
HAL Id: tel-02436831
https://hal.science/tel-02436831

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic controller synthesis for timed systems:
robustness and optimality

Damien Busatto-Gaston

To cite this version:
Damien Busatto-Gaston. Symbolic controller synthesis for timed systems: robustness and optimality.
Computer Science and Game Theory [cs.GT]. Aix Marseille Université, 2019. English. �NNT : �.
�tel-02436831�

https://hal.science/tel-02436831
https://hal.archives-ouvertes.fr

AIX-MARSEILLE UNIVERSITÉ
ED 184 MATHEMATIQUES ET INFORMATIQUE
LABORATOIRE D’INFORMATIQUE ET SYSTEMES

Thèse présentée pour obtenir le grade universitaire de docteur

Discipline: Informatique

Damien Busatto-Gaston

Synthèse symbolique de contrôleurs pour systèmes temporisés:
robustesse et optimalité

Symbolic controller synthesis for timed systems: robustness and optimality

Soutenue le 03/12/2019 devant le jury composé de:

Nathalie Bertrand (CR) INRIA Rennes Bretagne-Atlantique Examinatrice
Patricia Bouyer-Decitre (DR) CNRS, LSV, ENS Paris-Saclay Examinatrice
Krishnendu Chatterjee (PR) IST Austria Rapporteur
Benjamin Monmege (MCF) LIS, CNRS, Aix Marseille Université Directeur
Joël Ouaknine (PR) MPI for Software Systems Rapporteur
Laure Petrucci (PR) LIPN, CNRS, Université Paris 13 Examinatrice
Pierre-Alain Reynier (PR) LIS, CNRS, Aix Marseille Université Directeur
Igor Walukiewicz (DR) LaBRI, CNRS, Université de Bordeaux Rapporteur

Remerciements

J’aimerais tout d’abord remercier Benjamin et Pierre-Alain pour le soutien constant et les
conseils précis qu’ils m’ont fournis au cours de cette thèse. Ces trois années enrichissantes
furent un plaisir par leur encadrement et leur bienveillance.

Je voudrais également remercier Krishnendu Chatterjee, Joël Ouaknine et Igor Walu-
kiewicz pour avoir été rapporteurs de ce document, ainsi que Nathalie Bertrand, Laure
Petrucci et Patricia Bouyer-Decitre pour s’être intéressées à mes travaux en tant que
membres du jury. Je remercie en particulier cette dernière pour m’avoir fait découvir ce
sujet, m’avoir conseillé et m’avoir orienté vers Marseille lorsque j’étais en master.
Si le nom, les locaux et la direction du LIS ont changé au cours de ces dernières

années, il est resté un laboratoire particulièrement chaleureux et agréable, dont j’aimerais
remercier les membres permanents pour leur acceuil, et les non-permanents pour leur
complicité et leur entrain. Merci à mes co-bureaux Florian, Didier, Eloi d’avoir supporté
ma tendance récurrente à faire les cents pas. Je remercie particulièrement Sébastien R.
pour m’avoir assuré sans failles, ainsi que Théodore, Amélia, Manon P., Léo E., José
Luis, Thibault, Manon S., Cindy, Franck, Pacôme, Jeremy, Cedric, Sébastien D. et les
autres pour nos échanges scientifiques ou ludiques réguliers. Je remercie aussi mes amis,
et en particulier Léo T. et Antoine pour leur coopération.
Je remercie enfin ma famille pour leurs encouragements constants, leurs efforts pour

s’intérésser à mes travaux et leur bonne humeur.

2

Résumé

Le domaine de la synthèse réactive a pour objectif d’obtenir un système correct par
construction à partir d’une spécification logique. Une approche classique consiste à se
ramener à un jeu à somme nulle, où deux joueurs interagissent tour-à-tour dans un système
de transitions, et à se demander si le joueur "contrôleur" peut garantir que son objectif sera
rempli, et ce indépendamment des décisions du joueur "environnement". Nous étudions
des spécifications temps-réel, modélisées par un automate temporisé équipé d’un objectif
d’accessibilité ou de Büchi, et présentons des méthodes symboliques pour synthétiser des
stratégies du contrôleur. Nos contributions concernent deux problématiques distinctes :
on peut souhaiter que le contrôleur obtienne une stratégie robuste aux perturbations,
ou bien le faire jouer de manière optimale dans un jeu pondéré. Dans le contexte de la
robustesse, le contrôleur a pour objectif de suivre un lasso acceptant de l’automate. De
plus, ses choix de délais successifs doivent résister à d’éventuelles perturbations choisies
par l’environnement. Ce problème est connu comme étant PSPACE-complet, mais les
techniques existantes opèrent sur l’abstraction des régions. Nous proposons une solution
moins sensible à une explosion de l’espace d’états, en faisant exclusivement usage de zones.
Dans le contexte quantitatif, nous étudions des jeux sur automates temporisés équipés
de poids : le contrôleur souhaite minimiser le poids accumulé en atteignant un état
cible, alors que l’environnement vise l’objectif opposé. Dans une perspective de synthèse
réactive, cette extension pondérée des jeux temporisés permet de mesurer le degré de
qualité du contrôleur. Les jeux temporisés pondérés sont rapidement indécidables, même
lorsque les poids sont tous positifs. Des résultats de décidabilité existent pour une classe
à poids positifs, définie par une restriction sémantique sur le poids des cycles. Nous
introduisons la classe des jeux temporisés pondérés divergents comme une généralisation
de cette restriction sémantique autorisant les poids négatifs, ce qui permet de représenter
par exemple de l’énergie ou de l’argent. Nous présentons une méthode pour calculer la
valeur optimale de ces jeux. Les jeux divergents forment donc la première classe décidable
de jeux temporisés pondérés avec des poids négatifs et un nombre arbitraire d’horloges.
Nous étudions enfin une classe plus générale introduite par Bouyer, Jaziri et Markey
en 2015, qui reste analysable lorsque les poids sont positifs. Bien que cette classe soit
indécidable, les auteurs montrent que l’on peut approximer la valeur du jeu en utilisant
des régions de granularité moindre. Nous étendons cette classe pour autoriser des poids
négatifs, et montrons que la valeur y reste approximable. De plus, nous expliquons qu’un
algorithme symbolique suivant le paradigme de value iteration peut être utilisé sur cette
classe en tant que schéma d’approximation.

Mots clés : Automates temporisés, Synthèse, Robustesse, Jeux pondérés

3

Abstract

The field of reactive synthesis studies ways to obtain, starting from a specification,
a system that is correct by construction. A classical approach models this setting
as a zero-sum game played by two players on a transition system, and asks whether
player controller can ensure an objective against any competing player environment.
We focus on real-time specifications, modelled as timed automata with reachability or
Büchi acceptance conditions, and present symbolic ways to synthesise strategies for the
controller. We consider two problems, either restricting controller to robust strategies
or aiming for optimal strategies in a weighted game setting. In the robustness setting,
the goal of the controller is to play according to an accepting lasso of the automaton,
while resisting to timing perturbations chosen by a competing environment. The problem
was previously shown to be PSPACE-complete using regions-based techniques, but we
provide a first tool solving the problem using zones only, thus more resilient to state-
space explosion issues. In the quantitative setting, we study games played on a timed
automaton equipped with weights: controller wants to minimise the accumulated weight
while reaching a target, while the environment has an opposite objective. In a reactive
synthesis perspective, this quantitative extension of timed games allows one to measure
the quality of controllers. Weighted timed games are notoriously difficult and quickly
undecidable, even when restricted to non-negative weights. Decidability results exist for
a subclass with non-negative weights defined by a semantical restriction on the weights
of cycles. We introduce the class of divergent weighted timed games as a generalisation
of this semantical restriction to arbitrary weights, allowing one to model energy for
instance. We show how to compute their optimal value, yielding the first decidable class
of weighted timed games with negative weights and an arbitrary number of clocks. Then,
we focus on a larger class, known to be analysable with non-negative weights, that has
been introduced by Bouyer, Jaziri and Markey in 2015. Though the value problem is
undecidable, the authors show how to approximate the value by considering regions with
a refined granularity. We extend this class to incorporate negative weights, and prove
that the value can still be approximated. In addition, we show that a symbolic algorithm,
relying on the paradigm of value iteration, can be used as an approximation schema on
this class.

Keywords: Timed automata, Synthesis, Robustness, Weighted games

4

Contents

Remerciements 2

Résumé 3

Abstract 4

Contents 5

Introduction 9

I. Controller synthesis and timed systems 17

1. Finite systems 18
1.1. Transition systems . 18
1.2. Weighted transition systems . 20

1.2.1. Semirings, closure operation . 20
1.2.2. Transition systems labelled over a semiring 23

1.3. Turn-based game on a transition system 25
1.3.1. Attractors . 27

2. Timed systems 28
2.1. Modelling real-time constraints . 28
2.2. Encoding constraints as DBMs . 29
2.3. Timed automata . 32

2.3.1. Bounded clocks . 33
2.3.2. Regions . 34
2.3.3. Region abstraction, region automaton 36
2.3.4. Integer constants . 37
2.3.5. Zone abstraction, symbolic algorithms 37

II. Robust controller synthesis 40

Introduction 41

3. The perturbation game 44

5

4. A region-based approach 47
4.1. Robustness of region paths . 47

4.1.1. Controllable predecessors . 47
4.1.2. Shrunk DBMs . 48
4.1.3. Non-punctual region path . 49

4.2. Aperiodic cycles . 50
4.3. Generalization from region paths to paths 51

5. A symbolic approach 53
5.1. Reachability relation of a path . 53

5.1.1. Constraint graphs . 53
5.1.2. Encoding paths . 54
5.1.3. From constraint graphs to reachability relations 55
5.1.4. Checking inclusion . 56
5.1.5. Computation of Pre and Post . 58

5.2. Robust iterability of a lasso . 58
5.2.1. Controllable predecessors and their greatest fixpoints 58
5.2.2. Branching constraint graphs . 58
5.2.3. Solving the qualitative problem for a lasso 61

5.3. Synthesis of robust controllers . 62
5.3.1. Abstraction of lassos . 62
5.3.2. Forward Analysis . 63
5.3.3. Robust cycle search . 64

5.4. Case study . 70

6. The quantitative problem 74
6.1. Parametric DBMs . 74

6.1.1. Piecewise affine bounds . 75
6.1.2. Piecewise affine DBMs . 77

6.2. Largest admissible perturbation of a lasso 78

III.Weighted timed games 80

Introduction 81

7. Finite weighted games 87
7.1. The untimed setting . 87

7.1.1. Problems . 88
7.2. Solving weighted games . 89

7.2.1. Value iteration . 89
7.2.2. Optimal strategies . 90
7.2.3. Safely removing states of infinite value 91

6

7.3. Divergent weighted games . 94
7.3.1. SCC analysis . 94
7.3.2. Computing values in polynomial time 95
7.3.3. Polynomial lower bound . 99
7.3.4. Deciding divergence . 99

7.4. Almost-divergent weighted games . 100
7.4.1. SCC analysis . 101
7.4.2. Kernel of an almost-divergent weighted game 102
7.4.3. Semi-unfolding . 103
7.4.4. Deciding almost-divergence . 106

8. Weighted timed games 107
8.1. The timed setting . 107

8.1.1. Region and corner-point abstractions 109
8.1.2. Problems . 113
8.1.3. Related work . 113

9. Analysable classes of WTGs 114
9.1. Main results . 114

9.1.1. On the value problem . 114
9.1.2. On the value approximation problem 115

9.2. Cycle-based analysis . 117
9.2.1. Cycles in a 0-isolated WTG . 118
9.2.2. SCC-based characterisations . 119

9.3. The membership problem . 122
9.3.1. Deciding divergence . 123
9.3.2. Deciding almost-divergence . 124

10.Computing values 126
10.1. Symbolic value iteration . 126

10.1.1. Value functions as nested partitions 127
10.1.2. Operations over value functions 130
10.1.3. Tubes and diagonals . 135
10.1.4. Exponential vs doubly-exponential 142
10.1.5. Bounding partial derivatives . 144

10.2. Divergent weighted timed games . 147

11.Approximating values 151
11.1. Kernel of an almost-divergent WTG . 152
11.2. Semi-unfolding of almost-divergent WTGs 154

11.2.1. Semi-unfolding construction . 155
11.2.2. Semi-unfolding correctness . 156

11.3. Approximation of almost-divergent WTGs 159
11.3.1. Approximation of kernels . 159

7

11.3.2. Approximation of almost-divergent WTGs 162
11.4. Example of an execution of the approximation schema 163
11.5. Symbolic approximation algorithm . 167

11.5.1. Discussion . 170

Conclusion 171

8

Introduction

The widespread use of digital technology can be felt in most aspects of modern life. Digital
systems are designed to assist with—and sometimes perform autonomously—important
tasks, from long-distance communications to the management of our electrical or financial
infrastructures. When faced with a known situation, we trust these systems to act
accordingly, with near-instantaneous reaction times. This holds particularly for embedded
systems, i.e. systems designed to perform a fixed task, as part of a broader structure.
They can be found in most electronic devices, from phones and home appliances to traffic
lights, avionics and elevators. This has prompted a large research effort in computer
science, where a series of work has been devoted to the creation, analysis and testing of
embedded systems, as they are sometimes entrusted with our safety.

This is a challenging task, as the correctness or reliability of a system can depend on
fine interactions with its surroundings or with other systems, and it can be hard, for the
human designer, to anticipate on all possible behaviours.

Computer-aided verification
One approach lies in the field of formal methods, where one studies a mathematical
idealisation of the system, called a model, to check that it satisfies some desired properties,
such as eventually performing a particular task, or avoiding errors. The objective
is to develop automated methods to analyse and verify systems. For example, the
model-checking problem asks if a given model satisfies its specification, described by a
logical formulæ. This problem has been extensively studied in various settings, with
practical tools being used for the verification of hardware and software in industry (see
e.g. [CHVB18]).

half-closed closedto-closeopen

obstacle

no obstaclesobstaclealarm

wait

no obstacles

next station

Figure 1.: A transition system modelling train doors.

9

Example 1. As an example, we will use an embedded system that controls a pair of
doors in a subway train, represented in Figure 1. Whenever the train arrives at a new
station, the doors open. The system waits until an alarm signals departure for the next
station, then checks for any obstacles to their closing. If such an obstacle is present,
the doors close partially, and wait until the obstacle is removed before closing. Desired
property for the system might be "the train must always travel with closed doors", or
"doors always eventually close". The former is always guaranteed by this model, but not
the latter, that requires additional assumptions (we do not wait forever for the departure
signal, and obstacles are always eventually removed).

An ambitious variant is that of controller synthesis, where one starts from the specifica-
tion alone. The goal is to build a model that will, by construction, be correct. A classical
approach expresses this problem from the viewpoint of game theory: One encodes all
possible behaviours in a transition system, where two players are opposed. Starting
from some initial state for the system, the player named controller makes decisions that
determine how the system dynamically evolves. Thus, a sequence of successive states
is obtained, and we want this sequence to satisfy the specification. Examples include
asking that a target "good" state is eventually reached, or conversely that an error "bad"
state is never reached. However, the controller may sometimes not get to choose the next
state, in which case we say that the decision is made by the second player, called the
environment. The notion of environment captures everything that cannot be anticipated,
from user inputs to complex interactions with the real world or foreign systems. Overall,
the way the system evolves is derived from the choices of both players in a turn-based
fashion, and this interaction forms a game, where controller wins if its objective is met.
Our goal is thus to automatically construct a strategy for the controller, that is a recipe
dictating how to play, so that controller wins no matter how the environment plays. Such
strategy finally describes a system that is necessarily correct, since the specification must
hold in all possible scenarios.

Example 2. Going back to the example of Figure 1, one could consider that whether an
obstacle is present or not is not under our control. As such, player controller can choose
whether to wait, ring the alarm, or go to the next station when in the appropriate states,
but player environment is the one that decides if there is an obstacle or not.

Timed systems
We focus on a class of programs sensitive to real-time, where keeping track of how much
time elapses between the decisions taken by the program is required to differentiate
the good and bad behaviours. This is a common requirement for embedded systems,
as they interact with the real world. The design of such programs is a notoriously
difficult problem, because they must take care of delicate timing issues, and are difficult
to debug a posteriori. In order to ease the design of real-time software, it appears
important to automatise the process by using formal methods. The situation may be
modelled into a timed automaton [AD94], namely a transition system equipped with

10

half-closed closedto-closeopen no obstacles

or x > 30

obstacle

y = 1

alarm

x > 5, y := 0

no obstacles, y = 1

next station

x := 0

Figure 2.: A timed automaton modelling train doors.

real-valued variables, called clocks, evolving with a uniform rate. Transitions are equipped
with timing constraints expressed over the clocks, and may only be taken when these
constraints are met.

Example 3. We enrich the train door example from Figure 1, in order to obtain the
timed automaton depicted on Figure 2. Clocks x, y are variables that continuously
increase, at a rate of one unit per second. Whenever the train arrives at a new station,
clock x is reset (i.e. set to 0). We must stay in the open state at least five seconds
before signalling departure, at which point clock y is reset. Exactly one second later, the
system closes the doors if possible, and otherwise goes to the half-closed state. We then
wait until either the obstacle is removed or the time since arrival at the current station
(recorded by x) is at least thirty seconds, in which case we forcefully close the doors and
leave.1 Note that we removed the waiting loops in the open and half-closed states, as
they are no longer needed: in a timed automaton, one can always stay in the current
state and let time elapse.

In order to verify the real-time system, one determines whether there exists an accepting
execution in the timed automaton. A simple, yet realistic specification asks that a target
state is reached at some point. We are also interested in Büchi acceptance conditions,
where a target should be reached infinitely often along the execution, modelling cases
where we do not want the system to get stuck in a bad situation. It has been proven
in [AD94] that the reachability and Büchi problems on timed automata are both PSPACE-
complete, by partitioning the state space into regions. While optimal from a theoretical
complexity point of view, practical tools tend to favour efficient symbolic algorithms
for solving these problems, that use zones instead of regions, as they allow an on-
demand partitioning of the state space. This leads to much better performances, as
witnessed by successful model-checking tools like Uppaal [LPY97], Kronos [BDM+98],
or TChecker [HPT19, HSW10].
In this thesis, we study two controller synthesis problems on timed automata, either

restricting controller to robust strategies or aiming for optimal strategies in a weighted
game setting. The document is split into three parts:

1Do not imitate in real life.

11

half-closed closedto-close

alarm
x < 30

closing

x > 30

y = 1

Figure 3.: A timed automaton with Zeno behaviours.

• In Part I, we recall formalisms and known techniques for the study of finite or timed
transition systems;

• In Part II, we focus on making choices that are robust with regard to small timing
perturbations;

• In Part III, we present results on weighted timed games, where one aims for optimal
choices in a quantitative setting.

Robustness
As we have seen, timed automata [AD94] provide an automata-theoretic framework to
design, model and verify real-time systems. However, the semantics of timed automata
is a mathematical idealisation: it assumes that clocks have infinite precision and that
actions are instantaneous. Proving that a timed automaton satisfies a property may not
ensure that a real implementation of it also does. This robustness issue is a challenging
problem for embedded systems [HS06], and alternative semantics have been proposed, so
as to ensure that the verified (or synthesised) behaviour remains correct in presence of
small timing perturbations.

Example 4. As an example, consider Figure 3, that models part of a variant of Figure 2:
We assume that there is an obstacle that is not removed, and we add an action that lets
us repeat the alarm signal until the thirty seconds mark has been reached. We argue
that some infinite behaviours of this system are not realistic, as it is possible to ring the
alarm infinitely many times with a so-called Zeno behaviour. Indeed, one could let one
second elapse, and use the alarm transition once. Then, we let half a second elapse, and
use it again. By using increasingly smaller delays (1/2i after i steps), the alarm can be
rung arbitrarily many times, while keeping the total time elapsed under two seconds.
Another issue lies in the steps that require infinite precision, like the transition from

the to-close to the half-closed state. Indeed, it requires clock y to be valued at exactly
1. This might prove hard to ensure with a real system, and it would be preferable in
this case to leave some margin η > 0 around 1, such that one asks for y ∈ [1− η, 1 + η]
instead.

We are interested in a fundamental model-checking problem in timed automata
equipped with a Büchi condition: it consists in determining whether there exists an

12

accepting infinite execution. This problem has been studied numerously in the exact set-
ting, where symbolic methods have been developed [TYB05, Tri09, Li09, HS10, HSW12,
LOD+13, HSTW16]. In the context of robustness, the execution should be tolerant to
small perturbations of the delays. This discards executions suffering from weaknesses
such as Zeno behaviours, or even non-Zeno behaviours requiring infinite precision, as
exhibited in [CHR02].
More formally, the semantics we consider is defined in Chapter 3 as a game that

depends on some parameter δ representing an upper bound on the amplitude of the
perturbation [CHP11]. In this game, the controller plays against an antagonistic environ-
ment that can perturb each delay using a value chosen in the interval [−δ, δ]. The case
of a fixed value of δ has been shown to be decidable in [CHP11], and also for a related
model in [LLTW14]. However, these algorithms are based on regions, and as the value of
δ may be much smaller than the constants appearing in the guards of the automaton, do
not yield practical algorithms. Moreover, the maximal perturbation is not necessarily
known in advance, and could be considered as part of the design process.
The problem we are interested in is qualitative: we want to determine whether there

exists a positive value of δ such that the controller wins the game. It has been proven
in [SBMR13] that this problem is in PSPACE (and even PSPACE-complete), thus no
harder than in the exact setting with no perturbation allowed. However, the algorithm,
recalled in Chapter 4, heavily relies on regions, and more precisely on an abstraction
that refines the one of regions, namely folded orbit graphs. Hence, it is not amenable
to implementation, and has indeed never been implemented. Our main contribution
in Part II is to provide, in Chapter 5, an efficient symbolic algorithm for solving this
problem.
Our algorithm can be understood as an adaptation to the robustness setting of the

standard algorithm for Büchi acceptance in timed automata [LOD+13]. This algorithm
looks for an accepting lasso using a nested breadth-first search. A major difficulty consists
in checking whether a lasso can be robustly iterated, i.e. whether there exists δ > 0
such that the controller can follow the cycle for an infinite amount of steps while being
tolerant to perturbations of amplitude at most δ.

Our approach relies on several new ingredients:

• We provide a polynomial time procedure to decide, given a lasso, whether it can be
robustly iterated. This symbolic algorithm relies on a computation of the greatest
fixpoint of the operator describing the set of controllable predecessors of a path. In
order to provide an argument of termination for this computation, we resort to a new
notion of branching constraint graphs, extending the approach used in [JR11, Tra16]
and based on constraint graphs (introduced in [CLJ99]) to check iterability of a
cycle, without robustness requirements.

• We provide a termination criterion for the analysis of lassos. Focusing on zones is
not complete: it can be the case that two cycles lead to the same zone, but one is
robustly iterable while the other one is not. Robust iterability crucially depends on
the real-time dynamics of the cycle and we prove that it actually only depends on

13

the reachability relation of the path. We provide a polynomial-time algorithm for
checking inclusion between reachability relations of paths in timed automata based
on constraint graphs.

• It is worth noticing that all our procedures can be implemented using difference
bound matrices, a very efficient data structure used for timed systems. These
developments have been integrated in a tool, and we present a case study of a train
regulation network illustrating its performances.

We finally study in Chapter 6 a quantitative variant, where one computes the greatest
value of δ such that the controller wins the game. We obtain a new decidability result
for this problem, by showing that when considering a lasso, not only can we decide
robust iterability, but we can even compute the largest perturbation under which it is
controllable.

Weighted timed games
Solving the robustness game for a fixed value of δ can be seen as an instance of a more
general problem, where both players alternatively choose transitions and delays. This is
a natural extension of the controller synthesis problem to the real-time setting called
a timed game, where a controller and an antagonistic environment play on a timed
automaton instead of a finite transition system. Strategies of players become recipes
dictating how to play on this arena (timing delays and transitions to follow). In this more
ambitious setting, we will focus on reachability objectives, and we are thus looking for a
strategy of the controller so that the target is reached no matter how the environment
plays. Reachability timed games are decidable [AM99], and EXPTIME-complete [JT07].

If the controller has a winning strategy in a given reachability timed game, several such
winning strategies could exist. Weighted extensions of these games have been considered
in order to measure the quality of the winning strategy for the controller [BCFL04].
This means that the game, defined in Chapter 8, now takes place over a weighted (or
priced) timed automaton [BFH+01, ALTP04], where edges are equipped with weights,
and locations with rates of weights (the cost is then proportional to the time spent in
this location, with the rate as proportional coefficient).

Example 5. As a motivating example for studying weighted games, we present a ride-
sharing scenario. As a driver, we wish to travel from point A to point B, and must
choose between several options, as displayed in Figure 4. We can use a direct road, and
reach B in two to three hours, or an highway that lets us reach our destination in one
hour. Alternatively, we can make a detour: another traveller is waiting at point C, and
wishes to reach point D. For this portion too, a faster highway is available.

While all four possible paths satisfy the objective "reaching B", we want to select the
one that lets us spend as little money as possible for the trip. The cost of each path
depends on several factors. There are fixed entry fees (of 1e) for the highways, and we
need to keep track of fuel consumption, as the rate at which fuel is used differs in roads

14

A C

B D

road
1h

road
1h

road
[2h, 3h]

highway
1h

highway
0.5h

road
[0.5h, 1h]

Figure 4.: A ride-sharing decision diagram.

A

rdA→BhwA→B

rdA→C

B

C

rdC→D hwC→D

DrdD→B

1e/h

1e/h

2e/h 1e/h 0e/h−1e/h

x = 0 x = 1

x := 0
x = 0 1e

x = 1

x = 0

2 6 x 6 3

x = 0

1
2
6 x 6 1

x := 0

x = 0
1e

x = 1
2

x := 0

x = 0x = 1

Figure 5.: A weighted timed game modelling Figure 4. The cost of waiting in a state
is displayed in blue, the cost of taking a transition is in red. States and
transitions without costs have a weight of 0e

and highways. Thus, we say that roads cost 1e per hour, while highways cost 2e per
hour. Moreover, if we share the portion from C to D, the other traveller will pay for his
trip (at a rate of 2e/h), and that can lower our costs. A shared road therefore costs
us −1e per hour (negative rate means we are making a profit), while a shared highway
costs 0e/h.

The situation can be modelled as a weighted timed game, displayed in Figure 5. The
controller chooses delays and transitions in circle states, while the environment controls
the square ones. For example, if we choose to use the direct road from A to B, we go
(immediately) to state rdA→B, and stay there until going to state B. This requires letting
between two and three hours elapse in rdA→B, with a cost of 1e/h. The delay is chosen
by the environment, as it depends on external influences like traffic density.
In this example, the optimal strategy is to share the road from C to D. This lets us

ensure a total weight of at most 1.5e: going from A to C costs 1e in the worst case;
going from D to B similarly costs at most 1e; and sharing the trip from C to D is
guaranteed to bring us at least 0.5e.

15

While solving weighted timed automata has been shown to be PSPACE-complete [BBBR07]
(i.e. the same complexity as the non-weighted version), weighted timed games are known
to be undecidable [BBR05]. This has led to many restrictions in order to regain decid-
ability, the first and most interesting one being the class of strictly non-Zeno cost with
only non-negative weights (in edges and locations) [BCFL04]: this hypothesis states that
every execution of the timed automaton that follows a cycle of the region abstraction
has a weight far from 0 (in interval [1,+∞), for instance).
Less is known for weighted timed games in the presence of negative weights in edges

and locations. In particular, no results exist so far for a class that does not restrict the
number of clocks of the timed automaton to 1. However, negative weights are particularly
interesting from a modelling perspective, for instance in case weights represent the
consumption level of a resource (money, energy. . .) with the possibility to spend and
gain some resource. In Chapter 9, we introduce a generalisation of the strictly non-Zeno
cost hypothesis in the presence of negative weights, that we call divergence. We show
the decidability of the class of divergent weighted timed games for the optimal synthesis
problem in Chapter 10:

• We describe a procedure to solve weighted timed games for a bounded horizon,
i.e. when controller has a fixed number of steps to reach his targets. It follows
closely the framework of [ABM04], but is more symbolic and allows for negative
weights.

• We show that optimal strategies in divergent weighted timed games can be restricted
to a bounded horizon, that matches the one obtained in the non-negative case from
the study of [BCFL04].

The techniques providing these decidability results cannot be extended if the conditions
are slightly relaxed. For instance, if we add the possibility for an execution of the timed
automaton following a cycle of the region automaton to have weight exactly 0, the decision
problem is known to be undecidable [BJM15], even with non-negative weights only. For
this extension, in the presence of non-negative weights only, it has been proposed an
approximation schema to compute arbitrarily close estimates of the optimal weight that
the controller can guarantee [BJM15]. To this end, the authors consider regions with a
refined granularity so as to control the precision of the approximation.

Our contribution on the approximation front is presented in Chapter 11, and is two-fold:

• We extend the class considered in [BJM15] to the presence of negative weights, and
provide an approximation schema for the resulting class of almost-divergent games ;

• We show that the approximation can be obtained using a symbolic computation,
that avoids an a priori refinement of regions.

Moreover, the classes of weighted timed games that we study induce interesting classes
of finite weighted game when there are no clocks, that can be solved with a lower
complexity than arbitrary weighted games. We present those results in Chapter 7.

16

Part I.

Controller synthesis and timed systems

17

1. Finite systems

Let us now formally introduce transition systems and their quantitative or game-
theoretical extensions. In this chapter we study finite systems only, but terminology and
notations are defined over infinite ones with further chapters in mind.

1.1. Transition systems
Definition 1.1. Let Σ be a set of elements called labels. A transition system labelled
over Σ is a pair 〈S, T 〉, with S a set of states and T ⊆ S × Σ × S a set of transitions,
such that (s, a, s′) ∈ T is denoted s a−→ s′.

A transition system is finite if it has finitely many states and transitions. A directed
graph labelled over Σ is a finite transition system 〈S, T 〉 (labelled over Σ), such that T
contains at most one transition from s to s′ for every pair of state (s, s′). A relation R
over a domain Q is a set of pairs in Q×Q, and we sometimes write aR b to denote that
the pair (a, b) belongs to R. A relation is complete if it equals Q×Q. A graph 〈S, T 〉
induces a relation over the finite domain S as {(s, s′) | ∃a ∈ Σ, s

a−→ s′}: the set of states
(s, s′) linked by a transition. It is complete if this relation is complete.

For k > 1, a finite path of length k is a finite sequence of transitions (si, ai, s
′
i)16i6k such

that for all i ∈ [1, k−1], s′i = si+1. Such a path ρ will be denoted s1
a1−→ s2

a2−→ . . . sk
ak−→ s′k,

and is said to be a path from state first(ρ) = s1 to state last(ρ) = s′k of length |ρ| = k.
The concatenation of two finite paths ρ1 and ρ2, such that last(ρ1) = first(ρ2), is denoted
by ρ1ρ2. Transitions can be seen as paths of length one and states as paths of length
zero, and we extend the first and last operators in those cases. A cycle is a finite path ρ,
of length at least 1, such that first(ρ) = last(ρ).
We similarly define an infinite path ρ ∈ TN as an infinite sequence of transitions

s0
a1−→ s1

a2−→ . . . , with first(ρ) = s0. A state s is called a deadlock state if there are no
transitions t ∈ T with first(t) = s. A path ρ is maximal if it is infinite or if it is finite
and ends in a deadlock state. Conversely, a non-maximal path is a finite path that can
be extended.

Example 1.1. Figure 1.1 represents a transition system labelled over {req, rec, ok, pro, slp, to},
that models a client interacting with a server. From an initial state s0, the client sends a
request for data by taking the transition labelled by req. The server should answer by
sending a finite sequence of data, activating the receive transition rec multiple times. The
communication should end with a confirmation as the ok transition, allowing the client to
process the data with pro and return to the initial state. The client can sleep in the initial
state with slp, and if the communication fails the client will time-out with transition to.

18

s0 s1st

req

to

slp

rec

ok

pro

Figure 1.1.: A transition system modelling a client that requests a sequence of data to a
server, receives it and processes it.

In this analogy, the finite path s0
req−→ s1

rec−→ s1
ok−→ st

pro−→ s0
req−→ s1

to−→ s0 represents an
execution of the client where a successful interaction is followed by a time-out. There are
no deadlock states in this transition system, and therefore every maximal path is infinite
and every finite-path is non-maximal.

A finite (resp. infinite) path s0
a1−→ s1

a2−→ . . . naturally induces a finite (resp. infinite)
word a0a1 . . . over labels. A set of infinite words L is called an ω-language. Given a
transition system and an initial state s0, the ω-language Ls0 is defined as the set of
infinite words over labels induced by the infinite paths that start from s0. If the transition
system is finite, it can be seen as a non-deterministic Büchi automata where every state
is accepting, and therefore its language is an ω-regular language, a notion that generalises
the notion of regular languages to infinite words.

Definition 1.2. Given a transition system 〈S, T 〉, an objective Lt (as an ω-language
over labels) and an initial state s0, the emptiness problem asks if Ls0 ∩ Lt 6= ∅, i.e. is
there an infinite path starting from s0 that induces a word in Lt.

Definition 1.3. Given a transition system 〈S, T 〉, an objective Lt (as an ω-language
over labels) and an initial state s0, the model-checking problem asks if Ls0 ⊆ Lt, i.e. does
every infinite path starting from s0 induce a word in Lt.

The objective language encodes a specification, and can be expressed as an ω-regular
expression or a formula in linear temporal logic (LTL) for example. We will be focusing
on simple objectives, like the reachability of a target or a Büchi condition.

Definition 1.4. Given a transition system 〈S, T 〉, an initial state s0 ∈ S and a set of
target states St ⊆ S, the emptiness problem with a reachability condition asks if there
exists a finite path ρ such that first(ρ) = s0 and last(ρ) ∈ St. The emptiness problem
with a Büchi condition asks if there exists an infinite path s0

a1−→ s1
a2−→ . . . starting from

s0 that reaches St infinitely often, i.e. such that there exists infinitely many i ∈ N with
si ∈ St.

One can observe that the emptiness problem with a reachability (resp. Büchi) condition
is a particular case of the emptiness problem, as we could extend if needed the label of
every transition t with the states first(t) and last(t) and thus express these conditions
on words over labels. We call the associated ω-language a reachability (resp. Büchi)
objective.

19

Example 1.2. Consider the transition system in Figure 1.1, the initial state s0 and
the target states St = {st}. The emptiness problem with reachability condition St

is satisfied, as st is reachable from s0 by following req and ok. Since st can return
to s0 with pro, the emptiness problem with Büchi condition St is also satisfied. The
corresponding reachability (resp. Büchi) objective is the ω-language of all infinite words
over {req, rec, ok, pro, to} that contain at least one (resp. infinitely many) ok. The model-
checking problem is not satisfied with these objectives, as it is possible to loop between
s0 and s1 infinitely many times for example, never reaching st.

These problems have been well studied in a variety of settings, and we now give a
few results that apply to finite systems only. The emptiness problem with a reachability
condition can be solved in linear time using forward exploration techniques, like the
classical breadth-first search algorithm. Such techniques can indeed compute the set
of states reachable from s0, which is enough for reachability conditions. For Büchi
conditions, one can then launch a second exploration from every reachable state st in St

and search for a loop around st. A linear time complexity can be obtained by computing
all strongly connected components. Model checking is polynomial for reachability and
Büchi objectives, as it can be solved by attractor computations (see Section 1.3.1).

1.2. Weighted transition systems
All of the problems defined so far have been qualitative in nature. In order to model
quantitative notions like the cost of going from a source to a destination, we need to
define concepts such as the weight of a path, or the weight of a set of paths. This can
be done by considering a setting where labels are real numbers, the weight of a path is
the sum of its labels and the weight of a set of paths is the minimum of the weight of
each path. This is the setting that we will consider in our study of timed systems, and
our problems can be seen as extensions of the classical shortest path problem. However,
some developments (Difference Bound Matrices with non-standard entries) will require
the same notions over more exotic labels, so we introduce the more general context of
[BT10], where labels are only required to form a set with some algebraic properties.

1.2.1. Semirings, closure operation

A binary operation ⊕ over a domain Q is a mapping from Q×Q to Q, and we sometimes
write a⊕ b to denote the element ⊕(a, b).

Definition 1.5. A semiring (Q,⊕,⊗,0,1) is a setQ equipped with two binary operations
⊕ and ⊗ over Q of respective neutral element 0 and 1, such that for all a, b, c ∈ Q:

• (⊕ is associative) (a⊕ b)⊕ c = a⊕ (b⊕ c)

• (0 is neutral for ⊕) 0⊕ a = a⊕ 0 = a

• (⊕ is commutative) a⊕ b = b⊕ a

20

• (⊗ is associative) (a⊗ b)⊗ c = a⊗ (b⊗ c)

• (1 is neutral for ⊗) 1⊗ a = a⊗ 1 = a

• (⊗ distributes over ⊕, left) a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

• (⊗ distributes over ⊕, right) (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

• (0 is absorbing for ⊗) 0⊗ a = a⊗ 0 = 0

Examples of semirings include the natural semiring (N,+,×, 0, 1), equipped with stand-
ard addition and multiplication over integers, the tropical semiring (N∪{+∞},min,+,+∞, 0),
or the boolean semiring ({0, 1},∨,∧, 0, 1). As the neutral elements 0 and 1 are uniquely
determined by ⊕ and ⊗ 1, we may omit them and refer to the semiring as (Q,⊕,⊗), or
simply Q if the operations are clear from context. If 0 = 1 then necessarily Q = {0},
and Q is called the trivial semiring. The classical notion of ring additionally requires
that every element of Q has an inverse by ⊕ in Q, i.e. ∀a ∈ Q,∃(−a) ∈ Q such that
a⊕ (−a) = 0. Semirings strictly generalise rings, as for examples the boolean semiring
({0, 1},∨,∧) is not a ring.

Definition 1.6. A relation v ∈ Q×Q is a (partial) order if for all a, b, c ∈ Q

• (v is reflexive) a v a

• (v is transitive) a v b ∧ b v c⇒ a v c

• (v is antisymmetric) a v b ∧ b v a⇒ a = b

An ordered semiring is a semiring (Q,⊕,⊗) such that the relation v defined as
{(a, b) | ∃c ∈ Q, a ⊕ c = b} is an order on Q. The relation v is always reflexive and
transitive by the properties of ⊕, but it is not antisymetric on every semiring. In fact, a
non-trivial ring cannot be an ordered semiring. For example, (R>0,+,×) is an ordered
semiring with v equal to the standard 6 order on R>0, but (R,+,×) is not ordered by v.
If (Q,⊕,⊗) is a semiring where ⊕ is selective (i.e. ∀a, b ∈ Q, a⊕ b = a∨ a⊕ b = b), then
(Q,⊕,⊗) is an ordered semiring, and v is a total order (i.e. ∀a, b ∈ Q, a v b ∨ b v a).
Thus, another example of ordered semirings is (R ∪ {+∞},min,+), with v equal to the
> order over reals. If (Q,⊕,⊗) is an ordered semiring, then for every subset Q′ ⊆ Q such
that ⊕ and ⊗ are stable over Q′ and such that 0 and 1 are in Q′, (Q′,⊕,⊗) is also an
ordered semiring. Therefore, (N,+,×) and (Q ∪ {+∞},min,+) are ordered semirings.

If (Q,⊕,⊗) is an ordered semiring, then 0 is the least element of Q w.r.t. v, i.e. ∀a ∈
Q,0 v a. If there exists in Q an absorbing element ∞ for ⊕ (such that for all a ∈ Q,
∞ ⊕ a = ∞), then ∞ is the greatest element of Q w.r.t. v, i.e. ∀a ∈ Q, a v ∞.
For example, (R>0 ∪ {+∞},min,+) and ({0, 1},∨,∧) are ordered semirings where ∞
equals 0 and 1, respectively. If Q does not contain an absorbing element for ⊕, we
can consider a new symbol ∞ 6∈ Q and extend ⊕ and ⊗ with a ⊕∞ = ∞ for a ∈ Q,

1If 0 and 0′ are neutral for ⊕ then 0 = 0⊕ 0′ = 0′, this also holds on 1 with ⊗.

21

∞ ⊕∞ = ∞, a ⊗∞ = ∞ ⊗ a = ∞ for a ∈ Q\{0}, 0 ⊗∞ = ∞ ⊗ 0 = 0 and
∞⊗∞ = ∞, such that (Q∪ {∞},⊕,⊗,0,1) is an ordered semiring with ∞ absorbing
for ⊕. This allows us to define the ordered semirings (R>0∪{+∞},+,×) with ∞ = +∞
and (R ∪ {+∞,−∞},min,+) with ∞ = −∞ for example, and in the following we will
assume that every ordered semiring contains an absorbing element ∞ for ⊕.
For every k > 0 and a ∈ Q in an ordered semiring (Q,⊕,⊗), let ak denote 1 if

k = 0 and
⊗

06i<k a (i.e. a⊗ a · · · ⊗ a, k times) if k > 0, and let a(k) denote
⊕

06i6k a
i

(i.e. a0 ⊕ · · · ⊕ ak). On ordered semirings, ⊕ is monotone (i.e. ∀a, b ∈ Q, a v a⊕ b), and
therefore the sequence (a(k))k∈N is non-decreasing. Let a(∗) be called the closure of a and
denote the supremum of (a(k))k∈N if it exists. Intuitively, a(∗) is the limit of the infinite
sum 1⊕ a⊕ (a⊗ a)⊕ (a⊗ a⊗ a)⊕ . . . in Q.

Definition 1.7. An ordered semiring with closure is an ordered semiring where the
closure a(∗) of every a ∈ Q exists, i.e. the set Sa = {b ∈ Q | ∀k ∈ N, a(k) v b} contains
an element a(∗) such that a(∗) v b for every b ∈ Sa.

A first class of ordered semirings with closure are those where 1 = ∞, i.e. the neutral
element for ⊗ is absorbing for ⊕. In this case, a(∗) = 1 for every a ∈ Q. The semirings
(R>0 ∪ {+∞},min,+) and ({0, 1},∨,∧) belong to this class. We now introduce another
class of ordered semirings with closure, called complete semirings.

The relation v is a complete order over Q if each of its subsets has a supremum, i.e. for
all subsets S of Q, there exists c in B = {b ∈ Q | ∀a ∈ S, a v b} such that c v b for every
b ∈ B. In this case, we say that Q equipped with v is a complete join semilattice, where
join is the operator that returns the supremum of a subset of Q. A complete semiring is
an ordered semiring (Q,⊕,⊗) such that the relation v is a complete order over Q.

Lemma 1.1. Complete semirings are ordered semirings with closure.

Proof. Consider some element a ∈ Q, and let fa be a unary operator over Q defined by
fa(q) = (a⊗ q)⊕1. In particular, fa(0) = 1 = a(0), and for every k > 0, fa(a(k)) = a(k+1).
Let us prove that fa is non-decreasing, by considering q1 v q2 (i.e. ∃c, q2 = q1 ⊕ c) and
showing fa(q1) v fa(q2):

fa(q2) = fa(q1 ⊕ c) = (a⊗ (q1 ⊕ c))⊕ 1 = (a⊗ q1)⊕ (a⊗ c)⊕ 1 = fa(q1)⊕ (a⊗ c) .

It follows that on a complete semiring, fa is Scott-continuous (it preserves the supremum
of sets), and by Kleene’s fixpoint theorem [SHLG94], fa has a least fixpoint, which is the
supremum of the non-decreasing chain

0 v fa(0) v fa(fa(0)) v fa(fa(fa(0))) · · ·

i.e. the supremum of (a(k))k∈N, and therefore a(∗) by definition.

Example 1.3. Some examples of complete semirings include (R>0∪{+∞},+,×), where
a(∗) equals +∞ if a > 1 and 1/(1 − a) if a < 1, and (R ∪ {−∞,+∞},min,+) where
a(∗) equals 0 if a > 0, and −∞ if a < 0. Both form complete join semilattices with

22

v where join is either the usual sup or inf operator over reals. (N ∪ {+∞},+,×) and
(N ∪ {+∞},min,+) are also complete semirings, but not (Q ∪ {−∞,+∞},min,+) as
the ordinary order > is not complete over rational numbers (the infimum of a subset of Q
may be irrational). However, if we let QN = {a/N | a ∈ Z} be the set of rational numbers
of granularity 1/N for a fixed N ∈ N>0, then the semiring (QN ∪ {−∞,+∞},min,+)
is complete, and the closure operation is inherited from the tropical semiring over
R ∪ {−∞,+∞}.

Let us denote Mn(Q) the set of n × n matrices over Q. If (Q,⊕,⊗) is an ordered
semiring, then, for every integer n > 0, (Mn(Q),⊕,⊗,0,1) is an ordered semiring, with
⊕ and ⊗ the entrywise addition and the standard multplication of matrices (using ⊕
and ⊗ over Q internally), 0 the null matrix (equal to 0 everywhere), and 1 the identity
matrix (equal to 1 on the diagonal and to 0 everywhere else). The order v overMn(Q)
is inherited by applying the order v over Q entrywise, and for every matrix A ∈Mn(Q),
A(∗) denotes the closure of A in the matrix semiring (i.e. 1⊕A⊕A2⊕A3⊕ . . .) when it
exists.

Lemma 1.2 (Generalized Gauss-Jordan, [GM08]). If (Q,⊕,⊗) is an ordered semiring
with closure, then A(∗) exists for every matrix A, so that (Mn(Q),⊕,⊗) is also an
ordered semiring with closure. Moreover, A(∗) can be computed by performing at most n3

elementary operations (⊕, ⊗, and closure in Q).

This result is derived from a generalised version of the Floyd-Warshall algorithm
defined over semirings, described in Algorithm 1.1. To get intuition on Algorithm 1.1,
one can interpret the matrix A as a graph G = 〈{1, . . . , n}, {i M(i,j)−−−→ j | M(i, j) 6= 0}〉
labelled over Q, such that the entry (i, j) in A(∗) corresponds to applying

⊕
, over all

paths ρ from i to j in G, on
⊗

k
a−→l∈ρ a. The closure of diagonal entries corresponds to

an acceleration of this computation over cycles, such that only paths without cycles need
to be considered. Whenever the variable k is incremented, Ak contains the result of this
computation over all paths without cycles that only use {1, . . . , k} as intermediate states,
and thus An ⊕ 1 = A(∗) (that last step only updates diagonal entries by adding 1, this
corresponds to paths of length zero).

1.2.2. Transition systems labelled over a semiring

The results of this section hold for every semiring, but as we will mostly consider semirings
that extend the tropical semiring in further chapters, we will change notations and name
the two operators min and + of neutral elements +∞ and 0 instead of ⊕ and ⊗ of neutral
elements 0 and 1. We will also assume that min has an absorbing element named −∞
instead of ∞. In this section, we consider only finite transition systems (finitely many
states and edges).

Definition 1.8. A weighted transition system is a transition system 〈S, T 〉 labelled over
Σ, such that (Σ,min,+) is an ordered semiring with closure.

23

Algorithm 1.1: Closure computation over the semiring of matrices [GM08]
Input :A ∈Mn(Q)
Output :A(∗)

/* We construct a sequence of matrices A0 . . . An */
1 A0 ← A
2 for k ← 1 to n do
3 Ak(k, k)← (Ak−1(k, k))(∗)

4 for i← 1 to n do
5 for j ← 1 to n do
6 if (i, j) 6= (k, k) then
7 Ak(i, j)← Ak−1(i, j)⊕ (Ak−1(i, k)⊗ Ak(k, k)⊗ Ak−1(k, j))

8 return An ⊕ 1

The weight of a finite path ρ = s0
a1−→ s1 . . .

ak−→ sk is obtained by summing its edges in
order (+ may not be commutative) wt(ρ) = a1+· · ·+ak. The weight wtk(s, s′) for a pair of
states (s, s′) and k ∈ N is defined as the minimal weight of the set of all paths from s to s′
of length exactly k in the transition system.2 We also let wt6k(s, s′) = min06i6k wti(s, s′)
denote the minimal weight for all paths of length at most k ∈ N. From the ordering v of
(Σ,min,+) we derive an ordering 6, such that a 6 b⇔ b v a⇔ ∃c ∈ Σ, a = min(b, c).
The sequence (wt6k(s, s′))k∈N is decreasing for 6, and we define wt(s, s′) as its infimum
w.r.t. 6 if it exists. In fact, we will see that it always exists when (Σ,min,+) is a semiring
with closure.

Example 1.4. If the semiring is the tropical semiring (N∪{+∞},min,+), then wt(s, s′)
corresponds to the weight of the shortest path from s to s′ in a transition system labelled
by non-negative weights representing distance, and equals +∞ if no such path exists.
If the semiring is (Z ∪ {−∞,+∞},min,+), wt(s, s′) corresponds to the infimum of the
weight of the paths from s to s′, i.e. the weight of the shortest path if it exists, +∞ if s
cannot reach s′, and −∞ if s can reach a negative cycle that can reach s′. If the semiring
is ({0, 1},∨,∧), wt(s, s′) = 1 if and only if there is a path from s to s′ entirely labelled
by 1.

The adjacency matrix of a transition system 〈S, T 〉 weighted over Σ is a matrix M in
M|S|(Σ), seen as a mapping from S × S to Σ, such that M(s, s′) is equal to wt1(s, s′).
M is an element of the ordered semiring with closure (M|S|(Σ),min,+), where min
is the entrywise application of min and + is the standard product of matrices over
(Q,min,+). Observe that for every pair of states (s, s′), it holds that for every k > 0,
M (k)(s, s′) = wt6k(s, s′), and therefore M (∗)(s, s′) = wt(s, s′). Then, we can compute
wt(s, s′) for every pair (s, s′) by using Algorithm 1.1 on M . From the adjacency matrix

2 In particular, wtk(s, s′) equals +∞ if there are no such path, and wt0(s, s′) is equal to 0 if s = s′ and
+∞ otherwise.

24

s0 s1s2

1

2

1

0

−1

M =

s0 s1 s2

s0 +∞ 1 +∞
s1 2 1 0
s2 −1 +∞ +∞

s2 s0 s1

0 00

1

−11

−1

0

0

M (∗) =

s0 s1 s2

s0 0 1 1
s1 −1 0 0
s2 −1 0 0

Figure 1.2.: A weighted transition system labelled over (Z∪ {+∞,−∞},min,+) and its

adjacency matrix on the left, their closure on the right.

M (∗) of a transition system 〈S, T 〉, we can extract a transition system 〈S, T ′〉 called the

closure of 〈S, T 〉, with T ′ = {s M(∗)(s,s′)−−−−−→ s′ | s, s′ ∈ S}.

Example 1.5. Figure 1.2 represents a transition system labelled over the tropical
semiring (Z ∪ {+∞,−∞},min,+), its adjacency matrix M containing the minimum
weight over paths of length 1, the closure M (∗) = min(1,M,M2,M3) (1 is the identity
matrix with 0 on the diagonal and +∞ everywhere else), and the transition system
associated with M (∗).
On (N ∪ {+∞},min,+), Algorithm 1.1 is equivalent to running the classical Floyd-

Warshall algorithm on a graph with non-negative weights. On the semiring (Z ∪
{−∞,+∞},min,+), Algorithm 1.1 is equivalent to running the Floyd-Warshall al-
gorithm on a graph with arbitrary weights, with an additional check that sets diagonal
entries to −∞ as soon as they become negative.

1.3. Turn-based game on a transition system
In order to model situations where some choices are out of our control, we will study a
game-theoretical extension of transition systems, where two players play a turn-based
game.

Definition 1.9. A two-player turn-based game labelled over Σ is a tuple G = 〈SCtrl, SEnv, T 〉
such that SCtrl ∩ SEnv = ∅ and 〈SCtrl ∪ SEnv, T 〉 is a transition system labelled over Σ.

The disjoint union of states is denoted S = SCtrl] SEnv. We say that SCtrl contains the
states that belong to the player Ctrl, and SEnv the states that belong to the player Env. A
maximal play (resp. a non-maximal play) ρ in G is a maximal path (resp. a non-maximal
path) in 〈S, T 〉. Let S⊥ ⊆ S denote the deadlock states. Recall that states can be seen
as paths of length 0, and therefore states in S\S⊥ can be seen as non-maximal plays.
For P ∈ {Ctrl,Env}, the set of non-maximal plays ρ such that last(ρ) ∈ SP is denoted

25

s0 s1st

req

to

slp

rec

ok

pro

Figure 1.3.: A two-player turn-based game, where controller owns the circle states s0
and st, and the environment owns the rectangle state s1.

FPlaysP. A strategy σP for player P is a mapping from FPlaysP to T , such that for all
ρ ∈ FPlaysP, last(ρ) = first(σP(ρ)). A strategy is said positional if for all ρ ∈ FPlaysP,
σP(ρ) = σP(last(ρ)).3 Let play(s0, σCtrl, σEnv) denote the unique maximal play obtained
from an initial state and a pair of strategies, such that first(play(s0, σCtrl, σEnv)) = s0, and
for every prefix ρ of play(s0, σCtrl, σEnv) in FPlaysP, the next transition in play(s0, σCtrl, σEnv)
is σP(ρ).

Definition 1.10. Given a game G, an objective Lt (as an ω-language over labels) and
an initial state s0, the controller synthesis problem asks if there exists a strategy σCtrl for
Ctrl such that for all strategies σEnv for Env, play(s0, σCtrl, σEnv) is an infinite play that
induces a word in Lt.

Example 1.6. Figure 1.3 represents a two-player turn-based game associated with the
transition system of Figure 1.1, such that SCtrl = {s0, st} and SEnv = {s1}. This models
the fact that, as a client, we do not control the server’s answer. On this example, consider
the reachability objective associated with St = {st}, that models the specification "at
least one communication goes well". The synthesis problem is not satisfied from s0
with this objective, since for every strategy of player Ctrl, player Env can choose to
always time-out, or loop in s1 forever. If we consider the specification "controller sends
at least one request", defined by the reachability objective associated with St = {s1},
the synthesis problem is satisfied from s0, for example with the positional strategy for
controller that chooses req in s0 and pro in st.

If SEnv is empty, the controller synthesis problem on G is equivalent to the emptiness
problem on the transition system 〈SCtrl, T 〉. If SCtrl is empty, the controller synthesis
problem on G is equivalent to the model-checking problem on the transition system
〈SEnv, T 〉.
For a finite system equipped with a reachability or Büchi objective, the controller

synthesis problem is polynomial, and can be solved with fixpoint computations. In a more
general setting where the objective is given as an LTL formula, the controller synthesis
problem is 2-EXPTIME complete [PR89].

3Positional strategies are often called memoryless in the literature, as they always make the same
decision in a given state, thus one does not need to remember the history ρ to follow them.

26

1.3.1. Attractors

We now recall the classical notion of attractor of a player towards a set of states, that is
used to solve reachability games. Let St ⊆ S be a set of states. The attractor of Ctrl
towards St is the set of states such that player Ctrl can guarantee reaching St eventually.
Formally, it is the greatest set S ′ ⊆ S such that for all s ∈ S ′, either:

1. s ∈ St; or

2. s ∈ SCtrl, and there exists a transition s a−→ s′ with s′ ∈ S ′; or

3. s ∈ SEnv, and for all transitions s a−→ s′, it holds that s′ ∈ S ′.

It is well-known that S ′ can be computed with a fixpoint computation that starts with
S ′ = St, and adds progressively the states that satisfy conditions 2 or 3, until no such
state is left. The complexity of this computation is linear in the size |S| + |T | of the
graph.4

Then, the controller synthesis problem with reachability objective St and initial state
s0 is satisfied if and only if s0 belongs to the attractor of Ctrl towards St, and in this
case one can extract from the attractor computation a (positional) strategy σCtrl that
guarantees reachability of St from s0.

A symmetrical notion of attractor of Env towards a set St can be defined and computed
similarly.

4 A single backwards breadth-first search from St is enough if one keeps track, for each state of Max, of
the number of successors that have not yet been added to S′. When this counter reaches 0 the state
is added.

27

2. Timed systems

In this chapter, we introduce notions that let us express timing constraints, define timed
automata as finite transition systems enriched by those notions, and introduce classical
tools for their study.

