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THÈSE

présentée et soutenue publiquement le 14 Novembre 2019

pour l’obtention du

Doctorat de l’Université de Lorraine
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Résumé étendu

1 Notions de neurosciences

1.1 Neurones biologiques

Le cerveau humain comprend environ 1011 neurones, des cellules excitables électriquement
dont l'activité coordonnée est le fondement de tout processus cognitif, perception et mouvement.

Un neurone typique est composé de trois parties : le soma, l'axone et les dendrites (Figure
1.1). Le soma (aussi appelé corps cellulaire) contient le noyau du neurone et possède une mem-
brane capable de laisser des ions circuler vers l'intérieur ou l'extérieur de la cellule grâce à des
canaux ioniques. La di�érence de concentration en ion de part et d'autre de la membrane d'un
neurone donne lieu à une di�érence de potentiel appelée potentiel de membrane. Lorsqu'il est au
repos, le potentiel de membrane d'un neurone est négatif (le potentiel à l'intérieur est inférieur
au potentiel extérieur), mais selon les entrées qu'il reçoit sur ses dendrites, des mouvement d'ions
peuvent l'augmenter (on parle de dépolarisation) ou le diminuer (on parle alors de repolarisa-
tion). Quand le potentiel de membrane d'un neurone dépasse un certain seuil, il emet un signal
électrique appelé potentiel d'action, ou spike, qui se propage le long de son axone avant d'être
communiqué aux dendrites d'autres neurones. Après qu'un neurone a émis un spike, son potentiel
de membrane décroit en deçà de sa valeur au repos, ce qu'on appelle l'hyperpolarisation), puis
retourne lentement à son état de repos. Tant qu'un neurone est hyperpolarisé, il ne peut pas
émettre d'autre potentiel d'action et ne répond pas aux stimulations qu'il reçoit : cet intervalle
de temps est appelé période réfractaire du neurone (voir 1.2).

1.2 De l'activité cellulaire à la cognition

A l'échelle microscopique, les neurones communiquent entre eux via des transmissions synap-
tiques : lorsqu'un potentiel d'action atteint l'extrémité de l'axone d'un neurone, cela déclenche
la libération de molécules chimiques appelées neurotransmetteurs dans l'espace entourant la cel-
lule, qui se lient par la suite aux récepteurs synaptiques présents sur les dendrites des neurones
proches. Selon le type de neurotransmetteurs reçus de cette façon, des canaux ioniques spéci�ques
s'ouvrent sur les neurones post-synaptiques, ce qui conduit à l'augmentation ou la diminution
de leur potentiel de membrane : dans le premier cas, la synapse est dite excitatrice, et dans le
second elle est dite inhibitrice.

Dans une moindre mesure, les neurones peuvent aussi se transmettre leur activité électrique
les uns aux autres à travers des jonctions communicantes (aussi appelées synapses électriques)
connectant directement leur cytoplasmes, ou encore ils peuvent réagir au champ électrique généré
par les neurones auxquels ils ne sont pas connectés (ce qu'on appelle un couplage éphaptique).

En s'activant ensemble, des petits groupes de neurones peuvent e�ectuer des tâches simples.
A l'échelle macroscopique, les processus cognitifs requièrent la communication et la synchroni-
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Résumé étendu

sation de grandes aires cérébrales, chacune étant associée à certaines fonctions. Ces interactions
se font sous la forme d'émission de potentiels d'actions synchronisés à certaines fréquences, com-
munément désignées sous le terme d'oscillations neuronales. Plus d'information à ce sujet peut
être trouvée dans [Wang, 2010] et [Buzsaki, 2011].

Dans l'ensemble, le cerveau humain est organisé en di�érentes structures partageant des
fonctions communes. La partie externe du cerveau, le cortex cérébral, peut être divisé en quatre
lobes : le lobe frontal, le lobe pariétal, le lobe temporal et le lobe occipital. Les neurones formant
les couches les plus super�cielles du cortex, appelé néocortex, sont celles qui sont apparues le plus
tardivement au cours de l'évolution, et sont à l'origine des fonctions cérébrales les plus avancées
telles que le raisonnement ou la parole (voir Figure 1.3).

Sous le cortex cérébral se trouvent d'autres structures utiles telles que le tronc cérébral,
le thalamus, l'amygdale, l'hippocampe, etc... qui assurent d'autres fonctions moins avancées
évolutionnairement parlant telles que la respiration, le contrôle de la consommation alimentaire,
les émotions ou la mémoire.

1.3 Mesures de l'activité neuronale

Il existe de nombreuses techniques pour mesurer l'activité neuronale, in vitro ou in vivo, et
à di�érentes échelles.

Le mesure des potentiels de membranes ou des courants de membrane de neurones isolés
peut s'e�ectuer in vitro à l'aide de techniques de patch-clamp par exemple. Au cours de ces
expériences, une électrode constituée d'une micropipette remplie d'une solution électrolytique
est mise au contact de la membrane d'un neurone, tandis qu'une seconde électrode est placée
dans le bain entourant le neurone. Ces deux électrodes sont utilisées pour imposer au neurone
une di�érence de potentiel (on parle alors de voltage-clamp, cf Figure 1.4) ou un courant (on
parle alors de current-clamp) pendant que le courant ou le potentiel résultant est mesuré. Depuis
leur première utilisation sur des axones de calamar géant dans les années 1940, ces techniques
ont été massivement utilisées en électrophysiologie pour étudier les propriétés de divers canaux
ioniques.

L'activité de neurones individuels peut également être mesurée in vivo à l'aide de microélec-
trodes, des électrodes bipotentielles constituées de verre, de silicium ou de metal, dont la pointe
très �ne (typiquement avec un diamètre de l'ordre de quelques microns) est insérée directement
dans le corps cellulaire (quelques exemples de ce type d'électrodes sont présentés Figure 1.5).
Des microélectrodes extracellulaires peuvent également être utilisées a�n d'observer l'activité de
quelques neurones voisins.

De la même manière, des éléctrodes plus grandes (avec un diamètre de l'ordre du millimètre)
peuvent être insérées dans le milieu extracellulaire a�n de mesurer l'activité électrique totale
générée par tous les neurones environnants ainsi que celle propagée depuis les neurones plus
lointains, qu'on appelle potentiel de champ local (Local Field Potential en anglais, souvent abrégé
en LFP). Cette technique est appelée électroencéphalographie stéréotactique, ou sEEG. Dans
certaines électrodes sEEG, il est possible d'insérer des �ls électriques �n, formant un pinceau
de microélectrodes à son extrémité, ce qui permet de combiner des mesures à l'échelle micro- et
macroscopique.

La somme des activités de grandes populations de neurones peut aussi être mesurée à l'aide
d'autres méthodes. La plus commune est l'electroencéphalographie de scalp (EEG de scalp ou
EEG de surface), qui est non invasive et repose sur l'utilisation d'électrodes cupules posées sur la
tête à l'aide d'un bonnet élastique ou de ruban adhésif. A�n de réduire l'impédence du contact
électrique avec la peau et les cheveux dans une certaine mesure, un gel électrolytique est souvent
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2. Modèles computationnels de l'activité neuronale

appliqué entre les électrodes et le scalp. Alternativement, il est possible d'insérer des grilles
d'électrodes directement sous le crâne (sous la dure-mère) pour obtenir des signaux avec un
meilleur rapport signal sur bruit (cette technique est appelée électrocorticographie ou ECoG).

L'activité neuronale génère également un faible champ magnétique (inférieur au champ ma-
gnétique terrestre d'environ neuf ordre de grandeur). Sa mesure peut s'e�ectuer à l'aide de ma-
gnétomètres très sensibles tels que les SQUIDs (superconducting quantum interference devices)
placés autour de la tête, ce qui constitue la technique de magnétoencéphalographie (MEG). Com-
parée à l'EEG de surface, la MEG requiert un appareillage plus complexe et l'utilisation d'un
blindage magnétique, et est donc plus coûteuse, et de plus elle ne permet de mesurer que la com-
posante radiale du champ magnétique neuronal. Par ailleurs, elle est moins adaptée à la mesure
d'activité issue de sources situées en profondeur à l'intérieur du cerveau que l'EEG. Cependant,
elle présente l'avantage d'être moins déformée par le crâne, et o�re aussi une meilleure résolution
spatiale lorsqu'il s'agit de mesurer l'activité de petites régions à la surface du cerveau (pour une
comparaison complète de ces deux techniques, voir [Malmivuo, 2011]).

En�n, des techniques de mesures indirectes de l'activité neuronale in vivo existent égale-
ment, telle que l'imagerie par résonance magnétique fonctionnelle (IRMf) ou la Tomographie
par Emission de Positron (TEP). Dans un enregistrement par IRMf, les propriétés magnétiques
di�érant entre le sang riche et pauvre en oxygène sont exploitées pour déduire la consommation
en oxygène des neurones (augmentant avec leur activité) et obtenir une image cérébrale avec un
contraste BOLD (pour blood-oxygen-level dependant, dépendant du niveau d'oxygène sanguin).
De manière similaire en TEP, un autre corrélat de l'activité neuronale est étudié, généralement
la consommation de glucose des neurones, mais la technique di�ère en ce qu'elle repose sur l'in-
jection d'une molécule adjointe d'un traceur radioactif (du �uorodesoxyglucose F18 souvent) et
la mesure des émissions de positron en résultant dans le corps du patient. L'IRMf et la TEP
peuvent être utilisées pour étudier l'activité cerébrale de régions bien plus profondes et avec une
meilleure résolution spatiale que l'EEG de surface ou la MEG, mais leur résolution temporelle est
bien inférieure. A l'échelle microscopique, il est aussi possible de mesurer des méthodes d'ima-
gerie calcique pour observer l'évolution de la concentration en calcium intracellulaire à l'aide de
molécules ayant des propriétés de �uorescence variant avec la présence d'ion Ca2+.

2 Modèles computationnels de l'activité neuronale

Malgré toutes les méthodes existantes permettant de mesurer l'activité neuronale, il est tou-
jours de nombreuses questions auxquelles ni les expériences in vitro ni celles in vivo ne peuvent
répondre complètement, et dans de nombreux autres cas de telles expériences ne peuvent tout
simplement pas être conduites pour des raisons techniques ou éthiques. En e�et, les di�érentes
méthodes de mesures apportent des informations à l'échelle micro ou macroscopique, mais ne
permettent que rarement d'expliquer les liens entre ces di�érentes échelles. De plus, la plupart des
techniques de mesures directes sont invasives et ne sont donc pas utilisées sur des sujets humains
sains. Dans ce contexte, la modélisation mathématique des neurones est un outil puissant pour
développer une meilleure compréhension des mécanismes neuronaux ou des processus cognitifs.

Di�érents modèles de neurones individuels et de groupes de neurones existent (voir par
exemple le livre [Gerstner, 2014]), chacun ayant son propre degré de réalisme biologique et sa
propre complexité algorithmique, et ils doivent donc être choisis avec soin selon le phénomène à
étudier.
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2.1 Formalisme de Hodgkin-Huxley

Les modèles de neurones biologiques les plus détaillés proviennent historiquement du travail
de [Hodgkin and Huxley, 1952] sur les axones de calamar géant.

Leur modèle repose sur l'analogie entre un neurone biologique et un circuit électrique (voir
Figure 1.7). La membrane du neurone est considérée comme un condensateur, et la variation de
son potentiel de membrane Vm s'exprime en fonction de sa capacité Cm et des courants totaux
résultants de stimulation extérieure (Istim) et de ses courants transmembranaires (Ii) :

Cm ·
dVm
dt

= −Ii + Istim (1)

où les courant transmembranaires (Ii) peuvent être décomposés en la somme d'un courant
de fuite, d'un courant sodique et d'un courant potassique :

Ii = Il + INa + IK (2)

Chacun de ces trois canaux ioniques peut être décrit comme une résistance dont la conduc-
tance varie quand le canal s'ouvre ou se ferme, et le courant ionique résultant peut alors s'exprimer
en suivant les équations suivantes :

Il = gl · (Vm − El) (3)

INa = gNa ·m3 · h · (Vm − ENa)4 (4)

IK = gK · n4 · (Vm − EK) (5)

où gK , gNa et gl sont les conductances ioniques maximales, et EK , ENa and El sont les
potentiels de repos des canaux potassiques, sodiques et de fuite respectivement, qui peuvent être
vus comme un équilibre de Nernst entre l'intérieur et l'extérieur de la cellule. Les variables m
et n décrivent l'activation des canaux potassiques et sodiques, et h décrit l'inactivation du canal
sodique. Ces trois variables sont régies par des équations di�érentielles de la forme :

dx

dt
= αx · (1− x)− (βx · x) (6)

pour x ∈ {h, n,m} , où αx et βx sont des fonctions décrivant l'équilibre et les dynamiques des
variables d'activation et d'inactivation. Au �nal, le modèle Hodgkin-Huxley standard comprend
donc quatre équations di�érentielles ordinaires : dVm

dt , dm
dt ,

dh
dt , et

dn
dt .

Le modèle Hodgkin-Huxley d'origine a par la suite été étendu pour inclure d'autres canaux
ioniques de façon similaire a�n de représenter une plus grande variété de neurones. Il est aussi
possible de dé�nir plusieurs compartiments neuronaux suivant des équations similaires a�n de
prendre en compte la morphologie d'un neurone et les di�érentes propriétés de son soma, son
axone et ses dendrites.

Les modèles dérivés de ce formalisme ont un haut degré de réalisme biologique, et en particu-
lier ils permettent de reproduire �dèlement l'évolution temporelle du potentiel de membrane au
cours d'un potentiel d'action, ainsi que les potentiels extracellulaires. Cependant, ils demandent
des ressources informatiques importantes pour être simulés et ils sont di�ciles à analyser mathé-
matiquement, d'autant plus quand plusieurs compartiments sont modélisés.
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2. Modèles computationnels de l'activité neuronale

2.2 Modèles intègre-et-tire et modèles à deux variables

Une possibilité pour modéliser l'activité neuronale avec une complexité moindre comparé aux
modèles issus du formalisme de Hodgkin-Huxley consiste à ne considérer l'évolution du potentiel
de membrane qu'entre les potentiels d'actions, sans modéliser précisément la forme de chaque
spike.

Ce type de modèle se présente généralement sous la forme d'une ou deux équations di�éren-
tielles décrivant l'activité neurale entre les spikes, complété d'un ensemble d'équations de "reset"
appliquées lorsque l'activité neuronale dépasse un certain seuil, c'est-à-dire quand le neurone
émet un potentiel d'action.

Une grande partie de ces modèles sont dérivé du modèle Intègre-et-Tire créé par Louis Lapique
en 1907 (voir [Abbott, 1999]), qui a des équations de la forme :

Cm ·
dVm
dt

= Istim (7)

Vm ← Vreset if Vm > Vthreshold

Ce modèle tire son nom du fait que le potentiel de membrane Vm du neurone est approché
par l'intégration de son courant d'entrée Istim, jusqu'à ce qu'il atteigne un seuil Vthreshold où il
émet un potentiel d'action (il "tire") et retourne à sa valeur de reset Vreset.

Ce modèle très simple peut être amélioré de di�érentes façons, par exemple en considérant
qu'un neurone ne recevant aucune entrée devrait voir son potentiel de membrane revenir à sa
valeur de repos (modèle "leaky integrate-and-�re"), ou en ajoutant une autre variable et une
autre équation di�érentielle pour reproduire des dynamiques plus complexes (comme pour le
modèle adaptatif exponentiel intègre-et-tire, voir [Brette and Gerstner, 2005]).

D'autres modèles à deux varaibles existent qui sont plus une simpli�cation du modèle de
Hodgkin-Huxley qu'une extension du modèle Intègre-et-tire, comme le modèle d'Izhikevich ([Iz-
hikevich, 2003]), qui peut être décrit par les équations suivantes :

V ′m = 0.04V 2
m + 5Vm + 140− u+ I (8)

u′ = a(bVm − u)

si Vm ≥ 30mV , alors Vm ← c and u← u+ d

où Vm représente le potentiel de membrane et u est la variable de rétablissement de la
membrane, qui représente l'activation des courants ioniques K+ et Na+. Les valeurs numériques
0.04, 5 et 140 sont utilisées pour correspondre aux dynamiques d'initiation de spike de neurones
corticaux, et les paramètres sans dimension a, b, c et d peuvent être choisis pour reproduire
di�érentes types de comportements neuronaux.

D'autres exemples de modèles à deux variables sont les modèles de FitzHugh-Nagumo ([Na-
gumo et al., 1962]) et de Morris-Lecar ([Morris and Lecar, 1981]), et des modèles à trois variables
existent également tels que le modèle de Hindmarsh-Rose ([Hindmarsh and Rose, 1984]).

2.3 Modèles de taux d'activation

Il est possible de simpli�er encore davantage la description de l'activité d'un neurone en
la considérant comme un processus stochastique et en modélisant uniquement l'évolution de la
probabilité d'occurence d'un potentiel d'action.
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Ces modèles de "taux d'activation" sont parfois proches des modèles de réseaux de neurones
utilisés dans le domaine du machine learning, comme c'est le cas pour le modèle Linear-Nonlinear-
Poisson (souvent abrégé en "modèle LNP"). Dans ce modèle, le taux d'activation d'un neurone
est calculé en considérant une combinaison linéaire de ses entrées (étape linéaire) à laquelle
on applique une fonction non-linéaire comme une sigmoide (étape nonlinéaire). Le timing des
potentiels d'action du neurone est ensuite obtenu en le considérant comme un processus de
Poisson dont le taux est le taux d'activation caluclé précédemment

Ce type de modèle peut être utilisé pour reproduire des résultats expérimentaux sur des
processus visuels ou auditifs par exemple (voir [Simoncelli et al., 2004]), mais ils apportent des
informations moins détaillées sur les mécanismes biologiques impliqués que les modèles présentés
plus tôt.

2.4 Modèles de population

En�n, pour modéliser des grands groupes de neurones de manière plausible biologiquement
parlant sans avoir les contraintes computationnelles du formalisme de Hodgkin-Huxley, il est
possible de considérer les dynamiques de populations de neurones au lieu de celles de neurones
individuels. Pour ce faire, l'état de chaque population peut être décrit par quelques variables
représentant l'état moyen de tous les neurones qu'elle contient.

Une telle approche a par exemple été développée dans le travail de [Wilson and Cowan,
1972], qui simpli�e l'étude de l'évolution temporelle de la proportion de cellules actives dans
deux populations (l'une excitatrice et l'autre inhibitrice) de neurones localisés spatialement en
l'étude de deux équations di�érentielles couplées de la forme :

τ
dE

dt
= −E + (1− rE)SE [c1E − c2I + P (t)] (9)

τ ′
dI

dt
= −I + (1− rI)SI [c3E − c4I +Q(t)]

où E et I sont la proportion de neurones excitateurs et inhibiteurs actifs respectivement, P
et Q sont les entrées extérieures que chaque neurone reçoit, r est leur période réfractaire, et les
variables de c1 à c4 représentent le nombre moyen de synapses par neurone au sein de et entre
chaque population.

Ce type de modèle permet de simuler l'activité de grandes aires cérébrales et leur comporte-
ment est généralement facile à étudier à l'aide de méthodes d'analyse de plan de phase.

3 Variations de l'activité neuronale

Les oscillations neuronales peuvent varier en fonction de facteurs internes et externes tels que
l'âge ou la maladie. Même au cours d'une seule journée, la fatigue, le niveau d'attention ou le
sommeil peuvent grandement modi�er l'activité cérébrale, par des mécanismes qui ne sont pas
encore parfaitement compris à ce jour.

Dans les paragraphes qui vont suivre, nous allons décrire brièvement les deux processus
d'intérêt pour le travail de cette thèse, c'est-à-dire le cycle veille sommeil et l'épilepsie.
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3. Variations de l'activité neuronale

3.1 Cycle veille-sommeil

Description des phases de sommeil

Les humains et la plupart des animaux font l'expérience du sommeil, un état caractérisé par
une conscience altérée, un activité sensorielle relativement inhibée, une inhibition de presque
tous les muscles de mouvements volontaires, et des interactions réduites avec leur environnement
([National Institute of Neurological Disorders and Stroke, 2019]). L'activité du cerveau change
aussi au cours du sommeil, et di�érentes ondes cérébrales mesurées par EEG ont été utilisées
pour distinguer plusieurs phases de sommeil.

Une première distinction peut être faite entre le sommeil à mouvements oculaires rapides
(Rapid-Eye-Movement, ou REM) et le sommeil sans mouvements oculaires rapides (non-Rapid-
Eye-Movement ou NREM). Le sommeil REM est caractérisé par des mouvements oculaires ra-
pides derrière les paupières fermées, et l'activité cérébrale y est la plus proche de la veille. Cette
phase de sommeil est également celle où peuvent se produire les rêves. Le sommeil NREM quant
à lui peut être subdivisé en des phases N1, N2 et N3 qui font référence à la profondeur du som-
meil (1 étant le plus léger et 3 le plus profond), et est caractérisé par des ondes cérébrales plus
lentes et plus synchrones qu'au cours du sommeil REM. Le sommeil N3 est aussi appelé sommeil
à ondes lentes.

Après l'endormissement, la première phase de sommeil qui intervient est la N1, caractérisée
par des ondes theta (4-7Hz) et une absence d'ondes alpha (8-12Hz) sur les enregistrements EEG
([Miller et al., 2015]), qui dure environ 10 minutes avant de laisser place au sommeil N2, où des
fuseaux de sommeil (des bou�ées temporaires d'activité de fréquence 10-12Hz) et des complexes
K (des brefs pics d'activité) apparaissent. Après environ 20 minutes de phase N2, la prochaine
phase de sommeil apparaissant est la N3, où des ondes delta (0.5-4Hz) peuvent être enregistrées,
suivies environ 30 minutes plus tard par du sommeil REM.

Ces phases se répètent dans un ordre similaire pendant toute la nuit en formant des cycles
d'environ 90 minutes, comme on peut le voir sur l'exemple d'hypnogramme Figure 1.9, qui montre
la classi�cation des phases de sommeil obtenue par EEG, EOG (électrooculogramme) et EMG
(électromyogramme) pendant une nuit.

Neurophysiologie du cycle veille-sommeil

De nombreuses régions du cerveau et de nombreux neurotransmetteurs sont impliquées dans
l'alternance entre sommeil et veille.

Le maintien de l'état de veille est assuré par des groupes de cellules formant un chemin
ascendant depuis le tronc cérébral jusqu'aux régions corticales via deux branches, l'une passant
par le thalamus, et l'autre par l'hypothalamus et le cerveau antérieur. Ces neurones libèrent
diverses substances associées à l'éveil comme l'Acétylcholine, la Sérotonine, l'Orexine, et bien
d'autres (voir Figure 1.10 et [Schwartz and Roth, 2008] pour plus de détails).

Le besoin de sommeil s'accentue progressivement au cours des périodes d'éveil pour maintenir
un équilibre entre veille et sommeil appelé homéostasie. Les mécanismes sous-jacents à cette
homéostasie ne sont pas encore parfaitement compris, mais il a été montré qu'un nucléoside
appelé adénosine y joue un rôle important. Plus précisément, sa concentration dans le cerveau
antérieur basal augmente progressivement durant l'éveil, et il favorise l'endormissement (voir
[Schwartz and Roth, 2008] ou [Steriade, 2003]). La régulation du cycle veille-sommeil dépend
aussi du rhythme circadien, controllé par le noyau suprachiasmatique de l'hypothalamus.

Le sommeil quant à lui est maintenu par des neurones du noyau ventrolatéral préoptique
(VLPO) produisant du GABA et de la galanine. Les régions impliquées dans l'éveil et le VLPO
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s'inhibent mutuellement, c'est pourquoi la relation entre sommeil et veille est parfois décrite
comme un système bistable.

Fonctions du sommeil

Le sommeil n'est pas qu'une période d'inactivité cérébrale et corporelle, mais sert également
plusieurs buts (voir [Zielinski et al., 2016]). Il a été montré qu'il est impliqué dans la régulation de
la température corporelle, ainsi que dans la modulation des réponses immunitaires. Concernant
le cerveau lui-même, le sommeil est un facteur important du développement cérabral, et même
chez l'adulte, il est nécessaire au maintien d'une bonne condition psychologique et de bonnes
performances cognitives.

Le cycle veille-sommeil joue notamment un rôle très important dans les processus de formation
et de consolidation de la mémoire (voir [Rasch and Born, 2013] pour une revue du sujet). Bien
que ces processus ne soient pas parfaitement compris, une théorie répandue est que, au cours
de la journée, les informations sont encodées dans une région cérébrale appelée hippocampe,
formant la mémoire à court terme. Puis, durant le sommeil, l'hippocampe rejoue une partie de
son activité de la journée, ce qui permet le transfert de l'information vers d'autres zones du
cerveau pour créer la mémoire à long terme.

3.2 Epilepsie

Outre les processus physiologiques tels que le cycle veille-sommeil, de nombreuses maladies
peuvent aussi altérer l'activité cérébrale, et l'une des plus fréquentes est l'épilepsie.

Dé�nition de l'épilepsie

L'épilepsie est une a�ection qui est caractérisé par un risque élevé de générer une activité céré-
brale excessive et/ou anormale au cours d'épisodes temporaires appelés crises. Ces crises peuvent
avoir des e�ets divers selon la position et la taille de la zone cérébrale a�ectée, par exemple des
mouvements involontaires, une sensation de peur injusti�ée ou une perte de conscience.

La International League Against Epilepsy (ILAE) a proposé la dé�nition pratique de l'épi-
lepsie suivante dans [Fisher et al., 2014] :

"L'épilepsie est une maladie neurologique caractérisée par l'une des conditions suivantes :
� 1. Au moins deux crises non provoquées (ou ré�exes) intervenant à plus de 24h d'intervalle
� 2. Une crise non provoquée (ou ré�exe) mais une probabilité de nouvelle crise similaire au

risque général de récurrence après deux crises non provoquées (au moins 60%), pour les
dix années suivantes

� 3. Diagnostic d'un syndrome épileptique"
Dans cette dé�nition une crise "non provoquée" désigne une crise qui survient alors qu'une

personne n'est exposée à aucun facteur facilitateur tel que la �èvre ou le sevrage de l'alcool.
Une épilepsie peut être considérée comme "résolue" lorsqu'un patient n'a pas eu de crise

pendant au moins 10 ans, sans avoir pris de traitement anti-épileptique pendant 5 ans, mais cela
ne signi�e pas qu'il est impossible qu'une crise survienne à nouveau plus tard (c'est pourquoi
l'ILAE propose de ne pas utiliser le terme "guérie").

Une classi�cation détaillée des di�érents types de crises est proposée par l'ILAE dans [Fisher
et al., 2017] (voir Figure 1.11 pour la dernière mise à jour de 2017). Dans cette classi�cation,
trois facteurs principaux sont pris en compte :

xvi
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� la zone épileptogène : le ou les groupes de neurones qui initient les crises, et plus précisé-
ment s'ils se situent dans un hémisphère unique du cerveau (crise focale, autrefois appelée
"partielle"), ou dans les deux hémisphères (crise généralisée ou bilatérale)

� l'état de conscience du patient au cours des crises : si le patient reste conscient et attentif
au cours de la crise

� : les symptômes moteurs du patient : pas de symptôme (crise non motrice), les muscles
devenant faibles (crise atonique), des mouvements saccadés (crise clonique), des brèves
contractions musculaires (crise myoclonique), ou des spasmes épileptiques (c'est-à-dire
des mouvements de �exion et d'extension du corps répétés). D'autres mouvements auto-
matiques ou involontaires comme des frottements des mains ou une mastication peuvent
aussi survenir.

Même dans le cas de crises non motrices, un patient peut ressentir di�érents changements
dans ses sensations, ses émotions ou ses fonctions autonomes, par exemple des vagues de chaleur
ou de froid, de la �èvre, une accélération du rythme cardiaque, etc. (typiquement pour des crises
focales), ou des pertes d'attention, avec un regard �xe (on parle alors de "crises d'absences", qui
sont typiquement des crises généralisées).

Les épilepsies peuvent aussi être classifées en fonction de leurs causes. Une épilepsie est dite
idiopathique quand elle est causée par des anormalités génétiques, ou symptomatique quand elle
est la conséquence d'une maladie, d'une tumeur ou d'une autre source identi�able. Les épilepsies
de causes inconnues sont dites cryptogéniques. Parmi les épilepsies symptomatiques, il se peut
que l'a�ection à l'origine de la maladie ne soit plus présente.

Données épidémiologiques

L'épilepsie est la quatrième a�ection neurologique la plus répandue au monde (après la mi-
graine, les AVC et la maladie d'Alzheimer), d'après [Hirtz et al., 2007], et elle se classe deuxième
en terme de charge économique selon [Murray and al., 2012].

La prévalence et l'incidence de l'épilepsie sont respectivement une mesure de la proportion de
personnes sou�rant d'épilepsie et la proportion de personnes nouvellement diagnostiquée chaque
année dans une population, et ont été rapportées dans de nombreuses études ces dernières années.

Dans [Fiest et al., 2017], une méta-analyse de telles études est présentée, qui rapporte une
prévalence de l'épilepsie active d'environ 6.38 pour 1000 personnes, et une incidence de 61.44
pour 100,000 personnes-années. La prévalence de l'épilepsie au cours de la vie (c'est-à-dire la
proportion de personnes qui sou�riront d'épilepsie à un moment donné de leur vie) est estimée à
7.60 pour 1000 personnes. La prévalence de l'épilepsie ne semble pas varier signi�cativement en
fonction de la tranche d'âge ou du genre, mais son incidence est plus importante chez les enfants
et les personnes âgées que dans le reste de la poputation.

Quant à la proportion de chaque type d'épilepsie, la distribution des types de foyers épilep-
togènes et les étiologies chez environ 1000 patients adultes, elle est rapportée chez [Picot et al.,
2008]. Dans l'ensemble, cette étude indique que les épilepsies focales sont plus courantes que les
épilepsies généralisées. Parmi les épilepsies focales, 72.5% sont symptomatiques et 27.5% sont
cryptogéniques, tandis que parmi les épilepsies généralisées, 94.5% sont idiopathiques et 5.5%
sont cryptogéniques ou symptomatiques. Peu d'études rapportent la position du foyer épileptique
parmi les épilepsies focales, mais selon l'étude de [Manford, 1992] (sur environ 250 patients), le
lobe temporal serait la zone épileptogène la plus commune, suivie par le cortex moteur et le lobe
frontal, bien que dans de nombreux cas la zone exacte à l'origine des crises ne peut pas être
déterminée (voir Table 1.1).
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Diagnostic et traitement

Après qu'un patient a rapporté avoir eu des crises, l'épilepsie est le plus souvent diagnostiquée
en enregistrant son activité cérébrale avec un EEG de surface à la recherche d'activités épilep-
tiques typiques (ictale ou interictale). Ce premier test s'accompagne d'un examen neurologique
qui aide à déterminer les régions impliquées dans la génération des crises. Des tests sanguins, et
des examens IRM ou TEP peuvent aussi être pratiqués pour rechercher la cause de la patholo-
gie, par exemple pour repérer des anomalies génétiques ou des signes de lésions ou d'infections
([Foundation, 2013]).

A�n de diminuer les crises ou de les faire disparaître, le traitement le plus fréquent est la
prescription de médicaments antiépileptiques (antiepileptic drugs, ou AED). Cependant, trouver
l'AED approprié parmi la multitude de molécules existantes peut prendre beaucoup de temps,
et en fonction du type et l'étiologie de l'épilepsie, 30 à 40% des patients ont des crises qui
ne peuvent pas être contrôlées à l'aide de médicaments ([Engel, 2014]). Les épilepsies du lobe
temporal, où l'hippocampe est souvent impliqué, sont les plus courantes parmi ces épilepsies
pharmaco-résistantes ([Engel, 2014]).

D'autres thérapies comme les régimes cétogènes (un régime alimentaire incluant beaucoup
de gras et peu de glucides), ou la stimulation du nerf vagal ont aussi commencé à se développer
récemment, mais leurs résultats sont limités (jusqu'à 50% de contrôle des crises, d'après [Engel,
2014]).

Pour les patients pharmaco-résistants, le traitement o�rant le plus de chance de supprimer
complètement les crises consiste à retirer la zone épileptogène de leur cerveau. Avant une résection
chirurgicale, des électrodes sEEG peuvent être implantées pour quelques jours dans le cerveau
du patient a�n de dé�nir la zone épileptogène aussi précisément que possible. Cependant, cette
opération n'est pas applicable à tous les patients, elle peut avoir de nombreux e�ets secondaires
indésirables, et de plus tous les patients ne sont pas libérés de leur crises par la suite (voir
[Spencer et al., 2005]).

Dans l'ensemble, il est encore nécessaire d'améliorer les traitements de l'épilepsie et la com-
préhension de cette maladie en général.

Interactions entre l'épilepsie et le cycle veille-sommeil

L'épilepsie est d'autant plus di�cile à comprendre qu'elle intéragit avec d'autres processus
physiologiques tels que le cycle veille-sommeil. En e�et, la plupart des patients ne sou�rent de
crise que pendant la veille ou pendant des phases de sommeil spéci�ques ([Crespel et al., 1998]),
pour des raisons largement méconnues.

