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Abstract v

Oscillatory processes during the aggregation and the fragmentation of amyloid fibrils.

Abstract

The objective of this thesis is to study the physical process of protein aggregation and fragmentation. More specifi-
cally, oscillatory kinetic phenomena are identified during this process and are the subject of an in-depth analysis.
The process of protein aggregation and fragmentation is intimately linked to the contraction and development
of a vast class of incurable neurodegenerative diseases, amyloid diseases. Our work focuses on prion diseases, a
subcategory of amyloid diseases, caused by the misfolding of protein conformation and the aggregation of these
misfolded proteins into fibrils.
First, our study focuses on experimental static light scattering data (SLS). The signals obtained correspond approxi-
mately to the second moment of the size distribution of amyloid fibrils in vitro and therefore provide information
on the evolution of the size distribution over time. We note damped oscillations at specific locations on the signals.
These oscillations highlight the presence of complex, underlying kinetic phenomena during protein aggrega-
tion/fragmentation processes.
The analysis of SLS signals leads us to build a parametric characterization of oscillations in the frequency domain
(Fourier domain). We propose a numerical procedure to obtain these parameters. Then, we build a statistical test
of hypotheses. We thus obtain a p-value that allows us to quantitatively assert the presence of oscillations in the
experimental signals.
In a second step, we introduce and mathematically analyze a kinetic model of proteins capable of generating oscilla-
tions. The model is a variant of the polymerization/depolymerization system and considers two species of monomers:
a pathological monomer that polymerizes and a healthy monomer that depolymerizes. Unlike traditional models,
depolymerization is catalytic and non-linear and an exchange phenomenon occurs between the two species of
monomers and polymers. The model combines a Lotka-Volterra system for monomers with a growth/fragmentation
system: Becker-Döring in the discrete size setting, Lifshitz-Slyozov in the continuous size setting. In the discrete size
model, the oscillations are damped and under certain conditions we prove the exponential convergence towards a
stationary state. While in the continuous model, the system oscillates perpetually or converges to a Dirac depending
on the shape of the reaction coefficients.
By complexifying the model, in particular by integrating other species of polymers and kinetic reactions, it is possible
to achieve a realistic modelling of protein kinetic processes. The mathematical study of these models leads to new
interesting problems, improves and clarifies the understanding of the underlying physical phenomena.

Keywords: prion diseases, amyloids, hypothesis testing, spectral analysis, signal detection and filtering, prion
modelling, lifshitz-slyozov, becker-döring, asymptotic behaviour, entropy inequality, stability analysis

Équipe Mamba
Inria Paris – 2, rue Simone Iff – CS 42112 – 75589 Paris Cedex 12 –
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Résumé

Cette thèse a pour objectif l’étude du processus physique de l’agrégation et la fragmentation des protéines. Plus
particulièrement, des phénomènes cinétiques oscillatoires sont identifiés durant ce processus et font l’objet d’une
analyse approfondie. Le processus d’agrégation et de fragmentation de protéines est intimement lié à la contraction
et au développement d’une vaste classe de maladies neurodégénratives incurables, les maladies amyloïdes. Notre
travail se focalise sur les maladies à prions, une sous-catégorie des maladies amyloïdes. Les maladies à prions ont
pour cause le changement de conformation de protéines et l’agrégation de ces protéines sous forme de fibres.
Dans un premier temps, notre étude porte sur les données expérimentales de diffusion statique de la lumière (SLS).
Les signaux obtenus correspondent approximativement au moment d’ordre 2 de la distribution de taille des fibres
amyloïdes in vitro. Ils renseignent sur l’évolution en temps de la distribution de taille. Des oscillations atténuées et
localisées à des endroits spécifiques sur les signaux sont observables. Ces oscillations mettent en avant la présence de
phénomènes cinétiques complexes, sous-jacent, lors des processus d’agrégation/fragmentation de protéines.
L’analyse des signaux SLS nous mène à construire une caractérisation paramétrique des oscillations dans le domaine
fréquentiel. Nous proposons ensuite une procédure numérique pour obtenir ces paramètres. Puis, nous construisons
un test statistique d’hypothèses. Nous obtenons ainsi une p-valeur renseignant de manière quantitative sur la
présence d’oscillations dans les signaux expérimentaux.
Dans un second temps, nous introduisons et analysons mathématiquement un modèle cinétique de protéines
capables d’engendrer des oscillations. Le modèle est une variante du système de polymérisation/dépolymérisation
et considère deux espèces de monomères : un monomère pathologique qui polymérise et un monomère sain qui
dépolymérise. Contrairement aux modèles traditionnels, la dépolymérisation est catalytique et non-linéaire. Un
phénomène d’échange opère entre les deux espèces de monomères et les polymères. Le modèle couple un système
Lotka-Volterra pour les monomères à un système de croissance/fragmentation : Becker-Döring dans le cas discret en
taille, Lifshitz-Slyozov dans le cas continu. Nous étudions le comportement en temps long de ces deux systèmes.
Dans le modèle discret en taille, les oscillations sont atténuées et sous certaines conditions il y a convergence vers un
état stationnaire. Alors que dans le modèle continu, le système oscille de manière soutenue ou converge vers un Dirac
en fonction de la forme des coefficients de réactions. En complexifiant le modèle, en particulier en intégrant d’autres
espèces de polymères et de réactions cinétiques, il est possible d’aboutir à une modélisation réaliste des processus
cinétiques de protéines. L’étude mathématique de ces modèles conduit à de nouveaux problèmes intéressants,
améliore et précise la compréhension des phénomènes physiques sous-jacents.

Mots clés : les maladies à prions, amyloïde,test d’hypothèses, analyse spectrale, traitement du signal, modélisation
des prions, lifshitz-slyozov, becker-döring, comportement asymptotique, inégalités d’entropie, analyse de
stabilité
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Introduction

Generalities on Prion diseases

Prion diseases, also called transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative

and incurable disorders which affect both humans and animals. They are characterised by long incubation

periods, neuronal loss with a failure to induce inflammatory response. Prion diseases occur when

endogenous prion proteins, found on the surface of many cells, change their conformation and aggregate

into fibrils in the brain or the central nervous system, causing brain damage.

This abnormal accumulation of protein in the central nervous system causes the following symptoms:

• behavioural symptoms such as rapidly developing dementia, hallucinations, confusions, fatigue,

• communication problems such as difficulty speaking and writing,

• memory and cognitive deficits,

• movement problems such as muscle stiffness, disturbance in balance, difficulty coordinating leading

to clumsiness and shakiness.

These disorders are yet incurable and generally fatal.

The risk factors for prion diseases are ingesting blood or meat containing the pathological proteins and

infection from contaminated medical equipment. For instance, the bovine spongiform encephalopathy

(BSE), a TSE of bovines, is linked to the development of the human disease variant Creutzfeldt-Jakob

disease (vCJD). The World Health Organization reported that 152 cases of vCJD have been diagnosed in

the United Kingdom (UK), eight in France, two in Ireland and one in Canada, Italy and the United States

Human Prion Diseases Animal Prion Diseases
Creutzfeldt-Jakob Disease (CJD) Bovine Spongiform Encephalopathy (BSE)

Variant Creutzfeldt-Jakob Disease (vCJD) Chronic Wasting Disease (CWD)
Gerstmann-Straussler-Scheinker Syndrome Scrapie

Fatal Familial Insomnia Transmissible Mink Encephalopathy
Kuru Feline Spongiform Encephalopathy

Table 1 – Classification of the most common prion diseases (source: National Prion Disease Pathology
Surveillance Center).

1



2 Introduction

of America from October 1996 to November 2004. The wide variety of prion diseases are summarized in

the Table 1, and more specific details on each disease can be found in [10, 11].

Protein aggregation process is a phenomenon of major importance. It is the cause of a class of neu-

rodegenerative diseases also called amyloid diseases which affect significantly cattle but also human

population through the prion diseases and also prion-like diseases (Alzheimer, Parkinson, Huntington,

etc.). According to the Alzheimer’s Association and Parkinson’s Foundation, 5.8 million people are

living with Alzheimer’s dementia and 10 million people with Parkinson’s disease. Although the protein

aggregation phenomenon is extensively studied, it remains misunderstood, hence fascinating.

Prion diseases history

The first evidence of prion diseases takes place in the 18th century when farmers observed abnormal

behaviour of sheep such as excessive licking and intense itching. The sheep would pathologically scrape

against fences and hence the Scrapie was the first disease of a new class of neurological disorders known

as transmissible spongiform encephalopathies (TSEs).

Several theories have been put forward to determine the responsible agent of TSEs. The researchers first

thought that TSEs were caused by “slow viruses” because of the long time of incubation [146]. However,

no virus could be isolated. In the 1960s, experiments designed to disrupt the large molecules using

electron beams were used for the study of TSEs. Theses experiments showed that the size of the infectious

agent is very small (much smaller than viruses). Moreover, scientists tried unsuccessfully to inactivate

the scrapie agent with methods known to inactivate bacteria and viruses (UV irradiation, extreme heat,

high pressures, etc.) [119, 3]. They reach the conclusion that the scrapie agent is replicating without

nucleic acid and could be of protein origin [66].

In 1982, Prusiner gave credits to the hypothesis that the scrapie agent denoted P rP Sc is a protein-

only agent [130]. He purified the proteinaceous infectious particles (amyloid fibrils), named it prion

(which stands for PRoteinaceous Infection ONly) and inactivated the infectious agent with methods that

destroyed proteins.

The connection between the prion protein P rP c and the P rP Sc is established in [133]. Mice were

genetically modified in order to be deficient in the prnp gene encoding the P rP c. After inoculating scrapie-

infected brain homogenate, mice developed resistance to experimental prion disease. The experiments

demonstrated the requirement of P rP c for prion infection.

A more detailed survey of prion diseases history can be found in [167]. All the previous research leads to

establish the prion diseases as a growing scientific field of major importance which needs to be theorized

in order to completely understand the mechanisms.

Key mechanisms of Prions replication

The aggregation of abnormally folded cellular prion protein is the reason for prion diseases. It involves

the ubiquitous prion protein P rP c which is mainly present in the central nervous system of healthy

organisms. The P rP c can also be found in the kidney, heart, skin, etc., and its physiological function
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remains unknown. Mutations in the prion protein gene imply that the P rP c can spontaneously change its

conformation into the P rP Sc and aggregate [132]. The pathological P rP Sc is also able to convert P rP c

and propagate the disease.

The Prion Theory

TSEs are caused by an accumulation of abnormal isoform of proteins (amyloid fibrils) in the central

nervous system. The structure, the physiological functions and the reasons behind the formation of the

abnormal isoform are still unknown. Though the prion hypothesis is believed to be the most reasonable.

The hypothesis stipulates that P rP Sc is the infectious particle responsible for prion propagation and that

it can replicate by inducing the autocatalytic conversion of P rP c into its scrapie isoform [130]. Hence,

two structurally distinct objects emerged from identical protein without any modification of the amino

acid sequence.

Biochemical and biophysical measurements reveal that P rP c is composed of two α-helix which represent

42% of its defined structure and a small portion of β-sheets (3%). However, the β-sheets amount to 43%

of the scrapie agent P rP Sc and the α-helix to 30% (cf [118] and Figure 1). The α-helix and the β-sheets

are elements describing the tridimentional structure and the physicochemical properties of a protein.

The α-helix is the arrangement of amino acids in a rotating structure (like an helix) and the β-sheets are

made of β strands laterally connected by hydrogen bonds between atoms of the amino acids chain to

form a folded plane (like an accordion). The physicochemical properties of the P rP c and the infectious

P rP Sc are different. P rP Sc forms an insoluble and protease-resistant aggregate. The P rP c which leads to

the formation of abnormal isoform is the result of mutations in the prion protein gene coming from an

interaction between P rP c and P rP Sc. However the precise nature of the interaction remains unknown.

Figure 1 – Secondary structure of prion proteins (source [35]). A. Conformation of the P rP c protein
composed mainly of α-helices. B. Misfolding which causes the conversion of the structure. C. Final
misfolded secondary structure of the P rP Sc protein.

Moreover, pathologies due to protein aggregation and misassembly are separated in two subcategories:

the prion-like diseases or prionoids and the prion diseases. This separation is contested because it is

based on the hypothesis that there is no evidence of infectious agent in prionoids and that the disease is

inherited. The understanding of the prion diseases challenges the scientific communities and requires a
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multidisciplinary analysis (biochemistry, biophysics and mathematical modeling, numerical sciences,

etc.) in order to propose convincing models and arguments.

Models of prion replication

In terms of pathogenic mechanisms, the prion paradigm unifies a number of neurodegenerative disorders

that are caused by protein misfolding and aggregation [35]. These disorders include Alzheimer’s,

Parkinson’s, Huntington’s and prion diseases. In principle, host-encoded monomeric proteins are

converted into misfolded and aggregated assemblies, which serve as templates for further conversion.

Even if the molecular mechanisms of prion replication is still an open problem, the current models are

mainly based either on an autocatalytic process (a chemical system where at least one of the products

is a reactant) and on nucleation-elongation-fragmentation reactions. Mainly, two processes have been

proposed respectively by Griffith [66], Prusiner [129] and Jarret, Lansbury [76], Caughey [33]. The main

difference between these two processes lies in the role played by the P rP Sc aggregates at the beginning of

the replication mechanism.

Figure 2 – Model of prion replication by Lansbury (left) and by Prusiner (Right)

In the model proposed by Lansbury [76], both P rP c and P rP Sc are assumed to exist naturally in the

human organism. The two forms are in a reversible thermodynamic equilibrium that is perturbed in

the presence of P rP Sc aggregates, which provides favorable conditions for the conversion from P rP c to

P rP Sc (cf. Figure 2). It should be pointed out that in this model the disease needs some P rP Sc aggregates

to start. The second model was presented by Prusiner in 1991 [129]. In this second model, an initial slow

reaction with high activation energy converts P rP c into P rP Sc . The protein P rP Sc is able to template

and it forms a dimer with P rP c (P rP c-P rP Sc ). In the dimeric configuration P rP c converts faster than

the initial reaction. The newly created P rP Sc-P rP Sc dimer then dissociates and allows the formation of

new P rP Sc-P rP c dimers propagating the disease (cf. Figure 2). In this case, P rP Sc aggregates are not

necessarily at the start.
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The common ground of these two models of replication is that once the P rP Sc proteins start to aggregate,

they form structures called polymers characterised by the number of proteins composing the aggregates.

Typically, P rP Sc aggregates grow along a single axis creating organised filamentous structures called

fibrillary filaments or fibrils. The fibrils can interact with each other and form higher order fibrillary

aggregates called amyloids (cf [127] and Figure 3).

Figure 3 – Atomic Force Microscope image of a P rP Sc aggregate (source VIM Inra 2017).

Open questions and problems on Prion mechanisms

The study of prions remains an active research topic. Since the discovery and the purification of the

prions pathogenic form P rP Sc in 1982 by Prusiner [130], no major scientific progress has been made to

create a complete therapy of prion diseases. The main reasons lie in the lack of knowledge on prions.

The exact reasons of occurrence of prion diseases are still unknown and discussed among specialists.

The details of how prions induce toxicity are still unclear. Specifically, how does the aggregation take

place ? Do aggregates grow by sequential additions of monomers ? Do they attach to dimers, trimers or

i-mers ? How many type of aggregates are there and what are the interactions between each different

kind of aggregates ? Which are the most toxic aggregates ? What is the size distribution evolution of the

aggregates ? Which molecules or therapeutic processes induce prions clearance in living organisms ?
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Some of these questions are partially solved, others remain unknown. Eventually, the response to all

these questions would help to develop a rational therapy to prion and prion-like diseases.

Objective and contributions

The main objective of this thesis is seeking understanding on the kinetics of prion aggregation processes,

especially on the occurrence of transient phenomena such as oscillations in the size distribution evolution

of prion aggregates (see Figure 5).

The starting point of this work is the analysis of experimental results obtained by the VIM team at

INRA. In these static light scattering experiments, damped oscillations are observed and distinguished

from experimental noise thanks to a numerical procedure and a statistical test. Then, in order to

understand the kinetics of these oscillations in depolymerisation experiments, we studied a polymerisa-

tion/depolymerisation kinetic model and added more details in order to obtain a (simplified) realistic

model capable of displaying transient oscillations. In order to obtain these new dynamics in polymerisa-

tion/depolymerisation model, we developed a new hypothesis on the prion aggregation processes. It lead

to the design of new experiments to justify the models. Lastly, new replication models on prions were

able to corroborate experiments.

Statistical test of presence of oscillations.

In order to understand the aggregation processes for prion fibrils, we focus on experimental data obtained

by Static Light Scattering (SLS) experiments. These experiments provide information on the evolution

of size distribution of fibrils and display oscillations, however, the data are aggregated and difficult to

exploit. The oscillations in SLS signals reveal the presence of transient phenomena and new mechanisms

during the protein depolymerisation experiments. In Chapter 1, we define a rigorous procedure to detect

and quantify oscillations in a signal. We design a statistical test of presence of oscillations or High

Frequency features (HF features) and implement it on the experimental SLS data. The following results

are detailed in Chapter 1.

Static light scattering experiment

When light is sent through a material, several interactions are possible : fluorescence, transmission,

absorption, and scattering. In particular, scattering is the deflection of light from a straight trajectory,

after encountering some physical object. The intensity of the scattered light is a function of the molecular

weight and concentration of the scattering object. To measure such intensity we use a Static Light

Scattering (SLS) device (cf Figure 4).

Static light scattering (SLS) is based on the electromagnetic mechanism of light scattering. From this

theory it is known that light which interfers with a molecule, with a size inferior to its own wavelength,

induces an oscillatory dipole. An oscillatory dipole is itself a source of electromagnetic radiation. Most of
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Figure 4 – Light scattering device from the unit VIM at Inra (left) and explanatory sheme (right).

the light is elastically scattered. The measured light intensity interpreted as scattered outcoming photons

has been described and formalised by Rayleigh [45, 166]:

Iθ = I0α
Vscat(θ)
r2 CM

where I0 is the intensity of the incident light, Iθ is the intensity of the scattered light, Vscat is the

scattering volume seen from the detector and θ is the angle between the forward incident light and the

scattered light (cf Figure 4). Moreover the scattered light intensity measure depends on the molecular

weight M and the concentration C of molecules in the solution. The light received from a small light

source decreases with distance r according to the inverse square law. α is a constant which depends

on the particle’s characteristics and the light’s wavelength λ of the laser used. The constant α can be

calculated as:

α =
4π2n0

(
dn
dC

)2

NAλ4

where n0 is the refractive index of the solvent, dndC is the refractive index increment of the solute/solvent

system and NA = 6.022× 1023mol−1 is Avrogado’s number.

Hence, if the solution is composed of a mixture of polymers with different sizes, the scattered intensity is:

Iθ = K
∑
i

ciMi ,

where K = I0 •α •
Vscat(θ)
r2 , ci are the weight concentration of molecules and Mi the relative molecular

weights. In the experiments on prions, amyloid fibrils are purified and observed through a thermostatic

device using a 407-nm laser beam. Light-scattered signals were recorded at 112o angle. The solution

contains only monomers and polymers of different sizes. Denoting ui the concentration of aggregates of
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size i, the weight concentration ci is defined as:

ci = iuiM0

where M0 is the weight of a monomer. Moreover the molecular weight of a polymer is proportional

to its size, Mi = iM0. In conclusion, the experimental data recorded by the SLS device are a linear

transformation of the second moment of the concentration distribution. Given that monomers correspond

to the size i = 1mer, we obtain the SLS signal at time t:

Iθ(t) = k

v(t) +
i1∑
i=i0

i2ui(t)

 (1)

where v(t) is the concentration of monomers at time t, i0 is the minimal size of the polymers and i1 is the

maximal size of the polymers. The parameter k is a constant depending on the experimental conditions.

Remark 1. The SLS data are commonly read as the evolution of the average cluster size over time. In fact, the
average molecular weight is defined as :

〈Mw〉 =
∑
i ciMi∑
i ci

=
∑
i ciMi

ctot

where ctot denotes the total concentration of clusters. The average molecular weight is linked to the scattered
light as follows:

〈Mw〉 =
Iθ
kctot

.

Hence, the average cluster size denoted as 〈i〉 is defined as follows:

〈i〉 =
〈Mw〉
M0

=
Iθ

M0kctot
=

1
ρ

v +
∑
i

i2ui

 .
An interesting example of SLS signal is displayed in Figure 5. We observe fast oscillations in experi-

mental measurements of the infectious agent in Prion diseases. A major difficulty to infer such transient

oscillations and to evaluate their significance is that they are mixed up with noise. Hence, we propose a

rigorous procedure which detects high frequency features (HF features) - amplitude, frequency - in real

signals and to distinguish quantitatively these features of the signal from its noise.

Design of the statistical test of presence of oscillations.

The statistical test of presence of oscillations is based on three consecutive steps. We first introduce a

parametric characterization of the high frequency features (HF features). Then, we design a parametric

test of hypothesis and define a p-value which gives a quantitative indicator on the test results. Finally, we

compute the test for the different SLS signals thanks to Python Library made for this study.
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Figure 5 – Human PrP amyloid fibrils (Hu fibrils) depolymerisation monitored by Static Light
Scattering . A: The overall view of the ρ = 0.35µM Hu-fibrils depolymerisation at 550C. B-E corresponds
to a zoom-in on different time-segments of the depolymerisation curve A. As shown in B and C, from
time 4h to time 5h oscillations have been observed and for the time segment corresponding to time 15.3
to 15.5h only noise has been detected (D and E). (Figure taken from [55])

Model. We denote the SLS measurements as yni , which corresponds to a noisy signal localized around

i/n. Thus i is a location parameter and n a frequency parameter. We obtain

yni = xni + σξni , i = 0, . . . ,n− 1 (2)

where (xni )0≤i≤n−1 is the (unknown) signal of interest and the ξi are independent and identically dis-

tributed noise measurement, that we assume here to be standard Gaussian. The quantity σ > 0 is a (fixed)

noise level. In order to analyze oscillations in a signal, we look at the projection of the signal in the

Fourier basis. The discrete Fourier transform (DFT) DFTn : Rn→R
n transfers a real-valued discrete signal

(xni )0≤i≤n−1 of length n into a frequency domain via

DFTn
[
(xni )0≤i≤n−1

]
=

( n−1∑
i=0

xni e−j2πki/n
)

0≤k≤n−1
=

(
ϑn,k

)
0≤k≤n−1

. (3)
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The single-sided amplitude spectrum gives all the information needed to visualise the signal (xni )0≤i≤n−1

in the Fourier basis.

Parametric characterization of HF features in the Fourier Domain.For a discrete signal (xni )0≤i≤n−1

given in terms of its Fourier transform ϑn = (ϑn,k)0≤i≤n−1 via (3), we characterise a HF feature by two

nonnegative parameters: a location parameter g(ϑn) (in the frequency domain) and an intensity parameter

d(ϑn) (see Figure 6).

k

|ϑn,k |

d(ϑn)

g(ϑn)

Figure 6 – Idealized scheme of the parametrization of the HF features of a signal in the Fourier Domain. The parameter

g(ϑn) is the location parameter in the frequency scale which corresponds to the distance of the HF features from the low-frequency

components of the signal. The parameter d(ϑn) is the intensity parameter which corresponds to the relative amplitude of the HF

features.

A more precise definition of the characterisation of HF features is given in Chapter 1, Section 1.

Construction of the parametric test of hypothesis.Thanks to the characterisation of HF features, we

test the null

H0
n,m,ν,c : g(ϑn) < ν, d(ϑn) < c

against the local alternatives

H1
n,m,ν,c : g(ϑn) ≥ ν and d(ϑn) ≥ c

where ν > 0, c > 0 are thresholds to determine significant HF features. The null hypothesis H0, is that

there is no significant HF feature in the signal tested. On the contrary, the hypothesis H1 implies that the
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signal has significant HF feature.

In order to compute the p-value of the test, we design a Monte-Carlo procedure simulating a proxy of

the data (yi)0≤i≤n−1 under the null H0 (cf Chapter 1, Section 1.3.2). Using the proxy, we define a reject

region of our test for a risk level α and the p-value of the data (yi)0≤i≤n−1. The p-value obtained will be

an indicator of the presence of oscillations in the signal tested.

Figure 7 – SLS experiments and trend estimates. The x-axis is the time in hours. (Top left) Plot of n = 32768 samples of SLS

outputs with initial concentration (ρ) of 0.25µmol of P rP Sc fibrils.The dashed line is the trend estimate. (Middle left) ρ = 0.35µmol

(Bottom left) ρ = 0.5µmol. (Top right) ρ = 1µmol. (Middle right) ρ = 2µmol. (Bottom right) ρ = 3µmol.

Results We first applied the procedure using test signals. This first test allowed us to check the

robustness of our procedure. We note that for standard deviations of the noise between a tenth and

twice the size of the amplitude of the oscillations, the p-value of the test is small. Hence we are inclined

to reject the null hypothesis in favor of the alternative hypothesis. However, when the amplitude of

the oscillations is ten times lower than the level noise, we cannot conclude that the signal displays

significant oscillations. Moreover, for the test on the SLS signals displayed in Figure 7, we conclude

that the signals have oscillations of significant amplitude compared to the noise and we obtain the

HF features parameters for each signal. Finally, the numerical procedure to obtain the HF features
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parameters of a signal and compute its p-value is implemented in Python language and is available

online (https://github.com/mmezache/HFFTest).

A review on the kinetic models for polymerisation/depolymerisation process

The second objective of this thesis is to propose and study a new polymerisation-depolymerisation

model capable of explaining oscillations, which have been observed experimentally in the prion protein

polymerisation experiments. We first recall classical results on polymerisation/depolymerisation models

for the discrete size setting and for the continuous size setting.

The Becker-Döring model, an overview.

The most natural departure point in the formulation of a suitable mathematical model is the Becker-

Döring model of polymerisation and depolymerisation [9]. The Becker-Döring model is coherent with

other biological measurements, and it is viewed in the protein polymerisation literature as the "primary

pathway" model [18, 126].

Becker-Döring considers two reverse reactions: polymerisation through monomer addition, and

depolymerisation due to monomer loss. Accordingly, the model is characterised by the following system

of reactions, where Ci denotes polymers containing i monomers - so that C1 are the monomers - and ai , bi
are the polymerisation resp. depolymerisation reaction rate coefficients: C1 + Ci

ai−→ Ci+1, i ≥ 1,

Ci
bi−−→ Ci−1 + C1, i ≥ 2.

The model was popularized in the mathematical communities by Penrose et al. in [122]. The model is

formalised by an infinite-size ordinary differential equations (ODE) system. We let ci(t) ≥ 0 denote the

concentration of polymers of size i > 0 at time t. The kinetics of the growth-fragmentation process is the

following:

• The concentration of clusters of size i may grow when clusters of size i−1 become polymers of size i

acquiring 1 monomer with the positive reaction rate ai−1 or when clusters of size i + 1 depolymerise

with rate bi+1.

• The concentration of clusters of size i may decrease by polymerising with a monomer with the rate

ai or by depolymerising with the rate bi .

Hence the rate of increase of the concentration of clusters of size i is

Ji−1(c) = ai−1ci−1c1 − bici , i ≥ 2.

https://github.com/mmezache/HFFTest
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The variation of the concentrations of each ci follows the differential equations:

d
dt
ci(t) = Ji−1(c)(t)− Ji(c)(t), i ≥ 2. (4)

Monomers are involved in all the reactions, thus the evolution of monomers is denoted c1 and is driven

by the following differential equation:

d
dt
c1(t) = −2J1(c)(t)−

∑
i≥2

Ji(c)(t). (5)

Furthermore, the Becker-Döring model describes the kinetics of aggregation-fragmentation process in a

closed environment, there is no addition or depletion of element in the system. Consequently, the total

mass is a conserved quantity: ∑
i≥1

ici(t) = ρ, ∀t ≥ 0,

where ρ is a constant which denotes the total mass of the system.

Well-posedness. The general result on existence and uniqueness on Becker-Döring first appeared in [7].

Ball et al. rigorously defined the solutions of the system (4)-(5), solutions which belong to the following

Banach space:

X+ :=

c ∈RN

+ : ‖c‖ =
∑
i≥1

i|ci | <∞

 .
Definition 1. Let 0 < T ≤ ∞] and c(0) := c0 ∈ X+. A solution c = (ci) of (4)-(5) on [0, T ) is a function
c : [0, T ) 7→ X+ such that

1. each ci is continuous and sup
t∈[0, T )

‖c(t)‖ <∞,

2.
∑
i≥1
aici ∈ L1(0, t) and

∑
i≥1
bici ∈ L1(0, t) and

ci(t) = ci(0) +
∫ t

0
Ji−1(c)(s)− Ji(c)(s)ds, i ≥ 2,

c1(t) = c1(0)−
∫ t

0
J1(c)(s) +

∑
i≥2

Ji(c)(s)ds

for all t ∈ [0, T ).

Ball et al. proved the following theorem in [7] extending the results on a truncated system of finite size

by using compactness arguments to pass to the limit.

Theorem 1 (Well-posedness, Theorems 2.2 and 3.6 in[7]). Let c0 ∈ X+. Assume ai =O(i) and
∑
i≥1 i

2c0
i <∞.

The Becker-Döring equations (4)-(5) have a unique solution c on [0, ∞) subject to the initial data c0. Moreover



14 Introduction

for all t ≥ 0, ∑
i≥1

ici(t) =
∑
i≥1

ic0
i := ρ.

The well-posedness of the Becker-Döring system has been completed by Laurençot and Mischler in [88],

the uniqueness is proved without extra condition on the initial data c0. However, additional assumptions

on the reaction rates are assumed:

ai − ai−1 ≤ K, bi − bi−1 ≤ K, i ≥ 2

where K > 0 is a constant. The well-posedness of the Becker-Döring equations for general assumptions

on the reaction rate is extensively studied.

Asymptotic behaviour. Equilibrium solutions c̄ = (c̄i)i≥1 of (4)-(5) must satisfy the following condition:

Ji(c̄) = 0, ∀i ≥ 1.

This condition leads to a recursion relation c̄i+1 = ai
bi+1

c̄i . Finally, we obtain the equilibrium states

parametrized only by the monomers concentration c̄1:

c̄i =Qi(c̄1)i , Qi :=
i∏
j=2

(
aj−1

bj

)
with Q1 = 1.

Moreover, the equilibrium solutions must satisfy the mass conservation constraint:∑
i≥1

iQi(c̄1)i = ρ. (6)

The equation (6) provides a delicate issue on the equilibrium solutions of the Becker-Döring system. To

find the candidates of the equilibrium solutions leads to consider the power series whose coefficients are

iQi . We denote the radius of these series zs. zs is explicitly obtained in terms of rate coefficients by the

Cauchy-Hadamard theorem:

z−1
s = limsup

i→∞
Q1/i
i .

Hence, the equilibrium solutions are well defined for 0 ≥ c1 ≥ zs. Moreover, this leads to meta-stability in

the long time behaviour of the Becker-Döring system (cf [124]) since the initial mass of the system ρ may

be considered larger as the critical mass ρs:

ρs =
∑
i≥1

iQiz
i
s.

The solutions of (4)-(5) are divided into three categories: the sub-critical solution when ρ < ρs, the critical

solution when ρ = ρs and the super-critical solution when ρ > ρs.

A first result of convergence towards equilibrium was given by Ball et al. in [7]. The reaction rates are
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chosen such that the radius of convergence zs = +∞ and the proof is based on the existence of a Lyapunov

functional H which governs the trend to equilibrium:

H(c) =
∑
i≥1

ci
(
ln

(
ci
Qi

))
,

d
dt
H(c) = −p(c(t),

where the dissipation is

p(c(t)) =
∑
i≥1

(aic1ci − bi+1ci+1)(ln(aic1ci)− ln(bi+1ci+1)).

The results on the convergence towards equilibrium in (4)-(5) was extended by Slemrod in [150], in

particular the case where 0 < zs <∞ is treated and the following theorem is established.

Theorem 2 (Convergence to equilibrium, Theorem 5.11 in [150]). Let c0 ∈ X+ with mass
∑
i≥1 ic

0
i = ρ such

that H(c0) <∞. Assume ai = O(i), bi = O(i). Assume moreover there exists z ∈ [0, zs] such that aiz ≤ bi for
sufficiently large i. Let c be the unique solution to the Becker-Döring equations (4)-(5) on [0,∞) with initial
data c0. Then we have:

(i) If 0 ≤ ρ ≤ ρs, then lim
t→∞

∑
i≥1
i|ci(t)− c̄i | = 0.

(ii) If ρ > ρs, then, for every i ≥ 1, limt→∞ ci(t) = c̄i with
∑
i≥1
ic̄i = ρs.

Remark 2. In Theorem 2 (ii), solutions have a mass ρ for all times, however, as the time goes to infinity, they
converge in a weak sense to a steady-state having a strictly inferior mass. The excess ρ − ρs is describing the
formation of particles with infinite sizes and is related to phase transition [150, 123].

The Becker-Döring model generated lots of interesting and new mathematical problems and signifi-

cant results have been proved, e.g. the rate of convergence towards equilibrium [75, 30, 28]. For more

results about the Becker-Döring theory, we recall the studies [69, 110, 121, 83, 29].

A continuous polymerisation/depolymerisation model: the Lifshitz-Slyozov model.

The Lifshitz-Slyozov model was first introduced in the seminal paper [95] and was originally designed

to formalize the formation of a new phase in solid solution. It describes the formation of aggregates or

polymers by the addition of monomers in a continuous size setting. In the following, we denote v(t) the

concentration of monomers at time t and f (t,x) the concentration of polymers of size x > 0 at time t. In

our study, the model describes the kinetics happening during SLS experiments, hence we assume a closed

and space-homogeneous environment. This translates into the constraint that the total mass needs to be

conserved:

v(t) +
∫ ∞

0
xf (t,x)dx = v(0) +

∫ ∞
0
xf (0,x)dx := ρ, ∀t ≥ 0. (7)
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We denote by ρ the total mass of monomers and
∫
xf (t,x)dx can be interpreted as the concentration

of monomers in the polymerised form. Hence, the concentration of polymers satisfies the following

equation:
∂f

∂t
+
∂
∂x

[
(a(x)v(t)− b(x))f (t,x)

]
= 0, f (0,x) = f0(x) ≥ 0. (8)

Note that in (8), the depolymerisation rate is denoted by b(x), the polymerisation rate is denoted by

a(x) and both rates can be size-dependent. In the original seminal paper [95], the authors assume the

following reaction coefficients

a(x) = x
1
3 , b(x) = 1.

Using these definitions of the reaction rates, no boundary condition at x = 0 is required since the flux at

zero is always going outward. Moreover, one key assumption for the phase transition model is that for

larger sizes, the polymerisation rate is bigger than the depolymerisation rate, whereas the reverse is true

for smaller sizes. This leads to the phenomenon called "Ostwald ripening" which describes the formation

of larger and larger clusters at the expense of smaller ones (see e.g. [95, 109]).

The model containing Equation (8) can be completed by the mass conservation equation (7). Assuming

more assumptions on v(t), it can also be completed by the following equation for the concentration of

monomers:
dv
dt

=
∫ ∞

0
b(x)f (t,x)dx − v(t)

∫ ∞
0
a(x)f (t,x)dx, v(0) = v0. (9)

From Becker-Döring to Lifshitz-Slyozov. In [39], the authors show that the Lifshitz-Slyozov system

can be obtained as an asymptotic limit of the Becker-Döring system. The leading idea to demonstrate the

asymptotic equivalence is to consider the functions (ci(t))i>1, the solution of the Becker-Döring system,

as a discretisation in space of a function f (t,x), that, with a function v for the monomer concentration,

solves the Lifshitz-Slyozov system. The authors introduced a scaling parameter ε and showed that the

solution of the Becker-Döring system converges to that of the Lifshitz-Slyozov system as ε goes to 0.

In the following, we describe the main steps to get this result. We start by rewriting the system (4)-(5)

in a dimensionless form. The reference quantities used to rescale are:

• T : characteristic time,

• C1: characteristic value for the monomer concentration,

• C: characteristic value for the polymers concentrations,

• A1: characteristic value for the polymerisation coefficient a1,

• A: characteristic value for the polymerisation coefficients ai i ≥ 2,

• B: characteristic value for the depolymerisation coefficients,

• M: characteristic value for the total mass,
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• Mm: mass of one monomer.

We rescale every variable by its characteristic value:

t̄ =
t
T
, c̄1 =

c1(t̄T )
C1

, c̄i =
ci(t̄T )
C

, ρ̄ =
ρ

M
,

āi =
ai
A
, ā1 =

a1

A1
, b̄i =

bi
B
, for i ≥ 2.

We define the dimensionless parameters :

γ =
C
C1
, µ =

M
MmC1

, α = ATC1,

α1 =
A1C1

AC
, β = BT .

The dimensionless form of the system (4)-(5) is then (omitting the overlines):

d
dt ci= α(ai−1c1ci−1 − aic1ci) + β(bi+1ci+1 − bici) i ≥ 2,

d
dt c2= α1αa1c

2
1 −αa2c1c2 + β(b3c3 − b2c2),

d
dt c1= −γ

(
2(α1αc

2
1 − βb2c2) +

∞∑
i=2

(αaic1ci − βbi+1ci+1)
)
,

(10)

and the mass conservation is

c1 +γ
∞∑
i=2

ici = µρ. (11)

The dimensionless parameters γ, µ, α, α1, β appear as coefficients in (10)-(11). Furthermore, we define

the piecewise constant function f ε(t,x) as follows:
f ε(t,x) = cεi (t) if x ∈ [iε; (i + 1)ε) for i ≥ 2, t > 0,

f ε(t,x) = 0 if x ∈ [0,2ε),

where cεi is the solution of the system (10) with the suitable choice of the dimensionless parameters [39]:

γ = ε2, µ = 1, α = β =
1
ε
,α1 ≤ 1.
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With this choice of parameters, the rescaled version of the system (10)-(11) is:

d
dt ci=

1
ε (ai−1c1ci−1 − aic1ci) + 1

ε (bi+1ci+1 − bici) i ≥ 2,

d
dt c2= 1

εα1a1c
2
1 −

1
ε a2c1c2 + 1

ε (b3c3 − b2c2),

d
dt c1= −ε

(
2(α1c

2
1 − b2c2) +

∞∑
i=2

(aic1ci − bi+1ci+1)
)
,

and the mass conservation equation

cε1 + ε2
∞∑
i=2

icεi = ρ.

Collet et al. proved in [47] that for ε close to 0, the couple (cε1, f
ε) is an approximate solution of the

Lifshitz-Slyozov system.

Theorem 3 (First-order approximation, Theorem 2.3 in [39]). Assume that the kinetic coefficients ai , bi
satisfy

ai ,bi ≤ K, |ai+1 − ai | ≤
K
i
, |bi+1 − bi | ≤

K
i

for some constant k > 0. Consider a sequence εn→ 0.
Then there exist a subsequence, still denoted by εn, and two functions a,b ∈W 1,∞((0,∞))∩L∞(R+) such that

lim
εn→0

sup
r/εn<i<R/εn

|ai − a(iεn)|+ |bi − b(iεn)| = 0, ∀ 0 < r < R <∞.

Assume, moreover, that there exist constants 0 < s ≤ 1, M0 <∞, ρ <∞, Ms <∞ for which for all ε > 0

ε
∞∑
i=2

c0,ε
i ≤M0, c0,ε

1 + ε2
∞∑
i=2

ic0,ε
i = ρ, ε

∞∑
i=2

(iε)1+sc0,ε
i ≤Ms.

Then the subsequence εn may be chosen in such a way that
f εn ⇀ f , xf εn ⇀xf in C0([0,T ]; M1(0,∞)−weak− ?),

cεn1 (t)→ c1(t) uniformly in C0([0,T ]),

where (c, f ) is a solution to (7)-(8).

The space M1(0,∞) denotes the space of bounded measures on (0,∞), it is the dual of the space

of continuous function on (0,∞) with compact support, namely C0
0 (0,∞). The function f is in this

context a measure-valued solutions (see [37]). The proof of Theorem 3 relies on moment estimates

and equicontinuity arguments. More details on the link between the Becker-Döring system and the

Lifshitz-Slyozov system with different framework can be found in [88, 89, 110, 142].
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Moreover, second-order approximations shed light on the link between the Becker-Döring and Fokker-

Planck like equations. For example, in [39], the authors introduced the modified Lifshitz-Slyozov

equations: 

∂
∂t
g + ∂

∂x
G(g; t,x) = 0,

G(g; t,x) = (a(x)c(t)− b(x))g(t,x)− ε ∂∂x
(
a(x)c(t)+b(x)

2 g(t,x)
)
,

(a(0)c(t) + b(0))g(t,0) = 2a1c(t)2,

(12)

with the mass-conservation law

c(t) +
∫ ∞

0
xg(t,x)dx = ρ.

The term with second derivative in space corresponds to a diffusion term. This diffusion term comes

from the underlying mechanisms of the discrete Becker-Döring system.

Well-posedness. We recall now some results on the Lifshitz-Slyosov model (8)-(7) or (8)-(9). The

well-posedness has been established by Collet and Goudon in [37]. The autors proved the following

theorem, stating the existence and uniqueness of solutions of (8)-(7).

Theorem 4 (Well-posedness of the Lifshitz-Slyozov solutions, Theorem 1 in [37]). Let a, b be C1 functions
on [0,∞) such that

a(x) ≥ 0, b(x)≥ 0,

a(0)M − b(0) ≤ 0,

|a′(x)|+ |b′(x)| ≤ K.

Let the initial data f0 be nonnegative and satisfy∫ ∞
0
f0(x)dx <∞,

∫ ∞
0
xf0(x)dx <M.

Then the system (8)-(7) has a unique solution

(v,f ) where v ∈ C0 ([0,T ]) , xf ∈ L∞
(
[0,T ];L1([0,∞))

)
.

The condition a(0)M − b(0) ≤ 0 ensures the fact that no boundary condition is needed. The proof of

the theorem is based on the method of characteristic to obtain an expression of the density function in

terms of the monomer concentration and then a fixed-point method.
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Asymptotic behaviour. The asymptotic behaviour of the Lifshitz-Slyozov model for general assump-

tions on the reaction rates is still an open problem. However, Calvo, Doumic and Perthame recently

established in [27] the exponential convergence towards a dirac mass in the following theorem.

Theorem 5 (Convergence to a critical mass, Theorem 1.1 in [27]). Let a(x) = 1 and b(x) ≥ 0 such that

b ∈ C1(R+), ∃ α,β > 0, 0 < α ≤ b′(x) ≤ β

v0 > b(0) ≥ 0.

Moreover, we assume that

f0 ∈ L1(R+, (1 + x2)dx) with ρ0 =
∫ ∞

0
f0(x)dx > 0.

Then there exists a unique solution x̄ > 0 to the equation

M = ρ0x̄+ b(x̄)

and the solution (v,f ) ∈ C1(R+×C(R+,L
1((1+x2)dx)) to the Lifshitz-Slyozov system (8)-(9) is such that f (t,x)

converges to ρ0δx̄ exponentially fast in the sense of the Wasserstein distance: for some constant C > 0 we have

W2(f (t, ·),ρ0δx̄) ≤ Ce−αt , |v(t)− b(x̄)| ≤ Ce−αt .

