
HAL Id: tel-02436759
https://hal.science/tel-02436759v1

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simplifying Transducers using Sequentiality
Didier Villevalois

To cite this version:
Didier Villevalois. Simplifying Transducers using Sequentiality. Formal Languages and Automata
Theory [cs.FL]. Aix-Marseille Université (AMU), 2019. English. �NNT : �. �tel-02436759�

https://hal.science/tel-02436759v1
https://hal.archives-ouvertes.fr

AIX-MARSEILLE UNIVERSITÉ
E.D. 184 MATHEMATIQUES ET INFORMATIQUE
U.F.R. SCIENCES
LABORATOIRE D’INFORMATIQUE ET SYSTÈMES, CNRS U.M.R. 7020

Thèse présentée pour obtenir le grade universitaire de docteur

Discipline : Informatique

Didier VILLEVALOIS

Thesis: Simplifying Transducers using Sequentiality

Titre de la thèse : Simplification de transducteurs en utilisant la séquentialité

Soutenue le 26/11/2019 devant le jury composé de :

Olivier CARTON IRIF, CNRS, Université Paris-Diderot Rapporteur
Anca MUSCHOLL LaBRI, CNRS, Université de Bordeaux Rapporteure
Christof LÖDING RWTH Aachen University Examinateur
Benjamin MONMEGE LIS, CNRS, Aix-Marseille Université Examinateur
Jean-Éric PIN IRIF, CNRS, Université Paris-Diderot Examinateur
Pierre-Alain REYNIER LIS, CNRS, Aix-Marseille Université Directeur de thèse

Cette œuvre est mise à disposition selon les termes de la Licence Creative
Commons Attribution - Pas d’Utilisation Commerciale - Pas de Modification 4.0
International.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr

Abstract
Synthesis is a field of computer science that consists in generating programs

from abstract specifications. Specifications are often described via a logical for-
malism and programs are obtained as models of transformation. While, in the
specifications, it is useful to express properties of the desired programs using
some forms of non-determinism, we usually want to avoid it in the outcome
of synthesis, for obvious efficiency reasons. Generally speaking, this leads us to
the need to simplify the synthesised transformation models, in order to optimise
their evaluation or translation into practical applications.

In this thesis, the transformation models we are interested in are expressed
as Streaming String Transducers (SST) [AČ10 ; AČ11]. An SST is a deterministic
finite-state automaton equipped with a finite count of registers that can be used
to construct an output word. These registers can be updated by using register
concatenation or by prepending or appending finite words. We are interested
in the challenging problem of register minimisation, which consists, given an
SST, in computing an equivalent SST with a minimal number of registers. As a
first step to support this general model, we constrain how the registers can be
operated on : namely, the registers cannot be concatenated one to another.

We present two main contributions. First, we devise a procedure allowing to
minimise registers in the class of copyless appending SSTs (in this class, registers
can only be appended to). Second, we show, given a copyful concatenation-free
SST, how to decide whether there exists an equivalent concatenation-free SST
with a single register.

When considering the simplification of Finite-State Transducers (FST), a clas-
sical problem is the sequentiality problem [Cho77], which asks whether a given
FST admits an equivalent sequential one (that is with a deterministic underlying
input automaton). For both our results, the proof techniques generalise the fra-
mework created around the sequentiality problem.

Keywords : minimisation, sequentiality, transducers, twinning property

iii

Résumé
La synthèse est un domaine de l’informatique consistant à générer des pro-

grammes à partir de spécifications abstraites. Les spécifications sont souvent dé-
crites à l’aide d’un formalisme logique et les programmes sont obtenus sous la
forme de modèles de transformation. Alors qu’il est utile de pouvoir exprimer
les propriétés des spécifications avec du non-déterminisme, nous souhaitons en
général obtenir des modèles déterministes pour des raisons évidentes d’efficacité.
Ceci nous amène à vouloir simplifier les modèles synthétisés afin d’optimiser leur
évaluation ou leur représentation concrète dans un programme.

Dans cette thèse, les modèles de transformations qui nous intéressent sont ex-
primés par des Streaming String Transducers (SSTs) [AČ10 ; AČ11]. Un SST est
un automate fini déterministe équipé d’un nombre fini de registres qui peuvent
être utilisés pour élaborer un mot de sortie. Ces registres peuvent être mis à jour
en utilisant la concatenation de registres ou en les préfixant ou suffixant par des
mots finis. Nous sommes intéressés par le problème ambitieux de la minimisation
de registres, qui consiste, étant donné un SST, à calculer un SST équivalent avec
un nombre minimal de registres. Comme première étape à la prise en compte
de ce modèle très expressif, nous contraignons la manière dont les registres sont
manipulés : ils ne peuvent pas être concaténés les uns aux autres (cette classe
est appelée Concatenation-Free SST).

Nous présentons deux contributions principales. Tout d’abord, nous élabo-
rons une procédure permettant de minimiser le nombre de registres dans la
classe des Copyless Appending SSTs (dans cette classe, les registres ne peuvent
qu’être suffixés par un mot). Ensuite, nous montrons, étant donné un Copyful
Concatenation-Free SST, comment décider s’il existe un Concatenation-Free SST
équivalent à un seul registre.

Lorsque l’on considère la simplification des Finite-State Transducers (FST), un
problème classique est le problème de la séquentialité [Cho77], qui demande si
un FST donné admet un FST séquentiel équivalent. Pour nos deux résultats, les
techniques de preuves utilisées généralisent le cadre créé autour du problème de
séquentialité.

Mots clés : minimisation, séquentialité, transducteurs, propriété de jumelage

v

Remerciements
Le manuscrit entre vos mains marque le point d’orgue d’une tranche de cinq

années de vie. Il contient à la fois les doutes, déceptions, sueurs et douleurs, et
les surprises, joies et bonheurs qui ont été les miens durant le cheminement qui
a mené à son écriture. Heureusement, j’ai eu de nombreuses personnes autour
de moi pour m’accompagner.

Quelle idée de reprendre ses études à 40 ans pour se lancer dans une thèse.
On me l’a bien fait remarquer quand cette « lubie » m’a prise. Pourtant deux
personnes ont accueilli cette idée avec la plus grande bienveillance. C’est à vous,
Liva et Pierre-Alain, que j’adresse mes premiers remerciements. Un grand merci,
autant pour m’avoir mis en garde, à juste titre, sur mon possible manque de mal-
léabilité dû à mon âge, et pour avoir cru en moi malgré tout et m’avoir soutenu
coûte que coûte.

Un an de Master et quatre ans de thèse, c’est une longue période à devoir
me supporter et je te remercie encore Pierre-Alain pour ta patience, notamment
face à mes régulières démotivations, ralentis, et autres débrayages. . . Malgré ma
grande gueule, je pense n’avoir jamais vraiment été capable de t’exprimer la
gratitude que j’ai pour toi.

Je remercie Anca Muscholl et Olivier Carton d’avoir accepté d’être rappor-
teur.e.s de ce manuscrit, ainsi que les autres membres du jury, Christof Löding,
Benjamin Monmège et Jean-Éric Pin pour le temps qu’ils m’ont consacré.

Je remercie aussi les collègues du Master 2 – Célia, Sébastien, Bastien, Éloi !
– ainsi que les doctorants et post-doctorants – Guillaume, Luc, Laure, Matthieu,
Christina, Antoine, Makki, Léo – qui m’ont tous merveilleusement bien accueilli
parmi eux. Je suis heureux de vous avoir eu à mes côtés durant ces quelques
années et j’ai la chance de pouvoir compter certains d’entre vous parmi mes amis
pour encore longtemps ! Un coup de coude aux collègues de bureau : Damien,
Florian et Éloi. Éloi, je compte sur toi pour en finir rapidement à ton tour.

Je n’aurai pu survivre sans les bulles d’air que m’ont offert mes amies et amis,
danseuses et danseurs de Blues, Forró et autres, militantes et militants de la
protection animale, et usagères et usagers du Cabas Vert. Je ne peux pas tous
vous nommer mais vous vous reconnaîtrez.

Enfin, je remercie ma famille et mes amis proches, qui n’ont jamais mis en
doute mes choix de vie et sans qui je n’aurai pu relever ce nouveau défi.

vii

Contents
Abstract iii

Résumé v

Remerciements vii

Contents ix

Introduction 1
About Transformations . 1
Formal Methods for Safer Systems . 2
Efficient Evaluation of Models . 2
Models of Transformations . 3
General Methodology . 6
Outline of this Thesis . 7

1 Models of Transducers 9
1.1 Preliminaries . 9
1.2 Finite-State Transducers (FST) . 12
1.3 Two-way Finite-State Transducers (2FST) 14
1.4 Deterministic Streaming String Transducers (DSST) 15
1.5 String-to-Context Transducers (S2C) 19
1.6 Summary . 22

2 Comparison of Expressiveness 25
2.1 Functional Two-way Finite-State Transducers 25
2.2 Functional Finite-State Transducers 26
2.3 Sequential Finite-State Transducers 29
2.4 Multi-Sequential Functional Finite-State Transducers 30
2.5 Functional String-to-Context Transducers 31
2.6 Sequential String-to-Context Transducers 34
2.7 Summary . 34

3 Sequentiality of Finite-State Transducers 39
3.1 Characterisation of Sequential Functions 40
3.2 Construction of a Sequential Equivalent 45

ix

x Contents

3.3 Deciding Sequentiality . 47
3.4 Sequentiality in Other Contexts 50

4 k-Sequentiality of Finite-State Transducers 51
4.1 Preliminaries . 52
4.2 Characterisation of k-Sequential Functions 53
4.3 Construction of a k-Sequential Equivalent 58
4.4 Deciding k-Sequentiality . 62
4.5 Minimisation of the Degree of Sequentiality 67

5 Sequentiality of String-to-Context Transducers 69
5.1 Preliminaries . 70
5.2 Characterisation of Sequential S2Cs 73
5.3 Combinatorial Analysis . 77
5.4 Construction of an Equivalent Sequential S2C 90
5.5 Deciding Sequentiality of S2Cs 100
5.6 Related Work . 102

Conclusion 105

List of Figures 107

List of Tables 109

Bibliography 111

Introduction

About Transformations

In our everyday lives, everyone of us interacts with machines, be it at work or
at home or in between. We feed information to all kinds of computer systems,
ranging from smartwatches to autonomous vehicles, to desktop workstations,
and expect processed information in return. Each of these devices acts as some
form of data transformation. A transformation takes some input data and returns
some output data.

Computer science is the study of both computer hardware and software design.
In this discipline, we need means to define and realise these transformations.
Computer programs are a way to express those: developers use programming
languages to encode what input is expected from the user and how the output is
computed from it.

Programming languages often have complex syntaxes and semantics, which
make them suitable to express complex behaviours in a succinct way. However,
their complexity also makes them hard to reason about and prone to error. His-
tory is full of hardware and software problems that have led to financial, or more
importantly, human disasters [LT93; Ari96].

A basic way to ensure program safety is testing. We confirm, by repeatedly
executing the program with a set of valid and invalid inputs, that it behaves
correctly and produces the correct output or error message. Nevertheless, the
set of valid and invalid inputs is often infinite and thus the program cannot be
fully tested. Also, the (often) informal specifications of systems can’t describe
precisely all the valid and invalid behaviours.

In order to address these issues, a number of mathematically based techniques
have evolved over the years: first, some models to abstract transformations, mak-
ing them easier to reason about and yet expressive enough to model many com-
plex behaviours; second, some formal methods to guarantee the safety of the
models we design. We will now introduce some of them, which are of interest to
this thesis.

1

2 Introduction

Formal Methods for Safer Systems

The goal of formal methods is to allow the use of mathematical reasoning on
the behaviours of the program being developed.

One typical such formal method is model-checking. First, a description of the
system to verify is provided, represented as a mathematical model, along with
a specification of the admitted behaviours of the system, often expressed us-
ing some logical formalism (for example Linear-time Temporal Logic [Pnu77]).
Then, a model-checking algorithm is used to verify that the model indeed satis-
fies the logical formula of the specification. See [Cla+18] for a general overview
of model checking.

Another formal method is model synthesis. Here, only a specification of the
system, that can also be expressed using a logical formalism, is used as a driver
to directly generate a candidate model for the system. This synthesised model
is in turn used to produce part or all of the programming language code of the
system.

Realisability (also called uniformisation) [CL11] is a particular case of syn-
thesis. In this approach, the specification is directly given as a (maybe non-
deterministic) transformation model that expresses a relation between inputs
and outputs of the system. From that relation, is extracted a function that has
the same domain and behaves equally on that domain.

Efficient Evaluation of Models

When using synthesis, while we have formal guarantees that the synthesised
model describes a system that satisfies the specification, this model may not be
optimal in a number of ways, like performance or resource consumption. This
leads to the need to simplify the synthesised models. Some usual examples for
the simplification of models are, for example, the minimisation of their size or
the removal of non-determinism.

In this thesis, we focus on the removal, if ever possible, of non-determinism in
models. Whereas non-determinism can be useful to express compact system spec-
ifications in a logical formalism, it is notoriously impractical in the synthesised
models. In fact, the execution of non-deterministic algorithms can sometimes
blow up because we can’t ensure any bound on the number of parallel evalua-
tion contexts required to complete the computation. This constitutes the main
motivation for our work: removing part or all non-determinism in transforma-
tion models to allow for their efficient evaluation.

Models of Transformations 3

Models of Transformations
As explained above, programming languages, being Türing-complete, are too

expressive and many program properties are thus undecidable. We are in need
for abstractions that we can reason about more easily. Finite-state models, such
as finite-state automata, are a good start. They enjoy good closure and decidabil-
ity properties and yet are expressive enough to model many complex behaviours.

We can extend finite-state automata to obtain some models of transformations
that are also adequate for formal reasoning. In this thesis, we will use such
transformation models obtained from finite-state automata: some that are still
finite-state and some others that use registers in a carefully restricted way. We
will see that we can draw equivalences between those models.

A first aim of this manuscript is to summarise the equivalences between
finite-state machines and classes of machines with registers that inter-
est us. We will also summarise the main known results for the problems
of functionality, sequentiality and equivalence on these models.

Finite-State Transducers
Finite-state automata can be viewed as functions from words to boolean val-

ues, and thus describe languages. Finite-state transducers [Ber13; Sak09] extend
finite-state automata by adding output labels in order to produce a word at each
transition. The produced words are concatenated along a run in the transducer.
Then, given an input word, the output of the transducer is the set of words pro-
duced by the runs induced by this input word. As such, finite-state transducers
describe relations from words to words.

A finite-state transducer is functional if the relation it realises is a function. The
class of functions realised by functional finite-state transducers is called the class
of rational functions [Ber13]. We focus in this thesis on functional transducers.

Sequentiality of Finite-State Transducers

A finite-state transducer is sequential (some authors say input-deterministic) if
its underlying input automaton is deterministic. Regarding efficient evaluation,
sequential finite-state transducers are the silver bullet. Indeed, being sequential,
only one evaluation context is required. One can even take the input as a stream
of letters and stream the output word in return, thus occupying a constant mem-
ory space.

However, not every finite-state transducer can be made into a sequential one.
The problem of the sequentiality of finite-state transducers then consists in decid-

4 Introduction

ing whether a finite-state transducer admits an equivalent sequential one. This
problem has been extensively studied [Cho77; WK94; Béa+00; BC02].

A second aim of this manuscript is to provide a self-contained presenta-
tion of known results on sequentiality of finite-state transducers and an
original presentation of the decision of the sequentiality problem. Both
will serve as a basis for the understanding of our main contributions.

Deterministic Streaming String Transducers
[AČ10; AČ11] recently introduced the model of deterministic streaming string

transducers. They are deterministic finite-state automata equipped with regis-
ters to store intermediate output words. These registers can be concatenated
together or with word constants. A transition in a deterministic streaming string
transducer then boils down to a register update.

Register Complexity of Deterministic Streaming String Transducers

A deterministic streaming string transducer is sequential by nature. One way
to simplify a deterministic streaming string transducer would be to minimise its
number of registers. This is known as the register minimisation problem.

However challenging, a first step has been taken in [DRT16] where this prob-
lem is solved for the subclass of copyful appending deterministic streaming string
transducers. An appending deterministic streaming string transducer forbids the
concatenation of two registers and only allows registers to be appended with
some words constants.

When translating between the model of copyful appending deterministic stream-
ing string transducers and the model of functional finite-state transducers, we
can observe that the use of registers in one translates in non-determinism in the
other. In [DRT16], the authors gave a characterisation of the copyful append-
ing deterministic streaming string transducers that admit an equivalent one with
only k registers, for a given k ∈ N. This work demonstrated that there is a
strong connection between register minimisation and sequentialisation. Indeed,
when k = 1, the register minimisation problem of copyful appending determin-
istic streaming string transducers is equivalent to the sequentiality problem of
finite-state transducers.

It is worth noticing that the class of functions realised by copyful appending
deterministic streaming string transducers coincides with the class of rational
functions [Alu+13].

This strong connection between the different models of transformations is an
invitation to study further the links between sequentiality and register minimisa-
tion.

Models of Transformations 5

A Family of Models and Sequentiality Problems
k-Sequentiality of Functional Finite-State Transducers

A finite-state transducer is k-sequential if it is the union of k sequential finite-
state transducers. It is multi-sequential if it is k-sequential, for some k ∈ N. As
not all finite-state transducers can be made sequential, multi-sequential finite-
state transducers appear to be a good compromise in terms of efficient evalua-
tion. Given a functional multi-sequential finite-state transducer, we argue that
one can evaluate each member of the union in a separate thread. No communi-
cation is required between threads and a single final join is needed in order to
collect the output of the only accepting member.

Characterising the finite-state transducers that admit an equivalent multi-se-
quential one, has been studied in [CS86] for the functional case and in [JF15]
for the relational case. The ensuing simplification task would then be to reduce
the size of the union. Following in their footsteps, we studied in [Dav+17]
the problem of the k-sequentiality of functional finite-state transducers, which is
to decide, given k ∈ N, whether a functional finite-state transducer admits an
equivalent k-sequential one.

The first main contribution of this manuscript is to devise an effective
characterisation of the functional finite-state transducers that admit an
equivalent k-sequential one, for a given k ∈ N. We will present this
result directly in the setting of finite-state transducers, contrarily to the
initial publication, but with some original and more direct proofs.

A copyless deterministic streaming string transducer only allows for registers
to be used once in a whole register update of a transition, whereas a copyful de-
terministic streaming string transducer does not have this restriction. Whereas
functional finite-state transducers are equivalent to copyful appending determin-
istic streaming string transducers, functional k-sequential finite-state transducers
are equivalent to copyless appending deterministic streaming string transducers
with k registers. This means that the k-sequentiality problem of functional finite-
state transducers is equivalent to the problem of the minimisation to k registers
of copyless appending deterministic streaming string transducers.

Sequentiality of Functional String-to-Context Transducers

It is tempting to generalise the link between sequentiality and register minimi-
sation further above the rational functions. As functional finite-state transduc-
ers are equivalent to copyful appending deterministic streaming string transduc-
ers, the next step would be to handle copyful concatenation-free deterministic

6 Introduction

streaming string transducers. But there is no equivalent class on the side of
finite-state models.

This leads us to define a new model: the string-to-context transducers. Finite-
state transducers were able to append to the already produced word (just like
copyful appending deterministic streaming string transducers append to their
registers). Now, string-to-context transducers can, at each transition, simulta-
neously prepend and append to the already produced word (just like copyful
concatenation-free deterministic streaming string transducers both prepend and
append to their registers).

The minimisation to 1 register of copyful appending deterministic streaming
string transducers did correspond to the sequentiality of functional finite-state
transducers [DRT16]. Being able to decide the sequentiality problem for func-
tional string-to-context transducers would then establish a base case for a fu-
ture register minimisation of copyful concatenation-free deterministic streaming
string transducers.

The second main contribution of this manuscript is to devise an effec-
tive characterisation of the functional string-to-context transducers that
admit an equivalent sequential one. This constitutes an important first
step towards the register minimisation of copyfull concatenation-free
deterministic streaming string transducers.

General Methodology
Throughout this manuscript, we will extensively use two main tools:
— properties to characterise classes of functions, mathematically describing

in what way their outputs are tied to their inputs, and
— properties to characterise classes of machines, describing a structural pat-

tern that these machines must adhere to.

It is interesting to note that all the main results developed in this manuscript
follow the same principles. They are based on the general shape of the sequen-
tialisation theorem of Choffrut [Cho77], that we will recall later. For C1 a class
of machines, and C2 the subclass of C1 that we wish to characterise, the main
theorem will ressemble to:

Theorem. Let T a machine of class C1. The following assertions are equivalent:

1. the function realised by T satisfies the . . . property,

2. the machine T satisfies the . . . structural property,

3. there exists a machine of class C2 equivalent to T .

Outline of this Thesis 7

Each one of theses assertions plays a different role: 1 is a machine independent
characterisation, 2 is a property expressed by means of a pattern on a machine of
class C1, that can be used to derive efficient decision procedures, and 3 denotes
the class C2 of machines we wish to characterise.

We will often use a similar overall proof strategy, even if the individual proofs
might employ different techniques. This main theorem will always be accompa-
nied by a construction for the C2 equivalent machine, used as part of the proof
for the theorem, and also a decision procedure to identify the machines of C1
that we characterise.

Outline of this Thesis
This thesis is divided in five chapters.
We start in Chapter 1 by presenting the different models of transducers that

we will use. We also recall the main results for the classical problems of function-
ality, sequentiality and equivalence for these models.

In Chapter 2, we carry out a systematic comparison of the expressiveness of
the various equivalent models, by exhibiting constructions from one to another.

Chapter 3 is devoted to the presentation of the main known results around
the sequentiality of functional finite-state transducers. We recall the two known
properties to characterise the functions realised by finite-state transducers that
are sequential or admit a sequential equivalent, along with two different presen-
tations of the structural property to characterise the corresponding finite-state
transducers themselves. We then recall the construction of the sequential equiv-
alent when it exists. Finally, we discuss the decision of the sequentiality problem
and give a new presentation of the decision procedure.

In Chapter 4, we characterise the functional finite-state transducers that ad-
mit a k-sequential equivalent. We present a property of the functions that are
realised by a k-sequential finite-state transducer and the corresponding struc-
tural property for the functional finite-state transducers that admit a k-sequential
equivalent. From this, we draw a construction as well as a decision procedure
for the k-sequentiality problem.

Chapter 5 presents our work around string-to-context transducers. We first
devise a property to characterise the functions that are realised by a sequen-
tial string-to-context transducer, along with a structural property to characterise
the functional string-to-context transducers that admit a sequential equivalent.
We then undertake the combinatorial analysis of those transducers that admit
a sequential equivalent, to obtain a more combinatorial version of the struc-
tural property. This combinatorial property is later used as a foundation for our
construction to build an equivalent sequential string-to-context transducer, if it
exists. Finally, we exhibit a decision procedure for the sequentiality problem of
string-to-context transducers.

Chapter 1
Models of Transducers
1.1 Preliminaries . 9

1.1.1 Alphabets and Words . 9
1.1.2 Contexts . 10
1.1.3 Functions and Relations . 11
1.1.4 Models and Associated Problems . 11

1.2 Finite-State Transducers (FST) . 12
1.3 Two-way Finite-State Transducers (2FST) . 14
1.4 Deterministic Streaming String Transducers (DSST) 15
1.5 String-to-Context Transducers (S2C) . 19
1.6 Summary . 22

1.1 Preliminaries

1.1.1 Alphabets and Words
Let A be a finite alphabet. The set of finite words (or strings) over A is denoted

by A∗. The empty word is denoted by ε. We denote the concatenation of a word u
and a word v by u · v, and sometimes omit the dot, as in uv, when the meaning
is clear from context. The length of a word u is denoted by |u|. The number of
occurrences of the letter a in a word u is denoted by |u|a. We denote by last(u)
the last letter a non-empty word u. We denote by ũ the mirror of the word u, i.e.
for u = u1 · · ·uk, where ui ∈ A for all 1 6 i 6 k, ũ = uk · · ·u1

We say that a word u is a prefix (resp. suffix) of a word v if there exists a word
y such that uy = v (resp. yu = v). We say that two words u, v ∈ A∗ are conjugates
if there exist two words t1, t2 ∈ A∗ such that u = t1t2 and v = t2t1. If this holds,
we write u ∼ v. The primitive root of a word u ∈ A∗, denoted by root(u), is the
shortest word x such that u = xp for some p > 1. A word is said to be primitive,

9

10 1. Models of Transducers

if it is equal to its primitive root. Given a word u ∈ A∗, we say that v is a factor
of u if there exist words x, y such that u = xvy.

Given an alphabet B, we denote by FB the free group over B. For a word
x ∈ FB, we denote by x−1 its inverse in FB. For two words x, y ∈ B∗, if x is a
prefix of y, resp. a suffix, then we write x−1y, resp. yx−1, for the unique word
z ∈ B∗ such that y = xz, resp. y = zx.

Given two words u, v ∈ A∗, the longest common prefix (resp. suffix) of u and v
is denoted by lcp(u, v) (resp. lcs(u, v)). We define the prefix distance between u
and v, denoted by distp(u, v), as |u|+ |v| − 2|lcp(u, v)|.

Given a set of words W ⊆ A∗, the longest common prefix (resp. suffix) of
words in W is denoted by lcp(W) (resp. lcs(W)).

In the following lemma, we recall a classical result of combinatorics that we
will use in this thesis. For two integers n > 0 and m > 0, we denote by gcd(n,m)
the greatest common divisor of n and m.

Lemma 1.1 (Fine and Wilf, [FW65], Chapter 9 of [Lot02]). Let x, y ∈ A∗ and
m,n ∈ N. If xm and yn have a common factor of length at least |x|+|y|−gcd(|x|, |y|),
then the primitive roots of x and y are conjugates.

1.1.2 Contexts

Given a finite alphabetB, a context onB is a pair of words (u, v) ∈ B∗×B∗. The
set of contexts on B is denoted by C(B). The empty context is denoted by cε. For
a context c = (u, v), we denote by←−c (resp. −→c) its left (resp. right) component:
←−c = u (resp. −→c = v). The length of a context c is defined as |c| = |←−c | + |−→c |.
The lateralized length of a context c is defined as ‖c‖ = (|←−c |, |−→c |). For a context
c ∈ C(B) and a word w ∈ B∗, we write c[w] for the word ←−c w−→c . We define the
concatenation of two contexts c1, c2 ∈ C(B) as the context c1c2 = (←−c1

←−c2 ,
−→c2
−→c1).

Last, given a context c and a word u, we denote by c−1[u] the unique word v such
that c[v] = u, when such a word exists.

Example 1.1. Let B = {a, b, c}. Let c1 = (aa, bb), c2 = (bc, c) ∈ C(B) and
w = cc ∈ B∗. Then ←−c1 = aa, −→c1 = bb and c1[w] = aaccbb. Also |c1| = 4, |c2| = 3
‖c1‖ = (2, 2) and ‖c2‖ = (2, 1). Finally we have c1c2 = (aabc, cbb).

Given a set of contexts C ⊆ C(B), we denote by lcc(C) the longest common
context of elements in C, defined as lcc(C) = (lcs({←−c | c ∈ C}), lcp({−→c | c ∈ C})).
We also write C.lcc(C)−1 = {c′ | c′.lcc(C) ∈ C}.

Example 1.2. Let B = {a, b, c}. Let c1 = (abab, bbba), c2 = (acabab, bbbb), c3 =
(ccabab, bbbc) ∈ C(B), and let C = {c1, c2, c3}. Then lcc(C) = (abab, bbb). And
C.lcc(C)−1 = {(ε, a), (ac, b), (cc, c)}

1.1. Preliminaries 11

1.1.3 Functions and Relations
We consider two sets X, Y . Given a (binary) relation ∆ ⊆ X × Y , we let

dom(∆) = {x ∈ X | ∃y ∈ Y such that (x, y) ∈ ∆}. We denote the set of partial
functions from X to Y by F(X, Y). Given f ∈ F(X, Y), we write f : X ↪→ Y ,
we denote by dom(f) its domain and, for X ′ ⊆ X, we define f(X ′) = {f(x) |
x ∈ dom(f)∩X ′}. When more convenient, we may also see elements of F(X, Y)
as subsets of X × Y . Last, given ∆ ⊆ X × Y , we let choose(∆) denote some
∆′ ∈ F(X, Y) such that ∆′ ⊆ ∆ and dom(∆) = dom(∆′).
Remark. Throughout this thesis, we consider that all the functions we manip-
ulate, be it the ones that we characterise or the ones that our models realise,
are potentially partial. Therefore, we generally omit to say that they are indeed
partial. Sometimes, however, we will explicitly insist that a function is partial if
this is important for the understanding of the matter at hand.

1.1.4 Models and Associated Problems
In this thesis, we will manipulate transducers that realise functions from words

to words or (binary) relations between words. We call class of transducers a set
of transducers that either are described using the same model or satisfy some
common properties.

In our domain, we often study whether (and how) some general problems can
be solved with respect to a particular class of machines. We now introduce some
classical problems of interest.

We consider a class C of transducers. The following problem asks, given a
transducer in C, whether this transducer is a member of the subclass of C consist-
ing only of transducers realising functions.

Problem 1.1 (Functionality). Given a transducer of class C, decide whether it
realises a function.

The models of transducers we are interested in are all extensions of finite-
state automata on words. From a transducer considered here, we can always
extract the underlying automaton. If this underlying automaton is deterministic,
then the transducer is said to be sequential. This leads to the following problem
which, given a transducer in C, asks whether this transducer admits an equivalent
transducer in the subclass of C consisting only of sequential transducers.

Problem 1.2 (Sequentiality). Given a transducer of class C, decide whether it can
be realised by an equivalent sequential transducer of class C.

The following problem is also a natural problem and asks, given two transduc-
ers in C, whether these transducers are equivalent.

Problem 1.3 (Equivalence). Given two transducers of class C, decide whether
they realise the same function or relation.

12 1. Models of Transducers

For each of the class of transducers that we introduce hereafter, we will recall
the existing results for these classical problems. All these results are summarised
in Table 1.1.

1.2 Finite-State Transducers
Like finite-state automata, finite-state transducers read their input on a one-

way left-to-right input tape. In addition, they can write to a one-way left-to-right
output tape. For a comprehensive review, see [Ber13] or [Sak09].

Definition 1.1. Let A,B be two finite alphabets. A finite-state transducer (FST
for short) T from A∗ to B∗ is a tuple (Q, tinit, tfinal, T) where Q is a finite set of
states, tinit : Q ↪→ B∗ (resp. tfinal : Q ↪→ B∗) is the initial (resp. final) function,
and T ⊆ Q× A×B∗ ×Q is the finite set of transitions.

A state q is said to be initial (resp. final) if q ∈ dom(tinit) (resp. q ∈ dom(tfinal)).
We depict as w−→

T
q (resp. q w−→

T
), or just w−→ q (resp. q w−→) if it is clear from the

context, the fact that tinit(q) = w (resp. tfinal(q) = w). A run ρ from a state q1 to
a state qk+1 on a word u = u1 · · ·uk ∈ A∗ where for all 1 6 j 6 k, ui ∈ A, is
a sequence of transitions (q1, u1, w1, q2), (q2, u2, w2, q3), . . . , (qk, uk, wk, qk+1). The
output of such a run is the word w = w1w2 . . . wk ∈ B∗, and is denoted by out(ρ).
We depict this situation as q1

u|w−−→
T

qk+1, or just q1
u|w−−→ qk+1 if it is clear from the

context. The run ρ is said to be accepting if q1 is initial and qk+1 final. This finite-
state transducer T computes a relation [[T]] ⊆ A∗×B∗ defined as the set of pairs

(u, v1v2v3) such that there are p, q ∈ Q with
v1−→
T
p

u|v2−−→
T

q
v3−→
T

an accepting run.
Given an FST T = (Q, tinit, tfinal, T), we define the constant MT as MT =

max{|w| | (p, a, w, q) ∈ T or (q, w) ∈ tinit ∪ tfinal}. Given ∆ : Q ↪→ B∗, we de-
note by T∆ the FST obtained by replacing tinit with ∆.

An FST is trimmed if each of its states appears in some accepting run. W.l.o.g.,
we assume that the finite-state transducers we consider are trimmed. Indeed, we
are in this thesis only interested in the accepting runs and an equivalent trimmed
FST can be built in linear time in the number of states.

The union of two finite-state transducers Ti = (Qi, t
i
init, t

i
final, Ti), for i ∈ {1, 2},

is defined as T1 ∪ T2 = (Q1 ∪Q2, t
1
init ∪ t2init, t

1
final ∪ t2final, T1 ∪ T2). States can always

be renamed to ensure disjointness. It is trivial to verify that [[T1∪T2]] = [[T1]]∪ [[T2]].
This operation can be generalized to the union of k finite-state transducers.

An FST T from A∗ to B∗ is functional if the relation [[T]] is a function from
A∗ to B∗. The class of functions realised by functional finite-state transducers is
called the class of rational functions [Ber13] and is denoted by Rat.

An FST T = (Q, tinit, tfinal, T) is sequential if dom(tinit) is a singleton and if for
every transitions (p, a, w, q), (p, a, w′, q′) ∈ T , we have q = q′ and w = w′. As it
computes a unique run per input word, a sequential FST is always functional. An

1.2. Finite-State Transducers (FST) 13

FST is k-sequential if it is the union of k sequential FSTs. It is multi-sequential if
it is k-sequential for some k ∈ N.

Figure 1.1 describes the graphical notations used to depict finite-state trans-
ducers throughout this thesis.

q1
ab

tinit(q1) = ab

q2
ab

tfinal(q2) = ab

q3 q4
a, b|ab

(q3, a, ab, q4), (q3, b, ab, q4) ∈ T

Figure 1.1 – Graphical notations used to depict FSTs.

Example 1.3. Two examples of functional, but non-sequential, finite-state trans-
ducers are depicted on Figure 1.2. Tlast, on Figure 1.2a, computes the function
flast : u ∈ {a, b}+ 7→ last(u)|u|. Tlast first non-deterministically guesses the last
letter of the input word, and hence decides which of the initial states qa or qb
to start from. While in qa or qb, it also guesses whether the current input letter
is the last letter of the input word, and hence whether it should move to the
final state qf . Tlast∗, on Figure 1.2b, computes the function flast∗ : u1# · · · #un 7→
last(u1)|u1|# · · · #last(un)|un| where for all 1 6 i 6 n, ui ∈ {a, b}+. Tlast∗ oper-
ates similarly to Tlast and makes the same non-deterministic guesses but for the
current #-separated input subword.

qa

ε

qf

ε

qb

ε

a, b|a
a|a

a, b|b

b|b

(a) Tlast

qa

ε

qf

ε

qb

ε

a, b|a

a|a

a, b|b

b|b

#|# #|#

(b) Tlast∗

Figure 1.2 – Two example FSTs: Tlast and Tlast∗.

