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Résumé

Dans de nombreuses applications, aucun modèle physique du système n’est facile-
ment disponible, il s’agit alors de contrôler le système uniquement à partir de mesures
entrées-sorties. Deux types d’approches sont envisageables : identifier un modèle du
système puis l’utiliser afin de synthétiser un contrôleur, ce sont les méthodes indirectes,
ou identifier le contrôleur directement à partir des données du système, ce sont les
méthodes directes. Cette thèse se concentre sur les méthodes directes : l’objectif du
travail présenté est de mettre en place une nouvelle méthode directe basée sur des
données fréquentielles du système à contrôler.

Après un tour d’horizon des méthodes directes existantes, la méthode proposée est
introduite. Il s’agit de résoudre un problème de suivi de modèle de référence dans lequel
le problème d’identification est déporté du système vers le contrôleur. Dans ce cadre,
deux techniques d’identification sont considérées dans cette thèse : l’interpolation de
Loewner et l’approche des sous-espaces. De plus, une analyse préliminaire des données
fréquentielles disponibles permet de connâıtre les limites en performances du système
et, par conséquent, de choisir des spécifications atteignables. Enfin, une analyse de
la stabilité en boucle fermée permet d’obtenir un contrôleur stabilisant d’ordre réduit.
Tout au long de ce travail, les différentes étapes de la méthode sont appliquées progres-
sivement sur des exemples numériques. Pour finir, la méthode proposée est appliquée
sur deux systèmes irrationnels, décrits par des équations aux dérivées partielles: un
cristalliseur continu et un canal de génération hydroélectrique. Ces deux exemples sont
représentatifs de la catégorie de systèmes pour lesquels utiliser une méthode de contrôle
directe est plus pertinent.
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Abstract

In many applications, no physical description of the plant is easily available and
the control law has to be designed on the basis of input-output measurements only.
Two control strategies can then be considered : one can either identify a model of the
plant and then use any kind of model-based technique (indirect methods) to obtain a
control law, or use a data-driven strategy that directly compute the controller from
the experimental data (direct methods). This work focuses on data-driven techniques :
the objective of this thesis is to propose a new data-driven control technique based on
frequency-domain data collected from the system to be controlled.

After recalling some basics in feedback control, an overview of data-driven control
is given. Then, the proposed method is introduced. It is a model reference technique
where the identification problem is moved from the plant to the controller. In this work,
two identification techniques are used to that purpose: the Loewner framework and
the subspace approach. In addition, a preliminary analysis of the available frequency-
domain data allows determining the performance limitations and selecting achievable
specifications. Finally, a stability condition, already known in data-driven control, is
used during the reduction of the controller to ensure closed-loop internal stability. Along
this thesis, the different steps of the method are progressively applied on two numercial
examples. In the end, the proposed technique is applied on two irrational systems
described by partial differential equations: a continuous crystallizer and an open-channel
for hydroelectricity generation. These two examples illustrate the type of applications
for which using a data-driven control method is indicated.
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Notations and acronyms

Notations

ı Complex variable ı =
√
−1

ıR Imaginary axis
s Laplace variable
In Identity matrix of size n
A∗ Transpose and complex conjugate of A
† Moore-Penrose inverse
A ·B Entry-by-entry multiplication

Acronyms

LTI Linear Time Invariant
pLTI parametric-LTI
RHP Right-Half Plane
NMP Non-Minimum Phase
SISO Single Intput - Single Output
MIMO Multi Intput - Multi Output
BIBO Bounded Input - Bounded Output
SVD Singular Value Decomposition
SNR Signal to Noise Ratio
FRF Frequency Response Function
FFT Fast Fourier Transform
CbT Correlation-based Tuning
IFT Iterative Feedback Tuning
VRFT Virtual Reference Feedback Tuning
MFAC Model-Free Adaptive Control
ILC Iterative Learning Control
I4C Identification for Control
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Résumé 5
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Chapter 1

Introduction to data-driven
control

Contents

1.1 Context and motivations . . . . . . . . . . . . . . . . . . . . . 17

1.1.1 Model-based control and data-driven control . . . . . . . . . . 17

1.1.2 Developments of the data-driven control community . . . . . . 19

1.1.3 Motivating applications . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Overview of the contributions and thesis organization . . . 21

1.2.1 Proposed method in a glimpse . . . . . . . . . . . . . . . . . . 21

1.2.2 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.1 Context and motivations

For many applications, a mathematical description of the system, derived from phys-
ical laws, is not available. In this case, the controller has to be designed on the basis
of experimental measurements. Given some input-output data collected on a system,
two different strategies can be employed to design a controller. The first one consists in
identifying a model of the plant and then using any kind of model-based technique to ob-
tain a control law, and is called indirect methods. On the other side, the data-driven
strategy directly computes the controller from the experimental data. Such techniques
are also called direct methods. Data-driven and model-based control are two parts of
control theory that do not address the same classes of problems.

1.1.1 Model-based control and data-driven control

Concerning the model-based strategy, the control performances directly depend on
the amount of under-modelling of the true system. However, modeling errors are in-
evitable when it comes to identify a process on the basis of experimental data. To
address this issue in model-based theory, robust control theory emerged and proposed
to consider noise and uncertainties in the model or the parameters. Therefore, this type
of approach is indicated for problems where a reliable model with bounded modeling
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Chapter 1. Introduction to data-driven control

errors is available. Considering descriptions of modeling errors, it is then possible to
guarantee that the obtained controller is robust enough in case the model does not
represent exactly the actual system, as long as the true system stays in the defined set
of uncertainties around the nominal model. The main challenge is then to correctly
describe the model uncertainties, which is not a trivial question since in most cases,
identification techniques do not give enough information regarding the error between
the obtained model and the actual plant to construct such a model. It should also
be noted that an accurate model often has an important order, which complicates the
resolution of the control design problem. Depending on the employed model-based
technique, the complexity of the obtained controller may increase with the order of
the identified model of the plant. From a control perspective, structured model-based
control have been developed to address this problem and to be able to limit the order
of the designed controller by structuring it. It should be noted that the area of system
identification grew a lot to be able to expand the fields of applications for model-based
control technique for applications where a model cannot be derived from first principles.
For this reason, identification for control (I4C) emerged: the objective of I4C is to de-
sign a model appropriate for control design, instead of looking for the true system. I4C
often consists in iterating the identification and control steps to improve the quality of
the model regarding the control performances. However, the obtained control-oriented
models are uncertain and one of the major issue was to identify these models uncer-
tainty to study the robustness of the resulting controllers. Finally, finding a model that
is accurate and at the same time simple enough to design a controller, and finding ap-
propriate bounds for the associated uncertainties, can still be too time-consuming, too
complex or too costly, for some applications.

For this type of applications, data-driven techniques should be considered. Direct
data-driven methods are not sensitive to modelling errors since the selection of the
controller is done directly from the experimental data. They are also less conserva-
tive. Moreover, they are less time-consuming since the modelling and/or identification
steps are skipped and the resulting control law is tailored to the actual system. In
[Hjalmarsson, 2005], it is recalled that modelling represents 75% of the efforts in con-
trol projects. Of course, one could argue that the model of the plant considered in
model-based strategy can be used for other purposes (stability and robustness analysis,
simulation, etc...). However, recent developments of data-driven techniques allow to
deal with robust control design specifications. Furthermore, different techniques have
been proposed to handle stability considerations in different data-driven frameworks.
Finally, when it comes to simulation purposes, the models employed to this aim are
often too complex to be used for controller design through model-based approaches.

Nevertheless, data-driven approaches suffer some drawbacks. The first one is that,
as said in [Safonov and Tsao, 1994], experimental data only represent a subset of the
physical system’s behaviour. Only the dynamics exhibited by the available data will
be controlled by such techniques while robust control techniques will consider a set
of plant’s dynamics. Furthermore, since no plant model is available in a data-driven
framework, it is not possible to have any closed-loop simulations or any stability and/or
robustness guarantees. The advantage of model-based techniques such as robust control
is to address these problems by considering a nominal model and a surrounding envelope
containing the possible plant’s behaviour. The definition of a model set in indirect
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1.1. Context and motivations

control approaches is based on an upper bound for the modelling error: this bound can
be chosen to be conservative or on the basis of the available data. In this last case, it
should be noted that, as said in [Safonov and Tsao, 1994], the data can only provide a
lower bound on the plant uncertainty since it does not represent the complete system’s
behaviour. This is why it is said in [Brozenec et al., 2001]:

“Control theory makes no claims about the performance or stability of physical
systems; only about their models.”

The same stands for data-driven control: direct techniques cannot go further than the
available data.

The conclusion of these remarks is that these two strategies, model-based and data-
driven, are complementary in the sense that they do not address the same categories of
problems. If a reduced-order and accurate model, suitable for model-based control, is
available, then a model-based approach should be considered. This is also the case if the
model is uncertain but these uncertainties can be simply and accurately described. If it
is not the case because the identification step is too complicated compared to the stakes
of the considered application, data-driven control stands as the perfect alternative. It
should be noted that the complexity of model identification depends on the considered
application: is it a critical system? what is at stake when using this system (human lives,
expensive experimental set-ups, etc...)? The answers to these questions are important
to determine the importance of system identification. A survey of data driven control
techniques, and the trends and challenges regarding data-driven control in general, is
proposed in [Hou and Wang, 2013]. The complementarity of these two types of control
theory is perfectly expressed in this paper as follows:

“[Model-based control] starts and ends with the model. To some extent, it may be
called model theory rather than control theory.”.

Another comparison between a model-based and a data-driven technique has been pro-
posed in [Formentin et al., 2014b] and emphasize that using data-driven techniques
implies a larger variance of the controller parameters than model-based control design,
but it also can lead to a lower control cost.

1.1.2 Developments of the data-driven control community

Numerous direct methods have been proposed in the literature. The first known
direct control technique is the data-driven design of PID controllers proposed in the
pioneer work of Ziegler and Nichols in the 40’s [Ziegler and Nichols, 1942]. This work
allows to set the parameters values of a PID controller according to experimental mea-
surements. For the first time, a technique answers the need for a practical tuning method
that does not involve a too difficult step of system analysis and identification. In the
90’s, other direct techniques to tune PID controllers have been proposed, see [Åström
and Hägglund, 1995]. At the same time, the Unfalsified Control (UC, [Safonov and
Tsao, 1995]), Iterative Feedback Tuning (IFT, [Hjalmarsson et al., 1994]), Model-Free
Adaptive Control (MFAC, [Hou, 1999]) and Iterative Learning Control (ILC, [Moore,
1996]) were developed. More recently, other data-driven techniques have been pro-
posed, such as the VRFT (Virtual Reference Feedback Tuning, [Campi et al., 2002]),
the Correlation-based Tuning (CbT, [Karimi et al., 2002]), or the ones proposed in
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Chapter 1. Introduction to data-driven control

[Karimi and Kammer, 2017], [Hori et al., 2016], [Apkarian and Noll, 2018] and [Karimi
et al., 2018].

Even though the literature offers numerous data-driven techniques to design con-
trollers, the community is still growing and has many challenges to face in the various
related fields of research. To begin with, data-driven theory still needs tools to analyze
stability and robustness. In particular, it implies to propose new definitions of robust-
ness when it comes to data-driven theory, as pointed out in [Hou and Wang, 2013]. As
a matter of fact, in model-based theory, a control system is said to be robust if it can
endure variations of the considered model due to unmodelled dynamics. In data-driven
control, no model of the plant is used and, therefore, the concept of unmodelled dynam-
ics does not apply to direct control design techniques. When it comes to stability, some
data-driven techniques have proposed ways to analyze or enforce closed-loop stability,
see [Van Heusden et al., 2009] for example. Some of them rely on data-driven opti-
mization or data-driven estimation of the H∞ norm of dynamical systems: data-driven
theory still needs to develop tools in these two areas. In addition, it is important to
find a way to evaluate the performances of the designed closed-loops in a data-driven
framework.

1.1.3 Motivating applications

In [Hou and Wang, 2013], it is recalled that data-driven control has emerged with the
development of large-scale industrial processes for which obtaining of a model through
system identification is a complicated task. In fact, data-driven framework is more
indicated to process the huge amounts of data made available in this kind of control
problems. A good example is the power grid, treated in [Kammer, 2018] with a data-
driven control technique. In order to increase the part of renewable energy, the structure
of the power grid moves from a centralized one to a distributed one with a great number
of generation units, increasing its complexity. Regarding this evolution of the electrical
grid, the challenge is to ensure stability and power quality. This requires new control
methodologies since the electrical parameters are uncertain, and sometimes unknown:
finding a parametric model of the grid would be really complicated. At the same time,
the availability of real-time measurement data has increased significantly. For these
reasons, a data-driven strategy is indicated in this case.

More generally, data-driven techniques allows to treat numerous modern control
applications in which a model is too complex to obtain while experimental data is
easily available. This is the case for modern industry, as highlighted in [Yin et al.,
2014] and [Yin et al., 2015], for which no sufficient knowledge regarding the involved
complex processes is available. As explained in [Bonvin et al., 2006], this is the case
for batch processes. In [Formentin et al., 2014a], the data-driven technique presented
in [Formentin et al., 2012] has been applied to a gravimetric blender, which is a typical
batch process in the plastic industry: the obtained control performances allow to ensure
the quality of the produced material, to reduce plastic wastes and therefore to increase
the efficiency of the process. For the MFAC framework only, more than 70 applications
are cited in [Hou et al., 2017], including industrial processes, but also power systems
and motion systems.
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The recent profusion of the literature in the area of data-driven control highlights
the fact the data-driven control community has to grow to face challenging modern
applications as the ones mentioned before.

1.2 Overview of the contributions and thesis organization

1.2.1 Proposed method in a glimpse

This study is focused on the data-driven design of controllers for Linear Time-
Invariant (LTI) systems on the basis of frequency-domain data. To address this topic,
a new data-driven technique is proposed in the frequency-domain. As the IFT, the
VRFT or the CbT, it is a model reference technique: the specifications are expressed
through a reference transfer function denoted M(s) ∈ RH∞ that represents the desired
closed-loop behaviour.

The general problem formulation for model-reference control is summed up on Figure
1.1. The objective is to design a controller K on the basis of frequency-domain data
from the plant P so that the corresponding closed loop behaviour is as close as possible
from the objective closed-loop M, e.g. to minimize ε for any reference signal r.

M

K P
+ − −

+

r
ε

Figure 1.1: Problem formulation: M is the desired closed-loop, P is the plant and K
the controller to be designed.

While the IFT, the CbT and the VRFT are based on time-domain data, the method
proposed in this thesis is based on frequency-domain data from the plant. The data
consists in samples of the frequency-response of the system P, denoted {Φi}Ni=1, given

on a discrete frequency-grid {ωi}Ni=1. The couple {ωi,Φi}Ni=1 is the required data.

Then, the proposed method to solve the reference-model problem relies on two steps:

1. Based on the available data {ωi,Φi}Ni=1 and the reference model M, compute the

frequency-response of the ideal controller K? at the frequencies {ωi}Ni=1. The
ideal controller K? is the one that would exactly give the objective transfer M if
inserted in the closed-loop during the experiment.

2. Identify a reduced order model K̂ of the ideal controller on the basis of its
frequency-domain data. To this aim, two frequency-domain identification methods
have been largely used in this manuscript:

• The Loewner interpolation framework [Mayo and Antoulas, 2007] [Antoulas
et al., 2015], usually employed for data-driven model approximation;
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• A subspace-based algorithm [McKelvey et al., 1996], which is a well known
frequency-domain identification method;

This method has been introduced in this original form in [Kergus et al., 2017],
where only the Loewner approach was presented for controller identification. The main
advantage of the proposed method is its simplicity:

• The user does not have to choose a structure for the controller, unlike the CbT or
the VRFT approaches where the poles of the controller are fixed a priori.

• The order of the controller may become a tunable parameter allowing to find a
compromise between complexity and reliability. It may also be selected automat-
ically through the Loewner framework and the subspace approach.

• As for other data-driven techniques, this method is appealing for engineers for
applications when a controller should be synthesized quickly and for which it
would be too costly or too complex to identify a model.

• It can be applied from SISO (Single Input-Single Output) to MIMO (Multi Inputs-
Multi Outputs) plants.

1.2.2 Thesis overview

• Data {ωi,Φi}Ni=1

• Reference model M

Definition of the as-
sociated ideal con-

troller K? (Chapter 4)

Controller K identifi-
cation (Chapter 5)

• Loewner framework

• Subspace approach

2) Ensuring that the
ideal controller represents

a desirable control law

3) Ensuring
internal stability

1) Order reduction
for the controller

Figure 1.2: Original form of the proposed method (blue block) and the associated
challenges (red blocks).
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The main steps of the overall proposed method, as introduced in [Kergus et al., 2017],
are represented on Figure 1.2. The problem formulation is further detailed in Chapter 4
while the identification methods are detailed in Chapter 5. Numerical applications are
also provided in Chapter 4, highlighting the three major challenges explicited on Figure
1.2 and detailed hereafter.

1) Order reduction for the controller
The identification of the controller K is the core of the proposed method. There-
fore, it will be treated in the first place, see Chapter 5. The order reduction is done
through the proposed identification techniques. On that topic, the emphasis has
been put on exploring the abilities of the Loewner framework and the subspace ap-
proach in a data-driven control perspective. The main concern is to handle noisy
data and to ensure the stability of the identified controller, see [Kergus et al.,
2018b].

2) Ensuring that the ideal controller represents a desirable control law
As explained in [Bazanella et al., 2011], one of the main challenges for reference-
model techniques is to determine the specifications. This is particularly high-
lighted when it comes to the particular cases of non-minimum phase or unstable
plants: if the instabilities of the plant are not taken into account, they will be
compensated by the ideal controller, which then destabilizes the plant. One of the
first contribution, detailed in Chapter 6, is to propose a method to choose the ob-
jective M that takes into account the instabilities of the plant, see [Kergus et al.,
2019b]. This is a common problem for all model-reference data-driven techniques.

3) Ensuring internal stability
Finally, in the initial form presented above, the proposed method does not give any
information regarding closed-loop stability. The choice of the reference model M is
then coupled with a stability analysis technique in order to predict if the designed
closed-loop will be internally stable. This step will also limit the reduction of the
controller order. This technique is detailed in Chapter 7.

To tackle these three challenges, the method proposed in [Kergus et al., 2017] has
been modified. The new form of the method is now summed up in Figure 1.3. It includes
two additional steps:

• The choice of the reference model M: the objective is to answer problem 2)
by taking into account the intrinsic performance limitations of the plant when
choosing a reference model. The choice of the reference model is now lead by a
preliminary data-driven stability analysis of the plant’s data, allowing to estimate
its instabilities, both poles and zeros, which define what dynamics the plant can
reach in closed-loop.

• A data-driven stability analysis: the last step of the method now consists in
studying the internal stability of the resulting closed-loop, based on the controller
modelling error. Consequently, this step will also bound the reduction of the
controller in order to match the stability requirement.
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• Data {ωi,Φi}Ni=1

• Performance specifications

Construction of an
achievable reference

model M (Chapter 6)

Definition of the as-
sociated ideal con-

troller K? (Chapter 4)

Controller K identifi-
cation (Chapter 5)

• Loewner framework

• Subspace approach

Data-driven stability
analysis and reduction of the
controller Kr (Chapter 7)

Figure 1.3: Final version of the proposed method.

1.2.3 Applications

Along this work, numerical examples will be used to illustrate the proposed method.
Each one demonstrates some specific features. For example, the different natures of the
plant will illustrate how instabilities affect the control performances. In the end, two
industrial applications will be presented in Chapter 8.

i) A stable and minimum phase plant: the DC motor

The first considered example is the control of a DC motor’s speed. The electric
equivalent circuit is represented on Figure 1.4. It is a common actuator providing rotary
motion. Its input is the voltage u and the output to be controlled is the rotational speed
ω.

The following equation is obtained by applying Kirchoff’s law:

L
di

dt
+Ri = u− v, (1.1)
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u

R
i

L

vω

Figure 1.4: Armature circuit and DC motor.

where v is the back electromotive force, given by v = Kemfω withKemf = 0.01V.(rad.s−1)−1

the electromotive force constant of the motor. L = 0.5H is the inductance of the ar-
mature while R = 1Ω is its resistance. By applying Newton’s 2nd law on the motor, we
have:

Jω̇ + bω = T, (1.2)

where T = Kti is the torque generated by the motor, proportional to the armature
current i through the motor torque constant Kt = 0.01N.m.A−1. J = 0.01kg.m2 is the
moment of inertia of the rotor and b = 0.1N.m.s is the friction constant of the motor.
By applying the Laplace transform, the following transfer function of the system is
obtained:

P(s) =
ω(s)

u(s)
=

Kt

(Js+ b) (Ls+R) +KemfKt
=

0.01

0.005s2 + 0.06s+ 0.1001
. (1.3)

For this application, the control objective is to fasten the response of this actuator and
to have a zero tracking error. The proposed method will be applied on this example in
Chapter 4 in order to illustrate the original form of the proposed method (see Figure 1.2
and [Kergus et al., 2017]). Its purpose is mainly to apply the controller identification
step using different reference models in order to understand the impact of the order
reduction and of the specifications on the design process. In Chapter 5, this example
will be used on the basis of noisy data in order to demonstrate the improvements of the
controller identification step. In Chapter 7, a data-driven closed-loop stability analysis
is also performed.

ii) A non-minimum phase stable plant: the flexible transmission

This application has been used as a benchmark for robust digital control in [Landau
et al., 1995] and for different data-driven control techniques: the IFT in [Hjalmarsson
et al., 1995], the VRFT in [Campi et al., 2002] and [Sala and Esparza, 2005], and in
[Karimi et al., 2007] and [Van Heusden et al., 2011b] for the non-iterative CbT. The
considered flexible transmission is composed of three pulleys, see Figure 1.5. It is a
SISO system: its input is the angle θ1 which can be controlled, and its output is the
angle θ3.

In the original application in [Landau et al., 1995], three discrete transfer functions
are given for different loads of the third pulley, for a sampling period Ts = 0.05s. Here,
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θ1

θ2

θ3

Figure 1.5: Flexible transmission system.

we consider the unloaded case only. The transfer of the plant is given by:

P(z) =
θ3(t)

θ1(t)
=

0.2821z + 0.5067

z4 − 1.418z3 + 1.589z2 − 1.316z + 0.8864
.

Applying a bilinear transform with the given sampling period, the continuous time
model P (s) is obtained:

P(s) =
θ3(s)

θ1(s)
=

0.03616(s− 140.5)(s− 40)3

(s2 + 1.071s+ 157.9)(s2 + 3.172s+ 1936)
. (1.4)

This transfer function has four zeros in the Right-Half Plane (RHP). This application
will be used in Chapter 4 to illustrate the difficulty of choosing an appropriate reference
model and how, in practice, if no attention is paid, it is possible to identify a destabilizing
controller. In Chapter 5, this example is used to detail the controller identification step.
In Chapter 6, the RHP zeros of the system are estimated in a data-driven way and used
to build an achievable model reference. In Chapter 7, closed-loop stability is analyzed.

iii) Industrial applications

In Chapter 8, two industrial applications that show the relevance of using data-driven
control techniques are considered:

1. The control of the water depth in an open-channel: this system is presented in
[Dalmas et al., 2016] and was controlled using the original method in [Kergus
et al., 2017];

2. The control of a continuous crystallizer: this process is widely used in the chemical
industry. The partial differential equations describing its behaviour are studied
in [Rachah et al., 2016]. This control problem has been treated in [Vollmer and
Raisch, 2001] using a model-based technique and in [Apkarian and Noll, 2018]
using a data-driven one.

In these applications, the system is irrational, which makes the frequency-domain ap-
proach very interesting. Indeed, time-domain simulations are not easily accessible. How-
ever we still can estimate samples of the frequency response of the system {ωi,Φi}Ni=1,
from which the ideal controller’s frequency response can be deduced. For this reason,
these two applications illustrate the strengths of data-driven control since there is no
need to find a reduced-order model of the system to design the controller. These exam-
ples are treated in Chapter 8 using all the tools proposed in this work and recalled in
Figure 1.3. These two applications are also presented in [Kergus et al., 2019a].
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1.2.4 Thesis organization

The manuscript is divided in three parts. The present one consists in an introduction
to data-driven control. The contribution of this thesis, which is the proposal of a new
data-driven reference model technique, is presented in the second part. Finally, the
third one is composed of the conclusions and outlooks of this work.

Chapter 2: Preliminaries on LTI systems and feedback control

This chapter aims at introducing various concepts regarding dynamical systems and
feedback control that will be used all along this work. Notations are also introduced.

Chapter 3: Data-driven control

This chapter recalls the definition of data-driven control and the main differences with
model-based control design. Then, a brief survey of existing data-driven control design
techniques is proposed.

Part II: Data-driven control in the frequency domain

Chapter 4: General problem formulation

In this chapter, the general formulation of the method proposed in this thesis is exposed
in its original form, as in [Kergus et al., 2017]. First, the new data-driven paradigm to
design controllers for LTI systems is introduced. The key notions and the steps of the
method are exposed. This first version of the method is then applied to the control of
the DC motor and of the flexible transmission systems. These use-cases underline the
challenges that any model reference technique has to tackle: the identification of the
controller, the choice of achievable specifications and closed-loop stability analysis, see
Figure 1.2. These problems will be treated in the following dedicated chapters. This
chapter plays a pivotal role and provides the main idea of the manuscript.

Chapter 5: Controller identification in the frequency-domain

In this chapter, the Loewner framework and the subspace approach are recalled. These
are the two identification techniques in the frequency-domain used in the proposed
method to identify a controller. They are applied to the identification of the so-called
ideal controller K?. As said earlier, the properties of the considered identification tech-
niques are explored to enforce the stability of the identified controller and to improve
the robustness of the proposed method to noisy data. These contributions were exposed
in [Kergus et al., 2018b].

Chapter 6: Choice of an achievable reference model

In this chapter, the difficulty to choose the reference model M in data-driven techniques
is addressed. The definition of the achievable closed-loop behaviours is defined accord-
ing to the plant’s instabilities. A technique to build an achievable reference model is
proposed. It relies on a data-driven estimation of the plant’s instabilities uniquely on
the basis of its frequency-response samples. This contribution is presented in [Kergus
et al., 2019b] and applications are given in [Kergus et al., 2019a].
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Chapter 7: Closed-loop stability analysis and enforcement

This chapter exposes a data-driven stability analysis of the closed-loop obtained with
the identified controller. To this aim, the small-gain theorem is applied in the data-
driven case. The conditions of its applications are met thanks to the steps detailed
in the Chapters 4, 5 and 6. Internal stability is ensured until a certain controller
modelling error. Therefore, this internal stability consideration plays a key role in the
order reduction of the controller.

Chapter 8: Application to an hydroelectricity generation channel

In this chapter, the proposed data-driven method is applied on the two industrial exam-
ples introduced earlier: the open-channel for hydroelectricity generation and the contin-
uous crystallizer. The objective is to furnish data-driven oriented applications: contrary
to the numerical examples used along the thesis as a proof of concept, a reduced-order
model, suited for model-based design, would be complicated to obtain. These examples
are also presented in [Kergus et al., 2019a].

Part III: Conclusion

Chapter 9: Discussion

In this Chapter, the proposed data-driven control technique is summarized in one al-
gorithm and its different steps are briefly summed up. The results on the different
applications are discussed, as for the main strengths and limitations of the proposed
technique. Finally, different ways to improve the method proposed during this thesis
are presented and suggested for future research.
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Chapter 2

Preliminaries on LTI systems and
feedback control

The objective of this Chapter is to introduce various concepts regarding the modeling
and control of dynamical systems that will be used all along this work. In this thesis,
we consider the control of Linear Time-Invariant (LTI) continuous systems. For more
information on this general topic, the reader should refer e.g. to [Zhou et al., 1996] and
[Zhou and Doyle, 1998].

Contents

2.1 Generalities on LTI systems . . . . . . . . . . . . . . . . . . . 29

2.1.1 Representations of LTI models . . . . . . . . . . . . . . . . . . 30

2.1.2 Properties of LTI models . . . . . . . . . . . . . . . . . . . . . 32

2.1.3 Towards parametric models . . . . . . . . . . . . . . . . . . . . 34

2.2 The feedback control problem . . . . . . . . . . . . . . . . . . 35

2.2.1 Internal stability . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2 Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1 Generalities on LTI systems

As indicated by its name, a LTI system is linear and defines the relationship between
the inputs and the outputs of the system as a linear map. Time invariance means that
the output does not depend on the particular time the input is applied. Therefore, the
main property of LTI systems is that they can be characterized entirely by their impulse
response in the time-domain and equivalently, by their Frequency Response Function
(FRF) in the frequency-domain.
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2.1.1 Representations of LTI models

State-space representation and transfer functions

A rational LTI system H of order n, with nu inputs and ny outputs, can be represented
by a state-space model H = (A,B,C,D) as in (2.1) in the time-domain:

H :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

, (2.1)

where A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n and D ∈ Rny×nu . Then, x(t) ∈ Rn is the
state vector, u(t) ∈ Rnu is the input vector and y(t) ∈ Rny the output vector. It can
also be represented in frequency-domain by its associated transfer function, as follows:

H(s) = C(sIn −A)−1B +D, (2.2)

where In is the identity matrix of size n× n.

Considering a matrix transfer function H(s), a state-space model (A,B,C,D) sat-
isfying H(s) = (A,B,C,D) is a realisation of H(s).

Definition 2.1.1. Minimal realisation
A state-space realisation (A,B,C,D) of a rational transfer matrix H(s) is a minimal
realisation if the dimension of the matrix A is the smallest possible.

For proper systems, the order of a minimal state-space realisation of a matrix transfer
function is also called the McMillan degree.

Remark 2.1.1. It is also possible for a dynamical system to be characterized by a
descriptor state-space representation H = (E,A,B,C,D):

H :

{
Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

, (2.3)

where E ∈ Rn×n. Its associated transfer function is given by (2.4).

H(s) = C(sE −A)−1B +D. (2.4)

The first interest of this type of representation is that the matrix E can be singular
or complicated to invert for large-scale systems for example. As said in [Luenberger,
1977] and [Duan, 2010], many systems are naturally described by a descriptor state-
space model. Furthermore, some systems cannot be described by traditional state-space
models as the ones described by Differential Algebraic Equations (DAE), see [Sjöberg,
2005] on that topic and for examples of systems dirscribed by DAEs. While a state-
space system can only have finite modes, a descriptor system can exhibit both finite
and infinite modes. Therefore, descriptors models allow to consider impulsive dynamics
and more complex models including polynomials for example. In addition, the D-term
may be embedded in the E matrix as an infinite mode. Indeed, any rational matrix has
a descriptor realization in the form of (2.4) as said in [Duan, 2010].