The proof of Theorem 5 is based on Entropy inequalities. The study of the Lifshitz-Slyozov equations

is still an active research field and open problems remain for more general assumptions on the reaction co-

efficients. Further results can be found in [111, 87, 112, 63, 31] The modified Lifshitz-Slyozov system with

a diffusion term seems to be a more realistic continuous setting for the polymerisation/depolymerisation.

However, some interesting questions on this continuous setting with diffusion are still under active

research [161, 38, 44].

Kinetic models capable of displaying oscillations.

A key question of our study is thus the following: What kind of core elements should a model feature in

order to explain the appearance of such oscillations? A recent study from Pego and Velazquez [120] shows

that oscillations occur in a modified Becker-Döring-type model. The model considered is of finite size

and the clusters of maximal size are subject to atomization, a chemical reaction which converts clusters

into monomers. Pego and Velazquez proved the existence of Hopf bifurcations when the parameter

corresponding to the atomization coefficient is varying. They introduced a Becker-Döring model with

atomization in order to explain gas evolution oscillators in physical chemistry and its oscillatory behaviour

is closely linked to atomization. However, in the experiments leading to Figure 5, no evidence of
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atomization have been found. Moreover, the oscillations in the SLS signals are always damped, i.e.

located on a specific time interval. Hence, growth-fragmentation models with atomization do not seem

appropriate to explain transient oscillations in the prion fibrils experiments.

To date, very few mathematical models have taken into account the coexistence of multiple prion

assemblies or multiple type of fibrils [41]. Indeed, most of the aggregation models have been built using

the canonical nucleation-elongation-fragmentation process seminally reported by Bishop and Ferrone (see

e.g. [18, 98, 126]), which is based on the existence of a structurally unique type of assemblies characterised

only by their size distribution. The characterisation of multiple types of PrPSc subassemblies with

different rates of polymerisation, depolymerisation requires new mathematical models. The analysis of

the dynamics and relation between different subspecies leads to interesting new questions.

Discrete bi-monomeric Becker-Döring type model.

The most natural departure point in the formulation of a suitable mathematical model to describe the

kinetics behind the SLS experiments in Figure 5 is the Becker-Döring model of polymerisation and

depolymerisation. However damped oscillations, up to the best of our knowledge, have never been

observed numerically or evidenced analytically. We thus needed a variant of the Becker-Döring model

to explain the experimentally observed oscillations displayed in Figure 5. The model and its study is

detailed in Chapter 2. We present here an overview of the results obtained.

Model. In [74], it was recently shown that PrPSc assemblies are in equilibrium with an oligomeric

conformer (suPrP) encoding the entire strain information and constituting an elementary building

block of PrPSc assemblies. The fact that such an oligomeric building block appears separately from the

monomeric PrP points towards models with two different quasi-monomeric species (i.e. one monomer

and one oligomeric conformer in contrast to the polymer species Ci), each of which playing a role in a

different reaction. A suitable mathematical model should also take into account the constraint that large

polymers cannot interact directly, for reasons of size and order of magnitude of their concentrations.

Hence, we assume that polymers can only interact indirectly, through the exchange of monomers or small

oligomeric conformers.

We propose the following model system: Let V andW denote the two monomeric species. Let Ci be the

polymers containing i monomers, where polymerisation signifies the amendment of a monomerW while

depolymerisation only occurs when induced via the monomeric species V . More precisely, we consider
V +W k−→ 2W ,
W + Ci

ai−→ Ci+1, 1 ≤ i ≤ n,

Ci +V
bi−−→ Ci−1 + 2V , 2 ≤ i ≤ n.

(13)

with a reaction rate constant k for the monomer/conformer dynamics and polymerisa-

tion/depolymerisation coefficients ai and bi .

We emphasize the two main differences of (13) as compared to the classical Becker-Döring system:
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First, instead of one monomeric species c1, we now consider two interacting species of monomers (or

conformers), V andW . Secondly, depolymerisation is modelled as a monomer induced, nonlinear process,

which requires the catalytic action of V . Note that this process is reminiscent of the cyclical behaviour of

the three-species system:

V +W k−→ 2W , W +M a−→ 2M, M+V b−→ 2V , (14)

which is known to produce sustained periodic oscillations, see [162], where it is called the Ivanova system,

or [158], where it is referred to as a simplification of the Belousov-Zhabotinsky system.

We denote by ci(t), v(t) and w(t) the concentrations at time t of the polymers containing i monomers, the

depolymerising and the polymerising monomeric species. As in [124], we introduce the net rate of an

i-polymer being converted to an (i + 1)-polymer by

Ji = waici − vbi+1ci+1, 1 ≤ i ≤ n− 1.

With the convention J0 = Jn = 0, by using the mass-action law, model (13) yields the following system of

differential equations: 

dv
dt = −kvw+ v

n∑
i=2
bici , v(0) = v0,

dw
dt = −w

n−1∑
i=1
aici + kvw, w(0) = w0,

dci
dt = Ji−1 − Ji , ci(0) = c0

i , 1 ≤ i ≤ n.

(15)

We first remark that solutions to System (15) have two conserved quantities, obtained by weighted sums

of the equations:

1. The total concentration of polymerised species, since d
dt

n∑
i=1
ci = 0. This conservation law is linked to

the fact that we neglect nucleation.

2. The total mass, since d
dt

(
v +w+

n∑
i=1
ici

)
= 0, which indicates that there is no gain or loss of particles

during the chemical reactions: the system is closed.

As a consequence of those two conservation laws, we introduce

P0 :=
n∑
i=1

c0
i , Mtot := v0 +w0 +

n∑
i=1

ic0
i .

Moreover, we denote as Mk(t) the moment of order k of c = (ci) for k ∈N∗:

Mk(t) =
∑
i≥1

ikci(t). (16)
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The signal obtained by the SLS experiments is approximated by the second order moment of the size

distribution of c in the model and the numerical simulations.

Well-posedness. We introduce the Banach sequence spaces

`1
1 = {y = (yi) : ‖y‖ <∞}, ‖y‖ =

∞∑
i=1

i|yi |.

and

X = {x = (v,w,c) = (v,w,c1, c2, . . .) : ‖x‖X <∞}, ‖x‖X = |v|+ |w|+ ‖c‖.

Definition 2. Let 0 < T ≤∞ and c = (ci). A nonnegative solution x = (v,w,c) of (15) with n =∞ on [0,T ) is
a function x : [0,T )→X such that

1. x(t) ≥ 0 for all t ∈ [0;T ), i.e. v(t) ≥ 0, w(t) ≥ 0, ci(t) ≥ 0 for each i,

2. v,w : [0,T )→R and ci : [0,T )→R for all i ≥ 1 are continuous with supt∈[0,T ) ‖x(t)‖X <∞,

3.
∫ t

0

∑∞
i=1 aici(s)ds <∞,

∫ t
0

∑∞
i=2 bici(s)ds <∞ for all t ∈ [0,T ) and

4. v, w and c satisfy for all t ∈ [0,T )

v(t) = v0 +
t∫

0

(
−kv(s)w(s) + v(s)

∞∑
i=2
bici(s)

)
ds,

w(t) = w0 +
t∫

0

(
−w(s)

∞∑
i=1
aici(s) + kv(s)w(s)

)
ds,

ci(t) = c0
i +

t∫
0

(
Ji−1(s)− Ji(s)

)
ds, i ≥ 1, J0 = 0.

Theorem 6 (Well-posedness of the infinite dimensional system).
Let T > 0 be arbitrary and consider x0 = (v0,w0, c0) satisfy ‖x0‖X <∞. Assume

ai =O(i), bi+1 =O(i + 1), ∀ i ≥ 1.

Then, System (15) with n =∞ has a nonnegative solution for t ∈ [0,T ) with v(t) ≥ 0, w(t) ≥ 0, ci(t) ≥ 0 for
t ≥ 0 and all 1 ≤ i satisfying

v(t) +w(t) +
∞∑
i=1

ici(t) = v0 +w0 +
∞∑
i=1

ic0
i ,

∞∑
i=1

ci(t) =
∞∑
i=1

c0
i , ∀t ≥ 0.

Moreover, if
∞∑
i=1
i2c0

i <∞, then the solution is unique and satisfies

sup
t∈[0,T )

∞∑
i=1

i2ci(t) <∞.
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The proof of Theorem 6 adapts well-known results of the Becker-Döring system as presented in [7].

The main novelty lies in the nonlinearity of the depolymerisation terms, which requires the supplemen-

tary assumption for the bi .

Asymptotic behaviour. The main issue encountered in the study of the asymptotic behaviour of the

solutions of (15) is that no Lyapunov functional (Entropy) is known. Hence, in order to have some

insights on its behaviour, we study the system when n = 2, n ∈ N with n < ∞ and n = ∞. First, we

provide a complete and explicit study of the two-polymer case n = 2, which features a pivotal mechanism

of damped periodic oscillations in the case of a large reaction rate k compared to the polymerisation

coefficients.Let the reaction rates a1 = 1, b2 = 1 (for the sake of clarity). Using the conservation laws, the

system (15) is reduced to two coupled differential equations:
dv
dt = v [M − (k + 1)w − v] , v(0) = v0,

dw
dt = w [(M − P0) + (k − 1)v −w] , w(0) = w0,

(17)

where M =Mtot − P0. The above system is a generalization of the Lotka-Volterra system in its quadratic

form. Under the assumption P0 ∈
(
kM
1+k , kM

)
, there is a unique positive steady-state for (17) which is the

intersection of the null-clines. We denote this positive steady-state (v∞,w∞).

Theorem 7 (Exponential convergence to positive equilibrium).
Let P0 ∈

(
kM
1+k , kM

)
and consider v,w the solutions of (17) with (v∞,w∞) > 0 the positive steady state. Let

H : R∗+ ×R∗+ 7→R the differentiable function such that

H(v,w) = v − v∞ log(v) +w −w∞ log(w).

Then, H is a convex Lyapunov functional.

d
dt
H(v(t),w(t)) = −1

k
p2(v(t),w(t)),

with p(v,w) := [(v − v∞) + (w −w∞)].

Moreover, for 1
k << 1, every solution (v(t),w(t)) with initial data (v0,w0) > 0 converges exponentially to

(v∞,w∞), i.e.
|v − v∞|2 + |w −w∞|2 ≤ C

(
H(v0,w0)−H(v∞,w∞)

)
e−

1
k rt ,

where the positive rate r and constant C depend only on H0 :=H(v0,w0) and (v∞,w∞).

Theorem 7 states the existence of a Lyapunov functional and proves exponential convergence to an

equilibrium of solutions despite their highly oscillatory behaviour. The proof is based on convex local

estimates around the degeneracy line d
dtH = 0 and the entropy dissipation method.
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Secondly, we focus on the case where the maximal size of polymers n is finite. We study the existence

of steady states and their stability. We introduce several parametric regions – graphically illustrated in

Figure 8– which will defining the stability or instability regions of the boundary steady states (BSS).

n+
bn
k
≤ Mtot

P0
(region with horizontal green stripes in Fig. 8), (18)

n <
Mtot

P0
< n+

bn
k

(light blue region in Fig. 8), (19)

Mtot

P0
≤ 1 +

a1

k
(grey diagonally hatched region in Fig. 8). (20)

Case a1 ≤ bn
Mtot
P0

1
k

Mtot
P0

= n

M tot

P 0

= n
+
b n
k

M tot

P0

= 1 +
a1
k

Case a1 > bn
Mtot
P0

1
k

M
to
t

P 0
=

1
+
a 1 k

Mtot
P0

= n

M tot

P 0

= n
+
b n
k

Figure 8 – Stability regions of the SSs of the finite system (15) in the 1
k -Mtot

P0
parametric space: (BSSa) are

always unstable. Grey diagonally hatched zone ⇐⇒ (20) ⇐⇒ asymptotically stable (BSSb), which is
unstable elsewhere. Green horizontal lines ⇐⇒ (18) ⇐⇒ asymptotically stable (BSSc). Light blue zone
⇐⇒ (19) ⇐⇒ unstable (BSSc). Zone with red stars ⇐⇒ existence of at least one PSS (in case a1 > bn
coexisting with a stable (BSSb) in the horizontally hatched region; otherwise coexisting only unstable
BSSs.)

Proposition 1 (Nonnegative Steady States).
Let ai > 0, bi+1 > 0 for 1 ≤ i ≤ n− 1, let v0, w0 > 0 and P0 > 0, Mtot ≥ v0 +w0 + P0 > 0. Then,

1. there exists three kinds of boundary steady states (BBS):

(BSSa) There exist unstable BSSs: v̄ = w̄ = 0 and (c̄i)1≤i≤n satisfies
n∑
i=1
c̄i = P0,

n∑
i=1
ic̄i =Mtot .

(BSSb) There exists a BSS: v̄ = Mtot − P0 > 0, w̄ = 0, c̄1 = P0, c̄i = 0 for 2 ≤ i ≤ n. This BSS is locally
asymptotically stable under Assumption (20) (grey diagonally hatched in Fig. 8) and unstable
elsewhere.
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(BSSc) Under the additional assumption Mtot
P0

> n, there exists another BSS: v̄ = 0, w̄ =Mtot − nP0 > 0,
(c̄i)1≤i≤n−1 = 0 and cn = P0. This BSS is locally asymptotically stable under Assumption (18)

(green horizontal lines) and otherwise unstable, which corresponds to Assumption (19) (light blue
zone).

2. There exists (at least one) positive steady state (PSS) (v̄, w̄, c̄i)1≤i≤n provided that the polynomial P (z)

defined as

P (z) :=
[
a1

k
+ 1− Mtot

P0

]
+
n−1∑
i=2

[(
ai
k

+ i − Mtot

P0
+
bi
k

) i−1∏
j=0

aj
bj+1

]
zi−1

+
[(
n− Mtot

P0
+
bn
k

) n−1∏
j=0

aj
bj+1

]
zn−1 (21)

has a root z̄ > 0. Given z̄ > 0, we have

v̄ = c̄1

n−1∑
i=1

ai
k
z̄i−1

i−1∏
j=0

aj
bj+1

, w̄ = c̄1

n−1∑
i=1

ai
k
z̄i

i−1∏
j=0

aj
bj+1

,

c̄1 =
P0∑n

i=1 z̄
i−1 ∏i−1

j=0
aj
bj+1

, c̄i = z̄i−1
i−1∏
j=0

aj
bj+1

c̄1, 2 ≤ i ≤ n.

(22)

If all BSSs are unstable, i.e. 1 + a1
k <

Mtot
P0

< n + bn
k , then there exists at least one positive steady state.

Moreover, if the sequences (ai), (bi) are nondecreasing, the positive steady state is unique.

Further details are obtained in the case of constant coefficients, where we discuss the various zones

of stability or instability with respect to the parameters in Chapter 2, Section 2.4. Moreover, numerical

simulations of the system illustrate the oscillatory behaviour of the size distribution of the concentration

of polymers, see Figure 9.

Finally, we analyze steady states of the infinite system n =∞. In the following, we assume that the

coefficients satisfy

ai > 0, bi+1 > 0, ∀i ≥ 1 and ∃ K > 0 : max
i≥1

{
ai
i
,
bi
i
,
ai
bi+1

}
≤ K. (23)

Proposition 2 (Steady states of the infinite case system and their local stability).
Let v0 > 0, w0 > 0, P0 > 0 and Mtot ≥ v0 +w0 + P0 > 0. Let (ai ,bi+1)i≥1 satisfy (23).

Then, there exist the following steady states (v̄, w̄, c̄i≥1) of System (15) with n =∞:

(BSSa) The trivial BSSs v̄ = w̄ = 0 and c̄i≥1 ∈ `1
1 satisfying

∞∑
i=1

c̄i = P0, and
∞∑
i=1

ic̄i =Mtot ,
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Figure 9 – Numerical simulation of convergence to (PSS):SLS simulation (left image) and evolution
of the size distribution (right images). The reaction rates are constants. The parameters are n = 100,
k = 1.1, a = 1.5, b = 2 and the assumption 1 + a

k <
Mtot
P0

< n+ b
k is fulfilled (all BSSs are unstable).

which are always linearly unstable.

(BSSb) The BSS v̄ =Mtot −P0, w̄ = 0, c̄1 = P0 and c̄i≥2 = 0. This steady state is locally asymptotically stable iff

Mtot

P0
≤ a1

k
+ 1. (24)

(PSS) Under assumption (2.40), there exists no positive steady state (PSS). Conversely, if

Mtot

P0
>
a1

k
+ 1, (25)

then there exists a unique PSS (v̄, w̄, c̄i≥1). Note that as already noted for the n-polymer model, the
stability of the PSS is an open problem.

Proposition 2 proved that there exists a unique positive steady state under assumption (25). This

assumption means that the ratio Mtot
P0

needs to be "sufficiently large", else the polymers are unstable in the

sense that all the mass goes back to the polymer of minimal size c1. Moreover, two specific cases shed

light on the damped oscillations: the constant coefficient case (i.e. ai = a, bi = b for two positive constants

a and b and for all i) and the linear coefficient case (where ai = ia, bi = (i − 1)b, for two positive constants

a and b and for all i).
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Continuous bi-monomeric Lifshitz-Slyozov type model.

The study of a Becker-Döring type model for large clusters is a challenge, few results exist on non-linear

infinite size differential systems and the computational cost for numerical simulations is a limiting

obstacle. The maximum size in P rP Sc fibrils is of order 104, hence considering a continuous size setting

is beneficial in order to provide more insights on the kinetics of Prion process. The continuous setting is

viewed as the "macroscopic" limit of the Becker-Döring type model and the mathematical structure of the

resulting PDE-ODE system appears to be simpler. Hence, we introduce the corresponding bi-monomeric

Lifshitz Slyozov type system and study its asymptotical behaviour. The following results are detailed in

Chapter 3 .

Model. In the previous Section, we detailed the study and results on the bi-monomeric Becker-Döring

type system. We may now consider the size of clusters as a continuously varying variable x > 0 which

now replace i. The quantity f (t,x) denotes the density of aggregates of size x at time t, and v(t), w(t)

denote the concentration of monomers. We then obtain the following equations:

∂tf +∂xJ= 0, x > 0, t ≥ 0, f (0,x) = f 0(x),

J(t,x) =
(
a(x)w(t)− b(x)v(t)

)
f (t,x),

d
dt v(t) = −kv(t)w(t) + v(t)

∫∞
0 b(x)f (t,x)dx, v(0) = v0 > 0,

d
dtw(t) = −w(t)

∫∞
0 a(x)f (t,x)dx+ kv(t)w(t), w(0) = w0 > 0,

0 =
(
a(0)w(t)− b(0)v(t)

)
f (t,0)1{a(0)w(t)−b(0)v(t)>0}, ∀t > 0.

(26)

The system (26) is viewed as the "macroscopic" limit of the system (15) with n =∞. Also, the solutions of

the system (26) follow a conservation law of the total mass M of the population:

v(t) +w(t) +
∫ ∞

0
xf (t,x)dx = v0 +w0 +

∫ ∞
0
xf 0(x)dx =M. (27)

We denote the moment of magnitude n by Mn:

Mn(t) =
1
n

∫ ∞
0
xnf (t,x)dx,

and the total number of polymers by ρ:

ρ(t) =
∫ ∞

0
f (t,x)dx.
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The last equation of (26) is a boundary condition which can be interpreted as the absence of the nucleation

phenomenon. It implies that total concentration of polymerised fibrils remains constant:

ρ(t) =
∫ ∞

0
f (t,x)dx =

∫ ∞
0
f0(x)dx = ρ0.

We are interested in the steady-state and we denote two kinds of steady-state:

• the trivial steady-states: f (x) = 0 and v∞ +w∞ =M. It corresponds to a boundary steady-state and

can be interpreted as the non pathological equilibrium. All fibrils are converted into the two species

of monomers and the two species of monomers are at equilibrium.

• The nontrivial steady-state which enforce the following: there exists x > 0 such that f (x) , 0. It can

be interpreted as the pathological steady-state since polymers can be found at equilibrium.

We denote with (v∞,w∞, f ) the quantities at equilibrium.

Main results on the system (26). We note that the system in (26) is a coupled PDE/ODE system. The

ODE part of the system is the following:
d
dt v(t) =−kv(t)w(t) + v(t)

∫∞
0 b(x)f (t,x)dx,

d
dtw(t) =−w(t)

∫∞
0 a(x)f (t,x)dx+ kv(t)w(t).

(28)

The solution of the PDE in (26) has an influence on the solutions of the ODE through an integral term.

However, assuming some rightfully chosen hypothesis on the reaction coefficients a(x) and b(x), the

system (26) has 2 conserved quantities:

•
∫∞

0 xf (t,x)dx+ v(t) +w(t) =M,

•
∫∞

0 f (t,x)dx = ρ0.

In order for the ODE system to be decoupled of the PDE solution in (26), the reaction coefficient functions

have to be either constant, linear or affine function of the size variable x > 0. This comes from the fact

that the integral terms in (28) is replaced by one of the conserved quantities.

An interesting result is obtained if we suppose that the reaction rates are both linear:

∃a, b > 0, a(x) = ax, b(x) = bx.

In this case, the solutions (v,w) of (28) are periodic as well as the solution f of (26). We obtain the

following result.

Proposition 3. Let (v,w,f ) ∈ C1
b (R+) × C1

b (R+) × C
(
R+,L

1
)

be any nonnegative solution of (26) and (27)

such that the initial datum verifies v0, w0 > 0 and v0 +w0 < M. Assume that a,b ∈ C1(R+)+ satisfy a(x) =

ax, b(x) = bx with a, b > 0 and ∀x > 0. Then the following statements hold true:
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1. The solutions v(t),w(t) of (28) are periodic.

2. The solution f of (26) is periodic of the same period as v,w.

The proof of this proposition is detailed in Chapter 3. This result shows that the solution of the

bi-monomeric Lifshitz-Slyozov model (26) are periodic. Such a result is not observed in the experiments

since the continuous model is a first order approximation of the "true" discrete model. The second order

correction, a diffusion term, would dominate and change the behaviour of the solutions.

Moreover, even without the second order correction (the diffusion term), we show that the solutions of

the system (26) display damped oscillations and f concentrate its mass at a critical size when a(x) =

1, b(x) = bx with b > 0, ∀x ≥ 0.

Theorem 8 (Concentration at a critical size). Assume that the initial datum verifies v0, w0 > 0 such that
v0 +w0 <M and f0 ∈ L1(R+, (1 + x2)dx) with ρ0 =

∫∞
0 f0(x)dx > 0. Moreover let k > 1 with k sufficiently large

and 0 < ρ0 < kM. And finally, assume that a,b ∈ C1(R+)+ satisfy a(x) = 1, b(x) = bx with b > 0, ∀x ≥ 0.
The solution (v,w,f ) ∈ C1

b (R+)×C1
b (R+)×C

(
R+,L

1
)

to the system (26) and (27) are such that f (t,x) converges
to ρ0δ w∞

bv∞
exponentially fast in the sense of the Wasserstein distance: for some constant C > 0 we have

W2

(
f (t, ·),ρ0δ w∞

bv∞

)
≤ Ce−βt , |X(t, z)− w∞

bv∞
| ≤ Ce−βt .

The proof of Theorem 8 relies on one entropy inequalites, inspired by [27], and local convexity

estimates for a Lyapunov functional, inspired by [55]. This result shows that the solution of the bi-

monomeric Lifshitz-Slyozov system converges to a specific steady-state

(v(t),w(t), f (t, ·)) −−−−→
t→∞

(
v∞,w∞,ρ0δ w∞

bv∞

)
.

The behaviour of the continuous bi-monomeric model is closely linked to the form of the reaction

coefficients. We proved the existence of periodic solution in case of linear reaction coefficients and the

convergence towards a positive steady-state (assimilated as the pathological state) for linear depolymerisa-

tion and constant polymerisation coefficients. On the contrary, only damped and not sustained oscillatory

solutions have been observed for the discrete bi-monomeric model. The solutions either converge to

the positive steady-state or the boundary steady-state. This difference between the continuous and the

discrete model can be explained by the absence of the diffusion term in the continuous model.

Biochemical evidence of heterogeneity of the structure of amyloid fibrils.

The experiments studied in Chapter 4 provide new hypothesis on the molecular structure of Prion

assemblies. In order to ascertain the new mechanisms in Prion assemblies, we model the kinetics and

confront the experimental results with numerical simulations. Biochemical experiments and modeling
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help to gain more insights and knowledge about prion diseases. In Chapter 4, we study the quaternary

structure (size distribution and architecture) of prion assemblies. We first describe the experiments. Then

we explain how experiments show the heterogeneity of prion assemblies and the existence of at least two

sub-assemblies and how models comfort the hypothesis.

Biological experiments.

Protein Misfolded Cyclic Amplification (PMCA) experiments. PMCA (Protein Misfolded Cyclic

Amplification) is an amplification protocol that accelerates the conversion of P rP c protein to P rP Sc in

vitro. The technique consists of submitting a sample containing a small amount of P rP Sc at an alternation

of incubation and sonication phases. The incubation phases are intended to promote the polymerization

of aggregates. For this purpose the sample is left to rest in the presence of a large amount of P rP c. The

sonication phases have the following objectives to significantly increase polymer fragmentation. The

sample is then placed in a sonicator that breaks aggregates with ultrasound (cf Figure 10). The efficiency

of the protocol depends in part on the duration of the various phases. PMCA is one of the method to

reproduce in vitro the early replication stage of Prion diseases.

Figure 10 – Scheme of the Protein Misfolded Cyclic Amplification (PMCA) experimental process.

Size distribution by sedimentation velocity (S.V) experiments. Sedimentation velocity is an analytical

ultracentrifugation (AUC) method that measures the rate at which molecules move in response to

centrifugal force generated in a centrifuge [145, 36, 141]. This sedimentation rate provides information

about both the molecular mass and the shape of molecules. This experimental method is used to detect

aggregates in protein samples and to quantify the amount of aggregates. The sedimentation coefficient s

is defined as the ratio of the linear velocity of sedimentation of a protein v over the the gravitational field

ω2r (where ω is the angular velocity and r is the distance form the center of rotation):

s =
v

ω2r
.
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The forces acting on a particle during a sedimentation experiment are the gravitational field which

depends on the mass of the particle Mp and the friction with the solvent. The friction is a counterforce

exerted on the particle by the solvent and is characterized by the frictional coefficient f . The sedimentation

coefficient satisfies also the following relationship [36]:

s =
Mp(1− v̄ρ)

f
,

where v̄ is the partial specific volume of the particle and ρ is the density of the solvent. Mp(1 − v̄ρ)

characterizes the effective mass of the particle during the experiment. The negative term comes from the

counterforce exerted by the mass of the solvent which is displaced when the particle sediments. More

details on sedimentation velocity can be found in [36, 46, 101, 141] .

Several different methods using sedimentation velocity have been developed to perform a size

distribution analysis of protein polymers [144, 72, 92]. During sedimentation velocity experiments, the

particles with the most mass and the best hydrodynamic properties sediment the fastest.

Figure 11 – Scheme of the Sedimentation Velocity (S.V) experiments in order to obtain the size distribution
of the particles.

In Chapter 4, the method used to obtain information on the size distribution density is sediment

velocity experiments combined to a density gradient media. The sample studied is loaded atop high-

density solution of varying concentration (e.g. 10-25% iodixanol gradients [65, 64]) and a centrifugal

force is applied to the test tube containing the sample and the gradient solution. The variation in the
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density of the solution makes it possible to separate by size the particles in the sample studied. The small

particles stagnate and remain at the top and the big particles or polymers sediment. The total solution in

the test tube is segregated into equal fraction number and the average concentration of particles in each

fraction is determined and renormalized over the total concentration particles in the sample (cf Figure

11). The data obtained by S.V are interpreted as a dilatation of a size distribution density, normalized

at 100%, so that if ui denotes the concentration of polymers formed of i monomers, the data represent
iui∑
k kuk

. In order to obtain the evolution of the size distribution over time, the iteration of S.V experiments

with more samples is one the existing methods.

Structural diversification of prion assemblies in early Prion replication stage.

In prion diseases, the prion protein P rP C misfolds into P rP Sc and auto-organizes into conformationally

distinct assemblies or strains (polymers). The existence of P rP Sc structural heterogeneity within prion

strains suggests the emergence and coevolution of structurally distinct P rP Sc assemblies during prion

replication. Such P rP Sc diversification processes remain poorly understood. Here, we characterize the

evolution of the P rP Sc quaternary structure during prion replication in vivo and in vitro by PMCA. The

protein quaternary structure is the number and arrangement of multiple folded protein subunits (e.g.

monomers, dimers or small oligomers). The molecular mechanisms of P rP Sc replication and structural

diversification is observed combining PMCA and S.V experiments.

Regardless of the strain studied, the early replication stage (commonly assimilated as an elongation

process) results in the formation of small P rP Sc oligomers, thus highlighting a quaternary structural

convergence phenomenon. A bimodal behaviour is observed by the formation of two peaks (P1, P2) in the

representation of the size distribution (Figure (12)). The amount of assemblies in P1 decreases over time

as the amount of assemblies in P2 increases. We also note the absence of assemblies of intermediate size

between these peaks. The experiments analyzed in Chapter 4 rule out the hypothesis of a coagulation

between polymers in favor of an autocatalytic process as an explanation for the increase of assemblies in

P2.

The kinetic model is the following. We consider two different kinds of oligomers: on the one hand,

Ai , of size 2i, are formed by the aggregation of i SuPrP formed of two monomers, and denoted A1. Due

to the fact that iA < 5, as Ai assemblies are eluded in the first S.V fractions (cf Figure 12), we neglect

here the oligomers Ai with i > 1 for the sake of clarity and simplicity. On the second hand, oligomers

Bi , of size 3i, able to aggregate by B1− addition, where B1 is another SuPrP formed of three monomers.

However, A1 may react with monomers to give rise to B1. A convenient reaction scheme should also be

such that without monomers, almost nothing happens (cf Figure 4.5 in Chapter 4).

1. A1 and B1 can form a complex C in a reversible way:

A1 +B1

k+
C


k−C

C.
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Figure 12 – Size distribution evolution PrP assemblies at the early replication phase. (Left) S.V profile
describing, in vitro, the size distribution evolution of PrP assemblies obtained by PMCA from 127S-
infected brain homogenates. (Right) Numerical simulation of the size distribution. The initial condition
corresponds to the measures at the begining of the S.V experiments (blue curve of the graph on the left).

2. The complex C can then react with the monomer M to form two B1:

M +C
k+−→ 2B1.

3. The oligomers Bi follow a classical polymerisation/depolymerisation chain reaction, by B1− addi-

tion:

B1 +Bi
kion


ki+1
dep

Bi+1, 1 ≤ i ≤ n− 1.

To validate the designed mechanism, we performed numerical simulations using the size distribution

of the P rP Sc assemblies immediately after cyclic amplification as the initial condition (blue curve in

the left graph in Figure 12). Numerical simulations reproduce satisfactorily the results obtained by

the experiments (cf Figure 12) and the mathematical model gives more insights about the kinetics

and chemical relations between Ai and Bi . These oligomers undergo structural rearrangements, by

a P rP C-dependent, secondary templating pathway. This pathway provides mechanistic insights into

prion structural diversification, a key determinant for prion toxicity and interspecies transmission. The

uncovered processes are also key for a better understanding of misfolded assemblies propagating by a

prion-like process in other neurodegenerative diseases.

General perspectives and future work

Characterisation of oscillations in a wavelet basis. The test to detect HF features detailed in Chapter
1 is based on the projection of the signal in a discrete Fourier basis. The next step would be to define
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the HF features in a wavelet basis. The definition of "high-frequency" features has to be specified in this

framework. We can imagine a new parametric characterisation still taking into account the amplitude

and the localization on the frequency-scale (or resolution-scale) but also adding a new parameter to

locate these features on the time-scale. The multiresolution signal decomposition from the projection

in a wavelet basis provides further information on signals without making a priori strong assumptions.

The benefits are to get rid of the pre-processing step in the computation of the HF features and get a

better characterisation of transient oscillatory phenomena (i.e. dumped oscillations only appearing in a

fraction of the length of the signal). However, the number of parameters will then be equal to three (one

for the resolution, one for the amplitude and one for the localization on the time-scale) and the test of

hypothesis has to be extended to this framework.

Further results on the discrete bi-monomeric model. In Chapter 2, we study a bi-monomeric,

nonlinear Becker-Döring-type model. A proof of the exponential convergence toward the nonnegative

equilibrium is given considering the two-polymers system (cf Theorem 7). The explicit rate of

convergence is still unknown.

The next step is to obtain the convergence toward the nonnegative equilibrium for the infinite size

system. The main issue lies in the fact that we do not know if a Lyapunov functional exists. A method

to obtain results on the asymptotic behaviour would consist of decoupling the ODE system for the

monomeric species v,w and the system for the polymers concentrations using the conservation laws.

Once decoupled, the system for the monomeric species can be analysed independently, and the results

can be extended to the polymers system using the theory on asymptotically autonomous systems [97,

156]. An interesting question remains: what are the possible forms of reaction coefficients which allow

the decoupling between the two ODE systems ?

Inverse problem on the SLS signals. Turning back to the experiments as shown in Figure 5, it also

appears that much remains to be done before reaching a fully quantitative model. The first step is to

integrate the reaction scheme proposed in Chapter 2 in a more complete model, where "usual" reactions

(like linear depolymerisation) would be the dominant reactions, governing the slow dynamics of the

reactions, and nonlinear depolymerisation would be interpreted as local corrections. Using the same

notations as in Chapter 2, an interesting reaction scheme to study is the following:

V +W k−→ 2W
W + Ci

ai−→ Ci+1 i ≥ 1

Ci +V
bi−−→ Ci−1 + 2V i ≥ 2

Ci+1
βi+1−−−→ Ci +W i ≥ 1
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This reaction network is translated into the following infinite system of differential equations:

dv
dt =−kvw+ v

∞∑
i=2
bici , v(0) = v0,

dw
dt =−w

∞∑
i=1
aici +

∞∑
i=2
βici + kvw, w(0) = w0,

dci
dt =Ji−1 − Ji , ci(0) = c0

i , i ≥ 1,

where Ji is the net rate at which a i-fibril is converted to a (i + 1)-fibril by :

Ji = waici − [vbi+1 + βi+1]ci+1 1 ≤ i ≤ n− 1.

Figure 13 – Simulation of the second moment of the size distributions. The parameters are k = 0.3, ai =
2, bi = 0.1, βi = 1.9 and the maximal size of polymers is 50. The initial size distribution is centered on the
size 25, and v0 = 0.1, w0 = 0.2, P0 = 100.265.

Note that if k = bi = 0 we get the seminal Becker-Döring system. The numerical simulations of the second

moment of this hybrid model are close to the SLS signals (cf Figure 13). The next step are experimental

evidence and quantitative comparison, for instance through data assimilation strategies in the spirit of [5,

6].

Further results on the continuous bi-monomeric model. We propose a bi-monomeric, nonlinear

Lifshitz-Slyozov-type system in Chapter 3. The results on the asymptotic behaviour of the continuous

model differ from those of the discrete model, mainly because an underlying diffusion process takes place

in the discrete model. We study the first-order approximation of the continuous model which neglects
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the diffusion term. An interesting perspective is to derive and study the second order approximation

which includes a diffusion term in the continuous size-setting.

The next step is to propose and study numerical scheme to approximate the solutions of this coupled

ODE-PDE systems. The numerical analysis, in the spirit of [14, 31, 59], illustrates the results on the

asymptotic behaviour and gives more insights and a better understanding of the model. The numerical

analysis would also give further results on the convergence rate β (cf Theorem 8) of the ODE-PDE system.

Moreover, the study of the behaviour of the PDE is performed in the case of linear reaction coefficients

and in the case of one linear and one constant reaction coefficient:

a(x) = ax, b(x) = bx and a(x) = 1, b(x) = bx forx ≥ 0.

These choices were motivated by experimental data from biologists since the static light scattering

(SLS) signals studied show a fall for the second moment of the size distribution of polymers in a

closed in vitro environment. An interesting perspective would be to consider more general forms

of the reaction coefficients, for instance m1 ≤ a′(x) ≤ m2, m1 ≤ b′(x) ≤ m2 with m1,m2 > 0. The main

issue arising from this last choice of reaction coefficients is that the ODE-PDE system is coupled. We

cannot use the conservation laws to study the behaviour of the ODE system independently. However,

an appropriate entropy would probably solve this issue and give the corresponding asymptotic behaviour.

General perspectives. The study of the mechanisms governing the aggregation of proteins is of primary

importance in order to understand and cure Prion and Prion-like diseases. Since few experimental

tests are available to observe protein aggregation, studying these mechanisms experimentally is a

real challenge. In the majority of cases, only very indirect measurements can be obtained. The direct

consequence is to face ill-posed problems. The collaboration between biologists and mathematicians is

required in order to gain more insights and understanding. For example, we introduce in Chapter 1 a

parametric characterisation of the oscillatory components in the SLS signals. One interesting next step is

to design and study a sensitivity analysis of these parameters from different SLS signals. It can assert new

hypothesis and shed lights on new problems which require specific experiments. Moreover, we introduce

in Chapters 2,3, 4 new models of polymerisation/depolymerisation process with different species. In

order to enhance these models, biologists try to confirm the hypothesis made with experiments and

provide precise data to include in the models. Furthermore, realistic models help to construct and test

strategies counteracting Prion diseases. These strategies can be, first, tested with numerical simulations

and in vitro experiments. Finally, designing in vivo experiments and finding their representation through

mathematical models represent the remaining challenges to solve in order to finally find a cure for

amyloid diseases.
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Chapter1
Testing for high frequency features in a

noisy signal

1.1 Introduction

The aim of this study is to detect high frequency (HF) features in a noisy signal. We propose a parametric

characterization in the Fourier domain of the HF features. Then we introduce a procedure to evaluate

these parameters and compute a p-value which assesses in a quantitative manner the presence or absence

of such features, that we also call "oscillations". The procedure is well adapted for real 1-dimensional

signals. If the signal analyzed has singular events in the low frequencies, the first step is a data-driven

regularization of its Fourier transform. In the second step, the HF features parameters are estimated. The

third step is the computation of the p-value thanks to a Monte Carlo procedure. The test is conducted on

sanity-check signals where the ratio amplitude of the oscillations/level of the noise is entirely controlled.

The test detects HF features even when the level of the noise is five times larger than the amplitude of

the oscillations. The test is also conducted on signals from Prion disease experiments and confirms the

presence of HF features in these signals.

This study has been realised in collaborations with M. Doumic1, M. Hoffmann2 and H. Rezaei3 and has

been submitted to IMS Annals of Applied Statistics on August 2, 2019.

Motivation

In a one-dimensional signal, transient oscillations may reveal key features of the underlying processes.

As an example, and original motivation for our study, fast oscillations have been visually observed in

1Sorbonne Universités, INRIA, Université Paris-Diderot, CNRS, Laboratoire Jacques-Louis Lions, F-75005 Paris, France,
marie.doumic@inria.fr

2Université Paris-Dauphine PSL, CEREMADE, Place du Maréchal de Lattre de Tassigny, F-75016 Paris, hoff-
mann@ceremade.dauphine.fr

3INRA, UR892, Virologie Immunologie Moléculaires, 78350 Jouy-en-Josas, France, human.rezaei@inra.fr

39
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experimental measurements of the infectious agent in Prion diseases, see Figure 1.1.

Figure 1.1 – Human PrP amyloid fibrils (Hu fibrils) depolymerisation monitored by Static Light
Scattering (see Appendix for details). A: The overall view of the 0.35µM Hu-fibrils depolymerisation at
550C. B-E correspond to a zoom-in on different time-segments of the depolymerisation curve A. As shown
in B, from time 4h to time 5h oscillations have been observed when for time segment corresponding to
time 15.3 to 15.5h only noise has been detected (D). (Figure taken from [55])

A major difficulty to infer such transient oscillations and to evaluate their significance is that they are

mixed up with noise. Hence it is of major interest to rely on a rigorous procedure which detects high

frequency (HF) features - amplitude, frequency - in real signals and to distinguish quantitatively these

features of the signal from its noise.

To our knowledge, there exist only few methods to detect and estimate the HF features in a signal.

The Singular Spectrum Analysis (SSA) introduced by Broomhead and Jones in [22] is one of those and

allows one to visualize qualitative dynamics from noisy experimental data. The SSA is based on the

decomposition of a time series or signal into several additive components interpreted as trend compo-

nents, oscillatory components, and noise components. It was then widely used to identify intermittent or

modulated oscillations in time series, see e.g. [160, 117, 62].
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A statistical test of hypothesis to discriminate between potential oscillations and noise has been

introduced in [2] and [116]. This test is called the Monte Carlo SSA and has been applied almost

exclusively to meteorological data. Since SSA transforms the original data in a complex way, no theoritical

result has yet been proved on the Monte Carlo SSA. Prior knowledge on the signal (such as the trend or

assumptions on the noise) are also needed in order to calibrate the procedure and improve the result

of the statistical test. The Monte Carlo SSA is by construction a non-parametric procedure and the

oscillations detected by this test are not characterized quantitatively but qualitatively.

In this study, we propose another method, based on the Fourier transform of the signal, to infer a

parametric characterization of HF features, based on their amplitude and frequency detection. This

method is detailed in Section 1.2. We then introduce a statistical test to discriminate HF features from

noise in Section 1.4, apply our methodology to a simulated example in Section 1.3, and then to the

experimental measurements of PrP protein displayed in Figure 1.12 in Section 1.5.

Model and assumptions

For some (large) n ≥ 1, we have measurements yni of a noisy signal localized around i/n. Thus i is a

location parameter and n a frequency parameter. We may idealise our data via a representation of the

form

yni = xni + σξni , i = 0, . . . ,n− 1 (1.1)

where (xni )0≤i≤n−1 is the true (unknown) signal of interest and the ξi are independent and identically

distributed noise measurement, that we assume here to be standard Gaussian. The quantity σ > 0 is a

(fixed) noise level. In this nonparametric regression setting, we aim at detecting from the data (yni )0≤i≤n−1

whether (xni )0≤i≤n−1 exhibits high-frequency features (HF features) such as oscillations, a term that still

needs to be defined properly. Since we do not know in advance whether such high-frequency features are

present and where they are located, we need to investigate the shape of (xni )0≤i≤n−1, which requires some

smoothing in order to get rid of the noise (ξni )0≤i≤n−1. However, any smoothing procedure tends to wipe

out high-frequencies in the data, which is adversarial to our goal.

Results and organisation of the study

The statistical test to differentiate HF features from noise in a signal is data-driven and is based

on the study of the projection of the signal in the Fourier domain. We propose in Section 1.2 a

parametric characterization of the HF features of a signal. This characterization also provides an

algorithmic procedure for the computation of the HF features, implemented in the Python language at

https://github.com/mmezache/HFFTest (see Appendix 1.6.2). The procedure consists in three steps: in the

first step, a regularization procedure is applied to the experimental data in order to smooth the fast

variations that may exist in the low frequency range. The second step of the procedure is the detection

and localization of significant peaks in the Fourier domain. The third step is the computation of the HF

features parameters by selecting one of these peaks. The construction of the statistical test of hypothesis
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and the computation of the p-value is described in Section 1.3.

