Je Remercie Particulièrement 
  
Sébastien R Pour M'avoir Assuré Sans Failles, Ainsi Que Théodore 
  
Manon P Amélia 
  
Thibault José Luis 
  
Keywords: Automates temporisés, Synthèse, Robustesse, Jeux pondérés Timed automata, Synthesis, Robustness, Weighted games 4 . . . . . . . . . . 11.5. Symbolic approximation algorithm . . . . . . . . 

J'aimerais tout d'abord remercier Benjamin et Pierre-Alain pour le soutien constant et les conseils précis qu'ils m'ont fournis au cours de cette thèse. Ces trois années enrichissantes furent un plaisir par leur encadrement et leur bienveillance.

Je voudrais également remercier Krishnendu Chatterjee, Joël Ouaknine et Igor Walukiewicz pour avoir été rapporteurs de ce document, ainsi que Nathalie Bertrand, Laure Petrucci et Patricia Bouyer-Decitre pour s'être intéressées à mes travaux en tant que membres du jury. Je remercie en particulier cette dernière pour m'avoir fait découvir ce sujet, m'avoir conseillé et m'avoir orienté vers Marseille lorsque j'étais en master.

Si le nom, les locaux et la direction

Introduction

I. Controller synthesis and timed systems

Introduction

The widespread use of digital technology can be felt in most aspects of modern life. Digital systems are designed to assist with-and sometimes perform autonomously-important tasks, from long-distance communications to the management of our electrical or financial infrastructures. When faced with a known situation, we trust these systems to act accordingly, with near-instantaneous reaction times. This holds particularly for embedded systems, i.e. systems designed to perform a fixed task, as part of a broader structure. They can be found in most electronic devices, from phones and home appliances to traffic lights, avionics and elevators. This has prompted a large research effort in computer science, where a series of work has been devoted to the creation, analysis and testing of embedded systems, as they are sometimes entrusted with our safety. This is a challenging task, as the correctness or reliability of a system can depend on fine interactions with its surroundings or with other systems, and it can be hard, for the human designer, to anticipate on all possible behaviours.

Computer-aided verification

One approach lies in the field of formal methods, where one studies a mathematical idealisation of the system, called a model, to check that it satisfies some desired properties, such as eventually performing a particular task, or avoiding errors. The objective is to develop automated methods to analyse and verify systems. For example, the model-checking problem asks if a given model satisfies its specification, described by a logical formulae. This problem has been extensively studied in various settings, with practical tools being used for the verification of hardware and software in industry (see e.g. [START_REF]Handbook of Model Checking[END_REF]). Example 1. As an example, we will use an embedded system that controls a pair of doors in a subway train, represented in Figure 1. Whenever the train arrives at a new station, the doors open. The system waits until an alarm signals departure for the next station, then checks for any obstacles to their closing. If such an obstacle is present, the doors close partially, and wait until the obstacle is removed before closing. Desired property for the system might be "the train must always travel with closed doors", or "doors always eventually close". The former is always guaranteed by this model, but not the latter, that requires additional assumptions (we do not wait forever for the departure signal, and obstacles are always eventually removed).

An ambitious variant is that of controller synthesis, where one starts from the specification alone. The goal is to build a model that will, by construction, be correct. A classical approach expresses this problem from the viewpoint of game theory: One encodes all possible behaviours in a transition system, where two players are opposed. Starting from some initial state for the system, the player named controller makes decisions that determine how the system dynamically evolves. Thus, a sequence of successive states is obtained, and we want this sequence to satisfy the specification. Examples include asking that a target "good" state is eventually reached, or conversely that an error "bad" state is never reached. However, the controller may sometimes not get to choose the next state, in which case we say that the decision is made by the second player, called the environment. The notion of environment captures everything that cannot be anticipated, from user inputs to complex interactions with the real world or foreign systems. Overall, the way the system evolves is derived from the choices of both players in a turn-based fashion, and this interaction forms a game, where controller wins if its objective is met. Our goal is thus to automatically construct a strategy for the controller, that is a recipe dictating how to play, so that controller wins no matter how the environment plays. Such strategy finally describes a system that is necessarily correct, since the specification must hold in all possible scenarios.

Example 2. Going back to the example of Figure 1, one could consider that whether an obstacle is present or not is not under our control. As such, player controller can choose whether to wait, ring the alarm, or go to the next station when in the appropriate states, but player environment is the one that decides if there is an obstacle or not.

Timed systems

We focus on a class of programs sensitive to real-time, where keeping track of how much time elapses between the decisions taken by the program is required to differentiate the good and bad behaviours. This is a common requirement for embedded systems, as they interact with the real world. The design of such programs is a notoriously difficult problem, because they must take care of delicate timing issues, and are difficult to debug a posteriori. In order to ease the design of real-time software, it appears important to automatise the process by using formal methods. The situation may be modelled into a timed automaton [START_REF] Alur | A theory of timed automata[END_REF], namely a transition system equipped with real-valued variables, called clocks, evolving with a uniform rate. Transitions are equipped with timing constraints expressed over the clocks, and may only be taken when these constraints are met.

Example 3. We enrich the train door example from Figure 1, in order to obtain the timed automaton depicted on Figure 2. Clocks x, y are variables that continuously increase, at a rate of one unit per second. Whenever the train arrives at a new station, clock x is reset (i.e. set to 0). We must stay in the open state at least five seconds before signalling departure, at which point clock y is reset. Exactly one second later, the system closes the doors if possible, and otherwise goes to the half-closed state. We then wait until either the obstacle is removed or the time since arrival at the current station (recorded by x) is at least thirty seconds, in which case we forcefully close the doors and leave.1 Note that we removed the waiting loops in the open and half-closed states, as they are no longer needed: in a timed automaton, one can always stay in the current state and let time elapse.

In order to verify the real-time system, one determines whether there exists an accepting execution in the timed automaton. A simple, yet realistic specification asks that a target state is reached at some point. We are also interested in Büchi acceptance conditions, where a target should be reached infinitely often along the execution, modelling cases where we do not want the system to get stuck in a bad situation. It has been proven in [START_REF] Alur | A theory of timed automata[END_REF] that the reachability and Büchi problems on timed automata are both PSPACEcomplete, by partitioning the state space into regions. While optimal from a theoretical complexity point of view, practical tools tend to favour efficient symbolic algorithms for solving these problems, that use zones instead of regions, as they allow an ondemand partitioning of the state space. This leads to much better performances, as witnessed by successful model-checking tools like Uppaal [START_REF] Kim | Uppaal in a nutshell[END_REF], Kronos [BDM + 98], or TChecker [START_REF] Herbreteau | Tchecker[END_REF][START_REF] Frédéric Herbreteau | Efficient emptiness check for timed Büchi automata[END_REF].

In this thesis, we study two controller synthesis problems on timed automata, either restricting controller to robust strategies or aiming for optimal strategies in a weighted game setting. The document is split into three parts: • In Part I, we recall formalisms and known techniques for the study of finite or timed transition systems;

• In Part II, we focus on making choices that are robust with regard to small timing perturbations;

• In Part III, we present results on weighted timed games, where one aims for optimal choices in a quantitative setting.

Robustness

As we have seen, timed automata [START_REF] Alur | A theory of timed automata[END_REF] provide an automata-theoretic framework to design, model and verify real-time systems. However, the semantics of timed automata is a mathematical idealisation: it assumes that clocks have infinite precision and that actions are instantaneous. Proving that a timed automaton satisfies a property may not ensure that a real implementation of it also does. This robustness issue is a challenging problem for embedded systems [START_REF] Henzinger | The embedded systems design challenge[END_REF], and alternative semantics have been proposed, so as to ensure that the verified (or synthesised) behaviour remains correct in presence of small timing perturbations.

Example 4. As an example, consider Figure 3, that models part of a variant of Figure 2:

We assume that there is an obstacle that is not removed, and we add an action that lets us repeat the alarm signal until the thirty seconds mark has been reached. We argue that some infinite behaviours of this system are not realistic, as it is possible to ring the alarm infinitely many times with a so-called Zeno behaviour. Indeed, one could let one second elapse, and use the alarm transition once. Then, we let half a second elapse, and use it again. By using increasingly smaller delays (1/2 i after i steps), the alarm can be rung arbitrarily many times, while keeping the total time elapsed under two seconds. Another issue lies in the steps that require infinite precision, like the transition from the to-close to the half-closed state. Indeed, it requires clock y to be valued at exactly 1. This might prove hard to ensure with a real system, and it would be preferable in this case to leave some margin η > 0 around 1, such that one asks for y ∈ [1 -η, 1 + η] instead.

We are interested in a fundamental model-checking problem in timed automata equipped with a Büchi condition: it consists in determining whether there exists an accepting infinite execution. This problem has been studied numerously in the exact setting, where symbolic methods have been developed [TYB05, Tri09, Li09, HS10, HSW12, LOD + 13, HSTW16]. In the context of robustness, the execution should be tolerant to small perturbations of the delays. This discards executions suffering from weaknesses such as Zeno behaviours, or even non-Zeno behaviours requiring infinite precision, as exhibited in [START_REF] Cassez | A comparison of control problems for timed and hybrid systems[END_REF].

More formally, the semantics we consider is defined in Chapter 3 as a game that depends on some parameter δ representing an upper bound on the amplitude of the perturbation [START_REF] Chatterjee | Timed parity games: Complexity and robustness[END_REF]. In this game, the controller plays against an antagonistic environment that can perturb each delay using a value chosen in the interval [-δ, δ]. The case of a fixed value of δ has been shown to be decidable in [START_REF] Chatterjee | Timed parity games: Complexity and robustness[END_REF], and also for a related model in [START_REF] Kim | Robust synthesis for real-time systems[END_REF]. However, these algorithms are based on regions, and as the value of δ may be much smaller than the constants appearing in the guards of the automaton, do not yield practical algorithms. Moreover, the maximal perturbation is not necessarily known in advance, and could be considered as part of the design process.

The problem we are interested in is qualitative: we want to determine whether there exists a positive value of δ such that the controller wins the game. It has been proven in [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF] that this problem is in PSPACE (and even PSPACE-complete), thus no harder than in the exact setting with no perturbation allowed. However, the algorithm, recalled in Chapter 4, heavily relies on regions, and more precisely on an abstraction that refines the one of regions, namely folded orbit graphs. Hence, it is not amenable to implementation, and has indeed never been implemented. Our main contribution in Part II is to provide, in Chapter 5, an efficient symbolic algorithm for solving this problem.

Our algorithm can be understood as an adaptation to the robustness setting of the standard algorithm for Büchi acceptance in timed automata [LOD + 13]. This algorithm looks for an accepting lasso using a nested breadth-first search. A major difficulty consists in checking whether a lasso can be robustly iterated, i.e. whether there exists δ > 0 such that the controller can follow the cycle for an infinite amount of steps while being tolerant to perturbations of amplitude at most δ.

Our approach relies on several new ingredients:

• We provide a polynomial time procedure to decide, given a lasso, whether it can be robustly iterated. This symbolic algorithm relies on a computation of the greatest fixpoint of the operator describing the set of controllable predecessors of a path. In order to provide an argument of termination for this computation, we resort to a new notion of branching constraint graphs, extending the approach used in [START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF][START_REF] Tran | Verification of timed automata : reachability, liveness and modelling[END_REF] and based on constraint graphs (introduced in [START_REF] Comon | Timed automata and the theory of real numbers[END_REF]) to check iterability of a cycle, without robustness requirements.

• We provide a termination criterion for the analysis of lassos. Focusing on zones is not complete: it can be the case that two cycles lead to the same zone, but one is robustly iterable while the other one is not. Robust iterability crucially depends on the real-time dynamics of the cycle and we prove that it actually only depends on the reachability relation of the path. We provide a polynomial-time algorithm for checking inclusion between reachability relations of paths in timed automata based on constraint graphs.

• It is worth noticing that all our procedures can be implemented using difference bound matrices, a very efficient data structure used for timed systems. These developments have been integrated in a tool, and we present a case study of a train regulation network illustrating its performances.

We finally study in Chapter 6 a quantitative variant, where one computes the greatest value of δ such that the controller wins the game. We obtain a new decidability result for this problem, by showing that when considering a lasso, not only can we decide robust iterability, but we can even compute the largest perturbation under which it is controllable.

Weighted timed games

Solving the robustness game for a fixed value of δ can be seen as an instance of a more general problem, where both players alternatively choose transitions and delays. This is a natural extension of the controller synthesis problem to the real-time setting called a timed game, where a controller and an antagonistic environment play on a timed automaton instead of a finite transition system. Strategies of players become recipes dictating how to play on this arena (timing delays and transitions to follow). In this more ambitious setting, we will focus on reachability objectives, and we are thus looking for a strategy of the controller so that the target is reached no matter how the environment plays. Reachability timed games are decidable [START_REF] Asarin | As soon as possible: Time optimal control for timed automata[END_REF], and EXPTIME-complete [START_REF] Jurdziński | Reachability-time games on timed automata[END_REF].

If the controller has a winning strategy in a given reachability timed game, several such winning strategies could exist. Weighted extensions of these games have been considered in order to measure the quality of the winning strategy for the controller [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF]. This means that the game, defined in Chapter 8, now takes place over a weighted (or priced) timed automaton [BFH + 01, ALTP04], where edges are equipped with weights, and locations with rates of weights (the cost is then proportional to the time spent in this location, with the rate as proportional coefficient).

Example 5. As a motivating example for studying weighted games, we present a ridesharing scenario. As a driver, we wish to travel from point A to point B, and must choose between several options, as displayed in Figure 4. We can use a direct road, and reach B in two to three hours, or an highway that lets us reach our destination in one hour. Alternatively, we can make a detour: another traveller is waiting at point C, and wishes to reach point D. For this portion too, a faster highway is available.

While all four possible paths satisfy the objective "reaching B", we want to select the one that lets us spend as little money as possible for the trip. The cost of each path depends on several factors. There are fixed entry fees (of 1 e) for the highways, and we need to keep track of fuel consumption, as the rate at which fuel is used differs in roads and highways. Thus, we say that roads cost 1 e per hour, while highways cost 2 e per hour. Moreover, if we share the portion from C to D, the other traveller will pay for his trip (at a rate of 2 e/h), and that can lower our costs. A shared road therefore costs us -1 e per hour (negative rate means we are making a profit), while a shared highway costs 0 e/h. The situation can be modelled as a weighted timed game, displayed in Figure 5. The controller chooses delays and transitions in circle states, while the environment controls the square ones. For example, if we choose to use the direct road from A to B, we go (immediately) to state rd A→B , and stay there until going to state B. This requires letting between two and three hours elapse in rd A→B , with a cost of 1 e/h. The delay is chosen by the environment, as it depends on external influences like traffic density.

In this example, the optimal strategy is to share the road from C to D. This lets us ensure a total weight of at most 1.5 e: going from A to C costs 1 e in the worst case; going from D to B similarly costs at most 1 e; and sharing the trip from C to D is guaranteed to bring us at least 0.5 e.

While solving weighted timed automata has been shown to be PSPACE-complete [START_REF] Bouyer | On the optimal reachability problem of weighted timed automata[END_REF] (i.e. the same complexity as the non-weighted version), weighted timed games are known to be undecidable [START_REF] Brihaye | On optimal timed strategies[END_REF]. This has led to many restrictions in order to regain decidability, the first and most interesting one being the class of strictly non-Zeno cost with only non-negative weights (in edges and locations) [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF]: this hypothesis states that every execution of the timed automaton that follows a cycle of the region abstraction has a weight far from 0 (in interval [1, +∞), for instance).

Less is known for weighted timed games in the presence of negative weights in edges and locations. In particular, no results exist so far for a class that does not restrict the number of clocks of the timed automaton to 1. However, negative weights are particularly interesting from a modelling perspective, for instance in case weights represent the consumption level of a resource (money, energy. . . ) with the possibility to spend and gain some resource. In Chapter 9, we introduce a generalisation of the strictly non-Zeno cost hypothesis in the presence of negative weights, that we call divergence. We show the decidability of the class of divergent weighted timed games for the optimal synthesis problem in Chapter 10:

• We describe a procedure to solve weighted timed games for a bounded horizon, i.e. when controller has a fixed number of steps to reach his targets. It follows closely the framework of [START_REF] Alur | Optimal reachability for weighted timed games[END_REF], but is more symbolic and allows for negative weights.

• We show that optimal strategies in divergent weighted timed games can be restricted to a bounded horizon, that matches the one obtained in the non-negative case from the study of [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF].

The techniques providing these decidability results cannot be extended if the conditions are slightly relaxed. For instance, if we add the possibility for an execution of the timed automaton following a cycle of the region automaton to have weight exactly 0, the decision problem is known to be undecidable [START_REF] Bouyer | On the value problem in weighted timed games[END_REF], even with non-negative weights only. For this extension, in the presence of non-negative weights only, it has been proposed an approximation schema to compute arbitrarily close estimates of the optimal weight that the controller can guarantee [START_REF] Bouyer | On the value problem in weighted timed games[END_REF]. To this end, the authors consider regions with a refined granularity so as to control the precision of the approximation.

Our contribution on the approximation front is presented in Chapter 11, and is two-fold:

• We extend the class considered in [START_REF] Bouyer | On the value problem in weighted timed games[END_REF] to the presence of negative weights, and provide an approximation schema for the resulting class of almost-divergent games;

• We show that the approximation can be obtained using a symbolic computation, that avoids an a priori refinement of regions.

Moreover, the classes of weighted timed games that we study induce interesting classes of finite weighted game when there are no clocks, that can be solved with a lower complexity than arbitrary weighted games. We present those results in Chapter 7.

Part I.

Controller synthesis and timed systems 1. Finite systems

Let us now formally introduce transition systems and their quantitative or gametheoretical extensions. In this chapter we study finite systems only, but terminology and notations are defined over infinite ones with further chapters in mind.

Transition systems

Definition 1.1. Let Σ be a set of elements called labels. A transition system labelled over Σ is a pair S, T , with S a set of states and T ⊆ S × Σ × S a set of transitions, such that (s, a, s ) ∈ T is denoted s a -→ s .

A transition system is finite if it has finitely many states and transitions. A directed graph labelled over Σ is a finite transition system S, T (labelled over Σ), such that T contains at most one transition from s to s for every pair of state (s, s ). A relation R over a domain Q is a set of pairs in Q × Q, and we sometimes write a R b to denote that the pair (a, b) belongs to R. A relation is complete if it equals Q × Q. A graph S, T induces a relation over the finite domain S as {(s, s ) | ∃a ∈ Σ, s a -→ s }: the set of states (s, s ) linked by a transition. It is complete if this relation is complete.

For k 1, a finite path of length k is a finite sequence of transitions (s i , a i , s i ) 1 i k such that for all i ∈ [1, k-1], s i = s i+1 . Such a path ρ will be denoted s 1

a 1 -→ s 2 a 2 -→ . . . s k a k -→ s k ,
and is said to be a path from state first(ρ) = s 1 to state last(ρ) = s k of length |ρ| = k. The concatenation of two finite paths ρ 1 and ρ 2 , such that last(ρ 1 ) = first(ρ 2 ), is denoted by ρ 1 ρ 2 . Transitions can be seen as paths of length one and states as paths of length zero, and we extend the first and last operators in those cases. A cycle is a finite path ρ, of length at least 1, such that first(ρ) = last(ρ).

We similarly define an infinite path ρ ∈ T N as an infinite sequence of transitions s 0 a 1 -→ s 1 a 2 -→ . . . , with first(ρ) = s 0 . A state s is called a deadlock state if there are no transitions t ∈ T with first(t) = s. A path ρ is maximal if it is infinite or if it is finite and ends in a deadlock state. Conversely, a non-maximal path is a finite path that can be extended.

Example 1.1. Figure 1.1 represents a transition system labelled over {req, rec, ok, pro, slp, to}, that models a client interacting with a server. From an initial state s 0 , the client sends a request for data by taking the transition labelled by req. The server should answer by sending a finite sequence of data, activating the receive transition rec multiple times. The communication should end with a confirmation as the ok transition, allowing the client to process the data with pro and return to the initial state. The client can sleep in the initial state with slp, and if the communication fails the client will time-out with transition to. -→ s 0 represents an execution of the client where a successful interaction is followed by a time-out. There are no deadlock states in this transition system, and therefore every maximal path is infinite and every finite-path is non-maximal.

A finite (resp. infinite) path s 0 a 1 -→ s 1 a 2 -→ . . . naturally induces a finite (resp. infinite) word a 0 a 1 . . . over labels. A set of infinite words L is called an ω-language. Given a transition system and an initial state s 0 , the ω-language L s 0 is defined as the set of infinite words over labels induced by the infinite paths that start from s 0 . If the transition system is finite, it can be seen as a non-deterministic Büchi automata where every state is accepting, and therefore its language is an ω-regular language, a notion that generalises the notion of regular languages to infinite words. Definition 1.2. Given a transition system S, T , an objective L t (as an ω-language over labels) and an initial state s 0 , the emptiness problem asks if L s 0 ∩ L t = ∅, i.e. is there an infinite path starting from s 0 that induces a word in L t .

Definition 1.3. Given a transition system S, T , an objective L t (as an ω-language over labels) and an initial state s 0 , the model-checking problem asks if L s 0 ⊆ L t , i.e. does every infinite path starting from s 0 induce a word in L t .

The objective language encodes a specification, and can be expressed as an ω-regular expression or a formula in linear temporal logic (LTL) for example. We will be focusing on simple objectives, like the reachability of a target or a Büchi condition.

Definition 1.4. Given a transition system S, T , an initial state s 0 ∈ S and a set of target states S t ⊆ S, the emptiness problem with a reachability condition asks if there exists a finite path ρ such that first(ρ) = s 0 and last(ρ) ∈ S t . The emptiness problem with a Büchi condition asks if there exists an infinite path s 0 a 1 -→ s 1 a 2 -→ . . . starting from s 0 that reaches S t infinitely often, i.e. such that there exists infinitely many i ∈ N with s i ∈ S t .

One can observe that the emptiness problem with a reachability (resp. Büchi) condition is a particular case of the emptiness problem, as we could extend if needed the label of every transition t with the states first(t) and last(t) and thus express these conditions on words over labels. We call the associated ω-language a reachability (resp. Büchi) objective.

Example 1.2. Consider the transition system in Figure 1.1, the initial state s 0 and the target states S t = {s t }. The emptiness problem with reachability condition S t is satisfied, as s t is reachable from s 0 by following req and ok. Since s t can return to s 0 with pro, the emptiness problem with Büchi condition S t is also satisfied. The corresponding reachability (resp. Büchi) objective is the ω-language of all infinite words over {req, rec, ok, pro, to} that contain at least one (resp. infinitely many) ok. The modelchecking problem is not satisfied with these objectives, as it is possible to loop between s 0 and s 1 infinitely many times for example, never reaching s t .

These problems have been well studied in a variety of settings, and we now give a few results that apply to finite systems only. The emptiness problem with a reachability condition can be solved in linear time using forward exploration techniques, like the classical breadth-first search algorithm. Such techniques can indeed compute the set of states reachable from s 0 , which is enough for reachability conditions. For Büchi conditions, one can then launch a second exploration from every reachable state s t in S t and search for a loop around s t . A linear time complexity can be obtained by computing all strongly connected components. Model checking is polynomial for reachability and Büchi objectives, as it can be solved by attractor computations (see Section 1.3.1).

Weighted transition systems

All of the problems defined so far have been qualitative in nature. In order to model quantitative notions like the cost of going from a source to a destination, we need to define concepts such as the weight of a path, or the weight of a set of paths. This can be done by considering a setting where labels are real numbers, the weight of a path is the sum of its labels and the weight of a set of paths is the minimum of the weight of each path. This is the setting that we will consider in our study of timed systems, and our problems can be seen as extensions of the classical shortest path problem. However, some developments (Difference Bound Matrices with non-standard entries) will require the same notions over more exotic labels, so we introduce the more general context of [START_REF] Baras | Path Problems in Networks[END_REF], where labels are only required to form a set with some algebraic properties.

Semirings, closure operation

A binary operation ⊕ over a domain Q is a mapping from Q × Q to Q, and we sometimes write a ⊕ b to denote the element ⊕(a, b). Definition 1.5. A semiring (Q, ⊕, ⊗, 0, 1) is a set Q equipped with two binary operations ⊕ and ⊗ over Q of respective neutral element 0 and 1, such that for all a, b, c ∈ Q:

• (⊕ is associative) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) • (0 is neutral for ⊕) 0 ⊕ a = a ⊕ 0 = a • (⊕ is commutative) a ⊕ b = b ⊕ a • (⊗ is associative) (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c) • (1 is neutral for ⊗) 1 ⊗ a = a ⊗ 1 = a • (⊗ distributes over ⊕, left) a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) • (⊗ distributes over ⊕, right) (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) • (0 is absorbing for ⊗) 0 ⊗ a = a ⊗ 0 = 0
Examples of semirings include the natural semiring (N, +, ×, 0, 1), equipped with standard addition and multiplication over integers, the tropical semiring (N∪{+∞}, min, +, +∞, 0), or the boolean semiring ({0, 1}, ∨, ∧, 0, 1). As the neutral elements 0 and 1 are uniquely determined by ⊕ and ⊗1 , we may omit them and refer to the semiring as (Q, ⊕, ⊗), or simply Q if the operations are clear from context. If 0 = 1 then necessarily Q = {0}, and Q is called the trivial semiring. The classical notion of ring additionally requires that every element of Q has an inverse by ⊕ in Q, i.e. ∀a ∈ Q, ∃(-a) ∈ Q such that a ⊕ (-a) = 0. Semirings strictly generalise rings, as for examples the boolean semiring ({0, 1}, ∨, ∧) is not a ring.

Definition 1.6. A relation ∈ Q × Q is a (partial) order if for all a, b, c ∈ Q • ( is reflexive) a a • ( is transitive) a b ∧ b c ⇒ a c • ( is antisymmetric) a b ∧ b a ⇒ a = b
An ordered semiring is a semiring (Q, ⊕, ⊗) such that the relation defined as {(a, b) | ∃c ∈ Q, a ⊕ c = b} is an order on Q. The relation is always reflexive and transitive by the properties of ⊕, but it is not antisymetric on every semiring. In fact, a non-trivial ring cannot be an ordered semiring. For example, (R 0 , +, ×) is an ordered semiring with equal to the standard order on R 0 , but (R, +, ×) is not ordered by .

If (Q, ⊕, ⊗) is a semiring where ⊕ is selective (i.e. ∀a, b ∈ Q, a ⊕ b = a ∨ a ⊕ b = b), then (Q, ⊕, ⊗
) is an ordered semiring, and is a total order (i.e. ∀a, b ∈ Q, a b ∨ b a). Thus, another example of ordered semirings is (R ∪ {+∞}, min, +), with equal to the order over reals. If (Q, ⊕, ⊗) is an ordered semiring, then for every subset Q ⊆ Q such that ⊕ and ⊗ are stable over Q and such that 0 and 1 are in Q , (Q , ⊕, ⊗) is also an ordered semiring. Therefore, (N, +, ×) and (Q ∪ {+∞}, min, +) are ordered semirings.

If

(Q, ⊕, ⊗) is an ordered semiring, then 0 is the least element of Q w.r.t. , i.e. ∀a ∈ Q, 0 a. If there exists in Q an absorbing element ∞ for ⊕ (such that for all a ∈ Q, ∞ ⊕ a = ∞), then ∞ is the greatest element of Q w.r.t. , i.e. ∀a ∈ Q, a
∞. For example, (R 0 ∪ {+∞}, min, +) and ({0, 1}, ∨, ∧) are ordered semirings where ∞ equals 0 and 1, respectively. If Q does not contain an absorbing element for ⊕, we can consider a new symbol ∞ ∈ Q and extend ⊕ and

⊗ with a ⊕ ∞ = ∞ for a ∈ Q, ∞ ⊕ ∞ = ∞, a ⊗ ∞ = ∞ ⊗ a = ∞ for a ∈ Q\{0}, 0 ⊗ ∞ = ∞ ⊗ 0 = 0 and ∞ ⊗ ∞ = ∞, such that (Q ∪ {∞}, ⊕, ⊗, 0, 1
) is an ordered semiring with ∞ absorbing for ⊕. This allows us to define the ordered semirings (R 0 ∪ {+∞}, +, ×) with ∞ = +∞ and (R ∪ {+∞, -∞}, min, +) with ∞ = -∞ for example, and in the following we will assume that every ordered semiring contains an absorbing element ∞ for ⊕.

For every k 0 and a ∈ Q in an ordered semiring (Q, ⊕, ⊗), let a k denote 1 if k = 0 and 0 i<k a (i.e. a ⊗ a • • • ⊗ a, k times) if k > 0, and let a (k) denote 0 i k a i (i.e. a 0 ⊕ • • • ⊕ a k ). On ordered semirings, ⊕ is monotone (i.e. ∀a, b ∈ Q, a a ⊕ b), and therefore the sequence (a (k) ) k∈N is non-decreasing. Let a ( * ) be called the closure of a and denote the supremum of (a (k) ) k∈N if it exists. Intuitively, a ( * ) is the limit of the infinite sum

1 ⊕ a ⊕ (a ⊗ a) ⊕ (a ⊗ a ⊗ a) ⊕ . . . in Q.
Definition 1.7. An ordered semiring with closure is an ordered semiring where the closure a ( * ) of every a ∈ Q exists, i.e. the set

S a = {b ∈ Q | ∀k ∈ N, a (k) b} contains an element a ( * ) such that a ( * ) b for every b ∈ S a .
A first class of ordered semirings with closure are those where 1 = ∞, i.e. the neutral element for ⊗ is absorbing for ⊕. In this case, a ( * ) = 1 for every a ∈ Q. The semirings (R 0 ∪ {+∞}, min, +) and ({0, 1}, ∨, ∧) belong to this class. We now introduce another class of ordered semirings with closure, called complete semirings.

The relation is a complete order over Q if each of its subsets has a supremum, i.e. for all subsets S of Q, there exists c in B = {b ∈ Q | ∀a ∈ S, a b} such that c b for every b ∈ B. In this case, we say that Q equipped with is a complete join semilattice, where join is the operator that returns the supremum of a subset of Q. A complete semiring is an ordered semiring (Q, ⊕, ⊗) such that the relation is a complete order over Q.

Lemma 1.1. Complete semirings are ordered semirings with closure.

Proof. Consider some element a ∈ Q, and let f a be a unary operator over Q defined by f a (q) = (a ⊗ q) ⊕ 1. In particular, f a (0) = 1 = a (0) , and for every k 0, f a (a (k) ) = a (k+1) . Let us prove that f a is non-decreasing, by considering q 1 q 2 (i.e. ∃c, q 2 = q 1 ⊕ c) and showing f a (q 1 ) f a (q 2 ):

f a (q 2 ) = f a (q 1 ⊕ c) = (a ⊗ (q 1 ⊕ c)) ⊕ 1 = (a ⊗ q 1 ) ⊕ (a ⊗ c) ⊕ 1 = f a (q 1 ) ⊕ (a ⊗ c) .
It follows that on a complete semiring, f a is Scott-continuous (it preserves the supremum of sets), and by Kleene's fixpoint theorem [START_REF] Stoltenberg-Hansen | Mathematical Theory of Domains[END_REF], f a has a least fixpoint, which is the supremum of the non-decreasing chain

0 f a (0) f a (f a (0)) f a (f a (f a (0))) • • •
i.e. the supremum of (a (k) ) k∈N , and therefore a ( * ) by definition.

Example 1.3. Some examples of complete semirings include (R 0 ∪ {+∞}, +, ×), where a ( * ) equals +∞ if a 1 and 1/(1 -a) if a < 1, and (R ∪ {-∞, +∞}, min, +) where a ( * ) equals 0 if a 0, and -∞ if a < 0. Both form complete join semilattices with where join is either the usual sup or inf operator over reals. (N ∪ {+∞}, +, ×) and (N ∪ {+∞}, min, +) are also complete semirings, but not (Q ∪ {-∞, +∞}, min, +) as the ordinary order is not complete over rational numbers (the infimum of a subset of Q may be irrational). However, if we let Q N = {a/N | a ∈ Z} be the set of rational numbers of granularity 1/N for a fixed N ∈ N >0 , then the semiring (Q N ∪ {-∞, +∞}, min, +) is complete, and the closure operation is inherited from the tropical semiring over R ∪ {-∞, +∞}.

Let us denote M n (Q) the set of n × n matrices over Q. If (Q, ⊕, ⊗) is an ordered semiring, then, for every integer n > 0, (M n (Q), ⊕, ⊗, 0, 1) is an ordered semiring, with ⊕ and ⊗ the entrywise addition and the standard multplication of matrices (using ⊕ and ⊗ over Q internally), 0 the null matrix (equal to 0 everywhere), and 1 the identity matrix (equal to 1 on the diagonal and to 0 everywhere else). The order over M n (Q) is inherited by applying the order over Q entrywise, and for every matrix A ∈ M n (Q), A ( * ) denotes the closure of A in the matrix semiring (i.e. 1 ⊕ A ⊕ A 2 ⊕ A 3 ⊕ . . . ) when it exists.

Lemma 1.2 (Generalized Gauss-Jordan, [START_REF] Gondran | Graphs, dioids and semirings. new models and algorithms[END_REF]). If (Q, ⊕, ⊗) is an ordered semiring with closure, then A ( * ) exists for every matrix A, so that (M n (Q), ⊕, ⊗) is also an ordered semiring with closure. Moreover, A ( * ) can be computed by performing at most n 3 elementary operations (⊕, ⊗, and closure in Q).

This result is derived from a generalised version of the Floyd-Warshall algorithm defined over semirings, described in Algorithm 1.1. To get intuition on Algorithm 1.1, one can interpret the matrix A as a graph G = {1, . . . , n}, {i

M (i,j) ---→ j | M (i, j) = 0}
labelled over Q, such that the entry (i, j) in A ( * ) corresponds to applying , over all paths ρ from i to j in G, on k a -→l∈ρ a. The closure of diagonal entries corresponds to an acceleration of this computation over cycles, such that only paths without cycles need to be considered. Whenever the variable k is incremented, A k contains the result of this computation over all paths without cycles that only use {1, . . . , k} as intermediate states, and thus A n ⊕ 1 = A ( * ) (that last step only updates diagonal entries by adding 1, this corresponds to paths of length zero).

Transition systems labelled over a semiring

The results of this section hold for every semiring, but as we will mostly consider semirings that extend the tropical semiring in further chapters, we will change notations and name the two operators min and + of neutral elements +∞ and 0 instead of ⊕ and ⊗ of neutral elements 0 and 1. We will also assume that min has an absorbing element named -∞ instead of ∞. In this section, we consider only finite transition systems (finitely many states and edges).

Definition 1.8. A weighted transition system is a transition system S, T labelled over Σ, such that (Σ, min, +) is an ordered semiring with closure.

Algorithm 1.1: Closure computation over the semiring of matrices [START_REF] Gondran | Graphs, dioids and semirings. new models and algorithms[END_REF] 

Input : A ∈ M n (Q) Output : A ( * ) /* We construct a sequence of matrices A 0 . . . A n */ 1 A 0 ← A 2 for k ← 1 to n do 3 A k (k, k) ← (A k-1 (k, k)) ( * ) 4 for i ← 1 to n do 5 for j ← 1 to n do 6 if (i, j) = (k, k) then 7 A k (i, j) ← A k-1 (i, j) ⊕ (A k-1 (i, k) ⊗ A k (k, k) ⊗ A k-1 (k, j)) 8 return A n ⊕ 1
The weight of a finite path ρ = s 0

a 1 -→ s 1 . . . a k
-→ s k is obtained by summing its edges in order (+ may not be commutative) wt(ρ) = a 1 +• • •+a k . The weight wt k (s, s ) for a pair of states (s, s ) and k ∈ N is defined as the minimal weight of the set of all paths from s to s of length exactly k in the transition system.2 We also let wt k (s, s ) = min 0 i k wt i (s, s ) denote the minimal weight for all paths of length at most k ∈ N. From the ordering of (Σ, min, +) we derive an ordering , such that a b ⇔ b a ⇔ ∃c ∈ Σ, a = min(b, c). The sequence (wt k (s, s )) k∈N is decreasing for , and we define wt(s, s ) as its infimum w.r.t. if it exists. In fact, we will see that it always exists when (Σ, min, +) is a semiring with closure.

Example 1.4. If the semiring is the tropical semiring (N ∪ {+∞}, min, +), then wt(s, s ) corresponds to the weight of the shortest path from s to s in a transition system labelled by non-negative weights representing distance, and equals +∞ if no such path exists. If the semiring is (Z ∪ {-∞, +∞}, min, +), wt(s, s ) corresponds to the infimum of the weight of the paths from s to s , i.e. the weight of the shortest path if it exists, +∞ if s cannot reach s , and -∞ if s can reach a negative cycle that can reach s . If the semiring is ({0, 1}, ∨, ∧), wt(s, s ) = 1 if and only if there is a path from s to s entirely labelled by 1.

The adjacency matrix of a transition system S, T weighted over Σ is a matrix M in M |S| (Σ), seen as a mapping from S × S to Σ, such that M (s, s ) is equal to wt 1 (s, s ). M is an element of the ordered semiring with closure (M |S| (Σ), min, +), where min is the entrywise application of min and + is the standard product of matrices over (Q, min, +). Observe that for every pair of states (s, s ), it holds that for every k 0, M (k) (s, s ) = wt k (s, s ), and therefore M ( * ) (s, s ) = wt(s, s ). Then, we can compute wt(s, s ) for every pair (s, s ) by using Algorithm 1.1 on M . From the adjacency matrix

s 0 s 1 s 2 1 2 1 0 -1 M =   s 0 s 1 s 2 s 0 +∞ 1 +∞ s 1 2 1 0 s 2 -1 +∞ +∞   s 2 s 0 s 1 0 0 0 1 -1 1 -1 0 0 M ( * ) =   s 0 s 1 s 2 s 0 0 1 1 s 1 -1 0 0 s 2 -1 0 0   Figure 1.
2.: A weighted transition system labelled over (Z ∪ {+∞, -∞}, min, +) and its adjacency matrix on the left, their closure on the right.

M ( * ) of a transition system S, T , we can extract a transition system S, T called the closure of S, T , with T = {s

M ( * ) (s,s ) -----→ s | s, s ∈ S}.
Example 1.5. Figure 1.2 represents a transition system labelled over the tropical semiring (Z ∪ {+∞, -∞}, min, +), its adjacency matrix M containing the minimum weight over paths of length 1, the closure M ( * ) = min(1, M, M 2 , M 3 ) (1 is the identity matrix with 0 on the diagonal and +∞ everywhere else), and the transition system associated with M ( * ) . On (N ∪ {+∞}, min, +), Algorithm 1.1 is equivalent to running the classical Floyd-Warshall algorithm on a graph with non-negative weights. On the semiring (Z ∪ {-∞, +∞}, min, +), Algorithm 1.1 is equivalent to running the Floyd-Warshall algorithm on a graph with arbitrary weights, with an additional check that sets diagonal entries to -∞ as soon as they become negative.

Turn-based game on a transition system

In order to model situations where some choices are out of our control, we will study a game-theoretical extension of transition systems, where two players play a turn-based game.

Definition 1.9. A two-player turn-based game labelled over Σ is a tuple G = S Ctrl , S Env , T such that S Ctrl ∩ S Env = ∅ and S Ctrl ∪ S Env , T is a transition system labelled over Σ.

The disjoint union of states is denoted S = S Ctrl S Env . We say that S Ctrl contains the states that belong to the player Ctrl, and S Env the states that belong to the player Env. A maximal play (resp. a non-maximal play) ρ in G is a maximal path (resp. a non-maximal path) in S, T . Let S ⊥ ⊆ S denote the deadlock states. Recall that states can be seen as paths of length 0, and therefore states in S\S ⊥ can be seen as non-maximal plays. For P ∈ {Ctrl, Env}, the set of non-maximal plays ρ such that last(ρ) ∈ S P is denoted FPlays P . A strategy σ P for player P is a mapping from FPlays P to T , such that for all ρ ∈ FPlays P , last(ρ) = first(σ P (ρ)). A strategy is said positional if for all ρ ∈ FPlays P , σ P (ρ) = σ P (last(ρ)). 3 Let play(s 0 , σ Ctrl , σ Env ) denote the unique maximal play obtained from an initial state and a pair of strategies, such that first(play(s 0 , σ Ctrl , σ Env )) = s 0 , and for every prefix ρ of play(s 0 , σ Ctrl , σ Env ) in FPlays P , the next transition in play(s 0 , σ Ctrl , σ Env ) is σ P (ρ).

Definition 1.10. Given a game G, an objective L t (as an ω-language over labels) and an initial state s 0 , the controller synthesis problem asks if there exists a strategy σ Ctrl for Ctrl such that for all strategies σ Env for Env, play(s 0 , σ Ctrl , σ Env ) is an infinite play that induces a word in L t .

Example 1.6. Figure 1.3 represents a two-player turn-based game associated with the transition system of Figure 1.1, such that S Ctrl = {s 0 , s t } and S Env = {s 1 }. This models the fact that, as a client, we do not control the server's answer. On this example, consider the reachability objective associated with S t = {s t }, that models the specification "at least one communication goes well". The synthesis problem is not satisfied from s 0 with this objective, since for every strategy of player Ctrl, player Env can choose to always time-out, or loop in s 1 forever. If we consider the specification "controller sends at least one request", defined by the reachability objective associated with S t = {s 1 }, the synthesis problem is satisfied from s 0 , for example with the positional strategy for controller that chooses req in s 0 and pro in s t .

If S Env is empty, the controller synthesis problem on G is equivalent to the emptiness problem on the transition system S Ctrl , T . If S Ctrl is empty, the controller synthesis problem on G is equivalent to the model-checking problem on the transition system S Env , T . For a finite system equipped with a reachability or Büchi objective, the controller synthesis problem is polynomial, and can be solved with fixpoint computations. In a more general setting where the objective is given as an LTL formula, the controller synthesis problem is 2-EXPTIME complete [START_REF] Pnueli | On the synthesis of a reactive module[END_REF].

Attractors

We now recall the classical notion of attractor of a player towards a set of states, that is used to solve reachability games. Let S t ⊆ S be a set of states. The attractor of Ctrl towards S t is the set of states such that player Ctrl can guarantee reaching S t eventually. Formally, it is the greatest set S ⊆ S such that for all s ∈ S , either:

1. s ∈ S t ; or 2. s ∈ S Ctrl , and there exists a transition s a -→ s with s ∈ S ; or 3. s ∈ S Env , and for all transitions s a -→ s , it holds that s ∈ S .

It is well-known that S can be computed with a fixpoint computation that starts with S = S t , and adds progressively the states that satisfy conditions 2 or 3, until no such state is left. The complexity of this computation is linear in the size |S| + |T | of the graph. 4Then, the controller synthesis problem with reachability objective S t and initial state s 0 is satisfied if and only if s 0 belongs to the attractor of Ctrl towards S t , and in this case one can extract from the attractor computation a (positional) strategy σ Ctrl that guarantees reachability of S t from s 0 .

A symmetrical notion of attractor of Env towards a set S t can be defined and computed similarly.

Timed systems

In this chapter, we introduce notions that let us express timing constraints, define timed automata as finite transition systems enriched by those notions, and introduce classical tools for their study.

Modelling real-time constraints

Let X = {x 1 , . . . , x n } be a finite, non-empty set of variables called clocks. A valuation ν : X → R 0 is a mapping from clocks to non-negative real numbers, such that ν(x 1 ), . . . , ν(x n ) are called the coordinates of ν. Equivalently, ν can be seen as a point in space R X 0 . We denote 0 the valuation such that for all x ∈ X , ν(x) = 0. Given a real number d ∈ R, we define ν + d as the valuation such that ∀x ∈ X , The term atomic constraint will refer to a linear inequality in one of the following forms:

(ν + d)(x) = ν(x) + d if it exists. 1 If d is non-negative,
• A strict (resp. non-strict) non-diagonal atomic constraint over clock x ∈ X and constant c ∈ Q is an inequality of the form x c with ∈ {>, <} (resp. ∈ { , }).

• A strict (resp. non-strict) diagonal atomic constraint over clocks x and y ∈ X and constant c ∈ Q is an inequality of the form xy c with ∈ {>, <} (resp. ∈ { , }).

Let and ⊥ denote two special atomic constraints, defined as x 0 and x < 0 for an arbitrary x ∈ X . A guard g over X is a finite conjunction of atomic constraints over clocks in X . In particular, guards let us define x = c as shorthand for x c ∧ x c, and c 1 < x < c 2 as shorthand for x > c 1 ∧ x < c 2 . A guard is said strict (resp. non-strict, diagonal, non-diagonal) if all of its atomic constraints are strict (resp. non-strict, diagonal, non-diagonal). Guards(X ) denotes the set of all guards over X , and Guards nd (X ) the subset of non-diagonal guards. For all constants c ∈ Q and ∈ { , , >, <}, we say that valuation ν ∈ R X 0 satisfies the atomic constraint x c (resp. xy c), and write

ν |= x c (resp. ν |= x -y c), if ν(x) c (resp. ν(x) -ν(y) c
). We say that valuation ν ∈ R X 0 satisfies guard g, and write ν |= g, if ν satisfies all atomic constraints in g. For g ∈ Guards(X ), let g denote the set of all ν ∈ R X 0 such that ν |= g. Such sets are called zones and form convex polyhedra of R X 0 . A guard g is said satisfiable when the zone g is non-empty, and a zone is called rectangular when the associated guard is non-diagonal. The universal zone refers to = R X 0 and the empty zone refers to ⊥ = ∅. Guard g is the closed version of a satisfiable guard g where every strict constraint of comparison operator < or > is replaced by its non-strict version or . The zone g is the topological closure of Z = g , and is also denoted Z.

Zones are closed by intersection as g ∩ g = g ∧ g , but not by union.2 Zones are closed by time-successors as PostTime( g ) is equal to g , where g is obtained from g by removing every non-diagonal atomic constraint of the form x < c or x c. Zones are also closed by reset of clocks Y ⊆ X , as g [Y := 0] = g , where g = ⊥ if g = ∅, and otherwise g is obtained from g by removing every non-diagonal atomic constraint of the form x > c or x c with x ∈ Y, replacing every diagonal atomic constraint of the form xy c with y ∈ Y (resp. x ∈ Y) by x c (resp. y -c), and adding the constraint x 0 for every x ∈ Y. Note that encoding zones by storing their associated guard syntactically as a formula is not efficient, as guards can contain useless constraints. Moreover, it is possible to have different guards associated to the same zone, and for example testing if a zone is equal to another zone is non-trivial in this form.

Encoding constraints as DBMs

A bound (over R) is a pair (≺, c) with ≺ ∈ {<, } and c ∈ R. It represents the (open or large) upper bound ≺ c in a linear inequality. We introduce additional bounds (<, +∞) and (<, -∞) that will be used for trivial inequalities, and let Bounds(R) denote

({<, } × R) ∪ {(<, +∞), (<, -∞)}.
We say that a real number a ∈ R satisfies (≺, c) ∈ {<, } × R if the inequality a ≺ c holds. The bound (<, +∞) is satisfied by every real and (<, -∞) is never satisfied. We say that bound (≺, c) is at least as strong as

(≺ , c ), denoted (≺, c) (≺ , c ), if all reals satisfying (≺, c) satisfy (≺ , c ), equivalently if c = -∞ ∨ c = +∞ ∨ c < c ∨ (c = c ∧ (≺ = ≺ ∨ ≺ = <)) .
This forms a total order over bounds, where the strongest bound is (<, -∞) and the weakest one is (<, +∞). We define a binary operator min over bounds that returns the strongest bound out of its arguments, and an infimum inf over sets of bounds that returns the weakest bound that is at least as strong as every bound in the set.

We also define an addition + such that

(≺, c) + (≺ , c ) = (≺ , c + c ) ,
with ≺ set to if ≺ = ≺ = and to < otherwise, and where c + c uses the + operator of the tropical semiring (R ∪ {-∞, +∞}, min, +). 3The min operation admits (<, +∞) as neutral element and (<, -∞) as absorbing element, and + admits ( , 0) as neutral element and (<, +∞) as absorbing element. Then, (Bounds(R), min, +) is a semiring that we call the tropical semiring of bounds over R. It is an ordered semiring because min is selective. The order induced by min in (Bounds(R), min, +) is {(a, b) | b a}. Then, (Bounds(R), min, +) forms a complete join semilattice with where join is the inf operator. Therefore, (Bounds(R), min, +) is an ordered semiring with closure. The closure of a bound (≺, c) is equal to:

(<, 0) if (≺, c) = (<, 0); (<, -∞) if c < 0; and ( , 0) otherwise (i.e. if ( , 0) (≺, c)).
We define bounds over a subset Q of R with Bounds(Q) = ({<, }×Q)∪{(<, +∞), (<, -∞)} in a similar fashion. Recall that Q N denotes the rational numbers of granularity 1/N with N ∈ N >0 , and consider the tropical semiring of bounds over Q N , defined as (Bounds(Q N ), min, +). It inherits the properties of (Bounds(R), min, +) and is an ordered semiring with closure.

