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Abstract

With the advent of Big Data, databases whose size far exceed the human scale are becoming increasingly
common. The resulting overabundance of monitored variables (friends on a social network, movies watched,
nucleotides coding the DNA, monetary transactions...) has motivated the development of Dimensionality Re-
duction (DR) techniques. A DR algorithm such as Principal Component Analysis (PCA) or an AutoEncoder
typically combines the original variables into new features fewer in number, such that most of the information
in the dataset is conveyed by the extracted feature set.

A particular subcategory of DR is formed by Feature Selection (FS) methods, which directly retain the
most important initial variables. How to select the best candidates is a hot topic at the crossroad of statistics
and Machine Learning. Feature importance is usually inferred in a supervised context, where variables are
ranked according to their usefulness for predicting a specific target feature.

The present thesis focuses on the unsupervised context in FS, i.e. the challenging situation where no
prediction goal is available to help assess feature relevance. Instead, unsupervised FS algorithms usually
build an artificial classification goal and rank features based on their helpfulness for predicting this new target,
thus falling back on the supervised context. Additionally, the efficiency of unsupervised FS approaches is
typically also assessed in a supervised setting.

In this work, we propose an alternate model combining unsupervised FS with data compression. Our
Agnostic Feature Selection (AGNOS) algorithm does not rely on creating an artificial target and aims to retain
a feature subset sufficient to recover the whole original dataset, rather than a specific variable. As a result,
AGNOS does not suffer from the selection bias inherent to clustering-based techniques.

The second contribution of this work 1 is to establish both the brittleness of the standard supervised
evaluation of unsupervised FS, and the stability of the new proposed AGNOS.

1. Agnostic Feature Selection, G. Doquet and M. Sebag, ECML PKDD 2019
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Résumé

Les bases de données dont la taille dépasse largement l’échelle humaine sont de plus en plus cou-
rantes. La surabondance de variables considérées qui en résulte (amis sur un réseau social, films regardés,
nucléotides codant l’ADN, transactions monétaires...) a motivé le développement des techniques de réduction
de dimensionalité (DR).

Une sous-catégorie particulière de DR est formée par les méthodes de sélection d’attributs (SA), qui
conservent directement les variables initiales les plus importantes. La manière de sélectionner les meilleurs
candidats est un sujet d’actualité à la croisée des chemins entre statistiques et apprentissage automa-
tique. L’importance des attributs est généralement déduite dans un contexte supervisé, où les variables sont
classées en fonction de leur utilité pour prédire une variable cible spécifique.

Cette thèse porte sur le contexte non supervisé de la SA, c’est-à-dire la situation épineuse où aucun
objectif de prédiction n’est disponible pour évaluer la pertinence des attributs. Au lieu de cela, les algorithmes
de SA non supervisés construisent généralement un objectif de classification artificiel et notent les attributs
en fonction de leur utilité pour prédire cette nouvelle cible, se rabattant ainsi sur le contexte supervisé.

Dans ce travail, nous proposons un autre modèle combinant SA non supervisée et compression de
données. Notre algorithme AGNOS (Agnostic Feature Selection) ne repose pas sur la création d’une cible ar-
tificielle, et vise à conserver un sous-ensemble d’attributs suffisant pour reconstruire l’intégralité des données
d’origine, plutôt qu’une variable cible en particulier. Par conséquent, AGNOS ne souffre pas du biais de
sélection inhérent aux techniques basées sur le clustering.

La seconde contribution de ce travail 2 est d’établir à la fois la fragilité du processus supervisé standard
d’évaluation de la SA non supervisée ainsi que la stabilité du nouvel algorithme proposé AGNOS.

2. Agnostic Feature Selection, G. Doquet and M. Sebag, ECML PKDD 2019
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Chapitre 1

Feature Selection in an unsupervised
context

Data collection and processing have played an integral role in organized societies since antiquity, be it
for recording taxes, managing cattle or organizing a military force. The advent of computers, however recent
on the time scale of human History, has led to a paradigm shift ; data collection can now be performed auto-
matically rather than manually. Additionally, dematerialized storage allows keeping record of unprecedented
amounts of data.

Together, these two breakthroughs have led us to the Information era, in which data is gathered at an
ever-growing rate. Consequently, a new challenge arose : the pace at which data is collected often vastly
outscales the rate at which it can be processed. A notorious example of this issue is given by the CIA in the
early 2000s, when the US federal agency accumulated large amounts of intelligence but lacked the manpower
to analyze even a fraction of it. Accordingly, a new branch of research and industry dedicated to tackling this
class of problems appeared in the last decade, and was named Big Data.

Rather than allocating evermore computational power to data processing, a cost-efficient way of handling
large databases is provided by Dimensionality Reduction (DR). DR is informally defined as the process of
compressing the information contained in the original high-dimensional dataset into a new data representation
of lower dimension. Although DR predates computer science (Pearson, 1901), it has become an increasingly
prevalent tool in view of Big Data.

1.1 Context of the thesis

The presented work is concerned with automatic DR. The compressed data representation is discovered
with Machine Learning (ML). The approach will rely on the basics of neural networks (Haykin, 1994).

1.1.1 A need for interpretability

As ML becomes more and more popular in varied application fields such as medical research, financial
market prediction or weather forecast, it is increasingly important to the end user of ML to be able to make
sense of the learning results. The motivation underlying this interpretability requirement is threefold.
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The first desired property is fairness, corresponding to the absence of malicious or unwanted bias in the
algorithm output (O’neil, 2016). Fairness has been a hotly debated topic in the past few years, for example
in the US legal system; the dangerousness of defendants and convicts is evaluated through risk assess-
ment algorithms, and it was soon found that African-American citizens were on average assigned higher risk
scores than for other origins. The question remained, however, to determine whether this discrepancy was the
consequence of racist discrimination or the byproduct of other correlated factors such as firearm possession
(Skeem et al., 2016). Interpretability is therefore needed to assess the fairness of a learning agent.

The second desired property is transparency, which corresponds the understandability of a model. Trans-
parency is especially useful in domains where Artificial Intelligence outperforms human experts, such as
epilepsy prediction or the game of Go (Deepmind, 2019). In order for physicians to improve their own diag-
noses or Go players their own skill, they need to understand why the ML algorithm makes certain decisions.
In other words, interpretability is required for humans to learn from the machine.

The third desired property is accountability, such that there is clarity regarding who holds responsibility
of the decisions made by the algorithm. The need for accountability was recently highlighted, with the first
fatal accident involving a self-driving car happening in early 2018. Detailed analysis of the driving model is
required in order to determine if the algorithm is faulty and if the car passenger is to blame. Moving forward,
interpretability will thus become even more crucial, as ML algorithms become trusted with vital decisions.

Accordingly, the ML community as a whole is increasingly concerned with Fair, Transparent and Accoun-
table (FTA) learning, for both research (Doshi-Velez and Kim, 2017) and industry (FTA, 2018) purposes. The
aim of the presented work is thus to achieve FTA DR.

In order to perform efficient information compression, DR techniques typically produce new variables,
thereafter called features, that are obtained from the original features via an arbitrarily complex mapping.
Following this unconstrained functional complexity, the resulting features are in the general case hardly inter-
pretable by humans, regardless of their expertise.

Consequently, this thesis is concerned with a particular case of DR called Feature Selection (FS). Instead
of producing new composite features, FS methods filter out the least promising original variables, retaining
only the best candidates. The result of FS is therefore a subset containing interpretable features (assuming
the original data was interpretable to begin with), such as e.g. {age, smoker} for a lung cancer prediction task
on medical data. FS is therefore more appropriate than generic DR (often called Feature Construction (FC))
to achieve FTA learning.

1.1.2 The unsupervised context

Three particular different ML settings are relevant to this work : supervised, semi-supervised and un-
supervised. In the supervised case, the end goal of learning is fully known. Consider for instance a visual
recognition task where the learning agent is presented with pictures of street traffic and tasked with identi-
fying pedestrians, given that the human expert knows all the correct answers.

In the semi-supervised setting, only a few correct answers are available. This is the case of the lung cancer
prediction task example. Physicians can tell that patients with visible symptoms are ill, but are uncertain about
healthy-looking cases.
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In the unsupervised setting, no ground truth is available at all. Furthermore, the final goal of learning is
itself unknown. Using the previous illustrating example, this means the learning agent does not know whether
the medical data will ultimately be leveraged for lung cancer prediction, breast cancer prediction, or possibly
something else entirely.

One may then wonder what the purpose of unsupervised learning is. If we do not even know what we
want ourselves, how could ML be of any help? An answer to this questioning is provided by the following
argument, made by G. Hinton in 1996 :

“When we’re learning to see, nobody’s telling us what the right answers are — we just look. Every so
often, your mother says “that’s a dog”, but that’s very little information. You’d be lucky if you got a few bits of
information — even one bit per second — that way. The brain’s visual system has 1014 neural connections.
And you only live for 109 seconds. So it’s no use learning one bit per second. You need more like 105 bits per
second. And there’s only one place you can get that much information : from the input itself”.

In other words, life is at best a semi-supervised learning experience. Furthermore, supervised learning is
very limited in terms of scalability due to the scarcity of ground truth information. Yet, cognitive mammals are
able to learn quickly and efficiently using only their sensory inputs. This shows that unsupervised learning is
actually a powerful tool, and is well-suited for real-world applications. The power and crucial importance of
the unsupervised context has been further underlined by Y. LeCun (LeCun, 2016), essentially arguing that
supervised learning is merely the tip of the iceberg, while unsupervised learning forms the submerged part.

Consequently, this thesis is mainly focused on unsupervised FS. This setting is however particularly chal-
lenging for the sake of interpretability, given the absence of a definitive goal shedding light on the results.
For instance, the previous selection subset {age, smoker} is easily understandable for lung cancer prediction
purposes, but less so without knowledge about the objective.

In order to comply with the FTA learning requirement, defining a clear unsupervised goal is therefore of
paramount importance. Designing such a goal and demonstrating its soundness will in the following prove to
be a cornerstone of the presented work.

1.2 Motivation

As previously mentioned, DR is a useful tool in a wide range of applications, such as banking, genomics
research, online advertising, power grids or video game development. DR is essentially required for any Big
Data endeavor ; as soon as one is concerned with large amounts of input information, FS should at least be
considered as a pre-processing option.

Furthermore, as the computational power of CPUs and GPUs keeps increasing, private companies and
governments alike pursue collection of more and more data, in the hopes that their data processing capabili-
ties will eventually cease to be a bottleneck.

Moreover, the recent advent of cloud computing is an additional incentive for indiscriminate data harves-
ting, given the resulting boost of storage capacity. A telltale example of this trend is provided by Walmart (the
world’s biggest retail company), owner of the largest private cloud on the planet, which is able to process 2.5
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petabytes of consumer data per hour. This means that the company is recording millions of tidbits of informa-
tion (features) about each of their clients, not all features being equally interesting. There is thus little doubt
that DR algorithms, and more specifically FS methods, play a large role in the data processing pipeline.

Consequently, even though our contributions were so far applied only to comparatively much smaller
real-world datasets (spanning medical data, image data and text data), we expect unsupervised FS to be of
potential use in a wide array of different domains moving forward.

1.3 Main contributions and organization of the work

The first contribution presented in this manuscript is algorithmic. The goal is to design a method bridging
the gap between FC and FS, leveraging the constructed variables to guide the selection.

The second contribution is methodological in nature, and pertains to the evaluation procedure of unsuper-
vised FS. We claim and empirically show that the typical performance assessment scheme is unreliable, and
propose a more adequate stable efficiency criterion to rely on instead.

1.3.1 Performing unsupervised FS

The most common approach consists of i) performing spectral clustering (?) to equip the datapoints with
pseudo-labels ; ii) falling back on supervised techniques, select the features best able to predict the pseudo-
labels. Still, the reliability and robustness of the clusters is not guaranteed. This manuscript investigates an
alternate approach, called Agnostic Feature Selection (AGNOS), that does not rely on pseudo-labels.

Inspired by regularized regression (Tibshirani, 1996; Simon et al., 2013) and feature selection based on
neural networks (Verikas and Bacauskiene, 2002; Roy et al., 2015; Li et al., 2016), the proposed AGNOS
combines Auto-Encoders with structural regularization, and delegates the combinatorial optimization problem
at the core of feature selection to a regularized data compression scheme.

1.3.2 Assessing unsupervised FS

The efficiency and relevance of unsupervised FS are usually estimated within a supervised learning set-
ting. Accordingly, the ranking of different selection algorithms depends on the supervised goal.

In order to address this limitation, we introduce a novel performance indicator, called FIT, that corresponds
to an unsupervised learning setting. Unsupervised FS algorithms are ranked w.r.t. the informativity of the
respective selection subsets to retrieve the whole initial feature set.

1.3.3 Thesis outline

Chapter 2 introduces the general background of the DR problem setting and presents the concept of
intrinsic data dimension.

Chapter 3 provides an overview of the DR field and focuses on the positioning of unsupervised FS ap-
proaches with respect to other FC techniques.
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Chapter 4 introduces the proposed unsupervised FS method AGNOS, including its three declinations
AGNOS-S, AGNOS-W and AGNOS-G, each corresponding to a particular structural regularization scheme.

Chapter 5 discusses the prominent supervised performance indicators for assessing unsupervised FS,
and introduces the proposed FIT.

The experimental validation of the three versions of AGNOS is described and discussed in chapter 6. The
empirical results of AGNOS are compared to baselines both w.r.t. the typical supervised indicators and the
proposed unsupervised criterion. The sensitivity of the performance indicators w.r.t. the hyperparameters of
the method is also assessed.

Chapter 7 concludes the thesis with a summary of our contributions and a discussion of further perspec-
tives.



12

Chapitre 2

Dimensionality Reduction : formal
background

This chapter first introduces the general setting of Dimensionality Reduction (DR), the main associated
challenges and a tentative taxonomy of DR methods in section 2.1. An important hyperparameter of DR
techniques is the dimensionality of the resulting low-dimensional data representation, which is tied to the
intrinsic dimension (ID) of the dataset. Consequently, section 2.2 provides an overview of the ID estimation
field. Lastly, section 2.3 concludes the chapter with a discussion of the presented concepts and methods.

2.1 Setting

The following definitions and notations will be used throughout the entirety of this work.

Notations Given strictly positive integers n and D, let X ∈ Rn×D denote a dataset containing n samples
(x1, . . . ,xn), each xi corresponding to a point in a D-dimensional space. ∀(i, j) ∈ [1, . . . , n]× [1, . . . , D], the
coordinate of the i-th datapoint on the j-th dimension is denoted as fj(xi). ∀j ∈ [1, . . . , D], the n-dimensional
vector fj = (fj(x1), . . . , fj(xn)) is called the j-th feature. F = {f1, . . . ,fD} is called the original feature set .

Performing dimensionality reduction is in essence finding a new feature set containing fewer elements
than the original s.t. ”information” is preserved. In order to be theoretically well-grounded, all DR algorithms
rely on the following underlying hypothesis, thereafter referred to as the manifold assumption :

The manifold assumption The D-dimensional datapoints x1, . . . ,xn lie near a manifoldMd∗ of dimension
d∗ s.t. d∗ << D.

Dimensionality reduction techniques can be categorized with respect to the kind of information they aim
to preserve. For instance, Principal Component Analysis (PCA) attempts to capture the variance in the data,
while Locally Linear Embedding (LLE) (Roweis and Saul, 2000) is concerned with preserving the pairwise
distances between points (more in chapter 3).
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Formally, given target reduced dimensionality d ∈ N∗ s.t. d << D, let Hd denote the set of all sets
containing d features computed from F , and C : RD × Rd → R a cost function. A dimensionality reduction
problem can then be formulated as finding Z∗d s.t. :

Z∗d = arg min
Zd∈Hd

C(F,Zd) (2.1)

The cost function C measures the loss of information occurring due to the change of representation from
F to Z∗d .

Along this setting, three main questions are addressed in order in the following sections :
— Should the search for Z∗d span the entirety of Hd, or should it be restricted to a particular subset

of Hd ?(section 2.1.1)
— How should C be defined?(section 2.1.2)
— How should d be determined?(section 2.2)

2.1.1 Constraining the search : Feature Construction and Feature Selection

The general case of DR where there are no restrictions put on Hd is called Feature Construction (FC) 1.
FC techniques are well-suited to perform efficient data compression. However, the results are hardly interpre-
table, given that the mapping between the original features (elements of F ) and the new ones (elements of
Z∗d ) is potentially non-linear and arbitrarily complex. In the light of the growing need for fair, transparent and
accountable (FTA) learning (Doshi-Velez and Kim, 2017) underlined in chapter 1, recent years saw a rise of
popularity of the particular case of Feature Selection (FS). In this setting, the search for Z∗d is restricted to the
subsets of F containing d elements :

Z∗d = arg min
Zd⊂F
|Zd|=d

C(F,Zd) (2.2)

In other words, the new features are selected among the original ones. As such, the results of FS are typi-
cally easier to interpret than in the general case of FC 2. Furthermore, equation (2.2) defines a combinatorial
problem ; the goal is to find the best candidate from the C d

D subsets of F containing d elements (each original
feature being either rejected or retained). Exhaustive exploration being too expensive computationally-wise,
FS techniques rely on C to quickly orient the search towards a selection subset Z̃∗d s.t. :

C(F, Z̃∗d)− C(F,Z∗d) ≤ ε, with ε ∈ R+∗

The main challenge of FS is thus to preserve the desired ”information” originally contained in F while simul-
taneously tailoring the cost function C so that the approximation Z̃∗d is as accurate as possible, under the
constraint of an affordable time complexity budget.

1. This problem is also frequently referred to as Feature Extraction (FE). However, we find this alternate name to be a potential
source of ambiguity, due to the similarity in meaning with Feature Selection. We will therefore prefer using the term FC over FE in this
work. Note that FC is also infrequently used in the litterature to describe the process of adding extra features to F , thus pertaining to
the data augmentation setting, which is outside the scope of this thesis.

2. Consider for instance medical data which purpose is to predict lung cancer in patients. The selection subset {age, smoker} is
likely more understandable to a physician than the artificial features {tanh(0.87age + 0.13gender), σ(0.95smoker + 0.05name)}.
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2.1.2 Defining the cost function : Supervised and unsupervised DR

In the event that the end goal of learning is known at the time of DR, this objective defines an additional
target feature 3, which can be leveraged to design the cost function C. Consider a FS task on medical data for
the purpose of predicting a certain disease among the patients. If one knows which patients are affected by the
disease, then C should reflect the usefulness of the original features for discriminating between ill and healthy
patients. This idea is the motivation of the early Fisher score (Duda et al., 2000) approach. Considering for
instance the age feature. Let age denote its mean across the whole dataset, and ageh, σh, agei, σi its mean and
variance on the respective subsets of the nh healthy and ni ill patients. Then the cost of the {age} selection
subset singleton w.r.t. the Fisher score is given by :

C({age}) =
nhσh + niσi

nh(ageh − age)2 + ni(agei − age)2

The older (or younger) the ill patients relatively to the healthy ones, the more important the age variable.
Exploiting the learning goal in this way to define C corresponds to the most extensively studied problem in
the literature, called supervised DR.

An alternate setting, lower in popularity despite its crucial importance (LeCun, 2016) as highlighted in
chapter 1, corresponds to the case where no learning goal is available. Such a context is referred to as
unsupervised, in which C is harder to define (more in chapter 3).

Discussion

Following the discussions of sections 2.1.1 and 2.1.2, a tentative taxonomy of DR methods is proposed in
Figure 2.1.

FIGURE 2.1: High-level Taxonomy of Dimensionality Reduction methods

3. There may also exist multiple learning goals simultaneously (Zhang and Zhou, 2007). This variant is called multi-label learning
(Zhang and Zhou, 2013).
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This is in line with the typical point of view in the DR literature, where FS is treated as a concept separate
from FC rather than a particular case. Here, this setting is adapted for the sake of a clear and streamlined
presentation. However, an important aspect of our algorithmic contribution is to cross the gap between FC
and FS (chapter 4).

The resulting four categories of DR algorithms, namely Supervised FC, Unsupervised FC, Supervised
FS and Unsupervised FS will be discussed in chapter 3, along with some of the most prominent approaches
for each category.

Following the manifold assumption, FC can be interpreted as the task of projecting the datapoints onto
the latent manifold. Therefore, it naturally comes that hyperparameter d should be s.t. d ≈ d∗. Consequently,
the task of tuning d is closely tied to estimating the dimension of the underlying manifold 4. This can in turn
be cast to a problem of intrinsic dimension estimation, which we will focus on in the following section.

2.2 Intrinsic dimension

The intrinsic dimension (ID) of a dataset is an informal concept commonly defined in Machine Learning 5

as :

Definition 1. The intrinsic dimension ID(X) of dataset X ∈ Rn×D is the minimum number of features requi-
red to represent X with negligible loss of information w.r.t. the original D-dimensional representation.

After this definition, the intrinsic dimension should be an integer and bounded by D. It will be seen that
continuous ID is also of interest. After the manifold assumption, ID should by construction match the dimen-
sion d∗ of the underlying manifold, s.t. ∀X ∈ Rn×D, ID(X) = d∗. Turning definition 1 into a formal definition
proves to be challenging, as underlined by Pestov (2007) :

“A search for the ”right” concept of intrinsic dimension of a dataset is not yet over, and most probably one
will have to settle for a spectrum of various dimensions, each serving a particular purpose, complementing
each other”.

To the best of our knowledge, there is no unifying framework for the concept of ID as of yet, even though
promising new approaches have been proposed in the last decade (Facco et al., 2017). Additionally, authors
often use their own taxonomy of ID estimators ; Facco et al. (2017) differentiate between fractal and neigh-
borhood-based methods, and we will partially rely on their categorization. Note that e.g. Campadelli et al.
(2015) refer to other distinctions such as projection and topological techniques, interpreted as global vs lo-
cal estimates. In order to provide an overview of the ID estimation field, we will in the following rely on the
tentative taxonomy from figure 2.2.

One may argue that the boundary between fractal and neighborhood-based methods is slim, as it will be
shown in sections 2.2.2 and 2.2.3 that both share the core idea of ”zooming in” on the samples and providing

4. The link between d and d∗ is less immediate in the case of FS : there is no guarantee that the latent manifold can be retrieved
from exactly d∗ original features. Nevertheless, the manifold assumption provides a lower bound for the selection subset size, that is
d∗ ≤ d. Estimating d∗ is thus still of interest for the purpose of FS.

5. The concept of intrinsic dimensionality is also relied upon in signal processing (Trunk, 1976), where it refers to the minimum
number of variables needed to generate a near-perfect approximation of the original signal.
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FIGURE 2.2: Tentative taxonomy of intrinsic dimension estimation techniques

local ID estimates. This argument is the main reason for the varying taxonomies of ID estimators found in the
literature.

Sparsity-based methods are concerned with estimating the impact on the pairwise distances between
dataset samples of the curse of dimensionality, which we will now discuss.

2.2.1 The curse of dimensionality and sparsity-based ID estimation

The expression ”curse of dimensionality” was coined by Richard E. Bellman to describe various pheno-
mena arising in high-dimensional spaces that hinder typical data analysis. Among these adverse effects, the
sparsity issue is the one most prominently considered in ML, and is informally described as :

Definition 2. As the dimensionality of a dataset grows, samples become more and more spread apart.
Eventually, all datapoints are equally far away from each other.

This property is illustrated on an toy experiment in Figure 2.3. The sparsity property from definition 2 can
be rephrased from the perspective of the distribution of pairwise distances between samples :

Definition 3. As the dimensionalityD of the datasetX grows larger, the mean µD(X) of the Gaussian-shaped
histogram of pairwise distances increases, while its standard deviation σD(X) decreases.

The mathematical characterization of the root cause of this sparsity phenomenon is beyond the scope of
this thesis. For the sake of completeness, we refer the interested reader to Pestov (1999) for a more formal
explanation of the curse of dimensionality through the lens of the so-called concentration of measure.

Given the low variance in pairwise distance, every data sample has many equally remote ”close” neigh-
bors. Therefore, the sparsity property is typically harmful to ML algorithms relying on clustering, or more ge-
nerally investigating local structure. Considering that this issue is mitigated or even absent in low-dimensional
spaces, this provides an additional motivation to perform DR, besides those discussed in chapter 1 : escaping
the curse of dimensionality.
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FIGURE 2.3: Distribution of Euclidean distances between 104 randomly chosen pairs of points
sampled from the unit hypercube ID, for different values of dimension D. Top-left panel corres-
ponds to D = 3, top-right to D = 10, bottom-left to D = 100 and bottom-right to D = 1000. Image

taken from Pestov (2007).

The goal of a sparsity-based ID approximation is thus to quantify how much the dataset is plagued by the
sparsity effect. Chávez et al. (2001) provided a simple estimator using the notations from definition 3 :

ÎDsparse(X) =
µD(X)2

2σD(X)2
(2.3)

The stronger the sparsity effect inX, the larger ÎDsparse(X). Given that this ID estimation is both quite intuitive
and computationally inexpensive, the ÎDsparse has become a popular tool in the ML community 6.