The problem of the functionality of FSTs has long been studied [Sch75; GI83;
Béa+00] and proved by [FMR18] to be NLOGSPACE-complete. The problem
of the sequentiality of FSTs has also been studied extensively [Cho77; WK94;
Béa+00; BC02] and again proved by [FMR18] to be NLOGSPACE-complete.

The equivalence problem for sequential FSTs and functional FSTs has been
studied in [BH79] and [BH77] respectively. Regarding complexity, we can show
it is NLOGSPACE-complete for sequential FSTs and PSPACE-complete for func-
tional FSTs. The equivalence problem has been shown to be undecidable for
FSTs in general [Iba77].

14 1. Models of Transducers

1.3 Two-way Finite-State Transducers
Two-way finite-state transducers are analogous to finite-state transducers ex-

cept that they use a two-way input tape, as two-way finite-state automata do
[AHU69]. The input word can therefore be traversed in both directions arbitrar-
ily. As such, the transducer needs to know when it reached the boundaries of the
input word. Therefore we enrich the input alphabet with some begin and end
markers (namely ` and a) used to flank the input word.

Definition 1.2. Let A,B be two finite alphabets. A two-way finite-state transducer
(2FST for short) T from A∗ to B∗ is a tuple (Q, tinit, tfinal, T) where Q is a finite set
of states, tinit : Q ↪→ B∗ (resp. tfinal : Q ↪→ B∗) is the initial (resp. final) function,
and T ⊆ Q × A à × B∗ × Q × {−1,+1} is the finite set of transitions, where
A à = A ∪ {`,a}.

A configuration of a 2FST is a pair (q, i) ∈ Q × N where q is a state, and i is
the current position on the input tape. A state q is said to be initial (resp. final)
if q ∈ dom(tinit) (resp. q ∈ dom(tfinal)). A run ρ from a state q1 to a state qk+1 on
a word u = u1 · · ·un ∈ A∗à where for all 1 6 i 6 n, ui ∈ A à, is a sequence of
configurations (q1, i1), (q2, i2), . . . , (qk+1, ik+1) such that, for all 1 6 j 6 k, we have
1 6 ij 6 n and there exists (qj, uij , wj, qj+1,mj) ∈ T , such that mj = ij+1 − ij.
The output of such a run is the word w = w1w2 . . . wk ∈ B∗, and is denoted
by out(ρ). The run ρ is said to be accepting if q1 is initial, qk+1 is final, i1 = 1
and ik+1 = n + 1. This two-way finite-state transducer T computes a relation
[[T]] ⊆ A∗ × B∗ defined as the set of pairs (u, tinit(p) · out(ρ) · tfinal(q)) such that
there are two states p, q ∈ Q and an accepting run ρ from p to q on the word
` u a.

A 2FST T from A∗ to B∗ is functional if the relation [[T]] is a function from A∗

to B∗. Based on the equivalence of this model with Courcelle’s monadic second-
order logic definable string transductions [EH01], the class of functions realised
by functional two-way finite-state transducers is called the class of regular func-
tions and is denoted by Reg.

A 2FST T = (Q, tinit, tfinal, T) is sequential if dom(tinit) is a singleton and if for
every transitions (p, a, w, q,m), (p, a, w′, q′,m′) ∈ T , we have q = q′, w = w′ and
m = m′. As it computes a unique run per input word, a sequential 2FST is always
functional.

Figure 1.3 describes the graphical notations used to depict two-way finite-state
transducers throughout this thesis.

Example 1.4. Three examples of functional two-way finite-state transducers are
depicted on Figure 1.4. Tmirror, Tpartition and Tcopy all operate by making three
traversals of the input word. All three of them are sequential. Tmirror, on Fig-
ure 1.4a, computes the function fmirror : u ∈ {a, b}∗ 7→ ũ. Tmirror moves forward

1.4. Deterministic Streaming String Transducers (DSST) 15

q1
ab

tinit(q1) = ab

q2
ab

tfinal(q2) = ab

q3 q4
a, b|ab,+1

(q3, a, ab, q4,+1), (q3, b, ab, q4,+1) ∈ T

Figure 1.3 – Graphical notations used to depict 2FSTs.

to the end of the input word (in state q2), copies the letters while moving back-
ward to its beginning (in state q3), and finally moves forward back to its end
(in state q4). Tpartition, on Figure 1.4b, computes the function fpartition : u ∈
{a, b}∗ 7→ a|u|ab|u|b. Tpartition moves forward while collecting the a letters (in state
q2), moves backward to the beginning of the input word (in state q3), and finally
moves forward again while collecting the b letters (in state q4). Tcopy, on Fig-
ure 1.4c, computes the function fcopy : u ∈ {a, b}∗ 7→ uu. Tcopy moves forward
while copying the input word a first time (in state q2), moves backward to its
beginning (in state q3), and finally moves forward again while copying the input
word a second time (in state q4).

The problem of the functionality of 2FSTs has been shown to be PSPACE-
complete [CK87]. [EH01] proved that the class of functional 2FSTs and the
class of sequential 2FSTs coincide. As such, functional 2FSTs can always be re-
alised by an equivalent sequential 2FST and [CK87] makes the problem of the
sequentiality of 2FSTs to be PSPACE-complete.

The equivalence problem for sequential 2FSTs has been shown to be PSPACE-
complete [Gur80]. This complexity also holds for functional 2FSTs as explained
in [MP19]. As the problem of the equivalence is undecidable for FSTs in general
[Iba77], it is also undecidable for 2FSTs in general.

1.4 Deterministic Streaming String Transducers
Alur and Černý recently proposed a new model, deterministic streaming string

transducers, to capture the class of regular functions [AČ10; AČ11]. Contrar-
ily to finite-state transducers and two-way finite-state transducers, deterministic
streaming string transducers are not finite-state. Although they read the input
word on a simple one-way left-to-right input tape, they employ a finite number
of output registers, that can be concatenated altogether and with finite words,
and thus recover a lot of expressiveness.

The following three definitions explain how registers are operated on.

Definition 1.3 (Register selectors). Given a finite set of registersX and an alphabet
B, we denote by Sel(X , B) the set of register selectors defined as (X ∪B)∗.

Definition 1.4 (Valuations). Given a finite set of registers X and an alphabet B,
we define valuations as mappings from X to B∗. Let Val(X , B) be the set of such

16 1. Models of Transducers

q1
ε

q2 q3 q4 q5
ε`|ε,+1 a|ε,−1 `|ε,+1 a|ε,+1

a, b|ε,+1 a|a,−1

b|b,−1

a, b|ε,+1

(a) Tmirror

q1
ε

q2 q3 q4 q5
ε`|ε,+1 a|ε,−1 `|ε,+1 a|ε,+1

a|a,+1

b|ε,+1

a, b|ε,−1 a|ε,+1

b|b,+1

(b) Tpartition

q1
ε

q2 q3 q4 q5
ε`|ε,+1 a|ε,−1 `|ε,+1 a|ε,+1

a|a,+1

b|b,+1

a, b|ε,−1 a|a,+1

b|b,+1

(c) Tcopy

Figure 1.4 – Three example 2FSTs: Tmirror, Tpartition and Tcopy.

valuations. For ν ∈ Val(X , B), we lift ν to a morphism on Sel(X , B) by setting
ν(a) = a for all a ∈ B.

Definition 1.5 (Update functions). Given a finite set of registers X and an alphabet
B, the set of update functions X → Sel(X , B) is denoted by Upd(X , B). For σ ∈
Upd(X , B), we lift σ to a morphism on Sel(X , B) by setting σ(a) = a for all a ∈ B.
For ν ∈ Val(X , B) and σ ∈ Upd(X , B), we write σ(ν) ∈ Val(X , B) to denote the
application of σ to ν, where for all X ∈ X , σ(ν)(X) = ν(σ(X)). Finally, for
σ1, σ2 ∈ Upd(X , B), we write σ1σ2 ∈ Upd(X , B) to denote the composition of σ1
and σ2, where for all X ∈ X , σ1σ2(X) = σ2(σ1(X)).

For the purpose of depicting update functions, we use sets of assignments of
the form “X = s” where X ∈ X and s ∈ Sel(X , B).

Example 1.5. Let X = {X, Y } and B = {a, b, c}. Let ν = {X 7→ ab;Y 7→ ε}
be a valuation. Let σ = {X = XY ;Y = Xc} be an update function. Then

1.4. Deterministic Streaming String Transducers (DSST) 17

we have σ(ν) = {X 7→ ab;Y 7→ abc}, σσ(ν) = {X 7→ ababc;Y 7→ abc}, and
σσσ(ν) = {X 7→ ababcabc;Y 7→ ababcc}.

Definition 1.6. Let A,B be two finite alphabets. A deterministic streaming string
transducer (DSST for short) T from A∗ to B∗ is a tuple (Q,X , qinit, ν, δ, µ) where
Q is a finite set of states, X is a finite set of registers, qinit ∈ Q is the initial state,
ν ∈ Val(X , B) is the initial valuation, δ : Q×A ↪→ Upd(X , B)×Q is the transition
function, µ : Q ↪→ Sel(X , B) is the final selection function.

Remark. Note that in most presentations of this model, as for example in [AČ10],
the initial valuation always associates every registers to the empty word. How-
ever, we choose here to have an explicit initial valuation, as it will simplify the
presentation of our results. It can easily be shown that both ways are equivalent.

We depict as ν−→
T

qinit, or just ν−→ qinit if it is clear from the context, the fact
that qinit is the initial state and ν the initial valuation. A state q is said to be
final if q ∈ dom(µ), and we depict as q s−→

T
, or just q s−→ if it is clear from

the context, the fact that µ(q) = s. A run ρ from a state q1 to a state qk+1
on a word u = u1 · · ·uk ∈ A∗ where for all 1 6 i 6 k, ui ∈ A, is a se-
quence of transitions (q1, u1, σ1, q2), (q2, u2, σ2, q3), . . . , (qk, uk, σk, qk+1) such that
for all i, δ(qi, ui) = (σi, qi+1). The update of such a run is the update function

σ = σ1σ2 · · ·σk ∈ Upd(X , B). We depict this situation as q1
u|σ−−→
T

qk+1 or just

q1
u|σ−−→ qk+1 if it is clear from the context. The run ρ is said to be accepting if q1 is

initial and qk+1 final. This deterministic streaming string transducer T computes
a function 1 [[T]] : A∗ ↪→ B∗ such that [[T]](u) = σ(ν)(s), for all u ∈ A∗, for which

there are p, q ∈ Q with ν−→
T
p

u|σ−−→
T

q
s−→
T

an accepting run.
A DSST is trimmed if each of its states appears in some accepting run. W.l.o.g.,

we assume that the deterministic streaming string transducers we consider are
trimmed. Indeed, we are in this thesis only interested in the accepting runs and
an equivalent trimmed DSST can be built in linear time in the number of states.

Definition 1.7 (Copyless/Copyful). We say that a register selector s ∈ Sel(X , B) is
copyless if each X ∈ X occurs at most once in s. An update function σ is copyless
if each X ∈ X occurs at most once in σ(X). A DSST is copyless if all its transitions
are labelled with copyless update functions or register selectors. If a DSST is not
copyless, then it is copyful.

Remark. The copyless restriction is also called linear by some authors. As a mat-
ter of fact, it is very similar to the linear constraint of tree transducers [Com+07].

Figure 1.5 describes the graphical notations used to depict deterministic stream-
ing string transducers throughout this thesis.

1. Observe that, by definition, DSSTs always define functions.

18 1. Models of Transducers

q1
ν

q1 is the initial state and
ν is the initial valuation

q2
s

µ(q2) = s

q3 q4
a|σ

δ(q3, a) = (σ, q4)

Figure 1.5 – Graphical notations used to depict DSSTs.

Example 1.6. Two examples of deterministic streaming string transducers are
depicted on Figure 1.6. Slast and Slast∗ are equivalent to Tlast and Tlast∗ of Exam-
ple 1.3.
Slast, on Figure 1.6a, computes the function flast : u ∈ {a, b}+ 7→ last(u)|u|.
Slast replaces non-determinism by the use of two registers Xa and Xb to store
both the words that would be produced if the last input letter were to be an a
or a b. It also remembers in states qa and qb whether the last read letter is an a
or a b, and selects the corresponding register Xa or Xb if this is indeed the last
input letter. Slast∗, on Figure 1.6b, computes the function flast∗ : u1# · · · #un 7→
last(u1)|u1|# · · · #last(un)|un| where for all 1 6 i 6 n, ui ∈ {a, b}+. Slast∗ operates
similarly to Slast. Additionally, when it reads a # from states qa and qb, it copies
the content of the register Xa or Xb to the other register in order to commit to
the word produced accordingly to the last letter. As a result, Xa and Xb always
have equal content up to their last # letter. Note that whereas Slast is copyless,
Slast∗ is copyful, because of the parallel copies of the register Xa (resp. Xb) in the
update function σa# (resp. σb#).

qi

Xa = ε
Xb = ε

qa

Xa

qb

Xb

a
∣ ∣ ∣σ ab

a
∣∣∣σab

b ∣∣∣σ
ab

b
∣∣∣σab

(a) Slast

qi

Xa = ε
Xb = ε

qa

Xa

qb

Xb

a
∣ ∣ ∣σ ab

a
∣∣∣σab

b ∣∣∣σ
ab

b
∣∣∣σab

#
∣ ∣ ∣σ a#

∣∣∣σ
b #

(b) Slast∗

Figure 1.6 – Two example DSSTs: Slast and Slast∗. The updates are abbreviated:
σab = {Xa = Xaa;Xb = Xbb}, σa# = {Xa = Xa#;Xb = Xa#} and
σb# = {Xa = Xb#;Xb = Xb#}.

1.5. String-to-Context Transducers (S2C) 19

Example 1.7. Three additional examples of deterministic streaming string trans-
ducers are depicted on Figure 1.7. Smirror, Spartition and Scopy are equivalent to
Tmirror, Tpartition and Tcopy of Example 1.4. They all replace the two-way traver-
sals by the use of a unique register X. Smirror, on Figure 1.7a, computes the
function fmirror : u ∈ {a, b}∗ 7→ ũ. Smirror prepends the read letters to X, thus
obtaining the mirror of the input word. Spartition, on Figure 1.7b, computes the
function fpartition : u ∈ {a, b}∗ 7→ a|u|ab|u|b. Spartition prepends the read a letters
and appends the read b letters, thus obtaining the partitioning of those letters.
Scopy, on Figure 1.7c, computes the function fcopy : u ∈ {a, b}∗ 7→ uu. Scopy
appends the read letters to X and finally uses two copies of X.

q
X = ε X

a|X = aX

b|X = bX

(a) Smirror

q
X = ε X

a|X = aX

b|X = Xb

(b) Spartition

q
X = ε XX

a|X = aX

b|X = bX

(c) Scopy

Figure 1.7 – Three example DSSTs: Smirror, Spartition and Scopy.

Definition 1.8 (Appending/Concatenation-free). We define two subsets of Sel(X , B):
Selapp(X , B) = X · B∗ and Sel cf(X , B) = B∗ · X · B∗. We say that a regis-
ter selector s is appending (resp. concatenation-free) if s ∈ Selapp(X , B) (resp.
s ∈ Sel cf(X , B)). An update function σ is appending (resp. concatenation-free) if,
for all X ∈ X , σ(X) ∈ Selapp(X , B) (resp. σ(X) ∈ Sel cf(X , B)). A DSST is ap-
pending (resp. concatenation-free) if all its transitions are labelled with appending
(resp. concatenation-free) update functions or register selectors.

Example 1.8. Slast and Slast∗ are appending, and thus concatenation-free. Smirror
and Spart are concatenation-free but not appending. Scopy is neither appending
nor concatenation-free.

The equivalence problem for copyless DSSTs has been shown to be in PSPACE

[AČ11]. It has also been shown to be decidable for copyful DSSTs [FR17].

1.5 String-to-Context Transducers
In this section, we introduce the string-to-context transducers, that are the ba-

sis for some of the work presented in this thesis. They stand as an alternative
presentation of the (copyless) concatenation-free DSSTs with 1 register. Unlike
two-way finite-state transducers, that extend the finite-state transducers with a

20 1. Models of Transducers

two-way input tape, string-to-context transducers keep a one-way input tape but
extend their output tape. The output tape can now be written to at both ends
simultaneously, i.e. the output word is both prepended and appended to at each
transition.

Definition 1.9. Let A,B be two finite alphabets. A string-to-context transducer
(S2C for short) T from A∗ to B∗ is a tuple (Q, tinit, tfinal, T) where Q is a finite
set of states, tinit : Q ↪→ C(B) (resp. tfinal : Q ↪→ C(B)) is the initial (resp. final)
function, and T ⊆ Q× A× C(B)×Q is the finite set of transitions.

A state q is said to be initial (resp. final) if q ∈ dom(tinit) (resp. q ∈ dom(tfinal)).
We depict as c−→

T
q (resp. q c−→

T
), or just c−→ q (resp. q c−→) if it is clear from the

context, the fact that tinit(q) = c (resp. tfinal(q) = c). A run ρ from a state q1 to
a state qk+1 on a word u = u1 · · ·uk ∈ A∗ where for all 1 6 j 6 k, ui ∈ A,
is a sequence of transitions (q1, u1, c1, q2), (q2, u2, c2, q3), . . . , (qk, uk, ck, qk+1). The
output of such a run is the context c = ckck−1 · · · c1 ∈ C(B), and is denoted by

out(ρ). We depict this situation as q1
u|c−→
T

qk+1, or just q1
u|c−→ qk+1 if it is clear

from the context. The run ρ is said to be accepting if q1 is initial and qk+1 final.
This string-to-context transducer T computes a relation [[T]] ⊆ A∗ × B∗ defined

as the set of pairs (u, d3d2d1[ε]) such that there are p, q ∈ Q with
d1−→
T

p
u|d2−−→
T

q
d3−→
T

an accepting run.

Remark. Because of the insertion of an empty word inside the context produced
by runs, the output of S2Cs are words and not contexts. This effectively makes
S2Cs string-to-string transducers.

Given an S2C T = (Q, tinit, tfinal, T), we define the constant MT as MT =
max{|c| | (p, a, c, q) ∈ T or (q, c) ∈ tinit ∪ tfinal}. Given ∆ : Q ↪→ B∗, we de-
note by T∆ the S2C obtained by replacing tinit with ∆. An S2C is trimmed if
each of its states appears in some accepting run. W.l.o.g., we assume that the
string-to-context transducers we consider are trimmed. Indeed, we are in this
thesis only interested in the accepting runs and an equivalent trimmed S2C can
be built in linear time in the number of states.

An S2C T from A∗ to B∗ is functional if the relation [[T]] is a function from A∗

to B∗. An S2C T = (Q, tinit, tfinal, T) is sequential if dom(tinit) is a singleton and if
for every transitions (p, a, c, q), (p, a, c′, q′) ∈ T , we have q = q′ and c = c′. As it
computes a unique run per input word, a sequential S2C is always functional.

Figure 1.8 describes the graphical notations used to depict string-to-context
transducers throughout this thesis.

Example 1.9. Two examples of string-to-context transducers are depicted on
Figure 1.9. T ′mirror and T ′partition are equivalent to Tmirror and Tpartition of Exam-
ple 1.4. They both are sequential and replace the two-way traversals by the use of
prepending. T ′mirror, on Figure 1.9a, computes the function fmirror : u ∈ {a, b}∗ 7→

1.5. String-to-Context Transducers (S2C) 21

q1
(a, b)

tinit(q1) = (a, b)

q2
(a, b)

tfinal(q2) = (a, b)

q3 q4
a, b|(a, b)

(q3, a, (a, b), q4), (q3, b, (a, b), q4) ∈ T

Figure 1.8 – Graphical notations used to depict S2Cs.

ũ. T ′mirror prepends the read letters, thus obtaining the mirror of the input word.
T ′partition, on Figure 1.9b, computes the function fpartition : u ∈ {a, b}∗ 7→ a|u|ab|u|b.
T ′partition prepends the read a letters and appends the read b letters, thus obtaining
the partitioning of those letters.

q
cε cε

a|(a, ε)

b|(b, ε)

(a) T ′mirror

q
cε cε

a|(a, ε)

b|(ε, b)

(b) T ′partition

Figure 1.9 – Two example S2Cs: T ′mirror and T ′partition.

Remark. The classical model of finite-state transducers can be recovered from
the one of string-to-context transducers. A string-to-context transducer T =
(Q, tinit, tfinal, T) is a string-to-string transducer from A∗ to B∗ if, for all (q, c) ∈
tinit ∪ tfinal,

←−c = ε, and for all (q, a, c, q′) ∈ T ,←−c = ε.

The problem of the functionality for S2Cs can be decided thanks to the de-
cidability of the functionality for non-deterministic streaming string transducers
which has been shown to be in PSPACE [AD11].

We have proved that the problem of the sequentiality of functional S2Cs is in
CONPTIME in [RV19] and this result is fully detailed in Chapter 5 of this thesis.

In Chapter 2, we will see that sequential S2Cs are equivalent to 1-register
(hence copyless) concatenation-free DSSTs. Therefore we can reuse [AČ11] to
state that the equivalence problem for sequential S2Cs is in PSPACE.

Let us discuss the equivalence problem for functional S2Cs. Functional S2Cs
can also be viewed as 1-register concatenation-free non-deterministic stream-
ing string transducers (NSST, cf. [AD11]). To decide the equivalence between
two functional S2Cs, we can proceed using the usual technique of first testing
the equality of their domains and then testing the functionality of their disjoint
union. Testing the equality of two non-deterministic finite-state automata is in
PSPACE. Finally, the disjoint union of two 1-register NSSTs is still a 1-register
NSST 2, hence it is copyless, and its functionality can be decided in PSPACE

2. We use the same register for the two parts of the disjoint union.

22 1. Models of Transducers

[AD11]. Therefore, the equivalence problem for functional S2Cs is in PSPACE.
Again, the undecidability of the problem of the equivalence for S2Cs in general

stems from the undecidability of the equivalence for FSTs [Iba77].

1.6 Summary
We have seen four different models of transducers that will be used in this

thesis: finite-state transducers, two-way finite-state transducers, deterministic
streaming string transducers and string-to-context transducers. In Chapter 2,
we will compare the expressiveness of these models. However, we can already
recapitulate the latest results on the classical problems mentioned throughout
this chapter. They are summarised in Table 1.1. A recent survey can be found in
[MP19].

1.6. Summary 23

Class of transducer Functionality Sequentiality Equivalence

Sequential FST n/a n/a
NLOGSPACE-c

[BH79]

Functional FST n/a
NLOGSPACE-c

[FMR18]
PSPACE-c
[BH77]

FST
NLOGSPACE-c

[FMR18]
NLOGSPACE-c

[FMR18]
undecidable

[Iba77]

Sequential 2FST n/a n/a
PSPACE-c
[Gur80]

Functional 2FST n/a always true
PSPACE-c
[Gur80]

2FST
PSPACE-c
[CK87]

PSPACE-c
[EH01; CK87]

undecidable

Copyless DSST n/a n/a
PSPACE

[AČ11]

Copyful DSST n/a n/a
decidable
[FR17]

Sequential S2C n/a n/a
PSPACE

[AČ11]

Functional S2C n/a
CONPTIME

[RV19]
PSPACE

[AD11]

S2C
PSPACE

[AD11]
PSPACE

[AD11; RV19]
undecidable

Table 1.1 – Summary of the results for the classical problems.
"n/a" means non-applicable.

Chapter 2
Comparison of Expressiveness
2.1 Functional Two-way Finite-State Transducers 25
2.2 Functional Finite-State Transducers . 26

2.2.1 From Copyful Appending DSSTs to Functional FSTs 27
2.2.2 From Functional FSTs to Copyful Appending DSSTs 28

2.3 Sequential Finite-State Transducers . 29
2.4 Multi-Sequential Functional Finite-State Transducers 30

2.4.1 From Copyless Appending DSSTs to Multi-Sequential Functional FSTs . . 30
2.4.2 From Multi-Sequential Functional FSTs to Copyless Appending DSSTs . . 30

2.5 Functional String-to-Context Transducers . 31
2.5.1 From Copyful Concatenation-Free DSSTs to Functional S2Cs 32
2.5.2 From Functional S2Cs to Copyful Concatenation-Free DSSTs 33

2.6 Sequential String-to-Context Transducers . 34
2.7 Summary . 34

In this chapter, we will study the expressiveness of the functional finite-state
transducer models that we introduced in Chapter 1. Specifically, we will look at
how they compare to the deterministic streaming string transducer model and
its different restrictions (copyless/copyful, appending/concatenation-free).

2.1 Functional Two-way Finite-State Transducers
As defined in Section 1.3, the class of functions realised by functional 2FSTs is

the class of regular functions [EH01].
[AČ10] introduced the copyless DSST model and proved that the class of func-

tions it realises is exactly the class of regular functions, by providing construc-
tions from sequential 2FSTs to copyless DSSTs and from copyless DSSTs to de-
terministic Monadic Second Order Transductions.

From these results, we draw the following proposition.

25

26 2. Comparison of Expressiveness

Proposition 2.1. Let A,B be two alphabets. Let f be a function from A∗ to B∗.
The following assertions are equivalent:

1. f is a regular function,

2. f can be realised by a functional 2FST,

3. f can be realised by a copyless DSST.

Remark. Some copyful DSSTs are not within the class of regular functions. In-
deed, copyfulness gives the ability to describe transductions whose output grows
non-linearly w.r.t. the growth of their input word. For example, Figure 2.1 de-
picts a copyful DSST that realises the function u ∈ {a}∗ 7→ a2|u|, whose output
obviously grows exponentially.

q
X = a X

a
∣∣∣X = XX

Figure 2.1 – A copyful DSST with exponential size increase.

2.2 Functional Finite-State Transducers
As defined in Section 1.2, the class of functions realised by functional FSTs

is the class of rational functions [Ber13]. The following proposition extends
this connection to copyful appending DSSTs, using a construction similar to
[Alu+13].

Proposition 2.2. Let A,B be two alphabets. Let f be a function from A∗ to B∗.
The following assertions are equivalent:

1. f is a rational function,

2. f can be realised by a functional FST,

3. f can be realised by a copyful appending DSST.

The equivalence between 1 and 2 comes from the definition of rational func-
tions. We will detail the equivalence between 2 and 3 in the next two subsections
as it will be useful when considering S2Cs.

Remark. In contrast to regular functions, we need copyfulness to fully express
the rational functions with appending DSSTs. We will see in Section 2.4 that, if
we only use copyless appending DSSTs, we loose some form of non-determinism
and obtain the class of multi-sequential rational functions.

2.2. Functional Finite-State Transducers 27

2.2.1 From Copyful Appending DSSTs to Functional FSTs
Let S = (Q,X , qinit, ν, δ, µ) be a copyful appending DSST. We build an equiva-

lent functional FST T = (Q′, tinit, tfinal, T).

States The states of T are pairs of a state and a register of S, i.e. Q′ = Q× X .
Each state of T thus designates a register of S, the content of which has already
been outputted.

Initial Function Initial states of T must produce the initial valuation for their
designated register.

for all X ∈ X such that ν(X) = w, then w−→
T

(qinit, X)

Transitions We add a transition in T for each assignation Y = X ·w in S. These
transitions must produce the word that is appended to the designated register of
their source state.

for all p, q ∈ Q, a ∈ A, w ∈ B∗ and X, Y ∈ X ,
such that p

a|σ−→
S

q and σ(Y) = X · w, then (p,X) a|w−−→
T

(q, Y)

Final Function Final states of T correspond to final states of S. They must also
produce the word appended to their designated register, if any.

for all p ∈ Q, w ∈ B∗ and X ∈ X such that p X·w−−→
S

, then (p,X) w−→
T

The following lemma states that S and T are equivalent. As S is functional by
definition, so is T , and this also proves the implication from 3 to 2 of Proposi-
tion 2.2.

Lemma 2.3. [[T]] = [[S]].

Proof. We first state the following construction invariant:

∀u ∈ A∗, w1−→
T

(qinit, X) u|w2−−→
T

(p, Y)

iff ν−→
S
qinit

u|σ−−→
S

p with ν(X) = w1 and σ(Y) = Xw2

This invariant can be proven by induction on the length of u. Both the base case
and the induction step hold by construction of T . Finally, we obtain the result
by definition of the final function of T .

28 2. Comparison of Expressiveness

2.2.2 From Functional FSTs to Copyful Appending DSSTs
Let T = (Q, tinit, tfinal, T) be a functional FST. We now build an equivalent copy-

ful appending DSST S = (Q′,X , qinit, ν, δ, µ). Intuitively, this construction extends
the classical power set construction used to determinise a non-deterministic
finite-state automata.

States The states of S are subsets of states of T , i.e. Q′ = 2Q.

Registers We use one register per state of T to store the output T would have
produced before reaching each of these states.

X = {Xq | q ∈ Q}

Initial State The initial state of S is the set of initial states of T . We define the
corresponding initial valuation accordingly.

qinit = dom(tinit) and ν = {Xq 7→ w | w−→
T
q}

Transitions Given a state of S and a letter a ∈ A, we identify the set of tran-
sitions of T that are enabled, compute the new state, and update the registers
accordingly. We define δ as follows:

for all S1 ∈ Q′ and a ∈ A, such that S2 = {q2 | ∃q1 ∈ S1 ∧ q1
a|w−−→
T

q2} 6= ∅,

then S1
a|σ1∪σ2−−−−→
S

S2 where

σ1 = {Xq2 = Xq1 · w | ∃q1 ∈ S1 ∧ q1
a|w−−→
T

q2} and σ2 = {Xq = Xq | q ∈ Q \ S2}

Note that σ1 and σ2 are disjoint: σ1 defines updates for the registers {Xq |
q ∈ S2}, while σ2 defines updates for the registers {Xq | q /∈ S2}. Furthermore,
because T is functional, we can arbitrarily choose any pair (q1, w) ∈ S1 × B∗

such that q1
a|w−−→
T

q2. Therefore σ1 is well defined. Finally, as there is no transition
between states q1 ∈ S1 and states q ∈ Q \ S2, we know that the current values of
the registers {Xq | q ∈ Q \S2} won’t be used in the final output. As their value is
useless, we choose to simply copy them.

Final States Every state of S that contains a final state of T is final. Thus, we
define µ as follows:

for all S ∈ Q′ such that S ∩ dom(tfinal) 6= ∅,
let q ∈ S such that q w−→

T
, then S

Xq ·w−−−→
S

2.3. Sequential Finite-State Transducers 29

As T is functional, we can arbitrarily choose any pair (q, w) ∈ S×B∗ such that
q

w−→
T

. Therefore µ is well defined.

The following lemma proves the implication from 2 to 3 of Proposition 2.2.

Lemma 2.4. [[S]] = [[T]].

Proof. We first state the following construction invariant:

∀u ∈ A∗, ν−→
S
qinit

u|σ−−→
S

S with ν(Xp) = w1 and σ(Xq) = Xpw2

iff
w1−→
T

p
u|w2−−→
T

q with p ∈ qinit and q ∈ S

The proof can be done by induction on the length of u. Both the base case and the
induction step hold by construction of S. We also use the functionality of T to
show that our construction is correct. Finally, we obtain the result by definition
of the final states of S.

Observations First, note that S is appending by construction, as all of its regis-
ter updates are of the form Y = Xu for some u ∈ B∗.

Second, note that S may be copyful. For example, suppose that there exist

some states p, q1, q2 ∈ Q with q1 6= q2, and two transitions p
a|w1−−→ q1 and p

a|w2−−→ q2
in T reading the same letter a ∈ A. This will result in a transition reading a
from a state S 3 p of S having parallel updates of the form Xq1 = Xp · w1 and
Xq2 = Xp · w2.

2.3 Sequential Finite-State Transducers
The equivalence between the class of 1-register appending DSSTs and the class

of sequential FSTs is even easier. As both models are deterministic, we only need
to do syntactic rewrite of the machine’s output labels, as shown in Table 2.1. This
leads to the following proposition.

Proposition 2.5. Let A,B be two alphabets. A function f from A∗ to B∗ can be
realised by a 1-register appending DSST iff it can be realised by a sequential FST.

Label 1-register appending DSST sequential FST
Initial X = w w

Transition X = Xw w
Final Xw w

Table 2.1 – Synctactic rewrites of labels between 1-register appending DSSTs
and sequential FSTs

30 2. Comparison of Expressiveness

Observations It is obvious that a 1-register appending DSST is copyless. Also,
as stated before, a sequential FST is always functional.

2.4 Multi-Sequential Functional Finite-State
Transducers

Proposition 2.6. Let A,B be two alphabets. A function f from A∗ to B∗ can be
realised by a copyless appending DSST with k registers iff it can be realised by a
k-sequential functional FST.

The equivalence is shown in the following two subsections.

2.4.1 From Copyless Appending DSSTs to Multi-Sequential
Functional FSTs

Let S = (Q,X , qinit, ν, δ, µ) be a copyless appending DSST withX = {X1, . . . , Xk}
for some k ∈ N. We build an equivalent k-sequential functional FST T =
∪i∈{1,...,k}Ti with Ti = (Q′i, tiinit, t

i
final, Ti) for i ∈ {1, . . . , k}. We build each Ti from

S with the construction of Section 2.2.1 but keeping only (qinit, Xi) as its unique
initial state and trimming it appropriately.

The following lemma proves the forward implication of Proposition 2.6.

Lemma 2.7. Ti is sequential, for all i ∈ {1, . . . , k}, and [[T]] = [[S]].

Proof. As S is deterministic, for all p ∈ Q and a ∈ A, there is only one transition

p
a|σ−→ q, for some σ ∈ Upd(X , B). As S is copyless, for all X ∈ X , there is only

one register Y such that σ(Y) = Xw, for some w ∈ B∗. We obtain that for all

p ∈ Q, X ∈ X and a ∈ A, if (p,X) a|w−−→
Ti

(q, Y) and (p,X) a|w′−−→
Ti

(q′, Y ′) then w = w′,

q = q′ and Y = Y ′. Therefore Ti is sequential.
We now prove the equivalence between T and S. Let T ′ the functional FST

equivalent to S, obtained by the construction of Section 2.2.1. This construction
is such that the initial states of T ′ are {(qinit, Xi) | i ∈ {1, . . . , k}}, i.e. the initial
states of the Ti’s. Therefore, we obtain that [[T]] = [[T ′]] and thus [[T]] = [[S]].

2.4.2 From Multi-Sequential Functional FSTs to Copyless
Appending DSSTs

Let T = ∪i∈{1,...,k}Ti be a k-sequential functional FST where for all i ∈ {1, . . . , k},
Ti = (Q′i, tiinit, t

i
final, Ti).

From each of the Ti, we build an equivalent appending DSST with 1 register,
using the construction of Section 2.3. We then make the product of these k

2.5. Functional String-to-Context Transducers 31

DSSTs and we obtain an appending DSST S with k registers. It can easily be
shown that [[S]] = [[T]].

As every update of S is of the form Xi = Xiw, for some i ∈ {1, . . . , k} and
w ∈ B∗, we obtain that S is copyless, therefore proving the reverse implication
of Proposition 2.6.

