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Introduction

History & Research Activities

I did my PhD from 2008 to 2011 in the Laboratoire d’Informatique Fondamentale de Lille
(LIFL) at Université Lille 1. My work focused on combinatorial optimization and
landscape analysis. I mainly worked on neutral characteristics and proposed different
ways to exploit this particularity into stochastic local search algorithms.

After my PhD, I obtained an ERCIM Alain Bensoussan fellowship to work with Thomas
Stützle at Université Libre de Bruxelles (Belgium) on automatic algorithm configu-
ration from September 2012 to August 2013. I collaborated with two postdoctoral re-
searchers (Manuel López-Ibáñez and Franco Mascia) with whom we defined a generalized
structure of stochastic local search that could automatically be instantiated using their
grammar to describe algorithmic components. This common work was a real opportunity
for me to learn from passionate people and to start building my research network since I
continue to collaborate with Manuel on other topics.

In September 2013, I was hired as an Associate Professor in the LIFL – Centre de Recherche
en Informatique, Signal et Automatique de Lille (CRIStAL) since 2015 – where I joined
back my former research team. Although, this team is known for working on multi-
objective combinatorial problems, I never worked on these problems. Naturally, I wanted
to focus part of my research work on multi-objective optimization. With my novel
knowledge on automatic algorithm configuration, we decided to work on a multi-objective
approach to automatically configure multi-objective stochastic local search algorithms.
This work was carried out with the collaboration of Holger Hoos from University of Lei-
den (The Netherlands) and is part of the PhD work of Aymeric Blot (2015-2018), I have
co-supervised. Besides, I wanted to continue my PhD work on landscape analysis in or-
der to extend the neutral characteristics to multi-objective optimization. In this way, we
collaborated with Hernan Aguirre and Kiyoshi Tanaka from Shinshu University (Japan).

Alongside, I continued to work on single-objective problems. For example, I wanted to
pursue my investigations on landscape-based design which was the thesis topic of an-
other PhD student I co-supervised, Lucien Mousin (2015-2018). I met Myriam Delgado
from the Federal University of Technology of Paraná (Brazil) in 2016. She was interested
to work on algorithm selection using automatic algorithm configuration to find the op-
timal parameter setting of each considered algorithm and landscape analysis to extract
features from each instance. This was a good opportunity to make these two fields meet.
This work is currently carried out through the PhD of Lucas Pavelski that I co-supervised
with Myriam.

Since my recruitment, I supervised undergraduate and Master’s student internships and
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Introduction

some of them have continued to pursue a PhD under my supervision. A detailed list is
given in Appendix in the extended CV. The contributions presented in this manuscript
are derived from the articles and conference papers I wrote with my co-authors during
these past eight years since I obtained my PhD. The following of this introduction will
present the context of these recent works and give the organization of the manuscript.

Combinatorial Optimization

A combinatorial optimization problem (COP) consists in finding the optimal solution (or
a set of optimal solutions) in a discrete (i.e. enumerable) space of feasible solutions of a
given problem. In single-objective optimization, the notion of optimality is given by an
objective function. A single-objective optimization problem involves minimizing, without
loss of generality, an objective function f : Ω→ IR over a space of candidate solutions Ω,
i.e., to determine

arg min
s∈Ω

f(s) (1)

In multi-objective optimization, several criteria (or objective functions) characterizing the
quality of solutions of a given problem are optimized simultaneously. A multi-objective
optimization problem involves minimizing, without loss of generality, a vector of functions
over a space of candidate solutions, i.e., to determine

arg min
s∈Ω

(f1(s), f2(s), ..., fn(s)) (2)

where n is the number of objectives (n ≥ 2) and each function fi(s) has to be minimized.
The concept of Pareto dominance is used to capture trade-offs between the criteria fi:
solution s1 is said to dominate solution s2 if, and only if, (i) s1 is better than or equal to
s2 according to all criteria, and (ii) there is at least one criterion according to which s1 is
strictly better than s2. A set S of solutions in which there are no s1, s2 ∈ S such that s1

dominates s2 is called a Pareto set or a Pareto front. The goal when solving an instance
of a multi-objective optimization problem is to determine the best such set, i.e., the set
S ⊂ Ω such that there is no s′ ∈ Ω that dominates any of the s ∈ Ω.

Metaheuristics are widely used algorithms to solve large and complex multi-objective op-
timisation problems (Gendreau and Potvin 2010). In combinatorial optimization, the
stochastic local search (SLS) algorithms (Hoos and Stützle 2004) are efficient metaheuris-
tics used to solve NP-hard problems and obtain good solutions in reasonable time for such
problems. The simple and hybrid SLS algorithms manipulate only one single candidate
solution of the given problem instance in each search step and move in the search space
by iterating a neighborhood operator. We may cite the simulated annealing (Kirkpatrick
et al. 1983), the tabu search (Glover et al. 1993), the variable neighborhood search (Mlade-
nović and P. Hansen 1997) and the iterated local search (Lourenço et al. 2010). The SLS
algorithms can also manage a population of candidate solutions which interact with each
other. These SLS are often nature-inspired algorithms since they evolves in the search
space following natural rules. We may cite evolutionary algorithms (Holland 1992) and
ant colony optimization (Dorigo et al. 1996).

2
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Most of the metaheuristics have been first designed for single-objective optimization but
have been adapted to multi-objective optimization. However, performance assessment
of multi-objective algorithm is not straightforward since Pareto sets of solutions are not
easily comparable when all the solutions of a front do not dominate all the solutions of
the other one. Binary indicators are then used, such as the epsilon indicator (ε) and the
hypervolume difference indicator (HD) (Zitzler et al. 2003). The ε-indicator Iε+ (resp. Iε∗)
gives the minimum distance (resp. value) by which a Pareto set approximation A needs
to or can be translated (resp. divided) in each dimension in the objective space such that
another Pareto set approximation B is weakly dominated. Formally, it is defined in a
minimization context as follows:

Iε+(A,B) = minε{∀x2 ∈ B, ∃x1 ∈ A | fi(x1)− ε ≤ fi(x2) for i ∈ {1, ..., n} (3)

(resp. Iε∗ (A,B) = minε{∀x2 ∈ B, ∃x1 ∈ A | fi(x1)/ε ≤ fi(x2)})

The HD-indicator is based on the hypervolume concept and is defined for two sets A and
B such as:

IHD(A,B) =


IHD(B)− IHD(A)
if ∀x2 ∈ B, ∃x1 ∈ A | x1 � x2

IHD(A+B)− IHD(A) otherwise
(4)

IHD(A) gives the hypervolume of the objective space dominated by A, and accordingly
IHD(A,B) measures the volume of the space that is dominated by B but not by A with
respect to a predefined reference point Z.
Both epsilon and hypervolume difference indicators have been proposed to compare two
sets of solutions.
The works presented in this manuscript focus on combinatorial optimization problems and
stochastic local search algorithms for both single- and multi-objective optimization.

Knowledge-based Design of Optimization Algorithms

Metaheuristics are generic and flexible algorithms able to adapt to any kind of optimization
problems. Both genericity and flexibility are given by the available algorithmic strategies
and their own parameters values. First, the generic design can be completed with problem-
dependent mechanisms or heuristics. Second, while it is widely admitted that no single
algorithm dominates all others on all problem instances, the metaheuristics have to be
finely parameterized to perform well. Therefore learning process should be used to design
metaheuristics adapted to the given problem instances.
In this manuscript, we will be interested in two different ways to address knowledge-
based design of metaheuristics: automatic algorithm configuration and landscape-based
knowledge algorithm design. I focused my research work on these two independent topics
that, very recently, have started to meet each other.

3
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Automatic Algorithm Configuration

Different research fields deal with automatic algorithm design. We may cite algorithm
configuration (also called parameter tuning), parameter control, algorithm selection and
hyper-heuristics. The first two expose only one algorithm while the last two consider var-
ious algorithms. Automatic algorithm configuration and algorithm selection are off-line
processes while parameter control is an on-line process. The contributions on automatic
algorithm design presented in this manuscript focus on algorithm configuration. There-
fore, we will present automatic algorithm configuration in extended detail while we will
only briefly present the other fields.

Algorithm configuration determines a parameter setting that optimizes the performance
of a given algorithm for a given class of problem instances. In this context, we call the
algorithm whose parameters are being optimized the target algorithm and the procedure
that automatically configures the target algorithm a configurator. Automatic algorithm
configuration (AAC) is a machine learning process, whose general concept is illustrated
on Figure 1. It involves making a prediction of the optimal configuration of the target
algorithm over a training dataset, usually relatively to a given running time or computa-
tional budget. The configurations resulting from this training are then re-evaluated on a
disjoint test dataset to ensure the unbiasedness of the final prediction.

ConfiguratorConfiguration space
Instance set

Target algorithm

Optimised
configuration(s)

Instance,
ConfigurationPerformance

Figure 1: Automatic configuration of a given parameterized target algorithm for a given
set of problem instances.

Given a configurable target algorithm A, a space Θ of configurations of A, a distribution
of instances D, a performance indicator o : Θ × D → R, and a statistical population
parameter E; the algorithm configuration problem consists in optimizing the aggregated
performance of the target algorithm A across all instances i ∈ D, as given in Equation 5
(in which Aθ denotes the algorithm obtained by associating the configuration θ to the
target algorithm A). {

optimize E[o(Aθ, i), i ∈ D]
subject to θ ∈ Θ

(5)

Algorithm configuration supposes that the limit implied by Equation 5 exists and is finite.
The most commonly used statistical parameter is the simple average of the performance
of the target algorithm.
Among the configurators, we may cite the most commonly used: irace (López-Ibáñez et al.
2016) that is based on statistical racing, SMAC (Hutter et al. 2011), based on random
forests, ParamILS (Hutter et al. 2009), based on iterated stochastic local search and,
GGA+ (Ansótegui et al. 2015, 2009) based on a genetic algorithm and random forests.
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Most of the configurators handle only one objective (e.g. the performance or the running
time). However, SPRINT-race (Zhang et al. 2013) is a multi-objective configurator based
on statistical racing where two metrics are simultaneously considered for model selection
in machine learning. Morevoer, some multi-objective procedures have been also proposed
and are based on evolutionary algorithms (Branke and Elomari 2012; Dréo 2009) where
the performance and the runtime have to be optimize simultaneously.

Parameter control adapts the algorithmic components or parameter values of an algorithm
during its execution. The underlying idea is that the behavior of the algorithm, and so its
parameters, has to change during the run in order to better adapt to the local structure
of the search space. Parameter control approaches use techniques such as multi-armed
bandits (Fialho et al. 2009) or adaptive pursuit (Thierens 2005) to dynamically determine
good parameter settings in response to observations made while trying to solve a given
problem instance. However, the number of configurations that can be handled by such
approaches is very limited (Desport et al. 2015; Tollo et al. 2015; Veerapen et al. 2012).
The first taxonomy was proposed by Eiben et al. (1999). Karafotias et al. (2015) expanded
upon the trends and the challenges of parameter control. B. Doerr and C. Doerr (2018)
updated and completed the original taxonomy of Eiben et al. (1999) and presented a sur-
vey for discrete black-box optimization.

Algorithm selection investigates the relation between algorithm performance and problem
instance features (Rice 1976). The principle is that, for a given set of problem instances,
a set of complementary algorithms can be used to improve overall performance. This
problem optimizes the performance of every instance of the set independently, then it is
also called per-instance algorithm selection. In machine-learning, this process is known as
meta-learning. The procedure that automatically selects the appropriate algorithm for a
given instance is called a selector. Among others, we may cite SATzilla (Xu et al. 2008)
and ISAC (Kadioglu et al. 2010). An extension of algorithm selection is the per-instance
algorithm scheduling problem where a schedule of algorithms is output rather than one
single algorithm. This process is preferred when instance features are not very informa-
tive (M. Lindauer et al. 2016). Despite the scarcity of multi-objective works, Horn et al.
(2016) proposed a multi-objective approach where both performance and runtime are two
important criteria of the optimization. Meanwhile, Kotthoff (2014) gave a comprehensive
survey of algorithm selection for COPs which has recently been updated by Kerschke et al.
(2019) and completed with works on numerical optimization problems.

A hyper-heuristic selects, combines, generates or adapts simpler heuristics to efficiently
solve optimization problems. It is designed to handle classes of problems and be adapted
to each single instance to solve. Therefore, it is often considered like on-line algorithm
selection. Hyper-heuristics have been applied to a large variety of COPs (see the compre-
hensive survey of Burke et al. (2013)) and also in multi-objective optimization (Guizzo
et al. 2017; Li et al. 2019).

During my postdoctoral research, I worked on automatic configuration of Stochastic Local
Search (SLS) algorithms (see Chapter 1); and one of the objectives of my recruitment
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at Université de Lille was to extend this work to the multi-objective optimization. We
were convinced that configuring a multi-objective SLS is a multi-objective optimization
problem. Chapter 3 presents our contribution in this field.

Landscape-based Knowledge for Algorithm Design

The concept of fitness landscape was first introduced in the literature by Wright (1932) in
his work on the evolution of living beings. It consists in representing individuals in relation
to their fitness and giving a geometric structure to the problem in order to understand the
drifts of evolution. This concept was then transposed to many fields such as combinatorial
or numerical optimization (Jones 1995; Manderick et al. 1991). In combinatorial optimiza-
tion, and more precisely in single-objective optimization, fitness landscape is defined as a
triplet (Ω,N , f), where Ω represents the search space, N : Ω → 2Ω is the neighborhood
relation that associates to each solution s of the search space Ω a set of solutions N (s),
called neighbors and, f : Ω → IR is an objective function that measures the quality of
the solutions. This definition gives a geometrical structure to the search space which is
based on the neighborhood relation and the fitness function. Indeed, the search space
can be seen as a graph in which solution representations are nodes, neighborhood relation
defines edges and fitness values are “heights” in the landscape (see Figure 2 (Left) in a
maximization context).

Figure 2: (Left) 3D Visualization of a maximization fitness landscape;
(Right) Visualization of a LON (Ochoa and Veerapen 2016).

Different Fitness Landscape Analysis (FLA) measures and tools have been proposed to
capture information about the structural properties of the problem instances. For example,
the autocorrelation of the fitness landscape can be used to measure its ruggedness (Wein-
berger 1990). Other FLA measures based on information theory can be calculated from a
random/adaptive walk, such as the entropy and the density basin (Vassilev et al. 2000).
Another common measure is the fitness-distance correlation (Jones and Forrest 1995).
Neutrality is a particular property of some landscapes that can be characterized with the
neutral degree or the size of the plateaus (Marmion et al. 2013a, 2011b).

Ochoa et al. (2008) introduced the Local Optima Networks (LON), an oriented graph
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where the nodes are local optima and the directed edges represents the possibility to
escape from a local optima. It gives a better representation of the landscape (see Fig-
ure 2 (Right)). Recently, Vérel et al. (2018) proposed a methodology to build LONs for
large search spaces where a sampling is mandatory. From these works, other metaphors
appeared like the funnels (Herrmann et al. 2016) and the big valley hypothesis (Ochoa
and Veerapen 2016). Due to the neighborhood relation, landscapes and even LONs are
high-dimensional graphs that are difficult to represent. Recent works aims at giving some
tools for better visualizing such landscapes (Ochoa et al. 2015; Veerapen and Ochoa 2018).

The behavior of stochastic local search algorithms in the search space depends on the neigh-
borhood relation; the same applies for hybrid metaheuristics that integrate neighborhood-
based mechanisms. Therefore, the landscape metaphor is used to help designers to un-
derstand the behavior of their algorithms. Kauffman (1993) introduced the NK-landscape
family that gives artificial landscapes where the ruggedness can be tuned. Several works
have studied the performance of algorithms on these specific landscapes like Merz (2004)
for memetic algorithms, Daolio et al. (2012) for iterated local search algorithms and, Tari
et al. (2017, 2018) for basic climbers. Permutation problems like the permutation flow-
shop scheduling problem (FSP) and the quadratic assignment problem (QAP) have also
been investigated. Marmion et al. (2013b) studied FLA measures of two landscapes in-
duced by different neighborhood relations and evaluated the efficiency of metaheurictics
for both landscapes. Marmion et al. (2011a) studied the neutral property of the FSP with
makespan minimization on the performance of an iterated local search, while Hernando
et al. (2017) characterized the landscape of the FSP compared to the makespan or the
sum of flowtimes minimization. Chicano et al. (2012) analyzed the LONs of the QAP
and the performance of heuristic search algorithms. Basseur and Goëffon (2015) compare
the behavior of classical basic local search techniques and their ability to reach high local
optima for both NK-landscapes and permutation problems.

The works discussed below and most of the works on landscape analysis used FLA mea-
sures or tools to explain and understand the algorithm performance in an a posteriori
analysis. However, an a priori or on-line landscape analysis can give some knowledge
about the problem/instances to solve. This knowledge can be integrated in the design of
an algorithm before the execution (Marmion et al. 2011a; Mousin et al. 2016, 2019) or
directly during the execution. For example, Consoli et al. (2016) exploits fitness land-
scapes measures to dynamically select the operators of an evolutionary algorithm. Given
the limited number of such works, designing algorithm with knowledge extracted from
landscape analysis seems and is actually not straightforward and will be discussed in the
conclusion of Chapter 5. Recently, Liefooghe et al. (2017b) used landscape characteristics
in a racing-based configurator and improved its efficacy.

Contrary to single-objective COPs, very few works deal with multi-objective fitness land-
scapes. Knowles and Corne (2003) first proposed landscape features to characterize multi-
objective QAP instances. Garrett and Dasgupta (2007) adapted the classical FLA mea-
sures to the multi-objective optimization. Garrett (2009) proposed a definition to plateaus
being the solutions with the same rank with respect to the Pareto Local Optima. Similarly
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to the analysis of LON, he studied the graph built from these plateaus. More recently,
Vérel et al. (2013) gave a definition to multi-objective fitness landscapes and studied the
impact of the correlations between the objectives in the structure of the decision space.
Recent works analyzed the features of the landscape compared to the performance of multi-
objective stochastic local search algorithms (Daolio et al. 2017; Liefooghe et al. 2017a). In
order to better characterize multi-objective landscapes, we proposed an extension of the
concept of neutrality to the multi-objective COP presented in Chapter 4.

Document Outline

This manuscript is divided into two parts: the first one deals with the automatic con-
figuration of stochastic local search (SLS) algorithms and, the second one deals with the
characterization of landscapes and the exploitation of features into stochastic local search
algorithms. Both parts present works in single- and multi-objective optimization.

The first part, called Automatic Algorithm Configuration, is divided into three chapters:

In Chapter 1, we present a generalized structure that unifies classical SLS algorithms as
well as powerful hybridizations. Using a grammar-based approach, we give a practical
implementation to automatically generate efficient SLS. The performance of our approach
is validated on the permutation flowshop scheduling problem.

In Chapter 2, we propose a comprehensive survey and a unification of SLS techniques in
metaheuristics for multi-objective combinatorial optimisation. This generalized structure
is able to instantiate all the prominant multi-objective SLS of the literature. We present a
simpler multi-objective SLS template where numerous algorithmic components as well as
control and feedbacks mechanisms can be integrated. It is the starting point of the works
presented in the next chapter.

In Chapter 3, we present different contributions on multi-objective configuration of multi-
objective SLS. First, the multi-objective AAC is defined as a multi-objective optimiza-
tion problem. Experiments are conducted on three permutation problems (the flowshop
scheduling problem, the traveling salesman problem and the quadratic assignment prob-
lem) and lead to validate our conviction that multi-objective SLS are better configured
using a multi-objective approach. We also show that this statement remains true regard-
less of the correlation between the objectives. Second, we propose a novel approach to
design dynamic SLS algorithms that modify their parameters during the execution follow-
ing a schedule that is pre-defined with automatic algorithm configuration. The presented
experiments are encouraging.

The second part, called Landscape-based Knowledge for Algorithm Design, is divided into
two chapters:

In Chapter 4, we extend the concept of neutrality for multi-objective landscapes. The
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proposed definitions are based either on the Pareto dominance or on two performance in-
dicators namely the epsilon indicator and the hypervolume difference indicator. Moreover,
a characterization of some neutral neighbors is proposed in order to identify those who
would be the most promising to lead to new better solutions. The neutral property of
three permutation problems is analyzed with respect to different correlations between the
objectives.

In Chapter 5, we present two state-dependent SLS algorithms designed from an a priori
analysis of the problem. First, a particular characteristic of good solutions is exploited
into an iterated greedy algorithm in order to drastically reduce the size of the search space
to solve a variant of the permutation flowshop scheduling problem. Then, in a context of
expensive evaluation, feedbacks computed during the execution are exploited into a tabu
search to reduce the size of the neighborhood that also extremely reduces the optimization
runtime.
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Chapter 1

Automatic Configuration of
Hybrid Stochastic Local

Search Algorithms

In this chapter, we propose a practical, unified structure that encompasses stochastic lo-
cal search (SLS) algorithms and an automatic configuration approach able to generate
powerful hybrid SLS algorithms. This work was carried out in collaboration with Thomas
Stützle, Manuel López-Ibáñez and Franco Mascia during my postdoctoral contract at ULB
(Université Libre de Bruxelles) in Belgium from September 2012 to August 2013.

Successful algorithms for hard combinatorial problems are often the result of an effective
engineering of metaheuristics or of an appropriate combination of ideas originating from
various such methods. However, despite the plethora of possibilities, algorithm designers
often consider, only a few available methods when tackling a new problem. In our work,
we proposed a semi-automatic system that, with little human effort, is able to generate
powerful hybrid SLS algorithms (López-Ibáñez et al. 2013, 2014; Marmion et al. 2013c;
Mascia et al. 2014).

This chapter is organized as follows:

• Section 1.1 presents our generalized local search (GLS) structure able to instantiate
the classical SLS algorithms and hybrid SLS algorithms.

• Section 1.2 presents a practical implementation to easily generate efficient hybrid
SLS for a given problem. Our approach is based on the grammar description of the
GLS structure and the use of automatic algorithm configuration.

• Section 1.3 gives all the necessary ingredients to replicate the experiments.

• Section 1.4 analyzes the results obtained with our approach for designing a hybrid
SLS for a variant of the permutation flowshop scheduling problem.
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1.1 Generalized Local Search Structure

Many stochastic local search (SLS) algorithms manipulate a single solution at each of the
search steps (Hoos and Stützle 2004). They may internally keep a memory of multiple solu-
tions, such as the best solution found so far, but there is the concept of the current solution,
whose neighborhood is being explored. Examples of such SLS methods (also called meta-
heuristics) include classical iterative best- and first-improvement algorithms (Papadim-
itriou and Steiglitz 1982), iterated local search (ILS) (Lourenço et al. 2010), simulated
annealing (SA) (Kirkpatrick et al. 1983), variable neighborhood search (VNS) (Mladen-
ović and P. Hansen 1997), random iterative improvement (RII) and probabilistic iterative
improvement (PII) (Hoos and Stützle 2004), and iterated greedy (IG) (Ruiz and Stützle
2007), among others.

Figure 1.1: The iterated local search (ILS) algorithm

We propose a generalized local search (GLS) structure modeled after iterated local search
(ILS) (Lourenço et al. 2010). ILS, as shown in Fig. 1.1, starts from an initial solution
s0, applies an improvement method (usually referred as local search, ls), and then three
steps are repeated until the termination criterion is met: the current solution is perturbed
to generate a new one, local search is applied to the new solution, and the acceptance
criterion (in the simplest case of acceptance criteria) accepts the new solution or stays with
the current one. ILS contains the most important elements of any hybrid LS algorithm,
which are a perturbation operator, a subsidiary local search, and an acceptance criterion.
The perturbation is a transformation of the input solution. In ILS, this is typically a
small random transformation of the solution but it may also be a random re-initialization.
A perturbation may be one simple move in a neighborhood space, but it may also be
composed of k applications of a simple move, and k may be even vary during the search
either based on feedback of the search process or according to a pre-defined schedule.
The local search can range from a simple iterative improvement over short runs of an SA
algorithm to a full-fledged ILS. It could also be that no local search algorithm is used at
all.
The acceptance criterion determines which solution will replace the current solution. The
most basic acceptance criterion (improveAccept) accepts only solutions that are better
(strictly or not) than the best solution found so far. Other acceptance criteria allow worse
solutions to be accepted in order to increase the exploration of the search space. For
instance, the probAccept criterion accepts a worsening solution with a probability p ∈ [0, 1].
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Table 1.1: Classical metaheuristics formulated as instances of the GLS template.

Name Reference Perturbation Local Search Acceptance Criterion

ILS Lourenço et al. 2010 any any any
SA Kirkpatrick et al. 1983 one move none Metropolis
PII Hoos and Stützle 2004 one move none Metropolis (fixed temp.)
RII Hoos and Stützle 2004 one move none Probabilistic
VNS Mladenović and P. Hansen 1997 variable move iterative improvement Better
IG Ruiz and Stützle 2007 destruct-construct any any

For example, if p = 1, every new solution is accepted (alwaysAccept). A thresholdAccept
criterion accepts a worsening solution if the relative deviation between the best and the
current solution is below a threshold. In simulated annealing, a worse solution is accepted
according to the Metropolis criterion (metropolisAccept). This criterion uses a cooling
schedule that starts from an initial temperature, the temperature is decreased according
to the cooling schedule until the algorithm stops after reaching a final temperature. Often,
the temperature is decreased periodically after a number of iterations (span).
By considering different alternatives for each of these components, we can replicate many
of the SLS methods proposed in the literature. For instance, simulated annealing (SA)
can be replicated by defining the perturbation operator as a simple move operator in
a neighborhood, using no subsidiary local search, and using the Metropolis acceptance
criterion. With these components, the scheme given for ILS above will actually replicate
a classical SA algorithm.
Another example is variable neighborhood search (VNS) (Mladenović and P. Hansen 1997).
VNS executes an iterative improvement method at each iteration, and varies the strength
of the perturbation depending on whether the resulting solution improves the best so
far. This is equivalent to an ILS with a specialized variable move operator, iterative
improvement as local search, and an improveAccept acceptance criterion. Other classical
SLS algorithms can be modeled after ILS in a similar manner, as shown in Table 1.1.
In addition to replicating these classical SLS algorithms, the GLS structure proposed here
can also reproduce more complex combinations of SLS algorithms. For example, an ILS
algorithm can use a different ILS algorithm (with different perturbation and/or acceptance
criterion) as a subsidiary local search, which, in turn may use SA as its own subsidiary
local search. We called recursion the possibility of an ILS to embed another ILS. The level
of recursion is the number of embedded ILSs. This ability of combining simple components
to generate hybrid local search algorithms allows designing powerful algorithms. However,
it raises the question of how to find high-performing algorithms for a particular problem,
among all the possible combinations.

1.2 Implementation

1.2.1 A practical implementation of the GLS structure

In this section, we describe how to implement the GLS structure proposed above in order
to generate practical algorithms for a given problem. Our method consists of three parts.
First, we use a generative grammar to describe the design space defined by the GLS struc-
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ture. Second, we use a re-usable framework of source code components as the underlying
implementation of the grammar. This implementation includes both problem-independent
code, which can be re-used in any problem, and problem-specific components, which must
be developed for each problem. Finally, we use an automatic algorithm configuration
tool to search the configuration space and generate high-performing instantiations of the
grammar, given a set of training instances representative of the problem.

1.2.2 A grammar description of the GLS structure

A practical implementation of the GLS structure should contain many components that
interact. Implementing such a GLS structure as a unique monolithic algorithm is a com-
plex task. Moreover, the fact that a local search can be embedded within another in
arbitrary ways complicates such implementation. The alternative that we proposed was
to implement only the individual components, with clearly defined interfaces, and directly
generate specific algorithms by combining these components. This is a typical problem in
genetic programming, where grammars are often used to represent the design space of an
algorithm (McKay et al. 2010).
A grammar is a set of derivation rules that describes how the symbols in a language can
be combined to produce valid sentences. In our case, the valid sentences are local search
algorithms encoded in C++, but for clarity we will describe the algorithms in pseudo-code.
Fig. 1.2 shows the grammar that describes the GLS structure proposed in the previous
section. Each line is a production rule of the form <non-terminal> ::=expression that
describes how the non-terminal on the left-hand side can be replaced by the expression on
the right-hand side. Expressions may contain terminal and/or non-terminals. Alternative
expressions are separated with the symbol “|”. The non-terminal symbol <algorithm>
defines the starting point for instantiating an algorithm from the grammar.
The first three rules in the grammar describe the main structure of the GLS structure
proposed earlier (see Fig. 1.1). The next three rules describe the basic components of
our GLS structure, that is, the perturbation operator (<perturb>), local search (<ls>),
and acceptance criterion (<accept>). Since the rule <ls> can expand to <ils> which
contains again <ls>, a local search can be embedded within another local search (recur-
sion). The other rules describe the alternatives available for the various components. Our
grammar explicitly contains classical local search algorithms, but defined in terms of ILS,
as detailed in Table 1.1. Moreover, the grammar also allows problem-specific components
(<pbs_...>), which can be implemented for each problem tackled.
The possibility of adding problem-specific components is an advantage of our proposed
method. Such components are critical for the success of SLS algorithms. For example, in
this way problem specific construction and destruction mechanisms can be incorporated
and be used in the destruction/construction phase (<deconst-construct_perturb>) of
an IG algorithm. Hence, our grammar must account for such components. A practical
implementation of our method also requires to define other problem-specific components in
order to describe the representation of the problem, neighborhood operators, the objective
function and how to read an instance of the problem. For simplicity, we do not include
these in our exposition, but they are implemented in a similar fashion.
Finally, each ILS in the proposed grammar has its own termination criterion (<stop>),
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<algorithm> ::= <initialization> <ils>
<initialization> ::= random | <pbs_initialization>

<ils> ::= ILS(<perturb>, <ls>, <accept>, <stop>)

<perturb> ::= none | <initialization> | <pbs_perturb>
<ls> ::= <ils> | <descent> | <sa> | <rii> | <pii> | <vns> | <ig> | <pbs_ls>

<accept> ::= alwaysAccept | improvingAccept <comparator>
| prob(<value_prob_accept>) | probRandom | <metropolis>
| threshold(<value_threshold_accept>) | <pbs_accept>

<descent> ::= bestDescent(<comparator>, <stop>)
| firstImprDescent(<comparator>, <stop>)

<sa> ::= ILS(<pbs_move>, no_ls, <metropolis>, <stop>)
<rii> ::= ILS(<pbs_move>, no_ls, probRandom, <stop>)
<pii> ::= ILS(<pbs_move>, no_ls, prob(<value_prob_accept>), <stop>)
<vns> ::= ILS(<pbs_variable_move>, firstImprDescent(improvingStrictly),

improvingAccept(improvingStrictly), <stop>)
<ig> ::= ILS(<deconst-construct_perturb>, <ls>, <accept>, <stop>)

<comparator> ::= improvingStrictly | improving
<value_prob_accept> ::= [0, 1]
<value_threshold_accept> ::= [0, 1]
<metropolis> ::= metropolisAccept(<init_temperature>, <final_temperature>,

<decreasing_temperature_ratio>, <span>)
<init_temperature> ::= {1, 2,..., 10000}

<final_temperature> ::= {1, 2,..., 100}
<decreasing_temperature_ratio> ::= [0, 1]
<span> ::= {1, 2,..., 10000}

Figure 1.2: A simplified view of the grammar for the GLS structure.

which is typically a maximum computation time. If there is more than one level of ILS
algorithms, the total computation time must be divided among them, such that the inner
level does not consume all available time. We adopt here a simple scheme. The top-level
ILS stops once the total time is consumed. Each subsequent level stops after consuming
a ratio of the time allocated to its parent ILS. This ratio is controlled by a parameter
tls ∈ {0.1, 0.2, . . . , 1} for each level of ILS.
These ratios have to be tuned in order to generate an efficient hybrid SLS algorithm.
In practice, an instantiation of the grammar produces an algorithm that is mapped to
source code implementing the individual components. In our case, the implementation
of the components is done using Paradiseo-MO (Humeau et al. 2013), an open-source
C++ framework whose purpose is to facilitate the design of metaheuristics by providing
a library of reusable components. The idea is that an algorithm designer can re-use the
available algorithm components or implement her own components, and freely combine
these components to design new algorithms.
Our proposal goes a step beyond this idea, since in our proposed method the algorithm
designer can focus on implementing problem-specific components, while the grammar takes
care of describing the possible algorithm designs given the available components. The
next section describes how to automatically find a high-performing SLS algorithm for a
given problem, among all the possible algorithm designs that can be generated from the
grammar.

1.2.3 Automatic generation of hybrid LS metaheuristics

Given a particular problem, our goal is to find the highest-performing instantiation of
the grammar given above. As mentioned above, techniques such as genetic program-
ming (McKay et al. 2010) and grammatical evolution (Burke et al. 2012) are often used
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for this task. Before our work, Mascia et al. (2013) showed how to instantiate IG algo-
rithms from a grammar by means of a parametric representation. The use of a parametric
representation has certain advantages and enables the use of state-of-the-art automatic
configuration tools for offline parameter tuning. In that work, they showed that a para-
metric representation produced better IG algorithms than the representation used by
grammatical evolution. In our joint work, we explore the much larger space of SLS algo-
rithms defined by the proposed GLS structure.
We follow the method described in the previous work (Mascia et al. 2013) to generate a
parametric description of the grammar. This requires defining a maximum limit to the
number of ILS levels in the final algorithm, that is, a maximum number of applications of
the rule <ls> in the grammar. This limit has an influence on the number of parameters
required to describe the grammar. In the next section, we explore the effect of this limit
on the results.
From the parameter description and given a set of training instances representative of the
problem, we apply an automatic configuration tool to search the space of possible algo-
rithm designs. Here, we use irace (López-Ibáñez et al. 2011). Nonetheless, any automatic
configuration tool that handles large numbers of categorical, numerical and conditional
parameters with complex constraints would be appropriate.
Each parameter configuration tested by irace is an instantiation of the grammar, which
is mapped to C++ code and compiled into an executable. This executable is then run
on various training instances by irace in order to determine its performance. The irace
procedure stops after exhausting a given budget of algorithm runs, and it returns the SLS
algorithm configuration that it identified as the best performing one during the tuning.

1.3 Experimental Environment

1.3.1 The PFSP-WT

We tested our proposed method on the permutation flowshop scheduling problem with
weighted tardiness (PFSP-WT). The permutation flowshop scheduling problem (PFSP)
encompasses a variety of problems that are typical of industrial production environments.
The common goal of various PFSPs is to scheduleN jobs onM machines with the condition
that all jobs must be processed in the same order and jobs are not allowed to pass each
other. Each job i requires, on each machine j, a fixed, non-negative processing time pij .
In the PFSP-WT, we are asked to determine a schedule that minimizes the total weighted
tardiness. Each job i has a due date di, which denotes the desired completion time of
the job on the last machine, and a priority weight wi, which denotes its importance. The
tardiness of a job i is defined as Ti = max{Ci − di, 0}, where Ci is the completion time of
job i on the last machine, and the total weighted tardiness is given by

∑n
i=1wi · Ti. This

problem is NP-hard even for a single machine (Du and Leung 1990).

1.3.2 Local search components for the PFSP-WT

To the best of our knowledge, a state-of-the-art algorithm for the PFSP-WT was pro-
posed by Dubois-Lacoste et al. (Dubois-Lacoste et al. 2009). This algorithm, henceforth
called soa-IG, is an iterated greedy algorithm that works as follows. An initial solution
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<pbs_initialization> ::= NEH | NEH-WSLACK
<pbs_perturb> ::= <deconst-construct_perturb>

| <perturb_move>(<k>)
| var_<perturb_move>(<k>)

<perturb_move> ::= insert | swap | exchange
<k> ::= {1,2,...,10}
<deconst-construct_perturb> ::= soa_ig_perturb(<d>)
<d> ::= {1,2,...,10}
<pbs_ls> ::= soa_ig_ls

<pbs_variable_move> ::= var_<pbs_move>(<k>)
<pbs_move> ::= insert
<pbs_accept> ::= soa_ig_accept(<Tc>)
<Tc> ::= [0,1]

Figure 1.3: The extended grammar for the PFSP-WT.

is constructed using a modified version of the well-known NEH algorithm (Nawaz et al.
1983) called NEH-WSLACK where the WSLACK heuristic provides the initial order for
the NEH algorithm, and the jobs are inserted in the solution in the order that minimizes
the partial objective function, i.e., computed using the jobs present in the partially con-
structed solution. The local search in soa-IG is a first-improvement descent using a swap
neighborhood and with a maximum number of swaps, fixed to 2 · (N − 1), where N is the
number of jobs. The perturbation operator consists in removing d jobs randomly from the
solution. These jobs are re-inserted one by one to minimize the partial objective function.
Finally, in the acceptance criterion, a new solution that is worse than the current one is
accepted with a probability given by exp(100 · (f(π) − f(π′))/(f(π) · Tc)), where Tc is a
user-defined parameter, f(π) is the objective value of the current solution and f(π′) is the
objective value of the new one. Dubois-Lacoste et al. (2009) suggest the settings d = 5
and Tc = 1.2.
We added the aforementioned components to the grammar of our GLS structure as ad-
ditional problem-specific components (Fig. 1.3). In particular, we add two initialization
methods, NEH with and without the WSLACK heuristic (NEH and NEH-WSLACK). In addi-
tion to the random destruction-construction perturbation used by soa-IG, we added further
problem-specific perturbations based on classical neighborhood move operators (insert, ex-
change and swap) and a strength parameter k that controls the number of random moves
applied per perturbation. The value of k may be fixed or vary during the run (var_) as in
VNS. The problem-specific local search used by SOA is added to the grammar (soa_ls).
Moreover, the pbs(_variable)_move used in the grammar (see Fig 1.2) are set to the
insert move. Note that, the descents also use the insert move to define the neighborhood.
Finally, we add the acceptance criterion of soa-IG as an additional acceptance criterion.