By contrast with the informal definition ID(X) ∈ N∗, the above formula does not necessarily return an
integer (and can return 0 in pathological cases), that is ÎDsparse(X) ∈ R+. Although a non-integer dimension
may seem counter-intuitive, this is in line with fractal dimensions, which we will now introduce and discuss.

2.2.2 Fractal-based ID estimation

Though seemingly unrelated, DR and fractal geometry (Mandelbrot, 1983) bear some similarities, that
we will now exhibit. As per the manifold assumption, DR relies on the hypothesis that there is a disconnect
between the representation dimension D of dataset X and its ”true” dimension ID(X).

6. It directly follows from equation (2.3) that the estimated ID of a dataset composed of a single sample is infinite. Although it has
limited practical implications, this mathematical oddity has interestingly enough been shown (Pestov, 2007) to be a required property
of any theoretically well-grounded ID estimator.
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On the other hand, fractals can be represented in 2D or 3D, such as the notorious real-life example of a
snowflake (fig. 2.4), or the artificial Julia set (fig 2.5). Given that these two entities can be drawn on a sheet
of paper, their representation dimension, thereafter called topological dimension, is D = 2.

FIGURE 2.4: A snowflake presents self-similarity properties characteristic of fractal patterns.
Image taken from Wikipedia.

FIGURE 2.5: The Julia set, an artificially generated fractal pattern drawn in 2D. Image taken from
Wikipedia.

This does not however provide us with any insight regarding whether these two objects are equally ”com-
plex” fractal patterns. Therefore, an additional concept to characterize complexity in a fractal, called fractal
dimension (Mandelbrot, 1983) is needed, as informally defined in definition 4 :

Definition 4. The fractal dimension of any geometrical object is the rate at which details in the pattern change
with the scale of measure.

In other words, assume a magnifying glass is at one’s disposal. The fractal dimension of the snowflake
corresponds to the speed at which it becomes more detailed as one zooms in on a small region, w.r.t. the
optical power of the lens.
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A well-studied real-world illustration of this concept is provided by the problem of measuring the length of
the coastline of Great Britain (Mandelbrot, 1967), as shown in figure 2.6.

FIGURE 2.6: The measured length of the coastline of Great Britain increases as the length of the
measuring stick decreases. Image taken from Wikipedia.

As the size of the segments used to approximate the coastline pattern decreases, the total measured
length increases. The ratio between the two quantities is a tentative definition of the intrinsic dimension of
Great Britain.

In light of definition 4, the link between fractal geometry and DR is made clearer ; the intrinsic dimension
of a dataset can be thought of as the rate at which samples become simpler to depict as one closes in on
the datapoints. The concept of fractal dimension can thus be transposed to the context of DR (Camastra and
Vinciarelli, 2002; Kégl, 2003) in ML to approximate ID(X). Similarly as for the ID, numerous formal definitions
of the fractal dimension were proposed over the years.

Box-counting dimension The most well-known fractal dimension estimator is the box-counting dimension
(also sometimes referred to as Minkowski dimension), which is illustrated in figure 2.7.

The process consists in covering the dataset with square-like boxes of side length ε, then observing how
the number N(ε) of boxes needed to achieve full coverage increases as ε decreases :

ÎDbox(X) = lim
ε→0

log(N(ε))

log(1
ε )

(2.4)

Informally, this means that if X contains n samples, ÎDbox(X) is the exponent of the power law such that
N( 1

n) ∝ nÎDbox(X).

Hausdorff dimension An alternative to the box-counting dimension is provided by the Hausdorff dimen-
sion, which relies on balls rather than square boxes, as illustrated in figure 2.8.
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FIGURE 2.7: Illustration of the box-counting dimension concept applied to the Great Britain coast-
line example. Image taken from Wikipedia.

FIGURE 2.8: Illustration of the Hausdorff dimension concept applied to the Great Britain coastline
example. Image taken from Wikipedia.

Defining S(X) the (infinite) set of possible covers of X by balls centered on the datapoints, each ball being
associated to its radius ri > 0, the Hausdorff content of X is defined as :

Cd(X) = inf
S(X)

∑
ri

rdi (2.5)

The Hausdorff dimension of X is then given by :

ÎDHausdorff(X) = inf
d≥0

(
Cd(X) = 0

)
(2.6)

The underlying idea is thus to cover the dataset with progressively smaller spheres, and observe how
the total volume of the coverage decreases as the spheres shrink. Therefore, despite having a less intuitive
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definition, the Hausdorff dimension is conceptually close to the box-counting dimension. Interestingly enough,
these two quantities are linked by the following inequality :

∀X ∈ Rn×D, ÎDHausdorff(X) ≤ ÎDbox(X) (2.7)

Even though ÎDHausdorff(X) = ÎDbox(X) in most cases, the equality does not necessarily hold (e.g. consi-
dering Q the set of rational numbers, ÎDHausdorff(Q) = 0 whereas ÎDbox(Q) = 1).

Discussion

Both fractal dimensions presented above are hardly affordable in practice in terms of computational com-
plexity. In order to address this issue, the correlation dimension (Camastra and Vinciarelli, 2002) and packing
dimension (Kégl, 2003) were designed by the ML community as computationally efficient variants of respec-
tively the box-counting and Hausdorff dimensions.

An additional benefit of the fractal geometry framework is to shed light on the counter-intuitive notion of
a non-integer intrinsic dimension, as was first showcased in section 2.2.1 ; the rate at which details appear
in a fractal is not necessarily a multiple of the zoom multiplier. Going back to the Koch snowflake example,
the total length of the pattern contour increases by a factor 4 every time the scale is enhanced by a factor 3.
Therefore, the Koch snowflake is considered of fractal dimension log(4)/log(3) ≈ 1.27.

Global and local ID estimates There is an important contrast in terms of methodology between sparsity-
based and fractal-based methods. The technique from Chávez et al. (2001) is only concerned with the histo-
gram of pairwise distances of X, thus considers the ID on the global scale and assumes it is invariant across
the samples. By contrast, fractal-based methods investigate the complexity of each individual sample. The
final ID(X) is therefore actually an aggregate of multiple estimations made on the local scale. This is tied
to the underlying assumption that the ID dimension of a dataset is fluctuating across the different regions of
the representation space. For example, it is likely that the ID of a cluster near the origin (meaning all feature
values are simultaneously close to 0) differs from outliers. This idea that one must examine the ID on a local
basis forms the basis of neighborhood-based ID estimators, which we will now introduce.

2.2.3 Neighborhood-based ID estimation

Early neighborhood-based ID estimators (Pettis et al., 1979; Verveer and Duin, 1995) directly relied on
the Euclidean distance in the original representation space of the dataset to detect neighborhoods. Howe-
ver, following section 2.2.1, the sparsity effect caused by the curse of dimensionality prevents this strategy
from being sound in high-dimensional spaces. In order to provide reliable results, one must therefore devise
alternate ways of detecting neighborhoods.

To that end, (Costa and Hero, 2004) rely on a popular unsupervised Feature Construction method called
Isomap (more in chapter 3). The idea is to aggressively prune the pairwise sample similarity graph provided
by Isomap, so that all datapoints remain connected using as few edges as possible. An illustration of this
process is provided in figure 2.9, on the well-known Swiss Roll artificial dataset. Despite being originally
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FIGURE 2.9: An example of Geodesic Minimal Spanning Tree on a Swiss Roll. Image taken from
(Costa and Hero, 2004).

generated and represented in a 3D space, this manifold can be ”unfolded” and mapped to a 2D space. Most
ID estimators will therefore return ÎD(SwissRoll) ≈ 2.

The pruned similarity graph is called a Geodesic Minimal Spanning Tree (GMST). It has been shown
(Costa and Hero, 2004) that the depth of this tree can be used to approximate the intrinsic dimension of
the manifold. The main shortcoming of the GMST approach is that the quality of its ID estimation depends
on the accuracy of the similarity graph provided by Isomap. Unfortunately, Isomap has been experimentally
demonstrated (Balasubramanian and Schwartz, 2002) to be topologically unstable, meaning a small error in
neighborhood assessment (relying still on the Euclidean distance) can lead to a large error in the final graph.

Consequently, the GMST approach has decreased in popularity to the benefit of Maximum Likelihood
Estimation (MLE) (Levina and Bickel, 2005). This technique relies on the assumption that if one ”zooms in”
on a particular datapoint x, then the density f(x) of samples in this region is roughly constant in a ball Sx(r)
centered on x with a small radius r, s.t. f(x) ≈ C everywhere in Sx(r). The idea is then to consider the
samples as an homogenous Poisson process in Sx(r). The number N(x, r) of datapoints inside Sx(r) is then
s.t. N(x, r) ∝ Crd(x). Here, d(x) denotes the dimension of sphere Sx(r) and corresponds to the local ID at
point x. Given a fixed sphere radius r0, the final ID approximation ÎDMLE is then simply obtained by averaging
the local estimators :

∀X ∈ Rn×D, ÎDMLE(X) =
1

n

∑
x∈X

d(x) (2.8)

As said, the MLE ID estimator relies on the strong assumption of locally constant sample density. In
practice, the more inhomogenous the underlying Poisson process, the less accurate ÎDMLE .

Building upon the MLE technique, Facco et al. (2017) proposed a neighborhood-based ID estimator that
only relies on the two closest neighbors of each point, denoted ÎD2NN . This essentially means that the
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homogenous Poisson process assumption needs only to hold in smaller spheres than before. ÎD2NN is
therefore better suited than ÎDMLE to deal with non-smooth manifolds.

Similarly as before, ÎD2NN (X) is obtained by averaging local estimates d(x). However, rather than from
counting the number of samples in S(x, r0), d(x) is derived from the volume of the hyperspherical shell
enclosed between the closest and second closest neighbors of x, as illustrated in figure 2.10.

FIGURE 2.10: Two-dimensional example of local ID estimation via the 2NN technique.

Before averaging the local results, the top 10% ranked datapoints w.r.t. the ratio r2
r1

are discarded. This
essentially means that samples with only one close neighbor are ignored, given that these are likely to be
outliers and would skew the final estimator ÎD2NN .

An additional benefit of the 2−NN method over traditional MLE estimation is the reduced computational
cost ; Muja and Lowe (2014) have shown that dedicated algorithms were able to find the first two neighbors
of n points in approximately O (nlog(n)) time.

2.3 Discussion

As discussed above, the boundary between fractal and neighborhood is slim, e.g. the pioneer MLE esti-
mator from Levina and Bickel (2005) is referred to as a fractal-based technique in Facco et al. (2017).

Criteria for ID estimation As shown, ID estimation is key to DR. In this context, the criteria for choosing an
adequate ID estimator include :

— Affordable computational cost (both time and space-wise)

— Resilience w.r.t. the sparsity effect of the curse of dimensionality
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— Accuracy of the results : ÎD should be close to the dimension d∗ of the latent manifold

The sparsity-based estimator from Chávez et al. (2001), the correlation dimension (?) and the packing
dimension (Kégl, 2003) all meet the first criterion. However, it has since been demonstrated (Pestov, 2007)
that the resulting ÎD is not necessarily close to d∗ ; all these techniques thus fail to meet the accuracy criterion.
Additionally, correlation and packing dimensions are also sensitive to the sparsity effect (Pestov, 2007).

By contrast, the 2−NN method (Facco et al., 2017) is both inexpensive computationally-wise and resilient
to the sparsity effect. Furthermore and to the best of our knowledge, ÎD2NN is empirically a close approxima-
tion of d∗, in cases where ground truth knowledge about the dimension of the underlying manifold is known.
Therefore, we will in the context of this thesis rely on the 2−NN approach for the purpose of ID estimation.
The discussion of this chapter should however not make us forget that many authors (Guyon et al., 2002; Li
et al., 2016; Ye and Sun, 2018) instead proceed manually or iteratively to tune d.

Alternate visual-based tuning of d d can be tuned relying e.g. on Principal Component Analysis (PCA)
using a grid search process. The idea would be to perform a PCA of the original data for different number of
principal components (corresponding to the constructed features), then visually examine the smoothness of
the respective covariance matrices spectra.

FIGURE 2.11: Example of covariance matrices spectra resulting of PCA for different dimensions
d1 and d2

In the example provided in figure 2.11, the large gap between the leading eigenvalues and the tail of the
spectrum for d = d1 indicates that some of the constructed features are much less important than the others
for capturing the variance in the data. Therefore, d should be lowered until the spectrum becomes smooth, as
is the case for d = d2.
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This ”trial-and-error” technique come with the significant downside of being computationally expensive,
given that the FC algorithm relied upon must be ran many times to obtain accurate results. This approach is
therefore ill-advised in view of Big Data.

Online selection subset size calibration Another possibility exclusive to FS is to forego ID estimation and
determine the number of features to select online, that is during the execution of the FS algorithm. This is a
popular solution in supervised FS. In the Drop-Out-One approach (Ye and Sun, 2018) (more in chapter 3)
for instance, features are greedily eliminated until the resulting change in predictive accuracy of the target
features becomes lower than a threshold.

To the best of our knowledge, this type of technique has not yet been proposed for the unsupervised
context, where a suitable stopping criterion is harder to define. This defines a direction for future research
(chapter 7).
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Chapitre 3

Dimensionality reduction : overview

Based on the formal background on Dimensionality Reduction (chap. 2), this chapter presents the state-
of-the-art in Feature Extraction (FC) (section 3.1) and Feature Selection (FS) (section 3.2), in both supervised
and unsupervised contexts (thereafter abbreviated as sup. and unsup.). A brief review of some of the most
impactful and popular approaches is provided for each of the four problem settings. The chapter concludes
with a discussion on the strengths and limitations of the aforementioned methods, coupled with the main
lessons learned.

An important methological difference between FC and FS lies in the way sup. and unsup. learning are
perceived. In the general FC context, unsup. historically came first, with early methods such as PCA (Pearson,
1901), and remains the main focus of the literature. Sup. learning is then layered on top of unsup., and label
information is taken advantage of as much as possible.

On the other hand, FS is most often studied in the sup. context. The absence of labels is seen as a
handicap. Unsup. FS therefore aims to build pseudo-label information in order to fall back on sup. learning.

Accordingly, section 3.1 will introduce unsup. FC methods first, followed by sup. approaches. By contrast,
section 3.2 begins with sup. FS and presents unsup. techniques afterwards.

3.1 Feature Construction

Following the general problem setting exposed in chapter 2 and using the same notations, DR aims to
find a mapping φ∗ : F → Hd s.t. φ∗(F ) = Z∗d minimizes cost function C. FC is not limited to ”sparse filters”
mappings selecting a subset of the initial features (as is FS). Instead, φ∗ can correspond to either a linear
combination of the initial features or an arbitrarily complex non-linear function thereof.

3.1.1 Unsupervised FC

3.1.1.1 Linear mappings

Principal Component Analysis Perhaps the most well-known DR technique overall is the Principal Com-
ponent Analysis (PCA) algorithm (fig 3.1), an early approach dating back to the 19th century and formalized
by Pearson (1901). Assuming the original features have been preemptively centered and given the data cova-
riance matrix XTX, the constructed features (referred to as principal components) are given by the columns
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of matrix Z s.t. Z = XW , where W contains the eigenvectors of XTX. In order to perform DR, only the d lea-
ding eigenvectors are considered, s.t. Zd = XWd is now a n× d matrix 1 The underlying idea is that provided
d is well-tuned (see section 2.2), the leading eigenvectors are sufficient to capture most of the variance in the
data. As said in chapter 2, DR methods can be categorized by the kind of ”information” they respectively aim
to preserve. Accordingly, the purpose of PCA is to accurately depict correlations between original features.

FIGURE 3.1: A 2D example of PCA applied to the picture of a fish. From Wikipedia.

Singular Value Decomposition The Singular Value Decomposition (SVD) of X ∈ Rn×D is given by X =
UΣV , where U and V are orthogonal matrices of respective dimensions n × n and D × D, and Σ a n × D
diagonal matrix. The diagonal entries of Σ (the singular values of X) are the square roots of the non-zero
eigenvalues of XTX.

In order to perform DR (as well as greatly reduce the computational cost), only the d largest singular
values and corresponding singular vectors are computed in the truncated SVD (Golu and Reinsch, 1971), s.t.
X̂ = UdΣdVd. The constructed features then correspond to the rows of Vd.

Interestingly enough, SVD is equivalent to PCA if the original features have been preemptively centered
to zero mean. However, centering is ill-advised in some cases, e.g. image processing tasks where features
correspond to positive pixel intensity values ; mean centering transforms null values into high amplitude nega-
tive values, artificially increasing the (usually low) importance of the corresponding features. SVD is therefore
usually preferred over PCA in this setting.

Multi-Dimensional Scaling Multi-Dimensional Scaling (MDS) (Torgerson, 1958; Borg and Groenen, 2003)
follows a different line of thought to PCA and SVD; the goal is to preserve the likeness of samples (rather than
the correlations between features). Accordingly, the input of the method is a similarity matrix containing the
pairwise Euclidean distances between datapoints, which spectral decomposition produces the constructed
features. The notion of similarity matrix is also central to unsup. FS, and the associated theory of spectral
clustering (Von Luxburg, 2007) will be presented in more detail in section 3.2.3.

1. Interestingly enough, the Eckart-Young theorem (Eckart and Young, 1936) guarantees that Zd is the best approximation (in the
sense of the Frobenius norm) of X by a matrix of rank d or less.
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Discussion

Over the years, the three aforementioned techniques have been further refined into many computationally
efficient variants such as the k-SVD (Aharon et al., 2006) or the generalized MDS (Bronsteina et al., 2006).
However, a core limitation remains : the mapping φ∗ resulting of any of PCA, SVD or MDS is linear. As such,
these methods are ill-advised for performing DR on non-linear manifolds. An example of unwanted behavior
is provided in figure 3.2 on an artificial Swiss Roll dataset (see section 2.2.3), which a standard PCA is unable
to properly unfold.

FIGURE 3.2: Far-away points are wrongly assessed as close together in the PCA projection by
the Euclidean distance. From Roweis and Saul (2000).

3.1.1.2 Non-linear mappings

Isomap Isomap (Tenenbaum et al., 2000) is an extension of MDS designed to handle non-linear manifolds,
taking note of the unreliability of the Euclidean distance (panel A of figure 3.3). The similarity matrix is first
translated into graph form : each vertex represents a data point, and two vertices are connected by an edge
iff one is part of the k nearest neighbors (w.r.t. the Euclidean distance) of the other. This allows computing a
geodesic distance between vertices, corresponding to the length of the shortest path connecting them in the
graph (panel C). Panel B shows that this new distance accurately detects neighborhoods in the Swiss roll.
MDS is then performed using the geodesic similarity matrix as input. The reliance on local neighborhoods of
the geodesic distance is what allows the resulting mapping φ∗ to be non-linear.

FIGURE 3.3: The geodesic distance accurately depicts pairwise similarities, and is used by Iso-
map to unfold the Swiss roll. From Tenenbaum et al. (2000).
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As mentioned earlier (section 2.2.3), Isomap has quickly been shown to be topologically unstable (Bala-
subramanian and Schwartz, 2002), meaning that adding a small perturbating noise to the data is sufficient to
greatly corrupt the associated similarity graph, and consequently the constructed features (figure 3.4).

FIGURE 3.4: Adding Gaussian noise of small amplitude leads to a badly unfolded Swiss Roll.
From Balasubramanian and Schwartz (2002).

Locally Linear Embedding Locally Linear Embedding (LLE) (Roweis and Saul, 2000; Saul and Roweis,
2003) first defines the local structure of the n data points xi ∈ RD, through approximating each point as the
barycenter of its k nearest neighbors. The goal is then to find points y1, . . . yn in Rd, such that the yi satisfy
the same local relationships as the xis. Formally, let N(i) denote the set of indices of the k nearest neighbors
of xi. The weights Wi,j then minimize the Euclidean distance ‖xi −

∑
j∈N(i)Wi,jxj‖ with the constraints∑

j∈N(i)Wi,j = 1, Wi,j ≥ 0 and Wi,j = 0 for j 6∈ N(i). Note that W is invariant under rotation, translation or
homothety on the dataset X : it captures the local structure of the samples. These local relationships are then
leveraged to learn Y s.t. :

Y = arg min
M∈Rn×d

‖M −WM‖2F

An illustration of the LLE DR process is provided in figure 3.5.

3.1.1.3 Non-linear mappings learned with AutoEncoders

AutoEncoders are artificial neural networks designed to perform FC. An AutoEncoder is composed of two
interacting parts : an encoder φ that learns the constructed features, followed by a decoder ψ aims to recons-
truct the original variables from the constructed ones (figure 3.6). The goal is to minimize the discrepancy
between the original data and the output of the decoder, i.e. find φ∗, ψ∗ s.t. :

φ∗, ψ∗ = arg min
ψ,φ

Loss(X, (ψ ◦ φ)X) (3.1)
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FIGURE 3.5: Illustration of the three sequential steps involved in LLE.

The most widely used loss function is the squared L2 norm (often referred to as the mean squared error
(MSE) loss), i.e. :

L = ||(ψ ◦ φ)(X)−X||2F = ||X̂ −X||2F =

n∑
i=1

||x̂i − xi||22 (3.2)

Alternatively, the MSE loss can be interpreted as a sum of individual errors over each feature :

L(F ) =

D∑
i=1

||f̂i − fi||22

Equations (3.2) and (3.1.1.3) are clearly equivalent. However, given that our algorithmic contribution per-
tains to the field of unsupervised FS and relies on AutoEncoders (more in chapter 4), we will in the following
prefer using the feature-based interpretation L(F ).

Whether φ and ψ are linear mappings depends on the activation functions used in the neural network. As
shown by Baldi and Hornik (1989), an AutoEncoder with linear activation functions and a MSE loss essentially
performs PCA. In practice, nonlinearities such as sigmoid, tanh or ReLU (Xu et al., 2015) are thus relied upon
instead.

If the output of the encoder is of the same dimensionality as the input, then the optimization problem is
trivially solved by learning an identity mapping for both the encoder and the decoder 2. In order to enforce
finding an interesting solution, the common strategy is thus to enforce φ : RD → Rd and ψ : Rd → RD, with

2. More precisely, it suffices that ψ ◦ φ = Id, which is achieved by learning any invertible φ : RD → RD and ψ = φ−1. This is
unlikely to produce a useful representation in the encoder. Furthermore, this can still occur even if non-linear activation functions are
used (e.g. φ can stay in the linear regime of a sigmoid with small enough neuronal weights).
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FIGURE 3.6: An AutoEncoder performs unsupervised FC by compressing the input into d latent
variables.

d << D, thus creating an under-complete representation in the encoder. This under-complete representation
can be viewed as data compression in the sense that ψ allows to recover the initial information.

An alternative to under-complete representations is to rely on an over-complete representation (d > D)
under the constraint that φ is sparse. This idea of implicit compressibility rather than explicit is at the core
of sparse coding (Olshausen and Field, 1997). Sparse encoding has been shown (Poultney et al., 2007;
Boureau and LeCun, 2008) to produce expressive constructed features s.t. each of these filters memorizes a
different piece of information related to the input. The reconstructed data is provided by the additive (linear)
combination of these filters (fig. 3.7).

FIGURE 3.7: Example of encoder-learned filters on a handwritten digit taken from the popular
MNIST database. From Boureau and LeCun (2008).

Another strategy to prevent the AutoEncoder from learning uninteresting features is to use a loss function
different than the one in equation (3.2). Such a strategy is implemented by Denoising AutoEncoders (Vincent
et al., 2008), which first produce a noisy version X̃ of X to use as input data, then task the network with
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reconstructing the original ”clean” data from the corrupted version (fig. 3.8) :

φ∗, ψ∗ = arg min
ψ,φ

Loss(X, (ψ ◦ φ)X̃) (3.3)

FIGURE 3.8: Illustration of the denoising AutoEncoder process on MNIST.

Following the manifold assumption (sec. 2.1), corrupted samples in X̃ will generally lie farther than the
uncorrupted datapoints from the underlying low-dimensional manifold. A denoising AutoEncoder is therefore
learning to project these noisy samples back onto the manifold. To guarantee the success of this denoising
process, the features constructed by the encoder must be resilient to perturbations in the input, and should
thus be more expressive than the original ones. The resulting compressed representation accordingly de-
pends on the type and magnitude of corrupting noise applied to transform X into X̃. The most common
corruption is the so-called masking noise, setting a fraction of randomly chosen feature values to zero. This
method can be linked to the DropOut strategy (Hinton et al., 2012; Srivastava et al., 2014), setting a random
fraction of neuronal weights to zero to avoid overfitting as well as co-adaptation of neurons.

In order to further increase the robustness of the learned compressed data representation w.r.t. input
noise, Denoising AutoEncoders can be stacked together : after one AutoEncoder has been trained, the output
of its decoder is corrupted, and is fed as input to the next AutoEncoder in the stack. Such an architecture
is called a Stacked Denoising AutoEncoder (Vincent et al., 2010), and leads to a series of intermediate
compressed representations, each being resilient to the noise applied to the previous one. The resulting
embedding Z∗d is then provided by the deepest, lowest-dimension encoder.

Along the many more AutoEncoder variants that were unmentioned so far, the most notable approach
corresponds to Variational AutoEncoders (VAE) (Kingma and Welling, 2013) (appendix .1). Although VAEs
are actually quite remote from classical Auto-Encoders, they constitute a potential extension of our algorithmic
contribution (chap. 7).