2.1. Modelling real-time constraints
Let X = {x1, . . . , xn} be a finite, non-empty set of variables called clocks. A valu-
ation ν : X → R>0 is a mapping from clocks to non-negative real numbers, such that
ν(x1), . . . , ν(xn) are called the coordinates of ν. Equivalently, ν can be seen as a point in
space RX>0. We denote 0 the valuation such that for all x ∈ X , ν(x) = 0. Given a real
number d ∈ R, we define ν + d as the valuation such that ∀x ∈ X , (ν + d)(x) = ν(x) + d
if it exists.1 If d is non-negative, we say that we performed a time elapse of delay d.
The time-successors of ν are the valuations ν + d with d > 0. Similarly, we refer to all
ν + d in RX>0 with d 6 0 as time-predecessors of ν. The set of points that are either
time-predecessors or time-successors of a valuation ν form the unique diagonal line in
RX>0 that contains ν. If Y is a subset of X , we define ν[Y := 0] as the valuation such that
∀x ∈ Y , (ν[Y := 0])(x) = 0 and ∀x ∈ X\Y , (ν[Y := 0])(x) = ν(x). This operation is called
a reset of clocks Y .

We extend those notions to sets of valuations in a natural way. The set of time-successors
of Z ⊆ RX>0, denoted PostTime(Z), contains the valuations that are time-successors of
valuations in Z. The reset of Z ⊆ RX>0 by Y , denoted Z[Y := 0], contains the valuations
ν[Y := 0] such that ν ∈ Z.
The term atomic constraint will refer to a linear inequality in one of the following

forms:

• A strict (resp. non-strict) non-diagonal atomic constraint over clock x ∈ X and
constant c ∈ Q is an inequality of the form x ./ c with ./ ∈ {>,<} (resp. ./ ∈
{>,6}).

• A strict (resp. non-strict) diagonal atomic constraint over clocks x and y ∈ X
and constant c ∈ Q is an inequality of the form x − y ./ c with ./ ∈ {>,<}
(resp. ./ ∈ {>,6}).

Let > and ⊥ denote two special atomic constraints, defined as x > 0 and x < 0 for an
arbitrary x ∈ X . A guard g over X is a finite conjunction of atomic constraints over
clocks in X . In particular, guards let us define x = c as shorthand for x 6 c ∧ x > c, and

1if d is negative, ν + d may not belong to RX
>0

28

c1 < x < c2 as shorthand for x > c1 ∧ x < c2 . A guard is said strict (resp. non-strict,
diagonal, non-diagonal) if all of its atomic constraints are strict (resp. non-strict, diagonal,
non-diagonal). Guards(X) denotes the set of all guards over X , and Guardsnd(X) the
subset of non-diagonal guards. For all constants c ∈ Q and ./ ∈ {>,6, >,<}, we say
that valuation ν ∈ RX>0 satisfies the atomic constraint x ./ c (resp. x− y ./ c), and write
ν |= x ./ c (resp. ν |= x − y ./ c), if ν(x) ./ c (resp. ν(x) − ν(y) ./ c). We say that
valuation ν ∈ RX>0 satisfies guard g, and write ν |= g, if ν satisfies all atomic constraints
in g. For g ∈ Guards(X), let JgK denote the set of all ν ∈ RX>0 such that ν |= g. Such
sets are called zones and form convex polyhedra of RX>0. A guard g is said satisfiable
when the zone JgK is non-empty, and a zone is called rectangular when the associated
guard is non-diagonal. The universal zone refers to J>K = RX>0 and the empty zone refers
to J⊥K = ∅. Guard g is the closed version of a satisfiable guard g where every strict
constraint of comparison operator < or > is replaced by its non-strict version 6 or >.
The zone JgK is the topological closure of Z = JgK, and is also denoted Z.

Zones are closed by intersection as JgK ∩ Jg′K = Jg ∧ g′K, but not by union.2 Zones are
closed by time-successors as PostTime(JgK) is equal to Jg′K, where g′ is obtained from g
by removing every non-diagonal atomic constraint of the form x < c or x 6 c. Zones
are also closed by reset of clocks Y ⊆ X , as JgK [Y := 0] = Jg′K, where g′ = ⊥ if JgK = ∅,
and otherwise g′ is obtained from g by removing every non-diagonal atomic constraint
of the form x > c or x > c with x ∈ Y, replacing every diagonal atomic constraint of
the form x− y ./ c with y ∈ Y (resp. x ∈ Y) by x ./ c (resp. y 6./ −c), and adding the
constraint x 6 0 for every x ∈ Y. Note that encoding zones by storing their associated
guard syntactically as a formula is not efficient, as guards can contain useless constraints.
Moreover, it is possible to have different guards associated to the same zone, and for
example testing if a zone is equal to another zone is non-trivial in this form.

2.2. Encoding constraints as DBMs
A bound (over R) is a pair (≺, c) with ≺ ∈ {<,6} and c ∈ R. It represents the (open
or large) upper bound ≺ c in a linear inequality. We introduce additional bounds
(<,+∞) and (<,−∞) that will be used for trivial inequalities, and let Bounds(R) denote
({<,6} × R) ∪ {(<,+∞), (<,−∞)}.

We say that a real number a ∈ R satisfies (≺, c) ∈ {<,6} × R if the inequality a ≺ c
holds. The bound (<,+∞) is satisfied by every real and (<,−∞) is never satisfied. We
say that bound (≺, c) is at least as strong as (≺′, c′), denoted (≺, c) 4 (≺′, c′), if all reals
satisfying (≺, c) satisfy (≺′, c′), equivalently if

c = −∞∨ c′ = +∞∨ c < c′ ∨ (c = c′ ∧ (≺ = ≺′ ∨ ≺ = <)) .

This forms a total order over bounds, where the strongest bound is (<,−∞) and the
weakest one is (<,+∞). We define a binary operator min over bounds that returns
the strongest bound out of its arguments, and an infimum inf over sets of bounds that

2the union of two zones may not be a convex set

29

returns the weakest bound that is at least as strong as every bound in the set.
We also define an addition + such that

(≺, c) + (≺′, c′) = (≺′′, c+ c′) ,

with ≺′′ set to 6 if ≺ = ≺′ = 6 and to < otherwise, and where c+ c′ uses the + operator
of the tropical semiring (R ∪ {−∞,+∞},min,+).3
The min operation admits (<,+∞) as neutral element and (<,−∞) as absorbing

element, and + admits (6, 0) as neutral element and (<,+∞) as absorbing element.
Then, (Bounds(R),min,+) is a semiring that we call the tropical semiring of bounds
over R. It is an ordered semiring because min is selective. The order v induced by min
in (Bounds(R),min,+) is {(a, b) | b 4 a}. Then, (Bounds(R),min,+) forms a complete
join semilattice with v where join is the inf operator. Therefore, (Bounds(R),min,+)
is an ordered semiring with closure. The closure of a bound (≺, c) is equal to: (<, 0) if
(≺, c) = (<, 0); (<,−∞) if c < 0; and (6, 0) otherwise (i.e. if (6, 0) 4 (≺, c)).

We define bounds over a subsetQ of R with Bounds(Q) = ({<,6}×Q)∪{(<,+∞), (<,−∞)}
in a similar fashion. Recall that QN denotes the rational numbers of granularity 1/N
with N ∈ N>0, and consider the tropical semiring of bounds over QN , defined as
(Bounds(QN),min,+). It inherits the properties of (Bounds(R),min,+) and is an ordered
semiring with closure.
For notational convenience, we add a variable x0 that is always considered equal to

0, and denote X0 the set X ∪ {x0}. A difference bound constraint is a linear inequality
x− y ≺ c over clocks x, y ∈ X0 and bound (≺, c). As for atomic constraints, we say that a
valuation ν ∈ RX>0 satisfies x−y ≺ c and write ν |= x−y ≺ c if the real number ν(x)−ν(y)
satisfies the bound (≺, c) (with ν(x0) defined as equal to 0), and Jx− y ≺ cK denotes
the set of valuations that satisfy x− y ≺ c. The inclusion relation of sets of valuations
in RX>0 gives a natural order over atomic constraints, difference bound constraints and
guards. Thus, given atomic constraints, difference bound constraints or guards φ and
φ′, we will say that φ is at least as strong as φ′ if JφK ⊆ Jφ′K, and that φ is equivalent
to φ′ if JφK = Jφ′K. A difference bound constraint x − y ≺ c is at least as strong as
another difference bound constraint x′ − y′ ≺′ c′ if and only if either (≺, c) = (<,−∞),
(≺′, c′) = (<,+∞), or x = x′, y = y′ and (≺, c) 4 (≺′, c′).

Lemma 2.1. Every atomic constraint can be associated with an equivalent difference
bound constraint. Similarly, every difference bound constraint can be associated with an
equivalent atomic constraint.

Proof. From atomic constraints to difference bound constraints we refer to Table 2.1.
From difference bound constraints to atomic constraints, note that if c ∈ Q and at most
one of x, y is equal to x0 then we can use Table 2.1 to find an atomic constraint equivalent
to x− y ≺ c. If c ∈ {+∞,−∞} we can use the atomic constraint > or ⊥. If x = y = x0

then x0 − x0 ≺ c is equivalent to > if (6, 0) 4 (≺, c), and to ⊥ otherwise.
3 It is the standard addition over R, extended with c+ (+∞) = +∞ and c+ (−∞) = −∞ for all c ∈ R,
and (+∞) + (−∞) = +∞.

30

x ≺ c x � c x− y ≺ c x− y � c
x− x0 ≺ c x0 − x ≺ −c x− y ≺ c y − x ≺ −c

Table 2.1.: The first line represents atomic constraints, and the second line represents
their equivalent difference bound constraints. The symbol ≺ (resp. �) can
be interpreted as either < or 6 (resp. either > or >).

One can then see a guard g as a finite conjunction of difference bound constraints,
and encode it as a finite weighted transition system 〈X0, T 〉 labelled over Bounds(Q),

whose vertices are clocks in X0 and such that every transition x
(≺,c)−−−→ y corresponds to a

difference bound constraint x− y ≺ c in g. We also add transitions x0
(6,0)−−−→ x for every

x ∈ X0 to enforce the non-negativity of clocks. As there are finitely many constraints in
g, there exists a granularity 1/N such that (X0, T) is in fact labelled over Bounds(QN).
The adjacency matrix of such weighted transition system, as defined in Section 1.2.2, is
a mapping M from X0 × X0 to Bounds(QN) called a Difference Bound Matrix (DBM)
where every entry M(x, y) = (≺, c) represents the difference bound constraint x− y ≺ c,
and JMK is the zone associated to the conjunction of those constraints.
DBMs were introduced in [BM83, Dil90] for analyzing timed automata, they offer a

practical way to represent zones, and one can perform operations like intersections, resets
or time-successor computations on DBMs in time quadratic in |X |. We refer to [BY04]
for details.4 A DBM is said in normal form if M = M(∗) in the semiring of matrices
over the tropical semiring of bounds. Thus, for every DBM M there exists a unique
DBM in normal form Norm(M) such that JMK = JNorm(M)K. One can use Algorithm 1.1
to compute Norm(M) = M(∗) in time cubic in |X |. Intuitively, a DBM in normal form
contains all of the strongest atomic constraints that are satisfied by its associated zone.
A DBM in normal form M is non-empty (i.e. JMK 6= ∅) if and only if none of its

diagonal entries are negative, i.e. ∀x ∈ X0, (6, 0) 4 M(x, x). Given two non-empty DBMs
in normal form M and M′, we have JMK = JM′K if and only if M = M′, and JMK ⊆ JM′K if
and only if M(x, y) 4 M′(x, y) for all clocks x, y ∈ X0. Therefore, testing DBMs in normal
form for equality or inclusion of their associated zones requires a time complexity at most
quadratic in |X |.

Example 2.1. An example of satisfiable guard, zone and DBM in normal form is
displayed in Figure 2.1. Consider the guard over X = {x1, x2} defined by g = x1 − x2 <
1 ∧ x1 − x2 > 1. It is not satisfiable, and JgK = ∅. From g we obtain the DBM

M =

6 0 < +∞ < +∞
6 0 < +∞ < 1
6 0 6 −1 < +∞

, with Norm(M) =

6 0 < +∞ < +∞
6 0 < 0 < 1
6 0 < −1 < 0

.

4 DBMs are usually defined without the bound (<,−∞): they only appear when the associated zone is
empty, in which case computations are stopped as soon as possible. The two definitions are equivalent
for non-empty zones.

31

x1

x2

1 20

1

2

x1 > 1 ∧ x2 < 1 ∧ x1 − x2 < 1

x0 x1 x2

x0 6 0 < −1 < 0
x1 < 2 6 0 < 1
x2 < 1 < 0 6 0

Figure 2.1.: A guard g over clocks X = {x1, x2} with constants in Z = Q1, a representation
of the zone JgK, and the DBM in normal form M encoding JgK.

2.3. Timed automata
Definition 2.1. A timed automaton A is a tuple 〈L,X ,Σ, E〉, with L a finite set of
locations, X a finite set of clocks, Σ a finite set of actions and E a finite set of edges
labelled by an action, a non-diagonal guard and a set of clocks to reset, such that 〈L,E〉
is a finite transition system labelled over Σ× Guardsnd(X)× 2X .

A path π in A refers to a path in the transition system 〈L,E〉, i.e. a sequence of the
form `0

a1,g1,Y1−−−−→ `1
a2,g2,Y2−−−−→ . . . in (L,E). We call a pair (`, ν) ∈ L× RX>0 a configuration.

The semantics of A is defined as the transition system JAK = 〈L × RX>0, T 〉 labelled
over R>0 × E, whose states are configurations and where T is the set of transitions
(`, ν)

d,e−→ (`′, ν ′) obtained from every delay d ∈ R>0 and edge e = `
a,g,Y−−−→ `′ in A such

that ν + d |= g and ν ′ = (ν + d)[Y := 0]. An execution ρ in A refers to a path in JAK,
it describes a sequence of delays and edges to take, starting from configuration first(ρ).
Given an execution ρ in A, one can abstract delays and valuations to obtain a path π in
A. In this case, we say that ρ is following π, or that π contains the execution ρ.
A finite or infinite word a1a2 . . . over Σ is called an untimed word. We define timed

words as finite or infinite words over R>0×Σ, such that (d1, a1)(d2, a2) . . . represents the
sequence where action a1 happens after a delay of d1 units of time, action a2 happens d2

units of time after a1, etc..5 A path π in A naturally induces an untimed word, and an
execution ρ in A naturally induces a timed word. Sets of infinite timed (resp. untimed)
words are called timed (resp. untimed) ω-languages. Given a timed ω-language L,
we define the corresponding untimed ω-language Untimed(L) as {(ai)i∈N | ∃(di)i∈N ∈
RN

>0, (di, ai)i∈N ∈ L}, and given an untimed ω-language Lu, we define the corresponding
timed ω-language Timed(Lu) as {(di, ai)i∈N | (di)i∈N ∈ RN

>0, (ai)i∈N ∈ Lu}.

Example 2.2. An example of timed automaton A is depicted in Figure 2.2. We
denote valuation ν : x1 → ν(x1), x2 → ν(x2) as ν = (ν(x1), ν(x2)). From (`0, (0, 0)), A
allows the finite timed word (1.5, a)(0.25, b)(1.75, a), induced by an execution following

`0
a,1<x1<2,{x2}−−−−−−−−→ `1

b,x162,{x1}−−−−−−→ `2
a,x2>2,{x2}−−−−−−→ `1 with successive configurations (`0, (0, 0)),

(`1, (1.5, 0)), (`2, (0, 0.25)) and (`1, (1.75, 0)). The untimed word ba cannot be induced by
an execution starting from (`0, (0, 0)).

5 Timed words are usually defined with global time stamps instead of delays, but one can convert from
one to the other as needed.

32

`0 `1 `2`3

a, 1 < x1 < 2

x2 := 0

b, x1 6 2, x1 := 0

a, x2 > 2, x2 := 0b, x1 > 2, x1 := 0

a, x2 < 2, x2 := 0

Figure 2.2.: A timed automaton over clocks X = {x1, x2} and actions Σ = {a, b}, where
the reset of a clock x is denoted by x := 0, such that the edge from `3 to `0

refers to (`3, a, x2 < 2, {x2}, `0) ∈ E, alternatively denoted `3
a,x2<2,{x2}−−−−−−→ `0.

We define the emptiness and model checking problems on timed automata using the
transition system of their semantics. Given a timed automaton A, an objective Lut (as
an untimed ω-language), an initial location `0 and an initial valuation ν0, the emptiness
problem (resp. model-checking problem) refers to the emptiness (resp. model-checking)
problem on JAK with objective Timed(Lut) and initial configuration (`0, ν0).
Remark. A standard definition of those problems would use a timed language as the
objective, but we will focus on cases where the objective is untimed. It is usually assumed
that all clocks are null initially (i.e. ν0 = 0), and in this case only the initial location `0
is specified.
Given a timed automaton A and an initial configuration (`0, ν0), the timed language
L(`0,ν0)(A) is defined as the language of JAK at (`0, ν0), i.e. the set of timed words induced
by the executions starting from (`0, ν0). The untimed language Lu(`0,ν0)(A) is defined
as Untimed(L(`0,ν0)(A)), i.e. the set of untimed words induced by paths that contain
executions starting from (`0, ν0).
The emptiness (resp. model-checking) problem can be reformulated as asking if the

untimed language Lu(`0,ν0)(A) has non-empty intersection with Lut (resp. is included in
Lut). Thus, if two timed automata have the same untimed language, they are equivalent
for the emptiness and model-checking problems. We also define the emptiness problem
with a reachability condition (resp. with a Büchi condition) on timed automata, and
they can be seen as special cases of the emptiness problem associated to reachability
(resp. Büchi) objectives. Given a timed automaton, an initial configuration (`0, ν0), and
a set of target locations Lt ⊆ L, the emptiness problem with a reachability condition asks
if there exists a finite execution ρ such that first(ρ) = (`0, ν0) and last(ρ) ∈ Lt × RX>0.
Given a timed automaton, an initial configuration (`0, ν0), and a set of target locations
Lt ⊆ L, the emptiness problem with a Büchi condition asks if there exists an infinite
execution (`0, ν0)

d1,e1−−−→ (`1, ν1)
d2,e2−−−→ . . . starting from (`0, ν0) that reaches Lt infinitely

often, i.e. such that there exist infinitely many i ∈ N with `i ∈ Lt.

2.3.1. Bounded clocks

Let RX>0,<M denote the set of valuations in RX>0 bounded by M ∈ Q>0, i.e. such that
for every clock x ∈ X , ν(x) ∈ [0,M). A guard g is said to be bounded by M ∈ Q>0 if
JgK ⊆ RX>0,<M , i.e. every valuation that satisfies g belongs to RX>0,<M . Let Guards(X ,M)

33

(resp. Guardsnd(X ,M)) denote the set of guards (resp. non-diagonal guards) over X
bounded by M . Given a timed automaton A, we say that all clocks are bounded by
M in A if every guard in A belongs to Guardsnd(X ,M). Let A be a timed automaton,
and let M be the greatest constant (in absolute value) to appear in the constraints of A.
There exists a timed automaton A′ where clocks are bounded by M + 1, and an initial
location `′0 in A′ such that Lu(`0,0)(A) = Lu(`′0,0)(A′) [BFH+01]. The intuition behind the
construction is to store in the locations the information of which clock is above M and
maintain those under M + 1.
Bounded clocks are a powerful assumption that is usually required in related work,

and will be necessary for most of our results. As the above transformation maintains
untimed languages, this assumption comes without loss of generality for the emptiness
and model-checking problems. From now on, we will assume that all clocks are bounded
by some constant M , that all constants that appear in atomic constraints are included
in [−M,M], and we restrict JAK to configurations in L× RX>0,<M , as executions that get
out of this cube cannot continue and thus do not affect the languages of A. Moreover,
we change the universal guard > such that J>K equals RX>0,<M instead of RX>0.

2.3.2. Regions

We will rely on the crucial notion of regions, as introduced in the seminal work on timed
automata [AD94]. Given a finite set of rational numbers S ⊆ Q, S is said to be of
granularity 1/N if S ⊆ QN . Such N always exists, and one can find the smallest one
by decomposing elements of S as irreducible fractions c/c′ with c ∈ Z, c′ ∈ N>0 and
use the least common multiple of all c′ as N . A guard g is said to be of granularity
1/N if all constants in the atomic constraints of g form a set of granularity 1/N . A
zone is of granularity 1/N if it can be described by a guard of granularity 1/N . Let
GuardsN(X ,M) denote the set of guards over X bounded by M and of granularity 1/N ,
and let Guardsnd

N (X ,M) denote the non-diagonal ones. Given a finite set of guards
G ⊆ Guardsnd(X ,M), we can find N such that G ⊆ Guardsnd

N (X ,M), by denoting S ⊆ Q
the set of constants used in atomic constraints of G and using N the smallest integer
such that S is of granularity 1/N . For all a ∈ R>0, bac ∈ N denotes the integral part of
a, and fract(a) ∈ [0, 1) its fractional part, such that a = bac+ fract(a).

Definition 2.2. With respect to the set X of clocks, a granularity N ∈ N>0 and an
upper bound M ∈ N>0, we define 1/N -regions as subsets of valuations r characterised by
a valuation ι ∈ RX>0,<M called the integral part of r such that ι(x) ∈ QN for every x ∈ X ,
and an ordered partition R0]R1] · · ·]Rm splitting X into m+ 1 subsets. The ordered
partition is denoted 0 = R0 < R1 < · · · < Rm, where R0 can be empty but Ri 6= ∅ for
1 6 i 6 m.

A valuation ν in RX>0,<M belongs to r if

• for all x ∈ X , ι(x)N = bν(x)Nc;

• for all x ∈ R0, fract(ν(x)N) = 0;

34

x1

x2

1 20

1

2

x1

x2

1 20

1

2

Figure 2.3.: All 1/1-regions in Reg1({x1, x2}, 2) on the left, their refinement of granularity
1/3 in Reg3({x1, x2}, 2) on the right.

• for all 0 6 i 6 m, for all x, y ∈ Ri, fract(ν(x)N) = fract(ν(y)N).

• for all i, j such that 0 6 i < j 6 m, for all x ∈ Ri and all y ∈ Rj, fract(ν(x)N) <
fract(ν(y)N).

With granularity N = 1, we recover the classical notion of regions from [AD94]. The
set of valuations contained by a 1/N -region r characterised by ι and 0 = {x0

1, . . . , x
0
m0
} <

{x1
1, . . . , x

1
m1
} < · · · < {xm1 , . . . , xmmm} can be described by a formula, constructed as a

conjunction of inequalities over X : If we let f(x) denote the term (x− ι(x))N , and Ei

denote the formula f(xi1) = · · · = f(ximi) for every 0 6 i 6 m, then ν ∈ r if and only if
its coordinates satisfy

E0 ∧ E1 ∧ · · · ∧ Em ∧ 0 = f(x0
1) < f(x1

1) < · · · < f(xm1) < 1 .

Therefore, every 1/N -region is a zone of granularity 1/N , associated to a guard in
GuardsN(X ,M). We denote by RegN(X ,M) the set of 1/N -regions bounded by M . It
forms a finite partition of RX>0,<M , and the number |RegN(X ,M)| of 1/N -regions is
polynomial in MN and exponential in |X |. If ν is a valuation in RX>0,<M , [ν] denotes the
unique region that contains ν. Valuations in the same 1/N -region satisfy the same guards
in GuardsN (X ,M). In fact, zones associated to guards in GuardsN (X ,M) can be described
as a finite union of regions in RegN(X ,M). If r is a 1/N -region in RegN(X ,M), then
the time-successor valuations in PostTime(r) ∩ RX>0,<M form a finite union of regions in
RegN (X ,M), and the reset r[Y := 0] of Y ⊆ X is a region in RegN (X ,M). A 1/N -region
r′ is said to be a time successor of the 1/N -region r if there exists ν ∈ r, ν ′ ∈ r′, and
d > 0 such that ν ′ = ν + d.
If r is an 1/N -region, let r denote its topological closure, i.e. the smallest zone that

contains r associated to a non-strict guard.6 The corners of r are valuations in r
that belong to QXN . If r is characterized by an integral part ι and a clock ordering
0 = R0 < R1 < · · · < Rm, then ι is a corner of r. If m = 0 then r = {ι}, otherwise r does
not include its corners but contains valuations arbitrarily close to them. The corners of r
are the vertices of the polytope r, such that r is their convex hull.

Example 2.3. Figure 2.3 represents the 24 regions of granularity N = 1 with upper
bound M = 2 over two clocks. The green region is characterised by ι = (1, 0) and

6r is obtained by replacing every bound (<, c) by (6, c) in the DBM encoding r as a zone.

35

0 = {x1} < {x2}, corresponds to the formula 0 = x1 − 1 < x2 < 1 and thus is equal to
the zone Jx1 = 1 ∧ 0 < x2 < 1K. Its corners are the valuations (1, 0) and (1, 1). The red
region is characterised by ι = (0, 1) and 0 = {x1, x2}. The black region is characterised
by ι = (1, 1) and 0 < {x1} < {x2}. The blue region is characterised by ι = (0, 0) and
0 < {x1, x2}.

2.3.3. Region abstraction, region automaton

Definition 2.3. Given a timed automaton A = 〈L,X ,Σ, E〉 such that all clocks are
bounded by M and all guards belong to Guardsnd

N (X ,M) for some granularity 1/N , we
define the region abstraction of A as the transition system 〈L×RegN (X ,M), T 〉 labelled
over RegN(X ,M) × E, where T contains all transitions (`, r)

r′′,e−−→ (`′, r′) such that
e = `

a,g,Y−−−→ `′ is an edge of A, r′′ is a time-successor of r, r′′ |= g and r′′[Y := 0] = r′.

As there are finitely many regions, the region abstraction of A is a finite transition
system, where paths p represent a sequence of regions alternating between letting time
elapse and taking edges, following some path π in A. We say that π contains the region
path p, and when π is clear from context we sometimes denote r1

delay−−−→ r2
a1,g1,Y1−−−−→ r3 . . .

the path p = (`1, r1)
r2,e1−−→ (`2, r3) . . . with e1 = (`1, a1, g1,Y1, `2). The states of the

region abstraction are called region states, and its paths are called region paths. From
an execution in A described by ρ = (`0, ν0)

d1,e1−−−→ (`1, ν1)
d2,e2−−−→ . . . , we can construct a

region path p = (`0, [ν0])
[ν0+d1],e1−−−−−→ (`1, [ν1])

[ν1+d2],e2−−−−−→ . . . , and say that ρ follows p.
From the region abstraction (L×RegN (X ,M), T), we can construct a timed automaton
RN (A) = 〈L×RegN (X ,M),X ,Σ, E ′〉, called the region automaton of A, whose locations
are region states and such that E ′ is defined by transforming every transition (`, r)

r′′,e−−→
(`′, r′) in T , where e is labelled by (a, g,Y), into an edge (`, r)

a,g′′,Y−−−→ (`′, r′), with
Jg′′K = r′′ ⊆ JgK. Every execution in A exists in RN(A) as an execution following a
region path p, and conversely every execution in RN(A) following some region path p
is contained in the path π of A followed by p. Then, A and RN(A) contain the same
executions, therefore they have the same timed and untimed languages and are equivalent
w.r.t. the emptiness and model-checking problems.

Proposition 2.1 ([AD94]). Consider a region path p starting in (`, r). For all valuations
ν in r, there exists in RN(A) an execution following p and starting from (`, ν). If p is
finite and ends in (`′, r′), there also exists in RN (A) an execution following p and ending
at (`′, ν ′) for every valuation ν ′ ∈ r′.

One can then deduce that for every initial configuration (`0, ν0), the language L(`0,[ν0])

of the region abstraction, defined as the infinite words over Σ induced by region paths
starting from (`0, [ν0]), is equal to the untimed language Lu(`0,ν0)(RN (A)) [AD94]. It follows
that A satisfies the emptiness (resp. model-checking) problem with initial configuration
(`0, ν0) and ω-regular objective Lut if and only if the region abstraction, seen as a transition
system labelled over actions in Σ, satisfies the emptiness (resp. model-checking) problem

36

with initial state (`0, [ν0]) and objective Lut . As the region abstraction is a finite transition
system, those problems can be solved using the region abstraction of A. For reachability
or Büchi objectives, the time-complexity of this procedure becomes polynomial in the
size of the region abstraction of A, therefore exponential in the size of A.

By using the region abstraction, the emptiness problem can be shown to be PSPACE-
complete for reachability or Büchi conditions [AD94].

2.3.4. Integer constants

A timed automaton A can be scaled by N ∈ N>0 by multiplying every constant in the
guards of A by N . The executions in the scaled automaton are scaled versions of the
executions in A, where delays and valuations are multiplied by N . This means that we
can restrict the constants to integer values without loss of generality, as we only care
about the properties of the untimed words induced by those executions. Formally, let A
be a timed automaton, with guards in Guardsnd

N (X ,M), such that N ∈ N>0 is as small
as possible for the constants in A. There exists a timed automaton A′ with guards
in Guardsnd

1 (X ,MN) such that A and A′ have the same untimed language. Moreover,
if constants are encoded in binary, the size of A′ is at most quadratic in the size of
A [AD94].
From now on, we assume that the guards in the timed automata we consider have

granularity 1/N = 1, such that every constant that appears in atomic constraints
belong to Z. In this case, we omit N from previous notations about regions, such that
1/N -regions are simply called regions, RegN(X ,M) is denoted Reg(X ,M), and RN(A)
becomes R(A).

2.3.5. Zone abstraction, symbolic algorithms

While the region abstraction gives optimal complexity results for reachability and Büchi
conditions, techniques based on constructing the region abstraction struggle with run-time
efficiency, mostly because of the large state-space to explore. Practical implementations
rely on so-called symbolic techniques instead, where zones are used to represent sets of
regions and where the region abstraction is constructed on the fly.

Let ZonesN (X ,M) be the set of zones associated with guards in GuardsN (X ,M). This is
a finite set since these zones are finite unions of regions in RegN (X ,M). Let Zones(X ,M)
denote Zones1(X ,M). The following elementary operations can be defined on zones
Z ∈ Zones(X ,M):

• Time elapse, as PostTime<M(Z) = PostTime(Z) ∩ RX>0,<M .

• Intersection with a guard g ∈ Guardsnd
1 (X ,M), as Z ∩ JgK.

• Reset of Y ⊆ X , with ResetY(Z) = Z[Y := 0].

Their output is also a zone in Zones(X ,M), which let us define the successor of a zone Z
by an edge e = (`, a, g,Y , `′) as Poste(Z) = ResetY(JgK ∩ PostTime<M(Z)).

37

Given a timed automaton A = 〈L,X ,Σ, E〉 such that all clocks are bounded by M
and all guards belong to Guardsnd

1 (X ,M), we define the zone abstraction7 of A as the
transition system 〈L× Zones(X ,M), T 〉 labelled over E, where states (`, Z) are called
zone states and where T contains all transitions (`, Z)

e−→ (`′, Z ′) such that e is an edge
of A from ` to `′, Z ′ = Poste(Z) and Z ′ 6= ∅. The zone abstraction of A is a finite
transition system, and can be seen as a symbolic representation of the region abstraction
of A by interpreting zones as sets of regions. Recall that if ν is a valuation then the
region [ν] is a zone that contains ν. The zone abstraction inherits properties from the
region abstraction, most notably its language over Σ starting from (`0, [ν0]) is equal to
the untimed language of A starting from (`0, ν0), and therefore the zone abstraction is
equivalent to A w.r.t. the emptiness and model-checking problems.

Given an initial configuration (`0, ν0), we say that a zone state (`, Z) is reachable from
(`0, ν0) if there exists a path in the zone abstraction from (`0, [ν0]) to (`, Z). The zone
abstraction contains a number of states exponential in the size of A, but the ones not
reachable from (`0, ν0) can be ignored. Algorithm 2.1 describes the classical forward
exploration technique, computing the set of all zone states reachable from an initial
configuration (`0, ν0). It uses two sets of zone states, Passed and Waiting, to explore
the zone abstraction, starting from (`0, Z0) = (`0, [ν0]). At every step, we select a zone
state (`, Z) of Waiting, check if it is in Passed, and if not we add (`, Z) to Passed
and its successors to Waiting. All elementary operations on zones can be implemented
efficiently using DBMs in normal form (see Section 2.2).

Algorithm 2.1: Forward exploration of the zone abstraction
Input :A timed automaton 〈L,X ,Σ, E〉, an initial zone state (`0, Z0)
Output :All zone states reachable from (`0, Z0)

1 Passed← ∅
2 Waiting← {(`0, Z0)}
3 while Waiting 6= ∅ do
4 select and remove a zone state (`, Z) from Waiting
5 if for all (`p, Zp) ∈ Passed, ` 6= `p or Z 6= Zp then
6 add (`, Z) to Passed
7 for e = (`, a, g,Y , `′) ∈ E do
8 if Poste(Z) 6= ∅ then add (`′,Poste(Z)) to Waiting

9 return Passed

Let us now focus on the existence problem with a reachability condition, where we
are given a set of target locations Lt and want to decide if they can be reached by an
execution starting from (`0, ν0). This problem can be solved by applying any algorithm
dealing with reachability objectives on finite transition systems on the zone abstraction.
For example, one could use Algorithm 2.1, and test if some reachable state (`, Z) satisfies

7usually called zone graph

38

` ∈ Lt. However, this algorithm can be improved, by testing for zone inclusion instead
of equality in line 5 (Z 6= Zp becomes Z 6⊆ Zp). This is correct because if ` = `p and
Z ⊆ Zp then all locations reachable from configurations in (`, Z) are also reachable from
configurations in (`p, Zp), therefore exploring zone states reachable from (`, Z) is not
needed for reachability conditions. In this case, Algorithm 2.1 computes a subset of the
reachable zone states that covers reachable configurations, i.e. there exists an execution
from (`0, ν0) to (`, ν) if and only if there exists (`, Z) ∈ Passed such that ν ∈ Z. One can
further reduce the explored state-space by using finer approaches, called extrapolation
techniques [Bou03, BBFL03, HKSW11, BBLP04, HSW11], where the zone Z added to
Passed in line 6 is enlarged into some α(Z) ⊇ Z to speed up the computation. The
termination of Algorithm 2.1 relies on the finite number of zones in Zones(X ,M), and
therefore on the bounded clocks assumption. This assumption can be removed using
extrapolation techniques where operator α has finite image.

39

Part II.

Robust controller synthesis

40

Introduction

In this part we study problems related to the robustness of controllers. As mentioned in
the general introduction, the semantics of timed automata is a mathematical idealisation,
where delays are chosen with an infinite precision. Therefore, alternative semantics have
been proposed in order to ensure that a property satisfied by a timed automaton A
carries over to implementations modelled by A. Integrating the robustness question in
the verification of real-time systems has attracted attention in the community, and the
recent works include, for instance, robust model checking for timed automata under clock
drifts [RPV17], Lipschitz robustness notions for timed systems [HOS16], quantitative
robust synthesis for timed automata [BBF+18]. Stability analysis and synthesis of
stabilizing controllers in hybrid systems are a closely related topic, see e.g. [PS16, PGS17].
For the model-checking problem that asks if every execution in A satisfies some

objective, an approach consists in enlarging the guards by a small amount δ > 0,
e.g. so that 2 6 x < 3 becomes 2 − δ 6 x < 3 + δ, thus defining an enlarged timed
automaton Aδ. Indeed, if Aδ satisfies the model-checking problem, so does A, and there
is always some margin δ left around executions of A, ensuring that the specification is
ensured in a robust manner. The qualitative robust model-checking problem then asks
if there exists some δ > 0 such that Aδ satisfies the model-checking problem. It was
shown in [DWDMR08, Pur00] to be PSPACE-complete for safety properties and LTL
formulæ [BMR06]. A quantitative variant, asking what is the greatest δ > 0 such that
Aδ satisfies the model-checking problem, was also studied in [JR11].

A symmetrical approach can be followed for the emptiness problem, that asks if there
exists an execution in A satisfying the specification. In this context, the goal is to restrict
the semantics, so as to remove executions that would not be implementable in a real-world
situation (were infinitesimal imprecisions on measurements are bound to appear). In this
case, guards are shrunk, so that 2 6 x < 3 becomes 2 + δ 6 x < 3 − δ. If the shrunk
system satisfies the emptiness problem, so does the original timed automaton, and every
guard is satisfied with some margin for error. The intuition is that the emptiness problem
searches for an execution, modelling an implementation, that satisfies the specification.
However, we argue that this shrinking approach does not provide a satisfying notion

of robustness for infinite behaviours, as it does not let imprecisions accumulate, and does
not prevent Zeno behaviours:

Example 1. Consider a simple timed automaton, with a single location `0, and an edge
`0

x<1,∅−−−→ `0. This edge can be followed infinitely many times, using increasingly small
delays. In contrast, a real implementation must run on a processor with a fixed frequency,
and thus cannot allow any infinite execution. Shrinking the guard x < 1 by δ ∈ (0, 1/2)
results in guard δ 6 x < 1 − δ. The shrunk edge can still be followed infinitely many

41

times, by aiming for a convergence point in (δ, 1− δ) 6= ∅.

We study the emptiness problem with a Büchi acceptance condition: it consists in
determining whether there exists an accepting infinite execution. As such, we will use
another notion of robustness, based on perturbations. The situation is modelled as
a two-player game Gδ, between the controller that chooses edges and delays, and the
antagonistic environment that can perturb each delay using a value chosen in the interval
[−δ, δ]. This approach forbids executions that rely on Zeno behaviours, or even non-Zeno
behaviours requiring infinite precision [CHR02]. In contrast with the shrinking semantics,
controller can react to the perturbations, and compensate for them by changing future
delays.

Example 2. Coming back to Example 1, in the perturbation semantics the environment
can ask every time elapse to be at least δ > 0, and as such after 1/δ steps the value of x
is greater than 1, and infinite executions are no longer possible.

For a fixed value of δ > 0, the robust controller synthesis problem asks if controller
has a winning strategy in Gδ. Solving it is useful if we know the characteristics of the
hardware on which the controller will be implemented. This problem has been shown to
be decidable in [CHP11], and also for a related model in [LLTW14]. These algorithms
are based on using 1/N -regions, with N ∈ N>0 a granularity such that δ ∈ QN . The
perturbation δ may be small compared to the constants appearing in the guards of the
timed automaton, and thus we will need a large N . As the overall complexity of these
approaches is sensitive to region-granularity (the state-space is linear in N |X |), they may
not yield practical algorithms.
In the context of synthesis, one may not know in advance what is the amplitude on

perturbations δ that the controller will face. In this case, a preliminary step consists
in studying the qualitative robust controller synthesis problem, that asks if there exists
δ > 0 such that the controller has a winning strategy in Gδ. If the answer is yes, one
would ideally obtain a controller and a value for δ > 0, that can then be used to guide
hardware choices.
The qualitative problem enjoys promising complexity results: it has been proven

in [SBMR13] that it is PSPACE-complete, thus no harder than the exact setting with
δ = 0 [AD94], and it does not require the use of regions of lower granularity. However,
the algorithm of [SBMR13] heavily relies on regions, and more precisely on an abstraction
that refines the one of regions, namely folded orbit graphs. Hence, it is not amenable to
implementation.
Our objective is to provide an efficient symbolic algorithm for solving the qualitative

problem. To this end, we target the use of zones instead of regions, as they allow an on-
demand partitioning of the state space. Moreover, the algorithm we develop explores the
reachable state-space in a forward manner. This is known to lead to better performances,
as witnessed by the successful tool Uppaal Tiga based on forward algorithms for solving
controller synthesis problems [CDF+05].

Our algorithm can be understood as an adaptation to the timed setting of a classical
nested breadth-first search algorithm for transition systems with Büchi objectives. This

42

algorithm is searching for a winning lasso, i.e. a path from the initial location to a target,
followed by a cycle around the target. In the timed setting, this search takes place in the
zone abstraction. A similar approach is detailed in [LOD+13], where a major difficulty
consists in checking if a winning cycle can be iterated for an infinite amount of steps.
Indeed, it is explained that standard speedup techniques using zone inclusions to reduce
the search-space may not preserve Büchi emptiness.
In the context of robustness, we need to additionally preserve the robust iterability

of winning cycles, which is not maintained by the techniques of [LOD+13]. The key
argument of [SBMR13] was the notion of aperiodic folded orbit graph of a path in
the region automaton, thus tightly connected to regions. Lifting this notion to zones
seems impossible as it makes an important use of the fact that valuations in regions are
time-abstract bisimilar, which is not the case for zones. We will address this difficulty
by computing the reachability relations of zone paths, and showing that inclusion of
reachability relations is a complete termination criterion.
On positive instances, our algorithm outputs a winning strategy for controller, in

the form of a lasso in the zone abstraction. At this point, we know that there exists
a value of δ > 0 that controller wins against, but we are not provided with such a δ.
We overcome this issue by studying the more ambitious quantitative robust controller
synthesis problem, that asks what is the greatest δ > 0 such that the controller has a
winning strategy in Gδ. The decidability of this problem is unknown, but we solve it on
the particular case where controller follows a lasso of the zone graph, and are thus able
to extract not only a valid δ, but the greatest one.

We introduce our notion of robustness to perturbations in Chapter 3, detail the result
of [SBMR13] in Chapter 4, present our symbolic procedure in Chapter 5, and study the
qualitative problem in Chapter 6.

43

3. The perturbation game

Consider a timed automaton A = 〈L,X ,Σ, E〉, equipped with an initial location `0 and
a Büchi condition Lt ⊆ L as a set of target locations. We are interested in the locations
reached by executions of A, but not by the actions performed by those executions.
Therefore, we assume that every edge has a unique action in Σ associated to it, and
remove actions from our notations, such that A is written 〈L,X , E〉 and an edge ` a,g,Y−−−→ `′

is denoted ` g,Y−−→ `′ instead. We assume that clocks X in A are bounded by M ∈ N>0

and that every constant in the guards is an integer, such that every guard g in A belongs
to Guardsnd

1 (X ,M). With robustness in mind, we argue that null delays should not be
authorized, and restrict the transition system JAK to transitions (`, ν)

d,e−→ (`′, ν ′) with
delay d > 0. Previous results still hold in this case, as operators and definitions can be
adjusted accordingly. For example, operator PostTime will be denoted PostTime>0 in
this case, and we can use it to define adapted variants of the Post operator and of the
forward exploration algorithm over zones.

We study the robustness problem introduced in [SBMR13], that is stated in terms of
games where a controller fights against an environment. After a prefix of an execution,
the controller will have the capability to choose delays and edges to fire, whereas the
environment perturbs the delays chosen by the controller with a small parameter δ > 0.
The aim of the controller will be to find a strategy so that, no matter how the environment
plays, he is ensured to generate an infinite execution satisfying a Büchi condition.

Definition 3.1. Given a timed automaton A = 〈L,X , E〉 of initial location `0 and
Büchi condition Lt, and a maximal perturbation δ ∈ Q>0, the perturbation game is
a two-player turn-based game Gδ(A) between a controller and an environment. Its
state space is partitioned into SCtrl] SEnv where SCtrl = L × RX>0,<M belongs to the
controller, and SEnv = L× RX>0,<M × R>0 × E to the environment. The initial state is
(`0,0) ∈ SCtrl. From each state (`, ν) ∈ SCtrl, there is a transition to (`, ν, d, e) ∈ SEnv with
e = (`, g,Y , `′) ∈ E whenever d > δ, and ν+d+ε |= g for all ε ∈ [−δ, δ]. Then, from each
state (`, ν, d, (`, g,Y , `′)) ∈ SEnv, there is a transition to (`′, (ν + d + ε)[Y := 0]) ∈ SCtrl

for all ε ∈ [−δ, δ].

A play of Gδ(A) is a finite or infinite path q0
t1−→ q1

t2−→ q2 · · · where q0 = (`0,0) and
ti is a transition from state qi−1 to qi for all i > 0. It is said to be maximal if it is
infinite or cannot be extended with any transition. A strategy for the controller is a
function σCtrl mapping each non-maximal play ending in some (`, ν) ∈ SCtrl to a pair
(d, e) where d > 0 and e ∈ E such that there is a transition from (`, ν) to (`, ν, d, e).
A strategy for the environment is a function σEnv mapping each finite play ending in
(`, ν, d, e) to a state (`′, ν ′) related by a transition. A play gives rise to a unique execution

44

`0 `1 `2`3

1 < x1 < 2

x2 := 0

x1 6 2, x1 := 0

x2 > 2, x2 := 0x1 < 2, x1 := 0

x2 < 2, x2 := 0

Figure 3.1.: A timed automaton, with initial location `0 and targets {`2, `3}.

of JAK by only keeping the states in SCtrl. For a pair of strategies (σCtrl, σEnv), we let
playδA((`0,0), σCtrl, σEnv) denote the execution associated with the unique maximal play of
Gδ(A) that follows the strategies. Controller’s strategy σCtrl is winning (with respect to the
Büchi condition Lt) if for all strategies σEnv of the environment, playδA((`0,0), σCtrl, σEnv)
is infinite and visits infinitely often some location of Lt.

If δ = 0, then the environment has only a single choice of ε ∈ [−δ, δ], so that deciding
if controller has a winning strategy is equivalent to solving the emptiness problem with a
Büchi condition, which is PSPACE-complete [AD94]. We define three different problems,
depending on whether the maximal perturbation δ is known or not.

Definition 3.2. The robust controller synthesis problem asks, given a timed automaton
A and a maximal perturbation δ > 0, whether the controller has a winning strategy in
Gδ(A).

Definition 3.3. The qualitative robust controller synthesis problem asks, given a timed
automaton A, whether there exists δ > 0 such that the controller has a winning strategy
in Gδ(A).

Definition 3.4. The quantitative robust controller synthesis problem is a computation
problem and asks, given a timed automaton A, what is the supremum of δ > 0 such that
the controller has a winning strategy in Gδ(A).

Those problems can also be expressed with a reachability condition instead of a Büchi
condition: controller wins Gδ(A) if he can ensure visiting some location of Lt at least once.
Büchi conditions are more challenging, as we need to deal with the issues of robustly
reaching a target, but also with the robustness of infinite paths along a cycle, where
perturbations may accumulate.

Example 3.1. The controller has a winning strategy in Gδ(A), with A the automaton of
Figure 3.1, for all possible values of δ < 1/2. Indeed, he can follow the cycle `0 → `3 → `0
by always picking time delay 1/2 so that, when arriving in `3 (resp. `0) after the
perturbation of the environment, clock x2 (resp. x1) has a valuation in [1/2− δ, 1/2 + δ].
Therefore, he can play forever following this positional strategy. For δ ≥ 1/2, the
environment can enforce reaching `3 with a value for x2 at least equal to 1. The guard
x2 < 2 of the next edge to `0 cannot be guaranteed, and therefore the controller cannot
win Gδ(A). In [SBMR13], it is shown that the cycle around `2 does not provide a winning
strategy for the controller for any value of δ > 0 since perturbations accumulate so that
the controller can only play it a finite number of times in the worst case.

45

We are interested in cases where the maximal perturbation is not known, and it is
simply assumed that some infinitesimal perturbations will happen in real-life executions
of the system. Therefore, our results mostly focus on deciding the qualitative problem.
When it is satisfied, we can provide a strategy for controller that resists some perturbation,
and we can solve the quantitative problem on the automaton restricted to that strategy,
i.e. we can compute the greatest perturbation admissible for this controller’s strategy.

46

4. A region-based approach

By [SBMR13], the qualitative robust controller synthesis problem is known to be PSPACE-
complete. Their solution is based on the region automaton of A. We are seeking for a
more practical solution using zones. In this chapter, we introduce some of the machinery
used to obtain the results of [SBMR13], and extend one of their results to consider paths
in A instead of region paths. We will use this generalisation in the next chapter.

A classical way to approach Büchi conditions in transition systems is to look for lassos
π0π

ω, where π0 is a path from the initial state to a target state, and where π is a cycle
around the target state. The techniques of [SBMR13] look for such lassos p0pω in the
region abstraction, and then test if they can be robustly followed. We will start by
explaining how to check if a finite region path p0 can be robustly followed, and then
focus on checking if a region cycle p can be robustly iterated infinitely many times.

4.1. Robustness of region paths
Consider a finite region path p. We formalise the notion of following p in a manner that
resists perturbations by taking a backward analysis point of view.

4.1.1. Controllable predecessors

We define the following operators over sets of valuations Z, symmetrically to the ones
used for symbolic forward analysis algorithms over the zone abstraction: PreTime>t(Z)
is the set of valuations such that a time delay of more than t time units leads to Z,
UnresetY(Z) is the set of valuations in RX>0,<M that end in Z when the clocks in Y are
reset.

Definition 4.1. Consider an edge e = (`, g,Y , `′). For every set Z ⊆ RX>0,<M , we define
the predecessors of Z by e as Pree(Z) = PreTime>0(JgK ∩ UnresetY(Z)).

We extend this operator to a path π by induction, such that if π is of length 0,
Preπ(Z) = Z, and if π = π′e with e an edge, Preπ(Z) = Preπ′(Pree(Z)).
From a robustness perspective, we also consider the operator shrink[−δ,δ](Z) defined

as the set of valuations ν such that ν + [−δ, δ] ⊆ Z introduced in [SBM11]. Given an
edge e = (`, g,Y , `′), a set Z ⊆ RX>0,<M and a fixed δ > 0, we define the controllable
predecessors of Z as follows:

CPreδe(Z) = PreTime>δ(shrink[−δ,δ](JgK ∩ UnresetY(Z))) .

47

Intuitively, CPreδe(Z) is the set of valuations from which the controller can ensure
reaching Z in one step, following the edge e, no matter of the perturbations of amplitude
at most δ of the environment. In fact, it can delay in shrink[−δ,δ](JgK ∩ UnresetY(Z)) with
a delay of at least δ, where under every perturbation in [−δ, δ], the valuation satisfies the
guard, and it ends, after reset, in Z. We extend this operator to a path π by induction,
denoting it by CPreδπ: if π is of length 0, CPreδπ(Z) = Z, and if π = π′e with e an edge,
CPreπ(Z) = CPreπ′(CPree(Z)). Note that CPre0

π = Preπ is the usual predecessor operator
without perturbation. We can also define those operators on region paths instead of
paths by applying them to the region automaton.
If we consider a fixed δ ∈ Q>0, and find a granularity N ∈ N>0 such that δN ∈ N,

then all of those operations are closed over ZonesN(X ,M), and given a DBM describing
Z they can be effectively computed in time cubic in |X | [SBM11]. Now, consider a region
path p from (`, r) to (`′, r′). If controller starts in (`, r) at some valuation ν ∈ r and
wants to reach (`′, r′) in Gδ(A) by following p, he has a strategy ensuring it if and only if
ν ∈ CPreδp(r

′).
For the qualitative problem, we will perform computations that are parametrised by δ.

4.1.2. Shrunk DBMs

Definition 4.2. We say that p from (`, r) to (`′, r′) can be robustly followed if r ∩
CPreδp(r

′) 6= ∅ for some δ > 0.

We will use a parametrised extension of DBMs, namely shrunk DBMs, that were
introduced in [SBM11] in order to study the parametrised state space of timed automata.
Intuitively, our goal is to express shrinkings of guards, e.g. sets of states satisfying
constraints of the form g = 1 + δ < x < 2 − δ ∧ 2δ < y, where δ is a parameter to be
chosen.
Formally, a shrunk bound is a pair ((≺, c), p) with (≺, c) a member of the semiring

of bounds (Bounds(Z),min,+) such that ≺ ∈ {6, <} and c ∈ Z, and p a non-negative
integer in N ∪ {∞}, that represents the bound ≺ c − δp for small enough values of
δ > 0: A real a satisfies ((≺, c), p) for δ = 0 if a ≺ c, it satisfies ((≺, c), p) for δ > 0 if
a ≺ c − δp holds for some δ > 0 small enough. The shrunk bound ((≺, c),∞) can be
satisfied for δ = 0, but is never satisfied for δ > 0. This will appear when perturbations
can accumulate. We also define the shrunk bounds ((<,−∞),∞) and ((<,+∞), 0),
representing constraints that are respectively never and always satisfied, for both δ = 0
and δ > 0.
If m,m′ are bounds in Bounds(Z), recall that we write m 4 m′ if m is at least as

strong as m′ (i.e. m = min(m,m′)), and m ≺ m′ if m 4 m′ ∧ m 6= m′. We say that
a shrunk bound ((≺, c), p) is at least as strong as ((≺′, c′), p′), if either p, p′ ∈ N and
(≺, c) ≺ (≺′, c′)∨ ((≺, c) = (≺′, c′)∧ p > p′), or p =∞∧ p′ ∈ N, or p = p′ =∞∧m 4 m′.
This forms a total order over shrunk bounds, where the strongest bound is ((<,−∞),∞)
and the weakest bound is ((<,+∞), 0). If ((≺, c), p) is at least as strong as ((≺′, c′), p′)
then for all δ > 0 and all a ∈ R, a ≺ c− δp implies a ≺′ c′ − δp′.

We define operations min and inf over shrunk bounds in an intuitive way (min returns

48

the strongest bound and inf the weakest bound at least as strong as its inputs), and an
addition (m, p) + (m′, p′): it equals ((<,+∞), 0) if m+m′ = (<,+∞), ((<,−∞),∞) if
m+m′ = (<,−∞), and (m+m′, p+ p′) otherwise, with m+m′ the addition of bounds
and p + p′ the standard addition over N extended with c +∞ = ∞ for all c ∈ N and
∞+∞ =∞. This defines a semiring of operators min and +, that we call the tropical
semiring of shrunk bounds. It is an ordered semiring since min is selective, and it has
closure because it forms a complete join semilattice with the order induced by min, where
join is the inf operator. The closure (m, p)(∗) of a shrunk bound (m, p) with p ∈ N>0 is
(m(∗),∞) if m 4 (6, 0), (m(∗), 0) otherwise. The closure of (m, 0) is (m(∗), 0), and the
closure of (m,∞) is (m(∗),∞). This means that we can construct DBMs over shrunk
bounds as mappings from X0×X0 to shrunk bounds. They are called shrunk DBMs and,
by Lemma 1.2, normalization is well-defined over them.

Usually, a shrunk DBM is encoded as a pair (M,P), where M is a DBM over X , and P
is a |X0|×|X0| non-negative integer matrix called a shrinking matrix. This pair represents
the set of valuations defined by the DBM M − δP , for any given δ > 0. Considering the
example g = 1 + δ < x < 2− δ∧ 2δ < y, M is the guard obtained by setting δ = 0, and P
is made of the integer multipliers of δ. Formally, given a fixed δ > 0 and a shrunk DBM
(M,P) where M(x, y) = (≺x,y, cx,y) and P (x, y) = px,y, M − δP contains every valuation
that satisfies ∧

x,y∈X0

x− y ≺x,y cx,y − δ px,y .

We adopt the following notation: when we write a statement involving a shrunk DBM
(M,P), we mean that for some δ0 > 0, the statement holds for M − δP for all δ ∈ (0, δ0].
For instance, (M,P) = PreTime>δ((N,Q)) means that M − δP = PreTime>δ(N − δQ)
for all small enough δ > 0.
Shrunk DBMs are closed under standard operations on zones, and as a consequence,

the CPre operator can be computed on shrunk DBMs:

Lemma 4.1 ([SBMR13]). Let e = (`, g,Y , `′) be an edge and (M,P) be a shrunk DBM.
Then, there exists a shrunk DBM (N,Q), that we can compute in polynomial time, such
that (N,Q) = CPreδe((M,P)).

A shrunk DBM in normal form is empty if and only if it contains a bound stronger
than ((6, 0), 0) in its diagonal entries. One could therefore decide if r ∩ CPreδp(r

′) 6= ∅ for
some δ > 0 by using shrunk DBMs. In this chapter, they are used as theoretical tools,
because an easier characterization of region paths that can be robustly followed exists,
that we now present.

4.1.3. Non-punctual region path

A region is said to be non-punctual if it contains two valuations separated by a positive
time delay. Otherwise it is said punctual. Consider a region path p, and recall that
it is a sequence of transitions of the form (`, r0)

r1,e−−→ (`′, r2) meaning that from r0, a
time elapse leads to r1, from which edge e can be taken and projects r1 into r2. If r1 is

49

punctual, then clearly p cannot be robustly followed, as any perturbation, however small,
will force controller out of p. When every region r1 in p reached after a time elapse is
non-punctual, we say that p is a non-punctual region path. In [SBMR13], it is shown
that this condition is sufficient for finite paths:

Proposition 4.1 ([SBMR13]). A finite region path can be robustly followed if and only
if it is non-punctual.