The numerical examples are performed in Section 1.4 with sanity-check signals. They are constructed

around parameters which control their trend, their transient oscillations and their noise. We vary the ratio

of the amplitude of the HF features over the noise level (i.e. its standard deviation), which sheds light

on the robustness of the procedure: the transient oscillations are detected by the procedure even if the

noise level is significantly high. The procedure is then applied to static light scattering (SLS) experiments

of P rP Sc fibrils, in Section 1.5. They are characterised by their singular slow-varying components

(non-monotonous trend) and their fast-varying components (isolated discontinuous jumps, transient

oscillations, noise). We compute the HF features parameters of SLS signal experiments for different

initial concentration of P rP Sc. We conclude that these signals have significant HF features, i.e. the signals

display transient oscillations coming from biochemical reactions and not from the experimental noise.

1.2 Characterisation of high frequency features

The discrete Fourier transform (DFT) DFTn : Rn→R
n transfers a real-valued discrete signal (xni )0≤i≤n−1

of length n into a frequency domain via

DFTn
[
(xni )0≤i≤n−1

]
=

( n−1∑
i=0

xni e−j2πki/n
)

0≤k≤n−1
=

(
ϑn,k

)
0≤k≤n−1

. (1.2)

The single-sided amplitude spectrum gives all the information needed to visualise the signal

(xni )0≤i≤n−1 in the Fourier basis.

Our typical experimental signals have a specific low frequency trend combined with HF features or

transient oscillations that shall persist beyond denoising. The presence of a trend implies that there are

large Fourier coefficients ϑn,k on the scale corresponding to the low frequency information. Transient

oscillations can be characterised by large coefficients in mid or high frequencies that are relatively well

localised. As displayed by the test signal in Figure 1.2, a typical signal displaying oscillations would thus

consist, in the frequency domain, of large coefficients in the low frequency, then a decay to a minimum

value, and then one or more peaks in mid or high frequencies and a decay as the frequency grows

further. Hence HF features in a signal corresponds to a level of energy (measured by the norm of the DFT

coefficients) at a specific distance from the low frequency DFT coefficients in the frequency domain (cf

Figure 1.3).

For a discrete signal (xni )0≤i≤n−1 given in terms of its Fourier transform ϑn = (ϑn,k)0≤i≤n−1 via (1.2), we

characterise a HF feature by two nonnegative parameters: a location parameter g(ϑn) (in the frequency

domain) and an intensity parameter d(ϑn) (see Figure 1.3).
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Figure 1.2 – Graph of a test signal with HF features and its single-sided amplitude spectrum. Top: Plot of zi = f (0.4i) for

i = 0, . . . ,300 where f (x) = 1√
x+1

+0.3sin
(

2πx
5

)
1[40,80](x). Bottom: Plot of the amplitude spectrum of (zi )0≤i≤300 (logarithmic scale

for the y-axis).

First step: Pre-processing the signal

Replacing xni by xni +C for some arbitrary constant C, with no loss of generality, we may (and will) assume

that

|ϑn,0| > max
0≤k≤n−1

|ϑn,k |. (1.3)

Condition (1.3) is in force from now on. We transform ϑn = (ϑn,k)0≤i≤n−1 into a non-decreasing

sequence µ(m)
n = (µ(m)

n,j )m≤j≤n−m that depends on a certain smoothing parameter m (with 0 ≤ m ≤ n − 1)

defined as follows:

µ
(m)
n,m = min

k
ϑ

(m)
n,k ≤ µ

(m)
n,m+1 ≤ . . . ≤ µ

(m)
n,j ≤ µ

(m)
n,n−m = max

k
ϑ

(m)
n,k

where

ϑ
(m)
n,k =

(
1

2m+1

k+m∑
l=k−m

|ϑn,l |2
)1/2

, m ≤ k ≤ n−m− 1. (1.4)

In other words, the sequence µ(m)
n is the order statistics of a 2m-regularised version of ϑn.

Remark 3. The smoothing parameter m is needed as soon as the signal observed displays singularities e.g. a
jump discontinuity or a fast transition of monotonicity of the trend. These phenomena are approximated by the
harmonic sequence {ej2πk·, k ∈Z}, and when projected in the Fourier domain, the amplitude spectrum displays
a serie of spikes (cf Figure 1.4). These phenomena are related to Gibbs phenomenon ( [169], chapter 2) and give
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k

|ϑn,k |

d(ϑn)

g(ϑn)

Figure 1.3 – Idealized scheme of the parametrization of the HF features of a signal in the Fourier Domain. The parameter

g(f ) is the location parameter in the frequency scale which corresponds to the distance of the HF features from the low-frequency

components of the signal. The parameter d(f ) is the intensity parameter which corresponds to the relative amplitude of the HF

features.

rise to spikes in the Fourier domain which can be falsely interpreted as HF features. The regularization with an
adequate choice of the parameter m solves this issue (cf Figure 1.4 and Section 1.4).

Remark 4. The regularisation of order 2m transforms the sequence ϑn of n terms into a sequence of n− 2m

terms in order to avoid boundary effects. We label the indices of the series from m to n−m− 1 in so that the
parameter k in ϑ(m)

n,k is reminiscent of a frequency parameter and we formally have ϑ(0)
n,k = |ϑn,k |.

Second Step: Detection and Localization of significant features in the Fourier domain.

Define, for x ≥ 0

a(x) = a(m)
n (x) = min

{
k |m ≤ k ≤ n−m− 1, ϑ(m)

n,k ≤ x
}

(1.5)

and

b(x) = b(m)
n (x) = max

{
argmax

{
ϑ

(m)
n,k | a(x) ≤ k ≤ n−m− 1

}}
. (1.6)

Remark 5. The index a(x) is the minimal frequency at which searching for HF features starts, getting rid of
the potentially high energy levels arising from the low frequency part of the signal. The index b(x) is a maximal
frequency for which the energy level x is reached in the search zone {a(x),a(x) + 1, . . . ,n−m}.
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Figure 1.4 – Graph of a test signal with a jump and a change of monotonicity and its single-sided amplitude spectrum.
Top: Graph of the signal with a decreasing, increasing and stationary part. Middle: Zoom on the low frequency of the amplitude

spectrum for n = 10000 samples of the signal. The blue dot markers emphasize one over ten samples of the signal. Bottom: Plot of

the amplitude spectrum of the test signal (plain line). The dash line corresponds to the plot of (ϑ
(3)
n,k )3≤k≤n−4 defined by (1.4) with

m = 3.

Define the sets

A(m)
n =

{
µ

(m)
n,j | µ

(m)
n,j = ϑ(m)

n,b(µ(m)
n,j )
, m ≤ j ≤ n−m− 1

}
and

S (m)
n =

{
µ

(m)
n,j ∈ A

(m)
n | b(µ(m)

n,j ) > a(µ(m)
n,j ), m ≤ j ≤ n−m− 1

}
.

Remark 6. The set A(m)
n represents potential candidates for maximum energy levels of a HF feature, while S (m)

n

represents the set of intensities of the spikes of ϑn.

Third Step: Definition of the HF features parameters.

To define the HF features, we now select in the set S (m)
n the feature with maximum relative amplitude.

Let us define

d(x) = d(m)
n (x) = x −min

{
ϑ

(m)
n,k |m ≤ k ≤ b(m)

n (x)
}

(1.7)
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and we obtain a maximum intensity of HF feature as

ι
(m)
n (ϑn,·) ∈max

{
argmax
x∈S

(
x − min

m≤k≤b(m)
n (x)

ϑ
(m)
n,k

)}
= max

{
argmax
x∈S

d(m)
n (x)

}

if S (m)
n is non empty and ι(m)

n (ϑn,·) = 0 otherwise. Moreover if the set argmaxx∈S d
(m)
n (x) is not reduced to

a singleton taking its maximum ensures us to obtain a unique element for ι(m)
n (ϑn,·) i.e. the feature of

maximum relative amplitude and maximum intensity. We are ready to give a quantitative definition of a

HF feature:

Definition 3. To any discrete signal ϑn = (ϑn,k)0≤i≤n−1 given in the Fourier domain, we associate a high-
frequency feature (HF feature)

(
Gn,m(ϑn),Dn,m(ϑn)

)
at discretisation level n ≥ 1 and smoothing level m ≤ n−1

2

as follows:
Gn,m(ϑn) = b(m)

n

(
ι
(m)
n (ϑn)

)
−a(m)

n

(
ι
(m)
n (ϑn)

)
and

Dn,m(ϑn) = d(m)
n

(
ι
(m)
n (ϑn)

)
,

where b(m)
n , a(m)

n and d(m)
n are defined in (1.6), (1.5) and (1.7) respectively.

Remark 7. The parameters Gn,m(ϑn) and Dn,m(ϑn) are two distances (Gn,m(ϑn) is a distance on the frequency
axis and Dn,m(ϑ) on the intensity axis). This couple of parameters provides a characterization in the discrete
Fourier domain of events defined as HF features. For each signal, the parametric characterization is unique. It
describes the peak with the highest distance between its amplitude and the minimum amplitude of the Fourier
coefficients of lower frequencies (with Dn,m(ϑn)). The parameter Gn,m(ϑn) gives the distance in frequency indices
between the peak and the components in the low frequencies with the same intensity (see Figure 1.3).

1.3 Testing for HF features

We keep-up with the statistical setting introduced in Equation (1.1): we observe

yni = xni + σξni , i = 0, . . . ,n− 1, (1.8)

where (xni )0≤i≤n−1 is the signal of interest and the σξni are independent centred Gaussian random variables

with noise variance σ2, for some (large) n ≥ 1, interpreted as a maximal discretisation resolution level or

equivalently a maximal frequency of observation. Applying the discrete Fourier transform DFTn on both

sides of (1.8), we equivalently observe

ϑ̂n,k = ϑn,k + σξ̃k,n, k = 0, . . . ,n− 1,

where the σξ̃k,n are independent centred Gaussian random variables with variance σ2 as well, thanks

to the fact that DFTn is an orthogonal linear mapping. From data (yni )0≤i≤n−1 or rather (ϑ̂n,k)0≤k≤n−1, we
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wish to construct a statistically significant test of the absence of HF feature as the null, against a set of

local alternatives where some HF features are present.

1.3.1 Construction of a statistical test

Thanks to the characterisation of HF features via
(
Dn,m(ϑn),Gn,m(ϑn)

)
given in Definition 3, we test the

null

H0
n,m,ν,c : Gn,m(ϑn) < ν, Dn,m(ϑn) < c

against the local alternatives

H1
n,m,ν,c : Gn,m(ϑn) ≥ ν and Dn,m(ϑn) ≥ c

where ν > 0, c > 0 are thresholds to determine significant HF features. The null hypothesis H0, is that

there is no significant HF feature in the signal tested. On the contrary, the hypothesis H1 implies that the

signal has significant HF feature. For the test to be powerful, the main problem is to define the couple

(ν,c): for too small values any signal shall reject H0 whereas for large values, any signal shall accept H0.

We obtain simple test statistics for
(
Gn,m(ϑn),Dn,m(ϑn)

)
by setting

Ĝn,m = Gn,m(ϑ̂n) = b(m)
n

(
ι
(m)
n (ϑ̂n)

)
−a(m)

n

(
ι
(m)
n (ϑ̂n)

)
and

D̂n,m = Dn,m(ϑ̂n) = d(m)
n

(
ι
(m)
n (ϑ̂n)

)
.

In order to compute the p-value of the test, we design a Monte-Carlo procedure simulating a proxy of the

data (yi)0≤i≤n−1 under the null H0. Using the proxy, we define a reject region of our test for a risk level α

and the p-value of the data (yi)0≤i≤n−1.

Rejection zone at risk level α.

We first simulate N times y(0)
λ,n defined in (1.14) below, which is a simulated proxy of the data (yni )0≤i≤n−1

with HF features removed from the signal (xni )0≤i≤n−1. Repeating independently N times the procedure,

we obtain a Monte-Carlo sequence

y
(0),k
λ,n k = 1, . . . ,N .

In a second step, we denote by E0
N the cloud of points representing the HF features parameters of these

simulated signals (with HF features removed but with Gaussian noise):

E0
N =

{(
Gn,m

(
DFT[y(0),k

λ,n ]
)
,Dn,m

(
DFT[y(0),k

λ,n ]
))
| k = 1, . . . ,N

}
. (1.9)
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We define the function P : R2
+→ F ⊂ [0;1]:

P (g,d) =N−1
N∑
k=1

1{
Gn,m

(
DFT[y(0),k

λ,n ]
)
≥g, Dn,m

(
DFT[y(0),k

λ,n ]
)
≥d

}. (1.10)

Hence P (g,d) is the proportion of points in E0
N located in the North-East quarter of the plane centered

on (g,d) (cf Figure 1.5). In order to reduce the computation cost, we only consider the restriction of P to

the set E0
N . Thus if E0

N is reduced to a singleton, then the image set P (E0
N ) is equal to {1}, on the contrary

if E0
N contains N disjoint points then the minimal bound on P (E0

N ) is 1
N . For a risk level α ∈ P (E0

N ), the

Ĝk

D̂k

P (Ĝk , D̂k) = 1
3

P (Ĝk , D̂k) = 2
3

P (Ĝk , D̂k) = 1
3

Figure 1.5 – Cloud of points
(
Ĝk , D̂k

)
=

(
Gn,m

(
DFT[y(0),k

λ,n ]
)
,Dn,m

(
DFT[y(0),k

λ,n ]
))

for k = 1,2,3.

rejection zone of our test is defined as

Rm,n
(
κα1 ,κ

α
2

)
=

{
(yi)1≤i≤n defined by (1.1) s.t. Ĝn,m ≥ κα1 , D̂n,m ≥ κα2

}
(1.11)

where (Ĝn,m, D̂n,m) is the test statistics and
(
κα1 ,κ

α
2

)
∈ E0

N are such that

P (κα1 ,κ
α
2 ) = α. (1.12)

Remark 8. The risk level α is imposed by the Monte-Carlo sequence, α ∈ P (E0
N ) ⊂ [ 1

N ;1]. For example,
Figure 1.5 represents an arbitrary set E0

N for N = 3. Consequently, we note that 1
3 ≤ α ≤ 1 in order to obtain

candidates κα1 ,κ
α
2 . For α < 1

3 no candidate can be obtained by this procedure and its associated reject region is
not defined. Moreover there can be multiple reject regions defined for the same risk level α (in the example whe
have two reject regions for α = 1

3 ).

The main idea behind the computation of the couples
(
Gn,m

(
DFT[y(0),k

λ,n ]
)
,Dn,m

(
DFT[y(0),k

λ,n ]
))

is to

generate random outcomes under the null H(0) that enable us to compute risk level by Monte-Carlo.

The couples correspond to the relative amplitude and the frequency gap for a non-oscillating signal
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with noise. We also get reject region(s) of level α thanks to the threshold(s)
(
κα1 ,κ

α
2

)
. We do not need

uniqueness of the reject region in order to define and compute the p-value, see below.

Definition of the p− value.

The p− value of the observations (yni )0≤i≤n−1 is defined as

p− value
(
(yni )0≤i≤n−1

)
= min

{
α ∈ P (E0

N ) | Ĝn,m ≥ κα1 , D̂n,m ≥ κα2
}
. (1.13)

An equivalent definition of the p-value of the observations (yni )0≤i≤n−1 is obtained via

p− value
(
(yni )0≤i≤n−1

)
= inf

{
α ∈ P (E0

N )| (yni )0≤i≤n−1 ∈ Rm,n
(
κα1 ,κ

α
2

)}
.

Ĝkn,m

D̂kn,m (
κ1/3

1 ,κ1/3
2

)

(
κ2/3

1 ,κ2/3
2

)

(
Ĝn,m, D̂n,m

)
(
κ1/3

1 ,κ1/3
2

)

Figure 1.6 – Point cloud
(
Ĝkn,m, D̂

k
n,m

)
for k = 1,2,3 (black dots) and HF feature parameters

(
Ĝn,m, D̂n,m

)
(red dot).

Remark 9. The computation of the p− value is illustrated schematically in Figure 1.6. We observe the point
cloud formed by

(
Ĝkn,m, D̂

k
n,m

)
(the black dots) for k = 1,2,3. On the vertical axis we have the relative amplitude

and on the horizontal axis we have the gap in frequency between the oscillations and the trend in the Fourier
domain. The red dot illustrates the HF features parameters subject to the test. We use the

(
Ĝkn,m, D̂

k
n,m

)
as our

grid to compute the p-value. Using (1.12), we compute the level α and obtain consequently the
(
κα1 ,κ

α
2

)
for each

element of the grid. The p-value is 2
3 in this example.

The p− value gives a confidence index for non-rejecting the null. This index is meaningful provided

the test has a good power, i.e. if the probability of making a type II error is small. Hence the p− value of(
(yni )0≤i≤n−1

)
is our measure of confidence in non-rejection of the null H0. The main difficulty however

lies in solving (1.11) since ϑn remains unknown under the null and that there are no reason that Ĝn,m or
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D̂n,m are pivotal statistics under the null. We describe below a numerical procedure based on Monte-Carlo

simulation that estimates y(0)
λ,n a proxy of the data with HF features removed but with noise.

1.3.2 A Monte-Carlo procedure for the simulation of the null

In order to evaluate (1.11) and (1.13), we first build a low-frequency estimator x̂(0)
λ,n from the data

(yni )0≤i≤n−1 that removes the potential HF features. The estimator depends on a regularisation parameter

λ. We next define

y
(0)
λ,i,n = x̂(0)

λ,i,n + σ̂nε
n
i , i = 0, . . . ,n− 1, (1.14)

where the εni are independent centred Gaussian random variables that we simulate and σ̂n is an estimator

of the standard deviation of the noise. The simulated signal (y(0)
λ,i,n)0≤i≤n−1 obtained by estimating a proxy

of f with HF features removed with additional simulated noise serves as a proxy of the data (yni )0≤i≤n−1

under the null H0.

Numerical computation of f̂ (0)
λ,n

Trend estimation or filtering for mimicking a signal with HF features removed has many applications and

hence it has been extensively studied. It has given rise to the smoothing and filtering methods such as the

moving average [164], smoothing splines [136], Hodrick-Prescott filtering [134], `1-trend filtering [82]

and so on. The trend is considered as the general shape of a signal or a time series. Although the trend

is often understood and perceived intuitively, its estimator relies on the definitions given to the trend.

The differences between the various definitions of the trend are a matter of interpretation. Considering

the different definitions of the trend, the choice of the method to estimate this component is more likely

qualitative. In the following, the trend is considered as the underlying slowly varying component of the

signal and we choose the `1-trend filtering method described in [82] to estimate it. The estimator of x̂(0)
λ,n

as a n-dimensional vector is then the solution of the following optimisation problem:

x̂
(0)
λ,n ∈ argmin

x∈Rn

1
2

n−1∑
i=1

(yni − x
n
i )2 +λ

n−2∑
i=1

|xni−1 − 2xni + xni+1|, (1.15)

where λ ≥ 0 is a regularisation parameter which controls the trade-off between the smoothness of x̂(0)
λ,n

and the residual
∑n−1
i=0

(
x̂

(0)
λ,n,i − y

n
i

)2
. We note that the second term

n−2∑
i=1
|xni−1 − 2xni + xni+1| is the `1-norm of

the second order variations of the sequence (xn) (i.e. the discretization of the corresponding L1-norm of

the second derivative of a function). Moreover, for any sequence (xn),

|xni−1 − 2xni + xni+1| = 0, ∀i = 0, . . . ,n− 1 ⇐⇒ xni = αi + β, with α,β ∈R, ∀i = 0, . . . ,n− 1.

Thus only an affine function has its `1-norm equal to 0. Hence this method gives an estimator of the

trend such that:
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(i) x̂(0)
λ,n is computed numerically in O(n) operations,

(ii) as λ→ 0, max0≤i≤n−1 |x̂
(0)
λ,n − y

n
i | → 0, the estimator converges to the original data,

(iii) as λ → ∞, the estimator converges to the best affine fit of the observations. This convergence

happens for a finite value of λ [82].

(iv) x̂(0)
λ,n is piecewise linear, i.e. there are indices 0 = j1 < j2 < . . . < jK = n− 1 for which:

x̂
(0)
λ,n,i = αki + βk , jk < i < jk+1, k = 1, . . . ,K − 1.

The `1-trend filtering method is well suited to extract the trend components of the signals studied in

Section 1.4. Since the signals display singularities such as discontinuous jumps, the trend extracted is well

approximated by a piecewise linear function. Moreover the HF features in the signals are components

looking like sine waves and varying at an intermediate pace. However interpolating a sine wave by a

piecewise linear function requires a fine scale and thus the parameter λ has to be close to 0. Rising

slightly the value of λ allows us to capture the trend without the HF features. Moreover there exists

a threshold λmax ∈ R+ [82] such that x̂(0)
λmax,n

is the trend estimator corresponding to the best affine fit.

It implies that the choice of λ is restricted to the bounded open interval (0, λmax). Since there is no

optimal criterium to choose λ, the choice of the parameter is qualitative and motivated empirically (see

Section 1.4).

Numerical estimation of the noise level σ̂n

The estimator of the standard deviation of the noise is the second ingredient needed in order to compute

f̂
(0)
λ,n in (1.14). The methods to estimate the level of noise are closely linked to the methods of signal

denoising and thus have been extensively studied. The method chosen to estimate the noise level is

the median absolute deviation and the denoised signal is obtained thanks to the wavelet shrinkage

methods [49, 50, 52, 51].

We assume that our data y = (yi)0≤i≤n−1 are such that n = 2J+1 for J > 0. We then consider an orthogonal

wavelet transform matrixW for a given filter. Choosing wavelets (e.g. Coiflet, Daubechies, Haar) and

varying the combinations of parameters M (number of vanishing moments), S (support width) and j0
(low-resolution cut-off) one may construct various orthogonal matricesW (see for details [96], chapter 7).

In this study we use the Symmlet with parameter 8 which has M = 7 vanishing moments and support

length S = 15. The wavelet coefficients of y are denoted by w and

w =Wx+ σξ̃,

where ξ̃ =Wξ is a standard Gaussian random vector by orthogonality ofW . For convenience, we index

dyadically the vector of the wavelet coefficients

wj,k j = 0, . . . , J, k = 0, . . . ,2j − 1.
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We make the legitimate assumption that empirical wavelet coefficients at the finest resolution level J are

essentially pure noise. Hence the standard deviation estimator σ̂n is the median absolute deviation

σ̂n =
median(wJ,·)
Φ−1(3/4)

, (1.16)

where Φ−1(·) is the inverse of the cumulative distribution function for the standard normal distribution.

Thus σ̂n is a consistent estimator of σ . It is interesting to note that further computations give the

VisuShrink estimator x̂n of the signal (xni )0≤i≤n−1

x̂n =WT • ŵn,j0 •W , (1.17)

where j0 denotes a low resolution cut-off and ŵn,j0 is the estimator in the wavelet domain

ŵn,j0 =

 wj,· j < j0
sign(wj,·)

(
|wj,·| − σ̂n(2logn)1/2

)
+

j0 ≤ j ≤ J
.

The first reason that motivated this choice is that the shrinkage methods attempt to remove whatever

noise is present and retain whatever signal is present regardless of the frequency [51]. The goal of this

study is to estimate HF features in noisy signals. However the traditional methods of noise removal

such as low-pass filters are based on frequency-dependent estimators, which can also impact and distort

the results of the HF feature procedure. The second reason is that these methods are data-driven and

no specific assumptions on the signal are required. The wavelet shrinkage is spatially adapted and the

method is efficient for a wide variety of signals even when the signals exhibit spatial inhomogeneities [51].

Finally these methods are proven to be nearly optimal for the mean squared error criterion when the

smoothness of the original signal is unknown [52].

1.4 Simulation example: sanity check of the procedure.

Pre-processing: a data-driven choice of m

We first address the delicate issue of choosing the smoothing parameter m. Define a sequence (mi)1≤i≤K
such that

1 =m1 < m2 < . . . < mK ≤ n−1
2 .

We can take for instance mi = i for i = 1, . . . ,K . Note that K ∈ {1, . . . , n−1
2 } is the parameter defining the

length of the finite sequence (mi)1≤i≤K . This parameter can be fixed by the user in order to reduce the

number of iterations of the procedure to compute the HF features. However, a standard choice of K to

obtain a data-driven procedure is K = n−1
2 , since averaging the signal over more than half of the sample

size is obviously meaningless. A good rule of thumbs is that K = n
1
2 , since it reduces the number of
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calculations and remains pertinent compared to the range of the signal. Let

i? ∈ argmax
1≤i≤K

∣∣∣Ĝn,mi − Ĝn,mi−1

∣∣∣,
then

m̂ =

 mi? if Ĝn,mi? > Ĝn,mi?−1

mi?−1 otherwise.
(1.18)

As previously stated in Remark 3, the empirical signals observed are non-monotonous, contain singulari-

ties and transient oscillations. Their amplitude spectra display a series of spikes in the low-frequencies

and in the mid or high frequencies. Hence without a pre-processing step, the HF feature parameters

(Definition (3)) characterize the low frequencies features (i.e. the trend represented in the amplitude

spectrum by spikes in the low frequencies, see Figure 1.4).

In order to solve this problem, we regularize the Fourier coefficients as defined in (1.4). The sequence

(mk)1≤k≤K gradually smoothes the Fourier amplitude spectrum: the spikes in the low frequencies merge

together whereas the isolated spikes in the mid or high frequencies (corresponding to transient os-

cillations) slightly decrease in amplitude but remain significant. The data-driven choice of m is well

adapted to regularize the empirical signals since it chooses the parameter m̂ from the sequence (mk)1≤k≤K
which maximizes the difference between the localisation parameters Ĝ for two consecutive smoothing

parameters. Thus the spikes located in a close frequency range have been smoothed and the remaining

spikes of significant amplitude for the regularization parameter m̂ are isolated in the Fourier amplitude

spectrum.

Defining a test signal

To study numerically the validity of the procedure and the statistical test, we first compute a simulated

signal where all the parameters are known. To do so, we superimpose three signals: one for the general

trend of the curve, one for the HF features, and one for the noise. The signal obtained is the vector

(Si)0≤i≤n−1:

Si = Ti +Oi + σξi , (1.19)

where σ > 0 is the parameter corresponding to the level of noise and ξi are realizations of independent

and identically normally distributed random variables. Moreover (Ti)0≤i≤n−1 corresponds to the trend

and (Oi)0≤i≤n−1 to the HF features (cf Figure 1.7).

For the general trend, we choose the Lennard Jones potential [77], since we notice that its DFT is not

monotonously decreasing in the low frequency range (see Figure 1.2) and that it displays a similar shape

as the experimental signals presented in Section 1.5. The Lennard Jones potential is defined by Pi :

Pi =
(
c1

[(c2

i

)p
− c3

(c2

i

)q]
+ c4

)
.
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Since this potential is not defined at 0, we link the potential to an affine function. Hence we introduce

the index j (0 < j < n− 1) which connects the potential to the affine function. We denote the trend by the

vector (Ti)0≤i≤n−1:

Ti =
(
Pj+1 − Pj
j + 1

i + Pj

)
1{0≤i≤j} + Pi1{j+1≤i≤n−1}.

The HF features in the test signal correspond to sine waves and are located at a specific time interval.

Figure 1.7 – Simulation of the test signal defined by (1.19).The x-axis is the time in hours. (Up) Plot of (Ti )0≤i≤105 with

parameters c1 = 0.4, c2 = c3 = c4 = 2, p2 = q = 3, j0 = 1700, j1 = 3400. (Middle) Plot of (Ti +Oi )0≤i≤105 with the same parameters

and ca = 0.05, cf = 10. (Down) Plot of (Si )0≤i≤105 with the same parameters and σ = 0.025.

Hence we introduce the indices 0 < j0 < j1 < n− 1 which localize the oscillations in the signal, and we

define the oscillations by the vector (Oi)0≤i≤n−1:

Oi = ca(i − j0)(j1 − i)sin(2πcf i)
(

4
(j1 − j0)2

)
1{j0≤i≤j1} (1.20)

where ca (resp. cf ) is the parameter for the amplitude ( resp. the frequency) of the oscillations.

Numerical computations and robustness of the procedure. We want to understand the robustness of

the numerical procedure when the frequencies and the amplitudes of the oscillations are fixed but the

level of noise varies. Other said, for which parameters of the oscillations and for which level of noise

does the test return that the signal oscillates (or not)? In order to answer this question, we propose the

following sensitivity analysis.
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σ 1
10ca

1
2ca ca 2ca 10ca

m̂ 6 6 6 6 24

Ĝn,m̂ (Hz) 2.069e−3 2.044e−3 2.145e−3 1.943e−3 8.437e−2

D̂n,m̂ 1.73e−4 1.807e−4 1.807e−4 1.844e−4 2.768e−3

p-value 5e−5 5e−5 5e−5 5e−5 4.023e−1

Figure 1.8 – Table of estimators and p-values of the sanity-check signals. The simulation of the null
is performed with the real trend of the signals.

First we remind the parameters in our system. From the signal construction, we have three parameters

:

• σ the standard deviation of the normal distributed noise,

• ca the parameter corresponding to the amplitude of the oscillations,

• cf the parameter corresponding to the frequency of the oscillations (since the time scale is in hours,

cf /3600 is expressed in Hz).

The smoothing parameter m̂ is chosen thanks to the data-driven procedure described previously (1.18).

The relevant output of our model is the p-value of the signals computed thanks to the numerical

procedure. A natural way to study the sensitivity of the p-value to the parameters is to fix all parameters

but one and observe the effect on the p-values obtained. In this example the varying parameter is the

level of noise σ ∈
{

1
10ca,

1
2ca, ca, 2ca, 10ca

}
.

First sanity check test

Since we are working with a constructed sanity check signal, we obtained (Ĝkn,m̂, D̂
k
n,m̂) in Figure 1.9 by

applying the procedure of detection of the HF feature parameters setting ca = cf = 0 (it corresponds

to Si = Ti + σξi in (1.19)). Thus the simulation of the null in Section 1.3.2 is performed using the real

trend of the signal in (1.14). Then the signal tested (Figure 1.9) are constructed signal with parameters

ca = 0.05, cf = 10 and σ ∈ { 1
10ca,

1
2ca, ca, 2ca, 10ca} in (1.19). The results of the detection of HF features

and the statistical test are in Table 1.8. We note that for standard deviations of the noise between a tenth

and the double of the amplitude of the oscillations, the p-value of the test is equal to 5e − 5. Hence,

we are inclined to reject the hypothesis H0 which corresponds to the event that the signal displays no

oscillations. Moreover we note that the signals with standard deviations of the noise between 1
10ca and

2ca have almost the same HF feature parameters where (Ĝn,m̂, D̂n,m̂) ≈ (2e− 3,1.8e− 4). In contrast, for the
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Figure 1.9 – Numerical results of the procedure on the sanity-check signal when the simulation of the null is performed
with the real trend. (Left column) Plot of (Si )1≤i≤105 (1.19) with the parameters c1 = 0.4, c2 = c3 = c4 = 2, p2 = q = 3, j0 = 1700, j1 =

3400, ca = 0.05, cf = 10 and σ ∈
{

1
10 ca,

1
2 ca, ca, 2ca, 10ca

}
from top to bottom. The x-axis is the time in hours. (Right column) The

black dots are the cloud of points of the simulation of the null, for N = 20000. The red diamond corresponds to the HF features

parameters of the corresponding signal on the left column. The x-axis is the localization parameters Ĝn,m̂ and the y-axis is the

relative amplitude D̂n,m̂.

signal with the standard deviation of the noise of 10ca, the p-value is equal to 0.4, hence we are inclined

to accept that the signal has not significant enough HF feature.

Second sanity check test

The second step is to test the procedure on the same signals but using the trend estimate given by (1.15)

and the noise estimation procedure described in the first step of Section 1.3.2. The method chosen to

estimate the trend of the signal is the `1-trend filtering [82]. As displayed in Figure 1.10, the trend

estimation is less robust as the standard deviation of the noise rises. However this method is qualitatively

the right one to estimate the trend of a signal displaying jumps or spikes.

Hence we compute the procedure to obtain the HF features parameters for the sanity check signals

using (1.19) with standard deviation level σ ∈
{

1
10ca,

1
2ca, ca, 2ca, 10ca

}
. The p-values are computed using

the `1-trend estimators in order to obtain the couples (Ĝkn,m̂, D̂
k
n,m̂) where k = 1, . . . ,20000. The results are

in Table 1.11. Similarly to the first sanity check, the p-values for the signals with a level of noise from 1
10ca

to 2ca is equal to 5e− 5. Hence the procedure detect significant HF features where Ĝn,m̂ ≈ (2e− 3,2e− 4).

Also for a standard deviation of the noise of 10ca, the p-value is 5.32e−2, so that HF feature parameters

are not significant enough.
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Figure 1.10 – Numerical estimation of the trend on the sanity check signals. The x-axis is the time in hours.The parameter

in the `1-trend filtering is λ = 301. (Up) Plot of (Pi +Oi )0≤i≤105 in (1.19) with parameters c1 = 0.4, c2 = c3 = c4 = 2, p2 = q = 3, j0 =

1700, j1 = 3400 ca = 0.05, cf = 10. The dashed line is the `1-trend estimator when σ = 1
10 ca. (Middle) The dashed line is the

`1-trend estimator when σ = ca. (Down )The dashed line is the `1-trend estimator when σ = 10ca.

σ 1
10ca

1
2ca ca 2ca 10ca

m̂ 3 3 3 3 18

Ĝn,m̂ (Hz) 2.095e−3 2.095e−3 2.044e−3 2.12e−3 1.181e−1

D̂n,m̂ 1.768e−4 1.784e−4 1.918e−4 2.394e−4 3.593e−3

p-value 5e− 5 5e−5 5e−5 5e−5 5.32e−2

Figure 1.11 – Table of estimators and p-values of the sanity-check signals. The simulation of the null
is performed with the `1-estimate of the trend (1.15) of the signals.

1.5 Empirical analysis on biological data

The Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of

animal and human brain diseases. The neurodegenerative processes are poorly understood and hence

fatal. However the largely accepted hypothesis suggests that the infectious agent (PrPsc) is the misfolded

form of the normal Prion protein (PrPc). The PrPsc forms multimeric assemblies (fibrils) which are the

prerequisite for the replication and propagation of the diseases [131]. To follow the aggregation kinetics

of these fibrils, compare it to mathematical models and get a better understanding of these diseases,



58 CHAPTER 1. Testing for high frequency features in a noisy signal

several experimental and measurement devices are used, among which the Static Light Scattering

(SLS). The Static Light Scattering (SLS) signal is an experimental measurement which describes the

temporal dynamics of PrP amyloid assemblies formed in vitro [93] see Fig. 1.1 taken from [54] (see

Appendix 1.6.1).These signals correspond to an affine transformation of the second moment of the size

distribution of protein polymers or fibrils through time [128]:∑
i∈I

i2ci(t) + σ,

where I denotes the set of the sizes of the fibrils, ci the concentration of fibrils of size i which is varying

with the time t and σ > 0 is the experimental noise (σ can be time-dependent). At the beginning of the

experiment the fibrils are large, containing in average several hundreds of monomers, which undergo

an overall depolymerization process and leads to a decay in the signal. The experiment is carried out

with six initial concentrations of fibrils (Figure 1.12) ranging from 0.25µmol to 3µmol; at higher initial

concentrations (0.5µmol and higher), a re-polymerisation process can be observed, which may be viewed

by the fact that the trend of the signal increases again before reaching a plateau. Moreover the SLS signals

differ in terms of variance of noise and amplitude of oscillations (noticed by sight). We thus study each

signal independently.

In order to test whether the signals display HF features, we submit the observations to the statistical

test described above. The denoised signal and hence the standard deviation of the noise are estimated

thanks to the VisuShrink method and the median absolute deviation (cf [51], [50]) using the symmlet

wavelet with 8 vanishing moments and the library Wavelab [25] (the same results have been obtained with

the homemade python library, see Appendix 1.6.2). The trend of the signal is estimated with the `1-trend

filtering method with the parameter λ = 31 (λ is fixed qualitatively in order for the trend to include

the discontinuous jumps of the SLS experiments). The results of the statistical test are summarized in

Table 1.13.

We note that all signals display oscillations more or less pronounced (cf. Figure 1.14). The relative

amplitude of the oscillations D̂n,m̂ differs from one signal to another for three reasons. First of all,

each signal corresponds to an experiment with a specific initial concentration. The calibration of the

experiments is not identical for experiments with different initial concentrations. Secondly, the signals

are not on the same scale. The signal with initial concentration of 0.25µmol goes from 0.5 to 2.2 in

amplitude, and the signal of initial concentration of 3µmol goes from 16 to 28 in amplitude. Finally, they

do not have the same regularization coefficient m̂.

However the frequency localization parameters are comparable. In Table 1.13, we note that the

parameters Ĝn,m̂ are in the same range of value with a factor of less than 4 between the minimum and

maximum Ĝn,m̂. Finally all the p-value of the tests are equal to 5e− 5, the tests confirm that the signals

display significant HF features.

Through this study, we demonstrated the existence of oscillatory behavior in the SLS experiments. The

immediate biochemical consequences are the coexistence of structurally distinct PrP assemblies within
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Figure 1.12 – SLS experiments and trend estimates. The x-axis is the time in hours. The parameter in the `1-trend filtering

is λ = 31. (Top left) Plot of n = 32768 samples of SLS outputs with initial concentration (I0) of 0.25µmol of P rP Sc fibrils.The

dashed line is the `1-trend estimator. (Middle left) I0 = 0.35µmol (Bottom left) I0 = 0.5µmol. (Top right) I0 = 1µmol. (Middle right)

I0 = 2µmol. (Bottom right) I0 = 3µmol.

Concentration (µmol) 0.25 0.35 0.5 1 2 3

σ̂ 3.553e− 3 4.72e− 2 1.11e− 2 3.09e− 2 8.44e− 2 1.287e− 1

m̂ 4 3 5 7 9 7

Ĝn,m̂ (Hz) 4.954e−3 7.53e−3 5.656e−3 8.375.e−3 2.698e−3 4.971e−3

D̂n,m̂ 9.649e−6 1.863e−5 1.012e−4 6.526e−4 3.345e−4 1.01e−3

p-value 5e− 5 5e−5 5e−5 5e−5 5e−5 5e−5

Figure 1.13 – Table of estimators and p-values for the test of presence of HF features in the SLS
experiments
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Figure 1.14 – HF features of the SLS experiments and numerical results of the estimation of the HF features parame-
ters.(Left column) Zoom on the SLS experimentation signals with initial concentration in µmol from the top to the bottom of

I0 ∈ {0.25, 0.35, 0.5, 1, 2, ,3} The x-axis is the time in Hours. (Right column) The black dots are the cloud of points (Ĝkn,m̂, D̂
k
n,m̂)

corresponding to the simulation of the null for k = 1, . . . ,20000. The red diamond corresponds to the HF features parameters

(Ĝn,m̂, D̂n,m̂), defined by Definition 3, of the corresponding signal on the left column. The x-axis is the localization parameter of the

HF features and the y-axis is the relative amplitude of the HF .

the same media and the unstable behavior, i.e. out of the thermo-dynamical equilibrium, of the chemical

system formed by theses assemblies. Indeed the observation of oscillations in these light-scattering

experiments has shed light on the existence of a complex chemical reaction network beyond the existing

aggregation-fragmentation models. This has paved the way for new mechanistic models, e.g. a system of

reactions which possibly involve several conformations of PrP assemblies [54], capable of explaining such

phenomena. Also it has been reported that the existence of multiple conformations of PrP assemblies

within an isolate contributes to the adaptation and evolution of Prion as a pathogen to a new environment

and a new host [94].

Further biochemical characterizations are required to explore the dynamics of these oscillations and

to establish more precise kinetic models. The methodology developed in the present work will lead to

analyze and characterize with specific parameters transient oscillations. These parameters will lead to

evaluate physico-chemical conditions as well as the dynamic of the present complex system.
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Summary

In this study, we have introduced a method, based on the discrete Fourier transform, to quantify the

high frequency features of a given non stationary discrete signal, and then test whether the parameters

characterizing these features may be considered as significant or not. We then tested our method on

simulated and experimental data, which shed light on its efficiency, since HF features may be detected

even with a noise of the same amplitude. Moreover, the two parameters estimated from the data to

characterize the HF are informative per se: they could be used by the experimentalists to compare different

experimental conditions and their influence on such transient phenomena in the signals. They may also

reveal useful in the search for quantitative comparison between mechanistic models, such as the one

proposed in [54], and experimental data.

The test to detect HF feature is based on the projection of the signal in a discrete Fourier basis.

A further step, in order to localize them, would be to define them in a wavelet basis. The number of

parameters will then be equal to three (one for the resolution, one for the amplitude and one for the

localisation on the time-scale), and the test of hypothesis has to be extended to this framework. This is a

direction for future work.

1.6 Supplementary and appendix

1.6.1 Materials and methods of the depolymerisation experiment shown in Fig-
ures 1.1 and 1.12

Formation of amyloid fibrils: PrP amyloid fibrils were formed using the manual setup protocol described

previously in [21]. Fibril formation was monitored using a ThT binding assay [21]. Samples were dialysed

in 10 mM sodium acetate, pH 5.0. Then fibrils were collected by ultracentrifugation and resuspended

in 10 mM sodium acetate, pH 5.0. A washing step was performed by repeating the ultracentrifugation

and resuspension steps in 10 mM sodium acetate, pH 5.0. Static light scattering: Static light scattering

kinetic experiments were performed with a thermostatic homemade device using a 407-nm laser beam.

Light-scattered signals were recorded at a 1120 angle. Signals were processed with a homemade MatLab

program. All experiments have been performed at 550C in a 2mmX10mm cuve.

1.6.2 Library in python to implement the numerical simulation

The numerical simulations have been made with the library python accessible at

https://github.com/mmezache/HFFTest. The functions of the library are explicitely commented in

the file "README.md". The functions are organized in four categories in the library:

1. the procedure to compute the HF features parameters,
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2. the procedure to simulate the null hypothesis,

3. the Monte-Carlo procedure to compute the p-value,

4. the procedure to compute test signals such as the ones displayed in Figures 1.2, 1.4, 1.7.

The file "ExampleHFF.py" is a python program which compute the complete procedure for a test signal.

The users may change at will the following parameters:

• the length of the signal,

• the standard deviation of the noise,

• the amplitude of the oscillations,

• the parameter of the `1-trend filtering,

• the number of iteration of the Monte-Carlo procedure,

• the choice of the test signal.

The program displays the test signal obtained, the trend estimate, the cloud of points corresponding to

the HF features of the null (blue dots) and the point corresponding to the HF features of the tested signal

(red dot), and the single-sided amplitude spectrum of the signal which emphasizes the points where the

computations of the HF features are computed (cf Figure 1.3).

The time of computations may be significantly long if the number of iteration of the Monte-Carlo

procedure is big (over 100). However the Monte-Carlo procedure can be computed in a parallelized

framework which reduces drastically the time of computations.

Moreover the automatic choice of the smoothing parameter m̂ is efficient for signals which display

oscillations of "high" frequency, i.e. if the spike corresponding to the oscillations in the single sided

amplitude spectrum is located away from the low-frequency components (cf Section 1.4 and example 2 in

"ExampleHFF.py"). The procedured was designed to identify oscillations "hidden" in the noise, a situation

which corresponds to the experimental signals. If the signal tested has oscillations located in the low-

frequencies, the users are advised to fix the smoothing parameters (cf example 1 in "ExampleHFF.py").