A descriptor representation is said to be minimal if its dimension n is the smallest
possible. When considering such a realisation, the McMillan degree is given by the rank
of the E matrix.

It should be noted that the classic state-space representation is only a particular
case of the descriptor state-space one, for which E = In.
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Poles and zeros

LTI systems are also characterized by their poles and zeros. On this aspect, the reader
should refer to [MacFarlane and Karcanias, 1976] for more information. However, as in
[Zhou et al., 1996] or [Zhou and Doyle, 1998], the poles and zeros are defined by putting
the considered system in the Smith form. Here, the poles and zeros are defined directly
according to the transfer matrix H(s) of a system H, as in [Havre and Skogestad, 1996]
and [Havre and Skogestad, 2001].

Let us consider a rational LTI system H equipped with a state-space representation
(A,B,C,D). Its poles and zeros are defined as follows.

Definition 2.1.2. Zeros
zi ∈ C is a zero of the system H if the rank of H(zi) is less than the maximal rank
of the transfer matrix H(s). There exists non-zero vectors yzi ∈ Cny and uzi ∈ Cnu ,
respectively called the output zero direction and the input zero direction, which satisfy:

yTziH(zi) = 0 H(zi)uzi = 0 (2.5)

Definition 2.1.3. Poles
The poles {pj}np

j=1 ∈ C of the system H are the eigenvalues of the matrix A. They are
the roots of the characteristic equation:

det(sI −A) = 0.

For each pole pj , there exist non-zero vectors, the output directions ypj and the input
directions upj , which represents the directions in which H(pj) is infinite.

Considering a state-space representation H = (A,B,C,D), for a pole pj of H, the
associated input and output directions, upj and ypj respectively, can be computed as
follows:

upj = BTxL
ypj = CxR

, (2.6)

where xL and xR are respectively left and right eigenvectors of A associated to pj :

xTLA = xTLpj
AxR = pjxR

. (2.7)

Pole-residue expansion

Another representation that will used in this work is the pole-residue expansion of the
transfer function. When the system has semi-simple poles (A is diagonalisable), the
pole-residues expansion is given by:

H(s) =

n∑
i=1

Ri
s− λi

, (2.8)

where {λi}ni=1 are the poles of the considered system, which are the eigenvalues of the
matrix A, considering the state-space realisation in (2.1). Each matrix Ri ∈ Cny×nu is
the residue associated to the pole λi, they are computed as follows:

∀i = 1 . . . n,Ri = (Cxi)
(
yTi B

)
, (2.9)
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with, for all i = 1 . . . n, xi and yi are the right and left eigenvectors associated with the
eigenvalue λi of the matrix A. The norm of the residues will be used in Chapter 5 as a
measure if the importance of the associated poles in the system’s dynamics.

Remark 2.1.2. For a descriptor state-space model as in (2.3), the poles λi of the
system are the eigenvalues of the matrix pencil (A,E). They are defined along with
the associated right and left eigenvectors in (2.10). The residues are then computed
according to (2.11).

∀i = 1 . . . n,

{
Axi = λiExi
yTi A = λiy

T
i E

(2.10)

∀i = 1 . . . n, Ri = (Cxi)
(
yTi Exi

)−1 (
yTi B

)
(2.11)

Remark 2.1.3. As said earlier, LTI systems are completely characterized by their
frequency-response. Consequently, people may refer to frequency response measure-
ments from such plants as non-parametric models.

From now on, if not said otherwise, we will consider state-space realisations (2.1)
and their transfer functions (2.2).

2.1.2 Properties of LTI models

Observability and controlability

These notions are particularly relevant to understand the identification techniques re-
called in Chapter 5 and used to obtain a controller model. They will also be used in
the data-driven estimation of instabilities presented in Chapter 6.

Definition 2.1.4. Observability
A system described by a state-space realisation as in (2.1), and its pair (A,C), is said
to be observable if the initial state x0 = x(0) of the system can be determined from
the input and output signals u(t) and y(t) in a given time interval [0, tf ], for any tf > 0.

Therefore, if the system is observable, it means that the entire system’s behaviour is
characterized by the system’s output y, for any input signal u. On the contrary, for an
unobservable plant, the state vector cannot be determined through outputs measure-
ments.

The observability matrix, introduced in (2.12) for a system of order n, allows to test
if a system is observable. The system is observable if and only if O, as given in (2.12),
has full-column rank, meaning rank(O)= n.

O =


C
CA

CA2

...

CAn−1

 ∈ Rnyn×n (2.12)

Since the observability of a system is determined by the A and C matrices only, it is
also said that the pair (C,A) is observable.
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Definition 2.1.5. Controllability
A system described by a state-space realisation as in (2.1), or the pair (A,B), is said to
be controllable if, for any initial state x0 and final state xf , and for any tf > 0, there
exists a piecewise continuous input signal u(t) defined on the interval [0, tf ] such that
x(tf ) = x1.

The controllability matrix, introduced in (2.13) for a system of order n, allows to
test if a system is controllable. The system is controllable if and only if C, as given in
(2.13), has full-row rank, meaning rank(C)= n.

C =
(
B AB A2B . . . An−1B

)
∈ Rn×nun (2.13)

A realisation of a transfer matrix H(s) is minimal if and only if it is both controllable
and observable.

Remark 2.1.4. These notions of controlability and observability can be extended to
descriptor state-space models. A realisation (E,A,B,C,D) of order n is said to be
controllable if rank(A−λE,B) = n and rank(E,B) = n for all λ ∈ C. This is equivalent
with rank(Cg) = n, where Cg is the generalized controlability matrix, defined as follows:

Cg =
(

(λ1E −A)−1B . . . (λnE −A)−1B
)
∈ Rn×nnu (2.14)

with {λi}ni=1 ∈ C a set of distinct values which are not eigenvalues of the pencil (A,E).

The same way, a realisation (E,A,B,C,D) of order n is said to be observable if
rank(AT − µET , CT ) = n and rank(ET , CT ) = n for all µ ∈ C. This is equivalent with
rank(Og) = n, where Og is the generalized observability matrix, defined as follows:

Og =

 C(µ1E −A)−1

...

C(µnE −A)−1

 ∈ Rnyn×n (2.15)

with {µi}ni=1 ∈ C a set of distinct values which are not eigenvalues of the pencil (A,E).

As for state-space realisations, a descriptor state-space realisation is minimal if it is
controllable and observable. This will be useful when introducing the Loewner frame-
work in Chapter 5.

Stability and the H∞ and H2 spaces

As mentioned in the introduction chapter, analyzing closed-loop stability is an important
challenge for any data-driven control technique. It is then important to recall the
definition of a stable system.

Definition 2.1.6. BIBO stability
A system H is said to be Bounded-Input Bounded-Output (BIBO) stable if, for any
bounded input, it produces a bounded output.

Given a continuous state-space realisation H = (A,B,C,D), the plant H is stable if
and only if all its poles, the eigenvalues of A, have negative real values. More generally,
a system is stable if and only if its transfer function is analytic in the Right-Half Plane
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(RHP). The notion of stability leads us to introduce the following spaces, representing
important classes of functions.

L∞ is the space of functions bounded on the imaginary axis ıR. It means that the
functions in L∞ have no poles on the imaginary axis. RL∞ is the rational subspace
of L∞, containing all the proper and real rational functions bounded on the imaginary
axis. L∞ is equipped with the following norm:

∀H ∈ L∞, ‖H‖∞ = sup
ω∈R

σ (H(ıω)) , (2.16)

where σ(·) denotes the maximal singular value of a matrix. This norm, called the
H∞-norm, is important for stability and robustness analysis, as explained in Section
2.2.1. The closed-loop stability test proposed in Chapter 7 for the proposed data-driven
control technique relies on the estimation of the H∞-norm of a system from its FRF.

H∞ is the subspace of L∞ that are analytic and bounded in the open RHP. RH∞
is the subspace of proper real rational functions of H∞.

L2 is the set of square integrable functions defined on the imaginary axis. It is
equipped with the following norm:

∀H ∈ L2, ‖H‖2 =

√
1

2π

∫ ∞
−∞

trace (H∗(ıω)H(ıω)) dω, (2.17)

where trace(·) denotes the trace of a matrix and (·)∗ is the complex conjugate transpose
of a matrix. RL2 is the subspace of L2 containing the real rational and proper functions
with no poles on the imaginary axis.

H2 is the subspace of L2 of stable functions, in sense that they admit an analytic
continuation in the open RHP.H2, the orthogonal ofH2, is the subspace of L2 containing
the anti-stable functions, analytic in the open left-half plane. These spaces will be
mostly used for the data-driven stability analysis performed in Chapter 6. RH2 and
RH2 respectively and proper functions of H2 and H2.

2.1.3 Towards parametric models

If identification techniques are well-established for LTI systems in both time and frequency-
domain, the obtained models are valid only for a single operating point. Extension to
continuum of operating points have been developed in the area of Linear Parametrically
Varying (LPV) modelling and identification, as detailed in [Tóth, 2010]. LPV models
can be represented by a state-space model where the matrices depends on a time-varying
vector p(t), as in (2.18):

H(p(t)) :

{
ẋ(t) = A(p(t))x(t) +B(p(t))u(t)
y(t) = C(p(t))x(t) +D(p(t))u(t)

. (2.18)

To obtain such a model, global approaches in the area of LPV modelling require a
single experiment, where the parameters entering the model vary in a known sequence.
In this type of experiment, frequency-domain data are absolutely not relevant.
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Nevertheless, in many applications, as explained in [Lovera and Mercere, 2007],
a parameter-dependent model, as given in (2.19), is identified on the basis of local
experiments or simulations in which the parameter is frozen. When the operating point
remains unchanged during a local experiment, it is possible to use frequency-domain
data to characterize the system.

H(p) :

{
ẋ(t) = A(p)x(t) +B(p)u(t)
y(t) = C(p)x(t) +D(p)u(t)

, (2.19)

Note that, because of the lack of information regarding the time variation of the
scheduling parameter, this scenario is different from the traditional LPV framework
and can be designated as parametric-LTI (p-LTI).

It should be noted that a classical way to model LPV systems is to identify local
LTI frozen models at different operating points and to interpolate them. This type
of techniques, like gain scheduling for example, are called local approaches. The line
between the p-LTI case and the LPV one is usually crossed by assuming that the
parameters are slowly varying. It allows to transpose the obtained p-LTI model to the
LPV case with a bounded error, like in [Alkhoury et al., 2017].

In this work, identifying a parametric model of a controller can be useful. A variant
of the classic Loewner framework already tackles the identification of p-LTI models,
see [Ionita and Antoulas, 2014] and [Rapisarda and Antoulas, 2016]. In the subspace
approach, a one technique has been proposed during this thesis to identify such models,
see [Kergus et al., 2018a].

2.2 The feedback control problem

Given a system P, feedback control consists in designing a controller K so that the
feedback structure visible on Figure 2.1 is internally stable and allows to meet the
performance specifications. The different involved signals are u and y, the input and
output vectors of the plant, the measurement noise w, the disturbance d, the reference
signal r, which should be reproduced, and the associated tracking error ε = r − y.
The following relations between the different signals of the closed-loop are the basis of

K P
+ − +

+

+

+

r

d
ε u y

w

Figure 2.1: Considered feedback structure.

stability enforcement and performance specifications for feedback control design:

y = (Iny + PK)−1PKr− (Iny + PK)−1Pd− (Iny + PK)−1PKw; (2.20)
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ε = (Iny + PK)−1r− (Iny + PK)−1Pd + (Iny + PK)−1w; (2.21)

u = (Inu + KP)−1Kr− (Inu + KP)−1KPd− (Inu + KP)−1Kw. (2.22)

Considering the closed-loop of Figure 2.1, the sensitivity function S is the transfer
from the reference signal r to the tracking error ε. It is given by:

S(s) = (Iny + P(s)K(s))−1. (2.23)

The closed-loop transfer T from the reference signal r to the output y, is defined by:

T(s) = (Iny + P(s)K(s))−1P(s)K(s). (2.24)

It is also called the complementary sensitivity function since it satisfies T + S = Iny .

Assuming that the plant P and the controller K are proper, let us consider that
this closed-loop interconnection is realisable, meaning that all the transfers mentioned
above are well-defined and proper. As recalled in [Zhou and Doyle, 1998], this is the
case if and only if I +K(∞)P (∞) is invertible.

The considerations concerning the transfer functions appearing in (2.20), (2.21) and
(2.22) and the stability of the interconnection visible on Figure 2.1 will play an important
role in Chapter 6. The choice of the specifications and their impact on the proposed
design process can be well understood thanks to the notions presented in this section.

2.2.1 Internal stability

Internal stability is the first requirement for any feedback system: it guarantees that,
for bounded input signals, all the signals in the closed-loop stay bounded.

Definition 2.2.1. Internal stability
The closed-loop system of Figure 2.1 is internally stable if bounded inputs r, d and w
produce bounded outputs ε and u. This is the case if the six following transfer functions
are stable: S, T, SP, (Inu + KP)−1, (Inu + KP)−1KP and (Inu + KP)−1K.

Remark 2.2.1. In the SISO case, the matrices P(s) and K(s) commute and then, only
four transfer functions need to be stable to ensure internal stability.

Instead of checking the stability of all the mentioned transfer functions, the following
theorem introduces another condition as in [Zhou and Doyle, 1998] that will be used in
this work.

Theorem 2.2.1. The closed-loop visible on Figure 2.1 is internally stable if and only
if S is stable and if the number of RHP poles of the open-loop PK is equal to nK +nP ,
nK and nP being the number of RHP poles of K and P respectively.

From a practical point of view, Theorem 2.2.1 means that there should not be any
instabilities cancellation in the open-loop.
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2.2.2 Performances

In addition to the stability requirement, the control design should ensure that the feed-
back system shown on Figure 2.1 meets some performance objectives: the output y
should follow the reference signal r with a certain speed, a limited overshoot, while the
system may be submitted to disturbances d and measurement noise w. The command
signal u should also be reasonable to avoid any problem with the actuators. These
specifications can be divided in four categories: tracking, disturbance rejection, noise
attenuation and moderate command.

These four performance specifications and the way they are expressed for control
design purposes are detailed in the following paragraph. The inherent limitations of the
system, due to its instabilities, are finally discussed. These considerations will help the
reader to understand how critical the choice of the reference model is in the proposed
method, which is an important topic in Chapters 4 and 6.

A. Performance specifications in the frequency-domain

As explained in [Zhou and Doyle, 1998], the mentioned performance objectives means
that the signals ε and u should be in a given class of signals. This implies to understand
the relation between the inputs of the feedback system, the signals r, d and w, and its
outputs ε, y and u. To that extent, it is needed to define the specifications in the
frequency-domain through the transfer functions appearing in (2.21) and (2.22).

Tracking performances are defined by the relation between the reference signal r
and the tracking error signal ε. Then, according to (2.21), the tracking performances
are determined by the sensitivity function S in the frequency-domain:

• The tracking error in permanent regime is determined by the value of |S(ıω)| in
the low frequency-range.

• The response time of the closed-loop system is determined by the bandwidth ω0

of the sensitivity function S: the greater ω0 is, the faster the closed-loop is.

• The overshoot of the time-response is determined by the H∞-norm of S.

Therefore, this is why this problem is called sensitivity minimization, since it can be
written as follows: {

|S(ıω)| ≤ γ ∀ω ≤ ω0

|S(ıω)| ≤M ∀ω > ω0
, (2.25)

where γ, M and ω0 represents the tracking performance objectives and are fixed by the
user.

Disturbance rejection is characterized in the frequency-domain by the transfer
SP, see (2.21). This transfer should be designed as a bandstop filter for the frequency
ranges where the Fourier transform of the disturbance signal d is important.

Noise attenuation is determined by the transfer T. Since measurement noise is
usually mostly important in the high frequency range, T should be designed as a lowpass
filter. Since T + S = I, a trade-off is necessary between the tracking performances and
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the noise attenuation ones: indeed, increasing the cutoff frequency ω0 of the closed-loop
transfer T fasten the closed-loop but does not prevent the noise to affect the tracking
error ε.

Moderate command objectives are given on the transfers appearing in (2.22). The
gain of the transfer (Inu + KP)−1K should be limited to have a reasonable command
signal u. To limit the influence of the noise, its gain should also be limited in the high
frequency-range.

Remark 2.2.2. Weighted H2 and H∞ performance
In robust control design, the specifications are expressed through weighting functions
that represent the desired shapes for the different transfers and the desired performances.
For example, the sensitivity minimization problem becomes:

‖W1S‖∞ ≤ 1, (2.26)

where W1
−1 represents the desired highpass filter behaviour for the sensitivity function.

The moderate command objective is also classically written as follows:

‖W2KS‖∞ ≤ 1, (2.27)

where W2
−1 allows to bound the gain of transfer function KS.

B. Performance limitations

The possible performances of the feedback system of Figure 2.1 are limited by two
factors: the necessary trade-off between the different design objectives and the eventual
presence of instabilities in the plant. These two aspects are detailed hereafter.

Performance trade-off must be performed among the different performance ob-
jectives mentioned in the previous paragraph. A classic example is that the faster one
wants the closed-loop to be, the higher the command signal will be. Furthermore,
as explained in [Zhou et al., 1996] and [Zhou and Doyle, 1998], the loop design in
the frequency-domain, associated with the performances objectives, actually consists in
achieving high loop gains in a desired frequency range. However, it is not possible to
achieve an arbitrarily high gain over an arbitrarily wide frequency range: the closed-loop
stability feature gets less robust to model uncertainty and, at some point, the system
may be destabilized.

The presence of instabilities, RHP poles or zeros in the system limits the possible
closed-loop performances. Indeed, as said in Theorem 2.2.1, a necessary condition for
the closed-loop to be internally stable is that there should not be any cancellation of
instabilities in the open-loop. Therefore, as detailed in [Havre and Skogestad, 1996],
to preserve internal stability, for a given RHP zero zi of the plant P, associated with
an output direction yzi , the sensitivity function S and the complementary sensitivity
function T must satisfy: {

yTziT(zi) = 0

yTziS(zi) = yTzi
. (2.28)
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The same way, considering a given RHP pole pj of the plant P, associated with an output
direction ypj , the sensitivity function S and the complementary sensitivity function T
must satisfy (2.29) to preserve internal stability.{

T(pj)ypj = ypj
S(pj)ypj = 0

(2.29)

The analyticity constraints on S and T given in (2.28) and (2.29) limit the possible
performances of the closed-loop, see [Zhou and Doyle, 1998] or [Havre and Skogestad,
2001]. To highlight this point in the SISO case, let us introduce the Blaschke products
Bz and Bp defined respectively by the RHP zeros {zi}i=1...nz

and poles {pj}j=1...np
of

the plant:

Bz(s) =

nz∏
i=1

s− zi
s+ zi

Bp(s) =

np∏
j=1

s− pj
s+ pj

. (2.30)

These two functions, Bz and Bp, are stable and satisfy |Bz(ıω)| = 1 and |Bp(ıω)| = 1
for all frequencies ω ∈ R.

Thanks to (2.29) and (2.28), the functions B−1
p S and B−1

z T are in H∞ and the
following relations can be written:{ ∀z ∈ C, ‖S(s)‖∞ =

∥∥B−1
p (s)S(s)

∥∥
∞ ≥

∣∣B−1
p (z)S(z)

∣∣
∀p ∈ C, ‖T(s)‖∞ =

∥∥B−1
z (s)T(s)

∥∥
∞ ≥

∣∣B−1
z (p)T(p)

∣∣ (2.31)

By considering the RHP zeros {zi}i=1...nz
and poles {pj}j=1...np

of the system, it is
shown that the peak in S and T have a lower bound determined by the plant’s RHP
poles and zeros:  ‖S(s)‖∞ ≥ max

i=1...nz

∣∣B−1
p (zi)

∣∣
‖T(s)‖∞ ≥ max

j=1...np

∣∣B−1
z (pj)

∣∣ . (2.32)

Similar results are obtained in the MIMO case in [Zhou and Doyle, 1998] or [Havre and
Skogestad, 2001].

The instabilities of the system also limit the cutoff frequencies of the closed-loop
transfer functions S and T. As explained in the previous paragraph, in the SISO case,
one wants to have T(ıω) = 1 for low frequencies while T(zi) = 0 for any RHP zero zi.
Consequently, the bandwidth of the closed-loop must be much smaller than the smallest
RHP zero frequency.

In the general MIMO case, a good overview of the limitations of closed-loop per-
formances is available in [Seron et al., 1997]. As in the SISO case, these limitations
are induced by the analyticity constraints given in (2.28) and (2.29), determined by the
RHP poles and zeros of the system.

2.2.3 Robustness

In practice, models are associated with uncertainties since it cannot represent the true
plant behaviour. The uncertainties are the errors between the model and the reality.
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Usually, model sets are used to represents the uncertainties, by putting bounds in the
frequency domain for example.

The notion of robustness has been introduced in control theory to take into account
model uncertainty. The robustness of a closed-loop feedback system denotes the ability
of the controller to stabilize and/or ensure performances for the whole model set instead
of doing it for the nominal model only.

Results regarding the robust stability are mainly obtained thanks to the small gain
theorem, recalled in Theorem 2.2.2 as given in [Zhou and Doyle, 1998]. It requires to
write the uncertain system as another interconnection, visible on Figure 2.2. The block
∆ represents the uncertainties.

∆

M

Figure 2.2: M−∆ interconnection for stability analysis using the small-gain theorem.

Theorem 2.2.2. Small-gain theorem
Suppose M ∈ RH∞ and let γ > 0. Then the interconnected system shown on Figure
2.2 is well-posed and internally stable for all ∆ ∈ RH∞ with:

(a) ‖∆‖∞ ≤ 1
γ if and only if ‖M‖∞ < γ

(b) ‖∆‖∞ < 1
γ if and only if ‖M‖∞ ≤ γ

As said in [Zhou and Doyle, 1998], Theorem 2.2.2 still holds when M and ∆ are
infinite dimensional: they only need to be in H∞. The small-gain theorem will be used
in Chapter 7 to study the stability of the closed-loop.
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Chapter 3

State of the art: Data-driven
control

The objective of this chapter is to introduce data-driven control and the related chal-
lenges and difficulties. The differences and the relations between data-driven control
theory and model-based control theory will be exposed in Section 3.1. A survey of the
existing data-driven control techniques is proposed in Section 3.2.
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3.1 Data-driven control theory

Model-based control and data-driven control are two different parts of control theory.
However, model-based control techniques may have been called data-driven in the past.
This was mostly the case with model-based techniques where the model is obtained from
the plant’s measurements (the identification of the model is data-driven). For example,
in [Kostic, 2004], these techniques are called “Model-based data-driven control design”.
The terms “model-based control” and “data-driven control” can therefore be confusing.
This section aims at recalling their definitions before recalling the differences between
these two types of methods.

3.1.1 Definition of data-driven control

Different definitions of data-driven control have been proposed in the literature.
All of them emphasize the key aspect of data-driven control which is the direct use of
input-output data from the plant. In [Xu and Hou, 2009], the definition of data-driven
control includes the analysis and the guarantee of the results. In [Van Helvoort, 2007],
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it is said that data-driven control uses the plant’s data directly to adapt the controller.
In [Van Heusden, 2010], data-driven control is defined as the minimization of a control
criterion. In [Hou and Wang, 2013], these three definitions are regrouped in only one.
In this work, the following definition of data-driven control is proposed.

Definition 3.1.1. Data-driven control
A control technique is said to be data-driven when the measured data of the plant is
used directly for the design of the controller. No parametric model of the system is
necessary.

This definition includes all the direct control approaches, even the ones that are not
adaptive or not relying on the resolution of an optimization problem. Furthermore, an-
alyzing the stability and the robustness of the obtained closed-loop is still a challenging
issue for many data-driven control techniques, but they still should be classified as data-
driven methods. In contrast, model-based control can be defined as in [Van Heusden,
2010].

Definition 3.1.2. Model-based control
A control technique is said to be model-based when it can be decomposed in two distinct
steps. The first step consists in obtaining a model of the plant. During the second step,
the controller is designed on the basis of the model of the system.

3.1.2 Relations and differences with model-based control theory

As explained in [Hou and Wang, 2013], real-world systems can be divided in four cate-
gories:

1. Plants for which an accurate model is available;

2. Those for which a model with a good accuracy and moderate uncertainties is
available;

3. Those for which a model is available but not adapted to control design because of
a too high order for example;

4. Those for which a model is unavailable or too difficult to obtain.

Here, the models can be obtained either by first principle or system identification.
Model-based control theory allows to tackle the problems where plants are in the first
two classes.

For systems in the third category, model or controller reduction is inevitable for
control design purposes. As a matter of fact, this type of models complicates the
resolution of the control design problem and/or leads to high order controllers, which
are too complex to implement. However, robust control or adaptive control can address
such problems to some extent. It should be noted that non-linear systems might be
catalogued in this category when the non-linearities are too important to be tackled by
nonlinear model-based control techniques.

The last category of systems cannot be treated by model-based control techniques.
Finally, data-driven control techniques are developed to address the control design for
systems in this category, but also for some very complex plants of the third category.
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3.2 Overview of data-driven control techniques

The objective of this section is to give an overview of data-driven techniques. They are
classified according to their type of problem formulation: (i) model-reference control,
(ii) robust control and (iii) predictive and learning control. Since the method introduced
in this work is a model-reference one, the corresponding part is more detailed in order to
put in perspective the results to be exposed. Other possible classifications of data-driven
control techniques will be discussed in 3.2.4.

3.2.1 Model reference control

Model-reference control consists in finding a controller that achieves a desired closed-
loop behaviour, called the reference model, denoted M. Here, only the data-driven
model reference techniques are presented.

Virtual Reference Feedback Tuning (VRFT)

The VRFT is one of the most popular one-shot data-driven technique. It was first
proposed in [Campi et al., 2002] for SISO plants. It relies on a single batch of time-
domain data {u(tk), y(tk)}Nk=1 from the plant P. The problem is shown on Figure 3.1.

M−1

K P
+ −

r? e? u y

Figure 3.1: Principle of the VRFT.

The VRFT is based on the fictive reference r?, represented on Figure 3.1. It is the
reference signal that would give the experimental output if the closed-loop were defined
by the objective transfer function M. By definition, its expression is given by:

r?(t) = M(z)−1y(t). (3.1)

The fictive error e?(t) = r?(t) − y(t) is then introduced. This signal would be the
input of the controller in the ideal case, when the obtained closed-loop is equal to
the objective during the experiment. The design task then becomes an identification
problem: the controller must fit the dynamical relationship between e? and u.

A class K of linearly parametrized controllers is selected a priori :

K =
{
K : K(z, θ) = βT (z)θ

}
, (3.2)

where β(z) is a vector of given transfer functions, fixing the poles of the controller and
constituting the basis of K, and θ ∈ Rn are the controller’s tunable parameters. Choos-
ing a linear parametrization of the admissible controllers makes the problem convex and

43



Chapter 3. State of the art: Data-driven control

the global solution can be found. It is a global method, there is no problem with the
initialization of θ or local minimas.

The objective is to solve (3.3). However, it is not possible without having a model
of the plant P.

θ? = arg min
θ∈Rn

J(θ),

J(θ) =

∥∥∥∥( P(z)K(z, θ)

1 + P(z)K(z, θ)
−M(z)

)
W (z)

∥∥∥∥2

2

,
(3.3)

For this reason, to avoid the identification of a model, the VRFT minimizes the following
criteria instead:

JV RFT (θ) = ‖u−K(z, θ)r?‖22 . (3.4)

Since only a finite amount of measurements is available, JV RFT (θ) is approximated by
JNV RFT (θ):

JNV RFT (θ) =
1

N

N∑
k=1

(uF (tk)−K(z, θ)e?F (tk))
2 , (3.5)

where N is the number of measurements. It satisfies:

lim
N→∞

JNV RFT (θ) = JV RFT (θ). (3.6)

In (3.5), e?F (t) = F(z)e?(t) and uF (t) = F(z)u(t) are filtered signals. As explained in
[Campi et al., 2002], the filter F(z) is chosen so that J(θ) and JV RFT (θ) shares the same
minimizer θ?. This is possible when J(θ?) = 0. It implies that the ideal controller, the
one that would have given the model reference M during the experiment, is contained
by the selected class of controllers K.

In [Campi et al., 2002], noisy data are handled by introducing an instrumental
variable. The VRFT has been extended to MIMO plants in [Formentin et al., 2012]
and to non-linear systems in [Campi and Savaresi, 2006], the main changes concern the
design of the filter F. In [Formentin and Savaresi, 2011] and [Formentin et al., 2013],
gain-scheduled controllers are obtained through the VRFT framework for LPV plants.
It is also possible to change the reference function, and the associated criterion, in order
to perform sensitivity minimization as in [Hori et al., 2016] or disturbance rejection
as in [Eckhard et al., 2018]. Applications of the VRFT can be found in the previous
references or in [Panzani et al., 2012] and [Passenbrunner et al., 2012].

The main strength of the VRFT, in addition to not requiring a model of the plant,
is to be a one shot technique requiring a single experiment. Its main drawback is the
difficulty to choose the reference model, as highlighted in [Bazanella et al., 2011], mostly
when the plant is non-minimum or unstable. To that extent, a flexible criterion has been
introduced in [Campestrini et al., 2011] to design the reference model M along with the
controller for non-minimum phase systems. This has been done in [Selvi et al., 2018].
Even once the specifications are chosen, the choice of a class K of controllers is a difficult
task without any other prior knowledge of the plant. To tackle this issue, a technique
has been proposed in [Formentin et al., 2015]. Finally, in order to analyze closed-loop
stability, two techniques have been proposed in [Van Heusden et al., 2009], relying on
the small-gain theorem, and in [Dehghani et al., 2009], based on the winding number
and the Nyquist diagram.
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Correlation-based Tuning (CbT)

CbT was introduced in [Karimi et al., 2002]. It is an iterative algorithm: each iteration
requires an experiment to update the controller’s parameters using time-domain data.
The principle of CbT is exposed on Figure 3.2. The method is based on the correlation
approach, also used in system identification. CbT is applicable to SISO LTI plants.

M
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+

−
+

−
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Figure 3.2: Principle of the CbT.

The objective is to design a controller K so that the resulting closed-loop reproduces
the reference model M behaviour for a reference signal r. Therefore, according to the
expression of the output error ε, see (3.7), minimizing the error between the closed-loop
and the reference model boils down to decorrelate ε from the reference signal r.

