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sur les travaux des uns et des autres.
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Abstract

Facial landmark detection is an essential task for a large number of applications such
as facial analysis (e.g., identification, expression, 3D reconstruction), human-computer
interaction or even multimedia (e.g., content indexing and retrieval). Although many
approaches have been proposed, performance under uncontrolled conditions is still not
satisfactory. The variations that may impact facial appearance (e.g., pose, expression,
illumination, occlusion, motion blur) make it a difficult problem to solve. In this thesis,
a contribution to both the analysis of the performance of current approaches and the
modeling of temporal information for video-based facial landmark detection is made.
An experimental study is conducted using a video dataset to measure the impact of pose
and expression variations on landmark detection. This evaluation highlights the most
difficult poses and expressions to handle. It also illustrates the importance of a suit-
able temporal modeling to benefit from the dynamic nature of the face. A focus is then
placed on improving temporal modeling to ensure consideration of local motion in addi-
tion to global motion. Several architectures are designed based on the two main models
from the literature: coordinate regression networks and heatmap regression networks.
Experiments on two datasets confirm that local motion modeling improves results (e.g.
in the presence of expressions). These experiments are extended with a study on the
complementarity between spatial and temporal information as well as local and global
motion to improve the design of the proposed architectures. By leveraging these com-
plementarities more effectively, competitive performance with current state-of-the-art
approaches is achieved, despite the simplicity of the proposed models.

Keywords: computer vision; deep learning; facial analysis; landmark detection.
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Résumé

La détection des points caractéristiques du visage est une tâche essentielle pour un
grand nombre d’applications telles que l’analyse faciale (p. ex., identification, expres-
sion, reconstruction 3D), l’interaction homme-machine ou encore le multimédia (p. ex.,
recherche, indexation). Bien que de nombreuses approches aient été proposées, les per-
formances en conditions non contrôlées ne sont toujours pas satisfaisantes. Les varia-
tions susceptibles d’impacter l’apparence du visage (p. ex., pose, expression, éclairage,
occultation, flou cinétique) en font un problème encore difficile à résoudre. Dans cette
thèse, une contribution est faite à la fois sur l’analyse des performances des approches
actuelles mais aussi sur la modélisation de l’information temporelle pour la détection
des points caractéristiques du visage basée sur la vidéo. Une étude expérimentale est
réalisée à l’aide d’un jeu de données vidéo permettant d’évaluer l’impact des variations
de pose et d’expression sur la détection des points caractéristiques. Cette évaluation
permet notamment de mettre en évidence les poses et expressions posant le plus de dif-
ficultés. Elle permet également d’illustrer l’importance d’une modélisation temporelle
capable de tenir compte efficacement de la nature dynamique du visage. L’accent est
ensuite mis sur l’amélioration de la modélisation temporelle afin de considérer le mou-
vement local en plus du mouvement global. Plusieurs architectures sont conçues en
s’appuyant sur les deux principaux modèles de la littérature : les réseaux de régression
de coordonnées et les réseaux de régression de cartes de chaleur. Les expérimentations
sur deux ensembles de données confirment que la modélisation du mouvement local
améliore les résultats (p. ex. avec les expressions). Ces expérimentations sont étendues
par une étude portant sur la complémentarité entre l’information spatiale et temporelle
ainsi que le mouvement local et global dans le but d’améliorer la conception des archi-
tectures proposées. En exploitant davantage ces complémentarités, de meilleures per-
formances, compétitives avec l’état de l’art, sont obtenues, et ce, malgré la simplicité
des modèles proposés.

Mots-clés : vision par ordinateur; apprentissage profond; analyse faciale; détection de
points caractéristiques.
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CHAPTER 1. INTRODUCTION

1.1 Background

Over recent years, the ubiquity of sensors (i.e., smartphones, computers, in public
spaces) has led to an explosion of data, especially visual data. Each day, massive
amounts of visual data are produced. Every minute, 500 hours of video and 66,000
images are uploaded on YouTube and Instagram 1. Processing this amount of data is
currently beyond the reach of humans and the quantity of data continues to increase. Ac-
cording to CISCO 2, video will represent 80% of all Internet traffic by 2021 3. Hence,
it is critical to develop algorithms capable of understanding visual data, which is the
purpose of computer vision. One of the most popular research topics within computer
vision is human behaviour understanding since visual data represents a considerable
source of information about people and their behaviour. The face provides the ability to
recognize people, estimate their age, gender, and their emotional state. Hence, a large
amount of research is focused on the automatic analysis of facial images, which aims
to extract such information. Applications cover a wide variety of domains, e.g., edu-
cation, transport, entertainment, security, surveillance, or medicine, just to name a few.
Concrete exemples are engagement recognition in e-learning environments to improve
teacher-student interaction and stimulate learning [82], driver inattention or drowsiness
detection to prevent potential accidents [177], or mental health assessment for objective
diagnosis [289]. Apart from the use of affective states, facial analysis also allows image
editing, which can provide entertainment on social networks or improve the customer
experience in retail [151].

Figure 1.1: Facial landmark detection [193]. The structure of the face is identified and
its different components are characterized. This is achieved through the detection of
facial landmarks, which are usually located around the eyes, nose and mouth.

1https://www.smartinsights.com/internet-marketing-statistics/
happens-online-60-seconds/

2CISCO is a leading provider of communications and Internet solutions and services.
3https://newsroom.cisco.com/press-release-content?type=webcontent&

articleId=1853168

2

https://www.smartinsights.com/internet-marketing-statistics/happens-online-60-seconds/
https://www.smartinsights.com/internet-marketing-statistics/happens-online-60-seconds/
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1853168
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1853168
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Facial landmark detection, also known as face alignment, is a fundamental task in
facial analysis (e.g., face recognition, facial expression recognition, 3D face reconstruc-
tion, eye gaz tracking, face frontalization). As shown in Figure 1.1, this task defines
the facial geometry, so that the structure of the face can be identified and its different
components characterized. Facial landmark detection is useful for most facial analysis
tasks and more broadly in human computer interaction, animation, video compression,
image super resolution, indexing and retrieval, etc.

Figure 1.2: Comparison between traditional machine learning algorithms and deep
learning algorithms. In the latter, hierarchical features are learned instead of using hand-
crafted ones such as histograms of oriented gradients [9, 126].

Identifying the facial structure is trivial for humans. From the perspective of an al-
gorithm, an image is represented by an array of pixels. From these pixels, the aim is
to provide enough abstraction to reach a semantic level that allows facial landmarks to
be retrieved. However, it is difficult for an algorithm to have this kind of high level of
understanding. To overcome this semantic gap, two solutions have been proposed (see
Figure 1.2). The first one, the traditional approach, uses domain-specific knowledge to
transform raw data into features (i.e., feature engineering). These features provide use-
ful input for the prediction task, performed by Machine Learning (ML) algorithms. The
second one, the Deep Learning (DL) approach, instead of using handcrafted features,
lets the algorithm discover the features (i.e., feature learning) needed for the prediction
task directly from the raw data. DL involves a series of computational layers, which
generally extract low level features such as edges and curves, up to more abstract con-
cepts. Such models are called Deep Neural Networks (DNNs). Thanks to the increase
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in computational power and available data, DNNs have shown over the past few years
impressive capabilities. They have completely disrupted the field of computer vision
[122]. In most tasks, the community has shifted from feature engineering to DNNs
architecture engineering.

1.2 Problem Formulation

Figure 1.3: Facial landmark detection process: (a) original image, (b) face detection,
and (c) landmark detection.

Given the position and size of face, the alignment process, illustrated in Figure 1.3
consists in modeling non-rigid facial structures. It can be done by identifying facial
landmarks, which are usually located around the eyes, nose, and mouth. Landmarks
correspond to corners (e.g., eyes, mouth) or edges that connect these corners. From the
landmarks, it is then easier to remove transformations, using for example Generalized
Procrustes Analysis (GPA) [75], to achieve the alignment of two or more faces. Work
on face alignment is generally focused essentially on the detection of landmarks. The
detection can be done in 2D, which means that each landmark is represented by Carte-
sian coordinates (x, y) on the 2D plane. Note that 3D detection, which involves an
additional coordinate z corresponding to the depth, is also possible but is beyond the
scope of this work. Three steps are generally necessary but not mandatory to perform
landmark detection: face preprocessing, shape initialization, and an iterative process of
feature extraction and shape prediction.

The purpose of this work is to model the relationship between an image or image
sequence I and a facial shape Ŝ. The mapping function can be expressed as follows:

M : I 7→ Ŝ (1.1)
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Two approaches can be found in the literature to achieve this mapping. They ei-
ther regress the coordinates directly or compute heatmaps, one for each landmark. Due
to their effectiveness and versatility, Convolutional Neural Networks (CNNs) are often
used to learn these mappings in a supervised manner. The training uses N images anno-
tated with the corresponding shapes (I1, S1), ..., (IN , SN) where I can be a C-channel
image ∈ RH×W×C as well as a C-channel image sequence ∈ RT×H×W×C with H and
W the height and width of the image and T the temporal window. Mean Squared Er-
ror (MSE) is used to measure the difference between the prediction and the associated
ground truth over n samples. The MSE cost function is minimized according to the
approach.

