
HAL Id: tel-02433285
https://hal.science/tel-02433285v1

Submitted on 9 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DESIGN AND FABRICATION OF NITRIDE-BASED
SOLAR CELLS AND INTEGRATION FOR TANDEM

CELL
Taha Ayari

To cite this version:
Taha Ayari. DESIGN AND FABRICATION OF NITRIDE-BASED SOLAR CELLS AND INTE-
GRATION FOR TANDEM CELL. Engineering Sciences [physics]. École Doctorale de génie électrique
et informatique, 2018. English. �NNT : �. �tel-02433285�

https://hal.science/tel-02433285v1
https://hal.archives-ouvertes.fr


DESIGN AND FABRICATION OF NITRIDE-BASED SOLAR CELLS 

AND INTEGRATION FOR TANDEM CELL 
 

 

 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Taha Ayari 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

PhD in the 

The School of Electrical and Computer Engineering 

 

 

 

 

 

 

 

Georgia Institute of Technology 

August 2018 

 

 

COPYRIGHT © 2018 BY TAHA AYARI 



DESIGN AND FABRICATION OF NITRIDE-BASED SOLAR CELLS 

AND INTEGRATION FOR TANDEM CELL 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:   

 

 

  

Dr. Abdallah Ougazzaden, Advisor 

School of Electrical and Computer 

Engineering 

Georgia Institute of Technology 

 Dr. Ali Adibi 

School of Electrical and Computer 

Engineering 

Georgia Institute of Technology 

   

Dr. Jean Paul Salvestrini 

School of Electrical and Computer 

Engineering 

Georgia Institute of Technology 

 Dr. Thomas Sanders 

Regents Professor, MSE 

Georgia Institute of Technology 

   

Dr. Paul Voss 

School of Electrical and Computer 

Engineering 

Georgia Institute of Technology 

   

  Date Approved: July 2, 2018 

 

  



 

 

 

 

 

 

 

 

 



 

iv 

ACKNOWLEDGEMENTS 

I would like to express my gratitude to my advisor Dr. Abdallah Ougazzaden. 

This thesis would not have been possible without his knowledge, expertise, and guidance. 

Furthermore I feel that his confidence in my work allowed me to grow as a scientist, 

engineer, and researcher. A heartfelt thanks goes out to the other members of my PhD 

committee: Dr Jean Paul Salvestrini, Dr. Paul Voss, Dr. Ali Adibi and Dr. Thomas 

Sanders. The patience and the support of Dr. Jean Paul Salvestrini and Dr. Paul Voss has 

been unwavering during the completion of this thesis. I would also like to thank the 

institutions and funding partners that made this work possible. Georgia Tech Lorraine has 

been very supportive during the completion of my PhD. Generous grants from the French 

National Research Agency (ANR) under the GANEX Laboratory of Excellence (Grant 

number ANR-11-LABX-0014) have helped make this work possible. Much of the work 

has been carried out using the equipment, personnel, and resources of the Georgia     

Tech-CNRS, UMI2958. 

I would like to extend my gratitude personally to the other PhD students and 

colleagues who have assisted in various ways in the making of this thesis. To Suresh 

Sundaram, Xin Li, Saiful Alam and Adama Mballo who assisted with MOVPE growth. 

To Matthew Jordan and Chris Bishop who assisted in micro-fabrication. To Youssef El 

Gmili and Yacine Halfaya who have assisted with characterization. To Walid Elhuni who 

helped with the simulation of InGaN solar cells. 

Finally and most importantly, I would like to thank my mom, dad and siblings for 

being with me at every stage of my life. They always taught me the importance of quality 



 v 

education and have made many sacrifices so I could lead a better life and could get a 

better education. My dad has always been a source of inspiration to me. It is from him 

where I learnt the importance of being able to apply my knowledge in the real world. He 

is one of the smartest persons I have seen in my life and he is the main reason why I kept 

pushing myself so I could reach his level of technical competence one day. My mom is 

one of the most patient and disciplined persons I have known in my life. She has always 

been the central support for our family pushing us to aim high and provided us 

unconditional support for all the endeavors we undertake. But for their support and 

sacrifices, I would not have made it to this stage of my life and I could not be more 

thankful for having such an amazing family.  

 

 

 

 

 

 

 

 

 

 



 vi 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS iv 

List of Tables viii 

LIST OF FIGURES ix 

SUMMARY xiv 

CHAPTER 1. Introduction 1 

CHAPTER 2. III-nitrides fundamentals and experimental techniques 4 

2.1 III-Nitrides fundamentals 4 

2.2 Experimental methods 10 

2.2.1 Metal-organic vapor phase epitaxy (MOVPE) 10 

2.2.2 Materials characterization techniques 14 

CHAPTER 3. InGaN-based solar cells 18 

3.1 Photovoltaic effect basis 18 

3.1.1 The solar spectrum 18 

3.1.2 Photovoltaic performances 20 

3.2 InGaN-based solar cells: state of the art 23 

CHAPTER 4. 2D h-BN Epitaxial liftoff technique 30 

4.1 Large-Area Two-Dimensional Layered Hexagonal Boron Nitride growth by 

MOVPE 30 

4.1.1 H-BN: a III-Nitride 2D material 30 

4.1.2 H-BN growth by MOVPE 32 

4.2 Van Der Waal epitaxy of III-Nitrides on 2D h-BN 38 

4.2.1 InGaN based PIN on h-BN 39 

4.2.2 AlGaN/GaN structure on h-BN 43 

4.3 Wafer-scale release of InGaN MQW based PIN with commercial tape 44 



 vii 

4.4 Wafer-scale device fabrication and transfer: HEMT (High Electron Mobility 

Transistor)-based gas sensors on flexible substrates 49 

4.4.1 Electrical characterization of AlGaN/GaN devices on h-BN sapphire 51 

4.4.2 Sensor measurements: before and after transfer 52 

CHAPTER 5. Heterogeneous integration of thin-film InGaN based solar cells on 

foreign substrates 58 

5.1 Materials growth by MOVPE 60 

5.2 Wafer-scale devices fabrication 61 

5.3 Solar cells transfer on glass with back side reflector 64 

CHAPTER 6. Conclusion and perspectives 68 

6.1 Conclusion 68 

6.2 Perspectives 69 

6.3 Publications 72 

Appendix A:  Devices Fabrication 74 

Apppendix B: Electrical characterizations 76 

REFERENCES 79 

  



 viii 

LIST OF TABLES 

Table 1– Lattice parameters and thermal expansion coefficients of III-nitrides 

binaries[20]. ........................................................................................................................ 5 

Table 2 – Bandgap bowing parameters of III-nitrides ternaries. ........................................ 6 

Table 3 – Spontaneous polarization parameters from the literature. .................................. 7 

Table 4– Bowing parameters for spontaneous polarization in III-nitride alloys [30][31]. . 8 

Table 5–  Summary of some important physical properties of h-BN. .............................. 31 

 

 

 

 

 

 

 

 

 

 

 

 



 ix 

LIST OF FIGURES 

Figure 1-1 The evolution of the solar cell performance from 1977 to 2017 illustrated by 

NREL[3]. ............................................................................................................................ 1 

Figure 1-2 Schematic of the fabrication of a 4-terminal InGaN/Si tandem device. .......... 3 

Figure 2-1Wurtzite crystal structure of III nitrides. ........................................................... 5 

Figure 2-2 Schematic illustration of the Ga-face (left) polarity and the N-face (right) 

polarity for GaN[28]. .......................................................................................................... 7 

Figure 2-3 Photographs of the reaction chamber and the gas panel of the MOVPE 

reactor. .............................................................................................................................. 12 

Figure 2-4 Aixtron 3x2 inch, close coupled showerhead (CCS) MOVPE system. ......... 13 

Figure 3-1 Solar radiation spectra for the incident sunlight at the top-of-the-atmosphere 

(yellow), at sea level (red), and a blackbody curve (black line). ...................................... 19 

Figure 3-2 (a). Equivalent electric circuit for an ideal solar cell. The load resistance 

(RLoad) determines the amount of current across the diodes and the load, (b). Electrical 

characteristics of a solar cell under dark and illumination. .............................................. 21 

Figure 3-3 HAADF-STEM transmission electron images of (a) a bulk structure and 

(b)semibulk, as well as a cathodoluminiscence (CL) spectrum of (c) the bulk structure 

and (d) semibulk[58]. ........................................................................................................ 27 

Figure 3-4 Current Density-Voltage (J − V ) measured under AM 1.5G, experimentally 

and simulations (ideal) [59]. ............................................................................................. 28 

Figure 3-5 (a) Illustration of the growth process on a selective surface to develop nano-

pyramids. (b) SEM image of InGaN nano-pyramid network at 22% In. (c) coss-section 

TEM image of the nano-pyramids[61]. ............................................................................ 29 

Figure 4-1 Comparison of the crystal structures of graphene (a) and hexagonal BN (b). 32 

Figure 4-2 High-resolution triple axis 2- scan of h-BN grown on sapphire; left inset 

shows the triple axis -scan along with Lorentz fit (red line) of the BN (0 0 0 2) 

reflection and right inset shows Raman shift spectrum [77]............................................. 33 

Figure 4-3 (a) Cross-section high-angle annular dark field scanning transmission 

microscopy (HAADF-STEM) image of 30 nm BN grown on sapphire along zone axis <1 



 x 

1 -2 0>; (b) is the higher magnification image of the area marked in the box in (a) to 

show highly oriented lattice; (c) shows the high resolution TEM image and fast Fourier 

transform pattern in the inset of selected area; (d), (e), (f) and (g) are energy dispersive X-

ray spectroscopy (EDX) elemental mappings of Al, B, N and C, respectively [77]. ....... 34 

Figure 4-4 Scanning electron microscope images of BN grown on sapphire (a) with low 

magnification to show uniform smooth surface and (b) with higher magnification to show 

hexagonal wrinkle pattern; inset of (a) shows the transparent 2-inch wafer after growth 

[77]. ................................................................................................................................... 36 

Figure 4-5 (a), (b), (c) and (d) are SEM images of the sapphire and of the 2D BN layers 

with different thickness; (e) is AFM characterization of 30 nm BN layer in (c) ; (f) height 

profile across the wrinkle along the blue line marked in (e)[77]. ..................................... 37 

Figure 4-6 Illustration showing the (a) covalent bond formation during standard epitaxy 

of 3D material on 3D substrates and (b) the different combinations of material stacking 

for van der Waals epitaxy [88].......................................................................................... 38 

Figure 4-7 SEM images and XRD (002) FWHM rocking curves of 300 nm thick GaN 

layers grown on 1.5, 3-5 and 20 nm h-BN layers. ............................................................ 39 

Figure 4-8 SEM image of GaN directly grown on 3 nm h-BN layer............................... 40 

Figure 4-9 (a) Schematic illustration of the grown structure and (b) the resulting 

transparent wafer photograph after epi-growth................................................................. 41 

Figure 4-10 High resolution X-ray diffraction 2θ - ω scans of the MQW structure on the 

h-BN layer and the same structure using conventional GaN template. ............................ 41 

Figure 4-11 SEM images of the MQW structure surface (a) on conventional GaN 

template and (b) on h-BN. ................................................................................................ 42 

Figure 4-12 (a) Photo of the grown AlGaN/GaN on h-BN, (b) High resolution X-ray 

diffraction 2θ - ω scans of the grown AlGaN/GaN heterostructure on h-BN using 

Al0.14Ga0.86N as a nucleation layer (NL), the red curve is the measurement and the blue 

curve presents the simulation result. The inset is a schematic of the grown structure. (c) 

High resolution TEM image showing the interface between the 2D layered h-BN and the 

AlGaN nucleation layer. (d) Energy dispersive X-ray spectroscopy (EDX) elemental 

mapping of Al. .................................................................................................................. 44 



 xi 

Figure 4-13 Photograph of the MQW structure after exfoliation using (a) an aluminum 

foil and (b) a copper foil. .................................................................................................. 45 

Figure 4-14 X-ray diffraction using the 2θ - ω configuration of the MQW structure 

before and after the transfer. ............................................................................................. 46 

Figure 4-15 (a) SEM image of the BN/AlGaN surface in the MQW structure and (b) 

AFM image of the BN/AlGaN separated surface in the MQW structure. ........................ 47 

Figure 4-16 CL spectrum recorded at room temperature under excitation of 17 kV (a) 

before and after lift-off (excited from the p-doped layer) with fitted MQWs peaks in 

dotted lines and (b) after lift-off (excited from the n-doped layer) with fitted MQW peak 

in red. ................................................................................................................................ 48 

Figure 4-17 Blue light emission by electrical injection from the exfoliated MQW 

structure............................................................................................................................. 48 

Figure 4-18 Our approach for the growth, fabrication, release and transfer of boosted 

AlGaN/GaN gas sensor to a flexible sheet using h-BN as a buffer and release layer. ..... 50 

Figure 4-19 (a) Photo of the wafer-scale processed HEMT sensors, (b) IDS-VDS 

characteristic of an HEMT device with 2 µm gate length (c) Wafer mapping of the gate 

pinching, with white areas representing masked-off regions that include TLM patterns (d) 

Histogram of the pinching distribution across the wafer. ................................................. 52 

Figure 4-20 Response of n HEMT sensor, with a gate size of 2 μm × 200 μm, to NO2 gas 

for a concentration of 100 ppm at 30°C. (a) Before the transfer, (b) after the transfer to 

the flexible template and (c) Repeated measure after the transfer showing the stability of 

the transferred device after 9 cycles.................................................................................. 54 

Figure 4-21 Thermal simulation of the operating device temperature Vs thermal 

conductivities of different post-transfer supports. ............................................................ 55 

Figure 4-22 (a) Raman spectra at E2 peak of GaN on h-BN/sapphire (black), released 

from the sapphire (red) and transferred to an adhesive acrylic tape (red). (b) Capacitance-

voltage measured at 1 kHz and 100 kHz on a device before and after its transfer. Both 

Raman and C-V results indicate an increase in the 2DEG density after the release and 

transfer to the acrylic adhesive tape. ................................................................................. 56 