ε(s) =

(
M(s)− P(s)K(s)

1 + P(s)K(s)

)
r(s) +

1

1 + P(s)K(s)
w(s) (3.7)

A class K of admissible controllers is selected, using the following parametrization:

K(θ, s) =
B(s)

A(s)
=
b0 + b1s+ · · ·+ bnb

snb

1 + a1s+ · · ·+ anas
na

u(t) = φ(θ, t)T θ

φT (θ, t) = [−u(t− 1) · · · − u(t− na), e(t) . . . e(t− nb)]

θT = [a1 . . . anab0 . . . bnb
]

(3.8)

where e is the tracking error and u is the command signal in the closed-loop obtained
with K(θ). For a given parameter vector θ, the correlation between r and ε is given
by:

ξ(θ) =
1

N

N∑
k=1

ζ(θ, tk)ε(θ, tk) (3.9)

where ζ is an instrumental variable correlated with r but decorrelated from the mea-
surement noise w. If contained in the set K, the ideal controller is obtained for ξ(θ) = 0.
Otherwise, the controller’s parameters are chosen by minimizing the correlation func-
tion ξ. This is done using an iterative gradient-based algorithm. In the ideal case, the
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instrumental variable should be chosen as the gradient of the correlation function. This
can be done through the identification of a plant model, or using the output yd. In this
case, the regressor vector φ(θ, t), defined in (3.8), is approximated as if the closed-loop
was the desired one M. This implies that the distance to the optimal solution can be
made small.

In [Karimi et al., 2007], a non-iterative version of this method has been proposed.
The main improvement resides in the fact that this version only requires a single exper-
iment. It is still based on the correlation function ζ. The criterion to be minimized is
given in (3.10), with l a sufficiently large integer:

Jc(θ, l) =

l∑
τ=−l

R2
εuF

(τ), (3.10)

where RεuF is the cross correlation function between ε and uF , the filtered command
signal:

RεuF (τ) =
N∑
t=1

ε(θ, t)uF (t− τ) (3.11)

with N the number of available samples.

The command signal u is filtered using weighting filter designed as in the VRFT, so
that (3.12) holds and that the resulting closed-loop is as close as possible to the desired
one M. The design of this filter, as for the VRFT, assumes that the sensitivity function
obtained with K(θ) can be assimilated to 1 −M, the one corresponding to the ideal
case.

lim
l→∞

Jc(θ, l) =

∥∥∥∥M− PK(θ)

1 + PK(θ)

∥∥∥∥2

2

. (3.12)

In [Van Heusden et al., 2011a], the data-driven stability criteria introduced in [Van Heus-
den et al., 2009] is used to constraint the optimization problem and enforce closed-loop
stability. This is done using a stabilizing controller. In practice, this assumption might
be a strong one, depending on the considered application.

In [Formentin et al., 2014b], the CbT is compared to a model-based control tech-
nique. It emphasizes that using data-driven techniques implies a larger variance of the
controller parameters than model-based control design, but it also can lead to a lower
control cost.

Iterative Feedback Tuning

Iterative Feedback Tuning (IFT) was introduced in [Hjalmarsson et al., 1994]. More
information and some applications can be found in [Hjalmarsson et al., 1998] and the
references therein.

The class K of admissible controllers is linearly parametrized by a parameter vector
θ as in the VRFT and CbT, see (3.2). As for the CbT, the objective is to find the
controller’s parameters θ? that minimize the error between the output y(θ) and the
desired one yd, see Figure 3.2. yd is defined as the output of the reference closed-loop
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M, representing the expected behaviour, while y(θ) is the output of the closed-loop
with K(θ) as controller, see Figure 3.2. The minimization of the control criterion relies
on the estimation of its gradient at each iteration, which requires two experiments. The
collected measurements are in the time-domain. The algorithm converges to a local
minimum of the control criterion.

The difference between CbT and IFT resides in the way they approximate the gra-
dient of the output error ε = y(θ) − yd. In CbT, the ideal case is used to tune an
instrumental variable. In the IFT framework, a second experiment is performed to ob-
tain the derivative of ε, using r− y(θ) a s a reference signal. This is justified by (3.13),
obtained by deriving (3.7) with no disturbance term.

∂ε(θ)

∂θ
=

1

K(θ)

∂K(θ)

∂θ

(
PK(θ)

1 + PK(θ)
(r − y(θ))

)
(3.13)

In [Hjalmarsson et al., 1998], it is also said that the choice of the reference model M
is a “key design decision”. Indeed, for unstable or NMP systems, the controller giving
exactly the desired behaviour M in closed-loop may be unstable. The implementation
of the IFT should be modified in order to estimate the gradient correctly: the collected
signal y is filtered and the filter must compensate the RHP zeros of the plant to avoid
this problem.

Obviously, the main drawback of this approach is the great number of experiments
required for the control design. This is also the conclusion of the comparison between
unfalsified control and IFT proposed in [Wang and Safonov, 2002]. This method has
been extended to MIMO sytems in [Hjalmarsson, 1999]. In order to limit the error of the
gradient estimation due to noise, a pre-filtering step is proposed in [Hildebrand et al.,
2005]. Other extensions of the IFT have been proposed to tackle the control of nonlinear
systems. In [Hjalmarsson, 1998], it is shown that the original algorithm can be applied
to nonlinear systems only if they can be assimilated to their first-order Taylor expansion.
Most of these improvements are summed up in [Hjalmarsson, 2002], which also contain
a list of applications of the IFT. Other work either require even more experiments per
iterations as in [Sjöberg et al., 2003], or on the identification of linearized time-varying
models at each iteration, see [Sjöberg et al., 2009]. In [De Bruyne and Kammer, 1999], a
sufficient condition for closed-loop internal stability, introduced in [Vinnicombe, 1993],
is used to choose the step size of the algorithm such that closed-loop internal stability
is guaranteed.

Unfalsified control

Unfalsified Control (UC) was introduced in [Safonov and Tsao, 1995]. It relies on the
idea that a control law is validated if its ability to meet the desired specifications is
not falsified by the data. Given a set of controllers K, parametrized by a vector θ, and
measurements data in the time-domain, it constructs the set KUF ⊂ K of unfalsified
controllers, the ones for which the desired performances would have been reached if
inserted in the closed-loop during the experiment. This falsification procedure relies on
the concept of virtual reference, defined according to the controller as follows:

r̃(t) = K−1(θ, z)u(t) + y(t). (3.14)
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The main difference with the VRFT is that the virtual reference is obtained by inversing
the controller at the current iteration, instead of inversing the reference model M.

When implemented in real-time, a controller in KUF is chosen at each iteration.
The controller changes according to the data of the plant. Therefore, it constitutes an
adaptive control scheme. Different switching mechanisms have been proposed in the
literature to choose a controller at each iteration. In [Van Helvoort et al., 2007], the
performances are expressed as reference closed-loop behaviour and the set of unfalsified
controllers is described by an ellipsoid, allowing to compute analytically the updated
controller. In [Jun and Safonov, 2002], a gradient-based approach is proposed to min-
imize a performance objective in KUF . The stability of these schemes are studied in
[Battistelli et al., 2010]. Applications can be found in [Van Helvoort et al., 2005] for
a motion system, in [Safonov, 2006] for a robot arm control and a missile guidance
problem, and in [Demourant et al., 2002] for an aircraft autopilot.

In [Battistelli et al., 2018], a new data-driven technique based on the unfalsified
control framework is proposed. It requires a single experiment only. Instead of using
one reference model, two transfer functions representing the closed-loop behaviour are
used: the reference closed-loop M, between the reference signal r and the output y, and
Wu, the transfer one wants to achieve between the reference signal r and the command
signal u. The scheme of this method is represented on Figure 3.3. The signals uθ and
yθ are the ones that should be obtained if the controller K(θ) is ideal.
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Figure 3.3: Principle of the non-iterative data-driven controller falsification.

The controller’s final parameters θ? are obtained by solving the problem given in
(3.15). δ is a scalar in [0, 1] used to weight the two criterias associated with the two
objective transfers M and Wu.

θ? = arg min
θ

δJN (θ) + (1− δ)VN (θ),

JN (θ) = ‖y − yθ‖22 ,
VN (θ) = ‖u− uθ‖22 .

(3.15)

The initialisation of the algorithm is done by taking θ0, defined according to (3.16),
as the initial set of parameters for the controller. It corresponds to the resolution of
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(3.15) for δ = 0. K(θ0) stabilizes the plant internally, even for non-minimum phase
plants.

θ0 = arg min
θ

VN (θ) (3.16)

Then, δ is progressively decreased. For each value of δ, K(θ) is obtained and a
stability test is performed, as in [Van Heusden et al., 2009]. If this test is not satisfied,
the controller is falsified. The algorithm stops when it reaches the minimal value of δ
such that the controller given by (3.15) stabilizes the plant internally.

3.2.2 Robust data-driven control

In model-based control, robust control is one of the most popular category of techniques
since it deals with uncertainties, noise and disturbances. Unlike adaptive control where
changes in the system imply changes in the controller, robust control designs a controller
that will be valid in a bounded set of uncertainties around a nominal model. However,
frequency-domain data have been used to directly tune controllers since the development
of Quantitative Feedback Theory, see [Horowitz, 1982]. This technique uses graphical
tools based on the Nyquist chart to design robust controllers and highlighted the perfor-
mance limitations recalled briefly in Chapter 2 and the necessary trade-offs for control
design. It was then replaced by the more general framework of H∞-synthesis, still in
the frequency-domain.

Since then, various data-driven techniques based on frequency-domain data have
been proposed to design controllers that ensure robust stability and performances. The
first approach consists in using convex optimization for data-driven robust control de-
sign. In [Karimi and Galdos, 2010], a technique to tune linearly parametrized controllers
given a loop-shaping objective and H∞ performance criteria is proposed for SISO LTI
systems. The robust performance conditions are expressed as linear or convex con-
straints around the desired open-loop on the Nyquist diagram. In [Saeki et al., 2010],
these constraints are linearized around an initial stabilizing controller. In [Karimi and
Kammer, 2017], an extension of this technique is propose and is not limited to lin-
early parametrized controllers and is applicable to MIMO systems. For SISO systems,
[Karimi et al., 2018] proposed a technique to achieve the same goal without any initial
stabilizing controller. Contrary to the previous mentionned methods, it converges to the
global solution of the optimization problem, not only a local minima. An application
to a power converter is available in [Nicoletti et al., 2017].

Some techniques based on non-convex optimization have also been proposed. In
[Den Hamer et al., 2009], a fixed-order controller is tuned to ensure stability and
optimize closed-loop stability. The admissible controllers are defined using Youla Q-
parametrisation. The parameters appear in a non-convex way in the H∞-norm of the
closed-loop system, which is the criteria used in the minimisation. This technique
requires to be initialized by a stabilizing controller. In [Khadraoui et al., 2013], a fixed-
order controller is designed so that the closed-loop frequency response fits a desired
frequency response. This is done by solving as a nonlinear programming problem based
on the concept of bounded error. This technique is applicable to SISO systems only. In
[Apkarian and Noll, 2018], a technique based on the computation of the winding number
is proposed. A non-smooth trust region method is employed to tune the parameters of
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the controller. The admissible controllers are arbitrarily parametrized. It is applied to
infinite-dimensional LTI systems.

3.2.3 Predictive and learning data-driven control

The last category of data-driven techniques rely on the prediction of the plant behaviour.
This is the case for the Self-Tuning Regulators (STR). This technique is presented
in [Åström et al., 1977]: the parameters of the plant are estimated, a linear controller
is deduced. It is an adaptive technique: when new data from the system are available,
the estimation of the plant’s parameters is updated and so is the control law.

Model-Free Adaptative control (MFAC) was introduced in [Hou, 1999] is an-
other online technique. At each iteration, a local and compact model, relying on the
concept of pseudo partial derivative, is obtained. It consists in a dynamic linearization
of the plant’s behaviour. The command signal u is then updated so that the system’s
output converge to the desired signal yd.

Model-Free Control (MFC) was introduced in [Fliess, 2009]. More insights can
be found in [Fliess and Join, 2013]. It proposes to tune intelligent PIDs controllers
(iPID). As MFAC, it relies on local models, but expressed in a different form. The
gains of the iPID are tuned according to the ultra local model identified at each step.
This technique relies on numerical differentiation.

Another technique is the so called data-driven Model Predictive Control (MPC), see
[Huang and Kadali, 2008], which is a derivative of the traditional model-based MPC
framework [Lee, 2011]. This technique is also called the subspace approach since the
main idea is that the plant’s behaviour is represented as a subspace of finite dimension.
The basis of this subspace is given by dynamic matrices, which can be obtained from
input-output data. The command signal is then obtained at each time through the
traditionnal MPC framework.

Local models can also be obtained through supervised machine learning. This is
the concept of the lazy learning control approach, see [Bontempi et al., 1999]. At
every instant, a linear local model of the plant is obtained. Then, the controller can
be obtained using an optimal control method for example. The main drawback of this
approach is to be computationally demanding.

Iterative Learning Control (ILC) is different from the other methods presented
in this paragraph since it does not identify local models of the system’s dynamic. ILC
has been developped to control systems doing a repetitive task in a finite amount of
time. The basic idea behind ILC is to iteratively find a command sequence u such that
the tracking error converges to zero. At each iteration, the current controller is inserted
in the closed-loop and the collected data are used offline to update the control law. ILC
does not tune a controller, it directly compute the optimal command signal u. Different
types of control laws can be considered. Although ILC does not make any assumptions
regarding the system dynamics, in the end, the system is inverted, see [Markusson et al.,
2001]. The main drawback of ILC is to require plenty of experiments. An overview of
ILC techniques, applications and research developments can be found in [Ahn et al.,
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2007].

3.2.4 Classification of data-driven control methods

In this section, the data-driven techniques are categorized according to the nature of
the resolution of the control design problem. However, different classifications may also
pertinent.

Online and offline data

In [Hou and Wang, 2013], a survey of data-driven control techniques is proposed. The
data-driven control methods are classified according to the type of data: online, offline
or hybrid. Indeed, contrary to offline techniques, online techniques also require to study
the convergence of the proposed schemes. Moreover, the tools used to study closed-loop
stability are rather different in both cases. When it comes to offline techniques, most
stability criteria are based on the winding number or the small-gain theorem. These
conditions are useless in online approaches where BIBO stability has to be studied.

Structure of the controller

Most techniques presented in Section 3.2 require to define a class K of admissible con-
trollers. This choice is a key design decision. As a matter of fact, for model-reference
techniques, the ideal controller is assumed to be contained in K. For some techniques,
the chosen structure is just a maximal order for the controller. This is the case for the
CbT, the IFT or the non iterative UC algorithm: this assumption is then less limitating
than for the VRFT where the poles of the controller are fixed in order to convexify the
problem. To sum up, the class of admissible controllers, when required, should be large
enough to allow to meet the performance specifications.

Knowledge of the system used in data-driven control

It should be noted that not all the techniques require the same knowledge of the system.
For example, for reference model control, it is often required to know the unstable zeros
of the system or to have access to an initial stabilizing controller. These two information
are crucial when studying closed-loop stability. An initial stabilizing controller is also
needed for most data-driven robust control techniques.

Finally, the techniques having the least knowledge of the plant are the predictive
and learning ones. Paradoxically, they are the ones producing most information on the
plant dynamics by identifying local models, or by inverting the plant for ILC techniques.
On this last point, it should be noticed that the concept of ideal controller, which is
central in model reference control, also needs to invert the system. This is exactly why
some problems happen for non-minimum phase plants, and it makes the choice of the
reference model a critical step.
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Data-driven control in the
frequency domain
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Chapter 4

General problem formulation

In this chapter, a direct data-driven design method, based on frequency-domain data,
is proposed. The identification of the plant is skipped and the controller is designed
directly from the available measurements. The identification task is reported on the con-
troller, using for the first time the Loewner approach, known for model approximation
and reduction, and a subspace approach, known in system identification. The problem
formulation is given in Section 4.1 and the main lines of the method are defined. The
proposed technique is then illustrated through numerical examples in Section 4.2.

The purpose of this chapter is to illustrate the steps of the method, and the associ-
ated challenges, that will be further detailed in the next chapters. The proposed method
has been introduced in its first version in [Kergus et al., 2017]. Successive improvements
were added in [Kergus et al., 2018b] and [Kergus et al., 2018a] concerning the controller
identification and in [Kergus et al., 2019b] concerning the reference model selection and
the data-driven stability analysis. Applications can be found in [Kergus et al., 2019a].
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4.1 Problem formulation

4.1.1 The model reference problem

As recalled in Chapter 3, the objective of data-driven techniques is to design a con-
troller on the basis of experimental data from the plant, without having to identify a
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parametric model of the system to be controlled. The proposed method is a model refer-
ence one, like the techniques presented in Section 3.2.1: the specifications are expressed
as a reference transfer function which represents the desired closed-loop behavior.

The problem is shown on Figure 4.1. The goal is to find a controller K for an
unknown plant P so that K gives a closed-loop as close as possible to the reference
transfer M. The proposed method can be used for SISO plants as well as for MIMO
plants. The number of inputs and outputs of the system to be controlled are respectively
denoted nu and ny.

M

K P
+ − −

+
ε

Figure 4.1: Problem formulation: M is the desired closed-loop, P is the plant and K
the controller to be designed.

The proposed formulation is very close from the one of the CbT, see Figure 3.2.
However, while the VRFT or the CbT are based on time-domain data, in this work,
the controller is designed on the basis of frequency-domain data. The data is given as
samples of the frequency response of the plant {ωi,Φi}, i = 1 . . . N , where Φi ∈ Cny×nu

and ωi ∈ R+. The method proposed in this work is closer to the VRFT in sense that
it is a one-shot technique: the main idea for both methods is to find a controller that
matches the ideal case for a given set of input-output data from the plant.

The direct data-driven control design technique proposed in this work, as introduced
in [Kergus et al., 2017], relies on two steps:

1. The obtention of the frequency response K?(ıωi) of the ideal controller, the one
that would give the desired reference model M if inserted in the closed-loop;

2. The identification of a model K̂ of this ideal controller through the Loewner
framework or the subspace approach, in the frequency-domain.

This approach is rather different from the VRFT and the CbT since the proposed
method identify a controller instead of formulating an optimization problem. Moreover,
in this work, there is no need for an a priori selection of a class of controllers: the user
does not have to determine the poles of the controller, which makes it really appealing
for engineers. Indeed, for the VRFT, this is a difficult task that do not guarantee
the selected poles optimality for a given reference model. It should be noted that the
second step of the proposed method allows to obtain a reduced-order controller model.
Therefore, it is possible for the user to fix a maximal order for the controller, which
constitutes a sort of structuration.
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4.1.2 Relying on the data

The proposed technique does not require a plant model. The only assumption is that
the considered system is LTI and causal so that it can be characterized by its frequency
response. The main drawback of this type of model-free approach is that it is impossible
to check the validity of the data, as explained in [Den Hamer, 2010]. Consequently, the
data should reflect the dynamics to be controlled and be reliable, not too biased by noise
or disturbances. To sum up, the data should be as close as possible to the true system
behaviour. The same constraints also apply when using any black-box identification
technique, the resulting model being used for control purposes most of the time.

This question of how much trust can be put in the data is directly related to the
way they are obtained. As recalled in [Pintelon and Schoukens, 2012], a Frequency Re-
sponse Function (FRF), which consists of transfer function measurements on a discrete
frequency grid, contains a lot of information but not in a small set of parameters like a
model: it is also called a non-parametric model. In [Pintelon and Schoukens, 2012], the
quality of FRF measurements is analyzed. It depends on different factors including the
experiment design, the sampling, the Fast Fourier Transform (FFT), but also the use
of post-processing techniques on the raw measurements.

Remark 4.1.1. The measurements can be given as a time-domain data-set {u(tk),y(tk)}Nk
k=1,

where u(tk) ∈ Rnu and y(tk) ∈ Rny . A Fourier transform of the input and output signals
is done and samples of the plant frequency response are estimated:

Φi =
Y (ıωi)

U(ıωi)
=
F(y(tk))

F(u(tk))
. (4.1)

Obviously, the signal u should sufficiently excite the system to get rich-enough informa-
tion in terms of frequencies. Most often, this is how FRF measurements are obtained,
the Fourier transform being obtained by applying a FFT to the collected time-domain
signals. However, in some cases, like in electronics for example, the FRF measurements
are directly obtained by a frequency analyser.

For system modelling as much as for data-driven control, the quality of the data
plays a pivotal role in the performance of the employed technique. For this reason,
experiment design is an important field of research in the area of system identification.
In [Hjalmarsson, 2005], the close relation between system identification and closed-
loop control performances is studied: it is concluded that “experiment design is the
most important design variable for a successful application”. The references therein
contains plenty of experiment design techniques. The objective of experiment design
is to maximize the information content of the measurements. The essential concepts
and the premices of experiment design can be found in [Goodwin and Payne, 1977].
A review of different experiment design concepts and tools is available in [Gevers and
Bombois, 2006]. A survey is available in [Pronzato, 2008] where special attention is
given to non-parametric models, which is more pertinent in the present case.

When it comes to the obtention of good FRF measurements, specific advice can
be found in [Phillips and Allemang, 2003] where an overview of excitation methods is
proposed and the influence of averaging and post-processing techniques is discussed.
Finally, considering the perspective of this work, the reader should refer to [Pintelon
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et al., 2010a] and [Pintelon et al., 2010b]: a technique to estimate the noise and obtain
reliable FRF measurements of multivariable systems is proposed.

The objective of this thesis is not to study or improve the quality of FRF mea-
surements. Assuming that a good experiment design was done, it is possible to filter
the obtained FRF to obtain reliable data with a limited noise influence. However, the
problem of noisy data can be addressed through the identification of the ideal controller.
This topic is more detailed in Chapter 5.

4.1.3 The ideal controller

As for other model reference data-driven control techniques, see Section 3.2.1, the con-
cept of ideal controller is central in the control design. As a matter of fact, it is the one
LTI controller that would give exactly the objective transfer function M if inserted in
the closed-loop. Each process and reference model pair corresponds to one ideal con-
troller. Thanks to this key notion, the problem of identifying a model of the plant is
moved to the identification of the controller.

The first step of the method proposed in this thesis consists in characterizing this
ideal controller. The closed-loop objective transfer M and the open-loop experimen-
tal data of the plant are used to get the frequency response of the ideal controller
{ωi,K?(ıωi)}Ni=1 for a limited frozen set of frequency values. Therefore, by definition,
the frequency response samples of the ideal controller are computed according to (4.2):

∀ i = 1 . . . N, K?(ıωi) = Φ−1
i M(ıωi)(Iny −M(ıωi))

−1. (4.2)

The ideal controller is also important in the VRFT or CbT even though it is not
used expressively during the design of the controller, see Chapter 3. Both techniques
assume that, in the ideal case, the selected class of controllers K contains the ideal
controller K?. This implies that the choice of K is a key step in the success of such
techniques. This can be a complicated step in the case of the VRFT, since the admissible
controllers are linearly parametrized to make the design problem convex. This is less
important for the CbT or the IFT which design fixed-order controllers described by
fully-parametrized transfer functions. Therefore, the first strength of our method is
that it does not require to define a set K of admissible controllers other than the set of
rational and linear models. The only possible structuration consists in the choice of a
maximal order by the user.

The mismatched case happens when K? /∈ K. Even in this case, it is assumed that
the difference between K(θ) and K? can be made small. For the VRFT or the non-
iterative CbT, the sensitivity function (1 + PK(θ))−1 is then approximated by the ideal
one (1 + PK?)−1. It allows to make the model reference control criterion convex in the
controllers parameters θ. Consequently, the class of admissible controllers should be
chosen large enough so that this assumption is valid.

To sum up, the basic idea of model reference control is to get as close as possible
to the ideal case. The underlying assumption is that the corresponding ideal controller
represents the behaviour that the designed controller should reproduce. However, this
assumption is not always true, as explained in [Bazanella et al., 2011]. For example, for
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NMP systems, the achievable dynamics are limitated by the RHP zeros of the plant.
Therefore, if the reference model does not take into account these intrinsic limitations,
the ideal controller may destabilize the plant internally. In this case, its behaviour is
disastrous in terms of closed-loop stability and should not be reproduced in the designed
controller. This problem will be illustrated in Section 4.2 by applying the proposed
method on numerical examples. This issue will be tackled in Chapter 6 by proposing a
method to choose an achievable model reference.

4.1.4 Identification of the controller

Assuming that the specified reference model M is well chosen, obtaining a closed-loop
as close as possible to M boils down to find a controller as close as possible to the ideal
controller. Thanks to the concept of ideal controller, this can be done by moving the
identification problem from the plant to the controller directly.

In the proposed method, the ideal controller K?, known over a limited data samples,
is approximated by K, a linear time-invariant model defined by the following generalized
state-space form:

K :

{
Eẋ(t) = Ax(t) +Be(t)

u(t) = Cx(t)
, (4.3)

where x(t) ∈ Rn the state vector, e(t) ∈ Rny the input vector of the controller, which
is the tracking error, u(t) ∈ Rnu the output vector (i.e. the control signal) and E,A ∈
Rn×n, B ∈ Rn×ny and C ∈ Rnu×n. Its associated transfer function is K(s) = C(sE −
A)−1B.

Remark 4.1.2. There is no D-term in (4.3) since it can be embedded in the E matrix.

The problem is to find a realization K of the ideal controller, through the following
interpolatory conditions:

∀i = 1 . . . N, K(ıωi) = K?(ıωi) (4.4)

This is achieved through the Loewner framework or the subspace approach. These
two techniques will be recalled in Chapter 5. The identification of the ideal controller
allows to avoid structuring the controller, which makes this technique really easy to use
compared to the VRFT. Indeed, the poles will be determined during the identification
step and will therefore be adapted to the considered reference model M. The order n
of the designed controller K can be a tunable parameter in the method if one wants
to reduce its complexity. However, it can be chosen automatically since the considered
identification techniques both rely on an order revealing decomposition.

As said earlier, this step, not formulated as the minimization of a control criterion,
distinguish the method proposed in this work from the other techniques described in
Section 3.2.1. Nevertheless, it should be noted that the same objective is pursued:
to minimize the norm of the error between the reference model M and the resulting
closed-loop H:

H =
PK

1 + PK
.
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Indeed, this error, known as J(θ) for other techniques presented in Section 3.2.1, can
be developed as follows (written in the SISO case):

‖M−H‖ =

∥∥∥∥ PK?

1 + PK? −
PK

1 + PK

∥∥∥∥
=

∥∥∥∥ P(K? −K)

(1 + PK?)(1 + PK)

∥∥∥∥
=

∥∥∥∥ P(K? −K)

(1 + PK?)2 − (1 + PK?)P(K? −K)

∥∥∥∥ .
(4.5)

Therefore, according to (4.5), when the designed controller K tends to K?, the error
between M and H tends to zero. This is why, the interpolation and the order reduction
of the ideal controller, because they minimize an H2-norm, goes in the same direction
that solving an optimization problem as in other model reference control techniques.

4.2 Application to numerical examples

In this section, the proposed method is applied on the two numerical examples presented
in Chapter1 in order to highlight the underlying challenges that will be addressed in
the following chapters.

4.2.1 Application of the proposed direct control method: the DC mo-
tor

The first considered system is a DC motor, see Section 1.2.3. It is a SISO and stable
second-order plant described by the following transfer function:

P(s) =
0.01

0.005s2 + 0.06s+ 0.1001
=

2

(s+ 9.997)(s+ 2.003)
.

In the first place, the data is noise-free, N = 100 samples {ωi,P(ıωi)}Ni=1 of the frequency

response of P are considered, for frequencies {ωi}Ni=1 logarithmically spaced between 0.1
and 103rad.s−1. In order to have no tracking error and to fasten the response of the
system, the reference model is chosen as:

M(s) =
1

s2

ω2
0

+ 2ξ
ω0
s+ 1

, (4.6)

with ω0 = 10rad.s−1 and ξ = 1. The corresponding ideal controller, calculated thanks
to the expressions of M and of the true system P, is:

K?(s) =
50s2 + 600s+ 1001

s2 + 20s
=

50(s+ 9.997)(s+ 2.003)

s(s+ 20)
. (4.7)

It should be noted that the expression of the ideal controller given in (4.7) is supposed
to be unknown when applying a data-driven reference model technique. Nevertheless,
samples of its frequency-response can be estimated at the frequencies {ωi}Ni=1 without
using the plant model, but only the data, according to Equation (4.2). Then, given
the interpolatory conditions in (4.4), the ideal controller is interpolated through the
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Loewner framework, giving us the minimal realization K of K?, also visible on Figure
4.2.
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Figure 4.2: Interpolation of the ideal controller for the DC motor example.

Since the data is unbiased, the expression of the minimal realisation K has exactly
the same expression than K?, see (4.7). This is due to the properties of the Loewner
framework that will be detailed in Chapter 5. The subspace approach also recover the
exact expression of the ideal controller with a second-order model. This controller allows
to achieve the desired closed-loop performances, as shown on Figure 4.3.
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Figure 4.3: Closed-loop performances achieved in the DC motor example using the
minimal realization of the ideal controller obtained through the Loewner framework.
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Chapter 4. General problem formulation

However, this second-order controller would not be implemented to control a second-
order system because it is as complex than the system itself. To that extent, the ideal
controller is reduced to two first-order models: Kl, obtained through the Loewner frame-
work, and Ks, obtained by the subspace-based algorithm. Their frequency response are
given in Figure 4.4.

Kl(s) =
49.828

s− 1.074.10−5

Ks(s) =
33.403(s+ 1.505)

(s+ 0.0126)

The performances of the resulting closed-loops are shown on Figure 4.5. Kl is almost
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Figure 4.4: Identification of the first-order controllers Kl and Ks, respectively through
the Loewner framework and the subspace approach.

an integrator: therefore, the tracking error is made null in permanent regime. However,
it creates an overshoot of 57% and a pseudo-periodic output signal: it takes 5.5 seconds
for the tracking error to be lower than 5%. Indeed, the fact that Kl contains only
an integrator tends to destabilize the feedback structure: it increases the overshoot
and reduces closed-loop robustness. On the other side, this problem is avoided with
the subspace approach: Ks is not a mere integrator but also contains a zero. The
subspace-based controller Ks only creates an overshoot of 3% and its response time is
0.35s. In permanent regime, the associated closed-loop gives a tracking error of 0.5%.
Considering that the original plant has a static gain of 0.01 and a response-time of
1.5s, Ks is the best controller between the two obtained by the proposed method. The
main reason why Kl is less performing is that the Loewner framework identify a strictly
proper model, contrary to the subspace approach.
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Figure 4.5: Closed-loop performances achieved in the DC motor example when inserting
Kl and Ks in the closed-loop.

