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Résumé : Les bases de données dont la taille dépasse largement I'échelle humaine sont de plus en plus courantes. La
surabondance de variables considérées qui en résulte (amis sur un réseau social, films regardés, nucléotides codant 'ADN,
transactions monétaires...) a motivé le développement des techniques de réduction de dimensionalité (DR).

Une sous-catégorie particuliere de DR est formée par les méthodes de sélection d’attributs (SA), qui conservent directement
les variables initiales les plus importantes. La maniére de sélectionner les meilleurs candidats est un sujet d’actualité a la
croisée des chemins entre statistiques et apprentissage automatique. Limportance des attributs est généralement déduite
dans un contexte supervisé, ou les variables sont classées en fonction de leur utilité pour prédire une variable cible spécifique.
Cette these porte sur le contexte non supervisé de la SA, c’est-a-dire la situation épineuse ou aucun objectif de prédiction
n’est disponible pour évaluer la pertinence des attributs. Au lieu de cela, les algorithmes de SA non supervisés construisent
généralement un objectif de classification artificiel et notent les attributs en fonction de leur utilité pour prédire cette nouvelle
cible, se rabattant ainsi sur le contexte supervisé.

Dans ce travail, nous proposons un autre modele combinant SA non supervisée et compression de données. Notre algo-
rithme AGNOS (Agnostic Feature Selection) ne repose pas sur la création d’'une cible artificielle, et vise a conserver un
sous-ensemble d’attributs suffisant pour reconstruire I'intégralité des données d’origine, plutdt qu’une variable cible en parti-
culier. Par conséquent, AGNOS ne souffre pas du biais de sélection inhérent aux techniques basées sur le clustering.

La seconde contribution de ce travail # est d’établir a la fois la fragilité du processus supervisé standard d’évaluation de la SA
non supervisée ainsi que la stabilité du nouvel algorithme proposé AGNOS.

a. Agnostic Feature Selection, G. Doquet and M. Sebag, ECML PKDD 2019

Title : Agnostic Feature Selection

Keywords : Dimensionality reduction, feature selection, unsupervised learning

Abstract : With the advent of Big Data, databases whose size far exceed the human scale are becoming increasingly
common. The resulting overabundance of monitored variables (friends on a social network, movies watched, nucleotides
coding the DNA, monetary transactions...) has motivated the development of Dimensionality Reduction (DR) techniques. A
DR algorithm such as Principal Component Analysis (PCA) or an AutoEncoder typically combines the original variables into
new features fewer in number, such that most of the information in the dataset is conveyed by the extracted feature set.

A particular subcategory of DR is formed by Feature Selection (FS) methods, which directly retain the most important initial
variables. How to select the best candidates is a hot topic at the crossroad of statistics and Machine Learning. Feature
importance is usually inferred in a supervised context, where variables are ranked according to their usefulness for predicting
a specific target feature.

The present thesis focuses on the unsupervised context in FS, i.e. the challenging situation where no prediction goal is
available to help assess feature relevance. Instead, unsupervised FS algorithms usually build an artificial classification goal
and rank features based on their helpfulness for predicting this new target, thus falling back on the supervised context.
Additionally, the efficiency of unsupervised FS approaches is typically also assessed in a supervised setting.

In this work, we propose an alternate model combining unsupervised FS with data compression. Our Agnostic Feature
Selection (AGNOS) algorithm does not rely on creating an artificial target and aims to retain a feature subset sufficient to
recover the whole original dataset, rather than a specific variable. As a result, AGNOS does not suffer from the selection bias
inherent to clustering-based techniques.

The second contribution of this work ? is to establish both the brittleness of the standard supervised evaluation of unsupervi-
sed FS, and the stability of the new proposed AGNOS.

a. Agnostic Feature Selection, G. Doquet and M. Sebag, ECML PKDD 2019




Synthese

Les bases de données dont la taille dépasse largement I'échelle humaine sont de plus en plus courantes. La
surabondance de variables considérées qui en résulte (amis sur un réseau social, films regardés, nucléotides codant
'’ADN, transactions monétaires...) a motivé le développement des techniques de réduction de dimensionalité (DR).

Une sous-catégorie particuliere de DR est formée par les méthodes de sélection d’attributs (SA), qui conservent
directement les variables initiales les plus importantes. La maniére de sélectionner les meilleurs candidats est un sujet
d’actualité a la croisée des chemins entre statistiques et apprentissage automatique. Limportance des attributs est
généralement déduite dans un contexte supervisé, ou les variables sont classées en fonction de leur utilité pour prédire
une variable cible spécifique.

Cette these porte sur le contexte non supervisé de la SA, c’est-a-dire la situation épineuse ol aucun objectif de
prédiction n’est disponible pour évaluer la pertinence des attributs. Au lieu de cela, les algorithmes de SA non supervisés
construisent généralement un objectif de classification artificiel et notent les attributs en fonction de leur utilité pour
prédire cette nouvelle cible, se rabattant ainsi sur le contexte supervisé.

Dans ce travail, nous proposons un autre modele combinant SA non supervisée et compression de données. Notre
algorithme AGNOS (Agnostic Feature Selection) ne repose pas sur la création d’une cible artificielle, et vise a conserver
un sous-ensemble d’attributs suffisant pour reconstruire l'intégralité des données d’origine, plutét qu’une variable cible
en particulier. Par conséquent, AGNOS ne souffre pas du biais de sélection inhérent aux techniques basées sur le
clustering.

La méthodologie proposée repose sur une modification particuliere de I'architecture de réseaux de neurones artifi-
ciels de type Autoencodeur. Une couche spéciale, dite couche de sélection, est insérée entre la couche d’entrée et les
couches cachées constituant le bloc d’encodeur standard. Cette couche de sélection permet de controler quels attributs
initiaux sont mis a contribution pour opérer la réduction de dimensionalité.

La fonction de perte utilisée pour entrainer le réseau par descente de gradient stochastique est également modifiée,
afin d’encourager la parcimonie parmi les poids de la couche de sélection. Cela aura pour effet de limiter le nombre
d’attributs initiaux utilisés pour découvrir une représentation compressée des données d’entrée. Lors de 'apprentis-
sage, un compromis est alors opéré entre cette nouvelle contrainte et le critere habituel d’erreur de reconstruction des
données initiales.

Lidée centrale de I'algorithme est donc d’inciter le réseau a faire appel au plus petit nombre d’attributs initiaux
possible pour construire une représentation compressée des données d’entrée, a partir de laquelle 'on peut reconsti-
tuer l'intégralité des attributs initiaux (y compris ceux non sélectionnés), le tout sans perdre une quantité significative
d’'information.

La seconde contribution de ce travail ! est d’établir & la fois la fragilité du processus supervisé standard d’évaluation
de la SA non supervisée ainsi que la stabilité du nouvel algorithme proposé AGNOS. Pour ce faire, une nouveau critére
de validation expérimental spécifique aux méthodes de SA non supervisées est proposé. Celui-ci consiste a estimer
la perte d’information dans le pire des cas, c’est-a-dire I'erreur de reconstruction des attributs initiaux les moins bien
capturés par la représentation compressée.

La conception de ce critére particulier est motivée par un constat pratique : dans de nombreux domaines industriels,
une grande quantité de données est collectée sans qu’il soit nécessairement prévu d’exploiter ces données dans un
but précis connu a I'avance. La SA non supervisée peut dans ce contexte étre vue comme une étape de prétraitement
visant a nettoyer et débruiter les données, qui seront a I'avenir analysées de maniere supervisée. Il est donc important
de ne pas avoir perdu par mégarde trop d’'information durant la phase de prétraitement non supervisée, et ce quelque
soit I'objectif supervisé futur. Par conséquent, il est judicieux de conserver la possibilité de reconstruire n’importe quel
attribut initial, d’ou cette attention particuliére portée au pire des cas.

1. Agnostic Feature Selection, G. Doquet and M. Sebag, ECML PKDD 2019
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Chapitre 1

Feature Selection in an unsupervised
context

Data collection and processing have played an integral role in organized societies since antiquity, be it for recording
taxes, managing cattle or organizing a military force. The advent of computers, however recent on the time scale of
human History, has led to a paradigm shift; data collection can now be performed automatically rather than manually.
Additionally, dematerialized storage allows keeping record of unprecedented amounts of data.

Together, these two breakthroughs have led us to the Information era, in which data is gathered at an ever-growing
rate. Consequently, a new challenge arose : the pace at which data is collected often vastly outscales the rate at which it
can be processed. A notorious example of this issue is given by the CIA in the early 2000s, when the US federal agency
accumulated large amounts of intelligence but lacked the manpower to analyze even a fraction of it. Accordingly, a new
branch of research and industry dedicated to tackling this class of problems appeared in the last decade, and was
named Big Data.

Rather than allocating evermore computational power to data processing, a cost-efficient way of handling large
databases is provided by Dimensionality Reduction (DR). DR is informally defined as the process of compressing
the information contained in the original high-dimensional dataset into a new data representation of lower dimension.
Although DR predates computer science (Pearson, 1901), it has become an increasingly prevalent tool in view of Big
Data.

1.1 Context of the thesis

The presented work is concerned with automatic DR. The compressed data representation is discovered with Ma-
chine Learning (ML). The approach will rely on the basics of neural networks (Haykin, 1994).

1.1.1 A need for interpretability

As ML becomes more and more popular in varied application fields such as medical research, financial market
prediction or weather forecast, it is increasingly important to the end user of ML to be able to make sense of the
learning results. The motivation underlying this interpretability requirement is threefold.

The first desired property is fairness, corresponding to the absence of malicious or unwanted bias in the algorithm
output (O’neil, 2016). Fairness has been a hotly debated topic in the past few years, for example in the US legal
system; the dangerousness of defendants and convicts is evaluated through risk assessment algorithms, and it was
soon found that African-American citizens were on average assigned higher risk scores than for other origins. The
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question remained, however, to determine whether this discrepancy was the consequence of racist discrimination or
the byproduct of other correlated factors such as firearm possession (Skeem et al., 2016). Interpretability is therefore
needed to assess the fairness of a learning agent.

The second desired property is transparency, which corresponds the understandability of a model. Transparency
is especially useful in domains where Atrtificial Intelligence outperforms human experts, such as epilepsy prediction or
the game of Go (Deepmind, 2019). In order for physicians to improve their own diagnoses or Go players their own skill,
they need to understand why the ML algorithm makes certain decisions. In other words, interpretability is required for
humans to learn from the machine.

The third desired property is accountability, such that there is clarity regarding who holds responsibility of the deci-
sions made by the algorithm. The need for accountability was recently highlighted, with the first fatal accident involving
a self-driving car happening in early 2018. Detailed analysis of the driving model is required in order to determine if
the algorithm is faulty and if the car passenger is to blame. Moving forward, interpretability will thus become even more
crucial, as ML algorithms become trusted with vital decisions.

Accordingly, the ML community as a whole is increasingly concerned with Fair, Transparent and Accountable (FTA)
learning, for both research (Doshi-Velez and Kim, 2017) and industry (FTA, 2018) purposes. The aim of the presented
work is thus to achieve FTA DR.

In order to perform efficient information compression, DR techniques typically produce new variables, thereafter
called features, that are obtained from the original features via an arbitrarily complex mapping. Following this uncons-
trained functional complexity, the resulting features are in the general case hardly interpretable by humans, regardless
of their expertise.

Consequently, this thesis is concerned with a particular case of DR called Feature Selection (FS). Instead of pro-
ducing new composite features, FS methods filter out the least promising original variables, retaining only the best
candidates. The result of FS is therefore a subset containing interpretable features (assuming the original data was in-
terpretable to begin with), such as e.g. {age, smoker} for a lung cancer prediction task on medical data. FS is therefore
more appropriate than generic DR (often called Feature Construction (FC)) to achieve FTA learning.

1.1.2 The unsupervised context

Three particular different ML settings are relevant to this work : supervised, semi-supervised and unsupervised. In
the supervised case, the end goal of learning is fully known. Consider for instance a visual recognition task where the
learning agent is presented with pictures of street traffic and tasked with identifying pedestrians, given that the human
expert knows all the correct answers.

In the semi-supervised setting, only a few correct answers are available. This is the case of the lung cancer prediction
task example. Physicians can tell that patients with visible symptoms are ill, but are uncertain about healthy-looking
cases.

In the unsupervised setting, no ground truth is available at all. Furthermore, the final goal of learning is itself unk-
nown. Using the previous illustrating example, this means the learning agent does not know whether the medical data
will ultimately be leveraged for lung cancer prediction, breast cancer prediction, or possibly something else entirely.

One may then wonder what the purpose of unsupervised learning is. If we do not even know what we want ourselves,
how could ML be of any help ? An answer to this questioning is provided by the following argument, made by G. Hinton
in 1996 :

“When we're learning to see, nobody’s telling us what the right answers are — we just look. Every so often, your
mother says “that’s a dog”, but that’s very little information. You’d be lucky if you got a few bits of information — even one
bit per second — that way. The brain’s visual system has 10** neural connections. And you only live for 10° seconds. So
it's no use learning one bit per second. You need more like 10° bits per second. And there’s only one place you can get
that much information : from the input itself”.
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In other words, life is at best a semi-supervised learning experience. Furthermore, supervised learning is very
limited in terms of scalability due to the scarcity of ground truth information. Yet, cognitive mammals are able to learn
quickly and efficiently using only their sensory inputs. This shows that unsupervised learning is actually a powerful
tool, and is well-suited for real-world applications. The power and crucial importance of the unsupervised context has
been further underlined by Y. LeCun (LeCun, 2016), essentially arguing that supervised learning is merely the tip of the
iceberg, while unsupervised learning forms the submerged part.

Consequently, this thesis is mainly focused on unsupervised FS. This setting is however particularly challenging
for the sake of interpretability, given the absence of a definitive goal shedding light on the results. For instance, the
previous selection subset {age, smoker} is easily understandable for lung cancer prediction purposes, but less so
without knowledge about the objective.

In order to comply with the FTA learning requirement, defining a clear unsupervised goal is therefore of paramount
importance. Designing such a goal and demonstrating its soundness will in the following prove to be a cornerstone of
the presented work.

1.2 Motivation

As previously mentioned, DR is a useful tool in a wide range of applications, such as banking, genomics research,
online advertising, power grids or video game development. DR is essentially required for any Big Data endeavor; as
soon as one is concerned with large amounts of input information, FS should at least be considered as a pre-processing
option.

Furthermore, as the computational power of CPUs and GPUs keeps increasing, private companies and govern-
ments alike pursue collection of more and more data, in the hopes that their data processing capabilities will eventually
cease to be a bottleneck.

Moreover, the recent advent of cloud computing is an additional incentive for indiscriminate data harvesting, given
the resulting boost of storage capacity. A telltale example of this trend is provided by Walmart (the world’s biggest retail
company), owner of the largest private cloud on the planet, which is able to process 2.5 petabytes of consumer data per
hour. This means that the company is recording millions of tidbits of information (features) about each of their clients, not
all features being equally interesting. There is thus little doubt that DR algorithms, and more specifically FS methods,
play a large role in the data processing pipeline.

Consequently, even though our contributions were so far applied only to comparatively much smaller real-world
datasets (spanning medical data, image data and text data), we expect unsupervised FS to be of potential use in a wide
array of different domains moving forward.

1.3 Main contributions and organization of the work

The first contribution presented in this manuscript is algorithmic. The goal is to design a method bridging the gap
between FC and FS, leveraging the constructed variables to guide the selection.

The second contribution is methodological in nature, and pertains to the evaluation procedure of unsupervised FS.
We claim and empirically show that the typical performance assessment scheme is unreliable, and propose a more
adequate stable efficiency criterion to rely on instead.
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1.3.1 Performing unsupervised FS

The most common approach consists of i) performing spectral clustering (?) to equip the datapoints with pseudo-
labels ; ii) falling back on supervised techniques, select the features best able to predict the pseudo-labels. Still, the
reliability and robustness of the clusters is not guaranteed. This manuscript investigates an alternate approach, called
Agnostic Feature Selection (AGNOS), that does not rely on pseudo-labels.

Inspired by regularized regression (Tibshirani, 1996; Simon et al., 2013) and feature selection based on neural
networks (Verikas and Bacauskiene, 2002; Roy et al., 2015; Li et al., 2016), the proposed AGNOS combines Auto-
Encoders with structural regularization, and delegates the combinatorial optimization problem at the core of feature
selection to a regularized data compression scheme.

1.3.2 Assessing unsupervised FS

The efficiency and relevance of unsupervised FS are usually estimated within a supervised learning setting. Accor-
dingly, the ranking of different selection algorithms depends on the supervised goal.

In order to address this limitation, we introduce a novel performance indicator, called FIT, that corresponds to an
unsupervised learning setting. Unsupervised FS algorithms are ranked w.r.t. the informativity of the respective selection
subsets to retrieve the whole initial feature set.

1.3.3 Thesis outline

Chapter 2 introduces the general background of the DR problem setting and presents the concept of intrinsic data
dimension.

Chapter 3 provides an overview of the DR field and focuses on the positioning of unsupervised FS approaches with
respect to other FC techniques.

Chapter 4 introduces the proposed unsupervised FS method AGNOS, including its three declinations AGNOS-S,
AGNOS-W and AGNOS-G, each corresponding to a particular structural regularization scheme.

Chapter 5 discusses the prominent supervised performance indicators for assessing unsupervised FS, and intro-
duces the proposed FIT.

The experimental validation of the three versions of AGNOS is described and discussed in chapter 6. The empirical
results of AGNOS are compared to baselines both w.r.t. the typical supervised indicators and the proposed unsupervised
criterion. The sensitivity of the performance indicators w.r.t. the hyperparameters of the method is also assessed.

Chapter 7 concludes the thesis with a summary of our contributions and a discussion of further perspectives.
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Chapitre 2

Dimensionality Reduction : formal
background

This chapter first introduces the general setting of Dimensionality Reduction (DR), the main associated challenges
and a tentative taxonomy of DR methods in section 2.1. An important hyperparameter of DR techniques is the dimen-
sionality of the resulting low-dimensional data representation, which is tied to the intrinsic dimension (ID) of the dataset.
Consequently, section 2.2 provides an overview of the ID estimation field. Lastly, section 2.3 concludes the chapter with
a discussion of the presented concepts and methods.

2.1 Setting

The following definitions and notations will be used throughout the entirety of this work.

Notations Given strictly positive integers n and D, let X € R"*? denote a dataset containing n samples (x4, ..., x,),
each z; corresponding to a point in a D-dimensional space. V(i,j) € [1,...,n] x [1,..., D], the coordinate of the i-th
datapoint on the j-th dimension is denoted as f;(z;). Vj € [1, ..., D], the n-dimensional vector f; = (f;(z1),..., fj(zn))
is called the j-th feature. F = {f1,..., fp} is called the original feature set.

Performing dimensionality reduction is in essence finding a new feature set containing fewer elements than the
original s.t. “information” is preserved. In order to be theoretically well-grounded, all DR algorithms rely on the following
underlying hypothesis, thereafter referred to as the manifold assumption :

The manifold assumption The D-dimensional datapoints x1, ..., x, lie near a manifold M- of dimension d* s.t.
d* << D.

Dimensionality reduction techniques can be categorized with respect to the kind of information they aim to preserve.
For instance, Principal Component Analysis (PCA) attempts to capture the variance in the data, while Locally Linear
Embedding (LLE) (Roweis and Saul, 2000) is concerned with preserving the pairwise distances between points (more
in chapter 3).

Formally, given target reduced dimensionality d € N* s.t. d << D, let H,; denote the set of all sets containing d
features computed from F, and C : R” x R? — R a cost function. A dimensionality reduction problem can then be
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formulated as finding Z s.t. :
Z5 = argmin C(F, Zy) (2.1)
Za€EHa
The cost function C' measures the loss of information occurring due to the change of representation from F' to Z.
Along this setting, three main questions are addressed in order in the following sections :

— Should the search for Z; span the entirety of #/;, or should it be restricted to a particular subset of
Hq ?(section 2.1.1)

— How should C be defined ?(section 2.1.2)
— How should d be determined ?(section 2.2)

2.1.1 Constraining the search : Feature Construction and Feature Selection

The general case of DR where there are no restrictions put on H, is called Feature Construction (FC)'. FC tech-
niques are well-suited to perform efficient data compression. However, the results are hardly interpretable, given that the
mapping between the original features (elements of F') and the new ones (elements of Z) is potentially non-linear and
arbitrarily complex. In the light of the growing need for fair, fransparent and accountable (FTA) learning (Doshi-Velez
and Kim, 2017) underlined in chapter 1, recent years saw a rise of popularity of the particular case of Feature Selection
(FS). In this setting, the search for Z} is restricted to the subsets of F' containing d elements :

Z5 =argmin C(F, Zy) (2.2)
ZaCF
|Za|=d

In other words, the new features are selected among the original ones. As such, the results of FS are typically easier
to interpret than in the general case of FC 2. Furthermore, equation (2.2) defines a combinatorial problem ; the goal is to
find the best candidate from the C¢ subsets of F' containing d elements (each original feature being either rejected or
retained). Exhaustive exploration being too expensive computationally-wise, FS techniques rely on C to quickly orient
the search towards a selection subset Z s.t. :

C(F,Z3) — C(F, Z}) < ¢, with e € R**

The main challenge of FS is thus to preserve the desired "information” originally contained in F' while simultaneously

tailoring the cost function C' so that the approximation Zj is as accurate as possible, under the constraint of an affordable
time complexity budget.

1. This problem is also frequently referred to as Feature Extraction (FE). However, we find this alternate name to be a potential
source of ambiguity, due to the similarity in meaning with Feature Selection. We will therefore prefer using the term FC over FE in this
work. Note that FC is also infrequently used in the litterature to describe the process of adding extra features to F', thus pertaining to
the data augmentation setting, which is outside the scope of this thesis.

2. Consider for instance medical data which purpose is to predict lung cancer in patients. The selection subset {age, smoker} is
likely more understandable to a physician than the artificial features {tanh(0.87age + 0.13gender), o(0.95smoker + 0.05name)}.
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2.1.2 Defining the cost function : Supervised and unsupervised DR

In the event that the end goal of learning is known at the time of DR, this objective defines an additional farget
feature®, which can be leveraged to design the cost function C. Consider a FS task on medical data for the purpose
of predicting a certain disease among the patients. If one knows which patients are affected by the disease, then C
should reflect the usefulness of the original features for discriminating between ill and healthy patients. This idea is the
motivation of the early Fisher score (Duda et al., 2000) approach. Considering for instance the age feature. Let age
denote its mean across the whole dataset, and age;,, o1, age;, o; its mean and variance on the respective subsets of the
ny, healthy and n; ill patients. Then the cost of the {age} selection subset singleton w.r.t. the Fisher score is given by :

Npop + Ni0;
nn(ager — age)? + n;(age; — age)?

C({age}) =

The older (or younger) the ill patients relatively to the healthy ones, the more important the age variable. Exploiting
the learning goal in this way to define C' corresponds to the most extensively studied problem in the literature, called
supervised DR.

An alternate setting, lower in popularity despite its crucial importance (LeCun, 2016) as highlighted in chapter 1,
corresponds to the case where no learning goal is available. Such a context is referred to as unsupervised, in which C
is harder to define (more in chapter 3).

Discussion

Following the discussions of sections 2.1.1 and 2.1.2, a tentative taxonomy of DR methods is proposed in Figure
2.1.

‘ Dimensionality ‘

Reduction
‘ Feature_ ‘ ‘Feature Selection‘
Construction
Supervised [ Unsuperwsed Supervised [ Unsupervised

FIGURE 2.1: High-level Taxonomy of Dimensionality Reduction methods

This is in line with the typical point of view in the DR literature, where FS is treated as a concept separate from FC
rather than a particular case. Here, this setting is adapted for the sake of a clear and streamlined presentation. However,
an important aspect of our algorithmic contribution is to cross the gap between FC and FS (chapter 4).

3. There may also exist multiple learning goals simultaneously (Zhang and Zhou, 2007). This variant is called multi-label learning
(Zhang and Zhou, 2013).
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The resulting four categories of DR algorithms, namely Supervised FC, Unsupervised FC, Supervised FS and
Unsupervised FS will be discussed in chapter 3, along with some of the most prominent approaches for each category.

Following the manifold assumption, FC can be interpreted as the task of projecting the datapoints onto the latent
manifold. Therefore, it naturally comes that hyperparameter d should be s.t. d ~ d*. Consequently, the task of tuning d
is closely tied to estimating the dimension of the underlying manifold *. This can in turn be cast to a problem of intrinsic
dimension estimation, which we will focus on in the following section.

2.2 Intrinsic dimension

The intrinsic dimension (ID) of a dataset is an informal concept commonly defined in Machine Learning® as :

Definition 1. The intrinsic dimension I1D(X) of dataset X € R"*P is the minimum number of features required to
represent X with negligible loss of information w.r.t. the original D-dimensional representation.