Chapter2
A bi-monomeric system to capture

oscillatory aggregation kinetics

2.1 Introduction

The aim of this chapter is to propose and study a new polymerisation-depolymerisation model capable

of explaining oscillations, which have been observed experimentally in the time-course of prion protein

polymerisation experiments. Up to our knowledge, such oscillations have never been observed, either

theoretically or numerically, in the family of growth-fragmentation-nucleation equations, which are

most often used to model protein polymerisation. In order to understand the appearance of oscillations

observed in protein aggregation experiments, we propose, motivate and analyse mathematically the

differential system describing the kinetics of the following reactions:
V +W k−→ 2W ,
W + Ci

ai−→ Ci+1, 1 ≤ i ≤ n,

Ci +V
bi−−→ Ci−1 + 2V , 2 ≤ i ≤ n,

with n finite or infinite. This system may be viewed as a variant of the seminal Becker-Döring system,

and is capable of displaying sustained though damped oscillations.

This work is the result of a collaboration with M. Doumic1, K. Fellner2 and H. Rezaei3 and has been

published in the Journal of Theoritical Biology [55].

1Sorbonne Universités, Inria, Université Paris-Diderot, CNRS, Laboratoire Jacques-Louis Lions, F-75005 Paris, France,
marie.doumic@inria.fr

2University of Graz, Austria, Institute of Mathematics and Scientific Computing, 8010 Graz, klemens.fellner@uni-graz.at
3INRA, UR892, Virologie Immunologie Moléculaires, 78350 Jouy-en-Josas, France, human.rezaei@inra.fr

63



64 A bi-monomeric system to capture oscillatory aggregation kinetics

Biological background and motivation

The prion phenomenon (prion being derived from ‘proteinaceous infectious only particle’) involves the

self-propagation of a biological information through structural information transfer from a protein in a

prion-state (i.e. misfolded resp. infectious) to the same protein in a non-prion state. Such a concept is key

to the regulation of diverse physiological systems and to the pathogenesis of prion diseases [40, 135, 154].

Recently, prion-like mechanisms have been involved in the propagation and gain of toxic functions of

proteins or peptides associated with other neurodegenerative disorders such as Alzheimer, Parkinson

and Huntington diseases [80]. Elucidating the mechanisms driving prion-like aggregation is thus of key

importance, and, as explained below, still requires new mathematical modelling and analysis.

During the evolution of prion pathology, the host encoded monomeric prion protein (PrPC) is

converted into misfolded aggregating conformers (PrPSc) [19]. PrPSc assemblies have the ability to

self-replicate and self-organise in the brain through a still unresolved molecular mechanism commonly

called templating. Differences in disease phenotypes (distinctive symptomologies, incubation times, and

infectious characters of PrPSc) are reported within the same host species. These phenotypic differences are

assigned to structural differences in PrPSc assemblies, introducing the concept of prion strains based on

structural diversity/heterogeneity of PrPSc assemblies [73]. In the prion literature a plethora of evidences

strongly suggest that within a given prion strain a PrPSc structural heterogeneity exists, which suggests

that in a given environment structurally different PrPSc subassemblies with different biological and

physico-chemical properties coexist [94] even if the mechanism of this diversification remains elusive. To

date, very few mathematical models have taken into account the coexistence of multiple prion assemblies

or multiple type of fibrils [41]. Indeed, most of the aggregation models have been built using the canonical

nucleation-elongation-fragmentation process seminally reported by Bishop and Ferrone (see e.g. [18,

98, 126]), which is based on the existence of a structurally unique type of assemblies characterised only

by their size distribution. The characterisation of multiple types of PrPSc subassemblies with different

rates of aggregation, depolymerisation and exchange requires new mathematical models and analyses to

describe the dynamics and relation between different subspecies.

In order to explore the consequence of the coexistence of structurally different PrPSc assemblies

within the same environment, the depolymerisation kinetics of recombinant PrP amyloid fibrils have

been explored by Static Light Scattering (SLS) [100]. A detailed study of those experiments revealed

a surprising, transient oscillatory phenomenon, as the time evolution of the SLS measurement (see

Appendix 2.6.2 for details) shows in Figure 2.1. First note that when denoting by ci(t) the concentrations

at time t of the polymers containing i monomers, we can interpret the signal of an experimental SLS

measurement, as in [126], as the time evolution of the second moment of the polymers, i.e.

M2(t) :=
n∑
i=1

i2ci(t). (2.1)

Hence, at the beginning of the experiments, after a short lag phase, quick depolymerisation is observed.

This is followed by a transient phase ranging from approximately 1h to 11 hours, when slow variations
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Figure 2.1 – Human PrP amyloid fibrils (Hu fibrils) depolymerisation monitored by Static Light Scattering
(see Appendix 2.6.2 for details). A: The overall view of the 0.35µM Hu-fibrils depolymerisation at 550C.
B-E correspond to a zoom-in on different time-segments of the depolymerisation curve A. As shown in B,
from time 4 to time 5h oscillations have been observed when for time segment corresponding to time
15.3 to 15.5h only noise has been detected (D).

were superimposed by fast periodic oscillations with a frequency around 0.01 to 0.02 Hz, see Figures 2.1B

and 2.1C. Both the variations and the oscillations progressively disappear, and a constant signal with

noise is observed at the end of the experiments (Figure 2.1, D and E). This specific phenomenon may be

used to gain new insight into the underlying biological mechanism.

A first key question of our study is thus the following: What kind of core elements should a model

feature in order to explain the appearance of such oscillations?

The most natural departure point in the formulation of a suitable mathematical model is the Becker-

Döring model of polymerisation and depolymerisation [9]. The Becker-Döring model is coherent with

other biological measurements [100], and it is viewed in the protein polymerisation literature as the

"primary pathway" model [18, 126].

Becker-Döring considers two reverse reactions: polymerisation through monomer addition, and

depolymerisation due to monomer loss. Accordingly, the model is characterised by the following system
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of reactions, where Ci denotes polymers containing i monomers - so that C1 are the monomers - and ai , bi
are the polymerisation resp. depolymerisation reaction rate coefficients: C1 + Ci

ai−→ Ci+1, i ≥ 1,

Ci
bi−−→ Ci−1 + C1, i ≥ 2.

The Becker-Döring system, however, satisfies the detailed balance condition [7], which implies the

existence of a Lyapunov functional and no sustained oscillations are possible. Also damped oscillations,

up to the best of our knowledge, have never been observed numerically or evidenced analytically. We

thus needed a variant of the Becker-Döring model to explain the experimentally observed oscillations

displayed in Figure 2.1.

In [74], it was recently shown that PrPSc assemblies are in equilibrium with an oligomeric conformer

(suPrP) encoding the entire strain information and constituting an elementary building block of PrPSc

assemblies. The fact that such an oligomeric building block appears separately from the monomeric PrP

points towards models with two different quasi-monomeric species (i.e. one monomer and one oligomeric

conformer in contrast to the polymer species Ci), each of which playing a role in a different reaction.

A suitable mathematical model should also to take into account the constraint that large polymers

cannot interact directly, for reasons of size and order of magnitude of their concentrations. Hence, we

assume that polymers can only interact indirectly, through the exchange of monomers or small oligomeric

conformers.

A third crucial modelling aspect concerns the details of the depolymerisation reaction rates, which are

linear in the original Becker-Döring system. However, numerical studies (see below for a more detailed

discussion and numerical illustrations) as well as the content of this study strongly suggests that sustained

or damped oscillations require a nonlinear (more precisely, a monomer induced) depolymerisation

process, which we detail in the following section.

2.2 Introduction of the proposed model system

We propose the following model system: Let V and W denote the two monomeric species, where the

second, conformer species is taken monomeric for the sake of simplicity (but a slight modification of the

model would allow to consider it as oligomeric). Let Ci be the polymers containing i monomers, where

polymerisation signifies the amendment of a monomer W while depolymerisation only occurs when

induced via the monomeric species V . More precisely, we consider
V +W k−→ 2W ,
W + Ci

ai−→ Ci+1, 1 ≤ i ≤ n,

Ci +V
bi−−→ Ci−1 + 2V , 2 ≤ i ≤ n.

(2.2)
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with a reaction rate constant k for the monomer/conformer dynamics and polymerisa-

tion/depolymerisation coefficients ai and bi . Note that large values for k compared to ai , bi introduce a

slow-fast behaviour into (2.2) and yields a mechanism of oscillations which is detailed in a fully rigorous

way for a two-polymer system (i.e. n = 2) in Section 2.3.

We emphasise the two main differences of (2.2) as compared to the classical Becker-Döring system:

First, instead of one monomeric species C1, we now consider two interacting species of monomers (or

conformers), V andW . Secondly, depolymerisation is modelled as a monomer induced, nonlinear process,

which requires the catalytic action of V . Note that this process is reminiscent of the cyclical behaviour of

the three-species system

V +W k−→ 2W , W +M a−→ 2M, M+V b−→ 2V , (2.3)

which is known to produce sustained periodic oscillations, see [162], where it is called the Ivanova system,

or [158], where it is referred to as a simplification of the Belousov-Zhabotinsky system.

To reiterate and further illustrate the reasons which guided us towards model (2.2), let us isolate

those two main ingredients. Firstly, let us modify the Becker-Döring system by taking two monomeric

species [74], but with a standard linear depolymerisation reaction, i.e. we consider the following system:
V +W k−→ 2W ,
W + Ci

ai−→ Ci+1, 1 ≤ i ≤ n,

Ci
bi−−→ Ci−1 +V , 2 ≤ i ≤ n.

(2.4)

Figure 2.2 compares the behaviours of the bi-monomeric Becker-Döring system (2.4) to model (2.2)

under conditions when both feature oscillations (which is systematic in the nonlinear depolymerisation

model (2.2), yet only occurs for some parameters in the bi-monomeric Becker-Döring system (2.4)).

Nevertheless, even if the bi-monomeric Becker-Döring system (2.4) shows oscillatory behaviour, those

oscillations are far less sustained and cannot serve as an explanation of the experimental observations.

Interestingly, nonlinear depolymerisation leads not only to much more sustained oscillations, but

also yields faster convergence to its size-distribution equilibrium (data not shown), while the linear bi-

monomeric Becker-Döring system (2.4) exhibits similar metastability as observed for the Becker-Döring

system [123].

Secondly, when considering a monomeric Becker-Döring system with second-order depolymerisation

reaction:

V + Ci
ai−→ Ci+1, 1 ≤ i ≤ n, Ci +V

bi−−→ Ci−1 + 2V , 2 ≤ i ≤ n, (2.5)

numerical simulations do not display any kind of oscillations, see second row in Figure 2.3.

Let us also remark that in model (2.2), the first polymer species C1 could also denote a smallest

polymer of size n0 > 1, i.e. it represents the smallest "active" polymer size. This means that no nucleation,

as modelled by C1 +C1→C2 in the Becker-Döring system, is considered. This is in line with the time-scale

of the considered experiment where nucleation is negligible compared with other reactions.
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Figure 2.2 – Left images: Comparison of the oscillatory behaviour of the monomer concentration
v of the proposed model (2.2) (blue) with the bi-monomeric Becker-Döring system (2.4) with linear
depolymerisation (red) subject to the same initial distribution (Right image).

Finally, the original Becker-Döring system (for n = ∞) allows to model phase transitions where

polymers of infinite size are created in finite time depending on the polymerisation coefficients; a

phenomenon called gelation or also Ostwald ripening [7]. In this paper, we shall consider both finite or

infinite systems and discuss similarities and differences. However, in view of our application background

of understanding amyloid fibrils, we are never interested in the appearance of gelation or Ostwald

ripening and only consider polymerisation coefficients, where the average size of polymers, though

possibly large, remains finite.

The purpose of this study is to provide a first insight into this new, in our opinion highly promising

model. In particular, the model system (2.6) in the following section reveals extremely rich behaviour and

is capable of displaying various types of dynamics such as sustained and damped periodic oscillations.

2.2.1 A bi-monomeric nonlinear Becker-Döring model: Formal properties

We denote by ci(t), v(t) and w(t) the concentrations at time t of the polymers containing i monomers,

the depolymerising and the polymerising monomeric species. We assume the reactant’s concentrations

to be sufficiently large to neglect stochastic effects and consider a deterministic setting. By using the

mass-action law, model (2.2) yields the following system of differential equations:
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Figure 2.3 – Numerical results corresponding to SLS measurement, i.e. the quantity M2 defined by (2.1)
(Left Column) and the evolution of the size distribution of polymers (Right Column). First Row: The
here proposed model (2.2) with parameters n = 50, k = 9.5, ai = 4.8, bi = 8. Second Row: The model (2.5)
with c1 multiplied by 10 in order to ignite the reactions in the system. Third row: The model (2.4) with
parameters n = 50, k = 0.95, ai = 0.48, bi = 0.8.



dv
dt = −kvw+ v

n∑
i=2
bici , v(0) = v0,

dw
dt = −w

n−1∑
i=1
aici + kvw, w(0) = w0,

dc1
dt = −wa1c1 + vb2c2, c1(0) = c0

1,

dci
dt = w(−aici + ai−1ci−1) + v(bi+1ci+1 − bici), 2 ≤ i ≤ n− 1, ci(0) = c0

i ,

dcn
dt = wan−1cn−1 − vbncn, cn(0) = c0

n,

where the last equation is only to be considered when n is finite.

As in [124], we introduce the net rate of an i-polymer being converted to an (i + 1)-polymer by

Ji = waici − vbi+1ci+1, 1 ≤ i ≤ n− 1.
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With the convention J0 = Jn = 0, we can thus rewrite the above system as

dv
dt = −kvw+ v

n∑
i=2
bici , v(0) = v0,

dw
dt = −w

n−1∑
i=1
aici + kvw, w(0) = w0,

dci
dt = Ji−1 − Ji , ci(0) = c0

i , 1 ≤ i ≤ n.

(2.6)

In this chapter, we shall always assume the initial conditions and reaction rates to be such that there

exists a unique solution (v,w,ci) ∈ C1(0,T )2 ×C1(0,T ,`1
1), where we denote

`1
s :=

{
(xi)i≥1 ∈RN

∣∣∣∣∣ ∑
i≥1

isxi <∞
}
, for s ∈R .

We first remark that solutions to System (2.6) in `1
1 have two conserved quantities, obtained by

weighted sums of the equations:

1. The total number of polymers, since d
dt

n∑
i=1
ci = 0. This conservation law is linked to the fact that we

neglect nucleation.

2. The total mass, since d
dt

(
v +w+

n∑
i=1
ici

)
= 0, which indicates that there is no gain or loss of particles

during the chemical reactions: the system is closed.

As a consequence of those two conservation laws, we introduce

P0 :=
n∑
i=1

c0
i , Mtot := v0 +w0 +

n∑
i=1

ic0
i .

Overview: The chapter is organised from the simplest to the most complete cases: In Section 2.3, we

provide a complete and explicit study of the two-polymer case n = 2, which features a pivotal mechanism

of damped periodic oscillations in the case of a large reaction rate k compared to the polymerisation

coefficients, see Corollary 1. To understand this mechanism, Theorem 9 states the existence of a Lyapunov

functional, which is also the Hamiltonian of an underlying Lotka-Volterra models and proves exponential

convergence to an equilibrium of solutions despite their highly oscillatory behaviour, see e.g. the left

blue solution in Figure 2.2. The main difficulty lies in the fact that the time derivative of the Lyapunov

functional vanishes across some lines in phase-space, which necessitates precise estimates.

In Section 2.4, we focus on the case where the maximal size of polymers n is finite. We study the

existence of steady states and their stability (Proposition 5). Further details are obtained in the case of

constant coefficients, where we discuss the various zones of stability or instability with respect to the

parameters.

In the final Section 2.5, we analyse well-posedness and steady states of the infinite system n =∞. Two

specific cases shed light on the damped oscillations: the constant coefficient case (i.e. ai = a, bi = b for
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two positive constants a and b and for all i) and the linear coefficient case (where ai = ia, bi = (i − 1)b, for

two positive constants a and b and for all i).

2.3 The two-polymer model

In this section, we study the bi-monomeric system (2.2) coupled to only two sizes of polymers in the

case of normalised coefficients a1 = b2 = 1 for the sake of the clearest possible presentation. We thus

investigate the following two-polymer model dv
dt = v [−kw+ c2] ,
dw
dt = w [kv − c1] ,


dc1
dt = −wc1 + vc2,
dc2
dt = wc1 − vc2,

(2.7)

subject to the nonnegative initial data v(0) = v0, w(0) = w0, c1(0) = c0
1 and c2(0) = c0

2.

The purpose of this section is to explicitly exemplify a mechanism of transient oscillatory behaviour of

(2.2) under the assumption that the reaction rate constant k is large (compared to the other parameters).

More precisely, for a sufficiently small parameter ε = 1
k , we will prove that under general conditions

solutions to (2.7) converge exponentially to a positive equilibrium state while undergoing O(1/ε) many

transient oscillations.

This result is a consequence of proving that the two-polymer model (2.7): i) features a convex

Lyapunov functional which entails exponential convergence to equilibrium via a generalised entropy

method and ii) can be reformulated as a regular perturbation of a classical Hamiltonian-conserving

Lotka-Volterra system, for which the perturbative terms are of order ε and cause exponential convergence

to equilibrium on a time scale of order 1/ε.

First, we recall that System (2.7) conserves the total number of polymers and the total mass. This

implies the following two mass conservation laws for all t ≥ 0:

c1(t) + c2(t) = P0 = c0
1 + c0

2, and v(t) +w(t) + c2 =Mtot − P0 =:M.

Expressing c1 and c2 in terms of these two conservation laws allows to reduce System (2.7) into
dv
dt = v [M − (k + 1)w − v] ,

dw
dt = w [(M − P0) + (k − 1)v −w] ,

(2.8)

which constitutes a generalised Lotka-Volterra system of predator-prey type, see e.g. see [20] or [70],

for which possible behaviours have been extensively listed and studied, and for which convergence may

either be proved using an appropriate Lyapunov functional or using the Poincaré-Bendixson theorem

and the Poincaré-Dulac theorem. However, up to our knowledge, these methods do not provide a rate of

convergence, or explicit estimates.

Besides the boundary equilibria (v̄, w̄) = (M,0) and (v̄, w̄) = (0,M − P0) (in the case M ≥ P0), System
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(2.8) has the equilibrium

v∞ :=
P0

k

(
1 +

1
k

)
− M
k
, w∞ :=

M
k
− P0

k2 ,

and (v∞,w∞) > 0 provided that P0 ∈
(
kM
1+k , kM

)
, which we shall assume henceforth.

We observe that the equilibrium (v∞,w∞) takes values of order ε := 1/k. This suggests the rescaling

v→ v
k

= εv, and w→ w
k

= εw,

and yields the rescaled equilibrium values

v∞ = P0 (1 + ε)−M, and w∞ =M − εP0, (2.9)

By using (2.9) and v∞ +w∞ = P0, System (2.8) rescales to the following two-polymer system, which we

shall study subsequently: 
dv
dt = v [w∞ −w]− εv [v − v∞ +w −w∞] ,

dw
dt = w [v − v∞]− εw [v − v∞ +w −w∞] .

(P2)

First, we point out that the rescaled two-polymer model (P2) in the limiting case ε = 0 constitutes the

classical Lotka-Volterra system, i.e.
dv0
dt = v0 [w∞ −w0] = v0w0

(
− ∂H∂w0

)
,

dw0
dt = w0 [v0 − v∞] = w0 v0

∂H
∂v0
,

(2.10)

which is defined by, and conserves, the Hamiltonian:

H(v,w) = v − v∞ lnv +w −w∞ lnw, (2.11)

d
dt
H(v0(t),w0(t)) =

∂H
∂v

dv0

dt
+
∂H
∂w

dw0

dt
= 0.

Moreover, for positive equilibria (v∞,w∞) > 0, the Hamiltonian H is the sum of the convex functions

v−v∞ lnv and w−w∞ lnw with minima at v∞ and w∞. Hence, any positive equilibrium (v∞,w∞) > 0 is the

unique minimiser of the associated Hamiltonian (2.11) and H(v,w) > H(v∞,w∞) for all (v,w) , (v∞,w∞).

2.3.1 Large-time behaviour and entropy functional

The following theorem proves large-time convergence to the positive equilibrium (v∞,w∞) by using the

Hamiltonian (2.11) as a Lyapunov functional of the full system (P2).

Theorem 9 (Exponential convergence to positive equilibrium).
Consider P0 ∈

(
kM
1+k , kM

)
and hence a positive equilibrium (v∞,w∞) > 0.

Then, the Hamiltonian (2.11) is a convex Lyapunov functional for System (P2) with a decay rate of order ε.
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More precisely,

d
dt
H(v(t),w(t)) = −εp2(v(t),w(t)), with p(v,w) := [(v − v∞) + (w −w∞)] . (2.12)

Moreover, for ε sufficiently small, every solution (v(t),w(t)) to (P2) subject to positive initial data (v0,w0) > 0

converges exponentially to the positive equilibrium (v∞,w∞), i.e.

|v − v∞|2 + |w −w∞|2 ≤ C
(
H0 −H∞

)
e−εrt , (2.13)

where the positive rate r and constant C depend only on the initial value of the Hamiltonian H0 :=H(v0,w0)

and the values of the positive equilibrium (v∞,w∞).

Proof. The decay rate of the Hamiltonian (2.12) follows from direct calculations when evaluatingH along

the flow of (P2).

In the following, we prove the exponential convergence (2.13) via a modified entropy method.

The standard entropy method consists in proving a functional inequality, which bounds the entropy

production functional (i.e. the entropy decay rate) from below by the relative entropy with respect to the

equilibrium, see e.g. [47, 48, 58, 57] in the context of nonlinear reaction-diffusion system. For the present

Hamiltonian decay (2.12), however, this approach would aim for an estimate like p2(v,w) ≥ r(H(v,w)−H∞)

for a rate r > 0, which cannot hold since p2 vanishes at a straight line through the equilibrium point:

p = 0 ⇐⇒ w −w∞ = −(v − v∞).

In order to prove exponential convergence to the equilibrium in such a case, we shall provide explicit

estimates that all solution trajectories only spend a finite amount of time near this line of degeneracy.

We first observe from (P2) that the null-cline v̇ = 0 is also a straight line, which passes through the

equilibrium:

v̇ = 0 ⇐⇒ w −w∞ = −λε(v − v∞), λε :=
ε

1 + ε
< 1,

Note that since λε < 1, the nullcline v̇ = 0 is below p = 0 for v ≤ v∞ and above p = 0 for v ≥ v∞. Next, we

introduce a line Wλ between v̇ = 0 and p with a slope λ ∈ (λε,1) to be chosen later:

Wλ : w −w∞ = −λ(v − v∞), λ ∈ (λε,1).

Similarly, on the opposite side of p = 0 we define the line WΛ:

WΛ : w −w∞ = −Λ(v − v∞), Λ := 2−λ > 1.

In the following, we denote by 4−λ the open triangle in the phase space (v,w) ∈R2
+, which is defined

by the interior between the lines Wλ, WΛ and v = 0. Note that on 4−λ we have 0 < v < v∞ and w∞ < w <

w∞ +Λv∞. Analog, the open triangle 4+
λ is defined as the interior of the lines Wλ, WΛ and w = 0, i.e. we

consider v∞ < v < v∞ +w∞/λ and 0 < w < w∞.
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)

Figure 2.4 – Phase space for System (P2)

In the following, we shall detail the estimates in the triangle 4−λ for 0 < v < v∞, while the estimates

for 4+
λ follow analogously (e.g. by exchanging the variables v and w and the roles of λ and Λ). We first

observe that w −w∞ ∈ (−λ(v − v∞),−Λ(v − v∞)), which implies

(1−λ)(v − v∞) ≤ p ≤ (1−Λ)(v − v∞).

Moreover, we point out that v̇ < 0 and ẇ < 0 are strictly negative on 4−λ. Hence, whenever a solution

trajectory enters 4−λ at some time t1 at a point (v(t1),w(t1)) = (v1,WΛ(v1)) with v1 < v∞, then it must leave

4−λ again at a time t2 at a point (v(t2),w(t2)) = (v2,Wλ(v2)), for which holds that 0 < v2 < v1. For later use,

we shall refer to the duration of crossing 4−λ as the sojourn time t2 − t1. In Lemma 3 of Appendix 2.6.1,

we show that the sojourn time is bounded from below and above independently of the trajectories.

In order to ensure that all solution trajectories which pass through the line of degeneracy p = 0 where

Ḣ = 0 are crossing the line of degeneracy, we shall prove that p2(t) is a strictly convex function near p = 0

with a positive lower bound for p̈ within the triangle 4−λ (and 4+
λ) for λ chosen sufficiently close to one,

i.e. that p(t) = 0 can only occur at discrete points in time.

We begin by calculating

ṗ = v̇ + ẇ = d − ε(v +w)p, with d := vw∞ −wv∞.

Note that d = (v − v∞)w∞ − (w −w∞)v∞ and in the triangle 4−λ, we have

in 4−λ : d < 0 with − (v − v∞)[w∞ +λv∞] ≤ |d| ≤ −(v − v∞)[w∞ +Λv∞]. (2.14)

Next,

ḋ =− [(v − v∞)v∞w+ (w −w∞)vw∞]− εdp,
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and

p̈ =− [(v − v∞)v∞w+ (w −w∞)vw∞]

− 2εdp − ε(v +w)d + ε2(v +w)p2 + ε2(v +w)2p.

If p(t0) = 0, then

p2(t) = p2(t0)︸︷︷︸
=0

+2p2(t0)︸︷︷︸
=0

ṗ(t0)(t − t0) + 2
[
(ṗ)2 + pp̈

]
(θ)

(t − t0)2

2
=

[
(ṗ)2 + pp̈

]
(θ) (t − t0)2,

for some θ ∈ (t, t0) ⊂ (t1, t2). Hence, by using Lemma 2 (see Appendix 2.6.1) and for ε sufficiently small

(ṗ)2 + pp̈ = d2 − [(v − v∞)v∞w+ (w −w∞)vw∞]p+O(ε)

≥ κ(v(θ)− v∞)2 ≥ κ(v1 − v∞)2

for a constant κ > 0. Now, for any solution trajectory, we estimate

∫ t2

t1

Ḣdt = −ε
∫ t2

t1

p2(t)dt = −ε
∫ t2

t1

[
(ṗ)2 + pp̈

]
(θ)(t − t0)2 dt

≤ −εκ(v1 − v∞)2
∫ t2

t1

(t − t0)2 dt ≤ −εκ
∫ t2

t1

C1(v(t)− v∞)2 dt

∫ t2
t1

(t − t0)2 dt

t2 − t1

≤ −εκC1K

∫ t2

t1

(v(t)− v∞)2 dt,

where C1 = (v1−v∞)2

(v2−v∞)2 < 1 since v2 < v(t) < v1 for all t ∈ (t2, t1) and K is a constant only depending on the

lower bound of the sojourn time t2 − t1 provided in Lemma 3.

Next, we observe that the convexity of the Hamiltonian H together with the decay of the Hamiltonian

H(v(t),w(t)) ≤H0 for all t ≥ 0 imply uniform-in-time positive lower and upper bounds on v and w subject

to initial data with finite H0 =H(v0,w0) < +∞. By using this lower and upper bounds, we estimate

H(v,w)−H(v∞,w∞) = v∞h
( v
v∞

)
+w∞h

( w
w∞

)
≤ C2(v∞,w∞,H

0)
[
(v − v∞)2 + (w −w∞)2

]
, (2.15)

where h(z) = (z − 1)− lnz ≥ 0 is non-negative and convex and h(z) ≤ C2(z∗, z∗)(z − 1)2 for z ∈ (z∗, z∗). Hence,

on 4−λ, we have H(v,w)−H(v∞,w∞) ≤ C3(v − v∞)2 with a constant C3 = C3(C2,λ) and conclude that∫ t2

t1

Ḣdt ≤ −εκC1KC
−1
3

∫ t2

t1

H(v,w)−H(v∞,w∞)dt (2.16)



76 CHAPTER 2. A bi-monomeric system to capture oscillatory aggregation kinetics

Note that an analogous estimate to (2.16) holds also in 4+
λ.

Outside 4λ = 4−λ ∪ 4
+
λ, there exists a constant Cλ > 0 such that the estimate |p|2 ≥

Cλ
[
(v − v∞)2 + (w −w∞)2

]
holds. Moreover, the uniform lower and upper bounds on v(t),w(t) imply

that there exists a positive constant C4 = C4(v∞,w∞,H0)

0 < C4 := min
{(v,w):H(v,w)≤H0}\4λ

 [(v − v∞) + (w −w∞)]2

v∞h
(
v
v∞

)
+w∞h

(
w
w∞

)  ,
which implies p2 ≥ C4(H(v,w)−H(v∞,w∞) and

Ḣ ≤ −εC4(H(v,w)−H(v∞,w∞)) outside of 4λ. (2.17)

Estimate (2.17) proves exponential convergence (of order ε) towards equilibrium first in the relative

Hamiltonian distance (H(v,w)−H(v∞,w∞)) as long as a solution trajectory is outside the critical area 4λ.

Consequently, the reversed estimate (2.15) (which holds equally true on all points with H(v,w) ≤ H0)

implies exponential convergence to the equilibrium in the Euclidian distance.

Within the critical area 4λ, this exponential convergence is hampered by the line of degeneracy where

p = 0. However, (2.16) and the lower crossing time estimates in Lemma 3 of Appendix 2.6.1 show that

solutions trajectories do not get stuck (or significantly slowed down) within 4λ. More precisely, since

the speed of trajectories outside 4λ is bounded above, for any fixed λ < 1 (sufficiently close to one), all

solution trajectories will remain within 4λ for only a small fraction (let say 10%) of the time spent on

one rotation around (v∞,w∞). Moreover, recall that trajectories can only reach (v∞,w∞) outside of 4λ
due to the sign conditions on v̇ and ẇ.

Finally, this small fraction of time spent within 4λ per rotation can not degenerate near (v∞,w∞),

since classical linearisation techniques shows eigenvalues of the form

µ = −εP0

2
± i

√
(P0 −M)M + εP0(2M − P0)− 5

4
ε2P 2

0
ε→0−−−−→ ±i

√
v∞w∞, (2.18)

where the right hand side values corresponds to the eigenvalues (and thus finite oscillation period) of the

zero order Lotka-Volterra system (2.10).

Altogether, we obtain the exponential convergence to equilibrium with a rate εr as in (2.13), where r

can be estimated explicitly in terms of the constants in (2.17) and (2.16) as well as the crossing times in

Lemma 3. �
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Figure 2.5 – Trajectories of the monomeric concentrations v and w for the two-polymer model for k = 10,
a = b = 1 and kM

1+k < P0 < kM.

Figure 2.6 – Monotone decay of the Lyapunov functional (2.12) for the two-polymer model for k = 10,
a = b = 1 and kM

1+k < P0 < kM.



78 CHAPTER 2. A bi-monomeric system to capture oscillatory aggregation kinetics

Figure 2.7 – Trajectories of the monomeric concentrations v and w for the two-polymer model for k = 35,
a = b = 1 and kM

1+k < P0 < kM.

2.3.2 Asymptotic expansion for fast monomer-conformer exchange

In the following, we show that System (P2), i.e.
dv
dt = v [w∞ −w]− εv [v − v∞ +w −w∞] ,
dw
dt = w [v − v∞]− εw [v − v∞ +w −w∞] .

constitutes a regular perturbation in terms of ε of the zero order Lotka-Volterra system (2.10). This is

summarised in the following corollary.

Corollary 1 (Fast transient oscillations).
Assume ε sufficiently small as in the second part of Proposition 9.

Then, by applying the ansatz

v = v0 + εv1 +O(ε2), and w = w0 + εw1 +O(ε2), (2.19)

solutions to System (P2) can be approximated in a regular asymptotic expansion in ε which features the
Lotka-Volterra system (2.10) as zero order approximation. Hence, the zero order terms (v0(t),w0(t)) are periodic
solutions with period T > 0 to the Lotka-Volterra system (2.10) while the first order terms (v1(t),w1(t)) are
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solutions to the following non-autonomous linear inhomogeneous system v̇1

ẇ1

 =

w∞ −w0 −v0

w0 v0 − v∞

︸                    ︷︷                    ︸
=:A(t)

·
v1

w1

− v0(v∞ − v0 +w∞ −w0)

w0(v∞ − v0 +w∞ −w0)

︸                         ︷︷                         ︸
=:g1(t)

. (2.20)

Hence, the solutions (v(t),w(t)) of System (P2) are perturbed from the zero order solutions (v0(t),w0(t)) not more
than O(ε) far on a time interval of size O(T ) and hence undergo O(1/ε) many oscillations before converging to
(v∞,w∞) as proven in Theorem 9.

Proof. Global existence of the first order terms (v1(t),w1(t)) follows from classical ODE theory. In fact,

since (v0(t),w0(t)) is periodic with period T , also A(t) and g1(t) are T -periodic and Floquet theory implies

that solutions to (2.20) are T -periodic if and only if one is not a Floquet multiplier, i.e. an eigenvalue of

the associated monodromy matrix, see e.g. [153, Chapter 3.6]. However, the Lyapunov structure and the

exponential decay of Proposition 9 imply that System (2.20) has to be entirely unstable and that both

Floquet multipliers have to be larger than one.

Moreover, all higher order expansion terms (vn(t),wn(t)) for n ≥ 2 satisfy systems analogous to (2.20)

with the same non-autonomous system matrix A(t) and similar inhomogeneities gn(t) only depending on

the previously determined asymptotic expansion terms (v0,w0), . . . , (vn−1,wn−1).

Hence, (2.19) constitutes a regular asymptotic expansion of the solution (v,w) up to arbitrarily

high order. In particular, this implies that the change of the full solution (v,w) compared to the zero

order approximation (v0,w0) over one period is of order ε and that (v,w) will undergo order 1/ε many

oscillations before finally converging to the equilibrium (v∞,w∞). �

Figures 2.5, 2.6 and 2.7 illustrate Corollary 1 for values k = 10 and k = 35. Clearly, the number of

oscillations increases with k, while all other parameters being left unchanged. Moreover, Figure 2.6 shows

the monotone decay of the Lyapunov functional in the case k = 10: we observe a general exponential

decay despite the successive plateaux, which occur when solutions cross the lines of degeneracy p = 0.

2.4 The n−polymer model

Let us now turn to System (2.6) in the case where 3 ≤ n <∞. Let us begin by recalling a well-posedness

result.

Proposition 4 (Well-posedness of the finite dimensional system).
Let n ∈ N, and v0, w0, c0

i ≥ 0 for 1 ≤ i ≤ n. Then System (2.6) has a unique time-continuous nonnegative
solution v(t) ≥ 0, w(t) ≥ 0, ci(t) ≥ 0 for t ≥ 0 and all 1 ≤ i ≤ n satisfying

v(t) +w(t) +
n∑
i=1

ici(t) = v0 +w0 +
n∑
i=1

ic0
i ,

n∑
i=1

ci(t) =
n∑
i=1

c0
i , ∀t ≥ 0.
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2.4.1 Steady states analysis

System (2.6) with finite n features both boundary steady states (BSS), where at least one concentration is

zero, and positive steady state (PSS), where all concentrations are strictly positive.

Let us first introduce several parametric regions – graphically illustrated in Figure 2.8– which will

defining the stability or instability regions of the boundary steady states (BSS).

n+
bn
k
≤ Mtot

P0
(region with horizontal green stripes in Fig. 2.8), (2.21)

n <
Mtot

P0
< n+

bn
k

(light blue region in Fig. 2.8), (2.22)

Mtot

P0
≤ 1 +

a1

k
(grey diagonally hatched region in Fig. 2.8). (2.23)

Case a1 ≤ bn
Mtot
P0

1
k

Mtot
P0

= n

M tot

P 0

= n
+
b n
k

M tot

P0

= 1 +
a1
k

Case a1 > bn
Mtot
P0

1
k

M
to
t

P 0
=

1
+
a 1 k

Mtot
P0

= n

M tot

P 0

= n
+
b n
k

Figure 2.8 – Stability regions of the SSs of the finite system (2.6) in the 1
k -Mtot

P0
parametric space: (BSSa)

are always unstable. Grey diagonally hatched zone ⇐⇒ (2.23) ⇐⇒ asymptotically stable (BSSb), which
is unstable elsewhere. Green horizontal lines ⇐⇒ (2.21) ⇐⇒ asymptotically stable (BSSc). Light blue
zone ⇐⇒ (2.22) ⇐⇒ unstable (BSSc). Zone with red stars ⇐⇒ existence of at least one PSS (in case
a1 > bn coexisting with a stable (BSSb) in the horizontally hatched region; otherwise coexisting only
unstable BSSs.)

Proposition 5 (Nonnegative Steady States).
Let ai > 0, bi+1 > 0 for 1 ≤ i ≤ n− 1, let v0, w0 > 0 and P0 > 0, Mtot ≥ v0 +w0 + P0 > 0. Then,

1. there exists three kinds of boundary steady states (BBS):

(BSSa) There exist unstable BSSs: v̄ = w̄ = 0 and (c̄i)1≤i≤n satisfies
n∑
i=1
c̄i = P0,

n∑
i=1
ic̄i =Mtot .
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(BSSb) There exists a BSS: v̄ = Mtot − P0 > 0, w̄ = 0, c̄1 = P0, c̄i = 0 for 2 ≤ i ≤ n. This BSS is locally
asymptotically stable under Assumption (2.23) (grey diagonally hatched in Fig. 2.8) and unstable
elsewhere.

(BSSc) Under the additional assumption Mtot
P0

> n, there exists another BSS: v̄ = 0, w̄ =Mtot − nP0 > 0,
(c̄i)1≤i≤n−1 = 0 and cn = P0. This BSS is locally asymptotically stable under Assumption (2.21)

(green horizontal lines) and otherwise unstable, which corresponds to Assumption (2.22) (light
blue zone).

2. There exists (at least one) positive steady state (PSS) (v̄, w̄, c̄i)1≤i≤n provided that the polynomial P (z)

defined as

P (z) :=
[
a1

k
+ 1− Mtot

P0

]
+
n−1∑
i=2

[(
ai
k

+ i − Mtot

P0
+
bi
k

) i−1∏
j=0

aj
bj+1

]
zi−1

+
[(
n− Mtot

P0
+
bn
k

) n−1∏
j=0

aj
bj+1

]
zn−1 (2.24)

has a root z̄ > 0. Given z̄ > 0, we have

v̄ = c̄1

n−1∑
i=1

ai
k
z̄i−1

i−1∏
j=0

aj
bj+1

, w̄ = c̄1

n−1∑
i=1

ai
k
z̄i

i−1∏
j=0

aj
bj+1

,

c̄1 =
P0∑n

i=1 z̄
i−1 ∏i−1

j=0
aj
bj+1

, c̄i = z̄i−1
i−1∏
j=0

aj
bj+1

c̄1, 2 ≤ i ≤ n.

(2.25)

If all BSSs are unstable, i.e. 1 + a1
k <

Mtot
P0

< n + bn
k , then there exists at least one positive steady state.

Moreover, if the sequences (ai), (bi) are nondecreasing, the positive steady state is unique.

Remark 10. The existence of positive roots of the polynomial P can be analysed in more detail in the case of
constant polymerisation coefficients, see Proposition 6 below. Also, the computation of those roots can be done
numerically. While the linear stability of the BSSs can be calculated explicitly, the stability of the PSS constitutes
a difficult problem, which can be explicitly confirmed in the two-polymer model, see (2.18), but seems otherwise
only possible by numerical calculations.

Proof. For simplicity of notations, we drop the ·̄ in what follows, and postpone the proofs of stability to

Appendix 2.6.2. The steady states of System (2.6) satisfy the following relations:−kvw+ v
∑n
i=2 bici = 0, −w

∑n−1
i=1 aici + kvw = 0, J1 = . . . = Jn−1 = 0,∑n

i=1 ci = P0, v +w+
∑n
i=1 ici = Mtot .

(2.26)

1. First, we discuss the existence of BSSs, where at least one of the two monomeric species vanishes:
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(a) If w = v = 0, then any distribution (ci) such that
∑n
i=1 ci = P0 and

∑n
i=1 ici =Mtot is a steady state

solution.

(b) If w = 0 and v , 0, then by the first equation we have v
∑n
i=2 bci = 0, hence ci = 0 for i ≥ 2, so that

c1 = P0 and v is such that v + c1 =Mtot .

(c) If v = 0 and w , 0, then by the second equation we have w
∑n−1
i=1 aci = 0, hence ci = 0 for i ≤ n−1,

so that cn = P0 and w is such that w+ncn =Mtot .

2. Let us now consider v > 0 and w > 0. Since Ji = 0, we have by immediate recursion

ci =
ai−1w
biv

ci−1 = · · · =
 i−1∏
j=0

αj

zi−1c1, ∀ 2 ≤ i ≤ n,

where αi = ai
bi+1

, α0 = 1 and z = w
v . Inserting this identity into (2.26), yields

kv = c1

n−1∑
i=1

aiz
i−1

i−1∏
j=0

αj , P0 = c1

n∑
i=1

zi−1
i−1∏
j=0

αj ,

and

Mtot = v(1 + z) + c1

n∑
i=1

izi−1
i−1∏
j=0

αj = c1

( n−1∑
i=1

ai
k
zi−1(1 + z)

i−1∏
j=0

αj +
n∑
i=1

izi−1
i−1∏
j=0

αj

)

= c1

( n−1∑
i=1

ai
k
zi−1

i−1∏
j=0

αj +
n∑
i=2

ai−1

k
zi−1

i−2∏
j=0

αj +
n∑
i=1

izi−1
i−1∏
j=0

αj

)

= c1

(
a1

k
+ 1 +

n−1∑
i=2

((ai
k

+ i
)
αi−1 +

ai−1

k

) i−2∏
j=0

αjz
i−1+

(an−1

k
+nαn−1

)n−2∏
j=0

αjz
n−1

)
.

We deduce

Mtot

c1
=
Mtot

P0

n∑
i=1

zi−1
i−1∏
j=0

αj

=
a1

k
+ 1 +

n−1∑
i=2

((ai
k

+ i
)
αi−1 +

ai−1

k

) i−2∏
j=0

αjz
i−1 +

(an−1

k
+nαn−1

) n−2∏
j=0

αjz
n−1,
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and finally

P (z) =
[
a1

k
+ 1− Mtot

P0

]
+
n−1∑
i=2

[((
ai
k

+ i − Mtot

P0

)
αi−1 +

ai−1

k

) i−2∏
j=0

αj

]
zi−1

+
[((
n− Mtot

P0

)
αn−1 +

an−1

k

) n−2∏
j=0

αj

]
zn−1 = 0.

If 1 + a1
k <

Mtot
P0

< n+ bn
k , we have P (0) < 0 and P (+∞) = +∞, so that P admits at least one positive root.

Moreover if the sequences (ai) and (bi) are nondecreasing, it implies that there is exactly one change

of sign of the coefficients of the polynomial P and hence there is exactly one positive real root for P

thanks to Descartes’ rule of signs.

�

Discussion and biological interpretation: The steady state analysis of Proposition 5 revealed different

parametric regions. A key quantity appears to be the ratio Mtot
P0

, which is easily interpreted as the sum of

the average size of polymers plus the ratio representing the relative numbers of monomers to polymers,

i.e.
Mtot

P0
=

∑
ici
P0

+
v +w
P0

.