1.3.3 Experimental Protocol

We assess the potential of the proposed method by generating three hybrid SLS algorithms
for the PFSP-WT, and comparing them with soa-IG. In particular, we generate three
algorithms (ALS1, ALS2, and ALS3) for tackling the PFSP-WT from our GLS structure,
by allowing different levels of recursion.
The procedure for generating these three algorithms is as follows. We consider the gram-
mar presented in Fig. 1.2 and the PFSP-WT-specific extensions discussed above (Fig. 1.3).
For each level of recursion, we automatically generate a parameter description. Indeed,
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the recursion leads to an increasing number of parameters. With one level of recursion,
i.e., a single ILS, the grammar is represented by 80 parameters. Of these 80 parameters,
27 are categorical and represent possible algorithmic choices, 25 are integer-valued, and 28
are real-valued. With two or three levels of recursion, the number of parameters increases
to 127 and 174, respectively.
The parameter description is given to irace together with a number of training instances.
As training instances, we generated 10 random PFSP-WT instances for each number of
jobs in {50, 60, 70, 80, 90, 100} and with 20 machines, following the procedure described
by Minella et al. (Minella et al. 2008). Within irace, a specific algorithm, i.e., a specific
parameter configuration, is evaluated by running it on a training instance with a time
limit of 30 CPU-seconds. A single run of irace stops after exhausting a given budget of
evaluations. Since the number of parameters is different according to the level of recursion,
we used different budgets for the different runs of irace; concretely, 30 000 evaluations for
generating ALS1, 40 000 for generating ALS2, and 50 000 for generating ALS3.
The three algorithms ALS1, ALS2 and ALS3 generated by irace are then run on a set of
test instances of size 50x20 and 100x20, different from the set of training instances. Also
soa-IG is run on the same instances. To avoid differences due to implementation details,
we have instantiated soa-IG as one specific SLS algorithm through our grammar, taking
care that the algorithm is implemented correctly in this way. These test instances were
generated by Minella et al. (Minella et al. 2008) from well-known PFSP instances (Taillard
1993). Each run is repeated 30 times with different random seeds.

1.4 Experimental Results

1.4.1 Generated Hybrid SLS

The three algorithms (ALS1, ALS2 and ALS3) generated by irace are shown in Fig. 1.4.
The first one (ALS1) is an IG algorithm within a classical ILS. It uses the NEH-WSLACK
initialization, then executes a classical ILS with a k-insert move as perturbation, IG as
the subsidiary local search, and an improving acceptance criterion. The IG has a time
limit of 0.8·maxTime, and it is represented by an ILS with the construction/deconstruction
operator of soa-IG as the perturbation, a first-improvement descent as the subsidiary local
search, and the IG acceptance criterion. The first-improvement descent has a time limit
of 0.5 · 0.8 · maxTime. (Note that the first-improvement descent will actually terminate
much before its maximum time limit upon finding a local optimum; in fact, the time lim-
its mentioned here and in the following do actually not restrict the computation times of
iterative improvement algorithms.)

ALS2 is a VNS algorithm included in an ILS that is itself included in an ILS. ALS2 uses
the NEH initialization, then executes a classical ILS without perturbation, an ILS as the
subsidiary local search, and an improving acceptance criterion. The subsidiary ILS has a
time limit of 0.8 ·maxTime, again no perturbation, a VNS as the subsidiary local search,
and a Metropolis acceptance criterion. The VNS has a time limit of 0.4·0.8·maxTime, and
it is represented as an ILS with a variable insert move perturbation, a first-improvement
descent as the subsidiary local search, and the improvingStrictly acceptance criterion.
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The first-improvement descent has a time limit of 0.4 · 0.4 · 0.8 ·maxTime.

Figure 1.4: Hybrid LS algorithms automatically generated for PFSP-WT.

ALS3 is also a VNS algorithm included in an ILS that is itself included in an ILS. Although
three levels of recursion were allowed when generating ALS3, this algorithm only has two
levels as ALS2. ALS3 uses the NEH-WSLACK initialization, then executes a classical
ILS with a k-exchange move as perturbation, an ILS as the subsidiary local search, and
an acceptance criterion that always accepts a new solution. The subsidiary ILS has a
time limit of 0.8 ·maxTime, and uses the construction/deconstruction operator of soa-IG
as the perturbation, a VNS as the subsidiary local search, and a Metropolis acceptance
criterion. The VNS has a time limit of 0.4 · 0.8 ·maxTime and it is represented as an ILS
with a variable insert move perturbation, a first-improvement descent as the subsidiary
local search, and the improvingStrictly acceptance criterion. The first-improvement
descent has a time limit of 0.3 · 0.4 · 0.8 ·maxTime seconds.
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1.4.2 Comparison with the state-of-the-art algorithm

To assess the performance of the three automatically generated algorithms, we run them
30 times on the test instances and compare them with soa-IG. Fig. 1.5 and 1.6 show
the solution cost reached by each algorithm on each instance. Table 1.2 gives the best
and mean solution. The behavior of the algorithms is slightly different depending on the
instance size. The performance of the automatically generated SLS algorithms on the
50x20 instances matches the quality obtained by soa-IG in most instances, and they are
noticeably better on a few. On the 100x20 instances, the automatic SLS algorithms clearly
outperform soa-IG.
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Figure 1.5: Solution costs obtained by the three automatic SLS algorithms (ALS1, ALS2
and ALS3) and soa-IG on the texttt50x20 instances.

In order to assess the performance over each set of instances, we perform a statistical
analysis based on the Friedman test for analyzing non-parametric unreplicated complete
block designs, and its associated post-hoc test for multiple comparisons (Conover 1999).
First, we pair the runs performed on the same instance using the same random seed. This is
the blocking factor, and the different algorithms are the treatment factor. Algorithms are
ranked within each block, lower solution cost corresponds to lower rank. If the Friedman
test rejects the hypothesis that the different algorithms obtain the same mean rank, then
we calculate the difference (∆R) between the sum of ranks of each algorithm and the best
ranked one (with the lowest sum of ranks). We also calculate the minimum difference
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Figure 1.6: Solution costs obtained by the three automatic SLS algorithms (ALS1, ALS2
and ALS3) and soa-IG on the 100x20 instances.

between the sum of ranks of two algorithms that is statistically significant (∆Rα), given a
significance level of α = 0.05. Table 1.3 gives the results of this analysis, applied separately
to the two sets of instances of size 50x20 and 100x20. We indicate in bold type the best
strategy (the one having the lowest sum of ranks) and those that are not significantly
different from the best one. In both cases, the best ranked algorithm is significantly better
than the rest. However, the best algorithm is different in each case. Notably, soa-IG is
consistently ranked as the worst by a large margin, especially on the 100x20 instances.
These results are consistent with the observations above. Therefore, our conclusion is
that the current state of the art can be matched and outperformed by the automatically
generated algorithms.

1.5 Conclusion and Perspectives

Summary In this chapter, we have shown that the process of designing hybrid stochas-
tic local search (SLS) algorithms can become mostly automatic. In particular, we have
proposed a unified and practical generalized local search (GLS) structure. We have shown
that the GLS structure unifies the formulation of various simple SLS methods and their
possible combinations (hybridizations) into a single structure. In fact, the best algorithms
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Table 1.2: Solution costs obtained by the three automatic SLS algorithms and soa-IG on
the test instances.

ALS1 ALS2 ALS3 soa-IG
Instances Best Avg Best Avg Best Avg Best Avg

50x20 ta051 26589 26806.2 26589 26824.9 26589 26756.1 26589 26899.6
ta052 24059 24273.2 24183 24443.2 24096 24390.8 24059 24333.5
ta053 32897 33307.8 32910 33183.7 32910 33206.8 32897 33634.6
ta054 31221 31470.2 31221 31663.3 31221 31572.7 31221 31488.9
ta055 21908 21936.2 21908 21948.3 21908 21975.9 21908 22094.7
ta056 16181 16516.4 16189 16711.6 16189 16740.7 16181 16556.7
ta057 23610 23869 23610 23990.4 23610 23953.9 23974 24211.2
ta058 22091 22207.7 22091 22131.9 22091 22166.8 22091 22262.1
ta059 27333 27521.3 27333 27685.1 27333 27573.1 27333 27577.9
ta060 63078 63286.3 63078 63235.9 63078 63179.9 63117 63456

100x20 ta081 409667 416932.6 409052 415941.5 409697 415306.3 415388 422625
ta082 325472 329803.8 324060 329161.3 323133 327466.6 328014 334437.1
ta083 492455 496922.6 490669 495669.7 487450 494569.8 500142 505772
ta084 553249 562380.8 549600 558824.5 551359 559419.9 550536 568600.5
ta085 472546 480861 474883 481147.7 471402 479941.3 481576 487291.6
ta086 484905 490357.9 480575 489379 480926 488144.7 484892 496511.1
ta087 378567 382931.6 374208 384024.5 376694 382277.9 382122 388511.8
ta088 389673 395809.4 389475 396729.7 385029 394056.2 394226 402836.5
ta089 562109 571495.2 560593 570489.5 561570 568465.7 569769 582829.9
ta090 459232 464206.4 454597 461262.9 457784 462177.3 464264 471961.3

Table 1.3: Statistical analysis based on the Friedman-test. The second column gives the
minimum difference in the sum of ranks that is statistically significant (∆Rα), given a
significance level of α = 0.05. For each instance set, algorithms are ordered according to
the rank obtained. The numbers in parenthesis are the difference of ranks relative to the

best algorithm. The algorithm that is significantly better than the other ones is
indicated in bold face.

Instances ∆Rα Algorithms (∆R)

50x20 57.92 ALS1, ALS3 (75), ALS2 (115.5), soa-IG (221.5)
100x20 47.04 ALS3, ALS2 (100), ALS1 (143), soa-IG (573)

generated when applied to the PFSP-WT are complex hybrids that combine ILS with IG,
VNS and even a different ILS. Our proposal is also practical, in the sense that it generates
algorithms that are as efficient as if they were hand-crafted by a competent programmer.
Two properties of our proposal are key for obtaining such efficiency. First, instead of
a complex algorithmic framework with many parameters, our system generates specific
algorithms from a grammar description of the GLS structure. These specific algorithms,
which contain only a small fraction of all the algorithmic components available in the
grammar, are generated directly as C++ code and compiled. Second, our grammar descrip-
tion allows algorithm designers to include problem-specific components, which are often
crucial for obtaining high-performing SLS algorithms. The system takes care of combin-
ing, testing and selecting (or discarding) these problem-specific components among all the
available algorithmic components. The evaluation of this proposal has been performed on
the permutation flowshop scheduling problem with weighted tardiness (PFSP-WT). Our
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experimental results showed that the three automatically generated SLS algorithms are
able to outperform the state-of-the-art algorithm on well-known PFSP-WT instances from
the literature.

Extension of the GLS structure Additional SLS algorithms, for example,
greedy randomized adaptive search procedure (GRASP) (Feo and Resende 1995) and Tabu
Search (Glover et al. 1993) were integrated later for solving other hard combinatorial prob-
lems. We may cite the traveling salesman problem with time windows (López-Ibáñez and
Blum 2010) and the unconstrained binary quadratic programming problem (Kochenberger
et al. 2004), a non-linear combinatorial optimization problem that unifies a wide range of
important problems including graph coloring, set partitioning, and maximum cut prob-
lems. Our approach also proved its ability to configure an efficient hybrid SLS. This work
is continued by Thomas Stützle with PhD students where better implementations of both
the components and the whole approach, are also studied (Franzin and Stützle 2019; Pag-
nozzi and Stützle 2019).

Extension to the Multi-objective Optimization This postdoctoral work
allowed me to learn the field of automatic algorithm configuration (AAC). When I came
back to Université de Lille, I wanted to extend this work to multi-objective optimization
which was in tune with the ORKAD team expertise. The contributions presented in the
rest of this part, result from this initial work. Chapter 2 presents a unified structure of
multi-objective SLS algorithms. Chapter 3 gives a definition to multi-objective AAC and
presents the results obtained on different configurations of multi-objective SLS.
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Chapter 2

Multi-Objective Stochastic
Local Search Algorithms

In this chapter, we consider multi-objective stochastic local search (MO-SLS) algorithms.
Although SLS algorithms sometimes have been directly used as single-objective procedures
of multi-objective algorithms, many multi-objective local search algorithms have also been
specifically designed.

During the PhD of Aymeric Blot, we focused on these multi-objective local search tech-
niques. We proposed a new basic local search structure (Blot et al. 2018b) that unifies
most, if not all, multi-objective local search algorithms of the literature, and discussed a
number of strategies that can be integrated inside this structure. This MO-SLS structure
has been used in different way in our works on automatic design (Blot et al. 2018a, 2017a,
2018c, 2019, 2017c; Pageau et al. 2019). It showed its practicality in tuning MO-SLS or
in integrating control mechanisms into MO-SLS.

This chapter is organized as follows:

• Section 2.1 presents a survey of the use of local search techniques in multi-objective
algorithms. We distinguished two types of multi-objective local search algorithms:
the direct extensions of well-known single-objective local search algorithms, and the
others that have been designed together with evolutionary algorithms. Nevertheless,
both types of local search algorithms share a common underlying structure.

• Section 2.2 details the basic components of our unification representing the sets of
solutions and the strategies. Several values for each components are given.

• Section 2.3 describes our unification of the multi-objective local search structure and
gives the instantiation of the most prominent multi-objective local search algorithms.

• Section 2.4 shows the ability of our structure to be tuned or to integrate control
mechanisms. A static and an adaptive MO-SLS structure are proposed and dis-
cussed.
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2.1 Literature Review

Historically, local search algorithms have been initially designed to solve single-objective
combinatorial optimization problems and, therefore, are themselves single-objective algo-
rithms (see Chapter 1). Multi-objective stochastic local search algorithms are used on the
same combinatorial problems, e.g., multi-objective permutation problems (Basseur and
Burke 2007; Dubois-Lacoste et al. 2015; Jaszkiewicz 2002; Liefooghe et al. 2012), and
bioinformatics problems (Abbasi et al. 2015). The majority of the literature works fo-
cuses on bi-objective and tri-objective problems, while very fewer works tackle more than
three objectives simultaneously. This is due to the nature of the induced search space;
indeed, in these many-objective problems (Ishibuchi et al. 2008) solutions are much more
often incomparable to each others, thus majorly hindering the neighborhood exploration
of MO-SLS algorithms.
The development of MO-SLS algorithms has occurred simultaneously from two differ-
ent directions. On the one hand, they were directly extended from well-known and es-
tablished single-objective algorithms (e.g., (Czyzak and Jaszkiewicz 1996; M. P. Hansen
1997; Serafini 1994; Ulungu et al. 1995)). On the other hand, they were either integrated
into evolutionary algorithms as inner components or used as post-processing algorithms
(e.g., (Ishibuchi and Murata 1996; Knowles and Corne 1999; Talbi et al. 2001)). Nowa-
days, the prominent MO-SLS algorithms in the literature have grown into the Pareto Local
Search (PLS) algorithms, which are derived from the second type of MO-SLS algorithms.
In the following, we detail chronologically the development of these two algorithmic families
before summarizing their common characteristics.

2.1.1 Extensions of Single-Objective SLS Algorithms

Since local search algorithms have been originally designed for single-objective optimiza-
tion, they are single-trajectory algorithms, meaning that they follow a single solution (i.e.,
the current solution). Unsurprisingly, the first MO-SLS algorithms were extensions of
these single-objective local search algorithms.
Simulated Annealing (SA) (Kirkpatrick et al. 1983) is a local search procedure that opti-
mises a single solution, using a decreasing parameter, the temperature, to slowly converge
to the global optimal solution. Serafini (1994), Fortemps et al. (1994) and Ulungu et al.
(1995, 1999) have independently proposed the same algorithm, Multi-Objective Simulated
Annealing (MOSA). Like in the original single-objective algorithm, a single current solu-
tion is considered and moved through the search space, while a subsidiary set is used to
store the potential Pareto optimal solutions. The current solution is updated by evaluating
a single random neighbor and potentially accepting it with regard to rules based on prob-
abilities, which are themselves based on whether the neighbor dominates, is dominated
by or is incomparable to the current solution, and on weighted projections of the fitness
function. Czyzak and Jaszkiewicz (1996, 1998) proposed the Pareto Simulated Annealing
(PSA), in which, rather than a single current solution, a set of current solutions is used to
converge into multiple optima at the same time. The diversity of having multiple current
solutions is also used to guide the parallel searches in diverse directions. Engrand (1998)
and then Suppapitnarm and Parks (1999) proposed another MOSA variants, in which the
current solution is periodically replaced by one of the archived solutions (SMOSA). Other
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variants also include the Pareto Archived Simulated Annealing (PASA) by Suresh and
Mohanasundaram (2004), the Archived Multi-Objective Simulated Annealing (AMOSA)
by Bandyopadhyay et al. (2008) and those based on both Pareto Dominance (PDMOSA)
and Weights (WMOSA) proposed in literature reviews by Suman (2003) and Suman and
Kumar (2006).
Tabu Search (TS) (Glover et al. 1993) is a stochastic local search algorithm that uses an
auxiliary set of solutions, the tabu list, to guide the search and escape local optima by
preventing a backward move on the search space by banning the acceptance of neighbors
too similar to recent considered solutions. In a TS local search, when a solution is explored,
each of the solution’s neighbors is evaluated and the best non-tabu one is selected to replace
the current solution, even if it has a worse quality. The first multi-objective algorithm
based on TS is theMulti-Objective Tabu Search (MOTS) proposed by M. P. Hansen (1997).
It uses a set of current solutions and independently explores their neighborhoods using an
aggregation of the multiple objectives. After a given number of iterations, a drift strategy
is applied: the set of solutions is updated by replacing one of the solutions by another one,
both uniformly selected at random, to explore the whole front and not merely to focus
on one part of the objective space. Other TS algorithms have been proposed, such as the
one by Baykasoglu et al. (1999), which is based on a local search with an intensification
memory to restart from when no more improving move is available, or the two algorithms
proposed by Jaeggi et al. (2004, 2008), based on the Hooke and Jeeves move (MOTS) and
path-relinking (PRMOTS), respectively. Multi-objective variants of scatter search using
TS and path-relinking have also been proposed (Beausoleil 2001; Molina et al. 2005).
Greedy Randomised Adaptive Search Procedure (GRASP) for Maximum Independent Set
is a procedure originally presented by Feo et al. (1994) for single-objective problems. It
has been extended by Vianna and Arroyo (2004) for multi-objective optimization prob-
lems (GRASP-MULTI). Both algorithms are multi-start metaheuristics that alternate two
phases, the first being the construction of an initial solution, and the second being the
iterative improvement of that solution through a local search procedure; the best overall
solution (or set of solutions, for the multi-objective version) is then returned. The local
search procedure simply replaces the current solution by any improving neighbor until
there is no more. In the case of the multi-objective version, the different local search iter-
ations use different aggregation weights and a list of all potential Pareto optimal solutions
is automatically kept up to date. An extensive survey of multi-objective GRASP can be
found in (Martí et al. 2015), in which the authors propose a multi-objective GRASP with
path-relinking.
Lastly, Variable neighborhood Search (VNS) (Mladenović and P. Hansen 1997) is a lo-
cal search algorithm that solves the local optima problem by simply considering multiple
other neighborhoods. Indeed, a PLO regarding a given neighborhood may have dominat-
ing neighbors regarding other neighborhoods. Geiger (2008) proposed a Multi-Objective
Variable Neighborhood Search (MOVNS) based on PLS-2 and the VNS methodology. Like
in PLS, an archive is used to store all potential Pareto optimal solutions. In every itera-
tion, both a solution and a neighborhood, if they have not been explored yet, are selected
uniformly at random, and then the solution is entirely explored and the Pareto set is up-
dated using all the neighbors. Arroyo et al. (2011) proposed an interesting alternative to
the MOVNS algorithm by adding a shaking mechanism: instead of generating the neigh-
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borhood of a solution of the Pareto set, their algorithm generates the neighborhood of a
neighbor of the solution of the Pareto set.

2.1.2 SLS Techniques in Evolutionary Algorithms

In addition to the single-objective SLS algorithms, the development of MO-SLS algorithms
also occurred at the same time jointly with the multi-objective evolutionary algorithms.
Evolutionary Algorithms (EAs) constitute a class of metaheuristics based on the iterative
improvement of a set of solutions (namely, the population), which is often used to tackle
multi-objective optimization problems. EAs usually iterate both crossover and mutation
techniques to improve the population. There are two types of hybridization of multi-
objective EAs with local search mechanisms. The first type integrates the SLS inside the
EA, either complementing or replacing the mutation, by using a SLS on every solution
of the population at each iteration. The local search is then generally a single-objective
algorithm, based on an aggregation of the different objectives. The second type uses a
MO-SLS as a post-processing procedure at the end of the EA.
Ishibuchi and Murata (1996) first proposed the Multi-Objective Genetic Local Search
(MOGLS), which hybridizes a genetic algorithm with a single-objective SLS by perform-
ing a SLS on every solution generated at every iteration. During the SLS, at most k
neighbors of the current solution are produced and any improving neighbor is accepted.
The crossover and the mutation strategies generate new solutions where the SLS is ap-
plied using a new aggregation, i.e., the weights are randomly chosen. A cellular variant,
called C-MOGLS, was proposed by Murata et al. (2000), which divides solutions into cells
associated with weight vectors to guide the selection and local search procedures of the
MOGLS. Jaszkiewicz (2002) proposed another Genetic Local Search (GLS) where the main
differences are the way the solutions are selected for recombination and the SLS aggrega-
tion, which uses a weight vector selected at random from a set of possible weight vectors.
Knowles and Corne (1999, 2000a) proposed the Pareto Archived Evolutionary Strategy
(PAES), an EA without crossover that only relies on local search techniques. PAES was
presented as “the simplest non-trivial approach to a multi-objective local search proce-
dure”, and three versions were introduced. All versions maintain a single current solution
to be explored, while the population takes the role of a Pareto set. In the simple (1+1)-
PAES, the current solution is explored by generating a single neighbor. The neighbor
replaces the current solution either if it dominates the latter or if it is in a less crowded re-
gion of the population. The population itself is updated in such a way that any dominated
solution is discarded and the solutions of less crowded spaces replace the solutions of more
crowded spaces. The (1+λ)-PAES variant generates λ neighbors of the current solution
at every iteration, which are all considered for updating the population and replacing the
current solution. The (µ+λ)-PAES variant replaces the current solution with a list of µ
current solutions, one of which is explored, selected using a binary tournament. Knowles
and Corne (2000b) also proposed the memetic-PAES (M-PAES), a variant periodically
employing a crossover.
Talbi et al. (2001) also proposed a genetic algorithm hybridized with a MO-SLS proce-
dure. The execution of the algorithm is divided into two separate steps, beginning with
the execution of a genetic algorithm. Once the GA finishes, every solution of the final
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population is then explored by generating and archiving every possible non-dominated
neighbor, a procedure that is then iterated until the end of the algorithm.
Similarly, Moslehi and Mahnam (2011) proposed a hybridization of a Multi-Objective Par-
ticle Swarm Optimisation algorithm with a single-objective SLS (MOPSO+LS).

2.1.3 Pareto Local Search Algorithms

Following the steps of algorithms such as PAES (Knowles and Corne 1999) and PLS-
2 (Talbi et al. 2001), which are based on Pareto dominance and use the population of
the EA as a Pareto set, many more algorithms solely based on SLS techniques have
been designed that are not simple extensions of known single-objective SLS algorithms.
These simple extensions can still be seen as either single-trajectory algorithms or multi-
ple-trajectory algorithms, as multiple solutions are simultaneously iteratively improved.
On the contrary, the notion of trajectory is more blurred in the following algorithms,
which are based more on improving iteratively the full archive (originally the evolutionary
population) than on focusing on single solutions.
Paquete et al. (2004) and Angel et al. (2004) simultaneously proposed the first standalone
SLS algorithms: the Pareto Local Search (PLS) and the Bi-criteria Local Search (BLS).
Both algorithms are very similar and are both known as PLS (or PLS-1 in comparison to
the PLS-2 algorithm, the SLS algorithm of the EA proposed by (Talbi et al. 2001) that is
sometimes referred to under this name). Unlike in the previous EAs, in PLS algorithms,
a population is called an archive and always consists of a Pareto set. At every iteration
of the PLS algorithm, a single solution not yet considered is taken from the archive to
explore its neighborhood and all of its neighbors are used to update the archive.
Aguirre and Tanaka (2005) proposed the multiple multi-objective random bit climbers
(moRBC), which also follows a SLS scheme. At each iteration, all the possible moves
of the neighborhood are generated. They are all successively applied to the current so-
lution, which can be immediately replaced when a dominating neighbor is found. These
authors proposed multiple versions of moRBC wherein incomparable neighbors may be
accepted and a separate archive may be used for crowding or restarting purposes.
Using the idea of employing a separate standalone procedure to generate the initial so-
lutions of the SLS, Paquete and Stützle (2003) proposed the Two-Phase Local Search
procedure (TPLS) for bi-objective optimization problems. First, an initial solution is
generated (originally, using a SLS), considering the first objective only. Then, a SLS is
performed, starting from the resulting solution, but using an aggregation of the objectives
slightly more oriented towards the second objective. This step is then repeated until the
final local search considers the second objective only. Many variants of the TPLS pro-
cedure have been proposed, among which is the 2-Phase Pareto Local Search (2PPLS)
procedure by Lust and Teghem (2010), which hybridises the first step by constructing po-
tentially extreme supported efficient solutions as the initial set of a PLS algorithm and an
adaptive version of TPLS, likewise hybridised with a PLS algorithm, by Dubois-Lacoste
et al. (2011).
Instead of using the Pareto dominance or an aggregation-based comparison, the Indicator-
Based Multi-Objective Local Search (IBMO-SLS) (Basseur and Burke 2007; Basseur et al.
2012) accepts neighbors that are better than any solution of the population, by using a
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binary multi-objective indicator, such as the hypervolume indicator (Zitzler and Thiele
1999). The population size of IBMO-SLS is fixed, the worse solution being replaced as
soon as a new neighbor is accepted. The authors also proposed an iterative version of
IBMO-SLS, in which the new initial Pareto set is obtained by applying random noise to a
given number of solutions of the Pareto set. If the Pareto set is not big enough, additional
solutions randomly generated are considered.
Drugan and Thierens (2012) proposed a multi-restart version of PLS with the Iterated PLS
(IPLS). IPLS follows the PLS-2 algorithm, but associates with every solution a Boolean
flag that is turned off after the solution neighborhood is explored. When all solutions are
flagged, the search first restarts from a new solution that is randomly generated. After a
given number of PLS runs, instead of considering a new solution, IPLS uniformly selects
at random a solution from the archive, applies a mutation and restarts from the resulting
solution.
Two separate generalisations of the PLS algorithms have since been independently pro-
posed: the Dominance-based Multi-objective Local Search (DMLS) (Liefooghe et al. 2012)
and the Stochastic Pareto Local Search (SPLS) (Drugan and Thierens 2012). The DMLS
generalisation uses an archive of solutions and includes multiple strategies related to the
selection of solutions to explore and to the exploration of the neighborhood. DMLS(α ·β)
denotes that the DMLS uses the selection strategy α (with α ∈ {1, ?} for the selection
of a single random solution and all solutions, respectively) and the exploration strategy β
(with β ∈ {1, 1 6≺, 1�, ?} for the acceptance of a single neighbor at random, a single non-
dominated neighbor at random, a single dominating neighbor at random and all neighbors,
respectively). The SPLS generalisation also uses an archive of solutions from which at each
iteration a solution is selected uniformly to be explored. Similarly, multiple exploration
strategies are discussed. Furthermore, like in IPLS, a Boolean flag is associated with each
solution to avoid exploring it multiple times and to enable faster termination and restarts
when the exploration is not performed exhaustively. Indeed, the aforementioned authors
also proposed a more generic process to restart PLS algorithms, together with a hybrid
genetic PLS algorithm. Moalic et al. (2013) also proposed the Fast Local Search (FLS),
which behaves like SPLS in that the exploration of a solution neighborhood stops as soon
as a neighbor not dominated by the archive is found. Tricoire (2012) also proposed the
multi-directional local search (MDLS), loosely based on PLS, in which at every iteration
a solution from the archive is taken at starting point of a subsidiary local search, before
merging the resulting archives by filtering dominating solutions.
The anytime behaviour of PLS algorithms has been investigated by Dubois-Lacoste et
al. (2012, 2015), who proposed variants that optimize not just the quality of the final
archive only, but also the quality of intermediate archives. They proposed the Optimistic
HyperVolume Improvement (OHVI), an alternative mechanism for selecting the solution
of the archive whose neighborhood will be explored, and, more importantly, they showed
that changing the exploration strategy during the search could improve the performances
of the PLS algorithm.
Finally, Inja et al. (2014) proposed the Queued Pareto Local Search (QPLS), another
restart scheme using a queue to avoid premature convergence. Starting from the initial
solutions, QPLS recursively explores every solution of the queue by using dominating
neighbors to finally obtain a single final solution. If this final solution is not dominated
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by the archive, it is merged and k incomparable neighbors are added to the queue. The
authors also proposed the Genetic Queued Pareto Local Search (GQPLS), which hybridizes
genetic algorithm techniques to update the queue.

2.1.4 Condensed Literature Summary

All of the MO-SLS algorithms outlined above share a common structure, in which a Pareto
set of solution is iteratively improved by considering either a solution or a set of solutions
as current, which is then explored to merge some or all of their neighboring solutions to
the Pareto set. Table 2.1 summarizes the main SLS algorithms in the literature, according
to the five following local search attributes.

Current solutions A single current solution or a current set of multiple solutions is used
by the local search.

Archive The local search keeps track of a separate current set, or the current solutions
can be directly selected from the archive.

Neighborhood Exploration A single neighbor, the full neighborhood or only a subset
of the neighborhood (if a stopping criterion is used) is evaluated.

Acceptance criterion Incomparable and dominated neighbor may be accepted and re-
turned after the neighborhood exploration, either as the stopping criterion of the
exploration or in addition to the final neighbor.

Quality The comparison of the quality of two neighbors is done by considering either an
aggregation or the Pareto dominance.

Reference During the neighborhood exploration, neighbors are compared either to the
current solution or to other solutions such as the full Pareto set.

In Table 2.1, an “X” means that the algorithm possesses the corresponding characteristic,
possibly depending of the context during the resolution (e.g., SA algorithm accepting dom-
inated solutions by means of the temperature), whereas a “C” means that the characteristic
is only present in some particular variant of the algorithm (e.g., the DMLS structure is
able to instantiate many different MO-SLS algorithms).

2.1.5 Analysis and Discussion

Table 2.1 shows a trend between the two algorithmic families of the MO-SLS algorithms,
where extensions of single-objective SLS algorithms generally separate the archive and
the current solutions and use aggregations, and the family of the PLS algorithms, which
generally directly select the current solutions from the archive and use Pareto dominance.
One of the apparent weakness of MO-SLS algorithms relates to the possible number of
solutions included in the archive and thus the size and shape of the optimal Pareto front.
Indeed, if a MO-SLS algorithm does not use any mechanism to bound the size of its
archive, exploration of too many solutions (and furthermore exhaustive neighborhood
explorations) can become prohibitively computationally expensive slowing the convergence
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Table 2.1: Condensed Literature Summary
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MOSA X X X X X X X
PSA X X X X X X X
MOTS X X X X X X X
MOVNS X X X X X X
MOGLS X X X X X X
PAES X C X C C X X X
PLS-2 X X X X X X
PLS-1 X X X X X X
moRBC X X X X C X X
IBMO-SLS X X X X X X
DMLS C C X C C C C X C C
SPLS X X C C C C X C C
FLS X X X X X X

MOSA (Fortemps et al. 1994; Serafini 1994); PSA (Czyzak and Jaszkiewicz 1996);
MOTS (M. P. Hansen 1997); MOVNS (Geiger 2008); MOGLS (Ishibuchi and Murata
1996); PAES (Knowles and Corne 1999, 2000a); PLS-2 (Talbi et al. 2001); PLS-1 (Angel
et al. 2004; Paquete et al. 2004); moRBC (Aguirre and Tanaka 2005); IBMO-SLS (Basseur
and Burke 2007); DMLS (Liefooghe et al. 2012); SPLS (Drugan and Thierens 2012);
FLS (Moalic et al. 2013)
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of the algorithm to a halting point (Liefooghe et al. 2012). MO-SLS are similarly much
weakened when using too large neighborhood, especially when explorations are performed
exhaustively. Another current weakness of MO-SLS algorithms is that there is usually no
explicit handling of the intensification/diversification trade-off. If some works focus on
preserving diversity at the cost of some convergence speed (Blot et al. 2015), in most of
the MO-SLS algorithms only intensification is rewarded and diversification is delegated as
a side-effect of the archiving process. Furthermore, some variants of MO-SLS algorithms
may require long computational time to reach high-quality approximations of the Pareto
fronts and result on poor solutions if stopped early. Anytime mechanisms for MO-SLS
algorithms have been proposed to deal with this particular limitation (Dubois-Lacoste
et al. 2015).
The two DMLS and SPLS generalizations can be configured to instantiate a large range
of Pareto local search strategies, but are not compatible with many extensions of single-
objective strategies (and do not claim to be). The first fundamental limitation is that these
generalizations do not use an explicit set of current solutions that is conveyed through the
iterations of the local search, but instead select new current solutions from the archive
every iteration. This also implies that the current solutions are always non-dominated.
They can, through the use of an activation/deactivation scheme, emulate to some extent
some trajectory-based strategies by keeping track of the selection of the previous iteration,
but without the flexibility of keeping a separate set of current solutions, which allows, for
example, to easily perform explorations outside their current archive (e.g., to explore dom-
inated neighbors or when the algorithm allows some deterioration of the current solutions).
The second main limitation is that the use of an archive as the main set of solutions leads
to the use of the Pareto dominance (or a weakened version) for quality comparison, which
leaves out the use of scalar-based comparisons in the exploration procedure.
To overcome these limitations, to allow more flexibility and to incorporate more diverse
strategies, we propose a new MO-SLS generalization, which is detailed in Sections 2.2 and
2.3. Its main characteristics are the use of two explicit sets of solutions (namely, the set
of current solutions and the archive), the separation of acceptance and stopping criteria
in the exploration strategy, the possibility of using a simple set and not a Pareto set for
the set of current solutions, the possibility of using scalar-based acceptance criteria and,
finally, the use of an explicit reference during neighborhood comparisons.

2.2 Identification of MO-SLS Strategies

In this section, we describe different sets and strategies of the MO-SLS algorithms through
examples from the literature review of the previous section. They are the basic components
of our unification of MO-SLS that is presented in Section 2.3.

2.2.1 Set of Potential Pareto Optimal Solutions (Archive)

The archive is the Pareto set at the core of all MO-SLS algorithms. It holds potential
Pareto optimal solutions, i.e., solutions not yet dominated by any other found solutions.
This is the set of solutions finally returned by the procedure.
Depending on the problem considered, the size of the archive can become very large. Unless
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this size is kept unbounded, a mechanism such as a diversity criterion (e.g., crowding,
relaxed dominance, etc.) or a basic filtering mechanism may be used to remove the less
important potential Pareto optimal solutions once a given size is reached (Liefooghe et al.
2012).

2.2.2 Set of Current Solutions (Memory)

In addition to the archive, the current set, a second set of solutions, is used to keep all the
solutions whose neighborhood may be explored. These solutions are taken either from the
archive or from previous iterations and may possibly be dominated by some solutions of
the archive. To avoid using the same term (i.e., current) for both the current set and the
current solutions it contains, we propose to call this set memory.
We identified three categories of strategies concerning the usage of the memory. First, as
a direct extension of the single-objective local search algorithms, the memory can contain
a single current solution (e.g., MOSA algorithm (Ulungu et al. 1999)). Iteration after
iteration, the current solution is explored, potentially replaced by one of its neighbors,
while the archive is automatically updated. If the current solution appears to be a Pareto
Local Optimum, a restart can then be performed from one of the other potential Pareto
optimal solutions. However, considering a single current solution means focusing on a
single trajectory in the search space, whereas the multi-objective setting requires optimiz-
ing the whole Pareto front. Thus, the second category of strategies includes algorithms
that keep a set of multiple current solutions and explores it sequentially, with the direct
consequence of an improved diversity since each of the separate trajectories can then focus
on the subset of the Pareto front (e.g., PSA (Czyzak and Jaszkiewicz 1998), MOTS al-
gorithms (M. P. Hansen 1997), etc.). Finally, the third category includes algorithms that
do not keep track of the trajectory, but rather directly select and explore solutions from
the archive (e.g., PAES (Knowles and Corne 1999), PLS (Paquete et al. 2004), DMLS
algorithms (Liefooghe et al. 2012), etc.).
Note that, like in the archive, the size of the memory may become very large, and, therefore,
the same bounding mechanisms may be used. However, as such mechanisms were proposed
for algorithms in which the memory and the archive were joined, it may be advantageous
to bound only the memory and keep the archive unbounded.
We may envision a new exploration strategy where multiple solutions could be explored at
the same time by combining their neighborhoods. In that case, without loss of generality,
the current object would be itself a set of solutions and the memory would be a set of sets
of solutions.

2.2.3 Exploration Strategies

The exploration of the current solution consists in the construction of its neighborhood,
i.e., the generation of its neighbors.
Like in the single-objective case, two types of exploration strategy are distinguished: the
best improvement strategy and the first improvement strategy. The best strategies compare
every neighbor to the current solution or to the reference so that only the best non-
dominated neighbors are accepted. On the contrary, the first strategies generate neighbors
one by one and stop when a given stopping criterion is reached. Of course, the latter
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strategies are not limited to stopping after a single accepted neighbor. In both the best
and the first strategies, the exploration procedure generates some neighbors, accepting
some of them, and then returns the set of accepted neighbors. For each of these neighbors,
three questions arise: (i) Should it be included into the archive? (ii) Should it replace the
current solution? (iii) Should the exploration continue or stop in regard to its quality?
The quality of a neighbor can be a function of either the current solution or a part or
the totality of the archive. In multi-objective optimization, the objective space is divided
into dominating solutions, incomparable solutions and dominated solutions compared to
a current solution (these region of the objective space are defined in Chapter 4). The
dominated solutions of the current solution are generally ignored, whereas exploration
strategies usually consider solutions in the two other area. Considering incomparable
solutions potentially enables to make better-informed decisions, however the main draw-
back is the added cost (e.g., computational time) of an overall more expensive exploration
procedure.
An alternative to using the Pareto dominance criterion is to aggregate the objectives, to
obtain a scalar value subsequently used to either rank neighbors or compute probabilities.
The weights of the aggregation can be either globally set, associated with the current
solution or updated automatically in regard to the state of the archive.
The archive (the set of potential Pareto optimal solutions) can be updated directly either
during the exploration of a current solution or after the exploration of all current solutions
has been performed. In the direct update, the explorations of the remaining current
solutions may be impacted, i.e., the reference set is modified on the fly.
Similarly, the memory (the set of current solutions) can be updated during the explo-
ration to replace the current explored solutions (e.g., in trajectory-based local search algo-
rithms (Czyzak and Jaszkiewicz 1996; Fortemps et al. 1994; M. P. Hansen 1997; Serafini
1994)) or to include promising new neighbors directly (Blot et al. 2015).
If the memory contains multiple solutions, they are all explored before the search continues
unless an early stopping criterion is met. Note that, if multiple solutions are explored and
either the memory or the archive is updated during the exploration, the order in which
the solutions of the memory are explored can strongly impact the performance.