Discussion

The unsupervised FC methods introduced in section 3.1.1 can be organized in three categories : variance-
preserving mappings (PCA, SVD), similarity-preserving mappings (MDS, Isomap, LLE), and reconstruction-
preserving mappings (AutoEncoders). Similarity-preserving methods rely on the Euclidean distance or related
constructs such as geodesic distances to assess the likeness of datapoints. As underlined in chapter 2, this
might be unreliable for high-dimensional datasets due to the curse of dimensionality.
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By contrast, AutoEncoders do not need to compute any kind of pairwise sample similarity, given that these
are concerned only with rebuilding the original data representation from the constructed features. This key
property is at the core of the proposed unsupervised FS approach (chapter 4).

3.1.2 Supervised FC

Interestingly enough, the most well-known supervised FC approaches all correspond to similarity-preserving
mappings [REFS]. Furthermore, these techniques share the same core idea that samples of the same class
should be close together w.r.t. the constructed features in Z∗d , while samples of different classes should be
mapped as far away from each other as possible.

3.1.2.1 Linear mapping via the Fisher discriminant

The Fisher Discriminant (Fisher, 1936), often referred to as Linear Discriminant Analysis (LDA) is an early
supervised FC approach attempting to maximize the inter-class scatter while simultaneously minimizing the
intra-class scatter. Formally, consider a binary classification task composed of n1 samples from the first class
and n2 samples from the second one, and denote by X1 and X2 the subsets of samples corresponding to
the respective classes. ∀i ∈ {1, 2}, let mi = 1

ni

∑
x∈Xi

x denote the vector of average feature values on the i-th

class. The between-class and within-class scatter matrices SB ∈ RD×D and SW ∈ RD×D are then defined

s.t. SB = (m1 −m2)(m1 −m2)T and SW =
2∑
i=1

∑
x∈Xi

(x−mi)(x−mi)
T .

LDA then aims to maximize the Fisher discriminant, that is find w∗ ∈ RD×1 s.t. :

J(w∗) =
w∗TSBw

∗

w∗TSWw∗ = arg max
w∈RD×1

J(w) (3.4)

Intuitively, this corresponds to finding a direction maximizing the projected class means (the numerator)
and minimizing the classes variance in that direction (the denominator). This direction corresponds to the
vector normal to the discriminant hyperplane separating the classes (fig. 3.9).

The end result of LDA is thus a single constructed feature z∗ s.t. ∀i ∈ [1, . . . , n], z∗(xi) = w.xi. This
constructed feature is clearly obtained from the original variables through a linear mapping. Therefore, LDA
suffers from the same issue as linear unsup. FC techniques, as discussed in section 3.1.1.

In order to lift this limitation, non-linear refinements of the approach were later proposed. The most pro-
minent such refinement is the Kernel LDA (Mika et al., 1999), which first projects the input samples to a new
space through a non-linear kernel function, then relies on the kernel trick (Hofmann et al., 2008) to efficiently
compute the Fisher discriminant in that space. Consequently, LDA still enjoys a high popularity for modern
applications, both for the purpose of FC (Ghassabeh et al., 2015) and error correction (Gorban et al., 2018).
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FIGURE 3.9: As a result of LDA, samples are projected on the vector normal to the discriminant
hyperplane separating the first class (in green) from the second (in red). From Wikipedia.

3.1.2.2 Non-linear mappings

Non-linear supervised FC techniques can be split in two categories : those that ”enrich” the unsup. FC
approach Isomap (see section 3.1.1) with label information, and those based on neural networks.

Enriched Isomap techniques Using the same notations as for LLE in section 3.1.1, the similarity metric at
the core of Isomap is in the unsup. context typically defined as :

∀(i, j) ∈ [1, . . . , n]2, S(xi,xj) =

{
exp(−||xi−xj ||2/β) if j ∈ N(i) or i ∈ N(j)
0 otherwise

This formalization clearly does not take advantage of the labels (y1, . . . , yn). In order to do so, supervised
approaches such as Locally Discriminant Projection (LDP) (Zhao et al., 2006a) and Orthogonal Discriminant
Projection (ODP) (Li et al., 2009) propose tweaking S s.t. :

∀(i, j) ∈ [1, . . . , n]2, S(xi,xj) =


exp(−||xi−xj ||2/β)

(
1 + exp(−||xi−xj ||2/β)

)
if j ∈ N(i) or i ∈ N(j) and yi = yj

exp(−||xi−xj ||2/β)
(

1− exp(−||xi−xj ||2/β)
)

if j ∈ N(i) or i ∈ N(j) and yi 6= yj

0 otherwise
(3.5)

Equation (3.5) enforces that the similarity between neighboring samples from the same class is increa-
sed compared to regular Isomap, while the similarity between neighboring samples of different classes is
decreased. Most notably, the similarity between non-neighboring samples remains zero, regardless of whe-
ther their labels are identical. This essentially means that each class can be split into multiple (potentially
non-connected) components of the similarity graph, therefore allowing non-linear classification of patterns.
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Neural network-based approaches Any deep neural network tasked with classification essentially per-
forms sup. FC in its hidden layers, in the same way that AutoEncoders tasked with reconstruction perform un-
sup. FC. However, this will in the general case lead to constructed features which do not necessarily preserve
the information of the original features ; considering for instance a supervised classifier network involving one
hidden layer Z∗d , the network may learn to encode class information in a single latent variable, ignoring the
(d− 1) others, s.t. z∗1 = y and ∀i ∈ [2, . . . , d], z∗i = 0.

FIGURE 3.10: The structure of a Siamese Convolutional Neural Network. From Liu et al. (2018).

In order to avoid such pathological configurations, neural network-based sup. FC techniques explicitely
encourage all constructed features to discriminate between classes via the objective function. Liu et al. (2018)
proposed to use a siamese (Bromley et al., 1994) Convolutional Neural Network (CNN) (Krizhevsky et al.,
2012) to learn the constructed features (fig. 3.10).

Defining, with a slight abuse of notation, δ(x1,x2) = ||Z∗
d(x1) − Z∗

d(x2)||2 as the Euclidean distance
between the two input datapoints in the constructed feature space, δ(x1,x2) is denoted δ+ if y1 = y2 and δ−
if y1 6= y2. Given µ a margin parameter, the final loss function of the Siamese CNN is then defined as :

L(x1,x2) = max(0, δ+ − δ− + µ) (3.6)

The objective function from equation (3.6) essentially incentivizes minimizing the distance in Z∗d between
points of same label, while maximizing the distance between samples from different classes. This approach
therefore corresponds to an non-linear adaptation, in neural network form, of the principle that similar points
should be mapped close together while dissimilar points should be as remote as possible from one another
in the embedding. This core idea is also prominent in FS, which we will now introduce and discuss.

3.2 Feature selection

As seen in chapter 2, FS is a particular of FC where the exploration for the optimal feature set Z∗d (w.r.t.
cost function C) is limited to a small region of the search space corresponding to the CdD subsets of the
original feature set F containing d elements. Despite this restriction, FS is not a ”simpler” version of the
DR problem. On the contrary, the FS setting involves multiple new challenges and concepts absent from
the general case of FC. The most prominent of these specificities are discussed in section 3.2.1. Section
3.2.2 thereafter provides an overview of the most impactful methods in the field of sup. FS. Unsup. FS is
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subsequently studied in section 3.2.3. The algorithmic contribution of this thesis (chapter 4) pertains to the
latter setting.

Diversity of input data representations

Three implicit assumptions were made regarding the input data during the general background presenta-
tion of chapter 2 :

Assumption 1. All original features are available from the beginning of the FS process.

Assumption 2. There are no structural relationships between original features 3.

Assumption 3. All original features come from the same source.

Most FS algorithms from the literature (both sup. and unsup.) are designed to handle tasks where all
three above assumptions hold, thus correspond to the so-called traditional FS context. However, the rise of
Big Data has led to an increased prevalence of real-life applications where at least one of these assumptions
no longer holds (Li and Liu, 2017).

FIGURE 3.11: The spatial arrangement of the voxels is an important source of information ne-
glected by traditional FS.

In the context of sentiment analysis using text data extracted from the Twitter social network, each feature
correspond to one word of vocabulary. Given that new slang words are generated by the users every day, the
size of the feature set is constantly growing, thus falsifying assumption 1. This setting corresponds to FS for
streaming data.

3. More specifically, even though these relationships may exist, we assume no prior information or expert knowledge regarding
these structures
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In neuroimaging, features will typically correspond to voxels spatially arranged in a three-dimensional
space so as to mirror the anatomy of the human brain (Jenatton et al., 2011) (fig. 3.11). This graph-like
structure falsifies assumption 2 and is not exploited by traditional FS algorithms. This setting corresponds to
FS with structured features.

FIGURE 3.12: Taxonomy of FS from a data-driven perspective. From Li et al. (2018a)

In bioinformatical cancer research, different types of genetic material (e.g. DNA and RNA) are simulta-
neously exploited for predicting tumors (Zhao and Liu, 2008). Original features are therefore obtained from
multiple sources different in nature 4. This setting corresponds to Multi-View FS.

We refer the interested reader to Li et al. (2018a) for a thorough review of FS methods in non-traditional
settings, the taxonomy of which is presented in figure 3.12.

We will in the context of this thesis focus on traditional FS. It is however important to note that some
traditional FS techniques can be seamlessly adapted to other settings. For instance, group LASSO (Yuan
and Lin, 2007) (more in section 3.2.2) is by construction well-suited for tree-like structured features (fig. 3.13),
leading to its tree-guided group LASSO (Liu and Ye, 2010) variant.

Hierarchical group structures corresponding to figure 3.13 also provide a direction for future refinement of
our algorithmic contribution (chapter 7).

4. One could also consider the previous example of social network sentiment analysis, where features are extracted from different
data formats such as text, image or video
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FIGURE 3.13: Example of features forming groups in a tree-like structure. From Li et al. (2018a).

3.2.1 Particularities of the Feature Selection setting

3.2.1.1 Independent, collective and semi-independent scoring

As said earlier, the aim of DR is in the general case to find Z∗d = arg minZd∈Hd C(F,Zd). In the FS setting,
the cost function C is responsible for estimated the quality of the selection subset. In other words, C is in
this case a scoring function judging the ”relevance” (w.r.t. a learning goal) of the original features 5. Scoring
techniques can be categorized w.r.t. the context in which relevance is assessed.

Independent scoring Kohavi and John (1997) proposed a first tentative definition of feature relevance in
the sup. context by interpreting the features f1, . . . ,fD and the learning goal y as random variables drawn
from an underlying joint distribution P (F,y). With a slight abuse of notation, the relevance of an original
feature is defined as :

∀i ∈ [1, . . . , D],Relevance(fi) = |P (fi, y)− P (fi)P (y)| (3.7)

It follows from equation (3.7) that a feature is irrelevant iff it is independent from the labels. The stronger the
dependency between fi and y, the more relevant fi.

Given that state-of-the-art unsup. FS methods typically construct an artificial learning goal ŷ (more in
section 3.2.3), the above definition of relevance is applicable in both sup. and unsup. contexts.

In practice, given that the underlying joint distribution is unknown, relevance can hardly be computed
empirically in this way. However, this definition is an integral part of prominent scoring criteria such as the
Fisher score (Duda et al., 2000) or the supervised version of the Laplacian score (He et al., 2005) (more in
sections 3.2.2 and 3.2.3).

Most importantly, the relevance estimation of a particular original feature does not involve any of the
other features. We will therefore in the following refer to FS approaches relying on such scoring functions as
independent scoring methods.

5. In the unsup. declination of the FS problem, a common alternative (He et al., 2005; Zhao and Liu, 2007; Cai et al., 2010; Li
et al., 2012) is to define two cost functions C1 and C2. C1 is tasked with scoring the features. C2 is responsible for assessing the
quality Z∗d after the selection process is complete. By contrast with the unsup. C1, C2 is often a sup. estimator (more in chapter 5)
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Limitations of independent scoring methods Independent scoring methods are by construction plagued
by two opposite issues : false negatives (features falsely considered irrelevant) and false positives (falsely
relevant features).

FIGURE 3.14: Independent scoring methods are unable to detect that although X1 and X2 are in-
dividually irrelevant, they perfectly separate the classes (stars and circles) if considered together.

From Guyon and Elisseeff (2003).

Figure 3.14 provides an illustration of the false negative problem on the well-known XOR example : X1

and X2 are both individually irrelevant and do not separate the classes at all. However, taken jointly, they
allow for a perfect non-linear separation.

Figure 3.15 illustrates the opposite issue of false positives ; X1 and Y are dependent (left panel), but
become independent conditionally to X2, meaning X1 is not truly relevant. This phenomenon is known as
Simpson’s paradox (Simpson, 1951), and is caused by feature redundancy : the information carried by X1 is
already accounted for in X2 (X2 however contains additional information absent from X1). In light of these is-
sues, the main benefit of independent scoring is its lower computational complexity relatively to both collective
and semi-independent scoring, which we now introduce.

Semi-independent scoring ∀i ∈ [1, . . . , D], let F \i denote the subset of F containing every feature ex-
cept fi. Following Kohavi and John (1997), the notion of feature relevance can be extended to tackle the
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FIGURE 3.15: On the left panel, X1 appears relevant. However, it becomes irrelevant conditio-
nally to X2 (denoted by circles and stars on the right panel). From Guyon and Elisseeff (2003).

aforementioned limitations :

Relevance(fi) =
∑
S⊂F \i

|P (fi,y|S)− P (fi|S)P (y|S)| (3.8)

Following equation (3.8), fi is considered irrelevant iff it is independent from the learning goal conditionally
to any combination of other features, indicating that the information carried by fi (if any) is already accounted
for elsewhere. This new definition solves the problem of false negatives 6.

By contrast with independent scoring, the process of estimating the relevance of an element of F involves
all features. Nevertheless, each feature is still assigned its own individual score. Therefore, we will in the
following refer to FS methods relying on this paradigm as semi-independent scoring techniques.

Collective scoring A third possible scoring approach consists in defining relevance on a subset level only,
so that features are assessed as groups rather than individuals. This approach is intuitively well-suited for
tree-like feature structures (fig. 3.13). However, the number of score estimates needed to fully explore the

6. It is however not enough to avoid false positives. In order to avoid Simpson’s paradox, Kohavi and John (1997) further differen-
tiate between weakly and strongly relevant features, with the idea of selecting only strongly relevant ones. However, the definitions
of weak and strong relevance are unpractical, and bear mostly historical significance.
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search space rises from D (one per original feature) to CdD (one per subset of F containing d elements).
Exhaustive exploration is thus intractable.Gaudel and Sebag (2010) envision the search for Z∗d as navigating
through a decision tree, which is aggressively pruned to avoid considering unpromising candidate subsets.
Such algorithms are in the following referred to as collective scoring approaches.

3.2.1.2 Forward, backward or simultaneous selection

Once scoring function C has been defined, three differing strategies are available to construct Z∗d based
on C.

Forward selection The first selection strategy consists in an iterative process, of which pseudocode is
provided in Algorithm 1 7 :

Algorithm 1 Forward selection
Input : Feature set F = {f1, ...,fD}
Parameter: Selection subset size d
Output : Selection subset Zd
Initialize Zd = ∅ and candidate set S = F
Repeat
for f ∈ S do

Compute C(f)

end
Determine best candidate fbest w.r.t. C
Zd ← (Zd ∪ fbest)
S ← (S\fbest)
until |Zd| = d
Return Zd.

Following alg. 1, forward selection (Guyon and Elisseeff, 2003) is a ”bottom-up” approach, building the
selection subset from the ground up.

Backward selection The second selection strategy is also an iterative process, described in algorithm 2 :

7. This algorithm is written from the perspective of semi-independent scoring. Nevertheless, its pseudocode can be slightly modi-
fied to adopt the point of view of collective scoring, without loss of generality.
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Algorithm 2 Backward selection
Input : Feature set F = {f1, ...,fD}
Parameter: Selection subset size d
Output : Selection subset Zd
Initialize Zd = F
Repeat
for f ∈ Zd do

Compute C(f)

end
Determine worst candidate fworst w.r.t. C
Zd ← (Zd\fworst)
until |Zd| = d
Return Zd.

By alg. 2, backward selection (Guyon and Elisseeff, 2003) (also commonly referred to as Recursive Fea-
ture Elimination (RFE)) is a ”top-down” method, pruning the selection subset down to the desired size d.

Simultaneous selection This last strategy performs selection in a single pass rather than iteratively (alg.
3) :

Algorithm 3 Simultaneous selection
Input : Feature set F = {f1, ...,fD}
Parameter: Selection subset size d
Output : Selection subset Zd
Initialize Zd = ∅
for f ∈ F do

Compute C(f)

end
Determine the d best candidates (f1

best, . . . , f
d
best) w.r.t. C

Zd ← {f1
best, . . . , f

d
best}

Return Zd.

Discussion If C defines an independent scoring process, then the order in which features are selec-
ted/discarded is clearly irrelevant. The above three strategies are therefore equivalent in that case. Inde-
pendent scoring methods therefore opt for simultaneous selection, given its lower computational cost relati-
vely to both forward and backward approaches.

On the other hand, if C pertains to either semi-independent or collective scoring, then each strategy likely
leads to different results. An illustration of the respective weaknesses is provided in figure 3.16.
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FIGURE 3.16: A binary classification task with three features. ∀(i, j) ∈ [1, 3]2, panel (i, j) de-
picts the separation of the two classes (resp. in black and white) achieved by selection sub-
set {fi, fj}. The diagonal panels therefore resp. correspond to the singleton selection subsets

{f1}, {f2}, {f3}. Taken from Guyon and Elisseeff (2003).

In this sup. example, f3 is the most individually relevant feature, given that it achieves the best class
separation on its own (bottom-right panel). A forward selection method will therefore choose f3 first. However,
if tasked with selected a second candidate, then potential forward selections {f3,f 1} and {f3, f2} are both
worse predictors than {f1, f2}, corresponding to the result of backward selection.

In this example, going backwards is thus better than forward for d = 2, and worse for d = 1. This is a
consequence of the greedy 8 nature of both approaches.

Informally, it appears that the lower the selection ratio d
D , the better forward selection comparatively to

RFE. In practice, both semi-independent and collective FS algorithms rely on either simultaneous (He et al.,
2005; Li et al., 2012) or backward selection (Guyon et al., 2002; Ye and Sun, 2018), while forward selection
is seldom implemented in recent approaches.

3.2.1.3 Filters, wrappers and embedded methods

As said, the end goal of FS (and even DR in general) is to help a learning algorithm, e.g. a supervised
classifier or an unsupervised regressor. An additional way of categorizing FS approaches (complimentary to
the type and ordering of feature scoring) is therefore via the relationship between the FS technique and the
learning algorithm. An illustration of the three resulting groups of methods is provided in fig. 3.17.a.

8. Greedy is here used to reflect the fact that earlier selection/elimination decisions are never revisited in light of later decisions.
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FIGURE 3.17: Schematic of filters, wrappers and embedded methods.

Filters (Duda et al., 2000; He et al., 2005)(panel a) of figure 3.17) act as a pre-processing step to the
learning algorithm, the latter being uninvolved in the selection.

Wrappers (Huang et al., 2007)(panel b)) also correspond to a pre-processing step. By contrast with filters,
wrappers define an iterative selection pipeline. At each step, the learning algorithm is ran using the candidate
selection subset as input. The eventual performance of learning is then leveraged to guide the search for the
optimal selection subset Z∗d during the next step.

Embedded methods (Guyon et al., 2002)(panel c)) represent a paradigm shift. FS is performed online du-
ring the execution of the learning algorithm, rather than in pre-processing. The underlying idea is to leverage
partial results of learning (such as the parameters of a neural network) to orient the search for Z∗d .

All three aforementioned techniques are clearly applicable in the sup. context, where the learning algo-
rithm typically corresponds to a supervised classifier. The main motivation for choosing an adequate selection
strategy is then the computational cost. Embedded methods require few runs of the learning algorithm (pos-
sibly with a warm start), while filters require none at all. By contrast, wrappers involve running the learning
algorithm multiple times. This constitutes a significant downside of wrappers in many application domains.
In sup. image classification for instance 9, training a deep convolutional network hundred of times is typically
unaffordable.

As a result, sup. FS most often correspond to either filters (Duda et al., 2000) or embedded methods
(Guyon et al., 2002). Selection resulting of embedded FS likely yields higher learning performance than for
filters, given that Z∗d is tailor-made for the learning algorithm considered. On the flipside, filters lead to selection

9. Selecting individual pixels in a high-resolution image is hardly effective for prediction. Therefore, Computer Vision applications
of FS (Chen, 2015) are concerned with identifying the best candidates among objects of greater scale, e.g. retaining the most
informative convolutional filters.
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subsets of higher generalization power. This means that if the learning algorithm is modified (e.g. hidden
layers are added to a deep neural network), filter-based FS is invariant, whereas the learning performance
resulting of embedded FS is likely degraded.

This independence property of selection w.r.t. subsequent learning is thereafter called agnosticism. This
notion is sought for and extended in both our algorithmic and methodological contributions (chapters 4 and
5).

In the unsup. context, the eventual learning algorithm (if any) is typically unknown at the time of FS. Conse-
quently, both wrappers and embedded method are ill-suited to this setting. To the best of our knowledge, all
of the most impactful traditional unsup. FS approaches (He et al., 2005; Zhao and Liu, 2007; Cai et al., 2010;
Li et al., 2012) are filters. A direction for future research would be to refine our algorithm AGNOS into an
embedded unsup. method (chapter 7).

3.2.2 Supervised Feature Selection

This section introduces the most well-known sup. FS algorithms. For each approach, the scale of the sco-
ring function (independent, semi-independent or collective), the order of assessment (simultaneous, forward
selection or recursive elimination) and the link with the learning algorithm (filter, wrapper or embedded) are
stated after the description of the method.

RelieF The early RelieF (Kira and Rendell, 1992; Kononenko, 1994) searches for two specific neighbors of
any given point xi : the closest (w.r.t. the Euclidean distance) observation with the same label (the nearest hit
nh(i)) and the closest observation with a different label (the nearest miss nm(i)). The score of feature fj is
then s.t. :

∀j ∈ [1, . . . , D], S(fi) =
1

n

n∑
i=1

(
|fj(xi)− fj (nm(i)) |2 − |fj(xi)− fj (nh(i)) |2

)
(3.9)

In order to maximize this score, an informative feature should take similar values on neighboring points
of the same class and as distinct values as possible on differently labeled neighboring points. Top ranked
features should thus support stark separation of the classes and lead to a high prediction accuracy. Eq. (3.9)
seems to define an independent scoring method. However, it is important to note that the nearest misses
and hits have been determined by considering all original features. RelieF is accordingly a semi-independent
approach.
Keywords : Filter, semi-independent scoring, simultaneous selection

Fisher score The Fisher score (Duda et al., 2000) was introduced as an alternative to RelieF inspired by
the Fisher discriminant (section 3.1.2). Considering a classification task with c classes, ni denotes the number
of samples in the i-th class, µj(i) and σj(i) respectively the mean and variance of the j-th feature on the i-th
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class, and µj the mean of the j-th feature on the whole dataset. The Fisher score of fj is then s.t. :

∀j ∈ [1, . . . , D], S(fj) =

c∑
i=1

ni(µj(i)− µj)2

c∑
i=1

niσj(i)2

(3.10)

Equation (3.10) implements the same core idea as RelieF, that the most informative features are those
presenting a large contrast between different classes. However, contrarily to RelieF, the Fisher score is an
independent scoring method and suffers from the issues presented in section 3.2.1.1. A generalized Fisher
score has later been proposed in Gu et al. (2012), turning to collective scoring instead.
Keywords : Filter, independent scoring, simultaneous selection

RFE-SVM Support Vector Machines (SVM) (Cortes and Vapnik, 1995) are a type of sup. classification al-
gorithms. The goal of a linear SVM is to find the unique hyperplane (often referred to as decision boundary )
meeting two requirements in the separable case : i) all datapoints sharing a common label are on the same
side of the border and ii) the distance between the border and the closest datapoint (thereafter called mar-
gin 10) is maximal among all hyperplanes fulfilling condition i). This process is illustrated in figure 3.18, where
H1 is a poor separator. H2 achieves perfect separation, but with only a small margin. H3 is the optimal hyper-
plane maximizing inter-class margin.

The process of fitting the decision boundary corresponds to solving the following constrained optimization
problem for w∗ and b∗ : {

w∗ = arg minw∈RD ||w||2
∀i ∈ [1, . . . , n], yi(w

∗.xi − b∗) ≥ 1
(3.11)

By definition, the learned weight vector w = (w1, . . . , wD) involves one component per feature. Recursive
Feature Elimination-Support Vector Machine (RFE-SVM) (Guyon et al., 2002) is an iterative embedded FS
method leveraging this observation, of which pseudocode is provided in algorithm 4.