By using non-punctuality one can show that the qualitative robust controller synthesis
problem over a reachability condition is PSPACE-complete. However, a Büchi condition
requires robustness over an infinite path, and non-punctuality is no longer enough in this
case.

4.2. Aperiodic cycles
Consider a finite region path p that forms a cycle, i.e. it ends in the same region state
(`, r) it started in. We want to know if p can be robustly iterated, meaning that there
exists a zone of lower granularity Z ⊆ r such that Z 6= 0 and Z ⊆ CPreδp(Z). In particular,
this implies that pi can be robustly followed for every i > 0. The reachability relation of
a region path p, denoted by Reach(p) is the set of pairs (ν, ν ′) ∈ r × r such that there
exists an execution starting from (`, ν) and ending in (`, ν ′) that follows p. We say that
the reachability relation Reach(p) is complete if Reach(p) = r × r.

Definition 4.3. A region cycle p is aperiodic if for some k > 1, the reachability relation
along the region path pk is complete.

Proposition 4.2 ([SBMR13]). A region cycle is robustly iterable if and only if it is
non-punctual and aperiodic

Moreover, aperiodicity can be checked for by using a dedicated structure called a folded
orbit graph. The orbit graph of a region path p is a bipartite graph whose vertices are the
corners of the first and last regions of the path; there is an edge between two corners if
there exists an execution following p whose starting and ending valuations are arbitrarily
close to the corners. When the region path is a cycle, the folded orbit graph is obtained
by superposing initial and final vertices. This folded orbit graph is aperiodic if and only
if for some k > 1, the sequence pk has a folded orbit graph that is a complete graph. This
should happen for some k at most exponential in |X | [SBMR13], and thus aperiodicity
of a region path can be checked in polynomial space.
Overall, the qualitative robust controller synthesis problem with a Büchi condition

can be solved by looking for a non-punctual aperiodic winning lasso p0pω in the region
abstraction, i.e. a non-punctual region paths p0 from the initial region state (`0,0) to
a target region state (`t, r) with `t ∈ Lt and a non-punctual aperiodic region cycle p
around (`t, r). Using a variant of this procedure, where the winning lasso is guessed and
aperiodicity is checked for with folded orbit graphs, it is shown in [SBMR13] that the
problem is PSPACE-complete.

50

4.3. Generalization from region paths to paths
Definition 4.4. A finite path π is called a progress cycle if it is a cycle and if every
clock is reset in at least one of its edges, i.e. X =

⋃
(`,g,Y,`′)∈π Y .

If a region cycle p following π is aperiodic, π must be a progress cycle, as otherwise
any clock that is never reset in π will increase strictly in value while following p and
the reachability relation will not be complete for any pk. This holds because we did not
authorize null delays.

In this section, our goal is to extend the previous results and characterize games where
controller has a winning strategy in Gδ(A) by a property expressed on the reachability
relation of paths in A, as opposed to the reachability relation of region paths. The
reachability relation of a path π that starts in ` and ends in `′, denoted by Reach(π),
is the set of pairs (ν, ν ′) such that there is an execution of JAK starting from (`, ν) and
ending in (`′, ν ′) that follows π.

We will prove the following result:

Lemma 4.2. There exists δ > 0 such that controller has a winning strategy in Gδ(A) if
and only if there exist two paths π1 and π2 in A, and a region r in RX>0,<M , such that:

• π1 is a path from `0 to some accepting location `t;

• π2 is a progress cycle around `t;

• there exists a non-punctual region path from (`0,0) to (`t, r) along π1;

• there exists a non-punctual region cycle around (`t, r) along π2;

• the reachability relation of π2 is complete over r, i.e. r × r ⊆ Reach(π2).

The main difference with previous results is that π2 can contain several region cycles
around r, and instead of asking one of them to be aperiodic, we only ask that the entire
reachability relation is complete, and thus that the union of the reachability relations of
all such region cycles covers r × r.

Proof of Lemma 4.2, direction (⇒). As previously explained, if A satisfies the robust
controller synthesis problem, then there exists a non-punctual region path p1p2 in the
region automaton of A, such that p1 reaches a target region (`t, r) from (`0,0), and
p2 is an aperiodic cycle around (`t, r). Let π1 (resp. π2) be a path that contains p1

(resp. p2). There exists k such that the reachability relation of pk2 is complete, and
therefore r × r ⊆ Reach(πk2).

In order to prove the converse, we will rely on intermediate results from [SBMR13].

Lemma 4.3 (Corollary 2, [SBMR13]). Let π be a path in A. Let M and N be non-empty
zones such that N = CPre0

π(M). Then, for every shrinking matrix P there exists a
shrinking matrix Q such that CPreδπ(M − δP) = N − δQ holds for all small enough δ > 0.

51

Let B∞(ν, ε) describes {ν ′ | ∀x ∈ X , |ν(x)− ν ′(x)| < ε}. The following lemma states
that one can find a sub-zone (zone of smaller granularity) with non-empty interior inside
every non-empty zone.

Lemma 4.4 (Lemma 14, [SBMR13]). For all non-empty zones M , there exists a non-
empty set of valuations M ′ (described as a zone of smaller granularity, with constraints
over Q), a valuation ν ∈ M ′ and ε > 0 such that B∞(ν, ε) ∩ M ⊆ M ′, and for all
shrinking matrices P such that M − δP is non-empty for some δ > 0, M ′ ⊆ M − δ′P
for all small enough δ′ > 0.

And the set of controllable predecessors of such a sub-zone is non-empty for small
enough δ > 0.

Lemma 4.5 (Lemma 12, [SBMR13]). Let p be a non-punctual path ending in region
r. Let r′ ⊆ r be a set of valuations such that there exists ν ∈ r′ and ε > 0 with
B∞(ν, ε) ∩ r ⊆ r′. Then, CPreδp(r

′) is non-empty for small enough δ > 0.

We can now finish the proof of Lemma 4.2.

Proof of Lemma 4.2, direction (⇐). Consider now two paths π1 and π2, and a non-
punctual region lasso p1pω2 around a region r as described in Lemma 4.2. Let us prove
that controller has a winning strategy in Gδ(A) for a small enough δ.

Let Z be the zone defined by r, such that Z×Z ⊆ Reach(π2). Let us apply Lemma 4.4
and let Z ′ ⊆ Z be the zone of smaller granularity that is obtained. Since the reachability
relation is complete over Z, we have Z ⊆ CPre0

π2
(Z ′). This implies that there exists Z ′′

and P such that Z ⊆ Z ′′ and Z ′′ − δP = CPreδπ2(Z
′) for δ small enough, by Lemma 4.3.

Moreover, by applying Lemma 4.5 on p2, Z and Z ′, we get that CPreδp2(Z
′) is non-empty

for small enough δ > 0. By monotonicity of CPre, CPreδp2(Z
′) ⊆ CPreδπ2(Z

′) (they are
the same paths, except that guards are enlarged in π2 when compared to p2); hence
Z ′′ − δP is non-empty for small enough δ. By definition of Z ′, for small enough δ > 0,
Z ′ ⊆ Z ′′ − δP , therefore Z ′ ⊆ CPreδπ2(Z

′). This means that, for small enough δ, the
controller can enforce staying in Z ′ by following π2 as many times as he wants in the
game Gδ(A). Similarly, by applying Lemma 4.5 on p1, Z and Z ′, we get that the initial
configuration can ensure reaching Z ′ if δ is small enough. Hence, there exists δ > 0 such
that the controller has a winning strategy in Gδ(A).

52

5. A symbolic approach

In this chapter, we will describe a symbolic (i.e. zone-based) procedure solving the
qualitative robust controller synthesis problem.

5.1. Reachability relation of a path
Before treating the robustness issues, we start by designing a symbolic (i.e. zone-based)
approach to describe and compare the reachability relations of paths in timed automata.
This will be crucial subsequently to design a termination criterion in the state space
exploration of our robustness-checking algorithm.

The reachability relation Reach(π) of a path π can be seen as a subset of RX]X ′>0 where X ′
are primed versions of the clocks, such that each (ν, ν ′) ∈ Reach(π) if and only if there is
an execution from valuation ν to valuation ν ′ following π. Unfortunately, reachability
relations Reach(π) are not zones in general, that is, they cannot be represented using
only atomic constraints over X] X ′. In fact, we shall see shortly that constraints of the
form x− y + u− v 6 c also appear, as already observed in [QSW17]. We thus cannot rely
directly on the traditional difference bound matrices (DBMs) used to represent zones.
We instead rely on the constraint graphs that were introduced in [CLJ99], and explored
in [JR11] for the parametric case (the latter work considers enlarged constraints, and
not shrunk ones as we study here). Our contribution is to use these graphs to obtain a
syntactic check of inclusion of the according reachability relations.

5.1.1. Constraint graphs

Rather than considering the values of the clocks in X , this data structure considers the
date Xi of the latest reset of the clock xi, and uses a new variable τ denoting the global
timestamp. Note that the clock values can be recovered easily since Xi = τ − xi. For the
extra clock x0, we introduce variable X0 equal to the global timestamp τ (since x0 must
remain equal to 0). A constraint graph defining a zone is a weighted transition system
whose states are X = {X0,X1, . . . ,Xn} labelled over the tropical semiring of bounds over Z.
This transition system is always a complete graph, i.e. it contains exactly one transition
from X to Y for each pair of states (X,Y). We refer to its states as nodes, to its labels as
weights and to its transitions as edges. Weights in the graph are thus pairs of the form
(≺, c) (see Chapter 2.2 for details). Constraints on clocks are represented by weights
on edges in the graph: a constraint X − Y ≺ c is represented by an edge from X to Y
weighted by (≺, c), with ≺ ∈ {<,6} and c ∈ Z. Weights (<,+∞) and (<,−∞) are also
allowed for trivial constraints. Therefore, we can compute shortest weights between two

53

vertices of a weighted graph. A cycle is said to be negative if it has weight at most (<, 0),
i.e. (<, 0) or (≺, c) with c < 0.

5.1.2. Encoding paths

Constraint graphs can also encode tuples of valuations seen along a path. To encode a
k-step computation, we make k + 1 copies of the nodes, that is, (Xi) = {Xi

0,X
i
1, . . . ,X

i
n}

for i ∈ {1, . . . , k+1}. These copies are also called layers. Let us first consider an example
on the path π consisting of the edge from `1 to `2, and the edge from `2 to `1, in the
timed automaton of Figure 3.1. The constraint graph Gπ is depicted in Figure 5.1: in our
diagrams of constraint graphs, the absence of labels on an edge means (6, 0), we depict
with an edge with arrows on both ends the presence of an edge in both directions. We
always represent with dashed arrows edges that are labelled by (<, c), and plain arrows
edges that are labelled with (6, c), and the absence of an edge means that it is labelled
with (<,+∞). The graph has five columns, each containing copies of the variables for
that step: they represent the valuations before the first edge, after the first time elapse,
after the first reset, after the second time elapse and after the second reset. In general
now, each elementary operation can be described by a constraint graph with two layers
(Xi)06i6n (before) and (X′i)06i6n (after).

• The operation Pretime>t is described by the constraint graph G>t
time with edges

Xi → X0, Xi ↔ X′i for i > 0, and X0
(<,−t)−−−→ X′0. Figure 5.1 contains two occurrences

of G>0
time.

• The operation JgK ∩ UnresetY(·), to test a guard g and reset the clocks in Y, is
described by the constraint graph Gg,Y

edge with edges X0 ↔ X′0 (meaning that the time
does not elapse), Xi ↔ X′i for i such that clock xi /∈ Y , and X′i ↔ X′0 for i such that
clock xi ∈ Y , and for every constraint1 xi−xj ≺ c appearing in g, an edge from Xj to
Xi labelled by (≺, c) (since it encodes the fact that (τ−Xi)−(τ−Xj) = Xj−Xi ≺ c).
In Figure 5.1, we have first Gx162,{x1}

edge , and then Gx2>2,{x2}
edge .

Constraint graphs can be stacked one after the other to obtain the constraint graph of
an edge e, and then of a path π, that we denote by Gπ. In the resulting graph, there is
one leftmost layer of vertices (X`

i)i and one rightmost one (Xr
i)i representing the situation

before and after the firing of the path π. Once this graph is constructed, the intermediary
levels can be eliminated after replacing each edge between the nodes of X`] Xr by the
shortest path in the graph. This phase is hereafter called normalisation of the constraint
graph. The normalised version of the constraint graph of Figure 5.1 is depicted on its
right.
Constraint graphs can be encoded as DBMs over the set of clocks {Xi

j | 0 6 i 6
k, 0 6 j 6 n}, and their normalization can therefore be obtained efficiently using DBM
normalization. The normalization of Gπ can be computed in time O(|X |3|π|) by following

1 guards are seen as conjunctions of difference bound constraints by Lemma 2.1, with exactly one
constraint for every pair of clocks in X0

54

X0

X1

X2

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

(<, 0)
(6, 2)

(<, 0)

(6,−2)

`1
G>0

time G
x162,{x1}
edge `2

G>0
time G

x2>2,{x2}
edge `1

X`
0

X`
1

X`
2

◦

◦

◦

◦

◦

◦

Xr
0

Xr
1

Xr
2

Figure 5.1.: On the left, the constraint graph of the path `1
x162,x1:=0−−−−−−→ `2

x2>2,x2:=0−−−−−−→ `1.
Orange and green colors are used to differentiate successive steps. On the
right, its normalised version: dashed edges have weight (<, .), plain edges
have weight (6, .), black edges have weight (., 0), red edges have weight (., 2)
and blue edges have weight (.,−2). For every node X, the normalized version

also contains a loop X
(6,0)−−−→ X that is not displayed.

π one edge at a time and normalizing at each step. If the constraint graph Gπ contains a
negative cycle, then the zone associated with the DBM encoding it is empty, but that
information may be lost when we remove the intermediary levels. In this case, we set the
weight of the edges (X`

0,X
`
0) and (Xr

0,X
r
0) in the normalized constraint graph to (<, 0).

5.1.3. From constraint graphs to reachability relations

From a logical point of view, the elimination of intermediary layers reflects an elimination
of quantifiers in a formula of the first-order theory of real numbers. At the end, we obtain
a set of constraints of the form Xk

i − Xk′
j ≺ c with k,k′ ∈ {`, r}. These constraints do

not reflect uniquely the reachability relation Reach(π), in the sense that it is possible
that Reach(π1) = Reach(π2) but the normalised versions of Gπ1 and Gπ2 are different.
For example, if we consider the path π2 obtained by repeating twice the cycle π between
`1 and `2, the reachability relation does not change (Reach(π2) = Reach(π)), but the
normalised constraint graph does (Gπ2 6= Gπ): all labels (6, 2) of the red dotted edges
from the rightmost layer to the leftmost layer become (6, 4), and the labels (6,−2) of
the dashed blue edges become (6,−4).

We solve this issue by jumping back from variables Xk
i to the clock valuations. Indeed,

in terms of clock valuations ν` and νr before and after the path, the constraint Xk
i −Xk′

j ≺ c
(for k,k′ ∈ {`, r}) rewrites as

(τk − νk(xi))− (τk
′ − νk′(xj)) ≺ c ,

where τ ` is the global timestamp before firing π and τ r the one after. When k = k′,
variables τ ` and τ r disappear, leaving a constraint of the form

νk(xj)− νk(xi) ≺ c .

55

When k 6= k′, we can rewrite the constraint as

τk − τk′ ≺ νk(xi)− νk
′
(xj) + c .

We therefore obtain upper and lower bounds on the value of τ r − τ `, allowing us to
eliminate τ r − τ `, considered as a single variable that contains the time elapsed during
the firing of π. We therefore obtain in fine a formula mixing constraints of the form

• νk(xa)− νk(xb) ≺ p, with k ∈ {`, r}, a 6= b, and we define γka,b = (≺, p);

• ν`(xa) − ν`(xb) + νr(xc) − νr(xd) ≺ p, with a 6= b and c 6= d, and we define
γa,b,c,d = (≺, p). This constraint can appear in two ways: either from

νr(xc)− ν`(xb) + p1 ≺1 τ
r − τ ` ≺2 ν

r(xd)− ν`(xa) + p2

by eliminating τ r − τ `, or by adding the two constraints of the form

ν`(xa)− ν`(xb) ≺1 p1 and νr(xc)− νr(xd) ≺2 p2 .

Thus, γa,b,c,d is obtained as the strongest of the two constraints obtained in this
manner. In other terms, in the constraint graph, this constraint is the minimal
weight between the sum of the weights of the edges (Xr

d,X
`
a) and (X`

b,X
r
c), and the

sum of the weights of the edges (X`
b,X

`
a) and (Xr

d,X
r
c). For example, in the path in

Figure 5.1, we have γ0,1,0,2 = (6, 0) since the two weights are respectively (<,+∞)
and (6, 0), whereas γ1,2,2,1 = (6, 0) because the two weights are respectively (6, 0)
and (<, 2).

Let ϕ(G) be the conjunction of such constraints, obtained from the normalization of
a constraint graph G: this is a quantifier-free formula of the additive theory of reals.
We obtain the following property, whose proof can be derived from the developments
of [CLJ99].

Lemma 5.1. Let π be a path in a timed automaton. Reach(π) is the set of pairs of
valuations (ν`, νr) that satisfy the formula ϕ(Gπ).

Proof. As we have seen, the constraints of Gπ encode syntactically the constraints that
valuations must meet to form an execution following π. Normalization of DBMs leaves the
represented zone unchanged, and therefore ϕ(Gπ) is a formula that describes Reach(π). A
particular case is the one where Reach(π) = ∅, where we made sure that ϕ(Gπ) contains
the constraint ν`(x0)− ν`(x0) < 0 and is therefore not satisfiable.

5.1.4. Checking inclusion

Checking formulæ like ϕ(Gπ) (i.e. conjunctions of linear inequalities) for inclusion is
polynomial in general, as one can use linear programming techniques. In this case
however, a more efficient way exists.

56

X`
a

X`
b

X`
e

Xr
f

Xr
d

Xr
c

◦

◦

◦

◦

◦

◦

X`
a

X`
b

X`
e

Xr
d

Xr
c

Xr
f

◦

◦

◦

◦

◦

◦

Figure 5.2.: Normalised constraint graphs involved in a possible deduction of stronger
constraints.

For a path π, we regroup the pairs (γ`a,b), (γra,b) and (γa,b,c,d) above in a single vector Γπ

(of size O(|X |4)). We extend the comparison relation 6 to these vectors by applying it
componentwise. These vectors can be used to check equality or inclusion of reachability
relations in time O(|X |4):

Theorem 5.1. Let π and π′ be paths in a timed automaton such that Reach(π) and
Reach(π′) are non empty. Then, Reach(π) ⊆ Reach(π′) if and only if Γπ 6 Γπ

′.

Proof. The main argument on why the syntactic check on ϕ(Gπ) is sufficient amounts
directly from the normalisation of the constraint graph. Indeed, let us show that the
constraints obtained in a formula ϕ(Gπ) are the strongest possible. For that, suppose
that we obtain a stronger constraint on ν`(xa)− ν`(xb) + νr(xc)− νr(xd) by combining
two inequalities of ϕ(Gπ) (it is then possible to extend the argument to work for all
positive linear combinations of inequalities): they must then be either of the form{
ν`(xa)− ν`(xe) + νr(xc)− νr(xf) ≺1 p1

ν`(xe)− ν`(xb) + νr(xf)− νr(xd) ≺2 p2

or

{
ν`(xa)− ν`(xe) + νr(xf)− νr(xd) ≺1 p1

ν`(xe)− ν`(xb) + νr(xc)− νr(xf) ≺2 p2

Summing up each pair gives a new possible constraint on ν`(xa)− ν`(xb) + νr(xc)− νr(xd).
This corresponds to the two situations in the constraint graphs depicted in Figure 5.2.
Using the normalisation of the constraint graphs implies then easily that the new
constraints are weaker than the original constraint already present in Γπ.

Notice that we do not need to check equivalence or implication of formulæ ϕ(Gπ) and
ϕ(Gπ′), but simply check syntactically constants appearing in these formulæ. Moreover,
these constants can be extracted easily from the normalized constraint graph stored as
a DBMs on 2× |X0| clocks, allowing for reusability of classical DBM libraries. For the
constraint graph in Figure 5.1, we have seen that Gπ2 6= Gπ, even if Reach(π2) = Reach(π).
However, we can check that ϕ(Gπ2) = ϕ(Gπ) as expected.

57

5.1.5. Computation of Pre and Post

By Lemma 5.1 and the construction of constraint graphs, one can easily compute

Preπ(Z) = {ν | ∃ν ′ ∈ Z, ((`, ν), (`′, ν ′)) ∈ Reach(π)}

for a given path π and zone Z (see [CLJ99, JR11]). In fact, consider the normalised
constraint graph Gπ on nodes X` ∪ Xr. To compute Preπ(Z), one just needs to add the

constraints of Z on Xr. This is done by replacing each edge Xr
i
w−→ Xr

j by Xr
i

min(Zj,i,w)−−−−−−→ Xr
j

where Zj,i = (≺, p) defines the constraint of Z on xj − xi. Then, the normalisation of the
graph describes the reachability relation along path π ending in zone Z. Furthermore,
projecting the constraints to X` yields Preπ(Z): this can be obtained by gathering all
constraints on pairs of nodes of X`. One can symmetrically compute the successor

Postπ(Z) = {ν ′ | ∃ν ∈ Z, ((`, ν), (`′, ν ′)) ∈ Reach(π)}

by constraining the nodes X` and projecting to Xr.

5.2. Robust iterability of a lasso
In this section, we study the perturbation game Gδ(A) between the two players (controller
and environment), as defined in Chapter 3, when the timed automaton A is restricted
to a fixed lasso π1π

ω
2 , i.e. π1 is a path from `0 to some accepting location `t, and π2 a

cyclic path around `t. This implies that the controller does not have the choice of the
transitions, but only of the delays, while the environment only perturbates these delays.
We will consider different settings, in which δ is fixed or not.

5.2.1. Controllable predecessors and their greatest fixpoints

We start by studying the controllable predecessor CPreδπ(Z) defined in Section 4.1 as the
set of valuations from which the controller can ensure reaching the set of valuations Z by
following π.
This operator is monotone, hence its greatest fixpoint νX CPreδπ(X) is well-defined,

equal to
⋂
i>0 CPreδπi(>): it corresponds to the valuations from which the controller

can guarantee to loop forever along the path π. By definition of the game Gδ(A)
where A is restricted to the lasso π1π

ω
2 , the controller wins the game if and only if

0 ∈ CPreδπ1(νX CPreδπ2(X)). As a consequence, our problem reduces to the computation
of this greatest fixpoint.

5.2.2. Branching constraint graphs

We consider first a fixed (rational) value of the parameter δ, and are interested in the
computation of the greatest fixpoint νX CPreδπ2(X). In [JR11], constraints graphs were
used to provide a termination criterion allowing one to compute the greatest fixpoint of

58

the classical predecessor operator CPre0
π. We generalise this approach to deal with the

operator CPreδπ and to this end, we need to generalise constraint graphs. Unfortunately,
the operator shrink[−δ,δ] cannot be encoded in a constraint graph. Intuitively, this comes
from the fact that a constraint graph represents a relation between valuations, while there
is no such relation associated with the CPreδπ operator. Instead, we introduce branching
constraint graphs that will faithfully represent the CPreδπ operator: unlike constraint
graphs introduced so far that have a left layer and a right layer of variables, a branching
constraint graph has still a single left layer but several right layers. We also need weights
in this new constraint graph to be rational numbers, such that if N ∈ N>0 is the smallest
granularity with δN ∈ N, then the branching constraint graph will be labelled over the
tropical semiring of bounds over QN .
We first define a branching constraint graph Gδ

shrink associated with the operator
shrink[−δ,δ] as follows. Its set of vertices is composed of three copies of {X0,X1, . . . ,Xn},
denoted by primed, unprimed and doubly primed versions. Edges are defined so as to
encode the following constraints : X′i = Xi and X′′i = Xi for every i 6= 0, and X′0 = X0 + δ
and X′′0 = X0 − δ. An instance of this graph can be found in several occurrences in
Figure 5.3.

Proposition 5.1. Let Z be a zone and Gδ
shrink(Z) be the graph obtained from Gδ

shrink by
adding on primed and doubly primed vertices the constraints defining Z (as for Preπ(Z)
in Section 5.1.5). Then the constraint on unprimed vertices obtained from the shortest
paths in Gδ

shrink(Z) is equivalent to shrink[−δ,δ](Z).

Proof. Given a zone Z and a real number d, we define Z + d = {ν + d | ν ∈ Z}. One
easily observes that shrink[−δ,δ](Z) = (Z + δ) ∩ (Z − δ). The result follows from the
observation that taking two distinct copies of vertices, and considering shortest paths
allows one to encode the intersection.

Then, for all edges e = (`, g,Y , `′), we define the branching constraint graph Gδ
e as the

graph obtained by stacking (in this order) the branching constraint graph G>δ
time, G

δ
shrink

and Gg,Y
edge. Note that two copies of the graph Gg,Y

edge are needed, to be connected to the
two sets of vertices that are on the right of the graph Gδ

shrink. This definition is extended
in the expected way to a finite path π, yielding the graph Gδ

π. In this graph, there is
a single set of vertices on the left, and 2|π| sets of vertices on the right. As a direct
consequence of the previous results on the constraint graphs for time elapse, shrinking
and guard/reset, one obtains:

Proposition 5.2. Let Z be a zone and π be a path. We let Gδ
π(Z) be the graph obtained

from Gδ
π by adding on every set of right vertices the constraints defining Z. Then the

constraint on the left layer of vertices obtained from the shortest paths in Gδ
π(Z) is

equivalent to CPreδπ(Z).

An example of the graph Gδ
π(Z) for π = e1e2, edges considered in Figure 5.1, is depicted

in Figure 5.3 (on the left).
We are now ready to prove the following result, generalisation of [JR11, Lemma 2],

that will allow us to compute the greatest fixpoint of the operator CPreδπ:

59

◦X0

◦X1

◦X2

◦

◦

◦

G>δ
time

◦

◦

◦

◦

◦

◦

Gδ
shrink

G
x162,{x1}
edge

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

G>δ
time

◦
◦

◦

◦
◦

◦

Gδ
shrink

G
x2>2,{x2}
edge

◦
◦

◦

◦
◦

◦

◦
◦

◦
Z

◦
◦

◦
Z

◦
◦

◦
Z

◦
◦

◦
Z

i j

r1

r2

r3

r4

r5

Figure 5.3.: On the left, the branching constraint graph Gδ
e1e2

encoding the operator
CPreδe1e2 , where e1 and e2 refer to edges considered in Figure 5.1. Dashed
edges have weight (<, .), plain edges have weight (6, .). Black edges
(resp. orange edges, pink edges, red edges, blue edges) are labelled by
(., 0) (resp. (.,−δ), (., δ), (., 2),(.,−2)). On the right, a decomposition of a
path in a branching constraint graph Gδ

π (proof of Proposition 5.3).

Proposition 5.3. Let π be a path and δ be a non-negative rational number. We let
N = |X0|2. If CPreδπ2N+1(>) (CPreδπ2N (>), then νX CPreδπ(X) = ∅.

Proof. Assume CPreδπ2N+1(>) (CPreδπ2N (>) and consider the zones CPreδπN+1(>) (rep-
resented by the DBM M1) and CPreδπN (>) (represented by the DBM M2). We have
M1 (M2, as otherwise the fixpoint would have already been reached after N steps. By
Proposition 5.2, the zone corresponding to M1 is associated with shortest paths between
vertices on the left in the graph Gδ

πN+1 . In the sequel, given a path r in this graph, w(r)
denotes its weight. We distinguish two cases:
Case 1: M1 (M2 because of the rational coefficients. Then, there exists an entry
(x, y) ∈ X 2

0 such that M1[x, y] < M2[x, y].2 The value M1[x, y] is thus associated with a
shortest path between vertices X and Y in Gδ

πN+1 . We fix a shortest path of minimal
length, and denote it by r. As the entry is strictly smaller than in M2, this shortest path
should reach the last copy of the graph Gδ

π. This path can be interpreted as a traversal of
the binary tree of depth |X0|2 +1, reaching at least one leaf. We can prove that this entails
that there exists a pair of clocks (u, v) ∈ X 2

0 appearing at two levels i < j of this tree, and

2Here we borrow notations from [JR11], where M1[x, y] refers to the constant c such that M1[x, y] = (≺
, c).

60

a decomposition r = r1r2r3r4r5 of the path, such that w(r2) + w(r4) = (≺, d) with d < 0
(Property (†)). In addition, in this decomposition, r3 is included in subgraphs of levels
k ≥ j, and the pair of paths (r2, r4) is called a return path, following the terminology
of [JR11]. This decomposition is depicted in Figure 5.3 (on the right). Intuitively, the
property (†) follows from the fact that as r3 is included in subgraphs of levels k ≥ j, and
because the final zone (on the right) is the zone > which adds no edges, the concatenation
r′ = r1r3r5 is also a valid path from X to Y in Gδ

πN+1 , and is shorter than r. We conclude
using the fact that r has been chosen as a shortest path of minimal weight.
Property (†) allows us to prove that the greatest fixpoint is empty. Indeed, by

considering iterations of π, one can repeat the return path associated with (r2, r4) and
obtain paths from X to Y whose weights diverge towards −∞.
Case 2: M1 (M2 because of the ordering coefficients. We claim that this case cannot
occur. Indeed, one can show that the constants will not evolve anymore after the Nth
iteration of the fixpoint: the coefficients can only decrease by changing from a non-strict
inequality (≤, c) to a strict one (<, c). This propagation of strict inequalities is performed
in at most |X0|2 additional steps, thus we have CPreδπ2N+1(>) = CPreδπ2N (>), yielding a
contradiction.

Compared to the result of [JR11], the number of iterations needed before convergence
grows from |X0|2 to 2|X0|2: this is due to the presence of strict and non-strict inequalities,
not considered in [JR11]. With the help of branching constraint graphs, we have thus
shown that the greatest fixpoint can be computed in finite time: this can then be done
directly with computations on zones (and not on branching constraint graphs).

Proposition 5.4. Given a path π and a rational number δ, the greatest fixpoint νX CPreδπ(X)
can be computed in time polynomial in |X | and |π|. As a consequence, one can decide
whether the controller has a winning strategy along a lasso π1π

ω
2 in Gδ(A) in polynomial

time.

5.2.3. Solving the qualitative problem for a lasso

We have shown how to decide whether the controller has a winning strategy for a fixed
rational value of δ. We now aim at deciding whether there exists a positive value of δ for
which the controller wins the game Gδ(A) (where A is restricted to a lasso π1π

ω
2). To

this end, we will use the shrunk DBMs of Section 4.1.

Proposition 5.5. Given a path π, one can compute a shrunk DBM (M,P) equal to the
greatest fixpoint of the operator CPreδπ. As a consequence, one can solve the qualitative
robust controller synthesis problem for a given lasso in time complexity polynomial in the
number of clocks and in the length of the lasso.

Proof. The bound 2|X0|2 identified in Proposition 5.3 for the greatest fixpoint does not
depend on the value of δ. Hence the algorithm for computing a shrunk DBM representing
the greatest fixpoint proceeds as follows. It computes symbolically, using shrunk DBMs,
the 2|X0|2-th and 2|X0|2 + 1-th iterations of the operator CPreδπ, from the zone >. By

61

monotonicity, the 2|X0|2 + 1-th iteration is included in the 2|X0|2-th. If the two shrunk
DBMs are equal, then they are also equal to the greatest fixpoint. Otherwise, the greatest
fixpoint is empty. To decide the qualitative robust controller synthesis problem for a given
lasso, one first computes a shrunk DBM representing the greatest fixpoint associated with
π2 and, if not empty, one computes a new shrunk DBM by applying to it the operator
CPreδπ1 . Then, one checks whether the valuation 0 belongs to the zone represented by
the resulting shrunk DBM.

5.3. Synthesis of robust controllers
We are now ready to solve the qualitative robust controller synthesis problem on all timed
automata, that is to find, if it exists, a lasso π1π

ω
2 and a perturbation δ such that the

controller wins the game Gδ(A) when following the lasso π1π
ω
2 as a strategy. As for the

symbolic checking of emptiness of a Büchi timed language [LOD+13], we will use a nested
forward analysis to exhaust all possible lassos, each being tested for robustness by the
techniques studied in previous section: a first forward analysis will search for π1, a path
from the initial location to an accepting location, and a second forward analysis from
each accepting location `t to find a cycle π2, not necessarily simple, around `t. Forward
analysis means that we compute the successor zone Postπ(Z) when following path π from
zone Z: it is described formally in Chapter 2.3.5 as a symbolic algorithm solving the
emptiness problem for reachability conditions.

5.3.1. Abstraction of lassos

Before studying in more details the two independant forward analyses, we first study
what information we must keep about π1 and π2 in order to still being able to test the
robustness of the lasso π1π

ω
2 . A classical problem for robustness is the firing of a punctual

edges, i.e. an edge where controller has a single choice of time delay: clearly such a
firing will be robust for no possible choice of parameter δ. Therefore, we must at least
forbid such punctual edges in our forward analyses. We thus introduce a non-punctual
successor operator Postnp

π . It consists of the standard successor operator Postπ in the
timed automaton Anp obtained from A by making strict every inequality symbol in
guards (1 6 x 6 2 becomes 1 < x < 2). The crucial point is that if a positive delay
d can be taken by the controller while satisfying a set of strict constraints, then other
delays are also possible, close enough to d. By analogy, recall that a region is said to
be non-punctual if it contains two valuations separated by a positive time delay. In
particular, if such a region satisfies a non-diagonal atomic constraint in A it also satisfies
the corresponding strict constraint in Anp.
Controller wins Gδ(A) for some δ > 0 if and only if he wins Gδ(Anp) for some δ > 0.

This observation can be derived from [SBMR13], as every non-punctual lasso in the
region abstraction of A is a valid region path in Anp.
The link between non-punctuality and robustness is as follows, where we abusively

denote by 0 the zone {0}.

62

Theorem 5.2. Let π1π
ω
2 be a lasso of the timed automaton. We have

∃δ > 0 0 ∈ CPreδπ1(νX CPreδπ2(X)) ⇐⇒ Postnp
π1

(0) ∩ (
⋃
δ>0νX CPreδπ2(X)) 6= ∅

Proof. We start by observing that if Z is a zone (with constants over Q), ν is a valu-
ation and e an edge, the three following statements are equivalent: 1. ∃δ > 0 ν ∈
CPreδe(Z); 2. ν ∈

⋃
δ>0 CPreδe(Z); 3. ν ∈ Prenp

e (Z). This is derived from the fact that⋃
δ>0 shrink[−δ,δ](JgK ∩ Z) is equal to the intersection of Z with the strict version of g, as

present in Anp.
Let us now prove by induction that Prenp

π (Z) =
⋃
δ>0 CPreδπ(Z) for all paths π. Let us

write π equals π′ · e, with e the last edge of π. Then, by inductive hypothesis:

Prenp
π (Z) = Prenp

e (Prenp
π′ (Z)) =

⋃
δ>0

CPreδe(Prenp
π′ (Z)) =

⋃
δ>0

CPreδe(
⋃
δ′>0

CPreδ
′

π′(Z)) .

To finish the induction we need to prove that
⋃
δ>0 CPreδe(

⋃
δ′>0 CPreδ

′

π′(Z)) is equal
to
⋃
δ>0 CPreδe(CPreδπ′(Z)). The left to right inclusion holds as for any valuation ν in⋃

δ>0 CPreδe(
⋃
δ′>0 CPreδ

′

π′(Z)), there exists values for δ and δ′ such that ν ∈ CPreδe(CPreδ
′

π′(Z)).
Moreover, CPreδe(Z) and CPreδπ′(Z

′) are decreasing over δ, so that ν ∈ CPreδ
′′

e (CPreδ
′′

π′ (Z))
with δ′′ = min(δ, δ′). For the right to left inclusion, observe that any fixed δ > 0 is
covered by the set of all δ′ > 0, thus CPreδπ′(Z) ⊆

⋃
δ′>0 CPreδ

′

π′(Z), which in turn implies
CPreδe(CPreδπ′(Z)) ⊆ CPreδe(

⋃
δ′>0 CPreδ

′

π′(Z)) as CPreδe(Z
′) is increasing over Z ′.

We will also need a duality property on predecessor and successor relations: for all
paths π, and zones Z and Z ′, Z ∩ Prenp

π (Z ′) 6= ∅ if and only if Postnp
π (Z) ∩ Z ′ 6= ∅. This

always holds by definition of Pre and Post, in particular in Anp. Then,

∃δ > 0 0 ∈ CPreδπ1(νX CPreδπ2(X)) ⇔ 0 ∈
⋃
δ>0 CPreδπ1(νX CPreδπ2(X))

⇔ 0 ∩ Prenp
π1

(νX CPreδπ2(X)) 6= ∅
⇔ Postnp

π1
(0) ∩ (νX CPreδπ2(X)) 6= ∅ .

Therefore, in order to test the robustness of the lasso π1π
ω
2 , it is enough to only keep

in memory the sets Postnp
π1

(0) and
⋃
δ>0 νX CPreδπ2(X).

5.3.2. Forward Analysis

As a consequence of the previous theorem, we can use a classical forward analysis of the
timed automaton Anp to look for the prefix π1 of the lasso π1π

ω
2 . A classical inclusion

check on zones, as described in Chapter 2.3.5, allows one to stop the exploration, this
criterion being complete thanks to Theorem 5.2. It is worth reminding that we consider
only bounded clocks, hence the number of reachable zones is finite, ensuring termination.

63

5.3.3. Robust cycle search

We now perform a second forward analysis, from each possible target location, to
find a robust cycle around it. To this end, for each cycle π2, we must compute the
zone

⋃
δ>0 νX CPreδπ2(X). This computation is obtained by arguments developed in

Section 5.2.3 (Proposition 5.5). To enumerate cycles π2, we can again use a classical
forward exploration, starting from the universal zone >. Using zone inclusion to stop
the exploration is not complete: considering a path π′2 reaching a zone Z ′2 included in
the zone Z2 reachable using some π2, π′2 could be robustly iterable while π2 is not. In
order to ensure termination of our analysis, we instead use reachability relations inclusion
checks. These tests are performed using the technique developed in Section 5.1, based on
constraint graphs (Theorem 5.1). The correction of this inclusion check is stated in the
following lemma, where Reachnp(π) denotes the reachability relation associated with π
in the automaton Anp. This result is derived from the analysis based on regions of the
previous chapter. Indeed, we will prove that the non-punctual reachability relations we
consider capture the existence of non-punctual aperiodic paths in the region automaton,
as considered in [SBMR13].
We say that controller wins on the lasso π0π

ω if he wins in the perturbation game
restricted to π0 and π for some δ, i.e. if ∃δ > 0 0 ∈ CPreδπ0(νX CPreδπ(X)).

Lemma 5.2. Let π1 be a path from `0 to some target location `t. Let π2, π
′
2 be two paths

from `t to some location `, such that Reachnp(π2) ⊆ Reachnp(π′2). For all paths π3 from `
to `t, if controller wins on the lasso π1(π2π3)ω, then controller wins on the lasso π1(π′2π3)ω

This lemma proved to be a major technical challenge, and the rest of this section is
dedicated to its proof.

As explained earlier, one can assume without loss of generality that all constraints in
the guards of A are strict. We will thus make no distinction in this proof between Post
and Postnp, or Reach and Reachnp.
In order to prove Lemma 5.2, we will need new notions on regions. Recall that a

region r is defined by a valuation ι with integer coordinates and a partition R0, . . . , Rm

of X , such that a valuation ν belongs to r when for every clock x ∈ X , the integral
part of ν(x) is equal to ι(x), and the fractional part of the coordinates of ν satisfies the
ordering 0 = R0 < R1 < R2 < · · · < Rm (i.e. for all clocks x in R0, frac(ν(x)) = 0, for
all 0 6 i 6 m and all clocks x, y ∈ Ri, frac(ν(x)) = frac(ν(y)), and for all 0 6 i < j 6 m
and all clocks x ∈ Ri, y ∈ Rj, frac(ν(x)) < frac(ν(y))). Here we abusively write 0 = R0

to remind that the clocks in R0 have integer values. Moreover, the set R0 can be empty
but not the sets R1, . . . , Rm. Region r is non-punctual if and only if R0 = ∅.

Consider a region r with corresponding integral part ι and clock ordering 0 = R0 < · · · <
Rm. The first time-successor of r is the region defined by ι and 0 < R0 < R1 · · · < Rm

if R0 6= ∅, by ι′ and 0 = Rm < R1 · · · < Rm−1 if R0 = ∅, with ι′(x) = ι(x) + 1 if x ∈ Rm

and ι′(x) = ι(x) otherwise. Intuitively, it is the next region that valuations in r reach
by letting time elapse. The i-th time successor of r is defined inductively with the first
time-successor notion, with the 0-th time successor of r set to r. Any region reachable
from r by time-elapse can be assigned an i > 0 such that it is the i-th time successor of r.

64

Symmetrically, the first time-predecessor of r is the region defined by ι and 0 = R1 <
· · · < Rm if R0 = ∅, by ι′ and 0 < R1 · · · < Rm < R0 if R0 6= ∅, with ι′(x) = ι(x)− 1 if
x ∈ R0 and ι′(x) = ι(x) otherwise.

We introduce a notion of first partial-time-predecessor of a region r, characterized by a
subset P0 of R0. Intuitively, it performs the first time-predecessor operation on all clocks
except R0\P0.

Definition 5.1. The first partial-time-predecessor of a region r, characterized by a
subset P0 6= ∅ of R0, is the region defined by ι′ and 0 = (R0\P0) < R1 · · · < Rm < P0,
with ι′(x) = ι(x) − 1 if x ∈ P0 and ι′(x) = ι(x) otherwise. Moreover, let the first
partial-time-predecessor of r characterized by ∅ be r.

If r is punctual (i.e. not non-punctual), the set of all first partial-time-predecessors of
r contains r (characterised by P0 = ∅) and the first time-predecessor of r (characterised
by P0 = R0). If r is non-punctual, the set of all first partial-time-predecessors of r is {r}.

We introduce a way to refine a clock partition. Intuitively, a clock ordering 0 = R′0 <
· · · < R′m′ is an ordered sub-partition of 0 = R0 < · · · < Rm if some sets Ri are split into
several R′i′ < · · · < R′j′ .

Definition 5.2. 0 = R′0 < · · · < R′m′ is an ordered sub-partition of 0 = R0 < · · · < Rm

if R′0 ⊆ R0 and for all 0 6 i < j 6 m, x ∈ Ri and y ∈ Rj, there exists 0 6 i′ < j′ 6 m′

such that x ∈ R′i′ and y ∈ R′j′ .

Consider two regions r and r′, with corresponding integral parts ι and ι′, and clock
orderings 0 = R0 < · · · < Rm and 0 = R′0 < · · · < R′m′ .

Definition 5.3. We say that r is simulated by r′, and write r 4 r′, if there exists r′′, a
first partial-time-predecessor of r with corresponding integral part ι′′ and clock ordering
0 = R′′0 < · · · < R′′m, such that ι′ = ι′′ and 0 = R′0 < · · · < R′m′ is an ordered sub-partition
of 0 = R′′0 < · · · < R′′m.

Definition 5.4. We will say that r and r′ are equivalent w.r.t. Y with Y ⊆ X if they
are equal when projected on RY>0. Equivalently, if there exist two valuations ν ∈ r and
ν ′ ∈ r′ such that for all x ∈ Y , ν(x) = ν ′(x).

Observe that if r and r′ are equivalent w.r.t. Y, then r[R := 0] = r′[R := 0] for all
resets R with X\Y ⊆ R. In particular, if two regions r and r′ are equivalent w.r.t. X
then r = r′. All regions r and r′ are equivalent w.r.t. ∅.

Example 5.1. Figure 5.4 represents the simulation and equivalence notions on a few
examples. On the left, the blue region characterised by ι = (0, 0) and 0 < {x1, x2} is
simulated by the two light blue regions, because 0 < {x1} < {x2} and 0 < {x2} < {x1}
are ordered sub-partitions of 0 < {x1, x2}. The red region characterised by ι = (1, 1) and
0 = {x1} < {x2} is simulated by the two light red regions, because 0 < {x1} < {x2} is an
ordered sub-partition of 0 = {x1} < {x2}, and ι = (0, 1) and 0 < {x2} < {x1} is a first
partial-time predecessor of the red region. The green region is only simulated by itself.
The green and blue regions are equivalent w.r.t. {x2}. On the right, Figure 5.4 represents

65

x1

x2

1 20

1

2

x1

x2

1 20

1

2

Figure 5.4.: The simulation relation between regions in Reg({x1, x2}, 2).

the set of regions simulated by the region characterised by ι = (1, 1) and 0 = {x1, x2}.
The black regions are its first partial-time predecessors, and the gray regions are obtained
by ordered sub-partition.

The relation 4 enjoys nice properties, that we now describe.

Lemma 5.3. For all regions r and r′, with corresponding integral parts ι and ι′, and
clock orderings 0 = R0 < · · · < Rm and 0 = R′0 < · · · < R′m′, such that r 4 r′ and r, r′
are equivalent w.r.t. Y ⊆ X :

1. if r is non-punctual then r′ is non-punctual as well;

2. if r is punctual and s is the first time-successor of r, s is non-punctual and r 4 s;

3. every strict non-diagonal guard satisfied by r is also satisfied by r′;

4. for each reset R ⊆ X , r[R := 0] 4 r′[R := 0] and r[R := 0], r′[R := 0] are equivalent
w.r.t. Y ∪R;

5. for each time-successor s of r there exists a time-successor s′ of r′ such that s 4 s′

and s, s′ are equivalent w.r.t. Y;

6. if r′ 4 s for some region s then r 4 s.

Proof. Let r′′ be a first partial-time-predecessor of r characterised by P0 ⊆ R0, with
corresponding integral part ι′′ = ι′ and clock ordering 0 = R′′0 < · · · < R′′m, such that
0 = R′0 < · · · < R′m′ is an ordered sub-partition of 0 = R′′0 < · · · < R′′m.

1. If R0 = ∅ then R′0 ⊆ R′′0 ⊆ R0 = ∅, and r′ is non-punctual.

2. The first time-successor of r is the non-punctual region s defined by ι and 0 < R0 <
R1 · · · < Rm since r is punctual. It is an ordered sub-partition of r which is a first
partial-time-predecessor of itself, therefore r 4 s.

3. We show that a strict non-diagonal atomic constraint satisfied by r is also satisfied
by r′′. If r is non-punctual then r′′ = r, and they satisfy the same constraints. If r
is punctual, a constraint x < c with x ∈ X is satisfied by r if and only if c > ι(x) + 1.
Since ι′′(x) 6 ι(x) for all x ∈ X , c > ι′′(x) + 1 and r′′ satisfies x < c. A constraint

66

x > c with x ∈ X is satisfied by r if and only if c < ι(x) or x ∈ X\R0 ∧ c = ι(x). If
c < ι(x), then either c < ι′′(x) or c = ι′′(x) and x ∈ P0, and in both cases x > c is
satisfied by r′′. If x ∈ X\R0 ∧ c = ι(x), then x 6∈ (R0\P0) ∧ c = ι′′(x) and x > c is
satisfied by r′′.

Then, as ι′ = ι′′ and R′0 is included in R′′0 , all strict non-diagonal constraints satisfied
by r′′ are also satisfied by r′.

4. The simulation relation is stable by projection into RX\R>0 , and it is also stable by
adding new clocks to both R0 and R′0, therefore it is stable by reset. Equivalence
w.r.t. Y is maintained and extended to Y ∪R by definition.

5. We prove by induction on i that for all i > 0, there exists j > 0 such that the
i-th time-successor of r is simulated by the j-th time-successor of r′ and that they
are equivalent w.r.t. Y. If i = 0, pick j = 0. For the induction step, it is enough
to prove the property with i = 1. Let us first assume that r is non-punctual.
The first time-successor of r is described by ι′and 0 = Rm < R1 < · · · < Rm−1,
with ι′ equal to ι + 1 on Rm and equal to ι on all other clocks. Moreover, r′
is described by ι and an ordered sub-partition of 0 < R1 < · · · < Rm. Let us
assume that Rm is split into R′m′−j < · · · < R′m′ in r′, with j > 0. Therefore, the
(2j + 1)-th time-successor of r′ is described by ι′ and an ordered sub-partition of
the clock ordering 0 = Rm < R1 < · · · < Rm−1, and therefore simulates the first
time-successor of r. Additionally, r and r′ induce the same ordering for clocks in
Y, and this is maintained on the successors, so they are equivalent w.r.t. Y. Let
us now assume that r is punctual. The first time-successor of r is described by
ι and 0 < R0 < R1 < · · · < Rm. Moreover, r′ is described by ι′ and an ordered
sub-partition of 0 = (R0\P0) < R1 · · · < Rm < P0, with ι′(x) = ι(x) − 1 if x ∈ P0

and ι′(x) = ι(x) otherwise. Let us assume that P0 is split into R′m′−j < · · · < R′m′
in r′, with j > 0. Then, the (2j + 1)-th time-successor of r′ is described by ι and
an ordered sub-partition of the clock ordering 0 = P0 < (R0\P0) < R1 < · · · < Rm,
which is an ordered sub-partition of the clock ordering 0 = R0 < R1 < · · · < Rm,
and therefore simulates the first time-successor of r. Additionally, r and r′ induce
the same ordering for clocks in Y , and this is maintained on the successors, so they
are equivalent w.r.t. Y .

6. Let s correspond to an integral part ιs and a clock ordering 0 = Rs
0 < · · · < Rs

ms .
Let s′ be a first partial-time-predecessor of r′ characterised by Q0 ⊆ R′0 with
corresponding integral part ιs′ = ι′ and clock ordering 0 = Rs′

0 < · · · < Rs′

m′ , such
that 0 = Rs

0 < · · · < Rs
ms is an ordered sub-partition of 0 = Rs′

0 < · · · < Rs′

m′ . Now,
if r′ is non-punctual then r′ = s′. As being an ordered sub-partition is transitive,
0 = Rs

0 < · · · < Rs
ms is an ordered sub-partition of 0 = R′′0 < · · · < R′′m, and r 4 s.

If r′ is punctual, the region r must be punctual by Lemma 5.3.1, and Q0 ⊆ R0\P0.
Then, the clock ordering of s is an ordered sub-partition of the clock ordering of
the first partial-time-predecessor of r characterised by P0]Q0 (the last sets Rs

i in
the clock ordering of rs all belong to P0]Q0), thus r 4 s.

67

Consider a region path p describing a sequence

r1
delay−−−→ r2

g1,Y1−−−→ r3
delay−−−→ . . .

g|π|,Y|π|−−−−→ rn ,

and p′ another region path r′1
delay−−−→ . . .

g|π|,Y|π|−−−−→ r′n following the same sequence of edges
π. We say that p 4 p′ if for all 1 6 i 6 n, ri 4 r′i. In particular, if p 4 p′ and
p is non-punctual (i.e. ever region r2i+1 reached after a delay is non-punctual), p′ is
non-punctual as well by Lemma 5.3.1.
The following results can be obtained from Lemma 5.3, and state that 4 acts as a

time-abstract simulation relation, while keeping additional guarantees on progress cycles
or non-punctual region paths.

Lemma 5.4. Let π be a path in A describing a progress cycle, let p be a region path
from a region r1 to a region r2 that follows π, and let r′1 be a region such that r1 4 r′1.
Then, there exists a region path p′ from r′1 to r2 following π, such that p 4 p′.

Proof. Consider an edge in A of guard g and reset R, and a region path r1
delay−−−→ r2

g,R−−→ r3

and let r′1 be a region such that r1 and r′1 are equivalent w.r.t. Y with some Y ⊆ X , and
r1 4 r′1. Then, by Lemma 5.3.5, there exists a region r′2 time-successor of r′1 such that
r2 4 r′2 and r2, r′2 are equivalent w.r.t. Y . Since r2 |= g, by Lemma 5.3.3, r′2 |= g. Finally,
if r′3 = r′2[R := 0] and p′ = r′1

delay−−−→ r′2
g,R−−→ r′3, by Lemma 5.3.4 we obtain r3 4 r′3 and r3,

r′3 are equivalent w.r.t. Y ∪R. By applying this procedure inductively on p (starting from
r1 and r′1 equivalent w.r.t. ∅), we obtain a region path p′ from r′1 to some r′2 following π,
such that p 4 p′ and r2, r′2 are equivalent w.r.t.

⋃
(`,g,R,`′)∈π R the clocks reset by π. As π

is a progress cycle, it resets all clocks, and therefore r′2 = r2.

Lemma 5.5. Let π be a path in A, and let p be a region path following π from a region
r1 to a region r2. Then, there exists a non-punctual region path p′ following π from r1 to
some r′2 with p 4 p′.

Proof. Consider an edge in A of guard g and reset R, and a region path r1
delay−−−→ r2

g,R−−→ r3,
and let r′1 be a region such that r1 4 r′1. Then, by Lemma 5.3.5, there exists a region r′′2
time-successor of r′1 such that r2 4 r′′2 . If r′′2 is non-punctual, let r′2 = r′′2 , otherwise let r′2
be the first time-successor of r′′2 . By Lemma 5.3.2 and Lemma 5.3.6, r′2 is a time-successor
of r′1 such that r2 4 r′2. Since r2 |= g, by Lemma 5.3.3, r′2 |= g. Finally, if r′3 = r′2[R := 0]

and p′ = r′1
delay−−−→ r′2

g,R−−→ r′3, by Lemma 5.3.4 we obtain r3 4 r′3. By applying this
procedure inductively on p, we obtain a non-punctual region path p′ from r′1 to some r′2
following π, with p 4 p′.

We will now show that region cycles can be made non-punctual while keeping a full
reachability relation on the associated path in A.

68

r r r r r

s s′ s′ s′ s′

p p p p

p2

p′1 p′2 p′2 p′2

p1 p1 p1

4 4 4 4 4
Figure 5.5.: Proof scheme of Lemma 5.6. Edges represent region paths, the dashed ones

are non-punctual.

Lemma 5.6. Let π be a path in A describing a progress cycle, Let r be a region such
that r × r ⊆ Reach(π). Let p be a region cycle around region r that follows π, and let s
be a region such that r 4 s. There exists a region s′ reachable from s by a non-punctual
region path p′0 that follows π, and a non-punctual region cycle p′ around s′ that follows
π3, with s′ × s′ ⊆ Reach(π3).

Proof. Let us explain how to construct a region s′ and four region paths p1, p2, p′1 and
p′2 following π such that

• p 4 p1,

• p 4 p2,

• p1 4 p′1,

• p1 4 p′2,

• p1 is a non-punctual path from r to s′,

• p2 is a path from s′ to r,

• p′1 is a non-punctual paths from s to s′,

• and p′2 is a non-punctual paths from s′ to s′.

We start by applying Lemma 5.5 on p, and obtain a non-punctual path p1 from r to a
region s′ with p 4 p1. Now, we apply Lemma 5.4 on p1 and s (as r 4 s), and obtain a
path p′1 from s to s′ with p1 4 p′1 (and therefore p′1 is also non-punctual). Then we apply
Lemma 5.4 on p1 and s′ (as r 4 s′), and obtain a path p′2 from s′ to s′ with p1 4 p′2 (and
therefore p′2 is also non-punctual). Finally, by applying Lemma 5.4 on r, s′ and p (as
r 4 s′), we obtain a region path p2 that follows π, starts in s′ and ends in r. We fix
p′0 = p′1 and p′ = (p′2)3. Let us show s′× s′ ⊆ Reach(π3). Let ν, ν ′ be two valuations in s′.
There exists a region path p2 that follows π, starts in s′ and ends in r. Thus, ν can reach
some valuation ν1 in r by following π. We also know that p1 is a region path from r to s′
following π, therefore there exists a valuation ν ′1 in r that can reach ν ′ by following π.
From r × r ⊆ Reach(π), we deduce that ν1 can reach ν ′1 by following π. Therefore every
valuation ν in s′ can reach every valuation ν ′ in s′ by following π3.

69

We are now ready to prove Lemma 5.2.