2.5 Functional String-to-Context Transducers

In order to better understand the expressiveness of functional S2Cs, it is useful
to view them as built from two functional FSTs.

Proposition 2.8. Let A,B be two alphabets. A function f from A∗ to B∗ can be
realised by an S2C iff there exist two rational functions g, h from A∗ to B∗ such
that, for all u ∈ dom(f), f(u) = g̃(u) · h(u).

Proof. Let Tf be an S2C realising f . We consider Tf to be unambiguous. If
it is not, as it is functional, we can use classical automata techniques to build
an unambiguous equivalent. From Tf , we can easily build two FSTs Tg and Th
realising g and h. First, they all have the same set of states. Second, we define
their transitions, and initial and final functions as follows:

for all
a|(u,v)−−−→
Tf

p, we set
a|ũ−→
Tg

p and
a|v−→
Th

p.

for all p
a|(u,v)−−−→
Tf

q, we set p
a|ũ−→
Tg

q and p
a|v−→
Th

q.

for all q
a|(u,v)−−−→
Tf

, we set q
a|ũ−→
Tg

and q
a|v−→
Th

.

As Tf is unambiguous, so are Tg and Th, and thus also functional. It is then easy
to prove that, indeed, for all u ∈ dom(f), f(u) = g̃(u) · h(u).

Conversely, from two FSTs Tg and Th realising g and h, we can build an S2C
Tf by applying a product construction of Tg and Th.

And again, S2Cs are still comparable to a particular restriction of DSSTs.

Proposition 2.9. Let A,B be two alphabets. A function f from A∗ to B∗ can be
realised by a copyful concatenation-free DSST iff it can be realised by an S2C.

The equivalence is shown in the following two subsections. They follow ex-
actly the same course than Section 2.4. While appending updates correspond
to productions of an FST, concatenation-free updates correspond to those of an
S2C.

32 2. Comparison of Expressiveness

2.5.1 From Copyful Concatenation-Free DSSTs to Functional
S2Cs

Let S = (Q,X , qinit, ν, δ, µ) be a copyful concatenation-free DSST. We build an
equivalent functional S2C T = (Q′, tinit, tfinal, T).

States The states of T are pairs of a state and a register of S, i.e. Q′ = Q× X .
Each state of T thus designates a register of S, the content of which has already
been outputted.

Initial Function Initial states of T must produce the initial valuation for their
designated register.

for all X ∈ X such that ν(X) = w, then
(ε,w)−−−→
T

(qinit, X)

Transitions We add a transition in T for each assignation Y = v · X · w in S.
These transitions must produce the context that is added around the designated
register of their source state.

for all p, q ∈ Q, a ∈ A, v, w ∈ B∗ and X, Y ∈ X ,
such that p

a|σ−→
S

q and σ(Y) = v ·X · w, then (p,X) a|(v,w)−−−−→
T

(q, Y)

Final Function Final states of T correspond to final states of S. They must also
produce the word appended to their designated register, if any.

for all p ∈ Q, v, w ∈ B∗ and X ∈ X such that p v·X·w−−−→
S

, then (p,X) (v,w)−−−→
T

The following lemma states that S and T are equivalent. As S is functional by
definition, so is T , and this also proves the forward implication Proposition 2.9.

Lemma 2.10. [[T]] = [[S]].

Proof. We first state the following construction invariant:

∀u ∈ A∗, (ε,w1)−−−→
T

(qinit, X) u|(v2,w2)−−−−−→
T

(p, Y)

iff ν−→
S
qinit

u|σ−−→
S

p with ν(X) = w1 and σ(Y) = v2Xw2

We can prove it by induction on the length of u. Both the base case and the in-
duction step hold by construction of T . Finally, we obtain the result by definition
of the final function of T .

2.5. Functional String-to-Context Transducers 33

2.5.2 From Functional S2Cs to Copyful Concatenation-Free
DSSTs

Let T = (Q, tinit, tfinal, T) be a functional S2C. We now build an equivalent
copyful concatenation-free DSST S = (Q′,X , qinit, ν, δ, µ).

States The states of S are subsets of states of T , i.e. Q′ = 2Q.

Registers We use one register per state of T to store the output T would have
produced before reaching each of these states.

X = {Xq | q ∈ Q}

Initial State The initial state of S is the set of initial states of T . We define the
corresponding initial valuation accordingly.

qinit = dom(tinit) and ν = {Xq 7→ vw | (v,w)−−−→
T

q}

Transitions We define δ as follows:

for all S1 ∈ Q′ and a ∈ A, such that S2 = {q2 | ∃q1 ∈ S1 ∧ q1
a|(v,w)−−−−→
T

q2} 6= ∅,

then S1
a|σ1∪σ2−−−−→
S

S2 where

σ1 = {Xq2 = v ·Xq1 ·w | ∃q1 ∈ S1 ∧ q1
a|(v,w)−−−−→
T

q2} and σ2 = {Xq = Xq | q ∈ Q \ S2}

We can show that σ1 ∪ σ2 is well-defined, using similar arguments to the ones
used in the construction from functional FSTs to copyful appending DSSTs of
Section 2.2.2.

Final States Every state of S that contains a final state of T is final. Thus, we
define µ as follows:

for all S ∈ Q′ such that S ∩ dom(tfinal) 6= ∅,
let q ∈ S such that q

(v,w)−−−→
T

, then S
v·Xq ·w−−−−→
S

As T is functional, we can arbitrarily choose any pair (q, (v, w)) ∈ S ×B∗ such

that q
(v,w)−−−→
T

. Therefore µ is well defined.

The following lemma proves the implication from 2 to 3 of Proposition 2.2.

Lemma 2.11. [[S]] = [[T]].

34 2. Comparison of Expressiveness

Proof. We first state the following construction invariant:

∀u ∈ A∗, ν−→
S
qinit

u|σ−−→
S

S with ν(Xp) = w1 and σ(Xq) = v2Xpw2

iff
(ε,w1)−−−→
T

p
u|(v2,w2)−−−−−→
T

q with p ∈ qinit and q ∈ S

It can be proven by induction on the length of u. Both the base case and the in-
duction step hold by construction of S. Finally, we obtain the result by definition
of the final states of S.

Observations First, note that S is concatenation-free by construction, as all of
its register updates are of the form Y = vXw for some v, w ∈ B∗. Second, as for
the construction of Section 2.2.2, the non-determinism of T may yield copyful
updates in S.

2.6 Sequential String-to-Context Transducers
Similarly to Section 2.3, the equivalence between the class of 1-register concatenation-

free DSSTs and the class of sequential S2Cs is even easier. As both models are
deterministic, we only need to do syntactic rewrite of the machine’s output labels,
as shown in Table 2.2. This leads to the following proposition.

Proposition 2.12. Let A,B be two alphabets. A function f from A∗ to B∗ can be
realised by a 1-register concatenation-free DSST iff it can be realised by a sequential
S2C.

Label 1-register concatenation-free DSST sequential S2C
Initial X = w (ε, w)

Transition X = vXw (v, w)
Final vXw (v, w)

Table 2.2 – Synctactic rewrites of labels between 1-register concatenation-free
DSSTs and sequential S2Cs

Observations It is obvious that a 1-register concatenation-free DSST is copyless.
Also, as stated before, a sequential S2C is always functional.

2.7 Summary
The Figure 2.2 depicts the relationships between the classes of functions re-

alised by our different models and where our example functions are situated. We

2.7. Summary 35

also situate four additional example functions: fmirror·id, fmirror·last, fmirror·last∗,
and fid·mirror. fmirror·id is discussed in Example 2.1 and fid·mirror is discussed in
Example 2.2. Finally, fmirror·last and fmirror·last∗ can be built as S2Cs in a similar
way to fmirror·id but they cannot be realised by sequential S2Cs.

Figure 2.2 – A representation of different functional transducer classes.

Example 2.1. Three example implementations of fmirror·id : u ∈ {a, b}∗ 7→ ũu
are depicted on Figure 2.3. Tmirror·id is a sequential S2C that both prepends and
appends the letter it reads from the input word. Smirror·id is a concatenation-free
DSST with only one register that both prepends and appends the letter it reads
from the input word to its register X. T ′mirror·id is a 2FST. It moves forward to
the end of the input word while producing no output (in state q2), then moves

36 2. Comparison of Expressiveness

backward while copying the input word in reverse (in state q3), and finally moves
forward again back to the end of the input word while copying it a second time
(in state q4). We can prove, by using the notion of inversion defined in [Bas+18],
that the function fmirror·id cannot be realised by a one-way FST.

q
cε cε

a|(a, a)

b|(b, b)

(a) Tmirror·id

q
X = ε X

a|X = aXa

b|X = bXb

(b) Smirror·id

q1
ε

q2 q3 q4 q5
ε`|ε,+1 a|ε,−1 `|ε,+1 a|ε,+1

a, b|ε,+1 a|a,−1

b|b,−1

a|a,+1

b|b,+1

(c) T ′mirror·id

Figure 2.3 – Three example implementations of fmirror·id.

Example 2.2. Two example implementations of fid·mirror : u ∈ {a, b}∗ 7→ uũ are
depicted on Figure 2.4. Sid·mirror is a DSST with two registers X and Y . It simul-
taneously appends the read letter to X and prepends it to Y . The final output is
obtained by concatenating X and Y . Tid·mirror is a 2FST. It moves forward while
copying the input word a first time (in state q2), then moves backward while
copying the input word in reverse (in state q3), and finally moves forward again
back to the end of the input word while producing no output (in state q4). The
function fid·mirror cannot be realised by a DSST with one register nor by an S2C.
This can easily be understood by considering the characterisation of S2Cs from
Proposition 2.8.

The next three chapters will discuss how to characterise functions (and the
transducers realising those) in the three classes depicted in orange (sequential
FST, multi-sequential FST and sequential S2C) among the functions in the two
classes depicted in light blue (FST and S2C). Chapter 3 will recall results, due
to [Cho77], that allow to characterise, amongst the class of functional FSTs,
the ones that admit an equivalent sequential FST. Chapter 4 will present original
results, published in [Dav+17], that allow, given k ∈ N, to characterise, amongst
the class of functional FSTs, the ones that admit an equivalent k-sequential FST.
Finally, Chapter 5 will present original results, published in [RV19], that allow

2.7. Summary 37

qX = ε
Y = ε

XY

a
∣∣∣∣∣X = Xa
Y = aY

b
∣∣∣∣∣X = Xb
Y = bY

(a) Sid·mirror

q1
ε

q2 q3 q4 q5
ε`|ε,+1 a|ε,−1 `|ε,+1 a|ε,+1

a|a,+1

b|b,+1

a|a,−1

b|b,−1

a, b|ε,+1

(b) Tid·mirror

Figure 2.4 – Two example implementations of fid·mirror.

to characterise, amongst the class of functional S2Cs, the ones that admit an
equivalent sequential S2C.

Chapter 3
Sequentiality of Finite-State
Transducers
3.1 Characterisation of Sequential Functions . 40

3.1.1 Bounded Variation Property . 40
3.1.2 Lipschitz Property . 41
3.1.3 Twinning Property . 41
3.1.4 Sequentialisation Theorem . 44

3.2 Construction of a Sequential Equivalent . 45
3.3 Deciding Sequentiality . 47
3.4 Sequentiality in Other Contexts . 50

In this chapter, we recall the work of [Cho77] to characterise, amongst func-
tional finite-state transducers, the ones that admit an equivalent sequential finite-
state transducer. It will provide a basis for the understanding of the extensions
that we build in Chapters 4 and 5. For another full account of those results, see
[BC02].

You may recall from Chapter 1 that a sequential finite-state transducer T =
(Q, tinit, tfinal, T) has the following syntactic restriction: dom(tinit) is a singleton
and for every transitions (p, a, w, q), (p, a, w′, q′) ∈ T , we have q = q′ and w = w′.
We call the class of rational functions that can be realised by a sequential finite-
state transducer is called the class of sequential functions.

The following example shows two classical traits of non-determinism in FSTs.

Example 3.1. Two examples of functional, but non-sequential, finite-state trans-
ducers are depicted on Figure 3.1. Tending, on Figure 3.1a, computes the function
fending : u ∈ {a, b}∗a 7→ a|u|. Tending non-deterministically guesses, while in
qi, whether the current a letter is the last letter of the input word, and hence
whether it should move to the final state qf . Tsynchro, on Figure 3.1b, computes
the function fsynchro which maps an input word u to itself if u ∈ a+b, and to a · u

39

40 3. Sequentiality of Finite-State Transducers

if u ∈ a+c. Tsynchro non-deterministically guesses, while in q1, whether the input
word ends with a b or a c, and goes accordingly to the left or right branch (q2 or
q4). It produces one more a while going to the right branch.

qi

ε

qf

ε

a, b|a

a|a

(a) Tending

q1

ε

q2 q4

q3

ε

q5

ε

a|a a|aa
a|a

b|b

a|a

c|c

(b) Tsynchro

Figure 3.1 – Two example FSTs: Tending and Tsynchro.

Note that there was initially two different classes called sub-sequential trans-
ducers, introduced by Ginsburg et Rose, and sequential transducers, introduced
by Schützenberger. In fact, the work of [Cho77] characterises the sub-sequential
ones. In this thesis, we chose to use the term "sequential" to speak about the
more general sub-sequential class, following the consensus in the recent litera-
ture.

In Section 3.1, we first present the properties used to characterise functions
that are realisable by a sequential finite-state transducer. Then we present a
pattern property of finite-state transducers that can also be realised by an equiv-
alent sequential finite-state transducer. Finally, we present the main result of
[Cho77], the so-called sequentialisation theorem, that links all these properties
to the existence of an equivalent sequential finite-state transducer.

In Section 3.2, we describe and prove the construction of an equivalent sequen-
tial transducer. Lastly, in Section 3.3 we discuss the decision of the sequentiality
problem for finite-state transducers.

3.1 Characterisation of Sequential Functions
We here introduce the different properties that characterise the functions that

can be realised by a sequential transducer and the functional transducers that
admit an equivalent sequential one.

3.1.1 Bounded Variation Property
The bounded variation property was first introduced in [Cho77], and deals

with word to word functions. Given a function f , it states that if two words are

3.1. Characterisation of Sequential Functions 41

close, w.r.t. to their prefix distance, then their images by f are also close.

Definition 3.1 (Bounded variation property). Let A,B be two alphabets. A func-
tion f from A∗ to B∗ satisfies the bounded variation property if for all m ∈ N,
there exists M ∈ N such that for all u, v ∈ dom(f), if distp(u, v) 6 m then
distp(f(u), f(v)) 6M .

3.1.2 Lipschitz Property
The application of the Lipschitz property to rational functions was hinted in

[Ber13, Example 2.8] as part of a presentation of the results of [Cho77]. Given
a function f , it states that the prefix distance between the images by f of two
words is proportional to the prefix distance between these two input words.

Definition 3.2 (Lipschitz property). Let A,B be two alphabets. A function f from
A∗ to B∗ satisfies the Lipschitz property if there exists K ∈ N such that for all
u, v ∈ dom(f), distp(f(u), f(v)) 6 K.distp(u, v).

Example 3.2. The function fending defined in Example 3.1 obviously satisfies
the Lipschitz property with coefficient 1. Indeed, let u, v ∈ {a, b}∗a. We have
f(u) = a|u| and f(v) = a|v|. Then, distp(f(u), f(v)) = ||u| − |v|| 6 distp(u, v).

Similarly, one can prove that the function fsynchro defined in Example 3.1 also
satisfies the Lipschitz property.

Example 3.3. The function flast defined in Example 1.3 does not satisfy the
Lipschitz property. Indeed, let K ∈ N and take u = aKa, v = aKb. We have
f(u) = aK+1 and f(v) = bK+1. Then, distp(f(u), f(v)) = 2K + 2 > K.distp(u, v) =
2K.

In the next lemma, we state that the Lipschitz property implies the bounded
variation property. We will later prove that they actually are equivalent.

Lemma 3.1. Let A,B be two alphabets. If a function f from A∗ to B∗ satisfies the
Lipschitz property then it satisfies the bounded variation property.

Proof. Let f that satisfies the Lipschitz property and let K ∈ N such that for
all u, v ∈ dom(f), distp(f(u), f(v)) 6 K.distp(u, v). We prove that f satisfies the
bounded variation property. Let m ∈ N and define M = Km. If u, v ∈ dom(f)
and distp(u, v) 6 m then we have distp(f(u), f(v)) 6 K.distp(u, v) 6M .

3.1.3 Twinning Property
We now introduce the twinning property, originally formulated by [Cho77],

which defines a structural property of transducers.

42 3. Sequentiality of Finite-State Transducers

Definition 3.3 (Twinning property – Choffrut’s version (TPchoffrut)). Two states

q1, q2 of an FST are said to be twinned, if for any two runs
w1−→ p1

u|x1−−→ q1
v|y1−−→ q1

and
w2−→ p2

u|x2−−→ q2
v|y2−−→ q2, where p1, p2 are initial states, we have either y1 =

y2 = ε, or there exists a word z such that either w1x1 = w2x2z and zy1 = y2z, or
w2x2 = w1x1z and zy2 = y1z. An FST satisfies the twinning property if any two of
its states are twinned.

Remark. As explained in Chapter 1, we consider our FSTs to be trimmed. There-
fore, in the previous definition, both q1 and q2 are co-accessible, i.e. there exist
runs from q1 and q2 to some final states.

The following two lemmas state some consequences of the TPchoffrut.

Lemma 3.2. Let four words x1,x2,x
′
1,x
′
2 such that either x2 = x′2 = ε or there exists

a word z such that either x1 = x′1z and zx2 = x′2z, or x1z = x′1 and x2z = zx′2, then
for all words x3, x

′
3, distp(x1x2x3, x

′
1x
′
2x
′
3) = distp(x1x3, x

′
1x
′
3).

Proof. If x2 = x′2 = ε then the result is trivial. We now consider that there
exists a word z such that x1z = x′1 and x2z = zx′2. The other case is obtained
by symmetry. Then we have x′1x

′
2x
′
3 = x1x2zx

′
3. Therefore distp(x1x2x3, x

′
1x
′
2x
′
3) =

distp(x3, zx
′
3) = distp(x1x3, x

′
1x
′
3).

Lemma 3.3. Let T = (Q, tinit, tfinal, T) be an FST that satisfies the TPchoffrut.

For any two runs w−→ i
u|x−−→ q and w

′

−→ i′
u|x′−−→ q′, with i and i′ initial, we have

distp(wx,w′x′) 6 2MT (|Q|2 + 1).

Proof. We proceed by strong induction on the length of u.
If |u| 6 |Q|2, then distp(wx,w′x′) 6 |wx|+ |w′x′| 6 2MT (|Q|2 + 1).
Otherwise, we can exhibit a synchronized loop in both runs

w−→ i
u1|x1−−−→ p

u2|x2−−−→ p
u3|x3−−−→ q and w

′

−→ i′
u1|x

′
1−−−→ p′

u2|x
′
2−−−→ p′

u3|x
′
3−−−→ q′

such that u1u2u3 = u, x1x2x3 = x, x′1x
′
2x
′
3 = x′, and |u2| > 0. By Lemma 3.2, we

have distp(wx1x2x3, w
′x′1x

′
2x
′
3) = distp(wx1x3, w

′x′1x
′
3). As |u1u3| < |u1u2u3|, we

can apply the induction hypothesis on the runs

w−→ i
u1|x1−−−→ p

u3|x3−−−→ q and w
′

−→ i′
u1|x

′
1−−−→ p′

u3|x
′
3−−−→ q′

and we obtain distp(wx1x3, w
′x′1x

′
3) 6 2MT (|Q|2 + 1).

We now introduce a slightly more abstract twinning property. It is based on
the prefix distance and hides the combinatorial nature of the TPchoffrut. We will
use this presentation in our further developments.

3.1. Characterisation of Sequential Functions 43

Definition 3.4 (Twinning property – distance version (TPdist)). Two states q1, q2 of

an FST are said to be L-twinned, for some L ∈ N, if for any two runs
w1−→ p1

u|x1−−→
q1

v|y1−−→ q1 and
w2−→ p2

u|x2−−→ q2
v|y2−−→ q2, where p1, p2 are initial states, we have for all

j > 0, distp(w1x1y
j
1, w2x2y

j
2) 6 L. An FST satisfies the twinning property if there

exists L ∈ N such that any two of its states are L-twinned.

The following lemma states that both definitions are equivalent.

Lemma 3.4. An FST satisfies the TPdist if and only if it satisfies the TPchoffrut.

Proof. Let T an FST that satisfies the TPdist. We show that T satisfies the
TPchoffrut. Let L ∈ N and q1, q2 two L-twinned states of T . For any two runs
x1−→ p1

u|x2−−→ q1
v|x3−−→ q1 and

y1−→ p2
u|y2−−→ q2

v|y3−−→ q2, we have for all j > 0,
distp(x1x2x

j
3, y1y2y

j
3) 6 L. Observe that x1x2x

j
3 and y1y2y

j
3 must grow at the same

pace, and thus |x3| = |y3|. Consider that x3 6= ε and y3 6= ε. If |x1x2| = |y1y2|
then we let z = ε and we trivially obtain the result. Otherwise, we can grow j
enough to find a sufficiently great factor between xj3 and yj3, and therefore, by
Lemma 1.1, the primitive roots of x3 and y3 are conjugates. Let t1, t2 such that
x3 = (t1t2)α and y3 = (t2t1)α for some α > 1. Finally, if |x1x2| > |y1y2|, we let
z = (t2t1)βt2 for some β > 0 such that x1x2 = y1y2z, and we have zx3 = y3z.
Otherwise, we let z = (t1t2)βt1 for some β > 0 such that x1x2z = y1y2, and we
have x3z = zy3.

The other direction is obtained by Lemma 3.3, taking L = 2MT (|Q|2 + 1).

From now on, as the TPchoffrut and TPdist are equivalent, we will simply refer
to the TPdist as the "twinning property" (TP).

Example 3.4. The finite-state transducer Tending, given in Figure 3.1a, that com-
putes the function fending, obviously satisfies the twinning property. Indeed, qi is
0-twinned with itself, as we cannot find two different runs with loops around qi.
For the same reason, so is qf . Finally, qi and qf are 1-twinned, because the only
synchronised runs reaching qi and qf have a non-productive loop.

Similarly, we can prove that the finite-state transducer Tsynchro, given in Fig-
ure 3.1b, that computes the function fsynchro, also satisfies the twinning property.
Indeed, the only interesting state pair is (q2, q4) and we can verify that they are
twinned: The runs reaching q2 and q4 only produce a’s and the loops around q2
and q4 have the same productions.

Example 3.5. The finite-state transducer Tlast, given in Figure 1.2a, that com-
putes the function flast, does not satisfy the twinning property. Indeed, in search
of a contradiction, assume that Tlast does satisfy the twinning property and let
L ∈ N such that any two states of Tlast are L-twinned. Now, consider two loops
around qa and qb: p1 = q1 = qa, p2 = q2 = qb, u = ε and v = a. Then we have
w1 = w2 = x1 = x2 = ε, y1 = a and y2 = b. Thus distp(w1x1y

L
1 , w2x2y

L
2) = 2L > L

and we have a contradiction.

44 3. Sequentiality of Finite-State Transducers

3.1.4 Sequentialisation Theorem
The main result of [Cho77] is the following theorem, which characterises,

amongst functional finite-state transducers, the ones that admit an equivalent
sequential finite-state transducer.

Theorem 3.5. Let A,B be two alphabets. Let T be a functional FST from A∗ to B∗.
The following assertions are equivalent:

1. [[T]] satisfies the Lipschitz property,

2. [[T]] satisfies the bounded variation property,

3. T satisfies the twinning property,

4. [[T]] can be realised by a sequential FST.

Proof. The implication from 1 to 2 was proved in Lemma 3.1. The implications
from 4 to 1 and from 2 to 3 are proved in Propositions 3.6 and 3.7. The implica-
tion from 3 to 4 involves the construction of an equivalent sequential FST which
is detailed and proved in Section 3.2. Figure 3.2 depicts the proof diagram.

1.
Lipschitz Property

2.
Bounded Variation

Property

3.
Twinning Property

4.
Sequential FST

Lem. 3.1

Prop.3.7

construction

Pr
op

.3
.6

Figure 3.2 – Proof diagram of the sequentialisation theorem.

Proposition 3.6. Let A,B be two alphabets. Let T be a sequential FST realising
the function f from A∗ to B∗. Then f satisfies the Lipschitz property.

Proof. We will prove that f satisfies the Lipschitz property with coefficient 3MT .
Consider two input words u, v in the domain of f . If u = v, then the result is
trivial. Otherwise, let w = lcp(u, v) and let u = w.u′ and v = w.v′, with 0 6 |u′|
and 0 6 |v′|. As T is sequential, we have two runs in T

x1−→ p
w|x2−−→ q

u
′|y1−−→ r

y2−→ and
x1−→ p

w|x2−−→ q
v
′|z1−−→ s

z2−→

3.2. Construction of a Sequential Equivalent 45

such that [[T]](u) = x1x2y1y2 and [[T]](v) = x1x2z1z2. We also have |y1| 6 MT |u′|,
|z1| 6 MT |v′|, |y2| 6 MT , and |z2| 6 MT . Finally, as u 6= v, we have distp(u, v) =
|u′|+ |v′| > 1 and we obtain:

distp(f(u), f(v)) 6 |y1y2|+ |z1z2|
6MT (2 + |u′|+ |v′|)
6 3MT (|u′|+ |v′|)
6 3MT distp(u, v)

Proposition 3.7. Let A,B be two alphabets. Let T be a functional FST realising
the function f from A∗ to B∗. If f satisfies the bounded variation property, then T
satisfies the twinning property.

Proof. We denote by n the number of states of T . Suppose that f satisfies the
bounded variation property, and let N ∈ N such that for all u, v ∈ dom(f), if
distp(u, v) 6 2n then distp(f(u), f(v)) 6 N .

We consider an instance of the twinning property in T :

x1−→ p1
u|x2−−→ q1

v|x3−−→ q1 and
y1−→ p2

u|y2−−→ q2
v|y3−−→ q2

As T is trimmed, there exist runs

q1
w1|x4−−−→ r1

x5−→ and q2
w2|y4−−−→ r2

y5−→

with |w1| 6 n and |w2| 6 n. We consider the input words αj = uvjw1 and
βj = uvjw2, for all j > 0. We have, for all j > 0, distp(αj, βj) 6 |w1|+ |w2| 6 2n.
Therefore, for all j > 0, distp(f(αj), f(βj)) 6 N .

By using the triangle inequality twice, we obtain that, for all j > 0:

distp(x1x2x
j
3, y1y2y

j
3) 6 distp(x1x2x

j
3, x1x2x

j
3x4x5)

+ distp(x1x2x
j
3x4x5, y1y2y

j
3y4y5)

+ distp(y1y2y
j
3y4y5, y1y2y

j
3)

6 distp(x1x2x
j
3x4x5, y1y2y

j
3y4y5) + |x4x5|+ |y4y5|

6 distp(f(αj), f(βj)) + 2(n+ 1)MT
6 N + 2(n+ 1)MT

3.2 Construction of a Sequential Equivalent
In this section, we consider a functional FST T = (Q, tinit, tfinal, T). We build an

equivalent sequential FST D = (Q′, t′init, t
′
final, T

′) which may have infinitely many
states. We will prove that D is finite if T satisfies the twinning property.

46 3. Sequentiality of Finite-State Transducers

D operates in a similar way to the power set construction of non-deterministic
automata. For a word u ∈ dom(T), it computes the states of T that are reachable
by reading u and produces the longest common prefix of the outputs of all the
corresponding runs in T . Therefore, a state of D stores the reachable states of T
and, for each of these states, the remaining output word to produce.

States The states of D are sets of pairs of a state of T and a word over B, i.e.
Q′ = 2Q×B

∗
. A priori, this set is infinite.

Initial Function The initial function of D defines a unique initial state. It is
associated to the longest common prefix of the outputs for the initial states of T .

let v = lcp{w | (q, w) ∈ tinit} and I = {(q, w) | (q, vw) ∈ tinit}
then v−→

D
I

Transitions Given a state of D and a letter a ∈ A, we identify the set of transi-
tions of T that are enabled and compute the new state. We take care of consum-
ing the longest common prefix of their outputs and store the remaining outputs.

for all S1 ∈ Q′ and a ∈ A, such that S ′1 = {(q2, wx) | (q1, w) ∈ S1 ∧ q1
a|x−→
T

q2} 6= ∅,
let v = lcp{w | (q, w) ∈ S ′1} and S2 = {(q, w) | (q, vw) ∈ S ′1}

then S1
a|v−→
D

S2

Final Function Every state of D that contains a final state of T is final. We take
care of producing all the remaining output.

for all S ∈ Q′ such that there exists (q, w) ∈ S and q ∈ dom(tfinal),
let (q, w) ∈ S such that q x−→

T
, then S wx−→

D

Note that we need to choose some (q, w) in S. However, as we will see, the
functionality of T ensures that this definition is independent of this choice.

Observe that, by definition of the initial function and the transitions, we have:

for all S ∈ Q′, lcp{w | (q, w) ∈ S} = ε (P1)

Also, we can prove by induction that the following construction invariant holds:

if w−→
D
I

u|x−−→
D

P then P = {(p, y) | w
′

−→
T
i
u|x′−−→
T

p ∧ wxy = w′x′} (P2)

Therefore, if both (q, w) and (q′, w′) are in a state P ∈ Q′ and both q x−→
T

and q′ x
′

−→
T

,
then we have, by functionality of T , that wx = w′x′. This implies that the final
function of D is well-defined.

3.3. Deciding Sequentiality 47

Lemma 3.8. D is sequential and equivalent to T .

Proof. By construction, D is sequential. Furthermore, by (P2) and the definition
of the final function of D, we have [[D]] = [[T]].

The following theorem proves the implication from 3 to 4 of Theorem 3.5.

Theorem 3.9. If T satisfies the twinning property, then D is a finite sequential
finite-state transducer equivalent to T .

Proof. We first prove that the words stored in the states of D are bounded. Con-

sider a run w−→ I
u|x−−→ P in D and a pair (q1, y1) ∈ P . By (P1), there exists a pair

(q2, y2) ∈ P such that lcp(y1, y2) = ε. By (P2), there exist runs
w1−→ i1

u|x1−−→ q1

and
w2−→ i1

u|x2−−→ q1 in T such that wxy1 = w1x1 and wxy2 = w2x2. As T sat-
isfies the twinning property, and by Lemma 3.3, we have distp(wxy1, wxy2) 6
2MT (|Q|2 + 1). Therefore, |y1| 6 2MT (|Q|2 + 1).

This in turn means that D is finite. By Lemma 3.8, we obtain the result.

Example 3.6. Figure 3.1 depicts the sequential FSTs Dending and Dsynchro built
with the construction from Tending and Tsynchro. Observe how Dending remembers
whether the last read letter is an a or a b, and how Dsynchro stores the additional
a output letter in case the last letter of the input word would be a c.

(qi, ε)

ε

(qi, ε)
(qf , ε)

ε

b|a

a|a

a|a

b|a

(a) Dending

(q1, ε)

ε

(q2, ε)
(q4, a)(q3, ε)

ε

(q5, ε)

ε

a|a

a|a

b|b c|ac

(b) Dsynchro

Figure 3.3 – Two built sequential FSTs Dending and Dsynchro.

3.3 Deciding Sequentiality
In this section, we discuss the decision of the following problem:

48 3. Sequentiality of Finite-State Transducers

Problem 3.1 (Sequentiality). Given a functional finite-state transducer T , does T
admit an equivalent sequential finite-state transducer?

We will first give a historical perspective on how this problem has been solved.
Then we will highlight a key point of the decision procedure, that we will reuse
in the further developments of this thesis.

Thanks to Theorem 3.5, deciding sequentiality is equivalent to deciding the
twinning property:

Problem 3.2 (TP). Given a functional finite-state transducer T , does T satisfy
the twinning property?

As formulated in Definition 3.3, for T to satisfy the twinning property, any
two of its states have to be twinned. Also, two states q1, q2 are twinned if the
outputs of any two synchronised runs looping around q1 and q2 satisfy a partic-
ular combinatorial property (cf. Definition 3.3). Given a pair of states (q1, q2),
[Cho77] proved that it suffices to check this combinatorial property for any two
synchronised runs reading an input word of length at most 2n2, where n is the
number of states T . Therefore, the twinning property is decidable.

[WK94] proved it is is PTIME by using graph techniques. [Béa+00; BC02]
then did two other presentations of this result, one by verifying a property di-
rectly on the accessible part of the square of the transducer and the other based
on the decidability in polynomial time of the functionality over infinite words,
also resulting in PTIME algorithms. More recently, [FMR18] devised a logic to
express structural properties of automata such as the twinning property, leading
to a decision procedure in NLOGSPACE.

We now propose another presentation of the decision procedure, using some
techniques adapted from the work of [WK94], and highlighting the fact it is in
NLOGSPACE. We will use these ideas later in this thesis.

We say that there is a mismatch between two words if there exists a position
at which they differ. Let L be a positive integer. We say that two runs ρ1 and ρ2
on the same input word u are L-close if, for every prefix u′ of u, the restrictions
ρ′1 and ρ′2 of the two runs on the input u′ are such that distp(out(ρ′1), out(ρ′2)) 6 L.

Lemma 3.10. Let T be a finite-state transducer. T violates the twinning property
iff there are two runs

w1−→ p1
u|x1−−→ q1

v|y1−−→ q1 and
w2−→ p2

u|x2−−→ q2
v|y2−−→ q2, where p1, p2

are initial states, such that
a) either |y1| 6= |y2|
b) or |y1| = |y2| 6= 0, and there is a mismatch between the words w1x1 and w2x2,

and the runs
w1−→ p1

u|x1−−→ q1 and
w2−→ p2

u|x2−−→ q2 are 2MT (|Q|2 + 1)-close.

Proof. The reverse implication is trivial, so we focus on the direct one. We con-
sider a counter-example to the twinning property and aim at deriving a counter
example satisfying the above properties.

3.3. Deciding Sequentiality 49

Let L ∈ N, and q1, q2 be two states such that there are two runs
w1−→ p1

u|x1−−→
q1

v|y1−−→ q1 and
w2−→ p2

u|x2−−→ q2
v|y2−−→ q2, where p1, p2 are initial states, such that

there exists j ∈ N such that distp(w1x1y
j
1, w2x2y

j
2) > L.

Either, the distance is due to the length of the output words, i.e. |y1| 6= |y2|,
then we are in case a). Otherwise, there are two cases. If there is a mismatch
between the words w1x1 and w2x2, then we are in case b). Otherwise, this means
that there is a mismatch between the words w1x1y

j
1 and w2x2y

j
2, and we can

unfold the loops to build two runs
w1−→ p1

uv
j |x1y

j
1−−−−−→ q1

v|y1−−→ q1 and
w2−→ p2

uv
j |x2y

j
2−−−−−→

q2
v|y2−−→ q2, and we are in case b).