Coordinate Regression. In the case of coordinate regression, the ground truth is a
vector s = [x1, y1, x2, y2, ..., xL, yL]T with s ∈ R2L, L the number of landmarks and
x, y the Cartesian coordinates of a landmark. The MSE is:

MSEcoordinates =
1

n

n∑
i=1

||si − ŝi||22 (1.2)

with ŝ = Ŝ = f(I), and ||.||2 the Euclidean norm.

Heatmap Regression. For heatmap regression, the ground truth h ∈ RL×H×W is a set
of L heatmaps of dimension H ×W in which the coordinates of the maximum value
correspond to the coordinates of a landmark. The MSE is:

MSEheatmaps =
1

n

n∑
i=1

L∑
j=1

||hij − ĥij||2F (1.3)

with ||.||F the Frobenius norm.

1.3 Major Challenges

Under favorable conditions, a static frontal face with sufficient uniform lighting and
no occlusion, current landmark detection approaches perform fairly well, with accuracy
rates close to human performance. However, such conditions are unrealistic. When used
in practical applications, the environment is generally not controlled and rarely at the
advantage of the algorithm. Facial landmark detection depends on the face detection,
so the quality of detection impacts landmark detection. Many variations may affect
the appearance of the face. They can be related to the intrinsic dynamics of the face,
the environment, and the capture conditions. The major challenges are described and
illustrated (see Figure 1.4) below:
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• Pose: Pose variations lead to significant changes in the appearance of the face.
The difference between a frontal face and a profile face is considerable. The latter
leads to self-occlusions causing a partial or complete disappearance of certain
components. Moreover, some landmarks overlap each other.

• Expression: Facial expressions produce deformations on most facial components.
So, significant changes in appearance (e.g., mouth open and closed) are noted,
with landmarks that may overlap each other.

• Occlusion: Occlusions are very common. They can be related to objects (e.g.,
glasses, hat, make-up), or self-occlusions due to facial pilosity, hair, or hands.
They lead to a more or less important loss of information.

• Illumination: Depending on its type of source and its intensity (i.e., non-uniform,
low intensity), insufficient lighting causes the loss of certain details, or even make
certain parts of the face disappear.

• Motion blur: Motion blur is the consequence of fast motion of the subject or of
the camera. It causes trails in the direction of the motion with a loss of sharpness
and visual details.

• Resolution: Due to some constraints, the capture may not be performed in suitable
resolutions. The level of detail is then reduced. So, it becomes difficult to clearly
distinguish the different components of the face.

Figure 1.4: Major challenges encountered under uncontrolled conditions: (a) occlusion,
(b) pose, (c) illumination, (d) resolution, (e) motion blur, (f) expression [193].
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The design of robust algorithms to tackle these different challenges is necessary. It is
also important to consider the constraints of the applications. They typically include the
ability to run in real time and limited resources, especially embedded applications (e.g.,
smartphone). Finding a trade-off between accuracy and efficiency is often unavoidable.

1.4 Motivation

A large number of methods have been proposed to achieve robust detection in such sce-
narios. Despite considerable progress in recent years, the performance of facial land-
mark detection under uncontrolled conditions is still not fully satisfactory. The theoreti-
cal minimum error achievable on one of the most popular dataset in the literature is still
far from being reached [184]. Some landmarks (e.g., boundary of the face, mouth) are
still difficult to detect accurately due possibly to a lack of discriminative information
or ambiguity problems. Moreover, the degree of satisfaction of landmark detection is
generally based on its overall accuracy (distance between the prediction and the ground
truth), and does not really take into account the requirements of the applications (e.g.,
facial expression recognition, 3D face reconstruction). Many approaches have been de-
veloped with an emphasis on few challenges. Although they improve robustness, there
is still a lack of approaches that can address all challenges at once. Besides, the majority
of applications are built on video. Yet, most of the current approaches, when used in
these applications, implement a tracking-by-detection strategy and are therefore unable
to take advantage of the temporal coherence. We believe that the key to achieve such an
approach could be to leverage the dynamic nature of the face.

Video-based approaches have recently generated interest [193] and have already
shown their benefits [162]. They provide more robustness under uncontrolled condi-
tions and have the potential to overcome most of the difficulties inherent to these condi-
tions. One of the main reasons to include an additional dimension to the problem is to
leverage the temporal coherence. However, temporal information and more specifically
facial dynamics are currently under-exploited. The facial dynamics presents complex
motion that can be observed at different scales. Facial dynamics includes global motion
related to head movements and local motion, such as eye or lip movements, caused by
facial deformations, for instance related to expressions. The approaches proposed so far
are limited since they are unable to properly include local motion, which is important
for accurate detections. In addition, they do not make a sufficient use of the possible
synergy between motion, appearance, and shape.
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Beyond the algorithms, many datasets have been made available. These datasets
propose more and more complex data with multiple severe challenges. Data generally
comes from the Web, which represents a seemingly unlimited source of diversified data
captured under uncontrolled conditions. Until now, the focus of the dataset was static
data. Efforts have been made to provide datasets to compare performance in controlled
and uncontrolled conditions. However, the lack of contextual annotations that describes
the acquisition conditions limits the level of analysis. Current datasets make it diffi-
cult to conduct comprehensive analyses, such as quantifying the impact of the different
challenges on facial landmark detection. Yet, such analyses are crucial to effectively
estimate the contribution of current approaches and to get relevant insights on how to
improve these approaches. They may particularly highlight the role of temporal infor-
mation under uncontrolled conditions.

1.5 Contributions

The work of this thesis is structured around the following objectives, each of which
resulted in contributions:

• providing a better analysis of current approaches: A study is conducted using
a recent, richly annotated, video dataset. It quantifies the impact of two major
challenges, variations of pose and expression, on facial landmark detection. This
analysis is performed at different levels: the overall shape and the landmarks, to
identify the most critical situations and facial regions with regard to these chal-
lenges. In addition, recommendations are formulated, including the use of tem-
poral information as a solution to address these challenges, all at once.

• improving spatio-temporal modeling: Local motion modeling is integrated into
the two main models of the literature (i.e., coordinate and heatmap regression
networks) through direct pixel connectivity. Experiments validate the assumption
that local motion modeling improves performance, especially during complex lo-
calized motion such as expressions.

• studying the relationships between spatial and temporal information, and
local and global motion: An investigation of DNN design is carried out and lead
to better use of the complementarity between spatial and temporal information
and local and global motion. This results in an improvement of the proposed
architectures and additional performance gains.

8



CHAPTER 1. INTRODUCTION

In summary, the work in this thesis shows the importance and benefits of spatio-
temporal modeling for facial landmark detection. Capturing facial dynamics provides
valuable information in uncontrolled conditions, especially during pose and expression
variations.

1.6 Outline

This dissertation is structured in three main parts. In Chapter 2, existing work on fa-
cial landmark detection is reviewed. Image-based approaches are first discussed. This
mainly includes generative and discriminative approaches, which represent the two main
ways to address this problem. Given the prominence of DL today, a particular atten-
tion is given to this type of approaches. Finally, various solutions are discussed. They
have been proposed to specifically address one of the challenges that may be encoun-
tered under uncontrolled conditions (i.e., head pose, occlusions, expressions, or others).
The focus then switches to video-based approaches which, despite being less popular,
are attracting more and more attention. These approaches are organized into five cat-
egories. The most naive approaches, such as tracking by detection or box, landmark
or pose tracking, are first presented. More sophisticated approaches, such as adaptive
approaches, joint detection and tracking, and constrained approaches, are then featured.

Chapter 3 examines the effectiveness of current facial landmark detection approaches.
Datasets and evaluation protocols are first presented. Image and video datasets cap-
tured under uncontrolled conditions are described. The pre-processing and augmen-
tation techniques applied to the raw data are detailed, as well as the most commonly
used evaluation metrics. Two benchmarks, image and video, are then conducted using a
compilation of the results from the literature. In this way, a large number of approaches
can be discussed. However, this does not allow to quantify the impact of the various
challenges encountered under uncontrolled conditions. To go further, a comprehensive
analysis is conducted to quantify the impact of poses and expressions on facial landmark
detection. The analysis is performed up to the level of individual landmarks. It provides
useful insights on how to further contribute towards solving the alignment problem, and
highlights the key role of temporal information in addressing challenges such as head
pose and expression variations.

Afterwards, efforts are concentrated on spatio-temporal modeling. After having
identified the limitations of current video-based approaches, a solution to overcome
these limitations is proposed in Chapter 4. It consists in improving the way temporal in-
formation is modeled. The main objective is to capture more subtle motion and not just
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CHAPTER 1. INTRODUCTION

global motion related to head movements. For this purpose, existing spatio-temporal
modelling solutions are first reviewed. Both handcrafted and DL approaches are con-
sidered. Once identified, the most relevant solutions for the problem, especially 3D
convolutions, are used to propose new architectures for video-based landmark detection.
Experiments on two datasets, SNaP-2DFe [2] and 300VW [193], are conducted. The
results confirm the benefits of the proposed approach. To go further, questions about the
complementarity between spatial and temporal information and local and global motion
are investigated. Improvements to the proposed architectures are identified.
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CHAPTER 2. FACIAL LANDMARK DETECTION

As stated in [99], the face corresponds to a deformable object that can vary in terms
of shape and appearance. The first attempts to facial landmark detection can be traced
back to the 1990s. The Active Shape Models (ASMs) [38] represents one of the sem-
inal works on the subject. Such a generative approach consists of a parametric model
that can be fitted to a given face by optimizing its parameters. This process of applying
the model to new data is called inference. Rapid progress has been made through the
development of Active Appearance Models (AAMs) [37], Constrained Local Models
(CLMs) [40], and other extensions [216, 4, 9, 11], to the point where the problem is
now considered well addressed for constrained faces [99]. The research has therefore
shifted to unconstrained faces with multiple and complex challenges, e.g., occlusion,
variations in pose, illumination, and expression. Faster and more robust discriminative
methods such as Cascaded Shape Regression (CSR) [53] have been proposed to ad-
dress these challenges. They differ from generative approaches as they directly learn
a mapping function between images and facial shapes with better generalization abil-
ity. Due in particular to the phenomenon of data massification and the increase in the
computational capacity of machines, a subset of these approaches, DL, has stood out.
These approaches need larger datasets than traditional ML algorithms but do not require
feature engineering. Above all, they currently outperform all previous approaches and
most research now focuses on them.