The synthesis of these two controllers illustrates the importance of the identification
of the controller as well as its reduction. From the same data from the ideal controller,
the Loewner framework and the subspace approach give two really different controllers
when reducing the order. This aspect will be detailed in Chapter 5 in which the two
mentioned approximation techniques are recalled and their application to the ideal
controller is detailed.

This example also highlights the difficulty of choosing the reference model M, even
for a simple case like this one. It will be shown in Chapter 6 that the desired perfor-
mances expressed in M have a great impact on the design process and the resulting
closed-loop. It is actually the same issue of compromising between the complexity of
the controller and the closed-loop performances, as in model-based control. For exam-
ple, in the present case, by relaxing the performance specifications in terms of response
time, the identified first-order controllers will produce less overshoot. For instance, by
setting ω0 = 1 rad.s−1 in the reference model M instead of ω0 = 10rad.s−1, see (4.6),
the identified first-order controllers Kl and Ks allow to match the desired-closed loop
behaviour almost perfectly, see Figures 4.6 and 4.7. Their expressions are given by:

Kl(s) =
5.0049

s− 3.884.10−7
,

Ks(s) =
0.5(s+ 10.01)

(s− 2.758.10−5)
.
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Figure 4.6: Identification of first-order controllers through the Loewner framework and
the subspace approach for the DC motor for a reference model defined as in (4.6) with
ω0 = 1 rad.s−1 and ξ = 1.
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Figure 4.7: Closed-loop performances achieved in the DC motor example with first-order
controllers designed using a reference model M defined as in (4.6) with ω0 = 1 rad.s−1

and ξ = 1.

4.2.2 The particular case of unstable and non-minimum phase system

Now let us move to a more challenging control design problem by considering a non-
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4.2. Application to numerical examples

minimum-phase plant through the flexible transmission benchmark, see Section 1.2.3
for the definition of the considered plant. The system is characterized by the following
transfer function:

P (s) =
0.03616(s− 140.5)(s− 40)3

(s2 + 1.071s+ 157.9)(s2 + 3.172s+ 1936)
.

The objective is to obtain a well-damped and faster closed-loop behaviour. In the
first time, the reference model M is defined by a second-order transfer function as in
the DC motor example, see (4.6), but with ω0 = 10 rad.s−1 and ξ = 1. In order to
apply the proposed method, N = 200 samples of the frequency-response of the plant
P are considered. The corresponding frequencies are logarithmically spaced between 1
and 103 rad.s−1. For now, the considered data is noise-free.

The frequency-response samples of the corresponding ideal controller are computed
according to Equation (4.2). The theoretical expression of the ideal controller is given
in (4.10). As for the DC motor example, the transfer of the ideal controller is supposed
to be unknown in a data-driven control framework.

K?(s) =
2765.5(s2 + 1.071s+ 157.9)(s2 + 3.172s+ 1936)

s(s+ 20)(s− 140.5)(s− 40)3
(4.8)

Since the reference model does not contain the RHP zeros of the plant, by definition, the
ideal controller compensates them. Therefore, according to Theorem 2.2.1, it destabi-
lizes the plant internally. The interpolation of the ideal controller through the Loewner
framework gives the exact expression of the ideal controller. In this case, the ideal con-
troller represents a behaviour that should not be identified. Even if the reduced-order
controllers do not cancel the RHP zeros of the plant, trying to reduce the error between
the designed controller and this internally destabilizing ideal controller is not a good
strategy.

Here, the model of the plant is known, it is then possible to detect this problem. For
an unknown plant however, this configuration is hard to detect. Indeed, in the present
version of this method, no technique has been proposed to analyze internal stability
of the resulting closed-loop. Most traditional tools to analyze or enforce closed-loop
stability involve a model of the controlled plant. To tackle this issue in a data-driven
framework, in Chapter 7, the stability criteria proposed in [Van Heusden et al., 2009],
based on the small-gain theorem, is derived to identify a stabilizing controller.

It should be noted that the same type of problem occurs for unstable plants: for a
poor choice of specifications, the ideal controller’s zeros compensates the RHP poles of
the system. This can be explained by the fact that the instabilities of the plant, its RHP
poles or zeros, represents intrinsic closed-loop performances limitations that cannot be
overcome. The only solution is to use an achievable model reference, which takes into
account the instabilities of the system.

In [Campi et al., 2002], the VRFT is applied on this benchmark example. The
reference model used is MV RFT , given by the following discrete-time transfer function:

MV RFT (z) =
z−3(1− α)2

(1− αz−1)2
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Chapter 4. General problem formulation

with α = e−Tsω0 , Ts = 0.05s and ω0 = 10 rad.s−1. Applying a bilinear transform, the
continuous reference model MV RFT is obtained:

MV RFT (s) =
−0.059985(s− 40)3

(s+ 40)(s+ 9.797)2
. (4.9)

It contains the RHP zeros of the plant except the one at 140.5 rad.s−1. This zero
is introduced by the analogic-numeric converter and is situated beyond the maximal
frequency ωmax = 2π

Ts
= 125.7 rad.s−1. Using this reference model, the ideal controller

is now given by:

K?
V RFT (s) =

−1.565(s2 + 1.071s+ 157.9)(s2 + 3.172s+ 1936)

s(s2 + 49.43s+ 1102)(s− 140.5)
. (4.10)

The three RHP zeros of the plant at 40 rad.s−1 are not compensated by the ideal
controller anymore, which represents a huge improvement. It should be noted that the
unstable poles of K? will not affect the VRFT design process since it is not simulated
during the experiment (ωmax = 125.7 rad.s−1). Therefore, using MV RFT as a reference
model does not induce any instability compensation in the open-loop in the ideal case.

This example highlights that the choice of the reference model has a major impact
on the design process, even more for NMP or unstable plants. In the present case, M
and MV RFT present similar dynamics, see Figure 4.8, but the first one is not achievable
by the plant. The choice of an achievable reference model is one of the contributions
of this work: a method is proposed in Chapter 6. It requires to perform a preliminary
analysis of the plant’s FRF since, as illustrated in this example, the system’s instabilities
have to be known to define good closed-loop specifications.
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Figure 4.8: Frequency response of the plant and of the two reference models M and
MV RFT .
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4.3 Challenges in model-reference control

The application of the proposed method on these two examples, including a non-
minimum phase plant, emphasizes the challenges in model-reference control. They are
briefly recalled hereafter and each one of them is subject to a contribution detailed in
the next chapters.

Identification of the controller

The first question that should be answered concerns the identification of the con-
troller. The two frequency-domain techniques used in this work, the Loewner framework
and the subspace approach, will be recalled in Chapter 5. They both allow to reduce
the complexity of the controller. In order to prevent instability compensation in the
open-loop and to avoid introducing unstable dynamics, the stability of the controller
will be enforced during the identification of the controller.

Choice of an achievable reference model

As shown on the example of the flexible transmission, a poor choice of the reference
model M can lead to the identification of a destabilizing controller. This problem has
been underlined in [Bazanella et al., 2011], [Piga et al., 2018] and [Selvi et al., 2018].
Therefore, the choice of the reference model should be done wisely, by taking into
account the plant’s instabilities. As a matter of fact, the unstable poles and zeros of a
system constitute the main limitations of the achievable closed-loop performances. In
this thesis, a technique to choose the reference model is proposed in Chapter 6: the FRF
is first used to estimate the plant’s instabilities in a data-driven way and an achievable
model-reference is built.

Towards data-driven closed-loop stability

The application of the proposed method on numerical examples has shown that,
in its original form, it is not possible to assess whether the obtained closed-loop is
internally stable or not. As for data-driven control techniques in general, studying
closed-loop stability in a data-driven framework is a challenging problem. In Chapter 7,
the technique proposed in [Van Heusden et al., 2009] is applied to the proposed method
in order to study the stability of the resulting closed-loop and to validate the obtained
controllers.

Summary

In this chapter, the main idea of the proposed method is introduced. Considering some
frequency-domain data {ωi,Φi}Ni=1 from the plant P and a reference model M provided
by the user, the proposed technique consists in two steps:

1. In the first place, the ideal controller, the one LTI controller that would have lead
to the desired reference model during the considered experiment, is determined
by samples of its frequency-response, computed according to (4.2).
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2. The second step consists in identifying the ideal controller and reducing its order.
Two methods are considered in this work: the Loewner interpolation framework
and the subspace approach. This step will be detailed in the next chapter.

This initial version of the proposed technique is applied on two numerical examples, the
DC motor and the flexible. The results highlight that the choice of the reference model
M is crucial and should take into account the plant’s performance limitations. This
aspect will be detailed in Chapter 6. The proposed examples also show the need for a
stability analysis. This point will be treated in Chapter 7.
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Chapter 5

Controller identification in the
frequency-domain

This chapter first aims at recalling the frequency-domain identification techniques used
in the proposed data-driven framework in Section 5.1. These methods, namely the
Loewner framework and the subspace approach, are then used in Section 5.2 to identify
the ideal controller defined in Chapter 4. As in [Kergus et al., 2018b], the stability
of the controller is enforced and special attention is given to the noisy case. Finally,
numerical applications are provided in Section 5.3.
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5.1 Preliminary: frequency-domain identification

The objective of this section is to give an overview of the developments of system
identification in the first time. More attention is then drawn on the Loewner framework
in Section 5.1.2 and on the subspace approach in Section 5.1.3 as these two methods
will be used later on to identify a controller through the proposed data-driven control
technique. These two identification techniques have been chosen because of their com-
plementarity. Obviously, other frequency-domain techniques could be considered for
controller identification purposes.

5.1.1 Brief overview of system identification

The history and developments of system identification are extensively exposed in
[Deistler, 2002], [Ljung, 2010] and [Gevers, 2006]. Only the principal milestones in
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relation with control theory of the area will be recalled here. The objective is mainly
to show how control and system identification are related and intrinsically linked.

Development of system identification: history and techniques

As recalled in [Deistler, 2002], system identification began to develop in the late 18th
century. The early work in system identification consists in time series analysis, with
the harmonic analysis and the Fourier theory. The least square method, allowing to fit
a model on measurement data, was developed at the beginning of the 19th century by
Legendre and Gauss. In the early 20th century, Galton and Pearson made a significative
contribution to statistics by conceptualizing the linear regression and the correlation
analysis. Time series analysis kept growing during the last century, mainly because of
the econometrics high demand.

As explained in [Gevers, 2006], the interest for system identification considerably
increased due to the development of model-based control theory in the 1960s. Since,
in a lot of applications, no mathematical description of the plant can be derived from
physical laws, there was a need to obtain a model on the basis of measurements data in
order to broaden the fields of application of these new model-based control techniques.

The state-space realization theory, which is the origin of subspace identification, and
the maximum likelihood framework, the heir of time series analysis, were introduced
during this period. Afterwards, system identification progressively became the search for
the best approximation model, instead of looking for the true system inside a predefined
model set. As explained in [Hjalmarsson, 2005], looking for a model of the true system is
pointless since every model depends on the input used during the experiment. Therefore,
the challenge is to choose wisely the input in order to make the system reveal its relevant
properties. A good model will be an approximation of the true system that reflects
these properties. These considerations gave birth to the field of experiment design. The
latest developments of system identification focused also on the identification of non
linear system, on model order reduction, the identification of model uncertainties and
on identification for control.

Duality between control and system identification

These last two fields of interest, namely uncertainty modelling and identification
for control, underline the connection between modelling and control, even if, at the
beginning, these two steps were kept separate. This was possible by assuming that the
considered model represents the true system: this is called the certainty equivalence
principle. However, the actual modelling errors can lead to poor control performances
or even to design a destabilizing controller. Therefore, the uncertainties have to be
taken into account and this why adaptive control schemes and robust control ones have
been developed.

As said in [Gevers, 2005], the control community introduced the idea that instead
of looking for the true system, system identification should find its best approximation
within a model set. This idea then gave birth to identification for control: the identi-
fication should be done in such a way that modelling errors does not affect the control
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objective too much. Only the dynamics to be controlled need to be reflected in the
model, and sometimes a simple model can be enough for control purposes.

To sum up, the latest developments of system identification were destined to control
purposes. On one side, uncertain models allow to analyze the performances and the
robustness of the designed closed-loops. On the other side, I4C provides models in a
given set, suited for control design by their reflection of the dynamics to be controlled
only.

Finally, the interplay between system identification and control design can be ex-
plained by different factors but the most important one is that the main motivation
behind the identification of a model is often the control design. It should be noted that
it is the case for model-based control but also for data-driven control thanks to the
concept of ideal controller, see Section 4.2. What changes is only the object on which
you apply an identification technique: you can identify either the plant or the controller
directly.

Let us now briefly describe the Loewner framework and the subspace approach, used
along this manuscript to identify a controller model K of the ideal controller K?.

5.1.2 Loewner-based interpolation

The Loewner approach, exposed in [Mayo and Antoulas, 2007] and [Antoulas et al.,
2015], is an interpolatory method initially used for model approximation and reduction.
Since this method is one of the key tools in the proposed data-driven control design tech-
nique, the objective of this section is to recall its principle and its different properties.
However, interested readers are invited to refer to the above references for details.

Considering a plant G, the objective of the Loewner-based approach is to find a
descriptor realization H = [E,A,B,C, 0] of an appropriate order n so that the cor-
responding transfer function H(s) = C(sE − A)−1B matches data from the plant G.
The obtained model is a descriptor system, also called generalized state-space system,
defined as follows:

H :

{
Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
, (5.1)

where x(t) ∈ Rn the state vector, u(t) ∈ Rnu the input vector of the system, y(t) ∈ Rny

the output vector, and E,A ∈ Rn×n, B ∈ Rn×nu and C ∈ Rny×n. The pencil sE −A
needs to be regular, meaning that det(sE−A) 6= 0.

Remark 5.1.1. Omission of the D-term
The D-term of the descriptor state-space representation of (5.1) is omitted when looking
for a minimal realisation through the Loewner framework. As explained in Chapter 2,
if there is a D-term, it is embedded in the E matrix as an infinite mode.

The plant’s data is given as a set of interpolation points, {λi}ρi=1 and {µj}νj=1, tan-

gential directions, {ri}ρi=1 and {lj}νj=1, and of measurements data, {wi}ρi=1 and {vj}νj=1.
This set is divided between:

• right interpolation data
{

(λi, ri,wi) ∈ C× Cnu×1 × Cny×1
}ρ
i=1
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• and left interpolation data
{

(µj , lj ,vj) ∈ C× C1×ny × C1×nu
}ν
j=1

The objective is to find H that interpolates both right and left constraints, given as
(5.2). {

∀i = 1 . . . ρ H(λi)ri = wi

∀j = 1 . . . ν ljH(µj) = vj
(5.2)

This problem is called the generalized realization problem.

Let us first introduce the following compact notations:

Λ =

 λ1

. . .

λρ

 ∈ Cρ×ρ R = [r1 . . . rρ] ∈ Cnu×ρ W = [w1 . . .wρ] ∈ Cny×ρ

M =

 µ1

. . .

µν

 ∈ Cν×ν L =

 l1
...
lν

 ∈ Cν×ny V = [v1 . . .vν ] ∈ Cν×nu

(5.3)

Remark 5.1.2. The tangential directions {ri}ρi=1 and {lj}νj=1 are not relevant in the
SISO case and can be fixed to 1. The resolution of the general tangential interpolation
problem is exposed here: it will be used in the next Chapter when defining the class of
achievable reference models for the proposed method.

A key in the resolution of the generalized realization problem are the Loewner and
shifted Loewner matrices, completely defined by the interpolation points and the tan-
gential data, given in (5.4) and (5.5) respectively.

L =


v1r1 − l1w1

µ1 − λ1
. . .

v1rρ − l1wρ

µ1 − λρ
...

. . .
...

vνr1 − lνw1

µν − λ1
. . .

vνrρ − lνwρ

µν − λρ

 ∈ Cν×ρ (5.4)

Ls =


µ1v1r1 − l1w1λ1

µ1 − λ1
. . .

µ1v1rρ − l1wρλρ
µ1 − λρ

...
. . .

...
µνvνr1 − lνw1λ1

µν − λ1
. . .

µνvνrρ − lνwρλρ
µq − λρ

 ∈ Cν×ρ (5.5)

Assuming that the data comes from a rational matrix function G(s), the shifted-
Loewner matrix Ls is the Loewner matrix generated by sG(s).

Considering that the system G is equipped with a descriptor state-space model
(E,A,B,C, 0) of order n, the generalized tangential observability and controllability
matrices, Oν and Cρ, are introduced in (5.6) and (5.7) respectively. The main difference
with the generalized observability and controllability matrices introduced in Chapter 2,
see (2.15) and (2.14), is the introduction of the tangential directions, which changes the
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dimension of these matrices, and of the shift points {µj}νj=1 and {λ}ρi=1.

Oν =

 l1C(µ1E −A)−1

...

lνC(µνE −A)−1

 ∈ Rnyν×n (5.6)

Cρ =
(

(λ1E −A)−1Br1 . . . (λρE −A)−1Brρ
)
∈ Rn×nρ (5.7)

Following these matrices, the Loewner matrices, L and Ls, can be factored as fol-
lows:

L = −OνECρ and Ls = −OνACρ (5.8)

Therefore, if (E,A,B,C, 0) is a minimal realization of the plant G, Oν and Cρ have
full rank. Consequently, according to (5.8), the rank of the Loewner matrix L is the
McMillan degree k of the plant G. Obtaining the McMillan degree of the considered
system is one of the main advantages of the Loewner framework. In practice, the
McMillan degree is obtained by applying a rank revealing decomposition, such as a
Singular Value Decomposition (SVD), on the Loewner matrix L.

The order n of a minimal realization of the system H, given interpolatory conditions
as in (5.2), is determined by the rank of the Loewner pencil as follows:

n = rank[L,Ls] = rank

[
L
Ls

]
. (5.9)

As for the McMillan order, the order n of the minimal realisation of G is obtained by
applying a SVD to the Loewner pencil, see (5.10).

[L,Ls] = Y ΣlX̃∗,

[
L
Ls

]
= Ỹ ΣrX

∗ , (5.10)

where Σl,Σr ∈ Rn×n are diagonal matrices containing the non-zero singular values only,
Y ∈ Cν×n and X ∈ Cρ×n. This decomposition allows to deal with the cases were
redundant data are given in the interpolatory conditions.

A minimal generalized state-space model as in (5.1) can be deduced from this fac-
torization. The matrices of the model are then computed as in (5.11).

E=−Y ∗LX
A=−Y ∗LsX
B=Y ∗V
C=WX

(5.11)

In addition to determining the smallest exact interpolating model, the Loewner
framework allows to control the complexity of the identified model. If one wants to
reduce the order of the obtained model to an order r < n, only the r biggest singu-
lar values are kept in (5.10). The rest of the SVD is truncated. The reduced-order
representation is obtained as in (5.11).

Remark 5.1.3. Adding a D-term As said earlier in Remark 5.1.1, a D-term, which
corresponds to a singular value at infinity, can be added if the McMillan degree is
not equal to the order of the minimal realization, see [Antoulas et al., 2015] for more
information.
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Remark 5.1.4. This algorithm is implemented in the MOR Toolbox, see [MOR Tool-
box, 2018]. It is a Matlab based toolbox created for the reduction of large-scale models
or the approximation of FRF data.

A variant of the Loewner algorithm has been proposed in [Ionita and Antoulas,
2014] and [Rapisarda and Antoulas, 2016] in order to identify pLTI models as defined
in Section 2.1.3. It should be noted that the Loewner framework also allows to take
into account derivative constraints as Ḣ(z) = Ġ(z) with z ∈ C, as detailed in [Mayo
and Antoulas, 2007]. This will be of particular interest when determining an achievable
reference model in the next Chapter.

5.1.3 Subspace-based identification

The subspace approach is a singular value decomposition based identification algorithm.
In this work, we used the algorithm proposed in [McKelvey et al., 1996] where a state
space model H = [A,B,C,D] in discrete form is built directly from the frequency-
domain data of the plant G to be identified:

H :

{
xk+1=Axk +Buk

yk=Cxk +Duk
, (5.12)

with x(t) ∈ Rn, y(t) ∈ Rny the state vector and u(t) ∈ Rnu the input vector.

The subspace approach requires samples of the frequency response:

Gk = G(ıωk) ∈ Cp×m, k = 1 . . . N.

Remark 5.1.5. Here, only the algorithm for arbitrarily spaced data from [McKelvey
et al., 1996] is presented. For the special case of uniformly spaced data, a dedicated
algorithm is proposed in this same paper, allowing to get rid of the influence of noise
when the number of data points tends to infinity. To obtain the same consistency result
for arbitrarily spaced noisy data, a weighting matrix is introduced, assuming that the
covariance of the noise is known.

Considering the discrete Fourier transform of (5.12), we have:

eıωX(ω)=AX(ω) +BU(ω)
Y(ω)=CX(ω) +DU(ω)

(5.13)

where X(ω), U(ω) and Y(ω) denotes the Fourier transform of the time-domain signals
x(t), u(t) and y(t) respectively. Using (5.13) recursively and considering input vectors
such that U(ω) = ei, with ei the unit vector with one at the ith position, the following
equation is obtained, see [McKelvey, 1995]:

G = OqX + ΓW, (5.14)

where G and W are matrices constructed exclusively from the data as follows:

G =
1√
N


G1 G2 . . . GN

ejω1G1 ejω2G2 . . . ejωNGN
...

...
. . .

...

ej(q−1)ω1G1 ej(q−1)ω2G2 . . . ej(q−1)ωnGN

 ∈ Cqny×nuN , (5.15)
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W =
1√
N


Inu Inu . . . Inu

ejω1Inu ejω2Inu . . . ejωM Inu

...
...

. . .
...

ej(q−1)ω1Inu ej(q−1)ω2Inu . . . ej(q−1)ωN Inu

 ∈ Cqnu×nuN . (5.16)

In (5.14), Oq is the extended observability matrix, defined in (5.17), according to the
matrices of the state-space model to be identified:

Oq =


C
CA

...

CAq−1

 . (5.17)

Its dimension is fixed by the user through the parameter q ∈ N. Finally, the Γ matrix
used in (5.14) is given by:

Γ =


D 0 . . . 0
CB D . . . 0

...
...

...
CAq−2B CAq−3 . . . D


while the X matrix is given by:

X =
1√
N

[Xc(ω1) . . . Xc(ωN )]

with Xc(ω) =
[
X1(ω) . . . Xnu(ω)

]
where Xi(ω) is the transform state obtained for an

input U(ω) = ei.

The basic idea of [McKelvey et al., 1996] is that the range space of the extended
observability matrix (5.17) can be estimated from the input-output frequency-domain
data. Indeed, (5.14) gives:

GW⊥ = OqXW⊥,
wit ⊥ denoting the orthogonal of a matrix. As proved in [McKelvey et al., 1996], if N ≥
q+n and if the considered frequencies {ωi}Ni=1 are distinct and satisfy eıωi 6∈ λ(A), then
the range space of GW⊥ is equal to the range space of Oq. Therefore, the identification
boils down to the obtention of the range space of GW⊥.

To that extent, the following QR decomposition is performed on the data matrices:[
Re(W ) Im(W )
Re(G) Im(G)

]
=

[
R11 0
R21 R22

] [
QT1
QT2

]
. (5.18)

Then, the singular value decomposition of the R22 matrix gives:

R22 =
[
Ûs Ûo

] [Σ̂s 0

0 Σ̂o

] [
V̂s
V̂o

]
(5.19)

with Σ̂s ∈ Rn×n containing the n largest singular values and being an estimate of Oq.
Then, n is the order of the estimated model and is fixed by the user. n can also be
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selected automatically as the number of non-zero singular values, as in the Loewner
framework.

Then, the matrices A and C can be computed from the observability matrix, see
(5.17). Finally, B and D are chosen so that the frequency response of the model is as
close as possible to the experimental one. Matrices A and C are given by:

A = (J1Ûs)
†J2Ûs

C = J3Ûs
(5.20)

with:
J1=

[
I(q−1)p 0(q−1)p×p

]
J2=

[
0(q−1)p×p I(q−1)p

]
J3=

[
Ip 0p×(q−1)p

]
.

Remark 5.1.6. If one wants to limit the influence of the noise on the identified model,
it is possible to introduce a weighting matrix R. The SVD of Equation (5.19) is then
performed on RR22 instead of R22 only. The A and C matrices are then obtained
through the following equation, which differs from (5.20) through the introduction of
the weighting matrix R:

A = (J1RÛs)
†J2RÛs

C = J3RÛs
.

In [McKelvey et al., 1996], R is built on the basis of the noise covariance function while
it is proposed in [Liu et al., 1996] to build R on the basis of the available plant’s data.

Matrices B and D are solutions of the following least squares problem:

{B,D} = arg min
M∑
k=0

||Gk −D − C(ejωkI −A)−1B||2F (5.21)

Use of LMIs for eigenvalue control

One of the main strengths of the subspace algorithm is that it is possible to constraint
the position of the poles of the identified model in LMI regions. This extension of
the original subspace algorithm was proposed in [Miller and De Callafon, 2013] and
[Demourant and Poussot-Vassal, 2017]. As explained in [Chilali et al., 1999], a LMI
region D is characterized by two matrices P = P T ∈ Rr×r and Q ∈ Rr×r:

D = {z ∈ C | P +Qz +QT z̄}. (5.22)

The eigenvalues of a matrix A = ϕ†b, with ϕ = J1Ûs and b = J2Ûs, see (5.20), lies
in D if and only if the following problem has a solution:

min
Ã,Ψ,β

β (5.23)

subject to:

P ⊗Ψ +Q⊗ Ã+QT ⊗ ÃT < 0 (5.24)

76



5.1. Preliminary: frequency-domain identification

(
I (ϕÃ− bΨ)

(ϕÃ− bΨ)T β

)
> 0 (5.25)

Ψ > 0 (5.26)

where Ã = AΨ. The decision variables are β, Ψ and Ã. Then, ϕ and b are given
by the standard subspace approach (5.20): the LMI (5.25) corresponds to the fitting
objective of the data.

In our case, we require that the dynamical process (i.e. the controller) be stable, so
the poles of A must lie in the unit circle which corresponding LMI region D is defined
by (5.22) with:

P =

(
−1 0
0 −1

)

Q =

(
0 0
1 0

)
.

The matrix A of the model is given by Ã = AΨ. The matrices C, B and D
are obtained as in the classic method: C is deduced from the same singular value
decomposition and B and D are the solutions of the same least squares problem.

Remark 5.1.7. It should be noted that the consistency of the problem is not affected by
the use of LMIs if the constraints are relevant with the controller to identify. Therefore,
in this work, the subspace approach will always be used with LMI constraints to identify
a stable controller.

Comparison of these two methods

The Loewner framework and the subspace approach both allow to identify a reduced-
order model on the basis of frequency-domain measurements. The subspace approach
also requires to fix the size of the extended observability matrix to be estimated. Both
techniques are based on a SVD which is a rank revealing decomposition. Therefore,
these two methods allow to fix the model order automatically by eliminating all the
singular values equal to zero.

The Loewner framework can address tangential interpolation problems. It also may
include derivative constraints. These two aspects will be of particular interest when
choosing a reference model in the next Chapter. The main weakness of this method is
to be extremely sensitive to noisy data. This issue will be tackled in the next section.

The subspace approach is more robust to noisy data and frequency weightings have
been proposed in [McKelvey et al., 1996] to improve the results of the method to noise.
In addition, the possibility to use LMI constraints to control the location of the poles
of the identified model constitutes a major advantage.
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5.2 Identification of the controller

In this Section, the Loewner framework and the subspace algorithm, recalled in Section
5.1.2 and 5.1.3 respectively, are now used to identify a controller for the problem exposed
in Chapter 4. These two methods are applied on the frequency response samples of the
ideal controller K?, which define the interpolation problem given in (4.4).

The resulting controllers, obtained through the Loewner framework and the subspace
algorithm, are denoted Kl = (El, Al, Bl, Cl, 0) and Ks = (As, Bs, Cs, Ds) respectively.
In the first time, it is assumed that they are minimal realizations of the ideal controller
K?. It means that all the non-zero singular values are kept to build a model, considering
(5.10) for the Loewner framework and (5.19) for the subspace approach.

5.2.1 Enforcing the stability of the identified controller

In many industrial applications, it is preferable to have a stable controller. This the case
when the plant to be controlled presents an input saturation for example. Enforcing
the stability of the controller will also be important to evaluate the choice of a reference
model in Chapter 6. Having a stable controller is also one of the necessary conditions
to apply the internal stability test proposed in Chapter 7.

To guarantee the stability of the controller, the subspace approach can be used under
LMI constraints, as explained in Section 5.1.3. For the Loewner framework, no technique
has been proposed to ensure the stability of the obtained realization. To that extent,
in [Kergus et al., 2018b], a projection on the RH∞ space, proposed in [Köhler, 2014], is
used as a post-processing technique to obtain a stable controller model. The objective
of this paragraph is to recall this technique. It should be noted that this algorithm has
already been combined with the Loewner framework in [Gosea and Antoulas, 2016] in
the area of model reduction.

Given an unstable continuous LTI descriptor system, the method proposed in [Köhler,
2014] allows to find a stable one of the same order which is an optimal approximation
of the original system in the space RH∞. In our case, this algorithm will be applied to
the the interpolating descriptor model Kl of order n. The goal is to obtain a nth order
stable controller Ks

l that is an optimal RH∞-approximation of Kl, meaning that Ks
l

solves:
Ks
l = arg min

K∈S+r,nu,ny

‖Kl −K‖∞ . (5.27)

Let us introduce the following notations:

Sr,nu,ny = Rr×r × Rr×r × Rr×nu × Rny×r × Rny×nu ,

S+
r,nu,ny

=
{

(E,A,B,C,D) ∈ Sr,nu,ny ;C≥0 ⊂ ρ(E,A)
}
,

S−r,nu,ny
=
{

(E,A,B,C,D) ∈ Sr,nu,ny ;C≤0 ⊂ ρ(E,A)
}
,

(5.28)

where σ(E,A) is the set of eigenvalues of (E,A) and ρ(E,A) is the resolvent set:
ρ(E,A) = C \ σ(E,A).

The first step is to decompose Kl into K+ ∈ S+
r,nu,ny

and K− ∈ S−r,nu,ny
. The

existence of such a decomposition is proved in [Köhler, 2014] and a method is proposed
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to compute it. Note that K+ is the RH2-problem optimal approximation of Kl:

K+ = arg min
K∈S+r,nu,ny

‖Kl −K‖2 .