For notational convenience, we add a variable x 0 that is always considered equal to 0, and denote X 0 the set X ∪ {x 0 }. A difference bound constraint is a linear inequality xy ≺ c over clocks x, y ∈ X 0 and bound (≺, c). As for atomic constraints, we say that a valuation ν ∈ R X 0 satisfies xy ≺ c and write ν |= xy ≺ c if the real number ν(x) -ν(y) satisfies the bound (≺, c) (with ν(x 0 ) defined as equal to 0), and xy ≺ c denotes the set of valuations that satisfy xy ≺ c. The inclusion relation of sets of valuations in R X 0 gives a natural order over atomic constraints, difference bound constraints and guards. Thus, given atomic constraints, difference bound constraints or guards φ and φ , we will say that φ is at least as strong as φ if φ ⊆ φ , and that φ is equivalent to φ if φ = φ . A difference bound constraint xy ≺ c is at least as strong as another difference bound constraint xy ≺ c if and only if either (≺, c) = (<, -∞), (≺ , c ) = (<, +∞), or x = x , y = y and (≺, c) (≺ , c ).

Lemma 2.1. Every atomic constraint can be associated with an equivalent difference bound constraint. Similarly, every difference bound constraint can be associated with an equivalent atomic constraint.

Proof. From atomic constraints to difference bound constraints we refer to Table 2.1. From difference bound constraints to atomic constraints, note that if c ∈ Q and at most one of x, y is equal to x 0 then we can use Table 2.1 to find an atomic constraint equivalent to xy ≺ c. If c ∈ {+∞, -∞} we can use the atomic constraint or ⊥.

If x = y = x 0 then x 0 -x 0 ≺ c is equivalent to if ( , 0) (≺, c), and to ⊥ otherwise. x ≺ c x c x -y ≺ c x -y c x -x 0 ≺ c x 0 -x ≺ -c x -y ≺ c y -x ≺ -c
Table 2.1.: The first line represents atomic constraints, and the second line represents their equivalent difference bound constraints. The symbol ≺ (resp. ) can be interpreted as either < or (resp. either > or ).

One can then see a guard g as a finite conjunction of difference bound constraints, and encode it as a finite weighted transition system X 0 , T labelled over Bounds(Q), whose vertices are clocks in X 0 and such that every transition x (≺,c) ---→ y corresponds to a difference bound constraint xy ≺ c in g. We also add transitions x 0 ( ,0) ---→ x for every x ∈ X 0 to enforce the non-negativity of clocks. As there are finitely many constraints in g, there exists a granularity 1/N such that (X 0 , T ) is in fact labelled over Bounds(Q N ). The adjacency matrix of such weighted transition system, as defined in Section 1.2.2, is a mapping M from X 0 × X 0 to Bounds(Q N ) called a Difference Bound Matrix (DBM) where every entry M(x, y) = (≺, c) represents the difference bound constraint xy ≺ c, and M is the zone associated to the conjunction of those constraints.

DBMs were introduced in [BM83, Dil90] for analyzing timed automata, they offer a practical way to represent zones, and one can perform operations like intersections, resets or time-successor computations on DBMs in time quadratic in |X |. We refer to [START_REF] Bengtsson | Timed Automata: Semantics, Algorithms and Tools[END_REF] for details. 4 A DBM is said in normal form if M = M ( * ) in the semiring of matrices over the tropical semiring of bounds. Thus, for every DBM M there exists a unique DBM in normal form Norm(M) such that M = Norm(M) . One can use Algorithm 1.1 to compute Norm(M) = M ( * ) in time cubic in |X |. Intuitively, a DBM in normal form contains all of the strongest atomic constraints that are satisfied by its associated zone.

A DBM in normal form M is non-empty (i.e. M = ∅) if and only if none of its diagonal entries are negative, i.e. ∀x ∈ X 0 , ( , 0) M(x, x). Given two non-empty DBMs in normal form M and M , we have M = M if and only if M = M , and M ⊆ M if and only if M(x, y) M (x, y) for all clocks x, y ∈ X 0 . Therefore, testing DBMs in normal form for equality or inclusion of their associated zones requires a time complexity at most quadratic in |X |.

Example 2.1. An example of satisfiable guard, zone and DBM in normal form is displayed in Figure 2.1. Consider the guard over

X = {x 1 , x 2 } defined by g = x 1 -x 2 < 1 ∧ x 1 -x 2
1. It is not satisfiable, and g = ∅. From g we obtain the DBM

M =   0 < +∞ < +∞ 0 < +∞ < 1 0 -1 < +∞   , with Norm(M) =   0 < +∞ < +∞ 0 < 0 < 1 0 < -1 < 0   . x 1 x 2 1 2 0 1 2 x 1 > 1 ∧ x 2 < 1 ∧ x 1 -x 2 < 1   x 0 x 1 x 2 x 0 0 < -1 < 0 x 1 < 2 0 < 1 x 2 < 1 < 0 0   Figure 2.1.: A guard g over clocks X = {x 1 , x 2 } with constants in Z = Q 1 , a representation
of the zone g , and the DBM in normal form M encoding g .

Timed automata

Definition 2.1. A timed automaton A is a tuple L, X , Σ, E , with L a finite set of locations, X a finite set of clocks, Σ a finite set of actions and E a finite set of edges labelled by an action, a non-diagonal guard and a set of clocks to reset, such that L, E is a finite transition system labelled over Σ × Guards nd (X ) × 2 X .

A path π in A refers to a path in the transition system L, E , i.e. a sequence of the form 0 Given an execution ρ in A, one can abstract delays and valuations to obtain a path π in A. In this case, we say that ρ is following π, or that π contains the execution ρ.

a 1 ,g 1 ,Y 1 ----→ 1 a 2 ,g 2 ,Y 2 ----→ . . . in (L, E). We call a pair ( , ν) ∈ L × R X 0 a configuration. The semantics of A is defined as the transition system A = L × R X 0 , T labelled over R 0 × E,
A finite or infinite word a 1 a 2 . . . over Σ is called an untimed word. We define timed words as finite or infinite words over R 0 × Σ, such that (d 1 , a 1 )(d 2 , a 2 ) . . . represents the sequence where action a 1 happens after a delay of d 1 units of time, action a 2 happens d 2 units of time after a 1 , etc..5 A path π in A naturally induces an untimed word, and an execution ρ in A naturally induces a timed word. Sets of infinite timed (resp. untimed) words are called timed (resp. untimed) ω-languages. Given a timed ω-language L, we define the corresponding untimed ω-language Untimed(L) as

{(a i ) i∈N | ∃(d i ) i∈N ∈ R N 0 , (d i , a i ) i∈N ∈ L},
and given an untimed ω-language L u , we define the corresponding timed ω-language Timed(L u ) as

{(d i , a i ) i∈N | (d i ) i∈N ∈ R N 0 , (a i ) i∈N ∈ L u }. Example 2.
2. An example of timed automaton A is depicted in Figure 2.2. We denote valuation ν : x 1 → ν(x 1 ), x 2 → ν(x 2 ) as ν = (ν(x 1 ), ν(x 2 )). From ( 0 , (0, 0)), A allows the finite timed word (1.5, a)(0.25, b)(1.75, a), induced by an execution following

0 a,1<x 1 <2,{x 2 } --------→ 1 b,x 1 2,{x 1 } ------→ 2 a,x 2 2,{x 2 }
------→ 1 with successive configurations ( 0 , (0, 0)), ( 1 , (1.5, 0)), ( 2 , (0, 0.25)) and ( 1 , (1.75, 0)). The untimed word ba cannot be induced by an execution starting from ( 0 , (0, 0)).

0 1 2 3 a, 1 < x 1 < 2 x 2 := 0 b, x 1 2, x 1 := 0 a, x 2 2, x 2 := 0 b, x 1 > 2, x 1 := 0 a, x 2 < 2, x 2 := 0 Figure 2.
2.: A timed automaton over clocks X = {x 1 , x 2 } and actions Σ = {a, b}, where the reset of a clock x is denoted by x := 0, such that the edge from 3 to 0

refers to ( 3 , a, x 2 < 2, {x 2 }, 0 ) ∈ E, alternatively denoted 3 a,x 2 <2,{x 2 } ------→ 0 .
We define the emptiness and model checking problems on timed automata using the transition system of their semantics. Given a timed automaton A, an objective L u t (as an untimed ω-language), an initial location 0 and an initial valuation ν 0 , the emptiness problem (resp. model-checking problem) refers to the emptiness (resp. model-checking) problem on A with objective Timed(L u t ) and initial configuration ( 0 , ν 0 ). Remark. A standard definition of those problems would use a timed language as the objective, but we will focus on cases where the objective is untimed. It is usually assumed that all clocks are null initially (i.e. ν 0 = 0), and in this case only the initial location 0 is specified.

Given a timed automaton A and an initial configuration ( 0 , ν 0 ), the timed language L ( 0 ,ν 0 ) (A) is defined as the language of A at ( 0 , ν 0 ), i.e. the set of timed words induced by the executions starting from ( 0 , ν 0 ). The untimed language L u ( 0 ,ν 0 ) (A) is defined as Untimed(L ( 0 ,ν 0 ) (A)), i.e. the set of untimed words induced by paths that contain executions starting from ( 0 , ν 0 ).

The emptiness (resp. model-checking) problem can be reformulated as asking if the untimed language L u ( 0 ,ν 0 ) (A) has non-empty intersection with L u t (resp. is included in L u t ). Thus, if two timed automata have the same untimed language, they are equivalent for the emptiness and model-checking problems. We also define the emptiness problem with a reachability condition (resp. with a Büchi condition) on timed automata, and they can be seen as special cases of the emptiness problem associated to reachability (resp. Büchi) objectives. Given a timed automaton, an initial configuration ( 0 , ν 0 ), and a set of target locations L t ⊆ L, the emptiness problem with a reachability condition asks if there exists a finite execution ρ such that first(ρ) = ( 0 , ν 0 ) and last(ρ) ∈ L t × R X 0 . Given a timed automaton, an initial configuration ( 0 , ν 0 ), and a set of target locations L t ⊆ L, the emptiness problem with a Büchi condition asks if there exists an infinite execution ( 0 , ν 0 )

d 1 ,e 1 ---→ ( 1 , ν 1 ) d 2 ,e 2
---→ . . . starting from ( 0 , ν 0 ) that reaches L t infinitely often, i.e. such that there exist infinitely many i ∈ N with i ∈ L t .

Bounded clocks

Let R X 0,<M denote the set of valuations in R X 0 bounded by M ∈ Q 0 , i.e. such that for every clock x ∈ X , ν(x) ∈ [0, M ). A guard g is said to be bounded by M ∈ Q 0 if g ⊆ R X 0,<M , i.e. every valuation that satisfies g belongs to R X 0,<M . Let Guards(X , M ) (resp. Guards nd (X , M )) denote the set of guards (resp. non-diagonal guards) over X bounded by M . Given a timed automaton A, we say that all clocks are bounded by M in A if every guard in A belongs to Guards nd (X , M ). Let A be a timed automaton, and let M be the greatest constant (in absolute value) to appear in the constraints of A.

There exists a timed automaton A where clocks are bounded by M + 1, and an initial location

0 in A such that L u ( 0 ,0) (A) = L u ( 0 ,0) (A ) [BFH + 01].
The intuition behind the construction is to store in the locations the information of which clock is above M and maintain those under M + 1.

Bounded clocks are a powerful assumption that is usually required in related work, and will be necessary for most of our results. As the above transformation maintains untimed languages, this assumption comes without loss of generality for the emptiness and model-checking problems. From now on, we will assume that all clocks are bounded by some constant M , that all constants that appear in atomic constraints are included in [-M, M ], and we restrict A to configurations in L × R X 0,<M , as executions that get out of this cube cannot continue and thus do not affect the languages of A. Moreover, we change the universal guard such that equals R X 0,<M instead of R X 0 .

Regions

We will rely on the crucial notion of regions, as introduced in the seminal work on timed automata [START_REF] Alur | A theory of timed automata[END_REF]. Given a finite set of rational numbers S ⊆ Q, S is said to be of granularity 1/N if S ⊆ Q N . Such N always exists, and one can find the smallest one by decomposing elements of S as irreducible fractions c/c with c ∈ Z, c ∈ N >0 and use the least common multiple of all c as N . A guard g is said to be of granularity 1/N if all constants in the atomic constraints of g form a set of granularity 1/N . A zone is of granularity 1/N if it can be described by a guard of granularity 1/N . Let Guards N (X , M ) denote the set of guards over X bounded by M and of granularity 1/N , and let Guards nd N (X , M ) denote the non-diagonal ones. Given a finite set of guards G ⊆ Guards nd (X , M ), we can find N such that G ⊆ Guards nd N (X , M ), by denoting S ⊆ Q the set of constants used in atomic constraints of G and using N the smallest integer such that S is of granularity 1/N . For all a ∈ R 0 , a ∈ N denotes the integral part of a, and fract(a) ∈ [0, 1) its fractional part, such that a = a + fract(a). Definition 2.2. With respect to the set X of clocks, a granularity N ∈ N >0 and an upper bound M ∈ N >0 , we define 1/N -regions as subsets of valuations r characterised by a valuation ι ∈ R X 0,<M called the integral part of r such that ι(x) ∈ Q N for every x ∈ X , and an ordered partition

R 0 R 1 • • • R m splitting X into m + 1 subsets. The ordered partition is denoted 0 = R 0 < R 1 < • • • < R m , where R 0 can be empty but R i = ∅ for 1 i m. A valuation ν in R X 0,<M belongs to r if • for all x ∈ X , ι(x)N = ν(x)N ; • for all x ∈ R 0 , fract(ν(x)N ) = 0; x 1 x 2 1 2 0 1 2 x 1 x 2 1 2 0 1 2 Figure 2.3.: All 1/1-regions in Reg 1 ({x 1 , x 2 }, 2)
on the left, their refinement of granularity 1/3 in Reg 3 ({x 1 , x 2 }, 2) on the right.

• for all 0 i m, for all x, y ∈ R i , fract(ν(x)N ) = fract(ν(y)N ).

• for all i, j such that 0 i < j m, for all x ∈ R i and all y ∈ R j , fract(ν(x)N ) < fract(ν(y)N ).

With granularity N = 1, we recover the classical notion of regions from [START_REF] Alur | A theory of timed automata[END_REF]. The set of valuations contained by a 1/N -region r characterised by ι and 0 = {x 0 1 , . . . ,

x 0 m 0 } < {x 1 1 , . . . , x 1 m 1 } < • • • < {x m 1 , .
. . , x m mm } can be described by a formula, constructed as a conjunction of inequalities over X : If we let f (x) denote the term (x -ι(x))N , and

E i denote the formula f (x i 1 ) = • • • = f (x i m i )
for every 0 i m, then ν ∈ r if and only if its coordinates satisfy

E 0 ∧ E 1 ∧ • • • ∧ E m ∧ 0 = f (x 0 1 ) < f (x 1 1 ) < • • • < f (x m 1 ) < 1 .
Therefore, every 1/N -region is a zone of granularity 1/N , associated to a guard in Guards N (X , M ). We denote by Reg N (X , M ) the set of 1/N -regions bounded by M . It forms a finite partition of R X 0,<M , and the number |Reg N (X , M )| of 1/N -regions is polynomial in M N and exponential in |X |. If ν is a valuation in R X 0,<M , [ν] denotes the unique region that contains ν. Valuations in the same 1/N -region satisfy the same guards in Guards N (X , M ). In fact, zones associated to guards in Guards N (X , M ) can be described as a finite union of regions in Reg N (X , M ). If r is a 1/N -region in Reg N (X , M ), then the time-successor valuations in PostTime(r) ∩ R X 0,<M form a finite union of regions in Reg N (X , M ), and the reset r[Y := 0] of Y ⊆ X is a region in Reg N (X , M ). A 1/N -region r is said to be a time successor of the 1/N -region r if there exists ν ∈ r, ν ∈ r , and d > 0 such that ν = ν + d.

If r is an 1/N -region, let r denote its topological closure, i.e. the smallest zone that contains r associated to a non-strict guard. 6 The corners of r are valuations in r that belong to Q X N . If r is characterized by an integral part ι and a clock ordering

0 = R 0 < R 1 < • • • < R m ,
then ι is a corner of r. If m = 0 then r = {ι}, otherwise r does not include its corners but contains valuations arbitrarily close to them. The corners of r are the vertices of the polytope r, such that r is their convex hull.

Example 2.3. Figure 2.3 represents the 24 regions of granularity N = 1 with upper bound M = 2 over two clocks. The green region is characterised by ι = (1, 0) and 0 = {x 1 } < {x 2 }, corresponds to the formula 0 = x 1 -1 < x 2 < 1 and thus is equal to the zone x 1 = 1 ∧ 0 < x 2 < 1 . Its corners are the valuations (1, 0) and (1, 1). The red region is characterised by ι = (0, 1) and 0 = {x 1 , x 2 }. The black region is characterised by ι = (1, 1) and 0 < {x 1 } < {x 2 }. The blue region is characterised by ι = (0, 0) and 0 < {x 1 , x 2 }.

Region abstraction, region automaton

Definition 2.3. Given a timed automaton A = L, X , Σ, E such that all clocks are bounded by M and all guards belong to Guards nd N (X , M ) for some granularity 1/N , we define the region abstraction of A as the transition system L × Reg N (X , M ), T labelled over Reg N (X , M ) × E, where T contains all transitions ( , r) As there are finitely many regions, the region abstraction of A is a finite transition system, where paths p represent a sequence of regions alternating between letting time elapse and taking edges, following some path π in A. We say that π contains the region path p, and when π is clear from context we sometimes denote r 1

delay ---→ r 2 a 1 ,g 1 ,Y 1 ----→ r 3 . . . the path p = ( 1 , r 1 ) r 2 ,e 1 --→ ( 2 , r 3 ) . . . with e 1 = ( 1 , a 1 , g 1 , Y 1 , 2 ).
The states of the region abstraction are called region states, and its paths are called region paths. From an execution in A described by ρ = ( 0 , ν 0 )

d 1 ,e 1 ---→ ( 1 , ν 1 ) d 2 ,e 2 ---→ . . . , we can construct a region path p = ( 0 , [ν 0 ]) [ν 0 +d 1 ],e 1 -----→ ( 1 , [ν 1 ]) [ν 1 +d 2 ],e 2
-----→ . . . , and say that ρ follows p. From the region abstraction (L×Reg N (X , M ), T ), we can construct a timed automaton R N (A) = L × Reg N (X , M ), X , Σ, E , called the region automaton of A, whose locations are region states and such that E is defined by transforming every transition ( , r) r ,e --→ ( , r ) in T , where e is labelled by (a, g, Y), into an edge ( , r) a,g ,Y ---→ ( , r ), with g = r ⊆ g . Every execution in A exists in R N (A) as an execution following a region path p, and conversely every execution in R N (A) following some region path p is contained in the path π of A followed by p. Then, A and R N (A) contain the same executions, therefore they have the same timed and untimed languages and are equivalent w.r.t. the emptiness and model-checking problems.

Proposition 2.1 ([AD94]

). Consider a region path p starting in ( , r). For all valuations ν in r, there exists in R N (A) an execution following p and starting from ( , ν). If p is finite and ends in ( , r ), there also exists in R N (A) an execution following p and ending at ( , ν ) for every valuation ν ∈ r .

One can then deduce that for every initial configuration ( 0 , ν 0 ), the language L ( 0 ,[ν 0 ]) of the region abstraction, defined as the infinite words over Σ induced by region paths starting from ( 0 , [ν 0 ]), is equal to the untimed language L u ( 0 ,ν 0 ) (R N (A)) [START_REF] Alur | A theory of timed automata[END_REF]. It follows that A satisfies the emptiness (resp. model-checking) problem with initial configuration ( 0 , ν 0 ) and ω-regular objective L u t if and only if the region abstraction, seen as a transition system labelled over actions in Σ, satisfies the emptiness (resp. model-checking) problem with initial state ( 0 , [ν 0 ]) and objective L u t . As the region abstraction is a finite transition system, those problems can be solved using the region abstraction of A. For reachability or Büchi objectives, the time-complexity of this procedure becomes polynomial in the size of the region abstraction of A, therefore exponential in the size of A.

By using the region abstraction, the emptiness problem can be shown to be PSPACEcomplete for reachability or Büchi conditions [START_REF] Alur | A theory of timed automata[END_REF].

Integer constants

A timed automaton A can be scaled by N ∈ N >0 by multiplying every constant in the guards of A by N . The executions in the scaled automaton are scaled versions of the executions in A, where delays and valuations are multiplied by N . This means that we can restrict the constants to integer values without loss of generality, as we only care about the properties of the untimed words induced by those executions. Formally, let A be a timed automaton, with guards in Guards nd N (X , M ), such that N ∈ N >0 is as small as possible for the constants in A. There exists a timed automaton A with guards in Guards nd 1 (X , M N ) such that A and A have the same untimed language. Moreover, if constants are encoded in binary, the size of A is at most quadratic in the size of A [START_REF] Alur | A theory of timed automata[END_REF].

From now on, we assume that the guards in the timed automata we consider have granularity 1/N = 1, such that every constant that appears in atomic constraints belong to Z. In this case, we omit N from previous notations about regions, such that 1/N -regions are simply called regions, Reg N (X , M ) is denoted Reg(X , M ), and R N (A) becomes R(A).

Zone abstraction, symbolic algorithms

While the region abstraction gives optimal complexity results for reachability and Büchi conditions, techniques based on constructing the region abstraction struggle with run-time efficiency, mostly because of the large state-space to explore. Practical implementations rely on so-called symbolic techniques instead, where zones are used to represent sets of regions and where the region abstraction is constructed on the fly.

Let Zones N (X , M ) be the set of zones associated with guards in Guards N (X , M ). This is a finite set since these zones are finite unions of regions in Reg N (X , M ). Let Zones(X , M ) denote Zones 1 (X , M ). The following elementary operations can be defined on zones Z ∈ Zones(X , M ):

• Time elapse, as PostTime <M (Z) = PostTime(Z) ∩ R X 0,<M .
• Intersection with a guard g ∈ Guards nd 1 (X , M ), as

Z ∩ g . • Reset of Y ⊆ X , with Reset Y (Z) = Z[Y := 0].
Their output is also a zone in Zones(X , M ), which let us define the successor of a zone Z by an edge e = ( , a, g, Y, ) as Post e (Z) = Reset Y ( g ∩ PostTime <M (Z)).

Given a timed automaton A = L, X , Σ, E such that all clocks are bounded by M and all guards belong to Guards nd 1 (X , M ), we define the zone abstraction7 of A as the transition system L × Zones(X , M ), T labelled over E, where states ( , Z) are called zone states and where T contains all transitions ( , Z) e -→ ( , Z ) such that e is an edge of A from to , Z = Post e (Z) and Z = ∅. The zone abstraction of A is a finite transition system, and can be seen as a symbolic representation of the region abstraction of A by interpreting zones as sets of regions. Recall that if ν is a valuation then the region [ν] is a zone that contains ν. The zone abstraction inherits properties from the region abstraction, most notably its language over Σ starting from ( 0 , [ν 0 ]) is equal to the untimed language of A starting from ( 0 , ν 0 ), and therefore the zone abstraction is equivalent to A w.r.t. the emptiness and model-checking problems.

Given an initial configuration ( 0 , ν 0 ), we say that a zone state ( , Z) is reachable from ( 0 , ν 0 ) if there exists a path in the zone abstraction from ( 0 , [ν 0 ]) to ( , Z). The zone abstraction contains a number of states exponential in the size of A, but the ones not reachable from ( 0 , ν 0 ) can be ignored. Algorithm 2.1 describes the classical forward exploration technique, computing the set of all zone states reachable from an initial configuration ( 0 , ν 0 ). It uses two sets of zone states, Passed and Waiting, to explore the zone abstraction, starting from ( 0 , Z 0 ) = ( 0 , [ν 0 ]). At every step, we select a zone state ( , Z) of Waiting, check if it is in Passed, and if not we add ( , Z) to Passed and its successors to Waiting. All elementary operations on zones can be implemented efficiently using DBMs in normal form (see Section 2.2).

Algorithm 2.1: Forward exploration of the zone abstraction Input : A timed automaton L, X , Σ, E , an initial zone state ( 0 , Z 0 ) Output : All zone states reachable from ( 0 , Z 0 ) Let us now focus on the existence problem with a reachability condition, where we are given a set of target locations L t and want to decide if they can be reached by an execution starting from ( 0 , ν 0 ). This problem can be solved by applying any algorithm dealing with reachability objectives on finite transition systems on the zone abstraction. For example, one could use Algorithm 2.1, and test if some reachable state ( , Z) satisfies ∈ L t . However, this algorithm can be improved, by testing for zone inclusion instead of equality in line 5 (Z = Z p becomes Z ⊆ Z p ). This is correct because if = p and Z ⊆ Z p then all locations reachable from configurations in ( , Z) are also reachable from configurations in ( p , Z p ), therefore exploring zone states reachable from ( , Z) is not needed for reachability conditions. In this case, Algorithm 2.1 computes a subset of the reachable zone states that covers reachable configurations, i.e. there exists an execution from ( 0 , ν 0 ) to ( , ν) if and only if there exists ( , Z) ∈ Passed such that ν ∈ Z. One can further reduce the explored state-space by using finer approaches, called extrapolation techniques [START_REF] Bouyer | Untameable timed automata![END_REF][START_REF] Behrmann | Static guard analysis in timed automata verification[END_REF][START_REF] Herbreteau | Using non-convex approximations for efficient analysis of timed automata[END_REF][START_REF] Behrmann | Lower and upper bounds in zone based abstractions of timed automata[END_REF][START_REF] Frédéric Herbreteau | Better abstractions for timed automata[END_REF], where the zone Z added to Passed in line 6 is enlarged into some α(Z) ⊇ Z to speed up the computation. The termination of Algorithm 2.1 relies on the finite number of zones in Zones(X , M ), and therefore on the bounded clocks assumption. This assumption can be removed using extrapolation techniques where operator α has finite image.

1 Passed ← ∅ 2 Waiting ← {( 0 , Z 0 )} 3 while Waiting = ∅ do
Part II.

Robust controller synthesis Introduction

In this part we study problems related to the robustness of controllers. As mentioned in the general introduction, the semantics of timed automata is a mathematical idealisation, where delays are chosen with an infinite precision. Therefore, alternative semantics have been proposed in order to ensure that a property satisfied by a timed automaton A carries over to implementations modelled by A. Integrating the robustness question in the verification of real-time systems has attracted attention in the community, and the recent works include, for instance, robust model checking for timed automata under clock drifts [START_REF] Roohi | Robust model checking of timed automata under clock drifts[END_REF], Lipschitz robustness notions for timed systems [START_REF] Henzinger | Lipschitz robustness of timed i/o systems[END_REF], quantitative robust synthesis for timed automata [BBF + 18]. Stability analysis and synthesis of stabilizing controllers in hybrid systems are a closely related topic, see e.g. [START_REF] Prabhakar | Counterexample guided abstraction refinement for stability analysis[END_REF][START_REF] Prabhakar | Formal synthesis of stabilizing controllers for switched systems[END_REF].

For the model-checking problem that asks if every execution in A satisfies some objective, an approach consists in enlarging the guards by a small amount δ > 0, e.g. so that 2

x < 3 becomes 2 -δ x < 3 + δ, thus defining an enlarged timed automaton A δ . Indeed, if A δ satisfies the model-checking problem, so does A, and there is always some margin δ left around executions of A, ensuring that the specification is ensured in a robust manner. The qualitative robust model-checking problem then asks if there exists some δ > 0 such that A δ satisfies the model-checking problem. It was shown in [START_REF] De Wulf | Robust safety of timed automata[END_REF][START_REF] Puri | Dynamical properties of timed automata[END_REF] to be PSPACE-complete for safety properties and LTL formulae [START_REF] Bouyer | Robust modelchecking of linear-time properties in timed automata[END_REF]. A quantitative variant, asking what is the greatest δ 0 such that A δ satisfies the model-checking problem, was also studied in [START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF].

A symmetrical approach can be followed for the emptiness problem, that asks if there exists an execution in A satisfying the specification. In this context, the goal is to restrict the semantics, so as to remove executions that would not be implementable in a real-world situation (were infinitesimal imprecisions on measurements are bound to appear). In this case, guards are shrunk, so that 2 x < 3 becomes 2 + δ x < 3 -δ. If the shrunk system satisfies the emptiness problem, so does the original timed automaton, and every guard is satisfied with some margin for error. The intuition is that the emptiness problem searches for an execution, modelling an implementation, that satisfies the specification.

However, we argue that this shrinking approach does not provide a satisfying notion of robustness for infinite behaviours, as it does not let imprecisions accumulate, and does not prevent Zeno behaviours:

Example 1. Consider a simple timed automaton, with a single location 0 , and an edge 0 x<1,∅ ---→ 0 . This edge can be followed infinitely many times, using increasingly small delays. In contrast, a real implementation must run on a processor with a fixed frequency, and thus cannot allow any infinite execution. Shrinking the guard x < 1 by δ ∈ (0, 1/2) results in guard δ x < 1 -δ. The shrunk edge can still be followed infinitely many times, by aiming for a convergence point in (δ, 1 -δ) = ∅.

We study the emptiness problem with a Büchi acceptance condition: it consists in determining whether there exists an accepting infinite execution. As such, we will use another notion of robustness, based on perturbations. The situation is modelled as a two-player game G δ , between the controller that chooses edges and delays, and the antagonistic environment that can perturb each delay using a value chosen in the interval [-δ, δ]. This approach forbids executions that rely on Zeno behaviours, or even non-Zeno behaviours requiring infinite precision [START_REF] Cassez | A comparison of control problems for timed and hybrid systems[END_REF]. In contrast with the shrinking semantics, controller can react to the perturbations, and compensate for them by changing future delays.

Example 2. Coming back to Example 1, in the perturbation semantics the environment can ask every time elapse to be at least δ > 0, and as such after 1/δ steps the value of x is greater than 1, and infinite executions are no longer possible.

For a fixed value of δ > 0, the robust controller synthesis problem asks if controller has a winning strategy in G δ . Solving it is useful if we know the characteristics of the hardware on which the controller will be implemented. This problem has been shown to be decidable in [START_REF] Chatterjee | Timed parity games: Complexity and robustness[END_REF], and also for a related model in [START_REF] Kim | Robust synthesis for real-time systems[END_REF]. These algorithms are based on using 1/N -regions, with N ∈ N >0 a granularity such that δ ∈ Q N . The perturbation δ may be small compared to the constants appearing in the guards of the timed automaton, and thus we will need a large N . As the overall complexity of these approaches is sensitive to region-granularity (the state-space is linear in N |X | ), they may not yield practical algorithms.

In the context of synthesis, one may not know in advance what is the amplitude on perturbations δ that the controller will face. In this case, a preliminary step consists in studying the qualitative robust controller synthesis problem, that asks if there exists δ > 0 such that the controller has a winning strategy in G δ . If the answer is yes, one would ideally obtain a controller and a value for δ > 0, that can then be used to guide hardware choices.

The qualitative problem enjoys promising complexity results: it has been proven in [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF] that it is PSPACE-complete, thus no harder than the exact setting with δ = 0 [AD94], and it does not require the use of regions of lower granularity. However, the algorithm of [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF] heavily relies on regions, and more precisely on an abstraction that refines the one of regions, namely folded orbit graphs. Hence, it is not amenable to implementation.

Our objective is to provide an efficient symbolic algorithm for solving the qualitative problem. To this end, we target the use of zones instead of regions, as they allow an ondemand partitioning of the state space. Moreover, the algorithm we develop explores the reachable state-space in a forward manner. This is known to lead to better performances, as witnessed by the successful tool Uppaal Tiga based on forward algorithms for solving controller synthesis problems [CDF + 05].

Our algorithm can be understood as an adaptation to the timed setting of a classical nested breadth-first search algorithm for transition systems with Büchi objectives. This algorithm is searching for a winning lasso, i.e. a path from the initial location to a target, followed by a cycle around the target. In the timed setting, this search takes place in the zone abstraction. A similar approach is detailed in [LOD + 13], where a major difficulty consists in checking if a winning cycle can be iterated for an infinite amount of steps. Indeed, it is explained that standard speedup techniques using zone inclusions to reduce the search-space may not preserve Büchi emptiness.

In the context of robustness, we need to additionally preserve the robust iterability of winning cycles, which is not maintained by the techniques of [LOD + 13]. The key argument of [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF] was the notion of aperiodic folded orbit graph of a path in the region automaton, thus tightly connected to regions. Lifting this notion to zones seems impossible as it makes an important use of the fact that valuations in regions are time-abstract bisimilar, which is not the case for zones. We will address this difficulty by computing the reachability relations of zone paths, and showing that inclusion of reachability relations is a complete termination criterion.

On positive instances, our algorithm outputs a winning strategy for controller, in the form of a lasso in the zone abstraction. At this point, we know that there exists a value of δ > 0 that controller wins against, but we are not provided with such a δ. We overcome this issue by studying the more ambitious quantitative robust controller synthesis problem, that asks what is the greatest δ > 0 such that the controller has a winning strategy in G δ . The decidability of this problem is unknown, but we solve it on the particular case where controller follows a lasso of the zone graph, and are thus able to extract not only a valid δ, but the greatest one.

We introduce our notion of robustness to perturbations in Chapter 3, detail the result of [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF] in Chapter 4, present our symbolic procedure in Chapter 5, and study the qualitative problem in Chapter 6.

The perturbation game

Consider a timed automaton A = L, X , Σ, E , equipped with an initial location 0 and a Büchi condition L t ⊆ L as a set of target locations. We are interested in the locations reached by executions of A, but not by the actions performed by those executions. Therefore, we assume that every edge has a unique action in Σ associated to it, and remove actions from our notations, such that A is written L, X , E and an edge

a,g,Y ---→ is denoted g,Y
--→ instead. We assume that clocks X in A are bounded by M ∈ N >0 and that every constant in the guards is an integer, such that every guard g in A belongs to Guards nd 1 (X , M ). With robustness in mind, we argue that null delays should not be authorized, and restrict the transition system A to transitions ( , ν)

d,e
-→ ( , ν ) with delay d > 0. Previous results still hold in this case, as operators and definitions can be adjusted accordingly. For example, operator PostTime will be denoted PostTime >0 in this case, and we can use it to define adapted variants of the Post operator and of the forward exploration algorithm over zones.

We study the robustness problem introduced in [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF], that is stated in terms of games where a controller fights against an environment. After a prefix of an execution, the controller will have the capability to choose delays and edges to fire, whereas the environment perturbs the delays chosen by the controller with a small parameter δ 0. The aim of the controller will be to find a strategy so that, no matter how the environment plays, he is ensured to generate an infinite execution satisfying a Büchi condition. Definition 3.1. Given a timed automaton A = L, X , E of initial location 0 and Büchi condition L t , and a maximal perturbation δ ∈ Q 0 , the perturbation game is a two-player turn-based game G δ (A) between a controller and an environment. Its state space is partitioned into S Ctrl S Env where S Ctrl = L × R X 0,<M belongs to the controller, and

S Env = L × R X 0,<M × R >0 × E to the environment. The initial state is ( 0 , 0) ∈ S Ctrl . From each state ( , ν) ∈ S Ctrl , there is a transition to ( , ν, d, e) ∈ S Env with e = ( , g, Y, ) ∈ E whenever d > δ, and ν + d + ε |= g for all ε ∈ [-δ, δ]. Then, from each state ( , ν, d, ( , g, Y, )) ∈ S Env , there is a transition to ( , (ν + d + ε)[Y := 0]) ∈ S Ctrl for all ε ∈ [-δ, δ]. A play of G δ (A) is a finite or infinite path q 0 t 1 -→ q 1 t 2 -→ q 2 • • • where q 0 =
( 0 , 0) and t i is a transition from state q i-1 to q i for all i > 0. It is said to be maximal if it is infinite or cannot be extended with any transition. A strategy for the controller is a function σ Ctrl mapping each non-maximal play ending in some ( , ν) ∈ S Ctrl to a pair (d, e) where d > 0 and e ∈ E such that there is a transition from ( , ν) to ( , ν, d, e). A strategy for the environment is a function σ Env mapping each finite play ending in ( , ν, d, e) to a state ( , ν ) related by a transition. A play gives rise to a unique execution of A by only keeping the states in S Ctrl . For a pair of strategies (σ Ctrl , σ Env ), we let play δ A (( 0 , 0), σ Ctrl , σ Env ) denote the execution associated with the unique maximal play of G δ (A) that follows the strategies. Controller's strategy σ Ctrl is winning (with respect to the Büchi condition L t ) if for all strategies σ Env of the environment, play δ A (( 0 , 0), σ Ctrl , σ Env ) is infinite and visits infinitely often some location of L t .

0 1 2 3 1 < x 1 < 2 x 2 := 0 x 1 2, x 1 := 0 x 2 2, x 2 := 0 x 1 < 2, x 1 := 0 x 2 < 2, x 2 := 0
If δ = 0, then the environment has only a single choice of ε ∈ [-δ, δ], so that deciding if controller has a winning strategy is equivalent to solving the emptiness problem with a Büchi condition, which is PSPACE-complete [START_REF] Alur | A theory of timed automata[END_REF]. We define three different problems, depending on whether the maximal perturbation δ is known or not.

Definition 3.2. The robust controller synthesis problem asks, given a timed automaton A and a maximal perturbation δ 0, whether the controller has a winning strategy in G δ (A).

Definition 3.3. The qualitative robust controller synthesis problem asks, given a timed automaton A, whether there exists δ > 0 such that the controller has a winning strategy in G δ (A).

Definition 3.4. The quantitative robust controller synthesis problem is a computation problem and asks, given a timed automaton A, what is the supremum of δ 0 such that the controller has a winning strategy in G δ (A).

Those problems can also be expressed with a reachability condition instead of a Büchi condition: controller wins G δ (A) if he can ensure visiting some location of L t at least once. Büchi conditions are more challenging, as we need to deal with the issues of robustly reaching a target, but also with the robustness of infinite paths along a cycle, where perturbations may accumulate.

Example 3.1. The controller has a winning strategy in G δ (A), with A the automaton of Figure 3.1, for all possible values of δ < 1/2. Indeed, he can follow the cycle 0 → 3 → 0 by always picking time delay 1/2 so that, when arriving in 3 (resp. 0 ) after the perturbation of the environment, clock x 2 (resp.

x 1 ) has a valuation in [1/2 -δ, 1/2 + δ].
Therefore, he can play forever following this positional strategy. For δ ≥ 1/2, the environment can enforce reaching 3 with a value for x 2 at least equal to 1. The guard x 2 < 2 of the next edge to 0 cannot be guaranteed, and therefore the controller cannot win G δ (A). In [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF], it is shown that the cycle around 2 does not provide a winning strategy for the controller for any value of δ > 0 since perturbations accumulate so that the controller can only play it a finite number of times in the worst case.

We are interested in cases where the maximal perturbation is not known, and it is simply assumed that some infinitesimal perturbations will happen in real-life executions of the system. Therefore, our results mostly focus on deciding the qualitative problem. When it is satisfied, we can provide a strategy for controller that resists some perturbation, and we can solve the quantitative problem on the automaton restricted to that strategy, i.e. we can compute the greatest perturbation admissible for this controller's strategy.

A region-based approach

By [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF], the qualitative robust controller synthesis problem is known to be PSPACEcomplete. Their solution is based on the region automaton of A. We are seeking for a more practical solution using zones. In this chapter, we introduce some of the machinery used to obtain the results of [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF], and extend one of their results to consider paths in A instead of region paths. We will use this generalisation in the next chapter.

A classical way to approach Büchi conditions in transition systems is to look for lassos π 0 π ω , where π 0 is a path from the initial state to a target state, and where π is a cycle around the target state. The techniques of [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF] look for such lassos p 0 p ω in the region abstraction, and then test if they can be robustly followed. We will start by explaining how to check if a finite region path p 0 can be robustly followed, and then focus on checking if a region cycle p can be robustly iterated infinitely many times.

Robustness of region paths

Consider a finite region path p. We formalise the notion of following p in a manner that resists perturbations by taking a backward analysis point of view.

Controllable predecessors

We define the following operators over sets of valuations Z, symmetrically to the ones used for symbolic forward analysis algorithms over the zone abstraction: PreTime >t (Z) is the set of valuations such that a time delay of more than t time units leads to Z, Unreset Y (Z) is the set of valuations in R X 0,<M that end in Z when the clocks in Y are reset.

Definition 4.1. Consider an edge e = ( , g, Y, ). For every set Z ⊆ R X 0,<M , we define the predecessors of Z by e as Pre e (Z) = PreTime >0 ( g ∩ Unreset Y (Z)).

We extend this operator to a path π by induction, such that if π is of length 0, Pre π (Z) = Z, and if π = π e with e an edge, Pre π (Z) = Pre π (Pre e (Z)).

From a robustness perspective, we also consider the operator shrink [-δ,δ] (Z) defined as the set of valuations ν such that ν + [-δ, δ] ⊆ Z introduced in [START_REF] Sankur | Shrinking Timed Automata[END_REF]. Given an edge e = ( , g, Y, ), a set Z ⊆ R X 0,<M and a fixed δ 0, we define the controllable predecessors of Z as follows:

CPre δ e (Z) = PreTime >δ (shrink [-δ,δ] ( g ∩ Unreset Y (Z))) .
Intuitively, CPre δ e (Z) is the set of valuations from which the controller can ensure reaching Z in one step, following the edge e, no matter of the perturbations of amplitude at most δ of the environment. In fact, it can delay in shrink [-δ,δ] ( g ∩ Unreset Y (Z)) with a delay of at least δ, where under every perturbation in [-δ, δ], the valuation satisfies the guard, and it ends, after reset, in Z. We extend this operator to a path π by induction, denoting it by CPre δ π : if π is of length 0, CPre δ π (Z) = Z, and if π = π e with e an edge, CPre π (Z) = CPre π (CPre e (Z)). Note that CPre 0 π = Pre π is the usual predecessor operator without perturbation. We can also define those operators on region paths instead of paths by applying them to the region automaton.

If we consider a fixed δ ∈ Q 0 , and find a granularity N ∈ N >0 such that δN ∈ N, then all of those operations are closed over Zones N (X , M ), and given a DBM describing Z they can be effectively computed in time cubic in |X | [START_REF] Sankur | Shrinking Timed Automata[END_REF]. Now, consider a region path p from ( , r) to ( , r ). If controller starts in ( , r) at some valuation ν ∈ r and wants to reach ( , r ) in G δ (A) by following p, he has a strategy ensuring it if and only if ν ∈ CPre δ p (r ). For the qualitative problem, we will perform computations that are parametrised by δ.

Shrunk DBMs

Definition 4.2. We say that p from ( , r) to ( , r ) can be robustly followed if r ∩ CPre δ p (r ) = ∅ for some δ > 0.

We will use a parametrised extension of DBMs, namely shrunk DBMs, that were introduced in [START_REF] Sankur | Shrinking Timed Automata[END_REF] in order to study the parametrised state space of timed automata. Intuitively, our goal is to express shrinkings of guards, e.g. sets of states satisfying constraints of the form g = 1 + δ < x < 2 -δ ∧ 2δ < y, where δ is a parameter to be chosen.

Formally, a shrunk bound is a pair ((≺, c), p) with (≺, c) a member of the semiring of bounds (Bounds(Z), min, +) such that ≺ ∈ { , <} and c ∈ Z, and p a non-negative integer in N ∪ {∞}, that represents the bound ≺ c -δp for small enough values of δ 0: A real a satisfies ((≺, c), p) for δ = 0 if a ≺ c, it satisfies ((≺, c), p) for δ > 0 if a ≺ c -δp holds for some δ > 0 small enough. The shrunk bound ((≺, c), ∞) can be satisfied for δ = 0, but is never satisfied for δ > 0. This will appear when perturbations can accumulate. We also define the shrunk bounds ((<, -∞), ∞) and ((<, +∞), 0), representing constraints that are respectively never and always satisfied, for both δ = 0 and δ > 0.

If m, m are bounds in Bounds(Z), recall that we write m m if m is at least as strong as m (i.e. m = min(m, m )), and m ≺ m if m m ∧ m = m . We say that a shrunk bound ((≺, c), p) is at least as strong as

((≺ , c ), p ), if either p, p ∈ N and (≺, c) ≺ (≺ , c ) ∨ ((≺, c) = (≺ , c ) ∧ p p ), or p = ∞ ∧ p ∈ N, or p = p = ∞ ∧ m m .
This forms a total order over shrunk bounds, where the strongest bound is ((<, -∞), ∞) and the weakest bound is ((<, +∞), 0). If ((≺, c), p) is at least as strong as ((≺ , c ), p ) then for all δ > 0 and all a ∈ R, a ≺ c -δp implies a ≺ c -δp .

We define operations min and inf over shrunk bounds in an intuitive way (min returns the strongest bound and inf the weakest bound at least as strong as its inputs), and an addition (m, p)

+ (m , p ): it equals ((<, +∞), 0) if m + m = (<, +∞), ((<, -∞), ∞) if m + m = (<, -∞)
, and (m + m , p + p ) otherwise, with m + m the addition of bounds and p + p the standard addition over N extended with c + ∞ = ∞ for all c ∈ N and ∞ + ∞ = ∞. This defines a semiring of operators min and +, that we call the tropical semiring of shrunk bounds. It is an ordered semiring since min is selective, and it has closure because it forms a complete join semilattice with the order induced by min, where join is the inf operator. The closure (m, p) ( * ) of a shrunk bound (m, p) ) , 0) otherwise. The closure of (m, 0) is (m ( * ) , 0), and the closure of (m, ∞) is (m ( * ) , ∞). This means that we can construct DBMs over shrunk bounds as mappings from X 0 × X 0 to shrunk bounds. They are called shrunk DBMs and, by Lemma 1.2, normalization is well-defined over them. Usually, a shrunk DBM is encoded as a pair (M, P ), where M is a DBM over X , and P is a |X 0 | × |X 0 | non-negative integer matrix called a shrinking matrix. This pair represents the set of valuations defined by the DBM M -δP , for any given δ > 0. Considering the example g = 1 + δ < x < 2 -δ ∧ 2δ < y, M is the guard obtained by setting δ = 0, and P is made of the integer multipliers of δ. Formally, given a fixed δ > 0 and a shrunk DBM (M, P ) where M (x, y) = (≺ x,y , c x,y ) and P (x, y) = p x,y , M -δP contains every valuation that satisfies

with p ∈ N >0 is (m ( * ) , ∞) if m ( , 0), (m ( *
x,y∈X 0 xy ≺ x,y c x,y -δ p x,y .

We adopt the following notation: when we write a statement involving a shrunk DBM (M, P ), we mean that for some δ 0 > 0, the statement holds for M -δP for all δ ∈ (0, δ 0 ]. For instance, (M, P ) = PreTime >δ ((N, Q)) means that M -δP = PreTime >δ (N -δQ) for all small enough δ > 0.

Shrunk DBMs are closed under standard operations on zones, and as a consequence, the CPre operator can be computed on shrunk DBMs:

Lemma 4.1 ([SBMR13]
). Let e = ( , g, Y, ) be an edge and (M, P ) be a shrunk DBM. Then, there exists a shrunk DBM (N, Q), that we can compute in polynomial time, such that (N, Q) = CPre δ e ((M, P )). A shrunk DBM in normal form is empty if and only if it contains a bound stronger than (( , 0), 0) in its diagonal entries. One could therefore decide if r ∩ CPre δ p (r ) = ∅ for some δ > 0 by using shrunk DBMs. In this chapter, they are used as theoretical tools, because an easier characterization of region paths that can be robustly followed exists, that we now present.

Non-punctual region path

A region is said to be non-punctual if it contains two valuations separated by a positive time delay. Otherwise it is said punctual. Consider a region path p, and recall that it is a sequence of transitions of the form ( , r 0 ) r 1 ,e --→ ( , r 2 ) meaning that from r 0 , a time elapse leads to r 1 , from which edge e can be taken and projects r 1 into r 2 . If r 1 is punctual, then clearly p cannot be robustly followed, as any perturbation, however small, will force controller out of p. When every region r 1 in p reached after a time elapse is non-punctual, we say that p is a non-punctual region path. In [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF], it is shown that this condition is sufficient for finite paths: Proposition 4.1 ([SBMR13]). A finite region path can be robustly followed if and only if it is non-punctual.

By using non-punctuality one can show that the qualitative robust controller synthesis problem over a reachability condition is PSPACE-complete. However, a Büchi condition requires robustness over an infinite path, and non-punctuality is no longer enough in this case.

Aperiodic cycles

Consider a finite region path p that forms a cycle, i.e. it ends in the same region state ( , r) it started in. We want to know if p can be robustly iterated, meaning that there exists a zone of lower granularity Z ⊆ r such that Z = 0 and Z ⊆ CPre δ p (Z). In particular, this implies that p i can be robustly followed for every i > 0. The reachability relation of a region path p, denoted by Reach(p) is the set of pairs (ν, ν ) ∈ r × r such that there exists an execution starting from ( , ν) and ending in ( , ν ) that follows p. We say that the reachability relation

Reach(p) is complete if Reach(p) = r × r.
Definition 4.3. A region cycle p is aperiodic if for some k 1, the reachability relation along the region path p k is complete.

Proposition 4.2 ([SBMR13]). A region cycle is robustly iterable if and only if it is non-punctual and aperiodic

Moreover, aperiodicity can be checked for by using a dedicated structure called a folded orbit graph. The orbit graph of a region path p is a bipartite graph whose vertices are the corners of the first and last regions of the path; there is an edge between two corners if there exists an execution following p whose starting and ending valuations are arbitrarily close to the corners. When the region path is a cycle, the folded orbit graph is obtained by superposing initial and final vertices. This folded orbit graph is aperiodic if and only if for some k 1, the sequence p k has a folded orbit graph that is a complete graph. This should happen for some k at most exponential in |X | [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF], and thus aperiodicity of a region path can be checked in polynomial space.