After this definition, the intrinsic dimension should be an integer and bounded by D. It will be seen that continuous
ID is also of interest. After the manifold assumption, ID should by construction match the dimension d* of the under-
lying manifold, s.t. ¥X € R"*P ID(X) = d*. Turning definition 1 into a formal definition proves to be challenging, as
underlined by Pestov (2007) :

“A search for the "right” concept of intrinsic dimension of a dataset is not yet over, and most probably one will have
to settle for a spectrum of various dimensions, each serving a particular purpose, complementing each other”.

To the best of our knowledge, there is no unifying framework for the concept of ID as of yet, even though promising
new approaches have been proposed in the last decade (Facco et al., 2017). Additionally, authors often use their own
taxonomy of ID estimators; Facco et al. (2017) differentiate between fractal and neighborhood-based methods, and
we will partially rely on their categorization. Note that e.g. Campadelli et al. (2015) refer to other distinctions such as
projection and topological techniques, interpreted as global vs local estimates. In order to provide an overview of the ID
estimation field, we will in the following rely on the tentative taxonomy from figure 2.2.

One may argue that the boundary between fractal and neighborhood-based methods is slim, as it will be shown in
sections 2.2.2 and 2.2.3 that both share the core idea of "zooming in” on the samples and providing local ID estimates.
This argument is the main reason for the varying taxonomies of ID estimators found in the literature.

Sparsity-based methods are concerned with estimating the impact on the pairwise distances between dataset
samples of the curse of dimensionality, which we will now discuss.

2.2.1 The curse of dimensionality and sparsity-based ID estimation

The expression "curse of dimensionality” was coined by Richard E. Bellman to describe various phenomena arising
in high-dimensional spaces that hinder typical data analysis. Among these adverse effects, the sparsity issue is the one
most prominently considered in ML, and is informally described as :

Definition 2. As the dimensionality of a dataset grows, samples become more and more spread apart. Eventually, all
datapoints are equally far away from each other.

4. The link between d and d* is less immediate in the case of FS : there is no guarantee that the latent manifold can be retrieved
from exactly d* original features. Nevertheless, the manifold assumption provides a lower bound for the selection subset size, that is
d* < d. Estimating d* is thus still of interest for the purpose of FS.

5. The concept of intrinsic dimensionality is also relied upon in signal processing (Trunk, 1976), where it refers to the minimum
number of variables needed to generate a near-perfect approximation of the original signal.
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ID estimators

Y

Sparsity Fractal Neighborhoods

FIGURE 2.2: Tentative taxonomy of intrinsic dimension estimation techniques

This property is illustrated on an toy experiment in Figure 2.3. The sparsity property from definition 2 can be rephra-
sed from the perspective of the distribution of pairwise distances between samples :

Definition 3. As the dimensionality D of the dataset X grows larger, the mean np(X) of the Gaussian-shaped histo-
gram of pairwise distances increases, while its standard deviation o p(X) decreases.

i
o

,n
'” J B

0 o5 1 15 2 25

FIGURE 2.3: Distribution of Euclidean distances between 10* randomly chosen pairs of points

sampled from the unit hypercube 17, for different values of dimension D. Top-left panel corres-

ponds to D = 3, top-right to D = 10, bottom-left to D = 100 and bottom-right to D = 1000. Image
taken from Pestov (2007).
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The mathematical characterization of the root cause of this sparsity phenomenon is beyond the scope of this thesis.
For the sake of completeness, we refer the interested reader to Pestov (1999) for a more formal explanation of the curse
of dimensionality through the lens of the so-called concentration of measure.

Given the low variance in pairwise distance, every data sample has many equally remote "close” neighbors. There-
fore, the sparsity property is typically harmful to ML algorithms relying on clustering, or more generally investigating local
structure. Considering that this issue is mitigated or even absent in low-dimensional spaces, this provides an additional
motivation to perform DR, besides those discussed in chapter 1 : escaping the curse of dimensionality.

The goal of a sparsity-based ID approximation is thus to quantify how much the dataset is plagued by the sparsity
effect. Chavez et al. (2001) provided a simple estimator using the notations from definition 3 :

= fip(X)?

IDsparse(X) = m (23)

The stronger the sparsity effect in X, the larger I/l\)sparse(X). Given that this ID estimation is both quite intuitive and

computationally inexpensive, the I/l\)sp,me has become a popular tool in the ML community ©.
By contrast with the informal definition ID(X) € N*, the above formula does not necessarily return an integer (and

o~

can return 0 in pathological cases), that is ID,.,s.(X) € R*. Although a non-integer dimension may seem counter-
intuitive, this is in line with fractal dimensions, which we will now introduce and discuss.

2.2.2 Fractal-based ID estimation

Though seemingly unrelated, DR and fractal geometry (Mandelbrot, 1983) bear some similarities, that we will now
exhibit. As per the manifold assumption, DR relies on the hypothesis that there is a disconnect between the represen-
tation dimension D of dataset X and its "true” dimension ID(X).

On the other hand, fractals can be represented in 2D or 3D, such as the notorious real-life example of a snowflake
(fig. 2.4), or the artificial Julia set (fig 2.5). Given that these two entities can be drawn on a sheet of paper, their
representation dimension, thereafter called topological dimension, is D = 2.

This does not however provide us with any insight regarding whether these two objects are equally "complex” fractal
patterns. Therefore, an additional concept to characterize complexity in a fractal, called fractal dimension (Mandelbrot,
1983) is needed, as informally defined in definition 4 :

Definition 4. The fractal dimension of any geometrical object is the rate at which details in the pattern change with the
scale of measure.

In other words, assume a magnifying glass is at one’s disposal. The fractal dimension of the snowflake corresponds
to the speed at which it becomes more detailed as one zooms in on a small region, w.r.t. the optical power of the lens.

A well-studied real-world illustration of this concept is provided by the problem of measuring the length of the
coastline of Great Britain (Mandelbrot, 1967), as shown in figure 2.6.

As the size of the segments used to approximate the coastline pattern decreases, the total measured length in-
creases. The ratio between the two quantities is a tentative definition of the intrinsic dimension of Great Britain.

In light of definition 4, the link between fractal geometry and DR is made clearer; the intrinsic dimension of a dataset
can be thought of as the rate at which samples become simpler to depict as one closes in on the datapoints. The concept
of fractal dimension can thus be transposed to the context of DR (Camastra and Vinciarelli, 2002; Kégl, 2003) in ML to
approximate ID(X). Similarly as for the ID, numerous formal definitions of the fractal dimension were proposed over
the years.

6. It directly follows from equation (2.3) that the estimated ID of a dataset composed of a single sample is infinite. Although it has
limited practical implications, this mathematical oddity has interestingly enough been shown (Pestov, 2007) to be a required property
of any theoretically well-grounded ID estimator.



2.2. Intrinsic dimension 17

FIGURE 2.4: A snowflake presents self-similarity properties characteristic of fractal patterns.
Image taken from Wikipedia.

FIGURE 2.5: The Julia set, an artificially generated fractal pattern drawn in 2D. Image taken from
Wikipedia.

Box-counting dimension The most well-known fractal dimension estimator is the box-counting dimension (also
sometimes referred to as Minkowski dimension), which is illustrated in figure 2.7.
The process consists in covering the dataset with square-like boxes of side length ¢, then observing how the number
N (e) of boxes needed to achieve full coverage increases as ¢ decreases :
log(N (€))

IDyoe(X) = lg% W (2.4)

Informally, this means that if X contains n samples, I/I\)boz(X) is the exponent of the power law such that N (1) o
I Dbow(X)

Hausdorff dimension An alternative to the box-counting dimension is provided by the Hausdorff dimension, which
relies on balls rather than square boxes, as illustrated in figure 2.8.
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11.5x200= 28x100=2800 70 x50=3500
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FIGURE 2.6: The measured length of the coastline of Great Britain increases as the length of the
measuring stick decreases. Image taken from Wikipedia.
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FIGURE 2.7: lllustration of the box-counting dimension concept applied to the Great Britain coast-
line example. Image taken from Wikipedia.

Defining S(X) the (infinite) set of possible covers of X by balls centered on the datapoints, each ball being associa-
ted to its radius r; > 0, the Hausdorff content of X is defined as :

YX) = | ¢ 2,
(X)) = jnf " (2:5)

The Hausdorff dimension of X is then given by :
I Ditausdort(X) = inf (C*(X) =0) (26)

The underlying idea is thus to cover the dataset with progressively smaller spheres, and observe how the total vo-
lume of the coverage decreases as the spheres shrink. Therefore, despite having a less intuitive definition, the Hausdorff



2.2. Intrinsic dimension 19

FIGURE 2.8: lllustration of the Hausdorff dimension concept applied to the Great Britain coastline
example. Image taken from Wikipedia.

dimension is conceptually close to the box-counting dimension. Interestingly enough, these two quantities are linked by
the following inequality :
VX € RHXD, IDHausdorff(X) < IDpos (X) (2-7)

Even though ﬁ)Hausdom(X ) = I/l\)boz(X ) in most cases, the equality does not necessarily hold (e.g. considering Q
the set of rational numbers, I Dyaysdorit(Q) = 0 whereas 1Dy, (Q) = 1).

Discussion

Both fractal dimensions presented above are hardly affordable in practice in terms of computational complexity. In
order to address this issue, the correlation dimension (Camastra and Vinciarelli, 2002) and packing dimension (Kégl,
2003) were designed by the ML community as computationally efficient variants of respectively the box-counting and
Hausdorff dimensions.

An additional benefit of the fractal geometry framework is to shed light on the counter-intuitive notion of a non-
integer intrinsic dimension, as was first showcased in section 2.2.1; the rate at which details appear in a fractal is
not necessarily a multiple of the zoom multiplier. Going back to the Koch snowflake example, the total length of the
pattern contour increases by a factor 4 every time the scale is enhanced by a factor 3. Therefore, the Koch snowflake is
considered of fractal dimension log(4)/log(3) ~ 1.27.

Global and local ID estimates There is an important contrast in terms of methodology between sparsity-based
and fractal-based methods. The technique from Chavez et al. (2001) is only concerned with the histogram of pairwise
distances of X, thus considers the ID on the global scale and assumes it is invariant across the samples. By contrast,
fractal-based methods investigate the complexity of each individual sample. The final ID(X) is therefore actually an
aggregate of multiple estimations made on the local scale. This is tied to the underlying assumption that the ID dimen-
sion of a dataset is fluctuating across the different regions of the representation space. For example, it is likely that the
ID of a cluster near the origin (meaning all feature values are simultaneously close to 0) differs from outliers. This idea
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FIGURE 2.9: An example of Geodesic Minimal Spanning Tree on a Swiss Roll. Image taken from
(Costa and Hero, 2004).

that one must examine the ID on a local basis forms the basis of neighborhood-based ID estimators, which we will now
introduce.

2.2.3 Neighborhood-based ID estimation

Early neighborhood-based ID estimators (Pettis et al., 1979; Verveer and Duin, 1995) directly relied on the Euclidean
distance in the original representation space of the dataset to detect neighborhoods. However, following section 2.2.1,
the sparsity effect caused by the curse of dimensionality prevents this strategy from being sound in high-dimensional
spaces. In order to provide reliable results, one must therefore devise alternate ways of detecting neighborhoods.

To that end, (Costa and Hero, 2004) rely on a popular unsupervised Feature Construction method called /Isomap
(more in chapter 3). The idea is to aggressively prune the pairwise sample similarity graph provided by Isomap, so that
all datapoints remain connected using as few edges as possible. An illustration of this process is provided in figure 2.9,
on the well-known Swiss Roll artificial dataset. Despite being originally generated and represented in a 3D space, this
manifold can be "unfolded” and mapped to a 2D space. Most ID estimators will therefore return ﬁ)(SwissRoIl) ~ 2.

The pruned similarity graph is called a Geodesic Minimal Spanning Tree (GMST). It has been shown (Costa and
Hero, 2004) that the depth of this tree can be used to approximate the intrinsic dimension of the manifold. The main
shortcoming of the GMST approach is that the quality of its ID estimation depends on the accuracy of the similarity graph
provided by Isomap. Unfortunately, Isomap has been experimentally demonstrated (Balasubramanian and Schwartz,
2002) to be topologically unstable, meaning a small error in neighborhood assessment (relying still on the Euclidean
distance) can lead to a large error in the final graph.

Consequently, the GMST approach has decreased in popularity to the benefit of Maximum Likelihood Estimation
(MLE) (Levina and Bickel, 2005). This technique relies on the assumption that if one "zooms in” on a particular datapoint
x, then the density f(x) of samples in this region is roughly constant in a ball S, (r) centered on z with a small radius
r, s.t. f(z) = C everywhere in S, (r). The idea is then to consider the samples as an homogenous Poisson process in
S, (r). The number N(z,r) of datapoints inside S, (r) is then s.t. N(z,r) oc Cr¥*). Here, d(zx) denotes the dimension
of sphere S, (r) and corresponds to the local ID at point z. Given a fixed sphere radius rg, the final ID approximation
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IDyg is then simply obtained by averaging the local estimators :

nxD T3 . l
VX € R™P, IDyp(X) = — > d(x) (2.8)

zeX

As said, the MLE ID estimator relies on the strong assumption of locally constant sample density. In practice, the
more inhomogenous the underlying Poisson process, the less accurate IDyiE.

Building upon the MLE technique, Facco et al. (2017) proposed a neighborhood-based ID estimator that only relies
on the two closest neighbors of each point, denoted IDyyy. This essentially means that the homogenous Poisson
process assumption needs only to hold in smaller spheres than before. IDQNN is therefore better suited than IDMLE
to deal with non-smooth manifolds.

Similarly as before, ID,n v (X) is obtained by averaging local estimates d(z). However, rather than from counting
the number of samples in S(z, ), d(z) is derived from the volume of the hyperspherical shell enclosed between the
closest and second closest neighbors of x, as illustrated in figure 2.10.

FIGURE 2.10: Two-dimensional example of local ID estimation via the 2NN technique.

Before averaging the local results, the top 10% ranked datapoints w.r.t. the ratio 72 are discarded. This essentially
means that samples with only one close neighbor are ignored, given that these are Ilkely to be outliers and would skew
the final estimator I Doy v -

An additional benefit of the 2 — NN method over traditional MLE estimation is the reduced computational cost;
Muja and Lowe (2014) have shown that dedicated algorithms were able to find the first two neighbors of n points in
approximately O (nlog(n)) time.

2.3 Discussion

As discussed above, the boundary between fractal and neighborhood is slim, e.g. the pioneer MLE estimator from
Levina and Bickel (2005) is referred to as a fractal-based technique in Facco et al. (2017).
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Criteria for ID estimation As shown, ID estimation is key to DR. In this context, the criteria for choosing an adequate
ID estimator include :

— Affordable computational cost (both time and space-wise)
— Resilience w.r.t. the sparsity effect of the curse of dimensionality
— Accuracy of the results : ID should be close to the dimension d* of the latent manifold

The sparsity-based estimator from Chavez et al. (2001), the correlation dimension (?) and the packing dimension
(Kegl, 2003) all meet the first criterion. However, it has since been demonstrated (Pestov, 2007) that the resulting ID
is not necessarily close to d* ; all these techniques thus fail to meet the accuracy criterion. Additionally, correlation and
packing dimensions are also sensitive to the sparsity effect (Pestov, 2007).

By contrast, the 2 — NN method (Facco et al., 2017) is both inexpensive computationally-wise and resilient to the
sparsity effect. Furthermore and to the best of our knowledge, IDony is empirically a close approximation of d*, in
cases where ground truth knowledge about the dimension of the underlying manifold is known. Therefore, we will in
the context of this thesis rely on the 2 — NN approach for the purpose of ID estimation. The discussion of this chapter
should however not make us forget that many authors (Guyon et al., 2002; Li et al., 2016; Ye and Sun, 2018) instead
proceed manually or iteratively to tune d.

Alternate visual-based tuning of d d can be tuned relying e.g. on Principal Component Analysis (PCA) using a
grid search process. The idea would be to perform a PCA of the original data for different number of principal compo-
nents (corresponding to the constructed features), then visually examine the smoothness of the respective covariance
matrices spectra.
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FIGURE 2.11: Example of covariance matrices spectra resulting of PCA for different dimensions
d; and ds

In the example provided in figure 2.11, the large gap between the leading eigenvalues and the tail of the spectrum
for d = d; indicates that some of the constructed features are much less important than the others for capturing the
variance in the data. Therefore, d should be lowered until the spectrum becomes smooth, as is the case for d = d-.
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This "trial-and-error” technique come with the significant downside of being computationally expensive, given that
the FC algorithm relied upon must be ran many times to obtain accurate results. This approach is therefore ill-advised
in view of Big Data.

Online selection subset size calibration Another possibility exclusive to FS is to forego ID estimation and deter-
mine the number of features to select online, that is during the execution of the FS algorithm. This is a popular solution in
supervised FS. In the Drop-Out-One approach (Ye and Sun, 2018) (more in chapter 3) for instance, features are greedily
eliminated until the resulting change in predictive accuracy of the target features becomes lower than a threshold.

To the best of our knowledge, this type of technique has not yet been proposed for the unsupervised context, where
a suitable stopping criterion is harder to define. This defines a direction for future research (chapter 7).
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Chapitre 3

Dimensionality reduction : overview

Based on the formal background on Dimensionality Reduction (chap. 2), this chapter presents the state-of-the-art
in Feature Extraction (FC) (section 3.1) and Feature Selection (FS) (section 3.2), in both supervised and unsupervi-
sed contexts (thereafter abbreviated as sup. and unsup.). A brief review of some of the most impactful and popular
approaches is provided for each of the four problem settings. The chapter concludes with a discussion on the strengths
and limitations of the aforementioned methods, coupled with the main lessons learned.

An important methological difference between FC and FS lies in the way sup. and unsup. learning are perceived. In
the general FC context, unsup. historically came first, with early methods such as PCA (Pearson, 1901), and remains
the main focus of the literature. Sup. learning is then layered on top of unsup., and label information is taken advantage
of as much as possible.

On the other hand, FS is most often studied in the sup. context. The absence of labels is seen as a handicap. Unsup.
FS therefore aims to build pseudo-label information in order to fall back on sup. learning.

Accordingly, section 3.1 will introduce unsup. FC methods first, followed by sup. approaches. By contrast, section
3.2 begins with sup. FS and presents unsup. techniques afterwards.

3.1 Feature Construction

Following the general problem setting exposed in chapter 2 and using the same notations, DR aims to find a mapping
¢* : F — Hg st ¢*(F) = Z; minimizes cost function C. FC is not limited to "sparse filters” mappings selecting a subset
of the initial features (as is FS). Instead, ¢* can correspond to either a linear combination of the initial features or an
arbitrarily complex non-linear function thereof.

3.1.1 Unsupervised FC

3.1.1.1 Linear mappings

Principal Component Analysis Perhaps the most well-known DR technique overall is the Principal Component
Analysis (PCA) algorithm (fig 3.1), an early approach dating back to the 19th century and formalized by Pearson
(1901). Assuming the original features have been preemptively centered and given the data covariance matrix X7 X,
the constructed features (referred to as principal components) are given by the columns of matrix Z s.t. 7 = XW,
where W contains the eigenvectors of X7 X. In order to perform DR, only the d leading eigenvectors are considered,
s.t. Z; = XW,is now a n x d matrix ' The underlying idea is that provided d is well-tuned (see section 2.2), the leading

1. Interestingly enough, the Eckart-Young theorem (Eckart and Young, 1936) guarantees that Z, is the best approximation (in the
sense of the Frobenius norm) of X by a matrix of rank d or less.
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eigenvectors are sufficient to capture most of the variance in the data. As said in chapter 2, DR methods can be cate-
gorized by the kind of “information” they respectively aim to preserve. Accordingly, the purpose of PCA is to accurately
depict correlations between original features.

50 100 150 200 250

FIGURE 3.1: A 2D example of PCA applied to the picture of a fish. From Wikipedia.

Singular Value Decomposition The Singular Value Decomposition (SVD) of X € R"*P is given by X = UXV,
where U and V are orthogonal matrices of respective dimensions n x n and D x D, and ¥ a n x D diagonal matrix. The
diagonal entries of X (the singular values of X) are the square roots of the non-zero eigenvalues of X7 X.

In order to perform DR (as well as greatly reduce the computational cost), only the d largest singular values and
corresponding singular vectors are computed in the truncated SVD (Golu and Reinsch, 1971), s.t. X = U;34V,. The
constructed features then correspond to the rows of V.

Interestingly enough, SVD is equivalent to PCA if the original features have been preemptively centered to zero
mean. However, centering is ill-advised in some cases, e.g. image processing tasks where features correspond to
positive pixel intensity values; mean centering transforms null values into high amplitude negative values, artificially
increasing the (usually low) importance of the corresponding features. SVD is therefore usually preferred over PCA in
this setting.

Multi-Dimensional Scaling Multi-Dimensional Scaling (MDS) (Torgerson, 1958; Borg and Groenen, 2003) follows
a different line of thought to PCA and SVD ; the goal is to preserve the likeness of samples (rather than the correlations
between features). Accordingly, the input of the method is a similarity matrix containing the pairwise Euclidean distances
between datapoints, which spectral decomposition produces the constructed features. The notion of similarity matrix is
also central to unsup. FS, and the associated theory of spectral clustering (Von Luxburg, 2007) will be presented in
more detail in section 3.2.3.

Discussion

Over the years, the three aforementioned techniques have been further refined into many computationally efficient
variants such as the k-SVD (Aharon et al., 2006) or the generalized MDS (Bronsteina et al., 2006). However, a core
limitation remains : the mapping ¢* resulting of any of PCA, SVD or MDS is linear. As such, these methods are ill-
advised for performing DR on non-linear manifolds. An example of unwanted behavior is provided in figure 3.2 on an
artificial Swiss Roll dataset (see section 2.2.3), which a standard PCA is unable to properly unfold.

3.1.1.2 Non-linear mappings

Isomap /somap (Tenenbaum et al., 2000) is an extension of MDS designed to handle non-linear manifolds, taking
note of the unreliability of the Euclidean distance (panel A of figure 3.3). The similarity matrix is first translated into graph
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FIGURE 3.2: Far-away points are wrongly assessed as close together in the PCA projection by
the Euclidean distance. From Roweis and Saul (2000).

form : each vertex represents a data point, and two vertices are connected by an edge iff one is part of the k nearest
neighbors (w.r.t. the Euclidean distance) of the other. This allows computing a geodesic distance between vertices,
corresponding to the length of the shortest path connecting them in the graph (panel C). Panel B shows that this new
distance accurately detects neighborhoods in the Swiss roll. MDS is then performed using the geodesic similarity matrix
as input. The reliance on local neighborhoods of the geodesic distance is what allows the resulting mapping ¢* to be
non-linear.

FIGURE 3.3: The geodesic distance accurately depicts pairwise similarities, and is used by Iso-
map to unfold the Swiss roll. From Tenenbaum et al. (2000).

As mentioned earlier (section 2.2.3), Isomap has quickly been shown to be topologically unstable (Balasubramanian
and Schwartz, 2002), meaning that adding a small perturbating noise to the data is sufficient to greatly corrupt the
associated similarity graph, and consequently the constructed features (figure 3.4).

Locally Linear Embedding Locally Linear Embedding (LLE) (Roweis and Saul, 2000; Saul and Roweis, 2003) first
defines the local structure of the n data points z; € R”, through approximating each point as the barycenter of its
nearest neighbors. The goal is then to find points v, ...y, in RY, such that the y; satisfy the same local relationships
as the z;s. Formally, let N (¢) denote the set of indices of the £ nearest neighbors of z;. The weights ; ; then minimize
the Euclidean distance [|z; — > ;¢ n(;) Wi ;z; || with the constraints >, ;) Wi =1, Wi ; = 0and Wi ; = 0 for j & N ().
Note that W is invariant under rotation, translation or homothety on the dataset X : it captures the local structure of the
samples. These local relationships are then leveraged to learn Y s.t. :

Y = argmin ||M — WM||%
MER"Xd

An illustration of the LLE DR process is provided in figure 3.5.
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FIGURE 3.4: Adding Gaussian noise of small amplitude leads to a badly unfolded Swiss Roll.

From Balasubramanian and Schwartz (2002).

(o)

° Op @ Select neighbors

o o

o o-=-__
o © X °
S A

o ® o
o
Oo ° o (o}

@ Reconstruct with
linear weights

FIGURE 3.5: lllustration of the three sequential steps involved in LLE.

3.1.1.3 Non-linear mappings learned with AutoEncoders

AutoEncoders are artificial neural networks designed to perform FC. An AutoEncoder is composed of two interacting
parts : an encoder ¢ that learns the constructed features, followed by a decoder ) aims to reconstruct the original
variables from the constructed ones (figure 3.6). The goal is to minimize the discrepancy between the original data and
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the output of the decoder, i.e. find ¢*,¢* s.t. :

", " = argmin Loss(X, (1) 0 ¢) X) (3.1)

)

The most widely used loss function is the squared L, norm (often referred to as the mean squared error (MSE) loss),
ie.:

L=l(wod)(X)— X[} =1X - X[} = |7 — i3 (3.2)

i=1

Alternatively, the MSE loss can be interpreted as a sum of individual errors over each feature :
D ~
L(F) =Y |Ifi = fill3
=1

Equations (3.2) and (3.1.1.3) are clearly equivalent. However, given that our algorithmic contribution pertains to
the field of unsupervised FS and relies on AutoEncoders (more in chapter 4), we will in the following prefer using the
feature-based interpretation L(F').
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FIGURE 3.6: An AutoEncoder performs unsupervised FC by compressing the input into d latent
variables.