Figure 5-1 a) Schematics of fabrication steps for releasing InGaN-based solar cells from 

sapphire and transferring them onto foreign substrates. b) Optical microscopy images 



 xii 

from the back side of ~1mm2 solar cells with two different designs on a water dissolvable 

tape after release. c) Photographs of devices with different sizes and designs transferred 

to glass with a DM as a    back-side reflector (the purple background is due to the 

reflected wavelength between 375-465 nm). .................................................................... 59 

Figure 5-2 (a) HR-XRD 2θ – ω scan of the grown MQW structure (blue curve) with 

simulation (red curve); the inset shows the RSM. (b) Wavelength distribution of 

photoluminescence mapping performed at room temperature. ......................................... 61 

Figure 5-3 Process fabrication of the solar cells. .............................................................. 62 

Figure 5-4 (a) Photograph of the fabricated solar cells on 2-inch h-BN/sapphire.  (b) 

Optical microscopy image of a ~1mm2 solar cell with design A. (c) Dark I-V curves of 

devices with design A in different locations on the wafer and their corresponding 

illuminated J-V curves under AM 1.5 condition in (d). Inset in (d) shows the illuminated 

J-V under a concentrated light source emitting at 440 nm. .............................................. 63 

Figure 5-5 (a) High resolution TEM image of the grown structure after release from 

sapphire. (b) Dark IV curves of the same device before and after its transfer to a foreign 

substrate. Inset in (b) is an optical microscope image of a solar cell device after its 

transfer on the final substrate. ........................................................................................... 65 

Figure 5-6 (a) Schematic of the deposited DM on glass. (b) FTIR measurements for the 

deposited DM on glass. (c) and (d) are J-V curves under AM 1.5 illumination condition 

of respectively a solar cell with design A before and after its transfer to a glass with Al 

back reflector and a solar cell with design B before and after its transfer to a glass with a 

dielectric mirror. Inset in (b) shows the transmittance of the polyurethane-based resin. . 66 

Figure 6-1 (a) Schematic illustration of the grown structure (b) HR-XRD 2θ – ω scan of 

the grown half PIN structure using semibulk InGaN, (c) SEM images of the grown 

structure surface and (d) CL spectrum recorded at room temperature under excitation of 3 

keV. ................................................................................................................................... 70 

Figure 6-2 Schematic illustration of the generic process flow for transfer printing solid 

objects. The process begins with the preparation of an assemblage of microstructures on a 

donor substrate by solution casting, micromachining, self-assembly or other suitable 

means. (i) Laminating a stamp against a donor substrate and then quickly peeling it away 

(ii) pulls the microstructures from the donor substrate onto the stamp. Contacting the 

file:///C:/Users/TAHA/Desktop/Techniques_1806.docx%23_Toc518553014
file:///C:/Users/TAHA/Desktop/Techniques_1806.docx%23_Toc518553014
file:///C:/Users/TAHA/Desktop/Techniques_1806.docx%23_Toc518553014
file:///C:/Users/TAHA/Desktop/Techniques_1806.docx%23_Toc518553014
file:///C:/Users/TAHA/Desktop/Techniques_1806.docx%23_Toc518553014


 xiii 

stamp to another substrate (receiving substrate (iii)) and then slowly peeling it away 

transfers the microstructures from the stamp to the receiver (iv). The peeling rate 

determines the strength of adhesion and, therefore, the direction of transfer [104]. ........ 71 

Figure 6-3 Design of a 4-terminal InGaN/Si tandem device ........................................... 72 

Figure B1 Typical metal contact patterns for TLM measurements. ................................ 77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/TAHA/Desktop/Techniques_1806.docx%23_Toc518553014
file:///C:/Users/TAHA/Desktop/Techniques_1806.docx%23_Toc518553014
file:///C:/Users/TAHA/Desktop/Techniques_1806.docx%23_Toc518553014


 xiv 

SUMMARY 

The integration of hybrid opto-electronics consists of assembling several devices, 

fabricated separately using different and potentially non-compatible processes, onto one 

common platform to achieve a functional heterogeneous system. This concept can be 

applied for cost-effective and high performance III-Nitride (III-N) based solar cell 

applications. InGaN alloys exhibit many favorable photovoltaic properties such as 

broadband absorption with a tunable bandgap (0.7 eV - 3.4 eV), superior radiation 

resistance, large absorption coefficients and high saturation velocities. Theoretically, 

efficiency greater than 40% can be achieved by a multi-junction solar cell composed of 

four InGaN sub-cells with different In content. However, so far the large lattice mismatch 

between InN and GaN makes it experimentally difficult to grow good-quality, high        

In-composition InGaN films and currently impedes the realization of an all InGaN    

multi-junction solar cell. Thus, a practical use of III-N solar cells could be their 

combination with mature Si and GaAs based solar cell technologies. In this thesis, we 

have made significant progress toward developing these hybrid devices by developing a 

transfer method for InGaN solar cells. We demonstrate wafer-scale Van der Waal epitaxy 

and fabrication of InGaN-based solar cells on 2D h-BN, the mechanical release of the 

devices, thanks to the Van der Waal bonded layered h-BN, and their transfer on glass on 

dielectric mirror as back-side reflector with device results and enhanced performance. 

The dielectric mirror transmits wavelength above 500 nm allowing the operation of 

InGaN/Si tandem solar cell for example. 
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Chapter 1 is an introductory chapter. It introduces the motivation behind this thesis 

work. The global situation of the photovoltaic market dominated by Si technology and 

the need for multijunction and tandem technology to exceed 40 % efficiency are 

highlighted with an emphasis on InGaN-based solar cells. 

In chapter 2, we present the basic properties of III-nitride alloys as well as the 

techniques and equipment used for the growth and materials characterization.  

In chapter 3, we introduce the physical concepts required to evaluate the photovoltaic 

performance. The state of the art for InGaN-based solar cells is presented as well. 

Chapter 4 goes into the 2D h-BN based epitaxial liftoff technique used in this thesis 

to enable InGaN solar cells hybrid integration for tandem devices. The first task is to 

optimize the MOVPE growth of h-BN at a wafer scale. Next step consists of using 2-inch 

h-BN/sapphire templates for the Van der Waal (vdW) epitaxy of III-nitride device 

structures. Here, we present results of InGaN-based PIN and AlGaN/GaN 

heterostructures grown on 2-inch h-BN/sapphire wafers. The last task is the wafer-scale 

fabrication and the transfer of the devices to foreign substrates. In this step, we benefit 

from a thesis work previously done in our lab during which AlGaN/GaN HEMT gas 

sensors have been fully developed. Here, we fabricate these devices on 2-inch                 

h-BN/sapphire templates and we transfer them to flexible substrates with boosted 

performances.  

In chapter 5, we build upon the results presented previously to discuss our work about 

the heterogeneous integration of InGaN-based solar cells on glass with back-side 

reflector while enhancing performances. Here, we demonstrate the first InGaN-based 
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solar cells on 2-inch h-BN/sapphire wafer and their transfer to the glass substrate. III-N 

solar cells with various sizes and designs are processed and characterized on a full 2-inch 

wafer giving performances comparable to similar devices on sapphire. The subsequent 

crack-free transfer of the solar cells, enabled by Van der Waal bonded 2D layered h-BN, 

to a glass substrate with a backside reflector yields an increase in the short circuit current 

density of up to 20%. This demonstration of transferred InGaN-based solar cells on 

foreign substrates while increasing performance represents a major advance toward 

lightweight, low cost and high efficiency photovoltaic applications. 

In the end, chapter 6 summarizes the results, perspectives and publications resulting 

from this work. The research perspective includes the growth of solar cells with thicker 

InGaN absorber using the ‘semibulk’ approach. This would further enhance the 

performances by increasing the light absorption and hence the short circuit current 

density.  The release and transfer process could be optimized to be more reproducible 

especially for large scale (> 2-inch wafers). Lastly, the integration of an InGaN solar cell, 

as a top subcell, with lower bandgap solar cells like Si or GaAS-based devices to make a 

4-terminal tandem device could be envisaged.  
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CHAPTER 1. INTRODUCTION 

Today, 95% of PV market is based on silicon (Si) (according to IHS Markit analysts). This 

technology has a maximum laboratory efficiency of 26.3% [1]. This efficiency is very close to the 

maximum theoretical limit for a single junction (around 30 %) [2], as illustrated by the saturation 

in the blue curves in Figure 1-1. In order to exceed this maximum efficiency, a tandem junction is 

necessary. Nowadays, the record yields at the laboratory level are obtained with multi-junctions 

based on III-V materials, as shown in Figure 1-1. Despite their good performance, these materials 

have a high production cost compared to Si. Therefore, several groups have studied the 

integration of III-V materials with Si to realize high efficiency tandem solar cells at low cost. 

Recently, an InGaP / Si tandem junction was reported with an efficiency of 29.8% [4]. This 

efficiency is close to that of the InGaP / GaAs tandem cell with a record efficiency of a 31.6% 

double junction cell, realized by Alta Device [5]. 

 

Figure 1-1 The evolution of the solar cell performance from 1977 to 2017 illustrated by NREL[3]. 
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Similarly, InGaN can be added on top of Si to make InGaN/Si tandem solar cell. InGaN 

alloys have a direct bandgap that varies from 3.42 eV to 0.76 eV [6] which covers the entire solar 

spectrum. They have a high absorption coefficient so that a few hundred nanometers in thickness 

(around 200 nm) is sufficient for the absorption of the majority of incident light (more than 90%) 

[7]. Simulations carried out for an InGaN/Si 4-terminal tandem device predicts an efficiency 

around 27 % when adding a nitride solar cell with 20% In content [8]. This tandem device 

consists on optically bonding an InGaN cell on top of a Si cell with 4 terminals, two for each cell. 

One interesting way to make these hybrid systems is to grow and process the InGaN-

based solar cell, release it from the growth wafer and bond it on top of a Si solar cell. 

Different approaches for the separation of epi-layers have been demonstrated including 

laser lift-off [9] and chemical etching of the growth substrate [10] or a sacrificial layer 

[11]. These techniques have many limitations in practice, notably high cost, long process 

times, and limitations in size [12][13][14]. A more recent 2D h-BN-based mechanical 

liftoff technique [15] has attracted much attention and has been demonstrated for some 

key GaN-based devices such as HEMTs (High Electron Mobility Transistors) and LEDs 

(Light Emitting Diodes) [16]–[18]. A few nanometers thick sp2-bonded h-BN layer acts 

as a template for subsequent 3D (bulk) materials growth and also allows for the 

mechanical separation of the epi-layers from the growth substrate. 
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Figure 1-2 Schematic of the fabrication of a 4-terminal InGaN/Si tandem device. 

The goal of this work is to develop a transfer method that allows a heterogeneous integration 

of InGaN solar cells with different photovoltaic technologies. This will pave the way to the 

fabrication of tandem devices like 4-terminal InGaN/Si solar cells, as described in Figure 1-2. For 

this purpose, we use a 2-inch h-BN/sapphire template to grow, fabricate and transfer 

InGaN-based solar cells to a glass substrate with a dielectric mirror reflecting wavelength 

between 400 nm and 500 nm and transmitting longer wavelength which is suitable for the 

operation of an InGaN/Si tandem device. 
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CHAPTER 2. III-NITRIDES FUNDAMENTALS AND 

EXPERIMENTAL TECHNIQUES 

 III-N nitrides are of fundamental interest for power electronics, for high frequency 

applications and for optoelectronics in the blue and ultraviolet spectral domains (solar 

cells, LEDs, Photodetectors…), due to their exceptional electronic, physical and optical 

properties. In this chapter we introduce some important properties of III-Nitrides, as well 

as the growth and characterization techniques for developing these materials.  

2.1 III-Nitrides fundamentals 

 The III-Nitrides (III-N) materials are alloys of the elements of group III and group V of 

the Mendeleev table. III-N wide bandgap materials are binary, ternary and quaternary 

compounds formed from element III (B, Ga, Al, In) and nitrogen.  

 These III-N compounds can present three crystalline phases: the wurtzite (WZ), 

zinc blende (ZB), and rock salt [19]. The Zinc Blende phase, which consists of two            

face-centered cubic lattices, one occupied by the elements III and the other occupied by 

the atoms nitrogen, offset by a quarter of the diagonal. In the rock salt structure, each of 

the two atom types forms a separate face-centered cubic lattice, with the two lattices 

interpenetrating. The rock salt structure is only existent at high pressures. The wurtzite 

phase, consisting of two compact hexagonal networks, one occupied by the atoms III and 

the other occupied by the nitrogen atoms, shifted along the c axis by a value of 3c/8, as 

shown in Figure 2-1. The wurtzite phase is the most stable under normal growth 

conditions (on sapphire substrate, SiC, ...) [20]. 
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Figure 2-1Wurtzite crystal structure of III nitrides. 

The III elements and nitrogen are bound by strong covalent bonds [21]. Therefore, 

III-nitrides are chemically and physically stable. Owing to their structure and thermal 

stability, III-nitrides are suitable candidates for high temperature and high-power 

applications. The lattice parameters and thermal expansion coefficients of BN, AlN, GaN 

and InN are summarized in Table 1.  

Table 1– Lattice parameters and thermal expansion coefficients of III-nitrides binaries[20]. 

Parameters BN AlN GaN InN 

a (in-plane lattice parameter) (Å) 2.55 3.122 
 

3.189 
 

3.548 

c (out-of-plane lattice parameter) (Å) 4.17 4.982 
 

5.185 
 

5.718 

Eg (bandgap energy) (eV) 5.9 6.28 
 

3.42 
 

0.7 

Thermal expansion coefficients (Δa/a) (10-6K-1) -2.7 4.15 
 

5.59 
 

3.8 

Thermal expansion coefficients (Δc/c) (10-6K-1) 38 5.27 
 

3.17 
 

2.9 
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The in-plane lattice parameter a and the out-of-plane lattice parameter c of ternaries can 

be calculated by Vegard’s law [22]: 

III-nitrides have wide bandgaps spanning a wide range from 0.7 (~1700 nm, 

infrared region) to 6.2 eV (~200 nm, deep UV region), as shown in Table 1. Especially, 

the InGaN covers the entire visible spectrum with a bandgap ranging from 3.42 eV to     

0.76 eV [6]. The energy bandgaps of ternaries can be calculated directly from their 

binaries: 

In this equation, “b” represents the energy bandgap bowing parameter. Table 2 

summarizes some bowing values of III-nitrides. 