2.2.4 Selection Strategies

After the exploration step has been completed, the solutions of the memory will have
been explored and the archive will have been updated with the accepted neighbors. The
memory has to be updated for the next iteration. Generally, the solutions are taken from
the archive (e.g., randomly, with regard to a crowding or sharing property (Deb 2001),
to an individual contribution (Dubois-Lacoste et al. 2012) or to the order of insertion in
the archive (Blot et al. 2017a)). However, in trajectory-based local search algorithms, the
memory is unchanged since it has been updated during the previous exploration step.

2.2.5 Termination Criteria

The local search has a natural termination criterion, which is reached when the memory
becomes empty, meaning that no more solution is to be explored. Such an event gener-
ally means that every solution of the archive is a Pareto local optimum. This situation
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also arises when the algorithm intentionally removes partially explored solutions from the
memory, for example, to force a quick convergence or ensure diversification. Other com-
monly used termination criteria include the whole computational time; the total number
of iterations, explorations or evaluations; and the number of successive iterations without
improvement.

2.2.6 Escaping Local Optima

In single-objective optimization, SLS algorithms are generally trapped in local optima.
However, various mechanisms (e.g., SA, TS, etc.) can be used to converge further towards
a global optimum. Likewise, the basic instantiations of the procedures detailed in this
chapter will generally be trapped in sets of Pareto local optimum. Likewise, the same
various mechanisms can be and have been adapted for MO-SLS procedures to converge
further towards the set of Pareto optima.
First, a temperature can be used to compute the probabilities of accepting neighbors of
lesser quality (Czyzak and Jaszkiewicz 1996; Fortemps et al. 1994; Serafini 1994). This
temperature can be either a global parameter of the local search or a specific temperature
that can be associated with each and every solution of the memory when the local search
follows a set of solutions of fixed size. The Tabu paradigm can also be used to drive the
search out of the PLO (M. P. Hansen 1997). Similarly, a global tabu list or a set of tabu
list can be used for each followed solution. Finally, it is possible to use an iterated SLS
scheme (Drugan and Thierens 2012) to stop the SLS early, before reaching a true set of
PLO. In this case, a convergence condition is defined as, for example, a threshold in the
convergence rate or a stagnation criterion. The search can then restart either from the
new solutions selected uniformly in the search space or from the solutions in the close
neighborhood of the current or the best solutions, using a kick. In the single-objective
case, a kick consists in taking a solution, either the current one or the best one, and
performing a given number of random moves over the search space. In the multi-objective
case, some solutions are selected (either a single one, a fixed number or a ratio of solutions,
or all of them) from the memory or the archive; a single-objective kick is performed on
each of them, and the resulting solutions are included in a new Pareto set, and then the
algorithm restarts from it.

2.3 MO-SLS Structure

From the basic components presented in Section 2.2, we define a unified structure of MO-
SLS algorithms that can instantiate the algorithms in the literature (see Section 2.1) and,
we hope future designs.

2.3.1 Local Search Algorithm

Procedure 1 (LS) describes the main loop of the local search. This procedure takes an
initial current set and an archive as input and returns the updated archive. It consists
in iterating three steps (the names in parentheses are the names of the sub-procedures
described as they appear in Procedure 1).
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Procedure 1: LS(memory, archive)
Input: memory, a set of solutions to generate neighborhoods
Input: archive, a Pareto set of solutions
Output: the updated archive set

repeat
all_accepted ← ∅;
repeat

let current ∈ memory;
ref ← REFERENCE(current, memory, archive, all_accepted);
accepted ← EXPLORE(current, ref, archive);
memory ← UPDATE(memory, current, accepted);
all_accepted ← all_accepted ∪ accepted;

until iteration stopping condition is met
or every current ∈ memory has been considered ;

archive ← COMBINE(archive, all_accepted);
memory ← SELECT(memory, archive, all_accepted);

until local search stopping condition is met
or memory = ∅;

return archive;

1. First, the solutions of the memory are explored one by one: for each, a reference
is chosen to compare the neighbors with (REFERENCE), then some or all of the
neighbors are accepted as candidates (EXPLORE), and, finally, the memory may be
updated with the neighbors (UPDATE).

2. When all the current solutions have been explored, or when an early stopping con-
dition is met, all accepted neighbors are used to update the archive (COMBINE).
Note that it is possible to update the archive during the exploration, in which case
the COMBINE procedure can still be used to bound its size.

3. Finally, the memory is set up with the new solutions to explore.

These three steps are iterated until the memory is empty or as soon as a given stopping
condition is met.

2.3.2 Local Search Exploration

The exploration mechanism (EXPLORE) is described in Procedure 2. This procedure
handles how neighboring solutions are generated and accepted, and how the reference
set is updated. It takes as input a solution to explore, which is used to generate the
neighborhood; a reference set to compare the neighbors with; and the archive of the SLS.
It returns a set of accepted neighbors of the input solution and possibly modifies the
archive as a side effect.
The neighbors of the current solution are generated one by one, and for each new neighbor,
the set of accepted neighbors is updated (ACCEPT). To implement some local search
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Procedure 2: EXPLORE(current, ref, archive)
Input: current, a solution to generate the neighborhood
Input: ref, a set of solutions to compare neighbors with
Input: archive, a Pareto set of solutions
Output: accepted, the set of accepted solutions
Side effect: modifies the archive set

accepted ← ∅;
repeat

let neighbor ∈ N (current);
accepted ← ACCEPT(accepted, neighbor, ref);
current, ref, archive ← UPDATE(ref, accepted, current, archive,
neighbor);

until exploration stopping condition is met
or every neighbor ∈ N (current) has been considered ;

return accepted;

algorithms from the literature, it is possible to immediately update the current solution,
the reference set and the archive (UPDATE). neighbors are generated until every possible
neighbor of the current solution has been generated or as soon as a given stopping condition
is met.

2.3.3 Iterated Local Search Algorithm

The local search of Procedure 1 (LS) can eventually stop because either the archive contains
only PLO or an early stopping condition has been met. One of the possible mechanisms to
iterate the local search (LS) and continue the search is described in Procedure 3 (ITER). It
follows the Iterated Local Search (ILS) scheme (Drugan and Thierens 2010, 2012; Lourenço
et al. 2010) where the final archive given by the local search is slightly modified and given
again as input to the local search procedure.
First, the local search is performed once, which sets up archive∗, the Pareto set that
contains the overall best non-dominated solutions across local search iterations. Then,
until the global stopping condition is met, new initial memory and archive are generated
(PERTURB), subsequent local search are performed and the two archives are combined
to update archive∗ (COMBINE).

2.3.4 Literature Instantiation

Following the unification presented in Section 2.1, Tables 2.2 and 2.3 detail how the main
literature algorithms are instantiated in Procedure 1 and Procedure 2, respectively, of our
structure. In Table 2.2, k designates a constant of the algorithm set beforehand, and in
Table 2.3, the “∗” symbol means that the memory size is variable.
Table 2.2 shows that many of the MO-SLS algorithms in the literature use the current so-
lution as a reference. However, recent studies increasingly encourage the use of the archive
as a reference since it leads to improved results (Blot et al. 2017a,c). The recombination
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Procedure 3: ITER(archive)
Input: archive, a Pareto set of solutions
Output: the updated archive∗ set

archive ← LS(archive);
archive∗ ← archive;
repeat

memory, archive ← PERTURB(archive, archive∗);
archive ← LS(memory, archive);
archive∗ ← COMBINE(archive, archive∗);

until global stopping condition is met ;
return archive∗;

column highlights that the recombination only makes sense when the exploration step
returns a new Pareto archive; for trajectory-based local search algorithms, such a step is
directly performed during the exploration, when a neighbor replaces the current solution
in the memory. Not mentioned here is the possible bounding of the archive size, which
is also performed on some problems after Pareto filtering (e.g., (Liefooghe et al. 2012)).
The selection column mainly differentiates between trajectory-based algorithms, for which
such a step is likewise irrelevant, and algorithms that do not use a memory mechanism
but recreate the set of new solutions every iteration.
Lastly, Table 2.3 shows that, if the first MO-SLS algorithms predominantly accepted im-
proving neighbors, newer MO-SLS algorithms have shown that considering incomparable
neighbors leads to improved results.

2.4 Automatic Design using the Unified Structure

The main objective of this literature review on MO-SLS during the PhD of Aymeric Blot
was to get a unified structure of MO-SLS in order to tune or control many components
and values. This MO-SLS unified structure was used as the core ingredients of tuning
and control experiments carried out during the thesis. Two types of MO-SLS was there-
fore defined: a static MO-SLS to be tuned and an adaptive MO-SLS integrating control
mechanisms.

2.4.1 Static MO-SLS Structure

The static MO-SLS algorithm is based on an iterated local search (see Procedure 3) and
the DMLS algorithm of Liefooghe et al. (2012). We proposed a static MO-SLS used
in several works on automatic configuration published in international conferences (Blot
et al. 2018a, 2017a,c; Pageau et al. 2019) and a journal (Blot et al. 2019). The main
contributions are presented in Chapter 3.
Algorithm 4 gives the pseudo-code of our static MO-SLS. The inner MO-SLS is close to
the DMLS algorithm and iterates three successive steps: the selection step (procedure
SELECT) in which solutions of the current set are selected and recorded in the memory,
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Chapter 2

Algorithm 4: Static Multi-Objective Iterated Stochastic Local Search
Input: archive, a Pareto set of solutions
Output: the updated archive set

current ← archive;
/* MO-Iterated-SLS */
until termination criterion is met do

/* Perturbation (except in loop 1) */
current ← PERTURB( archive );
/* Inner MO-SLS */
until inner termination criterion is met do

/* Selection */
memory ← SELECT(current);
/* Exploration */
candidates ← ∅;
for solution ∈ memory do

ref ← REFERENCE ( solution, current );
accepted ← EXPLORE( solution, ref );
candidates ← candidates ∪ accepted;

/* Archive */
current ← BOUND( pareto ( current ∪ candidates ));

archive ← pareto ( archive ∪ current );

return archive ;

the exploration step (procedure EXPLORE) in which the neighborhood of every selected
solution is explored according to the reference (procedure REFERENCE) being either
the solution or the current set , and the archive step (procedure BOUND) in which the
resulting neighbors are merged into the current set of solutions in order to keep only
the Pareto solutions. The outer MO-SLS simply performs a perturbation on the current
archive set, then the inner MO-SLS procedure from the perturbed set of solutions, and
finally, merges the resulting current set with the archive, and iterates until the global
termination criterion is met.
This instantiation differs from the unification by the set of strategies we choose to focus
on. In particular, it only supports dominance-based strategies, while strategies based on
aggregation are not taken into account. Other differences include a selection step before
the exploration step, at the beginning of the main loop, rather than at its end, a complete
exploration of every solution selected, and an explicit combination mechanisms that first
remove dominated solutions before bounding the size of the archive. Finally, as in the
DMLS algorithm, the memory is not updated during the exploration, as it is discarded at
the end of every iteration.
Table 2.4 lists 10 strategies/parameters and their possible values considered in the experi-
ments presented in Chapter 3. There are five categorical parameters that enable different
strategies of selection, exploration, archiving and perturbation, and five integer parameters
that enable a better tuning of each corresponding strategies.
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Table 2.4: Configuration space of the static multi-objective iterated SLS.

Phase Parameter Parameter values

Selection select-strat {all, rand, newest, oldest}
Selection select-size N+

Exploration explor-strat {all, all-imp, imp, imp-ndom, ndom}
Exploration explor-ref {sol, arch}
Exploration explor-size N+

Archive bound-strat {unbounded, rand, replace}
Archive bound-size N+

Perturbation perturb-strat {kick, kick-all, restart}
Perturbation perturb-size N+

Perturbation perturb-strength N+

In the following, we briefly recall and complete the description of every parameters of the
configuration space of the static multi-objective iterated SLS.

select-strat: the selection strategy: with the value all, every solution of the archive
will be explored; otherwise, with either of the values rand, newest, or oldest, only
some solutions, respectively uniformly chosen at random from the archive, or chosen
within the latest or oldest solutions included in the archive will be explored.

select-size: the (strictly positive) number of solution selected from the archive.

explor-strat: the exploration strategy: with the values all or all-imp, every neigh-
bor is evaluated and the non-dominated and dominating neighbors, respectively,
are returned; with the values imp, imp-ndom, or ndom, the neighbors are iteratively
evaluated until a sufficient number of dominating neighbors, dominating and non-
dominated neighbors, respectively, are found and returned. Finally, with the value
imp-ndom, the non-dominated neighbors does not contribute to the number of neigh-
bors selected (explor-size) but are also returned.

explor-ref: the reference of the exploration, either the current explored solution (with
the value sol), or the current archive (with the value arch).

explor-size: the number of neighbors selected in the imp, imp-ndom, and ndom explo-
ration strategies.

bound-strat: the bounding strategy after Pareto dominance. With the value unbounded,
it returns the current archive. With the value rand, solutions chosen uniformly at
random are discarded from the archive as long as the size of the archive is too large;
with the value replace, it uses the DMLS strategy of removing newly accepted
solutions if they did not replaced at least one solution of the archive.

bound-size: the maximum number of solutions in the archive above which the bounding
strategy will apply.
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perturb-strat: the perturbation strategy: with the value kick, some solutions of the
archive will be selected uniformly at random and then iteratively replaced by one
of their neighbors; with the value kick-all, the kick strategy applies for every
solution of the archive; with the value restart, some solution of the search space,
selected uniformly at random, will be considered instead.

perturb-size: the number of solutions considered in the kick and restart strategies.

perturb-strength: the number of successive kicks in the kick and kick-all strategies.

In the next Chapter, we propose a multi-objective methodology to automatically configure
algorithms, and in particular, we use our static MO-SLS algorithm as a case study.

2.4.2 Adaptive MO-SLS Structure

Adaptive algorithms integrates control and feedback mechanisms in order to modify strat-
egy components or numerical parameters during the execution (B. Doerr and C. Doerr
2018; Karafotias et al. 2015). They can, in principle, achieve robust performance over
a broad range of problem instances since the integrated mechanisms and procedures are
parameter and problem-independent. However, these algorithms generally consider only
one or two parameters/strategies to adapt.
In the work (Blot et al. 2018c), we proposed an adaptive MO-SLS based on the static MO-
SLS presented before and add the necessary structure to control the exploration strategy.
We decided to control the exploration strategy only since our studies on automatic configu-
ration show it is one of the strategy component that most impacts the performance. There-
fore, we fixed the selection procedure to select_1_rand (i.e. select-strat = rand and
select-size = 1), the archiving procedure to bounded_pareto (i.e. bound-strat=rand
and bound-size=100), and the perturbation procedure kick_1_3 (i.e. perturb-strat=kick,
perturb-size=1 and perturb-strength=3). We simplified the exploration procedure and
we fixed explor-ref=arch and explor-size=1. Algorithm 5 describes the resulting adap-
tive MOLS algorithm.

2.5 Conclusion and Perspectives

Summary In this Chapter, we proposed a structure that unifies the multi-objective
stochastic local search algorithms of the literature. This structure can instantiate exten-
sions of single-objective SLS, SLS techniques integrated in evolutionary algorithm as well
as real Pareto SLS. A simplified version of our structure has been automatically configured
and the experiments are presented in Chapter 3. This version has also been extended with
a learning mechanism in order to make it adaptive.

A Framework to Build Metaheuristics ParadisEO (Cahon et al. 2004) is
a C++ white-box object-oriented framework dedicated to the reusable design of meta-
heuristics. It was updated to enable the design of both single and multi-objective SLS
algorithms (Humeau et al. 2013; Liefooghe et al. 2011). The major advantage of ParadisEO
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Algorithm 5: Adaptive Multi-Objective Iterated Local Search
Input: archive, a Pareto set of solutions
Output: the updated archive set

current ← archive;
/* Initialize all rewards */
INIT_REWARDS ( );
until termination criterion is met do

/* Select exploration strategy */
exploration ← CONTROL ( );
/* Perturbation */
current ← kick_1_3 ( archive );
/* Apply the MO-SLS algorithm */
current ← MO-SLS(current);
/* Merge resulting archive and update rewards */
tmp ← pareto ( archive ∪ current );
UPDATE_REWARDS (exploration, current, tmp);
archive ← tmp;

return archive ;

is the dissociation between the problem-dependent and problem-independent design. How-
ever, the core of ParadisEO was first designed for single-objective evolutionary algorithms,
and it became too constraining for the design of configurable or adaptive metaheuristics.
jMetal is a Java framework for multi-objective optimization with metaheuristics (Durillo
and Nebro 2011; Nebro et al. 2015) used in many optimization problems. Recently, a
new version has been published to facilitate the resolution of dynamic optimization prob-
lems (Barba-González et al. 2018). Again, this framework is not adapted for the design of
configurable or adaptive metaheuristics. Therefore, during his PhD, Aymeric Blot designed
the AMH framework (Adaptive MetaHeuristics) (Blot et al. 2017b). This framework is
dedicated to the design of configurable and adaptive metaheuristics. It is based on the
execution flow of an optimization algorithm that enables flexibility of implementation. All
the different structures of MO-SLS used in his thesis have been implemented into AMH.
However, the current implementation of AMH is difficult to reuse in its state, since the
implementation remained at the prototype stage. A short-term objective is to propose a
framework with the flexibility of AMH and the problem-dependent/independent dissocia-
tion of ParadisEO.
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Chapter 3

Automatic Configuration of
Multi-Objective Stochastic Local

Search Algorithms

In this chapter, we extend our work, on the automatic algorithm configuration (AAC) of
single-objective stochastic local search algorithms presented in Chapter 1, to the multi-
objective optimization. Indeed, the proposed unification of multi-objective stochastic local
search (MO-SLS) algorithms (see Chapter 2) can be configured using many strategies or
numerical parameters. The contributions presented in this chapter are derived from the
PhD of Aymeric Blot and the collaboration with Holger Hoos (University of Leiden, The
Netherlands).

MO-SLS are multi-objective algorithms that simultaneously optimize at least two ob-
jective criteria. The performance of such algorithms is evaluated through one or more
indicator-based measures that give different information on the resulting Pareto front.
Therefore, we consider that configuring a multi-objective algorithm is a multi-objective
problem. In our work, we demonstrated that better results can be obtained by using a
native, multi-objective algorithm configuration procedure (Blot et al. 2018a, 2017a, 2019,
2017c). Moreover, we used this procedure to automatically configure a dynamic algorithm
that switches between configurations during the run (Pageau et al. 2019).

This chapter is organized as follows:

• Section 3.1 defines the multi-objective automatic algorithm configuration and then,
presents MO-ParamILS, a multi-objective extension of the single-objective algorithm
configuration framework ParamILS.

• Section 3.2 gives the experimental environment shared by the experiments presented.

• Section 3.3 presents extensive evidence that multi-objective AAC is preferable over
single-objective AAC for the performance optimization of MO-SLS algorithms when
there are several performance indicators of interest.

• Section 3.4 presents a study on the impact of correlation between optimization objec-
tives on both the efficacy of different AAC approaches and the optimized algorithms
obtained from these automated approaches.

• Section 3.5 presents a dynamic algorithm framework in which strategies and pa-
rameters are modified during the run according to a static schedule defined with
AAC.
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3.1 Multi-Objective AAC

3.1.1 Definition

Automatic algorithm configuration (AAC) has traditionally been defined as a single-
objective optimization problem, with either running time or solution quality as the opti-
mization objective. Multi-objective automatic algorithm configuration (MO-AAC) natu-
rally arises when several criteria have to be optimized simultaneously and independently.
Formally, a multi-objective configuration problem consists in a direct extension of the
single-objective configuration problem (see Introduction chapter) where the original per-
formance indicator is a vector of performance indicators.
Given a configurable target algorithm A, a space Θ of configurations of A, a distribution
of instances D, and a statistical population parameter E; we denote by Aθ the algorithm
obtained by associating the configuration θ to the target algorithm A, Equation 5 (given in
the Introduction chapter) becomes Equation 3.1 when the original performance indicator
o : Θ × D → R is replaced by o : Θ × D → Rn a vector of n performance indicators
O(A, i) = (o1(A, i), o2(A, i), . . . , on(A, i)).{

optimise E[O(Aθ, i), i ∈ D]
subject to θ ∈ Θ

(3.1)

Here, the supposition is also made that the limit exists and is finite. Therefore, every
component of the performance vector can be optimized independently and the MO-AAC
becomes a standard multi-objective optimization problem (Equation).{

optimise (E[o1(Aθ, i), i ∈ D], . . . , E[on(Aθ, i), i ∈ D])
subject to θ ∈ Θ

(3.2)

3.1.2 MO-ParamILS

3.1.2.1 Description

In the Introduction chapter, we claimed while there are numerous state-of-the-art AAC
procedures in the literature, including irace (López-Ibáñez et al. 2016), based on statistical
racing, SMAC (Hutter et al. 2011), based on random forests, and ParamILS (Hutter et al.
2009), based on iterated stochastic local search. When Aymeric Blot started his PhD,
only few MO-AAC procedures exist, including SPRINT-race (Zhang et al. 2015) based on
statistical racing and procedures based on evolutionary algorithms (Branke and Elomari
2012; Dréo 2009). Therefore, we proposed MO-ParamILS (Blot et al. 2016), a multi-
objective extension of ParamILS.
The core algorithm of MO-ParamILS is given by Algorithm 6. Like its predecessor
ParamILS, it is based on an iterated stochastic local search (Hoos and Stützle 2004;
Lourenço et al. 2010), in which the incumbents (i.e., the best solutions so far) are it-
eratively improved by mean of both local search and perturbation mechanisms. Three
parameters are exposed: the number r of initial random configurations, a restart proba-
bility prestart, and the number s of random search steps performed in each perturbation
phase. The update() function performs target algorithms runs and ensures that the
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different configurations can be compared, while the archive() function simply discards
dominated configurations.

Algorithm 6: Multi-objective ParamILS
Exposed parameters: r, prestart and s
Input: Initial archive of configurations
Output: The archive of incumbents, i.e., the overall best configurations found

/* Initialisation */
current_arch ← initial archive;
for i← 1 . . . r do

tmp ← random configuration;
update(tmp, current_arch);
current_arch ← archive(current_arch, tmp);

/* Iterated local search */
until termination criterion is met do

/* Perturbation (unless for the first iteration) */
if first iteration then

tmp ← current_arch;
else

with probability prestart then // Restart
/* incumbents are not forgotten */
current_arch ← { random configuration };
tmp ← current_arch;

otherwise // Random walk
config ← current_config;
for i← 1 . . . s do

config ← random neighbor of tmp;

tmp ← { config };

/* Local search */
tmp ← local_search(tmp);
foreach config ∈ tmp do

update(config, current_arch);
current_arch ← archive(current_arch, config);

return the archive of incumbent;

As well as for ParamILS, MO-ParamILS starts by considering r random configurations, in
order to compare the initial (usually default) configuration to a few others to make sure
of its relevance. Then, it applies a stochastic local search procedure, which is based on
the one-exchange neighborhood, i.e., modifying a single parameter value at a time. A tabu
mechanism is also used to ensure that the configurator is never stuck. Between iterations,
there is a prestart chance to restart the search from a new configuration, uniformly chosen at
random from the search space. Otherwise, a perturbation of s random steps is performed.
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The main difference between ParamILS and MO-ParamILS is that the former focuses on
optimizing a single configuration with regard to a single performance indicator, while the
later optimizes an archive of configurations, i.e., the set of the current best configurations
with regard to the multiple performance indicators.

3.1.2.2 The MO-AAC Protocol of MO-ParamILS

We proposed a MO-AAC protocol in three phases used in MO-ParamILS:

Training: In the training phase, MO-ParamILS is independently run multiple times on a
given training set of instances; each of these runs produces a Pareto set of configura-
tions. Multiple runs of MO-ParamILS are used, because individual runs can suffer
from stagnation and to make effective use of parallel computing resources. However,
as different MO-ParamILS runs usually use different subsets of the given training
set, the configurations obtained from them cannot be fairly compared to each other.

Validation: To fairly compare configurations obtained from different MO-ParamILS runs
and to reduce the number of configurations ultimately evaluated in the test phase,
every configuration from the training phase is evaluated on the same, fixed subset of
training instances. Based on the performance measurements thus obtained, Pareto-
dominated configurations are removed.

Test: The Pareto set of configurations obtained from the validation phase is evaluated
again, on a set of test instances that does not contain any of the instances used for
training or validation. Again, Pareto-dominated configurations are removed.

3.2 Experimental Environment

In the two following sections, we will present the results of two campaigns of experiments
where our MO-AAC approach is compared to classical single-objective AAC (SO-AAC)
approaches. These experiments have been conducted on permutation problems described
in this section. The target algorithm is the static multi-objective stochastic local search
presented in Chapter 2, Section 2.4.

3.2.1 Unary Indicators

Multi-objective algorithms provide a Pareto set of solutions. In order to assess the quality
of such Pareto sets, different indicators have been proposed (Knowles and Corne 2002;
Okabe et al. 2003; Zitzler and Thiele 1999). These usually characterize the final Pareto
set produced by a multi-objective algorithm in terms of convergence, distribution or cardi-
nality. Since no single quality indicator captures all of these properties, it is recommended
to consider multiple indicators, preferably complementing each other, in order to assess
the performance of multi-objective algorithms (Zitzler et al. 2003).
In our experiments, we use a combination of two indicators: the classical hypervolume (Zit-
zler and Thiele 1999) and a complementary spread measure. These have been chosen in
light of their common usage, their complementarity, and the additional requirements for
unary indicators that do not require reference sets arising in the context of the automatic
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algorithm configuration process at the core of our study.

Hypervolume (HV) is by far the most broadly used performance indicator in the literature
on multi-objective optimization (Riquelme et al. 2015). Assuming normalized objective
values in [0, 1], the unary hypervolume measures the volume between the Pareto set of
solutions and the point (1, 1). HV is primarily a convergence indicator, but also captures
information about the diversity of the front of solutions.
We use, as a complementary indicator, a variant of spread to capture the distributional
properties of the Pareto set. Given a Pareto set S, ordered regarding the first criterion,
we define

∆′ :=

∑|S|−1
i=1 |di − d̄|

(|S| − 1) · d̄
,

where d̄ denotes the average over the Euclidean distances di for i ∈ [1, |S| − 1] between
adjacent solutions on the ordered set S. This last indicator is to be minimized; it takes
small values for large Pareto sets with evenly distributed solutions, and values close to or
greater than 1 for Pareto sets with few or unevenly distributed solutions.
This slightly differs from the widely used spread indicator (Deb et al. 2002) in that it
does not use extreme positions (after normalization, the points (1, 0) and (0, 1)) and only
considers the distribution inside the Pareto set. Obviously, this indicator cannot be used
alone to assess a Pareto set, but it complements the information captured by the hyper-
volume indicator. Using these two unary indicators, we can assess the performance of
multi-objective algorithms in terms of the quality, diversity and distribution of the final
Pareto sets obtained. In our experiments, in order to facilitate analysis, we will consider
the minimizing variant of hypervolume, calculated as 1−HV, so that performance of a
multi-objective algorithm can be optimized by minimizing both indicators. Then, good
hypervolume values mean high HV (i.e., low values of 1−HV).

3.2.2 MO-AAC vs. SO-AAC Approaches

In our experiments, we compare two SO-AAC approaches and one MO-AAC approach
optimizing the performance of a multi-objective algorithm. Specifically, we consider three
distinct AAC approaches (Blot et al. 2017c):

HV, a SO-AAC approach that optimizes the hypervolume indicator only.

HV+∆′, a SO-AAC approach that optimizes a weighted sum of hypervolume (with a 0.75
coefficient) and ∆′ spread (with a 0.25 coefficient).

HV||∆′, a MO-AAC approach that simultaneously considers hypervolume and ∆′ spread.

The former approach is usually used in the literature (e.g., Bezerra et al. (2016)) while
the latter two approaches are motivated by the belief that the performance assessment of
multi-objective algorithms benefits from the use of multiple performance indicators. By
comparing HV to the two other configuration approaches, we aim to assess this belief in the
context of automatic configuration of MO-SLS algorithms. Furthermore, by comparing
HV+∆′ and HV||∆′, we intend to assess the benefits of MO-ACC compared to SO-ACC
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with aggregated performance metrics like it is usually done in the literature. Since the
∆′ indicator is a complementary measure to the hypervolume, the aggregation coefficients
(0.75 and 0.25) were thus set to mainly focus on convergence but keeping diversity in the
solutions.

3.2.3 Configurators

We use the configurators ParamILS (Hutter et al. 2009) and MO-ParamILS (Blot et al.
2016), both shared a similar conception and are based on stochastic local search algorithms.
Specifically, we use the FocusILS variants of both configurators, since these usually give the
best performance. Since the target algorithm of our works is a multi-objective stochastic
local search algorithm, we use the protocol presented before in Section 3.1.2.2. Using
this protocol, we compare the three AAC approaches. In the case of the HV approach,
ParamILS is used during the training phase to only optimize the hypervolume of the
target algorithm, since the configuration scenario is single-objective. However, during
the subsequent validation and test phases, the configurations resulting from the single-
objective training are assessed using both hypervolume and ∆′ spread separately, in a
Pareto way. Ultimately, it is expected that this approach only finds good hypervolume
values and disregards the ∆′ spread value. Similarly, the HV+∆′ approach uses ParamILS
during the training phase to optimize an aggregation of hypervolume and ∆′ spread, while
the assessment of the validation and test phases are then performed in a Pareto way. These
two SO-AAC approaches constitute the baseline against which our MO-AAC approach is
compared to. While they focus on specific directions of the multi-objective space and
use an optimisation criterion less complete than the final evaluation, they represent the
performance that our multi-objective approach will have to at least match.

3.2.4 Permutation Problems

3.2.4.1 The Bi-objective Permutation Flowshop Problem

In the permutation flow-shop scheduling problem (PFSP), N jobs {J1, . . . , JN} have to be
scheduled on M machines {M1, . . . ,MM}. Each job Ji is processed sequentially on each
of the machines, with fixed processing times {pi,1, . . . , pi,M}, and machines are critical
resources that can only process one job at a time. The sequencing of jobs is identical on
every machine, so that a solution may be represented by a permutation π of size N .

In Experiments 1, we consider a bi-objective PFSP (PFSP) minimizing two classical ob-
jectives being the makespan Cmax (Equation 3.3), i.e. the total completion time and, the
sum of flowtimes SFT (Equation 3.4), where Ci represents the completion time of job i
on machine MM . Note that Cmax and SFT are highly dependent to each other as the
makespan is included into the sum of flowtimes.

f1(π) = Cmax = max
i∈{1,...,N}

{Ci} = CπN (3.3)

f3(π) = SFT =
N∑
i=1

Ci (3.4)
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The most widely studied PFSP instances are those introduced by Taillard (1993), with
numbers of jobs, N ∈ {20, 50, 100, 200, 500} and numbers of machines, M ∈ {5, 10, 20}.
There are 10 instances for every valid (N,M) combination in Taillard benchmark set.
We considered three types of PFSP instance sets, characterized by their number of jobs,
N ∈ {50, 100, 200} and a fixed number of machines set toM = 20. The higher the number
of jobs, the more challenging the instances tend to be. For the exhaustive analysis and
the test phase of the three AAC approaches, we use the 10 Taillard instances for each of
those N values. For the training phase of the AAC approaches, we used a different, com-
pletely disjoint, set of instances, composed by newly generated Taillard-like instances. We
generated 30 of these instances for each N ∈ {50, 100, 200}, using the original generation
procedure.

In Experiments 2, we need to control the correlation between the objectives. Therefore, we
considered a PFSP minimizing two makespan objectives computed from separate matrices
(P k)k={1,2} of processing times, with controlled correlation between P 1 and P 2, such that
pki,j is the processing time of job i on machine j. The two objectives f1 and f2 are computed
from the respective matrix. We generated our own instances following the idea of uniform
random generation underlying the commonly used Taillard instances (Taillard 1993). The
processing times of matrix P 1 are generated following the uniform distribution U([1; 99]).
In the uncorrelated version of the problem, matrix P 2 is generated independently of ma-
trix P 1, following the same distribution U([1; 99]). For the two ρ−correlated versions, the
coverage method is used to generate matrix P 2 from matrix P 1. For each p2

i,j value of
matrix P 2, a real number α is drawn uniformly at random from [0; 1]. Then, p2

i,j = p1
i,j if

α < ρ; otherwise, p2
i,j is sampled from U([1; 99]). PFSP instances with medium and high

correlation were obtained for ρ = 0.6 and ρ = 0.9, respectively.

Classical PFSP neighborhoods include the exchange neighborhood, where the positions of
two jobs are exchanged, and the insertion neighborhood, where one job is reinserted at
another position in the permutation. In both experiments, we consider a hybrid neighbor-
hood defined as the union of the exchange and insertion neighborhoods, which is known to
lead to better performance than considering each neighborhood independently (Dubois-
Lacoste et al. 2015).

3.2.4.2 The Bi-objective Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is one of the most widely studied combinatorial
optimization problems. It can be defined by a complete weighted graph G whose nodes
represent cities, while edges corresponds to direct paths between cities. In the symmetric
TSP, the graph is undirected, and edge weights correspond to distances between cities.
Given a TSP instance G, the goal is to determine a tour passing through every city exactly
once, such that the total distance traveled is minimized, i.e., a minimum-weight Hamilto-
nian cycle in G. This cycle corresponds to a permutation of the cities. In our experiments,
we consider the bi-objective symmetric TSP (TSP), in which each instance is defined by
a graph G, as in the standard TSP, but each edge between two nodes i and j has two
weights, d1

i,j and d
2
i,j . The two objectives, f1 and f2, are defined as the total distance cov-
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ered by a given tour according to each of the two distance matricesD1 andD2, respectively.

A benchmark set of Euclidean instances (available online1) has been widely used in the
literature to assess the performance of TSP algorithms. These instances were constructed
by combining two independently generated distance matrices computed using Euclidean
distance between cities randomly placed on a two-dimension grid. The TSP benchmark
set contains six instances each for 100, 300 and 500 cities, meaning 15 different pairwise
independent combinations of two instances per benchmark size. In the test phase of Ex-
priments 1, we used these 15 instances. For the training phase of the AAC approaches,
we used a different, completely disjoint, set of newly generated instances containing 30 in-
stances for each number of cities, obtained using the original generator from the DIMACS
challenge.

Once again, we need to control the objectives correlation. First, the coordinates of the
N cities are uniformly sampled from [0; 3163]2, and the distance values in matrix D1 are
computed as Euclidean distances between these points. In the uncorrelated version, ma-
trix D2 is independently generated using the same protocol. For the two ρ−correlated
versions, the original coordinates of each city are moved based on a normal distribution
N (0, ρ), and then, the Euclidean distances between the new coordinates form the entries
of D2. The lower ρ, the higher the correlation between D1 and D2. TSP instances were
obtained with medium and high correlation using ρ = 600 and ρ = 150, respectively.

In both experiments, we consider the 2-opt neighborhood, where two tours are neighbors
if, and only if, one can be obtained from the other by removing two non-adjacent edges
reconnecting the resulting tour fragments by two other edges.

3.2.4.3 The Bi-objective Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) involves assigning a set of N facilities to a
set of N given locations, minimising a cost function that depends on the distance be-
tween locations and the flow required between the facilities assigned to these locations.
A solution is then a permutation π where πi is the facility of location i. This well-
known single-objective problem has been extended to multiple objectives by Knowles and
Corne (Knowles and Corne 2003). In our works, we considered a bi-objective QAP with
distance matrix D, where di,j is the distance between locations i and location j, and two
flow-matrices (W k)k={1,2}, such that, wki,j is the required flow between facility i and facility
j according to flow-matrix W k. The objectives are computed following Equation 3.5.

fk(π) =

N∑
i=1

N∑
j=1

wki,jdπi,πj (3.5)

This problem is tackled in Experiments 2 only. As for the PFSP and TSP, we follow the
same protocol for generating problem instances. First, we compute D as a symmetric ma-
trix of size N×N using the Manhattan distance between N locations uniformly generated
within the interval [0; 99].

1https://eden.dei.uc.pt/~paquete/tsp/#Exp2
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The values of the flow-matrixW 1 are sampled from U([0; 99]). In the uncorrelated version,
W 2 is also sampled from U([0; 99]), independently of W 1. For the two ρ−correlated ver-
sions, we use the coverage method to generate matrix W 2 from matrix W 1. For each w2

i,j

value of matrix W 2, a real number β is sampled uniformly at random from [0; 1]. Then,
w2
i,j = w1

i,j if β < ρ; otherwise, w2
i,j is sampled from U([0; 99]). As for the PFSP, we ob-

tain QAP instances with medium and high correlation for ρ = 0.6 and ρ = 0.9, respectively.

In this work, we consider the commonly used exchange operator for the QAP, under which
a neighbor of a solution is obtained by swapping two facilities between their two locations.

3.3 Experiments 1: Interest of using a MO-AAC Approach

3.3.1 Experimental Protocol

3.3.1.1 Configuration Spaces

Our MO-SLS algorithm iterates over four distinct phases: selection, exploration, archive
and perturbation. All four phases can be instantiated in many different ways via parameters
and their permissible values presented in Chapter 2, Section 2.4. In these experiments,
we propose two configurations spaces. The first one leads to 300 configurations only,
which enables an exhaustive analysis of the configuration space as well as the comparison
with the three different AAC approaches. Table 3.1 gives an overview of the subset of
parameters chosen. This small configuration space has been defined based on preliminary
experiments, in which we informally identified parameters and parameter values most likely
to result in good performance of our target algorithm. The small size of this search space
permits us to perform validation and testing in an exhaustive way, where the performance
of each of the 300 configurations is assessed on the entire training and test instance sets,
respectively. This exhaustive analysis of the configuration space enables the comparison of
the configurations resulting from the training phase to ones that may otherwise be never
considered. Our goal with this analysis is to demonstrate that our AAC approaches can
effectively configure a MO-SLS algorithm for solving bi-objective permutation problems.
We extend the permissible values of some parameters and obtained 10 920 configurations
presented in Table 3.2. Hence, the three AAC approaches will compete over a larger
configuration space.