Whether ¢ and v are linear mappings depends on the activation functions used in the neural network. As shown by
Baldi and Hornik (1989), an AutoEncoder with linear activation functions and a MSE loss essentially performs PCA. In
practice, nonlinearities such as sigmoid, tanh or ReLU (Xu et al., 2015) are thus relied upon instead.
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If the output of the encoder is of the same dimensionality as the input, then the optimization problem is trivially
solved by learning an identity mapping for both the encoder and the decoder?. In order to enforce finding an interesting
solution, the common strategy is thus to enforce ¢ : RP? — R? and ¢ : RY — RP, with d << D, thus creating an
under-complete representation in the encoder. This under-complete representation can be viewed as data compression
in the sense that ) allows to recover the initial information.

An alternative to under-complete representations is to rely on an over-complete representation (d > D) under
the constraint that ¢ is sparse. This idea of implicit compressibility rather than explicit is at the core of sparse coding
(Olshausen and Field, 1997). Sparse encoding has been shown (Poultney et al., 2007; Boureau and LeCun, 2008) to
produce expressive constructed features s.t. each of these filters memorizes a different piece of information related to
the input. The reconstructed data is provided by the additive (linear) combination of these filters (fig. 3.7).

—_—

7! =1" | +1 |+1 +1 7 |+1 +1 / [+1] , |[+0.8 +0.8

| I

FIGURE 3.7: Example of encoder-learned filters on a handwritten digit taken from the popular
MNIST database. From Boureau and LeCun (2008).

Another strategy to prevent the AutoEncoder from learning uninteresting features is to use a loss function different
than the one in equation (3.2). Such a strategy is implemented by Denoising AutoEncoders (Vincent et al., 2008), which
first produce a noisy version X of X to use as input data, then task the network with reconstructing the original "clean”
data from the corrupted version (fig. 3.8) :

¢*,¢* = argmin Loss(X, (¢ 0 ¢)X) (3.3)

)

Encoder Decoder

Noise

Original Noisy Code Output
Image Input

FIGURE 3.8: lllustration of the denoising AutoEncoder process on MNIST.

Following the manifold assumption (sec. 2.1), corrupted samples in X will generally lie farther than the uncorrupted
datapoints from the underlying low-dimensional manifold. A denoising AutoEncoder is therefore learning to project these
noisy samples back onto the manifold. To guarantee the success of this denoising process, the features constructed by
the encoder must be resilient to perturbations in the input, and should thus be more expressive than the original ones.
The resulting compressed representation accordingly depends on the type and magnitude of corrupting noise applied to
transform X into X. The most common corruption is the so-called masking noise, setting a fraction of randomly chosen

2. More precisely, it suffices that 1) o ¢ = Id, which is achieved by learning any invertible ¢ : R® — R” and ¢y = ¢~ *. This is
unlikely to produce a useful representation in the encoder. Furthermore, this can still occur even if non-linear activation functions are
used (e.g. ¢ can stay in the linear regime of a sigmoid with small enough neuronal weights).
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feature values to zero. This method can be linked to the DropOut strategy (Hinton et al., 2012; Srivastava et al., 2014),
setting a random fraction of neuronal weights to zero to avoid overfitting as well as co-adaptation of neurons.

In order to further increase the robustness of the learned compressed data representation w.r.t. input noise, De-
noising AutoEncoders can be stacked together : after one AutoEncoder has been trained, the output of its decoder
is corrupted, and is fed as input to the next AutoEncoder in the stack. Such an architecture is called a Stacked De-
noising AutoEncoder (Vincent et al., 2010), and leads to a series of intermediate compressed representations, each
being resilient to the noise applied to the previous one. The resulting embedding Z}; is then provided by the deepest,
lowest-dimension encoder.

Along the many more AutoEncoder variants that were unmentioned so far, the most notable approach corresponds
to Variational AutoEncoders (VAE) (Kingma and Welling, 2013) (appendix .1). Although VAEs are actually quite remote
from classical Auto-Encoders, they constitute a potential extension of our algorithmic contribution (chap. 7).

Discussion

The unsupervised FC methods introduced in section 3.1.1 can be organized in three categories : variance-preserving
mappings (PCA, SVD), similarity-preserving mappings (MDS, Isomap, LLE), and reconstruction-preserving mappings
(AutoEncoders). Similarity-preserving methods rely on the Euclidean distance or related constructs such as geodesic
distances to assess the likeness of datapoints. As underlined in chapter 2, this might be unreliable for high-dimensional
datasets due to the curse of dimensionality.

By contrast, AutoEncoders do not need to compute any kind of pairwise sample similarity, given that these are
concerned only with rebuilding the original data representation from the constructed features. This key property is at the
core of the proposed unsupervised FS approach (chapter 4).

3.1.2 Supervised FC

Interestingly enough, the most well-known supervised FC approaches all correspond to similarity-preserving map-
pings [REFS]. Furthermore, these techniques share the same core idea that samples of the same class should be close
together w.r.t. the constructed features in 2, while samples of different classes should be mapped as far away from
each other as possible.

3.1.2.1 Linear mapping via the Fisher discriminant

The Fisher Discriminant (Fisher, 1936), often referred to as Linear Discriminant Analysis (LDA) is an early su-
pervised FC approach attempting to maximize the inter-class scatter while simultaneously minimizing the intra-class
scatter. Formally, consider a binary classification task composed of n; samples from the first class and n, samples

from the second one, and denote by X; and X, the subsets of samples corresponding to the respective classes.

Vi € {1,2}, let m; = ni >~ « denote the vector of average feature values on the i-th class. The between-class and

CxeX;
within-class scatter matrices Sp € RP*P and Sy € RP*P are then defined s.t. S = (my — m2)(m; — m2)T and
2
Sy = 3 (x—my)(z—m;)T.
i=lzeX;
LDA then aims to maximize the Fisher discriminant, that is find w* € RP*! st. :

*T *
W Spw = arg max J(w) (3.4)

J(w*) = =282
(w ) w*TSW'LU* wERD X1
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Intuitively, this corresponds to finding a direction maximizing the projected class means (the numerator) and mini-
mizing the classes variance in that direction (the denominator). This direction corresponds to the vector normal to the
discriminant hyperplane separating the classes (fig. 3.9).

FIGURE 3.9: As a result of LDA, samples are projected on the vector normal to the discriminant
hyperplane separating the first class (in green) from the second (in red). From Wikipedia.

The end result of LDA is thus a single constructed feature z* s.t. Vi € [1,...,n], z*(x;) = w.x;. This constructed
feature is clearly obtained from the original variables through a linear mapping. Therefore, LDA suffers from the same
issue as linear unsup. FC techniques, as discussed in section 3.1.1.

In order to lift this limitation, non-linear refinements of the approach were later proposed. The most prominent such
refinement is the Kernel LDA (Mika et al., 1999), which first projects the input samples to a new space through a non-
linear kernel function, then relies on the kernel trick (Hofmann et al., 2008) to efficiently compute the Fisher discriminant
in that space. Consequently, LDA still enjoys a high popularity for modern applications, both for the purpose of FC
(Ghassabeh et al., 2015) and error correction (Gorban et al., 2018).

3.1.2.2 Non-linear mappings
Non-linear supervised FC techniques can be split in two categories : those that "enrich” the unsup. FC approach
Isomap (see section 3.1.1) with label information, and those based on neural networks.

Enriched Isomap techniques Using the same notations as for LLE in section 3.1.1, the similarity metric at the
core of Isomap is in the unsup. context typically defined as :

- (<llwi==3l*/8) if j € N(i) ori € N(j
V(z,j) c [1’ o ,n]z,S(mi,wj) _ { (e):c;herWise if j € N(i)ori e N(j)

This formalization clearly does not take advantage of the labels (yi,...,v,)- In order to do so, supervised ap-
proaches such as Locally Discriminant Projection (LDP) (Zhao et al., 2006a) and Orthogonal Discriminant Projection
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(ODP) (Li et al., 2009) propose tweaking S s.t. :

exp(*||mi7wj\|2/ﬁ) 14+ exp(*ﬂmifzjﬂz/ﬁ) if j e N(@)orie N(j)and y; = y;

V(i) € [1,... 0% S(@s, x;) = eap(“llei=2sll*/8) (1 _ eqp(~llzsasl*/8) ) if j e N(i) ori € N(j) and y; # y;
0 otherwise
(3.5)

Equation (3.5) enforces that the similarity between neighboring samples from the same class is increased compared
to regular Isomap, while the similarity between neighboring samples of different classes is decreased. Most notably,
the similarity between non-neighboring samples remains zero, regardless of whether their labels are identical. This
essentially means that each class can be split into multiple (potentially non-connected) components of the similarity
graph, therefore allowing non-linear classification of patterns.

Neural network-based approaches Any deep neural network tasked with classification essentially performs sup.
FC in its hidden layers, in the same way that AutoEncoders tasked with reconstruction perform unsup. FC. However, this
will in the general case lead to constructed features which do not necessarily preserve the information of the original
features ; considering for instance a supervised classifier network involving one hidden layer 77, the network may learn
to encode class information in a single latent variable, ignoring the (d — 1) others, s.t. z; =y and Vi € [2,...,d], 2z} = 0.

TN

Shared weights Loss funCtiOn

|
X: -> CNN/

FIGURE 3.10: The structure of a Siamese Convolutional Neural Network. From Liu et al. (2018).

In order to avoid such pathological configurations, neural network-based sup. FC techniques explicitely encourage
all constructed features to discriminate between classes via the objective function. Liu et al. (2018) proposed to use a
siamese (Bromley et al., 1994) Convolutional Neural Network (CNN) (Krizhevsky et al., 2012) to learn the constructed
features (fig. 3.10).

Defining, with a slight abuse of notation, é(x1,z2) = || Z}(z1) — Z](x2)||2 as the Euclidean distance between the
two input datapoints in the constructed feature space, §(x1,x2) is denoted 6§, if y; = yo and §_ if y; # yo. Given u a
margin parameter, the final loss function of the Siamese CNN is then defined as :

L(x1,x2) = max (0,04 — d_ + p) (3.6)

The objective function from equation (3.6) essentially incentivizes minimizing the distance in Z}; between points of
same label, while maximizing the distance between samples from different classes. This approach therefore corres-
ponds to an non-linear adaptation, in neural network form, of the principle that similar points should be mapped close
together while dissimilar points should be as remote as possible from one another in the embedding. This core idea is
also prominent in FS, which we will now introduce and discuss.
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3.2 Feature selection

As seen in chapter 2, FS is a particular of FC where the exploration for the optimal feature set Z; (w.r.t. cost
function C) is limited to a small region of the search space corresponding to the C¢%, subsets of the original feature set
F containing d elements. Despite this restriction, FS is not a "simpler” version of the DR problem. On the contrary, the
FS setting involves multiple new challenges and concepts absent from the general case of FC. The most prominent of
these specificities are discussed in section 3.2.1. Section 3.2.2 thereafter provides an overview of the most impactful
methods in the field of sup. FS. Unsup. FS is subsequently studied in section 3.2.3. The algorithmic contribution of this
thesis (chapter 4) pertains to the latter setting.

Diversity of input data representations

Three implicit assumptions were made regarding the input data during the general background presentation of
chapter 2 :

Assumption 1. All original features are available from the beginning of the FS process.
Assumption 2. There are no structural relationships between original features?.
Assumption 3. All original features come from the same source.

Most FS algorithms from the literature (both sup. and unsup.) are designed to handle tasks where all three above
assumptions hold, thus correspond to the so-called traditional FS context. However, the rise of Big Data has led to
an increased prevalence of real-life applications where at least one of these assumptions no longer holds (Li and Liu,
2017).
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FIGURE 3.11: The spatial arrangement of the voxels is an important source of information ne-
glected by traditional FS.

3. More specifically, even though these relationships may exist, we assume no prior information or expert knowledge regarding
these structures
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In the context of sentiment analysis using text data extracted from the Twitter social network, each feature corres-
pond to one word of vocabulary. Given that new slang words are generated by the users every day, the size of the
feature set is constantly growing, thus falsifying assumption 1. This setting corresponds to FS for streaming data.

In neuroimaging, features will typically correspond to voxels spatially arranged in a three-dimensional space so as
to mirror the anatomy of the human brain (Jenatton et al., 2011) (fig. 3.11). This graph-like structure falsifies assumption
2 and is not exploited by traditional FS algorithms. This setting corresponds to FS with structured features.

-
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Traditional 5 Multi- Multi-View
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FS with FS with
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FIGURE 3.12: Taxonomy of FS from a data-driven perspective. From Li et al. (2018a)

In bioinformatical cancer research, different types of genetic material (e.g. DNA and RNA) are simultaneously exploi-
ted for predicting tumors (Zhao and Liu, 2008). Original features are therefore obtained from multiple sources different
in nature *. This setting corresponds to Multi-View FS.

We refer the interested reader to Li et al. (2018a) for a thorough review of FS methods in non-traditional settings,
the taxonomy of which is presented in figure 3.12.

We will in the context of this thesis focus on traditional FS. It is however important to note that some traditional FS
techniques can be seamlessly adapted to other settings. For instance, group LASSO (Yuan and Lin, 2007) (more in
section 3.2.2) is by construction well-suited for tree-like structured features (fig. 3.13), leading to its tree-guided group
LASSO (Liu and Ye, 2010) variant.

Hierarchical group structures corresponding to figure 3.13 also provide a direction for future refinement of our
algorithmic contribution (chapter 7).

3.2.1 Particularities of the Feature Selection setting

3.2.1.1 Independent, collective and semi-independent scoring

As said earlier, the aim of DR is in the general case to find Z] = argming, .4, C(F, Zz). In the FS setting, the cost
function C is responsible for estimated the quality of the selection subset. In other words, C is in this case a scoring

4. One could also consider the previous example of social network sentiment analysis, where features are extracted from different
data formats such as text, image or video



3.2. Feature selection 35

@

wEwm . . o 4

FIGURE 3.13: Example of features forming groups in a tree-like structure. From Li et al. (2018a).

function judging the “relevance” (w.r.t. a learning goal) of the original features °. Scoring techniques can be categorized
w.r.t. the context in which relevance is assessed.

Independent scoring Kohavi and John (1997) proposed a first tentative definition of feature relevance in the sup.
context by interpreting the features f1,..., fp and the learning goal y as random variables drawn from an underlying
joint distribution P(F,y). With a slight abuse of notation, the relevance of an original feature is defined as :

Vi€ [1,...,D],Relevance(f;) = |P(fi,y) — P(fi)P(y)] (3.7)

It follows from equation (3.7) that a feature is irrelevant iff it is independent from the labels. The stronger the dependency
between f; and y, the more relevant f;.

Given that state-of-the-art unsup. FS methods typically construct an artificial learning goal 4 (more in section 3.2.3),
the above definition of relevance is applicable in both sup. and unsup. contexts.

In practice, given that the underlying joint distribution is unknown, relevance can hardly be computed empirically in
this way. However, this definition is an integral part of prominent scoring criteria such as the Fisher score (Duda et al.,
2000) or the supervised version of the Laplacian score (He et al., 2005) (more in sections 3.2.2 and 3.2.3).

Most importantly, the relevance estimation of a particular original feature does not involve any of the other features.
We will therefore in the following refer to FS approaches relying on such scoring functions as independent scoring
methods.

Limitations of independent scoring methods Independent scoring methods are by construction plagued by two
opposite issues : false negatives (features falsely considered irrelevant) and false positives (falsely relevant features).
Figure 3.14 provides an illustration of the false negative problem on the well-known XOR example : X; and X»
are both individually irrelevant and do not separate the classes at all. However, taken jointly, they allow for a perfect
non-linear separation.
Figure 3.15 illustrates the opposite issue of false positives; X; and Y are dependent (left panel), but become
independent conditionally to X5, meaning X; is not truly relevant. This phenomenon is known as Simpson’s paradox

5. In the unsup. declination of the FS problem, a common alternative (He et al., 2005; Zhao and Liu, 2007; Cai et al., 2010; Li
et al., 2012) is to define two cost functions C:1 and C>. C, is tasked with scoring the features. Cs is responsible for assessing the
quality Z;; after the selection process is complete. By contrast with the unsup. C1, C is often a sup. estimator (more in chapter 5)
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FIGURE 3.14: Independent scoring methods are unable to detect that although X; and X, are in-
dividually irrelevant, they perfectly separate the classes (stars and circles) if considered together.
From Guyon and Elisseeff (2003).

(Simpson, 1951), and is caused by feature redundancy : the information carried by X is already accounted for in X,
(X2 however contains additional information absent from X3). In light of these issues, the main benefit of independent
scoring is its lower computational complexity relatively to both collective and semi-independent scoring, which we now
introduce.

Semi-independent scoring Vi < [1,...,D], let F\* denote the subset of F containing every feature except f;.
Following Kohavi and John (1997), the notion of feature relevance can be extended to tackle the aforementioned limita-
tions :
Relevance(f;) = > [P(fi,ylS) — P(fi|S)P(y|9)] (3.8)
SCF\

Following equation (3.8), f; is considered irrelevant iff it is independent from the learning goal conditionally to any
combination of other features, indicating that the information carried by f; (if any) is already accounted for elsewhere.
This new definition solves the problem of false negatives ©.

By contrast with independent scoring, the process of estimating the relevance of an element of F' involves all
features. Nevertheless, each feature is still assigned its own individual score. Therefore, we will in the following refer to
FS methods relying on this paradigm as semi-independent scoring techniques.

6. It is however not enough to avoid false positives. In order to avoid Simpson’s paradox, Kohavi and John (1997) further differen-
tiate between weakly and strongly relevant features, with the idea of selecting only strongly relevant ones. However, the definitions
of weak and strong relevance are unpractical, and bear mostly historical significance.
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FIGURE 3.15: On the left panel, X; appears relevant. However, it becomes irrelevant conditio-
nally to X, (denoted by circles and stars on the right panel). From Guyon and Elisseeff (2003).

Collective scoring A third possible scoring approach consists in defining relevance on a subset level only, so
that features are assessed as groups rather than individuals. This approach is intuitively well-suited for tree-like feature
structures (fig. 3.13). However, the number of score estimates needed to fully explore the search space rises from D (one
per original feature) to C%, (one per subset of ' containing d elements). Exhaustive exploration is thus intractable.Gaudel
and Sebag (2010) envision the search for Z7; as navigating through a decision tree, which is aggressively pruned to
avoid considering unpromising candidate subsets. Such algorithms are in the following referred to as collective scoring
approaches.

3.2.1.2 Forward, backward or simultaneous selection

Once scoring function C has been defined, three differing strategies are available to construct Z; based on C.

Forward selection The first selection strategy consists in an iterative process, of which pseudocode is provided in
Algorithm 17 :

7. This algorithm is written from the perspective of semi-independent scoring. Nevertheless, its pseudocode can be slightly modi-
fied to adopt the point of view of collective scoring, without loss of generality.
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Algorithm 1 Forward selection

Input : Feature set F = {f1,..., fp}
Parameter Selection subset size d

Output : Selection subset Z,
Initialize Z; = 0 and candidate set S = F
Repeat
for f € Sdo
Compute C(f)

end
Determine best candidate fy . w.r.t. C
Zd — (Zd U fbest)
S (S\fbest)
until ’Zd‘ =d
Return Z;.

Following alg. 1, forward selection (Guyon and Elisseeff, 2003) is a "bottom-up” approach, building the selection
subset from the ground up.

Backward selection The second selection strategy is also an iterative process, described in algorithm 2 :

Algorithm 2 Backward selection

Input : Feature set F = {f1,..., fp}
Parameter Selection subset size d

Output : Selection subset Z,
Initialize Z; = F
Repeat
for f € Z;do
Compute C(f)

end

Determine worst candidate f,orst W.r.t. C
Zd — (Zd\fworst)
until | Z;| =d
Return Z,.

By alg. 2, backward selection (Guyon and Elisseeff, 2003) (also commonly referred to as Recursive Feature Elimi-
nation (RFE)) is a "top-down” method, pruning the selection subset down to the desired size d.

Simultaneous selection This last strategy performs selection in a single pass rather than iteratively (alg. 3) :
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Algorithm 3 Simultaneous selection

Input : Feature set F' = {fi1,..., fp}
Parameter Selection subset size d

Output : Selection subset Z,
Initialize Z; = 0
for f € FFdo
Compute C(f)

end
Determine the d best candidates (f. ..., fl,,) w.rt. C

Zd — {fblest’ tr fbdest}
Return Z,.

Discussion |If C defines an independent scoring process, then the order in which features are selected/discarded
is clearly irrelevant. The above three strategies are therefore equivalent in that case. Independent scoring methods
therefore opt for simultaneous selection, given its lower computational cost relatively to both forward and backward
approaches.

On the other hand, if C pertains to either semi-independent or collective scoring, then each strategy likely leads to
different results. An illustration of the respective weaknesses is provided in figure 3.16.

In this sup. example, f3 is the most individually relevant feature, given that it achieves the best class separation on
its own (bottom-right panel). A forward selection method will therefore choose f3 first. However, if tasked with selected
a second candidate, then potential forward selections {fs,;1} and {fs, f2} are both worse predictors than {fi, f2},
corresponding to the result of backward selection.

In this example, going backwards is thus better than forward for d = 2, and worse for d = 1. This is a consequence
of the greedy?® nature of both approaches.

Informally, it appears that the lower the selection ratio <, the better forward selection comparatively to RFE. In
practice, both semi-independent and collective FS algorithms rely on either simultaneous (He et al., 2005; Li et al.,
2012) or backward selection (Guyon et al., 2002; Ye and Sun, 2018), while forward selection is seldom implemented in
recent approaches.

3.2.1.3 Filters, wrappers and embedded methods

As said, the end goal of FS (and even DR in general) is to help a learning algorithm, e.g. a supervised classifier or
an unsupervised regressor. An additional way of categorizing FS approaches (complimentary to the type and ordering
of feature scoring) is therefore via the relationship between the FS technique and the learning algorithm. An illustration
of the three resulting groups of methods is provided in fig. 3.17.a.

Filters (Duda et al., 2000; He et al., 2005)(panel a) of figure 3.17) act as a pre-processing step to the learning
algorithm, the latter being uninvolved in the selection.

Wrappers (Huang et al., 2007)(panel b)) also correspond to a pre-processing step. By contrast with filters, wrappers
define an iterative selection pipeline. At each step, the learning algorithm is ran using the candidate selection subset as
input. The eventual performance of learning is then leveraged to guide the search for the optimal selection subset 27
during the next step.

8. Greedy is here used to reflect the fact that earlier selection/elimination decisions are never revisited in light of later decisions.
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FIGURE 3.16: A binary classification task with three features. V(i,j) € [1,3]?, panel (i,;) de-

picts the separation of the two classes (resp. in black and white) achieved by selection sub-

set {fi, f;}. The diagonal panels therefore resp. correspond to the singleton selection subsets
{f1},{f2},{fs}. Taken from Guyon and Elisseeff (2003).

Feature Learning
Selection algorithm

a) Filters

Feature Learning
Selection algorithm

b) Wrappers

Feature
selection|

Learning
algorithm

¢) Embedded methods

FIGURE 3.17: Schematic of filters, wrappers and embedded methods.
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Embedded methods (Guyon et al., 2002)(panel c)) represent a paradigm shift. FS is performed online during the
execution of the learning algorithm, rather than in pre-processing. The underlying idea is to leverage partial results of
learning (such as the parameters of a neural network) to orient the search for Z.

All three aforementioned techniques are clearly applicable in the sup. context, where the learning algorithm typically
corresponds to a supervised classifier. The main motivation for choosing an adequate selection strategy is then the
computational cost. Embedded methods require few runs of the learning algorithm (possibly with a warm start), while
filters require none at all. By contrast, wrappers involve running the learning algorithm multiple times. This constitutes
a significant downside of wrappers in many application domains. In sup. image classification for instance °, training a
deep convolutional network hundred of times is typically unaffordable.

As a result, sup. FS most often correspond to either filters (Duda et al., 2000) or embedded methods (Guyon et al.,
2002). Selection resulting of embedded FS likely yields higher learning performance than for filters, given that Z is
tailor-made for the learning algorithm considered. On the flipside, filters lead to selection subsets of higher generalization
power. This means that if the learning algorithm is modified (e.g. hidden layers are added to a deep neural network),
filter-based FS is invariant, whereas the learning performance resulting of embedded FS is likely degraded.

This independence property of selection w.r.t. subsequent learning is thereafter called agnosticism. This notion is
sought for and extended in both our algorithmic and methodological contributions (chapters 4 and 5).

In the unsup. context, the eventual learning algorithm (if any) is typically unknown at the time of FS. Consequently,
both wrappers and embedded method are ill-suited to this setting. To the best of our knowledge, all of the most impactful
traditional unsup. FS approaches (He et al., 2005; Zhao and Liu, 2007; Cai et al., 2010; Li et al., 2012) are filters. A
direction for future research would be to refine our algorithm AGNOS into an embedded unsup. method (chapter 7).