Proof of Lemma 5.2. Let π1 a path from `0 to some target location `t. Let π2, π
′
2 be two

paths from `t to some location `, such that Reach(π2) ⊆ Reach(π′2). Let us assume that
controller wins on the lasso π1(π2π3)

ω. Then, the controller wins in the perturbation
game restricted to π1, π2 and π3 and with `t as only target, for some δ. Therefore, there
exists non-punctual region paths p4 and p5 in the region abstraction of A, such that p4

reaches a target region (`t, r) from (`0,0), and p5 is an aperiodic cycle around r. There
exists k such that the reachability relation of pk5 is complete. Thus, we can define π4 a
path of the form π1(π2π3)

i with i > 0, and π5 a cycle of the form (π2π3)
j with j > 0,

such that r × r ⊆ Reach(π5).
Consider π′4 = π1(π

′
2π3)

i and π′5 = (π′2π3)
j. From Reach(π2) ⊆ Reach(π′2), we derive

Reach(π2π3) ⊆ Reach(π′2π3) and thus Reach(π4) ⊆ Reach(π′4) and Reach(π5) ⊆ Reach(π′5).
Therefore, r × r ⊆ Reach(π′5), Postπ4(0) ⊆ Postπ′4(0) and Postπ5(r) ⊆ Postπ′5(r), and we
can define a region path p′4 from 0 to r along π′4, and a region path p′5 from r to r along
π′5. Note that r × r ⊆ Reach(π′5) implies that π′5 is a progress cycle, as otherwise no
execution following π′5 can start and end in the same valuation.

By using Lemma 5.5 on π′4 and p′4, we can obtain a non-punctual region path p′′4 from
0 to some region r0 that follows π′4, such that r 4 r0. Now, we can apply Lemma 5.6
on π′5, r and r0, and obtain a non-punctual lasso following π′5π′35 , starting from r0 and
cycling around r1, such that r1 × r1 ⊆ Reach(π′35). Therefore, by Lemma 4.2, controller
wins in the perturbation game restricted to π1, π′2 and π3 for some δ, and thus wins on
the lasso π1(π′2π3)ω.

5.4. Case study
We implemented our algorithm in C++. We rely on the model-checking tool TChecker [HPT19]
for efficiently exploring the zone abstraction, and implemented an on-the-fly construction
of reachability relations using DBMs, and a check for the robust iterability of a cycle
based on shrunk DBMs.

To illustrate our approach, we present a case study on the regulation of train networks.
Urban train networks in big cities are often particularly busy during rush hours: trains
run in high frequency so even small delays due to incidents or passenger misbehaviour
can perturb the traffic and end up causing large delays. Train companies thus apply
regulation techniques: they slow down or accelerate trains, and modify waiting times
in order to make sure that the traffic is fluid along the network. Computing robust
schedules with provable guarantees is a difficult problem (see e.g. [DPH07]).

We study here a simplified model of a train network and aim at automatically synthes-
izing a controller that regulates the network despite perturbations, in order to ensure
performance measures on total travel time for each train. Consider a circular train
network with m stations s0, . . . , sm−1 and n trains. We require that all trains are at
distinct stations at all times. For each station i ∈ [0,m− 1], there is an attached interval
of delays [ui, vi] which bounds the travel time from si to si+1 mod m. Here the lower bound

70

s0

s1

s2 s3

s4

[u0, v0]

[u1, v1]

[u2, v2]

[u3, v3]

[u4, v4]

[t01, t
0
2]

[t11, t
1
2]

Figure 5.6.: A simple circular train network, with five stations and two trains. The blue
(resp. red) train starts at station s0 (resp. s2) and must cycle the network
within time [t01, t

0
2] (resp. [t11, t

1
2]).

comes from physical limits (maximal allowed speed, and travel distance) while the upper
bound comes from operator specification (e.g. it is not desirable for a train to remain at
station for more than 3 minutes). The objective of each train j ∈ [0, n− 1] is to cycle on
the network while completing each tour within a given time interval [tj1, t

j
2]. An example

for m = 5 and n = 2 is displayed in Figure 5.6.
All timing requirements are naturally encoded with clocks: every train i ∈ [0, n− 1] is

associated two clocks xi, yi, and a timed automaton Ai defined as in Figure 5.7. The
final timed automaton A is obtained as the product automaton A0 × · · · × An−1, whose
locations are tuples (s0, . . . , sn−1) associating a station for every train, and whose edges
are all

(s0, . . . , si, . . . , sn−1)
gi,Yi−−−→ (s0, . . . , qi, . . . , sn−1) ,

with si gi,Yi−−−→ qi an edge of Ai. Locations such that two trains are positioned at the same
station are finally removed.
Given the model A, we solve the qualitative robust controller synthesis problem in

order to find a controller choosing travel times for all trains ensuring a Büchi condition
(visiting s0 infinitely often). Given the fact that trains cannot be at the same station
simultaneously, it suffices to state the Büchi condition only for one train, since its
satisfaction of the condition necessarily implies that of all other trains.

Let us present two representative instances and then comment the performance of the
algorithm on a set of instances. Consider a network with two trains and m stations,
with [ui, vi] = [200, 400] for each station i, and the objective of both trains is the
interval [250 ·m, 350 ·m], that is, an average travel time between stations that lies in
[250, 350]. The algorithm finds an accepting lasso: intuitively, by choosing δ small enough

71

s0

s1

s2 s3

s4

u0 6 x0 6 v0

x0 := 0

u1 6 x0 6 v1
x0 := 0

u2 6 x0 6 v2

x0 := 0

u3 6 x0 6 v3
x0 := 0

t01 6 y0 6 t02
u4 6 x0 6 v4

x0, y0 := 0

A0

Figure 5.7.: The timed automaton encoding the blue train of Figure 5.6.

Scenario m n #Clocks robust? time
A 6 2 4 yes 4s
B 6 2 4 no 2s
C 6 3 5 no 263s
D 6 3 4 yes 125s
E 6 4 2 yes 53s
F 6 4 2 yes 424s
G 6 4 8 TO
H 6 4 8 TO
I 20 2 2 yes 76s
J 20 2 2 yes 55s
K 30 2 2 yes 579s

Table 5.1.: Summary of experiments with different sizes. In each scenario, we assign
a different objective to a subset of trains. The answer is yes if a robust
controller was found, no if none exists. TO stands for a time-out of 30
minutes.

72

so that mδ < 50, perturbations do not accumulate too much and the controller can
always choose delays for both trains and satisfy the constraints. This case corresponds
to scenario A in Table 5.1. Consider now the same network but with two different
objectives: [0, 300 ·m] and [300 ·m,∞). Thus, one train needs to complete each cycle in
at most 300 ·m time units, while the other one in at least 300 ·m time units. A classical
Büchi emptiness check reveals the existence of an accepting lasso: it suffices to move each
train in exactly 300 time units between each station. This controller can even recover
from perturbations for a bounded number of cycles: for instance, if a train arrives late at
a station, the next travel time can be chosen smaller than 300. However, such corrections
will cause the distance between the two trains to decrease and if such perturbations
happen regularly, the system will eventually enter a deadlock. Our algorithm detects that
there is no robust controller for the Büchi objective. This corresponds to the scenario B
in Table 5.1. Other scenarios are defined similarly for varying number of stations and
trains, and sometimes some trains are not given an objective [ti1, t

j
2] in order to reduce

the number of clocks.
Table 5.1 summarizes the outcome of our prototype implementation on other scenarios.

The tool was run on a 3.2Ghz Intel i7 processor running Linux, with a 30 minute time out
and 2GB of memory. The performance is sensitive to the number of clocks: on scenarios
with 8 clocks the algorithm ran out of time.

73

6. The quantitative problem
We say that a perturbation δ is admissible if the controller wins the game Gδ(A). The
qualitative robust controller synthesis problem, solved in the previous chapters, aims at
deciding whether there exists a positive admissible perturbation. The more ambitious
quantitative problem consists in determining the largest admissible perturbation.
The algorithm developed in Chapter 5 relied on solving the qualitative problem on

lassos by performing a bounded (2|X0|2) number of computations of the CPreδπ operator.
For the quantitative problem, instead of focusing on arbitrarily small values of δ using
shrunk DBMs as we did previously, we must perform a computation that holds for all
values of δ.

To do so, we consider an extension of the (shrunk) DBMs in which each entry of the
matrix (which thus represents a clock constraint) is a piecewise affine function of δ. We
argue that all the operations involved in the computation of the CPreδπ operator can be
performed symbolically w.r.t. δ using such functions.

6.1. Parametric DBMs
Formally, a parametric bound is a mapping f from R>0 to Bounds(R), such that f(δ)
represents the bound associated to the maximal perturbation δ. We define the operations
min, inf and + over parametric bounds in an intuitive way, with min(f, g) : δ 7→
min(f(δ), g(δ)), inf{f1, f2, . . .} : δ 7→ inf{f1(δ), f2(δ), . . .} and f + g : δ 7→ f(δ) + g(δ),
by using the min, inf and + operations of Bounds(R).

Lemma 6.1. Parametric bounds equipped with min and + form an ordered semiring
with closure. Moreover, the closure f (∗) of a parametric bound f is equal to δ 7→ (f(δ))(∗).

Proof. As (Bounds(R),min,+) is a semiring, one can derive that parametric bounds form
a semiring with min and +. Consider the relation v defined over parametric bounds as
{(f, g) | ∃h,min(f, h) = g}. Observe that f v g if and only if min(f, g) = g. Therefore,
v is antisymmetric. It follows that the semiring of parametric bounds is ordered. A
difference with the previous cases of standard or shrunk DBMs is that the min operator
is not selective and thus the order it induces is not total. Moreover, v is complete as the
set of parametric bounds forms a complete join semilattice with v, where join is the inf
operator. Therefore, the semiring of parametric bounds has closure. The closure f (∗) of
a parametric bound f equals

inf{(δ 7→ (6, 0)), f, f + f, f + f + f, . . .} ,

and thus maps δ ∈ R>0 to (f(δ))(∗) by definition of inf.

74

6.1.1. Piecewise affine bounds

We say that a parametric bound f is a finite affine bound if there exists ≺ ∈ {<,6},
c ∈ Z and p ∈ N such that for all δ ∈ R>0, f(δ) = (≺, c− δp). The equation of f refers
to the expression ≺ c− δp, where c is called the constant and p is called the slope. We
also define infinite affine bounds as equal to either δ 7→ (<,+∞) or δ 7→ (<,−∞). Then,
we define the class of piecewise affine bounds PWBounds as the smallest set of parametric
bounds that contains the affine bounds, is stable by min and +, and is stable by the
closure operation f 7→ f (∗), i.e. for every parametric bounds f, g ∈ PWBounds, f + g,
min(f, g) and f (∗) are in PWBounds. Some examples are displayed in Figure 6.1.
Such a parametric bound f is a piecewise affine mapping with finitely many pieces.

Note that all affine bounds are non-increasing, i.e. if δ 6 δ′ then f(δ′) 4 f(δ), and
that the operations min, + and closure map non-increasing parametric bounds to non-
increasing parametric bounds, such that all bounds in PWBounds are non-increasing. If
f contains finite pieces only, i.e. it maps all δ to finite bounds, it can be described as a
finite sequence

(δ0, f(0))
≺1c1−δp1−−−−−→ (δ1, f(δ1))

≺2c2−δp2−−−−−→ . . . (δk, f(δk))
≺k+1ck+1−δpk+1−−−−−−−−−−→∞

with k ∈ N, δ0 = 0 and δi ∈ R>0 for i ∈ [1, k], such that for all i ∈ [1, k], δ ∈ (δi−1, δi),
it holds that f(δ) = (≺i, ci − δpi), and for all δ > δk, f(δ) = (≺k+1, ck+1 − δpk+1). The
number of pieces of f is k+ 1, and the values δi with i ∈ [0, k] are called split points, and
mark the junction between pieces. We say that f contains an initial split point at δ = 0
and k finite-finite split points for values of δ > 0.

If f contains some infinite pieces, then either f maps every δ to (<,+∞), or it contains
a sequence of finite pieces and a last piece that maps every δ to (<,−∞) (because f
must be non-increasing), i.e. it can be described by the sequence

(δ0, f(0))
≺1c1−δp1−−−−−→ (δ1, f(δ1))

≺2c2−δp2−−−−−→ . . . (δk, f(δk))
<−∞−−−→∞ .

In this case, we say that f contains an initial split point at δ = 0, k − 1 finite-finite
split points δi for i ∈ [1, k − 1], and one finite-infinite split point δk. Indeed, (<,+∞)
is the neutral element of min, the absorbing element of +, and not in the image of the
closure operation, so a (<,+∞) affine piece cannot be split by those operations. A piece
mapping to (<,−∞), in contrast, can appear as the last piece of f by applying the
closure operation.
A bound f ∈ PWBounds is continuous over constants at all finite-finite split points,

meaning that for every split point δi > 0 with f(δi) = (≺, c) between a piece ≺i ci − δpi
and a piece ≺i+1 ci+1 − δpi+1, it holds that c = ci − δipi = ci+1 − δipi+1. Moreover, f
is also continuous at the initial split point δ0 = 0 with f(0) = (≺, c) before a piece
≺1 c1 − δp1, such that c = c1. Finally, if f contains a piece (<,−∞), f is continuous
at the finite-infinite split point δk: f(δk) is either equal to (≺, c) with c = ck + δkpk or
to (<,−∞). In our inductive construction from affine bounds, finite-finite split points
appear with the min operation as the intersection of finite pieces, and finite-infinite split

75

δ

f(δ)

< 1

6 5− 3δ6 2− δ

6 0

< −∞

1 2
0

1

2

−1

Figure 6.1.: Piecewise affine bounds. Dashed lines represent strict bounds, and infinite
bounds are represented at the top and bottom.

points appear with the closure operation.

Example 6.1. Figure 6.1 represents three piecewise affine bounds. The blue bound is
made of one piece of equation 6 2− δ. The red bound contains a piece of equation < 1
for δ ∈ [0, 4/3] and a piece of equation 6 5− 3δ for δ > 4/3. The green bound contains
a piece of equation 6 0 for δ ∈ [0, 5/3] and a piece of equation < −∞ for δ > 5/3. If we
name the red bound f , then the green bound represents its closure f (∗).

Piecewise affine bounds inherit the operations and properties of parametric bounds,
most notably they form with min and + an ordered semiring with closure, that we call
the tropical semiring of piecewise affine bounds.

Lemma 6.2. (PWBounds,min,+) is an ordered semiring with closure.

Proof. Piecewise affine bounds form an ordered semiring since they are a subset of
parametric bounds stable by min and + containing the neutral elements of min and
+. For every bound f ∈ PWBounds, it is a parametric bound and we have seen that
its closure f (∗) in (Bounds(R)R>0 ,min,+) exists. As PWBounds is stable by closure,
f (∗) ∈ PWBounds. Finally, closure in the semiring (PWBounds,min,+) is equal to closure
in the semiring of parametric bounds, as min (and therefore the order v) and + are
identical.

Every elementary operation (min, +, and closure) can be performed in linear time on
piecewise affine bounds, and they increase the size of the input in a controlled manner.
Formally, if K,C, P ∈ N, we say that a piecewise affine bound f is bounded by K[C−δP]
if f contains at most K finite-finite split points and if |c| 6 C and p 6 P hold for all finite
affine pieces of equation ≺ c− δp in f . If f is bounded by K[C − δP], the split points δi
are non-negative rational numbers whose corresponding irreducible fraction a/b satisfy
a 6 2C and b 6 P by continuity over constants: finite-finite split points describe the
intersection of ci−δpi and ci+1−δpi+1 at δ = (ci−ci+1)/(pi−pi+1), and the finite-infinite
split points are created similarly by intersection of an affine piece ci − δpi with 0. Then,
f(δi) = ci − δipi is a rational numbers whose corresponding irreducible fraction a′/b′

satisfies |a′| 6 3CP and b′ 6 P . Thus, f can be encoded in size O(K log(PC)) as

76

a sequence of split points and affine pieces of the form (δ0, f(0))
≺1c1−δp1−−−−−→ . . .∞ with

constants ci and pi encoded in binary, and rational pairs (δi, f(δi)) encoded as irreducible
fractions.

Lemma 6.3. Let f, g be piecewise affine bounds, such that f is bounded by K[C−δP] and
g is bounded by K ′[C ′−δP ′]. Then, min(f, g) is bounded by (2(K+K ′)+1)[max(C,C ′)−
δmax(P, P ′)], f + g is bounded by (K +K ′)[(C + C ′)− δ(P + P ′)], and f (∗) is bounded
by 0[0− δ0].

Proof. To bound the constants c and the slopes p in the output of these operations,
observe that the equations in the finite pieces of the output are obtained by addition in
f + g, they cannot change in min, and the closure operation maps every δ to f(δ)(∗) ∈
{(6, 0), (<, 0), (<,−∞)}. To bound the number of split points after min, observe that
new finite-finite split points can only be created by intersection of a finite piece in f
and a finite piece in g, such that if we consider the union of the finite-finite split points
of f and g, at most one new finite-finite split point appears between two consecutive
such split points, plus one after the last split point, giving K +K ′ + 1 new finite-finite
split points at most. To bound the number of split points after +, observe that the split
points in the output of + are at most the union of the split points in its inputs. Finally,
the output of the closure operation cannot have finite-finite split points.

This ensures that every algorithm using these elementary operations polynomially
many times will have an exponential time complexity at worst. The driving factor behind
this exponential is the number of pieces, that can double when the min or + operations
are used.

6.1.2. Piecewise affine DBMs

We construct DBMs over piecewise affine bounds, called piecewise affine DBMs, defined
as mappings from X0×X0 to PWBounds. A piecewise affine DBM M can equivalently be
seen as a mapping from δ ∈ R>0 to a DBM over R, denoted abusively M(δ), such that
(M(δ))(x, y) = (M(x, y))(δ) for all clocks x, y ∈ X0.

Piecewise affine DBMs have a normal form that can be computed with a cubic number
of elementary operations according to Lemma 1.2.
We show that piecewise affine DBMs are closed under standard operations on zones,

and thus the CPre operator can be computed with piecewise affine DBMs:

Lemma 6.4. Let e = (`, g,Y , `′) be an edge and M be a piecewise affine DBM. Then,
there exists a piecewise affine DBM N , that we can compute using a polynomial number
of elementary operations, such that for all δ > 0, N(δ) = CPreδe(M(δ)).

Proof. We have already defined the addition and minimum of piecewise affine bounds,
and if we interpret the operations "set a bound to (≺, c)" as "set it to δ 7→ (≺, c)" we
can use the standard definitions of Unreset and intersection from DBMs over Z [BY04]
A PreTime operation is defined as replacing for every x ∈ X the entry of index

(x0, x) in the DBM by δ 7→ (6, 0); replacing for every x ∈ X the entry f of index

77

(x, x0) by f + (δ 7→ (<,−δ)); and normalizing the DBM. A shrinking operation shrink
is defined as replacing for every x ∈ X the entries f of index (x, x0) or (x0, x) in the
DBM by f + (δ 7→ (<,−δ)); and normalizing the DBM. We can now define CPree as
PreTime(shrinkJgK ∩ UnresetY(Z)). It follows that CPree(M)(δ) = CPreδe(M(δ)), because
for every δ 6 0, PreTime(M)(δ) = PreTime>δ(M(δ)), shrink(M)(δ) = shrink[−δ,δ](M(δ))
and UnresetY(M)(δ) = UnresetY(M(δ)). The elementary operations on piecewise affine
bounds are only called polynomially many times at most while computing CPree.

The main difference with classical DBMs lies in the emptiness check: while a classical
(or shrunk) DBM can either be empty or not, this notion does not exist for piecewise affine
DBMs. Indeed, after normalization, a piecewise affine DBM M may contain diagonal
entries not comparable with zero (zero is the bound δ 7→ (6, 0)). For example, the green
bound from Figure 6.1 is a bound incomparable with zero that can be output by the
closure operation. One can compute for every bound f on a diagonal entry of the DBM
some δf = sup{δ | (6, 0) 4 f(δ)}, and then consider δd, the min of those δf . Then, it
follows that δd is the supremum of δ such that M(δ) is not empty. In contrast, shrunk
DBMs perform the same computations as piecewise affine DBMs, but as they are solely
interested in expressing statements about δ > 0 small enough, they only keep in memory
the first affine piece of our piecewise affine bounds.
We finally define an operator CPreπ on piecewise affine DBMs M , such that for all

δ > 0, CPreπ(M)(δ) = CPreδe(M(δ)). This is done by induction on the length of π: if
π = eπ′ with e and edge of A, then

CPreδπ(M(δ)) = CPreδe(CPreδπ′(M(δ))) ,

and Lemma 6.4 allows us to conclude; and if π is of length 0,

CPreπ(M)(δ) = M(δ) .

6.2. Largest admissible perturbation of a lasso
We have seen that a symbolic computation of the robust predecessors of a finite path,
that holds for all values of δ, can be computed with piecewise affine DBMs. Consider
now a cycle π in a timed automaton A. We will now explain how to compute the greatest
fixpoint of CPre over π with piecewise affine DBMs.

Lemma 6.5. Let π be a cycle. There exists a piecewise affine DBM N , that we can
compute using a polynomial number of elementary operations, such that for all δ > 0,
N(δ) = νX CPreδπ(X).

Proof. Let n equal 2|X0|2. We can compute piecewise affine DBMs M1 and M2 encoding
respectively CPreπn(>) and CPreπn+1(>). Then, by monotonicity, the inclusion M1(δ) ⊆
M2(δ) holds for every δ > 0, and if M1(δ) = M2(δ), then νX CPreδπ(X) = M1(δ). By
Proposition 5.3, for every δ > 0, if M1(δ) (M2(δ), then νX CPreδπ(X) = ∅. In addition,
both M1 and M2 are non-increasing w.r.t. δ, thus one can identify in linear time the

78

value δi = inf{δ ≥ 0 | M1(δ) (M2(δ)}. Then, let N be min(M1,Mδi), with Mδi the
piecewise affine DBM where every entry Mδi(x, y) maps δ to M1(x, y)(δ) if δ < δi and to
(<,−∞) if δ > δi. The value of bounds in Mδi(x, y) for δ = δi is similarly set to M1(x, y)
if M1(δi) = M2(δi) and to (<,−∞) otherwise.

As a consequence, we obtain the following new result:

Proposition 6.1. We can compute the largest admissible perturbation of a lasso in
exponential time.

Proof. Let π1π
ω
2 be a lasso. As a first step, we compute the greatest fixpoint of CPreπ2

as a piecewise affine DBM. As a second step, one applies the operator CPreπ1 to the
greatest fixpoint. We denote the result by M . To conclude, one can then return the
value sup{δ | 0 ∈M(δ)} of maximal perturbation. The elementary operations min and +
are only used polynomially many times in this computation and thus all piecewise affine
bounds used as inputs for elementary operations are bounded by K[C − δP], with K, C
and P at most exponential in the size of the automaton.

79

Part III.

Weighted timed games

80

Introduction
In this part we study problems related to the optimality of controllers. Let us start by
studying finite weighted games equipped with a reachability objective.

Finite weighted games
The context is that of a two-player turn-based game where transitions have been equipped
with weights. The optimal reachability problem asks what is the lowest cumulated weight
that controller can guarantee for reaching a target from a given intial state, against
any decisions made by the antagonistic environment. The controller is therefore the
minimiser player, while the environment wants to maximise the weight accumulated along
the execution. This lowest weight is called the value of the game, and computing it can
be seen as a natural generalisation of the classical shortest path problem in a weighted
graph to the case of two-player games. Weighted games with reachability objectives have
been recently explored as a refinement of mean-payoff games [BGHM15, BGHM16].
We focus particularly on challenges related to having negative weights, that are

crucial when one wants to model energy or other resources that can grow or decrease
during an execution of the system to study. If weights of transitions are all non-
negative, a generalised Dijkstra algorithm allows one to compute the value in polynomial
time [KBB+08]. In the presence of negative weights, a pseudo-polynomial time solution
(i.e. polynomial if weights are encoded in unary, but exponential otherwise) has been
given in [BGHM16]. Moreover, deciding if the value is equal to −∞ is shown to be in
NP∩ coNP, and as hard as solving mean-payoff games. Having negative weights therefore
comes with a price on the complexity side.
In Chapter 7, we introduce the value iteration algorithm used by [BGHM16], then

study classes of weighted games where the value can be computed in polynomial time,
even in the presence of negative weights encoded in binary. These ideas will be lifted to
the timed setting in later chapters, and will provide notable classes of weighted timed
games.
Our contribution is to define divergent and almost-divergent weighted games, and

show that they are solvable in polynomial time. To our knowledge, they are the first
non-trivial classes of weighted games with negative weights solvable in polynomial time,
apart from the class of acyclic games, that they contain. The intuition behind these
classes can be expressed as follows:

• In divergent games, cycles of total cumulated weight 0 are forbidden. As a result,
the weight of long execution must diverge to either +∞ or −∞, and we can use
this information to speed up the value iteration algorithm of [BGHM16].

81

Untimed weights in N weights in Z
all games divergent almost-div. all games

Value pb. PTIME
[KBB+08]

PTIME-complete
Thm. 7.1,7.2

pseudo-poly.
[BGHM16]

Value −∞ / PTIME-complete
Prop. 7.4, Lm. 7.4

pseudo-poly.
[BGHM16]

Value +∞ PTIME
[KBB+08]

PTIME-complete
Prop. 7.1, [BGHM16]

Membership /
NL-complete (unary wt.)

PTIME (binary wt.)
Thm. 7.1,7.2

/

Table 1.: Solving weighted games with arbitrary weights

• This logic is then extended to almost-divergent games, where only some "bad"
cycles of weight 0 are forbidden, based on a stability by decomposition rule (it is
forbidden for a cycle of weight 0 to be the composition of a positive cycle and a
negative one). In this case, inspired by [BJM15], we define a notion of kernel of the
game, that contains all cycles of weight 0, and deal with them separately.

We also solve the membership problem, i.e. check if an instance belongs to these classes,
in polynomial time. Table 1 summarises our results. The value problem compares the
value to a given threshold α, and particular cases of interest are the thresholds −∞ and
+∞.

Weighted timed games
We then turn our attention to weighted games played on a timed automaton instead
of a finite transition system. The resulting optimal reachability problems take place
on a weighted timed automaton [BFH+01, ALTP04], with weights on edges, and rates
on locations that let weight accumulate linearly when time elapses. If one does not
care about optimality (and weights), the problem reduces to solving reachability timed
games. This problem is EXPTIME-complete [JT07], and can be solved efficiently with
symbolic techniques (see Uppaal Tiga [CDF+05]). However, the quantitative set-
ting is notoriously difficult: While solving weighted timed automata has been shown
to be PSPACE-complete [BBBR07], weighted timed games are known to be undecid-
able [BBR05].
Faced with this challenge, several approaches have been followed. A semi-algorithm,

extending the value iteration algorithm of weighted games to the timed setting, has been
described in [BCFL04]. It takes the form of a greatest fixpoint computation, that may
not terminate. Alternatively, once can study restricted classes of weighted timed games
in order to regain decidability.

The most restrictive one is the class of acyclic games, where the dynamic has bounded

82

length, i.e. controller must reach a target within a fixed number of steps, or be punished
with a weight of +∞. The resulting problem has been shown to be decidable, and can
be solved in double-exponential time [TMM02]. In fact, the semi-algorithm of [BCFL04]
also solves acyclic weighted timed games, as their greatest fixpoint computation must
converge within a fixed number of steps. This result has been further refined in [ABM04],
where a fairly involved analysis claimed that the value iteration algorithm could be
implemented in exponential time.
It is worth noting that all of these results are stated for weighted timed games with

only non-negative weights (in edges and locations). Less is known for weighted timed
games in the presence of negative weights, and to our knowledge no results exist so
far for a class where the underlying timed automata have more than one clock. While
the value iteration algorithm can allow for the presence of negative weights (it is still a
semi-algorithm, and the fixpoint arguments did not require non-negative weights), we
argue that the complexity analysis of [ABM04] should be put into question. To this end,
we will detail a value iteration procedure for solving acyclic weighted timed games with
arbitrary weights. It follows closely the techniques of [ABM04], but is more symbolic.1
However, we could not replicate their complexity analysis, and will therefore rely on
a double-exponential time upper bound instead of an exponential one (see Chapter 10
for detailed explanations). This will induce an exponential gap between the results of
non-negative weights and our corresponding results for arbitrary weights.

In the context of non-negative weights, the largest class that enjoys decidability results is
defined by the strictly non-Zeno cost hypothesis [BCFL04]: it states that every execution
of the timed automaton that follows a cycle of the region abstraction has a weight far
from 0 (in interval [1,+∞), for instance). Indeed, it has been shown in [BCFL04] that
under this hypothesis controller can be restricted to reaching a target fixed number of
steps, exponential in the size of the game. In combination with [TMM02], this leads to a
triply-exponential time decision procedure, lowered to 2-EXPTIME with [ABM04].

We introduce a generalisation of the strictly non-Zeno cost hypothesis in the presence of
negative weights, that we call divergence. In the class of divergent weighted timed games,
each execution that follows a cycle of the region abstraction must have weight far from 0,
i.e. in (−∞,−1] ∪ [1,+∞). We show the decidability of this class, with a 3-EXPTIME
complexity (and an EXPTIME-hardness lower bound). The decision procedure relies on
showing that controller can be restricted to almost-optimal strategies that reach a target in
a bounded number of steps, exponential in the size of the game, matching asymptotically
the horizon that could be obtained in the non-negative case from [BCFL04].

As in the untimed setting, we relax our requirement slightly and define a larger class,
of almost-divergent weighted timed games. This time, executions that follow a cycle
of the region abstraction must have weight in (−∞,−1] ∪ {0} ∪ [1,+∞), and those of
weight 0 are subject to a stability by decomposition requirement. On this class, the
decision procedure of divergent games cannot be extended, as the value problem becomes
undecidable [BJM15]. This negative result already holds in the presence of non-negative

1 It performs computations on the entire state-space at once, whereas [ABM04] required constructing
the entire region abstraction.

83

weights only. For this case (where cycles have weight in {0} ∪ [1,+∞)), it has been
proposed an approximation schema to compute arbitrarily close estimates of the optimal
value [BJM15]. To this end, the authors consider regions with a refined granularity so as
to control the precision of the approximation.
Our main result on almost-divergent weighted timed games can be stated as fol-

lows: Given an almost-divergent weighted timed game, an initial configuration c and a
threshold ε, we can compute a value that we guarantee to be ε-close to the optimal value
when the play starts from c.

In order to approximate almost-divergent weighted timed games, we first adapt the
approximation schema of [BJM15] to our setting. At the very core of their schema is
the notion of kernels that collect all cycles of weight exactly 0 in the game. Then, a
semi-unfolding of the game (in which kernels are not unfolded) of bounded depth is
shown to be equivalent to the original game. Adapting this schema to negative weights
requires to address new issues:

• The definition and the approximation of these kernels is much more intricate in our
setting. Indeed, with only non-negative weights, a cycle of weight 0 only encounters
locations and edges with weight 0. It is no longer the case with arbitrary weights,
both for discrete weights on edges (that could alternate between weight +1 and −1,
e.g.) and continuous rates on locations: for this continuous part, this requires to
keep track of the real-time dynamics of the game.

• Some configurations may have value −∞. While it is undecidable in general whether
a configuration has value −∞, we prove that it is decidable for almost-divergent
weighted timed games.

• The identification of an adequate bound to define an equivalent semi-unfolding
of bounded depth is more difficult in our setting, as having guarantees on weight
accumulation is harder (we can lose accumulated weight). We deal with this by
evaluating how large the value of a configuration can be, provided it is not infinite.

We also develop a more symbolic approximation schema, in the sense that it avoids
the a priori refinement of regions. Instead, all computations are performed in a symbolic
way using a single call to the value iteration algorithm. This allows to mutualise as much
as possible the different computations: comparing these schemas with the evaluation
of MDPs or quantitative games like mean-payoff or discounted-payoff, it is the same
improvement as when using value iteration techniques instead of techniques based on the
unfolding of the model into a finite tree which can contain many times the same location.

This result can also be interpreted as a bound on the convergence speed of the fixpoint
computation performed by value iteration. Moreover, we prove that deciding if a weighted
timed game is divergent / almost-divergent is a PSPACE-complete problem.

Table 2 summarises our results on weighted timed games.
Other types of payoffs than the accumulated weight we study (i.e. total payoff)

have been considered for weighted timed games. For instance, energy and mean-payoff
timed games have been introduced in [BCR14]. They are also undecidable in general.

84

Timed weights in N
divergent almost-divergent all WTG

Value pb. 2-EXPTIME
[BCFL04]+[ABM04]

undecidable
[BJM15]

undecidable
[BBR05]

Approx. pb. / 2-EXPTIME
[BJM15]+[ABM04] ?

Value +∞ EXPTIME-complete
[BCFL04]

Timed weights in Z
divergent almost-divergent all WTG

Value pb.
3-EXPTIME

EXPTIME-hard
Thm. 9.1

undecidable
[BJM15]

undecidable
[BGNK+14]

Approx. pb. / 3-EXPTIME
Thm. 9.2 ?

Value −∞ EXPTIME-complete
Prop. 10.2,9.1

undecidable
Prop. 9.2

Value +∞ EXPTIME-complete
Prop. 7.1

Membership PSPACE-complete
Thm. 9.1,9.2 /

Table 2.: Solving weighted timed games with arbitrary weights

85

Interestingly, a subclass called robust timed games, not far from our divergence hypothesis,
admits decidability results for other payoffs. A weighted timed game is robust if, to say
short, every simple cycle (cycle without repetition of a state) has weight non-negative or
less than a constant −ε. Solving robust timed game can be done in EXPSPACE, and is
EXPTIME-hard. Moreover, deciding if a weighted timed game is robust has complexity
2-EXPSPACE (and coNEXPTIME-hard). This contrasts with our PSPACE results for the
membership problem.2 It has to be noted that extending our techniques and results in
the case of robust timed games is intrinsically not possible: indeed, the value problem
for this class is undecidable [BJM15].

This part is structured as follows: We start by presenting our results on finite optimal
reachability games in Chapter 7. We introduce weighted timed games in Chapter 8, and
define the divergent and almost-divergent classes in Chapter 9. Moreover, in Chapter 9 we
study structural properties of these classes, and state our main results. Our decidability
results are then proven in Chapter 10, and finally approximation techniques are presented
in Chapter 11.

2While our divergent games have a similar definition, both classes are incomparable.

86

7. Finite weighted games

7.1. The untimed setting
We consider two-player turn-based games played on weighted transition systems and
denote the two players by Min and Max instead of Ctrl and Env.

Definition 7.1. A weighted game1 is a tuple G = 〈SMin, SMax, St,Σ, T,wt,wtt〉 where
〈SMin, SMax, T 〉 is a two-player turn-based game labelled over Σ, of states S = SMin]SMax

and transitions T ⊆ S × Σ × S, wt : T → Z is the weight function associating an
integer weight with each transition2, St ⊆ SMin is a subset of target states for player
Min, and wtt : St → Z∞ is a function mapping each target state to a final weight of
Z∞ = Z ∪ {−∞,+∞}.

The addition of final weights is not standard, but we will use it in the process of solving
those games: In any case, it is possible to simply map each target state to the weight 0,
allowing us to recover the standard definition. These games need not be finite in general,
but in Chapter 7, we limit our study to the resolution of finite weighted games (where
all previous sets are finite). We suppose that: (i) the game is deadlock-free except on
target states,3 i.e. for each state s ∈ S\St, there is a letter a ∈ Σ and a state s′ ∈ S,
such that (s, a, s′) ∈ T , and there are no transitions starting from states in St; (ii) the
game is deterministic, i.e. for each pair (s, a) ∈ S × Σ, there is at most one state s′ ∈ S
such that (s, a, s′) ∈ T .

Notions of maximal (resp. non-maximal) plays, strategies and their outcome are derived
from the two-player turn-based game 〈SMin, SMax, T 〉 as in Chapter 1.3:

• A play is a sequence of consecutive transitions, it is non-maximal if it is finite and
ends in S\St and maximal if it is infinite or ends in St;

• A strategy for player Min (resp. player Max) is a mapping σMin : FPlaysMin → Σ
(resp. σMax : FPlaysMax → Σ) from non-maximal plays ending in a state of Min
(resp. Max) to labels;

• play(s, σMin, σMax) denotes the unique maximal play starting in s and conforming to
σMax and σMin.

1Weighted games are called min-cost reachability games in [BGHM16].
2If t = s

a−→ s′ is a transition in G, we denote wt(s, a, s′) the weight wt(t).
3this comes without loss of generality, as any non-target deadlock state can become a target state of
final weight +∞.

87

Recall that the finite play ρ is said to be a cycle if it ends in its first state—i.e. first(ρ) =
last(ρ)—and if |ρ| > 0. Recall also that the strategy σ is said positional if for all non-
maximal plays ρ, ρ′ ending in the same state, we have that σ(ρ) = σ(ρ′).
The objective of Min is to reach a target state, while minimising the accumulated

weight up to the target. Hence, we associate to every finite play ρ = s0
a1−→ s1 . . .

ak−→ sk
its cumulated weight

wtΣ(ρ) =
k−1∑
i=0

wt(si, ai+1, si+1) .

Then, the weight of a maximal play ρ, also denoted by wt(ρ), is defined by +∞ if ρ is
infinite and thus does not reach St, and wtΣ(ρ) + wtt(st) if it is finite and ends in st ∈ St.
Then, we let Val(s, σMin) and Val(s, σMax) be the respective values of the strategies:

Val(s, σMin) = sup
σMax

wt(play(s, σMin, σMax))

Val(s, σMax) = inf
σMin

wt(play(s, σMin, σMax)) .

Finally, for all states s, we let Val(s) = supσMax
Val(s, σMax) and Val(s) = infσMin

Val(s, σMin)

be the lower and upper values of s, respectively. We may easily show that Val(s) 6 Val(s)
for all s. We say that strategies σ?Min of Min and σ?Max of Max are optimal if, for all states s,
Val(s, σ?Max) = Val(s) and Val(s, σ?Min) = Val(s), respectively. We say that a game G is
determined if for all states s, its lower and upper values are equal. In that case, we write
Val(s) = Val(s) = Val(s), and refer to it as the value of s in G. Finite weighted games
are known to be determined [BGHM16]. If the game is not clear from the context, we
may add an index G to previous notations, such that wtG(ρ) is the weight of a maximal
play ρ in G (taking into account both cumulated and final weights), and ValG(s) is the
value of s in G.

We denote by wmax the maximal weight in absolute value of transitions in G, such
that wmax = maxt∈T |wt(t)|. Similarly, we let wt

max denote the maximal finite final weight
of target states in G:

wt
max = max{|wtt(st)| | st ∈ St ∧ wtt(st) ∈ Z} .

An algorithm A of input G whose time-complexity is polynomial in |S|, wmax and
wt

max is called pseudo-polynomial. Indeed, its complexity relative to the size of the input
depends on the encoding of weights: A is a polynomial-time algorithm if weights and
final weights are encoded in unary, but is exponential if they are encoded in binary (as
wmax and wt

max could be exponential in the size of G). In contrast, A is said polynomial
if it can be run in polynomial time when weights are encoded in binary.

7.1.1. Problems

We want to compute the value of a finite weighted game, as well as optimal strategies
for both players, if they exist. The corresponding decision problem, called the value

88

problem, asks whether ValG(s) 6 α, given a finite weighted game G, one of its states
s, and a threshold α ∈ Z. Other thresholds can also be considered, e.g. ValG(s) ./ α
with ./ ∈ {<,>,6,>,=, 6=}.4 We also define the value problem with threshold +∞
(resp. −∞), that asks, given a finite weighted game G and one of its states s, whether
ValG(s) = +∞ (resp. −∞). Every upper bound that we will mention (about the time-
complexity required to solve the value problem) relies on computing the value of every
state, and therefore on solving all of these problems equivalently. The lower bounds
results we will mention refer to the 6 α threshold.

7.2. Solving weighted games
Let G be a finite weighted game. We say that G is acyclic if it does not contain cycles,
and use standard notions for directed acyclic graphs: there exists a topological order
on states where s is smaller than s′ if and only if there exists a path from s to s′. We
call roots the smallest states, and leaves the greatest. For every state s, the sub-game
of root s refers to the game whose states are all states greater than or equal to s, and
whose transitions and weights match those of G. Every path in an acyclic game is finite
of length bounded by |S| − 1, and we let the depth of s ∈ S (resp. the depth of G) be
the greatest length of paths from a root to s (resp. from a root to a leaf).

If G is acyclic then, by the no-deadlocks assumption, the target states are exactly the
leaves of G. The value of a state s in G depends solely on weights and transitions in the
sub-game of root s. Indeed, if the value of every state in this sub-game, excluding s, is
already known, the value of s can be computed, as

Val(s) =

{
min(s,a,s′)∈T

[
wt(s, a, s′) + Val(s′)

]
if s ∈ SMin

max(s,a,s′)∈T
[
wt(s, a, s′) + Val(s′)

]
if s ∈ SMax .

The value of every state in G can thus be computed in a bottom-up fashion (i.e. in reverse
topological order), as the value of leaves equals the final weight wtt.

This technique can be extended to weighted games containing cycles in the form of a
fixpoint computation, that we will call the value iteration algorithm.

7.2.1. Value iteration

If V represents a value function—i.e. a mapping from states of S to a value in Z ∪
{+∞,−∞}—we denote by Vs the image V (s), for better readability. One step of the
game is summarised in the following operator F mapping each value function V to a
value function V ′ = F(V) defined by V ′s = wtt(s) if s ∈ St, and otherwise

V ′s =

{
min

s
a−→s′

[
wt(s, a, s′) + Vs′

]
if s ∈ SMin

max
s
a−→s′

[
wt(s, a, s′) + Vs′

]
if s ∈ SMax

(7.1)

4 Since ValG(s) ∈ Z∞, these other thresholds reduce to multiple instances of the value problem with
threshold 6 α, 6 α− 1, or its negation with threshold > α.

89

where s a−→ s′ ranges over the transitions in G that start from s. Then, starting from
V 0 mapping every state to +∞, except for the targets mapped to their final weight
according to wtt, we let

V i = F(V i−1)

for all i > 0. The value function V i represents the value Vali, which is intuitively what
Min can guarantee when forced to reach the target in at most i steps.

More formally, we define wti(ρ) the weight of a maximal play ρ at horizon i, as wt(ρ)
if ρ reaches a target state in at most i steps, and +∞ otherwise. Using this alternative
definition of the weight of a play, we can obtain a new game value

Vali(s) = inf
σMin

sup
σMax

wti(play(s, σMin, σMax)) .

Notice that F is a monotonic operator, i.e. if V ,V ′ are two value functions such
that Vs > V ′s for all states s ∈ S, then ∀s ∈ S,F(V)s > F(V ′)s. Moreover ∀s ∈
S,V 0

s > F(V 0)s since V 0 maps every non-target state to +∞, and target state keep
the same value. It follows that the sequence (V i)i∈N is non-increasing on every entry, as
V i = F i(V 0) > F i(F(V 0)) = V i+1. The value iteration algorithm consists in finding
the greatest fixpoint of operator F , i.e. the limit of the sequence (V i)i∈N. Indeed, this
greatest fixpoint is known to be the vector of values of the game (see, e.g., [BGHM16,
Corollary 11]).
Then, if G is an acyclic game of depth d, the fixpoint is reached after d steps, and

Val = V d. In this case, the infinite values in G (i.e. states s with Val(s) ∈ {−∞,+∞})
are derived from reaching targets with infinite final weights.

If the game contains cycles, infinite values can also come from arbitrarily long plays: a
state s can have value +∞ if Max can force an infinite play, never reaching any target,
and it can have value −∞ if Min can enforce an arbitrarily low weight, e.g. by staying in
a cycle of negative cumulated weight. These +∞ states correspond to a safety objective
for player Max, and can be computed in polynomial time: it is shown in [BGHM16] that
for all s ∈ S, Val(s) = +∞ if and only if V |S|s = +∞. In contrast, deciding if a state
has value −∞ has no known polynomial solution (it is as hard as solving mean-payoff
games). In [BGHM16], it is shown that in the presence of negative weights the sequence
(V i)i∈N stabilises after a number of iterations pseudo-polynomial on states with value in
R ∪ {+∞}, and that states with value −∞ can be detected in this computation (they
are those where the computed value goes under a given threshold).

7.2.2. Optimal strategies

Let us fix an initial state s. By definition of lower and upper values, there exists for each
player P ∈ {Min,Max} a sequence of strategies (σiP)i∈N such that limi→∞ Val(s, σiP) =
Val(s) and such that the sequence (Val(s, σiMin))i∈N is non-increasing over Z∞, while
(Val(s, σiMax))i∈N is non-decreasing. If the sequence (Val(s, σiP))i∈N stabilizes for all i > k,
then σkP is an optimal strategy of player P for s, i.e. Val(s, σkP) = Val(s). Therefore,
if Val(s) > −∞ then Min must have an optimal strategy for s (an infinite decreasing

90

sequence over Z stabilizes), and if Val(s) < +∞ then Max has an optimal strategy for s.
Moreover, if an optimal strategy for P exists for all states s, then they can be combined
into an (overall) optimal strategy for P.
In fact, there always exists a positional strategy σ?Max for Max that is optimal, even

if some states have value +∞. The strategy σ?Max can be obtained in the value itera-
tion algorithm, by memorizing for every state s ∈ SMax the transition that maximizes
max

s
a−→s′

[
wt(s, a, s′) + Vs′

]
in the last application of F . However, this does not hold for

Min, as there might be no sequence of positional strategies for player Min whose value
at s converges towards Val(s). In [BGHM16], it is shown that value iteration can also
compute an optimal strategy for Min (or a sequence of strategies in the −∞ case), by
switching between two positional strategies σ?Min and σ†Min: σ

?
Min accumulates negative

weight by following negative cycles, and σ†Min ensures reaching a target. The optimal
strategy of Min follows the decisions of σ?Min, until switching to the decisions of σ†Min when
the length of the play is greater than a finite bound k. These strategies thus require
finite memory in the form of a counter.
An interesting case happens if G has no cycles of negative cumulated weight, e.g. if

weights are non-negative.

Lemma 7.1. If G has no cycles of negative cumulated weight, then both players have
optimal strategies that are positional. Moreover, ValG = Val

|S|
G and the optimal strategies

can be computed in polynomial time.

Proof. Any strategy of Min is optimal on states of value +∞, so we will ignore those. As
there are no negative cycles, value −∞ can only be obtained through reaching a target
with final weight −∞. As a consequence, Min has an optimal strategy σMin that switches
between σ?Min and σ†Min when the length of the play is greater than some k, as detailed
in [BGHM16]. The strategy σ?Min is only compatible with cycles of negative cumulated
weight, and k > |S|+ 1, therefore σ†Min is never used. Thus, Min has an optimal strategy
σ?Min that is positional. Then, consider Val

|S|
G , the value with bounded horizon |S|. For

every state s, we have Val
|S|
G (s, σ?Min) = ValG(s), so that Val

|S|
G 6 ValG. As ValG 6 ValkG

holds for any k ≥ 0, ValG = Val
|S|
G . Finally, since value iteration converges in |S| steps, the

computation of optimal strategies described in [BGHM16] runs in polynomial time.

7.2.3. Safely removing states of infinite value

In this chapter, we study classes of weighted games with arbitrary weights where values
can be computed in polynomial time. As a first step, we explain how to compute and
remove states with infinite value in polynomial time. The only states with infinite value
that will remain are some states that derive a value of −∞ from arbitrary accumulation
of negative weight.
Let us start by formalising a way to safely remove states whose value is known to be

infinite. Let S−∞ be a subset of S, such that Val(s) = −∞ for all s ∈ S−∞. If a state of
G is in the attractor of Min towards S−∞, then clearly Min has a strategy giving it value
−∞, and we could therefore add it to S−∞. We will thus assume that S−∞ is closed

91

by attractor for Min, i.e. the attractor of Min towards S−∞ equals S−∞. We can define
the same notion for a set S+∞ of states with value +∞, that can be assumed closed by
attractor of Max.

Lemma 7.2. Let S−∞ be a set of states of value −∞ closed by attractor of Min, and let
S+∞ be a set of states of value +∞ closed by attractor of Max.

1. Removing the states S−∞ from G will not change any other value.

2. Symmetrically, the states in S+∞ can be safely removed from G.
Proof of Lemma 7.2.1. Let S ′ = S ′Min] S ′Max denote S\S−∞, and let G ′ denote the
restriction of G to S ′, i.e. the game of states S ′, of transitions all s → s′ such that
s, s′ ∈ S ′, with state partition, labels and weights naturally inherited from G. Let us
show that for all s ∈ S ′, ValG(s) = ValG′(s).
If σMin is a strategy of Min in G, and σ′Min is a strategy of Min in G ′, such that for

all plays ρ in FPlaysMin
G′ σMin(ρ) = σ′Min(ρ), we say that σMin coincides with σ′Min. We

define the same notion for strategies of Max. All strategies of Min and Max in G ′ can be
extended arbitrarily to become strategies in G that coincide, by making the same choices
on plays that stay in G ′, and making arbitrary choices otherwise. It follows that if σMin

and σ′Min are strategies of Min that coincide, then for any strategy σ′Max of Max in G ′,
there exists a corresponding strategy σMax in G, such that the path playG′(s, σ

′
Min, σ

′
Max)

is equal to playG(s, σMin, σMax), and therefore

ValG′(s, σ
′
Min) 6 ValG(s, σMin) ,

as the supremum over strategies of Max in G is at least equal to the one in G ′. Similarly,
if σMax and σ′Max are strategies of Max that coincide, then

ValG′(s, σ
′
Max) > ValG(s, σMax) .

By closure by attractor of Min, any transition starting in a state of S ′Min must end
in a state of S ′ (otherwise the first state would belong to the attractor of Min towards
S−∞). Therefore, every positional strategy of Min in G has a corresponding strategy
in G ′ that makes the same choices. This extends naturally to the (optimal) strategies
of Min switching between two positional strategies σ?Min and σ†Min. Then, if we consider
such an optimal strategy σMin of Min in G, and its corresponding strategy σ′Min in G ′, it
holds that ValG′(s) 6 ValG′(s, σ

′
Min) by definition of Val as an infimum over strategies,

and ValG′(s, σ
′
Min) 6 ValG(s, σMin) as explained before. Finally, ValG(s, σMin) = ValG(s) by

optimality of σMin, and thus ValG′(s) 6 ValG(s). If Min has no optimal strategies in G,
there exists a family of such switching strategies whose value converges towards ValG(s),
and the same result holds.

From every state s of S ′Max, a positional strategy that chooses a transition jumping into
S−∞ must have value −∞. Any other choice would thus be equal or better, and by closure
by attractor of Min, there must exist a transition starting in s that ends in S ′. Therefore,
there exists an optimal positional strategy σMax of Max in G with a corresponding strategy
σ′Max in G ′. Then, it holds that ValG′(s) > ValG′(s, σ

′
Max) > ValG(s, σMax) = ValG(s).

92

An entirely symmetrical proof lets us deal with S+∞ in the same way:

Proof of Lemma 7.2.2. Let S ′ = S ′Min] S ′Max denote S\S+∞, and let G ′ denote the
restriction of G to S ′. Let us show that for all s ∈ S ′, ValG(s) = ValG′(s).

Once again, all strategies of Min and Max in G ′ can be extended arbitrarily to become
strategies in G that coincide, such that if σMin and σ′Min are strategies of Min that coincide
then ValG′(s, σ

′
Min) 6 ValG(s, σMin), and if σMax and σ′Max are strategies of Max that coincide

then ValG′(s, σ
′
Max) > ValG(s, σMax).

By closure by attractor of Max, any transition starting in a state of S ′Max must end
in a state of S ′. Therefore, every optimal positional strategy σMax of Max in G has a
corresponding strategy σ′Max in G ′, such that ValG′(s) > ValG′(s, σ

′
Max) > ValG(s, σMax) =

ValG(s) holds.
From every state s of S ′Min, a positional strategy that chooses a transition jumping

into S+∞ must have value +∞. Any other choice would thus be equal or better,
and by closure by attractor of Max, there must exist a transition starting in s that
ends in S ′. Therefore, if Min has an optimal strategy then there exists an optimal
strategy σMin of Min in G with a corresponding strategy σ′Min in G ′, and it holds that
ValG′(s) 6 ValG′(s, σ

′
Min) 6 ValG(s, σMin) = ValG(s). If Min only has an optimal family of

strategies, the same reasoning holds.

Let S−∞t (resp. S+∞
t) denote the set of target states that wtt maps to −∞ (resp. +∞).

Corollary 7.1. If a state of G is in the attractor of Min towards S−∞t (resp. in the
attractor of Max towards S+∞

t), then it must have value −∞ (resp. +∞). Moreover, if
we remove those states from G, the value of the other states does not change.

Proof. If a state s is in the attractor of Min towards S−∞t , then clearly Min has a
(positional) strategy giving value −∞ to s, and Val(s) = −∞. An attractor of Min is
always closed by attractor of Min, so we can apply Lemma 7.2 and conclude. Once again,
a symmetrical proof lets us deal with the attractor of Max towards S+∞

t .

Then, assuming that all final weights are finite, states with value +∞ are those from
which Min cannot reach the target states: thus, they can also be computed and then
removed using the attractor algorithm.

Proposition 7.1. If wtt(st) ∈ Z for all st ∈ St, then a state s has value +∞ if and only
if it is not in the attractor of Min towards St. Moreover, if we remove those states from
G, the value of the other states does not change.

Proof. If a state s is not in the attractor of Min towards St, then Max has a (safety)
strategy giving value +∞ to s, and Val(s) = +∞. Conversely, if a state s is in the
attractor of Min towards St, then Min has a strategy giving finite value to s, and
Val(s) < +∞. We conclude by Lemma 7.2.

We can therefore assume without loss of generality that all states have value in
Z ∪ {−∞} and that all target states have final weight in Z, since all of these attractors
can be computed in linear time. As previously explained, finding all states of value

93

−∞ is harder, but whenever we do manage to find them we can safely remove them by
Lemma 7.2.

Remark. We showed that removing those states left values unchanged, but it does reduce
the space of optimal strategies: some optimal strategies are no longer possible in the
smaller game. We argue that this is inconsequential, as the optimal strategies of the
sub-game can be extended into optimal strategies of the full game by using simple
positional strategies derived from the attractor computations for the states that were
removed.

7.3. Divergent weighted games
Our first contribution is to solve in polynomial time the value problem, for a subclass
of finite weighted games that we call divergent. To the best of our knowledge, this is
the first attempt to solve a non-trivial class of weighted games with arbitrary weights in
polynomial time. Moreover, the same core technique is used for the decidability result
in the timed setting that we will present in Chapter 10. Let us first define the class of
divergent weighted games:

Definition 7.2. A weighted game G is divergent if every cycle ρ of G satisfies wtΣ(ρ) 6= 0.

Divergence is a property of the underlying weighted transition system, independent
from the repartition of states between players. The term divergent reflects that cycling
in the game ultimately makes the accumulated weight grow in absolute value. We will
first formalise this intuition by analysing the strongly connected components (SCC) of
the underlying transition system (the repartition of states into players does not matter
for the SCC decomposition). Based on this analysis, we will obtain the following results:

Theorem 7.1. The value problem over finite divergent weighted games is PTIME-
complete. Moreover, deciding if a given finite weighted game is divergent is an NL-
complete problem when weights are encoded in unary, and is in PTIME when they are
encoded in binary.

7.3.1. SCC analysis

Let G be a weighted game. A play ρ in G is said to be positive (resp. negative) if
wtΣ(ρ) > 0 (resp. wtΣ(ρ) < 0). It follows that a cycle in a divergent weighted game is
either positive or negative. Recall that a cycle is said to be simple if no states are visited
twice (except for the common state at the beginning and the end of the cycle). An SCC
of G refers to a set of states that are strongly connected—i.e. there is a path linking
every pair of states in the SCC—, and to the sub-game induced by those states.

Definition 7.3. An SCC S is said to be positive (resp. negative) if every cycle in S is
positive (resp. negative).

94

In a weighted game, SCCs may be neither positive nor negative: they could contain
both positive and negative cycles, or cycles of weight 0. In contrast, divergent games are
exactly the weighted games where that does not happen.

Proposition 7.2. A weighted game G is divergent if and only if each SCC of G is either
positive or negative.