Overall, the qualitative robust controller synthesis problem with a Büchi condition can be solved by looking for a non-punctual aperiodic winning lasso p 0 p ω in the region abstraction, i.e. a non-punctual region paths p 0 from the initial region state ( 0 , 0) to a target region state ( t , r) with t ∈ L t and a non-punctual aperiodic region cycle p around ( t , r). Using a variant of this procedure, where the winning lasso is guessed and aperiodicity is checked for with folded orbit graphs, it is shown in [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF] that the problem is PSPACE-complete.

Generalization from region paths to paths

Definition 4.4. A finite path π is called a progress cycle if it is a cycle and if every clock is reset in at least one of its edges, i.e. X = ( ,g,Y, )∈π Y.

If a region cycle p following π is aperiodic, π must be a progress cycle, as otherwise any clock that is never reset in π will increase strictly in value while following p and the reachability relation will not be complete for any p k . This holds because we did not authorize null delays.

In this section, our goal is to extend the previous results and characterize games where controller has a winning strategy in G δ (A) by a property expressed on the reachability relation of paths in A, as opposed to the reachability relation of region paths. The reachability relation of a path π that starts in and ends in , denoted by Reach(π), is the set of pairs (ν, ν ) such that there is an execution of A starting from ( , ν) and ending in ( , ν ) that follows π.

We will prove the following result:

Lemma 4.2. There exists δ > 0 such that controller has a winning strategy in G δ (A) if and only if there exist two paths π 1 and π 2 in A, and a region r in R X 0,<M , such that: • π 1 is a path from 0 to some accepting location t ;

• π 2 is a progress cycle around t ;

• there exists a non-punctual region path from ( 0 , 0) to ( t , r) along π 1 ;

• there exists a non-punctual region cycle around ( t , r) along π 2 ;

• the reachability relation of π 2 is complete over r, i.e. r × r ⊆ Reach(π 2 ).

The main difference with previous results is that π 2 can contain several region cycles around r, and instead of asking one of them to be aperiodic, we only ask that the entire reachability relation is complete, and thus that the union of the reachability relations of all such region cycles covers r × r.

Proof of Lemma 4.2, direction (⇒). As previously explained, if A satisfies the robust controller synthesis problem, then there exists a non-punctual region path p 1 p 2 in the region automaton of A, such that p 1 reaches a target region ( t , r) from ( 0 , 0), and p 2 is an aperiodic cycle around ( t , r). Let π 1 (resp. π 2 ) be a path that contains p 1 (resp. p 2 ). There exists k such that the reachability relation of p k 2 is complete, and therefore r × r ⊆ Reach(π k 2 ). In order to prove the converse, we will rely on intermediate results from [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF].

Lemma 4.3 (Corollary 2, [SBMR13]

). Let π be a path in A. Let M and N be non-empty zones such that N = CPre 0 π (M ). Then, for every shrinking matrix P there exists a shrinking matrix Q such that CPre δ π (M -δP ) = N -δQ holds for all small enough δ > 0.

Let B ∞ (ν, ε) describes {ν | ∀x ∈ X , |ν(x) -ν (x)| < ε}.
The following lemma states that one can find a sub-zone (zone of smaller granularity) with non-empty interior inside every non-empty zone.

Lemma 4.4 (Lemma 14, [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF]). For all non-empty zones M , there exists a nonempty set of valuations M (described as a zone of smaller granularity, with constraints over Q), a valuation ν ∈ M and ε > 0 such that B ∞ (ν, ε) ∩ M ⊆ M , and for all shrinking matrices P such that M -δP is non-empty for some δ > 0, M ⊆ M -δ P for all small enough δ > 0.

And the set of controllable predecessors of such a sub-zone is non-empty for small enough δ > 0.

Lemma 4.5 (Lemma 12, [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF]). Let p be a non-punctual path ending in region r. Let r ⊆ r be a set of valuations such that there exists ν ∈ r and ε > 0 with B ∞ (ν, ε) ∩ r ⊆ r . Then, CPre δ p (r ) is non-empty for small enough δ > 0.

We can now finish the proof of Lemma 4.2.

Proof of Lemma 4.2, direction (⇐). Consider now two paths π 1 and π 2 , and a nonpunctual region lasso p 1 p ω 2 around a region r as described in Lemma 4.2. Let us prove that controller has a winning strategy in G δ (A) for a small enough δ.

Let Z be the zone defined by r, such that Z × Z ⊆ Reach(π 2 ). Let us apply Lemma 4.4 and let Z ⊆ Z be the zone of smaller granularity that is obtained. Since the reachability relation is complete over Z, we have Z ⊆ CPre 0 π 2 (Z ). This implies that there exists Z and P such that Z ⊆ Z and Z -δP = CPre δ π 2 (Z ) for δ small enough, by Lemma 4.3. Moreover, by applying Lemma 4.5 on p 2 , Z and Z , we get that CPre δ p 2 (Z ) is non-empty for small enough δ > 0. By monotonicity of CPre, CPre δ p 2 (Z ) ⊆ CPre δ π 2 (Z ) (they are the same paths, except that guards are enlarged in π 2 when compared to p 2 ); hence Z -δP is non-empty for small enough δ. By definition of Z , for small enough δ > 0, Z ⊆ Z -δP , therefore Z ⊆ CPre δ π 2 (Z ). This means that, for small enough δ, the controller can enforce staying in Z by following π 2 as many times as he wants in the game G δ (A). Similarly, by applying Lemma 4.5 on p 1 , Z and Z , we get that the initial configuration can ensure reaching Z if δ is small enough. Hence, there exists δ > 0 such that the controller has a winning strategy in G δ (A).

A symbolic approach

In this chapter, we will describe a symbolic (i.e. zone-based) procedure solving the qualitative robust controller synthesis problem.

Reachability relation of a path

Before treating the robustness issues, we start by designing a symbolic (i.e. zone-based) approach to describe and compare the reachability relations of paths in timed automata. This will be crucial subsequently to design a termination criterion in the state space exploration of our robustness-checking algorithm.

The reachability relation Reach(π) of a path π can be seen as a subset of R X X 0 where X are primed versions of the clocks, such that each (ν, ν ) ∈ Reach(π) if and only if there is an execution from valuation ν to valuation ν following π. Unfortunately, reachability relations Reach(π) are not zones in general, that is, they cannot be represented using only atomic constraints over X X . In fact, we shall see shortly that constraints of the form xy + uv c also appear, as already observed in [START_REF] Quaas | Revisiting reachability in timed automata[END_REF]. We thus cannot rely directly on the traditional difference bound matrices (DBMs) used to represent zones. We instead rely on the constraint graphs that were introduced in [CLJ99], and explored in [START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF] for the parametric case (the latter work considers enlarged constraints, and not shrunk ones as we study here). Our contribution is to use these graphs to obtain a syntactic check of inclusion of the according reachability relations.

Constraint graphs

Rather than considering the values of the clocks in X , this data structure considers the date X i of the latest reset of the clock x i , and uses a new variable τ denoting the global timestamp. Note that the clock values can be recovered easily since X i = τ -x i . For the extra clock x 0 , we introduce variable X 0 equal to the global timestamp τ (since x 0 must remain equal to 0). A constraint graph defining a zone is a weighted transition system whose states are X = {X 0 , X 1 , . . . , X n } labelled over the tropical semiring of bounds over Z. This transition system is always a complete graph, i.e. it contains exactly one transition from X to Y for each pair of states (X, Y). We refer to its states as nodes, to its labels as weights and to its transitions as edges. Weights in the graph are thus pairs of the form (≺, c) (see Chapter 2.2 for details). Constraints on clocks are represented by weights on edges in the graph: a constraint X -Y ≺ c is represented by an edge from X to Y weighted by (≺, c), with ≺ ∈ {<, } and c ∈ Z. Weights (<, +∞) and (<, -∞) are also allowed for trivial constraints. Therefore, we can compute shortest weights between two vertices of a weighted graph. A cycle is said to be negative if it has weight at most (<, 0), i.e. (<, 0) or (≺, c) with c < 0.

Encoding paths

Constraint graphs can also encode tuples of valuations seen along a path. To encode a k-step computation, we make k + 1 copies of the nodes, that is, (X i ) = {X i 0 , X i 1 , . . . , X i n } for i ∈ {1, . . . , k + 1}. These copies are also called layers. Let us first consider an example on the path π consisting of the edge from 1 to 2 , and the edge from 2 to 1 , in the timed automaton of Figure 3.1. The constraint graph G π is depicted in Figure 5.1: in our diagrams of constraint graphs, the absence of labels on an edge means ( , 0), we depict with an edge with arrows on both ends the presence of an edge in both directions. We always represent with dashed arrows edges that are labelled by (<, c), and plain arrows edges that are labelled with ( , c), and the absence of an edge means that it is labelled with (<, +∞). The graph has five columns, each containing copies of the variables for that step: they represent the valuations before the first edge, after the first time elapse, after the first reset, after the second time elapse and after the second reset. In general now, each elementary operation can be described by a constraint graph with two layers (X i ) 0 i n (before) and (X i ) 0 i n (after).

• The operation Pretime >t is described by the constraint graph G >t time with edges

X i → X 0 , X i ↔ X i for i > 0, and X 0 (<,-t) ---→ X 0 . Figure 5.1 contains two occurrences of G >0 time . • The operation g ∩ Unreset Y (•)
, to test a guard g and reset the clocks in Y, is described by the constraint graph G g,Y edge with edges X 0 ↔ X 0 (meaning that the time does not elapse), X i ↔ X i for i such that clock x i / ∈ Y, and X i ↔ X 0 for i such that clock x i ∈ Y, and for every constraint1 x i -x j ≺ c appearing in g, an edge from X j to X i labelled by (≺, c) (since it encodes the fact that (τ

-X i ) -(τ -X j ) = X j -X i ≺ c).
In Figure 5.1, we have first G

x 1 2,{x 1 } edge , and then G

x 2 2,{x 2 } edge . Constraint graphs can be stacked one after the other to obtain the constraint graph of an edge e, and then of a path π, that we denote by G π . In the resulting graph, there is one leftmost layer of vertices (X i ) i and one rightmost one (X r i ) i representing the situation before and after the firing of the path π. Once this graph is constructed, the intermediary levels can be eliminated after replacing each edge between the nodes of X X r by the shortest path in the graph. This phase is hereafter called normalisation of the constraint graph. The normalised version of the constraint graph of Figure 5.1 is depicted on its right.

Constraint graphs can be encoded as DBMs over the set of clocks {X i j | 0 i k, 0 j n}, and their normalization can therefore be obtained efficiently using DBM normalization. The normalization of G π can be computed in time

O(|X | 3 |π|) by following X 0 X 1 X 2 • • • • • • • • • • • • • • • (<, 0) ( , 2) (<, 0) ( , -2) 1 G >0 time G x 1 2,{x 1 } edge 2 G >0 time G x 2 2,{x 2 } edge 1 X 0 X 1 X 2 • • • • • • X r 0 X r 1 X r 2 Figure 5
.1.: On the left, the constraint graph of the path 1

x 1 2,x 1 :=0 ------→ 2 x 2 2,x 2 :=0 ------→ 1 .
Orange and green colors are used to differentiate successive steps. On the right, its normalised version: dashed edges have weight (<, .), plain edges have weight ( , .), black edges have weight (., 0), red edges have weight (., 2) and blue edges have weight (., -2). For every node X, the normalized version also contains a loop X ( ,0) ---→ X that is not displayed.

π one edge at a time and normalizing at each step. If the constraint graph G π contains a negative cycle, then the zone associated with the DBM encoding it is empty, but that information may be lost when we remove the intermediary levels. In this case, we set the weight of the edges (X 0 , X 0 ) and (X r 0 , X r 0 ) in the normalized constraint graph to (<, 0).

From constraint graphs to reachability relations

From a logical point of view, the elimination of intermediary layers reflects an elimination of quantifiers in a formula of the first-order theory of real numbers. At the end, we obtain a set of constraints of the form X k i -X k j ≺ c with k, k ∈ { , r}. These constraints do not reflect uniquely the reachability relation Reach(π), in the sense that it is possible that Reach(π 1 ) = Reach(π 2 ) but the normalised versions of G π 1 and G π 2 are different. For example, if we consider the path π 2 obtained by repeating twice the cycle π between 1 and 2 , the reachability relation does not change (Reach(π 2 ) = Reach(π)), but the normalised constraint graph does (G π 2 = G π ): all labels ( , 2) of the red dotted edges from the rightmost layer to the leftmost layer become ( , 4), and the labels ( , -2) of the dashed blue edges become ( , -4).

We solve this issue by jumping back from variables X k i to the clock valuations. Indeed, in terms of clock valuations ν and ν r before and after the path, the constraint

X k i -X k j ≺ c (for k, k ∈ { , r}) rewrites as (τ k -ν k (x i )) -(τ k -ν k (x j )) ≺ c ,
where τ is the global timestamp before firing π and τ r the one after. When k = k , variables τ and τ r disappear, leaving a constraint of the form

ν k (x j ) -ν k (x i ) ≺ c .
When k = k , we can rewrite the constraint as

τ k -τ k ≺ ν k (x i ) -ν k (x j ) + c .
We therefore obtain upper and lower bounds on the value of τ r -τ , allowing us to eliminate τ r -τ , considered as a single variable that contains the time elapsed during the firing of π. We therefore obtain in fine a formula mixing constraints of the form 

• ν k (x a ) -ν k (x b ) ≺ p, with k ∈ { ,
ν r (x c ) -ν (x b ) + p 1 ≺ 1 τ r -τ ≺ 2 ν r (x d ) -ν (x a ) + p 2
by eliminating τ r -τ , or by adding the two constraints of the form

ν (x a ) -ν (x b ) ≺ 1 p 1 and ν r (x c ) -ν r (x d ) ≺ 2 p 2 .
Thus, γ a,b,c,d is obtained as the strongest of the two constraints obtained in this manner. In other terms, in the constraint graph, this constraint is the minimal weight between the sum of the weights of the edges (X r d , X a ) and (X b , X r c ), and the sum of the weights of the edges (X b , X a ) and (X r d , X r c ). For example, in the path in Figure 5.1, we have γ 0,1,0,2 = ( , 0) since the two weights are respectively (<, +∞) and ( , 0), whereas γ 1,2,2,1 = ( , 0) because the two weights are respectively ( , 0) and (<, 2).

Let ϕ(G) be the conjunction of such constraints, obtained from the normalization of a constraint graph G: this is a quantifier-free formula of the additive theory of reals. We obtain the following property, whose proof can be derived from the developments of [START_REF] Comon | Timed automata and the theory of real numbers[END_REF].

Lemma 5.1. Let π be a path in a timed automaton. Reach(π) is the set of pairs of valuations (ν , ν r ) that satisfy the formula ϕ(G π ).

Proof. As we have seen, the constraints of G π encode syntactically the constraints that valuations must meet to form an execution following π. Normalization of DBMs leaves the represented zone unchanged, and therefore ϕ(G π ) is a formula that describes Reach(π). A particular case is the one where Reach(π) = ∅, where we made sure that ϕ(G π ) contains the constraint ν (x 0 ) -ν (x 0 ) < 0 and is therefore not satisfiable.

Checking inclusion

Checking formulae like ϕ(G π ) (i.e. conjunctions of linear inequalities) for inclusion is polynomial in general, as one can use linear programming techniques. In this case however, a more efficient way exists. Proof. The main argument on why the syntactic check on ϕ(G π ) is sufficient amounts directly from the normalisation of the constraint graph. Indeed, let us show that the constraints obtained in a formula ϕ(G π ) are the strongest possible. For that, suppose that we obtain a stronger constraint on ν (x a ) -ν (x b ) + ν r (x c ) -ν r (x d ) by combining two inequalities of ϕ(G π ) (it is then possible to extend the argument to work for all positive linear combinations of inequalities): they must then be either of the form

X a X b X e X r f X r d X r c • • • • • • X a X b X e X r d X r c X r f • • • • • • Figure 5.
ν (x a ) -ν (x e ) + ν r (x c ) -ν r (x f ) ≺ 1 p 1 ν (x e ) -ν (x b ) + ν r (x f ) -ν r (x d ) ≺ 2 p 2 or ν (x a ) -ν (x e ) + ν r (x f ) -ν r (x d ) ≺ 1 p 1 ν (x e ) -ν (x b ) + ν r (x c ) -ν r (x f ) ≺ 2 p 2 Summing up each pair gives a new possible constraint on ν (x a ) -ν (x b ) + ν r (x c ) -ν r (x d ).
This corresponds to the two situations in the constraint graphs depicted in Figure 5.2. Using the normalisation of the constraint graphs implies then easily that the new constraints are weaker than the original constraint already present in Γ π .

Notice that we do not need to check equivalence or implication of formulae ϕ(G π ) and ϕ(G π ), but simply check syntactically constants appearing in these formulae. Moreover, these constants can be extracted easily from the normalized constraint graph stored as a DBMs on 2 × |X 0 | clocks, allowing for reusability of classical DBM libraries. For the constraint graph in Figure 5.1, we have seen that G π 2 = G π , even if Reach(π 2 ) = Reach(π). However, we can check that ϕ(G π 2 ) = ϕ(G π ) as expected.

Computation of Pre and Post

By Lemma 5.1 and the construction of constraint graphs, one can easily compute

Pre π (Z) = {ν | ∃ν ∈ Z, (( , ν), ( , ν )) ∈ Reach(π)}
for a given path π and zone Z (see [START_REF] Comon | Timed automata and the theory of real numbers[END_REF][START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF]). In fact, consider the normalised constraint graph G π on nodes X ∪ X r . To compute Pre π (Z), one just needs to add the constraints of Z on X r . This is done by replacing each edge X r i w -→ X r j by X r i min(Z j,i ,w)

------→ X r j where Z j,i = (≺, p) defines the constraint of Z on x j -x i . Then, the normalisation of the graph describes the reachability relation along path π ending in zone Z. Furthermore, projecting the constraints to X yields Pre π (Z): this can be obtained by gathering all constraints on pairs of nodes of X . One can symmetrically compute the successor

Post π (Z) = {ν | ∃ν ∈ Z, (( , ν), ( , ν )) ∈ Reach(π)}
by constraining the nodes X and projecting to X r .

Robust iterability of a lasso

In this section, we study the perturbation game G δ (A) between the two players (controller and environment), as defined in Chapter 3, when the timed automaton A is restricted to a fixed lasso π 1 π ω 2 , i.e. π 1 is a path from 0 to some accepting location t , and π 2 a cyclic path around t . This implies that the controller does not have the choice of the transitions, but only of the delays, while the environment only perturbates these delays. We will consider different settings, in which δ is fixed or not.

Controllable predecessors and their greatest fixpoints

We start by studying the controllable predecessor CPre δ π (Z) defined in Section 4.1 as the set of valuations from which the controller can ensure reaching the set of valuations Z by following π.

This operator is monotone, hence its greatest fixpoint νX CPre δ π (X) is well-defined, equal to i 0 CPre δ π i ( ): it corresponds to the valuations from which the controller can guarantee to loop forever along the path π. By definition of the game G δ (A) where A is restricted to the lasso π 1 π ω 2 , the controller wins the game if and only if 0 ∈ CPre δ π 1 (νX CPre δ π 2 (X)). As a consequence, our problem reduces to the computation of this greatest fixpoint.

Branching constraint graphs

We consider first a fixed (rational) value of the parameter δ, and are interested in the computation of the greatest fixpoint νX CPre δ π 2 (X). In [START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF], constraints graphs were used to provide a termination criterion allowing one to compute the greatest fixpoint of the classical predecessor operator CPre 0 π . We generalise this approach to deal with the operator CPre δ π and to this end, we need to generalise constraint graphs. Unfortunately, the operator shrink [-δ,δ] cannot be encoded in a constraint graph. Intuitively, this comes from the fact that a constraint graph represents a relation between valuations, while there is no such relation associated with the CPre δ π operator. Instead, we introduce branching constraint graphs that will faithfully represent the CPre δ π operator: unlike constraint graphs introduced so far that have a left layer and a right layer of variables, a branching constraint graph has still a single left layer but several right layers. We also need weights in this new constraint graph to be rational numbers, such that if N ∈ N >0 is the smallest granularity with δN ∈ N, then the branching constraint graph will be labelled over the tropical semiring of bounds over Q N .

We first define a branching constraint graph G δ shrink associated with the operator shrink [-δ,δ] as follows. Its set of vertices is composed of three copies of {X 0 , X 1 , . . . , X n }, denoted by primed, unprimed and doubly primed versions. Edges are defined so as to encode the following constraints : X i = X i and X i = X i for every i = 0, and X 0 = X 0 + δ and X 0 = X 0 -δ. An instance of this graph can be found in several occurrences in Figure 5.3. Proposition 5.1. Let Z be a zone and G δ shrink (Z) be the graph obtained from G δ shrink by adding on primed and doubly primed vertices the constraints defining Z (as for Pre π (Z) in Section 5.1.5). Then the constraint on unprimed vertices obtained from the shortest paths in G δ shrink (Z) is equivalent to shrink [-δ,δ] (Z). Proof. Given a zone Z and a real number d, we define

Z + d = {ν + d | ν ∈ Z}. One easily observes that shrink [-δ,δ] (Z) = (Z + δ) ∩ (Z -δ).
The result follows from the observation that taking two distinct copies of vertices, and considering shortest paths allows one to encode the intersection.

Then, for all edges e = ( , g, Y, ), we define the branching constraint graph G δ e as the graph obtained by stacking (in this order) the branching constraint graph G >δ time , G δ shrink and G g,Y edge . Note that two copies of the graph G g,Y edge are needed, to be connected to the two sets of vertices that are on the right of the graph G δ shrink . This definition is extended in the expected way to a finite path π, yielding the graph G δ π . In this graph, there is a single set of vertices on the left, and 2 |π| sets of vertices on the right. As a direct consequence of the previous results on the constraint graphs for time elapse, shrinking and guard/reset, one obtains: Proposition 5.2. Let Z be a zone and π be a path. We let G δ π (Z) be the graph obtained from G δ π by adding on every set of right vertices the constraints defining Z. Then the constraint on the left layer of vertices obtained from the shortest paths in G δ π (Z) is equivalent to CPre δ π (Z). An example of the graph G δ π (Z) for π = e 1 e 2 , edges considered in Figure 5.1, is depicted in Figure 5.3 (on the left).

We are now ready to prove the following result, generalisation of [JR11, Lemma 2], that will allow us to compute the greatest fixpoint of the operator CPre δ π : e 1 e 2 , where e 1 and e 2 refer to edges considered in Figure 5.1. Dashed edges have weight (<, .), plain edges have weight ( , .). Black edges (resp. orange edges, pink edges, red edges, blue edges) are labelled by (., 0) (resp. (., -δ), (., δ), (., 2),(., -2)). On the right, a decomposition of a path in a branching constraint graph G δ π (proof of Proposition 5.3).

• X 0 • X 1 • X 2 • • • G >δ time • • • • • • G δ shrink G x 1 2,{x 1 } edge • • • • • • • • • • • • G >δ time • • • • • • G δ shrink G x 2 2,{x 2 } edge • • • • • • • • • Z • • • Z • • • Z • • • Z i j r 1 r 2 r 3 r 4 r 5
Proposition 5.3. Let π be a path and δ be a non-negative rational number. We let

N = |X 0 | 2 . If CPre δ π 2N +1 ( ) CPre δ π 2N ( ), then νX CPre δ π (X) = ∅. Proof. Assume CPre δ π 2N +1 ( ) CPre δ π 2N (
) and consider the zones CPre δ π N +1 ( ) (represented by the DBM M 1 ) and CPre δ π N ( ) (represented by the DBM M 2 ). We have M 1 M 2 , as otherwise the fixpoint would have already been reached after N steps. By Proposition 5.2, the zone corresponding to M 1 is associated with shortest paths between vertices on the left in the graph G δ π N +1 . In the sequel, given a path r in this graph, w(r) denotes its weight. We distinguish two cases: Case 1: M 1 M 2 because of the rational coefficients. Then, there exists an entry y] is thus associated with a shortest path between vertices X and Y in G δ π N +1 . We fix a shortest path of minimal length, and denote it by r. As the entry is strictly smaller than in M 2 , this shortest path should reach the last copy of the graph G δ π . This path can be interpreted as a traversal of the binary tree of depth |X 0 | 2 +1, reaching at least one leaf. We can prove that this entails that there exists a pair of clocks (u, v) ∈ X 2 0 appearing at two levels i < j of this tree, and a decomposition r = r 1 r 2 r 3 r 4 r 5 of the path, such that w(r 2 ) + w(r 4 ) = (≺, d) with d < 0 (Property ( †)). In addition, in this decomposition, r 3 is included in subgraphs of levels k ≥ j, and the pair of paths (r 2 , r 4 ) is called a return path, following the terminology of [START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF]. This decomposition is depicted in Figure 5.3 (on the right). Intuitively, the property ( †) follows from the fact that as r 3 is included in subgraphs of levels k ≥ j, and because the final zone (on the right) is the zone which adds no edges, the concatenation r = r 1 r 3 r 5 is also a valid path from X to Y in G δ π N +1 , and is shorter than r. We conclude using the fact that r has been chosen as a shortest path of minimal weight.

(x, y) ∈ X 2 0 such that M 1 [x, y] < M 2 [x, y]. 2 The value M 1 [x,
Property ( †) allows us to prove that the greatest fixpoint is empty. Indeed, by considering iterations of π, one can repeat the return path associated with (r 2 , r 4 ) and obtain paths from X to Y whose weights diverge towards -∞. Case 2: M 1 M 2 because of the ordering coefficients. We claim that this case cannot occur. Indeed, one can show that the constants will not evolve anymore after the N th iteration of the fixpoint: the coefficients can only decrease by changing from a non-strict inequality (≤, c) to a strict one (<, c). This propagation of strict inequalities is performed in at most |X 0 | 2 additional steps, thus we have CPre δ π 2N +1 ( ) = CPre δ π 2N ( ), yielding a contradiction.

Compared to the result of [START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF], the number of iterations needed before convergence grows from |X 0 | 2 to 2|X 0 | 2 : this is due to the presence of strict and non-strict inequalities, not considered in [START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF]. With the help of branching constraint graphs, we have thus shown that the greatest fixpoint can be computed in finite time: this can then be done directly with computations on zones (and not on branching constraint graphs).

Proposition 5.4. Given a path π and a rational number δ, the greatest fixpoint νX CPre δ π (X) can be computed in time polynomial in |X | and |π|. As a consequence, one can decide whether the controller has a winning strategy along a lasso π 1 π ω 2 in G δ (A) in polynomial time.

Solving the qualitative problem for a lasso

We have shown how to decide whether the controller has a winning strategy for a fixed rational value of δ. We now aim at deciding whether there exists a positive value of δ for which the controller wins the game G δ (A) (where A is restricted to a lasso π 1 π ω 2 ). To this end, we will use the shrunk DBMs of Section 4.1.

Proposition 5.5. Given a path π, one can compute a shrunk DBM (M, P ) equal to the greatest fixpoint of the operator CPre δ π . As a consequence, one can solve the qualitative robust controller synthesis problem for a given lasso in time complexity polynomial in the number of clocks and in the length of the lasso.

Proof. The bound 2|X 0 | 2 identified in Proposition 5.3 for the greatest fixpoint does not depend on the value of δ. Hence the algorithm for computing a shrunk DBM representing the greatest fixpoint proceeds as follows. It computes symbolically, using shrunk DBMs, the 2|X 0 | 2 -th and 2|X 0 | 2 + 1-th iterations of the operator CPre δ π , from the zone . By monotonicity, the 2|X 0 | 2 + 1-th iteration is included in the 2|X 0 | 2 -th. If the two shrunk DBMs are equal, then they are also equal to the greatest fixpoint. Otherwise, the greatest fixpoint is empty. To decide the qualitative robust controller synthesis problem for a given lasso, one first computes a shrunk DBM representing the greatest fixpoint associated with π 2 and, if not empty, one computes a new shrunk DBM by applying to it the operator CPre δ π 1 . Then, one checks whether the valuation 0 belongs to the zone represented by the resulting shrunk DBM.

Synthesis of robust controllers

We are now ready to solve the qualitative robust controller synthesis problem on all timed automata, that is to find, if it exists, a lasso π 1 π ω 2 and a perturbation δ such that the controller wins the game G δ (A) when following the lasso π 1 π ω 2 as a strategy. As for the symbolic checking of emptiness of a Büchi timed language [LOD + 13], we will use a nested forward analysis to exhaust all possible lassos, each being tested for robustness by the techniques studied in previous section: a first forward analysis will search for π 1 , a path from the initial location to an accepting location, and a second forward analysis from each accepting location t to find a cycle π 2 , not necessarily simple, around t . Forward analysis means that we compute the successor zone Post π (Z) when following path π from zone Z: it is described formally in Chapter 2.3.5 as a symbolic algorithm solving the emptiness problem for reachability conditions.

Abstraction of lassos

Before studying in more details the two independant forward analyses, we first study what information we must keep about π 1 and π 2 in order to still being able to test the robustness of the lasso π 1 π ω 2 . A classical problem for robustness is the firing of a punctual edges, i.e. an edge where controller has a single choice of time delay: clearly such a firing will be robust for no possible choice of parameter δ. Therefore, we must at least forbid such punctual edges in our forward analyses. We thus introduce a non-punctual successor operator Post np π . It consists of the standard successor operator Post π in the timed automaton A np obtained from A by making strict every inequality symbol in guards (1 x 2 becomes 1 < x < 2). The crucial point is that if a positive delay d can be taken by the controller while satisfying a set of strict constraints, then other delays are also possible, close enough to d. By analogy, recall that a region is said to be non-punctual if it contains two valuations separated by a positive time delay. In particular, if such a region satisfies a non-diagonal atomic constraint in A it also satisfies the corresponding strict constraint in A np .

Controller wins G δ (A) for some δ > 0 if and only if he wins G δ (A np ) for some δ > 0. This observation can be derived from [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF], as every non-punctual lasso in the region abstraction of A is a valid region path in A np .

The link between non-punctuality and robustness is as follows, where we abusively denote by 0 the zone {0}.

Theorem 5.2. Let π 1 π ω 2 be a lasso of the timed automaton. We have

∃δ > 0 0 ∈ CPre δ π 1 (νX CPre δ π 2 (X)) ⇐⇒ Post np π 1 (0) ∩ ( δ>0 νX CPre δ π 2 (X)) = ∅
Proof. We start by observing that if Z is a zone (with constants over Q), ν is a valuation and e an edge, the three following statements are equivalent: 1. ∃δ > 0 ν ∈ CPre δ e (Z); 2. ν ∈ δ>0 CPre δ e (Z); 3. ν ∈ Pre np e (Z). This is derived from the fact that δ>0 shrink [-δ,δ] ( g ∩ Z) is equal to the intersection of Z with the strict version of g, as present in A np .

Let us now prove by induction that Pre np π (Z) = δ>0 CPre δ π (Z) for all paths π. Let us write π equals π • e, with e the last edge of π. Then, by inductive hypothesis:

Pre np π (Z) = Pre np e (Pre np π (Z)) = δ>0 CPre δ e (Pre np π (Z)) = δ>0 CPre δ e ( δ >0
CPre δ π (Z)) .

To finish the induction we need to prove that δ>0 CPre δ e ( δ >0 CPre δ π (Z)) is equal to δ>0 CPre δ e (CPre δ π (Z)). The left to right inclusion holds as for any valuation ν in δ>0 CPre δ e ( δ >0 CPre δ π (Z)), there exists values for δ and δ such that ν ∈ CPre δ e (CPre δ π (Z)). Moreover, CPre δ e (Z) and CPre δ π (Z ) are decreasing over δ, so that ν ∈ CPre δ e (CPre δ π (Z)) with δ = min(δ, δ ). For the right to left inclusion, observe that any fixed δ > 0 is covered by the set of all δ > 0, thus CPre δ π (Z) ⊆ δ >0 CPre δ π (Z), which in turn implies CPre δ e (CPre δ π (Z)) ⊆ CPre δ e ( δ >0 CPre δ π (Z)) as CPre δ e (Z ) is increasing over Z . We will also need a duality property on predecessor and successor relations: for all paths π, and zones Z and

Z , Z ∩ Pre np π (Z ) = ∅ if and only if Post np π (Z) ∩ Z = ∅.
This always holds by definition of Pre and Post, in particular in A np . Then,

∃δ > 0 0 ∈ CPre δ π 1 (νX CPre δ π 2 (X)) ⇔ 0 ∈ δ>0 CPre δ π 1 (νX CPre δ π 2 (X)) ⇔ 0 ∩ Pre np π 1 (νX CPre δ π 2 (X)) = ∅ ⇔ Post np π 1 (0) ∩ (νX CPre δ π 2 (X)) = ∅ .
Therefore, in order to test the robustness of the lasso π 1 π ω 2 , it is enough to only keep in memory the sets Post np π 1 (0) and δ>0 νX CPre δ π 2 (X).

Forward Analysis

As a consequence of the previous theorem, we can use a classical forward analysis of the timed automaton A np to look for the prefix π 1 of the lasso π 1 π ω 2 . A classical inclusion check on zones, as described in Chapter 2.3.5, allows one to stop the exploration, this criterion being complete thanks to Theorem 5.2. It is worth reminding that we consider only bounded clocks, hence the number of reachable zones is finite, ensuring termination.

Robust cycle search

We now perform a second forward analysis, from each possible target location, to find a robust cycle around it. To this end, for each cycle π 2 , we must compute the zone δ>0 νX CPre δ π 2 (X). This computation is obtained by arguments developed in Section 5.2.3 (Proposition 5.5). To enumerate cycles π 2 , we can again use a classical forward exploration, starting from the universal zone . Using zone inclusion to stop the exploration is not complete: considering a path π 2 reaching a zone Z 2 included in the zone Z 2 reachable using some π 2 , π 2 could be robustly iterable while π 2 is not. In order to ensure termination of our analysis, we instead use reachability relations inclusion checks. These tests are performed using the technique developed in Section 5.1, based on constraint graphs (Theorem 5.1). The correction of this inclusion check is stated in the following lemma, where Reach np (π) denotes the reachability relation associated with π in the automaton A np . This result is derived from the analysis based on regions of the previous chapter. Indeed, we will prove that the non-punctual reachability relations we consider capture the existence of non-punctual aperiodic paths in the region automaton, as considered in [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF].

We say that controller wins on the lasso π 0 π ω if he wins in the perturbation game restricted to π 0 and π for some δ, i.e. if ∃δ > 0 0 ∈ CPre δ π 0 (νX CPre δ π (X)).

Lemma 5.2. Let π 1 be a path from 0 to some target location t . Let π 2 , π 2 be two paths from t to some location , such that Reach np (π 2 ) ⊆ Reach np (π 2 ). For all paths π 3 from to t , if controller wins on the lasso π 1 (π 2 π 3 ) ω , then controller wins on the lasso π 1 (π 2 π 3 ) ω

This lemma proved to be a major technical challenge, and the rest of this section is dedicated to its proof.

As explained earlier, one can assume without loss of generality that all constraints in the guards of A are strict. We will thus make no distinction in this proof between Post and Post np , or Reach and Reach np .

In order to prove Lemma 5.2, we will need new notions on regions. Recall that a region r is defined by a valuation ι with integer coordinates and a partition R 0 , . . . , R m of X , such that a valuation ν belongs to r when for every clock x ∈ X , the integral part of ν(x) is equal to ι(x), and the fractional part of the coordinates of ν satisfies the ordering 0

= R 0 < R 1 < R 2 < • • • < R m (i.
e. for all clocks x in R 0 , frac(ν(x)) = 0, for all 0 i m and all clocks x, y ∈ R i , frac(ν(x)) = frac(ν(y)), and for all 0 i < j m and all clocks x ∈ R i , y ∈ R j , frac(ν(x)) < frac(ν(y))). Here we abusively write 0 = R 0 to remind that the clocks in R 0 have integer values. Moreover, the set R 0 can be empty but not the sets R 1 , . . . , R m . Region r is non-punctual if and only if R 0 = ∅.

Consider a region r with corresponding integral part ι and clock ordering

0 = R 0 < • • • < R m . The first time-successor of r is the region defined by ι and 0 < R 0 < R 1 • • • < R m if R 0 = ∅, by ι and 0 = R m < R 1 • • • < R m-1 if R 0 = ∅, with ι (x) = ι(x) + 1 if x ∈ R m and ι (x) = ι(x) otherwise.
Intuitively, it is the next region that valuations in r reach by letting time elapse. The i-th time successor of r is defined inductively with the first time-successor notion, with the 0-th time successor of r set to r. Any region reachable from r by time-elapse can be assigned an i 0 such that it is the i-th time successor of r.

Symmetrically, the first time-predecessor of r is the region defined by ι and 0

= R 1 < • • • < R m if R 0 = ∅, by ι and 0 < R 1 • • • < R m < R 0 if R 0 = ∅, with ι (x) = ι(x) -1 if x ∈ R 0 and ι (x) = ι(x) otherwise.
We introduce a notion of first partial-time-predecessor of a region r, characterized by a subset P 0 of R 0 . Intuitively, it performs the first time-predecessor operation on all clocks except R 0 \P 0 .

Definition 5.1. The first partial-time-predecessor of a region r, characterized by a subset P 0 = ∅ of R 0 , is the region defined by ι and 0

= (R 0 \P 0 ) < R 1 • • • < R m < P 0 , with ι (x) = ι(x) -1 if x ∈ P 0 and ι (x) = ι(x) otherwise.
Moreover, let the first partial-time-predecessor of r characterized by ∅ be r.

If r is punctual (i.e. not non-punctual), the set of all first partial-time-predecessors of r contains r (characterised by P 0 = ∅) and the first time-predecessor of r (characterised by P 0 = R 0 ). If r is non-punctual, the set of all first partial-time-predecessors of r is {r}.

We introduce a way to refine a clock partition. Intuitively, a clock ordering

0 = R 0 < • • • < R m is an ordered sub-partition of 0 = R 0 < • • • < R m if some sets R i are split into several R i < • • • < R j . Definition 5.2. 0 = R 0 < • • • < R m is an ordered sub-partition of 0 = R 0 < • • • < R m if R 0 ⊆ R 0
and for all 0 i < j m, x ∈ R i and y ∈ R j , there exists 0 i < j m such that x ∈ R i and y ∈ R j .

Consider two regions r and r , with corresponding integral parts ι and ι , and clock orderings

0 = R 0 < • • • < R m and 0 = R 0 < • • • < R m .
Definition 5.3. We say that r is simulated by r , and write r r , if there exists r , a first partial-time-predecessor of r with corresponding integral part ι and clock ordering

0 = R 0 < • • • < R m , such that ι = ι and 0 = R 0 < • • • < R m is an ordered sub-partition of 0 = R 0 < • • • < R m .
Definition 5.4. We will say that r and r are equivalent w.r.t. Y with Y ⊆ X if they are equal when projected on R Y 0 . Equivalently, if there exist two valuations ν ∈ r and ν ∈ r such that for all x ∈ Y, ν(x) = ν (x).

Observe that if r and r are equivalent w.r.t. Y, then r[R := 0] = r [R := 0] for all resets R with X \Y ⊆ R. In particular, if two regions r and r are equivalent w.r.t. X then r = r . All regions r and r are equivalent w.r.t. ∅.

Example 5.1. Figure 5.4 represents the simulation and equivalence notions on a few examples. On the left, the blue region characterised by ι = (0, 0) and 0 < {x 1 , x 2 } is simulated by the two light blue regions, because 0 < {x 1 } < {x 2 } and 0 < {x 2 } < {x 1 } are ordered sub-partitions of 0 < {x 1 , x 2 }. The red region characterised by ι = (1, 1) and 0 = {x 1 } < {x 2 } is simulated by the two light red regions, because 0 < {x 1 } < {x 2 } is an ordered sub-partition of 0 = {x 1 } < {x 2 }, and ι = (0, 1) and 0 < {x 2 } < {x 1 } is a first partial-time predecessor of the red region. The green region is only simulated by itself. The green and blue regions are equivalent w.r.t. {x 2 }. On the right, Figure 5.4 represents

x 1 x 2 1 2 0 1 2 x 1 x 2 1 2 0 1 2 Figure 5.4.: The simulation relation between regions in Reg({x 1 , x 2 }, 2).
the set of regions simulated by the region characterised by ι = (1, 1) and 0 = {x 1 , x 2 }. The black regions are its first partial-time predecessors, and the gray regions are obtained by ordered sub-partition.

The relation enjoys nice properties, that we now describe.

Lemma 5.3. For all regions r and r , with corresponding integral parts ι and ι , and

clock orderings 0 = R 0 < • • • < R m and 0 = R 0 < • • • < R m ,
such that r r and r, r are equivalent w.r.t. Y ⊆ X :

1. if r is non-punctual then r is non-punctual as well; 2. if r is punctual and s is the first time-successor of r, s is non-punctual and r s;

3. every strict non-diagonal guard satisfied by r is also satisfied by r ;

4. for each reset R ⊆ X , r[R := 0] r [R := 0] and r[R := 0], r [R := 0] are equivalent w.r.t. Y ∪ R;
5. for each time-successor s of r there exists a time-successor s of r such that s s and s, s are equivalent w.r.t. Y;

6. if r s for some region s then r s.

Proof. Let r be a first partial-time-predecessor of r characterised by P 0 ⊆ R 0 , with corresponding integral part ι = ι and clock ordering

0 = R 0 < • • • < R m , such that 0 = R 0 < • • • < R m is an ordered sub-partition of 0 = R 0 < • • • < R m . 1. If R 0 = ∅ then R 0 ⊆ R 0 ⊆ R 0 = ∅, and r is non-punctual.
2. The first time-successor of r is the non-punctual region s defined by ι and

0 < R 0 < R 1 • • • < R m since r is punctual.
It is an ordered sub-partition of r which is a first partial-time-predecessor of itself, therefore r s.

x > c with x ∈ X is satisfied by r if and only if c < ι(x) or x ∈ X \R 0 ∧ c = ι(x). If c < ι(x), then either c < ι (x) or c = ι (x) and x ∈ P 0 , and in both cases

x > c is satisfied by r . If x ∈ X \R 0 ∧ c = ι(x), then x ∈ (R 0 \P 0 ) ∧ c = ι (x) and x > c is satisfied by r .
Then, as ι = ι and R 0 is included in R 0 , all strict non-diagonal constraints satisfied by r are also satisfied by r .

4. The simulation relation is stable by projection into R X \R 0 , and it is also stable by adding new clocks to both R 0 and R 0 , therefore it is stable by reset. Equivalence w.r.t. Y is maintained and extended to Y ∪ R by definition. 5. We prove by induction on i that for all i 0, there exists j 0 such that the i-th time-successor of r is simulated by the j-th time-successor of r and that they are equivalent w.r.t. Y. If i = 0, pick j = 0. For the induction step, it is enough to prove the property with i = 1. Let us first assume that r is non-punctual. The first time-successor of r is described by ι and

0 = R m < R 1 < • • • < R m-1 ,
with ι equal to ι + 1 on R m and equal to ι on all other clocks. Moreover, r is described by ι and an ordered sub-partition of

0 < R 1 < • • • < R m . Let us assume that R m is split into R m -j < • • • < R m in
r , with j 0. Therefore, the (2j + 1)-th time-successor of r is described by ι and an ordered sub-partition of the clock ordering

0 = R m < R 1 < • • • < R m-1
, and therefore simulates the first time-successor of r. Additionally, r and r induce the same ordering for clocks in Y, and this is maintained on the successors, so they are equivalent w.r.t. Y. Let us now assume that r is punctual. The first time-successor of r is described by

ι and 0 < R 0 < R 1 < • • • < R m . Moreover, r is described by ι and an ordered sub-partition of 0 = (R 0 \P 0 ) < R 1 • • • < R m < P 0 , with ι (x) = ι(x) -1 if x ∈ P 0 and ι (x) = ι(x) otherwise. Let us assume that P 0 is split into R m -j < • • • < R m in
r , with j 0. Then, the (2j + 1)-th time-successor of r is described by ι and an ordered sub-partition of the clock ordering

0 = P 0 < (R 0 \P 0 ) < R 1 < • • • < R m , which is an ordered sub-partition of the clock ordering 0 = R 0 < R 1 < • • • < R m ,
and therefore simulates the first time-successor of r. Additionally, r and r induce the same ordering for clocks in Y, and this is maintained on the successors, so they are equivalent w.r.t. Y. 6. Let s correspond to an integral part ι s and a clock ordering andr s. If r is punctual, the region r must be punctual by Lemma 5.3.1, and Q 0 ⊆ R 0 \P 0 . Then, the clock ordering of s is an ordered sub-partition of the clock ordering of the first partial-time-predecessor of r characterised by P 0 Q 0 (the last sets R s i in the clock ordering of r s all belong to P 0 Q 0 ), thus r s.

0 = R s 0 < • • • < R s m s . Let s be a first partial-time-predecessor of r characterised by Q 0 ⊆ R 0 with corresponding integral part ι s = ι and clock ordering 0 = R s 0 < • • • < R s m , such that 0 = R s 0 < • • • < R s m s is an ordered sub-partition of 0 = R s 0 < • • • < R s m . Now, if r is non-punctual then r = s . As being an ordered sub-partition is transitive, 0 = R s 0 < • • • < R s m s is an ordered sub-partition of 0 = R 0 < • • • < R m ,
Consider a region path p describing a sequence

r 1 delay ---→ r 2 g 1 ,Y 1 ---→ r 3 delay ---→ . . . g |π| ,Y |π| ----→ r n ,
and p another region path r 1 delay ---→ . . .

g |π| ,Y |π|
----→ r n following the same sequence of edges π. We say that p p if for all 1 i n, r i r i . In particular, if p p and p is non-punctual (i.e. ever region r 2i+1 reached after a delay is non-punctual), p is non-punctual as well by Lemma 5.3.1.

The following results can be obtained from Lemma 5.3, and state that acts as a time-abstract simulation relation, while keeping additional guarantees on progress cycles or non-punctual region paths.

Lemma 5.4. Let π be a path in A describing a progress cycle, let p be a region path from a region r 1 to a region r 2 that follows π, and let r 1 be a region such that r 1 r 1 . Then, there exists a region path p from r 1 to r 2 following π, such that p p .

Proof. Consider an edge in A of guard g and reset R, and a region path r 1 delay ---→ r 2 g,R --→ r 3 and let r 1 be a region such that r 1 and r 1 are equivalent w.r.t. Y with some Y ⊆ X , and r 1 r 1 . Then, by Lemma 5.3.5, there exists a region r 2 time-successor of r 1 such that r 2 r 2 and r 2 , r 2 are equivalent w.r.t. Y. Since r 2 |= g, by Lemma 5.

3.3, r 2 |= g. Finally, if r 3 = r 2 [R := 0] and p = r 1 delay ---→ r 2 g,R
--→ r 3 , by Lemma 5.3.4 we obtain r 3 r 3 and r 3 , r 3 are equivalent w.r.t. Y ∪ R. By applying this procedure inductively on p (starting from r 1 and r 1 equivalent w.r.t. ∅), we obtain a region path p from r 1 to some r 2 following π, such that p p and r 2 , r 2 are equivalent w.r.t. ( ,g,R, )∈π R the clocks reset by π. As π is a progress cycle, it resets all clocks, and therefore r 2 = r 2 .

Lemma 5.5. Let π be a path in A, and let p be a region path following π from a region r 1 to a region r 2 . Then, there exists a non-punctual region path p following π from r 1 to some r 2 with p p .

Proof. Consider an edge in A of guard g and reset R, and a region path r 1 delay ---→ r 2 g,R --→ r 3 , and let r 1 be a region such that r 1 r 1 . Then, by Lemma 5.3.5, there exists a region r 2 time-successor of r 1 such that r 2 r 2 . If r 2 is non-punctual, let r 2 = r 2 , otherwise let r 2 be the first time-successor of r 2 . By Lemma 5.3.2 and Lemma 5.3.6, r 2 is a time-successor of r 1 such that r 2 r 2 . Since r 2 |= g, by Lemma 5.

3.3, r 2 |= g. Finally, if r 3 = r 2 [R := 0] and p = r 1 delay ---→ r 2 g,R
--→ r 3 , by Lemma 5.3.4 we obtain r 3 r 3 . By applying this procedure inductively on p, we obtain a non-punctual region path p from r 1 to some r 2 following π, with p p .

We will now show that region cycles can be made non-punctual while keeping a full reachability relation on the associated path in A. Lemma 5.6. Let π be a path in A describing a progress cycle, Let r be a region such that r × r ⊆ Reach(π). Let p be a region cycle around region r that follows π, and let s be a region such that r s. There exists a region s reachable from s by a non-punctual region path p 0 that follows π, and a non-punctual region cycle p around s that follows π 3 , with s × s ⊆ Reach(π 3 ).

Proof. Let us explain how to construct a region s and four region paths p 1 , p 2 , p 1 and p 2 following π such that

• p p 1 , • p p 2 , • p 1 p 1 , • p 1 p 2 ,
• p 1 is a non-punctual path from r to s ,

• p 2 is a path from s to r,

• p 1 is a non-punctual paths from s to s ,

• and p 2 is a non-punctual paths from s to s .

We start by applying Lemma 5.5 on p, and obtain a non-punctual path p 1 from r to a region s with p p 1 . Now, we apply Lemma 5.4 on p 1 and s (as r s), and obtain a path p 1 from s to s with p 1 p 1 (and therefore p 1 is also non-punctual). Then we apply Lemma 5.4 on p 1 and s (as r s ), and obtain a path p 2 from s to s with p 1 p 2 (and therefore p 2 is also non-punctual). Finally, by applying Lemma 5.4 on r, s and p (as r s ), we obtain a region path p 2 that follows π, starts in s and ends in r. We fix p 0 = p 1 and p = (p 2 ) 3 . Let us show s × s ⊆ Reach(π 3 ). Let ν, ν be two valuations in s . There exists a region path p 2 that follows π, starts in s and ends in r. Thus, ν can reach some valuation ν 1 in r by following π. We also know that p 1 is a region path from r to s following π, therefore there exists a valuation ν 1 in r that can reach ν by following π. From r × r ⊆ Reach(π), we deduce that ν 1 can reach ν 1 by following π. Therefore every valuation ν in s can reach every valuation ν in s by following π 3 .