3.2.2 Supervised Feature Selection

This section introduces the most well-known sup. FS algorithms. For each approach, the scale of the scoring function
(independent, semi-independent or collective), the order of assessment (simultaneous, forward selection or recursive
elimination) and the link with the learning algorithm (filter, wrapper or embedded) are stated after the description of the
method.

RelieF The early RelieF (Kira and Rendell, 1992; Kononenko, 1994) searches for two specific neighbors of any given
point x; : the closest (w.r.t. the Euclidean distance) observation with the same label (the nearest hit ny(i)) and the
closest observation with a different label (the nearest miss n..,(%)). The score of feature f; is then s.t. :

n

viell,...,Dl,5(f:) : > (Ifj(l'i) = fi () P = | f (i) = f; (na(0)) |2> (3.9)

n
i=1

In order to maximize this score, an informative feature should take similar values on neighboring points of the
same class and as distinct values as possible on differently labeled neighboring points. Top ranked features should thus
support stark separation of the classes and lead to a high prediction accuracy. Eq. (3.9) seems to define an independent
scoring method. However, it is important to note that the nearest misses and hits have been determined by considering
all original features. RelieF is accordingly a semi-independent approach.

Keywords : Filter, semi-independent scoring, simultaneous selection

9. Selecting individual pixels in a high-resolution image is hardly effective for prediction. Therefore, Computer Vision applications
of FS (Chen, 2015) are concerned with identifying the best candidates among objects of greater scale, e.g. retaining the most
informative convolutional filters.
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Fisher score The Fisher score (Duda et al., 2000) was introduced as an alternative to RelieF inspired by the Fisher
discriminant (section 3.1.2). Considering a classification task with ¢ classes, n; denotes the number of samples in the
i-th class, p;(i) and o;(i) respectively the mean and variance of the j-th feature on the i-th class, and ; the mean of
the j-th feature on the whole dataset. The Fisher score of f; is then s.t. :

_Zcf ni(pi (i) — pj)?
Vjel,...,D],8(f;) = = (3.10)
;nﬂj(i)Q

Equation (3.10) implements the same core idea as RelieF, that the most informative features are those presenting
a large contrast between different classes. However, contrarily to RelieF, the Fisher score is an independent scoring
method and suffers from the issues presented in section 3.2.1.1. A generalized Fisher score has later been proposed
in Gu et al. (2012), turning to collective scoring instead.
Keywords : Filter, independent scoring, simultaneous selection

RFE-SVM Support Vector Machines (SVM) (Cortes and Vapnik, 1995) are a type of sup. classification algorithms. The
goal of a linear SVM is to find the unique hyperplane (often referred to as decision boundary) meeting two requirements
in the separable case : i) all datapoints sharing a common label are on the same side of the border and ii) the distance
between the border and the closest datapoint (thereafter called margin'®) is maximal among all hyperplanes fulfilling
condition i). This process is illustrated in figure 3.18, where H; is a poor separator. H, achieves perfect separation, but
with only a small margin. Hj is the optimal hyperplane maximizing inter-class margin.

The process of fitting the decision boundary corresponds to solving the following constrained optimization problem
for w* and b* :

w* = argmin,, o |[w]]>
{ Viell,...,n|y(wr e, —b") >1 (8.11)
By definition, the learned weight vector w = (w1, ..., wp) involves one component per feature. Recursive Feature

Elimination-Support Vector Machine (RFE-SVM) (Guyon et al., 2002) is an iterative embedded FS method leveraging
this observation, of which pseudocode is provided in algorithm 4.

Algorithm 4 RFE-SVM

Input : Feature set F = {f1,..., fp}
Parameter Selection subset size d

Output : Selection subset Z,

Initialize candidate set Z; = F
Repeat
Train SVM from Z,, producing w = (w1, ...,wp)
Find fworst S.t. Wyorst = arg minwj wjz'
Zd <~ Zd\{fworst}
until ’Zd‘ =d
Return Z,.

10. Admittedly, this formulation slightly diverges from the formal definition of margin, which was here simplified for the sake of
brevity without loss of generality in the following discussion.
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»
>

f.

FIGURE 3.18: lllustration of a linear SVM on a binary classification task. Decision boundary
H3 maximizes the margin between the two classes (in black and white). Feature f; should be
prioritized over f, for selection. From Wikipedia.

Even though eliminating the features with the smallest associated weights (alg. 4) may seem counter-intuitive (given
that the goal of the optimization problem in eq. (3.11) is to minimize ||w||2), it is well-grounded in theory ; the following
explanation is also the core motivation of many neural network-based FS approaches (Setiono and Liu, 1997; De et al.,
1997; Steppe and Bauer, 1996; Zurada et al., 1997; Ye and Sun, 2018), the most impactful of which will be introduced
thereafter.

Keywords : Embedded method, semi-independent scoring, backward selection/Recursive Feature Elimination

Motivation of RFE-SVM and neural network-based FS In the sup. context, label information allow considering
the performance of a classifier as a collective scoring criterion. In order to avoid the expensive combinatorial problem
inherent to collective scoring, a semi-independent criterion can be derived from the collective one, by analyzing the
sensitivity of the classifier performance w.r.t. the removal of each feature from the input.

Formally, Vj € [1,...,D],¥S C F, let D;(S, f;) = J(S\{f;}) — J(S) denote the change in classifier performance
J induced by the elimination of f; from S. Intuitively, removing irrelevant features should hardly degrade performance.
Therefore, the lower D;(S, f;), the less relevant f;. Note that positive values for D;(S, f;) are possible, indicating an
increase in performance due to removing harmful noise from the classifier input. Computing the exact value of D ;(S, f;)
is computationally costly, as it requires training the classifier multiple times. A good approximation of it can however be
obtained using the following trick : eliminating f; can be simulated by setting all weights associated to f; to 0. That is, in
the case of RFE-SVM :

Viel,...,D),VS C F,Dy(S, f;)) = J(S with w; < 0) — J(S with w; untouched ) (3.12)
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A second order Taylor expansion of J around w; gives :

aJ 1 0%J
D )= 7 —wj + 5w A
J(Saf]) 8ijj+282ij] (3 3)
Given that J is examined after classifier training has converged, it lies in a local maximum, and the first order
derivative can be neglected. Thus :
19T

In the context of a linear SVM, J(S) = 3 |w]|)?, thus Vj € [1,...,D], aafjj = const. . This leads to :
Dy (S, fj) w? (3.15)

Equation (3.15) motivates eliminating the features with the smallest weights in linear RFE-SVM. Similar demonstra-
tions can be obtained for non-linear SVMs, as well as for neural networks.

Neural network-based FS Over the years, the idea of eliminating the features with the smallest associated weights
or decrease in classifier performance sprouted many neural network-based sup. FS approaches (Setiono and Liu,
1997; De et al., 1997; Steppe and Bauer, 1996; Zurada et al., 1997; Ye and Sun, 2018). These methods involve slight
variations in implementation (e.g. adding a threshold value on the weights for the purpose of feature elimination). Most
importantly, these algorithms differ on the type of weight regularization used.

Both the Signal Noise Ratio (SNR)'" (Bauer et al., 2000) and Feature Quality Index (FQI) (De et al., 1997) ap-
proaches do not implement any kind of weight regularization. Neural Network Feature Selector (NNFS) (Setiono and
Liu, 1997) adds a L» regularization term (also known as weight decay) to the loss function of the network. The Drop-
Out-One (Ye and Sun, 2018) refinement instead relies on a sparse group-LASSO (Simon et al., 2013) penalty on the
weights to enforce sparsity in the selection. This regularized regression technique will be further discussed below.

The Deep Feature Selection (DFS) (Li et al., 2016) approach is particularly relevant to the algorithmic contribution of
this thesis. DFS considers an alternate neural architecture, in which a sparse one-to-one linear layer is added between
the input and the first hidden layer, as illustrated in figure 3.19.

(Layer)

Input (Layer)

FIGURE 3.19: The Deep Feature Selection architecture. From Li et al. (2016).

11. This method consists in agumenting F artificial Gaussian noise features, and selecting only features which associated weights
are significantly larger than for the noisy features, at the end of training.
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The loss function of the network is then augmented with a sparse group-LASSO penalty term on the weights of this
additional layer. This architecture holds the practical benefit that the importance of input feature f; is now condensed in
the single real-valued slack variable w;, rather than inferred from an R”*4 weight matrix.

A limitation of sup. neural network-based FS is that the sensitivity of the classifier performance w.r.t. the input tends
to decrease as the number of hidden layers in the network increases (Pascanu et al., 2013). This corresponds to the
so-called vanishing gradient (Hochreiter, 1998) issue. Roy et al. (2015) report that the most important initial features
are hardly identifiable empirically for networks of depth > 3 using SNR, FQI or NNFS.

As will be seen, our algorithmic contribution (chapter 4)is the first attempt at extending regularized neural network-
based FS to the unsup. context.

Keywords : Wrappers/Embedded methods, Semi-independent scoring, Backward selection/Recursive Feature Elimi-
nation

Least Absolute Shrinkage and Selection Operator (LASSO) Ordinary Least Squares (OLS) (Goldberger,
1964) corresponds to the linear regression problem of finding 3* € RP sit. :

* = arg min . — (xs, B2 3.16
B =argmin} | |ly: ~ (s, Bl (3.16)

i=1

OLS is however prone to overfitting in the small n, large D regime (few datapoints, many features). In order to combat
this issue, a tentative solution is to add an L, regularization penalty term to the optimization problem, parameter A > 0
governing the severity of the penalization :

n
B* = argmin <Z lys — <$i75>|§> + AllBl]2 (3.17)
BERP  \;=1
The vector g* = (57, ..., 5p) reflects the importance of the respective original features in the regression. However,

by virtue of the L, geometry, 3* optimized via eq. (3.16) is rotationally invariant, as illustrated in the leftmost panel of
figure 3.20. This means that all features are likely associated to non-zero coefficients. An L, penalty term is thus hardly
discriminative.

In order to enforce sparsity in the solution, Tibshirani (1996) introduced the Least Absolute Shrinkage and Selection
Operator (LASSO) technique, which adds a L, penalization term instead :

B* = argmin <Z|yi_ <Jii,5>|§> + AllBI (3.18)
BeERP \ ;21
This regularization enforces sparsity among the coefficients 37,5 € [1,..., D]. This property stems from the nature

of the L, geometry, in which the penalty function treats the coordinate directions differently from all other directions
(center panel of figure 3.20). As a result of sparsity, the LASSO induces a supervised FS technique, discarding f; iff
B; <e.

In order to obtain the best of both worlds of the L; and L, geometries, Yuan and Lin (2007) introduced the group-
LASSO, in which the feature set is first partitioned in groups G, ..., Gx. |G;| denoting the size of the i-th feature group,
the L, ; penalized regression scheme reads :

n k
8" = argmin (Z i — <w@-,,6>||%> +AY_ ViG] [ 8 (3.19)
€RP \i=1 i=1

JEG;
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FIGURE 3.20: Outline of different penalty functions : L, (left), LASSO (center), group-LASSO
(right).

This hybrid geometry leads to sparsity at the group level (discarding as many groups of features as possible) while
preserving the rotational invariance of the solution within each group (rightmost panel of figure 3.20) (Bach, 2008).

Many variants of the group LASSO have since been proposed to achieve specific sparsity and invariance properties
(Meier et al., 2008; Simon et al., 2013; Ivanoff et al., 2016). Most notably, the sparse group LASSO, also referred to as
elastic net, reads (Simon et al., 2013) :

n k
B = arg min (Z lly: — <wiﬁ>|%> + (1= a)AD VIGI | D B2+ e)IBlh (3.20)
i=1 =1

JEG;

« € [0, 1] governs the convex combination of the LASSO and group LASSO. The aim of the elastic net is to achieve
sparsity of the solution both at the group level and within each group, and has become a useful regularization tool for
training sup. Neural Networks on high-dimensional data (Feng and Simon, 2017).

Keywords : Filters, semi-independent scoring, simultaneous selection

Discussion

During this review of sup. FS methods, the central idea has remained constant : "datapoints of the same class should
be neighbors, while datapoints of different classes should be strangers”. Features are selected or rejected based on
how well they reflect this desired structure. Interestingly enough, this same idea is also at the core of unsup. FS, as will
be shown in the next section.

An additional observation of particular interest to this thesis is that neural network-based FS approaches such as Ye
and Sun (2018) actually combine FC and FS, in the sup. context : features are selected w.r.t. their importance to build
the constructed features in the hidden layers of the network.

3.2.3 Unsupervised FS

By contrast with the sup. context, all methods presented in the following are filters implementing a semi-independent
feature scoring criterion, based on spectral clustering theory (Von Luxburg, 2007).
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Spectral clustering Let sim denote a similarity metric on the instance space, e.g. sim(z;, ;) = exp{—||z; — z;||3}
and M the n x n matrix with M; ; = sim(x;, ;). Let A be the diagonal degree matrix associated with M, i.e. A;; =

n -
5S> M, and L = A== (A — M)A~z the normalized Laplacian matrix associated with .
k=1

Spectral clustering relies on the diagonalization of L, with A; (resp. &;) the eigenvalues (resp. eigenvectors) of L,
with \; < \;11. Informally, the &; are used to define soft cluster indicators (i.e. the degree to which z; belongs to the
i-the cluster being proportional to (xg, §;)), with A\, measuring the inter-cluster similarity (the smaller the better).

The general unsupervised clustering scheme proceeds by clustering the samples and falling back on supervised
feature selection by considering the clusters as if they were pseudo-labels ; more precisely, the features are assessed
depending on how well they separate clusters.

Laplacian score The Laplacian score (He et al., 2005) can be viewed as an extension of the Fisher score (section
3.2.2), unifying sup. and unsup. contexts. The Laplacian score of feature f; is given by :

S = —— 3 () — fan) Mi (3.21)

O f.
Fi k=1

S(f;) can be rewritten using the Laplacian matrix, hence the name of the approach :

with 1 the n-dimensional constant vector |1, ...,1]7 and }; =f;— %1. The higher S(f;), the more important f;. The

Laplacian score is also remotely related to the MaxVariance approach (Kantardzic, 2003), selecting features with large
variance for the sake of their higher representative power.
In the sup. context, a possible similarity metric is the following :

. 2 ; , _ ) ity =
V(i k) € [1,...,n]*, supsim(xz;, xx) = { 0if i = i (3.22)
Using the similarity metric from equation (3.22), Laplacian and Fisher scores are equivalent :
1

Vje[l,...,D],Laplacian(f;) = (3.23)

1 + Fisher(f;)

In the unsupervised context using sim(z;, z;) = exp{—|x;—x;|3}, the Laplacian score becomes a semi-independent
scoring method, as are all unsup. methods introduced in the remainder of this section.

SPEC SPEC'? (Zhao and Liu, 2007) propose three scores respectively noted ¢;, ¢, and ¢s, still following the idea
that relevant features should be slowly varying among samples close to each other. After Shi and Malik (1997); Ng
(2001), considering eigenvectors &y, ..., £,—1 of the normalized Laplacian L (respectively associated with eigenvalues
Ao < A1 < ... < \y_1), smooth features are aligned with the first eigenvectors, hence the score ¢, :

Vi€ Lo Dlon(fs) = i LTy where fj = Abg;/ |[al g (3.24)

12. This name is not an acronym, rather a reference to the reliance on spectral clustering theory
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Eigenvectors &o, ..., £n—1 Of L define soft cluster indicators, and eigenvalues A\ < A; < ... < A,_; measure the
separability of the clusters. The smaller ¢, (f;), the more efficient f; is to separate the clusters.

As the first eigenvector & = Az1 does not carry any information, with Ay = 0, one might rather consider the
projection of the feature vector f; on the orthogonal space of &g :

oolf))=—~F'LF; (3.25)
2\Jj 1_ <};’€0> J J .

Finally, in the case where the target number of clusters « is known, only the top-x eigenvectors are considered, and
score ¢3 is defined as :

3 Fi) =D (2= M) (5. &) (3.26)
k=1
Features are ranked in ascending order for ¢, and ¢, and in descending order for ¢3.
The above scores measure the overall capacity of a feature to separate clusters, which might prove inefficient in
multi-classes/multi clusters settings : a feature most efficient to separate a pair of clusters might have a mediocre general
score.

MCFS Instead of assigning one global score per feature, Multi-Cluster Feature Selection (MCFS) (Cai et al., 2010)
address the limitations of SPEC by computing one score per feature per cluster, essentially attempting to capture the
local informativity of features. The respective capacities of the features to separate clusters are estimated through fitting
the eigenvectors (reminding that & is a soft indicator of the k-th cluster) up to a regularization term. Formally, this
corresponds to defining x independent optimization problems (one per cluster) s.t. :

Vk € [1,...,[{],&22 min ||£k—Xak||%+ﬂkHakH1 (327)
ak,ERDX1
ay = (a;(f1),...,a;(fp)) reflects the respective abilities of the original features to identify the k-th cluster. As seen in

the earlier discussion on LASSO, the L, regularization term enforces the sparsity of ax, (penalization strength being
governed by parameter 3y;), retaining only the features most relevant to this cluster. The final score of f; then simply
corresponds to the maximum value of a(f;) over the « clusters, s.t. :

S(fj) = max ]|ak(fj)| (3.28)

kel,...,k

NDFS A general limitation common to Laplacian score, SPEC and MCFS is the reliance on an Euclidean distance-
based similarity metric, which leads to unstable clustering in high-dimensional spaces due to the curse of dimensionality
(section 2.2.1). Non-negative Discriminative Feature Selection (NDFS) (Li et al., 2012) alleviates this issue by defining
a joint optimization problem. The « learning goals (a3, ..., ay) from MCFS are merged into a single feature importance
matrix A € RP**, subject to a group-LASSO regularization term. Moreover, considering that the original Laplacian
eigenvectors &g, ..., &,_1 are brittle, a second objective corresponds to a cluster indicator matrix = € R™**. The rows
of = are initialized with the Laplacian eigenvectors. a and 5 denoting two regularization weights, the goal is then to find
(2%, A%) st.:

=%, A" = argmin Tr(ETLE) + a(|E ~ XAllp + B|A]5,) (3.29)

=,

[1]

with the additional constraint that = must be orthogonal and semi-positive definite (7= = I,.,= > 0).
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Following Yu and Shi (2003), the first term of equation (3.29) can be rewritten as '° :

=TE) = LN sl ||2@)  E@)
T7(HTLH)—2Z_’JZ:1 (@s,25) | <2 A, (3.30)

Using the alternate formulation from eq. (3.30), it is apparent that minimizing the term Tr(E7LZE) provides an
incentive to cluster similar points together. The orthogonality and nonnegativity constraints on = further push each
sample to belong in exactly one cluster. Lastly, the group-LASSO penalty on the rows of A enforces sparse feature
selection.

NDFS is acknowledged as a seminal work in unsup. FS : later approaches (Li et al., 2014; Shi et al., 2014; Qian
and Zhai, 2013; Nie et al., 2016) all stem from NDFS, and provide incremental performance improvements by adding
(oftentimes computationally costly) third or even fourth optimization objectives. We will now introduce these methods for
the sake of completeness.

CGSSL Clustering-Guided Sparse Structural Learning (CGSSL) (Li et al., 2014) iterates on NDFS by making the
additional assumption that the pseudo-labels associated to the samples are actually generated by an underlying d-
dimensional linear model, s.t. :

V(i,7) € [1,...,k] x [1,...,n],yi(z;) = v?wj +piTQT:cj (3.31)

where v; € R” and p; € R? are weight vectors and Q € RP*4 is an orthogonal matrix representing the linear trans-
formation parameterizing the shared d-dimensional subspace. The feature importance matrix A from NDFS is then
redefinedto A = V + QP, and a regularization term on V' is added to the optimization problem :

P*,Q E A" =arg min Tr(ZTLE) +a(|Z - XA+ 8]4]3,) +714 - QPI} (3.32)

still subject to Z orthogonal and semi-positive definite (272 = I,.,= > 0), with «, 3, regularization weights. The

motivation for this sparse structural learning (Ando and Zhang, 2005a) refinement is that the selected features arguably
capture the structure of the underlying d-dimensional manifold (as per the manifold assumption from chapter 2).

RSFS Robust Sparse Feature Selection (RSFS) (Shi et al., 2014)) also aims at providing a more accurate cluster
structure than NDFS, but does so in a different fashion than CGSSL, inspired by robust PCA (Candés et al., 2011). Ins-
tead of explicitly generating pseudo-labels, it is assumed that the learned cluster indicators may be arbitrarily corrupted,
but that the corruption is sparse. This sparse noise is represented by a corruption matrix C' € R™** subject to a LASSO
penalty. The optimization problem then becomes :

C"Z A" = argmin Tr(ETLE) + a2 - ©) = XA} + 8 1415,) +71C% (3.33)

A parallel can be drawn between RSFS and denoising AutoEncoders (section 3.1.1) : a common idea is to increase
the robustness of learning by exposition to small perturbating noise.

13. Slightly abusing the notation, =(x;) designates the vector of cluster affilations of the i-th sample.



50 Chapitre 3. Dimensionality reduction : overview

RUFS Robust Unsupervised Feature Selection (RUFS) (Qian and Zhai, 2013)) aims to improve the quality of the
structure learned by NDFS by adding a cluster centroid matrix C' € R**P to the joint optimization problem :

C* B A" = argmin Tr(E7LE) + a(|Z = XA, + Bl Alz0) + 71X = ZCl,, (3.34)
The authors claim that by virtue of this addition, the inaccuracies caused in the spectral clustering process by irrelevant
features should mainly affect C, thus spare the more important =.

SOGFS Even if clusters are dynamically updated like in the aforementioned NDFS variants, the similarity graph can
still be arbitrarily corrupted by irrelevant or redundant features. Structured Optimal Graph Feature Selection (SOGFS)
(Nie et al., 2016) aims to correct this flaw by also optimizing the similarity matrix M itself. The idea is to weigh the
original features while computing pairwise similarities, according to the feature importance matrix A. The similarity
metric is therefore progressively biased towards the best selection candidates.

Still following the neighbors should look alike idea, M* is defined as :

* . 2
M* = arg min z:(H:Ez —xjllymi + am?,j) (3.35)

MT1=1,0<m; ;<17
with o a regularization parameter to avoid the trivial solution. In order to consider only relevant features to learn the
similarity matrix, this term becomes :

. 2
min Y (|| ATa; — ATa[, mi +ami)) (3.36)
MT1=1,0<m; ;<1 i

The final optimization problem of SOGFS is then :

M* =%, A* :argmin'yTT(ETzE)—i—BHAﬂgl+ E (HAT:B,-—AT:chsz-,j—i—amfj> (3.37)
M,E,A ’ — ’
= 0.

Discussion

While this review of state-of-the-art unsup. FS methods cannot be exhaustive '#, it supports the vision of unsup. FS
as using spectral clustering to equip datapoints with pseudo-labels and fall back on sup. FS. This technique leads to
two major issues :

— The already discussed reliance on a high-dimensional Euclidean distance to construct the similarity graph.

— The poor handling of redundant feature sets. Considering for instance that f; and f, are identical, then S(f1) =
S(f2) w.r.t. the Laplacian score, SPEC or MCFS. These twin features will consequently be either both rejected or
selected, which is clearly sub-optimal no matter the cost function. Note that NDFS and its refinements address
the redundancy issue.

As handling redundancy among initial features is of paramount importance, it is a cornerstone of our algorithmic
contribution (chapter 4).

A third issue of state-of-the-art unsup. FS methods lie in their empirical validation pipeline rather than the selec-
tion itself. The efficiency of all aforementioned methods is assessed in a sup. environment, which goes against the
agnosticism property of filters (more in chapter 5).

14. Additional references include for instance TRACK (Wang et al., 2014) and Similarity Preserving Feature Selection (SPFS)
(Zhao et al., 2013).
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Chapitre 4

Agnostic Feature Selection

This chapter presents our algorithmic contribution in the domain of unsup. FS, AGNOS, building upon the lessons
learned from the state of the art (chapter 3). The proposed AGNOS presents an original learning criterion at the cross-
road of FC and FS.

This novel combination of dimensionality reduction techniques is first discussed at a general level (sec. 4.1), introdu-
cing the main issues that need to be addressed (sec. 4.2). Section 4.3 thereafter discusses the feature scoring criteria.
Lastly, three declinations of AGNOS, called AGNOS-W, AGNOS-G and AGNOS-S, are proposed in section 4.4.

4.1 AGNOS full picture

The proposed unsup. FS algorithm AGNOS combines two underlying motivations : data compression efficiency and
generality, respectively defined and discussed in sections 4.1.1 and 4.1.2.