3.3.1.2 AAC Protocol

Table 3.3 summarizes the details of our AAC protocol for both configuration spaces. The
main differences concern the training phase. For the small (large) configuration space,
ParamILS starts by evaluating a single (10) random configuration, and can execute 100
(1000) MO-SLS runs before stopping, where each selected configuration cannot be run
more than 10 (100) times. Due to the reduced size of the small configuration space, only
10 independent runs of ParamILS are performed, compared to 20 runs for the large space.
In the validation phase, the configurations resulting from the training phase are evaluated
on all training instances, running every configuration once on each instance. In the test
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Table 3.1: Small configuration space (300 configurations)

Phase Parameter Parameter values

Selection select-strat {all, rand, oldest}
Selection select-size {1, 10}
Exploration explor-strat {imp, imp_ndom, ndom}
Exploration explor-ref {sol, arch}
Exploration explor-size {1, 10}
Archive bound-size {1000}
Perturbation perturb-strat {kick, kick_all, restart}
Perturbation perturb-size {10}
Perturbation perturb-strength {3, 10}

Table 3.2: Large configuration space (10 920 configurations)

Phase Parameter Parameter values

Selection select-strat {all, rand, newest, oldest }
Selection select-size {1, 3, 10}
Exploration explor-strat {all, all_imp, imp,imp_ndom, ndom}
Exploration explor-ref {sol, arch}
Exploration explor-size {1, 3, 10}
Archive bound-size {20, 50, 100, 1000}
Perturbation perturb-strat {kick, kick_all, restart
Perturbation perturb-size {1, 5, 10}
Perturbation perturb-strength {3, 5, 10}

phase, each of the configurations in the Pareto set obtained from the validation phase is
run 10 times on every test instance. For both validation and test phases, the performance
of each configuration is assessed based on the average hypervolume and spread values over
the runs. Obviously, for the small configuration space, our exhaustive analysis ensures that
the performance of all configurations are known for all training and test instances, and we
will directly use these results in the validation and test phases to avoid recomputing the
performance of configurations selected in the training phase.

3.3.2 Results and Analysis

3.3.2.1 Small Configuration Space

The results from this analysis for training and test instance sets are shown in Figures 3.1
and 3.2. Generally, the shapes of the Pareto sets in objective space are similar between
validation and test results, indicating that our AAC approaches do not suffer from over-
fitting. Therefore, we will focus our discussion on the test results seen in Figure 3.2.
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Table 3.3: AAC Protocol

Phase Small configuration space Large configuration space

Training No default configuration No default configuration
1 random configuration 10 random configurations
10 ParamILS runs 20 ParamILS runs
100 MO-SLS runs budget 1000 MO-SLS runs budget
max 10 MO-SLS run per config. max 100 MO-SLS run per config.

Validation 1 run per instance 1 run per instance
Test 10 runs per instance 10 runs per instance

Table 3.4 details how many unique (in parentheses: non-unique) configurations were found
by each AAC approach, and how many survived the validation and test phases. (we recall
that Pareto-dominated configurations are pruned in those phases).

Table 3.4: Number of configurations after training, validation and testing

Scenario Approach Small space Large space
Configs Pareto Final Configs Pareto Final

PFSP 50 HV 10 2 2 20 2 2
HV+∆′ 10 4 2 10 2 2
HV||∆′ 32 (38) 9 7 145 14 11

PFSP 100 HV 10 4 3 19 (20) 1 1
HV+∆′ 8 (10) 3 3 20 4 2
HV||∆′ 36 (42) 12 6 171 (172) 27 19

PFSP 200 HV 10 3 3 20 4 3
HV+∆′ 9 (10) 5 3 16 (20) 2 2
HV||∆′ 29 (39) 11 8 111 (117) 14 9

TSP 100 HV 6 (10) 1 1 15 (20) 2 1
HV+∆′ 6 (10) 2 2 15 (20) 6 4
HV||∆′ 16 (26) 3 3 62 (73) 11 5

TSP 300 HV 9 (10) 2 2 13 (20) 4 2
HV+∆′ 9 (10) 5 5 12 (20) 5 2
HV||∆′ 33 (41) 8 6 107 (130) 18 12

TSP 500 HV 6 (10) 5 4 16 (20) 4 4
HV+∆′ 8 (10) 5 4 14 (20) 3 2
HV||∆′ 36 (40) 12 11 135 (145) 25 22

Figure 3.3 shows the parameter distribution of the 300 configurations on test instances
according to our three selection mechanisms (crosses : +× ?, polygons: �∆�, and circles:
o⊕⊗) and our three exploration strategies (orange: +�o, green: ×∆⊕, and violet: ?�⊗).
Finally, Tables 3.5 and 3.6 list the Pareto-optimal configurations within the small con-
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figuration space. A “∗” symbol indicates that the value of the respective parameter does
not impact the performance of the configured MO-SLS when the other parameter values
are held fixed at the values shown. Conversely, when a specific parameter is shown, any
deviation from it will reduce performance.
First, we will discuss the results for the PFSP. None among the 300 possible configurations
simultaneously achieves good hypervolume and spread values (see Figure 3.2); the Pareto
front is distinctly non-convex. While for the smallest scenario with 50 jobs, most of all
configurations achieve good hypervolume values (i.e., low 1 − HV ), such configurations
get rarer as the number of jobs increases. This result was expected, since it is known that
larger PFSP instances are harder for multi-objective stochastic local search. Examining
these results in more detail, we observe that the imp exploration strategy always obtains
rather bad hypervolume values (see Figure 3.3). For 50 jobs, this strategy leads to better
spread values; however, this tends to be no longer true for larger instances. For the three
instance sizes, the imp-ndom and ndom strategies appear to give better performance in
terms of hypervolume.
All three approaches find very good, even near-optimal configurations – in particular,
HV||∆′, which achieves spreads over the entire Pareto-front. The 10 configurator runs of
HV and HV+∆′ produce close to 10 unique configurations each (see Table 3.4), and all of
these show good hypervolume values. However, after validation and testing, for both AAC
approaches, few configurations remain, and those tend to have good hypervolume but av-
erage spread. On the other hand, our MO-AAC approach, HV||∆′, produces many more
configurations after the training, validation and test phases. Compared to the other ap-
proaches, HV||∆′ clearly achieves better coverage of the optimal Pareto set of configurations
(Figure 3.2). Note that all three approaches use the same time budget for configuration,
the number of final solutions being strongly dependent of the kind (single-objective or
multi-objective) of AAC used for training.
Regarding the nature of the configurations, we observe a trend across the three instance
sizes (Tables 3.5): The best hypervolume is always reached with the oldest selection
strategy, the ndom exploration strategy and the arch exploration reference set choice.
Slightly worse hypervolume, but better spread is achieved using the imp_ndom exploration
strategy. Finally, the best spread values are obtained from configurations using the imp
exploration strategy, although this comes at the cost of rather bad hypervolume. In almost
every case, the perturbation strategy did not significantly impact the performance of the
non-dominated configurations.
Our results on the TSP differ markedly from those on the PFSP. Firstly, we observe that
the shape of the Pareto-optimal front of configurations varies with instance size: While it
is convex for 100 cities with some degree of correlation between hypervolume and spread,
for larger instances, the correlation between the two performance indicators decreases,
and the front becomes non-convex. In contrast to the PFSP, where the two objectives
were correlated, for our TSP benchmark sets, the objectives are completely independent;
therefore, the final archives are much bigger, as there exist a richer space of trade-off
solutions.
The impact on spread is evident from Figure 3.2; values above 1 correspond to two tightly
clustered sets of solutions separated by a large gap that the respective configuration of
MO-SLS failed to cover, and spread values of 0 correspond to final sets containing only
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Figure 3.1: Exhaustive analysis on training instances (left: PFSP; right: TSP)
x: HV approach, o: HV+∆′ approach, ∆: HV||∆′ approach, +: exhaustive analysis
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Figure 3.2: Exhaustive analysis on test instances (left: PFSP; right: TSP)
x: HV approach, o: HV+∆′ approach, ∆: HV||∆′ approach, +: exhaustive analysis
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Figure 3.3: Exhaustive analysis parameter distribution on test instances (left: PFSP;
right: TSP); Selection strategy: +×?: all (crosses), �∆�: oldest (polygons), o⊕⊗:

rand (circles); Exploration strategy: +�o: imp (orange), ×∆⊕: imp_ndom (green), ? � ⊗:
ndom (violet)
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Table 3.5: Pareto-optimal configurations (small space)

50-job PFSP

1-HV ∆′ Selection Exploration Archive Perturbation

0.4747 0.7775 oldest 10 ndom arch 1 1000 ∗ 10 ∗
0.4754 0.7640 all ndom arch 1 1000 ∗ 10 ∗
0.4770 0.7420 all imp_ndom sol 10 1000 ∗ 10 ∗
0.4837 0.6798 rand 1 imp arch 10 1000 ∗ 10 ∗
0.4853 0.5856 rand 1 imp sol 10 1000 ∗ 10 ∗
0.4855 0.5277 ∗ 10 imp arch 1 1000 ∗ 10 ∗
0.4860 0.4433 rand 1 imp arch 1 1000 ∗ 10 ∗
0.4862 0.4093 ∗ imp sol 1 1000 ∗ 10 ∗
0.4877 0.3336 oldest 1 imp sol 1 1000 kick ∗ 10

100-job PFSP

1-HV ∆′ Selection Exploration Archive Perturbation

0.4299 0.7865 oldest 10 ndom arch 1 1000 kick 10 3
0.4299 0.7979 oldest 10 ndom arch 1 1000 kick_all ∗
0.4332 0.7802 oldest 1 ndom arch 1 1000 kick 10 ∗
0.4336 0.7640 all ndom arch 1 1000 ∗ 10 ∗
0.4344 0.7541 rand 10 imp_ndom arch 1 1000 ∗ 10 ∗
0.4351 0.7540 all imp_ndom sol 1 1000 ∗ 10 ∗
0.4370 0.7470 rand 10 imp_ndom arch 10 1000 ∗ 10 ∗
0.4387 0.7338 rand 1 imp arch 10 1000 ∗ 10 ∗
0.4397 0.5396 rand 1 imp sol 10 1000 ∗ 10 ∗
0.4402 0.4409 ∗ 10 imp arch 1 1000 ∗ 10 ∗
0.4407 0.3428 oldest 10 imp sol 1 1000 ∗ 10 ∗
0.4410 0.3201 rand 1 imp sol 1 1000 ∗ 10 ∗
0.4410 0.3371 all imp sol 1 1000 ∗ 10 ∗
0.4454 0.2711 oldest 1 imp sol 1 1000 kick 10 ∗

200-job PFSP

1-HV ∆′ Selection Exploration Archive Perturbation

0.3600 0.8093 oldest 1 ndom arch 1 1000 restart/kick 10 ∗
0.3618 0.8027 oldest 10 ndom arch 1 1000 ∗ 10 ∗
0.3638 0.7628 rand 1 imp_ndom arch 1 1000 ∗ 10 ∗
0.3645 0.7534 all imp_ndom arch 1 1000 ∗ 10 ∗
0.3686 0.3511 rand 1 imp sol 1 1000 ∗ 10 ∗
0.3687 0.3456 ∗ 10 imp sol 1 1000 ∗ 10 ∗
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Table 3.6: Pareto-optimal configurations (small space)

100-city TSP instances

1-HV ∆′ Selection Exploration Archive Perturbation

0.1372 0.7389 rand 10 imp_ndom sol 10 1000 ∗ 10 ∗
0.1431 0.6572 all imp_ndom sol 10 1000 restart
0.1443 0.6544 all imp_ndom arch 10 1000 restart
0.1902 0.6488 oldest 1 ndom sol 1 1000 kick 10 3

300-city TSP instances

1-HV ∆′ Selection Exploration Archive Perturbation

0.1003 1.3582 oldest 10 imp_ndom sol 1 1000 ∗ 10 ∗
0.1006 1.3417 oldest 10 imp_ndom sol 10 1000 ∗ 10 ∗
0.1092 1.0409 oldest 10 ndom sol 10 1000 ∗ 10 ∗
0.1128 0.7933 rand 10 imp_ndom arch 1 1000 ∗ 10 ∗
0.1129 0.7880 rand 1 imp_ndom arch 1 1000 ∗ 10 ∗
0.1171 0.5003 rand 1 imp sol 10 1000 restart
0.1183 0.2288 rand 1 imp sol 1 1000 restart
0.1190 0.0409 rand 1 imp arch 1 1000 restart

500-city TSP instances

1-HV ∆′ Selection Exploration Archive Perturbation

0.0841 1.3767 oldest 10 imp_ndom sol 1 1000 ∗ 10 ∗
0.0989 1.2983 oldest 1 imp_ndom arch 10 1000 ∗ 10 ∗
0.1003 1.2897 oldest 10 ndom arch 10 1000 ∗ 10 ∗
0.1015 1.1290 oldest 10 ndom sol 10 1000 ∗ 10 ∗
0.1159 1.0080 rand ∗ imp_ndom arch 1 1000 ∗ 10 ∗
0.1403 0.8468 oldest 10 ndom arch 1 1000 kick 10 ∗
0.1616 0.4420 rand 1 imp sol 10 1000 ∗ 10 ∗
0.1624 0.0000 rand 1 imp ∗ 1 1000 ∗ 10 ∗
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two solutions, which are produced when the imp exploration strategy fails to sufficiently
diversify.
Our HV configuration approach produced few configurations, achieving near-optimal hy-
pervolume. HV+∆′ produced weak training results on the 100-city instances, but worked
well on the 300-city instances, because of the shape of the Pareto-optimal front. As for
the PFSP, HV||∆′ found many more configurations and achieved far better coverage of the
Pareto front. In our test instances from the literature, all three AAC approaches pro-
duced optimal configurations for 100-city instances, HV+∆′ and HV||∆′ still did on 300-city
instances, and only HV||∆′ managed to find most of the optimal configurations on the
500-city instance (see Figure 3.2).
Analysing the MO-SLS configurations in more detail, those that achieve the best hyper-
volume values always use the imp_ndom exploration strategy with the sol reference set.
While for 300- and 500-city instances, the oldest selection strategy is preferred, for 100
cities, the more common rand selection strategy performs better. Similarly to the PFSP,
the choice of perturbation mechanism does not significantly impact the performance of
optimal configurations.

For both problems, within the small configuration space, all three AAC approaches are
able to find configurations very close to the true Pareto-front. The two SO-AAC ap-
proaches strongly favors the hypervolume indicator, while the MO-AAC approach is able
to accurately cover the full range of Pareto-optimal configurations.

3.3.2.2 Large Configuration Space

Figure 3.4 shows the final configurations produced by all three AAC approaches for our six
benchmarks (two problems, three instance sizes). We also show the configurations of the
smaller set of configurations that we exhaustively evaluated, in order to show that these
final configurations map very closely those found within the small space, which suggests
that the small space indeed captures the high-performance configurations from the much
larger space and, more importantly, demonstrates that our AAC approaches effectively
finds such configurations. In the following, we will focus on the performance of our three
AAC approaches.
Both SO-AAC approaches, HV and HV+∆′, produced few non-dominated configurations in
their final testing phase – typically between 2 and 4 on each instance set (see Table 3.4).
As one might expect, HV always finds a final configuration with near-optimal hypervolume.
The results for HV+∆′ are similar to those for HV for the PFSP, but markedly different on
our TSP benchmarks. For 100-city TSP instances, HV+∆′ covers the Pareto front, while
for 300 cities, it finds the two extreme configurations, due to accidentally well-adapted
weights used for aggregating hypervolume and spread. However, due to the non-convex
shape of the front, no trade-off configurations are found between these extremes. For 500-
city instances, HV+∆′ only finds configurations with near-optimal hypervolume, similar to
what we observed for the PFSP.
On the other hand, our MO-AAC approach, HV||∆′, consistently provides many more non-
dominated configurations, except for the small 100-city TSP instance set, where the Pareto
front is completely covered by all three approaches. In all cases, the sets of configurations
found by HV||∆′ are very well distributed over the entire front of optimal configurations.
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Figure 3.4: Large-scale analysis on test instances (left: PFSP; right: TSP)
x: HV approach, o: HV+∆′ approach, ∆: HV||∆′ approach, +: exhaustive analysis
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Although HV+∆′ sometimes finds better configurations (e.g., on the 100- and 200-jobs PFSP
scenarios), HV||∆′ always produces configurations with similar performance.

Overall, our MO-AAC approach, HV||∆′, produces substantially better results than the two
SO-AAC approaches, HV and HV+∆′. HV finds excellent sets of configurations with respect
to hypervolume, but only provides very few of those and consequently fails to achieve
good spread. HV+∆′ sometimes provides better results and, under favorable circumstances,
can cover the entire set of Pareto-optimal configurations; however, especially for more
challenging scenarios, its performance is similar to that of HV. The main drawback of
this approach is the requirement of a costly preliminary step for calibrating the weights
used for aggregating the two optimization objectives. Finally, HV||∆′, our native MO-
AAC approach, always efficiently covers the entire Pareto-front of configurations, while
still finding sets of configurations with excellent hypervolume, as produced by the two
SO-AAC approaches.

3.4 Experiments 2: Impacts of Objectives Correlation on
AAC

3.4.1 Experimental Protocol

3.4.1.1 Permutation Problems Benchmarks

For each of the three bi-objective permutation problems, we considered six benchmark sets,
using two instances sizes and three degrees of correlation between the given objectives
(high, medium and no correlation). For the PFSP, we consider a set of medium-size
instances with 50 jobs and 20 machines, as well as a set of instances with 100 jobs and
20 machines. For the TSP, we consider a set of 50-city instances and a set with 100-city
instances. Similarly, for the QAP, we consider two sets of 50- and 100-facility instances.
For each of the 18 resulting benchmark sets, we generated 30 bi-objective instances for
use as training and validation sets during automated configuration, and a second set of 10
additional instances for subsequent performance testing.

3.4.1.2 Configuration Space

We use parameters and their permissible values that lead to 10 920 configurations already
presented in the previous section (see Table 3.2).

3.4.1.3 AAC Protocol

Experiments are conducted for a given scenario following three phases using ParamILS or
MO-ParamILS configurators. First, during the training phase, the configurator is run 20
times with a budget of 1000 target algorithm runs, using a different and random ordering
of the training instances. The search starts from 10 configurations uniformly sampled on
the configuration space. A threshold was set to limit, for a given configuration, the number
of runs to 100, in order to force diversification. Indeed, preliminary experiments show that
the threshold may be reached overall 5 times for both HV and HV+∆′ approaches. Then,
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both approaches using ParamILS followed the recommendation of using adaptive and
aggressive capping (Hutter et al. 2009). During the validation phase, each configuration
returned by the configurator is run 1 time on each of the 30 training instances, totaling 30
runs per configuration. Pareto-dominated configurations are then filtered. Finally, during
the test phase, each non-dominated configuration is run 10 times on each of the 10 testing
instances, totaling 100 runs, and Pareto-dominated configurations are filtered to obtain
the final set of optimal configurations, presented and discussed in the next Section.

3.4.2 Results and Analysis

3.4.2.1 Optimised Configuration

PFSP Tables 3.7 and 3.8 show the final non-dominated configurations found by the three
AAC approaches HV, HV+∆′ and HV||∆′ on our six PFSP scenarios. The configurations found
across all six scenarios are very similar. The combination of ndom exploration with either
the oldest or the rand selection strategy seems to lead to the best performance in terms of
hypervolume, while the combination of the imp exploration strategy with the rand selection
strategy leads to solution sets with worse hypervolume but better spread. While both the
sol and arch exploration reference choices are found within the final configurations for
all scenarios, arch is slightly more favored on larger instances, indicating that referencing
more stringently against the current archive during exploration is beneficial for larger
instance sizes.
The degree of correlation between objectives does not seem to impact the set of optimized
configurations.

TSP Tables 3.9 and 3.10 show the final non-dominated configurations found by our
three AAC approaches, HV, HV+∆′ and HV ||∆′, on the six TSP scenarios. Compared
to the PFSP scenarios, the number of distinct non-dominated configurations is much
smaller. The configurations we found vary strongly with both correlation level and problem
size. Overall, the ndom exploration strategy is preferred, together with either the rand or
the oldest strategy. However, for instance with medium or no correlation, the arch
exploration reference leads to better HV performance, and may be used together with
the imp_ndom exploration strategy when the number of cities increases. Furthermore,
on smallest high correlated instances the MO-SLS algorithm may benefit from using a
bounded archive and restart between iterations, while a large archive of size 1000 is chosen
(i.e., basically unbounded), along with a kick-based perturbation strategy, for all other
instances. This is consistent with the idea that larger TSP instances benefit from a
less aggressive perturbation mechanism in combination with a more diverse archive of
candidate tours.
On the TSP, we note that correlation between objective has an impact similar to the
problem size, making low (and no) correlated small instances significantly harder and
requiring more aggressive mechanisms than equally sized high correlated instances.

QAP Tables 3.11 and 3.12 show the final non-dominated configurations found by our
three AAC approaches for the six QAP scenarios. Again, much fewer configurations were
obtained than for the PFSP scenarios. These configurations are much more varied than
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Table 3.7: PFSP 50 jobs 20 machines (optimised configurations)

1-HV ∆′ Selection Explo. Arch. Perturb.

(high correlation)
0.494 1.385 oldest 1 ndom arch 1 1000 kick 1 10
0.494 1.355 oldest 1 ndom arch 1 50 kick 1 5
0.495 1.230 oldest 1 ndom sol 1 20 kick 1 3
0.505 1.112 rand 10 ndom arch 10 1000 restart
0.508 1.084 rand 10 all 50 kick_all 3
0.512 1.044 rand 10 ndom arch 1 1000 kick_all 3
0.513 1.036 all ndom arch 3 20 restart
0.514 0.753 rand 1 all_imp arch 100 restart
0.515 0.662 rand 1 imp arch 3 100 restart
0.515 0.662 rand 1 imp arch 3 50 restart
0.517 0.328 rand 1 imp sol 1 100 restart
0.519 0.115 rand 1 imp arch 1 20 kick 10 10
0.520 0.090 oldest 1 imp arch 1 20 kick 1 3

(medium correlation)
0.503 1.209 oldest 1 ndom sol 3 1000 kick 5 3
0.503 1.186 oldest 1 ndom sol 3 100 kick 5 10
0.505 1.125 oldest 1 ndom arch 1 50 kick 10 10
0.509 1.056 rand 10 all 50 restart
0.509 0.945 oldest 1 ndom sol 3 20 kick 1 3
0.517 0.882 all ndom arch 3 20 kick 1 5
0.520 0.855 rand 1 imp arch 3 1000 restart
0.521 0.723 rand 1 imp arch 3 100 kick_all 5
0.521 0.723 rand 1 imp arch 3 1000 kick_all 5
0.521 0.723 rand 1 imp arch 3 20 kick_all 10
0.522 0.493 rand 1 imp sol 1 100 restart
0.522 0.493 rand 1 imp sol 1 50 restart
0.522 0.478 rand 1 imp arch 1 1000 restart
0.522 0.478 rand 1 imp arch 1 20 restart
0.525 0.195 rand 1 imp arch 1 20 kick_all 10
0.527 0.116 oldest 1 imp arch 1 20 kick 10 10
0.527 0.028 rand 1 imp arch 1 100 kick 1 5
0.527 0.028 rand 1 imp sol 1 20 kick 1 10
0.527 0.028 rand 1 imp sol 1 50 kick 1 10
0.528 0.025 oldest 1 imp arch 1 20 kick 1 3

(no correlation)
0.521 0.971 rand 10 ndom arch 3 1000 kick 5 10
0.521 0.970 rand 10 ndom arch 3 1000 kick 10 3
0.524 0.841 rand 3 imp_ndom sol 10 50 kick_all 10
0.531 0.806 newest 1 ndom arch 3 50 kick 5 10
0.533 0.806 rand 10 all 20 kick 5 10
0.540 0.762 rand 1 imp sol 3 100 kick 10 3
0.541 0.586 all imp arch 1 100 restart
0.541 0.586 all imp arch 1 1000 restart
0.541 0.586 all imp arch 1 50 restart
0.541 0.586 newest 10 imp arch 1 100 restart
0.542 0.579 oldest 3 imp sol 1 20 restart
0.542 0.579 rand 10 imp sol 1 1000 restart
0.542 0.579 rand 10 imp sol 1 50 restart
0.542 0.579 rand 3 imp sol 1 1000 restart
0.545 0.318 rand 1 imp arch 1 20 kick 10 10
0.545 0.317 rand 1 imp sol 1 1000 kick 10 10
0.548 0.227 oldest 1 imp sol 1 1000 kick 10 5
0.550 0.129 rand 1 imp sol 1 50 kick 1 10
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Table 3.8: PFSP 100 jobs 20 machines (optimised configurations)

1-HV ∆′ Selection Explo. Arch. Perturb.

(high correlation)
0.354 1.885 oldest 1 ndom arch 1 1000 kick 1 10
0.356 1.760 oldest 1 ndom arch 1 100 kick 1 3
0.365 1.511 oldest 1 ndom sol 1 20 kick 10 5
0.375 1.468 oldest 1 ndom arch 1 20 kick 1 3
0.375 1.499 rand 3 all 100 kick 10 10
0.375 1.429 oldest 1 ndom sol 1 20 restart
0.377 1.306 rand 10 all 20 restart
0.379 1.268 newest 10 ndom arch 3 20 restart
0.380 1.240 newest 10 ndom arch 10 20 restart
0.380 0.996 rand 1 all_imp arch 1000 kick 10 10
0.380 0.982 rand 1 all_imp arch 1000 restart
0.382 0.796 rand 1 imp arch 3 1000 restart
0.382 0.796 rand 1 imp arch 3 20 restart
0.383 0.779 rand 3 all_imp sol 50 kick 5 3
0.384 0.120 rand 1 imp arch 1 20 restart
0.384 0.071 rand 1 imp arch 1 50 kick_all 5

(medium correlation)
0.369 1.748 oldest 1 ndom arch 1 1000 kick 1 5
0.369 1.747 oldest 1 ndom arch 1 1000 kick 1 3
0.369 1.746 oldest 1 ndom arch 1 1000 kick 1 10
0.367 1.594 oldest 1 ndom arch 1 100 kick 5 3
0.370 1.551 oldest 1 ndom arch 1 100 kick 1 3
0.370 1.548 oldest 1 ndom arch 1 100 kick 1 5
0.372 1.440 oldest 1 ndom arch 1 50 kick 10 3
0.378 1.431 rand 1 ndom arch 10 1000 restart
0.379 1.325 oldest 1 ndom arch 1 20 kick 10 10
0.379 1.241 rand 3 ndom arch 10 100 kick_all 3
0.381 1.083 rand 3 imp_ndom arch 10 100 kick 5 10
0.381 1.058 rand 1 imp_ndom sol 10 100 kick 5 5
0.381 1.050 rand 10 imp_ndom arch 10 100 kick_all 10
0.382 1.015 rand 3 imp_ndom arch 10 50 restart
0.382 1.007 rand 10 imp_ndom sol 10 50 kick_all 10
0.384 0.962 rand 10 all 50 kick 1 10
0.385 0.946 all ndom arch 3 20 kick 1 3
0.387 0.862 rand 10 all 20 kick_all 10
0.390 0.166 rand 1 imp arch 1 1000 restart
0.392 0.057 rand 1 imp sol 1 50 kick 10 10
0.393 0.006 rand 1 imp sol 1 20 kick 1 10
0.393 0.006 rand 1 imp sol 1 50 kick 1 10

(no correlation)
0.387 1.214 rand 1 ndom arch 1 1000 restart
0.387 1.169 rand 3 ndom arch 3 1000 kick_all 3
0.387 1.167 rand 3 ndom arch 3 1000 kick 5 5
0.387 1.165 rand 3 ndom arch 3 1000 kick_all 10
0.388 0.996 rand 10 ndom arch 10 1000 restart
0.388 0.989 rand 10 ndom arch 10 1000 kick 1 10
0.389 0.957 rand 1 ndom arch 10 100 kick 5 3
0.389 0.948 rand 10 ndom arch 10 100 kick_all 3
0.389 0.942 rand 10 ndom arch 10 100 kick 1 10
0.390 0.923 rand 1 imp_ndom arch 3 100 kick_all 3
0.390 0.922 rand 1 imp_ndom arch 3 100 restart
0.393 0.804 all ndom arch 3 50 kick 10 5
0.403 0.148 rand 1 imp sol 1 50 restart
0.403 0.150 rand 1 imp arch 1 1000 restart
0.403 0.150 rand 1 imp arch 1 50 restart
0.408 0.148 rand 1 imp sol 1 50 kick 10 10
0.408 0.130 rand 1 imp arch 1 1000 kick_all 3
0.411 0.074 all imp arch 1 100 kick 1 5
0.411 0.074 all imp arch 1 50 kick 1 5
0.411 0.074 all imp sol 1 1000 kick 1 3
0.411 0.074 all imp sol 1 20 kick 1 10
0.411 0.074 newest 10 imp arch 1 100 kick 1 371
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Table 3.9: TSP 50 cities (optimised configurations)

1-HV ∆′ Selection Explo. Arch. Perturb.

(high correlation)
0.157 0.804 oldest 1 ndom sol 3 1000 restart
0.157 0.804 oldest 1 ndom sol 3 100 restart
0.157 0.732 rand 1 ndom sol 1 50 restart
0.158 0.670 rand 1 ndom sol 3 1000 restart
0.158 0.669 rand 1 ndom sol 3 100 restart
0.158 0.646 rand 1 ndom sol 3 50 restart
0.159 0.612 rand 1 ndom sol 10 50 restart
0.159 0.606 all ndom arch 10 50 restart
0.160 0.591 oldest 1 ndom sol 3 1000 kick 10 3
0.162 0.562 oldest 1 imp sol 10 50 restart
0.162 0.452 oldest 1 imp arch 1 100 restart

(medium correlation)
0.163 0.662 rand 1 ndom arch 1 1000 kick_all 3
0.165 0.658 rand 1 ndom arch 10 1000 kick 10 3
0.167 0.658 rand 1 ndom arch 10 1000 kick 10 10
0.167 0.657 rand 1 ndom arch 10 1000 restart

(no correlation)
0.185 0.676 rand 1 ndom arch 1 1000 kick_all 5
0.185 0.676 rand 1 ndom arch 1 1000 kick_all 10
0.185 0.676 rand 1 ndom arch 1 1000 kick_all 3
0.190 0.655 rand 1 ndom arch 1 1000 restart
0.195 0.655 rand 1 ndom sol 1 1000 kick_all 10
0.196 0.625 rand 3 ndom sol 3 1000 restart
0.207 0.617 rand 1 ndom sol 1 1000 restart

Table 3.10: TSP 100 cities (optimised configurations)

1-HV ∆′ Selection Explo. Arch. Perturb.

(high correlation)
0.115 0.629 rand 1 ndom sol 3 1000 kick 10 3
0.115 0.6232 rand 3 ndom sol 10 1000 kick_all 3

(medium correlation)
0.123 0.816 rand 10 imp_ndom arch 1 1000 kick 10 10
0.123 0.662 rand 3 ndom sol 10 1000 kick_all 10
0.123 0.662 rand 3 ndom sol 10 1000 restart
0.123 0.661 rand 3 ndom sol 10 1000 kick 1 3
0.123 0.661 rand 3 ndom sol 10 1000 kick_all 3
0.123 0.660 rand 3 ndom sol 10 1000 kick_all 5
0.125 0.654 rand 1 ndom sol 3 1000 restart
0.125 0.653 rand 1 ndom sol 1 1000 kick_all 5
0.126 0.644 rand 1 ndom sol 1 1000 restart

(no correlation)
0.139 0.956 oldest 1 imp_ndom arch 1 1000 kick 5 3
0.139 0.956 oldest 1 imp_ndom arch 1 1000 kick 10 3
0.139 0.955 oldest 1 imp_ndom arch 1 1000 kick 5 5
0.139 0.902 oldest 3 ndom sol 10 1000 kick 10 10
0.139 0.901 oldest 3 ndom sol 10 1000 kick 10 5
0.140 0.885 oldest 1 ndom sol 10 1000 kick_all 5
0.140 0.857 oldest 10 ndom sol 10 1000 kick 10 10
0.141 0.654 rand 10 ndom sol 10 1000 kick 10 3
0.141 0.653 rand 10 ndom sol 10 1000 kick 10 5
0.145 0.645 rand 1 ndom sol 3 1000 kick 10 3
0.145 0.643 rand 3 ndom sol 3 1000 kick 10 5
0.145 0.636 rand 10 ndom sol 3 1000 kick_all 3
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Table 3.11: QAP 50 facilities (optimised configurations)

1-HV ∆′ Selection Explo. Arch. Perturb.

(high correlation)
0.319 0.893 oldest 1 ndom sol 1 1000 restart
0.319 0.882 oldest 1 ndom sol 1 100 restart
0.319 0.872 oldest 1 ndom sol 1 20 restart
0.320 0.443 oldest 1 imp arch 3 50 restart
0.320 0.343 rand 1 imp arch 1 50 restart
0.321 0.309 oldest 1 imp arch 1 100 restart
0.321 0.301 rand 1 imp sol 1 50 restart
0.321 0.266 oldest 1 imp sol 1 20 restart
0.321 0.169 oldest 1 imp arch 1 20 kick_all 10

(medium correlation)
0.321 0.884 oldest 1 ndom arch 1 1000 restart
0.321 0.876 oldest 1 ndom arch 1 100 restart
0.321 0.861 oldest 1 ndom sol 1 100 kick 1 3
0.321 0.849 oldest 1 ndom sol 1 1000 kick 1 3
0.321 0.848 oldest 1 ndom sol 1 100 kick 1 5
0.322 0.498 oldest 1 imp arch 3 100 kick 5 3
0.322 0.172 oldest 1 imp arch 1 100 kick 5 3

(no correlation)
0.322 0.797 rand 10 ndom arch 3 1000 restart
0.322 0.787 rand 1 ndom arch 3 1000 restart
0.322 0.784 rand 1 ndom arch 3 1000 kick 10 3
0.322 0.782 rand 1 ndom arch 3 1000 kick_all 10
0.322 0.770 rand 1 ndom sol 10 1000 kick_all 10
0.322 0.716 rand 1 imp sol 1 100 restart
0.322 0.710 oldest 1 imp sol 1 50 restart

for the PFSP and TSP, and vary with instance size as well as correlation between the
objectives. The restart perturbation strategy is favored for small, 50-facility instances,
while kick-based perturbation strategies appear to work better for the larger 100-facility
instances. Interestingly, the larger instances seem to be amenable to a wider range of
exploration strategies. However, the degree of objective correlation affects the choice of
exploration strategy; e.g., for the larger instances, the imp_ndom exploration strategy is
only chosen when the objectives are uncorrelated. Similarly, we found that bounding the
archive size appears to work only well for sufficiently correlated objectives, while the same
observation holds for the oldest selection strategy.

3.4.2.2 Configurator Performance

Table 3.13 summarises the performance of our three AAC approaches, HV, HV+∆′, and
HV||∆′, on all 18 scenarios, and details the number of final configurations and the range of
hypervolume and ∆′ indicator values.
Clearly, HV||∆′ produces much larger sets of configurations than HV and HV+∆′, in partic-
ular for the PFSP. While HV+∆′ and HV||∆′ achieve overall similar hypervolume values to
the dedicated HV approach, on some scenarios (highly correlated PFSP and uncorrelated
100-city TSP), HV achieves the best hypervolume, as could be expected. Surprisingly, on
the uncorrelated 100−job PFSP scenario, the HV||∆′ approach performs best in terms of
hypervolume. Regarding the complementary ∆′ spread indicator, HV||∆′ generally achieves
much better results, which are only occasionally matched by the HV+∆′ approach, when the
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Table 3.12: QAP 100 facilities (optimised configurations)

1-HV ∆′ Selection Explo. Arch. Perturb.

(high correlation)
0.319 0.839 oldest 1 ndom sol 1 50 restart
0.320 0.815 oldest 1 ndom sol 1 20 restart
0.320 0.525 rand 1 imp arch 3 1000 kick 10 3
0.320 0.297 rand 1 imp sol 3 50 kick 5 3
0.320 0.100 rand 1 imp sol 1 100 kick_all 10
0.321 0.090 newest 10 imp arch 1 1000 kick_all 10
0.321 0.080 all imp sol 1 50 kick 10 3

(medium correlation)
0.320 0.907 oldest 1 ndom arch 1 1000 restart
0.320 0.886 oldest 1 ndom arch 1 1000 kick 10 3
0.320 0.878 oldest 1 ndom sol 1 1000 kick 10 5
0.320 0.868 oldest 1 ndom sol 1 1000 kick 1 5
0.320 0.838 oldest 1 ndom arch 1 1000 kick 1 3
0.321 0.808 rand 1 imp_ndom arch 1 1000 kick_all 3
0.321 0.797 rand 3 imp_ndom arch 1 1000 kick_all 3
0.321 0.408 rand 1 all_imp sol 1000 kick_all 5
0.321 0.302 rand 1 all_imp sol 100 kick 5 5
0.321 0.272 rand 1 all_imp sol 100 kick 10 10
0.321 0.157 rand 1 imp sol 3 50 kick_all 5
0.321 0.000 rand 1 imp arch 1 50 kick 1 10

(no correlation)
0.321 0.713 rand 3 imp_ndom arch 1 1000 restart
0.321 0.710 rand 3 imp_ndom arch 1 1000 kick 1 3
0.321 0.708 rand 1 imp_ndom arch 1 1000 kick_all 3
0.321 0.702 rand 3 imp_ndom arch 1 1000 restart
0.321 0.702 rand 10 imp_ndom arch 1 1000 kick_all 10
0.321 0.261 rand 1 imp sol 3 50 kick 5 3
0.321 0.000 rand 1 imp arch 1 1000 kick_all 5

direction of aggregation is compatible with the shape of the optimised front of solutions;
but to ensure this is the case, a costly preliminary analysis is required to permit appropri-
ate normalisation of hypervolume and ∆′ spread. These observations are consistent with
experiments 1 (see Section 3.3, as for correlation between objectives, there is no clear over-
all impact on the three AAC approaches. We note, however, that the single-objective HV

approach clearly achieves the best hypervolume for the highly correlated PFSP scenarios.