We are now ready to prove Lemma 5.2.

Proof of Lemma 5.2. Let π 1 a path from 0 to some target location t . Let π 2 , π 2 be two paths from t to some location , such that Reach(π 2 ) ⊆ Reach(π 2 ). Let us assume that controller wins on the lasso π 1 (π 2 π 3 ) ω . Then, the controller wins in the perturbation game restricted to π 1 , π 2 and π 3 and with t as only target, for some δ. Therefore, there exists non-punctual region paths p 4 and p 5 in the region abstraction of A, such that p 4 reaches a target region ( t , r) from ( 0 , 0), and p 5 is an aperiodic cycle around r. There exists k such that the reachability relation of p k 5 is complete. Thus, we can define π 4 a path of the form π 1 (π 2 π 3 ) i with i 0, and π 5 a cycle of the form (π 2 π 3 ) j with j > 0, such that r × r ⊆ Reach(π 5 ).

Consider π 4 = π 1 (π 2 π 3 ) i and π 5 = (π 2 π 3 ) j . From Reach(π 2 ) ⊆ Reach(π 2 ), we derive Reach(π 2 π 3 ) ⊆ Reach(π 2 π 3 ) and thus Reach(π 4 ) ⊆ Reach(π 4 ) and Reach(π 5 ) ⊆ Reach(π 5 ). Therefore, r × r ⊆ Reach(π 5 ), Post π 4 (0) ⊆ Post π 4 (0) and Post π 5 (r) ⊆ Post π 5 (r), and we can define a region path p 4 from 0 to r along π 4 , and a region path p 5 from r to r along π 5 . Note that r × r ⊆ Reach(π 5 ) implies that π 5 is a progress cycle, as otherwise no execution following π 5 can start and end in the same valuation.

By using Lemma 5.5 on π 4 and p 4 , we can obtain a non-punctual region path p 4 from 0 to some region r 0 that follows π 4 , such that r r 0 . Now, we can apply Lemma 5.6 on π 5 , r and r 0 , and obtain a non-punctual lasso following π 5 π 3 5 , starting from r 0 and cycling around r 1 , such that r 1 × r 1 ⊆ Reach(π 3 5 ). Therefore, by Lemma 4.2, controller wins in the perturbation game restricted to π 1 , π 2 and π 3 for some δ, and thus wins on the lasso π 1 (π 2 π 3 ) ω .

Case study

We implemented our algorithm in C++. We rely on the model-checking tool TChecker [START_REF] Herbreteau | Tchecker[END_REF] for efficiently exploring the zone abstraction, and implemented an on-the-fly construction of reachability relations using DBMs, and a check for the robust iterability of a cycle based on shrunk DBMs.

To illustrate our approach, we present a case study on the regulation of train networks. Urban train networks in big cities are often particularly busy during rush hours: trains run in high frequency so even small delays due to incidents or passenger misbehaviour can perturb the traffic and end up causing large delays. Train companies thus apply regulation techniques: they slow down or accelerate trains, and modify waiting times in order to make sure that the traffic is fluid along the network. Computing robust schedules with provable guarantees is a difficult problem (see e.g. [START_REF] Ariano | Conflict resolution and train speed coordination for solving real-time timetable perturbations[END_REF]).

We study here a simplified model of a train network and aim at automatically synthesizing a controller that regulates the network despite perturbations, in order to ensure performance measures on total travel time for each train. Consider a circular train network with m stations s 0 , . . . , s m-1 and n trains. We require that all trains are at distinct stations at all times. For each station i ∈ [0, m -1], there is an attached interval of delays [u i , v i ] which bounds the travel time from s i to s i+1 mod m . Here the lower bound

s 0 s 1 s 2 s 3 s 4 [u 0 , v 0 ] [u 1 , v 1 ] [u 2 , v 2 ] [u 3 , v 3 ] [u 4 , v 4 ] [t 0 1 , t 0 2 ] [t 1 1 , t 1 2 ]
Figure 5.6.: A simple circular train network, with five stations and two trains. The blue (resp. red) train starts at station s 0 (resp. s 2 ) and must cycle the network within time

[t 0 1 , t 0 2 ] (resp. [t 1 1 , t 1 2 ]).
comes from physical limits (maximal allowed speed, and travel distance) while the upper bound comes from operator specification (e.g. it is not desirable for a train to remain at station for more than 3 minutes). The objective of each train j ∈ [0, n -1] is to cycle on the network while completing each tour within a given time interval [t j 1 , t j 2 ]. An example for m = 5 and n = 2 is displayed in Figure 5.6.

All timing requirements are naturally encoded with clocks: every train i ∈ [0, n -1] is associated two clocks x i , y i , and a timed automaton A i defined as in Figure 5.7. The final timed automaton A is obtained as the product automaton A 0 × • • • × A n-1 , whose locations are tuples (s 0 , . . . , s n-1 ) associating a station for every train, and whose edges are all (s 0 , . . . , s i , . . . , s n-1 )

g i ,Y i
---→ (s 0 , . . . , q i , . . . , s n-1 ) , with s i g i ,Y i ---→ q i an edge of A i . Locations such that two trains are positioned at the same station are finally removed.

Given the model A, we solve the qualitative robust controller synthesis problem in order to find a controller choosing travel times for all trains ensuring a Büchi condition (visiting s 0 infinitely often). Given the fact that trains cannot be at the same station simultaneously, it suffices to state the Büchi condition only for one train, since its satisfaction of the condition necessarily implies that of all other trains.

Let us present two representative instances and then comment the performance of the algorithm on a set of instances. Consider a network with two trains and m stations, with [u i , v i ] = [200,400] for each station i, and the objective of both trains is the interval [250 • m, 350 • m], that is, an average travel time between stations that lies in [250,350]. The algorithm finds an accepting lasso: intuitively, by choosing δ small enough ∞). Thus, one train needs to complete each cycle in at most 300 • m time units, while the other one in at least 300 • m time units. A classical Büchi emptiness check reveals the existence of an accepting lasso: it suffices to move each train in exactly 300 time units between each station. This controller can even recover from perturbations for a bounded number of cycles: for instance, if a train arrives late at a station, the next travel time can be chosen smaller than 300. However, such corrections will cause the distance between the two trains to decrease and if such perturbations happen regularly, the system will eventually enter a deadlock. Our algorithm detects that there is no robust controller for the Büchi objective. This corresponds to the scenario B in Table 5.1. Other scenarios are defined similarly for varying number of stations and trains, and sometimes some trains are not given an objective [t i 1 , t j 2 ] in order to reduce the number of clocks.

s 0 s 1 s 2 s 3 s 4 u 0 x 0 v 0 x 0 := 0 u 1 x 0 v 1 x 0 := 0 u 2 x 0 v 2 x 0 := 0 u 3 x 0 v 3 x 0 := 0 t 0 1 y 0 t 0 2 u 4 x 0 v 4 x 0 , y 0 := 0 A 0
Table 5.1 summarizes the outcome of our prototype implementation on other scenarios. The tool was run on a 3.2Ghz Intel i7 processor running Linux, with a 30 minute time out and 2GB of memory. The performance is sensitive to the number of clocks: on scenarios with 8 clocks the algorithm ran out of time.

The quantitative problem

We say that a perturbation δ is admissible if the controller wins the game G δ (A). The qualitative robust controller synthesis problem, solved in the previous chapters, aims at deciding whether there exists a positive admissible perturbation. The more ambitious quantitative problem consists in determining the largest admissible perturbation.

The algorithm developed in Chapter 5 relied on solving the qualitative problem on lassos by performing a bounded (2|X 0 | 2 ) number of computations of the CPre δ π operator. For the quantitative problem, instead of focusing on arbitrarily small values of δ using shrunk DBMs as we did previously, we must perform a computation that holds for all values of δ.

To do so, we consider an extension of the (shrunk) DBMs in which each entry of the matrix (which thus represents a clock constraint) is a piecewise affine function of δ. We argue that all the operations involved in the computation of the CPre δ π operator can be performed symbolically w.r.t. δ using such functions.

Parametric DBMs

Formally, a parametric bound is a mapping f from R 0 to Bounds(R), such that f (δ) represents the bound associated to the maximal perturbation δ. We define the operations min, inf and + over parametric bounds in an intuitive way, with min(f, g) : δ → min(f (δ), g(δ)), inf{f 1 , f 2 , . . .} : δ → inf{f 1 (δ), f 2 (δ), . . .} and f + g : δ → f (δ) + g(δ), by using the min, inf and + operations of Bounds(R). Lemma 6.1. Parametric bounds equipped with min and + form an ordered semiring with closure. Moreover, the closure f ( * ) of a parametric bound f is equal to δ → (f (δ)) ( * ) .

Proof. As (Bounds(R), min, +) is a semiring, one can derive that parametric bounds form a semiring with min and +. Consider the relation defined over parametric bounds as {(f, g) | ∃h, min(f, h) = g}. Observe that f g if and only if min(f, g) = g. Therefore, is antisymmetric. It follows that the semiring of parametric bounds is ordered. A difference with the previous cases of standard or shrunk DBMs is that the min operator is not selective and thus the order it induces is not total. Moreover, is complete as the set of parametric bounds forms a complete join semilattice with , where join is the inf operator. Therefore, the semiring of parametric bounds has closure. The closure f ( * ) of a parametric bound f equals

inf{(δ → ( , 0)), f, f + f, f + f + f, . . .} ,
and thus maps δ ∈ R 0 to (f (δ)) ( * ) by definition of inf.

Piecewise affine bounds

We say that a parametric bound f is a finite affine bound if there exists ≺ ∈ {<, }, c ∈ Z and p ∈ N such that for all δ ∈ R 0 , f (δ) = (≺, c -δp). The equation of f refers to the expression ≺ c -δp, where c is called the constant and p is called the slope. We also define infinite affine bounds as equal to either δ → (<, +∞) or δ → (<, -∞). Then, we define the class of piecewise affine bounds PWBounds as the smallest set of parametric bounds that contains the affine bounds, is stable by min and +, and is stable by the closure operation f → f ( * ) , i.e. for every parametric bounds f, g ∈ PWBounds, f + g, min(f, g) and f ( * ) are in PWBounds. Some examples are displayed in Figure 6.1.

Such a parametric bound f is a piecewise affine mapping with finitely many pieces. Note that all affine bounds are non-increasing, i.e. if δ δ then f (δ ) f (δ), and that the operations min, + and closure map non-increasing parametric bounds to nonincreasing parametric bounds, such that all bounds in PWBounds are non-increasing. If f contains finite pieces only, i.e. it maps all δ to finite bounds, it can be described as a finite sequence

(δ 0 , f (0)) ≺ 1 c 1 -δp 1 -----→ (δ 1 , f (δ 1 )) ≺ 2 c 2 -δp 2 -----→ . . . (δ k , f (δ k )) ≺ k+1 c k+1 -δp k+1 ----------→ ∞ with k ∈ N, δ 0 = 0 and δ i ∈ R 0 for i ∈ [1, k], such that for all i ∈ [1, k], δ ∈ (δ i-1 , δ i ), it holds that f (δ) = (≺ i , c i -δp i ), and for all δ > δ k , f (δ) = (≺ k+1 , c k+1 -δp k+1 ).
The number of pieces of f is k + 1, and the values δ i with i ∈ [0, k] are called split points, and mark the junction between pieces. We say that f contains an initial split point at δ = 0 and k finite-finite split points for values of δ > 0.

If f contains some infinite pieces, then either f maps every δ to (<, +∞), or it contains a sequence of finite pieces and a last piece that maps every δ to (<, -∞) (because f must be non-increasing), i.e. it can be described by the sequence

(δ 0 , f (0)) ≺ 1 c 1 -δp 1 -----→ (δ 1 , f (δ 1 )) ≺ 2 c 2 -δp 2 -----→ . . . (δ k , f (δ k )) <-∞ ---→ ∞ .
In this case, we say that f contains an initial split point at δ = 0, k -1 finite-finite split points δ i for i ∈ [1, k -1], and one finite-infinite split point δ k . Indeed, (<, +∞) is the neutral element of min, the absorbing element of +, and not in the image of the closure operation, so a (<, +∞) affine piece cannot be split by those operations. A piece mapping to (<, -∞), in contrast, can appear as the last piece of f by applying the closure operation.

A bound f ∈ PWBounds is continuous over constants at all finite-finite split points, meaning that for every split point

δ i > 0 with f (δ i ) = (≺, c) between a piece ≺ i c i -δp i and a piece ≺ i+1 c i+1 -δp i+1 , it holds that c = c i -δ i p i = c i+1 -δ i p i+1 . Moreover, f is also continuous at the initial split point δ 0 = 0 with f (0) = (≺, c) before a piece ≺ 1 c 1 -δp 1 , such that c = c 1 . Finally, if f contains a piece (<, -∞), f is continuous at the finite-infinite split point δ k : f (δ k ) is either equal to (≺, c) with c = c k + δ k p k or to (<, -∞).
In our inductive construction from affine bounds, finite-finite split points appear with the min operation as the intersection of finite pieces, and finite-infinite split Piecewise affine bounds inherit the operations and properties of parametric bounds, most notably they form with min and + an ordered semiring with closure, that we call the tropical semiring of piecewise affine bounds. Lemma 6.2. (PWBounds, min, +) is an ordered semiring with closure.

δ f (δ) < 1 5 -3δ 2 -δ 0 < -∞ 1 2 0 1 2 -1
Proof. Piecewise affine bounds form an ordered semiring since they are a subset of parametric bounds stable by min and + containing the neutral elements of min and +. For every bound f ∈ PWBounds, it is a parametric bound and we have seen that its closure f ( * ) in (Bounds(R) R 0 , min, +) exists. As PWBounds is stable by closure, f ( * ) ∈ PWBounds. Finally, closure in the semiring (PWBounds, min, +) is equal to closure in the semiring of parametric bounds, as min (and therefore the order ) and + are identical.

Every elementary operation (min, +, and closure) can be performed in linear time on piecewise affine bounds, and they increase the size of the input in a controlled manner. Formally, if K, C, P ∈ N, we say that a piecewise affine bound f is bounded by K[C -δP ] if f contains at most K finite-finite split points and if |c| C and p P hold for all finite affine pieces of equation ≺ c -δp in f . If f is bounded by K[C -δP ], the split points δ i are non-negative rational numbers whose corresponding irreducible fraction a/b satisfy a 2C and b P by continuity over constants: finite-finite split points describe the intersection of c i -δp i and c i+1 -δp i+1 at δ = (c i -c i+1 )/(p i -p i+1 ), and the finite-infinite split points are created similarly by intersection of an affine piece c i -δp i with 0. Then, Proof. To bound the constants c and the slopes p in the output of these operations, observe that the equations in the finite pieces of the output are obtained by addition in f + g, they cannot change in min, and the closure operation maps every δ to f (δ) ( * ) ∈ {( , 0), (<, 0), (<, -∞)}. To bound the number of split points after min, observe that new finite-finite split points can only be created by intersection of a finite piece in f and a finite piece in g, such that if we consider the union of the finite-finite split points of f and g, at most one new finite-finite split point appears between two consecutive such split points, plus one after the last split point, giving K + K + 1 new finite-finite split points at most. To bound the number of split points after +, observe that the split points in the output of + are at most the union of the split points in its inputs. Finally, the output of the closure operation cannot have finite-finite split points. This ensures that every algorithm using these elementary operations polynomially many times will have an exponential time complexity at worst. The driving factor behind this exponential is the number of pieces, that can double when the min or + operations are used.

f (δ i ) = c i -δ i p i is

Piecewise affine DBMs

We construct DBMs over piecewise affine bounds, called piecewise affine DBMs, defined as mappings from X 0 × X 0 to PWBounds. A piecewise affine DBM M can equivalently be seen as a mapping from δ ∈ R 0 to a DBM over R, denoted abusively M(δ), such that (M(δ))(x, y) = (M(x, y))(δ) for all clocks x, y ∈ X 0 .

Piecewise affine DBMs have a normal form that can be computed with a cubic number of elementary operations according to Lemma 1.2.

We show that piecewise affine DBMs are closed under standard operations on zones, and thus the CPre operator can be computed with piecewise affine DBMs: Lemma 6.4. Let e = ( , g, Y, ) be an edge and M be a piecewise affine DBM. Then, there exists a piecewise affine DBM N , that we can compute using a polynomial number of elementary operations, such that for all δ 0, N (δ) = CPre δ e (M (δ)). Proof. We have already defined the addition and minimum of piecewise affine bounds, and if we interpret the operations "set a bound to (≺, c)" as "set it to δ → (≺, c)" we can use the standard definitions of Unreset and intersection from DBMs over Z [START_REF] Bengtsson | Timed Automata: Semantics, Algorithms and Tools[END_REF] A PreTime operation is defined as replacing for every x ∈ X the entry of index (x 0 , x) in the DBM by δ → ( , 0); replacing for every x ∈ X the entry f of index (x, x 0 ) by f + (δ → (<, -δ)); and normalizing the DBM. A shrinking operation shrink is defined as replacing for every x ∈ X the entries f of index (x, x 0 ) or (x 0 , x) in the DBM by f + (δ → (<, -δ)); and normalizing the DBM. We can now define CPre e as PreTime(shrink g ∩ Unreset Y (Z)). It follows that CPre e (M )(δ) = CPre δ e (M (δ)), because for every δ 0, PreTime(M

)(δ) = PreTime >δ (M (δ)), shrink(M )(δ) = shrink [-δ,δ] (M (δ)) and Unreset Y (M )(δ) = Unreset Y (M (δ)
). The elementary operations on piecewise affine bounds are only called polynomially many times at most while computing CPre e .

The main difference with classical DBMs lies in the emptiness check: while a classical (or shrunk) DBM can either be empty or not, this notion does not exist for piecewise affine DBMs. Indeed, after normalization, a piecewise affine DBM M may contain diagonal entries not comparable with zero (zero is the bound δ → ( , 0)). For example, the green bound from Figure 6.1 is a bound incomparable with zero that can be output by the closure operation. One can compute for every bound f on a diagonal entry of the DBM some δ f = sup{δ | ( , 0) f (δ)}, and then consider δ d , the min of those δ f . Then, it follows that δ d is the supremum of δ such that M (δ) is not empty. In contrast, shrunk DBMs perform the same computations as piecewise affine DBMs, but as they are solely interested in expressing statements about δ > 0 small enough, they only keep in memory the first affine piece of our piecewise affine bounds.

We finally define an operator CPre π on piecewise affine DBMs M , such that for all δ 0, CPre π (M )(δ) = CPre δ e (M (δ)). This is done by induction on the length of π: if π = eπ with e and edge of A, then

CPre δ π (M (δ)) = CPre δ e (CPre δ π (M (δ))) ,
and Lemma 6.4 allows us to conclude; and if π is of length 0, CPre π (M )(δ) = M (δ) .

Largest admissible perturbation of a lasso

We have seen that a symbolic computation of the robust predecessors of a finite path, that holds for all values of δ, can be computed with piecewise affine DBMs. Consider now a cycle π in a timed automaton A. We will now explain how to compute the greatest fixpoint of CPre over π with piecewise affine DBMs.

Lemma 6.5. Let π be a cycle. There exists a piecewise affine DBM N , that we can compute using a polynomial number of elementary operations, such that for all δ 0, N (δ) = νX CPre δ π (X). Proof. Let n equal 2|X 0 | 2 . We can compute piecewise affine DBMs M 1 and M 2 encoding respectively CPre π n ( ) and CPre π n+1 ( ). Then, by monotonicity, the inclusion M 1 (δ) ⊆ M 2 (δ) holds for every δ 0, and if M 1 (δ) = M 2 (δ), then νX CPre δ π (X) = M 1 (δ). By Proposition 5.3, for every δ 0, if M 1 (δ) M 2 (δ), then νX CPre δ π (X) = ∅. In addition, both M 1 and M 2 are non-increasing w.r.t. δ, thus one can identify in linear time the

value δ i = inf{δ ≥ 0 | M 1 (δ)
M 2 (δ)}. Then, let N be min(M 1 , M δ i ), with M δ i the piecewise affine DBM where every entry M δ i (x, y) maps δ to M 1 (x, y)(δ) if δ < δ i and to (<, -∞) if δ > δ i . The value of bounds in M δ i (x, y) for δ = δ i is similarly set to M 1 (x, y) if M 1 (δ i ) = M 2 (δ i ) and to (<, -∞) otherwise.

As a consequence, we obtain the following new result: Proposition 6.1. We can compute the largest admissible perturbation of a lasso in exponential time.

Proof. Let π 1 π ω 2 be a lasso. As a first step, we compute the greatest fixpoint of CPre π 2 as a piecewise affine DBM. As a second step, one applies the operator CPre π 1 to the greatest fixpoint. We denote the result by M . To conclude, one can then return the value sup{δ | 0 ∈ M (δ)} of maximal perturbation. The elementary operations min and + are only used polynomially many times in this computation and thus all piecewise affine bounds used as inputs for elementary operations are bounded by K[C -δP ], with K, C and P at most exponential in the size of the automaton.

Part III.

Weighted timed games Introduction

In this part we study problems related to the optimality of controllers. Let us start by studying finite weighted games equipped with a reachability objective.

Finite weighted games

The context is that of a two-player turn-based game where transitions have been equipped with weights. The optimal reachability problem asks what is the lowest cumulated weight that controller can guarantee for reaching a target from a given intial state, against any decisions made by the antagonistic environment. The controller is therefore the minimiser player, while the environment wants to maximise the weight accumulated along the execution. This lowest weight is called the value of the game, and computing it can be seen as a natural generalisation of the classical shortest path problem in a weighted graph to the case of two-player games. Weighted games with reachability objectives have been recently explored as a refinement of mean-payoff games [START_REF] Brihaye | To reach or not to reach? Efficient algorithms for total-payoff games[END_REF][START_REF] Brihaye | Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games[END_REF].

We focus particularly on challenges related to having negative weights, that are crucial when one wants to model energy or other resources that can grow or decrease during an execution of the system to study. If weights of transitions are all nonnegative, a generalised Dijkstra algorithm allows one to compute the value in polynomial time [KBB + 08]. In the presence of negative weights, a pseudo-polynomial time solution (i.e. polynomial if weights are encoded in unary, but exponential otherwise) has been given in [START_REF] Brihaye | Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games[END_REF]. Moreover, deciding if the value is equal to -∞ is shown to be in NP ∩ coNP, and as hard as solving mean-payoff games. Having negative weights therefore comes with a price on the complexity side.

In Chapter 7, we introduce the value iteration algorithm used by [START_REF] Brihaye | Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games[END_REF], then study classes of weighted games where the value can be computed in polynomial time, even in the presence of negative weights encoded in binary. These ideas will be lifted to the timed setting in later chapters, and will provide notable classes of weighted timed games.

Our contribution is to define divergent and almost-divergent weighted games, and show that they are solvable in polynomial time. To our knowledge, they are the first non-trivial classes of weighted games with negative weights solvable in polynomial time, apart from the class of acyclic games, that they contain. The intuition behind these classes can be expressed as follows:

• In divergent games, cycles of total cumulated weight 0 are forbidden. As a result, the weight of long execution must diverge to either +∞ or -∞, and we can use this information to speed up the value iteration algorithm of [START_REF] Brihaye | Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games[END_REF]. • This logic is then extended to almost-divergent games, where only some "bad" cycles of weight 0 are forbidden, based on a stability by decomposition rule (it is forbidden for a cycle of weight 0 to be the composition of a positive cycle and a negative one). In this case, inspired by [START_REF] Bouyer | On the value problem in weighted timed games[END_REF], we define a notion of kernel of the game, that contains all cycles of weight 0, and deal with them separately.

Untimed

We also solve the membership problem, i.e. check if an instance belongs to these classes, in polynomial time. Table 1 summarises our results. The value problem compares the value to a given threshold α, and particular cases of interest are the thresholds -∞ and +∞.

Weighted timed games

We then turn our attention to weighted games played on a timed automaton instead of a finite transition system. The resulting optimal reachability problems take place on a weighted timed automaton [BFH + 01, ALTP04], with weights on edges, and rates on locations that let weight accumulate linearly when time elapses. If one does not care about optimality (and weights), the problem reduces to solving reachability timed games. This problem is EXPTIME-complete [JT07], and can be solved efficiently with symbolic techniques (see Uppaal Tiga [CDF + 05]). However, the quantitative setting is notoriously difficult: While solving weighted timed automata has been shown to be PSPACE-complete [START_REF] Bouyer | On the optimal reachability problem of weighted timed automata[END_REF], weighted timed games are known to be undecidable [START_REF] Brihaye | On optimal timed strategies[END_REF].

Faced with this challenge, several approaches have been followed. A semi-algorithm, extending the value iteration algorithm of weighted games to the timed setting, has been described in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF]. It takes the form of a greatest fixpoint computation, that may not terminate. Alternatively, once can study restricted classes of weighted timed games in order to regain decidability.

The most restrictive one is the class of acyclic games, where the dynamic has bounded length, i.e. controller must reach a target within a fixed number of steps, or be punished with a weight of +∞. The resulting problem has been shown to be decidable, and can be solved in double-exponential time [START_REF] La | Optimalreachability and control for acyclic weighted timed automata[END_REF]. In fact, the semi-algorithm of [BCFL04] also solves acyclic weighted timed games, as their greatest fixpoint computation must converge within a fixed number of steps. This result has been further refined in [START_REF] Alur | Optimal reachability for weighted timed games[END_REF], where a fairly involved analysis claimed that the value iteration algorithm could be implemented in exponential time.

It is worth noting that all of these results are stated for weighted timed games with only non-negative weights (in edges and locations). Less is known for weighted timed games in the presence of negative weights, and to our knowledge no results exist so far for a class where the underlying timed automata have more than one clock. While the value iteration algorithm can allow for the presence of negative weights (it is still a semi-algorithm, and the fixpoint arguments did not require non-negative weights), we argue that the complexity analysis of [START_REF] Alur | Optimal reachability for weighted timed games[END_REF] should be put into question. To this end, we will detail a value iteration procedure for solving acyclic weighted timed games with arbitrary weights. It follows closely the techniques of [START_REF] Alur | Optimal reachability for weighted timed games[END_REF], but is more symbolic.1 However, we could not replicate their complexity analysis, and will therefore rely on a double-exponential time upper bound instead of an exponential one (see Chapter 10 for detailed explanations). This will induce an exponential gap between the results of non-negative weights and our corresponding results for arbitrary weights.

In the context of non-negative weights, the largest class that enjoys decidability results is defined by the strictly non-Zeno cost hypothesis [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF]: it states that every execution of the timed automaton that follows a cycle of the region abstraction has a weight far from 0 (in interval [1, +∞), for instance). Indeed, it has been shown in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF] that under this hypothesis controller can be restricted to reaching a target fixed number of steps, exponential in the size of the game. In combination with [START_REF] La | Optimalreachability and control for acyclic weighted timed automata[END_REF], this leads to a triply-exponential time decision procedure, lowered to 2-EXPTIME with [START_REF] Alur | Optimal reachability for weighted timed games[END_REF].

We introduce a generalisation of the strictly non-Zeno cost hypothesis in the presence of negative weights, that we call divergence. In the class of divergent weighted timed games, each execution that follows a cycle of the region abstraction must have weight far from 0, i.e. in (-∞, -1] ∪ [1, +∞). We show the decidability of this class, with a 3-EXPTIME complexity (and an EXPTIME-hardness lower bound). The decision procedure relies on showing that controller can be restricted to almost-optimal strategies that reach a target in a bounded number of steps, exponential in the size of the game, matching asymptotically the horizon that could be obtained in the non-negative case from [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF].

As in the untimed setting, we relax our requirement slightly and define a larger class, of almost-divergent weighted timed games. This time, executions that follow a cycle of the region abstraction must have weight in (-∞, -1] ∪ {0} ∪ [1, +∞), and those of weight 0 are subject to a stability by decomposition requirement. On this class, the decision procedure of divergent games cannot be extended, as the value problem becomes undecidable [START_REF] Bouyer | On the value problem in weighted timed games[END_REF]. This negative result already holds in the presence of non-negative weights only. For this case (where cycles have weight in {0} ∪ [1, +∞)), it has been proposed an approximation schema to compute arbitrarily close estimates of the optimal value [START_REF] Bouyer | On the value problem in weighted timed games[END_REF]. To this end, the authors consider regions with a refined granularity so as to control the precision of the approximation.

Our main result on almost-divergent weighted timed games can be stated as follows: Given an almost-divergent weighted timed game, an initial configuration c and a threshold ε, we can compute a value that we guarantee to be ε-close to the optimal value when the play starts from c.

In order to approximate almost-divergent weighted timed games, we first adapt the approximation schema of [START_REF] Bouyer | On the value problem in weighted timed games[END_REF] to our setting. At the very core of their schema is the notion of kernels that collect all cycles of weight exactly 0 in the game. Then, a semi-unfolding of the game (in which kernels are not unfolded) of bounded depth is shown to be equivalent to the original game. Adapting this schema to negative weights requires to address new issues:

• The definition and the approximation of these kernels is much more intricate in our setting. Indeed, with only non-negative weights, a cycle of weight 0 only encounters locations and edges with weight 0. It is no longer the case with arbitrary weights, both for discrete weights on edges (that could alternate between weight +1 and -1, e.g.) and continuous rates on locations: for this continuous part, this requires to keep track of the real-time dynamics of the game.

• Some configurations may have value -∞. While it is undecidable in general whether a configuration has value -∞, we prove that it is decidable for almost-divergent weighted timed games.

• The identification of an adequate bound to define an equivalent semi-unfolding of bounded depth is more difficult in our setting, as having guarantees on weight accumulation is harder (we can lose accumulated weight). We deal with this by evaluating how large the value of a configuration can be, provided it is not infinite.

We also develop a more symbolic approximation schema, in the sense that it avoids the a priori refinement of regions. Instead, all computations are performed in a symbolic way using a single call to the value iteration algorithm. This allows to mutualise as much as possible the different computations: comparing these schemas with the evaluation of MDPs or quantitative games like mean-payoff or discounted-payoff, it is the same improvement as when using value iteration techniques instead of techniques based on the unfolding of the model into a finite tree which can contain many times the same location.

This result can also be interpreted as a bound on the convergence speed of the fixpoint computation performed by value iteration. Moreover, we prove that deciding if a weighted timed game is divergent / almost-divergent is a PSPACE-complete problem.

Table 2 summarises our results on weighted timed games. Other types of payoffs than the accumulated weight we study (i.e. total payoff) have been considered for weighted timed games. For instance, energy and mean-payoff timed games have been introduced in [START_REF] Brenguier | Energy and mean-payoff timed games[END_REF]. They are also undecidable in general. This part is structured as follows: We start by presenting our results on finite optimal reachability games in Chapter 7. We introduce weighted timed games in Chapter 8, and define the divergent and almost-divergent classes in Chapter 9. Moreover, in Chapter 9 we study structural properties of these classes, and state our main results. Our decidability results are then proven in Chapter 10, and finally approximation techniques are presented in Chapter 11.

Finite weighted games

The untimed setting

We consider two-player turn-based games played on weighted transition systems and denote the two players by Min and Max instead of Ctrl and Env.

Definition 7.1. A weighted game 1 is a tuple G = S Min , S Max , S t , Σ, T, wt, wt t where S Min , S Max , T is a two-player turn-based game labelled over Σ, of states S = S Min S Max and transitions T ⊆ S × Σ × S, wt : T → Z is the weight function associating an integer weight with each transition 2 , S t ⊆ S Min is a subset of target states for player Min, and wt t : S t → Z ∞ is a function mapping each target state to a final weight of

Z ∞ = Z ∪ {-∞, +∞}.
The addition of final weights is not standard, but we will use it in the process of solving those games: In any case, it is possible to simply map each target state to the weight 0, allowing us to recover the standard definition. These games need not be finite in general, but in Chapter 7, we limit our study to the resolution of finite weighted games (where all previous sets are finite). We suppose that: (i) the game is deadlock-free except on target states, 3 i.e. for each state s ∈ S\S t , there is a letter a ∈ Σ and a state s ∈ S, such that (s, a, s ) ∈ T , and there are no transitions starting from states in S t ; (ii) the game is deterministic, i.e. for each pair (s, a) ∈ S × Σ, there is at most one state s ∈ S such that (s, a, s ) ∈ T .

Notions of maximal (resp. non-maximal) plays, strategies and their outcome are derived from the two-player turn-based game S Min , S Max , T as in Chapter 1.3: Recall that the finite play ρ is said to be a cycle if it ends in its first state-i.e. first(ρ) = last(ρ)-and if |ρ| > 0. Recall also that the strategy σ is said positional if for all nonmaximal plays ρ, ρ ending in the same state, we have that σ(ρ) = σ(ρ ).

• A
The objective of Min is to reach a target state, while minimising the accumulated weight up to the target. Hence, we associate to every finite play ρ = s 0

a 1 -→ s 1 . . . a k -→ s k its cumulated weight wt Σ (ρ) = k-1 i=0 wt(s i , a i+1 , s i+1 ) .
Then, the weight of a maximal play ρ, also denoted by wt(ρ), is defined by +∞ if ρ is infinite and thus does not reach S t , and wt Σ (ρ) + wt t (s t ) if it is finite and ends in s t ∈ S t . Then, we let Val(s, σ Min ) and Val(s, σ Max ) be the respective values of the strategies:

Val(s, σ Min ) = sup σ Max wt(play(s, σ Min , σ Max )) Val(s, σ Max ) = inf σ Min wt(play(s, σ Min , σ Max )) .
Finally, for all states s, we let Val(s) = sup σ Max Val(s, σ Max ) and Val(s) = inf σ Min Val(s, σ Min ) be the lower and upper values of s, respectively. We may easily show that Val(s) Val(s) for all s. We say that strategies σ Min of Min and σ Max of Max are optimal if, for all states s, Val(s, σ Max ) = Val(s) and Val(s, σ Min ) = Val(s), respectively. We say that a game G is determined if for all states s, its lower and upper values are equal. In that case, we write Val(s) = Val(s) = Val(s), and refer to it as the value of s in G. Finite weighted games are known to be determined [START_REF] Brihaye | Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games[END_REF]. If the game is not clear from the context, we may add an index G to previous notations, such that wt G (ρ) is the weight of a maximal play ρ in G (taking into account both cumulated and final weights), and Val G (s) is the value of s in G.

We denote by w max the maximal weight in absolute value of transitions in G, such that w max = max t∈T |wt(t)|. Similarly, we let w t max denote the maximal finite final weight of target states in G:

w t max = max{|wt t (s t )| | s t ∈ S t ∧ wt t (s t ) ∈ Z} .
An algorithm A of input G whose time-complexity is polynomial in |S|, w max and w t max is called pseudo-polynomial. Indeed, its complexity relative to the size of the input depends on the encoding of weights: A is a polynomial-time algorithm if weights and final weights are encoded in unary, but is exponential if they are encoded in binary (as w max and w t max could be exponential in the size of G). In contrast, A is said polynomial if it can be run in polynomial time when weights are encoded in binary.

Problems

We want to compute the value of a finite weighted game, as well as optimal strategies for both players, if they exist. The corresponding decision problem, called the value problem, asks whether Val G (s) α, given a finite weighted game G, one of its states s, and a threshold α ∈ Z. Other thresholds can also be considered, e.g. Val G (s) α with ∈ {<, >, , , =, =}. 4 We also define the value problem with threshold +∞ (resp. -∞), that asks, given a finite weighted game G and one of its states s, whether Val G (s) = +∞ (resp. -∞). Every upper bound that we will mention (about the timecomplexity required to solve the value problem) relies on computing the value of every state, and therefore on solving all of these problems equivalently. The lower bounds results we will mention refer to the α threshold.

Solving weighted games

Let G be a finite weighted game. We say that G is acyclic if it does not contain cycles, and use standard notions for directed acyclic graphs: there exists a topological order on states where s is smaller than s if and only if there exists a path from s to s . We call roots the smallest states, and leaves the greatest. For every state s, the sub-game of root s refers to the game whose states are all states greater than or equal to s, and whose transitions and weights match those of G. Every path in an acyclic game is finite of length bounded by |S| -1, and we let the depth of s ∈ S (resp. the depth of G) be the greatest length of paths from a root to s (resp. from a root to a leaf).

If G is acyclic then, by the no-deadlocks assumption, the target states are exactly the leaves of G. The value of a state s in G depends solely on weights and transitions in the sub-game of root s. Indeed, if the value of every state in this sub-game, excluding s, is already known, the value of s can be computed, as The value of every state in G can thus be computed in a bottom-up fashion (i.e. in reverse topological order), as the value of leaves equals the final weight wt t . This technique can be extended to weighted games containing cycles in the form of a fixpoint computation, that we will call the value iteration algorithm.

Value iteration

If V represents a value function-i.e. a mapping from states of S to a value in Z ∪ {+∞, -∞}-we denote by V s the image V (s), for better readability. One step of the game is summarised in the following operator F mapping each value function V to a value function V = F(V ) defined by V s = wt t (s) if s ∈ S t , and otherwise

V s = min s a - →s wt(s, a, s ) + V s if s ∈ S Min max s a - →s wt(s, a, s ) + V s if s ∈ S Max (7.1)
where s a -→ s ranges over the transitions in G that start from s. Then, starting from V 0 mapping every state to +∞, except for the targets mapped to their final weight according to wt t , we let

V i = F(V i-1 )
for all i > 0. The value function V i represents the value Val i , which is intuitively what Min can guarantee when forced to reach the target in at most i steps.

More formally, we define wt i (ρ) the weight of a maximal play ρ at horizon i, as wt(ρ) if ρ reaches a target state in at most i steps, and +∞ otherwise. Using this alternative definition of the weight of a play, we can obtain a new game value

Val i (s) = inf σ Min sup σ Max wt i (play(s, σ Min , σ Max )) .
Notice that F is a monotonic operator, i.e. if V , V are two value functions such that V s V s for all states s ∈ S, then ∀s ∈ S, F(V ) s F(V ) s . Moreover ∀s ∈ S, V 0 s F(V 0 ) s since V 0 maps every non-target state to +∞, and target state keep the same value. It follows that the sequence (V i ) i∈N is non-increasing on every entry, as

V i = F i (V 0 ) F i (F(V 0 )) = V i+1
. The value iteration algorithm consists in finding the greatest fixpoint of operator F, i.e. the limit of the sequence (V i ) i∈N . Indeed, this greatest fixpoint is known to be the vector of values of the game (see, e.g., [BGHM16, Corollary 11]).

Then, if G is an acyclic game of depth d, the fixpoint is reached after d steps, and Val = V d . In this case, the infinite values in G (i.e. states s with Val(s) ∈ {-∞, +∞}) are derived from reaching targets with infinite final weights.

If the game contains cycles, infinite values can also come from arbitrarily long plays: a state s can have value +∞ if Max can force an infinite play, never reaching any target, and it can have value -∞ if Min can enforce an arbitrarily low weight, e.g. by staying in a cycle of negative cumulated weight. These +∞ states correspond to a safety objective for player Max, and can be computed in polynomial time: it is shown in [BGHM16] that for all s ∈ S, Val(s) = +∞ if and only if V |S| s = +∞. In contrast, deciding if a state has value -∞ has no known polynomial solution (it is as hard as solving mean-payoff games). In [START_REF] Brihaye | Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games[END_REF], it is shown that in the presence of negative weights the sequence (V i ) i∈N stabilises after a number of iterations pseudo-polynomial on states with value in R ∪ {+∞}, and that states with value -∞ can be detected in this computation (they are those where the computed value goes under a given threshold).

Optimal strategies

Let us fix an initial state s. By definition of lower and upper values, there exists for each player P ∈ {Min, Max} a sequence of strategies (σ i P ) i∈N such that lim i→∞ Val(s, σ i P ) = Val(s) and such that the sequence (Val(s, σ i Min )) i∈N is non-increasing over Z ∞ , while (Val(s, σ i Max )) i∈N is non-decreasing. If the sequence (Val(s, σ i P )) i∈N stabilizes for all i k, then σ k P is an optimal strategy of player P for s, i.e. Val(s, σ k P ) = Val(s). Therefore, if Val(s) > -∞ then Min must have an optimal strategy for s (an infinite decreasing sequence over Z stabilizes), and if Val(s) < +∞ then Max has an optimal strategy for s. Moreover, if an optimal strategy for P exists for all states s, then they can be combined into an (overall) optimal strategy for P.

In fact, there always exists a positional strategy σ Max for Max that is optimal, even if some states have value +∞. The strategy σ Max can be obtained in the value iteration algorithm, by memorizing for every state s ∈ S Max the transition that maximizes max s a -→s wt(s, a, s ) + V s in the last application of F. However, this does not hold for Min, as there might be no sequence of positional strategies for player Min whose value at s converges towards Val(s). In [START_REF] Brihaye | Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games[END_REF], it is shown that value iteration can also compute an optimal strategy for Min (or a sequence of strategies in the -∞ case), by switching between two positional strategies σ Min and σ † Min : σ Min accumulates negative weight by following negative cycles, and σ † Min ensures reaching a target. The optimal strategy of Min follows the decisions of σ Min , until switching to the decisions of σ † Min when the length of the play is greater than a finite bound k. These strategies thus require finite memory in the form of a counter.

An interesting case happens if G has no cycles of negative cumulated weight, e.g. if weights are non-negative.

Lemma 7.1. If G has no cycles of negative cumulated weight, then both players have optimal strategies that are positional. Moreover, Val G = Val |S| G and the optimal strategies can be computed in polynomial time.

Proof. Any strategy of Min is optimal on states of value +∞, so we will ignore those. As there are no negative cycles, value -∞ can only be obtained through reaching a target with final weight -∞. As a consequence, Min has an optimal strategy σ Min that switches between σ Min and σ † Min when the length of the play is greater than some k, as detailed in [START_REF] Brihaye | Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games[END_REF]. The strategy σ Min is only compatible with cycles of negative cumulated weight, and k |S| + 1, therefore σ † Min is never used. Thus, Min has an optimal strategy σ Min that is positional. Then, consider Val . Finally, since value iteration converges in |S| steps, the computation of optimal strategies described in [START_REF] Brihaye | Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games[END_REF] runs in polynomial time.

Safely removing states of infinite value

In this chapter, we study classes of weighted games with arbitrary weights where values can be computed in polynomial time. As a first step, we explain how to compute and remove states with infinite value in polynomial time. The only states with infinite value that will remain are some states that derive a value of -∞ from arbitrary accumulation of negative weight.

Let us start by formalising a way to safely remove states whose value is known to be infinite. Let S -∞ be a subset of S, such that Val(s) = -∞ for all s ∈ S -∞ . If a state of G is in the attractor of Min towards S -∞ , then clearly Min has a strategy giving it value -∞, and we could therefore add it to S -∞ . We will thus assume that S -∞ is closed by attractor for Min, i.e. the attractor of Min towards S -∞ equals S -∞ . We can define the same notion for a set S +∞ of states with value +∞, that can be assumed closed by attractor of Max.

Lemma 7.2. Let S -∞ be a set of states of value -∞ closed by attractor of Min, and let S +∞ be a set of states of value +∞ closed by attractor of Max.

1. Removing the states S -∞ from G will not change any other value.

2. Symmetrically, the states in S +∞ can be safely removed from G.

Proof of Lemma 7.2.1. Let S = S Min S Max denote S\S -∞ , and let G denote the restriction of G to S , i.e. the game of states S , of transitions all s → s such that s, s ∈ S , with state partition, labels and weights naturally inherited from G. Let us show that for all s ∈ S ,

Val G (s) = Val G (s).
If σ Min is a strategy of Min in G, and σ Min is a strategy of Min in G , such that for all plays ρ in FPlays Min G σ Min (ρ) = σ Min (ρ), we say that σ Min coincides with σ Min . We define the same notion for strategies of Max. All strategies of Min and Max in G can be extended arbitrarily to become strategies in G that coincide, by making the same choices on plays that stay in G , and making arbitrary choices otherwise. It follows that if σ Min and σ Min are strategies of Min that coincide, then for any strategy σ Max of Max in G , there exists a corresponding strategy σ Max in G, such that the path play G (s, σ Min , σ Max ) is equal to play G (s, σ Min , σ Max ), and therefore

Val G (s, σ Min ) Val G (s, σ Min ) ,
as the supremum over strategies of Max in G is at least equal to the one in G . Similarly, if σ Max and σ Max are strategies of Max that coincide, then

Val G (s, σ Max ) Val G (s, σ Max ) .
By closure by attractor of Min, any transition starting in a state of S Min must end in a state of S (otherwise the first state would belong to the attractor of Min towards S -∞ ). Therefore, every positional strategy of Min in G has a corresponding strategy in G that makes the same choices. This extends naturally to the (optimal) strategies of Min switching between two positional strategies σ Min and σ † Min . Then, if we consider such an optimal strategy σ Min of Min in G, and its corresponding strategy σ Min in G , it holds that Val From every state s of S Max , a positional strategy that chooses a transition jumping into S -∞ must have value -∞. Any other choice would thus be equal or better, and by closure by attractor of Min, there must exist a transition starting in s that ends in S . Therefore, there exists an optimal positional strategy σ Max of Max in G with a corresponding strategy

σ Max in G . Then, it holds that Val G (s) Val G (s, σ Max ) Val G (s, σ Max ) = Val G (s).
In a weighted game, SCCs may be neither positive nor negative: they could contain both positive and negative cycles, or cycles of weight 0. In contrast, divergent games are exactly the weighted games where that does not happen. Proposition 7.2. A weighted game G is divergent if and only if each SCC of G is either positive or negative.

Proof. Let us first suppose that G is divergent. By contradiction, consider a negative cycle ρ (of cumulated weight -p < 0) and a positive cycle ρ (of cumulated weight p > 0) in the same SCC. Let s and s be respectively the first states of ρ and ρ . By strong connectivity, there exists a finite play η from s to s and a finite play η from s to s. Let us consider the cycle ρ obtained as the concatenation of η and η . If ρ has cumulated weight q > 0, the cycle obtained by concatenating q times ρ and p times ρ has cumulated weight 0, which contradicts the divergence of G. The same reasoning on ρ and ρ proves that ρ cannot be negative. Thus, ρ is a cycle of cumulated weight 0, which again contradicts the hypothesis.

Reciprocally, consider a cycle of G. It belongs entirely to a single SCC, and must either be positive or negative. Thus, G is divergent.

Computing values in polynomial time

Consider a divergent weighted game G. We assume, as explained in Section 7.2.3 that all final weights are finite and that all values are in Z ∪ {-∞}.

We will rely on the value iteration algorithm to compute the value of every state. Value iteration algorithms usually benefit from decomposing a game into SCCs (in polynomial time), considering them in a bottom-up fashion: starting with target states whose value is wt t , SCCs are then considered in inverse topological order since the values of states in an SCC only depend on values of states of greater SCCs (in topological order), that have been previously computed.

Formally, each SCC S is solved individually: we remove from G every state that does not belong to S, except the outgoing neighbours-i.e. the states s such that s a -→ s with s ∈ S and s ∈ S. Such states s are made targets, and their final weight is their value (that has been previously computed since they belong to a greater SCC).

Example 7.1. Consider the weighted game of Figure 7.1, where Min states are drawn with circles, and Max states with squares. Vertex s t is the only target. Near each state is placed its value, near each transition is placed its weight when it differs from 0. For a given vector V , we have for instance

F(V ) s 8 = min(0 + V st , -1 + V s 9 ) , and 
F(V ) s 2 = max(-2 + V s 1 , -1 + V s 3 , -10 + V s 5 ) .
By a computation of the attractor of {s t } for Min, we obtain directly that s 4 and s 7 have value +∞. The inverse topological order on SCCs prescribes then to compute first the values for the SCC {s 8 , s 9 }, with target state s t associated with final weight 0. Then, For a divergent game G, Proposition 7.2 allows us to know in polynomial time if a given SCC is positive or negative, i.e. if all cycles it contains are positive or negative, respectively: it suffices to consider an arbitrary cycle of it, and compute its cumulated weight. A trivial SCC (i.e. with a single state and no transitions) will be arbitrarily considered positive. We now explain how to compute in polynomial time the value of all states in a positive or negative SCC.

s 1 s 4 s 2 s 3 s 5 s 6 s 7 s 8 s 9 s t -∞ -9 -9 +∞ 1 1 +∞ 0 2 0 -1 1 -2 -1 -10 -1 1 1 -1 -1 2 Figure 7.
First, in case of a strongly connected component with positive cycles, we show that:

Proposition 7.3. The value iteration algorithm applied on a positive SCC with q states stabilises after at most q steps. This is a corollary of Lemma 7.1. We also provide an independent proof, that will be generalisable to the timed setting.

Proof (inspired by techniques used in [BCFL04]

). There are no negative cycles in the SCC, thus there are no states with value -∞ in the SCC, and all values are finite. Let K be an upper bound on the values |V q s | obtained after q steps of the algorithm.5 Fix an integer p > (2K + w max (q -1))q. We will show that the values obtained after q + p steps are identical to those obtained after q steps only. Therefore, since the algorithm computes non-increasing sequences of values, we have indeed stabilised after q steps only.

Assume the existence of a state s such that V q+p s < V q s . By induction on p, we show the existence of a state s and a finite play ρ from s to s with length p and cumulated weight V q+p s -V q s : the play is composed of the transitions that optimise successively the min/max operator in F.