4.1.1 Efficient data compression (fig. 4.1)

State-of-the-art unsup. feature selection methods ((He et al., 2005; Zhao and Liu, 2007; Cai et al., 2010; Li et al.,
2012; Nie et al., 2016), chapter 3) perform selection with the ultimate goal of predicting a specific target f* not in the
original feature set F, as in sup. learning (chap. 5). However, as underlined in chapter 1, unsup. learning constitutes
the bulk of machine learning, and any element of the feature set can in principle define a learning goal (LeCun, 2016).
Following this idea, AGNOS aims to select a feature subset supporting the prediction of every initial feature and thus
tackles the unsup. FS problem from the angle of data compression.

All original Selection F=S FC
features are subset able —fricient datd——
learning goals to recover F compression FS

FIGURE 4.1: AGNOS combines FC and FS in order to leave no feature behind
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Data compression is traditionally performed through FC (chapters 2 and 3). Accordingly, AGNOS is a two-step
process : A compressed representation &, ¢ R"*¢ of the dataset is first obtained via feature construction. The original
features are then ranked w.r.t. their importance for learning the d latent features (¢1, ..., ¢4) composing ®,. A novelty
of the approach thus is to bridge the gap between the two categories of DR techniques, using feature construction as
a tool for feature selection. Interestingly enough, this essentially amounts to falling back on a supervised multi-labeled
feature selection problem, where datapoints are assigned one continuous label per constructed feature ¢;,i € [1,...,d].

4.1.2 Working hypotheses (fig. 4.2)

The main perk of unsup. learning is its increased adaptability compared to sup. learning (chap. 1) : Unsup. learning
is applicable to any dataset, whether it pertains to Bioinformatics, insurance risk assessment or electrical engineering.

In order to be as general as possible, AGNOS involves minimal hypotheses. It follows the so-called Occam’s razor
principle (Blumer et al., 1987), formulated by Kearns and Vazirani (1994); Crowder and Carbone (2011) as Occam
learning, specifically stipulating that the sought models involve as few contingencies as possible. The cornerstone of
DR is the manifold assumption (chap. 2) :

The manifold assumption The D-dimensional datapoints x4, ..., x, lie near a manifold M- of dimension d* s.t.
d* << D.

In the following, the manifold assumption is the only assumption done in AGNOS.

Only
Minimal r; requirement :
assumptions manifold
assumption

Adaptable and
generic learning

FIGURE 4.2: AGNOS operates under minimal hypotheses

4.1.3 Combining both motivations

Following section 4.1.1, AGNOS involves two interacting parts : a FC algorithm and a FS mechanism, and the
question thus becomes to select the algorithms involved in each component. From the assumption perspective and
given the hybrid nature of AGNOS, it follows :

Assumptions(AGNOS) = { Manifold assumption } = Assumptions(FC) U Assumptions(FS)

where the first equality comes from sec. 4.1.2. Accordingly, both FC and FS components of AGNOS must not require
any hypotheses beyond the manifold assumption. This requirement will rule out most DR methods (most often implicitly
involving additional assumptions, e.g. PCA (Pearson, 1901) relies on the assumption that the underlying manifold be
linear, or SFUS (Ma et al., 2012), assuming that all original features are boolean).

Eventually, the AGNOS DR pipeline proceeds by elimination and discards methods relying on additional hypotheses,
as will now be discussed.
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4.1.4 Typical DR requirements

DR methods typically make assumptions on three different components of the problem : the datapoints (sec. 4.1.4.1),
the underlying manifold (sec. 4.1.4.2), or the original features (sec. 4.1.4.3).

4.1.4.1 Assumptions regarding the datapoints

Sup. DR algorithms (Ye and Sun, 2018; Zhao et al., 2006b), assuming that each datapoint x; is equipped with a
label y;, are inappropriate by construction as we focus unsup. DR.

State-of-the-art unsup. FS methods (He et al., 2005; Zhao and Liu, 2007; Cai et al., 2010; Li et al., 2012; Nie et al.,
2016) (chap. 3) rely on the assumption that the pairwise likeness of datapoints can be accurately depicted using the
Euclidean distance in the original high-dimensional data representation. This assumption is unlikely to hold in the view
of the curse of dimensionality (chap. 2). Spectral clustering-based FS is thus also out of contention.

4.1.4.2 Assumptions regarding the nature of M

Linear FC techniques (Pearson, 1901; Golu and Reinsch, 1971) assume that the underlying manifold is linear, and
are thus inappropriate in the AGNOS context .

Although approaches such as Isomap (Tenenbaum et al., 2000) and Locally Linear Embedding (Roweis and Saul,
2000) are able to unfold a non-linear Swiss Roll (chap. 3), their success hinges on two additional informal implicit
assumptions : i) the underlying manifold M is smooth (informally, the parametric equations defining the manifold are
infinitely differentiable) ; and ii) M} does not contain "holes”.

The fact that both assumptions cannot be efficiently (either computationally or statistically) be overcome is argued
as follows. Consider the case of a torus (fig. 4.3), smooth manifold of intrinsic dimension 2 (w.r.t. any of the ID estimators
from chap. 2). It is clear that the torus clearly cannot be flattened from 3D to 2D while preserving local neighborhoods
due to the hole in the middle.

FIGURE 4.3: A torus corresponds to a smooth manifold, but contains a hole. From Wikipedia.

1. Note that even in the linear case, PCA and SVD require a specific configuration of the covariance matrix, s.t. the angles
between its eigenvectors be sufficiently large (Martinez and Zhu, 2005).
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3D Data, No Tear
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FIGURE 4.4: Like for the torus, Isomap fails to embed a 3D cylinder in a 2D space while pre-
serving its similarity graph (upper panels). However, DR is succesful if the cylinder has been
preemptively “cut” (lower panels). From van der Maaten et al. (2008)

Indeed, an option would be to "cut” the manifold as a form of pre-processing to DR (van der Maaten et al., 2008),
so that it can thereafter be unfolded like a Swiss Roll (figure 4.4). However, such a pre-processing step involves n
runs of the Dijkstra algorithm (Jianya, 1999), being thus computationally hardly affordable in most application domains.
Furthermore, such a “cutting” process effectively induces a deformation of the manifold, and would thus alter the final
selection subset. Considering these two significant downsides, similarity-preserving methods are ultimately discarded
for performing FC in AGNOS.

4.1.4.3 Assumptions regarding the original features

As seen in chapter 3, independent scoring FS methods (Duda et al., 2000) assume that the original feature set F'
does not contain any XOR-like concept (sec. 3.2.1). State-of-the-art unsup. methods such as the Laplacian score (He
et al., 2005), SPEC (Zhao and Liu, 2007) or MCFS (Cai et al., 2010) require that no elements of F' are redundant in
order to rank features fairly. Lastly, other approaches (Ma et al., 2012; Chang et al., 2014) assume that F' contains only
boolean features. Consequently, all aforementioned algorithms are not eligible to perform FS in AGNOS.

Discussion

Following the previous discussion, AGNOS should involve :

— A non-linear unsup. data compression scheme that does not rely on pairwise Euclidean distances between high-
dimensional datapoints.

— A semi-independent or collective feature scoring criterion able to handle redundancy.
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In view of these specifications, the natural candidate for performing FC is the non-linear AutoEncoder (chap. 3).
Taking inspiration from neural network-based FS (chap. 3), a semi-independent feature scoring criterion is derived from
the parameters of the AutoEncoder at the end of training. The following section discusses the feature redundancy
problem in the context of an AutoEncoder.

4.2 The redundancy issue

In a nutshell, the general AGNOS scheme uses an AutoEncoder to produce a compression representation &, €

R™*4 of the dataset; the initial variables are thereafter ranked w.r.t. their importance for learning (¢, ..., ¢4). In the
large sample limit, tuning the size of the encoder layer so that d = I D(X) ensures that i) ®, contains all the information
needed to reconstruct the original feature set; and ii) each of ¢4, . .., ¢4 is informative to some extent.

Note however that how the information is organized and scattered among the constructed features is unknown,
which might adversely affect the approach in the presence of redundant original features ; we shall come to this point in
section 4.4.

Consider a basic AutoEncoder equipped only with a MSE loss :

D

L(F) =Y |lfi = £ill3

=1

The contributions of each feature to the total loss appear to be weighted equally. However, let us consider the case
where the feature set contains « duplicates of the first feature (for some x € [2,...,D — 1], f1 = fa = ... = fe. In
an unsupervised feature selection setting, we would like the probability of selecting one copy of f; to increase with «.
On the other hand, the probability of selecting multiple copies should clearly always be zero no matter the value of «.
However :

K D
LF) =Y |Ifi— falls+ Y |Ifi— £ill3
=1 1=r+1

The contribution of f; to the total loss is considered « times more important than for another feature. The larger «,
the more reconstructing f; is a priority for the AutoEncoder during training, the more influence f; and all its duplicates
ultimately hold over ®,. Given that AGNOS aims to score original features w.r.t. this influence, all copies of f; will obtain
the same score and be discarded or selected together.

This is a major issue, as it is very common for real world datasets to contain clusters of strongly correlated features.
A sensible feature selection algorithm should select at most one representative per such cluster.

A key requirement for AGNOS to is to address the initial feature redundancy. To this end, three regularizations will
be proposed (sec. 4.4) in the spirit of LASSO (Tibshirani, 1996) and group-LASSO (Yuan and Lin, 2007) to enforce the
sparsity of the latent (aka constructed) features. Each regularization scheme comes with its own optimization criterion.
The three criteria however rely on the same principles, disccused in section 4.3.

4.3 Feature scoring

As said, AGNOS ranks original features w.r.t. an importance score derived from the parameters of the trained Au-
toEncoder, reflecting their respective influence for learning ®,4. Three scoring criteria will be examined in section 4.4,
each corresponding to a declination of AGNOS.
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The first criterion is based on the weights of the encoder part of the network, and is used in AGNOS-W. The second
considers the gradients of the constructed features w.r.t. the input features and is relied upon by AGNOS-G. Lastly, the
scoring criterion of AGNOS-S is based on an altered neural architecture.

The influence of f;,i € [1,...,D] over ®; can be assessed independently for each of the constructed features
b1,...,¢Pq. Section 4.3.1 discusses how these d influence measurements should be aggregated to obtain the final
score for f;. Section 4.3.2 assesses the semi-independence nature of the resulting scoring criteria.

As AGNOS essentially amounts to falling back on a sup. multi-labeled FS problem, where datapoints are assigned
one continuous label per constructed feature ¢;,i € [1,...,d], one could wonder why a new scoring procedure is needed
rather than simply adapting existing multi-labeled FS techniques (Ma et al., 2012; Chang et al., 2014). This interrogation
is addressed by section 4.3.3.

4.3.1 From local influence to global feature score

As a result of d = ID(X), in the large sample limit all constructed features are guaranteed to be relevant to the
reconstruction of the initial features to some extent. V(3,5) € [1,...,D] x [1,...,d], let I(f;, ¢;) denote the influence of
fi over ¢; (to be formalized below). A simple definition for the ranking criterion is to consider the average influence of
fi over all constructed features :

Score(f;) =

d
Z (fi, &4) (4.1)

&\»—‘

However, this formulation fails to take into account the local informativity of the features. The proposed approach
takes inspiration from the unsupervised feature selection algorithm MCFS (Cai et al., 2010) (chap. 3), in which a feature
is considered important iff it is helpful to identify at least one cluster. Assume that for a certain f; , 3j € [1,...,d] s...
I(fi, ¢j)islarge and Vk € [1,...,d] s.t. k # j, I(fi, ¢x) = 0. Then, according to equation (4.1), Score(f;) is small, and
fi is likely to be discarded. However, if a feature has a strong influence on at least one constructed feature, it means
that preserving the information it contains is very important for data compression. Therefore, such a feature f; should
be ranked highly and prioritized for selection.

Accordingly, a more suitable ranking criterion definition is to consider the maximum influence of f; over any construc-
ted feature :

Score(f;) = maxd] I(fs, @5) (4.2)

JE[L,

The criteria used in AGNOS-W and AGNOS-G both follow this reasoning.

Remark. Taking the maximum value might however be inappropriate if some latent variables are significantly less
important than others. If an initial feature f; holds a strong influence over only one ¢; of lesser importance, then f;
should be discarded. Nevertheless, f; will inaccurately be ranked highly w.r.t. eq. (4.2).

Considering this possible imbalance in constructed feature importance, a solution is to alter the structure of the
AutoEncoder, so that instead of aggregating d measurements I(f;, ¢;), the overall influence of f; over &, is directly
observed :

Score(f;) = I(fi, Pa) (4.3)

This change of scoring paradigm is the basis of AGNOS-S (sec. 4.4)
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4.3.2 Is AGNOS an independent scoring method ?

As seen in chapter 2, unlike collective or semi-independent scoring methods, independent feature selection algo-
rithms bear the important limitation of being unable to recognize features that are useless by themselves, but important
together.

In AGNOS, although Score(f;) is ultimately assessed in isolation from the other scores, it is derived from the in-
fluence measurements I(f;, ¢;) (or I(f;, ®q) in the case of AGNOS-S). Given that each constructed feature is obtained
by a non-linear combination of every initial variable, I(f;, ¢;) actually indirectly involves the whole original feature set
F. AGNOS is therefore a semi-independent scoring method, and meets the requirement of being applicable to datasets
containing XOR-like concepts.

4.3.3 Supervised multi-labeled feature selection via shared subspace learning

Sup. multi-labeled FS has been tackled by several approaches (Ma et al., 2012; Chang et al., 2014) in the context of
image annotation. In this setting, each image is labeled with multiple concepts it is related to such as "people”, "party”,
“entertainement”.

Sup. multi-labeled FS methods then make the assumption (Ando and Zhang, 2005b) that images are likely to share

some labels with each other (e.g. ("people,’'work”) and ("people”,’party”) pertain to the same topic "people”). The goal is
then to learn a shared subspace for the original features to help predict the labels.

Formally, let Y = [y1,...,ya] € {0,1}¢*" denote the label matrix, V € RP*? and P € RP*4 two weight matrices,
and Q € RP*P the shared subspace matrix. The goal is then to find V*, P*, Q* s.t. :
(V*, P*,Q*) = argminloss((V + QP)"XTY) + uQ(V, P) with Q" Q = Ip (4.4)
V,P,Q

where Q(V, P) is a regularization term weighted by p. The original features selected are then those corresponding to
non-zero rows of V* + Q* P*.

Arguably, one could adapt this framework to our unsupervised context by replacing Y with ®2'. However, such an
adaptation raises several theoretical and practical objections.

Firstly, the process of shared subspace learning basically amounts to optimizing a function mapping the samples to
the labels. However, a specificity of our approach is that we already have access to this exact function : it is given by the
encoding part of the AutoEncoder. Therefore, rather than learning a new mapping from scratch, we aim to leverage the
existing one, by observing the parameters of the AutoEncoder.

Secondly, ¢; € R™ is not a binary feature, but a continuous one. Therefore, the underlying assumption for subspace
learning that samples share some labels is much less likely to hold.

Finally, a requirement for feature selection to be applicable in practice is to be less computationally expensive than
learning without dimensionality reduction. Training an AutoEncoder to learn ¢4, then solving the optimization problem in
equation (4.4) is hardly affordable in terms of time complexity.

4.4 The AGNOS algorithm

We address the issue of redundancy among the original features by adapting LASSO-inspired regularization tech-
niques to the unsupervised context. The AutoEncoder loss function is enhanced with a penalty term enforcing that only
few, non-redundant initial features are retained during learning. This section presents the three considered regulari-
zation schemes, each corresponding to a declination of AGNOS : weight-based regularization for AGNOS-W (section
4.4.1), gradient-based regularization for AGNOS-G (section 4.4.2), and slack variable-based regularization for AGNOS-S
(section 4.4.3). The three versions of AGNOS are then discussed in section 4.4.3.
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Preprocessing : normalizing the original features

Intuitively, the larger the contribution of f; to the AutoEncoder loss L(F), the more influent f;, the more likely f; is
ultimately selected.

Assume however that for some pair of initial features f; and f;, one has f; = C * f; for some constant C' > 1.
Clearly both features carry the same information and their respective influences on ®, should be equal. However, like
in the case of redundant features and for the same reason, the contribution of f; to the MSE-based L(F) tends to be C
times larger than for f;, and f; is prioritized over f; for selection.

This selection bias towards features with large first and second order moments is handled by pre-processing the
dataset, each initial feature being normalized and centered.

441 AGNOS with weight regularization : AGNOS-W

The first declination of AGNOS is AGNOS-W, which is inspired by supervised feature selection with neural networks
techniques relying on weight-based regularization (Bauer et al., 2000; Roy et al., 2015). The AutoEncoder loss function
is enhanced with a group-LASSO (Yuan and Lin, 2007) penalty term on the weights of the hidden layer. Formally, letting
W e RP*4 denote the encoder weight matrix and W, . its i-th row, the L, ; penalization reads :

D d D

L(W) = ; ;Wfk = Z; [Will2

and the learning criterion of AGNOS-W is accordingly defined as :

D
Lw(F) =" |lIfi — fill3 + AL(W) (4.5)

i=1

with A the penalization weight. This regularization leads to a sparse input neural network (Feng and Simon, 2017) (chap.
3), enforcing that only a few original features are influential for learning ®,. In order to simultaneously reconstruct the
whole feature set and rely on as few original features as possible, the AutoEncoder is coerced to discard redundant fea-
tures by setting the corresponding rows of W to 0. This learning criterion thus is meant to tackle the issue of redundant
feature sets.

After training, the influence of f; over ¢; can be observed through coefficient |W; ;|, as in RFE-SVM (Guyon et al.,
2002). The larger this quantity, the more important f;. Naturally, considering the absolute value of W; ; is necessary to
properly account for negative weights, which are as informative as positive ones.

As previously discussed, f; should be considered important iff it is influential on at least one constructed feature.
Therefore, the final score of the i-th feature is defined as the maximum influence on any hidden neuron :

Scorew (fi) = Wil (4.6)

This leads to the following algorithm :
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Algorithm 5 AGNOS-W

Input : Feature set F = {f1,..., fp}
Parameter )

Output : Ranking of features in F

Normalize each feature to zero mean and unit variance.
Estimate intrinsic dimension ID of F.
Initialize neural network with d = 7D neurons in the hidden layer.
Repeat

D R D
Backpropagate Lw (F) = Y [[fi — fill3 + X X Wi, [l
=1 i=1

until convergence
Rank features by decreasing scores with Scorew (i) = ||[Wi,.||co-

4.4.2 AGNOS with gradient regularization : AGNOS-G

The second proposed declination of AGNOS is AGNOS-G, inspired by studies on the benefits of gradient regulariza-
tion (Rifai et al., 2011; Varga et al., 2017).

In the supervised context,Varga et al. (2017) have recently shown that L, regularization on the gradients of the
output layer helps improve the predictive accuracy of discriminative neural networks. This improvement is explained by
the fact that smaller output gradients leads to a decreased sensitivity of the learning goal w.r.t. the input, which helps
combat overfitting.

In the unsupervised context, Rifai et al. (2011) introduced contractive AutoEncoders. This corresponds to enhancing
a standard AutoEncoder with a L, penalty term on the gradients of the hidden layer w.r.t. the input dimensions. The
compressed representation &, produced by contractive AutoEncoders has been empirically shown to be more robust
w.r.t. input noise than for traditional AutoEncoders. By contrast with the supervised setting, the output layer of an Au-
toEncoder is not the end goal of learning, rather a byproduct of feature construction. The actual learning goal is &,
which resides in the hidden layer. This reasoning motivates penalizing the hidden layer gradients rather than the output
ones.

AGNOS-G also relies on regularizing the gradients of the hidden layer. Given that the end goal of AGNOS is feature
selection, this regularization should aim to simultaneously cancel all gradients of the constructed features w.r.t. redun-
dant original features. The L, regularization used for contractive AutoEncoders is inadequate for that purpose ; as seen
in chapter 3, an L, penalty cannot enforce sparsity.

Therefore, AGNOS-G instead employs a group-LASSO (Yuan and Lin, 2007) regularization instead, regrouping
hidden layer gradients by original feature :

The total loss function of the AutoEncoder is then :

D
La(F) =Y |Ifi — fill3 + AL(Za) (4.8)

i=1
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Similarly as in AGNOS-W, the combination of the mean square error and the sparsity pressure incentivizes the
AutoEncoder to nullify all hidden layer gradients related to superfluous initial features, therefore successfully tackling the
redundancy issue.

After training, the influence of f; over ¢; can be observed through the gradient of ¢; w.r.t. f;, estimated at each

datapoint : ,
) = 3 (G ) “9)

With the same reasoning as for AGNOS-W, f; should be considered important iff it is influential for at least one
constructed feature. Therefore, the final score is defined as :

2
Scoreqg(fi) = 1<?<d2(gq;j( )) (4.10)

The larger this quantity, the more important f;. This scoring criterion is similar to that of supervised feature saliency
selection methods (Steppe and Bauer, 1996; Zurada et al., 1997), with the notable difference that we consider the
hidden layer gradients rather than the output ones. This is consistent with the observation that our learning goal is not
the output of the network, rather ®,.

Interestingly enough, this modification also holds two practical advantages over traditional feature saliency tech-
nigues. On one hand, examining the gradients halfway through the feedforward process helps reduce the probability of
encountering a vanishing gradient problem (Pascanu et al., 2013). On the other hand, obtaining the pointwise gradients
of the hidden layer w.r.t. the input dimensions requires n x d x D computations for each training iteration, as opposed
to n x D? computations for the gradients of the output layer. Given that d << D, this is a significant reduction in time
complexity.

Moreover, in the case of an encoder with a single hidden layer, this score can be computed in a simple fashion. For
example, with a tanh activation function, one has :

2
Scoreq(f;) = lgjsgcd W2, (1— ¢j(z1)?) (4.11)

This leads to the proposed algorithm :

Algorithm 6 AGNOS-G

Input : Feature set F = {f1,..., fp}
Parameter )

Output : Ranking of features in F

Normalize each feature to zero mean and unit variance.
Estimate intrinsic dimension 1D of F.
Initialize neural network with d = I D neurons in the hidden layer.
Repeat

D n d 8¢ 2
Backpropagate L(F) = 3. ||fi - fz||2+xz > 5 ()

until convergence

Rank features by decreasing scores with Scoreq(f;) = r[rllax Z |af (k)]
Jelldl g=1 ~7°
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4.4.3 AGNOS with slack variables : AGNOS-S

A third version of AGNOS is considered, called AGNOS-S and inspired from Leray and Gallinari (1999); Li et al.
(2016); Goudet et al. (2018). The neural architecture is augmented with a sparse one-to-one linear layer composed
of slack variables, inserted between the input and the first hidden layer. Formally, to each feature f; is associated a
(learned) coefficient a; initialized to 1, and the encoder is fed with the vector (a; f;) (fig. 4.5). The learning criterion here
is the reconstruction loss augmented with an L; penalization on the slack variables :

D D
Ls(F) =Y "fi— £ilB+ 2> lail (4.12)
=1 =1

O P
fi —ﬂ\l fi
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FIGURE 4.5: Structure of the neural network used in AGNOS-S

Like in LASSO (Tibshirani, 1996), the L, penalization pushes the slack variables toward a sparse vector such that
features unnecessary to reconstruct F' are associated a null coefficient. This regularization thus efficiently tackles the
issue of redundancy. In order to prevent the network from drawing slack variables toward 0 and compensating for
the small slack variables by proportionally amplifying the encoder weights, the encoder weight vector W is normalized
(IIW|l2 = 1). In order to obtain a standardized protocol, this normalization is also applied in the AGNOS-W and AGNOS-G
variants.

Similarly as in Li et al. (2016), the score of the i-th feature is eventually set to |a;]| : this single real-valued coefficient
reflects the contribution of f; to the latent representation, and its importance to reconstruct the whole feature set :

Scores(fi) = |ail (4.13)

The larger this quantity, the more important f;.

This corresponds to directly measuring I(f;, Zq) rather than I(f;, z;) for each z;. Therefore, a major benefit of
this altered neural architecture is to provide an accurate ranking criterion even if some constructed features are more
important than others.
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Algorithm 7 AGNOS-S

Input : Feature set F' = {fi1,..., fp}
Parameter \

Output : Ranking of features in F

Normalize each feature to zero mean and unit variance.
Estimate intrinsic dimension 7D of F. .
Initialize neural network with (a1, ...,ap) = 1p and d = 1D neurons in the hidden layer.
Repeat

D D
Backpropagate Ls(F) = Y ||fi — fill3 + A X |ai
=1 1=1

until convergence
Rank features by decreasing scores with Scores(f;) = |ail.

Discussion

About tied weights While designing the architecture of an AutoEncoder, it is common practice to rely on weight
sharing (Baldi, 2012; Bengio, 2012). This practice, also referred to as tied weights, consists in setting the weights of
the decoder part of the network to the transpose of the encoder weights (that is, in the case of a single hidden layer,
W decoder) — 17T - An immediate benefit lies in the reduced number of learned parameters, which both lowers the
space complexity of training and helps prevent overfitting. Without weight sharing, the AutoEncoder might learn very
small encoder weights (corresponding to a near linear regime in the activation functions) and compensate with large
decoder weights. This essentially amounts to learning the identity function. An additional benefit of weight sharing is
therefore its potential regularizing effect, which prevents learning this degenerate solution.