Algorithm 4 RFE-SVM
Input : Feature set F = {f1, ...,fD}
Parameter: Selection subset size d
Output : Selection subset Zd
Initialize candidate set Zd = F
Repeat
Train SVM from Zd, producing w = (w1, . . . , wD)
Find fworst s.t. wworst = arg minwj w

2
j

Zd ← Zd\{fworst}
until |Zd| = d
Return Zd.

10. Admittedly, this formulation slightly diverges from the formal definition of margin, which was here simplified for the sake of
brevity without loss of generality in the following discussion.
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FIGURE 3.18: Illustration of a linear SVM on a binary classification task. Decision boundary
H3 maximizes the margin between the two classes (in black and white). Feature f1 should be

prioritized over f2 for selection. From Wikipedia.

Even though eliminating the features with the smallest associated weights (alg. 4) may seem counter-
intuitive (given that the goal of the optimization problem in eq. (3.11) is to minimize ||w||2), it is well-grounded
in theory ; the following explanation is also the core motivation of many neural network-based FS approaches
(Setiono and Liu, 1997; De et al., 1997; Steppe and Bauer, 1996; Zurada et al., 1997; Ye and Sun, 2018), the
most impactful of which will be introduced thereafter.
Keywords : Embedded method, semi-independent scoring, backward selection/Recursive Feature Elimina-
tion

Motivation of RFE-SVM and neural network-based FS In the sup. context, label information allow consi-
dering the performance of a classifier as a collective scoring criterion. In order to avoid the expensive combi-
natorial problem inherent to collective scoring, a semi-independent criterion can be derived from the collective
one, by analyzing the sensitivity of the classifier performance w.r.t. the removal of each feature from the input.

Formally, ∀j ∈ [1, . . . , D], ∀S ⊂ F , let DJ(S, fj) = J(S\{fj}) − J(S) denote the change in classifier per-
formance J induced by the elimination of fj from S. Intuitively, removing irrelevant features should hardly de-
grade performance. Therefore, the lower DJ(S, fj), the less relevant fj . Note that positive values for DJ(S, fj)
are possible, indicating an increase in performance due to removing harmful noise from the classifier input.
Computing the exact value of DJ(S, fj) is computationally costly, as it requires training the classifier multiple
times. A good approximation of it can however be obtained using the following trick : eliminating fj can be



48 Chapitre 3. Dimensionality reduction : overview

simulated by setting all weights associated to fj to 0. That is, in the case of RFE-SVM :

∀j ∈ [1, . . . , D],∀S ⊂ F,DJ(S, fj)) = J(S with wj ← 0)− J(S with wj untouched ) (3.12)

A second order Taylor expansion of J around wj gives :

DJ(S, fj) =
∂J

∂wj
wj +

1

2

∂2J

∂2wj
w2
j (3.13)

Given that J is examined after classifier training has converged, it lies in a local maximum, and the first
order derivative can be neglected. Thus :

DJ(S, fj) =
1

2

∂2J

∂2wj
w2
j (3.14)

In the context of a linear SVM, J(S) = 1
2 ‖w‖

2, thus ∀j ∈ [1, . . . , D], ∂
2J

∂2wj
= const. . This leads to :

DJ(S, fj) ∝ w2
j (3.15)

Equation (3.15) motivates eliminating the features with the smallest weights in linear RFE-SVM. Similar
demonstrations can be obtained for non-linear SVMs, as well as for neural networks.

Neural network-based FS Over the years, the idea of eliminating the features with the smallest associated
weights or decrease in classifier performance sprouted many neural network-based sup. FS approaches
(Setiono and Liu, 1997; De et al., 1997; Steppe and Bauer, 1996; Zurada et al., 1997; Ye and Sun, 2018).
These methods involve slight variations in implementation (e.g. adding a threshold value on the weights for the
purpose of feature elimination). Most importantly, these algorithms differ on the type of weight regularization
used.

Both the Signal Noise Ratio (SNR) 11 (Bauer et al., 2000) and Feature Quality Index (FQI) (De et al., 1997)
approaches do not implement any kind of weight regularization. Neural Network Feature Selector (NNFS)
(Setiono and Liu, 1997) adds a L2 regularization term (also known as weight decay ) to the loss function
of the network. The Drop-Out-One (Ye and Sun, 2018) refinement instead relies on a sparse group-LASSO
(Simon et al., 2013) penalty on the weights to enforce sparsity in the selection. This regularized regression
technique will be further discussed below.

The Deep Feature Selection (DFS) (Li et al., 2016) approach is particularly relevant to the algorithmic
contribution of this thesis. DFS considers an alternate neural architecture, in which a sparse one-to-one
linear layer is added between the input and the first hidden layer, as illustrated in figure 3.19.

The loss function of the network is then augmented with a sparse group-LASSO penalty term on the
weights of this additional layer. This architecture holds the practical benefit that the importance of input feature

11. This method consists in agumenting F artificial Gaussian noise features, and selecting only features which associated weights
are significantly larger than for the noisy features, at the end of training.
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FIGURE 3.19: The Deep Feature Selection architecture. From Li et al. (2016).

fj is now condensed in the single real-valued slack variable wj , rather than inferred from an RD×d weight
matrix.

A limitation of sup. neural network-based FS is that the sensitivity of the classifier performance w.r.t. the
input tends to decrease as the number of hidden layers in the network increases (Pascanu et al., 2013). This
corresponds to the so-called vanishing gradient (Hochreiter, 1998) issue. Roy et al. (2015) report that the
most important initial features are hardly identifiable empirically for networks of depth ≥ 3 using SNR, FQI or
NNFS.

As will be seen, our algorithmic contribution (chapter 4)is the first attempt at extending regularized neural
network-based FS to the unsup. context.
Keywords : Wrappers/Embedded methods, Semi-independent scoring, Backward selection/Recursive Fea-
ture Elimination

Least Absolute Shrinkage and Selection Operator (LASSO) Ordinary Least Squares (OLS) (Goldberger,
1964) corresponds to the linear regression problem of finding β∗ ∈ RD s.t. :

β∗ = arg min
β∈RD

n∑
i=1

||yi − 〈xi,β〉||22 (3.16)

OLS is however prone to overfitting in the small n, large D regime (few datapoints, many features). In order to
combat this issue, a tentative solution is to add an L2 regularization penalty term to the optimization problem,
parameter λ ≥ 0 governing the severity of the penalization :

β∗ = arg min
β∈RD

(
n∑
i=1

||yi − 〈xi, β〉||22

)
+ λ||β||2 (3.17)

The vector β∗ = (β∗1 , . . . , β
∗
D) reflects the importance of the respective original features in the regression.

However, by virtue of the L2 geometry, β∗ optimized via eq. (3.16) is rotationally invariant, as illustrated in the
leftmost panel of figure 3.20. This means that all features are likely associated to non-zero coefficients. An
L2 penalty term is thus hardly discriminative.
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FIGURE 3.20: Outline of different penalty functions : L2 (left), LASSO (center), group-LASSO
(right).

In order to enforce sparsity in the solution, Tibshirani (1996) introduced the Least Absolute Shrinkage and
Selection Operator (LASSO) technique, which adds a L1 penalization term instead :

β∗ = arg min
β∈RD

(
n∑
i=1

||yi − 〈xi,β〉||22

)
+ λ||β||1 (3.18)

This regularization enforces sparsity among the coefficients β∗j , j ∈ [1, . . . , D]. This property stems from
the nature of the L1 geometry, in which the penalty function treats the coordinate directions differently from
all other directions (center panel of figure 3.20). As a result of sparsity, the LASSO induces a supervised FS
technique, discarding fj iff β∗j < ε.

In order to obtain the best of both worlds of the L1 and L2 geometries, Yuan and Lin (2007) introduced
the group-LASSO, in which the feature set is first partitioned in groups G1, . . . , Gk. |Gi| denoting the size of
the i-th feature group, the L2,1 penalized regression scheme reads :

β∗ = arg min
β∈RD

(
n∑
i=1

||yi − 〈xi,β〉||22

)
+ λ

k∑
i=1

√
|Gi|

√∑
j∈Gi

β2
i (3.19)

This hybrid geometry leads to sparsity at the group level (discarding as many groups of features as possible)
while preserving the rotational invariance of the solution within each group (rightmost panel of figure 3.20)
(Bach, 2008).

Many variants of the group LASSO have since been proposed to achieve specific sparsity and invariance
properties (Meier et al., 2008; Simon et al., 2013; Ivanoff et al., 2016). Most notably, the sparse group LASSO,
also referred to as elastic net, reads (Simon et al., 2013) :

β∗ = arg min
β∈RD

(
n∑
i=1

||yi − 〈xi,β〉||22

)
+ (1− α)λ

k∑
i=1

√
|Gi|

√∑
j∈Gi

β2
i + αλ||β||1 (3.20)
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α ∈ [0, 1] governs the convex combination of the LASSO and group LASSO. The aim of the elastic net is
to achieve sparsity of the solution both at the group level and within each group, and has become a useful
regularization tool for training sup. Neural Networks on high-dimensional data (Feng and Simon, 2017).
Keywords : Filters, semi-independent scoring, simultaneous selection

Discussion

During this review of sup. FS methods, the central idea has remained constant : ”datapoints of the same
class should be neighbors, while datapoints of different classes should be strangers”. Features are selected
or rejected based on how well they reflect this desired structure. Interestingly enough, this same idea is also
at the core of unsup. FS, as will be shown in the next section.

An additional observation of particular interest to this thesis is that neural network-based FS approaches
such as Ye and Sun (2018) actually combine FC and FS, in the sup. context : features are selected w.r.t. their
importance to build the constructed features in the hidden layers of the network.

3.2.3 Unsupervised FS

By contrast with the sup. context, all methods presented in the following are filters implementing a semi-
independent feature scoring criterion, based on spectral clustering theory (Von Luxburg, 2007).

Spectral clustering Let sim denote a similarity metric on the instance space, e.g. sim(xi,xj) = exp{−‖xi−
xj‖22} and M the n× n matrix with Mi,j = sim(xi,xj). Let ∆ be the diagonal degree matrix associated with

M , i.e. ∆ii =
n∑
k=1

Mik, and L̃ = ∆−
1
2 (∆−M)∆−

1
2 the normalized Laplacian matrix associated with M .

Spectral clustering relies on the diagonalization of L̃, with λi (resp. ξi) the eigenvalues (resp. eigenvectors)
of L̃, with λi ≤ λi+1. Informally, the ξi are used to define soft cluster indicators (i.e. the degree to which xk
belongs to the i-the cluster being proportional to 〈xk, ξj〉), with λk measuring the inter-cluster similarity (the
smaller the better).

The general unsupervised clustering scheme proceeds by clustering the samples and falling back on
supervised feature selection by considering the clusters as if they were pseudo-labels ; more precisely, the
features are assessed depending on how well they separate clusters.

Laplacian score The Laplacian score (He et al., 2005) can be viewed as an extension of the Fisher score
(section 3.2.2), unifying sup. and unsup. contexts. The Laplacian score of feature fj is given by :

S(fj) =
1

σfj

n∑
i,k=1

(fj(xi)− fj(xk))Mi,k (3.21)
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S(fj) can be rewritten using the Laplacian matrix, hence the name of the approach :

S(fj) =
f̃j

T
L̃ f̃j

f̃j
T

∆ f̃j

with 1 the n-dimensional constant vector [1, ..., 1]T and f̃j = fj−
fTj ∆1

1T∆1
1. The higher S(fj), the more important

fj . The Laplacian score is also remotely related to the MaxVariance approach (Kantardzic, 2003), selecting
features with large variance for the sake of their higher representative power.

In the sup. context, a possible similarity metric is the following :

∀(i, k) ∈ [1, . . . , n]2, supsim(xi,xk) =

{
1 if yi = yk
0 if yi 6= yk

(3.22)

Using the similarity metric from equation (3.22), Laplacian and Fisher scores are equivalent :

∀j ∈ [1, . . . , D],Laplacian(fj) =
1

1 + Fisher(fj)
(3.23)

In the unsupervised context using sim(xi,xj) = exp{−‖xi − xj‖22}, the Laplacian score becomes a
semi-independent scoring method, as are all unsup. methods introduced in the remainder of this section.

SPEC SPEC 12 (Zhao and Liu, 2007) propose three scores respectively noted φ1, φ2 and φ3, still following
the idea that relevant features should be slowly varying among samples close to each other. After Shi and
Malik (1997); Ng (2001), considering eigenvectors ξ0, ..., ξn−1 of the normalized Laplacian L̃ (respectively
associated with eigenvalues λ0 < λ1 < ... < λn−1), smooth features are aligned with the first eigenvectors,
hence the score φ1 :

∀j ∈ [1, . . . , D], φ1(fj) = f̂j
T
L̃ f̂j where f̂j = ∆

1
2fj/

∥∥∥∆
1
2fj

∥∥∥ (3.24)

Eigenvectors ξ0, ..., ξn−1 of L̃ define soft cluster indicators, and eigenvalues λ0 < λ1 < ... < λn−1 measure
the separability of the clusters. The smaller φ1(fj), the more efficient fj is to separate the clusters.

As the first eigenvector ξ0 = ∆
1
2 1 does not carry any information, with λ0 = 0, one might rather consider

the projection of the feature vector fj on the orthogonal space of ξ0 :

φ2(fj) =
1

1− 〈f̂j , ξ0〉
f̂j

T
L̃ f̂j (3.25)

Finally, in the case where the target number of clusters κ is known, only the top-κ eigenvectors are considered,
and score φ3 is defined as :

φ3(fj) =

κ∑
k=1

(2− λk)〈f̂j , ξk〉2 (3.26)

12. This name is not an acronym, rather a reference to the reliance on spectral clustering theory
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Features are ranked in ascending order for φ1 and φ2, and in descending order for φ3.
The above scores measure the overall capacity of a feature to separate clusters, which might prove ineffi-

cient in multi-classes/multi clusters settings : a feature most efficient to separate a pair of clusters might have
a mediocre general score.

MCFS Instead of assigning one global score per feature, Multi-Cluster Feature Selection (MCFS) (Cai et al.,
2010) address the limitations of SPEC by computing one score per feature per cluster, essentially attempting
to capture the local informativity of features. The respective capacities of the features to separate clusters
are estimated through fitting the eigenvectors (reminding that ξk is a soft indicator of the k-th cluster) up to
a regularization term. Formally, this corresponds to defining κ independent optimization problems (one per
cluster) s.t. :

∀k ∈ [1, . . . , κ],a∗k = min
ak∈RD×1

‖ξk −Xak‖22 + βk‖ak‖1 (3.27)

a∗k = (a∗k(f1), . . . , a∗k(fD)) reflects the respective abilities of the original features to identify the k-th cluster. As
seen in the earlier discussion on LASSO, the L1 regularization term enforces the sparsity of ak (penalization
strength being governed by parameter βk), retaining only the features most relevant to this cluster. The final
score of fj then simply corresponds to the maximum value of ak(fj) over the κ clusters, s.t. :

S(fj) = max
k∈[1,...,κ]

|ak(fj)| (3.28)

NDFS A general limitation common to Laplacian score, SPEC and MCFS is the reliance on an Euclidean
distance-based similarity metric, which leads to unstable clustering in high-dimensional spaces due to the
curse of dimensionality (section 2.2.1). Non-negative Discriminative Feature Selection (NDFS) (Li et al., 2012)
alleviates this issue by defining a joint optimization problem. The κ learning goals (a∗1, . . . ,a

∗
κ) from MCFS

are merged into a single feature importance matrix A ∈ RD×κ, subject to a group-LASSO regularization term.
Moreover, considering that the original Laplacian eigenvectors ξ0, . . . , ξn−1 are brittle, a second objective cor-
responds to a cluster indicator matrix Ξ ∈ Rn×κ. The rows of Ξ are initialized with the Laplacian eigenvectors.
α and β denoting two regularization weights, the goal is then to find (Ξ∗, A∗) s.t. :

Ξ∗, A∗ = arg min
Ξ,A

Tr(ΞT L̃Ξ) + α(‖Ξ−XA‖2F + β ‖A‖22,1) (3.29)

with the additional constraint that Ξ must be orthogonal and semi-positive definite (ΞTΞ = Iκ,Ξ ≥ 0).
Following Yu and Shi (2003), the first term of equation (3.29) can be rewritten as 13 :

Tr(ΞT L̃Ξ) =
1

2

n∑
i,j=1

sim(xi,xj)

∥∥∥∥∥Ξ(xi)√
∆i
−

Ξ(xj)√
∆j

∥∥∥∥∥
2

2

(3.30)

Using the alternate formulation from eq. (3.30), it is apparent that minimizing the term Tr(ΞT L̃Ξ) provides
an incentive to cluster similar points together. The orthogonality and nonnegativity constraints on Ξ further

13. Slightly abusing the notation, Ξ(xi) designates the vector of cluster affilations of the i-th sample.
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push each sample to belong in exactly one cluster. Lastly, the group-LASSO penalty on the rows of A enforces
sparse feature selection.

NDFS is acknowledged as a seminal work in unsup. FS : later approaches (Li et al., 2014; Shi et al.,
2014; Qian and Zhai, 2013; Nie et al., 2016) all stem from NDFS, and provide incremental performance
improvements by adding (oftentimes computationally costly) third or even fourth optimization objectives. We
will now introduce these methods for the sake of completeness.

CGSSL Clustering-Guided Sparse Structural Learning (CGSSL) (Li et al., 2014) iterates on NDFS by ma-
king the additional assumption that the pseudo-labels associated to the samples are actually generated by
an underlying d-dimensional linear model, s.t. :

∀(i, j) ∈ [1, . . . , κ]× [1, . . . , n], ỹi(xj) = vTi xj + pTi Q
Txj (3.31)

where vi ∈ RD and pi ∈ Rd are weight vectors and Q ∈ RD×d is an orthogonal matrix representing the
linear transformation parameterizing the shared d-dimensional subspace. The feature importance matrix A
from NDFS is then redefined to A = V + QP , and a regularization term on V is added to the optimization
problem :

P ∗, Q∗,Ξ∗, A∗ = arg min
P,Q,Ξ,A

Tr(ΞT L̃Ξ) + α(‖Ξ−XA‖2F + β ‖A‖22,1) + γ ‖A−QP‖2F (3.32)

still subject to Ξ orthogonal and semi-positive definite (ΞTΞ = Iκ,Ξ ≥ 0), with α, β, γ regularization weights.
The motivation for this sparse structural learning (Ando and Zhang, 2005a) refinement is that the selected fea-
tures arguably capture the structure of the underlying d-dimensional manifold (as per the manifold assumption
from chapter 2).

RSFS Robust Sparse Feature Selection (RSFS) (Shi et al., 2014)) also aims at providing a more accurate
cluster structure than NDFS, but does so in a different fashion than CGSSL, inspired by robust PCA (Candès
et al., 2011). Instead of explicitly generating pseudo-labels, it is assumed that the learned cluster indicators
may be arbitrarily corrupted, but that the corruption is sparse. This sparse noise is represented by a corruption
matrix C ∈ Rn×κ subject to a LASSO penalty. The optimization problem then becomes :

C∗,Ξ∗, A∗ = arg min
C,Ξ,A

Tr(ΞT L̃Ξ) + α(‖(Ξ− C)−XA‖2F + β ‖A‖22,1) + γ|C|21 (3.33)

A parallel can be drawn between RSFS and denoising AutoEncoders (section 3.1.1) : a common idea is
to increase the robustness of learning by exposition to small perturbating noise.

RUFS Robust Unsupervised Feature Selection (RUFS) (Qian and Zhai, 2013)) aims to improve the quality
of the structure learned by NDFS by adding a cluster centroid matrix C ∈ Rκ×D to the joint optimization
problem :

C∗,Ξ∗, A∗ = arg min
C,Ξ,A

Tr(ΞT L̃Ξ) + α(‖Ξ−XA‖22,1 + β ‖A‖22,1) + γ ‖X − ΞC‖2,1 (3.34)

The authors claim that by virtue of this addition, the inaccuracies caused in the spectral clustering process by
irrelevant features should mainly affect C, thus spare the more important Ξ.
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SOGFS Even if clusters are dynamically updated like in the aforementioned NDFS variants, the similarity
graph can still be arbitrarily corrupted by irrelevant or redundant features. Structured Optimal Graph Fea-
ture Selection (SOGFS) (Nie et al., 2016) aims to correct this flaw by also optimizing the similarity matrix M
itself. The idea is to weigh the original features while computing pairwise similarities, according to the fea-
ture importance matrix A. The similarity metric is therefore progressively biased towards the best selection
candidates.

Still following the neighbors should look alike idea, M∗ is defined as :

M∗ = arg min
MT
i 1=1,0≤mi,j≤1

∑
i,j

(‖xi − xj‖22mi,j + αm2
i,j) (3.35)

with α a regularization parameter to avoid the trivial solution. In order to consider only relevant features to
learn the similarity matrix, this term becomes :

min
MT
i 1=1,0≤mi,j≤1

∑
i,j

(
∥∥ATxi −ATxj∥∥2

2
mi,j + αm2

i,j) (3.36)

The final optimization problem of SOGFS is then :

M∗,Ξ∗, A∗ = arg min
M,Ξ,A

γTr(ΞT L̃Ξ) + β ‖A‖22,1 +
∑
i,j

(∥∥ATxi −ATxj∥∥2

2
mi,j + αm2

i,j

)
(3.37)

Discussion

While this review of state-of-the-art unsup. FS methods cannot be exhaustive 14, it supports the vision of
unsup. FS as using spectral clustering to equip datapoints with pseudo-labels and fall back on sup. FS. This
technique leads to two major issues :

— The already discussed reliance on a high-dimensional Euclidean distance to construct the similarity
graph.

— The poor handling of redundant feature sets. Considering for instance that f1 and f2 are identical, then
S(f1) ≈ S(f2) w.r.t. the Laplacian score, SPEC or MCFS. These twin features will consequently be
either both rejected or selected, which is clearly sub-optimal no matter the cost function. Note that
NDFS and its refinements address the redundancy issue.

As handling redundancy among initial features is of paramount importance, it is a cornerstone of our
algorithmic contribution (chapter 4).

A third issue of state-of-the-art unsup. FS methods lie in their empirical validation pipeline rather than the
selection itself. The efficiency of all aforementioned methods is assessed in a sup. environment, which goes
against the agnosticism property of filters (more in chapter 5).

14. Additional references include for instance TRACK (Wang et al., 2014) and Similarity Preserving Feature Selection (SPFS)
(Zhao et al., 2013).
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Chapitre 4

Agnostic Feature Selection

This chapter presents our algorithmic contribution in the domain of unsup. FS, AGNOS, building upon the
lessons learned from the state of the art (chapter 3). The proposed AGNOS presents an original learning
criterion at the crossroad of FC and FS.

This novel combination of dimensionality reduction techniques is first discussed at a general level (sec.
4.1), introducing the main issues that need to be addressed (sec. 4.2). Section 4.3 thereafter discusses the
feature scoring criteria. Lastly, three declinations of AGNOS, called AGNOS-W, AGNOS-G and AGNOS-S, are
proposed in section 4.4.

4.1 AGNOS full picture

The proposed unsup. FS algorithm AGNOS combines two underlying motivations : data compression
efficiency and generality, respectively defined and discussed in sections 4.1.1 and 4.1.2.

4.1.1 Efficient data compression (fig. 4.1)

State-of-the-art unsup. feature selection methods ((He et al., 2005; Zhao and Liu, 2007; Cai et al., 2010; Li
et al., 2012; Nie et al., 2016), chapter 3) perform selection with the ultimate goal of predicting a specific target
f∗ not in the original feature set F , as in sup. learning (chap. 5). However, as underlined in chapter 1, unsup.
learning constitutes the bulk of machine learning, and any element of the feature set can in principle define
a learning goal (LeCun, 2016). Following this idea, AGNOS aims to select a feature subset supporting the
prediction of every initial feature and thus tackles the unsup. FS problem from the angle of data compression.

Data compression is traditionally performed through FC (chapters 2 and 3). Accordingly, AGNOS is a two-
step process : A compressed representation Φd ∈ Rn×d of the dataset is first obtained via feature construction.
The original features are then ranked w.r.t. their importance for learning the d latent features (φ1, . . . ,φd) com-
posing Φd. A novelty of the approach thus is to bridge the gap between the two categories of DR techniques,
using feature construction as a tool for feature selection. Interestingly enough, this essentially amounts to
falling back on a supervised multi-labeled feature selection problem, where datapoints are assigned one
continuous label per constructed feature φi, i ∈ [1, . . . , d].
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FIGURE 4.1: AGNOS combines FC and FS in order to leave no feature behind

4.1.2 Working hypotheses (fig. 4.2)

The main perk of unsup. learning is its increased adaptability compared to sup. learning (chap. 1) : Unsup.
learning is applicable to any dataset, whether it pertains to Bioinformatics, insurance risk assessment or
electrical engineering.

In order to be as general as possible, AGNOS involves minimal hypotheses. It follows the so-called Oc-
cam’s razor principle (Blumer et al., 1987), formulated by Kearns and Vazirani (1994); Crowder and Carbone
(2011) as Occam learning, specifically stipulating that the sought models involve as few contingencies as
possible. The cornerstone of DR is the manifold assumption (chap. 2) :

The manifold assumption The D-dimensional datapoints x1, . . . ,xn lie near a manifoldMd∗ of dimension
d∗ s.t. d∗ << D.