Table 2 – Bandgap bowing parameters of III-nitrides ternaries. 

 

BAlN BGaN AlGaN AlInN  InGaN 

Bowing (eV) 5.45[23] 9.2[24] 

 

1[25] 

 

2.5[25] 

 

3[25][26] 

      

 III-nitrides display strong spontaneous polarization Psp due to their wurtzite crystal 

structure and high degree of iconicity [27]. The polarizations of AlN, GaN and InN are 

summarized in Table 3. 

 

 

 𝑎, 𝑐(𝐴[𝑥]𝐵[1 − 𝑥]𝑁) = 𝑎, 𝑐(𝐴𝑁) . 𝑥 + 𝑎, 𝑐(𝐵𝑁) . (1 − 𝑥)   (2.1) 

 Eg(A[x]B[1 − x]N) = Eg(AN) . x + Eg(BN) . (1 − x) − b . x . (1 − x) (2.2) 
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Table 3 – Spontaneous polarization parameters from the literature. 

 

AlN GaN InN  

Psp (C/m2) -0.081[27] -0.029[27] 

 

-0.032[27] 

    

 According to the direction of growth, or according to the first deposited element, we will 

not have the same polarity [28]. If the first element is nitrogen (N), which corresponds to the 

direction of growth known as (0001) or direction c, we will have the last atomic layer of gallium 

(Ga), a polarity called Ga-face or metal-face. Otherwise, we will have an N-face polarity (000-1). 

Figure 2-2 shows a schematic of these two N-face and Ga-face configurations for GaN. 

 

Figure 2-2 Schematic illustration of the Ga-face (left) polarity and the N-face (right) polarity for 

GaN[28]. 

 For ternary alloys, the spontaneous polarization is given by: 

P𝑠𝑝 (C[x]D[1 − x]N) = P𝑠𝑝(CN) . x + P𝑠𝑝(DN) . (1 − x) − 𝑏 . x . (1 − x) (2.3) 
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 Here, b is a quadratic correction term analogous to the bowing of the band gap [29]. The 

appropriate bowing parameters for InGaN, AlGaN, and InAlN are given in Table 4. 

Table 4– Bowing parameters for spontaneous polarization in III-nitride alloys [29][30]. 

 

InGaN AlGaN InAlN  

b (C/m2) 0.037 0.021 

 

  0.07 

    

 Another source of polarization is induced by mechanical stress on the epitaxial layer [27]. 

This polarity is called piezoelectric polarization (Ppz). According to the piezoelectricity, a polarity 

induced by this external force may be in the same direction or opposite to the spontaneous 

polarity, depending on the nature of the mechanical stress (compressive or tensile) [27]. The 

piezoelectric vector Ppz is parallel to the vector of the deformation, and its amplitude is given by: 

where εx, εy, and εz are the components of strain in the x, y, and z directions, respectively, and eij 

are the piezoelectric coefficients of III nitrides. In [0 0 0 1] oriented wurtzite lattices εx = εy and       

e31 = e32, and the out-of-plane strain εz is linked to in-plane strain εx through the following 

equation: 

                                                                      εz = -2 
𝐶13

𝐶33
  εx 

 (2.5) 

Where  Cij are the elastic constants of the material [31]. 

Thus, the piezoelectric polarization of a III-nitride binary AN is given by:  

Ppz = εx e31 + εy e32 + εz e33 (2.4) 
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                                                                 Ppz = 2εx  (e31 - e31  
𝐶13

𝐶33
 ) 

(2.6) 

The values of the piezoelectric coefficients of GaN, AlN, and InN are summarized in Table 5. 

Table 5– Piezoelectric coefficients in III-nitride binaries [27][29]. 

 

GaN AlN InN  

e31 (cm-2) -0.338 -0.533 

 

  -0.412 

 

e31 (cm-2) 0.667 1.505 

 

   0.815 

    

For ternary alloys CxD(1-x)N, the piezoelectric polarization is given by: 

No bowing parameter is required in this case [27].  

 The total polarization can be calculated as the sum of the spontaneous polarization and 

the piezoelectric polarization: 

 Here, we have reviewed some important features of the III-Nitrides. In the next section, 

we will present the MOVPE (Metal-Organic vapor phase epitaxy) technique that we are using in 

our lab to grow these materials as well as the structural, morphological and optical 

characterizations performed to evaluate their quality. 

 

 

P𝑝𝑧 (C[x]D[1 − x]N) = P𝑝𝑧(CN) . x + P𝑝𝑧(DN) . (1 − x) (2.7) 

P =  Psp +  Ppz (2.8) 
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2.2 Experimental methods 

2.2.1 Metal-organic vapor phase epitaxy (MOVPE) 

Manasevit is the pioneer of the MOVPE technique [32]. During the years       

1969-1975, Manasevit was able to grow by this technique gallium arsenide (GaAs), 

gallium phosphide (GaP), gallium aluminum arsenide (GaAlAs), gallium nitride (GaN), 

and aluminum nitride (AlN) [33].  

The precursors used in MOVPE are mainly hydrides for the elements V and 

organometallics for the elements III. In case of GaN, Amonia (NH3) can be used for 

precursor V and TriMethyl-Gallium (TMG) or TriEthyl-Gallium (TEG) for precursors III 

[34]. Dopants can be added in epitaxial layers. They come from the decomposition of 

many precursors, such as Silane (SiH4) for n-type doping of GaN with Si and 

Bis(cyclopentadienyl)magnesium (Cp2Mg) for p-type doping of GaN with Mg. 

 In the MOVPE growth process, precursors and gases introduced into a chamber 

form a new material on the wafer surface via several steps, i.e., gas input, pyrolysis, 

diffusion, and surface reaction [35]. The by-products formed during these steps are 

pumped away with carrier gases. The general reaction for III-nitrides growth is described 

below: 

R3M(g) + NH3(g) ↔ MN(s) + 3RH(g) 

In the above equation, M represents the group III, R the organic compound 

(typically an alkyl such as methyl (CH3) or ethyl (C2H5)) that the group III element is 

attached to, and H elementary hydrogen. 
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MOVPE uses the properties of temperature dependence of the organometallic 

vapor pressure [36], as shown in equation (2.9). Thus, it is possible to transport the metal 

precursors to the growth chamber by simply bubbling a carrier gas (hydrogen for 

example) into a metal cylinder containing a liquid organometallic source maintained at a 

fixed temperature in a thermostatic bath (generally -10°C < T < 30°C). This container is 

called “bubbler”. The equilibrium vapor pressure can be described by the following 

equation: 

                                                                log (Peq (T)) = B -   
𝐴

𝑇
 + C log(T) 

(2.9) 

where Peq(T) is an equilibrium vapor pressure of the condensed phase, T is temperature in 

degrees Kelvin, and A, B, and C are material-specific constants. The constant C is often 

neglected in the practical use, making the relationship simpler. 

The molar flow rate of a metalorganic source Q is a function of the flow rate of 

the carrier gas Fcarrier (in sccm, standard cubic centimeter per minute), the pressure P of 

the metalorganic source container (bubbler), and the equilibrium vapor pressure of the 

precursor Peq. It is given by the following equation: 

                                                   Q = ( Peq(T) / (P – Peq(T)) ) . Fcarrier / CSTP (2.10) 

Where CSTP is equal to 22,406 cc/mole, it is the molar volume of an ideal gas at 

standard temperature (298.15K) and pressure (760 Torr). 
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MOVPE relies on the transport of chemical species in gaseous phase to the 

substrate raised to high temperature (500 ° C to 1300 ° C depending on the materials). In 

MOVPE, the pressure inside the reactor is normally between 13 mbar and atmospheric 

pressure. 

 Epitaxial materials and structures studied within this work were grown by        

low-pressure metal-organic vapor-phase epitaxy (LP-MOVPE) using a home-made 

system designed and installed by Prof. Abdallah Ougazzaden [37], as shown in Figure 

2-3. The system includes four basic elements: gas handling system, reactor chamber, 

heating system and an exhaust (low pressure) pumping system. The temperature range is 

from 400 C to 1040 C and the pressure in the reactor can be regulated from 80 to 1000 

mbar. Hydrogen or nitrogen can be used as carrier gas. During growth, the substrate is 

rotated at 60 rpm to enhance the layer homogeneity and to help maintain the laminar flow 

on the sample surface. 

 

Figure 2-3 Photographs of the reaction chamber and the gas panel of the MOVPE reactor. 
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 An Aixtron 3x2 inch, close coupled showerhead (CCS) MOVPE system has also 

been brought into operation and it is shown in Figure 2-4. The surface temperature of 

substrates in this reactor can reach 1300 °C. This is favorable for the growth of good 

quality AlN/sapphire template and h-BN material. 

 

Figure 2-4 Aixtron 3x2 inch, close coupled showerhead (CCS) MOVPE system. 

 Both systems are equipped with in-situ optical reflectance monitors to estimate 

the growth rate and get first information of the surface quality of the sample. 

For the case of the T-shape reactor, a laser beam with wavelength of 633 nm is 

used. Interference between the reflection at the surface of thin films and reflection at the 

bottom causes oscillations of detected light intensity as the layer is grown. The growth 

rate can be calculated by the following equation: 

                                               Growth rate = 𝜆 2𝑛𝛥𝑡⁄  
(2.11) 

where λ is the wavelength of the laser beam, n is refractive index of the layer and Δt is 

the time interval between two maxima or two minima of oscillations. 
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During the growth of a single layer, there would be additional light scattering due 

to the surface roughness. The reduced reflection intensity of maxima or minima indicates 

the increase of surface roughness, which can be expressed quantitatively as follows: 

 R = R0 . e-(4πσ/λ) (2.12) 

where R0 is the mean value of reflectance oscillations, λ is the used wavelength and σ 

refers to the root mean square of roughness. 

2.2.2 Materials characterization techniques 

• X-ray Diffraction (XRD) 

X-ray diffraction (XRD) is a technique commonly used to analyse crystals and 

especially III-Nitrides [31]. It has the advantage of allowing a structural analysis of a 

material while being non-destructive. The technique is based on the elastic diffusion, 

without loss of energy, of a photon (electromagnetic wave) by the material. This gives 

rise to interferences which are more marked as the material is ordered, which is 

particularly favourable for our crystalline materials. The range of X-rays is interesting 

because the incident wavelength is of the order of the crystal lattice parameter. 

The interaction of an X-ray beam with a crystal causes the diffraction of the signal in 

preferential directions that can be determined from Bragg's law [31]: 

                                                     n . 𝝀 = 2 . d . sin(θ) 
(2.13) 

with d the interplanar distance, 𝝀 the wavelength of the incident X-ray, n the 

diffraction order and θ the angle of incidence as shown in the figure 
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In this work, high resolution XRD measurements were performed in a Panalytical 

X’pert Pro MRD system with Cu Kα radiation (Cu Kα1: 1.5405 Å). The height of X-ray 

beam from hybrid monochromator is 1.2 mm and the resolution is ~ 12 arcsec. 

• Scanning transmission electron microscope (STEM) 

In a scanning transmission electron microscope, a beam of electrons is transmitted 

through an ultra-thin specimen [38]. An image is formed from the interaction of the 

electrons transmitted through the specimen. Owing to the small de Broglie wavelength of 

electrons, this technique can resolve the lattice of atoms in the crystal. The difference of 

STEM from conventional TEM is that STEM focuses the electron beam into a narrow 

spot which is scanned over the sample in a raster, which makes it suitable for analysis 

such as energy dispersive X-ray (EDX) mapping, electron energy loss spectroscopy 

(EELS) and annular dark field imaging (ADF) allowing direct correlation of image and 

quantitative data. An annular dark field image, which is formed only by very high-angle 

and incoherently-scattered electrons, is highly sensitive to atomic number variations of 

the sample (Z-contrast images). By using this high-angle annular dark-field scanning 

transmission microscopy (HAADF-STEM), the relative intensity variations of the images 

reflect variations in the compositions of the material. Therefore, HAADF-STEM images 

can be interpreted into quantitative compositional maps by using EDX as a chemical 

calibration [39]. To prepare the samples for TEM characterizations, 100 nm carbon were 

deposited to protect the surface. Then all the thin foils were prepared using focused ion 

beam (FIB) thinning and ion milling by Dr. David Troadec in Institut d’Electronique de 

Microelectronique et de Nanotechnologie (IEMN, Lille, France). Carbon coating and 

HAADF-STEM characterizations in this work were performed by Dr. Gilles Patriarche in 

Laboratoire de Photonique et de Nanostructures (LPN, Marcoussis, France). The 

equipment for HAADFSTEM is aberration-corrected JEOL 2200FS electron transmission 

microscope. 

• Energy-dispersive X-ray spectroscopy (EDX) 

The energy-dispersive X-ray spectroscopy is combined with TEM technique [38]. 

The X-rays produced when the electron beam impacts the structure are collected and 

measured by an energy-dispersive spectrometer. As the energies of the X-rays are 

characteristic of the energy difference between the two shells and of the atomic structure 



 16 

of the emitting element, EDX allows the measurement of elemental compositions of the 

specimen. 

• Atomic force microscope (AFM) 

Atomic force microscopy is a non-destructive technique to measure the sample 

surface in nanometer-scale resolution [40]. It consists of a cantilever with a sharp tip 

typically made of Si3N4 or Si. The tip radius of curvature is on the order of nanometers. 

When the tip is brought into proximity of a sample surface, the interaction forces between 

the tip and the sample cause a deflection of the cantilever according to Hook’s law. This 

deflection can be measured by the reflection of the laser beam focused on the cantilever. 

The motion of the probe across the sample surface is controlled by feedback loop and a 

piezo-electronic scanner moving the sample under the tip.  

AFM has three primary modes: tapping mode, contact mode and non-contact mode. 

