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1

Introduction

1.1 Articulatory speech synthesis

As technology gets more and more incorporated in our lives and the amount of exceedingly
heterogeneous, multimodal data circulating around each of us increases, it becomes essential to
learn to switch between data modalities and convert one into another. One of such types of
conversion is that of written text into the sound of speech: text-to-speech synthesis, or TTS.

In the modern society, this arti�cial production of human speech, along with a constellation
of other speech technology tasks such as speech recognition and understanding and speaker
recognition and veri�cation and others, is very well adopted and deeply rooted in everyday
use: we hear synthetic speech in our cell phones and other gadgets, company hotlines heavily
rely on it, public announcements are synthesized. It may appear that the presently attained
naturalness and intelligibility of speech synthesis does not leave much room for scienti�c pursuit.
However, there still are quite a few challenges, among which one can identify low-resource and/or
small-footprint speech synthesis, speaker or domain adaptation, expressiveness, treating the
multimodal aspects of speech within the scope of a speci�c application or for particular gains
and embracing speech synthesis research results within the umbrella domain of speech studies.

The last two points are where we can situate the work on articulatory speech synthesis: the
task to synthesize not only the speech wave but also the movement of the articulators that could
cause it.

1.2 Motivation

As pointed out above, at present TTS is rightfully ubiquitous, its applications ranging from the
most mundane such as reading out loud your text message while you are busy driving to the
more obscure such as simulating Ötzi's voice�the voice of a man who lived between 3400 and
3100 BC and was found on the border between Austria and Italy in 1991 [ACFS17]. However,
there still are domains that yet are to fully explore its bene�ts.

One such domain is language learning. As is commonly believed, around half of the world's
population speaks more than one language [Eur17, Rya13]. In the case of English alone, there
are 379.0 million native speakers and 753.3 million learners [ESe19]. These statistics show a
dire need to streamline language learning process so that human teachers, native and non-
native speakers alike, can provide more impactful help to their students. There are aspects to
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their work that cannot�at least at present�be done by a machine: building rapport between
the teacher and the student, getting creative with teaching methods, providing original, non-
mechanic feedback to students' work. It is crucial that teachers have enough time to dedicate
their e�ort there. Unfortunately, they often �nd themselves tasked to prepare study materials
and exercises, while technology should actually be already able to take over at least a part of
this duty.

One of the problems to solve in this direction is, indeed, the conversion of text into speech and
back, as suitable for the �eld. Nonetheless, the context of language learning dictates the need to
take into account a deeper understanding of how human speech is produced: for example, when
evaluating a learner's speaking, not all pronunciation mistakes should be treated alike since some
attempts are phonetically closer than others even when acoustically they may be quite di�erent;
besides, when correcting those pronunciation mistakes, it may be necessary not only to give a
correctly performed sound, but also to guide the student through the articulation of the sound
they are learning. Unfortunately, the two main branches of approaches of TTS�parametric and
concatenative speech synthesis�both are quite technical solutions with, as of now, no easy way
to introduce any information on the way the speech organs could move.

Another domain with a window of opportunity is medicine. When investigating a speaking
problem that is not easy to see or capture, there is a glaring absence of tools for a speech
therapist to simulate the suspected dysfunction in the vocal tract and see whether it would lead
to the phenomena they actually observe in the patient. Also, when planning a surgery that could
a�ect the patient's speech, at present there is no completely reliable way for doctors to make a
prognosis on its eventual quality, while naturally this question is a big concern for the well-being
of the patient. Finally, it has been shown that for many patients, the treatment of such speech
problems as misarticulation [BHS14, PMRC+14, PLM17], apraxia [MKF+10, KMG10, PBL13]
or Broca's aphasia [KBC99] may be facilitated with biofeedback, generalisation and maintenance
being especially promising in the case of children. Such treatment requires regular sessions on
site, which makes intensive training challenging. With acoustic-to-articulatory inversion and
articulatory speech synthesis, however, the sessions would not require anything but an easily
portable piece of software or even online access to a cloud computer, thus giving this method
an unparalleled boost.

On top of such practical applications, there also are deep research questions in speech studies
that have remained open for decades at least. For instance, what are articulation units and how
do we process them mentally? Do we have any concept of articulatory targets and what happens
to them in �uent speech, when neighboring sounds in�uence each other and there is not enough
time to complete speech movements as articulately and precisely as we could do for a standalone
sound? What are the consciously controlled factors in articulation, and what is just the e�ect
of the laws of physics in play? If we have a model conceptualized with a particular outlook
on these questions and it produces su�ciently natural and intelligible results, articulation can
serve as a bridge between the biomechanics of speech as a mechanical process and its linguistic
aspects and give us a clue; and vice versa, if a model is built fully compatibly with how speech
scientists understand speech production and it gives unexpected results, it is very reasonable
to revisit the knowledge and look for alternative theories. The problem is, state-of-the-art TTS
systems are built with no relation to any speech production theories and cannot help give a
satisfactory answer to these questions.

All the points above is what makes me argue that even while the quality attained by present-
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day TTS systems is unprecedented and speech synthesis can sometimes be on a par with a real
speaker, we need to proceed further and augment the sound of speech with other modalities,
speci�cally articulation.

It must be pointed out, however, that articulation mostly happens hidden from the view,
which makes data collection di�cult. Some methods are dangerous, some are too invasive;
some are not, but make it too uncomfortable for the subject speaker to speak; some are not
fast enough, and some manage to keep up with the speaker's movements, but only in some
speci�c points. Whenever a method is e�cient, it seems to also be expensive and come in with
a herculean task of data annotation.

On top of that, treating articulation within most speech production theories induces systems
with a highly convoluted pipeline that is hard to tune. Propagating errors can easily accumulate
to the point where the synthetic speech is of underwhelming quality.

The result is that despite the need for adopting articulatory aspects in speech synthesis, the
topic has been out of the spotlight in speech research community. Fortunately, with the advent
of considerably more informative, detailed, versatile and voluminous articulatory data such as
real-time magnetic resonance imaging (RT-MRI), the �eld is in its prime to tackle these issues.

1.3 Problem statement

The present dissertation aims to work towards a full-�edged articulatory speech synthesizer,
capable of treating a variety of speech phenomena and faithful to the e�ects of in�uence of
nearby sounds on each other, coarticulation.

An input of such a system is text. The generated output is speech and the synchronous
articulatory information related to it.

The objective is to explore two kinds of approaches: one drawing on the idea of frozen
articulatory targets, based on a rich system of rules governing transitions, and another on
treating articulatory parameters statistically, with no explicit knowledge on their interpretation
put inside the system; then, to make a link between the two.

These goals constitute a multi-step piece of work, which induces a number of sub-objectives:

� Identify an appropriate type of data for each of the objectives and prepare the data ac-
cordingly.

� Build the text-to-articulatory speech system in accordance with the principles of speech
production and the approaches commonly undertaken in speech synthesis community.

� Evaluate the results visually, perceptually, acoustically and numerically � not only sepa-
rately for the two approaches, but also meaning to compare them.

� Draw conclusions on the relation between the two approaches and compare their e�ciency.

1.4 Contribution

This dissertation starts with the work on articulatory speech synthesis from static magnetic
resonance imaging (MRI) data capturing context-aware articulatory targets, presented in Chap-
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ter 3. The presented method is primarily rule-based, essentially solving the problem of how to
transition between captured static context-informed vocal tract con�gurations.

Then Chapter 4 follows with deep neural networks (DNN)-based parametric articulatory
speech synthesis based on real-time MRI (RT-MRI) data. Here, no concept of articulatory
targets exists, and articulation is synthesized the same way as speech in parametric speech
synthesis.

Chapter 5 builds a bridge between the two approaches to investigate the relation between
the static and dynamic data used in the work of the previous two chapters.

Finally, Chapter 6 gives a �nal overview of the results of this work and the lessons to be
drawn from it, as well as its potential extensions.

The publications made over the course of the PhD studies:

� Tsukanova, Anastasiia, Ioannis Douros, Anastasia Shimorina, and Yves Laprie. �Can
static vocal tract positions represent articulatory targets in continuous speech? Match-
ing static MRI captures against real-time MRI for the French language." International

Congress of Phonetic Sciences. 2019.

� Douros, Ioannis, Anastasiia Tsukanova, Karyna Isaieva, Pierre-André Vuissoz, and Yves
Laprie. �Towards a method of dynamic vocal tract shapes generation by combining static
3D and dynamic 2D MRI speech data." INTERSPEECH 2019. 2019.

� Douros, Ioannis, Jacques Felblinger, Jens Frahm, Karyna Isaieva, Arun A. Joseph, Yves
Laprie, Freddy Odille, Anastasiia Tsukanova, Dirk Voit, and Pierre-André Vuissoz. �A
Multimodal Real-Time MRI Articulatory Corpus of French for Speech Research." INTER-
SPEECH 2019. 2019.

� Laprie, Yves, Benjamin Elie, Anastasiia Tsukanova, and Pierre-André Vuissoz. �Center-
line articulatory models of the velum and epiglottis for articulatory synthesis of speech."
2018 26th European Signal Processing Conference (EUSIPCO). IEEE, 2018.

� Tsukanova, Anastasiia, Benjamin Elie, and Yves Laprie. �Articulatory Speech Synthesis
from Static Context-Aware Articulatory Targets." In International Seminar on Speech

Production, pp. 37-47. Springer, Cham, 2017.

� Laprie, Yves, Benjamin Elie, Pierre-André Vuissoz, and Anastasiia Tsukanova. �Artic-
ulatory model of the epiglottis." In The 11th International Seminar on Speech Produc-

tion. 2017.
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2

Background and context

2.1 Speech production

Speech production can be seen as a manifestation of the compromise between the complexity
of what we, as human beings, need to be able to express, and the limited capacities that are
at our disposal. The processes involved in speech production are intricate just enough for the
simpli�cations and shortcuts not to hinder achieving the purposes of communication. The two
contradictory forces, one to simplify the underlying processes of speech and the other to have
enough subtlety to deliver messages as nuanced as they were intended, are what drives language
change at all of its levels.

This dictates what we expect to learn in speech production: we shall �nd evidence of a
certain variation and �uidity that mean to reduce the strain of the process of speech, and that
variation will constantly test the physical, biological and cognitive constraints faced both by the
speaker and by their listener.

Generally speaking, one can identify several subprocesses in producing speech:

� Conceptual thinking : the thought process that predates speech and generates the speaker's
intent;

� Lexical and grammatical selection : �ltering the speaker's intent through the available
means of the language;

� Movement planning and execution : preparing and executing coordinated commands for
speech organs: to control the breath, operate the vocal folds and put the articulatory
organs where they need to be to produce the desired output;

� Movement correction : processing mismatches between the intended, possibly updated,
outcome of any of the layers above, and the speech that is produced; correcting them.

In running speech, all these subprocesses occur at overlapping times, and it is through care-
fully controlled experiments that we can disassociate them. Such experiments can be cognitive,
neuroscienti�c, articulatory and acoustic in nature, and they deal with such parameters as fea-
ture timing (e.g. voice onset time�VOT), articulator positioning, phonetic feature presence or
absence; the evidence can come in the form of timing di�erences and changes in the place and
manner of articulation. One particularly illustrative case of changes is speech errors.
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The contributions of the present thesis are situated at the third level, movement planning and
execution. However, other elements also need to be examined and taken into account. The levels
of conceptual thinking and of lexical and grammatical selection are discussed in Chapter 2.1.1;
the level of movement planning and execution in Chapter 2.1.2; �nally, movement correction in
Chapter 2.1.3.

2.1.1 Accessing language resources

Speech on its own does not signify anything. It is a collection of sounds. What makes it
meaningful is the experience of the environment, its relation to the speaker's inner world: what
it makes them think and feel, and how what they say can in�uence and change it [SNA13].

How do we transform the sense of self and the desire to interact with the world in a certain
way into the act of speaking? It all starts with the brain.

The brain is an organ in the head that serves as the center of the nervous system. It is
divided into vertical halves called hemispheres and comes out of the brain stem, the passage to
the spinal cord. The matter covering hemispheres is called the cortex, and it is what provides
for higher cognitive functions. The evolution of the brain preferred the cortex to have a larger
surface area while occupying less space, which is why this tissue is laid in folds and has grooves
and wrinkles. We can identify some partitioning in the brain: �rst into lobes (frontal, temporal,
parietal and occipital) based on physical features, and then we can single out speci�c areas that
serve an identi�able function.

Generally speaking, in the majority of people the dominant hemisphere is the left, and
it deals with language, logical and analytical operations and mathematics. Meanwhile, the
right hemisphere operates emotions, recognizing faces, perceiving structures globally (without
detailed analysis), music and non-linguistic sounds. However, when we take a more detailed
look, we �nd that this division is not as clear-cut, and both hemispheres perform some functions
associated with their counterpart [SNA13].

One important region for speech production is situated in the lower back part of frontal lobe
of the dominant hemisphere (typically, the left). It is called Broca's area, named after a French
pathologist and neurosurgeon Pierre Paul Broca (1824�1880) who studied it. Once the stimulus
for creating an utterance is formed�already with or yet without the syntax, depending on the
complexity of the sentence [KS02],�this is where speech is formulated [SNA13].

If Broca's area is damaged, it causes a type of non-�uent aphasia that is called Broca's
aphasia. In most cases speech becomes telegraphic and dis�uent, made up of content vocabulary
words stacked together instead of being properly joined into syntactically correct sentences (for
example, �Carry, couch, Sophie� instead of �Sophie and I had to carry the couch.�) The
patients feel they know what they want to say, but cannot get it out, neither orally nor in writing.
It may even happen, such as in the historic case of Leborgne, that whenever the patient tries
to speak, only a limited combination of sounds will come out (such as the word �tan�). Speech
comprehension is partially impeded as well, despite the fact that this is not the area primarily
responsible for it. [DPIZC07, SNA13]

Indeed, a region that proved to play a major role in understanding of speech is Wernicke's
area, named after a German neurologist Carl Wernicke (1848�1905). Just as Broca's area is right
next to the motor cortex, Wernicke's area, being situated in the upper back part of the temporal
lobe and extending upwards into the parietal lobe, is closely connected to the auditory area in
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the temporal lobe through �bers of the arcuate fasciculus. The sound of the word is transmitted
from the ear to the auditory area, and then to Wernicke's area for processing [SNA13].

And back in reverse for speech production, it is thought that this is in Wernicke's area where
the basic structure of the utterance is constructed before being passed to Broca's area discussed
above [SNA13]. Damage to Wernicke's area, especially in the left hemisphere, causes Wernicke's
aphasia, which is �uent. Patients tend to speak in dragged out sentences that have no meaning,
and sometimes they also use made up or irrelevant words. Their utterances make sense to them,
and they do not see their speech errors.

The two �ows of information�for production and for perception�form two streams: the
ventral stream (speech comprehension) and the dorsal one (speech production) [HP00, HP04,
HP07]. They are asymmetric: speech comprehension essentially depends only on the auditory
system [SVH19], while speech production also relies on somatosensory-motor systems, using a
mapping from acoustic speech signals to parietal and frontal lobe articulatory networks. The
function of the left and right hemispheres of these two �ows di�er: in speech comprehension,
despite playing di�erent roles (understanding the meaning and treating the intonation, respec-
tively) [FA04, WECT19], both hemispheres are involved, and in speech production, the left
hemisphere dominates heavily.

E�ectively, after the lifelong training side by side and assisting each other all along the way,
the deep levels of memory, speech production and speech comprehension processes get tightly
intertwined.

2.1.2 Movement planning and execution

Once formed in Broca's area, the activation is transferred through the nerve �bers of the ar-
cuate fasciculus to perform phonological encoding in left frontal cortical regions, including the
operculum, insula, lateral pre-motor cortex and anterior supplementary motor area [BGHV01].
The motor cortex controls the muscles corresponding to the vocal tract: the tongue, lips, jaw,
soft palate, vocal cords and others [SNA13]. Here the mechanics of speech is controlled: it is
produced through managing all speech organs together with pacing the breath. It is remarkable
that this system originally developed for breathing and eating rather than for consciously mak-
ing any kind of meaningful signals, which brings an additional contribution to the complexity
of the speech production organization in the brain.

Fig. 2.1 schematically illustrates a mid-sagittal section of an adult's vocal tract, with the
organs involved in speech production. As said before, these organs move according to the control
from the brain, but how is this control organized?

One of the central issues in speech production is the notion of an elementary speech move-
ment. From the auditory perspective, the elementary unit is a phoneme: the smallest unit
of sound capable of changing the meaning but not bearing any meaning of its own. With a
certain agreement rate, boundaries between phones can be picked through the temporal anal-
ysis of the spectrum frequencies quite certainly. The time spans of transition from one phone
to another that are truly unstable and impossible to identify one way or the other generally
are very short (more on the physical point of view on speech and how it is carried out is to
follow in section 2.1.2). This is not at all the case for movements. Let us take sequence /fa/
as an example (Fig. 2.2). In the spectrogram, the presence of fricative noise /f/ is very distinct
from the regular frequencies of the vowel /a/; this is due to the threshold e�ect triggering the
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Figure 2.1: Human speech mechanism [Zem10]

turbulence in the vocal tract. However, within the actual vocal tract, the movement is smooth.
It could be analyzed in two principal ways:

� This syllable can be seen as stored as two target con�gurations of the vocal tract: for /f/
and for /a/. Then the transition is just a gradual transformation of the �rst shape into
the second.

� What is stored is the way we carry out this transition, the gesture for it on the level of
individual articulators that are, however, necessarily coordinated. This gesture is executed
just enough to produce the desired sensorimotor outcome.

Both views have given rise to a variety of theoretical and applied models discussed in Chap-
ter 2.2. No matter how the speech organs are operated, the �nal result is that at every single
moment of speech or preparation for it the speaker attains their particular con�guration. The
following subsection, Chapter 2.1.2, discusses what happens then.
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Figure 2.2: An example of a spectrogram: /fa/. The boundary between /f/ and /a/ can be seen
at around 1170 ms: the fricative noise stops, formant bands appear, and the waveform exhibits
the onset of voice.

Emitting speech sounds

The crucial elements for producing a sound of any kind are a source of an acoustic wave, a
propagation medium, and the presence of this medium's boundary. For humans, this is their
respiratory system (the source of pressure), the air, and the vocal folds (a vibrating element)
along with the vocal tract that is able to produce constrictions. In terms of acoustic and electrical
engineering, it means that we may describe the speech wave in terms of the source and �lter
characteristics: the human vocal tract is a sound-emitting �lter system that responds to one or
more sound sources, which can be written as the following equation:

| P(f) |=| U(f) | · | H(f) | · | R(f) |, (2.1)

where f is the frequency, | · | is the module function, | P(f) | is the sound pressure spectrum
at a distance from the mouth opening, | U(f) | is an amplitude versus source frequency char-
acteristics, namely volume velocity spectrum, | H(f) | is the frequency-selective gain function
of vocal transmission, and | R(f) | is the radiation characteristics at the lips converting volume
velocity calculated on the mouth opening into sound pressure. This vocal tract interpretation
is the foundation of the source-�lter theory of voice production [Fan71a].

Respiration

The respiration system of a human involves organs such as the trachea, rib cage, thorax,
abdomen, diaphragm, and lungs. The mechanics of breathing is largely explained by Boyle's

law, which states that if a gas is kept at a constant temperature, pressure and volume are
inversely proportional to one another and have a constant product; it means that we can regulate
the pressure of the air in the lungs by expanding and reducing their volume, sending the air
into and out of the lungs [Zem10].

At rest, the pressure within the lungs (alveolar pressure) amounts to the atmospheric one,
and the diaphragm, which is the principal muscle of inhalation and an anatomical divider
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Figure 2.3: The principal muscles of respiration [Zem10]

between a thoracic and an abdominal cavity, is not tense, pertaining the form of an inverted
bowl.

Then, the exterior air is drawn into the organs of respiration, i.e. the lungs, by contraction
of the posterior and anterior muscle �bers that draws the central tendon downward and shifts it
forward, thus expanding the chest cavity, lowering the diaphragm, and elevating the pressure in
the abdominal cavity (see Fig. 2.3). With an increase of thorax volume, as the lungs press upon
the walls of the thorax thanks to subatmospheric pleural �uid pressure, the pressure in the lungs
becomes negative with respect to the atmosphere [Zem10]. The air goes down the respiratory
tract, freely and directly passing the oral and nasal cavities, pharynx, larynx, trachea, and
bronchi; the inhalation muscles gradually relax, activating the passive forces of exhalation.

Once the outside and inside pressures are in balance due to the natural physical limitations
of the trachea and bronchial tree, relatively high pressure in the abdominal cavity tends to
restore the relaxed shape of the diaphragm as well as the ribs and soft tissues. With this air
inhaled, the resource for producing speech is available; it is used either for silent exhalation
or for speech, and the �ow volume will be proportional to the di�erence between atmospheric
pressure and the pressure within the lungs.

To breathe out or actually speak, humans expel the drawn air by contracting the rib cage
which decreases the volume of the thorax and consecutively increases the pressure in lungs (the
greater the lung pressure, the louder and more high-pitched sounds come) and pushes the air
out, up through the trachea, into the pharynx, throat cavity [Fla13]. The alveolar pressure falls
from around 40 cm H2O when exhaling passively or as high as 200 cm H2O when adding a
muscular e�ort to negative values at low lung volumes. As for speech production, it requires an
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air�ow brought upon by an alveolar or subglottal pressure in the range of 5 to 20 cm H2O. Speech
can occur at highly variable lung volumes (we may even speak "out of our breath", for example,
when a sentence ends up being longer than intended �rst) [Zem10]. Most of the utterances
are pronounced on expiration; ingressive sounds, for which the airstream �ows inward through
the mouth or nose, are rare [LM98]. So in order to avoid exhausting the drawn air amid an
utterance, humans have to regulate their alveolar and subglottal pressure and check themselves,
contracting the inspiratory musculature to make the expiration slower. It is this system of
rational usage of inspiratory and expiratory muscles what allows us to speak, altering the vital
process of natural breathing.

Phonation

When leaving the trachea, the air passes the larynx. Its cartilages hold two folds of ligament
and muscular tissue which are called vocal folds.The opening between them is the glottis and
serves as a gate for the air�ow. Due to their mobility, the vocal folds are a source of highly
variable resistance for the air �ow which instigates the speech sounds. When the ori�ce between
the vocal folds is closed, it means that there is a source of greater resistance on the way of the
air �ow, and at least some of the air will come back, raising the alveolar and subglottal pressures
even higher. Consequently, the air �ow will get only heavier, until it �nally forces the vocal
folds apart, letting the air�ow pass through. Then, according to the Bernoulli's law, the local
pressure falls, urging the cords close up again. With the �ow reduced, the local and subglottal
pressures amount to each other as in the beginning of this cycle. So, the vocal folds open and
close rapidly on loop for a speaker to produce voiced sounds, i.e. to phonate. This de�nes the
period of the oscillation forced onto the cords. In contrast, to produce an unvoiced sound, the
vocal folds neither close together nor vibrate�they stay open instead.

The rate of vocal fold vibration is described as voice musical tone, or pitch (perceptually),
or as fundamental frequency measured in Hz�cycles per second (physically). The basso voice
corresponds to 60 Hz or lower or B1 in the musical scale, and by raising the voice up to the
soprano register one will reach the frequency of over 1568 Hz, or G6 [Zem10].

For every individual speaker, the quality of the voice ranges with vocal fold vibration fre-
quencies. There is a comfortable middle or modal pitch range. At its upper limits the quality
of the voice suddenly changes into the falsetto register, also called loft register, or, possibly
for female soprano singers, laryngeal whistle. In falsetto, the contact area in the vocal folds is
much smaller, and the glottis turns into a tense and narrow slit that vibrates only at the edges.
The mechanism of laryngeal whistle is the same as of falsetto, but with higher tension, pressure
and resulting frequency. As for the lower limits of the modal pitch range, the voice changes
there into glottal fry or pulse register, which gives the e�ect of a creaky voice. To produce
it, the vocal folds are drawn together tightly, but let subglottal air bubble up between them in
discrete bursts in a syncopated rhythm [MVL58].

Mathematical models of the larynx for speech simulation include a single-degree-of-freedom
model by [FL68] where the vocal folds must move as a single mass toward and away from the
midline (with one degree of freedom, hence the name) which can be a simple solution but does not
describe behavior of the real larynx; two-degree-of-freedom models such as by [IF72] where the
vocal folds are two masses instead of a single one, capable of an independent horizontal motion
which is better but not devoid of artifacts and unrealistic consequences for the parameters; and
the sixteen-mass model by [Tit73] that was to take into account the mucosa in the vibrating
larynx and allow more degrees of freedom for the vocal folds.
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The important parameters of voice production are as follows [Zem10]:

1. Maximum pitch range: how �exible is the voice pitch?

2. Mean rate of vocal fold vibration: what is the most comfortable, habitual pitch for the
speaker, in relation to the pitch range?

3. Air cost: how long can the speaker phonate comfortably without running out of air?

4. Minimum-maximum intensity at various pitches: along the frequency range, how do the
sound pressure level measurements change?

5. Periodicity of vocal fold vibration: what is the natural period of vocal fold vibration when
other parameters are constant?

6. Noise: are there noisy areas in the sound spectrum? How are they related to intentional
voice qualities such as hoarseness, breathiness?

7. Finally, resonance: how does the vocal tract resonate when the air is propagated from the
larynx to the mouth opening?

The �nal point concerns the positioning of the further vocal tract rather than that of the
larynx, which brings us to the next section.

Articulation

So, phonation involved vibrations of the vocal folds that can essentially be summarized in
parameters of frequency, intensity, and duration. To obtain the speech sound, there has to be a
resonator to receive the pu�s of air from the larynx. While the fundamental frequency is de�ned
by the rate at which the air column is driven into oscillations, it is the form and dimensions of
the acoustic object what establish the resonating frequencies and in such a way determine the
quality of the tone.

Resonation is what the vocal tract serves for in sound emission. The vocal tract starts just
above the glottis and, from an acoustic point of view, is an acoustic tube, around 17 cm long for
an adult male, with a varying cross-sectional area. The vocal tract consists of the oral tract and
the nasal tract and ends with lips and nostrils respectively, from where the sound is propagated
in the atmosphere. When emitting a voiced sound, the vocal tract receives quasi-periodic pulses
of air. Since the glottal ori�ce is relatively small, its acoustic impedance is dominating, and
unless there is a pronounced constriction in the further vocal tract, the glottis is the main source
of turbulence. Otherwise obstacles on the way of the air�ow, which are made by positioning the
articulators that compose a source of widely ranging resistance to the air �ow (from minimal,
such as for open vowels, to neutral, such as for uttering a sound like "uh", and absolute, such
as the moment of constriction at the lips to produce [b]), bring out vortices�their experimental
evidence in the speech air�ow was provided by [Tho86]. Then these �ndings were theoretically
supported by [TT90] and [McG88]. Vortices can occur, for instance, due to changes in the
velocity of the �ow at the boundaries, �ow disruption such as by adverse pressure from a cavity,
�ow separation, or appearance of rotational motion because of moving through the curved form
of the vocal tract. When formed, a vortex can twist, stretch or spread further downstream
[Mar94].
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Intensifying, these e�ects will eventually lead to turbulent �ow. The characteristic that helps
predict whether the �ow stays laminar or becomes turbulent is the Reynolds number, noted as
Re:

Re =
inertial forces

viscous forces
= ρ

UL

µ
, (2.2)

where ρ stands for the air density; U is a velocity scale; L is a linear scale such as the
diameter of the vocal tract; and µ is the air bulk viscosity.

Low values of the Reynolds number are associated with laminar �ows�the �ows where the
viscous forces dominate. A high value of the Reynolds number will indicate a turbulent �ow with
chaotic instabilities. These e�ects are necessary to produce frication, aspiration and whisper or
contribute to the e�ect of a breathy or creaky voice.

To operate the air�ow and di�erentiate the resulting sounds of speech, humans position their
articulators so as to make a constriction of the �ow at a particular place and in a particular way.
This deliberate sound formation is called articulation ; every phoneme has a place and manner
of articulation associated with it, though some degree of freedom is allowed. The phonetic
details and how they play out in the language will be covered below [LD12].

Figure 2.4: Human vocal organs [LJ14]

Fig. 2.4 shows an outline of the vocal
tract. The vocal tract comprises �ve1 res-
onating cavities: the buccal, oral, pharyngeal,
and two paired nasal ones. Since they are in-
terconnected, the division is made from the
anatomical perspective. Articulation can be
formulated in terms of operating the cavities:
as the speaker articulates to produce speech,
the cavities can grow or diminish in volume
up to complete blockage, and this changes the
acoustic properties of the vocal tract, namely
the resonant characteristics. The result is a
sound as intended by the speaker, with a cor-
rect energy distribution (how much energy
concentrates at which frequencies�both as-
pects are perceptually important).

� The buccal cavity is the space extending
from lips and cheeks to the teeth and
gums. It is connected to the oral cavity
through the space between the teeth and behind the last molars. Its volume varies between
subjects, but is small.

� The oral cavity is bounded by the roof of the mouth, the teeth, the glossopalatine arch,
and the muscular �oor which is mostly the tongue. Due to the tongue's �exibility and high

1The �gure can get higher if we factor in smaller cavities and areas that are not clearly separated from some

of the cavities' proper, such as two small cavities in form of a deep depression, lateral to the aditus laryngis,

that are situated at the bottom of the pharynx and called pyriform sinuses, or the sublingual cavity under the

tongue. However, they do not seem to play a crucial role in speech production.
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Chapter 2. Background and context

mobility of the lips, during speech the volume of this cavity varies greatly. This cavity
communicates with the pharyngeal and nasal cavities through a port called pharyngeal
isthmus, bounded by the anterior faucial pillars, soft palate, and the dorsum of the tongue.

� The pharyngeal cavity proper extends over the pharynx (see Fig. 2.5), which is a vertically
aligned musculomembranous tube, oval in a transverse section (wider in the frontal plane
and more narrow in the sagittal one) and reaching from the level of the sixth cervical
vertebra (the posterior position) and the cricoid cartilage (the anterior one) to the base
of the skull. The mucous membrane of the tube continues into the one of the nasal
cavity. We de�ne three major regions in the cavity of the pharynx: the nasopharynx, the
oropharynx, and the laryngopharynx (see Fig. 2.6).

� The nasal cavities are two approximately symmetrical chambers with the nasal septum
between them. Anterior nares are nostrils, the way from the nasal cavities to the exterior.
Posterior nares are choanae, the way to the nasopharynx. The superior, middle, and
inferior nasal conchae, arranged in a labyrinth-like way, along with their nasal passages
comprise lateral walls of the cavities.

There are passive articulators that cannot change their position�the upper jaw, the hard
palate, the teeth�and active articulators that are free to move: the lower jaw, the lips, the
tongue, and the velum.

The mandible is a very important articulator�the only truly movable bone in the face.
Not only does it di�erentiate vowels by the degree of openness, it also helps enunciate sounds
better. The jaw mainly rises and falls, though it can also be protruded and retracted, or make
a grinding motion. The jaw is set on the temporomandibular and ginglymoarthrodial joints.

The vocal tract ends with an ori�ce formed by the lips. They consist of muscular and
grandular tissues and some fat. Of the two, the lower lip is faster and more mobile. To
participate in speech production, the lips can close and open and protrude and retract.

The tongue is the most �exible vocal organ with a great degree of freedom, which plays such
an important role in speech articulation that in many languages the word "tongue" has become
synonymous to either "language" or "speech". In the tongue, we discern the tip, blade, and body,
and the tongue body is divided into the front, center, and back further then. The tongue moves
thanks to an intricate and complex system of extrinsic and intrinsic muscles, usually one or two
muscles dominating in a particular motion, and other muscles gradually taking charge when
it is their order. [Har76] sees most tongue movements as composed of just seven components:
horizontal and vertical forward-backward and upward-downward movements of the tongue tip
and the tongue blade, two parameters for the transverse cross-sectional con�guration, and the
form of the tongue dorsum plane�spread or tapered.

In the roof of the mouth, we single out a small ridge behind the upper front teeth called the
alveolar ridge, hard palate, and soft palate (also called the velum). The velum can block the
air�ow from passing into the nasal cavity, which is necessary to produce an oral sound (then the
velum goes up) or let the air through (then the velum goes down, and the sound is nasal). A
�eshy extension at the back of the soft palate which hangs above the throat is called the uvula.

Behind and below the back of the tongue comes the pharynx, which can also be an articulator
or be ignored by the language: for instance, French, on the materials of which the present
dissertation is built, does not feature any pharyngeal sounds that would be signi�cant on the
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2.1. Speech production

Figure 2.5: Upper airway [Ope13]

nominative level. Then there is a �ap of cartilage behind the root of the tongue, which is
depressed during swallowing to cover the opening of the windpipe�this is the epiglottis.

Places and manners of articulation

The two subdisciplines of linguistics which study sounds of human languages are called
phonetics and phonology. While phonetics deals with the physical and physiological aspects of
sounds, phonology treats sounds as parts of a particular language, disregarding the information
that is linguistically irrelevant. Let us discuss the overall picture �rst, and then go further into
the speci�cs of the phonetics of the language treated in this dissertation, French.

The smallest distinctive unit of speech is called a phoneme. It does not carry a meaning of
its own, but can distinguish at least one word from another in the particular language where it
belongs to. The manifold of all acoustic variations of a phoneme comprises its allophones.

Phonemes of a natural language are usually not in one-to-one relation with the written
system of this language, and thus phoneticians�[Int99]�have introduced a special alphabet to
note transcriptions.

Phonetic symbols are enclosed in square brackets [ ], and phonemes are enclosed in virgules
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Chapter 2. Background and context

Figure 2.6: The division of the pharyngeal cavity into the nasopharynx, oropharynx, and
laryngopharynx [Ope13]
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2.1. Speech production

Figure 2.7: Mid-sagittal section of the vocal tract with labels for place of articulation [Int99].

//.
All sounds of natural languages are divided into vowels and consonants.
Vowels are articulated with an open vocal tract where the air �ows virtually unimpeded.

All organs of speech are tense, including walls of resonating cavities. The air stream is relatively
weak.

On the other hand, consonants are pronounced by means of creating an obstacle on the
way of the air stream. To get past the obstacle, the air stream has to be heavy. Only those
articulators that are responsible for the place of constriction are tense, and the others are lax.
Consonant production depends on fast and imperatively precise motions of articulators.

Usually the transition from voiced consonants to vowels in terms of the degree of constriction
is gradual: the language's phonemic continuity makes sure that there are no abrupt jumps in
the openness / closure range [LJ14].

Vowels can be classi�ed [Int99]:

� by height : the lowest resonance of the voice�the �rst formant, associated with the vertical
position of the tongue with respect to the roof of the mouth, or, alternatively, the degree
how open the jaw is. The more open a vowel is, the higher is the frequency of F1. Vowels
can range from close ones�when the tongue is close to the roof of the mouth�to open

ones�when the jaw is low, open. There are seven degrees of vowel height.

� by backness : de�ned by the second formant of the voice, associated with the position of
the tongue relative to the back of the mouth. The more front a vowel is, the higher is the
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Chapter 2. Background and context

frequency of F2. Vowels can range from front ones�when the tongue is forward in the
mouth�to back ones�vice versa. There are from �ve to seven degrees of vowel backness.

� by roundedness : de�ned by the third formant of the voice and indirectly associated with
the rounded or unrounded lips.

� by nasality : vowels can be oral or nasal, depending on whether the velum is raised or
lowered and whether the nasal tract is participating in the vowel production.

� by movement of the tongue, by voicing, by secondary constrictions, by tenseness . . .

Figure 2.8: The vowels' chart based on
their main features [Int99].

The vowels' chart is given in Fig. 2.8.
Naturally, the fact that vowels can be arranged

both in the articulatory and the acoustic spaces
has lead to recognition of cardinal vowels as the
extreme ones that all others can be compared to.
[Jon56] suggested a set of eight vowels, and [CH68]
updated this notion. Three vowels in this set, /A/,
/i/, and /u/, have articulatory de�nitions outside
of the scope of any particular language on Earth
and may be called corner vowels, and the others
are arranged between them so that they divide the
acoustic space into even-sized areas. Then vow-
els of all languages can be set in this vowel space,
expressed through the cardinal ones.

Consonants can be classi�ed [LJ14, Lav94,
Int99]:

� by voice into voiced and voiceless : the ones during which the vocal folds vibrate and the
ones during which they do not;

� by place (see Fig. 2.7): at each articulator constriction, a speech sound can be formed,
which may or may not belong to the language phoneme inventory. Consonants articulated
by the lips are labial with further distribution into bilabial, labiodental, dentolabial
depending on how the sound is produced (with both lips, with the low lip against the
upper teeth, or vice versa), and others.

Consonants articulated by the tongue are, in case of the raised tongue apex and blade,
called coronal, and in case of the tongue dorsum, dorsal. Depending on where the tongue
tip must be put, among others, we apply the corresponding terms: linguolabial (the
tongue tip in contact with the upper lip), interdental (the tongue comes between the
teeth), dental (the tip of the tongue or the tongue blade comes in contact with the back
surface or bottom of the top teeth), denti-alveolar (the tongue touches the upper part
of the back surface of the top teeth), alveolar (the tongue is in contact with the alveolar
ridge), postalveolar, retro�ex, palato-alveolar (the tip or the blade of the tongue comes
in contact with the back area of the alveolar ridge). For the tongue dorsum, the applicable
terms are palatal (when the front of the tongue articulates with the domed part of the
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2.1. Speech production

hard palate), velar (with the soft palate), uvular (with the very back of the soft palate
and uvula).