Consequently, two main categories of approaches can be defined, generative and
discriminative, not to mention the complementary solutions that can be applied to most
of these approaches, e.g., multi-task learning, to explicitly address some selected chal-
lenges. The proposed nomenclature is close to the ones proposed in [240, 99]. Con-
sidering its wide range of applications and the persistent difficulties encountered under
uncontrolled conditions, facial landmark localization remains a very active area of re-
search. Recently, there has been a trend towards video-based solutions [193]. One of the
main reasons to include this additional dimension to the problem is that temporal consis-
tency provides a useful input to achieve robust detection under uncontrolled conditions.
Different strategies have been proposed, from the most traditional tracking strategies,
such as tracking by detection, to more complex strategies that can jointly extract fea-
tures and perform tracking. Current work is mostly tracking-oriented and focuses on
global head movements.

All these items are discussed in detail in the following sections. In Section 2.1,
the groundbreaking work and advances in the two main categories of approaches are
reviewed, with an emphasis on DL approaches. This allows to properly describe, in
Section 2.1.4, the complementary solutions that can be used to handle major challenges.
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In contrast to existing literature reviews [240, 99], the different strategies proposed in
the literature to extend facial landmark localization to video are extensively discussed
in Section 2.2. Finally, Section 2.3 concludes with a positioning of the work presented
in this thesis.

2.1 Facial Landmark Detection in Still Images

Efforts to tackle the problem of facial landmark detection have long focused on still
images and much work has been published. In Section 2.1.1 and 2.1.2, the two main
categories of approaches, generative and discriminative, are detailed as well as their
developments. Among the discriminative approaches, deep learning approaches have
become very popular. Therefore, the latter is given close attention in Section 2.1.3.
Finally, complementary solutions to handle the difficulties encountered under uncon-
trolled conditions are reviewed in Section 2.1.4.

2.1.1 Generative Approaches

Generative methods typically build a statistical model for both shape and appearance.
They are referred to as generative approaches since they provide a model of the joint
probability distribution of the shape and appearance. These models are parametric and
therefore have some degrees of freedom constrained during training so they are expected
to match only possible facial configurations. By optimizing the model parameters, e.g.,
by minimizing the reconstruction error for a given image, the best possible instance of
the model for that image can be generated. Initially only shape variations were modelled
[38]. But, on the same line of thought, texture variations were also added to jointly apply
constraints to variations in shape and texture [37]. Facial appearance can be represented
in different ways. The entire face can be considered, which constitutes a holistic repre-
sentation. The face can also be decomposed into different parts, e.g., patches centered at
each landmark, which is known as a part-based representation. Generative approaches
provide a good fitting accuracy with little training data but are sensitive to shape ini-
tialization and do not generalize well to new images. The optimization can be difficult
under uncontrolled conditions due to the high dimensionality of the appearance space.
They tend to get trapped in local minima as well. Note also that these methods are
mainly based on Principal Component Analysis (PCA) [161] and therefore the distribu-
tion is assumed to be Gaussian, which does not fit the true distribution.

The AAMs [37] is probably the most representative method in this category and the
most widely studied. In the following, AAMs modeling and fitting are presented as well
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as some of their improvements. The modeling can be split into 3 parts: a shape model,
an appearance model, and a motion model. The shape model, also called Point Distri-
bution Model (PDM) [38], is common among deformable models [38, 37, 40, 9, 216].
It is built using the N training facial shapes. These shapes are first normalized (aligned)
using a GPA [75] to remove affine transformations (i.e., rotation, scale, and translation
variations) and keep only local, non-rigid shape deformation. Next, PCA is applied to
obtain a set of orthogonal bases that capture the maximal variance. Only the n eigenvec-
tors corresponding to the largest eigenvalues are kept as they summarize well the data.
This reduces the dimensions while ensuring that the key information is maintained. The
model can then be expressed as:

sp = s+ Usp (2.1)

where s ∈ R2L,1, Us ∈ R2L,n, and p ∈ Rn are respectively the mean shape, the shape
eigenvectors, and the vector of shape parameters. Four eigenvectors corresponding to
the similarity transforms (scaling, in-plane rotation, and translation) are added to Us

(re-orthonormalization) to be able to fit the model on any image [145].

To build the appearance model, features from the N training images are first extracted
using the function F . Initially, holistic pixel-based representation was used, which is
sensitive to lighting and occlusions [37]. To improve robustness, feature-based rep-
resentations such as Histogram of Oriented Gradients (HOG) [44] or Scale-Invariant
Feature Transform (SIFT) [136] can also be used. In this way, relevant facial features
are extracted, with a better ability to generalize to new faces. These features are then
warped into the reference shape using the motion model. PCA is finally applied onto
these vectorized warped feature-based images. The model can be expressed as:

aq = a+ Uaq (2.2)

where a ∈ RM,1, Ua ∈ RM,m and q ∈ Rm are respectively the mean appearance vector,
the appearance eigenvectors, and the vector of appearance parameters.
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The motion model refers typically to a warp function W such as a piece-wise affine
warp or a thin-plate spline [145, 218]. Given a shape generated from parameters p, this
function defines how to warp the texture into a reference shape, e.g., the mean shape s.
Figure 2.1 shows an example of AAMs instantiation.

Figure 2.1: Example of AAMs instantiation. The appearance computed from the pa-
rameters q is warp into the shape computed from the parameters p [145].

Finally, the AMMs can be fit to a previously unseen image by optimizing the following
cost function, which consists in the minimization of the appearance reconstruction error
with respect to the shape parameters:

arg min
p,q

||F (I)(W (p))− a− Uaq||2 (2.3)

The optimization is an iterative process by which parameters p and q are found so that
the best instance of the model is fitted to the given image. This can be solved by two
main approaches: analytically or by learning. The first one typically uses gradient de-
scent optimization algorithms [145, 77, 157]. The standard gradient descent being inef-
ficient for this problem, other ways to update the parameters have been proposed. In the
project-out inverse-compositional algorithm [145], shape and appearance are decoupled
by projecting out the appearance variations. This results in a faster fitting but also with
convergence issues that decrease robustness. With the simultaneous inverse composi-
tional algorithm [77], shape and appearance parameters are optimized simultaneously
to provide a more robust fitting, but at a higher computational cost. It is however pos-
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sible to speed it up using the alternating inverse compositional algorithm [157], which
optimizes the shape and appearance parameters in an alternated manner instead of si-
multaneously. The second optimization approach typically uses cascaded regression
to learn a mapping function between the facial appearance and the shape parameters
[37, 187]. The original AAMs [37] employs linear regression. Non-linear regression
has also been proposed [187]. This approach may be efficient but makes the invalid as-
sumption that there is a constant linear relationship between the image features and the
parameter updates [145]. Despite various efforts in optimization strategies, the AAMs
remains difficult to optimize under uncontrolled conditions due to the high dimension-
ality of the appearance space and the propensity of the optimizer to converge to local
minima.

To overcome these problems, more robust, part-based representations can be used.
In part-based generative models, the local appearance around each landmark is extracted
and combined to build a model for the whole face [219, 216], which reduces the size
of the appearance space. Active pictorial structures [4] go further by taking advantage
of the tree structure used in Pictorial Structures (PSs) [65] to replace PCA. PSs are
extended to model the appearance of the face using multiple graph-based pairwise dis-
tributions between the facial parts and prove to be more accurate than PCA. Note that
ASMs is also considered as a part-based generative model, with the difference that an
appearance model is used for each facial part rather than a single model for all parts.
However, its evolution towards models such as CLMs [40, 188], considered as discrim-
inative, will be discussed in the next section. Although holistic and parts-based models
appear to have the same representational power, part-based models are easier to optimize
and more robust to poor initializations, lighting, and occlusions since local features are
usually not as sensitive as global features.