In the following, the manifold assumption is the only assumption done in AGNOS.

FIGURE 4.2: AGNOS operates under minimal hypotheses

4.1.3 Combining both motivations

Following section 4.1.1, AGNOS involves two interacting parts : a FC algorithm and a FS mechanism,
and the question thus becomes to select the algorithms involved in each component. From the assumption
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perspective and given the hybrid nature of AGNOS, it follows :

Assumptions(AGNOS) = { Manifold assumption } = Assumptions(FC) ∪ Assumptions(FS)

where the first equality comes from sec. 4.1.2. Accordingly, both FC and FS components of AGNOS must not
require any hypotheses beyond the manifold assumption. This requirement will rule out most DR methods
(most often implicitly involving additional assumptions, e.g. PCA (Pearson, 1901) relies on the assumption
that the underlying manifold be linear, or SFUS (Ma et al., 2012), assuming that all original features are
boolean).

Eventually, the AGNOS DR pipeline proceeds by elimination and discards methods relying on additional
hypotheses, as will now be discussed.

4.1.4 Typical DR requirements

DR methods typically make assumptions on three different components of the problem : the datapoints
(sec. 4.1.4.1), the underlying manifold (sec. 4.1.4.2), or the original features (sec. 4.1.4.3).

4.1.4.1 Assumptions regarding the datapoints

Sup. DR algorithms (Ye and Sun, 2018; Zhao et al., 2006b), assuming that each datapoint xi is equipped
with a label yi, are inappropriate by construction as we focus unsup. DR.

State-of-the-art unsup. FS methods (He et al., 2005; Zhao and Liu, 2007; Cai et al., 2010; Li et al., 2012;
Nie et al., 2016) (chap. 3) rely on the assumption that the pairwise likeness of datapoints can be accurately
depicted using the Euclidean distance in the original high-dimensional data representation. This assumption
is unlikely to hold in the view of the curse of dimensionality (chap. 2). Spectral clustering-based FS is thus
also out of contention.

4.1.4.2 Assumptions regarding the nature ofM∗d

Linear FC techniques (Pearson, 1901; Golu and Reinsch, 1971) assume that the underlying manifold is
linear, and are thus inappropriate in the AGNOS context 1.

Although approaches such as Isomap (Tenenbaum et al., 2000) and Locally Linear Embedding (Roweis
and Saul, 2000) are able to unfold a non-linear Swiss Roll (chap. 3), their success hinges on two additional
informal implicit assumptions : i) the underlying manifoldM∗d is smooth (informally, the parametric equations
defining the manifold are infinitely differentiable) ; and ii)M∗d does not contain ”holes”.

The fact that both assumptions cannot be efficiently (either computationally or statistically) be overcome
is argued as follows. Consider the case of a torus (fig. 4.3), smooth manifold of intrinsic dimension 2 (w.r.t.
any of the ID estimators from chap. 2). It is clear that the torus clearly cannot be flattened from 3D to 2D while
preserving local neighborhoods due to the hole in the middle.

1. Note that even in the linear case, PCA and SVD require a specific configuration of the covariance matrix, s.t. the angles
between its eigenvectors be sufficiently large (Martinez and Zhu, 2005).
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FIGURE 4.3: A torus corresponds to a smooth manifold, but contains a hole. From Wikipedia.

FIGURE 4.4: Like for the torus, Isomap fails to embed a 3D cylinder in a 2D space while pre-
serving its similarity graph (upper panels). However, DR is succesful if the cylinder has been

preemptively ”cut” (lower panels). From van der Maaten et al. (2008)

Indeed, an option would be to ”cut” the manifold as a form of pre-processing to DR (van der Maaten et al.,
2008), so that it can thereafter be unfolded like a Swiss Roll (figure 4.4). However, such a pre-processing
step involves n runs of the Dijkstra algorithm (Jianya, 1999), being thus computationally hardly affordable
in most application domains. Furthermore, such a ”cutting” process effectively induces a deformation of
the manifold, and would thus alter the final selection subset. Considering these two significant downsides,
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similarity-preserving methods are ultimately discarded for performing FC in AGNOS.

4.1.4.3 Assumptions regarding the original features

As seen in chapter 3, independent scoring FS methods (Duda et al., 2000) assume that the original
feature set F does not contain any XOR-like concept (sec. 3.2.1). State-of-the-art unsup. methods such as
the Laplacian score (He et al., 2005), SPEC (Zhao and Liu, 2007) or MCFS (Cai et al., 2010) require that no
elements of F are redundant in order to rank features fairly. Lastly, other approaches (Ma et al., 2012; Chang
et al., 2014) assume that F contains only boolean features. Consequently, all aforementioned algorithms are
not eligible to perform FS in AGNOS.

Discussion

Following the previous discussion, AGNOS should involve :

— A non-linear unsup. data compression scheme that does not rely on pairwise Euclidean distances
between high-dimensional datapoints.

— A semi-independent or collective feature scoring criterion able to handle redundancy.

In view of these specifications, the natural candidate for performing FC is the non-linear AutoEncoder
(chap. 3). Taking inspiration from neural network-based FS (chap. 3), a semi-independent feature scoring
criterion is derived from the parameters of the AutoEncoder at the end of training. The following section
discusses the feature redundancy problem in the context of an AutoEncoder.

4.2 The redundancy issue

In a nutshell, the general AGNOS scheme uses an AutoEncoder to produce a compression representa-
tion Φd ∈ Rn×d of the dataset ; the initial variables are thereafter ranked w.r.t. their importance for learning
(φ1, . . . ,φd). In the large sample limit, tuning the size of the encoder layer so that d = ID(X) ensures that
i) Φd contains all the information needed to reconstruct the original feature set ; and ii) each of φ1, . . . ,φd is
informative to some extent.

Note however that how the information is organized and scattered among the constructed features is
unknown, which might adversely affect the approach in the presence of redundant original features ; we shall
come to this point in section 4.4.

Consider a basic AutoEncoder equipped only with a MSE loss :

L(F ) =

D∑
i=1

||f̂i − fi||22

The contributions of each feature to the total loss appear to be weighted equally. However, let us consider
the case where the feature set contains κ duplicates of the first feature (for some κ ∈ [2, . . . , D−1], f1 = f2 =
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. . . = fκ. In an unsupervised feature selection setting, we would like the probability of selecting one copy of
f1 to increase with κ. On the other hand, the probability of selecting multiple copies should clearly always be
zero no matter the value of κ. However :

L(F ) =

κ∑
i=1

||f̂i − f1||22 +

D∑
i=κ+1

||f̂i − fi||22

The contribution of f1 to the total loss is considered κ times more important than for another feature.
The larger κ, the more reconstructing f1 is a priority for the AutoEncoder during training, the more influence
f1 and all its duplicates ultimately hold over Φd. Given that AGNOS aims to score original features w.r.t. this
influence, all copies of f1 will obtain the same score and be discarded or selected together.

This is a major issue, as it is very common for real world datasets to contain clusters of strongly correlated
features. A sensible feature selection algorithm should select at most one representative per such cluster.

A key requirement for AGNOS to is to address the initial feature redundancy. To this end, three regulariza-
tions will be proposed (sec. 4.4) in the spirit of LASSO (Tibshirani, 1996) and group-LASSO (Yuan and Lin,
2007) to enforce the sparsity of the latent (aka constructed) features. Each regularization scheme comes with
its own optimization criterion. The three criteria however rely on the same principles, disccused in section
4.3.

4.3 Feature scoring

As said, AGNOS ranks original features w.r.t. an importance score derived from the parameters of the trai-
ned AutoEncoder, reflecting their respective influence for learning Φd. Three scoring criteria will be examined
in section 4.4, each corresponding to a declination of AGNOS.

The first criterion is based on the weights of the encoder part of the network, and is used in AGNOS-W.
The second considers the gradients of the constructed features w.r.t. the input features and is relied upon by
AGNOS-G. Lastly, the scoring criterion of AGNOS-S is based on an altered neural architecture.

The influence of fi, i ∈ [1, . . . , D] over Φd can be assessed independently for each of the constructed
features φ1, . . . ,φd. Section 4.3.1 discusses how these d influence measurements should be aggregated to
obtain the final score for fi. Section 4.3.2 assesses the semi-independence nature of the resulting scoring
criteria.

As AGNOS essentially amounts to falling back on a sup. multi-labeled FS problem, where datapoints are
assigned one continuous label per constructed feature φi, i ∈ [1, . . . , d], one could wonder why a new scoring
procedure is needed rather than simply adapting existing multi-labeled FS techniques (Ma et al., 2012; Chang
et al., 2014). This interrogation is addressed by section 4.3.3.

4.3.1 From local influence to global feature score

As a result of d = ID(X), in the large sample limit all constructed features are guaranteed to be relevant
to the reconstruction of the initial features to some extent. ∀(i, j) ∈ [1, . . . , D]× [1, . . . , d], let I(fi,φj) denote
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the influence of fi over φj (to be formalized below). A simple definition for the ranking criterion is to consider
the average influence of fi over all constructed features :

Score(fi) =
1

d

d∑
j=1

I(fi,φj) (4.1)

However, this formulation fails to take into account the local informativity of the features. The proposed
approach takes inspiration from the unsupervised feature selection algorithm MCFS (Cai et al., 2010) (chap.
3), in which a feature is considered important iff it is helpful to identify at least one cluster. Assume that for a
certain fi , ∃j ∈ [1, . . . , d] s.t. I(fi,φj) is large and ∀k ∈ [1, . . . , d] s.t. k 6= j, I(fi,φk) = 0. Then, according to
equation (4.1), Score(fi) is small, and fi is likely to be discarded. However, if a feature has a strong influence
on at least one constructed feature, it means that preserving the information it contains is very important for
data compression. Therefore, such a feature fi should be ranked highly and prioritized for selection.

Accordingly, a more suitable ranking criterion definition is to consider the maximum influence of fi over
any constructed feature :

Score(fi) = max
j∈[1,...,d]

I(fi,φj) (4.2)

The criteria used in AGNOS-W and AGNOS-G both follow this reasoning.

Remark. Taking the maximum value might however be inappropriate if some latent variables are signifi-
cantly less important than others. If an initial feature fi holds a strong influence over only one φj of lesser
importance, then fi should be discarded. Nevertheless, fi will inaccurately be ranked highly w.r.t. eq. (4.2).

Considering this possible imbalance in constructed feature importance, a solution is to alter the structure
of the AutoEncoder, so that instead of aggregating d measurements I(fi,φj), the overall influence of fi over
Φd is directly observed :

Score(fi) = I(fi,Φd) (4.3)

This change of scoring paradigm is the basis of AGNOS-S (sec. 4.4)

4.3.2 Is AGNOS an independent scoring method?

As seen in chapter 2, unlike collective or semi-independent scoring methods, independent feature se-
lection algorithms bear the important limitation of being unable to recognize features that are useless by
themselves, but important together.

In AGNOS, although Score(fi) is ultimately assessed in isolation from the other scores, it is derived from
the influence measurements I(fi,φj) (or I(fi,Φd) in the case of AGNOS-S). Given that each constructed
feature is obtained by a non-linear combination of every initial variable, I(fi,φj) actually indirectly involves
the whole original feature set F . AGNOS is therefore a semi-independent scoring method, and meets the
requirement of being applicable to datasets containing XOR-like concepts.
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4.3.3 Supervised multi-labeled feature selection via shared subspace learning

Sup. multi-labeled FS has been tackled by several approaches (Ma et al., 2012; Chang et al., 2014) in the
context of image annotation. In this setting, each image is labeled with multiple concepts it is related to such
as ”people”, ”party”, ”entertainement”.

Sup. multi-labeled FS methods then make the assumption (Ando and Zhang, 2005b) that images are likely
to share some labels with each other (e.g. (”people,”work”) and (”people”,”party”) pertain to the same topic
”people”). The goal is then to learn a shared subspace for the original features to help predict the labels.

Formally, let Y = [y1, . . . ,yd] ∈ {0, 1}d×n denote the label matrix, V ∈ RD×d and P ∈ RD×d two weight
matrices, and Q ∈ RD×D the shared subspace matrix. The goal is then to find V ∗, P ∗, Q∗ s.t. :

(V ∗, P ∗, Q∗) = arg min
V,P,Q

loss
(
(V +QP )TXT , Y

)
+ µΩ(V, P ) with QTQ = ID (4.4)

where Ω(V, P ) is a regularization term weighted by µ. The original features selected are then those corres-
ponding to non-zero rows of V ∗ +Q∗P ∗.

Arguably, one could adapt this framework to our unsupervised context by replacing Y with ΦT
d . However,

such an adaptation raises several theoretical and practical objections.
Firstly, the process of shared subspace learning basically amounts to optimizing a function mapping the

samples to the labels. However, a specificity of our approach is that we already have access to this exact
function : it is given by the encoding part of the AutoEncoder. Therefore, rather than learning a new mapping
from scratch, we aim to leverage the existing one, by observing the parameters of the AutoEncoder.

Secondly, φi ∈ Rn is not a binary feature, but a continuous one. Therefore, the underlying assumption for
subspace learning that samples share some labels is much less likely to hold.

Finally, a requirement for feature selection to be applicable in practice is to be less computationally ex-
pensive than learning without dimensionality reduction. Training an AutoEncoder to learn φd, then solving the
optimization problem in equation (4.4) is hardly affordable in terms of time complexity.

4.4 The AGNOS algorithm

We address the issue of redundancy among the original features by adapting LASSO-inspired regulariza-
tion techniques to the unsupervised context. The AutoEncoder loss function is enhanced with a penalty term
enforcing that only few, non-redundant initial features are retained during learning. This section presents the
three considered regularization schemes, each corresponding to a declination of AGNOS : weight-based regu-
larization for AGNOS-W (section 4.4.1), gradient-based regularization for AGNOS-G (section 4.4.2), and slack
variable-based regularization for AGNOS-S (section 4.4.3). The three versions of AGNOS are then discussed
in section 4.4.3.

Preprocessing : normalizing the original features

Intuitively, the larger the contribution of fi to the AutoEncoder loss L(F ), the more influent fi, the more
likely fi is ultimately selected.
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Assume however that for some pair of initial features fi and fj , one has fj = C ∗ fi for some constant
C > 1. Clearly both features carry the same information and their respective influences on Φd should be
equal. However, like in the case of redundant features and for the same reason, the contribution of fj to the
MSE-based L(F ) tends to be C times larger than for fi, and fj is prioritized over fi for selection.

This selection bias towards features with large first and second order moments is handled by pre-processing
the dataset, each initial feature being normalized and centered.

4.4.1 AGNOS with weight regularization : AGNOS-W

The first declination of AGNOS is AGNOS-W, which is inspired by supervised feature selection with neural
networks techniques relying on weight-based regularization (Bauer et al., 2000; Roy et al., 2015). The Au-
toEncoder loss function is enhanced with a group-LASSO (Yuan and Lin, 2007) penalty term on the weights
of the hidden layer. Formally, letting W ∈ RD×d denote the encoder weight matrix and Wi,∗ its i-th row, the
L2,1 penalization reads :

L(W ) =

D∑
i=1

√√√√ d∑
k=1

W 2
i,k =

D∑
i=1

‖Wi,∗‖2

and the learning criterion of AGNOS-W is accordingly defined as :

LW (F ) =
D∑
i=1

||f̂i − fi||22 + λL(W ) (4.5)

with λ the penalization weight. This regularization leads to a sparse input neural network (Feng and Simon,
2017) (chap. 3), enforcing that only a few original features are influential for learning Φd. In order to simulta-
neously reconstruct the whole feature set and rely on as few original features as possible, the AutoEncoder
is coerced to discard redundant features by setting the corresponding rows of W to 0. This learning criterion
thus is meant to tackle the issue of redundant feature sets.

After training, the influence of fi over φj can be observed through coefficient |Wi,j |, as in RFE-SVM
(Guyon et al., 2002). The larger this quantity, the more important fi. Naturally, considering the absolute value
of Wi,j is necessary to properly account for negative weights, which are as informative as positive ones.

As previously discussed, fi should be considered important iff it is influential on at least one constructed
feature. Therefore, the final score of the i-th feature is defined as the maximum influence on any hidden
neuron :

ScoreW (fi) = ‖Wi,∗‖∞ (4.6)

This leads to the following algorithm :
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Algorithm 5 AGNOS-W
Input : Feature set F = {f1, ...,fD}
Parameter: λ
Output : Ranking of features in F
Normalize each feature to zero mean and unit variance.
Estimate intrinsic dimension ÎD of F .
Initialize neural network with d = ÎD neurons in the hidden layer.
Repeat

Backpropagate LW (F ) =
D∑
i=1
‖f̂i − fi‖22 + λ

D∑
i=1
‖Wi,·‖2

until convergence
Rank features by decreasing scores with ScoreW (fi) = ‖Wi,·‖∞.

4.4.2 AGNOS with gradient regularization : AGNOS-G

The second proposed declination of AGNOS is AGNOS-G, inspired by studies on the benefits of gradient
regularization (Rifai et al., 2011; Varga et al., 2017).

In the supervised context,Varga et al. (2017) have recently shown that L2 regularization on the gradients
of the output layer helps improve the predictive accuracy of discriminative neural networks. This improvement
is explained by the fact that smaller output gradients leads to a decreased sensitivity of the learning goal w.r.t.
the input, which helps combat overfitting.

In the unsupervised context, Rifai et al. (2011) introduced contractive AutoEncoders. This corresponds to
enhancing a standard AutoEncoder with a L2 penalty term on the gradients of the hidden layer w.r.t. the input
dimensions. The compressed representation Φd produced by contractive AutoEncoders has been empirically
shown to be more robust w.r.t. input noise than for traditional AutoEncoders. By contrast with the supervised
setting, the output layer of an AutoEncoder is not the end goal of learning, rather a byproduct of feature
construction. The actual learning goal is Φd, which resides in the hidden layer. This reasoning motivates
penalizing the hidden layer gradients rather than the output ones.

AGNOS-G also relies on regularizing the gradients of the hidden layer. Given that the end goal of AGNOS
is feature selection, this regularization should aim to simultaneously cancel all gradients of the constructed
features w.r.t. redundant original features. The L2 regularization used for contractive AutoEncoders is inade-
quate for that purpose ; as seen in chapter 3, an L2 penalty cannot enforce sparsity.

Therefore, AGNOS-G instead employs a group-LASSO (Yuan and Lin, 2007) regularization instead, re-
grouping hidden layer gradients by original feature :

L(Zd) =

D∑
i=1

√√√√ n∑
k=1

d∑
j=1

(∂zj
∂fi

(xk)
)2 (4.7)



66 Chapitre 4. Agnostic Feature Selection

The total loss function of the AutoEncoder is then :

LG(F ) =
D∑
i=1

||f̂i − fi||22 + λL(Zd) (4.8)

Similarly as in AGNOS-W, the combination of the mean square error and the sparsity pressure incen-
tivizes the AutoEncoder to nullify all hidden layer gradients related to superfluous initial features, therefore
successfully tackling the redundancy issue.

After training, the influence of fi over φj can be observed through the gradient of φj w.r.t. fi, estimated
at each datapoint :

I(fi, zj) =

n∑
k=1

(
∂φj
∂fi

(xk)

)2

(4.9)

With the same reasoning as for AGNOS-W, fi should be considered important iff it is influential for at least
one constructed feature. Therefore, the final score is defined as :

ScoreG(fi) = max
1≤j≤d

n∑
k=1

(
∂φj
∂fi

(xk)

)2

(4.10)

The larger this quantity, the more important fi. This scoring criterion is similar to that of supervised feature
saliency selection methods (Steppe and Bauer, 1996; Zurada et al., 1997), with the notable difference that
we consider the hidden layer gradients rather than the output ones. This is consistent with the observation
that our learning goal is not the output of the network, rather Φd.

Interestingly enough, this modification also holds two practical advantages over traditional feature saliency
techniques. On one hand, examining the gradients halfway through the feedforward process helps reduce the
probability of encountering a vanishing gradient problem (Pascanu et al., 2013). On the other hand, obtaining
the pointwise gradients of the hidden layer w.r.t. the input dimensions requires n × d × D computations for
each training iteration, as opposed to n × D2 computations for the gradients of the output layer. Given that
d << D, this is a significant reduction in time complexity.

Moreover, in the case of an encoder with a single hidden layer, this score can be computed in a simple
fashion. For example, with a tanh activation function, one has :

ScoreG(fi) = max
1≤j≤d

n∑
k=1

W 2
i,j

(
1− φj(xk)2

)2 (4.11)

This leads to the proposed algorithm :
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Algorithm 6 AGNOS-G
Input : Feature set F = {f1, ...,fD}
Parameter: λ
Output : Ranking of features in F
Normalize each feature to zero mean and unit variance.
Estimate intrinsic dimension ÎD of F .
Initialize neural network with d = ÎD neurons in the hidden layer.
Repeat

Backpropagate LG(F ) =
D∑
i=1
||f̂i − fi||22 + λ

D∑
i=1

√
n∑
k=1

d∑
j=1

(
∂φj

∂fi
(xk)

)2

until convergence

Rank features by decreasing scores with ScoreG(fi) = max
j∈[1,...,d]

n∑
k=1

|∂φj

∂fi
(xk)|.

4.4.3 AGNOS with slack variables : AGNOS-S

A third version of AGNOS is considered, called AGNOS-S and inspired from Leray and Gallinari (1999); Li
et al. (2016); Goudet et al. (2018). The neural architecture is augmented with a sparse one-to-one linear layer
composed of slack variables, inserted between the input and the first hidden layer. Formally, to each feature
fi is associated a (learned) coefficient ai initialized to 1, and the encoder is fed with the vector (aifi) (fig.
4.5). The learning criterion here is the reconstruction loss augmented with an L1 penalization on the slack
variables :

LS(F ) =
D∑
i=1

||f̂i − fi||22 + λ
D∑
i=1

|ai| (4.12)

Like in LASSO (Tibshirani, 1996), the L1 penalization pushes the slack variables toward a sparse vector
such that features unnecessary to reconstruct F are associated a null coefficient. This regularization thus effi-
ciently tackles the issue of redundancy. In order to prevent the network from drawing slack variables toward 0
and compensating for the small slack variables by proportionally amplifying the encoder weights, the encoder
weight vector W is normalized (‖W‖2 = 1). In order to obtain a standardized protocol, this normalization is
also applied in the AGNOS-W and AGNOS-G variants.

Similarly as in Li et al. (2016), the score of the i-th feature is eventually set to |ai| : this single real-valued
coefficient reflects the contribution of fi to the latent representation, and its importance to reconstruct the
whole feature set :

ScoreS(fi) = |ai| (4.13)

The larger this quantity, the more important fi.
This corresponds to directly measuring I(fi, Zd) rather than I(fi, zj) for each zj . Therefore, a major

benefit of this altered neural architecture is to provide an accurate ranking criterion even if some constructed
features are more important than others.
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FIGURE 4.5: Structure of the neural network used in AGNOS-S

Algorithm 7 AGNOS-S
Input : Feature set F = {f1, ...,fD}
Parameter: λ
Output : Ranking of features in F
Normalize each feature to zero mean and unit variance.
Estimate intrinsic dimension ÎD of F .
Initialize neural network with (a1, ..., aD) = 1D and d = ÎD neurons in the hidden layer.
Repeat

Backpropagate LS(F ) =
D∑
i=1
||f̂i − fi||22 + λ

D∑
i=1
|ai|

until convergence
Rank features by decreasing scores with ScoreS(fi) = |ai|.

Discussion

About tied weights While designing the architecture of an AutoEncoder, it is common practice to rely on
weight sharing (Baldi, 2012; Bengio, 2012). This practice, also referred to as tied weights, consists in setting
the weights of the decoder part of the network to the transpose of the encoder weights (that is, in the case
of a single hidden layer, W (decoder) = W T ). An immediate benefit lies in the reduced number of learned
parameters, which both lowers the space complexity of training and helps prevent overfitting. Without weight
sharing, the AutoEncoder might learn very small encoder weights (corresponding to a near linear regime in
the activation functions) and compensate with large decoder weights. This essentially amounts to learning
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the identity function. An additional benefit of weight sharing is therefore its potential regularizing effect, which
prevents learning this degenerate solution.

However, weight sharing may be detrimental to learning when the end goal is not reconstruction but
feature selection. Assume the AutoEncoder is able to reconstruct the whole feature set and that no initial
feature is constant. By construction :

∀j ∈ [1, . . . , D], ∃i ∈ [1, . . . , d], |W (decoder)
ij | > 0

With weight sharing, W (decoder)
ij = Wji. Therefore :

∀j ∈ [1, . . . , D],∃i ∈ [1, . . . , d], |Wji| > 0

In other words, there is at least one non-zero coefficient per row of W . This means that every initial feature is
considered at least somewhat important w.r.t. the scoring function of AGNOS-W, hindering feature selection.
This is precisely what the L2,1 weight regularization employed in AGNOS-W aims to avoid, justifying leaving
encoder and decoder weights untied.

Although the negative impact of weight sharing on AGNOS-G and AGNOS-S is less clear from a theoretical
standpoint, preliminary experiments have shown that relying on tied weights led to decreased FS performance
in both these versions of AGNOS.