When the sound is produced with the tongue, there is a further dichotomy depending on
the tongue shape. If the air �ows across the centre of the mouth over the tongue, the
consonant is called central. If there is a constriction at the center of the tongue and the
air parts to �ow along the sides of the tongue, such a consonant is lateral.

Consonants pronounced at the pharynx are pharyngeal, produced by the faucal pillars
moving together or raising the larynx.

Glottal articulation occurs directly on the vocal folds.

� by manner [LJ14, Lav94, Int99]:

� Fricative consonants: produced by excitation of a noise by means of narrowing the
vocal tract at the point of articulation without a complete obstruction of the airway.
This obstruction generates a turbulent air �ow, which is perceived as a slightly hissing
noise. Common ways to make a fricative are to make the tongue approach the teeth
or the alveolar ridge or make the lower lip approach the upper teeth�actually, in
general, any other two articulators that can come close enough to each other.

� Stop consonants: produced in three phases:

� Catch : articulators come into the contact, making a complete closure in the
vocal tract. This closure can be labial, alveolar, palatal, velar, and glottal.

� Hold : even if the point of contact is not immobile, the articulators stay tightly
locked and do not leak the air. The articulators are tense. The air is being
accumulated. The pressure rises;

� Burst : the speaker lets the pressure force the articulators apart, and all the
drawn air gets momentarily released. This explosion is the most helpful percep-
tual cue to identify a stop consonant.

Stops can be either oral�then their behavior is as described above�or nasal. Nasal
stops are produced with a constriction somewhere in the oral cavity, after the velopha-
ryngeal port. From the temporal point of view, they are just like oral stops. But
since the velum is opened wide, the air is not accumulated as much, since it goes to
the nasal tract and radiates from the nostrils.

� A�ricate : a stop immediately followed by a fricative.

� Approximant : one articulator is close to another, but the narrowing is wide enough
to avoid a turbulent airstream.

� Glides and semivowels : the glides are dynamic sounds that are produced on the
vowel they precede, and semivowels are very much alike vowels, but only with a
greater degree of constriction.

� Others: trills, taps or �aps, clicks . . .

Phonetics of the French language

As we said, the section above described the general picture of how the phonetic organization
of a particular language may look like. This is important to consider to produce speech synthesis
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Chapter 2. Background and context

systems that are not for one-case use and can be generalized for other languages. However, every
language has its own speci�cs; an issue that may be negligible for a generic language in the grand
scheme of things, can be crucial in this particular case. This is why it is fundamental to also go
into details relevant for the language in question, French.

The phonetics of the French language has the following distinguishing characteristics:

� A relatively large number of vowels (�fteen);

� Four degrees of vowel openness: open, open-mid, close-mid, and close;

� Most vowels are open, and most vowels are rounded. In fact, lip protrusion can be ex-
tremely pronounced, such as in the case of /y/;

� There are both oral and nasal vowels;

� The vowels are articulated very clearly;

� Vowels retain their properties fully and are not reduced, French being a syllable-timed
language;

� Before a pause, consonants are pronounced very clearly, often with a trace of /@/. They
are not unvoiced like in some other languages such as Russian, German or some accents
of English;

� Assimilation of vowels by openness;

� Assimilation of consonants by voicedness;

� Absence of assimilation by place and manner of articulation;

� Liaisons (Fr.: liaison) and linking (Fr.: enchaînement)�two phenomena which make sure
French speech remains connected when, based on the lexical choice alone, it would not be
the case;

� Certain patterns in accentuation and rhythmics.

Phoneme inventory of the French language

There are �fteen vowels in French [Lon84, Cal89a], eleven oral and four nasal ones:

1. /i/: "qui", Fr. "who", /ki/�is a phoneme because it can be contrasted, for example,
with "que", Fr. "that", /kœ/: close front unrounded vowel;

2. /e/2: "dé", Fr. "dice", /de/�contrasting with "dais", Fr. "canopy", /dE/: close-mid
front unrounded vowel;

3. /E/3: "fait", Fr. "done", /fE/�contrasting with "fée", Fr. "fairy", /fe/: open-mid front
unrounded vowel;

2There is a tendency to neutralize the di�erence between /e/ and /E/.
3/E:/, as in "fête", Fr. "holiday", /fE:t/, is usually replaced by /E/. However, there are rare pairs where some

speakers still make a distinction in the vowel length: "mettre", Fr. "put", /mEtK/, vs. "maître", Fr. "teacher",

/mE:tK/.
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2.1. Speech production

4. /a/: "ta", Fr. "your_S_FEM", /ta/�contrasting with "tes", Fr. "your_PL", /te/:
open central unrounded vowel;

5. /y/: "tu", Fr. "you", /ty/�contrasting with "tous", Fr. "all", /tu/: close front rounded
vowel;

6. /ø/: "peut", Fr. "can_3P_SING", /pø/�contrasting with "pu", Fr. "could", /py/:
close-mid front rounded vowel;

7. /œ/: "sœur", Fr. "sister", /sœ:K/�contrasting with "sûr", Fr. "sure", /sy:K/: open-mid
front rounded vowel;

8. /u/: "court", Fr. "short", /ku:K/�contrasting with "cœur", Fr. "heart", /kœ:K/: close
back rounded vowel;

9. /o/: "pôle", Fr. "pole", /po:l/�contrasting with "Paul", Fr. name "Paul", /pOl/:
close-mid back rounded vowel;

10. /O/: "pomme", Fr. "apple", /pOm/�contrasting with "paume", Fr. "palm", /po:m/:
open-mid back rounded vowel;

11. /A/4: "pâte", Fr. "pasta", /pAt/�contrasting with "patte", Fr. "paw", /pat/: open
back unrounded vowel;

12. /Ã/: "emmener", Fr. "bring", /Ãm@ne/�di�erent from the word with an absent /Ã/:
"mener", Fr. "think", /m@ne/: nasal open back unrounded vowel;

13. /Õ/: "mont", Fr. "mount", /mÕ/�contrasting with "mot", Fr. "word", /mo/: nasal
open-mid back rounded vowel;

14. /œ̃/5: "un", Fr. "a_MASC", /œ̃/�contrasting with "an", Fr. "year", /ã/: nasal
open-mid front rounded vowel;

15. /Ẽ/: "fin", Fr. "end", /fẼ/�contrasting with "fine", Fr. "�ne", /fin/: nasal open-mid
front unrounded vowel.

Meanwhile, /@/, while being present in the language, is not a phoneme. If it were one,
adding or dropping it in speech would create new words, but it does not bring about semantic
changes6: chemin /SmẼ � S@mẼ/ (Fr. "way"), lentement /lÃtmÃ � lÃt@mÃ/ (Fr. "slowly"), and
so on and so forth. For this reason, /@/ is a stylistic variant of the phoneme /œ/ rather than a
phoneme on its own [And82, Tra87], and its omission in words is elision.

To summarize the footnotes, there is a (at times regional) tendency towards neutralization
in pairs /a/ vs. /A/, /Ẽ/ vs. /œ̃/, /e/ vs. /E/, /o/ vs. /O/, and /ø/ vs. /œ/ to the point when
they can be indeterminable [FKJ06].

There are twenty consonants in the French language [Lon84, Cal89a], all of which are pul-
monic egressive sounds. Twelve of them are obstruents (six plosives, six fricatives, all categorized
into pairs of a voiced and an unvoiced constituent), and eight of them are sonorants (three nasals,
two liquids, and three semivowels):

4/A/ is often replaced by /a/, though /A/ is preferred, for example, before /z/ or after /Kw/ [Tra87].
5Fewer and fewer speakers distinguish between /œ̃/ and /Ẽ/, especially in �uent speech.
6Though it should be noted that it does play a role in listening comprehension [FS97].

25



Chapter 2. Background and context

1. /p/: "cape", Fr. "cape", /kap/: oral voiceless bilabial stop;

2. /b/: "crabe", Fr. "crab", /kKab/ or /kKAb/: oral voiced bilabial stop;

3. /f/: "conf irmer", Fr. "con�rm", /kÕfiKme/: oral voiceless labiodental fricative;

4. /v/: "cave", Fr. "cellar", /ka:v/: oral voiced labiodental fricative;

5. /t/: "tissu", Fr. "fabric", /tisy/: central oral voiceless laminal denti-alveolar7 stop;

6. /d/: "cadeau", Fr. "present", /kado/: central oral voiced laminal denti-alveolar8 stop;

7. /s/: "symbole", Fr. "symbol", /sẼbOl/: central oral voiceless laminal alveolar dentalized9

sibilant fricative;

8. /z/: "gaz", Fr. "gas", /ga:z/ or /gA:z/: central oral voiced laminal alveolar dentalized10

sibilant fricative;

9. /S/: "chômage", Fr. "unemployment", /Soma:Z/: central oral voiceless palato-alveolar
labialized11 sibilant fricative;

10. /Z/: "âge", Fr. "age", /A:Z/: central oral voiced palato-alveolar labialized12 sibilant
fricative;

11. /k/: "occuper", Fr. "occupy", /Okype/: central oral voiceless velar stop;

12. /g/: "global", Fr. "global", /glObal/: central oral voiced velar stop;

13. /m/: "munir", Fr. "provide", /myni:K/: bilabial voiced nasal;

14. /n/: "nasal", Fr. "nasal", /nazal/: laminal denti-alveolar13 voiced nasal;

15. /l/: "allumer", Fr. "light", /alyme/: lateral oral apical alveolar14 lateral voiced liquid
approximant;

16. /K/: "rien", Fr. "nothing", /KjẼ/: central oral voiced uvular liquid fricative15;

17. /ñ/16: "Bourguignon", Fr. "Burgundian", /buKgiñÕ/: palatal voiced nasal;

18. /w/: "oui", Fr. "yes", /wi/: the central oral labio-velar voiced approximant�semivowel
glide, corresponding to the close vowel /u/;

7So, pronounced as [t”].
8So, pronounced as [d”].
9So, realised as [s”].
10So, pronounced as [z”].
11So, pronounced as [Sw].
12So, pronounced as [Zw].
13So, pronounced as [n”].
14Carried out as [l„]. Sometimes [l”] or [ l] occur. /l/ can come voiced or voiceless depending on its position in

the word, but these di�erences do not carry any meaning.
15Other regional or contextual options: the voiceless uvular fricative [X] and the uvular trill [ R].
16Currently /ñ/ seems to be merging with /nj/ [GLM12].
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19. /4/: "huile", Fr. "oil", /4il/: the central oral labio-palatal voiced approximant�semivowel
glide, corresponding to the close vowel /y/;

20. /j/: "yeux", Fr. "eyes", /jø/: the central oral palatal voiced approximant�semivowel
glide, corresponding to the close vowel /i/.

Some dialects of French also feature /N/. This sound also occurs in some loaned words such
as "parking" and can be replaced by /Ng/ or /ñ/ [GGGG11].

The acoustic properties of French can be found in the work by [Lon84].
Phoneme duration and timing in the French language

The length of a speech sound depends on its neighboring phonemes, on the position within
the utterance, and on the syntactic and semantic structure of the utterance [Cal89b].

Long consonants can be used for emphatic stress or in gemination.
When the utterance involves a co-occurrence of a consonant, the �rst consonant instance

usually loses its third phase of production (the burst), and the second one loses its �rst phase of
production (the catch). Then there is no pause between the consonants, but they belong to two
syllables. The consonant from the syllable coda's intensity is attenuating, while on the syllable
onset the intensity is rising.

In gemination of voiceless plosives, /p/, /t/, and /k/, the hold phase is voiceless. The pause
before the burst is longer than in a non-geminated plosive, and the articulators are tightly locked
during this pause.

To produce geminated voiced plosives, /b/, /d/, and /g/, the vocal folds start vibrating
earlier: the closure is completely voiced. Hence the pause before the burst is not entirely
voiceless�there is an insigni�cant glide.

Fricatives, liquids, and nasals�/f/ and /v/, /s/ and /z/, /S/ and /Z/, /l/, /m/, /n/, and
/K/�are not silent even during the hold phase.

In French vowel contrasts, there is evidence that duration is not a reliable cue, and though
in production it is normally held as per the rules of French phonology, the di�erence between
vowel durations is not sensed in perception [GB88].

Prosody and Voice Stream Segmentation

The minimal articulatory unit is the syllable. Syllables are formed by vowels which can be
accompanied by consonants before them (in the syllable onset) and after them (in the coda). If
a syllable ends with a vowel, it is open (e.g. "répéter", Fr. "repeat", /Ke.pe.te/); otherwise it is
closed (e.g. "acteur", Fr. "actor", /ak.tœ:K/). By the general principle, open vowels are used in
closed syllables, and close vowels are used in open syllables [Sch21], and more precisely, syllable
segmentation is done according to rules that di�erentiate between the number of consonants to
be distributed between vowels, their classes, and position within the word.

The units of utterance segmentation are:

� Rhythmic groups : groups of words�actually, given the French connectedness of speech,
groups of syllables, where syllables can overlap word boundaries and the number of sylla-
bles coincides with the number of pronounced vowels�having some sense as a whole and
stressed on the last syllable [Gra50]. Rhythmic groups are separated from each other by
changes in speech melody, rhythm, and duration of the stressed vowel;

� Syntagms : groups of rhythmic groups, giving a wider view on the units expressed via
rhythmic groups. Syntagm boundaries are more free to be established by the speaker
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than the ones of rhythmic groups, and they are marked by optional pauses and changes
in speech rate and melody;

� Breath groups along with intonational units : even larger units of rhythmic organization,
more or less coinciding with sentence boundaries. Breath groups are separated from each
other by pauses that are used for starting a new breath cycle.

As mentioned above, from the rhythmic point of view, French utterances are very continuous,
which is supported by two sandhi phenomena, liaison and enchaînement, that occur in word
sequences that are closely linked by sense and eliminate boundaries between words in favor of
merging them into sequences of syllables.

Enchaînement regroups the phonemes in an utterance into syllables in such a way that
the last pronounced consonant of one word is attached to the initial vowel of the next word.
This phenomenon does not a�ect the quality of the involved sounds, i.e. normally, there is no
assimilation.

Liaison is divided into vocalic and consonantal liaison (the latter usually simply bearing
the name "liaison").

Vocalic liaison happens when two similar vowels coincide in the �ow of speech within a
syntagm, resulting in one long vowel with a minor change of tone and intensity, and when there
are two di�erent vowels occurring one by one, resulting in a very fast transition from one to
another with a temporal overlap between the �rst phase of the second vowel production and the
third phase of the �rst one. The exception to vocalic liaison may be nasal vowels.

Consonantal liaison occurs at word boundaries too. French language has a great discrepancy
between its written and spoken forms: most consonant clusters at the end of the word are
not pronounced. However, liaison can preserve the speech �ow, making the previously mute
consonant link the words by means of a new syllable made from the consonant and the initial
vowel of the next word. Liaison can be obligatory, optional, or impossible depending on the
context and pronunciation style.

As a study by [FDR04] shows, productivity of liaison and enchaînement in French is relatively
the same and keeps under the level of 6 occurrences per 100 words.

Prosody is an essential formal feature of a sentence that allows the listener to single it
out from the voice stream, divide it into smaller semantic, rhythmic, and melodic segments.
Prosodic cues organize the set of words in a sentence into the whole, make the syntactic relations
between its parts clear; it is them what is responsible for the expressiveness and most delicate
disambiguation in speech.

Prosodic cues are the same in most languages: stress, speech melody, voice pitch, pauses,
register, and speech rate.

Stress is used to organize the utterance into segmentable units and to highlight its logical
center. Stressed syllables are distinguished from unstressed ones by the voice intensity (dynamic

stress, controlled by the tension of articulation and amount of the exhaled air), the pitch (tonic
accent), and duration of the vowel (quantitative stress). The tonic accent is dominative in
French along with the quantitative stress; voice intensity does not vary much from stressed
syllables to unstressed ones.

Depending on the speech segment in question, the notion of stress can apply to words,
phrases, syntagms, and utterances as a whole.
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2.1. Speech production

Word stress is bound in French: the accent always falls on the end of the word.
Phrasal stress strips most words in the phrase of their stress, leaving rhythmic, or normal

stress (Fr. "accent d'intensité"), and emphatic stress (Fr. "accent d'insistance"). Normal
stress de�nes the voice intensity pattern for the utterance when it is said with a neutral emo-
tion. It is marked by pitch, intensity, and vowel duration and falls on the last syllable of each
rhythmic group, being attended by secondary stress that falls, gradually fading, on every other
syllable from the end of the rhythmic group. As for emphatic stress, it imparts the emotion
behind the words of the speaker (emotive stress, usually on emotional words such as Fr. "mis-

érable", "admirable". . .�making the initial consonant, the �rst consonant, or the consonant
from liaison long) or highlights her line of thought such as in making de�nitions, corrections,
(didactic, or intellective stress�making the initial vowel long and articulated tenser, often
preceded by a glottal stop /P/, or, in case of the initial consonant, doing the same for the �rst
vowel and making the initial consonant be articulated tenser). Emphatic stress does not have
to be present in the utterance and cannot replace the regular stress [Fou59, LL70].

Then, syntagms also in�uence phrasal stress: it is the last rhythmic group that gets accented
most, and all groups before it are marked by stress less and less as we move from the end of the
syntagm. The greater the speech rate and the longer the syntagms, the less the rhythmic stress
instances are pronounced.

Finally, there is a ranking within the utterance, based on the logic of organization of syn-
tagms: the speaker highlights the syntagm that carries the central meaning in the utterance.

Speech melody is the main feature to establish to communicative type of the utterance�
declarative, interrogative, imperative, and exclamatory sentences and certain discourse elements
such as detached appositions, itemizing, marking an utterance that was cut short, asking for
reassurance of the interlocutor, etc. (which is especially important in French, since declarative,
interrogative, and imperative sentences can be built with exactly same sequences of words;
however, since French is not a tone language, meanings do not depend on voice pitch)�and to
identify syntagms and their relation to each other.

Voice timbre brings in the emphatic information on the utterance and depends on the
additional tones and overtones inherent in a particular speaker.

Timing control and, in particular, pauses add to the utterance segmentation as de�ned
by the stress and melody. The pause serves as a cue on how related the syntagms are and,
additionally, is a means of emphasis.

Temporal variations within phonemes and phrases are related to speech rate : it can increase,
for example, to let the listener identify a subordinate clause, or decrease.

[JF00] modeled prosodic features of the French language in utterances of various communica-
tive types based on four speakers. It is also argued by [Fou01] that the close relation between
the segmental and suprasegmental features in speech, articulation and prosody, highlights the
necessity to move forwards to their joint analysis.

2.1.3 Adjusting the plan: self-correction

To speak, humans rely on the clues from motor activity of their vocal apparatus and on the
gap between the desired acoustic result and the actual one. Motor feedback is processed mostly
unconsciously: the receptors of muscles, tendons, and mucous membrane report on their condi-
tion to the brain and spinal cord, in�uencing new neural commands for the muscles of speech,
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urging them for compensatory movement. Conversely, the speaker is more conscious of auditory
feedback, and it is more di�cult to compensate for its loss than for a problem with the motor
feedback which can happen in case of a disease, disorder or a surgery. Interfering with the
acoustic signal that reaches our ears leads to extreme speech degradation: prosody gets �at,
and speech becomes mistimed and inarticulate [Zem10], which can be observed, for example, in
children who lost their hearing at a very young age. Even studious training, such as the one for
simultaneous interpretation, does not eliminate these e�ects fully.

2.2 Speech modeling and synthesis

Now when we have covered how speech is produced in vivo in general and in the case of French,
we need to see the research that has been done to model the anatomy involved as well as the
approaches to synthetic speech.

2.2.1 Speech production models

Since speech production is easy to be seen as a multistage process and each of the stages
has plenty of room for exploration, the stages have oftentimes been studied independently,
producing di�erent models for word representations [LRM99], grammar encoding, phonological
encoding and motor planning and control [MTS+10], the �rst three groups usually falling in the
domain of psycholinguistics and the last of motor control. However, recently more and more
research has been trying to bring the stages in a uni�ed process [WH18]. Notable examples are
[Hic12, Hic14, FD00, WH16], which try to use circumstantial evidence such as aphasia symptoms
or speci�cally targeted experiments to reconcile the disparate �elds and unite them within a
single framework.

2.2.2 Speech synthesis

Let us see now how the problem of speech synthesis is approached in the state of the art and
what were the ideas that brought that about.

The components of present-day text-to-speech synthesis systems can commonly be divided
into two big parts.

At the front end, the system analyzes and processes the input text (tokenizes it, parses it
and performs its structural analysis, disambiguates homographs, normalizes it according to the
intended use of the system)�producing what we call linguistic speci�cation�and converts it
into a sequence of phonemes to produce, also marking stress. The result of this step is a set of
linguistic features.

At the back end, the speech waveform is generated. However, the presence of two such
clearly identi�able blocks is not obligatory (end-to-end speech synthesis).

The speech synthesis research has come a long way from knowledge- and rule-based tech-
niques that exploited phoneme-speci�c acoustic parameters to two major families of approaches:
concatenative speech synthesis that is based on data samples and parametric speech synthesis
that works only at the level of one or another kind of parameter evolution, programmatically
generating the sound of speech.
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Concatenative approaches

Concatenative speech synthesis appeared in the 1980s and the 1990s, seeing the synthesized
speech as a concatenation of processed acoustic units taken from a pre-precorded speech database.
These units generally are diphones, which are the signal from the second half of one phone to
the �rst half of the other. This way, covering the transition time in a single chunk allows for
capturing coarticulatory phenomena: the e�ect of the phone on its neighbor. As for the cutting
point, the phone center, from the acoustic perspective it is the most stable region and therefore
is most suitable for concatenating with a segment from another recording. To cover all phoneme
pairs, let alone all their positions in the rhythmic phrase and other factors such as intonation
patterns and duration, quite a substantial database is necessary. If it is not su�ciently large, the
units can be reduced to half-phones. As the database grows, the units can be made larger and
larger: phone clusters, syllables and entire words. When the system needs to deal with a narrow
domain with little lexical and/or syntactic variation, for example, train station announcements,
the units can grow up to segments and phrases (limited domain synthesis).

Diphone synthesis

One popular concatenative approach is diphone synthesis. Within it, the system database
contains a single instance of each particular unit available for concatenation (in some implemen-
tations, though rarely, a few, to account for di�erent pitch values and speaking rates). Then the
waveforms of the instances involved in the phrase to be synthesized are concatenated at points
where the sample waveform has the same value to ensure continuity. Then the waveform can
be smoothed.

The size of a suitable database depends on the language. While theoretically one would
need the number of all uniphones squared, not all combinations actually occur, thus typically
requiring between 800 and 2000 diphones (for example, [KEB08] found that Italian used 851
diphones and English 1763, while the number of uniphones was 66 and 39, respectively; in
Polish, there are 37 uniphones and 1008 diphones [Bac10]). In comparison to more advanced
concatenative techniques, such a database is of a modest size. Nevertheless, preparing it can
still be challenging. In the case of French, [DPP+96] indicates it took them one month to record
a corpus with a properly monotonous intonation, segment it, equalize the energy levels at the
beginning and the end of segments and normalize pitch.

Concatenating and processing such samples does not require a big computational power, so
this method can be the solution for mobile devices.

Speech synthesized by this method generally is highly intelligible but not very natural due to
its absence of variation in pitch and speech rate. To solve it, as mentioned above, one can record
more samples, conditioning diphones on di�erent pitches and speeds; however, this increases the
database, thus removing the primary advantage of the low footprint of this method. Another
solution would be to manipulate the concatenated samples with time-scaling and pitch shifting,
which needs to be done carefully for multiple reasons: �rst, since it is the articulators what
humans move faster or slower, not the vocal folds, the signal needs to be separated into source
and resonator frequencies before any speed adjustment; second, voiceless consonants do not have
much or any voice contribution and therefore need to be protected from time and pitch shifting
to remain natural.

To manipulate the selected samples and ensure a smooth transition between them, one uses
speech signal processing algorithms. There are three classes of their representations of speech
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[BSH07]: time-domain algorithms such as the pitch-synch overlap-add method (TD-PSOLA
[MC90]), linear prediction coding (LPC) and frequency domain-based algorithms.

In TD-PSOLA, probably most commonly implemented method of the three, �rst we identify
pitch periods and mark some identi�able glottal event in each period in the waveform (for exam-
ple, glottal closure�the point of maximum excitation). Then, during runtime, each segment is
windowed with a Hanning window around the pitchmark. Then the extracted windowed signals
can be shortened to increase pitch and padded with zero amplitudes to lower pitch; duration
can be adjusted by repeating and omitting frames. Then the frames are simply added one after
another. As this method does not take care to ensure the homogeneity of the spectral shapes or
values, this imposes an important limitation that one can perform only small waveform modi�-
cations, using only well-adapted for each other units. Otherwise the result will contain audible
glitches.

Unit selection

The major concatenative method is unit selection [HB96]. Unlike diphone synthesis, it
operates with a large database, where there are multiple copies of diphones as well as larger units
(diphthongs and phoneme clusters with a complex transition), each with its own intonation,
speed, intensity, position in the speech segment and the part of speech of the word or words
it belongs to. When synthesizing with the units from such a database, every diphone is to
be picked among numerous options. To make the choice, we use target speci�cation: before
generating the waveform from a selection of units from the database, the system predicts the
required prosody (explicitly, with a model, or implicitly, through identifying segments typically
exhibiting signi�cant prosodic e�ects: phrase boundaries, punctuation, etc.), speech rhythm
and intensity for the input text. Furthermore, after the input text passed the front end, we
also have the phonetic context and its phonological classes, parts of speech, phrase and sentence
type and size. This way one can pick a sequence of units matching those supplementary factors
as closely as possible.

It must be noted, however, that the concept of a �close match� is not straightforward. There
are multiple factors to weigh in:

� Between composing a sequence from several shorter units or a longer one, the longer one
will probably end up being more natural. Such a longer unit can equally be introduced
into the system as a sequence of consecutive shorter units.

� Furthermore, the results will be more natural if one has a sequence of passably suitable
units amounting to the value of target cost function, say, X, rather than a sequence where
all units but one are perfect, and all the cost X is concentrated in that single unit, resulting
in a noticeable distortion.

� Another point to consider is that even if each of the candidate units is reasonably adapted
to the target speci�cation on its own, together they will not produce a naturally sounding
result unless the neighboring units are su�ciently similar in terms of acoustics, prosody,
voice source and other attributes, meaning that they together have to have a low join cost.

This is why the weighting the target and join components of this decision tree is typically
�ne-tuned according to the naturalness results.
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Then, to mask the transition between segments and establish a common pitch, intensity and
speaking rate pattern, speech processing algorithms such as TD-PSOLA are applied as explained
in the part on diphone synthesis above.

Overall, unit selection synthesis analysis proves to be highly natural thanks to the direct
re-use of recordings of a real speaker. Manipulation with its pitch and speaking rate, however,
do not provide a su�cient degree of control over the continuity of the signal, thus rendering the
synthetic speech less intelligible. However, this naturalness-intelligibility payo� is still found
practical in real applications.

Another point to consider is the size and the computational load of the system: the unit
database size and the algorithms of selection and processing, both of which can exceed the
available hardware capacity. To improve them, one can build a strategy to prune the database
or at least the unit search space and/or replace some components of the system (the front end,
the model of prosody, intensity and duration, the algorithm of unit selection) by statistical
models. In the latter case, the system is called hybrid.

Employing statistics and machine learning does not have to be restricted to certain sections
of a speech synthesis system. In fact, this is another highly productive avenue of speech synthesis
research, which brings us to the following section.

Parametric approaches

In parametric speech synthesis, acoustic parameters (spectral envelope, information about the
source, usually the fundamental frequency, and noise-like components for obstruents) are mod-
eled as time series, stochastically generated as such from the linguistic speci�cation, and then
used in a speech production model�a vocoder�to obtain a waveform of speech. This approach
has instigated a very productive area in the �eld of speech synthesis. Until recently, the state of
the art was typically achieved when generating acoustic parameters with hidden Markov models
(HMMs), trained by force alignment from an annotated speech corpus [TNT+13]; as the �eld,
like many others, underwent the deep learning revolution, neural speech synthesis has reached
the state of the art.

HMM synthesis alone is unable to provide the continuity of the �ow of speech: the Markov
assumption, incorporated in it, brings in a tendency to centralize speech: the spectral vectors
are all emitted close to the average. To solve this and add the necessary dynamic features of
speech, the system has to incorporate not only the static coe�cients, but also the di�erences
and second-order di�erences between them. Then, in contrast to automatic speech recognition
where triphone models seem to provide already enough context, synthesis requires both phonetic
and prosodic factors�a longer-term context or access to the whole phrase or even the sentence.
An arising critical problem of the data sparsity is solved by parameter tying and constructing
speaker-speci�c adaptations for generic speech synthesis systems.

2.2.3 Multimodal speech synthesis

There has also been a productive direction of research aiming to add other information to speech
synthesis output. This can deal with how the generated speech will be delivered, for example,
talking heads meaning to animate an avatar so that it produces a natural output�e.g. [BLDO];
or, aside from the audiovisual aspect, focusing also on the expressivity such as [DCGO19].
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Or, alternatively, it may concern with going deeper into how speech is produced: how it is
premeditated (brain-machine interfaces and neural speech [GBW+09, GB11, RMC19]) and/or
how executed ([BHG+16] for the link with articulation).

If we concentrate on articulation, we enter the domain of articulatory speech synthesis:
a method of synthesizing speech by managing the vocal tract shape on the level of the speech
organs. The vocal tract can be modeled with geometric [Öhm66, BJK06a, Sto13], biomechanical
[LSF12, AHM+15] and statistical [Mae90a, HM11] models. The advantage of statistical models
is that they use few parameters, speeding up the computation time. Their disadvantage is that
they follow the data a priori without any guidance and do not have access to the knowledge of
what is realistic or physically possible. Because of this, to produce correct con�gurations, they
need to be �nely tuned.

One crucial notion to synthesizing the movement of the vocal tract is the smallest unit or
some other elementary component of articulated speech. From the auditory perspective, it is
the phoneme: the smallest semantically distinguishing unit. Meanwhile, from the articulatory
point of view, each and every sound we utter is a result of the source, formed by the vocal folds,
and the �lter, formed by the vocal tract. The shape of the vocal tract is a compound e�ect
of coordinated articulatory movements. Given that each articulator seemingly follows its own
timing and has considerable degrees of freedom in space, it is easy to see how the question of
organization of speech movements is no trivial task.

A major branch of modeling these motions consists in decomposing speech into articula-
tory gestures (articulatory phonology [BG92b], task dynamics [SGBR88, NMHJ+12], motor
primitives [MIGG99, RVSN16]). However, when dealing with overlapping gestures, we face the
disadvantage that, at least as of now, the ground truth is not available; every muscle contraction
and every bend at a joint can be integrated into various gesture elements, and it is up to the
model only to stay consistent about determining where the boundaries of those gestures are.

From this standpoint, it is interesting to consider an alternative view on what guides speech
phenomena: targets. They can be found in a virtual task space (task dynamics [SK87, SM89];
[SMB18]), or they can literally be speci�c positions of the vocal tract [LQSN17]. It is this line of
thought that the present work follows, chosen due to the bene�ts of the methodological clarity
and high applicability, e.g. in articulatory speech synthesis [Lin91, TSS+16, TEL17], which in
turn will be capable of serving as further evidence for the underpinnings of speech production
[Per17, Eng00, RTP+18], for example, for purely theoretical questions of timing and articulation
[PP15, PP14, MPH+17] to more psycholinguistically oriented studies such as [HB19].

[LQSN17] employed targets as the vocal tract con�gurations attained at the middle of the
duration of each phoneme, which is when it is most stable. However, that study recognized
the need to allow for contextually modi�ed targets to capture coarticulation. [Bir13a] worked
in that direction and di�erentiated targets according to their vocalic context, following the
previous ideas of [Öhm67].

The following subsections are going to be dedicated to the speci�cs of what goes into treating
articulation in speech synthesis.

Articulatory data

Speech is such a dynamic process involving so many di�erent structures in the human body
that there is a great need of dynamic and precise data capturing techniques, preferably without

34



2.2. Speech modeling and synthesis

any harm to the subject and tampering with the process of natural speech production.
Aerodynamic measurements were one of the earliest methods; their aim was to analyse the

pressure of the air �ow when the subject is speaking.
Electromyography is a muscle activity recording technique. It can collect responses from a

range of speech organs except for those that are inaccessible, usually by means of hooked-wire
or surface electrodes. Hooked-wire ones are inserted into the body of the muscle, causing a
minor discomfort for the subject and possibly a�ecting the way they speak. Surface electrodes
are non-invasive and easier to apply [Har99].

Photography can be used to capture articulatory data for visible or partially visible articu-
lators.

Radiography : X-rays, X-ray microbeam, cineradiography, computed tomography (CT).
All of them can use X-ray to capture the con�guration of the vocal tract. The soft tissues appear
grey, and even if CT manages to capture them more clearly, the edges of the tongue shapes are
not sharp enough. However, the radiation exposure makes these methods unsafe for the subject
[BH07].

Magnetic resonance imaging (MRI): uses a magnetic �eld and radio waves to image a
section of tissue. The three-dimensional space is compressed into two dimensions, which may
become a source of error for small objects that will be treated as if they were in the same plane.
For instance, the epiglottis may be condensed into one single slice, resulting in blurry edges and
misinterpretation of its size and shape. Furthermore, MRI is not able to capture solid tissues,
and such articulators as the teeth are invisible. Just like in computed tomography, the subject
usually has to assume the supine position, which a�ects the con�guration of the articulators
and the dynamics of speech�though vertical MRI machines are available, too. MRI can be
used to capture dynamic speech�the usual approach is to repeat the same utterance over and
over again and then join the scattered images taken at di�erent times into a whole utterance,
or use Fast Spin Echo for images of a poorer quality, but better imaging rate (4�24 captures
per minute). In comparison to CT, there is no ionizing radiation, but nevertheless long-term
biological and clinical safety for the subject's health remains to be proven [KSKM13]. With the
advance of technology, real-time MRI (RT-MRI) is being adopted more and more ([THM+06,
ATB+09, UZV+10, NBG+11, NZK+13, ELVO16, TN16, SST+17, RTP+18, LZL+19]).

One major question raised with the use of any kind of MRI is its segmentation, i.e. deter-
mining the contours of the articulators. This has been addressed with geometrical, statistical
and deep learning models ([NTR+14, TN16, TSS+16, SST+17, STTN17]).

Palatography : an early technique to study tongue placement across the palate and teeth;
it has developed into electropalatography and is now able to make captures in conversational
speech rather than in short sequences. It is a simple technique: easy to operate and relatively
non-invasive [GN99]. It was continued to improve over the years with variation in materials,
the number of sensors and chips [PB15, SB16].

A range of point tracking techniques is available too. Their advantage is a fast sampling rate
and selectivity: it is possible to track exactly that point in the tissue that is of interest. However,
it is not possible to apply enough trackers to obtain the whole picture without hindering the
speech, while imaging techniques can provide true multi-dimensional data.

To summarise, there still is no completely safe and informative method for collecting dynamic
articulatory data. Either the method captures a very particular behavior of the subject, or the
data are comprehensive and of high quality but come only in small amounts and at much lower
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frequencies than the frequency of 100 Hz that is deemed to be necessary to capture speech
phenomena.

Vocal tract modeling and synthesizing speech

So, speech synthesis augmented with articulatory information tries to stick to the natural speech
mechanism as close as possible. Nevertheless, there is variability in how close that is. Biome-
chanical approach solves the Navier-Stokes equations to estimate deformation of all (prominent)
vocal tract muscles and organs and estimate the corresponding aero-acoustic phenomena. It has
a bene�t of full control over the articulators, but su�ers from a heavy computational load and
lack of required anatomical and physiological data [LSF12, AHM+15].

Meanwhile, articulatory speech synthesis is based on using a simpli�ed articulatory model
to imitate human speech, controlling the articulators in a feasible way. It is able to replicate
the anatomical and physiological phenomena without delving deep into the structures that are
involved�it concerns only temporal evolution of the vocal tract geometry, which turns out to
be enough to synthesize speech of ample quality.

To alleviate the computational load and make the known theoretical knowledge applicable
in this case, the direct numerical simulation of speech phenomena is still limited to individual
cases that often are overly simpli�ed, and even in such cases the complexity is so high that the
computations take dozens of hours [Mae90a]; it can take days to compute the �ow dynamics at
the vocal folds [JHdA+13]. So, another approach is to develop models only for the most essential
physical phenomena.

[PVC+96] and [EPZ+11] provide theoretical foundations that allow us to de�ne what phe-
nomena are most important in phonation; they are supported by experiments of [RPVH+07] and
[SSDW+01]. The constructed larynx models are locally incompressible (with a low Helmholtz
number), quasi-stationary (with a low Strouhal number) and with an insigni�cant viscosity
(with an intermediate Reynolds number). It is not necessary to specify all details about the
�ow motion to produce a turbulence-induced sound [HM05, Kra05, YNW19].