Réciproquement, les observations in vivo des structures cérébrales internes impliquées dans
le cycle veille-sommeil chez l'homme sont généralement dérivées des enregistrements intracrâ-
niens obtenus chez des patients épileptiques, qui ne sont pas nécessairement représentatifs du
fonctionnement d'un cerveau sain.

Une région qui pourrait être intéressante à étudier dans ce contexte est l'hippocampe, puisqu'il
est l'une des principales régions impliquées dans les épilepsies chez l'adulte ou les épilepsies
pharmacorésistantes, alors que même son fonctionnement sain n'est pas parfaitement compris.

4 Objectifs de la thèse

Dans ce travail, nous cherchons à apporter une meilleure compréhension de di�érents facteurs
in�uençant l'activité cérébrale, à savoir le cycle veille-sommeil et l'épilepsie. Cette étude est
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ramenée à une seule région, l'hippocampe, qui présente des dynamiques intéressantes en lien
avec ces deux phénomènes.

Concernant le cycle veille-sommeil, nous investiguons la génération de rythmes hippocam-
piques typiquement associés au processus de mémorisation, à savoir les complexes sharp-wave
ripples (observés durant le sommeil profond), et les oscillations theta-gamma (observées durant
la veille). Concernant l'épilepsie, nous nous concentrons sur la génération des crises ainsi que des
fast ripples.

Ensemble, ces oscillations couvrent une large bande de fréquences di�érentes. A partir de
là, la principale question à laquelle nous cherchons à répondre est : quels sont les mécanismes
contrôlant ces rythmes ? De nombreuses hypothèses existent qui impliquent soit des changements
dans les dynamiques des neurones individuels ou dans leurs interactions synaptiques et leur
organisation en tant que réseau, mais elles sont di�ciles à véri�er expérimentalement à cause du
manque de données in vivo chez l'humain. En conséquence, pour répondre à cette question, nous
avons construit un modèle computationnel de l'hippocampe complet et étudié individuellement
l'in�uence de chacun de ses paramètres, avant de le comparer à des données cliniques.

Ce travail a été e�ectué au Loria au sein de l'équipe de recherche Neurosys, et au CRAN
au sein de l'équipe Espace. Nous avons collaboré avec le CHRU Nancy où les mesures sEEG
intracraniennes que nous avons utilisées pour valider notre modèle ont été obtenues sur des
patients épileptiques dans le cadre de leur procédure de résection chirurgicale.

5 Structure du manuscrit

Ce manuscrit comporte six chapitres. Le présent chapitre a présenté le contexte général de ce
travail, ainsi que des informations générales sur le sommeil et l'épilepsie. Dans le second chapitre,
nous présenterons une partie des connaissances actuelles sur l'hippocampe, son anatomie, sa
physiologie et ses oscillations neuronales typiques, et nous passerons également en revue di�érents
modèles de l'activité hippocampique existants.

Dans le chapitre 3, nous décrirons notre modèle computationnel de l'hippocampe. Nous jus-
ti�erons les choix de nos paramètres de modélisation en apportant une analyse de sensibilité de
notre système et nous montrerons comment reproduire di�érents types d'oscillations saines.

Puis dans le chapitre 4, nous montrerons comment des changements fonctionnels peuvent
permettre de reproduire des oscillations typiques du sommeil profond ou de la veille. Nous étu-
dierons plus en détail le rôle des dynamiques individuelles des neurones et de la connectivité
fonctionnelle du réseau en lien avec une modulation cholinergique. Nous comparerons aussi les
rythmes obtenus avec des enregistrements sEEG.

Le chapitre 5 suivra une logique similaire, mais cette fois le modèle de l'hippocampe sera
modi�é pour reproduire et expliquer des rythmes épileptiques. Nous étudierons l'in�uence de
trois des principales anomalies observées dans l'hippocampe épileptique, à savoir la sclérose
hippocampique, le bourgeonnement des �bres moussues et les anomalies génétiques.

En�n, dans le chapitre 6 nous résumerons nos résultats, et nous suggèrerons des améliorations
possibles qui pourraient être apportées à notre modèle dans des travaux futurs.

6 Conclusions générales

L'hippocampe peut présenter di�érents rythmes oscillatoires au cours du cycle veille-sommeil,
chacun d'eux étant impliqué dans des processus cognitifs. Par exemple, les oscillations theta-
gamma, qui consistent en un couplage d'ondes theta (4-12Hz) et gamma (40-100Hz), sont pro-
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duites au cours de la veille et sont utiles aux tâches de navigation spatiale et de mémoire à court
terme ([O'Keefe and Recce, 1993], [Axmacher et al., 2010]), tandis que les complexes sharp-wave
ripples, qui consistent en des oscillations rapides (120-200Hz) se produisant au cours d'ondes
lentes (≤ 0.5Hz), sont produites au cours du sommeil lent profond et de repos et jouent un rôle
important dans la consolidation de la mémoire ([Girardeau and Zugaro, 2011], [Buzsáki, 2015]).
Des modèles existent pour expliquer la générération de chacun de ces rythmes individuellement :
pour les sharp-wave ripple, voir [Taxidis et al., 2012] ou [Traub and Bibbig, 2000], et pour les
oscillations theta-gamma, voir [Pastoll et al., 2013], [Fukai, 1999], ou [Bartos et al., 2007]. Ce-
pendant, les mécanismes impliqués dans la génération et les transitions entre l'ensemble de ces
rythmes ne sont pas encore parfaitement compris.

Cette question est d'autant plus importante qu'une altération des rythmes hippocampiques
est impliquée dans l'épilepsie du lobe temporal médian phamaco-résistante, une forme d'épilep-
sie a�ectant environ 0.6 personne sur 1000 ([Asadi-Pooya et al., 2017]) et qui ne peut pas être
contrôlée par les traitements médicamenteux existants. Comme pour les rythmes physiologiques,
des modèles ont été développés pour reproduire des crises d'épilepsie (des épisodes d'activité neu-
ronale excessive, voir la revue de [Stefanescu et al., 2012]) ou des pointes intercritiques (de brefs
pics d'activité synchrone, voir par exemple [Demont-Guignard et al., 2009]), mais ces modèles
ne parviennent pas à expliquer entièrement les liens entre les conditions neuropathologiques de
l'hippocampe, des processus physiologiques comme le cycle veille-sommeil, et les oscillations qui
en résultent.

Dans ce contexte, l'objectif principal de cette thèse est d'apporter une meilleure compré-
hension de diverses oscillations hippocampiques, tant physiologiques que pathologiques, incluant
notamment les oscillations theta-gamma, les complexes sharp-wave ripple, les crises d'épilepsie
et les pointes intercritiques. Pour ce faire, nous avons développé un modèle computationnel de
l'hippocampe tenant compte de divers mécanismes auparavant décrits dans des travaux sépa-
rés, et avons analysé son activité oscillatoire en variant di�érents paramètres représentant les
propriétés structurelles ou fonctionnelles du réseau, ainsi que des modi�cations pathologiques
typiquement observées chez des patients épileptiques, en nous appuyant sur des techniques bien
dé�nies telles que des plans d'expérience ou une analyse de sensibilité de Sobol' a�n d'évaluer
quantitativement l'importance de chaque paramètre. Le modèle comprend également une esti-
mation du potentiel de champ local (LFP) généré par ses neurones, a�n d'être comparable à des
enregistrements cliniques.

Nos résultats montrent que la connectivité fonctionnelle de l'hippocampe est un facteur crucial
dans le contrôle de la fréquence de ses oscillations rapides notamment. De plus, concernant
l'épilepsie, le bourgeonnement des �bres moussues semble avoir un fort e�et épileptogène tandis
que la sclérose hippocampique aurait au contraire un e�et protecteur. Au �nal, nos résultats
apportent un nouvel éclairage sur les mécanismes impliqués dans la génération des oscillations
hippocampiques, qui pourraient ouvrir la voie à de futures applications cliniques.
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Chapter 1

Introduction

1.1 Basics of neuroscience

1.1.1 Biological Neurons

The human brain comprises about 1011 neurons, electrically excitable cells whose coordinated
activities are at the core of all cognitive processes, perceptions and behaviors.

A typical neuron is made of three main parts : the soma, the axon and the dendrites (Figure
1.1). The soma (also called cell body) contains the neuron's nucleus and has a membrane capable
of letting ions �ow in and out of the cell through ionic channels. The gradients in concentrations
of ions on each side of a neuron's membrane give rise to a voltage di�erence called membrane po-
tential. In its resting state, a neuron's membrane potential is negative (intracellular with respect
to extracellular potentials), but depending on the inputs it receives on its dendrites, ion �ows
can increase it, which is called depolarization, or decrease it, which is called hyperpolarization.
When a neuron's membrane potential increases above a certain threshold, it emits an electrical
signal called action potential or spike which propagates through its axon, and is then sent to
other neurons' dendrites. After a neuron has emitted a spike, its membrane potential decreases
and gets lower than its resting potential, before slowly going back to its resting state. As long
as a neuron is hyperpolarized, it cannot emit any other action potential and will not respond to
any input it receives : this period of time is called the refractory period of the neuron (see 1.2).

Figure 1.1 � Anatomy of a neuron and its regions. (Source : [Cheung, 2008])
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Figure 1.2 � A typical voltage trace of an action potential showing the polarisation phases.
(Source : Wikimedia Commons)

1.1.2 From single neuron activity to cognition

At the microscopic level, neurons communicate with each other through synaptic transmis-
sions : when an action potential reaches the end of a neuron's axon, it triggers the release of
chemicals called neurotransmitters in the extracellular space, which bind onto synaptic receptors
on nearby neurons' dendrites. Depending on the type of neurotransmitter received this way, spe-
ci�c ionic channels on the post-synaptic neuron open, which can lead to an increase or decrease
of its membrane potential : in the former case, the synapse is said excitatory, and in the latter
it is said inhibitory.

To a lesser extent, neurons can also communicate their electrical activity to each other through
gap junctions, also called electrical synapses, connecting cells cytoplasms directly, or they can
react to the electrical �eld generated by neurons to which they are not connected, which is called
ephaptic coupling.

By working together, small groups of neurons can perform simple tasks. At the macroscopic
level, cognitive processes require the communication and synchronization of large brain areas,
each associated with a speci�c function. These interactions take the form of temporary synchro-
nized activation at speci�c frequencies, commonly referred to as neural oscillations. In general,
neural oscillations, or brainwaves, can be de�ned as any rhythmic or repetitive patterns of neural
activity. More information on this topic can be found in [Wang, 2010] and [Buzsaki, 2011].

Overall, the human brain is organized in di�erent structures sharing common functions. The
outer part of the brain, the cerebral cortex, can be divided in four lobes, the frontal, parietal,
temporal and occipital lobe, and into two hemispheres, left and right. The most super�cial
layers of neurons in the cortex, called the neocortex, are those which appeared the latest in the
evolutionary history of the brain, and are able to perform the most advanced functions such as
reasoning or speech (see Figure 1.3).

Underneath the cerebral cortex lie other structures like the brainstem, the thalamus, the
amygdala, the hippocampus, etc... which perform older evolutionary functions such as breathing,
control of food intake, emotions or memory.
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Figure 1.3 � Diagram of the four lobes of the human cerebral cortex and the cerebellum, with
their associated functions (Source : [Kazilek, 2011])

1.1.3 Measures of neural activity

Di�erent techniques exist to record neural activity, in vitro or in vivo, and at di�erent scales.
Recordings of single neurons membrane potential or membrane currents can be performed in

vitro with patch-clamp techniques for example. During such experiments, an electrode consisting
in a micropipette �lled with an electrolitic solution is put in contact with the membrane of a
neuron, while another electrode is placed in the bath surrounding the neuron. These electrodes
are used to impose a voltage (voltage-clamp technique, see Figure 1.4) or a current (current-clamp
technique) to the cell while the resulting current or voltage is measured. Since their �rst use in the
late 1940s on giant squid axons, these techniques have been used extensively in electrophysiology
to study the properties of various ion channels.

Figure 1.4 � Schematic drawing of a voltage-clamp circuit. (Source : Wikimedia Commons)

Single neuron activity can also be recorded in vivo by what is called a microelectrode, a
biopotential electrode made of glass, silicon or metal, with an very thin tip (typically with a
diameter of a few microns) inserted directly into the cell body (a few examples of such electrodes
are shown on Figure 1.5). Extracellular microelectrodes can also be used to observe the activity
of the few surrounding neurons.
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Similarly, when larger electrodes are inserted in the extracellular space (with a diameter of
about 1mm), the electrical activity generated by all nearby neurons or propagated from distant
ones, called Local Field Potential (LFP), can be recorded. This technique is called stereotactic
electroencephalography, or sEEG. In some sEEG electrodes called Behnke-Fried electrodes (Fi-
gure 1.6), small wires can be inserted, forming a bunch of microelectrodes at its tip, thus enabling
both micro- and macro- measurements.

Figure 1.5 � Biopotential microelectrodes : (a) a capillary glass microelectrode, (b) an insu-
lated metal microelectrode, and (c) a solid-state multisite recording microelectrode. (Source :
[Mendelson, 2012])

Figure 1.6 � Illustration of a Benhke-Fried electrode (Source : [Sirven, 2011])

The summed electrical activity of large populations of neurons can be recorded through
di�erent other techniques. The most common one is scalp electro-encephalography (scalp EEG
or surface EEG), which is non-invasive and uses cup electrodes attached to the head with an
elastic cap or adhesive tape. To reduce the impedance of the electrical contact with the skin
and hair to some extent, an electrolytic gel is often placed between the electrode and the scalp.
Alternatively, arrays of electrodes can also be inserted directly under the skull (below the dura
mater) to obtain measurements with a better signal to noise ratio (this technique is called
electrocorticography or ECoG).
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Neural electrical activity also generates a weak magnetic �eld (about nine orders of magnitude
smaller than the earth's static magnetic �eld). Its measure, relying on very sensitive magneto-
meters such as SQUIDs (superconducting quantum interference devices) placed all around the
skull, constitutes the magneto-encephalography (MEG) technique. Compared to surface EEG,
MEG recordings require more complex instrumentation and magnetic shielding and are therefore
more expensive, and it can only be used to record radial components of the neural magnetic �eld.
Also, MEG is less adapted than scalp EEG for measuring the activity of sources situated deep
inside the head. However, it presents the advantage of being less distorted by the skull and can
also o�er better spatial resolution for the recording of small regions of the brain (see [Malmivuo,
2011] for a thorough comparison of these two techniques).

Finally indirect measures of neural activity in vivo exist as well, such as functional Magnetic
Resonance Imaging (fMRI), and Positron Emission Tomography (PET). In fMRI recordings,
the di�erent magnetic properties of highly and lowly oxygenated blood are used to infer the
oxygen consumption of neurons (increasing with their activity) and obtain what is called a BOLD
(blood-oxygen-level dependent) contrast on the image. Similarly in PET, a metabolic correlate
of neural activity is studied, usually the glucose uptake of neurons, but the recording technique
is quite di�erent and relies on the injection of a radioactive tracer molecule (�urodeoxyglucose
F18 usually) and the measure of the resulting positron emissions in the patient's body. fMRI
and PET can be used to infer neural activity from regions deep inside the brain with high
spatial resolution, but their temporal resolution is much poorer than in scalp EEG or MEG. At
a microscopic scale, it is also possible to perform Calcium Imaging to observe the evolution of
intracellular calcium concentration by using molecules that change their �uorescence properties
in presence of Ca2+ ions.

1.2 Computational models of neural activity

Despite all the methods available to record neural activity, there are still many questions
that neither in-vitro nor in-vivo experiments can fully answer, and many other cases in which
such experiments can simply not be performed due to technical or ethical issues. Indeed, the dif-
ferent recording techniques provide some information either at the microscopic scale, for example
regarding membrane potentials and chemical changes, or at the macroscopic scale, regarding os-
cillatory patterns of brain structures and behavior, but rarely explore the links between these
scales and the activity of relatively small neuronal populations. Furthermore, many of the direct
recording techniques are invasive and therefore they are not performed on healthy human brains.
In this context, mathematical modeling of neurons is a powerful tool to gain insight into a neural
mechanism or a cognitive process.

Di�erent models of individual neurons and groups of neurons exist (see for example in [Gerst-
ner, 2014]), which come with di�erent degrees of biological realism and computational burden,
and should be chosen carefully depending on the phenomenon to be studied. The main types of
computational models will be presented in this section.

1.2.1 The Hodgkin-Huxley formalism

The most biologically detailed models of neurons historically come from the work of [Hodgkin
and Huxley, 1952] on giant squid axons.

This model relies on an analogy between a biological neuron and an electrical circuit (see
Figure 1.7). The membrane of the neuron is seen as a capacitor, with the rate of change of its
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Figure 1.7 � Schematic diagram for the Hodgkin-Huxley model, adapted from [Gerstner, 2014]

potential Vm expressed a function of its membrane capacitance Cm and its total input currents
resulting from external stimulation (Istim) or transmembranal ionic currents (Ii) :

Cm ·
dVm
dt

= −Ii + Istim, (1.1)

where the total transmembranal ionic current (Ii) is the sum of a leak, sodium and potassium
components :

Ii = Il + INa + IK . (1.2)

Each of these three ion channels can be described as a resistor with a conductance varying
as the channel opens and closes, and the resulting ionic current can then be expressed by using
the following equations :

Il = gl · (Vm − El), (1.3)

INa = gNa ·m3 · h · (Vm − ENa)4, (1.4)

IK = gK · n4 · (Vm − EK), (1.5)

where gK , gNa, and gl are the maximum ionic conductances, and EK , ENa, and El are the
resting potentials of the potassium, sodium, and leak channels respectively, which can be seen
as a Nernst equilibrium potential between the intracellular and extracellular space. m and n are
variables describing the activation of the potassium and sodium channels, and h is a variable
describing the inactivation of the sodium channel. These three variables are governed by a set of
ordinary di�erential equations in the form :

dx

dt
= αx · (1− x)− βx · x, (1.6)

for x ∈ {h, n,m} , where αx and βx are functions describing the steady-state and temporal
dynamics of the activation and inactivation variables. Therefore, the standard Hodgkin-Huxley
model comprises four ordinary di�erential equations : dVm

dt , dm
dt ,

dh
dt , and

dn
dt .

The original Hodgkin-Huxley model has then been extended to include more ion channels in
a similar manner to be able to represent a large variety of neurons. It is also possible to de�ne
several neural compartments with similar equations to take into account the morphology of a
neuron and the di�erent properties of its soma, axon and dendrites.
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Models derived from this formalism have a high degree of biological realism, and in parti-
cular they are able to faithfully reproduce the temporal course of membrane potentials during
action potentials, as well as extracellular potentials. However, this comes at the cost of a high
computational burden and di�culties to mathematically analyze the system, and even more so
when multiple compartments are involved.

1.2.2 Integrate-and-Fire and two-variable models

One possible way to model neural activity with a reduced complexity compared to the
Hodgkin-Huxley models is to consider the evolution of membrane potential only between ac-
tion potentials, without modeling the exact shape of each spike.

Such models usually come in the form of one or two di�erential equations describing neural
activity between spikes, complemented by a set of "reset equations" applied when neural activity
reaches a prede�ned threshold, i.e. when the neuron spikes.

A large proportion of these models are derived from the Integrate-and-Fire model by Louis
Lapique in 1907 (see [Abbott, 1999]), which has simple equations of the form :

Cm ·
dVm
dt

= Istim, (1.7)

Vm ← Vreset if Vm > Vthreshold.

This model draws its name from the fact that the neuron membrane current Vm is approxi-
mated by the integration of its input current Istim until it reaches a threshold Vthreshold where it
�res and returns to its reset value Vreset.

This simple model can be improved in many ways, for example by considering that without in-
puts the membrane potential of a neuron should go back to its resting state (leaky integrate-and-
�re model), or by adding another variable and di�erential equation to reproduce more complex
dynamics (adaptive exponential integrate-and-�re model, see [Brette and Gerstner, 2005]).

Other two-variables models exist which are more a simpli�cation of the Hodgkin-Huxley
formalism than an expansion of the integrate-and-�re model, such as the Izhikevich model ([Iz-
hikevich, 2003]), which can be described by the following equations :

V ′m = 0.04V 2
m + 5Vm + 140− u+ I, (1.8)

u′ = a(bVm − u),

if Vm ≥ 30mV , then Vm ← c and u← u+ d,

where Vm represents the membrane potential and u represents a membrane recovery variable,
which accounts for the activation of K+ and Na+ ionic currents. The values 0.04, 5 and 140 are
used to �t the spike initiation dynamics of a cortical neuron, and the dimensionless parameters
a, b, c and d can be chosen to reproduce di�erent types of neural behaviors.

Other examples of two-variable models are the FitzHugh�Nagumo ([Nagumo et al., 1962])
and Morris�Lecar models ([Morris and Lecar, 1981]), and models with three variables also exist
such as the Hindmarsh�Rose model ([Hindmarsh and Rose, 1984]).

Such models can reproduce some features of single neuron activity with a low computational
burden, but have overall less precise spike dynamics than the Hogkin-Huxley models, which can
lead to di�erences for example when stimulating a neuron with correlated inputs (see [Feng,
2001]), and also they are not appropriate to represent detailed channel properties. Therefore
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the choice between a Hodgkin-Huxley and a simpli�ed model can be seen as a tradeo� between
biological realism and computational simplicity.

1.2.3 Rate models

It is possible to simplify even more the description of a single neuron activity by considering
it as a stochastic process and modeling only the evolution of the probability of occurrence of an
action potential.

These "rate models" are sometimes close to the arti�cial neural networks used in the �eld of
machine learning, such as the Linear-Nonlinear-Poisson (LNP) model. In this model, the �ring
rate of a neuron is computed by considering a linear combination of its inputs (linear step)
through a non-linear function such as a sigmoid (nonlinear step). The timing of the spikes of
the neuron is then obtained by considering the neuron as a Poisson process with the previously
calculated �ring rate.

Figure 1.8 � Schematic diagram for Linear Non-linear Poisson model, taken from [Williamson
et al., 2015]

These models can be used to reproduce experimental �ndings on visual and auditory processes
for example (see [Simoncelli et al., 2004]), but provide less detailed explanations of the underlying
biological mechanisms involved compared to the models presented previously.

1.2.4 Population models

Finally, to model a large group of neurons in a rather biologically plausible way without the
computational burden of the Hodgkin-Huxley formalism, it is possible to consider populations
of neurons instead of individual neuron dynamics. To do so, the state of each population can be
described only by a few variables which represent the average state of all the neurons inside it.

Such an approach was for example developed in the work of [Wilson and Cowan, 1972], which
simpli�es the study of the temporal evolution of the proportion of active cells in two interacting
populations (one excitatory and one inhibitory) of spatially localized neurons into the study of
two coupled di�erential equations of the form :
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τ
dE

dt
= −E + (1− rE)SE [c1E − c2I + P (t)], (1.9)

τ ′
dI

dt
= −I + (1− rI)SI [c3E − c4I +Q(t)],

where E and I are the proportions of active excitatory and inhibitory cells respectively, P
and Q the external inputs they each receive, r their refractory period, and c1 to c4 represent
the average number of synapses per cell made between and within each population. For other
population models, see for example [Jansen and Rit, 1995] or [Wendling et al., 2002].

Such models make possible to simulate the activity of large brain areas (such as the synchro-
nization of cortical areas) and their behavior are usually easy to predict through phase plane
analysis methods.

1.3 Variations of neural activity

Neural oscillations can vary depending on internal and external factors, such as age or ill-
nesses. Even over the course of a single day, fatigue, attentional level and sleep can drastically
change brain activity, through mechanisms that are not fully understood yet.

In the following paragraphs, we will shortly describe the two processes of interest for the
course of this work, i.e. the sleep-wake cycle and epilepsy.

1.3.1 The sleep-wake cycle

Functions of sleep

Sleep is not simply a period of body and brain inactivity, but serves many purposes (see
[Zielinski et al., 2016]). It has been shown to be involved in the regulation of body temperature,
as well as the modulation of immune responses. Regarding the brain itself, sleep is a key factor
in neural development, and even in adults, it is needed for the maintenance of good psychological
conditions and cognitive performances.

The sleep-wake cycle is a very important process for memory formation and consolidation
in particular (see [Rasch and Born, 2013] for a review). Though the exact mechanisms involved
are not fully understood, one common theory is that during the day, information is encoded in
a brain region called the hippocampus, forming short-term memories. Then during sleep, the
hippocampus replays some of its daily activity, which help transfer information to other brain
regions to create long-term memory.

Description of sleep stages

Humans and most animals experience sleep, a state characterized by altered consciousness,
relatively inhibited sensory activity, inhibition of nearly all voluntary muscles, and reduced in-
teractions with surroundings ([National Institute of Neurological Disorders and Stroke, 2019]).
Brain activity also changes during sleep, and di�erent brain waves measured with EEG have
been used to distinguish between di�erent stages of sleep.

One �rst distinction can be made between Rapid-Eye-Movement (REM) and non-Rapid-Eye-
Movement (NREM) sleep. REM sleep is characterized by eye movements behind the close eyelids,
and brain activity closest to wakefulness. This stage is also the one that enables dreaming. NREM
sleep can be further divided into stages N1, N2 and N3 which refer to the depth of sleep (1 being
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Figure 1.9 � Example of a normal hypnogram showing the progression of sleep stages during
the night for an individual's sleep, from [Miller et al., 2015]. The y-axis represents sleep stages
(evaluated in 30-second epochs) including : REM (Rapid Eye Movement) ; Stage 1 (N1) ; Stage
2 (N2) ; Stage 3 (N3 or SWS). The x-axis represents time during the night in hours.

the lightest and 3 the deepest), and is characterized by slower, more synchronous brain waves
than REM sleep. NREM stage N3 is also called slow-wave sleep.

After falling asleep, the �rst stage of sleep occurring is N1, characterized by theta (4-7Hz)
waves and an absence of alpha waves (8-12 Hz) on the EEG recording ([Miller et al., 2015]),
which lasts for around 10 minutes before turning to stage N2, where sleep spindles (transient
bursts of activity of frequency 10-12Hz) and K-complexes (brief peaks of activity) appear. After
about 20 minutes of stage N2, the next stage occurring is N3, where delta waves (0.5-4Hz) can
be seen, followed about 30 minutes later by REM sleep.

These stages repeat themselves in a similar order during the whole night in cycles of about
90 minutes, as can be seen on the hypnogram Figure 1.9, a graph showing the scoring of sleep
stages using EEG, EOG (electrooculogram), and EMG (electromyogram) measures throughout
one night.

Neurophysiology of the sleep-wake cycle

Many brain regions and many neurotransmitters are involved in the alternation of sleep and
wakefulness.

The maintenance of the awake state is promoted by groups of cells that form an ascending
pathway from the brainstem to cortical regions going through two branches, one in the thalamus,
and one in the hypothalamus and forebrain. These neurons release a wide variety of substances
associated with arousal, such as Acetylcholine, Serotonine, Orexin, and many others (see Figure
1.10 and [Schwartz and Roth, 2008] for more details).

The need for sleep gradually increases during periods of wakefulness to maintain a balance
between sleep and wakefulness called sleep homeostasis. The exact mechanisms underlying this
homeostasis are not yet fully understood, but the nucleoside called adenosine has been shown
to play important role in it. More precisely, its concentration in the basal forebrain increases
progressively during wakefulness, and has a sleep-inducing e�ect (see [Schwartz and Roth, 2008]
or [Steriade, 2003]). Sleep-wake regulation also depends on the circadian rhythm, controlled by
the suprachiasmatic nucleus of the hypothalamus.

Sleep itself is maintained by neurons of the ventrolateral preoptic nucleus (VLPO) which
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Figure 1.10 � A schematic drawing showing key components of the ascending arousal system,
from [Schwartz and Roth, 2008]. BF : Basal Forebrain, LH : Lateral hypothalamus, vPAG : ventral
periaqueductal grey matter, TMN : tuberomammillary nucleus, LDT : laterodorsal tegmental
nucleus, PPT : pedunculopontine, LC : locus coeruleus. Inside the parenthesis are indicated the
neurotransmitters involved : ACh : Acetylcholine, GABA : Gamma-Aminobutyric acid, 5-HT :
Serotonine, ORX : Orexin, MCH : Melanin-concentrating hormone, NA : Noradrenaline, DA :
Dopamine, His : Histamine.

produce GABA and galanin. The regions involved in arousal and the VLPO mutually inhibit
each other, which is why the relationship between sleep and wakefulness is sometimes described
as a bistable circuit.

1.3.2 Epilepsy

Besides physiological processes such as the sleep-wake cycle, brain activity can also be altered
by many diseases, one of the most frequent being epilepsy.

De�nition of epilepsy

Epilepsy is a disease which is characterized by a high risk of generating excessive and/or
abnormally synchronous neural activity in one's brain during transient episodes called seizures.
These seizures can have various e�ects depending on the location and size of the a�ected brain
zone, ranging from involuntary movements to out of place fear sensations and loss of conscious-
ness.
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Figure 1.11 � Classi�cation of seizures types according to the ILAE in 2017.

The International League Against Epilepsy (ILAE) proposed the following practical de�nition
of epilepsy in [Fisher et al., 2014] :

�Epilepsy is a disease of the brain de�ned by any of the following conditions :
� 1. At least two unprovoked (or re�ex) seizures occurring 24 h apart
� 2. One unprovoked (or re�ex) seizure and a probability of further seizures similar to the

general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the
next 10 years.

� 3. Diagnosis of an epilepsy syndrome�
In this de�nition, �unprovoked� seizures means that seizures occurring when a person is

exposed to a facilitating factor such as fever or alcohol withdrawal are not considered.
An epilepsy can be considered �resolved�, for example when a patient has been seizure-free

for at least 10 years, without taking any seizure medication for at least 5 years, but it doesn't
mean that it will never come back later (which is why the ILAE proposes not to use the term
�cured�).

A detailed classi�cation of seizure types has been proposed by the ILAE in [Fisher et al.,
2017] (see Figure 1.11 for the latest update from 2017). In this classi�cation, mainly three factors
are taken into account :

� the onset of the seizure : the group(s) of neurons which initiate the seizure, and more
precisely whether they lie within a single hemisphere (focal onset, previously referred to
as "partial onset"), or in both hemispheres of the brain (generalized or bilateral onset).
A focal onset seizure initiated by several distinct groups of neurons is sometimes called
complex, and it is termed "secondarily generalized" or "focal to bilateral" if after the
seizure initialization neurons on both hemispheres start to produce epileptiform activity ;

� the patient's awareness during a seizure : whether the patient stays awake and aware
during a seizure or not ;

� the patient's motor symptoms : no symptoms (non-motor seizure), muscles becoming
weak (atonic), muscles becoming tense or rigid (tonic), jerking movements (clonic), brief
muscle twitching (myoclonic), or epileptic spasms (body �exes and extends repeatedly).
Other involuntary automatic movements such as rubbing of hands or chewing can also
occur.
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Even in the case of non-motor seizures, a patient can feel di�erent changes in sensation,
emotions, or autonomic functions, for example waves of heat or cold, fear, heart racing, etc.
(typically for seizures with focal onset), or losses of awareness, sometimes with staring (these are
referred to as "absence seizures", and are typically generalized onset seizures).

Epilepsies can also be classi�ed depending on their causes. An epilepsy is said idiopathic when
it is caused by genetic abnormalities, or symptomatic when it is the consequence of a disease,
infection, tumor or any other identi�able brain abnormalities. Epilepsies with unknown causes
are called cryptogenic. Among symptomatic epilepsies, cases where the brain abnormality is due
to a previous event that is no longer present are termed "remote symptomatic" (in opposition
with acute symptomatic epilepsies).

Epidemiological data

Epilepsy is the fourth most common neurological disorder (the �rst three being migraine,
stroke and Alzheimer disease), as reported in [Hirtz et al., 2007], and it ranks second in terms
of economical burden according to [Murray and al., 2012].

The prevalence and incidence of epilepsy respectively measure the proportion of people suf-
fering from epilepsy and the proportion of newly diagnosed patients every year in a given popu-
lation, and have been reported in many studies throughout the years.

In [Fiest et al., 2017], a meta-analysis of such studies is presented, which reports a prevalence
of active epilepsy of about 6.38 per 1,000 persons, and an incidence of 61.44 per 100,000 person-
years. The lifetime prevalence of epilepsy (that is, the proportion of people that will su�er from
epilepsy at some point in their life) is estimated at 7.60 per 1,000 persons. The prevalence of
epilepsy doesn't seem to di�er signi�cantly by age group or sex, however, incidence is higher in
children and elderly people than in the rest of the population.

As for the proportion of each epilepsy type, [Picot et al., 2008] reports on the distribution
of seizure onset types as well as etiologies in about 1000 adult patients. Overall, this study
indicates that focal onset seizures are more common than generalized onset ones. Among focal
onset epilepsies, 72.5% were symptomatic and 27.5% cryptogenic, whereas for the generalized
epilepsies 94.5% were idiopathic and 5.5% cryptogenic or symptomatic. Fewer studies exist which
report the location of focal epilepsies onset zones, but according to [Manford, 1992] (on about
250 patients), the temporal lobe would be the most common, followed by the motor cortex and
the frontal lobe, though in many cases the exact seizure onset zone cannot be determined (see
Table 1.1).