Claim. For all i < j ∈ N, if V j = V i then for all s ∈ S there exist s and a play ρ from s to s with |ρ| = j -i and wt Σ (ρ) = V j s -V i s . Proof of Claim. Let us fix i, and prove it by induction on j > i.

Initialisation: If j = i + 1, we applied one step of the value iteration algorithm between V i and V j , so for all s there exist s and a transition s a -→ s such that wt(s, a, s ) = V i+1 s -V i s . Iteration: We assume the property holds for j -1 > i, and V j = V i . We applied one step of the value iteration algorithm between V j-1 and V j , so for all s there exist s and a transition s a -→ s such that wt(s, a, s ) = V j s -V j-1 s . We apply the property on i and j -1 (V j-1 = V i because V j = V i and as soon as V stabilises, the fixpoint is reached and the iteration stops), and obtain that for all s ∈ S there exist s and a play ρ from s to s with |ρ| = j -1 -i and wt

Σ (ρ) = V j-1 s -V i s . Then we define ρ = s a - → s ρ - → s and it holds that |ρ | = j -i and wt Σ (ρ ) = V j s -V i s .
This finite play being of length greater than (2K + w max (q -1))q, there is at least one state appearing more than 2K + w max (q -1) times. Thus, it can be decomposed into at least 2K + w max (q -1) cycles and a finite play ρ visiting each state at most once. The cumulate weight of ρ is then at least -(q -1)w max , and as all cycles in the SCC are positive, the cumulated weight of ρ is at least 2K + w max (q -1)

-(q -1)w max = 2K. Then, V q+p s -V q s 2K, so V q+p s 2K + V q s K. But K V q s , so V q+p s V q s ,
and that is a contradiction.

Example 7.2. For the SCC {s 8 , s 9 } of the game in Figure 7.1, starting from V mapping s 8 and s 9 to +∞, and s t to 0, after one iteration, V s 8 changes for value 0, and after the second iteration, V s 9 stabilises to value 2.

Consider then the case of a negative SCC. Contrary to the previous case, we must deal with states of value -∞. However, in a negative SCC, those states are easy to find6 . These are all states where Max cannot unilaterally guarantee to reach a target state: Proposition 7.4. In a negative SCC with no states of value +∞, states of value -∞ are all the ones not in the attractor of Max to the targets.

Proof. Consider a state s in the attractor of Max to the targets. Then, if Max applies a winning positional strategy for the reachability objective to the target states, all strategies of Min will generate a play from s reaching a target after at most |S| steps. This implies that s has a finite value in the game. Reciprocally, if s is not in the attractor, by determinacy of games with reachability objectives, Min has a (positional) strategy σ Min to ensure that no strategy of Max permits to reach a target state from s. Applying σ Min long enough to generate many negative cycles, before switching to a strategy allowing Min to reach the target (such a strategy exists since no states have value +∞ in the game), allows Min to obtain from s a negative weight as small as possible. Therefore s has value -∞.

Thus, we can compute (and remove) states of value -∞ in polynomial time for a negative SCC. Then, finite values of other states can be computed in polynomial time with the following procedure. From a negative SCC G that has no states of value +∞ or -∞, consider the dual (positive) SCC G obtained by: (i) switching states of Min and Max; (ii) taking the opposite of every weight in transitions; (iii) taking the opposite of every final weight. Sets of strategies of both players are exchanged in those two games, so that the upper value in G is equal to the opposite of the lower value in G, and vice versa. Since weighted games are determined, the value of G is the opposite of the value of G. This strongly relies on the fact that in G, we can give the reachability objective to Max instead of Min (by setting the weight of an infinite play to -∞) without changing the values, because both players have attractor strategies towards target states. Then, the value of G can be deduced from the value of G, for which Proposition 7.3 applies. We may also interpret this result as follows:

Proposition 7.5. The value iteration algorithm, initialised with V 0 v = -∞ (for all s), applied on a negative SCC with q states, and no states of value +∞ or -∞, stabilises after at most q steps. Proof. It is immediate that the vectors computed with this modified value iteration (that computes the smallest fixpoint of F) are exactly the opposite vectors of the ones computed in the dual positive SCC. The previous explanation is then a justification of the result.

Example 7.3. Consider the SCC {s 1 , s 2 , s 3 , s 4 } of the game in Figure 7.1, where the value of state s 5 has been previously computed. We already know that s 4 has value +∞ so we do not consider it further. The attractor of {s 5 } for Max is {s 2 , s 3 }, so that the value of s 1 is -∞. Then, starting from V 0 mapping s 2 and s 3 to -∞, the value iteration algorithm computes this sequence of vectors: V 1 = (s 2 → -9, s 3 → -∞) (Max tries to maximise the payoff, so he prefers jumping to the target to obtain -10 + 1 than going to s 3 where he gets -1 -∞, while Min chooses s 2 to still guarantee 0 -∞), V 2 = (s 2 → -9, s 3 → -9) (now, Min has a choice between the target giving 0 + 1 or s 3 giving 0 -9). Finally, V 3 = (s 2 → -9, s 3 → -9) and the fixpoint has been reached.

In a divergent weighted game where all values are finite, optimal strategies exist. Optimal strategies for both players can be obtained by combining optimal strategies in each SCC, the latter being obtained as explained in Section 7.2.

Polynomial lower bound

Let us show that the value problem is PTIME-hard. This comes from a reduction (in logarithmic space) of the problem of solving finite games with reachability objectives [START_REF] Immerman | Number of quantifiers is better than number of tape cells[END_REF]. To a reachability game, we simply set the weight of every transition to 1 and the final weight of every target to 0, making it a divergent weighted game. Then, Min wins the reachability game if and only if the value in the weighted game is lower than |S|.

Deciding divergence

Let us study the membership problem for divergent weighted games, i.e. the decision problem that asks if a given weighted game is divergent.

We will rely on the characterization of divergent games in term of SCCs given in Proposition 7.2. First, we note that simple cycles are enough to ensure that an SCC is positive (resp. negative), providing us with an efficient way to check this property: Lemma 7.3. An SCC S is positive (resp. negative) if and only if every simple cycle in S is positive (resp. negative). Moreover, deciding if an SCC is positive (resp. negative) is in NL when weights are encoded in unary, and is in PTIME when they are encoded in binary.

Proof. The direct implication holds by definition. Reciprocally, let us assume that every simple cycle in S is positive (resp. negative), and prove that every cycle ρ in S is positive (resp. negative). The cycle ρ can be decomposed into simple cycles, all belonging to S. Therefore they are all positive (resp. negative). As the cumulated weight of ρ is the sum of the cumulated weights of these simple cycles, ρ must be positive (resp. negative).

As a corollary, an SCC S is positive (resp. negative) if and only if every cycle in S, of length at most |S|, is positive (resp. negative).

To decide if a strongly connected G is positive (resp. negative), we outline two procedures: one is deterministic and will provide the polynomial upper bound on time-complexity, the other will guess a logarithmic number of bits and provide NL membership.

The deterministic algorithm proceeds as follows: With Floyd-Warshall's algorithm, one can compute the shortest paths (resp. greatest paths) adjacency matrix M in cubic time, such that M (s, s ) contains the minimal (resp. maximal) value in {wt(ρ) | ρ simple path from s to s }. If there exists a state s such that M (s, s) < 0 (resp. M (s, s) > 0), then S is not positive (resp. not negative) as there is a negative (resp. positive) cycle. Conversely, if M (s, s) = 0, we know that all simple paths from s to s have non-negative (resp. non-positive) weight, but this includes the empty path, and we defined cycles as paths of non-zero length. In this case, S is positive (resp. negative) if and only if for every pair (s, s ) it holds that M (s, s ) + M (s , s) > 0 (resp. M (s, s ) + M (s , s) < 0).

Let us now assume that weights are encoded in unary, and present a non-deterministic procedure. Then, note that a (binary) register containing integer values in [-B, B], with B polynomial in w max and |S|, requires a number of bits at most logarithmic in the size of G. An SCC is not positive (resp. not negative), if and only if it contains a cycle of non-positive (resp. non-negative) cumulated weight, of length bounded by |S|. We can guess such a cycle ρ on-the-fly, keeping in memory its cumulated weight (smaller than B = w max × |S| in absolute value), its initial state, and its current length, all in logarithmic space. If the length of the cycle exceeds |S|, the guess is invalid. Similarly, we can verify that the last state equals the first, and that the computed cumulated weight is indeed non-positive (resp. non-negative). Therefore, deciding if S is positive (resp. negative) is in coNL = NL [START_REF] Immerman | Nondeterministic space is closed under complementation[END_REF][START_REF] Szelepcsényi | The method of forced enumeration for nondeterministic automata[END_REF]. Note that when weights are encoded in binary this procedure only gives coNP membership.

Let us now explain why the membership problem is an NL-complete problem when weights are encoded in unary. First, to prove the membership in NL, notice that a weighted game is not divergent if and only if there is a non-negative cycle and a nonpositive cycle belonging to the same SCC, both of length at most |S|. This can be tested in NL, using a non-deterministic procedure similar to the one from Lemma 7.3. We first guess a starting state for both cycles. Verifying that those are in the same SCC can be done in NL by using standard reachability analysis. Then, we once again guess the two cycles on-the-fly, keeping in memory their accumulated weights in logarithmic space. Therefore, testing divergence is in coNL = NL [START_REF] Immerman | Nondeterministic space is closed under complementation[END_REF][START_REF] Szelepcsényi | The method of forced enumeration for nondeterministic automata[END_REF].

The NL-hardness (indeed coNL-hardness, which is equivalent [START_REF] Immerman | Nondeterministic space is closed under complementation[END_REF][START_REF] Szelepcsényi | The method of forced enumeration for nondeterministic automata[END_REF]) is shown by a reduction of the reachability problem in a finite automaton. More precisely, we consider a finite automaton with a starting state and a different target state without outgoing transitions. We construct from it a weighted game by distributing all states to Min, and equipping all transitions with weight 1. We also add a loop with weight -1 on the target state and a transition from the target state to the initial state with weight 0. Then, the game is not divergent if and only if the target can be reached from the initial state in the automaton.

When weights are encoded in binary, the previous decision procedure gives NP membership. However, we can achieve a PTIME upperbound by computing the strongly connected components and then using Lemma 7.3 to check that each SCC is either positive or negative.

This concludes the proof of Theorem 7.1.

Almost-divergent weighted games

With divergent weighted games, we described a class where the value problem is polynomial instead of pseudo-polynomial. This gain in complexity came at a cost: the absence of cycles of weight 0. In this section, we argue that some of those cycles can be allowed: we will extend the divergent class to games that contain cycles of weight 0 under a stability by decomposition requirement, while keeping a polynomial complexity. If ρ is a cycle s 0 a 1 -→ s 1 . . . s n-1 an -→ s 0 , it is either simple (i.e. for all i, j such that 0 i < j < n, s i = s j ), or we can extract smaller cycles from it. Indeed, if ρ is not simple, there exists a pair (i, j) such that 0 i < j < n and s i = s j . Then, for such a pair, we can write ρ = ρ 1 ρ 2 ρ 3 such that |ρ 1 | = i, |ρ 3 | = n -j. It follows that ρ 2 is a cycle around s i and ρ 1 ρ 3 is a cycle around s 0 . This process is called a decomposition of ρ into smaller cycles ρ = ρ 1 ρ 3 and ρ = ρ 2 , with wt Σ (ρ) = wt Σ (ρ ) + wt Σ (ρ ). As there could exist several pairs (i, j) such that s i = s j , there could exist multiple decompositions of ρ into smaller cycles. A cycle ρ in G is called a 0-cycle if wt Σ (ρ) = 0. Let us now define the class of almost-divergent weighted games: Definition 7.4. A weighted game G is almost-divergent if every 0-cycle ρ of G satisfies the following property: for every decomposition of ρ into smaller cycles ρ and ρ , ρ and ρ are 0-cycles.

Intuitively, a game is almost-divergent if its cycles of weight different from 0 cannot be combined to create a 0-cycle. Almost-divergence is a weaker property than divergence, and thus every divergent weighted game is almost-divergent. We start by analysing the strongly connected components of G, then derive the following results, extending Theorem 7.1: Theorem 7.2. The value problem over finite almost-divergent weighted games is PTIMEcomplete. Moreover, deciding if a given finite weighted game is almost-divergent is an NL-complete problem when weights are encoded in unary, and is in PTIME when they are encoded in binary.

SCC analysis

A play ρ in G is said to be non-negative (resp. non-positive) if wt Σ (ρ) 0 (resp. wt Σ (ρ) 0). An SCC S is said to be non-negative (resp. non-positive) if every cycle in S is nonnegative (resp. non-positive). We prove the following characterisation of almost-divergent games in terms of SCCs, extending Proposition 7.2. Proposition 7.6. A weighted game G is almost-divergent if and only if each SCC of G is either non-negative, or non-positive.

Proof. Let us first suppose that G is almost-divergent. By contradiction, consider a negative simple cycle ρ (of weight -p < 0) and a positive simple cycle ρ (of weight p > 0) in the same SCC. Let s and s be respectively the first states of ρ and ρ . By strong connectivity, there exists a finite play η from s to s and a finite play η from s to s. Let us consider the cycle ρ = ηη . If ρ has weight q > 0, the cycle obtained by concatenating q times ρ and p times ρ has weight 0. However, there exists a decomposition of (ρ) q (ρ ) p into smaller cycles that obtains ρ as one of the smaller cycles, which contradicts the almost-divergence of G as wt Σ (ρ) < 0. The same reasoning on ρ and ρ proves that ρ cannot be negative. Thus, ρ is a 0-cycle. Then, (ρ) p η(ρ ) p η is a 0-cycle, which again contradicts the hypothesis as one of its decompositions produces ρ.

Reciprocally, consider a cycle of G of cumulated weight 0, and one of its decomposition into smaller cycles. Both smaller cycles belong to the same SCC, therefore they are both non-negative or both non-positive. As the accumulated weight of the cycle is the sum of the weights of these smaller cycles they must both be 0-cycles. Therefore, G is almost-divergent. 

Kernel of an almost-divergent weighted game

We define the kernel K as a subgraph of G containing all 0-cycles, such that every 0-cycle is in K and every cycle in K is a 0-cycle. Such sub-graph may not exist in general, but we show that it is always the case in almost-divergent games. Let T K be the set of transitions of G belonging to a simple 0-cycle, and S K be the set of states covered by T K . We define the kernel K of G as the subgame of G defined by S K and T K . Transitions in T \T K with starting state in S K are called the output transitions of K. We define it using only simple 0-cycles in order to ensure its computability (in polynomial time). However, we now show that this is of no harm, since the kernel contains exactly all the 0-cycles.

Proposition 7.7. A cycle of G is entirely in K if and only if it is a 0-cycle.

Proof. As G is almost-divergent, the decomposition of every 0-cycle into simple cycles is a set of 0-cycles in K. Thus, every 0-cycle is in K.

t 1 t 2 t 3 t 4 t 5 ρ t 5 ρ t 4 ρ t 3 ρ t 2 ρ t 1
We now prove that every cycle in K is a 0-cycle. By construction, every transition t ∈ T K is part of a simple 0-cycle. Thus, to every transition t ∈ T K , we can associate a play ρ t such that tρ t is a simple 0-cycle. Then, observe that if

t 1 • • • t n is a finite play in K, then t 1 t 2 • • • t n ρ tn • • • ρ t 2 ρ t 1 is a 0-cycle of G. We showed that if ρ = t 1 • • • t n is a cycle of G in K, then there exists a cycle ρ = ρ tn • • • ρ t 2 ρ t 1 such that ρρ is a 0-cycle, therefore ρ is a 0-cycle by almost-divergence.
Using K we can compute the states with value -∞: Lemma 7.4. In an SCC of G, the set of states with value -∞ is computable in time linear in the number of states in G. These states can be removed without changing any other value.

Proof. If the SCC is non-negative, the cumulated weight cannot decrease along a cycle, and there can be no state of value -∞ (as final weights are finite).

If the SCC is non-positive, we let T t be the set of transitions of G whose end state belongs to S t . Notice that the kernel cannot contain target states since targets do not have outgoing edges. We will prove that a configuration has value -∞ if and only if it belongs to a state where player Min can ensure the LTL formula on transitions:

0 0 0 0 0 0 s 0 s 1 K s 2 s 3 s 2 s t K s 4 s t s 5 s 0 stop stop wt t (s t ) wt t (s t ) -∞ -∞ s 4 s t s 5 0 1 -3 -1 2 1 2 3 1 4 -3 1 -3 0 -1 Figure 7.3.: SCC decomposition of G, semi-unfolding of an SCC, kernel φ = (G ¬T t ) ∧ ¬FG T K .
The procedure to detect -∞ states will thus consist of three attractor computations, one for each LTL operator, and can be done in time linear in |S|.

Since ω-regular games are determined, this is equivalent to saying that a configuration has finite value if and only if it belongs to a state where Max can ensure ¬φ = (FT t )∨FGT K . If s is a state where Min can ensure φ, he can ensure a value of -∞ by avoiding S t for as long as he desires, while not getting stuck in K, and thus going through an unbounded number of negative cycles by Proposition 7.7. This proves that a state where Max cannot ensure ¬φ contains only valuations of value -∞. Conversely, if s is a state where Max can ensure ¬φ, then from s, Max must be able to enforce either reaching S t or staying in K forever. In both cases, Max can ensure a value above -∞.

Finally, the set of -∞ states is closed by attractor of Min, therefore by Lemma 7.2 they can be safely removed.

We will assume from now on that every state of G has value in Z.

Semi-unfolding

Let us prove that the value problem is PTIME-complete on almost-divergent weighted games. We derive PTIME-hardness from the sub-class of divergent games. In order to obtain an upper bound in PTIME, we will again compute the value of states in G in an SCC by SCC fashion, following the inverse topological order of the SCC decomposition. For non-negative SCCs, Lemma 7.1 can be used to compute values. However, this does not hold on non-positive SCCs, as they contain negative cycles. We will give a procedure that can handle both cases.

For an SCC of G and an initial state s 0 provided by the SCC decomposition, we show that the game on the SCC is equivalent to a game with a tree-shaped structure built as a semi-unfolding of G from s 0 , with certain nodes of the tree being kernels. These kernels are strongly connected parts of G included in K that contain all cycles of weight 0. The semi-unfolding is stopped either when reaching a target state, or when the depth reaches |S\S t |.

Given an almost-divergent game G, we will describe the construction of its semiunfolding T (G).

If s is in K, we let K s be the part of K accessible from s (note that K s is strongly connected as K is a union of cycles). We define the output transitions of K s as being the output transitions of K accessible from s. If s is not in K, we define the output transitions of s as the transitions of G that start in s.

We define a tree T whose nodes will either be labelled by states s ∈ S or by kernels K s , and whose edges will be labelled by output transitions in G. The root of the tree T is labelled with s 0 , or K s 0 (if s 0 belongs to the kernel), and the successors of a node of T are then recursively defined by its output transitions. When a state s is reached by an output transition, the child is labelled by K s if s ∈ K, otherwise it is labelled by s. Edges in T are labelled by the transitions used to create them. Along every branch, we stop the construction when either a final state is reached (i.e. a state not inside the current SCC) or the branch has length |S\S t |. As a corollary, every branch either ends in a target state or contains two nodes labelled by the same state (s or K s ). Leaves of T with a state belonging to S t are called target leaves, others are called stopped leaves. In the case where the stopped leaf of a branch is a node K s , we label the stopped leaf by s instead.

We now transform T into a weighted game T (G), by replacing every node labelled by a state s by a different copy s of s. Those states are said to inherit from s. Edges of T are replaced by the transitions labelling them, and have a similar notion of inheritance. Every non-leaf node labelled by a kernel K s is replaced by a copy of the weighted game K s , output transitions being plugged in the expected way. State partition between players and transition weights are inherited from the copied states and transitions of G. The only initial state of T (G) is the state denoted by s0 inherited from s 0 in the root of T (either s 0 or K s 0 ). The target states of T (G) are the states derived from leaves of T . If G is a non-negative (resp. non-positive) SCC, the final weight function wt t is inherited from G on target leaves and set to +∞ (resp. -∞) on stopped leaves.

We will now prove that G and T (G) are equivalent on the root state. Two plays ρ and ρ in G and T (G), resp. are said to mimic each other if |ρ| = |ρ| and for every 1 i |ρ| the i-th transition of ρ is inherited from the i-th transition of ρ. Then, the plays of G starting in the initial state that cannot be mimicked in T (G) are not useful for value computation, which is formalised by Proposition 7.8: Proposition 7.8. For every strongly connected, almost-divergent weighted game G, with an initial state s 0 , Val G (s 0 ) = Val T (G) (s 0 ).

Proof. Recall that we only left finite values in G (in the final weight functions, in particular). We first show that the value is also finite in T (G). Indeed, if Val T (G) (s 0 ) = +∞, since we assumed all final weights of G bounded, we are necessarily in the nonnegative case, and Max is able to ensure stopped leaves reachability. Then, for any positional strategy σ Min of Min in G, there exists a strategy σ Max of Max ensuring that the target is never reached in play(s 0 , σ Min , σ Max ). This extends to non-positional strategies of Min, as it implies that s 0 is not in the attractor of Min towards S t , and therefore Val G (s 0 ) = +∞. Thus, we obtain a contradiction. If Val T (G) (s 0 ) = -∞, we are necessarily in the non-positive case, and by construction this implies having Min ensuring stopped leaves reachability in T (G). Symmetrically from the +∞ case, we obtain that s 0 must not be in the attractor of Max towards S t , i.e. Min can ensure the LTL formula on transitions G ¬T t . Moreover, Min can also ensure the formula ¬FG T K , as otherwise Max would have a strategy preventing him from reaching a stopped leaf, by staying in a kernel forever. Then, Min can ensure the LTL formula on transitions (G ¬T t ) ∧ ¬FG T K at s 0 in G. As observed in the proof of Lemma 7.4, this implies Val G (s 0 ) = -∞, and is a contradiction.

Then, strategies and plays of T (G) starting from s0 can be mimicked in G, therefore if G is non-negative then Val G (s 0 ) Val T (G) (s 0 ): We can fix an optimal strategy σ Min for Min in T (G). It is a strategy of value less than +∞, so every play derived from σ Min in T (G) reaches a target leaf, and can be mimicked in G. Therefore, σ Min can be mimicked in G, where it is also winning, with the same weight. If G is non-positive, the same reasoning applies by considering an optimal strategy for Max in T (G) (by determinacy we can take the viewpoint of Max), and gives Val G (s 0 ) Val T (G) (s 0 ).

Let us now show that Val T (G) (s 0 ) Val G (s 0 ) when G is non-negative. There are no negative cycles, so Min has an optimal strategy σ Min that is positional by Lemma 7.1. Let us fix a strategy σ Max of Max in G, and let ρ be their outcome play G (s 0 , σ Min , σ Max ). Since σ Min is optimal and positional and stopped leaves have final weight +∞, ρ must be a simple path (without cycles) that reaches a target. Then, for every σ Max all such plays ρ can be mimicked in T (G), and

Val T (G) (s 0 ) Val T (G) (s 0 , σ Min ) = Val G (s 0 ). Once again, if G is non-positive,
the same reasoning applies by considering an optimal positional strategy for Max in G, and gives

Val T (G) (s 0 ) Val G (s 0 ).
In order to compute the value of a state s 0 of G, one could construct the semi-unfolding of root s 0 , and compute its value. Indeed, every cycle in T (G) belongs to K, so they must all be 0-cycles, therefore by Lemma 7.1 we can compute Val T (G) (s 0 ) in time polynomial in the size of T (G). However, this would be an exponential algorithm, as the number of nodes in T can be exponential in |S|. We argue that this exponential blow-up can be avoided: when two nodes of T are at the same depth and are labelled by the same state they can be merged, producing a graph T that is acyclic instead of tree-shaped, with at most quadratically many states. This does not change the value of the resulting weighted game T (G) at its root, because the two merged nodes had the same sub-tree, and therefore were states with the same value in T (G). This optimization on the construction of T (G) is performed on-the-fly, while the semi-unfolding is constructed, such that constructing T (G) (and solving it by Lemma 7.1) can be done in time polynomial in the size of G.

Remark. In contrast with divergent games, for non-positive SCCs we cannot use the dual game where weights and players are switched, because Max may not be able to enforce target reachability. Consider e.g. a self-loop of weight 0 controlled by Min. It does not affect value computation, but it provides Max with value +∞ in the dual game. If T (G) were to be a complete unfolding (that unfolds kernels as well), as opposed to a semi-unfolding, it could wrongly have value -∞ at its root, reflecting this issue.

Deciding almost-divergence

In order to study the membership problem for almost-divergent games-that asks if a given weighted game is almost-divergent-, we will adapt techniques developed for divergent games.

Once again, simple cycles are enough to ensure that an SCC is non-negative (resp. nonpositive):

Lemma 7.5. An SCC S is non-negative (resp. non-positive) if and only if every simple cycle in S is non-negative (resp. non-positive). Moreover, deciding if an SCC is nonnegative (resp. non-positive) is in NL when weights are encoded in unary, and is in PTIME when they are encoded in binary.

Proof. The direct implication holds by definition. Reciprocally, following the proof of Lemma 7.3, every cycle ρ can be decomposed into simple cycles, all belonging to S. Therefore they are all non-negative (resp. non-positive), and ρ must be non-negative (resp. non-positive).

As a corollary, an SCC S is non-negative (resp. non-positive) if and only if every cycle in S, of length at most |S|, is non-negative (resp. non-positive).

To decide if an SCC is non-negative (resp. non-positive), we rely on deterministic and non-deterministic procedures similar to the ones described in Lemma 7.3. The deterministic algorithm also uses Floyd-Warshall's algorithm to compute the shortest paths (resp. greatest paths) adjacency matrix M in cubic time, such that M (s, s ) contains the minimal (resp. maximal) value in {wt(ρ) | ρ simple path from s to s }. Then, S is non-negative (resp. non-positive) if and only if for every state s it holds that M (s, s) 0 (resp. M (s, s) 0). Let us now assume that weights are encoded in unary. An SCC is not non-negative (resp. not non-positive), if and only if it contains a cycle of positive (resp. negative) cumulated weight, of length bounded by |S|. We can guess such a cycle on-the-fly, and compute its cumulated weight in logarithmic space. Therefore, deciding if S is non-negative (resp. non-positive) is in coNL = NL [START_REF] Immerman | Nondeterministic space is closed under complementation[END_REF][START_REF] Szelepcsényi | The method of forced enumeration for nondeterministic automata[END_REF].

In order to prove the membership in NL with unary weights, notice that a weighted game is not almost-divergent if and only if there is a positive cycle and a negative cycle, both of length at most |S|, and belonging to the same SCC. This can be tested in NL using the procedure from Section 7.3.4. When weights are encoded in binary, we can achieve a PTIME upperbound with the same procedure as for divergent games, by applying Lemma 7.5 on every SCC.

The NL-hardness (indeed coNL-hardness, which is equivalent [START_REF] Immerman | Nondeterministic space is closed under complementation[END_REF][START_REF] Szelepcsényi | The method of forced enumeration for nondeterministic automata[END_REF]) is shown by a reduction of the reachability problem in a finite automaton. More precisely, we consider a finite automaton with a starting state and a different target state without outgoing transitions. We construct from it a weighted game by distributing all states to Min, and equipping all transitions with weight 0. We also add a loop with weight 1 on the initial state, one with weight -1 on the target state, and a transition from the target state to the initial state with weight 0. Then, the game is not almost-divergent if and only if the target can be reached from the initial state in the automaton.

We have finished the proof of Theorem 7.2.

Weighted timed games

We now turn our attention to a timed extension of the weighted games. We will first define weighted timed games, giving their semantics in terms of infinite weighted games.

The timed setting

Definition 8.1. A weighted timed game (WTG) is a tuple G = L Min , L Max , X , Σ, L t , E, wt where L = L Min L Max , X , Σ, E is a timed automaton whose locations are split between players Min and Max, wt : E L → Z is the weight function, associating an integer weight with each location and edge, L t ⊆ L Min is a set of target locations for player Min, and

wt t : L t × R X 0 → R ∞ is a function mapping each target configuration to a final weight of R ∞ = R ∪ {-∞, +∞}.
In this work, we will not use the actions in Σ that label edges, and will therefore not represent them in our formalism.1 Once again, final weights are non-standard and are usually set to 0 in related work.

The semantics of a weighted timed game G is defined in terms of the infinite weighted game G whose states are configurations ( , ν) of the underlying timed automaton. Configurations are split into players according to the location . A configuration ( , ν) is a target if ∈ L t , and its final weight is wt t ( , ν). The labels of G are given by R 0 × E and will encode the delay that a player wants to spend in the current location, before firing a certain edge of the timed automaton. For every delay d ∈ R 0 , edge e = ( , g, Y, ) ∈ E and valuation ν, there is a transition ( , ν)

d,e -→ ( , ν ) if ν + d |= g and ν = (ν + d)[Y := 0].
The weight of such a transition takes into account both discrete and continuous costs, and is given by d • wt( ) + wt(e).

As usual in related work [ABM04, BCFL04, BJM15], we assume that the WTGs have non-diagonal guards where all constants are integers, that all clocks are bounded by the greatest constant M to appear in guards, and we restrict G to configurations in L × R X 0,<M .2 Without loss of generality, we suppose the absence of deadlocks in G except on target locations, i.e. for each location ∈ L\L t and valuation ν ∈ R X 0,<M , there exist d ∈ R 0 and ( , g, Y, ) ∈ E such that ( , ν)

d,e
-→ ( , ν ), and no edges start from L t . We also assume that the final weight functions satisfy a property ensuring that they can be encoded in finite space: they must be piecewise affine with a finite number of -2 pieces and are continuous on each region. In particular, infinite final weights are constant over regions, i.e. if some configuration ( t , ν) has final weight +∞ or -∞, then for every valuation ν in the same region as ν, wt t ( t , ν) = wt t ( t , ν ). The standard final weight function ( , ν) → 0 satisfies this property. Moreover, the computations we will perform in the following maintain this property as an invariant.

1 2 2 3 wt t = 0 -1 4 -2 5 x 2 x := 0 0 1 x < 3 1 x < 3; 0 2 x < 3 3 x < 3 0 x < 3; 0 x < 3; 0 x < 3 x := 0; 3 1 < x < 3 x := 0; 1 2/3 x Val 0 1 2 3 0 1 2 3 2 → 4 → 3 2 → 3
Example 8.1. An example of WTG satisfying those assumptions is depicted on Figure 8.1. It is easy to observe that location 1 (resp. 5 ) has value +∞ (resp. -∞). As a consequence, the value in 4 is determined by the edge to 3 , and depicted in blue. In location 2 , the value associated with the edge to 3 is depicted in red, and the value in 2 is obtained as the minimum of these two curves. Observe the intersection in x = 2/3 requiring to refine the regions.

Plays, strategies, and values in the weighted timed game G will refer to plays, strategies, and values in G : Plays are executions in G, strategies map non-maximal plays to a choice of delay and edge to follow, and values are defined as the best weight each player can guarantee. It is known that (turn-based) weighted timed games are determined 3 , i.e. Val( , ν) = Val( , ν) for each location and valuation ν, therefore we use the notation Val to refer to both values. We also define wt i (ρ) the weight of a maximal play ρ at horizon i, as wt(ρ) if ρ reaches a target in at most i steps, and +∞ otherwise. Then, Val i (s) = inf σ Min sup σ Max wt i (play(s, σ Min , σ Max )) refers to the value at horizon i.

We say that a strategy σ Min of Min is ε-optimal if, for all ( , ν), and all strategies σ Max of Max, wt(play(( , ν), σ Min , σ Max )) Val( , ν) + ε .

It is said optimal if this holds for ε = 0. A symmetric definition holds for optimal strategies of Max.

We denote by w L max (resp. w E max ) the maximal weight in absolute values of locations (resp. of edges) in G.

w L max = max ∈L |wt( )| w E max = max e∈E |wt(e)|
Moreover, in order to match notations from the untimed setting we denote by w max a bound on the weight of transitions in G , that exists since clocks are bounded by M :

w max = M w L max + w E max
The integer w max is at most exponential in the size of G, and can thus be stored in polynomial space.

Region and corner-point abstractions

We will rely on the crucial notions of regions and their refinement with respect to a granularity 1/N . We will also rely on the region abstraction, seen either as a finite transition system or as a timed automaton, as introduced in Chapter 2.3.3. The region abstraction of the timed automaton underlying G can be seen as a finite two-player turn-based game, called the region game, by assigning to player Min (resp. Max) the region states ( , r) with ∈ L Min (resp. ∈ L Max ). Similarly, the region automaton 4 can be seen as a WTG, denoted R(G), that we will abusively call region game too. When 1/N -regions are considered, the region game is denoted R N (G).

By projecting away the region information of R N (G), we simply obtain:

Lemma 8.1. For all ∈ L, 1/N -regions r, and

ν ∈ r, Val G ( , ν) = Val R N (G) (( , r), ν).
On top of regions, we will need the corner-point abstraction techniques introduced in [START_REF] Bouyer | Optimal infinite scheduling for multi-priced timed automata[END_REF]. Recall that a valuation v is said to be a corner of a 1/N -region r, if it belongs to the topological closure r and has coordinates multiple of 1/N (v ∈ (1/N )N X ). We call corner state a triple ( , r, v) that contains information about a region state ( , r) of R N (G), and a corner v of the 1/N -region r. Every region has at most |X | + 1 corners. We now define the corner-point abstraction Γ N (G) of a WTG G as the WTG clock, but the proof does not use the assumption on the number of clocks. 4 Recall that we defined it as a timed automaton in Chapter 2.3.3.

obtained as a refinement of R N (G) where guards on edges are enforced to stay on one of the corners of the current 1/N -region: the locations of Γ N (G) are all corner states of R N (G), associated to each player accordingly, and edges are all ( , r, v) g ,Y --→ ( , r , v ) such that there exists t = ( , r) g,Y --→ ( , r ) an edge of R N (G) such that the model of guard g is a corner v satisfying the guard g (recall that g is the closed version of g), v ∈ PostTime(v), v = v [Y := 0], and there exist two valuations ν ∈ r, ν ∈ r such that (( , r), ν)

d ,t
--→ (( , r ), ν ) for some d ∈ R 0 (the latter condition ensures that the edge between corners is not spurious, i.e. created by the closure of guards).

Because of this closure operation, we must also define properly the final weight function: we simply define it over the only valuation v reachable in location ( , r, v) (with ∈ L t ) by wt t (( , r, v), v) = lim ν→v,ν∈r wt t ( , ν) (the limit is well defined since wt t is piecewise affine with a finite number of pieces on region r).

The WTG Γ N (G) can be seen as a finite weighted game (which means that there are only weights on edges), by removing guards, resets and rates of locations, and replacing the weights of edges by the actual weight of jumping from one corner to another: an edge (( , r), v) g ,Y --→ (( , r ), v ) becomes a transition from (( , r), v) to (( , r ), v ) with weight d • wt( ) + wt(t), with d ∈ R 0 the only delay such that g = {v + d}. Note that delay d is necessarily a rational of the form α/N with α ∈ N, since it must relate corners of 1/N -regions. In particular, this proves that the cumulated weight wt Σ (ρ) of a finite play ρ in Γ N (G) is indeed a rational number with denominator N .

We will call corner play every play ρ in the corner-point abstraction Γ N (G): it can also be interpreted as an execution in G where all guards are closed (as explained in the definition above). It straightforwardly projects on a finite path p in the region game R N (G): in this case, we say again that ρ follows p. Figure 8.2 depicts a play, its projected path in the region game and one of its associated corner plays.

( 0 , r 0 ) ( 1 , r 1 ) ( 2 , r 2 ) ( 3 , r 3 ) ρ ρ g 0 , Y 0 g 1 , Y 1 g 2 , Y 2 Figure 8
.2.: A play ρ (in blue), its projected path p in the region game (in black), and one of its associated corner plays ρ (in green).

Let ρ be a corner play following a region path p. The weight of ρ refers to its weight in Γ N (G). Following [BBL08, Prop. 5], it is possible to find a play ρ following p close to ρ, in the sense that we control the difference between their respective cumulated weights:

Lemma 8.2. For all ε > 0, all region paths p, and all corner plays ρ following p, there exists a play ρ in G following p such that |wt Σ (ρ) -wt Σ (ρ)| ε.

Proof. If ν is a valuation and ε > 0, let B ∞ (ν, ε) denote the open ball of radius ε centered into ν for the infinity norm . ∞ over R X 0 : ν -ν ∞ = max x∈X |ν(x) -ν (x)| .
We denote by d(ρ, ρ) the distance between those two plays, defined as the sum of the differences in absolute value between the delays on the transitions of ρ and ρ. By triangular inequality, we obtain

|wt Σ (ρ) -wt Σ (ρ)| w L max d(ρ, ρ) ,
since the same transitions are fired in ρ and ρ, with only different delays.

We will now prove the following:

Claim. For all ε > 0, all region paths p from r 0 to r 1 , and all ν ∈ r 0 ∩ B ∞ (v, ε), there exists ν ∈ r 1 ∩ B ∞ (v , ε) and ρ a play in G from ν to ν following p such that |wt(ρ) -wt(ρ)| 2ε|p|w L max . Proof of Claim. By the previous explanation, it is sufficient to find a play ρ such that d(ρ, ρ) 2ε|p|. By induction, it is sufficient to prove a similar result only for a single edge ( , r) r ,e --→ ( , r ) of R(G), between regions r and r , with e = g,Y --→ . We thus consider a corner play ( , v)

d,e -→ ( , v ) in the closed timed game G from a corner v ∈ r to a corner v ∈ r . Consider a valuation ν ∈ r ∩ B ∞ (v, ε). We now explain how to construct a valuation ν ∈ r ∩ B ∞ (v , ε) and d 0 such that ( , ν) d ,e 
--→ ( , ν ) is a valid play in G and |d -d | 2ε, which implies the claim.

Let r be a time successor region of r such that r [Y := 0] = r . We let v = v + d be the corner of r such that v = v [Y := 0]. Then, the timed successors of ν, i.e. the affine line ν + (1, 1, . . . , 1)R, intersect the set r ∩ B ∞ (v , ε) in a valuation ν : indeed, lines obtained by time elapsing starting from ν and v are parallel, and r is a time successor of r. There exists d such that ν = ν + d . Moreover,

d = ν -ν ∞ ν -v ∞ + v -v ∞ + v -ν ∞ 2ε + d , and 
d = v -v ∞ v -ν ∞ + ν -ν ∞ + ν -v ∞ 2ε + d , so that |d -d | 2ε. Letting ν = ν [Y := 0], we have ( , ν) d ,e --→ ( , ν ) and ν ∈ r ∩ B ∞ (v , ε).
This claim implies Lemma 8.2, and concludes our proof. Thus, corner plays allow one to obtain faithful information on the plays that follow the same path. The folded orbit graph inherits interesting topological properties from the corner-point abstraction, notably, by Lemma 8.4, for all vertices v, there exists at least one outgoing edge v ρ -→ v , and at least one incoming edge v ρ -→ v in FOG(p).

Problems

As in weighted (untimed) games, we consider the value problem, mimicked from the one in G . Precisely, given a weighted timed game G, a configuration ( , ν) and a threshold α ∈ Z ∞ , we want to know whether Val G ( , ν) α. In the context of timed games, optimal strategies may not exist, even for finite values. 5 We generally focus on ε-optimal strategies, that guarantee the optimal value, up to a small error ε ∈ R >0 . Moreover, when the value problem is undecidable, we also consider the value approximation problem that consists, given a precision ε ∈ Q >0 , in computing an ε-approximation of Val G ( , 0).

Related work

In the one-player case6 , computing the optimal value and an ε-optimal strategy for weighted timed automata is known to be PSPACE-complete [START_REF] Bouyer | On the optimal reachability problem of weighted timed automata[END_REF]. In the two-player case, the value problem of WTGs (also called priced timed games in the literature) is undecidable with 3 clocks [BBR05, BJM15], or even 2 clocks in the presence of negative weights [BGNK + 14] (for the existence problem, asking if a strategy of player Min can guarantee a given threshold). To obtain decidability, one possibility is to limit the number of clocks to 1: then, there is an exponential-time algorithm to compute the value as well as ε-optimal strategies in the presence of non-negative weights only [BBM06, Rut11, HIJM13], whereas the problem is only known to be PTIME-hard. A similar result can be lifted to arbitrary weights, under restrictions on the resets of the clock in cycles [BGH + 15]. The other possibility to obtain a decidability result [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF][START_REF] Alur | Optimal reachability for weighted timed games[END_REF] is to enforce a semantical property of divergence, originally called strictly non-Zeno cost: it asks that every play following a cycle in the region automaton has weight at least 1.

Other objectives, not directly related to optimal reachability, have been considered in [START_REF] Brenguier | Energy and mean-payoff timed games[END_REF] for weighted timed games, like mean-payoff and parity objectives. In this work, the authors manage to solve these problems for the so-called class of δ-robust WTGs that they introduce.

Analysable classes of WTGs

In this chapter, we introduce several classes of weighted timed games, and study some properties of their region cycles. We focus on region cycles because the value problem is decidable when R(G) is acyclic [START_REF] La | Optimalreachability and control for acyclic weighted timed automata[END_REF]. In contrast, region cycles authorise executions that accumulate weight in ways that are hard to analyse, classically called Zeno behaviours.

Main results

On the value problem

Let us start with the class of weighted timed games studied in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF], to our knowledge the greatest class of WTG where the value problem is known to be decidable. Definition 9.1. A weighted timed game G with non-negative weights satisfies the strictly non-Zeno cost property when every finite play ρ in G following a cycle in the region automaton R(G) satisfies wt Σ (ρ) 1.

The intuition behind this class is that the weight of any long enough execution in G will ultimately grow above any fixed bound, and diverge towards +∞ for an infinite execution. Therefore, the value of G is equal to Val i for some horizon i large enough, making the value problem decidable. It is shown in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF] that i can be bounded exponentially in the size of G.

We introduce divergent weighted timed games, as an extension of divergent weighted games to the timed setting, that naturally generalises the strictly non-Zeno cost property to weights in Z. Definition 9.2. A weighted timed game G is divergent when every finite play ρ in G following a cycle in the region automaton R(G) satisfies wt Σ (ρ) / ∈ (-1, 1).

Compared with the untimed notion of divergence, the cumulated weight is not only supposed to be different from 0, but also far from 0: otherwise, the original intuition on the ultimate growing of the weight of plays would not be fulfilled. If G has only non-negative weights on locations and edges, this definition matches with the strictly non-Zeno cost property of [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF], we will therefore refer to their class as the class of divergent WTG with non-negative weights.

Remark. As in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF], we could replace (-1, 1) by (-κ, κ) to define a notion of κ-divergence. However, since weights and guard constraints in weighted timed games are integers, for κ ∈ (0, 1), a weighted timed game G is κ-divergent if and only if it is divergent. This will be formally implied by Proposition 9.3 and Lemma 8. We study this class in Chapter 10, where our contributions summarise as follows:

Theorem 9.1. The value problem over divergent weighted timed games is decidable in 3-EXPTIME, and is EXPTIME-hard. Moreover, deciding if a given weighted timed game is divergent is a PSPACE-complete problem.

On the value approximation problem

In [START_REF] Bouyer | On the value problem in weighted timed games[END_REF], the authors slightly extend the strictly non-Zeno cost property, to allow for cycles of weight exactly 0 while still preventing those of weight arbitrarily close to 0: Definition 9.3. A weighted timed game G with non-negative weights is called simple when every finite play ρ in G following a cycle in the region automaton R(G) satisfies

wt Σ (ρ) ∈ {0} ∪ [1, +∞).
Unfortunately, it is shown in [START_REF] Bouyer | On the value problem in weighted timed games[END_REF] that the value problem is undecidable for simple WTGs. They propose a solution to the value approximation problem, as a procedure computing an approximation of the value of every configuration. The intuition is that cycles of weight exactly 0 are only possible when every (non-negative) weight encountered along the cycle equals 0, allowing one to define a subgame where every cyclic execution has weight 0. One can then analyse this subgame separately, by applying a semi-unfolding procedure on R(G), similar to the one presented in Chapter 7.4.

We now introduce a class of WTG that will extend the notion of simple WTG and allow negative weights: Definition 9.4. A weighted timed game G is 0-isolated when every finite play ρ in G following a cycle in the region automaton R(G) satisfies:

wt Σ (ρ) ∈ (-∞, -1] ∪ {0} ∪ [1, +∞) .
In other words, cyclic executions of weight exactly 0 are allowed, but not those close to 0. Clearly, every divergent WTG is 0-isolated, and, when weights are non-negative, this class matches the simple WTGs of [START_REF] Bouyer | On the value problem in weighted timed games[END_REF], therefore inheriting their undecidability result.

We did not obtain positive results for the value approximation problem on this class of WTG. Instead, inspired by the almost-divergent class studied in the untimed setting, we restrict the 0-isolated class with a stability by decomposition requirement for cycles of weight 0.

If p is a region cycle in R(G), it is either simple or it can be decomposed into smaller region cycles p and p , such that (a rotation of) p equals p p .1 Likewise, if ρ is a play in G following p, either p is simple, or ρ can be decomposed into smaller plays ρ and ρ following respectively p and p , such that wt Σ (ρ) = wt Σ (ρ ) + wt Σ (ρ ). Definition 9.5. A weighted timed game G is almost-divergent if every play ρ following a cycle p of R(G) satisfies either wt Σ (ρ) / ∈ (-1, 1), or wt Σ (ρ) = 0 and for every decomposition of ρ into plays ρ and ρ following smaller region cycles, wt Σ (ρ ) = wt Σ (ρ ) = 0.2 By definition, the almost-divergent class of WTGs contains the divergent one, and is included in the 0-isolated class. When weights are non-negative, the stability by decomposition requirement for cycles of cumulated weight 0 always hold, as wt Σ (ρ ) + wt Σ (ρ ) = 0 implies wt Σ (ρ ) = wt Σ (ρ ) = 0. In this case, the almost-divergent and 0-isolated notions are thus equivalent, and the almost-divergent class matches with the simple WTGs of [START_REF] Bouyer | On the value problem in weighted timed games[END_REF]. We will therefore refer to simple WTGs as almost-divergent WTGs with non-negative weights. Figure 9.1 represents the hierarchy of the classes of WTG that we introduced.

Remark. Given a finite weighted game G, we define its timed version as a weighted timed game, whose locations are the states of G equipped with weight 0, whose edges are the transitions of G, enriched with guard and reset X , and of weight the weight of the transition in G, with a single clock x. With this procedure, a divergent (resp. almostdivergent) weighted game becomes a divergent (resp. almost-divergent) weighted timed game. A weighted game that is not almost-divergent (for example, two loops of respective weight 1 and -1 on the same state) will become a WTG that is not almost-divergent, but that is 0-isolated: every state has weight 0, so the weights of (cyclic) executions are integers, and therefore not in (-1, 0) ∪ (0, 1). Thus, every class inclusion displayed in Figure 9.1 is strict.

We study almost-divergent games in Chapter 11. Our first result is the following extension of the approximation procedure for non-negative weights: Theorem 9.2. Given an almost-divergent WTG G, a location and ε ∈ Q >0 , we can compute an ε-approximation of Val G ( , 0) in time triply-exponential in the size of G and polynomial in 1/ε. Moreover, deciding if a WTG is almost-divergent is PSPACE-complete.

It heavily relies on the region abstraction, and requires one to construct R(G) entirely and compute its strongly connected components, before unfolding it partially in a treeshaped structure. Our second result is a more symbolic approximation schema based on the value iteration algorithm only: the computations are not performed on the region abstraction, but instead use polyhedra that can cover several regions. Theorem 9.3. Let G be an almost-divergent WTG such that Val G ( , ν) > -∞ for every configuration ( , ν). Then the sequence (Val k G ) k 0 converges towards Val G and for every ε ∈ Q >0 , we can compute an integer P such that Val P G is an ε-approximation of Val G for all configurations.

Note that we have to control for configurations ( , ν) of value -∞, where the nonincreasing sequence (Val k G ( , ν)) k∈N (that starts at +∞) will converge towards -∞, but has no hope of approximating it.

However, we will show that the configurations with value -∞ can be computed pre-emptively: Proposition 9.1. In an almost-divergent weighted timed game G, the value problem with threshold -∞ is EXPTIME-complete.

This contrasts with the general case, where this problem is undecidable: Proposition 9.2. Given a WTG G (not necessarily almost-divergent) and an initial location 0 , the decision problem asking whether Val G ( 0 , 0) = -∞ is undecidable.

Proof. The proof goes via a reduction to the existence problem on turn-based WTG: given a WTG G (without final weight function), an integer threshold α and a starting location 0 , does there exist a strategy for Min that can guarantee reaching the unique target location t from 0 with weight < α. In the non-negative setting, it is proved in [START_REF] Bouyer | Improved undecidability results on weighted timed automata[END_REF] that the problem is undecidable for the comparison α. In the negative setting, formal proofs are given for all comparison signs in [BGNK + 14].

Consider G the WTG built from G by adding a transition from t to 0 , without guards and resetting all the clocks, of discrete weight -α. We add a new target location t , and add transitions of weight 0 from t to t . Location t and t belong to Min. Let us prove that Val G ( 0 , 0) = -∞ if and only if Min has a strategy to guarantee a weight < α in G. Assume first Val G ( 0 , 0) = -∞. If Val G ( 0 , 0) = -∞, we are done. Otherwise, Min must follow in G the new transition from t to 0 to enforce a cycle of negative value, and thus enforce a play from ( 0 , 0) to t with weight less than α. Therefore, there exists a strategy for Min in G that can guarantee a weight < α. Reciprocally, if there exists a strategy for Min that can guarantee a weight < α, then Min can force a negative cycle play and Val G ( 0 , 0) = -∞.