3.5 Automatic Configuration of a Dynamic MO-SLS

The previous experiments showed the interest of our multi-objective approach to auto-
matically configure a multi-objective stochastic local search algorithm. In automatic al-
gorithm configuration, only one configuration is recommended for the entire run while it
is commonly admitted that different configurations should be used. Indeed, a problem
has different local structures in different regions of the search space. Parameter control
approaches (B. Doerr and C. Doerr 2018; Eiben et al. 1999; Karafotias et al. 2015) use
techniques such as multi-armed bandits (Fialho et al. 2009) or adaptive pursuit (Thierens
2005) to dynamically determine good parameter settings in response to observations made
while trying to solve a given problem instance. However, the number of configurations
handled by such approaches is very limited, contrary to AAC approaches.
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Table 3.13: AAC performance: number of final configurations and objective ranges

# 1−HV values ∆′ values # 1−HV values ∆′ values

PFSP 50 jobs 20 machines PFSP 100 jobs 20 machines
(high correlation)

3 0.494 – 0.495 1.230 – 1.385 HV 3 0.354 – 0.375 1.499 – 1.884
5 0.495 – 0.519 0.402 – 1.523 HV+∆′ 3 0.355 – 0.375 1.485 – 1.930
13 0.495 – 0.519 0.090 – 1.454 HV||∆′ 15 0.355 – 0.384 0.071 – 1.930

(medium correlation)
1 0.503 1.186 HV 3 0.369 – 0.370 1.551 – 1.748
4 0.503 – 0.508 1.056 – 1.209 HV+∆′ 8 0.369 – 0.382 1.015 – 1.746
19 0.503 – 0.527 0.025 – 1.187 HV||∆′ 14 0.370 – 0.393 0.006 – 1.548

(no correlation)
1 0.521 0.970 HV 1 0.387 1.167
1 0.521 0.971 HV+∆′ 5 0.387 – 0.390 0.822 – 1.170
17 0.521 – 0.550 0.129 – 0.975 HV||∆′ 20 0.386 – 0.411 0.074 – 1.21

TSP 50 cities TSP 100 cities
(high correlation)

3 0.157 – 0.158 0.669 – 0.804 HV 2 0.115 – 0.115 0.623 – 0.629
4 0.158 – 0.160 0.591 – 0.670 HV+∆′ 2 0.115 0.627 – 0.629
6 0.157 – 0.164 0.452 – 0.732 HV||∆′ 2 0.115 – 0.115 0.623 – 0.630

(medium correlation)
1 0.167 0.657 HV 2 0.123 0.662 – 0.816
2 0.167 – 0.167 0.658 – 0.662 HV+∆′ 3 0.123 0.660 – 0.662
2 0.167 – 0.167 0.658 – 0.663 HV||∆′ 5 0.123 – 0.126 0.644 – 0.815

(no correlation)
1 0.185 0.676 HV 4 0.139 – 0.140 0.884 – 0.956
1 0.185 0.676 HV+∆′ 5 0.139 – 0.141 0.654 – 0.9566
5 0.185 – 0.207 0.617 – 0.676 HV||∆′ 8 0.139 – 0.145 0.636 – 0.955

QAP 50 facilities QAP 100 facilities
(high correlation)

2 0.319 – 0.319 0.881 – 0.882 HV 1 0.319 0.839
2 0.319 – 0.319 0.872 – 0.893 HV+∆′ 1 0.319 0.821
8 0.319 – 0.321 0.169 – 0.891 HV||∆′ 6 0.320 – 0.321 0.080 – 0.815

(medium correlation)
3 0.321 – 0.321 0.849 – 0.884 HV 1 0.320 0.868
3 0.321 – 0.321 0.848 – 0.878 HV+∆′ 5 0.320 – 0.321 0.000 – 0.886
3 0.321 – 0.322 0.172 – 0.861 HV||∆′ 8 0.320 – 0.321 0.000 – 0.907

(no correlation)
2 0.322 0.787 – 0.794 HV 4 0.321 0.702 – 1.219
2 0.322 0.781 – 0.796 HV+∆′ 3 0.321 0.710 – 1.249
5 0.322 – 0.322 0.710 – 0.7973 HV||∆′ 4 0.321 – 0.321 0.000 – 0.708
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Figure 3.5: Two examples of dynamic algorithms, FA and F ′A

Therefore, we want to take advantage of both AAC and parameter control approaches.
We introduce a framework that successively runs several configurations, in the form of a
static pipeline, which we configure using a standard, general-purpose AAC procedure.

3.5.1 A Dynamic Algorithm Framework

Given a configurable algorithm A and its configuration space Θ, we use Aθ,T to denote A
under configuration θ ∈ Θ with cut-off time T . Then, we define the dynamic algorithm
FA

(θi,Ti)k
as a pipeline with k stages, which sequentially runs Aθ1,T1 ,Aθ2,T2 , . . . ,Aθk,Tk .

Specifically, when applied to a multi-objective optimization problem, we first run A under
configuration θ1, starting from a initial set of solutions, up to time T1. At that point, we
switch to configuration θ2 and continue our computation from the current set of solutions,
with a cut-off time of T2. We note that A is not restarted when switching between
configurations. Overall, the maximum running time of the dynamic algorithm is then
T =

∑k
i=1 Ti.

Figure 3.5 depicts two examples of dynamic algorithms FA and F ′A. While F uses k = 3
configurations to divide the total time budget into three intervals of equal duration, F ′
uses k = 4 configurations, of which two are run quickly in the beginning, after which more
time is allocated to last two configurations.
The configuration space of our framework comprises the Cartesian product Θk, the time
budgets T1, . . . , Tk and the integer k ≥ 1. For k = 1, our framework degenerates to the
original, static target algorithm A.

3.5.2 Automatic Configuration of our Framework

The purpose of this work is to assess the performance gains that can be obtained by switch-
ing between different configurations of an algorithm A while it is running. Towards this
end, we use a general-purpose, static algorithm configurator to configure the framework
introduced in the previous section. Since the size of the configuration space exponentially
increases with the maximum number of pipeline stages, K, we only consider a fixed num-
ber sk of different cut-off times for each stage, where k is the number of actual pipeline
stages used in a specific instantiation of our framework. This leads to a configuration
space of size

∑K
k=1 sk · |Θ|k. Using this approach, we can also assess the influence of K

and sk (for k = 1, . . . ,K) on the performance achieved by automatically configuring our
dynamic algorithm framework.
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3.5.3 Related Work

In addition to being conceptually related to adaptive algorithms or hyper-heuristics, since
it enables modifications of the configuration of an algorithm while it is running, our ap-
proach also bears resemblance to per-instance algorithm scheduling (M. Lindauer et al.
2016). There are, however, several major differences. Firstly, per-instance algorithm
scheduling uses instance features to determine which of a given set of distinct algorithms
to run, one after the other, on a given problem instance; in contrast, our approach uses
different configurations of a single algorithm and does not require instance features. Sec-
ondly, in per-instance algorithm scheduling, results are not passed from one stage of the
schedule to the next, while in our pipeline approach, each stage continues from the result
of the previous stage – as explained previously, it can thus be seen as a single algorithm
whose parameter configuration changes while running on a given problem instance. Fi-
nally, the primary goal of per-instance algorithm scheduling is robustness resulting from
performance complementarity between the algorithms in the schedule; the goal of our ap-
proach is to achieve improvements over the performance of the static version of the given
target algorithm, which uses a single configuration for the entire run, based on the idea
that different configurations are best suited for different phases of solving a given problem
instance.

3.5.4 Experimental Protocol

3.5.4.1 Problem and Benchmark

Experiments have been conducted on the permutation flowshop scheduling problem mini-
mizing the makespan and the sum of flowtimes (see the formal definition in Section 3.2.4.1).
We evaluate our approach on 6 sets of 10 Taillard instances each, with 20 jobs and 20 ma-
chines, 50 jobs and 5 machines, 50 jobs and 10 machines, 50 jobs and 20 machines, 100
jobs and 10 machines and 100 jobs and 20 machines, respectively.

3.5.4.2 Configuration Space

Table 3.14: Configuration space of the MO-SLS

Phase Parameter Parameter values

Selection select-strat {all, rand, newest, oldest}
Selection select-size 1
Exploration explor-strat {imp, imp_ndom, ndom, all, all_imp}
Exploration explor-ref arch
Exploration explor-size 5
Archive bound-strat unbounded
Perturbation perturb-strat {kick, kick_all, restart}
Perturbation perturb-size {1}
Perturbation perturb-strength {3}
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The core algorithm of the dynamic framework is the MO-SLS already used in this chapter.
Table 3.14 shows all strategies we considered (all numerical values have been fixed); these
give rise to 60 (4× 5× 3) different configurations of MO-SLS.
In addition to the own configuration space of the MO-SLS, some parameters of the dynamic
framework have to be configured. In the experiments we evaluate the framework with K
up to 3 and the following ways of dividing the overall running times between the pipeline
stages: For K = 2, we use (T1, T2) = (1/4, 3/4) · T , (1/2, 1/2) · T and (3/4, 1/4) · T , where
T is the overall cut-off time, while for K = 3, we consider (T1, T2, T3) = (1/3, 1/3, 1/3) ·T ,
(1/4, 1/4, 1/2) · T and (1/2, 1/4, 1/4) · T . Therefore, whilst the basic MO-SLS algorithm
has 60 distinct configurations, the dynamic MO-SLS algorithm, dubbed D-MO-SLS, has
60 + 3 · 602 ≈ 1.1 · 104 configurations for K = 2, and 60 + 3 · 602 + 3 × 603 = 6.6 · 105

configurations for K = 3 stages. We note that this configuration space is very large
compared to on-line algorithms from the literature, which typically involve only very few
configurations. In our experiments, we choose an overall cut-off time of T = N2 ·M/1000
for D-MO-SLS (with N and M the number of jobs and machines respectively).

3.5.4.3 AAC Protocol

In Section 3.3, we showed that a multi-objective AAC is the best approach to automatically
configure multi-objective algorithms such as MO-SLS. Therefore, in order to configure
D-MO-SLS, we also use MO-ParamILS and the hypervolume and spread indicators as
described in Section 3.2.1.
To obtain training sets to be used as the basis for automatic configuration, we generated
uniformly at random a set 100 instances for each of the six instance sizes we consider,
following the same protocol as Taillard. Since MO-ParamILS is a stochastic algorithm, we
perform 20 independent runs for each configuration scenario, each with 1000 and 10 000
runs of D-MO-SLS for K = 2 and K = 3, respectively. Then, the best of the 20 resulting
D-MO-SLS configurations (according to performance on the respective training set) was
evaluated on the 10 Taillard instances in each of our testing sets, based on 15 independent
runs. The performance indicators – hypervolume and spread – reported for a single D-
MO-SLS configuration have been obtained by averaging the respective values over the 15
independent runs and the 10 instances per set.

3.5.5 Results and Analysis

First, we present results for D-MO-SLS, our dynamic version of MO-SLS, for the PFSP
for K = 2 and K = 3 pipeline stages, i.e., one or two changes in configuration during each
run. Next, we compare the results for D-MO-SLS with those for static MO-SLS.

3.5.6 Evaluation of Dynamic MO-SLS

Table 3.15 shows the number of D-MO-SLS configurations in the Pareto-optimal sets
obtained from automatic configuration using MO-ParamILS; specifically, for K = 2 and
K = 3, we report the number of non-dominated configurations with k = 1, 2 and 3 pipeline
stages. For example, for the 20x20 scenario and K = 3, we obtained 1 configuration for
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Table 3.15: Number of non-dominated D-MO-SLS configurations determined through
automatic configuration.

K = 1 K = 2 K = 3
Instances NxM k = 1 k = 2 k = 1 k = 2 k = 3

20x20 20 5 4 1 7 9
50x5 9 - 7 - 5 9
50x10 9 - 7 - 10 8
50x20 11 - 12 - 3 8
100x10 8 1 9 - 5 5
100x20 8 - 13 N/A N/A N/A

static MO-SLS, 7 for dynamic MO-SLS with 2 pipeline stages and 9 for dynamic MO-
SLS with 3 pipeline stages. For 8 of the 11 benchmark sets considered (K = {2, 3} and 6
instance sizes), all non-dominated D-MO-SLS configurations obtained from MO-ParamILS
have at least 2 pipeline stages k ≥ 2, which clearly indicates the performance advantage
gained by switching between configurations during a single run of MO-SLS.
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Figure 3.6: Performance of Pareto-optimal D-MO-SLS configurations for the 20x20
benchmarks.

Figure 3.6 shows the Pareto fronts of D-MO-SLS configurations obtained in our experi-
ments with K = 2 (left) and K = 3 (right), respectively, for the benchmark instances with
20 jobs and 20 machines. For K = 2, static MO-SLS (k = 1) achieves better hypervolume,
while D-MO-SLS(2) obtains better spread; for K = 3, on the other hand, D-MO-SLS(2)
and D-MO-SLS(3) yield better results w.r.t. both indicators. Figure 3.7 shows the our
results for benchmark instances with 50 jobs and 20 machines. As also seen in Table 3.15,
no configurations from static MO-SLS are found in the final Pareto sets; furthermore, the
sets of configurations from both D-MO-SLS scenarios are well distributed over the Pareto
front.
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Figure 3.7: Performance of Pareto-optimal D-MO-SLS configurations for the 50x20
benchmarks.

3.5.7 Performance of the Dynamic vs Static MO-SLS

In this section, we further assess the performance of our dynamic MO-SLS algorithm
against static MO-SLS. Since there are only 60 configurations of static MO-SLS, we were
able to evaluate all of them. Figure 3.8 shows the Pareto fronts of configurations for
static MO-SLS (K = 1) vs dynamic MO-SLS for K = 2 and K = 3. Only few of
the 60 configurations of MO-SLS ended up in the Pareto-optimal sets for each of our
benchmarks. We further note that for each instance size, the Pareto fronts obtained for
K = 2 and K = 3 are of roughly similar size. For 50x10, 50x20, 100x10 and 100x20,
the configurations obtained for D-MO-SLS are better distributed along the respective
fronts. For 100x10 and 100x20, the fronts obtained by static MO-SLS (K = 1) are very
poorly distributed. Most of the configurations are tightly clustered; this is particularly
pronounced for 100x20, where there are two types of configurations that obtain either
good hypervolume or good spread, but never both. The configurations for dynamic MO-
SLS (K ≥ 2), on the other hand, are well distributed and cover a broad range of tradeoffs
between the objectives. Furthermore, the configurations for K = 1 are all dominated by
those for K ≥ 2. For the smallest instance size, 50x5, we observed a large improvement
in hypervolume, while spread remains comparable; this effect is less obvious for the 20x20
and 50x20 instances. For 50x20, static MO-SLS dominates parts of the fronts for dynamic
MO-SLS, likely as a result of the large configuration spaces for K ≥ 2; nevertheless, for
K ≥ 2, more homogeneous Pareto fronts of configurations are obtained. For 20x20,
all three fronts are quite close to each other and reasonably well distributed, with the
configurations of dynamic MO-SLS (K ≥ 2) filling some of the gaps in the front obtained
for static MO-SLS. We note that, even though the fronts for K = 2 and K = 3 are roughly
similar in size, the one for K = 3 contains more configurations and is overall preferable.
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Figure 3.8: Pareto fronts of static (K = 1) and dynamic (K ≥ 2) MO-SLS
configurations; for details see text.
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3.6 Conclusion and Perspectives

Summary In this chapter, we presented our contribution on multi-objective automatic
configuration algorithm (MO-AAC) and on automatic configuration of multi-objective
stochastic local search (MO-SLS) algorithms. On the one hand, we proposed a formal
definition of MO-AAC, based on the classical definition of AAC, where we introduced
the possibility of configuring an algorithm according to two or more criteria. Then, we
presented MO-ParamILS, the multi-objective extension of the configurator ParamILS and
we proposed a MO-AAC protocol adapted to the stochastic behaviour of MO-ParamILS.
On the other hand, we conducted two sets of experiments on classical permutation prob-
lems in order to (i) evaluate the benefit of using a multi-objective approach as opposed
to single-objective ones regarding the automatic configuration of a multi-objective local
search algorithm and, (ii) study the impact of the correlation between objectives on the
performance of both single- and multi-objective AAC. The performance was evaluated
with the hypervolume and the spread indicators. Our MO-AAC approach is based on the
Pareto comparison of both indicators while the first SO-AAC approach only considers the
hypervolume and the second one, an aggregation between the two indicators. The first
experiments showed that the MO-AAC approach gives better results than the two SO-
AAC approaches. Indeed, it was able to cover the entire Pareto-front of configurations,
and found the same sets of configurations with a better hypervolume than the two other
approaches. The second experiments showed that the correlation between objectives can
impact the optimal configuration of a given problem as much as problem size, strongly
implying that automatic algorithm configuration should be performed for each instance
class independently. Likewise, the correlation between objectives did not impact the av-
erage performance between the three AAC approaches. Finally, we presented a dynamic
framework that switches between different configurations during the execution in order
to better adapt to local structures. However, parameter control approach generally deals
with a very few numbers of parameters while algorithms are generally impacted by sev-
eral parameters. We proposed to use AAC to a priori configure this framework. The
experiments showed the interest of this approach taking the advantages of both AAC and
parameter control.

Automatic Configuration of Hybrid Multi-objective SLS In this chap-
ter, we validated the interest of using a multi-objective approach to configure a multi-
objective SLS. However, we used a simpler template of SLS than the unified structure
proposed in Chapter 2. A natural perspective would be to consider the entire structure of
SLS and enable the configuration of hybrid SLS like it was proposed in Chapter 1. There-
fore, we might validate our approach to configure more complex algorithms and compare
them to the state-of-the art algorithms for each problem solved.

Improvement of MO-ParamILS MO-ParamILS is based on a particular MO-SLS,
chosen from our knowledge about the different strategies in 2015. Following the initial
design of MO-ParamILS, we made a literature review of MO-SLS and proposed a unified
structure (see Chapter 2) which allowed us to identify numerous strategies. Recently,
Cáceres and Stützle (2017) explored variable neighborhood search strategies in ParamILS

82



AAC of Multi-Objective SLS

and showed that results are promising. We think that a similar study for MO-ParamILS
could increase its performance considering the categorical parameters. Besides, the nu-
merical parameters can be better managed. Indeed, both ParamILS and MO-ParamILS
discretize numerical parameters to facilitate the use of a neighborhood operator. Franzin
et al. (2018) studied the effect of transformations of numerical parameters in automatic
algorithm configuration. They showed that a proper transformation can strongly improve
the performance of the AAC. This work may also benefit to MO-ParamILS. We, recently,
started working with Leslie Pérez Cáceres (Pontifical Catholic University of Valparaíso,
Chile) on these improvements of MO-ParamILS.

Evaluating our Dynamic Framework in Single-objective Optimiza-
tion In Section 3.5, we proposed through an approach between AAC and parameter
control, a dynamic framework able to modify the parameter of an algorithm during the
run. A natural perspective would be to evaluate the interest of this approach for single-
objective metaheuristics. Currently, the time splits are statically parameterized while the
modification of the local structure of an instance (or class of instances) are not easily
predictable. We may also extend this work and add more flexibility in the time splits in
order to better react to the local structures of the search space.
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Neutrality in Multi-Objective
Fitness Landscapes

In this chapter, we extend the concept of neutrality for multi-objective landscapes. During
my PhD, we worked on single-objective fitness landscapes and more particularly, we stud-
ied and proposed some measures that characterize these specific landscapes. The ORKAD
team is one of the specialists in multi-objective combinatorial optimization. When I came
back in the team after my post-doc, we proposed a multi-objective definition to the neu-
trality. This work was part of a collaboration with Hernán Aguirre and Kiyoshi Tanaka
of Shinshu University (Nagano, Japan) in 2015 and 2016.

The extension of neutrality to multi-objective optimization is not straightforward. In
order to develop strategies to exploit neutral neighbors in multi-objective local search al-
gorithms, it is important and necessary to clearly define neutrality in the multi-objective
context. An initial work analyzing multi-objective stochastic local search algorithms (see
Chapter 2 for a detailled definition) from the point of view of neutrality was presented in
Blot et al. (2015), showing that these methods can be improved on bi-objective permu-
tation flowshop scheduling problems by exploiting neutrality. The contributions of this
chapter come from Marmion et al. (2016) and Kessaci-Marmion et al. (2017) where def-
initions and characterizations of the neutrality are given and analyzed on permutation
problems.

This chapter is organized as follows:

• Section 4.1 explains the background of this work.

• Section 4.2 proposes a natural definition of neutrality based on Pareto-dominance,
widely used in multi-objective optimization. Then, it gives definitions derived from
epsilon and hypervolume indicators since such indicators are usually used to compare
sets of solutions.

• Section 4.3 studies the distribution of neutral neighbors in permutation problems
according to the three neutral definitions proposed.

• Section 4.4 characterizes some of the most promising neutral neighbors and presents
some measures to understand the particularities they lead to.

• Section 4.5 studies the distribution of the most promising neutral neighbors in per-
mutation problems where different correlations between the objectives appear.
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4.1 Background

In single-objective optimization, the neutrality concept has been used to qualify a problem
where different solutions have the same fitness. Formally, let s1 and s2 be two different
solutions of the search space Ω. s1 and s2 are said to be neutral iff f(s1) = f(s2).
Stochastic local search (SLS) algorithms iteratively improve a solution by exploring its
neighborhood. The neutral property has been defined between two neighboring solutions.
Then, the set of the neutral neighbors of a solution s is Nn(s) = {s′ ∈ N (s)| f(s′) = f(s)}
where N (s) is the neighborhood of s. In single-objective optimization, it has been shown
that SLS algorithms are sensitive to neutrality and other properties of the landscape
and that properly exploiting neutrality can improve performance of local search methods
(Marmion et al. 2011a; Vérel et al. 2004).
Contrary to the single objective case, there is not much work on neutrality in multi-
objective optimization. A natural extension of the neutrality in multi-objective would
be if two solutions have the same objective vectors. However, although two solutions
can share the same objective value in single-objective optimization, it is extremely rare
to find multi-objective problems where a non null number of solutions would share the
same objective vectors. Indeed, multi-objective criteria are generally contradictory and
not correlated, explaining that solutions could be equal for one objective but rarely on the
others. The extension of neutrality to multi-objective optimization is then, not straight-
forward and its effects on the dynamics of multi-objective optimization algoithms are not
clearly understood. An initial work analyzing multi-objective stochastic local search from
the point of view of neutrality defined on the Pareto-dominance property was presented
in Blot et al. (2015). This work shows that the classical algorithm can be improved on bi-
objective permutation flowshop scheduling problems by exploiting this defined neutrality
property.

4.2 Indicator-based Definitions of Neutrality

In the context of multi-objective optimization, given a solution s ∈ Ω to explore using
a neighborhood structure N , three sets of neighboring solutions s′ of s may be defined:
improving neighbors I(s) that improve the quality of all the objectives of the solution,
deteriorating neighbors D(s) that decrease the quality of all the objectives of the solution,
or undetermined neighbors U(s) that are neither improving ones nor deteriorating ones,
as shown in Figure 4.1 for a bi-objective minimization problem. These latter neighbors
are non-comparable solutions with the initial solution s.
Based on this partition of neighbors, the following will present several definitions of neu-
trality. We will consider for illustrative purposes a bi-objective minimization problem.

4.2.1 Neutrality based on Pareto Dominance

Pareto dominance is directly linked to the definition of the three partitions of the neigh-
bors presented in the previous section (see Figure 4.1). Indeed, improving neighbors are
usually called as dominating neighbors (s′ � s with s′ ∈ N (s)), deteriorating neighbors
as dominated (s � s′) and undetermined neighbors are solutions that are non-dominated
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Figure 4.1: Neighbors types in a bi-objective minimization problem.

each other. Hence, neighbors in U can be either equal neighbors (equal for all the objec-
tives) or viewed as equivalent neighbors. Naturally, they define the neutral neighbors in
the multi-objective context when comparison of solutions is computed using Pareto dom-
inance. Formally, Pareto-neutrality is defined as follows: given a solution s ∈ Ω, NnP (s)
is the set of Pareto-neutral neighbors,

NnP (s) = {s′ ∈ N (s) | s � s′ and s′ � s} (4.1)

This definition of neutrality has been efficiently exploited in a multi-objective local search (Blot
et al. 2015) that shows the interest of clearly define the neutrality between neighbors. In
the following, other definitions of neutrality based on the epsilon and the hypervolume
difference indicators are proposed.

4.2.2 Neutrality based on ε-indicator

4.2.2.1 Partition of the neighborhood with ε-indicator

In the Introduction chapter, the binary additive epsilon indicator ε+ (resp. multiplica-
tive ε∗) was introduced to compare two Pareto set approximations. While comparing two
solutions, a solution s and a neighbor solution s′, this relation may be written as:

Iε+(s′, s) = max{max∀i{fi(s′)− fi(s)}; 0} (4.2)

(resp. Iε∗ (s′, s) = max{max∀i{fi(s′)/fi(s)}; 1})

This represents the minimum distance (resp. value) required for neighbor s′ to dominate
solution s. This definition divides the set of neighbors of a solution into two sets as
depicted in Figure 4.2:

• If the distance equals 0 (resp. value equals 1), the neighbor s′ already dominates
solution s. The set of these neighbors characterizes I (green area of Figure 4.2).
The definition of I may be written as follows:

I(s) = {s′ ∈ N (s) | Iε+(s′, s) = 0} (4.3)
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(resp. I(s) = {s′ ∈ N (s) | Iε∗ (s′, s) = 1})

• If the distance is positive (resp. value greater than 1), the neighbor may be either a
deteriorating or an undetermined solution. The set of these neighbors characterizes
D∪U (orange area of Figure 4.2). The definition of D∪U may be written as follows:

D ∪ U(s) = {s′ ∈ N (s) | Iε+(s′, s) > 0} (4.4)

(resp. D ∪ U(s) = {s′ ∈ N (s) | Iε∗ (s′, s) > 1})

Both indicators Iε+ and Iε∗ have very similar behaviors except the special role of values 0
and 1.

f2

f1

s

Iε+(s′, s) > 0 : D ∪ U(s)

Iε+(s′, s) = 0 : I(s)

Neighborhood of s

Figure 4.2: Value of Iε(s′, s) in a bi-objective minimization problem.

4.2.2.2 A symmetric definition of ε-neutrality

Neighbors belonging to D ∪ U (orange area of Figure 4.2) may be separated into two
types of neighbors with a symmetry consideration, i.e. if s′ is neighbor of s then s is also
neighbor of s′. Indeed, considering a symmetric relation between s′ and s, the ε-indicator
may take two values:

• Iε+(s, s′) = 0 (resp. Iε∗(s, s′) = 1) means that s dominates s′, i.e. s′ ∈ D(s)

• Iε+(s, s′) > 0 (resp. Iε∗(s, s′) > 1) means that s does not dominate s′, i.e. s′ ∈ U(s)

These latter solutions may be considered as neutral neighbors and leads to the proposi-
tion of a first definition of neutrality based on the ε-indicator. With this definition, the
undetermined set exactly characterizes the set of neutral neighbors U = Nnε.
Formally:

Nnε
+

(s) = {s′ ∈ N (s) | Iε+(s′, s) > 0 and Iε+(s, s′) > 0} (4.5)

(resp. Nnε
∗
(s) = {s′ ∈ N (s) | Iε∗ (s′, s) > 1 and Iε∗ (s, s′) > 1})
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Let us remark that this symmetric definition of ε-neutrality characterizes the same set of
neutral neighbors as Pareto-neutrality. However, this indicator produces a value that may
be used to more precisely describe the relations between neighboring solutions. Indeed,
introducing a bound on the indicator value will lead to a restriction of the set of neutral
neighbors. This restriction may be controlled by this tunable bound. Hereafter, we propose
neutrality definitions based on a bounded indicator value.

4.2.2.3 Bounded definitions of ε-neutrality

Another way to define neutral neighbors is to consider as neutral those neighboring so-
lutions that are close (in objective space) to the initial solution s. Hence, using the
ε+-indicator (resp. ε∗-indicator), we could define a neighbor as neutral if the distance
(resp. value) necessary to make the neighbor dominate the initial solution s is smaller
than a threshold δ. As explained latter, normalized values are then required in order to
give to δ a signification independent of the objective.
First, let us consider the set of neighbors s′ in D ∪ U(s) defined from the ε- indicator
without symmetry consideration i.e. Iε+(s′, s) > 0 (resp. Iε∗(s′, s) > 1). The set E0 of
neutral neighbors is then defined from these neighbors verifying the distance (resp. value)
is bounded by δ. Figure 4.3 (top) illustrates the area of E0-neutral neighbors of a solution
delimited by δ in bi-objective optimization.
Formally:

E0
+(s) = {s′ ∈ N (s) | 0 < Iε+(s′, s) < δ} (4.6)

(resp. E0
∗(s) = {s′ ∈ N (s) | 1 < Iε∗ (s′, s) < δ})

Equation 4.6 considers as neutral some neighbors that are dominated by s since the neigh-
bors belongs to D ∪ U(s). Removing these ones, only neighbors of U(s) are kept. In the
following definitions, the symmetry consideration is taken into account and two definitions
can be proposed. The set E1 of neutral neighbors is a subset of E0, where the dominated
neighbors have been removed. Figure 4.3 (middle) illustrates the area of E1-neutral neigh-
bors of a solution delimited by δ in a bi-objective minimization problem.
Formally:

E1
+(s) = {s′ ∈ N (s) | 0 < I+

ε (s′, s) < δ and 0 < I+
ε (s, s′)} (4.7)

(resp. E1
∗(s) = {s′ ∈ N (s) | 1 < I∗ε (s′, s) < δ and 1 < I∗ε (s, s′)})

However, this definition is not fully symmetric. Indeed, a solution s′ can be a neutral
neighbor of s, while s is not a neutral neighbor of s′. This may be contradictory with
the reciprocity notion. Thus we define the set E2 of neutral neighbors as a subset of E1,
where the symmetric value of the ε-indicator is also bounded by δ. Figure 4.3 (bottom)
illustrates the area of E2-neutral neighbors of a solution delimited by δ in a bi-objective
minimization problem.
Formally:

E2
+(s) = {s′ ∈ N (s) | 0 < I+

ε (s′, s) < δ and 0 < I+
ε (s, s′) < δ} (4.8)

(resp. E2
∗(s) = {s′ ∈ N (s) | 1 < I∗ε (s′, s) < δ and 1 < I∗ε (s, s′) < δ})
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Figure 4.3: Bounded definitions of ε-neutrality in a bi-objective minimization problem.

As seen on Figure 4.3 the different sets of neutral neighbors given by Eq 4.6, 4.7 and 4.8
are represented by rectangular areas that become increasingly smaller conform bounded
constraints are added on the initial set D∪U . The width of the areas is tuned by δ. More-
over, having such different definitions of neutrality induces the following questions: Which
are the most interesting neutral neighbors? Which definition should we use? For example,
considering sets E1 and E2 (i.e. Equation 4.7 and 4.8), a neutral neighbor improves at
least one objective while degrading at least a second one. If the degradation is smaller
than the improvement (let us remember that values are normalized, and so comparable),
this neighbor may be interesting to explore later. Such neighboring solutions belong to
E1 \ E2, i.e. the degradation on one objective is limited by δ while the improvement of
other ones is over δ and then, may be large even if δ is small. One of the important
question is: Do such neighbors exist? Are they numerous?
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4.2.3 Neutrality based on HD-indicator

4.2.3.1 Partition of the neighborhood with HD-indicator

Another way to compare two solutions, and in particular a solution s and one of its neigh-
boring solutions s′, is to calculate the “additional space" dominated by the neighboring
solution. This is computed by the Hypervolume Difference IHD(s′, s) between s′ and s as
follows:

IHD(s′, s) = IH(s+ s′)− IH(s)

Let us remark that IH(s + s′) is the hypervolume covered by both points {s, s′}. This
definition of HD-indicator divides the set of neighbors of a solution into two sets as depicted
in Figure 4.4:

• If the value is null, the neighbor s′ is dominated by the solution s. The set of these
neighbors characterizes D (orange area of Figure 4.4). The definition of D may be
written as follows:

D(s) = {s′ ∈ N (s) | IHD(s′, s) = 0} (4.9)

• If the value is positive, the solution s does not dominate the neighbor s′. The set
of these neighbors characterizes I ∪ U (green area of Figure 4.4). The definition of
I ∪ U may be written as follows:

I ∪ U(s) = {s′ ∈ N (s) | IHD(s′, s) > 0} (4.10)

f2

f1

s

IHD(s′, s) = 0 : D(s)

IHD(s′, s) > 0 : I ∪ U(s)

Neighborhood of s

Figure 4.4: Value of IHD(s′, s) in a bi-objective minimization problem.

4.2.3.2 A symmetric definition of HD-neutrality

Neighbors belonging to I ∪ U (green area of Figure 4.4) may be separated into two types
of neighbors with a symmetry consideration. Indeed, regarding the symmetric relation
between s′ and s, the HD-indicator may take two values:

• IHD(s, s′) = 0 means that s′ dominates s, i.e. s′ ∈ I(s)

• IHD(s, s′) > 0 means that s does not dominate s′, i.e. s′ ∈ U(s))
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These latter may be considered as neutral neighbors and leads to the proposition of a first
definition of neutrality based on HD-indicator. With this definition, the undetermined set
exactly characterizes the set of neutral neighbors U = NnHD.
Formally:

NnHD(s) = {s′ ∈ N (s) | IHD(s′, s) > 0 and IHD(s, s′) > 0} (4.11)

Let us remark that this symmetric definition of HD-neutrality characterizes the same set of
neutral neighbors as Pareto-neutrality. As for the ε-indicator, the HD-indicator computes a
value that may be exploited to give some more precise definitions through the introduction
of a bound.

4.2.3.3 Bounded definitions

Once again, in order to compare improvement/degradation of the objective functions, a
normalization of values should be done. A normalization method will be clarified in the
experimental protocol.
In order to give a similar meaning to the bound δ for both ε- and HD- indicators, we define
ÎHD(s, s′) = 1− IHD(s, s′), where IHD(s, s′) is a (positive) normalized value lower than 1.
Here, we consider the symmetric definition only since improving neighbors cannot be
neutral neighbors. The set HD1 of neutral neighbors s′ is then defined as a subset of U(s)
where ÎHD(s′, s) is bounded by δ. Figure 4.5 (top) illustrates the area of HD1-neutral
neighbors of a solution delimited by δ in a bi-objective minimization problem.
Formally:

HD1(s) = {s′ ∈ N (s) | ÎHD(s′, s) ≤ δ and ÎHD(s, s′) > 0} (4.12)

In the same way as ε-neutrality (Equation 4.7 and 4.8), it is important to propose a fully
symmetric definition to get the reciprocity notion. The set HD2 of neutral neighbors is
a subset of HD1, where the symmetric value of the HD-indicator is also bounded by δ.
Figure 4.5 (middle) illustrates the area of HD2-neutral neighbors of a solution delimited
by δ in a bi-objective minimization problem.
Formally:

HD2(s) = {s′ ∈ N (s) | ÎHD(s′, s) ≤ δ and ÎHD(s, s′) ≤ δ} (4.13)

Let us note that, δ represents an upper bound that delimits an area to define a set of neutral
neighbors. In Equation 4.12 and 4.13, ÎHD(s′, s) ≤ δ can be replaced by IHD(s′, s) ≥ δ
to get the adaptation of these definitions if the similar meaning with ε-indicator is not
needed.
As seen on Figure 4.5 (top and middle) the different sets of neutral neighbors given by
Equation 4.12 and 4.13 are represented by convex areas that become increasingly smaller
conform bounded constraints are added on the initial set U (i.e. δ is close to zero). Let us
remark that the convex line from s represents points of same hypervolume value IHD(s′, s)
i.e. each point which covers an equivalent area (IH(s + s′)) in the objective space. The
width of the convex areas is tuned by δ. Figure 4.5 (bottom) gives a zoom on a part of
HD2-neutral neighbors. Two cases are illustrated: the first one with a small value of δ
and the other one with a high value. If δ is very small, the convex area is very far from
the initial solution. Convex areas are less predictable than rectangular ones and then the
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Figure 4.5: Bounded definitions of HD-neutrality in a bi-objective minimization problem.

impact of the choice of the δ value is not easy to anticipate. Moreover, the interest of the
definitions may also be discussed. Neighboring solutions belonging to HD1 \HD2 seem to
represent a good trade-off between the degradation on one objective and the improvement
of other ones. Let us remark that these latter neighbors s′ of s are in the space where
ÎHD(s′, s) value is small and so for Iε(s′, s). Then, both values have to be minimized that
strengthens the decision of reversing IHD over 1.

4.3 Distribution of Neutral Neighbors in Permutation Prob-
lems

We analyze the previously presented definitions of neutrality for two multi-objective per-
mutation problems: the permutation flowshop scheduling problem and the traveling sales-
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man problem. Here, only the 2- and 3-objective versions of these problems are considered.
Therefore, we present some measures that will enable to better characterize the fitness
landscape of these permutation problems.

4.3.1 Experimental Protocol

Problems Description

The permutation flowshop scheduling problem (FSP) has already been introduced in Sec-
tion 3.2.4.1. In the following experiments, we consider three objectives to be minimized,
being (in this order) the makespan (Equation 3.3 in Section 3.2.4), the total tardiness
(Equation 4.14) and the sum of flowtimes (Equation 3.4).

f2(π) = TT =
N∑
i=1

{
max {0, Ci − di}

}
(4.14)

The neighborhood operator considered is the insertion operator and, Minella instances
(already presented in Section 1.3.3) with a number of jobs N ∈ {20, 50, 100} and 20 ma-
chines are analyzed.

The traveling salesman problem (TSP) has also already been introduced in Section 3.2.4.2.
Problems with two are three independent objectives are investigated. The neighborhood
operator is the two-opt operator. TSP instances were generated with the generator pro-
vided in the 8th DIMACS challenge 1 with the same problem sizes than those considered
for the FSP i.e. N ∈ {20, 50, 100} has been analyzed.

Indicators Computation and Normalization

As mentioned before, both additive and multiplicative epsilon indicators can be identically
used and so, in the following, only the additive version is considered. Here, we describe
how to normalize the computed ε- and HD-values. First, considering one solution s, all
of its neighbors s′ ∈ N (s) have to be exhaustively evaluated. Then, for each indicator, a
reference point is defined in order to compute the normalized values. About ε-indicator,
the reference point is s and for each objective i ∈ K, refi = max(fi(s

′)) as the maximum

value found among the neighbors per objective and εi =
fi(s

′)− fi(s)
refi − fi(s)

where maxfi =

max(fi(s
′)) is used for the normalization. Then, ε= maxi(εi). About HD-indicator, the

reference point Z is defined as zi = max(fi) + 1 and the HD-values are computed with
Pisa (Brockhoff 2015). The normalization is made using min(fi) of each objective i.

Fitness Landscape Measures

The structure of a problem, and in particular the neutrality property can vary between
regions of the search space. Hence, we propose to analyze the distribution of neutral
neighbors according to the several definitions of neutrality for both random and Pareto

1http://dimacs.rutgers.edu/Challenges/TSP/
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local optimum (PLO) solutions. In order to statistically ensure this study, for each in-
stance, two populations Prnd and Popt of 30 random and PLO solutions are respectively
considered. Then, for all neighbors of each solution in Prnd and Popt ε- and HD- values are
computed.
In Section 4.2, three initial sets (I,D,U) have been defined to partition the neighbors of
a solution. According to the first definitions of Pareto-, ε- and HD-neutrality, U(s) is the
set of neutral neighbors of a solution s. Both definitions of ε- and HD- indicator divide the
neighborhood into two sets D ∪ U(s) and I ∪ U(s), respectively. Let us remark that, for
a PLO solution, I is an empty set. Let us introduce, the neutral degree of a solution as
the number of neutral solutions in its neighborhood (Marmion et al. 2011b). To compare
problems with different neighborhood size, we compute the neutral ratio as the neutral
degree divided by the neighborhood size. In order to analyze the impact of the definitions
of the neutrality on the distribution of neighbors in the decision space, the sets E0, E1, E2,
HD1 and HD2 are determined. The cardinality of these sets gives the number of neutral
neighbors included within the considered bounded definition.