The unstable part K− = (E−, A−, B−, C−, D−) is then used to compute Ks
r. The

controllability and observability gramians of K−, denoted Wc and Wo respectively, are
computed by solving the following generalized Lyapunov equations:{

A−WcE
−T + E−WcA

−T +B−B−
T

= 0

A−
TWoE

− + E−
TWoA

− + C−C−
T

= 0
(5.29)

Let us introduce σ1 =
√

max(σ(WT
o Wc)) and the matrix R =WoE

−WcE
−T − σ2

1I,
where I is the identity matrix. The optimal RH∞-approximation is then given by:

Ks
l = K+ + (Es, As, Bs, Cs, Ds), (5.30)

where the matrices (Es, As, Bs, Cs, Ds) are computed as in (5.31) (readers can refer to
[Köhler, 2014] for further details).

Es = E−
T
R

Bs = E−
TWoB

−

Cs = C−WcE
−T

As = −A−TR− C−TC
Ds = D−.

(5.31)

5.2.2 Dealing with noisy data

Due to the definition of the ideal controller K?, see (4.2), the quality of the FRF
measurements of the plant directly impact the computed FRF of K?. Therefore, as
explained in Section 4.1.2, the plant’s data should reflect the dynamics to be controlled
and be not too biased. Different references to experiment design techniques and FRF
processing procedures have been given in this paragraph. However, this study would be
incomplete if the noisy case was not considered.

Concerning the subspace approach, a weighting filter is used in the original version
of the algorithm presented in [McKelvey et al., 1996]. However, the design of this filter
requires to know the covariance function.

The Loewner framework can identify a system from given noise-free measurements
in the frequency-domain (see [Antoulas et al., 2015]). An analysis of the effects of noise
on the performances of the Loewner approach is provided in [Lefteriu et al., 2010]: it
exhibits poor performances for high noise levels. Noise affects the recovered poles: the
largest singular values of the Loewner pencil does not necessarily reflect the physical
poles of the system and often include noise-related dynamics. In this case, overmodeling
is the only way, in the Loewner context, to capture the physical poles of the original
system.
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In the classical Loewner framework, the poles of the system are determined through
a rank revealing factorization. In order to make the selection of the poles robust to noise,
the SVD step is replaced by ordering the poles of the high-order system according to the
norm of the associated residues, as explained in [Lefteriu et al., 2010]. This approach
was used in [Kergus et al., 2018b] in the proposed data-driven control technique and is
recalled hereafter.

The reduction is applied to the stable nth-order controller model Ks
l = (Esl , A

s
l , B

s
l , C

s
l ,

Ds
l ) obtained in the previous paragraph as the optimal approximation of the interpo-

lating controller in RH∞. The objective is to obtain a stable nth-order controller Kr

by selecting the poles in a noise-proof way. Instead of using the SVD approach, the
importance of a pole λi of Ks

l is measured by the norm of the corresponding residue
ri. This strategy is based on the pole-residue expansion of the transfer function, see
Section 2.1: a pole with a larger residue norm contributes more to the response of the
system, while the rest do not influence it that much.

As explained in [Lefteriu et al., 2010], using this technique to select the poles in-
stead of the classical SVD approach, the approximated poles are within appropriate
pseudospectra bounds corresponding to the noise level in comparison with the physical
poles of the controller.

Finally, the r poles of the reduced-order controller are the ones corresponding to
the rth largest residue norms. The poles are then ordered downward, so that λ1 is the
pole with the highest dominance measure and λr has the smallest one. The poles of the
reduced stable model are [λ1 . . . λn]. After that, it is possible to adjust the residues and
the D-term to fit the data by solving the following least squares problem:

min
ri,D

N∑
j=1

∣∣∣∣∣
∣∣∣∣∣
r∑
i=1

ri
ıωj − λi

+D −K(ıωj)

∣∣∣∣∣
∣∣∣∣∣
2

F

. (5.32)

Finally, the rth order controller Kr is given by:

Kr(s) = D +

n∑
i=1

ri
s− λi

(5.33)

Since the poles of the reduced-order controller come from the stable model Ks
l , the

obtained rth-order controller Kr remains stable.

5.2.3 The parametric case

For some applications, it might be useful to identify parametric controllers which can
be tuned as a function of the working point for example. This will be the case in
Chapter 8 for example, when applying the proposed method to the hydrogeneration
control problem.

As mentioned earlier, the Loewner framework has been extended in [Ionita and An-
toulas, 2014] and [Rapisarda and Antoulas, 2016] to the identification of p-LTI models.
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The subspace-based methods are well-established for LTI systems. However, the
obtained models are valid for a single operating point only. Extension to LPV modelling
and identification have been proposed, as detailed in [Tóth, 2010]. As explained in
Section 2.1.3, frequency-domain data are not relevant in the LPV framework. For this
reason, in [Kergus et al., 2018a], a subspace-based algorithm to identify p-LTI models
on the basis of frequency-domain data has been proposed. It is still possible to impose
the location of its poles through LMI constraints. This extension of the classic subspace-
based algorithm is recalled here.

Considering local FRF measurements {ωi,H(p(j), ıωi)}Ni=1, obtained at the operating

points {p(j)}Np

j=1 from a plant G(p), the objective is to find a p-LTI model H as defined
in Section 2.1.3, see (2.19) and recalled hereafter:

H(p) :

{
xk+1 = A(p)xk +B(p)uk

yk = C(p)xk +D(p)uk
. (5.34)

In the present case, the matrices have an affine parameter-dependancy:

M(p) = M0 +

np∑
k=1

pkMk, (5.35)

where pk is the kth component of the parameter vector p. Considering the structure
of the matrices of the desired state-space representation (see (5.34) and (5.35)), it is
possible to concatenate all the LTI problems to solve the parametric problem directly
instead of interpolating Np local models as it is traditionally done.

All the local observability matrices Ô(j)
q , estimated at every operating point p(j),

are considered. They are obtained using the classic LTI subspace algorithm recalled in
Section 5.1.3, see (5.19), at every operating point where data is available. It allows to
derive all the local equations (5.20) for j = 1 . . . Np. Those are then expressed in a same
basis, which is not guaranteed by the classical subspace-based algorithm of [McKelvey
et al., 1996].

In [Kergus et al., 2018a], the observability canonical form is considered. It has
been extended for multivariable system in [Luenberger, 1967]. In the MIMO case,
assuming that the state-space representation is state-observable, the computation of the
transformation matrix Tj consists in choosing n independent rows of the full column

rank observability matrix Ô(j)
n ∈ Rnyn×n. The choice of this equivalent tranformation

is detailed in [Tóth, 2010].
Finally, the equivalence transformation Tj is available for all j = 1 . . . Np. The A(p)

and C(p) matrices of the parametric model then satisfy:{
A(p(j)) = TjA

(j)T−1
j

C(p(j)) = C(j)T−1
j

, (5.36)

where A(j) and C(j) are the solution of equation (5.20) of the LTI identification problem
at the operating point p(j). Considering equations (2.19) and (5.20), and the transfor-
mation into the observable canonical form (5.36), finding the A(p) and C(p) matrices
of the parametric model consists in solving the following set of equations ∀j = 1 . . . Np:

J1Ô(j)
n TjA(p(j))T−1

j = J2Ô(j)
n , (5.37)
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C(p(j))T−1
j = J3Ô(j)

n , (5.38)

where the matrices J1, J2 and J3 are the same ones as in the LTI case, see (5.20). The
matrices A(p) and C(p) are obtained by concatenating all these local problems in one
single large one (see [Kergus et al., 2018a] more details). The matrices B(p) and D(p)
are obtained by solving a least squares problem similar to the one of the LTI case, see
(5.21).

LMI regions constraints in the parametric case

This parametric model computation can be performed under LMI constraints to impose
the poles location, as explained in [Kergus et al., 2018a]. By extension of what has been
done in [Miller and De Callafon, 2013] and [Demourant and Poussot-Vassal, 2017] in the
LTI case, the eigenvalues of the matrix A(p) lie in D if and only if X = XT > 0 ∈ Rn×n
exists such that the following LMI is verified:

∀p ∈ ∆, P ⊗X +Q⊗ (A(p)X) +QT ⊗ (A(p)X)T < 0, (5.39)

where ∆ = {p | ∀k = 1 . . . np,pk ∈ [0, 1]} is a convex set (we assume that the parameters
are normalized). Its convex hull is defined by:

∆0 = {p | ∀k = 1 . . . np,pk ∈ {0, 1}} . (5.40)

To ensure that the eigenvalues of A(p) lies in D for an affine parameter-dependency,
one just needs to check the LMI given in equation (5.39) for p ∈ ∆0, which contains a
finite number of elements. Therefore, the matrices Ak forming A(p) ensuring that the
poles of the system lie in D are found by solving a problem containing a finite number
of LMIs. It is the pLTI equivalent of problem (5.23), see [Kergus et al., 2018a] for more
information.

5.3 Application to numerical examples

The objective of this section is to apply the proposed method on the same examples
than in Section 4.2: the DC motor and the flexible transmission. This time, noise will
be introduced in the measurements. As in [Lefteriu et al., 2010], the noise is directly
introduced on the FRF of the considered plants. For a plant P, the considered noisy
data {Φi}Ni=1 is obtained as follows:

∀i = 1 . . . N, Φi = P(ıωi) + N(ıωi)

N(ıωi) = P(ıωi) · 10−
SNR
10 R

(5.41)

where N is the noise, defined through R, a ny × nu complex matrix. The real and
imaginary parts of its elements are normally distributed random numbers. SNR denotes
the Signal to Noise Ratio. The · symbol stands for the entry-by-entry multiplication.

In order to highlight the influence of noisy data on the control design process, the
following measures are introduced:
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• the H2-error between the resulting closed-loop H and the reference model M:

H2 error =

√∑N
i=1 ‖H(ıωi)−M(ıωi)‖22∑N

i=1 ‖M(ıωi)‖22
. (5.42)

• the H∞-error between the resulting closed-loop H and the reference model M:

H∞ error =
max
i=1...N

σ (H(ıωi)−M(ıωi))

max
i=1...N

σ(M(ıωi))
. (5.43)

• the H2- norm of the noise:
√∑N

i=1 ‖N(ıωi)‖22.

• the H∞- norm of the noise: max
i=1...N

σ(N(ıωi)).

These measures can be seen as a data-based equivalent of the norms of systems intro-
duced in Chapter 2.

The DC motor

Three noisy data-sets, defined with SNR=50, SNR=20 and SNR=10, are considered,
in addition to the noise-free case, already seen in Section 4.2 (the same frequency grid
is used). For information, the norms of the two noise signals are given in Table 5.1.
The noisy measurements from the plant P are represented on Figure 5.1a for SNR=10.
The associated frequency-response of the ideal controller, biased by the noise, is given
on Figure 5.1b. For the sake of clarity, the two others noisy data-sets, SNR=20 and
SNR=50, have not been represented.

SNR=50 SNR=20 SNR=10

H2-norm 9.0793e-6 0.0090 0.0931

H∞-norm 2.6730e-6 0.0032 0.0336

Table 5.1: Norms of the considered noise signals.
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Figure 5.1: Use of noisy frequency-domain measurements from the DC motor (SNR=10)
and computation of the frequency-response of the associated ideal controller K? .
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Chapter 5. Controller identification in the frequency-domain

The first impact of the noise on the identification of the controller is to complicate
the choice of the order for the controller model. Indeed, both the Loewner framework
and the subspace approach rely on a SVD to reveal the rank of the underlying dynamical
system. The obtained normalized singular values for the two algorithms and the three
data-sets are shown on Figure 5.2. It shows that the noise perturbs the singular values
that are equal to zero in the noise-free case. When the SNR increases, it becomes
more and more difficult to determine the order of the underlying system: the drop of
the singular values turns almost invisible for SNR=80. On this aspect, the impact of
the noise appears more important on the Loewner framework than on the subspace
approach.
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Figure 5.2: Singular Value Decomposition in the Loewner framework (left) and in the
subspace approach (right) for different levels of noise.
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According to Figure 5.2, in the noise-free case, it is clear that the ideal controller
K? is a second-order system. The exact expression of K? is given in Section 4.2, see
(4.7). Identifying a second-order controller on the basis of the three considered noisy
data-sets gives the controllers of Table 5.2.

Loewner framework Subspace approach

Noise-free
50(s+9.997)(s+2.003)

s(s+20)
50(s+9.997)(s+2.003)

s(s+20)

SNR=50
−622.86(s+1.965)

(s−2.069e−5)(s−24.45)
49.996(s+9.975)(s+2.004)
(s+2.014e−5)(s+19.97)

SNR=20
48.792(s−0.05281)

(s−0.001577)(s−0.0458)
48.53(s2+6.983s+12.93)
(s+0.006399)(s+12.44)

SNR=10
39.262(s−0.00618)

(s2+0.004273s+0.002775)
45.639(s+0.2565)(s−40.79)

(s−1.107)(s−26.7)

Table 5.2: Identification of the ideal controller for different levels of noise.

The frequency responses of the identified controllers are visible on Figure 5.3 and the
associated closed-loop performances are shown on Figure 5.4. The associated closed-loop
errors are given in Table 5.3. For a low noise level (SNR=50), the subspace algorithm
performs well. In most cases, the identified controllers do not reflect the behaviour of the
ideal controller and the corresponding closed-loops present significant overshoots. Using
the model of the considered system, the controllers obtained by the subspace approach
at SNR=20 and SNR=10 give unstable closed-loops. Concerning the Loewner approach,
the three controllers identified for SNR=50, 20 and 10 give unstable closed-loops.
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(a) Through the Loewner framework.
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Figure 5.3: Approximation of the ideal controller by a second-order model for different
levels of noise through the Loewner framework and the subspace approach (as introduced
in Section 5.1).
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(a) Through the Loewner framework.
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(b) Through the subspace approach

Figure 5.4: Frequency-responses of the resulting closed-loops, obtained with the con-
trollers identified through the Loewner framework (left) and the subspace approach
(right).

Loewner framework Subspace approach

H2-error H∞-error H2-error H∞-error

SNR=50 0.0812 0.1469 1.6891e-5 2.9922e-4

SNR=20 0.9776 2.8150 0.6369 1.5852

SNR=10 0.8578 2.0711 1.1224 3.4032

Table 5.3: Closed-loop performances: error between the reference model and the closed-
loop obtained with controllers identified through the Loewner framework and the sub-
space approach.
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Figure 5.5: Decrease of the normalized residue norms and singular values to compare
the two reduction approaches in the Loewner framework for different noise levels.

87



Chapter 5. Controller identification in the frequency-domain

In order to identify better controllers on the basis of noisy data, the stability of the
controller is enforced, using LMI constraints for the subspace approach or the projec-
tion on RH∞ for the Loewner framework, see Section 5.2.1. To go further, the noise
is handled through a weighting matrix in the subspace approach. For the Loewner
framework, the traditionnal SVD implementation is replaced by the residue-based one,
as explained in Section 5.2.2. The decrease of the residue norms is shown on Figure 5.5
and compared to the classical SVD approach: the physical poles appear more clearly
with the residue approach for the highest noise level SNR=10: it is now visible that a
second-order model can describe the ideal controller.

The controllers obtained using this new version of the method, presented in [Kergus
et al., 2018b] for the Loewner framework, are shown on Figure 5.6. The closed-loop
errors with respect to the reference model are given in Table 5.4. The corresponding
closed-loop behaviours are visible on Figures 5.7a and 5.7b. For the Loewner framework,
the obtained closed-loop behaviours are much closer to the reference model M than
the ones on Figure 5.4. The results were also improved using the subspace approach.
Furthermore, using the theoretical expression of the DC motor, these closed-loops are all
stable. The associated step responses are visible on Figures 5.7c and 5.7d. Concerning
the static error visible on Figures 5.7c and 5.7d, the best solution would be to enforce
the presence of an integrator in the controller. This will be done in Chapter 7 on this
example.
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(a) Through the Loewner framework combined with
the RH∞-projection and the residue-based reduc-
tion.
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(b) Through the subspace approach under LMI con-
straints and using a frequency-weighting.

Figure 5.6: Identification of the ideal controller for different levels of noise.
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(a) Obtained closed-loops with controllers identified
through the enhanced Loewner framework.
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(b) Obtained closed-loops with controllers identi-
fied through the subspace approach under LMI con-
straints and using frequency-weighting.
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(c) Step responses obtained with controllers identi-
fied through the enhanced Loewner framework.
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(d) Step responses obtained with controllers identi-
fied through the subspace approach under LMI con-
straints and using a frequency-weighting.

Figure 5.7: Closed-loop performances of the resulting closed-loops, obtained with the
controllers identified through the Loewner framework (left) and the subspace approach
(right), for different noise levels. The controllers is forced to be stable and noisy data
are handled through frequency weigthing for the subspace approach and residue-based
reduction in the Loewner framework.

In order to complete this study about noisy data, for each considered SNR, 50, 20
and 10, 50 noisy FRF measurements have been considered. Each time, controllers are
identified using the Loewner framework and the subspace approach, with and without
stability enforcement and specific noise treatments. The results in terms of closed-
loop performances are indicated by the error between the resulting closed-loop and the
reference model M, see Figures 5.8 and 5.9. Enforcing the stability of the identified
controller and the proposed techniques to handle noise (frequency weigthing for the
subspace approach and residue-based reduction in the Loewner framework) allow to
improve closed-loop performances when working with noisy FRF measurements.
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Chapter 5. Controller identification in the frequency-domain

Loewner framework Subspace approach

H2-error H∞-error H2-norm H∞-error

SNR=50 6.3205e-5 1.1692e-04 5.3472e-4 9.3650e-4

SNR=20 0.2354 0.2505 0.4106 0.8185

SNR=10 0.2144 0.2194 0.2203 0.2336

Table 5.4: Closed-loop performances: error between the obtained closed-loop and the
reference model when enforcing the stability of the controller and using a specific tech-
nique to handle noisy data (residue-based reduction for the Loewner framework and
frequency weighting for the subspace approach).
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Figure 5.8: Impact of the noise on the performances obtained with the controllers
identified through the Loewner framework.
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Figure 5.9: Impact of the noise on the performances obtained with the controllers
identified through the subspace approach.
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The flexible transmission

On the DC motor example, identifying a stable controller works fine because the ideal
controller is stable. On the flexible transmission example, since the system is NMP,
the stability of the ideal controller mostly depends on the choice of the reference model
M. In Section 4.2, it has been shown that choosing a reference model that does not
contain the RHP zeros of the plant leads to an unstable ideal controller. Its instabilities
come from the compensation of the plant’s RHP zeros. Therefore, the ideal controller
destabilizes the plant internally.
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(a) Controller identification.
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(b) Resulting closed-loops.

Figure 5.10: Identification of a 6th order stable controller and resulting closed-loop
frequency-response for the flexible transmission example.

First, the same reference model than in Section 4.2 is considered, the data is noise-
free and the same frequency-grid is used. When identifying a stable controller as pro-
posed in this chapter, the closed-loop performances are far from the desired ones, see
Figure 5.10b. Indeed, modelling an unstable ideal controller by a stable model intro-
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Chapter 5. Controller identification in the frequency-domain

duces a large error, see Figure 5.10a. Furthermore, if enforcing the stability of the
controller prevents the compensation of instabilities in the open-loop, it is not sufficient
to ensure closed-loop stability. In addition, in terms of overall strategy, trying to get as
close as possible to a destabilizing controller is not a wise choice. To sum up, the choice
of the reference model is crucial to obtain good results when identifying a controller.
This problem is addressed in the following chapter.

Summary

In this chapter, the Loewner framework and the subspace approach were recalled. These
are the two techniques considered in this work to obtain a model of the ideal controller.
Since they both rely on a rank revealing decomposition, it makes the reduction of the
controller an easy task. The main contribution of this Chapter is to enforce the stability
of the identified controller and to study the impact of noisy data on the proposed control
design.

To that extent, the subspace approach is already equipped with all the necessary
tools: LMI constraints allow to monitor the location of the modes of the identified model
and the algorithm is strongly consistent when it comes to noisy data. This robustness
to noise is also one of the reason why this method is so popular in system identification.

On the other side, Loewner interpolation is really sensitive to noisy data. The model
reduction has been modified as proposed in [Lefteriu et al., 2010] in order to be more
robust. Furthermore, the projection technique introduced in [Köhler, 2014] is used to
enforce the stability of the identified controller.

Then, the controller identification step is applied on the DC motor example, on
the basis of noisy plant’s measurements. It highlights the robustness of the subspace
approach to noise. It also shows that the proposed modifications of the Loewner al-
gorithm allow to improve the results when dealing with noisy data. In the end, the
flexible transmission benchmark underlines that identifying a stable controller to avoid
compensations of instabilities in the open-loop is not a sufficient solution. It is necessary
to choose carefully the reference model M, which is the topic of the next Chapter, and
to perform a closed-loop stability analysis, see Chapter 7.
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Chapter 6

Choice of an achievable reference
model

The objective of this chapter is to investigate the influence of the reference model M
in the proposed data-driven method and to propose a method to find an adequate one.
In Section 6.1, the influence of the reference model on the performances of the proposed
method is studied. It is shown that the reference model should be chosen according to
the instabilities of the plant. A data-driven technique to estimate these instabilities is
described in Section 6.2. The overall method to choose an adequate reference model
is finally exposed in Section 6.3. All along this Chapter, the proposed techniques are
applied on the DC motor example and the flexible transmission benchmark.
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6.1 Specifications in data driven model-reference techniques

This section aims at showing the importance of the reference model, its influence
on the control design and the resulting closed-loop performances. Data-driven model-
reference techniques such as the VRFT or CbT, and the one presented in this thesis, can
seem really attractive since the only requirement is to furnish the desired closed-loop
behaviour. However, the reference model should also take into account the ability of
the unknown plant to reproduce its behaviour. This makes the choice of the objective
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closed-loop a critical step in data-driven techniques using a model-reference paradigm.
This problem is highlighted in [Bazanella et al., 2011], [Piga et al., 2018] and [Selvi
et al., 2018].

6.1.1 Influence of the specifications on the control design

Compromising between performances and controller’s complexity

As highlighted in Section 4.2 by the application of the proposed method on the DC
motor example, if the user wants to reduce the complexity of the identified controller,
a loss of closed-loop performances is observed. To some extent, when giving a maximal
order for the controller, specifying a less performing reference model might be a wise
choice. For the DC motor example, if one wants to obtain a first order controller, better
results are obtained by decreasing the cutoff frequency of the reference model, which
corresponds to a slower feedback system.

This can be explained by the definition of the ideal controller K? given in Chapter
4 and recalled hereafter:

K? = P−1M(Iny −M)−1. (6.1)

The closer the reference model M gets to the plant P, the more easily the factor P−1M
can be reduced without losing too much closed-loop performances.

It is well known in automatic control that the subtlety is to find a good compromise
between the controller’s complexity and the desired closed-loop performances. The
desired performances form itself a compromise, between speed and overshoot in the
case of the DC motor for example. If one wants to prioritize the speed over the absence
of overshoot, it is possible to increase the cutoff frequency of the reference model but
the damping factor must be decreased.

Challenging cases: non-minimum phase and unstable plants

In the example of the flexible transmission, treated in Section 4.2, the ideal controller
compensates the right-half plane zeros of the plant, see (4.10). The same occurs when
applying the method to unstable plants: the ideal controller will exhibit NMP zeros
compensating the unstable poles of the plant. Therefore, the closed-loop with the ideal
controller is internally unstable, see Chapter 2.

In Chapter 5, it has been proposed to identify stable controllers. If avoiding compen-
sations of instabilities in the open-loop when dealing with NMP plants, enforcing the
stability of the controller when the ideal controller is unstable clearly deteriorates the
performances of the obtained controller. As a matter of fact, trying to approximate an
unstable frequency-response by a stable model results in controllers that will be really
different from the ideal controller. Consequently, the associated closed-loops will not
present the expected dynamical behaviour, see Figure 5.10.

To sum up, the reference model should be chosen so that the corresponding ideal
controller stabilizes the plant internally.
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6.1.2 Finding an achievable model reference

As explained before, the choice of the reference model affects the design process in two
ways:

1. If the reference model does not take into account the plant instabilities, it is not
achievable by the system: the ideal controller destabilizes the system internally.

2. The closed-loop performances will impact the reduction of the controller (as in
the DC motor example): the more performances the user asks, the less likely a
low-order controller is to achieve them.

The first item is the one treated in this Chapter. The complexity-performance com-
promise can be dealt with later on, by iterating on the desired performances. Before
that, given some performance specifications, a technique to build an achievable reference
model is proposed. The second item will be treated in the end of Chapter 7, after the
internal stability analysis.

The compensation of instabilities in the open-loop PK? can be easily understood by
looking at the formula of the ideal controller, see (6.1). Regarding non-minimum phase
systems, as said in [Bazanella et al., 2011], this problem can be avoided by including the
right-half-plane zeros of the plant in the reference model. When it comes to unstable
systems, it is also necessary to consider the unstable poles of the plant in the construction
of the reference model to preserve internal stability.

To sum up, the choice of a reference model relies on the well known fact that the
plant’s instabilities are the main limitations of the possible control performances, see
[Havre and Skogestad, 1996]. If not taken into account, the ideal controller destabilizes
the plant internally and represents a bad behaviour that should not be identified. For
this reason, the choice of an appropriate model reference is a critical step for all data-
driven techniques.

According to Theorem 2.2.1, the ideal closed-loop, represented on Figure 6.1, is
internally stable if and only if I −M is stable and there is no instability compensation
between the plant P and the ideal controller K?.

K? P
+ −

Reference model M

Figure 6.1: The ideal case: feedback interconnection obtained with the ideal controller.

As recalled in Chapter 2, these conditions can be expressed as an interpolation
problem on the sensitivity function Iny −M. In the SISO case, the closed-loop obtained
with the ideal controller is internally stable if and only if the model reference satisfy:{

M(zi) = 0
M(pj) = 1

(6.2)

95



Chapter 6. Choice of an achievable reference model

where {zi}i=1...nz
and {pj}j=1...np

are respectively the unstable zeros and poles of the
plant P. When the plant has multiple RHP poles or zeros, derivative constraints must
be added in the SISO case as follows:{

M(zi) = M(1)(zi) = · · · = M(mzi−1)(zi) = 0

M(pj) = M(1)(pj) = · · · = M(mpj−1)(pj) = 1
, (6.3)

where mzi and mpj are the multiplicity of the RHP zeros zi and poles pj respectively.

M(m) denotes the m-th derivative of the transfer function M(s).

For MIMO systems, these conditions are generalized in a tangential interpolation
problem, see [Havre and Skogestad, 2001], involving the output directions ypj ∈ Cny

and yzi ∈ Cny , associated to the unstable poles pj and zeros zi respectively:{
yTziM(zi) = 0
M(pj)ypj = ypj

. (6.4)

Remark 6.1.1. As explained in Section 5.1.2, the tangential directions make sense only
if their dimension is strictly superior to 1. Since, in the proposed problem formulation
(Chapter 4), the reference model M is square of size ny × ny, the MIMO definition of
an achievable closed-loop given in (6.4) should only be used if ny > 1. Otherwise, for
SISO or MISO plants, derivative constraints should be used as in (6.3) to treat multiple
RHP poles or zeros.

In conclusion, a reference model must satisfy equation (6.3) if ny = 1 or (6.4) if
ny > 1 in order to be achievable by the plant P. In [Bazanella et al., 2011] and [Selvi
et al., 2018], it is proposed to design the model reference M along with the controller
in the VRFT procedure by parametrizing it. In the SISO case, in [Van Heusden et al.,
2009], it is proposed to define an achievable reference model M for data-driven controller
validation purposes: M is defined according to the nature of the system through a stable
filter. This approach will be recalled in the next chapter.

Remark 6.1.2. It should be noted that in [Battistelli et al., 2018], the problem of
choosing an achievable reference model is avoided by defining the initial ideal controller
as the one giving a certain moderate command objective Wu. Therefore, its expression
is:

K?
u = (1−WuP)−1Wu, (6.5)

instead of (6.1). For any stable Wu, the corresponding ideal controller K?
u defined by

(6.5) stabilizes the plant internally. The method then iterates to compromise between
this objective and the classic closed-loop performances specifications given by a reference
model M, see Section 3.2.1.

In this work, we propose a technique to define an achievable model reference. First,
it is necessary to identify the instabilities of the plant using a data-driven technique
thanks to a method proposed in [Cooman et al., 2018b]. This technique is described in
Section 6.2. Then, once the instabilities are estimated, the condition given in Equation
(6.2) allows to build an achievable reference model. In Section 6.3, a method to define
such a model reference is proposed.
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Figure 6.2: Frequency normalization and transformation from the plane to the unit
circle.

6.2 Model-free stability analysis and detection of instabil-
ities

The method proposed in [Cooman et al., 2018b] allows to detect and estimate in-
stabilities of a system on the basis of frequency-domain data exclusively. It is then
perfectly adapted to find a good reference-model in the proposed data-driven tech-
nique. The detection relies on the projection of the frequency-response on a basis of
unstable functions. If instabilities are detected, they are estimated through the unstable
part obtained during the projection. Originally, this method has been developed for the
design of electronic circuits. It is implemented in the PISA toolbox [PISA Toolbox,
2018].

6.2.1 Stable and unstable projection of frequency-domain data

It is assumed that P(ıω) ∈ L2, meaning that it can be written as follows:

P(ıω) = Ps(ıω) + Pas(ıω), (6.6)

where Ps is its stable projection, belonging to the Hardy space H2, and Pas ∈ H2 is its
antistable projection.

The frequency response of the plant P is available on a discrete frequency grid
{ωi,P(ıωi)}i=1...N only. First, the frequency grid is normalized and moved to the unit
circle as explained on Figure 6.2. The passage to the unit circle is done using the Mobius
transform, see Equation (6.7). This transformation sends the right-half plane inside the
unit disc.

Pdisc(z) = P

(
α
z + 1

z − 1

)
with α =

1

1 +
√

2
. (6.7)

Since the frequency response is assumed to be zero outside [ω1, ωN ], the data is
then filtered to avoid edge effect during the projection: the sudden ending of the data
would appear in the antistable part. The applied filter F is a finite-impulse-response
and stable one, see (6.8).

Pfiltered(eıθ) = F(eıθ)Pdisc(eıθ)

F(eıθ) =

Nf∑
k=1

ake
ıkθ

(6.8)
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Due to its stability, the filter F will mainly affect the stable projection Ps (it only mod-
ifies the residues of the unstable poles). In addition, its zeros are designed to be outside
the unit disc to avoid the cancellation of poles of the unstable projection. However, the
filter will suppress instabilities close to the boundaries of the set of frequencies. For this
reason, it is recommended to choose a wide frequency set around the region of interest.

The data Pfiltered(eıθ) is then projected on the basis functions Bdisc
k corresponding

to the powers of z:

Bdisc
k (z) = zk = eıkθ.