Cycle-based analysis

In this section, we will study properties that region cycles must satisfy in divergent or almost-divergent WTGs. This will give us a better understanding of the modelling power these classes confer.

Cycles in a 0-isolated WTG

Let us start with properties that hold for all 0-isolated weighted timed games G. Keeping the terminology of the untimed setting, a cycle p of R(G) is said to be a positive cycle (resp. a negative cycle, a 0-cycle) if every finite play ρ following p satisfies wt(ρ) 1 (resp. wt(ρ) -1, wt(ρ) = 0).

We start by showing that, in a 0-isolated game, all cycles p = t 1 • • • t n of R(G) (with t 1 , . . . , t n edges of R(G)) are either 0-cycles, positive cycles or negative cycles, and we can classify a cycle by looking only at one of the corner plays following it: Lemma 9.1. In a 0-isolated WTG, a cycle p is a positive cycle (resp. a negative cycle, a 0-cycle) if and only if there exists a corner play ρ following p with wt Σ (ρ) > 0 (resp. wt Σ (ρ) < 0, wt Σ (ρ) = 0).

Proof. If p is a positive cycle (resp. a negative cycle, a 0-cycle), every such corner play ρ will have weight above 0 (resp. under 0, equal to 0), by Lemma 8.3. Reciprocally, if such a corner play exists, all corner plays following p have weight above 0 (resp. under 0, equal to 0): otherwise the set {wt Σ (ρ) | ρ play following p} would have non-empty intersection with the set (-1, 0) ∪ (0, 1) by Lemma 8.3, which would contradict that the game is 0-isolated.

Corollary 9.1. A WTG G is 0-isolated if and only if every region cycle in G is either positive, negative, or a 0-cycle.

An important result is that the sign of cycles is stable by rotation. This is not trivial because plays following a cycle can start and end in different valuations, therefore changing the starting region state of the cycle could a priori change the plays that follow it and the sign of their weights. Lemma 9.2. Let p and p be region paths of a 0-isolated WTG. If pp is a positive cycle (resp. a negative cycle, a 0-cycle), then p p is a positive cycle (resp. a negative cycle, a 0-cycle).

Proof. Since p 1 = pp is a cycle, first(p) = last(p ) and first(p ) = last(p), so p 2 = p p is a cycle as well. First, since there are finitely many corners, by constructing a long enough play following an iterate of p p, we can obtain a corner play that starts and ends in the same corner. Formally, we define two sequences of region corners (v i ∈ first(p)) i and (v i ∈ first(p )) i . We start by choosing any v 0 ∈ first(p). Let v 0 be a corner of first(p ) such that v 0 is accessible from v 0 by following p with a corner play ρ 0 . For every i > 0, let v i be a corner of first(p) such that v i is accessible from v i-1 by following p with with a corner play ρ i , and let v i be a corner of first(p ) such that v i is accessible from v i by following p with a corner play ρ i . We stop the construction at the first index l such that there exists k < l with v l = v k . Additionally, we let ρ l = ρ k . We know that this process never gets stuck-i.e. we can always find such corner plays iteratively-by Lemma 8.4, and it is bounded since first(p) has at most |X | + 1 corners.

For every 0 i l, let w i be the weight of the corner play ρ i from v i to v i along p, and let w i be the weight of the corner play ρ i from v i to v i+1 along p . The concatenation of the two plays has weight w i + w i > 0 (resp. w i + w i < 0, w i + w i = 0), since it follows the positive cycle (resp. negative cycle, 0-cycle) p 1 . For every 0 i < l, the concatenation of the corner play ρ i from v i to v i+1 with the corner play ρ i+1 from v i+1 to v i+1 is a play from v i to v i+1 , of weight w i + w i+1 , following p 2 . Since p 2 is a cycle, and the game is 0-isolated, all possible values of w i + w i+1 have the same sign by Lemma 9.1. Finally, we can construct a corner play from v k to v l by concatenating the plays ρ k , ρ k+1 , . . . , ρ l-1 , ρ l-1 , ρ l . We denote the weight of that play W , and

v 0 v 1 v k = v l v k+1 v l-1 v 0 v 1 v k = v l v k+1 v l-1 ρ 0 ρ 0 ρ 1 ρ k ρ k ρ k+1 ρ l-1 ρ l-1
W = l-1 i=k (w i + w i+1 ) = l-1 i=k (w i + w i )
since w k = w l , and as w i + w i > 0 (resp. w i + w i < 0, w i + w i = 0) holds for every i, we obtain W > 0 (resp. W < 0, W = 0).

This implies that the terms w i + w i+1 , of constant sign, are all above 0 (resp. under 0, equal to 0). As a consequence, the concatenation of ρ k and ρ k+1 is a corner play following p 2 of weight above 0 (resp. under 0, equal to 0). By Lemma 9.1, we conclude that p 2 must be a positive cycle (resp. a negative cycle, a 0-cycle).

Therefore, region cycles in 0-isolated games are well-behaved: we can compose and rotate them while preserving their sign in the expected way. This will give us access to combinatorial proofs that extend the intuitions coming from the untimed setting.

SCC-based characterisations

As divergent WTG are 0-isolated, Lemma 9.1 lets us express divergence in terms of region cycles instead of cyclic executions: Corollary 9.2. A WTG G is divergent if and only if it is 0-isolated and contains no 0-cycles. In other words, if and only if every region cycle in G is either positive or negative.

Similarly, we can express almost-divergence as a property of R(G) by applying Lemma 9.1: a graph FOG(p, p ) as the union of FOG(p) and FOG(p ) (that share the same set of vertices), colouring in blue the edges of FOG(p) and in red the edges of FOG(p ). A path in FOG(p, p ) is said blue (resp. red) when all of its edges are blue (resp. red).

We assume first that there exists in FOG(p, p ) a blue cycle C and a red cycle C with the same first vertex v (a corner of ( , r)). Let k and k be the respective lengths of C and C , so that C can be decomposed as v

ρ 1 -→ • • • ρ k -→ v and C as v ρ 1 -→ • • • ρ k -→ v,
where ρ i are corner plays following p and ρ i are corner plays following p . Let ρ be the concatenation of ρ 1 , . . . , ρ k , and ρ be the concatenation of ρ 1 , . . . , ρ k . Recall that w = |wt Σ (ρ)| and w = |wt Σ (ρ )| are integers. Since p is negative, so is p k , the concatenation of k copies of p (the weight of a play following it is a sum of weights all below -1). Therefore, ρ, that follows p k , has a weight wt Σ (ρ) -1 by Lemma 8.3. Similarly, wt Σ (ρ ) 1. We consider the cycle C obtained by concatenating w copies of C and w copies of C . Similarly, we let ρ be the play obtained by concatenating w copies of ρ and w copies of ρ . Then, wt Σ (ρ ) = wt Σ (ρ)w + wt Σ (ρ )w = 0, and therefore the region cycle p composed of w copies p k and w copies of p k is a 0-cycle. This contradicts the almost-divergence of G, since p can be decomposed into smaller cycles that are not 0-cycles.

We now return to the general case, where C and C may not exist. Since FOG(p) and FOG(p ) are finite graphs with no deadlocks (every corner has an outgoing edge by Lemma 8.4), from every corner of FOG(p, p ), we can reach a blue simple cycle, as well as a red simple cycle. Since there are only a finite number of simple cycles in FOG(p, p ), there exists a blue cycle C and a red cycle C that can reach each other in FOG(p, p ). In FOG(p, p ), we let P be a path from the first vertex of C to the first vertex of C , and P be a path from the first vertex of C to the first vertex of C. Consider the cycle C obtained by concatenating P and P . As a cycle of FOG(p, p ), we can map it to a cycle p of R(G) (alternating p and p depending on the colours of the traversed edges), so that C is a cycle (of length 1) of FOG(p ). As G is 0-isolated, p is either positive, negative or a 0-cycle. By the almost-divergence of G, p cannot be a 0-cycle as it can be decomposed onto smaller cycles that are not 0-cycles. Suppose for instance that it is positive. Since ( , r) is the first region state of both p and p , we can construct the FOG(p, p ), in which C is a blue cycle and C is a red cycle, both sharing the same first vertex. We then conclude with the previous case. A similar reasoning with p applies to the case that p is negative. Therefore, in all cases, we reached a contradiction.

To finish the proof of the direct implication of Proposition 9.4, we suppose that the two cycles p and p , one positive and the other negative, in the same SCC of R(G), do not share any region states. By strong connectivity, in R(G), there exists a path p 1 from the first state of p to the first state of p , and a path p 2 from the first state of p to the first state of p. Consider the cycle p of R(G) defined by pp 1 p p 2 . By the almost-divergence of G and Corollary 9.1, p must be either positive, negative or a 0-cycle. Since it shares a state with both p and p , Lemma 9.3 allows us to prove a contradiction in both positive and negative cases, and therefore p must be a 0-cycle. This contradicts the hypothesis as one of the decompositions of p into smaller cycles produces p and p 1 p p 2 , with p a non-0-cycle. This concludes the proof of Proposition 9.4.

Remark. These characterisations of divergent or almost-divergent WTGs in term of SCCs provide an intuitive understanding of the modelling power these classes hold. For divergence, the model should have a global structure (the SCC decomposition) linking modules in an acyclic fashion. For each module, we have to choose between a positive dynamic, where weights always eventually increase, and a negative dynamic, where weights always eventually decrease. For almost-divergence, the modules may also have portions that are (eventually) neutral with regard to weight accumulation. In both classes, arbitrarily small weights should not be allowed to accumulate.

The membership problem

We study the membership problem for divergent (resp. almost-divergent) weighted timed games, i.e. the decision problem that asks if a given WTG is divergent (resp. almostdivergent). As mentioned in Theorems 9.1 and 9.2, we show that it is PSPACE-complete for both of these classes.

The proof is an extension of the NL bound of Lemmas 7.3 and 7.5 in the untimed setting, but this time we will guess region paths, hence the exponential blowup in complexity. In order to keep a compact representation of the weight of plays, we rely on the corner-point abstraction.

We show that, given a bound on the length of relevant region cycles, we can test in polynomial space the sign of corner plays: Lemma 9.4. Consider a weighted timed game G, a region state ( , r) of R(G), a bound B ∈ N, and a comparison operator ∈ {<, >, , , =, =}. Deciding if there exists a corner play ρ following a cycle p of R(G) starting from ( , r), such that |p| B and wt Σ (ρ) 0, is in PSPACE. 3Proof. We guess a starting corner v of r for ρ, and we guess on-the-fly the transitions of p and ρ, i.e. a sequences of regions with one of their corners, keeping in memory the cumulated weight of ρ and the length |p|. At every step, we check that |p| B in space polynomial in log(B) and log(|p|) log(|R(G)|), with log(|R(G)|) polynomial in |G|. 4 Similarly, we can check that ρ is following p in polynomial space. At some point, we guess that the cycle is complete, and we check that the current region state equals ( , r). Finally, we check that wt Σ (ρ) 0 in space polynomial in log(wt Σ (ρ)). Note that wt Σ (ρ) is an integer bounded (in absolute value) by B × w max , and can thus be stored in polynomial space. 5 This shows that the problem is in NPSPACE, and thus in PSPACE using Savitch's theorem [START_REF] Walter | Relationships between nondeterministic and deterministic tape complexities[END_REF].

Deciding divergence

In order to solve the membership problem for divergent games, we will rely on Lemma 9.4, and on a characterisation of divergence based on region cycles of length bounded by the number of corners in the corner-point abstraction Γ(G).

Lemma 9.5. Let G be a weighted timed game. An SCC S of R(G) is positive (resp. negative) if and only if every region cycle in S, of length at most |Γ(G)|, is positive (resp. negative).

Proof. The direct implication holds by definition. Reciprocally, let us assume that every cycle in S of length at most |Γ(G)| is positive (resp. negative), and prove that every cycle p in S is positive (resp. negative), by induction on the length of p. If p has length above |Γ(G)|, every corner play ρ following p can be split as ρ = ρ 1 ρ 2 ρ 3 , with ρ 2 a corner play that starts and ends in the same corner. Then we can write p = p 1 p 2 p 3 , with ρ 1 (resp. ρ 2 , ρ 3 ) following p 1 (resp. p 2 , p 3 ). Observe that p 2 and p 1 p 3 are region cycles of S, both positive (resp. negative) by induction. It follows that wt Σ (ρ 2 ) 1 (resp. wt Σ (ρ 2 ) -1), and wt Σ (ρ 1 ρ 3 ) 1 (resp. wt Σ (ρ 1 ρ 3 ) -1), as ρ 1 ρ 3 is a valid corner play following p 1 p 3 . We can therefore conclude that wt Σ (ρ) 1 (resp. wt Σ (ρ) -1). This holds for all corner plays following p, and by Lemma 8.3 p is positive (resp. negative).

Let us show how to decide if a game is not divergent. By Proposition 9.3 and Lemma 9.5, it suffices to search for an SCC of the region automaton containing a cycle such that there exists a corner play following it of non-negative weight, and a cycle such that there exists a corner play following it of non-positive weight, both of length bounded by

B = |Γ(G)| |L| × |Reg(X , M )| × (|X | + 1).
We can test this condition in NPSPACE: we guess a starting region for each cycle, use standard reachability analysis [START_REF] Alur | A theory of timed automata[END_REF] to check that they are in the same SCC of R(G) (in PSPACE), and use Lemma 9.4 with comparison 0 and 0, respectively, to check each cycle's sign. Since the bound B is at most exponential in |G|, this last step is also in PSPACE.

This shows that the membership problem for divergent weighted timed games is in coNPSPACE = coPSPACE = PSPACE by the theorems of Immerman-Szelepcsényi [START_REF] Immerman | Nondeterministic space is closed under complementation[END_REF][START_REF] Szelepcsényi | The method of forced enumeration for nondeterministic automata[END_REF] and Savitch [START_REF] Walter | Relationships between nondeterministic and deterministic tape complexities[END_REF].

Let us now show the PSPACE-hardness (indeed the coPSPACE, which is identical) by a reduction from the reachability problem in a timed automaton. As in the untimed setting, we consider a timed automaton with a starting location and a different target location without outgoing edges. We construct from it a weighted timed game by distributing all locations to Min, and equipping all edges with weight 1, and all locations with weight 0. We also add a loop with weight -1 on the target, and an edge from the target location to the initial location with weight 0, both with guard and resetting all clocks. Then, the weighted timed game is not divergent if and only if the target can be reached from the initial location in the timed automaton.

• An SCC of the region automaton contains a cycle such that there exists a corner play following it of negative weight, and a cycle such that there exists a corner play following it of positive weight, both of length bounded by

B = |Γ(G)| 2 .
Once again, we can test both conditions in NPSPACE, by guessing the starting regions of these cycles and using respectively Lemmas 9.6 and 9.4. This shows that the membership problem for divergent weighted timed games is in

coNPSPACE = coPSPACE = PSPACE [Imm88, Sze88, Sav70].
Let us now show the PSPACE-hardness (indeed the coPSPACE, which is identical) by a reduction from the reachability problem in a timed automaton, similar to the one we used for the PSPACE-hardness of deciding divergence. We consider a timed automaton with a starting location and a different target location without outgoing edges. We construct from it a weighted timed game by distributing all locations to Min, and equipping all edges with weight 0, and all locations with weight 0. We also add a loop with weight 1 on the initial location, one with weight -1 on the target location, and an edge from the target location to the initial location with weight 0, all three with guard and resetting all clocks. Then, the weighted timed game is not almost-divergent if and only if the target can be reached from the initial location in the timed automaton.

where ( , ν) d,e -→ ( , ν ) ranges over valid transitions in G. Then, starting from V 0 mapping every configuration ( , ν) to +∞, except for the targets mapped to wt t ( , ν), we let V i = F(V i-1 ) for all i > 0. The value function V i contains the value Val i G , which is what Min can guarantee when forced to reach the target in at most i steps [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF][START_REF] Alur | Optimal reachability for weighted timed games[END_REF].

The rest of this section presents a symbolic algorithm computing Val i G in time doublyexponential in i and the size of G. Intuitively, we observe that the mappings V 0 are piecewise affine for all , and show that F preserves piecewise affinity, such that all iterates V i can be computed using piecewise affine functions. In order to bound the size of V i (in particular, its number of pieces), we need to get into the details of how the mappings V are encoded.

This result contrasts with [START_REF] Alur | Optimal reachability for weighted timed games[END_REF], where the value problem with bounded horizon is claimed to be in EXPTIME. This is discussed in Section 10.1.4.

Value functions as nested partitions

We now present the class of piecewise affine value functions, and a way to efficiently encode them, as developed in [START_REF] Alur | Optimal reachability for weighted timed games[END_REF]. In this section, n will denote the number of clocks, such that X = {x 1 , . . . , x n }, and ∈ L will be a location of G. An affine value function is a mapping V : R X 0,<M → R ∞ such that for all ν ∈ R X 0,<M ,

V (ν) = n i=1 a i • ν(x i ) + b ,
with partial derivatives a i ∈ Q for 1 i n, and additive constant b ∈ Q. In this case, we say that V is defined by the equation

y = n i=1 a i x i + b ,
where the variable y ∈ X refers to V (x 1 , . . . , x n ). We also consider infinite mappings ν → +∞ and ν → -∞ to be affine value functions, defined by y = n i=1 0 • x i + (+∞) and y = n i=1 0 • x i + (-∞), respectively. Intuitively, we define a piecewise affine value function as a partition of R X 0,<M into finitely many polyhedra, called cells, each equipped by an affine value function. Formally, an affine inequality is an equation I of the form

n i=1 a i x i + b ≺ 0 ,
where b ∈ Q is the additive constant of I, ≺ ∈ {<, } is its comparison operator, and for every 1 i n, a i ∈ Q is the i-th partial derivative of I. Similarly, an affine equality is

2x 1 + x 2 -2 = 0 x 2 -1 = 0 x 1 x 2 1 2 0 1 2 Figure 10
.1.: The cell 2x 1 + x 2 -2 < 0 ∧ x 2 -1 < 0 in gray, and its borders in blue.

an equation E of the form

n i=1 a i x i + b = 0 .
We say that ν ∈ R X 0 satisfies I (resp. E), and write ν |= I (resp. ν |= E), if n i=1 a i • ν(x i ) + b ≺ 0 (resp. = 0) holds. In this case, I (resp. E ) refers to the set of valuations that satisfy I (resp. E). Equalities (resp. inequalities) are equivalent when they are satisfied by the same valuations. In particular, multiplying the additive constant b and all partial derivatives a i by the same factor N ∈ N >0 gives an equivalent equality (resp. inequality), and we will therefore assume that they are always integers. Definition 10.1. A cell is a set c ⊆ R X 0 , defined by a conjunction of affine inequalities

I 1 ∧ • • • ∧ I m , such that ν ∈ c if and only if for all 1 i m, ν |= I i . We write c = I 1 ∧ • • • ∧ I m in this case.
Cells are convex polyhedra, and the intersection of finitely many cells is a cell. From every affine inequality I we can extract an affine equality E(I), of identical partial derivatives and additive constant. Then, we call borders of a cell c = I 1 ∧ • • • ∧ I m the affine equalities E(I 1 ), . . . E(I m ). The closure c of a cell c is obtained by replacing every comparison operator < by in its affine inequalities. Note that regions and zones are particular cases of cells, where borders are of the form x + b = 0 or xx + b = 0.

Let E be an affine equality of equation n i=1 a i x i +b = 0. We say that R X 0 is partitioned by E into three cells:

• c < , defined by n i=1 a i x i + b < 0; • c > , defined by n i=1 a i x i + b > 0, i.e. n i=1 -a i x i -b < 0; • c = , defined by n i=1 a i x i + b = 0, i.e. n i=1 a i x i + b 0 ∧ n i=1 -a i x i -b 0.
Then, given a set E = {E 1 , . . . , E m } of affine equalities, we denote c j < , c j > and c j = the three cells obtained from E j ∈ E. For every mapping φ : E → {<, >, =}, we define c φ as the cell c 1 φ(E 1 ) ∩ • • • ∩ c m φ(Em) . Every valuation of R X 0 belongs to some c φ , and if φ = φ then c φ ∩ c φ = ∅, such that the set of mappings {<, >, =} E provides a partition of R X 0 128 into 3 m cells. We say that R X 0 is partitioned by E into m ∈ N cells if m of those 3 m cells are non-empty. In fact, m is bounded by O(m n ) (see e.g. [START_REF] Matousek | Lectures on Discrete Geometry[END_REF]), and we denote Splits(m, n) this bound (polynomial in m and exponential in n) on the number of cells in the partition. Similarly, a cell c ⊆ R X 0 is partitioned by E into at most Splits(m, n) sub-cells that have non-empty intersection with c. In particular, under the bounded clocks assumption we will partition R X 0,<M instead of R X 0 .

x 1

x 2 1 2 0 1 2 Figure 10.2.: A partition of R X 0,<2 according to two affine equalities.

Example 10.1. The Splits(2, 2) = 9 cells that partition R X 0,<2 according to E = {2x 1 + x 2 -2 = 0, x 2 -1 = 0} are represented in Figure 10.2. Definition 10.2. A nested partition is a tree P , where nodes are labelled by a cell c and a set E of affine equalities, such that the children of c in P are labelled by the cells that partition c according to E.

The cell c P at the root of a nested partition P is called the domain of P . Leaves of P are equipped by empty sets of equalities, and their cells are called base cells. The domain c P is partitioned by its base cells, and we denote [ν] P the base cell that contains valuation ν ∈ c P .

Example 10.2. Finally, a piecewise affine value function V : R X 0,<M → R ∞ is encoded as a pair (P, F ) where P is a nested partition of domain R X 0,<M , and where F is a partition value function defined over P , such that F = V .

A piecewise affine value function (P, F ) is said continuous on regions if for every region r ∈ Reg(X , M ), the restriction of F to domain r is continuous. There could be discontinuities in F , but only at borders separating different regions. In particular, if a partition value function is continuous over regions, and F ν = +∞ (resp. -∞) for some ν, then for all ν in the same region as ν, F ν = F ν .

Remark. In [START_REF] Alur | Optimal reachability for weighted timed games[END_REF], the domain of nested partitions is always a single region, and one value function is associated to each region. We define value functions over R X 0,<M instead, in order to obtain a symbolic algorithm. This induces slight differences in the way value functions are defined, because their mappings are continuous everywhere while ours can have discontinuities at borders between regions. In effect, they define their partitions with overlaps over borders, such that R X 0 is partitioned by an affine equality into two cells, c and c , instead of the three c < , c > and c = . This changes the number of cells Splits(m, n), but not asymptotically.

Cells are bounded, convex polyhedra. As such, elementary operations over cells (emptiness, intersection and inclusion tests) can be seen as instances of linear programming, and can thus be performed in polynomial time.

Operations over value functions

Let V be a piecewise affine value function, encoded as a pair (P , F ) for each location ∈ L, such that F = V . Our goal is to compute the value function F(V ), as a pair (P , F ) for each ∈ L. In order to express complexity results for this operation (and its iteration that computes F i (V )), we need to bound the size of the pairs (P , F ) with respect to the size of the pairs (P , F ).

This requires a precise analysis, where one keeps track of the number of linear equalities in the nodes of the nested partition. In a nested partition P , the depth of a node is the distance to the root of P , and the depth of P is the greatest such depth. We say that P is a k-nested partition if P has depth at most k -1 0, and nodes are on level i if their depth is i -1 (in other words, the root is at level 1 and leaves at level depth plus one, and a singleton partition where the root is a base cell is 1-nested). A k-nested partition P is said to be of complexity at most m if for every node of P labelled by a set E of affine equalities, it holds that |E| m. In this case, the number of base cells in P is bounded by Splits(m, n) k (every node gets partitioned into at most Splits(m, n) sub-cells), and the number of nodes in P is bounded by k • Splits(m, n) k . Let β P ∈ N denote the greatest constant (partial derivatives and additive constant) in the affine equalities and inequalities of P , in absolute value, and let m 0 denote the number of inequalities in the encoding of the domain c P .1 Then, P can be stored in space

|P | k • Splits(m, n) k • (m 0 + mk)(n + 1)(log(β P ) + 1) ,
as every node in P is labelled by a cell with at most m 0 + m(k -1) borders and at most m affine equalities, and each affine expression is stored in space (n + 1) log(β P ) (n + 1)(log(β P ) + 1).

For a partition value function F defined over P , we only need to additionally monitor the constants in affine value functions. Recall the affine equations in F are of the form y = n i=1 a i x i + b with a i and b in Q. In order to monitor their size, we instead write a y y = n i=1 a i x i + b, with all a i and b integers of Z, and a y ∈ N >0 , and ask that some β F ∈ N bounds all of these constants in absolute value. Then, a value function F defined over a k-nested partition P of complexity at most m is stored in space

|F | Splits(m, n) k • (n + 2)(log(β F ) + 1) .
We summarize these observations in the following lemma: Reciprocally, let (P, F ) be a k-nested partition of complexity at most m , with constants bounded by β P in P and β F in F . It requires space at most logarithmic in β P , β F , polynomial in m, and exponential in k, n.

We will now introduce useful operations over nested partitions, and explain how they affect the depth, complexity, and constants.

If P 1 and P 2 are nested partitions over the same domain c P , let P 1 ⊕ P 2 denote the coarsest nested partition that refines both P 1 and P 2 : each base cell c b of P 1 ⊕ P 2 corresponds to an intersection c 1 ∩ c 2 , with c 1 a base cell of P 1 and c 2 a base cell of P 2 . It is obtained by exploring P 1 and P 2 in a top-down fashion, while creating corresponding nodes in P 1 ⊕P 2 , starting from both root nodes. Let the current node in P 1 be n 1 , labelled by c 1 and E 1 . Let the current node in P 2 be n 2 , labelled by c 2 and E 2 . If c 1 ∩ c 2 = ∅, we create a node in P 1 ⊕ P 2 labelled by c 1 ∩ c 2 and E 1 ∪ E 2 . The children of this node will be created inductively, by considering all pairs (n 1 , n 2 ) such that n 1 is a child of n 1 in P 1 and n 2 is a child of n 2 in P 2 , and continuing the top-down exploration at n 1 and n 2 . If c 1 ∩ c 2 = ∅, we do not create a node in P 1 ⊕ P 2 . Note that if P 1 and P 2 are both k-nested partitions of complexity at most m with constants bounded by β P , P 1 ⊕ P 2 is a k-nested partition of complexity at most 2m with constants bounded by β P .

The minimum (resp. maximum) of a finite set of piecewise affine value functions can be computed with nested partitions. Lemma 10.2 (Thm. 1, [START_REF] Alur | Optimal reachability for weighted timed games[END_REF]). Let (P i , F i ), i = 1, . . . , q be q piecewise affine value functions, defined over the same domain c P , where each P i is a k-nested partition of complexity at most m , with constants bounded by β P in P and β F in F . Then there exists a piecewise affine value function (P , F ) of domain c P , where P is an atomic (k + 1)-nested partition of complexity at most max(qm, q2 ) , with constants bounded by 2β 2 P in P and β F in F , such that F = min i=1,...,q F i (resp. F = max i=1,...,q F i ). Proof. Let P be P 1 ⊕ • • • ⊕ P q . Let c denote a base cell in P , corresponding to an intersection c 1 ∩ • • • ∩ c q of base cells of P 1 , . . . , P q respectively. Consider the affine value functions F 1 (c 1 ), . . . , F q (c q ). Each of these is defined by an equation of the form a y y = n i=1 a i x i + b. We can see them as linear equalities over variables X {y}, denoted E 1 , . . . , E q , or equivalently as sets of valuations in R X {y} 0

, denoted E 1 , . . . , E q . If E, E are such equalities, of equations a y y = n i=1 a i x i + b and a y y = n i=1 a i x i + b , the intersection E ∩ E is either empty or, by elimination of y, it satisfies the equation

n i=1 (a y a i -a y a i )x i + (a y b -a y b) = 0 .
This describes an affine equality over X , that we denote E ∩ y E . Now, let us partition c by the set of all such intersections

E = {E i ∩ y E j | i, j ∈ [1, q] ∧ E i ∩ E j = ∅} .
On every sub-cell c in this partition, there exists j ∈ [1, n] such that for every ν ∈ c , F j ν = min i=1,...,q F i ν . Therefore, we define F on c as equal to F j (c j ). The k-nested partition P 1 ⊕ • • • ⊕ P q has complexity qm , and we partitioned its base cells by at most q 2 intersections E ∩ y E , resulting in a (k + 1)-nested partition of complexity max(qm, q 2 ) .

In order to implement the computation of F(V ), we define intermediate operations over value functions. Let ∈ L be a location, of value function V . For all ν ∈ R X 0,<M , let d ν ∈ R 0 denote the greatest valid delay from ν, such that

d ν = sup{d | ν +d ∈ R X 0,<M }. 2 Consider the following operations: • If Y ⊆ X is a set of clocks, let Unreset Y (V ) : R X 0,<M → R ∞ denote the value function such that for all ν, Unreset Y (V )(ν) = V (ν[Y := 0]) .
• If g is a guard over X , let Guard g (V ) : R X 0,<M → R ∞ denote the value function such that for all ν,

Guard g (V )(ν) =      V (ν) if ν |= g -∞ if ν |= g ∧ ∈ L Max +∞ if ν |= g ∧ ∈ L Min .
• If e ∈ E is an edge from 1 to 2 , let PreTime e (V ) : R X 0,<M → R ∞ denote the value function such that for all ν,

PreTime e (V 2 )(ν) = sup d∈[0,dν ) d • wt( 1 ) + wt(e) + V 1 (ν + d) if ∈ L Max inf d∈[0,dν ) d • wt( 1 ) + wt(e) + V 2 (ν + d) if ∈ L Min . Then, if V = F(V ), it holds that V =      V if ∈ L t max e=( ,g,Y, ) PreTime e (Guard g (Unreset Y (V ))) if ∈ L Max min e=( ,g,Y, ) PreTime e (Guard g (Unreset Y (V ))) if ∈ L Min \L t (10.2)
where e ranges over the edges in G that starts from .

Remark. The values +∞ and -∞ in Guards g ensure that players cannot choose invalid delays: By the no-deadlocks assumption, from every configuration there exists a transition in G , whose value will win against +∞ or -∞ in (10.2). We have detailed in Lemma 10.2 how one can perform the min and max operations over nested partitions. Let us now focus on the Guard g and Unreset Y operations.

Lemma 10.3. Let (P, F ) be a piecewise affine value function, where P is a k-nested partition of complexity at most m , with constants bounded by β P in P and β F in F . Let g be a non-diagonal guard in G. Then there exists a piecewise affine value function (P , F ), where P is a (k + 1)-nested partition of complexity at most max(m, 2n) , with constants bounded by max(β P , M ) in P and β F in F , such that F = Guard g ( F ).

Proof. First, let us state that the non-diagonal guard g can be encoded as a cell I 1 ∧• • •∧I 2n , with one upper and one lower inequality for each clock. We define P from P by partitioning each base cell by the set of affine equalities E(I 1 ) ∧ • • • ∧ E(I 2n ). It follows that each base cell of P is either entirely included in g or entirely outside of it. We can thus define F appropriately, such that F = Guard e ( F ). Finally, the nested partition P has the desired depth, complexity, and bounds over constants. Lemma 10.4. Let (P, F ) be a piecewise affine value function, where P is a k-nested partition of complexity at most m , with constants bounded by β P , β F . Let Y be a set of clocks. Then there exists a piecewise affine value function (P , F ), where P is a k-nested partition of complexity at most m , with constants bounded by β P in P and β F in F , such that F = Unreset Y ( F ). Proof. If E : n i=1 a i x i + b = 0 is an affine equality, let Unreset Y (E) denote the affine equality n i=1 a i x i + b = 0, with for i ∈ [1, n], a i = 0 if x i ∈ Y and a i = a i otherwise. We extend this operator to affine inequalities I in the same way, with Unreset Y (I) equal to I except for the i-th partial derivatives that is set to 0 when x i ∈ Y. For each valuation ν ∈ R X 0 , and E an affine equality (resp. inequality 

) ν |= Unreset Y (E) if and only if ν[Y := 0] |= E. Then, if c = I 1 ∧ • • • ∧ I p is a cell, let Unreset Y (c) denote the cell Unreset Y (I 1 ) ∧ • • • ∧ Unreset Y (I p ). It follows that ν ∈ Unreset Y (c) if and only if ν[Y := 0] ∈ c.
with for i ∈ [1, n], a i = 0 if x i ∈ Y and a i = a i otherwise. Then, for every ν ∈ Unreset Y (c), it holds that V (ν[Y := 0]) = Unreset Y (F (c))(ν) .
If P has depth 0, it only contains one node, the root. The piecewise affine value function (P , F ) with P = P and F a partition value function mapping c P to Unreset Y (F (c P )), encodes the function Unreset Y (V ). Otherwise, we construct P from P in the following top-down manner: Let the current node be labelled by a cell c and a set of affine equalities E. If Unreset Y (c) is empty, we remove the current node, and its entire sub-tree, from P . Otherwise, we replace c by Unreset Y (c), and E = {E 1 , E 2 , . . .} by {Unreset Y (E 1 ), Unreset Y (E 2 ), . . .}. We then apply the same process recursively on the children nodes. If the current node is a leaf, and Unreset Y (c) is non-empty, we let

F (c) = Unreset Y (F (c)).
The result is a nested partition P with the desired depth, complexity, and bounds over constants, and a partition value function F such that F = Unreset Y ( F ).

An application of the Unreset Y operator is displayed in Figure 10.4. All that is left is the PreTime e operation. It is more challenging, and requires extra machinery related to diagonal behaviours that naturally arise when dealing with timeelapses.

Tubes and diagonals

An affine inequality (resp. equality) is diagonal if the sum of its partial derivatives is null, i.e. n i=1 a i = 0. It follows that if ν satisfies a diagonal I then ν + d |= I for all d ∈ R. A cell is called a tube when all of its inequalities are diagonal. When the cell is a sub-cell of some root cell c P in a nested partition P , we relax this definition slightly, to allow for non-diagonal borders inherited from c P .

A (k 1 , k 2 )-nested tube partition is a (k 1 + k 2 )-nested partition, such that every node at level at most k 1 is labelled by a set of diagonal affine equalities, and thus every cell at level k 1 + 1 is a tube. The cells at level k 1 + 1 are called the base tubes of P . A (k 1 , k 2 )-nested tube partition P is said to be of complexity at most m 1 , m 2 if for every node of P at level at most k 1 , labelled by a set E, it holds that |E| m 1 , and for every node of P at level greater than k 1 , labelled by a set E , it holds that |E | m 2 . The cells labelling nodes of P at level k 1 + 1 are called the base tubes of P . Lemma 10.5. Let (P, F ) be a piecewise affine value function, where P is a k-nested partition of complexity at most m , with constants bounded by β P in P and β F in F . Then there exists a piecewise affine value function (P , F ), where P is a (k, k)-nested tube partition of complexity at most m, m , with constants bounded by β P in P and β F in F , such that F = F . Proof. Let P 1 , P 2 be two nested partitions such that every affine equality in sets E of P 1 (resp. P 2 ) is diagonal (resp. non-diagonal), and such that P = P 1 ⊕ P 2 . One can construct them by copying the diagonal (resp. non-diagonal) borders of P in a top-down manner. The nested partition P 1 has depth at most k -1, and we extend it so that every leaf node in P 1 is at level k (one can extend leaves to greater depths by constructing identical children nodes). Then, P 1 is a (k, 0)-nested tube partition, and P 2 is a (0, k)-nested tube partition. Finally, we construct P from P 1 , by placing at every base cell of P 1 labelled by a cell c a copy of P 2 restricted to the domain c. The base cells of P are the base cells of P , and we let F = F . The result is a nested partition P with the desired depth, complexity, and bounds over constants, and a partition value function F such that F = F . Given two affine equalities E : n i=1 a i x i + b = 0 and E : n i=1 a i x i + b = 0, let A = n i=1 a i and A = n i=1 a i denote the sums of their respective partial derivatives. Note that ν + d 2 must belong to a non-diagonal border of c, while ν + d 1 either belongs to a non-diagonal border of c or equals ν (whenever ν ∈ c). Thus, the optimal value of d for evaluating the sup must correspond to either delay 0 or to a delay leading ν to a non-diagonal border (this observation is proven formally in [START_REF] Alur | Optimal reachability for weighted timed games[END_REF]).

If B is a non-diagonal border of c, and ν is a valuation of R X 0 , there exists a unique

d ∈ R such that ν + d ∈ B . In fact, if B is described by n i=1 a i x i + b = 0 and A = n i=1 a i , then d = - 1 A ( n i=1 a i • ν(x i ) + b) .
We name this delay d ν,B , and it must belong to [0, [PreTime e,c,B (F )]) .

d ν ] if B is reachable from ν by time-elapse. 3 If c is a cell of C ν , let B ν (c)
Recall that we will ultimately compute the maximum over all edges e from to of PreTime e (Guard g (Unreset Y (V ))). Instead of computing the maximum with F in every PreTime e computations, we will do it as a last step. Let a y y = n i=1 a i x i +b be the equation of F (c), and let A = n i=1 a i . Let n i=1 a i x i +b = 0 be the equation of B, with A = n i=1 a i = 0 the sum of its partial derivatives. We obtain the following equalities:

d ν,B = - 1 A ( n i=1 a i • ν(x i ) + b ) F (c) ν+d ν,B = 1 a y n i=1 a i • ν(x i ) + Ad ν,B + b F (c) ν+d ν,B • A a y = n i=1 (A a i -Aa i ) • ν(x i ) + (A b -Ab ) PreTime e,c,B (F )(ν) • A a y = n i=1 (A a i -Aa i -a y a i • wt( )) • ν(x i ) +(A b -Ab -a y b • wt( ) + A a y • wt(e)) ,
and thus PreTime e,c,B (F )(ν) is described by an equation a 

f y y = n i=1 a f i x i + b f , with a f y ∈ N >0 , a f y nβ P β F , b f ∈ Z, |b f | β P β F (2n + |wt( )| + n|wt(e)|), and for all i ∈ [1, n], a f i ∈ Z and |a f i | β P β F (2n + |wt( )|). x 1 x 2 1 2 0 1 2 x 1 x 2 1 2
P β F (2n + |wt( )| + n|wt(e)|) in F cb .
Then, we can use all (P c b , F cb ) to define a unique (P , F ), by inserting all of the new diagonal equalities at level k 1 + 1 (the base tubes of P ).

We finally need to adapt Lemmas 10.3 and 10.4 to handle nested tube partitions instead of nested partitions.

Corollary 10.2. If (P, F ) is a (k 1 , k 2 )-nested tube partition of complexity at most m 1 , m 2 , then applying the Guard g operator for a non-diagonal guard g results in a (k 1 , k 2 + 1)-nested tube partition of complexity at most m 1 , max(m 2 , 2n) . Applying the Unreset Y operator results in a (k 1 , max(k 1 , k 2 ))-nested tube partition of complexity at most m 1 , max(m 1 , m 2 ) when (P, F ) is atomic. Proposition 10.1. Let V be a piecewise affine value function, encoded as a nested tube partition (P , F ) for each ∈ L, where every P is an atomic (k 1 , k 2 )-nested tube partition of complexity at most m 1 , m 2 , with constants bounded by β P in P and β F in F . Let q = |E| be the number of edges in G. Then there exists a piecewise affine value function V , encoded as a nested tube partition (P , F ) for each ∈ L, where every P is an atomic (k 1 + 5, max(k 1 , k 2 ) + 3)-nested tube partition of complexity at most m 1 , m 2 and constants bounded by β P in P and β F in F , such that V = F(V ). If we let k denote max(k 1 , k 2 ) and m denote max(m 1 , m 2 ), it holds that:

m 1 max          m 1 , 2q 2 , 8q(k + 1) 2 • Splits(max(m, 2n), n) 2(k+1) , (k + 3)(max(4, 2qm, 4qn)) k+3 • Splits(max(4, 2qm, 4qn), n) k+3 m 2 max(2qm, 4qn, 2q 2 ) β P 2 23 n 17 max(β P , M ) 32 β F 2nβ F max(β P , M )(2n + w L max + nw E max )
Proof. Fix a location ∈ L Max . the case L Min is symmetrical and will not be detailed. If ∈ L t , let (P , F ) = (P , F ). Otherwise,

V = max e=( ,g,Y, )
PreTime e (Guard g (Unreset Y (V ))) .

For every location , we construct, by Corollary 10.2 and Lemma 10.6, a nested tube partition (P , F ) encoding Guard g (Unreset Y (V )). Every P is an atomic (k 1 + 1, k + 1)nested tube partition of complexity at most m 1 , m 2 , with

m 1 k(max(m, 2n)) k • Splits(max(m, 2n), n) k
and m 2 max(m, 2n), with constants bounded by 2n max(β P , M ) 2 in P and β F in F . The next step is to apply Lemma 10.9 in order to obtain for every edge from to a pair (P e , F e ) such that max( F , F e ) = PreTime e ( F ). The nested partition P e is a (k 1 + 2, k + 1)-nested tube partition of complexity at most m 1 , max(m, 2n) , with

m 1 max(m 1 , 4(k + 1) 2 • Splits(max(m, 2n), n) 2(k+1) ) ,
with constants bounded by 4n 2 max(β P , M ) 4 in P e and 2nβ F max(β P , M )(2n + w

L max + nw E max ) in F e .
We can now apply Corollary 10.1 to compute max e=( ,g,Y, ) F e . The result is a (k 1 + 3, k + 2)-nested tube partition (P E , F E ) of complexity at most max(qm 1 , 4q(k + 1) 2 • Splits(max(m, 2n), n) 2(k+1) , q 2 ), max(qm, 2qn, q 2 ) , with constants bounded by 32n 4 max(β P , M ) 8 in P E and 2nβ F max(β P , M )(2n + w L max + nw E max ) in F E . Finally, we apply Corollary 10.1 and Lemma 10.6 to compute an atomic representation of max( F E , F ), resulting in a nested partition encoding V with the desired bounds on depth, complexity, and greatest constants.

Exponential vs doubly-exponential

We can now state the main result of this chapter.

Theorem 10.1. Given i 0, computing Val i G can be done in time doubly-exponential in i and exponential in the size of G.

Proof. This result is derived from Proposition 10.1. Indeed, we can apply it i times, and obtain a piecewise affine value function of depth at most linear in k 1 , k 2 , and i, thus of depth linear in the size of the input value function and in i. The final complexity m 1 , m 2 , and the bounds on constants β P and β F , are at most doubly exponential in i and exponential in the size of G, and we conclude by Lemma 10.1. We have seen that the size of the piecewise affine value functions handled in the computation is doublyexponentially bounded. This translates into a 2-EXPTIME procedure as the operations over value functions that we introduced can all be performed in time polynomial relative to the size of their input.

Let us now discuss the result of [START_REF] Alur | Optimal reachability for weighted timed games[END_REF], where an exponential upper bound on the bounded value problem is obtained with a non-symbolic algorithm on a slightly different setting (with non-negative weights only, without final weights, in a concurrent setting).

Their concurrent setting generalizes ours, the sign of weights had seemingly no impact in the proofs, and the symbolic version requires minor changes related to the continuity of value functions and to the way guards are handled. These changes should not affect complexity significantly, and the reason for this exponential gap is not apparent.

As a tentative answer, we make the following observation. If the game has no resets, i.e. Y = ∅ on all edges, the complexity of our approach becomes exponential.5 In [START_REF] Alur | Optimal reachability for weighted timed games[END_REF], the way one should deal with resets is not detailed, it is therefore left open whether we could obtain an exponential bound or whether their solution is in fact doubly-exponential.

We claim that the bound obtained in Proposition 10.1 is tight, in the sense that there exists a nested tube partition P , of complexity m 1 , m 2 , such that if P of complexity m 1 , m 2 is obtained after applying F, then m 1 = Θ(m n-1 1 ). This is the root of the issue, as we would need m 1 = O(m 1 ) in order to obtain an exponential bound:

• If a transformation m := am is applied i times on some m 0 , for a fixed constant a, we obtain a i m 0 , which is exponential in i.

• However, applying i times the transformation m := m n-1 on m 0 outputs m (n-1) i 0 , which is doubly exponential in i.

Example 10.4. Let p 1 , . . . p n-1 be n -1 pairwise distinct prime numbers. For every

d ∈ [1, n -1], i ∈ [1, p d -1], let E i d denote the affine equality x d -x n - i p d = 0 ,
and let

E d = {E i d | i ∈ [1, p d -1]}. Let E denote E 1 ∪ • • • ∪ E n-1 . It holds that |E| = n-1 d=1 (p d -1) ,
because the affine equalities are pairwise distinct:

E i d = E i d implies d = d and i p d = i p d
, where i p d and i p d are irreducible fractions, such that i = i . Let P denote the 1-nested partition of domain R X 0,<M where the root is partitioned by E. Since every E i d is diagonal, P is in fact an atomic (1, 0)-nested tube partition of complexity n-1 d=1 (p d -1), 0 . After applying Unreset {xn} , we obtain a (0, 1)-nested tube partition of complexity 0, n-1 d=1 (p d -1) . Indeed, the root is now split by the set of non-diagonal affine equalities

E = {Unreset {xn} (E i d ) : x d - i p d = 0 | d ∈ [1, n -1], i ∈ [1, p d -1]} , with |E | = n-1 d=1 (p d -1
) once again. The next step is to apply Lemma 10.6 in order to make the tube partition atomic. We claim that the output is a (1, 1)-nested tube partition with n-1 d=1 (p d -1) diagonal equalities. This comes from the fact that every new diagonal intersection

Unreset {xn} (E i d ) ∩ d Unreset {xn} (E i d ), with d = d , is unique: its equation is x d -x d + i p d - i p d = 0 , such that if E j d and E j d create the same diagonal, then i -j p d = i -j p d ,
and thus i = j and i = j (they are both irreducible fractions with distinct denominators). Overall, we started with m 1 = n-1 d=1 (p d -1) diagonal borders, and ended up with m 1 = n-1 d=1 (p d -1) diagonal borders after the unreset and pretime steps. It is well known (see e.g. [START_REF] Rosser | Explicit bounds for some functions of prime numbers[END_REF]) that for γ ∈ N large enough, if p is the γ-th prime number, then γ log(γ) + γ log(log(γ)) -γ < p -1 < γ log(γ) + γ log(log(γ)). It follows that for all γ ∈ N large enough, if we fix p 1 as the γ-th prime number, and p 2 , . . . , p n-1 the next prime numbers in order, then

γ log(γ) + γ log(log(γ)) -γ < p 1 -1 , p n-1 -1 < (γ + n -1) log(γ + n -1) + (γ + n -1) log(log(γ + n -1)) .
Overall, m 1 = Θ(γ log(γ)) and m 1 = Θ((γ log(γ)) n-1 ), thus our operations increase m 1 polynomially, whereas a linear increase is needed.

It should be noted that we do not know of any example where a double-exponential cost function (P , F ) for each ∈ L that represents V . As explained before, a crucial property is that, for a given valuation ν, the delays d that need to be considered in the sup or inf operation of F(V ) (ν) correspond to the intersection points of the diagonal half line containing the time successors of ν and borders of cells (if ν b is such a valuation, d = ν b -ν ∞ is the associated delay). In particular, there is a finite number of such borders, and the final F(V ) function can be written as a finite nesting of finite min and max operations over affine terms, each corresponding to a choice of delay and an edge to take. Formally, there are several cases to consider to define those terms, depending on delay and edge choices. For each available edge e, those terms can either be: In the first case, the resulting partial derivatives are 0 for clocks in Y, and the same as the partial derivatives in V for all other clocks, which allows us to conclude that they are bounded by Λ. We now consider the second case. We argue that the second case could be decomposed as a delay followed by an edge of the first case, meaning that we can assume Y = ∅ without loss of generality.

There are again two cases: the border B being inside a region or on the frontier of a region.

If the border is not the frontier of a region, it is the intersection points of two affine pieces of V whose equations (in the space R n+1 whose n first coordinates are the clocks (x 1 , . . . , x n ) and the last coordinate y corresponds to the value V (x 1 , . . . , x n )) can be written y = n i=1 a i x i + b (before the border) and y = n i=1 a i x i + b (after the border). Therefore, valuations at the borders all fulfill the equation n i=1

(a i -a i )x i + b -b = 0 (10.3) We let A = n i=1 (a i -a i ).
Consider that is a location of Min (the very same reasoning applies to the case of a location of Max). Since F computes an infimum, we know that the function mapping the delay d to the weight obtained from reaching ν + d is decreasing before the border and increasing after. These functions are locally affine which implies that their slopes verify: (10.4)

We deduce from these two inequalities that A 0. The case where A = 0 would correspond to the case where the border contains a diagonal line, which is forbidden, and thus A > 0. Consider now a valuation of coordinates ν = (x 1 , . . . , x n ) and another valuation of coordinates ν = (x 1 , . . . , x k-1 , x k + λ, x k+1 , . . . , x n ). The delays d and d needed to arrive to the border starting from these two valuations are such that ν + d and ν + d both verify (10.3). We can then deduce

d -d = λ a k -a k A .
It is now possible to compute the partial derivative of F(V ) in the k-th coordinate using

F(V ) ,ν -F(V ) ,ν λ = wt( )(d -d) + V ,ν +d -V ,ν+d λ (10.5) 
. We may compute it by using the equations of the affine pieces before or after the border. We thus obtain

F(V ) ,ν -F(V ) ,ν λ = a k -a k A wt( ) + n i=1 a i + a k F(V ) ,ν -F(V ) ,ν λ = a k -a k A wt( ) + n i=1 a i + a k
In the case where a k a k , the first equation, with (10.4), allows us to obtain that the partial derivative is at most a k . We may then lower wt( ) byn i=1 a i to obtain that the partial derivative is at least a k . Since a k and a k are bounded in absolute value by Λ, so is the partial derivative. We get the same result by reasoning on the second equation if a k a k .