The vocal tract con�guration, from the glottis to the lips opening, can be encoded by means
of area functions that approximate the vocal tract by acoustic tubes of varying size. The area
function can be estimated without any knowledge of separate articulators [Fan71b]. [Sto13] gen-
erates area functions as a transition from one vocalic area function to another, with consonants
superimposed as constrictions attained during this vowel-to-vowel transition. This approach,
roughly based on Öhman's [Öhm66] vowel substrates and consonantal perturbation, can be used
to synthesize some �xed phrases but is di�cult to generalize for use in text-to-speech (TTS)
systems. [SMB18] approximates area functions as a one-dimensional model of the vocal tract
based on just six points.

Another approach would be to construct the sagittal section of the vocal tract (the two-
dimensional case, such as in the work by [Mer73]) or the vocal tract proper (the three-dimensional
case, such as in the work by [BJ03]) as the area bounded by a bunch of primitives. Both of the
mentioned studies do not �t the form of the vocal tract too precisely. Instead of geometrical
primitives, the vocal tract can be shaped out from medical images by means of an articulatory
model. Many articulatory models have appeared in research, ranging from as simple as three-
parameter ones [Fan60] to as sophisticated as hundreds-parameter ones [GWTPP06]. One of
the most famous models is the one by [Mae90b], comprising a model for the lips, a model for
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the tongue, and a model for the larynx. All three articulators' con�gurations are decorrelated
from the in�uence of the lower jaw position and encoded by means of the principal component
analysis into vectors of varying lengths. To keep track of the encoding, one stores the vertical
opening and protrusion of the jaw. [Mae90b] indicates that three tongue parameters can de-
scribe 96% of the variance in the test images, and all three articulators are encoded in seven
parameters in total (see Figure 2.9).

Figure 2.9: The seven pa-
rameters of Maeda's articu-
latory model: P7 is the lar-
ynx height; P2, P3, and
P4 encode the tongue�its
body, shape, and tip respec-
tively; P1 stores the jaw

opening; P6 and P5 de�ne
the position of the lips�
their protrusion and opening
respectively.

First applied to vowels only, this model was followed by mod-
els to account for consonants too�in two dimensions [LB11a,
LVC14, MZF19] as well as in three dimensions [BBR+02]. (Ob-
viously, the two-dimensional models have to be accompanied by
some kind of spatial estimation at a further stage in speech syn-
thesis; since, again, full-scale 3D calculations take excessively
long computation time�often hours to calculate a 10-ms-long
speech signal�the more feasible alternative appears in limiting
the number of dimensions.)

As for another articulator that was left untreated by Maeda,
the velum, there are not many models for it. [SB08] made a
three-dimensional model of the velum based on static 3D MRI
and CT images, which raises the question of being actually able
to capture the high variability in the dynamic process of speech.
[LET15] propose a PCA-based velum model built on an X-ray
�lm of 15 short French sentences; this model is able to capture
70% of the total variance by means of two components.

When the shape of the vocal tract is established, the vocal
tract has to be divided into narrow tubes that are "strung" on
the vocal tract's central line [ML13] which can be computed by
various algorithms. The areas A (in cm2) can be computed from
the heights (d, in cm) of the estimated tubes and two speaker-
speci�c parameters that are to be determined empirically:

A = αdβ (2.3)

To control the dynamics of the modelled vocal tract, one can use the notions of gestures
(motions of formation of a particular constriction over time) and targets (the vocal tract con-
�gurations that the speaker aims to reach). Examples of studies that aim for simulating the
underlying mechanisms of speech production involve the task dynamic model by [SM89] (ac-
companied by the work on how to operate it: [NMT+12]), the gesture-based dynamic model by
[BG92a] and gestural dominance model by [BJK06b], and the targets-based model by [Bir07].
Furthermore, the dynamic characteristics of the system can be encoded together with the para-
metric representation of the vocal tract, such as in work of [WHS19].
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3

Articulatory speech synthesis from

static MRI data

3.1 Introduction

One of the principal notions that one has to face when dealing with speech synthesis and
processing is coarticulation: the in�uence of neighboring sounds on each other, stemming from
the fact that we cannot simply append one shape of the vocal tract after the other and always
have to try to �nd the most e�cient articulatory trajectory that would still leave our message
comprehensible.

For example, when we pronounce both /ba/ and /by/, what is de�nitive is that the lips need
to close to produce the stop /b/. However, there is no restriction on where they need to do
that. So, a natural transition is to give the lips the shape that is required for the coming vowel:
to protrude them for /y/ and not for /a/. This way, the moment the burst of /b/ is released,
production of the vowel starts.

This in�uence is most pronounced in the direction of anticipation: when the sounds planned
in the near future acquire some features of those that currently are in production. The other
direction of coarticulation, carryover, where the past sounds have lingering e�ects on the present
ones, is less prominent and is mostly attributed to passive inertia [KN99].

The greatest impact is typically brought by vowels, which become syllable nuclei. This is
especially true in the case of French, where vowels need to be articulated quite precisely and,
unless it is a /@/, cannot be reduced, unlike some other languages like Russian.

This largely outlined the approach of this study: to produce speech and articulatory move-
ments from phonetic transcription, relying on a set of basic vocal tract con�gurations and
focusing on the way how vowels in�uence consonants before them.

We were interested in exploring the potential in using quite little, and yet su�cient, static
magnetic resonance imaging (MRI) data and implementing one of the few existing attempts
at creating a full-�edged articulatory speech synthesizer with a comprehensive control over the
articulators, that would be capable of reproducing the vast diversity of speech sounds. This
lead us to dealing with these building-block vocal tract con�gurations by following the steps of
[Bir13a], applying that methodology to French and extending the scope to cover practically the
entire set of French phonology.
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3.2 Objectives

The objectives of this study were as follows:

� To represent the available MRI data with an existing articulatory model (joint work with
Yves Laprie);

� To extrapolate this limited dataset so as to estimate the missing samples, generally fol-
lowing the approach of [Bir13a] (carried out by myself);

� To develop a set of rules de�ning how, given an utterance to produce, to pick necessary
samples from the extended library of basic articulatory con�gurations, how to adjust
them to set up an e�cient transition both at the level of each of the articulators and the
entirety of the vocal tract, and how to transition between them in a set time while also
managing the parameters of the source and pressure in the subglottal and supraglottal
cavities (carried out by myself�the main contribution of this part);

� To post-process the obtained vocal tract con�gurations to make sure that they follow the
phonetic rules relevant to the French language (carried out by myself);

� To process those con�gurations with an existing acoustic simulation unit (joint work with
Benjamin Elie and Yves Laprie);

� To analyze and evaluate the resulting utterances (joint work with Yves Laprie and Ben-
jamin Elie).

3.3 Building an articulatory speech synthesis system

As set up by the objectives, the system is made up of three major components: the database
with the �building blocks" for articulating utterances, the joint control algorithm for the vocal
tract and the glottal source, and acoustic simulation. The primary concern of this work are the
�rst two components.

3.3.1 Dataset

The data were a static-MRI subset�the subset that was available at the time of the study�of
the ArtSpeechMRIfr dataset [DFF+19] recorded at Nancy Central Regional University Hos-
pital, France, under the approved medical protocol �METHODO� (ClinicalTrials.gov Identi-
�er: NCT02887053). The scanner in use was General Electric Signa HDxt 3T (GE healthcare,
Chicago, Illinois, United States). We used 3D FGRE (TR = 3.12ms, TE = 1.084, FOV = 26×26
cm, �ip angle = 10 degrees) for the acquisition. Scan slice thickness is 2 mm, spacing between
slices is 1 mm and pixel bandwidth is 488 Hz/pixel. Acceleration factor is 2. The image res-
olution is 256 × 256 with 76 slices. Duration of one acquisition is 12.7 seconds. The subject
(subject A, subsequently referred to as SA) is male, 35 years old, 182 cm tall and 74 kg. Overall
it made for 97 images.

Examples of mid-sagittal cuts of these data are shown in �gures 3.1 and 3.2.
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i y ø œ a u

S1

SA

Figure 3.1: Mid-sagittal slice of the static 3D images of subject SA for several of the French
vowels.

pa ta ka sa ʃa ʁa

SA

Figure 3.2: Mid-sagittal slice of the static 3D images of subject SA for some of the French
consonants. Consonant was pronounced in context of the following vowel.

I selected the mid-sagittal slice in those images. These data captured articulation without
phonation: the speaker was instructed to show the position that he would have to attain to
produce a particular sound. For vowels, that is the position when the vowel would be at its
clearest if the subject were phonating. For consonant-vowel (CV) syllables, that is the blocked
con�guration of the vocal tract, as if the subject were about to start pronouncing it. The
assumption is that such articulation shows the anticipatory coarticulation e�ects of the vowel
V on the consonant C preceding it. There were 13 vowels, 72 CV syllables and 2 semi-vowels in
the �nal dataset. This covers all main phonemes of the French language, but not in all contexts.
Each consonant was recorded in the context of the three cardinal vowels and /y/, which is
strongly protruded in French. Some intermediate vocalic contexts were added so as to enable
the vowel context expansion algorithm to be checked.

Figure 3.3: An example of dataset image annotation (/a/).
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Figure 3.4: The PCA-based articulatory model: curve change directions encoded in the �rst
three factors of each articulator (the jaw, the tongue, the lips, the epiglottis, the larynx).

Expanding the dataset

Since the collected French phonemic dataset was limited, I needed to expand it to cover other
contexts as well. We used the notion of the cardinal vowels�/a/, /i/, /u/ and /y/,�assuming
that /a/, /i/, /u/ and /y/ represent the most extreme places of vowel articulation, and since
then any other vowel articulation can be expanded as a combination of its /a/, /i/ /u/ and
/y/ �components". Having captured the C+/a/, C+/i/, C+/u/ and C+/u/context for all
consonants C and all non-cardinal vowels V on their own, I was able to estimate the missing
C+V samples:

� I projected the vowel V articulatory vector (from R29) onto the convex hull of the /a/,
/i/, /u/ and /y/ vectors.

� Assuming that the linear relationship between the C+V vector and the C+/a/, C+/i/,
C+/u/ and C+/y/ vectors is the same as the one between V and /a/, /i/, /u/ and /y/,
I estimated C+V from C+/a/, C+/i/, C+/u/ and C+/y/ using the coe�cients from the
projection of V onto the convex hull of /a/, /i/, /u/ and /y/.

I also estimated the neutral C con�guration, the one without any anticipatory e�ects, as the
average of C+/a/, C+/i/, C+/u/ and C+/y/.
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Finally, I assumed that the voiced and unvoiced consonants did not have any di�erences in
the articulation.

Articulatory model

After manually annotating the captures as shown in Figure 3.3 we applied a principal-component-
analysis (PCA)-based model on the articulator contours [LB11b, LVC14, LET15]. We paid spe-
cial attention to the interaction between articulators and the relevance of deformation modes.
Moreover, articulators other than the jaw, tongue and lips are often neglected and modeled with
insu�cient precision, whereas they can strongly in�uence acoustics at certain points in the vocal
tract. Here are two examples. The position of the epiglottis, which is essentially a cartilage, is
likely to modify the geometry of the lower part of the vocal tract by adding an arti�cial constric-
tion disturbing all the acoustics. It is therefore important to model its deformation modes and
interactions with other articulators correctly. In the same way, the velum plays an important
role both in controlling the opening of the velopharyngeal port, and in slightly modifying the
oral cavity to obtain resonant cavities that give the expected formants of vowels. The acoustic
tests we have carried out show in particular that the velum makes it possible to better control
the balance between the two cavities necessary for the realization of /u/ and /i/.

Regarding the tongue, PCA was applied on the contours delineated from images. Deforma-
tion modes are likely to be impacted by delineation errors. In the case of the tongue, these errors
are marginal, or at least give rise to deformation modes coming after the genuine deformations
whose amplitude is bigger. On the other hand, the width of epiglottis and/or velum is small
on the images, and the errors of delineation, whether manual or automatic, are of the same
order of magnitude as genuine deformations. Consequently, PCA applied without precaution
will mix both types of deformation. To prevent the apparition of these spurious deformation
components the epiglottis was approximated as a thick curve, and only the centerline of epiglot-
tis was analyzed. As a matter of fact, the centerline was determined after delineation of all the
epiglottis contours, and the width was set as the average width of all these contours in the upper
part where the two epiglottis edges are clearly visible (see Figure 3.5). The height of the upper
part (where both contours are visible) is adjusted by hand to �t the contours extracted from
images. The centerline is approximated as a B-spline and represented by its control points Pl
(0 ≤ l < M where M is the number of control points) in the form of a two-coordinate vector,
and the reconstruction of the epiglottis from the centerline amounts to draw a line at a distance
of half the width from the centerline.

The in�uence of delineation errors is very similar for the velum, which is a fairly �ne structure
not always well marked on MRI images because it moves quickly. As for epiglottis we used the
centerline and a fairly simple reconstruction algorithm. However, PCA was not applied directly
on the control point of the splines because the velum can roll up on itself. This particularity does
not lend itself well to the direct use of PCA, which results in the emergence of linear components
not appropriate in this case. The centerline is therefore broken down into a series of segments
of the same length. Each segment articulates with its predecessor and the �rst point is �xed.
The centerline is then de�ned as the vector of angles between two consecutive segments. In this
way PCA can be applied e�ectively to velum and gives rise to relevant deformation modes.

The architecture and general organization of the articulatory model are based on the depen-
dency links between the articulators. The main articulator is the jaw which is represented by
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Figure 3.5: Epiglottis and velum centerlines reconstructed by the model (solid blue lines).
Reconstructed vocal tract is represented by solid red lines. The vocal tract input and output
are represented in solid green lines. All these contours are superimposed onto the contours
(represented as solid yellow lines) delineated from the image.

3 parameters to get a complete and accurate control. Its geometrical contribution is subtracted
from the tongue contours before the application of PCA because tongue is directly attached to
the mandible. The tongue is represented by 12 parameters in order to obtain a su�cient pre-
cision for the realisation of consonant constrictions. The lips are represented by 3 parameters.
Unlike the tongue, the interactions between lips and jaw are more complex. For this reason we
subtract the correlation between jaw and lips before applying PCA. The larynx is considered
to be independent of the jaw and is represented by 3 parameters to control ist orientation and
vertical position. In the same way the velum is considered as an articulator independent of the
others. It is analyzed as explained above and is represented by 5 parameters. The epiglottis is
the articulator that is subject to the greatest number of in�uences: the jaw via the tongue, the
tongue itself and the larynx. These in�uences are subtracted by applying a multiple regression
to the epiglottis centreline before applying CPA. Analysis of the variance shows that the various
in�uences on the epiglottis account for most of its deformations. Its intrinsic deformation are
represented by 3 parameters.

In total these parameters form a vector from R29 (see Figure 3.4 for major parameter con-
tributions to the articulator shape). Since the model uses PCA, the zero con�guration should
correspond to the central position as identi�ed in the dataset, and small changes in the parame-
ter space within a certain neighborhood of zero should correspond to small changes (in terms of
distance and shape, not in terms of the resulting acoustics) in the curves. A clipping algorithm
is used to solve problems of collision between articulators, i. e. essentially between the tongue
and palate. So the model's behavior is not entirely linear.
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3.3.2 Strategies for transitioning between the articulatory targets

The dataset provided static images capturing idealistic, possibly over-articulated, targets for
consonants anticipating particular vowels, whereas the goal was to be also able to deal with
consonant clusters and consonants that would not anticipate any vowel at all�for example, due
to their ultimate position in a rhythmic phrase. So, in our context, to establish a transitioning
strategy would mean three things:

� Choose the building blocks: identify the articulatory target for each phoneme in a phrase.
It can either be what was captured in the dataset (a vowel or a consonant assuming vocalic
anticipation), an estimation of what the dataset was missing (missing phonemes, such as
voiced consonants, missing contexts or the absence of any context), or only a subset of
articulatory parameters corresponding to the critical articulators for the particular target.
A consonant cannot anticipate multiple phonemes, nor can vowels anticipate anything due
to the restrictions of the dataset at my disposal.

� Decide when � and whether � the articulatory target should be attained.

� Decide how to generate the articulatory positions between the target ones.

Our basic assumption was that by default, consonants anticipate the next coming vowel.
However, it would be unrealistic to assume it happens in all cases. This is why I imposed
several restrictions on the anticipatory e�ect:

� Temporal: no coarticulatory e�ect if the anticipated phoneme is more than 200 ms ahead;

� Spatial: if there is any movement scheduled between the anticipated vowel, the phoneme
in question negates the e�ect. For example, consider such sequence as /lki/: after /l/, the
tongue needs to move backward to produce /k/ before coming back forward for /i/. In
this situation, my algorithm does not allow the /l/ to anticipate the coming /i/. Algorith-
mically, it is done with associating every place of articulation to a number and checking
the di�erence between those numbers;

� Categorical: it is not possible to anticipate a vowel more than 5 phonemes ahead, and this
restriction becomes stricter if it applies across syllable boundaries.

For vowels, there is also a model of target undershoot.
Having established the articulatory targets, the question is how to transition between them.

We have tested out three strategies for interpolation between the target vectors:

� Linear: the interpolation between the target vectors is linear, with sharp turns at the
knots;

� Cosine: smooth transitions;

� Piecewise 1-d monotonic cubic Hermite interpolation that has smooth transitions, the
magnitude of each transition section bounded by its corresponding interpolation knots;
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� Complex: transitions are done with the previous cubic Hermite interpolation, but the
timing varies by the articulators. The critical ones reach for their target position faster
than the others, while those articulators whose contribution to the resulting sound in-
telligibility is not as large move slower (for example, the tongue can be in a number of
positions for the sound /b/, but the lips have to come into contact). Furthermore, the
articulators composed of heavier tissues (such as the tongue back) move slower than the
light and highly mobile ones (such as the lips).

Which of the strategies is more realistic from the articulatory standpoint, is a question that
can only be answered with the help of dynamic data. In their absence, I had to restrict myself
to the analysis of the resulting acoustics. The choice of the strategy did not, however, seem to
make a di�erence in the quality of the audio output.

3.3.3 Obtaining the sound

Each vocal tract position was encoded in an area function. They were obtained by the algorithm
of [HS65] with coe�cients adapted by Shinji Maeda and Yves Laprie. These parameters only
depend on the position in the vocal tract between the glottis and the lips. The transition from
the sagittal view to the area function has given rise to several works which contradict each other
slightly ([SLMD02] and [MJB12]) and it is therefore clear that the determination of the area
function will have to take into account the dynamic position of the articulators in the future.

Then, having obtained the translation into area functions, the constrictions were corrected
with the knowledge of the phoneme in production: a stop, a fricative or a vowel. This way I
was able to ensure that all stops attained closure at the place of their articulation, all fricatives
did not close too much or open too wide, and all vowels had enough space for the air to pass.
From the development perspective, each place of articulation was associated to a section in the
40-tube area function representation: the lips at [37, 39], the teeth at [36, 38], the alveolar ridge
at [34, 36], the palate at [32, 35], the velum at [17, 33], and the uvula at [21, 29]. Then, whenever
the place of articulation needed to have a constriction at that time or, on the contrary, could not
have too close a constriction according to the timing rules, the area functions were corrected:
closed vowels were not allowed to have a constriction of less than 0.25 cm2, mid-close less than
0.3 cm2, mid-open less than 0.35 cm2, open less than 0.4 cm2; oral and nasal stops were enforced
to have a complete closure, 0, at their place of articulation; fricatives were not allowed to have
a closure of less than 0.1 cm2. Velopharyngeal opening was veri�ed and corrected as well: if it
was an oral sound, velopharyngeal opening was corrected to 0; if it was a nasal sound with an
opening less than 0.5 cm2, the opening was reset to that minimal value.

Then we used an acoustic simulation system implemented by [EL16a] to obtain sound from
the area functions and supplementary control �les: glottal opening and pitch control.

Glottal opening was modeled by using external lighting and sensing photo-glottography
(ePGG) measurements [HM08]. Within the model I implemented, glottal opening is a relative
value from 0 to 1, 0 corresponding to most closed (as in vowels) and 1 corresponding to as open
as possible. The key value to attain during the production is 0.0 for a vowel, 1.0 for a voiceless
fricative or stop, and 0.7 for a voiced fricative or stop. The other phoneme classes do not have
key target values. Then, empirically, for every scenario (the opening value increasing from one
peak, such as 0.7, to another, or decreasing from one peak to another, or moving toward or from
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0), I added auxiliary points to match the shape and temporal behavior of the few examples in
the data that were at my disposal.

There was no need to model voicing (high-frequency oscillations of low amplitude superim-
posed onto the glottal opening waves) since the vocal folds operated by the glottal chink model
[EL16a, EL16b] are self-oscillating.

3.4 Evaluation

Each step in the system was evaluated on its own, and afterwards the synthesis results were
evaluated visually, acoustically and perceptually. Since the objective of the work was rather
to have a fully functional algorithm that produces reasonably realistic movements and sounds
rather than to obtain high-quality speech, a more rigorous evaluation, such as a quantitative
comparison to the dynamic data on articulatory trajectories, is still an avenue of future work.

3.4.1 The articulatory model and the trajectories

One peculiarity of the dataset and therefore of the model was the fact that it used only the sagit-
tal section of the speaker's vocal tract. While full three-dimensional models can capture the full
geometry of the vocal tract with such phenomena as lateral phonemes (e.g. /l/), two-dimensional
models get the bene�t of faster computation time and overall simplicity, but irreversibly lose
the spatial information.

In general, the articulatory model captured vocal tract positions correctly or with no critical
errors, though some part of its success is de�nitely owed to the post-processing stage where
area functions are corrected, since on its own the model did not impose much control over
constrictions. This way, control became two-fold: the articulatory model operated at the level
of articulators, and the post-processing set of rules on the resulting vocal tract geometry.

As for the movements, we can say that they were reasonable and the coarticulation-a�ected
targets guided the articulators to the positions necessary to produce a particular utterance. One
key point here is the timing strategy. Rule-based timing strategy seems to be very rigid for the
dynamic nature of speech; it would be more natural to follow speech production processes in
humans and to guide the synthesis with the elicited sound or the speaker's expectation�based
on their experience�on what this sound will be.

3.4.2 Glottal opening control

The algorithm for the glottis opening successfully allowed to distinguish between vowels and
consonants. Distinguishing between voiced and voiceless consonants, though, stays a point for
improvement, as well as well-coordinated control over the glottis and the vocal tract to avoid
acoustic artifacts.

3.4.3 The synthesized sound

Vowels and stops were the most identi�able and correct, although sometimes some minor adjust-
ments in the original data were necessary to obtain formants close to the reference values. When
compared to human speech, the formant transitions within the suggested strategies sometimes
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occurred too fast and sometimes too slowly; again, this highlights the utmost importance of
realistic timing strategies. Figure 3.6 shows an example of the synthesis when it is guided by
real timing: /aSa/ as produced by the system and as uttered by a human. The high-frequency
contributions in /S/, not appearing in the human sample, are due to the acoustic simulation.
The noise of /S/ is at the correct frequencies, but with a bit di�erent energy distribution, prob-
ably because of di�erences in articulation or in the area functions. There is also an acoustic
artifact between /S/ and /a/, which means that more work is necessary on liaising the vocal
tract and the source control.

Figure 3.6: An example of a human's utterance of /aSa/ (left) and its synthesis (right) along
with the glottal closure control as copied from the EPGG data (below). Phoneme durations are
aligned.

3.5 Conclusion

3.5.1 Overview of results

Regarding speech as a process of transitioning between context-aware targets is an interesting
approach that can be connected with the mental processes of speech production: to allow the
others to perceive the necessary acoustic cue, the speaker needs to come close enough to the
associated articulatory goal. The important di�erence between a real speaker and the algorithm
is the fact that the algorithm solves a static problem, laid out in full; it needs to hit particular
targets in a given order. As for humans, we solve a dynamic problem, and coarticulation is not
something we put in its de�nition; rather, coarticulation is our means to make the problem of
reaching too many targets in a too short period of time solvable.

The statistically derived articulatory model encodes complex shapes of the articulators in
only 29 parameters, sometimes struggling at the constrictions because of the inherent�and
intentional�lack of control over the resulting geometry of the vocal tract. This drawback is
addressed with a post-processing stage, which is a compromise (though brutal) solution.

The shapes of the articulators change in time according to the produced trajectories of the
vocal tract, and those are phonetically sound. They evolve in synchrony with other speech
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production parameters: F0, subglottal and supraglottal pressure. Together, the timing and
values of the system need to be in a delicate balance so as not to produce any artifacts down
the synthesis pipeline. We �nd that they are su�ciently well tuned for vowels and stops; as
for fricatives, the interplay between the place of articulation, pressure control and the temporal
evolution is so intricate that it essentially boils down to modeling each fricative separately.

I conclude that, within the laid out setting�comprehensive but static and little in quantity
data of the vocal tract, a statistical model to encode it, and a set of rules to manipulate it�
this work represents a thorough exploration of the approach. The results show that such data
and methods are not unsuitable for building an articulatory speech synthesizer; however, given
the limitations of the approach, a more promising course of carrying on with this work would
be incorporating patterns from some actually recorded dynamic data rather than a continued
search for a better set of rules through theoretical modeling, trial and error. More on this in
the following section.

3.5.2 Future work

As was said above, for the approach to work well, a closer, intertwined and well-aligned inter-
action between all its components�vocal tract con�guration, voicing and pressure control�is
necessary. Considering the uncountable amount of timing strategies and possible transitions, it
is reasonable to learn them from dynamic data; for example, approaches by [ELVO16] could be
used for that. Employing annotated dynamic data such as EMA or RT-MRI and augmenting
the articulatory model used in this study with temporal control, aligned with voicing control
as extracted from simultaneous audio, should considerably improve the results. Additionally,
exploring a connection between dynamic data and the present system would allow to properly
evaluate the generated trajectories and the sound.

Another approach to boosting the performance of the system would be to automate the
search for better rules: set a cost function for how good a generated articulation sample and
its audio are, have several initial sets of synthesis parameters, generate the output with them,
evaluate the result, adjust the parameters, re-generate the output, make conclusions about the
new adjustment of the parameters, etc., until the improvement disappears or is negligible�
comparable to how this relating to the result was treated in [WSB17]. This, like taking patterns
from actually observed dynamic data, is also a very productive idea, but di�cult to imple-
ment in a setting with multiple disjoint components rather than a single environment as in
VocalTractLab [Bir13b].
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4

Articulatory speech synthesis from

real-time MRI data

The previous chapter explored articulatory speech synthesis where the aspect of articulation
was treated as an extrapolation of the available static data with no reference of its dynamics.
The obvious inherent pitfall of that approach was the temporal aspect: managing the duration,
the speed and the trajectory of articulatory gestures.

To address that, this chapter is dedicated to articulatory speech synthesis with all its com-
ponents derived from real-time data.

4.1 Objectives

The objective was to address both articulatory and acoustic aspects of speech by taking into
account all the e�ects actually observed in use by a human speaker during normal, natural and
unrestrained speech; more speci�cally, to build a joint model to synthesize both articulatory
and acoustic parameters that would correspond to a given phonetized textual input.

That included picking appropriate data and methods with a consideration for the di�culties
of treating articulation, applying those methods to the data and evaluating and analyzing the
results. Speci�cally, the objective was to prepare RT-MRI data as a rich source of articulatory
information that can be collected at a good enough rate without tampering with the natural
process of speech and use both its visual and audio components jointly to drive an articulatory
speech synthesizer derived from patterns in the real behavior of the speaker rather than a set
of developed rules.

4.2 Methods

Once the data and methods were chosen, the pipeline of the work was as follows:

� Prepare the data: build the corpus, carry out the acquisitions, check that the data are
valid;

� Preprocess the data: perform phonetic annotations and obtain linguistic speci�cations,
synchronize them with the individual frames;
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� Do image segmentation or extract articulatorily relevant parameters from the frames;

� Train and test a joint acoustic-articulatory DNN-based parametric model to obtain an
articulatory speech synthesizer;

� Evaluate and interpret the results.

The following sections of this chapter are going to present the details.

4.2.1 Data preparation

Given the long-term objective to synthesize speech based on real-time, actually observed acoustic
and information-rich articulatory phenomena, it was necessary to get a good geometric descrip-
tion of the whole vocal tract and to get running speech which would exhibit how the global
geometry of the vocal tract evolves over time during speech production; RT-MRI articulatory
data seemed to be a good �t for that.

While it is relatively easy to �nd audio-articulatory databases in English [NBG+11, SST+17],
there are no similar free data in French. This prompted o� the creation of ArtSpeechMRIfr
[DFF+19], the dataset used for this work.

Dataset conceptualization and creation

A dataset necessary for an articulatory speech synthesizer needs to meet several criteria:

� For the synthesizer to be robust, the corpus must have a good coverage of all phonetic
contexts which can appear in French. Coverage is of a higher priority than the number of
instances per each phonetic combination.

� For the synthesizer to be natural, and for us to be able to evaluate the naturalness, the
data needs to be natural.

� For the eventual rami�cations of articulatory speech synthesis for speech science, one may
add utterances with some phenomena of theoretical interest, such as the articulation of
sounds with a complicated physics of production, articulatory adjustment phenomena and
intra-speaker variability.

� The eventual results that come from using the dataset need to be in a form that is com-
parable to previously existing work.

On top of that, the nature of RT-MRI acquisitions imposes a few more restrictions:

� The corpus planned for recording cannot be too long, both for the comfort of the speaker
who is subjected to a long period of immobility in a tight space with a loud noise, and for
the cost and limited availability to use the machine. The solution to split the corpus into
several parts to be recorded over several sessions is suboptimal, as it could lead to a great
inter-session variability in terms of the speaker's head position and speaking style;

� The speaking tasks need to be easily understandable by the speaker, since communication
between the control station and the person in the machine is noisy and uncomfortable.
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Regarding phonetic coverage, let us consider the classical way of constructing a corpus for
speech synthesis, which is to collect sentences from a vast written corpus, for instance, of a
newspaper. The greater the collection of sentences, the better its coverage. The problem with
this approach, however, is that each sentence contributes only a very limited number of new
phonetic contexts. A corpus vast enough to cover enough speech phenomena to serve as a basis
for a speech synthesizer would have thus required a very long recording, more than a dozen
hours of speech, which, as explained above, is not an option for MRI.

A good solution for our case was to speci�cally prepare a set of sentences for the subject to
read out, so that the coverage and balance of phonetic combinations became exactly as necessary.
The set of sentences for ArtSpeechMRIfr, generated by Yves Laprie from a phonetized version
of French Morphalou lexicon which provides 620.000 �exed forms [JMPSA06, LSG04].

Yves Laprie used several levels of criteria to guide the manual composition of sentences with
the available phonetized lexical entries. On inserting a new sentence, the �rst level is to count
its number of double vowels V1V2 for all vowels, the number of CV with the consonant C being
one of /p, t, k, f, s, S, l, K/ and V of /i, a, u/ or�additionally�/y/, the number of VC where C
is in the list /l, K, n, m/ as a coda and V in /i, a, u, y, e, E, o, O/, consonant clusters C1C2V with
C1 in /p, t, k, b, d, g, f/, C2 in /K, l/ and V in /a, i, u, y/, and the number of instances of 15
speci�c complex consonant clusters (at least a sequence of 3 consonants, between two vowels).
Except for those complex clusters, all the contexts in question almost always appear within
words to avoid the e�ect of prosodic boundaries.

Such corpus composition covered the core of mandatory phonetic contexts. Then, new
additional contexts were introduced, in particular, contexts with vowels not present in the set
of the cardinal vowels /i, a, u/ extended with /y/. The instances of VCVs were broken down
by grouping vowels into classes from the open to the close (/i, e/, /E, a/, /u, o, O/, /y, ø/, /œ,
@/ and nasal vowels /ã, õ, Ẽ, œ̃/). This provided a second level of phonetic coverage evaluation.

In total this corpus was made up of 79 sentences o�ering a very good coverage of all possible
phonetic contexts in French. The disadvantage of the sentences being arti�cially constructed
is their highly odd semantics (e.g. �Vous dactylographiez sa soupe sirupeuse au lit��Fr. �You
type his syrupy soup in bed�) and, in the case of two words, non-French inclusions (�cartoons�,
�squaw�). However, syntactically they are correct, and a native speaker should not have any
problem reading them.

Additionally, for comparison purposes, an additional set of syllables and sentences coming
from previously existing corpora (the frequently used in phonetics "La bise et le soleil. . . "
sequence [Int99] and a randomly selected subpart of the corpus in [MCTO11]) was added, as
well as a sequence of syllables mirroring and extending our static corpus (Chapter 3.3.1). Also, to
study the complex articulation of trills (that are not present in standard French), experimental
sequences of /aBa, uBu, iBi/ and /ara, uru, iri/ were added.

As for speech naturalness, one could see how reading out arti�cially constructed sentences
that would never be voiced in any real context is probably not the best representative example
of natural speech data. For this reason, we wanted to record some spontaneous speech, which is
less controlled than reading out loud and also manifests more e�ects like overlapping gestures
and phoneme elision.

I created prompts for each subject to follow for a minute per prompt, in a random order.
They covered everyday topics: �What do you like in your work?�, �Speak about your last trip
anywhere�, �Speak about a �lm or a book that had a lasting impression on you� (20 topics in
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total, see Table A.1). In the end, at the recording time, despite having hesitations in speech,
both subjects had enough to say to �ll the allowed minute.

Finally, during the acquisition, we had an opportunity to record additional data with SB.
This lead to the creation of utterances recorded in non-sagittal slices at an angle. This part,
however, was �ltered out in my work.

Technical settings

The data were recorded on a Siemens Prisma-�t 3T scanner (Siemens, Erlangen, Germany)
at Max Planck Institute in Göttingen, Germany. We used radial RF-spoiled FLASH sequence
[UZV+10] with TR = 2.02 ms, TE = 1.28 ms, FOV = 19.2×19.2 cm, �ip angle = 5 degrees, and
slice thickness is 8 mm. Pixel bandwidth is 1600 Hz/pixel. Image resolution is 136× 136. The
acquisition time varied from 34 sec to 90 sec, mostly about 60 sec. We followed the protocol
described in [NZK+13]. Images are recorded at a frame rate of 55 frames per second with the
algorithm presented in [UZV+10] (more on the frame rate will follow in Chapter 4.2.1).

The subjects are two adult male French native speakers speaking French. Subject A, SA, is
the same as in the static dataset from Chapter 3, now with the following measurements: male,
35 years old, 182 cm tall and 74 kg. Subject B, SB, is male, 32 years old, 180 cm tall and 65 kg.

Audio is recorded at a sampling frequency of 16 kHz inside the MRI scanner by using a
FOMRI III optoacoustics �bre-optic microphone. The subject wears earplugs to be protected
from the noise of the scanner, but is still able to communicate orally with the experimenters via
an in-scanner intercom system.

Since the sound is recorded at the same time with the MRI acquisition, there is additional
noise of the machine in the audio signal. In order to denoise it, we used the algorithm proposed
in [OVB12]. Since the noise was so strong, disruptive and present also in the frequency bands
of speech, the denoising algorithm ended up in removing some energy from speech formants
too, which was especially noticeable in nasal sounds. The resulting signal is considerably more
intelligible than the original, but the noise is still present.

Transcribing the corpus

Per each wav recording, I produced a text �le with the text of what the speaker says there. The
tokens with non-standard pronunciation were stored in a separate simple text �le along with
their phonetic transcription in SAMPA [W+97] (such as �j_pense S @ p a~ n s� re�ecting the
fact that, as it is common among native speakers of French, SB devoiced his /Z/ from �je� /Z@/
before a voiceless fricative /S/)�/S@/.

The transcription procedure was based on the guidelines for [SMWC03]:

� Numbers are written in words;

� Acronyms (that are pronounced letter by letter) have to be written letter by letter: �Je
suis allé en prépa scienti�que, en P C S I ";

� Punctuation marks: , . ? ! �

� Dis�uent speech:
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� Filled pauses (�euh", �hein");

� Other hesitations:

� Long syllables: marked with colon (�donc :");

� Pauses: marked with the plus sign (�+� or �++� if it is very long);

� Fusions: marked with an underscore (�ch_pratique� to mean �je pratique� but real-
ized as /SpKa.tik/, �ça va_êt' Internet � to mean �ça va être Internet� but realized
as /sa.vE.tẼ.tER.nEt/);

� Partial words: marked with an apostrophe, if it seems to be an intentional way to
increase the speed of speech while retaining intelligibility, or a hyphen, if the word
is just abandoned, which is often followed by a restart � see below (�bah je rent'

assez tard�, �dans l- -- dans la jungle�);

� Restarts: marked with double hyphens (�pas de petit-déjeuner mis à part, euh �

mis à part du café�);

� Mispronunciation, non-standard words: asterisk before the word, no space (�je me

demande si ça sert à *queqchose�);

� Unintelligible speech: the closest guess, if there is any possible, put inside double paren-
theses (�((mais bon))� or �en tant qu'un amateur, ((cvraiqu)) j_vais : dans des

musées�);

� Interjections: treated as any other lexemes (�bah�, �hm�, etc.);

� Actions: �{BR}� for breath, �{CG}� for cough, �{LS}� for lip smack, �{LG}� for laugh-
ter, �{NS}� for a loud background noise (aside from the noise of the machine which is
always present).