4.3.2 Neighbors Distribution in Initial Partitions

Table 4.1 gives the average distribution of improving (I) and deteriorating (D) neighbors
together with different partition of neighbors (U , I∪U , D∪U) for both random and Pareto
Local Optimum (PLO) solutions. At first glance, whatever the definition of neutrality
and the type of solutions, TSP neutrality is higher than FSP one. Moreover, the neutral
ratio of random solutions is always higher than the one of PLO solutions for both TSP
and FSP problems. Let us remark that the trend is the same for problems with 2 or
3 objectives. First, for PLO solutions, the neutral ratio decreases when the size of the
problem (N) increases. For FSP, the neutral ratio is almost null for more than 50 jobs.
Secondly, the Pareto-neutrality does not vary in the same way between FSP and TSP for
random solutions. Indeed, the number of neutral neighbors decreases while the numbers of
improving or deteriorating neighbors are almost the same and increase with the size of the
FSP problem. It seems that potential neutral neighbors are equally distributed between
improving or deteriorating when the size increases. Hence, both ε-partition (see D ∪ U)
and HD-partition (see I∪U) are invariant according to the size. For TSP, 50% of neighbors
are Pareto-neutral no matter the size and the other neighbors are equally distributed into
improving and deteriorating ones. Therefore, ε-partition and HD-partition leads to the
same neutral ratio when no bound is used. Finally, neutrality is almost the same between
2 and 3 objectives for FSP while it increases significantly for TSP, where more than 75% of
neighbors of random solutions are neutral. These two permutation-based problems present
some differences between neutral features. Knowing that FSP objectives are dependent,
contrary to TSP ones, may explain in part these differences.

4.3.3 Neutral Neighbors Distribution according to the Bound

The analysis focus on the distribution of neutral neighbors in the space delimited by the
bound δ. First, δ is equal to the average of the indicator values of neutral neighbors.
Table 4.2 gives the average cardinality (in percent) of the sets E0, E1 and E2 defined from
ε-indicator and HD1 and HD2 defined from HD-indicator. Note that |E0| is computed as
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Table 4.1: Cardinality (in percent) in different sets of neighbors. s is in Prnd or Popt,
Results are given for both FSP and TSP instances with 2 and 3 objective criteria.

Prnd Popt

2o I(s) D(s) U(s) I ∪ U(s) D ∪ U(s) D(s) U(s)

FSP
20 31.05 32.66 36.29 67.34 68.95 87.88 12.12
50 37.22 36.90 25.88 63.10 62.78 96.88 3.12
100 37.65 39.52 22.83 60.48 62.35 98.97 1.03

TSP
20 24.58 24.66 50.76 75.34 75.42 70.10 29.90
50 24.78 25.16 50.06 74.84 75.22 78.88 21.12
100 25.18 24.75 50.07 75.25 74.82 83.80 16.20

3o I(s) D(s) U(s) I ∪ U(s) D ∪ U(s) D(s) U(s)

FSP
20 25.58 26.86 47.56 73.14 74.42 83.10 16.90
50 33.86 33.52 32.62 66.48 66.14 95.23 4.77
100 36.49 38.33 25.18 61.67 63.51 98.81 1.19

TSP
20 12.14 11.80 76.06 88.20 87.86 41.77 58.23
50 12.42 12.49 75.08 87.51 87.58 49.46 50.54
100 12.49 12.34 75.17 87.66 87.51 55.35 44.65

a percentage of the total number of deteriorating and undetermined neighbors (D ∪ U)
while the other ones are computed only with undetermined neighbors (U). It explains
that |E0| and |E1| are quite similar. First, the number of objectives seems not to impact
the distribution of neutral neighbors since the trends and the cardinality are quite simi-
lar. Secondly, despite the fact that TSP neutral ratio is much higher than FSP one, the
cardinality and the trends between the sets are close, except one of E2 of PLO solutions.
Then, we will start to analyze the similarities that might be generalized for permutation
problems. |E0| and |E1| are almost equal for both random and PLO solutions. Even if the
bound δ is not the same, it seems that the distribution of neighbors is equivalent between
the sets D and U in terms of ε-indicator values. Concerning random solutions, E2 contains
more than half of E1. That is, more than half of the neutral neighbors of a solution are
close to it in the objective space. These neighbors can not be useful for diversification
strategies. However, the remaining ones (s′ ∈ E1 \ E2) could be interesting solutions to
explore. Moreover, HD2 contains less than half of HD1. That is, more than half of the
neutral neighbors of a solution are close to the axis, i.e. the deterioration on a criterion is
weak. The set HD1 \HD2 contains many solutions that have to be carefully considered.
The distribution of neutral neighbors of PLO solutions is very different from the one of
random solutions. Indeed, although |E1| and |HD1| are almost similar between random
and PLO solutions, |E2| and |HD2| is totally different. All the neighbors in E1 and HD1

are also in E2 and HD2 respectively. It means that most of the neutral neighbors, where
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Table 4.2: Cardinality (in percent) of E0, E1, E2, HD1 and HD2 with δ set to the
average value. Results are given for both FSP and TSP instances with 2 and 3 objective

criteria. Considered solutions are in Prnd or Popt.

Prnd Popt

2o E0 E1 E2 HD1 HD2 E0 E1 E2 HD1 HD2

FSP
20 58.35 59.94 35.54 38.44 14.75 58.69 58.88 56.44 42.55 40.31
50 58.86 61.13 35.86 37.90 12.98 59.47 60.68 59.09 36.50 33.63
100 58.37 61.88 36.35 37.97 12.57 58.52 64.74 62.54 35.53 31.37

TSP
20 57.66 59.46 33.97 37.38 12.78 51.03 50.98 49.68 34.66 32.35
50 58.42 60.33 36.57 37.96 14.49 50.92 52.21 51.92 34.95 33.08
100 58.54 60.47 36.36 38.20 14.44 50.54 51.76 51.69 35.46 34.20

3o E0 E1 E2 HD1 HD2 E0 E1 E2 HD1 HD2

FSP
20 58.37 60.03 34.35 35.04 7.87 58.47 58.82 29.31 35.87 33.39
50 59.07 61.01 34.87 35.84 8.56 60.03 60.99 31.79 35.37 33.12
100 58.38 61.79 36.01 36.33 10.17 58.87 64.65 31.97 35.38 33.20

TSP
20 55.99 56.57 29.31 36.30 9.76 51.42 51.54 48.62 33.51 31.62
50 56.78 57.60 31.79 37.06 10.63 51.33 51.53 50.35 34.08 32.41
100 56.97 57.79 31.97 37.67 10.99 51.03 51.24 50.79 34.54 33.56

the indicator value is lower than the average, are distributed very close to the solution.
Let us consider a neutral neighbor that improves a lot one objective criterion with a weak
deterioration of the other ones. The results show that random solutions have a non trivial
number of this last type of neutral neighbors contrary to PLO solutions. Let us return to
the case of E2 for FSP with 3 objectives. Unlike the other cases, only half of the neighbors
in E1 are in E2. It can be explained by the high dependency between objective 1 (Cmax)
and objective 3 (SFT ) since a weak improving of one can impact significantly the second.
In the following, the distribution of neutral neighbors is analyzed more finely with different
settings of the bound δ. Figure 4.6 gives the distribution of neutral neighbors in percent
(compared to the whole neighborhood) in the sets E0, E1, E2, HD1 and HD2 following
different values of δ. Note that, δ = 100 means that all the neutral neighbors (as defined
by each set) are considered. Then, |E0| = |D ∪ U| and |E1| = |HD1| = |U|. First, the
trends between the different sets that have been analyzed with Table 4.2 are obvious.
Here, the average value is meaningful. Therefore, in this part, we only discuss about new
information given by these figures.
The ε- indicator defines rectangular areas around the solution in the objective space.
These areas become larger when δ increases. Their increase is linear with δ, hence, the
intervals are linearly divided. The HD- indicator defines different convex areas that become
larger also when δ increases. The increase of these areas is quadratic with δ, hence, the
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Prnd
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(FSP) (TSP)

Figure 4.6: Cardinality (in percent) of E0, E1, E2, HD1 and HD2 for different values of δ
for both bi-objective FSP (left side) and TSP (right side). Here, results are given for the

problem of size N=100. Considered solutions are in Prnd or Popt.
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intervals are divided with a logarithmic scale approach. The main conclusion is that
the opposite behavior of both indicators is highlighted. Indeed, the cardinality of E0,
E1 and E2 logarithmically increases, while the cardinality of HD1 and HD2 increases
almost at the end. The definition of the indicator impacts significantly the definition of
the neutrality and consequently the determination of which neighbors are considered as
neutral. Moreover, we observe that TSP is highly neutral compared to FSP. This may
be due to the type of the instances. Indeed, in this TSP instances, the objectives are
independent as the distance-matrices are; while for the FSP, the 2 or 3 objectives have
some correlations.

4.4 Characterization of Promising Neutral Neighbors

In single-objective optimization, considering neutral neighbors during the search has al-
ready been successful in the past (Galván-López et al. 2011; Marmion et al. 2011a). How-
ever, the experiments presented in the previous section show that such neutral neighbors
may be very numerous and, considering all of them, almost at the beginning of the search,
can be very costly (for the archiving task for example). In this section, we will investigate
if some of these neutral neighbors can be considered as most promising (leading to other
parts of the search space, giving more diversity, contribution greater than the storing
cost...).
Moreover, the previous experiments left open questions about the link between the neutral
degree and the correlation of the objectives. In particular the following questions will be
addressed in this section:

• How to define promising neutral neighbors?

• Are these promising neutral neighbors numerous? Is it dependent on the correlation
between objectives?

• Where are they located? What is their distribution in the neighborhood?

4.4.1 Definition of Promising Neutral Neighbors

Defining promising neighbors seems to be problem-dependent. However, among properties
that are important to consider, many will agree to say that a neutral neighbor could be
promising if, for example:

• it allows to increase the spread along the Pareto front,

• it improves the convergence,

• it improves the hypervolume measure.

We propose to summarize these properties by defining promising neutral neighbors as solu-
tions that bring to a deterioration on one objective function smaller than the improvement
they bring on the other one (see Figure 4.7(top)). We consider now, the additive epsilon
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indicator and the (symmetric) definition of neutrality given by Equation 4.5. Let us note
Pn(s) ⊂ Nn(s), the set of promising neutral neighbors. It is defined as follows:

Pn(s) = {s′ ∈ Nn(s) | Iε(s′, s) < Iε(s, s
′)} (4.15)
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Promising bounded
neutral neighbors
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δ

Figure 4.7: Promising neutral neighbors: whole area (top) and δ-bounded area (bottom).

Within those promising neighbors, it is also possible to control the deterioration between
s and its neighbors s′, represented by the value of Iε(s′, s) with a bound δ ≥ 0 (see Figure
4.7(bottom)). This leads to the definition of Pδn(s) ⊂ Pn(s), the set of promising neutral
neighbors depending on δ, that may be defined by:

Pδn(s) = {s′ ∈ Pn(s) | Iε(s′, s) ≤ δ} (4.16)

4.4.2 Methodology to Study the Distribution of the Promising Neutral
Neighbors

When promising neutral neighbors are numerous in comparison to the number of neutral
neighbors and more widely to the whole neighborhood, a deeper study of their location
in the search space would help to exploit them into strategies. Therefore, we propose
to consider several values for the bound δ to study their distribution among the neutral
neighbors. Let us remark that values of objective functions of a solution s and its neighbors
s′ are first normalized using the whole neighborhood N , so that Iε(s′, s) ∈ [0; 1]. Let
∆ = {δ0, δ1, δ2 . . . δD} a discretization of [0; 1] where δ0 = 0 and δD = 1.
If we focus on the left-upper side quarter of the neighborhood, different values of δ lead to
horizontal layers (H-layer) of the promising neighbors area (similar layers may be found
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in the other part dealing with neutral neighbors). Such a H-layer allows to study the
distribution of neutral neighbors regarding a bounded authorized degradation (see Figure
4.8 (left)). This may be formalized by:

Hδin = {s′ ∈ Pδin (s) | δi−1 < Iε(s
′, s), 1 ≤ i ≤ D} (4.17)

Let us remark that the first H-layer (Hδ1n ) is the closest to the dominance area and hence
neighbors belonging to it represent a great interest.

f2

f1

δi−1
δi

s

Neighborhood of s
s

f2

f1

T

H

V

Figure 4.8: Space decomposition

In addition, we propose to define two other sub-areas. First, triangles T δin , in which both
Iε(s, s

′) and Iε(s′, s) are bounded by δi:

T δin = {s′ ∈ Pδin (s) | Iε(s, s′) ≤ δi, 0 ≤ i ≤ D} (4.18)

Secondly, vertical layers (V-layer), denoted as Vδin , to group neighbors further and further
from the solution explored s (see Figure 4.8 (right)).

Vδin = (

δi∑
k=δ0

Hkn) \ T δi−1
n = {s′ ∈ Pδin (s) | Iε(s, s′) > δi−1, 1 ≤ i ≤ D} (4.19)

The V-layers allow to study solutions that produce a minimal improvement (δi−1) with a
bounded degradation (δi). Neighboring solutions belonging to VnδD produce an improve-
ment larger than the worst degradation encountered within the whole neighborhood. Let
us remark that Vδ1n == Hδ1n == Pδ1n . Focusing on the first H-layer, Hδ1n , neighbors be-
longing to this layer are either in the triangle T δ1n or in the rest of the layer Pδ1n \T δ1n . The
triangle groups solutions very close to the initial solution s; these solutions have a very low
interest regarding convergence and diversity. The rest of the layer groups solutions that,
on the contrary, produce on one objective an improvement larger than the worst possible
degradation for the second objective in this layer (i.e. δ1).
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4.5 Distribution of Promising Neutral Neighbors in Permu-
tation Problems

In this section, we analyze where are located the promising neighbors in the neighborhood
of bi-objective optimization problems. However, the correlation between the objectives
largely influences the distribution of the whole neighborhood. Hence, we propose to study
the distribution of the promising neighbors among the neutral ones and more largely,
among the whole neighborhood, according to the correlation between objectives. We
focus our study on bi-objective permutation problems since they are widely used in the
literature to validate new optimization methods. Therefore, knowing the structure of these
permutation problems may help in the design of new methods. The permutation problems
considered are: the permutation flowshop scheduling problem (see Section 3.2.4.1), the
quadratic assignment problem (see Section 3.2.4.3) and the traveling salesman problem
(see Section 3.2.4.2).

4.5.1 Experimental Protocol

The experimental protocol we designed is identical for each bi-objective permutation prob-
lem. We study three different problem sizes N ∈ {20, 50, 100} as found in the literature
benchmarks, with three levels of correlation between the two objectives: no correlation,
mid-correlation and high-correlation as explained in Section 3.4. For each couple size-
correlation, we generated 10 instances, and for each instance, the neighborhood of 30
random solutions, denoted as Rnd, and 30 Pareto local optimal solutions, denoted as Opt
are evaluated and analyzed. Note that the neighborhood is studied under the best-known
neighborhood operator for each permutation problem.
The epsilon-indicator values are normalized following the protocol proposed in Section 4.3.1.
We compute Iε(s′, s) = maxk(εk, 0) and Iε(s, s′) = maxk(−εk, 0) (k ∈ {1, 2}) to obtain a
symmetric measure for non dominated solutions in bi-objective optimization with a same
reference.
The analysis consists in computing different measures for both random and optimal solu-
tions, for each considered instances. Then, an average of these values are applied to get
one value per instance of:

• the percentage of neutral neighbors (Nn),

• the percentage of promising (Pn) neighbors among the neutral ones,

• their distribution in the different subsets Pnδ, Tnδ, Hnδ and Vnδ
for δ ∈ ∆ = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1}

4.5.2 Experimental results on FSP

First, Table 4.3 (a) shows that as expected, the number of neutral neighbors Nn decreases
as the correlation between objectives increases. However, the size of the problem has no
impact on Nn for a same level of correlation. For random solutions the proportion of
promising neutral neighbors Pn is around 50 % which shows they are well distributed
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among the neutral ones. This observation is not true for Pareto local optimal solutions,
that have much less neutral neighbors and a smaller proportion of promising ones.

Table 4.3: Results for the bi-objective FSP (in percentage).

(a) Percentage of neutral and promising
neighbors for both random and optimal
solutions.

Rnd Opt

Nn Pn Nn Pn

ρ = 0
20 49.44 52.89 19.91 14.38
50 49.89 50.17 11.12 6.94
100 50.07 50.56 6.25 4.01

ρ: mid
20 38.25 52.61 13.3 13.43
50 41.21 50.3 7.33 7.58
100 41.75 50.19 3.94 4.38

ρ: high
20 23.11 51.3 5.53 14.47
50 23.01 50.72 2.82 9.7
100 25.76 50.91 1.62 6.15

(b) Distribution of promising neutral
neighbors in the first horizontal layer.

Rnd Opt

T 0.1
n P0.1

n \ T 0.1
n T 0.1

n P0.1
n \ T 0.1

n

ρ = 0
20 11,2 22,35 7,19 2,62
50 15,64 21,12 4,66 0,74

100 16,68 21,28 3,37 0,27

ρ: mid
20 13,44 22,78 7,48 2
50 18,13 21,14 6,25 0,52

100 18,94 20,95 4,25 0,05

ρ: high
20 21,35 20,76 11,94 1,1
50 26,97 17,97 9,06 0,39

100 26,15 18,73 6,01 0,01

Table 4.3 (b) focuses on the analysis of the first H-layer (H0.1
n ). For random solutions,

P0.1
n \ T 0.1

n represents 2/3 of solutions of the layer for low correlation instances and one
half for high correlated ones. On the contrary, for Pareto local optimal solutions, most of
the solutions are within the triangle, which means very close to the initial solution s, and
hence less interesting to consider for the diversity and the convergence. Therefore, in the
following, only details on the distribution of neutral neighbors for random solutions will
be given.
Table 4.4 indicates the distribution of promising neutral neighbors overH-layers, according
to several values of δ. The first observation is that the number of solutions decreases rapidly
as the value of δ increases. Indeed, when a high degradation is allowed on one objective,
a high improvement on the other one is required to compensate it.
The aim of Table 4.5 is to study solutions that produce a minimal improvement with
a bounded degradation. The distribution among V-layers shows that for low correlated
instances, V-layers with a medium δ have still an interesting number of solutions. This is
less true for high correlated problems. Let us note that Vn1 is not empty which means that
there exist some neighbors that produce an improvement larger than the worst degradation
encountered within the whole neighborhood.
As a conclusion for the FSP, it seems interesting to consider neutral neighbors during
the search. Indeed, for random solutions, 50 % of these ones are promising, and more
than 1/3 of them belong to Hn0.1, so very close to the dominance part. Moreover, when
objectives are not correlated, many promising neighbors produce an improvement much
larger than the degradation they produce on the second objective (they belong to Vnδ for
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Table 4.4: Distribution of the promising neutral neighbors
in the H-layers (Random solutions).

H0.1
n H0.2

n H0.3
n H0.4

n H0.5
n H0.6

n H1
n

ρ = 0
20 33.55 10.74 4.28 1.84 1.08 0.56 0.84
50 36.78 9.08 2.71 0.97 0.37 0.17 0.09

100 37.96 9.17 2.48 0.68 0.2 0.05 0.02

ρ: mid
20 36.22 10.25 3.55 1.45 0.62 0.29 0.23
50 39.28 8.11 1.99 0.6 0.21 0.07 0.04

100 39.9 7.98 1.77 0.42 0.1 0.02 0

ρ: high
20 42.1 6.78 1.66 0.5 0.2 0.03 0.03
50 44.94 4.78 0.83 0.13 0.03 0.01 0

100 44.89 5.1 0.77 0.13 0.02 0 0

Table 4.5: Distribution of the promising neutral neighbors
in the V-layers (Random solutions).

V0.1
n V0.2

n V0.3
n V0.4

n V0.5
n V0.6

n V1
n

ρ = 0
20 33.55 33.09 24.93 18.25 13.56 10.32 8.52
50 36.78 30.21 18.37 10.82 6.52 4.04 2.56
100 37.96 30.45 17.25 8.96 4.58 2.37 1.25

ρ: mid
20 36.22 33.02 22.82 15.35 10.44 7.24 5.38
50 39.28 29.25 16.03 8.51 4.61 2.65 1.61
100 39.9 28.93 14.79 6.96 3.23 1.53 0.74

ρ: high
20 42.1 27.53 15.27 8.27 4.76 2.84 1.73
50 44.94 22.75 9.51 4.15 1.87 0.87 0.43
100 44.89 23.84 9.66 3.7 1.41 0.55 0.23

large values of δ while belonging to Hnδ for small values of δ). Regarding Pareto local
optimal solutions, very few neutral neighbors are promising, so the interest of using them,
except (maybe) to escape from them is not as relevant as during the search.

4.5.3 Experimental results on QAP

The first observation is that results are very similar to the FSP ones. As for the FSP,
Table 4.6 (a) shows that the number of neutral neighbors Nn decreases as the correlation
between objectives increases. However, the size of the problem has no impact on Nn for
a same correlation. For random solutions the proportion of promising neutral neighbors
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Pn is around 50 % which shows that they are well distributed among the neutral ones.
This observation is not true for Pareto Pareto local optimal solutions, that have much less
neutral neighbors and a smaller proportion of promising ones.

Table 4.6: Results for the bi-objective QAP (in percentage).

(a) Percentage of neutral and promising
neighbors for both random and optimal
solutions.

Rnd Opt

Nn Pn Nn Pn

ρ = 0
20 50,29 52,36 26,17 16,46
50 50,23 51,18 17,94 11,36
100 50,11 50,8 14,19 8,31

ρ: mid
20 28,87 51,56 7,73 18,99
50 29,27 50,33 5,22 18,16
100 29,16 50,4 3,69 15,19

ρ: high
20 13,39 50,54 2,05 28,51
50 14,23 50,24 1,41 26,86
100 13,85 50,25 0,94 25,24

(b) Distribution of promising neutral
neighbors in the first horizontal layer.

Rnd Opt

T 0.1
n P0.1

n \ T 0.1
n T 0.1

n P0.1
n \ T 0.1

n

ρ = 0
20 5,9 17,97 7,8 2,73
50 8,47 20,14 8,68 1,23

100 10,78 21,1 7,51 0,37

ρ: mid
20 10,25 23,31 15,29 2,44
50 13,99 23,53 17,45 0,49

100 17,35 23,16 15,01 0,14

ρ: high
20 22,36 20,89 28,2 0,17
50 28,22 18,46 26,78 0,08

100 33,46 15 25,23 0,01

Table 4.6 (b) focuses on the analysis of the first H-layer. As for the FSP, for random
solutions, P0.1

n \ T 0.1
n represents around 2/3 of solutions of the layer for low correlation

instances and one half for high correlated ones. On the contrary, for Pareto local optimal
solutions, most of the solutions are within the triangle, which means very close to the
initial solution s, and hence less interesting to consider. Therefore, in the following, only
details on the distribution of neutral neighbors for random solutions will be given.
Table 4.7 indicates the distribution of promising neutral neighbors overH-layers, according
to several values of δ. The first observation is that the number of solutions decreases rapidly
as the value of δ increases. Indeed, when a high degradation is allowed on one objective,
a high improvement on the other one is required to compensate it and to belong to the
first layer.
Table 4.8 studies solutions that produce a minimal improvement with a bounded degra-
dation. The distribution among V-layers shows that for low correlated instances, V-layers
with a medium δ have still an interesting number of solutions. This is less true for high
correlated problems. As for the FSP, there are some neighbors belonging to Vn1 ; such
solutions produce an improvement larger than the worst degradation encountered within
the whole neighborhood.
As a conclusion on the QAP problem, and for the same reasons than for the FSP, it seems
interesting to consider neutral neighbors during the search, as a large part of them are
promising ones. The same question stays open as for the consideration of neutral neighbors
when the Pareto local optima are close.
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Table 4.7: Distribution of the promising neutral neighbors
in the H-layers (Random solutions).

H0.1
n H0.2

n H0.3
n H0.4

n H0.5
n H0.6

n H1
n

ρ = 0
20 23,88 12,3 7,2 3,94 2,15 1,33 1,56
50 28,61 12,61 5,71 2,49 1,07 0,42 0,27
100 31,87 11,98 4,52 1,62 0,56 0,18 0,07

ρ: mid
20 33,57 11,2 4,06 1,74 0,57 0,26 0,16
50 37,51 9,65 2,41 0,6 0,13 0,03 0
100 40,51 8,01 1,56 0,27 0,04 0,01 0

ρ: high
20 43,26 6,01 0,99 0,21 0,05 0,02 0
50 46,67 3,3 0,25 0,02 0 0 0
100 48,47 1,72 0,06 0 0 0 0

Table 4.8: Distribution of the promising neutral neighbors
in the V-layers (Random solutions).

V0.1
n V0.2

n V0.3
n V0.4

n V0.5
n V0.6

n V1
n

ρ = 0
20 23,88 30,28 28,48 24,05 19,02 14,91 12,56
50 28,61 32,74 26,67 19,15 12,79 8,13 5,17

100 31,87 33,07 23,79 14,86 8,58 4,69 2,48

ρ: mid
20 33,57 34,52 25,76 18,06 12,14 7,78 5,37
50 37,51 33,17 20,17 10,87 5,47 2,71 1,31

100 40,51 31,17 16,09 7,26 3,12 1,27 0,52

ρ: high
20 43,26 26,9 12,77 5,96 3,01 1,64 0,96
50 46,67 21,75 6,9 1,95 0,57 0,2 0,07

100 48,47 16,73 3,43 0,64 0,11 0,02 0

4.5.4 Experimental results on TSP

First, Table 4.9 (a), shows that the number of neutral neighbors Nn decreases faster as the
correlation between objectives increases. However, the size of the problem has no impact
on Nn for a same correlation. For random solutions the proportion of promising neutral
neighbors Pn is still around 50 % which shows that they are well distributed among the
neutral ones. This observation is not true for Pareto local optimal solutions, that have
very much less neutral neighbors and a smaller proportion of promising ones.
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Table 4.9: Results for the bi-objective TSP (in percentage).

(a) Percentage of neutral and promising
neighbors for both random and optimal
solutions.

Rnd Opt

Nn Pn Nn Pn

ρ = 0
20 50.76 51.15 29.9 9.84
50 50.06 49.79 21.12 7.29
100 50.08 50.27 16.2 5.01

ρ: mid
20 26.53 50.79 10.04 17.46
50 27.42 50.26 8.62 13.66
100 27.84 50.28 6.84 10.14

ρ: high
20 8.98 49.67 1.63 37.39
50 8.48 49.89 1.53 26.55
100 8.55 49.77 1.23 25.88

(b) Distribution of promising neutral
neighbors in the first horizontal layer.

Rnd Opt

T 0.1
n P0.1

n \ T 0.1
n T 0.1

n P0.1
n \ T 0.1

n

ρ = 0
20 4.5 21.08 1.81 2.49
50 6.52 22.84 2.49 2.12

100 7.89 23.99 2.39 1.4

ρ: mid
20 12.64 23.43 7.36 5.13
50 16.89 23.69 8.25 3.51

100 18.66 23.47 7.26 2.02

ρ: high
20 37.65 10.66 32.65 3.02
50 43.71 5.97 26.21 0.34

100 44.76 4.93 25.61 0.27

The analysis of the H-layer (Table 4.9 (b)) shows that for random solutions, P0.1
n \ T 0.1

n

represents 4/5 of solutions of the layer for low correlation instances (more than FSP and
QAP) and only 1/3 for high correlated ones (less than FSP and QAP). For Pareto local
optimal solutions, these ratio are enforced.
The analysis of the distribution over H-layers (Table 4.10), shows some similarities with
the two other problems. Indeed, in the same manner, the number of solutions decreases
rapidly as the value of δ increases to reach the value 0 for large δ.
Table 4.11 shows that for low correlated instances, V-layers with a medium δ have still an
interesting number of solutions. This is less true for high correlated problems, where for
large size problems this number may be null.
As a conclusion for the TSP, we can say that those results are slightly different from
the FSP and the QAP. If for low correlated instances, the number of promising neutral
neighbors encourages to consider neutral neighbors during the search, this is not true
anymore for high correlated instances. This analysis contributes to show the important
impact of correlation between objectives.

4.6 Conclusion and Perspectives

Summary In this chapter, we presented our contributions on multi-objective fitness land-
scape. First, we proposed several definitions of neutrality for multi-objective optimization:
the Pareto-neutrality, and different variants of ε-neutrality and HD-neutrality. We used the
binary epsilon (additive and multiplicative) and hypervolume difference indicators since
they enable the comparison between multi-objective solutions. While the Pareto definition
divides a solution neighborhood into three regions being the dominating neighbors, the
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Table 4.10: Distribution of the promising neutral neighbors
in the H-layers (Random solutions).

H0.1
n H0.2

n H0.3
n H0.4

n H0.5
n H0.6

n H1
n

ρ = 0
20 25,58 11,51 6,25 3,61 1,96 1,09 1,15
50 29,37 11,2 5,24 2,4 0,98 0,38 0,22
100 31,88 11,14 4,61 1,77 0,62 0,18 0,07

ρ: mid
20 36,08 9,6 3,2 1,16 0,48 0,22 0,05
50 40,58 7,69 1,63 0,3 0,05 0,01 0
100 42,13 6,84 1,16 0,14 0,01 0 0

ρ: high
20 48,31 1,25 0,11 0 0 0 0
50 49,68 0,21 0 0 0 0 0
100 49,69 0,08 0 0 0 0 0

Table 4.11: Distribution of the promising neutral neighbors
in the V-layers (Random solutions).

V0.1
n V0.2

n V0.3
n V0.4

n V0.5
n V0.6

n V1
n

ρ = 0
20 25.58 32.59 32.22 28.39 23.28 18.83 15.05
50 29.37 34.05 29.46 22.41 15.54 9.94 6.03

100 31.88 35.13 28.23 19.65 12.27 6.96 3.68

ρ: mid
20 36.08 33.04 23.56 15.2 9.6 6.13 3.66
50 40.58 31.38 17.69 8.66 3.97 1.72 0.7

100 42.13 30.31 15.51 6.67 2.49 0.87 0.28

ρ: high
20 48.31 11.92 2.81 0.76 0.22 0.09 0.02
50 49.68 6.18 0.35 0.03 0 0 0

100 49.69 5.02 0.16 0 0 0 0

incomparable neighbors and the dominated neighbors, the definitions based on the indi-
cators offer a wealth of information about the distribution of neighbors in the objective
space. Specific areas of the neighborhood are characterized and some of them include
some promising neighbors, defined later on. The bounded definitions based on the indi-
cators are tunable, and thus for the characterized neutral neighbors areas as well. Then,
these ones may be adapted with the local structure of the neighborhood. We considered
the permutation flowshop scheduling problem (FSP) and the traveling salesman problem
(TSP) with two or three objectives. While the objectives of the FSP were chosen to be
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quite correlated, the objectives of the TSP were independent. This particularity leads to
different neutral degrees and distributions of the neighbors for each definition investigated.
These experiments raised two questions (Should neighbors be considered identically dur-
ing the search? Does correlation impact the neutrality?) that have been addressed by
the following study. Therefore, we proposed indicators to better characterize the neutral
neighbors and, more particularly, the promising ones. This definition was based on the
additive epsilon only, since as we have seen, it is easier to understand. The incomparable
region around a solution was divided into different layers for which the sizes are tunable.
We conducted our study on the two previous permutations problems and we added the
quadratic assignment problem (QAP). However, we considered 2 objectives only and we
constructed different correlation levels between the objectives in order to see if the results,
previously obtained, could be partly explained by this. The experiments confirmed our
intuition, but also allowed us to better understand the landscape of the different problems.

Neutrality-Aware Multi-objective Stochastic Local Search In order
to integrate neutrality into metaheuristics in multi-objective optimization as it has been
done in single-objective optimization (Marmion et al. 2011a; Vérel et al. 2004), clear def-
initions of neutrality were required. This work was a first step towards such definitions.
In the future, we would like to use these definitions to analyze and compute indicators
during the execution of the algorithm. Indeed, the algorithm should be able to adapt to
local properties of the landscape. The number of neutral neighbors and their distribution
may help the algorithms, in particularly multi-objective stochastic local search algorithms
(see Chapter 2 for a clear description) to embed several mechanisms to perform better.
For each of them, we explain our ideas to use neutral neighbors. In the selection phase,
some solutions are selected to be explored in the following phase. The best choice might
be the promising neighbors identified at the previous iteration. In the exploration phase,
an efficient strategy is to stop the exploration of the neighborhood as soon as a dominat-
ing solution is found but it also accepts all non-dominated neighbors (i.e. Pareto-neutral
neighbors) identified. We could imagine not to accept all neutral neighbors, since they can
be numerous, but only the promising ones according to a bound evolving during the run.
Hence, the archiving phase would be faster. Adaptive algorithms integrate control mech-
anisms and feedback computation to easily react to unknown properties of the landscape.
According to the recent classification of B. Doerr and C. Doerr (2018), the control mech-
anisms can be, among others, state-dependent, success-based or learning-inspired. This
latter type is the most interesting from a landscape analysis perspective. Indeed, con-
sidering adaptive multi-objective SLS algorithms, measures on neutral neighbors, could
indicate if the next strategy to use should take into account the neutral neighbors or not,
and even the promising ones. Moreover, it could help to fix the value of the bound in the
different definitions of indicator-based neutrality.

Landscape-aware Automatic Selection of Multi-objective Algorithms
Fitness landscape analysis (FLA) enables a better understanding of the problem/instance
solved. Algorithm selection investigates the relation between algorithm performance and
problem instance features. However, although it may seem obvious to use FLA mea-
sures in the automatic selection process, only few works have already investigated that
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approach (Kerschke and Trautmann 2019). In the same way, with Lucas Pavelski and Myr-
iam Delgado, we proposed a similar approach since we integrated simple FLA measures
into our algorithm selection system to predict the best algorithm with its best parameters
to solve the classical permutation flowshop problems with makespan or sum of flowtimes
minimization (Pavelski et al. 2019). A natural perspective may be to extend our algo-
rithm selection system to multi-objective optimization and to integrate multi-objective
FLA measures. For example, those measures could be on global or local neutrality of the
instances used to train the model. This would allow us to better characterize an instance
in order to choose the best strategies in the different cases.
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Landscape-aware
Stochastic Local Search

Algorithms

In this chapter, we propose two stochastic local search algorithms designed from the a pri-
ori analysis of the problem for which they are adapted. Indeed, the nature of the landscape
plays an important role on the easiness, or not, in solving an optimization problem since
a stochastic local search algorithm moves from solution to another through the neighbor-
hood structure. Algorithms, where information from the landscape analysis is computed
and exploited at different times during the execution, are adaptive algorithms and more
precisely, state-dependent algorithms (B. Doerr and C. Doerr 2018). The contributions
presented in this chapter are derived from the PhD of Lucien Mousin.

The autocorrelation measure, the fitness-distance correlation, the neutral degree, the local
optima networks are, among others, problem-independent features that can be computed
to characterize the landscape. However, some properties of the problem directly impact
the landscape structure such as the number of solutions or, the time to explore the neigh-
borhood. In this chapter, our contributions focus on these particularities. Therefore, we
present two independent studies on two different optimization problems: the no-wait flow-
shop scheduling problem (Mousin et al. 2019) and the feature selection problem (Mousin
et al. 2016).

This chapter is organized as follows:

• Section 5.1 proposes an iterated greedy algorithm to solve the no-wait flowshop
scheduling problem. This variant of the classical permutation scheduling problems
imposes constraints on no waiting time when a task switches to the next machine.
The analysis of local optima shows the presence of identical sequences. Then, we
describe how these sequences are identified during the run and how they are exploited
to reduce the search space. The experiments conducted show the interest of this
approach.

• Section 5.2 proposes an adaption of a tabu search to solve a feature selection problem.
The particularity of this tabu search is that it integrates a learning mechanism that
estimates the good combination of features and then, reduces the neighborhood to
explore. The experiments on different datasets encourage the use of this approach.
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5.1 Reduction of the Search Space

In this section, we first present the target problem being the no-wait flowshop scheduling
problem. Then, we describe our methodology to analyze the sequences of consecutive jobs
and show how to exploit them into a metaheuristic. Experiments are conducted on the
Taillard instances and lead to propose an iterative version that increases the performance.

5.1.1 The No-Wait Flowshop Scheduling Problem

5.1.1.1 Problem description

The No-Wait Flowshop Scheduling Problem (NWFSP) is a variant of the well-known
permutation flowshop scheduling problem (FSP), where no waiting time is allowed between
the processing of a job on the successive machines (Röck 1984). Regarding the complexity
of the problem, it has been proved by Wismer (1972) that the NWFSP can be viewed
as an Asymmetric Traveling Salesman Problem. In addition, Röck (1984) proved that for
m-machines (m ≥ 3), the NWFSP is NP-hard while, the 2-machines case can be solved
in O(n ∗ log n) (Gilmore and Gomory 1964). The formal definition of the NWFSP is the
same as one of the FSP (see Chapter 3, Section 3.2.4.1). The difference is the computation
of the completion times to support the no waiting time constraint.
In this work, we consider the NWFSP with makespan (Cmax) minimization. Figure 5.1
provides a representation of a solution for an instance with five jobs and four machines.
The makespan of this solution is 22 units. The insertion operator is used to define the
neighborhood relation.

M1 J5 J2 J1 J3 J4

M2 J5 J2 J1 J3 J4

M3 J5 J2 J1 J3 J4

M4 J5 J2 J1 J3 J4

Figure 5.1: Gantt chart of the solution π = {5, 2, 1, 3, 4} of a 5-jobs 4-machines NWFSP
instance.

5.1.1.2 Literature Review

As mentioned before, the NWFSP is NP-Hard when the number of machines is strictly
higher than two. Thus, exact methods were not able to find the optimal solution in a
reasonable time for large-scale instances. Several heuristics and metaheuristics have been
developed to tackle this problem.

Heuristic approaches They are mostly constructive and start from an initial sequence
of jobs ordered according to a criterion. Then, they build a solution by inserting jobs in
that order, to optimize the (partial) makespan at each step. Some heuristics are either
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adaptations of heuristics developed for the classical FSP or have been specifically de-
signed for the NWFSP. Hence, the well-known constructive heuristic NEH (Nawaz et al.
1983), initially designed for the FSP, has been successfully applied on the No-Wait variant.
Among heuristics specifically designed for the NWFSP, we may cite GAN-RAJ (Gan-
gadharan and Rajendran 1993) and RAJ (Rajendran 1994), BIH (Bianco et al. 1999),
BH (Bertolissi 2000), LC (Laha and Chakraborty 2008)) and IBI (Mousin et al. 2017).