Therefore, the projection of the frequency response Pfiltered(eıθ) consists in calculating
its Fourier coefficients {ck}, as follows:

∀k, ck =
1

2π

∫ 2π

0
Pfiltered(eıθ)e−ıkθdθ

Ps
disc(z) =

∞∑
k=0

ckB
disc
k (z) =

∞∑
k=0

ckz
k

Pas
disc(z) =

∞∑
k=1

c−kB
disc
−k (z) =

∞∑
k=1

c−kz
−k

(6.9)

A numerically efficient way to compute a given number NF of Fourier coefficients
{ck} is the Fast Fourier Transform (FFT):

∀k = −NF

2
. . .

NF

2
− 1, ck =

NF−1∑
j=0

Pfiltered(eıθj )e−ıkθj (6.10)

with θj = 2πj
NF

linearly spaced on the unit circle between 0 and 2π. According to

Equation (6.10), the FFT requires NF samples of Pfiltered in order to compute NF

Fourier coefficients. The NF
2 coefficients with positive index corresponds to the stable

projection and the NF
2 with negative index to the unstable one.

To apply (6.10), it is necessary to know Pfiltered(eıθj ) for j = 0 . . . Nf − 1. To this
aim, Pfiltered is interpolated using a basic linear interpolation technique. The interpo-
lation error is then estimated in order to evaluate the influence of the interpolation on
the projection.

After the interpolation, Pfiltered(eıθj ) is known on the given linear grid {θj}j=1...NF
.

The FFT can be performed as in (6.10) and the resulting coefficients are used to build
Ps
disc and Pas

disc according to (6.9). Finally, Ps and Pas are obtained by applying the
inverse Mobius transformation, see (6.7).

Remark 6.2.1. Usually, the FFT is performed on time-domain signals to obtain
frequency-domain information. In the present case, it is applied on frequency-domain
data, projected on the unit disc: it is for this reason that the coefficients {ck} are called
Fourier coefficients and not Markov parameters.
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(a) Projection {ωi, P (ıωi)}Ni=1.
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Figure 6.3: Projection of the available frequency-domain data to determine the nature
of the plant P in the DC motor example: the plant is stable and minimum phase.

Application on the DC motor example

As in Section 4.2, N = 100 samples of the frequency-response of the plant P are
considered. The corresponding frequencies are logarithmically spaced between 0.1 and
103 rad.s−1. The considered data is noise-free. The projection of the FRF measurements
is shown on Figure 6.3. Since, on Figure 6.3a, the stable projection fits the plant’s data,
the system is stable. For the same reason, when projecting the inverse of the plant’s
data, the system is found to be minimum phase, see Figure 6.3b.

Application on the flexible transmission benchmark

As in Section 4.2, N = 200 samples of the frequency-response of the plant P are
considered. The corresponding frequencies are logspaced between 1 and 103 rad.s−1. In
the first time, the considered data is noise-free. The projection of the FRF measurements
is shown on Figure 6.4. Since the stable projection fits the plant’s data, the system is
stable.
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Figure 6.4: Projection of {ωi, P (ıωi)}Ni=1 to detect the presence of unstable poles.
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Applying the projection technique on
{
ωi, P

−1(ıωi)
}N
i=1

, the results, visible on Fig-
ure 6.5, show that the inverse of the plant is unstable. Therefore, the plant is non-
minimum phase.
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Figure 6.5: Projection of
{
ωi, P

−1(ıωi)
}N
i=1

to detect the presence of RHP zeros.

6.2.2 Estimation of the instabilities

Once the stable and unstable projection are obtained from the frequency response of
the plant, if the system is determined to be unstable or NMP, it is possible to estimate
its instabilities as it is done in [Cooman et al., 2018a]. It relies on the Hankel matrix
containing the Fourier coefficients corresponding to the unstable projection Pas

disc, see
(6.11).

Φ =


c−1 c−2 . . .

c−2
. . .

...

 (6.11)

Assuming that a state-space representation (Aas, Bas, Cas, Das) of Pas
disc is available, the

associated observability and controlability matrices, respectively denoted Oas and Cas
satisfy:

Φ = OasCas. (6.12)

In practice, a truncation ΦnF of sie nF × nF of the infinite dimensionnal matrix Φ
is used. For a rational system with np poles, the Hankel matrix Φ is of rank np. In
order to find the number of poles of Pas

disc, which corresponds to the unstable poles of
P filtered, a SVD is performed on the truncated Hankel matrix ΦnF :

ΦnF = USV T . (6.13)

The number of poles np is the number of non-zero singular values in (6.13). Moreover,
from (6.13), it is possible to estimate the observability and controlability matrices of
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the unstable projection Pas
disc. The SVD of ΦnF is partitioned as in (6.14), with SP ∈

RnP×nP containing the nP largest singular values, UP ∈ RnF×nP and VP ∈ RnF×nP :

ΦnF =
(
UP UR

)(SP 0
0 SR

)(
V T
P

V T
R

)
. (6.14)

Following (6.12), for a given number nF of Fourier coefficients, the observability and
controlability matrices can be approximated by:

OnF = Up
√
SP and CnF =

√
SPVP . (6.15)

OnF is the extended observability matrix of Pas
disc and satisfies:

OnF =


Cas

CasAas

Cas(Aas)2

...

Cas(Aas)nF−1

 . (6.16)

As in the subspace approach, see Chapter 5, it is possible to estimate the matrix Aas

from OnF as follows:
Âas = (J1OnF )†J2OnF , (6.17)

with J1 =
[
I(nF−1)nP ) 0(nF−1)nP×nP

]
and J2 =

[
0(nF−1)nP×nP

I(nF−1)nP )

]
. Finally, the

poles of Pas
disc, which are the unstable poles of P filtered, are given by the eigenvalues of

Âas.

Application on the flexible transmission benchmark

Let us come back to the application of the flexible transmission. The projection of its
frequency-response samples indicates that the plant is stable but non-minimum phase.
The next step consists in looking for the plant’s RHP zeros by estimating the unstable

poles of the frequency response
{
ωi, P

−1(ıωi)
}N
i=1

as explained earlier.

The SVD of the Hankel matrix Φ defined in (6.11) is visible on Figure 6.6. There are
four singular values before the sharp drop, so it is chosen to estimate four instabilities.
The estimated RHP zeros of the plant along with its real RHP zeros are given in Table
6.1. A good estimation of the NMP zeros is obtained even though the plant’s NMP zero
of multiplicity 3 has been estimated by three distinct zeros. It is interesting to note
that the mean of these three estimated zeros is equal to the value of the associated true
plant’s NMP zero.

Real RHP zeros of the system 140.5 40 40 40

Estimated RHP zeros 140.58 41.3-2ı 41.3+2ı 37.4

Table 6.1: Estimation of the RHP zeros of the flexible transmission system.
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Figure 6.6: Singular Value Decomposition of the Hankel matrix Φ: detection of four
RHP zeros.

6.2.3 Advantage of the projection approach

When it comes to analyse a system’s stability on the basis of its FRF measurements,
two options are available:

(i) obtain a rational fitting of the FRF measurements to determine all the poles and
zeros of the system;

(ii) project the FRF.

Considering the numerical applications, the flexible transmission and the DC motor,
presented in this manuscript to illustrate the proposed method, one could argue that
option (i), i.e. obtaining a model of the plant, would much more straightforward when it
comes to the determination of the plant’s instabilities. It is true that for simple examples
like these, using the Loewner framework, for example, would give a good estimate of
the RHP poles and zeros of the plant. However, these two examples do not illustrate
the added value of using the second option (ii), the projection approach.

As explained in [Cooman et al., 2018b], the main drawback of (i) is that pole-zero
identification through rational fitting faces the same challenges than system identifi-
cation in the frequency-domain. The order selection, for example, is a critical step.
Indeed, the main difficulty will be to distinguish the approximation artefacts from the
true instabilities of the system. Knowing that data-driven control is supposed to ad-
dress the cases where a control-oriented model is difficult to get, (i) does not seem like
an appropriate solution in a data-driven control framework.

In order to illustrate the limits of rational interpolation to estimate the RHP poles
and zeros, noise has been added to the considered frequency-domain data as in Chapter
5. For the DC motor example, ten different noisy data-sets (SNR=50), still containing
N = 100 points with frequencies logarithmically spaced between 0.1 and 103 rad.s−1,
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were considered and interpolated through the Loewner framework. All the obtained
models are of order N = 100 and are unstable. However, for a low noise-level like
SNR=50, the approximation artefacts are easy to spot and to eliminate: most of the
non-physical poles, including the unstable ones, are almost compensated by non-physical
zeros. In four cases, a RHP zero is identified in a high frequency range, suggesting that
the system is non-minimum phase while the true plant is not.

When considering ten noisy data-sets with a higher noise level (SNR=20), it becomes
more difficult to eliminate the non-physical instabilities identified when interpolating the
data. For this noise level, the interpolated models suggest in 3 cases that the system is
unstable and in 7 cases that the system is NMP. Considering these same 10 noisy data-
sets, the PISA projection allows to conclude that the system is stable and minimum
phase in every case.

The same occurs for the flexible transmission benchmark: the higher the noise, the
more difficult it gets to spot the non-physical instabilities in the interpolated high-order
models. However, it should be noted that the interpolated models contain estimation
of the real NMP zeros of the system with a similar error compared to the ones obtained
with PISA. Indeed, as shown in [Mårtensson and Hjalmarsson, 2009], the RHP poles
and zeros of a plant have a limited variance: therefore, they will appear in a limited error
bound around the true values of the RHP poles and zeros of the system. The problem
is to distinguish these estimates from the RHP artefacts introduced by the rational
approximation when dealing with noisy data or irrational systems as in Chapter 8 for
example. Avoiding this problem is the main strength of the PISA algorithm.

For this reason, using PISA is more interesting since it avoids the main problem
of poles-zeros identification, which to separate the approximation artefacts from the
physical poles and zeros of the system. This task gets more complicated when the noise
is more important. Using the same 10 noisy data-sets, the PISA algorithm allows to
determine that the system is stable and non-minimum phase with 4 RHP zeros.

6.3 Selection of an achievable model reference

Once the nature of the plant and its instabilities are determined from the projection
of its frequency-response, it is possible to determine what are its achievable behaviours.
This Section aims at finding a model-reference that satisfies the analiticity constraints
given (6.2) and imposed by the RHP poles and zeros of the system to be controlled.

6.3.1 The SISO case

Now that the instabilities of the plant are estimated, it is possible to build a stable
reference model that gives the desired performances and satisfies (6.2). In order for
the proposed method to stay user-friendly, in the SISO case, the achievable reference
model Mf is obtained by filtering the initial one M. As a matter of fact, the easiest
way for the user to express closed-loop performance specifications is to define a stable
first or second model-reference. It is a similar approach to what have been proposed in
[Van Heusden et al., 2009]: the main difference is that the filter is designed to ensure
internal stability in the ideal case instead of specifying the desired performances.
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The proposed choice of an achievable reeference model relies on the Blaschke prod-
ucts Bz and Bp, defined respectively by the estimated RHP zeros {zi}nz

i=1 and poles
{pj}np

j=1 of the plant, and recalled hereafter:

Bz(s) =

nz∏
i=1

s− zi
s+ zi

Bp(s) =

np∏
j=1

s− pj
s+ pj

. (6.18)

Bz and Bp, are stable. The choice of a stable reference model Mf that satisfies the
interpolatory conditions (6.2) is done as follows:

1. If the plant is stable and minimum phase: any stable and minimum-phase
M specified by the user is achievable by the plant.

Mf = M (6.19)

2. If the plant is stable and non-minimum phase:

Mf = MBz (6.20)

3. If the plant is unstable and minimum phase:

Mf = 1− (1−M)Bp (6.21)

4. If the plant is unstable and non-minimum phase:

Mf = MBzFM (6.22)

where the filter FM is defined as follows:

FM(s) =

∑np

k=1 γklk(s)∏np

j=1(s+ pj)
, (6.22)

with, for k = 1 . . . np,

γk =

∏np

j=1(pk + pj)

M(pk)Bz(pk)
(6.22)

and

lk(s) =

np∏
j=1,j 6=k

s− pj
pk − pj

. (6.22)

Proof: In case 1, for a stable and minimum phase plant P and a stable model
reference M, the functions (1−M) and P(1−M) are also stable. Finally, according to
the definition of the ideal controller, K?(1−M) = MP−1 is also stable. Therefore, K?

stabilizes the plant internally and M is achievable by the plant P.

For other cases, K? stabilizes the plant internally if and only if Mf is stable and
satisfies (6.2). In case 2 and 3, this is obviously the case since, by definition, Bz and
Bp are stable and satisfy {

∀i, Bz(zi) = 0
∀j, Bp(pj) = 0

. (6.23)
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In case 4, the use of Bz ensures that, for any RHP zeros zi, Mf (zi) = 0. The
additional filter F is stable and is supposed to ensure that, for any RHP poles pj ,
Mf (pj) = 1. It is defined using Lagrange polynomials which satisfies lk(pj) = δk,j .
Consequently, Mf is stable and satisfies (6.2).

Remark 6.3.1. Concerning the application of the proposed method to unstable plants,
it should be noted that measurements from such plants are only accessible when per-
forming an experiment with an initial stabilizing controller or if their frequency-response
can be accessible through frequency-domain simulations as in the application considered
in Chapter 8 or in [Kergus et al., 2019a].

Remark 6.3.2. In case 2 or 3, the multiplicity of the instabilities can be taken into
account to satisfy the derivative constraints of (6.3) by taking:

Bz(s) =

nz∏
i=1

(
s− zi
s+ zi

)mzi

and Bp(s) =

np∏
j=1

(
s− pj
s+ pj

)mpj

.

Solving (6.3) is more complicated in case 4, where the Loewner framework could be
used with derivative constraints in order to find an achievable reference model.

6.3.2 The MIMO case

In this paragraph, a more general solution allowing to deal with multivariable systems
is proposed. As a matter of fact, the choice of a reference model proposed earlier cannot
be easily extended to the MIMO case because of the tangential directions that appear
in this case in the definition of an achievable closed-loop, see (6.4).

Instead of filtering an initial reference model, we propose for the MIMO case to
identify one using the Loewner framework. As explained in Chapter 5, this technique
allows to find a minimal realization that solves a given tangential interpolation problem.
Therefore, an achievable reference model Mf can be obtained by solving (6.24) through
the Loewner framework:

yziMf (zi) = 0 ∀i = 1 . . . nz
Mf (pj)ypj = ypj ∀j = 1 . . . np

Mf (ıωk) = M(ıωk) ∀k = 1 . . . N
, (6.24)

where M is an initial reference model specifying the desired performances, as in the
SISO case. The obtained achievable model Mf does not necessarily need to be reduced:
a minimal realization is sufficient to be used as a reference model.

The tangential directions
{
ypj
}

associated to the estimated RHP poles {pj} can be
computed easily during the estimation of instabilities in the end of Section 6.2. Indeed,
the RHP poles are obtained through the matrices Aas and Cas from the antistable
projection. As explained in Chapter 2, considering an unstable pole pj , these two
matrices allow to compute the associated output direction from:

ypj = CasxR, AasxR = pjxR . (6.25)
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6.3.3 Choice of an initial reference model

Whether the considered plant is SISO or MIMO, the proposed method to build an
achievable reference mode is based on an initial specification M furnished by the user.
Even though the method proposed in this Chapter allows to turn this initial reference
model into an achievable one, the choice of M is a key aspect of the method for the two
reasons already exposed in paragraph 6.1.1. First, the performances specified by the
initial reference model M will impact the controller reduction because of the complexity-
performance tradeoff. This was already illustrated on the DC motor example in Chapter
4 and will be discussed also in the next Chapter.

In addition, the choice of the specifications is critical due to the performance limi-
tations of the plant. Indeed, as recalled in Chapter 2, the analiticity constraints (6.4)
imposed by the system’s instabilities limit the possible closed-loop performances. There-
fore, once the instabilities of the system are estimated, the lower bounds of the sensitivity
function and of the closed-loop transfer can be computed. The cutoff frequency of the
closed-loop is also limited by eventual NMP zeros. Finally, if the initial reference model
M does not respect these limitations, it is recommended to redefine it once the RHP
poles are estimated. This is highlighted in the following paragraph when applying the
proposed procedure on the flexible transmission benchmark.

In the end, the method proposed in this Chapter to build an achievable reference
model only ensures that the corresponding ideal controller stabilizes the plant internally.
It avoids the worst case scenario described in Chapter 4 and recalled in paragraph 6.1.1,
when applying the proposed control technique on the flexible transmission benchmark.
Therefore, the performance specifications, imposed through the initial reference model
M, remain an important tuning parameter. On this topic, good practices for the user
involve:

• using the estimation of instabilities to verify that M does not specify non-feasible
performances;

• increasing progressively the desired performances until reaching a desirable trade-
off. This iterative aspect will be discussed in the outlooks in Chapter 9.3.

6.3.4 Application on the flexible transmission benchmark

According to the projection of its data in Section 6.2, the flexible transmission is non-
minimum phase and stable. Its estimated instabilities are given in Table 6.1. Therefore,
according to the proposed selection of a reference model in the SISO case, an achievable
reference model is given by:

Mf (s) = M(s)Bz(s) (6.26)

with M the initial second-order reference model given by:

M(s) =
1

s2

ω2
0

+ 2ξ
ω0
s+ 1

(6.26)

with ω0 = 10 rad.s−1 and ξ = 1. The Blaschke product Bp is defined as in Equation
(6.18) thanks to the estimated NMP zeros of Table 6.1:

Bz(s) =
(s− 140.6)(s− 37.39)(s2 − 82.6s+ 1710)

(s+ 140.6)(s+ 37.39)(s2 + 82.6s+ 1710)
. (6.27)
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Interpolating the frequency-response of the corresponding ideal controller K? using
the Loewner framework leads to the following 10th order model K :

K(s) =
2765.5(s2 + 1.071s+ 157.9)(s2 + 3.172s+ 1936)

s(s+ 148.5)(s2 + 19.98s+ 485.8)(s2 + 112.1s+ 4540)

× (s− 140.6)(s− 37.39)(s2 − 82.6s+ 1710)

(s− 140.5)(s− 39.73)(s2 − 80.27s+ 1611)
.

(6.28)

As indicated in red, this minimal realization of the ideal controller compensates the NMP
zeros of the system. However, considering the blue part in (6.28), these instabilities are
almost compensated thanks to the choice of Mf (6.26) as reference model. As a matter
of fact, when using the projection on RH∞ proposed in [Köhler, 2014], the minimal
realisation K of the ideal controller can be assimilated to its stable projection Ks, see
Figure 6.7.

K(s) =
−3.7293e− 05(s− 2.966e06)(s2 + 1.067s+ 157.9)(s2 + 3.153s+ 1935)

s(s+ 140.9)(s+ 25.65)(s+ 5.03)(s2 + 92.98s+ 2303)
(6.29)
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Figure 6.7: Stable projection Ks of the minimal realisation K of the ideal controller
when using Mf as a reference model: the ideal controller can be assimilated to Ks.

This example illustrates well the fact that filtering the initial reference model M,
not achievable by the plant P, allows to consider the performance limitations induced
by the RHP zeros of the system. As shown on Figure 6.8, the filtered reference model
Mf presents an undershoot behaviour as the plant P due to the estimated RHP zeros.
Therefore, it is slower than the initial reference model M: as explained in Chapter 2,
the corresponding response time is not realistic since it is over the natural limit fixed
by the RHP zeros of the system.

Remark 6.3.3. The estimation of the instabilities obtained at this step of the method
should be used to modify the initial reference model if necessary. In the present case,
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Figure 6.8: Step response of the filtered reference model Mf , the initial one M and the
plant P: the proposed choice of the reference model Mf allows to introduce the natural
limitations of the plant P in the performance specifications.

the initial reference model is defined by a second-order model with a natural frequency
ω0 = 100rad.s−1. However, as recalled in Chapter 2, for a plant with RHP zeros, the
bandwidth of the closed-loop must be much smaller than the smallest RHP zero fre-
quency (see [Zhou and Doyle, 1998]), which is here 40rad.s−1 for the flexible transmission
benchmark.

Therefore, choosing a second-order model with a natural frequency ω0 = 10rad.s−1

as an initial reference model, denoted M2, is wiser (the damping factor ξ is kept equal
to 1). It is then filtered using Bz:

Mf 2 = M2Bz.

As shown on Figure 6.9, by changing the initial reference model to respect the per-
formance limitations of the system, the filtered reference model Mf 2 corresponds to a
much more desirable closed-loop behaviour.

In this chapter, only achievable reference models are obtained for the two considered
numerical examples. Reduced-order controllers will be identified in the next chapter
under internal stability considerations.
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Figure 6.9: Step response of the filtered reference models Mf and Mf 2, and of the
plant P: the estimation of the instabilities should be used to modify the performance
specifications if necessary.

Summary

In this chapter, it is recalled that the choice of a reference model is critical step for
data-driven techniques such as the VRFT, the CbT, the IFT or the one proposed in
this work. The main contribution in this Chapter is to propose a method to build an
achievable reference model Mf provided a stable initial one M specified by the user. It
relies on the following three steps:

1. Determination of the nature of the system (stable or not, minimum phase
or not) thanks to the projection of its frequency-response.

2. Estimation of the plant’s instabilities through the analysis of the obtained
antistable projection.

3. Construction of an achievable reference model Mf by filtering the initial
one M in the SISO case or by interpolating a model in the MIMO case given the
conditions in (6.24).

The first step allows to conclude that the DC motor is stable. Therefore, any stable
reference model M is achievable. Concerning the flexible transmission benchmark, the
projection indicates that the plant is stable but NMP and its NMP zeros are well
estimated. The initial reference model M is then filtered to obtain an achievable one
Mf . It should be noted that the performances specified by the initial reference model
M influences a lot the design process.

At this point, the choice of an achievable reference model Mf ensures that the
corresponding ideal controller K? preserves closed-loop internal stability. It is possible
to interpolate a minimal realisation of K? through the Loewner framework or to obtain
a high-order model through the subspace approach, following what has been done in
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Chapter 5. Finally, the only missing piece in the puzzle is the reduction of the controller
and an internal stability analysis of the resulting closed-loop: this is the topic of the
next chapter.
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Chapter 7

Closed-loop stability analysis and
enforcement

Analyzing and enforcing closed-loop stability is one of the most important challenges
for any data-driven control technique. The objective of this chapter is, in the first
place, to recall the different techniques known in data-driven control to analyze and/or
ensure stability in Section 7.1. Then, the data-driven stability condition proposed in
[Van Heusden et al., 2009] is derived to be applied to the proposed method in Section 7.2:
the reduction of the controller is then adjusted in order to preserve internal stability of
the closed-loop. The data-driven stability and the reduction step detailed in this chapter
are then applied on the numerical examples treated along this manuscript. Finally, some
preliminary work on closed-loop robustness analysis is presented in Section 7.3.
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7.1 Preliminary: data-driven closed-loop stability assess-
ment and enforcement

Closed-loop stability is a major challenge for any data-driven control technique. Since
this type of techniques do not use any plant model, it is not possible to check the
classical stability conditions and the robustness margins. Therefore, the only way to
test the stability seems to be to implement the obtained controller in the closed-loop,
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Chapter 7. Closed-loop stability analysis and enforcement

which can be risky according to the considered application. Different techniques have
been proposed in data-driven control theory to face this problem.

In online data-driven methods, BIBO stability is mostly enforced by introducing
some assumptions on the plant. For example, MFAC assumes that the controlled plant
satisfy the generalized Lipschitz conditions. Therefore, the Pseudo Partial Derivative
(PPD), estimated to construct the control law, is bounded and BIBO stability is ensured.
This type of solution is only pertinent when using online data however.

In robust data-driven control, as said in Chapter 3, the Nyquist criteria has been
widely used to enforce closed-loop stability. This is made possible by using a stabiliz-
ing controller. Stability enforcement is formulated as a constraint in the optimization
problem solved by this category of techniques. In the SISO case, it is possible to solve
this problem without a stabilizing controller.

When it comes to reference model control techniques, a data-driven test for internal
stability is proposed in [Van Heusden et al., 2007], relying on the small-gain theorem. It
does not require neither a plant model or to implement the controller in the closed-loop.
It showed good performances when applied on the flexible transmission benchmark to
check a posteriori if controllers obtained by the VRFT technique stabilize the plant
internally. In [van Heusden et al., 2008], this stability test is integrated to the non-
iterative CbT framework as an LMI constraint. In [Van Heusden et al., 2009], this
stability test is detailed and special attention is given to the reliability-conservatism
trade-off when only a finite amount of data is available.

As for other reference model methods, this last stability criteria is perfectly suited
for the method proposed in this work. In particular, this last technique estimates a
maximal admissible error for the controller modelling error thanks to the small-gain
theorem. This bound is really helpful in our case to ensure that the reduction of the
controller model does not destabilize the plant internally. Therefore, this solution will be
recalled hereafter before being used in the proposed method to ensure internal stability
during the controller reduction step.

Remark 7.1.1. For the IFT, another stability constraint was proposed in [De Bruyne
and Kammer, 1999]. It consists in identifying the sensitivity function and the closed-
loop transfer to estimate the stability margins. The destabilizing controllers are then
eliminated during the optimization procedure. This solution could be investigated in
the proposed method too, but it would require to perform this validation technique for
every controller. It seems costly compared to the stability test of [Van Heusden et al.,
2007] which can be incorporated into the reduction step, as detailed in the next section.

7.2 Controller reduction under data-driven closed-loop sta-
bility condition

In this section, the criteria proposed in [Van Heusden et al., 2009] is derived to include
an internal stability condition in the reduction of the controller. As a matter of fact, in
the end of Chapter 6, the choice of an achievable reference model Mf guarantees that
the associated controller K? ideal controller stabilizes the plant internally. However,
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7.2. Controller reduction under data-driven closed-loop stability condition

in general, a minimal realization of K? will exhibit a high order. It is then necessary
to obtain a reduced-order model K for which we do not have anymore information
regarding the internal stability of the closed-loop. To tackle this issue, the small-gain
theorem is applied on the resulting closed-loop, recalled in Figure 7.1. The computation
of the obtained criteria is then detailed.

K P
+ −

Figure 7.1: The resulting closed-loop: K is a reduced-order model of the ideal controller
K?.

7.2.1 Stability condition through the small gain theorem

This criteria relies on the small-gain theorem, recalled in Chapter 2, see Theorem 2.2.2.
First, the obtained closed-loop, see Figure 7.1, is written as the interconnection shown
on Figure 7.2. As proposed in [Van Heusden et al., 2009], the controller modelling error
∆ = K−K? appears as an uncertainty.

K?

K−K?

P
+ − +

+

Achievable reference model M

Uncertainty ∆

Figure 7.2: Stability analysis scheme: the controller modelling error is written as an
uncertainty.

Applying the small-gain theorem on the interconnection shown on Figure 7.2, the
following theorem is obtained.

Theorem 7.2.1. Suppose that G = P(1 −M) is stable and let γ > 0. Then the
interconnected system shown on Figure 7.2 is well-posed and internally stable for all
stable ∆ = K−K? with:

(a) ‖∆‖∞ ≤ 1
γ if and only if ‖G‖∞ < γ

(b) ‖∆‖∞ < 1
γ if and only if ‖G‖∞ ≤ γ

113



Chapter 7. Closed-loop stability analysis and enforcement

The assumptions are met to apply Theorem 7.2.1. Indeed, the choice of an achievable
reference model M as proposed in Chapter 6 ensures that the associated ideal controller
K? is stable and stabilizes the plant P internally. Therefore, G = P(1−M) is stable.
Furthermore, ensuring the stability of the identified controllers K and K? ensures that
∆ is also stable.

7.2.2 Stability-preserving reduction of the controller model

The problem is now to reduce the controller model while preserving the internal stability
of the closed-loop. To that extent, Theorem 7.2.1 can be seen as a limit for the controller
error that should not be crossed to preserve internal stability. The reduction of the
controller is then done in two steps:

a. Compute an estimate γ̃ of γ0 = ‖G‖∞;

b. Find n ∈ N such that the reduced-order controller K of order n satisfies:

‖K−K?‖∞ ≤
1

γ̃
− ε, (7.1)

where ε > 0 is chosen by the user to avoid being too close to the stability limit.
Equation (7.1) ensures that the reduced-order controller K preserves closed-loop
internal stability.

a. Data-driven estimation of the H∞-norm of the dynamical system G

Since we only have access to samples of the frequency-response of the plant P, the
function G(s) is only known on a discrete grid of frequencies. Therefore, the most
simple way to estimate γ0 = ‖G‖∞ is to take:

γ̃ = max
i=1...N

|G(ıωi)| . (7.2)

However, this estimation deeply depends on the quality of the plant’s data. Whenever
the data misses a peak of the frequency-response of the plant, it is likely that γ̃ under-
estimates γ0. According to (7.1), it would lead to an overestimation of the maximal
controller modelling error, and might result in the choice of a controller that do not
stabilize the plant internally.

Remark 7.2.1. In [Van Heusden et al., 2007], a technique based on the correlation
approach is proposed to estimate the H∞-norm of a dynamical system on the basis of
time-domain measurements.

b. Evolution of the controller modelling error according to the order

The controller modelling error is defined by the difference between the ideal controller
K? and reduced order controllers. This error vary according to the selected order n for
the controller K.

Using the Loewner framework, recalled in Chapter 5, it is possible to obtain a
minimal representation of the ideal controller K?. The choice of an achievable reference
model M in Chapter 6 ensures that this representation is either stable or might be
assimilated to its stable projection on RH∞ whenever the plant’s instabilities are not
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7.2. Controller reduction under data-driven closed-loop stability condition

perfectly estimated (see the case of flexible transmission benchmark in the previous
Chapter).

Reduced-order controllers can then be obtained using the Loewner framework and/or
the subspace approach. Therefore, the modelling error ∆ = K −K? is accessible for
every controller order n. It is then possible to determine which orders preserve the
internal stability of the closed-loop.

Remark 7.2.2. Complexity-performance trade-off
When reducing the controller’s order, the performances are expected to “decrease”: the
more the controller model is reduced, the less it will capture the dynamics of the ideal
controller K?. However, the order is not the only important aspect here. Indeed, the
trade-off between controller complexity and closed-loop performances also depends on
the choice of the specifications. This has already been highlighted on the DC motor
example in Chapter 4 and during the choice of an achievable reference model in Chapter
6.