Diagnosis and treatments

After a patient has reported having seizures, epilepsy is most commonly diagnosed by re-
cording its brain activity through surface EEG in search of typical epileptic patterns (ictal or
interictal). This �rst test is accompanied with a neurological examination to help determine the
regions involved in the seizure generation. Blood tests and MRI or PET scans can also be per-
formed to search for the etiology of the pathology, for example to look for genetic disorders, or
signs of lesions or infections ([Foundation, 2013]).

So as to reduce seizures or make them disappear, the most frequent treatment is the pres-
cription of an antiepileptic drug (AED). However, �nding the appropriate AED among the many
existing molecules can take a long time, and depending on the type and etiology of the epilepsy,
30% to 40% of patients have seizures that cannot be controlled by medication ([Engel, 2014]).
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Table 1.1 � Distribution of proposed sites of seizure onset in focal epilepsies
Proposed onset zone Distribution %
Localized to a single ILAE site 19.6

Motor Cortex 12.2
Supplementary motor 2.4
Lateral temporal 1.2
Parietal 3.9

Overlapping neighboring ILAE regions 43.1

Frontal 11.8
Central 8.2
Frontotemporal 3.5
Temporal 15.7
Posterior cortex 3.9

Lateralized only 1.2

Unlocalized 36.1

Temporal lobe epilepsies in particular, which usually involve the hippocampus, are the most
common type of pharmaco-resistant epilepsies ([Engel, 2014]).

Other therapies such as ketogenic diet (a specially high-fat, low-carbohydrate diet), or vagal
nerve stimulation have also started to develop recently, but with limited results (up to 50% of
seizure control, according to [Engel, 2014]).

In pharmaco-resistant patients, the best opportunity for complete freedom from seizures still
lies in a surgery to completely remove the seizure onset zone from their brain. Before the surgical
resection, sEEG electrodes can be implanted in the patient's brain for a few days so as to de�ne
the seizure onset zone as precisely as possible. However, this procedure cannot be applied to all
patients, it has many potential adverse e�ects, and not all patients become seizure-free after it
(see [Spencer et al., 2005]).

Overall, there is still need for improved treatments of epilepsy, and better understanding of
this disease in general.

Interactions between epilepsy and the sleep-wake cycle

Epilepsy is all the more di�cult to understand that it interacts with other physiological brain
processes such as the sleep-wake cycle. Indeed, most patients experience seizures only during the
day or during speci�c stages of the sleep ([Crespel et al., 1998]), for largely unknown reasons.

Conversely, in vivo observations of the internal brain structures involved in the sleep-wake
cycle are mostly derived from intracranial recordings made in epileptic patients, which might not
be fully representative of their healthy dynamics.

One of the brain regions that could be very interesting to study in this context is the hip-
pocampus, as it is the main cause of adult and drug-resistant epilepsy, yet even its healthy
functioning is far from being completely understood.

1.4 Objectives of this thesis

In this work, we want to provide a better understanding of the di�erent factors in�uencing
brain activity, focusing more particularly on the sleep-wake cycle and epilepsy. This study is
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narrowed down to a single region, the hippocampus, as it shows some interesting dynamics
related to these two phenomena.

Regarding the sleep-wake cycle, we investigate the generation of hippocampal rhythms ty-
pically associated with memory processes, i.e. sharp-wave ripple complexes (observed during
slow-wave sleep) and theta-nested gamma oscillations (observed during wakefulness). Regarding
epilepsy, our focus is put on epileptic seizures as well as fast ripples and interictal discharges.

Altogether, these oscillations cover a wide range of frequencies. From then, the main question
we try to answer is : what are the mechanisms controlling these rhythms ? Many hypotheses exist
that involve either changes in individual neuron dynamics or their synaptic interactions and
organization as a network, but these are hard to verify experimentally due to the low availability
of in vivo human data. Therefore, to complete this work, we devise a computational model of the
whole hippocampus and study each of these parameters individually, before comparing it with
clinical data.

Our work was carried out at Loria within the Neurorhythms research team (former name
Neurosys), and the CRAN within the NeuroSysCo team (former name Espace). We collaborated
with the CHRU Nancy where intracranial sEEG measurements we used to validate our model
were obtained on epileptic patients undergoing resective surgery.

1.5 Structure of the manuscript

This manuscript comprises six chapters. The current chapter has set the general context of
this work, and some background information on sleep and epilepsy. In the second one, we will
present some of the current knowledge on the hippocampus, its anatomy, physiology and its
oscillatory patterns, as well as review existing models of hippocampal activity.

In Chapter 3, we will describe our computational model of the hippocampus. We will justify
the choices of our modeling parameters by providing a parameter sensitivity analysis of our
system and we will show how to reproduce di�erent types of healthy oscillations.

Then in Chapter 4, we will show how functional changes can make the model produce either
typical wakefulness oscillations or slow-wave sleep ones. In particular, we will investigate the role
of single-neuron dynamics as well as network functional connectivity in relation with cholinergic
modulation. We will also compare the rhythms we obtain with real sEEG measurements.

Chapter 5 will follow a similar logic, but this time the hippocampus model will be altered
to reproduce and explain epileptic rhythms. We will study the in�uence of three of the main
abnormalities commonly observed in epileptic hippocampus, i.e. hippocampal sclerosis, mossy
�ber sprouting and genetic defects.

Finally, Chapter 6 will summarize our results, and suggest possible improvements that could
be made to our model in future works.
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Chapter 2

Literature Review

2.1 The Hippocampus

2.1.1 Neuroanatomy of the Hippocampus

The hippocampus is a structure located inside each mesio-temporal lobe in mammals, which
gets his name from its resemblance with a sea-horse (Figure 2.1 and Figure 2.2). It is composed
of two U-shaped regions, the Cornus Ammonis, also called hippocampus proper, and the Dentate
Gyrus. The Cornus Ammonis itself is divided into di�erent subregions named CA1, CA2, CA3
and CA4 (sometimes called the hilus), which di�er mostly by the synaptic connectivity they
make or receive (Figure 2.3). The CA2 and CA4 regions are often ignored in discussions about
the hippocampus due to their small size.

Figure 2.1 � Comparison of a dissected human hippocampus and fornix (left) to a specimen
of Hippocampus leria (right). Source : Hungarian neuroscientist László Seress' 1980 preparation,
Wikimedia Commons.)

Di�erent types of neurons can be found in each of these regions. In all the Cornus Ammonis,
most of the excitatory neurons are pyramidal cells, which are characterized by a long cone-
shaped dendritic tree. Interneurons on the other hand represent between 10 and 15% of the total
cell number, and are more diverse and comprise (but are not limited to) basket cells, O-LM
cells, chandelier cells or axo-axonic cells, bistrati�ed cells etc. (see [Freund and Buzsáki, 1998]
for a detailed review). In the Dentate Gyrus, there are no pyramidal cells, but instead smaller
round shaped excitatory neurons called granule cells can be found, as well as mossy cells, while
interneurons are mostly similar to the Cornus Amonnis ones. An estimation of the number of
principal neurons in each structure in human can be found in Table 2.1, while the structure
and proportions of CA1 interneurons can be found in Figure 2.4, classi�ed in di�erent categories
depending on the shape of the neurons or the proteins they express.
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Figure 2.2 � Positioning of the human hippocampus inside the temporal lobe. Source : Wiki-
media Commons.

Figure 2.3 � Coronal section from a healthy brain through the right rostral hippocampal for-
mation stained with thionin. Arrows mark the borders between regions. CA1 and CA2/3 refer to
the CA �elds of the hippocampus. DG, Dentate gyrus ; ml, molecular layer of the dentate gyrus ;
gl, granule cell layer ; pl, polymorphic layer ; S, subiculum ; PrS, presubiculum ; PaS, parasubi-
culum ; EC, entorhinal cortex ; cs, collateral sulcus ; PRC, perirhinal cortex. Scale bar, 1 mm.
Source : [Rempel-Clower et al., 1996]

Table 2.1 � Number of principal neurons in each region of the human hippocampal formation
(in millions). Sources : [West et al., 1994], [West and Slomianka, 1998]
Region Pyramidal cell Granule cells
Dentate Gyrus - 18
CA3 2.8 -
CA1 14 -
Subiculum 6 -
Entorhinal cortex 8 -

18
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Figure 2.4 � Diagram of interneuron types in the rat CA1 region. The dendrites and somata of
the interneurons are the same color, and the axon is shown in purple with color coded boutons.
Pink boutons specify synapses made only onto other interneurons. The legend below the diagram
gives the names and proportions of each interneuron type. Red : PV+ cells, Green : CCK+ cells,
Blue : Neurogliaform family, Purple : SOM+ cells, Orange : Interneuron-speci�c cells. Figure
adapted from : [Bezaire and Soltesz, 2013].

Each hippocampal region can then be seen as an organized structure composed of di�erent
layers, each of them containing speci�c neuron's somas or dendritic arborizations. In the Cornus
Ammonis, one can distinguish in that way the stratum oriens (containing the soma of some
interneurons), the stratum pyramidale (containing the soma of pyramidal cells) and the stratum
lacunosum moleculare and stratum radiatum (which contains respectively the distal and proximal
dendrites of pyramidal cells). In the Dentate Gyrus, the soma of the granular cells are located
inside the stratum granulosum, while their apical dendrites are located in the molecular layer.
The �rst segments of the axons of the granular cells, called mossy �bers, are located in the
polymorphic layer (this layer also contains basket cells).

2.1.2 Internal connectivity, a�erent and e�erent connections

The hippocampus receives most of its glutamatergic synaptic inputs through its neighboring
structures, the Entorhinal Cortex and the Subiculum, which convey information coming from
various cortical sources, such as sensory areas (including visual cortices) and the prefrontal
cortex, as well as from other structures of the limbic system. From there, neural activity follows
what is usually called the "trisynaptic pathway", a set of unidirectional excitatory synapses going
from the Entorhinal cortex layer II to the Dentate Gyrus (these connections form the so called
perforant path), from the Dentate Gyrus to CA3, from CA3 to CA1 (through what it called
Scha�er collaterals) and �nally from CA1 back to the Subiculum and the Entorhinal Cortex's
deeper layers. Fewer connections are also made from the Entorhinal Cortex directly to CA3 (from
neurons in layer II) and CA1 (from layer III) ([Andersen et al., 2007], see Figure 2.5).

The hippocampus also receives some glutamatergic inputs directly from some subcortical
regions such as the amygdala ([Felix-Ortiz and Tye, 2014]) and di�erent thalamus nuclei, na-
mely, the supramammillary nucleus, which projects to the Dentate Gyrus, and nucleus reuniens,
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Figure 2.5 � Diagram of the excitatory synaptic connections between subregions of the hippo-
campal formation, adapted from [Andersen et al., 2007], with the trisynaptic pathway appearing
in red.

which projects to the CA1 region, and are thought to amplify the synaptic transmissions recei-
ved by these regions, (see [Vertes, 2015]), as well as GABA-ergic (inhibitory), cholinergic and
glutamatergic (excitatory) inputs from the medial septum ([Wainer et al., 1985], [Huh et al.,
2010]).

As for hippocampal e�erent projections, most of them go through the entorhinal or perirhinal
cortices ([Agster and Burwell, 2013]), which in turn contact other regions of the brain such as
the frontal and temporal cortices ([Muñoz and Insausti, 2005]), and through the fornix, which
then contacts thalamic nuclei ([Raisman et al., 1966]). Synaptic connections also exist from one
hippocampus to the controlateral one, especially from the dentate gyri and CA2/CA3 regions
([Andersen et al., 2007]).

This anatomical organization underlies the hippocampal functions detailed in the following
section.

2.1.3 Functions of the Hippocampus

As was explained in Chapter 1, the hippocampus has been reported to play a major role
in memory formation and consolidation. According to the two-step memory formation theory,
during the day the hippocampus receives information from the rest of the brain and stores it in
the CA3 and CA1 regions, which is the basis of short-term memory. Conversely during the night,
the information previously stored is transmitted from the hippocampus back to the neocortex
to consolidate it into long-term memory. This theory is supported by the fact that hippocampus
surgical removal is associated with a loss of recent memories and a loss of the ability to make
new ones, but no loss of older memories, suggesting that only short-term memory is stored in
the hippocampus (see [Scoville and Milner, 1957] for the �rst report on this phenomenon, on
the famous "H.M" patient). Sleep has also been shown to enhance memory performance, while

20



2.2. Oscillatory patterns of the Hippocampus during the sleep-wake cycle and their modeling

sleep deprivation decrease it (for a review on this subject in human and animals, see [Stickgold,
2005]). According to the multiple trace theory ([Nadel et al., 2000], [Nadel et al., 2007]), episodic
memory (which is the memory of autobiographical events) could also actively depend on the
hippocampus for the retrieval of precise details, while only semantic memory (which refers to
general world knowledge) encoded in multiple neocortical circuits could be fully retrieved in the
case of hippocampal damage.

The hippocampus and entorhinal cortex also play a role in spatial navigation. As reported
by ([O'Keefe and Dostrovsky, 1971],[Brun, 2002]), some neurons in these two structures present
an activity which depends on one's position in one's environment. In the hippocampus, some
neurons called place cells �re preferentially when the subject is in one precise location of its
environment, whereas in the Entorhinal cortex, grid cells �re in a spatially regular pattern. Some
neurons called head-direction cells have also been discovered in the Entorhinal cortex, which
show an increased �ring rate when one's head is facing in a speci�c direction. After having been
�rst discovered and described in animals, this spatial dependant neural activity have then been
observed in human, either through indirect methods (fMRI in [Doeller et al., 2010]), and more
directly with sEEG recordings ([Jacobs et al., 2013]). Together, these di�erent cell types enable
the brain to build an e�cient mental representation of one's environment and perform spatial
navigation. Similarly, the hippocampus has been shown to include "time cells", neurons that �re
at successive moments in temporally structured experiences ([Eichenbaum, 2014]).

As a part of the limbic system, the hippocampal formation (and more precisely, its ventral
part), has also been shown to be involved in fear and anxiety behaviors ([McHugh et al., 2004],
[Adhikari et al., 2010]) and social interactions ([Felix-Ortiz and Tye, 2014]).

Overall, the hippocampus acts as a hub which integrates information from multiple brain
areas so as to build temporally, spatially, and even emotionally structured representations of
one's experiences. This region is then all the more important to study that pathologies like mesial
temporal lobe epilepsies may disturb these functions and lead to many cognitive impairments,
such as memory de�cits, language impairments or attention de�cits (see [Rastogi et al., 2014] or
[Uslu et al., 2019]).

2.2 Oscillatory patterns of the Hippocampus during the sleep-

wake cycle and their modeling

2.2.1 Theta-nested gamma oscillations

The hippocampus multiple functions are each characterized by speci�c neural activity pat-
terns.

In awake animals, it has been demonstrated that spatial navigation as well as short-term
memory encoding is accompanied by theta-nested gamma oscillations, which consists in low
frequency oscillations (theta, 5-10Hz) coupled with high frequency ones (gamma, 30-100Hz), as
shown on Figure 2.6.

Theta oscillations are most prominent in the CA1 region, but they also occur in CA3 and in
the Dentate Gyrus ([Buzsáki, 2002]). It has been hypothesized that the generation of this rhythm
could be caused by medial septum cholinergic and GABA-ergic inputs acting as a "pacemaker" for
the hippocampus ([Bland and Bland, 1986], [Hangya et al., 2009]), but it could also be generated
by hippocampal pyramidal neurons themselves, as they present a speci�c ion channel called
Calcium-Activated Nonspeci�c cationic channel (CAN channel, see description in [Partridge and
Swandulla, 1988]), which enable sustained activity in the theta frequency range ([Egorov et al.,
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2002], [Giovannini et al., 2017]), or by O-LM interneurons which spike preferentially at a theta
frequency ([Gloveli et al., 2004]).

The gamma oscillations on the other hand are thought to be produced by the interaction
between hippocampal pyramidal cells and various types of interneurons, in the CA3 and CA1
region in particular ([Csicsvari et al., 2003], [Klausberger and Somogyi, 2008], [Gloveli et al.,
2004]). As part of these gamma rhythms, hippocampal place cells and grid cells corresponding
to recently crossed locations �re at a speci�c phase of theta oscillations ([Lisman and Jensen,
2013]). This precise spatiotemporal �ring is what enables a faithful representation of an animal's
trajectory. The same type of oscillations could also be involved in short-term memory processes,
as a way to maintain information even as the related input is fading.

Figure 2.6 � Illustration of theta-nested gamma oscillation, from [Lisman and Jensen, 2013]. (A)
Simultaneous extracellular (top) and intracellular (bottom) recordings from the hippocampus.
(B) Schematic of the theta-gamma code. The ovals at top represent states of the same network
during two gamma cycles (active cells are black and constitute the ensemble that codes for a
particular item). Di�erent ensembles are active in di�erent gamma cycles.

Multiple computational models have been proposed to reproduce and explain theta and
gamma oscillations, as well as the formation of place cells or grid cells �ring patterns.

In [Wul� et al., 2009] for example, a small model of the CA1 region is proposed to study
the role of intrahippocampal networks on the coupling of theta and gamma oscillations, in re-
lation with an experiment on genetically modi�ed mice lacking a GABA-A receptor subunit on
their parvalbumin positive (PV+) interneurons. The model, consisting of 21 single compartment
Hodgkin-Huxley neurons of di�erent subtypes (pyramidal cells, PV+ basket cells and O-LM
cells), is used to compare the oscillations generated by a "wild-type" network where basket cells
receive strong inhibitory inputs from themselves and from O-LM cells and a genetically modi�ed
network where these synaptic interactions are removed. Both the experimental procedure and the
computational model demonstrate the importance of the synaptic inhibition on CA1 basket cells
in the generation of theta-nested gamma oscillations, as without GABA-A receptors on basket
cells, CA1 theta (but not gamma) oscillations are reduced in amplitude, and the phase coupling
of theta and gamma rhythms is reduced as well.

In [Tiesinga et al., 2001], a larger model is described to better understand the generation
of di�erent oscillatory rhythms in the CA3 region, and their link with the concentration of a
cholinergic agonist, carbachol (CCH). So as to reproduce the various e�ects of CCH on 500
pyramidal cells and 100 interneurons, a more complex, two-compartmental neuron model is used
(also derived from Hodgkin-Huxley formalism), which enables a study of each neuron channel
and synapse property individually. Overall, this network is capable of exhibiting di�erent CCH-
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induced rhythms, such as delta, theta and gamma oscillations, and proposes an explanation to the
transitions between them : CCH-theta rhythms caused by subthreshold membrane oscillations
transition to CCH-delta bursts when CCH concentration increases due to changes in potassium
channel properties, while an even greater concentration of CCH results in an increased activation
of both pyramidal cells and interneurons and the apparition of CCH-gamma oscillations.

Simpler models have also been developed, for example in [Keeley et al., 2017], where a leaky
integrate-and-�re (LIF) model is compared with a reduced population rate model in order to
study the generation of gamma oscillations of di�erent frequencies in the CA1 region. In this
article, one population of pyramidal cells and two populations of interneurons with di�erent
synaptic time constants are considered. Simulation results from the LIF model show that the
population of excitatory neurons can �re at a frequency ranging from slow to fast gamma depen-
ding on which interneuron population it is more strongly connected with, while the strength of
the synaptic coupling between the two interneuron populations determine whether intermediate
�ring frequencies can be reached. The population rate model can reproduce most (though not
all) of the behaviors seen with the LIF network, but it can also help understand them in terms
of bifurcations in the parameter space.

Regarding place cells and grid cells, more functional and abstract models exist such as the
oscillatory inference model presented in [Burgess et al., 2007], which expresses the �ring rate of
grid cells as a sum of sine waves with phase and frequencies depending on the animal's speed
and the distance it traveled in a "preferred" direction speci�c to that cell. The combination of
cells with di�erent preferred directions enables the formation of hexagonal grid maps such as the
ones seen in experiments. This model also simulates inputs from place cells coming to grid cells,
which helps reset their phase and correct errors that might accumulate in the grid �eld over time.

Attractor models are another main type of grid cells or place cells model. In [Pastoll et al.,
2013] for example, about 4000 excitatory and 1000 inhibitory exponential integrate-and-�re neu-
rons are modeled and connected with each other in accordance with their positioning on a torus
(which here re�ects their preferred direction, and not their spatial position). The network re-
ceives both a theta stimulation and a stimulation current which corresponds to a simulated
animal movement (for each neuron this input is proportional to the speed of the movement along
its preferred direction). This model is capable of reproducing gamma oscillations coupled to the
theta cycles, and grid �elds similar to those seen in experiments. The grid �ring pattern of in-
terneurons in particular is highly dependent on the connectivity of the network, i.e. the distance
at which excitatory and inhibitory connections are made preferentially.

More example of grid cells and place cells computational models can be found in [Giocomo
et al., 2011].

2.2.2 Sharp-Wave Ripple complexes

Memory consolidation is thought to rely on a speci�c hippocampal oscillatory pattern, called
Sharp-Wave Ripple complex (SPW-R).

This pattern consists in a large amplitude LFP de�ection (Sharp-Wave) in CA1 stratum
radiatum, on which a high-frequency is superimposed (Ripple, 120-200Hz) in the CA1 pyrami-
dal layer ([Buzsáki, 2015]). Sharp-Wave ripple complexes usually last around 100ms, and occur
mostly during slow-wave sleep as well as awake resting states, last around 100ms, and seem to be
able to arise and propagate anywhere along the septotemporal axis of the hippocampus ([Patel
et al., 2013]). A complete review of this phenomenon can be found in [Buzsáki, 2015].

During these oscillations neurons and place cells "replay" the activity they had during the
day ([Wilson and McNaughton, 1994]), spiking in the same order or in a reversed order (Figure
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Figure 2.7 � Illustration of a sharp-wave ripple complex, taken from [Buzsáki, 2015]. Raw traces
of wide-band LFP (1�625 Hz) recorded simultaneously from the CA1 pyramidal layer and the
mid str. radiatum, together with a band-pass �ltered (50�250 Hz) trace of the pyramidal layer
signal.

2.8, [Diba and Buzsáki, 2007]), but in a time-condensed manner, which may help transferring new
information and episodic memory traces to cortical areas. Regarding spatial memory, experiments
indicate that Sharp-Wave Ripple complexes help stabilizing place �elds ([Roux et al., 2017]),
and that disturbing them through optogenetic methods reduces animal's performance in spatial
memorization tasks ([Girardeau and Zugaro, 2011]).

Figure 2.8 � Illustration of place cells replay during SPW-Rs, from [Buzsáki, 2015]. Place cell
sequences experienced during behavior are replayed in both the forward and reverse direction
during awake SPW-Rs. Spike trains for place �elds of 13 CA3 pyramidal cells of a rat running
on a track are shown before, during and after a single traversal. Sequences that occur during
track running are reactivated during SPW-Rs both before and after the run, when the rat stays
immobile. Forward replay (left inset, red box) occurs before traversal of the environment and
reverse replay (right inset, blue box) after. The CA1 local �eld potential is shown on top and
the animal's velocity is shown below.

Sharp-Wave Ripples are usually considered as a consequence of the activity of the CA3 region,
where strong recurrent excitation gives rise to synchronized excitatory bursts, sometimes called
CA3 ripples, and transferred via Scha�er collaterals. However, CA3 high frequency oscillations
could arise from various dentate gyrus or entorhinal cortex inputs, in the fast gamma frequency
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range in particular ([Sullivan et al., 2011]). During SPW-Rs, CA1 pyramidal neurons are strongly
activated and synchronized, and so are some types of interneurons like basket cells, but other
types of interneurons like O-LM cells get relatively silent ([Csicsvari et al., 2003]). The fast
pacing of ripples could be the result of synaptic interactions between CA1 pyramidal cells and
interneurons, between CA1 interneurons, or axo-axonic electrical coupling of cells through gap
junctions (as presented in [Stark et al., 2014], where the �rst hypothesis is favored).

Similarly to theta-nested gamma oscillations, many computational models have been develo-
ped throughout the years so as to better understand sharp-wave ripple complexes.

Among these, the fast oscillation model from [Traub et al., 1999] was quite in�uential. This
model includes about 3000 pyramidal cells with more than 60 compartments, linked to each other
by axo-axonic gap junctions so as to form either a tree-like or a random graph, and was able
to produce bursts of activity in the ripple frequency range (100-200Hz), independently of the
presence of excitatory chemical synapses. These ripples appeared in the presence of a Poisson
background input applied to the neurons, provided that the gap junction coupling was strong
enough, and their frequency was mostly determined by the structure of the network, i.e. the mean
path length between two interconnected neurons. Later on, this model was developed further,
for example in [Traub and Bibbig, 2000] where a population of interneurons was also included.

Models including only chemical synapses and no axo-axonic gap junctions were also able to
reproduce sharp-wave ripple oscillations, such as the CA3 and CA1 model from [Taxidis et al.,
2012]. In this study, each of the two hippocampal regions was represented by an array of 1000
pyramidal cells (two compartmental Pinsky-Rinzel) and 100 fast spiking interneurons (single
compartment Hodgkin-Huxley), connected with AMPA and GABA-A synapses so that each
neuron receives the same number of synapses as was reported in electrophysiological studies.
The isolated CA3 model produced bursts of activity at a theta frequency, while the isolated
CA1 interneuron population generated gamma activity. Putting all the populations together
gave rise to sharp-wave ripple oscillations in CA1, with a stronger activation of interneurons
than pyramidal cells. The frequency of the oscillations could be modi�ed by changing synaptic
properties : for example, increasing the maximum conductance of GABA synapses slowed down
the oscillations, while increasing the decay time of AMPA synapses had the opposite e�ect.

In [Omura et al., 2015], the focus is put on how to explain the variability of SPW-Rs am-
plitudes with a network with heterogeneous synaptic properties. A model of CA3 is proposed,
comprising 10000 excitatory and 2000 inhibitory adaptive threshold integrate-and-�re neurons,
where the weight of synaptic connections between excitatory neurons is drawn from a lognormal
distribution. Such distribution made it possible to reproduce not only the frequency of SPW-Rs
but also the �ring rates and amplitude variability observed experimentally, which was not the
case with other distributions (such as a truncated Gaussian function).

The transition between theta-nested gamma oscillations and sharp-wave ripple complexes
is not yet fully understood, but it has been theorized in [Hasselmo, 1999] that these could
depend on the level of neuromodulators present in the hippocampus, and Acetylcholine (Ach) in
particular (see Figure 2.9). This idea is supported by an experiment presented in [Zylla et al.,
2013], where the activation of cholinergic receptors shifted hippocampal oscillations from ripple
to gamma frequency range. In [Brunel and Wang, 2003], the factors in�uencing the frequency and
synchrony of the fast oscillations generated by a integrate-and-�re neuron network are studied. In
a network consisting only of inhibitory neurons, the oscillatory frequency can be approximated
analytically and is mostly governed by synaptic rise time constants, and can reach the ripple
frequency band. When a population of excitatory cells is added, the frequency of the oscillations
decreases depending on the balance of relative speeds of excitatory and inhibitory synapses, down
to a gamma frequency range.
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Figure 2.9 � Two-stage model of long-term memory formation by [Hasselmo, 1999]. Panels A
and B represent synaptic connectivity from the neocortex to the hippocapal formation during
active waking and slow-wave sleep respectively. Connections suppressed by Ach are represented
with thin arrows and connections less sensitive to the modulation by Ach are represented with
thick arrows.

Overall it can be seen that many di�erent models exist to explain each aspect of healthy
hippocampal activity, each of them relying on di�erent cellular or network mechanisms, which is
why in the course of this thesis we think that building a single model capable of reproducing all
the types of hippocampal rhythm and taking into account the in�uence of several mechanisms
could be bene�cial for a better global understanding of this brain structure.

2.3 Modi�cations of the hippocampus in mesial-temporal lobe

epilepsy

2.3.1 Anatomical and physiological modi�cations

In patients su�ering from mesial temporal lobe epilepsy, physiological hippocampal rhythms
like theta-nested gamma oscillations or sharp-wave ripple complexes still occur, but other pa-
thological activity patterns are present which drive the symptoms and cognitive impairments
associated with this disease. Many structural and functional modi�cations have been observed
in the epileptic hippocampus, which may be a cause or a consequence of its abnormal activity.

Firstly, a very common histopathology seen in the epileptic hippocampus is hippocampal
sclerosis (HS), which consists in severe neuronal cell loss and gliosis. All the di�erent CA sub�elds
may be a�ected, as well as the Dentate Gyrus, to various levels depending on the patient. The
International League Against Epilepsy (ILAE) proposed a classi�cation of the di�erent types of
HS in [Blümcke et al., 2013] (see Figure 2.10).

The most common type of HS (60 to 80% of reported cases) is ILAE-Type 1, which is
sometimes called typical HS, and a�ects all regions of the hippocampus. ILAE types 2 and 3
show preferential cell loss in the CA1 and CA4 regions respectively, with less severe neuronal
loss in other regions (the reported proportions of cell loss in each region for each HS type can be
found in Table 2.2). The last type called "no-HS" corresponds to about 20% of patients, which
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Figure 2.10 � Illustration of the di�erent ILAE hippocampal sclerosis types observed in tem-
poral lobe epilepsies, adapted from [Blümcke et al., 2013]. All stainings represent NeuN im-
munohistochemistry, i.e. the presence of a biomarker characteristic of neural nuclei. DGe/DGI,
external/internal limbs of dentate gyrus ; Sub, subiculum. Scale bar in the �rst panel = 1,000µm
(applies also to the other panels).
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Region Type 1 Type 2 Type 3
CA1 >80% 80% <20%
CA3 40-90% <20% 30%
DG 50-60% <20% 35%

Table 2.2 � Typical proportion of cell loss in di�erent hippocampal sclerosis patterns

only present gliosis and no neuronal loss. HS is often associated with granule cell dispersion, a
broadening of the granule cell layer in the dentate gyrus.

Interestingly, while HS involves loss of pyramidal neurons and granule cells, the number of
GABA-ergic cells in the epileptic hippocampus is mostly preserved (as mentioned for example in
[Babb et al., 1989], but see also [Fritschy et al., 1999]), which could lead to an hypersynchroniza-
bility of the hippocampus. Similar patterns of cell loss are also observed in the entorhinal cortex
in epilepsy models of rats ([Drexel et al., 2012]) as well as in humans ([Vismer et al., 2015]).

Hippocampal sclerosis is observed in most experimental models of acquired epilepsy, such
as electrical kindling ([Cavazos and Sutula, 1990]) and kainate-acid administration ([Bouilleret
et al., 1999]), or after brain injuries. HS may appear as a consequence of in�ammation follo-
wing an initial injury, calcium ions accumulation to an excitotoxic level during seizure episodes
([Sendrowski and Sobaniec, 2013]), or systemic hypoxia during status epilepticus (in this case,
the varying vulnerability of hippocampal cells would also depend on their containing calcium
binding proteins, see [Freund et al., 1992]).

Another major abnormality seen in the epileptic hippocampus is mossy �ber sprouting, the
growth of granule cell axons (mossy �bers) and the multiplication of excitatory synaptic contacts
they make with surrounding or more distant neurons (see Figure 2.11). This phenomenon is seen
in almost every animal model of epilepsy, presumably as a consequence of mossy cell loss and
granule cell dea�erentation (see [Noebels et al., 2012] for a review of this phenomenon).

In [Schmeiser et al., 2017], mossy �ber sprouting patterns are described depending on HS
type : usually no sprouting is observed in no-HS hippocampus, whereas in HS types 1, 2 and 3,
increased mossy �ber density is found especially in CA1. In HS types 1 and 3 also, fewer mossy
�ber projections are found going from the dentate gyrus to CA3 and CA4, which could be linked
to the cell losses in these regions. This work also reports granule cell dispersion is more prominent
in ILAE HS types 1 and 2 compared to no-HS, with the width of the granule cell layer being
larger by about 50 µm.

Inside the Dentate Gyrus itself, mossy �ber sprouting is associated with the generation of
mono-synaptic excitatory connections between granule cells : approximately 500 new synapses
are created that way for each granule cell ([Buckmaster et al., 2002]), which gives an overall
connection probability of 0.7% between any pair of cells ([Scharfman et al., 2003]). This recur-
rent excitation is often seen as a potential cause of epileptic activities ([Cavarsan et al., 2018]).
New synapses from granule cells to inhibitory interneurons can also be formed ([Sloviter et al.,
2005]), but according to [Buckmaster et al., 2002] these are less numerous (only 5% of newly
formed synapses).