Metaheuristic approaches They are efficient methods to explore large search space
and mostly able to find solutions with a higher quality than constructive heuristics. Both
nature-inspired and stochastic local search (SLS) algorithms have been proposed to tackle
the NWFSP. Regarding nature-inspired algorithms, we may find genetic algorithms (Al-
dowaisan and Allahverdi 2003), particle swarm optimization (Pan et al. 2008), or dif-
ferential evolution (Qian et al. 2009). On the other hand, several SLS algorithms have
also been proposed, such as tabu search (Grabowski and Pempera 2005; Samarghandi and
ElMekkawy 2012), variable neighborhood search (Jarboui et al. 2010) or simulated anneal-
ing (Aldowaisan and Allahverdi 2003). At the beginning of the PhD of Lucien Mousin,
(Ding et al. 2015) proposed a very efficient approach named TMIIG (Tabu-Mechanism
Improved Iterated Greedy) based on a variable neighborhood search (Mladenović and
P. Hansen 1997). In the perturbation phase, the authors use the efficient destruction-
construction method of the Iterated Greedy (IG) (Ruiz and Stützle 2007), initially pro-
posed for the FSP, and added a tabu mechanism to avoid scheduling a job at its previous
positions during the different destruction-construction phases.

In 2015, TMIIG obtained the best performance to solve the Taillard instances, and it
found new best solutions for the largest instances. However, during the PhD work of
Lucien Mousin, Lin and Ying (2016) used the asymmetric traveling salesman problem
formalization and applied the best exact methods, specifically designed for this problem,
and were able to reach the optimal solutions for Taillard instances. In the following, the
results are compared to TMIIG since the work of Lin and Ying (2016) was conducted
at the same time and our approach is, nevertheless, interesting for the development of
landscape-aware algorithms.

5.1.2 Super-jobs: Promising sequences of Consecutive Jobs

In the NWFSP, each job is processing without interruption between the successive ma-
chines. Therefore, one question arises: does this specificity lead to a particular structure
of the best solutions of a given instance. In this section, we conduct an analysis of the
global and local optimum solutions in order to extract structural information on them.
It leads us to define a promising sequence of consecutive jobs as a super-job. Then, we
present a methodology to identify super-jobs of an unknown instance in order to exploit
them in the resolution.

5.1.2.1 Structural Analysis of Optimum Solutions

This analysis aims at extracting similarities in the structure of efficient schedules i.e. good
quality solutions. We conduct this analysis on small instances (low number of jobs) with
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Cmax Solution permutation

GO 1021 8 3 7 5 10 [9 1] [0 4] 6 [11 2]
LO 1036 8 3 7 [11 2] 5 10 [9 1] [0 4] 6

1075 8 10 [9 1] [0 4] 7 5 3 [11 2] 6
1090 8 3 5 10 6 [0 4] 7 [11 2] [9 1]
1103 8 3 5 10 6 [0 4] 7 [9 1] [11 2]
1132 8 10 6 [0 4] 7 5 3 [9 1] [11 2]
1132 8 3 7 [11 2] 5 10 9 6 [0 4] 1
∗1176 8 3 5 10 [9 1] [11 2] 7 6 [0 4]
1189 8 10 6 [0 4] 7 5 3 [11 2] [9 1]
1232 8 10 [9 1] [0 4] 7 3 5 6 [11 2]
1246 8 3 7 10 [9 1] [11 2] 5 6 [0 4]

Figure 5.2: Description (Cmax+ solution permutation) of the global optimum (GO) and
the 10 best local optima (LO) for illustrative instance (12 jobs and 5 machines). The

sequences [11 2] and [0 4] colored in orange and green respectively, appear in all solutions
and the sequence [9 1] colored in violet, appears in 10 solutions over 11. When these 3
sequences are considered as 3 unique jobs, only one local optimum remains (identified

with the star ∗), the other ones are no longer local and are moved to the global
optimum.

processing times uniformly generated following the methodology of Taillard’s instances (see
Chapter 3, Section 3.2.4.1). We report here, as an example, the analysis of an instance
with 12 jobs and 5 machines. This problem size (12) enables to exhaustively enumerate
the search space and therefore, to identify the global optimum and the best local optima
considering the insertion neighborhood. Indeed, local optima are interesting to analyze
since they may trap local search methods that explore the search space moving iteratively
to improving neighbors. In the following, the term optimum solutions (or optima) is used
to deal with the global or local optimum solutions more generally.
Figure 5.2 gives the global optimum (GO) and the 10 best local optima (LO) of the
studied instance of size 12. For this small instance, it is easy to see that the LO share a
similar structure between them and with the GO. Indeed, job 8 is always positioned at
the beginning of the schedule and two sequences of two consecutive jobs are present in
all of them: [0 4] in green, and [11 2] in orange and one sequence in 10 over 11 solutions:
[9 1] colored in violet. LO solutions guarantee that they can not be improved by applying
the insertion operator. However, if we consider each identified sequence of consecutive
jobs as a unique job, the best LO (Cmax = 1036) only differs from the global optimum
(Cmax = 1021) by the single move of the sequence [11 2] at the end of the permutation.
Likewise, applying the insertion operator on the other LO with the consideration of the
identified sequences instead of single job, moves all of them (except the one of Cmax = 1176
identified with a star) to the GO.
As mentioned before, this study has been conducted on a small instance to be able to
exhaustively enumerate the search space. Here, only sequences of two consecutive jobs
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were found. However, the size is not limited. Hence, if a job a is always followed by a job
b and, the job b is always followed by a job c then, the sequence [a b c] of three consecutive
jobs has to be considered rather than the two sequences [a b] and [b c] separately.
Observations made in this analysis motivate the substitution of original jobs by promising
sequences of jobs to favor to reach better quality solutions. This transformation of the
original problem may represent a good opportunity to solve large size instances. Therefore
one new question arises: how to define and identify the promising sequences?

5.1.2.2 Definition of Super-Jobs

The previous exhaustive analysis of the structure of local optima for small size instances
leads us to suppose that a similar behavior appears on larger ones. In this section, we
present the methodology we propose to identify promising sequences of an unknown in-
stance to be solved.
Regardless the size of the search space, good quality solutions and more precisely, good
quality local optima, hopefully share a similar structure. When the search space is non
enumerable, it is commonly admitted to use a sample of solutions in order to analyze their
structure, characteristics . . .
Here, we propose to extract the promising sequences from a pool, denoted P∗, of good
quality local optima and to define a super-job with a confidence of σ, any sequence of
consecutive jobs that appears at least σ percent of times in solutions of P∗. For example,
if σ = 50%, the super-jobs are the sequences of consecutive jobs shared by half of the
solutions of P∗. Let us note that only the longest sequences are considered as super-jobs.
For example, if both [a b] and [b c] appear at least σ percent of times in P∗, only [a b c]
is defined as a super-job.
This methodology has the advantage to be relevant regardless the problem size. However,
the main drawback may be the computational time required to generate the pool of good
quality solutions. Therefore, the size of the pool has to be fixed carefully: too large
means that too much time would be spent to generate the pool, too small means that
the identification of the super-jobs would be insignificant. This aspect will be discussed
during the experimental section.

5.1.2.3 Advantages of Super-Jobs

The advantages of considering sequences of consecutive jobs (super-jobs) as unique jobs
are several. First, for a complexity point of view, it will reduce the combinatorics of the
problem i.e. the size of the search space. Secondly, for a local search point of view, this
will modify the search space and the landscape induced by the insertion operator and so,
new regions of the search space may become reachable more easily.
In order to provide a better understanding of the impact of super-jobs on the landscape,
we present a visualization in 2D of the landscape transformation in Figure 5.3. Each
point of the graph represents a solution. Blue points represent the original landscape,
considering solutions constructed from original jobs following a neighborhood relationship
(in the simplified representation, a solution has two neighbors). Red points represent
the modified landscape obtained while considering super-jobs. We expect that the use of
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Figure 5.3: Visualization of the landscape in 2D. The blue points represent solutions of
the original problem while the red ones represent those remaining with the super-jobs.

super-jobs locally smooths the landscape and makes easier the movement of a stochastic
local search to avoid some original local optima which disappeared.

5.1.3 Iterated Greedy with Learning

Super-jobs have been defined as common structural characteristics of good quality solu-
tions. In this section we propose an approach that exploits these super-jobs to improve
an already efficient heuristic proposed in the literature for the FSP – the Iterated Greedy
(IG) – in order to reach new best solutions for the Taillard instances. Thus, this section
presents, first, the IG algorithm, and then our proposed approach.

5.1.3.1 Iterated Greedy Algorithm

The Iterated Greedy (IG) algorithm (Ruiz and Stützle 2007), initially proposed for the
classical permutation flowshop scheduling problem, is an iterated local search, based on
the insertion operator, whose perturbation phase removes some jobs from a solution, and
reinserts them one by one at their best position i.e. the position that minimizes the partial
makespan. The local search itself is an iterative improvement: each job of the sequence
is considered in a random order and is re-inserted at its best position. This process is
repeated until a local optimum is reached. The acceptance criterion of IG is inspired from
the one of the simulated annealing and, checks if the new local optimum found is better
or not than the best one ever found during the run. IG is known to be efficient to solve
many variants of permutation flowshops. However, even if it is able to reach good quality
solutions in a reasonable computational time, it is not able to reach, for the NWFSP, the
best-known solutions of the largest instances of Taillard. However, the best algorithm for
the NWFSP was the recent algorithm TMIIG (Ding et al. 2015), inspired from IG (see
Section 5.1.1.2). Since the performance of IG is doubtless to solve small and medium sizes
instances and, since the use of super-jobs decreases the problem size, we propose to design
a new algorithm taking advantage of both IG and the super-jobs.
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Algorithm 7: IGSJ– Iterated Greedy with Learning algorithm.
Input: pool of solutions P∗
Input: list of confidence levels in increasing order Σ = σ1, σ2, . . .
Output: solution π
Data: list of super-jobs SJ
SJ = identify(P∗, σ1) ; /* Identifies Super-jobs with a confidence σ1 */
π = init(SJ) ; /* Initializes π with identified SJ */

foreach σ in Σ do
SJ = identify(P∗, σ) ; /* Identifies Super-jobs with a confidence σ (i) */
π = IG(π, SJ) ; /* Runs IG from π with identified SJ (ii) */

return π

5.1.3.2 Iterated Greedy with Super-Jobs Algorithm

The Iterated Greedy with super-jobs algorithm (IGSJ) identifies super-jobs of several in-
creasing levels of confidence during the search and exploits them into the basic IG al-
gorithm. Algorithm 7 gives the pseudo-code of this new algorithm. Given a pool of
good quality local optima, whose generation will be discussed later, and an increasing list
Σ = {σ1, σ2, . . . , σn} of confidence levels, IGSJ first identifies super-jobs regarding the first
level of confidence σ1. Afterwards, an initialization method generates a first solution π
with these identified super-jobs. A process is then, iterated for each level of confidence of
Σ, alternating between (i) a phase of super-jobs identification (except for the first level of
confidence σ1) and (ii) a phase of improvement using IG. The Iterated Greedy algorithm
is executed on the solution considering super-jobs as jobs of the problem. As IG has no
natural stopping criterion, a maximal time, as well as a maximal number of iterations
without improvement, are used to stop the IG phase. Once all the levels of confidence
have been used, the algorithm returns the best-found solution over the run.
Table 5.1 presents the evolution of a solution π for all phases of an execution of IGSJ on
the instance ta023 of Taillard (20 jobs, 20 machines) with the list of confidence levels
Σ = {60%, 80%,∞}, where σ = ∞ means that no super-job is created (the problem is
solved with all the original jobs). In this example, with σ = 60%, in the first identification
phase, seven super-jobs are identified: one of size 12, two of size 2 and the fourth-remaining
ones of size 1. Therefore, the problem size is decreased from 20 to 7. The initialization
method then builds, from these 7 jobs, a local optimum with a quality of 3021 that IG
is not able to improve. Then, considering a confidence level of σ = 80%, some previous
super-jobs are decomposed during the next identification phase. Indeed, the largest super-
job is decomposed into eight smaller ones. The problem size is equal to 14 and IG manages
to find a better solution with a quality of 3013. It appears, in this special case, that the
global optimum is reached within this second phase. This explains why the last phase
(σ =∞, super-jobs are all of size 1) is not able to produce any improving solution.

5.1.4 Experiments

In order to assess the efficiency of the IGSJ algorithm, experiments are driven on Taillard
instances and results compared to the best-known solutions (at the moment of this work)
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σ Phase n Cmax Solution π

60 ident 7 - [1 7] 2 [3 19] 5 11 [13 15 14 17 9 4 8 18 0 12 6 10] 16
init 3021 [3 19] 16 5 2 11 [13 15 14 17 9 4 8 18 0 12 6 10] [1 7]
IG 3021 [3 19] 16 5 2 11 [13 15 14 17 9 4 8 18 0 12 6 10] [1 7]

80 ident 14 3021 [3 19] 16 5 2 11 [13 15] 14 17 [9 4] 8 [18 0] 12 [6 10] [1 7]
IG 3013 [3 19] 16 5 2 12 17 [18 0] 11 [13 15] 14 [9 4] 8 [6 10] [1 7]

∞ ident 20 3013 3 19 16 5 2 12 17 18 0 11 13 15 14 9 4 8 6 10 1 7
IG 3013 3 19 16 5 2 12 17 18 0 11 13 15 14 9 4 8 6 10 1 7

Table 5.1: Successive phases of IGSJ on instance ta023 of Taillard (20 jobs, 20
machines) with Σ = {60%; 80%;∞}. For each confidence level, the identified super-jobs

are in bold. n gives the number of jobs/super-jobs

of the literature obtained by TMIIG (Ding et al. 2015).

5.1.4.1 Experimental Protocol

In the experiments, we consider all the Taillard instances(N = {20, 50, 100, 200, 500} jobs
and M = {5, 10, 20} machines) for a total of 12 sizes and 10 instances per size. Following
a preliminary study, several parameters was settled for these experiments:

• Initial pool of solutions P∗: 10 solutions (enough to extract knowledge) were
generated from 10 independent executions of IG with a maximal time of n2 ∗ 10 ms
each.

• Levels of confidence: Two lists Σ1 = {60%, 80%,∞} and Σ2 = {60%, 70%, 80%, 90%,∞}
were tested in order to evaluate the performance of IGSJ according to the granularity.

• Initialization method: Iterated Best Insertion heuristic, a constructive heuristic
hybridized with a basic local search (first improvement hill climbing) (Mousin et al.
2017).

• Stopping criterion of IG: A maximal time of n2
sj ∗10 ms (where nsj is the number

of super-jobs of the phase), and a maximal number of iterations without improvement
of 50 ∗ nsj are defined.

Each execution of IGSJ on a given instance I returns a solution π of fitness Cmax(π). To
measure the quality of the solution, the Relative Percentage Deviation (RPD) is computed
relatively to the best-known solution of the literature π∗ as follows:

RPD =
Cmax(π)− Cmax(π∗)

Cmax(π∗)
∗ 100 (5.1)

Hence a negative RPD indicates that a new best known solution is found.
IGSJ is stochastic, thus 30 runs were executed to make the experimental results robust,
and performance for an instance I corresponds to the average of the 30 RPD computed.
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Machines
Jobs

50 100 200 500

5 17 2 21 11 X 14 5 29 13 11 16 5 6 4

10 26 20 7 24 18 26 22 X 23 23 24 19 X X X X 29 28 X X

20 13 29 12 25 26 X 29 X 19 29 X X X X X X X X 29 X X X X 28 29 23 X X X X

Machines
Jobs

50 100 200 500

5 1 23 2 25 17 X 14 6 X 13 14 20 8 6 6

10 27 17 19 X 24 28 26 X X 22 27 19 X X X X X 29 X X

20 17 X 22 26 27 X X X 27 29 X X X X X X X X X X X X X X 29 26 X X X X

Table 5.2: Results on Taillard instances (organized by size) for Σ1 = {60%, 80%,∞}
(top) and Σ2 = {60%, 70%, 80%, 90%,∞} (bottom). Gray cell: the best-known solution
of the literature is reached. #/X : Number of times the best-known is improved (X = all

runs).

5.1.4.2 Experimental Results

To analyze performance of the IGSJ algorithm, our results are compared with the best-
known solutions of the literature, reported in (Ding et al. 2015). Table 5.2 reports the
results for both Σ1 (top) and Σ2 (bottom). It indicates, for each instance (10 instances
per size) if the best-known solution of the literature is reached (cells colored in gray) and if
this best-known is improved (non empty cell). Hence, when a number is present in a cell,
this indicates the number of times the method improves the previous best-known solution
over the 30 executions, an ’x’ indicates 30/30. The results obtained for the 30 instances
with 20 jobs are not reported here as the original IG ever reaches the optimal solution.
The tables show that for all instances the method reaches the best-known of the literature
regardless the two lists of confidence levels Σ1 and Σ2. In addition they show that all
instances with 100, 200 and 500 jobs are improved with the proposed IGSJ algorithm
(there is non empty gray cell).

To deeper analyze the behavior of the method, some information about the execution
of the method for the two lists Σ1 (top) and Σ2 (bottom) are reported in Table 5.3.
Results presented are average over the 30 executions for the tem instances per size. The
conclusions are similar between the two lists Σ1 and Σ2. We will first discuss about the
common analyses and then point out differences within the discussion.
Left parts of these tables report the size of the problem i.e. the number of jobs for
each phase. These jobs are either original jobs, or the super-jobs constructed by the
concatenation of several jobs, as explained before. This measure gives the combinatorics
of the problem. For example, for instances of size 200, when σ = 60%, the number of jobs
is around 80-90. This means that the size of the problem has been divided by more than 2.
In the following phase, when σ = 80%, some super-jobs are decomposed and the number
of jobs is around 150-160. The combinatorics is still reduced. As mentioned before when
σ = ∞ the number of jobs equals the original number of jobs (i.e. 200 for the previous
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example). This first observation indicates that there is a real difference between the set
of jobs obtained for the two levels of confidence, which shows that the identification of
super-jobs is different.
Another observation is that the number of machines has also an impact on the identification
of super-jobs. Indeed for a given number of jobs, the more the number of machines, the
smaller the combinatorics. As far as instances of size 500 are concerned, the high level of
combinatorics may be explained by the use of IG to generate the pool of solutions. Indeed,
IG has difficulty to converge for large size problems within the time allowed. Hence the
solutions of the pool are too diversified to identify common sequences of jobs.

Instances Problem size End of improvement RPD value Time (s)
60% 80% Init IG60% IG80% IG∞ Init IG60% IG80% IG∞ 60% 80% ∞ total

20×5 1.23 10.26 98.7 0.0 1.3 0.0 0.06 0.06 0.00 0.00 0.14 0.31 0.00 0.45
20×10 1.00 10.00 100.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.14 0.30 0.00 0.45
20×20 1.26 10.35 95.3 2.3 2.3 0.0 0.03 0.03 0.00 0.00 0.14 0.30 0.01 0.45
50×5 9.23 31.65 10.0 31.0 53.7 5.3 0.97 0.22 0.06 0.06 0.59 1.72 1.69 3.99
50×10 5.98 29.83 28.3 6.7 57.7 7.3 0.72 0.47 0.07 0.07 0.82 1.84 0.98 3.64
50×20 4.10 27.85 59.0 3.3 29.3 8.3 0.42 0.24 0.05 0.04 0.89 1.88 0.54 3.30
100×5 45.46 78.32 0.0 43.3 34.7 22.0 3.00 0.03 0.00 -0.01 6.88 7.07 8.98 22.93
100×10 29.04 68.99 0.0 16.3 53.7 30.0 1.69 0.07 -0.05 -0.07 3.25 7.48 9.38 20.11
100×20 27.37 68.44 0.0 9.3 59.0 31.7 1.49 0.09 -0.08 -0.10 2.82 7.71 9.22 19.74
200×10 95.36 157.41 0.0 15.3 45.7 39.0 2.89 -0.13 -0.18 -0.19 30.94 35.48 46.51 112.93
200×20 81.83 150.74 0.0 5.0 41.7 53.3 1.99 -0.20 -0.30 -0.32 22.12 39.35 48.80 110.27
500×20 268.87 409.28 0.0 0.7 30.3 69.0 2.81 -0.18 -0.24 -0.25 598.84 656.63 784.92 2040.38

Instances Problem size End of improvement RPD value Time (s)
60% 70% 80% 90% Init IG60% IG70% IG80% IG90% IG∞ Init IG60% IG70% IG80% IG90% IG∈fty 60% 70% 80% 90% ∞ total

20×5 1.23 10.19 10.30 10.20 98.70 0.00 1.33 0.00 0.00 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.14 0.14 0.14 0.31 0.00 0.74
20×10 1.00 10.00 10.00 10.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.14 0.14 0.31 0.00 0.73
20×20 1.26 10.22 10.40 10.20 95.30 2.30 1.67 0.67 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.14 0.14 0.14 0.30 0.01 0.74
50×5 9.23 29.51 31.70 29.50 9.30 23.70 35.67 20.67 9.00 1.67 0.97 0.22 0.06 0.04 0.03 0.03 0.54 1.40 1.40 1.56 1.70 6.60
50×10 5.98 28.09 29.90 28.10 24.30 5.30 30.00 19.67 14.67 6.00 0.72 0.47 0.09 0.07 0.06 0.06 0.76 1.29 1.31 1.77 0.99 6.11
50×20 4.10 26.91 27.90 26.90 56.70 3.00 14.00 13.00 10.67 2.67 0.42 0.24 0.06 0.04 0.04 0.03 0.86 1.14 1.19 1.87 0.54 5.60
100×5 45.46 71.38 78.30 71.40 0.00 31.00 21.33 16.00 19.67 12.00 3.00 0.03 0.00 -0.01 -0.02 -0.03 6.82 6.38 6.94 7.63 8.91 36.68
100×10 29.04 63.72 69.00 63.70 0.00 9.00 25.33 26.67 25.33 13.67 1.69 0.07 -0.04 -0.07 -0.09 -0.09 3.32 6.57 6.80 7.01 8.92 32.62
100×20 27.37 62.91 68.50 62.90 0.00 8.00 16.33 32.00 28.67 15.00 1.49 0.09 -0.05 -0.10 -0.12 -0.13 2.90 6.95 7.11 7.01 8.63 32.60
200×10 95.36 144.20 157.50 144.20 0.00 5.70 19.33 28.00 23.00 24.00 2.89 -0.13 -0.18 -0.20 -0.22 -0.22 31.09 30.83 32.45 35.71 43.83 173.91
200×20 81.83 138.14 150.90 138.10 0.00 0.70 14.67 28.00 28.67 28.00 1.99 -0.20 -0.28 -0.32 -0.33 -0.34 22.09 34.00 33.18 35.29 45.30 169.85
500×20 268.87 376.81 409.50 376.80 0.00 0.00 5.33 15.67 31.33 47.67 2.81 -0.18 -0.23 -0.26 -0.27 -0.28 601.14 566.95 585.10 631.06 744.54 3 128.79

Table 5.3: IGSJ with Σ1 = {60%, 80%,∞} (top) and Σ2 = {60%, 70%, 80%, 90%,∞}
(bottom). Reported measures are averages over the 10 instances of each size.

Measures about the convergence of IGSJ are given in the middle part of the tables. The
column, called End of improvement, indicates in percentage, the number of times (over
the 30 executions) the method – Init or IG – reaches the best solution of the run (average
of the 10 instances of each size). We can observe, that in both tables, for instances of
size 20, the best solution is mainly reached during the initialization phase. Indeed, for
small size instances, IG is very efficient and manages to reach best-known solutions. For
size 50, the IGSJ manages to almost always find its best solution before considering the
original problem (σ =∞) contrary to the original IG. This validates the use of super-jobs.
However, for largest size problems, some improvements are still obtained in the last phase
when the original problem is considered.
This analysis is re-enforced by the third set of columns that report the average RPD at
each phase. Thus it indicates, how far from the best-known solution of the literature, are
solutions reached after each phase. For instances of size 20, the best-known solution, which
is optimal, is reached (RPD=0). For size 50, the best-known solutions are often reached
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(but maybe not in all the executions, which explained a small positive RPD). The most
interesting is for large instances, as best known solutions are improved (negative RPD).
A complementary interesting observation for large size instances is the high improvement
between the initialization and the first phase with σ = 60%. In the following phases, even
if some better solutions are reached, the improvement is less important but significant.
The right part of the two tables reports time spent at each phase. The stopping criterion,
at each phase, is either a maximal time or a maximal number of iterations without im-
provement, both depending on the number of jobs. So, as we can expect, for most cases,
the time spent increases with the value of confidence level. Note that the total time is quite
significant (the computational time for the generation of the pool of solutions still have to
be added), but the objective of the approach is to be able to find new best solutions. So
we did not consider the computing time like an optimization constraint.

5.1.4.3 Discussion

The experimental results proved the performance of our approach (IGSJ) since new best
solutions have been found out for every largest Taillard instance. This section provides a
discussion on two important aspects of the method: the computational time required for
the generation of the pool of solutions, and the analysis of the dynamic of the method.

Discussion on the generation of the pool P∗ The computational time of the pro-
posed method may represent a drawback for the resolution of large instances. This com-
putational time is partly explicated by the generation of the pool of solutions P∗.
The fact is that the performance of the approach is based on the knowledge extraction
from this pool of initial solutions used to identify pertinent super-jobs. Preliminary results
show that the quality of the solutions of the pool highly impacts the performance, and
hence constructive heuristics do not give enough good quality solutions to identify reliable
super-jobs. Hence, we chose IG, with a time limit, to give pretty good quality solutions
for the pool of solutions, even if it is time consuming. In addition, we tested different sizes
for the pool. Indeed, the higher the size, the larger the computational time to generate
the pool whereas the lower the size, the lower the chance to have a representative pool.
Following these tests we decided to generate a pool of 10 solutions only, as pertinent
super-jobs can be found out, even with so few solutions. A small pool reduces a lot the
whole computational time of the approach. However, the time still remains important.
For example, to solve a 200 jobs instance, 400 seconds are required to generate one solution
of the pool, hence around one hour for the 10 solutions of the pool. This is quite long,
but not so important since we wanted to obtain new best solutions.
Since our approach is stochastic, in the exposed experiments, the performance is evaluated
from 30 executions of IGSJ for each instance. Each one generates its own pool of good
quality solutions. We drove some parallel experiments where a single pool of 10 solutions
was generated only and was shared between the 30 executions. The experimental results
were similar: best-known solutions of the literature were reached for the smallest instances
of Taillard, and improved for the largest one. Using such a shared pool decreases the whole
computational time by thirty.
During the analysis of the method, we also noticed that for largest instances (with 500
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jobs, mainly) a better pool of solutions improves the identification of super-jobs and then
still reduces the combinatorics. Thus, we can imagine leaving more computational time to
IG to generate a shared pool of better quality solutions, instead of generating one different
pool for each execution.

Discussion on the behavior of the method Another interesting aspect is that the
performance of the approach lies on the reduction of the combinatorics of the problem
(and so the size of the search space) made possible by the particular structure of the best
quality local optima. In the search space, each local optimum is the ’center’ of a basin
of attraction. All the basins make the landscape very rugged for stochastic local search
algorithms. The perturbation phase of IG has been designed to escape from local optima,
and so, from their attraction basins. However, the basins of attraction are not side-by-side
but included in each other; the best local optimum of a large basin may be the center of
other ones. Hence, even with a perturbation, a stochastic local search often remains in the
same large basin of attraction in which it has started. The reduction of the combinatorics
of the problem, with the identification of super-jobs, produces an interesting effect on
the landscape. Indeed, some original local optima do not exist in the reduced landscape
and so, for its basins of attraction. Therefore, regions of the landscape are smoothed,
original basins of attractions get larger and, the performance of IG at each iteration of our
approach is improved. For example, for instances with 20 jobs (the easiest of the Taillard
instances), IG ends to converge close to the best-known solutions without reaching it,
whereas with the reduction of the combinatorics, it reaches it each time. The reduction
of the number of basins of attraction helps IG to move towards the best one. Exploiting
super-jobs erases rugged regions of the search space and increases the performance of IG.
These encouraging results lead us to incorporate (IGSJ) in a more general scheme.

5.1.5 IIGSJ: an Iterative Version

5.1.5.1 Description

The experimental results presented above, showed that the learning mechanism is efficient
for both small and large size instances. Indeed, IGSJ is able to either find out new best
solutions or at least to reach the best-known solutions for the Taillard instances. For
the largest (and actually the most difficult) instances of size 100, 200 and 500, new best
solutions were discovered. However the successive RPD values (see Table 5.2) show that
IGSJ still improves the solution when the original problem is considered (σ = ∞). This
suggests IGSJ may be improved. For instances of size 500, we noticed that the initial
solutions used to identify the super-jobs are very diversified (the size of the problem was
barely reduced by two with the lower level of confidence σ = 60%) because the original
IG is not efficient for this size. Undoubtedly, this has an effect on the performance of the
whole execution of IGSJ. Iterating IGSJ from the solutions obtained at the end of the 30
executions may improve the quality as well as the size of super-jobs identified and so the
performance of the algorithm.
The proposed iterative approach (IIGSJ) given in Algorithm 8 is based on this idea.
IIGSJ starts with a set P0 of R solutions, iterates I times the inner procedure and returns
the best solution π∗ found. The inner procedure aims at building sets of solutions with
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Algorithm 8: IIGSJ: Iterative IGSJ

Input: pool of solutions P0

Input: Σ = σ1, σ2, . . . list of confidence levels in increasing order
Input: number of iterations I
Input: number of solutions built at each iteration i
Input: number of solutions used for learning ρ
Data: set of solutions built at iteration i, Pi
Data: temporary set of solutions Ptmp
Data: temporary solution π
Output: best solution found π∗

π∗ =best(P0) ; /* Initialize the best solution with the best solutions of P0 */

for i in 1..I do
// INNER PROCEDURE
Pi = ∅ ; /* Initialize Pi as an empty set */

for k in 1..R do
Ptmp = pick(ρ,Pi−1);
; /* Pick ρ solutions among Pi−1 to be stored in Ptmp (i) */
π = IGSJ(Ptmp,Σ) ; /* (ii) */
Pi = Pi ∪ π ; /* Store π in Pi (iii) */
π∗ =best(π, π∗) ; /* Memorize the best solution */

return π∗

better and better qualities in order to identify super-jobs hopefully being those of the
optimal solution. At iteration i ∈ I, it starts with Pi as an empty set where R new
solutions will be iteratively added following these three steps: (i) first, ρ solutions are
uniformly picked at random from the set Pi−1 and stored in a temporary set Ptmp then
(ii), IGSJ is applied with Ptmp and Σ to obtain a new solution π that is finally (iii), stored
in Pi, the set of the current iteration i; if π is better than the current π∗ then it replaces it.
The parameter ρ is used to select a subset of solutions and then to maintain the diversity
in the constructed pool Ptmp, otherwise the same super-jobs would be identified for each
confidence level in phase (ii).

5.1.5.2 Experimental Protocol

IIGSJ presents its own parameters to settle in addition to those of IGSJ. The number
of solutions R of a pool (Pi)i≥0 has been settled to 20 that is statistically reasonable to
evaluate the average performance of the approach; the number of solutions ρ to 10 like
in the previous experiments where 10 solutions were used to identify the super-jobs, and
the number of iterations I to 5 being enough to converge and to prevent over-learning.
The original iterated greedy is still the algorithm used in IGSJ to improve solutions. It
is stopped when either a maximal time of n2

sj ms (where nsj is the current number of
super-jobs) or a maximal number of iterations without improvement of 25 ∗ n is reached.
Note that this stopping criterion is shorter than in the previous experiments. Indeed, since
the process is iterated, the end of the convergence is not mandatory for each execution
of IG. Moreover, the use of IGSJ requires the setting of the parameter Σ to identify the
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Instance Best Gap Instance Best Gap Instance Best Gap Instance Best Gap

Ta01 1,486 0 Ta31 3,160 -1 Ta61 6,366 -31 Ta91 15,248 -71
Ta02 1,528 0 Ta32 3,432 0 Ta62 6,219 -15 Ta92 15,007 -78
Ta03 1,460 0 Ta33 3,210 -1 Ta63 6,108 -13 Ta93 15,276 -100
Ta04 1,588 0 Ta34 3,338 -1 Ta64 6,001 -25 Ta94 15,117 -83
Ta05 1,449 0 Ta35 3,356 0 Ta65 6,183 -17 Ta95 15,113 -96
Ta06 1,481 0 Ta36 3,346 -1 Ta66 6,058 -16 Ta96 14,997 -112
Ta07 1,483 0 Ta37 3,231 0 Ta67 6,224 -23 Ta97 15,300 -95
Ta08 1,482 0 Ta38 3,235 0 Ta68 6,115 -15 Ta98 15,162 -75
Ta09 1,469 0 Ta39 3,070 -2 Ta69 6,359 -11 Ta99 15,012 -88
Ta10 1,377 0 Ta40 3,317 0 Ta70 6,371 -10 Ta100 15,259 -81
Ta11 2,044 0 Ta41 4,274 0 Ta71 8,059 -18 Ta101 19,551 -130
Ta12 2,166 0 Ta42 4,177 0 Ta72 7,859 -21 Ta102 19,980 -116
Ta13 1,940 0 Ta43 4,099 0 Ta73 8,017 -11 Ta103 19,791 -122
Ta14 1,811 0 Ta44 4,399 0 Ta74 8,330 -18 Ta104 19,775 -153
Ta15 1,933 0 Ta45 4,322 0 Ta75 7,939 -19 Ta105 19,732 -111
Ta16 1,892 0 Ta46 4,289 0 Ta76 7,773 -28 Ta106 19,852 -90
Ta17 1,963 0 Ta47 4,420 0 Ta77 7,851 -15 Ta107 19,967 -145
Ta18 2,057 0 Ta48 4,318 0 Ta78 7,881 -32 Ta108 19,900 -156
Ta19 1,973 0 Ta49 4,155 0 Ta79 8,137 -24 Ta109 19,817 -101
Ta20 2,051 0 Ta50 4,283 0 Ta80 8,095 -19 Ta110 19,794 -141
Ta21 2,973 0 Ta51 6,129 0 Ta81 10,676 -24 Ta111 46,264 -425
Ta22 2,852 0 Ta52 5,725 0 Ta82 10,562 -32 Ta112 46,797 -478
Ta23 3,013 0 Ta53 5,862 0 Ta83 10,591 -20 Ta113 46,154 -390
Ta24 3,001 0 Ta54 5,788 0 Ta84 10,588 -19 Ta114 46,556 -343
Ta25 3,003 0 Ta55 5,886 0 Ta85 10,507 -32 Ta115 46,402 -339
Ta26 2,998 0 Ta56 5,863 0 Ta86 10,624 -66 Ta116 46,667 -274
Ta27 3,052 0 Ta57 5,962 0 Ta87 10,793 -32 Ta117 46,170 -339
Ta28 2,839 0 Ta58 5,926 0 Ta88 10,801 -38 Ta118 46,495 -378
Ta29 3,009 0 Ta59 5,876 0 Ta89 10,703 -20 Ta119 46,408 -335
Ta30 2,979 0 Ta60 5,958 0 Ta90 10,752 -46 Ta120 46,433 -414

Table 5.4: Best known solutions of Taillard instances. A bold value indicates a new best
solution was found out by our approach.

jobs with different levels of confidence. We use Σ = {60%, 70%, 80%, 90%,∞} since the
previous experiments showed better results for large size instances with this setting.

5.1.5.3 Experimental Results

Table 5.4 reports the best-known solutions for all Taillard instances and gives the gap value
between the results obtained by our approach and the previous best-known solutions of the
literature obtained by TMIIG (Ding et al. 2015). A gap equal to 0 means IIGSJ reaches the
best-known solutions of TMIIG, and a strictly negative gap means it finds out a solution
with a better quality i.e. a new best-known solution. This table shows that for the largest
instances of size 100, 200 and 500 jobs, IIGSJ improves the good results already obtained
with IGSJ and finds out new best-known solutions. The quality of the best solution has
been improved up to 478 like for the instance Ta112 for example. Clearly, IIGSJ is very
efficient to solve uniform instances of the no-wait flowshop scheduling problem like Taillard
instances.
In the following, we detail the results obtained by IIGSJ and discuss the interest of using
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Iter 0 Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Total
Instances RPD time (s) RPD time (s) RPD time (s) RPD time (s) RPD time (s) RPD time (s)

20×5 0.000 14 0.000 14 0.000 14 0.000 14 0.000 14 0.000 71
20×10 0.000 14 0.000 14 0.000 14 0.000 14 0.000 14 0.000 71
20×20 0.015 15 0.001 14 0.000 14 0.000 14 0.000 14 0.000 71
50×5 0.276 129 0.073 112 0.029 103 0.020 101 0.013 100 0.009 545
50×10 0.128 124 0.059 107 0.037 101 0.020 97 0.019 98 0.019 527
50×20 0.120 111 0.034 100 0.016 97 0.010 96 0.010 94 0.010 497
100×5 1.015 742 0.317 370 0.162 253 0.134 236 0.107 229 0.102 1830
100×10 0.577 332 0.215 282 0.147 254 0.134 243 0.124 231 0.112 1341
100×20 0.587 324 0.222 265 0.159 244 0.137 226 0.127 206 0.124 1264
200×10 1.431 1835 0.441 1281 0.187 1084 0.102 1005 0.085 976 0.084 6181
200×20 1.180 1726 0.366 1269 0.206 1116 0.134 1048 0.105 908 0.082 6068
500×20 1.748 32906 0.598 20789 0.299 16668 0.157 14747 0.090 11728 0.055 96838

Table 5.5: Analysis of the 5 iterations of IIGSJ. Results are presented according to the
12 different sizes of the Taillard instances N ×M . The RPD value of a run is computed
from the best-known quality reported in Table5.4. Times are given in seconds. For each
iteration, the reported values of RPD and time are the average values computed over 200

runs.