Proof. Let us first suppose that G is divergent. By contradiction, consider a negative
cycle ρ (of cumulated weight −p < 0) and a positive cycle ρ′ (of cumulated weight p′ > 0)
in the same SCC. Let s and s′ be respectively the first states of ρ and ρ′. By strong
connectivity, there exists a finite play η from s to s′ and a finite play η′ from s′ to s. Let
us consider the cycle ρ′′ obtained as the concatenation of η and η′. If ρ′′ has cumulated
weight q > 0, the cycle obtained by concatenating q times ρ and p times ρ′′ has cumulated
weight 0, which contradicts the divergence of G. The same reasoning on ρ′′ and ρ′ proves
that ρ′′ cannot be negative. Thus, ρ′′ is a cycle of cumulated weight 0, which again
contradicts the hypothesis.

Reciprocally, consider a cycle of G. It belongs entirely to a single SCC, and must either
be positive or negative. Thus, G is divergent.

7.3.2. Computing values in polynomial time

Consider a divergent weighted game G. We assume, as explained in Section 7.2.3 that all
final weights are finite and that all values are in Z ∪ {−∞}.

We will rely on the value iteration algorithm to compute the value of every state. Value
iteration algorithms usually benefit from decomposing a game into SCCs (in polynomial
time), considering them in a bottom-up fashion: starting with target states whose value
is wtt, SCCs are then considered in inverse topological order since the values of states in
an SCC only depend on values of states of greater SCCs (in topological order), that have
been previously computed.

Formally, each SCC S is solved individually: we remove from G every state that does
not belong to S, except the outgoing neighbours–i.e. the states s′ such that s a−→ s′ with
s ∈ S and s′ 6∈ S. Such states s′ are made targets, and their final weight is their value
(that has been previously computed since they belong to a greater SCC).

Example 7.1. Consider the weighted game of Figure 7.1, where Min states are drawn
with circles, and Max states with squares. Vertex st is the only target. Near each state is
placed its value, near each transition is placed its weight when it differs from 0. For a
given vector V , we have for instance

F(V)s8 = min(0 + Vst ,−1 + Vs9) , and

F(V)s2 = max(−2 + Vs1 ,−1 + Vs3 ,−10 + Vs5) .

By a computation of the attractor of {st} for Min, we obtain directly that s4 and s7 have
value +∞. The inverse topological order on SCCs prescribes then to compute first the
values for the SCC {s8, s9}, with target state st associated with final weight 0. Then,

95

s1 s4

s2

s3

s5

s6

s7

s8

s9

st

−∞

−9

−9

+∞
1

1

+∞

0

2

0−1

1

−2

−1

−10

−1
1

1

−1

−1 2

Figure 7.1.: SCC decomposition of a divergent weighted game: {s1, s2, s3, s4} and {s7}
are negative SCCs, {s6} and {s8, s9} are positive SCCs, and {s5} is a trivial
positive SCC.

we continue with SCC {s6}, also keeping a new target state s8 with (already computed)
final weight 0. For the trivial SCC {s5}, a single application of F suffices to compute
the value. Finally, for the SCC {s1, s2, s3, s4}, we use a target state s5 with final weight
1. Notice that this game is divergent, since, in each SCC, all cycles have the same sign.

For a divergent game G, Proposition 7.2 allows us to know in polynomial time if a
given SCC is positive or negative, i.e. if all cycles it contains are positive or negative,
respectively: it suffices to consider an arbitrary cycle of it, and compute its cumulated
weight. A trivial SCC (i.e. with a single state and no transitions) will be arbitrarily
considered positive. We now explain how to compute in polynomial time the value of all
states in a positive or negative SCC.
First, in case of a strongly connected component with positive cycles, we show that:

Proposition 7.3. The value iteration algorithm applied on a positive SCC with q states
stabilises after at most q steps.

This is a corollary of Lemma 7.1. We also provide an independent proof, that will be
generalisable to the timed setting.

Proof (inspired by techniques used in [BCFL04]). There are no negative cycles in the
SCC, thus there are no states with value −∞ in the SCC, and all values are finite. Let
K be an upper bound on the values |V q

s | obtained after q steps of the algorithm.5 Fix
an integer p > (2K + wmax(q − 1))q. We will show that the values obtained after q + p
steps are identical to those obtained after q steps only. Therefore, since the algorithm
computes non-increasing sequences of values, we have indeed stabilised after q steps only.

5After q steps, the value iteration algorithm has set to a finite value all states, since it extends the
attractor computation.

96

Assume the existence of a state s such that V q+p
s < V q

s . By induction on p, we show
the existence of a state s′ and a finite play ρ from s to s′ with length p and cumulated
weight V q+p

s −V q
s′ : the play is composed of the transitions that optimise successively the

min/max operator in F .

Claim. For all i < j ∈ N, if V j 6= V i then for all s ∈ S there exist s′ and a play ρ from
s to s′ with |ρ| = j − i and wtΣ(ρ) = V j

s − V i
s′.

Proof of Claim. Let us fix i, and prove it by induction on j > i.
Initialisation: If j = i + 1, we applied one step of the value iteration algorithm

between V i and V j, so for all s there exist s′ and a transition s
a−→ s′ such that

wt(s, a, s′) = V i+1
s − V i

s′ .
Iteration: We assume the property holds for j − 1 > i, and V j 6= V i. We applied one

step of the value iteration algorithm between V j−1 and V j , so for all s there exist s′ and
a transition s a−→ s′ such that wt(s, a, s′) = V j

s − V j−1
s′ . We apply the property on i and

j − 1 (V j−1 6= V i because V j 6= V i and as soon as V stabilises, the fixpoint is reached
and the iteration stops), and obtain that for all s′ ∈ S there exist s′′ and a play ρ from
s′ to s′′ with |ρ| = j − 1− i and wtΣ(ρ) = V j−1

s′ − V i
s′′ . Then we define ρ′ = s

a−→ s′
ρ−→ s′′

and it holds that |ρ′| = j − i and wtΣ(ρ′) = V j
s − V i

s′′ . 4

This finite play being of length greater than (2K +wmax(q − 1))q, there is at least one
state appearing more than 2K + wmax(q − 1) times. Thus, it can be decomposed into at
least 2K + wmax(q − 1) cycles and a finite play ρ′ visiting each state at most once. The
cumulate weight of ρ′ is then at least −(q − 1)wmax, and as all cycles in the SCC are
positive, the cumulated weight of ρ is at least 2K + wmax(q − 1) − (q − 1)wmax = 2K.
Then, V q+p

s − V q
s′ > 2K, so V q+p

s > 2K + V q
s′ > K. But K > V q

s , so V q+p
s > V q

s , and
that is a contradiction.

Example 7.2. For the SCC {s8, s9} of the game in Figure 7.1, starting from V mapping
s8 and s9 to +∞, and st to 0, after one iteration, Vs8 changes for value 0, and after the
second iteration, Vs9 stabilises to value 2.

Consider then the case of a negative SCC. Contrary to the previous case, we must
deal with states of value −∞. However, in a negative SCC, those states are easy to find6.
These are all states where Max cannot unilaterally guarantee to reach a target state:

Proposition 7.4. In a negative SCC with no states of value +∞, states of value −∞
are all the ones not in the attractor of Max to the targets.

Proof. Consider a state s in the attractor of Max to the targets. Then, if Max applies a
winning positional strategy for the reachability objective to the target states, all strategies
of Min will generate a play from s reaching a target after at most |S| steps. This implies
that s has a finite value in the game.

6This is in contrast with the general case of (non divergent) finite weighted games where the problem
of deciding if a state has value −∞ is as hard as solving mean-payoff games [BGHM16].

97

Reciprocally, if s is not in the attractor, by determinacy of games with reachability
objectives, Min has a (positional) strategy σMin to ensure that no strategy of Max permits
to reach a target state from s. Applying σMin long enough to generate many negative
cycles, before switching to a strategy allowing Min to reach the target (such a strategy
exists since no states have value +∞ in the game), allows Min to obtain from s a negative
weight as small as possible. Therefore s has value −∞.

Thus, we can compute (and remove) states of value −∞ in polynomial time for a
negative SCC. Then, finite values of other states can be computed in polynomial time
with the following procedure. From a negative SCC G that has no states of value +∞ or
−∞, consider the dual (positive) SCC G̃ obtained by: (i) switching states of Min and
Max; (ii) taking the opposite of every weight in transitions; (iii) taking the opposite of
every final weight. Sets of strategies of both players are exchanged in those two games,
so that the upper value in G is equal to the opposite of the lower value in G̃, and vice
versa. Since weighted games are determined, the value of G is the opposite of the value
of G̃. This strongly relies on the fact that in G̃, we can give the reachability objective to
Max instead of Min (by setting the weight of an infinite play to −∞) without changing
the values, because both players have attractor strategies towards target states. Then,
the value of G can be deduced from the value of G̃, for which Proposition 7.3 applies.
We may also interpret this result as follows:

Proposition 7.5. The value iteration algorithm, initialised with V 0
v = −∞ (for all s),

applied on a negative SCC with q states, and no states of value +∞ or −∞, stabilises
after at most q steps.

Proof. It is immediate that the vectors computed with this modified value iteration
(that computes the smallest fixpoint of F) are exactly the opposite vectors of the ones
computed in the dual positive SCC. The previous explanation is then a justification of
the result.

Example 7.3. Consider the SCC {s1, s2, s3, s4} of the game in Figure 7.1, where the
value of state s5 has been previously computed. We already know that s4 has value
+∞ so we do not consider it further. The attractor of {s5} for Max is {s2, s3}, so that
the value of s1 is −∞. Then, starting from V 0 mapping s2 and s3 to −∞, the value
iteration algorithm computes this sequence of vectors: V 1 = (s2 7→ −9, s3 7→ −∞) (Max
tries to maximise the payoff, so he prefers jumping to the target to obtain −10 + 1
than going to s3 where he gets −1−∞, while Min chooses s2 to still guarantee 0−∞),
V 2 = (s2 7→ −9, s3 7→ −9) (now, Min has a choice between the target giving 0 + 1 or s3

giving 0− 9). Finally, V 3 = (s2 7→ −9, s3 7→ −9) and the fixpoint has been reached.

In a divergent weighted game where all values are finite, optimal strategies exist.
Optimal strategies for both players can be obtained by combining optimal strategies in
each SCC, the latter being obtained as explained in Section 7.2.

98

7.3.3. Polynomial lower bound

Let us show that the value problem is PTIME-hard. This comes from a reduction (in
logarithmic space) of the problem of solving finite games with reachability objectives
[Imm81]. To a reachability game, we simply set the weight of every transition to 1 and
the final weight of every target to 0, making it a divergent weighted game. Then, Min
wins the reachability game if and only if the value in the weighted game is lower than |S|.

7.3.4. Deciding divergence

Let us study the membership problem for divergent weighted games, i.e. the decision
problem that asks if a given weighted game is divergent.
We will rely on the characterization of divergent games in term of SCCs given in

Proposition 7.2. First, we note that simple cycles are enough to ensure that an SCC is
positive (resp. negative), providing us with an efficient way to check this property:

Lemma 7.3. An SCC S is positive (resp. negative) if and only if every simple cycle in
S is positive (resp. negative). Moreover, deciding if an SCC is positive (resp. negative) is
in NL when weights are encoded in unary, and is in PTIME when they are encoded in
binary.

Proof. The direct implication holds by definition. Reciprocally, let us assume that every
simple cycle in S is positive (resp. negative), and prove that every cycle ρ in S is positive
(resp. negative). The cycle ρ can be decomposed into simple cycles, all belonging to S.
Therefore they are all positive (resp. negative). As the cumulated weight of ρ is the sum
of the cumulated weights of these simple cycles, ρ must be positive (resp. negative).

As a corollary, an SCC S is positive (resp. negative) if and only if every cycle in S, of
length at most |S|, is positive (resp. negative).

To decide if a strongly connected G is positive (resp. negative), we outline two proced-
ures: one is deterministic and will provide the polynomial upper bound on time-complexity,
the other will guess a logarithmic number of bits and provide NL membership.
The deterministic algorithm proceeds as follows: With Floyd-Warshall’s algorithm,

one can compute the shortest paths (resp. greatest paths) adjacency matrix M in
cubic time, such that M(s, s′) contains the minimal (resp. maximal) value in {wt(ρ) |
ρ simple path from s to s′}. If there exists a state s such thatM(s, s) < 0 (resp.M(s, s) >
0), then S is not positive (resp. not negative) as there is a negative (resp. positive) cycle.
Conversely, if M(s, s) = 0, we know that all simple paths from s to s have non-negative
(resp. non-positive) weight, but this includes the empty path, and we defined cycles as
paths of non-zero length. In this case, S is positive (resp. negative) if and only if for
every pair (s, s′) it holds that M(s, s′) +M(s′, s) > 0 (resp. M(s, s′) +M(s′, s) < 0).

Let us now assume that weights are encoded in unary, and present a non-deterministic
procedure. Then, note that a (binary) register containing integer values in [−B,B], with
B polynomial in wmax and |S|, requires a number of bits at most logarithmic in the
size of G. An SCC is not positive (resp. not negative), if and only if it contains a cycle
of non-positive (resp. non-negative) cumulated weight, of length bounded by |S|. We

99

can guess such a cycle ρ on-the-fly, keeping in memory its cumulated weight (smaller
than B = wmax × |S| in absolute value), its initial state, and its current length, all in
logarithmic space. If the length of the cycle exceeds |S|, the guess is invalid. Similarly,
we can verify that the last state equals the first, and that the computed cumulated
weight is indeed non-positive (resp. non-negative). Therefore, deciding if S is positive
(resp. negative) is in coNL = NL [Imm88, Sze88]. Note that when weights are encoded in
binary this procedure only gives coNP membership.

Let us now explain why the membership problem is an NL-complete problem when
weights are encoded in unary. First, to prove the membership in NL, notice that a
weighted game is not divergent if and only if there is a non-negative cycle and a non-
positive cycle belonging to the same SCC, both of length at most |S|. This can be tested
in NL, using a non-deterministic procedure similar to the one from Lemma 7.3. We first
guess a starting state for both cycles. Verifying that those are in the same SCC can
be done in NL by using standard reachability analysis. Then, we once again guess the
two cycles on-the-fly, keeping in memory their accumulated weights in logarithmic space.
Therefore, testing divergence is in coNL = NL [Imm88, Sze88].

The NL-hardness (indeed coNL-hardness, which is equivalent [Imm88, Sze88]) is shown
by a reduction of the reachability problem in a finite automaton. More precisely, we
consider a finite automaton with a starting state and a different target state without
outgoing transitions. We construct from it a weighted game by distributing all states to
Min, and equipping all transitions with weight 1. We also add a loop with weight −1 on
the target state and a transition from the target state to the initial state with weight 0.
Then, the game is not divergent if and only if the target can be reached from the initial
state in the automaton.
When weights are encoded in binary, the previous decision procedure gives NP mem-

bership. However, we can achieve a PTIME upperbound by computing the strongly
connected components and then using Lemma 7.3 to check that each SCC is either
positive or negative.

This concludes the proof of Theorem 7.1.

7.4. Almost-divergent weighted games
With divergent weighted games, we described a class where the value problem is polyno-
mial instead of pseudo-polynomial. This gain in complexity came at a cost: the absence
of cycles of weight 0. In this section, we argue that some of those cycles can be allowed:
we will extend the divergent class to games that contain cycles of weight 0 under a
stability by decomposition requirement, while keeping a polynomial complexity.
If ρ is a cycle s0

a1−→ s1 . . . sn−1
an−→ s0, it is either simple (i.e. for all i, j such that

0 6 i < j < n, si 6= sj), or we can extract smaller cycles from it. Indeed, if ρ is not
simple, there exists a pair (i, j) such that 0 6 i < j < n and si = sj. Then, for such a
pair, we can write ρ = ρ1ρ2ρ3 such that |ρ1| = i, |ρ3| = n− j. It follows that ρ2 is a cycle
around si and ρ1ρ3 is a cycle around s0. This process is called a decomposition of ρ into

100

smaller cycles ρ′ = ρ1ρ3 and ρ′′ = ρ2, with wtΣ(ρ) = wtΣ(ρ′) + wtΣ(ρ′′). As there could
exist several pairs (i, j) such that si = sj, there could exist multiple decompositions of ρ
into smaller cycles. A cycle ρ in G is called a 0-cycle if wtΣ(ρ) = 0. Let us now define
the class of almost-divergent weighted games:

Definition 7.4. A weighted game G is almost-divergent if every 0-cycle ρ of G satisfies
the following property: for every decomposition of ρ into smaller cycles ρ′ and ρ′′, ρ′ and
ρ′′ are 0-cycles.

Intuitively, a game is almost-divergent if its cycles of weight different from 0 cannot be
combined to create a 0-cycle. Almost-divergence is a weaker property than divergence,
and thus every divergent weighted game is almost-divergent. We start by analysing
the strongly connected components of G, then derive the following results, extending
Theorem 7.1:

Theorem 7.2. The value problem over finite almost-divergent weighted games is PTIME-
complete. Moreover, deciding if a given finite weighted game is almost-divergent is an
NL-complete problem when weights are encoded in unary, and is in PTIME when they are
encoded in binary.

7.4.1. SCC analysis

A play ρ in G is said to be non-negative (resp. non-positive) if wtΣ(ρ) > 0 (resp. wtΣ(ρ) 6
0). An SCC S is said to be non-negative (resp. non-positive) if every cycle in S is non-
negative (resp. non-positive). We prove the following characterisation of almost-divergent
games in terms of SCCs, extending Proposition 7.2.

Proposition 7.6. A weighted game G is almost-divergent if and only if each SCC of G
is either non-negative, or non-positive.

Proof. Let us first suppose that G is almost-divergent. By contradiction, consider a
negative simple cycle ρ (of weight −p < 0) and a positive simple cycle ρ′ (of weight p′ > 0)
in the same SCC. Let s and s′ be respectively the first states of ρ and ρ′. By strong
connectivity, there exists a finite play η from s to s′ and a finite play η′ from s′ to s. Let
us consider the cycle ρ′′ = ηη′. If ρ′′ has weight q > 0, the cycle obtained by concatenating
q times ρ and p times ρ′′ has weight 0. However, there exists a decomposition of (ρ)q(ρ′′)p

into smaller cycles that obtains ρ as one of the smaller cycles, which contradicts the
almost-divergence of G as wtΣ(ρ) < 0. The same reasoning on ρ′′ and ρ′ proves that ρ′′
cannot be negative. Thus, ρ′′ is a 0-cycle. Then, (ρ)p

′
η(ρ′)pη′ is a 0-cycle, which again

contradicts the hypothesis as one of its decompositions produces ρ.
Reciprocally, consider a cycle of G of cumulated weight 0, and one of its decomposition

into smaller cycles. Both smaller cycles belong to the same SCC, therefore they are
both non-negative or both non-positive. As the accumulated weight of the cycle is the
sum of the weights of these smaller cycles they must both be 0-cycles. Therefore, G is
almost-divergent.

101

s s′

η

η′

ρ ρ′

Figure 7.2.: Proof scheme of Proposition 7.6.

7.4.2. Kernel of an almost-divergent weighted game

We define the kernel K as a subgraph of G containing all 0-cycles, such that every 0-cycle
is in K and every cycle in K is a 0-cycle. Such sub-graph may not exist in general, but
we show that it is always the case in almost-divergent games.

Let TK be the set of transitions of G belonging to a simple 0-cycle, and SK be the set of
states covered by TK. We define the kernel K of G as the subgame of G defined by SK and
TK. Transitions in T\TK with starting state in SK are called the output transitions of K.
We define it using only simple 0-cycles in order to ensure its computability (in polynomial
time). However, we now show that this is of no harm, since the kernel contains exactly
all the 0-cycles.

Proposition 7.7. A cycle of G is entirely in K if and only if it is a 0-cycle.

Proof. As G is almost-divergent, the decomposition of every 0-cycle into simple cycles is
a set of 0-cycles in K. Thus, every 0-cycle is in K.

t1
t2

t3

t4

t5

ρt5

ρt4

ρt3

ρt2

ρt1
We now prove that every cycle in K is a 0-cycle. By construction,

every transition t ∈ TK is part of a simple 0-cycle. Thus, to every
transition t ∈ TK, we can associate a play ρt such that tρt is
a simple 0-cycle. Then, observe that if t1 · · · tn is a finite play
in K, then t1t2 · · · tnρtn · · · ρt2ρt1 is a 0-cycle of G. We showed
that if ρ = t1 · · · tn is a cycle of G in K, then there exists a
cycle ρ′ = ρtn · · · ρt2ρt1 such that ρρ′ is a 0-cycle, therefore ρ is
a 0-cycle by almost-divergence.

Using K we can compute the states with value −∞:

Lemma 7.4. In an SCC of G, the set of states with value −∞ is computable in time
linear in the number of states in G. These states can be removed without changing any
other value.

Proof. If the SCC is non-negative, the cumulated weight cannot decrease along a cycle,
and there can be no state of value −∞ (as final weights are finite).
If the SCC is non-positive, we let Tt be the set of transitions of G whose end state

belongs to St. Notice that the kernel cannot contain target states since targets do not
have outgoing edges. We will prove that a configuration has value −∞ if and only
if it belongs to a state where player Min can ensure the LTL formula on transitions:

102

> 0

> 0

> 0

6 0

6 0 > 0

s0

s1

Ks2

s3

s2

st

Ks4

st s5

s0
stop stop

wtt(st) wtt(st)

−∞ −∞

s4

st
s5

0 1

−3 −1 2 1

2

3

1

4

−3

1

−3
0 −1

Figure 7.3.: SCC decomposition of G, semi-unfolding of an SCC, kernel

φ = (G¬Tt) ∧ ¬FGTK. The procedure to detect −∞ states will thus consist of three
attractor computations, one for each LTL operator, and can be done in time linear in |S|.

Since ω-regular games are determined, this is equivalent to saying that a configuration
has finite value if and only if it belongs to a state where Max can ensure ¬φ = (FTt)∨FGTK.
If s is a state where Min can ensure φ, he can ensure a value of −∞ by avoiding St for as
long as he desires, while not getting stuck in K, and thus going through an unbounded
number of negative cycles by Proposition 7.7. This proves that a state where Max cannot
ensure ¬φ contains only valuations of value −∞. Conversely, if s is a state where Max
can ensure ¬φ, then from s, Max must be able to enforce either reaching St or staying
in K forever. In both cases, Max can ensure a value above −∞.
Finally, the set of −∞ states is closed by attractor of Min, therefore by Lemma 7.2

they can be safely removed.

We will assume from now on that every state of G has value in Z.

7.4.3. Semi-unfolding

Let us prove that the value problem is PTIME-complete on almost-divergent weighted
games. We derive PTIME-hardness from the sub-class of divergent games. In order to
obtain an upper bound in PTIME, we will again compute the value of states in G in an
SCC by SCC fashion, following the inverse topological order of the SCC decomposition.
For non-negative SCCs, Lemma 7.1 can be used to compute values. However, this does
not hold on non-positive SCCs, as they contain negative cycles. We will give a procedure
that can handle both cases.

For an SCC of G and an initial state s0 provided by the SCC decomposition, we show
that the game on the SCC is equivalent to a game with a tree-shaped structure built as a
semi-unfolding of G from s0, with certain nodes of the tree being kernels. These kernels
are strongly connected parts of G included in K that contain all cycles of weight 0. The
semi-unfolding is stopped either when reaching a target state, or when the depth reaches
|S\St|.

103

Given an almost-divergent game G, we will describe the construction of its semi-
unfolding T (G).

If s is in K, we let Ks be the part of K accessible from s (note that Ks is strongly
connected as K is a union of cycles). We define the output transitions of Ks as being the
output transitions of K accessible from s. If s is not in K, we define the output transitions
of s as the transitions of G that start in s.
We define a tree T whose nodes will either be labelled by states s ∈ S or by kernels

Ks, and whose edges will be labelled by output transitions in G. The root of the tree T
is labelled with s0, or Ks0 (if s0 belongs to the kernel), and the successors of a node of T
are then recursively defined by its output transitions. When a state s is reached by an
output transition, the child is labelled by Ks if s ∈ K, otherwise it is labelled by s. Edges
in T are labelled by the transitions used to create them. Along every branch, we stop the
construction when either a final state is reached (i.e. a state not inside the current SCC)
or the branch has length |S\St|. As a corollary, every branch either ends in a target
state or contains two nodes labelled by the same state (s or Ks). Leaves of T with a
state belonging to St are called target leaves, others are called stopped leaves. In the case
where the stopped leaf of a branch is a node Ks, we label the stopped leaf by s instead.

We now transform T into a weighted game T (G), by replacing every node labelled by
a state s by a different copy s̃ of s. Those states are said to inherit from s. Edges of T
are replaced by the transitions labelling them, and have a similar notion of inheritance.
Every non-leaf node labelled by a kernel Ks is replaced by a copy of the weighted game
Ks, output transitions being plugged in the expected way. State partition between players
and transition weights are inherited from the copied states and transitions of G. The
only initial state of T (G) is the state denoted by s̃0 inherited from s0 in the root of T
(either s0 or Ks0). The target states of T (G) are the states derived from leaves of T . If
G is a non-negative (resp. non-positive) SCC, the final weight function wtt is inherited
from G on target leaves and set to +∞ (resp. −∞) on stopped leaves.

We will now prove that G and T (G) are equivalent on the root state. Two plays ρ and
ρ̃ in G and T (G), resp. are said to mimic each other if |ρ| = |ρ̃| and for every 1 6 i 6 |ρ|
the i-th transition of ρ̃ is inherited from the i-th transition of ρ. Then, the plays of G
starting in the initial state that cannot be mimicked in T (G) are not useful for value
computation, which is formalised by Proposition 7.8:

Proposition 7.8. For every strongly connected, almost-divergent weighted game G, with
an initial state s0, ValG(s0) = ValT (G)(s̃0).

Proof. Recall that we only left finite values in G (in the final weight functions, in
particular). We first show that the value is also finite in T (G). Indeed, if ValT (G)(s̃0) =
+∞, since we assumed all final weights of G bounded, we are necessarily in the non-
negative case, and Max is able to ensure stopped leaves reachability. Then, for any
positional strategy σMin of Min in G, there exists a strategy σMax of Max ensuring that the
target is never reached in play(s0, σMin, σMax). This extends to non-positional strategies
of Min, as it implies that s0 is not in the attractor of Min towards St, and therefore
ValG(s0) = +∞. Thus, we obtain a contradiction. If ValT (G)(s̃0) = −∞, we are necessarily
in the non-positive case, and by construction this implies having Min ensuring stopped

104

leaves reachability in T (G). Symmetrically from the +∞ case, we obtain that s0 must not
be in the attractor of Max towards St, i.e. Min can ensure the LTL formula on transitions
G¬Tt. Moreover, Min can also ensure the formula ¬FGTK, as otherwise Max would have
a strategy preventing him from reaching a stopped leaf, by staying in a kernel forever.
Then, Min can ensure the LTL formula on transitions (G¬Tt) ∧ ¬FGTK at s0 in G. As
observed in the proof of Lemma 7.4, this implies ValG(s0) = −∞, and is a contradiction.
Then, strategies and plays of T (G) starting from s̃0 can be mimicked in G, therefore

if G is non-negative then ValG(s0) 6 ValT (G)(s̃0): We can fix an optimal strategy σMin

for Min in T (G). It is a strategy of value less than +∞, so every play derived from σMin in
T (G) reaches a target leaf, and can be mimicked in G. Therefore, σMin can be mimicked
in G, where it is also winning, with the same weight. If G is non-positive, the same
reasoning applies by considering an optimal strategy for Max in T (G) (by determinacy
we can take the viewpoint of Max), and gives ValG(s0) > ValT (G)(s̃0).

Let us now show that ValT (G)(s̃0) 6 ValG(s0) when G is non-negative. There are no
negative cycles, so Min has an optimal strategy σMin that is positional by Lemma 7.1.
Let us fix a strategy σMax of Max in G, and let ρ be their outcome playG(s0, σMin, σMax).
Since σMin is optimal and positional and stopped leaves have final weight +∞, ρ must be
a simple path (without cycles) that reaches a target. Then, for every σMax all such plays
ρ can be mimicked in T (G), and ValT (G)(s̃0) 6 ValT (G)(s̃0, σMin) = ValG(s0). Once again,
if G is non-positive, the same reasoning applies by considering an optimal positional
strategy for Max in G, and gives ValT (G)(s̃0) > ValG(s0).

In order to compute the value of a state s0 of G, one could construct the semi-unfolding
of root s0, and compute its value. Indeed, every cycle in T (G) belongs to K, so they must
all be 0-cycles, therefore by Lemma 7.1 we can compute ValT (G)(s̃0) in time polynomial
in the size of T (G). However, this would be an exponential algorithm, as the number of
nodes in T can be exponential in |S|. We argue that this exponential blow-up can be
avoided: when two nodes of T are at the same depth and are labelled by the same state
they can be merged, producing a graph T that is acyclic instead of tree-shaped, with at
most quadratically many states. This does not change the value of the resulting weighted
game T (G) at its root, because the two merged nodes had the same sub-tree, and therefore
were states with the same value in T (G). This optimization on the construction of T (G)
is performed on-the-fly, while the semi-unfolding is constructed, such that constructing
T (G) (and solving it by Lemma 7.1) can be done in time polynomial in the size of G.
Remark. In contrast with divergent games, for non-positive SCCs we cannot use the
dual game where weights and players are switched, because Max may not be able to
enforce target reachability. Consider e.g. a self-loop of weight 0 controlled by Min. It
does not affect value computation, but it provides Max with value +∞ in the dual game.
If T (G) were to be a complete unfolding (that unfolds kernels as well), as opposed to a
semi-unfolding, it could wrongly have value −∞ at its root, reflecting this issue.

105

7.4.4. Deciding almost-divergence

In order to study the membership problem for almost-divergent games—that asks if
a given weighted game is almost-divergent—, we will adapt techniques developed for
divergent games.

Once again, simple cycles are enough to ensure that an SCC is non-negative (resp. non-
positive):

Lemma 7.5. An SCC S is non-negative (resp. non-positive) if and only if every simple
cycle in S is non-negative (resp. non-positive). Moreover, deciding if an SCC is non-
negative (resp. non-positive) is in NL when weights are encoded in unary, and is in PTIME
when they are encoded in binary.

Proof. The direct implication holds by definition. Reciprocally, following the proof of
Lemma 7.3, every cycle ρ can be decomposed into simple cycles, all belonging to S.
Therefore they are all non-negative (resp. non-positive), and ρ must be non-negative
(resp. non-positive).

As a corollary, an SCC S is non-negative (resp. non-positive) if and only if every cycle
in S, of length at most |S|, is non-negative (resp. non-positive).
To decide if an SCC is non-negative (resp. non-positive), we rely on deterministic

and non-deterministic procedures similar to the ones described in Lemma 7.3. The
deterministic algorithm also uses Floyd-Warshall’s algorithm to compute the shortest
paths (resp. greatest paths) adjacency matrixM in cubic time, such thatM(s, s′) contains
the minimal (resp. maximal) value in {wt(ρ) | ρ simple path from s to s′}. Then, S is
non-negative (resp. non-positive) if and only if for every state s it holds that M(s, s) > 0
(resp. M(s, s) 6 0). Let us now assume that weights are encoded in unary. An SCC is
not non-negative (resp. not non-positive), if and only if it contains a cycle of positive
(resp. negative) cumulated weight, of length bounded by |S|. We can guess such a cycle
on-the-fly, and compute its cumulated weight in logarithmic space. Therefore, deciding if
S is non-negative (resp. non-positive) is in coNL = NL [Imm88, Sze88].

In order to prove the membership in NL with unary weights, notice that a weighted
game is not almost-divergent if and only if there is a positive cycle and a negative cycle,
both of length at most |S|, and belonging to the same SCC. This can be tested in
NL using the procedure from Section 7.3.4. When weights are encoded in binary, we
can achieve a PTIME upperbound with the same procedure as for divergent games, by
applying Lemma 7.5 on every SCC.

The NL-hardness (indeed coNL-hardness, which is equivalent [Imm88, Sze88]) is shown
by a reduction of the reachability problem in a finite automaton. More precisely, we
consider a finite automaton with a starting state and a different target state without
outgoing transitions. We construct from it a weighted game by distributing all states to
Min, and equipping all transitions with weight 0. We also add a loop with weight 1 on
the initial state, one with weight −1 on the target state, and a transition from the target
state to the initial state with weight 0. Then, the game is not almost-divergent if and
only if the target can be reached from the initial state in the automaton.

We have finished the proof of Theorem 7.2.

106

8. Weighted timed games

We now turn our attention to a timed extension of the weighted games. We will first
define weighted timed games, giving their semantics in terms of infinite weighted games.

8.1. The timed setting
Definition 8.1. A weighted timed game (WTG) is a tuple G = 〈LMin, LMax,X ,Σ, Lt, E,wt〉
where 〈L = LMin]LMax,X ,Σ, E〉 is a timed automaton whose locations are split between
players Min and Max, wt : E]L→ Z is the weight function, associating an integer weight
with each location and edge, Lt ⊆ LMin is a set of target locations for player Min, and
wtt : Lt ×RX>0 → R∞ is a function mapping each target configuration to a final weight of
R∞ = R ∪ {−∞,+∞}.

In this work, we will not use the actions in Σ that label edges, and will therefore not
represent them in our formalism.1 Once again, final weights are non-standard and are
usually set to 0 in related work.

The semantics of a weighted timed game G is defined in terms of the infinite weighted
game JGK whose states are configurations (`, ν) of the underlying timed automaton.
Configurations are split into players according to the location `. A configuration (`, ν)
is a target if ` ∈ Lt, and its final weight is wtt(`, ν). The labels of JGK are given by
R>0 × E and will encode the delay that a player wants to spend in the current location,
before firing a certain edge of the timed automaton. For every delay d ∈ R>0, edge
e = (`, g,Y , `′) ∈ E and valuation ν, there is a transition (`, ν)

d,e−→ (`′, ν ′) if ν + d |= g
and ν ′ = (ν+d)[Y := 0]. The weight of such a transition takes into account both discrete
and continuous costs, and is given by d · wt(`) + wt(e).

As usual in related work [ABM04, BCFL04, BJM15], we assume that the WTGs have
non-diagonal guards where all constants are integers, that all clocks are bounded by
the greatest constant M to appear in guards, and we restrict JGK to configurations in
L × RX>0,<M .2 Without loss of generality, we suppose the absence of deadlocks in JGK
except on target locations, i.e. for each location ` ∈ L\Lt and valuation ν ∈ RX>0,<M ,

there exist d ∈ R>0 and (`, g,Y , `′) ∈ E such that (`, ν)
d,e−→ (`′, ν ′), and no edges start

from Lt. We also assume that the final weight functions satisfy a property ensuring that
they can be encoded in finite space: they must be piecewise affine with a finite number of

1Equivalently, one might assume that every edge is equipped by a unique action.
2Observe that this assumption is without loss of generality for (weighted) timed automata [BFH+01],
but we do not know if it is for weighted timed games: in particular in the presence of negative
weights, the technique of [BFH+01] can not be directly applied.

107

−2
`1

2

`2

`3

wtt = 0

−1
`4

−2
`5

x 6 2
x := 0
0

1 6 x < 3
1

x < 3; 0

2 6 x < 3
3 x < 3

0

x < 3; 0 x < 3; 0

x < 3
x := 0; 3

1 < x < 3
x := 0; 1

2/3 x

Val

0 1 2 3
0

1

2

3
`2 → `4 → `3

`2 → `3

Figure 8.1.: A weighted timed game with a single clock x, and a depiction of its value
function. Weights are indicated in bold font on locations and edges. Locations
belonging to Min (resp. Max) are depicted by circles (resp. squares). The
target location is `3, whose final weight function is zero.

pieces and are continuous on each region. In particular, infinite final weights are constant
over regions, i.e. if some configuration (`t, ν) has final weight +∞ or −∞, then for every
valuation ν ′ in the same region as ν, wtt(`t, ν) = wtt(`t, ν

′). The standard final weight
function (`, ν) 7→ 0 satisfies this property. Moreover, the computations we will perform
in the following maintain this property as an invariant.

Example 8.1. An example of WTG satisfying those assumptions is depicted on Fig-
ure 8.1. It is easy to observe that location `1 (resp. `5) has value +∞ (resp. −∞). As a
consequence, the value in `4 is determined by the edge to `3, and depicted in blue. In
location `2, the value associated with the edge to `3 is depicted in red, and the value in
`2 is obtained as the minimum of these two curves. Observe the intersection in x = 2/3
requiring to refine the regions.

Plays, strategies, and values in the weighted timed game G will refer to plays, strategies,
and values in JGK: Plays are executions in G, strategies map non-maximal plays to a
choice of delay and edge to follow, and values are defined as the best weight each player
can guarantee. It is known that (turn-based) weighted timed games are determined3,

3The result is stated in [BGH+15] for weighted timed games (called priced timed games) with one

108

i.e. Val(`, ν) = Val(`, ν) for each location ` and valuation ν, therefore we use the notation
Val to refer to both values. We also define wti(ρ) the weight of a maximal play ρ at
horizon i, as wt(ρ) if ρ reaches a target in at most i steps, and +∞ otherwise. Then,
Vali(s) = infσMin

supσMax
wti(play(s, σMin, σMax)) refers to the value at horizon i.

We say that a strategy σ?Min of Min is ε-optimal if, for all (`, ν), and all strategies σMax

of Max,
wt(play((`, ν), σ?Min, σMax)) 6 Val(`, ν) + ε .

It is said optimal if this holds for ε = 0. A symmetric definition holds for optimal
strategies of Max.
We denote by wLmax (resp. wEmax) the maximal weight in absolute values of locations

(resp. of edges) in G.

wLmax = max
`∈L
|wt(`)| wEmax = max

e∈E
|wt(e)|

Moreover, in order to match notations from the untimed setting we denote by wmax a
bound on the weight of transitions in JGK, that exists since clocks are bounded by M :

wmax = MwLmax + wEmax

The integer wmax is at most exponential in the size of G, and can thus be stored in
polynomial space.

8.1.1. Region and corner-point abstractions

We will rely on the crucial notions of regions and their refinement with respect to a
granularity 1/N . We will also rely on the region abstraction, seen either as a finite
transition system or as a timed automaton, as introduced in Chapter 2.3.3. The region
abstraction of the timed automaton underlying G can be seen as a finite two-player
turn-based game, called the region game, by assigning to player Min (resp. Max) the
region states (`, r) with ` ∈ LMin (resp. ` ∈ LMax). Similarly, the region automaton4 can
be seen as a WTG, denoted R(G), that we will abusively call region game too. When
1/N -regions are considered, the region game is denoted RN(G).

By projecting away the region information of RN(G), we simply obtain:

Lemma 8.1. For all ` ∈ L, 1/N-regions r, and ν ∈ r, ValG(`, ν) = ValRN (G)((`, r), ν).

On top of regions, we will need the corner-point abstraction techniques introduced
in [BBL08]. Recall that a valuation v is said to be a corner of a 1/N -region r, if it
belongs to the topological closure r and has coordinates multiple of 1/N (v ∈ (1/N)NX).
We call corner state a triple (`, r, v) that contains information about a region state
(`, r) of RN(G), and a corner v of the 1/N -region r. Every region has at most |X |+ 1
corners. We now define the corner-point abstraction ΓN(G) of a WTG G as the WTG

clock, but the proof does not use the assumption on the number of clocks.
4Recall that we defined it as a timed automaton in Chapter 2.3.3.

109

obtained as a refinement of RN(G) where guards on edges are enforced to stay on one
of the corners of the current 1/N -region: the locations of ΓN(G) are all corner states
of RN(G), associated to each player accordingly, and edges are all (`, r, v)

g′′,Y−−→ (`′, r′, v′)

such that there exists t = (`, r)
g,Y−−→ (`′, r′) an edge of RN(G) such that the model of

guard g′′ is a corner v′′ satisfying the guard g (recall that g is the closed version of g),
v′′ ∈ PostTime(v), v′ = v′′[Y := 0], and there exist two valuations ν ∈ r, ν ′ ∈ r′ such that
((`, r), ν)

d′,t−−→ ((`′, r′), ν ′) for some d′ ∈ R>0 (the latter condition ensures that the edge
between corners is not spurious, i.e. created by the closure of guards).

Because of this closure operation, we must also define properly the final weight function:
we simply define it over the only valuation v reachable in location (`, r, v) (with ` ∈ Lt)
by wtt((`, r, v), v) = limν→v,ν∈r wtt(`, ν) (the limit is well defined since wtt is piecewise
affine with a finite number of pieces on region r).

The WTG ΓN(G) can be seen as a finite weighted game (which means that there are
only weights on edges), by removing guards, resets and rates of locations, and replacing
the weights of edges by the actual weight of jumping from one corner to another: an
edge ((`, r), v)

g′′,Y−−→ ((`′, r′), v′) becomes a transition from ((`, r), v) to ((`′, r′), v′) with
weight d ·wt(`) + wt(t), with d ∈ R>0 the only delay such that Jg′′K = {v + d}. Note that
delay d is necessarily a rational of the form α/N with α ∈ N, since it must relate corners
of 1/N -regions. In particular, this proves that the cumulated weight wtΣ(ρ) of a finite
play ρ in ΓN(G) is indeed a rational number with denominator N .
We will call corner play every play ρ in the corner-point abstraction ΓN(G): it can

also be interpreted as an execution in G where all guards are closed (as explained in the
definition above). It straightforwardly projects on a finite path p in the region game
RN (G): in this case, we say again that ρ follows p. Figure 8.2 depicts a play, its projected
path in the region game and one of its associated corner plays.

(`0, r0)

(`1, r1) (`2, r2)

(`3, r3)

ρ

ρ

g0,Y0 g1,Y1 g2,Y2

Figure 8.2.: A play ρ (in blue), its projected path p in the region game (in black), and
one of its associated corner plays ρ (in green).

Let ρ be a corner play following a region path p. The weight of ρ refers to its weight in
ΓN(G). Following [BBL08, Prop. 5], it is possible to find a play ρ following p close to ρ,
in the sense that we control the difference between their respective cumulated weights:

Lemma 8.2. For all ε > 0, all region paths p, and all corner plays ρ following p, there
exists a play ρ in G following p such that |wtΣ(ρ)− wtΣ(ρ)| 6 ε.

Proof. If ν is a valuation and ε > 0, let B∞(ν, ε) denote the open ball of radius ε centered

110

into ν for the infinity norm ‖.‖∞ over RX>0:

‖ν − ν ′‖∞ = max
x∈X
|ν(x)− ν ′(x)| .

We denote by d(ρ, ρ) the distance between those two plays, defined as the sum of the
differences in absolute value between the delays on the transitions of ρ and ρ. By
triangular inequality, we obtain

|wtΣ(ρ)− wtΣ(ρ)| 6 wLmaxd(ρ, ρ) ,

since the same transitions are fired in ρ and ρ, with only different delays.
We will now prove the following:

Claim. For all ε > 0, all region paths p from r0 to r1, and all ν ∈ r0 ∩ B∞(v, ε),
there exists ν ′ ∈ r1 ∩ B∞(v′, ε) and ρ a play in G from ν to ν ′ following p such that
|wt(ρ)− wt(ρ)| 6 2ε|p|wLmax.

Proof of Claim. By the previous explanation, it is sufficient to find a play ρ such that
d(ρ, ρ) 6 2ε|p|. By induction, it is sufficient to prove a similar result only for a single
edge (`, r)

r′′,e−−→ (`′, r′) of R(G), between regions r and r′, with e = `
g,Y−−→ `′. We thus

consider a corner play (`, v)
d,e−→ (`′, v′) in the closed timed game G from a corner v ∈ r to

a corner v′ ∈ r′. Consider a valuation ν ∈ r ∩B∞(v, ε). We now explain how to construct
a valuation ν ′ ∈ r′ ∩ B∞(v′, ε) and d′ > 0 such that (`, ν)

d′,e−−→ (`′, ν ′) is a valid play in G
and |d− d′| 6 2ε, which implies the claim.

Let r′′ be a time successor region of r such that r′′[Y := 0] = r′. We let v′′ = v + d be
the corner of r′′ such that v′ = v′′[Y := 0]. Then, the timed successors of ν, i.e. the affine
line ν + (1, 1, . . . , 1)R, intersect the set r′′ ∩ B∞(v′′, ε) in a valuation ν ′′: indeed, lines
obtained by time elapsing starting from ν and v are parallel, and r′′ is a time successor
of r. There exists d′ such that ν ′′ = ν + d′. Moreover,

d′ = ‖ν − ν ′′‖∞ 6 ‖ν − v‖∞ + ‖v − v′′‖∞ + ‖v′′ − ν ′′‖∞ 6 2ε+ d , and

d = ‖v − v′‖∞ 6 ‖v − ν‖∞ + ‖ν − ν ′‖∞ + ‖ν ′ − v′‖∞ 6 2ε+ d′ ,

so that |d − d′| 6 2ε. Letting ν ′ = ν ′′[Y := 0], we have (`, ν)
d′,e−−→ (`′, ν ′) and ν ′ ∈

r′ ∩ B∞(v′, ε). 4

This claim implies Lemma 8.2, and concludes our proof.

Thus, corner plays allow one to obtain faithful information on the plays that follow
the same path.

Lemma 8.3. If p is a finite region path in RN (G), the set of cumulated weights {wtΣ(ρ) |
ρ play of G following p} is an interval bounded by the minimum and the maximum values
of the set {wtΣ(ρ) | ρ corner play of ΓN(G) following p}.

111

(`, r)
(`1, r1) (`2, r2)

(`, r)

(`, r)

Figure 8.3.: A region cycle p in the region game (in black), its associated corner plays
(in green), and its folded orbit graph (in blue). Note that there is no edge
between the top right corner and the bottom right corner, as no corner play
goes from the former to the latter.

Proof. The set {wtΣ(ρ) | ρ finite play following p} is an interval as the image of a convex
set by an affine function (see [BBBR07, Sec. 3.2] for an explanation).
The good properties of the corner-point abstraction allow us to conclude, since for

every play ρ following p, one can find a corner play following p of smaller weight and one
of larger weight [BBL08], and for every corner play ρ following p and every ε > 0, one can
find a play following p whose weight is at most ε away from wtΣ(ρ) by Lemma 8.2.

An important property of the corner-point abstraction, derived from Proposition 2.1,
is that corner plays cannot get stuck as long as they follow a region path:

Lemma 8.4. Let p be a region path starting from (`, r) and ending in (`′, r′). For all
corners v of r, there exists a corner play following p that starts in (`, r, v). For all corners
v′ of r′ there exists a corner play following p that ends in (`′, r′, v′).

Proof. Pick a valuation arbitrarily close to v. By Proposition 2.1, there exists a play that
follows p starting from this valuation. As plays can be expressed as linear combinations
of corner plays (see [Pur00] for details), there exists a corner play that starts in v, and
similarly one that ends in v′.

Useful theoretical tools stem from the corner-point abstraction. Notably, let us focus
on a cycle of the region automaton. In order to study some properties of the corner
plays following this cycle, we only need to consider the aggregation of all the behaviours
following it. Inspired by the folded orbit graphs (FOG) introduced in [Pur00], we define the
folded orbit graph FOG(p) of a region cycle p = (`1, r = r1)

e1−→ (`2, r2)
e2−→ · · · en−→ (`1, r)

in RN (G) as a graph whose vertices are the corners states of region r, and that contains
an edge from corner v to corner v′ if there exists a corner play ρ from (`1, r, v) to (`1, r, v

′)
following p. We fix ρ arbitrarily and label the edge between v and v′ in the FOG by this
corner play: it is then denoted by v

ρ−→ v′. An example is depicted in Figure 8.3.

112

The folded orbit graph inherits interesting topological properties from the corner-point
abstraction, notably, by Lemma 8.4, for all vertices v, there exists at least one outgoing
edge v

ρ′−→ v′, and at least one incoming edge v′′
ρ′′−→ v in FOG(p).

8.1.2. Problems

As in weighted (untimed) games, we consider the value problem, mimicked from the one
in JGK. Precisely, given a weighted timed game G, a configuration (`, ν) and a threshold
α ∈ Z∞, we want to know whether ValG(`, ν) 6 α. In the context of timed games,
optimal strategies may not exist, even for finite values.5 We generally focus on ε-optimal
strategies, that guarantee the optimal value, up to a small error ε ∈ R>0. Moreover,
when the value problem is undecidable, we also consider the value approximation problem
that consists, given a precision ε ∈ Q>0, in computing an ε-approximation of ValG(`,0).

8.1.3. Related work

In the one-player case6, computing the optimal value and an ε-optimal strategy for
weighted timed automata is known to be PSPACE-complete [BBBR07]. In the two-player
case, the value problem of WTGs (also called priced timed games in the literature) is
undecidable with 3 clocks [BBR05, BJM15], or even 2 clocks in the presence of negative
weights [BGNK+14] (for the existence problem, asking if a strategy of player Min can
guarantee a given threshold). To obtain decidability, one possibility is to limit the number
of clocks to 1: then, there is an exponential-time algorithm to compute the value as
well as ε-optimal strategies in the presence of non-negative weights only [BBM06, Rut11,
HIJM13], whereas the problem is only known to be PTIME-hard. A similar result can be
lifted to arbitrary weights, under restrictions on the resets of the clock in cycles [BGH+15].
The other possibility to obtain a decidability result [BCFL04, ABM04] is to enforce a
semantical property of divergence, originally called strictly non-Zeno cost: it asks that
every play following a cycle in the region automaton has weight at least 1.
Other objectives, not directly related to optimal reachability, have been considered

in [BCR14] for weighted timed games, like mean-payoff and parity objectives. In this
work, the authors manage to solve these problems for the so-called class of δ-robust
WTGs that they introduce.

5For example, a player may want to let time elapse as much as possible, but with delay d < 1 because
of a strict guard.

6When all locations belong to the same player

113

9. Analysable classes of WTGs

In this chapter, we introduce several classes of weighted timed games, and study some
properties of their region cycles. We focus on region cycles because the value problem is
decidable when R(G) is acyclic [TMM02]. In contrast, region cycles authorise executions
that accumulate weight in ways that are hard to analyse, classically called Zeno behaviours.

9.1. Main results

9.1.1. On the value problem

Let us start with the class of weighted timed games studied in [BCFL04], to our knowledge
the greatest class of WTG where the value problem is known to be decidable.

Definition 9.1. A weighted timed game G with non-negative weights satisfies the strictly
non-Zeno cost property when every finite play ρ in G following a cycle in the region
automaton R(G) satisfies wtΣ(ρ) > 1.

The intuition behind this class is that the weight of any long enough execution in G
will ultimately grow above any fixed bound, and diverge towards +∞ for an infinite
execution. Therefore, the value of G is equal to Vali for some horizon i large enough,
making the value problem decidable. It is shown in [BCFL04] that i can be bounded
exponentially in the size of G.

We introduce divergent weighted timed games, as an extension of divergent weighted
games to the timed setting, that naturally generalises the strictly non-Zeno cost property
to weights in Z.

Definition 9.2. A weighted timed game G is divergent when every finite play ρ in G
following a cycle in the region automaton R(G) satisfies wtΣ(ρ) /∈ (−1, 1).

Compared with the untimed notion of divergence, the cumulated weight is not only
supposed to be different from 0, but also far from 0: otherwise, the original intuition
on the ultimate growing of the weight of plays would not be fulfilled. If G has only
non-negative weights on locations and edges, this definition matches with the strictly
non-Zeno cost property of [BCFL04], we will therefore refer to their class as the class of
divergent WTG with non-negative weights.
Remark. As in [BCFL04], we could replace (−1, 1) by (−κ, κ) to define a notion of
κ-divergence. However, since weights and guard constraints in weighted timed games
are integers, for κ ∈ (0, 1), a weighted timed game G is κ-divergent if and only if it is
divergent. This will be formally implied by Proposition 9.3 and Lemma 8.3.

114

weights in Z weights in N

divergent strictly non-Zeno cost

almost-divergent simple

0-isolated

Figure 9.1.: Classes of weighted timed games, and their respective restrictions to non-
negative weights.

We study this class in Chapter 10, where our contributions summarise as follows:

Theorem 9.1. The value problem over divergent weighted timed games is decidable in
3-EXPTIME, and is EXPTIME-hard. Moreover, deciding if a given weighted timed game
is divergent is a PSPACE-complete problem.

9.1.2. On the value approximation problem

In [BJM15], the authors slightly extend the strictly non-Zeno cost property, to allow for
cycles of weight exactly 0 while still preventing those of weight arbitrarily close to 0:

Definition 9.3. A weighted timed game G with non-negative weights is called simple
when every finite play ρ in G following a cycle in the region automaton R(G) satisfies
wtΣ(ρ) ∈ {0} ∪ [1,+∞).

Unfortunately, it is shown in [BJM15] that the value problem is undecidable for simple
WTGs. They propose a solution to the value approximation problem, as a procedure
computing an approximation of the value of every configuration. The intuition is that
cycles of weight exactly 0 are only possible when every (non-negative) weight encountered
along the cycle equals 0, allowing one to define a subgame where every cyclic execution
has weight 0. One can then analyse this subgame separately, by applying a semi-unfolding
procedure on R(G), similar to the one presented in Chapter 7.4.
We now introduce a class of WTG that will extend the notion of simple WTG and

allow negative weights:

Definition 9.4. A weighted timed game G is 0-isolated when every finite play ρ in G
following a cycle in the region automaton R(G) satisfies:

wtΣ(ρ) ∈ (−∞,−1] ∪ {0} ∪ [1,+∞) .

In other words, cyclic executions of weight exactly 0 are allowed, but not those close
to 0. Clearly, every divergent WTG is 0-isolated, and, when weights are non-negative,

115

this class matches the simple WTGs of [BJM15], therefore inheriting their undecidability
result.
We did not obtain positive results for the value approximation problem on this class

of WTG. Instead, inspired by the almost-divergent class studied in the untimed setting,
we restrict the 0-isolated class with a stability by decomposition requirement for cycles
of weight 0.

If p is a region cycle in R(G), it is either simple or it can be decomposed into smaller
region cycles p′ and p′′, such that (a rotation of) p equals p′p′′.1 Likewise, if ρ is a play
in G following p, either p is simple, or ρ can be decomposed into smaller plays ρ′ and ρ′′
following respectively p′ and p′′, such that wtΣ(ρ) = wtΣ(ρ′) + wtΣ(ρ′′).

Definition 9.5. A weighted timed game G is almost-divergent if every play ρ following
a cycle p of R(G) satisfies either wtΣ(ρ) /∈ (−1, 1), or wtΣ(ρ) = 0 and for every decom-
position of ρ into plays ρ′ and ρ′′ following smaller region cycles, wtΣ(ρ′) = wtΣ(ρ′′) = 0.2

By definition, the almost-divergent class of WTGs contains the divergent one, and
is included in the 0-isolated class. When weights are non-negative, the stability by
decomposition requirement for cycles of cumulated weight 0 always hold, as wtΣ(ρ′) +
wtΣ(ρ′′) = 0 implies wtΣ(ρ′) = wtΣ(ρ′′) = 0. In this case, the almost-divergent and
0-isolated notions are thus equivalent, and the almost-divergent class matches with the
simple WTGs of [BJM15]. We will therefore refer to simple WTGs as almost-divergent
WTGs with non-negative weights. Figure 9.1 represents the hierarchy of the classes of
WTG that we introduced.

Remark. Given a finite weighted game G, we define its timed version as a weighted timed
game, whose locations are the states of G equipped with weight 0, whose edges are the
transitions of G, enriched with guard > and reset X , and of weight the weight of the
transition in G, with a single clock x. With this procedure, a divergent (resp. almost-
divergent) weighted game becomes a divergent (resp. almost-divergent) weighted timed
game. A weighted game that is not almost-divergent (for example, two loops of respective
weight 1 and −1 on the same state) will become a WTG that is not almost-divergent,
but that is 0-isolated: every state has weight 0, so the weights of (cyclic) executions are
integers, and therefore not in (−1, 0) ∪ (0, 1). Thus, every class inclusion displayed in
Figure 9.1 is strict.

We study almost-divergent games in Chapter 11. Our first result is the following
extension of the approximation procedure for non-negative weights:

Theorem 9.2. Given an almost-divergent WTG G, a location ` and ε ∈ Q>0, we can
compute an ε-approximation of ValG(`,0) in time triply-exponential in the size of G and
polynomial in 1/ε. Moreover, deciding if a WTG is almost-divergent is PSPACE-complete.