Figure 2.8 illustrates Proposition 5. The extrem case
∑
ici
P0

= n is equivalent to cn = P0. Therefore, the zones
Mtot
P0

> n (green horizontal lines and light blue zone) can be interpreted either as situations with a high

amount of very large polymers close to the maximal size n or as situations with a large amount of the

monomeric species v and w (compared to P0). From a biological view, both those situations seem very

unlikely. Hence (BSSc) and its stability is conjectured to have little biological relevance. Moreover, (BSSc)

will disappear in the limit n→∞, see Section 2.5.

The biologically more realistic zone Mtot
P0

< n is divided into only two parts: either Assumption (2.23)

is fulfilled, and (BSSb) is locally asymptotically stable (grey diagonally hatched region), or all BSSs are

unstable whereas there exists a PSS (red stars zone). Assumption (2.23) has a direct interpretation that

there is not enough initial mass to ignite the polymerisation hierarchy in the sense that all polymers

depolymerise into the species C1. Indeed (BSSb), which is stable under Assumption (2.23), features

c̄1 = P0 while c̄i = 0 for 2 ≤ i ≤ n. Conversely, in the red star region, the system features a PSS (which is

conjectured to be stable). In the dichotomy of stable (BSSb) versus existence of a PSS, the convergence

to (BSSb) could be considered as non-proliferation of a disease in a more specific prionic model while

otherwise a prionic assembly gets established in terms of the PSS.

From a more conceptional modelling viewpoint, the n-polymer model couples the bi-monomeric

equations for v and w to a finite range of polymers of sizes 1 to n, which are considered as biologically

"active", i.e. they interact with the monomeric species. More than the two-polymer model, the n-polymer

model with increasing n describes the interaction of the bi-monomeric dynamics for v and w with a larger
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and larger hierarchy of polymerising and depolymerising polymers. The nonlinear feedback from the

polymer-hierarchy is sufficient to introduce sustained oscillatory behaviour already in the two-polymer

model, but it can be hypothesised that with larger n the dynamical interplay between monomer species

and polymer hierarchy becomes more intricate, cf. Figure 2.12 below.

In any case, the model system (2.6) should be understood as a prototypical building block of more

realistic and prion specific models. In the experiment illustrated in Figure 2.1, for instance, oscillations

appear only during a specific time range; other reactions may have occured before, giving progressively

rise to polymers belonging to the "active" range of the n-polymer model. Moreover, from a mathematical

perspective, the n-polymer model is an interesting intermediate before turning to the infinite system.

Case of constant polymerisation coefficients

If the reaction coefficients are constant, i.e. the polymerisation/depolymerisation speed is the same for

all polymers regardless of their size, the polynomial P defined in (2.24) (characterising PSSs) takes a

simpler expression, which is stated in the following corollary.

Corollary 2 (Positive steady states in the constant coefficients case).
Let k, b, a, P0 and Mtot be positive real constants. Let ai = a and bi+1 = b for 1 ≤ i ≤ n in System (2.6). Let
n ≥ 3. Then,

1. if the initial conditions and parameters satisfy the condition

Mtot

P0
=

(
a
k

+
b
k

)
n− 1
n

+
n+ 1

2
, (2.27)

there exists a unique positive steady state (PSS) to System (2.6), which is defined by

c̄i :=
P0

n
∀ 1 ≤ i ≤ n, v̄ =

a
k
P0, w̄ =

b
k
P0.

2. If (2.27) is not satisfied, then the PSSs of System (2.6) are given by (γ, v̄, w̄, c̄1) where γ , 1 is a root of the
following polynomial

Q(γ) := P (
b
a
γ) =

(a
k
− Mtot

P0
+ 1

)
+
n−2∑
i=1

(a
k

+
b
k
− Mtot

P0
+ i + 1

)
γ i +

(b
k
− Mtot

P0
+n

)
γn−1, (2.28)

and (c̄1, v̄, w̄) are defined from γ by

c̄1 := P0
1−γ
1−γn

, v̄ :=
a
k
P0

1−γn−1

1−γn
, w̄ :=

b
k
P0
γ −γn

1−γn
. (2.29)

Remark 11. The relation (2.27) shall never be satisfied in practice, but it may be roughly satisfied in the sense
that if n is large, it corresponds to the case where the average size of the polymers is initially taken around n

2 . We
shall see later (Proposition 3) how this average size is related to the cases γ < 1 or γ > 1.
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Proof. We apply Proposition 5 and notice that P (z) =Q(γ) with γ = a
b z and Q defined by (2.28). We then

distinguish according to γ = 1 or γ , 1.

1. For γ = 1, we have

Q(1) =
a
k
− Mtot

P0
+ 1 + (n− 2)

(a
k

+
b
k
− Mtot

P0
+ 1

)
+

(n− 1)(n− 2)
2

− Mtot

P0
+
b
k

+n

= (n− 1)
(a
k

+
b
k

+
n− 2

2
+ 1

)
−nMtot

P0
+n, (2.30)

so that Q(γ) = 0 iff the relation (2.27) is satisfied, and the value for ci , v and w immediately follow

from (2.25).

2. If γ , 1, we obtain (2.29) directly from (2.25).

�

For the existence of PSS, we study roots of the polynomial Q by applying Descartes’ rule.

Lemma 1 (Descartes’ rule of signs [68]).
Given a univariate real polynomial P, the number of positive real roots of P is bounded by the number of sign
variations of the ordered (by exponent) sequence of the coefficients of P.

The following proposition characterises different cases, leading to zero, one or two positive steady

states.

Proposition 6 (Existence and number of PSSs of System (2.6) with constant coefficients).
Consider System (2.6) with constant polymerisation/depolymerisation coefficients a and b under the assumptions
of Corollary 2. Assume that (2.27) is not satisfied. Then, we have the following cases.

1. If one of the following assumptions is satisfied:

Mtot

P0
<min

{
1 +

a
k
,n+

b
k

}
, (2.31)

Mtot

P0
>max

{
n+

b
k
,n+

b
k

+
a
k
− 1

}
, (2.32)

then, System (2.6) with constant coefficients has no PSS.

2. If either

1 +
a
k
<
Mtot

P0
< n+

b
k
, (2.33)

or
n+

b
k
<
Mtot

P0
< 1 +

a
k
, (2.34)

holds, then System (2.6) with constant coefficients has a unique PSS.
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3. If

max
{
b
k

+n,
a
k

+ 1
}
<
Mtot

P0
< n+

b
k

+
a
k
− 1, (2.35)

holds, then System (2.6) with constant coefficients has at most two PSSs.

Case a < b
Mtot
P0

1
k

M
to
t

P 0
=

1
+
a
k

M
to
t

P 0
=
n
−

1
+
a+
b

k

M tot

P0

= n
+
b
k

γ
=

1
:

M
to
t

P 0
=

a+
b

k
(1
−

1 n
) +

n+
1

2

Case a > b
Mtot
P0

1
k

Mtot

P0
= 1 +

a
k

M
to
t

P 0
=
n
− 1

+
a+
b

k

M tot

P 0

= n
+
b
k

γ
=

1 :

M t
ot

P 0

=
a+
b
k
(1
−
1
n
) +
n+

1
2

Figure 2.9 – Zones with zero (white), one (light grey) or two (dotted domain) PSSs. In red is the line of
assumption (2.27): above we have γ > 1, below γ < 1.

Proof. Using the results of Corollary 2, we look for roots of the polynomial Q(γ) =
n−1∑
i=0
uiγ

i , where

u0 =
a
k
− Mtot

P0
+ 1, ui =

a
k

+
b
k
− Mtot

P0
+ i + 1 = u0 +

b
k

+ i, un−1 =
b
k
− Mtot

P0
+n.

and we apply the Descartes’ rule. We notice that (ui) is strictly increasing in i for 0 ≤ i ≤ n − 2, and

un−1 = un−2 − a
k + 1.

1. If u0 > 0 and un−1 > 0, i.e. if assumption (2.31) is satisfied, then, all coefficients are positive. If un−2 < 0

and un−1 < 0, i.e. if assumption (2.32) is satisfied, then, all coefficients are negative. In both cases,

there exists no PSS.

2. If u0 < 0 and un−1 > 0, i.e. under assumption (2.33), or if u0 > 0 and un−1 < 0, i.e. assumption (2.34),

there is exactly one change of sign in the coefficients. In these cases, there exists at most one PSS. In

fact, there exists exactly one PSS, because P (0) = u0 and P (z) ∼ un−1z
n−1 as z→∞ are of opposite sign.

3. If u0 < 0, un−2 > 0 and un−1 < 0, i.e. under assumption (2.35), there are two changes of signs in the

coefficients, so that there exist at most two PSSs.

�
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Discussion and biological interpretation: The conditions (2.31)-(2.35) are summarised in Figure 2.9: The

grey region is the region, where assumptions (2.33) and (2.34) are satisfied, i.e. there is a unique PSS. The

region with dots corresponds to assumption (2.35), where there exist at most two PSSs. The white region

in the figure corresponds to assumptions (2.31) and (2.32) with no PSS. As in the general coefficient case,

we see that the zone where there is at least one steady state corresponds to the intermediate zone, where
Mtot
P0

is neither "small" nor "large" as compared to the reaction parameters. Moreover, more than one PSS

can only occur in the biologically unrealistic region where Mtot
P0

> n.

In the case of a unique PSS, let us now study the respective values of γ T 1. This is of key importance,

since if γ ≥ 1, then the corresponding PSS has no finite limit as n→∞.

Corollary 3 (Values of the root γ).
Let the assumptions of Proposition 6 be satisfied and assume moreover inequality (2.33). Let γ be the unique
positive root of the polynomial Q. Then,

• if Mtot
P0

=
(
a
k + b

k

)
n−1
n + n+1

2 , we have γ = 1,

• if Mtot
P0

>
(
a
k + b

k

)
n−1
n + n+1

2 , we have γ > 1,

• if Mtot
P0

<
(
a
k + b

k

)
n−1
n + n+1

2 , we have γ < 1.

Proof. Under Assumption (2.33), Q(0) < 0 and Q(∞) > 0, so that γ > 1 iff Q(1) < 0. We have already

calculated Q(1) in (2.30), from which the result follows immediately. �

Remark 12. Letting n tend to infinity while keeping Mtot and P0 finite ensures γ < 1: Hence, the steady state
(ci)1≤i≤n−1 = (c1γ

i−1)1≤i≤n−1 defines a converging series and thus a possible steady state for the infinite system.
Note that that the assumption of constant polymerisation coefficients prevents gelation (as for the classical
Becker-Döring system).

2.4.2 Simulation results and discussion

Experiments can either measure the total polymerised mass M1(t) (by Thioflavine T, see e.g. [165]) or the

second moment M2(t) (by Static Light Scattering, see e.g. [126]) defined by

M1 :=
n∑
i=1

ici =Mtot − v −w, M2 :=
n∑
i=1

i2ci(t). (2.36)

The following numerical simulations exemplify the dynamical behaviour of System (2.6) in two

biologically plausible cases: Figures 2.10, 2.11 and 2.12 illustrate damped oscillations converging to

a positive steady state (PSS) under Assumption (2.33) while Figure 2.13 shows convergence to (BSSb)

(recall w̄ = 0 and c̄1 = P0) under Assumption (2.23).

Figure 2.10: The size distribution of the polymers (right image), initially taken as a sharp Gaussian,

oscillates in the sense that the Gaussian moves from left to right and right to left periodically in its



88 CHAPTER 2. A bi-monomeric system to capture oscillatory aggregation kinetics

entirety while progressively diffusing. Figure 2.11: For initial states very close to the steady state, the

oscillations remain numerous, though of smaller amplitude. Figure 2.12: An example concerning the

influence of the initial average size of the polymers and of the total number of polymers n shows that

smaller initial average size implies stronger damping of the oscillations. This supports an intuition that

the role played by k in the two-polymer model might be here played by the average size of the polymers,

which is about n
2 in this example.

Figure 2.10 – Numerical simulation of convergence to (PSS) as in Proposition 5:M2(t) defined by (2.1) (left
image) and evolution of the size distribution (right images). The parameters are n = 100, k = 1.1, a = 1.5,
b = 2 and Assumption (2.33): 1 + a

k <
Mtot
P0

< n+ b
k .

2.5 The infinite system

Let us now turn to the infinite system (2.6) with n =∞, where no restriction is imposed on the maximal

size of a fibril. Infinite size systems like the classical Becker-Döring model or a prion model [98, 126]

are considered the most natural way to model such aggregation processes [18]. In this section, we first

present a well-posedness result and, second, a study of all steady states. Finally, we point out the link

between the infinite model and Lotka-Volterra systems in two specific cases: constant coefficients and

linear coefficients.
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Figure 2.11 – Numerical simulation of convergence to (PSS) as in Proposition 5: M2 defined by (2.1) (left
images) and time evolution of the size distribution (right image). The initial condition is the (numerical)
PSS, but v̄ and w̄ are perturbed by a constant of order 10−1 away of their equilibrium values. The
parameters are n = 100, k = 1.1, a = 1.5, b = 2 and Assumption (2.33): 1 + a

k <
Mtot
P0

< n+ b
k .

2.5.1 Well-posedness

We introduce the Banach sequence spaces

`1
1 = {y = (yi) : ‖y‖ <∞}, ‖y‖ =

∞∑
i=1

i|yi |.

and

X = {x = (v,w,c) = (v,w,c1, c2, . . .) : ‖x‖X <∞}, ‖x‖X = |v|+ |w|+ ‖c‖.

Definition 4. Let 0 < T ≤∞ and c = (ci). A nonnegative solution x = (v,w,c) of (2.6) with n =∞ on [0,T ) is
a function x : [0,T )→X such that

1. x(t) ≥ 0 for all t ∈ [0;T ), i.e. v(t) ≥ 0, w(t) ≥ 0, ci(t) ≥ 0 for each i,

2. v,w : [0,T )→R and ci : [0,T )→R for all i ≥ 1 are continuous with supt∈[0,T ) ‖x(t)‖X <∞,

3.
∫ t

0

∑∞
i=1 aici(s)ds <∞,

∫ t
0

∑∞
i=2 bici(s)ds <∞ for all t ∈ [0,T ) and
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Figure 2.12 – Numerical simulation of convergence to (PSS) as in Proposition 5: M2 defined by (2.1) and
its sensitivity to the number of polymers. The number of polymers are 100 (up), 50 (middle) and 20
(bottom). The initial size distributions are centered on n

2 . The parameters are k = 10, a = 1.5, b = 2 and
Assumption (2.33): 1 + a

k <
Mtot
P0

< n+ b
k .

4. v, w and c satisfy for all t ∈ [0,T )

v(t) = v0 +
t∫

0

(
−kv(s)w(s) + v(s)

∞∑
i=2
bici(s)

)
ds,

w(t) = w0 +
t∫

0

(
−w(s)

∞∑
i=1
aici(s) + kv(s)w(s)

)
ds,

ci(t) = c0
i +

t∫
0

(
Ji−1(s)− Ji(s)

)
ds, i ≥ 1, J0 = 0.

(2.37)

Theorem 10 (Well-posedness of the infinite dimensional system).
Let T > 0 be arbitrary and consider x0 = (v0,w0, c0) satisfy ‖x0‖X <∞. Assume

ai =O(i), bi+1 =O(i + 1), ∀ i ≥ 1.

Then, System (2.6) with n =∞ has a nonnegative solution for t ∈ [0,T ) with v(t) ≥ 0, w(t) ≥ 0, ci(t) ≥ 0 for
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Figure 2.13 – Numerical simulation of convergence to (BSSb) as in Proposition 5: M2 defined by (2.1) (left
images) and time evolution of the size distribution (right image). The initial size distribution is centred
around the size 40. The parameters are n = 100, k = 2, a = 80, b = 1 and Mtot

P0
< 1 + a

k (Assumption (2.23),
lower white zone in Figure 2.9, diagonally hatched zone in Figure 2.8).

t ≥ 0 and all 1 ≤ i satisfying

v(t) +w(t) +
∞∑
i=1

ici(t) = v0 +w0 +
∞∑
i=1

ic0
i ,

∞∑
i=1

ci(t) =
∞∑
i=1

c0
i , ∀t ≥ 0.

Moreover, if
∞∑
i=1
i2c0

i <∞, then the solution is unique and satisfies

sup
t∈[0,T )

∞∑
i=1

i2ci(t) <∞. (2.38)

The proof of Theorem 10 adapts well-known results of the Becker-Döring system as presented in [7]

and is postponed to Appendix 2.6.2. The main novelty lies in the nonlinearity of the depolymerisation

terms, which requires the supplementary assumption for the bi .
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2.5.2 Steady states and their local stability

In the following, we assume that the coefficients satisfy

ai > 0, bi+1 > 0, ∀i ≥ 1 and ∃ K > 0 : max
i≥1

{
ai
i
,
bi
i
,
ai
bi+1

}
≤ K. (2.39)

The following result can be seen as the limit as n→∞ of Proposition 5.

Proposition 7 (Steady states of the infinite case system and their local stability).
Let v0 > 0, w0 > 0, P0 > 0 and Mtot ≥ v0 +w0 + P0 > 0. Let (ai ,bi+1)i≥1 satisfy (2.39).

Then, there exist the following steady states (v̄, w̄, c̄i≥1) of System (2.6) with n =∞:

(BSSa) The trivial BSSs v̄ = w̄ = 0 and c̄i≥1 ∈ `1
1 satisfying

∞∑
i=1

c̄i = P0, and
∞∑
i=1

ic̄i =Mtot ,

which are always linearly unstable.

(BSSb) The BSS v̄ =Mtot −P0, w̄ = 0, c̄1 = P0 and c̄i≥2 = 0. This steady state is locally asymptotically stable iff

Mtot

P0
≤ a1

k
+ 1. (2.40)

(PSS) Under assumption (2.40), there exists no positive steady state (PSS). Conversely, if

Mtot

P0
>
a1

k
+ 1, (2.41)

then there exists a unique PSS (v̄, w̄, c̄i≥1). Note that as already noted for the n-polymer model, the
stability of the PSS is an open problem.

Proof.
First step: Existence of the steady states. After dropping the notation ·̄ for simplicity, any steady state

satisfy

kvw = v
∞∑
i=2

bici , w
∞∑
i=1

aici = kvw, Ji = Ji−1 =⇒ vbi+1ci+1 = waici , ∀ i ≥ 1.

Let us first suppose v = 0. Then, the equation for w implies either w = 0 or ci = 0 for all i. The first case

yields (BSSa) by taking into account the conservation of mass and of the number of polymers. The second

case is not possible under the assumption P0 > 0. Hence, (BSSa) gathers all BSSs with v = 0.

Next, suppose v , 0 and w = 0. By the equalities vbi+1ci+1 = 0, we deduce ci≥2 = 0. Consequentially,

c1 =
∑∞
i=1 ci = P0 and v =Mtot −w −

∑∞
i=1 ici =Mtot − P0, which is (BSSb).
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Let us finally assume both v , 0, w , 0. We can divide the equations for ci by v. By denoting z = w
v ,

αi = ai
bi+1

for i ≥ 1, α0 = 1, we calculate

ci+1 =
w
v
ai
bi+1

ci−1 = zαici = · · · = zic1

i∏
j=0

αj .

Under assumption (2.39), this series with coefficients
∏i
j=1αj has a strictly positive convergence radius R

and since we are looking for steady states in `1
1 , we consider here only z < R. Moreover, the equations for

v and w as well as the mass and polymer conservation laws yield the relations:

kv = c1

∞∑
i=1

aiz
i−1

i−1∏
j=0

αj , P0 = c1

∞∑
i=1

zi−1
i−1∏
j=0

αj ,

Mtot = v(1 + z) + c1

∞∑
i=1

izi−1
i−1∏
j=0

αj = c1

 ∞∑
i=1

ai
k
zi−1(1 + z)

i−1∏
j=0

αj +
∞∑
i=1

izi−1
i−1∏
j=0

αj

.
We deduce

Mtot

c1
=
Mtot

P0

∞∑
i=1

zi−1
i−1∏
j=0

αj =
∞∑
i=1

zi−1
((ai
k

+ i
) i−1∏
j=0

αj +1i≥2
ai−1

k

i−2∏
j=0

αj

)
.

We recognise a relation of the form M
P0
F1(z) = F2(z) and notice that F1 and F2 are two increasing functions

in z, which are both defined by series with convergence radii R > 0. Moreover F2 increases faster than F1

since all its coefficients are strictly larger. Hence, there exists no solution iff Mtot
P0
F1(0) < F2(0), which is

exactly assumption (2.40). Conversely, if Mtot
P0
F1(0) ≥ F2(0), there exists a unique solution z < R, which

ensures a posteriori the validity of our assumption to only consider z < R. Given the solution z, the explicit

expressions for c1, v and w follow. Note that z = 0 in the limit case where Mtot
P0
F1(0) = F2(0) and we are

back to (BSSb).

Second step: Linear stability or instability of the steady states. Linearisation of System (2.6) around

the steady states yields the following cases:

1. Linearisation around a state (0,0, c̄i): The equation for v gives dṽ
dt = ṽ

∑∞
i=2 bi c̄i , which has the positive

eigenvector (1,0, ci = 0) for the positive eigenvalue λ =
∑∞
i=2 bi c̄i . Hence, these steady states are

linearly unstable.

2. Linearisation around the state (Mtot − P0,0, P0, ci≥2 = 0). As for the asymptotic stability result, we may

pass to the limit n→∞ in the corresponding part of the proof of Proposition (1).

�
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2.5.3 Link with oscillatory models

We proved in the previous section the well-posedness of the infinite model and that there exists a unique

positive steady state under assumption (2.41). This assumption means that the ratio Mtot
P0

needs to be

"sufficiently large", else the polymers are unstable in the sense that all the mass goes back to the polymer

of minimal size c1. There are two ways for this ratio to be "sufficiently large": either the monomeric

species are in large excess, so that v0+w0

P0
is large, and/or the average polymer size, namely Mtot−v0−w0

P0
is

large, i.e. far enough from the BSS c̄1 = P0 for which Mtot
P0

= 1 has its minimum. Proposition 7 leaves the

question open if the unique positive steady state is asymptotically stable under this assumption, but we

expect this to be true.

In this subsection, in order to give some insights into the question of damped oscillations towards

the positive equilibrium, we focus on two specific cases for the parameters of the model: the constant

coefficient case and the linear coefficient case. Results for general reaction rate coefficients are difficult

and open questions, beyond the scope of this study.

The constant coefficient case and its link to a predator-prey Lotka-Volterra system

As for the finite system, assuming constant coefficients permits to derive an explicit formula for the

positive steady state.

Corollary 4 (Non-trivial steady state for constant reaction coefficients).
Under the assumptions of Proposition 7 with ai = a, bi = b and under assumption (2.41), the strictly positive
steady state (v̄, w̄, c̄i≥1) of (2.6) is explicitly given by

v̄ =
a
k
P0, w̄ = γ

b
k
P0, c̄1 = (1−γ)P0, c̄i = γ i−1(1−γ)P0, ∀i ≥ 2,

where

γ =
1
2

(
−a
b

+
kMtot

bP0
+ 1−

√(a
b
− kMtot

bP0
+ 1

)2
+

4k
b

)
.

Proof. The straightforward computations proving Corollary 4 are postponed to Appendix 2.6.2. �

Discussion and biological interpretation: Corollary 4 supposes assumption (2.41), which constitutes the

biologically most relevant case since from a modelling point of view we are interested in Mtot
P0
� 1, which

means that the average size of polymers is initially large, and/or that there are enough monomeric species

v and w. Accordingly, Corollary 4 states the existence of a PSS, which is conjectured to be stable. The

opposite condition (2.40) concerns cases where the disease cannot spread due to a too small amount of

large polymers and monomeric species compared to small polymers (see the discussion for n finite after

Proposition 5).

In the case of constant polymerisation coefficients, we obtain the following system

dv
dt

= −kvw+ bv(P0 − c1),
dw
dt

= −awP0 + kvw,
dci
dt

= Ji−1 − Ji , 1 ≤ i. (2.42)
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and observe that if c1 is negligible compared to P0, i.e. P0 − c1 ' P0, with P0 being a constant, then the

equations for (v,w) in (2.42) constitute a Lotka-Volterra system with v taking the role of the prey and

w being the predator. Hence, System (2.42) can be interpreted as a perturbation of the Lotka-Volterra
system by the concentration of the polymer of minimal size c1. Note that this observation is in accordance

with the numerically observed oscillations, which are progressively damped towards the steady state

and are more pronounced for smaller c1 - the oscillatory behaviour of System (2.42) is also reflected in

oscillations of M1 and M2 defined by (2.36).

The linear coefficient case and its link to a cyclic reaction system

As in the constant coefficients case, an explicit formula for the positive steady state is easily computed in

the case of linear polymerisation coefficients.

Corollary 5 (Non-trivial steady state for linear reaction coefficients).
Under the assumptions of Proposition 7 with ai = ia, and bi+1 = ib for i ≥ 1, and under assumption (2.41), the
strictly positive steady state (v̄, w̄, c̄i≥1) of (2.6) is given by

v̄ =
a

k(1−γ)
P0, w̄ =

bγ

k(1−γ)
P0, c̄1 = (1−γ)P0, c̄i = γ i−1(1−γ)P0, ∀i ≥ 2

and
γ =

Mtotk − P0(a+ k)
Mtotk + P0b

∈ (0,1).

Proof. Again, we postpone the straightforward calculations of the proof of the corollary to Appendix 2.6.2.

�

Discussion and biological interpretation: Keeping the same notation of the total polymer mass M1(t) =

Mtot − v −w as in the previous section, assuming linear polymerisation coefficients yields the simplified

system:

dv
dt

= −kvw+ vb(M1 − P0),
dw
dt

= −waM1 + kvw,
dM1

dt
= waM1 − vb(M1 − P0). (2.43)

System (2.43) differs from (2.42) by featuring an interplay between the two monomer species and the

total polymer massM1(t), which varies in time as a kind of quasi-variable (and in contrast to total number

of polymers P0 being constant).

In situations when P0 � M1 (i.e. when the average polymer size remains sufficiently large), we

recover the already cited Ivanova differential system (2.3). The Ivanova system displays sustained

oscillations [162]. In our specific case, the total number of polymers P0 is a perturbation which has

an impact on the behaviour of the solutions of (2.43). The mass conservation of System (2.43) implies
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M1(t) =Mtot − v(t)−w(t). Hence, we can further reduce (2.43):
dv
dt = −kvw+ vb ((Mtot − P0)− v −w) ,

dw
dt = −wa(Mtot − v −w) + kvw.

(2.44)

System (2.44) is a well known quadratic Lotka-Volterra system, see [20] or [70]. By using Poincaré-

Bendixson theorem and the Poincaré-Dulac theorem, it follows that solutions of (2.44) converge to

a steady state. Also, the oscillatory behaviour near the steady states follows from the (well-known)

eigenvalues of the linearised system. We expect that global oscillatory behaviour of the solutions can

be shown by similar arguments as in the two-polymer case, see Corollary 1. Moreover, exponential

convergence to the steady state can probably be proven by developing an analog proof as for Theorem 9.

These results, however, are beyond the scope of this study.

Summary and Perspectives

In this chapter, we propose a bi-monomeric, nonlinear Becker-Döring-type system, where one monomer

species is involved in the polymerisation process while the other monomeric species is able to in-

duce depolymerisation (with an accordingly nonlinear depolymerisation rate). Moreover, the poly-

merising/depolymerising hierarchy of polymers provides a nonlinear feedback to the evolution of the

monomeric species.

A key observation of this paper highlights that the nonlinear coupling between monomeric species

and polymer hierarchy leads to generic oscillatory behaviours of solutions, which is in special parametric

cases linked to Lotka-Volterra models. A key concept of this paper is that the proposed mathematical

model may play a pivotal role in explaining oscillatory behaviour in prion assemblies depolymerisation

experiments, and thus become a building block for more specific models for the development of prion

diseases.

Furthermore, we performed a full study of the model in the case of only two polymers. We have proven

exponential convergence to equilibrium as well as provided an explanation for the damped oscillations,

which occur when the monomer dynamics is fast compared to polymerisation/depolymerisation. For

the finite and infinite models, we have analysed the existence, uniqueness and stability of the boundary

steady states (BSSs) and characterised the existence of positive steady states (PSSs).

Several questions remain open, especially interesting ones for the infinite system: What is the stability

of the positive steady state? What is the (nonlinear) rate of convergence to equilibrium? Does a Lyapunov

functional exist (at least in a suitable neighbourhood of the PSSs)? How to rigorously prove the existence

of damped oscillations?

Turning back to the experiments as shown in Figure 2.1, it also appears that much remains to be

done before reaching a fully quantitative model: integrating the proposed reaction scheme in a more

complete model, where "usual" reactions (like linear depolymerisation) would be the dominant reactions,

governing the slow dynamics of the reactions, and these ones local corrections; experimental evidence



2.6. Supplementary and appendix 97

and quantitative comparison, for instance through data assimilation strategies in the spirit of [5, 6].

Finally, in a similar fashion as the Lifshitz-Slyozov system for Becker-Döring, a continuous approxi-

mation of our system could provide interesting insights into the interplay between the different scales, in

particular the role of the average size of the polymers, and lead us to new mathematical problems.
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2.6 Supplementary and appendix

2.6.1 The two-polymer model continued

Lemma 2 (Local convexity estimate of the Hamiltonian decay).
Consider as above 4−λ to be the interior of the triangle between v = 0 and the lines Wλ : w −w∞ = −λ(v − v∞)

and WΛ : w −w∞ = −Λ(v − v∞).

Then, for all λε < λ < 1 sufficiently close to one, we have

d2 − [(v − v∞)v∞w+ (w −w∞)vw∞]p ≥ κ(v − v∞)2, (2.45)

for a positive constant κ = κ(λ,v∞,w∞) > 0.

Proof. We set

q := [(v − v∞)v∞w+ (w −w∞)vw∞]

and observe that q > 0 is equivalent to

w −w∞ > −(v − v∞)
v∞
v

w
w∞

,

where on 4−λ both v∞
v > 1 and w

w∞
> 1. It is easily checked that the line q = 0 as a function of v is a curve

through the equilibrium (v∞,w∞), where it has the line p = 0 as tangent. Moreover, on 4−λ the line q = 0 is

strictly convex and intersects the line WΛ (and thus enters 4−λ) at the point

v =
v∞(w∞ +Λv∞)
Λ(v∞ +w∞)

< v∞.

In order to prove (2.45), we need to estimate d2 − qp below. Note that qp > 0 holds on two subdomains of

4−λ: I) the intersection of the domains q > 0 and p > 0 up to the line WΛ, which we shall denote as 4−λ,I and

II) the domain 4−λ,II between the lines Wλ, p = 0 and the domain q < 0, where thus both q < 0 and p < 0.

On 4−λ,I , we estimate 0 ≤ q ≤ v∞w∞p with 0 ≤ p ≤ (1−Λ)(v − v∞). Together with (2.14), this implies

on 4−λ,I : d2 − qp ≥ (v − v∞)2
[
(w∞ +λv∞)2 − (1−Λ)2v∞w∞

]
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By observing that (1−Λ)2 = (λ− 1)2, we obtain

κ = (w∞ +λv∞)2 − (λ− 1)2v∞w∞ > 0

for λ close enough to one.

On 4−λ,II , where q < 0, we estimate

|q| = −(v − v∞)v∞(w −w∞)− (w −w∞)(v − v∞)w∞ − v∞w∞p

≤ (v − v∞)2(v∞ +w∞)Λ− v∞w∞p.

Since (1−λ)(v − v∞) ≤ p ≤ 0 and (1−Λ)2 = (λ− 1)2, we obtain

d2 − qp ≥ (v − v∞)2
[
(w∞ +λv∞)2 + (v∞ +w∞)Λ(1−λ)(v − v∞)− v∞w∞(λ− 1)2

]
≥ κ(v − v∞)2

for λ close enough to one. �

Lemma 3 (Sojourn time estimates).
Consider 4−λ as above. Let t1 be the time when a solution trajectory enters 4−λ at a point (v1,WΛ(v1) and t2 the
time when the same trajectory leaves 4−λ at a point (v2,Wλ(v2)) with v2 < v1 and Wλ(v2) <WΛ(v1).

Then, for ε sufficiently small and all v1 ∈ (0,v∞), we have that the sojourn time t2 − t1 is bounded below and
above, i.e.

c1

c2

1
2Λ[v∞ +w∞]

≤ t2 − t1 ≤
2(Λ−λ)
w∞

, (2.46)

where c1, c2 > 0 are trigonometric constants. Note that c1 =O(λ− 1) while c2 =O(1).

Proof. We estimate the second equation of (P2) by using that p ≥ (1−λ)(v −v∞), w∞ ≤ w ≤ w∞ +Λv∞ and

v − v∞ = −|v − v∞| holds on 4−λ:

−ẇ = −w(v − v∞) + εwp ≥ w∞|v − v∞| − ε(1−λ)w|v − v∞|

≥ |v − v∞| [w∞ − ε(1−λ)(w∞ +Λv∞)]

≥ w∞
2
|v − v∞| ≥

w∞
2
|v1 − v∞|,

where the second last inequality holds for sufficiently small ε, e.g. ε ≤ w∞
2(1−λ)(Λv∞+w∞) . Hence,

w(t1)−w(t2) =
∫ t2

t1

−ẇdt ≥ w∞
2
|v1 − v∞|(t2 − t1).

On the other hand, since w(t1)−w(t2) ≤WΛ(v1)−Wλ(v1) as v2 = v(t2) < v1 = v(t1), we have

w(t1)−w(t2) ≤ w∞ −Λ(v1 − v∞)−w∞ +λ(v1 − v∞) = (Λ−λ)|v1 − v∞|
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which yields the upper bound (2.46). For the lower bound, we estimate with w ≤ w∞ +Λv∞

−ẇ = −w(v − v∞) + εwp ≤ |v − v∞| [w∞ +Λv∞] (1 + ε(Λ− 1))

≤ 2Λ[v∞ +w∞]|v − v∞| ≤ 2Λ[v∞ +w∞]|v2 − v∞|,

for ε sufficiently small, e.g. ε(Λ− 1) ≤ 1. Hence

w(t1)−w(t2) =
∫ t2

t1

−ẇdt ≤ 2Λ[v∞ +w∞]|v2 − v∞|(t2 − t1) (2.47)

and we require a lower bound for w(t1)−w(t2), which we derive as follows. From

−v̇ = v[w −w∞] + εvp ≤ v∞Λ|v − v∞|+ εv∞(Λ− 1)|v − v∞|

≤ |v − v∞|Λv∞

for ε sufficiently small, e.g. ε(Λ− 1) ≤Λ and by recalling −ẇ ≥ w∞
2 |v − v∞| from above, we estimate

dw
dv

=
−ẇ
−v̇
≥ w∞

2Λv∞
.

The lower bound on dw
dv implies that the solution trajectory starting at (v1,w1 =WΛ(v1)) and leaving 4−λ

at (v2,w2 =Wλ(v2)) lies below the straight lineW through (v1,w1) with slope w∞
2Λv∞

. By denoting v̂1, ŵ1

the crossing between W and Wλ, we have that v̂1 < v2 < v1 and ŵ1 > w2. Moreover, the length l of W
within 4−λ is proportional both to v1 − v∞ and v̂1 − v∞ by trigonometric constants. Since v̂1 < v2 < v1, l is

therefore also proportional to v2 − v∞, i.e. there exist a trigonometric constant c1 such that l = c1|v2 − v∞|.
Finally, l is also proportional to w1 − ŵ1, i.e. l = c2(w1 − ŵ1). Altogether, that implies that

w(t1)−w(t2) = w1 −w2 ≥ w1 − ŵ1 =
l
c2

= |v2 − v∞|
c1

c2
,

which yields together with (2.47) the lower bound (2.46). This finishes the proof. �

2.6.2 Stability of the steady states for the finite system

Proof of stability of the boundary steady states (Proposition 5)

(BSSa) v = w = 0.

To analyse linear stability, we linearise system (2.6) around those equilibria and obtain the
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following matrix

A(0,0) =



n∑
i=2
bici 0 0 · · · 0

0 −
n−1∑
i=1
aici 0 · · · 0

b2c2 −a1c1 0 · · · 0

· · · · · · 0 · · · 0

bi+1ci+1 − bici −aici + ai−1ci−1 0 · · · 0

−bncn wan−1 0 · · · 0


,

which has an n-fold zero eigenvalue as well as λ+ =
n∑
i=2
bici > 0 and λ− = −

n−1∑
i=1
aici ≤ 0. Hence,

these steady states are always unstable.

(BSSb) w = 0 and c2 = c3 = . . . = cn = 0.

The linearised system is then described by A(v,0) defined by

A(v,0) :=



0 −kv 0 b2v · · · biv bi+1v · · · bnv

0 kv − a1P0 0 0 · · · 0 0 · · · 0

0 −a1P0 0 b2v · · · 0 0 · · · 0

0 a1P0 0 −b2v b3v 0 0 · · · 0

0 0 0 0 · · · −biv bi+1v 0 0

0 0 · · · 0 0 0 0 · · · 0

0 0 · · · 0 0 0 0 0 −bnv


.

This is exactly symmetric to the case of A(0,w): Zero is an eigenvalue of order two, and the other

eigenvalues are λi = −biv for 2 ≤ i ≤ n and λ1 = kv−a1P0 = kMtot−P0(k+a1), so that it is unstable

iffMtot > P0(1 + a1
k ).

(BSSc) v = 0 and c1 = c2 = . . . = cn−1 = 0.

The linearised system is given by dX
dt = AX with w =Mtot −nP0:

A(0,w) =



−kw+ bnP0 0 0 · · · · · · · · · 0 0

kw 0 −a1w · · · −aiw · · · −an−1w 0

0 0 −a1w 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · ai−1w −aiw 0 · · · 0

· · · · · · · · · · · · · · · · · · 0 0

bnP0 0 0 · · · 0 an−2w −an−1w 0

−bnP0 0 0 · · · 0 0 an−1w 0


,
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The eigenvalues are thus 0 (twofold), λ0 = −kw+ bnP0 and λi = −aiw < 0 for 1 ≤ i ≤ n− 1. This

steady state is thus unstable iff λ0 > 0, i.e. bnP0 > k(Mtot −nP0). Note that such a steady state is

physically relevant only if it is nonnegative, i.e. Mtot ≥ nP0.

The infinite system.

Well-posedness

Proof.[Theorem 10] First step: Existence. Let xn0 = (v0,w0, c
0
1, . . . , c

0
n). By Proposition 4, System (2.6) has a

unique solution xn on [0,∞) with vn(t) ≥ 0, wn(t) ≥ 0,cni (t) ≥ 0, for 1 ≤ i ≤ n and

vn(t) +wn(t) +
n∑
i=1

icni (t) = v0 +w0 +
n∑
i=1

ic0
i ,

n∑
i=1

ci(t) =
n∑
i=1

c0
i .

We construct a sequence (xn)n≥1 in X such that x1 = v, x2 = w, xi = cni−2,1 ≤ i − 2 ≤ n and xi = 0,∀i ≥ n+ 2.

Thus, ‖xn‖X ≤ ‖x0‖X and 0 ≤ vn(t) ≤ ‖x0‖X , 0 ≤ wn(t) ≤ ‖x0‖X , 0 ≤ cni (t) ≤ i−1‖x0‖X ,∀ t ≥ 0 and all i and n.

Therefore, using the assumptions on ai , bi , we obtain the bounds

|ċn1 | ≤
(
a1 +

b2

2

)
‖x0‖2X ,

|ċni | ≤
(
ai−1

i − 1
+
ai
i

+
bi+1

i + 1
+
bi
i

)
‖x0‖2X ≤ K2 <∞, i ≥ 2.

Therefore, for all i the function cni (.) are equicontinuous on [0,∞). Thanks to the Arzelá-Ascoli theorem,

we can extract a subsequence nk → ∞ such that there exists a continuous function ci : [0,∞) 7→ R

such that cnki → ci uniformly on compact subsets of [0,∞) as k→∞. Note that ci ≥ 0 and
∑N
i=1 ici(t) =

limk→∞
∑N
i=1 ic

nk
i (t) ≤ ‖x0‖X . Hence, we obtain

∞∑
i=1

ici(t) ≤ ‖x0‖X , ∀t ≥ 0. (2.48)

Using the assumptions on ai , bi and (2.48), we get

∞∑
i=1

aici(t) ≤ K1‖x0‖X <∞,
∞∑
i=2

bici(t) ≤ K2‖x0‖X <∞, ∀t ≥ 0. (2.49)

Therefore, we also obtain

|v̇n(t)| ≤ (k +K3)‖x0‖X and |ẇn(t)| ≤ (k +K4)‖x0‖X .

Using the same reasoning and thanks to the the Arzelá-Ascoli theorem, there exist continuous functions

v : [0,∞) 7→R and w : [0,∞) 7→R), respectively, such that vnk → v, (resp. wnk → w) uniformly on compact

subsets of [0,∞) as k→∞ and v ≥ 0, w ≥ 0.
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Finally we pass to the limit as k→∞ in

vnk (t) = v0 +
∫ t

0

(
−kvnk (s)wnk (s) + vnk (s)

∞∑
i=2

bic
nk
i (s)

)
ds,

wnk (t) = w0 +
∫ t

0

(
−wnk (s)

∞∑
i=1

aic
nk
i (s) + kvnk (s)wnk (s)

)
ds,

c
nk
1 (t) = c0

i +
∫ t

0

(
− a1c

nk
1 (s)wnk (s) + b2c

nk
2 (s)vnk (s)

)
ds,

c
nk
i (t) = c0

i +
∫ t

0

(
(ai−1c

nk
i−1(s)− aic

nk
i (s))wnk (s) + (bi+1c

nk
i+1(s)− bic

nk
i (s))vnk (s)

)
ds, i ≥ 2.

We get (2.37) at the limit thanks to the uniform convergence and the bounds obtained in (2.49).

Moreover, in order to obtain a priori estimates (2.38), we compute:

d
dt

nk∑
i=1

i2c
nk
i =

nk−1∑
i=1

(2i + 1)(aiw
nk c

nk
i − bi+1v

nk c
nk
i+1).

Using the bounds on wnk , vnk and the assumptions on ai , bi+1, we get

nk∑
i=1

i2c
nk
i ≤

∞∑
i=1

i2c0
i +K

∫ t

0

nk∑
i=1

i2c
nk
i

 ,
where the constant K is independent of k. Since

∑∞
i=1 i

2c0
i <∞ and using Gronwall’s inequality we get:

l∑
i=1

i2c
nk
i +

nk∑
i=l+1

i2c
nk
i ≤Me

Kt ,

for all t ≥ 0 where M is a constant independent of k. Letting k→∞ then l→∞, we deduce

∞∑
i=1

i2ci ≤MeKt

and (2.38).

We can also obtain the following conserved quantities for the solution of System (2.6) with n =∞.

Since (2.37) holds, we get for n > 1, t ≥ 0

n∑
i=1

ci(t)−
n∑
i=1

c0
i = −

∫ t

0
Jn(s)ds.
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Since v, w are bounded and (2.49), we have lim
n→∞
−
∫ t

0 Jn(s)ds = 0 and

∞∑
i=1

ci(t) =
∞∑
i=1

c0
i .