IGSJ iteratively. We present the results by grouping Taillard instances according to the
12 different sizes (N ×M) since the number of jobs N and the number of machines M
impact the resolution of the problem. In our experiments, one iteration of IIGSJ provides
20 solutions. All the solutions obtained after each iteration during a run of IIGSJ are
memorized in order to make an a posteriori analysis to validate the interest of iterating
the approach of IGSJ. After running IIGSJ on Taillard instances, the qualities of the
solutions obtained after each iteration and the (new) best-known quality (values reported
in Table 5.4) are compared to compute the RPD value. Table 5.5 gives the average RPD
computed from the 200 values obtained (20 solutions per iteration, 10 instances by size)
for each iteration of IIGSJ. A null RPD value means that the quality of the 200 solutions
provided at the considered iteration is equal to the best-known quality for each of the
10 instances respectively. A strictly positive RPD value means that at least one solution
provided at the end of the iteration does not have the best-known quality. As expected, the
average RPD decreases with the successive iterations that shows the interest of exploiting
the solution provided by an iteration to identify new and better super-jobs.
This decrease is illustrated on Figure 5.4 that shows the associated boxplots for the most
difficult instances (20-jobs instances are optimally solved from the beginning). A line
separates each graphic: the left part corresponds to the first iteration (like one execution
of IGSJ) while the right part corresponds to the next iterations performed in IIGSJ. We
observe that the larger the instance size, the larger the improvement of the median quality.
Between iteration 4 and iteration 5, for different instances (eg. 100× 10, 100× 20, 200×
10), some qualities are even deteriorated. This may be explained by over-learning where
the solutions in the sets P3 or P4 are too similar, and so the approach has difficulties
to detect new super-jobs and get stuck in a particular region of the search space. To
break through this drawback, we should think about introducing diversity between each
iteration.
Table 5.5 reports also, in seconds, the average execution time for each iteration and the
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average of the total time. Since the execution time depends on the number of (super-
)jobs, it increases a lot when the number of jobs increases. This value nearly reaches
96,838 seconds for the largest instances (size 500) i.e. almost 28 hours. Obviously, this
time is not satisfactory practically. But, in these experiments, our goal was to simply
improve the performance of our initial approach IGSJ to find out new best solutions ;
what was done. If we analyze more carefully the average times for each iteration, we
observe a reduction of the time inversely proportional to the instance size, the larger this
reduction the higher the number of jobs. We may explain this by the increase of the size
of the super-jobs and the decrease of their numbers. Solutions are more and more similar
within the set and so may share larger sequences of jobs that gives a smaller and smaller
number of jobs.

5.2 Reduction of the Neighborhood Size

In this section, we investigate an optimization approach able to jointly deal with large
datasets where feature selection is needed before using time-consuming classifiers. This
approach based on the Tabu Search integrates a learning mechanism in order to evaluate
only promising subsets of features.

5.2.1 The Feature Selection Problem in classification

5.2.1.1 Problem description

In a classification problem, a set of observations with known classes is used to learn a
classification model to predict the class of any new observations. A feature selection
process may be used to select information that may help the classification. In this context,
a dataset (in the following called instance) is represented by a set of d observations. Each
observation i is characterized by n features and one class. Hence an instance is represented
by a matrix A of d rows and n columns which represents the value of each feature for each
observation, and a vector C of size d which represents the class of each observation, as
follows:

A =

a11 · · · a1n
...

. . .
...

ad1 · · · adn

 , C =

c1
...
cd

 (5.2)

where ci ∈ {1, ..., k} with k the number of classes.
An instance is composed by two sets. The first one, called training set, allows resolution
approaches to learn a model and, the second one, called validation set, is used to evaluate
that model on new observations.

5.2.1.2 Resolution approaches

For this problem, resolution approaches may be classified in three major types according
to the way the search procedure and the classifier are combined:

• Filter approaches: Select features independently of the classification method used.
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Figure 5.4: Boxplots of the RPD values for 5 iterations of IIGSJ.

• Wrapper approaches: Exploit the classifier performance to select features. This
type of approaches is used in this chapter, and detailed hereafter.

• Embedded approaches: Combine filter and wrapper approaches. They are used
to reduce overfitting.

The wrapper model, initiated by R. Kohavi (Kohavi and John 1997), applies a search pro-
cedure to find different subsets that are evaluated with a classifier on the training set. The
best subset found during the search procedure is then evaluated on the validation set (see
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Figure 5.5). An advantage of this approach is to be able to deal with correlations between
features and to find relevant associations of them. However, this kind of approaches may
generate overfitting, i.e. the specialization of the model to observations used to build the
model. Moreover, the computing time may become large with regard to the classifier used,
when the dataset contains a large number of observations and/or features.

All features features subset Classify Quality + Best subset

Evaluate subset

Training Set Validation Set

Figure 5.5: Wrapper approach

5.2.1.3 Literature Review

Finding the best subset of features can be viewed as a combinatorial optimization problem.
Hence, a lot of methods, such as metaheuristics have been proposed to solve it. Table 5.6
reports some metaheuristics from the literature used to tackle this problem together with
the type of approach used for resolution.

Table 5.6: Metaheuristics for the feature selection problem. The reference and the
resolution approach are given.

Ref Algorithm Approach

Yang and Honavar (1998) Genetic Algorithm with DistAl Wrapper
Emmanouilidis et al. (2000) Niched Pareto Genetic Algorithm Wrapper
Oliveira et al. (2006) Genetic Algorithm Wrapper
Long et al. (2007) HillClimbing Filter +Wrapper
Hamdani et al. (2007) NSGA II Wrapper
Duval et al. (2009) Genetic Algorithm + Iterated Local Search Embedded
Cai et al. (2010) Multi-Cluster Feature Selection Wrapper
Gheyas and Smith (2010) Simulated Annealing and Genetic Algorithm Wrapper
Cervante et al. (2012) Particle Swarm Optimization Wrapper
Xue et al. (2013) Particle Swarm Optimization Wrapper
Tan et al. (2014) Modified micro Genetic Algorithm Wrapper

This table shows that very recent methods have been proposed and most of them are
wrapper approaches. The nature-inspired metaheuristics are highly represented and, in
particular, genetic algorithms seem to be the favored metaheuristic for this problem. On
the contrary, very few stochastic local search (SLS) algorithms are used.
When using an efficient classifier, such as SVM (Support Vector Machine) (Schölkopf and
Smola 1998), on large datasets, the evaluation of a subset may be time consuming. In
this context, nature-inspired metaheuristics which evolve a population of solutions, need
to make many evaluations at each generation, and therefore, are not any more good can-

130



Landscape-aware SLS

didate algorithms contrary to SLS algorithms. Indeed, they benefit from a neighborhood
structure, and exploit it to guide the search and to spare some evaluations.
Following these remarks, we proposed a SLS that integrates a learning mechanism to
reduce the neighborhood size and then, reduce the number of evaluations per iteration.

5.2.2 The Feature Selection Problem with Learning Tabu Search

The Learning Tabu Search (LTS) algorithm is an efficient SLS integrating a learning
mechanism (Schindl and Zufferey 2013). This section presents the steps needed to adapt
this method to the Feature Selection (FS) problem.

5.2.2.1 Model of the Feature Selection Problem

A solution s represents the features. It is represented by a bit string of size n, the total
number of features: s = [a1, ..., an] with ai ∈ {0, 1},∀i ∈ {1, ..., n}. The ith bit ai
indicates if the feature i is chosen (ai = 1) or, on the contrary, if it is not (ai = 0). For the
FS problem in classification, several criteria are commonly used to measure the quality of
a solution. First, it may be measured by the quality of the classification realized using the
selected features. Most of classifiers propose to compute the accuracy, which is defined
as the ratio between the well-classified observations and the total number of observations
tested. The accuracy is computed as follows:

accuracy =
number of well-classified observations

total number of observations
(5.3)

Secondly, the number of selected features is an important criterion for FS problem. Indeed,
in order to obtain more interpretable models, the number of selected features should be
minimized. This criterion is defined as the ratio between the number of selected features
(# S_Features) and the total number of features (# Features). In order to obtain a
maximization criterion, the criterion, noted features, is defined as follows:

features = 1− # S_Features
# Features

(5.4)

Here, we consider these two maximization criteria, accuracy and features. Note that, in
the literature, other criteria are also used such as sensitivity or specificity. In this work,
the FS problem is represented as a single-objective combinatorial optimization problem.
Consequently, the fitness function f is defined as a weighted sum between accuracy and
features:

f = α ∗ accuracy + (1− α) ∗ features (5.5)

where α ∈ [0, 1] is a weighting coefficient (set to 0.75 in the experiments). The goal is to
find the subset of features that maximizes f .
For neighborhood structure, we consider the well-known one-flip operator defined, for all
s in the search space, as follows:

N 0
1 (s) = {s′ | ∃i ∈ {1, ..., n} s.t. a′i 6= ai and ∀j 6= i, a′j = aj} (5.6)
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As the number of selected features has to be minimized, a good solution is represented
with most of bits equal to 0. Hence, the probability of flipping a bit from 0 to 1 is higher
than flipping a bit from 1 to 0. Consequently, in order to give the same chance to both
flips 0 to 1 and 1 to 0, we divided the neighborhood into two sub-neighborhoods. The
add neighborhood (NA) is the set of neighboring solutions where one bit has been flipped
from 0 to 1. The drop neighborhood (ND) is the set of neighboring solutions where one
bit has been flipped from 1 to 0. Then, N 0

1 (s) = NA(s) ∪ND(s) and NA(s) ∩ND(s) = ∅.
The neighborhoods NA and ND are mathematically defined as:

NA(s) = {s′ | ∃i ∈ {1, ..., n} with a′i = 1 and ai = 0 and ∀j 6= i, a′j = aj} (5.7)

and

ND(s) = {s′ | ∃i ∈ {1, ..., n} with a′i = 0 and ai = 1 and ∀j 6= i, a′j = aj} (5.8)

5.2.2.2 From Tabu Search to Learning Tabu Search

In SLS algorithms and particularly in Tabu Search, the exploration of the neighborhood
of a solution can be time-consuming. Indeed, in the original Tabu Search method, all
the non-tabu neighbors of a solution are evaluated at each iteration. In the FS problem,
the evaluation of a solution is computed by applying a classification procedure that can
be computationally expensive when the number of observations and/or features becomes
large. Hence, the evaluation of the whole neighborhood at each iteration can not be
considered. Schindl and Zufferey (2013) designed the Learning Tabu Search (LTS) in
order to avoid this. They divide the exploration of the neighborhood into two steps: (i)
the quality of all neighbors is estimated and, (ii) the Q most promising ones are fully
evaluated. LTS is based on an estimation function used to estimate the potential quality
of each neighboring solution.
The computation of this estimation is based on this idea: “if, some combinations of charac-
teristics often belong to good solutions during the run, such combinations of characteristics
should be favored when generating new solutions”. The estimation of the quality of one
combination is computed from the quality of solutions where this combination appears.
Therefore, LTS needs a memory to save the quality of each features combination.

The performance of LTS relies on the definition of this memory that represents the learning
mechanism. This mechanism is related to the pheromones concept of ant colony optimiza-
tion (ACO) algorithms (Dorigo and Birattari 2010). The quality of one combination is
then called its trail value. The higher the trail value of a combination, the better is its
quality. Like in ACO, the memory has to be updated to increase the trail of promising
combinations and to decrease those that are associated to bad ones. An evaporation pro-
cedure is used to forget them.

In LTS, the update procedure is applied at regular intervals, called cycles. The quality
of the best solution found during each cycle is used to update the trail values. The size
of the cycle is a sensible parameter of LTS, as it impacts the performance of the learning
mechanism. The update procedure aims to concentrate the search in regions containing
high quality solutions. In order to visit new regions of the solutions space, a diversification
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procedure has been introduced. This procedure modifies the policy of choosing the Q
most promising neighbors to be evaluated during the neighborhood exploration. Usually,
a learning mechanism favors the neighbors with the highest estimation values but, it
may lead to a premature convergence of LTS. To avoid this issue, when diversification is
triggered, the combinations with the lowest estimation values are favored.

Algorithm 9: Learning Tabu Search (LTS)
Input: Initial solution s
Output: Best solution s∗

Data: Best solution of the current cycle s∗

s∗ ← s;
repeat

Estimate the quality of non-tabu neighbors of N (s);
NQ ← Q most promising neighbors of N (s) according to the diversification
policy;
s← arg max

s′∈NQ
f(s′);

if s > s∗ then
s∗ ← s;

if s > ŝ then
ŝ← s;

Update the tabu list;
if End of cycle then

Update trails of each combination with ŝ;

until Stopping condition is met ;
return s*

Algorithm 9 gives an insight of LTS. From an initial solution, different steps are applied
until the stopping criterion is met. Every non-tabu neighbors are estimated and then, the
Q most promising neighbors are evaluated. Most promising neighbors stands for neighbors
with the highest estimation when diversification is disabled but, ones with the lowest
estimation when diversification is triggered. At the end of the neighborhood exploration,
the best solutions s∗ of the run, ŝ of the current cycle and the tabu list are updated.
At the end of each cycle, trail values are updated from the fitness of ŝ according to the
diversification policy.

5.2.3 Learning Tabu Search for Feature Selection

In the following, we explain the adaptation of LTS to the FS problem.

5.2.3.1 Definition of trail

We propose to consider the combination of two features. A combination of two features
is interesting if these features are both selected in good solutions i.e. the combination of
these two features brings information for the classification task. The trail value tr(ai, aj)
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associated to features ai and aj , indicates if the combination of ai and aj is promising,
thanks to the observations of the search history.

5.2.3.2 Estimation of neighbors

A solution s and each neighbor s′ differ from one bit ai. The estimation of a neighbor
(Estim(s, ai)) (i.e. its potential quality), is computed from the relevance of selecting the
feature ai in relation to other features in s:

Estim(s′i) = Estim(s, ai) =
∑

aj∈s,aj 6=ai

tr(ai, aj) ∗ δs(aj)
{
δs(aj) = 1 si aj = 1 dans s
δs(aj) = 0 sinon.

(5.9)

5.2.3.3 Neighborhoods exploration

NA and ND are the neighborhoods composed with add flips and drop flips respectively. A
promising add flip adds a feature ai to a solution s, if Estim(s, ai) is high in order to select
a feature which brings the most information to solution (i.e. the future classification). A
promising drop flip removes a feature ai from a solution s, if Estim(s, ai) is low. During
the exploration of the neighborhood in LTS, only the Q best promising neighbors are
evaluated. Then, Aq (resp. Dq) is the subset of non-tabu neighbors of NA (resp. ND)
composed of the q neighbors with the highest (resp. lowest) estimations. Finally, all
neighbors of Aq ∪Dq are evaluated and the best one is chosen.

5.2.3.4 Update procedure

As mentioned before, the trail values tr(ai, aj) are updated at the end of each cycle from
the best solution ŝ found during the cycle: tr(ai, aj) = ρ ∗ tr(ai, aj) + ∆tr(ai, aj), where
ρ ∈ [0, 1] is the evaporation rate and ∆tr(ai, aj) is proportional to the fitness of ŝ, if ai
and aj both belong to ŝ, and is equal to 0 otherwise.

5.2.3.5 Diversification procedure

It is used to escape from a region of the search space. Therefore, when the mechanism is
triggered, the construction of the sets Aq and Dq during the exploration of the neighbor-
hood is inverted i.e. Aq (resp. Dq) is the subset of non-tabu neighbors of NA(s) (resp.
ND) composed of the q neighbors with the lowest (resp. highest) trail values. This mech-
anism depends on two parameters t1 and t2: the mechanism is triggered after t1 iterations
without improving s∗ (the best solution found during the run), and is disabled as soon as
s∗ has improved, or after t2 iterations with diversification.

5.2.4 Experiments

5.2.4.1 Experimental protocol

We choose to compare LTS to other SLS algorithms: a Hill Climbing (HC) and a Tabu
Search (TS). Hill Climbing is a classic SLS algorithm, that has the major inconvenient,
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to stop the search when it falls in a local optimum. In order to give the same chance
for all algorithms, when HC is traaped in a local optimum, HC is restarted from a new
solution until the allowed time is over. The Tabu Search is a SLS that uses a memory
to escape from local optima. This memory is used to store recently visited solutions that
are qualified as tabu. At each step, the tabu search moves to the best non-tabu solution
of the neighborhood. Hence, the tabu search is able to escape from a local optimum by
moving to the least deteriorating neighbor. In the literature, Tabu Search applies the best
improvement strategy for the neighborhood exploration. Nevertheless, this strategy may
be time-consuming when the evaluation is costly, therefore we choose the first improvement
strategy.

Each instance used for experiments is divided into two parts. The first one is the training
set, used by the algorithm to look for the best subset of features. The second one is
the validation set, used to evaluate the ability of the subset of features previously found,
to well classify new data. For each instance with their training and validation sets, we
performed for each algorithm the following different steps: (i) the algorithm is run on the
training set, (ii) the best solution found is selected and its accuracy on the validation set is
computed, (iii) these two steps are executed 30 times per instance per algorithm, (iv) the
statistical Wilcoxon test is performed on fitness obtained on the training set to compare
algorithms, and (v) the statistical Wilcoxon test is performed on accuracy obtained on the
validation set.

5.2.4.2 Description of the Instances

Experiments are computed using six instances from the literature. Each line of these
instances represents an observation. Table 5.7 details information about the instances
used for experiments (well-balanced binary classes). An important point is the clas-
sifier used to compute the accuracy. In this work, we used the Support Vector Ma-
chine (SVM ) (Schölkopf and Smola 1998) that constructs hyperplanes to separate data
into two classes. This procedure becomes time consuming when the number of observa-
tions increases and when data are difficult to separate into two classes. Hence, for such
instances, the runtime needed by SVM to construct and then evaluate a model is very
costly.

In consequence, we choose to distinguish two groups of instances (low evaluation cost vs.
high evaluation cost) according to the SVM runtime when it is applied on the training
set. The first group contains Schizophrenia, Colon and Breast instances (SVM runtime
lower than 1 second) and the second one, Arcene, DNA and Madelon instances. Note
that, SVM requires more than 38 seconds on Madelon instance to compute the accuracy
on the whole training set. Preliminary experiments helped to set the allocated runtime
given to HC, TS and LTS. This allocated runtime is the same for the three methods, and
is partially dependent on SVM runtime, since it is used within the evaluation to compute
the accuracy of a solution. Let us remark, that even if Arcene instance requires less than
2 seconds to compute the accuracy, preliminary experiments showed that the convergence
is quite low but happened for each algorithm before 3000 seconds.
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Table 5.7: Instances description. For each instance, the reference, the number of original
features (# Features), the size of the training |T | and validation |V | sets (i.e. number of
observations) are given. The runtime (in seconds) needed by SVM to build and evaluate

a model on training set (without feature selection), and the runtime (in seconds)
allocated to each optimization algorithm are given.

SVM Allocated
Name Reference # Features |T | |V | Runtime Runtime

Schizophrenia (Calhoun 2014) 410 56 30 0.01 500
Colon (Zhu et al. 2007) 2000 62 32 0.052 120
Breast (Zhu et al. 2007) 24481 78 26 0.734 500

Arcene (Guyon et al. 2008) 10000 100 100 1.123 3000
DNA (Guerra-Salcedo and Whitley 1999) 180 1400 600 1.172 500
Madelon (Guyon et al. 2004) 500 2000 600 38.089 5000

Table 5.8: LTS parameters.

Parameter Value

Size of Tabu List 7
Size of Aq and Dq (q) 10
Cycle (I) 10
Evaporation rate (ρ) 0.9
Number of iterations with diversification (t1) 10
Number of iterations without diversification (t2) 10

5.2.4.3 LTS Parameters Setting

Preliminary experiments have been carry out in order to settle the parameters of LTS.
Table 5.8 shows parameters involved in this study.
Two parameters deserve special attention. The first one is q that controls the number of
promising estimated neighbors from each set, Aq and Dq, that will be evaluated. Indeed,
if q is small, LTS converges quickly because the first best solutions are often the same.
Otherwise, if q is large, LTS becomes time-consuming because many solutions are eval-
uated. Note that q could be adapted to the instance size, but preliminary experiments
show that q = 10 appears to be a good trade-off for these instances. The second one is
the size of a cycle (I). If I is small, the learning mechanism will make overfitting because
the search has not enough time to find a new best solution. Otherwise, if I is large, the
learning mechanism will take much time to discover good combinations and to forgot bad
ones. Preliminary experiments show that I = 10 appears to be also a good trade-off.

5.2.4.4 Performance analysis

This analysis is organized in two parts. The first part deals with the optimization per-
spective (capacity of the method to find a good subset of selected features i.e. with a
high fitness value) and evaluates its performance on the training set. The second part
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concerns the datamining perspective (capacity of the model to predict class of unknown
observations) and evaluates results obtained on the validation set.

5.2.4.5 Analysis of the Optimization Approach

Table 5.9 shows a comparative study between the proposed approach LTS and the other
approaches. For each instance, the accuracy computed with SVM from the whole features
is pointed out in order to exhibit the benefit of the feature selection. This table shows
that concerning results about the fitness, LTS gives in most of the cases the best results
with a standard deviation close to zero. In details, we can see that LTS often gives the
best accuracy and selects always the least number of features. This may be explained by
the neighborhood exploration strategy. Indeed, LTS selects for evaluation the q best add
flips as well as the q best drop ones. Consequently, drop flips have as much chances to be
chosen as add flips. On the contrary, other approaches have a random neighborhood. As
the number of selected features is small, the probability to find a drop flip is low and may
required the evaluation of many neighbors. As a result, LTS can find a solution with a
good accuracy with the least number of features faster than other algorithms. Table 5.9
also shows that, for each instance, LTS improves results obtained by the original Tabu
Search. These results show the improvement obtained by the introduction of the learning
mechanism.
In order to analyze the behavior of the different algorithms, we computed their evolution
over time. Figure 5.6 shows the evolution of the average fitness of each approach over the
time and gives the box-and-whisker plots (after one third, two thirds, and at the end of
the allocated runtime) on Madelon instance, which is the most difficult instance to solve.
For this one, LTS has a quick progression compared to the two other methods. Indeed,
Madelon is a high-cost instance, so thanks to the estimation function, LTS avoids a large
number of evaluations.
Consequently, LTS finds the potential good solutions more quickly than other approaches.
These results show the interest of the estimation function.
To understand the behavior of the learning mechanism, we also investigate the dynamic of
add and drop flips over time. Thus, Figure 5.7 shows, for one execution, the evolution of
the different metrics (Fitness, Accuracy and # S_Features) for LTS onMadelon instance.
We can observe several phases on this figure. The first one (from the beginning to 1000
sec approximately) adds features to increase the accuracy, and in consequence also the
fitness. The second one starts when fitness is high. In this phase, the learning mechanism
chooses the worst features to remove thanks to the trail values. As LTS removes features,
which bring the least information, the accuracy decreases slightly while the second part
of the fitness that favors small subsets of features increases. Consequently LTS makes a
good trade-off between the accuracy and the number of selected features.

5.2.4.6 Analysis of the datamining approach

Table 5.10 shows the results about the accuracy values on both training and validation
sets for each instance. The objective is to analyze the ability to make a good classification
on the validation set, using features selected on the training set. A first observation is that
performance decreases between the training set and the validation one. This difference
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Table 5.9: Average and standard deviation (in brackets) of Fitness, Accuracy and
# S_Features values obtained on training sets for HC, TS and LTS. Fitness values in

bold stand for algorithms outperforming the other one(s) according to the Wilcoxon test.
For each instance, the value of the accuracy obtained by SVM without any feature

selection is pointed out in brackets. The statistical comparison between algorithms is
given under the instance name.

Instance Algorithm Fitness Accuracy (%) # S_Features

HC 0.992(0) 99.946(0.311) 11.788(1.933)

Schizophrenia (69.64%) TS 0.968(0) 97.132(2.043) 16.939(5.123)

LTS > HC > TS LTS 0.995(0) 100(0) 8.758(0.792)

HC 0.998(0) 99.951(0.281) 10.909(3.440)

Colon (87.09%) TS 0.982(0) 97.752(1.845) 10.97(2.628)

(LTS = HC) > TS LTS 0.996(0) 99.609(0.809) 6.788(1.745)

HC 0.98(0) 97.319(2.717) 18.394(6.685)

Breast (67.3%) TS 0.94(0) 92.308(4.022) 13.121(2.804)

HC > (LTS = TS) LTS 0.94(0) 92.075(4.100) 11.879(2.858)

HC 0.999(0) 99.879(0.331) 21.97(6.356)

Arcene (83%) TS 0.971(0) 96.273(3.224) 22.273(4.252)

LTS > HC > TS LTS 0.999(0) 100(0) 14.97(3.147)

HC 0.941(0) 95.71(0.603) 19.152(5.274)

DNA (89.57%) TS 0.941(0) 95.762(0.585) 19.485(4.651)

LTS > (HC = TS) LTS 0.945(0) 95.234(0.67) 13.606(2.904)

HC 0.712(0) 64.135(0.576) 37.273(9.593)

Madelon (56,45%) TS 0.714(0) 63.885(0.673) 31.03(6.849)

LTS > (HC = TS) LTS 0.731(0) 65.152(0.327) 15.606(3.201)

reveals overfitting, that is to say, the solution built on the training set is specific for
these data. Consequently, the solution looses in prediction quality for new data. This is
especially true for instances with few observations and confirms the difficulty to find a
good classification model. The standard deviations obtained with the validation set on
these instances are high and show a bad stability of the results produced. Conversely,
in instances with a large numbers of observations, the standard deviations obtained with
the validation sets are reasonable. Solutions are less sensitive to the data used for the
validation. As for the training set, LTS obtains better or equivalent results than other
approaches on the validation set. In particular, we observe an improvement about the
results obtained by LTS compared to TS. In conclusion, these experiments show the good
performance of LTS regarding both the optimization and the datamining perspectives. In
particular, these experiments show the contribution of the learning mechanism, as LTS is
able to find better subsets of features than the classical Tabu Search although they are
based on the same components.
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Figure 5.6: Evolution of the three algorithms on Madelon instance.
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Figure 5.7: Evolution of Fitness, Accuracy and # S_Features values for LTS on Madelon
instance. For more readability, the accuracy curve has been translated by +0.08.

5.3 Conclusion and Perspectives

Summary In this chapter, we presented two landscape-aware stochastic local search
algorithms that modify the landscape differently. The first algorithm was specifically
designed for the no-wait flowshop scheduling problem where the constraint imposed on
switching between machines gives a property to be exploited. Indeed, an a priori landscape
analysis of small instances reveals that similar sequences of jobs are found in the best
solutions. In the first section of this chapter, we proposed a methodology to identify
these sequences during the run and a way to directly exploit them. Actually, the proposed
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Table 5.10: Average and standard deviation (in brackets) of {T,V}_Accuracy values
obtained on respectively training and validation sets for HC, TS and LTS. Accuracy
values in bold stand for algorithms outperforming the other one(s) according to the

Wilcoxon test. The statistical comparison between algorithms is given. The double line
shows the separation between low and high evaluation time cost.

Instance Algorithm T_Accuracy (%) V_Accuracy (%)

Schizophrenia HC 99.946(0.311) 60.208(9.352)

TS 97.132(2.043) 55.457(10.923)

LTS 100(0) 61.319(8.162)

(LTS = HC) > TS LTS > HC > TS

Colon HC 99.951(0.281) 94.318(5.150)

TS 97.752(1.845) 91.004(6.287)

LTS 99.609(0.809) 94.127(4.863)

HC > LTS > TS (LTS = HC) > TS

Breast HC 97.319(2.717) 54.079(10.263)

TS 92.308(4.022) 50.116(10.333)

LTS 92.075(4.100) 52.098(9.904)

HC > (LTS = TS) LTS = HC = TS

Arcene HC 99.879(0.331) 72.18(4.004)

TS 96.273(3.224) 71.69(4.707)

LTS 100(0) 74.60(4.629)

(LTS = HC) > TS LTS > HC > TS

DNA HC 95.71(0.603) 93.63(1.582)

TS 95.762(0.585) 93.25(1.604)

LTS 95.234(0.67) 94.09(1.540)

(HC = TS) > LTS LTS = HC = TS

Madelon HC 64.135(0.576) 57.07(2.200)

TS 63.885(0.673) 56.56(2.059)

LTS 65.152(0.327) 59.69(1.219)

LTS > (HC = TS) LTS > (HC = TS)

algorithm extremely reduces the size of the problem solved and increases it at each iteration
that reveals new regions of the search space. The experiments conducted on the Taillard
instances show the efficiency of our algorithm to give new best solutions (to the best of
our knowledge at the time) to the largest instances. However, this work was carried out in
parallel to other people who modeled the problem like an asymmetric traveling salesman
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problem. They used high performing exact methods and they found the optimal solutions
(with guarantee). Our goal, in this PhD work, was to study the advantage of using or not
knowledge into metaheuristics. In that sense, we achieved our objective.
The second algorithm is an adaptation to the feature selection problem of a tabu search
integrating a learning mechanism to reduce the number of neighbors to be explored. We
presented the whole model of the problem and defined all the components needed by the
Learning Tabu Search to run. The experiments show the efficacy of the algorithm on a
datamining problem. The idea of reducing the number of neighbors is interesting to keep
in mind when the runtime represents a crucial point, but more generally, to speed up
classical algorithms.
This work is interesting since it proves that integrating learning mechanisms into meta-
heuristics can be efficient. Nevertheless, we realized that extracting problem-dependent
knowledge is a difficult challenge and represents a big obstacle that specialists of the prob-
lem may help to overcome.

Landscape-based Knowledge in VRP For example, recently, in the vehicule
routing problem (VRP) community, Arnold and Sörensen (2019a,b) reached new best
solutions for the large instances thanks to new algorithms integrating a learning mecha-
nism. They learn about good sequences of clients and directly exploit them during the
run. Since 2018, we are working with Diego Cattaruzza (INOCS team of CRIStAL) and
Daniele Vigo (University of Bologna, Italy), who are both specialists in VRP, in order to
improve metaheuristics with learning mechanisms driven by problem-dependent landscape
characteristics.

Landscape Visualization to Help Decisions In my team, Nadarajen Veer-
apen is an Associate Professor who is specialized in landscape visualization (Ochoa et al.
2015; Veerapen and Ochoa 2018). The work of Lucien Mousin shows that it is very diffi-
cult to identify characteristics that may be useful to be exploited in the resolution of an
optimization problem. Landscape analysis gives some problem-independent measures that
are meaningful and understandable by metaheuristics optimizers, without being specialist
of one type of problem. Therefore, landscape visualization might help the optimization
specialist and the problem specialist to understand the characteristics of a problem. A
collaboration in that sense might be fruitful.
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Every chapter of this manuscript ends with a conclusion and short-term perspectives.
Our contributions focus on stochastic local search algorithms where permutation prob-
lems have been mainly used as case study. However, the different approaches such as
the automatic configuration of a generalized structure, the multi-objective configuration
and the landscape-based design are generalizable and obvious perspectives may be to
apply them on nature-inspired algorithms as well as on other combinatorial optimiza-
tion problems. In the following, we will present one perspective on automatic algorithm
configuration (AAC) and three perspectives that join AAC with fitness landscape analysis.

Training Instances in AAC Automatic algorithm configuration can be formulated
as an optimization problem where the objective is to find the optimal configuration (i.e.
strategies and/or parameters values) of an algorithm. However, the optimal configura-
tion is only adapted to the class of instances used to train the model. When we are
defining the experimental protocol, the same question arises every time: How to choose
the training instances? For example, let us consider the case of the permutation flow-
shop scheduling problem. Taillard instances are widely used to validate the performance.
These instances give 120 instances where 10 instances share the same number of jobs
N ∈ {20, 50, 100, 200, 500} and machines M ∈ {5, 10, 20}. It is understood that the larger
the number of jobs and machines, the more difficult the resolution. Therefore, the optimal
configuration is clearly not the same regardless the size (i.e. numbers of jobs and ma-
chines). If the objective is to find the best configuration to solve instances with 100 jobs
and 20 machines, are we supposed to use training instances with all the sizes? Or only
the ones with 100 jobs and/or 20 machines? Or with a (uniform or Gaussian) distribution
around 100 jobs and/or 20 machines? We would like to investigate this topic in order to
give guidelines to better define experimental protocols.

Algorithm Configuration Landscapes An obvious, and currently popular in
our field, perspective combining AAC and landscape analysis would be to study the land-
scape of the configuration space. Indeed, the configurator moves in a search space com-
posed with the possible configurations of the target algorithm. The landscape is defined
from a neighborhood relation between solutions. This relation is generally based on one
single operator. However, a configuration is generally a set of both numerical and categori-
cal parameters. While in ParamILS/MO-ParamILS, numerical parameters are discretized
and so considered as categorical ones, in irace, discrete or continuous distributions are
used according to the type of the parameter. Therefore, the definition of algorithm config-
uration landscape is not straightforward. One year ago, Pushak and Hoos (2018) studied
these particular landscapes. They limited their study to numerical parameters and showed
that the space is almost convex for each one. This study is a valuable starting point. We
could imagine, in the future, to deeper analyze the algorithm configuration landscapes
through different AAC approaches (e.g., statistical racing, stochastic local search, genetic
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algorithm). Moreover, numerical parameters are often discretized when metaheuristic-
based approaches are considered to configure an algorithm. In that case, it would be
interesting to analyze the impact of discretization on the configuration space and so, on
the performance of the metaheuristics.

Parameter Control Approach exploiting AAC and FLA Unlike AAC,
parameter control is an on-line approach (Eiben et al. 1999) that modifies the configura-
tion during the run to adapt the algorithm to the local structure. However, only a small
number of parameters can be handled at the same time. B. Doerr and C. Doerr (2018)
revised the former classification to better take into account the recent improvements on
parameter control. They proposed to divide it into five categories namely state-dependent,
success-based, learning-inspired, self-adaptive and hyper-heuristic. In Chapter 3, we pre-
sented an approach between AAC and parameter control. Following this new classification,
we can characterize our contribution into state-dependent approaches since a time param-
eter gives the moment during the execution where the configuration has to be modified. In
Blot et al. (2018c), we proposed a success-based approach to control the exploration strat-
egy of a multi-objective local search and we obtained several interesting results. Indeed,
we demonstrated that on the studied problem, taken individually, the three considered
exploration strategies perform very differently, and that our approach can achieve results
statistically equivalent to the best strategy. We also introduced a mechanism to discard
some bad values during the execution, which is equivalent to a learning-inspired approach.
Our preliminary experiments showed that it should be possible to adaptively identify sur-
viving values of parameters/strategies during the execution for each tackled instance only
from performance feedback. However, the learning mechanisms could have the opposite
effect if it is only inspired by the execution. This may be due to the modification of the
local structure. Therefore we would propose to use AAC, before the execution, on the
same class of instances but in different regions of the search space, pre-identified with
fitness landscape analysis (FLA). We could propose a success-based and learning-inspired
parameter control approach where information computed/analyzed during the run would
be interpreted on-line to trigger the modification of the configuration. Different steps may
need to be studied: (i) detect different local structures using FLA, (ii) find the best config-
uration depending on the local structures with AAC and, (iii) integrate control/feedback
mechanisms in order to switch to the best configuration according to the local structure
identified and the configurations performance. Evidently, these perspectives can be carried
out in both single- and multi-objective optimization.

Improving AAS with AAC and FLA Automatic algorithm selection (AAS) can
be formulated as an optimization problem where the objective is to find the best algorithm
for every instance. However, the configuration of the algorithms available in the portfolio
is rarely optimal for the instance solved. Integrating AAC into the AAS process would
enable the optimization of the algorithm together with its configuration. This approach
has already been evaluated by M. T. Lindauer et al. (2015) on AI problems, such as SAT,
CSP, ASP, MAXSAT and QBF. It gives encouraging results but, like in parameter control
approaches, only few configurations are available per algorithm and another drawback is
the very high computational cost required. AI problems are different from combinatorial
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optimization problems and it would be interesting to adapt the proposed approach for
permutation problems and more largely for other problems of operational research. How-
ever, based on our knowledge on these problems, we know that FLA measures can wisely
be used to help the learning. Kerschke and Trautmann (2019) have proposed an AAS
approach by combining FLA and machine learning to solve numerical optimization prob-
lems. Currently, we already use FLA into an AAS approach (Pavelski et al. 2019) but, the
algorithms are configured a priori and the FLA measures are used to classify instances and
then to suggest an optimal configuration for each algorithm. Moreover, the configuration
of the algorithms would not be static as it has been discussed above. The goal of this
work would be to directly integrate FLA into the AAS approach in addition to the AAC.
Different steps may need to be studied: (i) characterize the instance to solve with FLA
measures, (ii) generate a configuration space of a reasonable size and, (iii) integrate the
adaptive approach presented above.
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Pedagogical Responsibilities

2019 Responsible of the working group for the reorganization of maths education for
the 3rd year students of GIS (Computer Engineering and Statistics) department of
Polytech Lille.

2018 Responsible of the working group for the renewal of the pedagogical model of the
GIS apprenticeship program to include modules related to Data Sciences.

Since 2016 Pedagogical manager for the 3rd year (SE) of GIS department (about 50
students)
Role: preparation of semester juries, timetable, 3rd year internship coordinator,
management of temporary lecturers

Since 2016 Nominated member of the examination board of Polytech Lille (3 times a
year)
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Since 2014 Nominated member of the pedagogical commission of Polytech Lille (3 times
a year)

2014-2016 Pedagogical manager for the 3rd year (AE) of GIS department (about 15
apprentices) Role: Organization of apprenticeship, design and update of the appren-
tice’s electronic booklet, timetable, preparation of the semester juries. . .
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Résumé

Les métaheuristiques sont des algorithmes génériques et flexibles capables de s’adapter à tout type de prob-
lème d’optimisation grâce à la variété des stratégies algorithmiques et leurs propres valeurs de paramètres.
Premièrement, la généricité de la conception peut aussi être complétée par des mécanismes ou des heuris-
tiques dépendant du problème. Deuxièmement, bien qu’il soit largement admis qu’aucun algorithme ne
domine tous les autres sur toutes les instances du problème, une métaheuristique doit être finement
paramétrée pour bien fonctionner. Par conséquent, un processus d’apprentissage peut être utilisé pour
concevoir une métaheuristique adaptée au problème à traiter.
Dans nos travaux, nous nous intéressons à deux façons différentes d’aborder la conception basée sur la
connaissance : la configuration automatique d’algorithmes et l’analyse de paysage. La première partie
traite de la configuration automatique des algorithmes de recherche locale mono-objectif et multi-objectif
et la seconde traite de la caractérisation des paysages multi-objectifs et de l’exploitation des caractéristiques
du problème pour concevoir des algorithmes de recherche locale.
Ces deux sujets, apparemment indépendants, ont, très récemment, commencé à se rejoindre et diverses
perspectives seront données dans ce sens.

Abstract

Metaheuristics are generic and flexible algorithms able to adapt to any kind of optimization problems.
Both genericity and flexibility are given by the available algorithmic strategies and their own parameters
values. First, the generic design can be completed with problem-dependent mechanisms or heuristics.
Second, while it is widely admitted that no single algorithm dominates all others on all problem instances,
the metaheuristics have to be finely parameterized to perform well. Therefore learning process should be
used to design metaheuristics adapted to the given problem instances.
In this work, we will be interested in two different ways to address knowledge-based design of metaheuristics:
automatic algorithm configuration and fitness landscape analysis. The first part deals with the automatic
configuration of single-objective and multi-objective stochastic local search algorithms and, the second one
deals with the characterization of multi-objective landscapes and the exploitation of features into stochastic
local search algorithms.
These two, apparently independent topics, have, very recently, started to meet each other and various
perspectives will be given in that sense.
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