1 We refer to the cycle decomposition procedure described in Chapter 7.4 for finite transition systems.
It is here applied on the region abstraction, seen as a finite transition system.

2 Once again, we could replace (−1, 1) by (−κ, κ) with 0 < κ < 1 to define an equivalent notion of
κ-almost-divergence.

116

It heavily relies on the region abstraction, and requires one to construct R(G) entirely
and compute its strongly connected components, before unfolding it partially in a tree-
shaped structure. Our second result is a more symbolic approximation schema based on
the value iteration algorithm only: the computations are not performed on the region
abstraction, but instead use polyhedra that can cover several regions.

Theorem 9.3. Let G be an almost-divergent WTG such that ValG(`, ν) > −∞ for every
configuration (`, ν). Then the sequence (ValkG)k>0 converges towards ValG and for every
ε ∈ Q>0, we can compute an integer P such that ValPG is an ε-approximation of ValG for
all configurations.

Note that we have to control for configurations (`, ν) of value −∞, where the non-
increasing sequence (ValkG(`, ν))k∈N (that starts at +∞) will converge towards −∞, but
has no hope of approximating it.
However, we will show that the configurations with value −∞ can be computed

pre-emptively:

Proposition 9.1. In an almost-divergent weighted timed game G, the value problem with
threshold −∞ is EXPTIME-complete.

This contrasts with the general case, where this problem is undecidable:

Proposition 9.2. Given a WTG G (not necessarily almost-divergent) and an initial
location `0, the decision problem asking whether ValG(`0,0) = −∞ is undecidable.

Proof. The proof goes via a reduction to the existence problem on turn-based WTG:
given a WTG G (without final weight function), an integer threshold α and a starting
location `0, does there exist a strategy for Min that can guarantee reaching the unique
target location `t from `0 with weight < α. In the non-negative setting, it is proved
in [BBM06] that the problem is undecidable for the comparison 6 α. In the negative
setting, formal proofs are given for all comparison signs in [BGNK+14].

Consider G ′ the WTG built from G by adding a transition from `t to `0, without guards
and resetting all the clocks, of discrete weight −α. We add a new target location `′t, and
add transitions of weight 0 from `t to `′t. Location `t and `′t belong to Min. Let us prove
that ValG′(`0,0) = −∞ if and only if Min has a strategy to guarantee a weight < α in
G. Assume first ValG′(`0,0) = −∞. If ValG(`0,0) = −∞, we are done. Otherwise, Min
must follow in G ′ the new transition from `t to `0 to enforce a cycle of negative value,
and thus enforce a play from (`0,0) to `t with weight less than α. Therefore, there exists
a strategy for Min in G that can guarantee a weight < α. Reciprocally, if there exists a
strategy for Min that can guarantee a weight < α, then Min can force a negative cycle
play and ValG′(`0,0) = −∞.

9.2. Cycle-based analysis
In this section, we will study properties that region cycles must satisfy in divergent or
almost-divergent WTGs. This will give us a better understanding of the modelling power
these classes confer.

117

9.2.1. Cycles in a 0-isolated WTG

Let us start with properties that hold for all 0-isolated weighted timed games G. Keeping
the terminology of the untimed setting, a cycle p of R(G) is said to be a positive cycle
(resp. a negative cycle, a 0-cycle) if every finite play ρ following p satisfies wt(ρ) > 1
(resp. wt(ρ) 6 −1, wt(ρ) = 0).

We start by showing that, in a 0-isolated game, all cycles p = t1 · · · tn of R(G) (with
t1, . . . , tn edges of R(G)) are either 0-cycles, positive cycles or negative cycles, and we
can classify a cycle by looking only at one of the corner plays following it:

Lemma 9.1. In a 0-isolated WTG, a cycle p is a positive cycle (resp. a negative
cycle, a 0-cycle) if and only if there exists a corner play ρ following p with wtΣ(ρ) > 0
(resp. wtΣ(ρ) < 0, wtΣ(ρ) = 0).

Proof. If p is a positive cycle (resp. a negative cycle, a 0-cycle), every such corner play ρ
will have weight above 0 (resp. under 0, equal to 0), by Lemma 8.3. Reciprocally, if such
a corner play exists, all corner plays following p have weight above 0 (resp. under 0, equal
to 0): otherwise the set {wtΣ(ρ) | ρ play following p} would have non-empty intersection
with the set (−1, 0) ∪ (0, 1) by Lemma 8.3, which would contradict that the game is
0-isolated.

Corollary 9.1. A WTG G is 0-isolated if and only if every region cycle in G is either
positive, negative, or a 0-cycle.

An important result is that the sign of cycles is stable by rotation. This is not
trivial because plays following a cycle can start and end in different valuations, therefore
changing the starting region state of the cycle could a priori change the plays that follow
it and the sign of their weights.

Lemma 9.2. Let p and p′ be region paths of a 0-isolated WTG. If pp′ is a positive cycle
(resp. a negative cycle, a 0-cycle), then p′p is a positive cycle (resp. a negative cycle, a
0-cycle).

Proof. Since p1 = pp′ is a cycle, first(p) = last(p′) and first(p′) = last(p), so p2 = p′p
is a cycle as well. First, since there are finitely many corners, by constructing a long
enough play following an iterate of p′p, we can obtain a corner play that starts and ends
in the same corner. Formally, we define two sequences of region corners (vi ∈ first(p))i
and (v′i ∈ first(p′))i. We start by choosing any v0 ∈ first(p). Let v′0 be a corner of first(p′)
such that v′0 is accessible from v0 by following p with a corner play ρ0. For every i > 0,
let vi be a corner of first(p) such that vi is accessible from v′i−1 by following p′ with with
a corner play ρ′i, and let v′i be a corner of first(p′) such that v′i is accessible from vi by
following p with a corner play ρi. We stop the construction at the first index l such that
there exists k < l with vl = vk. Additionally, we let ρl = ρk. We know that this process
never gets stuck—i.e. we can always find such corner plays iteratively—by Lemma 8.4,
and it is bounded since first(p) has at most |X |+ 1 corners.

For every 0 6 i 6 l, let wi be the weight of the corner play ρi from vi to v′i along p, and
let w′i be the weight of the corner play ρ′i from v′i to vi+1 along p′. The concatenation of

118

v0 v1 vk = vl vk+1 vl−1

v′0 v′1 v′k = v′l v′k+1 v′l−1

ρ0
ρ′0 ρ1

ρk ρ′k ρk+1
ρl−1

ρ′l−1

Figure 9.2.: Proof scheme of Lemma 9.2. The top labels are corners of first(p), the
bottom ones are corners of first(p′), and edges represent corner plays.

the two plays has weight wi +w′i > 0 (resp. wi +w′i < 0, wi +w′i = 0), since it follows the
positive cycle (resp. negative cycle, 0-cycle) p1. For every 0 6 i < l, the concatenation of
the corner play ρ′i from v′i to vi+1 with the corner play ρi+1 from vi+1 to v′i+1 is a play
from v′i to v′i+1, of weight w′i + wi+1, following p2. Since p2 is a cycle, and the game is
0-isolated, all possible values of w′i + wi+1 have the same sign by Lemma 9.1.
Finally, we can construct a corner play from v′k to v′l by concatenating the plays

ρ′k, ρk+1, . . . , ρl−1, ρ
′
l−1, ρl. We denote the weight of that play W , and

W =
l−1∑
i=k

(w′i + wi+1) =
l−1∑
i=k

(wi + w′i)

since wk = wl, and as wi + w′i > 0 (resp. wi + w′i < 0, wi + w′i = 0) holds for every i, we
obtain W > 0 (resp. W < 0, W = 0).

This implies that the terms w′i + wi+1, of constant sign, are all above 0 (resp. under 0,
equal to 0). As a consequence, the concatenation of ρ′k and ρk+1 is a corner play following
p2 of weight above 0 (resp. under 0, equal to 0). By Lemma 9.1, we conclude that p2 must
be a positive cycle (resp. a negative cycle, a 0-cycle).

Therefore, region cycles in 0-isolated games are well-behaved: we can compose and
rotate them while preserving their sign in the expected way. This will give us access to
combinatorial proofs that extend the intuitions coming from the untimed setting.

9.2.2. SCC-based characterisations

As divergent WTG are 0-isolated, Lemma 9.1 lets us express divergence in terms of
region cycles instead of cyclic executions:

Corollary 9.2. A WTG G is divergent if and only if it is 0-isolated and contains no
0-cycles. In other words, if and only if every region cycle in G is either positive or
negative.

Similarly, we can express almost-divergence as a property of R(G) by applying
Lemma 9.1:

119

Corollary 9.3. A WTG G is almost-divergent if and only if it is 0-isolated and every
0-cycle p of R(G) satisfies the following property: for every decomposition of p into
smaller region cycles p′ and p′′, p′ and p′′ are 0-cycles. In other words, if and only if
every region cycle in G is either positive, negative, or a 0-cycle stable by decomposition.

After studying the properties of region cycles, we now focus on strongly connected
components (SCCs) of the region abstraction R(G). Following the notations of Chapter 7,
an SCC S of R(G) is said to be positive (resp. negative) if every cycle in S is positive
(resp. negative), i.e. if every play ρ following a region cycle in S satisfies wtΣ(ρ) > 1
(resp. wtΣ(ρ) 6 −1). We will transfer in the timed setting Proposition 7.2:

Proposition 9.3. A weighted timed game G is divergent if and only if, each SCC of
R(G) is either positive or negative.

Likewise, an SCC S of R(G) is said to be non-negative (resp. non-positive) if every
region cycle in S is either a positive cycle or a 0-cycle (resp. either a negative cycle or
a 0-cycle), i.e. every play ρ following a region cycle in S satisfies either wtΣ(ρ) > 1 or
wtΣ(ρ) = 0 (resp. either wtΣ(ρ) 6 −1 or wtΣ(ρ) = 0). We obtain:

Proposition 9.4. A WTG G is almost-divergent if and only if each SCC of R(G) is
either non-negative or non-positive.

Remark. Note that if G is divergent it has no 0-cycle, and Proposition 9.4 implies that
each SCC of R(G) is either positive or negative. Conversely, if each SCC of R(G)
is either positive or negative, Proposition 9.4 implies that G is divergent. Therefore,
Proposition 9.3 is a corollary of Proposition 9.4.

To prove the reciprocal implication of Proposition 9.4, we only need to show that
non-negative (resp. non-positive) SCCs of R(G) are almost-divergent. By definition, such
SCCs are 0-isolated, as they only contain executions ρ following region cycles such that
wtΣ(ρ) ∈ {0} ∪ [1,+∞) (resp. wtΣ(ρ) ∈ (−∞,−1] ∪ {0}). Then, if wtΣ(ρ) = 0 and ρ can
be decomposed into smaller plays ρ′ and ρ′′ of non-negative (resp. non-positive) weight,
it follows that wtΣ(ρ′) = wtΣ(ρ′′) = 0.

For the direct implication, the situation is more complex: we need to be more careful
while composing cycles with each other, and weights in the timed game are no longer
integers, forbidding the arithmetical reasoning we applied in the untimed setting. To
help us, we rely on the folded orbit graphs of region cycles.
Suppose that G is almost-divergent, and consider two cycles p and p′ in the same

SCC of R(G). We need to show that they are both either non-positive or non-negative.
Lemma 9.3 will first take care of the case where p and p′ share a region state (`, r).

Lemma 9.3. If G is almost-divergent and two cycles p and p′ of R(G) share a region
state (`, r), they are either both non-negative or both non-positive.

Proof. Suppose by contradiction that p is negative and p′ is positive. We assume that
(`, r) is the first region state of both p and p′, possibly performing a rotation of the
cycles if necessary (in particular this preserves their sign by Lemma 9.2). We construct

120

a graph FOG(p, p′) as the union of FOG(p) and FOG(p′) (that share the same set of
vertices), colouring in blue the edges of FOG(p) and in red the edges of FOG(p′). A path
in FOG(p, p′) is said blue (resp. red) when all of its edges are blue (resp. red).

We assume first that there exists in FOG(p, p′) a blue cycle C and a red cycle C ′ with
the same first vertex v (a corner of (`, r)). Let k and k′ be the respective lengths of C and

C ′, so that C can be decomposed as v
ρ1−→ · · · ρk−→ v and C ′ as v

ρ′1−→ · · ·
ρ′
k′−→ v, where ρi are

corner plays following p and ρ′i are corner plays following p′. Let ρ be the concatenation
of ρ1, . . . , ρk, and ρ′ be the concatenation of ρ′1, . . . , ρ′k′ . Recall that w = |wtΣ(ρ)| and
w′ = |wtΣ(ρ′)| are integers. Since p is negative, so is pk, the concatenation of k copies of
p (the weight of a play following it is a sum of weights all below −1). Therefore, ρ, that
follows pk, has a weight wtΣ(ρ) 6 −1 by Lemma 8.3. Similarly, wtΣ(ρ′) > 1. We consider
the cycle C ′′ obtained by concatenating w′ copies of C and w copies of C ′. Similarly, we
let ρ′′ be the play obtained by concatenating w′ copies of ρ and w copies of ρ′. Then,
wtΣ(ρ′′) = wtΣ(ρ)w′ + wtΣ(ρ′)w = 0, and therefore the region cycle p′′ composed of w′

copies pk and w copies of p′k
′
is a 0-cycle. This contradicts the almost-divergence of G,

since p′′ can be decomposed into smaller cycles that are not 0-cycles.
We now return to the general case, where C and C ′ may not exist. Since FOG(p)

and FOG(p′) are finite graphs with no deadlocks (every corner has an outgoing edge by
Lemma 8.4), from every corner of FOG(p, p′), we can reach a blue simple cycle, as well as
a red simple cycle. Since there are only a finite number of simple cycles in FOG(p, p′),
there exists a blue cycle C and a red cycle C ′ that can reach each other in FOG(p, p′).
In FOG(p, p′), we let P be a path from the first vertex of C to the first vertex of C ′,
and P ′ be a path from the first vertex of C ′ to the first vertex of C. Consider the cycle
C ′′ obtained by concatenating P and P ′. As a cycle of FOG(p, p′), we can map it to a
cycle p′′ of R(G) (alternating p and p′ depending on the colours of the traversed edges),
so that C ′′ is a cycle (of length 1) of FOG(p′′). As G is 0-isolated, p′′ is either positive,
negative or a 0-cycle. By the almost-divergence of G, p′′ cannot be a 0-cycle as it can
be decomposed onto smaller cycles that are not 0-cycles. Suppose for instance that it
is positive. Since (`, r) is the first region state of both p and p′′, we can construct the
FOG(p, p′′), in which C is a blue cycle and C ′′ is a red cycle, both sharing the same first
vertex. We then conclude with the previous case. A similar reasoning with p′ applies to
the case that p′′ is negative. Therefore, in all cases, we reached a contradiction.

To finish the proof of the direct implication of Proposition 9.4, we suppose that the two
cycles p and p′, one positive and the other negative, in the same SCC of R(G), do not
share any region states. By strong connectivity, in R(G), there exists a path p1 from the
first state of p to the first state of p′, and a path p2 from the first state of p′ to the first
state of p. Consider the cycle p′′ of R(G) defined by pp1p′p2. By the almost-divergence of
G and Corollary 9.1, p′′ must be either positive, negative or a 0-cycle. Since it shares a
state with both p and p′, Lemma 9.3 allows us to prove a contradiction in both positive
and negative cases, and therefore p′′ must be a 0-cycle. This contradicts the hypothesis
as one of the decompositions of p′′ into smaller cycles produces p and p1p′p2, with p a
non-0-cycle. This concludes the proof of Proposition 9.4.

121

Remark. These characterisations of divergent or almost-divergent WTGs in term of
SCCs provide an intuitive understanding of the modelling power these classes hold. For
divergence, the model should have a global structure (the SCC decomposition) linking
modules in an acyclic fashion. For each module, we have to choose between a positive
dynamic, where weights always eventually increase, and a negative dynamic, where
weights always eventually decrease. For almost-divergence, the modules may also have
portions that are (eventually) neutral with regard to weight accumulation. In both
classes, arbitrarily small weights should not be allowed to accumulate.

9.3. The membership problem
We study the membership problem for divergent (resp. almost-divergent) weighted timed
games, i.e. the decision problem that asks if a given WTG is divergent (resp. almost-
divergent). As mentioned in Theorems 9.1 and 9.2, we show that it is PSPACE-complete
for both of these classes.

The proof is an extension of the NL bound of Lemmas 7.3 and 7.5 in the untimed setting,
but this time we will guess region paths, hence the exponential blowup in complexity. In
order to keep a compact representation of the weight of plays, we rely on the corner-point
abstraction.
We show that, given a bound on the length of relevant region cycles, we can test in

polynomial space the sign of corner plays:

Lemma 9.4. Consider a weighted timed game G, a region state (`, r) of R(G), a bound
B ∈ N, and a comparison operator ./ ∈ {<,>,6,>,=, 6=}. Deciding if there exists a
corner play ρ following a cycle p of R(G) starting from (`, r), such that |p| 6 B and
wtΣ(ρ) ./ 0, is in PSPACE.3

Proof. We guess a starting corner v of r for ρ, and we guess on-the-fly the transitions
of p and ρ, i.e. a sequences of regions with one of their corners, keeping in memory
the cumulated weight of ρ and the length |p|. At every step, we check that |p| 6 B in
space polynomial in log(B) and log(|p|) 6 log(|R(G)|), with log(|R(G)|) polynomial in
|G|.4 Similarly, we can check that ρ is following p in polynomial space. At some point,
we guess that the cycle is complete, and we check that the current region state equals
(`, r). Finally, we check that wtΣ(ρ) ./ 0 in space polynomial in log(wtΣ(ρ)). Note that
wtΣ(ρ) is an integer bounded (in absolute value) by B × wmax, and can thus be stored in
polynomial space.5 This shows that the problem is in NPSPACE, and thus in PSPACE
using Savitch’s theorem [Sav70].

3i.e. it can be done using space polynomial in |G| and log(B).
4 The global clock bound M is at most exponential in the size of G, and |R(G)| is at most exponential
in |X | but polynomial in M , therefore |R(G)| is at most exponential in |G|.

5 Compared with the untimed setting, we no longer care about the encoding of weights: if they are
stored in binary, wmax is at most exponential in the size of G, therefore log(wmax) is polynomial.

122

9.3.1. Deciding divergence

In order to solve the membership problem for divergent games, we will rely on Lemma 9.4,
and on a characterisation of divergence based on region cycles of length bounded by the
number of corners in the corner-point abstraction Γ(G).

Lemma 9.5. Let G be a weighted timed game. An SCC S of R(G) is positive (resp. neg-
ative) if and only if every region cycle in S, of length at most |Γ(G)|, is positive (resp. neg-
ative).

Proof. The direct implication holds by definition. Reciprocally, let us assume that every
cycle in S of length at most |Γ(G)| is positive (resp. negative), and prove that every cycle
p in S is positive (resp. negative), by induction on the length of p. If p has length above
|Γ(G)|, every corner play ρ following p can be split as ρ = ρ1ρ2ρ3, with ρ2 a corner play
that starts and ends in the same corner. Then we can write p = p1p2p3, with ρ1 (resp. ρ2,
ρ3) following p1 (resp. p2, p3). Observe that p2 and p1p3 are region cycles of S, both
positive (resp. negative) by induction. It follows that wtΣ(ρ2) > 1 (resp. wtΣ(ρ2) 6 −1),
and wtΣ(ρ1ρ3) > 1 (resp. wtΣ(ρ1ρ3) 6 −1), as ρ1ρ3 is a valid corner play following p1p3.
We can therefore conclude that wtΣ(ρ) > 1 (resp. wtΣ(ρ) 6 −1). This holds for all corner
plays following p, and by Lemma 8.3 p is positive (resp. negative).

Let us show how to decide if a game is not divergent. By Proposition 9.3 and Lemma 9.5,
it suffices to search for an SCC of the region automaton containing a cycle such that
there exists a corner play following it of non-negative weight, and a cycle such that
there exists a corner play following it of non-positive weight, both of length bounded by
B = |Γ(G)| 6 |L| × |Reg(X ,M)| × (|X |+ 1).

We can test this condition in NPSPACE: we guess a starting region for each cycle, use
standard reachability analysis [AD94] to check that they are in the same SCC of R(G)
(in PSPACE), and use Lemma 9.4 with comparison > 0 and 6 0, respectively, to check
each cycle’s sign. Since the bound B is at most exponential in |G|, this last step is also
in PSPACE.
This shows that the membership problem for divergent weighted timed games is in

coNPSPACE = coPSPACE = PSPACE by the theorems of Immerman-Szelepcsényi [Imm88,
Sze88] and Savitch [Sav70].

Let us now show the PSPACE-hardness (indeed the coPSPACE, which is identical) by a
reduction from the reachability problem in a timed automaton. As in the untimed setting,
we consider a timed automaton with a starting location and a different target location
without outgoing edges. We construct from it a weighted timed game by distributing all
locations to Min, and equipping all edges with weight 1, and all locations with weight 0.
We also add a loop with weight −1 on the target, and an edge from the target location
to the initial location with weight 0, both with guard > and resetting all clocks. Then,
the weighted timed game is not divergent if and only if the target can be reached from
the initial location in the timed automaton.

123

9.3.2. Deciding almost-divergence

Let us now focus on the membership problem for almost-divergent WTGs. We start by
stating a variation of Lemma 9.4, that reason on a pair of corner plays:

Lemma 9.6. Consider a weighted timed game G, a region state (`, r) of R(G), a bound
B ∈ N, and comparison operators ./, ./′ ∈ {<,>,6,>,=, 6=}. Deciding if there exists
a cycle p of R(G) starting from (`, r), and two corner plays ρ and ρ′, both following p,
such that |p| 6 B, wtΣ(ρ) ./ 0 and wtΣ(ρ′) ./′ 0, is in PSPACE.

Proof. We follow the same non-deterministic procedure as Lemma 9.4, but this time we
guess two corner plays on-the-fly instead of one.

Then, we find a characterisation of almost-divergence based on region cycles of bounded
length.

Lemma 9.7. Let G be a weighted timed game. An SCC S of R(G) is non-negative
(resp. non-positive) if and only if every region cycle in S, of length at most |Γ(G)|2, is
either a positive cycle or a 0-cycle (resp. either a negative cycle or a 0-cycle).

Proof. The direct implication holds by definition. Reciprocally, suppose that every cycle
in S of length at most |Γ(G)|2 is either a positive cycle or a 0-cycle (resp. either a negative
cycle or a 0-cycle). Let us prove that every cycle p in S is either a positive cycle or
a 0-cycle (resp. either a negative cycle or a 0-cycle), by induction on the length of p.
Consider a region cycle p with length above |Γ(G)|2. Let us show that for all corner
plays ρ, ρ′ following p, either wtΣ(ρ) = wtΣ(ρ′) = 0, or both wtΣ(ρ) > 1 and wtΣ(ρ′) > 1
(resp. both wtΣ(ρ) 6 −1 and wtΣ(ρ′) 6 −1) hold. This will allow us to conclude by
Lemma 8.3.

From a pair of corner plays ρ and ρ′ following p, we can extract a sequence of pairs of
corners states ((`i, ri, vi), (`i, ri, v

′
i)), such that (`i, ri) is the i-th region state of p, and

vi (resp. v′i) is the i-th corner of ρ (resp. ρ′). Since |p| > |Γ(G)|2, there must exist two
indexes, j and k, such that j < k, (`j, rj) = (`k, rk) and (vj, v

′
j) = (vk, v

′
k). In other words,

we can write p = p1p2p3, with p2 and p1p3 region cycles of S, and ρ, ρ′ can be split as
ρ = ρ1ρ2ρ3, ρ′ = ρ′1ρ

′
2ρ
′
3, with ρl (resp. ρ′l) following pl (resp. p′l) for l ∈ {1, 2, 3}, such

that ρ2 and ρ′2 are corner cycles, i.e. first(ρ2) = last(ρ2) and first(ρ′2) = last(ρ′2). Then, by
induction either wtΣ(ρ2) = wtΣ(ρ′2) = 0, or both wtΣ(ρ2) > 1 and wtΣ(ρ′2) > 1 (resp. both
wtΣ(ρ2) 6 −1 and wtΣ(ρ′2) 6 −1) hold. The same property holds for ρ1ρ3 and ρ′1ρ′3, both
valid corner plays following p1p3. It follows that either wtΣ(ρ) = wtΣ(ρ′) = 0, or both
wtΣ(ρ) > 1 and wtΣ(ρ′) > 1 (resp. both wtΣ(ρ) 6 −1 and wtΣ(ρ′) 6 −1) hold.

Let us show how to decide if a game is not almost-divergent. By Proposition 9.4 and
Lemma 9.7, we distinguish two cases for not being almost-divergent:

• There exists a region cycle, of length at most B = |Γ(G)|2, and two corner plays ρ
and ρ′, both following p, such that wtΣ(ρ) = 0 and wtΣ(ρ′) 6= 0.

124

• An SCC of the region automaton contains a cycle such that there exists a corner
play following it of negative weight, and a cycle such that there exists a corner play
following it of positive weight, both of length bounded by B = |Γ(G)|2.

Once again, we can test both conditions in NPSPACE, by guessing the starting regions of
these cycles and using respectively Lemmas 9.6 and 9.4.
This shows that the membership problem for divergent weighted timed games is in

coNPSPACE = coPSPACE = PSPACE [Imm88, Sze88, Sav70].
Let us now show the PSPACE-hardness (indeed the coPSPACE, which is identical) by a

reduction from the reachability problem in a timed automaton, similar to the one we used
for the PSPACE-hardness of deciding divergence. We consider a timed automaton with a
starting location and a different target location without outgoing edges. We construct
from it a weighted timed game by distributing all locations to Min, and equipping all
edges with weight 0, and all locations with weight 0. We also add a loop with weight 1
on the initial location, one with weight −1 on the target location, and an edge from the
target location to the initial location with weight 0, all three with guard > and resetting
all clocks. Then, the weighted timed game is not almost-divergent if and only if the
target can be reached from the initial location in the timed automaton.

125

10. Computing values

In this chapter, we focus on classes of WTGs where the value problem is decidable. We
will recall how one can compute values with bounded horizon i ∈ N, by lifting the value
iteration algorithm of finite weighted games to weighted timed games, hereby solving the
value problem on acyclic WTGs. This has previously been done by [ABM04]. Instead
of relying on the result of [ABM04] as is, we will give a detailed explanation of their
techniques, with mostly independent proofs. The motivation for doing so are as follows:

• On the one hand, our setting is more general, in the sense that we allow for negative
weights and for final weights, where they do not do so explicitly.

• On the other hand, their result is stated for concurrent games, a generalisation of
the turn-based games we consider. This leads to simplifications in the proofs, and
lowers some parts of the complexity analysis.

• We will need, in Chapter 11, to bound the partial derivatives of the functions we
compute. This cannot be deduced from their result directly.

• We present their techniques in a new, more symbolic light, by performing computa-
tions on the entire state-space at once instead of region by region.

• Even by following their explanations closely, we are not able to replicate their
complexity analysis, and detail possible reasons for this. We will therefore rely on a
doubly-exponential upper bound instead of the exponential one claimed in [ABM04].

Then, we focus on divergent WTGs, and give a 3-EXPTIME decision procedure for
computing values.

10.1. Symbolic value iteration
If V represents a value function—i.e. a mapping from configurations of L × RX>0 to
a value in R∞—we denote by V` the mapping ν 7→ V (`, ν). One step of the game
is summarised in the following operator F mapping each value function V to a value
function V ′ = F(V) defined by V ′` (ν) = wtt(`, ν) if ` ∈ Lt, and otherwise

V ′` (ν) =

sup
(`,ν)

d,e−→(`′,ν′)

[
d · wt(`) + wt(e) + V`′(ν

′)
]

if ` ∈ LMax

inf
(`,ν)

d,e−→(`′,ν′)

[
d · wt(`) + wt(e) + V`′(ν

′)
]

if ` ∈ LMin

(10.1)

126

where (`, ν)
d,e−→ (`′, ν ′) ranges over valid transitions in G. Then, starting from V 0 mapping

every configuration (`, ν) to +∞, except for the targets mapped to wtt(`, ν), we let
V i = F(V i−1) for all i > 0. The value function V i contains the value ValiG , which is what
Min can guarantee when forced to reach the target in at most i steps [BCFL04, ABM04].

The rest of this section presents a symbolic algorithm computing ValiG in time doubly-
exponential in i and the size of G. Intuitively, we observe that the mappings V 0

` are
piecewise affine for all `, and show that F preserves piecewise affinity, such that all
iterates V i

` can be computed using piecewise affine functions. In order to bound the size
of V i

` (in particular, its number of pieces), we need to get into the details of how the
mappings V` are encoded.

This result contrasts with [ABM04], where the value problem with bounded horizon is
claimed to be in EXPTIME. This is discussed in Section 10.1.4.

10.1.1. Value functions as nested partitions

We now present the class of piecewise affine value functions, and a way to efficiently
encode them, as developed in [ABM04]. In this section, n will denote the number of
clocks, such that X = {x1, . . . , xn}, and ` ∈ L will be a location of G. An affine value
function is a mapping V` : RX>0,<M → R∞ such that for all ν ∈ RX>0,<M ,

V`(ν) =
n∑
i=1

ai · ν(xi) + b ,

with partial derivatives ai ∈ Q for 1 6 i 6 n, and additive constant b ∈ Q. In this case,
we say that V` is defined by the equation

y =
n∑
i=1

aixi + b ,

where the variable y 6∈ X refers to V`(x1, . . . , xn). We also consider infinite mappings
ν 7→ +∞ and ν 7→ −∞ to be affine value functions, defined by y =

∑n
i=1 0 · xi + (+∞)

and y =
∑n

i=1 0 · xi + (−∞), respectively.
Intuitively, we define a piecewise affine value function as a partition of RX>0,<M into

finitely many polyhedra, called cells, each equipped by an affine value function. Formally,
an affine inequality is an equation I of the form

n∑
i=1

aixi + b ≺ 0 ,

where b ∈ Q is the additive constant of I, ≺ ∈ {<,6} is its comparison operator, and for
every 1 6 i 6 n, ai ∈ Q is the i-th partial derivative of I. Similarly, an affine equality is

127

2x1 + x2 − 2 = 0

x2 − 1 = 0

x1

x2

1 20

1

2

Figure 10.1.: The cell 2x1 + x2 − 2 < 0 ∧ x2 − 1 < 0 in gray, and its borders in blue.

an equation E of the form
n∑
i=1

aixi + b = 0 .

We say that ν ∈ RX>0 satisfies I (resp. E), and write ν |= I (resp. ν |= E), if
∑n

i=1 ai ·
ν(xi) + b ≺ 0 (resp. = 0) holds. In this case, JIK (resp. JEK) refers to the set of valuations
that satisfy I (resp. E). Equalities (resp. inequalities) are equivalent when they are
satisfied by the same valuations. In particular, multiplying the additive constant b
and all partial derivatives ai by the same factor N ∈ N>0 gives an equivalent equality
(resp. inequality), and we will therefore assume that they are always integers.

Definition 10.1. A cell is a set c ⊆ RX>0, defined by a conjunction of affine inequalities
I1 ∧ · · · ∧ Im, such that ν ∈ c if and only if for all 1 6 i 6 m, ν |= Ii. We write
c = JI1 ∧ · · · ∧ ImK in this case.

Cells are convex polyhedra, and the intersection of finitely many cells is a cell. From
every affine inequality I we can extract an affine equality E(I), of identical partial
derivatives and additive constant. Then, we call borders of a cell c = JI1 ∧ · · · ∧ ImK the
affine equalities E(I1), . . . E(Im). The closure c of a cell c is obtained by replacing every
comparison operator < by 6 in its affine inequalities. Note that regions and zones are
particular cases of cells, where borders are of the form x + b = 0 or x− x′ + b = 0.

Let E be an affine equality of equation
∑n

i=1 aixi+b = 0. We say that RX>0 is partitioned
by E into three cells:

• c<, defined by
∑n

i=1 aixi + b < 0;

• c>, defined by
∑n

i=1 aixi + b > 0, i.e.
∑n

i=1−aixi − b < 0;

• c=, defined by
∑n

i=1 aixi + b = 0, i.e.
∑n

i=1 aixi + b 6 0 ∧
∑n

i=1−aixi − b 6 0.

Then, given a set E = {E1, . . . , Em} of affine equalities, we denote cj<, c
j
> and cj= the

three cells obtained from Ej ∈ E . For every mapping φ : E → {<,>,=}, we define cφ as
the cell c1

φ(E1) ∩ · · · ∩ cmφ(Em). Every valuation of RX>0 belongs to some cφ, and if φ 6= φ′

then cφ ∩ cφ′ = ∅, such that the set of mappings {<,>,=}E provides a partition of RX>0

128

into 3m cells. We say that RX>0 is partitioned by E into m′ ∈ N cells if m′ of those 3m

cells are non-empty. In fact, m′ is bounded by O(mn) (see e.g. [Mat02]), and we denote
Splits(m,n) this bound (polynomial in m and exponential in n) on the number of cells
in the partition. Similarly, a cell c ⊆ RX>0 is partitioned by E into at most Splits(m,n)
sub-cells that have non-empty intersection with c. In particular, under the bounded
clocks assumption we will partition RX>0,<M instead of RX>0.

x1

x2

1 20

1

2

Figure 10.2.: A partition of RX>0,<2 according to two affine equalities.

Example 10.1. The Splits(2, 2) = 9 cells that partition RX>0,<2 according to E =
{2x1 + x2 − 2 = 0, x2 − 1 = 0} are represented in Figure 10.2.

Definition 10.2. A nested partition is a tree P , where nodes are labelled by a cell c and
a set E of affine equalities, such that the children of c in P are labelled by the cells that
partition c according to E .

The cell cP at the root of a nested partition P is called the domain of P . Leaves of
P are equipped by empty sets of equalities, and their cells are called base cells. The
domain cP is partitioned by its base cells, and we denote [ν]P the base cell that contains
valuation ν ∈ cP .

Example 10.2. Figure 10.3 represents a nested partition P over domain cP = RX>0,<2.
The root cP is partitioned as in Figure 10.2, and has 9 children nodes. They are all base

x1

x2

1 20

1

2

Figure 10.3.: A nested partition of RX>0,<2.

129

cells, except the cell of Figure 10.1, that is further partitioned by the affine equality
4x1 − 3 = 0 into three base cells.

Definition 10.3. A partition value function F defined over a nested partition P is a
mapping from the base cells of P to affine value functions. It encodes a mapping from cP
to R∞, denoted JF K: if ν ∈ cP and F ([ν]P) is defined by y =

∑n
i=1 aixi + b, then JF K (ν),

denoted JF Kν , equals
∑n

i=1 ai · ν(xi) + b.

A partition value function F of domain cP is continuous if for all ν ∈ cP , for every
base cell cb such that ν ∈ cb, if F (cb) is defined by y =

∑n
i=1 aixi + b then JF Kν =∑n

i=1 ai · ν(xi) + b. In other words, the affine equations provided by F to neighbouring
cells should match on the borders that separate them.
Finally, a piecewise affine value function V` : RX>0,<M → R∞ is encoded as a pair

(P, F) where P is a nested partition of domain RX>0,<M , and where F is a partition value
function defined over P , such that JF K = V`.
A piecewise affine value function (P, F) is said continuous on regions if for every

region r ∈ Reg(X ,M), the restriction of F to domain r is continuous. There could be
discontinuities in F , but only at borders separating different regions. In particular, if
a partition value function is continuous over regions, and JF Kν = +∞ (resp. −∞) for
some ν, then for all ν ′ in the same region as ν, JF Kν′ = JF Kν .

Remark. In [ABM04], the domain of nested partitions is always a single region, and
one value function is associated to each region. We define value functions over RX>0,<M

instead, in order to obtain a symbolic algorithm. This induces slight differences in the
way value functions are defined, because their mappings are continuous everywhere while
ours can have discontinuities at borders between regions. In effect, they define their
partitions with overlaps over borders, such that RX>0 is partitioned by an affine equality
into two cells, c6 and c>, instead of the three c<, c> and c=. This changes the number of
cells Splits(m,n), but not asymptotically.

Cells are bounded, convex polyhedra. As such, elementary operations over cells
(emptiness, intersection and inclusion tests) can be seen as instances of linear programming,
and can thus be performed in polynomial time.

10.1.2. Operations over value functions

Let V be a piecewise affine value function, encoded as a pair (P`, F`) for each location
` ∈ L, such that JF`K = V`. Our goal is to compute the value function F(V), as a pair
(P ′`, F

′
`) for each ` ∈ L. In order to express complexity results for this operation (and

its iteration that computes F i(V)), we need to bound the size of the pairs (P ′`, F
′
`) with

respect to the size of the pairs (P`, F`).
This requires a precise analysis, where one keeps track of the number of linear equalities

in the nodes of the nested partition. In a nested partition P , the depth of a node is the
distance to the root of P , and the depth of P is the greatest such depth. We say that P
is a k-nested partition if P has depth at most k − 1 > 0, and nodes are on level i if their
depth is i− 1 (in other words, the root is at level 1 and leaves at level depth plus one,

130

and a singleton partition where the root is a base cell is 1-nested). A k-nested partition
P is said to be of complexity at most 〈m〉 if for every node of P labelled by a set E of
affine equalities, it holds that |E| 6 m. In this case, the number of base cells in P is
bounded by Splits(m,n)k (every node gets partitioned into at most Splits(m,n) sub-cells),
and the number of nodes in P is bounded by k · Splits(m,n)k. Let βP ∈ N denote the
greatest constant (partial derivatives and additive constant) in the affine equalities and
inequalities of P , in absolute value, and let m0 denote the number of inequalities in the
encoding of the domain cP .1 Then, P can be stored in space

|P | 6 k · Splits(m,n)k · (m0 +mk)(n+ 1)(log(βP) + 1) ,

as every node in P is labelled by a cell with at most m0 + m(k − 1) borders and at
most m affine equalities, and each affine expression is stored in space (n+ 1)dlog(βP)e 6
(n+ 1)(log(βP) + 1).

For a partition value function F defined over P , we only need to additionally monitor
the constants in affine value functions. Recall the affine equations in F are of the form
y =

∑n
i=1 aixi + b with ai and b in Q. In order to monitor their size, we instead write

ayy =
∑n

i=1 aixi + b, with all ai and b integers of Z, and ay ∈ N>0, and ask that some
βF ∈ N bounds all of these constants in absolute value. Then, a value function F defined
over a k-nested partition P of complexity at most 〈m〉 is stored in space

|F | 6 Splits(m,n)k · (n+ 2)(log(βF) + 1) .

We summarize these observations in the following lemma:

Lemma 10.1. Let (P, F) encode a piecewise affine value function, such that (P, F) uses
space |(P, F)|. Then, there exists k, m, βP and βF such that P is a k-nested partition of
complexity at most 〈m〉, with constants bounded by βP in P and βF in F , with k, m at
most linear in |(P, F)|, and βP , βF at most exponential in |(P, F)|.

Reciprocally, let (P, F) be a k-nested partition of complexity at most 〈m〉, with constants
bounded by βP in P and βF in F . It requires space at most logarithmic in βP , βF ,
polynomial in m, and exponential in k, n.

We will now introduce useful operations over nested partitions, and explain how they
affect the depth, complexity, and constants.
If P1 and P2 are nested partitions over the same domain cP , let P1 ⊕ P2 denote the

coarsest nested partition that refines both P1 and P2: each base cell cb of P1 ⊕ P2

corresponds to an intersection c1 ∩ c2, with c1 a base cell of P1 and c2 a base cell of P2. It
is obtained by exploring P1 and P2 in a top-down fashion, while creating corresponding
nodes in P1⊕P2, starting from both root nodes. Let the current node in P1 be n1, labelled
by c1 and E1. Let the current node in P2 be n2, labelled by c2 and E2. If c1 ∩ c2 6= ∅,
we create a node in P1 ⊕ P2 labelled by c1 ∩ c2 and E1 ∪ E2. The children of this node
will be created inductively, by considering all pairs (n′1, n

′
2) such that n′1 is a child of n1

in P1 and n′2 is a child of n2 in P2, and continuing the top-down exploration at n′1 and
1If cP = RX

>0,<M , then m0 = n.

131

n′2. If c1 ∩ c2 = ∅, we do not create a node in P1 ⊕ P2. Note that if P1 and P2 are both
k-nested partitions of complexity at most 〈m〉 with constants bounded by βP , P1 ⊕ P2 is
a k-nested partition of complexity at most 〈2m〉 with constants bounded by βP .
The minimum (resp. maximum) of a finite set of piecewise affine value functions can

be computed with nested partitions.

Lemma 10.2 (Thm. 1, [ABM04]). Let (Pi, Fi), i = 1, . . . , q be q piecewise affine value
functions, defined over the same domain cP , where each Pi is a k-nested partition of
complexity at most 〈m〉, with constants bounded by βP in P and βF in F . Then there
exists a piecewise affine value function (P ′, F ′) of domain cP , where P ′ is an atomic
(k + 1)-nested partition of complexity at most 〈max(qm, q2)〉, with constants bounded by
2β2

P in P ′ and βF in F ′, such that JF ′K = mini=1,...,q JFiK (resp. JF ′K = maxi=1,...,q JFiK).

Proof. Let P ′ be P1 ⊕ · · · ⊕ Pq. Let c denote a base cell in P ′, corresponding to an
intersection c1 ∩ · · · ∩ cq of base cells of P1, . . . , Pq respectively. Consider the affine
value functions F1(c1), . . . , Fq(cq). Each of these is defined by an equation of the form
ayy =

∑n
i=1 aixi + b. We can see them as linear equalities over variables X]{y}, denoted

E1, . . . , Eq, or equivalently as sets of valuations in RX]{y}>0 , denoted JE1K , . . . , JEqK. If
E,E ′ are such equalities, of equations ayy =

∑n
i=1 aixi + b and a′yy =

∑n
i=1 a

′
ixi + b′, the

intersection JEK ∩ JE ′K is either empty or, by elimination of y, it satisfies the equation

n∑
i=1

(aya
′
i − a′yai)xi + (ayb

′ − a′yb) = 0 .

This describes an affine equality over X , that we denote E ∩y E ′. Now, let us partition c
by the set of all such intersections

E = {Ei ∩y Ej | i, j ∈ [1, q] ∧ JEiK ∩ JEjK 6= ∅} .

On every sub-cell c′ in this partition, there exists j ∈ [1, n] such that for every ν ∈ c′,
JFjKν = mini=1,...,q JFiKν . Therefore, we define F ′ on c′ as equal to Fj(cj). The k-nested
partition P1 ⊕ · · · ⊕ Pq has complexity 〈qm〉, and we partitioned its base cells by at
most 〈q2〉 intersections E ∩y E ′, resulting in a (k + 1)-nested partition of complexity
〈max(qm, q2)〉.

In order to implement the computation of F(V), we define intermediate operations
over value functions. Let ` ∈ L be a location, of value function V`. For all ν ∈ RX>0,<M , let
dν ∈ R>0 denote the greatest valid delay from ν, such that dν = sup{d | ν+d ∈ RX>0,<M}.2
Consider the following operations:

• If Y ⊆ X is a set of clocks, let UnresetY(V`) : RX>0,<M → R∞ denote the value
function such that for all ν,

UnresetY(V`)(ν) = V`(ν[Y := 0]) .

2 In fact, dν =M − ‖ν‖∞.

132

• If g is a guard over X , let Guardg(V`) : RX>0,<M → R∞ denote the value function
such that for all ν,

Guardg(V`)(ν) =

V`(ν) if ν |= g

−∞ if ν 6|= g ∧ ` ∈ LMax

+∞ if ν 6|= g ∧ ` ∈ LMin .

• If e ∈ E is an edge from `1 to `2, let PreTimee(V`) : RX>0,<M → R∞ denote the value
function such that for all ν,

PreTimee(V`2)(ν) =

{
supd∈[0,dν)

[
d · wt(`1) + wt(e) + V`1(ν + d)

]
if ` ∈ LMax

infd∈[0,dν)

[
d · wt(`1) + wt(e) + V`2(ν + d)

]
if ` ∈ LMin .

Then, if V ′ = F(V), it holds that

V ′` =

V` if ` ∈ Lt

maxe=(`,g,Y,`′) PreTimee(Guardg(UnresetY(V`′))) if ` ∈ LMax

mine=(`,g,Y,`′) PreTimee(Guardg(UnresetY(V`′))) if ` ∈ LMin\Lt

(10.2)

where e ranges over the edges in G that starts from `.
Remark. The values +∞ and −∞ in Guardsg ensure that players cannot choose invalid
delays: By the no-deadlocks assumption, from every configuration there exists a transition
in JGK, whose value will win against +∞ or −∞ in (10.2).
We have detailed in Lemma 10.2 how one can perform the min and max operations

over nested partitions. Let us now focus on the Guardg and UnresetY operations.

Lemma 10.3. Let (P, F) be a piecewise affine value function, where P is a k-nested
partition of complexity at most 〈m〉, with constants bounded by βP in P and βF in F .
Let g be a non-diagonal guard in G. Then there exists a piecewise affine value function
(P ′, F ′), where P ′ is a (k + 1)-nested partition of complexity at most 〈max(m, 2n)〉, with
constants bounded by max(βP ,M) in P ′ and βF in F ′, such that JF ′K = Guardg(JF K).

Proof. First, let us state that the non-diagonal guard g can be encoded as a cell I1∧· · ·∧I2n,
with one upper and one lower inequality for each clock. We define P ′ from P by
partitioning each base cell by the set of affine equalities E(I1) ∧ · · · ∧ E(I2n). It follows
that each base cell of P ′ is either entirely included in g or entirely outside of it. We can
thus define F ′ appropriately, such that JF ′K = Guarde(JF K). Finally, the nested partition
P ′ has the desired depth, complexity, and bounds over constants.

Lemma 10.4. Let (P, F) be a piecewise affine value function, where P is a k-nested
partition of complexity at most 〈m〉, with constants bounded by βP , βF . Let Y be a set of
clocks. Then there exists a piecewise affine value function (P ′, F ′), where P ′ is a k-nested
partition of complexity at most 〈m〉, with constants bounded by βP in P ′ and βF in F ′,
such that JF ′K = UnresetY(JF K).

133

x1

x2

1 20

1

2

x1

x2

1 20

1

2

Figure 10.4.: On the left, the nested partition of Figure 10.3. On the right, the cor-
responding nested partition obtained by applying Lemma 10.4 for reset
Y = {x2}. The affine value function of the grey cell on the right is obtained
from the grey cell on the left, by setting the partial derivative of x2 to 0.

Proof. If E :
∑n

i=1 aixi + b = 0 is an affine equality, let UnresetY(E) denote the affine
equality

∑n
i=1 a

′
ixi + b = 0, with for i ∈ [1, n], a′i = 0 if xi ∈ Y and a′i = ai otherwise.

We extend this operator to affine inequalities I in the same way, with UnresetY(I) equal
to I except for the i-th partial derivatives that is set to 0 when xi ∈ Y. For each
valuation ν ∈ RX>0, and E an affine equality (resp. inequality) ν |= UnresetY(E) if and
only if ν[Y := 0] |= E. Then, if c = I1 ∧ · · · ∧ Ip is a cell, let UnresetY(c) denote the
cell UnresetY(I1) ∧ · · · ∧ UnresetY(Ip). It follows that ν ∈ UnresetY(c) if and only if
ν[Y := 0] ∈ c. In particular, if c does not intersect the sub-space where every clock in Y
equals 0, then UnresetY(c) = ∅.
Similarly, if c is a base cell of P and F maps c to the affine value function y =∑n
i=1 aixi + b = 0, let UnresetY(F (c)) denote the affine function

y =
n∑
i=1

a′ixi + b = 0 ,

with for i ∈ [1, n], a′i = 0 if xi ∈ Y and a′i = ai otherwise. Then, for every ν ∈ UnresetY(c),
it holds that

V (ν[Y := 0]) = UnresetY(F (c))(ν) .

If P has depth 0, it only contains one node, the root. The piecewise affine value function
(P ′, F ′) with P ′ = P and F ′ a partition value function mapping cP to UnresetY(F (cP)),
encodes the function UnresetY(V). Otherwise, we construct P ′ from P in the fol-
lowing top-down manner: Let the current node be labelled by a cell c and a set of
affine equalities E . If UnresetY(c) is empty, we remove the current node, and its entire
sub-tree, from P . Otherwise, we replace c by UnresetY(c), and E = {E1, E2, . . .} by
{UnresetY(E1),UnresetY(E2), . . .}. We then apply the same process recursively on the
children nodes. If the current node is a leaf, and UnresetY(c) is non-empty, we let

134

F ′(c) = UnresetY(F (c)). The result is a nested partition P ′ with the desired depth,
complexity, and bounds over constants, and a partition value function F ′ such that
JF ′K = UnresetY(JF K).

An application of the UnresetY operator is displayed in Figure 10.4.
All that is left is the PreTimee operation. It is more challenging, and requires extra

machinery related to diagonal behaviours that naturally arise when dealing with time-
elapses.

10.1.3. Tubes and diagonals

An affine inequality (resp. equality) is diagonal if the sum of its partial derivatives is
null, i.e.

∑n
i=1 ai = 0. It follows that if ν satisfies a diagonal I then ν + d |= I for all

d ∈ R. A cell is called a tube when all of its inequalities are diagonal. When the cell is a
sub-cell of some root cell cP in a nested partition P , we relax this definition slightly, to
allow for non-diagonal borders inherited from cP .
A (k1, k2)-nested tube partition is a (k1 + k2)-nested partition, such that every node

at level at most k1 is labelled by a set of diagonal affine equalities, and thus every cell
at level k1 + 1 is a tube. The cells at level k1 + 1 are called the base tubes of P . A
(k1, k2)-nested tube partition P is said to be of complexity at most 〈m1,m2〉 if for every
node of P at level at most k1, labelled by a set E , it holds that |E| 6 m1, and for every
node of P at level greater than k1, labelled by a set E ′, it holds that |E ′| 6 m2. The cells
labelling nodes of P at level k1 + 1 are called the base tubes of P .

Lemma 10.5. Let (P, F) be a piecewise affine value function, where P is a k-nested
partition of complexity at most 〈m〉, with constants bounded by βP in P and βF in F .
Then there exists a piecewise affine value function (P ′, F ′), where P ′ is a (k, k)-nested
tube partition of complexity at most 〈m,m〉, with constants bounded by βP in P ′ and βF
in F ′, such that JF ′K = JF K.

Proof. Let P1, P2 be two nested partitions such that every affine equality in sets E of P1

(resp. P2) is diagonal (resp. non-diagonal), and such that P = P1⊕P2. One can construct
them by copying the diagonal (resp. non-diagonal) borders of P in a top-down manner.
The nested partition P1 has depth at most k − 1, and we extend it so that every leaf
node in P1 is at level k (one can extend leaves to greater depths by constructing identical
children nodes). Then, P1 is a (k, 0)-nested tube partition, and P2 is a (0, k)-nested
tube partition. Finally, we construct P ′ from P1, by placing at every base cell of P1

labelled by a cell c a copy of P2 restricted to the domain c. The base cells of P ′ are the
base cells of P , and we let F ′ = F . The result is a nested partition P ′ with the desired
depth, complexity, and bounds over constants, and a partition value function F ′ such
that JF ′K = JF K.

Given two affine equalities E :
∑n

i=1 aixi + b = 0 and E ′ :
∑n

i=1 a
′
ixi + b′ = 0, let

A =
∑n

i=1 ai and A
′ =

∑n
i=1 a

′
i denote the sums of their respective partial derivatives.

135

We define their diagonal intersection as

E ∩d E ′ :
n∑
i=1

(Aa′i − A′ai)xi + (Ab′ − A′b) = 0 .

Observe that E∩dE ′ is a diagonal equality, and that ν |= E∧ν |= E ′ implies ν |= E∩dE ′.
Moreover, if E (resp. E ′) is diagonal then E∩dE ′ is equivalent to E (resp. E ′). Now, given
a cell c = I1∧ · · · ∧ Im and a set E of affine equalities, let E denote E ∪{E(I1), . . . E(Im)},
and let Tube(c, E) denote {E ∩d E ′ | E,E ′ ∈ E}. The pair (c, E) is said atomic if c is
partitioned by Tube(c, E) in only one cell (equal to c). Intuitively, (c, E) is atomic if the
affine equalities in E and in the borders of c do not intersect within the smallest tube
that contains c.
A (k1, k2)-nested tube partition is atomic if for every node at level greater than k1,

labelled by a cell c and a set E , the pair (c, E) is atomic. Intuitively, this means that in
the non-diagonal part of P , the equalities that split cells into sub-cells are non-diagonal
and do not intersect within their tube. Nested tube partitions can be made atomic, by
introducing a bounded amount of diagonal affine equalities.

Lemma 10.6 (Lem. 3, [ABM04]). Let (P, F) be a piecewise affine value function, where
P is a (k1, k2)-nested tube partition of complexity at most 〈m1,m2〉, with constants
bounded by βP in P and βF in F . Then there exists a piecewise affine value function
(P ′, F ′), where P ′ is an atomic (k1 + 1, k2)-nested tube partition, of complexity at most
〈max(m1, k2m

k2
2 · Splits(m2, n)k2),m2〉 and with constants bounded by 2nβ2

P in P ′ and βF
in F ′, such that JF ′K = JF K.

Proof. We insert an additional level at depth k1 + 1, where we will store the new diagonal
equalities. We add to these new base tubes all equalities E ∩d E ′ derived from their
sub-tree that are not equivalent to a diagonal equality in P . It is shown in [ABM04] that
there are at most mk2

2 new diagonals for each node at level greater than k1 in P , and thus
the new base tubes are equipped with at most k2m

k2
2 · Splits(m2, n)k2 affine equalities.

The bound on constants in P ′ is derived from the equation describing E ∩d E ′.

Example 10.3. Figure 10.5 represents the atomic nested tube partition P ′ associated
to the nested partition P displayed in Figure 10.3. the nested tube partition P ′ has one
diagonal level split by the 4 affine equalities in green. Each of the resulting 9 base tubes
is then partitioned by the (non-diagonal) blue and red borders as in Figure 10.3. The
result P ′ is therefore an atomic (1, 2)-nested tube partition of complexity 〈4, 2〉.

We can now compute PreTimee(V`′), with V`′ a value function encoded as a nested
tube partition (P, F), and e ∈ E an edge from ` to `′. We will assume in the following
that ` is a location of Max, but the case of Min is symmetrical. Let us fix a valuation
ν ∈ RX>0,<M . Recall that

PreTimee(JF K)(ν) = sup
d∈[0,dν)

[
d · wt(`) + wt(e) + JF Kν+d

]
.

136

x1

x2

1 20

1

2

Figure 10.5.: The atomic nested tube partition derived from the nested partition of
Figure 10.3 by Lemmas 10.5 and 10.6.

For every delay d ∈ [0, dν), consider the term JF Kν+d. The valuations ν + d belong to a
diagonal line of RX>0, and range from ν to ν + dν . The segment ν + [0, dν) intersects a
finite number of base cells in P . Let Cν be the set of base cells of P reachable from ν by
letting time elapse. For each cell c in Cν , from the segment from ν to ν + dν we isolate
two delays: the infimum over delays in R>0 such that ν + d ∈ c, denoted d1, and the
supremum over delays such that ν + d ∈ c, denoted d2. As d 7→ JF Kν+d is affine over c,
so is d 7→ d · wt(`) + wt(e) + JF Kν+d, and the supremum of d · wt(`) + wt(e) + JF Kν+d for
ν + d ∈ c must either be reached at (or arbitrarily close to) d1, or at (or arbitrarily close
to) d2. Note that ν + d2 must belong to a non-diagonal border of c, while ν + d1 either
belongs to a non-diagonal border of c or equals ν (whenever ν ∈ c). Thus, the optimal
value of d for evaluating the sup must correspond to either delay 0 or to a delay leading
ν to a non-diagonal border (this observation is proven formally in [ABM04]).
If B is a non-diagonal border of c, and ν is a valuation of RX>0, there exists a unique

d ∈ R such that ν + d ∈ JBK. In fact, if B is described by
∑n

i=1 aixi + b = 0 and
A =

∑n
i=1 ai, then

d = − 1

A
(
n∑
i=1

ai · ν(xi) + b) .