Among other anatomical and physiological hippocampal features linked to epilepsy, hippo-
campal neurons' ion channels can be altered as well, either due to genetic mutations, or after
plasticity in acquired epilepsy syndromes (see [Lerche et al., 2012]). More precisely, genetic alte-
rations of sodium, potassium, HCN or chloride channels subunits can be observed on mice with
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Figure 2.11 � Illustration of mossy �ber sprouting in epileptic pilocarpine-treated rats, from
[Noebels et al., 2012]. A1- Timm staining of the dentate gyrus (h=hilus, g=granule cell layer,
m=molecular layer) and CA3 region. A2- Magni�ed view of boxed region in A1 shows a dense
band of black Timm-staining in the inner molecular layer, made of sprouted mossy �bers.
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spontaneous epilepsy phenotypes, while in acquired temporal lobe epilepsies the HCN channel
currents can be either reduced or enhanced, potassium current can be reduced, and persistent
sodium current can be enhanced, for example. Synaptic receptors of AMPA, GABA and NMDA
types can be modi�ed too ([Lerche et al., 2012], [Fritschy et al., 1999]). Finally, glial cells are also
involved in di�erent types of temporal lobe epilepsy, as impaired astrocytes alter the regulation
of potassium as well as glutamate (for example) in the extracellular space, which lead to neuronal
hyperexcitability (see [Heinemann et al., 2000] and [Coulter and Steinhauser, 2015]).

2.3.2 Pathological hippocampal rhythms

Apart from (but probably related to) anatomical and functional modi�cations, the epileptic
hippocampus generates di�erent abnormal rhythms which will be discussed in this section.

Of course, the best known of these pathological oscillatory patterns is the epileptic seizure. In
mesial temporal lobe epilepsy, the most common seizure onset types are the hypersynchronous
(HYP) and low voltage fast (LVF) types, though other patterns also exist (see [Engel, 2001],
[Weiss et al., 2015] and Figure 2.12). HYP onsets are associated with high amplitude ictal di-
scharges seen on depth electrodes with a frequency less than 2Hz, while LVF onsets consists
in low amplitude faster oscillations with a frequency higher than 12Hz and are more likely to
propagate outside the seizure onset region. During seizures, other oscillatory patterns can appear
and vary between brain regions, as developed in [Osorio et al., 2016] for surface electrodes. On a
smaller scale, [Gonzalez-Sulser et al., 2012] shows that in a rat epilepsy model, LFP discharges
originating from small groups of neurons either in CA3 or in the DG occur during seizures and
propagate through excitatory synaptic transmissions, mostly glutamatergic.

In temporal lobe epilepsies, seizures occur predominantly during waking (see for example
[Crespel et al., 1998] for a study on humans) and REM sleep ([Sedigh-Sarvestani et al., 2014] for
a rat model), which indicates there could be a facilitating e�ect of theta oscillations on seizure
occurrence. According to [Lopim et al., 2016], the frequency of seizure occurrence is also reduced
correlated with the severity of hippocampal sclerosis.

The epileptic hippocampus generates pathological rhythms outside of seizure episodes as well,
mainly pathological high frequency oscillations (HFOs) and interictal epileptiform discharges
(IEDs), shown in Figure 2.13.

HFOs regroup all types of oscillations in the 100Hz-500Hz frequency range, but in the context
of mesial temporal lobe epilepsy usually refer to one particular pattern called fast ripples, events
similar to sharp-wave ripple complexes but of shorter duration and capable of reaching higher
frequency([Bragin et al., 1999]). After having been observed only in areas ipsilateral to seizure
onsets at �rst, fast ripples have then been shown to occur also in contralateral hippocampus
and entorhinal cortex as well ([Staba et al., 2002]), and their occurrence rate is correlated with
hippocampal sclerosis ([Staba et al., 2007]). Fast ripples can have a peak frequency close to that
of physiological ripples, in which case they are hard to di�erentiate, except when fast ripple
involve regions or groups or neurons which do not produce physiological ripple, such as the
Dentate Gyrus ([Engel et al., 2009]). Pathological HFOs and increases in the >100Hz frequency
range occur during both REM and NREM sleep, but are also seen during ([Jirsch, 2006]) or
just before seizures ([Weiss et al., 2015], [Jiruska et al., 2010]) as a marker of increased neuronal
synchronization in the mesial temporal lobe.

On the other hand, Interictal Epileptiform Discharges (sometimes also called interictal spikes)
are de�ned as events on EEG recordings with short duration (20-70ms) and clearly distinguishable
from background activity ([Gloor, 1975]), and are commonly used to diagnose epilepsy and de�ne
seizure onset zones before resection surgeries ([Engel, 2012]). Their exact morphology can vary
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Figure 2.12 � Di�erent ictal EEG onsets recorded by clinical electrodes (black) and microelec-
trodes (blue) positioned in mesial temporal limbic structures, taken from [Weiss et al., 2015].
(A) The hypersynchronous (HYP) onset pattern. (B) The low voltage fast (LVF) onset pattern.
Red box indicates expanded time epoch of macroelectrode recording shown directly below.

Figure 2.13 � Examples of interictal events in a Kainate Acid-treated rat, adapted from [Engel,
2001]. A1�3, Interictal spikes. B, HFO (Fast ripple). The numbers within dashed boxes show the
frequency of oscillations indicated by arrows.
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greatly at the inter-individual and intra-individual levels ([Gaspard et al., 2014]), but they are
characterized by an increased energy in the 10-70Hz frequency band which provides the basis
for automatic detection techniques (see for example [Gaspard et al., 2014] and [Janca et al.,
2014]). IEDs occur during all stages of the sleep-wake cycle, but are more numerous in NREM
sleep ([Gelinas et al., 2016]), and many studies show that they are associated with memory
impairments : those occuring during wakefulness disturb working memory ([Krauss et al., 1997])
and more precisely memory maintenance and retrieval ([Kleen et al., 2013]), while those occuring
during NREM sleep impair memory consolidation ([Gelinas et al., 2016]) by inducing abnormal
hippocampal-cortical coupling.

2.3.3 Models of the epileptic hippocampus

Computational models are powerful tools to study possible mechanisms underlying epilepsy
and the generation of epileptiform activity. We will now present a few of these models, focusing
either on individual neuron properties, the balance between excitation and inhibition, or the
topology of synaptic connections (others models can be found for example in the review from
[Stefanescu et al., 2012]).

In [Cressman et al., 2009], a full Hodgkin-Huxley type model as well as a reduced model (with
a sigmoid �t to membrane currents) are proposed to study the role of sodium and potassium
concentration dynamics in the generation of epileptiform activity, which involves simulating the
behavior of a single neuron in a bath containing these ions in di�erent concentrations. This
model suggests that potassium dynamics may play a very important role in epileptogenesis, as a
broad range of potassium bath concentration can give rise to seizure-like activity, a situation that
can be described as a Hopf bifurcation and the apparition of a stable periodic orbit in internal
potassium concentration in the model's reduced form. It should be noted that not all of the
neuron's possible behaviors obtained with the full model could be reproduced with the reduced
model, though.

The role of another membrane current, the hyperpolarization activated current (h-current),
is discussed in [Dyhrfjeld-Johnsen, 2008]. This current had been shown to be signi�cantly upre-
gulated in CA1 dendrites in di�erent types of hippocampal epilepsies (such as those induced by
childhood fever-induced seizures), but its exact role on epileptogenesis was not clear. The authors
investigated this issue by simulating the behavior of a single pyramidal cell with three di�erent
existing models (multicompartmental Hodgkin-Huxley type) after an increase of their dendritic
h-current conductance density, and showed that it resulted in a hyperexcitability of the neuron,
but to various degrees depending of the model.

The work of [Cressman et al., 2009] accompanies that of [Ullah et al., 2008], where a network of
100 pyramidal cells and 100 interneurons is represented with single compartment Hodgkin-Huxley
neurons, and the dynamics of sodium and potassium concentrations are further studied connected
to glial modulation and synaptic interactions. This network is able to reproduce seizure-like
activity when presented a perturbing stimulus, provided that its recurrent excitatory connections
are strong enough. The exact synaptic strength and stimulus needed to reach such state is lower
when the extracellular potassium concentration is high, which is coherent with the idea that
abnormal glial bu�ering could play a role in seizure generation.

The work of [Demont-Guignard et al., 2009] also mentions the neuronal hyperexcitability
induced by abnormal potassium channels and h-channels, but focuses more on the e�ect of varying
several synaptic conductances (AMPA, NMDA and GABA) on interictal spike generation, in a
CA1 network consisting of 2500 pyramidal neurons (two-compartments Hodgin-Huxley), 312
basket cells and 312 O-LM cells (single comportment Hodgkin-Huxley). The results of this work
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suggest that AMPA conductance plays a prominent role in determining the characteristics of
interictal spikes : it is the main factor increasing their amplitude (though NMDA conductance
increases it GABA conductance decreases it to a lesser extent), and only a speci�c range of
AMPA conductances enables NMDA and GABA conductance to increase their duration. This
model is also interesting as it provides an estimation of the local �eld potential generated by the
network, obtained by approximating each pyramidal neuron as a current dipole, with a dipolar
moment proportional to the di�erence of membrane potential between its somatic and dendritic
compartment.

In [Wendling et al., 2002], the role of the varying strength of synaptic interactions is also
explored, this time using a population model including 4 groups of neurons present in the CA1
region : pyramidal cells, excitatory interneurons, and two groups of inhibitory interneurons. These
two groups of inhibitory interneurons have di�erent dynamics, to represent both fast interneurons
contacting pyramidal cells somata, and slower interneurons contacting their dendrites. Di�erent
typical epileptic activity can be reproduced by changing the coupling between these di�erent
populations, and though all types of synaptic coupling in�uence the resulting rhythms, changing
only the dendritic inhibition coming from slow interneurons is enough to reproduce various
transitions of activity observed in sEEG data.

The role of the number and topology of synaptic connections is investigated for example in
[Neto�, 2004], where the activity of a ring-shaped hippocampal network (corresponding to the
CA3 or CA1 region) is simulated with di�erent number of synapses per neuron, proportions of
long-range versus short-range synaptic connections and synaptic strength. Increasing the pro-
portions of long-range connections in particular enables the network to evolve from a normal
activity to a seizure-like activity and then to a bursting activity, whatever the neuron model
used (Hodgkin-Huxley, Integrate-and-�re or Poisson).

Similar questions are also studied in a Dentate Gyrus model by [Morgan and Soltesz, 2008]
(taken from the mossy �ber sprouting and sclerosis models of [Santhakumar et al., 2005] and
[Dyhrfjeld-Johnsen et al., 2007]). In this work, the number of synaptic connections in a net-
work of about 50000 multi-compartmental Hodgkin-Huxley neurons is progressively increased
by following di�erent rules (Hebbian-like connectivity, scale-free connectivity, repetition of small
motifs, etc...), which proves to greatly in�uence the hyperexcitability of the network. In parti-
cular, the presence of small hubs of highly interconnected neurons seems to be a key feature for
the generation of epileptiform activity.

To conclude, similarly to healthy hippocampal oscillations, many models exist to reproduce
epileptic activity, each focusing on a speci�c aspect or mechanism, but these models cannot
fully explain the links between neuropathological conditions of the hippocampus, physiological
processes such as the sleep-wake cycle, and the resulting oscillations. In this work, we would like
to provide a di�erent approach and include those di�erent mechanisms, from cell level to network
level, in a single model so as to be able to analyze their e�ects jointly.

2.4 Tools for analyzing and predicting the behavior of neural net-

work models

For a computational model of neural activity to be truly useful, it is necessary to be able to
interpret its behavior, and then �nd out the factors in�uencing it. We will now present a few
methods that can be used to address this issue.
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2.4.1 Typical model outputs

Spike timing and coherence measures

Technically, any variable of a model can be stored and plotted to visualize its activity over
time. In single neuron models, membrane potentials or ionic channels conductances can be used,
but in models including multiple neurons, visualizing the timing of their spikes is usually more
meaningful.

This information is often represented on a raster plot (also called rastergram) such as the
one shown on Figure 2.14 : each spike happening in the network is indicated as a dot with x-
coordinate corresponding to its timing and y-coordinate corresponding to the index of the neuron
that �red it. Most of the models presented in the previous sections include a raster plot as a
qualitative, easy to interpret visualization of their activity.

Figure 2.14 � Example of a raster plot, adapted from [Keeley et al., 2017]

More quantitative analysis can be done by computing the �ring rate of a population of neu-
rons, or the synchrony of their spike trains. Several methods exist to obtain the latter information,
such as the coherence measure from [Wang and Buzsáki, 1996], the spike-train distance measure
proposed in [Victor and Purpura, 1997], or the event synchronization measure from [Quiroga
et al., 2002].

Local Field Potentials

The previous methods provide some useful insights on a neural network's activity, however the
individual spike trains of a large number of neurons is not commonly obtained experimentally, and
therefore the validation of a model must often be done in comparison with LFP measurements.

In a model comprising multicompartmental neurons, the LFP generated by the network can
be computed with high realism ([Einevoll et al., 2013]). Considering the extracellular medium as
a three-dimensional continuum, the extracellular potential φ generated by a single neuron follows
the equation :

φ(re, t) =
1

4πσ

N∑

n=1

In(t)

|re − rn|
(2.1)
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where re is the measurement point (the tip of the electrode), rn the position of the n-th compart-
ment of the neuron, In the transmembrane current of this compartment, and σ is the conductivity
of the extracellular medium (see Figure 2.15). The LFP generated by a whole network of neurons
at the point re is then simply the sum of the contributions of each neuron individually. Here
the conductivity σ is supposed isotropic, but the formula can be easily adapted to account for a
more complex extracellular medium.

Figure 2.15 � Illustration of the LFP calculation from multicompartment neurons, adapted
from [Einevoll et al., 2013]

However, simulating neurons with a detailed morphology is highly time-consuming, and the-
refore it is common to approximate neurons as current dipoles with the source located at the
soma and the sink located at the neuron's dendrites ([Pettersen et al., 2012]) to reduce the com-
putational burden of the model while keeping a good estimation of the LFP (see Figure 2.16).
Further simpli�cation can be made by considering only synaptic currents and no other mem-
brane currents in the calculation of the LFP, as synaptic activity is often the most important
contribution to the extracellular �eld (see [Buzsaki et al., 2012]).

This forward calculation of the LFP is not applicable to single compartment neurons as is,
because a cell must remain electrically neutral by current conservation law, but di�erent LFP
proxies exist to work around this problem if necessary (notably the weighted sum of neuron's
membrane potentials or synaptic currents). In [Mazzoni et al., 2015], a realistic LFP (obtained
with a model with multicompartmental neurons) is compared with several of these proxies in a
LIF model, showing that proxies can reproduce almost 90% of the variance of the more realis-
tic LFP. Interestingly, this work also shows that synaptic contacts made onto pyramidal cells
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Figure 2.16 � Comparison of the LFP produced by a multi-compartmental pyramidal neuron
(A) and an analogous two-compartmental model (B) following an excitatory synaptic input,
adapted from [Pettersen et al., 2012].
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contribute much more to the resulting LFP than contacts made onto interneurons.
Recently, another approach for the modelisation of LFP have also been developed, called

hybrid LFP, which consists in �rst simulating a network's activity using time-saving, single-
compartment neuron dynamics, and then use the generated spike trains to obtain the LFP
through a model of multicompartmental neurons (see [Hagen et al., 2016]).

Once a LFP signal is obtained, it is often interpreted in the frequency domain using Fourier
analysis.

In this context, sharp-wave ripple complexes are often detected by �rst �ltering the LFP
signals in the ripple (or sharp-wave) frequency range (and then in most cases computing the Root-
Mean-Square (RMS) of the �ltered signal). Then, a threshold is applied to only keep portions of
the signal signi�cantly above its baseline level. This is for example what is done in [Girardeau
et al., 2009], [Roux et al., 2017], [Zylla et al., 2013], or [Taxidis et al., 2012]. Eventually, other
criteria can be applied to remove unprobable sharp-wave ripples for example if they have an
unrealistic duration, shape, or if they are too close to each other.

The detection of epileptic seizures or interictal spikes is usually done by studying several
features of a signal (either in the temporal or frequency domain) before applying an automated
classi�er to separate portions of signal between healthy and pathological, or even using deep
learning methods (see for example [Paul, 2018] for a review on seizure detection and [Gaspard
et al., 2014] or [Antoniades et al., 2017] for interictal discharges detection).

2.4.2 Model analysis techniques

Knowing the di�erential equations de�ning a network, it is sometimes possible to predict its
behavior without having to e�ectively simulate it. In two-dimensional single neurons and popu-
lation models in particular, it is possible to perform phase plane analysis (explained in [Gerstner,
2014]) to mathematically �nd a system's equilibrium points as well as possible bifurcations. Ho-
wever, in more complex neural networks, such mathematical analysis is often impossible and
other methods should be used. We will now present two techniques we used in this work to
analyze the behavior of our neural network models.

Design of Experiments

To analyze the in�uence of a set of parameters on a model, a naive approach would consist
in simply running a large number of simulations, sampling the parameter space regularly, to
deduce the network behavior empirically. However, when the parameter space is too large or too
high-dimensional, the time and computational resources needed to perform all these becomes
unreasonably large as well. One solution to this issue consists in applying Design of Experiments
(DOE) techniques to choose an optimal subset of simulations to run, and then �t a linear or
polynomial function on the observed behaviors (see [Goupy and Creighton, 2013] for complete
explanations on DOE).

In general, a DOE method will propose a set of experiments to run to be able to estimate
a polynomial function f such that y = f(x1, x2, ..., xN )., where x1, x2, ..., xN are N factors
describing a multi-variate system and y is a relevant output of said system. In a �rst order
description of the system, the output y will be estimated as a function of N + 1 coe�cients
p0, p1, ..., pN :

y = p0 +
N∑

j=1

pjxj . (2.2)
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With a matrix notation, if Y =




y1
y2
...
yk


 are the observations of the output y in k experiments

(k > N) obtained with the values of the factors X =




x1,1 x1,2 ... x1,N
x2,1 x2,2 ... x2,N
...

...
xk,1 xk,2 ... xk,N


, we will obtain the

coe�cient vector P such that Y = XP (by using a least-square method).
Usually, the factors in the matrix X are normalized, so that each of them ranges between −1

and 1.
When the joint interactions of parameters need to be considered, products of two or more

factors (terms of the form xixj or longer) can be added to the matrix X and the corresponding
terms to the solution P . In other words, with such second order, the output of each experiment
yi (i < k) will be estimated as :

yi = p0 +

N∑

j=1

pjxi,j +

N∑

j=1

pjjx
2
i,j +

N∑

j=1
l=1
l 6=j

pjlxi,jxi,l. (2.3)

The quality of the approximation of the output Y can be estimated by computing the co-
e�cient of determination R2, which represents the ratio of the explained variance of Y by the
model by the total variance of Y . An example of linear and quadratic �tting on a simple 2D
example is shown on Figure 2.17.

Figure 2.17 � Examples of linear and quadratic �tting on 2D data. The red stars indicate
experimental points, while the blue surface is the approximated response, �tted with a least-
square method.

Some of the most common types of DOE experiment matrices X are as follows (see Figure
2.18 for an illustration in a three-dimensional parameter space) :

� Factorial design : all the combinations of values with all xi = −1 or 1 are explored, for
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a total of 2N experiments. The points studied are the corners of the hypercube de�ning
parameter space.

� Fractional factorial design : in experiments where the high order interactions between
parameters are negligible, some points in a factorial design can be removed while keeping
a good estimation of y

� Box-Behnken design : proposed in 1960 by Box and Behnken ([Box and Behnken, 1960]),
this design places the experimental points on the middle of the edges of the parameter
space's hypercube, as well as points in the center of the cube (all factors set to 0). This
design is made for obtaining quickly second-order modeling of the output y. It also has
the interesting property that additional factors can be added to the model without loosing
the results of the �rst experiments made.

� Doehlert design : in this design, the experimental points form are spread regularly in the
parameter space following an hexagonal pattern. One of its advantages is that it makes
it possible to extend the range of values to be studied for some parameters by simply
extending the pattern, again without having to perform any new experiments inside the
parameter subspace initially studied.

Overall, a DOE method can indicate which parameters may in�uence the most the output of
a system, as these will be associated with high coe�cients in the coe�cient vector P . It can also
help predict the values of the system in new experimental points x by simply computing the dot
product of x and P for a linear system or by applying equation 2.3.

Figure 2.18 � Examples of matrices of experiments for a 3 factors DOE with di�erent design
methods.
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Global sensitivity analysis

DOE techniques are useful to approximate the behavior of a system, but when the system is
too complex, other methods such as global sensitivity analysis can give a more complete vision
of the in�uence of each parameter on the output. Here we will focus on the Sobol' methods, as
they do not require to make any assumption on the linearity or monotony of the model (these
methods and others are described thoroughly in [Saltelli, 2008]).

Sobol' methods are variance analysis methods, meaning that they aim at estimating the
contributions of each parameter x of the system to the variance of its output y (taken individually
or jointly). The analysis yields, for each parameter, a so-called sensitivity index.

To better understand this approach, let us de�ne D the total variance of the output y, Di the
variance of y obtained by varying the parameter xi only, and more generally Dz the variance of
y obtained by varying only the parameters in a subset z. The �rst order sensitivity index relative
to the i-th parameter is then de�ned as Si = Di

D , and the sensitivity index relative to the subset
z of parameters is de�ned as Sz = Dz

D .
The global sensitivity index Stot

i of the i-th parameter represents the total in�uence of this
parameter taken individually and jointly with other parameters on the output and is de�ned as
the sum of Si and all the Sz where i ∈ z. For example if the system has three variables, then
Stot
1 = S1 + S12 + S13 + S123.
Having Si = Stot

i = 0 for a certain parameter xi means that y does not depend on xi.
Conversely, Si = Stot

i = 1 means that y depends only on xi.
Provided that the input parameters are independent and the output is square-integrable, the

sensitivity index Si of the output relative to the i-th parameter varied individually can be written
as (see [Sobol', 2001]) :

Si =

∫

[0,1]N

∫

[0,1](N−1)

y(x)y(xi, x
′
∼i)dxdx

′ − y20, (2.4)

where all the parameters are normalized in the [0, 1] interval, x = (x1, ..., xN ) = (xi, x∼i) is a
point of the parameter space, xi, x′∼i denotes a vector with same component xi as in x (the other
components being x′∼i), and y0 is the mathematical expectation of y.

The sensitivity index Sz relative to any set of parameters z can be computed with a similar
process :

Sz =

∫

[0,1]N

∫

[0,1](N−|z|)
y(x)y(z, x′∼z)dxdz

′ − y20. (2.5)

The integrals in this expression can be approximated by using a Monte-Carlo or similar
method, which gives the following estimation of Si :

Ŝi =
1

Nsim

Nsim∑

k=1

y(x)y(xi, x
′
∼i)− ŷ20. (2.6)

Usually, a quasi Monte-Carlo method called Sobol sequence is used to de�ne the sequence of
simulations to run to obtain a faster convergence.

As can be seen, the sensitivity of the system to one parameter is obtained by varying all the
parameters simultaneously which is why this method is called a global sensitivity analysis, in
opposition with a local sensitivity analysis.
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2.5 Conclusions of the chapter

The hippocampus is a complex structure which plays a key role in memory formation and
spatial navigation. Its functions are performed through neural oscillatory patterns in a broad
range of frequencies, but the mechanisms underlying their generation are not yet fully understood,
which makes it all the more di�cult to understand and cure hippocampal pathologies such as
temporal lobe epilepsies.

The literature on the anatomy and electrophysiology of the hippocampus as well as the
existing computational models of this structure highlight di�erent issues to be taken into account
in our building of a model capable of reproducing all the variety of rhythms seen in the healthy
and epileptic hippocampus over the sleep-wake cycle :

� Both theta-nested gamma oscillations and sharp-wave ripple complexes, as well as epi-
leptic seizures are largely in�uenced by network connectivity, therefore large populations
of neurons need to be modeled, and particular attention should be given to synaptic
connectivity ;

� Sharp-wave ripple complexes require the communications of the CA3 and the CA1 re-
gion, and epilepsy often goes with mossy �ber sprouting in the DG. Finally, theta-nested
gamma oscillations are thought to need the closed loop of the hippocampus with the EC.
Therefore, our model should include the four following regions : the EC, the DG, CA3
and CA1 ;

� Theta rhythms occurring during wakefulness may require a speci�c ion channel (the CAN
channel), and epilepsy is sometimes also associated with altered individual neuron dy-
namics, and so Hodgkin-Huxley modeling of the neurons would be needed to investigate
these e�ects ;

Finally, as the human hippocampal data available to us comes from sEEG measurements,
the model needs to include LFP modeling.

In the next section, we will now present our model handling all these issues and propose an
analysis of its behavior.

41



Chapter 2. Literature Review

42



Chapter 3

Structural and functional modeling of

the healthy hippocampus

In this section, we will present our model of the hippocampus, and analyze the oscillations
it produces depending on its structural and functional parameters. We will then show how these
parameters can be tuned to reproduce sleep-wake cycle variations in the healthy hippocampus.

3.1 Description of the model

3.1.1 Neuron dynamics

The neurons in our network were simulated using a point conductance-based model derived
from Hodgkin-Huxley's ([Hodgkin and Huxley, 1952]). The temporal evolution of each neuron
membrane potential Vm followed a di�erential equation of the form :

Cm
dVm
dt

= −Ileak −
∑

Ichannel − IsynE − IsynI + η, (3.1)

where Cm is the membrane capacitance (proportional to the cell area), Ileak is a leakage current,
each Ichannel is the membrane current associated with the ion channel channel, IsynE and IsynI
are the excitatory and inhibitory synaptic inputs to the cell, respectively, and η is a random
gaussian noise accounting for unknown entries.

Our principal excitatory neurons were pyramidal cells modelled with the following ion chan-
nels : fast sodium (INa), potassium (IK), low-threshold calcium current (ICa), and potassium
M-current (IM ). To some pyramidal cells, we also added Calcium-Activated-Nonspeci�c (CAN)
cationic channels, which was found in hippocampal pyramidal neurons as well as in the entorhinal
cortex (see [Yoshida et al., 2012]) and enables persistant activity during wakefulness in the theta
band ([Giovannini et al., 2017]), with corresponding current ICAN . In the following, these two
types of pyramidal cells are referred to as non-CAN and CAN respectively. Interneurons were
modelled with the following ion channels : fast sodium (INa), and potassium (IK).

The complete expressions for all these ionic channel currents are taken from [Giovannini et al.,
2017], and will be detailed below.

The leakage currents obey the following equation :

Ileak = (gleak ×A)× (Vm − Eleak), (3.2)

where gleak is the maximum leaking conductance, A is the area of the neuron membrane and
Eleak is the channel reversal potential.
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The IK , IM and ICAN currents follow a set of equations of the form :

Ichannel = (gchannel ×A)×mk × (Vm − Echannel), (3.3)

where m is a gating variable de�ned by :

dm

dt
=
m∞ −m

τm
.

For IK and ICAN , the m∞ and τm parameters depend on two functions αm and βm (them-
selves dependent on the membrane voltage Vm, see Table 3.1 and 3.2) :

m∞ =
αm

αm + βm
,

τm =
0.2

αm + βm
.

Similarly, the INa and ICa currents follow a set of equations of the form :

Ichannel = (gchannel ×A)×mk × n× (Vm − Echannel), (3.4)

with two gating variables m and n, such as :

dm

dt
=
m∞ −m

τm
,

dn

dt
=
n∞ − n
τn

,

m∞ =
αm

αm + βm
, n∞ =

αn

αn + βn
,

τm =
0.2

αm + βm
, τn =

0.2

αn + βn
.

Finally the gating variable α of the ICAN current depends on the calcium concentration inside
the neuron, [Ca]2+i , de�ned by :

d[Ca]2+i
dt

= γ(ICa) +
([Ca]2+∞ − [Ca]2+i )

τ[Ca]2+

,

γ(ICa) =
−ku × ICa

2× F × depth×A,

where τ[Ca]2+ = 1s represents the rate of calcium removal from the cell, [Ca]2+∞ = 0.24mol/L is
the calcium concentration if the calcium channel remains open for a duration ∆T →∞, ku = 104

is a unit conversion constant, F is Faraday's constant and depth = 1µm is the depth at which
the calcium is stored inside the cell (as in [Giovannini et al., 2017]).

The amplitude of the noise η (Equation 3.1) simulating random unknown inputs to our
network was set to 100pA for excitatory neurons and 10pA for inhibitory neurons, so as to
obtain sporadic spikes in all of them in the absence of synaptic inputs.

The full expression of all the parameters de�ned here can be found in Table 3.1 and Table
3.2 for interneurons and excitatory neurons, respectively. The I-f curve of each type of neuron,
describing their �ring rate as a function of their input current, is shown on Figure 3.1.
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Table 3.1 � Parameter values of interneurons
Parameter Expression

A 14 · 103cm2

gleak 0.1mS/cm2

Eleak −90mV

gK 9mS/cm2

EK −65mV

kK 4

αm,K 0.01 VM+34mV

1−e−0.1(VM+34mV )

βm,K 0.125 e−
VM+44mV

80mV

gNa 35mS/cm2

ENa 55mV

kNa 3

αm,Na 0.1 VM+35mV

1−e−0.1(VM+35mV )

βm,Na 4 e−
VM+60mV

18mV

αn,Na 0.07 e−
VM+58mV

20mV

βn,Na
1

e1−0.1∗(VM+28mV )

Figure 3.1 � I-f curves of the excitatory and inhibitory neurons used in the model.
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Chapter 3. Structural and functional modeling of the healthy hippocampus

Table 3.2 � Parameter values of pyramidal neurons
Parameter Expression

A 29 · 103cm2

gleak 0.01mS/cm2

Eleak −70mV

gK 5mS/cm2

EK −100mV

kK 4

αm,K −0.032 VM+40mV

e−1−0.2(VM+40mV )

βm,K 0.5 e−
VM+45mV

40mV

gNa 50mS/cm2

ENa 50mV

kNa 3

αm,Na −0.32 VM+42mV

e−
VM+42mV

4mV −1
βm,Na 0.28 VM+15mV

e−
VM+15mV

5mV −1
αn,Na 0.128 e−

VM+38mV

18mV

βn,Na
4

1+e−
VM+15mV

5mV

gM 90µS/cm2

EM −100mV

kM 1

m∞,M
1

1+e−
VM+35mV

10mV

τm,M
1

3.3e
VM+35mV

20mV +e−
VM+35mV

20mV

gCa 0.1mS/cm2

ECa 120mV

kCa 2

αm,Ca −0.055 VM+27mV

e−
VM+27mV

3.8mV −1
βm,Ca −0.94 e

VM+75mV

17mV

αn,Ca −0.000457e
VM+13mV

50mV

βn,Ca
0.0065

e−
VM+15mV

28mV +1

gCAN 0.5µS/cm2

ECAN −20mV

kCAN 2

αm,CAN 0.0002 · 31.4 [Ca]2+
i

0.5mol/L

βm,CAN 0.0002 · 31.4
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3.1. Description of the model

Figure 3.2 � Topology of the entorhinal cortex and the hippocampus used in the model.

3.1.2 Topology of the network

At the macroscopic level, our network is composed of two di�erent structures : one repre-
senting the hippocampus, and the other representing the entorhinal cortex. The hippocampus
proper itself is divided into three substructures : the dentate gyrus, CA3 and CA1 (the CA2 and
CA4 regions are not modeled here due to their smaller size).

As our goal is to model realistically the population's extracellular recordings as obtained on
human epileptic patients, the position of the entorhinal cortex and the hippocampal structures
and the di�erent types of neurons within them were chosen in accordance with human anatomy.
A 15mm-thick slice of the hippocampal formation was reproduced in this way, with excitatory
neurons uniformly distributed within the stratum pyramidale for CA3, CA1 and the EC, or
within the stratum granulosum for the dentate gyrus, and interneurons uniformly distributed
within the stratum oriens. For each excitatory neuron, its projection on the stratum moleculare
was also computed as an estimation of the position of its apical dendrites (Figure 3.2), and its
projection on the stratum oriens as an estimation of the position of its basal dendrites, and thus
the orientation of the (neural) elementary dipole used for generating the extracellular recordings.
In other words, at the cellular level, the detailed geometry of the pyramidal neurons was simpli�ed
to simple current dipoles ([Pettersen et al., 2012]). Moreover, as interneurons contributions to
the LFP are very small [Mazzoni et al., 2015], their microscopic geometry was neglected (point
neurons). CAN neurons (see section 3.1.1) were used in the entorhinal cortex, CA3 and CA1,
while non-CAN neurons were used in the dentate gyrus.

A 10 :1 ratio between pyramidal neurons and interneurons, as reported in [Jinno and Kosaka,
2010] for dorsal hippocampus, was respected in all regions but the dentate gyrus . The same 10 :1
ratio was used between the total number of neurons in CA1 and the total number of neurons in
CA3, as reported in humans in [West and Gundersen, 1990].

As for the dentate gyrus, we considered a ratio 100 :1 ratio between the pyramidal cells and
the interneurons, because of the higher proportion of excitatory cells compared to inhibitory cells
in this structure ([Patton and McNaughton, 1995],[Jinno and Kosaka, 2010]).

As will be further explained in 3.3.1, the number of neurons in the smallest groups in the
model, i.e. in the interneuron group in CA3 and in the DG, was set to 100, and neuron numbers
in other regions were derived from it (see Table 3.3).