It remains to prove that the two runs in case b) are always 2MT (|Q|2 +1)-close.
Suppose they are not. As a single transition can increase the length of an output
word by at most MT , then the input word has length at least |Q|2. This allows
us to identify a synchronized loop in the two runs which increases the distance.
But then we would be in case a), and this is a contradiction.

From Lemma 3.10, we can derive a decision procedure in three phases. Let
T = (Q, tinit, tfinal, T) be a finite-state transducer.

Phase 1 We non-deterministically guess a skeleton of a counter-example. This
skeleton consists of the following informations:

— two pairs of states (p1, p2) and (q1, q2) in Q2, with p1 and p2 initial states,
— whether case a) or case b) of Lemma 3.10 will be at fault.

Phase 2 We verify that there exists a loop in T 2 around (q1, q2) representing
two runs ρ and ρ′ such that either |out(ρ)| 6= |out(ρ′)| if we are in case a) or
|out(ρ)| = |out(ρ′)| 6= 0 if we are in case b).

Note that, in both cases, we can prove by contradiction that we can find such
a loop on an input word of length at most 2|Q|2. We let L = 2MT |Q|2.

We build a directed graph with vertices in Q2 × {0, . . . , L}2. We add an edge
from vertex (r1, r2, n1, n2) to vertex (r′1, r′2, n1 +|w1|, n2 +|w2|) if there exist a letter

a ∈ A and some transitions r1
a|w1−−→ r′1 and r2

a|w2−−→ r′2 in T . We then test if we can
reach from vertex (q1, q2, 0, 0) any vertex (q1, q2, n1, n2) such that either n1 6= n2 if
we are in case a) or n1 = n2 6= 0 if we are in case b).

The size of the graph is in O(|Q|2 × log2(L)). As reachability in a graph can
be decided in non-deterministic logarithmic space, we obtain that finding such a
loop can also be done in NLOGSPACE.

Phase 3 We do this phase only for case b). In order to guess a mismatch
between two synchronised runs whose outputs stay at a distance of at most N =
2MT (|Q|2 + 1), one can proceed as follows. We first build a directed graph with
vertices in Q2×N6N × (B ∪{⊥})2. The graph simulates pairs of runs ρ and ρ′ on
the same input word, and stores in its counter the distance between the outputs

50 3. Sequentiality of Finite-State Transducers

of the two runs. Additionally, vertices allow to non-deterministically store the
letter produced by the run which is ahead (ρ for instance), and then continue
the simulation of ρ′ until ρ′ catches up ρ (i.e. the counter is equal to 0) and
checks that the letter produced by ρ′ is different from the one stored before. We
then test if any vertex with a counter equal to 0 and having different stored letter
is reachable. The size of the graph is in O(|Q|2× log2(N)). Again, as reachability
in a graph can be decided in non-deterministic logarithmic space, we obtain that
finding such a mismatch can also be done in NLOGSPACE.

Each of these three phases can be done in NLOGSPACE, and we obtain an
overall decision procedure in NLOGSPACE.

3.4 Sequentiality in Other Contexts
Automata can be viewed as functions from words to boolean values, thus de-

scribing languages. They can be represented as weighted automata over the
Boolean semiring, i.e. (B,∨,∧,⊥,>). Similarly, transducers can be represented
as weighted automata over the semiring of languages, i.e. (P(A∗),∪, ·, ∅, {ε}),
where the concatenation · has been extended to languages.

As such, it is a legitimate question whether and how the notion of sequen-
tiality applies in the larger setting of weighted automata. This is a subject of
interest in many fiels and [LS06] provides an extensive survey. Let us recall
some of the known results. The determinisability of weighted automata over
a field is known to be decidable [LS06]. Also, the determinisability problem
of weighted automata over the tropical semiring (Z,min,+,+∞, 0), despite be-
ing very challenging, is decidable for polynomially ambiguous automata [KL09;
Kir12]. Finally, [FGR15] proved that the determinisability problem is decidable
for functional weighted automata with set semantics over infinitary groups.

On a different matter, it is interesting to see how structural properties similar
to the twinning property are used in many results. Here is a non-exhaustive
list: a weak twinning property to decide multi-sequentiality for relational finite-
state transducers [JF15], a twinning property of order k to decide the problem
of the minimisation to k registers of copyful appending deterministic streaming
string transducers [DRT16], a critical loop property to decide the realisability of
multi-sequential specifications [EFJ18], ...

Chapter 4
k-Sequentiality of Finite-State
Transducers
4.1 Preliminaries . 52
4.2 Characterisation of k-Sequential Functions 53

4.2.1 Lipschitz Property of Order k . 53
4.2.2 Branching Twinning Property of Order k 54
4.2.3 k-Sequentialisation Theorem . 55

4.3 Construction of a k-Sequential Equivalent . 58
4.3.1 An Infinite Sequential Equivalent . 58
4.3.2 Recovering k-Sequentiality . 59
4.3.3 Building a k-Sequential . 61

4.4 Deciding k-Sequentiality . 62
4.5 Minimisation of the Degree of Sequentiality 67

This chapter presents the work we developed in [Dav+17] to characterise,
given k ∈ N, the functional finite-state transducers that admit an equivalent k-
sequential one. Whereas the initial publication was presented in a larger setting,
namely weighted automata with set semantics over infinitary groups, we will,
in the spirit of the rest of this thesis, restrict ourselves to functional finite-state
transducers.

First recall that a finite-state transducer is k-sequential if it is the union of k
sequential finite-state transducers. A finite-state transducer is multi-sequential
if it is k-sequential for some k ∈ N. Multi-sequential transducers have been
studied in [CS86] where the authors devised a technique to characterise the
functional finite-state transducers that admit an equivalent multi-sequential one,
and more recently in [JF15] where this result was extended to relational finite-
state transducers.

51

52 4. k-Sequentiality of Finite-State Transducers

Going forward from these results, it is a natural question to ask whether the
size of the union can be decreased. As explained in introduction, while eval-
uating a transducer with non-determinism present the risk to have unbounded
number of parallel runs for the same input word, functional multi-sequential
transducers can be evaluated using a thread for each member of the union and
a join to collect the output of the only accepting run. Decreasing the size of the
union then allows to reduce the number of threads required. This leads us to
the problem of k-sequentiality which aims at deciding, given k ∈ N, whether a
functional finite-state transducer admits an equivalent k-sequential one.

We have seen in Section 2.4 that the class of functional k-sequential finite-
state transducers is equivalent to the class of copyless appending deterministic
streaming string transducers with k registers. Therefore, the problem of the k-
sequentiality of functional finite-state transducers also solves the problem of the
minimisation to k registers of copyless appending deterministic streaming string
transducers.

In order to characterise the functional finite-state transducers that admit an
equivalent k-sequential one we extend the work of [Cho77] around sequentiality.
We devise a generalisation of the Lipschitz and twinning properties: a Lipshitz
property of order k and a branching twinning property of order k. The informal
idea for this generalisation is that if our function is realisable by a k-sequential
transducer, then, when we consider k + 1 inputs, the outputs corresponding to
two of these inputs should remain close, with respect to their relative distance.

Note that [DRT16] also devises generalisations of Choffrut’s work, to charac-
terise the copyful appending deterministic streaming string transducers with k
registers: a bounded-variation property of order k and a twinning property of
order k. They operate differently and we will also highlight the differences.

4.1 Preliminaries
Definition 4.1 (delay). Given x, y ∈ B∗, the delay between x and y is x−1y ∈ FB.
It is denoted by delay(x, y).

We first draw a link between the delay and the distance between two words.

Lemma 4.1. For all words x, y ∈ B∗, distp(x, y) = |delay(x, y)|.

Proof. Let w = lcp(x, y) and let x′, y′ ∈ B∗ such that x = wx′ and y = wy′. Then
we have distp(x, y) = |x| + |y| − 2|lcp(x, y)| = |wx′| + |wy′| − 2|w| = |x′| + |y′| =
|(x′)−1|+ |y′| = |(x′)−1y′| = |(x′w)−1wy′| = |x−1y| = |delay(x, y)|

The delay provides an additional tool to express the combinatorial constraint
of the twinning property.

Lemma 4.2. Let four words x1, x2, y1, y2 ∈ B∗. The following assertions are equiv-
alent:

4.2. Characterisation of k-Sequential Functions 53

1. delay(x1, x2) = delay(x1y1, x2y2),
2. there exists L ∈ N such that for all i > 0, distp(x1y

i
1, x2y

i
2) 6 L,

3. either y1 = y2 = ε, or |y1| = |y2| and there exists z ∈ B∗ such that either
x1 = x2z and zy1 = y2z, or x2 = x1z and zy2 = y1z.

Proof. The equivalence between 2 and 3 has been proven in Section 3.1.3.
Let us first prove the implication from 1 to 2. We suppose that delay(x1, x2) =

delay(x1y1, x2y2), i.e. x−1
1 x2 = (x1y1)−1x2y2 = y−1

1 x−1
1 x2y2. We set L = distp(x1, x2).

For all i > 0, we have x−1
1 x2 = (y−1

1)ix−1
1 x2y

i
2. Therefore, |x−1

1 x2| = |(x1y
i
1)−1x2y

i
2|.

By Lemma 4.1, we obtain that distp(x1, x2) = distp(x1y
i
1, x2y

i
2).

To prove the implication from 3 to 1, we analyse the three cases. If y1 = y2 = ε
then the result is trivial. If |y1| = |y2| and there exists z ∈ B∗ such that x1 =
x2z and zy1 = y2z then we have x1y1 = x2y2z. Therefore, delay(x1y1, x2y2) =
(x1y1)−1x2y2 = (x2y2z)−1x2y2 = z−1 and delay(x1, x2) = (x1)−1x2 = (x2z)−1x2 =
z−1. The third case is symmetrical.

We say that a function f is k-sequential if it can be realised by a k-sequential
finite-state transducer. We now define the degree of sequentiality of a function.

Definition 4.2 (Degree of sequentiality). The degree of sequentiality of a function
f is the minimal k ∈ N such that f is k-sequential.

4.2 Characterisation of k-Sequential Functions

4.2.1 Lipschitz Property of Order k
We lift the Lipschitz property to functions that can be expressed using a k-

sequential transducer: given a function f , we consider k + 1 input words and
require that two of those must have proportionally close images by f .

Definition 4.3 (Lipschitz property of order k). Let A,B be two alphabets. A func-
tion f from A∗ to B∗ satisfies the Lipschitz property of order k if there exists
K ∈ N such that for all u0, . . . , uk ∈ dom(f), there exist two indices i, j such that
0 6 i < j 6 k and distp(f(ui), f(uj)) 6 K.distp(ui, uj).

Remark. Note that the Lipschitz property introduced in Definition 3.2 is equiva-
lent to the Lipschitz property of order 1. Also, it must be pointed out that we use
a generalisation of the Lipschitz property whereas [DRT16] used a generalisation
of the bounded variation property.

Example 4.1. As shown in Chapter 3, the function flast defined in Example 1.3
does not satisfy the Lipschitz property, and thus it does not satisfy the Lipschitz
property of order 1. One can however prove that this function satisfies the Lips-
chitz property of order 2.

54 4. k-Sequentiality of Finite-State Transducers

4.2.2 Branching Twinning Property of Order k
The idea behind the branching twinning property of order k is to consider

k + 1 runs labeled by arbitrary words with k cycles. If the branching twinning
property is satisfied then there are two runs among these k + 1 such that the
outputs remain close (i.e. the prefix distance between these values is bounded)
along the prefix part of these two runs that read the same input. This property is
named after the intuition that the k+ 1 runs can be organized in a tree structure
where the prefixes of any two runs are on the same branch up to the point where
those two runs do not read the same input anymore.

While the twinning property of order k of [DRT16] simply goes from 2 to
k + 1 runs on the same input word, the branching twinning property of order
k considers runs on inputs that may be different. Observe that the branching
twinning property of order k is thus a strengthening of the twinning property of
order k.

Definition 4.4 (Branching twinning property of order k). Let A,B be two alpha-
bets. A functional FST from A∗ to B∗ satisfies the branching twinning property of
order k (denoted by BTPk) if (see Figure 4.1)

— for all states qi,j with 0 6 i 6 k, 0 6 j 6 k and q0,j initial for all 0 6 j 6 k,
— for all words ui,j, vi,j ∈ A∗ with 1 6 i 6 k and 0 6 j 6 k

such that there are k + 1 runs satisfying
—

wj−→ q0,j for all 0 6 j 6 k, and

— qi−1,j
ui,j |xi,j−−−−→ qi,j and qi,j

vi,j |yi,j−−−−→ qi,j for all 1 6 i 6 k, 0 6 j 6 k,
there exists 0 6 j < j′ 6 k such that for all 1 6 i 6 k, if for every 1 6 i′ 6 i, we
have ui′,j = ui′,j′ and vi′,j = vi′,j′, then we have

delay(wjx1,j · · ·xi,j, wj′x1,j′ · · ·xi,j′) = delay(wjx1,j · · · xi,jyi,j, wj′x1,j′ · · ·xi,j′yi,j′).

Remark. Note that the twinning property introduced in Chapter 3 is equivalent
to the branching twinning property of order k for k = 1.

Example 4.2. As shown in Chapter 3, the finite-state transducer Tlast defined
in Example 1.3 does not satisfy the twinning property. We can show using the
same counter-example that it also does not satisfy the BTP1. Indeed, consider
two loops around qa and qb: q0,0 = q1,0 = qa, q0,1 = q1,1 = qb, u1,0 = u1,1 = ε and
v1,0 = v1,1 = a. Then, delay(ε, ε) = ε 6= delay(a, b) = a−1b. One can prove however
that it satisfies the BTP2. Therefore, the sequentiality degree of flast is 2.

Figure 4.2 depicts T
last

2 , the finite-state transducer obtained by concatenating
Tlast with itself, with a fresh # separator letter. T

last
2 realizes the function f

last
2 :

u#v 7→ flast(u)#flast(v) where u, v ∈ {a, b}+. We can see that the minimal k such
that T

last
2 satisfies the BTPk is k = 4. Therefore, the sequentiality degree of f

last
2

is 4.

4.2. Characterisation of k-Sequential Functions 55

q0,0
w0 q1,0

v1,0|y1,0

q2,0

v2,0|y2,0

qk,0

vk,0|yk,0

u1,0|x1,0 u2,0|x2,0

q0,1
w1 q1,1

v1,1|y1,1

q2,1

v2,1|y2,1

qk,1

vk,1|yk,1

u1,1|x1,1 u2,1|x2,1

q0,k
wk q1,k

v1,k|y1,k

q2,k

v2,k|y2,k

qk,k

vk,k|yk,k

u1,k|x1,k u2,k|x2,k

k
+

1
ru

ns

k loops

··
·

Figure 4.1 – Branching twinning property of order k

qa

ε

qf

qb

ε

qa

qf

ε

qb

a, b|a

a|a

a, b|b

b|b

|#

#|#

a, b|a

a|a

a, b|b

b|b

Figure 4.2 – The FST T
last

2.

4.2.3 k-Sequentialisation Theorem
Our main result is the following theorem, which characterises the functional

finite-state transducers admitting an equivalent k-sequential finite-state trans-
ducer.

Theorem 4.3. Let A,B be two alphabets. Let T be a functional FST from A∗ to B∗

56 4. k-Sequentiality of Finite-State Transducers

and let k ∈ N. The following assertions are equivalent:

1. [[T]] satisfies the Lipschitz property of order k,

2. T satisfies the branching twinning property of order k,

3. [[T]] can be realised by a k-sequential FST.

Proof. The implications from 3 to 1 and from 1 to 2 are proved in Proposi-
tions 4.4 and 4.5. The implication from 2 to 3 involves the construction of an
equivalent k-sequential FST which is detailed and proved in Section 4.3.

Proposition 4.4. Let A,B be two alphabets and let k ∈ N. Let T be a k-sequential
functional FST realising the function f from A∗ to B∗. Then f satisfies the Lipschitz
property of order k.

Proof. Consider that T is defined as the union of k sequential FSTs T1, . . . , Tk.
Let u0, . . . , uk ∈ dom([[T]]). By the pigeon hole principle, there are 0 6 j < j′ 6 k
and 1 6 i 6 k such that uj, uj′ ∈ dom([[Ti]]). The result follows by sequentiality of
Ti (cf. Proposition 3.6).

Proposition 4.5. Let A,B be two alphabets. Let T be a functional FST realising
the function f from A∗ to B∗ and let k ∈ N. If f satisfies the Lipschitz property of
order k, then T satisfies the branching twinning property of order k.

Consider a functional finite-state transducer T that does not satisfy BTPk. Let
us prove that [[T]] does not satisfy Lipk. It is a consequence of the following
lemma.

Lemma 4.6. If T does not satisfy BTPk, then for all positive integers K, there are
k + 1 words u0, . . . , uk, initial states q0, . . . , qk, states p0, . . . , pk and k + 1 runs:

wj−→ qj
uj |xj−−−→ pj for all 0 6 j 6 k,

such that for all j 6= j′, distp(wjxj, wj′xj′) > K.max(distp(uj, uj′), 1).

Proof. The idea behind the proof is to consider a witness as described in Fig-
ure 4.1. If BTPk is not satisfied, then one can pump the loops "the right number
of times" to: (1) sufficiently increase the prefix distance between the outputs
of the runs, (2) not increase too much the distance between the corresponding
input words.

Let K be a positive integer. Since T does not satisfy BTPk, then there are:
— states qi,j with 0 6 i 6 k, 0 6 j 6 k and q0,j initial for all 0 6 j 6 k,
— words ui,j and vi,j with 1 6 i 6 k and 0 6 j 6 k, and
— k + 1 runs such that

—
wj−→ q0,j for all 0 6 j 6 k, and

— qi−1,j
ui,j |xi,j−−−−→ qi,j and qi,j

vi,j |yi,j−−−−→ qi,j for all 1 6 i 6 k, 0 6 j 6 k,

4.2. Characterisation of k-Sequential Functions 57

such that for all 0 6 j < j′ 6 k, there is 1 6 i 6 k such that for all 1 6 i′ 6 i, we
have ui′,j = ui′,j′, vi′,j = vi′,j′ and

delay(wjx1,j · · ·xi,j, wj′x1,j′ · · ·xi,j′) 6= delay(wjx1,j · · · xi,jyi,j, wj′x1,j′ · · ·xi,j′yi,j′).

We construct by induction (in decreasing order) a sequence of positive inte-
gers tk, . . . , t1. Let us give the construction of ti, assuming ti+1, . . . , tk have been
defined. Let L′i be the maximal length of the words ui+1,jv

ti+1
i+1,j · · ·uk,jv

tk
k,j over all

0 6 j 6 k, and let Li = max(L′i, 1). Consider Ji the set of pairs (j, j′) such that
for all 1 6 i′ 6 i, we have ui′,j = ui′,j′, vi′,j = vi′,j′ and

delay(wjx1,j · · ·xi,j, wj′x1,j′ · · ·xi,j′) 6= delay(wjx1,j · · · xi,jyi,j, wj′x1,j′ · · ·xi,j′yi,j′).

By Lemma 4.2, one can choose an integer N such that for all pairs (j, j′) ∈ Ji,

distp(wjx1,j · · ·xi,j(yi,j)N , wj′x1,j′ · · ·xi,j′(yi,j′)
N) > 2Li(MT +K). (*)

We set ti = N .

We show that the words uj = u1,jv
t1
1,j · · ·uk,jv

tk
k,j, for all 0 6 j 6 k, and the

corresponding runs fulfil the condition of the lemma. Indeed, let j 6= j′, and i
the minimal index such that (j, j′) ∈ Ji. Such an index i exists by hypothesis. For
` ∈ {j, j′}, set

x` = x1,`(y1,`)t1x2,`(y2,`)t2 · · ·xk,`(yk,`)tk and

x` = x1,`x2,` · · ·xi−1,`xi,`(yi,`)ti and

x` = xi+1,`(yi+1,`)ti+1 · · ·xk,`(yk,`)tk .

Because i is the minimal index such that (j, j′) ∈ Ji, there is no delay induced
by the loops up to the ith loop and we obtain

delay(wjxj, wj′xj′) = delay(wjxjxj, wj′xj′xj′) = x−1
j delay(wjxj, wj′xj′)xj′

Then, by Lemma 4.1,

distp(wjxj, wj′xj′) = |delay(wjxj, wj′xj′)|
> |delay(wjxj, wj′xj′)| − |x

−1
j | − |xj′|

By definition of Li, |x
−1
j | 6 LiMT and |xj′| 6 LiMT , and then by (*)

distp(wjxj, wj′xj′) > 2Li(MT +K)− 2LiMT > 2LiK

Moreover, by definition of Li, distp(uj, uj′) 6 2Li and Li > 1.

58 4. k-Sequentiality of Finite-State Transducers

Therefore

distp(wjxj, wj′xj′) > K.max(distp(uj, uj′), 1)

Proof of Proposition 4.5. We prove that if T does not satisfy BTPk then [[T]]
does not satisfy Lipk. Let K ∈ N and K ′ = K(2n+ 1) + 2(n+ 1)MT where n is the
number of states of T . By Lemma 4.6, there are k + 1 words u0, . . . , uk, initial
states q0, . . . , qk, states p0, . . . , pk and k + 1 runs:

wj−→ qj
uj |xj−−−→ pj for all 0 6 j 6 k,

such that for all j 6= j′, distp(wjxj, wj′xj′) > K ′.max(distp(uj, uj′), 1).
As T is trimmed, these k + 1 runs can be completed into accepting runs:

wj−→ qj
uj |xj−−−→ pj

vj |yj−−→ rj
zj−→ for all 0 6 j 6 k,

such that for all 0 6 j 6 k, |vj| 6 n. Then, for all j 6= j′, we have

distp(wjxjyjzj, wj′xj′yj′zj′)
> distp(wjxj, wj′xj′)− 2(n+ 1)MT by the triangle inequality twice

> K ′.max(distp(uj, uj′), 1)− 2(n+ 1)MT by Lemma 4.6

> (K(2n+ 1) + 2(n+ 1)MT).max(distp(uj, uj′), 1)− 2(n+ 1)MT
> K(2n+ 1).max(distp(uj, uj′), 1) because max(distp(uj, uj′), 1) > 1
> K(distp(uj, uj′) + 2n) idem

> K.distp(ujvj, uj′vj′)

4.3 Construction of a k-Sequential Equivalent

In this section, we consider a functional FST T = (Q, tinit, tfinal, T) that satisfies
the BTPk. We will build a transducer D that is equivalent to T defined as the
union of k sequential transducers Di, for 1 6 i 6 k.

4.3.1 An Infinite Sequential Equivalent

We first build Dω = (Q′, t′init, t
′
final, T

′) an infinite sequential transducer equiva-
lent to T , using the construction of Section 3.2. We recall that this construction
was a power set construction extended with unproduced output words. In par-
ticular, we have Q′ ⊆ 2Q×B

∗
. We will only consider the accessible part of Dω.

4.3. Construction of a k-Sequential Equivalent 59

4.3.2 Recovering k-Sequentiality
We let NT = 2MT |Q||Q|. The states of Dω are sets of pairs of a state of T and a

word. As such, they can be viewed as partial functions from states of T to words.
In the following lemma, we will prove that when a state of Dω contains pairs
with words that are too far apart (their relative distance is more than NT) then a
copy of T of which we replace the initial function by this state is a k-sequential
transducer. This will allow us to define D from Dω.

Lemma 4.7. For all S ∈ Q′, if there exists (q1, w1), (q2, w2) ∈ S such that
distp(w1, w2) > NT , then TS is k-sequential.

Definition 4.5. For a state S ∈ Q′, we define the rank of S, denoted by rank(S),
as the minimal integer k′ such that TS satisfies the BTPk′.

The input word of a run ρ is denoted by in(ρ). If a run ρ in T has length at
least the number of states of Q then, by the pigeon hole principle, ρ contains a
loop. Using this idea, the following lemma can be proven by induction.

Lemma 4.8. Let ρ be a run in T . If |in(ρ)| > |Q| then there exist ` > 1, and
runs ρ0, . . . , ρ` and ρ′1, . . . , ρ

′
`, such that ρ = ρ0ρ

′
1ρ1 . . . ρ

′
`ρ`, all the ρ′i are loops and

|in(ρ0 . . . ρ`)| < |Q|.
Lemma 4.9. For all S ∈ Q′, if there exist (q1, w1), (q2, w2) ∈ S such that
distp(w1, w2) > NT , then there exists a partition of S in two subsets S ′ and S ′′

such that rank(S ′) + rank(S ′′) 6 k.

Proof. Let (q1, w1), (q2, w2) ∈ S such that distp(w1, w2) > NT . Let (q3, w3), . . . ,
(qm, wm) be an enumeration of the elements of S distinct from (q1, w1) and
(q2, w2). Because T is functional and Dω is equivalent to T , we have m 6 |Q|.

Since S is accessible, there exists a run s−→
Dω

I
u|t−→
Dω

S. Then, by (P2) of Sec-

tion 3.2, for every 1 6 j 6 m, since (qj, wj) ∈ S, there exists a run

ρj :
x0,j−−→
T

q0,j
u|xj−−→
T

qj

such that stwj = x0,jxj.
The proof is now done in two steps. First, we expose a decomposition of

u into three words wvτw
′ such that every run ρj loops over vτ , and the delay

between the outputs of the runs ρ1 and ρ2 is modified along vτ . This allows us to
define a partition {S ′, S ′′} of S, splitting the elements (qj, wj) of S depending on
whether or not the delay between ρ1 and ρj changes along vτ . Then, we prove
that rank(S ′) + rank(S ′′) 6 k, using the following idea. Let r′ = rank(S ′) − 1,
r′′ = rank(S ′′)−1. By combining a witness of the non satisfaction of the BTPr′ by
TS′ and a witness of the non satisfaction of the BTPr′′ by TS′′, we build a witness
of the non satisfaction of the BTPr′+r′′+1 by TS. This in turn implies that

rank(S ′) + rank(S ′′)− 1 = r′ + r′′ + 1 < k.

60 4. k-Sequentiality of Finite-State Transducers

1. By applying Lemma 4.8 to the product of m copies of T , there exists ` > 1
such that we obtain a subdivision u0v1u1 · · · v`u` of the word u such that
each run ρj loops over each input vs, and |u0 · · ·u`| < |Q|m 6 |Q||Q|.
Note that the distance between the outputs of ρ1 and ρ2 after reading the
input u is

distp(w1, w2) > NT = 2MT |Q||Q|.

In order for the distance to increase by at leastNT , there has to exist an inte-
ger 1 6 τ 6 ` such that the delay between the outputs of ρ1 and ρ2 changes
along vτ , since MT is greater than or equal to the maximal size of the out-
put of a transition of T , and |u0 · · ·u`| < |Q||Q|. Let u = u0v1u1 · · · vτ−1uτ−1,
u = uτvτ+1uτ+1 · · · v`u`, and for every 1 6 j 6 m, consider the following
decomposition of the run ρj:

ρj :
x0,j−−→ q0,j

u|x1,j−−−→ q1,j
vτ |x2,j−−−−→ q1,j

u|x3,j−−−→ qj.

Let S ′ be the set of pairs (qj, wj) corresponding to the indices j such that
the delay between ρ1 and ρj stays the same along vτ , i.e. ,

delay(x0,1x1,1, x0,jx1,j) = delay(x0,1x1,1x2,1, x0,jx1,jx2,j),

Then, let S ′′ = S \ S ′. By definition of vτ , S
′′ is not empty since it contains

(q2, w2), hence {S ′, S ′′} is a partition of S.
2. Let r′ = rank(S ′)− 1, r′′ = rank(S ′′)− 1, and r = r′ + r′′. By definition of the

rank, there exists an unsatisfied instance of the BTPr′ over the transducer
TS′. Let φ0, . . . , φr′ be the runs of TS′ forming this instance. Similarly, there
exists an unsatisfied instance of the BTPr′′ over the transducer TS′′. Let
φr′+1, . . . , φr+1 be the runs of TS′′ forming this instance. For every 0 6 i 6
r + 1, we add loops over the empty word at the end of the run φi in order
for it to contain exactly r loops, yielding the run:

φ′i : p0,i p1,i pr,i
y0,i s1,i|y1,i

t1,i|z1,i tr,i|zr,i

Note that, since both S ′ and S ′′ are subsets of S, each φ′i can be seen as a
run over the transducer TS. By extending those runs on the left, we now
construct an instance of the BTPr+1 for T that is not satisfied. For every
0 6 i 6 r + 1, (p0,i, y0,i) ∈ S, therefore there exists 1 6 ji 6 m such that
(p0,i, y0,i) = (qji , wji), hence we can compose the run ρji with φ′i, as follows:

ψi : q0,ji q1,ji qji p1,i pr,i
x0,ji u|x1,ji u|x3,ji s1,i|y1,i

vτ |x2,ji t1,i|z1,i tr,i|zr,i

4.3. Construction of a k-Sequential Equivalent 61

Note that ψi is a run of T .
In order to conclude the proof, we need to prove that the instance of the
BTPr+1 for T formed by the runs ψ0, . . . , ψr is not satisfied. For every 0 6
i < i′ 6 r + 1, we now expose a loop differentiating ψi and ψi′, i.e. , a loop
along which the delay between the outputs of ψi and ψi′ changes, and that
occurs on the part of the runs where the inputs are identical.
We consider three possibilities:
— If 0 6 i 6 r′ < i′ 6 r + 1, then (qji , wji) ∈ S

′ and (qj
i
′ , wj

i
′) ∈ S ′′, and, by

definition of the partition {S ′, S ′′} of S,

delay(x0,jix1,ji , x0,j
i
′x1,j

i
′) 6= delay(x0,jix1,jix2,ji , x0,j

i
′x1,j

i
′x2,j

i
′),

Therefore, the first loop of ψi and ψi′ can be used to differentiate them.
— If 0 6 i < i′ 6 r′, since the runs φ0, . . . , φr′ form a non satisfied instance

of the BTPr′ for TS′, we can find a loop differentiating φi and φi′, and
use the corresponding loop to differentiate ψi and ψi′.

— If r′+1 6 i < i′ 6 r+1, since the runs φr′+1, . . . , φr+1 form a non satisfied
instance of the BTPr′′ for TS′′, we can find a loop differentiating φi and
φi′, and use the corresponding loop to differentiate ψi and ψi′.

As T satisfies the BTPk, so does TS and we have rank(S) 6 k. As TS does not
satisfy the BTPr′+r′′+1, we obtain that rank(S ′)+rank(S ′′)−1 = r′+r′′+1 < rank(S),
and thus rank(S ′) + rank(S ′′) 6 k.

Proof of Lemma 4.7. By Lemma 4.9, there exists a partition of S into two sub-
sets S ′ and S ′′ such that rank(S ′) + rank(S ′′) 6 k. Note that rank(S ′) > 1 and
rank(S ′′) > 1, hence rank(S ′′) < k and rank(S ′) < k. Therefore, the induction
hypothesis can be applied, proving that TS′ is rank(S ′)-sequential, and TS′′ is
rank(S ′′)-sequential. Finally, as S is equal to the union of S ′ and S ′′, TS is equiva-
lent to the union of TS′ and TS′′. Therefore TS is k-sequential.

4.3.3 Building a k-Sequential
We build k sequential transducers D1, . . . ,Dk whose union is equivalent to T .

Let U denote the set containing the accessible states S of Dω such that for all
(q1, w1), (q2, w2) ∈ S, distp(w1, w2) 6 NT . Moreover, let U ′ be the set of states of
Dω accessible in one transition from U , i.e. ,

U ′ = {S ′ | ∃S ∈ U, a ∈ A,w ∈ B∗ such that (S, a, w, S ′) ∈ T ′}.

There are only finitely many w1, w2 ∈ B∗ such that distp(w1, w2) 6 NT and
lcp(w1, w2) = ε. Hence U is finite. Note that this implies the finiteness of U ′.

By Lemma 4.7, for every state S ∈ U ′ that is not in U , TS can be expressed as
the union of k sequential transducers DS,i, with 1 6 i 6 k. For every 1 6 i 6 k,

62 4. k-Sequentiality of Finite-State Transducers

let Di be defined as the union of Dω restricted to the states S ∈ U , and all the
DS′,i, for S ′ ∈ U ′ \ U , with the two following differences:

1. the only initial state of Di is the initial state of Dω,

2. for every transition (S, a, w, S ′) of Dω between states S ∈ U and S ′ ∈ U ′ \U ,

we add a transition (S, a, wwS′,i, qS′,i), where
w
S
′
,i−−−→

D
S

′
,i

qS′,i.

Proposition 4.10. D = ∪16i6kDi is a finite k-sequential FST equivalent to T .

Proof. We prove that Dω is equivalent to the union of the Di, with 1 6 i 6 k,
which implies the desired result, since T is equivalent to Dω and the Di are finite
by construction.

First, we show that [[Dω]] is included into the union of the [[Di]]. Let ρ : w−→
S0

u|x−−→ Sf
y−→ be an accepting run of Dω. We now expose an integer i ∈ {1, . . . , k}

such that the output of the run of Di over the input u is wxy. If all the states
visited by ρ are in U , ρ is present in each Di, and we are done. Otherwise, let us
split ρ as follows:

ρ : w−→ S0
u1|x1−−−→ S

a|x′−−→ S ′
u2|x2−−−→ Sf

y−→,

where S ′ is the first state encountered along ρ that is not in U . Then S ′ ∈ U ′.
Moreover, by (P2) of Section 3.2, the definition of the final relation of Dω, and
the fact that TS′ is equivalent to the union of the DS′,i, there exists 1 6 i 6 k and
a run

ρ′ : z0−→ q0
u2|z1−−−→ qf

z2−→

in DS′,i such that z0z1z2 = x2y. Then the run

w−→ S0
u1|x1−−−→ S

a|x′z0−−−→ q0
u2|z1−−−→ qf

z2−→

over the input u is in Di, and the associated output is wx1x
′z0z1z2 = wxy, which

proves the desired result.
Conversely, we can prove, using similar arguments, that for every 1 6 i 6 k,

[[Di]] is included into [[Dω]], which concludes the proof.

4.4 Deciding k-Sequentiality
In this section, we prove the decidability of the following problem:

Problem 4.1 (k-sequentiality). Given a functional FST T from A∗ to B∗ and a
natural number k, is [[T]] k-sequential?

Thanks to Theorem 4.3, deciding k-sequentiality is equivalent to deciding the
branching twinning property of order k:

4.4. Deciding k-Sequentiality 63

Problem 4.2 (BTPk). Given a functional FST T from A∗ to B∗ and a natural
number k, does T satisfy the BTPk?

We will now devise a decision procedure that proceeds similarly to the one we
developed in Section 3.3. Given a functional FST and a natural number k, this
procedure will non-deterministically find a counter-example to the branching
twinning property of order k. Contrarily to Section 3.3, the counter-example
here has k + 1 runs with k loops.