This procedure posed some limitations. In particular, since the bilabial trill /B/ and the
alveolar trill /r/ do not belong to the French language, they are not recognized by French
SAMPA. Therefore, they had to be mislabeled: such sequences as /aBa/ and /ara/ had to be
transcribed as /aba/ or /ava/ and /aKa/.

A phenomenon that turned out to be impossible to represent within the framework of
SAMPA was stops with a long block phase, occurring in sequences like �crabes bagarreurs",
/kKab^.ba.ga.KœK/: the �rst /b/ has no audible release and is followed by the next /b/. Their
transcriptions were decided upon on an individual basis.

Phonetic labeling

To translate the transcribed text into its phonetic transcription, I tried out two tools: Astali
[FMJ15] and eLite HTS [RBBD14].

The bene�t of Astali is the fact that its phonetic labeling is more �exible, giving me a way
to take into account the non-standard phonetic tokens I took note of in the supplementary
phonetizing dictionary �les. Its disadvantage, however, is the fact that its output was a Praat
TextGrid �le [BW18] with no linguistic information, while I needed a more complete coverage
to train an articulatory-acoustic model.
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The output of eLite HTS is in the HTS format [Zen06], and it gives every phoneme a richer
piece of information: it includes the phoneme identity itself, phonetic context (two phonemes
before and two after, thus forming a quinphone together), position in the syllable (forward and
backward), stress, accent and the number of phonemes in the syllable (now, in the previous
syllable and in the next one), the vowel in the current syllable as well as text parsing around
the phoneme and utterance-level information.

All in all, it was more reasonable to keep using eLite HTS. However, upon a closer look it
turned out that the tool had a bug: despite passing to it input texts in a correct encoding, it
processed them in ASCII, resulting in an incorrect treatment of all French diacritics: whenever a
character was not recognized�let us say, é that should be phonetized as /e/,�it was phonetized
as /a/. Besides, the tool could not deal with apostrophes or other symbols, thus mishandling
even more cases.

To �x phonetic labeling of eLite HTS, I employed a set of text replacement rules so that the
instances that were known to impede eLite HTS were replaced with character sequences that it
would handle correctly (see Table 4.1). Naturally, these substitutions hindered the parsing unit
of eLite HTS, so for any given text I ran eLite HTS twice: once to obtain the correct phonetic
information but incorrect syntactic one and once vice versa.

To combine the outputs, there was an issue that the correct phonetic labels did not have
to have a one-to-one correspondence to the syntactic ones. Sometimes it would be expected to
insert, delete or substitute elements in one sequence of labels or the other. Thus I matched the
sequences through Levenshtein's distance [Lev65]. I put the cost of substitution to 1 and the
costs of deletion and insertion to 2, so that a correction of the label is more likely to happen
than a copy or an omission.

This processing �xed all mistakes identi�ed when reviewing labels, but also created some
new. For example, the character sequence �ai � can be phonetized correctly: faire /f E K/;
however, when treating the word �système��normally phonetized as /s i s t E m/�and replacing
the character è with the sequence ai (�systaime�), which avoids using accentuation but should
be phonetized the same, eLite HTS produces an inexplicable phonetization /s i s t E i m/, i.e.
the sound /E/ is correct and should cover both letters �a� and �i � but is followed by an extra
/i/. Having no open source code of the tool, it is di�cult to determine the cause of this error.

Finally, e-Lite HTS assumed that every �le started with a phoneme, while actually the
beginning of every recording, albeit short, was silence. So I prepended every output of e-Lite
HTS with an extra phoneme sil.

The next step was to perform state force alignment to estimate the boundaries of the phonetic
labels. I used HVite from HTK [YEG+02] with Merlin as frontend [WWK16]. For each speech
�le�in my �rst run a whole single-acquisition recording (one minute, typically)�HVite loaded
the corresponding label �le, expanded it to create an alignment network and produced a phonetic
transcription according to the output probabilities of the HMMs in the network.

Then, to improve phoneme alignment and reduce subsequent computational load, I split each
recording into sentences according to the timing of state force-aligned label �les and each textual
transcription according to the French sentence tokenizer sent_tokenize of NLTK [LB02] and
manually checked the cut-o� points for the audio; it turned out that often, especially with spon-
taneous speech and syllable by syllable enunciation, the force-alignment algorithm put sentence
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Character combination Replacement
*, (, ), � empty string
- at the end of a word (marks the speaker cutting
their �ow of speech)

empty string

: (marks a long syllable) empty string
?, ! .
', �, ' empty string or a blank space; if possible, re-

place the word before the apostrophe with its
complete form (que, lorsque, jusque, presque,
le, la, je, me, te, se, ce (especially important,
to avoid phonetizing it as /k/), de)

rés or dés at the beginning of the word + vowel rer or der + white space + z + vowel
other instances of és + vowel er + white space (to avoid pronouncing the r)

+ s + vowel
é, possibly followed by a silent e or a combina-
tion of d, s and t at the end of the word

er + white space (to avoid pronouncing the r)

è ai (to obtain the sound /E/)
à, ù a, u respectively
ê ai

â, û, ô, î a, u, o, i respectively
ë e at the end of the word (e.g. ambiguë), other-

wise ai (Noël)
ï i + white space (e.g. naïve → na ive)
ü, possibly followed by an e at the end of the
word

u

ö or ü (words of German origin retaining the
original orthography, not present in the corpus)

oe and ai respectively

ç s

ñ (words of Spanish origin retaining the original
orthography, not present in the corpus)

gn

æ ae

÷ e

Table 4.1: Replacing characters in eLite HTS inputs so that they get phonetized correctly.

boundaries incorrectly. In such cases the text was corrected to correspond to the audio, even
though this did not represent a full sentence then. This way the entire corpus gets transformed
into a collection of short text and audio phrases, barring the �les where phonetization of e-Lite
failed due to internal errors. Then I regenerated phonetic labels from the sentence transcriptions
and performed another run of state force aligning the sentence audios with those labels.

After all the improvements, the quality of phonetic annotation became quite reasonable
provided that the label �le listed the correct phonemes for the sound sequence. Unfortunately,
this was not always the case because of the absence of processing non-standard pronunciations
(e.g. the elision in *�queqchose" /kEk.Soz/ instead of �quelque chose" /kEl.k@.Soz/), errors in
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splitting into single-sentence recordings or errors in phonetization.

Synchronizing audio, video and phonetic labels

Despite the fact that MRI acquisitions are conducted in a way that is as controlled as possible,
with stable settings and a �xed position of the subject, there are factors that will inevitably
vary from one acquisition to another. The most impactful of them is the temperature. The
machine itself and the air inside it�as well as the body of the subject�can heat up and cool
down along the acquisition time, according to the periods of continuous use or breaks. This can
cause variation in image acquisition rate that can go up to 1%. In our case, the expected rate
is 55 Hz, which means an image every 18.18 ms, and a one-minute long acquisition should have
3300 images. A variation of 1% would mean between a frequency between 54.45 and 55.55 Hz,
that is, taking from 18.00 to 18.36 ms to make one capture.

Alone, a shift of ±0.18 ms is negligible for articulatory events that are captured by RT-MRI.
The only place where such a short period of time would be sensitive is the vocal folds, but their
activity is not registered anyway. However, when this varying time per image accumulates over
the course of the acquisition, aligning the audio track, the duration of which stays as set in
advance before the acquisition, with the resulting video can lead to a considerable shift up to
around 600 ms per minute, since we could be dealing with up to around 33 images that �go
missing� or are unaccounted for. This duration can correspond to around ten phonemes in a
stream of speech, thus misplacing the phonetic labels, especially at the sequence end.

To accommodate to that, once I split the audio and the transcriptions of the corpus into
sentences, I analyze the corresponding sequences of images per each acquisition. Due to the
setup, the �rst few images do not correspond to any sound due to the gap of 70 ms from the
start of recording the image to the start of recording the audio. As for the images in total, just
as predicted, their number varies from one take to another. In the treated cases, 95 acquisitions
had more images than anticipated (8.39 more images on average, a standard deviation of 5.70),
11 had fewer (5.64 fewer images on average, a standard deviation of 6.09), and 3 had exactly
the anticipated number of images. In total it makes 6.74 more images on average, a standard
deviation of 7.15.

A failproof method to aligning images to audio timing is to �nd a phonetic label with a very
short and recognizable visual cue, for example, /p/ requiring the lips to close, at the beginning
and the end of the sequence. The images corresponding to this label will then be identi�ed
unambiguously, and having a clear correspondence between time stamps at the two ends of the
sequence and the images should extrapolate to other images quite correctly. This is, however, an
approach that is better to apply manually rather than through automatic detection of lip closure
because of the many possibilities how it can go wrong if one does not also check the neighboring
vocal tract shapes and how aptly they re�ect neighboring phonetic labels: for example, the lips
may or may not also close for periods of silence, or the lips may be recognized as open because
of the contact being too �eeting or because of a processing error.

Thus, to associate every image to an HTS label, I made the assumed frame rate �exible,
corresponding to the number of available images for the given audio, taking care to check that
the estimated frequency stays within the predicted limits of 1% variation. This way I identi�ed
a 81811 ms-long sequence with 326 images missing (that is, no captures for some 6000 ms).

In the end I obtained a correspondence between any frame of a video from the corpus, the
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time in the audio and its associated phonetic label. As force-aligned labels are provided every
5 ms, technically this means skipping a few labels with each new frame. In reality, however,
phonemes do not change as frequently, so labels repeat, and skipping a few does not create a
problem.

The next step, which is going to be covered below, was to process the frames and extract
articulation-relevant information from them. The timing of these articulatory parameters re-
vealed certain issues with the synchronization that was presented in the current section.

Processing the frames

An RT-MRI capture, as shown in Figure 4.1a, has a lot of areas that are irrelevant for studying
articulation. To perform rigorous automatic processing of the images, we need to process the
image so that it only contains the area of the vocal tract and we are able to extract articulatorily
relevant information from it.

When choosing methods to do so, since the purpose of working with RT-MRI data was to
have a complete information on the position of the articulators of the speaker, the preference
was given to those that lose as little precision in the shapes of the articulators as possible�
rather than, for example, a preference for the speed of computation or the interpretability of
the resulting images by a human.

Figure 4.1a: An example of
an original RT-MRI frame,
before processing.

Figure 4.1b: Smoothing the
frame in Figure 4.1a with a
bilateral �lter.

Figure 4.1c: Applying
adaptive thresholding to
the smoothed frame in
Figure 4.1b.

RT-MRI frames are rather noisy, so the �rst step taken by Ioannis Douros was to reduce
noise through smoothing [Sze10], an operation where each pixel is substituted by the result of
some kind of operation on its neighborhood, most commonly by a weighted sum of the pixels
around it. This idea works well due to the fact that typically, images change their pixel values
gradually over space, and averaging a neighborhood can help get rid of the outliers, the pixels
that are less correlated with the �lter's center. However, a problem here is that boundaries of
objects (in our case, the outlines of the articulators) represent edges, and the assumption of
a slow change fails. We may average away the line that was previously sharp and lose some
essential articulatory information.

This is why smoothing was chosen to be performed through applying a bilateral �lter [TM98],
which was developed so as to preserve edges: in the regions where pixel values are quite similar
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to each other, it acts as a standard domain �lter, but it will not cross a sharp boundary in this
averaging. The diameter of each pixel's neighborhood was d = 9 (the original image size being
136 × 136 pixels; such a value of d corresponds to a very large �lter) and both �lter sigmas
in the color and coordinate spaces equal to 75, which is a moderate change. This parameter
setup is acceptable for o�ine applications that need heavy denoising rather than the speed of
computation. An example of smoothing a typical RT-MRI frame from the database (Figure 4.1a)
is given in Figure 4.1b.

Once the image was smoothed, we wanted to simplify it for further treatment. This can
be done with thresholding. The idea of thresholding a grayscale image is to replace all pixel
values above a certain threshold with one color (white), and all pixel values below with another
(black). However, a peculiarity of MRI captures is that pixel intensity is not the same in di�erent
regions of the frame, depending on the MRI coils�loops of conductive wire around the core,
used to create a magnetic �eld. The nose and the frontal regions of the vocal tract�the lips, the
tongue tip�are visualized with a much greater intensity, as almost white shapes, than the back
regions (the pharynx, the larynx), where we can only see blurred gray outlines. For such images,
simple thresholding with a globally assigned threshold value is not a suitable method; it is best
to have a local threshold value per each luminosity region. This approach, chosen by Ioannis
Douros, is called adaptive thresholding. A blockSize×blockSize-region can be characterized
by its average value, but to use it as a threshold means to keep in too much noise. A better
solution is to set the threshold value T(x, y) based on the neighborhood's (a 11×11=rectangular
around point (x, y) in our case) cross-correlation with a Gaussian window, minus an adjustment
constant C = 2. Flooding the space outside of the head of the speaker with the white color, we
obtained images as shown in Figure 4.1b.

To facilitate articulatory information extraction, it was important to limit the study to a
single area of interest at a time. We used the tip of the nose as one point of reference, which is
the middle of the leftmost points on the speaker's head. In cases when the nose tip strayed too
far from where it was on average in its sequence (more than 3 pixels in either of the dimensions),
since the speaker's head was not supposed to be moving, I assumed it to be an error and reset
it to a sequence-speci�c default value. From there, I identi�ed the values to hard-code windows
containing (a) the vocal tract, Figure 4.2a (used for the work in the next chapter), (b) the
velum (used for the work in this chapter), Figure 4.2b and (c) the lips, Figure 4.2c (used for
the work in this chapter). Theoretically the relative location of these windows with regards
to the nose tip could depend only on the speaker's anatomy and be therefore speaker-speci�c,
but since the head angle varied from one acquisition session to another, it had to be session-
speci�c. Additionally, in the individual images where I could automatically identify that the
algorithm was failing to extract the features (see the details in the following subsections) due
to a slightly misplaced window, the window was shifted in the direction that was expected to
solve the problem.

Extracting features

Ideally, an articulatory speech synthesizer should work with articulatory information that is
as rich as possible. There also is a very strong requirement for this information to be highly
precise so that it remains interpretable and sound from the point of view of the physics of
speech production. The approaches to get this information can be manual, semi-automatic and
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(a) (b) (c)

Figure 4.2: Vocal tract (4.2a), velum (4.2b) and lips (4.2c) windows for the RT-MRI frames.

automatic.
For a given mid-sagittal MRI frame, static or dynamic, a trained human with the knowledge

of phonetics and of the anatomy of speech organs can draw the contours of almost all the organs
that are known to play part in speech production. The training is necessary to learn to be
consistent, for example, in the choice where the lips begin and end or how the bottom part of
the tongue is annotated when it is visible, and absolutely essential to correctly handle di�cult
cases, such as:

� The tongue tip is one of the fastest articulators, participating in rapid, precisely controlled
wide-range motions to produce numerous phonemes, such as the voiceless alveolar stop /t/.
The tongue dorsum is less so, but thanks to jaw displacement it can be agile too. These
movements result in ghosting, for example, an image with two outlines of the tongue or a
physically impossible shape, or in merging the boundaries of the tongue with a neighboring
articulator (see Figure 4.3 for an example).

� It may appear that the uvula becomes in�ated and increases in volume, which really is
either blurring (Figure 4.4a) or the uvula rolling up onto itself (Figure 4.4b). Besides,
the velum is represented with a blurry shape of only a few pixels' width. Sometimes
the phoneme that is being produced needs to be taken into account to correctly identify
whether the velum touches the pharyngeal wall or not: if it is a nasal sound, there should
be a contact to close the velopharyngeal port, and if it is an oral one, no.

� The epiglottis is thin. Being set deep in the vocal tract, far away from the frontal side
that MRI visualizes with a greater intensity, the precise shape of the epiglottis can be
di�cult to discern (Figure 4.5b). Besides, it can press up to the tongue, thus hiding its
edge (Figure 4.5a).

� As a resonating system, the vocal tract is characterized not only by its width at any point,
but also by its length. One end is clear to see, the lips; meanwhile, the other end, at
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the vocal folds, can only be guessed upon (Figure 4.6), since the position of the larynx is
extremely unstable in visualization, both due to its anatomical structure (very little tissue
to see in the mid-sagittal frame) and due to its position at the rear of the vocal tract.

/e/ /s/ /s/ /s/ /s/ /@/ /k/ /k/

Figure 4.3: The tongue in a fragment of an RT-MRI sequence /s(@)k/: note the double blurred
outline of the tongue tip to produce the alveolar fricative /s/ and the blurred shape of the
tongue dorsum when making a constriction for the velar stop /k/; in the latter case, it is also
di�cult to see where the palate ends and the tongue begins.

(a) Rapid motion of the velum and therefore blurring (in the middle): SB pronouncing /K/.

(b) �Swelling� that is actually the velum's rolling up on itself: every third frame in SA's production of

/uKi/.

Figure 4.4: Two main causes of the velum contour to be di�cult to annotate: rapid motions
and an intricate geometry.

Aside from being this challenging, manual annotation also is quite taxing and extremely
time-consuming. Coupled with the copious amounts of data in the RT-MRI corpus (around two
hours of speech), all the points above ruled out the option of making annotations by hand.

Another solution would be semi-automatic: to have a baseline annotator and use a human
to correct the curves. The problem with this approach was that we needed the data to be
up to a very high standard, sound from the perspective of physics and with a great degree of
consistency. This lead to the need to perform at least minor corrections in every single image,
and evaluating the annotator's performance showed that corrections did not get to be done any
easier or faster than drawing the contours oneself.

A more automatic approach would be to perform manual preparatory work on some RT-MRI
images and run an existing contour extraction and identi�cation method, for example, annotate
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(a) The epiglottis pressing up to the tongue: SB
pronouncing /a/.

(b) The epiglottis being barely visible in the

picture: SB pronouncing /ã/.

Figure 4.5: Two main causes of the epiglottis contour to be di�cult to annotate: merging with
the tongue and being barely visible.

Figure 4.6: The outlines of the larynx can be very di�cult to discern, which can lead to a wrong
estimated position of the vocal folds and a wrong vocal tract length: SA pronouncing /k/.

a part of the frames and use it to train a statistical or deep learning model. Despite the
challenges posed by high variability in the vocal tract shape and con�guration when producing
the extensive variety of speech sounds, di�erences in speakers' anatomy and the connectivity of
the tract airway to other channels of air through lip opening, velum opening or larynx [RRUC13],
this has been a proli�c direction of research, both with articulatory data that was more in
use in past decades and those that are being explored now, in particular, RT-MRI captures.
Some notable examples are methods that start o� a prede�ned curve for an articulator or a
prede�ned vocal tract shape and try to avoid deforming it too much when transitioning between
frames, such as a geometrically constrained snake model that also relies on the information from
landmarks, contact points and pronounced curvature areas [SWF+18], or models relying on
the vocal tract appearance [AE17] or the appearance of some vocal tract components [TN15];
unsupervised tracking methods, usually providing less informative outlines, such as [BN08,
LRP+13, PBKN10]; and supervised methods, relying on annotated examples and/or landmarks,
such as [EB11, RRUC13, KG18, TGH+19].

In this direction I explored the image segmentation method of [NTR+14]. Its idea is to create
templates�correctly annotated frames,�run the segmentation algorithm, identify frames with
signi�cant delineation errors, correct their contours, save the new contours as a template and
rerun the algorithm. An example of a template that I �tted to our data is shown in Figure 4.7.

Nevertheless, image segmentation proved to be a hard problem, particularly exacerbated in
our case by the need to have results that would be very precise. Having weighed in the expertise
and the estimated long hours of work necessary to identify images to serve as templates and
to treat them, it was decided to proceed with fully automatic approaches, limiting ourselves to
less rich information while retaining precision.
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Figure 4.7: An example of a segmentation template �tted to the ArtSpeechMRIfr RT-MRI data
(SA, /@/).

The articulator that was the easiest to process was the lips. For speech production in French,
the most signi�cant attributes about them are the following values:

� Whether the lips are open or closed, i.e. whether there is a labial obstruction of the air
passage in the vocal tract.

� If they are open, how wide, i.e. how large is the area at the outer end of the vocal tract.

� If they are closed, how tightly they are pressed together, i.e. whether there is any pressure
building up behind their closure.

� Whether they are protruded or not, i.e. whether the vocal tract is made longer due to
their location on the anteroposterior axis.

� Whether they are rounded or not, i.e. the shape of the vocal tract at the outer end.

All features but the last one are re�ected in the mid-sagittal frames, and this information
can be reliably extracted from a window containing the lips.

Another signi�cant articulator that still can give us some useful information even without
the complete knowledge of its entire contour is the velum. It controls whether the air goes
through the oral and/or the nasal cavity when producing speech: when the velum is down, the
velopharyngeal port is open and the air�ow can go through the nose producing a nasal sound,
and when it presses up, this passage is blocked and the air is contained in the oral cavity, making
the sound oral.

Furthermore, the velum can come in contact with the tongue. Here we should mention two
relevant places of articulation, the one involving the large body of the velum and the other the
smaller uvula dangling at the end of the latter, and three manners of articulation: approximant
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(e.g. the voiced labio-velar approximant /w/), fricative (e.g. the voiced uvular fricative /K/)
and stop (e.g. the voiceless velar stop /k/).

Therefore, the most important attributes of the velum are:

� Whether there is a passage between the velum and the pharyngeal wall;

� If there is, how wide it is (determines the intensity of nasalization);

� Where the contact between the velum and the tongue is (whether it is a full contact
between the velum and the tongue or only the uvula and the tongue�determines the
place of articulation);

� The temporal characteristics of this contact (determining the manner of articulation: a
prolonged narrowing of the vocal tract makes an approximant, a constriction that, because
of turbulence, rapidly changes between a wide and a narrow one or even a contact, makes
for a fricative, and a prolonged contact with a subsequent burst makes a stop);

� The spatial arrangement of the air�ow: whether it is completely obstructed, or there is
a constriction, or the air�ow is blocked at the center of the vocal tract by the uvula, but
there still is a passage for it at its sides, thus creating a lateral sound.

Most of these aspects are, at least to some degree, represented in RT-MRI data, the limiting
factors being the absence of other planes but the mid-sagittal one (no information regarding the
potential lateral ways for the air�ow) and a relatively low frame rate (blurring the frication be-
tween the articulators together). For the purposes of articulatory speech synthesis the available
amount of information should still be useful, so we proceeded with extracting it.

The procedure we followed was a result of a collaborative e�ort of Ioannis Douros and
myself: Ioannis Douros conceived the general idea to narrow down our view to speci�c windows
and to use seed points, color �lls and contour detection tools to look for contacts between the
organs in those windows (see details below); then I worked completely on my own on producing
articulatory parameters (picking and developing methods for processing contours, readjusting
the windows for better results, treating errors, unforeseen cases and minor noise in the image,
giving informative feedback from the computation process, treating the calculated values for
consistent temporal behavior, analyzing and evaluating the results).
Extracting the articulatory parameters for the lips

Given a frame window containing the lips as in Figure 4.8a, �rst we discard (i.e. �ll with
black) the leftmost white area of the image that corresponds to the space outside the head of
the speaker. Then we look for seed points of the lips (Figure 4.8b): the upper lip pixel is a white
(x, 0) pixel that is closest to the expected (15, 0) and belongs to an area of at least 8 pixels; the
lower lip seed could be the �rst white pixel from the left-bottom corner of the image rightwards,
except that the �rst white pixel normally corresponds to the white space outside the speaker's
head, so it should be the �rst white pixel seen after a span of black pixels that surround the
speaker's head, with the same condition on the area size.

If the algorithm fails to �nd a seed point for the upper lip, it is assumed that the window was
placed too low, and the process is repeated with the window one pixel higher; the symmetric
process is done for the seed point of the lower lip and the window shift by one pixel down.
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(a) Raw �ltered image (b) The upper and lower lip

seeds

Figure 4.8: A sample image to extract articulatorily relevant information from the lips. The
leftmost white area corresponds to the end of the vocal-tract-related part of the image and is
thus irrelevant. The two elongated shapes in the center are the lips. There is the tongue tip
approaching the upper lip at the right. The seed points are indicated in red.

The seed points can be used to suppress all contours detected with the border-following
algorithm of [S+85] but those that correspond to the lips. Figure 4.9, from left to right, shows
the various cases we may encounter: If we �nd two smaller contours, the lips are apart; if we
�nd a tall contour stretching over the entire image height, the lips are closed. A complicating
issue may be the tongue touching either one of the lips or both, which typically happens outside
speech segments as the speaker licks their lips, but can nevertheless produce unrealistic values
or contours.

This way, the fact whether the lips were open or closed was the �rst piece of articulatory
information extracted from the images.

If, however, any of the contours assumed to be the lips touches the left border of the image,
it is assumed that the window was placed too much to the right and needs to be shifted to the
left in order to include the outermost points of the lips. The window is shifted to the left, and
the previous steps are repeated.

Figure 4.9: Cases to be treated when extracting the articulatory information from the lips, from
left to right: open lips, �eetingly closed, closed, the tongue touching the lower lip and both the
lips and the tongue being in contact.

66



4.2. Methods

Then, whenever there were two contours, we could �nd the distance between them (the
smallest euclidean distance between their pixels borders�see Equation 4.1 below), which served
as the value of their opening�the second articulatory parameter extracted from this window:
Equation 4.3.

eucl(A,B) =
√
(displx(A,B))2 + (disply(A,B))2, (4.1)

where displaxis is displacement along a given axis:

displaxis(A,B) =

{
|Aaxis − Baxis| if Aaxis = Baxis
|Aaxis − Baxis|− 1 otherwise

(4.2)

ls_dist = min(eucl(U, L)),

{
U being a pixel on the border of the upper lip contour,

L the lower lip
(4.3)

Figures 4.10a�4.10c marks how the distance between the lips is computed.
The meaning of having a distance between pixel borders rather than pixel coordinates them-

selves can be shown on the following example: if the lowest point of the upper lip is (10, 10), and
the highest point of the lower lip is (10, 11), the traditional euclidean distance between them
will be 1, while the contours are obviously in contact, sharing a common pixel border.

Having distances in pixels is a solution that is convenient for computations; naturally, all
the values can be translated back into mm, since the distance between any two adjacent pixel
centers (i.e. the value of 1 pixel in our implementation) is 1.412 mm.

As for the case when the lips were in contact, the ls_dist distance was set to 0, and we
calculated the surface of their contact ls_cont as follows�see Figure 4.10e:

ls_cont = min(eucl(O, I)),


O being a pixel from the outer contour of the joined lips,

I the inner one,

Oy, Iy < 0.8× h, h being the height of the window
(4.4)

The vertical limit of the contact points being necessarily in the upper 80% of the image
means to make sure that the thinning of the lower lip at the bottom of the image, the one that
needs to be included in the window in case the lips open wide, does not get counted as the
contact surface.

Then the contact surface was used to divide the joint area of the lips in contact into two
separate lips touching, thus providing us with full lip contours in all cases.

These �rst three articulatory parameters are not independent: whenever the lips are open,
the distance between the lips ls_dist is positive and the contact surface ls_cont is zero; other
times, when the lips are closed, the distance between them is automatically zero, and their
contact surface is not negative.

Then I calculated lips protrusion values up_l_pr and lw_lpr�see Figures 4.10f:

up_l_pr, lw_lpr = RLx − LLx,

{
RL for the rightmost,

LLfor the leftmost point of the upper or lower lip resp.
(4.5)
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Assuming the window is stable enough and crosses the lips at approximately the same height,
this di�erence should be informative enough about how far the lips protrude.

(a) The leftmost contour is tall

� the lips are closed, ls_dist

= 0

(b) The leftmost contour is

short � the lips are open,

ls_dist to be computed as

the distance between the lips;

ls_cont is 0.

(c) ls_dist, the distance be-

tween the lips, is the shortest

distance between the contours

of the upper and the lower lip.

(d) The lips are closed.

ls_cont is computed from the

inner and outer contours.

(e) ls_cont is the distance be-

tween the outer and the inner

contour, disregarding the lower

20% of the image (whitened

out) that could produce a

smaller distance.

(f) up_l_protr and

lw_l_protr are the di�erence

between the x coordinate of

the rightmost and the leftmost

points on the lips.

Figure 4.10: Examples marking how the lip parameters are computed. The upper lip is green,
the lower lip is orange, the key elements are highlighted in red or blue.

Extracting the articulatory parameters for the velopharyngeal area

The next step was to extract the articulatory information of the velum. As discussed above,
the velopharyngeal area of the frames has less constrast and brightness, which means that
smoothing and thresholding it is less reliable and may bring in errors: feeble shapes and outlines
can get discarded, and spaces can be recognized as tissue. Besides, the area has more articulators
moving than it was in the case of lips, which makes it more challenging to reliably recognize
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them automatically. Figure 4.11 shows what a processed window may contain, and Figure 4.12
shows how the presence of movement in the sequence can bring in some odd shapes.

Figure 4.11: An example of a processed velum window: the initial window (the tongue and the
velum in contact to produce /k/), the smoothed and �ltered image, and its annotation.

Figure 4.12: Due to noise and movement, the extracted contours may be of unpredictable shapes:
a sequence of frames where the loss of contact between the tongue (green) and the velum (violet
rather than blue elsewhere in the chapter, to indicate that it is a joint contour of the velum
and the pharyngeal wall that alone is marked orange) creates a highly irregular contour of the
tongue (one frame before the last). The contour annotation error in the middle image (assigning
the label �tongue� to the joint tongue-velum contour past the point of contact), however, is not
related to this disformation but rather to the failure to recognize the two articulators as being
in contact. The tongue-velum distance arising from this incorrect annotation was discarded at
the subsequent consistency veri�cation stage.

The biggest shape is the tongue, but even its recognition is not straightforward, since the
layout of the muscle �bers creates darker areas in the body of the tongue that get processed as
cavities. Their number, exact location and size can vary between one image and another.

At the right we have the border of the vocal tract that is the closest to the back: the
velopharyngeal wall. Depending on the window, partly on the movement of the speaker but
especially on whether the nose tip was detected correctly, the window may or may not also
contain some of the cavities behind it that actually are �lled with the vertebrae. This sets up
a choice to be made when setting the limits to the window: including more space to the right
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will guarantee that the entirety of the pharyngeal wall is present in the window at the expense
of introducing there a lot more irregular and unstable shapes that will require processing, while
making sure that the vertebrae do not get into the window

The major focus of our attention, the velum, is an articulator whose shape is particularly
problematic to capture automatically. It may appear unattached to the more front area of the
vocal tract; its shape, due to it being very thin and mobile, can be distorted, which can be
even more aggravated by the heavy processing of the image. As for the window boundaries,
depending on the speaker's head precise position, sometimes shapes from the nasal cavity are
fully visible in the original large image, and sometimes not. Coupled with the fact that the
velum may appear disjoint from the more frontal part of the vocal tract, it de�nitely rules out
having a safety margin in the window to make sure that the entirety of the velum is contained
in it, since the shapes in the nasal cavity would become indistinguishable from the shape of the
velum. As the velum can curl, this, in turn, means that it may cross the upper boundary of the
window multiple times (potentially, enter the window, leave it and reenter).

This explains why it may be di�cult to recognize and process the outlines of these articula-
tors even when they are clearly apart as in Figure 4.13. The task becomes even more di�cult
when they come into contact. Due to the velum curling, the velum and the tongue can touch
multiple times within the same image, creating very irregular outlines. Past the contact, closer
to the lips, there may or may not be space between the velum and the tongue; same goes for
the space before the contact between the tongue and the pharyngeal wall, closer to the glottis.
A situation when all three articulators are in contact can appear in many di�erent ways, with
spaces and not.

Figure 4.13: An example of automatically extracted contours in the window of the velum. Green
stands for the tongue, blue for the velum, and orange for the pharyngeal wall.

Finally, contour detection, such as the chosen border-following algorithm of [S+85], is reliable
when the entirety of the outline is contained within the image. When part of an object touches
the border multiple times, coupled with inconsistencies such as the velum appearing to hang in
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the air it becomes slightly unpredictable whether a shape will be considered part of one object
or multiple ones. So, I had to break down all large border-crossing contours into small chunks
that entered the image on the image border, followed a boundary and left the image. This was
necessary to avoid falsely joined organs when they are not, actually, in contact, but created
many more candidate contours to identify as the velum, the tongue or the pharyngeal wall.

First, I found seed points of the three articulators in question:

� The initial seed point of the velum was the closest white pixel (i.e. with tissue) to the
upper left corner of the image as long as it belonged to a su�ciently large white area, and
then it was shifted at most 7 pixels down as long as the color stayed white.

� The initial seed point of the tongue was the closest white pixel to the middle point of the
left border of the image as long as it belonged to a su�ciently large white area, and then
it was shifted up to 6 pixels to the right as long as the color stayed white.

� The initial seed point of the pharyngeal wall was the closest white pixel to the down right
corner of the image if it belonged to large enough an area, and then if was shifted to the
left as much as possible to �nd the border of the pharyngeal wall, the maximum shift being
up to the middle of the image. No direction of search was preferred, as in case the entirety
of the wall was in the image, it was possible to also �nd parts of spaces corresponding to
the vertebrae, and they sometimes could appear disjoint from the rest of the wall.

If the seeds were found outside the areas where I roughly expected them to be, the corre-
sponding images were saved as potentially problematic.

Then, to treat cases of contact, the following procedure was used to identify reference points
for spaces between the organs:

� The point between the tongue and the velum: the �rst black pixel encountered on the
line from the tongue seed point to the velum one; if it fails, try 15 pixels to the right.
This way the point should be closer to the tongue surface than to the velum. Normally
the tongue seed point is high enough that there are no black areas created by the muscle
�bers on the way from this point to its velum counterpart;

� The point between the tongue and the pharyngeal wall: the last pixel in the �rst span of
black pixels encountered on the line from the pharyngeal wall seed point to the tongue
one.

� The point between the velum and the pharyngeal wall: �rst, a new pharyngeal wall point
is found as the leftmost white pixel sharing the same white area with the pharyngeal wall
seed point when looking from (w− 1, 8); then, the point is the last pixel in the �rst span
of black pixels encountered on the line from the new pharyngeal wall seed point to the
velum one�so, it would be closer to the velum than to the wall, but will not enter any
small pockets created by the velum's curling.

� In a similar fashion, the newly constructed upper pharyngeal wall seed point could serve
to �nd a point between the tongue and the pharyngeal wall that would be in the upper
part of the image, closer to the velum.
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Then, using the organ seed points, I identi�ed organ contacts by coloring the white area
around one seed point and checking whether the other seed point in question changed its color
too. If no, the articulators were not in contact. If yes, there were two possibilities: either there
is a true contact between them, or both of them touch the third articulator, but not each other.
In the latter case, I identi�ed a sub-window with the potential place of contact and repeated
the process of coloring a point from one articulator and checking the color of the point of the
other.

If it appeared that the tongue was in contact with the pharyngeal wall and the pharyngeal
wall seed point was not at the very right of the image, most likely it was an error of the
pharyngeal wall seed identi�cation�see Figure 4.14.

Figure 4.14: An example of an erroneous pharyngeal wall seed causing the tongue to be recog-
nized as in contact with the pharyngeal wall: initial wrong guess (left), shifted correct window
(right). The marked points are the seed points for the tongue, the pharyngeal wall and the
velum.

Then I suppressed all shapes that did not contain a single seed point and applied the same
border-following algorithm of [S+85] to �nd the contours present in the image. I cut them so
that every contour would either be entirely contained within the image proper or begin at the
boundary, go through the image and end somewhere else at the boundary.

There typically were numerous contours with irregular shapes.
If an organ was known to stand apart from the others, I was looking for one contour for it.
If an organ was known to be in contact with another one, I was looking for two contours:

one for the part before the place of contact (this place having an a priori unknown location),
the other for the part past the place of contact, closer to the lips. For example, if the tongue
and the pharyngeal wall are in contact, the �rst contour would include the lower part of the
pharyngeal wall, near the glottis, up until the contact point, followed by the lower part of the
back of the tongue, and the second contour would include all the upper part of the pharyngeal
wall until the place of contact below, followed by the outline of tongue dorsum.

If there was a chain of articulatory contacts, for example, the tongue touching the velum and
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the velum touching the pharyngeal wall, but not the tongue touching the pharyngeal wall (as in
Figure 4.11 when producing /k(u)/), I looked for the contour of the chain: tongue-velum-wall,
velum-wall-tongue, velum-tongue-wall.

If all organs were touching each other (as in Figure 4.15), there was nothing to compute as
taking note of the presence of contact was enough.

Figure 4.15: All articulators in contact with each other�no need to calculate the distances.
Blue marks the contour that was labeled as the velum; purple the contour that was labeled as
the velum and the pharyngeal wall; bottle green, the tongue and the pharyngeal wall.

First I made all possible guesses for which organ each contour could be.
Special case

In the special case when articulator X was in contact with Y, Y with Z, but not X with
Z (see Figure 4.16), I searched for the joint X-Y-Z chain contour as the contour that passed
close to all reference points (the upper part of the pharyngeal wall, the velum seed point and a
reference point for the space next to the back of the tongue and the end of the velum) or was so
large that it occupied more than 75% of the image and then broke down that chain into three
contours: the tongue, the velum and the pharyngeal wall. The splitting points were found as
the extreme points of the contour and the closest points to the reference and seed points.