Remark 7.2.3. Comparison with the stability test in [Van Heusden et al.,
2007]
The stability test proposed in this Section is inspired from the one detailed in [Van Heus-
den et al., 2007]. It shares the same base, which is the formulation of the resulting
closed-loop as the interconnection of Figure 7.2 and the application of the small-gain
theorem. In that sense, the same stability criteria is obtained. The major difference
between the work of [Van Heusden et al., 2007] and the present one is the computation
of the H∞-norm of G. Moreover, it is not used in the exact same way: in [Van Heusden
et al., 2007] and [Van Heusden et al., 2009], it used as an a-posteriori stability verifica-
tion while in [van Heusden et al., 2008], it is incorporated as an LMI constraint to the
CbT approach. Here, the internal stability criteria stands as a limitation during the
controller reduction.

7.2.3 Application to numerical examples

In this paragraph, the DC motor example and the flexible transmission benchmark are
used to illustrate the stability analysis and the controller reduction introduced in this
Section.

The DC motor

As in Chapter 4, two reference-models are considered, M1 and M2. Both are defined
as second order transfer function as in (7.3), with a static gain k = 1, a damping
factor ξ = 1 and natural frequencies ω0 equal to ω01 = 10rad.s−1 and ω02 = 1rad.s−1

respectively. Then M reads:

M(s) =
k

s2

ω2
0

+ 2ξ
ω0
s+ 1

. (7.3)

In the noise-free case, the available data from the plant allow to obtain a good
estimate of the H∞-norm of the transfer G1 = P(1−M1). We obtain γ̃1 = ‖G1‖∞ =
0.0297, see Figure 7.3. When using M2 as reference model, the estimation of ‖G2‖∞,
with G2 = P(1−M2), is also perfect: γ̃2 = ‖G2‖∞ = 0.0994
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Figure 7.3: Data-driven estimation of ‖G‖∞ in the noise-free case for the DC motor
example, using two different reference models M1 and M2.

Controllers of order n = 1 and n = 2 are identified through the Loewner framework
and the subspace approach, as explained in Chapter 5. The corresponding modelling
errors are given in Table 7.1. When using M1 as reference model, the subspace approach
does not allow to reduce the controller to an order n = 1. When moving to M2

as reference model, both identification techniques, the Loewner framework and the
subspace approach, obtain a stabilizing first order controller.

Using M1 Using M2

γ̃−1
1 = 33.7053 γ̃−1

2 = 10.0624

Loewner Subspace Loewner Subspace

n = 2 7.4617× 10−6 8.3306e− 06 0.0020 3.6444e− 08

n = 1 12.9358 68.4331 0.0021 0.0113

Table 7.1: Evolution of the controller modelling error ‖∆‖∞ for controllers of order
n = 2 and n = 1, using two different reference models M1 and M2. γ̃−1

1 and γ̃−1
2

represent the maximal admissible controller modelling error in these two cases. Bold
values correspond to cases where the stability test (7.1) is verified.
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7.2. Controller reduction under data-driven closed-loop stability condition

The flexible transmission benchmark

The proposed stability analysis is now applied on the flexible transmission benchmark.
The considered reference model is the achievable one Mf obtained in the end of Chapter
6:

Mf = MBz

where M is a second-order transfer determining the performance specifications, defined
as in (7.3) with {k, ξ, ω0} =

{
1, 1, 10rad.s−1

}
, and where Bz is the Blaschke product

associated with the estimated RHP zeros of the plant, see Chapter 6.

As for the previous example, the H∞-norm of the dynamical system G = P(1−Mf )
is estimated through the available data: we have γ̃ = 20.7152, which underestimates
the true value γ0 = 20.8505.

Controllers are then identified through the Loewner framework as explained in Chap-
ter 5 and reduced to orders comprised between 1 and nmax = 10, which corresponds
to the order of the minimal representation of the ideal controller interpolated through
the Loewner framework. The evolution of the controller modelling error when using the
Loewner framework for the order reduction step is given on Figure 7.4: it shows that
the controller can be reduced up to an order n = 5. Reducing it to a lower order would
lead to destabilize the plant internally.

2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

Figure 7.4: Controller reduction for the flexible transmission benchmark: the Loewner
framework is used to reduce the minimal realization of the ideal controller to an order
n. The reduction of the controller is limited by the internal stability condition.

Since the plant is of order 4, it is necessary to find a way to reduce the controller
more than that. As for the DC motor example, changing the specifications for weaker
ones allow to reduce the controller to a lower order. In the present case, let us consider
an achievable reference model Mf 2 = M2Bz, where M2 is a second-order model with
{k, ξ, ω0} =

{
1, 1, 2rad.s−1

}
, see (7.3). The specifications then correspond to a slower

closed-loop behaviour in comparison with Mf . When using Mf 2 as reference model,
we obtain γ̃−1 = 0.0641 while the true value for the maximal controller modelling error
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is γ−1
0 = 0.0638. In this case, it is possible to reduce the controller up to an order n = 2

while preserving the internal stability of the resulting closed-loop.

2 4 6 8 10
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Figure 7.5: Controller reduction for the flexible transmission benchmark using Mf 2 as
a reference model: giving weaker specifications allows to reduce the controller to a lower
order.

Remark 7.2.4. The evolution of the maximal controller modelling error γ−1 according
to the the natural frequency ω0 of the initial reference model is represented on Figure
7.6. To a certain extent, specifying a less performing initial reference model allow to
reduce the controller more.
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Figure 7.6: Influence of the performance specifications on the reduction of the controller.

The performances in time-domain are visible on Figure7.7. When choosing carefully
the performance specifications and ensuring that the reference model is achievable, a
2nd order controller allows to match the desired behaviour.
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Figure 7.7: Step response of the plant P, the reference model Mf 2 and of the closed-loop
obtained with the 2nd order controller identified through the Loewner framework.

Remark 7.2.5. Figures 7.4 and 7.5 also highlight that knowing the frequency-response
of the plant on a given discrete frequency grid can lead to the underestimation of the
H∞-norm of the dynamical system G. In the present case, it does not lead to the
selection of a destabilizing controller. However, it underlines that the parameter ε in
(7.1) can be particularly important to avoid this potential problem.

Application of the subspace approach: conservatism of the proposed stability
test and the special case of the integrator

Keeping Mf 2 as a reference model, we now use the subspace approach under LMI
constraints to identify stable reduced-order controller models. The controller modelling
error is then superior to 0.6808, which is bigger than the estimated admissible error
γ̃−1 = 0.0665, for every order between 1 and 10. However, since we know the plant
model for this example, it is possible to know that all the controllers identified through
the subspace approach, with an order 1 ≤ n ≤ 10, stabilize the plant internally.

Remark 7.2.6. It should be noted that the controllers identified through the Loewner
framework may contain an integrator. This is why there is no problem when applying
this stability test, see Figures 7.4 and 7.5. This is made possible by the RH∞-projection
of the ideal controller, see Chapter 5.

Remark 7.2.7. In Theorem 7.2.1, it is supposed that the controller modelling error ∆
is stable. More precisely, according to the small-gain theorem (recalled in Chapter 2), ∆
should belong to the Hardy space H∞ to apply the proposed stability test. Therefore,
when the ideal controller contain an integrator, the stability test is supposed to be not
applicable. Since we are working in a limited frequency range, defined by the available
plant’s data, the integrator can be replaced by a stable and very slow pole (ω � ω1).
This is also done in robust control: the frequency weighting functions never contain a
pure integrator even if they exhibit a similar behaviour thanks to stable and real slow
modes. This is why it is possible to use Theorem 7.2.1 even when the ideal controller
contain an integrator.
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This case illustrates the conservatism of the proposed stability test. Indeed, Theorem
7.2.1 only ensures that all stable controllers with a modelling error ‖∆‖∞ < γ0 stabilize
the plant internally. It says nothing about controllers failing the test given in (7.1).
However, in order to be less conservative, the small gain theorem could be applied using
any other stable and stabilizing controller K0, if available. The main advantage of
relying on the ideal controller K? is that it is known to be stable and stabilizing, but
also because it corresponds to a known closed-loop behaviour: the achievable reference
model as designed in Chapter 6.

These two aspects are explored in [Van Heusden et al., 2009] to obtain a less con-
servative stability test: for a given reduced-order controller K, if it is possible to find
an achievable reference model M, corresponding to a stabilizing ideal controller K?

such that the stability test (7.1) is satisfied, then K stabilizes the plant internally. The
reference model M is the varying parameter instead of the controller order. However,
this less conservative procedure would take much more time in the present case since
the test should be run for every reduced-order controller instead of computing once the
maximal controller modelling error.

Remark 7.2.8. Using other data-driven stability analysis tools
Whenever the proposed stability test is too conservative, other ways to assess if the
resulting closed-loop is stable should be employed. As for the less conservative test
of [Van Heusden et al., 2009], it requires however to test the identified controllers one
by one. Ab idea could be to use the same stability constraint than [De Bruyne and
Kammer, 1999] used in the VRFT approach, see Remark 7.1.1.

Another way to check if a given controller stabilizes the plant internally would be
to use the data-driven stability analysis performed by the PISA toolbox and exposed
in Chapter 6. Indeed, the choice of a reference model in Chapter 6 ensures that the
ideal controller does not cancel any plant’s instabilities. The estimation of the plant’s
instabilities allows to verify easily it is not the case for the considered reduced-order
controller K either. Therefore, as explained in Chapter 2, a stable closed-loop transfer is
enough to know that the controller stabilizes the plant internally. First, the frequency-
response of the closed-loop MK with K as controller is reconstructed as follows:

∀i = 1 . . . N, MK(ıωi) = (I + ΦiK(ıωi))
−1ΦiK(ıωi).

Projecting it on H2 and H2 is sufficient to determine if the obtained closed-loop is
internally stable or not. For example, considering the second-order controller identified
though the subspace approach under LMI constraints, the results of the projection are
given on Figure 7.8 and shows that the closed-loop-transfer MK is stable. Since the
controller is stable, it does not compensate the NMP zeros of the plant. Therefore, this
controller stabilizes the plant internally.
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Figure 7.8: Data-driven stability analysis of the closed-loop transfer obtained with the
2nd order controller identified through the subspace approach: the input-output transfer
is stable.

Nevertheless, the absence of integrator in the identified controller leads to poor
performances. Using the second-order stable controller obtained using the subspace
approach under strict LMI constraints, with Mf 2 as reference model, gives the step
response visible on Figure 7.9: the corresponding static error is equal to 99.7%, which
a terrible result. At the same time, the second-order controller obtained through the
Loewner framework contains an integrator: there is no tracking error, no overshoot,
and the rising time is equal to 2.3s.

In addition, the subspace-based controllers fail the proposed stability test because
the ideal controller K? contains an integrator that cannot appear in the subspace-
identified controllers because of the LMI constraints. The modelling error is then very
important. When relaxing the LMI constraints in the subspace approach, the identified
controllers may contain an integrator: the modelling error in this case is given on Figure
7.10. When reducing the controller’s model order to n < 6, the integrator disappear
and the modelling error exceeds the maximal error fixed by the stability test.

A solution consists in enforcing the presence of an integrator in the controller, as it
is done in the VRFT approach for this example in [Campi et al., 2002], and also for the
original version of the stability test in [Van Heusden et al., 2007]. The ideal closed-loop
is then represented on Figure 7.11. The ideal controller is then defined as:

K? =
1

s
K?

2(s). (7.4)

The controller identification is then performed on K?
2, which frequency-response samples

are easily computed from the ones of the ideal controller K?. The subspace approach is
used to obtain controllers of order 2 ≤ n ≤ 10. Once again, they are all rejected by the
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Figure 7.9: Step-response of the closed-loop obtained using the second-order controllers
identified through the Loewner framework combined with the RH∞-projection and
through the subspace approach under LMI constraints. The subspace-based controller
does not contain an integrator and leads to poor performances.
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Figure 7.10: Controller reduction using the subspace approach for the flexible transmis-
sion benchmark using Mf 2 as a reference model.

proposed stability test even though they all stabilize the plant internally. The second-
order controller obtained through the subspace approach with an imposed integrator
gives the performances visible on Figure 7.12: there is no tracking error, an overshoot
of 5.3% and a 5% rising time of 3.8s.
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1
sK

?
2(s) P(s)

+ −

Achievable reference model Mf 2(s)

Figure 7.11: Enforcing the presence of an integrator in the controller through the pro-
posed method in the DC motor example.
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Figure 7.12: Step-response of the closed-loop obtained using the second-order controller
with an imposed integrator identified through the subspace.

7.3 Towards data-driven robustness analysis

In the end of Section 7.2, a reduced-order controller K that stabilizes the plant internally
is obtained. Considering the use of the small-gain theorem for data-driven stability
enforcement, it is possible to apply the same methodology to determine which system’s
set is stabilized by the plant internally. To that extent, the work presented in this
Section can be seen as a data-driven robustness analysis. However, it should be noted
that the word “robustness” is not exact since there is no nominal model available around
which a model set is defined. The proposed data-driven robustness analysis is detailed
in the following paragraph before being applied to numerical examples.

7.3.1 Data-driven robust stability criteria

As for the analysis of internal stability in Section 7.2, the proposed approach for stability
robustness is based on the small-gain theorem. From now on, the plant P is considered
to be subject to uncertainties. The behaviour P̃ of the system is then given by:

P̃ = P + ∆P, (7.5)

where ∆P represents the plant’s uncertainty. The final closed-loop, with a stabilizing
reduced-order controller K obtained in the end of Section 7.2, is written as on Figure
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7.13.

K

∆P

P
+ − +
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Figure 7.13: Stability robustness analysis scheme.

The small-gain theorem is then applied on this interconnection, giving the following
theorem.

Theorem 7.3.1. Suppose that H = K(I + KP)−1 is stable and let β > 0. Then the
interconnected system shown on Figure 7.13 is well-posed and internally stable for all
stable ∆P with:

(a) ‖∆P‖∞ ≤ 1
β if and only if ‖H‖∞ < β

(b) ‖∆P‖∞ < 1
β if and only if ‖H‖∞ ≤ β

Since the reduced-order controller K stabilizes the plant internally, it is possible
to use Theorem 7.3.1 to determine in which bounds the controller stabilizes the plant
internally.

As in Section 7.2, since no parametric model of the plant P is available, the H∞-
norm of the dynamical system H should be estimated on the basis of the available
samples of its frequency-response:

∀i = 1 . . . N, H(ıωi) = K(ıωi)(I + K(ıωi)P(ıωi))
−1. (7.6)

As in Section 7.2, an estimation of β0 = ‖H‖∞ is obtained through (7.7):

β̃ = max
i=1...N

|H(ıωi)| . (7.7)

Then, according to Theorem 7.3.1, the controller K stabilizes the plant set defined by
(7.5) with ∆P ∈ H∞ satisfying the proposed robust stability test:

‖∆P‖∞ < β̃−1 − ε, (7.8)

where ε is a parameter fixed by the user to introduce some conservatism. As in the
previous Section, it is used to avoid overestimating the admissible uncertainties when β̃
underestimates the H∞-norm of H.

7.3.2 Description of the plant’s uncertainties

Contrary to the stability criteria exposed in Section 7.2 where the controller modelling
error is known to be stable, when analyzing robust stability, there is no guarantee at
all that the plant’s uncertainty ∆P is stable. Therefore, once the robust stability test
given in (7.8) is defined, it is still not possible to represent the set of dynamics stabilized
by the controller since ∆P should not only satisfy (7.8) but also be stable.
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In traditional robust model-based control, the plant’s uncertainties are usually fully
described through the uncertain parameters of the system: ∆P is then known to be
stable. In this case, the only question left, answered through the application of the
small-gain theorem, is to determine in which bounds the uncertain parameters may
vary without destabilizing the closed-loop. In the present case, since no plant model is
available, no uncertain parameters can be used to build the ∆P-block. Therefore, in a
data-driven framework, the proposed robust stability test only constitutes an indicator
of the robustness of the obtained controller.

In some cases, the proposed robust stability test may be too conservative. This is
partly due to the choice of the type of uncertainty. Since the considered uncertainty is
additive, see (7.5), (7.8) confines the plant’s behaviour P̃ to a disk centered at P(ıωi)
and of radius β̃ − ε. In practice, the uncertainty is more important in a high-frequency
range. To that extent, it may be interesting to use weighting functions to characterize
the frequency-domain behaviour of the uncertainty, see (7.9).

P̃ = P + W1∆W2, ∆ ∈ H∞, ‖∆‖∞ < 1, (7.9)

where W1 and W2 determines the neighborhood of the nominal model P which contains
P̃. As said earlier, in the proposed method, the notion of nominal model is replaced by
a nominal frequency-response of the plant, which is the available data from the system.

When using (7.9) as model set, the application of the small-gain theorem gives us
that the closed-loop is well-posed and internally stable for all ∆ ∈ RH∞ such that
‖∆‖∞ < 1 if and only if ‖W2HW1‖∞ ≤ 1

Remark 7.3.1. It should be noted that other descriptions of the plant’s uncertainties
may be used, such as the multiplicative form for example:

P̃ = (I + W1∆W2) P. (7.10)

Many possible definitions of plant’s uncertainties are proposed in [Zhou and Doyle, 1998]
and the associated robust stability tests are exposed.

7.3.3 Application to numerical examples

DC motor example

In this example, considering the first order controller identified through the Loewner
framework when using M2 as reference model, (7.7) gives β̃ = 9.9236 while the true
value is β0 = 10.0099. The corresponding set of models is represented on the complex
plane on Figure 7.14. This representation do not imply that all the plant’s behaviour
in this set are stabilized by the controller since the stability of ∆ is not ensured.

The main interest of the proposed robustness analysis is, in the present case, to
better understand the performance-robustness tradeoff, well known in robust control. To
that extent, the estimated uncertainty bound is computed for the first-order controllers
identified through the Loewner framework for different reference models. The natural
frequency ω0 of the reference model varies (the damping factor is still ξ = 1 and the
static gain k = 1). As shown on Figure 7.15, specifying a slower dynamics by decreasing
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Figure 7.14: Robust stability analysis on the DC motor example: the circles represent
the plant’s behaviours P̃ such that the plant’s uncertainty ∆ satisfy (7.8).

the natural frequency ω0 of the reference model allows to obtain a more robust closed-
loop.
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Figure 7.15: Illustration of the performance-robustness compromise: the faster the
specifications are, the lower the uncertainty bound gets. The bound is computed using
the first-order controller identified through the Loewner framework for every considered
reference model.
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7.3. Towards data-driven robustness analysis

Flexible transmission benchmark

Considering the second-order controller identified through the Loewner framework when
using Mf 2 as reference model, (7.7) gives β̃ = 0.7338, which underestimates the true
value β0 = 0.9400 occurring at 1.5484 × 10−7rad.s−1. As for the DC motor example,
the model set corresponding to uncertainties such that (7.8) is satisfied is represented
on Figure 7.16.
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Figure 7.16: Robust stability analysis on the flexible transmission benchmark: the
circles represent the plant’s behaviours P̃ such that the plant’s uncertainty ∆ satisfy
(7.8).

As for the DC motor example, specifying a slower closed-loop behaviour in the initial
reference model allow to improve the robustness of the resulting closed-loop, see Figure
7.17. However, in the present example, the robustness is highly overestimated for low
values of ω0.
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Figure 7.17: Illustration of the performance-robustness compromise: the faster the
specifications are, the lower the uncertainty bound gets. The bound is computed using
the first-order controller identified through the Loewner framework for every considered
reference model.
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Summary

In this Chapter, the data-driven stability test introduced in [Van Heusden et al., 2007]
for controller validation is recalled. A similar test is proposed, based on the small-gain
theorem, and used to limit the controller reduction step: as long as the stability test is
verified, the reduced-order controller will preserve internal stability. The main drawback
of the approach proposed in this Chapter is that the quality of the data influences a lot
the stability criteria and it may lead to the selection of destabilizing controllers.

The application of this stability test on the DC motor example and the flexible
transmission benchmark show good results when identifying and reducing controllers
through the Loewner framework. However, the application of the subspace approach
on the flexible transmission benchmark highlights the conservatism of this test. In the
proposed numerical example, since the plant model is known, it is possible to check that
the controllers rejected by the proposed stability test stabilizes the plant internally. It
is also possible to get this result using the projection technique described in Chapter 6.
The flexible transmission example also shows that the closed-loop performances may be
improved significantly by enforcing the presence of an integrator in the controller.

In the end, some preliminary work extends the proposed stability considerations
with a data-driven robustness analysis. It is deri ved from the small-gain theorem. This
step only aims at furnishing a robustness indicator. When applied on the proposed
numerical examples, it highlights the performance-robustness trade-off: specifying a
less performing reference model may lead to a more robust closed-loop.
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Chapter 8

Application to irrational systems

The objective of this Chapter is to illustrate the complete proposed method (Chapters
4 to 7) on industrial examples. Indeed, considering the simple numerical examples de-
veloped earlier in this work, for which using a model-based control technique is actually
more indicated because of the simplicity of the considered models. On the contrary,
the two applications presented in this chapter are representative of the category of sys-
tems for which using a data-driven control technique. The first one is a continuous
crystallizer, see Section 8.1, and the second one is an open-channel for hydroelectricity
generation, see Section 8.2. Both systems are described by Partial Differential Equations
(PDE), resulting in irrational transfer functionss.
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8.1 Application to a continuous crystallizer

8.1.1 Presentation of the system

The first considered application is the control of a continuous cooling crystallizer. This
process is widely used in the chemical industry. It is a separation process which goal is
to produce high-purity solids from liquids. The system is SISO: its input is the solute
feed concentration cf (t) and its output is the solute concentration in the crystallizer

c(t). The state of the system is x(t) = [n(L, t) c(t)]T , where n(L, t) denotes the crystal
size distribution. Physically, this system is described by population and mass balance
equations. A complete mathematical model of this system is derived in [Rachah et al.,
2016].
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Chapter 8. Application to irrational systems

The objective is to stabilize the plant around a desired steady-state c(t) = css =
4.09mol/L, which is just above the saturation concentration cs = 4.038mol/L, required
for the crystals to be produced. For this steady state, as said in [Vollmer and Raisch,
2001], the system is unstable and presents sustained oscillations which may degrade the
crystals quality. Feedback control is therefore needed. This control problem has been
treated in [Vollmer and Raisch, 2001] through infinite-dimensional H∞ synthesis, which
is model-based, and in [Apkarian and Noll, 2018] thanks to a data-driven H∞ synthesis.

When linearizing the system’s partial differential equations around the desired steady
state, the crystallizer is characterized by an irrational transfer with an infinite number of
poles, see [Vollmer and Raisch, 2001], [Rachah et al., 2016] or [Apkarian and Noll, 2018]
for its expression. It is possible to evaluate numerically the frequency response of the
linearized plant P on a discrete frequency grid, see Figure 8.1. In [Apkarian and Noll,
2018], a rational model P502 of order 502 is obtained through a finite-difference method
(see Figure 8.1) to obtain an initial stabilizing controller. The poles and zeros of P502

are given on Figure 8.2: the rational model is minimum phase and two unstable poles
of value 3.83×10−5±0.848×10−2ı are visible. In the present work, the model P502 will
only be used as a comparison for the data-driven estimation of tha system’s instabilities
and to simulate the closed-loop dynamics with the different controllers identified along
this section.
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Figure 8.1: Evaluation of the frequency-response of the linearized plant P on a discrete
frequency grid (500 linspaced frequencies between 0.001 and 1 rad.s−1) and frequency
response of the finite difference rational model P502.

8.1.2 Selection of an achievable reference model

In order to use the proposed method to select an achievable reference model as proposed
in Chapter 6, the considered frequency grid is much smaller: N = 500 frequencies are
considered, logarithmically spaced between 10−3 and 1 rad.s−1. The corresponding sam-
ples of the frequency response of the plant are estimated directly through the irrational
transfer.
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Figure 8.2: Poles and zeros of the rational model P502

The first step in choosing an achievable reference model consists in the projection of
the FRF on the spaces H2 and H2. The projection is given on Figure 8.3: the antistable
projection fits the resonance while the stable part fits the rest of the frequency-response
of the plant. Therefore the plant is unstable, as expected considering P502 but also the
previous studies of this system given in [Vollmer and Raisch, 2001], [Rachah et al., 2016]
and [Apkarian and Noll, 2018].
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Figure 8.3: Projection of the frequency-response samples from the plant P on the Hardy
spaces H2 and H2: the system is unstable.

As detailed in [Cooman et al., 2018a], the Hankel matrix of the antistable projection
of the plant’s data is computed and a singular value decomposition is performed. The
rank of this matrix gives us the order of the antistable projection, and consequently
the number of RHP poles of the system P. The decomposition is visible on Figure 8.4:
according to the drop after the second singular value, the system exhibits two unstable
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Figure 8.4: Singular Value Decomposition of the Hankel matrix corresponding to the
antistable projection of the plant’s data: the system exhibits two RHP poles.

poles. These two RHP poles are then estimated. Their value is given in Table 8.1. The
obtained values are coherent with the ones found in [Vollmer and Raisch, 2001] and
with the RHP poles of the rational model P502.

RHP poles of P502 3.83× 10−5 ± 0.848× 10−2ı

Estimated RHP poles 1.07× 10−4 ± 0.852× 10−2ı

Estimated RHP poles in [Vollmer and Raisch, 2001] 0.99× 10−4 ± 0.89× 10−2ı

Table 8.1: Estimation of the RHP poles of the plant.

Remark 8.1.1. In [Vollmer and Raisch, 2001], the RHP poles are estimated through
a direct search method. This estimation is then used to factorize the plant’s expression
to solve the mixed-sensitivity problem in the infinite-dimensional case.

Then, the inverse plant’s data is analyzed in order to determine whether the plant is
minimum phase or not. The projection is then performed on the samples

{
ωi,P(ıωi)

−1
}

.
The result is visible on Figure 8.5: the stable projection of the plant’s inverse fits the
inverse of the plant’s frequency-response samples. Consequently, the plant is minimum
phase.

Finally, an achievable reference model is selected as in Chapter 6. The initial stable
reference model M is a first order transfer function:

M(s) =
1

1 + τs
, τ = 1s.

Since the plant is unstable and minimum-phase, the achievable reference model is chosen
as Mf = 1− (1−M)Bp, with Bp defined according to the estimated RHP poles of the
plant, see Table 8.1.
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Figure 8.5: Projection of the inverse of the frequency-response samples from the plant
P on the Hardy spaces H2 and H2: the system is minimum phase.

8.1.3 Control design

Controller identification

In the first place, the achievable reference model designed in the previous paragraph
is used to compute the frequency-response of the ideal controller, visible on Figure
8.6. The resulting ideal controller is then interpolated using the Loewner framework: a
minimal realisation of order n = 177 is obtained. The controller is then reduced to a
second-order model K2:

K2(s) =
39.084(s2 + 0.04163s+ 0.003132)

s(s+ 0.002751)
. (8.1)

The reduced order r = 2 is selected in order order to compare the controller obtained
with the proposed method with the one obtained in [Apkarian and Noll, 2018], denoted
K:

K(s) =
54.47s2 + 2.317s+ 0.02446

s2 + 0.002033s+ 4.374e− 6
. (8.2)

The frequency response of these controllers is visible on Figure 8.6.

Stability analysis

Following the stability test proposed in Chapter 7, the maximal admissible controller
error is γ̃−1 = 54.2547, which largely overestimates γ−1

0 = 18.8520, obtained using
the finite-difference model P502. On the other side, the evolution of the controller
modelling error is visible on Figure 8.7. The controller modelling error for K2 is ‖∆‖∞ =
‖K2 −K?‖∞ ' 2.1219e+03. According to Figure 8.7, it is possible to preserve internal
stability when reducing the controller up to an order r = 7.

The stability test is not verified for K2 but, as shown in the previous chapter, this
test is conservative. In order to check this possibility, the data of the resulting closed-
loop MK2 is projected using the PISA toolbox. The frequency-response samples of the
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Figure 8.6: Identification of the controller using the Loewner framework: the minimal
realization of the ideal controller has 177 states. It is reduced to a second-order controller
K2, see (8.1).
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Figure 8.7: Evolution of the controller modelling error when reducing the order of the
controller model using the Loewner framework.

resulting closed-loop are computed as follows:

∀i = 1 . . . N, MK2(ıωi) = (I + ΦiK2(ıωi))
−1ΦiK2(ıωi).

The results of the projection are visible on Figure 8.8: the antistable projection does
not contribute to the dynamic of MK2. Therefore, K2 stabilizes the plant P internally.
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Figure 8.8: Projection of the frequency-response of the resulting closed-loop MK2: K2

stabilizes the plant P internally.

8.1.4 Results

In order to evaluate closed-loop performances, the finite-difference model is then used
to simulate the closed-loop behaviour in time-domain. The results are visible on Figure
8.9. The controller obtained in [Apkarian and Noll, 2018] allows to reach the desired
steady-state faster with a less important overshoot. These better performances might
be explained by two reasons: (i) model-reference control is really limitating when it
comes to the expression of the closed-loop specifications and (ii) the reduction of the
ideal controller degrades the closed-loop control performances.
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Figure 8.9: Simulation of the passage to a new steady state for the closed-loops built
with the second-order controller K2 obtained by the proposed algorithm and K, the
one obtained in [Apkarian and Noll, 2018].
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Influence of the controller reduction

First, let us investigate (i) the influence of the reduction of the ideal controller on
the closed-loop control performances. To that extant, controllers of order 3 and 5 are
obtained through the Loewner framework, respectively denoted K3 and K5:

K3(s)=
92.763(s+ 0.1574)(s2 + 0.0001243s+ 8.263× 10−5)

s(s2 + 0.008329s+ 2.71× 10−5)
,

K5(s)=
−7.7499(s− 3.444× 105)(s2 + 0.001032s+ 7.226× 10−5)(s2 + 0.0374s+ 0.000532)

s(s+ 1.328e04)(s+ 0.004241)(s2 + 0.006436s+ 4.093× 10−5)
.

(8.3)
As shown on Figure 8.10, the more the order of the identified controller is important,

the more it will fit the frequency-response of the ideal controller. This is also visible
on the time-domain simulations given on Figure 8.11, when simulating the passage to a
new steady-state. A high order controller is more likely to give the desired closed-loop
behaviour, specified by the reference model Mf .
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Figure 8.10: Reduction of the ideal controller to different orders (2, 3 and 5). The
corresponding controllers are denoted K2, K3 and K5 respectively.
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8.1. Application to a continuous crystallizer

Figure 8.11: Simulation of the passage to a new steady state for the closed-loops built
with the controllers K2, K3 and K5, of order to 2, 3 and 5 respectively, identified
and reduce through the Loewner framework. They are compared to the controller K
obtained in [Apkarian and Noll, 2018], see (8.2).