The commonly used tapping mode maps topography by lightly tapping the surface with 

an oscillating probe tip. The oscillation frequency is equal or slightly lower than its 

resonance frequency. In order to maintain a constant oscillating amplitude, the feedback 

loop controls vertical position to maintain a constant tip-sample interaction. The vertical 

position of the scanner is stored to form the topographic image of the sample surface. In 

contact mode, the spring constant of the cantilever is lower than the effective spring 

constant holding the atoms of most solid samples together. The contact force on the tip is 

repulsive. The scanner gently traces the tip across the sample surface. By maintaining a 

constant cantilever deflection, an image of the surface is obtained. In non-contact mode, a 

stiff cantilever vibrates near the surface of the sample with the spacing on the order of 

tens to hundreds ångstroms. The surface topography can be measured by monitoring 

changes in the amplitude due to attractive van der Waal forces between the tip and the 

sample surface. The AFM images in this work were obtained by Veeco 3100 Dimension 

Atomic Force Microscope. 

• Scanning Electron Microscope (SEM) 

A scanning electron microscope is a type of electron microscope that produces 

images of a sample by scanning it with a focused beam of high energy electrons [41]. The 

electrons interact with atoms in the sample, producing signals of secondary electrons, 

backscattered electrons, characteristic X-rays, light (cathodoluminescence), Auger 



 17 

electrons, transmitted electrons and phonons (heat). Secondary electrons are low energy 

electrons emitted by atoms near the surface. The number of secondary electrons depends 

on the angle at which the beam meets the surface of specimen. By scanning the sample 

and collecting the secondary electrons with a special detector, the topography of the 

surface can be displayed.  

The SEM images in this work were obtained by Zeiss supraTM 55VP. The main 

elements are: electron source, magnetic focusing lenses, the sample vacuum chamber, 

imaging system and control panel. 

• Cathodoluminescence (CL) 

A cathodoluminescence spectroscopy combined with SEM system is used to study 

optical properties of the sample [42]. The high energy electron bombardment onto a 

semiconductor will result in the promotion of electrons from the valence band into the 

conduction band, leaving behind a hole. When an electron and a hole recombine, it is 

possible for a photon with a specific wavelength to be emitted. The CL emission is 

detected via a parabolic mirror collector and analysed by a spectrometer with a focal 

length of 320 mm using a 1200 grooves mm-1 grating with a spectral resolution of 0.06 

nm. The signal is then registered by a liquid N2-cooled HORIBA JOBIN YVON 

Instruments Symphon 1024 x 256 CCD detector. 

 

 

 

 

 

 

 

 



 18 

CHAPTER 3. INGAN-BASED SOLAR CELLS 

3.1 Photovoltaic effect basis 

3.1.1 The solar spectrum 

In 1900 Planck proposed a new approach attesting that light is composed of energy 

packets, later called photons by Einstein, where each packet of energy is bound to a wavelength 

by the relation:  

 Ephoton = h.ν = 
ℎ.𝑐

𝜆
 

(3.1) 

where h is Planck's constant (≃ 6, 626.10-34J · s), c is the velocity of light (≃ 2, 998.108m / s), and 

λ is the wavelength in meter.  

De Broglie then showed that light can be considered both as corpuscles (packets of 

energy) and as an electromagnetic wave, in which the two aspects are linked by: 

 
𝑝 =  

ℎ

𝜆
 (3.2) 

where p is the quantity of the motion of a corpuscle.  

In the field of photovoltaic (PV), we are interested in the second aspect, which attests that 

the light propagates in the form of packets of energy called photons. Figure 3-1 shows the 

intensity of light emitted by the sun as a function of wavelength, called the irradiance of the solar 

spectrum. 
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Figure 3-1 Solar radiation spectra for the incident sunlight at the top-of-the-atmosphere (yellow), 

at sea level (red), and a blackbody curve (black line). 

The sun's irradiation passes through several layers of the atmosphere, which modifies the 

solar spectral irradiance according to the position in the globe. This is estimated by the mass of 

air through, AM (Air Mass), which is calculated by: 

                                              𝐴𝑀 =  
1

𝑐𝑜𝑠(𝜃𝑍)
  =  

1

𝑠𝑖𝑛(𝜃ℎ)
                                                                       

(3.3) 

where 𝜃𝑍 and 𝜃ℎ are the angles of incidence with respect to the zenith and with respect to the 

horizon, respectively. The spectrum AM1.5, which corresponds to an angle 𝜃𝑍 = 48.2◦, has been 

chosen as the standard solar spectrum for solar cell tests and the measurement of efficiencies is 

based on this spectrum. There exist AM1.5G and AM1.5D where the letters G and D designate 

the overall light beam and the direct light beam, respectively. The global beam takes into account 

the light beams reflected from the ground or diffused by clouds or other particles in the air, 

whereas the direct beam is the one that arrives directly through the atmosphere. AM1.5D is used 
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for testing solar cells under concentration. AM0 means that the mass of air is zero, i.e the solar 

spectrum outside the atmosphere. 

3.1.2 Photovoltaic performances 

All PV cells are characterized by certain parameters that determine their performance. 

Before explaining these parameters, we will first address the electrical operation of a solar cell. 

For a p-n junction, the relationship between the voltage at the terminals of the junction and the 

density of the current flowing through it is given by: 

                                                  J= J0 ( exp (
𝑞𝑣

𝑛𝑘𝑇
)-1 )                                                                     

(3.4) 

where V is the voltage across the junction [V], k is the Boltzmann constant                                                  

(1, 38.10-23 m2.kg.s-2.K), T is the absolute temperature, n is the ideality factor is considered ideal 

when it is equal to 1.) J0 is the saturation current density, also called the current density of the 

minority carriers, which is given by: 

 
                      J0 = q . ( √

𝐷𝑛

𝜏𝑛
 . np + √

𝐷𝑝

𝜏𝑝
 . pn )  where np =  

𝑛𝑖.𝑛𝑖

𝑁𝐴
  ; pn =  

𝑛𝑖.𝑛𝑖

𝑁𝐷
 

(3.5) 

where q is the charge of an electron (1,6.10-19C), Dp and Dn are diffusion coefficients of electrons 

and holes [cm2 / s], respectively. τn and τp are the lifetimes of electrons and holes [s], respectively. 

NA and ND are the concentrations of acceptor and donor dopants, respectively. J0 is a determinant 

parameter for a p-n junction and is linked to the recombination. Indeed, the greater the 

recombination , the more J0 is important and the quality of the junction is poor.  

Equation (3.4) represents the relation J (V) for a p-n junction in the dark. If this junction 

is placed under illumination, a photo-generated current, current of minority carriers, will circulate 
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in the opposite direction to the current induced by the direct polarization of the junction. Then, 

the relation J (V) for a junction under illumination is given by: 

                                                  J= J0 ( exp (
𝑞𝑣

𝑛𝑘𝑇
)-1 )- JL 

(3.6) 

where JL is the photo-generated current density. Figure 3-2(a) shows the equivalent electrical 

circuit for an ideal solar cell, modeled as a current generator with a parallel load resistor. The 

current across the diode depends on the source of illumination. The load resistor determines the 

amount of current flowing through the diode. The electrical characteristics of the solar cell under 

dark and illuminated conditions are given in Figure 3-2(b), with the corresponding key 

parameters of the solar cell.  

 

Figure 3-2 (a). Equivalent electric circuit for an ideal solar cell. The load resistance (RLoad) 

determines the amount of current across the diodes and the load, (b). Electrical characteristics of a 

solar cell under dark and illumination. 

Four points are important in the curve J (V) for a solar cell. These are the Voc, the Jsc, the 

Vmax and the Jmax. The Voc corresponds to the open-circuit voltage of the cell, the Jsc is the short-

circuit current density, the Vmax and the Jmax are the voltage and the current density at the point of 

the maximum power. These points are marked in Figure 3-2(b).  
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The Jsc is the maximum current through the solar cell given that the voltage across the 

solar cell is zero. The Jsc is due to the generation and collection of light-generated carriers. The Jsc 

of a solar cell is dependent on the intensity of the incident light and crystalline quality of the 

epitaxial layer, particularly the absorber layer. Additionally, the diffusion length and the surface 

recombination significantly affect the Jsc. In a solar cell with perfectly passivated surface and 

uniform generation, the equation for the Jsc can be approximated as: 

                                                Jsc = qG(Ln + Lp) (3.7) 

where G is the generation rate of the electron-hole pairs, and Ln and Lp are the electron and hole 

diffusion lengths respectively. 

The Voc is the maximum voltage available from a solar cell given that the there is no 

current across the solar cell. The Voc for a solar cell can be calculated using the equation, 

                                                Voc = 
nkT

q
  ln ( 

Jsc

J0
 + 1) 

(3.8) 

where n is the ideality factor of a diode, in-case of an ideal diode n=1, kT/q is the thermal voltage 

(25.85 mV at 300K), Jsc is the short-circuit current density and J0 is the saturation current density. 

The fill factor (FF) is the ratio between the product (Vmax · Jmax) and the product (Voc · 

Jsc). This factor represents the filling ratio of the rectangle (Voc · Jsc) with respect to the rectangle 

(Vmax · Jmax). This factor is given by: 

                                                    FF = 
Vmax · Jmax

Voc · Jsc
 

(3.9) 
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The power conversion efficiency (PCE) is the most commonly used parameter in 

demonstrating the performance of the solar cell device under given source of illumination. It is 

defined as the ratio of energy output from the solar cell to input energy from the sun. The PCE of 

a solar cell is given as: 

                                                   η = 
Voc · Jsc.FF

𝑃𝑖𝑛
 

(3.10) 

where Pin is the incident power density which corresponds to 1 mW / cm2 for AM1.5G. 

3.2 InGaN-based solar cells: state of the art 

The promising use of the InGaN alloy in the field of photovoltaic (PV) has been studied 

by Wu et al. (2003)[43], whereas the first experimental results were published by Jani et al 

(2005)[44]. This shows that these materials have only been studied for PV application for a few 

recent years. From the first experimental results, several challenges have been observed that limit 

the performance of these materials, including p-type doping as well as the epitaxial growth of a 

relatively thick layer of good quality. Jani et al. [44] produced two heterojunction                                     

p (GaN) -i (InGaN) -n (GaN) cells with different concentrations of indium (7% and 40%). They 

noticed that at 40% indium the material is much more degraded than at 7% of In for an equivalent 

thickness of 130 nm. By using a quantum well structure for the intrinsic region, they have been 

able to improve the material quality for 40% of In, but this is far from the expected performance 

for PV, mainly due to transmission loss and recombinations caused by a quality of degraded 

material. They have also noticed in the I (V) curves under light, for negative voltages, an opposite 

current due to the effect of an inverted diode. The latter is due to the Schottky contact formed at 

the interface between the metal and the p-GaN. The 7% indium p-i-n structure showed a 

photoluminescence (PL) emission peak corresponding to an indium composition of 27%. This is 

explained by a phase separation and segregation of the indium in the InGaN layer. This is 
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translated electrically by a reduction of (Voc). Other similar structures have been reported, such as 

that carried out by Neufeld et al (2008) [45]. For an In composition of 12%, they obtained a Voc 

of 1.81 V, a FF of 75% and a Jsc of 4.2 mA / cm2 for an AM0 illumination under concentration. In 

2011, the same group was able to have an EQE of 73% for a thickness of 60 nm of In0,12Ga0,98N 

with a textured surface of 7 nm of roughness [46] EQI and FF reported in this work are 97% and 

78.6%, respectively. Kuwahara et al. (2010) [47] developed an InGaN-based p-i-n solar cell with 

10% indium on two different substrates, sapphire (Al2O3) and GaN. They showed that growth on 

a GaN substrate reduces the density of defects in the epitaxial layers. Thus, they were able to 

develop a non-doped absorber layer of 250 nm of InGaN. They obtained a Voc of 2.23 V, a FF of 

63% and a Jsc of 1.59 mA / cm2 under 1.5-sun AM1.5G.  

Because of the difficulty in growing a good quality and relatively thick crystalline layer 

for higher indium compositions, multi quantum well (MQW) and super lattice (Super Lattice SL) 

were used. In 2009, Dahal et al. [48] compared the performance of two p-i-n solar cells with 30% 

and 40% indium. The intrinsic region consists of eight periods of InGaN (3 nm) / GaN (8 nm). 

The Voc obtained are 2 V and 1.8 V for the 30% and 40% indium cells, respectively. These values 

are consistent with the energy values of the gaps for these compositions (~2.32 eV and ~2.02 eV 

for 30% and 40% In). However, the photo-generated current density of the cell with 40% indium 

is worse than that of the cell with 30% indium. This is due to the degradation of the material for a 

higher indium composition, which was proved by PL and X-ray measurements. Liou et al. (2011) 

[49] reported interesting results for an InGaN-based p-i-n structure developed on a silicon 

substrate. They have compared the two structures p (GaN) / i (InGaN) / n (GaN) and p (GaN) / i 

(InGaN  [3 nm] -GaN [13 nm] MQW) / n (GaN) with Indium ranging from 19% to 36%. They 

showed that the MQW structure exhibits higher PV performance than those obtained with p-i-n 

cells having a single intrinsic layer. An efficiency of 5.95% and a FF greater than 74% were 

achieved with the MQW p-i-n structure under illumination AM1.5. Young et al. (2013) [50] 
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developed a similar structure but using the super-lattice structure. The thickness of the low gap 

InGaN layers is equivalent to that of the previous team (3 nm) but the thickness of the large gap 

layers is only 4 nm. They compared the performance of the cell for several number of periods, 

between 10 and 50 periods. They obtained 20% of In, a Voc of 2.26 V as well as a FF which can 

go up to 80%. However, the Jsc remains poor, on the order of 2 mA /cm2, mainly due to 

transmission loss, due to the small thickness of InGaN. Then in 2014, the same group [51] 

improved their cell by adding an antireflection layer (ARC) on the front and a mirror face to 

increase absorption. Thus, they were able to obtain an EQE of 80% and a Jsc of 2.97 mA /cm2 

under illumination AM0. An increase in the power density of 37.5% compared to the cell without 

ARC or mirror.  

In order to avoid the lattice mismatch between GaN and InGaN and the polarization 

effect on the hetero-interfaces in the heterostructure, other groups have tried a p-n or p-i-n 

homojunction structure. Jani et al. (2007) [52] demonstrated PV behavior for an InGaN-based 

homojunction cell with an indium composition of 28%, with which they obtained a 2.1 V Voc 

which is consistent with its energy gap. Nevertheless, a year later they reported a 1.5 V Voc for a 

higher gap energy (2.9 eV at In = 12%). They have shown that by adding a GaN window layer, 

the Voc increases to 2V[53], but the current density is very low (0.04 mA /cm2). Jampana et al. 