No other case needed the contours to be split.
Pharyngeal wall

The contour of the pharyngeal wall, when it is not in contact with any other organ, needed
to be su�ciently right, su�ciently tall, and its bounding rectangular needed to contain the
pharyngeal wall seed (again, I used eucl distance from Equation 4.1).

If the pharyngeal wall was in contact with the tongue, it had two options.

� One option for it was to be the contour whose bounding rectangular contained the identi-
�ed point in the space between the pharyngeal wall and the tongue (the down part, closer
to the glottis, before the contact point). This contour also needed to be contained in the
lower right part of the image.
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(a) The tongue in contact with

the velum, the velum with

the pharyngeal wall, but not

the tongue with the pharyngeal

wall.

(b) The velum in contact with

the tongue, the tongue with

the pharyngeal wall, but not

the velum with the pharyngeal

wall.

(c) The tongue in contact with

the pharyngeal wall, the pha-

ryngeal wall with the velum,

but not the tongue with the

velum.

Figure 4.16: Assigning contours in the special case of two articulatory pairs in contact, but not
the third pair. To extract a correct distance between the two articulators that do not touch, it
is necessary to cut the joint contour in three parts. As usual in this chapter, green stands for
what was labeled as the tongue, blue as the velum and orange as the pharyngeal wall.

� The other option was to be the contour whose bounding rectangular contained the same
point as above but shifted 30 pixels up and 5 pixels left (the upper part of the wall from
the velopharyngeal port downwards to the contact point and the rest of the tongue from
there).

If the velum touched the pharyngeal wall, the contour of interest could be the contour whose
bounding rectangular contained the space point between the velum and the pharyngeal wall (see
above).

Tongue

The contour of the tongue, when it was not in contact with any other organ, needed to
encompass a large enough area, and that area had to contain the seed point of the tongue.

If, however, the tongue touched the velum, there were three options to consider.

� If the velum lay on the tongue with no space between them, then their joint contour was
the one that we would have found for the tongue had it been standalone.

� If the contour's bounding rectangular contained the seed point of the space between the
velum and the tongue, it could be the joint velum-tongue contour past the contact point,
closer to the lips. To qualify, this contour also needed not to stretch too far to the right.

� If the contour's bounding rectangular contained the seed point of the space between the
tongue and the upper part of the pharyngeal wall, it was the joint velum-tongue contour
before the contact point, closer to the glottis. To qualify, this contour also needed not to
have any points close to the left border of the image.
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Velum

If the velum did not touch any other articulator, any contour that was su�ciently large and
whose bounding rectangular contained the velum seed point was to be labeled as the velum.

Then, for every picture, the set of contours with their potential guesses were examined
together to make sure they did not contradict each other: every articulator had to have a
contour: one and only one for an isolated articulator, at least one for an articulator in contact;
additionally, a contour could have several labels only for articulators in contact.

If the labeling was found to be inconsistent, I proceeded to reassigning labels until they
became consistent or the number of repeated attempts to do that got larger than the number of
articulators in question (three). To �nd a consistent labeling, I checked articulators one by one,
all the while keeping track of the contours whose labeling had already been determined fairly
certainly.

If there was no inconsistency found for a given articulator, its contour or contours got
preliminarily approved to be labeled as the articulator and, when applicable, the articulator it
touched.

If there was a problem, the algorithm tried to �x it in the ways described below.
If an articulator was not associated to any contour, �rst I found the contour that was the

closest to the articulator's seed. This contour could not be small and located in the down left
corner of the image because that was the characteristics of black areas falsely recognized as
empty spaces in the tongue.

The same approach was attempted if an articulator was touching another one but had only
one contour. If it did not yield a new contour to associate to the articulator in question, it
should theoretically have happened only for the joint part of the tongue and the velum closer
to the glottis. To identify that, I considered the contour closest to the seed point between the
tongue and the upper part of the pharyngeal wall, since by design it is very close to the velum.

If an articulator was not found to be in contact with any other but got associated to multiple
contours, the contour that was the closest to the seed point of the articulator became the one
that got to keep the label.

Whenever such problem �xing created a con�ict with an already preliminarily approved label
or the new labeling turned out to be inconsistent (for example, if the tongue was not touching
any other articulator and had its single contour, but then this contour got to be assigned to the
velum), it triggered a new round of search for a consistent labeling of the contours, this time
applied to the new way of labeling the contours.

If after this process the labeling was still inconsistent, the entire process of contour search and
labeling was repeated for the potentially noisy contours extracted from the original smoothed
and �ltered image (rather than the image where all white areas not containing a single artic-
ulator's seed point were �lled with black). If the labeling stayed inconsistent even after that,
articulatory parameters extracted from the velum window were set to NaNs. Otherwise, having
made sure that the shapes present in the frame were all properly labeled and the understanding
of the picture seemed to be correct, I was able to calculate the following values as the minimal
distances between pixels on borders of the respective contours�see Figure 4.17:

v_t_dist =

{
min(eucl(V, T)), V for the velum,T the tongue if no contact

0 otherwise
(4.6)
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v_w_dist =

{
min(eucl(V,W)), V for the velum,W the pharyngeal wall if no contact

0 otherwise
(4.7)

(a) v_t_dist=7.62 (b) v_w_dist=5.10 (c) t_w_dist=10.05

Figure 4.17: v_t_dist, v_w_dist and t_w_dist are computed as the minimal distances
between the respective articulators.

A complicating issue was the case when there was an articulatory contact: for example, the
tongue and the velum touching (see Figure 4.18). Then I would only have access to the joint
contour of both articulators, and there will be only one minimal distance between this joint
articulator and the pharyngeal wall, instead of two: one for the distance between the velum
and the pharyngeal wall, and the other between the tongue and the pharyngeal wall. In this
case, I masked the image to have the distance to be computed only in the approximate expected
area (in the case of the velum and the tongue in contact, the distance between the tongue and
the pharyngeal wall needed to only be in the lower part of the image, and the one between the
velum and the pharyngeal wall only in the upper part). Whenever the mask did not capture a
single point of the contour, the distance was set to NaN (�not a number�).

These two values bear the pieces of information we were searching for: how far the tongue is
from the velum (to investigate their behavior when producing such sounds as rhotics) and how
open the velopharyngeal port is (to measure nasality). However, there is one more constriction
present in the window: the space between the back of the tongue and the pharyngeal wall. In
the case of French, this place of articulation is not used consciously, but still is quite informative
for the acoustics of the resulting sound, so I extracted it as well (see Figure 4.17).

t_w_dist =

{
min(eucl(T,W)), T for the tongue,W the pharyngeal wall if no contact

0 otherwise
(4.8)

Additionally, the categorical information, whether there is a contact or not, was stored as
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(a) v_w_dist=4.47 (b) t_w_dist=3.00

Figure 4.18: v_w_dist and t_w_dist computed in the case of the velum and the tongue in
contact: the minimal distance is computed only in the area where the articulator is expected to
be.

the following values:

v_t_cont =

{
0 if no contact between the velum and the tongue

1 otherwise
(4.9)

v_w_cont =

{
0 if no contact between the velum and the pharyngeal wall

1 otherwise
(4.10)

t_w_cont =

{
0 if no contact between the tongue and the pharyngeal wall

1 otherwise
(4.11)

The cont values could be derived without precise contour assignment, so those values could
be set even when there was no dist values available.

It should be noted that while the articulatory shape changes gradually and smoothly, the
function of minimum between two curves does not have to be smooth, since the points producing
the minimal distance do not have stay close across neighboring images. It was less of an issue
with the lips, since most of their mid-sagittal behavior can be explained in two dimensions: x
for protrusion and y for opening. The lips do not curl and do not have any options for how to
come into contact. This is not the case, however, with the more complex organs in the back of
the vocal tract. For example, Figure 4.19 showcases three very di�erent cases for how the tongue
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and the velum can touch: either because of the tongue going up while the velum is straight and
presses up at the pharyngeal wall (as in /k/), or because the velum lowers and at least slightly
curls to touch the tongue while opening up (as in /Õ/), or because the velum falls �at on the
back of the tongue, and the surface of their contact vibrates in order to produce the rhotic /K/.

(a) /k/: A contact at the

expense of the tongue posi-

tion, with the velum straight

and pressing up the pharyngeal

wall.

(b) /Õ/: A contact at the ex-

pense of the lowered velum.

(c) /K/: A turbulent rhotic con-

tact, the velum is shown in

an extensive contact with the

tongue.

Figure 4.19: The tongue and the velum can come in contact in various ways, but these con�gu-
rations will lead to the same values t_v_dist = 0, t_v_cont = 1. The blue-green color stands
for joint contours of the velum and the tongue, green for the tongue alone, blue for the velum,
orange for the pharyngeal wall.

Furthermore, in the case of the lips we were calculating the surface of the contact between
the upper and the lower lips, which gave us the possibility to di�erentiate between a �eeting
contact and the lips being �rmly pressed together. Since the same computations for the contacts
that can occur in the window of the velum would be much more prone to errors, it was decided,
as Equations 4.9�4.11 showed, to only store the categorical information about the presence or
the absence of the contact (see Figure 4.20 to see how the two types of contact as treated as
same); this e�ectively rules out any way to foresee any change in the t_v_cont, v_w_cont
and t_w_cont values: in one frame, they can be 1, and in the next one already 0, even though
most likely these transitionary frames are not a clear case of either.
Creating articulatory parameter sequences

While having the big advantage of being fully automatic, this approach above has its short-
comings. The major weak point is the robustness of the algorithm. First, whenever there is an
error in identifying a point of reference (such as the nose tip or a seed point) used to calculate
one parameter or the other, all the subsequent calculations become incorrect. Even when the
nose tip is found correctly, it still does not guarantee correct processing of the contours in the
image, since contour labeling relies on treating numerous cases, and while the results show that
most of the cases were treated, there is a possibility that some of them were not. This can
cause dramatic errors down the pipeline: let us consider, for example, the following sequence
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(a) A �eeting contact between

the velum and the pharyngeal

wall, about to disappear.

(b) Firm contact between the

velum and the pharyngeal wall,

completely blocking o� air from

entering the nasal cavity.

Figure 4.20: The articulatory parameters extracted from the window of the velum do not allow
to track the di�erence between a well-planted contact between the articulators and a �eeting
one: two examples of the velum touching the pharyngeal wall.

of v_w_dist values: 6.00, 6.00, 6.71, 6.09. They are all quite consistent. If we add the next
value that was calculated to be 18.00, it will create a dramatic e�ect in the estimation of the
derivative and will be picked up by the machine learning algorithm.

A possible solution to that is to compare the dynamics of the parameter values in a �xed
number of adjacent images and keep out those values that were probably wrong.

Thus, having extracted the values ls_dist (Equation 4.3), ls_cont (Equation 4.4), up_l_pr
and lw_l_pr (Equation 4.5) from the window of the lips and the values v_t_dist (Equa-
tion 4.6), v_w_dist (Equation 4.7), t_w_dist (Equation 4.8) and v_t_cont (Equation 4.9),
v_w_cont (Equation 4.10), t_w_cont (Equation 4.11) from the window of the velum, if the
window of a given frame did not produce values consistent with the recent history, its group of
parameters were replaced with NaNs.

The exact check for consistency was as follows. The size of the history was chosen through
analyzing the intervals of erroneously processed images and concluding that it rarely was more
than three images at once and having found no instances of more than four images. Thus, the
values had to be consistent with their history of hist = 4 most recent images, which corresponds
to looking back by approximately 73 ms and accounting for 91 ms in total. If there was not
enough recent reliable history in the sequence yet, I checked whether the calculated parameter
at least fell into the interval of its reasonable values. If yes, it could be stored, and if not, if it
was the �rst value after a sequence of NaNs, it was replaced by the maximally acceptable value,
and otherwise it was discarded.

When there were enough recent values, I could analyze the dynamics of their behavior. For
this analysis to be informative, the history needed to be consistent: to qualify, all values could
not contain any outliers, which means that they needed to stay close enough to their mean over
the course of hist frames. The following two paragraphs are going to quantify this �enough�.
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Chapter 4. Articulatory speech synthesis from real-time MRI data

It was surmised that the information about the presence or absence of a contact was more
reliable than the values calculated as a distance between two potentially mistaken curves. This
led me to empirically set two thresholds for the di�erence between the current value and its
mean over the course of the recent history: a weaker threshold, T lw = 2.5 for the lips and
Tvw = 3.5 for the velum, and a stronger threshold, T ls = 3.75 for the lips and Tvs = 6.3 for the
velum. The motivation for the exact values was brought by the range of values for a correct
parameter sequence and how much it should be able to change over the �xed number hist of
frames.

Thus, a chunk of hist recent parameter values was considered as reliable enough to serve as
a ground for keeping or discarding the next value if all its present elements (i.e. all elements
but NaNs) did not deviate from their mean value by more than Tw (T lw or Tvw, depending on
whether the articulator was studied in the window of the lips or of the velum).

Having access to a reliable average value over the course of the last hist frames, if the change
between the average and the new value implied no change in how we considered the articulators
in contact in the frame or not, it was compared to Tw, and if it did, to Ts. A change greater than
the threshold value drove the new value out of consideration, and we marked it as implausible
and discarded it.

Whenever a window had even a single value that was discarded as implausible, either due
to too drastic a di�erence from the past average value or because of going beyond the expected
limits, all other parameters extracted from this window were also replaced by NaNs, since it was
likely that what was happening in the frame was processed incorrectly (incorrect seed points,
incorrect labeling of the contours, etc.)

Since afterwards I was going to apply interpolation, I also needed to set some non-NaN
values at the boundaries of the sequence. If the parameter values were increasing from the �rst
non-NaN value in the sequence, I set the sequence to begin with the minimal meaningful value
for this parameter; if the values were decreasing, with the maximal one. The case of the end
of the sequence went in reverse: if at the end the values were decreasing, I added the minimal
value, and if they were increasing, the maximal one. If there was no dynamic near the sequence
boundary (stable values, no increase or decrease), the same non-NaN value was copied to the
boundary.

After all these steps I �nally obtained a sequence of articulatory parameters, a value or a
NaN per each frame per each articulatory parameter. Keeping in only the values the algorithm
was con�dent about assured that we would not deduce any erratic transitions from one frame to
another. Thus I was able to remove NaNs and re-estimate them through upsampling the signal
to match the acoustic rate of 200 Hz (a value once in 5 ms) that was necessary for parametric
speech synthesis. Upsampling was done by piecewise 1-d monotonic cubic Hermite interpolation
in order to have smooth transitions, the magnitude of each transition section bounded by its
corresponding interpolation knots.
Verifying the articulatory parameters

In the subsequent parts of the work, the phonetic labels stayed associated to the extracted
articulatory parameters. The labels were oftentimes assigned not precisely in agreement with
what would be the judgment of a human annotator. Some of these imprecisions could still
maintain the consistency between the label and the articulatory parameters, thus not a�ecting
the interpretability of the results, and some of them could severely disrupt it. Having no
ground truth and having to reason only with the calculated articulatory parameters, I could not
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verify the �rst case; for the second, I carried out the following tests on those frames that could
potentially create an inconsistency:

� For every phonetic label associated with necessarily open lips (vowels), if the lips never
closed during the phoneme production, I labeled the instance as consistent, and if they
did, as an error.

� For every phoneme that would be impossible to produce without closing the lips (bilabial
stops and nasals /b, p, m/), if the lips closed at least once during the phoneme production,
it was marked as consistent labeling, and if not, as an error.

� I extracted all instances marked as:

� A rounded vowel, that is expected to be articulated with the corners of the lips drawn
together and the lips protruded forward;

� An unrounded vowel, where the lips are not protruded.

The associated up_l_pr, lw_lpr values were compared as samples for being di�erent for
vowels requiring protrusion and not (Shapiro-Wilk's, D'Agostino's and Anderson's tests
for checking that the samples did not follow a normal distribution, Kolmogorov-Smirnov
and Mann-Whitney tests to compare the samples). It would be expected that overall, the
values for protruded vowels should be larger.

� For any phoneme requiring a contact between the tongue and the velum (/K, k, g, ñ/), if
these two articulators came into contact at least once during the phoneme production, it
was marked as consistent labeling, and if not, as an error.

� For any phoneme that would be impossible to produce with a contact between the tongue
and the velum (the vowels and more frontal phonemes /j, Z, S, 4, l, d, t, z, s, v, f, w, m,
p/), if there was such contact (t_v_dist values equal to zero, positive t_v_cont values),
it was marked as an error.

� For any nasal phoneme (a vowel or a consonant), if it was produced with a closed velopha-
ryngeal port (v_w_dist = 0, v_w_cont = 1 � a contact between the velum and the
pharyngeal wall), it was marked as an error.

� For any oral phoneme (a consonant or a vowel), if it was produced nasalized at any
moment (without a contact between the velum and the pharyngeal wall: v_w_dist >
0, v_w_cont = 0), it was marked as an error.

This means that when the labels were found to be inconsistent, there were two possible
error types: either an articulatory contact that should not have happened for this phoneme
(this type is further referred to in �gures as �unacceptable�, for an unacceptable contact), or an
absent contact that should have been there (referred to as �absent�). For every error, it was also
important not only to mark its ratio in the entire distribution of consistent and inconsistent
phonetic labels, but also to mark how many times it could have occurred, as an error occurring
25 times out of 26 times possible is very di�erent from an error occurring 25 times out of 2500.

The results of all the checks above were aggregated by speakers (SA, SB or both) and by
speech styles (spontaneous, not spontaneous or both).

81



Chapter 4. Articulatory speech synthesis from real-time MRI data

The closure was consistent with the label 88.92% for SA (when breaking down by spontaneous
and non-spontaneous speech, 91.09% and 88.05% respectively), 92.52% for SB (94.37% and
91.75%, respectively). In total it makes in 90.85% cases (92.87% and 90.02%).

The majority of the errors, 53.21%, were the case of an absent contact between the articu-
lators. That represents 29.31% of all cases where the presence of a contact was critical.

The rest of the errors, 46.79%, were the case of an extra closure during a phoneme that
prohibit it. That represents 10.80% of the cases when this error could have occurred.

Figures from 4.23 to s4.24 visualize the possible comparisons.
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As Figures from 4.23 to 4.24 show, each pair of articulators (the lips, the tongue and the
velum, the pharyngeal wall and the velum and the tongue and the pharyngeal wall) exhibit
their own particularities.

ls_dist and ls_cont were the pair with one of the highest precision rates, 92.87% and
90.71%. While the majority of the errors were extra closures for ls_dist and absent closures
for ls_cont, absent closures (no lip contact when supposedly producing /b, p, m/) occurred
much more often with respect to how often they could have in both parameters. SA was more
likely to have extra closure errors than SB was. Non-spontaneous speech had a lower rate of
absent closure errors, which could be related to a more careful articulation. The last two points
are also re�ected in the conclusion when comparing the impact of the speaker identity (SA or
SB) and the kind of speech (spontaneous or not): for extra closures, the impact was greater
from who the speaker was; for absent closures, whether it was spontaneous or non-spontaneous
speech. Considering the total distribution of error types, precision was more de�ned by the kind
of speech rather than by the identity of the speaker.

t_v_dist and t_v_cont had a slightly lower precision (87.39% and 90.28%). The rate
of extra closures (i.e. having a velum-tongue contact when producing, for example, /i/) was
prevalent as an error type in both parameters. However, it was related to the overall number of
phonemes prohibiting such contact rather than to the frequency with which this error occurred
with respect to how many times it was checked, since absent closure errors occurred much more
often (76.61% and 87.80% of the cases when they could have occurred). SA was more likely to
have extra closure errors than SB was; in fact, they were the reason for the drop in precision
for SA. Those extra closures were also the reason why the total precision for non-spontaneous
speech was lower than that of spontaneous speech. The probable explanation is probably that in
general spontaneous speech struggled more at capturing the contact between the tongue and the
velum; hence, fewer extra closure errors in spontaneous speech and fewer absent closure errors
in non-spontaneous speech. Anyway, the major de�ning factor for the distribution of consistent
and wrong labels was the identity of the speaker rather than the kind of speech.

v_w_dist and v_w_cont exhibit the lowest precision out of all pairs (86.93% and 81.59%).
Despite the fact that there were much fewer extra closures than absent contacts, with respect
to the number of times that extra closures were checked they occurred much more frequently.
In v_w_dist, SA was more likely to have absent closure errors (i.e. to produce supposedly oral
sounds nasalized) than SB was, and this error brought down SA's precision. In v_w_cont, both
speakers' precision su�ered from an increase in absent closure errors. Spontaneous speech had a
greater precision than non-spontaneous due to the lower counts and a lower relative frequency of
absent closure. Again, the probable explanation is probably that in general spontaneous speech
struggled more at capturing the contact between these two articulators. As for the de�ning
factor for the distribution of consistent labels and error types, there was a di�erence for the
two parameters: in v_w_dist, for both types of errors and the resulting precision, the major
de�ning factor is the identity of the speaker, and in v_w_cont, by the kind of speech.

t_w_dist and t_w_cont are a special case since no closure is necessary to produce any
sound, so the only error type that was checked was extra closure, and precision went as high as
97.70% and 98.63%. There was no considerable di�erence in label consistency across speakers
and spontaneity.

The analysis of error patterns showed the following problems:
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� Time shifts and other errors in labeling (missing, extra or wrong phonemes), commonly
causing multiple errors in a single �le. For example, if a + means closure and − means
none, with a time shift a frame sequence labeled as /b, b, b, b, i, i, i, i, i, i, i, i, i/ could
produce − − − − + + − − − − − − −, revealing that /b/ actually started only when the
phonetic label already changed to /i/ (or this was no /bi/ in the �rst place);

� Incorrect identi�cation of the lips:

� Wrong nose tip identi�cation due to noise being too strong in the image or due
to accidental �ltering out of the nose area, leading the algorithm to misplace the
leftmost point recognized as the speaker's face. I improved this by correcting the
nose tip values that get too far from the other ones that are observed in the sequence
(for example, if all previous frames had the nose tip at around (9, 20) and the next
frame came with a nose tip at (20, 19), I corrected it);

� Choosing a wrong seed (a white pixel approximately where the lips, the velum, the
tongue or the pharyngeal wall are expected to be) brought by a slightly misplaced
window due to an unexpected speaker's movement or noise;

� Other shapes getting involved: the tongue touching the lips (compromising the es-
timation whether the lips touch or not�see Figure 4.25 to get an idea for how the
algorithm interpreted the upper and lower lip then), or in noise canceling, the lips
getting accidentally merged with the area outside the vocal tract; mishandling the
complicated geometry of the contours in the back of the vocal tract.

� When the contact was �eeting, the pixels where the articulators touched could stay too
dark for the algorithm to pick up on their contact (see Figure 4.26 for an example of the
lips).

The lips closed, /p/. The lips open, prepar-

ing to speak.

The tongue touching

the lips (1), silence

The tongue touching

the lips (2), silence

Figure 4.25: Di�erent cases for the annotation of lip contours, green for the upper lip and orange
for the low lip.

As for the lip protrusion, both the upper and the lower lip were shown to have, in general,
larger protrusion values up_l_protr and lw_l_protr on protruded vowels rather than on the
non-protruded ones:
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/s/, lsdist =

1.0

/m/, lsdist =

1.0

/m/, lsdist =

1.0

/m/, lsdist =

3.16

/ã/, lsdist = 4 /ã/, lsdist = 5

Figure 4.26: The vocal-tract window of the sequence /smã/ (with only the ending of /s/ and
the beginning of /ã/) and the respective extracted distance between the lips: a case when the
contact between the lips is too �eeting to be recognized.

Sp. Par. Mprotr[par]± σprotr[par] Mnot protr[par] ±
σnot protr[par]

SA, non-sp up_l_protr 13.55 ± 2.39 13.03 ± 2.22
SA, spont up_l_protr 13.69 ± 1.86 12.96 ± 1.62
SB, non-sp up_l_protr 11.50 ± 1.48 11.15 ± 1.42
SB, spont up_l_protr 12.64 ± 0.99 12.06 ± 1.00
SA, non-sp lw_l_protr 12.18 ± 2.22 11.60 ± 2.10
SA, spont lw_l_protr 12.62 ± 1.82 11.49 ± 1.46
SB, non-sp lw_l_protr 13.17 ± 1.88 12.71 ± 1.78
SB, spont lw_l_protr 13.61 ± 1.37 12.14 ± 1.38
SA, all up_l_protr 13.57 ± 2.32 13.01 ± 2.08
SB, all up_l_protr 11.62 ± 1.47 11.35 ± 1.39
SA, all lw_l_protr 12.24 ± 2.18 11.57 ± 1.95
SB, all lw_l_protr 13.22 ± 1.83 12.59 ± 1.72
SA+B, non-
sp

up_l_protr 12.41 ± 2.19 11.90 ± 2.00

SA+B, spont up_l_protr 13.15 ± 1.57 12.48 ± 1.40
SA+B, non-s lw_l_protr 12.73 ± 2.10 12.27 ± 1.99
SA+B, spont lw_l_protr 13.12 ± 1.68 11.84 ± 1.46
SA+B, all up_l_protr 12.48 ± 2.09 11.96 ± 1.95
SA+B, all lw_l_protr 12.78 ± 2.06 12.17 ± 1.88

Table 4.2: Lip protrusion is shown to be di�erent on the vowels to require protrusion (larger
up_l_protr, lw_l_protr values) and those that do not (smaller up_l_protr, lw_l_protr
values).

4.2.2 Implementation

The speech synthesizer was built using Merlin as frontend [WWK16] based o� their standard
�build your own voice" recipe and using WORLD vocoder, for each speaker separately. After
excluding the phrases where there was no phonetic labeling (due to bugs in elite HTS) or
articulatory parameters (when, for example, the articulatory sequence was to be estimated based
o� too few samples that were labeled as a phoneme rather than silence or pause) available, I
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obtained 618 utterances, 52.65 minutes of speech for speaker SA and 917 utterances, 59.53
minutes of speech for speaker SB.

The proportions of random division of the data for model training, validation and testing
were 90%, 9% and 1% respectively.

All input parameters were normalized before being processed by the network.

Linguistic speci�cation

To extract linguistic features from the labels, I identi�ed potentially signi�cant phonetic phe-
nomena that were marked in the HTS labels:

� Speci�c phoneme;

� Groups of phonemes exhibiting allophonic variation, such as /e/ and /E/ or /o/ and /O/;

� Phonetic class�a feature per each position in the quinphone: vowel and its type (open,
closed, etc.; front, back, etc.; rounded or unrounded); consonant and its type (voiced or
unvoiced; stop, fricative, nasal, etc.; articulated at the front, center or the back of the
vocal tract);

� Position of the phoneme in the syllable, of the syllable in the word, of the word in the
phrase: an exact number as well as within a range;

� Number of phonemes in the syllable, of syllables in the word, of words in the phrase: an
exact number as well as within a range;

� Stress and accent in the current syllable as well as in the neighbors;

� Distance to the stressed / accented syllables forwards and backwards;

� Part-of-speech tags: backwards, forwards and now.

Duration model

The duration model was a feed-forward 6-layer network, each layer with a hyperbolic tangent
activation (tanh). The choice of the activation function was done to allow the model parameters
to update regularly and avoid the model parameters getting �stuck�.

The batch size was 64, the learning rate was 0.002 with an exponential decay, 25 training
epochs.

The output of the model is the value dur for duration.

Articulatory-acoustic and acoustic models

For comparison purposes, I made two setups: full art and no art: with articulation and
without, respectively.

Acoustically a signal is characterized by a sequence of f0, the smooth spectral envelope and
aperiodic energy. Then they produce the following parameters�both for full art and no art:
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� The mgc parameters: Mel-Generalized Cepstral coe�cients, extracted from the signal's
spectral envelope, its dimensionality of 60, and the corresponding dmgc parameters esti-
mating the derivative of mgc, the dimensionality of 3× 60 = 180.

� The lf0 parameters: log of f0 values in cases where there is voicing identi�ed, a �xed
large negative value otherwise�its dimensionality of 1, and the corresponding dlf0 for
the derivative, 3× 1 = 3.

� The bap parameters: band aperiodicities, the aperiodic energy of the signal�its dimen-
sionality of 1, and the corresponding dbap of 3.

� The vuv parameters: voiced or unvoiced, a boolean value (no derivative).

Acoustic parameters were treated by the WORLD vocoder.
Articulatorily (full art only) I enhanced the signal with the upsampled sequences of the

articulatory parameters calculated above:

� ls_dist ∈ [0, hwindow] (before normalization),

� ls_cont ∈ [0,wwindow],

� up_l_protr ∈ [0,wwindow],

� lw_l_protr ∈ [0,wwindow],

� t_v_dist ∈ [0,
√
h2window +w2window],

� t_v_cont ∈ [0, 1],

� v_w_dist ∈ [0,
√
h2window +w2window],

� v_w_cont ∈ [0, 1],

� t_w_dist ∈ [0,
√
h2window +w2window],

� t_w_cont ∈ [0, 1].

Same as the duration model, the network setup started o� the standard Merlin recipe: a
feed-forward network with 6 layers, each layer with a hyperbolic tangent activation (tanh).

The batch size was larger than in the duration model, 256, since the acoustic search space
constituted more parameters and therefore needed to bene�t from a more accurate gradient
computation. The learning rate was 0.002 with an exponential decay; the number of training
epochs was set to 25.

The output of the network was a set of parameters: the acoustic parameters used to generate
audio (mgc, lf0, bap) and all the articulatory parameters.
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4.3 Evaluation

4.3.1 Evaluation components and criteria

The system is a joint articulatory and acoustic synthesizer; hence, it should be evaluated as
such.

First, I would like to know how the adding of the articulation in�uenced the resulting
quality of speech: intelligibility and naturalness. Without going into details there could be
three scenarios: (a) the quality improves because articulation is helpful; (b) the quality reduces
because articulatory information does not behave consistently with the acoustic and linguistic
training data; (c) the quality stays the same. At a closer scrutiny, the results could be mixed:
an improvement in some aspects while a deterioration in others.

Second, I needed to go deeper into the development/test evaluation and evaluate speci�-
cally the behavior of the articulatory parameters. The synthesized sequences should stay inter-
pretable, which is not guaranteed considering the network does not have the knowledge about
the meaning of each articulator's values, and they should not deviate far from what we observe
in the corpus, which is not guaranteed either as the network could try to keep the cost function
low by working primarily on the acoustic parameters and largely disregarding the articulatory
ones.

4.3.2 Evaluation data and methods

Large-scale articulatory-acoustic evaluation

The �rst dataset was the rest of the [MCTO11] corpus: 281 sentences that were not included
in the original corpus. They were synthesized both within no art and full art setups. Their
duration models were naturally the same. What was di�erent was their acoustic models, which
in the case of full art was an articulatory-acoustic model.

First, the results were compared objectively: with MCD (mean mel-cepstrum distortion
between the generated parameter sequence and the target one), BAP (band aperiodicity pre-
diction error), and three measures for F0: RMSE (root mean square error), CORR (correlation
coe�cient) and V/UV (frame-level voiced/unvoiced error).

Then they were evaluated perceptually.
As for articulation, since no art did not treat it, it was not possible to compare it for the two

setups. However, one of my evaluation criteria was to keep the generated articulatory parameter
sequences interpretable, and the number of sentences was high enough to provide a meaningful
comparison of parameter interpretability on the generated set to the one that was in the original
corpus.

One-sentence-out articulatory evaluation

To evaluate speci�cally the behavior of the generated articulatory parameter sequences, I trained
ten instances of the model with the same input data, but only one sentence taken out (i.e. all
samples that contained this sentence). The sentences were chosen randomly according to the
following criteria:

104



4.3. Evaluation

� It needed to have no fewer than 3 instances in the database of each speaker and no more
than 10. Those instances were found as sentences with Jaccard similarity [Jac01] greater
than 0.6;

� It could not have a disbalanced representation between the speakers: the numbers of its
occurrences in the sets of SA and SB could not di�er by more than 40%;

� It could not be shorter than the shortest sentence that made sense to analyze: �Il a pas
mal" (thus ruling out, for example, /aBa/ and /ara/);

� It could not be only a part of an actual sentence, starting in the middle of it due to the
imprecise corpus split into sentences or ending midway or with the speaker's hesitation.

Then the generated sequences were compared to the original ones with dynamic time warp-
ing, or DTW. Essentially it considers the source signal as one that needs to be morphed into the
target signal at the lowest expense. Given a graph of pattern values over time, it uses dynamic
programming to �nd the shortest path in this graph. The �nal cost of this path can serve as a
measure of similarity between two temporal patterns.

Finally, I compared the rates of interpretability with respect to the phonetic label of the
original and the generated sequences.

4.3.3 Evaluation results

Synthesis example

Let us consider the synthesis of �Bonjour" (Fr. �Hello"). Its phonetized form is /bÕZuK/.
Figure 4.27 shows the spectrogram of the generated signal with the voice of SA.

This sound was generated accompanied by the sequences of each of the articulatory param-
eters.

Lip opening and contact parameters, ls_dist and ls_cont (Figure 4.28), show that the lips
correctly closed to produce a /b/ (closure is marked with red) and correctly remained open
throughout the rest of the utterance.

Lip protrusion parameters up_l_protr and lw_l_protr (Figure 4.29) were generated with
the lips being more protruded on the vowels /Õ/ and /u/ and their neighborhood, which is
correct.

Tongue-velum distance and contact parameters t_v_dist and t_v_cont (Figure 4.30) cor-
rectly shows, as the velum lowers to produce the nasal /Õ/, the decrease in the tongue-velum
distance; there is no contact between the velum and the tongue to produce the rhotic /K/, but
this is something we observe in the original data as well (Figure 4.31), since the algorithm recog-
nizes the space created by the velar and uvular vibration as an absence of contact. Furthermore,
the increase of the t_v_cont values right before the end of the utterance could indicate that
the problem was us getting too open a distance at /u/ and having no time to close it for /K/
without a dramatic e�ect on the derivative.

Velum-pharyngeal wall distance and contact parameters v_w_dist and v_w_cont (Fig-
ure 4.32) generally exhibit a correct division between oral and nasal sounds over the course of
all phonemes but /b/ in the case of v_w_dist: in this con�guration, /b/ would be produced as
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Chapter 4. Articulatory speech synthesis from real-time MRI data

Figure 4.27: The full art synthesis of �bonjour" /bÕZuK/ with the voice of SA. The transition
of formants corresponds to the change of phonemes in production.

/m/. This should be caused by the same e�ect as in t_v_dist and t_v_cont: the silent posi-
tion for the velum is to be lowered, and the velum was generated to have such a high v_w_dist
that the value did not have the time to get as low as necessary for /b/ without a�ecting the
derivative (while it should be noted that the decrease from pau to /b/ is quite steep), and then
it was already time to prepare for the nasal /Õ/ coming next. Otherwise, both /b/ and the �nal
phonemes correctly register as oral sounds.

Tongue-pharyngeal wall distance and contact parameters t_w_dist and t_w_cont (Fig-
ure 4.33) show a correct absence of the contact throughout the entire sequence.

Large-scale articulatory-acoustic evaluation

As mentioned above, two setups, no art and full art, were trained. They were objectively
evaluated on their common part, acoustics�see Table 4.3.

For the reference, the duration model's evaluation (in both setups) was as follows:
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(a) ls_dist

(b) ls_cont

Figure 4.28: The synthesized sequences of ls_dist and ls_cont for �bonjour" /bÕZuK/ with the
voice of SA. The lip closure (in red) is consistent with the production of the labial stop /b/ and
the narrowed labial opening for /u/ and with the absence of labial contact throughout the rest
of the utterance.

� SA:
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Figure 4.29: The synthesized sequences of ls_dist and ls_cont for �bonjour" /bÕZuK/ with the
voice of SA. Values within the range associated with protrusion are marked green. Indeed, both
/Õ/ and /u/ require lip protrusion, and it should be anticipated.

� Development: RMSE: 24.110 frames/phoneme, CORR: 0.738;

� Test: RMSE: 26.476 frames/phoneme, CORR: 0.676;

� SB:

� Development: RMSE: 34.212 frames/phoneme, CORR: 0.585;

� Test: RMSE: 19.195 frames/phoneme, CORR: 0.580.

As for the interpretability of the generated labels, it generally follows that of the corpus.
The major issue for all of the articulators is attaining a contact, thus raising the absent closure
error counts and frequency. Figures 4.34 and 4.35 show the distributions.
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(a) t_v_dist

(b) t_v_cont

Figure 4.30: The synthesized sequences of t_v_dist and t_v_cont for �bonjour" /bÕZuK/ with
the voice of SA. As the velum lowers to produce the nasal /Õ/, the tongue-velum distance
correctly decreases; the behavior of the velum and the tongue for the rhotic /K/ follows that of
the original data, and, furthermore, the increase of the t_v_cont values right before the end
of the utterance could indicate that the problem was getting too open a distance at /u/ and
having no time to close it when /K/ without a dramatic e�ect on the derivative.
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/u/, t_v_dist =

4.0

/u/, t_v_dist =

2.8

/K/, t_v_dist =

3.0

/i/, t_v_dist =

2.2

/i/, t_v_dist =

2.8

Figure 4.31: Every other frame when producing /uKi/ and the associated t_v_dist values. The
points producing the values are marked in red. Despite the interaction between the tongue and
the velum to produce the rhotic /K/, the extracted distances between the tongue and the velum
are positive, at most recognizing frication but not contact.