Influence of the initial reference model

Finally, let us investigate (ii) the influence of the performance specifications. In [Ap-
karian and Noll, 2018], the specifications are given as frequency weightings functions,
giving more freedom to the desired closed-loop behaviour. To underline this aspect,
the closed-loop M2 reached by the controller K obtained is [Apkarian and Noll, 2018]
is taken as reference model. M2 has been computed using the finite-difference model
P502. It leads to the identification of the second-order controller KM2 :

KM2(s) =
28.282(s+ 0.08652)(s+ 0.00982)

(s2 + 0.001967s+ 4.192e− 06)
. (8.4)

KM2 gives a better response time and a more important overshoot than K. However,
the closed-loop performances induced by KM2 are much closer to the ones obtained by
K than the ones obtained using Mf as a reference model.
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Figure 8.12: Simulation of the passage to a new steady state for the closed-loops built
with the controllers K2 and KM2 obtained by the proposed method using two different
reference models Mf and M2, and with the controller K obtained in [Apkarian and
Noll, 2018].

To sum up, the first important aspect in order to obtain good closed-loop perfor-
mances is the reduction of the ideal controller. The second one is that, for a given
controller order, the choice of the reference model remains a critical step: choosing one
desired transfer, even achievable, is limiting compared to robust specifications using
frequency weightings.

To compare with a model-based method, in [Vollmer and Raisch, 2001], an infinite-
dimensional model-based H∞ controller synthesis is performed on this very same ap-
plication. The obtained controller is irrational and a reduction step is needed, which
can be quite complicated. On this use-case, a reduced 8th order controller is obtained
in [Vollmer and Raisch, 2001]. On the other side, applying a structured model-based
technique such as hinfstruct relies on an approximation of the irrational system, here
the finite-difference model P502, and is therefore time-consuming due to the complexity
of the model.

For these reasons, data-driven control techniques are particularly indicated in this
case. In [Apkarian and Noll, 2018], the considerations regarding the limitations due
to the RHP poles and zeros of the plant are known through an initial stabilizing con-
troller. Stability is guaranteed by the algorithm thanks to a test on the winding number.
However, this method requires to build a fine frequency grid on which samples of the
frequency-response of the plant are assumed to be available. Furthermore, the control
design relies on iterative non-smooth optimization, which can be time-consuming and
is sensitive to the considered initial stabilizing controller.

On the other side, the main strength of the proposed method is its simplicity. It is
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a one shot technique, it does not make strong assumptions and does not depend on an
initial stabilizing controller.

8.2 Application to an hydroelectricity generation channel

8.2.1 Presentation of the system

The second application is an industrial problem provided by the French power producer
EDF (Electricité de France). EDF uses water resources to generate green energy with
run-of-the-river power plants. They rely on open-channel hydraulic systems that are
non-linear and which dynamic depends on the operating point. Here, for simplicity we
will consider one single operating point only.

Their physical model requires partial differential equations (namely Saint-Venant
equations). In [Dalmas et al., 2016], a new irrational transfer function is proposed for
open channels to represent the level-to-flow variations for any operating point. It is
the solution of Saint-Venant equations under many assumptions. The system has two
inputs, the entering and the outgoing flows qe and qs, and one output, the water depth
h. The transfer is given by:

h(x, s,Q0) = Ge(x, s,Q0)qe(s) +Gs(x, s,Q0)qs(s)

= P (x, s,Q0)

[
qe
qs

]
, (8.5)

where

Ge(x, s,Q0)=
λ1(s)eλ2(s)L+λ1(s)x − λ2(s)eλ1(s)L+λ2(s)x

B0s(eλ1(s)L − eλ2(s)L)

Gs(x, s,Q0)=
λ1(s)eλ1(s)x − λ2(s)eλ2(s)x

B0s(eλ1(s)L − eλ2(s)L)

where x is the position of the measurement point on the channel, Q0 the nominal flow,
L the length of the open channel. B0, λ1(s) and λ2(s) depend on the canal configuration
and the nominal flow (see [Dalmas et al., 2016]).

The system, which dynamic is visible in Figure 8.13, is extremely slow, has a delay
behavior and a pole in limit of stability. Moreover, it has an infinite number of poles
since the transfer function is irrational.

The system have been approximated in [Dalmas et al., 2016] by a 8th order rational
transfer function depending on the nominal flow with input time delays: τe ' 500s
and τs ' 1500s, on qe and qs respectively. This approximation is shown in Figure 8.13
(dashed red). This model will be used to evaluate the performances of the identified
controller.

The input flow qe in the open channel is seen as a disturbance (rain for example).
The objective is to maintain the water depth to avoid flooding in the area. To this aim,
the command signal is the output flow qs. Therefore, only the transfer Gs between the
output flow qs and the water depth h is considered, see (8.5).
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Figure 8.13: System dynamic for nominal flow Q0 = 1400 m3.s−1: original plant in
solid blue and approximation obtained in [Dalmas et al., 2016] in dashed red.

In this example, the frequency approach is interesting since the system is represented
by an irrational transfer function. Therefore, one cannot have a time-domain simula-
tion. However we still can estimate samples of the frequency response of the system
{ωi,Φi}Ni=1, from which the ideal controller’s frequency response can be deduced. The
samples of the frequency response Φi = Gs(ıωi), i = 1 . . . N are extracted from the
irrational transfer function Gs, for N = 500 linearly spaced frequencies between 10−4

and 10−1 rad.s−1.

8.2.2 Selection of an achievable reference model

As for the previous application, the first step of the proposed method consist in de-
termining the nature of the system thanks to the projection of its frequency-response
measurements. The results of the projection are visible on Figures 8.14 and 8.15 re-
spectively.

Due to the presence of an integrator, the plant’s FRF is not in L2. The data is
then filtered by a bandpass filter for the stability analysis, see [Cooman et al., 2018b]
for further explanations. Figure 8.14 shows that, except the integrator, the plant has
no unstable poles. The mismatch between the projection and the plant’s data is due to
the use of the bandpass filter. According to Figure 8.15, the plant is minimum phase:
the stable projection fits the inverse of the plant’s data.

Therefore, the only constraint that the reference model should satisfy is M(0) = 1,
which would have been respected anyway to have zero tracking error. The objective is
to stabilize the system and to obtain a faster dynamic. The reference closed-loop M is
chosen to be a second order continuous transfer function:

M(s) =
1

1 + 2ξ
ω0
s+ s2

ω2
0

, (8.6)
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Figure 8.14: Projection of the plant’s data: the only instability is the integrator.
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Figure 8.15: Projection of the inverse of the plant’s data: the system is minimum phase.

with ω0 = 10−4rad.s−1 and ξ = 1. It satisfies M(0) = 1.

The frequency response of the ideal controller K?(ıωi), which exactly provides the
desired closed-loop behavior dictated by M when placed in the closed-loop, is obtained
as follows:

∀i = 1 . . . N, K ? (ıωi) =
M(ıωi)

Φi −M(ıωi)Φi
. (8.7)
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8.2.3 Control design

The result of the identification step is given in Figure 8.18. The minimal realisation of
the ideal controller is of order 137 and is stable. In the first place, it is necessary to
obtain a reduced-order controller that preserves closed-loop internal stability.

Following the stability test proposed in Chapter 7, the maximal admissible controller
error is γ̃−1 = 220.9667, which largely overestimates γ−1

0 = 11.3224, obtained using the
rational 8th-order model visible on Figure 8.13. On the other side, the evolution of the
controller modelling error is visible on Figure 8.16: it is possible to preserve internal
stability when reducing the controller up to an order r = 1.
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Figure 8.16: Evolution of the controller modelling error when reducing the order of the
controller model using the Loewner framework.

The SVD of the Loewner matrix in the present case is given on Figure 8.17: there is
only one significant drop around the McMillan order n = 137 which gives the minimal
realisation of the ideal controller. However, the first singular values decrease fast before
reaching. Therefore, a small order controller should be sufficient to reach the desired
performances. The minimal representation of the ideal controller is then reduced to a
stable second order controller K:

K(s) =
3.3492.10−5(s2 − 0.0663s+ 0.007729)

(s+ 2.001e− 05)(s+ 0.001161)
.
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Figure 8.17: Singular value decomposition of the Loewner matrix considering the data
of the ideal controller K? given in (8.7).
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Figure 8.18: Identification of the ideal controller (red dots): minimal realization of order
137 (solid blue) and reduced 2nd order controller K (dashed blue) obtained through the
Loewner framework.

8.2.4 Results

Since we had no access to the EDF simulator, the 8th order rational transfer function
of [Dalmas et al., 2016] is used to simulate the closed-loop with the 2nd order controller
obtained by applying the method proposed in this work. The results are shown in Figure
8.19: the resulting closed-loop achieve a response time of 4.84× 105s (134.4 hours) with
no overshoot, while the system naturally has a response time of 2.47 × 1013s. The
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closed-loop dynamic is almost the objective one. The command signal is shown on
Figure 8.20: it is reasonable, the maximum flow variation is around 8.3m3.s−1, which
is in the acceptable range for this application with a controller of order 2.
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Figure 8.19: Step response of the closed loop obtained with the 2nd order controller
identified through the proposed method (dashed green) and of the objective transfer
(solid red).
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Figure 8.20: Evolution of the outgoing flow qs when applying a step on the closed-loop
obtained with the identified 2nd order controller K.
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8.2. Application to an hydroelectricity generation channel

Finally, the performances in terms of disturbance rejection are shown on Figure
8.21: an input flow of 100m3/s during four hours is considered. This disturbance would
increase the water depth of 0.65m if not rejected. Figure 8.21 represents the tracking
error when this disturbance is applied on the stabilized closed-loop: the water depth
increases of 0.54m instead of the 0.65m without the controller. Finally, the disturbance
is completely rejected 0.8× 105s (2.3 hours) after its application. During the remaining
time of the disturbance application, the disturbance does not affect the closed-loop
system.
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Figure 8.21: Performance of the controlled closed-loop in terms of disturbance rejection.

It should be noted that the closed-loop could be faster by increasing the frequency
ω0 of the reference model M, see (8.6). However, taking ω0 = 10−4rad.s−1 (instead of
10−5rad.s−1), leads to the identification of a second-order controller giving an oscillatory
behaviour in closed-loop. The consequence is a significant overshoot, which is not
acceptable in this application. Furthermore, the command signal qs rises up to 80m3/s
when applying a step on the corresponding closed-loop.

Remark 8.2.1. In this application, it could be interesting to identify a pLTI model of
the controller that depends on the sensor position x, see (8.5). It would allow to avoid
to design a controller for each open-channel when the only parameter that changes is
the sensor’s position. To that extent, it would be possible to use the parametric version
of the Loewner framework, see [Ionita and Antoulas, 2014], or the extension of the
subspace algorithm proposed during this thesis, see [Kergus et al., 2018a].

In this application, the proposed method is appealing since it does not require to
simulate the complex system described by an irrational transfer function to obtain time-
domain data. Only samples of the frequency response of the plant are needed, which
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can be estimated directly from the irrational transfer function. Moreover, one should
notice that controlling such an infinite order model is also quite challenging even for
model-based methods. A interesting perspective would be to try this controller on the
EDF simulator instead of using the approximate model to validate the performances.
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9.1 Summary of the proposed method

A new data-driven control technique is proposed in this work. The main idea, originally
exposed in [Kergus et al., 2017], is exposed in Chapter 4. The specifications are given as
a reference model M, corresponding to the desired closed-loop transfer. The objective
is to design a controller K such that the resulting closed-loop is as close as possible to
the reference model, see Figure 9.1. The plant’s data and the reference model are used
to construct the frequency response of the ideal controller, which is then identified. In
this work, two identification techniques are considered: the Loewner framework and the
subspace approach.

M

K P
+ − −

+
ε

Figure 9.1: Problem formulation: M is the desired closed-loop, P is the plant and K
the controller to be designed.
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In Chapter 4, the application of this first version of the method, as exposed in [Kergus
et al., 2017], on two numerical examples, the DC motor and the flexible transmission
benchmark, illustrates the impact of the choice of the reference model on the control
design. The flexible transmission example, which is non-minimum phase, shows that it
is a particularly challenging step when the plant has RHP poles or zeros. Furthermore,
it highlights the necessity to analyze the stability of the obtained closed-loop. Therefore,
the initial version of the method is modified to include two additional steps. The final
version of the proposed method is recalled hereafter in Algorithm 1 and the different
steps are briefly summed up.
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9.1. Summary of the proposed method

Algorithm 1: Data-driven control in the frequency domain: final version
of the proposed method

Data:

• Samples of the frequency response of the plant {Φi}Ni=1 at the frequencies
{ωi}Ni=1.

• Stable reference model M giving the desired closed-loop performances.

Solution:

1. Construction of an achievable reference model

(a) Projection of the available data and determination of the plant’s nature
and limitations:

• stable or unstable when projecting {Φi}Ni=1;

• minimum phase or not when projecting {Φ−1
i }Ni=1.

(b) If any, estimate the system’s RHP poles {pj}np

j=1 and NMP zeros

{zi}nz
i=1 and their respective output directions

{
ypj
}np

j=1
and {yzi}nz

i=1.

(c) Build an achievable reference model Mf that satisfy the plant’s
limitations given by: {

yTziMf (zi) = 0
Mf (pj)ypj = ypj

. (9.1)

2. Controller identification

(a) Compute the frequency-response samples of the ideal controller K?:

∀ i = 1 . . . N, K?(ıωi) = Φ−1
i Mf (ıωi))(Iny −Mf (ıωi))

−1. (9.2)

(b) On the basis of this samples, identify a model K of K? using the
Loewner framework or the subspace approach, of a prescribed order n
or a minimal realisation of high-order.

3. Stability analysis and controller reduction

(a) Compute the maximal controller modelling error:

γ̃ = max
i=1...N

|Φi(1−Mf (ıωi)(ıωi)| . (9.3)

(b) Reduce the controller order, using the Loewner framework or the
subspace approach, and check that the stability test is verified:

‖K−K?‖∞ ≤
1

γ̃
− ε, (9.4)

(c) When the stability test is not verified, two situations may occur:

• The stability test is too conservative and the projection of step 1a)
will determine if the controller stabilizes the plant internally.

• The considered reduced-order controller does not stabilize the
plant internally.
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9.1.1 Choice of the reference model

The choice of an achievable reference model, tackled in Chapter 6 and exposed in [Kergus
et al., 2019b], is based on a projection of the frequency response of the plant to determine
whether the plant has instabilities or not. Indeed, the RHP poles and zeros of a system
are the main limitations of the closed-loop performances, expressed as interpolatory
constraints on the closed-loop, see step 1c of Algorithm 1. When the plant is unstable
and/or NMP, its instabilities are estimated. Then, an achievable reference model Mf

is built from the initial one M specified by the user to satisfy the analiticity constraints
imposed by the RHP poles and zeros of the plant.

Estimating the plant’s instabilities may seem like a model-based approach. However,
it is necessary to know the plant’s performance limitation to avoid the situation where
the ideal controller destabilize the plant internally, see Chapter 4. There are two ways
to know these limitations: (i) having access to a stabilizing controller or (ii) knowing the
system’s instabilities. In the present case, no initial stabilizing controller is supposed
to be available. Estimating the plant’s RHP poles and zeros is then the only available
solution. As discussed in Chapter 6, the projection approach allows to avoid identifying
a model of the system.

9.1.2 Controller identification

Once an achievable reference model Mf is obtained, the frequency response of the
associated ideal controller is computed following step 2a of Algorithm 1 and identified
through the Loewner framework and/or the subspace approach. These two techniques
are recalled in Chapter 5 and additional features are considered to use them in a data-
driven control framework, as explained in [Kergus et al., 2018b]. First, the stability of
the controller is enforced either through a projection on RH∞ when using the Loewner
framework, or through LMI constraints when using the subspace approach. It avoids to
introduce instabilities in the open-loop and to satisfy the conditions of application of the
small-gain theorem when it comes to the data-driven stability analysis. Furthermore,
noisy data were considered to study how the quality of the data influences the controller
identification. It appeared that the Loewner framework is very sensitive to noise and
the reduction has consequently been modified to limit its impact on the results.

The Loewner framework and the subspace approach both allow to reduce the con-
troller order up to a prescribed order n in a straightforward way. The reduction of
the controller model implies to discard some of the ideal controller dynamics, and con-
sequently it degrades the closed-loop performances in comparison with the expected
behaviour specified by M. However, as explained in Chapter 6, the compromise be-
tween controller’s complexity and closed-loop performances does not only depend on
the controller reduction but also on the initial reference model specified by the user.
This was already highlighted in Chapter 4 on the DC motor example: for a given con-
troller order, less demanding reference models may lead to better performances. This
is also the case for the flexible transmission benchmark, as detailed in Chapter 7.
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9.1.3 Data-driven stability analysis

The choice of an achievable reference model Mf and the stability of the controller model
allow us to apply the small-gain theorem as in [Van Heusden et al., 2009] to derive an
internal stability condition, given in step 3a of Algorithm 1. As long as the controller
modelling error is below a limit determined by the plant P and the achievable reference
model Mf , the identified controller will stabilize the plant internally. The reduction of
the controller model is then done while preserving internal closed-loop stability.

The main drawback of this approach is that the proposed stability test is very con-
servative. As an example, all the controllers identified through the subspace approach
for the flexible transmission benchmark are rejected while they all stabilize the plant in-
ternally. The projection technique for data-driven stability analysis recalled in Chapter
6 can then be used as a complement to test the stability of the resulting closed-loop.

The second drawback is that the proposed stability test relies on a data-driven
estimation of an H∞-norm, see step 3b of Algorithm 1. The underestimation of this
norm may lead to the selection of destabilizing controllers. Specific tools should be
considered to improve the results regarding this aspect, this idea will be further discussed
in Section 9.3.

9.2 Conclusion

9.2.1 Results

The proposed method shows good results on the two numerical examples treated along
this work (the DC motor and the flexible transmission benchmark). In Chapter 8, two
additional and more complex examples illustrate the proposed method: a continuous
crystallizer and an open-channel for hydroelectricty generation. These applications are
representative of the class of systems for which data-driven control techniques is more
appealing than model-based ones. Indeed, their models, which are irrational, are too
complex for model-based control.

In both cases, the data-driven stability analysis proposed in [Cooman et al., 2018b]
allows to draw the right conclusion concerning the nature of the plant. However, the
second example considered in Section 8.2 shows that integral actions are not handled
by this technique. In Section 8.1, the continuous crystallizer is shown to be unstable
and its unstable poles correspond to the ones previously found in the literature. The
technique presented in Chapter 6 is then used to select an achievable reference model.
The resulting ideal controllers are stable and, in the case of the continuous crystallizer,
do not compensate the plant’s instabilities. The associated ideal controllers are then
identified and reduced. In each application, the final controller stabilizes the considered
system internally and leads to good closed-loop performances.

As shown by the application of the proposed method on the continuous crystal-
lizer, choosing a reference model constitutes a very limited specifications requirement,
compared to robust specifications for example. To that extent, it may be interesting
to iterate the method proposed in this thesis by changing the initial reference model
progressively up to a certain performance level.
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9.2.2 Main strengths and limitations

i) Simplicity of the proposed method

The main strength of the proposed method is its simplicity. It only requires frequency-
response samples from the plant and a reference model chosen by the user. Contrary to
other model reference techniques, there is no need to structure the controller a priori.
Furthermore, it does not require an initial stabilizing controller: the system’s insta-
bilities are estimated directly from the available data, allowing to know what are the
achievable closed-loop dynamics.

The interventions of the user are limited to the following ones:

• Determine the nature of the plant from the projection of the FRF measurements:
this step may be touchy if the data are not rich enough, see the following paragraph
(ii). Once it is done, the number of instabilities is determined easily by a rank-
revealing decomposition. It should be noted that, regarding this aspect, the user
may be solicited twice: once to choose a reference model at the beginning, and once
in the end if the internal stability test is not verified because of its conservatism.

• Trading between the controller’s complexity and closed-loop performances: choos-
ing the order of the controller to fit the ideal controller dynamics is made easy
in the two identification techniques used along this work. However, the reduction
of the controller, under internal stability considerations, may imply to decrease
closed-loop performances for a given reference model. Nevertheless, in the pro-
posed method, the complexity-performance trade-off does not only depend on the
controller reduction but also on the choice of the specifications, see (iii).

ii) Impact of the quality of the data

As for system identification, the quality of the available data plays a pivotal role in
the success of the proposed method. As a matter of fact, noisy data deteriorate the
estimation of the RHP poles and zeros of the system while determining an achievable
reference model. In addition, the data should be dense enough to capture the unstable
dynamics. However, to determine the nature of the plant (stable or not, minimum-
phase or not), the projection of the frequency-response is more robust to noise than the
identification of a high-order model of the system.

The noise is obviously passed through the frequency-response of the ideal controller.
Its main effect is to increase the order of the minimal realisation obtained through
the Loewner framework and the subspace approach. However, when it comes to the
identification of the controller, the noise impacts mostly the Loewner interpolation.
Additional information concerning the noise covariance function would be needed to
improve the results of the subspace identification.

In the end, the most critical step regarding the quality of the data is the internal
stability test proposed in Chapter 7. As a matter of fact, it relies on the estimation of
the H∞-norm of a dynamical system on the basis of samples of its frequency-response.
Consequently, the H∞-norm is often underestimated, which may lead to the choice of
destabilizing reduced-order controller.
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Regarding the question of the quality of the data, a pre-filtering step should be
considered to limit the impact of noise on the estimation the system’s instabilities and
on the controller identification. To that extent, other identification techniques, maybe
more robust to noisy data like the subspace approach, could be considered.

iii) Formulation of the specifications

The flexible transmission benchmark illustrates that the choice of the specifications has
a strong impact on the reduction of the controller. When the initial reference model
corresponds to a fast closed closed-loop dynamics, it is not possible to reduce the ideal
controller as much as when using slower specifications. In this example, it is explained by
the fact that the faster specifications do not respect the performance limitations imposed
by the NMP zeros of the plant. Consequently, once the instabilities are estimated, it is
suggested to adapt the performance specifications if needed.

Nevertheless, even though the reference model respects the performance limitations,
specifying a model reference may be problematic. This is particularly highlighted by the
application of the proposed method on the continuous crystallizer application: robust
specifications allow a greater flexibility in the specifications than a reference model.
Indeed, instead of giving one single desired behaviour, specifications are formulated
as frequency-domain weighting functions defining a whole set of expected closed-loop
dynamics.

9.3 Outlooks

9.3.1 Extension to other problem formulations

In this work, only the structure presented on Figure 9.1 has been presented. However,
as it has been for the VRFT in [Lecchini, 2001] or for unfalsified control in [Battistelli
et al., 2018], other objective functions may be considered:

1. The sensitivity function S, see Figure 9.2. A similar formulation has been used as
an extension of the VRFT in

S

K P
+ −

−
+ ε

Figure 9.2: Alternative problem formulation: S is the desired sensitivity function, P is
the plant and K the controller to be designed.

2. The transfer Tr→u = Wu to reach it as a moderate command objective, see
Figure 9.3. As said in [Battistelli et al., 2018], the main advantage of this formu-
lation is that the corresponding ideal controller will never compensate the plant’s
instabilities.
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Wu

K P
+ −

−
+ ε

Figure 9.3: Alternative problem formulation: Wu is the desired transfer in terms of
moderate command objectives, P is the plant and K the controller to be designed.

3. The disturbance rejection transfer Wd, as specified on Figure 9.4.

Wd

K P
+ − +

+
−

+
ε

Figure 9.4: Alternative problem formulation: Wd is the desired disturbance rejection
transfer, P is the plant and K the controller to be designed.

In each of the mentioned alternative problem formulations, the ideal case allows to
compute the frequency-response of the corresponding ideal controller to be identified
and reduced. To that extent, it could be interesting to use other identification and
reduction techniques. It would also be possible to use time-domain techniques based on
virtual signals as in the VRFT framework.

It could also be possible to mix these performance specifications in an iterative way
using a similar procedure than the the one proposed in [Battistelli et al., 2018], based
on a ponderate objective function.

9.3.2 Overcoming the difficulty of choosing a reference model

As said earlier in Chapter 8, specifying performances as a single desired reference model
is much less flexible than robust specifications. The choice of a reference model is then a
crucial step for the success of the proposed technique. In order to overcome the difficulty
of selecting achievable performance specifications, the following lines of approach may
be investigated in future work.

Reference model control and the associated matching problem

In this thesis, the construction of an achievable reference model Mf is based on the
choice of an initial one M. Even if M is allowed to not respect the analiticity constraints
given in (9.1), it might be too demanding in terms of performances considering the
impact of (9.1), see Chapter 2.

It is also possible to build an achievable sensitivity function Sf , and therefore an
achievable reference model Mf = I − Sf , without having to specify an initial desired
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behaviour. To this end, the problem may be reformulated as a matching one. The
specifications for Sf to be achievable and to impose some closed-loop performances are
the following:

1. Internal stability: Sf is stable LTI and satisfies the following interpolatory
conditions: {

Sf (zi)=1 ∀i = 1 . . . nz
Sf (pj)=0 ∀j = 1 . . . np

where {zi}i=1...nz
and {pj}j=1...np

are the unstable zeros and poles of the plant P.

2. Limited overshoot: ‖Sf‖∞ ≤ γ

3. Low static error: min
Sf

max
θ∈(0,θc)

∣∣Sf (eıθ)
∣∣, where θc is the cutoff frequency.

Consequently, having estimated the instabilities of the plant and given a cutoff
frequency, it is possible to shape an achievable sensitivity function Sf by introducing
the following function:

f(z) =
1

γ
Sf

(
1

z

)
(9.5)

with γ the lower bound of the sensitivity function, defined according to the plant’s
instabilities (see [Havre and Skogestad, 1996]). In the SISO case, it is given by:

γ = max
zi

np∏
j=1

|zi + pj |
|zi − pj |

.

If f is a solution of:
min

f Schur
max
z∈I
|f(z)|

s.t.

{
f(z−1

i )= 1
γ ∀i = 1 . . . nz

f(p−1
j )=0 ∀j = 1 . . . np

, (9.6)

then the corresponding sensitivity function Sf , see (9.5), is achievable by the plant.
This problem may be solved using the methodology developed in [Mart́ınez et al., 2018],
introduced for broadband matching filters synthesis. A similar approach for sensitivity
shaping is described in [Karlsson et al., 2010].

Structuring the controller

Another solution to avoid one of the user’s interventions is to structure the controller.
The choice of this structure K then becomes an input parameter as well as the reference
model M.

The problem would then formulated be formulated as an optimization one, similar
to the VRFT, CbT or IFT framework:

min
K∈K

∥∥(I + PK)−1PK−M
∥∥ (9.7)

where the distance between the resulting closed-loop and the reference model M may
be the H2-norm. The main strength of this approach would be to avoid the controller
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reduction. Assuming that an initial stabilizing controller is available, it could be possible
to include a stability constraint such as the test exposed in Chapter 7.

Th solution avoids the need to build an achievable reference model, and therefore
estimating the plant’s instabilities would not be required any longer.

Combined use with other control techniques

The basic idea of the data-driven control technique proposed in this thesis is to identify
the controller on the basis of some data from the ideal controller K?. In this work,
this data comes from the choice of a reference model, but it could come from other
data-driven control techniques such as ILC for example.

9.3.3 Data-driven stability analysis

Finally, one of the main line of research that should be further developed concerns
stability analysis.

Data-driven estimation of the H∞-norm of a dynamical system

As said earlier, the proposed stability test relies on the estimation of an H∞-norm
which should be improved. In the first place, it should be noted that some specific
data-driven tools exist to estimate correctly the H∞-norm. The technique proposed in
[Van Heusden et al., 2007], used for data-driven control design, is based on time-domain
data and relies on the discrete Fourier transform. As for the stability test proposed in
Chapter 7, it suffers from the finiteness of the available data.

To improve this point, it has been proposed in [Hjalmarsson, 2005] and [Wahlberg
et al., 2010] to design the experiment’s input in an iterative procedure to overcome
the difficulty of dealing with a finite amount of data. Another iterative input design
technique is proposed in [Rallo, 2017], relying on expert advice. These type of techniques
may be used before the proposed data-driven control techniques to obtain more reliable
data.

Towards a less conservative data-driven stability test

Even assuming that the H∞-norm may be properly estimated, the considered stability
test may be conservative as highlighted by the flexible transmission benchmark, see
Chapter 7. Less conservative options should be considered. To that extent, it has been
suggested to use the data-driven stability analysis of [Cooman et al., 2018b], recalled in
Chapter 6, used to build an achievable reference model. Another interesting and similar
technique, suggested in [Poussot-Vassal, 2019], would be to use the Loewner framework
coupled with the RH∞-projection technique from [Köhler, 2014] as detailed in Chapter
5. Indeed, computing the distance δ:

δ = ‖H−Has‖∞ ,

where H is a minimal representation of the closed-loop interpolated through the Loewner
framework and Has ∈ H2 is its antistable projection, would allow to assess the stability
of the resulting closed-loop.
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On identification methods for direct data-driven controller tuning. International Jour-
nal of Adaptive Control and Signal Processing, 25(5):448–465.

[Vinnicombe, 1993] Vinnicombe, G. (1993). Frequency domain uncertainty and the
graph topology. IEEE Transactions on Automatic Control, 38(9):1371–1383.

[Vollmer and Raisch, 2001] Vollmer, U. and Raisch, J. (2001). H-control of a continuous
crystallizer. Control Engineering Practice, 9(8):837–845.

[Wahlberg et al., 2010] Wahlberg, B., Syberg, M. B., and Hjalmarsson, H. (2010). Non-
parametric methods for l2-gain estimation using iterative experiments. Automatica,
46(8):1376–1381.

[Wang and Safonov, 2002] Wang, R. and Safonov, M. G. (2002). The comparison of
unfalsified control and iterative feedback tuning. University of Southern California,
USA.

[Xu and Hou, 2009] Xu, J.-X. and Hou, Z.-S. (2009). Notes on data-driven system
approaches. Acta Automatica Sinica, 35(6):668–675.

[Yin et al., 2014] Yin, S., Gao, H., and Kaynak, O. (2014). Data-driven control and pro-
cess monitoring for industrial applications—part i. IEEE Transactions on Industrial
Electronics, 61(11):6356–6359.

[Yin et al., 2015] Yin, S., Gao, H., and Kaynak, O. (2015). Data-driven control and pro-
cess monitoring for industrial applications—part ii. IEEE Transactions on Industrial
Electronics, 62(1):583–586.

[Zhou and Doyle, 1998] Zhou, K. and Doyle, J. C. (1998). Essentials of robust control,
volume 104. Prentice hall Upper Saddle River, NJ.

[Zhou et al., 1996] Zhou, K., Doyle, J. C., Glover, K., et al. (1996). Robust and optimal
control, volume 40. Prentice hall New Jersey.

[Ziegler and Nichols, 1942] Ziegler, J. and Nichols, N. (1942). Optimum settings for
automatic controllers. trans. ASME, 64(11).

168