We first show, when given a counter-example for the BTPk, that, for each pair
of run indices (j, j′), checking the delay constraint is equivalent to looking for a
loop whose output words have distinct lengths, or for a mismatch on the paths
leading to loops. The proof goes along the same line as the one of Lemma 3.10.

Lemma 4.11. Let T = (Q, tinit, tfinal, T) be an FST. T violates the BTPk if and only
if there exists a counter example given as follows: there are

— states qi,j with 0 6 i 6 k, 0 6 j 6 k and q0,j initial for all 0 6 j 6 k,
— words ui,j and vi,j with 1 6 i 6 k and 0 6 j 6 k, and
— k + 1 runs such that

—
wj−→ q0,j for all 0 6 j 6 k, and

— qi−1,j
ui,j |xi,j−−−−→ qi,j and qi,j

vi,j |yi,j−−−−→ qi,j for all 1 6 i 6 k, 0 6 j 6 k,
such that for all 0 6 j < j′ 6 k, there is 1 6 i 6 k such that for all 1 6 i′ 6 i, we
have ui′,j = ui′,j′, vi′,j = vi′,j′ and

a) either |yi,j| 6= |yi,j′|,

b) or |yi,j| = |yi,j′| 6= 0, the words wjx1,j . . . xi,j and wj′x1,j′ . . . xi,j′ have a mis-

match, and the runs
wj−→ q0,j

u1...ui|x1,j ...xi,j−−−−−−−−−→ qi,j and
w
j
′

−−→ q0,j′
u1...ui|x1,j′

...x
i,j
′

−−−−−−−−−−→ qi,j′

are 2MT .(|Q|k+1 + 1)-close.

Proof. The reverse implication is trivial, so we focus on the direct one. We
consider a counter-example to the BTPk and aim at deriving a counter example
satisfying the above properties.

By Definition 4.4, there are
— states qi,j with 0 6 i 6 k, 0 6 j 6 k and q0,j initial for all 0 6 j 6 k,
— words ui,j, vi,j ∈ A∗ with 1 6 i 6 k and 0 6 j 6 k, and
— k + 1 runs such that

—
wj−→ q0,j for all 0 6 j 6 k, and

— qi−1,j
ui,j |xi,j−−−−→ qi,j and qi,j

vi,j |yi,j−−−−→ qi,j for all 1 6 i 6 k, 0 6 j 6 k,
such that for all 0 6 j < j′ 6 k, there is 1 6 i 6 k such that for all 1 6 i′ 6 i, we
have ui′,j = ui′,j′, vi′,j = vi′,j′ and

delay(wjx1,j · · ·xi,j, wj′x1,j′ · · ·xi,j′) 6= delay(wjx1,j · · · xi,jyi,j, wj′x1,j′ · · ·xi,j′yi,j′).

64 4. k-Sequentiality of Finite-State Transducers

Let us consider a pair (j, j′) of runs indices with 0 6 j < j′ 6 k. Then there
exists an index i (satisfying i 6 χj,j′) such that the loop i induces a different
delay. Let us take i = ηj,j′, which is the smallest such index, by definition.

First, if the delay difference is due to the length of the output words, i.e. |yi,j| 6=
|yi,j′|, then we are done as we are in case a).

Second, there are two cases. If there is a mismatch in the words wjx1,j . . . xi,j
and wj′x1,j′ . . . xi,j′, then we are in case b). Otherwise, we can assume that every
loop of index at most i has output words of same length on components j and j′,
that is, for all 1 6 i′ 6 i, |yi′,j| = |yi′,j′|. It means that there is a mismatch between
the non-empty output words yi,j and yi,j′. This loop can be unfolded to move the
mismatch on output words of the runs leading to the loop. It remains to show
that the runs are 2MT .(|Q|k+1 + 1)-close. If this is the case, then we are done and
have proven that case b) is satisfied. Otherwise, we have that |u1 · · ·ui| > |Q|k+1

and thus that there exists a synchronized loop (on the k + 1 runs) whose output
words on components j and j′ have distinct length. But then we are back in case
a).

From Lemma 4.11, we can derive a non-deterministic decision procedure that
will guess a counter example in three phases. The first phase will guess a skele-
ton of the counter-example. The second phase will materialise the loops of the
counter-example and finally the third phase will materialise the backbone of the
counter-example. We will show that the overall procedure executes in polyno-
mial space.

Lemma 4.12. The BTPk problem is in PSPACE when k is given in unary.

Proof. Let T = (Q, tinit, tfinal, T) be a finite-state transducer and k a natural.

Phase 1 We non-deterministically guess a skeleton of a counter-example. This
skeleton consists of the following informations:

— k+1 vectors of states #»q0, . . . ,
#»qk in Qk+1, with components of #»q0 initial states,

— for all 0 6 j < j′ 6 k, τj,j′ ∈ {a, b} indicates, for the pair (j, j′) of runs,
whether case a) or case b) of Lemma 4.11 will be at fault.

— for all 0 6 j < j′ 6 k, ηj,j′ ∈ {1, . . . , k} indicates the index of the loop that
will exhibits said fault on the pair (j, j′) of runs. Note that up to this index
(included), the runs j and j′ read the same input.

Phase 2 We non-deterministically materialise the loops of the counter-example.
We build runs ρ′i,j looping around #»qi [j], for all 1 6 i 6 k and 0 6 j 6 k. For each
pair (j, j′), we take care that

— if i 6 ηj,j′ then ρ′i,j and ρ′i,j′ read the same input,
— if i = ηj,j′ then either |out(ρ′i,j)| 6= |out(ρ′i,j′)| if τj,j′ = a, or |out(ρ′i,j)| =
|out(ρ′i,j′)| 6= 0 if τj,j′ = b.

4.4. Deciding k-Sequentiality 65

For each 1 6 i 6 k, we proceed to find cycles around #»qi for all pairs (j, j′) inde-
pendently. Note that, in both the a) and b) cases, we can prove by contradiction
that we can find such a cycle on an input word of length at most 2|Q|k+1. We let
L = 2MT |Q|k+1.

Let 1 6 i 6 k and let 0 6 j < j′ 6 k such that i = ηj,j′. Using the same
technique as in Section 3.3, we build a directed graph with vertices in Qk+1 ×
{0, . . . , L}2. The two counters n1, n2 of the vertices allow to track the output of
the distinguished runs j and j′. We add edges similarly to Section 3.3 based
on the transitions of T , taking care to read the same input, if necessary, and
updating the two counters n1, n2, if necessary. We then test if we can reach from
vertex (#»qi , 0, 0) any vertex (#»qi , n1, n2) such that either n1 6= n2 if τj,j′ = a or
n1 = n2 6= 0 if τj,j′ = b.

The size of the graph is in O(|Q|k+1 × log2(L)). As reachability in a graph can
be decided in non-deterministic logarithmic space, we obtain that finding such a
cycle can also be done in PSPACE.

We then find a linear combination of these cycles to concatenate them and
obtain a single cycle around #»qi still respecting the constraints that the a) or b)
cases require.

For each 1 6 i 6 k, we built O(k2) cycles, using polynomial space for each.
Therefore, the overall process is in PSPACE.

Phase 3 We non-deterministically materialise the backbone of the counter-
example. We can adapt the proof technique presented in Section 3.3 to decide
the existence of a mismatch between two runs that stay 2MT .(|Q|k+1 + 1)-close
as follows. We let N = 2MT .(|Q|k+1 + 1).

We build a graph which guesses the k + 1 runs in parallel, and according to
the structure guessed in the skeleton (it indicates which runs share their inputs
or not). For each pair of runs who should exhibit a mismatch, as indicated by
the skeleton, we maintain a counter, which is bounded by N .

Additionally, for each pair of runs who should exhibit a mismatch, vertices al-
low to non-deterministically store the letter produced by the run which is ahead
(ρ for instance), and then continue the simulation of ρ′ until ρ′ catches up ρ (i.e.
the counter is equal to 0) and checks that the letter produced by ρ′ is different
from the one stored before. We then test if we can reach any vertex with all the
counters equal to 0 and having different stored letters for each pair of runs who
should exhibit a mismatch.

The size of the graph is O(|Q|k+1 × k2 log2(N)). Again, as reachability in a
graph can be decided in non-deterministic logarithmic space, we obtain that
finding such a mismatch can also be done in PSPACE.

Each of these three phases can be done in PSPACE, and we obtain an overall
decision procedure in PSPACE.

We now prove a lower bound for our decision procedure.

66 4. k-Sequentiality of Finite-State Transducers

Lemma 4.13. The BTPk problem is PSPACE-hard when k is given in unary.

Proof. We present a reduction of the emptiness of k deterministic finite state
automata to the BTPk problem.

Let D1, . . . ,Dk be k deterministic finite-state automata over some alphabet A.
Let # and $ be two fresh symbols not in A. We build a functional FST T realising
the function:

f : u#$m#$i 7→ $m×i for all m ∈ N, i ∈ {1, . . . , k}, if u ∈ dom(Di)

We build T as the union of k sequential FSTs Ti. We build each Ti from the
corresponding Di as follows :

— The states of Ti are the states of Di and i + 1 new states: q# and qj for all
j ∈ {1, . . . , i}.

— The initial function of Ti associates the initial state of Di to ε.
— For each transition p a−→ q of Di, we add a transition p

a|ε−→ q to Ti.
— For each final state p of Di, we add a transition p

#|ε−−→ q#.

— We add a self loop q#
$|$i−−→ q# and a transition q#

#|ε−−→ q1.

— For all j ∈ {1, . . . , i− 1}, we add a transition qj
#|ε−−→ qj+1.

— The final function of Ti associates qi to ε.
Observe that the size of T is polynomial in the sum of the sizes of the Di’s.

We now prove that T satisfies the BTPk−1 if and only if the intersection of the
languages defined by the Di’s is empty.

Suppose that T does not satisfy the BTPk−1. We thus have a counter example
with k runs ρ1, . . . , ρk. For each pair of runs, there is a synchronized loop such
that this loop is inducing a delay between these two runs and the two runs read
the same input up to (and including) this loop. The delay must be induced by
the self loops around the q# states as those are the only productive transitions of
the Ti’s. As there is a delay, those two runs are in two different Ti’s. Therefore,
by the pigeon hole principle, every one of the k runs has a loop around the
q# state of a different Ti. Consider the prefix u# of the input read by ρ1. For
all i ∈ {2, . . . , k}, there is a synchronized loop such that this loop is inducing a
delay between ρ1 and ρi, and ρ1 and ρi read the same input up to (and including)
this loop. Therefore, every one of the k runs read the same word u before the
first #. This in turn means that all of the Di’s can read the word u, and thus the
intersection of the languages defined by the Di’s is not empty.

Conversely, suppose now that the intersection of the languages defined by the
Di’s is non-empty, and let u be a word in this intersection. We show that [[T]]
does not satisfy the Lipschitz property of order k − 1. Fix a constant K, and
consider the k input words ui = u#$m#$i, for i ∈ {1, . . . , k} with m = K.k. For
all 1 6 j < j′ 6 k, we have distp(uj, uj′) < k and distp([[T]](uj), [[T]](uj′)) > K.k.

4.5. Minimisation of the Degree of Sequentiality 67

Therefore, [[T]] does not satisfy the Lipschitz property of order k − 1 and, by
Theorem 4.3, T does not satisfy the BTPk−1.

Theorem 4.14. The k-sequentiality problem is PSPACE-complete when k is given in
unary.

Proof. This follows from Lemmas 4.12 and 4.13.

4.5 Minimisation of the Degree of Sequentiality
In this chapter, we have described two procedures: one to decide, given a

functional finite-state transducer and a natural number k, whether this trans-
ducer admits a k-sequential equivalent, and one to build the k-sequential equiva-
lent, under the proviso that it exists. In this subsection, we address the problem
of finding the degree of sequentiality of a functional finite-state transducer, i.e.
finding the minimal k such that this transducer can be realised by a k-sequential
transducer.

The decision procedure for the k-sequentiality problem is in PSPACE. By care-
fully analysing the proof of Lemma 4.12, we can devise a deterministic algorithm
to decide the problem in EXPTIME. Given a functional k-sequential finite-state
transducer, we can proceed by dichotomy from k to determine its degree of se-
quentiality. We then need log2(k) calls to our decision procedure, giving an over-
all procedure still in EXPTIME.

Theorem 4.15. Given a functional multi-sequential FST, we can compute its degree
of sequentiality in EXPTIME.

The problem of the register complexity of deterministic streaming string trans-
ducers was introduced by [AR13] and consists, given a deterministic streaming
string transducer, in finding the minimal k such that there exists an equivalent
deterministic streaming string transducer with k registers. We can apply the
same strategy as above to solve this problem for the class of copyless append-
ing deterministic streaming string transducers. Given a copyless appending de-
terministic streaming string transducer with k0 register, we build an equivalent
k0-sequential (of polynomial size) and compute its degree of sequentiality k, by
dichotomy from k0. We can then build an equivalent copyless appending deter-
ministic streaming string transducer with k register.

Corollary 4.16. Given a copyless appending DSST, we can compute its register com-
plexity in EXPTIME.

Chapter 5
Sequentiality of
String-to-Context Transducers
5.1 Preliminaries . 70

5.1.1 Combinatorial Tools . 70
5.1.2 Factor Distance . 71

5.2 Characterisation of Sequential S2Cs . 73
5.2.1 Contextual Bounded Variation . 73
5.2.2 Contextual Lipschitz Property . 74
5.2.3 Contextual Twinning Property . 74
5.2.4 Sequentialisation Theorem for S2Cs . 75

5.3 Combinatorial Analysis . 77
5.3.1 Behaviours of Loops . 77

5.3.1.1 Properties of Two Synchronised Lassos 79
5.3.1.2 Lifting to k Synchronised Lassos . 82

5.3.2 Analysis of Loops Consecutive to a Productive Loop 83
5.3.2.1 Lassos Consecutive to a Commuting Lasso 84
5.3.2.2 Lassos Consecutive to a Non-Commuting Lasso 88

5.3.3 A Two-Loop Pattern Property . 89
5.4 Construction of an Equivalent Sequential S2C 90

5.4.1 Additional Definitions and Notations . 90
5.4.2 Construction . 92
5.4.3 Correctness . 93
5.4.4 Boundedness . 97
5.4.5 Final Theorem . 100

5.5 Deciding Sequentiality of S2Cs . 100
5.6 Related Work . 102

In this chapter, we present the work that we developed in [RV19] to charac-
terise the functional string-to-context transducers that admit an equivalent se-
quential one. We wish to provide here a more complete picture of the problem

69

70 5. Sequentiality of String-to-Context Transducers

of the sequentiality of string-to-context transducers by defining an additional
property similar to the bounded variation property of [Cho77] which was not in
the initial publication.

In Chapter 2, we have seen that functional finite-state transducers are equiv-
alent to copyful appending deterministic streaming string transducers. [DRT16]
observed that the minimisation to one register of copyful appending determinis-
tic streaming string transducers precisely coincides with the sequentiality prob-
lem of functional finite-state transducers. Thanks to the equivalence between
functional string-to-context transducers and copyful concatenation-free deter-
ministic streaming string transducers (cf. Chapter 2), we claim that solving the
sequentiality problem of functional string-to-context transducers is a first impor-
tant step towards solving the register minisation problem for copyful concatenation-
free deterministic streaming string transducers.

In order to characterise the functional string-to-context transducers that ad-
mit an equivalent sequential one, we once more extend the results of [Cho77]
around sequentiality. We generalise those for the string-to-context transducers
by defining a contextual bounded variation property, a contextual Lipschitz prop-
erty and a contextual twinning property. From these properties, we draw a con-
struction for an equivalent sequential string-to-context transducer, if it exists,
along with a decision procedure for the problem of the sequentiality of string-
to-context transducers. The key tool behind this generalisation is a notion of
distance that is appropriate to how the output is constructed by string-to-context
transducers.

5.1 Preliminaries

5.1.1 Combinatorial Tools
LetA an alphabet. The primitive period of a word x ∈ A+, denoted by period(x),

is the shortest (unique) primitive word y such that x ∈ y+z for some z prefix of
y.

Example 5.1. The primitive root and primitive period act differently. For in-
stance, root(abcab) = abcab but period(abcab) = abc.

The next lemma states a property of the primitive period that we will use
throughout this chapter.

Lemma 5.1. Let v, x, z ∈ A+ and w ∈ A∗ such that root(v) ∼ root(x) ∼ root(z). If
vwx is a factor of a word in z∗ then period(vwx) ∼ root(z).

Proof. Without loss of generality, consider z to be primitive. Let u, y ∈ A∗ and
i > 2 such that uvwxy = zi. There exist t1, t

′
1, t2, t

′
2 such that z = t1t

′
1 = t2t

′
2

and root(v) = t′1t1 and root(x) = t′2t2. Then there exists α 6 0, β 6 0 and

5.1. Preliminaries 71

γ > 0 such that u = t1(t′1t1)α, y = (t′2t2)βt′2, and vwx = t′1(t1t′1)γt2. Therefore
vwx ∈ (t′1t1)+t′1t2.

If |t2| 6 |t1|, then t′1t2 is a prefix of t′1t1. Otherwise, let t ∈ A+ such that
t′1t2 = t′1t1t, and then t is a prefix of t′1t1. In both cases, by definition, we have
period(vwx) ∼ z.

The next lemma recalls another classical result of combinatorics that we will
use along with Fine and Wilf (Lemma 1.1).

Lemma 5.2 (Saarela, Theorem 4.3 of [Saa15]). Let m,n > 1, sj, tj ∈ A∗ and
uj, vj ∈ A+. If s0u

i
1s1 . . . u

i
msm = t0v

i
1t1 . . . v

i
ntn holds for m + n values of i, then it

holds for all i.

5.1.2 Factor Distance
Given two words u, v ∈ B∗, a longest common factor of u and v is a word

w of maximal length that is a factor of both u and v. Note that this word is
not necessarily unique. We denote such a word by lcf(u, v). The factor distance
between u and v, denoted by distf(u, v), is defined as distf(u, v) = |u| + |v| −
2|lcf(u, v)|. This definition is correct as |lcf(u, v)| is independent of the choice of
the common factor of maximal length.

Using a careful case analysis, we can prove that distf is indeed a distance, the
only difficulty lying in the subadditivity:

Lemma 5.3. distf is a distance.

Proof. Let x, y, z words.
— Symmetry: It is trivial to prove that distf (x, y) = distf (y, x).
— Identity: It is trivial to prove that distf (x, y) = 0 ⇐⇒ x = y.
— Triangle Inequality: We want to prove that distf(x, z) 6 distf(x, y) +

distf(y, z). By definition, distf(x, y) = |x| + |y| − 2|lcf(x, y)|, distf(y, z) =
|y|+ |z| − 2|lcf(y, z)| and distf (x, z) = |x|+ |z| − 2|lcf(x, z)|. Let α a longest
common factor of x and y, and β a longest common factor of y and z.
Let x1, x2, y1, y2, y3, y4, z1, z2 words such that x = x1αx2, y = y1αy2, and
y = y3βy4, z = z1βz2. Observe that distf(x, y) = |x1|+ |x2|+ |y1|+ |y2| and
distf (y, z) = |y3|+ |y4|+ |z1|+ |z2|. We observe six cases:

(i) |y1| 6 |y3| < |y1|+ |α| and |y4| 6 |y2| < |y4|+ |β|.
There exists γ such that y1α = y3γ and γy2 = βy4. Then we have |α| 6
|y3|+ |γ| and |β| 6 |y2|+ |γ|. Yet, |x| = |x1|+ |x2|+ |α| and we obtain that
|x|−|γ| = |x1|+|x2|+|α|−|γ| 6 |x1|+|x2|+|y3|. Also, |z| = |z1|+|z2|+|β|
and we obtain that |z| − |γ| = |z1| + |z2| + |β| − |γ| 6 |z1| + |z2| + |y2|.
Finally, we have that |lcf(x, z)| > |γ| as γ indeed is a common factor of

72 5. Sequentiality of String-to-Context Transducers

x and z. Then,

distf (x, z) = |x|+ |z| − 2|lcf(x, z)|
6 |x|+ |z| − 2|γ|
6 |x1|+ |x2|+ |y3|+ |z1|+ |z2|+ |y2|
6 distf (x, y) + distf (y, z)

(ii) |y3| 6 |y1| < |y3|+ |α| and |y2| 6 |y4| < |y2|+ |β|.
This case is symmetrical to the previous case.

(iii) |y1| 6 |y3| < |y1|+ |α| and |y2| 6 |y4| < |y2|+ |β|.
Then we have |α| 6 |y3| + |β| + |y4|. Yet, |x| = |x1| + |x2| + |α| and we
obtain that |x|− |β| = |x1|+ |x2|+ |α|− |β| 6 |x1|+ |x2|+ |y3|+ |y4|. Also,
|z| = |z1|+ |z2|+ |β| and thus |z| − |β| = |z1|+ |z2|. Finally, we have that
|lcf(x, z)| > |β| as β indeed is a common factor of x and z. Then,

distf (x, z) = |x|+ |z| − 2|lcf(x, z)|
6 |x|+ |z| − 2|β|
6 |x1|+ |x2|+ |y3|+ |y4|+ |z1|+ |z2|
6 distf (x, y) + distf (y, z)

(iv) |y3| 6 |y1| < |y3|+ |α| and |y4| 6 |y2| < |y4|+ |β|.
This case is symmetrical to the previous case.

(v) |y1|+ |α| 6 |y3| and |y4|+ |β| 6 |y2|.
Then, |α| 6 |y3| and |β| 6 |y2|. Yet, |x| = |x1|+ |x2|+ |α| and we obtain
that |x| 6 |x1|+ |x2|+ |y3|. Also, |z| = |z1|+ |z2|+ |β| and we obtain that
|z| 6 |z1|+ |z2|+ |y2|. Then, as |lcf(x, z)| > 0,

distf (x, z) = |x|+ |z| − 2|lcf(x, z)|
6 |x|+ |z|
6 |x1|+ |x2|+ |y3|+ |z1|+ |z2|+ |y2|
6 distf (x, y) + distf (y, z)

(vi) |y3|+ |α| 6 |y1| and |y2|+ |β| 6 |y4|.
This case is symmetrical to the previous case.

We now prove some classical properties of distances.

Lemma 5.4. For all c, c′ ∈ C(B) and w ∈ B∗, we have distf (c[w], c′[w]) 6 |c|+ |c′|.

5.2. Characterisation of Sequential S2Cs 73

Proof. It is easy to see that |lcf(c[w], c′[w])| > |w|. Then, we have:

distf (c[w], c′[w]) = |c|+ |c′|+ |w|+ |w| − 2|lcf(c[w], c′[w])|
6 |c|+ |c′|+ |w|+ |w| − 2|w|
6 |c|+ |c′|

Lemma 5.5. For all c, c′ ∈ C(B) and w,w′ ∈ B∗, we have

distf (w,w′)− |c| − |c′| 6 distf (c[w], c′[w′]) 6 distf (w,w′) + |c|+ |c′|.

Proof. Using the triangle inequality and Lemma 5.4, we have:

distf (w,w′) 6 distf (w, c[w]) + distf (c[w], c′[w′]) + distf (c′[w′], w′)
6 |c|+ distf (c[w], c′[w′]) + |c′|

Again, using the triangle inequality and Lemma 5.4, we have:

distf (c[w], c′[w′]) 6 distf (c[w], w) + distf (w,w′) + distf (w′, c′[w′])
6 |c|+ distf (w,w′) + |c′|

Let us also prove a simple property of lcf.

Lemma 5.6. For all u1, u2, v1, v2 ∈ B∗, |lcf(u1u2, v1v2)| > |lcs(u1, v1)|+ |lcp(u2, v2)|.

Proof. Let x = lcs(u1, u2) and y = lcp(u2, v2). Then there exist u′1, u
′
2, v
′
1, v
′
2 ∈ B∗

such that u1 = u′1x, v1 = v′1x, u2 = yu′2 and v2 = yv′2. Then we have u1u2 = u′1xyu
′
2

and v1v2 = v′1xyv
′
2. Therefore xy is a factor of u1u2 and v1v2 and, by definition of

the longest common factor, |lcp(u1u2, v1v2) > |xy| > |lcs(u1, v1)|+ |lcp(u2, v2)|.

5.2 Characterisation of Sequential S2Cs
We first present the adaptation of the bounded variation, Lipschitz and twin-

ning properties to string-to-context transducers.

5.2.1 Contextual Bounded Variation
We adapt the classical bounded variation property of [Cho77] by using the

factor distance to denote how close the output words must remain. Notice that
we still need the prefix distance to set bounds for the input words.

Definition 5.1 (Contextual Bounded Variation Property (CBV)). Let A,B be two
alphabets. A function f from A∗ to B∗ satisfies the contextual bounded variation
property if for all m ∈ N, there exists M ∈ N such that for all u, v ∈ dom(f), if
distp(u, v) 6 m then distf (f(u), f(v)) 6M .

74 5. Sequentiality of String-to-Context Transducers

5.2.2 Contextual Lipschitz Property
The factor distance is also appropriate to generalise the Lipschitz property.

Definition 5.2 (Contextual Lipschitz Property (CLip)). Let A, B be two alphabets. A
function f from A∗ to B∗ satisfies the contextual Lipschitz property if there exists
K ∈ N such that ∀u, v ∈ dom(f), distf (f(u), f(v)) 6 K distp(u, v).

Example 5.2. The function fmirror defined in Example 1.9 obviously satisfies the
contextual Lipschitz property with coefficient 1. Indeed, let u, v ∈ {a, b}∗. We
have f(u) = ũ and f(v) = ṽ. By Lemma 5.6, |lcf(ũ, ṽ)| > |lcs(ũ, ṽ)| = |lcp(u, v)|.
Then, distf (f(u), f(v)) = |ũ|+ |ṽ|−2|lcf(ũ, ṽ)| 6 |u|+ |v|−2|lcp(u, v)| = distp(u, v).

Similarly, the function fmirror·id defined in Example 2.1 satisfies the contex-
tual Lipschitz property with coefficient 2. Indeed, let u, v ∈ {a, b}∗. We have
f(u) = ũu and f(v) = ṽv. By Lemma 5.6, |lcf(ũu, ṽv)| > |lcs(ũ, ṽ)|+ |lcp(u, v)| =
2|lcp(u, v)|. Then, distf(f(u), f(v)) = |ũu| + |ṽv| − 2|lcf(ũu, ṽv)| 6 2|u| + 2|v| −
4|lcp(u, v)| = 2distp(u, v).

Example 5.3. The function fmirror·last : u ∈ {a, b}+ 7→ ũ · last(u)|u| does not satisfy
the contextual Lipschitz property. Indeed let K ∈ N and take u = aKa, v = aKb.
We have f(u) = a2K+2 and f(v) = baKbK+1. Then, distf (f(u), f(v)) = 2(K + 2) >
K.distp(u, v) = 2K.

In the next lemma, we state that the contextual Lipschitz property implies the
contextual bounded variation property. We will later prove that they actually are
equivalent.

Lemma 5.7. Let A,B be two alphabets. If a function f from A∗ to B∗ satisfies
the contextual Lipschitz property then it satisfies the contextual bounded variation
property.

Proof. Let f that satisfies the contextual Lipschitz property and let K ∈ N such
that for all u, v ∈ dom(f), distf(f(u), f(v)) 6 K.distp(u, v). We prove that f
satisfies the contextual bounded variation property. Let m ∈ N and define M =
Km. If u, v ∈ dom(f) and distp(u, v) 6 m then we have distf(f(u), f(v)) 6
K.distp(u, v) 6M .

5.2.3 Contextual Twinning Property
Again, we can extend the twinning property thanks to the factor distance.

Definition 5.3 (Contextual Twinning Property (CTP)). We consider an S2C and
L ∈ N. Two states q1 and q2 are said to be L-contextually twinned if for any two

runs
c1−→ p1

u|d1−−→ q1
v|e1−−→ q1 and

c2−→ p2
u|d2−−→ q2

v|e2−−→ q2, where p1 and p2 are initial
states, we have for all j > 0, distf(ej1d1c1[ε], ej2d2c2[ε]) 6 L. An S2C satisfies the
contextual twinning property if there exists L ∈ N such that any two of its states
are L-contextually twinned.

5.2. Characterisation of Sequential S2Cs 75

Example 5.4. Figure 5.1 depicts Tmirror·last, computing the function fmirror·last de-
fined in Example 5.3. Tmirror·last does not satisfy the contextual twinning property.
Indeed, in search of a contradiction, assume that Tmirror·last does satisfy the twin-
ning property and let L ∈ N such that any two states of Tmirror·last are L-twinned.
Now, consider two loops around qa and qb: p1 = q1 = qa, p2 = q2 = qb, u = ε and
v = a. Then we have c1 = c2 = d1 = d2 = (ε, ε), e1 = (a, a) and e2 = (a, b). Thus
distf (eL1 d1c1[ε], eL2 d2c2[ε]) = 2L > L and we have a contradiction.

qa

(ε, ε)

qf

(ε, ε)

qb

(ε, ε)

a|(a, a) b|(b, a)

a|(a, a)

a|(a, b) b|(b, b)

b|(b
, b)

Figure 5.1 – The S2C Tmirror·last.

5.2.4 Sequentialisation Theorem for S2Cs
Our main result is the following theorem, which characterises the functional

string-to-context transducers admitting an equivalent sequential string-to-context
transducer.

Theorem 5.8. Let A,B be two alphabets. Let T be a functional S2C from A∗ to B∗.
The following assertions are equivalent:

1. [[T]] satisfies the contextual Lipschitz property,

2. [[T]] satisfies the contextual bounded variation property,

3. T satisfies the contextual twinning property,

4. [[T]] can be realised by a sequential S2C.

Proof. The implication from 1 to 2 was proved in Lemma 5.7. The implications
from 4 to 1 and from 2 to 3 are proved in Propositions 5.9 and 5.10. The impli-
cation from 3 to 4 is more involved, and is based on a careful analysis of word
combinatorics of loops of string-to-context transducers satisfying the CTP. This
analysis is summarised in Lemma 5.33 and used in Section 5.4 to describe the
construction of an equivalent sequential S2C.

Proposition 5.9. Let A,B be two alphabets. Let T be a sequential S2C realizing
the function f from A∗ to B∗. Then f satisfies the contextual Lipschitz property.

76 5. Sequentiality of String-to-Context Transducers

Proof. We will prove that f satisfies the Lipschitz property with coefficient 3MT .
Consider two input words u, v in the domain of f . If u = v, then the result is
trivial. Otherwise, let w = lcp(u, v) and let u = w.u′ and v = w.v′, with 0 6 |u′|
and 0 6 |v′|. As T is sequential, we have two runs in T

c1−→ p
w|c2−−→ q

u
′|d1−−→ r

d2−→ and
c1−→ p

w|c2−−→ q
v
′|e1−−→ s

e2−→

such that [[T]](u) = d2d1c2c1[ε] and [[T]](v) = e2e1c2c1[ε]. We also have |d1| 6
MT |u′|, |e1| 6 MT |v′|, |d2| 6 MT , and |e2| 6 MT . Finally, as u 6= v, we have
distp(u, v) = |u′|+ |v′| > 1 and we obtain:

distf (f(u), f(v)) 6 |d2d1|+ |e2e1|
6MT (2 + |u′|+ |v′|)
6 3MT (|u′|+ |v′|)
6 3MT distp(u, v)

Proposition 5.10. Let A,B be two alphabets. Let T be a functional S2C realiz-
ing the function f from A∗ to B∗. If f satisfies the contextual bounded variation
property, then T satisfies the contextual twinning property.

Proof. We denote by n the number of states of T . Suppose that f satisfies the
contextual bounded variation property, and let N ∈ N such that for all u, v ∈
dom(f), if distp(u, v) 6 2n then distf (f(u), f(v)) 6 N . We consider an instance of
the contextual twinning property in T :

c1−→ p1
u|d1−−→ q1

v|e1−−→ q1 and
c2−→ p2

u|d2−−→ q2
v|e2−−→ q2

As T is trimmed, there exist runs

q1
w1|f1−−−→ r1

g1−→ and q2
w2|f2−−−→ r2

g2−→

with |w1| 6 n and |w2| 6 n. We consider the input words αj = uvjw1 and
βj = uvjw2, for all j > 0. We have, for all j > 0, distp(αj, βj) 6 |w1|+ |w2| 6 2n.
Therefore, for all j > 0, distf (f(αj), f(βj)) 6 N .

By using the triangle inequality twice, we obtain that, for all j > 0:

distf (ej1d1c1[ε], ej2d2c2[ε]) 6 distf (g1f1e
j
1d1c1[ε], g2f2e

j
2d2c2[ε]) + 2(n+ 1)MT

6 distf (f(αj), f(βj)) + 2(n+ 1)MT
6 N + 2(n+ 1)MT

5.3. Combinatorial Analysis 77

5.3 Combinatorial Analysis
Recall from Chapter 3, that the classical twinning property forces the outputs

of two runs reading the same input to only diverge by a finite amount. This con-
straint in turn makes for strong combinatorial bindings between runs involving

loops: for two runs
w1−→ p1

u|x1−−→ q1
v|y1−−→ q1 and

w2−→ p2
u|x2−−→ q2

v|y2−−→ q2, we have
|y1| = |y2|, and root(y1) ∼ root(y2).

Similar behaviours are expected with string-to-context transducers and lead
us to study the combinatorial properties of synchronised runs involving loops in
those machines. Throughout this section, we consider a string-to-context trans-
ducer T = (Q, tinit, tfinal, T) that satisfies the contextual twinning property.

5.3.1 Behaviours of Loops
We start with two examples illustrating how output contexts of synchronised

loops can be modified to obtain an equivalent sequential S2C.

Example 5.5. Figure 5.2a shows an example of a non-sequential functional S2C
transducer T1. The contexts produced on loops around states q1 and q2 both
commute with word a. This observation can be used to build an equivalent
sequential S2C D1, depicted on Figure 5.2c. Figure 5.2b shows an example of
a non-sequential functional S2C transducer T2 where output contexts are non-
commuting, but can be slightly shifted so as to be aligned. This observation can
be used to build an equivalent sequential S2C D2, depicted on Figure 5.2d.

The following definition follows from the intuition drawn by the previous ex-
ample.

Definition 5.4 (Lasso, Aligned/Commuting/Non-commuting lasso). A lasso around

a state q is a run ρ of the form c−→ p
u|d−→ q

v|e−→ q with p an initial state. ρ is said to
be productive, if |e| 6= 0. We say that ρ is:

— aligned w.r.t. f and w, for some f ∈ C(B) and w ∈ B∗, denoted by
(f, w)−aligned, if there exists a context g ∈ C(B) such that for all i ∈ N,
eidc[ε] = gf i[w].

— commuting w.r.t. x, for some x ∈ B+, denoted by x−commuting, if there
exists a context f ∈ C(B) such that for all i > 0, there exists k ∈ N such
that eidc[ε] = f [xk].

— non-commuting if there exists no word x ∈ B+ such that ρ is commuting
w.r.t x.