2.1.2 Discriminative Approaches

Unlike generative approaches, that rely on statistical parametric models of appearance
and shape, discriminative approaches learn a mapping from the image to the facial
shape. In this section two categories of approaches are distinguished. The first category
refers to hybrid approaches such as CLMs [40, 188]. Such approaches are based on
independent discriminative models of appearance, one for each facial part, constrained
by a statistical parametric shape model, e.g., PDM. This means that there is still an op-
timization step during inference for this category. Besides, the ambiguity between the
local appearance models of different landmarks can strongly impact the performance
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under uncontrolled conditions. To address these difficulties, a second category of ap-
proaches has emerged. These approaches, the most notable of which is CSR [53, 248],
infer the whole face shape by directly learning one or more regression functions which
implicitly encode the shape constraint. It provides more freedom than a parametric
shape model would as no explicit assumption on the distribution of the data is made.
During inference, there is no optimization as well. The facial shape is directly estimated
from the image features. Because of these distinctions, discriminative approaches are
faster and more robust in comparison to generative ones. They generalize better to new
unseen images as they can benefit from large datasets, which are omnipresent nowadays.
However, it remains challenging to directly map the appearance to the facial shape when
confronted to severe difficulties such as extreme poses or expressions. A third category
could be added for DL approaches, e.g., CNNs. Most of the work today is based on
DNNs, leaving traditional methods behind 1. These approaches are capable of learning
highly discriminative and task-specific features. They no longer need feature engineer-
ing. Given the breakthrough of DL in computer vision, a separate section (Section 2.1.3)
is dedicated to these approaches.

Hybrid Approaches

CLMs is an extension of ASMs with the main difference that the appearance models are
discriminative rather than generative. It is a part-based hybrid approach composed of
two elements: discriminative local detectors or regressors to represent the appearance
and a generative shape model to regularize the deformations and ensure a valid face.
In the following, the modeling, fitting, and improvements related to this approach are
described.

Local detectors or regressors are used to compute response maps providing the prob-
ability that a given landmark is located at a specific position. To build them for each
landmark, a statistical model of the grey level structure along with the Mahalanobis
distance as the response were initially proposed in ASMs [38]. However, more power-
ful discriminative approaches, e.g., binary classifiers such as logistic regression [188]
or Support Vector Machines (SVMs) [138], have been used. Consider a linear SVMs
that determines whether or not a given patch matches the description of the region of a
landmark. From the training data, positive and negative examples are extracted for each
landmark to train different SVMs, also called patch experts.

1https://jponttuset.cat/dl-lstm-gan-evolution/
https://medium.com/@karpathy/a-peek-at-trends-in-machine-learning-ab8a1085a106
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The response can be expressed as follows:

R = −I(c+ δc)T
V∑
v=1

αvλv(c) (2.4)

where I is the given image, c the initial coordinates, δc a displacement constrained by
the PDM, λv(c) the V support vectors and αv the support weights. The output corre-
sponds to the inverted classifier score, which is 1 if positive, -1 otherwise. By fitting
a logistic regression function to the output, Platt Scaling [171], an approximate prob-
abilistic output can be obtained. To refine the detection and maintain a valid shape, a
shape constraint is then imposed using a statistical shape model such as PDM, already
presented in Section 2.1.1.

Figure 2.2: Overview of CLMs fitting: ELS is generally performed to get a response
map for each landmark. To refine the detection and maintain a valid shape, a shape
constraint is then imposed using a statistical shape model [188].

Hence, two steps, illustrated in Figure 2.2, can be differentiated when fitting CLM.
An Exhaustive Local Search (ELS) [188] is generally performed first to get a response
map for each landmark. This step is followed by a shape refinement over these response
maps to find the shape parameters that maximize the probability that the landmarks are
accurately detected given the appearance features. The cost function can be expressed
as:

arg min
p

L∑
l=1

Rl(I(sl + Ulp)) (2.5)
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where I is the given image, L the number of landmarks, sl the coordinate of the l-th
landmark from the mean shape, Ul the shape eigenvectors, p the shape parameters, and
R the response. The Gauss-Newton algorithm, although it suffers from local minima, is
generally employed to solve this problem [188]. Also, the true response maps are not
directly used due to performance issues; they are replaced by approximations. There are
several approximation techniques, most of them parametric, yet a non-parametric rep-
resentation known as regularized landmark mean-shift has proved to be a good balance
between representational power and computational complexity [188]. It takes the form
of a Gaussian Kernel Density Estimate [195]:

KDE =
∑
yi∈ψi

πyiN (xi; yi, pI) (2.6)

where yi is a candidate location among ψi locations within a given region, πyi is the
likelihood that the i-th landmark is aligned at location yi, xi is the location of the i-th
landmark generated by the shape model, p is the variance of the noise on landmark lo-
cations, and I is the identity matrix. A regression-based fitting approach can also be
used to learn mapping functions from response maps to the shape parameter updates. It
is known as discriminative response map fitting [5]. Given its nature and ability to ben-
efit from large amounts of data, this approach achieves a performance gain over RLMS
fitting.

One of the limitations of part-based approaches is the ambiguity between local de-
tectors due to the small size and large appearance variations of the training patches.
Feature descriptors can be used to obtain a more robust appearance representation. As
an example, HOG has proved to be effective [5]. To further reduce ambiguity, more
reliable patch experts have been introduced. They are capable of learning non-linear
and spatial relationships between pixels and responses, e.g., the minimum output sum
of squared errors [16, 143] or the local neural field [9]. A second limitation of part-
based approaches may be the ELS, which can be computationally expensive. However,
it can be avoided by computing response maps using regression voting [36, 41]. A
third limitation is related to the use of PDM as a shape model, which has restricted
degrees of freedom due to PCA. Other shape models have been proposed, from sepa-
rate statistical shape models for each facial component to preserve local deformations
[91] to discriminative shape models based on restricted Boltzmann machines [237]. The
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most distinctive one is the exemplar-based shape model [11, 98] which, implicitly from
training data, imposes shape constraints using a consensus of non-parametric models.
It has the advantage of being independent of the initialization. It should be noted that
there are some other variants close to the CLMs but generally considered as indepen-
dent. This includes the combination of local regressors based on boosted support vector
regression with graph models such as Markov random fields [223, 142], or the use of
tree-structured models [286, 222, 90]. However, globally optimizing Markov random
fields appear to be difficult [223]. Tree-based models are easier to optimize thanks to
dynamic programming but struggle to perform in real time [65, 286].

Regression-Based Approaches

Direct Regression (DR) learns the mapping from the image appearance to the facial
shape in one iteration without any initialization nor parametric appearance or shape
models. The landmark locations are jointly estimated while the shape constraints are
implicitly encoded. The model can be expressed as follows:

M : F (I) 7→ s (2.7)

whereM is the model, F (I) is a function that extract appearance features from an image
I , and s ∈ R2L,1 is the predicted facial shape. The regression function being central,
its choice is decisive. Regression forests [19] are generally used to cast votes for the
facial shape from randomly sampled local patches [46, 256, 257]. However, the random
strategy to sample patches is sensitive to occlusions [257]. Additionally, the information
provided by local patches is not sufficient to perform global shape estimation. More re-
cently, holistic approaches performed DR using global facial images. In particular, DL
approaches [205] is discussed in Section 2.1.3. This mapping is more difficult to learn
due to the significant variations in appearance that can occur in the global facial image.

Since DR is challenging, CSR has been proposed to divide the regression process
into stages, as shown in Figure 2.3. It usually starts with an initial shape, typically the
mean shape of the training data. The early stages focus on large variations, e.g., yaw,
roll, or scaling, while the later ones focus on subtle variations, e.g., face contours and
motions of the mouth, nose, and eyes, to sequentially update and refine the prediction,
following a coarse-to-fine strategy. Each stage corresponds to an independent regressor,
which learns the mapping from the shape-indexed features to the shape update. Shape-
indexed features correspond to local features extracted based on the current landmark
location estimates.
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Figure 2.3: Coarse-to-fine prediction using CSR [230]. The regression process is di-
vided into stages. The early stages focus on large variations while the later ones focus
on subtle variations, to sequentially update and refine the prediction.

A shape increment can be expressed as follows:

δŝt = rt(φt(I, st−1)) (2.8)

where δst is the shape increment at stage t, rt the stage regressor, and φt a function
that extracts shape-indexed features from image I using the landmark locations at stage
t− 1. The shape constraints are implicitly and adaptively encoded through the sequen-
tial training of the stage regressors rt. During inference, the initial shape is refined by
estimating shape increments δs to reduce errors. This results in fast and accurate pre-
dictions.

Explicit shape regression [27] represents one seminal work on CSR, using random
ferns as stage regressors and pixel intensity differences as shape-indexed features. To
train such a model, the mean shape of the training data is first calculated and normalized,
i.e., rescaled and centered at the origin. Then, each stage regressor is trained using the
ground truth transformed into the mean shape coordinates through GPA [75]. This en-
sures invariance in scale. The objective is to minimize the mean squared error between
the target and the estimate shape increment. It can be expressed as follows:

arg min
r

N∑
n=1

||δst,n − rt(In, st−1,n)||2 (2.9)

where r is the stage regressor, δs is the target shape increment at stage t, I is the n-th
training image, and s is the shape estimate from the previous stage. The initial shape
is generally perturbated multiple times, using data augmentation, to improve general-
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ization. During inference, the same objective as during training is kept. The shape
estimate is gradually updated using the shape increments transformed back into global
coordinates. The complete process is a two-level boosted regression, which consists
of a cascade of random ferns, i.e., 10 stages of 500 ferns with a depth of 5. Candi-
date features are proposed by generating a random set of normalized pixel coordinates
indexed relatively to the nearest landmark on the mean shape. These shape-indexed fea-
tures are extracted based on the current shape estimate at each stage by transforming the
pixel locations back into global coordinates. Local pixel intensity differences provide
discriminative features invariant to illumination. A correlation-based feature selection
strategy is then applied to retain only the most discriminative and distinctive features
using Pearson’s correlation coefficient. The sum of the outputs of each fern constitutes
the final output of the stage. With some adjustments, this approach can achieve impres-
sive execution speeds and handle partial or uncertain labels during training [105].