47



Chapter 3. Structural and functional modeling of the healthy hippocampus

Table 3.3 � Number of excitatory neurons (NE) and interneurons (NI) in each region
Region NE NI

Entorhinal cortex 10000 1000
Dentate Gyrus 10000 100
CA3 1000 100
CA1 10000 1000

Table 3.4 � Parameter values of the biexponential synapses
Synapse Type AMPA GABA
Resting Potential (E) 0 mV -80 mV
Time constant for rise (τg) 0.3 ms 1 ms
Time constant for decay (τh) 5 ms 10 ms
Maximum Conductance (gmax, see section 3.2.2) 60 pS 600 pS

3.1.3 Synapses model

The interactions between neurons were modelled as AMPA and GABA-A synapses, with
IsynE and IsynI currents for excitatory and inhibitory connections respectively. These currents
are described by the following bi-exponential di�erential equations :

IsynI,E = gI,E(Vm − EI,E), (3.5)

dgI,E
dt

= (−gI,E + hI,E)
1

τgI,E
,

dhI,E
dt

= −hI,E
1

τhI,E
.

Whenever a pre-synaptic spike occurs, the value of hI or hE in the post-synaptic neuron is
instantaneously increased by a �xed (impulse) conductance gmaxe or gmaxi .

The values of the synaptic resting potentials EI and EE , and the synaptic time constants of
rise and decay τgE , τhE , τgI and τhI are given in Table 3.4. The maximum conductances gmaxE

and gmaxI were chosen in accordance with the total number of neurons in each region so as to
get a reasonable total synaptic input to them.

However it should be noted that di�erent factors such as the varying concentration of neu-
rotransmitters can modify these synaptic conductances. The e�ect of Acetylcholine in particular
will be studied later on in this chapter.

3.1.4 Synaptic connection probabilities

As was also done in [Taxidis et al., 2012], the connection probability p between any two
neurons within the same region in the model depends on the distance D between them, following

a gaussian-like distribution : p = A e−
D2

2σ2 . The width σ of this distribution was set to 2500µm
for excitatory cells, in accordance with [Ropireddy et al., 2011] (which states that hippocampal
pyramidal cells make half of their connections within 1.3-1.7mm), and to the value of 350µm
for interneurons, in accordance with the values reported in [Freund and Buzsáki, 1998] for hip-
pocampal basket cells (which states that the transverse extent of their axon is between 9mm
and 1.3mm). The connection probability distributions for each region are then characterized by
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3.1. Description of the model

Table 3.5 � Maximum probability A of the synaptic connectivity within each region. EC :
Entorhinal Cortex, DG : Dentate Gyrus. Py : Pyramidal neuron, In : Interneuron (the �rst two
letters indicates the presynaptic neuron type while the second one indicates the post-synaptic
neuron type). Sources : [Couey et al., 2013], [Patton and McNaughton, 1995], [Taxidis et al.,
2012], [Larimer and Strowbridge, 2008], [Debanne et al., 1995], [Knowles and Schwartzkroin,
1981]. Note that parameters come from physiological recordings on human or rat hippocampus
depending on the availability of the data.

Py-Py Py-In In-Py In-In
EC 0 0.37 0.54 0
DG 0 0.06 0.14 0
CA3 0.56 0.75 0.75 0
CA1 0 0.28 0.3 0.7

the maximum probability A of two neurons within a distance D close to zero to be connected,
summed up in Table 3.5.

Regarding the synaptic connections between di�erent subregions, only excitatory connections
were considered, as these are the most commonly reported ([Andersen et al., 2007]). The pro-
bability distribution is also gaussian-like among the septo-temporal axis, following the equation

p = A.e−
∆2
z

2σ2 , where ∆z is the di�erence of z coordinates between the source and target neuron
(i.e. the connection probability is higher between neurons in adjacent layers). As will be explained
in section 3.2.2, the maximum value of the probability distribution on the trisynaptic pathway
(i.e. for connections from the EC to the DG, from the DG to CA3, from CA3 to CA1 and from
CA1 to the EC) was set to ptri = 0.45, whereas for the monosynaptic pathway (i.e. connections
made from the EC directly to CA3 and CA1), the maximum value was set to pmono = 0.3. The
width σ of the distribution was set to 50µm for all these connections, so as to have connections
of neurons in close layers with little dispersion. Consequently, each excitatory neuron in the en-
torhinal cortex for example targets about 700 excitatory neurons and 70 inhibitory neurons in
the dentate gyrus (7% of each population), 50 excitatory neurons and 5 inhibitory neurons in
CA3 and 500 excitatory neurons and 50 inhibitory neurons in CA1 (5% of each population).

3.1.5 Simulations outputs

The analyzed output is the extracellular potential generated by the network, at a macroscopic
scale.

The modelling of the LFP follows the approach proposed in [Mazzoni et al., 2015]. More pre-
cisely, the potential in every point in space was approximated by a weighted sum of the synaptic
currents arriving at each pyramidal neuron, and neglecting the in�uence of the interneurons.
Considering the neurons as dipoles, the contribution U of a neuron of length L to the extracel-
lular potential at any point in space, at a distance r and an angle θ from the midpoint of the
neuron (see Figure 3.3), writes as :

U =
L cos θ

4πσr2
(IsynE + IsynI ), (3.6)

where σ = 0.3S/m is the conductivity of the extracellular medium, which we considered homo-
geneous. One extremity of each neuronal dipole is set to its soma, while the other is set to either
its approximated basal dendrite or apical dendrite position (see section 3.1.2), depending on the
synapse type, according to the literature on this topic ([Andersen et al., 2007]).
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Chapter 3. Structural and functional modeling of the healthy hippocampus

Figure 3.3 � Diagram of the parameters L, r and θ used to compute the contribution of single
neuron to the LFP.

Figure 3.4 � Topology of the entorhinal cortex and the hippocampus used in the model, along
with the two simulated electrode contacts.

The LFP at one point is the sum of the contributions from all the excitatory neurons in the
entorhinal cortex and the hippocampus (dentate gyrus, CA3, and CA1) : LFP=

∑
U . In order

to model the signal recorded by the macroscopic electrode and to compare it with real patient
recordings, we averaged the LFP on two sets of 144 points evenly distributed on a cylinder of
diameter 0.8mm going through the network, each of them representing a 2mm-long contact,
separated by 1.5mm, and computed the di�erence between the two resulting signals, as in a
bipolar sEEG montage (see �gure 3.4).

Similarly to what is done in the intracranial EEG recordings available to us (section 4.3.1),
the simulated LFP was also bandpass �ltered between 0.15Hz and 480Hz and downsampled to
1024Hz.

3.1.6 Parameters to be studied

The model described in the previous sections was built in accordance with the literature on
the hippocampus in as many aspects as possible. However, there are parameters that needed to
be tuned more arbitrarily, either because too little information was available in the literature or
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3.1. Description of the model

due to computer resource constraints.
First, because our modeled hippocampus includes less neurons than a real human hippocam-

pus, each of our modeled neurons receives less synaptic contacts from its surroundings. Therefore,
in order for these synaptic inputs to properly drive neural activity, i.e. in order for each modeled
neuron to receive the same overall synaptic current as a real hippocampal neuron, the ampli-
tude of each synaptic current should be increased. This is done by increasing the maximum
conductances of both excitatory and inhibitory synapses : gmax,e and gmax,i.

Another parameter that needs to be set is the maximum connection probabilities between
di�erent subregions of our model, as little quantitative information can be found about it in the
literature.

It has been shown that neurons from the entorhinal cortex can target both excitatory and
inhibitory neurons in the dentate gyrus ([Amaral et al., 2007]) and in the CA regions ([Kiss
et al., 1998]), and the same holds true for Scha�er collaterals (synaptic contacts from region
CA3 to CA1, [Wittner et al., 2006]). In [Ursino et al., 2010], connections with di�erent properties
were modeled depending on whether the target neuron was excitatory or inhibitory in order to
generate complex dynamics, but it is not the case in all models ([Taxidis et al., 2012], [Wendling
et al., 2002]). Because such di�erentiated connections are not needed in our network in order to
generate both fast and slow oscillatory rhythms, and in absence of strong experimental evidence
proving so, we decided to keep our approach simple and have not changed connection probabilities
depending on the type of neurons targeted.

Similarly, so as not to make the model more complex than needed, we only set one connection
probability ptri for all synaptic connections along the tri-synaptic loop (from the Entorhinal
Cortex to the Dentate Gyrus, from the Dentate Gyrus to CA3, from CA3 to CA1, and from CA1
back to the Entorhinal Cortex), and one connection probability pmono for synaptic connections
made from the Entorhinal Cortex directly to CA3 and CA1.

Then, some functional parameters can also be changed which will help represent sleep-wake
variations :

� As was mentioned before, the varying concentration of neurotransmitters like ACh bet-
ween wakefulness and slow-wave sleep modulate the synaptic interactions between and
within hippocampal subregions. More precisely, due to the presence of nicotinic and mus-
carinic receptors on hippocampal neurons, it has been shown that some synaptic connec-
tions are enhanced by a high ACh concentration, such as the inhibitory connections within
the dentate gyrus and CA1 ([Jones and Yakel, 1997], [Frazier et al., 1998]), or the exci-
tatory connections from the dentate gyrus ([Cheng and Yakel, 2013], [Gray et al., 1996]),
while others are reduced, such as the excitatory connections from the entorhinal cortex
([Heys et al., 2012]) or CA3 ([Herreras et al., 1988]). To represent these changes, we de�ne
three gains that can be used to modify the synaptic conductances : Ge (increasing excita-
tory synaptic conductances in the DG), ge (decreasing excitatory synaptic conductances
in the EC and CA3), and Gi (increasing inhibitory synaptic conductances in the DG and
CA1).

� As presented in [Yoshida et al., 2012], ACh also plays a key role in the activation of CAN
currents in hippocampal pyramidal cells. Therefore, the conductance of this channel gCAN

will also be a parameter that we can change.
Finally, as neurons in the model do not �re in an organized manner on their own, an external

stimulation has to be applied to perform a simulation. In order to assess the network behavior
under a stereotypical input, it is possible to simply apply a positive current on each of the
entorhinal cortex neurons (either excitatory or inhibitory). To study the response of our model
to input variations, we chose to apply a square wave current Istim starting at t0 = 250ms of
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Chapter 3. Structural and functional modeling of the healthy hippocampus

Figure 3.5 � Diagram of our model of the hippocampal formation, with the parameters to be
studied appearing in red. The number of neurons of each type in each region is shown inside
black boxes. Purple arrows represent AMPA synaptic interactions, and green arrows represent
GABA synapstic interactions, with next to them the corresponding connection probability and
the maximum synaptic conductance. The black arrow represents input stimulation given to the
EC neural populations.

which we varied the maximum value A1 (A1 > 0) as well as the frequency f1 across simulations :

Istim(t) =

{
A1 if t > t0 and sin(2πf1(t− t0)) ≥ 0,
0 otherwise.

(3.7)

A diagram of the model and its parameters are shown on Figure 3.5.
The in�uence of these 10 parameters (gmax,e, gmax,i, ptri, pmono, Ge, ge, Gi, gCAN , A1 and

f1) will be analyzed in section 3.2.1.
Then in section 3.3, we will also discuss some other of our modeling choices, including the

number of neurons, as well as the LFP approximation.

3.2 Exploration of the parameter space under stereotypical in-

puts

3.2.1 Parameter study with a Design of Experiments and Sobol' method

So as to get a �rst intuition on the behavior of the model, we conducted simulations follo-
wing a Box-Benhken design matrix with our ten parameters (the simulation amplitude A1, the
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3.2. Exploration of the parameter space under stereotypical inputs

stimulation frequency f1, the connection probability on the trisynaptic pathway ptri, and mono-
synaptic pathway pmono, the maximum conductance of excitatory synapses gmax,e, and inhibitory
synapses gmax,i, the gain on the conductance of ACh-enhanced excitatory synapses Ge, on ACh-
reduced excitatory synapses ge, on ACh-enhanced inhibitory synapses Gi, and the conductance
of the CAN channel gCAN ) normalized from the following ranges to the [−1, 1] interval :

� A1 : [0.5nA, 1.5nA]
� f1 : [0Hz, 10Hz]
� ptri : [0.2, 0.7]
� pmono : [0.1, 0.5]
� gmax,e : [50pS, 70pS]
� gmax,i : [500pS, 700pS]
� Ge : [1, 5]
� ge : [1, 5]
� Gi : [1, 5]
� gCAN : [0.5µS/cm2, 25µS/cm2]
Because the hippocampus is able to produce both fast oscillations (gamma or ripple frequency

range) and slow oscillations (delta to theta frequency range), we chose to interpret the following
outputs of our model : the peak frequency of its spectrum in the 30-250Hz range (from gamma
to ripple and higher) ffast and the peak frequency of its spectrum in the 1-30Hz range (which
includes the delta and theta frequency bands) fslow.

We then used a least squares method to �t this data with a second order polynomial function
of the parameters :

ffast = a0 +

10∑

i=1

aipi +

10∑

i=1

aiip
2
i +

10∑

i=1
j=1
i 6=j

aijpipj + Efast, (3.8)

fslow = b0 +
10∑

i=1

bipi +
10∑

i=1

biip
2
i +

10∑

i=1
j=1
i 6=j

bijpipj + Eslow, (3.9)

with pi, i ∈ [1, 10] the ten parameters of the network studied here, a and b the 65 coe�cients
de�ning the e�ects of each parameter on the fast and slow oscillations frequency respectively,
and E the residuals of the model represented as a random variable.

This model reproduces the values of ffast and fslow with good accuracy (a coe�cient of deter-
mination R2 = 0.88 and R2 = 0.95 respectively). Figure 3.6 shows the values of the coe�cients
relative to each parameter and combination of parameters. It can be seen that some factors have
more in�uence (either positive or negative) on the resulting oscillations than others.

In the approximation of fslow, a few parameters seem to stand out, mostly the frequency of
the input f1 as well as the product of parameters f1 ·ge. The approximation of ffast on the other
hand seems to involve more parameters, and the most important parameters are di�erent than
those for fslow. It is possible to evaluate the signi�cance of each of the factors used in this �tting
with a Student's t-test, knowing that any coe�cient βk (where β stands for a or b) follows a
t-distribution :

β̂k − βk
S
√

[(XX ′)−1]k,k
∼ T (n− p− 1), (3.10)
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with βk the coe�cient associated with the k-th factor in the description of one of the model's
outputs (ffast or fslow), β̂k is its estimation obtained with a least-square method from the
simulations, S is an estimation of the variance of the studied output,X is the matrix containing all
the factors used in the simulations, T is a Student's t-distribution, n is the number of simulations
performed (here 170), and p is the number of factors studied (here 65).

Figure 3.6 � Coe�cients measuring the each parameter's individual, squared or joint in�uence in
the modeling of ffast and fslow, from a Box-Behnken DOE. The signi�cant coe�cients (p<0.01)
are shown in red.

To simplify the models of ffast and fslow, we tried to remove the least signi�cant factors one
by one and optimize the model iteratively (see Figure 3.7).

For approximating fslow, keeping only four parameters is enough to keep a R2 value above
0.8. These four factors are : f1, f1 ·ge, f1 ·pmono, and f21 . In other words, the slow frequency of the
oscillations mostly follows the frequency of the input, though other parameters also in�uence it
to a lesser extent. However, ffast appears as a more complex function of the network parameters
as not less than 15 factors are needed to model it with a R2 value above 0.8. These 15 factors
include all of the initial ten parameters studied, except for gmax,i and Ge.

To provide a better understanding of the parameters in�uencing the fast oscillations of the
network in particular, we completed our previous analysis with a global sensitivity analysis
following a Sobol' method.

After performing 2200 simulations sampling the whole parameter space, the �rst-order as
well as global sensitivity indices obtained for the outputs ffast and fslow are shown on Figure
3.8. Once again, the frequency of the slow oscillations fslow seems mostly in�uenced by the
frequency of the input f1. As for the fast oscillations frequency ffast, even though A1 looks like
it is the only important factor in a �rst order approximation, global sensitivity indices reveal
that other factors such as f1, ge and pmono also carry a lot of information on the variance of

54



3.2. Exploration of the parameter space under stereotypical inputs

Figure 3.7 � R2 values of the models of ffast and fslow obtained with di�erent number of
factors. Starting from the original model with all factors included, the least signi�cant factor was
removed iteratively.

this output. Surprisingly, the gain put on increased excitatory synaptic conductances Ge (in the
dentate gyrus) and inhibitory synaptic conductances Gi (in the dentate gyrus and CA1) have
much less in�uence on ffast than the reduction of excitatory synaptic conductances ge (in the
entorhinal cortex and CA3), in accordance with the common hypothesis stating that sharp-wave
ripples complexes are initiated by recurrent excitatory connections in CA3 ([Buzsáki, 2015]).

Overall it should be noted that the frequency of the slow oscillations of the network fslow
can have values within the whole range of [0Hz, 10Hz] used to stimulate it, while the frequency
of the fast oscillations ffast varies between 30Hz (the minimum value of the range considered
for ffast) and 190Hz. Therefore, the model can only reproduce oscillations with frequency up to
the ripple frequency band, and is not able to generate pathological high frequency oscillations
(HFOs), without further modi�cations.

A quadratic model can also be �t on the results of these simulations as was done with the
Box-Benhken DOE, which yields a coe�cient of correlation R2 of 0.70 for the estimation of ffast
and 0.93 for the estimation of fslow. The coe�cients of these quadratic �ttings are shown on
Figure 3.9.

Overall, the following factors are signi�cantly (p < 0.001) linked to the outputs of the model :
� for ffast : 7 single factors (f1, A1, ptri, pmono, gmax,i, gmax,e, and ge), 6 squared factors

(f21 , p
2
tri, p

2
mono, g

2
max,i, g

2
e and g2CAN ), and 17 products of two factors (f1 ·A1, f1 · pmono,

f1 · ge, f1 · Gi, f1 · gCAN , A1 · ptri, A1 · gmax,i, A1 · gmax,e, A1 · ge, A1 · Gi, ptri · gCAN ,
pmono · gmax,e, pmono · ge, gmax,i · ge, gmax,e · ge, ge ·Gi, and ge · gCAN ).

� for fslow : 3 single factors (f1, gmax,e, and ge), 2 squared factors (f21 and g2e), and 16
products of two factors (f1 ·A1, f1 · ptri, f1 · pmono, f1 · gmax,i, f1 · gmax,e, f1 ·Ge, f1 · ge,
A1 · pmono, A1 · gmax,e, A1 · ge, A1 · gCAN , ptri · gmax,i, ptri · ge, pmono · gmax,e, pmono · ge,
and gmax,e · ge).

Both ffast and fslow depend on the characteristics of the input A1 and f1, showing that
our hippocampal model can have speci�c responses to stimuli from a�erent structures or sensory
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Chapter 3. Structural and functional modeling of the healthy hippocampus

Figure 3.8 � Sobol' sensitivity indices (�rst order and global) for all our ten parameters for the
study of ffast and fslow, with con�dence intervals at 95%.
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Figure 3.9 � Coe�cients measuring the each parameter's individual, squared or joint in�uence
in the modeling of ffast and fslow, obtained from 2200 simulations following a Sobol' sequence.
The signi�cant coe�cients (p<0.001) are shown in red.
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modalities in accordance with its biological function, but these outputs also depend on structural
and functional properties of the network.

This analysis will help us �nd the appropriate set of parameters for reproducing either delta,
theta, gamma or ripple oscillations, depending on the vigilance state. In the next section, we will
�rst focus on non input-related parameters, before studying the in�uence of the input in more
details in section 3.2.3.

3.2.2 Choices of parameters for representing wakefulness or slow-wave sleep

states

Representing typical oscillations of the sleep-wake cycle can be done by choosing the ap-
propriate sets of parameters so as to have fslow in the theta range (5-10Hz) and ffast in the
gamma range (30-90Hz) for wakefulness and fslow in the delta range (1-4Hz) and ffast in the
ripple range (130-200Hz) for slow-wave sleep respectively. We showed before the frequency fslow
is mostly determined by the frequency f1 of the input, which is why this section will mostly be
focused on the choice of parameters needed to obtain oscillations either in the gamma or ripple
range.

Among the parameters that can be used to tune the network's behavior, some of them like ge,
Ge, gi and gCAN that re�ect neurotransmitter concentrations could change their value to better
reproduce either sleep or wakefulness oscillations. On the other hand, ptri and pmono represent the
structural connectivity of the network, so they should not be changed between simulations once
properly set. The same holds true for gmax,e and gmax,i which represent the basic conductances
of synapses (i.e. without any synaptic plasticity or external neurotransmitter in�uence).

From the simulations performed in the previous section for the Sobol' sensitivity analysis, we
classi�ed the parameters depending on the frequency range of the output ffast (into gamma, 30-
90Hz, and ripple 130-200Hz frequency bands), and represented their distribution on Figure 3.10.
Four parameters, pmono, gmax,i, ge and gCAN , have a signi�cantly di�erent distribution between
the gamma and ripple bands (p<0.001 in a Wilcoxon�Mann�Whitney test). Figure 3.11 shows
the value of ffast depending on these four parameters on all the 2200 simulations performed in
the Sobol' analysis. Overall, a large set of parameters could be used to produce either sleep or
wakefulness oscillations.

Because ptri and gmax,e have been shown (Figure 3.8) to have only limited in�uence on the
output oscillations, we chose to keep them at the mean value of the previous studied range, that
is : ptri = 0.45 and gmax,e = 60pS. The value of gmax,i is slightly more in�uential, but as shown
on Figure 3.10 the mean value gmax,i = 600pS is also appropriate to be able to reproduce both
gamma and ripple oscillations.

The parameters Ge and Gi, which have very limited in�uence on ffast, represent the possible
increases of the synaptic conductances due to the presence of neurotransmitters such as Acetyl-
choline in the network. Therefore, we chose to have Ge = Gi = 1 to represent the slow-wave sleep
state (that is, the absence of Acetylcholine), and Ge = Gi = 3 (the mean value of the range we
studied) for the representation of the wakefulness state, for biological plausibility reasons.

Then, the three main parameters that remain to be chosen are pmono, ge and gCAN . From
Figure 3.11, it can be seen the fastest oscillations (i.e. in the ripple range) can be obtained roughly
when ge and gCAN are low, and pmono is rather high. Conversely, oscillations in the gamma range
are obtained with higher ge and gCAN and low pmono.

Because pmono should be kept the same during wakefulness and slow-wave sleep, we chose to
use the mean value of 0.3. For the other values, we chose to have gCAN set to its minimal value
to represent sleep (0.5µS/cm2) and to its highest value during wakefulness (25µS/cm2), and ge
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3.2. Exploration of the parameter space under stereotypical inputs

Figure 3.10 � Mean and standard deviation of the set of parameters yielding fast oscillations
in the gamma (30-90Hz) and ripple (130-200Hz) frequency range respectively. A star (*) next to
a parameter's name indicate that the gamma and ripple sets are statistically di�erent (p<0.001
in a Wilcoxon�Mann�Whitney test).

to its lowest value during sleep (ge = 1) and to its middle value (ge = 3) during wakefulness to
stay coherent with the other parameters representing the variation of synaptic conductances Ge

and Gi. These values are also represented on Figure 3.11.
All these choices of parameters can be found in Table 3.6.

Parameter Slow-wave sleep value Wakefulness value

ptri 0.4

pmono 0.3

gmax,i 600pS

gmax,e 60pS

Ge 1 3

ge 1 3

Gi 1 3

gCAN 0.5µS/cm2 25µS/cm2

Table 3.6 � Choice of network parameters for the sleep and wakefulness state

3.2.3 In�uence of the input

After having chosen the network's internal parameters, we can now study in more details the
relation between its output and the input used to stimulate it.

We �rst stimulated our "sleep state" network with a step current (f1 = 0 in Equation 3.7).
When stimulated by a su�ciently high current (A1 above 300pA), the network LFP presents
a transient fast activity whose frequency, amplitude and duration depend on the value of the
step current, resulting from a fast activity of CA1 pyramidal neurons. Increasing this current
about 1nA makes the network start oscillating at a low frequency (about 2.5Hz), on which faster
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Chapter 3. Structural and functional modeling of the healthy hippocampus

Figure 3.11 � Evolution of the ffast oscillatory frequency depending on the parameters gmax,i,
ge, pmono and gCAN (normalized). The parameter values chosen to represent the slow-wave sleep
and wakefulness states are shown with a red and blue cross respectively.
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3.2. Exploration of the parameter space under stereotypical inputs

oscillations are superimposed (see Figure 3.12).

Figure 3.12 � Simulated LFP resulting from a step current stimulation starting at t=250ms,
with values 400pA, 800pA and 1200pA, under slow-wave sleep and wakefulness conditions.

Applying a square wave stimulation with f1 > 0 also makes the network produce coupled
fast and slow oscillations, mostly synchronized with the input (Figure 3.13). The frequency of
the slow oscillations fslow increases with the frequency f1 of the square waves before dropping
at a value which depends on the stimulation current value A1 (see Figure 3.14 - B), when the
input isn't strong enough to elicit an activation of the whole network up to the CA1 region. On
the other hand the frequency of the fast oscillations ffast increases with the amplitude A1 of the
stimulation, and reaches its maximum value when the input frequency f1 is close to 2.5Hz, the
natural frequency of the oscillations occurring with a step input (Figure 3.14 - A).

With parameters set to the "wakefulness" state instead of the sleep one, similar patterns of
the evolution of fslow can be seen, except that no rhythmic slow activity appears for a step input
stimulation. Furthermore, there is no strong resonance e�ect of ffast around f1 = 2.5Hz as there
was in slow-wave sleep, and overall slower ffast values can be reached (Figure 3.15).

Whatever the parameters settings, stimulating only a small part of the entorhinal cortex
neurons gives rise to oscillations in the corresponding layers of the other regions which shows
that localized patterns of activation can be achieved (see the raster plots on Figure 3.16). The
spread of this localized activity is limited to adjacent layers in excitatory cell groups but reaches
neurons further away in interneuron groups.
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Chapter 3. Structural and functional modeling of the healthy hippocampus

Figure 3.13 � Simulated LFP (in blue) resulting from a square current stimulation starting at
t=250ms, with maximum value A1=1nA and frequency 1Hz, 5Hz and 10Hz, under slow-wave
sleep and wakefulness conditions. The corresponding input shape is shown in orange on each
plot.
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3.2. Exploration of the parameter space under stereotypical inputs

Figure 3.14 � Evolution of the network activity depending on the maximal amplitude A1 and
frequency f1 of the input square wave current for a network with slow-wave sleep settings. A-
Frequency of the fast oscillations, B- Frequency of the slow oscillations generated by the network.

Figure 3.15 � Evolution of the network activity depending on the maximal amplitude A1 and
frequency f1 of the input square wave current for a network with wakefulness settings. A- Fre-
quency of the fast oscillations, B- Frequency of the slow oscillations generated by the network.
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Chapter 3. Structural and functional modeling of the healthy hippocampus

Figure 3.16 � Raster plots of the 4 subregions of the network with a localized input to the EC
of frequency f1 = 2.5Hz and amplitude A1 = 1nA, starting at t = 250ms, with slow-wave sleep
settings. Neurons are indexed according to their position along the septo-temporal axis.
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Overall, this study shows that in order to obtain delta and sharp-wave ripple oscillations
in the sleep mode, an input with high amplitude A1 and frequency f1 in the delta range or
below is needed, while to obtain theta-gamma oscillations in the wakefulness mode, input with
f1 in the theta range and lower A1 should be applied. This last point is in accordance with the
theory stating that an external pacemaker, such as the medial septum, induces hippocampal
theta oscillations (see for example [Hangya et al., 2009], [Kang et al., 2015] or [Buzsáki, 2002]),
however it should be noted that the inputs studied here have a very peculiar shape, and that
inputs from regions a�erent to the hippocampus, with a more complex, realistic spectrum, and
at least a component in the theta range could also elicit theta oscillations. This realistic setup
will be studied in the next chapters.

3.3 Other modeling choices

3.3.1 Number and types of neurons

The human hippocampus contains tens of millions of neurons. Simulating each of their indi-
vidual dynamics through a Hodgkin-Huxley formalism would be impossible to do in a reasonable
amount of time considering the current computing resources available to us, so the number of
neurons had to be scaled down in our model.

Still, a minimum number of neurons is needed to obtain relevant results. More precisely,
[Williamson et al., 2016] shows that group activity starts to arise in networks containing tens of
neurons, while [Batista et al., 2014] shows that the dynamic range of a network activity increases
with the number of neurons in it (starting from around 10dB for an individual Hodgkin-Huxley
neuron, and stabilizing at around 30dB for networks with 80 or more neurons). Furthermore, as
the synaptic connections in our network are random, and as the connection probabilities to the
smallest neuron groups in our model can be as low as 6%, having too few neurons in any region
could result in strong behavior variations depending on the initialization of the network.

Therefore, we chose to model 100 neurons in our smallest neuronal populations, i.e. CA3
and Dentate gyrus interneurons (however it should be noted that such scaling down of the
neuron numbers could still a�ect the network dynamics, as shown in [van Albada et al., 2015]
for example).

The Figure 3.17 below shows the resulting LFP obtained in simulations where the neuron
numbers have been reduced tenfold compared to this value (and the synaptic conductance has
been increased tenfold accordingly), and is to be compared with Figure 3.14. Though most of
the features of the larger network are reproduced this way, there are still notable di�erences.
Most notably, the stimulation frequency that is associated with the fastest oscillations increases
with the stimulation intensity (instead of being stable at around 2.5Hz for the larger network),
and the peak associated with this resonance e�ect also gets wider. Moreover, the network is able
to follow fast frequency inputs even for a stimulation intensity as low as 0.7nA, which overall
could indicate that under realistic slow-wave sleep inputs, a smaller network would generate more
sharp-wave ripple complexes than a larger, more realistic one.

Figure 3.18 however demonstrates that having �ve times more neurons in the network com-
pared to our base values doesn't change its behavior signi�cantly, and therefore we kept these
values in the following parts to keep the simulation time as low as possible.

The choice of the di�erent types of neurons to be modeled was also based on computational
simplicity. We simulated the behavior of the network when replacing all excitatory neurons in
the Dentate Gyrus by smaller neurons (the size of the soma was divided by two), and by adding a
di�erent type of interneuron with half the usual membrane capacity in all the regions. As shown
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Chapter 3. Structural and functional modeling of the healthy hippocampus

Figure 3.17 � Evolution of the network activity depending on the maximal amplitude A1 and
frequency f1 of the input square wave current for a network with 10 neurons in the smallest
population, under slow-wave sleep settings. A- Frequency of the fast oscillations, B- Frequency
of the slow oscillations generated by the network.

Figure 3.18 � Evolution of the network activity depending on the maximal amplitude A1 and
frequency f1 of the input square wave current for a network with 500 neurons in the smallest
population. A- Frequency of the fast oscillations, B- Frequency of the slow oscillations generated
by the network.
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on Figure 3.19, the behavior of this network under stereotypical inputs remains very similar
to our previous results, which is why we chose to keep using only one type of excitatory and
inhibitory neurons in the following chapters.

Figure 3.19 � Evolution of the network activity depending on the maximal amplitude A1 and
frequency f1 of the input square wave current for a network with 10 neurons in the smallest
population. A- Frequency of the fast oscillations, B- Frequency of the slow oscillations generated
by the network.

3.3.2 LFP model

So as to reduce the computational resources needed to simulate our network dynamics, we
chose to include only point Hodgkin-Huxley neurons instead of multicompartmental ones. As a
consequence, the way we compute the LFP generated by each neuron is but an approximation of
the real extracellular potentials. In particular, instead of being originated at a speci�c location
on the neuron morphology, the synaptic currents in our modeled LFP are all located at a single
point, representing either the apical or basal dendrites of the neuron.

However, because we are studying the LFP recorded by a macro-electrode, each neuron
contribution is spatially average on its whole surface, and therefore the position of the origin of
synaptic currents only has a limited e�ect on the resulting signal.

To verify this, we added a random component on the position of the dendrite of each neuron
at each time step in the calculation of the LFP. More precisely, the position of the dendrite
was uniformly drawned from a cylinder of diameter 50µm, with axis the soma-dendrite vector
used previously, as shown on Figure 3.20. As can be seen on Figure 3.21, the resulting LFP is
highly similar both in the temporal and frequency domain to our previous LFP estimation (the
correletion coe�cient between the two is 0.97 on the example shown), which is why we kept using
the latter in the rest of our work.

It should however be noted that other factors in�uencing the LFP, such as the contribution of
other membrane potentials, were not considered here (see Appendix A for supplementary results
including the in�uence of action potentials on the fast frequencies).
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Chapter 3. Structural and functional modeling of the healthy hippocampus

Figure 3.20 � Diagram of the subspace used to draw the position of the dendrite of neurons
randomly in the approximation of the LFP.

Figure 3.21 � Simulated LFP and its frequency spectrum with �xed dendrite positions (top) or
randomized positions (bottom).
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Chapter 4

Modeling of the sleep-wake cycle

In the previous section, we built a model of the hippocampus, capable of reproducing both
wakefulness and sleep rhythms (i.e theta-nested gamma oscillations and sharp-wave ripple com-
plexes), and other combinations of fast and slow rhythms as well. Di�erent sets of parameters
can lead to similar oscillations, however not all of the transitions between those sets would be
plausible, biologically speaking, during the sleep-wake cycle.