However, weight sharing may be detrimental to learning when the end goal is not reconstruction but feature selec-
tion. Assume the AutoEncoder is able to reconstruct the whole feature set and that no initial feature is constant. By
construction :

Vje[l,....Dl3iel,....d, WS >0

With weight sharing, Wi(fec"d”) = Wj;. Therefore :
Vi e [1,...,D},E|i S [1,,d],|le| >0

In other words, there is at least one non-zero coefficient per row of . This means that every initial feature is considered
at least somewhat important w.r.t. the scoring function of AGNOS-W, hindering feature selection. This is precisely what
the L, ; weight regularization employed in AGNOS-W aims to avoid, justifying leaving encoder and decoder weights
untied.

Although the negative impact of weight sharing on AGNOS-G and AGNOS-S is less clear from a theoretical stand-
point, preliminary experiments have shown that relying on tied weights led to decreased FS performance in both these
versions of AGNOS.

Should the group LASSO penalty be sparse? Recent supervised neural network-based FS methods (Roy
et al., 2015; Li et al., 2016; Ye and Sun, 2018) (chap. 3) perform regularization via a sparse group LASSO penalty
(Simon et al., 2013) on the weights of the first hidden layer.
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By contrast, both AGNOS-W and AGNOS-G rely on a “vanilla” non-sparse group LASSO (Yuan and Lin, 2007)
penalty instead. A first argument for this design choice is to avoid introducing the additional hyperparameter «, which
would increase the complexity of the sensitivity study (more in chap. 6).

More importantly, the goal of the sparse group LASSO is to achieve sparsity both at the group level and inside
each group, which is a desirable property in the supervised setting (Feng and Simon, 2017). However, in the context
of an AutoEncoder performing unsupervised learning, a sparse group LASSO penalty would induce a compressed
representation s.t. each original feature contributes to as few constructed features as possible. This corresponds to
learning a disentangled representation (Bengio et al., 2013; Kim and Mnih, 2018). Learning a disentangled represen-
tation essentially corresponds to sacrificing some efficiency regarding data compression  in exchange for better model
interpretability 3. However, studying the impact of such a tradeoff is beyond the scope of this thesis.

Normalizing structural regularization strength \ The sparsity penalty terms implemented in AGNOS-S, AGNOS-
W and AGNOS-G respectively involve D slack variables, D x d weights, and D x d x n gradients. The number of para-
meters involved in the structural regularization thus depends on the considered variant of the approach. Accordingly, for
the sake of consistency and homogeneity, the respective penalty strengths (Ag, Aw, Ag) are normalized s.t. Ay = %S

and \g = 2.

2. This is a direct consequence of the network being prevented from spreadng the information contained by an important original
feature into multiple components of the d-dimensional space.

3. Arguably, the fewer original features are involved for learning each constructed feature, the easier it is to measure their respec-
tive influence.
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Chapitre 5

Performance indicators for assessing
unsupervised Feature Selection

This chapter is concerned with the validation procedure of unsup. FS. The theoretical properties of an ideal perfor-
mance indicator are first discussed in section 5.1. Section 5.2 thereafter introduces the three sup. criteria typically used
in unsup. FS. Lastly, section 5.3 presents our methodological contribution, the unsup. FIT criterion.

How many features to select? The results of both sup. and unsup. assessment protocols depend on hyperpara-
meter k governing the size of the selection subset S;.. As discussed in chapter 2, & is in the unsup. FS context manually
set by the user rather than automatically tuned like in sup. approaches (Ye and Sun, 2018). In the remainder of this
chapter, k is considered a fixed parameter.

Empirical validation of state-of-the-art unsup. FS algorithms (He et al., 2005; Zhao and Liu, 2007; Cai et al., 2010;
Li et al., 2012; Nie et al., 2016) typically considers multiple values for &, in order to monitor the efficiency of selection as
a function of the reduced dimensionality. Accordingly, we will follow this protocol in our own empirical study (chap. 6).

5.1 Motivation

In sup. FS, the relevance of a performance indicator PI is unambiguous : PI is a good criterion iff it rewards
selecting the best features for predicting the learning goal.

By contrast, the quality of PI is harder to define in the unsup. context, given the absence of ground truth. An
important question then arises : “What makes a good performance indicator for unsup. FS ?”

We argue that a suitable PI should strive for the following six qualities, defined thereafter :

— Impartiality
— Expressivity
— Stability

— Interpretability
— Simplicity

— Cost-efficiency
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Impartiality Impartiality denotes the absence of unwanted bias towards selecting features of a certain nature, struc-
ture or apparent purpose. Consider for instance PI; s.t. :

_ | 1if S, contains only categorical features
PL(Sy) = { 0 otherwise

P1I, incentivizes the selection of categorical features regardless of information carried, thus fails to meet the requirement
of impartiality.

Expressivity The more information is taken into account by PI, the more expressive this performance indicator.
Consider e.g. the following P1I, :
PI,(S;) = max cov(f, f1)
fESk

The quality of Sj is assessed using only a small piece of information (the covariance with a single particular feature);
the expressiveness of P, is hence clearly low.

Stability The score of a particular unsup. FS algorithm w.r.t. PI is expected to fluctuate according to the selection
subset size k and the set © of algorithm hyperparameters. However, the position of this method in the ranking of unsup.
FS approaches should hardly depend on & and ©.

Consequently, PI is deemed stable iff the associated ordering of unsup. selection techniques is consistent across
a wide range of values for & and ©. In other words, what matters is the relative hierarchy of algorithms rather than the
respective absolute scores.

Consider e.g. PI5 s.t.:

PI(Sg) if k <10

PIy(Sk) = { PL(Sy) if k > 10

The ordering of selection methods is likely shuffled when considering subsets of more than ten features. P13 is therefore
unstable '.

Interpretability In order to comply with FTA learning (chap. 1), a performance indicator should be easily unders-
tandable, even by a non-expert in ML. The behavior of information-theoretic measurements such as the Variation of
Information (VI) (Meila, 2003) is unintuitive, as claimed by Gates et al. (2018) (more in sec. 5.2). Such indicators thus
arguably lack in interpretability.

Simplicity Assume FS algorithm A is ranked highly w.r.t. performance indicator PI. This could indicate that A4 is a
better selection method than its competitors. However, it may also be that PI is partial towards the selection subset
resulting of A. In the absence of ground truth, disentangling the experimental validation of unsup. FS methods from the
empirical study of P1 itself is therefore challenging. This issue is amplified in the presence of important hyperparameters
for PI. Consider for instance PI, s.t. :

V(Oé,ﬂ,’}/) € R37PI4(S/€7047577) = aPIl(Sk) +ﬂPI2(Sk) +'YPI3(SIC)

The goal of measuring the quality of S, with PI, is mingled with the task of tuning «, 5 and ~. A simple performance
indicator should therefore, unlike P14, include as few hyperparameters as possible, so that it can be considered a fixed
component of the validation process.

1. Arguably, PI; is also non-smooth : the score of an algorithm abruptly changes across the boundary & = 10. Smoothness is
also a desired property of performance indicators, although with a lower priority than stability.
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Cost-efficiency In addition to all aforementioned qualities, an ideal performance indicator should also be as inex-
pensive as possible in terms of computational complexity (both time and space-wise). Most notably and in view of Big
Data, the assessment procedure should scale well w.r.t. both the number of datapoints and the number of original
features.

Discussion

As said, state-of-the-art unsup. FS methods (He et al., 2005; Zhao and Liu, 2007; Cai et al., 2010; Li et al., 2012;
Nie et al., 2016) are typically empirically assessed with a sup. performance indicator. We claim that this procedure nets
significant downsides for little benefits :

Claim: Typical sup. performance indicators for unsup. FS all fail to meet the impartiality, expressivity and stability pro-
perties.

This claim will be further discussed in section 5.2 and supported by empirical evidence in our experimental study
(chap. 6). Our campaign of experiments will also show that, relatively to sup. performance indicators, the proposed
unsup. FIT criterion is more impartial, expressive and stable. The main downside of this methodological contribution lies
in its poor cost-efficiency (chap. 6). A direction for future research consists in improving the cost-efficiency of the FIT
procedure (chap. 7).

5.2 Supervised performance indicators

State-of-the-art unsup. FS methods (He et al., 2005; Zhao and Liu, 2007; Cai et al., 2010; Li et al., 2012) typically
rely on one of two techniques to quantify the quality of the retained feature subset Sj.. The first technique is classifier-
based (sec. 5.2.1), while the second one is clustering-based (sec. 5.2.2). Section 5.2.3 will thereafter investigate our
claim that sup. performance indicators are ill-suited for assessing unsup. FS.

5.2.1 Classifier-based criterion

Given that we are here concerned with sup. assessment of unsup. FS, let f* denote the target feature and x a
classifier. Let the datapoints be split into a training set X,..;, and a testing set X;..;. Let 0 : N x N — {0, 1} denote the

function s.t. :
lifa=1b

V(a,b) € N?,6(a,b) = { 0 otherwise.

The predictive power of the selection subset S is measured using h. h is first trained on X;,..:», considering only
the features in S;. The test classification error rate of ¢ is thereafter defined as :

BRy(S.f7) = 1= 3 8@ @)= ¥ £(r@).fw) (5.1)

TEXtest TE€EXtest

The lower ER4(Sk, f*), the more accurate yx for predicting f* using only S,. Unsup. FS algorithms are then ranked
in ascending order w.r.t. the respective resulting error rates.

The resulting ranking is actually a multivariate function involving f*, the classifier structure (e.g. Decision Tree
(Safavian and Landgrebe, 1991), Random Forest (Diaz-Uriarte and Andres, 2006), Gaussian SVM (Scholkopf and
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Smola, 2001)), the hyperparameters of h, and the random split between X;...;, and X;..;. The dependency w.r.t. the
train/test split is typically removed by relying on Leave-One-Out (LOO) cross-validation (Kohavi, 1995) 2.

The most common choice for ¢ in the literature (Zhao and Liu, 2007; Cai et al., 2010) is the p-Nearest-Neighbor
(r-NN) classifier. The motivation underlying this choice is fourfold.

First of all, p-NN classification is non-linear, which is required due to working hypotheses (sec. 4.1.2). Furthermore,
the unreliability of Euclidean distance-based similarities caused by the curse of dimensionality is alleviated in the k-
dimensional space defined by S, (provided that k << D).

Moreover, p-NN classification is usually more resilient w.r.t. overfitting than e.g. Decision-Tree based classification
such as Random Forest. Lastly, a p-NN classifier does not involve any hyperparameters besides p, typically fixed to
p = 1 (thus predicting the class of the sample closest to the considered datapoint). This classifier therefore adheres to
the notion of simplicity introduced earlier.

With p = 1 and z; denoting the nearest neighbor of z; %, the error rate from equation (5.1) can then be rewritten as
(Cai et al., 2010) :

BR(Sk. 1) =13 307 0. 1 (0) 52)

The empirical assessment of the three declinations of AGNOS and baseline unsupervised FS algorithms w.r.t. this
performance indicator will be provided in our experimental validation (chap. 6) with p = 5 neighbors, for the sake of
stability.

5.2.2 Clustering-based metrics

In this procedure, samples are clustered with a standard K-means algorithm (Hartigann and Wong, 1979) consi-
dering only the features in S;. Similarly as for the p-NN classifier, relying on a k-dimensional space instead of a
D-dimensional one helps escape the curse of dimensionality and provide reliable clusters.

Notations As a result of K-means clustering, each sample is assigned to a unique cluster. This essentially amounts
to equipping each datapoint x; with a pseudo-label (the corresponding cluster number). Let F denote the resulting new
feature vector, containing « unique values (x governing the number of clusters). Let ¢ denote the number of classes in
V(7)) e[l,...,k] x[1,...,d, let A; and B, respectively denote the set of samples belonging to the i-th cluster and
the set of samples belonging to the j-th class.

. Given the above framework, two performance indicators are typically designed to assess the relevance of the
clusters. Section 5.2.2.1 introduces a first criterion measuring the homogeneity of the clusters. Section 5.2.2.2 thereafter
presents an alternate definition of relevance rooted in information theory.

In order to fully uncover the learning goal, it is clear that K-means clustering should be performed with x > c.
However, tuning « within the range [c, n] is both challenging and crucial to the success of clustering-based performance
indicators, as will be discussed in section 5.2.2.3.

2. Arguably, the results still weakly depend on the order in which the n-folds are considered for training g.
3. Formally :

Vi) €M, stg i, [ (flw) = F@) < [0 (Fla) — f(x)?

fESK fESK
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5.2.2.1 Cluster purity-based performance indicator

The goal is here to measure how well aligned f; is with f*, up to a reordering of the clusters. Formally, let ©,,_,.
denote the family of functions 6 : [1,..., k] — [1,...,].
The accuracy score (ACC) (Cai et al., 2010; Li et al., 2012) of the selection subset Sy, is then defined as :

ACC(S, f*) = max —ZZ|A9()OB| (5.3)

0€0,. . N
- i=1 j=1

This can be rewritten from the perspective of the samples :
ACC(Sk, f*) = pnax o Z 5( £ (1)) (m)) (5.4)

It directly follows from eq. (5.4) that VS;, € F,0 < ACC(Sk, f*) < 1, tightness of the upper bound being guaranteed
by k > ¢. The higher ACC(Sk, f*), the better the clusters allow identifying the different target concepts, the better the
selection.

The ranking of the three declinations of AGNOS and baseline unsupervised FS algorithms w.r.t. the ACC score will
be discussed in our empirical study (chap. 6).

5.2.2.2 Information theoretic performance indicator

Following information theory (Cover and Thomas, 2012), }\* and f* can be interpreted as the respective realizations
of two random variables. The core idea is then to measure the reduction of uncertainty (a.k.a. entropy) concerning the
realization f* gained from knowing the realization f:

The individual entropies of F and f* are respectively denoted H(f:) and H(f*), defined as :

_ Z |Ail | < >
Z 15l ( )
Accordingly, the joint entropy H(F, f*)is given by :

__22|Aiﬂ3j|log(|AiﬁBj|) (5.6)
n n

i=1 j=1

The mutual information (M) (Banerjee et ¢ al., 2005) performance indicator then measures how much knowledge
about learning goal f* can be inferred from f* MI(f* f*) corresponds to the sum of individual entropies minus the
joint entropy, that is :

MI(f*, f*) = H(f*) + H(f*) — H(f*, f*) (5.7)

The higher the MI, the more informative the clustering for identifying the target, the better the selection.
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By equations (5.5) and (5.6) :

0 < H(f*) < log(k)
0 < H(f*) < log(c)

H(fF*)max(H(f*), H(f*)) < H(f*, f*) < H(f*) + H(f*)
Injecting these upper and lower bounds in eq. (5.7) yields :
0< Ml(f;, f*) < min(log(r),log(c)) (5.8)

Eq. (5.8) is source of an interpretability issue of the Ml : the result MI(F, f*) = 1 can depict an arbitrarily good or
bad selection subset, depending on the relative values of x, ¢ and n.

In order to obtain interpretable results, numerous possible normalizations of the Ml have been proposed over the
years, such as the minimum Normalized Mutual Information (N M I,,,;,,) (Liu et al., 2008), joint NMI (N M1;4n:) (Yao,
2003), square root NMI (N MI,,.) (Strehl and Ghosh, 2002) or Adjusted Mutual Information (AMI) (Vinh et al., 2009).
Each normalization variant comes with specific pros and cons. For instance, the NM1,,;, * is ill-suited for continuous
learning goals s.t. ¢ = n, given that any selection subset S), leads to a perfect score NMI,,,;,, = 1. A thorough discussion
of the respective benefits and limitations of each normalization procedure can be found in Vinh et al. (2010).

For the sake of unsup. FS assessment, the most commonly used NMI variant (Zhao and Liu, 2007; Cai et al., 2010)
is the mean NMI (N M I,,..,) (Kvalseth, 1987), which we will in the rest of this work simply referto as NM1 :

MI(F*, f*)
H(f*)+H(f*)
The higher the NMI, the better the selection. A NMI score of 0 indicates no mutual information, while the maximum score

of 1 indicates perfect correlation. The empirical ranking of the three declinations of AGNOS and baseline unsupervised
FS algorithms w.r.t. the NMI score will be provided in chapter 6.

NMI(S), f*) =2 (5.9)

5.2.2.3 Tuning the number of clusters «

The process of normalizing the mutual information does not remove the dependency of the performance indicator
on . Most notably, the higher x, the higher the NMI, as illustrated in figure 5.1.

The ACC score also faces the same issue, although admittedly to a lesser extent (more in chap. 6). In order to limit
the bias in both performance indicators caused by large values of , we will in our experimental validation set « to the
minimal value allowing perfect scores, that is k = c.

Other clustering-based sup. performance indicators such as e.g. the Variation of Information (Meila, 2003) also
depend on &, oftentimes in a non-monotonous fashion (fig. 5.2).

The number of clusters is therefore a crucial hyperparameter to all aforementioned clustering-based measurements,
s.t. fine-tuning « is necessary to fairly compare unsup. FS algorithms. Consequently, these performance indicators do
not comply with the requirement of simplicity.

In order to fulfill this requirement and lower the importance of k, Gates et al. (2018) propose an element-centric
(EC) clustering-based indicator. While this type of indicator has to the best of our knowledge not yet been utilized for
the purpose of unsup. FS assessment, it is in any case ill-suited, as the validation procedure would still be supervised.
Thus, the crux of the problem remains, as exposed in our earlier claim : sup. performance indicators, by design, lack
impartiality, expressivity and stability. The following section will further discuss this claim.

4. Formally, NMl,..;.. (F*, f*) = %
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FIGURE 5.1: Despite the left clustering clearly being more similar to the central configuration
than the right clustering, the NMI score is higher for the latter. From Gates et al. (2018)
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FIGURE 5.2: The Variation of Information (y-axis) performance indicator exhibits an unintuitive
behavior as the number & of clusters changes (x-axis), on a large toy dataset. From Gates et al.
(2018)

5.2.3 Discussion

sup. performance indicators incentivize selecting the features most useful to predict a particular goal. More specifi-
cally and as underlined by the notations ER(Sk, f*), ACC(Sk, f*)and NMI(Sk, f*), sup. performance criteria depend
not only on the selection subset, but also on the configuration of the target variable ; f* being by definition unaccoun-
ted for in unsup. FS. Therefore, selection algorithms are ranked in an arbitrary order depending on an external
unknown variable. This partiality issue is illustrated in figure 5.3.

Moreover, sup. performance indicators only consider the link between the selection subset S;. and f*. All knowledge
related to the rejected subset F'\ 'Sy is discarded. Given that all original features are potential unsup. learning goals
(LeCun, 2016), sup. indicators actually leverage very little information, and therefore also lack expressivity.
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FIGURE 5.3: Clustering of medical data (left) based on the same unsup. selection subset leads to
a perfect performance w.r.t. a certain learning goal (middle) and poor performance w.r.t. another
goal (right).

A byproduct of the limited expressiveness of sup. assessment is that ignoring D — k features means that the amount
of information "wasted” depends on k. Arguably, this hinders the stability of the validation procedure, as will be empiri-
cally demonstrated in chapter 6.

5.3 Unsup. assessment of unsup. FS

5.3.1 The proposed FIT criterion

In accordance with the principle that any initial feature is potentially valuable, an unsup. performance indicator should
evaluate the ability of Si to recover all original variables simultaneously, rather than a single specific f*.

As such, we propose an intuitive adaptation of the sup. classifier-based criterion from section 5.2.1 to the unsup.
context; given Sy, D Nearest-Neighbor regressors xi1, ..., xp are trained from S;, to respectively recover f1,..., fp.
The motivation for relying on regressors rather than classifiers is that 7' may simultaneously contain categorical and
continuous features.

The score of Sy, is then derived from the average reconstruction error of the regressors. A reconstruction error is
an unbounded quantity, and thus faces the same interpretability issue as the Ml (sec. 5.2). We therefore rely on the R?
score instead, which we now introduce.

The coefficient of determination R?> Given y a regression target, 7 the mean of y across all samples and § the
target predicted by a regressor, the R? score is defined as :

i (yz - Qz)z
Ry, j)=1-—— (5.10)
> (yi —9)?

The R? score measures the proportion of the variance in y that is accounted for by the regression model. R?(y, 7))
is therefore an indicator of "goodness-of-fit”. The maximal R? score of 1 indicates that the regressor predicts y perfectly.
If regression fails and the model output is 3 for all datapoints (meaning the input variables are disregarded), then

Objective : Breast cancer

fy
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R%(y,9) = 0. Interestingly enough, R2(y,7) can actually reach arbitrarily large negative values®, indicating that the
regression model is worse than constant § output.

If original features are normalized and centered, § = 0 and >

(yi —§)* = an y? = o(y) = 1. Therefore, eq. (5.10)
i=1 i=1

can be rewritten as :
R*(y,§) =1— MSE(y,)) (5.11)

Consequently, the R? score can in the context of this work be interpreted as a normalization of the MSE.
This leads to the following algorithm :

Algorithm 8 The unsup. FIT criterion

Input : Dataset X, Selection subset Sy,
Parameter Number of neighbors p

Output : FIT(Sy)
Let RZ,,(Sk) = 0.
fori=1,...,ndo
\ Find the p nearest neighbors =7, . .. ,xt of x; w.rt. S
end
forj=1,...,Ddo
Fit f; from S;, using the p-NN regressor x;

R(?wg(sk') — R?M)g(sk) =+ R2 (f]7XJ(Sk>)

end
Return FIT(S;) = M

The time complexity of computing MSE-based scores is negligible compared to that of searching for the p nearest
neighbors of each datapoint. Furthermore, the structure of the pseudocode in alg. 8 underlines that the neighborhood
search needs only be performed once, rather than D times. Consequently, the FIT score is only marginally less cost-
efficient than the sup. classifier-based criterion.

5.3.2 Discussion

The ideal selection subset S; w.r.t. FIT best supports the reconstruction of the whole dataset. This entails three
important consequences.

First of all and by contrast with sup. performance indicators, the FIT assessment procedure is not swayed towards
features most relevant for a specific purpose, hinting at impartiality. Naturally, one cannot claim the approach is devoid
of bias, as the retained features in Sy, might be improper to the particular prediction of any considered feature (e.g. due
to their distribution). This could be further alleviated by building a classifier based on Sy, for each feature. This approach
however suffers from fundamental and computational issues, see below.

By construction, FIT actually exploits the information carried by every variable rather than only S, and f*, thus
enjoys a higher expressivity relatively to sup. indicators.

5. The R? notation is therefore slightly misleading. In order to lift this ambiguity, alternate notations such as the Nash-Sutcliffe
Efficiency (NSE) (McCuen et al., 2006) are sometimes preferred instead.
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Lastly, the underlying goal of the FIT procedure is invariant w.r.t. the size & of the selection subset : leave no feature
behind. k only governs the "budget” available to fulfill this goal. We argue that this invariance helps the FIT criterion to
provide more stable results than sup. assessment (ignoring D — k features). This stability property will be studied during
the sensitivity analysis portion of our empirical study (chap. 6).

About unsup. ACC/NMI

In order to support the selection of a feature subset sufficient to recover the entire dataset, one could adapt
clustering-based criteria such as ACC or NMI to the unsup. context, and specifically use the retained features to predict
each f; ranging among the other features. As said, this process however involves two related issues.

Both ACC and NMI rely on building clusters; the number «; of such clusters should depend on the considered
feature f;, be it categorical or continuous. On the one hand, the S; based clustering procedure should be repeated
many times, scaling poorly in the large D regime. On the other hand, this would require fine-tuning «; for each f; (sec.
5.2.2.3), thus failing the requirement of simplicity.

Summary

In this chapter, we have first discussed what constitutes a suitable performance indicator for assessing unsup. FS.
The state-of-the-art sup. criteria were thereafter introduced. These criteria were claimed to admit significant limitations,
most notably regarding their reliability and stability. A novel unsup. performance criterion, called FIT, was accordingly
proposed to tackle these limitations, by considering the reconstruction of all original features simultaneously. The next
chapter will empirically compare the respective merits of existing performance indicators and FIT.
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Chapitre 6

Experimental validation

This chapter presents the experimental validation of AGNOS. The experimental setup is first introduced in section
6.1, along with a preliminary study regarding the intrinsic dimension of the benchmark datasets. Following chapter 5,
the supervised performance of AGNOS-S, AGNOS-W and AGNOS-G is assessed and compared to baselines in section
6.2. Section 6.3 thereafter exhibits the unsupervised performance of AGNOS w.r.t. the novel proposed FIT criterion. A
sensitivity study of the results is conducted in section 6.4, to assess the influence of the hyperparameters of the method.
Section 6.5 concludes the chapter with a final discussion of the results.

6.1 Experimental setup and preliminary study

6.1.1 Experimental setup

6.1.1.1 The scikit-feature benchmark

Scikit-feature (skfeature for short) Li et al. (2018b); skf (2018) is an open-source feature selection repository deve-
loped at Arizona State University. It is built upon the widely used Python machine learning package scikit-learn. The
skfeature databank currently contains 29 datasets commonly used in feature selection tasks and challenges. These
datasets span multiple domains, including text data, face image data, genomics data, hand written text in image format,
as well as artificial data specifically generated for feature selection purposes.