CSR approaches differ mainly in terms of the shape-indexed features and regressors
they use. An approach worth mentioning is the Supervised Descend Method (SDM)
[248]. Initially developed to solve general non-linear least square problems, SDM uses
linear regression with SIFT features to learn descent directions that minimize the objec-
tive. Random forests can also be used to learn discriminative local binary features for
each landmark and to learn the mapping between the concatenated features and the fa-
cial shape [178]. Gaussian process regression trees [125] have been proposed to enhance
generalization. A Gaussian process regression tree corresponds to a kernel function de-
fined by a set of trees to measure the similarity between two inputs and uses differences
of Gaussians as input features.

One of the main concerns of CSR may be the initialization with the mean shape,
which is sub-optimal. Poor initialization can lead to local optima and impact robust-
ness, e.g., for large head poses [198]. DR can be used to generate a better initial es-
timate [274]. The bounding box can be randomly shift and rescaled to generate mul-
tiple shape hypotheses and learn to rank or combine them to get the final result [252].
The coarse-to-fine strategy can also be employed to perform a progressive and adaptive
shape searching [285]. Another concern related to the mapping from the face bounding
box to the facial shape is the sensitivity to the face detector [184]. A mapping learned
with bounding boxes from one detector could perform poorly if a different detector is
used during inference, due to the possible differences in box sizes and locations. Lastly,
a minor concern could be the fixed number of cascades. Good results or locally optimal
solutions can be delivered early in the process, making the rest unnecessary. There is
currently no way to stop the process or adjusting the number of cascades.
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2.1.3 Deep Learning Approaches

Traditional ML techniques that have been used so far are not very efficient when dealing
with raw image data directly, i.e., to work directly with pixels. Facial landmark detection
is too difficult due to the variations in appearance (e.g., position, orientation, illumina-
tion) that can occur, especially under uncontrolled conditions. To overcome this issue,
discriminative features as invariant as possible to variations are extracted (e.g., HOG,
SIFT), which require engineering skills and domain expertise. This can be avoided by
using DL approaches, which are capable of learning highly discriminative task-specific
features. This subset of ML methods is based on Artificial Neural Networks (ANNs).
These methods, although not new [123, 119], have recently led to breakthroughs in
many fields, including computer vision [112]. This is associated to the increase in com-
putational power and data availability currently required to leverage such approaches.

Figure 2.4: Structure of an artificial neuron. A weighted sum of the inputs is performed.
The result is then passed through a non-linear activation function.

The most common type of ANNs is the feedforward network, in which informa-
tion is forwarded in a single direction through multiple layers of computational units,
without cycles or loops. There is a variety of architecture with a potentially high num-
ber of layers, hence the use of the term DL. The multilayer perceptron [181] can be
considered as the groundwork of DL and is often referred as vanilla neural networks.
Nowadays, CNN is the architecture commonly used to process images [124]. ANNs are
often referred to as biologically inspired models [180]. An artificial neuron, illustrated
in Figure 2.4, corresponds to a very simplified version of biological neuron. It can be
formulated as follows:

y = f(
I∑
i=1

Wixi + b) (2.10)

where xi is the i-th input, W are the connection weights, b is the neuron bias, and f
is called the activation function. The same applies to CNNs, which mimic the ven-
tral pathway of the visual cortex by considering an image as a compositional hierarchy
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using convolution and pooling layers inspired by simple cells, complex cells, and the
LGN–V1–V2–V4–IT hierarchy in the brain [92, 64]. Each layer of a CNN represents
the input at a specific level of abstraction. The first layers focus on low-level features
such as colors, edges, and orientation, while high-level ones (parts of objects, objects)
are obtained in the subsequent layers by composing these low-level features. Although
this is an over-simplification from the actual visual cortex, CNNs allow to learn com-
plex functions, which outperform traditional ML techniques in most tasks [3]. Among
the popular CNN architectures are AlexNet [112], VGG [197], Inception [206], and
ResNet [86], which are widely used in the literature, or at least they serve as a basis for
more specific architectures. Today, much work is focused, not exclusively, on designing
architectures: deep [197], wide [243], new layer [43], new connection [86], new layer
composition [206], efficiency [93], structural diversity [278], combination with a pro-
jection model [288], etc. Many criteria need to be considered, including the amount,
type, and quality of data available for the targeted problem.

Figure 2.5: Comparison between feedforward and recurrent neural networks. In feed-
forward networks, the information flows in one direction only, from the input layer to
the output layer. In recurrent neural networks, there are cycles or loops, which make
them usueful for time series/sequential tasks.

Conventional feedforward networks have no persistence. To allow a reasoning about
their past decisions, they can be extended by adding a feedback loop to them and thus
making them recurrent (see Figure 2.5 [182]. This introduces a notion of sequence
where information can be passed from one step to another. A common way to represent
Recurrent Neural Networks (RNNs) is to unroll each step, which results in multiple
copies of the same network interacting with each other. In the following the different
layers used to build a DNN architecture, how to train and deploy such an architecture,
and the specificities related to the landmark detection problem are described.
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Theory

A Convolutional Neural Network is a composition of layers, each performing a (sup-
posedly) differentiable function, all together resulting in an architecture that enables the
learning of a non-linear mapping between input(s) and output(s). There are several types
of layers, the most common ones being fully connected (fc) layers, convolution (conv)
layers, activation layers, and pooling (pool) layers.

As illustrated in Figure 2.6, fc layers are composed of a fixed number of neurons that
are connected to all the neurons in the adjacent layers. Each neuron output is a weighted
sum of its inputs. This leads to a high level reasoning through the extraction of global
relationship between neurons/features.

Figure 2.6: Illustration of an fc layer. Each neuron in the fc layer is connected to each
neuron in the previous layer

Using fc layer for high-dimensional data being impracticable due to too many con-
nections, conv layer was proposed [124]. CNNs make the explicit assumption that the
inputs are images, which results in two key properties of the conv layer: local connec-
tions and weight sharing. A conv layer produces a set of 2-dimensional feature map.
Each neuron of a feature map is connected to a local region, its receptive field, in the
previous layer through a set of parameters called filter or kernel (see Figure 2.7). Lo-
cal group of pixels are generally highly correlated. Since a feature should be useful to
compute at different positions, all neurons in a feature map share the same filter. This
provides a feature extractor with translation equivariance and far less parameters than
with an fc layer.
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2D convolution can be expressed as:

vxyij = bij +
∑
m

Pi−1∑
p=0

Qi−1∑
q=0

wpqijmv
(x+p)(y+q)
(i−1)m (2.11)

where vxyzij is the value at position (x, y) on the j-th feature map in the i-th layer, b is
the bias, m is the index of the feature map in the previous layer, P,Q are respectively
the height and width of the kernel, and w is the value of the kernel. Note that a 1-
dimensional conv layer where the filter is of the same size as the input is equivalent to
an fc layer.

Figure 2.7: Example of a convolution operation with a 2x2 filter and stride 1. The dot
products between the filter and a local region of the input is illustrated.

The activation layer is an elementwise function, which performs a non linear trans-
formation, e.g., rectified linear unit (ReLu) [150]. Without this transformation, only
linear operations are performed by the network. By increasing its non linear proper-
ties, this makes the network more suitable to solve complex problems. ReLu is one of
the most commonly used activation. In comparison to the first used activations, e.g.,
tanh, sigmoid, it makes the training faster and alleviate optimization problems. It can be
expressed as follow:

f(x) =

{
0 for x < 0

x for x ≥ 0
(2.12)

Finally, pool layer corresponds to a downsampling operation, which generally com-
putes the maximum or average of a local region. Max pooling is depicted in Figure 2.8.
It helps further reduce the amount of parameters and computation, allowing a better
control of overfitting. It also adds invariance to translation (small shift) and distortion
[124].
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Figure 2.8: Example of a max pooling with a 2x2 filter and stride 2. The maximum of
local regions is computed, which leads to a downsampling of the input.

Most of these layers have hyperparameters, which are not learned but must be de-
fined manually. It is necessary to specify the capacity in terms of number of neurons for
fc layers. The number, size and the displacement (stride) of filters are to be defined for
conv layers. Similarly, the size and displacement of the window are also to be provided
for pool layers. To control the size of the input and avoid losing information at the
boundaries, conv and pool layers also require a certain amount of padding. Figure 2.9
depicts stride and padding. conv and fc layers also have parameters that need to be
learned.

Figure 2.9: Behaviour of a filter of size 3x3 with padding and stride 1.