Among the changes occurring in the hippocampus during the sleep-wake cycle, a focus will
now be put on the role of Acetylcholine (ACh) on the functional connectivity as well as individual
dynamics of hippocampal neurons. We will then compare our modeled network activity with
intracerebral recordings in a more realistic setup.

We published our investigations on this chapter's questions in [Aussel et al., 2018] for the
most part, on a previous version of our model. Therefore we will also present how the additions
we have made since reinforce or qualify the results of this publication.

4.1 Parameters representing the sleep-wake cycle

In this section, we reduce our previous chapter's parameter study to only three parameters so
as to test three main hypotheses for explaining the sleep/wake variations of the signals recorded
inside the human hippocampal formation, two of which are directly linked to the concentration
of ACh in the system. These three hypotheses are :

1. The role of the synaptic connectivity : The varying concentration of ACh between wa-
kefulness and slow-wave sleep modulate the synaptic interactions between and within
hippocampal subregions. According to [Hasselmo, 1999], high ACh concentration during
wakefulness reduces synaptic interactions from CA3 to CA1 and back to the entorhi-
nal cortex, thus promoting short-term memory storage in CA3, and conversely the low
concentration of ACh during sleep strengthens these connections and promotes long-term
memory formation in the neocortex. More precisely, due to the presence of nicotinic and
muscarinic receptors on hippocampal neurons, it has been shown that some synaptic
connections are enhanced by a high Ach concentration, such as the inhibitory connections
within the dentate gyrus and CA1 ([Jones and Yakel, 1997], [Frazier et al., 1998]), or
the excitatory connections from the dentate gyrus ([Cheng and Yakel, 2013], [Gray et al.,
1996]), while others are reduced, such as the excitatory connections from the entorhinal
cortex ([Heys et al., 2012]) or CA3 ([Herreras et al., 1988]). This e�ect was modeled by
modulating the strength of synaptic interactions, multiplying or dividing by a gain G = 3
the conductance gmax,e or gmax,i of these synapses to represent higher ACh concentration
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Chapter 4. Modeling of the sleep-wake cycle

Figure 4.1 � Synaptic connectivity for slow-wave sleep and wakefulness. Bold lines indicate
increased connectivity, and dotted lines indicate decreased connectivity during wakefulness com-
pared to slow-wave sleep

during wakefulness (this factor G regroups the parameters called Ge, ge and Gi used in
the previous chapter). These two connectivity settings, summed up in Figure 4.1, will
be called later on "slow-wave sleep connectivity" and "wakefulness connectivity". It is
worth noting that other biological mechanisms apart from the varying concentration of
ACh could also cause changes in the functional connectivity during the sleep-wake cycle,
such as synaptic plasticity ([Tononi and Cirelli, 2006]) or di�erential activity of distinct
interneurons subtypes ([Gan et al., 2017]).

2. The role of CAN currents : As presented in [Yoshida et al., 2012], ACh also plays a key role
in the activation of CAN currents in hippocampal pyramidal cells. As was detailed in the
previous chapter, to obtain wakefulness rhythms we chose a value of gCAN = 25µS/cm2,
and to account for the low concentration of ACh during slow-wave sleep, we chose gCAN =
0.5µS/cm2. These two values will be referred to as "CAN o�" and "CAN on" respectively
in the following.

3. The role of the input : The last possible factor inducing sleep wake variations that we are
investigating here is the (glutamatergic) input of the hippocampal network. Indeed, the
inputs the hippocampal formation receives from its a�erent structures also vary between
wakefulness and sleep, as the whole brain exhibits di�erent oscillatory rhythms. There-
fore we chose to change the input stimulation to our network accordingly, by basing it
on measured LFP signals measured in the patient's brain either during wakefulness or
slow-wave sleep (see Section 4.3.1). Please note that cholinergic inputs (from the medial
septum for example) are only represented by changing the two other settings (functional
connectivity and CAN currents), and that other non-glutamatergic inputs are not directly
modeled here.

4.2 Network response to stereotypical inputs

A �rst analysis can be done by stimulating the network with stereotypical inputs, de�ned as
in the previous chapter by the application of a positive current to entorhinal cortex neurons.
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Sleep inputs were represented as square inputs in the delta frequency band (f1 = 2.5Hz)
and large maximum value (A1 = 1.2nA), while wakefulness inputs were represented as square
inputs in the theta frequency band (f1 = 7.5Hz) and smaller maximum value (A1 = 0.8nA).
The frequency of the resulting fast oscillations ffast and slow oscillations fslow, de�ned as in the
previous chapter as the frequency of maximum energy in the power spectrum of the simulated
LFP in the 30-250Hz and 0-30Hz bands respectively, are shown on Figure 4.2.

Figure 4.2 � Distribution of the frequencies ffast (A) and fslow (B) generated by the model
under stereotypical inputs, with an input corresponding to sleep (A1 = 1.2nA, f1 = 2.5Hz)
or wakefulness (A1 = 0.8nA, f1 = 7.5Hz), functional connectivity corresponding to sleep or
wakefulness and presence or absence of CAN currents.

These simulations show that our three factors can all in�uence the fast oscillations frequency
ffast. In particular, both sleep input and connectivity are needed to achieve oscillations in the
ripple frequency band, while wakefulness connectivity on its own drives the network in the gamma
band instead (the other two factors being less in�uential in this situation).

On the other hand, the frequency of the slow oscillations fslow generated by the network are
almost only determined by the input given to the network, and does not seem to change when
the connectivity and CAN currents are varied.

However, because the inputs received by the hippocampus in vivo are much more complex
than stereotypical ones used here, and contain di�erent frequency components, it is likely that
the input-output relationships we observed before will be slightly di�erent as well. Therefore, the
next sections will focus on studying the behavior of the model under realistic inputs.

4.3 Inputs and outputs of the model to perform comparisons with

real signals

4.3.1 De�nition of realistic inputs

In the following sections, we apply a more realistic input than the one used previously, this
time derived from sEEG measurements in human patients. The LFP data we used was obtained
from patients su�ering from refractory epilepsy, implanted with intracranial electrodes for sur-
gery planning at the Neurology Service of the University Hospital (CHU) from Nancy, France.
The patient gave his informed consent and the study was approved by the ethics committee
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of the hospital. The sEEG electrodes (Dixi Medical R©, France) had a diameter of 0.8mm, with
2mm-long contacts and 1.5mm inter-contact distance. The patient was notably implanted in the
prefrontal cortex, the temporal lobe and the hippocampus (see Figure 4.3 for an MRI image
of the implantation of an electrode in the hippocampus), but the epileptogenic zone was loca-
ted in another region. The position of the electrodes in the patient's brain was automatically
ascertained using a procedure described in [Hofmanis et al., 2011].

Signals were recorded using Micromed R©, Italy acquisition system. The sampling frequency
was 1024 Hz. All signals were labelled by a neurologist to identify the di�erent stages of the
sleep-wake cycle (based on EEG signal) as well as to exclude any epileptic phenomena from
the data (interictal or seizures). Therefore we assumed that, when no seizure or epileptic spike
occurred, the signals from these regions were similar to that of healthy people. We used data
from either the slow-wave sleep or wakefulness state.

From the data recorded on the electrodes located in the prefrontal cortex, the lateral temporal
lobe and the temporal pole, three groups of 10000 Poisson neurons were de�ned : each of their
�ring rates was obtained by �rst high-pass �ltering the LFP from one of these regions above
5Hz, then taking its absolute value, and �nally scaling it to a 0-200Hz range, so as to roughly
follow its temporal evolution. Each of the Poisson neuron group was connected to the neurons
of a di�erent slice of the entorhinal cortex region with a uniform probability of 0.05 through
excitatory synapses with the same conductance gmax,e as within the network. The goal of this
process was to provide uncorrelated inputs to the entorhinal cortex, with some temporal and
frequential characteristics of clinically recorded brain signals.

Figure 4.3 � Coregistered CT-MRI image of the implantation of an sEEG electrode in the
patient's hippocampus (coronal view).

4.3.2 Sharp-Wave Ripples and gamma oscillations detection

Under realistic inputs, the spectrum of the generated LFP is much more complex than it was
with stereotypical inputs, following a 1/f decrease in power typical of sEEG signals. Therefore
the frequency of the fast and slow oscillations ffast and fslow have to be obtained in a di�erent
manner than previously.

Meaningful events were located in the simulated signals with a method close to that of
([Taxidis et al., 2012]). First, the root mean square (RMS) of the signal was computed using
10ms-long time windows with no overlap, and its standard deviation (SD) was derived from its
whole length. Portions of signal where the RMS was greater than 4xSD, with a peak above 6xSD,
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were considered as events. However, unlike in [Taxidis et al., 2012], RMS was applied to the raw
signal and not to the signal �ltered in the ripple frequency band, so as to be able to detect not
only ripples, but other types of oscillations as well.

The spectrum of all the detected events was then analyzed to identify the type of oscillatory
patterns : each of them was bandpass �ltered between 30 and 250Hz with a Butterworth �lter
of order 2, and the frequency of maximum power was extracted (please note that in the rest of
this work, all the �lters applied to signals are Butterworth �lters of order 2). The frequency of
these fast oscillations is similar to the ffast output obtained before.

The distribution of the peak frequencies in the di�erent simulations performed were compared
using Wilcoxon�Mann�Whitney tests (with the purpose of avoiding making assumptions on the
shape of the distributions).

In the real sEEG signals, a similar procedure was used to detect SWR, except that the RMS
was computed from the 120-250Hz bandpass �ltered signal, and only events when the peak RMS
was above 7xSD were considered.

On the other hand, the frequency of the slow oscillations was obtained by low-pass �ltering
the signals below 20Hz and looking at the highest frequency with an energy greater than half
the maximum energy of the spectrum. This output is to be compared with the fslow frequencies
obtained before.

4.4 Network response to realistic inputs

4.4.1 Slow-wave sleep mode

Under realistic inputs, large amplitude events can be seen on the simulated electrode every
few seconds (11 events in a typical one-minute-long simulation, with mean duration 156ms),
as the one shown on Figure 4.4. Band-pass �ltering them between 30 and 400Hz reveals an
oscillatory pattern with peak frequency at 125Hz (SD : 20Hz) (see also Figure 4.10), which is
consistent with the literature on sharp-wave ripple complexes for in vivo recordings ([Buzsáki,
2015]).

The ripples in the simulation also appear to happen with a timing close to that of the
sharp-waves ripples in the LFP recorded in the patient's hippocampus, as shown in Figure 4.5.
In ten one-minute-long signals, 216 SWR were found in the measured LFP and 211 in the
corresponding simulations. 80% of the simulated events were located within 1 second of a SWR
in the corresponding measured signal, the simulated SWRs occurring in average 265ms before a
measured SWR (SD :2s).

Figure 4.6 shows the evolution of the �ring rates of the excitatory and inhibitory neuron
populations in CA3 and CA1 during a SWR. It can be seen that the sharp-wave activity follows
the evolution CA1 interneurons �ring rate, while ripple activity mostly comes from increased
CA1 excitatory neurons �ring rate. The event is preceded by strong CA3 inhibition. During the
SWR, interneurons in CA3 then decrease their �ring rate, and only get strongly activated again
around 100ms later, possibly causing its termination. This pattern of activity of CA3 interneurons
is similar to what has been reported for O-LM interneurons in particular (see [Somogyi et al.,
2014]).

The direction of the propagation of the ripples in CA1, as well as their original location,
varies between events, in accordance with [Patel et al., 2013]. However, about one third of all of
the CA1 pyramidal neurons �re during each of the SWR events, which is more than what was
reported in the literature, as in [Nádasdy et al., 1999].
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The spectrum of the simulated signal is quite similar to that of the sEEG signal measured in
the hippocampus during slow-wave sleep, though the simulated signal shows a slightly stronger
power density in the ripple frequency band (see Figure 4.9). This could be explained by the
fact that our simulated neurons only model a slice of the hippocampus where too many CA1
pyramidal cells get involved in the SWRs and synchronize, and therefore our simulations do not
show enough noise and power in other frequency bands. Also, we do not include in our simulation
the LFP generated by neighboring structures and propagated through the extracellular medium,
which could increase the energy in the low frequencies of the LFP and therefore could compensate
for the apparent high frequency peak that we observe in our simulations.

Figure 4.4 � LFP simulated at the electrode during a ripple, and corresponding 120-250Hz
bandpass �ltered and 50 Hz lowpass �ltered signals.

4.4.2 Wakefulness mode

Switching the network parameters to the wakefulness ones gives rise to di�erent oscillatory
rhythms. Indeed, when applying a similar method of event detection as for slow-wave sleep, that
is when looking for portions of the signal with RMS signi�cantly above its standard deviation
(see Section 4.3.2), it can be seen that the events' peak frequency is shifted towards the gamma
range (90Hz, SD 31Hz). Also, the signal now presents lower frequency oscillations, with a peak
in its power spectral density around 7Hz, which corresponds to the theta frequency band (see
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Figure 4.5 � A : Comparison between the position of sharp-wave ripples in the simulation
(orange stars) and in the slow-wave sleep recordings of the hippocampus (green stars). The blue
line corresponds to the simulated LFP, and the red line to the recorded one. B : Frequency of
occurrence of the sharp-wave ripples in the measured and simulated LFP.

Figure 4.6 � Evolution of the �ring rates of the CA3 (top) and CA1 regions (bottom) during
a sharp-wave ripple, superimposed on the LFP. Orange : excitatory neurons �ring rate, Blue :
inhibitory neurons �ring rate, Green : LFP (all normalized).
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Figure 4.7 � LFP simulated at the electrode during theta-nested gamma oscillations, and cor-
responding 50-120Hz bandpass �ltered and 12 Hz lowpass �ltered signals.

Figure 4.7).
More precisely, power in the gamma frequency band (30-100Hz) is mostly located around the

peak of the theta oscillations (see Figure 4.8). On the other hand, the frequency of the gamma
oscillations doesn't change signi�cantly depending on the phase of the theta oscillations.

4.5 Factors in�uencing the sleep-wake oscillatory rhythms

After having con�rmed that slow-wave sleep and wakefulness parameters (input, CAN current
and functional connectivity) were associated with sharp-wave ripples and theta-nested gamma
oscillations respectively, we tried to modify each of them individually to analyze their in�uence.
Note that among these parameters, two are continuously varying (functional connectivity gain
G and CAN channel conductance gCAN ), while the third one is binary (sleep/wake input).

A �rst analysis can actually be done by binarizing all three factors. As we have determined
the most plausible values that generate either sleep rhythms (i.e. SWR) or wake rhythms (theta-
gamma oscillations), we can choose the respective values for the connectivity gain and the CAN
conductance (G = {1, 3} and gCAN = {0.5, 25}µS). These values are designated in the following
by sleep (G = 1, gCAN = 0.5) and wake (G = 3, gCAN = 25) respectively.

As it can be seen in Figure 4.10, the high frequency component of the oscillations depends
mostly on the functional connectivity, with little e�ect from the CAN current and the input :
slow-wave sleep connectivity produces events within ripple frequency range, while wakefulness
connectivity produces peak frequencies within the gamma band. The input type (sleep/wake)
does not signi�cantly change these peak frequencies. The CAN conductance has a slightly more
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Figure 4.8 � Proportion of the power in the gamma frequency band depending on the phase of
the theta oscillations, in ten one-minute-long simulations

Figure 4.9 � Comparison between the power spectrum of the hippocampal LFP (red) and the
corresponding simulated signal (blue), during slow-wave sleep (left) and wakefulness (right).
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important e�ect, increasing the frequency of the oscillations. Similar results can also be seen on
Figure 4.11, as whenever the slow-wave sleep connectivity increases the ripple to gamma band
power ratio. The CAN currents increase the overall power in the signal in every parameter set,
and also increase the frequency of occurrence of SWRs seen with slow-wave sleep connectivity,
from 0.3Hz (SD 0.1Hz) to 1.6Hz (SD 0.1Hz) with sleep inputs and from 0.13Hz (SD 0.04Hz) to
1.25Hz (SD 0.4Hz) with wakefulness inputs (in each case the p-value is less than 0.01). The power
of the signal is much higher with slow-wave sleep connectivity than with wakefulness connectivity,
which may be due to the very high neuronal activity seen during our simulated SWRs.

Figure 4.10 � Distribution of the fast oscillations frequencies of events in ten one-minute-
long simulations with Sleep or Wakefulness stimulation, Sleep or Wakefulness connectivity, and
presence or absence of CAN current, with mean and standard deviation. Whenever a di�erent
connectivity is used, the peak frequency is signi�cantly di�erent (p < 10−3). The dark blue points
correspond to the same set of parameters chosen for the study of the in�uence of the connectivity
in Fig 4.12.

In order to asses more precisely the e�ect of the CAN conductance variations, we have also
modi�ed it gradually between the two extreme values (see Figure 4.14, left panel ; recall that the
on/o� CAN current labels in Figure 4.10 correspond to the most extreme cases in Figure 4.14).

Figure 4.10 indicates that functional connectivity is the most important factor for changing
the peak frequency. The natural question which arises is if this change in the peak frequency
is gradual when we vary the connectivity gain G or if there is a switch at some point. This is
explored in Figure 4.12 (left panel). As it can be seen, the peak frequency decreases non-linearly
as G is increased. Only the value G = 1 ensures the generation of ripples, while values greater
than or equal to 1.5 lower the peak frequencies into the gamma band. For conciseness, we present
here the dependency of the peak frequency with G for �xed values of the CAN conductance (to
one of the extreme values, namely wake) and the input (wake also).

The low frequency part of the simulated signals seems to be in�uenced di�erently by these
three factors. This slow oscillations frequency seems to be in�uenced by both the CAN current
and functional connectivity, with smaller e�ect from the input type (see Figure 4.13). Increased
CAN current ( see Figure 4.14, right panel) increases the slow oscillations frequency, and so
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4.5. Factors in�uencing the sleep-wake oscillatory rhythms

does wakefulness connectivity (see Figure 4.12, right panel), but only up to the value G = 3,
above which the slow oscillations frequency drops. Wakefulness connectivity also increases its
standard deviation, meaning that di�erent input signals of the same type can then induce very
di�erent oscillatory frequencies. High CAN current and wakefulness connectivity are both needed
to achieve slow oscillations consistently in the theta band instead of the delta band.

Figure 4.11 � Power in the oscillations in the Ripple (120-200Hz, yellow), Gamma (30-100Hz,
green) and Theta (5-10Hz, blue) frequency bands in ten one-minute-long simulations with Sleep
or Wakefulness stimulation, Sleep or Wakefulness connectivity, and presence or absence of CAN
current, with mean and standard deviation.

4.5.1 Network topology and structural connectivity in�uences the resulting

LFP

In [Aussel et al., 2018], we published similar results to the ones presented previously in
this chapter. However, the biological plausibility of our model has been improved since then,
notably by applying di�erent inputs to three di�erent layers of our modeled entorhinal cortex,
and connecting the regions in our model with a connection probability decreasing with the
distance between the source and target neurons along the septo-temporal axis.

These changes helped us obtain a simulated LFP closer to clinical recordings in the frequency
domain. In particular in slow-wave sleep settings, the power spectrum of our current model is
closer to sEEG measurements in the ripple band, as the synchronized groups of neurons during
SWRs is smaller than in our previously published model (see Figure 4.15). It seems likely that
applying more diverse inputs to the entorhinal cortex could lead to an even more realistic network
activity.

The trends observed in the variation of the fast and slow oscillatory frequencies in our pu-
blished model are mostly similar to those presented here (see Figure 4.16 and 4.17), with fast
oscillations frequency being mostly in�uenced by functional connectivity and slow oscillations
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Chapter 4. Modeling of the sleep-wake cycle

Figure 4.12 � In�uence of the functional connectivity modi�cation factor G, with wakefulness
input and high CAN current. In dark blue, the value G = 1 corresponds to the sleep connecti-
vity and G = 3 corresponds to the wakefulness one. Left : Distribution of the fast oscillations
frequencies. Right : Distribution of the slow oscillations frequencies (ten simulations in each case).

Figure 4.13 � Distribution of the slow frequency components of the neural oscillations in ten
one-minute-long simulations with Sleep or Wakefulness stimulation, Sleep or Wakefulness connec-
tivity, and presence or absence of CAN current. The p-values indicated correspond to the com-
parison of the signals with and without CAN in each situation. The green points correspond to
the same set of parameters chosen for the study of the in�uence of the CAN channel conductance
as in Fig 4.14.
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4.5. Factors in�uencing the sleep-wake oscillatory rhythms

Figure 4.14 � In�uence of the CAN channel conductance gCAN (in µS/cm2), with wakefulness
input and connectivity. In green, the value gCAN = 0.5µS/cm2 corresponds to slow-wave sleep
settings and gCAN = 25µS/cm2 corresponds to wakefulness. Left : Distribution of the fast oscil-
lations frequencies. Right : Distribution of the slow oscillations frequencies (ten simulations in
each case).

frequency being in�uenced by the CAN currents. However, our current more complex input and
inter-region connectivity induce a more diverse response of the network along the septo-temporal
axis, which tend to increase the variability in the fast oscillations frequency observed, as di�erent
oscillatory patterns can now appear at the same time in di�erent neuron groups. As for the slow
oscillations frequency, our current more complex model reveals that functional connectivity plays
an important role in the production of theta oscillations (and not only CAN currents).

In our previous article [Aussel et al., 2018], one of the original contributions was the use of an
approximation of the real anatomy of the simulated systems. Therefore, regardless and previous
to any sleep/wake analysis, we also checked in this work what could be the bene�ts of using a
anatomically realistic topology and connectivity compared to, say, a random one.

Figure 4.18 and Figure 4.19 present the simulated LFP with slow-wave sleep and wakefulness
parameters respectively in 3 di�erent networks : a �rst network with topology and connectivity as
de�ned in the previous chapter, a second network with the same topology but a uniform rather
than distance-related connectivity, and a third network where the connectivity was kept but
where each structure's topology was replaced with a simple rectangular-shaped column. Other
parameters were kept the same across simulations.

What can be seen is that both topology and connectivity in�uence the results of the simu-
lations for slow-wave sleep parameters. Sharp-wave ripples-like events (see Section 4.4.1) can
only be seen with a distance-related connectivity and not with uniform connectivity. The events
obtained with the full topology are closer to the frequency of sharp-wave ripples reported in the
literature (see [Buzsáki, 2015]), while those obtained with a simpli�ed topology lie within the
gamma band (and there is proportionally more power in the theta and gamma bands compared
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Figure 4.15 � Comparison between the power spectrum of the hippocampal LFP (blue) and the
corresponding simulated signal (orange), during slow-wave sleep (left) and wakefulness (right),
from the model published in [Aussel et al., 2018].

Figure 4.16 � Distribution of the fast oscillations frequencies in ten one-minute-long simulations
with Sleep or Wakefulness stimulation, Sleep or Wakefulness connectivity, and presence or absence
of CAN current, with mean and standard deviation, from the model published in [Aussel et al.,
2018]. Whenever a di�erent connectivity is used, the peak frequency is signi�cantly di�erent
(p < 10−3).
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Figure 4.17 � Distribution of the slow frequency components of the neural oscillations in ten
one-minute-long simulations with Sleep or Wakefulness stimulation, Sleep or Wakefulness connec-
tivity, and presence or absence of CAN current, from the model published in [Aussel et al., 2018].
The p-values indicated correspond to the comparison of the signals with and without CAN in
each situation.

to the ripple band in this case).
On the other hand, theta and gamma oscillations can be obtained with all the three networks,

though the temporal aspect of the simulated signal is modi�ed by changing either the connectivity
or the topology.

A possible explanation as for why the topology and connectivity can a�ect so much the
resulting simulations in the slow-wave sleep case is that it changes the number and sizes of
interconnected neuronal clusters and therefore without a detailed topology it is hard to get the
same kind of neural synchronization as seen during sharp-wave ripple complexes. To a lesser
extent, changing the position of the neurons and their orientation when changing the topology
also a�ects the resulting signal as it a�ects the way neural activities are summed up when
computing the LFP seen by the electrode.

4.6 Discussion

Our results suggest that the high frequency component of hippocampal oscillations might be
governed mostly by network connectivity, whereas the low frequency components could result
from both individual neuron channel properties and network connectivity. A possible consequence
of this idea is that higher frequency, pathological oscillations that are seen in the epileptic hip-
pocampus for example (fast ripples or seizures) might also emerge from an abnormal functional
connectivity of the system rather than individual neuron properties.

An interesting point to raise is that the glutamatergic inputs given to the network seemed
to have little to no in�uence on the frequency of our model's oscillations, which could indicate
that the hippocampus doesn't need an external "pacemaker" such as the medial septum to
set its rhythms, but it has its own internal pacemaker, the CAN neurons (for more arguments
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Figure 4.18 � Comparison of the simulated LFP for slow-wave sleep, with the following topology
and connectivity : (a) full topology and distance-related connectivity, (b) full topology but uni-
form connectivity, and (c) simpli�ed topology and distance-related connectivity. A : 10-second
LFP traces for each conformation. B : Fast oscillations frequencies in each LFP simulation,
for each conformation, with mean and SD. Statistical comparison shows signi�cant di�erence
between each case (p < 10−3). C : Frequency of occurrence of the events for each conforma-
tion, with mean and SD. D : Power in in the oscillations in the Ripple (120-200Hz, yellow),
Gamma (30-100Hz, green) and Theta (5-10Hz, blue) frequency bands, with mean and SD, for
each conformation.
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Figure 4.19 � Comparison of the simulated LFP for wakefulness, with the following topology and
connectivity : (a) full topology and distance-related connectivity, (b) full topology but uniform
connectivity, and (c) simpli�ed topology and distance-related connectivity. A : 5-second LFP
traces for each conformation. B : Fast oscillations frequencies in each LFP simulation, for each
conformation, with mean and SD. Statistical comparison shows signi�cant di�erence between
each case (p < 10−3). C : Peak frequency of the LFP �ltered in the theta band (5-10Hz), for
each conformation, with mean and SD.
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on that topic, see for example [Hangya et al., 2009], [Kang et al., 2015] or [Buzsáki, 2002]).
Still, the external in�uence cannot be excluded, as our model predicts that theta oscillations
can also be generated by the correct combination of the inputs and functional connectivity, as
seen under stereotypical inputs. On the other hand, the inputs seem to in�uence the timing at
which oscillations are generated, which could account for signal encoding, particularly during
wakefulness. On portions of the signals, the simulation even showed some similarities with the
measurements in the temporal domain and not only in the frequency domain (see Figure 4.5).

Similarly to what have been proposed by [Taxidis et al., 2012], our model was able to repro-
duce di�erent rhythms, and sharp-wave ripples in particular, by using only chemical synapses
(and therefore no axo-axonic gap junctions). This further supports the idea that gap junctions
may not be necessary for generating high frequency oscillations in the hippocampus.

Finally, our work suggests that the topology of the hippocampal formation should be taken
into account in order to improve existing computational models. In particular, such methods
could produce a realistic sEEG signal estimation while keeping the simulation complexity low,
by solving the di�erential equations for point neurons only and considering them as dipoles for
calculating local �eld potentials.

86



Chapter 5

Modeling of the epileptic hippocampus

After having built a convincing model of the healthy hippocampus and parametrized it for
mimicking sleep and wakefulness, we will now extend it so as to study pathological epileptic
rhythms. As in the previous sections, we will base our modeling choices on existing physiological
knowledge of the epileptic hippocampus. In particular, we will study the e�ects of four common
neuropathological changes on the oscillations generated by the network, in relation with the
vigilance state.

5.1 Model changes to account for epilepsy

Among the di�erent changes that can occur in an epileptic hippocampus, we chose to focus
on four in particular : hippocampal sclerosis, mossy �ber sprouting, increased excitability and
impaired inhibition.

Hippocampal sclerosis was modeled by reducing the number of excitatory neurons in each
subregion of the model as a fraction scl of the maximum pyramidal cell and granule cell reduction
observed in type 1 hippocampal sclerosis ([Blümcke et al., 2013]). More precisely, the number of
excitatory neurons was set to :

� 10000 · (1− 0.75scl) in the entorhinal cortex
� 10000 · (1− 0.6scl) in the dentate gyrus
� 1000 · (1− 0.8scl) in CA3
� 10000 · (1− 0.8scl) in CA1
with scl varying between 0 (no sclerosis) and 1 (high sclerosis). The number of inhibitory

neurons on the other hand was left unchanged. With scl = 0, the number of excitatory neurons
in all regions is the same as in the healthy model.

Mossy �ber sprouting ([Noebels et al., 2012]) was represented by including recurrent exci-
tatory connections in the dentate gyrus as well as increasing the number of connections from
excitatory to inhibitory neurons in this region. A parameter spr varying between 0 (no sprouting)
to 1 (high sprouting) was de�ned to modify the maximum synaptic connection probabilities to :

� 0.1 · spr from excitatory to excitatory neurons, so that each excitatory neuron makes in
average 300 synapses with spr = 1, in accordance with the maximum 500 new synapses
reported in a pilocarpine epilepsy model in [Buckmaster et al., 2002]

� 0.06 ·(1+spr) from excitatory to inhibitory neurons, so that each excitatory neuron forms
about 1% of its new synapses with inhibitory interneurons.
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Chapter 5. Modeling of the epileptic hippocampus

Regarding the increased excitability of pyramidal cells, we chose to change the equilibrium
potential EK of their potassium channels, which could represent for example a channelopathy
([Lerche et al., 2012]) or impaired glial function ([Coulter and Steinhauser, 2015]). A healthy
hippocampus is characterized with EK = −100mV , and this value is increased to −90mV or
−80mV , increasing neuronal excitability, to represent epilepsy.

Finally, di�erent mechanisms can alter synaptic inhibition in mesial temporal lobe epilepsy.
The one we chose to model is the accumulation of chloride ions inside pyramidal cells changing
the reversal potential of GABA synapses (see [Huberfeld et al., 2007]).

We propose to model chloride ion concentration in each excitatory neuron as a simple �rst
order process :

d[Cl−]

dt
= − [Cl−]

τCl
, (5.1)

with τCl the decay rate of [Cl−]. Whenever the excitatory neuron emits an action potential,
the concentration [Cl−] is then increased by a �xed amount (set here to 0.2). A healthy hippo-
campus is characterized by a fast τCl decay rate of 0.1s, and this value is increased up to 0.5s or
1s to represent epilepsy.

The expression of the resting potential EI of the inhibitory synaptic current received by the
neuron is then modi�ed to :

EI =

{
−80mV if [Cl−] ≤ 0.5,
0mV otherwise.

(5.2)

The threshold value 0.5 and increase to [Cl−] have been set to 0.5 and 0.2 respectively so
that the threshold is scarcely exceeded in a simulation with parameters representing a healthy
hippocampus.

To summarize, our epilepsy study introduces 4 new parameters in our hippocampal model,
scl, spr, EK and τCl, representing respectively hippocampal sclerosis, mossy �ber sprouting,
pyramidal cell hyperexcitability and impaired inhibition. These parameters are to be studied in
relation with the vigilance state, which can be set to either slow-wave sleep and wakefulness.

Because the number of parameters is much smaller than in our initial study of the healthy
hippocampus in Chapter 3, we will investigate their in�uence on the resulting LFP by sampling
the parameter space regularly, without using a DOE or Sobol' analysis method.

5.2 Detection of epileptic oscillations in the modeled LFP

In clinical context, pathological oscillations such as seizures and interictal discharges (IEDs)
are commonly detected by visual inspection of the EEG or sEEG signals by an expert. Their
automated detection is still an active research �eld, and often relies on machine learning tech-
niques to cluster the data into a physiological and epileptic set (see for example [Paul, 2018] for
the detection of seizures or [Gaspard et al., 2014] for IEDs).

In this work, we chose to keep a rather simple approach for the detection of pathological
oscillations in our simulated signals. Seizures were detected and characterized by an increase in
the power in the theta to alpha band (4-10Hz), as was for example found out in intracranial
recordings in [Naftulin et al., 2018].

Interictal spikes (IEDs), sharp-wave ripples and fast ripples were detected by �rst �ltering
our simulated LFP in the corresponding frequency bands (10-80Hz, 120-200Hz and 200-500Hz
respectively), and computing the root mean square (RMS) of the resulting signals. Events were
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Figure 5.1 � Simulated LFP under a square current of amplitude 1nA, with spr = 1, scl = 0,
EK = −100mV and τCl = 0.1s.

then de�ned as portions of LFP with RMS higher than its mean value and with a peak at least
four times its standard deviation in at least one of the de�ned frequency band. IEDs were de�ned
as events with a peak in the RMS of the 10-80Hz �ltered signal but no peak in the ripple or fast
ripple frequency ranges, ripples were de�ned as events with a peak in the RMS of the 120-200Hz
�ltered signal but no peak in the fast ripple frequency range, and fast ripples were de�ned as
events with a peak in the RMS of the 200-500Hz �ltered signal.

5.3 In�uence of the parameter changes under stereotypical inputs

5.3.1 Model saturation

Certain parameters values cause the wakefulness network to saturate after a few seconds (see
Figure 5.1), i.e. to produce continuous paroxystic neural spiking in all the regions of the model,
which does not stop even after all external input to the network is removed. This abnormal
activity �rst arises from CA3, which can be expected knowing that this region is the one with
highest recurrent excitation. The LFP in this saturated state shows a peak in the fast ripple
frequency band (above 200Hz) in its spectrum.