We name this delay dν,B, and it must belong to [0, dν] if JBK is reachable from ν by
time-elapse.3 If c is a cell of Cν , let Bν(c) denote the non-diagonal borders of c reachable
from ν by time-elapse. The supremum PreTimee(JF K)(ν) is then equal to

max

{
JF Kν
maxc∈Cν maxB∈Bν(c)[dν,B · wt(`) + wt(e) + JF (c)Kν+dν,B

]

where JF Kν corresponds to the delay 0, and JF (c)Kν+dν,B
corresponds to a jump arbitrarily

3 Note that it can be equal to dν , as x−M = 0 is a border of the cell RX
>0,<M .

137

close to B.4
If the nested tube partition (P, F) is atomic, it follows that every other valuation in

the same cell ν ′ ∈ [ν]P can reach the same set of borders by time elapse, i.e. Cν = Cν′
and Bν(c) = Bν′(c) for all c ∈ Cν . In consequence, we rename those sets Cc′ and Bc′(c)
if c′ = [ν]P . We introduce an operator PreTimee,c,B, indexed by an edge, a cell and a
non-diagonal border of the cell, that maps a partition value function F to the value
function:

ν 7→ dν,B · wt(`) + wt(e) + JF (c)Kν+dν,B
.

If the nested tube partition (P, F) is atomic, we can therefore write for each base cell
cb of P that PreTimee(JF K) restricted to domain cb equals

max(JF K ,max
c∈Ccb

max
B∈Bcb (c)

[PreTimee,c,B(F)]) .

Recall that we will ultimately compute the maximum over all edges e from ` to `′ of
PreTimee(Guardg(UnresetY(V`′))). Instead of computing the maximum with JF K in every
PreTimee computations, we will do it as a last step.

Lemma 10.7. Let (P, F) be a piecewise affine value function, where P is an atomic
nested tube partition, with constants bounded by βP in P and βF in F . Let cb be a base
cell of P , e be an edge from ` to `′, c be a cell in Ccb and B be a border in Bcb(c). Then
there exists an affine value function f of equation afyy =

∑n
i=1 a

f
i xi + bf , with constants

bounded by βPβF (2n+ |wt(`)|+n|wt(e)|), such that f = PreTimee,c,B(F) on cb. Moreover,∑n
i=1 a

f
i = −afy · wt(`).

Proof. Let ν be a valuation in cb. As B ∈ Bcb(c) it holds that dν,B ∈ [0, dν], such that

PreTimee,c,B(F)(ν) = dν,B · wt(`) + wt(e) + JF (c)Kν+dν,B
.

Let ayy =
∑n

i=1 aixi+b be the equation of F (c), and let A =
∑n

i=1 ai. Let
∑n

i=1 a
′
ixi+b

′ = 0
be the equation of B, with A′ =

∑n
i=1 a

′
i 6= 0 the sum of its partial derivatives. We obtain

the following equalities:

dν,B = −
1

A′
(
∑n

i=1 a
′
i · ν(xi) + b′)

JF (c)Kν+dν,B
=

1

ay

[∑n
i=1 ai · ν(xi) + Adν,B + b

]
JF (c)Kν+dν,B

· A′ay =
∑n

i=1(A′ai − Aa′i) · ν(xi) + (A′b− Ab′)
PreTimee,c,B(F)(ν) · A′ay =

∑n
i=1(A′ai − Aa′i − aya′i · wt(`)) · ν(xi)

+(A′b− Ab′ − ayb′ · wt(`) + A′ay · wt(e)) ,

and thus PreTimee,c,B(F)(ν) is described by an equation afyy =
∑n

i=1 a
f
i xi + bf , with

afy ∈ N>0, afy 6 nβPβF , bf ∈ Z, |bf | 6 βPβF (2n+ |wt(`)|+n|wt(e)|), and for all i ∈ [1, n],
afi ∈ Z and |afi | 6 βPβF (2n+ |wt(`)|).

4In particular, if ν + dν,B 6∈ c then F (c) evaluated on ν + dν,B may not equal JF Kν+dν,B
.

138

Finally,
∑n

i=1 a
f
i = −afy · wt(`) because

∑n
i=1(A′ai − Aa′i) = 0.

We can use the observation that
∑n

i=1 a
f
i = −afy · wt(`) holds on the output of

Lemma 10.7 to specialize Lemma 10.2 on such instances, so as to obtain a lower output
complexity.

Lemma 10.8. Let (Pi, Fi), i = 1, . . . , q be q piecewise affine value functions, where
each Pi is a (k1, k2)-nested tube partition of complexity at most 〈m1,m2〉, with constants
bounded by βP in Pi and βF in Fi. Suppose that they share the same partition, i.e. P1 =
· · · = Pq = P , and that for all affine value functions mapped to base cells of P by an Fi,
of equation ayy =

∑n
i=1 aixi + b, it holds that

∑n
i=1 ai = −wt(`) · ay. Then there exists a

piecewise affine value function (P ′, F ′) of domain cP , where P ′ is a (k1 + 1, k2)-nested
tube partition of complexity at most 〈max(m1, q

2),m2〉, with constants bounded by 2β2
P in

P ′ and βF in F ′, such that JF ′K = mini=1,...,q JFiK (resp. JF ′K = maxi=1,...,q JFiK).

Proof. The construction follows the proof of Lemma 10.2, with the additional observation
that all intersections E∩yE ′ must be diagonal equalities in RX>0, since

∑n
i=1(aya

′
i−a′yai) =

−aya′y ·wt(`)+a′yay ·wt(`) = 0. Therefore, the new equalities are all diagonal, and the new
level of nodes in P ′ is added at level k1 + 1. As the inputs share the same nested partition
the step P1 ⊕ · · · ⊕ Pq can be skipped, letting us obtain the desired complexity.

When the input mappings do not have this property, we will rely on a weaker result,
derived from Lemma 10.2 directly: the new borders may be diagonal, or they may be
non-diagonal, so we add a new level for each possibility.

Corollary 10.1. Let (Pi, Fi), i = 1, . . . , q be q piecewise affine value functions over the
same domain cP , where each Pi is a (k1, k2)-nested tube partition of complexity at most
〈m1,m2〉, with constants bounded by βP in Pi and βF in Fi. Then there exists a piecewise
affine value function (P ′, F ′) of domain cP , where P ′ is a (k1 + 1, k2 + 1)-nested tube
partition of complexity at most 〈max(m1q, q

2),max(m2q, q
2)〉, with constants bounded by

2β2
P in P ′ and βF in F ′, such that JF ′K = mini=1,...,q JFiK (resp. JF ′K = maxi=1,...,q JFiK).

We can now use Lemmas 10.7 and 10.8 to implement PreTimee over nested tube
partitions.

Lemma 10.9. Let (P, F) be a piecewise affine value function, where P is an atomic
(k1, k2)-nested tube partition of complexity at most 〈m1,m2〉, with constants bounded
by βP in P and βF in F . Let e be an edge from ` to `′. Then there exists a piece-
wise affine value function (P ′, F ′), where P ′ is a (k1 + 1, k2)-nested tube partition of
complexity at most 〈max(m1, 4k

2
2 · Splits(m2, n)2k2),m2〉, with constants bounded by 2β2

P

in P ′ and βPβF (2n + |wt(`)| + n|wt(e)|) in F ′, such that for each base cell cb of P ,
JF ′K = maxc∈Ccb maxB∈Bcb (c)[PreTimee,c,B(F)].

Proof. For each base cell cb of P , we can compute (P ′cb , F
′
cb), encoding the value function

maxc∈Ccb maxB∈Bcb (c)[PreTimee,c,B(F)] over cb, with Lemmas 10.7 and 10.8. There are
at most max(1, k2Splits(m2, n)k2) cells in Ccb and at most 2 borders in Bcb(c), such

139

x1

x2

1 20

1

2

x1

x2

1 20

1

2

Figure 10.6.: On the left, the atomic nested tube partition of Figure 10.5. On the right,
the corresponding nested tube partition obtained by applying Corollary 10.2
for reset Y = {x2}. Note that every border on the right is derived from
a diagonal border on the left, by atomicity, such that the blue and red
borders can be ignored.

that by Lemma 10.8, (P ′cb , F
′
cb) is a (k1 + 1, k2)-nested tube partition of complexity at

most 〈max(m1, 4k
2
2 · Splits(m2, n)2k2),m2〉, with constants bounded by 2β2

P in P ′cb and
βPβF (2n+ |wt(`)|+ n|wt(e)|) in F ′cb. Then, we can use all (P ′cb , F

′
cb) to define a unique

(P ′, F ′), by inserting all of the new diagonal equalities at level k1 + 1 (the base tubes of
P).

We finally need to adapt Lemmas 10.3 and 10.4 to handle nested tube partitions
instead of nested partitions.

Corollary 10.2. If (P, F) is a (k1, k2)-nested tube partition of complexity at most
〈m1,m2〉, then applying the Guardg operator for a non-diagonal guard g results in a
(k1, k2 + 1)-nested tube partition of complexity at most 〈m1,max(m2, 2n)〉. Applying the
UnresetY operator results in a (k1,max(k1, k2))-nested tube partition of complexity at
most 〈m1,max(m1,m2)〉 when (P, F) is atomic.

Indeed, if (P, F) is atomic and Y 6= ∅ then the unreset of a border B of a base cell
c of P can only partition UnresetY(c) into several sub-cells if B is diagonal, therefore
the resulting partition can only contain the Unreset of diagonal borders. Note that
UnresetY(B) may be diagonal or not, depending on what clocks are reset, and thus we
obtain a complexity of 〈m1,m1〉. If Y = ∅ the complexity stays at 〈m1,m2〉. Let us now
bring everything together for the value iteration operator F .

Proposition 10.1. Let V be a piecewise affine value function, encoded as a nested
tube partition (P`, F`) for each ` ∈ L, where every P` is an atomic (k1, k2)-nested tube
partition of complexity at most 〈m1,m2〉, with constants bounded by βP in P` and βF in
F`. Let q = |E| be the number of edges in G. Then there exists a piecewise affine value
function V ′, encoded as a nested tube partition (P ′`, F

′
`) for each ` ∈ L, where every P ′` is

140

an atomic (k1 + 5,max(k1, k2) + 3)-nested tube partition of complexity at most 〈m′1,m′2〉
and constants bounded by β′P in P ′` and β′F in F ′`, such that V ′ = F(V). If we let k
denote max(k1, k2) and m denote max(m1,m2), it holds that:

m′1 6 max

m1,

2q2,

8q(k + 1)2 · Splits(max(m, 2n), n)2(k+1),

(k + 3)(max(4, 2qm, 4qn))k+3 · Splits(max(4, 2qm, 4qn), n)k+3

m′2 6 max(2qm, 4qn, 2q2)
β′P 6 223n17 max(βP ,M)32

β′F 6 2nβF max(βP ,M)(2n+ wLmax + nwEmax)

Proof. Fix a location ` ∈ LMax. the case LMin is symmetrical and will not be detailed. If
` ∈ Lt, let (P ′`, F

′
`) = (P`, F`). Otherwise,

V ′` = max
e=(`,g,Y,`′)

PreTimee(Guardg(UnresetY(V`′))) .

For every location `′, we construct, by Corollary 10.2 and Lemma 10.6, a nested tube
partition (P ′′`′ , F

′′
`′) encoding Guardg(UnresetY(V`′)). Every P ′′`′ is an atomic (k1 + 1,k+ 1)-

nested tube partition of complexity at most 〈m′′1,m′′2〉, with

m′′1 6 k(max(m, 2n))k · Splits(max(m, 2n), n)k

and m′′2 6 max(m, 2n), with constants bounded by 2nmax(βP ,M)2 in P ′′`′ and βF in F ′′`′ .
The next step is to apply Lemma 10.9 in order to obtain for every edge from ` to `′ a

pair (P ′′e , F
′′
e) such that max(JF ′′`′K , JF ′′e K) = PreTimee(JF ′′`′K). The nested partition P ′′e is

a (k1 + 2,k + 1)-nested tube partition of complexity at most 〈m′′′1 ,max(m, 2n)〉, with

m′′′1 6 max(m′′1, 4(k + 1)2 · Splits(max(m, 2n), n)2(k+1)) ,

with constants bounded by 4n2 max(βP ,M)4 in P ′′e and 2nβF max(βP ,M)(2n+ wLmax +
nwEmax) in F ′′e .

We can now apply Corollary 10.1 to compute maxe=(`,g,Y,`′) JF ′′e K.
The result is a (k1 + 3,k + 2)-nested tube partition (P ′′E, F

′′
E) of complexity at most

〈max(qm′′1, 4q(k + 1)2 · Splits(max(m, 2n), n)2(k+1), q2),max(qm, 2qn, q2)〉 ,

with constants bounded by 32n4 max(βP ,M)8 in P ′′E and 2nβF max(βP ,M)(2n+ wLmax +
nwEmax) in F ′′E. Finally, we apply Corollary 10.1 and Lemma 10.6 to compute an atomic
representation of max(JF ′′EK , JF ′′`′K), resulting in a nested partition encoding V ′` with the
desired bounds on depth, complexity, and greatest constants.

141

10.1.4. Exponential vs doubly-exponential

We can now state the main result of this chapter.

Theorem 10.1. Given i > 0, computing ValiG can be done in time doubly-exponential in
i and exponential in the size of G.

Proof. This result is derived from Proposition 10.1. Indeed, we can apply it i times, and
obtain a piecewise affine value function of depth at most linear in k1, k2, and i, thus
of depth linear in the size of the input value function and in i. The final complexity
〈m′1,m′2〉, and the bounds on constants β′P and β′F , are at most doubly exponential in i
and exponential in the size of G, and we conclude by Lemma 10.1. We have seen that
the size of the piecewise affine value functions handled in the computation is doubly-
exponentially bounded. This translates into a 2-EXPTIME procedure as the operations
over value functions that we introduced can all be performed in time polynomial relative
to the size of their input.

Let us now discuss the result of [ABM04], where an exponential upper bound on the
bounded value problem is obtained with a non-symbolic algorithm on a slightly different
setting (with non-negative weights only, without final weights, in a concurrent setting).

Their concurrent setting generalizes ours, the sign of weights had seemingly no impact
in the proofs, and the symbolic version requires minor changes related to the continuity
of value functions and to the way guards are handled. These changes should not affect
complexity significantly, and the reason for this exponential gap is not apparent.
As a tentative answer, we make the following observation. If the game has no resets,

i.e. Y = ∅ on all edges, the complexity of our approach becomes exponential.5 In [ABM04],
the way one should deal with resets is not detailed, it is therefore left open whether we
could obtain an exponential bound or whether their solution is in fact doubly-exponential.

We claim that the bound obtained in Proposition 10.1 is tight, in the sense that there
exists a nested tube partition P , of complexity 〈m1,m2〉, such that if P ′ of complexity
〈m′1,m′2〉 is obtained after applying F , then m′1 = Θ(mn−1

1). This is the root of the issue,
as we would need m′1 = O(m1) in order to obtain an exponential bound:

• If a transformation m′ := am is applied i times on some m0, for a fixed constant a,
we obtain aim0, which is exponential in i.

• However, applying i times the transformation m′ := mn−1 on m0 outputs m(n−1)i

0 ,
which is doubly exponential in i.

Example 10.4. Let p1, . . . pn−1 be n − 1 pairwise distinct prime numbers. For every
d ∈ [1, n− 1], i ∈ [1, pd − 1], let Ei

d denote the affine equality

xd − xn −
i

pd
= 0 ,

5 In this case, the UnresetY steps can be skipped, and one can replace every m and k by m2 and k2,
respectively, in Proposition 10.1. Overall, m′

1 (resp. m′
2) end up linear in m1 (resp. m2) instead of

being polynomial.

142

and let Ed = {Ei
d | i ∈ [1, pd − 1]}. Let E denote E1 ∪ · · · ∪ En−1. It holds that

|E| =
n−1∑
d=1

(pd − 1) ,

because the affine equalities are pairwise distinct: Ei
d = Ei′

d′ implies d = d′ and i
pd

= i′

p′d
,

where i
pd

and i′

p′d
are irreducible fractions, such that i = i′.

Let P denote the 1-nested partition of domain RX>0,<M where the root is partitioned
by E . Since every Ei

d is diagonal, P is in fact an atomic (1, 0)-nested tube partition of
complexity 〈

∑n−1
d=1(pd − 1), 0〉.

After applying Unreset{xn}, we obtain a (0, 1)-nested tube partition of complexity
〈0,
∑n−1

d=1(pd−1)〉. Indeed, the root is now split by the set of non-diagonal affine equalities

E ′ = {Unreset{xn}(E
i
d) : xd −

i

pd
= 0 | d ∈ [1, n− 1], i ∈ [1, pd − 1]} ,

with |E ′| =
∑n−1

d=1(pd − 1) once again.
The next step is to apply Lemma 10.6 in order to make the tube partition atomic.

We claim that the output is a (1, 1)-nested tube partition with
∏n−1

d=1(pd − 1) di-
agonal equalities. This comes from the fact that every new diagonal intersection
Unreset{xn}(E

i
d) ∩d Unreset{xn}(E

i′

d′), with d 6= d′, is unique: its equation is

xd′ − xd +
i

pd
− i′

pd′
= 0 ,

such that if Ej
d and Ej′

d′ create the same diagonal, then

i− j
pd

=
i′ − j′

pd′
,

and thus i = j and i′ = j′ (they are both irreducible fractions with distinct denominators).
Overall, we started with m1 =

∑n−1
d=1(pd − 1) diagonal borders, and ended up with

m′1 =
∏n−1

d=1(pd − 1) diagonal borders after the unreset and pretime steps. It is well
known (see e.g. [Ros41]) that for γ ∈ N large enough, if p is the γ-th prime number,
then γ log(γ) + γ log(log(γ))− γ < p− 1 < γ log(γ) + γ log(log(γ)). It follows that for
all γ ∈ N large enough, if we fix p1 as the γ-th prime number, and p2, . . . , pn−1 the next
prime numbers in order, then

γ log(γ) + γ log(log(γ))− γ < p1 − 1 ,
pn−1 − 1 < (γ + n− 1) log(γ + n− 1) + (γ + n− 1) log(log(γ + n− 1)) .

Overall, m1 = Θ(γ log(γ)) and m′1 = Θ((γ log(γ))n−1), thus our operations increase m1

polynomially, whereas a linear increase is needed.

It should be noted that we do not know of any example where a double-exponential

143

splitting of the state-space is required, and a finer analysis of our procedure may still
be able to match the results claimed in [ABM04]. In particular, the construction of
Example 10.4 cannot a priori be iterated recursively, as the output diagonals do not
have the same form as the input ones.

10.1.5. Bounding partial derivatives

In the previous analysis, we explained that constants (partial derivatives and additive
constants) grow polynomially at each elementary step, which is enough for an exponential
upper bound (double-exponential growth of their value, stored in binary). This rough
analysis will not be fine enough for some of our results, in particular the approximation
results of Chapter 11 will be sensitive to the partial derivatives in a linear (and not
logarithmic) way. In this section, we study the growth of these partial derivatives more
closely. This time, our focus will not be on the space required to store affine equations,
but rather on mathematical properties of the value functions, namely their Lipschitz-
continuity, closely related to bounds on partial derivatives. As a result, we revert to
denoting affine equations as terms y =

∑n
i=1 aixi + b with rational constants instead of

using integers with a separately stored denominator ay.

Definition 10.4. The function wtt is said to be Λ-Lipschitz-continuous when |wtt(s, ν)−
wtt(s, ν

′)| 6 Λ‖ν − ν ′‖∞ for all valuations ν, ν ′, where ‖ν‖∞ = maxx∈X |ν(x)| is the ∞-
norm of vector ν ∈ RX . The function wtt is said to be Lipschitz-continuous if it is
Λ-Lipschitz-continuous, for some Λ.

Since final weight functions are piecewise affine and continuous on regions, they are
Λ-Lipschitz-continuous, for a given constant Λ > 0.

We will maintain as an invariant that V i
` is Lipschitz-continuous over each region and

for all `:

Lemma 10.10. If every final weight in a WTG G is Λ-Lipschitz-continuous on re-
gions (and piecewise affine), then ValiG is ΛΛ′-Lipschitz-continuous on regions, with Λ′

polynomial in wLmax and |X |, and exponential in i.

Note that for a piecewise affine function with finitely many pieces, being Λ-Lipschitz-
continuous on regions is equivalent to being continuous on regions and having all partial
derivatives bounded by Λ in absolute value. The rest of this section is dedicated to
proving Lemma 10.10.

Lemma 10.11. If for all ` ∈ L, V` is piecewise affine with finitely many pieces that
have all their partial derivatives bounded by Λ in absolute value, then for all ` ∈ L,
F(V)` is continuous on regions and piecewise affine with partial derivatives bounded by
max(Λ, |wt(`)|+ (n− 1)Λ) in absolute value.

Proof. We will show that for every region r, F(V) restricted to r has those properties.
Note that they are transmitted over finite min and max operations. The continuity on
regions is easy to prove because it is stable by inf and sup. There exists a partition

144

cost function (P`, F`) for each ` ∈ L that represents V . As explained before, a crucial
property is that, for a given valuation ν, the delays d that need to be considered in the
sup or inf operation of F(V)`(ν) correspond to the intersection points of the diagonal
half line containing the time successors of ν and borders of cells (if νb is such a valuation,
d = ‖νb − ν‖∞ is the associated delay). In particular, there is a finite number of such
borders, and the final F(V)` function can be written as a finite nesting of finite min and
max operations over affine terms, each corresponding to a choice of delay and an edge to
take. Formally, there are several cases to consider to define those terms, depending on
delay and edge choices. For each available edge e, those terms can either be:

1. If a delay 0 is taken and all clocks in Y ⊆ X are reset by e, then

wtΣ((`, ν)
0−→ (`, ν)

e−→ (`′, ν[Y := 0])) = wtΣ(e) + V`′(ν[Y := 0])

2. If a delay d > 0 (leading to valuation νb on border B) is taken and all clocks in
Y ⊆ X are reset by e, then

wtΣ((`, ν)
d−→ (`, νb)

e−→ (`′, νb[Y := 0])) = wtΣ(`) · d+ wtΣ(e) + V`′(ν
b[Y := 0])

x1

x2

ν ν ′

B

νb

ν ′b
c

Figure 10.7.: A cell c as described in the proof of Lemma 10.11. Dashed lines are borders
of c, dotted lines are proof constructions.

In the first case, the resulting partial derivatives are 0 for clocks in Y , and the same as
the partial derivatives in V`′ for all other clocks, which allows us to conclude that they
are bounded by Λ. We now consider the second case. We argue that the second case
could be decomposed as a delay followed by an edge of the first case, meaning that we
can assume Y = ∅ without loss of generality.
There are again two cases: the border B being inside a region or on the frontier of a

region.
If the border is not the frontier of a region, it is the intersection points of two affine

pieces of V`′ whose equations (in the space Rn+1 whose n first coordinates are the clocks

145

(x1, . . . , xn) and the last coordinate y corresponds to the value V`′(x1, . . . , xn)) can be
written y =

∑n
i=1 aixi + b (before the border) and y =

∑n
i=1 a

′
ixi + b′ (after the border).

Therefore, valuations at the borders all fulfill the equation

n∑
i=1

(a′i − ai)xi + b′ − b = 0 (10.3)

We let A =
∑n

i=1(a′i − ai). Consider that ` is a location of Min (the very same reasoning
applies to the case of a location of Max). Since F computes an infimum, we know that
the function mapping the delay d to the weight obtained from reaching ν+d is decreasing
before the border and increasing after. These functions are locally affine which implies
that their slopes verify:

wt(`) +
n∑
i=1

ai 6 0 and wt(`) +
n∑
i=1

a′i > 0 . (10.4)

We deduce from these two inequalities that A > 0. The case where A = 0 would
correspond to the case where the border contains a diagonal line, which is forbidden,
and thus A > 0. Consider now a valuation of coordinates ν = (x1, . . . , xn) and another
valuation of coordinates ν ′ = (x1, . . . , xk−1, xk + λ, xk+1, . . . , xn). The delays d and d′

needed to arrive to the border starting from these two valuations are such that ν + d
and ν ′ + d′ both verify (10.3). We can then deduce

d′ − d = λ
ak − a′k
A

.

It is now possible to compute the partial derivative of F(V)` in the k-th coordinate using

F(V)`,ν′ −F(V)`,ν
λ

=
wt(`)(d′ − d) + V`′,ν′+d′ − V`′,ν+d

λ
(10.5)

. We may compute it by using the equations of the affine pieces before or after the border.
We thus obtain

F(V)`,ν′ −F(V)`,ν
λ

=
ak − a′k
A

(
wt(`) +

n∑
i=1

ai

)
+ ak

F(V)`,ν′ −F(V)`,ν
λ

=
ak − a′k
A

(
wt(`) +

n∑
i=1

a′i

)
+ a′k

In the case where ak > a′k, the first equation, with (10.4), allows us to obtain that the
partial derivative is at most ak. We may then lower wt(`) by −

∑n
i=1 a

′
i to obtain that

the partial derivative is at least a′k. Since ak and a′k are bounded in absolute value by Λ,
so is the partial derivative. We get the same result by reasoning on the second equation
if a′k > ak.
We now come back to the case where the border is on the frontier of a region. Then,

146

it is a segment of a line of equation xk = c for some k and c. V`′ contains at most three
values for points of B: the limit coming from before the border, the value at the border,
and the limit coming from after the border. The computation of F(V) considers values
obtained from all three and takes the min (or the max).
Now, let y =

∑n
i=1 aixi + b be the equation defining the affine piece of V`′ before the

border (resp. at the border, after the border). Consider a valuation of coordinates ν =
(x1, . . . , xn) and another valuation of coordinates ν ′ = (x1, . . . , xj−1, xj + λ, xj+1, . . . , xn).
The delays d and d′ needed to arrive to the border starting from these two valuations
are such that ν + d and ν ′ + d′ both verify xk = c. We can then deduce that d′ − d = 0
if j 6= k and d′ − d = −λ if j = k. It is now possible to compute the partial derivative
of F(V)` in the j-th coordinate using (10.5) again. We may compute it by using the
equations of the affine piece before the border (resp. at the border, after the border).
Then,

V`′,ν+d =
n∑
i=1

ai(xi + d) + b =

(
n∑

i=1,i 6=k

ai(xi + d)

)
+ akc+ b

V`′,ν′+d′ =

(
n∑

i=1,i 6=k

ai(xi + d′)

)
+ akc+ b .

We thus obtain

F(V)`,ν′ −F(V)`,ν
λ

= aj if j 6= k

F(V)`,ν′ −F(V)`,ν
λ

= −wt(`)−
n∑

i=1,i 6=k

ai otherwise

Then, the partial derivatives are bounded, in absolute value, by |wt(`)|+ (n− 1)Λ.

As a corollary, we obtain Lemma 10.10.

10.2. Divergent weighted timed games
We will now explain how to compute all values in a divergent weighted timed game G.
This is a decidability result, and our computations will be performed on R(G). First,
we use the continuity on regions of final weights to argue that final weights can be
considered finite without loss of generality: indeed, the region abstraction can be seen as
a (finite) reachability two-player game by saying that (`, r) belongs to Min (resp. Max) if
` ∈ LMin (resp. ` ∈ LMax). If (`, ν) is a target configuration such that Val(`, ν) = +∞,
then for all ν ′ ∈ [ν],Val(`, ν ′) = +∞. Therefore, the attractor of Max to these +∞ target
configurations in JGK is a set of regions, equal to the attractor of Max to these +∞ target
regions in the finite region game. As a consequence, we can compute all such states of

147

R(G) with complexity linear in the size of R(G), and remove them safely by Lemma 7.2.
The same approach can be followed for the final weights −∞.

Now, we can compute the set of configurations of value +∞, with a similar technique.
Notice that a configuration (`, ν) cannot reach the target locations if and only if (`, [ν]) is
not in the attractor of Min to the targets in the finite region game. We can thus compute
all such states of R(G) with complexity linear in the size of R(G), and remove them
safely by Lemma 7.2.

We then decompose R(G) in SCCs. By Proposition 9.3, each SCC is either positive or
negative (i.e. it contains only positive cycles, or only negative ones). Then, in order to
find the sign of a component, it suffices to find one of its simple cycles, for example with
a depth-first search, then compute the weight of one play following it.

As we did for weighted (untimed) games, we then compute values in inverse topological
order over the SCCs. Once the values of all configurations in (`, r) appearing in previously
considered SCCs have been computed, they are no longer modified in further computation.
This is the case, in particular, for all pairs (`, r) that have value +∞, that we precompute
from the beginning. In order to resolve a positive SCC of R(G), we apply the value
iteration operator F on the current piecewise affine function, only modifying the pieces
appearing in the SCC, until reaching a fixpoint over these pieces. In order to resolve a
negative SCC of R(G), we compute the attractor for Max to the previously computed
SCCs: outside of this attractor, we set the value to −∞. Then, we apply F for pieces
appearing in the SCC, initialising them to −∞ (equivalently, we compute in the dual
game, that is a positive SCC), until reaching a fixpoint over these pieces. The next
proposition contains the correction and termination arguments that where presented in
Propositions 7.3, 7.4, and 7.5 for the untimed setting:

Proposition 10.2. Let G be a divergent game with no configurations of value +∞.

1. The value iteration algorithm applied on a positive SCC of R(G) with n region
states stabilises after at most n steps.

2. In a negative SCC, region states (`, r) of R(G) of value −∞ are all the ones not in
the attractor for Max to the targets.

3. The value iteration algorithm, initialised with −∞, applied on a negative SCC of
R(G) with n region states, and no configuration of value −∞, stabilises after at
most n steps.

Proof of Proposition 10.2-1. There are no negative cycles in the SCC, therefore there
are no configurations with value −∞, and all values are finite. Let K be a bound
on the values |V n

` (ν)| obtained after n steps of the algorithm.6 Let us fix an integer
p > (2K + (n− 1)2wmax)n. We will show that the values obtained after n+ p steps are
identical to those obtained after n steps only. Therefore, since the algorithm computes

6The value iteration emulates the attractor computation, so every value is finite after n steps. Moreover,
functions ν 7→ V n

` (ν) are piecewise affine with a finite number of pieces over a bounded space,
allowing us to obtain this uniform bound K.

148

non-increasing sequences of values, we have indeed stabilised after n steps only. Let us
assume the existence of a configuration (`, ν) such that V n+p

` (ν) < V n
` (ν). By induction

on p, we can show the existence of a configuration (`′, ν ′) and a finite play ρ from (`, ν) to
(`′, ν ′), with length p and weight V n+p

` (ν)− V n
`′ (ν

′): the play is composed of the delays
and transitions that optimise successively the min/max operator in F .

Claim (timed setting notations). For all i < j ∈ N, if V j 6= V i then, for all configur-
ations (`, ν), there exists (`′, ν ′) and a play ρ from (`, ν) to (`′, ν ′) with |ρ| = j − i and
wtΣ(ρ) = V j

` (ν)− V i
`′(ν

′).

Proof of Claim. Let us fix i, and prove it by induction on j > i.
Initialisation : If j = i + 1, we applied F once between V i and V j, so for all

configurations (`, ν) there exists (`′, ν ′) and a transition (`, ν)
d,t−→ (`′, ν ′) of weight

V j
` (ν)− V i

`′(ν
′).

Iteration : We assume the property holds for j − 1 > i, and V j 6= V i. We applied
F once between V j−1 and V j, so for all configurations (`, ν), there exists (`′, ν ′) and a
transition (`, ν)

d,t−→ (`′, ν ′) of weight V j
` (ν)− V i

`′(ν
′). We apply the property on i and

j − 1 (V j−1 6= V i because V j 6= V i and as soon as V stabilises, the fixpoint is reached
and the iteration stops), and obtain that for all configurations (`′, ν ′), there exists (`′′, ν ′′)
and a play ρ from (`′, ν ′) to (`′′, ν ′′) with |ρ| = j−1− i and wtΣ(ρ) = V j−1

`′ (ν ′)−V i
`′′(ν

′′)).
Then we define ρ′ = (`, ν)

d,t−→ (`′, ν ′)
ρ−→ (`′′, ν ′′) and it holds that |ρ′| = j − i and

wtΣ(ρ′) = V j
` (ν)− V i

`′′(ν
′′). 4 4

This finite play being of length greater than (2K + (n − 1)2wmax)n, if we associate
each visited configuration (`, ν) to the region state (`, [ν]), there is at least one state
of R(G) appearing more than 2K + (n − 1)2wmax times. Thus, it can be decomposed
into at least 2K + (n − 1)2wmax plays following cycles of R(G) and at most (n − 1)
finite plays ρ′i visiting each state of R(G) at most once. All cycles of the SCC being
positive, the weight of ρ is at least (2K + (n− 1)2wmax)− (n− 1)2wmax = 2K, bounding
from below each ρ′i’s weight by −(n − 1)wmax. Then, V n+p

` (ν) − V n
`′ (ν

′) > 2K, so
V n+p
` (ν) > 2K + V n

`′ (ν
′) > 2K −K > K. But K > V n

` (ν), so V n+p
` (ν) > V n

` (ν), and
that is a contradiction.

Much like in the untimed setting, negative SCCs can be resolved using a dual method.
First, we characterise the −∞ values as regions of R(G) where Max cannot unilaterally
guarantee to reach the targets.

Proof of Proposition 10.2-2. Consider a state (`, r) of R(G) in the attractor for Max to
the targets. Then, if Max applies a winning memoryless strategy for the reachability
objective to the target locations, for all ν ∈ r, all strategies of Min will generate a play
from (`, ν) reaching a target after at most |R(G)| steps. This implies that (`, ν) has a
finite (lower) value in the game.
Reciprocally, if (`, r) is not in the attractor, by determinacy of timed games with

reachability objectives, for all ν ∈ r, Min has a (memoryless) strategy σMin to ensure that
no strategy of Max permits to reach a target location from (`, ν). Applying σMin long

149

enough to generate a play following many negative cycles, before switching to a strategy
allowing Min to reach the target (such a strategy exists since no configuration has value
+∞ in the game), allows Min to obtain from (`, ν) a negative weight as small as possible.
Thus, (`, ν) has value −∞.

Thus, given a negative SCC, we can compute configurations of value −∞ in time
polynomial in the SCC’s size. Then, finite values of other configurations can be computed
by applying F .

Proof of Proposition 10.2-3. From a negative SCC G that has no more configuration of
value +∞ or −∞, consider the dual (positive) SCC G̃ obtained by: (i) switching locations
of Min and Max; (ii) taking the opposite of every weight in locations and transitions.
Sets of strategies of both players are exchanged in those two games, so that the upper
value in G is equal to the opposite of the lower value in G̃, and vice versa. Since weighted
games are determined, the value of G is the opposite of the value of G̃. Then, the value
of G can be deduced from the value of G̃, for which Proposition 10.2-1 applies.

It is then immediate that the values computed with this computation of the smallest
fixpoint of F are exactly the opposite values of the ones computed in the dual positive
SCC.

By Theorem 10.1, we obtain a triply-exponential algorithm computing the value of a
divergent weighted timed game. This shows that the value problem is in 3-EXPTIME
for divergent weighted timed game. The proof for EXPTIME-hardness comes from a
reduction of the problem of solving timed games with reachability objectives [JT07]. To a
reachability timed game, we simply add weights 1 on every edge and 0 on every location,
making it a divergent weighted timed game. Then, Min wins the reachability timed game
if and only if the value in the weighted timed game is lower than threshold α = |R(G)|.
One direction of this statement’s proof is direct by definition of having a value smaller
than +∞, and the other comes from the fact that reachability in the timed game implies
reachability in the region game in less than α transitions, in turn implying that Min can
ensure target reachability in the WTG with weight below α, i.e. ValG(s, ν) 6 α.
In an SCC of R(G), the value iteration algorithm of [ABM04] allows us to compute

an ε-optimal strategy for both players (for configurations having a finite value), that is
constant (delay or fire an edge) over each piece of the piecewise affine value function.
As in the untimed setting, we may then compose such ε-optimal strategies to obtain an
ε′-optimal strategy in G (ε′ is greater than ε, but can be controlled with respect to the
number of SCCs in R(G)).

150

11. Approximating values

In this chapter, we will study almost-divergent weighted timed games. Our goal is to
prove Theorem 9.2: Given an almost-divergent WTG G, a location ` and ε ∈ Q>0, we
can compute an ε-approximation of ValG(`,0) in time triply-exponential in the size of G
and polynomial in 1/ε.

To obtain this result, we follow an approximation schema that we now outline. First,
we will always reason on the region game R(G) of the almost-divergent WTG G. The
goal is to compute an ε-approximation of ValR(G)((`0, [0]),0) for some initial location `0.
As already recalled, techniques of Chapter 10 allow one to compute the (exact) values
of a WTG played on a finite tree, using the value iteration operator F . The idea is
thus to decompose as much as possible the game R(G) as a WTG over a tree. First, we
decompose the region game into SCCs (left of Figure 11.1), and as in previous chapters we
must think about the final weight functions as the previously computed approximations
of the values of SCCs coming after the current one in the topological order. We will keep
as an invariant that final weight functions are piecewise linear functions with a finite
number of pieces, and are continuous on each region.
For an SCC of R(G) and an initial state (`0, [0]) of R(G) provided by the SCC

decomposition, we follow Chapter 7.4 and show that the game on the SCC is equivalent
to a game on a tree built from a semi-unfolding (see middle of Figure 11.1) of R(G) from
(`0, [0]) of finite depth, with certain nodes of the tree being kernels (parts of R(G) that
contain all cycles of weight 0). The semi-unfolding is stopped either when reaching a final
location, or when some location (or kernel) has been visited for a certain fixed number of
times.
Then, we compute an approximation of Val(`0,0) with a bottom-up computation on

the semi-unfolding. This computation is exact on nodes labelled by a single region state s,
but approximated on kernel nodes Ks. For the latter, we use the corner-point abstraction
(right of Figure 11.1) over 1/N -regions to compute values, and prove that this provides
an 1/N -approximation of values.

Finally, we will use the semi-unfolding structure to derive our second result, stated in
Theorem 9.3: it is a more symbolic approximation schema based on the value iteration
algorithm only. It is more symbolic in the sense that it does not require the SCC
decomposition, the computation of kernels nor the semi-unfolding of the game in a tree.

Remark. As in previous chapters, one can assume without loss of generality that final
weights are finite. Then, it is easy to detect the set of states with value +∞: these are
all the states from which Min cannot ensure reachability of a target location ` ∈ Lt with
wtt(`) < +∞. It can therefore be computed by an attractor computation, and is indeed
a property constant on each region. In particular, removing those states from R(G) does

151

s0

s

Ks′

s

s

sf

Ks′′

sf

stop leaf

wtt(sf)

0 1

−3 −1 2 1

2

3

1

4

−3

1

−3

Figure 11.1.: Static approximation schema: SCC decomposition of R(G), semi-unfolding
of an SCC, corner-point abstraction for the kernels

not affect the value of any other state and can be done in complexity linear in |R(G)|.
We will therefore assume that the considered WTG have no configurations with value
+∞, and no target configuration with final weight +∞ or −∞.

11.1. Kernel of an almost-divergent WTG
The approximation procedure described above uses kernels in order to group together
all cycles of weight 0. We study those kernels and give a characterisation allowing
computability. Contrary to the non-negative case studied in [BJM15], the situation
is more complex in our arbitrary case, since weights of both locations and edges may
differ from 0 in the kernel. Moreover, it is not trivial (and may not be true in a non
almost-divergent WTG) to know whether it is sufficient to consider only simple cycles,
i.e. cycles without repetitions.

We will now construct the kernel K as the subgraph of R(G) containing all 0-cycles.
Formally, let TK be the set of edges of R(G) belonging to a simple 0-cycle, and SK be
the set of states covered by TK. We define the kernel K of R(G) as the subgraph of R(G)
defined by SK and TK. Edges in T\TK with starting state in SK are called the output
edges of K. We define it using only simple 0-cycles in order to ensure its computability.
However, we now show that this is of no harm, since the kernel contains exactly all the
0-cycles, which will be crucial in the approximation schema we present in Section 11.3.

Proposition 11.1. A cycle of R(G) is entirely in K if and only if it is a 0-cycle.

Proof. We prove that every 0-cycle is in K by induction on the length of the cycles.
The initialisation contains only cycles of length 1, that are in K by construction. If we
consider a cycle p of length n > 1, it is either simple or it can be rotated and decomposed
into p′p′′, p′ and p′′ being smaller cycles. Let ρ be a corner play following p′p′′. We
denote by ρ′ the prefix of ρ following p′ and ρ′′ the suffix following p′′. It holds that
wtΣ(ρ′) = −wtΣ(ρ′′), and in an almost-divergent SCC this implies wtΣ(ρ′) = wtΣ(ρ′′) = 0.
Therefore, by Lemma 9.1 both p′ and p′′ are 0-cycles, and they must be in K by induction

152

hypothesis. Note that this reasoning proves that every cycle contained in a longer 0-cycle
is also a 0-cycle.

t1
t2

t3

t4

t5

pt5

pt4

pt3

pt2

pt1

We now prove that every cycle in K is a 0-cycle. By construction, every edge t ∈ TK is
part of a simple 0-cycle. Thus, to every edge t ∈ TK, we can associate a path pt such
that tpt is a simple 0-cycle (rotate the simple cycle if necessary). We can prove (using
both Lemmas 9.1 and 9.2) the following property, that was trivial in the untimed setting,
by relying on another pumping argument on corners:

Claim. If t1 · · · tn is a path in K, then t1t2 · · · tnptn · · · pt2pt1 is a 0-cycle of R(G).

Proof of Claim. We prove the property by induction on n. For n = 1, the property is
immediate since t1pt1 is a 0-cycle. Consider then n such that the property holds for
n, and let us prove that it holds for n + 1. We will exhibit two corner plays following
t1 · · · tn+1ptn+1 · · · pt1 of opposite weight and conclude with Lemma 9.1.

Let v0 be a corner of last(tn+1). Since tn+1ptn+1 is a 0-cycle, there exists w ∈ Z, a corner
play ρ0 following tn+1 ending in v0 with weight w and a corner play ρ′0 following ptn+1

beginning in v0 with weight −w. We name v′0 the corner of last(tn) where ends ρ′0. We
consider any corner play ρ1 following tn+1 from corner v′0. The corner play ρ′0ρ1 follows
the path ptn+1tn+1 that is also a 0-cycle by Lemma 9.2, therefore ρ1 has weight w. We
denote by v1 the corner where ends ρ1. By iterating this construction, we obtain some
corner plays ρ0, ρ1, ρ2, . . . following tn+1 and ρ′0, ρ′1, ρ′2, . . . following ptn+1 such that ρ′i goes
from corner vi to v′i, and ρi+1 from corner v′i to vi+1, for all i > 0. Moreover, all corner
plays ρi have weight w and all corner plays ρ′i have weight −w. Consider the first index l
such that vl = vk for some k < l, which exists because the number of corners is finite.

We apply the induction to find a corner play following t1 · · · tnptn · · · pt1 , going through
the corner v′k in the middle: more formally, there exists wα, a corner play ρα following
t1 · · · tn ending in v′k with weight wα and a corner play ρ′α following ptn · · · pt1 beginning
in v′k with weight −wα. We apply the induction a second time with corner v′l−1: there
exists wβ, a corner play ρβ following t1 · · · tn ending in v′l−1 with weight wβ and a corner
play ρ′β following ptn · · · pt1 beginning in v′l−1 with weight −wβ.

The corner play ραρk+1ρ
′
k+1ρk+2ρ

′
k+2 · · · ρ′l−1ρ

′
β, of weight wα + (w − w)(l − k)− wβ =

wα − wβ, follows the cycle t1 · · · tn(tn+1ptn+1)
l−kptn · · · pt1 . The corner play ρβρlρ′kρ′α, of

weight wβ + w − w − wα = wβ − wα, follows the cycle t1 · · · tntn+1ptn+1ptn · · · pt1 . Since
the game is almost-divergent, and those two corner plays are in the same SCC, both have
weight 0. The second corner play of weight 0 ensures that the cycle t1 · · · tn+1ptn+1 · · · pt1
is a 0-cycle, by Lemma 9.1. 4

153

Now, if p is a cycle of R(G) in K, there exists a cycle p′ such that pp′ is a 0-cycle,
therefore p is a 0-cycle.

11.2. Semi-unfolding of almost-divergent WTGs
Given an almost-divergent WTG G, we describe the construction of its semi-unfolding
T (G) (as depicted in Figure 11.1). This crucially relies on the absence of states with
value −∞, so we explain how to deal with them first:

Lemma 11.1. In an SCC of R(G), the set of configurations with value −∞ is a union
of regions computable in time linear in the size of R(G).

Proof. If the SCC is non-negative, the cumulated weight cannot decrease along a cycle,
thus, there can be no configuration with value −∞.
If the SCC is non-positive, let Tt be the set of edges of R(G) whose end state has

location in Lt. We can prove that a configuration has value −∞ if and only if it belongs
to a state where player Min can ensure the LTL formula on edges: (G¬Tt) ∧ ¬FGTK.
The procedure to detect −∞ states thus consists of four attractor computations, which
can be done in time linear in |R(G)|.
Let us prove that a configurations has value −∞ if and only if it belongs to a state

where player Min can ensure the LTL formula on edges: φ = (G¬Tt) ∧ ¬FGTK. Since
ω-regular games are determined, this is equivalent to saying that a configuration has
finite value if and only if it belongs to a state where Max can ensure ¬φ.
If (`, r) is a region state where Min can ensure φ, he can ensure −∞ value from all

configurations in (`, r) by avoiding St for as long as he desires, while not getting stuck
in K, and thus going through an infinite number of negative cycles by Proposition 11.1.
This proves that a state where Max cannot ensure ¬φ contains only valuations of value
−∞. Conversely, if (`, r) is a state where Max can ensure ¬φ = (FTt) ∨ FGTK, then
from (`, r), Max must be able enforce either St reachability or staying in K forever. In
both cases, Max can ensure a value above −∞.

We can now assume that no states of G have value −∞, and that the final weight
function maps all configurations to R. Since wtt is piecewise linear with finitely many
pieces, wtt is bounded. Let wt

max denote the supremum of |wtt|, ranging over all target
configurations.
We now explain how to build the semi-unfolding T (G). We only build the semi-

unfolding T (G) of an SCC of G starting from some state (`0, r0) ∈ S of the region game,
since it is then easy to glue all the semi-unfoldings together to get the one of the full
game. Since every configuration has finite value, we will prove that values of the game
are bounded by |R(G)|wmax + wt

max. As a consequence, we can find a bound γ linear in
|R(G)|, wmax and wt

max such that a play that visits some state outside the kernel more
than γ times has weight strictly above |R(G)|wmax + wt

max, hence is useless for the value
computation. This leads to considering the semi-unfolding T (G) of G (nodes in the kernel
are not unfolded, see Figure 11.1) such that each node not in the kernel is encountered

154

at most γ times along a branch: the end of each branch is called a stopped leaf of the
semi-unfolding. In particular, the depth of T (G) is bounded by |R(G)|γ, and thus is
polynomial in |R(G)|, wmax and wt

max. Leaves of the semi-unfolding are thus of two types:
target leaves that are copies of target locations of G for which we set the target weight
as in G, and stop leaves for which we set their target weight as being constant to +∞ if
the SCC G is non-negative, and −∞ if the SCC is non-positive.

Proposition 11.2. Let G be an almost-divergent WTG, and let (`0, r0) be some state
of the region game. We can define a semi-unfolding T (G) with initial state (˜̀

0, r0)
(a copy of state (`0, r0)) which is equivalent to G, i.e. for all ν0 ∈ r0, ValG(`0, ν0) =
ValT (G)((˜̀

0, r0), ν0).

11.2.1. Semi-unfolding construction

In order to prove Proposition 11.2, we will construct the desired semi-unfolding T (G) of a
(non-negative or non-positive) SCC G, largely following the semi-unfolding of Chapter 7.4.

If (`, r) is in K, we let K`,r be the part of K accessible from (`, r) (note that K`,r is an
SCC as K is a disjoint set of SCCs). We define the output edges of K`,r as being the
output edges of K accessible from (`, r). If (`, r) is not in K, the output edges of (`, r)
are the edges of R(G) starting in (`, r).

Formally, we define a tree T whose nodes will either be labelled by region graph states
(`, r) ∈ S\SK or by kernels K`,r, and whose edges will be labelled by output edges in R(G).
The root of the tree T is labelled with (`0, r0), or K`0,r0 (if (`0, r0) belongs to the kernel),
and the successors of a node of T are then recursively defined by its output edges. When
a state (`, r) is reached by an output edge, the child is labelled by K`,r if (`, r) ∈ K,
otherwise it is labelled by (`, r). Edges in T are labelled by the edges used to create
them. Along every branch, we stop the construction when either a final state is reached
(i.e. a state not inside the current SCC) or the branch contains 3|R(G)|wmax + 2wt

max + 2
nodes labelled by the same state ((`, r) or K`,r). Leaves of T with a location belonging
to Lt are called target leaves, others are called stopped leaves.

We now transform T into a WTG T (G), by replacing every node labelled by a state (`, r)
by a different copy (˜̀, r) of (`, r). Those states are said to inherit from (`, r). Edges of T
are replaced by the edges labelling them, and have a similar notion of inheritance. Every
non-leaf node labelled by a kernel K`,r is replaced by a copy of the WTG K`,r, output
edges being plugged in the expected way. We deal with stopped leaves labelled by a
kernel K`,r by replacing them with a single node copy of (`, r), like we dealt with node
labelled by a state (`, r). State partition between players and weights are inherited from
the copied states of R(G). The only initial state of T (G) is the state denoted by (˜̀

0, r0)
inherited from (`0, r0) in the root of T (either (`0, r0) or K`0,r0). The final states of T (G)
are the states derived from leaves of T . If R(G) is a non-negative (resp. non-positive)
SCC, the final weight function wtt is inherited from R(G) on target leaves and set to
+∞ (resp. −∞) on stopped leaves.

155

11.2.2. Semi-unfolding correctness

We will now prove that Proposition 11.2 holds on this semi-unfolding T (G).

Lemma 11.2. All finite plays in R(G) have cumulated weight (ignoring final weights) at
least −|R(G)|wmax in the non-negative case, and at most |R(G)|wmax in the non-positive
case. Moreover, values of the game are bounded by |R(G)|wmax + wt

max.

Proof. Suppose first that R(G) is a non-negative SCC. Consider a play ρ following a
path p. This path p can be decomposed into p = p1pc1 · · · pnpcn such that every pci is a
cycle, and p1 . . . pn is a simple path in R(G) (thus

∑n
i=1 |pi| 6 |R(G)|). Let us define all

plays ρi and ρci as the restrictions of ρ on pi and pci . Now, since all plays following cycles
have cumulated weight at least 0,

wtΣ(ρ) =
n∑
i=1

wtΣ(ρi) + wtΣ(ρci) >
n∑
i=1

−wmax|ρi|+ 0 > −|R(G)|wmax .

Similarly, we can show that every play in a non-positive SCC has cumulated weight at
most |R(G)|wmax.

For the bound on the values, consider again two cases. If R(G) is non-negative, consider
any memoryless attractor strategy σMin for Min toward St. Since all states have values
below +∞, all plays obtained from strategies of Max will follow simple paths of R(G),
that have cumulated weight at most |R(G)|wmax in absolute value. Similarly, if R(G) is
non-positive, following the proof of Lemma 11.1, since all values are above −∞, Max
can ensure ¬φ, i.e. (FTt) ∨ FGTK on all states. Then we can construct a strategy σMax

for Max combining an attractor strategy toward St on states satisfying FTt, a safety
strategy on states satisfying GTK, and an attractor strategy toward the latter on all
other states. Then, all plays obtained from strategies of Min will either not be winning
(GTK) or follow simple paths of R(G). Both cases imply that the values of the game are
bounded by |R(G)|wmax + wt

max.

Lemma 11.3. All plays in T (G) from the initial state to a stopped leaf have cumulated
weight at least 2|R(G)|wmax + 2wt

max + 1 if the SCC R(G) is non-negative, and at most
−2|R(G)|wmax − 2wt

max − 1 if it is non-positive.

Proof. Note that by construction, all finite paths in T (G) from the initial state to a
stopped leaf can be decomposed as p′p1 · · · p3|R(G)|wmax+2wt

max+1 with all pi being cycles
around the same state. Additionally, those cycles cannot be 0-cycles by Proposi-
tion 11.1, since they take at least one edge outside of K. Therefore the restriction
of ρ to p1 · · · p3|R(G)|wmax+2wt

max+1 has weight at least 3|R(G)|wmax + 2wt
max + 1 (in the

non-negative case) and at most −3|R(G)|wmax−2wt
max−1 (in the non-positive case). The

beginning of the play, following p′, has cumulated weight at least −|R(G)|wmax (in the
non-negative case) and at most |R(G)|wmax (in the non-positive case), by Lemma 11.2.

Consider two plays in R(G) and T (G), respectively:

ρ = ((`1, r1), ν1)
d1,t1−−→ · · · dn−1,tn−1−−−−−−→ ((`n, rn), νn)

156

ρ̃ = ((˜̀
1, r1), ν1)

d1,,t̃1−−−→ · · · dn−1,t̃n−1−−−−−−→ ((˜̀
n, rn), νn) .

They are said to mimic each other if every (˜̀
i, ri) is inherited from (`i, ri) and every edge

t̃i is inherited from the edge ei. Combining Lemmas 11.3 and 11.2, we obtain:

Lemma 11.4. If R(G) is a non-negative (resp. non-positive) SCC, every play from the
initial state and with cumulated weight less than |R(G)|wmax + 2wt

max + 1 (resp. greater
than −|R(G)|wmax − 2wt

max − 1) can be mimicked in T (G) without reaching a stopped
leaf. Conversely, every play in T (G) reaching a target leaf can be mimicked in R(G).

Proof. We prove only the non-negative case. Let ρ be a play of R(G) with cumulated
weight less than |R(G)|wmax + 2wt

max + 1. Consider the branch of the unfolded game
it follows. If ρ cannot be mimicked in T (G), then a prefix of ρ reaches the stopped
leaf of that branch when mimicked in T (G). In this situation, ρ starts by a prefix of
weight at least 2|R(G)|wmax + 2wt

max + 1 by Lemma 11.3 and then ends with a suffix
play of weight at least −|R(G)|wmax by Lemma 11.2, and that contradicts the initial
assumption. The non-positive case is proved exactly the same way, and the converse is
true by construction.

Then, the plays of R(G) starting in an initial configuration that cannot be mimicked
in T (G) are not useful for value computation, which is formalised by Proposition 11.3:

Proposition 11.3. For all valuations ν0 ∈ r0, ValG(`0, ν0) = ValT (G)((˜̀
0, r0), ν0).

Proof. By Lemma 8.1, we already know that ValG(`0, ν0) = ValR(G)((`0, r0), ν0). Recall
that we only left finite values in R(G) (in the final weight functions, in particular), and
more precisely |ValR(G)((`0, r0), ν0)| 6 |R(G)|wmax + wt

max by Lemma 11.2. We first show
that the value is also finite in T (G). Indeed, if ValT (G)((˜̀

0, r0), ν0) = +∞, since we
assumed all final weights of R(G) bounded, we are necessarily in the non-negative case,
and Max is able to ensure stopped leaves reachability.

Claim. If ValT (G)((˜̀
0, r0), ν0) = +∞, then there are no winning strategies in R(G)

for Min ensuring weight less than |R(G)|wmax + wt
max + 1 from (`0, r0).

Thus, we can obtain the contradiction ValR(G)((`0, r0), ν0) > |R(G)|wmax + wt
max.

Proof of Claim. By contradiction, consider a strategy σMin of Min ensuring weight
A 6 |R(G)|wmax + wt

max + 1 in R(G). Then, for all σMax, the cumulated weight of
playR(G)(((˜̀

0, r0), ν0), σMin, σMax) (reaching target configuration (`, ν)) is at most A −
wtt(`, ν) 6 |R(G)|wmax + 2wt

max + 1, and by Lemma 11.4 this play does not reach a
stopped leaf when mimicked in T (G), which is absurd. 4

If ValT (G)((˜̀
0, r0), ν0) = −∞, we are necessarily in the non-positive case, and by

construction this implies having Min ensuring stopped leaves reachability in T (G).

Claim. If ValT (G)((˜̀
0, r0), ν0) = −∞, then there are no winning strategies in R(G)

for Max ensuring weight above −|R(G)|wmax − wt
max − 1 from (`0, r0).