Should the group LASSO penalty be sparse? Recent supervised neural network-based FS methods
(Roy et al., 2015; Li et al., 2016; Ye and Sun, 2018) (chap. 3) perform regularization via a sparse group
LASSO penalty (Simon et al., 2013) on the weights of the first hidden layer.

By contrast, both AGNOS-W and AGNOS-G rely on a ”vanilla” non-sparse group LASSO (Yuan and Lin,
2007) penalty instead. A first argument for this design choice is to avoid introducing the additional hyperpa-
rameter α, which would increase the complexity of the sensitivity study (more in chap. 6).

More importantly, the goal of the sparse group LASSO is to achieve sparsity both at the group level and
inside each group, which is a desirable property in the supervised setting (Feng and Simon, 2017). However,
in the context of an AutoEncoder performing unsupervised learning, a sparse group LASSO penalty would
induce a compressed representation s.t. each original feature contributes to as few constructed features as
possible. This corresponds to learning a disentangled representation (Bengio et al., 2013; Kim and Mnih,
2018). Learning a disentangled representation essentially corresponds to sacrificing some efficiency regar-
ding data compression 2 in exchange for better model interpretability 3. However, studying the impact of such
a tradeoff is beyond the scope of this thesis.

Normalizing structural regularization strength λ The sparsity penalty terms implemented in AGNOS-S,
AGNOS-W and AGNOS-G respectively involve D slack variables, D × d weights, and D × d × n gradients.

2. This is a direct consequence of the network being prevented from spreadng the information contained by an important original
feature into multiple components of the d-dimensional space.

3. Arguably, the fewer original features are involved for learning each constructed feature, the easier it is to measure their respec-
tive influence.
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The number of parameters involved in the structural regularization thus depends on the considered variant
of the approach. Accordingly, for the sake of consistency and homogeneity, the respective penalty strengths
(λS , λW , λG) are normalized s.t. λW = λS

d and λG = λS
dn .
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Chapitre 5

Performance indicators for assessing
unsupervised Feature Selection

This chapter is concerned with the validation procedure of unsup. FS. The theoretical properties of an
ideal performance indicator are first discussed in section 5.1. Section 5.2 thereafter introduces the three sup.
criteria typically used in unsup. FS. Lastly, section 5.3 presents our methodological contribution, the unsup.
FIT criterion.

How many features to select? The results of both sup. and unsup. assessment protocols depend on
hyperparameter k governing the size of the selection subset Sk. As discussed in chapter 2, k is in the unsup.
FS context manually set by the user rather than automatically tuned like in sup. approaches (Ye and Sun,
2018). In the remainder of this chapter, k is considered a fixed parameter.

Empirical validation of state-of-the-art unsup. FS algorithms (He et al., 2005; Zhao and Liu, 2007; Cai
et al., 2010; Li et al., 2012; Nie et al., 2016) typically considers multiple values for k, in order to monitor the
efficiency of selection as a function of the reduced dimensionality. Accordingly, we will follow this protocol in
our own empirical study (chap. 6).

5.1 Motivation

In sup. FS, the relevance of a performance indicator PI is unambiguous : PI is a good criterion iff it
rewards selecting the best features for predicting the learning goal.

By contrast, the quality of PI is harder to define in the unsup. context, given the absence of ground truth.
An important question then arises : “What makes a good performance indicator for unsup. FS?”

We argue that a suitable PI should strive for the following six qualities, defined thereafter :

— Impartiality

— Expressivity

— Stability

— Interpretability
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— Simplicity

— Cost-efficiency

Impartiality Impartiality denotes the absence of unwanted bias towards selecting features of a certain na-
ture, structure or apparent purpose. Consider for instance PI1 s.t. :

PI1(Sk) =

{
1 if Sk contains only categorical features
0 otherwise

PI1 incentivizes the selection of categorical features regardless of information carried, thus fails to meet the
requirement of impartiality.

Expressivity The more information is taken into account by PI, the more expressive this performance
indicator. Consider e.g. the following PI2 :

PI2(Sk) = max
f∈Sk

cov(f ,f1)

The quality of Sk is assessed using only a small piece of information (the covariance with a single particular
feature) ; the expressiveness of PI2 is hence clearly low.

Stability The score of a particular unsup. FS algorithm w.r.t. PI is expected to fluctuate according to the
selection subset size k and the set Θ of algorithm hyperparameters. However, the position of this method in
the ranking of unsup. FS approaches should hardly depend on k and Θ.

Consequently, PI is deemed stable iff the associated ordering of unsup. selection techniques is consistent
across a wide range of values for k and Θ. In other words, what matters is the relative hierarchy of algorithms
rather than the respective absolute scores.

Consider e.g. PI3 s.t. :

PI3(Sk) =

{
PI1(Sk) if k ≤ 10
PI2(Sk) if k > 10

The ordering of selection methods is likely shuffled when considering subsets of more than ten features. PI3

is therefore unstable 1.

Interpretability In order to comply with FTA learning (chap. 1), a performance indicator should be easily
understandable, even by a non-expert in ML. The behavior of information-theoretic measurements such as
the Variation of Information (VI) (Meilă, 2003) is unintuitive, as claimed by Gates et al. (2018) (more in sec.
5.2). Such indicators thus arguably lack in interpretability.

1. Arguably, PI3 is also non-smooth : the score of an algorithm abruptly changes across the boundary k = 10. Smoothness is
also a desired property of performance indicators, although with a lower priority than stability.
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Simplicity Assume FS algorithm A is ranked highly w.r.t. performance indicator PI. This could indicate that
A is a better selection method than its competitors. However, it may also be that PI is partial towards the
selection subset resulting of A. In the absence of ground truth, disentangling the experimental validation of
unsup. FS methods from the empirical study of PI itself is therefore challenging. This issue is amplified in the
presence of important hyperparameters for PI. Consider for instance PI4 s.t. :

∀(α, β, γ) ∈ R3, P I4(Sk, α, β, γ) = αPI1(Sk) + βPI2(Sk) + γPI3(Sk)

The goal of measuring the quality of Sk with PI4 is mingled with the task of tuning α, β and γ. A simple
performance indicator should therefore, unlike PI4, include as few hyperparameters as possible, so that it
can be considered a fixed component of the validation process.

Cost-efficiency In addition to all aforementioned qualities, an ideal performance indicator should also be
as inexpensive as possible in terms of computational complexity (both time and space-wise). Most notably
and in view of Big Data, the assessment procedure should scale well w.r.t. both the number of datapoints and
the number of original features.

Discussion

As said, state-of-the-art unsup. FS methods (He et al., 2005; Zhao and Liu, 2007; Cai et al., 2010; Li et al.,
2012; Nie et al., 2016) are typically empirically assessed with a sup. performance indicator. We claim that this
procedure nets significant downsides for little benefits :

Claim: Typical sup. performance indicators for unsup. FS all fail to meet the impartiality, expressivity and sta-
bility properties.

This claim will be further discussed in section 5.2 and supported by empirical evidence in our experimental
study (chap. 6). Our campaign of experiments will also show that, relatively to sup. performance indicators,
the proposed unsup. FIT criterion is more impartial, expressive and stable. The main downside of this me-
thodological contribution lies in its poor cost-efficiency (chap. 6). A direction for future research consists in
improving the cost-efficiency of the FIT procedure (chap. 7).

5.2 Supervised performance indicators

State-of-the-art unsup. FS methods (He et al., 2005; Zhao and Liu, 2007; Cai et al., 2010; Li et al., 2012)
typically rely on one of two techniques to quantify the quality of the retained feature subset Sk. The first
technique is classifier-based (sec. 5.2.1), while the second one is clustering-based (sec. 5.2.2). Section 5.2.3
will thereafter investigate our claim that sup. performance indicators are ill-suited for assessing unsup. FS.
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5.2.1 Classifier-based criterion

Given that we are here concerned with sup. assessment of unsup. FS, let f∗ denote the target feature and
χ a classifier. Let the datapoints be split into a training set Xtrain and a testing set Xtest. Let δ : N×N→ {0, 1}
denote the function s.t. :

∀(a, b) ∈ N2, δ(a, b) =

{
1 if a = b
0 otherwise.

The predictive power of the selection subset Sk is measured using h. h is first trained on Xtrain, conside-
ring only the features in Sk. The test classification error rate of φ is thereafter defined as :

ERφ(Sk,f
∗) = 1−

∑
x∈Xtest

δ (h(x), f∗(x)) =
1

|Xtest|
∑

x∈Xtest

L
(
f∗(x), f̂(x)

)
(5.1)

The lower ERφ(Sk,f
∗), the more accurate χ for predicting f∗ using only Sk. Unsup. FS algorithms are

then ranked in ascending order w.r.t. the respective resulting error rates.
The resulting ranking is actually a multivariate function involving f∗, the classifier structure (e.g. Deci-

sion Tree (Safavian and Landgrebe, 1991), Random Forest (Dı́az-Uriarte and Andres, 2006), Gaussian SVM
(Scholkopf and Smola, 2001)), the hyperparameters of h, and the random split between Xtrain and Xtest. The
dependency w.r.t. the train/test split is typically removed by relying on Leave-One-Out (LOO) cross-validation
(Kohavi, 1995) 2.

The most common choice for g in the literature (Zhao and Liu, 2007; Cai et al., 2010) is the p-Nearest-
Neighbor (p-NN) classifier. The motivation underlying this choice is fourfold.

First of all, p-NN classification is non-linear, which is required due to working hypotheses (sec. 4.1.2).
Furthermore, the unreliability of Euclidean distance-based similarities caused by the curse of dimensionality
is alleviated in the k-dimensional space defined by Sk (provided that k << D).

Moreover, p-NN classification is usually more resilient w.r.t. overfitting than e.g. Decision-Tree based clas-
sification such as Random Forest. Lastly, a p-NN classifier does not involve any hyperparameters besides
p, typically fixed to p = 1 (thus predicting the class of the sample closest to the considered datapoint). This
classifier therefore adheres to the notion of simplicity introduced earlier.

With p = 1 and x′i denoting the nearest neighbor of xi 3, the error rate from equation (5.1) can then be
rewritten as (Cai et al., 2010) :

ER(Sk,f
∗) = 1− 1

n

n∑
i=1

δ
(
f∗(xi), f

∗(x′i)
)

(5.2)

The empirical assessment of the three declinations of AGNOS and baseline unsupervised FS algorithms
w.r.t. this performance indicator will be provided in our experimental validation (chap. 6) with p = 5 neighbors,
for the sake of stability.

2. Arguably, the results still weakly depend on the order in which the n-folds are considered for training g.
3. Formally :

∀(i, j) ∈ [1, . . . , n]2 s.t. j 6= i,

√∑
f∈Sk

(
f(xi)− f(x′i)

)2 ≤√∑
f∈Sk

(
f(xi)− f(xj)

)2
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5.2.2 Clustering-based metrics

In this procedure, samples are clustered with a standard K-means algorithm (Hartigann and Wong, 1979)
considering only the features in Sk. Similarly as for the p-NN classifier, relying on a k-dimensional space
instead of a D-dimensional one helps escape the curse of dimensionality and provide reliable clusters.

Notations As a result of K-means clustering, each sample is assigned to a unique cluster. This essentially
amounts to equipping each datapoint xi with a pseudo-label (the corresponding cluster number). Let f̂∗ de-
note the resulting new feature vector, containing κ unique values (κ governing the number of clusters). Let c
denote the number of classes in f∗. ∀(i, j) ∈ [1, . . . , κ] × [1, . . . , c], let Ai and Bj respectively denote the set
of samples belonging to the i-th cluster and the set of samples belonging to the j-th class.

. Given the above framework, two performance indicators are typically designed to assess the relevance
of the clusters. Section 5.2.2.1 introduces a first criterion measuring the homogeneity of the clusters. Section
5.2.2.2 thereafter presents an alternate definition of relevance rooted in information theory.

In order to fully uncover the learning goal, it is clear that K-means clustering should be performed with
κ ≥ c. However, tuning κ within the range [c, n] is both challenging and crucial to the success of clustering-
based performance indicators, as will be discussed in section 5.2.2.3.

5.2.2.1 Cluster purity-based performance indicator

The goal is here to measure how well aligned f̂∗ is with f∗, up to a reordering of the clusters. Formally,
let Θκ→c denote the family of functions θ : [1, . . . , κ]→ [1, . . . , c].

The accuracy score (ACC) (Cai et al., 2010; Li et al., 2012) of the selection subset Sk is then defined as :

ACC(Sk,f
∗) = max

θ∈Θκ→c

1

n

κ∑
i=1

c∑
j=1

|Aθ(i) ∩Bj | (5.3)

This can be rewritten from the perspective of the samples :

ACC(Sk,f
∗) = max

θ∈Θκ→c

1

n

n∑
i=1

δ

(
θ
(
f̂∗(xi)

)
,f∗(xi)

)
(5.4)

It directly follows from eq. (5.4) that ∀Sk ∈ F, 0 ≤ ACC(Sk,f
∗) ≤ 1, tightness of the upper bound being

guaranteed by κ ≥ c. The higher ACC(Sk,f
∗), the better the clusters allow identifying the different target

concepts, the better the selection.
The ranking of the three declinations of AGNOS and baseline unsupervised FS algorithms w.r.t. the ACC

score will be discussed in our empirical study (chap. 6).
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5.2.2.2 Information theoretic performance indicator

Following information theory (Cover and Thomas, 2012), f̂∗ and f∗ can be interpreted as the respective
realizations of two random variables. The core idea is then to measure the reduction of uncertainty (a.k.a.
entropy ) concerning the realization f∗ gained from knowing the realization f̂∗.

The individual entropies of f̂∗ and f∗ are respectively denoted H(f̂∗) and H(f∗), defined as :

H(f̂∗) = −
κ∑
i=1

|Ai|
n

log

(
|Ai|
n

)

H(f∗) = −
c∑
j=1

|Bj |
n

log

(
|Bj |
n

) (5.5)

Accordingly, the joint entropy H(f̂∗,f∗) is given by :

H(f̂∗,f∗) = −
κ∑
i=1

c∑
j=1

|Ai ∩Bj |
n

log

(
|Ai ∩Bj |

n

)
(5.6)

The mutual information (MI) (Banerjee et al., 2005) performance indicator then measures how much
knowledge about learning goal f∗ can be inferred from f̂∗. MI(f̂∗,f∗) corresponds to the sum of individual
entropies minus the joint entropy, that is :

MI(f̂∗,f∗) = H(f̂∗) +H(f∗)−H(f̂∗,f∗) (5.7)

The higher the MI, the more informative the clustering for identifying the target, the better the selection.
By equations (5.5) and (5.6) :

0 ≤ H(f̂∗) ≤ log(κ)

0 ≤ H(f∗) ≤ log(c)

H(f̂∗)max
(
H(f̂∗), H(f∗)

)
≤ H(f̂∗,f∗) ≤ H(f̂∗) +H(f∗)

Injecting these upper and lower bounds in eq. (5.7) yields :

0 ≤MI(f̂∗,f∗) ≤ min
(
log(κ), log(c)

)
(5.8)

Eq. (5.8) is source of an interpretability issue of the MI : the result MI(f̂∗,f∗) = 1 can depict an arbitrarily
good or bad selection subset, depending on the relative values of κ, c and n.

In order to obtain interpretable results, numerous possible normalizations of the MI have been proposed
over the years, such as the minimum Normalized Mutual Information (NMImin) (Liu et al., 2008), joint NMI
(NMIjoint) (Yao, 2003), square root NMI (NMIsqrt) (Strehl and Ghosh, 2002) or Adjusted Mutual Information
(AMI) (Vinh et al., 2009). Each normalization variant comes with specific pros and cons. For instance, the
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NMImin
4 is ill-suited for continuous learning goals s.t. c = n, given that any selection subset Sk leads

to a perfect score NMImin = 1. A thorough discussion of the respective benefits and limitations of each
normalization procedure can be found in Vinh et al. (2010).

For the sake of unsup. FS assessment, the most commonly used NMI variant (Zhao and Liu, 2007; Cai
et al., 2010) is the mean NMI (NMImean) (Kvalseth, 1987), which we will in the rest of this work simply refer
to as NMI :

NMI(Sk,f
∗) = 2

MI(f̂∗,f∗)

H(f̂∗) +H(f∗)
(5.9)

The higher the NMI, the better the selection. A NMI score of 0 indicates no mutual information, while the
maximum score of 1 indicates perfect correlation. The empirical ranking of the three declinations of AGNOS
and baseline unsupervised FS algorithms w.r.t. the NMI score will be provided in chapter 6.

5.2.2.3 Tuning the number of clusters κ

The process of normalizing the mutual information does not remove the dependency of the performance
indicator on κ. Most notably, the higher κ, the higher the NMI, as illustrated in figure 5.1.

FIGURE 5.1: Despite the left clustering clearly being more similar to the central configuration
than the right clustering, the NMI score is higher for the latter. From Gates et al. (2018)

The ACC score also faces the same issue, although admittedly to a lesser extent (more in chap. 6). In
order to limit the bias in both performance indicators caused by large values of κ, we will in our experimental
validation set κ to the minimal value allowing perfect scores, that is κ = c.

Other clustering-based sup. performance indicators such as e.g. the Variation of Information (Meilă, 2003)
also depend on κ, oftentimes in a non-monotonous fashion (fig. 5.2).

The number of clusters is therefore a crucial hyperparameter to all aforementioned clustering-based mea-
surements, s.t. fine-tuning κ is necessary to fairly compare unsup. FS algorithms. Consequently, these per-
formance indicators do not comply with the requirement of simplicity.

4. Formally, NMImin(f̂∗,f∗) = MI(f̂∗,f∗)

min
(
H(f̂∗),H(f∗)

) .
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FIGURE 5.2: The Variation of Information (y-axis) performance indicator exhibits an unintuitive
behavior as the number κ of clusters changes (x-axis), on a large toy dataset. From Gates et al.

(2018)

In order to fulfill this requirement and lower the importance of κ, Gates et al. (2018) propose an element-
centric (EC) clustering-based indicator. While this type of indicator has to the best of our knowledge not
yet been utilized for the purpose of unsup. FS assessment, it is in any case ill-suited, as the validation
procedure would still be supervised. Thus, the crux of the problem remains, as exposed in our earlier claim :
sup. performance indicators, by design, lack impartiality, expressivity and stability. The following section will
further discuss this claim.

5.2.3 Discussion

sup. performance indicators incentivize selecting the features most useful to predict a particular goal. More
specifically and as underlined by the notationsER(Sk,f

∗),ACC(Sk,f
∗) andNMI(Sk,f

∗), sup. performance
criteria depend not only on the selection subset, but also on the configuration of the target variable ; f∗ being
by definition unaccounted for in unsup. FS. Therefore, selection algorithms are ranked in an arbitrary
order depending on an external unknown variable. This partiality issue is illustrated in figure 5.3.

Moreover, sup. performance indicators only consider the link between the selection subset Sk and f∗.
All knowledge related to the rejected subset F\Sk is discarded. Given that all original features are potential
unsup. learning goals (LeCun, 2016), sup. indicators actually leverage very little information, and therefore
also lack expressivity.

A byproduct of the limited expressiveness of sup. assessment is that ignoring D − k features means
that the amount of information ”wasted” depends on k. Arguably, this hinders the stability of the validation
procedure, as will be empirically demonstrated in chapter 6.
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FIGURE 5.3: Clustering of medical data (left) based on the same unsup. selection subset leads to
a perfect performance w.r.t. a certain learning goal (middle) and poor performance w.r.t. another

goal (right).

5.3 Unsup. assessment of unsup. FS

5.3.1 The proposed FIT criterion

In accordance with the principle that any initial feature is potentially valuable, an unsup. performance
indicator should evaluate the ability of Sk to recover all original variables simultaneously, rather than a single
specific f∗.

As such, we propose an intuitive adaptation of the sup. classifier-based criterion from section 5.2.1 to the
unsup. context ; given Sk, D Nearest-Neighbor regressors χ1, . . . , χD are trained from Sk to respectively reco-
ver f1, . . . ,fD. The motivation for relying on regressors rather than classifiers is that F may simultaneously
contain categorical and continuous features.

The score of Sk is then derived from the average reconstruction error of the regressors. A reconstruc-
tion error is an unbounded quantity, and thus faces the same interpretability issue as the MI (sec. 5.2). We
therefore rely on the R2 score instead, which we now introduce.

The coefficient of determination R2 Given y a regression target, ȳ the mean of y across all samples and
ŷ the target predicted by a regressor, the R2 score is defined as :

R2(y, ŷ) = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳ)2

(5.10)

The R2 score measures the proportion of the variance in y that is accounted for by the regression model.
R2(y, ŷ) is therefore an indicator of ”goodness-of-fit”. The maximal R2 score of 1 indicates that the regressor
predicts y perfectly. If regression fails and the model output is ȳ for all datapoints (meaning the input variables
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are disregarded), then R2(y, ŷ) = 0. Interestingly enough, R2(y, ŷ) can actually reach arbitrarily large negative
values 5, indicating that the regression model is worse than constant ȳ output.

If original features are normalized and centered, ȳ = 0 and
n∑
i=1

(yi − ȳ)2 =
n∑
i=1

y2
i = σ(y) = 1. Therefore,

eq. (5.10) can be rewritten as :
R2(y, ŷ) = 1−MSE(y, ŷ) (5.11)

Consequently, the R2 score can in the context of this work be interpreted as a normalization of the MSE.
This leads to the following algorithm :

Algorithm 8 The unsup. FIT criterion
Input : Dataset X, Selection subset Sk
Parameter: Number of neighbors p
Output : FIT (Sk)
Let R2

avg(Sk) = 0.
for i = 1, . . . , n do

Find the p nearest neighbors x1
i , . . . ,x

p
i of xi w.r.t. Sk

end
for j = 1, . . . , D do

Fit fj from Sk using the p-NN regressor χj
R2
avg(Sk)← R2

avg(Sk) +R2 (fj ,χj(Sk))

end

Return FIT (Sk) =
R2
avg(Sk)

D

The time complexity of computing MSE-based scores is negligible compared to that of searching for the p
nearest neighbors of each datapoint. Furthermore, the structure of the pseudocode in alg. 8 underlines that
the neighborhood search needs only be performed once, rather than D times. Consequently, the FIT score is
only marginally less cost-efficient than the sup. classifier-based criterion.

5.3.2 Discussion

The ideal selection subset S∗k w.r.t. FIT best supports the reconstruction of the whole dataset. This entails
three important consequences.

First of all and by contrast with sup. performance indicators, the FIT assessment procedure is not swayed
towards features most relevant for a specific purpose, hinting at impartiality. Naturally, one cannot claim the
approach is devoid of bias, as the retained features in Sk might be improper to the particular prediction of
any considered feature (e.g. due to their distribution). This could be further alleviated by building a classifier

5. The R2 notation is therefore slightly misleading. In order to lift this ambiguity, alternate notations such as the Nash-Sutcliffe
Efficiency (NSE) (McCuen et al., 2006) are sometimes preferred instead.
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based on Sk for each feature. This approach however suffers from fundamental and computational issues,
see below.

By construction, FIT actually exploits the information carried by every variable rather than only Sk and f∗,
thus enjoys a higher expressivity relatively to sup. indicators.

Lastly, the underlying goal of the FIT procedure is invariant w.r.t. the size k of the selection subset : leave
no feature behind. k only governs the ”budget” available to fulfill this goal. We argue that this invariance helps
the FIT criterion to provide more stable results than sup. assessment (ignoring D − k features). This stability
property will be studied during the sensitivity analysis portion of our empirical study (chap. 6).

About unsup. ACC/NMI

In order to support the selection of a feature subset sufficient to recover the entire dataset, one could
adapt clustering-based criteria such as ACC or NMI to the unsup. context, and specifically use the retained
features to predict each fi ranging among the other features. As said, this process however involves two
related issues.

Both ACC and NMI rely on building clusters ; the number κi of such clusters should depend on the conside-
red feature fi, be it categorical or continuous. On the one hand, the Sk based clustering procedure should be
repeated many times, scaling poorly in the large D regime. On the other hand, this would require fine-tuning
κi for each fi (sec. 5.2.2.3), thus failing the requirement of simplicity.

Summary

In this chapter, we have first discussed what constitutes a suitable performance indicator for assessing
unsup. FS. The state-of-the-art sup. criteria were thereafter introduced. These criteria were claimed to admit
significant limitations, most notably regarding their reliability and stability. A novel unsup. performance crite-
rion, called FIT, was accordingly proposed to tackle these limitations, by considering the reconstruction of all
original features simultaneously. The next chapter will empirically compare the respective merits of existing
performance indicators and FIT.
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Chapitre 6

Experimental validation

This chapter presents the experimental validation of AGNOS. The experimental setup is first introduced
in section 6.1, along with a preliminary study regarding the intrinsic dimension of the benchmark datasets.
Following chapter 5, the supervised performance of AGNOS-S, AGNOS-W and AGNOS-G is assessed and
compared to baselines in section 6.2. Section 6.3 thereafter exhibits the unsupervised performance of AGNOS
w.r.t. the novel proposed FIT criterion. A sensitivity study of the results is conducted in section 6.4, to assess
the influence of the hyperparameters of the method. Section 6.5 concludes the chapter with a final discussion
of the results.