We now come back to the case where the border is on the frontier of a region. Then, it is a segment of a line of equation x k = c for some k and c. V contains at most three values for points of B: the limit coming from before the border, the value at the border, and the limit coming from after the border. The computation of F(V ) considers values obtained from all three and takes the min (or the max). Now, let y = n i=1 a i x i + b be the equation defining the affine piece of V before the border (resp. at the border, after the border). Consider a valuation of coordinates ν = (x 1 , . . . , x n ) and another valuation of coordinates ν = (x 1 , . . . , x j-1 , x j + λ, x j+1 , . . . , x n ). The delays d and d needed to arrive to the border starting from these two valuations are such that ν + d and ν + d both verify x k = c. We can then deduce that d -d = 0 if j = k and d -d = -λ if j = k. It is now possible to compute the partial derivative of F(V ) in the j-th coordinate using (10.5) again. We may compute it by using the equations of the affine piece before the border (resp. at the border, after the border). Then,

V ,ν+d = n i=1 a i (x i + d) + b = n i=1,i =k a i (x i + d) + a k c + b V ,ν +d = n i=1,i =k a i (x i + d ) + a k c + b .
We thus obtain As a corollary, we obtain Lemma 10.10.

F(V ) ,ν -F(V ) ,ν λ = a j if j = k F(V ) ,ν -F(V ) ,ν λ = -wt( ) -

Divergent weighted timed games

We will now explain how to compute all values in a divergent weighted timed game G. This is a decidability result, and our computations will be performed on R(G). First, we use the continuity on regions of final weights to argue that final weights can be considered finite without loss of generality: indeed, the region abstraction can be seen as a (finite) reachability two-player game by saying that ( , r) belongs to Min (resp. Max) if ∈ L Min (resp. ∈ L Max ). If ( , ν) is a target configuration such that Val( , ν) = +∞, then for all ν ∈ [ν], Val( , ν ) = +∞. Therefore, the attractor of Max to these +∞ target configurations in G is a set of regions, equal to the attractor of Max to these +∞ target regions in the finite region game. As a consequence, we can compute all such states of R(G) with complexity linear in the size of R(G), and remove them safely by Lemma 7.2. The same approach can be followed for the final weights -∞. Now, we can compute the set of configurations of value +∞, with a similar technique. Notice that a configuration ( , ν) cannot reach the target locations if and only if ( , [ν]) is not in the attractor of Min to the targets in the finite region game. We can thus compute all such states of R(G) with complexity linear in the size of R(G), and remove them safely by Lemma 7.2.

We then decompose R(G) in SCCs. By Proposition 9.3, each SCC is either positive or negative (i.e. it contains only positive cycles, or only negative ones). Then, in order to find the sign of a component, it suffices to find one of its simple cycles, for example with a depth-first search, then compute the weight of one play following it.

As we did for weighted (untimed) games, we then compute values in inverse topological order over the SCCs. Once the values of all configurations in ( , r) appearing in previously considered SCCs have been computed, they are no longer modified in further computation. This is the case, in particular, for all pairs ( , r) that have value +∞, that we precompute from the beginning. In order to resolve a positive SCC of R(G), we apply the value iteration operator F on the current piecewise affine function, only modifying the pieces appearing in the SCC, until reaching a fixpoint over these pieces. In order to resolve a negative SCC of R(G), we compute the attractor for Max to the previously computed SCCs: outside of this attractor, we set the value to -∞. Then, we apply F for pieces appearing in the SCC, initialising them to -∞ (equivalently, we compute in the dual game, that is a positive SCC), until reaching a fixpoint over these pieces. The next proposition contains the correction and termination arguments that where presented in Propositions 7.3, 7.4, and 7.5 for the untimed setting: Proposition 10.2. Let G be a divergent game with no configurations of value +∞.

1. The value iteration algorithm applied on a positive SCC of R(G) with n region states stabilises after at most n steps.

2. In a negative SCC, region states ( , r) of R(G) of value -∞ are all the ones not in the attractor for Max to the targets.

3. The value iteration algorithm, initialised with -∞, applied on a negative SCC of R(G) with n region states, and no configuration of value -∞, stabilises after at most n steps.

Proof of Proposition 10.2-1. There are no negative cycles in the SCC, therefore there are no configurations with value -∞, and all values are finite. Let K be a bound on the values |V n (ν)| obtained after n steps of the algorithm. 6 Let us fix an integer p > (2K + (n -1) 2 w max )n. We will show that the values obtained after n + p steps are identical to those obtained after n steps only. Therefore, since the algorithm computes enough to generate a play following many negative cycles, before switching to a strategy allowing Min to reach the target (such a strategy exists since no configuration has value +∞ in the game), allows Min to obtain from ( , ν) a negative weight as small as possible. Thus, ( , ν) has value -∞.

Thus, given a negative SCC, we can compute configurations of value -∞ in time polynomial in the SCC's size. Then, finite values of other configurations can be computed by applying F.

Proof of Proposition 10.2-3. From a negative SCC G that has no more configuration of value +∞ or -∞, consider the dual (positive) SCC G obtained by: (i) switching locations of Min and Max; (ii) taking the opposite of every weight in locations and transitions. Sets of strategies of both players are exchanged in those two games, so that the upper value in G is equal to the opposite of the lower value in G, and vice versa. Since weighted games are determined, the value of G is the opposite of the value of G. Then, the value of G can be deduced from the value of G, for which Proposition 10.2-1 applies.

It is then immediate that the values computed with this computation of the smallest fixpoint of F are exactly the opposite values of the ones computed in the dual positive SCC. By Theorem 10.1, we obtain a triply-exponential algorithm computing the value of a divergent weighted timed game. This shows that the value problem is in 3-EXPTIME for divergent weighted timed game. The proof for EXPTIME-hardness comes from a reduction of the problem of solving timed games with reachability objectives [START_REF] Jurdziński | Reachability-time games on timed automata[END_REF]. To a reachability timed game, we simply add weights 1 on every edge and 0 on every location, making it a divergent weighted timed game. Then, Min wins the reachability timed game if and only if the value in the weighted timed game is lower than threshold α = |R(G)|. One direction of this statement's proof is direct by definition of having a value smaller than +∞, and the other comes from the fact that reachability in the timed game implies reachability in the region game in less than α transitions, in turn implying that Min can ensure target reachability in the WTG with weight below α, i.e. Val G (s, ν) α.

In an SCC of R(G), the value iteration algorithm of [START_REF] Alur | Optimal reachability for weighted timed games[END_REF] allows us to compute an ε-optimal strategy for both players (for configurations having a finite value), that is constant (delay or fire an edge) over each piece of the piecewise affine value function. As in the untimed setting, we may then compose such ε-optimal strategies to obtain an ε -optimal strategy in G (ε is greater than ε, but can be controlled with respect to the number of SCCs in R(G)).

Approximating values

In this chapter, we will study almost-divergent weighted timed games. Our goal is to prove Theorem 9.2: Given an almost-divergent WTG G, a location and ε ∈ Q >0 , we can compute an ε-approximation of Val G ( , 0) in time triply-exponential in the size of G and polynomial in 1/ε.

To obtain this result, we follow an approximation schema that we now outline. First, we will always reason on the region game R(G) of the almost-divergent WTG G. The goal is to compute an ε-approximation of Val R(G) (( 0 , [0]), 0) for some initial location 0 . As already recalled, techniques of Chapter 10 allow one to compute the (exact) values of a WTG played on a finite tree, using the value iteration operator F. The idea is thus to decompose as much as possible the game R(G) as a WTG over a tree. First, we decompose the region game into SCCs (left of Figure 11.1), and as in previous chapters we must think about the final weight functions as the previously computed approximations of the values of SCCs coming after the current one in the topological order. We will keep as an invariant that final weight functions are piecewise linear functions with a finite number of pieces, and are continuous on each region.

For an SCC of R(G) and an initial state ( 0 , [0]) of R(G) provided by the SCC decomposition, we follow Chapter 7.4 and show that the game on the SCC is equivalent to a game on a tree built from a semi-unfolding (see middle of Figure 11.1) of R(G) from ( 0 , [0]) of finite depth, with certain nodes of the tree being kernels (parts of R(G) that contain all cycles of weight 0). The semi-unfolding is stopped either when reaching a final location, or when some location (or kernel) has been visited for a certain fixed number of times.

Then, we compute an approximation of Val( 0 , 0) with a bottom-up computation on the semi-unfolding. This computation is exact on nodes labelled by a single region state s, but approximated on kernel nodes K s . For the latter, we use the corner-point abstraction (right of Figure 11.1) over 1/N -regions to compute values, and prove that this provides an 1/N -approximation of values.

Finally, we will use the semi-unfolding structure to derive our second result, stated in Theorem 9.3: it is a more symbolic approximation schema based on the value iteration algorithm only. It is more symbolic in the sense that it does not require the SCC decomposition, the computation of kernels nor the semi-unfolding of the game in a tree.

Remark. As in previous chapters, one can assume without loss of generality that final weights are finite. Then, it is easy to detect the set of states with value +∞: these are all the states from which Min cannot ensure reachability of a target location ∈ L t with wt t ( ) < +∞. It can therefore be computed by an attractor computation, and is indeed a property constant on each region. In particular, removing those states from R(G) does We will therefore assume that the considered WTG have no configurations with value +∞, and no target configuration with final weight +∞ or -∞.

Kernel of an almost-divergent WTG

The approximation procedure described above uses kernels in order to group together all cycles of weight 0. We study those kernels and give a characterisation allowing computability. Contrary to the non-negative case studied in [START_REF] Bouyer | On the value problem in weighted timed games[END_REF], the situation is more complex in our arbitrary case, since weights of both locations and edges may differ from 0 in the kernel. Moreover, it is not trivial (and may not be true in a non almost-divergent WTG) to know whether it is sufficient to consider only simple cycles, i.e. cycles without repetitions.

We will now construct the kernel K as the subgraph of R(G) containing all 0-cycles. Formally, let T K be the set of edges of R(G) belonging to a simple 0-cycle, and S K be the set of states covered by T K . We define the kernel K of R(G) as the subgraph of R(G) defined by S K and T K . Edges in T \T K with starting state in S K are called the output edges of K. We define it using only simple 0-cycles in order to ensure its computability. However, we now show that this is of no harm, since the kernel contains exactly all the 0-cycles, which will be crucial in the approximation schema we present in Section 11.3. Proposition 11.1. A cycle of R(G) is entirely in K if and only if it is a 0-cycle.

Proof. We prove that every 0-cycle is in K by induction on the length of the cycles. The initialisation contains only cycles of length 1, that are in K by construction. If we consider a cycle p of length n > 1, it is either simple or it can be rotated and decomposed into p p , p and p being smaller cycles. Let ρ be a corner play following p p . We denote by ρ the prefix of ρ following p and ρ the suffix following p . It holds that wt Σ (ρ ) = -wt Σ (ρ ), and in an almost-divergent SCC this implies wt Σ (ρ ) = wt Σ (ρ ) = 0. Therefore, by Lemma 9.1 both p and p are 0-cycles, and they must be in K by induction Now, if p is a cycle of R(G) in K, there exists a cycle p such that pp is a 0-cycle, therefore p is a 0-cycle.

Semi-unfolding of almost-divergent WTGs

Given an almost-divergent WTG G, we describe the construction of its semi-unfolding T (G) (as depicted in Figure 11.1). This crucially relies on the absence of states with value -∞, so we explain how to deal with them first: Lemma 11.1. In an SCC of R(G), the set of configurations with value -∞ is a union of regions computable in time linear in the size of R(G).

Proof. If the SCC is non-negative, the cumulated weight cannot decrease along a cycle, thus, there can be no configuration with value -∞.

If the SCC is non-positive, let T t be the set of edges of R(G) whose end state has location in L t . We can prove that a configuration has value -∞ if and only if it belongs to a state where player Min can ensure the LTL formula on edges: (G ¬T t ) ∧ ¬FG T K . The procedure to detect -∞ states thus consists of four attractor computations, which can be done in time linear in |R(G)|.

Let us prove that a configurations has value -∞ if and only if it belongs to a state where player Min can ensure the LTL formula on edges: φ = (G ¬T t ) ∧ ¬FG T K . Since ω-regular games are determined, this is equivalent to saying that a configuration has finite value if and only if it belongs to a state where Max can ensure ¬φ.

If ( , r) is a region state where Min can ensure φ, he can ensure -∞ value from all configurations in ( , r) by avoiding S t for as long as he desires, while not getting stuck in K, and thus going through an infinite number of negative cycles by Proposition 11.1. This proves that a state where Max cannot ensure ¬φ contains only valuations of value -∞. Conversely, if ( , r) is a state where Max can ensure ¬φ = (FT t ) ∨ FGT K , then from ( , r), Max must be able enforce either S t reachability or staying in K forever. In both cases, Max can ensure a value above -∞.

We can now assume that no states of G have value -∞, and that the final weight function maps all configurations to R. Since wt t is piecewise linear with finitely many pieces, wt t is bounded. Let w t max denote the supremum of |wt t |, ranging over all target configurations.

We now explain how to build the semi-unfolding T (G). We only build the semiunfolding T (G) of an SCC of G starting from some state ( 0 , r 0 ) ∈ S of the region game, since it is then easy to glue all the semi-unfoldings together to get the one of the full game. Since every configuration has finite value, we will prove that values of the game are bounded by |R(G)|w max + w t max . As a consequence, we can find a bound γ linear in |R(G)|, w max and w t max such that a play that visits some state outside the kernel more than γ times has weight strictly above |R(G)|w max + w t max , hence is useless for the value computation. This leads to considering the semi-unfolding T (G) of G (nodes in the kernel are not unfolded, see Figure 11.1) such that each node not in the kernel is encountered We can compute the values in this game to obtain Val(c 1 ) = 1 and Val(c 1 ) = 3. We then define a value for every configuration in state 1 by linear interpolation, obtaining: (x, y) → 3 -2y . This happens to be exactly (x, y) → Val T (G) ( 1 , (x, y)) in this case, but would only be an ε/3-approximation of it in general. Now, we can compute an ε/3-approximation of Val T (G) ( 2 ) with one step of value iteration, obtaining (x, y) → inf 0<d<2-x (-1) × d + 1 + 3 -2(0 + d) = 3x -2 . The next step is computing an ε/3-approximation of the value of 1 in the game defined by K 1 and its output edges to t and 2 , of respective final weight functions (x, y) → x and (x, y) → 3x -2. This will give us a 2ε/3-approximation of Val T (G) ( 1 ).

Following Section 11.3.1 once again, we should use N 3(5 + 3)/ε and compute values in the 1/N -corners game C N (K 1 ). For ε = 15 this gives N = 2 (which will once again keep the computation exact). We can construct a finite (untimed) weighted game as in Figure 11.4, and obtain a value for each 1/2-corner of state 1 :

• On the 1/2-region (0 < y < 1/2, x = 0), corner (0, 0) has value 2 and corner (0, 1/2) has value 2.

• On the 1/2-region (y = 1/2, x = 0), corner (0, 1/2) has value 2.

• On the 1/2-region (1/2 < y < 1, x = 0), corner (0, 1/2) has value 2 and corner (0, 1) has value 1.

From these results, we define a piecewise-linear function by interpolating the values of 

Symbolic approximation algorithm

The previous approximation result suffers from several drawbacks. It relies on the SCC decomposition of the region automaton. Each of these SCCs have to be analysed in a sequential way, and their analysis requires an a priori refinement of the granularity of regions. This approach is thus not easily amenable to implementation. We instead prove in this section that the symbolic approach based on the value iteration paradigm, i.e. the computation of iterates of the operator F recalled in page 126, is an approximation schema. This is stated in Theorem 9.3, for which we now sketch a proof in this section.

Notice that configurations with value +∞ are stable through value iteration, and do not affect its other computations. Since Theorem 9.3 assumes the absence of configurations of value -∞, we will therefore consider in the following that all configurations have finite value in G.

Consider first a game G that is a kernel. By the results of Section 11.3.1, there exists an integer N such that solving the untimed weighted game Γ N (G) computes an ε/2approximation of the value of 1/N corners. Using the results of [START_REF] Brihaye | Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games[END_REF] for untimed weighted games, we know that those values are obtained after a finite number of steps of (the untimed version of) the value iteration operator. More precisely, if one considers a number of iterations From this observation, we deduce the following property of P : way, T (G) is no longer a semi-unfolding, it is instead a (complete) unfolding of R(G), of a certain bounded depth P + . This new bound P + is bounded by the former depth of T (G) to which is added α times the biggest bound P K we need for the kernels. Now, T (G) is a tree of depth P + whose value at its root is ε-close to the value of G. Finally, the value computed by Val P + G is bounded between Val G and Val T (G) , which allows us to conclude.

The bound P K for a kernel K depends linearly in Λ, the Lipschitz constant of value functions on locations of T (G) reachable from K. Once K has been replaced by its unfolding of depth P K , the Lipschitz constant of the value function at the root of T (G) are thus bounded exponentially in Λ. This means that we ensure a bound for P + that is at most polynomial in 1/ε, and that is of the order of a tower of α exponentials.

Proving the same property on non-positive SCCs requires more work, because the semi-unfolding gives final weight -∞ to stop leaves, which does not integrate well with value iteration (initialisation at +∞ on non-target states). However, by unfolding those SCCs slightly more (at most |R(G)| more steps), we can obtain the desired property with a similar bound P -.

If it does not, then ρ + has a prefix that reaches a stopped leaf in T (G): this must be ρ. This implies (see Lemma 11.4) that wt T + (G) (ρ + ) < -|R(G)|w max -w t max Val T (G) (( ˜ 0 , r 0 ), ν 0 ) . Since this holds for all η > 0, we proved Val T + (G) (( ˜ 0 , r 0 ), ν 0 ) Val T (G) (( ˜ 0 , r 0 ), ν 0 ), which finally implies that the two values are equal.

Then, we can follow the proof of Lemma 11.9 (with T + and T + (G)) in order to conclude. Now, if we are given an almost-divergent game G and a precision ε, we can add the bounds for value iteration obtained from each SCC by Lemmas 11.9 and 11.10, and obtain a final bound P such that for all k P , Val k G is an ε-approximation of Val G .

Discussion

Overall, this leads to an upper bound complexity that is polynomial in 1/ε and of the order of a tower of n exponentials, with n polynomial in the size of the input WTG. However, we argue that this symbolic procedure is more amenable to implementation than the previous approximation schema. First, it avoids the three already mentioned drawbacks (SCC decomposition, sequential analysis of the SCCs, and refinement of the granularity of regions) of the previous approximation schema. Then, it allows one to directly launch the value iteration algorithm on the game G, and we can stop the computation whenever we are satisfied enough by the approximation computed: however, there are no guarantees whatsoever on the quality of the approximation before the number of steps P given above. Finally, this schema allows one to easily obtain an almost-optimal strategy with respect to the computed value. If G is not guaranteed to be free of configurations of value -∞, then we must first perform the SCC decomposition of R(G), and, as G is almost-divergent, identify and remove regions whose value is -∞, by Lemma 11.1. Then, we can apply the value iteration algorithm.

As a final remark, notice that our correctness proof strongly relies on Section 11.3.1, and thus would not hold with the approximation schema of [START_REF] Bouyer | On the value problem in weighted timed games[END_REF] (which does not preserve the continuity on regions of the computed value functions, in turn needed to define final weights on 1/N -corners).

Conclusion

In this thesis we presented new results for several controller synthesis problems on timed automata, that we now summarize, while mentionning possible future research directions and open problems.

Robustness

In Part II, we studied the qualitative robust controller synthesis problem, that asks if a Büchi objective can be guaranteed, in a timed automaton, against infinitesimal perturbations of delays. We developed a zone-based solution to this problem, that relies on computing and comparing the reachability relations of paths in the timed automaton. We complemented our theoretical results by a prototype tool and a case study, that illustrates the application of robust controller synthesis in small or moderate size problems. Our prototype relies on the standard DBM libraries, that we use with twice as many clocks to store the constraints of the normalised constraint graphs encoding reachability relations.

In order to scale to larger models an interesting future direction is to study extrapolation operators, and understanding whether results from reachability analysis on timed automata [BBFL03, BBLP04, HSW11] can be adapted to the robustness setting. This would also be interesting from a theoretical point of view, as it could remove the need for bounded clocks. This seems to be a challenging task, and we plan to start by considering the integration of those operators in the computation of reachability relations. This would be of independent interest, as an abstraction-compatible compositional aproach to reachability analysis of timed systems.

We also plan to explore other ways to improve performance: different strategies can be adopted for the nested forward analysis, switching between the two modes using heuristics, a parallel implementation, etc.

Moreover, we took interest in a more quantitative problem, that asks what is the greatest admissible perturbation for controller. The methods developed for the qualitative problem do not extend to this setting, as we heavily relied on reasoning on arbitrarily small perturbations e.g. for Lemma 5.2. However, if the qualitative problem is satisfied, our symbolic algorithm finds a lasso where controller wins the perturbation game for some maximal perturbation value δ > 0. One could then use the techniques of Chapter 6 to determine the greatest perturbation against which this strategy for controller holds. Controller may be able to resist a greater maximal perturbation with another strategy, where the choice of what edge to follow depends on the perturbations. Indeed, by the results of [START_REF] Sankur | Robust controller synthesis in timed automata[END_REF] such strategies could be safely ignored for the qualitative problem, but this is unlikely to hold in the quantitative setting. Computing the largest admissible perturbation on a general timed automaton is therefore another intriguing perspective. The complexity (and even decidability) of an exact computation of this greatest perturbation is open, and would have to be compared in practice with a binary search approach that tries successively fixed values for δ, as the fixed-perturbation problem can be solved by reduction to Büchi timed games [START_REF] Chatterjee | Timed parity games: Complexity and robustness[END_REF][START_REF] Kim | Robust synthesis for real-time systems[END_REF].

Weighted timed games

Our study of weighted timed games in Part III belongs to a series of works that explore the frontier of decidability. We introduced the first decidable class of weighted timed games with arbitrary weights and no restrictions on the number of clocks. We have given an approximation procedure for a larger class of weighted timed games, where the exact problem becomes undecidable. In addition, we proved the correctness of a symbolic approximation schema, that does not start by splitting exponentially every region, but only does so when necessary. We argue that this paves the way towards an implementation of value approximation for weighted timed games. Such tool would likely struggle with instances of moderate size, but could help with the design and testing of alternative approaches that trade theoretical guarantees with performance.

Another perspective is to extend this work to the concurrent setting, where both players play simultaneously and the shortest delay is selected. It should be noted that several known results on weighted timed games with non-negative weights [BCFL04, [START_REF] Alur | Optimal reachability for weighted timed games[END_REF][START_REF] Bouyer | On the value problem in weighted timed games[END_REF] are stated in such a concurrent setting. We did not consider this setting in this work because concurrent WTGs are not determined, and several of our proofs rely on this property for symmetrical arguments (mainly to lift results of non-negative SCCs to non-positive ones).

A long-standing open problem is the approximation of weighted timed games, i.e. whether one can compute an arbitrarily close approximation of the value of a given game. We successfully solved this problem on the class of almost-divergent games, and introduced in Chapter 9 the slightly larger class of 0-isolated games. We do not have approximation results on this 0-isolated class, and as such it forms a natural intermediate step between the best known decidable class and the general case. The answer to this open question could also be negative, and there remain gaps in the complexity bounds obtained thus far for decidable classes. Therefore, pursuing better lower bounds could prove enlightening, and is another possible direction for future research.

Robust timed games

An interesting generalisation of our results on robustness it to consider timed games instead of timed automata. On top of perturbing delays picked by the controller, the environment could also choose some transitions to follow (for example in a turnbased fashion). The region-based approach of Chapter 4 can be extended to such a setting [START_REF] Oualhadj | Probabilistic robust timed games[END_REF], so that solving the (qualitative) robust controller synthesis problem for a Büchi condition becomes EXPTIME. A purely symbolic method remains some distance away, as the matter would need to be settled without robustness as a first step (by adapting an on-the-fly algorithm for solving finite Büchi games to the timed setting).

Finally, one could consider bringing robustness issues to weighted timed games, by subjecting the controller to perturbations over delays. Under this semantics, the optimal reachability problem stays undecidable [START_REF] Bouyer | Robust weighted timed automata and games[END_REF], and related work considers very restricted classes when combining notions of optimality and robustness. For instance, the timed automata studied in [BBF + 18] under optimality and robustness concerns are tree-shaped structures with one self-loop for each leaf.
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 1 Figure 1.1.: A transition system modelling a client that requests a sequence of data to a server, receives it and processes it.
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 1 Figure 1.3.: A two-player turn-based game, where controller owns the circle states s 0 and s t , and the environment owns the rectangle state s 1 .

  we say that we performed a time elapse of delay d. The time-successors of ν are the valuations ν + d with d 0. Similarly, we refer to all ν + d in R X 0 with d 0 as time-predecessors of ν. The set of points that are either time-predecessors or time-successors of a valuation ν form the unique diagonal line in R X 0 that contains ν. If Y is a subset of X , we define ν[Y := 0] as the valuation such that ∀x ∈ Y, (ν[Y := 0])(x) = 0 and ∀x ∈ X \Y, (ν[Y := 0])(x) = ν(x). This operation is called a reset of clocks Y. We extend those notions to sets of valuations in a natural way. The set of time-successors of Z ⊆ R X 0 , denoted PostTime(Z), contains the valuations that are time-successors of valuations in Z. The reset of Z ⊆ R X 0 by Y, denoted Z[Y := 0], contains the valuations ν[Y := 0] such that ν ∈ Z.

  whose states are configurations and where T is the set of transitions ( , ν) d,e -→ ( , ν ) obtained from every delay d ∈ R 0 and edge e = a,g,Y ---→ in A such that ν + d |= g and ν = (ν + d)[Y := 0]. An execution ρ in A refers to a path in A , it describes a sequence of delays and edges to take, starting from configuration first(ρ).

  ( , r ) such that e = a,g,Y ---→ is an edge of A, r is a time-successor of r, r |= g and r [Y := 0] = r .
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  select and remove a zone state ( , Z) from Waiting 5 if for all ( p , Z p ) ∈ Passed, = p or Z = Z p then 6 add ( , Z) to Passed 7 for e = ( , a, g, Y, ) ∈ E do 8 if Post e (Z) = ∅ then add ( , Post e (Z)) to Waiting 9 return Passed

Figure 3

 3 Figure 3.1.: A timed automaton, with initial location 0 and targets { 2 , 3 }.

  r}, a = b, and we define γ k a,b = (≺, p);• ν (x a ) -ν (x b ) + ν r (x c ) -ν r (x d ) ≺ p,with a = b and c = d, and we define γ a,b,c,d = (≺, p). This constraint can appear in two ways: either from

  Figure 5.2.: Normalised constraint graphs involved in a possible deduction of stronger constraints.

Figure 5

 5 Figure 5.3.: On the left, the branching constraint graph G δ e 1 e 2 encoding the operator CPre δe 1 e 2 , where e 1 and e 2 refer to edges considered in Figure5.1. Dashed edges have weight (<, .), plain edges have weight ( , .). Black edges (resp. orange edges, pink edges, red edges, blue edges) are labelled by (., 0) (resp. (., -δ), (., δ), (., 2),(., -2)). On the right, a decomposition of a path in a branching constraint graph G δ π (proof of Proposition 5.3).

Figure 5

 5 Figure 5.5.: Proof scheme of Lemma 5.6. Edges represent region paths, the dashed ones are non-punctual.

Figure 5

 5 Figure 5.7.: The timed automaton encoding the blue train of Figure 5.6.

Figure 6

 6 Figure 6.1.: Piecewise affine bounds. Dashed lines represent strict bounds, and infinite bounds are represented at the top and bottom.

  a rational numbers whose corresponding irreducible fraction a /b satisfies |a | 3CP and b P . Thus, f can be encoded in size O(K log(P C)) as a sequence of split points and affine pieces of the form (δ 0 , f (0)) ≺ 1 c 1 -δp 1 -----→ . . . ∞ with constants c i and p i encoded in binary, and rational pairs (δ i , f (δ i )) encoded as irreducible fractions. Lemma 6.3. Let f, g be piecewise affine bounds, such that f is bounded by K[C -δP ] and g is bounded by K [C -δP ]. Then, min(f, g) is bounded by (2(K +K )+1)[max(C, C )δ max(P, P )], f + g is bounded by (K + K )[(C + C ) -δ(P + P )], and f ( * ) is bounded by 0[0 -δ0].

|S|G

  , the value with bounded horizon |S|. For every state s, we have Val |S| G (s, σ Min ) = Val G (s), so that Val |S| G Val G . As Val G Val k G holds for any k ≥ 0, Val G = Val |S| G

  G (s) Val G (s, σ Min ) by definition of Val as an infimum over strategies, and Val G (s, σ Min ) Val G (s, σ Min ) as explained before. Finally, Val G (s, σ Min ) = Val G (s) by optimality of σ Min , and thus Val G (s) Val G (s). If Min has no optimal strategies in G, there exists a family of such switching strategies whose value converges towards Val G (s), and the same result holds.

Figure 7

 7 Figure 7.2.: Proof scheme of Proposition 7.6.

Figure 8 .

 8 Figure 8.1.: A weighted timed game with a single clock x, and a depiction of its value function. Weights are indicated in bold font on locations and edges. Locations belonging to Min (resp. Max) are depicted by circles (resp. squares). The target location is 3 , whose final weight function is zero.

Lemma 8. 3 .

 3 If p is a finite region path in R N (G), the set of cumulated weights {wt Σ (ρ) | ρ play of G following p} is an interval bounded by the minimum and the maximum values of the set {wt Σ (ρ) | ρ corner play of Γ N (G) following p}.

Figure 9

 9 Figure 9.1.: Classes of weighted timed games, and their respective restrictions to nonnegative weights.

Figure 9 .

 9 Figure 9.2.: Proof scheme of Lemma 9.2. The top labels are corners of first(p), the bottom ones are corners of first(p ), and edges represent corner plays.

Figure 10 .Figure 10

 1010 Figure 10.3.: A nested partition of R X 0,<2 .

Lemma 10 . 1 .

 101 Let (P, F ) encode a piecewise affine value function, such that (P, F ) uses space |(P, F )|. Then, there exists k, m, β P and β F such that P is a k-nested partition of complexity at most m , with constants bounded by β P in P and β F in F , with k, m at most linear in |(P, F )|, and β P , β F at most exponential in |(P, F )|.

Figure 10

 10 Figure 10.4.: On the left, the nested partition of Figure 10.3. On the right, the corresponding nested partition obtained by applying Lemma 10.4 for reset Y = {x 2 }. The affine value function of the grey cell on the right is obtained from the grey cell on the left, by setting the partial derivative of x 2 to 0.

  In particular, if c does not intersect the sub-space where every clock in Y equals 0, then Unreset Y (c) = ∅. Similarly, if c is a base cell of P and F maps c to the affine value function y = n i=1 a i x i + b = 0, let Unreset Y (F (c)) denote the affine function y = n i=1 a i x i + b = 0 ,

Figure 10

 10 Figure 10.5.: The atomic nested tube partition derived from the nested partition of Figure 10.3 by Lemmas 10.5 and 10.6.

  denote the non-diagonal borders of c reachable from ν by time-elapse. The supremum PreTime e ( F )(ν) is then equal to max F ν max c∈Cν max B∈Bν (c) [d ν,B • wt( ) + wt(e) + F (c) ν+d ν,B ] where F ν corresponds to the delay 0, and F (c) ν+d ν,B corresponds to a jump arbitrarily close to B. 4 If the nested tube partition (P, F ) is atomic, it follows that every other valuation in the same cell ν ∈ [ν] P can reach the same set of borders by time elapse, i.e. C ν = C ν and B ν (c) = B ν (c) for all c ∈ C ν . In consequence, we rename those sets C c and B c (c) if c = [ν] P . We introduce an operator PreTime e,c,B , indexed by an edge, a cell and a non-diagonal border of the cell, that maps a partition value function F to the value function: ν → d ν,B • wt( ) + wt(e) + F (c) ν+d ν,B . If the nested tube partition (P, F ) is atomic, we can therefore write for each base cell c b of P that PreTime e ( F ) restricted to domain c b equals max( F , max c∈Cc b max B∈Bc b (c)

  Lemma 10.7. Let (P, F ) be a piecewise affine value function, where P is an atomic nested tube partition, with constants bounded by β P in P and β F in F . Let c b be a base cell of P , e be an edge from to , c be a cell in C c b and B be a border in B c b (c). Then there exists an affine value function f of equationa f y y = n i=1 a f i x i + b f , with constants bounded by β P β F (2n + |wt( )| + n|wt(e)|), such that f = PreTime e,c,B (F ) on c b . Moreover, n i=1 a f i = -a f y • wt( ). Proof. Let ν be a valuation in c b . As B ∈ B c b (c) it holds that d ν,B ∈ [0, d ν ], such thatPreTime e,c,B (F )(ν) = d ν,B • wt( ) + wt(e) + F (c) ν+d ν,B .

  Indeed, if (P, F ) is atomic and Y = ∅ then the unreset of a border B of a base cell c of P can only partition Unreset Y (c) into several sub-cells if B is diagonal, therefore the resulting partition can only contain the Unreset of diagonal borders. Note that Unreset Y (B) may be diagonal or not, depending on what clocks are reset, and thus we obtain a complexity of m 1 , m 1 . If Y = ∅ the complexity stays at m 1 , m 2 . Let us now bring everything together for the value iteration operator F.

1.Figure 10

 10 Figure 10.7.: A cell c as described in the proof of Lemma 10.11. Dashed lines are borders of c, dotted lines are proof constructions.

  partial derivatives are bounded, in absolute value, by |wt( )| + (n -1)Λ.

Figure 11

 11 Figure 11.1.: Static approximation schema: SCC decomposition of R(G), semi-unfolding of an SCC, corner-point abstraction for the kernels

Figure 11

 11 Figure 11.4.: The finite weighted game obtained from C 1 (K 1 ), where c i and c i are the corners of i in T (G).

Figure 11

 11 Figure 11.6.: The value function (x, y) → Val T (G) ( 1 , (x, y)), projected on x = 0, is depicted in red. Black dots represent the values obtained for 1/3-corners using the corner-points abstraction, and the derived approximation of the value function is depicted in blue

P

  = |L||Reg N (X , M )|(|X | + 1)(2(|L||Reg N (X , M )|(|X | + 1) -1)w max + 1) , then Val P Γ N (G) (( , r, v), v) = Val Γ N (G) (( , r, v), v).

Table 5 .

 5 1.: Summary of experiments with different sizes. In each scenario, we assign a different objective to a subset of trains. The answer is yes if a robust controller was found, no if none exists. TO stands for a time-out of 30 minutes. so that mδ < 50, perturbations do not accumulate too much and the controller can always choose delays for both trains and satisfy the constraints. This case corresponds to scenario A in Table5.1. Consider now the same network but with two different objectives: [0, 300 • m] and [300 • m,

	Scenario m n #Clocks robust? time
	A	6 2	4	yes	4s
	B	6 2	4	no	2s
	C	6 3	5	no	263s
	D	6 3	4	yes	125s
	E	6 4	2	yes	53s
	F	6 4	2	yes	424s
	G	6 4	8		TO
	H	6 4	8		TO
	I	20 2	2	yes	76s
	J	20 2	2	yes	55s
	K	30 2	2	yes	579s

Table 2 .

 2 : Solving weighted timed games with arbitrary weights Interestingly, a subclass called robust timed games, not far from our divergence hypothesis, admits decidability results for other payoffs. A weighted timed game is robust if, to say short, every simple cycle (cycle without repetition of a state) has weight non-negative or less than a constant -ε. Solving robust timed game can be done in EXPSPACE, and is EXPTIME-hard. Moreover, deciding if a weighted timed game is robust has complexity 2-EXPSPACE (and coNEXPTIME-hard). This contrasts with our PSPACE results for the membership problem. 2 It has to be noted that extending our techniques and results in the case of robust timed games is intrinsically not possible: indeed, the value problem for this class is undecidable[START_REF] Bouyer | On the value problem in weighted timed games[END_REF].

	Timed	divergent	weights in N almost-divergent	all WTG
	Value pb.	2-EXPTIME [BCFL04]+[ABM04]	undecidable [BJM15]	undecidable [BBR05]
	Approx. pb.	/	2-EXPTIME [BJM15]+[ABM04]	?
	Value +∞		EXPTIME-complete [BCFL04]	
	Timed	divergent	weights in Z almost-divergent	all WTG
	Value pb.	3-EXPTIME EXPTIME-hard Thm. 9.1	undecidable [BJM15]	undecidable [BGNK + 14]
	Approx. pb.	/	3-EXPTIME Thm. 9.2	?
	Value -∞	EXPTIME-complete Prop. 10.2,9.1	undecidable Prop. 9.2
	Value +∞		EXPTIME-complete Prop. 7.1	
	Membership	PSPACE-complete Thm. 9.1,9.2	/

  play is a sequence of consecutive transitions, it is non-maximal if it is finite and ends in S\S t and maximal if it is infinite or ends in S Min , σ Max ) denotes the unique maximal play starting in s and conforming to σ Max and σ Min . this comes without loss of generality, as any non-target deadlock state can become a target state of final weight +∞.

t ; • A strategy for player Min (resp. player Max) is a mapping σ Min : FPlays Min → Σ (resp. σ Max : FPlays Max → Σ) from non-maximal plays ending in a state of Min (resp. Max) to labels; • play(s, σ 1 Weighted games are called min-cost reachability games in [BGHM16]. 2 If t = s a -→ s is a transition in G, we denote wt(s, a, s ) the weight wt(t). 3

  1.: SCC decomposition of a divergent weighted game: {s 1 , s 2 , s 3 , s 4 } and {s 7 } are negative SCCs, {s 6 } and {s 8 , s 9 } are positive SCCs, and {s 5 } is a trivial positive SCC.

we continue with SCC {s 6 }, also keeping a new target state s 8 with (already computed) final weight 0. For the trivial SCC {s 5 }, a single application of F suffices to compute the value. Finally, for the SCC {s 1 , s 2 , s 3 , s 4 }, we use a target state s 5 with final weight 1. Notice that this game is divergent, since, in each SCC, all cycles have the same sign.

  Figure 10.6.: On the left, the atomic nested tube partition of Figure 10.5.On the right, the corresponding nested tube partition obtained by applying Corollary 10.2 for reset Y = {x 2 }. Note that every border on the right is derived from a diagonal border on the left, by atomicity, such that the blue and red borders can be ignored. that by Lemma 10.8, (P c b , F cb ) is a (k 1 + 1, k 2 )-nested tube partition of complexity at most max(m 1 , 4k 2 2 • Splits(m 2 , n) 2k 2 ), m 2 , with constants bounded by 2β 2 P in P c b and β
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Do not imitate in real life.

If 0 and 0 are neutral for ⊕ then 0 = 0 ⊕ 0 = 0 , this also holds on 1 with ⊗.

In particular, wt k (s, s ) equals +∞ if there are no such path, and wt 0 (s, s ) is equal to 0 if s = s and +∞ otherwise.

Positional strategies are often called memoryless in the literature, as they always make the same decision in a given state, thus one does not need to remember the history ρ to follow them.

A single backwards breadth-first search from S t is enough if one keeps track, for each state of Max, of the number of successors that have not yet been added to S . When this counter reaches 0 the state is added.

if d is negative, ν + d may not belong to R X 0

the union of two zones may not be a convex set

It is the standard addition over R, extended with c + (+∞) = +∞ and c + (-∞) = -∞ for all c ∈ R, and (+∞) + (-∞) = +∞.

DBMs are usually defined without the bound (<, -∞): they only appear when the associated zone is empty, in which case computations are stopped as soon as possible. The two definitions are equivalent for non-empty zones.

Timed words are usually defined with global time stamps instead of delays, but one can convert from one to the other as needed.

r is obtained by replacing every bound (<, c) by ( , c) in the DBM encoding r as a zone.

usually called zone graph

guards are seen as conjunctions of difference bound constraints by Lemma

2.1, with exactly one constraint for every pair of clocks in X 0

Here we borrow notations from[START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF], where M 1 [x, y] refers to the constant c such that M 1 [x, y] = (≺ , c).

We show that a strict non-diagonal atomic constraint satisfied by r is also satisfied by r . If r is non-punctual then r = r, and they satisfy the same constraints. If r is punctual, a constraint x < c with x ∈ X is satisfied by r if and only if c ι(x) + 1. Since ι (x) ι(x) for all x ∈ X , c ι (x) + 1 and r satisfies x < c. A constraint

It performs computations on the entire state-space at once, whereas[START_REF] Alur | Optimal reachability for weighted timed games[END_REF] required constructing the entire region abstraction.

While our divergent games have a similar definition, both classes are incomparable.

Since Val G (s) ∈ Z ∞ , these other thresholds reduce to multiple instances of the value problem with threshold α, α -1, or its negation with threshold > α.

After q steps, the value iteration algorithm has set to a finite value all states, since it extends the attractor computation.

This is in contrast with the general case of (non divergent) finite weighted games where the problem of deciding if a state has value -∞ is as hard as solving mean-payoff games[START_REF] Brihaye | Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games[END_REF].

Equivalently, one might assume that every edge is equipped by a unique action.

Observe that this assumption is without loss of generality for (weighted) timed automata [BFH + 01], but we do not know if it is for weighted timed games: in particular in the presence of negative weights, the technique of [BFH + 01] can not be directly applied.

The result is stated in [BGH+ 15] for weighted timed games (called priced timed games) with one

For example, a player may want to let time elapse as much as possible, but with delay d < 1 because of a strict guard.

When all locations belong to the same player

We refer to the cycle decomposition procedure described in Chapter 7.4 for finite transition systems. It is here applied on the region abstraction, seen as a finite transition system.

Once again, we could replace (-1, 1) by (-κ, κ) with 0 < κ < 1 to define an equivalent notion of κ-almost-divergence.

i.e. it can be done using space polynomial in |G| and log(B).

The global clock bound M is at most exponential in the size of G, and |R(G)| is at most exponential in |X | but polynomial in M , therefore |R(G)| is at most exponential in |G|.

Compared with the untimed setting, we no longer care about the encoding of weights: if they are stored in binary, w max is at most exponential in the size of G, therefore log(w max ) is polynomial.

If c P = R X 0,<M , then m 0 = n.

In fact, d ν = M -ν ∞ .

Note that it can be equal to d ν , as x -M = 0 is a border of the cell R X 0,<M .

In particular, if ν + d ν,B ∈ c then F (c) evaluated on ν + d ν,B may not equal F ν+d ν,B .

In this case, the Unreset Y steps can be skipped, and one can replace every m and k by m 2 and k 2 , respectively, in Proposition 10.1. Overall, m 1 (resp. m 2 ) end up linear in m 1 (resp. m 2 ) instead of being polynomial.

The value iteration emulates the attractor computation, so every value is finite after n steps. Moreover, functions ν → V n (ν) are piecewise affine with a finite number of pieces over a bounded space, allowing us to obtain this uniform bound K.

Indeed, inf and sup are 1-Lipschitz-continuous functions, and with a fixed play ρ, the mapping wt t → wt Σ (ρ) + wt t (last(ρ)) is 1-Lipschitz-continuous.

Remerciements

An entirely symmetrical proof lets us deal with S +∞ in the same way:

Proof of Lemma 7.2.2. Let S = S Min S Max denote S\S +∞ , and let G denote the restriction of G to S . Let us show that for all s ∈ S , Val G (s) = Val G (s).

Once again, all strategies of Min and Max in G can be extended arbitrarily to become strategies in G that coincide, such that if σ Min and σ Min are strategies of Min that coincide then Val G (s, σ Min ) Val G (s, σ Min ), and if σ Max and σ Max are strategies of Max that coincide then Val G (s, σ Max ) Val G (s, σ Max ).

By closure by attractor of Max, any transition starting in a state of S Max must end in a state of S . Therefore, every optimal positional strategy σ Max of Max in G has a corresponding strategy σ Max in G , such that Val G (s)

From every state s of S Min , a positional strategy that chooses a transition jumping into S +∞ must have value +∞. Any other choice would thus be equal or better, and by closure by attractor of Max, there must exist a transition starting in s that ends in S . Therefore, if Min has an optimal strategy then there exists an optimal strategy σ Min of Min in G with a corresponding strategy σ Min in G , and it holds that Val G (s) Val G (s, σ Min ) Val G (s, σ Min ) = Val G (s). If Min only has an optimal family of strategies, the same reasoning holds.

Let S -∞ t (resp. S +∞ t ) denote the set of target states that wt t maps to -∞ (resp. +∞).

Corollary 7.1. If a state of G is in the attractor of Min towards S -∞ t (resp. in the attractor of Max towards S +∞ t ), then it must have value -∞ (resp. +∞). Moreover, if we remove those states from G, the value of the other states does not change.

Proof. If a state s is in the attractor of Min towards S -∞ t , then clearly Min has a (positional) strategy giving value -∞ to s, and Val(s) = -∞. An attractor of Min is always closed by attractor of Min, so we can apply Lemma 7.2 and conclude. Once again, a symmetrical proof lets us deal with the attractor of Max towards S +∞ t .

Then, assuming that all final weights are finite, states with value +∞ are those from which Min cannot reach the target states: thus, they can also be computed and then removed using the attractor algorithm.

Proposition 7.1. If wt t (s t ) ∈ Z for all s t ∈ S t , then a state s has value +∞ if and only if it is not in the attractor of Min towards S t . Moreover, if we remove those states from G, the value of the other states does not change.

Proof. If a state s is not in the attractor of Min towards S t , then Max has a (safety) strategy giving value +∞ to s, and Val(s) = +∞. Conversely, if a state s is in the attractor of Min towards S t , then Min has a strategy giving finite value to s, and Val(s) < +∞. We conclude by Lemma 7.2.

We can therefore assume without loss of generality that all states have value in Z ∪ {-∞} and that all target states have final weight in Z, since all of these attractors can be computed in linear time. As previously explained, finding all states of value -∞ is harder, but whenever we do manage to find them we can safely remove them by Lemma 7.2.

Remark. We showed that removing those states left values unchanged, but it does reduce the space of optimal strategies: some optimal strategies are no longer possible in the smaller game. We argue that this is inconsequential, as the optimal strategies of the sub-game can be extended into optimal strategies of the full game by using simple positional strategies derived from the attractor computations for the states that were removed.

Divergent weighted games

Our first contribution is to solve in polynomial time the value problem, for a subclass of finite weighted games that we call divergent. To the best of our knowledge, this is the first attempt to solve a non-trivial class of weighted games with arbitrary weights in polynomial time. Moreover, the same core technique is used for the decidability result in the timed setting that we will present in Chapter 10. Let us first define the class of divergent weighted games: Definition 7.2. A weighted game G is divergent if every cycle ρ of G satisfies wt Σ (ρ) = 0.

Divergence is a property of the underlying weighted transition system, independent from the repartition of states between players. The term divergent reflects that cycling in the game ultimately makes the accumulated weight grow in absolute value. We will first formalise this intuition by analysing the strongly connected components (SCC) of the underlying transition system (the repartition of states into players does not matter for the SCC decomposition). Based on this analysis, we will obtain the following results:

Theorem 7.1. The value problem over finite divergent weighted games is PTIMEcomplete. Moreover, deciding if a given finite weighted game is divergent is an NLcomplete problem when weights are encoded in unary, and is in PTIME when they are encoded in binary.

SCC analysis

Let G be a weighted game. A play ρ in G is said to be positive (resp. negative) if wt Σ (ρ) > 0 (resp. wt Σ (ρ) < 0). It follows that a cycle in a divergent weighted game is either positive or negative. Recall that a cycle is said to be simple if no states are visited twice (except for the common state at the beginning and the end of the cycle). An SCC of G refers to a set of states that are strongly connected-i.e. there is a path linking every pair of states in the SCC-, and to the sub-game induced by those states. Definition 7.3. An SCC S is said to be positive (resp. negative) if every cycle in S is positive (resp. negative).

( , r)

Figure 8.3.: A region cycle p in the region game (in black), its associated corner plays (in green), and its folded orbit graph (in blue). Note that there is no edge between the top right corner and the bottom right corner, as no corner play goes from the former to the latter.

Proof. The set {wt Σ (ρ) | ρ finite play following p} is an interval as the image of a convex set by an affine function (see [START_REF] Bouyer | On the optimal reachability problem of weighted timed automata[END_REF]Sec. 3.2] for an explanation).

The good properties of the corner-point abstraction allow us to conclude, since for every play ρ following p, one can find a corner play following p of smaller weight and one of larger weight [START_REF] Bouyer | Optimal infinite scheduling for multi-priced timed automata[END_REF], and for every corner play ρ following p and every ε > 0, one can find a play following p whose weight is at most ε away from wt Σ (ρ) by Lemma 8.2.

An important property of the corner-point abstraction, derived from Proposition 2.1, is that corner plays cannot get stuck as long as they follow a region path: Lemma 8.4. Let p be a region path starting from ( , r) and ending in ( , r ). For all corners v of r, there exists a corner play following p that starts in ( , r, v). For all corners v of r there exists a corner play following p that ends in ( , r , v ).