We also have

n∑
i=1

ici(t)−
n∑
i=1

ic0
i =

∫ t

0

n∑
i=1

i (Ji−1(s)− Ji(s))ds = −
∫ t

0
nJn(s)ds+

∫ t

0

n−1∑
i=1

Ji(s)ds, (2.50)

and
∞∑

i=n+1

ci(t)−
∞∑

i=n+1

c0
i =

∫ t

0
Jn(s)ds.

We obtain the following result from (2.48)

lim
n→∞

(n+ 1)
∞∑

i=n+1

ci(t) ≤ lim
n→∞

∞∑
i=n+1

ici(t) = 0,

whence lim
n→∞

∫ t
0 nJn(s)ds = 0. Then, by passing to the limits and adding v and w to (2.50) we obtain

v(t) +w(t) +
∞∑
i=1

ici(t) = v0 +w0 +
∞∑
i=1

ic0
i . (2.51)

Second step: Uniqueness. Let x1 = (v1,w1, c) and x2 = (v2,w2,d) be absolutely continuous in time solu-

tions of System (2.6) with n =∞ and the same initial condition x0 = (v0,w0, c0). Then, we note

J
(1)
i = aiw1ci − bi+1v1ci+1, J

(2)
i = aiw2di − bi+1v2di+1, ∀i ≥ 1,

and J (1)
0 = J (2)

0 = 0. Let V (t) = v1(t)−v2(t), W (t) = w1(t)−w2(t) and yi(t) = ci(t)−di(t). Then, for a.e. t ∈ [0,T )

we have

d
dt
|V |+ |W | = sign(V )

(
−kVw1 − kv2W +V

∞∑
i=2

bici + v2

∞∑
i=2

biyi

)

+ sign(W )
(
kv1W + kVw2 −W

∞∑
i=1

aici −w2

∞∑
i=1

aiyi

)
,

= |V |
(
−kw1 + sign(VW )kw2 +

∞∑
i=2

bici

)
+ |W |

(
kv1 − sign(VW )kv2 −

∞∑
i=1

aici

)

+
(
sign(V )v2

∞∑
i=2

biyi − sign(W )w2

∞∑
i=1

aiyi

)
.
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We have by (2.49) and (2.51) that

d
dt
|V |+ |W | ≤ K1

|V |+ |W |+ ∞∑
i=1

i|yi |

 . (2.52)

Integrating (2.52) we obtain for t ∈ [0,T )

|V (t)|+ |W (t)| ≤ K1

∫ t

0

(
|V |+ |W |+

∞∑
i=1

i|yi |
)
ds. (2.53)

We also have for a.e. t ∈ [0,T )

d
dt

n∑
i=1

i|yi | =
n∑
i=1

(J (1)
i − J

(2)
i )[(i + 1)sign(yi+1)− i sign(yi)]− (n+ 1)sign(yn+1)(J (1)

n+1 − J
(2)
n+1). (2.54)

Now

(J (1)
i − J

(2)
i )[(i + 1)sign(yi+1)− i sign(yi)] = (aiyiw1 + aidiW − bi+1yi+1v1 − bi+1di+1V )

×[(i + 1)sign(yi+1)− i sign(yi)],

= aiw1|yi |[(i + 1)sign(yi+1yi)− i]− bi+1|yi+1|v1[(i + 1)− i sign(yi+1yi)]

+(aidiW − bi+1di+1V )[(i + 1)sign(yi+1)− i sign(yi)],

hence

(J (1)
i − J

(2)
i )[(i + 1)sign(yi+1)− i sign(yi)] ≤ aiw1|yi |+ (2i + 1)(aidi |W |+ bi+1di+1|V |). (2.55)

Integrating (2.54) and using (2.55), we therefore obtain for t ∈ [0,T )

n∑
i=1

i|yi | ≤
∫ t

0

n∑
i=1

aiw1|yi |ds+
∫ t

0

n∑
i=1

(2i + 1)(aidi |W |+ bi+1di+1|V |)ds

− (n+ 1)
∫ t

0
sign(yn+1)(J (1)

n+1 − J
(2)
n+1)ds.

(2.56)

Using the assumption on ai , bi+1 we have by (2.38) that

sup
t∈[0,T )

∞∑
i=1

(2i + 1)aidi(t) <∞, sup
t∈[0,T )

∞∑
i=1

(2i + 1)bi+1di+1(t) <∞. (2.57)

By the same arguments as in the first step, we deduce

lim
n→∞

(n+ 1)
∫ t

0
sign(yn+1)(J (1)

n+1 − J
(2)
n+1)ds = 0, t ∈ [0,T ). (2.58)
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Using (2.56)–(2.58), ai =O(i) and letting n→∞, we therefore obtain for t ∈ [0,T )

∞∑
i=1

i|yi |(t) ≤ K2

∫ t

0

(
|V |+ |W |+

∞∑
i=1

i|yi |
)
ds. (2.59)

Summing the two inequalities (2.53) and (2.59) and using Gronwall’s inequality, we obtain that

|V (t)|+ |W (t)|+
∞∑
i=1

i|yi(t)| = 0, t ∈ [0,T )

and thus (v1,w1, c) = (v2,w2,d) and uniqueness. �

Explicit formula for the positive steady state.

Proof.[Corollary 4] We define γ = a
b z = αz and use the expressions obtained in the Proposition 7,

c̄i = γ i−1c̄1,
c̄1

1−γ = P0, kv̄ = a c̄1
1−γ = aP0,

v̄ + w̄+ c̄1
(1−γ)2 = a

k P0 + bv̄γ
a + P0

1−γ = P0

(
a
k + bγ

k + 1
1−γ

)
=Mtot ,

which gives us immediately a second-order equation for γ . We define

β1 =
b
k
, β2 =

a
k
, µ =

Mtot

P0
,

hence
a
k (1−γ) + b

kγ(1−γ) + 1 = Mtot
P0

(1−γ),

β2(1−γ) + β1γ(1−γ) + 1 = µ(1−γ),

β1γ
2 +γ(β2 −µ− β1) +µ− 1− β2 = 0.

We calculate the discriminant

∆ = (β2 −µ− β1)2 − 4β1(µ− 1− β2) = (β2 −µ+ β1)2 + 4β1,

γ± = 1
2

(
−β2
β1

+ µ
β1

+ 1±
√

(β2
β1
− µ
β1

+ 1)2 + 4
β1

)
.

We see easily that for any value of the parameters we have γ+ > 1: Indeed, we have

γ+ >
1
2

(
−
β2

β1
+
µ

β1
+ 1 + |

β2

β1
−
µ

β1
+ 1|

)
≥ 1.
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Thus, the only admissible solution is γ−. We see similarly that it is always smaller than 1

γ− <
1
2

(
−
β2

β1
+
µ

β1
+ 1− |

β2

β1
−
µ

β1
+ 1|

)
≤ 1.

And we have γ− > 0 under the assumption (2.41). �

Proof.[Corollary 5] Using the same notations as previously, we have

γ =
aw̄
bv̄
, c̄i = γ i−1c̄1,

c̄1

1−γ
= P0,

and denoting f (γ) = 1
1−γ =

∞∑
i=0
γ i

kv̄ = ac̄1

∞∑
i=1

iγ i−1 = aP0(1−γ)f ′(γ) =
aP0

(1−γ)
, kw̄ = bc1

∞∑
i=1

iγ i =
bP0γ

(1−γ)

v̄ + w̄+
c1

(1−γ)2 =
aP0

k(1−γ)
+

bP0γ

k(1−γ)
+

P0

(1−γ)
=Mtot ,

and thus

Mtotk(1−γ) = P0(a+ bγ + k), γ =
Mtotk − P0(a+ k)
Mtotk + P0b

< 1.

We have γ > 0 iff the assumption (2.41) is fulfilled. �

Materials and methods of the depolymerisation experiment shown in Figure 2.1

Formation of amyloid fibrils: PrP amyloid fibrils were formed using the manual setup protocol described

previously in [21]. Fibril formation was monitored using a ThT binding assay [21]. Samples were dialysed

in 10 mM sodium acetate, pH 5.0. Then fibrils were collected by ultracentrifugation and resuspended

in 10 mM sodium acetate, pH 5.0. A washing step was performed by repeating the ultracentrifugation

and resuspension steps in 10 mM sodium acetate, pH 5.0. Static light scattering: Static light scattering

kinetic experiments were performed with a thermostatic homemade device using a 407-nm laser beam.

Light-scattered signals were recorded at a 1120 angle. Signals were processed with a homemade MatLab

program. All experiments have been performed at 550C in a 2mmX10mm cuve.



Chapter3
A continuous bi-monomeric

Lifshitz-Slyozov type model.

3.1 Introduction

We study the following system of reactions in a continuous size-setting where the depolymerisation is

catalysed by a monomeric species. Let us recall the discrete-size chemical model where we denote V and

W respectively the monomeric depolymerising and polymerising species, and Ci the polymers containing

i monomers. 
V +W k−→ 2W

W + Ci
ai−→ Ci+1 i ≥ 1

Ci +V
bi−−→ Ci−1 + 2V i ≥ 2

(3.1)

C1 represents the minimal size of the polymers however it could as well represent already large fibrils,

of any given size n0 ∈N∗. The infinite size-structured ordinary differential equations (ODE) systems

corresponding to (3.1) has previously been studied (cf Chapter 2, [55]). The new framework model the

phenomenon of protein aggregation process by three coupled equations: a transport equation represent-

ing the evolution in time of the concentration of clusters of specific sizes and two differential equations

representing the evolution in time of the concentration of the two monomeric species. The infinite ODE

systems leads to high computational costs whereas the partial derivative equations (PDE) coupled with

two ODE seems easier to handle both theoretically and numerically.

In this study, we are interested in the long-term behaviour of a polymerisation/depolymerisation equa-

tions modeling the kinetics of large polymers in a spatially and closed environment. We prove that

depending on the assumptions on the reaction coefficients the existence of either sustained oscillations

or damped oscillations and the convergence towards a steady-state. We first recall some results on the

seminal Lifshitz-Slyozov equations.

107
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3.1.1 A continuous polymerisation/depolymerisation model: the Lifshitz-Slyozov
model.

The Lifshitz-Slyozov model was first introuced in the seminal paper [95], was originally designed

to model the formation of a new phase in solid solution. It describes the formation of aggregates or

polymers by the continuous addition of monomers. In the following, we denote v(t) the concentration

of monomers at time t and f (t,x) the concentration of polymers of size x > 0 at time t. The model is

an attempt to describe the kinetics happening during SLS experiments, hence we assume a closed and

space-homogeneous environment. This translates into the constraint that the total mass needs to be

conserved:

v(t) +
∫ ∞

0
xf (t,x)dx = v(0) +

∫ ∞
0
xf (0,x)dx := ρ, ∀t ≥ 0. (3.2)

We denote by ρ the total mass of monomers and
∫
xf (t,x)dx can be interpreted as the concentration

of monomers in the polymerised form. Hence, the concentration of polymers satisfies the following

equation:
∂f

∂t
+
∂
∂x

[
(a(x)v(t)− b(x))f (t,x)

]
= 0, f (0,x) = f0(x) ≥ 0. (3.3)

Note that in (3.3), the depolymerisation rate is denoted by b(x), the polymerisation rate is denoted by

a(x) and both rates can be size-dependent. In the original seminal paper [95], the authors assume the

following reaction coefficients

a(x) = x
1
3 , b(x) = 1.

Using these definitions of the reaction rates, no boundary condition at x = 0 is required since the flux at

zero is always going outward. Moreover, one key assumption for the phase transition model is that for

larger sizes, the polymerisation rate is bigger than the depolymerisation rate, whereas the reverse is true

for smaller size. This lead to the phenomenon called "Ostwald ripening" which describes the formation

of larger and larger clusters at the expense of smaller ones (see e.g. [95, 109]).

The model containing equation (3.3) can either be completed by the mass conservation equation (3.2) or

equivalently by the following equation for the concentration of monomers:

dv
dt

=
∫ ∞

0
b(x)f (t,x)dx − v(t)

∫ ∞
0
a(x)f (t,x)dx, v(0) = v0. (3.4)

We recall now some results on the Lifshitz-Slyosov model (3.3)-(3.2) or (3.3)-(3.4). The well-posedness

has been established by Collet and Goudon in [37]. The autors proved the following theorem, stating the

existence and uniqueness of solutions of (3.3)-(3.2).
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Theorem 11 (Well-posedness [37].). Let a, b be C1 functions on [0,∞) such that

a(x) ≥ 0, b(x)≥ 0,

a(0)M − b(0) ≤ 0,

|a′(x)|+ |b′(x)| ≤ K.

Let the initial data f0 be nonnegative and satisfy∫ ∞
0
f0(x)dx <∞,

∫ ∞
0
xf0(x)dx <M.

Then the system (3.3)-(3.2) has a unique solution

(v,f ) where v ∈ C0 ([0,T ]) , xf ∈ L∞
(
[0,T ];L1([0,∞))

)
.

The condition a(0)M − b(0) ≤ 0 ensures the fact that no boundary condition is needed. The proof of

the theorem is based on the method of characteristic to obtain an expression of the density function in

terms of the monomer concentration and then a fixed-point method.

The asymptotic behaviour of the Lifshitz-Slyozov model for general assumptions on the reaction rates is

still an open problem. However, Calvo, Doumic and Perthame recently established in [27] the exponential

convergence towards a dirac mass in the following theorem.

Theorem 12 (Exponential convergence to a critical mass [27]). Let a(x) = 1 and b(x) ≥ 0 such that

b ∈ C1(R+), ∃ α,β > 0, 0 < α ≤ b′(x) ≤ β

v0 > b(0) ≥ 0.

Moreover, let

f0 ∈ L1(R+, (1 + x2)dx) with ρ0 =
∫ ∞

0
f0(x)dx > 0.

Then there exists a unique solution x̄ > 0 to the equation

M = ρ0x̄+ b(x̄)

and the solution (v,f ) ∈ C1(R+ ×C(R+,L
1((1 + x2)dx)) to the Lifshitz-Slyozov system (3.3)-(3.4) is such that

f (t,x) converges to ρ0δx̄ exponentially fast in the sense of the Wasserstein distance: for some constant C > 0 we
have

W2(f (t, ·),ρ0δx̄) ≤ Ce−αt , |v(t)− b(x̄)| ≤ Ce−αt .
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The proof of Theorem 12 is based on Entropy inequalities. The study on the Lifshitz-Slyozov equations

is still an active research field and open problems remain for more general assumptions on the reaction

coefficients. Further results can be found in [111, 87, 112, 63, 31]

3.1.2 From Becker-Döring to Lifshitz-Slyozov system.

In [39], the authors show that the Lifshitz-Slyozov system can be obtained as an asymptotic limit of the

Becker-Döring system. The leading idea to demonstrate the asymptotic equivalence is to consider the

functions (ci(t))i>1, the solution of the Becker-Döring system, as a discretisation in space of a function

f (t,x), that, with a function v for the monomer concentration, solves the Lifshitz-Slyozov system. Collet

et al in [39] introduced a scaling parameter ε and showed that the solution of the Becker-Döring system

converges to that of the Lifshitz-Slyozov system as ε goes to 0.

In the following, we describe the main steps to get this result. We start by rewriting the Becker-Döring

system in a dimensionless form. The reference quantities used to rescale are:

• T : characteristic time,

• C1: characteristic value for the monomer concentration,

• C: characteristic value for the polymers concentrations,

• A1: characteristic value for the polymerisation coefficient a1,

• A: characteristic value for the polymerisation coefficients ai i ≥ 2,

• B: characteristic value for the depolymerisation coefficients,

• M: characteristic value for the total mass,

• Mm: mass of one monomer.

We rescale every variable by its characteristic value:

t̄ =
t
T
, c̄1 =

c1(t̄T )
C1

, c̄i =
ci(t̄T )
C

, ρ̄ =
ρ

M
,

āi =
ai
A
, ā1 =

a1

A1
, b̄i =

bi
B
, for i ≥ 2.

We define the dimensionless parameters :

γ =
C
C1
, µ =

M
MmC1

, α = ATC1,

α1 =
A1C1

AC
, β = BT .
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The dimensionless form of the Becker-Döring system is then (omitting the overlines):

d
dt ci= α(ai−1c1ci−1 − aic1ci) + β(bi+1ci+1 − bici) i ≥ 2,

d
dt c2= α1αa1c

2
1 −αa2c1c2 + β(b3c3 − b2c2),

d
dt c1= −γ

(
2(α1αc

2
1 − βb2c2) +

∞∑
i=2

(αaic1ci − βbi+1ci+1)
)
,

(3.5)

and the mass conservation is

c1 +γ
∞∑
i=2

ici = µρ. (3.6)

The dimensionless parameters γ, µ, α, α1, β appear as coefficients in (3.5)-(3.6). Furthermore, we define

the piecewise constant function f ε(t,x) as follows:
f ε(t,x) = cεi (t) if x ∈ [iε; (i + 1)ε) for i ≥ 2, t > 0,

f ε(t,x) = 0 if x ∈ [0,2ε),

where cεi is the solution of the system (3.5) with the suitable choice of the dimensionless parameters [39]:

γ = ε2, µ = 1, α = β =
1
ε
,α1 ≤ 1.

With this choice of parameters, the rescaled version of the system (3.5)-(3.6) is:

d
dt ci=

1
ε (ai−1c1ci−1 − aic1ci) + 1

ε (bi+1ci+1 − bici) i ≥ 2,

d
dt c2= 1

εα1a1c
2
1 −

1
ε a2c1c2 + 1

ε (b3c3 − b2c2),

d
dt c1= −ε

(
2(α1c

2
1 − b2c2) +

∞∑
i=2

(aic1ci − bi+1ci+1)
)
,

and the mass conservation equation

cε1 + ε2
∞∑
i=2

icεi = ρ.

Collet et al proved in [47] that for ε close to 0, the couple (cε1, f
ε) is an approximate solution of the

Lifshitz-Slyozov system.

Theorem 13 (First-order approximation [39]). Assume the kinetic coefficients ai , bi satisfy

ai ,bi ≤ K, |ai+1 − ai | ≤
K
i
, |bi+1 − bi | ≤

K
i



112 CHAPTER 3. A continuous bi-monomeric Lifshitz-Slyozov type model.

for some constant k > 0. Consider a sequence εn→ 0.
Then there exist a subsequence, still denoted by εn, and two functions a,b ∈W 1,∞((0,∞))∩L∞(R+) such that

lim
εn→0

sup
r/εn<i<R/εn

|ai − a(iεn)|+ |bi − b(iεn)| = 0, ∀ 0 < r < R <∞.

Assume, moreover, that there exist constants 0 < s ≤ 1, M0 <∞, ρ <∞, Ms <∞ for which for all ε > 0

ε
∞∑
i=2

c0,ε
i ≤M0, c0,ε

1 + ε2
∞∑
i=2

ic0,ε
i = ρ, ε

∞∑
i=2

(iε)1+sc0,ε
i ≤Ms.

Then the subsequence εn may be chosen in such a way that
f εn ⇀ f , xf εn ⇀xf in C0([0,T ]; M1(0,∞)−weak− ?),

cεn1 (t)→ c1(t) uniformly in C0([0,T ]),

where (c, f ) is a solution to (3.2)-(3.3).

The space M1(0,∞) denotes the space of bounded measures on (0,∞), it is the dual of the space

of continuous function on (0,∞) with compact support, namely C0
0 (0,∞). The function f is in this

context a measure -valued solutions (see [37]). The proof of Theorem 13 relies on moment estimates

and equicontinuity arguments. More details on the link between the Becker-Döring system and the

Lifshitz-Slyozov system with different framework can be found in [88, 89, 110, 142].

Moreover, second-order approximations shed light on the link between the Becker-Döring and Fokker-

Planck like equations. For example, in [39], the authors introduced the modified Lifshitz-Slyozov

equations: 

∂
∂t
g + ∂

∂x
G(g; t,x) = 0,

G(g; t,x) = (a(x)c(t)− b(x))g(t,x)− ε ∂∂x
(
a(x)c(t)+b(x)

2 g(t,x)
)
,

(a(0)c(t) + b(0))g(t,0) = 2a1c(t)2,

(3.7)

with the mass-conservation law

c(t) +
∫ ∞

0
xg(t,x)dx = ρ.

The term with second derivative in space can be assimilated as a diffusion term. This diffusion term is

coming from the underlying mechanisms of the discrete Becker-Döring system. The modified Lifshitz-

Slyozov system with a diffusion term seems to be a more realistic continuous setting for the polymerisa-

tion/depolymerisation. Further details on the growth/fragmentation model with diffusion can be found

in [161, 38, 44].



3.2. Long-time behaviour of the bi-monomeric Lifshitz-Slyozov type model. 113

3.2 Long-time behaviour of the bi-monomeric Lifshitz-Slyozov type

model.

3.2.1 Notations and framework assumptions

The model subsequently studied corresponds to the reaction network in (3.1). The chemical system

is neither detailed nor complex balanced. The chemical reactions in (3.1) are not at equilibrium (not

detailed balanced) and neither the complex of the chemical reactions (cf [71]).

Discrete setting. It is translated in a discrete size setting into the following infinite system of differential

equations, where we denote respectively ci(t), v(t) and w(t) the concentrations at time t of the polymers

containing i monomers, the depolymerising and the polymerising monomeric species. Without loss of

generality, we assume that the smallest size of polymers n0 is equal to 1.

dv
dt =−kvw+ v

∞∑
i=2
bici , v(0) = v0,

dw
dt =−w

∞∑
i=1
aici + kvw, w(0) = w0,

dc1
dt =−wa1c1 + vb2c2, c1(0) = c0

1

dci
dt =w(−aici + ai−1ci−1) + v(bi+1ci+1 − bici), ci(0) = c0

i , i ≥ 2.

(3.8)

As classically done for the Becker-Döring systems (e.g. [39, 7, 53]), we define the net rate at which a

i-fibril is converted to a (i + 1)-fibril by :

Ji = waici − vbi+1ci+1 1 ≤ i ≤ n− 1.

With the convention J0 = 0 we can rewrite the system (3.8) as :

dv
dt =−kvw+ v

∞∑
i=2
bici , v(0) = v0,

dw
dt =−w

∞∑
i=1
aici + kvw, w(0) = w0,

dci
dt =Ji−1 − Ji , ci(0) = c0

i , i ≥ 1.

(3.9)

Remarks and notations : This system has two conserved quantities :
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• the total concentration of polymerised fibrils d
dt

(
∞∑
i=1
ci

)
= 0, due to the fact that the smallest and

largest fibrils do not polymerise,

• the conservation of mass d
dt

(
v +w+

∞∑
i=1
ici

)
= 0 which indicates that there is no gain or loss of

particles during the chemical reaction.

We denote the total concentration of polymerised fibrils and the total mass of the system by P0 and Mtot :

P0 =
∞∑
i=1

c0
i , Mtot = v0 +w0 +

∞∑
i=1

ic0
i .

The bi-monomeric Becker-Döring type system has been extensively studied in [55]. The well-posedness

has been established and the solutions of (3.9) admit a locally attractive nonnegative steady-state under

some conditions on the reaction rate and the initial conditions (see [55]).

Continuous setting. We may now consider the size of clusters as a continuously varying variable x > 0

which now replace i. The quantity f (t,x) denotes the density of aggregates of size x at time t, and

v(t), w(t) denote the concentration of monomers. We then obtain the following equations:

∂tf +∂xJ= 0, x > 0, t ≥ 0, f (0,x) = f 0(x),

J(t,x) =
(
a(x)w(t)− b(x)v(t)

)
f (t,x),

d
dt v(t) = −kv(t)w(t) + v(t)

∫∞
0 b(x)f (t,x)dx, v(0) = v0 > 0,

d
dtw(t) = −w(t)

∫∞
0 a(x)f (t,x)dx+ kv(t)w(t), w(0) = w0 > 0,

0 =
(
a(0)w(t)− b(0)v(t)

)
f (t,0)1{a(0)w(t)−b(0)v(t)>0}, ∀t > 0.

(3.10)

The system (3.10) is viewed as the "macroscopic" limit of the system (3.9). The connection between these

two models is similar to the link between the Becker-Döring system and its Lifshitz-Slyozov limit which

has been investigated in [39, 53, 89].

Moreover the solutions of the system (3.10) follows a conservation law of the total mass M of the

population:

v(t) +w(t) +
∫ ∞

0
xf (t,x)dx = v0 +w0 +

∫ ∞
0
xf 0(x)dx =M. (3.11)



3.2. Long-time behaviour of the bi-monomeric Lifshitz-Slyozov type model. 115

We denote the moment of magnitude n by Mn:

Mn(t) =
1
n

∫ ∞
0
xnf (t,x)dx, (3.12)

and the total number of polymers by ρ:

ρ(t) =
∫ ∞

0
f (t,x)dx.

The last equation of (3.10) is a boundary condition depending on the assumptions on the reaction

coefficients a(x), b(x). This condition can be interpreted as the absence of the nucleation phenomenon

and implies that total concentration of polymerised fibrils remain constant.

Lemma 4. Let (v,w,f ) ∈ C1
b (R+)×C1

b (R+)×C
(
R+,L

1
)

be any nonnegative solution of (3.10) and a,b ∈ C1(R+)

such that a(0)w(t) > b(0)v(t) ∀t > 0. Then the total number of polymers is constant:

ρ(t) =
∫ ∞

0
f (t,x)dx =

∫ ∞
0
f0(x)dx := ρ0.

The Lemma 4 is proved by a simple integration. We note that the boundary condition is needed for

(3.10) to be well-posed only when a(0)w(t) > b(0)v(t).

We are interested in the steady-state. We denote with (v∞,w∞, f ∞) the quantities at equilibrium.

In the discrete size-setting, the solutions admits damped oscillations and converge locally towards a

nonnegative steady-state under the correct assumptions. In the continuous size-setting, we denote two

kinds of steady-state:

• the trivial steady-states: f ∞(x) = 0 and v∞ +w∞ = M. It corresponds to a boundary steady-state

and can be interpreted as the non pathological equilibrium. All fibrils are converted into the two

species of monomers and the two species of monomers are at equilibrium.

• The nontrivial steady-state which enforces the following: there exists x > 0 such that f ∞(x) , 0. It

can be interpreted as the pathological steady-state since polymers can be found at equilibrium.

3.2.2 Main results

We note that the system in (3.10) is a coupled PDE/ODE system. The ODE part of the system is the

following: 
d
dt v(t) =−kv(t)w(t) + v(t)

∫∞
0 b(x)f (t,x)dx,

d
dtw(t) =−w(t)

∫∞
0 a(x)f (t,x)dx+ kv(t)w(t).

(3.13)

The solution of the PDE in (3.10) has an influence on the solutions of the ODE through an integral term.

However, assuming some rightfully chosen hypothesis on the reaction coefficients a(x) and b(x), the
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system (3.10) has 2 conserved quantities:

• v(t) +w(t) +
∫∞

0 xf (t,x)dx =M,

•
∫∞

0 f (t,x)dx = ρ0.

In order for the ODE system to be decoupled of the PDE solution in (3.10), the reaction coefficient

functions have to be either constant, linear or affine function of the size variable x > 0. This comes from

the fact that the integral terms in (3.13) are replaced by one of the conserved quantities.

In the following we restrict ourselves to the following assumptions on the reaction coefficients:

• the reaction coefficients are linear, a(x) = ax and b(x) = bx with a,b > 0,

• the reaction coefficients are constant, a(x) = a and b(x) = b with a,b > 0,

• one of the coefficient is linear and the other is constant.

An interesting result can be obtained if we suppose that the reaction rates are both linear:

∃a, b > 0, a(x) = ax, b(x) = bx.

In this case, the solutions (v,w) of (3.13) are periodic as well as the solution f of (3.10). We obtain the

following result.

Proposition 1. Let (v,w,f ) ∈ C1
b (R+)×C1

b (R+)×C
(
R+,L

1
)

be any nonnegative solution of (3.10) and (3.11)

such that the initial datum verifies v0,w0 > 0 and w0 +w0 <M. Assume that a,b ∈ C1(R+)+ satisfy (3.16). Then
the following statements hold true:

1. The solutions v(t),w(t) of (3.17) are periodic of the same period.

2. The solution f of (3.10) is periodic of the same period as v(t), w(t).

The proof of this proposition is detailed in Section 3.3. This result shows that the solution of the

bi-monomeric Lifshitz-Slyozov model (3.10) are periodic when the size-dependency ratio is constant.

The size-dependency ratio is formalised as

polymerisation rate
depolymerisation rate

(x).

We obtain periodic solutions v(t) and w(t) of the same period. Hence the transport term of the PDE of

(3.10) is a periodic function and its integral in time over one period is null. Such a result is not observed

in the experiment since the continuous model is a first order approximation of the "true" discrete model.

The second order correction, a diffusion term, would dominate and change the behaviour of the solutions.
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Moreover, even without the second order correction (the diffusion term), we show that the solutions

of System (3.10) display damped oscillations and f concentrates its mass at a critical size when the

size-dependency ratio is decreasing. The equation for f in (3.10) is a non-linear transport equation. The

characteristic curves defined below are closely related to the asymptotic behaviour of f .

Definition 5. (Characteristic curves). Given z ∈ [0,∞), let X : [0,∞)2→ [0,∞) be the C1 solution of

d
dt
X(t, z) = a(X(t, z))w(t)− b(X(t, z))v(t), X(0, z) = z. (3.14)

We also recall some classical formulae on the characteristic curves:

• The expression of the solution in terms of the characteristic curves:

f (t,X(t, z)) = f0(z)exp
{∫ t

0
b′(X(s,z))v(s)− a′(X(s,z))w(s)ds

}
.

• The derivation in size of the characteristic curve:

∂X(t, z)
∂z

= exp
{∫ t

0
a′(X(s,z))w(s)− b′(X(s,z))v(s)ds

}
.

Let

b > 0 a(x) = 1, b(x) = bx, ∀x > 0. (3.15)

Using the characteristic curves, we obtain the following asymptotic result.

Theorem 14 (Concentration at a critical size). Let the initial data satisfies v0,w0 > 0 and v0 +w0 <M and
f0 ∈ L1(R+, (1 +x2)dx) with ρ0 =

∫∞
0 f0(x)dx > 0. Moreover let k > 1 with k large and 0 < ρ0 < kM. And finally,

assume that a,b ∈ C1(R+)+ satisfy (3.15).
The solution (v,w,f ) ∈ C1

b (R+)×C1
b (R+)×C

(
R+,L

1
)

to the system (3.10) and (3.11) satisfies

1. for all z ≥ 0, ∫ ∞
0
|X(t, z)− x|2f (t,x)dx ≤ e−2bC0t

∫ ∞
0
|z − x|2f0(x)dx,

2. lim
t→∞

v(t) = v∞ = ρ0
k , lim

t→∞
w(t) = w∞ = b

k+b

(
M − ρ0

k

)
and lim

t→∞
X(t, z) = w∞

bv∞
, with

|X(t, z)− w∞
bv∞
|2 ≤ Ce−γt ,

where γ > 0 is a nonnegative rate of convergence depending on the initial conditions (v0,w0,ρ0), the
reaction coefficients k,b and C > 0 is a constant,

3. f (t,x) converges to ρ0δ w∞
bv∞

exponentially fast in the sense of the Wasserstein distance: for z ≥ 0 and some

constant C > 0 we have

W2

(
f (t, ·),ρ0δ w∞

bv∞

)
≤ Ce−βt ,
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where β > 0 is a nonnegative rate depending on the rate γ , the initial conditions (v0,w0,ρ0), the reaction
coefficients k,b and C > 0 is a constant.

The proof of Theorem 14 is detailed in Section 3.4. It relies on an entropy inequalites, inspired by

[27], and local convexity estimates for a Lyapunov functional, inspired by [55]. This result shows that the

solution of the bi-monomeric Lifshitz-Slyozov system converges to a specific steady-state

(v(t),w(t), f (t, ·)) −−−−→
t→∞

(
v∞,w∞,ρ0δ w∞

bv∞

)
.

3.3 Sustained oscillations for the bi-monomeric Lifshitz-Slyozov

system.

In this section we show that solutions of (3.10) are oscillating for linear reaction coefficients, hence the

solutions are not converging toward a steady state.

Linear coefficients. We first assume the reaction coefficients to be linear:

a,b > 0 a(x) = ax, b(x) = bx, ∀x > 0. (3.16)

Using the mass conservation (3.11) and the hypothesis on the reaction coefficients (3.16), the variables

(v,w) are solutions of the following closed system:
dv
dt = v

(
bM − bv − (k + b)w

)
, v(0) = v0 > 0,

dw
dt =w

(
− aM + (k + a)v + aw

)
, w(0) = w0 > 0

(3.17)

Remark 13. We note that the system obtained in (3.17) is a quadratic Lotka-Volterra system for two species
v,w (cf [70]). The system (3.17), in its rewritten form, is actually known under other names such as the Ivanova
system [162] or the reduced Belousov-Zhabothinsky system [125]:

V +W → 2W , W +M1→ 2M1, M1 +V → 2V .

These chemical reactions lead to a differential system of size three where the species have a circular cooper-
ative/competitive connections as in the classical Lotka-Volterra system. We recover System 3.17 using the
mass conservation laws v(t) +w(t) +M1(t) =M and rewriting M1(t) =M − v(t)−w(t). We also note that the
trivial steady-state of the system are (0,0), (0,M), (M,0) and the non-trivial steady state is the unique solution
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(v∞,w∞) of the isoclines : 
M= v + k+b

b w,

M= k+a
a v +w,

and therefore (v∞,w∞) =
(

a
k+b+aM,

b
k+b+aM

)
.

We can now prove the existence of oscillatory solutions for the system (3.10).

Proof.[Proposition 1.] The proof of the periodic solution of System (3.17) is classical and can be found in

Chapter 12 [162]. It uses the fact that the trajectories are included in closed curves. We recall the proof.

We denote by S the convex open set

S = {(x,y) ∈R2 | x > 0, y > 0, M > x+ y}.

The set S is the set of admissible solutions of (3.17). Some computations give us the relation:

Φ(v(t),w(t)) = (M − v(t)−w(t))kv(t)aw(t)b = (M − v0 −w0)kva0w
b
0 = c0 > 0. (3.18)

The function Φ vanishes on the boundary of S and take its maximal value at an interior point Φ0 of S .

Therefore the trajectories of the form (3.18) are closed curves in the (v,w)-plane for 0 < c0 < Φ0 and one

readily check that the velocity cannot vanish. Then the solution of (3.17) are periodic and we denote their

period by T ≥ 0.

To prove the second item, we use the method of characteristics to express f as a function of v and w:

f (t,X(t,x)) = f0 (x)exp
(∫ t

0
bv(s)− aw(s)ds

)
.

Moreover using the fact that v and w are periodic of period T , we get:∫ T

0

1
v(s)

d
dt
v(s)ds = bMT − b

∫ T

0
v(s)ds − (k + b)

∫ T

0
w(s)ds,

ln(v(T ))− ln(v(0)) = bMT − b
∫ T

0
v(s)ds − (k + b)

∫ T

0
w(s)ds,

0 = bM − b 1
T

∫ T

0
v(s)ds − (k + b)

1
T

∫ T

0
w(s)ds.

We denote ṽ = 1
T

∫ T
0 v(s)ds and w̃ = 1

T

∫ T
0 w(s)ds, using the same argument for w̃, we obtain the following

system: 
bM = bṽ + (k + b)w̃,

aM = (k + a)ṽ + aw̃.
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Then (ṽ, w̃) =
(

a
k+b+aM,

b
k+b+aM

)
, and

∫ T

0
aw(s)− bv(s)ds = 0. (3.19)

Since (3.19) is verified, f is a periodic function of the same period T as v an w. �

3.4 Damped oscillations and concentration at a critical size.

In this section, we consider that the depolymerization dominates i.e. the depolymerization coefficient is

linear with respect to the size whereas the polymerization coefficient is constant:

a(x) = 1 b(x) = bx, b > 0, x ≥ 0.

The size-dependency-ratio is then decreasing.

3.4.1 Asymptotic behaviour of the decoupled dynamical system

Using the lemma 4 and the hypothesis on the reaction coefficients (3.15), the variables (v,w) are solutions

of the following quadratic Lotka-Volterra system:
dv
dt =v(bM − bv − (k + b)w), v(0) = v0 > 0,

dw
dt =w(kv − ρ0), w(0) = w0 > 0.

(3.20)

Theorem 15. Let (v,w,f ) ∈ C1
b (R+) × C1

b (R+) × C
(
R+,L

1
)

be any nonnegative solution of (3.10) and (3.11)

such that the initial datum verifies v0,w0 > 0 and v0 +w0 <M. Assume that a,b ∈ C1(R+)+ satisfy (3.15). Let
k > 1 with k large enough and 0 < ρ0 < kM.
Then the following statements hold true:

1. 0 < v(t) <M and 0 < w(t) <M for any t.

2. The function F : (0,∞)2 7→R such that

F(v,w) = k(v − v∞ ln(v)) + (k + b)(w −w∞ ln(w))

is a Lyaponuv function and for all k ≥ 1 (v(t),w(t)) is converging towards the steady-state (v∞,w∞) =(
ρ0
k ,

b
k+b (M − ρ0

k )
)
.

3. For k� 1 , every solutions (v(t),w(t)) to (3.20) converge exponentially fast toward the positive equilibrium
(v∞,w∞), i.e.

|v − v∞|2 + |w −w∞|2 ≤ Ce−αt , (3.21)
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where α > 0 is a nonnegative rate only depending on the initial conditions (v0,w0), the reaction coefficients
k, b and C > 0 is a constant.

Remark 14. Note that the condition 0 < ρ0 < kM is necessary to establish the existence of a positive steady-
state. We recall that the positive steady-state is assimilated to the pathological cases with the existence of
prion fibrils at equilibrium. Moreover, if ρ0 ≥ kM then the solutions of System 3.20 admit a locally linearly
attractive boundary steady-state (v∞,w∞) = (M,0). Hence, the last inequality translates the fact that if only
small assemblies and monomers are present initially, the solutions are locally attracted towards a healthy case
where the fibrils depolymerise and only monomers remain at equilibrium.

Proof. [Theorem 15.] We first focus on the proof of the first item. The positivity of the solutions v(t), w(t)

follows from the computations:

dv
dt

= v (bM1(t)− kw) ,

v(t) ≥ v0 exp
(∫ t

0
bM1(s)− kw(s)ds

)
> 0,

and similarly

w(t) ≥ w0 exp
(∫ t

0
kv(s)− ρ0ds

)
> 0.

The positivity of the solutions v(t), w(t) and the mass conservation equation (3.11) imply that the upper

bound is verified for v(t) and w(t).

Proof of 2. We note that the following function F : (0,∞)2 → R is a Lyapunov functional for the

solution of (3.20):

F(v,w) = k(v − v∞ ln(v)) + (k + b)(w −w∞ ln(w)),

since we have
d
dt
F(v,w) = −kb(v − v∞)2.

Hence the solution (v,w) converges to the invariant subset of K :

K = { d
dt
F = 0} = {(x,y) ∈R2| x = v∞, y > 0}.

Though the ω-limit set reduces to the only positive steady-state (v∞,w∞). This conclude the proof of the

second item.

Proof of 3. The proof of exponential convergence towards the positive steady-state is based on the

dissipation of the Lyapunov functional F(v(t),w(t)) and local convexity estimates when the time derivative

of the Lyapunov functional is null as it was used in [55]. The proof is postponed in the Appendix 3.5.1.

Let us briefly summarize the main step of the proof. For the sake of clarity, we suppose that the parameter

b of the depolymerisation rate is equal to 1 in the proof. We first rescale our system with the parameter
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ε = 1
k . The main issue, for both the system and its rescaled form, is coming from the fact that the time

derivative of the Lyapunov is equal to 0 on a straight line of the phase portrait:

v(t) = v∞ =⇒ d
dt
F(v(t),w(t)) = 0.

In order to prove that the solutions do not get stuck on this degeneracy line, we establish local estimates

which prove that the trajectory of the solutions does not get stuck on the line but crosses it. The condition

to prove the existence of such estimates is based on the assumptions 0 < ρ0 < kM and k > 1 with k large

enough. ρ0 < kM can be interpreted as the following: either there is enough polymerised assemblies

to ignite the chemical reactions or few polymers assemblies are initially present and the reaction rate

which governs the exchange between the two monomeric species is large. The last interpretation implies

a strong competition between the monomeric species.

Finally, we obtain an exponential convergence towards the positive steady-state with rate r for the rescaled

system (r is of order 1
k ). Since the solution of the rescaled system converges exponentially fast, we deduce

that the solution of the original system (3.20) also converges towards its equilibrium exponentially fast.

We denote α its exponential rate of convergence, hence α depends on the scale parameter 1
k , the initial

conditions. �

We obtain the convergence of the trajectory (w,v) towards a positive steady-state (w∞,v∞).

3.4.2 Asymptotic behaviour for the PDE

The study of the asymptotic behaviour and the techniques used are inspired by [27]. We recall the

characteristics for the specific reaction coefficients (3.15):

d
dt
X(t, z) = w(t)− bv(t)X(t, z), X(0, z) = z for z ≥ 0,

and we have the implicit formula

X(t, z) =
(
z+

∫ t

0
w(s)exp

{∫ s

0
bv(σ )dσ

}
ds

)
exp

{∫ t

0
−bv(s)ds

}
.

Lemma 5. Under the assumptions of Theorem 15, let (v,w,f ) ∈ C1
b (R+)×C1

b (R+)×C
(
R+,L

1
)

be any nonnegative
solution of (3.10) and (3.11) such that 0 <

∫
f (0,x)dx < kM. Then the following statements hold true:

1. there is a constant C0 > 0 depending only on the initial conditions (v0,w0) such that C0 < v(t), C0 < w(t)

for t > 0,

2. the characteristics always remain bounded:

X(t, z) ≤ z+ M
bC0

,
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3. let
∫∞

0 xsf0(x)dx <∞ for s > 0 then
∫∞

0 xsf (t,x)dx <∞.

Proof.[Lemma 5] Proof of item 1: Since v and w are continuous functions such that v(t) > 0, w(t) > 0

with t ∈ [0,T ] for any finite time T and since

(v(t),w(t)) −−−−→
t→∞

(v∞,w∞) ∈ (R∗+)2

then it exists a constant C0 > 0 such that C0 < v(t), C0 < w(t) for t > 0.

Proof of item 2: thanks to (3.15) and the first item, we have

dX(t,z)
dt ≤ w(t)− bC0X(t, z).

Hence

X(t, z) ≤ e−bC0t

(
z+

∫ t

0
w(s)ebC0sds

)
≤ z+ M

bC0
.

Proof of item 3. We use the characteristics to represent the solutions as

f (t,X(t, z)) = f0(z)exp
{∫ t

0
bv(τ)dτ

}
. (3.22)

We also note that
∂X(t, z)
∂z

= exp
{
−
∫ t

0
bv(τ)dτ

}
. (3.23)

We define the characteristics in R− then we define z̄(t), the value such that X(t, z̄) = 0. Then we proceed to

a change of variables using (3.22) and (3.23),∫ ∞
0
xsf (t,x)dx =

∫ ∞
z̄(t)
X(t, z)sf (t,X(t, z))

∂X(t, z)
∂z

dz

=
∫ ∞
z̄(t)
X(t, z)sf (t,X(t, z))exp

{
−
∫ t

0
bv(τ)dτ

}
dz

=
∫ ∞
z̄(t)
X(t, z)sf0(z)dz ≤

∫ ∞
0

(
z+ M

bC0

)s
f0(z)dz

where we used the second item for the last step. �

Lemma 6 (Concentration of the mass along the characteristic curves). Under the assumptions of Lemma 5,
let us define, for any z ≥ 0

g(t, z) =
∫ ∞

0
f (t,x)|X(t, z)− x|2dx.
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We have
g(t, z) ≤ g(0, z)e−2bC0t .