6.1 Experimental setup and preliminary study

6.1.1 Experimental setup

6.1.1.1 The scikit-feature benchmark

Scikit-feature (skfeature for short) Li et al. (2018b); skf (2018) is an open-source feature selection reposi-
tory developed at Arizona State University. It is built upon the widely used Python machine learning package
scikit-learn. The skfeature databank currently contains 29 datasets commonly used in feature selection tasks
and challenges. These datasets span multiple domains, including text data, face image data, genomics data,
hand written text in image format, as well as artificial data specifically generated for feature selection pur-
poses.

Skfeature also provides ready-made Python implementations for 34 popular feature selection algorithms
(28 supervised and 6 unsupervised), facilitating empirical comparison of new FS approaches w.r.t. some
state-of-the-art methods.

Due to its open source nature and ease of use, skfeature has risen in popularity as an international
benchmark for feature selection Li et al. (2017); Chen et al. (2017). This justifies our usage of skfeature for
the experimental validation of AGNOS.
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6.1.1.2 Datasets

Experiments are carried on 8 datasets taken from the scikit-feature database, selected for their diversity
in number of features, types (categorical and continuous) and domain (face image, sound processing and
medical data). Complementary experiments on the other 21 datasets from the database have shown the
representativity of the results obtained on the 8 chosen datasets. In all datasets but one (Isolet), the number
of samples is small w.r.t. the number of features D. Dataset size, dimensionality, number of classes and data
type are summarized in Table 6.1.

# samples # features # classes Data type
arcene 200 10000 2 Medical
Isolet 1560 617 26 Sound processing
ORL 400 1024 40 Face image
pixraw10P 100 10000 10 Face image
ProstateGE 102 5966 2 Medical
TOX171 171 5748 4 Medical
warpPie10P 130 2400 10 Face image
Yale 165 1024 15 Face image

TABLE 6.1: Summary of benchmark datasets.

6.1.1.3 Performance indicators

The three variants of AGNOS are compared to four unsup. baselines introduced in section 3.2.3 : the
Laplacian score (He et al., 2005), SPEC (Zhao and Liu, 2007), MCFS (Cai et al., 2010) and NDFS (Li et al.,
2012). The implementations of all baselines have been taken from the scikit-feature database, and all their
hyperparameters have been set to their default values.

Four performance indicators have been considered, where the first three indicators correspond to the
typical sup. assessment procedure (chap. 5 : the sup. accuracy of a p-NN classifier, the ACC score and the
NMI score) and the fourth performance metric is the proposed unsup. FIT criterion.

6.1.1.4 Hyperparameters

In all experiments, AGNOS is ran using a single hidden layer Auto-Encoder with tanh activation functions
for both encoder and decoder, Glorot parameter initialization (Glorot and Bengio, 2010), and the Adam (Ru-
der, 2016) gradient descent scheme, with initial learning rate of 10−3. The number p of neighbors used for all
p-NN regressors involved in the FIT score (chap. 5) is set to p = 5 1. Following section 5.2.2.3, the number of
clusters to use for clustering-based performance indicators is set to κ = c for all experiments, where c is the
number of classes in the sup. learning goal.

1. Preliminary experiments have shown results to be more stable overall with p = 5 rather than p = 1.
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The results provided in sections 6.2 and 6.3 were recorded with the following default hyperparameter
values for AGNOS : hidden layer size d = ÎD (estimated intrinsic dimension of the data), sparsity penalty
strength λ = 1. The sensitivity of the results w.r.t. both d and λ will be assessed in section 6.4.

6.1.2 Intrinsic dimension and selection subset size

As seen (chap. 4), AGNOS includes two important preprocessing steps : i) feature normalization and ii)
intrinsic dimension estimation. Therefore, we begin our experimental study by analyzing the ID estimation
process. Section 6.1.2.1 presents the estimated ID for every benchmark dataset, as well as how these results
are prone to change as a consequence of feature normalization. An analysis of the faithfulness of the ID
estimator is thereafter conducted in section 6.1.2.2.

6.1.2.1 Intrinsic dimension estimation

Table 6.2 contains the estimated IDs for each dataset using the method from Facco et al. (2017) 2.

Dataset Initial dimension ÎD of unnormalized data ÎD of normalized data
Arcene 10000 18.01 39.89
Isolet 617 8.29 8.53
ORL 1024 5.60 5.50
pixraw10P 10000 3.74 3.94
ProstateGE 5966 22.27 22.32
TOX171 5748 6.35 14.75
warpPIE10P 2400 2.63 2.62
Yale 1024 9.27 9.62

TABLE 6.2: Intrinsic dimensions of each dataset, using all samples.

The fact that the estimated ID is small compared to the original dimensionality for every dataset highlights
the potential of feature selection for data compression. For 6 out of the 8 benchmark datasets, ÎD is mostly
unaffected by the rescaling of each feature to zero mean and unit variance.

However, for the remaining 2 datasets (Arcene and TOX171), the normalization process provokes a si-
gnificant change in ÎD, which more than doubles in both cases. This suggests that the correlation between
features can decrease as a result of normalization. This could limit the potential of data compression. Ho-
wever, feature normalization is mandatory to avoid bias in the selection (chap. 4), and is thus relied upon in
AGNOS regardless of this drawback. We will therefore consider the ÎD of normalized data in our experimental
validation.

2. As said (chap. 2), the ID is not necessarily an integer. However, the number of neurons in the hidden layer of the Auto-Encoder
used in AGNOS must itself be an integer. Therefore, we opt to round up the estimated intrinsic dimension : ÎD ← dÎDe.
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6.1.2.2 Assessing the quality of the ID estimation

As said, the results from table 6.2 are merely an approximation, of unknown precision, of the ”true”
intrinsic dimension of the data. We therefore attempt to estimate the quality of the approximation ÎD.

In order to simulate randomness 3, we opt to perform 20 uniform train/test splits for each dataset. ÎD is
thus estimated 20 times, considering for each run only the 80% of samples in the training set. The results are
contained in table 6.3.

Dataset Initial dimension ÎD of unnormalized data ÎD of normalized data
Arcene 10000 16.99 (0.74) 38.04 (7.20)
Isolet 617 9.02 (0.03) 9.25 (0.02)
ORL 1024 5.39 (0.08) 5.26 (0.07)
pixraw10P 10000 3.91 (0.19) 4.11 (0.15)
ProstateGE 5966 21.56 (2.90) 23.11 (4.36)
TOX171 5748 6.13 (0.12) 14.27 (0.94)
warpPIE10P 2400 2.58 (0.01) 2.59 (0.01)
Yale 1024 9.60 (0.98) 9.74 (0.91)

TABLE 6.3: Mean and variance (in parenthesis) of intrinsic dimension across 20 runs for every
dataset, using 80% of samples drawn at random for each run.

On half of the benchmark datasets (namely Isolet, ORL, pixraw10P and warpPIE10P), the average esti-
mated ID over the 20 splits is close to the ÎD obtained with all samples (table 6.2, 10% variation or less), with
a small variance (at most 5% of the expected value). This holds true for both the normalized and unnormalized
versions of the data. The 2-NN method thus appears to be a trustworthy ID estimator for these datasets.

Although the mean estimated ID across splits is also consistent with table 6.2 for the remaining half of the
benchmark datasets (namely Arcene, ProstateGE, TOX171 and Yale), we observe a high variance (between
7% and 20% of the expected value). This means that the results of a run are strongly dependent on which
20% of samples are omitted for ID estimation in that run. Therefore, this indicates that the ID estimator is
sensitive w.r.t. outliers for these datasets, and that ÎD is a brittle estimation of the true intrinsic dimension in
those cases.

The mean estimated ID is twice larger in the normalized version of the data for Arcene and TOX171, which
is in line with table 6.2. However, a novel observation is that feature normalization also leads to a disproportio-
nate increase in variance in both cases (from 2% to 7% in TOX171 ; from 4% to 19% in Arcene). This suggests
that rescaling does not modify the apparent intrinsic dimensionality uniformly across the dataset, increasing
the sensitivity of the ID estimator.

The main takeaway of this preliminary analysis is that the constraint d = ÎD should likely be relaxed in all
three declinations of AGNOS, which section 6.4.2 will showcase the impact of.

3. The 2-NN ID estimator being a deterministic algorithm, we cannot simply perform multiple runs on the full dataset and examine
the variance of the results.
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6.1.2.3 Selection subset size

Following the manifold assumption and the discussion on intrinsic dimension (chap. 2), the intrinsic dimen-
sion ID of the data provides a lower bound for the selection subset size k by construction. In practice, it is
unlikely that any selection subset of size k = ID is able to fully recover the original feature set F . Furthermore,
we only have access to an approximation ˆID of the ”true” intrinsic dimension, of unknown precision.

In order to avoid selecting too few features and for the sake of cautiousness, we therefore want that
k > ÎD. The wider the margin between ÎD and k, the more likely Sk to be sufficient for recovering F .
However, the larger k, the more similar the respective performances of the different considered unsupervised
FS algorithms tend to be, as will be shown in section 6.4.

k should therefore ultimately be set to a value larger than the estimated intrinsic dimension of the datasets,
but small enough that we can observe a stark contrast in performance among the baselines and the three
declinations of AGNOS. As a consequence of preliminary experiments, we choose the default selection subset
size to be k = 100. For the sake of completeness, we will however study the behavior of the baselines and
AGNOS for varying subset sizes in section 6.4.

6.2 Supervised evaluation results

Section 6.2.1 first assesses the stability of the performance of AGNOS (according to the 3 considered
supervised performance indicators) w.r.t. the random initialization of the AutoEncoder parameters. AGNOS-S,
AGNOS-G and AGNOS-W are then compared to the baselines in section 6.2.2.

6.2.1 Sensitivity w.r.t. initialization of network parameters

All baseline unsupervised FS methods considered are deterministic algorithms. By contrast, AGNOS is
stochastic, given that it relies on training a neural network. The inherent randomness comes from the ini-
tialization of the AutoEncoder parameters (using the Glorot initialization of weights and biases (Glorot and
Bengio, 2010)). A first step consists of examining the stability of AGNOS performance across runs, controlling
the reliability of the results under an affordable time complexity budget.

Tables 6.4 and 6.5 display the results respectively obtained with the standard classification and the ACC
scores of AGNOS-S, AGNOS-W and AGNOS-G on the benchmark datasets. Each table contains the mean
and variance, over 10 runs with different initial network parameters, of the score.

The standard classification score (Table 6.4) is measured with a 5-NearestNeighbor classifier and k = 100
selected variables. The variance of the classification score is shown to be small (less than 1% of the mean)
for every dataset and declination of AGNOS, establishing its low sensitivity w.r.t. the random initialization of
the AutoEncoder.

Similar conclusions can be drawn from Table 6.5, which records the ACC scores using the same setup as
above.
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Dataset AgnosS AgnosW AgnosG
Arcene 0.81(-) 0.77(0.003) 0.75(0.004)
Isolet 0.83(-) 0.84(-) 0.65(-)
ORL 0.93(-) 0.93(-) 0.89(-)
pixraw10P 0.97(-) 0.93(-) 0.99(-)
ProstateGE 0.76(-) 0.83(-) 0.75(-)
TOX171 0.66(0.001) 0.86(0.006) 0.63(0.007)
warpPIE10P 0.99(-) 0.98(-) 0.98(-)
Yale 0.63(-) 0.60(-) 0.61(-)

TABLE 6.4: Mean and variance of standard classification score of 5-NearestNeighbor classifier
on the benchmark datasets for the three declinations of AGNOS, over 10 runs with different Glorot

initializations of network parameters. (-) indicates a variance lower than 10−3.

In both cases, and even more so in the ACC case, AGNOS-W and AGNOS-G variances are higher than
for AGNOS-S. Specifically, the variance is negligible for AGNOS-S on all datasets but 2 (where it is 10−3). In
contrast, the variance is circa 4 10−3 on all datasets but two for AGNOS-W and AGNOS-G.

Dataset AgnosS AgnosW AgnosG
Arcene 0.67(-) 0.62(0.002) 0.63(0.002)
Isolet 0.54(0.001) 0.58(-) 0.41(0.001)
ORL 0.57(-) 0.55(-) 0.53(-)
pixraw10P 0.81(0.002) 0.64(0.009) 0.78(0.008)
ProstateGE 0.61(-) 0.59(0.006) 0.57(0.005)
TOX171 0.40(-) 0.29(0.006) 0.36(0.007)
warpPIE10P 0.27(-) 0.36(0.002) 0.42(0.002)
Yale 0.51(-) 0.38(-) 0.53(-)

TABLE 6.5: Mean and variance of ACC score on the benchmark datasets for the three decli-
nations of AGNOS, over 10 runs with different Glorot initializations of network parameters. (-)

indicates a variance lower than 10−3.

Likewise, table 6.6 contains the mean and variance of the NMI scores. The variance of the NMI score
is also less than 1% of the mean in most cases. There are however some outliers for which the variance is
proportionally larger (e.g. ∼ 8% of the mean for AGNOS-W on ProstateGE). This seems to occur only in the
event that the mean NMI score is itself small (less than 0.10).

Given the overall stability of the results, we will in the remainder of this chapter neglect the variance due
to random network parameter initialization and consider only the expected value.
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Dataset AgnosS AgnosW AgnosG
Arcene 0.08(-) 0.02(-) 0.04(-)
Isolet 0.69(-) 0.70(-) 0.58(-)
ORL 0.76(-) 0.77(-) 0.73(-)
pixraw10P 0.87(-) 0.76(0.003) 0.81(0.004)
ProstateGE 0.06(-) 0.13(0.006) 0.01(-)
TOX171 0.23(0.001) 0.15(0.009) 0.08(0.002)
warpPIE10P 0.28(0.001) 0.35(0.003) 0.33(0.003)
Yale 0.54(-) 0.50(-) 0.56(-)

TABLE 6.6: Mean and variance of NMI score on the benchmark datasets for the three declinations
of AGNOS, over 10 runs with different Glorot initializations of network parameters. (-) indicates a

variance lower than 10−3.

Dataset AgnosS AgnosW AgnosG Laplacian MCFS NDFS SPEC
Arcene 0.81 0.77 0.75 0.67 0.52 0.69 0.70
Isolet 0.83 0.84 0.65 0.68 0.65 0.82 0.74
ORL 0.93 0.93 0.89 0.92 0.90 0.91 0.87
pixraw10P 0.97 0.93 0.99 0.99 0.95 0.98 0.85
ProstateGE 0.76 0.83 0.75 0.75 0.74 0.71 0.70
TOX171 0.66 0.86 0.63 0.84 0.74 0.67 0.78
warpPIE10P 0.99 0.98 0.98 0.99 0.96 0.98 0.98
Yale 0.63 0.60 0.61 0.56 0.53 0.63 0.58

TABLE 6.7: Supervised classification scores of 5-NearestNeighbor classifier for the three decli-
nations of AGNOS and the baselines on the benchmark datasets. Statistically significantly better

(according to a t-test with a p-value of 0.05) results in boldface.

6.2.2 Comparison with the baselines

Tables 6.7, 6.8 and 6.9 respectively contain, for the three variants of AGNOS and the four baselines, the
classification, ACC and NMI scores on every benchmark dataset. In particular, AGNOS-S appears to perform
better on average than the group-LASSO based AGNOS-W and AGNOS-G, with the default hyperparameter
values (k = 100, d = ÎD, λ = 1). The validity of this conclusion in other regions of the hyperparameter space
will be investigate during the sensitivity study (sec. 6.4).

Interestingly, on the two high-dimensional image datasets pixraw10P and warpPie10P, the Laplacian
method matches respectively AGNOS-G and AGNOS-S w.r.t. the classification score.

On the remaining lower dimensionality image dataset Yale, NDFS matches the results of AGNOS-S.
On Isolet, AGNOS-W and to a lesser extent AGNOS-S outperform all other algorithms, with NDFS ranking

third.
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Dataset AgnosS AgnosW AgnosG Laplacian MCFS NDFS SPEC
Arcene 0.67 0.62 0.63 0.66 0.56 0.51 0.66
Isolet 0.54 0.58 0.41 0.48 0.41 0.57 0.57
ORL 0.57 0.55 0.53 0.55 0.56 0.54 0.47
pixraw10P 0.81 0.64 0.78 0.80 0.75 0.78 0.48
ProstateGE 0.61 0.59 0.57 0.58 0.59 0.57 0.59
TOX171 0.40 0.29 0.36 0.45 0.48 0.46 0.47
warpPIE10P 0.27 0.36 0.42 0.29 0.36 0.29 0.33
Yale 0.51 0.38 0.53 0.44 0.40 0.44 0.40

TABLE 6.8: Supervised ACC scores for the three declinations of AGNOS and the baselines on
the benchmark datasets. Statistically significantly better (according to a t-test with a p-value of

0.05) results in boldface.

Dataset AgnosS AgnosW AgnosG Laplacian MCFS NDFS SPEC
Arcene 0.08 0.02 0.04 0.09 0.20 0.01 0.09
Isolet 0.69 0.70 0.58 0.62 0.56 0.70 0.69
ORL 0.76 0.77 0.73 0.76 0.78 0.74 0.70
pixraw10P 0.87 0.76 0.81 0.86 0.86 0.84 0.66
ProstateGE 0.06 0.13 0.01 0.02 0.02 0.01 0.02
TOX171 0.23 0.15 0.08 0.27 0.22 0.33 0.24
warpPIE10P 0.28 0.35 0.33 0.30 0.30 0.34 0.34
Yale 0.54 0.50 0.56 0.49 0.52 0.48 0.44

TABLE 6.9: Supervised NMI scores for the three declinations of AGNOS and the baselines on the
benchmark datasets. Statistically significantly better (according to a t-test with a p-value of 0.05)

results in boldface.

On ORL, AGNOS-S and AGNOS-W outperform others, though Laplacian and NDFS obtain close per-
formances. On Arcene, AGNOS-S significantly outperforms all other methods, while AGNOS-W does so on
ProstateGE and TOX171, medical datasets with comparatively high intrinsic dimension.

Overall, AGNOS is therefore shown to be competitive with the baselines in terms of supervised evaluation ;
specifically, the best recorded performance is achieved by a declination of AGNOS on all datasets w.r.t. the
classification score, 7 out of 8 datasets w.r.t. the ACC score, and 5 out of 8 w.r.t. the NMI score.

These first sup. results are encouraging. However, based on the claim that the sup. assessment is brittle,
we shall delay the discussion regarding the respective performances of AGNOS-S, AGNOS-W and AGNOS-G
to their unsup. assessment in sec. 6.3.
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Discussion

On one hand, we set the number of clusters κ used in sup. clustering to the minimal value c corresponding
to the number of sup. classes in the dataset. On the other hand, the NMI score tends to be positively correlated
with κ (sec. 5.2.2.3). Consequently, we expect the NMI to be positively correlated with c.

AgnosS AgnosW AgnosG Laplacian MCFS NDFS SPEC
ACC -0.01 0.14 -0.15 -0.11 -0.14 -0.12 -0.20
NMI 0.72 0.79 0.73 0.71 0.70 0.71 0.80

TABLE 6.10: Correlation between scores and number of classes in the dataset, for the three
declinations of AGNOS and the baselines.

Table 6.10 contains the correlations between the ACC and NMI scores on one hand, and c on the other
hand. Expectedly, the NMI score is strongly correlated to c. The correlation between the ACC score and c is
much lower than for the NMI, for all algorithms 4. The ACC score should accordingly be prioritized over the
NMI score if no prior knowledge is available to tune κ.

6.3 Unsupervised evaluation results

Section 6.3.1 first assesses the stability of the FIT score of AGNOS w.r.t. the randomness of the initial
conditions ; section 6.3.2 provides a comparison of the three declinations of AGNOS with the baselines, which
is further discussed in section 6.3.3.

6.3.1 Sensitivity w.r.t. initialization of network parameters

Similarly as for sup. assessment, the variance in the results due to the Glorot initialization is minimal (less
than 1% of the mean value) for all datasets and declinations of AGNOS, though AGNOS-W and AGNOS-G
appear to be slightly less stable than AGNOS-S. Overall, the FIT score is shown to be hardly sensitive w.r.t.
initial conditions. We will therefore neglect this source of variance in the remainder of this chapter, recording
only the mean value.

6.3.2 Comparison with the baselines

Table 6.12 contains the respective FIT scores of the considered FS algorithms over the benchmark da-
tasets. The proposed AGNOS-S is shown to achieve a higher FIT score than the baselines on all datasets.
These results empirically demonstrate that the selection subsets induced by AGNOS-S retain more informa-
tion about the features on average than the baselines.

4. Interestingly enough, this correlation is slightly positive for AGNOS-W and negative for the baselines and AGNOS-G. This
suggests that the baselines and AGNOS-G are less adequate for multi-label classification than AGNOS-W and AGNOS-S.
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Dataset AgnosS AgnosW AgnosG
Arcene 0.610(-) 0.460(6× 10−4) 0.560(5× 10−4)
Isolet 0.763(-) 0.762(-) 0.701(-
ORL 0.800(-) 0.795(-) 0.780(-)
pixraw10P 0.855(-) 0.782(4× 10−4) 0.832(3× 10−4)
ProstateGE 0.662(-) 0.620(3× 10−4) 0.606(3× 10−4)
TOX171 0.581(-) 0.580(2× 10−4) 0.528(3× 10−4)
warpPIE10P 0.910(-) 0.897(-) 0.901(-)
Yale 0.703(-) 0.696(-) 0.671(-)

TABLE 6.11: Mean and variance of FIT score on the benchmark datasets for the three decli-
nations of AGNOS, over 10 runs with different Glorot initializations of network parameters. (-)

indicates a variance lower than 10−4.

Arcene Isolet ORL pixraw10P ProstateGE TOX171 warpPIE10P Yale
AgnoS-S 0.610 0.763 0.800 0.855 0.662 0.581 0.910 0.703
AgnoS-W 0.460 0.762 0.795 0.782 0.620 0.580 0.897 0.696
AgnoS-G 0.560 0.701 0.780 0.832 0.606 0.528 0.901 0.671
Laplacian 0.576 0.680 0.789 0.840 0.655 0.563 0.903 0.601
MCFS 0.275 0.720 0.763 0.785 0.634 0.549 0.870 0.652
NDFS 0.490 0.747 0.796 0.835 0.614 0.520 0.904 0.677
SPEC 0.548 0.733 0.769 0.761 0.646 0.559 0.895 0.659

TABLE 6.12: FIT score of 5-NearestNeighbors regressor using the top 100 ranked features. Sta-
tistically significantly (according to a t-test with a p-value of 0.05) better results in boldface.

By constrast, AGNOS-W and AGNOS-G are both outperformed by at least one baseline on every bench-
mark dataset (with the exception of AGNOS-W on TOX171 and Yale). Our interpretation is that this is due to
a key difference between the LASSO regularization and the slack variables. One one hand, the importance
of initial feature fj is in AGNOS-W and AGNOS-G obtained by taking the maximum of a d-dimensional vector.
This process therefore ignores the behavior of d − 1 latent features. On the other hand, the importance of
fj is directly given by the single positive real value |aj |, summarizing its influence over all d latent variables
simultaneously, which tentatively explains why this allows the slack variable layer to better reflect the influence
of the original variables.

6.3.3 Discussion

Stability of results is not stability of selection While the three variants of AGNOS obtain very stable
results according to both sup. and unsup. performance indicators (w.r.t. the random initialization of the Auto-
Encoder parameters), the selected features themselves are not. Quite the contrary, the overlap between
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selection subsets resulting of two different runs of AGNOS may be as low as 5% (95% of features selected in
one run are rejected in the other), for all datasets.

Given that both sup. and unsup. performance indicators are stable across runs however, suggesting that
different selected subsets carry the same information, the variability of the selected features is explained from
the feature redundancy within a dataset : typically, in the case of several copies of a same feature, one of
these copies should be selected indifferently by AGNOS. More generally, AGNOS indiscriminately picks one
representative per cluster of correlated features.

Leaving no feature behind Figure 6.1 depicts the respective cumulative distribution functions of the R2

scores achieved by a 5-NearestNeighbors regressor using the top 100 ranked features by the baseline me-
thods and the three AGNOS variants, on Arcene. A first observation is that every FS algorithm leads to
accurate fitting (R2 score > 0.8) of some features and poor fitting (R2 score < 0.2) on some other features.
This shows that the quality of the model predictions is very sensitive w.r.t. the target variable, which is an
additional supportive argument to our claim that sup. assessment of unsup. FS (dealing with a single target)
is unreliable. Most importantly, FS algorithms differ in the number of poorly fitted features. R2 scores < 0.2
are achieved for less than 20% of features using any declination of AGNOS and more than 35% of features
using MCFS. This shows that on this example dataset, AGNOS retains information about more features than
MCFS.

FIGURE 6.1: Cumulative distribution functions of the R2 scores of a 5-NearestNeighbors re-
gressor using the top 100 ranked features on Arcene. If a point has coordinates (x, y), then the

goodness-of-fit of the regressor is ≤ x for y initial features (the lower, the better).