Thus, we can obtain the contradiction ValR(G)((`0, r0), ν0) < −|R(G)|wmax − wt
max.

157

Proof of Claim. By contradiction, consider a strategy σMax of Max ensuring weight
A > −|R(G)|wmax − wt

max − 1 in R(G). Then, for all σMin, the cumulated weight
of playR(G)(((˜̀

0, r0), ν0), σMin, σMax) (reaching target configuration (`, ν)) is at least A−
wtt(`, ν) > −|R(G)|wmax − 2wt

max − 1, and by Lemma 11.4 this play does not reach a
stopped leaf when mimicked in T (G), which is absurd. 4

If R(G) is non-negative, for all ε > 0 we can fix an ε-optimal strategy σMin for Min
in T (G). It is a winning strategy, so every play derived from σMin in T (G) reaches
a target leaf, and can be mimicked in R(G) by Lemma 11.4. Therefore, σMin can be
mimicked in R(G), where it is also winning, with the same value. From this we deduce
ValR(G)((`0, r0), ν0) 6 ValT (G)((˜̀

0, r0), ν0). If R(G) is non-positive, the same reasoning
applies by considering an ε-optimal strategy for Max in T (G).
Let us now show the reverse inequality. If R(G) is non-negative, let us fix 0 < ε < 1,

an ε-optimal strategy σMin for Min in R(G), and a strategy σMax of Max in R(G). Let ρ
be their outcome playR(G)(((`0, r0), ν0), σMin, σMax), ρk be the finite prefix of ρ defining its
cumulative weight and (`k, νk) be the configuration defining its final weight, such that
wtR(G)(ρ) = wtΣ(ρk) + wtt(`k, νk). Then,

wtR(G)(ρ) 6 ValR(G)((`0, r0), ν0) + ε < |R(G)|wmax + wt
max + 1 ,

therefore

wtΣ(ρk) < |R(G)|wmax + wt
max + 1− wtt(`k, νk) 6 |R(G)|wmax + 2wt

max + 1 ,

and by Lemma 11.4 all such plays ρ can be mimicked in T (G), so that

ValT (G)((˜̀
0, r0), ν0) 6 ValR(G)((`0, r0), ν0) .

Once again, if R(G) is non-positive, the same reasoning applies by considering an
ε-optimal strategy for Max in R(G).

This proof not only holds on an SCC, but also on full almost-divergent WTGs, by
simply stacking the semi-unfoldings of each SCC on top of each others.
Note that the semi-unfolding procedure of an SCC depends on wt

max, where wtt can
be the value function of an SCCs under the current one. Assuming all configurations
have finite value, we can extend the reasoning of Lemma 11.2 and bound all values in
the full game by |R(G)|wmax + wt

max, which lets us bound uniformly the unfolding depth
of each SCC and gives us a bound on the depth of the complete semi-unfolding tree:
|R(G)|(5|R(G)|wmax + 2wt

max + 2) + 1.

158

11.3. Approximation of almost-divergent WTGs

11.3.1. Approximation of kernels

We start by approximating a kernel G by extending the region-based approximation
schema of [BJM15]. In their setting, all runs in kernels had weight 0, allowing a reduction
to a finite weighted game. In our setting, we have to approximate the timed dynamics
of runs, and therefore resort to the corner-point abstraction (as shown to the right
of Figure 11.1).
Since final weight functions are piecewise linear with a finite number of pieces and

continuous on regions, they are Λ-Lipschitz-continuous, for a given constant Λ > 0. We
let B = wLmax |L||Reg(X ,M)|+ Λ.

Let N be an integer. Consider the corner-point abstraction game ΓN(G) described in
Chapter 8, with locations of the form (`, r, v) with v a corner of the 1/N -region r. Two
plays ρ of G and ρ′ of ΓN(G) are said to be 1/N-close if they follow the same path p in
RN (G). In particular, at each step the configurations (`, ν) in ρ and (`′, r′, v′) in ρ′ (with
v′ a corner of the 1/N -region v′) satisfy ` = `′ and ν ∈ r′, and the edges taken in both
plays have the same discrete weights. Close plays have close weights, in the following
sense:

Lemma 11.5. For all 1/N-close plays ρ of G and ρ′ of ΓN(G),

|wtG(ρ)− wtΓN (G)(ρ
′)| 6 B/N .

Proof. Since ρ and ρ′ follow the same locations ` of G, one reaches a target location if
and only if the other does. In the case where they do not reach a target location, both
weights are infinite, and thus equal. We now look at the case where both plays reach a
target location, moreover in the same step.

Consider the region path p of the run ρ: p can be decomposed into a simple path with
maximal cycles in it. The number of such maximal cycles is bounded by |L×Reg(X ,M)|
and the remaining simple path has length at most |L× Reg(X ,M)|. Since all cycles of a
kernel are 0-cycles, the parts of ρ that follow the maximal cycles have weight exactly 0.
Consider the same decomposition for the play ρ′. Cycles of p do not necessarily map

to cycles over locations of ΓN(G), since the 1/N -regions could be distinct. However,
Lemma 8.3 shows that, for all those cycles of p, there exists a sequence of finite plays of
G whose weight tends to the weight of ρ′. Since all those finite plays follow a cycle of the
region game R(G) (with G being a kernel), they all have weight 0. Hence, the parts of ρ′
that follow the maximal cycles of p have also weight exactly 0.

Therefore, the difference |wtG(ρ)−wtΓN (G)(ρ
′)| is concentrated on the remaining simple

path of p: on each edge of this path, the maximal weight difference is 1/N × wLmax since
1/N is the largest difference possible in time delays between plays that stay 1/N -close
(since they stay in the same 1/N -regions). Moreover, the difference between the final
weight functions is bounded by Λ/N , since the final weight function wtt is Λ-Lipschitz-
continuous and the final weight function of ΓN(G) is obtained as limit of wtt. Summing
the two contributions, we obtain as upper bound the constant B/N .

159

In particular, if we start in configurations (`0, ν0) of G, and ((`0, r0, v0), v0) of ΓN(G),
with ν0 ∈ r0, since both players have the ability to stay 1/N -close all along the plays, a
bisimulation argument permits to obtain that the values of the two games are also close
in (`0, ν0) and ((`0, r0, v0), v0):

Lemma 11.6. For all locations ` ∈ L, 1/N-regions r, ν ∈ r and corners v of r,
|ValG(`, ν)− ValΓN (G)((`, r, v), v)| 6 B/N .

Proof. Let us prove that for α = B/N ,

ValG(`, ν) 6 ValΓN (G)((`, r, v), v) + α , and

ValΓN (G)((`, r, v), v) 6 ValG(`, ν) + α .

By definition and determinacy of turn-based WTG, this is equivalent to proving these
two inequalities:

inf
σMin

sup
σMax

wtG(play((`, ν), σMin, σMax)) 6 inf
σ′Min

sup
σ′Max

wtΓN (G)(play(((`, r, v), v), σ′Min, σ
′
Max)) + α

sup
σ′Max

inf
σ′Min

wtΓN (G)(play(((`, r, v), v), σ′Min, σ
′
Max)) 6 sup

σMax

inf
σMin

wtG(play((`, ν), σMin, σMax)) + α

Consider the following equation:

|wtG(play((`, ν), σMin, σMax))− wtΓN (G)(play(((`, r, v), v), σ′Min, σ
′
Max))| 6 α . (11.1)

To show the first inequality, it suffices to show that for all σ′Min, there exists σMin such
that for all σMax, there is σ′Max verifying (11.1). For the second, it suffices to show that
for all σ′Max, there exists σMax such that for all σMin, there is σ′Min verifying (11.1). We will
detail the proof for the first, the second being syntactically the same, with both players
swapped.

Equation (11.1) can be obtained from Lemma 11.5, under the condition that the plays
play((`, ν), σMin, σMax) and play(((`, r, v), v), σ′Min, σ

′
Max) are 1/N -close. Therefore, we fix

a strategy σ′Min of Min in the game ΓN(G), and we construct a strategy σMin of Min in
G, as well as two mappings f : FPlaysMin

G → FPlaysMin
ΓN (G) and g : FPlaysMax

ΓN (G) → FPlaysMax
G

such that:

• for all ρ ∈ FPlaysMin
G , ρ and f(ρ) are 1/N -close, and if ρ is consistent with σMin and

starts in (`, ν), then f(ρ) is consistent with σ′Min and starts in ((`, r, v), v);

• for all ρ′ ∈ FPlaysMax
ΓN (G), g(ρ′) and ρ′ are 1/N -close, and if ρ′ is consistent with σ′Min

and starts in ((`, r, v), v), then g(ρ′) is consistent with σMin and starts in (`, ν).

We build σMin, f , and g by induction on the length n of plays, over prefixes of plays of
length n− 1, n and n, respectively. For n = 0 (plays of length 0 are those restricted to a
single configuration), we let f(`, ν) = ((`, r, v), v) and g((`, r, v), v) = (`, ν), leaving the
other values arbitrary (since we will not use them).

160

Then, we suppose σMin, f , and g built until length n − 1, n and n, respectively (if
n = 0, σMin has not been build yet), and we define them on plays of length n, n+ 1 and
n+ 1, respectively. For every ρ ∈ FPlaysMin

G of length n, we note ρ′ = f(ρ). Consider the
decision (d′, e′) = σ′Min(ρ

′) and ρ′+ the prefix ρ′ extended with the decision (d′, e′). By
timed bisimulation, there exists (d, e) such that the prefix ρ+ composed of ρ extended
with the decision (d, e) builds 1/N -close plays ρ+ and ρ′+. We let σMin(ρ) = (d, e). If
ρ+ ∈ FPlaysMin

G , we also let f(ρ+) = ρ′+, and otherwise we let g(ρ′+) = ρ+. Symmetrically,
consider ρ′ ∈ FPlaysMax

ΓN (G) of length n, and ρ = g(ρ′). For all possible decisions (d′, e′), by
timed bisimulation, there exists a decision (d, e) in the prefix ρ such that the respective
extended plays ρ′+ and ρ+ are 1/N -close. We then let g(ρ′+) = ρ+ if ρ+ ∈ FPlaysMax

G and
f(ρ+) = ρ′+ otherwise. We extend the definition of f and g arbitrarily for other prefixes
of plays. The properties above are then trivially verified.
We then fix a strategy σMax of Max in the game G, which determines a unique play

play((`, ν), σMin, σMax). We construct a strategy σ′Max of Max in the game ΓN (G) by building
the unique play play(((`, r, v), v), σ′Min, σ

′
Max) we will be interested in, such that each of its

prefixes is in relation, via f or g, to the associated prefix of play((`, ν), σMin, σMax). Thus,
we only need to consider a prefix of play ρ′ ∈ FPlaysMax

ΓN (G) that starts in ((`, r, v), v) and is
consistent with σ′Min, and σ′Max built so far. Consider the play ρ = g(ρ′), starting in (`, ν)
and consistent with σMin, and σMax (by assumption). For the decision (d, e) = σMax(ρ)
(letting ρ+ be the extended prefix), the definition of f and g ensures that there exists a
decision (d′, e′) after ρ′ that results in an extended play ρ′+ that is 1/N -close, via f or g,
with ρ+. We thus can choose σ′Max(ρ

′) = (d′, e′).
We finally have built two plays play((`, ν), σMin, σMax) and play((`′, ν ′), σ′Min, σ

′
Max) that

are 1/N -close, as needed, which concludes this proof.

Using this result, picking N an integer larger than B/ε, we can thus obtain |ValG(`, ν)−
ValΓN (G)((`, r, v), v)| 6 ε. Recall that ΓN(G) can be considered as an untimed weighted
game (with reachability objective). Thus we can apply the result of [BGHM16], where it
is shown that the optimal values of such games can be computed in pseudo-polynomial
time (i.e. polynomial time with weights encoded in unary, instead of binary). We then
define an ε-approximation of ValG , named Val′N , on each 1/N -region by interpolating the
values of its 1/N -corners in ΓN(G) with a piecewise linear function: therefore, we can
control the Lipschitz constant of the approximated value for further use.

Lemma 11.7. Val′N is an ε-approximation of ValG, that is piecewise linear with a finite
number of pieces and 2B-Lipschitz-continuous over regions.

Proof. By construction, the approximated value is piecewise linear with one piece per
1/N -region. To prove the Lipschitz constant, it is then sufficient to bound the difference
between ValΓN (G)((`, r, v), v) and ValΓN (G)((`, r, v

′), v′), for v and v′ two corners of a 1/N -
region r. We can pick any valuation ν in r and apply Lemma 11.6 twice, between ν
and v, and between ν and v′. We obtain |ValΓN (G)((`, r, v), v)− ValΓN (G)((`, r, v

′), v′)| 6
2B/N = 2‖v − v′‖∞B.

161

11.3.2. Approximation of almost-divergent WTGs

We now explain how to approximate the value of an almost-divergent WTG G, thus
proving Theorem 9.2. First, we compute a semi-unfolding T (G) as described in the
previous section. Then we perform a bottom-up computation of the approximation.
As already recalled, techniques of Chapter 10 allow us to compute exact values of a
tree-shape WTG. In consequence, we know how to compute the value of a non-kernel
node of T (G), depending of the values of its children. There is no approximation needed
here, so that if all children are ε-approximation, we can compute an ε-approximation
of the node. Therefore, the only approximation lies in the kernels, and we explained
before how to compute an arbitrarily close approximation of the value of a kernel. We
crucially rely on the fact that the value function is 1-Lipschitz-continuous1. This entails
that imprecisions will sum up along the bottom-up computations, as computing an
ε-approximation of the value of a game whose final weights are ε′-approximations yields
an (ε+ε′)-approximation. Therefore we compute approximations with threshold ε′ = ε/α
for kernels in T (G), where α is the maximal number of kernels along a branch of T (G):
α is smaller than the depth of T (G), which is bounded by Proposition 11.2.

The subregion granularity considered before for kernel approximation crucially depends
on the Lipschitz constant of final weights. The growth of these constants is bounded
for kernels in T (G) by Lemma 11.7. For non-kernel nodes of T (G), we use the careful
analysis of Lemma 10.10, detailed in Chapter 10.1.5.
The overall time complexity of this method is triply-exponential in the size of the

input game and polynomial in 1/ε.

1Indeed, inf and sup are 1-Lipschitz-continuous functions, and with a fixed play ρ, the mapping
wtt 7→ wtΣ(ρ) + wtt(last(ρ)) is 1-Lipschitz-continuous.

162

11.4. Example of an execution of the approximation
schema

0

`0

1

`1

−1
`2

1

`3

0

`4

`t

wtt(x, y) = x

0 < x < 1
x := 0

0

y < 2
1 < x < 2

y := 0

0

1 < x < 2
x := 0

1
y = 1
y := 0

1
x = 1

0

1 < x < 2, y < 1
x := 0

−2

y = 0

0

x

y

1 20

1

2

`0,0

x

y

1 20

1

2

`1,1

x

y

1 20

1

2

`2,−1

x

y

1 20

1

2

`3,1

x

y

1 20

1

2

`4,0

x

y

1 20

1

2

`t

wtt(x, y) = x

0

0
1 1 0

−2

0

Figure 11.2.: A weighted timed game G with two clocks x and y, and the portion of its
region game R(G) accessible from configuration (`0, (0, 0)). Locations of
Min (resp. Max) are depicted as circles (resp. squares). The states of R(G)
are labeled by their associated region, location and weight, and edges are
labeled by a representation of their guards and resets. Since each location
` of G leads to a unique state (`, r) of R(G), we will refer to states by their
associated location label.

We are given the WTG G in Figure 11.2 and ε ∈ Q>0, and want to compute an ε-
approximation of its value in location `0 for the valuation (x=0, y=0), denoted ValG(`0, (0, 0)).
In this example, we will use ε=15 because the computations would not be readable
with a smaller precision. We also chose an example where R(G) is isomorphic to G for
readability reasons. R(G) contains one SCC {`1, `2, `3, `4}, made of two simple cycles:

• p1 = `1 → `2 → `1 is a positive cycle (all plays following p1 have cumulated weight
in the interval (1, 3)),

163

• and p2 = `1 → `3 → `4 → `1 is a 0-cycle (all plays following p2 have cumulated
weight 0). This can be checked by Lemma 8.3.

Therefore, R(G) only contains non-negative SCCs and is almost-divergent. Since all
states are in the attractor of Min towards Lt, all cycles are non-negative and the final
weight function is bounded (on all reachable regions), there are no configurations in R(G)
with value +∞ or −∞.

We let the kernel K be the sub-game of R(G) defined by p2, and we construct a
semi-unfolding T (G) of R(G) of equivalent value. Following Section 11.2.1 , we should
unfold the game until every stopped branch contains a state seen at least 3|R(G)|wmax +
2wt

max + 2 = 3× 3× 4 + 2× 1 + 2 = 40 times. We will unfold with bound 4 instead of 40
for readability (it is enough on this example). Thus the infinite branch (`1`2)ω is stopped
when `1 is reached for the fourth time, as depicted in Figure 11.3.

`′1

`′3`′4

`′t`′2

`0`2

K′`1

`0

K`1

`2

K′`1

`′2

K′′`1

`′′2

`′′′1

`′′t

`′t

`t

wtt(x, y) = +∞

wtt(x, y) = x

wtt(x, y) = x

wtt(x, y) = x

Figure 11.3.: The kernel K (with input state `1), and a semi-unfolding T (G) such that
ValG(`0, (0, 0)) = ValT (G)(`0, (0, 0)). We denote by `i, `′i and `′′i the locations
in K, K′ and K′′.

Let us now compute an approximation of ValT (G). Let us first remove the states of value
+∞: `′′′1 and `′′2. Then, we start at the bottom and compute an (ε/3)-approximation of the
value of `′′1 in the game defined by K′′`1 and its output edge to `′′t . Following Section 11.3.1,
we should use N > 3(4 + 1)/ε and compute values in the 1/N -corners game CN(K′′`1) in
order to obtain an (ε/3)-approximation of the value function. For ε = 15 we will use
N = 1 (in this case the computation happens to be exact and would also hold with a
small ε). We construct this corner game, and obtain the finite (untimed) weighted game
in Figure 11.4.

164

x

y

c′1

x

y

c1

x

y

c′3

x

y

c3

x

y

c4

x

y

c′4

x

y

c′t,wtt = 1

x

y

ct,wtt = 0

2

0

−2

1

1

−2

−2 0 0

Figure 11.4.: The finite weighted game obtained from C1(K′′`1), where ci and c
′
i are the

corners of `′′i in T (G).

We can compute the values in this game to obtain Val(c′1) = 1 and Val(c1) = 3. We
then define a value for every configuration in state `′′1 by linear interpolation, obtaining:

(x, y) 7→ 3− 2y .

This happens to be exactly (x, y) 7→ ValT (G)(`
′′
1, (x, y)) in this case, but would only be

an ε/3-approximation of it in general. Now, we can compute an ε/3-approximation of
ValT (G)(`

′
2) with one step of value iteration, obtaining

(x, y) 7→ inf
0<d<2−x

(−1)× d+ 1 + 3− 2(0 + d) = 3x− 2 .

The next step is computing an ε/3-approximation of the value of `′1 in the game defined
by K′`1 and its output edges to `′t and `′2, of respective final weight functions (x, y) 7→ x
and (x, y) 7→ 3x− 2. This will give us a 2ε/3-approximation of ValT (G)(`

′
1).

Following Section 11.3.1 once again, we should use N > 3(5 + 3)/ε and compute values
in the 1/N -corners game CN(K′`1). For ε = 15 this gives N = 2 (which will once again
keep the computation exact). We can construct a finite (untimed) weighted game as in
Figure 11.4, and obtain a value for each 1/2-corner of state `′1:

• On the 1/2-region (0 < y < 1/2, x = 0), corner (0, 0) has value 2 and corner (0, 1/2)
has value 2.

• On the 1/2-region (y = 1/2, x = 0), corner (0, 1/2) has value 2.

• On the 1/2-region (1/2 < y < 1, x = 0), corner (0, 1/2) has value 2 and corner (0, 1)
has value 1.

From these results, we define a piecewise-linear function by interpolating the values of

165

corners on each 1/2-region, and obtain

(x, y) 7→

{
2 if y 6 1/2

3− 2y otherwise

as depicted in Figure 11.5.

1/2 y

Val`′1(0, y)

0 1
0

1

2

Figure 11.5.: The value function (x, y) 7→ ValT (G)(`
′
1, (x, y)), projected on x = 0. Black

dots represent the values obtained for 1/2-corners using the corner-point
abstraction.

This gives us a 2ε/3-approximation of (x, y) 7→ ValT (G)(`
′
1, (x, y)) (in fact exactly

ValT (G)(`
′
1)). Now, we can compute a 2ε/3-approximation of ValT (G)(`2) on region (1 <

x < 2, y = 0) with one step of value iteration, obtaining :

(x, y)→ inf
0<d<2−x

{
3− d if d 6 1/2

4− 3d otherwise
=

{
3x− 2 if x 6 3/2

x + 1 otherwise

Then, we need to compute an ε/3-approximation of the value of `1 in the game defined
by K`1 and its output edges to `t and `2, of respective final weight functions (x, y) 7→ x
and (x, y) 7→ 3x− 2 if x 6 3/2; x + 1 otherwise. This will give us an ε-approximation of
ValT (G)(`1).

Following Section 11.3.1 one last time, we should use N > 3(5 + 3)/ε and compute
values in the 1/N -corner game CN(K`1). This time, let us use N = 3 to showcase an
example where the computed value is not exact. We can construct a finite (untimed)
weighted game as in Figure 11.4, and obtain a value for each 1/3-corner of state `′1.
From these results, we define a piecewise-linear function by interpolation, as depicted in
Figure 11.6.

166

1/3 2/3 y

Val`1(0, y)

0 1
0

1

2

Figure 11.6.: The value function (x, y) 7→ ValT (G)(`1, (x, y)), projected on x = 0, is
depicted in red. Black dots represent the values obtained for 1/3-corners
using the corner-points abstraction, and the derived approximation of the
value function is depicted in blue

Finally, from this ε-approximation of ValT (G)(`1), we can compute an ε-approximation
of ValT (G)(`0) using one step of value iteration, and conclude. On our example this ensures

ValT (G)(`0, (0, 0)) = sup
0<d<1

ValT (G)(`1, (0, d)) ∈ [2− ε, 2 + ε] .

11.5. Symbolic approximation algorithm
The previous approximation result suffers from several drawbacks. It relies on the SCC
decomposition of the region automaton. Each of these SCCs have to be analysed in a
sequential way, and their analysis requires an a priori refinement of the granularity of
regions. This approach is thus not easily amenable to implementation. We instead prove
in this section that the symbolic approach based on the value iteration paradigm, i.e. the
computation of iterates of the operator F recalled in page 126, is an approximation
schema. This is stated in Theorem 9.3, for which we now sketch a proof in this section.

Notice that configurations with value +∞ are stable through value iteration, and do not
affect its other computations. Since Theorem 9.3 assumes the absence of configurations
of value −∞, we will therefore consider in the following that all configurations have finite
value in G.

Consider first a game G that is a kernel. By the results of Section 11.3.1, there exists
an integer N such that solving the untimed weighted game ΓN(G) computes an ε/2-
approximation of the value of 1/N corners. Using the results of [BGHM16] for untimed
weighted games, we know that those values are obtained after a finite number of steps of
(the untimed version of) the value iteration operator. More precisely, if one considers a
number of iterations

P = |L||RegN(X ,M)|(|X |+ 1)(2(|L||RegN(X ,M)|(|X |+ 1)− 1)wmax + 1) ,

then ValPΓN (G)((`, r, v), v) = ValΓN (G)((`, r, v), v). From this observation, we deduce the
following property of P :

167

Lemma 11.8. If G is a kernel with no configurations of infinite value, then |ValG(`, ν)−
ValPG (`, ν)| 6 ε for all configurations (`, ν) of G.

Proof. We already know that ValPΓN (G)((`, r, v), v) = ValΓN (G)((`, r, v), v) for all configura-
tions ((`, r, v), v) of ΓN (G). Moreover, Section 11.3.1 ensures |ValG(`, ν)−ValΓN (G)((`, r, v), v)| 6
ε/2 whenever ν is in the 1/N -region r. Therefore, we only need to prove that |ValPG (`, ν)−
ValPΓN (G)((`, r, v), v)| 6 ε/2 to conclude. This is done as for Lemma 11.6, since Lemma 11.5
(that we need to prove Lemma 11.6) does not depend on the length of the plays ρ and
ρ′, and both runs reach the target state in the same step, i.e. both before or after the
horizon of P steps.

Once we know that value iteration converges on kernels, we can use the semi-unfolding
of Section 11.2 to prove that it also converges on non-negative SCCs when all values are
finite.

Lemma 11.9. If G is a non-negative SCC with no configurations of infinite value, we
can compute P+ such that |ValG(`, ν)− ValP+

G (`, ν)| 6 ε for all configurations (`, ν) of G.

Proof. Consider a non-negative SCC G, a precision ε, and an initial configuration (`0, ν0).
Let T (G) be its finite semi-unfolding (obtained from the labelled tree T , as in Sec-
tion 11.2.1), such that ValG(`0, ν0) = ValT (G)((˜̀

0, r0), ν0). Let α be the maximum number
of kernels along a branch of T . Let P ′ be an integer such that for all kernels K in T (G),
|ValK(`, ν)− ValP

′

K (`, ν)| 6 ε/α for all configurations (`, ν) of G. We can find such a P ′
by using Lemma 11.8.
Create T ′(G) from T by applying the method used to create T (G) but replace every

kernel by its complete P ′-unfolding instead. This implies that T ′(G) is a tree, of bounded
depth P (at most the depth of T times P ′). Then

|ValT (G)((˜̀
0, r0), ν0)− ValT ′(G)((˜̀

0, r0), ν0)| 6 ε .

This holds because the value function is 1-Lipschitz-continuous with regard to the final
weight function, so imprecision builds up additively.

Consider now T ′′(G) the (complete) unfolding of R(G) with unfolding depth P , where
kernels are also unfolded. By construction, ValT ′′(G)((˜̀

0, r0), ν0) = ValPT ′′(G)((
˜̀
0, r0), ν0).

Then, we can prove that ValPT ′′(G)((
˜̀
0, r0), ν0) = ValPG (`0, ν0) (same strategies at bounded

horizon P), which implies ValR(G))((`0, r0), ν0) 6 ValT ′′(G)((˜̀
0, r0), ν0) (monotonicity of

Valk). By another monotonicity argument (because T ′′ contains T ′ as a prefix), we can
also prove ValT ′′(G)((˜̀

0, r0), ν0) 6 ValT ′(G)((˜̀
0, r0), ν0).

Bringing everything together we obtain |ValPG (`0, ν0)− ValG(`0, ν0)| 6 ε.

The idea is to unfold every kernel of the semi-unfolding game T (G) according to its
bound in Lemma 11.8. More precisely, let α be the maximum number of kernels along
one of the branches of T (G). In a bottom-up fashion, we can find for each kernel K in
T (G) a bound PK such that, for all configurations (`, ν), |ValK(`, ν)− ValPK

K (`, ν)| 6 ε/α.
We thus unfold K in T (G) with depth up to PK. After each kernel has been replaced this

168

way, T (G) is no longer a semi-unfolding, it is instead a (complete) unfolding of R(G),
of a certain bounded depth P+. This new bound P+ is bounded by the former depth
of T (G) to which is added α times the biggest bound PK we need for the kernels. Now,
T (G) is a tree of depth P+ whose value at its root is ε-close to the value of G. Finally,
the value computed by ValP+

G is bounded between ValG and ValT (G), which allows us to
conclude.
The bound PK for a kernel K depends linearly in Λ, the Lipschitz constant of value

functions on locations of T (G) reachable from K. Once K has been replaced by its
unfolding of depth PK, the Lipschitz constant of the value function at the root of T (G)
are thus bounded exponentially in Λ. This means that we ensure a bound for P+ that is
at most polynomial in 1/ε, and that is of the order of a tower of α exponentials.
Proving the same property on non-positive SCCs requires more work, because the

semi-unfolding gives final weight −∞ to stop leaves, which does not integrate well with
value iteration (initialisation at +∞ on non-target states). However, by unfolding those
SCCs slightly more (at most |R(G)| more steps), we can obtain the desired property with
a similar bound P−.

Lemma 11.10. If G is a non-positive SCC with no configurations of infinite value, we
can compute P− such that |ValG(`, ν)− ValP−G (`, ν)| 6 ε for all configurations (`, ν) of G.

Proof. Consider a non-positive SCC G, a precision ε, and an initial configuration (`0, ν0).
Let T (G) be its finite semi-unfolding (obtained from the labelled tree T , as in Sec-
tion 11.2.1), such that ValG(`0, ν0) = ValT (G)((˜̀

0, r0), ν0).
We now change T , by adding a subtree under each stopped leaf: the complete unfolding

of R(G), starting from the stopped leaf, of depth |R(G)|. Let us name T+ this unfolding
tree. We then construct T +(G) as before, based on T+. Since we are in a non-positive
SCC, T +(G) must have final weight −∞ on its stopped leaves. It is easy to see that
ValG(`0, ν0) = ValT +(G)((˜̀

0, r0), ν0) still holds (the proof was based on branches being
long enough, and we increased the lengths). We now perform a small but crucial change:
the final weight of stopped leaves in T +(G) is set to +∞ instead of −∞. Trivially
ValT (G)((˜̀

0, r0), ν0) 6 ValT +(G)((˜̀
0, r0), ν0) (we increased the final weight function). Let

us prove that
ValT +(G)((˜̀

0, r0), ν0) 6 ValT (G)((˜̀
0, r0), ν0) .

For a fixed η > 0, consider σMin a η-optimal strategy for player Min in T (G). Let
us define σ+

Min, a strategy for Min in T +(G), by making the same choice as σMin on the
common prefix tree, and once a node that is a stopped leaf in T (G) is reached, we
switch to a memoryless attractor strategy of Min towards target states. Consider any
strategy σ+

Max of Max in T +(G), and let σMax be its projection in T (G). Let ρ+ denote
the (maximal) play

playT +(G)(((`0, r0), ν0), σ+
Min, σ

+
Max)) ,

and ρ be playT (G)(((`0, r0), ν0), σMin, σMax)). By construction, ρ+ does not reach a stopped
leaf in T +(G). If the play ρ+ stays in the common prefix tree of T and T+, then ρ = ρ+,
and

wtT +(G)(ρ
+) 6 ValT (G)((˜̀

0, r0), ν0) + η .

169

If it does not, then ρ+ has a prefix that reaches a stopped leaf in T (G): this must be ρ.
This implies (see Lemma 11.4) that

wtT +(G)(ρ
+) < −|R(G)|wmax − wt

max 6 ValT (G)((˜̀
0, r0), ν0) .

Since this holds for all η > 0, we proved ValT +(G)((˜̀
0, r0), ν0) 6 ValT (G)((˜̀

0, r0), ν0), which
finally implies that the two values are equal.
Then, we can follow the proof of Lemma 11.9 (with T+ and T +(G)) in order to

conclude.

Now, if we are given an almost-divergent game G and a precision ε, we can add the
bounds for value iteration obtained from each SCC by Lemmas 11.9 and 11.10, and
obtain a final bound P such that for all k > P , ValkG is an ε-approximation of ValG.

11.5.1. Discussion

Overall, this leads to an upper bound complexity that is polynomial in 1/ε and of the
order of a tower of n exponentials, with n polynomial in the size of the input WTG.
However, we argue that this symbolic procedure is more amenable to implementation
than the previous approximation schema. First, it avoids the three already mentioned
drawbacks (SCC decomposition, sequential analysis of the SCCs, and refinement of
the granularity of regions) of the previous approximation schema. Then, it allows one
to directly launch the value iteration algorithm on the game G, and we can stop the
computation whenever we are satisfied enough by the approximation computed: however,
there are no guarantees whatsoever on the quality of the approximation before the number
of steps P given above. Finally, this schema allows one to easily obtain an almost-optimal
strategy with respect to the computed value.
If G is not guaranteed to be free of configurations of value −∞, then we must first

perform the SCC decomposition of R(G), and, as G is almost-divergent, identify and
remove regions whose value is −∞, by Lemma 11.1. Then, we can apply the value
iteration algorithm.
As a final remark, notice that our correctness proof strongly relies on Section 11.3.1,

and thus would not hold with the approximation schema of [BJM15] (which does not
preserve the continuity on regions of the computed value functions, in turn needed to
define final weights on 1/N -corners).

170

Conclusion

In this thesis we presented new results for several controller synthesis problems on timed
automata, that we now summarize, while mentionning possible future research directions
and open problems.

Robustness
In Part II, we studied the qualitative robust controller synthesis problem, that asks
if a Büchi objective can be guaranteed, in a timed automaton, against infinitesimal
perturbations of delays. We developed a zone-based solution to this problem, that relies
on computing and comparing the reachability relations of paths in the timed automaton.
We complemented our theoretical results by a prototype tool and a case study, that
illustrates the application of robust controller synthesis in small or moderate size problems.
Our prototype relies on the standard DBM libraries, that we use with twice as many
clocks to store the constraints of the normalised constraint graphs encoding reachability
relations.

In order to scale to larger models an interesting future direction is to study extrapola-
tion operators, and understanding whether results from reachability analysis on timed
automata [BBFL03, BBLP04, HSW11] can be adapted to the robustness setting. This
would also be interesting from a theoretical point of view, as it could remove the need for
bounded clocks. This seems to be a challenging task, and we plan to start by considering
the integration of those operators in the computation of reachability relations. This
would be of independent interest, as an abstraction-compatible compositional aproach to
reachability analysis of timed systems.
We also plan to explore other ways to improve performance: different strategies can

be adopted for the nested forward analysis, switching between the two modes using
heuristics, a parallel implementation, etc.
Moreover, we took interest in a more quantitative problem, that asks what is the

greatest admissible perturbation for controller. The methods developed for the qualitative
problem do not extend to this setting, as we heavily relied on reasoning on arbitrarily
small perturbations e.g. for Lemma 5.2. However, if the qualitative problem is satisfied,
our symbolic algorithm finds a lasso where controller wins the perturbation game for
some maximal perturbation value δ > 0. One could then use the techniques of Chapter 6
to determine the greatest perturbation against which this strategy for controller holds.
Controller may be able to resist a greater maximal perturbation with another strategy,
where the choice of what edge to follow depends on the perturbations. Indeed, by
the results of [SBMR13] such strategies could be safely ignored for the qualitative

171

problem, but this is unlikely to hold in the quantitative setting. Computing the largest
admissible perturbation on a general timed automaton is therefore another intriguing
perspective. The complexity (and even decidability) of an exact computation of this
greatest perturbation is open, and would have to be compared in practice with a binary
search approach that tries successively fixed values for δ, as the fixed-perturbation
problem can be solved by reduction to Büchi timed games [CHP11, LLTW14].

Weighted timed games
Our study of weighted timed games in Part III belongs to a series of works that explore
the frontier of decidability. We introduced the first decidable class of weighted timed
games with arbitrary weights and no restrictions on the number of clocks. We have
given an approximation procedure for a larger class of weighted timed games, where
the exact problem becomes undecidable. In addition, we proved the correctness of a
symbolic approximation schema, that does not start by splitting exponentially every
region, but only does so when necessary. We argue that this paves the way towards an
implementation of value approximation for weighted timed games. Such tool would likely
struggle with instances of moderate size, but could help with the design and testing of
alternative approaches that trade theoretical guarantees with performance.
Another perspective is to extend this work to the concurrent setting, where both

players play simultaneously and the shortest delay is selected. It should be noted that
several known results on weighted timed games with non-negative weights [BCFL04,
ABM04, BJM15] are stated in such a concurrent setting. We did not consider this setting
in this work because concurrent WTGs are not determined, and several of our proofs
rely on this property for symmetrical arguments (mainly to lift results of non-negative
SCCs to non-positive ones).

A long-standing open problem is the approximation of weighted timed games, i.e. whether
one can compute an arbitrarily close approximation of the value of a given game. We
successfully solved this problem on the class of almost-divergent games, and introduced
in Chapter 9 the slightly larger class of 0-isolated games. We do not have approximation
results on this 0-isolated class, and as such it forms a natural intermediate step between
the best known decidable class and the general case. The answer to this open question
could also be negative, and there remain gaps in the complexity bounds obtained thus far
for decidable classes. Therefore, pursuing better lower bounds could prove enlightening,
and is another possible direction for future research.

Robust timed games
An interesting generalisation of our results on robustness it to consider timed games
instead of timed automata. On top of perturbing delays picked by the controller,
the environment could also choose some transitions to follow (for example in a turn-
based fashion). The region-based approach of Chapter 4 can be extended to such a

172

setting [ORS14], so that solving the (qualitative) robust controller synthesis problem for
a Büchi condition becomes EXPTIME. A purely symbolic method remains some distance
away, as the matter would need to be settled without robustness as a first step (by
adapting an on-the-fly algorithm for solving finite Büchi games to the timed setting).
Finally, one could consider bringing robustness issues to weighted timed games, by

subjecting the controller to perturbations over delays. Under this semantics, the optimal
reachability problem stays undecidable [BMS13], and related work considers very restric-
ted classes when combining notions of optimality and robustness. For instance, the timed
automata studied in [BBF+18] under optimality and robustness concerns are tree-shaped
structures with one self-loop for each leaf.

173

Bibliography

[ABM04] Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability
for weighted timed games. In Proceedings of the 31st International Col-
loquium on Automata, Languages and Programming (ICALP’04), volume
3142 of Lecture Notes in Computer Science, pages 122–133. Springer, 2004.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[ALTP04] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in
weighted timed automata. Theoretical Computer Science, 318(3):297–322,
2004.

[AM99] Eugene Asarin and Oded Maler. As soon as possible: Time optimal control
for timed automata. In Hybrid Systems: Computation and Control, volume
1569 of Lecture Notes in Computer Science, pages 19–30. Springer, 1999.

[BBBR07] Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-François
Raskin. On the optimal reachability problem of weighted timed automata.
Formal Methods in System Design, 31(2):135–175, 2007.

[BBF+18] Giovanni Bacci, Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas
Markey, and Pierre-Alain Reynier. Optimal and robust controller synthesis
using energy timed automata with uncertainty. In Bill W. Roscoe and
Jan Peleska, editors, Proceedings of the 22nd International Symposium
on Formal Methods (FM’18), Lecture Notes in Computer Science, pages
203–221, Oxford, UK, July 2018. Springer. Best paper award.

[BBFL03] Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and Kim G. Larsen.
Static guard analysis in timed automata verification. In Hubert Garavel
and John Hatcliff, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 254–270, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

[BBL08] Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Optimal infinite
scheduling for multi-priced timed automata. Formal Methods in System
Design, 32(1):3–23, 2008.

[BBLP04] Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek.
Lower and upper bounds in zone based abstractions of timed automata. In

174

Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 312–326, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[BBM06] Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved unde-
cidability results on weighted timed automata. Information Processing
Letters, 98(5):188–194, 2006.

[BBR05] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On op-
timal timed strategies. In Proceedings of the Third international conference
on Formal Modeling and Analysis of Timed Systems (FORMATS’05),
volume 3829 of LNCS, pages 49–64. Springer, 2005.

[BCFL04] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen.
Optimal strategies in priced timed game automata. In Proceedings of the
24th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’04), volume 3328 of LNCS, pages 148–160.
Springer, 2004.

[BCR14] Romain Brenguier, Franck Cassez, and Jean-François Raskin. Energy
and mean-payoff timed games. In Proceedings of the 17th International
Conference on Hybrid Systems: Computation and Control (HSCC’14),
pages 283–292. ACM, 2014.

[BDM+98] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros
Tripakis, and Sergio Yovine. Kronos: A model-checking tool for real-time
systems. In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided
Verification (CAV 1998), Proceedings, pages 546–550, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Judi
Romijn, and Frits W. Vaandrager. Minimum-cost reachability for priced
timed automata. In Proceedings of the 4th International Workshop on
Hybrid Systems: Computation and Control (HSCC’01), volume 2034 of
Lecture Notes in Computer Science, pages 147–161. Springer, 2001.

[BGH+15] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and
Benjamin Monmege. Simple priced timed games are not that simple.
In Proceedings of the 35th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’15),
volume 45 of LIPIcs, pages 278–292. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2015.

[BGHM15] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege.
To reach or not to reach? Efficient algorithms for total-payoff games. In
Proceedings of the 26th International Conference on Concurrency Theory

175

(CONCUR’15), volume 42 of LIPIcs, pages 297–310. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2015.

[BGHM16] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege.
Pseudopolynomial iterative algorithm to solve total-payoff games and
min-cost reachability games. Acta Informatica, 2016.

[BGNK+14] Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna, Lakshmi
Manasa, Benjamin Monmege, and Ashutosh Trivedi. Adding negative
prices to priced timed games. In Proceedings of the 25th International
Conference on Concurrency Theory (CONCUR’14), volume 8704, pages
560–575. Springer, 2014.

[BJM15] Patricia Bouyer, Samy Jaziri, and Nicolas Markey. On the value problem in
weighted timed games. In Proceedings of the 26th International Conference
on Concurrency Theory (CONCUR’15), volume 42 of Leibniz International
Proceedings in Informatics, pages 311–324. Leibniz-Zentrum für Informatik,
2015.

[BM83] Bernard Berthomieu and Miguel Menasche. An enumerative approach
for analyzing time Petri nets. In R. E. A. Mason, editor, Information
Processing 83 – Proceedings of the 9th IFIP World Computer Congress
(WCC’83), pages 41–46. North-Holland/IFIP, September 1983.

[BMR06] Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust model-
checking of linear-time properties in timed automata. In José R. Correa,
Alejandro Hevia, and Marcos Kiwi, editors, LATIN 2006: Theoretical
Informatics, pages 238–249, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[BMS13] Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robust weighted
timed automata and games. In Víctor Braberman and Laurent Fribourg,
editors, Formal Modeling and Analysis of Timed Systems, pages 31–46,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Bou03] Patricia Bouyer. Untameable timed automata! In Helmut Alt and Michel
Habib, editors, STACS 2003, pages 620–631, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg.

[BT10] John S. Baras and George Theodorakopoulos. Path Problems in Networks.
2010.

[BY04] Johan Bengtsson and Wang Yi. Timed Automata: Semantics, Algorithms
and Tools, volume 3098 of Lecture Notes in Computer Science, pages
87–124. Springer, 2004.

176

[CDF+05] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and
Didier Lime. Efficient on-the-fly algorithms for the analysis of timed games.
In CONCUR 2005, volume 3653, pages 66–80. Springer-Verlag, 2005.

[CHP11] Krishnendu Chatterjee, Thomas A. Henzinger, and Vinayak S. Prabhu.
Timed parity games: Complexity and robustness. Logical Methods in
Computer Science, 7(4), 2011.

[CHR02] Franck Cassez, Thomas A. Henzinger, and Jean-François Raskin. A compar-
ison of control problems for timed and hybrid systems. In Claire Tomlin and
Mark R. Greenstreet, editors, Proceedings of the 5th International Work-
shop on Hybrid Systems: Computation and Control (HSCC’02), volume
2289 of Lecture Notes in Computer Science, pages 134–148. Springer, 2002.

[CHVB18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors. Handbook of Model Checking. Springer, 2018.

[CLJ99] Hubert Comon-Lundh and Yan Jurski. Timed automata and the theory
of real numbers. In Proceedings of CONCUR’99, volume 1664 of Lecture
Notes in Computer Science, pages 242–257. Springer, 1999.

[Dil90] David L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In Automatic Verification Methods for Finite State Systems (CAV
1989), volume 407 of Lecture Notes in Computer Science, pages 197–212.
Springer, 1990.

[DPH07] Andrea D’Ariano, Marco Pranzo, and Ingo A. Hansen. Conflict resolution
and train speed coordination for solving real-time timetable perturbations.
IEEE Transactions on Intelligent Transportation Systems, 8(2):208–222,
June 2007.

[DWDMR08] Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin.
Robust safety of timed automata. Formal Methods in System Design,
33(1):45–84, 2008.

[GM08] Michel Gondran and Michel Minoux. Graphs, dioids and semirings. new
models and algorithms. Operations Research/ Computer Science Interfaces
Series, 41, 01 2008.

[HIJM13] Thomas Dueholm Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen.
A faster algorithm for solving one-clock priced timed games. In Pro-
ceedings of the 24th International Conference on Concurrency Theory
(CONCUR’13), volume 8052 of Lecture Notes in Computer Science, pages
531–545. Springer, 2013.

[HKSW11] Frédéric Herbreteau, Dileep Kini, B. Srivathsan, and Igor Walukiewicz.
Using non-convex approximations for efficient analysis of timed automata.

177

In Supratik Chakraborty and Amit Kumar, editors, IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2011), volume 13 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 78–89, Dagstuhl, Germany, 2011. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[HOS16] Thomas A. Henzinger, Jan Otop, and Roopsha Samanta. Lipschitz robust-
ness of timed i/o systems. In Barbara Jobstmann and K. Rustan M. Leino,
editors, Verification, Model Checking, and Abstract Interpretation, pages
250–267, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[HPT19] Frédéric Herbreteau, Gerald Point, and Thanh-Tung Tran. Tchecker.
http://www.labri.fr/perso/herbrete/tchecker/index.html, 2019.

[HS06] Thomas A. Henzinger and Joseph Sifakis. The embedded systems design
challenge. In FM 2006, volume 4085 of Lecture Notes in Computer Science,
pages 1–15. Springer, 2006.

[HS10] Frédéric Herbreteau and B. Srivathsan. Efficient on-the-fly emptiness check
for timed Büchi automata. In ATVA 2010, volume 6252 of Lecture Notes
in Computer Science, pages 218–232. Springer, 2010.

[HSTW16] Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran, and Igor
Walukiewicz. Why liveness for timed automata is hard, and what we
can do about it. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2016), volume 65
of LIPIcs, pages 48:1–48:14. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016.

[HSW10] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Efficient empti-
ness check for timed Büchi automata. In Computer Aided Verification
(CAV 2010), Proceedings, volume 6174 of Lecture Notes in Computer
Science, pages 148–161. Springer, 2010.

[HSW11] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstrac-
tions for timed automata. Proceedings - Symposium on Logic in Computer
Science, 10 2011.

[HSW12] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Efficient empti-
ness check for timed Büchi automata. Formal Methods in System Design,
40(2):122–146, 2012.

[Imm81] Neil Immerman. Number of quantifiers is better than number of tape cells.
Journal of Computer and System Sciences, 22(3):384–406, 1981.

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation.
SIAM Journal on Computing, 17:935–938, 1988.

178

http://www.labri.fr/perso/herbrete/tchecker/index.html

[JR11] Rémi Jaubert and Pierre-Alain Reynier. Quantitative robustness analysis
of flat timed automata. In Proceedings of the 14th International Con-
ference on Foundations of Software Science and Computation Structures
(FoSSaCS’11), volume 6604 of Lecture Notes in Computer Science, pages
229–244. Springer, 2011.

[JT07] Marcin Jurdziński and Ashutosh Trivedi. Reachability-time games on
timed automata. In Proceedings of the 34th International Colloquium
on Automata, Languages and Programming (ICALP’07), volume 4596 of
LNCS, pages 838–849. Springer, 2007.

[KBB+08] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, Vladi-
mir Gurvich, Gabor Rudolf, and Jihui Zhao. On short paths interdiction
problems: Total and node-wise limited interdiction. Theory of Computing
Systems, 43(2):204–233, 2008.

[Li09] Guangyuan Li. Checking timed Büchi automata emptiness using lu-
abstractions. In FORMATS 2009, volume 5813 of Lecture Notes in Com-
puter Science, pages 228–242. Springer, 2009.

[LLTW14] Kim G. Larsen, Axel Legay, Louis-Marie Traonouez, and Andrzej Wasowski.
Robust synthesis for real-time systems. Journal of Theoretical Computer
Science (TCS), 515:96–122, 2014.

[LOD+13] Alfons Laarman, Mads Chr. Olesen, Andreas Engelbredt Dalsgaard,
Kim Guldstrand Larsen, and Jaco van de Pol. Multi-core emptiness
checking of timed Büchi automata using inclusion abstraction. In Com-
puter Aided Verification (CAV 2013), Proceedings, volume 8044 of Lecture
Notes in Computer Science, pages 968–983. Springer, 2013.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
International Journal on Software Tools for Technology Transfer, 1(1):134–
152, Dec 1997.

[Mat02] Jiri Matousek. Lectures on Discrete Geometry. Springer-Verlag, Berlin,
Heidelberg, 2002.

[ORS14] Youssouf Oualhadj, Pierre-Alain Reynier, and Ocan Sankur. Probabilistic
robust timed games. In Paolo Baldan and Daniele Gorla, editors, CONCUR
2014 – Concurrency Theory, pages 203–217, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[PGS17] Pavithra Prabhakar and Miriam García Soto. Formal synthesis of stabilizing
controllers for switched systems. In Proceedings of the 20th International
Conference on Hybrid Systems: Computation and Control (HSCC ’17),
pages 111–120, New York, NY, USA, 2017. ACM.

179

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module.
Automata Languages and Programming, 372:179–190, 01 1989.

[PS16] Pavithra Prabhakar and Miriam Garcia Soto. Counterexample guided
abstraction refinement for stability analysis. In Computer Aided Verification
(CAV 2016), Proceedings, Part I, pages 495–512, 2016.

[Pur00] Anuj Puri. Dynamical properties of timed automata. Discrete Event
Dynamic Systems, 10(1-2):87–113, 2000.

[QSW17] Karin Quaas, Mahsa Shirmohammadi, and James Worrell. Revisiting reach-
ability in timed automata. In Proceedings of the 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2017). IEEE, 2017.

[Ros41] Barkley Rosser. Explicit bounds for some functions of prime numbers.
American Journal of Mathematics, 63(1):211–232, 1941.

[RPV17] Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. Robust
model checking of timed automata under clock drifts. In Proceedings of
the 20th International Conference on Hybrid Systems: Computation and
Control (HSCC’17), pages 153–162, New York, NY, USA, 2017. ACM.

[Rut11] Michał Rutkowski. Two-player reachability-price games on single-clock
timed automata. In Proceedings of the Ninth Workshop on Quantitative
Aspects of Programming Languages (QAPL’11), volume 57 of Electronic
Proceedings in Theoretical Computer Science, pages 31–46, 2011.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and determ-
inistic tape complexities. Journal of Computer and System Sciences,
4(2):177–192, 1970.

[SBM11] Ocan Sankur, Patricia Bouyer, and Nicolas Markey. Shrinking Timed
Automata. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2011), volume 13
of LIPIcs, pages 90–102. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2011.

[SBMR13] Ocan Sankur, Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier.
Robust controller synthesis in timed automata. In Proceedings of the 24th
International Conference on Concurrency Theory (CONCUR’13), volume
8052 of Lecture Notes in Computer Science, pages 546–560. Springer, 2013.

[SHLG94] Viggo Stoltenberg-Hansen, Ingrid Lindström, and Edward R. Griffor. Math-
ematical Theory of Domains. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1994.

[Sze88] Róbert Szelepcsényi. The method of forced enumeration for nondetermin-
istic automata. Acta Informatica, 26(3):279–284, 1988.

180

[TMM02] Salvatore La Torre, Supratik Mukhopadhyay, and Aniello Murano. Optimal-
reachability and control for acyclic weighted timed automata. In Proc. 2nd
IFIP International Conference on Theoretical Computer Science (TCS’02,
pages 485–497. Kluwer, 2002.

[Tra16] Thanh-Tung Tran. Verification of timed automata : reachability, liveness
and modelling. PhD thesis, University of Bordeaux, France, 2016.

[Tri09] Stavros Tripakis. Checking timed Büchi automata emptiness on simulation
graphs. ACM Trans. Comput. Log., 10(3):15:1–15:19, 2009.

[TYB05] Stavros Tripakis, Sergio Yovine, and Ahmed Bouajjani. Checking timed
Büchi automata emptiness efficiently. Formal Methods in System Design,
26(3):267–292, 2005.

181

Synthèse symbolique de contrôleurs pour systèmes temporisés: robustesse et
optimalité

Résumé : Le domaine de la synthèse réactive a pour objectif d’obtenir un système correct par
construction à partir d’une spécification logique. Une approche classique consiste à se ramener à un
jeu à somme nulle, où deux joueurs interagissent tour-à-tour dans un système de transitions, et à se
demander si le joueur "contrôleur" peut garantir que son objectif sera rempli, et ce indépendamment
des décisions du joueur "environnement". Nous étudions des spécifications temps-réel, modélisées
par un automate temporisé équipé d’un objectif d’accessibilité ou de Büchi, et présentons des
méthodes symboliques pour synthétiser des stratégies du contrôleur. Nos contributions concernent
deux problématiques distinctes : on peut souhaiter que le contrôleur obtienne une stratégie robuste
aux perturbations, ou bien le faire jouer de manière optimale dans un jeu pondéré.
Mots clés : Automates temporisés, Synthèse, Robustesse, Jeux pondéré

Symbolic controller synthesis for timed systems: robustness and optimality

Abstract: The field of reactive synthesis studies ways to obtain, starting from a specification, a
system that is correct by construction. A classical approach models this setting as a zero-sum game
played by two players on a transition system, and asks whether player controller can ensure an
objective against any competing player environment. We focus on real-time specifications, modelled
as timed automata with reachability or Büchi acceptance conditions, and present symbolic ways to
synthesise strategies for the controller. We consider two problems, either restricting controller to
robust strategies or aiming for optimal strategies in a weighted game setting.
Keywords: Timed automata, Synthesis, Robustness, Weighted games

Cette œuvre est mise à disposition selon les termes de la Licence Creative Commons Attribution -
Pas d’Utilisation Commerciale - Pas de Modification 4.0 International.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr

	Title page
	Remerciements
	Résumé
	Abstract
	Contents
	Introduction
	Controller synthesis and timed systems
	Finite systems
	Transition systems
	Weighted transition systems
	Semirings, closure operation
	Transition systems labelled over a semiring

	Turn-based game on a transition system
	Attractors

	Timed systems
	Modelling real-time constraints
	Encoding constraints as DBMs
	Timed automata
	Bounded clocks
	Regions
	Region abstraction, region automaton
	Integer constants
	Zone abstraction, symbolic algorithms

	Robust controller synthesis
	Introduction
	The perturbation game
	A region-based approach
	Robustness of region paths
	Controllable predecessors
	Shrunk DBMs
	Non-punctual region path

	Aperiodic cycles
	Generalization from region paths to paths

	A symbolic approach
	Reachability relation of a path
	Constraint graphs
	Encoding paths
	From constraint graphs to reachability relations
	Checking inclusion
	Computation of Pre and Post

	Robust iterability of a lasso
	Controllable predecessors and their greatest fixpoints
	Branching constraint graphs
	Solving the qualitative problem for a lasso

	Synthesis of robust controllers
	Abstraction of lassos
	Forward Analysis
	Robust cycle search

	Case study

	The quantitative problem
	Parametric DBMs
	Piecewise affine bounds
	Piecewise affine DBMs

	Largest admissible perturbation of a lasso

	Weighted timed games
	Introduction
	Finite weighted games
	The untimed setting
	Problems

	Solving weighted games
	Value iteration
	Optimal strategies
	Safely removing states of infinite value

	Divergent weighted games
	SCC analysis
	Computing values in polynomial time
	Polynomial lower bound
	Deciding divergence

	Almost-divergent weighted games
	SCC analysis
	Kernel of an almost-divergent weighted game
	Semi-unfolding
	Deciding almost-divergence

	Weighted timed games
	The timed setting
	Region and corner-point abstractions
	Problems
	Related work

	Analysable classes of WTGs
	Main results
	On the value problem
	On the value approximation problem

	Cycle-based analysis
	Cycles in a 0-isolated WTG
	SCC-based characterisations

	The membership problem
	Deciding divergence
	Deciding almost-divergence

	Computing values
	Symbolic value iteration
	Value functions as nested partitions
	Operations over value functions
	Tubes and diagonals
	Exponential vs doubly-exponential
	Bounding partial derivatives

	Divergent weighted timed games

	Approximating values
	Kernel of an almost-divergent WTG
	Semi-unfolding of almost-divergent WTGs
	Semi-unfolding construction
	Semi-unfolding correctness

	Approximation of almost-divergent WTGs
	Approximation of kernels
	Approximation of almost-divergent WTGs

	Example of an execution of the approximation schema
	Symbolic approximation algorithm
	Discussion

	Conclusion