Skfeature also provides ready-made Python implementations for 34 popular feature selection algorithms (28 super-
vised and 6 unsupervised), facilitating empirical comparison of new FS approaches w.r.t. some state-of-the-art methods.

Due to its open source nature and ease of use, skfeature has risen in popularity as an international benchmark for
feature selection Li et al. (2017); Chen et al. (2017). This justifies our usage of skfeature for the experimental validation
of AGNOS.

6.1.1.2 Datasets

Experiments are carried on 8 datasets taken from the scikit-feature database, selected for their diversity in number
of features, types (categorical and continuous) and domain (face image, sound processing and medical data). Comple-
mentary experiments on the other 21 datasets from the database have shown the representativity of the results obtained
on the 8 chosen datasets. In all datasets but one (Isolet), the number of samples is small w.r.t. the number of features
D. Dataset size, dimensionality, number of classes and data type are summarized in Table 6.1.



6.1. Experimental setup and preliminary study 75

# samples | # features | # classes | Data type

arcene 200 10000 2 Medical

Isolet 1560 617 26 Sound processing
ORL 400 1024 40 Face image
pixraw10P 100 10000 10 Face image
ProstateGE | 102 5966 2 Medical

TOX171 171 5748 4 Medical
warpPie10P | 130 2400 10 Face image

Yale 165 1024 15 Face image

TABLE 6.1: Summary of benchmark datasets.

6.1.1.3 Performance indicators

The three variants of AGNOS are compared to four unsup. baselines introduced in section 3.2.3 : the Laplacian score
(He et al., 2005), SPEC (Zhao and Liu, 2007), MCFS (Cai et al., 2010) and NDFS (Li et al., 2012). The implementations
of all baselines have been taken from the scikit-feature database, and all their hyperparameters have been set to their
default values.

Four performance indicators have been considered, where the first three indicators correspond to the typical sup.
assessment procedure (chap. 5 : the sup. accuracy of a p-NN classifier, the ACC score and the NMI score) and the
fourth performance metric is the proposed unsup. FIT criterion.

6.1.1.4 Hyperparameters

In all experiments, AGNOS is ran using a single hidden layer Auto-Encoder with fanh activation functions for both
encoder and decoder, Glorot parameter initialization (Glorot and Bengio, 2010), and the Adam (Ruder, 2016) gradient
descent scheme, with initial learning rate of 10~3. The number p of neighbors used for all p-NN regressors involved in
the FIT score (chap. 5) is set to p = 5. Following section 5.2.2.3, the number of clusters to use for clustering-based
performance indicators is set to k = ¢ for all experiments, where c is the number of classes in the sup. learning goal.

The results provided in sections 6.2 and 6.3 were recorded with the following default hyperparameter values for
AGNOS : hidden layer size d = ID (estimated intrinsic dimension of the data), sparsity penalty strength A = 1. The
sensitivity of the results w.r.t. both d and \ will be assessed in section 6.4.

6.1.2 Intrinsic dimension and selection subset size

As seen (chap. 4), AGNOS includes two important preprocessing steps : i) feature normalization and ii) intrinsic
dimension estimation. Therefore, we begin our experimental study by analyzing the ID estimation process. Section
6.1.2.1 presents the estimated ID for every benchmark dataset, as well as how these results are prone to change as
a consequence of feature normalization. An analysis of the faithfulness of the ID estimator is thereafter conducted in
section 6.1.2.2.

1. Preliminary experiments have shown results to be more stable overall with p = 5 rather than p = 1.
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6.1.2.1 Intrinsic dimension estimation

Table 6.2 contains the estimated IDs for each dataset using the method from Facco et al. (2017) 2.

Dataset Initial dimension | I D of unnormalized data | ID of normalized data
Arcene 10000 18.01 39.89

Isolet 617 8.29 8.53

ORL 1024 5.60 5.50

pixraw10P 10000 3.74 3.94

ProstateGE | 5966 22.27 22.32

TOX171 5748 6.35 14.75

warpPIE10P | 2400 2.63 2.62

Yale 1024 9.27 9.62

TABLE 6.2: Intrinsic dimensions of each dataset, using all samples.

The fact that the estimated ID is small compared to the original dimensionality for every dataset highlights the
potential of feature selection for data compression. For 6 out of the 8 benchmark datasets, ID is mostly unaffected by
the rescaling of each feature to zero mean and unit variance.

However, for the remaining 2 datasets (Arcene and TOX171), the normalization process provokes a significant
change in ID, which more than doubles in both cases. This suggests that the correlation between features can de-
crease as a result of normalization. This could limit the potential of data compression. However, feature normalization
is mandatory to avoid bias in the selection (chap. 4), and is thus relied upon in AGNOS regardless of this drawback. We
will therefore consider the D of normalized data in our experimental validation.

6.1.2.2 Assessing the quality of the ID estimation

As said, the results from table 6.2 are merely an approximation, of unknown precision, of the "true” intrinsic dimen-
sion of the data. We therefore attempt to estimate the quality of the approximation ID. .

In order to simulate randomness 3, we opt to perform 20 uniform train/test splits for each dataset. 1D is thus esti-
mated 20 times, considering for each run only the 80% of samples in the training set. The results are contained in table
6.3.

On half of the benchmark datasets (namely Isolet, ORL, pixraw10P and warpPIE10P), the average estimated ID
over the 20 splits is close to the ID obtained with all samples (table 6.2, 10% variation or less), with a small variance
(at most 5% of the expected value). This holds true for both the normalized and unnormalized versions of the data. The
2-NN method thus appears to be a trustworthy ID estimator for these datasets.

Although the mean estimated ID across splits is also consistent with table 6.2 for the remaining half of the benchmark
datasets (namely Arcene, ProstateGE, TOX171 and Yale), we observe a high variance (between 7% and 20% of the
expected value). This means that the results of a run are strongly dependent on which 20% of samples are omitted for

2. As said (chap. 2), the ID is not necessarily an integer. However, the number of neurons in the hidden layer of the Auto-Encoder
used in AGNOS must itself be an integer. Therefore, we opt to round up the estimated intrinsic dimension : ID « [ID].

3. The 2-NN ID estimator being a deterministic algorithm, we cannot simply perform multiple runs on the full dataset and examine
the variance of the results.
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Dataset Initial dimension | I.D of unnormalized data | 1D of normalized data
Arcene 10000 16.99 (0.74) 38.04 (7.20)

Isolet 617 9.02 (0.03) 9.25 (0.02)

ORL 1024 5.39 (0.08) 5.26 (0.07)

pixraw10P 10000 3.91 (0.19) 4.11 (0.15)
ProstateGE | 5966 21.56 (2.90) 23.11 (4.36)

TOX171 5748 6.13 (0.12) 14.27 (0.94)
warpPIE10P | 2400 2.58 (0.01) 2.59 (0.01)

Yale 1024 9.60 (0.98) 9.74 (0.91)

TABLE 6.3: Mean and variance (in parenthesis) of intrinsic dimension across 20 runs for every
dataset, using 80% of samples drawn at random for each run.

ID estimation in that run. Therefore, this indicates that the ID estimator is sensitive w.r.t. outliers for these datasets, and
that 1D is a brittle estimation of the true intrinsic dimension in those cases.

The mean estimated ID is twice larger in the normalized version of the data for Arcene and TOX171, which is in line
with table 6.2. However, a novel observation is that feature normalization also leads to a disproportionate increase in
variance in both cases (from 2% to 7% in TOX171; from 4% to 19% in Arcene). This suggests that rescaling does not
modify the apparent intrinsic dimensionality uniformly across the dataset, increasing the sensitivity of the ID estimator.

The main takeaway of this preliminary analysis is that the constraint d = ID should likely be relaxed in all three
declinations of AGNOS, which section 6.4.2 will showcase the impact of.

6.1.2.3 Selection subset size

Following the manifold assumption and the discussion on intrinsic dimension (chap. 2), the intrinsic dimension 1D
of the data provides a lower bound for the selection subset size k£ by construction. In practice, it is unlikely that any
selection subset of size k = ID is able to fully recover the original feature set F'. Furthermore, we only have access to
an approximation ID of the "true” intrinsic dimension, of unknown precision.

In order to avoid selectlrlg too few features and for the sake of cautiousness, we therefore want that & > ID. The
wider the margin between ID and k, the more likely Sy, to be sufficient for recovering F. However, the larger &, the more
similar the respective performances of the different considered unsupervised FS algorithms tend to be, as will be shown
in section 6.4.

k should therefore ultimately be set to a value larger than the estimated intrinsic dimension of the datasets, but small
enough that we can observe a stark contrast in performance among the baselines and the three declinations of AGNOS.
As a consequence of preliminary experiments, we choose the default selection subset size to be k = 100. For the sake
of completeness, we will however study the behavior of the baselines and AGNOS for varying subset sizes in section
6.4.

6.2 Supervised evaluation results

Section 6.2.1 first assesses the stability of the performance of AGNOS (according to the 3 considered supervi-
sed performance indicators) w.r.t. the random initialization of the AutoEncoder parameters. AGNOS-S, AGNOS-G and
AGNOS-W are then compared to the baselines in section 6.2.2.
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6.2.1 Sensitivity w.r.t. initialization of network parameters

All baseline unsupervised FS methods considered are deterministic algorithms. By contrast, AGNOS is stochastic,
given that it relies on training a neural network. The inherent randomness comes from the initialization of the AutoEnco-
der parameters (using the Glorot initialization of weights and biases (Glorot and Bengio, 2010)). A first step consists of
examining the stability of AGNOS performance across runs, controlling the reliability of the results under an affordable
time complexity budget.

Dataset AgnosS AgnosW AgnosG
Arcene 0.81(-) 0.77(0.003) | 0.75(0.004)
Isolet 0.83(-) 0.84(-) 0.65(-)
ORL 0.93(-) 0.93(-) 0.89(-)
pixraw10P 0.97(-) 0.93(-) 0.99(-)
ProstateGE | 0.76(-) 0.83(-) 0.75(-)
TOX171 0.66(0.001) | 0.86(0.006) | 0.63(0.007)
warpPIE10P | 0.99(-) 0.98(-) 0.98(-)
Yale 0.63(-) 0.60(-) 0.61(-)

TABLE 6.4: Mean and variance of standard classification score of 5-NearestNeighbor classifier
on the benchmark datasets for the three declinations of AGNOS, over 10 runs with different Glorot
initializations of network parameters. (-) indicates a variance lower than 103.

Tables 6.4 and 6.5 display the results respectively obtained with the standard classification and the ACC scores of
AGNOS-S, AGNOS-W and AGNOS-G on the benchmark datasets. Each table contains the mean and variance, over 10
runs with different initial network parameters, of the score.

The standard classification score (Table 6.4) is measured with a 5-NearestNeighbor classifier and & = 100 selected
variables. The variance of the classification score is shown to be small (less than 1% of the mean) for every dataset and
declination of AGNOS, establishing its low sensitivity w.r.t. the random initialization of the AutoEncoder.

Similar conclusions can be drawn from Table 6.5, which records the ACC scores using the same setup as above.

In both cases, and even more so in the ACC case, AGNOS-W and AGNOS-G variances are higher than for AGNOS-
S. Specifically, the variance is negligible for AGNOS-S on all datasets but 2 (where it is 10~3). In contrast, the variance
is circa 4 10~3 on all datasets but two for AGNOS-W and AGNOS-G.

Likewise, table 6.6 contains the mean and variance of the NMI scores. The variance of the NMI score is also less
than 1% of the mean in most cases. There are however some outliers for which the variance is proportionally larger
(e.g. ~ 8% of the mean for AGNOS-W on ProstateGE). This seems to occur only in the event that the mean NMI score
is itself small (less than 0.10).

Given the overall stability of the results, we will in the remainder of this chapter neglect the variance due to random
network parameter initialization and consider only the expected value.

6.2.2 Comparison with the baselines

Tables 6.7, 6.8 and 6.9 respectively contain, for the three variants of AGNOS and the four baselines, the classifica-
tion, ACC and NMI scores on every benchmark dataset. In particular, AGNOS-S appears to perform better on average
than the group-LASSO based AGNOS-W and AGNOS-G, with the default hyperparameter values (k¥ = 100, d = ID,
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Dataset AgnosS AgnosW AgnosG
Arcene 0.67(-) 0.62(0.002) | 0.63(0.002)
Isolet 0.54(0.001) | 0.58(-) 0.41(0.001)
ORL 0.57(-) 0.55(-) 0.53(-)
pixraw10P 0.81(0.002) | 0.64(0.009) | 0.78(0.008)
ProstateGE | 0.61(-) 0.59(0.006) | 0.57(0.005)
TOX171 0.40(-) 0.29(0.006) | 0.36(0.007)
warpPIE10P | 0.27(-) 0.36(0.002) | 0.42(0.002)
Yale 0.51(-) 0.38(-) 0.53(-)

TABLE 6.5: Mean and variance of ACC score on the benchmark datasets for the three decli-
nations of AGNOS, over 10 runs with different Glorot initializations of network parameters. (-)
indicates a variance lower than 1073,

Dataset AgnosS AgnosW AgnosG
Arcene 0.08(-) 0.02(-) 0.04(-)
Isolet 0.69(-) 0.70(-) 0.58(-)
ORL 0.76(-) 0.77(-) 0.73()
pixraw10P 0.87(-) 0.76(0.003) | 0.81(0.004)
ProstateGE | 0.06(-) 0.13(0.006) | 0.01(-)
TOX171 0.23(0.001) | 0.15(0.009) | 0.08(0.002)
warpPIE10P | 0.28(0.001) | 0.35(0.003) | 0.33(0.003)
Yale 0.54(-) 0.50(-) 0.56(-)

TABLE 6.6: Mean and variance of NMI score on the benchmark datasets for the three declinations
of AGNOS, over 10 runs with different Glorot initializations of network parameters. (-) indicates a
variance lower than 10—32.

A = 1). The validity of this conclusion in other regions of the hyperparameter space will be investigate during the
sensitivity study (sec. 6.4).

Interestingly, on the two high-dimensional image datasets pixraw10P and warpPie10P, the Laplacian method matches
respectively AGNOS-G and AGNOS-S w.r.t. the classification score.

On the remaining lower dimensionality image dataset Yale, NDFS matches the results of AGNOS-S.

On Isolet, AGNOS-W and to a lesser extent AGNOS-S outperform all other algorithms, with NDFS ranking third.

On ORL, AGNOS-S and AGNOS-W outperform others, though Laplacian and NDFS obtain close performances. On
Arcene, AGNOS-S significantly outperforms all other methods, while AGNOS-W does so on ProstateGE and TOX171,
medical datasets with comparatively high intrinsic dimension.

Overall, AGNOS is therefore shown to be competitive with the baselines in terms of supervised evaluation ; specifi-
cally, the best recorded performance is achieved by a declination of AGNOS on all datasets w.r.t. the classification score,
7 out of 8 datasets w.r.t. the ACC score, and 5 out of 8 w.r.t. the NMI score.

These first sup. results are encouraging. However, based on the claim that the sup. assessment is brittle, we shall
delay the discussion regarding the respective performances of AGNOS-S, AGNOS-W and AGNOS-G to their unsup.
assessment in sec. 6.3.
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Dataset AgnosS | AgnosW | AgnosG | Laplacian | MCFS | NDFS | SPEC
Arcene 0.81 0.77 0.75 0.67 0.52 0.69 0.70
Isolet 0.83 0.84 0.65 0.68 0.65 0.82 0.74
ORL 0.93 0.93 0.89 0.92 0.90 0.91 0.87
pixraw10P 0.97 0.93 0.99 0.99 0.95 0.98 0.85
ProstateGE | 0.76 0.83 0.75 0.75 0.74 0.71 0.70
TOX171 0.66 0.86 0.63 0.84 0.74 0.67 0.78
warpPIE10P | 0.99 0.98 0.98 0.99 0.96 0.98 0.98
Yale 0.63 0.60 0.61 0.56 0.53 0.63 0.58

TABLE 6.7: Supervised classification scores of 5-NearestNeighbor classifier for the three decli-
nations of AGNOS and the baselines on the benchmark datasets. Statistically significantly better
(according to a t-test with a p-value of 0.05) results in boldface.

Dataset AgnosS | AgnosW | AgnosG | Laplacian | MCFS | NDFS | SPEC
Arcene 0.67 0.62 0.63 0.66 0.56 0.51 0.66
Isolet 0.54 0.58 0.41 0.48 0.41 0.57 0.57
ORL 0.57 0.55 0.53 0.55 0.56 0.54 | 0.47
pixraw10P 0.81 0.64 0.78 0.80 0.75 0.78 | 0.48
ProstateGE | 0.61 0.59 0.57 0.58 0.59 0.57 | 0.59
TOX171 0.40 0.29 0.36 0.45 0.48 0.46 | 047
warpPIE10P | 0.27 0.36 0.42 0.29 0.36 0.29 | 0.33
Yale 0.51 0.38 0.53 0.44 0.40 0.44 | 0.40

TABLE 6.8: Supervised ACC scores for the three declinations of AGNOS and the baselines on
the benchmark datasets. Statistically significantly better (according to a t-test with a p-value of
0.05) results in boldface.

Discussion

On one hand, we set the number of clusters « used in sup. clustering to the minimal value ¢ corresponding to the
number of sup. classes in the dataset. On the other hand, the NMI score tends to be positively correlated with « (sec.
5.2.2.3). Consequently, we expect the NMI to be positively correlated with c.

Table 6.10 contains the correlations between the ACC and NMI scores on one hand, and ¢ on the other hand.
Expectedly, the NMI score is strongly correlated to c. The correlation between the ACC score and ¢ is much lower
than for the NMI, for all algorithms“. The ACC score should accordingly be prioritized over the NMI score if no prior
knowledge is available to tune x.

4. Interestingly enough, this correlation is slightly positive for AGNOS-W and negative for the baselines and AGNOS-G. This
suggests that the baselines and AGNOS-G are less adequate for multi-label classification than AGNOS-W and AGNOS-S.
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Dataset AgnosS | AgnosW | AgnosG | Laplacian | MCFS | NDFS | SPEC
Arcene 0.08 0.02 0.04 0.09 0.20 0.01 0.09
Isolet 0.69 0.70 0.58 0.62 0.56 0.70 0.69
ORL 0.76 0.77 0.73 0.76 0.78 0.74 0.70
pixraw10P 0.87 0.76 0.81 0.86 0.86 0.84 0.66
ProstateGE | 0.06 0.13 0.01 0.02 0.02 0.01 0.02
TOX171 0.23 0.15 0.08 0.27 0.22 0.33 0.24
warpPIE10P | 0.28 0.35 0.33 0.30 0.30 0.34 0.34
Yale 0.54 0.50 0.56 0.49 0.52 0.48 0.44

TABLE 6.9: Supervised NMI scores for the three declinations of AGNOS and the baselines on the
benchmark datasets. Statistically significantly better (according to a t-test with a p-value of 0.05)
results in boldface.

AgnosS | AgnosW | AgnosG | Laplacian | MCFS | NDFS | SPEC
ACC | -0.01 0.14 -0.15 -0.11 -0.14 | -0.12 | -0.20
NMI | 0.72 0.79 0.73 0.71 0.70 0.71 0.80

TABLE 6.10: Correlation between scores and number of classes in the dataset, for the three
declinations of AGNOS and the baselines.

6.3 Unsupervised evaluation results

Section 6.3.1 first assesses the stability of the FIT score of AGNOS w.r.t. the randomness of the initial conditions;
section 6.3.2 provides a comparison of the three declinations of AGNOS with the baselines, which is further discussed
in section 6.3.3.

6.3.1 Sensitivity w.r.t. initialization of network parameters

Similarly as for sup. assessment, the variance in the results due to the Glorot initialization is minimal (less than 1%
of the mean value) for all datasets and declinations of AGNOS, though AGNOS-W and AGNOS-G appear to be slightly
less stable than AGNOS-S. Overall, the FIT score is shown to be hardly sensitive w.r.t. initial conditions. We will therefore
neglect this source of variance in the remainder of this chapter, recording only the mean value.

6.3.2 Comparison with the baselines

Table 6.12 contains the respective FIT scores of the considered FS algorithms over the benchmark datasets. The
proposed AGNOS-S is shown to achieve a higher FIT score than the baselines on all datasets. These results empirically
demonstrate that the selection subsets induced by AGNOS-S retain more information about the features on average
than the baselines.

By constrast, AGNOS-W and AGNOS-G are both outperformed by at least one baseline on every benchmark dataset
(with the exception of AGNOS-W on TOX171 and Yale). Our interpretation is that this is due to a key difference between
the LASSO regularization and the slack variables. One one hand, the importance of initial feature f; is in AGNOS-W
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Dataset AgnosS | AgnosW AgnosG
Arcene 0.610(-) | 0.460(6 x 10~%) | 0.560(5 x 10~%)
Isolet 0.763(-) | 0.762(-) 0.701(-
ORL 0.800(-) | 0.795(-) 0.780(-)
pixraw10P 0.855(-) | 0.782(4 x 10~%) | 0.832(3 x 10~%)
ProstateGE | 0.662(-) | 0.620(3 x 10~%) | 0.606(3 x 10~%)
TOX171 0.581(-) | 0.580(2 x 10~%) | 0.528(3 x 10~%)
warpPIE10P | 0.910(-) | 0.897(-) 0.901(-)
Yale 0.703(-) | 0.696(-) 0.671(-)

TABLE 6.11: Mean and variance of FIT score on the benchmark datasets for the three decli-
nations of AGNOS, over 10 runs with different Glorot initializations of network parameters. (-)
indicates a variance lower than 1074,

Arcene | Isolet | ORL | pixraw10P | ProstateGE | TOX171 | warpPIE10P | Yale
AgnoS-S | 0.610 | 0.763 | 0.800 | 0.855 0.662 0.581 0.910 0.703
AgnoS-W | 0.460 | 0.762 | 0.795 | 0.782 0.620 0.580 0.897 0.696
AgnoS-G | 0.560 | 0.701 | 0.780 | 0.832 0.606 0.528 0.901 0.671
Laplacian | 0.576 | 0.680 | 0.789 | 0.840 0.655 0.563 0.903 0.601
MCFS 0.275 | 0.720 | 0.763 | 0.785 0.634 0.549 0.870 0.652
NDFS 0.490 | 0.747 | 0.796 | 0.835 0.614 0.520 0.904 0.677
SPEC 0.548 | 0.733 | 0.769 | 0.761 0.646 0.559 0.895 0.659

TABLE 6.12: FIT score of 5-NearestNeighbors regressor using the top 100 ranked features. Sta-
tistically significantly (according to a t-test with a p-value of 0.05) better results in boldface.

and AGNOS-G obtained by taking the maximum of a d-dimensional vector. This process therefore ignores the behavior
of d — 1 latent features. On the other hand, the importance of f; is directly given by the single positive real value |q;],
summarizing its influence over all d latent variables simultaneously, which tentatively explains why this allows the slack
variable layer to better reflect the influence of the original variables.

6.3.3 Discussion

Stability of results is not stability of selection While the three variants of AGNOS obtain very stable results
according to both sup. and unsup. performance indicators (w.r.t. the random initialization of the Auto-Encoder parame-
ters), the selected features themselves are not. Quite the contrary, the overlap between selection subsets resulting of
two different runs of AGNOS may be as low as 5% (95% of features selected in one run are rejected in the other), for all
datasets.

Given that both sup. and unsup. performance indicators are stable across runs however, suggesting that different
selected subsets carry the same information, the variability of the selected features is explained from the feature re-
dundancy within a dataset : typically, in the case of several copies of a same feature, one of these copies should
be selected indifferently by AGNOS. More generally, AGNOS indiscriminately picks one representative per cluster of
correlated features.
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Leaving no feature behind Figure 6.1 depicts the respective cumulative distribution functions of the R? scores
achieved by a 5-NearestNeighbors regressor using the top 100 ranked features by the baseline methods and the three
AGNOS variants, on Arcene. A first observation is that every FS algorithm leads to accurate fitting (R? score > 0.8)
of some features and poor fitting (R2 score < 0.2) on some other features. This shows that the quality of the model
predictions is very sensitive w.r.t. the target variable, which is an additional supportive argument to our claim that sup.
assessment of unsup. FS (dealing with a single target) is unreliable. Most importantly, FS algorithms differ in the number
of poorly fitted features. R? scores < 0.2 are achieved for less than 20% of features using any declination of AGNOS
and more than 35% of features using MCFS. This shows that on this example dataset, AGNOS retains information about
more features than MCFS.

10000 EEE AgnoS-5
EE AgnoS-W
. AgnoS-G
Laplacian
8000 MCFS
EEm NDFS
I SPEC

6000
4000

2000

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 6.1: Cumulative distribution functions of the R? scores of a 5-NearestNeighbors re-
gressor using the top 100 ranked features on Arcene. If a point has coordinates (z,y), then the
goodness-of-fit of the regressor is < « for y initial features (the lower, the better).