Two lassos
c1−→ p1

u1|d1−−−→ q1
v1|e1−−−→ q1 and

c2−→ p2
u2|d2−−−→ q2

v2|e2−−−→ q2 are said to be
synchronised if u1 = u2 and v1 = v2. They are said to be weakly balanced if
|e1| = |e2| and strongly balanced if ‖e1‖ = ‖e2‖.

78 5. Sequentiality of String-to-Context Transducers

q0
cε

q1

q2

q3
cε

q4
cε

a|(a, a
)

a|(a, a)

b|(a, a)

a|(ε, ba)

a|(ε, aa)

c|(ε, ab)

(a) T1

q0
cε

q1

q2

q3
cε

q4
cε

a|(ε, c
)

a|(ab, de)

b|cε

a|(b, cd)

a|(ba, ed)

c|cε

(b) T2

q0
cε

q1

q2
cε

q3
cε

a|cε

a|(ε, aa)

b|(aa, aa)

c|(ba, ab)

(c) D1

q0
cε

q1

q2
cε

q3
cε

a|(ε, c)

a|(ab, de)
b|cε

c|(b, d)

(d) D2

Figure 5.2 – 5.2a An S2C T1 computing the function that maps anb to a2n+2 and
anc to ba2nb. 5.2c A sequential S2C D1 equivalent to T1. 5.2b An
S2C T2 computing the function that maps anb to (ab)n−1c(de)n−1

and anc to b(ab)n−1c(de)n−1d. 5.2d A sequential S2C D2 equivalent
to T2.

Given an integer k > 1, we consider the k-th power of T , that we denote by
T k. A run in T k naturally corresponds to k synchronised runs in T , i.e. on the
same input word. We lift the notion of lasso to T k, and we denote them by H1H2,
where H1 starts in initial states and ends in some state q = (qi)i∈{1,...,k} ∈ Qk, and
H2 is a loop around state q. In the sequel, we will only consider lassos such that q
contains pairwise distinct states (qi 6= qj for all i 6= j). Those lassos are included
in the lassos in T 6|Q| = ∪16k6|Q|T k.

The intuition given by Example 5.5 is formalised in the following lemma:

Lemma 5.11. Let H1H2 = (ρj)j∈{1,...,k} a lasso in T k, for some 1 6 k 6 |Q|. We

write ρj :
cj−→ pj

u1|dj−−−→ qj
u2|ej−−−→ qj for each j. Then there exists an integer m ∈ N

such that |ej| = m for all j ∈ {1, . . . , k}. If m > 0, we say that the lasso H1H2 is
productive, and:

— either there exists x ∈ B+ primitive such that ρj is x−commuting for all j ∈
{1, . . . , k}. In this case, we say that the lasso H1H2 is x−commuting, and we
let powc(x,H1, H2) = m/|x| and splitc(x,H1, H2) = {(qj, fj) | j ∈ {1, . . . , k}}
where fj ∈ C(B) is such that ∀α ∈ N, eαj djcj[ε] = fj[xα powc(x,H1,H2)]. 1

1. Because we only consider lassos around pairwise distinct states, both splitc(x,H1, H2) and

5.3. Combinatorial Analysis 79

— or there exist f ∈ C(B) and w ∈ B∗ such that ρj is non-commuting and
(f, w)−aligned for all j ∈ {1, . . . , k}. In this case, we say that the lasso H1H2
is (f, w)−aligned, and we let splitnc(f, w,H1, H2) = {(qj, gj) | j ∈ {1, . . . , k}}
where gj ∈ C(B) is such that ∀α ∈ N, eαj djcj[ε] = gjf

α[w].1

Example 5.6. We consider the example S2C in Figure 5.2. The lasso in T 2
1 around

(q1, q2) is a−commuting. We can compute a powc of 2 and {(q1, (a, a)), (q2, (b, a))}
as a possible splitc. The lasso in T 2

2 around (q1, q2) is ((ab, de), c)−aligned. We can
compute {(q1, cε), (q2, (b, d))} as a possible splitnc.

In the remainder of this subsection, we will prove Lemma 5.11. We first need
to study the combinatorial properties of two synchronised lassos. We will later
lift those to k synchronised lassos.

5.3.1.1 Properties of Two Synchronised Lassos

Lemma 5.12. For any two synchronised lassos ρ1 and ρ2, we have that
— either ρ1 and ρ2 are non-productive
— or ρ1 and ρ2 are productive and weakly-balanced, and there exists x ∈ B+

primitive such that ρ1 and ρ2 are x−commuting,
— or ρ1 and ρ2 are productive, strongly-balanced and non-commuting, and there

exists f ∈ C(B) and w ∈ B∗ such that ρ1 and ρ2 are (f, w)−aligned.

In order to prove Lemma 5.12, we first need some preliminary combinatorial
results.

Lemma 5.13. Let c1, c2, d1, d2 ∈ C(B). If for all i ∈ N, distf(di1c1[ε], di2c2[ε]) 6 L,
then there exist e1, e2 ∈ C(B) such that there exist infinitely many integers i ∈ N,
such that e−1

1 di1c1[ε] = e−1
2 di2c2[ε]

Proof. Suppose that for all i ∈ N, distf(di1c1[ε], di2c2[ε]) 6 L. Then for all i ∈ N,
there exist f1, f2 ∈ C(B), such that f−1

1 di1c1[ε] = f−1
2 di2c2[ε] and |f1| + |f2| 6 L.

Let CL = {(f1, f2) | |f1|+ |f2| 6 L}. CL is finite. Thus there exists some (e1, e2) ∈
CL such that there exist infinitely many integers i ∈ N such that e−1

1 di1c1[ε] =
e−1

2 di2c2[ε].

Lemma 5.14. Let u1, w1, u2, w2 ∈ B∗ and v1, v2 ∈ B+ such that |v1| = |v2| and
u1v

i
1w1 = u2v

i
2w2 for all i ∈ N. Then there exists x ∈ B+ and f1, f2 ∈ C(B) such

that for all i > 1, there exist k ∈ N such that vi1 = f1[xk] and vi2 = f2[xk].

Proof. There exists i0 sufficiently large so that vi01 and vi02 overlap with a common
factor of length greater than |v1| + |v2| − gcd(|v1|, |v2|). Thus, by Lemma 1.1,
root(v1) ∼ root(v2).

splitnc(f, w,H1, H2) are partial functions from Q to C(B).

80 5. Sequentiality of String-to-Context Transducers

Let t, t′ ∈ B∗ and α, β > 1 such that v1 = (tt′)α and v2 = (t′t)β. We choose
x = root(v1) = tt′, f1 = (tt′, ε) and f2 = (t′, t). Then for all i > 1, let k = αi−1 > 0,
and we have vi1 = (tt′)αi = tt′(tt′)αi−1 = f1[xk] and vi2 = (t′t)αi = t′xαi−1t =
f2[xk].

Lemma 5.15. Let u1, w1, u2, w2, y2 ∈ B∗ and v1, v2, x2 ∈ B+ such that |v1| =
|v2| + |x2| and u1v

i
1w1 = u2v

i
2w2x

i
2y2 for all i ∈ N. Then there exists x ∈ B+ and

f1, f2 ∈ C(B) such that for all i > 1, there exist k ∈ N such that vi1 = f1[xk] and
vi2w2x

i
2 = f2[xk].

Proof. There exists m0 sufficiently large so that vm0
1 overlap with both v

m0
2 and

x
m0
2 with common factors of length greater than |v1| + |v2| − gcd(|v1|, |v2|) and
|v1|+ |x2|−gcd(|v1|, |x2|). Thus, by Lemma 1.1, root(v1) ∼ root(v2) and root(v1) ∼
root(x2). As |v1| = |v2|+ |x2|, we have that |v2w2x2| > |v1|. Yet v2w2x2 is a factor
of v∗1, then, by Lemma 5.1, period(v2w2x2) ∼ root(v1).

Let t1, t
′
1, t2, t

′
2 ∈ B∗ and α, β, γ > 1 such that t1t

′
1 = t2t

′
2, and v1 = (t1t′1)α,

v2 = (t′1t1)β and x2 = (t′2t2)γ. Note that α = β + γ. Also we have v2w2x2 =
t′1(t1t′1)θt2, for some θ > 0. We choose x = root(v1) = t1t

′
1, f1 = ((t1t′1)α, ε)

and f2 = (t′1(t1t′1)θ, t2). Then for all i > 1, let k = α(i − 1) > 0, and we
have vi1 = (t1t′1)αi = (t1t′1)αxα(i−1) = f1[xk] and vi2w2x

i
2 = vi−1

2 v2w2x2x
i−1
2 =

(t′1t1)β(i−1)t′1(t1t′1)θt2(t′2t2)γ(i−1) = t′1(t1t′1)θxα(i−1)t2 = f2[xk].

Lemma 5.16. Let u1, w1, y1, u2, w2, y2 ∈ B∗ and v1, x1, v2, x2 ∈ B+ such that |v1|+
|x1| = |v2|+ |x2| and u1v

i
1w1x

i
1y1 = u2v

i
2w2x

i
2y2 for all i ∈ N. Then we have

— either |v1| 6= |v2| and |x1| 6= |x2|, and there exists x ∈ B+ and f1, f2 ∈ C(B)
such that for all i > 1, there exist k ∈ N such that vi1w1x

i
1 = f1[xk] and

vi2w2x
i
2 = f2[xk].

— or |v1| = |v2| and |x1| = |x2|, and there exist w ∈ B∗ and f, g1, g2 ∈ C(B)
such that for all i ∈ N, vi1w1x

i
1 = g1f

i[w] and vi2w2x
i
2 = g2f

i[w].

Proof. If |v1| 6= |v2| and |x1| 6= |x2|, suppose |v1| > |v2|. There exists i0 sufficiently
large so that vi01 overlap with both x

i0
2 with a common factor of length greater

than |v1| + |x2| − gcd(|v1|, |x2|). Thus, by Lemma 1.1, root(v1) ∼ root(x2). Using
the same argument, we have that root(v1) ∼ root(v2) and root(x1) ∼ root(x2).
As |v1| + |x1| = |v2| + |x2|, we have that |v2| + |x2| > |v1| and thus |v2w2x2| >
|v1|. Yet v2w2x2 is a factor of v∗1, then, by Lemma 5.1, period(v2w2x2) ∼ root(v1).
Symmetrically, period(v1w1x1) ∼ root(x2).

Let t1, t
′
1, t2, t

′
2, t3, t

′
3 ∈ B∗ and α, β, γ, δ > 1 such that t1t

′
1 = t2t

′
2 = t3t

′
3,

and v1 = (t1t′1)α, x1 = (t′2t2)β, v2 = (t′1t1)γ and x2 = (t′3t3)δ. Note that α +
β = γ + δ. Also we have v1w1x1 = (t1t′1)θ1t2 and v2w2x2 = t′1(t1t′1)θ2t3, for
some θ1, θ2 > 0. We choose x = root(v1) = t1t

′
1 f1 = ((t1t′1)θ1 , t2) and f2 =

(t′1(t1t′1)θ2 , t3). Then for all i > 1, let k = (α+β)(i−1) > 0, and we have vi1w1x
i
1 =

vi−1
1 v1w1x1x

i−1
1 = (t1t′1)θ1(t1t′1)(α+β)(i−1)t2 = f1[xk] and vi2w2x

i
2 = vi−1

2 v2w2x2x
i−1
2 =

t′1(t1t′1)θ2(t1t′1)(γ+δ)(i−1)t3 = f2[xk].
If |v1| < |v2|, we obtain the same result.

5.3. Combinatorial Analysis 81

If |v1| = |v2| and |x1| = |x2|, we only have that root(v1) ∼ root(v2) and
root(x1) ∼ root(x2). If |u1| < |u2|, let v such that we have u2 = u1v and v1v = vv2;
if |u1| = |u2|, let v = ε and we have u1 = u2 and v1 = v2; if |u1| > |u2|, let v such
that we have u1 = u2v and v2v = vv1. Similarly, if |y1| < |y2|, let x such that we
have y2 = xy1 and x2x = xx1; if |y1| = |y2|, let x = ε and we have y1 = y2 and
x1 = x2; if |y1| > |y2|, let x such that we have y1 = xy2 and x1x = xx2.

Finally, from v and y, we obtain that
— v1v = vv2, w1 = vw2x, x2x = xx1, or
— v1v = vv2, w1x = vw2, x1x = xx2, or
— v2v = vv1, vw1 = w2x, x2x = xx1, or
— v2v = vv1, vw1x = w2, x1x = xx2.
We handle the first case. The others are similar. We choose f = (v2, x2),

w = w2, and g1 = (v, x) and g2 = (ε, ε). Then for all i ∈ N, vi1w1x
i
1 = vi1w1x

i
1 =

vi1vw2xx
i
1 = vvi2w2x

i
2x = v(f i[w])x = g1f

i[w] and vi2w2x
i
2 = g2f

i[w].

Lemma 5.17. Let f ∈ C(B), w ∈ B∗, and x ∈ B+ a primitive word. Let ρ1 and ρ2
be two synchronised, productive, strongly-balanced and (f, w)−aligned lassos. If ρ1
is x−commuting, then ρ2 is x−commuting.

Proof. Let ρ1 : c1−→ p1
u1|d1−−−→ q1

u2|e1−−−→ q1 and ρ2 : c2−→ p2
u1|d2−−−→ q2

u2|e2−−−→ q2.
We have that ‖e1‖ = ‖e2‖, and ρ1 and ρ2 are (f, w)−aligned. By Definition 5.4,

there exist some contexts g1, g2 ∈ C(B) such that for all i > 0, ei1d1c1[ε] = g1f
i[w]

and ei2d2c2[ε] = g2f
i[w]. If ρ1 is x−commuting then, by Definition 5.4, there exist

h ∈ C(B) such that for all i > 0, there exists j > 0 such that ei1d1c1[ε] = h[xj].
Hence, there exists k > 0 and h′ ∈ C(B) such that f iw = h′[xk] and then g2f

i[w] =
g2h

′[xk]. Therefore, by Definition 5.4, ρ2 is x−commuting.

We can now prove Lemma 5.12.

Proof of Lemma 5.12. Let ρ1 : c1−→ p1
u1|d1−−−→ q1

u2|e1−−−→ q1 and ρ2 : c2−→ p2
u1|d2−−−→

q2
u2|e2−−−→ q2. By Lemma 5.13, there exist f1, f2 ∈ C(B) such that there exist

infinitely many integers i ∈ N such that f−1
1 ei1d1c1[ε] = f−1

2 ei2d2c2[ε]. Then we
have that |e1| = |e2|. We observe 10 cases.

If |e1| = 0 or |e2| = 0 then |e1| = |e2| = 0 and ρ1, ρ2 are not productive.

If e1, e2 ∈ B+ × {ε}, then there exist g1, g2 ∈ C(B) and i0 such that there exist
infinitely many integers i > i0, such that g1[←−e1

i−i0] = g2[←−e2
i−i0]. Therefore, by

Lemma 5.2, we obtain that for all i ∈ N, g1[←−e1
i] = g2[←−e2

i]. Then by Lemma 5.14,
there exists x ∈ B+ such that both ρ1 and ρ2 are productive, weakly-balanced
and x−commuting. The same holds for the other three cases where exactly two
of the four components of e1 and e2 are empty.

If e1 ∈ B+ × {ε} and e2 ∈ B+ × B+, then there exist g1, g2 ∈ C(B) and i0 such
that there exist infinitely many integers i > i0, such that g1[←−e1

i−i0] = g2e
i−i0
2 d2c2[ε].

Therefore, by Lemma 5.2, we obtain that for all i ∈ N, g1[←−e1
i] = g2e

i
2d2c2[ε]. Then

82 5. Sequentiality of String-to-Context Transducers

by Lemma 5.15, there exists x ∈ B+ such that both ρ1 and ρ2 are productive,
weakly-balanced and x−commuting. The same holds for the other three cases
where exactly one of the four components of e1 and e2 is empty.

If e1, e2 ∈ B+ × B+, then there exist g1, g2 ∈ C(B) and i0 such that there exist
infinitely many integers i > i0, such that g1e

i−i0
1 d1c1[ε] = g2e

i−i0
2 d2c2[ε]. Therefore,

by Lemma 5.2, we obtain that for all i ∈ N, g1e
i
1d1c1[ε] = g2e

i
2d2c2[ε]. Then by

Lemma 5.16, there are two cases. Firstly, if ‖e1‖ 6= ‖e2‖ then there exists x ∈ B+

such that both ρ1 and ρ2 are productive, weakly-balanced and x−commuting.
Secondly, if ‖e1‖ = ‖e2‖ then there exist f ∈ C(B) and w ∈ B∗ such that both
ρ1 and ρ2 are productive, strongly-balanced, and (f, w)−aligned. However, by
Lemma 5.17, if it still happens that either one of ρ1 and ρ2 is x−commuting, then
both ρ1 and ρ2 are x−commuting. If not, then they both are non-commuting.

5.3.1.2 Lifting to k Synchronised Lassos

Lemma 5.18. Let x ∈ B+ a primitive word. Let ρ1 and ρ2 be two synchronised
productive lassos. If ρ1 is x−commuting, then ρ2 is x−commuting.

Proof. Let ρ1 : c1−→ p1
u1|d1−−−→ q1

u2|e1−−−→ q1 and ρ2 : c2−→ p2
u1|d2−−−→ q2

u2|e2−−−→ q2. By
Lemma 5.12, we observe two cases. First, consider that ‖e1‖ = ‖e2‖ and that
there exists f ∈ C(B) and w ∈ B∗ such that ρ1 and ρ2 are (f, w)−aligned. By
Lemma 5.17, if ρ1 is x−commuting, then ρ2 is x−commuting. Second, we only
have that |e1| = |e2|, and there exists x′ ∈ B+ primitive such that ρ1 and ρ2 are
x′−commuting. If ρ1 is also x−commuting then, thanks to Lemma 1.1, we can
prove that x′ ∼ x and then that ρ2 is also x−commuting.

The following lemma states a consequence of the definition of aligned lassos.

Lemma 5.19. Let ρ be a productive lasso c−→ p
u|d−→ q

v|e−→ q and f ∈ C(B) and
w ∈ B∗. ρ is (f, w)−aligned if and only if there exist t1, t2, t3, t4 and α, β > 0
such that root(←−e) = t1t2, root(←−f) = t2t1, root(−→e) = t3t4, root(−→f) = t4t3, and
dc[ε] = (t1t2)αt1wt3(t4t3)β.

As a corollary, any productive lasso ρ : c−→ p
u|d−→ q

v|e−→ q is (e, dc[ε])−aligned.
Also, note that a lasso can be commuting and aligned at the same time.

Lemma 5.20. Let ρ1, . . . , ρk be k synchronised productive lassos that are pairwise
aligned, strongly balanced and not commuting. Then there exist f ∈ C(B) and
w ∈ B∗ such that they are all (f, w)−aligned.

Proof. Let ρi : ci−→ pi
u1|di−−−→ qi

u2|ei−−→ qi for i ∈ {1, . . . , k}. As ρ1, . . . , ρk are pairwise
aligned, there exist f2, . . . , fk ∈ C(B) and w2, . . . , wk ∈ B∗ such that for all i ∈
{2, . . . , k}, ρ1 and ρi are (fi, wi)−aligned. Then for all i ∈ {2, . . . , k}, there exist

5.3. Combinatorial Analysis 83

fi, gi, hi ∈ C(B) and wi ∈ B∗ such that for all j ∈ N, ej1d1c1[ε] = gif
j
i [wi] and

ejidici[ε] = hif
j
i [wi].

Let `, r ∈ {2, . . . , k} such that |←−g` | = max{|←−gi | | i ∈ {2, . . . , k}} and |−→gr | =
max{|−→gi | | i ∈ {2, . . . , k}}. Let g = (←−g` ,−→gr), f = (←−f` ,

−→
fr), and w = g−1d1c1[ε].

By definition, for all i ∈ {2, . . . , k}, |←−gi | 6 |←−g` | and |←−gi | 6 |←−gr |. Thus, for all
i ∈ {2, . . . , k}, g−1

i g ∈ C(B). We have that |g| > |d1c1|, otherwise it would
contradict that the lassos are all non-commuting. Thus, w ∈ B∗.

By Lemma 5.19, we have that root(←−e) ∼ root(←−f`) and root(−→e) ∼ root(−→fr).
Therefore, we can show that for all j ∈ N, ej1d1c1[ε] = gf j[w]. Then, for all
i ∈ {2, . . . , k} and j ∈ N, ejidici[ε] = hif

j
i [wi] = hig

−1
i ej1d1c1[ε] = hig

−1
i gf j[w].

We are finally ready to prove Lemma 5.11.

Proof of Lemma 5.11. The length of the contexts labelling the loops must be
equal, as the outputs must grow at the same pace when the loops are pumped. By
Lemma 5.18, if one of the lassos is x−commuting then they are all x−commuting.
Otherwise, none of them are commuting. Then, by Lemma 5.12, they are also all
pairwise aligned and strongly balanced. Therefore by Lemma 5.20, there exists
f ∈ C(B) and w ∈ B∗ such that they are all (f, w)−aligned.

5.3.2 Analysis of Loops Consecutive to a Productive Loop
Consider a run that contains two consecutive productive loops. We can observe

that the type (commuting or non-commuting) of the lasso involving the first loop
impacts the possible types of the lasso involving the second loop. For instance, it
is intuitive that a non-commuting lasso cannot be followed by a commuting lasso.
Similarly, an x−commuting lasso cannot be followed by a y−commuting lasso, if
x and y are not conjugates. We will see that loops following a first productive
loop indeed satisfy stronger combinatorial properties. The following definition
characterises their properties.

Definition 5.5 (Strongly commuting/Strongly aligned lasso). Let ρ be a productive

lasso c−→ p
u|d−→ q

v|e−→ q and x ∈ B+. We say that ρ is:
— strongly commuting w.r.t. x, denoted by strongly−x−commuting, if there

exists a context f ∈ C(B) such that for all i > 0, j > 0, there exists k ∈ N
such that eidc[xj] = f [xk].

— strongly aligned w.r.t. g, f and x, denoted by strongly−(g, f, x)−aligned, if
there exists a context h ∈ C(B) such that for all i, j ∈ N, ejdc[xi] = hgjf [xi].

The following lemma states the properties of a lasso consecutive to a commut-
ing lasso.

Lemma 5.21. Let H1H2 a productive x−commuting lasso in T 6|Q|, for some x ∈
B+. Let ∆ = splitc(x,H1, H2) and H3H4 = (ρj)j∈{1,...,k} a productive lasso in T k∆ ,

84 5. Sequentiality of String-to-Context Transducers

for some 1 6 k 6 |Q|. We write ρj :
cj−→ pj

u1|dj−−−→ qj
u2|ej−−−→ qj for each j ∈∈ {1, . . . , k}.

Then:
— either ρj is strongly−x−commuting for all j ∈ {1, . . . , k}. In this case, we

say that the lasso H3H4 is strongly−x−commuting.
— or there exist g, h ∈ C(B) such that ρj is strongly−(h, g, x)−aligned for all

j ∈ {1, . . . , k}. In this case, we say that H3H4 is strongly−(h, g, x)−aligned
and we let extractnc(h, g, x,∆, H3, H4) = {(qj, hj) | j ∈ {1, . . . , k}} where
hj ∈ C(B) is s.t. ∀α, β ∈ N, eαj djcj[xβ] = hjh

αg[xβ].

The following lemma states that once a non-commuting loop is encountered,
then the alignment of production is fixed, i.e. no transfer between left and right
productions is possible anymore. Hence, the left and right FST derived from the
S2C both satisfy the twinning property:

Lemma 5.22. Let H1H2 be a productive non-commuting lasso that is
— either (f, w)−aligned in T 6|Q|, for some f ∈ C(B) and w ∈ B∗, and we let

∆′ = splitnc(f, w,H1, H2),
— or strongly−(g, f, x)−aligned in T 6|Q|

∆ , for some g, f ∈ C(B) and some ∆ ∈
F(Q, C(B)), and we let ∆′ = extractnc(g, f, x,∆, H1, H2).

Then
←−
T∆′ and

−→
T∆′ both satisfy the twinning property.

In the remainder of this subsection, we will prove Lemmas 5.21 and 5.22.

5.3.2.1 Lassos Consecutive to a Commuting Lasso

In order to prove Lemma 5.21, we proceed as for Lemma 5.11 by proving
the result first for two runs and then lifting it to k runs. The case of two runs
is obtained by distinguishing whether they are strongly balanced or not, and
using Lemma 1.1.

We state the following lemma for two runs.

Lemma 5.23. Let x ∈ B+ a primitive word and let ∆ = splitc(x,H1, H2) for some
H1H2 an x−commuting lasso in T k. For any two synchronised lassos ρ1 and ρ2 in
T∆, we have that

— either ρ1 and ρ2 are non-productive,
— or ρ1 and ρ2 are productive, weakly-balanced, and strongly−x−commuting,
— or ρ1 and ρ2 are productive, strongly-balanced, non-commuting, and there

exists g, f ∈ C(B) such that ρ1 and ρ2 are strongly−(g, f, x)−aligned.

In order to prove Lemma 5.23, we first need some additional combinatorial
results.

Lemma 5.24. Let c1, c2, d1, d2 ∈ C(B) and x ∈ B+ a primitive word. If for all
i, j ∈ N, distf(dj1c1[xi], dj2c2[xi]) 6 L, then there exist e1, e2 ∈ C(B) and a set
I ⊆ N × N such that for all (i, j) ∈ I, e−1

1 dj1c1[xi] = e−1
2 dj2c2[xi], and for all

(i0, j0) ∈ N× N, there exists (i, j) ∈ I such that i > i0 and j > j0.

5.3. Combinatorial Analysis 85

Proof. Suppose that for all i, j ∈ N, distf (dj1c1[xi], dj2c2[xi]) 6 L. Then for all i, j ∈
N, there exist f1, f2 ∈ C(B), such that f−1

1 dj1c1[xi] = f−1
2 dj2c2[xi] and |f1|+ |f2| 6 L.

Let CL = {(f1, f2) | |f1| + |f2| 6 L}. CL is finite. Therefore, we can prove that
there exist some (e1, e2) ∈ CL and a set I ⊆ N × N such that for all (i, j) ∈ I,
e−1

1 dj1c1[xi] = e−1
2 dj2c2[xi], and for all (i0, j0) ∈ N × N, there exists (i, j) ∈ I such

that i > i0 and j > j0.

Lemma 5.25. Let s1, u1, w1, u2, w2, y2 ∈ B∗ and t1, x2, v ∈ B+ such that v is prim-
itive, |t1| = |x2| and for all i, j ∈ N, s1t

j
1u1v

iw1 = u2v
iw2x

j
2y2. Then there exist

f1, f2 ∈ C(B) such that for all i, j > 1 there exists k ∈ N such that tj1u1v
i = f1[vk]

and viw2x
j
2 = f2[vk].

Proof. We can find sufficiently large i0 and j0 such that tj01 and xj02 both overlap
with vi0 with a common factor of length greater than |t1| + |v| − gcd(|t1|, |v|) =
|x2| + |v| − gcd(|x2|, |v|). Thus by Lemma 1.1, root(t1) ∼ root(x2) ∼ root(v).
As |t1| = |x2|, |t1u1v| > |x2|. Yet t1u1v is a factor of x∗2 and, by Lemma 5.1,
period(t1u1v) ∼ root(x2). Similarly, period(vw2x2) ∼ root(t1). Thus root(t1) ∼
root(x2) ∼ period(t1u1v) ∼ period(vw2x2) ∼ root(v).

Let z1, z
′
1, z2, z

′
2 ∈ B∗ and α > 1 such that z1z

′
1 = z2z

′
2, and v = z1z

′
1, t1 = (z′1z1)α

and x2 = (z′2z2)α. Also we have t1u1v = z′1(z1z
′
1)θ1, vw2x2 = (z1z

′
1)θ2z2, for some

θ1, θ2 > 0.
We choose f1 = (z′1, (z1z

′
1)θ1), and f2 = ((z1z

′
1)θ2 , z2). Then, for all i, j > 1,

we have tj1u1v
i = z′1(z1z

′
1)α(j−1)+θ1+(i−1) and viw2x

j
2 = (z1z

′
1)(i−1)+θ2+α(j−1)z2. Let

k = (i− 1) +α(j− 1) > 0. And we obtain tj1u1v
i = f1[vk] and viw2x

j
2 = f2[vk].

Lemma 5.26. Let s1, u1, w1, s2, u2, w2 ∈ B∗ and t1, t2, v ∈ B+ such that |t1| = |t2|
and for all i, j ∈ N, s1t

j
1u1v

iw1 = s2t
j
2u2v

iw2. Then there exist some contexts
f, g, h1, h2 ∈ C(B) such that for all i, j ∈ N, tj1u1v

i = h1g
jf [vi] and tj2u2v

i =
h2g

jf [vi].

Proof. There exists j0 sufficiently large such that tj01 overlap with tj02 with a com-
mon factor of length greater than |t1| + |t2| − gcd(|t1|, |t2|) = |t1| = |t2|. Thus by
Lemma 1.1, root(t1) ∼ root(t2). If |s1| 6 |s2|, let t such that s1t = s2 and t1t = tt2.
If |s1| > |s2|, let t such that s1 = s2t and tt1 = t2t. If |w1| 6 |w2|, let i0 such that
vi0w1 = w2 and vi0 is a suffix of u1. If |w1| > |w2|, let i0 such that w1 = vi0w2 and
vi0 is a suffix of u2. We obtain that

— s1t = s2, t1t = tt2, u1 = tu2v
i0, vi0w1 = w2, or

— s1 = s2t, tt1 = t2t, tu1 = u2v
i0, vi0w1 = w2, or

— s1t = s2, t1t = tt2, u1v
i0 = tu2, w1 = vi0w2, or

— s1 = s2t, tt1 = t2t, tu1v
i0 = u2, w1 = vi0w2.

We handle the first case. The others are similar. We choose h1 = (t, vi0),
h2 = (ε, ε), g = (t2, ε), and f = (u2, ε). Then for all i ∈ N, tj1u1v

i = tj1tu2v
i0vi =

ttj2u2v
ivi0 = h1g

jf [vi] and tj2u2v
i = h2g

jf [vi].

86 5. Sequentiality of String-to-Context Transducers

Lemma 5.27. Let s1, u1, w1, s2, u2, w2, y2 ∈ B∗ and t1, t2, x2, v ∈ B+ such that
|t1| = |t2|+ |x2| and for all i, j ∈ N, s1t

j
1u1v

iw1 = s2t
j
2u2v

iw2x
j
2y2. Then there exist

f1, f2 ∈ C(B) such that for all i, j > 1 there exists k ∈ N such that tj1u1v
i = f1[vk]

and tj2u2v
iw2x

j
2 = f2[vk].

Proof. We can find sufficiently large i0 and j0 such that tj01 overlap with t
j0
2 ,

vi0 and x
j0
2 with common factors of respective length greater than |t1| + |t2| −

gcd(|t1|, |t2|), |t1| + |v| − gcd(|t1|, |v|), and |t1| + |x2| − gcd(|t1|, |x2|). Thus by
Lemma 1.1, root(t1) ∼ root(t2) ∼ root(x2) ∼ root(v). As |t1| = |x2|, |t1u1v| > |x2|.
Similarly to Lemma 5.25, we can show that period(t1u1v) ∼ period(t2u2v) ∼
period(vw2x2) ∼ root(v), and reconstruct the words to obtain the result.

Lemma 5.28. Let s1, u1, w1, y1, s2, u2, w2, y2 ∈ B∗ and t1, x1, t2, x2, v ∈ B+ such
that |t1| + |t2| = |x1| + |x2|, |t1| 6= |x1| and |t2| 6= |x2|, and for all i, j ∈ N,
s1t

j
1u1v

iw1x
j
1y1 = s2t

j
2u2v

iw2x
j
2y2. Then there exist f1, f2 ∈ C(B) such that for all

i, j > 1 there exists k ∈ N such that tj1u1v
iw1x

j
1 = f1[vk] and tj2u2v

iw2x
j
2 = f2[vk].

Proof. Without loss of generality, consider that |t1| > |t2|. We can find suffi-
ciently large i0 and j0 such that tj01 overlap with t

j0
2 , vi0 and x

j0
2 with common

factors of respective length greater than |t1| + |t2| − gcd(|t1|, |t2|), |t1| + |v| −
gcd(|t1|, |v|), and |t1| + |x2| − gcd(|t1|, |x2|). Thus by Lemma 1.1, root(t1) ∼
root(t2) ∼ root(x2) ∼ root(v). Similarly, we can show that root(x1) ∼ root(x2). Fi-
nally, similarly to Lemma 5.25, we can show that period(t1u1v) ∼ period(t2u2v) ∼
period(vw1x1) ∼ period(vw2x2) ∼ root(v), and reconstruct the words to obtain
the result.

Lemma 5.29. Let s1, u1, w1, y1, s2, u2, w2, y2 ∈ B∗ and t1, x1, t2, x2, v ∈ B+ such
that |t1| = |x1|, |t2| = |x2|, and for all i, j ∈ N, s1t

j
1u1v

iw1x
j
1y1 = s2t

j
2u2v

iw2x
j
2y2.

Then there exist some contexts f, g, h1, h2 ∈ C(B) such that for all i, j ∈ N, we have
tj1u1v

iw1x
j
1 = h1g

jf [vi] and tj2u2v
iw2x

j
2 = h2g

jf [vi].

Proof. There exists j0 sufficiently large such that tj01 overlap with t
j0
2 with a

common factor of length greater than |t1| + |t2| − gcd(|t1|, |t2|) = |t1| = |t2|.
Thus by Lemma 1.1, root(t1) ∼ root(t2). The same applies to x

j0
1 and x

j0
2 , and

root(x1) ∼ root(x2). By a reasoning similar to Lemma 5.26, based on the length
of s1, s2, y1 and y2, we can show that there exists t, x ∈ B∗ such that we obtain

— s1t = s2, t1t = tt2, u1v
iw1 = tu2v

iw2x, xx1 = x2x, xy1 = y2, or
— s1t = s2, t1t = tt2, u1v

iw1x = tu2v
iw2, x1x = xx2, y1 = xy2, or

— s1 = s2t, tt1 = t2t, tu1v
iw1 = u2v

iw2x, xx1 = x2x, xy1 = y2, or
— s1 = s2t, tt1 = t2t, tu1v

iw1x = u2v
iw2, x1x = xx2, y1 = xy2.

Again similarly to Lemma 5.26, we can reconstruct the words tj1u1v
iw1x

j
1 and

tj2u2v
iw2x

j
2 to obtain the result.

Proof of Lemma 5.23. Let x ∈ B+ a primitive word, H1H2 be an x−commuting
in T k, and let ∆ = splitc(x,H1, H2). Let ρ1 : c1−→ p1

u1|d1−−−→ q1
u2|e1−−−→ q1 and ρ2 : c2−→

p2
u1|d2−−−→ q2

u2|e2−−−→ q2 be two lassos in T∆.