Once the architecture is defined, the training phase aims to adjust the layer param-
eters to obtain the best possible predictions. An objective or loss function is applied at
the output of the network to measure the error between predictions and ground truth.
Mean Squared Error (MSE) is one of the most common regression loss functions:

MSE =
1

N

N∑
n=1

||si − si||2 (2.13)

whereN is the number of training samples, si the i-th ground truth shape, and si the i-th
predicted shape. The (mini-batch) Stochastic Gradient Descent (SGD) algorithm [179]
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is used to find the minimum of this function. The error is computed and distributed
backwards (backpropagation). A gradient vector for each parameter is computed from
the last layer to the first using the chain rule. It determines the amount by which the error
would increase/decrease if the parameter was changed. The parameter is then adjusted
in the direction opposite to the gradient vector multiplied by an additional hyperparam-
eter called the Learning Rate (LR). The latter defines by how much the parameters are
changed according to the error, which helps to control the speed at which the model
learns. It is called stochastic because batches of training samples are selected randomly
to compute gradient at each iteration instead of the full training set. It helps prevent the
algorithm from reaching local minima. A parameter update can be expressed as follows:

W ← W − λ(
∂MSE

∂W
) (2.14)

whereW corresponds to the parameters, λ the LR and ∂MSE
∂W

the partial derivative of the
lost function with respect to the parameters. To avoid gradient problems when perform-
ing gradient descent optimization, the parameters are initialized with random values in
such a way that they are not too small nor too large, e.g., Glorot initialization. Going
through all the training data corresponds to an epoch; it is done multiple times. This it-
erative process leads to a convergence towards a minimum generally close to the global
solution. It is crucial to carefully tune hyperparameters, some as the LR being critical to
ensure a good convergence. Variants of SGD such as Adam [107] can be used to main-
tain an LR for each parameter and to adapt it dynamically during training. Once training
is completed and the parameters are set, the network can then return the corresponding
landmarks from an input image by passing it through the stack of layers.

RNNs rely on an extension of backpropagation called BackPropagation Through
Time (BPTT), which unrolls the network and propagates the error backward over the
entire input sequence. The weights are then updated with the accumulated gradients.
BPTT can be computationally expensive as the number of timesteps increases. To avoid
computational burden, truncated BPTT is generally used. The sequence is split into
smaller sequences that are treated as separate training cases. Vanilla RNNs have funda-
mental optimization limitations as the gradients tend to either vanish or explode during
optimization, resulting in an unstable network unable to learn long term dependencies
[12]. Gradient explosion can be addressed through gradient clipping [160]. Gradient
vanishing can be solved using Long Short-Term Memory (LSTM) [88] illustrated in
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Figure 2.10. By adopting a memory cell coupled with gating functions to control the
flow of information, the network is better able to learn over long sequences. LSTM can
be expressed as:

it = sigmoid(WxiXt +WhiHt−1 +Wci ◦ Ct−1 + bi)

ft = sigmoid(WxfXt +WhfHt−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(WxcXt +WhcHt−1 + bc)

ot = sigmoid(WxoXt +WhoHt−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(2.15)

whereXt andHt are respectively the input and the hidden state at time t. W denotes the
weights, b the bias, and ◦ the Hadamard product. Ct is the memory cell of the LSTM,
which is updated by the input gate it, the forget gate ft, and the output gate ot. Theses
gates help reduce the vanishing gradient effect. Gated Recurrent Unit (GRU) [31] is an
increasingly popular alternative with a simplified structure, which combines the forget
and input gates into a single update gate and merges the hidden state and memory cell.

Figure 2.10: Comparison of a vanilla RNN unit (left) and a LSTM block (right) [76].
Compared to vanilla rnn, LSTM has a memory cell updated by different gates to control
the flow of information and reduce the vanishing gradient effect.

Beyond the standard supervised learning framework, other techniques can be used.
Adversarial Learning (AL) is an increasingly popular framework, which consists of re-
placing or supplementing the explicit loss function with one or several DNNs. This is
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often presented as a game theory scenario where several networks are used to compete
against each other. Training is modeled as a zero-sum game. The gain of one neces-
sarily constitutes a loss for the other. As shown in Figure 2.11, one neural network,
called the generator (G), generates new data (e.g. an heatmap), while its opponent, the
discriminator (D), tries to detect if the data is real or if it is the result of G. The aim of G
is thus to fool D. The gradients accumulated from the loss of D are used to update G. In
this way D provides feedback to G so that it may improve. This strategy is also known
as Generative Adversarial Networks (GANs) [73]. The original GANs loss function can
be expressed as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.16)

where D maximize the probability it correctly classifies reals and fakes (logD(x)) and
G minimize the probability that D will predict its outputs are fake (log(1−D(G(z)))).

Figure 2.11: Overview of GANs. The generator generates new data while its opponent,
the discriminator, tries to detect if the data is real or if it is the result of the generator.
The discriminator then provides feedback to the generator so that it may improve.

Advances

In the recent Menpo challenge [271], which is a good indicator of trends on facial land-
marks detection problem, only DL approaches have been proposed. Currently, two
strategies to design architectures for landmark detection can be distinguished: coordi-
nate regression and heatmap regression. They respectively regress the coordinates di-
rectly using a fully connected layer [205] or compute heatmaps, one for each landmark
with the same size as the input, using a FCN [23]. The coordinates of the maximum
value in a heatmap are generally considered as the coordinates of a landmark.
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Figure 2.12: Early CNN architecture for facial landmark detection [205]. It consists of
4 conv and pool layers and 2 fc layers to produce landmark coordinates.

One of the first DNNs designed for landmark detection is based on the CSR ap-
proach presented in Section 2.1.2 [205, 282]. It consists of multiple levels of CNN,
the first level processing the whole face to capture texture information and geomet-
ric constraints, while the subsequent levels perform a local refinement. Figure 2.12
illustrates the CNN architecture composed of 4 conv and pool layers and 2 fc layers
allowing the direct regression of landmark coordinates. There is now a trend towards
Fully Convolutional Network (FCN) architectures. It has some advantages [135], in-
cluding no input size limit, better spatial information handling and a better computa-
tional cost/representation power ratio. The HourGlass (HG) network shown in Fig-
ure 2.13 is currently very popular and considered as the state-of-the-art facial landmark
detection method [23]. Initially designed for human pose estimation [152], HG consists
of a symmetrical encoder-decoder with skip connections between the two to consolidate
information at different scales. It is generally stacked several times (up to 8) with in-
termediate supervision to follow the CSR approach. A compromise between these two
approaches is also possible, by regressing coordinates and using landmark heatmaps to
transfer spatial information across stages [111]. HG is the most popular model, yet it
struggles to run in real time due to its high computational complexity. Neural network
compression such as weight binarization can be applied to improve speed and reduce
the size of the model, but at the expense of accuracy [22].

CSR remains popular within DL approaches and can be implemented in different
ways, either by stacking networks [274, 87, 80], as seen previously, or by formulating
it as a recurrent process by combining CNNs and RNNs [215, 230, 116]. In the lat-
ter, each recurrent step corresponds to a shape increment; shape increments are jointly
learned relying on an explicit memory shared across steps. CSR can be improved by
adding attention mechanisms to the network to enable it to focus on relevant parts of the
data. Such a mechanism, combined with a RNN, can identify reliable landmarks and use
them as attention centers to refine primarily landmarks close to them [245]. It can also
be incorporated into conv layers using intermediate supervision to generate top-down
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attention maps [267]. This allows the network to focus on regions around the landmarks
and thus capture more discriminative and powerful features for facial landmark detec-
tion. This approach suggests that CSR is not a necessity and that DR remains a valid
solution. Deep Reinforcement Learning (DRL) has also proven to be a promising al-
ternative to CSR through the use of a shape searching policy, which maximizes a shape
evaluation function [134].

Figure 2.13: Hourglass network [23]. It consists of a symmetrical encoder-decoder
with skip connections between the two to consolidate information at different scales.
It is generally stacked several times to produce heatmaps, one for each landmark, in a
coarse-to-fine manner.

Other improvements have been proposed. A comparative analysis of different loss
function (L1, L2) [66] suggests that more attention should be paid to small and medium
range errors and the authors proposed a new loss function called Wing loss to address
this problem. The loss function can also be used to apply more specific constraints dur-
ing training. A contextual loss has been proposed to capture the visual context of each
landmark [273]. It can be combined with a structural loss to add an explicit geometric
constraint in order to exploit the hierarchical structure of the face. This constraint can
be incorporated into the model in different ways. A first alternative involves the use of
a second model as a discriminator to distinguish between real and fake shapes with the
aim of providing a feedback to the first model [30]. A second alternative is to integrate
other information related to landmarks such as boundary of the face and use them as a
representation of geometric structure [235].

2.1.4 Handling Challenges

Under uncontrolled conditions, the approaches presented in Section 2.1.1, 2.1.2, and
2.1.3 continue to encounter difficulties, e.g., head pose, occlusions, facial expressions,
illumination. Some of the approaches are capable of implicitly dealing with these chal-
lenges, but they remain most often ineffective when extreme cases occur. A number
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of authors propose to explicitly address some selected challenges and the proposed so-
lutions are generally complementary to most approach. These include the use of 3D
models or multiple specialized models (e.g., multiview) to treat profile faces more con-
sistently, multitask learning with expression recognition as a related task to better han-
dle facial expressions, or extended dataset annotations to explicitly detect occlusions. In
this section a focus is placed on three challenges considered to be the most complex to
address (i.e., head pose, occlusions, expressions) and review the proposed solutions to
tackle them.

Head pose

Figure 2.14: Joint multiview by capitalizing on the correspondences between views
[50]. This helps achieve better accuracy under extreme poses.