Proof.[Proof of Lemma 6] An immediate calculation gives

d
dt
g(t, z) =

∫ ∞
0

∂
∂t

(f (t,x))|X(t, z)− x|2 + 2f (t,x) ddt (X(t, z))(X(t, z)− x)dx

=
∫ ∞

0

(
∂
∂x

[(bv(t)x −w(t))f (t,x)]|X(t, z)− x|2

+ 2f (t,x)(w(t)− bv(t)X(t, z))(X(t, z)− x)
)
dx.

Then after integrating by part, we obtain:

d
dt
g(t, z) =

∫ ∞
0

2f (t,x)
[
(bv(t)x −w(t))(X(t, z)− x)

+ 2f (t,x)(w(t)− bv(t)X(t, z))(X(t, z)− x)
]
dx

= −2bv(t)g(t, z) ≤ −2bC0g(t, z).

Then g(·, z) ∈ L1
t (0,∞)with the announced decay. �

Proof.[Theorem 14.] Proof of 1. The first point of the theorem is proved by Lemma 6 and shows that the

mass concentrates along any characteristic curve.

Proof of 2. Theorem 15 gives the convergence of the monomeric species (v(t),w(t)) towards the

steady-state (v∞,w∞). We now prove the convergence of the characteristic curves using theorems on

asymptotically autonomous system [97, 156]. We denote by X(t, z) a characteristic curve of (3.10) with

initial data z at time 0:

d
dtX(t, z) = w(t)− bv(t)X(t, z) = h(t,X(t, z)), X(0, z) = z ≥ 0. (3.24)

We note that the characteristic curves are defined by an asymptotically autonomous differential equation

(see Appendix 3.5.2). Then we get the limit differential equation:

d
dt y(t) = w∞ − bv∞y(t). (3.25)

Hence for any positive initial data y0 > 0, the solution y(t) of (3.25) converges exponentially fast toward
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w∞
bv∞

:

lim
t→∞

y(t) = w∞
bv∞

, |y(t)− w∞
bv∞
|2 ≤ Ce−2bv∞t for t ≥ 0,

where C = C(b,v∞,w∞, y0) > 0. Moreover, thanks to Theorem 1.2 in [156], we get

lim
t→∞

X(t, z) = w∞
bv∞

.

Using the exponential convergence in the euclidian distance of (v(t),w(t)) toward the positive steady-state

(cf Theorem 15) and the exponential convergence for the limit differential equation of the characteristics,

we deduce that the characteristics converge exponentially fast toward w∞
bv∞

, i.e.

|X(t, z)− w∞
bv∞
|2 ≤ Ce−γt .

We denote γ > 0 the positive rate of convergence which depends on the rate α, the reaction coefficients

k, b and the initial conditions. C > 0 is a constant. (Further details and results on the convergence rate β is
currently under study.)

Proof of 3. We recall the Wasserstein distance, let g1, g2 ∈ L1(0,∞). The Wasserstein distance W2

between g1 and g2 is defined as follows:

W2(g1, g2) :=
(∫ ∞

0

∫ ∞
0
|x − y|2g1(x)g2(y)dxdy

)1
2
.

We write,

W2

(
f (t, ·),ρ0δ w∞

bv∞

)
≤

(∫ ∫
|x − y|2ρ0δ w∞

bv∞
(y)f (t,x)dydx

)1/2

,

≤
(∫
|x − w∞

bv∞
|2ρ0f (t,x)dx

)1/2

,

≤
(
2|X(t, z)− w∞

bv∞
|2ρ2

0 + 2
∫
|X(t, z)− x|2ρ0f (t,x)dx

)1/2

.

Using Lemma 6 and the exponential convergence of the characteristics in item 2 of this proof, we get

W2

(
f (t, ·),ρ0δ w∞

bv∞

)
≤ Ce−βt ,

where β > 0 is the rate of convergence such that β = min(γ/2,bC0) and C > 0 is a constant. This conclude

the proof of Theorem 14. �
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Discussions and perspectives

In this Chapter, we propose a bi-monomeric, nonlinear Lifshitz-Slyozov-type system. It extends the

previous work in [55] in a continuous size setting. The results on the asymptotic behaviour of the

continuous model differ from those of the discrete model, mainly because an underlying diffusion process

takes place in the discrete model. We study the first-order approximation of the continuous model which

neglects the diffusion term. An interesting perspective is to work on the second order approximation

which includes a diffusion term in the continuous size-setting.

Furthermore, the study of the behaviour of the PDE is performed in the case of linear reaction coefficients

and in the case of one linear and one constant reaction coefficient. These choices were motivated by exper-

imental data from biologists. The static light scattering (SLS) signals studied show a fall for the second

moment of the size distribution of polymers in a closed in vitro environment. This observation strongly

suggests the size-dependency ratio is decreasing, i.e. the depolymerisation dominates the polymerisation.

However, considering more general forms of reaction coefficients leads to interesting new mathematical

problems .

Several questions remain open: What is the convergence rate to equilibrium ? How to rigorously prove the

existence of damped oscillations when the concentration converges to a critical mass ? What is the correct

framework (assumptions on the reaction coefficients, on the initial data, etc) to establish well-posedness

of the system ?

The next step is to propose and study numerical scheme to approximate the solutions of this coupled

ODE-PDE systems. The numerical analysis, in the spirit of [14, 31, 59], illustrates the results on the

asymptotic behaviour and gives more insights and a better understanding of the model.

Finally, much remains to be done before reaching a fully quantitative model of the polymerisa-

tion/depolymerisation process of prion fibrils: integrating the proposed reaction scheme in a more

complete model (e.g. where linear depolymerisation is added), considering other structure of fibrils

(where the elementary block unit is a dimer or a trimer) and other forms of reaction coefficients (power

functions of size, etc), experimental evidence and quantitative comparison through data assimilation

strategies.
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3.5 Supplementary and appendix

3.5.1 Exponential convergence in the theorem 15

In this section, we study the system of differential equations (3.20) assuming the reaction coefficients

follow (3.15). We prove that the solutions of (3.20) converge exponentially to the positive equilibrium for

a sufficiently small parameter ε = 1
k . The parameter b is set to b = 1 for the sake of the clearest possible
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presentation. We obtain the following system:
dv
dt =v(M − v − (k + 1)w),

dw
dt =w(kv − ρ0).

(3.26)

This system has the equilibrium:

v∞ = ρ0
k , w∞ = 1

k+1

(
M − ρ0

k

)
,

and (v∞,w∞) > 0 provided that 0 < ρ0 < kM. If ρ0 ≥ kM, one checks that the boundary steady-state (M,O)

is linearly locally stable. We observe that the equilibrium (v∞,w∞) takes values of order ε := 1
k . This

suggests the rescaling

v→ v
k

= εv, and w→ w
k

= εw

and yields the rescaled equilibrium values

v∞ = ρ0, w∞ = 1
1+ε (M − ερ0). (3.27)

By using (3.27), System (3.26) rescales to the following system, which we shall study subsequently:


dv
dt =v(w∞ −w)− εv(v − v∞ +w −w∞),

dw
dt =w(v − v∞).

(3.28)

We point out that the rescaled system (3.28) in the limiting case ε = 0 constitutes the classical Lotka-

Volterra system.

The following theorem proves large-time convergence to the positive equilibrium (v∞,w∞) by using a

Lyapunov functional of System (3.28).

Theorem 16. (Exponential convergence to positive equilibrium)

Consider ρ0 ∈ (0, kM) and hence a positive equilibrium (v∞,w∞) > 0.
Then the functional H

H(v,w) = v − v∞ logv + (1 + ε)(w −w∞ logw)

is a Lyapunov functional for the system (3.28) with a decay rate of order ε. More precisely,

d
dtH(v(t),w(t)) = −ε(v(t)− v∞)2. (3.29)

Moreover, for ε sufficiently small, every solution (v(t),w(t)) to (3.28) subject to positive initial data (v0,w0) >
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0 converges exponentially to the positive equilibrium (v∞,w∞), i.e.

|v − v∞|2 + |w −w∞|2 ≤ C(H0 − H̄)e−εrt , (3.30)

where the positive rate r and constant C depend only on the initial value of the Lyapunov H0 :=H(v0,w0) and
the values of the positive equilibrium (v∞,w∞).

Proof. The decay of the functional (3.29) follows from direct calculations when evaluating H along the

flow of (3.28).

In the following, we proved the exponential convergence (3.30) via a modified entropy method introduced

in [54]. We note that the Lyapunov functional H has a line of degeneracy, i.e. a straight line through the

equilibrium where the time derivative of the Lyapunov functional vanishes:

d
dtH(v,w) = 0 ⇐⇒ v = v∞, w ∈ (0,M). (3.31)

In order to prove the exponential convergence to the equilibrium in such a case, we shall provide

estimates which show that all solution trajectories pass through this line of degeneracy with positive

speed.

We first observe from (3.28) that the null-cline v̇ = 0 is also a straight line, which passes through the

equilibrium:

v̇ = 0 ⇐⇒ w −w∞ = −λε(v − v∞), λε := ε
1+ε < 1.

Next, we introduce a line Wλ− between v̇ = 0 and v = v∞ with a slope −λ with λ > λε to be chosen later:

Wλ− : w −w∞ = −λ(v − v∞), λ > λε.

Similarly, on the opposite side of v = v∞ we define the line Wλ+:

Wλ+ : w −w∞ = λ(v − v∞), λ > λε.

Moreover, we denote Wλ−(v) (respectively Wλ+(v)) the coordinate w such that w = w∞ − λ(v − v∞)

(resp.w = w∞+λ(v−v∞)). In the following, we denote by 4+
λ the convex cone in the phase space (v,w) ∈R2

+,

which is defined by the interior between the lines Wλ−, Wλ+ and above the line w = w∞. Note that on 4+
λ

we have w∞ < w and v̇ < 0. Analogously, the open triangle 4−λ is defined as the interior of the lines Wλ+,

Wλ− and under the line w = w∞, i.e. we consider 0 < w < w∞ and v̇ > 0.

Hence, we shall detail the estimates on the convex cone 4+
λ for w∞ < w, while the estimates for 4−λ

follow analogously (e.g. by exchanging the variables v and w). We denote

p(t) := v(t)− v∞ and d
dtH(v(t),w(t)) = −εp2(t).
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0 v∞ v

w∞

v̇ = 0

w Wλ+Wλ−

Figure 3.1 – Phase space for the system (3.28)

We first observe that

− 1
λ (w −w∞) ≤ p ≤ 1

λ (w −w∞).

Moreover, we point out that 4+
λ is the closed union of two convex subcones:

{v > v∞} ∩4+
λ and {v < v∞} ∩4+

λ.

The sign of ẇ is constant on the two subcones but changes in their common boundary (ẇ > 0 in

{v > v∞}∩4+
λ and ẇ < 0 in {v < v∞}∩4+

λ). Hence, whenever a solution trajectory enters 4−λ at some time t1
at a point (v(t1),w(t1)) = (v1,Wλ+(v1)) with v1 > v∞ and Wλ+(v1) > w∞ then it crosses the line v = v∞ at a

time t̃ > t1 with w(t̃) >Wλ+(v1) > w∞ and it must leave 4+
λ again (after a finite timespan, cf. Lemma 8) at

a time t2 at a point (v(t2),w(t2)) = (v2,Wλ−(v2)), for which holds that 0 < v2 < v1.

In order to quantify that all solution trajectories pass through the line of degeneracy p = 0 where

Ḣ = 0, we prove that p2(t) is a strictly convex function near p = 0 with a positive lower bound for p̈ within

the triangle 4+
λ (and 4−λ) for λ chosen sufficiently large λ� 1, i.e. that p(t) = 0 can only occur at discrete

points in time.

We begin by calculating

ṗ = v̇ = v(w∞ −w)− εvd, with d := v − v∞ +w −w∞.

Next,

ḋ =vw∞ − v∞w − εvd,
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and

p̈ =
[
v(w −w∞)2 − vw(v − v∞)

]
− εv

[
2d(w∞ −w) + vw∞ − v∞w

]
+ ε2

[
v2d + d2v

]
.

If p(t0) = 0, then

p2(t) = p2(t0)︸︷︷︸
=0

+2 p(t0)︸︷︷︸
=0

ṗ(t0)(t − t0) + 2
[
(ṗ)2 + pp̈

]
(θ)

(t − t0)2

2
=

[
(ṗ)2 + pp̈

]
(θ) (t − t0)2,

for some θ ∈ (t, t0) ⊂ (t1, t2).

Hence, by using Lemma 7 and for ε sufficiently small

(ṗ)2 + pp̈ = (v(w −w∞))2 + vp
[
(w −w∞)2 −w(v − v∞)

]
+O(ε),

≥ C(w(θ)−w∞)2 ≥ C(w1 −w∞)2,

for a constant k > 0. Now, for any solution trajectory crossing 4+
λ in a time interval (t1, t2), we estimate∫ t2

t1

Ḣdt = −ε
∫ t2

t1

p2(t)dt = −ε
∫ t2

t1

[
(ṗ)2 + pp̈

]
(θ)(t − t0)2 dt

≤ −εC(w1 −w∞)2
∫ t2

t1

(t − t0)2 dt ≤ −εC
∫ t2

t1

C1(w(t)−w∞)2 dt

∫ t2
t1

(t − t0)2 dt

t2 − t1

≤ −εCC1K

∫ t2

t1

(w(t)−w∞)2 dt,

where C1 = (w1−w∞)2

(w(t0)−w∞)2 ≤ 1 since w(t) ≤ w(t0) for all t ∈ (t1, t2) and K is a constant only depending on (the

bounds of) the sojourn time t2 − t1 of all solution trajectory through 4+
λ as estimated in Lemma (8).

Next, we observe that the convexity of the Lyapunov H together with the decay of the Lyapunov

H(v(t),w(t)) ≤H0 for all t ≥ 0 imply uniform-in-time positive lower and upper bounds on v and w subject

to initial data with finite H0 =H(v0,w0) < +∞. By using this lower and upper bounds, we estimate

H(v,w)−H(v∞,w∞) = v∞h
( v
v∞

)
+ (1 + ε)w∞h

( w
w∞

)
≤ C2(v∞,w∞,H

0)
[
(v − v∞)2 + (w −w∞)2

]
, (3.32)

where h(z) = (z − 1)− lnz ≥ 0 is non-negative and convex and h(z) ≤ C2(z∗, z∗)(z − 1)2 for z ∈ (z∗, z∗). Hence,

on 4+
λ, we have H(v,w)−H(v∞,w∞) ≤ C3(w −w∞)2 with a constant C3 = C3(C2,λ) and conclude that∫ t2

t1

Ḣ ≤ −εκC1KC
−1
3

∫ t2

t1

H(v,w)−H(v∞,w∞)dt (3.33)

Note that an analog estimate to (3.33) holds also on 4−λ.
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Outside of 4λ = 4−λ ∪ 4
+
λ, there exists a constant Cλ > 0 such that the estimate |p|2 ≥

Cλ
[
(v − v∞)2 + (w −w∞)2

]
holds. Moreover, the uniform lower and upper bounds on v(t),w(t) imply

that there exists a positive constant C4 = C4(v∞,w∞,H0)

0 < C4 := min
{(v,w):H(v,w)≤H0}\4λ

 (v − v∞)2

v∞h
(
v
v∞

)
+ (1 + ε)w∞h

(
w
w∞

) ,
which implies p2 ≥ C4(H(v,w)−H(v∞,w∞) and

Ḣ ≤ −εC4(H(v,w)−H(v∞,w∞)) outside of 4λ. (3.34)

Estimate (3.34) proves exponential convergence (of order ε) towards equilibrium first in the relative

Hamiltonian distance (H(v,w)−H(v∞,w∞)) as long as a solution trajectory is outside the critical area

4λ. Consequently, the estimate (3.32) (which holds equally true on all points with H(v,w) ≤H0) implies

exponential convergence to equilibrium in the Euclidian distance.

Within the critical area 4λ, this exponential convergence is hampered by the line of degeneracy where

p = 0. However, (3.33) and the lower crossing time estimates in Lemma 8 show that solutions trajectories

do not get stuck (or significantly slowed down) within 4λ. More precisely, since the speed of trajectories

outside 4λ is bounded from above, for any fixed λ > 1 (λ large enough), all solution trajectories will

remain within 4λ only a small fraction of the time spent on one rotation around (v∞,w∞).

Finally, this small fraction spent within 4λ per rotation can not degenerate near (v∞,w∞), since

classical linearisation techniques shows eigenvalues of the form

µ = −ε
ρ0

2
± i

√
(ρ0(M − ερ0)− ε

2ρ2
0

4
ε→0−−−−→ ±i

√
v∞w∞, (3.35)

where the right hand side values corresponds to the eigenvalues (und thus finite oscillation period) of the

classical Lotka-Volterra system.

Altogether, we obtain exponential convergence to equilibrium with a rate εr as in (3.30), where r

can be estimated explicitly in terms of the constants in (3.33) and (3.34) as well as the sojourn times in

Lemma 8. �

Lemma 7. (Local convexity estimates of the Lyapunov decay)

Consider 4+
λ to be the interior of the convex subcone above w = w∞ and between the lines

Wλ− : w −w∞ = −λ(v − v∞) and Wλ+ : w −w∞ = λ(v − v∞).

Then for λ > 1 and λ large enough, we have

v2(w −w∞)2 + vp
[
(w −w∞)2 −w(v − v∞)

]
≥ C(w −w∞)2 (3.36)
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for C = C(λ,v∞,w∞,M) > 0.

Proof. We set

q = (w −w∞)2 −w(v − v∞)

and observe that q < 0 is equivalent to

(w −w∞)2

w
< (v − v∞),

and q = 0 is a curve denoted as C which crosses the line Wλ+ at the unique point(
v∞ + w∞

λ(λ−1) ,
λ
λ−1w∞

)
.

Moreover the line v = v∞ is the tangent line of C at (v∞,w∞).

In order to prove (3.36), we need to bound v2(w −w∞)2 + vpq from below. Note that pq < 0 holds on two

subdomains of 4+
λ:

1. the domain between C and the line Wλ+ where p > 0 and q < 0. We denote this domain E1,

2. the domain between the lines v = v∞ and Wλ− where p < 0 and q > 0. We denote this domain E2.

On E1, we estimate 0 < p < w−w∞
λ . Also, we have 0 < v < M and 0 < w < M thanks to Theorem 15. This

implies that

0 > q ≥ (w −w∞)2 − w(w −w∞)
λ

and

v2(w −w∞)2 + vpq ≥ v2(w −w∞)2 + v
w −w∞
λ

[
(w −w∞)2 − vw(w −w∞)

λ

]
,

≥ v2(w −w∞)2 − w(w −w∞)2

λ2 ,

≥
(
v2
∞ − M

2

λ2

)
(w −w∞)2.

By choosing a λ large enough, we have

C1 =
(
v2
∞ − M

2

λ2

)
> 0.



3.5. Supplementary and appendix 133

On E2, we estimate 0 > p > −w−w∞λ . It implies that

v2(w −w∞)2 + vpq ≥ v2(w −w∞)2 − vw −w∞
λ

[
(w −w∞)2 −wp

]
,

≥ v2(w −w∞)2 − v (w −w∞)3

λ
− vw (w −w∞)2

λ2 ,

≥
(
v2
∞ + 2v∞(v − v∞)− v(w −w∞)

λ
− vw
λ2

)
(w −w∞)2,

≥
(
v2
∞ −

(M + 2v∞)(M −w∞)
λ

− M
2

λ2

)
(w −w∞)2.

By choosing a λ large enough, we have

C2 =
(
v2
∞ −

(M + 2v∞)(M −w∞)
λ

− M
2

λ2

)
> 0.

Altogether, by choosing C = min(C1,C2), we obtain the estimate (3.36) on 4+
λ. �

Lemma 8. (Sojourn time estimates)

Consider 4+
λ as above. Let t1 be the time when the trajectory enters 4+

λ at a point
(
v1,Wλ+(v1)

)
and t2 the

time when the same trajectory leaves 4+
λ at a point

(
v2,Wλ−(v2)

)
with v2 < v1.

Then for ε > 0 small enough and for λ > 1 large enough and all v1 ∈ (v∞,M), we have that the crossing time
is bounded below and above, i.e.

c2

2v∞
≤ t2 − t1 ≤

2(c1 + 1)
λv∞

, (3.37)

where c1 is a constant such that 1 ≤ c1 ≤
M−w∞

min(w1−w∞,w2−w∞) and c2 is a constant such that 0 < c2 <
v1−v∞
M−w∞ .

Proof. In the following we use the notations Wλ+(v1) := w1 and Wλ−(v2) := w2. On 4+
λ, we have that

w −w∞ >min(w1 −w∞,w2 −w∞) and there exists a constant c1 with 1 ≤ c1 ≤
M−w∞

min(w1−w∞,w2−w∞) such that

c1 min(w1 −w∞,w2 −w∞) = max(w1 −w∞,w2 −w∞).

We get the lower bound on w −w∞:

w −w∞ ≥
min(w1 −w∞,w2 −w∞) + max(w1 −w∞,w2 −w∞)c−1

1
2

.

We estimate the first equation of (3.28) by using that −w−w∞λ ≤ v − v∞ ≤
w−w∞
λ , w∞ < w <M and the lower
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bound on w −w∞:

−v̇ = v(w −w∞) + εv [v − v∞ +w −w∞] ,

≥ (v − v∞)(w −w∞) + ε(v − v∞)(w −w∞) + v∞(w −w∞) + εv∞(v − v∞) + εv∞(w −w∞),

≥ (w −w∞)
[(

1 + ελ−1
λ

)
v∞ − 1+ε

λ (w −w∞)
]
≥ (w −w∞)

[(
1 + ελ−1

λ

)
v∞ − 1+ε

λ (M −w∞)
]
,

≥ (w −w∞)
v∞
2
≥

min(w1 −w∞,w2 −w∞) + max(w1 −w∞,w2 −w∞)c−1
1

2
v∞
2
,

where the second last inequality holds for ε > 0 small enough and for sufficiently large λ, e.g. λ ≥
2(1+ε)(M−w∞)

v∞
. Hence,

v(t1)− v(t2) =
∫ t2

t1

−v̇dt ≥ |w1 −w∞|+ |w2 −w∞|
2

v∞
2

(t2 − t1).

On the other hand, we have

v(t1)− v(t2) =
(w1 −w∞) + (w2 −w∞)

λ
=

min(w1 −w∞,w2 −w∞) + max(w1 −w∞,w2 −w∞)
λ

which yields the upper bound (3.37), i.e.

t2 − t1 ≤
2(c1 + 1)
λv∞

.

For the lower bound, we estimate with v − v∞ ≤
w−w∞
λ and w∞ < w <M

−v̇ = v(w −w∞) + εv [v − v∞ +w −w∞] ,

≤ (w −w∞)2

λ
+ v∞(w −w∞) + ε

λ+ 1
λ

(w −w∞)
[
v∞ +

(w −w∞)
λ

]
,

≤
[(

1 + ε
λ+ 1
λ

)
v∞ +

1 + ε(λ+ 1)
λ2 (w −w∞)

]
,

≤ (w −w∞)
[(

1 + ε
λ+ 1
λ

)
v∞ +

1 + ε(λ+ 1)
λ2 (M −w∞)

]
≤ (M −w∞)2v∞,

where the last inequality holds for sufficiently large λ and ε sufficiently small.

Hence

v(t1)− v(t2) =
∫ t2

t1

−v̇dt ≤ (M −w∞)2v∞(t2 − t1)
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and we require a lower bound for v(t1) − v(t2), which we dervie as follows. Since v∞ < v1 < M and

w∞ < w <M, we estimate

v1 − v2 ≥ v1 − v∞ ≥ c2(M −w∞)

where c2 is a constant such that 0 < c2 <
v1−v∞
M−w∞ . We finally get the lower bound (3.37). �

3.5.2 Results on asymptotically autonomous differential systems

In this section, we recall some results on asymptotically autonomous differential equations. The proofs of

the results and further details can be found in [97, 155, 156].

Definition 6. Let f : R×Rn 7→R
n and g : Rn 7→R

n be continuous and locally Lipschitz on R
n. An ordinary

differential equation in R
n

ẋ = f (t,x), (3.38)

is called asymptotically autonomous with limit equation

ẏ = g(y), (3.39)

if
f (t,x) −−−−→

t→∞
g(x), locally uniformly in x ∈Rn.

We denote the ω-limit set of ω of a forward bounded solution x to (3.38) satisfying x(t0) = x0 by

ω(t0,x0):

ω(t0,x0) =
⋂
s>t0

{x(t); t ≥ s}.

We recall the main theorems established by Markus in [97].

Theorem 17. Theω-limit setω of a forward bounded solution x to (3.38) is nonempty, compact, and connected.
Moreover

dist(x(t),ω) −−−−→
t→∞

0.

Finally ω is invariant under (3.39), i.e. if y(t0) = y0 ∈ ω and y(t,y0) its trajectory with initial point y0 then
y(t,y0) ∈ω. In particular any point in ω lies on a full orbit of (3.39) that is contained in ω.

Theorem 18. Let y∞ be a locally asymptotically stable equilibrium of (3.39) and ω the ω-limit set of a forward
bounded solution x to (3.38). If ω contains a point y0 such that the solution of (3.39) though (0, y0) converges
to y∞ for t→∞, then ω = {y∞}, i.e.

x(t) −−−−→
t→∞

y∞.

Furthermore, the Poincaré-Bendixson theorem is also extended to asymptotically autonomous planar

systems.
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Theorem 19. Let n = 2 and ω the ω-limit set of a forward bounded solution x of (3.38). Then ω either contains
equilibria of (3.39) or is the union of periodic orbits of (3.39).

These theorems have been used in population dynamics in order to prove that asymptotically au-

tonomous ODEs arising from the models converge to equilibrium (e.g. [32]). If n = 2 and the possible

equilibria of (3.39) are restricted a unique equilibrium which is locally stable, then any solution of (3.38)

converges to the the equilibrium of (3.39). Moreover, these theorems have been generalized in [156] to be

applied for specific PDEs.



Chapter4
Quaternary structural convergence and

structural diversification of prion

assemblies.

4.1 Summary and mathematical modeling.

In this chapter, we detail and explain the evidence coming from biochemical experiments which enforce

the hypothesis of heterogeneity in architecture and structure of the P rP assemblies. The article containing

this result is in Section 4.2. It has been accepted Communications Biology and is soon to appear under the

title "Quaternary structural convergence and structural diversification of prion assemblies at the early

replication stage". The following section contains a summary of the article and the complementary details

on the mathematical model of a polymerisation/depolymerisation process with two distinct polymer

assemblies.

4.1.1 Structural diversification of prion assemblies in early Prion replication
stage.

In prion diseases, the prion protein P rP C misfolds into P rP Sc and auto-organizes into conformationally

distinct assemblies or strains (polymers). The existence of P rP Sc structural heterogeneity within prion

strains is suggesting the emergence and coevolution of structurally distinct P rP Sc assemblies during

prion replication. Such P rP Sc diversification processes remain poorly understood. Here, we characterize

the evolution of the P rP Sc quaternary structure during prion replication in vivo and in vitro in a

cell-free system generated by PMCA. The protein quaternary structure is the number and arrangement of

multiple folded protein subunits (e.g. monomers, dimers or small oligomers). The molecular mechanisms

of P rP Sc replication and structural diversification is observed combining Protein Misfolding Cyclic

137
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Amplification (PMCA) and Sedimentation Velocity experiments (cf Figures 10 and 11).

Regardless of the strain studied, the early replication stage (commonly assimilated as an elongation

process) results in the formation of small P rP Sc oligomers, thus highlighting a quaternary structural

convergence phenomenon. A bimodal behavior is observed by the formation of two peaks (P1, P2) in

the representation of the size distribution (Figure (4.1)). The amount of assemblies in P1 decreases over

time as the amount of assemblies in P2 increases. We also note the absence of assemblies of intermediate

size between these peaks. The experiments described in Section 4.2.2 rule out the hypothesis of a

condensation phenomenon in favor of an autocatalytic process as an explanation for the increase of

assemblies in P2. P1 and P2 contain structurally distinct subsets of assemblies, denoted respectively Ai
and Bi . These subsets differ in proportion, size and architecture of their elementary bricks. Experiments

suggests that Bi assemblies results from a cooperative process by the integration/conversion of P rP C

elementary bricks (monomers) and Ai assemblies. The kinetic model is detailed in the section 4.1.2.

Figure 4.1 – Size distribution evolution PrP assemblies at the early replication phase. (Left) S.V
profile describing, in vitro, the size distribution evolution of PrP assemblies obtained by PMCA from
127S-infected brain homogenates. (Right) Simulation of the size distribution of the system (4.1). The
initial condition corresponds to the measures at the begining of the S.V experiments (blue curve of the
graph on the left).

To validate the designed mechanism, we translated these chemical reactions into time-dependent

differential equations and performed kinetic simulations using the size distribution of the P rP Sc as-

semblies immediately after cyclic amplification as the initial condition (blue curve in Figure 4.1). The

mathematical modeling and the numerical simulation give more insights about the kinetics between Ai
and Bi . These oligomers undergo structural rearrangements, by a P rP C-dependent, secondary templating

pathway. This pathway provides mechanistic insights into prion structural diversification, a key determi-

nant for prion toxicity and inter-species transmission. The uncovered processes are also key for a better

understanding of misfolded assemblies propagating by a prion-like process in other neurodegenerative
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diseases.

4.1.2 Mathematical modeling of the kinetics and numerical simulations

As explained in the previous section, we consider two different kinds of oligomers: on the one hand, Ai ,

of size 2i, are formed by the aggregation of i SuPrP formed of two monomers, and denoted A1. Due to the

fact that iA < 5, as Ai assemblies are eluded in the first Sedimentation Velocity (S.V) fractions, we neglect

here the oligomers Ai with i > 1 for the sake of clarity and simplicity. On the second hand, oligomers

Bi , of size 3i, able to aggregate by B1− addition, where B1 is another SuPrP formed of three monomers.

However, A1 may react with monomers to give rise to B1. Let us also note that the size of A1 and B1,

respectively formed of two and three monomers, is somewhat arbitrary: all we know is that this is their

order of magnitude, in coherence with [74]. As explained in the following article, a convenient reaction

scheme should also be such that without monomers, almost nothing happens (Figure 4.4).

1. A1 and B1 can form a complex C in a reversible way:

A1 +B1

k+
C


k−C

C.

2. The complex C can then react with the monomer M to form two B1:

M +C
k+−→ 2B1.

3. The oligomers Bi follow a classical polymerisation/depolymerisation chain reaction, by B1− addi-

tion:

B1 +Bi
kion


ki+1
dep

Bi+1, 1 ≤ i ≤ n− 1.

Ordinary differential equations

The data obtained by S.V are interpreted as a dilatation of a size distribution density, normalized at 100%,

so that if ui denotes the concentration of polymers formed of i monomers, the data represent iui∑
k
kuk

.

We translate this reaction scheme into the following system of differential equations, denoting a1, b1,
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c and bi respectively the concentrations of A1, B1, C and Bi :

dm
dt = −k+m(t)c(t), m(0) =m0,

dc
dt = k+

Ca1(t)b1(t)− k−Cc(t)− k+m(t)c(t), c(0) = c0,

da1
dt = −k+

Ca1(t)b1(t) + k−Cc(t), a1(0) = a0
1,

db1
dt = −k+

Ca1(t)b1(t) + k−Cc(t) + 2k+m(t)c(t)− J1 −
n−1∑
i=1
Ji ,

dbi
dt = Ji−1 − Ji , 2 ≤ i ≤ n− 1,

dbn
dt = Jn−1, bi(0) = b0

i 1 ≤ i ≤ n,

(4.1)

where Ji is the net rate at which a polymer of size 3i grows into a polymer of size 3(i + 1), hence:

Ji = kionb1bi − ki+1
depbi+1.

The parameters to estimate are: m0, c0, a0
1, b0

i , k+, k
+
C , k−C , k

i
on and ki+1

dep - total of 2(n− 1) +n+ 6 = 3n+ 4

parameters if there are n different sizes of polymers.

We can however use the properties of the model to determine part of the parameters.

Interpretation of the S.V data

In the absence of an exactly reliable relation between the fraction number and the sizes of the oligomers,

we assume (a choice which is qualitatively acceptable rather than exactly quantitative) that if Oj(t)

denotes the measured proportion of the fraction number j at time t, it measures the proportion of

polymerised mass present in oligomers containing roughly j−monomers.

In the following, we denote the total polymerised mass as

M(t) := 2a1(t) + 3b1(t) + 5c(t) + 3
n∑
i=2

ibi(t).

We thus interpret the fraction number measured as follows:

2a1(t) + 3b1(t) + 5c(t)
M(t)

≈
5∑
j=1

Oj (t) := O1(t),
3ibi(t)
M(t)

≈
3i+2∑
j=3i

Oj (t) := Oi(t), i ≥ 2,

and we use the quantities Oi(t), measured at several time points, to compare the model with the experi-

mental data. We have a maximal fraction number equal to 30, so that we define Oj for j ≤ 9 and add the

value of O30 to compute O9 in the above definition.
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Let us recall here that the size of three monomers for suPrP-B constitutes itself an approximation,

so that the fit of our model to the experimental data is meant as a qualitative rather than quantitative

insight.

Analysis and calibration of the model

Conserved quantities The system has two conserved quantities: first, the total mass:

d
dt

(
m+ 2a1 + 5c+ 3

n∑
i=1

ibi

)
= 0 =

d
dt

(
m(t) +M(t)

)
,

and second, what can be viewed as the excess of monomers which will not be consumed to form suPrP-B:

d
dt

(
m− a1 − c

)
= 0.

We denote these conserved quantities respectivelyMtot =m0 + 2a0
1 + 5c0 + 3

n∑
i=1
ib0
i and ρ0 =m0 − a0

1 − c0.

These two quantities depend on the parameters to be estimated.

A quantity directly measured experimentally is the so-called centroid, defined as the average size:

centroid(t) :=
M2(t)
M(t)

=
4a1(t) + 9b1(t) + 9

9∑
i=1
i2bi(t)

2a1(t) + 3b1(t) + 3
9∑
i=1
ibi(t)

=

30∑
j=1
jOj (t)

30∑
j=1
Oj (t)

.

Asymptotic and initial behaviour of the model We consider that at the final time measurement, an

equilibrium has been reached, that we denote with ∞ superscripts. The equilibrium fulfills the following

equations: 
−k+m

∞c∞ = 0,

k+
Ca
∞
1 b
∞
1 − k

−
Cc
∞ = 0,

J∞1 = . . . = J∞9 = 0.

(4.2)

Asymptotically, if the monomers are in excess, the system converges towards the following state:

c∞ = a∞1 = 0, m∞ = ρ0, b∞i =
ki−1
on

kidep
b∞1 b

∞
i−1, i ≥ 2.

The last equality allows us to define recursively bi from b1, and b1 is given by the following mass equality:

M∞ = 3
9∑
i=1

ib∞i .
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Since O∞1 = 3b∞1
M∞ , we have

ki−1
on

kidep
M∞ =

3b∞i
b∞i−1O

∞
1

= 3
O∞i
O∞i−1O

∞
1

i − 1
i

which can be experimentally measured: this gives us n− 1 relations, thus we now have 2n+ 5 parameters

to estimate (here n = 9).

We also assume that initially, before adding monomers, the system was in equilibrium, which means:

k−Cc
0 = k+

Ca
0
1b

0
1,

b0
i

b0
i−1b

0
1

=
ki−1
on

kidep
=
O0
i

b0
1O

0
i−1

i − 1
i
, i ≥ 3,

so that we have n− 1 new relations, and the number of parameters to estimate is reduced to n+ 6.

Numerical simulations We run the simulations with Matlab, and used the ode solver ode45 (cf Figure

4.1). The parameters which were not given by the analysis have been adjusted qualitatively. The time

scale is in hours, the concentrations are in arbitrary units.

k1
on k2

on k3
on k4

on k5
on k6

on k7
on k8

on

8.4 52.6 166 4.4 0.35 5.4 5.6 4.8

k2
dep k3

dep k4
dep k5

dep k6
dep k7

dep k8
dep k9

dep

100 100 100 25 25 25 25 25

b2(0) b3(0) b4(0) b5(0) b6(0) b7(0) b8(0) b9(0)

0.42 0.32 0.65 0.27 0.1 0.07 0.046 0.03

kC+ kC− k+ m(0) c(0) a1(0) b1(0)

0.15 3000 5 300 7.10−4 38.2 0.39
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4.2.1 Introduction

In terms of pathogenic mechanisms, the prion paradigm unifies a number of neurodegenerative disorders

that are caused by protein misfolding and aggregation [43, 79, 80, 24]. These disorders include prion

diseases, Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. In principle, host-encoded

monomeric proteins are converted into misfolded and aggregated assemblies, which serve as templates for

further autocatalytic conversion. In prion diseases, the prion protein P rP C is converted into a misfolded,

β-sheet-rich conformer termed P rP Sc [130]. In susceptible host species and in laboratory rodents, P rP Sc

assemblies form stable, structurally distinct P rP Sc conformers [12, 23, 42], known as prion strains, which

encode stereotypical biological phenotypes [148, 151, 152, 15]. The strain-specific structural differences

can be observed at the secondary and tertiary structural level in terms of local structural variation but

also at the quaternary level with strain-specific size distribution signature [151, 147, 157]. A large body

of evidence supports the view for structural diversity within specific prion populations and strains:

(i) prion substrains can be preferentially selected during prion transmission [34, 90, 4, 94] with a

species/transmission barrier,

(ii) size- or density-fractionation studies support the existence of a heterogeneous spectrum of P rP Sc

assemblies with distinct tertiary/quaternary structures [147, 157, 84, 81, 159, 16, 17, 138] and

biological activity (templating activity and infectivity),

(iii) kinetic studies of prion pathogenesis suggest that the formation of neurotoxic P rP Sc species [149]

occurs at the late stage of prion infection when replicative P rP Sc assemblies are formed at earlier

stages [140, 139].

The prion replication process thus intrinsically allows the structural diversification of P rP Sc assemblies.

While the kinetic aspects of prion replication ‘as a whole’ have been comprehensively described by

measuring infectivity or P rP Sc levels in the brain (see [85, 107] as examples), the processes by which

P rP Sc structural diversification and the formation of different subpopulations occur within a given strain

remain unknown and are not mechanistically supported in the actual framework of the prion paradigm.

The autocatalytic conversion model proposed by Griffith in 1967 [66], the nucleated-polymerization

model described by Lansbury and Caughey in 1995 [86] and other derived models (e.g. [99]) merely

assume the existence of structurally homogeneous assemblies that have absolutely identical propensity

to replicate throughout disease progression. These mechanisms intrinsically reduce P rP Sc heterogeneity

due to the best replicator selection process [105, 114]. A recent high-resolution structural analysis of

the N-terminal domain of the yeast prion SuP35 suggests that conformational fluctuations in natively

disordered monomeric Sup35 are responsible for the stochastic, structural diversification of Sup35
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aggregates [113]. This idea can be extrapolated to mammalian prion PrP to explain intrastrain structural

diversification and strain mutation [42]. However, based on the best replicator selection concept [105,

114, 108], the aforementioned idea does not explain the coevolution of at least two structurally distinct

P rP Sc subassemblies within the same environment [34, 91].

To examine the molecular mechanisms of P rP Sc replication and structural diversification in depth,

we explore, by sedimentation velocity (SV)-based methods, the quaternary structure evolution of P rP Sc

assemblies during the early stage of prion conversion in vivo and in a cell-free system by protein

misfolding cyclic amplification [137] (PMCA). By using several prion strains as templates, we demonstrate

that the early stage of prion replication invariably generates two subsets of assemblies, termed Ai and Bi ,

which differ in proportion, size, the architecture of their elementary bricks and structure. The analysis of

their kinetics of formation during PMCA combined with kinetic data assimilation reveals the existence

of two sequential processes of formation. The first process corresponds to a quaternary structural

convergence, as it tends to reduce the parental quaternary structure polydispersity to generate mostly

small-sized assemblies, namely Ai . The second process transforms the Ai into structurally different

assemblies, namely, Bi , according to a secondary auto-catalytic pathway requiring P rP C , whereby Bi
facilitates its own formation. Our findings provide, for the first time, mechanistic insights into prion

structural diversification.

4.2.2 Results

Small P rP Sc oligomers are formed at early replication stage

The early phases of prion replication are commonly thought to consist of an elongation process [61],

with the P rP Sc template serving as a base. We studied the size distribution of proteinase K (PK)-resistant

P rP Sc (P rP res) assemblies at the early step of prion replication in the brain by SV in an iodixanol gradient

using a previously published methodology [157, 84, 74]. The P rP res size distribution at the disease

end-stage served as control. Three different host-PrP/strain combinations were studied:

• the 127S cloned scrapie prion strain in ovine PrP tg338 transgenic mice [85],

• the 139A cloned mouse prion strain in mouse PrP tga20 mice [60],

• the vCJD cloned human prion strain in human PrP tg650 mice [13, 67].

Details on Figure 4.2. The size distribution of proteinase K (PK)-resistant P rP Sc assemblies present
in the brain in vivo (a-c) and in PMCA products (d-e) was examined by sedimentation velocity (SV). (a-c)
For the in vivo sedimentograms, brains from ovine (tg338), murine (tga20) and human (tg650) transgenic
mice inoculated with 127S scrapie prions (a), 139A mouse prions (b) and vCJD human prions (c) were
collected (in triplicate) at the early stage (15 days postinfection (127S), 11 days postinfection (139A) and
120 days postinfection (vCJD), blue curves) and at the end stage of the disease (60 days postinfection (127S),
55 days postinfection (139A), 495 days postinfection (vCJD), red curves). The brains were solubilized and
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Figure 4.2 – Size distribution of P rP Sc assemblies from different prion strains at the early and late
stages of pathogenesis in vivo and after the PMCA reaction.

SV-fractionated. The collected fractions (numbered from top to bottom) were analyzed for PK-resistant P rP Sc

content by immunoblotting. (d-e) For the sedimentograms from the PMCA products with P rP C substrate (d),
the same prion strains were subjected to a single round of mb-PMCA by using 10-5 (139A) or 10-6 (vCJD,
127S) diluted brain homogenates as seed for the reaction. Thirty minutes after the last sonication, the amplified
products were solubilized and SV-fractionated. The mean ± SEM levels of PK-resistant PrPSc per fraction were
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obtained from the immunoblot analysis of n=4 independent fractionations of PMCA reactions. The peaks
containing P rP Sc assemblies sedimentating in the top and middle fractions are denoted P1 and P2, respectively.
For the sedimentograms from the PMCA products without PrPC substrate (e), undiluted 127S-infected tg338
brain (20% w/v, red curve) or a 1:32 dilution in PMCA buffer (blue curve) was used as seed, mixed with equal
volume of brain homogenate from P rP 0/0 mice as substrate and subjected to a single round of mb-PMCA before
SV fractionation.