(2010) [54] reported better current density (0.91 mA /cm2 for an indium concentration of ~15%), 

their structure is not quite a homojunction, the junction p-In0.16Ga0.84N / n In0.175Ga0,825N is 

inserted between a p-GaN layer and an n-GaN layer, the Voc obtained is 1.73 V and the FF is 

61%. Islam et al. (2013) [55] reported a homojunction structure with a high indium composition 

(25%). The structure consists of an n + p junction of In0.25Ga0.75N with a total thickness of 700 nm 

deposited on a template layer of GaN of thickness 1 .4 μm. With this structure, they obtained a 

Voc of 1.5 V and a Jsc of 0.5 mA /cm 2. Cells with homojunction structure suffer from very low 

current density and a fill factor often degraded due to structural defects. These defects act as 
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recombination centers for photo-generated carriers and thus degrade the efficiency of collecting 

these carriers. 

Some groups have studied nano-structures (e.g nano-wires, quantum dots, etc.) for the 

fabrication of an InGaN-based solar cell. The advantages of these structures are that they have a 

greater surface area of absorption, improved carrier transport and tuning of the band-gap due to 

the confinement properties in these structures. Due to the difficulty of obtaining good contacts 

and controlling the growth of these materials, few works have been able to obtain PV 

performances for these structures. Nguyen et al. (2011) [56] have the first cell with the nanowire 

structure developed on silicon (Si). The nanowires correspond to an axial p-i-n homojunction of 

InN. A high current density was obtained (14 mA/cm2) under illumination AM1.5G, but the Voc 

and the FF are very low; 0.14 V and 34.02%, respectively. 

Currently, the maximum efficiency of an InGaN-based solar cell is obtained by Tran et 

al. (2012) for an n-InGaN / p-Si junction with an efficiency of 7.12% [57]. 

 Recently, two new concepts have been proposed by our lab that can contribute to the 

advancement of these materials in the PV field. The first was reported by Pantzas et al. 

(2013)[58]. This approach deals with growing good quality thick InGaN absorber. It consists of 

periodically inserting thin GaN layers (2-3 nm) to grow a ‘’semi-bulk’’ (SB) InGaN layer. The 

GaN interlayers relieve strain and absorb excess In wich allows for thicker layers and higher In 

content. Figures 3-3 (a) and (b) show the HAADF-STEM (high-angle, annular dark field 

scanning transmission electron microscopy) images for two samples: the first with a bulk layer of 

InGaN, and the second with the semi-bulk structure. The cathodoluminescence spectra (CL) with 

several energies of excitation make it possible to have a profile in depth. It can be noted that for 

the semi-bulk structure (SB) there is only one emission peak for InGaN which is around 400nm. 

For the sample with a bulk layer, two distinct peaks of InGaN are observed, which means that 

there is phase separation in this layer.  
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Figure 3-3 HAADF-STEM transmission electron images of (a) a bulk structure and (b)semibulk, 

as well as a cathodoluminiscence (CL) spectrum of (c) the bulk structure and (d) semibulk[58]. 

Device results for a solar cell with an In0.08Ga0.92N semi-bulk absorber are shown in 

figure 3-4. Extracted efficiency, fill factor, open circuit voltage and short circuit current 

density are respectively equal to 0.39%, 65, 1.04 V and 0.57 mA/cm2. 
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Figure 3-4 Current Density-Voltage (J − V ) measured under AM 1.5G, experimentally and 

simulations (ideal) [59]. 

The second approach was proposed by Sundaram et al. (2014) [60]. The idea is to 

perform the growth on a selective surface. Figure 3-5 (a) shows a schematic illustration of this 

growth process. These hexagonal nano-pyramids have a height of 150 nm with a relatively 

homogeneous indium composition of 22%. Figures 3-5 (b) and ( c) show a scanning electron 

microscopy (SEM) image of the network of these nano-pyramids and a cross-section TEM image 

of these nano-pyramids. The indium composition present in the nano-pyramids is twice as large 

as that in a plane layer constrained to the substrate under the same growth conditions. The ability 

to incorporate more indium without deteriorating the crystalline quality of the InGaN layers using 

the defect-free thick InGaN nano-structures, offers a new route to develop monolithic           

InGaN-based high efficiency solar cells.  
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Figure 3-5 (a) Illustration of the growth process on a selective surface to develop nano-pyramids. 

(b) SEM image of InGaN nano-pyramid network at 22% In. (c) coss-section TEM image of the 

nano-pyramids[61]. 
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CHAPTER 4. 2D H-BN EPITAXIAL LIFTOFF TECHNIQUE 

The goal of this thesis is to develop a transfer method that allows the growth of 

InGaN-based solar cells, their fabrication and their hybrid integration with other solar cell 

technologies like Si-based photovoltaics. For this purpose, we have considered the            

2D h-BN based transfer technique. Indeed, h-BN is a nitride material, so it is compatible 

with other III-Nitrides in a single growth run. Moreover, h-BN has a graphene like 

layered structure, so it allows the mechanical release of the above layers and their transfer 

to foreign substrates. In this chapter, we present the results achieved for the optimization 

of this transfer technique. First, the wafer-scale growth of h-BN on 2-inch sapphire 

wafers is presented. Then, the van der Waal epitaxy of two different device structures, an     

InGaN-based PIN and an AlGaN/GaN HEMT structure are discussed. Finally, the device 

fabrication on h-BN/sapphire template have been optimized for HEMT based gas sensors, 

this is the object of section 4.4.  

4.1 Large-Area Two-Dimensional Layered Hexagonal Boron Nitride growth by 

MOVPE 

4.1.1 H-BN: a III-Nitride 2D material  

Boron nitride is a III-V compound that has been known for more than 170 years 

[62]. Unlike the other nitrides, whose most stable and most studied structure is the 

wurtzite phase [63], the BN presents four stable polytypes: the hexagonal BN (h-BN), the 

cubic BN (c-BN), wurtzite BN (w-BN) and rhombohedral BN (r-BN). While the 

hexagonal phase is the stable phase at atmospheric pressure, the cubic phase is stable at 
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high temperature [64]. The other two phases are metastable at high pressure [64]. In this 

thesis, we consider the BN in its hexagonal phase. 

Table 5 summarizes some important properties of hexagonal Boron Nitride. 

 Table 5 Summary of some important physical properties of h-BN. 

Parameters h-BN 

a (Å) 2.5[65] 

c (Å) 6.6 [65] [66] 

Eg (eV) 5.8 [67] 

Thermal expansion coefficients (10-6/°C) -2.7 (||a), 38 (┴a)[68] 

Thermal conductivity (W.cm-1K-1) 390 (||a) [69] 

The hexagonal phase (h-BN) is similar to graphene because of its 2D layered 

structure and very close crystalline parameters (a = 2.464 Å and c = 6.738 Å for 

graphene) [70]. These two compounds have a layered structure formed of the ABAB type 

stack of BN planes for h-BN and carbon for graphene. The hexagons formed by B and N 

atoms in h-BN are perfectly superimposed from one plane to another while they are 

shifted in the graphene, as can be seen in figures 4-1 (a) and (b). In addition, the various 

layers of BN are superimposed in such a way that the boron atoms of the hexagons of the 

lower layer face the nitrogen atoms of the upper layer. The bonds between the various 

planes are of Van der Waals type and they are spaced 3.3 Å apart for h-BN. The 

hexagons constituting the atomic layers are formed of B-N covalent bonds at a distance 

of 1.45 Å. The strength of the B-N link in the plane is therefore much stronger than that 

between the planes.  



 32 

 

Figure 4-1 Comparison of the crystal structures of graphene (a) and hexagonal BN (b). 

4.1.2 H-BN growth by MOVPE 

Hexagonal BN films have been obtained by chemical vapor deposition (CVD) 

[71][72][73], molecular beam epitaxy (MBE) [74] or metalorganic vapor phase epitaxy 

(MOVPE) [75][66][76]. Most studies focused on the thick layers or several monolayers. 

In this thesis work, we studied wafer-scale 2D layered h-BN films that are directly grown 

on sapphire substrates by MOVPE. 

    The growth was performed in the Aixtron MOVPE CCS 3x2’’ reactor using 

triethylboron (TEB) and ammonia (NH3) as B and N precursors, respectively. The layers 

were grown at 1280 °C in hydrogen ambient at 85 mbar, with V/III ratio of about 1000. 

The total flow rate into the reactor is 20 SLPM (standard liter per minute). The growth 

rate is 15 nm/h based on the cross-section STEM characterizations. 

The crystal structure of 30 nm-thick BN was examined by HR-XRD scans, as 

shown in figure 4-2. A clear symmetric diffraction peak is located at 26.0° that relates to 
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hexagonal boron nitride (0 0 0 2) crystal planes. The (0 0 0 4) plane diffract peak is also 

observed at 53.7°. The crystal lattice “c” is calculated to be 6.85 Å. Compared with the 

reported value 6.6 Å [66], the shift can be due to the residual strain in the 2D layer. The 

residual strain can come from the heating, epitaxy growth and cooling process. The left 

inset of Figure 4-2 is the HR-XRD -scan in the triple-axis mode to measure the mosaic 

width. The full-width at half maximum (FWHM) is around 684 arcsec confirming the 

highly oriented crystal structure along c-axis.  

 

Figure 4-2 High-resolution triple axis 2- scan of h-BN grown on sapphire; left inset shows the 

triple axis -scan along with Lorentz fit (red line) of the BN (0 0 0 2) reflection and right inset 

shows Raman shift spectrum [77]. 

The hexagonal phase of the epitaxial layer is also confirmed by Raman shift 

measurement shown in right inset of the Figure 4-2. The spectrum of the thin BN film 
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fitted with Cauchy-Lorentz distribution shows a peak at 1370 cm-1 with the FWHM of 45 

cm-1 that is attributed to the h-BN E2g vibration mode [78].  

 

Figure 4-3 (a) Cross-section high-angle annular dark field scanning transmission microscopy 

(HAADF-STEM) image of 30 nm BN grown on sapphire along zone axis <1 1 -2 0>; (b) is the 

higher magnification image of the area marked in the box in (a) to show highly oriented lattice; 

(c) shows the high resolution TEM image and fast Fourier transform pattern in the inset of 

selected area; (d), (e), (f) and (g) are energy dispersive X-ray spectroscopy (EDX) elemental 

mappings of Al, B, N and C, respectively [77]. 

As a direct evidence of crystal phase and quality, the cross-section STEM images taken 

along zone axis <1 1 -2 0> are shown in figure 4-3(a) and figure 4-3 (b). The 30 nm BN 

layer has a highly ordered layered lattice. The stacking sequence of basal planes is clearly 

observed in the image with higher magnification in figure 4-3 (b) confirming that the 

phase of the BN layer is hexagonal rather than turbostratic or rhombohedral. The 

interlayer distance is 0.34 nm (± 0.01 nm), which agrees well with the calculations from 



 35 

HR-XRD. Fast Fourier transform (FFT) pattern of the high-resolution TEM image and 

corresponding selected area are presented in figure 4-3 (c), showing clear diffraction 

spots from basal planes as well as prism planes. An abrupt interface without 

interdiffusion between the epi-layer and the sapphire substrate and without generating 

any dislocations can be seen in energy dispersive X-ray spectroscopy (EDX) element 

mappings (figure 4-3 (d)-(g)). In the bottom part of the figure 4-3 (a), out-of-plane 

waviness (wrinkling) can be seen and that is due to the thermal compressive strain, since 

BN has a negative expansion coefficient in the plane (a//) [79], [80]. This 2D morphology 

feature will be discussed in more detail in the following paragraphs. 

The whole 2-inch wafer is highly transparent and demonstrates smooth surface without 

delamination (inset of figure 4-4). The SEM images with different magnifications are 

presented in figure 4-4. The flat and uniform surface can be seen in the left figure with 

low magnification (5kx). When looking into the image with 20 kx magnification in figure 

4-4 (b), the hexagonal wrinkle pattern is observed and the average wrinkle spacing is 

around 400 nm. The majority of wrinkle junctions (>90%) are threefold to form oriented 

honeycomb pattern indicating it is under isotropic biaxial compression strain[81]. This 

wrinkle pattern is a ubiquitous phenomenon for deformed graphene due to its low 

bending rigidity [81], [82] , and was also observed in h-BN monolayer flakes deposited 

by CVD [80], [83], [84].  
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Figure 4-4 Scanning electron microscope images of BN grown on sapphire (a) with low 

magnification to show uniform smooth surface and (b) with higher magnification to show 

hexagonal wrinkle pattern; inset of (a) shows the transparent 2-inch wafer after growth [77]. 

The morphology change of the BN layers with different thicknesses is shown in          

figure 4-5. Compared with the sapphire substrate in figure 4-5 (a), the surface of               

3 nm-thick BN layer in figure 4-5 (b) is flat showing growth step feature. This 

morphology also indicates that step-flow growth mode is dominant here to form flat 

surface. When the layer thickness is 30 nm, the localized wrinkles appear. AFM 

characterization in figure 4-5 (e) provides detailed morphology of 30 nm BN. An 

example of the profile across one wrinkle along the line marked in the figure 4-5 (e) 

shows that it is 8 nm high. In fact, the height of different wrinkles can vary from 5 nm to 

10 nm. Then, when the layer thickness is increased to 60 nm, the wrinkle height increases 

as well, ranging from 15 nm to 25 nm.  
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Figure 4-5 (a), (b), (c) and (d) are SEM images of the sapphire and of the 2D BN layers with 

different thickness; (e) is AFM characterization of 30 nm BN layer in (c) ; (f) height profile 

across the wrinkle along the blue line marked in (e)[77].   
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4.2 Van Der Waal epitaxy of III-Nitrides on 2D h-BN 

Van der Waal epitaxy (vdWE)  has been first introduced by Koma et al. [85] [86]. As 

opposed to standard epitaxy, this technique occurs when the epitaxial crystalline layer is bound 

primarily to the substrate by weak Van der Waals interactions; Figure 4-6 illustrates this 

difference. Thus, vdWE is different from conventional epitaxy, which has strong chemical bonds 

connecting the epitaxial material and the substrate at the interface. Various advantageous arise in 

vdWE including the possibility to grow well-crystallized epitaxial material without any necessity 

to satisfy lattice matching requirement with the substrate. To allow the growth via vdWE instead 

of via conventional heteroepitaxy, Koma and co-workers originally suggested the usage of 

overlayers and substrates from materials whose surface is free of active dangling bonds [87], such 

as 2D h-BN.  