5.3. Combinatorial Analysis 87

As H1H2 is x−commuting, we can find two synchronised x−commuting lassos

in T around p1 and p2. Let ρ′1 :
c0,1−−→ i1

t1|c1,1−−−→ p1
t2|c2,1−−−→ p1 and ρ′2 :

c0,2−−→ i2
t1|c1,2−−−→

p2
t2|c2,2−−−→ p2 be those two lassos. Furthermore, by definition of splitc, we have

that ∆(p1) = c1 and ∆(p2) = c2, and for all i ∈ N, there exists k ∈ N such that
ci2,1c1,1c0,1[ε] = c1[xk] and ci2,2c1,2c0,2[ε] = c2[xk]. By Definition 5.3, for all i, j ∈ N,
distf (ej1d1c1[xi], ej2d2c2[xi]) 6 L.

By Lemma 5.24, there exist f1, f2 ∈ C(B) and a set I ⊆ N× N such that for all
(i, j) ∈ I, f−1

1 ej1d1c1[xi] = f−1
2 ej2d2c2[xi], and for all (i0, j0) ∈ N × N, there exists

(i, j) ∈ I such that i > i0 and j > j0. Then we have that |e1| = |e2|. We observe
10 cases.

If |e1| = 0 or |e2| = 0 then |e1| = |e2| = 0 and ρ1, ρ2 are non-productive.

If e1 ∈ {ε}×B+ and e2 ∈ B+×{ε}, then there exists g1, g2 ∈ C(B) and (i0, j0) ∈
N× N such that for all (i, j) ∈ I such that i > i0 and j > j0, g1[xi−i0−→e1

j−j0−−→d1c1] =
g2[←−e2

j−j0←−−d2c2x
i−i0]. Therefore, by applying Lemma 5.2 two times, we obtain that

for all i, j ∈ N, g1[xi−→e1
j−−→d1c1] = g2[←−e2

j←−−d2c2x
i]. Then by Lemma 5.25, both ρ1 and ρ2

are productive and strongly−x−commuting. The same holds for the symmetrical
case where e1 ∈ B+ × {ε} and e2{ε} ×B+.

If e1, e2 ∈ B+ × {ε}, then there exists g1, g2 ∈ C(B) and (i0, j0) ∈ N × N
such that for all (i, j) ∈ I such that i > i0 and j > j0, g1[←−e1

j−j0←−−d1c1x
i−i0] =

g2[←−e2
j−j0←−−d2c2x

i−i0]. Therefore, by applying Lemma 5.2 two times, we obtain that
for all i, j ∈ N, g1[←−e1

j←−−d1c1x
i] = g2[←−e2

j←−−d2c2x
i]. Then by Lemma 5.26, there exist

f, g ∈ C(B) such that both ρ1 and ρ2 are productive and strongly−(g, f, x)−aligned.
However, if it still happens that either one of ρ1 and ρ2 is strongly−x−commuting
(implying that root(←−e1) ∼ root(−→e1) ∼ x or root(←−e2) ∼ root(−→e2) ∼ x), then both ρ1
and ρ2 are strongly−x−commuting. If not, then they both are non-commuting.
The same holds for the symmetrical case where e1, e2 ∈ {ε} ×B+.

If e1 ∈ B+×{ε} and e2 ∈ B+×B+, then there exists g1, g2 ∈ C(B) and (i0, j0) ∈
N× N such that for all (i, j) ∈ I such that i > i0 and j > j0, g1[←−e1

j−j0←−−d1c1x
i−i0] =

g2e
j−j0
2 d2c2[xi−i0]. Therefore, by applying Lemma 5.2 two times, we obtain that

for all i, j ∈ N, g1[←−e1
j←−−d1c1x

i] = g2e
j
2d2c2[xi]. Then by Lemma 5.27, both ρ1 and ρ2

are productive and strongly−x−commuting. The same holds for the other three
cases where exactly one of the four components of e1 and e2 is empty.

If e1, e2 ∈ B+×B+ and ‖e1‖ 6= ‖e2‖, then there exists g1, g2 ∈ C(B) and (i0, j0) ∈
N × N such that for all (i, j) ∈ I such that i > i0 and j > j0, g1e

j−j0
1 d1c1[xi−i0] =

g2e
j−j0
2 d2c2[xi−i0]. Therefore, by applying Lemma 5.2 two times, we obtain that

for all i, j ∈ N, g1e
j
1d1c1[xi] = g2e

j
2d2c2[xi]. Then by Lemma 5.28, both ρ1 and ρ2

are productive and strongly−x−commuting.

If e1, e2 ∈ B+×B+ and ‖e1‖ = ‖e2‖, then there exists g1, g2 ∈ C(B) and (i0, j0) ∈
N × N such that for all (i, j) ∈ I such that i > i0 and j > j0, g1e

j−j0
1 d1c1[xi−i0] =

88 5. Sequentiality of String-to-Context Transducers

g2e
j−j0
2 d2c2[xi−i0]. Therefore, by applying Lemma 5.2 two times, we obtain that

for all i, j ∈ N, g1e
j
1d1c1[xi] = g2e

j
2d2c2[xi]. Then by Lemma 5.29, there exist f, g ∈

C(B) such that both ρ1 and ρ2 are productive and strongly−(g, f, x)−aligned.
However, if it still happens that either one of ρ1 and ρ2 is strongly−x−commuting
(implying that root(←−e1) ∼ root(−→e1) ∼ x or root(←−e2) ∼ root(−→e2) ∼ x), then
both ρ1 and ρ2 are strongly−x−commuting. If not, then they both are non-
commuting.

Proof of Lemma 5.21. By Lemma 5.23, if not productive, two lassos following
a commuting lasso are either strongly commuting or strongly aligned. This result
can be lifted to k runs in a similar way to Lemma 5.11.

5.3.2.2 Lassos Consecutive to a Non-Commuting Lasso

We finally study the properties of lassos that are consecutive to a lasso that is
not commuting, in order to prove Lemma 5.22. The following lemma shows that
only a non-commuting lasso can follow a non-commuting lasso.

Lemma 5.30. Let f ∈ C(B), w ∈ B∗, such that there exists no x ∈ B+ and
g ∈ C(B) such that, for all i ∈ N, there exists k ∈ N such that f i[w] = g[xk]. Let
c, d ∈ C(B), and i > 1. Then there exists no x ∈ B+ and g ∈ C(B) such that, for all
j ∈ N, there exists k ∈ N such that djcf i[w] = g[xk].

Proof. This can easily be proved by contradiction.

The lassos after a non-commuting lasso are then always fully-aligned. Given
a string-to-context transducer that satisfies the contextual twinning property, we
can thus view its restriction after an aligned lasso as the pair of two classical
finite-state transducers that both satisfy the classical twinning property.

Lemma 5.31. Let f ∈ C(B) and w ∈ B∗ and let ∆ = splitnc(f, w,H1, H2), for some
H1H2 a productive, non-commuting and (f, w) − aligned lasso in T 6|Q|. Then

−→
T∆

and
←−
T∆ both satisfy the twinning property.

Proof. We show the result for
−→
T∆. The proof for

←−
T∆ is symmetrical.

Let x−→ p
u|y−→ q

v|z−→ q and x
′

−→ p′
u|y′−−→ q′

v|z′−−→ q′ two lassos in
−→
T∆. By the definition

of
−→
T∆, there exist (p, c), (p′, c′) ∈ ∆ such that−→c = x and

−→
c′ = x′, and p

u|d−→ q
v|e−→ q

and p′
u|d′−−→ q′

v|e′−−→ q′ in T∆ such that
−→
d = y,

−→
d′ = y′, −→e = z,

−→
e′ = z′.

From ∆ = splitnc(f, w,H1, H2) and H1H2 being non-commuting, we know that

there exist i > 1 and two lassos
c1−→ o

s|c2−−→ p
t|c3−−→ p and

c
′
1−→ o′

s|c′2−−→ p′
t|c′3−−→ p′ in T ,

such that c3c2c1[ε] = cf i[w] and c′3c
′
2c
′
1[ε] = c′f i[w]. Thus we can build two lassos

in T : ρ1 : c1−→ o
s|dc3c2−−−−→ q

v|e−→ q and ρ2 : c
′
1−→ o′

s|d′c′3c
′
2−−−−→ q′

v|e′−−→ q′.
By Definition 5.3, for all j ∈ N, distf(ejdcf i[w], e′jd′c′f i[w]) 6 L. As H1H2 is

non-commuting, by Lemma 5.30, ρ1 and ρ2 must also be non-commuting, and

5.3. Combinatorial Analysis 89

thus strongly-balanced. As H1H2 and ρ1 and ρ2 are strongly-balanced and non-
commuting the f i[w] part can only overlap with itself in the words ejdcf i[w] and
e′jd′c′f i[w]. Therefore, we can derive that for all j ∈ N, distp(xyzj, x′y′z′j) 6
L.

Lemma 5.32. Let x ∈ B+ a primitive word and let ∆0 = splitc(x,H1, H2), for
some H1H2 a productive and x−commuting lasso in T 6|Q|. Let g, f ∈ C(B) and let
∆ = extractnc(g, f, x,∆0, H3, H4), for some H3H4 a productive, non-commuting and
strongly−(g, f, x)−aligned lasso in T 6|Q|

∆0
. Then

−→
T∆ and

←−
T∆ both satisfy the twin-

ning property.

Proof. We show the result for
−→
T∆. The proof for

←−
T∆ is symmetrical.

Let
v0−→ q2

u1|v1−−−→ q3
u2|v2−−−→ q3 and

v
′
0−→ q′2

u1|v
′
1−−−→ q′3

u2|v
′
2−−−→ q′3 two lassos in

−→
T∆. By the

definition of
−→
T∆, there exist (q2, e0), (q′2, e′0) ∈ ∆ such that −→e0 = v0 and

−→
e′0 = v′0,

and q2
u1|e1−−−→ q3

u2|e2−−−→ q3 and q′2
u1|e

′
1−−−→ q′3

u2|e
′
2−−−→ q′3 in T∆ such that −→e1 = v1,

−→
e′1 = v′1,

−→e2 = v2,
−→
e′2 = v′2.

From ∆ = extractnc(g, f, x,∆0, H3, H4) andH3H4 being strongly−(g, f)−aligned,

we know that there exist i > 1 and two lassos
d0−→ q1

t1|d1−−→ q2
t2|d2−−→ q2 and

d
′
0−→ q′1

t1|d
′
1−−→ q′2

t2|d
′
2−−→ q′2 in T∆0, such that d2d1d0 = e0g

if and d′2d
′
1d
′
0 = e′0g

if .

Thus we can build two lassos in T∆0:
d0−→ q1

t1t2u1|e1d2d1−−−−−−−→ q3
u2|e2−−−→ q3 and

d
′
0−→

q′1
t1t2u1|e

′
1d
′
2d
′
1−−−−−−−→ q′3

u2|e
′
2−−−→ q′3.

From ∆0 = splitc(x,H1, H2) and H1H2 being x−commuting, we know that

there exist k > 1, c ∈ C(B) and two lassos
c0−→ q0

s1|c1−−→ q1
s2|c2−−→ q1 and

c
′
0−→

q′0
s1|c
′
1−−→ q′1

s2|c
′
2−−→ q′1 in T , such that c2c1c0[ε] = d0c[xk] and c′2c

′
1c
′
0[ε] = d′0c[wk].

Thus we can build two lassos in T : ρ1 : c0−→ q0
s1s2t1t2u1|e1d2d1c2c1−−−−−−−−−−−−→ q3

u2|e2−−−→ q3 and

ρ2 : c
′
0−→ q′0

s1s2t1t2u1|e
′
1d
′
2d
′
1c
′
2c
′
1−−−−−−−−−−−−→ q′3

u2|e
′
2−−−→ q′3.

By Definition 5.3, for all j ∈ N, distf(ej2e1e0g
ifc[xk], e′j2 e′1e′0gifc[xk]) 6 L. As

H1H2 is non-commuting, by Lemma 5.30, ρ1 and ρ2 must also be non-commuting,
and thus strongly-balanced. As H1H2 and ρ1 and ρ2 are strongly-balanced and
non-commuting the gifc[xk] part can only overlap with itself in the words
ej2e1e0g

ifc[xk] and e′j2 e
′
1e
′
0g
ifc[xk]. Therefore, we can derive that for all j ∈ N,

distp(v0v1v
j
2, v
′
0v
′
1v
′j
2) 6 L.

Proof of Lemma 5.22. By Lemmas 5.31 and 5.32,
−→
T∆ and

←−
T∆ both satisfy the

twinning property.

5.3.3 A Two-Loop Pattern Property
The following 2-loop property summarises the combinatorial properties of the

synchronised runs involving loops in string-to-context transducers that satisfy

90 5. Sequentiality of String-to-Context Transducers

the CTP.

Definition 5.6 (2-loop property). Given four runs H1, H2, H3, H4 in T 6|Q|, such
that H1H2 and (H1H3)H4 are lassos in T 6|Q|, we say that they satisfy the 2-loop
property if:

1. H1H2 is

a) either non productive,

b) or productive and x−commuting, for some x ∈ B+,

c) or productive, non-commuting and (f, w)−aligned, for some f ∈ C(B)
and w ∈ B∗.

2. if H1H2 is productive and x−commuting, we let ∆ = splitc(x,H1, H2), then
H3H4 is a lasso in T 6|Q|

∆ . If productive then it is:

a) either strongly−x−commuting,

b) or non-commuting and strongly−(h, g, x)−aligned, for some g, h ∈ C(B).
We let ∆′ = extractnc(h, g, x,∆, H3, H4), then

←−
T∆′ and

−→
T∆′ both satisfy

the twinning property.

3. if H1H2 is productive, non-commuting and (f, w)−aligned, we let ∆ =
splitnc(f, w,H1, H2), then

←−
T∆ and

−→
T∆ both satisfy the twinning property.

A string-to-context transducer T is said to satisfy the 2-loop property if for all
runs H1, H2, H3, H4 as above, they satisfy the 2-loop property.

As a consequence of Lemmas 5.11, 5.21 and 5.22, we have:

Lemma 5.33. If an S2C T satisfies the CTP then it satisfies the 2-loop property.

5.4 Construction of an Equivalent Sequential S2C
Throughout this section, we consider a functional string-to-context transducer
T = (Q, tinit, tfinal, T) from A∗ to B∗ that satisfies the 2-loop property. Intuitively,
our construction stores the set of possible runs of T , starting in an initial state,
on the input word read so far. These runs are incrementally simplified by erasing
synchronised loops, and by replacing a prefix by a partial function ∆ : Q ↪→ C(B).
These simplifications are based on the 2-loop property.

5.4.1 Additional Definitions and Notations
The set of runs of T is denoted by R(T). In our construction, we extensively

use initial output functions in F(Q, C(B)) and sets of synchronised runs in T 6|Q|.
In this subsection, we define some tools to manipulate those.

5.4. Construction of an Equivalent Sequential S2C 91

We first extend the concatenation and the context-filling operations to initial
output functions. Given ∆ ∈ F(Q, C(B)), c ∈ C(B), w ∈ B∗, we define ∆c =
{(q, dc) | (q, d) ∈ ∆} and ∆[w] = {(q, d[w]) | (q, d) ∈ ∆}.

For a set of synchronised runs H ∈ R(T 6|Q|), we denote by word(H) the word
read by H. Given ∆ ∈ F(Q, C(B)), we define id∆ = (qi)16i6k ∈ R(T k), for some
enumeration {q1, . . . , qk} of dom(∆). As such, word(id∆) = ε.

We recall the definition of the choose operator, defined in Section 1.1.3, which
we will use in this construction. Given ∆ ⊆ X × Y , we let choose(∆) denote
some ∆′ ∈ F(X, Y) such that ∆′ ⊆ ∆ and dom(∆) = dom(∆′).

Definition 5.7 (Action of T). For ∆ ⊆ Q× C(B) and a ∈ A, we define the action

of T by a on ∆ as ∆ • a = choose({(q′, dc) | (q, c) ∈ ∆ and q
a|d−→
T

q′}). Given

H ∈ R(T 6|Q|) and a ∈ A, we define the action of a on H, denoted by H • a, as
the set of runs H ′ ∈ R(T 6|Q|) obtained by extending runs of H with consecutive
transitions of T associated with input symbol a, and by eliminating runs so as to
ensure that runs reach pairwise distinct states of T .

Definition 5.8 (Action of sets of synchronised runs). For ∆ ⊆ Q × C(B) and
H ∈ R(T 6|Q|) a set of runs, we define the action of T by H on ∆ as ∆ • H =
choose({(q′, dc) | (q, c) ∈ ∆ and q d−→

H
q′}).

It is worth noticing that, as T is functional, if two runs reach the same state, it
is safe to keep only one of them. This allows us to maintain a set of at most |Q|
runs.

As T is functional and is assumed to be trim, if we consider two runs
c1−→

p1
u|d1−−→ q and

c2−→ p2
u|d2−−→ q, then there exists a run q

u|e−→ f
g−→ where f is final. By

functionality, we have ged1c1[ε] = ged2c2[ε], hence d1c1[ε] = d2c2[ε]. This implies
that even if the choose operator may select different contexts corresponding to
different runs leading to the same state, they yield the same word when they are
applied to ε.

Similarly, if we consider two runs p
u|d1−−→ q and p

u|d2−−→ q, and a word w such

that c−→ i
v|d−→ p with w = dc[ε], then we have d1[w] = d2[w]. As a consequence, the

choice realised by choose has no impact as soon as one compares the contexts
applied to a possible output word produced before.

Last, using a similar reasoning, we can prove that when considering two runs

p1
u|d1−−→ q and p2

u|d2−−→ q such that p1 and p2 appear in some ∆ : Q ↪→ C(B),
obtained after a non-commuting lasso, then we have d1∆(p1) = d2∆(p2). Hence,
the choice realised by choose has actually no impact.

In the sequel, we will often write equalities involving partial functions ∆ :
Q ↪→ C(B). When these equalities are in one of the three above situations, we
will thus omit the operator choose, for simplicity of the writing.

92 5. Sequentiality of String-to-Context Transducers

5.4.2 Construction
We now define an equivalent deterministic string-to-context transducer D =

(Q, tinit, tfinal, T), and we denote by D its trim part. While D may have infinitely
many states, we will prove that D is finite. Formally, we define Q = Qstart]Qcom]
Q¬com where:

— Qstart = {(ε, tinit, H) | H ∈ R(T 6|Q|)}
— Qcom = {(x,∆, H) | x ∈ B+,∆ ∈ F(Q, C(B)), H ∈ R(T 6|Q|)}
— Q¬com = {(⊥,∆, id∆) | ∆ ∈ F(Q, C(B))}.

Given a state p = (x,∆, H) ∈ Q, we let xp be equal to x. Given a state
p = (x,∆, H) ∈ Q and some run H ′ in T k such that the start state of H ′ is the
end state of H, we let p •H ′ = (x,∆, HH ′).

By definition, we have Q ⊆ (B∗ ∪ {⊥})×F(Q, C(B))×R(T 6|Q|) = Q∞. Given
q = (x,∆, H) ∈ Q∞, we let ∆q = ∆ • H ∈ F(Q, C(B)). An invariant of our
construction is that every starting state of a run in H belongs to dom(∆).

Intuitively, the semantics of a state q = (x,∆, H) ∈ Q can be understood as
follows: x is used to code the type of state (Qstart, Qcom or Q¬com), and ∆ and H
are used to represent the runs that remain to be executed to faithfully simulate
the runs of T on the input word u read so far. As we have seen in the previous
section, loops may either be commuting, allowing to shift some parts of the out-
put from one side of the context to the other side, or they are non-commuting,
and then should be aligned, forbidding such modifications. Intuitively, states
in Qstart correspond to situations in which no productive loop has been encoun-
tered yet. States in Qcom (with x ∈ B+) correspond to situations in which only
x-commuting loops have been encountered. States in Q¬com correspond to situ-
ations in which a non-commuting loop has been encountered. A representation
of D is given in Figure 5.3.

Qstart Qcom Q¬com
x-com

¬com

¬com

¬prod ¬prod∨x-com

Figure 5.3 – A schematic representation of states and transitions of D.

Initial and final states They are defined as follows:
— tinit = {(i, cε)} where i = (ε, tinit, idtinit

) ∈ Qstart
— tfinal = choose({(q̄, dc) | q ∈ Q, (p, c) ∈ ∆q̄, (p, d) ∈ tfinal})

5.4. Construction of an Equivalent Sequential S2C 93

Transitions Intuitively, a transition of D leaving some state p = (x,∆, H) ∈
Q with letter a ∈ A aims at first extending H with a, obtaining the new set of
runs H • a, and then simplifying this set of runs by removing loops.

For all p ∈ Q and a ∈ A, we define the transition p
a|c−→ q where (q, c) =

SIMPLIFY((x,∆, H • a)).
The function SIMPLIFY is performed by Algorithm 5.2, which calls Algorithm 5.1

to remove all loops of H • a one by one. Depending on the type of the loop en-
countered, the type of the state is updated. These two algorithms are described
below.

We first define EXTEND_WITH_LOOP(p,H2) in Algorithm 5.1 that takes as input
a state p = (x,∆, H1) ∈ Qstart ∪ Qcom and a run H2 in T 6|Q| such that H1H2 is a
lasso in T 6|Q|

∆ . The algorithm enumerates the possible cases for the type of this
lasso, depending on the type of p. This enumeration strongly relies on the 2-loop
property. Depending on the case, the loop is processed, and a pair composed of
a new state and a context is returned. This context will be part of the output
associated with the transition.

We then define SIMPLIFY(p) in Algorithm 5.2 that takes as input a state p ∈
Q∞ (we need to consider Q∞ as input and not only Q because of the recursive
calls) and returns a pair composed of a new state and a context. Intuitively,
it recursively processes the lassos present in the runs stored by the state p, by
using calls to the previous algorithm. Notice that in the case where xp = ⊥, i.e.
we are in a non-commuting state, we don’t call the previous algorithm and just
simplify p by computing the longest common context of all its stored runs. This
can be thought of as applying the longest common prefix strategy of the classical
construction for sequential finite-state transducers (cf Chapter 3).

5.4.3 Correctness
In this subsection, we will prove the correctness of our construction. We start

with the following easy observation:

Lemma 5.34. Let ∆ : Q ↪→ C(B) and H a run in T 6|Q|
∆ . If H = H1H2, with H1H2

a non-productive lasso. then ∆ •H1 = (∆ •H1) •H2.

Lemma 5.35 (Correctness of extend_with_loop). Let p, q ∈ Q∞ and H2 ∈
R(T 6|Q|

∆p
) such that xp ∈ B∗ and (q, c) = EXTEND_WITH_LOOP(p,H2).

— If xp = ε then (∆p •H)[ε] = ∆qc[ε].
— If xp ∈ B+ then for all k ∈ N, (∆p •H)[xkp] = ∆qc[xkp].

Proof of Lemma 5.35. We proceed to a case analysis.

Case xp = ε Let p = (ε, tinit, H1). Either H2 is non-productive, q = p, c = cε and,
by Lemma 5.34, ∆p •H2[ε] = tinit •H1H2[ε] = tinit •H1[ε] = ∆p[ε] = ∆qc[ε].

Otherwise, H2 is productive and we pass through the else if block at Line 4.

94 5. Sequentiality of String-to-Context Transducers

Algorithm 5.1 – Extending a state p = (x,∆, H1) ∈ Qstart ∪ Qcom with H2 ∈
R(T 6|Q|) s.t. H1H2 is a lasso in T 6|Q|

∆ .

1: function EXTEND_WITH_LOOP(p,H2)
2: if H2 is non-productive then
3: return (p, cε)
4: else if p = (ε, tinit, H1) then
5: if H1H2 is x−commuting, for some x ∈ B+, then
6: let ∆ = splitc(x,H1, H2) and k = powc(x,H1, H2)
7: return ((x,∆, id∆), (ε, xk))
8: else if H1H2 is (f, w)−aligned, for some f ∈ C(B) and w ∈ B∗, then
9: let ∆ = splitnc(f, w,H1, H2)

10: return ((⊥,∆, id∆), f · (ε, w))
11: end if
12: else if p = (x,∆0, H1), where x ∈ B+, then
13: if H1H2 is strongly−x−commuting then
14: let k = |out(H2)|/|x|
15: return (p, (ε, xk))
16: else if H1H2 is strongly−(g, f, x)−aligned, for some g, f ∈ C(B), then
17: let ∆ = extractnc(g, f, x,∆0, H1, H2)
18: return ((⊥,∆, id∆), gf)
19: end if
20: end if
21: end function

Algorithm 5.2 – Simplifying a state p = (x,∆, H) ∈ Q∞.

22: function SIMPLIFY(p)
23: if p = (⊥,∆, H) then
24: let ∆′ = ∆ •H, c = lcc(∆′) and q = (⊥,∆′.c−1, id∆′)
25: return (q, c)
26: else if p = (x,∆, H1H2H3), where x ∈ B∗ and H2 is the first loop, then
27: let q = (x,∆, H1)
28: let (r, c) = EXTEND_WITH_LOOP(q,H2) with r = (x′,∆′, H ′)
29: let (s, d) = SIMPLIFY((x′,∆′, H ′.H3))
30: return (s, dc)
31: else
32: return (p, cε)
33: end if
34: end function

5.4. Construction of an Equivalent Sequential S2C 95

If H1H2 is x−commuting for some x ∈ B+, then ∆ = splitc(x,H1, H2), k =
powc(x,H1, H2), q = (x,∆, id∆) and c = (ε, xk). Thus, ∆p•H2[ε] = tinit•H1H2[ε] =
∆[xk] = ∆qc[ε].

If H1H2 is (f, w)−aligned for some f ∈ C(B) and w ∈ B∗, then we have
∆ = splitnc(f, w,H1, H2), q = (⊥,∆, id∆) and c = f · (ε, w). Thus, ∆p • H2[ε] =
tinit •H1H2[ε] = ∆f [w] = ∆qc[ε].

Case xp ∈ B+ Let p = (x,∆0, H1) and j ∈ N. Either H2 is non-productive,
q = p, c = cε and, by Lemma 5.34, ∆p •H2[xj] = ∆0 •H1H2[xj] = ∆0 •H1[xj] =
∆p[xj] = ∆qc[xj].

Otherwise, H2 is productive and we pass through the else if block at Line 12.
If H1H2 is strongly−x−commuting, then k = |out(H2)|/|x|, q = p and c =

(ε, xk). Thus, ∆p •H2[xj] = ∆0 •H1H2[xj] = ∆0 •H1[xj+k] = ∆qc[xj].
If H1H2 is strongly−(g, f, x)−aligned for some g, f ∈ C(B), then ∆ =

extractnc(g, f, x,∆0, H1, H2), q = (⊥,∆, id∆) and c = gf . Thus, ∆p • H2[xj] =
∆0 •H1H2[xj] = ∆gf [xj] = ∆qc[xj].

In the following lemma, we prove the correctness of the simplification of a
state p. We have three cases. If xp = ε then we have an equality of the output
words obtained by filling all the contexts with ε. If xp ∈ B+ then we have an
equality of the output words obtained by filling all the contexts with any power
of x. If xp = ⊥ then we have an equality of the contexts themselves.

Lemma 5.36 (Correctness of simplify). Let p = (x,∆, H) ∈ Q∞ and (q, c) =
SIMPLIFY(p). Then q ∈ Q and we have:

— If x = ε then ∆p[ε] = ∆qc[ε].
— If x ∈ B+ then for all k ∈ N, ∆p[xk] = ∆qc[xk].
— If x = ⊥ then ∆p = ∆qc.

Proof. The result follows from Lemmas 5.37 and 5.38.

Lemma 5.37 (Correctness of simplify for non-commuting states). Let p ∈ Q∞ such
that xp = ⊥ and (q, c) = SIMPLIFY(p). Then q ∈ Q and ∆p = ∆qc.

Proof. Let p = (⊥,∆, H). The fact that q ∈ Q is trivial. As xp = ⊥, we only
pass through the if block at Line 23. Let ∆′ = ∆ • H and c = lcc(∆′) and
q = (⊥,∆′ · c−1, id∆′). Thus ∆qc = (∆ •H) · c−1c = ∆p.

Lemma 5.38 (Correctness of simplify for startup and commuting states). Let p ∈
Q∞ such that xp 6= ⊥ and (q, c) = SIMPLIFY(p). Then q ∈ Q and we have:

— If xp = ε then ∆p[ε] = ∆qc[ε].
— If xp ∈ B+ then for all k ∈ N, ∆p[xkp] = ∆qc[xkp].

Proof. First observe that the fact that q ∈ Q can be proven using a simple induc-
tion.

96 5. Sequentiality of String-to-Context Transducers

We now consider the second property, and proceed by strong induction on
|Hp|. If Hp = id then, as xp 6= ⊥, we only pass through the else statement at
Line 31. Then the result is trivially obtained.

Otherwise |Hp| > 0. If Hp doesn’t contain a loop then, again, we only pass
through the else statement at Line 31, and the result is trivially obtained.

If Hp contains a loop, we pass through the else if block at Line 26. Let p =
(x,∆, H) and H = H1H2H3 where H1H2 is the first lasso in Hp. Let q = (x,∆, H1),
(r, c) = EXTEND_WITH_LOOP(q,H2), and (s, d) = SIMPLIFY(r • H3). We observe
two cases.

Case xp = ε By Lemma 5.35, we have that tinit•H1•H2[ε] = ∆q•H2[ε] = ∆rc[ε].
If xr = ⊥ then, by Lemma 5.37, ∆r •H3 = ∆sd. We obtain that

∆p[ε] = tinit •H1H2H3[ε]
= (tinit •H1H2) •H3[ε]
= (∆rc) •H3[ε]
= (∆r •H3)c[ε]
= ∆sdc[ε]

If xr 6= ⊥, as |Hr•H3| 6 |H1| + |H3| < |Hp|, then, by the induction hypothesis,
Lemma 5.38 holds for SIMPLIFY(r •H3).

If xr = ε, we have that c = cε and ∆r •H3[ε] = ∆sd[ε]. We obtain that

∆p[ε] = tinit •H1H2H3[ε]
= (tinit •H1H2) •H3[ε]
= (∆rc) •H3[ε]
= ∆r •H3[ε]
= ∆sd[ε]
= ∆sdc[ε]

If xr ∈ B+, we have that c = (ε, x`) for some ` ∈ N and for all k ∈ N,
∆r •H3[xk] = ∆sd[xk]. We obtain that

∆p[ε] = tinit •H1H2H3[ε]
= (tinit •H1H2) •H3[ε]
= (∆rc) •H3[ε]
= ∆r •H3[x`]
= ∆sd[x`]
= ∆sdc[ε]

5.4. Construction of an Equivalent Sequential S2C 97

Case xp ∈ B+ By Lemma 5.35, we have that for all k ∈ N, tinit •H1 •H2[xk] =
∆q •H2[xk] = ∆rc[xk]. Let j ∈ N.

If xr = ⊥, then, by Lemma 5.37, ∆r •H3 = ∆sd. We obtain that

∆p[xj] = tinit •H1H2H3[xj]
= (tinit •H1H2) •H3[xj]
= (∆rc) •H3[xj]
= (∆r •H3)c[xj]
= ∆sdc[xj]

If xr 6= ⊥, as |Hr•H3| = |H1| + |H3| < |Hp|, then, by the induction hypothesis,
Lemma 5.38 holds for SIMPLIFY(r •H3).

Also, as xq = xp ∈ B+, by construction, it can only happen that xr ∈ B+. Thus
we have that c = (ε, x`) for some ` ∈ N and for all k ∈ N, ∆r •H3[xk] = ∆sd[xk].
We obtain that

∆p[xj] = tinit •H1H2H3[xj]
= (tinit •H1H2) •H3[xj]
= (∆rc) •H3[xj]
= ∆r •H3[xj+`]
= ∆sd[xj+`]
= ∆sdc[xj]

Lemma 5.39 (Correctness of transitions). For all q ∈ Q such that i
u|c−→
D

q, ∆qc[ε] =
tinit • u[ε].

Proof. We proceed by induction on |u|. If u = ε, the result is obtained trivially.

If u = u′a with a ∈ A, let p = (x,∆, H) ∈ Q such that i
u
′|c−−→ p

a|d−→ q, and
(q, d) = SIMPLIFY((x,∆, H • a)). By the induction hypothesis, we obtain that
tinit • u′[ε] = ∆pc[ε]. By extending with a, we get that tinit • u[ε] = tinit • u′ • a[ε] =
∆pc • a[ε] = (∆p • a)c[ε]. We observe three cases. If p ∈ Qstart then c = cε and, by
Lemma 5.38, (∆p•a)c[ε] = ∆p•a[ε] = ∆qd[ε] = ∆qdc[ε]. If p ∈ Qcom then c[ε] = xk,
for some k ∈ N, and, by Lemma 5.38, (∆p•a)c[ε] = ∆p•a[xk] = ∆qd[xk] = ∆qdc[ε].
Finally, if p ∈ Q¬com then, by Lemma 5.37, (∆p • a)c[ε] = ∆qdc[ε].

5.4.4 Boundedness
We can now prove that all the parts of the built transducer D are bounded.

98 5. Sequentiality of String-to-Context Transducers

Lemma 5.40. Let p = (x,∆, H1) and q = (x′,∆′, H ′), c ∈ C(B) and H2 ∈
R(T 6|Q|

∆•H1
), such that (q, c) = EXTEND_WITH_LOOP(p,H2). Then |word(H ′)| 6

|word(H1)|.
Proof. We obtain the result by a trivial case analysis of EXTEND_WITH_LOOP.

Lemma 5.41. Let p = (x,∆, H) and s = (x′,∆′, H ′), and c ∈ C(B) such that
(s, c) = SIMPLIFY(p). Then |word(H ′)| < |Q||Q|.
Proof. We proceed by strong induction on the length of word(H).

If H = id then we can only pass through the if block at Line 23 or the else if
block at Line 31. In both cases, the result is obtained trivially.

Otherwise, let n = |word(H)|, and we observe three cases. Firstly, if x = ⊥,
then we pass through the else if block at Line 31, and the result is obtained
trivially. Secondly, if there is a loop in H, then we pass through the else if
block at Line 26. Let H = H1H2H3 where H1H2 is the first lasso in Hp. Let
q = (x,∆, H1), (r, c) = EXTEND_WITH_LOOP(q,H2), and (s, d) = SIMPLIFY(r •H3).
By Lemma 5.40, we have that |word(Hr)| 6 |word(H1)|. Thus |word(Hr•H3)| =
|word(HrH3)| 6 |word(H1H3)| < |word(H)|, and, by the induction hypothesis
applied on r •H3, we obtain the result. Thirdly, if there is no loop in H, then we
pass through the else if block at Line 31 and we have |word(H ′)| = |word(H)| <
|Q||Q|. Indeed, suppose we had that |word(H)| > |Q||Q|, then H must contain a
loop, which is a contradiction.