Unreliabilty of sup. assessment Table 6.13 contains the respective frequencies of ranks attained by each
selection method w.r.t. the R2 scores of each feature on the warpPIE10P dataset. A first observation is that
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not only is AGNOS-S more often ranked first than the baselines, it is also least often ranked last. This property
also holds true for AGNOS-W and AGNOS-G, although the contrast with the baselines is less pronounced.
This is once again in line with the idea of reconstructing every initial variable.

1 2 3 4 5 6 7
AgnoS-S 0.37 0.09 0.12 0.09 0.17 0.07 0.08
AgnoS-W 0.16 0.11 0.09 0.23 0.07 0.21 0.13
AgnoS-G 0.12 0.17 0.11 0.18 0.05 0.24 0.13
LAP 0.12 0.17 0.20 0.17 0.04 0.17 0.13
MCFS 0.10 0.23 0.11 0.19 0.04 0.16 0.17
NDFS 0.08 0.21 0.13 0.11 0.11 0.09 0.27
SPEC 0.04 0.03 0.25 0.03 0.52 0.05 0.09

TABLE 6.13: Frequency of ranks of selection methods w.r.t. R2 scores of each feature on warp-
PIE10P with a 5-NearestNeighbors regressor using the top 100 ranked features. For instance,
AGNOS-S obtains the lowest reconstruction error among the 7 candidate methods for 37% of the

original features.

Most importantly, every FS algorithm is able to achieve any rank for some original features. Therefore,
the ranking of unsup. FS w.r.t. sup. assessment is extremely brittle, depending on the target variable
considered . This confirms our claim (chap. 5) that sup. assessment is partial, thus unreliable. It remains to
show that the FIT score itself is stable w.r.t. hyperparameters d, k and λ (sec. 6.4).

6.4 Sensitivity study

We will study the sensitivity of the 3 aforementioned supervised performance indicators, as well as the
proposed FIT score, w.r.t. three parameters :

— The size k of the selection subset (section 6.4.1).

— The size d of the hidden layer of the AutoEncoder (section 6.4.2).

— The strength λ of the sparsity penalty term in the AutoEncoder loss function (section 6.4.3).

In order to conduct this sensitivity study, we will record the performance indicators with 2 of the 3 para-
meters set to their respective default values and the remaining parameter varying across a wide range 5. The
default values are the same as in section 6.1, namely : {k = 100; d = ÎD, λ = 1}.
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FIGURE 6.2: Prediction score of 5-NearestNeighbor classifier w.r.t. selection subset size k, on
Yale

6.4.1 Sensitivity w.r.t. number of selected features k

6.4.1.1 Classification-based criterion

Figure 6.2 depicts the classification accuracy achieved by the 5-NearestNeighbor classifier trained only
from the selection subset Sk as a function of k, on the Yale dataset. A first observation is that this supervised
score expectedly appears to increase with k overall. Additionally, AGNOS-S outperforms all other methods for
k ≤ 100. Thereafter, it is locally overtaken by NDFS and globally matched by AGNOS-G. There is therefore a
clear-cut best candidate on this dataset. However, the ranking of ”middle of the pack” algorithms is unstable :
AGNOS-W, NDFS and SPEC regularly overtake each other. This makes it difficult to precisely gauge the
efficiency of the respective FS methods with this performance indicator.

Similar results are visible on fig. 6.3, depicting the results on ProstateGE. On this dataset, the clear-cut
best candidate is AGNOS-W. For the other six methods, the performances are brittle and may be highly non
monotonous w.r.t. k ; note for instance the sharp decreasef in classification accuracy of NDFS when k passes
from 10 to 15. This non-monotony is blamed on the addition of features irrelevant for predicting the target,
hindering the classifier.

In conclusion, the supervised performance indicator is too sensitive w.r.t. k to provide a consistent ranking
of methods. 6



6.4. Sensitivity study 95

FIGURE 6.3: Prediction score of 5-NearestNeighbor classifier w.r.t. selection subset size k, on
ProstateGE

FIGURE 6.4: ACC score w.r.t. selection subset size k, on TOX171

6.4.1.2 Clustering-based criteria

Figures 6.4 and 6.5 depict the sensitivity w.r.t. k of the ACC score on TOX171 (resp. of the NMI score
on warpPIE10P). Both these performance criteria appear to be highly sensitive w.r.t. the selection subset
size, and they do not support any consistent (dataset-dependent) ranking of the methods. Similarly chaotic
performance curves were observed on all other benchmark datasets. This sensitivity could admittedly be

5. This technique will allow us to measure the sensitivity of the results in a small region of the R3 hyperparameter space, centered
around the coordinates corresponding to the default values. In order to obtain a more comprehensive overview of result sensitivity
across the hyperparameter landscape, one should instead turn to a fine-grained grid search.

6. Note that, even if the resulting ranking were stable w.r.t. k, the partiality problem exposed in chapter 5 would remain.
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FIGURE 6.5: NMI score w.r.t. selection subset size k, on warpPIE10P

decreased by fine-tuning the number κ of clusters considered beforehand ; nevertheless these experiments
suggest that these two criteria are ill-suited to compare FS algorithms fairly.

6.4.1.3 FIT criterion

FIGURE 6.6: FIT score w.r.t. selection subset size k, on Yale

Figure 6.6 depicts the FIT score attained by the 3 declinations of AGNOS and the baselines as a function
of the selection subset size k, on the Yale dataset.

For all considered FS algorithms, the FIT score appears to be a non-decreasing function of k, nonwiths-
tanding a few exceptions (e.g. the decrease between 30 and 40 selected features for the Laplacian approach).
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Additionally, the ranking of selection methods is shown to be robust w.r.t. k 7, with AGNOS-S attaining the top
rank for any k > 20. Concordant results were observed on the other benchmark datasets.

Following these two observations, the proposed FIT score appears much more reliable for ranking unsu-
pervised FS approaches than the 3 considered supervised performance indicators, in the absence of prior
knowledge regarding the desired size of the selection subset.

The smoothness of the performance curves was expected as the FIT indicator is an average over thou-
sands of elements (the original features), whereas the supervised criteria are obtained from a single target,
leading to the irregular curves shown previously.

Furthermore, the gap in performance between the top and bottom ranked algorithms expectedly de-
creases as k increases (it would eventually be 0 for k = D). However, an additional interesting result is
that FS approaches do not all benefit equally from a larger selection subset size. Typically, SPEC generally
obtains low results for small values of k. This is explained as SPEC is ill-suited to handle redundant features,
with a tendency to select features correlated to each other. This is visible on Yale, and all the more so on the
Arcene dataset, for which the results are provided in figure 6.7.

FIGURE 6.7: FIT score w.r.t. selection subset size k, on Arcene

Arcene is the only benchmark dataset for which negative FIT scores are recorded. The 5-NearestNeighbor
regressor trained from SPEC is worse than a constant regressor for k ≤ 30. However, its performance then
abruptly improves as k increases to 50.

Given that the performance of AGNOS-S is already close to the observed global maximum for k = 5,
it appears than very few variables are required to accurately predict the whole feature set on this dataset.
However, the top 30 ranked features w.r.t. SPEC are likely highly redundant (even duplicates), explaining
the constant FIT score for k ∈ [5, . . . , 30]. Actually relevant features occupy the next 20 spots in the SPEC
ranking, which is the reason for the sudden jump in fitting accuracy. The counterperformance of AGNOS-W is
interpreted as the sparsity penalty being insufficiently strong to handle the known redundancy of the features.

7. The rank of each method changes at most 3 times with k, and the top ranked algorithms are mostly invariant across the
considered range [5, . . . , 200].
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Ongoing experiments will clarify this phenomenon. By contrast, this issue of inefficient selection for small
subset sizes has not been encountered by AGNOS-S.

6.4.2 Sensitivity w.r.t. dimension of hidden layer d

6.4.2.1 Classification-based criterion

FIGURE 6.8: Prediction score of 5-NearestNeighbor classifier w.r.t. hidden layer size d, on Yale.
The vertical black dotted line corresponds to the estimated intrinsic dimension. The colored ho-
rizontal dotted line correspond to the respective prediction scores of the baselines (independent

of d)

Figure 6.8 depicts the classification accuracy attained by the 3 declinations of AGNOS as a function of the
size d of the hidden layer of the AutoEncoder, on the Yale dataset. The performance of all three declinations
of AGNOS w.r.t. this criterion appears sensitive w.r.t. d. The supervised predictive accuracy of AGNOS-W
diminishes as d increases, which is attributed to the same phenomenon as in fig. 6.7. This variant of AGNOS
eventually performs worse than all baselines. On the other hand, AGNOS-S remains a better candidate than
all baselines for all d in a reasonable range (in [10, 85]).
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6.4.2.2 Clustering-based criteria

FIGURE 6.9: ACC score (left panel) and NMI score (right panel) w.r.t. hidden layer size d, on
Yale. The vertical black dotted line corresponds to the estimated intrinsic dimension. The colored
horizontal dotted line correspond to the respective FIT scores of the baselines (independent of

d).

Figure 6.9 records the ACC and NMI scores as function of d, on Yale. The sensitivity of the results w.r.t. d
is higher than for the classification criterion, with AGNOS-S generally being the best candidate and AGNOS-G
a close second. However, all three declinations of AGNOS can perform worse than at least one baseline for
some values of d. The brittleness of the resulting ranking confirms that these two performance criteria are
ill-advised for comparing FS algorithms.

6.4.2.3 FIT criterion

Figure 6.10 depicts the FIT score attained by the 3 declinations of AGNOS as a function of the size d of the
hidden layer of the AutoEncoder, on the Yale dataset. The respective performances of both AGNOS-W and
AGNOS-G are s.t. the rank of both variants among the considered FS methods fluctuates with d. By contrast,
the performance of AGNOS-S appears to be stable w.r.t. d, and remains higher than all baselines across the
entire range d ∈ [5, . . . , 100]. Concordant results were observed on the other benchmark datasets.

The fact that the performance of AGNOS-W decreases for d > ÎD is congruent with the reasoning exposed
in chapter 4 ; if the size of the hidden layer is larger than the intrinsic dimension, then the set of latent features
likely contains redundancy. In turn, original features that are important to build only superfluous latent features
may be wrongfully selected, negatively impacting the results.

By construction, all latent features matter for d = ÎD, meaning the above issue is averted and only the
most relevant initial features are selected. However, this assumption does not seem to hold in practice, as
highlighted by the fact that the performance of AGNOS-G is shown to increase for d > ÎD. In order to address
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FIGURE 6.10: FIT score w.r.t. hidden layer size d, on Yale. The vertical black dotted line corres-
ponds to the estimated intrinsic dimension. The colored horizontal dotted line correspond to the

respective FIT scores of the baselines (independent of d).

this shortcoming, a potential direction for further work is to take into account the varying importance of the
latent features in the selection criterion (chap. 7).

The low sensitivity of performance w.r.t. d means that studying the intrinsic dimension of the dataset as
preprocessing is of lesser importance for AGNOS-S than for AGNOS-G and AGNOS-W. This is consequently
another argument in favor of this declination of AGNOS. We interpret this robustness property in the same
manner as in section 6.3 ; in AGNOS-W, the encoder weights (resp. the encoder gradients in AGNOS-G) are
simultaneously affected by the reconstruction penalty and the group LASSO penalty. Therefore, the value
of d directly governs the number of parameters responsible for enforcing sparsity, and in turn has a strong
influence on the final selection criteria. On the other hand, sparsity is enforced in AGNOS-S by the slack
variable layer, which size is unaffected by d. The quality of the selection criterion in AGNOS-S is therefore less
reliant on finetuning d.

6.4.3 Sensitivity w.r.t. penalization strength λ

Figure 6.11 depicts the FIT scores of the three AGNOS variants as function of λ (represented in log scale)
on Isolet .

The performance of AGNOS appear to be sensitive w.r.t. λ, with all three variants possibly being overtaken
by some of the baselines. However, the suitable range for λ differs for each declination of AGNOS. For both
AGNOS-S and AGNOS-W, the default value λ = 1 leads to a FIT score close to the recorded maximum.
However, this default value appears to be too large for AGNOS-G, requiring λ = 10−3 to reach its best
performance instead. This is related to the phenomenon of fig. 6.7, which is under study.
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FIGURE 6.11: FIT score w.r.t. penalization strength λ (represented in log scale), on Isolet. The
vertical black dotted line corresponds to the default value of λ = 1. The colored horizontal dotted
line correspond to the respective FIT scores of the baselines (independent of λ). Similar curves

are obtained for the other benchmark datasets, as well as for sup. assessment.

arcene Isolet ORL pixraw10P ProstateGE TOX171 warpPie10P Yale
AGNOS-S 265 25 29 242 145 143 31 14
AGNOS-W 422 31 40 389 191 180 47 18
AGNOS-G 428 32 42 394 195 184 48 18
Laplacian <1 <1 <1 <1 <1 <1 <1 <1
SPEC 3 9 <1 2 1 2 1 <1
MCFS <1 2 <1 <1 <1 <1 <1 <1
NDFS 130 16 17 193 80 76 18 7

TABLE 6.14: Empirical runtimes on a single Nvidia Geforce GTX 1060 GPU, in seconds.

Main drawback of AGNOS : the computational cost

Table 6.14 contains the empirical runtimes of the baselines and the three variants of AGNOS on each
dataset. AGNOS-S is shown to be between 25% and 100% slower than NDFS, and several orders of magnitude
slower than Laplacian score, SPEC and NDFS. Training an Auto-Encoder with a number of parameters of the
order of D × d thus appears more expensive than spectral clustering-based optimization 8. AGNOS-W and
AGNOS-G are even slower, being on average 50% slower than AGNOS-S. This is explained by the fact that the
respective loss functions of AGNOS-W and AGNOS-G involve D×d parameters (resp. weights and gradients)
compared to the D slack variables computed in AGNOS-S.

The computational effort thus constitutes the main limitation of the proposed algorithmic contribution.
Consequently, a perspective for future research is to lower the complexity of the approach, either with early

8. Arguably, the use of GPU for neural computation is significally more advanced than for spectral clustering, although some
announcements from Nvidia (nvi, 2017) suggest that appropriate libraries for spectral clustering with CUDA would be available soon.
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stopping or recursive feature elimination (chap. 7).

6.5 Partial Conclusion

This experimental study has shown that AGNOS is able to consistently select a subset sufficient to recover
the whole original feature set, and outperform the considered baseline methods w.r.t. both sup. and unsup.
performance criteria. A remaining question is which one of the three AGNOS declinations is best suited to the
dataset at hand, particularly so among AGNOS-S and AGNOS-G. As said, the comparative lesser performance
of AGNOS-W is under study.

The second contribution of the chapter is to show the merits of the proposed FIT criterion, in terms
of stability w.r.t. the target feature by construction and also w.r.t. the hyper-parameters of FS such as the
selection subset size. This robustness property, highlights the reliability of the FIT evaluation scheme for
comparing unsupervised FS algorithms.

Finally, the unsup. part of this empirical study (sec. 6.3) has also underlined the partiality issue inherent
to sup. validation of unsup. FS, as claimed in chapter 5, the ranking of unsup. FS algorithms w.r.t. any sup.
scoring function arbitrarily depending on the considered learning goal.
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Perspectives and conclusion

Two different aspects of unsupervised feature selection have been explored in this thesis. On one hand, a
novel unsupervised FS algorithm has been proposed. On the other hand, we have devised a new performance
evaluation framework for comparing unsupervised FS techniques.

This chapter first recalls the main results and lessons learned for the unsupervised feature selection
problem (section 7.1), then discusses the research perspectives opened by this work in section 7.2.

7.1 Summary of contributions

7.1.1 Unsupervised Dimensionality Reduction

As shown (chap. 2), the curse of dimensionality (Pestov, 1999) effectively renders the Euclidean distance
ineffective to assess similarity between high-dimensional datapoints. Moreover, the efficiency of state-of-the-
art unsup. FS approaches (chap. 3) is noticeably hindered, admittedly to a varying extent, when faced with
features carrying redundant information. Thirdly, features are typically retained in view of a single particular
learning goal (chap. 5), even though all original variables are potential learning goals in the unsup. context
(LeCun, 2016).

Taking note from the above three remarks, the proposed algorithmic contribution hinges on Auto-Encoding
neural networks to simultaneously suppress the need for a high-dimensional similarity metric and perform
agnostic feature selection. In doing so, Agnostic Feature Selection (AGNOS, chap. 4) essentially bridges the
gap between unsupervised feature construction and selection. Three variants of this algorithmic contribution
(named AGNOS-W, AGNOS-G and AGNOS-S) have been proposed, each enhancing the AutoEncoder with a
different form of structural regularization enforcing sparse selection, thereby efficiently addressing the feature
redundancy issue.

7.1.2 Assessment of unsupervised Feature Selection

As seen (chap. 5), we claim that typical sup. performance indicators for unsup. FS lack in reliability and
stability. In order to provide a stable and reliable performance indicator, we propose the methodological contri-
bution of this thesis, the unsup. FIT scoring criterion (chap. 5).



104 Chapitre 7. Perspectives and conclusion

7.1.3 Empirical evidence

A systematic study has been conducted to back the claims of the thesis. On the one hand, it is shown that
the proposed AGNOS algorithm outperforms state-of-the-art unsup. FS methods (He et al., 2005; Zhao and
Liu, 2007; Cai et al., 2010; Li et al., 2012) w.r.t. both typical sup. assessment metrics and the novel FIT score.

The main two lessons learned from the empirical study concern both unsupervised FS and the validation
methodology :

— On the algorithmic side, AGNOS favourably compares to the most impactful unsup. FS techniques on
representative datasets illustrating different application domains (medical, text and face image data)
and an artificial dataset known to hinder independent scoring methods.

— On the methodological side, we establish that sup. performance indicators generally used to assess
unsup. FS provide brittle results. The exploitation of the intrinsic dimensionality of a dataset can also be
considered a worthy ingredient for unsup. FS in the data compression perspective.

These findings were the subject of an accepted paper at the 2019 edition of the European Conference on
Machine Learning (ECML) 1.

7.1.4 Strengths and weaknesses

Pros The main benefits of our contribution are :

— Escaping the curse of dimensionality by avoiding usage of a high-dimensional pairwise similarity metric.

— Capturing much more information than spectral clustering-based methods : the objective is to recover D
original features rather than a single pseudo-label variable. As a result, the selected subset is relevant
w.r.t. any learning goal.

— Efficiently handling redundant feature sets, thanks to the sparsity-enforcing term in the Auto-Encoder
loss.

Cons Nevertheless, AGNOS currently suffers from a sizeable drawback : its empirical time complexity is
shown to be larger by at least a factor two, and often an order of magnitude, than state-of-the-art unsup. FS
methods (chap. 6). Lowering the computational cost of the approach is our first perspective for future research
(sec. 7.2).

7.2 Towards more robust and computationally efficient agnostic feature se-
lection

This work opens three perspectives for further research.

1. Agnostic Feature Selection, G. Doquet and M. Sebag, ECML PKDD 2019
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7.2.1 Computational cost

A short-term research perspective is to reduce the computational cost of AGNOS. A first option is to trans-
form AGNOS from a filter-based approach to an embedded online selection method, taking inspiration from
Guyon et al. (2002). One possible way of iteratively eliminating the original features least contributing towards
learning the constructed features in the latent AutoEncoder data representation during network training, is to
set the associated slack variables to 0 in AGNOS-S. Given this modification, the dimensionality of the input
continuously decreases, hereby greatly reducing computational cost both in terms of time and space com-
plexity, and allowing AGNOS to better scale to large real-life datasets. Such an iterative process can support
an automatic stopping criterion in the approach, s.t. the number of features to ultimately retain is determined
on the fly, as is already implemented in supervised neural network-based approaches such as Drop-Out-One
(Ye and Sun, 2018).

A second option is to use an early stopping of the Auto-Encoder, e.g. when the feature ranks as computed
from the slack variables and/or the weights or gradients have not changed for some consecutive epochs :
indeed, a perfect reconstruction accuracy is a means rather than an end for the AE learning.

7.2.2 Probabilistic AGNOS

A longer-term perspective consists of replacing the deterministic AutoEncoder relied upon by AGNOS with
a Variational AutoEncoder (Kingma and Welling, 2013) (appendix .1). Given this modified neural architecture,
original features would be selected w.r.t. their usefulness for generating realistic new samples, rather than
reconstructing the existing datapoints.

The goal of this extension is to provide a more robust feature selection approach in the case where the
application domain contains very few samples comparatively to the number of features, e.g. in DNA-based
bioinformatics research.

7.2.3 Better exploiting the latent features

As said, AGNOS relies on the implicit assumption that all constructed features are equally important for
reconstructing the original data (chap. 4). This assumption is unlikely to hold in practice, as underlined by
the lower empirical performance (chap. 6) of AGNOS-W and AGNOS-G (where feature importance is derived
from one constructed feature) comparatively to AGNOS-S (where feature importance simultaneously involves
all constructed features).

In the short term, the extension of AGNOS-G to consider the gradients from f̂i w.r.t. fi (∂f̂i) is a way
to seamlessly handle the importance of the latent variables. In a medium term, the importance of the latent
variables φj w.r.t. f̂i can be used to weight the importance of the fis.

7.2.4 Causal discovery

Lastly, a long-term perspective is to explore the link between the proposed unsupervised feature selection
paradigm and the neighboring field of causal inference (Pearl, 2009). Causal feature selection (Guyon and
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Aliferis, 2007; Peters et al., 2017) has insofar and to the best of our knowledge only been considered in the
supervised context. However, the central motivation behind AGNOS of selecting features sufficient to recover
the whole feature set is strongly reminiscent of finding a minimal functional causal model (Goudet et al., 2018)
explaining all variables. Bridging the gap between causal discovery and unsupervised feature selection for
the purpose of interpretability is therefore an especially interesting prospect in view of Fair, Transparent and
Accountable learning (chap. 1).
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.1 Appendix A : Variational Auto-Encoders

Variational AutoEncoders (VAE) (Kingma and Welling, 2013) rapidly gained popularity over the past five
years as a data augmentation method (Pu et al., 2016). The mathematical basis of VAEs is actually quite re-
mote from classical AutoEncoders. The name of the approach is therefore slightly ambiguous, as the resulting
network merely resembles an AutoEncoder.

The core idea behind VAEs is to interpret the d constructed features as being the parameters of d proba-
bility distribution functions. The most common choice corresponds to a multivariate Gaussian distribution, so
that each constructed feature in Z∗d consists of a tuple (µ, σ) reflecting the mean and standard deviation of a
scalar Gaussian.

During training, latent variables are sampled from their respective distributions, and the decoder part of
the neural network is tasked with recreating the original data X 2 from the stochastic samples. The success
of this reconstruction hinges on the crucial observation that a set of d Gaussian random variables can be
mapped to an arbitrarily close approximation of any d-dimensional distribution (including that of X, provided
the manifold assumption from chapter 2 holds), provided a sufficiently complex function (Devroye, 1986). An
illustration of this result is provided in figure 1.

FIGURE 1: The 2D random variable z on the left panel can be mapped to a ring-shape distribution
X through the function ψ(z) = z/10 + z/||z||

Provided with this setup, one could sample from the model without any input. However, obtaining a satis-
factory reconstruction of X this way is unaffordable in terms of time complexity, as highlighted by figure 2 and
the following discussion.

One would expect the model generating the digit in panel (b) to be deemed mediocre, given the apparent
dissimilarity with the original MNIST datapoint of panel (a). On the other hand, the reconstruction of panel (c)
(identical to (a) but shifted down and to the right by one pixel) is perceived to be better. Unfortunately, (b) is
much closer to (a) than (c) is, w.r.t. the MSE loss. Therefore, one would need to obtain a model significantly

2. More precisely, the decoder is tasked with generating datapoints that look like those of X, which is why the approach is used
to perform Data Augmentation. The decoder designation is therefore only used to draw the parallel between VAEs and traditional
AEs ; a less ambiguous name for this network component would be generator.
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FIGURE 2: The reconstructed digit of panel (c) is perceptually much closer to the original MNIST
digit of panel (a) than the sample in panel (b). However, the MSE loss provides the reverse

conclusion, that (b) is the far better approximation

better than (c) in order to discard results such as (b). This is consequently likely to require an unreasonable
amount of samples.

In order to accelerate the sampling procedure, an encoder φ mapping X to the constructed features
(µ(X), σ(X)) is added to the pipeline, s.t. the distribution parameters are learned through backpropagation of
the reconstruction error 3 (fig. 3).

FIGURE 3: Illustration of the final VAE pipeline

3. Arguably, an alternate solution would be to design a similarity metric better suited to depict likeness of images than the MSE.
However, not only are such metrics challenging to define in domains such as computer vision, but also hardly interpretable without
label information indicating which images are similar, as is the case in unsupervised FC
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The sole purpose of the encoder part is thus to ensure that training is affordable in terms of time com-
plexity. After training is complete, φ is discarded and new samples can be generated using only the construc-
ted features and ψ, therefore achieving data augmentation. This constitutes a significant methological dif-
ference with classical AutoEncoders : the encoder is merely a convenient tool rather than the end goal of
learning. Moreover, the constructed features do not necessarily contain any information related to X, which
is why we consider VAEs to be remote from other FC methods.
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