 

Figure 4-6 Illustration showing the (a) covalent bond formation during standard epitaxy of 3D 

material on 3D substrates and (b) the different combinations of material stacking for van der 

Waals epitaxy [88]. 

For this thesis, we use 2D h-BN/sapphire templates for the vdWE of sp3-bonded 

GaN-based alloys. Two structures have been investigated, a MQW (multi quantum well) 

InGaN based PIN and an AlGaN/GaN heterostructure. 
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4.2.1 InGaN based PIN on h-BN 

The growth optimization of 2D-layered h-BN on a 2 inch sapphire substrate has enabled us 

to investigate vdWE of InGaN/GaN MQW structure on a 3 to 5-nm thick 2D h-BN layer and 

subsequent exfoliation from the sapphire substrate [17]. The growth was performed in the Aixtron 

MOVPE CCS 3x2’’ system on (0001) sapphire substrate. Triethylboron (TEB), 

Trimethylgallium/Triethylgallium (TMGa/TEG), Trimethylindium (TMIn) Trimethylaluminum 

(TMAl) and Ammonia (NH3), were used as B, Ga, In, Al and N sources respectively. Silane 

(SiH4) and Cp2Mg was used as n-type and p-type doping sources.  

First, a h-BN layer (3-5 nm) was grown on the sapphire substrate at 1280°C. The thickness 

of this layer was carefully chosen to optimize the GaN quality on top. Snure et al. have reported 

in [89] that the smoothness of the h-BN surface affect the quality of the above GaN layer. Based 

on that we have studied the growth of 300 nm GaN template on h-BN/sapphire using a 250 nm 

Al0.14Ga0.86N nucleation layer. Here, we have considered three different thicknesses of the h-BN 

layer: 1.5 nm h-BN (RMS roughness = 0.342 nm over 5x5 µm2), 3-5 nm h-BN (RMS roughness 

= 0.732 nm over 5x5 µm2) and 20 nm h-BN (RMS roughness = 2.956 nm over 5x5 µm2). The 

SEM images of the GaN surface and the FWHM of (002) rocking curves shown in Figure 4-7 

suggest that 3-5 nm is the optimal thickness for the h-BN layer. 

 

Figure 4-7 SEM images and XRD (002) FWHM rocking curves of 300 nm thick GaN layers 

grown on 1.5, 3-5 and 20 nm h-BN layers. 
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Then, an intermediate Si-doped AlGaN layer (250 nm) with an Al mole fraction of 14% 

was grown at 1100°C. This layer acts as an interfacial buffer between sp3-bonded 3D epitaxial 

films and 2D h-BN and promotes nucleation [90]. As shown in Figure 4-8, GaN does not wet the 

h-BN layer so we had to include some Al for a better wetting. 

 

Figure 4-8 SEM image of GaN directly grown on 3 nm h-BN layer. 

The InGaN/GaN MQW structure consists of a Si-doped GaN layer (0.5 µm), 5-periods of 

InGaN/GaN multi-quantum wells (MQWs), and a Mg-doped GaN layer (0.25 µm). The MQW 

structure consists of a 12-nm-thick GaN barrier layer and a 2.5-nm-thick InGaN quantum well 

layer with an In mole fraction of 15%. The electron and hole carrier concentrations in the Si- and 

Mg-doped GaN layers are 5 x 1018 and 1 x 1017 cm-3, respectively. Figure 4-9(a) and (b) show the 

schematic of the grown structure and the wafer photograph after growth, respectively. 

Additionally, two similar MQW structures have been grown under the same conditions: the first 

directly on sapphire without the h-BN layer and the second on a conventional 1.5 µm thick GaN 

template on sapphire.   

http://www.sciencedirect.com.prx.library.gatech.edu/science/article/pii/S0030401814003526#f0005


 41 

 

Figure 4-9 (a) Schematic illustration of the grown structure and (b) the resulting transparent wafer 

photograph after epi-growth. 

  The crystallographic properties of the MQW structure on h-BN in comparison with the MQW 

structure on a conventional GaN template were analyzed by High Resolution X-ray Diffraction 

(HR-XRD) using 2θ–ω configuration, the rocking curve scans are shown in Figure 4-10.  

 

Figure 4-10 High resolution X-ray diffraction 2θ - ω scans of the MQW structure on the h-BN 

layer and the same structure using conventional GaN template. 
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  In the case of MQW structure on conventional GaN template, one can observe the intense GaN 

peak and satellite peaks from the MQWs up to the third order with (n-2 = 3) pendellosung fringes 

indicating good periodicity and abrupt interfaces in the quantum wells. For the MQWs sample 

with h-BN layer, the satellite peaks from the MQWs up to the third order were also observed, 

along with GaN (0002) and AlGaN (0002) diffraction planes. The difference in the diffraction 

peaks intensity may be attributed to the thickness of the GaN which is lower in case of the device 

structures grown on h-BN. SEM images, shown in Figure 4-11 (a) and (b), confirm that surface 

quality of the sample with h-BN layer is similar to the one with conventional GaN template. 

Atomic Force Microscopy (AFM) measurements on the p-GaN surface for both cases, gave a 

comparable RMS roughness around 1.6 nm over a 5 µm x 5 µm area. Concerning the MQW 

structure on sapphire without the h-BN layer no x-ray diffraction peaks were observed, even from 

GaN, and SEM image of the surface showed completely 3D layers. This confirms that the h-BN 

acts as an effective buffer layer.  

 

Figure 4-11 SEM images of the MQW structure surface (a) on conventional GaN template and (b) 

on h-BN. 

 

 



 43 

4.2.2 AlGaN/GaN structure on h-BN 

AlGaN/GaN structure was grown by MOVPE on 2-inch h-BN/sapphire substrates 

(Figure 4-12 a). The grown structure is shown in the inset of figure 4-12 b.                    

The high-resolution X-ray diffraction (HRXRD) 2θ − ω scan of the grown layers on        

h-BN/sapphire is presented in figure 4-12 b. The satellite peaks from the 

Al0.25Ga0.75N/GaN heterostructure were clearly observed, along with GaN (002) and 

Al0.14Ga0.86N (002) diffraction planes. Simulation, shown in blue, confirms the Al content 

and the thicknesses of the different layers in the structure. The broadness and the low 

intensity of the AlGaN buffer compared to the simulated one are due to the 3D 

morphology of this layer as shown in the elemental EDX mapping of Al in figure 4-12 d. 

The high resolution TEM image in figure 4-12 c is a direct evidence of the crystal phase 

and quality of the 5-nm thick h-BN layer. An abrupt interface without inter-diffusion 

along the Al0.25GaN0.75/GaN can be seen in energy dispersive X-ray spectroscopy (EDX) 

element mapping in figure 4-12 d. 
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Figure 4-12 (a) Photo of the grown AlGaN/GaN on h-BN, (b) High resolution X-ray diffraction 

2θ - ω scans of the grown AlGaN/GaN heterostructure on h-BN using Al0.14Ga0.86N as a 

nucleation layer (NL), the red curve is the measurement and the blue curve presents the 

simulation result. The inset is a schematic of the grown structure. (c) High resolution TEM image 

showing the interface between the 2D layered h-BN and the AlGaN nucleation layer. (d) Energy 

dispersive X-ray spectroscopy (EDX) elemental mapping of Al. 

4.3 Wafer-scale release of InGaN MQW based PIN with commercial tape 

After demonstrating the wafer-scale growth feasibility of GaN-based materials on                

2D h-BN, a subsequent release of the InGaN MQW structure from the 2-inch sapphire 

substrate using an adhesive tape was attempted. The atoms within a mono-layer of h-BN 

are bound by chemical bonds. However, adjacent mono-layers are connected only by 

weak van der Waals attractions, which is the reason why layered materials can be 

exfoliated with ease. Figure 4-13 (a) and (b) show photos of two MQW structures lifted 
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off using an acrylic conductive adhesive layer on an aluminum foil and a copper foil, 

respectively. The entire MQW structure was exfoliated from the 2-inch substrate with 

excellent reproducibility.  

 

Figure 4-13 Photograph of the MQW structure after exfoliation using (a) an aluminum foil and (b) 

a copper foil. 

Structural characteristics of the released wafer were studied to check for 

degradation due to lift-off. The 2θ - ω scans of the MQW structure after the release, in 

comparison with before lift-off are shown in figure 4-14. The scans exhibit clearly the 

signature satellite peaks of the MQW structure, providing evidence that the structural 

integrity is conserved. The lower intensity of the satellite peaks after the lift-off can be 

explained by the thicker stack (750 nm) of AlGaN and GaN layer traversed by x-rays 

before reaching the MQW stack, since after lift-off the structure is flipped upside down. 
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Figure 4-14 X-ray diffraction using the 2θ - ω configuration of the MQW structure before and 

after the transfer. 

  The separated surface morphology of the lifted-off MQW structure has been 

investigated with SEM and AFM. Figure 4-15 (a) shows the SEM image of the n-type 

buffer surface in the released MQW structure, which exhibits smooth surface 

morphology. From the AFM image, RMS roughness of 1.14 nm over a 5 µm x 5 µm area 

was obtained. This smooth surface indicates that the exfoliation occurred by breaking the 

bonds between the 2D layered BN layers and not at the interfaces of the sp3 bonded       

III-nitride layers which would result in a surface with increased roughness. Theoretical 

investigation in the literature using density functional theory (DFT) and the registry index 

model also shows that the transfer happens within the BN 2D layers which exhibits the 

minimum energy barrier of 2 meV/atom required to separate a BN/BN bilayer [91]. The 

surface of the sapphire after lift-off has been investigated by AFM and steps of less than 

3 nm between islands of BN and the surface has been measured confirming the separation 

within the BN layer. 
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Figure 4-15 (a) SEM image of the BN/AlGaN surface in the MQW structure and (b) AFM image 

of the BN/AlGaN separated surface in the MQW structure. 

Optical characteristics of the MQW structure have also been investigated. Depth 

resolved cathodoluminescence (CL) spectra for the MQW structure before and after 

exfoliation from the sapphire substrate recorded at room temperature with an electron 

beam excitation energy of 17 kV are shown in figure 4-16 (a), (b). Before lift-off, the 

MQW structure exhibits the GaN near band edge emission peak at 364 nm, and the 

MQW emission peak at 454 nm which corresponds to 15% In content in the quantum 

wells. After lift-off, emission from the InGaN/GaN MQWs is observed at 458 nm, as 

shown in figure 4-16 (a). The red-shifted peak position can be due to a partial residual 

strain relaxation in the active region after lift-off. The same intensity ratio of 1.1 between 

the GaN and the MQWs peaks before and after the lift-off has been observed. The 

magnitude of the two main peaks’ intensity before and after the liftoff is different by only 

15%. This could be attributed to a slight difference in the experimental conditions. The 

two shoulders around the MQWs peak in the CL spectrum after lift-off, presented in 

figure 4-14 (a), can be explained by the Fabry-Perot effect. Figure 4-16 (b) shows the CL 

spectrum observed by exciting from the n-side of the lifted off surface which clearly 

exhibits the AlGaN and GaN peaks with a less intense peak from MQWs. The presence 

of AlGaN and GaN peaks throughout the exfoliated sample is consistent with exfoliation 

occurring at the BN.  
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Figure 4-16 CL spectrum recorded at room temperature under excitation of 17 kV (a) before and 

after lift-off (excited from the p-doped layer) with fitted MQWs peaks in dotted lines and (b) after 

lift-off (excited from the n-doped layer) with fitted MQW peak in red. 

    This series of studies confirm that the structural and optical characteristics are 

preserved during this exfoliation process. Probe tips were placed to obtain 

electroluminescence from the MQW structure. Figure 4-17 shows a graphical 

representation of the probing configuration and a camera image of the blue light emitted 

from the exfoliated layers by electrical injection without metal contact deposition. 

 

Figure 4-17 Blue light emission by electrical injection from the exfoliated MQW structure. 
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4.4 Wafer-scale device fabrication and transfer: HEMT (High Electron Mobility 

Transistor)-based gas sensors on flexible substrates 

In the previous sections, we have demonstrated the vdWE of GaN-based device 

structures on 2-inch h-BN/sapphire templates. We have also confirmed the feasibility of 

the 2D h-BN enabled transfer method at a wafer-scale by exfoliating the InGaN MQW 

PIN structure and showing the conservation of the structure properties after liftoff.       

Now, we need to move forward to optimize the device fabrication using h-BN/sapphire 

templates and demonstrate a complete transfer on a foreign substrate. For this purpose, 

we have considered the AlGaN/GaN structure to fabricate HEMT (High Electron 

Mobility Transistor)-based gas sensors [92]. These devices has been already developed in 

our lab during a thesis work [93], more details about their operation principle can be 

found in Appendix C.   

HEMT-based gas sensors with catalytically active gate electrodes are an interesting 

sensing technology due to their many advantageous material properties, such as high 

thermal and chemical stability [94], which have demonstrated sensitivity and suitability 

for detection of diesel exhaust gases[92][95]. With appropriate transfer technique, HEMT 

sensors have promising potential to be integrated into wearable applications. This would 

enable the development of a wearable and portable air pollutant monitoring platform to 

collect air pollutant data (species and concentration) continuously. Such a system requires 

inexpensive, miniaturized (micro-scale), rapidly responding and highly sensitive gas 

sensors that can be operated on malleable and lightweight substrates. 
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Figure 4-18 Our approach for the growth, fabrication, release and transfer of boosted AlGaN/GaN 

gas sensor to a flexible sheet using h-BN as a buffer and release layer.   