The emergence of such saturation states only depends on the mossy �ber sprouting level spr
and the hippocampal sclerosis level scl. More precisely, it can be observed that the mossy �ber
sprouting level spr promotes instability while the hippocampal sclerosis level scl reduces it (see
Figure 5.2). This is consistent with an overall epileptogenic e�ect of sprouting ([Santhakumar
et al., 2005]) compared to a protective e�ect of sclerosis ([Lopim et al., 2016]).

With high spr and low scl, this saturation e�ect arises even for very low input stimulation,
meaning that it can develop from the internal noise put on all neurons and closed-loop excitation
only. Also, EK and τCl do not change the sprouting and sclerosis levels generating this paroxystic
activity, meaning that recurrent excitation, more than individual neurons hyperexcitability or
reduced inhibition is needed to obtain such pathological oscillations.

The sleep-wake cycle does in�uence this phenomenon, as in slow-wave sleep settings it arises
from a smaller subset of the parameters space than in wakefulness, that is with high pyramidal
cell hyperexcitability (EK = −80mV or higher), very high sprouting (spr = 0.8 or higher), and
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Figure 5.2 � Simple diagram showing the region of spr and scl parameters leading to network
instability in hached red, under wakefulness settings.

no hippocampal sclerosis (scl = 0). In conditions where instability appears only in wakefulness,
it seems to arise from the modi�ed synaptic connectivity accompanying wakefulness (and the
increased excitatory synaptic strength in the dentate gyrus in particular), and not from the
increased CAN current (see Figure 5.3).

5.3.2 Pathological oscillations

The evolution of the fast oscillations mean frequency ffast as a function of the four parameters
spr, scl, EK and τCl is shown on Figure 5.4 for slow-wave sleep and wakefulness respectively. Each
subplot of this �gure shows in color the values of ffast depending on spr and scl, for �xed values
of EK and τCl, which correspond to the line and column at which the subplot appears. The point
in the bottom-left corner of the bottom-left plot therefore corresponds to a healthy hippocampus
model. This layout will be used again throughout this chapter for the representation of other
model outputs.

In both the slow-wave sleep and wakefulness modes, high mossy �ber sprouting level comes
with higher frequency fast oscillations compared to the healthy hippocampus. Reciprocally, high
hippocampal sclerosis tends to reduce the frequency of the fast oscillations produced by the
network.

The relationship between the fast oscillations frequency ffast and our four parameters can
be estimated with a second order polynomial function (with the same method as in Chapter 3,
section 3.2.1) :

ffast = a0 + a1spr + a2scl + a3EK + a4τCl + a11spr
2 + a22scl

2 + a33E
2
K + a44τ

2
Cl

+a12spr · scl + a13spr · EK + a14spr · τCl + a23scl · EK + a24scl · τCl + a34EK · τCl

+Efast (5.3)

with a coe�cient of determination R2 of 0.84 in the wakefulness mode and 0.77 in the slow-
wave sleep one. In both slow-wave sleep and wakefulness, the most important parameters are
the mossy �ber sprouting level spr and the sclerosis scl, followed by the potassium channel
equilibrium potential EK (see Figure 5.5). The value of ffast also increases with the amplitude
of the input A1, especially under slow-wave sleep settings.

From this study, it seems that the fast ripple oscillations observed in epileptic hippocampus
experimentally in wakefulness and slow-wave sleep could be obtained in our model with high
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Figure 5.3 � Simulated LFP under a square current of amplitude 1nA, with spr = 1, scl = 0.2,
EK = −100mV and τCl = 0.01s, with low or high CAN channel conductance and wakefulness
or slow-wave sleep connectivity.

Figure 5.4 � Fast oscillation frequency ffast of the simulated LFP for di�erent values of spr,
scl, EK and τCl (in Hz). Left : Slow-wave sleep settings. Right : Wakefulness settings. The
input stimulation has frequency f1 = 2.5Hz and amplitude A1 = 1.2nA for slow-wave sleep and
A1 = 0.8nA for wakefulness.
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Figure 5.5 � Coe�cients measuring each parameter's individual, squared or joint in�uence in
the modeling of ffast in the wakefulness and slow-wave sleep mode. The signi�cant coe�cients
(p<0.001) are shown in red.

mossy �ber sprouting level and rather low sclerosis level. An hyperexcitability of the pyramidal
neurons (controlled by the parameter EK) would facilitate such pathological oscillations. As for
slower epileptiform patterns such as interictal discharges, these could be obtained more easily
with higher sclerosis levels and medium mossy �ber sprouting level. These hypothesis will be
tested with realistic inputs in the next section.

It should also be noted that when presented with an input consisting of several stimulations
with the same duration and amplitude, the network can respond at di�erent frequencies, as can
be seen on Figure 5.6, where the standard deviation of the ffast frequency of the network activity
emerging from successive stimulations is shown. This is especially true for intermediate to high
values of all four parameters, that is when the network is at the limit between a healthy and
a fast pathological behavior. The standard deviation of ffast is also higher in the wakefulness
compared to the slow-wave sleep state. Because no parameter was changed between successive
stimulations, it is likely that the di�erent oscillatory frequencies result from a di�erent initial
state of the network when the stimulation starts.

Epileptic features of the network in�uence the slow frequency of the oscillations fslow as
well, when the network is stimulated with a constant input (Figure 5.7). In particular, high
sclerosis and sprouting enable the network to produce oscillations in the theta frequency band
under constant input during wakefulness, and even in the alpha or beta band when potassium
dynamics are altered. Our results from Chapter 3 indicate that our hippocampal network will
respond preferentially (i.e with higher ffast frequency) when stimulated with an input at this
fslow frequency, which may then lead to epileptic seizures.
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Figure 5.6 � Standard deviation of the fast oscillation frequency ffast of the simulated LFP
for di�erent values of spr, scl, EK and τCl (in Hz). Left : Slow-wave sleep settings. Right :
Wakefulness settings. The input stimulation has frequency f1 = 2.5Hz and amplitude A1 =
1.2nA for slow-wave sleep and A1 = 0.8nA for wakefulness.

Figure 5.7 � Slow oscillation frequency fslow of the simulated LFP for di�erent values of spr,
scl, EK and τCl (in Hz). Left : Slow-wave sleep settings. Right : Wakefulness settings. The input
stimulation has frequency f1 = 0Hz and amplitude A1 = 0.8nA.
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5.4 Reproduction of epileptiform activity under realistic inputs

We next applied a realistic input to our network as de�ned in Section 4.3.1. In particular,
we chose a portion of signal from an awake patient around a seizure episode for the wakefulness
inputs and a portion of signal from another sleeping patient which included interictal discharges
for the slow-wave sleep inputs.

5.4.1 Reproduction of seizure-like activity in wakefulness settings

Under wakefulness settings, it is possible for the model to reproduce seizures with similar
timing and duration as in clinical measurements, as shown on Figure 5.8 - A, which goes with an
increased power in the theta frequency band. Increasing the parameters spr or EK , or decreasing
the parameter scl, tends to make the seizure in the model last longer or even never stop (though
it should be noted that our model does not include any internal seizure termination mechanisms),
as well as it increases the amplitude and frequency of the discharges in it, as shown for example
on Figure 5.8-B). Choosing parameters closer to a healthy state has the opposite e�ect, to a
point where the seizure disappears. The longer seizures as the one on Figure 5.8-B show a slow
increase in their theta band power at the beginning of the seizure similar to that of the real
seizure. The seizure-like activity in the simulated LFP occurs when the input stimulation shows
an increased power in the theta to beta frequency bands, in accordance with our previous results
on stereotypical inputs. No signi�cant change occur in the spectrum of the LFP before the
beginning of the seizure.

The total power in the theta band in the whole seizure episode (Figure 5.9) is high for
values of scl slightly below spr, and is strongly reduced at higher sclerosis levels. The neuronal
hyperexcitability controlled EK is slightly increasing the range of the spr and scl parameters
enabling such high power in the theta band, thus making the network more prone to generate
epileptiform activity.

Figure 5.10 shows the Peak Signal-to-Noise Ratio (SNR) of the simulated signal, computed
here as the ratio of the maximum value to the standard deviation of the (raw) LFP : SNR =
max(LFP )
SD(LFP ) . With intermediate values of the parameters, seizures appear with a high SNR, that is
with bursts of synchronized activity with an amplitude much higher than the background noise.
When the parameters are changed towards a more epileptic state (high spr, EK and τCl and low
scl), the SNR is reduced due to the augmentation of background noise, as synchronized activity
becomes more prominent (and the seizure fails to stop), and when parameters are changed
towards a healthy state the SNR is also reduced, this time due to the reduction of the maximum
amplitude of the signal. The SNR value in the human seizure recordings we used is 9.98, which
corresponds to a simulated signal with such intermediate values of the parameters, while the
SNR value in the same patient in the contralateral hippocampus outside a seizure episode is 4.9,
which is similar to the value of 5.9 obtained in the healthy model (spr=0, scl=0, EK=-100mV,
and τCl=100ms).

5.4.2 Reproduction of interictal spikes and fast ripples in slow-wave sleep

settings

Regarding slow-wave sleep settings and inputs, it is possible for the network to produce high
amplitude, brief activity peaks similar to interictal discharges (IEDs) as shown on Figure 5.11.
These IEDs tend to appear when a healthy network would produce large amplitude, slow oscil-
lations (see Figure 5.12), and they become more numerous as the sclerosis level scl is increased
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Figure 5.8 � Comparison of the measured hippocampal LFP and its theta band power around
a seizure in a patient (blue) and the simulated LFP of the model (orange). A- With spr=0.6,
scl=0.6, EK = −100mV and tauCl=0.1 second. B- With spr=0.6, scl=0.4, EK = −100mV and
tauCl=0.1 second.
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Figure 5.9 � Power in the theta band of the simulated LFP, depending on the values of spr,
scl, EK and τCl, with wakefulness settings and input. The values shown are in log-scale, with the
zero corresponding to the theta band power in healthy conditions (spr=0, scl=0, EK = −100mV
and τCl=0.1 second).

Figure 5.10 � Signal-to-Noise Ratio of the simulated LFP, computed as the ratio of the maximum
value to the standard deviation of the signal, depending on the values of spr, scl, EK and τCl,
with wakefulness settings and input.
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and gets higher than the sprouting level spr (Figure 5.13). At high scl levels, the number of IEDs
is also increased by either high EK or τCl, while it is reduced by the same two parameters in the
spr > scl region of the parameter space.

Figure 5.11 � Interictal discharge simulated with a network in a slow-wave sleep state with
spr = 0.6, scl = 0.6, EK = −90mV and τCl = 500ms.

Figure 5.12 � Comparison of the LFP generated with a network in a slow-wave sleep state in
�ve di�erent conditions, under the same input stimulation. Healthy state : spr = 0, scl = 0,
EK = −100mV and τCl = 100ms. EK + state : spr = 0, scl = 0, EK = −90mV and τCl =
100ms. τCl + state : spr = 0, scl = 0, EK = −100mV and τCl = 500ms. scl + state : spr = 0,
scl = 0.2, EK = −100mV and τCl = 100ms. spr + state : spr = 0.2, scl = 0, EK = −100mV
and τCl = 100ms.

The spr > scl region of the parameter space also promotes the production of oscillations in
the fast ripple range (200-500Hz), especially when either EK or τCl are high, as shown on Figure
5.14. In this �gure, it should be noted that in the region where EK = −80mV , spr is high and
scl = 0, the network is in a saturated state and therefore no fast ripple events can be detected
with our method. The three parameters spr, EK and τCl tend to turn physiological sharp-wave
ripple complexes into fast ripples, while increased sclerosis reduce their frequency down to the
gamma frequency band (see Figure 5.15).
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Figure 5.13 � Number of interictal discharges obtained with a network in slow-wave sleep state
in a one-minute-long simulation for di�erent values of spr, scl, EK and τCl.

Figure 5.14 � Number of fast ripple oscillations obtained with a network in slow-wave sleep
state in a one-minute-long simulation for di�erent values of spr, scl, EK and τCl.

98



5.5. Discussion

Figure 5.15 � Comparison of the activity generated with a network in a slow-wave sleep state
in �ve di�erent conditions, under the same input stimulation generating a sharp-wave ripple
like event, in the temporal (top) and frequency domain (bottom). Healthy state : spr = 0,
scl = 0, EK = −100mV and τCl = 100ms. EK + state : spr = 0, scl = 0, EK = −90mV
and τCl = 100ms. τCl + state : spr = 0, scl = 0, EK = −100mV and τCl = 500ms. scl +
state : spr = 0, scl = 0.2, EK = −100mV and τCl = 100ms. spr + state : spr = 0.2, scl = 0,
EK = −100mV and τCl = 100ms.

5.5 Discussion

In this chapter, we have modi�ed our previously developed hippocampal model so as to take
into account four hippocampal abnormalities usually associated with epilepsy, that is hippocam-
pal sclerosis (type I), mossy �ber sprouting, impaired potassium dynamics (leading to neuronal
hyperexcitability), and impaired chloride dynamics (leading to impaired inhibition).

A study of the network's behavior under stereotypical inputs reveals that very fast oscillations,
as well as paroxistic activity, can now be obtained. The wakefulness state enhances the capacity
of the network to produce such saturated state, mostly due to the combined e�ect of mossy �ber
sprouting and cholinergic modulation of synaptic currents. Impaired potassium dynamics also
favor such abnormal activities, while hippocampal sclerosis has a rather protective e�ect.

When stimulated with a realistic input, the network can also reproduce epileptic seizures
occurring during wakefulness, as well as interictal spikes and fast ripples occurring during slow-
wave sleep. The timing of epileptic seizures in particular is determined by the power in the theta
to beta frequency ranges in the stimulation input given to the network.

Epileptic seizures closest to the clinical recordings can be obtained when the degrees of scle-
rosis and mossy �ber sprouting are balanced. High mossy �ber sprouting with low hippocampal
sclerosis leads to perpetual seizure-like activity, while high sclerosis with low sprouting suppresses
the seizure. However, it should be noted that the model does not include any mechanism related
to seizure termination (such as synaptic depletion for example), and therefore it is probable that
high sprouting and low sclerosis could also enable realistic seizures, though longer than with a
more balanced set of parameters. Interestingly, impaired potassium and chloride dynamics have
little in�uence on the generation of seizures.
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In the model, interictal spikes are more numerous in the presence of hippocampal sclerosis,
impaired potassium dynamics or impaired chloride dynamics, but their number is reduced in the
case of high mossy �ber sprouting. Fast ripples on the other hand are favored by high sprouting
levels along with impaired chloride and potassium dynamics. One possible consequence of these
results is that cognitive impairments seen in epileptic patients, and promoted by interictal spikes
and fast ripples ([Kleen et al., 2013], [Krauss et al., 1997]), might be reduced by targeting such
chloride and potassium mechanisms.

Overall, the spr = scl hyperplane of the parameter space plays a very important role in the
production of pathological oscillations. With high spr and scl, it is possible to reproduce realistic
seizures, scl > spr increases the number of interictal discharges while spr > scl favors fast ripple
oscillations instead. Impaired potassium and chloride dynamics mostly in�uence the generation of
interictal discharges and fast ripples, but not the generation of seizures (at least in the parameter
range we studied). Seizures are mostly the result of the abnormal structural connectivity induced
by mossy �ber sprouting and modi�ed functional connectivity of wakefulness.

Interestingly, our results suggest that though brain injury is often a cause of acquired epilepsy,
the seizures may not be due to the neuronal loss itself, but to the mossy �ber sprouting it
induces instead. Further hippocampal sclerosis could then take place to counterbalance mossy
�ber sprouting and reduce seizure-like activity.
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Chapter 6

Conclusions and Perspectives

This chapter provides a summary of the work described in this manuscript, the main contri-
butions of each section as well as possible extensions that could be done in future works.

6.1 General conclusions

The hippocampus can exhibit di�erent oscillatory rhythms within the sleep-wake cycle, each
of them being involved in cognitive processes. For example, theta-nested gamma oscillations,
consisting of the coupling of theta (4-12Hz) and gamma (40-100Hz) rhythms, are produced during
wakefulness and are associated with spatial navigation and working memory tasks ([O'Keefe and
Recce, 1993], [Axmacher et al., 2010]), whereas Sharp-Wave-Ripple (SWR) complexes, consisting
of fast (120-200Hz) oscillatory events occurring during low frequency waves (≤ 0.5Hz), are produ-
ced during slow-wave sleep and quiet waking and play an important role in memory consolidation
([Girardeau and Zugaro, 2011], [Buzsáki, 2015]). Models exist to reproduce and explain the ge-
neration of each of these rhythms individually : for Sharp-Wave Ripples, see [Taxidis et al., 2012]
or [Traub and Bibbig, 2000] and for theta-nested gamma oscillations, see [Pastoll et al., 2013],
[Fukai, 1999], or [Bartos et al., 2007]. However, the mechanisms of generation and transition
between all of these rhythms are not yet fully understood.

This question is all the more important that altered hippocampal rhythms are involved in
drug-resistant mesial temporal lobe epilepsy, a form of epilepsy a�ecting about 0.6 person per
1000 people ([Asadi-Pooya et al., 2017]) and which cannot be controlled by existing pharmaceu-
tical treatments. As for physiological rhythms, some models have also been previously developed
to reproduce epileptic seizures (episodes of excessive neural activity, see the review from [Stefa-
nescu et al., 2012]) or interictal discharges (brief peaks of synchronous activity, see for example
[Demont-Guignard et al., 2009]), but these models cannot fully explain the links between neuro-
pathological conditions of the hippocampus, physiological processes such as the sleep-wake cycle,
and the resulting oscillations.

In this context, the main objective of this thesis was to provide better understanding of
various hippocampal oscillations, both physiological and pathological, including theta-nested
gamma oscillations, sharp-wave ripple complexes, epileptic seizures and interictal spikes. We
did so by developing a computational model of the hippocampus regrouping many mechanisms
previously described in separate works, and analyzing its oscillatory activity as we varied di�erent
parameters representing either structural or functional properties of the network, as well as
pathological modi�cations typically observed in epilepsy, using well-de�ned techniques such as
Design of Experiments and Sobol' analysis to quantitatively evaluate the importance of each
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parameter. The model also includes a simulation of the Local Field Potential (LFP) generated
by the neurons, so as to be comparable with clinical recordings.

Our results suggest that the network connectivity is crucial to control the frequency of hippo-
campal fast oscillations in particular. Moreover, regarding epilepsy, we showed that mossy �ber
sprouting could have a strong epileptogenic e�ect, while hippocampal sclerosis could be rather
protective. More details on the di�erent parts of this work are given below. Overall, our work
provides new insights into the mechanisms underlying the generation of various hippocampal
oscillations, which could pave the way to future clinical applications.

6.2 Building of a healthy hippocampus model

6.2.1 Contributions

In the �rst part of our work, we designed a full model of the hippocampal formation including
the entorhinal cortex, the dentate gyrus and the CA3 and CA1 regions, with in total more
than thirty thousand Hodgkin-Huxley point neurons. This model includes a LFP estimation as
measured by a macroscopic sEEG electrode so as to be more easily interpretable, obtained with
a direct problem approach by considering each pyramidal neuron as a current dipole.

Our model was made biologically plausible by relying on existing literature on the anatomy
and electrophysiological properties of the hippocampus. In particular, the position of the neurons
as well as the connection probabilities within each hippocampal region was reproduced, which
we later showed was important to reproduce its rhythms.

However, due to the model complexity, a lot of parameters needed to be tuned in order to
obtain realistic behavior. Therefore, we performed a thorough study of the network's activity as a
function of our parameters through a design of experiment method and a sobol' global sensitivity
analysis method, and used this analysis to deduce the most appropriate parameters to reproduce
either sleep or wakefulness typical oscillations.

In order to investigate the role of the input, we then studied how this hippocampal model
responds to stereotypical inputs. In particular, we showed that under slow-wave sleep conditions,
the network responds preferentially to inputs in the delta range, where it is able to generate sharp-
wave ripple oscillations. Furthermore, under both slow-wave sleep or wakefulness conditions, the
frequency of the slow oscillations of the network mostly follows that of the input, showing for
example that a stimulation with at least a component in the theta band is needed to obtain this
type of oscillations.

6.2.2 Future work

Improving the LFP estimation

The LFP approximation in our model relies on the hypothesis that each excitatory neuron can
be seen as a current dipole, with the current source located at the soma and the sink located in the
stratum moleculare at the neuron's supposed apical dendrites location, even though its dynamics
are simulated only with point Hodgkin-Huxley equations. This approach has the advantage of
not requiring too much computational resource, but a more accurate approximation of the LFP
could be obtained by replacing the point excitatory neurons in our model by compartmental
ones, more or less detailed.

Furthermore, our LFP approximation only takes into account synaptic currents, and not all
membrane currents arising from neurons' action potentials. As we model the LFP seen by sEEG
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electrodes inserted directly into the hippocampus, and therefore very close to some neurons, the
contribution of action potentials might be signi�cant ([Schomburg et al., 2012]), especially in
highly synchronized activity like epileptic spikes and seizures. To address this issue, we started
to work in collaboration with Harry Tran from the CRAN to develop a hybrid model of LFP
where hippocampal dynamics and spike timings would be simulated with our model before being
used to compute action potentials signatures in a more complex framework mimicking multi-
compartmental neurons. A poster was presented at the CNS conference 2019 in Barcelona about
this work, which is reproduced in Appendix A along with its abstract. The inclusion of action
potentials in our LFP approximation could reveal other appropriate parameter choices for the
generation of fast oscillations such as sharp-wave ripple complexes in particular.

Detailing or reducing the hippocampal model

Further knowledge of hippocampal oscillations could also be gained by either detailing or
reducing our current network model.

On the one hand, our model could be made even more realistic, provided that enough com-
putational resources are available, for example by adding more complex ion channel dynamics,
di�erent neuron types (as in [Santhakumar et al., 2005] or [Demont-Guignard et al., 2009]), as
well as modeling the di�erent layers of each region of the hippocampus and entorhinal cortex
with their own structural and functional connectivity. Also, it could be interesting to add gap
junctions (as in [Traub et al., 1999]) or ephaptic coupling to the regular synaptic interactions in
the network to study their in�uence on the resulting hippocampal rhythms and fast oscillations
in particular, as these mechanisms could induce neural synchrony at high frequency.

On the other hand, simplifying the neuron model could help study and predict the network
behavior mathematically, and going through the process of model reduction could also help
identify the key mechanisms that are necessary for the generation of each type of oscillations.
Some work was done in this direction during and following our Master thesis, where we studied
the activity of a simple ring-shaped Hop�eld neural network (see Appendix B), and which we
then started to extend so as to study the interaction of several ring populations.

6.3 Modeling of the hippocampus sleep-wake cycle

6.3.1 Contributions

After having de�ned the model and its sleep and wakefulness modes, we compared its activity
under realistic input stimulation with intracranial recordings obtained in epileptic patients out-
side of seizure episodes and free from interictal discharges. Our model was able to reproduce both
theta-nested gamma oscillations, typical of the awake state, and sharp-wave ripple complexes,
typical of slow-wave sleep, with temporal and frequential similarities with the measured sEEG
signals.

We linked the modi�cation of some parameters of the network, that is the conductance of
the CAN ion channels and the synaptic conductances, with cholinergic modulation, and showed
how single neuron dynamics are mostly involved in the determination of the slow oscillations of
the network (and the transition from delta to theta frequency band), while network functional
connectivity in�uences both its slow and fast oscillations (and the transition from gamma to
ripples).

Our results, published in [Aussel et al., 2018], also indicate that the reproduction of realistic
hippocampal oscillations, and especially sharp-wave ripple complexes, can only be done with
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realistic structural and functional connectivity patterns in the model. Gap junctions on the
other hand are not needed to obtain fast oscillations in the ripple frequency band, in accordance
with [Taxidis et al., 2012].

All the Python source �les used for building our healthy hippocampus model and running
the simulations are accessible on the ModelDB public repositories.

6.3.2 Future work

Adding explicit cholinergic inputs

Our model includes cholinergic modulation through their indirect e�ect on functional connec-
tivity and CAN channel dynamics, however it could also be interesting to model the concentration
of Acetylcholine explicitly and add cholinergic inputs from the medial septum to the network.

In particular, it would make our modeling of the wakefulness state more accurate. Making
synaptic and CAN channel properties vary following a theta rhythm characteristic of awake
septal inputs, instead of being �xed, could make the resulting oscillations change signi�cantly.
Acetylcholine can also have an excitatory e�ect on neurons that we did not take into account in
this work.

Studying REM sleep and the transitions between sleep phases

Another interesting research direction could be to study hippocampal oscillations in other
sleep stages, such as REM sleep or lighter stages of NREM sleep.

This could be done for example by introducing other neurotransmitters e�ects to the model,
like serotonin or norepinephrine, whose concentration in the hippocampus vary within the sleep-
wake cycle di�erently from acetylcholine ([Hasselmo, 1999]). The transitions between waking and
sleep and between sleep stages could also be studied from our model by gradually changing the
concentrations of these three (or more) neurotransmitters. It could then be useful to add the
thalamocortical loop to our model.

Linking oscillatory rhythms to memory

The main hippocampal function usually associated with the sleep-wake cycle is the formation
of short-term memories and their consolidation into long-term memory. Though this work was
only focusing on the generation of sleep-wake oscillatory rhythms, as our collaborators from the
CHRU Nancy now started to record signals from epileptic patients during and after spatial-like
memory tasks, our model may be extended to study some aspects of memory function.

For example, it could be interesting to add synaptic plasticity dynamics to our network
and study how they could a�ect the shape and timing of theta-gamma and sharp-wave ripple
oscillations, in interaction with the cholinergic modulation currently present in the model, and see
whether it would be possible to observe some replay of wakefulness activation patterns during
slow-wave sleep ([Buzsáki, 2015]). Similarly, memory impairments could be studied from our
model as altered hippocampal rhythms.

104



6.4. Modeling of the epileptic hippocampus

6.4 Modeling of the epileptic hippocampus

6.4.1 Contributions

We developed our model further to include four typical pathological modi�cations of the hip-
pocampus seen in mesial temporal lobe epilepsies, that is hippocampal sclerosis ([Blümcke et al.,
2013]), mossy �ber sprouting ([Noebels et al., 2012]), impaired potassium dynamics ([Lerche
et al., 2012], [Coulter and Steinhauser, 2015]), and impaired chloride dynamics in pyramidal
neurons (and its in�uence on inhibition, [Huberfeld et al., 2007]). Similarly to our sleep-wake
cycle study, these modi�cations involve both network connectivity and single neuron dynamics.
It should be noted that our "healthy" model of the hippocampus was unable to reproduce pa-
thological outputs.

Following a similar methodology as for the healthy hippocampus, we �rst analyzed our mo-
del's behavior under stereotypical inputs, and studied how these four modi�cations can induce
instability or modify oscillatory frequency. We also showed that the speci�c functional connecti-
vity of wakefulness induced by cholinergic modulation could make this state more vulnerable to
epilepsy-associated damage.

We then applied realistic stimulation to the network and were able to reproduce hippocampal
seizure timing and duration with an appropriate choice of parameters under wakefulness settings,
and interictal spikes and fast ripples under slow-wave sleep settings.

Our results suggest that mossy �ber sprouting is the main factor inducing epileptic seizure,
which reinforces the idea that epilepsy is a "network disease", while hippocampal sclerosis shows
a rather protective e�ect, but increases the variability in hippocampal response. Hippocampal
sclerosis, though often at the origin of acquired epilepsy, would not be the cause of seizures
themselves, but instead these would be caused by the mossy �ber sprouting induced by neuronal
loss. Potassium and chloride dynamics have little in�uence on the generation of seizures, but
increase the number of interictal discharges and fast ripples produced by the network, and thus
could be involved in the cognitive impairments usually associated with hippocampal epilepsy.

6.4.2 Future work

Modeling the e�ect of antiepileptic drugs

Anti-epileptic drugs used to reduce seizures each have an e�ect on speci�c ion channels or
synaptic receptors ([Chindo et al., 2016]), which could be included in our model's Hodgkin-Huxley
dynamics.

Such work could make it possible to study the e�ectiveness of a drug depending on the four
parameters characterizing an epileptic hippocampus in our model, thus helping to �nd out the
types of patient it is the most likely to treat, or providing insights on the e�ect of new treatments
before starting clinical trials.

Studying the propagation of seizures and ripples to other brain regions

Another main aspect of epilepsy that we did not study in this work is the propagation of
seizures from the seizure onset zone to other brain regions.

For now, our model only includes the hippocampus and entorhinal cortex regions, but it would
be possible to model an additional one, for example a cortical column, and study the conditions
needed for an epileptic spike or seizure occurring in the hippocampus to cause pathological
oscillations in this region too.
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Hippocampo-cortical coupling in general could be an interesting direction to explore, as it has
been shown to be involved in memory consolidation ([Maingret et al., 2016]), and its alteration
is a cause of memory impairments in epilepsy ([Gelinas et al., 2016]). The issue of detecting and
quantifying hippocampo-cortical coupling on human sEEG measurements has been investigated
by Iris Dumeur, student at the Ecole des Mines de Nancy, during a student research project, and
could be used to validate the model.

Studying other hippocampal pathologies

Finally, we have seen in the di�erent parts of this work that our hippocampal network can
generate many di�erent oscillatory patterns. Here, we focused only on patterns related to the
sleep-wake cycle and epilepsy, but information on other pathological rhythms could also be
inferred from the simulations we performed when exploring the parameter space. It would also
be possible to include other hippocampal abnormalities in the model so as to study other illnesses,
such as Alzheimer's disease for example.
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Hybrid modeling of LFP
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Introduction 
 
Simulating extracellular recordings of neuronal populations is a challenging task for understanding            
the nature of extracellular field potentials (LFPs), investigating specific brain structures and mapping             
cognitive functions. In general, it is assumed that extracellular recording devices (micro and/or             
macro-electrodes) record a mixture of low frequency patterns, mainly attributed to the synaptic             
currents and high-frequency components reflecting action potentials (APs) activity. Simulating such           
signals often require a high computational burden due to the multicompartmental neuron models             
used [1]. Therefore, different LFP proxies coexist in the litterature, most of them only reproducing               
some of the features of experimental signals [2]. This may be an issue in producing and validating                 
computational models of phenomenons where the fast and slow components of neural activity are              
equally important, such as hippocampal oscillations [3]. In this work, we propose an original              
approach for simulating large scale neural networks efficiently while computing a realistic            
approximation of the LFP signal including both synaptic and action potentials extracellular            
signatures. We apply this method on a hippocampal network [4] and compare the simulated signal               
with intracranial measurements made on human patients. 
 
Methods 
 
Computational model. The first step of our method consists in simulating an anatomical and              
functional realistic hippocampal network, using the macroscopic hippocampal anatomy. The          
modelled hippocampal formation includes four of its areas (CA1, CA3, dentate gyrus and the              
entorhinal cortex) and contains more than 32.000 neurons placed in an anatomically realistic             
manner to be able to simulate various fast and slow oscillations rhythms. The neurons inside each                
of the 4 regions were simulated with minimal LFP producing morphologies (2 compartments,             
approximated thus by a dipole). Each neuron’ dynamics was modelled using Hodgkin-Huxley type             
equations (a specific Calcium-Activated-Nonspecific / CAN channel was added for simulating a            
richer dynamics). The connections within and between the modelled régions d regions were set              
according to the available neurobiological literature or tuned in order to obtain realistic outputs              
(various fast and slow oscillatory rhythms, such as theta-nested gamma oscillations and sharp-wave             
ripple complexes). For details of this model, see [4].  

The input of the model was modelled as a random (Poisson) process with variable intensity               
(firing rate). This intensity / firing rate was extracted from the enveloppes of real depth EEG                
recordings from cerebral areas projecting onto the Entorhinal cortex of human epileptic patients             
(recorded during presurgical evaluation in the Neurology Service of the Nancy University Hospital -              
CHU Nancy). 

The output of the model was the LFP generated by the network on an sEEG electrode, to be                  
compared with real depth intrahippocampal sEEG signals (see Figure 1 for the localization of the               
electrodes). It is described in more details in the next section. 

 



 
Figure 1 : Left - Coregistered CT-MRI image of the implantation of an SEEG electrode in the patient's 

hippocampus (coronal view). Right - Topology of the modeled hippocampal network. 
 
LFP model. Realistic simulations of LFP imply compartmental neuron models with detailed            
morphologies. For a large population, these simulations are time consuming and need powerful             
computers. We propose to use a simpler approach. First, we modelled the extracellular potentials as               
a sum of synaptic and action potential related currents, assumed to be the main contributors [5].                
Next, the contribution of synaptic currents was obtained by considering each pyramidal neuron as a               
fixed current dipole (between soma and dendrites). The generated electrical potentials (LFP) were             
computed at specific points in space, corresponding to the extracellular electrode positions,            
assuming that the propagation medium is homogeneous isotropic. We focused on the pyramidal             
neurons contributions, significantly higher than those of interneurons [2]. 