Lemma 5.42. Let p = (x,∆, H1), q = (x′,∆′, H ′), c ∈ C(B) and H2 ∈ R(T 6|Q|
∆•H1

)
such that (q, c) = EXTEND_WITH_LOOP(p,H2). We assume that |word(H1H2)| 6
|Q||Q|, |x| 6 MT |Q||Q| and for all (q, d) ∈ ∆, |d| 6 MT |Q||Q|. Then we distinguish
two cases:

— if x′ 6= ⊥, then |x′| 6MT |Q||Q| and for all (q, d) ∈ ∆′, |d| 6MT |Q||Q|,
— if x′ = ⊥, then for all (q, d) ∈ ∆′, |d| 6 2MT |Q||Q|.

Proof. We proceed by case analysis of EXTEND_WITH_LOOP. If H2 is not produc-
tive then we pass through the if block at Line 2, the returned state is p and the
result is obtained trivially. Otherwise, H2 is productive.

If x = ε then we pass through the else if block at Line 4. Either H1H2 is
x′−commuting, for some x′ ∈ B+ such that |x′| 6 MT |Q||Q|, and we let ∆′ =
splitc(x′, H1, H2), or H1H2 is (f, w)−aligned, for some f ∈ C(B) and w ∈ B∗, and
we let ∆′ = splitnc(f, w,H1, H2). In both cases, by definition of ∆′, we have that,
for all (q, d) ∈ ∆′, |d| 6 MT + |out(H1)| 6 MT |Q||Q|, because |word(H2)| > 1 and
|word(H1H2)| 6 |Q||Q|.

If x ∈ B+ then we pass through the else if block at Line 12. If H1H2 is
strongly−x−commuting, then the returned state is p and the result is obtained
trivially. If H1H2 is strongly−(g, f, x)−aligned, for some f, g ∈ C(B), then we
let ∆′ = extractnc(g, f, x,∆, H1, H2). By definition of ∆′, we have that, for all
(q, d) ∈ ∆′, |d| 6 |∆(q)|+ |out(H1)| 6 2MT |Q||Q|, because |∆(q)| 6MT |Q||Q| and
|word(H1)| 6 |Q||Q|.

5.4. Construction of an Equivalent Sequential S2C 99

Lemma 5.43. Let p = (x,∆, H) and s = (x′,∆′, H ′), and c ∈ C(B) such that
(s, c) = SIMPLIFY(p) and x, x′ ∈ B∗. If |word(H)| 6 |Q||Q|, |x| 6 MT |Q||Q| and
for all (q, d) ∈ ∆, |d| 6 MT |Q||Q| then |x′| 6 MT |Q||Q| and for all (q, d) ∈ ∆′,
|d| 6MT |Q||Q|.

Proof. We proceed by strong induction on the length of word(H). Let n =
|word(H)|, we observe two cases. First, if there is a loop in H, then we pass
through the else if block at Line 26. Let H = H1H2H3 where H1H2 is the
first lasso in Hp. Let q = (x,∆, H1), (r, c) = EXTEND_WITH_LOOP(q,H2), r =
(x′′,∆′′, H ′′), and (s, d) = SIMPLIFY(r • H3). We have that |word(H1H2)| 6
|word(H)| 6 |Q||Q|. Then, by Lemma 5.42, we have that |x′′| 6MT |Q||Q| and for
all (q, d) ∈ ∆′′, |d| 6MT |Q||Q|. Again, by Lemma 5.40, we have that |word(Hr)| 6
|word(H1)|. Thus |word(Hr•H3)| = |word(HrH3)| 6 |word(H1H3)| < |word(H)| 6
|Q||Q|, and, by the induction hypothesis applied on r • H3, we obtain the result.
Second, if there is no loop in H, then we pass through the else if block at Line 31
and the result is obtained trivially.

Lemma 5.44 (Boundedness of D). For all q = (x′,∆′, H ′) ∈ Q such that i
u|c−→
D

q,
the following assertions are satisfied:

— |x′| 6MT |Q||Q|,
— |word(H ′)| < |Q||Q|,
— if x′ 6= ⊥, then for all (q, d) ∈ ∆′, |d| 6MT |Q||Q|,
— if x′ = ⊥, then for all (q, d) ∈ ∆′, |d| 6 4MT |Q||Q|+2.

Proof. We distinguish two cases, whether x′ = ⊥ or not.
We start with the case x′ 6= ⊥ and proceed by induction on |u|. If u = ε,

the result is obtained trivially. If u = u′a with a ∈ A, let p = (x,∆, H) ∈ Q

such that i
u
′|c−−→ p

a|d−→ q, and (q, d) = SIMPLIFY((x,∆, H • a)). By the induction
hypothesis, we have that |x| 6 MT |Q||Q|, for all (q, d) ∈ ∆, |d| 6 MT |Q||Q|, and
|word(H)| < |Q||Q|. By extending with a, we have that |word(H • a)| 6 |Q||Q|.
Then by Lemma 5.43, we obtain the result.

We now consider that x′ = ⊥. The execution i
u|c−→
D

q can be decomposed

as i
u1|c1−−−→
D

p
a|c2−−→
D

p′
u2|c3−−−→
D

q, with xp 6= ⊥ and xp′ = ⊥. The transition from
p to p′ involves the removal of a loop, by EXTEND_WITH_LOOP, which is non-
commuting. As a consequence of the 2-loop property, we have that some inter-
mediate state p′′ = (⊥,∆, id∆) is computed, and that

←−
T∆ and

−→
T∆ both satisfy the

classical twinning property. In addition, thanks to the first case of this proof,
and to Lemma 5.42, we also have that for all (q, d) ∈ ∆′, |d| 6 2MT |Q||Q|. The
behaviour of our procedure starting from this intermediate state p′′ is exactly
the one of the determinisation procedure of Choffrut (cf Chapter 3) performed
on the two sides of the context. See for details Line 24 of Algorithm 5.2. By
Lemma 3.3, we know that delays stored in the determinisation procedure of

100 5. Sequentiality of String-to-Context Transducers

Choffrut have size at most 2M(n2 + 1), where M is the size of the largest output
of the transducer, and n is the number of states. We therefore consider the left
and right transducers from ∆′, each having |Q| states and using M = 2MT |Q||Q|.
As a consequence, we obtain that for all (q, d) ∈ ∆′, we have :

|d| 6 2.2.(2MT |Q||Q|).(|Q|2 + 1) 6 16MT |Q||Q|+2

5.4.5 Final Theorem
Theorem 5.45. D is a finite sequential string-to-context transducer equivalent to
T .

Proof. The fact that D is deterministic is direct by an observation of its defini-
tion. In addition, D is finite as a consequence of Lemma 5.44. To prove the

equivalence between D and T , we consider a word u ∈ A∗, and the run i
u|c−→
D

q

of D on u. By Lemma 5.39, we have ∆qc[ε] = tinit • u[ε]. This entails:

u ∈ dom([[T]]) ⇐⇒ dom(tinit • u) ∩ dom(tfinal) 6= ∅
⇐⇒ dom(∆q) ∩ dom(tfinal) 6= ∅
⇐⇒ q ∈ dom(tfinal)
⇐⇒ u ∈ dom([[D]])

The definition of tfinal then directly implies [[T]] = [[D]].

5.5 Deciding Sequentiality of S2Cs
In this section, we prove the following result:

Theorem 5.46. Given a functional string-to-context transducer, deciding whether
there exists an equivalent sequential string-to-context transducer is in coNP.

In order to show this result, we introduce a restriction of the 2-loop property:

Definition 5.9 (small-2-loop property). A string-to-context transducer T is said to
satisfy the small-2-loop property if, for all runs H1, H2, H3, H4 ∈ T 2 with |Hi| 6
|Q|2 for each i, H1H2, H1H3H4 are lassos and they satisfy the 2-loop property (in
the sense of Definition 5.6).

By definition, if a string-to-context transducer satisfies the 2-loop property
then it also satisfies the small-2-loop property. We will show that the two proper-
ties are equivalent.

Lemma 5.47. If a string-to-context transducer T satisfies the small-2-loop property
then [[T]] satisfies the contextual Lipschitz property.

5.5. Deciding Sequentiality of S2Cs 101

Lemma 5.48. If a string-to-context transducer T satisfies the small-2-loop property
then the SIMPLIFY procedure is well-defined for arbitrarily-long pairs of runs in T 2.

Proof. From an arbitrary pair of runs in T 2, it is always possible to find lassos
for which both the initial part and the loop part have lengths less than |Q|2.

We can then prove that if a string-to-context transducer satisfies the small-
2-loop property then the function it realizes satisfies the contextual Lipschitz
property.

Lemma 5.49. If a string-to-context transducer T satisfies the small-2-loop property
then for all runs ρ1 : c1−→ i1

u|d1−−→ q1 and ρ2 : c2−→ i2
u|d2−−→ q2, with i1, i2 initial states, we

have distf (d1c1[ε], d2c2[ε]) 6 34MT |Q||Q|+2.

Proof. Let H be the set of runs containing only the two runs ρ1 and ρ2, and let
(q, c) = SIMPLIFY(i • H). By Lemma 5.38 and Lemma 5.48, we have that tinit •
H[ε] = ∆i•H [ε] = ∆qc[ε]. Let e1, e2 ∈ C(B) are such that ∆q = {(q1, e1), (q2, e2)}.
We thus have d1c1[ε] = e1c[ε] and d2c2[ε] = e2c[ε]. Therefore distf (d1c1[ε], d2c2[ε]) 6
|e1|+ |e2|. Let q = (xq,∆, Hq). By definition, we know that ∆q = ∆ •Hq and that,
by Lemma 5.44, for all (q, d) ∈ ∆, |d| 6 4MT |Q||Q|+2, and |word(Hq)| < |Q||Q|.
Thus |e1| 6 17MT |Q||Q|+2 and |e2| 6 17MT |Q||Q|+2 and we obtain the result.

Proof of Lemma 5.47. Let T be a string-to-context transducer. Assume that T
satisfies the small-2-loop property and let u1, u2 ∈ dom([[T]]). We want to prove
that there exists K ∈ N such that distf([[T]](u1), [[T]](u2)) 6 Kdistp(u1, u2). If
u1 = u2 then distf([[T]](u1), [[T]](u2)) = 0, and the result is trivially obtained,
whatever the value of K is.

In the following, we assume that u1 6= u2 and thus distp(u1, u2) > 1. Let

ρ1 : c1−→ i1
u1|d1−−−→ f1

e1−→ and ρ2 : c2−→ i2
u2|d2−−−→ f2

e2−→ be the corresponding runs in T .
Let u = lcp(u1, u2) and u′1, u

′
2 such that u1 = uu′1 and u2 = uu′2. Let p1, p2 ∈ Q the

states that ρ1 and ρ2 reach after having read u. That is ρ1 : c1−→ i1
u|d′1−−→ p1

u
′
1|d
′′
1−−−→

f1
e1−→ and ρ2 : c2−→ i2

u|d′2−−→ p2
u
′
2|d
′′
2−−−→ f2

e2−→.
By Lemma 5.49, distf (d′1c1[ε], d′2c2[ε]) 6 34MT |Q||Q|+2. Therefore,

distf ([[T]](u1), [[T]](u2)) = distf (e1d1c1[ε], e2d2c2[ε])
6 34MT |Q||Q|+2 + |e1d

′′
1|+ |e2d

′′
2|

6 34MT |Q||Q|+2 +MT (|u′1|+ 1) +MT (|u′2|+ 1)
6MT (34|Q||Q|+2 + distp(u1, u2) + 2)
6MT (34|Q||Q|+2 + 3)distp(u1, u2)

Proof of Theorem 5.46. By Theorem 5.8 and Lemma 5.47, T admits an equiva-
lent sequential S2C transducer iff T satisfies the small-2-loop property. Because

102 5. Sequentiality of String-to-Context Transducers

of this equivalence, we give a procedure to decide whether T satisfies the small-
2-loop property.

The procedure first non-deterministically guesses a counter-example to the
small-2-loop property and then verifies that it is indeed a counter-example. By
definition of the small-2-loop property, the counter-example can have one of the
following four shapes:

1. a run H : (c0,d0)−−−→ (i1, i2)
u1|(c1,d1)−−−−−→ (p1, p2)

u2|(c2,d2)−−−−−→ (p1, p2) in T 2, with
|u1| < |Q|2 and |u2| < |Q|2, that is a productive lasso neither commuting
nor aligned.

2. a run H : (c0,d0)−−−→ (i1, i2)
u1|(c1,d1)−−−−−→ (p1, p2)

u2|(c2,d2)−−−−−→ (p1, p2)
u3|(c3,d3)−−−−−→ (q1, q2)

u4|(c4,d4)−−−−−→ (q1, q2) in T 2, with |ui| < |Q|2, for all i ∈ {1, . . . , 4}, such that
the first lasso is a productive x−commuting lasso, for some x ∈ B+, and
the second lasso is a productive lasso neither strongly−x−commuting nor
strongly aligned.

3. a run H : (c0,d0)−−−→ (i1, i2)
u1|(c1,d1)−−−−−→ (p1, p2)

u2|(c2,d2)−−−−−→ (p1, p2) in T 2, with
|u1| < |Q|2 and |u2| < |Q|2, that is a productive aligned lasso but, for ∆
appropriately obtained with splitnc,

←−
T∆ and/or

−→
T∆ do not satisfy the twin-

ning property.

4. a run H : (c0,d0)−−−→ (i1, i2)
u1|(c1,d1)−−−−−→ (p1, p2)

u2|(c2,d2)−−−−−→ (p1, p2)
u3|(c3,d3)−−−−−→ (q1, q2)

u4|(c4,d4)−−−−−→ (q1, q2) in T 2, with |ui| < |Q|2, for all i ∈ {1, . . . , 4}, such that the
first lasso is a productive aligned lasso, the second lasso is productive and
strongly aligned but, for ∆ appropriately obtained with extractnc,

←−
T∆ and/or−→

T∆ do not satisfy the twinning property.

Verifying that a lasso in T 2 is not commuting (resp. not aligned) boils down
to checking whether there exists no x ∈ B+ such that the lasso is x−commuting
(resp. no f ∈ C(B) and w ∈ B∗ such that the lasso is (f, w)−aligned). Verifying
that a lasso in T 2 is not aligned boils down to checking whether there exists no
f ∈ C(B) and w ∈ B∗ such that the lasso is (f, w)−aligned. In both cases, the
search space for the words x,w and context f can be narrowed down to factors
of the output contexts of the given lasso. Thus the verification for shape 1 can be
done in polynomial time. Similarly, the verification for shapes 2, 3 and 4 can be
done in polynomial time. Furthermore, all three shapes are of polynomial size,
by definition of the small-2-loop property, yielding the result. The existence of
an equivalent sequential S2C is therefore in coNP.

5.6 Related Work
In this chapter, we presented a characterisation of the functional string-to-

context transducers that admit a sequential equivalent. We have seen that,

5.6. Related Work 103

thanks to the equivalence between functional string-to-context transducers and
copyful concatenation-free deterministic streaming string transducers (cf. Chap-
ter 2), this is a first step towards solving the problem of the register minimisation
for copyful concatenation-free deterministic streaming string transducers.

The authors of [Bas+16] solved the register minimisation problem in a sim-
ilar setting: the copyless concatenation-free non-deterministic streaming string
transducers. Their result relies on the use of sweeping transducers, which are
two-way finite-state transducers that are only allowed to change the direction of
the reading head at the extremities of the input word.

They first prove that copyless concatenation-free non-deterministic streaming
string transducers with k registers are equivalent to (non-deterministic) func-
tional sweeping transducers that execute at most 2k passes over the input word.
They then prove that it is decidable, given a natural number k, whether a func-
tional sweeping transducer admits an equivalent sweeping transducer that exe-
cutes at most k passes, and devise a construction for this equivalent transducer
if it exists.

It should be stressed that the problem they study is quite different from ours,
as they focus on copyless non-deterministic streaming string transducers whereas
we target the copyful deterministic streaming string transducers.

Conclusion
In this manuscript, we studied several problems around the simplification of

transducers in order to make their evaluation or translation into programs more
efficient. We have seen that these problems can be solved with tools that stem
from the work of [Cho77] around the sequentiality of finite-state transducers.

In Chapter 4, we have presented a characterisation of the functional finite-
state transducers that admit a k-sequential equivalent, for some k ∈ N. This char-
acterisation was based on a property of the functions realised by the transducers,
the Lipschitz property of order k, and a property of the transducers themselves,
the branching twinning property of order k. We devised a decision procedure for
the k-sequentiality problem, a construction for the k-sequential equivalent, if it
exists, and discussed how we can search for a minimal such k.

As a by-product of our work, we were able to solve the problem of the minimi-
sation to k registers of copyless appending deterministic streaming string trans-
ducers. Prior to this work, [DRT16] had devised another generalisation of the
results of [Cho77] to tackle the problem of the minimisation to k registers of
copyful appending deterministic streaming string transducers. It is interesting
to notice that their characterisation involved a generalisation of the bounded
variation property whereas our work involved a generalisation of the Lipschitz
property. For both these generalisations, the case for k = 1 coincides with the
sequentiality problem of functional finite-state transducers. We have discussed
the fact that, for k > 1, the branching twinning property of order k is stronger
than the twinning property of order k of [DRT16]. Henceforth, we obtain that,
for k > 1, the Lipschitz property of order k is also a stronger property than the
bounded variation property of order k, the primmer characterising the copyless
appending deterministic streaming string transducers with k registers and the
latter characterising the copyful appending deterministic streaming string trans-
ducers with k registers.

In Chapter 5, we have presented a characterisation of the functional string-
to-context transducers that admit a sequential equivalent. This characterisation
used two properties of the functions realised by the transducers, the contextual
bounded variation property and the contextual Lipschitz property, and a prop-
erty of the transducers themselves, the contextual twinning property. We also
devised a decision procedure for this problem, along with a construction for the
sequential equivalent, if it exists.

There are still some work to do to complete the picture. First, we have not yet

105

106 Conclusion

proved a lower bound for the decision procedure for the sequentiality problem of
string-to-context transducers. Second, it would be interesting to see if and how
we can adapt our procedure to decide the problem of the functionality of string-
to-context transducers, without relying on the functionality of non-deterministic
streaming string transducers.

We conclude with some broader perspectives. We were able to characterise the
functions realised by sequential string-to-context transducers with both a variant
of the bounded variation property and a variant of the Lipschitz property. We
thus expect that this work will be generalisable further to solve both the reg-
ister minimisation of copyful concatenation-free deterministic streaming string
transducers, in the vein of [DRT16], and the register minimisation of copyless
concatenation-free deterministic streaming string transducers, similarly to our
work on k-sequentiality.

List of Figures
1.1 Graphical notations used to depict FSTs. 13
1.2 Two example FSTs: Tlast and Tlast∗. 13
1.3 Graphical notations used to depict 2FSTs. 15
1.4 Three example 2FSTs: Tmirror, Tpartition and Tcopy. 16
1.5 Graphical notations used to depict DSSTs. 18
1.6 Two example DSSTs: Slast and Slast∗. 18
1.7 Three example DSSTs: Smirror, Spartition and Scopy. 19
1.8 Graphical notations used to depict S2Cs. 21
1.9 Two example S2Cs: T ′mirror and T ′partition. 21

2.1 A copyful DSST with exponential size increase. 26
2.2 A representation of different functional transducer classes. . . . 35
2.3 Three example implementations of fmirror·id. 36
2.4 Two example implementations of fid·mirror. 37

3.1 Two example FSTs: Tending and Tsynchro. 40
3.2 Proof diagram of the sequentialisation theorem. 44
3.3 Two built sequential FSTs Dending and Dsynchro. 47

4.1 Branching twinning property of order k 55
4.2 The FST T

last
2. 55

5.1 The S2C Tmirror·last. 75
5.2 5.2a An S2C T1 computing the function that maps anb to a2n+2 and

anc to ba2nb. 5.2c A sequential S2C D1 equivalent to T1. 5.2b An
S2C T2 computing the function that maps anb to (ab)n−1c(de)n−1

and anc to b(ab)n−1c(de)n−1d. 5.2d A sequential S2C D2 equivalent
to T2. 78

5.3 A schematic representation of states and transitions of D. 92

107

List of Tables
1.1 Summary of the results for the classical problems. 23

2.1 Synctactic rewrites of labels between 1-register appending DSSTs
and sequential FSTs . 29

2.2 Synctactic rewrites of labels between 1-register concatenation-free
DSSTs and sequential S2Cs . 34

109

Bibliography
[AHU69] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. “A General Theory of

Translation”. en. In: Mathematical systems theory 3.3 (Sept. 1969),
pp. 193–221 (cit. on p. 14).

[AČ10] Rajeev Alur and Pavol Černý. “Expressiveness of Streaming String
Transducers”. In: IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2010,
December 15-18, 2010, Chennai, India. 2010, pp. 1–12 (cit. on pp. iii,
v, 4, 15, 17, 25).

[AČ11] Rajeev Alur and Pavol Černý. “Streaming Transducers for Algorith-
mic Verification of Single-Pass List-Processing Programs”. In: Pro-
ceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’11. New York, NY, USA:
ACM, 2011, pp. 599–610 (cit. on pp. iii, v, 4, 15, 19, 21, 23).

[Alu+13] Rajeev Alur, Loris D’Antoni, Jyotirmoy Deshmukh, et al. “Regular
Functions and Cost Register Automata”. In: Proceedings of the 2013
28th Annual ACM/IEEE Symposium on Logic in Computer Science.
LICS ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 13–
22 (cit. on pp. 4, 26).

[AD11] Rajeev Alur and Jyotirmoy V. Deshmukh. “Nondeterministic Stream-
ing String Transducers”. In: International Colloquium on Automata,
Languages, and Programming. Springer, 2011, pp. 1–20 (cit. on
pp. 21–23).

[AR13] Rajeev Alur and Mukund Raghothaman. “Decision Problems for Ad-
ditive Regular Functions”. In: Automata, Languages, and Program-
ming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July
8-12, 2013, Proceedings, Part II. Vol. 7966. Lecture Notes in Com-
puter Science. Springer, 2013, pp. 37–48 (cit. on p. 67).

[Ari96] ARIANE 5 - Flight 501 Failure. Tech. rep. by the Inquiry Board. Chair-
man : J-L Lions. Paris, 1996 (cit. on p. 1).

[Bas+16] Félix Baschenis, Olivier Gauwin, Anca Muscholl, et al. “Minimiz-
ing Resources of Sweeping and Streaming String Transducers”. In:
43rd International Colloquium on Automata, Languages, and Pro-

111

112 Bibliography

gramming, ICALP 2016, July 11-15, 2016, Rome, Italy. 2016, 114:1–
114:14 (cit. on p. 103).

[Bas+18] Félix Baschenis, Olivier Gauwin, Anca Muscholl, et al. “One-Way
Definability of Two-Way Word Transducers”. en. In: Logical Methods
in Computer Science ; Volume 14 (2018), Issue 4, 1860–5974 (cit.
on p. 36).

[BC02] Marie-Pierre Béal and Olivier Carton. “Determinization of Transduc-
ers over Finite and Infinite Words”. In: Theoretical Computer Science
289.1 (Oct. 2002), pp. 225–251 (cit. on pp. 4, 13, 39, 48).

[Béa+00] Marie-Pierre Béal, Olivier Carton, Christophe Prieur, et al. “Squar-
ing Transducers: An Efficient Procedure for Deciding Functionality
and Sequentiality of Transducers”. In: LATIN 2000: Theoretical In-
formatics. Springer, 2000, pp. 397–406 (cit. on pp. 4, 13, 48).

[Ber13] Jean Berstel. Transductions and Context-Free Languages. Springer-
Verlag, 2013 (cit. on pp. 3, 12, 26, 41).

[BH77] Meera Blattner and Tom Head. “Single-Valued a-Transducers”. In:
Journal of Computer and System Sciences 15.3 (Dec. 1977), pp. 310–
327 (cit. on pp. 13, 23).

[BH79] Meera Blattner and Tom Head. “The Decidability of Equivalence
for Deterministic Finite Transducers”. In: Journal of Computer and
System Sciences 19.1 (1979), pp. 45–49 (cit. on pp. 13, 23).

[CL11] Arnaud Carayol and Christof Löding. “Uniformization in Automata
Theory”. en. In: 14th Congress of Logic, Methodology and Philosophy
of Science. College Publications, July 2011, pp. 153–178 (cit. on
p. 2).

[CS86] C. Choffrut and M. P. Schutzenberger. “Décomposition de Fonctions
Rationnelles”. fr. In: STACS 86. Ed. by B. Monien and G. Vidal-
Naquet. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 1986, pp. 213–226 (cit. on pp. 5, 51).

[Cho77] Christian Choffrut. “Une Caracterisation Des Fonctions Sequentielles
et Des Fonctions Sous-Sequentielles En Tant Que Relations Rationnelles”.
In: Theoretical Computer Science 5.3 (Dec. 1977), pp. 325–337 (cit.
on pp. iii, v, 4, 6, 13, 36, 39–41, 44, 48, 52, 70, 73, 105).

[Cla+18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, et al., eds.
Handbook of Model Checking. en. Springer International Publishing,
2018 (cit. on p. 2).

[Com+07] H. Comon, M. Dauchet, R. Gilleron, et al. Tree Automata Techniques
and Applications. Published: Available on: http://www.grappa.univ-
lille3.fr/tata. 2007 (cit. on p. 17).

113

[CK87] Karel Culik II and Juhani Karhumäki. “The Equivalence Problem
for Single-Valued Two-Way Transducers (on NPDTOL Languages)
Is Decidable”. In: SIAM J. Comput. 16.2 (Apr. 1987), pp. 221–230
(cit. on pp. 15, 23).

[Dav+17] Laure Daviaud, Ismaël Jecker, Pierre-Alain Reynier, et al. “Degree
of Sequentiality of Weighted Automata”. en. In: Foundations of Soft-
ware Science and Computation Structures. Ed. by Javier Esparza and
Andrzej S. Murawski. Vol. 10203. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017, pp. 215–230 (cit. on pp. 5, 36, 51).

[DRT16] Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot. “A Gen-
eralised Twinning Property for Minimisation of Cost Register Au-
tomata”. In: Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-
8, 2016. 2016, pp. 857–866 (cit. on pp. 4, 6, 50, 52–54, 70, 105,
106).

[EH01] Joost Engelfriet and Hendrik J. Hoogeboom. “MSO Definable String
Transductions and Two-Way Finite-State Transducers”. In: ACM Trans.
Comput. Logic 2.2 (Apr. 2001), pp. 216–254 (cit. on pp. 14, 15, 23,
25).

[EFJ18] Léo Exibard, Emmanuel Filiot, and Ismaël Jecker. “The Complex-
ity of Transducer Synthesis from Multi-Sequential Specifications”.
In: 43rd International Symposium on Mathematical Foundations of
Computer Science (MFCS 2018). Ed. by Igor Potapov, Paul Spirakis,
and James Worrell. Vol. 117. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018, 46:1–46:16 (cit. on p. 50).

[FGR15] Emmanuel Filiot, Raffaella Gentilini, and Jean-FranÃ§ois Raskin.
“Quantitative Languages Defined by Functional Automata”. In: Log-
ical Methods in Computer Science 11.3 (Sept. 2015), p. 14. arXiv:
1111.0862 (cit. on p. 50).

[FMR18] Emmanuel Filiot, Nicolas Mazzocchi, and Jean-François Raskin. “A
Pattern Logic for Automata with Outputs”. In: Developments in Lan-
guage Theory. Ed. by Mizuho Hoshi and Shinnosuke Seki. Vol. 11088.
Cham: Springer International Publishing, 2018, pp. 304–317 (cit.
on pp. 13, 23, 48).

[FR17] Emmanuel Filiot and Pierre-Alain Reynier. “Copyful Streaming String
Transducers”. en. In: Reachability Problems. Ed. by Matthew Hague
and Igor Potapov. Vol. 10506. Cham: Springer International Pub-
lishing, 2017, pp. 75–86 (cit. on pp. 19, 23).

https://arxiv.org/abs/1111.0862

114 Bibliography

[FW65] Nathan J. Fine and Herbert S. Wilf. “Uniqueness Theorems for Peri-
odic Functions”. In: Proceedings of the American Mathematical Soci-
ety 16 (1965), pp. 109–114 (cit. on p. 10).

[Gur80] Eitan M. Gurari. “The Equivalence Problem for Deterministic Two-
Way Sequential Transducers Is Decidable”. In: Siam Journal on Com-
puting - SIAMCOMP. Vol. 11. Nov. 1980, pp. 83–85 (cit. on pp. 15,
23).

[GI83] Eitan M. Gurari and Oscar H. Ibarra. “A Note on Finite-Valued and
Finitely Ambiguous Transducers”. In: Mathematical systems theory
16 (1983), pp. 61–66 (cit. on p. 13).

[Iba77] Oscar H. Ibarra. “The Unsolvability of the Equivalence Problem for
E-Free NGSM’s with Unary Input (Output) Alphabet and Applica-
tions”. In: Proceedings of the 18th Annual Symposium on Founda-
tions of Computer Science. SFCS ’77. Washington, DC, USA: IEEE
Computer Society, 1977, pp. 74–81 (cit. on pp. 13, 15, 22, 23).

[JF15] Ismaël Jecker and Emmanuel Filiot. “Multi-Sequential Word Rela-
tions”. en. In: Developments in Language Theory. Ed. by Igor Potapov.
Lecture Notes in Computer Science. Springer International Publish-
ing, 2015, pp. 288–299 (cit. on pp. 5, 50, 51).

[Kir12] Daniel Kirsten. “Decidability, Undecidability, and PSPACE-Completeness
of the Twins Property in the Tropical Semiring”. In: Theoretical Com-
puter Science 420 (Feb. 2012), pp. 56–63 (cit. on p. 50).

[KL09] Daniel Kirsten and Sylvain Lombardy. “Deciding Unambiguity and
Sequentiality of Polynomially Ambiguous Min-Plus Automata”. In:
STACS. 2009 (cit. on p. 50).

[LT93] N. G. Leveson and C. S. Turner. “An Investigation of the Therac-25
Accidents”. In: IEEE Computer 26.7 (July 1993), pp. 18–41 (cit. on
p. 1).

[LS06] Sylvain Lombardy and Jacques Sakarovitch. “Sequential?” In: Theo-
retical Computer Science. In Honour of Professor Christian Choffrut
on the Occasion of His 60th Birthday 356.1 (May 2006), pp. 224–
244 (cit. on p. 50).

[Lot02] M. Lothaire. Algebraic Combinatorics on Words. Encyclopedia of Math-
ematics and Its Applications. Cambridge University Press, 2002 (cit.
on p. 10).

[MP19] Anca Muscholl and Gabriele Puppis. “The Many Facets of String
Transducers”. In: 2019 (cit. on pp. 15, 22).

[Pnu77] A. Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Sym-
posium on Foundations of Computer Science (Sfcs 1977). Oct. 1977,
pp. 46–57 (cit. on p. 2).

115

[RV19] Pierre-Alain Reynier and Didier Villevalois. “Sequentiality of String-
to-Context Transducers”. In: 46th International Colloquium on Au-
tomata, Languages, and Programming (ICALP 2019). Ed. by Chris-
tel Baier, Ioannis Chatzigiannakis, Paola Flocchini, et al. Vol. 132.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019,
128:1–128:14 (cit. on pp. 21, 23, 36, 69).

[Saa15] Aleksi Saarela. “Systems of Word Equations, Polynomials and Linear
Algebra: A New Approach”. In: European Journal of Combinatorics
47 (2015), pp. 1–14 (cit. on p. 71).

[Sak09] Jacques Sakarovitch. Elements of Automata Theory. Ed. by Reuben-
Translator Thomas. Cambridge University Press, 2009 (cit. on pp. 3,
12).

[Sch75] Marcel P. Schutzenberger. “Sur les relations rationnelles”. fr. In:
Automata Theory and Formal Languages 2nd GI Conference Kaiser-
slautern, May 20–23, 1975. Ed. by H. Brakhage. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 1975, pp. 209–213
(cit. on p. 13).

[WK94] Andreas Weber and Reinhard Klemm. “Economy of Description for
Single-Valued Transducers”. In: Annual Symposium on Theoretical
Aspects of Computer Science. Springer, 1994, pp. 607–618 (cit. on
pp. 4, 13, 48).

	Title Page
	Abstract
	Résumé
	Remerciements
	Contents
	Introduction
	About Transformations
	Formal Methods for Safer Systems
	Efficient Evaluation of Models
	Models of Transformations
	General Methodology
	Outline of this Thesis

	Models of Transducers
	Preliminaries
	Alphabets and Words
	Contexts
	Functions and Relations
	Models and Associated Problems

	Finite-State Transducers (FST)
	Two-way Finite-State Transducers (2FST)
	Deterministic Streaming String Transducers (DSST)
	String-to-Context Transducers (S2C)
	Summary

	Comparison of Expressiveness
	Functional Two-way Finite-State Transducers
	Functional Finite-State Transducers
	From Copyful Appending DSSTs to Functional FSTs
	From Functional FSTs to Copyful Appending DSSTs

	Sequential Finite-State Transducers
	Multi-Sequential Functional Finite-State Transducers
	From Copyless Appending DSSTs to Multi-Sequential Functional FSTs
	From Multi-Sequential Functional FSTs to Copyless Appending DSSTs

	Functional String-to-Context Transducers
	From Copyful Concatenation-Free DSSTs to Functional S2Cs
	From Functional S2Cs to Copyful Concatenation-Free DSSTs

	Sequential String-to-Context Transducers
	Summary

	Sequentiality of Finite-State Transducers
	Characterisation of Sequential Functions
	Bounded Variation Property
	Lipschitz Property
	Twinning Property
	Sequentialisation Theorem

	Construction of a Sequential Equivalent
	Deciding Sequentiality
	Sequentiality in Other Contexts

	k-Sequentiality of Finite-State Transducers
	Preliminaries
	Characterisation of k-Sequential Functions
	Lipschitz Property of Order k
	Branching Twinning Property of Order k
	k-Sequentialisation Theorem

	Construction of a k-Sequential Equivalent
	An Infinite Sequential Equivalent
	Recovering k-Sequentiality
	Building a k-Sequential

	Deciding k-Sequentiality
	Minimisation of the Degree of Sequentiality

	Sequentiality of String-to-Context Transducers
	Preliminaries
	Combinatorial Tools
	Factor Distance

	Characterisation of Sequential S2Cs
	Contextual Bounded Variation
	Contextual Lipschitz Property
	Contextual Twinning Property
	Sequentialisation Theorem for S2Cs

	Combinatorial Analysis
	Behaviours of Loops
	Analysis of Loops Consecutive to a Productive Loop
	A Two-Loop Pattern Property

	Construction of an Equivalent Sequential S2C
	Additional Definitions and Notations
	Construction
	Correctness
	Boundedness
	Final Theorem

	Deciding Sequentiality of S2Cs
	Related Work

	Conclusion
	List of Figures
	List of Tables
	Bibliography