Se
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BA
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F0
RM
SE

F0
C
O
RR

V
U
V

no art SA Dev 4.871 dB 0.116 dB 16.176 Hz 0.740 8.859%
no art SA Test 4.654 dB 0.131 dB 13.669 Hz 0.840 6.253%
full art SA Dev 4.878 dB 0.119 dB 16.131 Hz 0.743 8.693%
full art SA Test 4.709 dB 0.135 dB 15.785 Hz 0.781 6.278%
no art SB Dev 5.352 dB 0.133 dB 18.645 Hz 0.516 7.631%
no art SB Test 5.399 dB 0.157 dB 15.304 Hz 0.549 10.725%
full art SB Dev 5.390 dB 0.132 dB 18.530 Hz 0.504 8.200%
full art SB Test 5.498 dB 0.161 dB 14.777 Hz 0.563 11.567%

Table 4.3: Objective evaluation of the no art and full art setups of the acoustic-articulatory
models. MCD: mean mel-cepstrum distortion (the distortion between the generated sequence
and the target one). BAP: bap (band aperiodicity) prediction error. F0 RMSE: root mean
square of F0. CORR: F0 correlation coe�cient. VUV : frame-level voiced/unvoiced error. The
full art setup takes slightly worse values that could be explained by the fact that the network
size of full art stayed the same while managing more parameters�maybe it needed one more
epoch; however, SB's F0 RMSE and F0 CORR were slightly improved in full art. In general,
SA's results are better than SB's.
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(a) v_w_dist

(b) v_w_cont

Figure 4.32: The synthesized sequences of v_w_dist and v_w_cont for �bonjour" /bÕZuK/
with the voice of SA (oral samples marked in red). The division between oral and nasal sounds
on all phonemes is correct with the exception of v_w_dist values during the production of
/b/, which would be produced as /m/ in this con�guration. This should be caused by the same
e�ect as in t_v_dist and t_v_cont: the silent position for the velum is to be lowered, and the
velum was generated to have such a high v_w_dist that the value did not have the time to get
as low as necessary for /b/ without a�ecting the derivative (while it should be noted that the
decrease from pau to /b/ is quite steep), and then it was already time to prepare for the nasal
/Õ/ coming next.
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(a) t_w_dist

(b) t_w_cont

Figure 4.33: The synthesized sequences of t_w_dist and t_w_cont for �bonjour" /bÕZuK/ with
the voice of SA. As it should be, there is no contact between the tongue and the pharyngeal
wall throughout the entire sequence.
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Lip protrusion, too, di�ered between protruded vowels and not�SA and SB together:

� up_l_protr: 11.84± 1.91 protruded, 11.49± 1.69 not;

� lw_l_protr: 12.69± 1.79 protruded, 12.45± 1.61 not.

It was decided against carrying out a multi-user perceptual test because both these acoustic
evaluation values and an informal preliminary test suggested that while not being identical, the
generated audio samples were indistinguishable to the human ear.

One-sentence-out articulatory evaluation

The main instrument to compare how well the synthesized articulatory sequences modeled the
original ones was the distance induced by dynamic time warping.

Table 4.4 compares the DTW distance between the generated articulatory sequences (10
per each parameter per speaker) and their corresponding sequences from each speaker's part of
the corpus that were left out in the model's database. While in general the distances between
the synthesized sequences and the original ones are higher than those between the original
ones themselves, since the variance is high, they still fall within the range of the acceptable.
Figures 4.36 show examples of aligned articulatory parameter sequences.

Parameter Speaker Msynth to corp[dtw] ±
σsynth to corp[dtw]

Mintracorp[dtw] ±
σintracorp[dtw]

ls_dist SA 49.67± 16.86 39.28± 18.53
ls_dist SB 47.55± 13.88 32.83± 19.37
ls_cont SA 20.96± 13.10 15.51± 10.23
ls_cont SB 12.85± 9.75 11.08± 12.81
t_v_dist SA 47.10± 15.91 35.47± 18.28
t_v_dist SB 58.64± 19.47 46.09± 27.90
t_v_cont SA 7.92± 5.34 4.80± 5.68
t_v_cont SB 3.41± 4.64 2.18± 3.77
v_w_dist SA 32.63± 23.49 29.78± 17.09
v_w_dist SB 36.31± 19.64 31.69± 17.82
v_w_cont SA 7.30± 2.16 4.94± 3.15
v_w_cont SB 10.50± 2.61 6.90± 4.64
t_w_dist SA 63.82± 15.93 26.48± 12.82
t_w_dist SB 59.72± 10.93 37.73± 15.67
t_w_cont SA 1.02± 0.44 0.00± 0.00
t_w_cont SB 2.76± 3.07 3.24± 4.02

Table 4.4: The mean dynamic-time-warping distance between the generated articulatory pa-
rameter sequence and the corresponding sentences in the corpus (synth to corp), compared to
the same distances between the original sentences (intracorp). While synth to corp distances
are greater than intracorp, variance is very high, so they still fall within the acceptable range.
dist parameters get synthesized closer to the corpus values for SA; cont, for SB.
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Chapter 4. Articulatory speech synthesis from real-time MRI data

Additionally, I compared phonetic label consistency with the parameter labels for the gener-
ated sequences and their original counterparts taken out from the corpus. The conclusion is the
same as in the large-scale evaluation: that it is more complicated to generate a contact, therefore
the number of unacceptable closure drops in synthesis, and the rate of absent closures increases.
As for the frequencies of errors, they come out to be related to what was in the original data
not used to train the model.
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Finally, I looked into lip protrusion in the generated sequences and in the original data.
Again, the upper lip parameter up_l_protr was better at di�erentiating between protruded
and non-protruded vowels; when verifying whether the values corresponding to protruded vowels
were on average larger than those to non-protruded ones, this condition was true 61.40% of the
times in synthesis and 59.65% in the corresponding original data.

4.4 Conclusion

4.4.1 Overview of the results

This chapter presented a DNN-based articulatory speech synthesizer, where articulation was
extracted fully automatically at a comprehensive rate and modeled jointly with the acoustics
of the aligned signal. Substantial work was conducted to represent articulatory information in
a consistent way suitable for the network, i.e. as a set of eight parameters corresponding to
the lips opening and contact surface, the distance between the velum and the tongue and the
categorical parameter stating the presence or absence of a contact between them, the distance
between the velum and the pharyngeal wall and its own categorical parameter, and the distance
between the tongue and the pharyngeal wall. These parameters should therefore be able to
represent numerous articulatory e�ects in speech production:

� Full behavior of the mid-sagittal slice of the lips: lips protrusion and opening;

� Nasality, represented through the distance and contact between the velum and the pha-
ryngeal wall;

� Partial information of the velar region: no notion of the velum and tongue position, but
a set of values that depend on them:

� Circumstantial evidence of the tongue height through the distance between the tongue
and the velum;

� Circumstantial evidence of the tongue backness through the distance between the
tongue and the pharyngeal wall.

The results suggest that the original acoustic model can handle the added information,
meaning that the extracted parameters were generally coherent with the acoustic data: ob-
jective evaluation for the full art setup comes up to almost identical no art MCD, BAP,
F0 RMSE, F0 CORR and VUV values, and perceptually the generated samples in the two modes
are indistinguishable.

The generated articulatory parameter sequences match the original ones acceptably closely.
They struggle more at attaining a contact between the articulators, which results in a reduced
rate of prohibited closure errors and an increased one in absent contacts.

Thus, within the de�ned objectives, obtaining a full-�edged articulatory speech synthesizer
can be considered complete.
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Chapter 4. Articulatory speech synthesis from real-time MRI data

4.4.2 Future work

There are a few experiments and improvements that could still help us gain some insight re-
garding this line of research.

For instance, it would be useful to study the exact behavior of the distortion and error func-
tions, especially of the articulatory parameters error, over the time of acoustic model training.
Since the full art setup introduced new parameters, it could be the case that it would be
justi�ed to modify the number of training epochs or to adapt the layers in the network.

Then, the study would be much more complete with experimenting with other types of
neural networks, especially LSTMs and BLSTMs known to excel in speech synthesis thanks
to their improved management of temporal relations, and adjusting their parameters. Also, it
would make sense to process the generated articulatory parameters at the �nal layer so that
they stay within the interpretable ranges, for example, without reaching negative values.

From the purely speech production perspective, it is also interesting to study the contribution
of each of the parameters. For example, the pair of the tongue and the pharyngeal wall is not
part of the place of articulation of any phonemes of French, and throughout the analysis it
oftentimes appeared secondary despite its alluded contribution to estimating the backness of
the tongue. This brings out the question of whether this piece of information was useful to the
network or not. It could turn out, for example, that the lips are much more meaningful in the
resulting sound generation than the distance between the tongue and the velum; this is an open
research question that merits being studied.

Continuing the line of thought of separating di�erent contributions, we saw some di�erences
between spontaneous and non-spontaneous speech. While spontaneous speech is more di�cult
to align due to more irregularities with respect to the standard carefully articulated production
of the delivered phrases, it cannot be denied that it is immensely more natural, for example,
through exhibiting the speaker's uncertainty that is associated as an attribute of natural speech
and can be picked up by articulatory speech synthesis [BFS+]. In order to learn more about
constructing articulatory speech databases in the future, it would be useful to evaluate the
importance of spontaneous speech.

One of the major issues of the study was the problem of phonetic alignment. With the
recording being quite noisy and the video being in asynchrony with the audio, it is of no doubt
that obtaining a correct correspondence between the timing of the audio recording, the MRI
frame and the linguistic annotation label is a tall order. Nevertheless, as it was commented
upon in the section about the analysis of phonetic label inconsistencies, oftentimes articulation
makes it quite clear that there is a time shift (the example of /b, b, b, b, i, i, i, i, i, i, i, i, i/
could produce − − − − + + − − − − − − −, where + stands for the lips closure). It would be
expected to improve phonetic alignment dramatically if we integrated articulatory information
in the alignment process. Having a separate clean recording of prompted speech, devoid of the
noise of the MRI machine, and transferring its phonetic labeling onto our denoised samples,
could also be of help, provided that the noise does not hinder the alignment between the two
versions of the utterance.

Finally, a very promising�and more ambitious�direction of follow-up research would be
to represent articulatory information of the whole vocal tract rather than a few selected areas.
The challenge in that is that we would have most likely to do without precise outlines of the
articulators, since they could be too prone to mistakes. For this, a potential solution could be
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to represent the vocal tract con�guration with methods such as [LSNQ18] and then to encode
it with statistical methods such as PCA or deep learning methods such as autoencoders. There
is, however, a growing body of research to track full articulator outlines with various amount of
detail with supervised, semi-supervised and unsupervised machine learning, such as [TGH+19],
so eventually it should be possible to have precisely segmented images as well.
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5

Static targets versus running speech for

articulatory speech synthesis

In the previous chapters, we have seen what can be done for articulatory speech synthesis using
static or dynamic MRI, with quite di�erent methods.

The di�erence between the two data types is inherent.
On the one hand, MRI can capture the position of a vocal tract that was held stable over the

acquisition time (typically a dozen or more seconds). The three-dimensional space is represented
as a number of images, each collapsing together the information of its respective slice. This way
we can obtain a comprehensive picture of the vocal tract with a high resolution, but due to the
extended acquisition time, this picture is frozen.

On the other hand, the protocol of RT-MRI selects only one piece of 3D volume; for speech
production research, typically the mid-sagittal one. It captures the tissues within that slice in
real time [LZL+19], which enables us to analyze rapid-paced speech movements. The speech
observed with such a method is unrestricted and therefore highly natural, allowing for a deep
understanding of the dynamics of the articulators [NTR+14, TN16, RTP+18] and, as Chapter 4
showed, for speech synthesis based on them. However, it cannot be denied that in the attempt
to gain enough temporal coverage in RT-MRI we lose a lot of image sharpness and clarity. If the
slice is not thin enough, the intricate geometry of the articulators gets projected on a single plane
(there are phonemes with quite complex three-dimensional behavior, such as the lateral /l/);
if the speaker moves too fast, no position will be manifested for long enough to be captured
by the machine (since each elementary acquisition lasts 2 or 3 ms and the last radius gets
acquired around 18 ms after the �rst). Both of these points can result in ghosting (for example,
the presence of two outlines of the tongue tip, which is an especially rapid articulator), image
blurring or other artifacts, subsequently a�ecting the analysis and rendering image segmentation
especially di�cult.

As shown in the previous chapters, our case was not an exception to the general rule. Ta-
ble 5.1 summarized that while being an optimal solution for capturing consciously controlled
vocal tract positions with a high resolution, static MRI captures had the disadvantage of demon-
strating unrealistic, probably overarticulated vocal tract shapes. The speaker had apparent
trouble avoiding excessive nasalization as there is no conscious control of the velum when it is
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MRI RT-MRI
Advantages Image resolution, sharpness and

quality
Unrestrained, natural speech in real
time

�Distilled� manifestation of
coarticulation-in�uenced vocal
tract con�guration

Speaker's comfort

DisadvantagesNo temporal information Reduced image quality
Incorrect vocal tract positions No (entirely) conscious control over

articulation

Table 5.1: Advantages and disadvantages in regular (static) MRI and RT-MRI, summarized.

not actively used in speech production; also, at showing an appropriate context when articulat-
ing particular phonemes (for example, not raising the tongue dorsum enough for anticipating
/i/�see Fig. 5.1,�while /i/ is de�ned as a close front unrounded vowel; using this target to
guide an articulatory speech synthesizer would naturally lead to a misinterpretation of antic-
ipatory coarticulation for /i/, making it more similar to the e�ects of /a/, an open central
unrounded vowel in French). There is evidence that phonemes that are intrinsically dynamic in
articulation, such as liquids, were also misrepresented by the static protocol of MRI acquisitions,
leading again to unrealistic shapes [LETV18].

Figure 5.1: Static (left) and a typical dynamic (right) recording of /p(i)/ articulation by speaker
SA. Note how the tongue dorsum is not raised high enough in the static dataset; this tongue
position would be much better explained by anticipating a more open sound like /a/. This
could have been helped with a special voice and accent training preliminary to the acquisitions.

This brings us to the need to build a bridge between the two directions of work. More precise
details follow below.

5.1 Objectives

In our two approaches to treating the mechanics of speech production , the pivoting point was
manifesting or circumventing the notion of an elementary unit of articulation.

Within the static approach, we explicitly built the system around some key articulatory
positions revealing coarticulation and serving as articulatory targets, every articulatory motion
generated as a transition from the previous target to the next in a given amount of time.
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As for the dynamic one, there articulatory parameter sequences were generated similarly to
acoustic parameters, statistically driven by the relation identi�ed in the data between linguistic
speci�cation and articulatory parameter values. It does imply that the speaker's intended ut-
terance guides their articulation, but does not specify how. Any generated value is a result of
the fact that the system has had enough examples of when this linguistic speci�cation was seen
together with this value and its derivative estimation; there is no strategy involved.

To further illustrate the last point, let us explore the following example: if we look at the
parameter of lips opening in the synthesis of the syllable /ba/, the production of the stop /b/
can only happen if the lips collide with force, involving the muscles of the lips, the pressure in
the oral cavity builds up until the certain point at which the lips part, both because of the air
forcing them to do so and because of the jaw movement that proceeds to the open vowel /a/.
If the contact is �eeting, with no force, then what will be produced is a bilabial �ap: /b̆a/; if
there is no contact at all, just the lips coming closer to each other, it is a bilabial fricative (or
approximant): /Ba/; if there is contact, but it does not get released during /a/, no /a/ will
be produced, since /a/ is a vowel and not an obstruent. So, whether the lips close or not, is
something that de�nes whether the synthetic sound will be recognized as what was intended or
not.

This means that from the articulatory perspective lips closure is less of a question of precision
(whether the opening is 2 cm2 or 2.2 cm2, or 0.0 cm2 versus 0.2 cm2) and rather whether it is
present or not. In other words, the closure is a categorical value, which the resulting speech
intelligibility entirely hinges upon. Thus it would ideally require some kind of planning, and
that would lead us to go back to modeling the organization of articulatory movements.

This motivates us to see whether we can �nd any trace of such coarticulation-aware targets
as we had in the static case present in the dynamic data. Not only will this serve as validation
to the static-target approach�show whether it is possible to use this kind of static articulatory
representations as points of reference for the dynamics of speech�and serve as a stepping stone
to potential hybrid methods, it will also advance us in RT-MRI data treatment in general: for
example, it can serve as a base for the decision on which RT-MRI captures to annotate manually.

The aim of the part of work is to look for such static, frozen articulatory targets that were
constructed in the static MRI corpus in RT-MRI data and give an interpretation either of their
presence, possibly to some extent or only in some cases, or absence, e�ectively drawing a link
between the two types of data. The objective is to employ measures that are proven to be
e�cient in image processing and computer vision feature extraction to compare the static and
dynamic MRI datasets, and to draw conclusions from the dynamics and distributions of these
similarity measures.

This work was a joint e�ort of Ioannis Douros, Anastasia Shimorina and myself: the method-
ology was preliminarily validated by Ioannis Douros and me, Ioannis Douros prepared the pro-
cessing protocol of the initial set of input images (that were later replaced by the vocal tract
windows processed and cut as described in the previous chapter), the computation was set up
by me and run with the help of Ioannis Douros and Anastasia Shimorina, the results were ag-
gregated by Anastasia Shimorina and me, and evaluation and analysis were done by me, though
Anastasia Shimorina provided helpful discussions about their methodology.
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5.2 Data and methods

The present study used two MRI corpora: classic static MRI, the same as in Chapter 3, and
RT-MRI, as in Chapter 4. The outline of the work was as follows:

� Treat the static and the dynamic frames to make them comparable;

� Utilize structural similarity, Earth mover's distance, and SIFT matches to compare them;

� Verify the validity and consistency of the obtained measures;

� Study the temporal behavior of each measure and interpret it;

� Analyze the identi�ed similarities.

The following sections will cover these steps in greater detail.

5.2.1 Treating MRI and RT-MRI captures

When matching the images of these two datasets, one has to face several issues:
(1) The resolution and quality of the images is not the same: 256 × 256 pixels against

189 × 189. Furthermore, MRI is very sensitive to movement, resulting in a certain amount of
blurring in the dynamic images.

(2) The images do not depict exactly the same areas of the subjects' vocal tracts, nor do the
subjects take exactly same positions or posture. Moreover, three years passed between acquiring
the static and dynamic datasets, resulting in some minor physical changes in speaker SA; and
naturally, there are di�erences between speakers SA and SB.

(3) Static acquisitions may produce shapes that will never be observed in dynamic data since
they involve no phonation and there are phonemes whose sustained imitation of articulation is
either di�cult or impossible (liquids due to their dynamic nature�a point raised in [LETV18];
stops, whose burst is a result of pressure building up in the vocal tract; it is di�cult to control
nasality).

(4) The static dataset is rather small and should not be expected to be able to cover all the
images in the dynamic dataset.

(5) While being larger, the dynamic dataset still remains relatively small as far as speech
resources go. When breaking down into speci�c contexts, phoneme classes, syntactic structures,
or speaking styles, data sparsity quickly becomes an issue.

Taking all the points above into account, we created rectangular windows that only contained
the vocal tract information (Fig. 4.2a), from the laryngeal region to the lips, as was explained
in Chapter 4.2.1. This cropping relied on the reference points of the tip of the nose and the
corner of one of the vertebrae, which is less reliable than �tting the articulatory model derived
from static images to the dynamic ones, but with the upside of being usable in the absence of
articulatory contours. These windows were applied both to the static and dynamic data. Then
the smaller windows were resized to images of size 84× 82 pixels.
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Static MRI

We applied histogram matching to each static image so that its image characteristics follow
the ones of a sample dynamic image. As an aside, since the head position of speaker SA was
quite di�erent in the static MRI dataset compared to the RT-MRI one and, out of all chosen
techniques, only SIFT is rotation- and location-invariant, we turned the static images by 12.3◦ so
that the vocal tract angles were aligned with those in the dynamic ones.

As was explained in Chapter 3.3.1, each of the 95 MRI captures corresponded either to a
vowel V or to a blocked consonant-vowel C(V) articulation.

RT-MRI

There were some RT-MRI images where the cropping algorithm for leaving out all articulatorily
irrelevant information failed due to an incorrectly determined nose tip (this part of the work
was done before the speaker- and sequence-speci�c improvements to selecting windows that were
described in Chapter 4). These sequences were kept out.

For the purpose of analysis, each cropped RT-MRI frame needed to correspond to a phonetic
label which was a force-aligned [YEG+02] [WWK16] corrected output of eLite HTS [RBBD14]
(see Chapter 4.2.1 for details). Every sequence where the phonetization algorithm failed was
thus excluded too.

In the end it left us with 368, 848 RT-MRI frames.

5.2.2 Image comparison measures

Ideally, an e�cient algorithm for image comparison should be able to:

� Identify a shared manner of articulation such as: a contact for a stop or a nasal, a narrowing
in the vocal tract for a fricative or a liquid, the absence of obstruction for a vowel, an open
or close velopharyngeal port for a nasal or an oral sound. Any such shared feature should
raise the resulting value of the similarity measure by a few points.

� Capture a shared place of articulation and the critical articulator: identify when both
the static and the dynamic frames depict, for example, an alveolar consonant, and give
points for that. This way, when the phonemes are identical up to the feature of voice
(for example, static /k/ and dynamic /k/ or static /p/ and dynamic /b/), they should be
recognized as even more similar than those that share only the place or only the manner.

� Be sensitive to coarticulatory e�ects: we would hope that because of the protruded lips
/p(y)/ should turn out to be closer to /y/ than, say, /p(a)/ is; or, to make another example,
the tongue dorsum in /t(i)/ should already be raised to anticipate the close vowel /i/ and
thus /t(i)/ should be quite similar to /i/, which should not be the case for /t(E)/ where
the tongue is already preparing for an open /E/ position.

The same criteria were then applied when developing a method to evaluate the results of
this work.

We chose to stay as rigorous in our approach as possible and to have a coherent measure
between each of the static images and each of the dynamic images. We cut out the rectangular of
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the vocal tract and resized the resulting images to 84× 82 pixels. Then three techniques which
are known to perform well in image processing and computer vision feature extraction were
used: structural similarity (SSIM) [WBSS04, Ava09], Earth mover's distance (EMD) [RTG00]
(Wasserstein distance on the histograms of the images), and scale-invariant feature transform
(SIFT) [Low99, Low04].

EMD measures the di�erence between two probability distributions, calculating the work it
would take to transform one of them into the other. When applied to pixel intensity histograms,
it produces a measure of image similarity. If fi,j is the optical �ow between clusters pi and qj
from P and Q respectively and di,j is the ground distance between them,

EMD(P,Q) =

∑m
i=1

∑n
j=1 fi,jdi,j∑m

i=1

∑n
j=1 fi,j

(5.1)

Lower values of EMD mean more similar images.
SSIM [WBSS04, Ava09] is a measure that originally quanti�ed perceived image degradation

when given an original image and its compressed version, but can be used to quantify similarity
between any two images. It is calculated on windows of the image. SSIM between two windows
x and y�in our implementation, windows of size 7�is a ratio that depends on the windows'
averages, variances and the covariance [WSB03]:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2x + µ
2
y + c1)(σ

2
x + σ

2
y + c2)

, (5.2)

where µx and σ2x are the average and the variance respectively of window x, µy and σ2y of y,
σxy is the covariance of x and y, and consonants c1 and c2 are computed as follows:

cs = (ks × R)2,

R being the dynamic range of the pixel-values.
The �nal SSIM index is the average over all the windows. Its values range from −1 to 1, 1

standing for identical images, and −1 for an inverted local structure [BZP08].
SIFT [Low99, Low04] is a feature detection algorithm. It describes features as histograms

of oriented gradient in a neighborhood. First, a certain number of features are detected and
computed. The larger this number is, the lower the threshold local-contrast score is for a feature
to be retained. Most weak features in low-contrast regions are �ltered out, and edge-like features
are preferred. Then the computed features in the source and target images are compared and
matched. We used feature matching with 5 k-d trees [Ben80] using FLANN (Fast Library for
Approximate Nearest Neighbors) [ML17], which is suitable for nearest neighbor search in large
datasets and high-dimensional features. Each match was associated with a distance: the lower
this value was, the better the match. If two images depict similar objects, their matches are
supposed to be close, which brings in the idea to measure image similarity by the proportion of
close matches out of all matches considered�Equation 5.3:

SIFT(x, y) =
|matches(x, y) : match.dist < threshold|

|matches(x, y)|
(5.3)

Before running the comparisons on the entire dataset, I took a small subset of di�erent vocal
tract con�gurations and studied the quality of matches identi�ed by SIFT when adjusting the
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image preprocessing features (bilateral �lter [TM98] parameters, as explained in Chapter 4.2.1),
the number of features and the match distance threshold. The con�guration with the fewest
noisy matches that still yielded enough informative ones was when the bilateral �lter had diam-
eter d of each pixel neighborhood set to 9 (a large �lter�I checked values 5, 6, 7, 8, 9: a larger
�lter was more sensitive to the global structure of the objects in the image) and when the �lter's
σ parameter both in the color and coordinate space was reduced to 20 in contrast to 75 from
the setup in Chapter 4.2.1�a much more moderate change (I checked σ values 20, 40, 60 and
80: too much blurring reduced the quality of matches). As for the number of features and their
threshold distance, it proved to be a good idea to calculate a moderate number of features, 80 (I
checked 5, 20, 35, 50, 65, 95, 110, 125 and 140: too few features were not informative enough, and
too many made them noisier). With this in mind, I set the limit threshold to be 80 (I checked
60, 70, 80, 85, 90 and 95: being too lenient with the distance threshold lead to false matches, and
too strict caused the matches to become trivial or disappear altogether).

Since SIFT measure is a proportion of all matches, its values range from 0 to 1, and the
greater the value, the closer two images are.

SIFT transformation is invariant to rotation and feature location in the image. To discount
the matches drawn between di�erent articulators, I experimented with a modi�ed version of
this measure as well, SIFTl, which is a simpli�ed version of an additional geometric test:

SIFTl(x, y) =
1∑M

n=1 dist(keypoint
(x)
n, keypoint

(y)
n)
× 1

M
,M = |matches(x, y) : match.dist < 70|,

(5.4)
the idea being that the smaller the displacement is between two matched features, the more

probable it is that it corresponds to the same articulator (hence the �rst ratio), and that image
pairs with a lot of strong matches should not be penalized for having too many components in
the sum (hence the second ratio).

5.3 Experiments

5.3.1 Temporal behavior

First the chosen measures needed to be validated through studying their temporal behavior:
where their extrema were found and whether there were any patterns in the relations between
the extrema.

Figures 5.4, 5.5 and 5.6 show an example of the change of the EMD, SSIM, SIFT and SIFTl
values over a sequence �ma ville natale� /ma.vil.na.tal/ (see Figure 5.3 for the spectrogram). In
particular, Figure 5.6c shows SIFT and SIFTl, that are based on the same method SIFT, next
to each other.

According to our criteria, an ideal similarity measure would have major peaks when compar-
ing the phonemes with the same articulation (/m(a)/ to /m(a)/, /a/ to /a/, /f(i)/ to /v(i)/. . . ),
smaller peaks for the same place of articulation (shared between /t(a)/, /n(a)/ and also /l(a)/),
moderate increases when comparing any two vowels, and very minor increases when comparing
a vowel to a consonant anticipating it.

What can be identi�ed from these �gures is that EMD comparisons (Figure 5.4) do not seem
to be informative, as they are highly correlated and do not depend on articulation.
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Chapter 5. Static targets versus running speech for articulatory speech synthesis

SSIM (Figure 5.5) consistently peaks on /a/-to-/a/ comparisons; the same holds for /i/,
/n(a)/ and /t(a)/. Shapes resembling /f(i)/ are identi�ed at /i/, and also in transition periods,
such as from /m/ to /a/ and /l/ to /n/ to /a/. One can also remark that quantitative analysis of
SSIM values, just by treating the minimum and maximum values, is less promising than analysis
of local extrema, as the relative positioning of each curve rarely changes. In our example, it
usually is /t(a)/ on the top and /n(a)/ at the bottom. Meanwhile, the local temporal behavior
of each curve seems to be more informative.

The peaks of SIFT(/m(a)/, x), SIFT(/a/, x), SIFT(/f(i)/, x) are consistent with the occur-
rences of /m(a)/, /a/, /v(i)/ respectively. There is a certain confusion of vowels: the static /i/
resembles the collection of frames of the dynamic /a/; additionally, the shapes of /l(a)/ and
/n(a)/ are activated on /t(a)/ as well. A shape resembling /t(a)/ is encountered not only in
/t/, but also during the transitions between /m(a)/ and /a/, /i/ and /l/ and /a/ and /l/.

The change of SIFTl (Equation 5.4) over time reveals that generally the values do not diverge
much from 0. Again, there is a certain confusion regarding vowels: shapes resembling /a/ are
associated with instances of /i/; of nasal consonants: /m/ is confused for /n/; shapes similar to
/l(a)/ appear at /a/; /t(a)/ is correctly identi�ed at /t/, but also during the transition from
/v/ to /i/.
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5.3. Experiments

(a) A shared place of articulation is a ground to increase the similarity value: static /t(u)/ (left) and a

frame of dynamic /s(ã)/ (center) sharing the alveolar region, while di�erent places should not: see the

/s(ã)/ and static /k(E)/ with the velar closure (right).

(b) A shared manner of articulation is a ground to very slightly increase the similarity value as an

indication of a similar distance at the constriction: static /s(a)/ (left) and a frame of dynamic /S(a)/
(center), being both sibilants, are somewhat similar, while di�erent manners are not: see the /S(a)/ and

static /t(a)/ (right).

(c) Coarticulatory e�ects are a ground to increase the similarity value: static /t(i)/ (left) and a frame of

dynamic /i/ (center), whereas a di�erence in them is not: consider static /t(E)/ (right).

Figure 5.2: Phoneme comparison criteria: what articulation features should contribute as a
factor of similarity (left third of the page-center), and how not being shared should lead us to
the conclusion that the phonemes are di�erent (right half of the page-center).
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5.3. Experiments

Figure 5.4: The change of EMD�Earth mover's distance�values over time when comparing
the static frames /m(a)/, /a/, /f(i)/, /i/, /l(a)/ and /t(a)/ to the same sequence as in Figure 5.3,
�ma ville natale� /ma.vil.na.tal/. The lower the value, the more similar the frames are considered
to be. The signals are strongly correlated and do not seem to be informative.

Figure 5.5: The change of SSIM�structural similarity�values over time when comparing the
static frames /m(a)/, /a/, /f(i)/, /i/, /l(a)/ and /t(a)/ to the same sequence as in Figure 5.3, �ma
ville natale� /ma.vil.na.tal/. The greater the value, the more similar the frames are considered
to be. The peaks of SSIM(/a/, x) are consistent with the occurrences of /a/; the same holds for
/i/, /n(a)/ and /t(a)/. /m(a)/, /f(i)/ and /l(a)/ do not follow the labeling.

Figure 5.7 shows the similarity measures between seven static images of /f/ (/f(i), f(E), f(a),
f(o), f(u), f(y), f(ø)/) and the consecutive images of the dynamic sequence /�, fe, fE, fa, fOK, fo,
fu, fy, fø, fœK, fã, fÕ, fẼ/.

One can see that, just like in Figure 5.4, the values of EMD in Figure 5.7a are strongly
correlated and do not seem to capture any articulatorily relevant information.

Same as in Figure 5.5, Figure 5.7b demonstrates that the ranking of SSIM values when
comparing a particular set of static images to the real-time sequence typically stays quite stable.
In our example, the values of SSIM(/f(a)/, x) are almost always the lowest, and SSIM(/f(o)/, x)
the highest. The shapes most resembling the static samples of /f/ appear in the transitions
from /f/ to vowels. Distinguishing the vocalic anticipatory coarticulation is impossible.

Figure 5.7c shows that SIFT values anticipate the beginning of /f/, the peaks occurring right
before the beginning of the phoneme. Again, distinguishing the vocalic anticipatory coarticula-
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Chapter 5. Static targets versus running speech for articulatory speech synthesis

tion is impossible.
Figure 5.7d, like Figure 5.6b, shows that most SIFTl values are very close to 0. The spikes

do not seem to be very informative, though it can be said that they generally occur at the
end of the fricative and can last through the vowel and the subsequent beginning of silence.
Minor peaks follow the behavior of SIFT : they pre-empt the beginning of /f/. Distinguishing
the vocalic anticipatory coarticulation is impossible.

Overall, the analysis of the measure's temporal behavior in the examples above leads to the
following conclusions:

� EMD does re�ect some changes in the image sequences, but they are not speci�c to any
articulatory con�guration. Likely, the static and dynamic images needed to be much more
similar to each other for EMD to be informative due to the optical �ow assumptions that a
contour corresponding to an object in the source image can only slightly move in the target
image, while our images are both dissimilar in terms of image quality and representing
di�erently shaped contours.

� In terms of interpretability, the performance of SSIM and SIFT is quite similar. Both
do encode some articulatory information: we can identify both vowels and consonants.
Above we discussed mismatches as, for example, according to SIFT static /l(a)/ and /n(a)/
were similar not only to their dynamic counterparts (taken as entire collections of frames
spanning over the occurrences of a particular phonetic label, /l(a)/ and /n(a)/ in this case)
but also to /t(a)/. Such mismatches and similar demonstrate that in the case of consonants
SIFT is rather sensitive to the place of articulation (where the constriction occurs), which
makes it better at getting consonants right but creates di�culties to identify how open or
close and front or back a vowel is, and SSIM is better at capturing the general positioning
of the articulators, which makes it better at dealing with vowels and anticipating a certain
vocalic context.

� The concerns regarding how well the static dataset models the real-time one seem to
be justi�ed: the especially problematic e�ects are those that we expected in point (3)
at the beginning of this chapter (Chapter 5.2.1): the production of nasals and liquids
and realistic anticipatory coarticulation. Likewise, point (4) about the poor coverage of
the variety of shapes occurring in speech production is a valid concern, considering the
frequent mismatches at the transition periods between any two phonemes.

� Adding the feature match location into SIFT to create SIFTl (Equation 5.4) does have
some merit, but the interpretability of this measure is severely a�ected by the unevenness
of its peaks: in comparison to the very strong spikes that do not actually contain much
articulatory information, the moderate peaks have the potential to be useful when merged
with other values.

It should be noted that the jerks in the measures' plots occur more frequently and are greater
in magnitude than the changes in actual articulation can occur. Therefore we �nd it imprudent
to look for patterns one image at a time, for example, at the image or images in the center
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of a given phoneme, like in the approach of [LSNQ18]. Instead, we resolve ourselves to using
averaging and looking for general patterns.

5.3.2 Distributions and correlations

All the measures re�ected that the static dataset, being done with speaker SA, resembled SA's
part of the real-time one better than that of SB (Figure 5.8): in case of EMD, the mass of
histogram for SA compared to SB is shifted to the left, and in case of the rest of the measures,
to the right. The only exception to this is SSIM and its SA-SB distributions (Figure 5.8, middle
pair): in the frames of SB, SSIM identi�ed more images that had a similarity value higher than
the mode than in those of SA.

When breaking down by phonemes, this pattern of SA's frames being closer to the static
dataset than those of SB are holds. The shapes of the distributions, however, stay the same�see
Figure 5.9.

The calculated distances were aggregated by speakers, by phonemes, by phonemes in vocalic
context (what vowel V is anticipated in the dynamic dataset according to the phonetic labeling),
by the phoneme's phonetic classes and by speaking styles (spontaneous speech or not). To reduce
the memory load, it was done in 10 randomly split blocks, 6 times over.

Table 5.2 shows the mean and standard deviation of each metric across the entire volume of
speech by speakers SA and SB. Overall the relationship between the measures is not strong: see
correlations in Table 5.3.

E(EMD) ± SD(EMD) E(SSIM) ± SD(SSIM) E(SIFT) ± SD(SIFT) E(SIFTl) ± SD(SIFTl)

SA 0.0016± 0.0003 0.0350± 0.0331 0.0665± 0.0317 0.0115± 0.0989
SB 0.0018± 0.0002 0.0367± 0.0297 0.0613± 0.0299 0.0080± 0.0346

Table 5.2: Means (E) and standard deviations (SD) of the image similarity measures, speakers
SA and SB.

Measure EMD SSIM SIFT SIFTl

SA SB SA SB SA SB SA SB
EMD 0.42 -0.02 0.07 0.00 0.01 -0.01
SSIM 0.08 0.06 0.01 0.00
SIFT -0.09 -0.25

Table 5.3: Correlations between EMD, SSIM, SIFT and SIFTl values across the entire set of
image comparisons. Between any two measures not involving EMD, a positive correlation is
indicative of an agreement in judgment. With EMD, it is the reverse since EMD is lower for
similar images while the others are higher.