Head pose variations are one of the main sources of error. They lead to signifi-
cant changes in appearance and shape especially when switching from frontal to profile
views, which hides an entire part of the face. The approaches presented so far assume
that the landmarks to be detected are visible. This is not true with profile faces. More-
over, there is little training data for extreme poses due to the difficulty of annotating it.
To address these problems, apart from the few multi-tasking or conditioning solutions,
which condition the measurement of 2D coordinates on 3D pose [251, 114], two solu-
tions currently stand out: multiple view-specific models and dense 3D model.

Multiple view-specific models can be used to achieve a better accuracy under ex-
treme poses, one for each view, e.g., left profile, frontal view, and right profile. The best
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model is then selected depending on the scenario. It can be done using head pose based
on a few landmarks [253, 264, 48] or the confidence score of the models [39, 286]. To
reduce selection failures and improve fault tolerance, one possibility, instead of splitting
the training data by pose, is to use the whole training data for each model and weight
more heavily the training samples of the specific pose domain, with overlap between
domains [67]. An alternative is to merge the results of different pose-dependent models
[46]. Still, model selection and model fusion are not trivial tasks as it requires view esti-
mation or the use and ranking of different models. More recently, with the introduction
of a specific landmark configuration for profile faces [271], a joint multi-view model has
been proposed to avoid using distinct models, by capitalizing on the correspondences
between views (see Figure 2.14) [50].

Figure 2.15: 2D-3D dual learning to mutually reinforce each task [244]. Considering the
3D structure of the face is particularly useful to address more effectively self-occluded
landmarks.

Pose variations can also be handled by fitting a dense 3D model, e.g., a 3D Mor-
phable Model (3DMM) [15], to a 2D image. Considering the 3D structure of the face
is particularly useful to reliably reason about self-occluded landmarks. The projection
matrix and model parameters are generally estimated using cascaded regression, then
a 3D-to-2D projection is performed to infer the 2D landmark locations from the 3D
face [100, 287]. Using a single model has also been proposed to improve training and
inference times [101, 14]. The main limitation with these methods is that the shape is
restricted by their linear parametric 3D model, which may lead to a lack of precision in
detection. This can be mitigated by jointly refining the 3D face model and 2D landmark
locations through a recurrent 2D-3D double learning process to mutually reinforce each
other (see Figure 2.15) [244].

Occlusions

Among other causes of error are occlusions, which lead to a loss of information since
they cover a more or less important part of the face. Occlusions that are locally consis-
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tent, meaning that they do not hide all the landmarks, are considered. This challenge is
particularly complex to deal with due to the variety of occlusions, which can be caused
by objects with arbitrary appearances and shape, or self occlusions, e.g., due to head
pose. It requires to rely on non-occluded parts and, therefore, determine which parts are
hidden. Occlusions can be detected explicitly to improve the robustness to outliers (i.e.,
misdetected landmarks).

A first approach is to use occlusion-dependent models. The facial image is gener-
ally divided into several regions in which some are assumed occluded. Different models
are trained with each of these regions. The resulting predictions are merged accord-
ing to certain criteria such as the amount of occlusion present in the regions [25, 265].
The main drawback of this approach is that facial occlusions are totally arbitrary and
therefore it cannot cover the variety of occlusions. Moreover, relying on a single re-
gion provides insufficient appearance information. Another strategy for dividing and
processing the facial image is to segment the image into non-overlapping regions and
predict for each region a heatmap, which indicates how useful is the information con-
tained in it. This heatmap is used together with the facial image to perform landmark
detection [255].

A second approach helps further alleviate the mentioned drawbacks by using unified
framework to jointly model the appearance around each landmark, landmark locations
and visibility, and occlusion pattern [71]. CSR can be used to predict landmarks location
and visibility with an explicit occlusion pattern constraint and more weight assigned to
visible landmarks [238]. With recent DL approaches such as FCN, occlusion informa-
tion can be embedded into heatmaps labels [269]. Broadly speaking, these approaches
require ground truth annotations for occlusions or synthetically occluded data, which
makes the annotation of datasets more laborious.

Expressions

Facial expressions also cause important changes of facial appearance and shape. There
are 7 universal expressions [57]: happiness, sadness, fear, disgust, anger, contempt, and
surprise. All over the world they are used to convey the same emotion. The various
state transitions and intensity are source of localized and complex motions. Beyond
these universal expressions, more complex expressions are likely to be encountered in
natural environments [183, 172]. Recent approaches, i.e. DL, deals reasonably well with
expressions in terms of Euclidean distance. However, it is unclear at this time whether
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this is suited to applications since Euclidean distance is a specific evaluation metric for
landmarks detection and does not reflect some cases such as instability on videos. A few
methods have been specifically designed to be robust to expressions by using multi-state
local shape models or face shape prior models to deal with the shape variations of facial
components [210, 237]. Considering the correlation between shape and expression, a
more common solution is not to treat facial landmark detection as an independent prob-
lem but to jointly learn various related tasks in order to achieve individual performance
gains. Among the related task is facial action unit detection [130, 191]. The relationship
between facial action units and landmarks can serve as a constraint when iteratively up-
dating landmarks during CSR [239]. Facial expression recognition is also widely used
[281, 280, 175, 241]. An example is depicted in Figure 2.16. While such a solution
may be straightforward to implement, by adding as many outputs as auxiliary tasks, it
can make the training stage much more complex because the optimal convergence rates
may vary from one task to another [280].

Figure 2.16: Landmark detection with auxiliary tasks based on multitask learning [279].
Facial landmark detection is not treated as an independent problem but jointly learned
with various related tasks in order to achieve individual performance gains.

Other

Some challenges, mostly related to the quality of the image, e.g., illumination, resolu-
tion, blur, have attracted less interest, either because they are easier to handle or because
they do not have major impacts in terms of occurrence frequency or error. Recently,
work based on GANs has been carried out to detect landmarks more accurately on low-
resolution images [24]. As shown in Figure 2.17, it involves three models to improve
both super-resolution and facial landmark detection: a generator for synthesizing high-
resolution images from low-resolution ones, a first discriminator to distinguish between
synthesized and original high-resolution images, and a second discriminator for the de-
tection of landmarks on synthesized high-resolution images.
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Figure 2.17: Adversarial learning involving super-resolution to improve landmark de-
tection on low resolution images [24]. A generator synthesizes high-resolution images
from low-resolution ones while a first discriminators distinguishes between synthesized
and original high-resolution images, and a second discriminator detects landmarks on
synthesized high-resolution images.

The datasets used to solve the landmark detection problem present significant intra/inter-
dataset variations, which can lead to poor generalization. By coupling two models, it
is possible to leverage these variations [236]. The first model takes advantage of intra-
dataset variations by using an implicit feature sharing mechanism. It takes an image and
its flipped version as input. The second model, which focuses on inter-dataset variations,
decides which candidate should be considered. Some authors have rather focused their
work on simplifying the landmark detection task by normalizing the input to a canoni-
cal pose. The most advanced solutions employ supervised face transformations such as
spatial transformer networks to remove the translation, scale, and rotation variations of
the face [139, 111, 259, 61, 29]. While most authors focus on the variance of faces, the
intrinsic variance of image styles can also be handled to improve performance using a
style-aggregated network, which takes as input two complementary images of the same
face, the original style image and an aggregated style image generated by GANs [55].

2.1.5 Summary

Generative approaches can achieve interesting performance under uncontrolled condi-
tions using only few data, with suitable representation and optimization strategy [218,
217]. However, they can be computationally intensive and due to the difference between
the model and the true distribution of data, their ability to generalize is often restricted
[13]. Besides, a small error in the prediction of the model coefficients may lead to a
large error regarding the landmarks. This is not true discriminative approaches, which
are becoming more and more popular. Instead of predicting the model coefficients, land-
marks are directly predicted resulting in a better accuracy.
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Part-based approaches such as CLMs, although more robust to partial occlusions
and lighting, suffer from an ambiguity problem along with performance issues due to
their local appearance representation coupled with a global shape optimization. To over-
come the limitations of these approaches, another popular approach is to estimate the
whole facial shape directly from the image features while implicitly exploiting spatial
constraints. This is less restrictive than modeling them explicitly with a shape model.
Two solutions can be found: DR and CSR, the latter being the most commonly used and
a state-of-the-art approach. By providing a mapping from the image to the facial shape
without the use of any parametric appearance or shape model, faster and more accurate
predictions can be obtained. The coarse-to-fine strategy of CSR offers a progressive
and flexible way to encode the shape constraints while increasing robustness. The avail-
ability of large datasets further improves the generalization capacity of discriminative
approaches. However, it is still not easy to perform this mapping in some scenarios,
such as extreme expression and pose variations. Recently, a shift from traditional ap-
proaches to DL-based approaches has occurred. The latter can model more effectively
the nonlinear relationship between images and shapes and has already shown impressive
performance.

Facial landmark detection problem has benefited from the advances in DL. With
such approaches, the need for feature engineering is no longer necessary. The research
has shifted to architecture design where domain expertise can still be useful but not as
crucial as it used to be. Although CSR continues to predominate, DR appears to be
practicable with DNNs, as some authors showed it [146, 148]. However, DNNs require
a significant amount of computational power and annotated data, which is not easily
affordable. It is also worth noting that landmark detection is a structural prediction
problem that can hardly benefit from models pre-trained on massive amounts of data
such as ImageNet [47] for object detection and localization. On the other hand, over-
fitting can be an issue when building a deep model from scratch due to the lack of data
available. Despite these challenges, DL approaches have helped take a further step to-
wards solving the problem of facial landmark detection, but there is still much to be
done.