Proof. Pick a valuation arbitrarily close to v. By Proposition 2.1, there exists a play that follows p starting from this valuation. As plays can be expressed as linear combinations of corner plays (see [START_REF] Puri | Dynamical properties of timed automata[END_REF] for details), there exists a corner play that starts in v, and similarly one that ends in v .

Useful theoretical tools stem from the corner-point abstraction. Notably, let us focus on a cycle of the region automaton. In order to study some properties of the corner plays following this cycle, we only need to consider the aggregation of all the behaviours following it. Inspired by the folded orbit graphs (FOG) introduced in [Pur00], we define the folded orbit graph FOG(p) of a region cycle p = ( 1 , r = r 1 )

as a graph whose vertices are the corners states of region r, and that contains an edge from corner v to corner v if there exists a corner play ρ from ( 1 , r, v) to ( 1 , r, v ) following p. We fix ρ arbitrarily and label the edge between v and v in the FOG by this corner play: it is then denoted by v ρ -→ v . An example is depicted in Figure 8.3.

Corollary 9.3. A WTG G is almost-divergent if and only if it is 0-isolated and every 0-cycle p of R(G) satisfies the following property: for every decomposition of p into smaller region cycles p and p , p and p are 0-cycles. In other words, if and only if every region cycle in G is either positive, negative, or a 0-cycle stable by decomposition.

After studying the properties of region cycles, we now focus on strongly connected components (SCCs) of the region abstraction R(G). Following the notations of Chapter 7, an SCC S of R(G) is said to be positive (resp. negative) if every cycle in S is positive (resp. negative), i.e. if every play ρ following a region cycle in S satisfies wt Σ (ρ) 1 (resp. wt Σ (ρ) -1). We will transfer in the timed setting Proposition 7.2:

Likewise, an SCC S of R(G) is said to be non-negative (resp. non-positive) if every region cycle in S is either a positive cycle or a 0-cycle (resp. either a negative cycle or a 0-cycle), i.e. every play ρ following a region cycle in S satisfies either wt Σ (ρ) 1 or wt Σ (ρ) = 0 (resp. either wt Σ (ρ) -1 or wt Σ (ρ) = 0). We obtain:

Remark. Note that if G is divergent it has no 0-cycle, and Proposition 9.4 implies that each SCC of R(G) is either positive or negative. Conversely, if each SCC of R(G) is either positive or negative, Proposition 9.4 implies that G is divergent. Therefore, Proposition 9.3 is a corollary of Proposition 9.4.

To prove the reciprocal implication of Proposition 9.4, we only need to show that non-negative (resp. non-positive) SCCs of R(G) are almost-divergent. By definition, such SCCs are 0-isolated, as they only contain executions ρ following region cycles such that wt Σ (ρ) ∈ {0} ∪ [1, +∞) (resp. wt Σ (ρ) ∈ (-∞, -1] ∪ {0}). Then, if wt Σ (ρ) = 0 and ρ can be decomposed into smaller plays ρ and ρ of non-negative (resp. non-positive) weight, it follows that wt Σ (ρ ) = wt Σ (ρ ) = 0.

For the direct implication, the situation is more complex: we need to be more careful while composing cycles with each other, and weights in the timed game are no longer integers, forbidding the arithmetical reasoning we applied in the untimed setting. To help us, we rely on the folded orbit graphs of region cycles.

Suppose that G is almost-divergent, and consider two cycles p and p in the same SCC of R(G). We need to show that they are both either non-positive or non-negative. Lemma 9.3 will first take care of the case where p and p share a region state ( , r). Lemma 9.3. If G is almost-divergent and two cycles p and p of R(G) share a region state ( , r), they are either both non-negative or both non-positive.

Proof. Suppose by contradiction that p is negative and p is positive. We assume that ( , r) is the first region state of both p and p , possibly performing a rotation of the cycles if necessary (in particular this preserves their sign by Lemma 9.2). We construct Let us now focus on the membership problem for almost-divergent WTGs. We start by stating a variation of Lemma 9.4, that reason on a pair of corner plays: Lemma 9.6. Consider a weighted timed game G, a region state ( , r) of R(G), a bound B ∈ N, and comparison operators , ∈ {<, >, , , =, =}. Deciding if there exists a cycle p of R(G) starting from ( , r), and two corner plays ρ and ρ , both following p, such that |p| B, wt Σ (ρ) 0 and wt Σ (ρ ) 0, is in PSPACE.

Proof. We follow the same non-deterministic procedure as Lemma 9.4, but this time we guess two corner plays on-the-fly instead of one.

Then, we find a characterisation of almost-divergence based on region cycles of bounded length.

Lemma 9.7. Let G be a weighted timed game. An SCC S of R(G) is non-negative (resp. non-positive) if and only if every region cycle in S, of length at most |Γ(G)| 2 , is either a positive cycle or a 0-cycle (resp. either a negative cycle or a 0-cycle).

Proof. The direct implication holds by definition. Reciprocally, suppose that every cycle in S of length at most |Γ(G)| 2 is either a positive cycle or a 0-cycle (resp. either a negative cycle or a 0-cycle). Let us prove that every cycle p in S is either a positive cycle or a 0-cycle (resp. either a negative cycle or a 0-cycle), by induction on the length of p. Consider a region cycle p with length above |Γ(G)| 2 . Let us show that for all corner plays ρ, ρ following p, either wt Σ (ρ) = wt Σ (ρ ) = 0, or both wt Σ (ρ) 1 and wt Σ (ρ ) 1 (resp. both wt Σ (ρ)

-1 and wt Σ (ρ ) -1) hold. This will allow us to conclude by Lemma 8.3.

From a pair of corner plays ρ and ρ following p, we can extract a sequence of pairs of corners states (( i , r i , v i ), ( i , r i , v i )), such that ( i , r i ) is the i-th region state of p, and v i (resp. v i ) is the i-th corner of ρ (resp. ρ ). Since |p| > |Γ(G)| 2 , there must exist two indexes, j and k, such that j < k, ( j , r j ) = ( k , r k ) and (v j , v j ) = (v k , v k ). In other words, we can write p = p 1 p 2 p 3 , with p 2 and p 1 p 3 region cycles of S, and ρ, ρ can be split as ρ = ρ 1 ρ 2 ρ 3 , ρ = ρ 1 ρ 2 ρ 3 , with ρ l (resp. ρ l ) following p l (resp. p l ) for l ∈ {1, 2, 3}, such that ρ 2 and ρ 2 are corner cycles, i.e. first(ρ 2 ) = last(ρ 2 ) and first(ρ 2 ) = last(ρ 2 ). Then, by induction either wt Σ (ρ 2 ) = wt Σ (ρ 2 ) = 0, or both wt Σ (ρ 2 ) 1 and wt Σ (ρ 2 ) 1 (resp. both wt Σ (ρ 2 ) -1 and wt Σ (ρ 2 ) -1) hold. The same property holds for ρ 1 ρ 3 and ρ 1 ρ 3 , both valid corner plays following p 1 p 3 . It follows that either wt Σ (ρ) = wt Σ (ρ ) = 0, or both wt Σ (ρ) 1 and wt Σ (ρ ) 1 (resp. both wt Σ (ρ) -1 and wt Σ (ρ ) -1) hold.

Let us show how to decide if a game is not almost-divergent. By Proposition 9.4 and Lemma 9.7, we distinguish two cases for not being almost-divergent:

• There exists a region cycle, of length at most B = |Γ(G)| 2 , and two corner plays ρ and ρ , both following p, such that wt Σ (ρ) = 0 and wt Σ (ρ ) = 0.

Computing values

In this chapter, we focus on classes of WTGs where the value problem is decidable. We will recall how one can compute values with bounded horizon i ∈ N, by lifting the value iteration algorithm of finite weighted games to weighted timed games, hereby solving the value problem on acyclic WTGs. This has previously been done by [START_REF] Alur | Optimal reachability for weighted timed games[END_REF]. Instead of relying on the result of [START_REF] Alur | Optimal reachability for weighted timed games[END_REF] as is, we will give a detailed explanation of their techniques, with mostly independent proofs. The motivation for doing so are as follows:

• On the one hand, our setting is more general, in the sense that we allow for negative weights and for final weights, where they do not do so explicitly.

• On the other hand, their result is stated for concurrent games, a generalisation of the turn-based games we consider. This leads to simplifications in the proofs, and lowers some parts of the complexity analysis.

• We will need, in Chapter 11, to bound the partial derivatives of the functions we compute. This cannot be deduced from their result directly.

• We present their techniques in a new, more symbolic light, by performing computations on the entire state-space at once instead of region by region.

• Even by following their explanations closely, we are not able to replicate their complexity analysis, and detail possible reasons for this. We will therefore rely on a doubly-exponential upper bound instead of the exponential one claimed in [START_REF] Alur | Optimal reachability for weighted timed games[END_REF].

Then, we focus on divergent WTGs, and give a 3-EXPTIME decision procedure for computing values.

Symbolic value iteration

If V represents a value function-i.e. a mapping from configurations of L × R X 0 to a value in R ∞ -we denote by V the mapping ν → V ( , ν). One step of the game is summarised in the following operator F mapping each value function V to a value function V = F(V ) defined by V (ν) = wt t ( , ν) if ∈ L t , and otherwise

We define their diagonal intersection as

Observe that E ∩ d E is a diagonal equality, and that (c,E) is atomic if the affine equalities in E and in the borders of c do not intersect within the smallest tube that contains c. A (k 1 , k 2 )-nested tube partition is atomic if for every node at level greater than k 1 , labelled by a cell c and a set E, the pair (c, E) is atomic. Intuitively, this means that in the non-diagonal part of P , the equalities that split cells into sub-cells are non-diagonal and do not intersect within their tube. Nested tube partitions can be made atomic, by introducing a bounded amount of diagonal affine equalities.

Lemma 10.6 (Lem. 3, [START_REF] Alur | Optimal reachability for weighted timed games[END_REF]). Let (P, F ) be a piecewise affine value function, where P is a (k 1 , k 2 )-nested tube partition of complexity at most m 1 , m 2 , with constants bounded by β P in P and β F in F . Then there exists a piecewise affine value function (P , F ), where P is an atomic

, m 2 and with constants bounded by 2nβ 2 P in P and β F in F , such that F = F . Proof. We insert an additional level at depth k 1 + 1, where we will store the new diagonal equalities. We add to these new base tubes all equalities E ∩ d E derived from their sub-tree that are not equivalent to a diagonal equality in P . It is shown in [START_REF] Alur | Optimal reachability for weighted timed games[END_REF] that there are at most m k 2 2 new diagonals for each node at level greater than k 1 in P , and thus the new base tubes are equipped with at most k 2 m k 2 2 • Splits(m 2 , n) k 2 affine equalities. The bound on constants in P is derived from the equation describing E ∩ d E .

Example 10.3. Figure 10.5 represents the atomic nested tube partition P associated to the nested partition P displayed in Figure 10.3. the nested tube partition P has one diagonal level split by the 4 affine equalities in green. Each of the resulting 9 base tubes is then partitioned by the (non-diagonal) blue and red borders as in Figure 10.3. The result P is therefore an atomic (1, 2)-nested tube partition of complexity 4, 2 .

We can now compute PreTime e (V ), with V a value function encoded as a nested tube partition (P, F ), and e ∈ E an edge from to . We will assume in the following that is a location of Max, but the case of Min is symmetrical. Let us fix a valuation ν ∈ R X 0,<M . Recall that

We can use the observation that n i=1 a f i = -a f y • wt( ) holds on the output of Lemma 10.7 to specialize Lemma 10.2 on such instances, so as to obtain a lower output complexity.

Lemma 10.8. Let (P i , F i ), i = 1, . . . , q be q piecewise affine value functions, where each P i is a (k 1 , k 2 )-nested tube partition of complexity at most m 1 , m 2 , with constants bounded by β P in P i and β F in F i . Suppose that they share the same partition, i.e. P 1 = • • • = P q = P , and that for all affine value functions mapped to base cells of P by an F i , of equation a y y = n i=1 a i x i + b, it holds that n i=1 a i = -wt( ) • a y . Then there exists a piecewise affine value function (P , F ) of domain c P , where P is a (k 1 + 1, k 2 )-nested tube partition of complexity at most max(m 1 , q 2 ), m 2 , with constants bounded by 2β 2 P in P and β F in F , such that F = min i=1,...,q F i (resp. F = max i=1,...,q F i ).

Proof. The construction follows the proof of Lemma 10.2, with the additional observation that all intersections E ∩ y E must be diagonal equalities in R X 0 , since n i=1 (a y a i -a y a i ) = -a y a y • wt( ) + a y a y • wt( ) = 0. Therefore, the new equalities are all diagonal, and the new level of nodes in P is added at level k 1 + 1. As the inputs share the same nested partition the step P 1 ⊕ • • • ⊕ P q can be skipped, letting us obtain the desired complexity.

When the input mappings do not have this property, we will rely on a weaker result, derived from Lemma 10.2 directly: the new borders may be diagonal, or they may be non-diagonal, so we add a new level for each possibility.

Corollary 10.1. Let (P i , F i ), i = 1, . . . , q be q piecewise affine value functions over the same domain c P , where each P i is a (k 1 , k 2 )-nested tube partition of complexity at most m 1 , m 2 , with constants bounded by β P in P i and β F in F i . Then there exists a piecewise affine value function (P , F ) of domain c P , where P is a (k 1 + 1, k 2 + 1)-nested tube partition of complexity at most max(m 1 q, q 2 ), max(m 2 q, q 2 ) , with constants bounded by 2β 2 P in P and β F in F , such that F = min i=1,...,q F i (resp. F = max i=1,...,q F i ).

We can now use Lemmas 10.7 and 10.8 to implement PreTime e over nested tube partitions.

Lemma 10.9. Let (P, F ) be a piecewise affine value function, where P is an atomic (k 1 , k 2 )-nested tube partition of complexity at most m 1 , m 2 , with constants bounded by β P in P and β F in F . Let e be an edge from to . Then there exists a piecewise affine value function (P , F ), where P is a splitting of the state-space is required, and a finer analysis of our procedure may still be able to match the results claimed in [START_REF] Alur | Optimal reachability for weighted timed games[END_REF]. In particular, the construction of Example 10.4 cannot a priori be iterated recursively, as the output diagonals do not have the same form as the input ones.

Bounding partial derivatives

In the previous analysis, we explained that constants (partial derivatives and additive constants) grow polynomially at each elementary step, which is enough for an exponential upper bound (double-exponential growth of their value, stored in binary). This rough analysis will not be fine enough for some of our results, in particular the approximation results of Chapter 11 will be sensitive to the partial derivatives in a linear (and not logarithmic) way. In this section, we study the growth of these partial derivatives more closely. This time, our focus will not be on the space required to store affine equations, but rather on mathematical properties of the value functions, namely their Lipschitzcontinuity, closely related to bounds on partial derivatives. As a result, we revert to denoting affine equations as terms y = n i=1 a i x i + b with rational constants instead of using integers with a separately stored denominator a y .

Definition 10.4. The function wt t is said to be Λ-Lipschitz-continuous when |wt t (s, ν) -

Since final weight functions are piecewise affine and continuous on regions, they are Λ-Lipschitz-continuous, for a given constant Λ 0.

We will maintain as an invariant that V i is Lipschitz-continuous over each region and for all : Lemma 10.10. If every final weight in a WTG G is Λ-Lipschitz-continuous on regions (and piecewise affine), then Val i G is ΛΛ -Lipschitz-continuous on regions, with Λ polynomial in w L max and |X |, and exponential in i. Note that for a piecewise affine function with finitely many pieces, being Λ-Lipschitzcontinuous on regions is equivalent to being continuous on regions and having all partial derivatives bounded by Λ in absolute value. The rest of this section is dedicated to proving Lemma 10.10. Lemma 10.11. If for all ∈ L, V is piecewise affine with finitely many pieces that have all their partial derivatives bounded by Λ in absolute value, then for all ∈ L, F(V ) is continuous on regions and piecewise affine with partial derivatives bounded by max(Λ, |wt( )| + (n -1)Λ) in absolute value.

Proof. We will show that for every region r, F(V ) restricted to r has those properties. Note that they are transmitted over finite min and max operations. The continuity on regions is easy to prove because it is stable by inf and sup. There exists a partition non-increasing sequences of values, we have indeed stabilised after n steps only. Let us assume the existence of a configuration ( , ν) such that V n+p (ν) < V n (ν). By induction on p, we can show the existence of a configuration ( , ν ) and a finite play ρ from ( , ν) to ( , ν ), with length p and weight V n+p (ν) -V n (ν ): the play is composed of the delays and transitions that optimise successively the min/max operator in F.

Claim (timed setting notations). For all i < j ∈ N, if V j = V i then, for all configurations ( , ν), there exists ( , ν ) and a play ρ from ( , ν) to ( , ν ) with |ρ| = j -i and

Proof of Claim. Let us fix i, and prove it by induction on j > i.

Initialisation : If j = i + 1, we applied F once between V i and V j , so for all configurations ( , ν) there exists ( , ν ) and a transition ( , ν)

Iteration : We assume the property holds for j -1 > i, and V j = V i . We applied F once between V j-1 and V j , so for all configurations ( , ν), there exists ( , ν ) and a transition ( , ν)

. We apply the property on i and j -1 (V j-1 = V i because V j = V i and as soon as V stabilises, the fixpoint is reached and the iteration stops), and obtain that for all configurations ( , ν ), there exists ( , ν ) and a play ρ from ( , ν ) to ( , ν ) with |ρ| = j -1 -i and wt

Then we define ρ = ( , ν)

This finite play being of length greater than (2K + (n -1) 2 w max )n, if we associate each visited configuration ( , ν) to the region state ( , [ν]), there is at least one state of R(G) appearing more than 2K + (n -1) 2 w max times. Thus, it can be decomposed into at least 2K + (n -1) 2 w max plays following cycles of R(G) and at most (n -1) finite plays ρ i visiting each state of R(G) at most once. All cycles of the SCC being positive, the weight of ρ is at least (2K + (n -1) 2 w max ) -(n -1) 2 w max = 2K, bounding from below each ρ i 's weight by -(n -1)w max . Then,

, and that is a contradiction.

Much like in the untimed setting, negative SCCs can be resolved using a dual method. First, we characterise the -∞ values as regions of R(G) where Max cannot unilaterally guarantee to reach the targets.

Proof of Proposition 10.2-2. Consider a state ( , r) of R(G) in the attractor for Max to the targets. Then, if Max applies a winning memoryless strategy for the reachability objective to the target locations, for all ν ∈ r, all strategies of Min will generate a play from ( , ν) reaching a target after at most |R(G)| steps. This implies that ( , ν) has a finite (lower) value in the game.

Reciprocally, if ( , r) is not in the attractor, by determinacy of timed games with reachability objectives, for all ν ∈ r, Min has a (memoryless) strategy σ Min to ensure that no strategy of Max permits to reach a target location from ( , ν). Applying σ Min long hypothesis. Note that this reasoning proves that every cycle contained in a longer 0-cycle is also a 0-cycle.

We now prove that every cycle in K is a 0-cycle. By construction, every edge t ∈ T K is part of a simple 0-cycle. Thus, to every edge t ∈ T K , we can associate a path p t such that tp t is a simple 0-cycle (rotate the simple cycle if necessary). We can prove (using both Lemmas 9.1 and 9.2) the following property, that was trivial in the untimed setting, by relying on another pumping argument on corners:

Proof of Claim. We prove the property by induction on n. For n = 1, the property is immediate since t 1 p t 1 is a 0-cycle. Consider then n such that the property holds for n, and let us prove that it holds for n + 1. We will exhibit two corner plays following

opposite weight and conclude with Lemma 9.1.

Let v 0 be a corner of last(t n+1 ). Since t n+1 p t n+1 is a 0-cycle, there exists w ∈ Z, a corner play ρ 0 following t n+1 ending in v 0 with weight w and a corner play ρ 0 following p t n+1 beginning in v 0 with weight -w. We name v 0 the corner of last(t n ) where ends ρ 0 . We consider any corner play ρ 1 following t n+1 from corner v 0 . The corner play ρ 0 ρ 1 follows the path p t n+1 t n+1 that is also a 0-cycle by Lemma 9.2, therefore ρ 1 has weight w. We denote by v 1 the corner where ends ρ 1 . By iterating this construction, we obtain some corner plays ρ 0 , ρ 1 , ρ 2 , . . . following t n+1 and ρ 0 , ρ 1 , ρ 2 , . . . following p t n+1 such that ρ i goes from corner v i to v i , and ρ i+1 from corner v i to v i+1 , for all i 0. Moreover, all corner plays ρ i have weight w and all corner plays ρ i have weight -w. Consider the first index l such that v l = v k for some k < l, which exists because the number of corners is finite.

We apply the induction to find a corner play following t 1 • • • t n p tn • • • p t 1 , going through the corner v k in the middle: more formally, there exists w α , a corner play ρ α following t 1 • • • t n ending in v k with weight w α and a corner play ρ α following p tn • • • p t 1 beginning in v k with weight -w α . We apply the induction a second time with corner v l-1 : there exists w β , a corner play ρ β following t 1 • • • t n ending in v l-1 with weight w β and a corner play

The corner play

Since the game is almost-divergent, and those two corner plays are in the same SCC, both have weight 0. The second corner play of weight 0 ensures that the cycle

at most γ times along a branch: the end of each branch is called a stopped leaf of the semi-unfolding. In particular, the depth of T (G) is bounded by |R(G)|γ, and thus is polynomial in |R(G)|, w max and w t max . Leaves of the semi-unfolding are thus of two types: target leaves that are copies of target locations of G for which we set the target weight as in G, and stop leaves for which we set their target weight as being constant to +∞ if the SCC G is non-negative, and -∞ if the SCC is non-positive.

Proposition 11.2. Let G be an almost-divergent WTG, and let ( 0 , r 0 ) be some state of the region game. We can define a semi-unfolding T (G) with initial state ( ˜ 0 , r 0 ) (a copy of state ( 0 , r 0 )) which is equivalent to G, i.e. for all ν 0 ∈ r 0 , Val G ( 0 , ν 0 ) = Val T (G) (( ˜ 0 , r 0 ), ν 0 ).

Semi-unfolding construction

In order to prove Proposition 11.2, we will construct the desired semi-unfolding T (G) of a (non-negative or non-positive) SCC G, largely following the semi-unfolding of Chapter 7.4.

If ( , r) is in K, we let K ,r be the part of K accessible from ( , r) (note that K ,r is an SCC as K is a disjoint set of SCCs). We define the output edges of K ,r as being the output edges of K accessible from ( , r). If ( , r) is not in K, the output edges of ( , r) are the edges of R(G) starting in ( , r).

Formally, we define a tree T whose nodes will either be labelled by region graph states ( , r) ∈ S\S K or by kernels K ,r , and whose edges will be labelled by output edges in R(G). The root of the tree T is labelled with ( 0 , r 0 ), or K 0 ,r 0 (if ( 0 , r 0 ) belongs to the kernel), and the successors of a node of T are then recursively defined by its output edges. When a state ( , r) is reached by an output edge, the child is labelled by K ,r if ( , r) ∈ K, otherwise it is labelled by ( , r). Edges in T are labelled by the edges used to create them. Along every branch, we stop the construction when either a final state is reached (i.e. a state not inside the current SCC) or the branch contains 3|R(G)|w max + 2w t max + 2 nodes labelled by the same state (( , r) or K ,r ). Leaves of T with a location belonging to L t are called target leaves, others are called stopped leaves.

We now transform T into a WTG T (G), by replacing every node labelled by a state ( , r) by a different copy ( ˜ , r) of ( , r). Those states are said to inherit from ( , r). Edges of T are replaced by the edges labelling them, and have a similar notion of inheritance. Every non-leaf node labelled by a kernel K ,r is replaced by a copy of the WTG K ,r , output edges being plugged in the expected way. We deal with stopped leaves labelled by a kernel K ,r by replacing them with a single node copy of ( , r), like we dealt with node labelled by a state ( , r). State partition between players and weights are inherited from the copied states of R(G). The only initial state of T (G) is the state denoted by ( ˜ 0 , r 0 ) inherited from ( 0 , r 0 ) in the root of T (either ( 0 , r 0 ) or K 0 ,r 0 ). The final states of T (G) are the states derived from leaves of T . If R(G) is a non-negative (resp. non-positive) SCC, the final weight function wt t is inherited from R(G) on target leaves and set to +∞ (resp. -∞) on stopped leaves.

Semi-unfolding correctness

We will now prove that Proposition 11.2 holds on this semi-unfolding T (G).

Lemma 11.2. All finite plays in R(G) have cumulated weight (ignoring final weights) at least -|R(G)|w max in the non-negative case, and at most |R(G)|w max in the non-positive case. Moreover, values of the game are bounded by |R(G)|w max + w t max . Proof. Suppose first that R(G) is a non-negative SCC. Consider a play ρ following a path p. This path p can be decomposed into p = p 1 p c 1 • • • p n p c n such that every p c i is a cycle, and p 1 . . .

Let us define all plays ρ i and ρ c i as the restrictions of ρ on p i and p c i . Now, since all plays following cycles have cumulated weight at least 0,

Similarly, we can show that every play in a non-positive SCC has cumulated weight at most |R(G)|w max .

For the bound on the values, consider again two cases. If R(G) is non-negative, consider any memoryless attractor strategy σ Min for Min toward S t . Since all states have values below +∞, all plays obtained from strategies of Max will follow simple paths of R(G), that have cumulated weight at most |R(G)|w max in absolute value. Similarly, if R(G) is non-positive, following the proof of Lemma 11.1, since all values are above -∞, Max can ensure ¬φ, i.e. (FT t ) ∨ FGT K on all states. Then we can construct a strategy σ Max for Max combining an attractor strategy toward S t on states satisfying FT t , a safety strategy on states satisfying GT K , and an attractor strategy toward the latter on all other states. Then, all plays obtained from strategies of Min will either not be winning (GT K ) or follow simple paths of R(G). Both cases imply that the values of the game are bounded by |R(G)|w max + w t max . Lemma 11.3. All plays in T (G) from the initial state to a stopped leaf have cumulated weight at least 2|R(G)|w max + 2w t max + 1 if the SCC R(G) is non-negative, and at most -2|R(G)|w max -2w t max -1 if it is non-positive. Proof. Note that by construction, all finite paths in T (G) from the initial state to a stopped leaf can be decomposed as p p 1 • • • p 3|R(G)|wmax+2w t max +1 with all p i being cycles around the same state. Additionally, those cycles cannot be 0-cycles by Proposition 11.1, since they take at least one edge outside of K. Therefore the restriction of ρ to p 1 • • • p 3|R(G)|wmax+2w t max +1 has weight at least 3|R(G)|w max + 2w t max + 1 (in the non-negative case) and at most -3|R(G)|w max -2w t max -1 (in the non-positive case). The beginning of the play, following p , has cumulated weight at least -|R(G)|w max (in the non-negative case) and at most |R(G)|w max (in the non-positive case), by Lemma 11.2. Consider two plays in R(G) and T (G), respectively:

They are said to mimic each other if every ( ˜ i , r i ) is inherited from ( i , r i ) and every edge ti is inherited from the edge e i . Combining Lemmas 11.3 and 11.2, we obtain: Lemma 11.4. If R(G) is a non-negative (resp. non-positive) SCC, every play from the initial state and with cumulated weight less than |R(G)|w max + 2w t max + 1 (resp. greater than -|R(G)|w max -2w t max -1) can be mimicked in T (G) without reaching a stopped leaf. Conversely, every play in T (G) reaching a target leaf can be mimicked in R(G).

Proof. We prove only the non-negative case. Let ρ be a play of R(G) with cumulated weight less than |R(G)|w max + 2w t max + 1. Consider the branch of the unfolded game it follows. If ρ cannot be mimicked in T (G), then a prefix of ρ reaches the stopped leaf of that branch when mimicked in T (G). In this situation, ρ starts by a prefix of weight at least 2|R(G)|w max + 2w t max + 1 by Lemma 11.3 and then ends with a suffix play of weight at least -|R(G)|w max by Lemma 11.2, and that contradicts the initial assumption. The non-positive case is proved exactly the same way, and the converse is true by construction.

Then, the plays of R(G) starting in an initial configuration that cannot be mimicked in T (G) are not useful for value computation, which is formalised by Proposition 11.3:

Proof. By Lemma 8.1, we already know that Val G ( 0 , ν 0 ) = Val R(G) (( 0 , r 0 ), ν 0 ). Recall that we only left finite values in R(G) (in the final weight functions, in particular), and more precisely |Val R(G) (( 0 , r 0 ), ν 0 )| |R(G)|w max + w t max by Lemma 11.2. We first show that the value is also finite in T (G). Indeed, if Val T (G) (( ˜ 0 , r 0 ), ν 0 ) = +∞, since we assumed all final weights of R(G) bounded, we are necessarily in the non-negative case, and Max is able to ensure stopped leaves reachability.

Claim. If Val T (G) (( ˜ 0 , r 0 ), ν 0 ) = +∞, then there are no winning strategies in R(G) for Min ensuring weight less than |R(G)|w max + w t max + 1 from ( 0 , r 0 ). Thus, we can obtain the contradiction Val R(G) (( 0 , r 0 ), ν 0 ) > |R(G)|w max + w t max . Proof of Claim. By contradiction, consider a strategy σ Min of Min ensuring weight

|R(G)|w max + 2w t max + 1, and by Lemma 11.4 this play does not reach a stopped leaf when mimicked in T (G), which is absurd.

we are necessarily in the non-positive case, and by construction this implies having Min ensuring stopped leaves reachability in T (G).

Claim. If Val T (G) (( ˜ 0 , r 0 ), ν 0 ) = -∞, then there are no winning strategies in R(G) for Max ensuring weight above -|R(G)|w max -w t max -1 from ( 0 , r 0 ). Thus, we can obtain the contradiction Val R(G) (( 0 , r 0 ), ν 0 ) < -|R(G)|w max -w t max .

Proof of Claim. By contradiction, consider a strategy σ Max of Max ensuring weight

Then, for all σ Min , the cumulated weight of play R(G) ((( ˜ 0 , r 0 ), ν 0 ), σ Min , σ Max ) (reaching target configuration ( , ν)) is at least Awt t ( , ν) -|R(G)|w max -2w t max -1, and by Lemma 11.4 this play does not reach a stopped leaf when mimicked in T (G), which is absurd.

If R(G) is non-negative, for all ε > 0 we can fix an ε-optimal strategy σ Min for Min in T (G). It is a winning strategy, so every play derived from σ Min in T (G) reaches a target leaf, and can be mimicked in R(G) by Lemma 11.4. Therefore, σ Min can be mimicked in R(G), where it is also winning, with the same value. From this we deduce Val R(G) (( 0 , r 0 ), ν 0 )

Val T (G) (( ˜ 0 , r 0 ), ν 0 ). If R(G) is non-positive, the same reasoning applies by considering an ε-optimal strategy for Max in T (G).

Let us now show the reverse inequality. If R(G) is non-negative, let us fix 0 < ε < 1, an ε-optimal strategy σ Min for Min in R(G), and a strategy σ Max of Max in R(G). Let ρ be their outcome play R(G) ((( 0 , r 0 ), ν 0 ), σ Min , σ Max ), ρ k be the finite prefix of ρ defining its cumulative weight and ( k , ν k ) be the configuration defining its final weight, such that

and by Lemma 11.4 all such plays ρ can be mimicked in T (G), so that

Once again, if R(G) is non-positive, the same reasoning applies by considering an ε-optimal strategy for Max in R(G).

This proof not only holds on an SCC, but also on full almost-divergent WTGs, by simply stacking the semi-unfoldings of each SCC on top of each others.

Note that the semi-unfolding procedure of an SCC depends on w t max , where wt t can be the value function of an SCCs under the current one. Assuming all configurations have finite value, we can extend the reasoning of Lemma 11.2 and bound all values in the full game by |R(G)|w max + w t max , which lets us bound uniformly the unfolding depth of each SCC and gives us a bound on the depth of the complete semi-unfolding tree:

Approximation of almost-divergent WTGs

Approximation of kernels

We start by approximating a kernel G by extending the region-based approximation schema of [START_REF] Bouyer | On the value problem in weighted timed games[END_REF]. In their setting, all runs in kernels had weight 0, allowing a reduction to a finite weighted game. In our setting, we have to approximate the timed dynamics of runs, and therefore resort to the corner-point abstraction (as shown to the right of Figure 11.1). Since final weight functions are piecewise linear with a finite number of pieces and continuous on regions, they are Λ-Lipschitz-continuous, for a given constant Λ 0. We let B = w L max |L||Reg(X , M )| + Λ. Let N be an integer. Consider the corner-point abstraction game Γ N (G) described in Chapter 8, with locations of the form ( , r, v) with v a corner of the 1/N -region r. Two plays ρ of G and ρ of Γ N (G) are said to be 1/N -close if they follow the same path p in R N (G). In particular, at each step the configurations ( , ν) in ρ and ( , r , v ) in ρ (with v a corner of the 1/N -region v ) satisfy = and ν ∈ r , and the edges taken in both plays have the same discrete weights. Close plays have close weights, in the following sense:

Proof. Since ρ and ρ follow the same locations of G, one reaches a target location if and only if the other does. In the case where they do not reach a target location, both weights are infinite, and thus equal. We now look at the case where both plays reach a target location, moreover in the same step.

Consider the region path p of the run ρ: p can be decomposed into a simple path with maximal cycles in it. The number of such maximal cycles is bounded by |L × Reg(X , M )| and the remaining simple path has length at most |L × Reg(X , M )|. Since all cycles of a kernel are 0-cycles, the parts of ρ that follow the maximal cycles have weight exactly 0.

Consider the same decomposition for the play ρ . Cycles of p do not necessarily map to cycles over locations of Γ N (G), since the 1/N -regions could be distinct. However, Lemma 8.3 shows that, for all those cycles of p, there exists a sequence of finite plays of G whose weight tends to the weight of ρ . Since all those finite plays follow a cycle of the region game R(G) (with G being a kernel), they all have weight 0. Hence, the parts of ρ that follow the maximal cycles of p have also weight exactly 0.

Therefore, the difference |wt G (ρ) -wt Γ N (G) (ρ )| is concentrated on the remaining simple path of p: on each edge of this path, the maximal weight difference is 1/N × w L max since 1/N is the largest difference possible in time delays between plays that stay 1/N -close (since they stay in the same 1/N -regions). Moreover, the difference between the final weight functions is bounded by Λ/N , since the final weight function wt t is Λ-Lipschitzcontinuous and the final weight function of Γ N (G) is obtained as limit of wt t . Summing the two contributions, we obtain as upper bound the constant B/N .

In particular, if we start in configurations ( 0 , ν 0 ) of G, and (( 0 , r 0 , v 0 ), v 0 ) of Γ N (G), with ν 0 ∈ r 0 , since both players have the ability to stay 1/N -close all along the plays, a bisimulation argument permits to obtain that the values of the two games are also close in ( 0 , ν 0 ) and (( 0 , r 0 , v 0 ), v 0 ): Lemma 11.6. For all locations ∈ L, 1/N -regions r, ν ∈ r and corners v of r,

By definition and determinacy of turn-based WTG, this is equivalent to proving these two inequalities:

Consider the following equation:

To show the first inequality, it suffices to show that for all σ Min , there exists σ Min such that for all σ Max , there is σ Max verifying (11.1). For the second, it suffices to show that for all σ Max , there exists σ Max such that for all σ Min , there is σ Min verifying (11.1). We will detail the proof for the first, the second being syntactically the same, with both players swapped. Equation (11.1) can be obtained from Lemma 11.5, under the condition that the plays play(( , ν), σ Min , σ Max ) and play((( , r, v), v), σ Min , σ Max ) are 1/N -close. Therefore, we fix a strategy σ Min of Min in the game Γ N (G), and we construct a strategy σ Min of Min in G, as well as two mappings f : FPlays Min G → FPlays Min Γ N (G) and g :

• for all ρ ∈ FPlays Min G , ρ and f (ρ) are 1/N -close, and if ρ is consistent with σ Min and starts in ( , ν), then f (ρ) is consistent with σ Min and starts in (( , r, v), v);

• for all ρ ∈ FPlays Max Γ N (G) , g(ρ ) and ρ are 1/N -close, and if ρ is consistent with σ Min and starts in (( , r, v), v), then g(ρ ) is consistent with σ Min and starts in ( , ν).

We build σ Min , f , and g by induction on the length n of plays, over prefixes of plays of length n -1, n and n, respectively. For n = 0 (plays of length 0 are those restricted to a single configuration), we let f ( , ν) = (( , r, v), v) and g(( , r, v), v) = ( , ν), leaving the other values arbitrary (since we will not use them).

Then, we suppose σ Min , f , and g built until length n -1, n and n, respectively (if n = 0, σ Min has not been build yet), and we define them on plays of length n, n + 1 and n + 1, respectively. For every ρ ∈ FPlays Min G of length n, we note ρ = f (ρ). Consider the decision (d , e ) = σ Min (ρ ) and ρ + the prefix ρ extended with the decision (d , e ). By timed bisimulation, there exists (d, e) such that the prefix ρ + composed of ρ extended with the decision (d, e) builds 1/N -close plays ρ + and ρ + . We let σ Min (ρ) = (d, e). If ρ + ∈ FPlays Min G , we also let f (ρ + ) = ρ + , and otherwise we let g(ρ + ) = ρ + . Symmetrically, consider ρ ∈ FPlays Max Γ N (G) of length n, and ρ = g(ρ ). For all possible decisions (d , e ), by timed bisimulation, there exists a decision (d, e) in the prefix ρ such that the respective extended plays ρ + and ρ + are 1/N -close. We then let g(ρ + ) = ρ + if ρ + ∈ FPlays Max G and f (ρ + ) = ρ + otherwise. We extend the definition of f and g arbitrarily for other prefixes of plays. The properties above are then trivially verified.

We then fix a strategy σ Max of Max in the game G, which determines a unique play play(( , ν), σ Min , σ Max ). We construct a strategy σ Max of Max in the game Γ N (G) by building the unique play play((( , r, v), v), σ Min , σ Max ) we will be interested in, such that each of its prefixes is in relation, via f or g, to the associated prefix of play(( , ν), σ Min , σ Max ). Thus, we only need to consider a prefix of play ρ ∈ FPlays Max Γ N (G) that starts in (( , r, v), v) and is consistent with σ Min , and σ Max built so far. Consider the play ρ = g(ρ ), starting in ( , ν) and consistent with σ Min , and σ Max (by assumption). For the decision (d, e) = σ Max (ρ) (letting ρ + be the extended prefix), the definition of f and g ensures that there exists a decision (d , e ) after ρ that results in an extended play ρ + that is 1/N -close, via f or g, with ρ + . We thus can choose σ Max (ρ ) = (d , e ).

We finally have built two plays play(( , ν), σ Min , σ Max ) and play(( , ν ), σ Min , σ Max ) that are 1/N -close, as needed, which concludes this proof.

Using this result, picking N an integer larger than B/ε, we can thus obtain |Val G ( , ν)-Val Γ N (G) (( , r, v), v)| ε. Recall that Γ N (G) can be considered as an untimed weighted game (with reachability objective). Thus we can apply the result of [START_REF] Brihaye | Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games[END_REF], where it is shown that the optimal values of such games can be computed in pseudo-polynomial time (i.e. polynomial time with weights encoded in unary, instead of binary). We then define an ε-approximation of Val G , named Val N , on each 1/N -region by interpolating the values of its 1/N -corners in Γ N (G) with a piecewise linear function: therefore, we can control the Lipschitz constant of the approximated value for further use.

Lemma 11.7. Val N is an ε-approximation of Val G , that is piecewise linear with a finite number of pieces and 2B-Lipschitz-continuous over regions.

Proof. By construction, the approximated value is piecewise linear with one piece per 1/N -region. To prove the Lipschitz constant, it is then sufficient to bound the difference between Val Γ N (G) (( , r, v), v) and Val Γ N (G) (( , r, v ), v ), for v and v two corners of a 1/Nregion r. We can pick any valuation ν in r and apply Lemma 11.6 twice, between ν and v, and between ν and v . We obtain

Approximation of almost-divergent WTGs

We now explain how to approximate the value of an almost-divergent WTG G, thus proving Theorem 9.2. First, we compute a semi-unfolding T (G) as described in the previous section. Then we perform a bottom-up computation of the approximation. As already recalled, techniques of Chapter 10 allow us to compute exact values of a tree-shape WTG. In consequence, we know how to compute the value of a non-kernel node of T (G), depending of the values of its children. There is no approximation needed here, so that if all children are ε-approximation, we can compute an ε-approximation of the node. Therefore, the only approximation lies in the kernels, and we explained before how to compute an arbitrarily close approximation of the value of a kernel. We crucially rely on the fact that the value function is 1-Lipschitz-continuous 1 . This entails that imprecisions will sum up along the bottom-up computations, as computing an ε-approximation of the value of a game whose final weights are ε -approximations yields an (ε + ε )-approximation. Therefore we compute approximations with threshold ε = ε/α for kernels in T (G), where α is the maximal number of kernels along a branch of T (G): α is smaller than the depth of T (G), which is bounded by Proposition 11.2.

The subregion granularity considered before for kernel approximation crucially depends on the Lipschitz constant of final weights. The growth of these constants is bounded for kernels in T (G) by Lemma 11.7. For non-kernel nodes of T (G), we use the careful analysis of Lemma 10.10, detailed in Chapter 10.1.5.

The overall time complexity of this method is triply-exponential in the size of the input game and polynomial in 1/ε. We are given the WTG G in Figure 11.2 and ε ∈ Q >0 , and want to compute an εapproximation of its value in location 0 for the valuation (x=0, y=0), denoted Val G ( 0 , (0, 0)).

Example of an execution of the approximation schema

In this example, we will use ε=15 because the computations would not be readable with a smaller precision. We also chose an example where R(G) is isomorphic to G for readability reasons. R(G) contains one SCC { 1 , 2 , 3 , 4 }, made of two simple cycles:

• p 1 = 1 → 2 → 1 is a positive cycle (all plays following p 1 have cumulated weight in the interval (1, 3)),

• and p 2 = 1 → 3 → 4 → 1 is a 0-cycle (all plays following p 2 have cumulated weight 0). This can be checked by Lemma 8.3.

Therefore, R(G) only contains non-negative SCCs and is almost-divergent. Since all states are in the attractor of Min towards L t , all cycles are non-negative and the final weight function is bounded (on all reachable regions), there are no configurations in R(G) with value +∞ or -∞.

We let the kernel K be the sub-game of R(G) defined by p 2 , and we construct a semi-unfolding T (G) of R(G) of equivalent value. Following Section 11.2.1 , we should unfold the game until every stopped branch contains a state seen at least 3|R(G)|w max + 2w t max + 2 = 3 × 3 × 4 + 2 × 1 + 2 = 40 times. We will unfold with bound 4 instead of 40 for readability (it is enough on this example). Thus the infinite branch ( 1 2 ) ω is stopped when 1 is reached for the fourth time, as depicted in Figure 11.3. Val G ( 0 , (0, 0)) = Val T (G) ( 0 , (0, 0)). We denote by i , i and i the locations in K, K and K .

Let us now compute an approximation of Val T (G) . Let us first remove the states of value +∞: 1 and 2 . Then, we start at the bottom and compute an (ε/3)-approximation of the value of 1 in the game defined by K 1 and its output edge to t . Following Section 11.3.1, we should use N 3(4 + 1)/ε and compute values in the 1/N -corners game C N (K 1 ) in order to obtain an (ε/3)-approximation of the value function. For ε = 15 we will use N = 1 (in this case the computation happens to be exact and would also hold with a small ε). We construct this corner game, and obtain the finite (untimed) weighted game in Figure 11 This gives us a 2ε/3-approximation of (x, y) → Val T (G) ( 1 , (x, y)) (in fact exactly Val T (G) ( 1 )). Now, we can compute a 2ε/3-approximation of Val T (G) ( 2 ) on region (1 < x < 2, y = 0) with one step of value iteration, obtaining :

Then, we need to compute an ε/3-approximation of the value of 1 in the game defined by K 1 and its output edges to t and 2 , of respective final weight functions (x, y) → x and (x, y) → 3x -2 if x 3/2; x + 1 otherwise. This will give us an ε-approximation of Val T (G) ( 1 ).

Following Section 11.3.1 one last time, we should use N 3(5 + 3)/ε and compute values in the 1/N -corner game C N (K 1 ). This time, let us use N = 3 to showcase an example where the computed value is not exact. We can construct a finite (untimed) weighted game as in Figure 11.4, and obtain a value for each 1/3-corner of state 1 . From these results, we define a piecewise-linear function by interpolation, as depicted in Figure 11.6. Lemma 11.8. If G is a kernel with no configurations of infinite value, then |Val G ( , ν) -Val P G ( , ν)| ε for all configurations ( , ν) of G. Proof. We already know that Val P Γ N (G) (( , r, v), v) = Val Γ N (G) (( , r, v), v) for all configurations (( , r, v), v) of Γ N (G). Moreover, Section 11.3.1 ensures |Val G ( , ν)-Val Γ N (G) (( , r, v), v)| ε/2 whenever ν is in the 1/N -region r. Therefore, we only need to prove that |Val P G ( , ν)-Val P Γ N (G) (( , r, v), v)| ε/2 to conclude. This is done as for Lemma 11.6, since Lemma 11.5 (that we need to prove Lemma 11.6) does not depend on the length of the plays ρ and ρ , and both runs reach the target state in the same step, i.e. both before or after the horizon of P steps.

Once we know that value iteration converges on kernels, we can use the semi-unfolding of Section 11.2 to prove that it also converges on non-negative SCCs when all values are finite.

Lemma 11.9. If G is a non-negative SCC with no configurations of infinite value, we can compute P + such that |Val G ( , ν) -Val P + G ( , ν)| ε for all configurations ( , ν) of G. Proof. Consider a non-negative SCC G, a precision ε, and an initial configuration ( 0 , ν 0 ). Let T (G) be its finite semi-unfolding (obtained from the labelled tree T , as in Section 11.2.1), such that Val G ( 0 , ν 0 ) = Val T (G) (( ˜ 0 , r 0 ), ν 0 ). Let α be the maximum number of kernels along a branch of T . Let P be an integer such that for all kernels K in T (G), |Val K ( , ν) -Val P K ( , ν)| ε/α for all configurations ( , ν) of G. We can find such a P by using Lemma 11.8.

Create T (G) from T by applying the method used to create T (G) but replace every kernel by its complete P -unfolding instead. This implies that T (G) is a tree, of bounded depth P (at most the depth of T times P ). Then |Val T (G) (( ˜ 0 , r 0 ), ν 0 ) -Val T (G) (( ˜ 0 , r 0 ), ν 0 )| ε .

This holds because the value function is 1-Lipschitz-continuous with regard to the final weight function, so imprecision builds up additively.

Consider now T (G) the (complete) unfolding of R(G) with unfolding depth P , where kernels are also unfolded. By construction, Val T (G) (( ˜ 0 , r 0 ), ν 0 ) = Val P T (G) (( ˜ 0 , r 0 ), ν 0 ). Then, we can prove that Val P T (G) (( ˜ 0 , r 0 ), ν 0 ) = Val P G ( 0 , ν 0 ) (same strategies at bounded horizon P ), which implies Val R(G)) (( 0 , r 0 ), ν 0 ) Val T (G) (( ˜ 0 , r 0 ), ν 0 ) (monotonicity of Val k ). By another monotonicity argument (because T contains T as a prefix), we can also prove Val T (G) (( ˜ 0 , r 0 ), ν 0 ) Val T (G) (( ˜ 0 , r 0 ), ν 0 ).

Bringing everything together we obtain |Val P G ( 0 , ν 0 ) -Val G ( 0 , ν 0 )| ε. The idea is to unfold every kernel of the semi-unfolding game T (G) according to its bound in Lemma 11.8. More precisely, let α be the maximum number of kernels along one of the branches of T (G). In a bottom-up fashion, we can find for each kernel K in T (G) a bound P K such that, for all configurations ( , ν), |Val K ( , ν) -Val P K K ( , ν)| ε/α. We thus unfold K in T (G) with depth up to P K . After each kernel has been replaced this Synthèse symbolique de contrôleurs pour systèmes temporisés: robustesse et optimalité

Résumé : Le domaine de la synthèse réactive a pour objectif d'obtenir un système correct par construction à partir d'une spécification logique. Une approche classique consiste à se ramener à un jeu à somme nulle, où deux joueurs interagissent tour-à-tour dans un système de transitions, et à se demander si le joueur "contrôleur" peut garantir que son objectif sera rempli, et ce indépendamment des décisions du joueur "environnement". Nous étudions des spécifications temps-réel, modélisées par un automate temporisé équipé d'un objectif d'accessibilité ou de Büchi, et présentons des méthodes symboliques pour synthétiser des stratégies du contrôleur. Nos contributions concernent deux problématiques distinctes : on peut souhaiter que le contrôleur obtienne une stratégie robuste aux perturbations, ou bien le faire jouer de manière optimale dans un jeu pondéré.

Mots clés : Automates temporisés, Synthèse, Robustesse, Jeux pondéré Symbolic controller synthesis for timed systems: robustness and optimality

Abstract: The field of reactive synthesis studies ways to obtain, starting from a specification, a system that is correct by construction. A classical approach models this setting as a zero-sum game played by two players on a transition system, and asks whether player controller can ensure an objective against any competing player environment. We focus on real-time specifications, modelled as timed automata with reachability or Büchi acceptance conditions, and present symbolic ways to synthesise strategies for the controller. We consider two problems, either restricting controller to robust strategies or aiming for optimal strategies in a weighted game setting.