None of the similarity measures followed the normal distribution:

� EMD:
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� Shapiro-Wilk's test (ShW): statistic 0.963 for SA and 0.975 for SB, p-value 0.000 for
both,

� D'Agostino's K2 test (DA): 131, 032.833 for SA, 218, 447.082 for SB, p-value 0.000;

� SSIM:

� Shapiro-Wilk's test (ShW): statistic 0.999 for SA and 0.998 for SB, p-value 0.000 for
both,

� D'Agostino's K2 test (DA): 2, 272.411 for SA, 4492.322 for SB, p-value 0.000;

� SIFT :

� Shapiro-Wilk's test (ShW): statistic 0.966 for SA and 0.977 for SB, p-value 0.000 for
both,

� D'Agostino's K2 test (DA): 107, 402.547 for SA, 108, 058.162 for SB, p-value 0.000;

� SIFTl:

� Shapiro-Wilk's test (ShW): statistic 0.039 for SA and 0.135 for SB, p-value 0.000 for
both,

� D'Agostino's K2 test (DA): 13, 912, 105.949 for SA, 11, 653, 781.164 for SB, p-value
0.000;

Thus, in order to determine whether the observed di�erences between phonemes are statisti-
cally signi�cant, I needed to use non-parametric tests. The samples made by di�erent measures
were assumed independent.

5.3.3 Analyzing the speakers

For every measure, its distribution for speaker SA is di�erent from the one for SB are di�erent;
furthermore, quite obviously, the distributions of any two measures for a given speaker are
di�erent: see Table 5.4 (Kolmogorov-Smirnov and Mann-Whitney tests).
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(a) The change of SIFT (Equation 5.3) over time. The peaks of SIFT(/m(a)/, x), SIFT(/a/, x),
SIFT(/f(i)/, x) are consistent with the occurrences of /m(a)/, /a/, /v(i)/ respectively. The static /i/
resembles the collection of frames of the dynamic /a/. /l(a)/ and /n(a)/ are activated on /t(a)/ as well.

A shape resembling /t(a)/ is encountered not only in /t/, but also during the transitions between /m(a)/
and /a/, /i/ and /l/ and /a/ and /l/.

(b) The change of SIFTl (Equation 5.4) over time. Most of the time the values are close to 0. Shapes

resembling /a/ are associated with instances of /i/; /m/ is confused for /n/; shapes similar to /l(a)/
appear at /a/; /t(a)/ is correctly identi�ed at /t/, but also during the transition from /v/ to /i/.

(c) The comparison of SIFT and SIFTl measures: SIFT identi�es the similarity between /f(i)/ and /v(i)/.
SIFTl does, too, but it demonstrates a higher peak already in the section of /i/. Both SIFT and SIFTl
�nd that the static /i/ resembles the collection of frames of the dynamic /a/ (/i/-like shapes are also

found during the transitioning time, for example, between /a/ and /t/; the top peak of SIFTl(/i/, x) is,
indeed, at /i/).

Figure 5.6: The change of SIFT (scale-invariant feature transform)-based SIFT and SIFTl values
in time when comparing the static frames /m(a)/, /a/, /f(i)/, /i/, /l(a)/ and /t(a)/ to the same
sequence as in Figure 5.3, �ma ville natale� /ma.vil.na.tal/. An ideal similarity measure would
have major peaks when comparing the phonemes with the same articulation (/m(a)/ to /m(a)/,
/a/ to /a/, /f(i)/ to /v(i)/. . . ), smaller peaks for the same place of articulation (shared between
/t(a)/, /n(a)/ and also /l(a)/), moderate increases when comparing any two vowels, and very
minor increases when comparing a vowel to a consonant anticipating it.
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(a) The temporal behavior of EMD over the course of the sequence. The lower the value, the more

similar the images. No evidence of articulatory information.

(b) The temporal behavior of SSIM over the course of the sequence. The higher the value, the more

similar the images. The shapes most resembling the static samples of /f/ appear at the transitions from

/f/ to vowels.

(c) The temporal behavior of SIFT over the course of the sequence. The higher the value, the more

similar the images. The values anticipate the beginning of /f/, the peaks occurring right before the

beginning of the phoneme.

(d) The temporal behavior of SIFTl over the course of the sequence. The higher the value, the more

similar the images. The spikes generally occur at the end of /f/ and can last through the vowel and the

subsequent beginning of silence. Minor peaks follow the behavior of SIFT (Figure 5.7c): they pre-empt

the beginning of /f/.

Figure 5.7: The global view of the plots of the similarity measures between seven static images
of /f/ (/f(i), f(E), f(a), f(o), f(u), f(y), f(ø)/) and the consecutive images of the dynamic sequence
/�, fe, fE, fa, fOK, fo, fu, fy, fø, fœK, fã, fÕ, fẼ/.

154



5.3. Experiments

Figure 5.8: The overall distribution of the EMD measure for the distance between all the
dynamic and all the static captures for speakers SA (left) and SB (right) (the pair at the top);
SSIM (middle pair); and SIFT (bottom). One can see that the static dataset was closer to SA's
part of the dynamic one. The overall shapes of the distributions are similar, except that SSIM
has more image pairs whose similarity was greater than the mode for SB than for SA.
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Figure 5.9: The overall distribution of the EMD measure for the distance between all the
dynamic captures labeled as /i/ and the bulk of static captures for speakers SA (left) and SB
(right) (the pair at the top); SSIM, the dynamic /f(a)/ and the entire corpus of static captures
(middle pair); and SIFT , /f(y)/ (the bottom). One can see that the static dataset was closer to
SA's part of the dynamic one.
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Chapter 5. Static targets versus running speech for articulatory speech synthesis

Speaking styles a�ect the distributions: spontaneous speech is found to be di�erent from non-
spontaneous (Table 5.5, Kolmogorov-Smirnov (KS) and Mann-Whitney (MW) equality tests,
α = 0.05).

5.3.4 Phoneme comparisons

To recapitulate, I had the similarity values for each of the 95 MRI captures compared to each
of the 368, 848 RT-MRI frames, according to four similarity measures: EMD, SSIM, SIFT and
SIFTl. Each capture, MRI and RT-MRI alike, corresponded to a phonetic label, from which I
could extract the phoneme in production as well as its anticipated vowel, where applicable.

So, for any phoneme pair encountered, I aggregated all instances of their comparisons in the
corpus.

For example, when studying a measure sim on the static MRI capture of /a/ and any
instances of /O/ in the RT-MRI corpus, if we have twenty frames of /O/ in the �rst recording,
�ve in the third and �ve in the tenth, it would provide thirty values of sim. Or, when studying
phonemes in context, I could �nd the comparison values for the static MRI capture of, for
example, /k(i)/ and all the dynamic instances of, say, /t(a)/.

Every phoneme was associated to a list of its phonetic classes, such as vowel and consonant,
and, more speci�cally, oral vowel, nasal vowel, back vowel, central vowel, etc. or labial,
alveolar, etc. and plosive, fricative, etc. This way the aggregation could be carried out not
only over all separate phonemes, but also over the phonetic classes. To stay within the range of
comparable features, the phonetic classes were divided into the categories of place and manner
of articulation, nasality and lip roundedness.

Once all comparison values for a particular pair of phonemes, coarticulated phonemes or
phonetic classes were gathered, and I calculated their average and standard deviation. Note that
it was done in 10 randomly selected blocks, as in 10-fold cross-validation tests, to reduce the
memory load and repeated 6 times to make sure the conclusions were not due to the randomness
of the data split. Additionally, I tested V (vowel) and C(V) (consonant C anticipating a vowel
V) distributions for being di�erent.

The averages and standard deviations were then used to identify which static phonemes,
phonemes in context or phonetic classes were the closest to each phoneme, phoneme in context
or phonetic class encountered in the dynamic corpus, and vice versa, to what dynamic phonemes,
etc. the static ones came the closest. This part of the work is presented below in section 5.3.4�
�Matching static and real-time phonemes, phonemes in context and phonetic classes�.

The distributions were used to verify the presence of coarticulatory e�ects. This part of
the work, too, is presented below, in section 5.3.4: �Testing for phoneme-speci�c distribution
equality�.

Testing for phoneme-speci�c distribution equality

So, in order to do the following:

� To see whether we can see the same distributions for phonemes di�ering only in voicing,
e.g. /p/ and /b/;

� To identify di�erences caused by coarticulation, e.g. /p(a)/ and /p(ã)/;
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� To tell the distributions of vowels apart,

I tested the distributions formed by all comparisons of V's and C(V)'s with a same consonant
C for being di�erent with Kolmogorov-Smirnov (KS) and Mann-Whitney (MW) equality tests,
α = 0.05.

When comparing the distributions that apeared from the comparison between all rtMRI
frames labeled as a given vowel and the bulk of static MRI frames to the similar distribution
but for another vowel, all measures were able to distinguish the distributions of almost all vow-
els. There were instances where a vowel pair would produce two indistinguishable measure
distributions. This does not disqualify the result as most of these vowel pairs are rather close
phonetically (for example, /o/ and /u/); however, since our ideal measure would pick up on
phonological di�erences as well, such indistinguishable results are important to consider. Specif-
ically, EMD could not distinguish /a/ and /O/ for SA, but was able to distinguish all vowels for
SB; SSIM could not distinguish /o/ and /u/ for SB; SIFT /e/ and /Õ/, /Ẽ/ and /œ/, /Ẽ/ and
/E/ for SA, /ã/ and /O/, /o/ and /E/, /o/ and /@/, /œ/ and /œ̃/ for SB. SIFTl was the most
indiscriminate of them all: the distributions of /ã/ and /œ/, /a/ and /œ/, /Õ/ and /@/, /u/
and /y/ for SA and /e/ and /y/, /Ẽ/ and /o/, /Ẽ/ and /œ̃/ were found equal. Some confusions
were frequent across data splits, some were not. It should also be noted that almost all of these
pairs are cases when at least one vowel of the pair is relatively infrequent in the data.

When comparing distributions appearing from calculating a similarity measure between a
static image depicting a certain vowel or phoneme and the entire real-time dataset, there were
almost no instances when they would be equal. The exact list of indistinguishable distributions
varied with data splits, but usually there were fewer than �ve pairs per measure per speaker.
For example, EMD could not distinguish /K(a)/ from /K(ã)/ for SA, /K(ã)/ from /K(E)/ for SB,
SSIM /k(E)/ from /k(Õ)/, /k(a)/ from /k(u)/ for SB, SIFT /S(o)/ from /S(u)/, /S(a)/ from /S(u)/,
/K(ã)/ from /K(i)/, /t(E)/ from /t(i)/ for SA/ and /n(E)/ from /n(i)/, /K(u)/ from /K(y)/ for SB,
and, �nally, SIFTl /s(ø)/ from /s(u)/, /s(i)/ from /s(u)/, /S(a)/ from /S(E)/, /S(E)/ from /S(y)/,
/l(e)/ from /l(o)/ for SA and /k(i)/ from /k(y)/, /k(i)/ from /k(Õ)/, /S(a)/ from /S(E)/, /K(E)/
from /K(Õ)/ for SB, etc. To summarize, typically the indistinguishable distributions concern the
phonemes /s/, /S/, /K/, /l/, which together with the nasals are on the list of the phonemes that
were suspected to be problematic to capture in a static setting since the very beginning, as the
aerodynamics of producing a fricative is quite crucial to adjust its articulation and therefore
the static acquisition with its silent articulation was at a disadvantage. This is an indication of
the fact that, �rst, for most of the static images there is no evidence for them to be produced
incorrectly or inconsistently, since their distributions appear to be unequal; and second, some
sounds are certainly di�cult to sustain for an extended time in an MRI machine.

Matching static and real-time phonemes and phonemes in context

As each of our measures has a relation of order, i.e. any two phonemes can be considered more
or less similar according to it (in SIFT , SIFTl and SSIM, the greater the value, the more similar
the phonemes; in EMD, the reverse), that meant that for any static capture I had the means to
see what phonemes were considered to be the most similar to it, on average, according to each
of the measures. This direction of analysis is encoded as �static to dynamic� in the �gures and
text of this chapter. And vice versa, for any label encountered in the dynamic corpus, I could
identify the static capture that came to be the closest on average (dynamic to static).
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The exact list of suggestions varied with every program run, but repetitions appeared con-
sistently. I analyzed the two most frequent top matches across all the data splits, considering
the following factors to be of in�uence:

� Whether the most frequent top matches across the cross-fold checks were correct;

� How large was the variance of the particular phoneme pair comparison�with respect to
the average value;

� How various the top matches across the cross-fold checks were: if, according to a measure
sim, the closest phoneme to ph changes with every data split, then having a match of ph1
and ph2 does not bear the same importance as consistently �nding ph2 to be the closest
to ph1.

The behavior of similarity measures di�ered in the following two scenarios: (a) stat-to-dyn :
compare a given static MRI image depicting a consonant-vowel /C(V)/ or vowel /V/ blocked
articulation to all the RT-MRI images, broken down by their coarticulated phoneme labels
(/C(V)/ or /V/ again), or compare a set of static MRI images depicting the same consonant
/C/ in di�erent vocalic contexts to all RT-MRI images as per their phoneme labels, with no
coarticulation information; and (b) the other direction dyn-to-stat : compare the bunch of
dynamic images labeled as a particular phoneme17, with coarticulation or not, to static images,
with coarticulation or not.

When performing image comparisons in the dyn-to-stat direction, EMD consistently lists
/o/ and /O/ as the best candidates for any dynamic image when discarding coarticulatory
information, and /o/, /O/ or /m(a)/ when keeping it in. This holds for both of the speakers.
Its implication is that, on average, the statistics of the RT-MRI frame dataset matched most
closely those of these three static MRI captures.

In the reverse direction, stat-to-dyn, EMD is very noisy and inconsistent when dealing with
coarticulated phonemes (/C(V)/). When disregarding coarticulation, the best matches start
repeating over di�erent data splits, and some of them become right, but this improvement is
not dramatic and the matches stay sporadic.

We can thus conclude that there is little hope to capturing articulatory information with
the EMD measure, because of the datasets being too di�erent.

SSIM also has a problem of giving same best matches for all dynamic phonemes with no
coarticulation: in the dyn-to-stat direction, in the case of sounds with little or no obstruction
(vowels, approximants) /E/, /O/ and /a/ are the most frequent matches for SA, and /u/, /w/
and /e/ for SB. When additionally breaking down by anticipated vowels, I additionally get /K/
and /f/ in di�erent vocalic contexts that indiscriminately appear as top frequent matches for
SA, and /s/, /S/, /p/ for SB. This could be due to the fact that in smaller groupings, broken
down by coarticulation, the impact of articulatory transitions appearing in RT-MRI but labeled
just the same, as vowels or consonants anticipating a vowel, becomes large enough to get a high
SSIM score on average (or it could be indicative of incorrect timing in the phonetic labels). As
further evidence of this, when comparing RT-MRI vowel frames to static images, I can identify
some relation between the original vowels and the matches' anticipated vowels: for example,

17I will call such image sets �dynamic images� and similarly hereon, even though I do not mean any particular

RT-MRI frame; the approach is to generalize over all the frames that received a particular label
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the most frequent best matches for /E/ are /K(E)/, /l(e)/; for /ã/ the best matches are /K(E)/,
/K(ã)/; for /k(i)/ it is /k(i)/ or /l(i)/. This means that the openness of the anticipated vowel
is usually correct. The feature of nasality is not captured in the comparisons in this direction:
SSIM matches /f(E)/ and /p(o)/ to the dynamic images of /m(E)/; or, another example, /p(y)/,
/l(y)/, /p(i)/ to the dynamic images of /m(y)/.

As for stat-to-dyn SSIM, in most cases its best match for sounds with little or no obstruc-
tion will indiscriminately be /H/, /ø/ or /u/ for SA and /H/, /o/ and /w/ for SB�sounds that
fall into the same category, but are no precise matches (both /u/ and /o/ are back rounded
vowels, and the di�erence between them is that /u/ is close and /o/ is close-mid; /w/ is a labial
approximant, the closest consonantal equivalent of /u/). It both disquali�es SSIM from being
used as evidence of the static frames validity in this case, and, regarding the consistency and
similarity across speakers (labial approximants and close-mid rounded vowels), does show that
some articulatory information is indeed captured. The precision increases for fricatives, both
with vocalic context and not (/f, v, z, s, Z, S, K/�appearances of correct matches are numerous
and frequent over di�erent data splits), and even more so in the case of plosives: both /k/ and
/g/ get matches of /k/ and /g/, /p, b/ are mostly matched to /b/ in case of SA or /m/ in case
of SB, which captures the labial articulation, but raises questions about voicing and nasality. /t,
d/ get matches of fricatives with close places of articulation: /f, v/, /s, z/, /S, Z/. When applied
to nasal stops, however, almost all stat-to-dyn SSIM's top frequent matches involve nasality:
for example, for /m(Õ)/, they are /b(e) (same place of articulation) or /v(Õ)/ for SA, or /n(e) or
/m(e)/ for SB, or for /n(u)/, it is /j(u)/ (close place of articulation, same vocalic anticipation)
or /b(Ẽ)/ (nasality) for SA and /j(u)/ or /m(u)/ (nasality, same vocalic anticipation) for SB.

What can be concluded is that with SSIM it is easier to �nd the RT-MRI images that are
most similar to a given static image or a set of them rather than vice versa, to �nd the best
static image to explain a collection of RT-MRI images. When the articulators are close enough,
SSIM begins to capture vocalic context of consonants, and when there is a contact such as
in plosives, SSIM is capable of identifying the place of articulation. The asymmetry between
SSIM's treatment of nasality�no handling nasality in the dyn-to-stat direction, capturing it
in the stat-to-dyn direction and even favoring nasal matches for some oral consonants�is an
indicator that the concern regarding the correctness of nasalization in the static dataset may be
quite justi�ed: the oral sounds may be produced as if slightly nasalized because of the lack of
tension in the articulators, and in the simulation of nasal sounds the velopharyngeal port may
be not open enough because there is no actual speech production occurring during the static
MRI acquisition.

In the dyn-to-stat direction, SIFT 's matches of vowels with no regard of coarticulation are
rather close: its best candidates for /a/ are /a/ and /e/ (both are front and unrounded) for SA
and only /a/ for SB; for /e/, /e/ and /i/ (both are front and unrounded) for SA and /a/ and /e/
for SB; for /i/, /e/ and /i/ (both are front and unrounded) for SA and /y/ (also close and front
as /i/, but rounded) for SB; for /u/, /w/ for both speakers, /w/ being the closest consonant to
/u/; for /y/, /e/ and /w/ for SA, /y/ and /w/ for SB. When I break the cases of RT-MRI and
static MRI consonants by the vowels they anticipate, the top frequent best matches of vowels
start including consonants, with the same e�ects as in the similar scenario of SSIM: there is a
relation between the (dynamic) vowel and the vowel anticipated by the (static) consonant. For
example, SIFT matches /a/ and /k(a)/ to the dynamic /a/, or /w(a)/, /t(o)/ and /p(o)/ to the
dynamic /o/. The explanation could be the same as in SSIM: either this is the in�uence of the
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Chapter 5. Static targets versus running speech for articulatory speech synthesis

transition times, or it is an indicator of temporal shifts in the phonetic labeling.
In the stat-to-dyn direction, SIFT 's matches of vowels with no regard of coarticulation are

rather oftentimes nasal: the static /a/ is matched to /ø/ or /Ẽ/ of SA or to /œ̃/ or /ø/ of SB;
/ø/ to /ø/ or /œ/ for SA and /ø/ for SB; /E/ to /œ̃/ or /Ẽ/ for SA and /œ̃/ for SB; /œ/ to /ø/
or /œ̃/ of SA or /œ̃/ or /ã/ of SB. Just like it was with SSIM of the same scenario, /H/, /w/
and /u/ are unusually frequent and indiscriminate matches as well.

When applied to nasal vowels and consonants, dyn-to-stat SIFT is not capable of matching
them to the nasal vowels in the static dataset: all its matches are oral. As for the st-to-dyn
direction, SIFT does pick either nasal RT-MRI phonemes or phonemes with velar articulation,
e.g. according to SIFT , if coarticulation is taken into account, the closest matches to the static
/ã/ are /b(ã)/ or /v(ã)/ for SA and /r(o)/ for SB; and with no coarticulation, no consonants
appear among the matches, and the matches are correct: for example, the static /Ẽ/ gets matched
to the dynamic /Ẽ/ or /œ̃/ for SA or /œ̃/ or /Ẽ/ for SB.

In fricatives, with no regard for anticipated vowels both dyn-to-stat and, to a lesser extent,
stat-to-dyn SIFT matches dynamic (static) fricatives to static (dynamic) vowels. Stat-to-dyn
works better: for example, its matches for /K/ are nasal vowels, and top matches for /f, s, S/
do include not only vowels, but also /f, v/, /s, z/ and /S, Z/ respectively. However, when we
take into account the vocalic context, the best matches drastically improve for /f, v/ and /s,
z/: the best match for the dynamic /f(a)/ is the static /f(u)/ or /f(i)/ for SA, /f(u)/ for SB; for
/f(o)/, it is /w(a)/ or /f(o)/ for SA and /f(u)/ or /f(o)/ for SB; for /s(o)/, it is /s(u)/ or /s(ø)/
for SA and /s(u)/ or /f(u)/ for SB. There is no improvement for /K/ and /S, Z/: the dynamic
/K/ gets mostly confused with static /k/, and the static /K/ straight out does not correspond
to any reliable matches in the dynamic datasets (basically, every data split changes the best
candidate, and they do not repeat). One possible explanation could be that the liquid sound
/K/ is produced through a �eeting contact between the velum and the tongue in RT-MRI data
and through a clearly visible, full-on contact, which is more appropriate for a stop or a trill, in
the static data. As for /S, Z/, their dynamic instances are matched to the static /n/, /s/, /l/,
/t/�again, and sounds with a similar place of articulation, but a di�erent manner. The SIFT
matches of the static /S/ are extremely noisy. Whenever SIFT does matches it correctly, it is to
the dynamic /Z/ rather than /S/.

Just like in fricatives, in stops and nasal stops, with no regard for anticipated vowels dyn-
to-stat SIFT matches them to static vowels, but when we take into account the vocalic context,
it identi�es the approximate place of articulation: aside from correct matches, we may have
frequent confusions like /n/-/t/-/f/-/s/ and /p/-/m/-/v/. It should be noted, however, that no
vocalic context of the static /l/ ever appears among the best matches of the dynamic /l/. Also,
in the stat-to-dyn direction, SIFT matches the static /n/ not only to the dynamic /n/, but also
to /t/, /v/ and /z/, thus favoring dynamic matches with a close place of articulation, but no
contact and no nasality. The matches of the static /l/ in its various vocalic contexts most often
are the instances of /j/, though /n/, /v/, /z/ appear too.

This means that SIFT is e�cient at identifying the place of articulation, not only for the
consonants, but also for the vowels (whether they are front, central or back). Putting together
the evidence of mismatches, the results of SIFT indicate that the static-MRI simulation of the
liquids /l, K/ and treatment of nasality may have indeed been incorrect: the static and dynamic
samples of /l, K/ almost never match, and the asymmetry of the matches in the nasals means
that, in the case of nasal sounds, the velopharyngeal port was not open enough in the static
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dataset to correctly re�ect the dynamic one, and in the case of oral sounds, they were slightly
nasalized, which prevented the dynamic dataset's oral sound samples from being matched to
them.

The analysis of dyn-to-stat SIFTl matches shows that it makes indiscriminate matches in
the case of vowels, matching almost all of them to /o/ and /O/ in the case of SA and /u/ and /o/
of SB. In approximants and liquids, dynamic /j/ are matched to static /l/, and static samples
of /l/ are matched to dynamic ones of /j/. Stat-to-dyn SIFTl is very noisy, either producing
new top matches at almost every data split, or matching indiscriminately to /u, œ, H/.

Before concluding that SIFT seems to be most sensitive to articulation, let us investigate its
methodology in greater detail. Figure 5.10 shows what kind of matches can be made correctly
by SIFT and how it re�ects the interpretability of these results.

In particular, Figure 5.10a and Figure 5.10b are examples of very reasonably identi�ed
matches. Both of them depict the SIFT transformation from a static vowel�/a/ in the case
of Figure 5.10a, /E/ in the case of Figure 5.10b�to a dynamic one, /a/. The algorithm
picks up on all the key points of articulation. The question of interpretability comes up when
comparing the resulting values of these comparisons. The expected result, naturally, would be
that the static /a/ resembles the dynamic /a/ at least slightly better than the static /E/ does,
despite the fact that the gesture of /E/ passes over a shape very similar to /a/. This is not,
however, what happens. Due to the multiple matches at the articulatorily less relevant chin
and a match of the constriction of the vocal tract despite its incorrect location, the static /E/
gains a higher match count and is thus considered more similar to /a/ than the static /a/ is
(SIFT(/a/st, /a/dyn) = 0.1, SIFT(/a/st, /E/dyn) = 0.1125). This behavior is the perfect example
of the motivation to analyze the values over time and on average, since the change in time proves
to be more illustrative of the real similarities�see Figure 5.6.

Sometimes the matches are indeed correct, but we have to admit that this success does not
do justice to what is happening in the frame from the articulatory point of view, as is shown
in Fig. 5.10c where the algorithm picks up on the shared place of articulation between /n(i)/
and /z/ rather imprecisely; alternatively, even if the matches do identify a certain similarity as
in Figure 5.10d between /p(a)/ and /p(i)/, it may not be signi�cant enough to show up in the
numerical results due to too few matches in total.

It also goes without saying that the algorithm may also make mistakes, the extreme cases of
which are shown in Figure 5.11: the mistakes may be made in such a way that does not disqualify
the �nal result, as in Figure5.11a, or such that cannot be treated in any other way than noise,
as in Figure 5.11b. As mentioned in the SIFT con�guration above in Chapter 5.2.2, I visually
analyzed a set of frame pairs to �nd the right balance between selectivity and productivity of
SIFT matches through variations in its parameters. The �nal set of parameters ensured that
cases like in Figure 5.11 did not happen often.

Thus, it is reasonable to conclude that EMD and SIFTl do not provide (much) articulatorily
relevant information, while SIFT de�nitely does, especially on average, which enables us to
discard noise. SSIM can also provide some indirect evidence in the stat-to-dyn direction,
once the articulators are close enough. In the case of vowels, SIFT is more sensitive to the
front-central-back distinction, while SSIM to open-mid-close.

The qualitative analysis of matches and mismatches brings us to the following conclusions:

� We do not dispose of the means to validate or discredit the simulation of the quality of
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vowel production in the static MRI dataset.

� There is an issue of nasality representation in the static MRI dataset: the oral sounds are
slightly too nasalized, and the nasal sounds are not nasalized enough.

� The liquids /l, K/ produced for the static MRI dataset do not match those seen in the
real-time data.

� The phoneme class that is matched the best is the fricatives barring /S, Z/, which seem
to have been problematic to either produce in the static MRI setting or to match by our
methods.

� Judging by matches like /a/-/k(a)/ or /o/-/p(o)/, what may be happening could be (a)
the contribution of consonant-vowel transition periods in the real-time data that is not
represented by the static frames, or (b) the phonetic label timing, obtained through forced
alignment, could be incorrect, thus a�ecting the analysis.

� A curious e�ect is that it was common that voiced consonants from real-time data matched
more often than their unvoiced counterparts, which were actually recorded in the static
dataset. It is not necessarily due to their vocal tract shapes being a better match, but
could be simply due to the procedure of averaging, since voiceless fricatives typically last
longer than their voiced counterparts, thus allowing for a greater articulatory variation.

5.4 Evaluation

The qualitative analysis in the previous section above was performed on the most frequent and
closest matches. There is a need to also evaluate the results quantitatively, to cover a larger
expanse of data rather than the top most frequent matches and to make sure their interpretation
was not a�ected by human bias.

5.4.1 Articulatory similarity measure

Let us consider a function that can compare any two images depicting vocal tract con�gurations
and give a value of how similar they are. Let us say, we compare /l/ and a number of images:
/l/, /u/, /k/ and /f/, and according to our analysis, the image that is closest to /l/ is /f/. This
is incorrect, but these phonemes actually have a lot in common: both are articulated at the
front of the vocal tract (alveolar and labiodental consonants), both are oral, and the lip position
is very similar unless a�ected by coarticulation. It would be reasonable to penalize this error
less than for assuming that the closest phoneme to /l/ is /k/, which has a di�erent place of
articulation.

This motivated me to create a �golden standard� similarity measure based on the similarity
of articulatory features, according to the principles laid out above in Chapter 5.2.2.

This measure, RS(ph1(V1), ph2(V2)) standing for reference similarity (Equation 5.10) be-
tween phonemes ph1 and ph2, optionally anticipating V1 and V2 respectively, has several com-
ponents.

The �rst component is CF (Equation 5.5), for common features, and it is based on the
lists of phonetic classes each phoneme is associated to. For example, /n/ is a nasal consonant
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(which refers to the class of nasal stops),alveolar, nasal (which refers to all phonemes with
nasality), consonant, and /t/ is a plosive, alveolar, oral consonant, oral and consonant. The
features they share are alveolar and consonant�two features in total,�while the union of the
lists of features is six features long. Thus the proportion of the shared features is two over six.

CF(ph1(V1), ph2(V2)) =
|F1 ∩ F2|
|F1 ∪ F2|

, Fk = {articulatory features of phk} (5.5)

The values of CF thus vary from 0 to 1, 0 standing for two phonemes that do not have a
single feature in common and 1 for those that are identical from the articulatory point of view
(such as /p/ and /p/ or /k/ and /g/).

One disadvantage of CF is that it has no information on how close or far to each other
two places of articulation are, or how similar or distinct two manners of articulation are. This
information is used in the next two components, PlA and MA, standing for the places and
manners of articulation respectively.

PlA works on the ordering of all possible places of articulation within the vocal tract: labial,
alveolar, palatal, etc. The distance between element positions on this list, divided by the
maximal distance possible (6 since my implementation has 7 categories of places of articulation),
can be used to measure the similarity of the places of articulation�Equation 5.6:

PlA(ph1(V1), ph2(V2)) =
|pl1 − pl2|

6
, plk = place of articulation of phk (5.6)

Similarly to PlA,MA works on the ordering of all possible manners of articulation: plosive,
nasal consonant, fricative, approximant, close vowel, close-mid vowel, etc.�Equation 5.7:

MA(ph1(V1), ph2(V2)) =
|m1 −m2|

7
,mk = manner of articulation of phk (5.7)

The �nal two components, CVsim (Equation 5.8) and VVsim (Equation 5.9), are values that
relate to the anticipated vowels V1 and V2, taking into account the contribution of coarticulation
into the similarity between ph1 and ph2. Since V1 and V2 are optional, if one or both of them
are missing, the respective components do not apply. They are also omitted when dealing with
cases such as /p(a)/ and /b(a)/�consonants that vary only in voice and anticipate the same
vowel�in order not to penalize them for dissimilarity between /p/ and /b/ and /a/.

CVsim(ph1(V1), ph2(V2)) = RS(ph1, V2) + RS(ph2, V1) (5.8)

VVsim(ph1(V1), ph2(V2)) = RS(V1, V2) (5.9)

Then RS can be de�ned as follows:

RS(ph1(V1), ph2(V2)) =
1∑
fwf

×
∑

f∈{CF,PlA,MA,CVsim,VVsim}

wf × f(ph1(V1), ph2(V2) (5.10)

I empirically used wCF = 0.5,wPlA = 1,wMA = 1,wCVsim = 0.3 and wVVsim = 0.1.
An illustrative excerpt of the values that can be obtained with RS is given in Table 5.6.
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Chapter 5. Static targets versus running speech for articulatory speech synthesis

(a) An example of correct results produced by

SIFT when comparing the static /a/ with the

dynamic /a/: correctly matched the alveolar re-

gion, the palate, the upper and lower lips, two

matches at the chin, the tongue, the opening

between the tongue dorsum and the velum, the

velum itself. The only imprecise match is the

space between the uvula and the back of the

tongue being mapped further down the pha-

ryngeal wall of the speaker. The total num-

ber of matches is 8, which produces the value

8/80 = 0.1000. Compare this SIFT result to

the one in Fig. 5.10b, where the same dynamic

frame is compared to /E/ rather than /a/.

(b) An example of correct results produced by

SIFT when comparing the static /E/ with the

same dynamic frame as in Fig. 5.10a, /a/: just
like in that example, SIFT correctly matched

the palate, the upper and lower lips, bottom of

the tongue and the velum. One more match at

the chin appeared. Despite the fact that /a/
is central and /E/ is front, the frontal narrow-

ing between the tongue and the palate in the

static frame was matched to the central one in

the dynamic. The total number of matches is 9,

which produces the value 9/80 = 0.1125, which

is greater than 0.1000 from comparing the the-

oretically closer static frame of /a/ to this dy-

namic frame.

(c) An example of correct results produced by

SIFT when comparing the static /n(i)/ with

SA's dynamic /z/: The algorithm correctly

matched the upper and lower lips, the chin and

the palate, and it is correct not to match the

alveolar contact of /n/ with the mere narrow-

ing of the vocal tract for the alveolar fricative

/z/. However, these matches only very approx-

imately re�ect the shared place of articulation

for the two sounds.

(d) An example of correct results produced by

SIFT when comparing the static /p(a)/ with

SB's dynamic /p(i)/: The algorithm correctly

matched the place of articulation, the lips, but

since this is the only match identi�ed, it will

not be signi�cant enough to consider the sounds

similar.

Figure 5.10: Examples of quite reasonable matches done by SIFT when comparing static images
(left halves) to the dynamic ones (right halves). Circles indicate areas that were features, i.e.
that were considered as potential matches. Whenever a circle at the left is joined to a circle at
the right, it means the respective areas matched and, from the algorithm's point of view, the
con�guration of the articulator in that region is similar.
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5.4. Evaluation

(a) An example of mixed results produced by

SIFT when comparing the static /m(Õ)/ with

the dynamic pause (SA will eventually start

pronouncing /ku/): two correct matches at the

lips, one of the absence of alveolar contact, one

of the sublingual cavity, and yet mismatching

the chin with the epiglottis, the back of the

tongue with the dorsum and the constriction

between the tongue and the velum with a simi-

lar shape in the nasal cavity. This is an example

of reasonably noisy matches.

(b) A worst-case scenario for SIFT, where all

the matches are very noisy: matching the static

/a/ against the dynamic /l(e)/ and mapping

the upper lip to the pharyngeal wall and to the

back of the tongue, the teeth to the vertebra,

the tongue dorsum to its root and the chin to

the vertebra. The situation was probably ag-

gravated by the incorrect window.

Figure 5.11: Examples of incorrect matches done by SIFT when comparing static images (left
halves) to the dynamic ones (right halves). Circles indicate areas that were features, i.e. that
were considered as potential matches. Whenever a circle at the left is joined to a circle at
the right, it means the respective areas matched and, from the algorithm's point of view, the
articulator's con�guration there is similar.
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5.4. Evaluation

As it was discussed above, for each static MRI frame and for each RT-MRI frame's phonetic
label each of the four measures had its �best candidates��RT-MRI phonetic labels or static
MRI frames respectively that, on average, were the closest. RS enabled me to carry out a formal
evaluation of the matches and mismatches in these best candidates.

Furthermore, I generalized PlA (Equation 5.6) andMA (Equation 5.7) to be able to evaluate
the best candidates when dealing not with phonemes, but with articulatory classes�RPhClD
standing for reference phonetic class distance, Equation 5.11:

RPhClD(phcl1, phcl2) =
|index(phcl1) − index(phcl2)|

maximal index in this category
(5.11)

When applied to the oral-nasal or rounded-unrounded distinctions, RPhClD is 0 when
the phonetic classes are the same and 1 otherwise. When applied to the places and manners
of articulation, RPhClD can take intermediate values between 0 and 1 as well, to show that a
fricative is as close to an approximant as an approximant is to a close vowel, and that is
much closer than to an open vowel.

5.4.2 Articulatory error

For each block of aggregated data and each phoneme pair encountered in it, I produced the
averages and standard deviations as explained above, thus, given a phoneme in one corpus
(static or real-time), obtaining a ranking of phonemes of the complementary corpus by their
similarity to the initial phoneme.

To begin, let us consider only the best candidate cand(1)ph for each phoneme ph and each of
the four similarity measures. The phoneme in question could be compared to the candidate:

RS(1) = RS(ph, cand(1)ph)

If the candidate was a perfect match, then RS(1) was equal to 1. If there was nothing in
common between the two phonemes, RS(1) was 0. This way, for cand(1)ph, the measure that
produced it produced an error 1− RS(1).