Unreliabilty of sup. assessment Table 6.13 contains the respective frequencies of ranks attained by each se-
lection method w.r.t. the R? scores of each feature on the warpPIE10P dataset. A first observation is that not only is
AGNOS-S more often ranked first than the baselines, it is also least often ranked last. This property also holds true for
AGNOS-W and AGNOS-G, although the contrast with the baselines is less pronounced. This is once again in line with
the idea of reconstructing every initial variable.

Most importantly, every FS algorithm is able to achieve any rank for some original features. Therefore, the ranking
of unsup. FS w.r.t. sup. assessment is extremely brittle, depending on the target variable considered. This
confirms our claim (chap. 5) that sup. assessment is partial, thus unreliable. It remains to show that the FIT score itself
is stable w.r.t. hyperparameters d, k and X (sec. 6.4).
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1 2 3 4 5 6 7

AgnoS-S | 0.37 | 0.09 | 0.12 | 0.09 | 0.17 | 0.07 | 0.08
AgnoS-W | 0.16 | 0.11 | 0.09 | 0.23 | 0.07 | 0.21 | 0.13
AgnoS-G | 0.12 | 0.17 | 0.11 | 0.18 | 0.05 | 0.24 | 0.13
LAP 0.12 {017 | 0.20 | 0.17 | 0.04 | 0.17 | 0.13
MCFS 0.10 | 0.23 | 0.11 | 0.19 | 0.04 | 0.16 | 0.17
NDFS 0.08 | 0.21 | 0.13 | 0.11 | 0.11 | 0.09 | 0.27
SPEC 0.04 | 0.03 | 0.25 | 0.03 | 0.52 | 0.05 | 0.09

TABLE 6.13: Frequency of ranks of selection methods w.r.t. R? scores of each feature on warp-

PIE10P with a 5-NearestNeighbors regressor using the top 100 ranked features. For instance,

AGNOS-S obtains the lowest reconstruction error among the 7 candidate methods for 37% of the
original features.

6.4 Sensitivity study

We will study the sensitivity of the 3 aforementioned supervised performance indicators, as well as the proposed
FIT score, w.r.t. three parameters :

— The size k of the selection subset (section 6.4.1).
— The size d of the hidden layer of the AutoEncoder (section 6.4.2).
— The strength X of the sparsity penalty term in the AutoEncoder loss function (section 6.4.3).

In order to conduct this sensitivity study, we will record the performance indicators with 2 of the 3 parameters set to
their respective default values and the remaining parameter varying across a wide range °. The default values are the
same as in section 6.1, namely : {k = 100;d = ID, \ = 1}.

6.4.1 Sensitivity w.r.t. number of selected features k

6.4.1.1 Classification-based criterion

Figure 6.2 depicts the classification accuracy achieved by the 5-NearestNeighbor classifier trained only from the
selection subset S as a function of &, on the Yale dataset. A first observation is that this supervised score expectedly
appears to increase with k overall. Additionally, AGNOS-S outperforms all other methods for £ < 100. Thereafter, it is
locally overtaken by NDFS and globally matched by AGNOS-G. There is therefore a clear-cut best candidate on this
dataset. However, the ranking of "middle of the pack” algorithms is unstable : AGNOS-W, NDFS and SPEC regularly
overtake each other. This makes it difficult to precisely gauge the efficiency of the respective FS methods with this
performance indicator.

Similar results are visible on fig. 6.3, depicting the results on ProstateGE. On this dataset, the clear-cut best can-
didate is AGNOS-W. For the other six methods, the performances are brittle and may be highly non monotonous w.r.t.
k; note for instance the sharp decreasef in classification accuracy of NDFS when k passes from 10 to 15. This non-
monotony is blamed on the addition of features irrelevant for predicting the target, hindering the classifier.

5. This technique will allow us to measure the sensitivity of the results in a small region of the R* hyperparameter space, centered
around the coordinates corresponding to the default values. In order to obtain a more comprehensive overview of result sensitivity
across the hyperparameter landscape, one should instead turn to a fine-grained grid search.
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FIGURE 6.2: Prediction score of 5-NearestNeighbor classifier w.r.t. selection subset size k, on
Yale
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FIGURE 6.3: Prediction score of 5-NearestNeighbor classifier w.r.t. selection subset size k, on
ProstateGE

In conclusion, the supervised performance indicator is too sensitive w.r.t. k£ to provide a consistent ranking of me-
thods. ©

6.4.1.2 Clustering-based criteria

Figures 6.4 and 6.5 depict the sensitivity w.r.t. k£ of the ACC score on TOX171 (resp. of the NMI score on warp-
PIE10P). Both these performance criteria appear to be highly sensitive w.r.t. the selection subset size, and they do
not support any consistent (dataset-dependent) ranking of the methods. Similarly chaotic performance curves were
observed on all other benchmark datasets. This sensitivity could admittedly be decreased by fine-tuning the number

6. Note that, even if the resulting ranking were stable w.r.t. k, the partiality problem exposed in chapter 5 would remain.



86 Chapitre 6. Experimental validation

m Agnos-s
m— AQnOS-W
. AgnoS-G

Laplacian

MCFS
. NDFS
0.50 mmEm SPEC

b
— AgnoS-G
Laplacian
MCFs.
BN NDFS
0.15 . SPEC

FIGURE 6.5: NMI score w.r.t. selection subset size k&, on warpPIE10P

k of clusters considered beforehand; nevertheless these experiments suggest that these two criteria are ill-suited to
compare FS algorithms fairly.

6.4.1.3 FIT criterion

Figure 6.6 depicts the FIT score attained by the 3 declinations of AGNOS and the baselines as a function of the
selection subset size k, on the Yale dataset.

For all considered FS algorithms, the FIT score appears to be a non-decreasing function of &, nonwithstanding a few
exceptions (e.g. the decrease between 30 and 40 selected features for the Laplacian approach). Additionally, the ranking
of selection methods is shown to be robust w.r.t. k7, with AGNOS-S attaining the top rank for any &£ > 20. Concordant
results were observed on the other benchmark datasets.

7. The rank of each method changes at most 3 times with %, and the top ranked algorithms are mostly invariant across the
considered range [5, . .., 200].
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FIGURE 6.6: FIT score w.r.t. selection subset size k, on Yale

Following these two observations, the proposed FIT score appears much more reliable for ranking unsupervised FS
approaches than the 3 considered supervised performance indicators, in the absence of prior knowledge regarding the
desired size of the selection subset.

The smoothness of the performance curves was expected as the FIT indicator is an average over thousands of
elements (the original features), whereas the supervised criteria are obtained from a single target, leading to the irregular
curves shown previously.

Furthermore, the gap in performance between the top and bottom ranked algorithms expectedly decreases as &
increases (it would eventually be 0 for £ = D). However, an additional interesting result is that FS approaches do not
all benefit equally from a larger selection subset size. Typically, SPEC generally obtains low results for small values of
k. This is explained as SPEC is ill-suited to handle redundant features, with a tendency to select features correlated to
each other. This is visible on Yale, and all the more so on the Arcene dataset, for which the results are provided in figure
6.7.
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FIGURE 6.7: FIT score w.r.t. selection subset size k, on Arcene

Arcene is the only benchmark dataset for which negative FIT scores are recorded. The 5-NearestNeighbor regressor
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trained from SPEC is worse than a constant regressor for £ < 30. However, its performance then abruptly improves as
k increases to 50.

Given that the performance of AGNOS-S is already close to the observed global maximum for & = 5, it appears than
very few variables are required to accurately predict the whole feature set on this dataset. However, the top 30 ranked
features w.r.t. SPEC are likely highly redundant (even duplicates), explaining the constant FIT score for k € [5,. .., 30].
Actually relevant features occupy the next 20 spots in the SPEC ranking, which is the reason for the sudden jump in
fitting accuracy. The counterperformance of AGNOS-W is interpreted as the sparsity penalty being insufficiently strong
to handle the known redundancy of the features. Ongoing experiments will clarify this phenomenon. By contrast, this
issue of inefficient selection for small subset sizes has not been encountered by AGNOS-S.

6.4.2 Sensitivity w.r.t. dimension of hidden layer d

6.4.2.1 Classification-based criterion

1
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FIGURE 6.8: Prediction score of 5-NearestNeighbor classifier w.r.t. hidden layer size d, on Yale.

The vertical black dotted line corresponds to the estimated intrinsic dimension. The colored ho-

rizontal dotted line correspond to the respective prediction scores of the baselines (independent
of d)

Figure 6.8 depicts the classification accuracy attained by the 3 declinations of AGNOS as a function of the size d of
the hidden layer of the AutoEncoder, on the Yale dataset. The performance of all three declinations of AGNOS w.r.t. this
criterion appears sensitive w.r.t. d. The supervised predictive accuracy of AGNOS-W diminishes as d increases, which is
attributed to the same phenomenon as in fig. 6.7. This variant of AGNOS eventually performs worse than all baselines.
On the other hand, AGNOS-S remains a better candidate than all baselines for all d in a reasonable range (in [10, 85]).
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6.4.2.2 Clustering-based criteria
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FIGURE 6.9: ACC score (left panel) and NMI score (right panel) w.r.t. hidden layer size d, on

Yale. The vertical black dotted line corresponds to the estimated intrinsic dimension. The colored

horizontal dotted line correspond to the respective FIT scores of the baselines (independent of
d).

Figure 6.9 records the ACC and NMI scores as function of d, on Yale. The sensitivity of the results w.r.t. d is
higher than for the classification criterion, with AGNOS-S generally being the best candidate and AGNOS-G a close
second. However, all three declinations of AGNOS can perform worse than at least one baseline for some values of d.
The brittleness of the resulting ranking confirms that these two performance criteria are ill-advised for comparing FS
algorithms.

6.4.2.3 FIT criterion

Figure 6.10 depicts the FIT score attained by the 3 declinations of AGNOS as a function of the size d of the hidden
layer of the AutoEncoder, on the Yale dataset. The respective performances of both AGNOS-W and AGNOS-G are s.t.
the rank of both variants among the considered FS methods fluctuates with d. By contrast, the performance of AGNOS-S
appears to be stable w.r.t. d, and remains higher than all baselines across the entire range d € [5, ..., 100]. Concordant
results were observed on the other benchmark datasets. -

The fact that the performance of AGNOS-W decreases for d > ID is congruent with the reasoning exposed in
chapter 4 ; if the size of the hidden layer is larger than the intrinsic dimension, then the set of latent features likely contains
redundancy. In turn, original features that are important to build only superfluous latent features may be wrongfully
selected, negatively impacting the results.

By construction, all latent features matter for d = ID, meaning the above issue is averted and only the most relevant
initial features are selected. However, this assumption does not seem to hold in practice, as highlighted by the fact that
the performance of AGNOS-G is shown to increase for d > ID. In order to address this shortcoming, a potential direction
for further work is to take into account the varying importance of the latent features in the selection criterion (chap. 7).

The low sensitivity of performance w.r.t. d means that studying the intrinsic dimension of the dataset as preproces-
sing is of lesser importance for AGNOS-S than for AGNOS-G and AGNOS-W. This is consequently another argument
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FIGURE 6.10: FIT score w.r.t. hidden layer size d, on Yale. The vertical black dotted line corres-
ponds to the estimated intrinsic dimension. The colored horizontal dotted line correspond to the
respective FIT scores of the baselines (independent of d).

in favor of this declination of AGNOS. We interpret this robustness property in the same manner as in section 6.3; in
AGNOS-W, the encoder weights (resp. the encoder gradients in AGNOS-G) are simultaneously affected by the recons-
truction penalty and the group LASSO penalty. Therefore, the value of d directly governs the number of parameters
responsible for enforcing sparsity, and in turn has a strong influence on the final selection criteria. On the other hand,
sparsity is enforced in AGNOS-S by the slack variable layer, which size is unaffected by d. The quality of the selection
criterion in AGNOS-S is therefore less reliant on finetuning d.

6.4.3 Sensitivity w.r.t. penalization strength )\

Figure 6.11 depicts the FIT scores of the three AGNOS variants as function of A (represented in log scale) on Isolet

The performance of AGNOS appear to be sensitive w.r.t. A, with all three variants possibly being overtaken by
some of the baselines. However, the suitable range for X differs for each declination of AGNOS. For both AGNOS-S and
AGNOS-W, the default value A = 1 leads to a FIT score close to the recorded maximum. However, this default value
appears to be too large for AGNOS-G, requiring A = 1073 to reach its best performance instead. This is related to the
phenomenon of fig. 6.7, which is under study.

Main drawback of AGNOS : the computational cost

Table 6.14 contains the empirical runtimes of the baselines and the three variants of AGNOS on each dataset.
AGNOS-S is shown to be between 25% and 100% slower than NDFS, and several orders of magnitude slower than
Laplacian score, SPEC and NDFS. Training an Auto-Encoder with a number of parameters of the order of D x d thus
appears more expensive than spectral clustering-based optimization 8. AGNOS-W and AGNOS-G are even slower, being
on average 50% slower than AGNOS-S. This is explained by the fact that the respective loss functions of AGNOS-W and

8. Arguably, the use of GPU for neural computation is significally more advanced than for spectral clustering, although some
announcements from Nvidia (nvi, 2017) suggest that appropriate libraries for spectral clustering with CUDA would be available soon.
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arcene | Isolet | ORL | pixraw10P | ProstateGE | TOX171 | warpPie10P | Yale

AGNOS-S | 265 25 29 242 145 143 31 14
AGNOS-W | 422 31 40 389 191 180 47 18
AGNOS-G | 428 32 42 394 195 184 48 18
Laplacian | <1 <1 <1 <1 <1 <1 <1 <1
SPEC 3 9 <1 2 1 2 1 <1
MCFS <1 2 <1 <1 <1 <1 <1 <1
NDFS 130 16 17 193 80 76 18 7

TABLE 6.14: Empirical runtimes on a single Nvidia Geforce GTX 1060 GPU, in seconds.

AGNOS-G involve D x d parameters (resp. weights and gradients) compared to the D slack variables computed in
AGNOS-S.

The computational effort thus constitutes the main limitation of the proposed algorithmic contribution. Consequently,
a perspective for future research is to lower the complexity of the approach, either with early stopping or recursive
feature elimination (chap. 7).

6.5 Partial Conclusion

This experimental study has shown that AGNOS is able to consistently select a subset sufficient to recover the whole
original feature set, and outperform the considered baseline methods w.r.t. both sup. and unsup. performance criteria.
A remaining question is which one of the three AGNOS declinations is best suited to the dataset at hand, particularly so
among AGNOS-S and AGNOS-G. As said, the comparative lesser performance of AGNOS-W is under study.
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The second contribution of the chapter is to show the merits of the proposed FIT criterion, in terms of stability w.r.t.
the target feature by construction and also w.r.t. the hyper-parameters of FS such as the selection subset size. This
robustness property, highlights the reliability of the FIT evaluation scheme for comparing unsupervised FS algorithms.

Finally, the unsup. part of this empirical study (sec. 6.3) has also underlined the partiality issue inherent to sup.
validation of unsup. FS, as claimed in chapter 5, the ranking of unsup. FS algorithms w.r.t. any sup. scoring function
arbitrarily depending on the considered learning goal.
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Chapitre 7

Perspectives and conclusion

Two different aspects of unsupervised feature selection have been explored in this thesis. On one hand, a novel
unsupervised FS algorithm has been proposed. On the other hand, we have devised a new performance evaluation
framework for comparing unsupervised FS techniques.

This chapter first recalls the main results and lessons learned for the unsupervised feature selection problem (sec-
tion 7.1), then discusses the research perspectives opened by this work in section 7.2.

7.1 Summary of contributions

7.1.1 Unsupervised Dimensionality Reduction

As shown (chap. 2), the curse of dimensionality (Pestov, 1999) effectively renders the Euclidean distance ineffective
to assess similarity between high-dimensional datapoints. Moreover, the efficiency of state-of-the-art unsup. FS ap-
proaches (chap. 3) is noticeably hindered, admittedly to a varying extent, when faced with features carrying redundant
information. Thirdly, features are typically retained in view of a single particular learning goal (chap. 5), even though all
original variables are potential learning goals in the unsup. context (LeCun, 2016).

Taking note from the above three remarks, the proposed algorithmic contribution hinges on Auto-Encoding neural
networks to simultaneously suppress the need for a high-dimensional similarity metric and perform agnostic feature
selection. In doing so, Agnostic Feature Selection (AGNOS, chap. 4) essentially bridges the gap between unsupervised
feature construction and selection. Three variants of this algorithmic contribution (named AGNOS-W, AGNOS-G and
AGNOS-S) have been proposed, each enhancing the AutoEncoder with a different form of structural regularization
enforcing sparse selection, thereby efficiently addressing the feature redundancy issue.

7.1.2 Assessment of unsupervised Feature Selection

As seen (chap. 5), we claim that typical sup. performance indicators for unsup. FS lack in reliability and stability. In
order to provide a stable and reliable performance indicator, we propose the methodological contribution of this thesis,
the unsup. FIT scoring criterion (chap. 5).

7.1.3 Empirical evidence

A systematic study has been conducted to back the claims of the thesis. On the one hand, it is shown that the
proposed AGNOS algorithm outperforms state-of-the-art unsup. FS methods (He et al., 2005; Zhao and Liu, 2007; Cai
et al., 2010; Li et al., 2012) w.r.t. both typical sup. assessment metrics and the novel FIT score.
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The main two lessons learned from the empirical study concern both unsupervised FS and the validation methodo-
logy :
— On the algorithmic side, AGNOS favourably compares to the most impactful unsup. FS techniques on representa-

tive datasets illustrating different application domains (medical, text and face image data) and an artificial dataset
known to hinder independent scoring methods.

— On the methodological side, we establish that sup. performance indicators generally used to assess unsup. FS
provide brittle results. The exploitation of the intrinsic dimensionality of a dataset can also be considered a worthy
ingredient for unsup. FS in the data compression perspective.

These findings were the subject of an accepted paper at the 2019 edition of the European Conference on Machine
Learning (ECML) .

7.1.4 Strengths and weaknesses

Pros The main benefits of our contribution are :
— Escaping the curse of dimensionality by avoiding usage of a high-dimensional pairwise similarity metric.

— Capturing much more information than spectral clustering-based methods : the objective is to recover D original
features rather than a single pseudo-label variable. As a result, the selected subset is relevant w.r.t. any learning
goal.

— Efficiently handling redundant feature sets, thanks to the sparsity-enforcing term in the Auto-Encoder loss.

Cons Nevertheless, AGNOS currently suffers from a sizeable drawback : its empirical time complexity is shown to
be larger by at least a factor two, and often an order of magnitude, than state-of-the-art unsup. FS methods (chap. 6).
Lowering the computational cost of the approach is our first perspective for future research (sec. 7.2).

7.2 Towards more robust and computationally efficient agnostic feature se-
lection

This work opens three perspectives for further research.

7.2.1 Computational cost

A short-term research perspective is to reduce the computational cost of AGNOS. A first option is to transform AG-
NOS from a filter-based approach to an embedded online selection method, taking inspiration from Guyon et al. (2002).
One possible way of iteratively eliminating the original features least contributing towards learning the constructed fea-
tures in the latent AutoEncoder data representation during network training, is to set the associated slack variables to
0 in AGNOS-S. Given this modification, the dimensionality of the input continuously decreases, hereby greatly reducing
computational cost both in terms of time and space complexity, and allowing AGNOS to better scale to large real-life
datasets. Such an iterative process can support an automatic stopping criterion in the approach, s.t. the number of
features to ultimately retain is determined on the fly, as is already implemented in supervised neural network-based
approaches such as Drop-Out-One (Ye and Sun, 2018).

1. Agnostic Feature Selection, G. Doquet and M. Sebag, ECML PKDD 2019
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A second option is to use an early stopping of the Auto-Encoder, e.g. when the feature ranks as computed from
the slack variables and/or the weights or gradients have not changed for some consecutive epochs : indeed, a perfect
reconstruction accuracy is a means rather than an end for the AE learning.

7.2.2 Probabilistic AGNOS

A longer-term perspective consists of replacing the deterministic AutoEncoder relied upon by AGNOS with a Varia-
tional AutoEncoder (Kingma and Welling, 2013) (appendix .1). Given this modified neural architecture, original features
would be selected w.r.t. their usefulness for generating realistic new samples, rather than reconstructing the existing
datapoints.

The goal of this extension is to provide a more robust feature selection approach in the case where the application
domain contains very few samples comparatively to the number of features, e.g. in DNA-based bioinformatics research.

7.2.3 Better exploiting the latent features

As said, AGNOS relies on the implicit assumption that all constructed features are equally important for recons-
tructing the original data (chap. 4). This assumption is unlikely to hold in practice, as underlined by the lower empirical
performance (chap. 6) of AGNOS-W and AGNOS-G (where feature importance is derived from one constructed feature)
comparatively to AGNOS-S (where feature importance simultaneously involves all constructed features).

In the short term, the extension of AGNOS-G to consider the gradients from f, w.rt. f; (8ﬁ-) is a way to seamlessly
handle the importance of the latent variables. In a medium term, the importance of the latent variables ¢; w.r.t. f; can
be used to weight the importance of the f;s.

7.2.4 Causal discovery

Lastly, a long-term perspective is to explore the link between the proposed unsupervised feature selection paradigm
and the neighboring field of causal inference (Pearl, 2009). Causal feature selection (Guyon and Aliferis, 2007; Peters
et al., 2017) has insofar and to the best of our knowledge only been considered in the supervised context. However, the
central motivation behind AGNOS of selecting features sufficient to recover the whole feature set is strongly reminiscent
of finding a minimal functional causal model (Goudet et al., 2018) explaining all variables. Bridging the gap between cau-
sal discovery and unsupervised feature selection for the purpose of interpretability is therefore an especially interesting
prospect in view of Fair, Transparent and Accountable learning (chap. 1).
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.1 Appendix A : Variational Auto-Encoders

Variational AutoEncoders (VAE) (Kingma and Welling, 2013) rapidly gained popularity over the past five years as
a data augmentation method (Pu et al., 2016). The mathematical basis of VAEs is actually quite remote from classical
AutoEncoders. The name of the approach is therefore slightly ambiguous, as the resulting network merely resembles
an AutoEncoder.

The core idea behind VAEs is to interpret the d constructed features as being the parameters of d probability distribu-
tion functions. The most common choice corresponds to a multivariate Gaussian distribution, so that each constructed
feature in Z consists of a tuple (p, o) reflecting the mean and standard deviation of a scalar Gaussian.

During training, latent variables are sampled from their respective distributions, and the decoder part of the neural
network is tasked with recreating the original data X 2 from the stochastic samples. The success of this reconstruction
hinges on the crucial observation that a set of d Gaussian random variables can be mapped to an arbitrarily close
approximation of any d-dimensional distribution (including that of X, provided the manifold assumption from chapter 2
holds), provided a sufficiently complex function (Devroye, 1986). An illustration of this result is provided in figure 1.
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FIGURE 1: The 2D random variable z on the left panel can be mapped to a ring-shape distribution
X through the function ¥(z) = 2/10 + z/||z||

Provided with this setup, one could sample from the model without any input. However, obtaining a satisfactory
reconstruction of X this way is unaffordable in terms of time complexity, as highlighted by figure 2 and the following
discussion.

One would expect the model generating the digit in panel (b) to be deemed mediocre, given the apparent dissimilarity
with the original MNIST datapoint of panel (a). On the other hand, the reconstruction of panel (c) (identical to (a) but
shifted down and to the right by one pixel) is perceived to be better. Unfortunately, (b) is much closer to (a) than (c) is,
w.r.t. the MSE loss. Therefore, one would need to obtain a model significantly better than (c) in order to discard results
such as (b). This is consequently likely to require an unreasonable amount of samples.

2. More precisely, the decoder is tasked with generating datapoints that look like those of X, which is why the approach is used
to perform Data Augmentation. The decoder designation is therefore only used to draw the parallel between VAEs and traditional
AEs; a less ambiguous name for this network component would be generator.
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(a) (b) (©)

FIGURE 2: The reconstructed digit of panel (c) is perceptually much closer to the original MNIST
digit of panel (a) than the sample in panel (b). However, the MSE loss provides the reverse
conclusion, that (b) is the far better approximation
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In order to accelerate the sampling procedure, an encoder ¢ mapping X to the constructed features (u(X),o(X)) is
added to the pipeline, s.t. the distribution parameters are learned through backpropagation of the reconstruction error®

(fig. 3).

H(X)

[
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¢

/’
\

o(X)

FIGURE 3: lllustration of the final VAE pipeline
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Decoder

The sole purpose of the encoder part is thus to ensure that training is affordable in terms of time complexity. After
training is complete, ¢ is discarded and new samples can be generated using only the constructed features and ), the-
refore achieving data augmentation. This constitutes a significant methological difference with classical AutoEncoders :

3. Arguably, an alternate solution would be to design a similarity metric better suited to depict likeness of images than the MSE.
However, not only are such metrics challenging to define in domains such as computer vision, but also hardly interpretable without

label information indicating which images are similar, as is the case in unsupervised FC
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the encoder is merely a convenient tool rather than the end goal of learning. Moreover, the constructed features do not
necessarily contain any information related to X, which is why we consider VAEs to be remote from other FC methods.
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