As shown in Figure 4.2 a–c, small oligomers sedimenting between fractions 1 and 4 were preferentially

detected at the early stage of pathogenesis, regardless of the strain considered. A second population

of oligomers with a larger size distribution and peaking in fractions 8–10 and 18 was observed for the

127S prion strain. The contribution of incompletely digested P rP C or remnant input P rP Sc inoculum to

the PrP signal detected in the top fractions was discarded. Indeed, no P rP C signal was detected after

PK treatment of uninfected tg338 brain and no P rP res was detected in the brain of PrP knock-out mice

(PrP-/-) inoculated with vCJD prions and analyzed for P rP Sc content at early time points.

At the disease end stage and for the 3 strains, larger assemblies were observed (Figure 4.2 a–c). These

observations suggest that prion replication in the brain proceeds through distinct mechanistic phases

that are common to the three prion strains studied here:

• a phase that generates mainly small and similar oligomers with respect to quaternary structure (at

the SV resolution) at the early stage of the replication process;

• a phase that generates a quaternary structural diversification of PrP assemblies during the disease

evolution.

We next determined whether these phases can be reproduced by an in vitro bona fide amplification

method. We used a high-throughput variant of PMCA (termed mb-PMCA [74, 103, 104]), which

generates in one unique round of 48 h as much infectivity as in the brain at the terminal stage of

the disease, with high reproducibility in terms of limiting dilution and the amplification yield [103,

104]. When the size distribution of the amplified products was analyzed by SV after one mb-PMCA

round, two discrete distributions were observed for the three strains (Figure 4.2 d), a major set of small

P rP res assemblies sedimenting between fractions 1 and 3 (named peak P1) and a minor set of larger

assemblies with a well-defined Gaussian distribution centered on fraction 15 (named peak P2). The

relative proportions of P1 and P2 varied among the three strains; P2 was barely detected in the 139A

amplicons. When the mb-PMCA reaction was seeded with healthy brain homogenate, there was no

evidence of spontaneously formed P1 and P2 P rP
res in the amplified products. These data indicate that

during mb-PMCA amplification, two populations of P rP Sc assemblies are generated that differ according

to their quaternary structures, with a predominance of small assemblies.

The bimodal (i.e., generation of two peaks) and discrete behavior of the size distribution as well as

the formation of predominantly small assemblies in P1 may originate from the mb-PMCA conditions

(i.e. shearing forces during the sonication step [1, 115, 163]) rather than from the replication process
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itself. To discriminate between these two possibilities, undiluted 127S seeds (i.e., 20% brain homogenate)

were incubated and sonicated in identical mb-PMCA conditions but without the P rP C substrate (i.e.,

1:1 dilution in P rP 0/0 brain lysate). The samples were then SV-fractionated and analyzed for P rP res

content by western blot. For comparison, the same brain was diluted in the PMCA buffer before the

mb-PMCA reaction, as we reported previously that a simple dilution affects the size distribution of P rP Sc

assemblies, by displacing the equilibrium between P rP Sc assemblies and their suPrP elementary subunit

(P rP Sci 
 P rP Sci−1 + suP rP ) [74, 73].

While the dilution of 127S seed indeed drastically affected the size distribution of 127S P rP Sc assemblies,

sonication of concentrated 127S seeds in the P rP 0/0 substrate revealed mostly the presence of large-sized

assemblies (Figure 4.2 e), peaking in fraction 12–16, as for 127S fractionated brain material solubilized

at 37◦C [84]. The absence of sonication effect on P rP Sc assemblies size distribution rules out a

fragmentation process during the mb-PMCA being at the origin of the formation of small-size assemblies.

Altogether, these observations suggest that:

• in vivo, the early phase of replication generates mainly small-sized assemblies, which diversify

with respect to quaternary structure during the disease pathogenesis.

• Similar to in vivo replication, the mb-PMCA amplification condition generates two sets of PrP

assemblies that differ in their quaternary structures.

The formation of these two groups of assemblies is common to the 127S, 139A and vCJD prion strains

used here.

Bimodal and autocatalytic evolution of P rP res from P1 to P2

We next asked whether P2 formation resulted from a simple condensation of P1 peak assemblies (coagula-

tion process [106, 143]) or from an alternative templating pathway. We first examined the influence of

the amplification rate on the formation of these two species by varying the concentration of the seed used

as the template for the mb-PMCA reaction. We generated mb-PMCA products seeded with 10-3 to 10-10

diluted 127S brain homogenate. The amounts of P rP res amongst the amplified products were similar,

whatever the seed dilution, as previously observed [104]. The SV-sedimentograms of the mb-PMCA

products are shown in Figure 4.3 a. The relative amounts of assemblies in P1 decreased as the amounts

of those from P2 increased as a function of the seed concentration. The variation in the P1 and P2 peak

maximum as a function of the logarithm of the dilution factor revealed a quasi-linear decrease in P1

when the P2 peak maximum followed a sigmoidal increase (Figure 4.3 b). Such uncorrelated variations in

P1 and P2 indicate that:

• P2 peak formation does not result from the simple condensation of assemblies present in P1,

• the formation of P rP res assemblies in P2 follows a seed concentration-dependent cooperative

process.



148CHAPTER 4. Quaternary structural convergence and structural diversification of prion assemblies.

Figure 4.3 – Seed concentration- and time-dependent dynamic evolution of the PMCA-generated
P rP Sc assemblies.

This observation strongly suggests that the assemblies forming the P1 and P2 peaks result from distinct

polymerization pathways and should therefore be structurally distinct.

Details on Figure 4.3 (a–b) SV profiles of mb-PMCA products seeded with serial ten-fold dilutions
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from 127S-infected brain homogenates. Thirty minutes after the last sonication, the amplified products were
solubilized and SV-fractionated. The mean relative levels of PK-resistant P rP Sc per fraction (a) were obtained
from the immunoblot analysis of n = 4 independent fractionations of PMCA reactions (representative dot-blot
shown). Variation in the P1 and P2 peak maximum (mean ± SEM values) as a function of the logarithm
of the seed dilution factor (b). (c) PK-resistant P rP Sc sedimentograms from the PMCA products generated
with 127S prions (10-5 dilution) and further incubated at 37◦C during the indicated quiescent phase
(t), i.e., without sonication. At each time point, the collected products were frozen prior SV analysis. All
collected samples were then thawed, fractionated in parallel by SV and analyzed by immunoblot (c, n = 3

independent experiments, representative dot-blot shown). (d) PK-resistant P rP Sc isopycnic sedimentograms
from PMCA products generated with 127S prions (10-5 dilution) and immediately fractionated at the end
of the PMCA reaction (blue line and symbol) or after a 24h-quiecent incubation at 37◦C (red line and
symbol). At each time point, the collected samples were frozen. All collected samples were then thawed,
fractionated in parallel by sedimentation at the equilibrium [84] and analyzed by immunoblot (the mean ±
SEM levels of PK-resistant P rP Sc per fraction were obtained from the immunoblot analysis of n = 3 independent
fractionations of PMCA reactions). As control, the density profile of PK-resistant P rP Sc assemblies from
the brain of terminally sick tg338 mice infected with 127S prions (solubilization at 37◦C to mimic the
PMCA conditions) is shown (gray line and symbol). (e) Evolution of the percentage of P1 and P2 peak surface
areas (under the curve) as a function of the quiescent phase post-PMCA reaction (C). (f) PK-resistant P rP Sc

sedimentograms from the PMCA products generated with 139A and vCJD prion seeds (10-5 dilution) and fur-
ther incubated for a quiescent period of 48 h at 37◦C (mean ± SEM values from n = 3 independent experiments).

To further explore the entanglement between the assemblies forming P1 and P2, we set the mb-PMCA

regime to favor the formation of the P1 peak by using high dilutions of the inoculum seed, followed

by quiescent incubations (i.e., without sonication) at 37◦C for increasing periods. As shown with 127S

prions, the SV analysis at defined incubation time points post-PMCA reaction revealed a decrease in the

population of P1 in favor of P2 (Figure 4.3 c). At 3 h post-incubation, there were equal proportions of

assemblies forming P1 and P2. At 24 h, most of the P rP res assemblies were located in the P2 peak.

Comparing the distribution in isopycnic gradients [84] of the P rP res populations at 0h and 24h of

quiescent incubation revealed a quasi-similar density for P rP res assemblies composing the P1 and the

P2 peaks (Figure 4.3 d). This observation implies that the low sedimentation velocity of the assemblies

forming P1 does not result from an interaction with lipids or other low-density molecules and that

the sedimentation velocity increase of P2 compared to P1 results strictly from a quaternary structure

rearrangement through size increase.

As shown in Figure 4.3 c, the formation of assemblies sedimenting in P2 exhibited a bimodal behavior

(i.e., absence of assemblies of intermediate size), without any significant shift in the P2 peak position.

This suggests that the formation of these assemblies resulted from the association with a specific number

of assemblies present in P1. Drawing the time-dependent surface variation in P1 and P2 showed that the

formation of P2 assemblies proceeded slowly at the start, increased steadily from 2–3h up to 7h where it

slowed down again. This sigmoidal variation is typical of an autocatalytic reaction [102]. This indicates
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that the assemblies present in P2 enhance their own formation according to an autocatalytic process.

Similarly, the 139A and vCJD prions showed a bimodal evolution of P1 to P2 during a 24-h quiescent

phase (Figure 4.3 f), arguing in favor of a generic process of transformation.

To determine whether the P2 peak assemblies could further evolve, we extended the quiescent phase

up to 30 days. For the 127S, 139A and vCJD prion strains, the sedimentogram curves at 7 and 30 days

showed a translational shift in the P2 peak to higher fractions, indicative of an isokinetic increase in their

mean average sizes (Figure 4.4 a, left curves). This size translation deeply contrasts with the bimodal

phase (transformation of P1 to P2) observed during the 0 to 7-day quiescent incubation and highlights a

change in the kinetic regime. This new regime would be compatible with a coalescence process [168, 106,

143], whereby assemblies would grow by end-to-end or lateral association of assemblies rather than by

incorporation of monomers.

Details on Figure 4.4. (a) PMCA products from 127S, 139A and vCJD prions (105, 104 and 104 diluted
seeds, respectively) were treated with or without PK to eliminate P rP C before quiescent incubation at 37◦C for
2 days, 7 days or 30 days, as indicated. At each time point, the collected products were frozen. All collected
samples were then thawed, SV-fractionated in parallel and analyzed by immunoblotting (mean ± SEM values
from n = 3 independent experiments). (b-c) Relative percentage of P1 versus P2 peaks in SV-sedimentograms
from ± PK-treated PMCA products reconstituted in P rP 0/0 or P rP C containing tg338 mouse brain homogenates,
and incubated in quiescent conditions for 2 or 7 days. (b) PMCA products were generated with a 105-diluted
127S prion seed. At the end of the PMCA reaction (t0), the products were mixed, and eventually treated with
high concentration of PK to remove residual P rP C . After PK inhibition, the products were then diluted 1:1 in
either P rP 0/0 brain homogenate or in tg338 brain homogenate and incubated for 2 days or 7 days at 37◦C in
quiescent conditions. (c) The PMCA products were then fractionated by sedimentation velocity and analysed for
P rP Sc content by immunoblot. The amount of P rP Sc in the fractions corresponding to P1 and P2 populations
was quantified. The results shown are the mean ± SEM values of three independent experiments.

Altogether, the quaternary structure variation of P rP res assemblies as a function of seed-concentration

or time followed two distinct kinetic regimes. The first regime, occurring during the early steps of the

conversion process, leads to a bimodal and cooperative size increase, which indicates the existence of

an autocatalytic transformation of P rP res assemblies present in P1 to P2. The bimodal aspect of the size

distribution tends to indicate that the P rP res assemblies forming P1 structurally differ from those forming

P2. The second regime, occurring on long-term quiescence is more compatible with a coalescence process.

Quasi-irreversible transformation of P rP res from P1 to P2

The bimodal and cooperative transformation of P1 to P2 reported in Figure 4.3 c-e is incompatible with

the existence of an equilibrium between the assemblies populating these peaks and a coalescence or

coagulation process. To further disprove the existence of an equilibrium process (or detailed-balance)

governing the P1 to P2 transformation, we first set the mb-PMCA regime favoring the formation of
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Figure 4.4 – PrP-dependent generation of Bi assemblies from Ai assemblies.

the P1 peak together with the P2 peak (low dilution of the inoculum seed, Figure 4.5 a, isolated by

SV the assemblies forming P1 (fraction 1 to 3) and P2 (fraction 14 to 18) and studied their quaternary

structural evolution on isolation during quiescent incubation for 7 days at 37◦C. As shown in

Figure 4.5 b, almost all P1 was transformed into P2, which reflects an irreversible transformation

process rather than an equilibrium displacement or a simple condensation or coagulation. In sharp
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contrast, the P2 peak in isolation did not lead to the retro-formation of the P1 peak by depolymer-

ization (Figure 4.5 c), underlying the absence of an equilibrium or detailed-balance between P2

and P1 as expected for a simple condensation or coagulation process. The irreversible nature of the

transformation of P1 to P2 argues in favour of the existence of a thermodynamically-driven “locking”

process. This implies structural rearrangements of P1 assemblies and formation of higher stable P2 objects.

Figure 4.5 – Quaternary structural evolution of isolated P rP Sc assemblies in P1 and P2 peaks on
quiescent incubation. (a) SV profile of PMCA products seeded with 106-diluted 127S brain homogenate, leading to the formation of P1
and P2 assemblies (as in Figure 4.3 a). The fractions corresponding to P1 and P2 peaks were pooled as indicated, and further incubated for 7 days at
37◦C in quiescent conditions, prior SV analysis. (b) On quiescent incubation, most of the assemblies present in the pooled P1 fractions evolved and
formed P2. (c) On quiescent incubation, the pool of P2 fractions did not evolve, underlying the irreversible character of the P1 to P2 transformation
and the absence of an equilibrium between P1 and P2. The results shown are the mean ± SEM values from n = 3 independent fractionations.

P1 and P2 contain structurally distinct P rP res assemblies

To further confirm the structural rearrangement in the P rP Sc assemblies accompanying the transfor-

mation of P1 to P2, we determined the specific infectivity of the P1 and P2 assemblies. A 127S-PMCA

product was fractionated at the end of the reaction or after 48 h of quiescent incubation. Pools of fractions

corresponding to the P1 and P2 peaks were inoculated into reporter tg338 mice. The specific infectivity

(infectivity per PrP molecule), which is mostly associated to P rP res assemblies (i.e. negligible contribution

of PK-sensitive P rP Sc species to 127S infectivity [157, 84]), was calculated from the mean survival time

using 127S dose-response curves [157]. As shown in Figure 4.6, the specific infectivity of the P1 peak

assemblies was 50-100-fold higher than that of the P2 peak assemblies. These observations indicate that

the P1 and P2 peaks contain structurally distinct sets of P rP res assemblies, named Ai and Bi (the i index

referring to the number of monomer/subunit in the assembly). The specific infectivity of P2 did not

change over a longer period of quiescent incubation (7 days), suggesting that the transformation of the

assemblies present in the P2 peak into larger assemblies was not associated with a structural change

measurable by their specific activity.
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Figure 4.6 – Specific infectivity of the P1 and P2 peaks post-PMCA reaction and after quiescent incu-
bation. Fractions corresponding to P1 (fractions 1-3) and P2 (fractions 14-16 (days 0 and 2) or 16-18 (day 7)) from PMCA products seeded with
106-diluted 127S brain homogenate were pooled and inoculated into groups of reporter tg338 mice at two different dilutions (1:10 and 1:1000) for
better accuracy. The specific infectivity of the assemblies was calculated from the mean survival time of the mice using a 127S dose-response curve.

Architectural characterization of Ai and Bi assemblies

To characterize the structural difference between Ai and Bi assemblies at the level of their elementary

subunit [74], we used a size exclusion chromatography (SEC) method in native condition, allowing

hydrodynamic radius-based analyses. To determine if the hydrodynamic radius from Bi elementary

subunit (suPrPB) differ from that of Ai (suPrPA), 127S-PMCA products generated at high-seed dilution

(10-8) were analysed by SEC immediately at the end of the reaction (defined at t0) or after a 7-day

quiescent incubation. At t0, the SEC profile showed the existence of a unique peak eluting at 14.7ml

(Figure 4.7 a). As PMCA products generated at 10-8 seed dilution mostly contain Ai assemblies in the

P1 peak (Figure 4.7 b), one can attribute the SEC peak at t0 to suPrPA. After the 7-day quiescence, the

chromatogram revealed the emergence of an additional peak eluting at 15.5ml (Figure 4.7 a), which

correlates with the transformation of Ai to Bi observed by SV (Figure 4.7 b). This new peak was thus

attributed to suPrPB. The low difference observed in the elution volume between suPrPA and suPrPB

suggests a difference in their hydrodynamic radius (suPrPB assemblies being more compact than suPrPA

assemblies), and therefore a difference in their structure.

To gain further insight into the mechanism of suPrPB formation, 127S-PMCA products generated

with different seed concentrations ,as in Figure 4.3 a, were analysed by SEC. At high seed dilution (10-8

dilution factor), the chromatogram revealed the existence of suPrPA (Figure 4.7 c). Lower seed dilutions

led to the emergence of a new peak with an elution volume of 15.50ml corresponding to the emergence

of suPrPB, and a shift toward lower elution volume of suPrPA (Figure 4.7 c). This last phenomenon could

be the consequence of dissociation /association equilibrium displacement between different species

during the separation on the SEC column [8, 78].
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Figure 4.7 – Characterization of the elementary subunit of PMCA-generated P rP Sc assemblies by size
exclusion chromatography (SEC) under native conditions. (a) SEC analysis (n ≥ 3) of mb-PMCA products generated with
127S prions (10-8 dilution) immediately after the PMCA phase (day 0) or after 7 days of quiescent incubation (day 7). A representative immunoblot
corresponding to elution volumes 12ml to 18ml is shown. The column calibration was performed using standard MW calibrants under identical
conditions as for PMCA products analysis. (b) Representative sedimentogram of mb-PMCA products generated with 127S prions (10-8 dilution)
post-PMCA reaction (day 0) and after a 7-day quiescent incubation, highlighting the P1 to P2 evolution of P rP Sc assemblies.(c) SEC profiles of mb-
PMCA products generated with 127S seeds at different dilution factors, as indicated. Thirty minutes after the last sonication, the amplified products
were solubilized and SEC-fractionated. The mean relative levels of PK-resistant P rP Sc per fraction were obtained from the immunoblot analysis of
n = 3 independent fractionations of PMCA reactions. Note the formation of at least two distinct set of assemblies as function of seed concentration.

Collectively, the SEC analysis of the P1 to P2 transformation demonstrates that the formation of Bi
species is concerted with the emergence of a new elementary subunit (suPrPB). suPrPB differs from

suPrPA by its hydrodynamic radius and therefore its structure. The structural difference between suPrPA

and suPrPB is at the origin of their physicochemical properties and their aggregation propensity. The

existence of conformationally distinct suPrP further demonstrates that Ai and Bi are fundamentally

different in terms of ultrastructure and further exclude a simple coalescence or coagulation process at

the origin of the Ai to Bi transformation.

The formation of Bi from Ai assemblies requires P rP C

Our previous studies revealed that only ∼ 30% of the P rP C substrate was converted into P rP Sc after a

complete round of mb-PMCA [103, 104]. To determine whether the remaining 70% still participated in

the transformation of Ai to Bi assemblies during the quiescent phase, PMCA products from the 139A,

127S and vCJD prions were treated with PK to eliminate P rP C before quiescent incubation at 37◦C. As

shown in Figure 4.4 a, the amount of Bi assemblies generated during the 48-h quiescent incubation was

drastically decreased for the three prion strains. Further quiescent incubation for 7 and 30 days in the

absence of P rP C allowed the formation of comparatively low amounts of Bi assemblies for the 127S and

139A prion strains.

To determine if the drastic decrease of Ai to Bi transformation after PK treatment was specific to
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depletion of P rP C or of cofactors, we performed reconstitution experiments of ± PK-treated 127S-PMCA

products (e.g. without potential, PK-susceptible co-factors) with either P rP 0/0 brain homogenate (e.g.

media containing all brain cofactors except P rP C) or tg338 brain homogenate (e.g. media containing all

cofactors and P rP C) before 48 h or 7 days of quiescent incubation (Figure 4.4 b). The quiescent products

were then SV-fractionated and the amount of P rP Sc in the fractions corresponding to P1 and P2 peaks

was quantified. As shown in Figure 4.4 c, reconstitution of the PK-treated PMCA amplicons with P rP 0/0

brain homogenate did not allow Bi neoformation as compared with reconstitution in tg338 media. A

depolymerization of Bi assemblies was even observed when the reconstitution was done in P rP 0/0 brain

homogenate. Thus, at the resolution of this experiment, the contribution of PK-sensitive PrP conformers

and protein cofactors appeared negligible. The formation of Bi assemblies upon reconstitution of

PK-treated mb-PMCA product with tg338 brain homogenate also indicated that the N-terminal segment

of Ai had a low contribution to the process.

Finally, the importance of P rP C in the Ai to Bi transformation was further strengthened when

comparing the quiescent evolution of non-PK-treated mb-PMCA products freshly reconstituted with

tg338 brain homogenate with that of mb-PMCA products alone. As can be seen, the amount Bi assemblies

formed was 1.4-fold increased upon fresh reconstitution (Figure 4.4 c).

Collectively, this set of reconstitution experiments indicates that the Ai to Bi transformation can be

qualified as a pure P rP C-dependent process without significant contribution of PK-susceptible cofactors.

P rP C requirement suggests that Bi assemblies result from the integration/conversion of P rP C into Ai
assemblies during the quiescent phase. The appearance of a low amount of Bi after a long incubation

period without P rP C may result from the leakage of monomers from a conformer cosedimenting with Ai .

Kinetic scheme describing the transformation of Ai to Bi

To establish a kinetic mechanism and provide a molecular interpretation of the assemblies dynamics

during the quiescent phase, a number of elementary steps were identified based on experimental

observations and were used as unavoidable constraints [56].

The first constraint was the existence of two structurally distinct P rP Sc subassemblies, namely, Ai and Bi ,

with distinct dynamics. Indeed, structurally equivalent assemblies would fail to present a bimodal size

distribution, cooperative seed concentration and kinetic evolution or distinct specific infectivity.

The second constraint was the existence of a detailed balance relation between the P rP Sc assemblies

and their elementary subunit (suPrP), as previously shown [74], making the size distribution of the

P rP Sc assemblies highly dynamic and dependent on the assembly concentration, as shown in Figure

4.2 e. Indeed, SV analysis of the P rP 0/0 brain lysates seeded with 30-fold-diluted 127S-infected brains

and submitted to PMCA revealed a quaternary structure rearrangement with a shift in lower molecular
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weight assemblies according to the detailed balance:

P rP Sci 
 P rP Sci−1 + suP rP

where P rP Sci and P rP Sci−1 are the sizes i and i-1 of suP rP Sc, respectively.

The 3rd constraint is that the Ai and Bi assemblies are in detailed balance with their respective suPrPs

(Figure 4.7, denoted suP rP A and suP rP B) but with distinct equilibrium constants KAeq and KBeq. Thus, at

any moment of the process of assembly transformation of Ai to Bi , the following equilibrium should be

respected:

Ai 
 Ai−1 + suP rP A,Bi 
 Bi−1 + suP rP B. (4.3)

The equilibrium constant KAieq and KBieq governs the respective size distribution of the Ai and Bi
assemblies and, thus, the bimodal aspect of the curve. According to our previous SV calibrations with

PrP oligomers and globular mass markers [157], the size distribution of the Ai and Bi subassemblies were

fixed: iA < 5 and iB centered around 20 PrP-mers. Due to the limited resolution of SV fractionation for

small assemblies, we assumed that Ai and suPrPB cosedimented. The fourth constraint relies on the fact

that the transformation of A to B requires P rP C and that the kinetic is cooperative, as shown in Figures

4.2 e and ??. This cooperativity implies that B subassemblies facilitate their own formation according to

an autocatalytic process. This can be resumed by the following minimalistic autocatalytic process:

C
 suP rP B + suP rP A,C + P rP C → 2suP rP B, (4.4)

where C is an active complex reacting with P rP C that generates B assemblies. Considering that suP rP B

can condense into B2 [74] and according to detailed balance (2), one can establish the reaction model

describing the formation of Bi assemblies from the neo-formed suP rP B:

2suP rP B
 B2. (4.5)

Altogether, these five elementary steps constitute the reaction mechanism that describes the

transformation of Ai into Bi subassembly species. To validate the designed mechanism, we translated

these elementary reactions into time-dependent differential equations and performed kinetic simulations

using the size distribution of the P rP Sc assemblies immediately after cyclic amplification as the initial

condition (blue curve in Figure 4.3 a).

According to the model, the simulated size distribution variation as a function of time showed

bimodal behavior, as was experimentally observed (Figure 4.8 a). Furthermore, the theoretical size

distribution centroid presented similar sigmoidal patterns to those of the experimental data (Figure

4.8 b), arguing in favour of an autocatalytic kinetic model describing the overall quaternary structure

evolution of P rP Sc assemblies during the quiescent phase. The numerical analysis of the model revealed

that the autocatalytic formation of Bi species occurs at the expense of Ai species and with P rP C
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Figure 4.8 – Mathematical modeling of the time-dependent dynamic evolution of the PMCA-
generated P rP Sc assemblies. (a) The size distribution evolution of a structurally distinct set of assemblies Ai and Bi dimensioned
on gradient fraction numbers was simulated based on the kinetic scheme described in the results section (equations (4.3) to (4.5)). (b) The time
dependency evolution of the simulated centroid (black line) and centroid calculated from experimental sedimentograms of Figure 4.3 d (red circle)
show a similar shape, supporting the cooperativity hypothesis of the transformation of Ai into Bi . (c) The simulation of time dependency evolution
of the total amount of Ai assemblies (

∑
iAi in black), Bi assemblies (

∑
iBi in blue) and the monomer (in red) revealed that Ai assemblies constitute

the limiting species for the conversion of P rPC during the quiescent phase. In the present simulation framework, only 14% of P rPC is consumed.

consumption (Figure 4.8 c). According to this model, when P rP C is in large excess, Ai constitutes the

limiting compound for the formation of Bi assemblies. Therefore, during the quiescent phase, the P rP C
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to P rP Sc conversion rate is directly proportional to the amount of Ai assemblies (Figure 4.8 c).

4.2.3 Discussion

The mechanisms of prion replication and the dynamics responsible for prion structural diversification in

the infected host remain unclear and rarely addressed. In the actual framework of the prion paradigm,

the templating process is admitted to occur at the prion assembly interface, leading to an increased

size of the complex formed by the template: substrate, out of the fragmentation/depolymerization

context. The atypical size distribution observed here at the early stage of the replication process for

three distinct prion strains, where accumulation of small-size assemblies dominates, contrasts with this

canonical templating model and requires an additional process that considers the dynamics of replication.

As shown in vivo for the vCJD, 127S and 139A prion strains, the early stage of the replication process

in the brain is dominated by the accumulation of small assemblies, whereas higher-size subsets are

detected at the terminal stage of pathogenesis. Such quaternary structural diversity, - and beyond the

existence of structurally distinct types of assemblies, as defined by their specific infectivity ([157, 84]),

can be exclusively explained by the existence of a balance between at least two kinetic modes taking

place at different stage of the pathogenesis. Both can be governed by evolution or a fluctuation in the

replication micro-environment due to the physio-pathological state of the infected animal and/or to the

sequential involvement of specific prion-replicating cell types.

However, another possibility can lie in the intrinsic and deterministic properties of the PrP replication

process to generate structurally distinct types of assemblies. Discriminating between these two

non-mutually exclusive hypotheses is technically difficult in vivo. The mb-PMCA as a bona fide

amplification method in a more simplified and kinetically controlled context constitutes a relevant

method for investigating the intrinsic propensity of the replication process to generate structurally

distinct assemblies. Interestingly, and against common belief, the size distribution of the P rP Sc

assemblies used as seeds was relatively insensitive to mb-PMCA sonication cycles when a simple dilution

displaced the assemblies towards a smaller size (Figure 4.3 e), as previously reported[74].

These two observations exclude the contribution of the fragmentation process during the mb-PMCA

sonication cycles to the size distribution pattern of P rP Sc assemblies and emphasize the existence of a

constitutional dynamic between the P rP Sc subpopulation [74], which should be considered during the

replication process. We showed that two sets of P rP Sc assemblies, Ai and Bi , were generated during the

mb-PMCA reaction. The Ai and Bi assemblies constitute two structurally distinct P rP Sc subpopulations.

Beside the fact that the bimodal size distribution instead of a continuum constitutes an indirect but

solid argument for structural differences in the PrP assemblies populating the P1 and P2 peaks, the best

arguments are undoubtedly their distinct specific infectivity and the existence of two distinct elementary

subunits as shown by SEC. The irreversibility of the P1 to P2 transformation (Figure ??) physically

demonstrates a PrP structural rearrangement associated to the Ai → Bi transformation process. Indeed,

as evocated in the results section, the irreversible transformation of Ai → Bi can only be explained if
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the process is thermodynamically favored through a structural rearrangement and the formation of

higher stable object rendering the process irreversible. Therefore, the prion replication process per se

intrinsically generates structurally diverse P rP Sc subassemblies in a deterministic process.

According to our SV experiments, small-sized P rP Sc assemblies were mainly formed at the early

stage of prion replication in the brain and during the mb-PMCA reaction. This was observed with three

distinct prion strains (127S, 139A, vCJD) on 3 different PrP genetic backgrounds. Considering that the

P rP Sc assemblies that constitute each strain are structurally distinct, one can ask how distinct P rP Sc

assemblies all can generate Ai assemblies that harbor strain structural information while showing the

same quaternary structure (at the SV resolution). The first explanation can be the existence of a common

narrow subpopulation of P rP Sc (with respect to their quaternary structure) within the three strains that

serves as the best replicator and participates in the formation of Ai assemblies.

However, the P rP Sc quaternary structure subset that exhibits the highest specific infectivity in vivo

(i.e., the best replicator) can be associated with either small-size assemblies (i.e., 127S and 139A in

[157, 84]) or high-molecular-weight assemblies (i.e., vCJD) and is therefore strain-dependent. The

existence of a structurally common P rP Sc subpopulation is thus unlikely to be at the origin of the generic

formation of a small-size subset in the brain or Ai assemblies in the mb-PMCA condition. Intrinsically,

the early steps of the replication process favor the emergence of mainly one subspecies Ai with a highly

narrowed size distribution, arguing in favor of a quaternary structural convergence phenomenon during

these steps. This structural convergence concerns the PrP domain that governs polymerization (the

size of assemblies). However, as the A assemblies harbor the strain structural determinant, one can

conclude that Ai assemblies present a certain degree of structural variability, allowing strain structural

information encoding.

All along the quiescent phase and for the three prion strains studied, the Ai assemblies constitute

the precursor species in the formation of Bi assemblies. Furthermore, there is compelling evidence that

the presence of P rP C is required for the evolution of Ai into Bi assemblies. The set of reconstituted

media experiments (Figure 4.4) led us to firmly exclude the contribution of PK-susceptible cofactors and

highlighted the existence of a secondary templating pathway. In addition, the N-terminal part of P rP Sc

(at least for 127S seeds) is dispensable for Ai → Bi transformation, even if the yield of the process is

significantly decreased when 127S PMCA products were PK-treated (i.e. removal of their N-terminal

domain) before reconstitution and quiescent incubation with tg338 normal brain homogenate. This

decrease could clearly be attributed to the kinetic effect of 2-fold dilution factor of both P rP C and PMCA

product occurring during the reconstitution process.

According to the kinetic model describing the autocatalytic formation of Bi during the quiescent

phase, Ai is the limiting species for conversion when large amounts of P rP C are present (Figure 4.8 c).

Even if the first event conducing to the formation of Bi assemblies remains undetermined, we can assume

that Ai can have the intrinsic propensity to spontaneously evolve into Bi assemblies in the presence of
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Figure 4.9 – Quaternary structural convergence and secondary autocatalytic pathway at the root of
the formation of Bi assemblies. (a) Different prion strains (S1, S2 and S3) give rise to the formation of common oligomeric assemblies,
termed Ai , with a narrowed size distribution during mb-PMCA reactions. This common quaternary structural convergence at the early stage of the
replication process suggests the existence of a common conversion pathway and a common oligomerization domain that is independent of the strain
structural determinant (SSD, i.e., the PrP domain(s) harboring the replicative and strain information [74, 73], represented in red). (b) Ai and Bi
assemblies are in an equilibrium/detailed balanced with their respective suPrP (step I and II) as was previously showed [74] and also demonstrated
by the dilution experiment (see Figure 4.3 e). Based on the constraints imposed by the experimental observations, the best model to account for the
cooperative and P rPC dependency transformation of Ai into Bi assemblies implicates the formation of complex between suP rPA and suP rP B (step
III). The formation of this complex is at the origin of a secondary templating pathway where the transformation of suP rPA (A1) to suP rP B (B1) is
assisted by suP rP B, making the process autocatalytic.

P rP C (Figure 4.9). The cooperative disappearance of P1 in favor of P2 strongly suggests an autocatalytic

process for the transformation of Ai to Bi (4.4)-(??). This last phenomenon shows the existence of a



4.2. Article 161

secondary autocatalytic process, undescribed until now, in the canonical prion replication process [86].

It can be reasonably envisaged that Ai have the intrinsic propensity to generate Bi assemblies in the

presence of P rP C assemblies with a very low efficiency. This parallel pathway to the autocatalytic process

can then explain how the first set of Bi assemblies is generated (Figure 4.9).

The existence of a secondary autocatalytic process can be a way to maintain P rP Sc structural diversity

throughout the evolution of the pathology. In the absence of this secondary autocatalytic process, the

system only selects the best replicator assembly. In the present case, the best replicator is Ai assembly

according to its specific infectivity (Figure 4.6). The secondary templating pathway allows the system to

escape this rule, leading the accumulation of the autocatalytic pathway product (here, the Bi assemblies).

This phenomenon can explain why, for certain prion strains, the most infectious assemblies represent a

minor population, while those with the lowest specific infectivity mostly accumulate [157, 84].

4.2.4 Conclusion

The early step of prion replication for at least three distinct prion strains leads to the formation of

small assemblies. The mb-PMCA approach clearly demonstrates the intrinsic properties of the bona fide

replication process to generate at least two structurally distinct P rP Sc subassemblies. The deterministic

aspect of the replication process to generate a structurally diverse set of assemblies contrasts with the

widespread idea that considers the prion diversification process within a given strain (often referred to

as the creation of prion quasi-species) as a stochastic event and as a process that is governed by environ-

mental fluctuations9. The secondary autocatalytic pathway leading to the formation of Bi subassemblies

can participate in prion adaptation during transmission events with species barriers. Considering that

the transmitted inoculum initially contains Ai and Bi assemblies, the autocatalytic conversion process of

Bi can kinetically drive the adjustment and integration of the new-host P rP C to generate host-adapted Bi
assemblies. This hypothesis is supported by our recent observations in which complementation between

Ai and Bi subassemblies is required to cross existing species barriers.

4.2.5 Methods

Ethics

Animal experiments were conducted in strict accordance with ECC and EU directives 86/009 and

2010/63 and were approved by the local ethics committee of the author’s institution (Comethea; permit

numbers 12/034 and 15/045).

Transgenic mouse lines and prion strains

The ovine (tg338 line; Val136-Arg154-Gln171 VRQ allele), human (tg650 line; Met129 allele) and

mouse (tga20) PrP transgenic lines have been described previously[85, 60, 13]. The mouse lines were

homozygous and overexpressed approximately 8-, 6-, and 10-fold amounts of heterologous P rP C on a

mouse PrP-null background. P rP 0/0 mice were Zürich-I mice [26]. Cloned 127S scrapie, human vCJD and
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mouse 139A prion strains were serially passaged in tg338, tg650 and tga20 mice, respectively [103, 104].

These strains were used as pools of mouse-infected brains and prepared as 20% wt/vol homogenates in

5% glucose by use of a tissue homogenizer (Precellys 24 Ribolyzer; Ozyme, France).

Time course analysis of prion accumulation

Eight-week-old female tg338, tg650 and tga20 mice were inoculated intracerebrally in the right cerebral

hemisphere with 127S, vCJD or 139A prions (20µl of a 10% brain homogenate dose). Infected animals

were euthanized by cervical column disruption in triplicate at regular time points and at the terminal

stage of disease. Brains were removed and kept for P rP Sc size fractionation.

Miniaturized bead-PMCA assay

The miniaturized bead-PMCA (mb-PMCA) assay [34, 74, 104] was used to amplify prions. Briefly, serial

ten-fold dilutions of 127S, vCJD and 139A prions (mouse brain homogenates diluted in PMCA buffer)

were mixed with brain lysates (10% wt/vol) from healthy tg338, tg650 and tga20 mice as respective

substrates and subjected to one round of 96 cycles of 30-s sonications (220-240 Watts) followed by

29.5 min of incubation at 37◦C. With a > 104 dilution of the seeds, input P rP Sc is not detected in the

mb-PMCA products. PMCA was performed in a 96-well microplate format using a Q700 sonicator

(QSonica, USA, Delta Labo, Colombelles, France). For quiescent incubation, the samples were left in

the incubator at 37◦C for the indicated period of time, without any sonication. To eliminate residual

P rP C present in the PMCA products before quiescent incubation, the samples were treated with PK (80

µg/ml final concentration). The treatment was stopped by adding 2 mM Pefabloc and 1x EDTA-free

protease inhibitor cocktail. All final products were kept for P rP Sc size fractionation, and aliquots were

PK-digested (115 µg/ml final concentration, 0.6% SDS, 1 h, 37◦C) prior to immunoblot analyses, as

described below.

For reconstitution experiments, mb-PMCA products were generated with a 105-diluted 127S prion seed.

At the end of the mb-PMCA reaction, the products were mixed, eventually treated with PK (150 µg/ml

final concentration, 1h, 37◦C). PK activity was inactivated by the combined addition of 4mM Pefabloc and

2x EDTA-free protease inhibitor cocktail. The products were then diluted 1:1 in either P rP 0/0 or in tg338

brain homogenate and incubated for 48h or 7 days at 37◦C in quiescent conditions. The PMCA products

were then fractionated by sedimentation velocity and analyzed for P rP Sc content by immunoblot.

Sedimentation velocity (SV) fractionation

SV experiments were performed as described previously [157, 84, 74]. Mouse brain homogenates or

PMCA products were solubilized by adding an equal volume of solubilization buffer (50 mM HEPES

pH 7.4, 300 mM NaCl, 10 mM EDTA, 4% wt/vol dodecyl-β-D-maltoside (Sigma)) and incubated for 45

min on ice. Sarkosyl (N-lauryl sarcosine; Fluka) was added to a final concentration of 2% wt/vol, and the

incubation continued for an additional 30 min on ice. A total of 150 µl of solubilized samples was loaded

atop a 4.8-ml continuous 10-25% iodixanol gradient (Optiprep, Axys-Shield), with a final concentration
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of 25 mM HEPES pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.5% Sarkosyl. The gradients were centrifuged

at 285,000 g for 45 min in a swinging-bucket SW-55 rotor using an Optima LE-80K ultracentrifuge

(Beckman Coulter). Gradients were then manually segregated into 30 equal fractions of 165 µl from the

bottom using a peristaltic pump and analyzed by immunoblotting or bioassay for P rP Sc or infectivity,

respectively. To avoid any cross-contamination, each piece of equipment was thoroughly decontaminated

with 5 N NaOH followed by several rinses in deionized water after each gradient collection [84].

Isopycnic sedimentation

The entire procedure was performed as described previously [84]. Mouse brain homogenates or PMCA

products were solubilized as described above. For mouse brain homogenates, solubilization was per-

formed at 37◦C to mimic PMCA conditions. A total of 220 µl of solubilized material was mixed to reach

40% iodixanol, 25 mM HEPES pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.5% Sarkosyl final concentration

and loaded within a 4.8 ml of 10-60% discontinuous iodixanol gradient with a final concentration of 25

mM HEPES pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.5% Sarkosyl. The gradients were centrifuged at 115

000 g for 17 hours in a swinging-bucket SW-55 rotor using an Optima LE-80K ultracentrifuge (Beckman

Coulter). Gradients were then manually segregated into 30 equal fractions of 165 µl from the bottom

using a peristaltic pump and analyzed for P rP Sc content by immunoblotting.

Size exclusion chromatography

SEC analysis was performed using an ÄKTA-100 purifier FPLC. 200 µl of the PMCA products were

mixed with an equal volume of 2X-buffer to reach 25 mM HEPES pH 7.4, 150 mM NaCl, 10 mM EDTA,

35 mM n-Dodecyl β-D-Maltoside, 2 % w/w Sarkosyl and 0.5% Triton-X100 final concentration. After

centrifugation at 10 000g for 3 min (no visible pellet), the solution was loaded on Superdex 200 10/300

GL column (24 ml, GE healthcare). The chromatography running buffer was HEPES 25 mM pH7.2, 200

mM NaCl, without detergents to avoid the formation of micellar structure. The flow rate was fixed at

0.35ml/min. After sample injection, the flow-through of the column was fractionated every 250 µl. The

PrP levels per fraction were estimated by western blotting, as for SV. For molecular weight estimation,

the Superdex 200 was calibrated with blue dextran molecules with varying molecular weight.

Analysis of P rP Sc content by immunoblotting

Aliquots of the SV-fractionated PMCA samples were treated with PK (50 µg/ml final concentration, 1 h,

37◦C) before mixing in Laemmli buffer and denaturation at 100◦C for 5 min. The samples were run on

12% Bis-Tris Criterion gels (Bio-Rad, Marne la Vallée, France) and electrotransferred onto nitrocellulose

membranes. In some instances, denatured samples were spotted onto nitrocellulose membranes using a

dot-blot apparatus (Schleicher and Schuell BioScience (Whatman)). Nitrocellulose membranes were

probed for PrP with 0.1 µg/ml biotinylated anti-PrP monoclonal antibody Sha31. Immunoreactivity was

visualized by chemiluminescence (GE Healthcare). The protein levels were quantified with ImageLab

software after acquisition of chemiluminescent signals with a Chemidoc digital imager (Bio-Rad,
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Marnes-la-Coquette, France). For all SDS-PAGE analyses, a fixed quantity of human recombinant PrP

was employed for consistent calibration of the PrP signals in different gels.

To improve the sensitivity of the western blot detection method for the samples containing low levels

of P rP res (e.g., early samples and SEC fractions) a double-deposit was made to electro-concentrate the

sample. Typically, after a first round of sample loading in SDS-PAGE wells, a short migration time was

performed to allow running within the acrylamide gel for 2mm. Then, a second round of sample loading

was done identically to the first one and the migration was continued until the front reached 3cm within

the gel. The electrotransfer and detection was then identical as above.

Bioassays

The pool of fractions of interest was extemporarily diluted ten-fold in 5% glucose and immediately

inoculated via the intracerebral route into reporter tg338 mice (20 µl per pool of fraction, n = 5 mice

per pool). Mice showing prion-specific neurological signs were euthanized at the end stage. To confirm

prion disease, brains were removed and analyzed for P rP Sc content using the Bio-Rad TsSeE detection

kit [90] prior to immunoblotting, as described above. The survival time was defined as the number of

days from inoculation to euthanasia. To estimate what the difference in mean survival times means in

terms of infectivity, strain-specific curves correlating the relative infectious dose to survival times were

used, as previously described [157].
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