The mechanism for gas sensor operating on a foreign substrate like a flexible 

carrier is illustrated in Figure 4-18. The 2D h-BN layer enables the release of the device 

and its transfer to an acrylic adhesive layer. This layer is expected to confine the heat 

generated by self-heating, leading to higher operating temperature of the gas sensor, 

which is known to contribute to an increase of the sensitivity and an improvement of the 

response time [92]. 
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4.4.1 Electrical characterization of AlGaN/GaN devices on h-BN sapphire 

The process fabrication has been adapted for device structures on 2D h-BN. For 

instance, no ultrasonic cleaning is used, rapid thermal annealing conditions such as gas 

flow rate and temperature ramping were optimized, and contact with liquids was limited 

during each step to prevent spontaneous delamination. The source, drain, and contacts 

were defined by optical lithography. The deposit of the source and drain metallization 

contact structure consisted of electron beam evaporated Ti/Al/Ni/Au (12/200/40/100 nm) 

multilayers followed by a rapid thermal annealing at 870°C for 30s under nitrogen 

atmosphere.  The gate contact was deposited using Pt sputtering with a thickness of 15 to 

20nm at a pressure of 6mTorr, providing a catalytically active sensing layer. Gate 

dimensions are Lg=2µm and Wg=200µm, with a total drain to source spacing of 6µm. 

Electron beam evaporated Ti/Al/Ni/Au (12/200/40/100 nm) pads were deposited to 

facilitate electrical contacting of the devices. 

The resulting processed devices are shown in Figure 4-19 a. Transfer length 

measurements (TLM) performed on several locations of the wafer show an average 

specific contact resistivity of 3x10-5 Ω.cm-2, indicating good ohmic contact behavior. 

Wafer mapping of the current-voltage characteristics reveal more than 1000 functional 

HEMT devices on the 2-inch wafer (Fig 4-19 b and 4-19 c). We also note that more than 

100 devices exhibit more than 70% gate pinching, which we have quantified as [Ids (Vgs 

=0V)-Ids(Vgs =-6V)/ Ids(Vgs =0V)]*100 at Vds=10V. This is a direct indication that these 

devices have good control of the carrier concentration in the 2DEG by the gate contact 

(Figure 4-19 d).   
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Figure 4-19 (a) Photo of the wafer-scale processed HEMT sensors, (b) IDS-VDS characteristic of an 

HEMT device with 2 µm gate length (c) Wafer mapping of the gate pinching, with white areas 

representing masked-off regions that include TLM patterns (d) Histogram of the pinching 

distribution across the wafer. 

4.4.2 Sensor measurements: before and after transfer 

HEMT gas sensors with greater than 80% gate pinching were tested under NO2 

gas for a concentration of 100ppm at 30 °C, both as-grown on the original sapphire 

substrate and after transfer to a tape with acrylic adhesive. The sapphire layer was 

removed by fixing supports to both the sapphire and active layer sides with a 

thermoplastic polymer, and applying pressure so that the Van der Waals bonds in the      

h-BN layer are broken.  The active layers are then transferred to a flexible substrate; we 

have chosen to use a tape with acrylic adhesive for thermal insulation. The top support is 

removed by heating the thermoplastic at 60 °C and rinsing the residues with DI water. 
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Exposure to the gas leads to decreased drain-source current. From the transient 

response and recovery curves, we have calculated sensitivity as S = [│I0-Igas│/I0]*100, 

where I0 is the initial current under pure N2 and Igas is the steady state current after the test 

gas has been applied. This metric gives a normalized measure of the change in device 

current under gas exposure.  We have also determined the response time τ defined by the 

time between 10% and 90% of the initial and final steady state values under gas 

exposure. The average sensitivity S was found to be 2.8 % ± 1.4 % with an average 

response time of 361 s ±140.8 s for around 20 tested devices. Figure 4-20 (a) presents one 

of the best response we obtained before the transfer, S and τ were calculated to be equal 

to 6.5 % and 385 s respectively. Working devices after the transfer to the new substrate 

have undergone the same testing procedure. The results indicate an average sensitivity      

S = 12 % ± 1.2 % with a response time ranging from 7s to 61 s. Figure 4-20 (b) shows 

result from the same device, used in figure 4-20 (a), after its transfer. This sensor presents 

a doubling in sensitivity, a six times lower response time and a faster recovery after gas 

exposure. We also note that a repeated measurement with 9 test cycles during more than 

three consecutive hours has been performed after the transfer exhibiting similar response 

and no significant drift, as shown in Figure 4-20 c.  
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Figure 4-20 Response of n HEMT sensor, with a gate size of 2 μm × 200 μm, to NO2 gas for a 

concentration of 100 ppm at 30°C. (a) Before the transfer, (b) after the transfer to the flexible 

template and (c) Repeated measure after the transfer showing the stability of the transferred 

device after 9 cycles. 

The observed large enhancement in sensitivity and response time after transfer 

may be attributed to several root causes. Our choice of the final support is expected to 

enable the confinement of the heat generated by self-heating. As seen in Figure 4-21, 

thermal modeling results show that the tape with electrically conductive acrylic adhesive 

used in this study is predicted to yield a device operating temperature ranging between 

105 °C and 128 °C. Thermal conductivities used in the simulation are 130 W/m.K for 

GaN, 25 W/m.K for Al0.14Ga0.86N, 20 W/m.K for Al0.25Ga0.75N, 19 W/m.K  for Ti, 

205 W/m.K for Al, 90 W/m.K for Ni, 314 W/m.K for Au, 72 W/m.K for Pt, and 385 

W/m.K for copper.  The temperature at the 25-micron thick copper film is 30 °C, the 

same as the chuck holder. 
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In addition, we have performed Raman spectroscopy measurements on the E2 

GaN line before and after transfer at different temperatures and with different input 

powers, based on the method reported in [96]. The Raman measurements show that pre-

transfer self-heating results in a sensor temperature of 60 °C in the active region.  After 

transfer, the sensor temperature was measured to be 120 °C. These results are consistent 

with thermal simulations presented in Figure 4-21.  It also explains the drop in I0 after 

transfer since device temperature is inversely related to the electron mobility in the 2DEG 

[97]. 

 

Figure 4-21 Thermal simulation of the operating device temperature Vs thermal conductivities of 

different post-transfer supports. 

To verify whether this increase in device operating temperature is the primary 

reason behind the boosted performances, we have operated a pre-transfer sensor                   

(on h-BN/sapphire) at 120 °C and compared the performance to the transferred sensor.  

The sensitivity and the response time of a pre-transfer device were measured as a 

function of temperature. The results show that the sensitivity has only increased by a 

factor of 1.06 when varying the stage temperature from 30 °C to 120 °C, and the response 
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time has decreased by a factor of 2.47.  Because these factors are less than those resulting 

from the transfer (1.94 and 6.31, respectively), it suggests that other reasons in addition to 

thermal effects are behind the post-transfer performance enhancement.  

The effects from strain changes in the semiconductor layers after the transfer may 

play a role and should be considered. Raman spectroscopy results, performed at room 

temperature both before and after transfer, show a relaxation of the GaN layer after the 

transfer. The E2 peak of GaN has shifted towards less compressive strains, as presented in 

Figure 4-22 a, which agrees with the reported results in [98] and indicates an increase of 

the 2DEG carrier density. This is necessarily linked with an increase in the surface state 

charges to maintain the electrostatic neutrality[99], and can consequently contribute to 

the enhancement in sensitivity since the gas molecules are chemically absorbed to surface 

charges after dissociation on the Pt sensing layer[100]. 

 

Figure 4-22 (a) Raman spectra at E2 peak of GaN on h-BN/sapphire (black), released from the 

sapphire (red) and transferred to an adhesive acrylic tape (red). (b) Capacitance-voltage measured 

at 1 kHz and 100 kHz on a device before and after its transfer. Both Raman and C-V results 

indicate an increase in the 2DEG density after the release and transfer to the acrylic adhesive tape. 

To further confirm the increase in 2DEG carrier density, we have conducted C-V 

measurements at different frequencies between the gate and the source of a device before 

and after its transfer to the adhesive tape. From the C-V profiling in Figure 4-22 b, we 

observe a 39 % increase in maximum capacitance measured at 1 kHz after transfer which 

is directly related to the 2DEG carrier density at the AlGaN/GaN interface. 
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In this section, we have demonstrated wafer-scale fabrication of HEMT gas 

sensors grown on a 2-inch h-BN/sapphire template. The h-BN layer allowed the transfer 

of the devices to a flexible and heat insulating acrylic tape. Gas sensing measurements 

have been carried out before and after the transfer showing greatly improved performance 

on the flexible substrate.  

These results confirm the feasibility of the h-BN enabled epitaxial lift off 

technique for wafer scale growth and fabrication of GaN-based devices and for their 

release and transfer to more suitable substrate with enhanced functionalities and 

performances. In the next chapter, we will focus on the application of this technique to 

heterogeneously integrate InGaN solar cells on foreign substrate.  
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CHAPTER 5. HETEROGENEOUS INTEGRATION OF         

THIN-FILM INGAN BASED SOLAR CELLS ON FOREIGN 

SUBSTRATES 

 

In this section, we apply the h-BN enabled epitaxial liftoff technique to grow, 

fabricate and transfer InGaN-based solar cells from a 2-inch h-BN/sapphire template 

to a glass slab with a dielectric mirror (DM) reflecting only high energy photons, as 

illustrated in figure 5-1 a. 

The choice of this final substrate enhances the performance of the InGaN-based solar 

cells thanks to the increased light absorption due to the reflected high energy photons. At 

the same time, the DM transmits longer wavelengths which allows the operation of a      

4-terminal tandem device after bonding with Si or GaAs-based solar cells. Figure 5-1 b 

shows microscope images of two crack-free ~1mm2 devices after their mechanical 

separation from the sapphire by means of a water-dissolvable tape. After liftoff, the 

devices are bonded on glass with a backside reflector using a polyurethane-based 

transparent resin, as shown in figure 5-1 c. 
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Figure 5-1 a) Schematics of fabrication steps for releasing InGaN-based solar cells from sapphire 

and transferring them onto foreign substrates. b) Optical microscopy images from the back side of 

~1mm2 solar cells with two different designs on a water dissolvable tape after release. c) 

Photographs of devices with different sizes and designs transferred to glass with a DM as a    

back-side reflector (the purple background is due to the reflected wavelength between 375-465 

nm). 
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5.1 Materials growth by MOVPE 

The growth was performed in an Aixtron MOVPE CCS 3x2’’ system on a (0001) 

sapphire substrate. Triethylboron (TEB), Trimethylgallium/Triethylgallium 

(TMGa/TEG), Trimethylindium (TMIn) Trimethylaluminum (TMAl) and Ammonia 

(NH3), were used as B, Ga, In, Al and N sources, respectively. Silane (SiH4) and Cp2Mg 

was used as n-type and p-type doping sources. First, a h-BN layer (5 nm) was grown on 

the sapphire substrate at 1280°C. Then, an intermediate Si-doped AlGaN layer (300 nm) 

with an Al mole fraction of 14% was grown at 1100°C. The InGaN-based solar cell 

structure consists of a Si-doped GaN layer (0.5 µm), 5-periods of InGaN/GaN multi-

quantum wells (MQWs), and a Mg-doped GaN layer (0.3 µm). The MQW structure 

consists of a 12 nm-thick GaN barrier layer and a 2.5 nm-thick InGaN quantum well 

layer. The growth of the GaN-based layers on the ultra-thin h-BN layer is governed by 

van der Waals epitaxy (vdWE)[101]. The high-resolution X-ray diffraction (HR-XRD)  

2θ − ω scan around the (002) reflection of the grown structure is shown in figure 5-2 a. 

The scan clearly delineates the InGaN satellite peaks up to the fifth order as well as the 

peaks from the GaN and Al0.14GaN layers. Reciprocal space mapping shows a strained 

MQW structure (inset of figure 5-2 a). The In content extracted from X-ray simulation is 

around 18%. figure 5-2 b is the photoluminescence (PL) mapping performed at room 

temperature. Over the entire 2-inch wafer, the average emission wavelength is 475nm, 

which is in agreement with the HR-XRD In content, and the standard deviation of the 

peak wavelength is 0.8%. This series of structural and optical characterizations 

demonstrate the ability to grow epitaxial InGaN-based structures on a Van der Waal 

surface with good quality that can operate as photovoltaic devices. 
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Figure 5-2 (a) HR-XRD 2θ – ω scan of the grown MQW structure (blue curve) with simulation 

(red curve); the inset shows the RSM. (b) Wavelength distribution of photoluminescence mapping 

performed at room temperature. 

5.2 Wafer-scale devices fabrication 

Several solar cells with different designs and sizes were fabricated using a 2-inch 

grown sample, as shown in figure 5-4 a. A standard photolithography-based process, 

shown in figure 5-3, has been applied while contact with liquids was limited and no 

ultrasonic cleaning was used. First, mesa etching isolation was achieved by inductively 

coupled plasma with BCl3/Cl2/Ar chemistry. Ti/Al/Ni/Au, Ni/Au and another 

Ti/Al/Ni/Au stack was used for the n-contact, the p-contact and the bus bars, respectively. 

All the metals layers have been deposited by thermal evaporation. N-contact annealing 

was carried out at 850 °C for 30 s under N2; the p-contact was annealed at 600 °C for 60s 

under an O2/N2 atmosphere. Dark I-Vs were measured by an automated probe station and 

the photovoltaic results were obtained using an Oriel Sol3A solar simulator.  
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Figure 5-3 Process fabrication of the solar cells. 

 After fabrication, dark and illuminated I-V measurements were performed. The 

results for a set of devices having the same design and located at different positions on 

the wafer are presented in this paper. The dark I-V curves, shown in figure 5-4 c, 

demonstrate good process uniformity at the wafer scale. Figure 5-4 d exhibits the J–V 

curves under AM 1.5 condition. Extracted efficiency, fill factor, open circuit voltage and 

short circuit current density are respectively equal to 0.08%, 39.5, 1.17 V and 0.17 

mA/cm2. These performances are comparable with similar reported InGaN solar cell 

grown on sapphire [102].   
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Figure 5-4 (a) Photograph of the fabricated solar cells on 2-inch h-BN/sapphire.  (b) Optical 

microscopy image of a ~1mm2 solar cell with design A. (c) Dark I-V curves of devices with 

design A in different locations on the wafer and their corresponding illuminated J-V curves under 

AM 1.5 condition in (d). Inset in (d) shows the illuminated J-V under a concentrated light source 

emitting at 440 nm. 