Concerning the extracellular waveforms of the action potentials, a realistic simulation might            
take into account several factors, such as the presence and density of specific ion channels for                
every compartment, the neuron morphology and the electrode position in relation to it [6]. Indeed, for                
compartmental models, the potential recorded by an extracellular electrode is a weighted sum of the               
membrane currents of all compartments, the weights depending on the medium conductivity and the              
distances between each compartment and the electrode (thus on the neuron geometry). For our              
population, we used the simplified model proposed previously [7] which consists of a lumped soma               
attached to an axon subdivided into fixed-length compartments. With this type of morphology, one              
can obtain the extracellular action potentials (EAP) using a fast morphological filtering approach [7].              
The coefficients of the filter depend on the neuron morphology. Here, the axon diameter is set to 2                  
um for both types excitatory and inhibitory neurons and its length is 1000 um for the former and 400                   
um for latter. The axons of both populations for each hippocampus regions were oriented in a                
realistic manner. Having obtained the EAPs for every neuron, we next generated the total population               
contribution for each electrode by convolving the EAPs of each neuron with the raster plot given by                 
the computational model described in the previous section and summing up.  

The final simulated LFP, recorded by a finite electrode size, was obtained by a weighted               
average of synaptic and EAP contributions over the surface of the sEEG electrodes, sampled using               
a regular grid of 288 points.  
 
Results  and conclusions 
 
To evaluate the how realistic our model is, we compared the frequency properties of our simulated                
signal and one recorded at the CHRU Nancy in an awake patient’s hippocampus, presenting theta               
and gamma waves (see Figure 2 below). More precisely, we computed the norm of the difference                
between the real and simulated signal spectra on different frequency bands. By choosing a pair of                
weights balancing the contributions of the action potentials and the synaptic currents (called wAP and               
wsyn respectively), it is possible to adapt our model so that it specifically reproduces either theta or                 



gamma oscillations. 
It should be noted that though action potentials and synaptic currents play a similar role in                

determining the LFP in the gamma band, it is not true for lower frequencies, where the action                 
potentials contribution is less significant. 
 

 
 

Figure 2 : Left - Observed difference in the frequency domain between the real and simulated signals, with 
varying contributions of the action potentials and synaptic currents, in the theta band (top) and gamma band 

(bottom). Right - Power spectrum of the real and simulated signals after optimal weighting of the AP and 
synaptic contributions to the LFP (wAP=-wsyn, white dot on the left images)  

 
Overall, this work shows the importance of considering both action potentials and synaptic currents              
contributions to the LFPs, even in rather low frequency bands (such as gamma), while presenting a                
computationally efficient way of calculating them. 
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Annex B

On the stability of Hop�eld neural

networks

Before we started building a detailed model of the hippocampus including Hodgkin-Huxley
neurons, we �rst performed a short work related to the stability of rate models such as those
used to represent head-direction cells.

This work, though not directly related to the scope of our thesis, was published as a full length
conference article at the IEEE Conference on Decision and Control 2017, which is reproduced
thereafter.
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Stability conditions of Hopfield ring networks with discontinuous
piecewise-affine activation functions*

Amelie Aussel1, Laure Buhry2 and Radu Ranta3

Abstract— Ring networks, a particular form of Hopfield
neural networks, can be used in computational neurosciences
in order to model the activity of place cells or head-direction
cells. The behaviour of these models is highly dependent on
their recurrent synaptic connectivity matrix and on individual
neurons’ activation function, which must be chosen appropri-
ately to obtain physiologically meaningful conclusions.

In this article, we propose some simpler ways to tune this
synaptic connectivity matrix compared to existing literature so
as to achieve stability in a ring attractor network with a piece-
wise affine activation functions, and we link these results to the
possible stable states the network can converge to.

I. INTRODUCTION

In the hippocampus and the entorhinal cortex, some neu-
rons, such as place cells, grid cells and head-direction cells,
are capable of firing at different rates depending on an
animal’s position ([10]). When organized in a network, these
cells function as a “cognitive map” of one’s environment,
providing the basis of spatial orientation skills, but are
also involved in short-term memory, as they can encode
spatial information and retain it for some time even when
all external stimuli are removed.

Different computational models have been developed to
represent these structures, for examples see [9], mainly based
on Hopfield-like neural networks ([4]). In Hopfield neural
networks, each neuron’s activity sk is computed from the
weighted sum of the activity of all the N neurons of the
network, through an activation function φ. As the synaptic
decay of biological neurons is known to have an exponential
shape, we have the following differential equation:

ṡk = −1

τ
sk + φ(

N−1∑

i=0

wkisi + bk) (1)

or, in a matrix format:

ṡ = −1

τ
s + φ(Ws + b) (2)

where W is called the (recurrent) synaptic connectivity
matrix, τ is a synaptic time constant and b is the external
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input provided to the system (see [11]). The term Ws + b
can be interpreted as the total synaptic input received by the
neurons, and the term φ(Ws + b) as their firing rates (the
number of action potentials they emit in one second).

In the first studies of the latter model, the synaptic connec-
tivity matrix W was symmetric, and the activation function
φ was C1 and strictly increasing (often a sigmoid function),
which ensured the convergence of the system to a stable
point for any stimulation b (as shown in [5]). However, when
some of these constraints were lifted in order to account for
more realistic networks, the stability analysis of the model
became a much more complicated task (for a review, see
[13]). In particular, a few authors have studied Hopfield-like
neural networks with non-C1 activation functions φ, in order
to establish the conditions for a unique stable point to exist
(for example see [1]).

In [3], a necessary and sufficient condition for the stability
of a system with a non-C1 activation functions φ was
presented. More precisely, with φ(x) = max(x, 0) it was
shown that the system converges to an equilibrium point for
all constant b and all initial conditions, if and only if the
matrix ( 1

τ I−W) is copositive; that is, xT ( 1
τ I−W)x > 0

for all nonnegative x, except x = 0.
However, it is not clear how to apply this reasoning for

a more complex activation function φ. Also, the copositivity
of a matrix is not something easy to ensure when tuning
the connectivity matrix W. In addition, it provides no
information about the form of the solution at the stable
points.

Our point is that some other stability conditions can be
obtained, which may be weaker than those developed in
[3], but are also easier to verify when choosing the synaptic
connectivity matrix W. These conditions take advantage of
the periodic structure that can be imposed on W, when
considering place cells or head-direction cells.

Indeed, because networks made of these cells have to
be able to encode a continuum of positions, the associated
model should also present a continuum of stable points,
and such a continuous attractor dynamics is often achieved
by choosing a synaptic connectivity matrix with some kind
of periodicity (see [9]). This structure is coherent with
experimental results, as it has been observed that hippocam-
pal neurons are highly interconnected and tend to form
associative networks (see [7]).

In Section II of the present article, we will detail the model
we used, a ring-shaped, Hopfield-like neural network with a



piecewise affine activation function φ, then we will present
the results we obtained regarding its stability of the form
of its stable states in Section III. Finally, in Section IV we
will show how these results can apply on a simulation of a
network with a gaussian synaptic connectivity matrix.

II. DEFINITION OF THE RING NETWORK MODEL

A. Network dynamics

We studied the stability of a network consisting of N
identical neurons, which activity s followed the dynamics
(2) with an activation function φ defined by:

φ(x) =

{
αx+ β if x ≥ 0
0 if x < 0

(3)

where α and β are positive real constants.
The stimulation b is chosen strictly positive and uniform

on all neurons (∀k ∈ J0;N − 1K, bk = b).

This definition of φ ensures that neuronal firing rates are
always positive, and it also represents the fact that neurons
can only fire if the total input they receive is greater than
a certain threshold. With α > 0 and β = 0, the function
φ represents the behaviour of type-I neurons (capable of
firing at frequencies close to zero when excited with stimulus
just above their threshold), and with α > 0 and β > 0,
it represents the behaviour of type-II neurons (that have a
minimal firing rate).

It can be shown from equations (2) and (3) that, whatever
the initial conditions, the network activity s will always
become and remain non-negative after a certain amount
of time, and therefore, for simplicity reason, we will only
consider non-negative s.

With our definition of the activation function φ (equation
(3)), each neuron can follow two distinct linear differential
equations, depending on the input it receives:

• On the one hand, if a neuron k receives an input that is
greater than or equal to zero, it will be called ”excited”
and follow the equation: ṡk = − 1

τ sk+α
∑N−1
i=0 wkisi +

αb+ β
• On the other hand, if it receives an input that is less

than zero, it will be called ”inhibited” and follow the
equation: ṡk = − 1

τ sk

Therefore, at any instant t, our whole network can be
described by one of 2N different linear systems depending on
which neurons are excited or inhibited. We can then consider
our model as a switched system in the form:

ṡ(t) =

(
−1

τ
IN + αPΣ(t)W

)
s(t) + PΣ(t)(αb+ β)1 (4)

where IN is the identity matrix of size N-by-N, 1 is the N-
by-1 all-ones vector and PΣ(t) is a diagonal N-by-N matrix
containing ones at indexes corresponding to the excited
neurons at the instant t and zeros elsewhere.

B. The ring structure condition

In order to model structures such as head-direction
cells, we considered ring-shaped, rotation invariant networks,
which imposed some constraints on the synaptic connectivity
matrix W.

Each neuron was assigned a position so that they were
all uniformly distributed on a circle: for k in J0;N − 1K
the angular position of neuron k was θk = −π + 2kπ

N .
Then, because all neurons were identical (same time con-
stant τ , same activation function φ), the rotation invariance
was obtained by connecting all neurons to their neighbours
identically. In other words, the synaptic interaction between
any two neurons does not depend on their position on the
ring, but only on the angular distance between them (wij =
f(θi − θj)). This imposes that W is Toeplitz. So that there
was no discontinuity for θi − θj = kπ, W was even chosen
circulant (which means that any line of W can be obtained
as a right-shift a the previous one).

We also chose to keep W symmetric, which means that
the function f is even, and that the synaptic interaction
associated with an angular distance is the same whether we
go clockwise or anti-clockwise. Our synaptic connectivity
matrix is therefore of the form:

W =




w0 w1 w2 · · · w2 w1

w1 w0 w1 · · · w3 w2

w2 w1 w0 · · · w4 w3

...
. . .

w2 w3 w4 · · · w0 w1

w1 w2 w3 · · · w1 w0




(5)

The elements of W are all real values, but they can be
either positive or negative. A positive coefficient represents
an excitatory synapse and a negative one represents an
inhibitory synapse.

C. Connectivity matrix and submatrices eigenvalues

In order to analyze the stability of the system in the next
section, we had to determine the eigenvalues of the matrix
AΣ = (− 1

τ IN + αPΣW) for all possible matrices PΣ, as
defined in II.

Let us consider a matrix PΣ with k zeros along its
diagonal (so that it corresponds to a system with k inhibited
neurons), and let us consider AΣ = (− 1

τ IN +αPΣW) and
A0 = (− 1

τ IN + αW). The matrix PΣW is obtained by
replacing by zeroes all the k lines of W that corresponds to
inhibited neurons. Therefore, as it is also explained in [3], by
developing the determinant of AΣ along these lines, we find
that AΣ has k eigenvalues equal to − 1

τ , and the other are
the eigenvalues of the matrix ÃΣ, obtained by removing the
rows and columns of A0 corresponding to inhibited neurons.

Because W is a real symmetric matrix, it is noteworthy
that ÃΣ is also a real symmetric matrix and therefore all the
eigenvalues of the system are real. Moreover, we can infer
from [6] (Cauchy interlacing theorem) that the eigenvalues
of ÃΣ all lie between the minimum and the maximum of
the eigenvalues of A0.



As W is also circulant, its eigenvalues can be calculated
as the discrete Fourier transform of its first row’s coefficients:
for all m in J0;N − 1K, the corresponding eigenvalue λm of
W is equal to:

λm =
N−1∑

n=0

wne
2mniπ
N (6)

And the corresponding eigenvalue of A0 is:

µm = αλm −
1

τ
(7)

In the next section, we will now present our results
regarding the stability of the system defined here, as well
as the possible stable states it can reach.

III. STABILITY ANALYSIS

A. Form of the stable states

All the stable states of the system presented in section II
can be seen as the equilibrium point of one of the subsystems
defined by a combination of excited and inhibited neurons
Σ: (

−1

τ
IN + αPΣW

)
s + PΣ(αb+ β)1 = 0 (8)

The equilibrium points of the different subsystems can be
easily obtained.

The equilibrium point s0 of the subsystem with PΣ = 0
(all neurons inactive) is

s0 = 0 (9)

The equilibrium point scons of the subsystem with PΣ =
IN (all neurons active) is a state on which all neurons share
the same activity, due to the circulant property of W:

scons =
αb+ β
1
τ − αλ0

1 (10)

The equilibrium point sΣ of a system with PΣ 6=
IN ,PΣ 6= 0 (at least one active and one inactive neuron)
verifies:
• For all inhibited neuron k, sΣ

k = 0.
• As for the excited neurons, s̃Σ = Ã−1

Σ (αb+β)1 where
s̃Σ is the vector obtained by deleting all the elements
corresponding to inhibited neurons from sΣ.

However, not all the equilibrium points of the different
subsystems are also stable points for the whole system. For
example, the state defined by s0 = 0 is the equilibrium point
of the subsystem when all neurons are inactive, but it is not
a stable point of the whole system, as is this state ṡ0 =
− 1
τ s0 + φ(Ws0 + b) = (αb + β)1 6= 0 (because b, α > 0,

and β ≥ 0).
In fact, an equilibrium point sΣ of a subsystem defined

by Σ is a stable point for the whole system if and only if it
verifies:

∀k active in Σ, sΣ
k > 0 and Wks

Σ + b ≥ 0 (11)
∀k inactive in Σ, sΣ

k = 0 and Wks
Σ + b < 0 (12)

where Wk denotes the kth line of W.

Fig. 1. Example of the two types of stable points for ring networks,
achieved from the same initial conditions with two different synaptic
connectivity matrices. Top plot: Initial conditions. Bottom plot: two stable
states - consensus (red dashed line), and bump (blue solid line).

In this section, we will focus on the two following forms
of the stable points of the whole system:

Definition 1: A stable state of the system is called a
consensus if all the neurons share the same non-zero activity.
A stable state which is not a consensus is called a bump.

An example of consensus and bump are shown on Fig.1.

It can be easily checked that the only possible consensus
of the system is the state scons defined previously ((10)).

As ring network models are generally used to encode
information in the form of localised activity around some
angular position, we want to achieve an equilibrium point
which is not a consensus.

B. Sufficient condition for stability

In [3], a necessary and sufficient condition for the stability
of the system was presented. More precisely, with our
notations and with β = 0, it can be shown that:

Theorem 1: The following statements are equivalent:
1) All positive eigenvectors of all submatrices of −A0

have positive eigenvalues.
2) The matrix −A0 is copositive; that is, xT (−A0)x > 0

for all nonnegative x, except x = 0.
3) For all constant b and all initial conditions, the dynam-

ics converge to an equilibrium point.
However, we could not apply this reasoning with β > 0,

and even with β = 0, the copositivity of the matrix −A0 is
not something easy to ensure when tuning the connectivity
matrix W. What’s more, it provides no information about
the form of the solution at the stable points.

Then, let us first propose a sufficient condition for the
stability of the system.

Theorem 2: If all the eigenvalues of W are strictly less
than 1

ατ , then the system converges to an equilibrium point,



for all constant b and all initial conditions. Under these
conditions, the consensus scons is an equilibrium point of
the system if and only if λ0 ≥ − b

βτ .
Proof: Let us suppose that the connectivity matrix W’s

eigenvalues verify:

∀m ∈ J0;N − 1K, λm <
1

ατ

Then all the eigenvalues µm of A0 are strictly negative.
This also implies that all the possible matrices AΣ =
− 1
τ IN + PΣW defining our systems are negative definite.

The function V (x) = xTx is then a common Lyapunov
function for all our subsystems, as we have AT

Σ + AΣ

negative definite for all possible AΣ. This ensures that the
system converges to an equilibrium point, for all constant b
and all initial conditions.

Let us now prove that in that case, the consensus scons
is an equilibrium point of the system if and only if we also
have λ0 ≥ − b

βτ .
Let us consider a network that verifies ∀m ∈ J0;N −

1K, λm < 1
ατ , and the state scons in which for all neuron,

the neural activity is equal to:

scons =
αb+ β
1
τ − αλ0

> 0 (13)

We can compute for each neuron k (k ∈ J0;N − 1K):

Wkscons + b =

(
N−1∑

i=0

wiksi

)
+ b = scons

(
N−1∑

i=0

wik

)
+ b

As W is circulant, we have ∀k ∈ J0;N −1K,
∑N−1
i=0 wik =

λ0. Therefore:

Wkscons + b = sconsλ0 + b =
b+ βτλ0

1− ατλ0

As explained in III-A, this state is a stable state for the system
if and only if Wkscons+ b ≥ 0 for all k. Therefore the state
scons is a stable state of the system if and only if λ0 ≥ − b

βτ .

Summarizing this subsection, we have proposed a con-
servative sufficient for stability (λi < 1/(ατ), ∀ i) corre-
sponding to region 1 in figure 2 (splitted in two subregions
depending on the type of equilibrium point). Moreover, we
have defined strict necessary and sufficient conditions for the
existence of a stable consensus (region 1a).

The next subsections partially tighten the stability condi-
tions for the other possible equilibirum (bump), both analyt-
ically (subsection C) and numerically (section IV).

C. Necessary condition for stability

In this section we will prove the following statement:
Theorem 3: If λ0 ≥ 1

ατ then at least one neuron’s activity
diverges to infinity, for all constant b and all initial conditions
(we will say that the system diverges).

Such a network, with neural activity that diverges to
infinity, is of course highly unrealistic, so the region λ0 ≥ 1

ατ
should be avoided when choosing the synaptic connectivity
matrix.

Proof: From the definition of the activation φ (equation
(3)), because α and β are positive, it is clear that:

∀x ∈ R, φ(x) ≥ αx
Therefore, we can write the following inequality:

N−1∑

k=0

ṡk ≥
N−1∑

k=0

(
−1

τ
sk + α(

N−1∑

i=0

wki ∗ si + bk)

)
(14)

Also, because the synaptic connectivity matrix W in
circulant, we can show that:
N−1∑

k=0

N−1∑

i=0

wki ∗ si =

(
N−1∑

i=0

wi

)(
N−1∑

k=0

sk

)
= λ0

(
N−1∑

k=0

sk

)

Then, we can deduce from (14) that:
N−1∑

k=0

ṡk ≥
(
−1

τ
+ αλ0

)(N−1∑

k=0

sk

)
+Nαb

As all the neuronal activities sk are positive, and the
stimulation b is strictly positive, if the connectivity matrix
W is such that λ0 ≥ 1

ατ , at any given time we will have∑N−1
k=0 ṡk > 0 which means that the system will diverge to

infinity.
The eigenvalue λ0 therefore plays a key role in the

behaviour of the system, as it provides a necessary condition
for stability of the system as well as necessary and sufficient
condition for the existence of a consensus. As this eigen-
value is obtained from the sum of synaptic weights, it can
be interpreted in terms of balance between excitation and
inhibition in the network: stronger excitatory connections in
the network (which increase λ0) tend to make the network
diverge, whereas stronger inhibitory connections (which de-
crease λ0) tend to stabilize it and promote localized activity,
as could be expected.

D. What about the remaining case ?

We will now focus on the case that was not addressed
before, that is when W has at least one eigenvalue which is
greater than 1

ατ and λ0 ≤ 1
ατ .

Under these conditions, we could not find any more
specific results regarding the stability of the system than
those stated in Theorem 1, but we addressed the issue of
the form of the solution when the system converges to an
equilibrium point.

If λ0 ≥ − b
βτ , as we also have λ0 ≤ 1

ατ , then it can
be easily shown that the consensus defined by scons =
αb+β
1
τ−αλ0

1 is an equilibrium point of the system (with a similar
reasoning as in the proof for Theorem 2). However, as W
has at least one eigenvalue that is strictly greater than 1

ατ , it
implies that A0 has at least one eigenvalue which is strictly
greater than 0, and so this consensus is an unstable fixed
point.

Therefore, when the system converges to an equilibrium
point, if the initial state was not s = scons with scons as
defined in (10), or if λ0 ≤ − b

βτ then this equilibrium point
must be a bump.



IV. APPLICATION WITH A GAUSSIAN SYNAPTIC
CONNECTIVITY MATRIX

In order to verify our results, as well as tighten our stability
conditions for the case λ0 ≤ 1

ατ but ∃i 6= 0, λi >
1
ατ ,

we focused on studying a network in which the function
used to generate the synaptic connectivity matrix W was
known, and performed numerical simulations. Note that
plausible synaptic connectivity matrices will usually have
one mode (connection weights decrease monotonically with
the distance). In this case, λ1 will be the highest eigenvalue
(corresponding to the lowest non null frequency revealed by
the Fourier transform), which makes it possible to analyze
the stability of the system regarding this eigenvalue only.

More precisely, the synaptic connectivity matrix W was
built from a gaussian function as follows:

∀i ∈ J0;N − 1K,∀j ∈ J0;N − 1K,
wij = f(θi − θj) + µ (15)

with f : x 7−→
{

e−
x2

2σ2 if x 6= 0
0 if x = 0

This connectivity represents a ring in which all neurons
are excitatory, with an excitatory synaptic interaction f
decreasing as a gaussian of width σ with distance. Because
neurons usually don’t send synapses to themselves, the
excitatory synaptic interaction is equal to zero for i = j. The
presence of inhibitory interneurons with a uniform action on
the network is represented by introducing effective inhibition
as a global shift of µ < 0 of the synaptic connectivity,
as suggested in [2]. The connectivity matrix W can then
be tuned by chosing only the two parameters σ and µ
appropriately.

The parameters of the network were chosen as follows:
N=1000, τ=10ms, α=2, β=10, b=1. The initial state of the
network was chosen randomly, and the differential equations
were solved using Euler method with a time step of 0.5ms.

All the simulations were performed using Matlab (MAT-
LAB 8.1, The MathWorks Inc., Natick, MA, 2000).

With this synaptic connectivity matrix, for a large N , the
eigenvalues of W can be approximated using the error func-
tion defined by erf(x) = 1√

π

∫ x
−x e

−t2 dt. More precisely, we
have:

λ0 ≈ (N − 1)µ+
Nσ√

2π
erf
(

π

σ
√

2

)
(16)

and, among all the other eigenvalues of W, the largest
one is always:

λ1 ≈
Nσ

2
√

2π
e−σ

2

(
erf
(

π

σ
√

2
+ i

σ√
2

)

+erf
(

π

σ
√

2
− i σ√

2

))
+ µ (17)

We could then define the behaviour of the system in the
following regions, depending on σ and µ:
• Region 1a (λ0 <

1
ατ , λ1 <

1
ατ and λ0 ≥ − b

βτ ): the
system converges to a consensus.

Fig. 2. Stability analysis of a neural network with a Gaussian connectivity
matrix of parameters σ and µ. Red circled line: λ0 = 1

ατ
; Blue dashed

line: λ1 = 1
ατ

; Magenta squared line: λ0 = − b
βτ

; Black line: Border of
the region of convergence, as obtained in simulations; Green dash-dot line:
Border of the region of convergence, as predicted numerically.

• Region 1b (λ0 <
1
ατ , λ1 <

1
ατ and λ0 < − b

βτ ): the
system converges to a bump.

• Region 2 (λ0 ≥ 1
ατ ): the system diverges to infinity.

As for Region 3, characterized by λ0 <
1
ατ and λ1 ≥ 1

ατ ,
even though we could not obtain theoretical results, we used
numerical methods to predict the stability of the network as
well as the exact form of the solution.

To do this for a given matrix W, we considered all
the different combinations of active and inactive neurons Σ
on the ring (with regard to the rotation invariance of the
network), such that ÃΣ was negative definite (with ÃΣ as
defined in II-C). For each of these Σ, we computed the
theoretical state sΣ in which the network would be if it were
to stabilize with active and inactive neurons as defined by
Σ:
• for each inactive neuron k, sΣ

k = 0
• s̃Σ = Ã−1

Σ (αb + β)1, with s̃Σ the vector obtained
by selecting only the indices corresponding to active
neurons in sΣ.

We then checked the nullity of ṡΣ.
When no Σ could be found for which ṡΣ = 0, we

concluded that the network defined by W was unstable
(Region 3a), whereas on the other case, we listed the possible
forms in which the network could stabilize (Region 3b).

In Region 3b, our observations were that only one form
of solution could be stable for a given matrix W, and this
form always corresponded to a Σ where all active neurons
were grouped together on the ring, thus forming a single
bump of activity on the ring.

With our simulations, we could then confirm our theoret-
ical predictions and complement our numerical observations
(as summed up in Fig.2):



• In Region 1a, the system converges to a consensus.
• In Region 1b, the system converges to a bump.
• In Region 2, the system diverges to infinity.
• In Region 3a, the system diverges to infinity.
• In Region 3b, the system converges to a bump of the

predicted form.
In order to build a network that will converge to a

bump, one should then choose the synaptic weight matrix
parameters σ and µ corresponding to region 1b or 3b.

V. CONCLUSION

In this work, we studied the stability of ring neural net-
works with piecewise-affine, discontinuous activation func-
tions. In comparison to existing literature, we obtained some
simpler necessary conditions and sufficient conditions for
convergence of the system depending on the eigenvalues of
the synaptic connectivity matrix, and we were able to link
them to the form of the solutions. When these theoretical
conditions were not met, we were able to predict the be-
haviour of the system numerically on an example network.
All of these results were then confirmed using simulations
of a network with gaussian-like connectivity matrix.

Understanding the theoretical aspects of the behaviour
of such systems could prove very useful in computational
neurosciences, in order to build more complex models of
place cells or head-direction cells, and easily tune them to
resemble physiological networks.

As for future works, it would be interesting to see if
the results of this study can be extended to activation
functions with more than two affine regions (e.g., with some
saturation), to piecewise non-linear activation functions, or
to systems with more complex dynamics (e.g., with some
noisy input, or with delays on the synaptic transmission).
Another perspective would be to study this network in terms
of memory, i.e., how long the network can maintain accurate
localized activity when the stimulation is removed.
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Résumé

L'hippocampe peut présenter di�érents rhythmes oscillatoires au cours du cycle veille-sommeil, cha-
cun étant impliqué dans des processus cognitifs. Par exemple, des oscillations theta-gamma sont produites
pendant la veille et sont associés à la navigation spatiale et la mémoire à court terme, tandis que des
complexes sharp-wave-ripples, produits durant les périodes de sommeil lent profond, jouent un rôle im-
portant dans la consolidation de la mémoire. Des modèles existent pour reproduire chacun de ces rythmes,
cependant les mécanismes impliqués dans leur génération et les transitions entre eux ne sont pas encore
parfaitement compris.

Cette question est d'autant plus importante qu'une altération des rythmes hippocampiques est impli-
quée dans l'épilepsie du lobe temporal médian phamaco-résistante, une forme courante d'épilepsie qui ne
peut pas être contrôlée par les traitements médicamenteux existants. Des modèles ont aussi été développés
pour reproduire des crises d'épilepsie ou des pointes intercritiques, mais ces modèles ne parviennent pas
à expliquer entièrement les liens entre les conditions neuropathologiques de l'hippocampe, des processus
physiologiques comme le cycle veille-sommeil, et les oscillations qui en résultent.

Dans ce contexte, l'objectif principal de cette thèse est d'apporter une meilleure compréhension de
diverses oscillations hippocampiques, tant physiologiques que pathologiques.

Pour ce faire, nous développons tout d'abord un modèle computationnel de l'hippocampe sain incluant
au total plus de trente mille neurones Hodgkin-Huxley, représentés par des dizaines de millers d'équa-
tions di�érentielles résolues numériquement, et comprenant une estimation du potentiel extracellulaire
(LFP) généré par les neurones dipolaires tel que mesuré par une électrode macroscopique a�n d'être plus
facilement interprété. Nous e�ectuons ensuite une étude complète de l'activité de notre réseau basée sur
des plans d'expérience a�n d'étudier le rôle des paramètres intrinsèques du modèle et l'importance de la
stimulation en entrée dans la production de di�érents rythmes couplés.

Par la suite, notre modèle est évalué dans un contexte réaliste : l'activité qu'il génère quand il est
soumis à des entrées réalistes est comparée avec des enregistrements intracérébraux obtenus sur des
patients épileptiques. Nous montrons ainsi que notre modèle est capable de générer des oscillations de
veille ou de sommeil similaires aux signaux cliniques sur le plan temporel et fréquentiel. Nous relions les
modi�cations de paramètres du modèle (gains synaptiques et conductances de canaux ioniques) à une
modulation cholinergique, et montrons comment les dynamiques des neurones in�uencent principalement
les oscillations basse fréquence, tandis que la connectivité fonctionnelle contrôle les oscillations haute
fréquence.

En�n, nous détaillons davantage notre modèle a�n d'inclure quatre modi�cations de l'hippocampe
observées dans les cas d'épilepsies du lobe temporal médian, à savoir la sclérose hippocampique, le bour-
geonnement des �bres moussues, et une altération des dynamiques potassiques et chloriques (qui se tra-
duisent par des modi�cations de la connectivité du réseau ou des paramètres des neurones individuels),
et montrons comment ces mécanismes peuvent intéragir avec le cycle veille-sommeil décrit précédemment
pour donner lieu à des synchronisations et rythmes pathologiques.

En conclusion, nous proposons dans cette thèse un modèle unique de l'hippocampe regroupant divers
mécanismes précédemment décrits dans des travaux séparés, et analysons son activité oscillatoire tandis
que nous varions di�érents paramètres représentant les propriétés structurelles et fonctionnelles du ré-
seau, ainsi que des modi�cations pathologiques observées en épilepsie. Nos résultats apportent un nouvel
éclairage sur les mécanismes impliqués dans la génération des oscillations hippocampiques, qui pourraient
ouvrir la voie à de futures applications cliniques.

Mots-clés: hippocampe, cycle veille-sommeil, modélisation, traitement du signal, epilepsie.
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Abstract

The hippocampus can exhibit di�erent oscillatory rhythms within the sleep-wake cycle, each of
them being involved in cognitive processes. For example, theta-nested gamma oscillations, consisting of
the coupling of theta and gamma rhythms, are produced during wakefulness and are associated with
spatial navigation and working memory tasks, whereas sharp-wave-ripple complexes, consisting of fast
oscillatory events occurring during low frequency waves, are produced during slow-wave sleep and quiet
waking and play an important role in memory consolidation. Models exist to reproduce and explain the
generation of each of these rhythms, yet the mechanisms involved in their generation and the transitions
between them are not yet fully understood.

This question is all the more important that altered hippocampal rhythms are involved in drug-
resistant mesial temporal lobe epilepsy, a common form of epilepsy which cannot be controlled by existing
pharmaceutical treatments. Some models have also been previously developed to reproduce epileptic
seizures (episodes of excessive neural activity) or interictal discharges (brief peaks of synchronous activity),
but these models cannot fully explain the links between neuropathological conditions of the hippocampus,
physiological processes such as the sleep-wake cycle, and the resulting oscillations.

In this context, the main objective of this thesis is to provide better understanding of various hip-
pocampal oscillations, both physiological and pathological.

To do so, we �rst design a full computational model of the healthy hippocampal formation including
the entorhinal cortex, the dentate gyrus and the CA3 and CA1 regions. This model includes more than
thirty thousand Hodgkin-Huxley point neurons, reprensented by tens of thousands di�erential equations
to be solved numerically, as well as an estimation of the extracellular potentials (LFP) generated by
the dipolar neurons as measured by a macroscopic electrode, so as to be more easily interpretable. We
perform a thorough study of our model's activity based on design of experiments techniques to identify
the role of each of its intrinsic parameters and the importance of input stimulation in the production
coupled oscillatory outputs.

We then evaluate our model in a realistic context : its activity under realistic input stimulation is
compared with intracranial recordings obtained in epileptic patients. We demonstrate that our model
is able to reproduce both sleep and wakefulness oscillations with temporal and frequential similarities
with the clinically measured signals. We link the modi�cation of some parameters of the model (synaptic
gains and ion channel conductances) with cholinergic modulation, and show how single neuron dynamics
are mostly responsible for the frequency of slow oscillations of our network, while network functional
connectivity controls its fast oscillations.

Finally, we detail our model further to include four pathological modi�cations of the hippocampus
seen in mesial temporal lobe epilepsies, that is hippocampal sclerosis, mossy �ber sprouting, and impaired
potassium and chloride dynamics in pyramidal neurons (which are modeled by changing the network
connectivity or the parameters of individual neuron dynamics), and show how these mechanisms can
interact with the previously described sleep-wake cycle and lead to pathological synchrony and rhythms
such as seizures, interictal spikes and fast ripples.

In conclusion, we propose in this thesis a unique model of the hippocampus regrouping many mech-
anisms previously described in separate works, and analyze its oscillatory activity as we vary di�erent
parameters representing either structural or functional properties of the network, as well as pathological
modi�cations observed in epilepsy. Our results provide new insights into the mechanisms underlying the
generation of various hippocampal oscillations, which could open the way to future clinical applications.

Keywords: hippocampus, sleep-wake cycle, modeling, signal processing, epilepsy.
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