When evaluating a measure (EMD, SIFT , SIFTl or SSIM) only on the �rst best candidate,
the error AE, standing for articulatory error, would accumulate over the entire set of initial
phonemes and their best candidates:

AE1 =
∑
ph

1− RS(ph, cand(1)ph)

Let us consider further best candidates. The measure expectation for the (ph, cand(1)ph) pair
was E[sim(ph, cand(1)ph)]; for, say, the second best candidate it was lower in the case of SIFT , SIFTl
and SSIM and higher in the case of EMD: E[sim(ph, cand(2)ph)]. We can count this di�erence
in and discount the error contributed by a second- or third-best candidate proportionally to the
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Chapter 5. Static targets versus running speech for articulatory speech synthesis

di�erence between their averages�Equation 5.12:

AEk =



∑
ph

∑
k(1− RS(ph, cand

(k)
ph ))×

E[sim(ph,cand
(k)
ph )]

E[sim(ph,cand
(1)
ph )]

if sim = SIFT or SIFTl,∑
ph

∑
k(1− RS(ph, cand

(k)
ph ))×

E[sim(ph,cand
(k)
ph )]+1

E[sim(ph,cand
(1)
ph )]+1

if sim = SSIM,∑
ph

∑
k(1− RS(ph, cand

(k)
ph ))×

E[sim(ph,cand
(1)
ph )]

E[sim(ph,cand
(k)
ph )]

if sim = EMD

(5.12)

This way, if the average value for the second best candidate was 2
3 times the average value

for the winner, this RS-related error will be counted within the �nal AEk error value with the
weight 2

3 .
Table 5.7 presents the best and worst similarity measures, according to the articulatory error

from Equation 5.12, across the entire dataset, aggregated by speakers, directions of comparisons
(stat-to-dyn or dyn-to-stat), the number of best matches counted into the formula (one or two),
the best and worst similarity measures and their average error across the entire corpus in that
speaker-direction-coarticulation modality setting. It shows that, in fact, on average the matches
on the frames of SA were better with SIFT , and those of SB (and consequently, both of them
pulled together) with SSIM (but for stat-to-dyn comparisons when coarticulation is taken into
account, when SIFT is better for SB too�though actually their error values are almost equal
there, 0.2406 for SIFT and 0.2421 for SSIM). The worst matches are EMD and SIFTl.
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Chapter 5. Static targets versus running speech for articulatory speech synthesis

5.5 Towards bringing the two directions together

Of the two approaches I have studied, one driven by static articulatory targets and one syn-
thesizing the articulatory parameter sequence just like the acoustics, both had their strong and
weak points, as discussed above. It would be highly bene�cial to create articulatory targets with
static captures and transitions between them with dynamic data. The work presented above
can thus serve as a point to build upon when working towards bringing the two approaches
together in a hybrid articulatory synthesizer.

First o�, we showed how SSIM and SIFT can help us �lter out MRI captures where the
static simulation of sound production did not succeed: these are the sound categories (liquids,
sibilants) where both SSIM and SIFT repeatedly fail to match the dynamic frames to the their
static counterparts.

Then, one could augment the dataset of blocked articulations through combining the ensem-
ble of static images (that would bring in the speaker's vocal tract dimensions, preserving the
homogeneity of the database) with multiple dynamic frames labeled with the phonetic label of
interest (that would bring in the articulatory information) with techniques such as [DTI+19].

As for extracting the articulatory strategies for transitions, SSIM and SIFT do not o�er a
straightforward way to do that with RT-MRI data. A promising prospect would be to go back
to individual windows in the case of SSIM and feature matches in the case of SIFT and to try to
identify those that have a high SSIM score or that are close matches. Such a speci�c focus on one
place of articulation may be less informative for the global picture, but it could contribute more
to our understanding of the articulators' navigation to and from the hypothetical articulatory
target.

5.6 Conclusion

5.6.1 Overview of results

To match our static MRI dataset to the dynamic RT-MRI one, we have presented four image
similarity measures. All four of them were appropriate candidates for investigation: they were
known to be used in the �eld of computer vision, they were sensitive to the changes in the data,
and their distributions were able to distinguish the speakers and even speaking styles.

Two of them, EMD and SIFTl, were subsequently disquali�ed from drawing conclusions re-
garding articulation because of their temporal behavior (not informative peaks in the considered
examples, high correlation between di�erent comparisons in the case of EMD and most values
being too close to 0 in comparison to occurring spikes in the case of SIFTl�Figures 5.4 and
5.6b), their distributions (no discrimination between the similarity measure distributions for
very di�erent sounds), through the qualitative analysis of the phonemes of one dataset most
often found to be on average the closest to a given phoneme of the other dataset (no articu-
latory interpretation for the confusions), and through the quantitative analysis with the AE1,
AE2 error functions (Equation 5.12, Table 5.7), where they were ranked as the worst similarity
measures in all modalities of the experiment.

The other two, SIFT and SSIM, were found to be capable of capturing some articulatory
information, which was validated �rst with the temporal analysis on several examples, then,
circumstantially, through having di�erent measure distributions for su�ciently di�erent sounds,
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5.6. Conclusion

then through a qualitative analysis, where despite using a di�erent methodology, they reached
rather consistent conclusions regarding what sounds can be and cannot be matched through
delving into the computation process of SIFT, and �nally, through a quantitative analysis,
where their performance was consistently the best judging by the AE1, AE2 error functions.
SIFT performed better on matching the frames of SA�same speaker as in the static dataset,�
and SSIM fared better with a change of speaker for SB. This could possibly relate to the shape
of the distributions of SSIM comparison values, where while the mode of SB's comparisons was
lower than the mode of SA's ones, the mass of images with a similarity value greater than the
mode was higher for SB than for SA.

As the measures were rather noisy, a single comparison between just two images was usually
not informative enough. Patterns apparent enough to let us draw conclusions appeared only
through averaging and selecting the most frequently identi�ed best matches in the case of
qualitative analysis and all the best matches in the case of the quantitative one.

The quality of the static MRI dataset seems to be appropriate: in general, it can serve both
as a reference for the place of articulation produced in the dynamic data and as a manifestation
of coarticulation. The problematic sounds and features that I was able to identify through
the analysis of measure distributions and mismatches were the liquids /l, K/, whose dynamic
production could not be matched by their static simulation, the alveolar fricatives /s, S/, again,
simulated unrealistically in the static setting, and the feature of nasality: apparently, the oral
sounds in the static corpus were slightly too nasalized, and in the nasal sounds, vice versa, the
velopharyngeal port did not open enough.

These problems tie well with the known issues of blocked articulation with no phonation
(the precision of articulation of the sounds with a complicated temporal scenario), aggravated
by the supine position in an MRI machine.

Furthermore, the peaks in the temporal behavior analysis and the mismatches found in the
qualitative analysis are evidence of a great in�uence of transition periods in the RT-MRI data
on the results. The shapes appearing at the time of transition to and from a sound may fail to
be explained with the static image that, according to the phonetic label, should be the closest.

This means that, if we were to build a hybrid articulatory speech synthesizer both on MRI
and RT-MRI data, MRI data could indeed be used on the condition that it would be cleaned
out from the sounds whose simulation was not successful.

As for �nding articulatory targets in the RT-MRI data to use them in a similar way as
the static MRI frames, we have to conclude that the impact of coarticulatory e�ects and the
rapidness of real-time articulation would prevent us from singling out one particular image of, for
example, /b(i)/ to use it as a target. Since we were only able to �nd patterns through averaging
and the analysis of most frequent values, the same approach would need to be used to create
articulatory targets from RT-MRI frames: we would need to combine numerous samples labeled
with /b(i)/ in one single picture. Static pictures could then serve as a source of information on
the place of articulation, to help choose the best articulated frames out of the entire phoneme.
Another approach could be to assume phonetic labeling to be correct and to indiscriminately
take the middle of each phoneme as the target, as it was done in [LQSN17].
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5.6.2 Future work

A direct continuation of this study would be to repeat it focusing on speci�c articulators, by
taking windows as de�ned in Chapter 4. For example, a window of the velum (as in Figure 4.2b)
is expected to let us zero in on the feature of nasality and disregard everything that would be
irrelevant to it.

When building a joint articulatory synthesizer using both static and dynamic articulatory
data, in order to bene�t from the precision and little variation of the static data and from the
actual speech production information in real time as manifested in the dynamic data, it seems
feasible to extend the collection of static frames to cover more phonetic contexts, which could
be done with image combination techniques such as [DTI+19].

Furthermore, the similarity measures could be integrated into forced alignment of RT-MRI
data to improve the quality of phonetic labeling. It would be especially fruitful to combine the
information of SIFT and SSIM, to be able to handle both similar and di�erent speakers and to
bene�t from the strengths of both measures.
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6

Conclusions

6.1 Global overview

The last three chapters presented the results for an articulatory speech synthesizer driven by
coarticulation-aware static vocal tract con�gurations (Chapter 3), an articulatory speech syn-
thesizer that functioned as a regular DNN-based parametric speech synthesizer expanded with
articulatory parameters (Chapter 4) and a bridge between the data types underlying the two
(Chapter 5).

It was shown that, in both methods used in articulatory speech synthesis, we can bene�t
from some advantages but have to face certain limitations inherent to the method.

Rule-based articulatory speech synthesis boasted a comprehensive control over the entire set
of the articulators�the jaw, the tongue, the lips, the velum, the epiglottis and the larynx�
as well as F0, glottal opening, subglottal and supraglottal pressure; with a varying quality of
the result, it could cover the entirety of French phonology thanks to an extended set of vocal
tract con�gurations, coming from static MRI images, that served as building blocks for the
system. Applied as is, it used to have a problem with attaining constrictions for stops and nasal
stops, reaching too close constrictions for fricatives and vowels, and mistreating the feature of
nasality. This was e�ciently, if brutally, solved by resetting those tubes of area functions that
contradicted the phoneme in production, implemented at a post-processing stage, right before
simulating the acoustics.

The movements and the speech generated by the rule-based system were correct enough
to showcase the general validity of the approach but far from natural or intelligible enough to
become usable in any real-case scenario. This was due to two major factors: timing of the
system, that, too, was managed with rules, and the interplay between di�erent components.
The said interplay was not as decisive in the case of vowels, which have a fairly simple acoustics
of production, and of stops, which have a very recognizable acoustic cue of a burst, but quite
crucial for fricatives, where the place of articulation, the pressure and the timing need to be
especially well coordinated, and for liquids, that were synthesized closer either to semi-vowels
or to stops at the corresponding places of articulation.

The DNN-based parametric articulatory speech synthesizer that was presented then ad-
dressed the issue of the subpar timing control that was so conspicuous in the previous system.
It was based on a standard deep-learning parametric speech synthesizer developed with the
default �build your own voice� method in Merlin [WWK16] and trained with a feed-forward

175



Chapter 6. Conclusions

network on the denoised audio recorded simultaneously with RT-MRI acquisitions. Then the
original acoustic model of that base speech synthesizer was augmented with articulatory pa-
rameters automatically extracted from RT-MRI images. Those parameters did not represent as
comprehensive a picture of articulation as the �rst synthesizer, but should give us the position
of the lips, indirect evidence of the position of the tongue, nasality and key constriction values
between the velum and the tongue and the tongue and the pharyngeal wall. The quality of
speech and movements attained by this articulatory speech synthesizer is considerably higher
than that of the �rst one. Articulation-wise, compared to the �rst synthesizer, it deals well
with vowels and fricatives but struggles with those sounds that require the articulators to come
in contact. As for articulatory trajectories, they are handled considerably more naturally that
those in the �rst synthesizer.

The common point between the two systems was the use of MRI, albeit of di�erent kinds:
static and dynamic. It was important to explore the relation between the two types of data and
to try to identify some key vocal tract con�gurations among those recorded in RT-MRI similar to
what was captured in the static setting. I concluded that the static MRI dataset was in general
valid, although it struggled with the representation of fricatives, where the aerodynamics of the
production is an important factor to being able to pronounce the sound correctly, and liquids,
the production of which requires the knowledge of their temporal behavior. The consequence of
that is, possibly, an inferior quality of synthesis of those two classes of sounds by the rule-based
synthesizer that relied on static MRI data was not only due to a misaligned strategy of all its
components control, but also due to the shortcomings of the original data as well.

6.2 Future work

Both articulatory speech synthesizers had their strong and weak points. Aside from potential
study-speci�c directions to explore that were mentioned at the end of each chapter, overall, it
would be quite pertinent to unite the two approaches in a hybrid system. This hybrid system
could be relatively simple, such as just using the duration model from the DNN-based articu-
latory speech synthesizer to inform the timing strategy of the rule-based synthesizer. It could
also be much more intertwined. For example, we could make use of a dramatically extended
library of vocal tract con�gurations using dynamic data, or apply an automatic delineation al-
gorithm on RT-MRI data, represent the contours with the same articulatory model as in the
rule-based synthesizer and train the DNN-based speech synthesizer with those articulatory pa-
rameters. Another promising prospect is to de�ne gestures or targets as elements from a joint
sensory-motor space rather than only sensory or only the other; this outlook is supported by
psycholinguistic research [DR19].

Considering the long-term applications envisioned for articulatory speech synthesis, it will be
necessary to focus not only on the correctness, comprehensiveness, naturalness and intelligibility
of systems in development, but also on their ability to serve their purpose. This would require
them to be quite �exible and highly reactive, for example, to allow the user to adjust the vocal
tract geometry and promptly provide the updated acoustic output.

As for the exploration of articulatory speech synthesis in application to speech production
studies, with the quality of synthesis such as in the DNN-based synthesizer, it is already within
the realm of possibility, even more so when taking into account the astounding advances of deep
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learning that should be able to help boost the output quality even more.
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Appendix A. Prompts for spontaneous speech in the RT-MRI corpus

French English
Comment avez vous choisi votre parcours pro-
fessionnel et l'université ? Parlez nous de vos
études.

How did you decide upon your career and uni-
versity? Talk about your studies.

Parlez nous de ce que vous faites en recherche. Talk about your research.
Qu'est-ce que vous aimez dans votre travail ? What do you like in your work?
Racontez votre expérience de l'apprentissage des
langues étrangères.

Talk about your experience with learning for-
eign languages.

Si vous deviez ouvrir un commerce, qu'est-ce
que ça serait ?

If you were to start a business, what would it
be?

Qu'est-ce que vous achetez au supermarché
d'habitude ?

What do you usually buy at a supermarket?

Qu'est ce qui fait un petit déjeuner parfait pour
vous ? Et pour les déjeuner et dîner ?

What is the best breakfast for you? Lunch?
Dinner?

Pouvez-vous expliquer comment vous cuisinez
votre plat préféré ?

Explain how to make your favorite dish.

Où préférez vous manger : dans un restaurant,
chez vous ?

Do you prefer eating out or at home?

Que pensez vous des fast-food ? What is your opinion on fast food?
Veuillez décrire votre ville natale et votre vie là
bas.

Describe your home town and what your life
there was like.

Racontez votre dernier voyage. Talk about your last trip.
Quels sont vos loisirs préférés ? What are your favorite pastimes?
Racontez un �lm ou un livre qui vous a laissé
une impression durable.

Talk about a movie or a book that made a last-
ing impression on you.

Quelles sont vos principales sources
d'informations (Internet, journaux, télé. . . )
et de quel genre sont ces informations ?

What are your main information sources (the
Internet, newspapers, TV. . . ) and what kind of
information is it?

Quelles tâches domestiques faites vous ?
Bricolez vous ?

What household chores do you do? Do you tin-
ker?

Quelle est votre destination de voyage de rêve
et pourquoi ?

What is your dream traveling destination and
why?

Que pensez vous du système de santé en
France ?

What do you think of the healthcare system in
France?

Que pensez vous des grèves en France ? What is your opinion on strikes in France?
Quels sont les avantages et les inconvénients
d'habiter à Paris ?

What are pros and cons of living in Paris?

Pensez vous que vous êtes économe ? Quelles
dépenses vous permettez vous facilement ou
non ?

Do you think yourself sparing? What expenses
do you allow yourself easily and what not?

Table A.1: Prompts for spontaneous speech used to acquire the RT-MRI part of the ArtSpeechM-
RIfr [DFF+19] corpus.
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Detailed summary in French

Cette thèse se situe dans le domaine de la synthèse articulatoire de la parole, ce qui est la
tranformation du texte en sa réalisation vocale combinée avec l'évolution des mouvements des
organs de l'articulation, des articulateurs, nécessaire pour produire l'énoncé.

La thèse est organisée en trois grandes parties :

� Celle consacrée au développement d'un synthétiseur articulatoire de la parole basé sur le
concepte des cibles articulatoires ;

� Celle consacrée au développement d'un synthétiseur articulatoire de la parole qui s'appuie
sur des données enregistrées en temps réel ;

� Celle qui traite des liens que l'on peut établir entre les deux approches au-dessus utilisées.

B.1 Synthèse articulatoire de la parole à partir des données IRM

statiques

Le premier synthétiseur est issu d'une approche à base de règles. Celle-ci visait à obtenir le
contrôle complet sur les articulateurs (mâchoire, langue, lèvres, vélum, larynx et épiglotte).
Elle s'appuyait sur des données statiques du plan sagittal médian obtenues par IRM (Imagerie
par Résonance Magnétique) correspondant à deux types d'articulations sans phonation :

� Des articulations bloquées de voyelles du français,

� Des articulations bloquées des syllabes de type consonne-voyelle où le locuteur devait
imaginer être sur le point de prononcer la syllabe.

Cette partie du travail était composée de plusieurs étapes :

� L'encodage de l'ensemble des données grâce à un modèle du conduit vocal basé sur l'ACP
(analyse en composantes principales) qui sépare l'in�uence des articulateur de l'un à l'autre
et puis traite des contours d'un articulateur à la fois ;

� L'extension de l'ensemble des données pour compenser l'absence des enregistrements pour
les syllabes non traitées dans le corpus. Cette estimation a été faite grâce à l'identi�cation
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de la rélation entre les vecteurs de /a/, /i/, /u/, /y/ et les vecteurs des autres voyelles et
à l'application de cette rélation aux con�gurations du conduit vocal pendant l'articulation
des syllabes traitées ;

� L'utilisation des con�gurations articulatoires obtenues comme sources de positions à at-
teindre et destinées à piloter le synthétiseur à base de règles qui est la contribution prin-
cipale de cette première partie. Les facteurs qui ont été pris en compte dans le choix
des cibles était des contraintes temporailes, spatiales et catégoriques. Une fois les cibles
choisis, j'ai testé trois stratégies d'interpolation entre les vecteurs cibles :

� Linear : l'interpolation entre les vecteurs cibles est linéaire, avec des virages serrés
aux n÷uds ;

� Cosine : transitions lisses ;

� Piecewise 1-d monotonic cubic Hermite interpolation : des transitions lisses, l'amplitude
de chaque section de transition limitée par ses n÷uds d'interpolation correspondants
;

� Complex : les transitions se font avec l'interpolation précédente de Hermite cubique,
mais le timing varie selon les articulateurs. Ceux qui sont critiques atteignent leur
position cible plus rapidement que les autres, tandis que les articulateurs dont la
contribution à l'intelligibilité sonore résultante n'est pas aussi grande se déplacent
plus lentement (par exemple, la langue peut être dans plusieurs positions pour le son
/b/, mais les lèvres doivent entrer en contact). De plus, les articulateurs composés
de tissus plus lourds (comme le dos de la langue) se déplacent plus lentement que
ceux légers et très mobiles (comme les lèvres).

� L'ajustement des conduits vocaux obtenus selon une perspective phonétique, par exemple,
par l'imposition du contact entre les lèvres lors de la production d'une occlusive labiale ;

� La simulation acoustique permettant d'obtenir un signal acoustique, controlée par une
séquence des parametres acoustiques qui doivent être en accord avec l'évolution du conduit
vocal.

Les résultats de cette synthèse ont été évalués de manière visuelle, acoustique et perceptuelle,
et les problèmes rencontrés ont été identi�és et classés selon leurs origines, qui pouvaient être :
les données, leur modélisation, l'algorithme contrôlant la forme du conduit vocal, la traduction
de cette forme en fonctions d'aire, ou encore la simulation acoustique.

Les résultats montrent que les formes des articulateurs changent dans le temps en fonction
des trajectoires produites du conduit vocal, et celles-ci sont phonétiquement correctes. Elles
évoluent en synchronisme avec d'autres paramètres de la production vocale : F0, pression sous-
glottale et supraglottale. Ensemble, le timing et les valeurs du système doivent être dans un
équilibre délicat a�n de ne pas produire d'artefacts dans le pipeline de synthèse. Nous trouvons
qu'ils sont su�samment bien accordés pour les voyelles et les occlusives ; quant aux fricatives,
l'interaction entre le lieu d'articulation, le contrôle de la pression et l'évolution temporelle est
si complexe qu'elle se résume essentiellement à la modélisation de chaque fricative séparément.

J'en conclus que, dans le cadre de l'ensemble des données du conduit vocal, un modèle
statistique pour le coder et un ensemble de règles pour le manipuler, ce travail représente une
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exploration approfondie de l'approche. Les résultats montrent que de telles données et méthodes
ne sont pas inadaptées à la construction d'un synthétiseur de parole articulatoire ; cependant,
étant donné les limites de l'approche, il serait plus prometteur de poursuivre ce travail en
incorporant des modèles provenant de certaines données dynamiques réellement enregistrées
plutôt que de continuer à chercher un meilleur ensemble de règles par modélisation théorique,
essais et erreurs.

B.2 Synthèse articulatoire de la parole à partir des données IRM

en temps réel

La seconde approche a été développée en s'appuyant sur un synthétiseur de référence constitué
d'un réseau de neurones feed-forward entraîné à l'aide de la méthode standard du système Merlin
[WWK16] sur des données audio composées de parole en langue française enregistrée par IRM
en temps réel.

Ces données ont été segmentées phonétiquement et linguistiquement avec eLite HTS [RBBD14],
un outil que j'ai complété par des corrections des erreurs récurrentes. Les étiquettes ont été
alignées avec les données audio avec HVite de HTK [YEG+02] et Merlin comme frontend
[WWK16]. Ces données audio, malgré un débruitage, étaient fortement parasitées par le son de
la machine à IRM, ce qui a causé des problèmes de synchronisation.

Nous avons complété le synthétiseur de référence en ajoutant dix paramètres représentant
de l'information articulatoire :

� L'ouverture des lèvres et leur protrusion ce qui donne les informations essentielles sur le
comportement des lèvres,

� La distance entre la langue et le vélum, ce qui nous donne les informations sur l'occlusion
entre ces deux articulateurs et fournie une indice latente de la position verticale de la
langue ;

� La distance entre le vélum et la paroi pharyngale, ce qui contrôle l'accès de l'air dans la
cavité nasale et, par conséquent, la nasalisation,

� La distance entre la langue et la paroi pharyngale, ce qui represente une information sur
la position horizontale de la langue.

Ces paramètres ont été extraits automatiquement à partir des images et alignés au signal et
aux spéci�cations linguistiques.

Les séquences articulatoires et les séquences de parole, générées conjointement, ont été éval-
uées à l'aide de di�érentes mesures acoustiques :

� la distortion mel-cepstrum moyenne,

� l'erreur de prédiction de l'apériodicité,

� trois mesures pour F0 : RMSE (root mean square error), CORR (coé�cient de corrélation)
and V/UV (frame-level voiced/unvoiced error).
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J'ai conclus que l'ajout des paramètres articulatoires n'a pas dégradé le modèle acoustique
original.

Un analyse de la pertinence des paramètres articulatoires par rapport aux labels phonétiques
a également été réalisée. L'erreur la plus récurrente a été l'achèvement du contact dans les cas
où le contact est indispensable pour produire le son.

Puis, j'ai véri�é la similitude entre les séquences originelles et celles qui étaient générées,
avec la distance de déformation temporelle dynamique. Cette évaluation permet de conclure
que les paramètres articulatoires générés s'approchent de manière acceptable des paramètres
originaux.

B.3 Cibles statiques et la parole en temps réel pour la synthèse

de la parole articulatoire

Les deux approches présentées ci-dessus ont en commun l'utilisation de deux types de données
IRM. Ce point commun a motivé la recherche, dans les données temps réel, des images clés,
c'est-à-dire les con�gurations statiques IRM, utilisées pour modéliser la coarticulation. A�n de
comparer les images IRM statiques avec les images dynamiques en temps réel, nous avons utilisé
plusieurs mesures :

� La similarité structurelle,

� La distance du "terrassier",

� SIFT ;

Après avoir véri�é la pertinence et la validité de ces mesures, j'ai étudié qualitativement et
quantitativement, puis interprété leur comportement; j'ai ensuite analysé leur similarités.

J'en ai conclu que SIFT et la similarité structurelle capturaient bien les informations articu-
latoires et que leur comportement, de manière générale, validaient les données d'IRM statiques.

Les phonèmes et traits phonétiques problématiques que j'ai pu identi�er à travers les analyses
des distributions et incompatibilités de mesures étaient les liquides /l, K/, dont la production
dynamique ne pouvait être imitée par leur simulation statique, les fricatives alvéolaires /s, S/,
elles aussi simulées de manière non réaliste dans le contexte statique, et les caractéristiques de
la nasalité.

Il semblerait que les sons du corpus statique aient été légèrement trop nasalisés, et que
réciproquement les sons nasalisés présentaient une ouverture vélopharyngée insu�sante. En�n,
j'ai discuté l'impact de cette étude pour de futurs synthétiseurs articulatoires hybrides de la
parole.

B.4 Conclusion globale

La synthèse vocale articulatoire basée sur des règles permettait un contrôle complet de l'ensemble
des articulateurs - la mâchoire, la langue, les lèvres, le vélum, l'épiglotte et le larynx - ainsi que du
F0, de l'ouverture glottale, de la pression sous-glottale et supraglottale ; avec une qualité variable
du résultat, elle pouvait couvrir la phonologie française grâce à un jeu étendu de con�gurations
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du conduit vocal, provenant des images IRM statiques qui constituaient la structure du système.
Appliqué tel quel, il avait un problème pour atteindre des contacts pour les occlusives et les
occlusives nasales, atteindre des approchements trop étroits pour les fricatifs et les voyelles, et
maltraiter la caractéristique de la nasalité. Ceci a été résolu e�cacement, bien que brutalement,
en réinitialisant ces tubes de fonctions de zone qui n'était pas en accord avec le phonème en
production, mis en ÷uvre à l'étape de post-traitement, juste avant de simuler l'acoustique.

Les mouvements et les énoncés générés par le système fondé sur des règles étaient su�sam-
ment corrects pour démontrer la validité générale de l'approche, mais loin d'être assez naturels
ou intelligibles pour devenir utilisables dans un scénario réel. Cela s'explique par deux facteurs
majeurs : le timing du système, qui lui également a été géré selon des règles, et l'interaction entre
les di�érentes composantes. Cette interaction n'a pas été aussi décisive dans le cas des voyelles,
qui ont une acoustique de production assez simple, et des occlusives, qui sont acoustiquement
très reconnaissables, mais tout à fait cruciale pour les fricatives, où le lieu d'articulation, la
pression et le timing doivent être particulièrement bien coordonnés, et pour les liquides, qui
sont synthétisés soit près des semi voyelles soit aux points d'articulation correspondants.

Le synthétiseur de parole articulatoire paramétrique basé sur DNN qui a été présenté a en-
suite abordé la question du contrôle de la synchronisation subpar qui était si visible dans le
système précédent. Il était basé sur un synthétiseur de parole paramétrique standard à ap-
prentissage profond, développé avec la méthode par défaut "build your own voice" de Merlin
[WWK16] et formé avec un réseau de feed-forward sur l'audio dénoisé enregistré simultanément
aux acquisitions IRM en temps réel. Ensuite, le modèle acoustique original de ce synthétiseur
de parole de base a été complété par des paramètres articulatoires extraits automatiquement
des images IRM en temps réel. Ces paramètres ne représentaient pas une image de l'articulation
aussi complète que le premier synthétiseur, mais devaient nous donner la position des lèvres, la
preuve indirecte de la position de la langue, la nasalité et les valeurs clés de constriction entre
le vélum et la langue et la langue et la langue et la paroi pharyngeale. La qualité de la pa-
role et des mouvements atteints par ce synthétiseur de parole articulatoire est considérablement
supérieure à celle du premier. Du point de vue de l'articulation, par rapport au premier syn-
thétiseur, il traite bien les voyelles et les fricatives, mais a du mal avec les sons qui nécessitent
le contact des articulateurs. Quant aux trajectoires articulatoires, elles sont traitées beaucoup
plus naturellement que celles du premier synthétiseur.

Le point commun entre les deux systèmes était l'utilisation de l'IRM, quoique de nature
di�érente : statique et dynamique. Il était important d'explorer la relation entre les deux types
de données et d'essayer d'identi�er certaines con�gurations clés des voies vocales parmi celles
enregistrées dans le IRM en temps réel similaire à ce qui a été saisi dans le cadre statique. J'ai
conclu que l'ensemble des données statiques de l'IRM était en général valide, bien qu'il ait eu des
di�cultés avec la représentation des fricatifs, où l'aérodynamique de la production est un facteur
important pour pouvoir prononcer correctement le son, et des liquides, dont la production exige
la connaissance de leur comportement dans le temps. La conséquence de cela est, peut-être,
une qualité inférieure de synthèse de ces deux classes de sons par le synthétiseur basé sur des
règles qui s'appuyait sur des données IRM statiques n'était pas seulement due à une stratégie
mal alignée de tous ses composants de contrôle, mais aussi aux lacunes des données originales
aussi bien.
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Résumé

Cette thèse se situe dans le domaine de la synthèse articulatoire de la parole et est organisé en
trois grandes parties : les deux premières sont consacrées au développement de deux synthé-
tiseurs articulatoires de la parole ; la troisième traite des liens que l'on peut établir entre les
deux approches utilisées.

Le premier synthétiseur est issu d'une approche à base de règles. Celle-ci visait à obtenir le
contrôle complet sur les articulateurs (mâchoire, langue, lèvres, vélum, larynx et épiglotte). Elle
s'appuyait sur des données statiques du plan sagittal médian obtenues par IRM (Imagerie par
Résonance Magnétique) correspondant à des articulations bloquées de voyelles du français, ainsi
que des syllabes de type consonne-voyelle, et était composée de plusieurs étapes : l'encodage
de l'ensemble des données grâce à un modèle du conduit vocal basé sur l'ACP (analyse en com-
posantes principales) ; l'utilisation des con�gurations articulatoires obtenues comme sources de
positions à atteindre et destinées à piloter le synthétiseur à base de règles qui est la contribu-
tion principale de cette première partie ; l'ajustement des conduits vocaux obtenus selon une
perspective phonétique ; la simulation acoustique permettant d'obtenir un signal acoustique.
Les résultats de cette synthèse ont été évalués de manière visuelle, acoustique et perceptuelle,
et les problèmes rencontrés ont été identi�és et classés selon leurs origines, qui pouvaient être :
les données, leur modélisation, l'algorithme contrôlant la forme du conduit vocal, la traduction
de cette forme en fonctions d'aire, ou encore la simulation acoustique. Ces analyses nous per-
mettent de conclure que, parmi les test e�ectués, les stratégies articulatoires des voyelles et des
occlusives sont les plus correctes, suivies par celles des nasales et des fricatives.

La seconde approche a été développée en s'appuyant sur un synthétiseur de référence consti-
tué d'un réseau de neurones feed-forward entraîné à l'aide de la méthode standard du système
Merlin [WWK16] sur des données audio composées de parole en langue française enregistrée par
IRM en temps réel. Ces données ont été segmentées phonétiquement et linguistiquement. Ces
données audio, malgré un débruitage, étaient fortement parasitées par le son de la machine à
IRM. Nous avons complété le synthétiseur de référence en ajoutant huit paramètres représen-
tant de l'information articulatoire : l'ouverture des lèvres et leur protrusion, la distance entre
la langue et le vélum, entre le vélum et la paroi pharyngale, et en�n entre la langue et la paroi
pharyngale. Ces paramètres ont été extraits automatiquement à partir des images et alignés
au signal et aux spéci�cations linguistiques. Les séquences articulatoires et les séquences de
parole, générées conjointement, ont été évaluées à l'aide de di�érentes mesures : distance de
déformation temporelle dynamique, la distortion mel-cepstrum moyenne, l'erreur de prédiction
de l'apériodicité, et trois mesures pour F0 : RMSE (root mean square error), CORR (coé�cient
de corrélation) and V/UV (frame-level voiced/unvoiced error). Un analyse de la pertinence des
paramètres articulatoires par rapport aux labels phonétiques a également été réalisée. Elle per-
met de conclure que les paramètres articulatoires générés s'approchent de manière acceptable
des paramètres originaux, et que l'ajout des paramètres articulatoires n'a pas dégradé le modèle
acoustique original.

Les deux approches présentées ci-dessus ont en commun l'utilisation de deux types de don-
nées IRM. Ce point commun a motivé la recherche, dans les données temps réel, des images clés,

203



c'est-à-dire les con�gurations statiques IRM, utilisées pour modéliser la coarticulation. A�n de
comparer les images IRM statiques avec les images dynamiques en temps réel, nous avons utilisé
plusieurs mesures : la similarité structurelle, la distance du "terrassier" et SIFT ; après avoir
véri�é la pertinence et la validité de ces mesures, j'ai étudié qualitativement et quantitative-
ment, puis interprété leur comportement; j'ai ensuite analysé leur similarités. J'en ai conclu
que SIFT et la similarité structurelle capturaient bien les informations articulatoires et que leur
comportement, de manière générale, validaient les données d'IRM statiques. Les phonèmes et
traits phonétiques problématiques que j'ai pu identi�er à travers les analyses des distributions et
incompatibilités de mesures étaient les liquides /l, K/, dont la production dynamique ne pouvait
être imitée par leur simulation statique, les fricatives alvéolaires /s, S/, elles aussi simulées de
manière non réaliste dans le contexte statique, et les caractéristiques de la nasalité. Il semblerait
que les sons du corpus statique aient été légèrement trop nasalisés, et que réciproquement les
sons nasalisés présentaient une ouverture vélopharyngée insu�sante. En�n, j'ai discuté l'impact
de cette étude pour de futurs synthétiseurs articulatoires hybrides de la parole.

Mots-clés: synthèse articulatoire, articulation, conduit vocal, IRM, IRM dynamique

Abstract

The thesis is set in the domain of articulatory speech synthesis and consists of three major
parts: the �rst two are dedicated to the development of two articulatory speech synthesizers
and the third addresses how we can relate them to each other.

The �rst approach results from a rule-based approach to articulatory speech synthesis that
aimed to have a comprehensive control over the articulators (the jaw, the tongue, the lips, the
velum, the larynx and the epiglottis). This approach used a dataset of static mid-sagittal mag-
netic resonance imaging (MRI) captures showing blocked articulation of French vowels and a
set of consonant-vowel syllables; that dataset was encoded with a PCA-based vocal tract model.
Then the system comprised several components: using the recorded articulatory con�gurations
to drive a rule-based articulatory speech synthesizer as a source of target positions to attain
(which is the main contribution of this �rst part); adjusting the obtained vocal tract shapes
from the phonetic perspective; running an acoustic simulation unit to obtain the sound. The
results of this synthesis were evaluated visually, acoustically and perceptually, and the prob-
lems encountered were broken down by their origin: the dataset, its modeling, the algorithm
for managing the vocal tract shapes, their translation to the area functions, and the acoustic
simulation. We concluded that, among our test examples, the articulatory strategies for vowels
and stops are most correct, followed by those of nasals and fricatives.

The second explored approach started o� a baseline deep feed-forward neural network-
based speech synthesizer trained with the standard recipe of Merlin [WWK16] on the audio
recorded during real-time MRI (RT-MRI) acquisitions: denoised (and yet containing a consid-
erable amount of noise of the MRI machine) speech in French and force-aligned state labels
encoding phonetic and linguistic information. This synthesizer was augmented with eight pa-
rameters representing articulatory information�the lips opening and protrusion, the distance
between the tongue and the velum, the velum and the pharyngeal wall and the tongue and
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the pharyngeal wall�that were automatically extracted from the captures and aligned with the
audio signal and the linguistic speci�cation. The jointly synthesized speech and articulatory
sequences were evaluated objectively with dynamic time warping (DTW) distance, mean mel-
cepstrum distortion (MCD), BAP (band aperiodicity prediction error), and three measures for
F0: RMSE (root mean square error), CORR (correlation coe�cient) and V/UV (frame-level
voiced/unvoiced error). The consistency of articulatory parameters with the phonetic label was
analyzed as well. I concluded that the generated articulatory parameter sequences matched the
original ones acceptably closely, despite struggling more at attaining a contact between the ar-
ticulators, and that the addition of articulatory parameters did not hinder the original acoustic
model.

The two approaches above are linked through the use of two di�erent kinds of MRI speech
data. This motivated a search for such coarticulation-aware targets as those that we had in the
static case to be present or absent in the real-time data. To compare static and real-time MRI
captures, the measures of structural similarity, Earth mover's distance, and SIFT were utilized;
having analyzed these measures for validity and consistency, I qualitatively and quantitatively
studied their temporal behavior, interpreted it and analyzed the identi�ed similarities. I con-
cluded that SIFT and structural similarity did capture some articulatory information and that
their behavior, overall, validated the static MRI dataset. The problematic sounds and features
that I was able to identify through the analysis of measure distributions and mismatches were
the liquids /l, K/, whose dynamic production could not be matched by their static simulation,
the alveolar fricatives /s, S/, again, simulated unrealistically in the static setting, and the feature
of nasality: apparently, the oral sounds in the static corpus were slightly too nasalized, and in
the nasal sounds, vice versa, the velopharyngeal port did not open enough. Finally, I commented
on the repercussions of the study for potential hybrid articulatory speech synthesizers.

Keywords: articulatory speech synthesis, articulation, vocal tract, MRI, RT-MRI
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