To compare the experimental results to models, we have simulated the fabricated 

solar cell using commercially available SILVACO-Atlas software. Considering 35% of 

p-contact coverage, the simulation with AM 1.5 illumination condition results in an 

efficiency, a fill factor, an open circuit voltage and a short circuit current density equal to 

0.14 %, 37.2, 2.28 V and 0.17mA/cm2
, respectively. The difference with the measured 

Voc is mainly attributed to the barrier height from the p-contact. It is known that the 

formation of good ohmic contacts on p-doped GaN layers is difficult compared to on n-

doped layers[103]. PV measurements using a lamp emitting at 440 nm with a power 
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density around 140 mW/cm2 have been performed on several devices. They result in 

short circuit current densities Jsc of more than 40 mA/cm2   and higher Voc around 1.6 V as 

compared to the results under AM 1.5 condition as shown in the inset of Figure 5-4 d. 

These increased performances under high irradiance confirm the suitability of the InGaN 

solar cells for High Concentrated Photovoltaic (HCPV) applications.  

5.3 Solar cells transfer on glass with back side reflector 

After processing, the devices were easily transferred to a glass slab with a 

backside reflector by means of water dissolvable tape. The devices were bonded to the 

final substrate using an optically transparent polyurethane-based resin and the tape was 

removed in water without leaving residues. The transmittance of the resin is shown in the 

inset of Figure 5-6 (b). 

The transfer method does not require any harsh chemicals or processing, and it is 

favorable for cost reduction since the growth substrate can be reused for future material 

depositions. During the transfer process, device structures remained completely intact and 

free from damage due to the gentle lift-off and transfer method. This is confirmed by the 

Transmission Electron Microscopy (TEM) image in Figure 5-5 (a) which shows the 

preservation of the MQW structure. Figure 5-5 (d) exhibits similar dark IV curves of a 

device (shown in the inset of Figure 5-5 (d)) before and after its release. This further 

confirms that no degradation has been induced from the transfer process. 
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Figure 5-5 (a) High resolution TEM image of the grown structure after release from sapphire. (b) 

Dark IV curves of the same device before and after its transfer to a foreign substrate. Inset in (b) 

is an optical microscope image of a solar cell device after its transfer on the final substrate. 

Two solar cell designs, shown in figure 5-1 b., were tested under AM 1.5 

illumination condition before and after their transfer. In figure 5-6 c, we present the 

results for design A. In this case, the backside reflector is simply a 100-nm thick layer of 

Al that has around 90% reflectivity for the entire visible spectrum. This transfer resulted 

in a 20% increase in the Jsc since more light can be absorbed by the solar cell from the 

reflected photons.   

For a 4-terminal tandem device with an InGaN-based solar cell on top, it is not 

possible to use an aluminum back reflector since it reflects the long-wavelength incident 

light. Hence, we designed a DM to selectively reflect wavelengths that can be absorbed 

by the InGaN cell and to transmit longer wavelengths. The DM was deposited on a glass 

substrate by Plasma-enhanced chemical vapor deposition (PECVD). It consists of 13 

alternating layers of SiN (60 nm)/SiO2 (60 nm) and a final 140 nm SiN layer, as shown 

in figure 5-6 a. Fourier-transform infrared spectroscopy (FTIR) measurements on the 

deposited DM give reflectivity around 85% within the InGaN cell absorption spectrum 

and less than 20% for the higher wavelengths, as shown in figure 5-6 b. 
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Figure 5-6 (a) Schematic of the deposited DM on glass. (b) FTIR measurements for the deposited 

DM on glass. (c) and (d) are J-V curves under AM 1.5 illumination condition of respectively a 

solar cell with design A before and after its transfer to a glass with Al back reflector and a solar 

cell with design B before and after its transfer to a glass with a dielectric mirror. Inset in (b) 

shows the transmittance of the polyurethane-based resin. 

Solar cells with design B were transferred to a glass on which we deposited the 

designed DM. In this case, the reflected light has resulted in a Jsc increase by 12%, as 

shown in figure 5-6 d. The Voc remained almost unchanged for both cases which 

indicates the preservation of the grown solar cell structure after the transfer process 
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In summary, this chapter presents an unprecedented growth and fabrication of 

InGaN solar cells using a 2-inch h-BN/sapphire wafer. The devices exhibit PV 

performances comparable to similar solar cells grown on sapphire. An easy, nontoxic and 

low-cost liftoff process was used to separate the devices from the growth wafer without 

cracks. After their release, thin-film solar cells are bonded on glass with a backside 

reflector. This transfer offers a new technological degree of freedom that allowed an 

increase in the Jsc up to 20% when placed on a back-side reflector. The results presented 

here provide viable routes to the development of advanced InGaN-based solar cells that 

can lead to a significant improvement in the efficiency and a cost reduction for both 

terrestrial and space photovoltaic applications.   
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CHAPTER 6. CONCLUSION AND PERSPECTIVES 

6.1 Conclusion 

The motivation behind this thesis work stems from the fact that a practical III-Nitride 

photovoltaic application consists of transfer to a foreign substrate with enhanced 

functionality and/or integration with mature group IV or III-V based solar cell 

technologies. This comes from the large lattice mismatch between InN and GaN that 

makes it experimentally difficult to grow good-quality, high In-composition InGaN films 

and currently impedes the realization of an all InGaN multi-junction solar cell. One 

interesting way to make hybrid solar cells is to grow and process the InGaN-based solar 

cell, release it from the growth wafer and bond it on top of the other cells. In this work, 

we have demonstrated an h-BN based epitaxial lift-off technique compatible with good 

quality III-N materials, with photovoltaic device fabrication and with subsequent bonding 

on a heterogeneous substrate.   

We first optimized the growth conditions to obtain 2D layered h-BN with good 

homogeneity over a 2-inch sapphire wafer. The highly oriented lattice and hexagonal 

phase of the epitaxial layers were confirmed by X-ray diffraction, Raman spectroscopy, 

and cross-section scanning transmission electron microscopy. The surface of BN over a         

2-inch wafer exhibits specific 2D material morphology features for different BN 

thicknesses, from an atomically flat surface to a honeycomb wrinkle network. 

Secondly, we investigated the Van der Waal epitaxy of GaN-based materials on        

2-inch h-BN/sapphire templates. InGaN based PIN structures and AlGaN/GaN 

heterostructures have been grown. Deep investigation of material quality is performed 

using structural, morphological and optical characterizations. 

Thirdly, we have demonstrated the feasibility to fabricate devices grown on                         

h-BN/sapphire at a wafer scale without spontaneous delamination that could be caused by 

the weak inter-layer bonding in the h-BN. HEMT-based gas sensors have been fabricated 
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and tested before and after their transfer on flexible substrate with enhanced sensing 

performance. 

Finally, InGaN based solar cell structure has been grown on 2-inch h-BN substrate. 

Devices with various sizes and designs are processed and characterized on a full 2-inch 

wafer giving performances comparable to similar devices on sapphire. The subsequent 

crack-free transfer of the solar cells, enabled by Van der Waal bonded 2D layered h-BN, 

to a substrate with a backside reflector yields an increase in the short circuit current 

density of up to 20%. This demonstration of transferred InGaN-based solar cells on 

foreign substrates while increasing performance represents a major advance toward 

lightweight, low cost and high efficiency tandem photovoltaic applications.  

6.2 Perspectives 

• Thicker InGaN based absorber  

To further increase the performance of our solar cells, we can use a semi-bulk InGaN 

absorber [58]. This approach is an effective method for achieving high efficiency InGaN 

PIN heterojunction solar cells. The semi-bulk absorber approach effectively helps to 

suppress the transition from two dimensional to three-dimensional growth that occurs 

during the growth of thick epitaxial InGaN layers. 

Preliminary results have been already obtained for a semi-bulk InGaN based half PIN 

structure on 2-inch h-BN/sapphire substrate using Al0.14Ga0.86N nucleation layer. Figure 

6-1 shows the structural, morphological and optical characterizations of the grown 

structure.    



 70 

 

Figure 6-1 (a) Schematic illustration of the grown structure (b) HR-XRD 2θ – ω scan of the 

grown half PIN structure using semibulk InGaN, (c) SEM images of the grown structure surface 

and (d) CL spectrum recorded at room temperature under excitation of 3 keV. 

• PDMS-assisted transfer method 

The mechanical release and transfer of the grown structures may generate cracks 

and destroy the devices. This could be alleviated using an elastomeric stamp. 

Polydimethylsiloxane (PDMS) is a silicon-based polymer, easy to make and nontoxic. 

PDMS is made using pre-polymer and curing agent (Sylgard 184, Dow Corning Co., 

Midland, MI, USA). Thanks to its unique properties such as low stiffness, chemical 

stability, and conformal contact, PDMS can be used as a soft elastomeric stamp. It 

permits to transfer and print solid objects from one substrate to another and fabricate 

heterogeneous systems that integrates different devices [104]. The adhesion between 

the solid objects and the stamp is rate-sensitive (that is, kinetically controllable) 

owing to the viscoelastic behavior of the elastomer. A peeling with sufficiently high 

velocity (typically ∼10 cm.s−1 or faster) leads to adhesion that is strong enough to 
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adhere preferentially the solid objects to the surface of the stamp. Then removing the 

stamp with sufficiently low peel velocity (∼1mm.s−1 or slower) causes the objects to 

adhere preferentially to the device substrate and separate from the stamp. The process 

for PDMS assisted transfer is described in figure 6-2 [104]. 

 

Figure 6-2 Schematic illustration of the generic process flow for transfer printing solid objects. 

The process begins with the preparation of an assemblage of microstructures on a donor substrate 

by solution casting, micromachining, self-assembly or other suitable means. (i) Laminating a 

stamp against a donor substrate and then quickly peeling it away (ii) pulls the microstructures 

from the donor substrate onto the stamp. Contacting the stamp to another substrate (receiving 

substrate (iii)) and then slowly peeling it away transfers the microstructures from the stamp to the 

receiver (iv). The peeling rate determines the strength of adhesion and, therefore, the direction of 

transfer [104]. 
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• Fabrication of a tandem device 

The transferred InGaN solar cells on the DM could be integrated on top of a Si cell to 

form a 4-terminal tandem device, as shown in figure 6-3. This could boost the current 

mature Si technology beyond the Shockley-Queisser limit. Simulations carried out for 

an InGaN/Si 4-terminal tandem device predicts an efficiency increase around 13% 

when adding a nitride solar cell with 20% In content[8]. 

 

Figure 6-3 Design of a 4-terminal InGaN/Si tandem device 
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APPENDIX A:  DEVICES FABRICATION  

Apparatus  

1) Facilities:  

• 500 m2 cleanroom at Institut Lafayette.  

2) Materials:  

• Relevant mask sets.  

• Cleanroom supplies: tweezers, wipes, etc.  

3) Chemicals :  

• Cleaning: Acetone, Isopropanol, DI Water.  

• Photoresist: Shipley® S1813, LOR 3b, SPR 220.  

• Developer: Shipley® MF-319  

• Buffered Oxide Etch (BOE)  

4) Tools:  

➢ RTA: As-One, ANNEALSYS  

• Temperature requirement: up to 860°C  

• Gases: N2, O2, air.  
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➢ Mask Aligner: EVG 6200  

• Should accommodate: Wafer size 2”  

• Minimum resolution: 0.5 - 1μm  

• Typical exposure wavelength –  350nm - 450nm, Broadband.  

 

➢ Etcher: Inductively Coupled Plasma (ICP) Etcher, SPTS ICP process module  

• Should etch III-Nitrides (Cl2 diluted in Ar)  

• Should incorporate appropriate wafer size  

• Etch depths: 0.5 μm  

• Gases: Cl2, Ar, N2 
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➢ E-Beam Evaporator: Denton Vacuum Explorer 

• Metals: Ni, Au, Ti, Al  

 

 

 

APPPENDIX B: ELECTRICAL CHARACTERIZATIONS 

Hall effect measurements 

Hall-effect experiments were used during this thesis to determine the carrier type, 

concentration, and mobility of grown epilayers. The standard procedure for the Hall 

effect experiments involves the following steps: 

1. A 1 x 1 cm square specimen is cut from the sample. 

2. Indium contacts are soldered to the four corners of the specimen. For this purpose, the 

soldering iron is heated at 400 C and is left in contact with indium droplets for 30 s. 
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3. The resistance between contacts is checked using a multi-meter.  

4. The sample is positioned on the sample holder of the Hall-effect setup and the 

resistance of the contacts is measured again in this setup. 

5. The sample holder is placed inside the magnet. Several (typically ten) measurements 

are taken and the average value is quoted as the result. 

TLM measurements (Transfer Length Method) 

Often the transfer length measurement method, or TLM method, is used to 

determine the specific contact resistance.  In the TLM method ohmic contacts are formed 

on a semiconductor with varying distances between the two contacts. Typically, linear or 

circular contact designs are used as is shown in Figure B1.  

 

Figure B1 Typical metal contact patterns for TLM measurements. 
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In this thesis work we have considered Linear TLMs. They are more simplistic to 

analyse. It is important that W >> di and that the material is either passivated or etched so 

that current is confined to flowing directly from one pad to the next. For simplicity we 

will confine our discussion to linear TLM patterns where these criteria are satisfied. 

Four–probe measurements are used on each of the pads to characterize the current–

voltage characteristics for each of the gaps, d1, d2, etc. The resulting curves are fit to a 

linear model I = V/R + b. The parameter, b, should be very small (we are performing the 

measurements in the dark) but since we deal with physical data which can be noisy it is 

included because it increases the accuracy of the fit on the resistance and in a typical 

measurement it is 3–4 orders of magnitude less than the SMU (source measurement unit) 

range. This fitting is done by orthogonal distance regression and both the fit of the 

resistance in Ohms and the standard error of the fit are found for each of the gap 

distances di. In a typical measurement the resistance increases as the gap size increases 

and it is given by: 

                                                  R(d) = 
Rsh

𝑊
 𝑑 +  2 

Rsh Lt

𝑊
   

(B.1) 

And the specific contact resistance is given by: 

                                                             ρc = Lt
2 Rsh (B.2) 

 

The results for Rsh (sheet resistance), Lt (transfer length: is the average distance a 

carrier travels under the contact before it is collected by the contact), and ρc are then 

obtained from the linear fit and the associated uncertainties from the standard errors of 

the fit. 
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