Complementary solutions have been developed, which can be integrated into both
the DL and the more traditional approaches. This include the use of 3D model, multi
view-specific models, multitask learning, GANs, explicit occlusions modeling. They
can help solve the remaining challenges and further increase generalization. By inte-
grating such solutions, it is possible to significantly improve the robustness to specific
challenges. However, it is often a combination of these challenges that are encountered
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under uncontrolled conditions. Although these solutions are not mutually exclusive, it
may be too complex and costly to apply them together. Another kind of solution based
on temporal consistency and allowing several challenges to be addressed at the same
time is possible.

All the approaches presented so far, when applied to a video stream, are not able
to use temporal information. Yet, with the ubiquity of video sensors, the vast majority
of applications rely on videos. Moreover, there is a need for an approach that can deal
with all challenges at once. Recent work has proved that taking into account video con-
sistency help to deal with the variability in facial appearance and ambient environment
encountered under uncontrolled conditions. These works are reviewed in the following
section.

2.2 Extending Facial Landmark Detection to Videos

Despite the quantity of facial landmark detection approaches proposed in the literature
and the recent major advances, the difficulties encountered under uncontrolled condi-
tions are still far from being solved (see Section 2.1). As already seen in Section 1.3,
variations in pose and expression along with occlusions are among the most difficult
challenges due to their significant influence on facial appearance. Moreover, applica-
tions of face analysis are mainly based on image sequences. So far, image-based meth-
ods cannot use the motion information from image sequences nor adapt their models
online to make it person-specific. In the following sections, it is shown how tempo-
ral information can be beneficial to landmark detection, especially under uncontrolled
conditions, by addressing many of its challenges. To this end, temporal approaches are
reviewed from the most naive but popular tracking by detection to the most recent and
more complex ones based on DNNs.

2.2.1 Tracking by Detection

Recently, a comparative analysis of video-based facial landmark detection approaches
showed that the most popular strategy for this problem is tracking by detection [193].
As illustrated in Figure 2.18 tracking by detection consists in applying face detection
followed by facial landmark detection, independently on each frame, without taking
into account the coherence of adjacent frames.

Face detection can possibly return false positives. To prevent these, predictions with
the highest confidence are usually retained. The detector may also fail to detect any
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faces on an image, making facial landmark detection no longer possible. In this case,
the bounding boxes from the previous image can possibly be used. This is a reasonable
assumption if the frame rate is high enough to ensure that there is no significant varia-
tion between the current and the previous images.

Figure 2.18: Tracking-by-detection over a few frames. It consists in applying face de-
tection followed by facial landmark detection, independently on each frame, without
taking into account the coherence of adjacent frames. Detection from previous frame is
used in case of failure. [32].

Although tracking by detection is naive, a recent study has demonstrated its via-
bility for deformable face tracking [32] since current detectors are effective enough to
operate under uncontrolled conditions [272]. However, this strategy has severe limita-
tions. It relies on two distinct static models that are individually trained, which is time
consuming. Neither of these two models are able to integrate motion information and
personalize the models online to the targeted person. Additionally, facial landmark de-
tection being sensitive to initialization, it is very likely to obtain poor predictions due
to bad initializations far from the ground truth, especially during large variations, e.g.,
pose or expression.

2.2.2 Box, Landmark and Pose Tracking

To avoid using face detection at each frame with the related initialization issues, an al-
ternative is to use a substitute for the detection in order to adapt to the temporal domain.
Three main solutions have been proposed to establish a correlation between the previous
and current frames [258]: box, landmark, and pose tracking. In each of these solutions,
the aim is generally to take advantage of the previous prediction to provide a better ini-
tialization for the current frame.
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Figure 2.19: Box tracking over a few frames based on a rigid tracking algorithm instead
of a face detector in each frame. A reset mechanism is used in case of drift [32].

Box tracking consists in using a rigid tracking algorithm instead of a face detector in
each frame (see Figure 2.19). Such algorithms are able to be robust to some variations
in the facial appearance during tracking [258, 32]. However, it can be as much time
consuming as detection, and more importantly, it can easily drift over time, especially
under uncontrolled conditions. This solution is found to be equivalent to tracking by
detection with the same drawbacks [32]. The second solution, landmark tracking, in-
volves the use of the previous shape as an initialization for the current frame [258]. It
provides the ability to inherit information about rotation, translation, and scale, and thus
provide an initialization closer to the ground truth and potentially a better convergence
and more accurate predictions. It might, however, lead to a poor convergence due to cu-
mulative errors in video, when the initialization is not the same as in the training set. A
third solution is to keep only the similarity transformation parameters from the previous
prediction, i.e., pose tracking [258, 194] as shown in Figure 2.20. These parameters are
used to adjust the mean shape, which then serves as an initialization. By tracking the
pose and not the full shape, the noise from the previous prediction is smoothed, making
the following predictions more stable over time. It can greatly reduce the failure rate
while improving overall performance [193].
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In the same vein but less popular, ensemble learning algorithms can be used to gen-
erate multiple initializations for an image, based on the shape parameters from previous
predictions [166, 127]. This can be summarized as applying facial landmark detection
using the different initializations and then recovering the best result. The obvious dis-
advantage of this approach is its efficiency; a balance between computational efficiency
and accuracy has to be found. Beyond initialization, the shape parameters of the previ-
ous prediction can also be used to select a pose dependent model to obtain a better and
more efficient convergence, as explained in Section 2.1.4 [258, 249].

Figure 2.20: Overview of pose tracking. The mean shape is adjusted based on the
similarity transformation parameters from the previous frame [258].

Regardless of the tracking strategy, it is necessary to incorporate a reinitialization
mechanism in order to avoid any drift over time. Such mechanism is illustrated in Fig-
ure 2.19. It is generally based on the quality of the prediction, using SVMs [258, 32] or
more recently DNNs [164] to decide if the shape and appearance still match those of a
face. The classifier is trained with patches extracted from the ground truth for positive
examples, and negative cases are randomly sampled from the region around the ground
truth. It can also be done in a holistic way by concatenating the face image and the
landmark heatmap. The score of the classifier is then used as a fitting score to judge
the quality of the predictions. If the score is below a certain threshold, face detection is
applied instead of tracking.

Non-rigid tracking produces a more accurate fitting than tracking by detection. It
takes advantage of adjacent frames to improve initialization. Facial landmark detection
is therefore no longer dependent on the detection window, but rather takes advantage of
the previous prediction to improve initialization. These solutions remain trivial and still
do not benefit from person-specific information.

2.2.3 Adaptive Approaches

In contrast to the work presented in Section 2.2.2, which retains one generic model after
learning, a more advanced approach consists in integrating an on-line model update, also
called incremental learning, in order to make it person-specific and thus more accurate
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[186, 166, 6, 33]. This is close to rigid tracking algorithms but, instead of considering
the object as a single bounding box, its shape and deformations are taken into account
along with its appearance. As shown in Figure 2.21, the pre-trained model is updated
over time to learn a person-specific representation without re-training from scratch. In-
cremental learning can be achieved using generative approaches as proposed with the
incremental PSs [34, 33] but also apply to discriminative approaches as with incremental
SDM [6]. These approaches are generally costly. Therefore, efficient methods based on
continuous regression, as opposed to standard discrete regression, have been proposed
and are able to reach real-time performance [186]. To avoid compromising the model
during drifting, an update criterion similar to the reinitialization mechanisms presented
in Section 2.2.2 is generally used.

Figure 2.21: CSR with on-line model update [186]. The pre-trained model is updated
over time to learn a person-specific representation without re-training from scratch.

Adaptive approaches provide more accurate predictions but, as with generic track-
ing, they are prone to drifting, while tracking-by-detection is drift-free but less accurate.
It is possible to establish a synergy between both detection and tracking in order to limit
the weaknesses of these two approaches. This is known as joint detection and tracking.

2.2.4 Joint Approaches

To avoid drift issues and provide accurate predictions, both the tracking by detection ap-
proach and the conventional tracking approach may be combined to complement each
other [106, 81]. One of the first solutions to be proposed relies on the use of different
detection and tracking initializations [106]. Each of these initializations define differ-
ent optimization sub-problems. Independent shape updates for each sub-problem are
computed and then coupled using global variable consensus optimization [17].

44



CHAPTER 2. FACIAL LANDMARK DETECTION

Using Equation 2.3 of the generative model (Section 2.1.1, Page 16), it can be formu-
lated as follows:

arg min
p1...pM ,q1...qM

M∑
m=1

fm(pm, qm) (2.17)

whereM , f , p and q correspond respectively to the different initializations, sub-problems,
shape, and appearance parameters. This strategy can be integrated within any state-of-
the-art approach. However, the synergy between both tasks is limited due to the use of
separate models, one for landmark detection and another for tracking. The two tasks are
not optimized together and are actually applied subsequently.

DRL [132] has been proposed to explicitly exploit the synergy between bounding
box generation and landmark detection [81]. Two agents, a tracking agent and an align-
ment agent, are trained interactively (see Figure 2.22). The aim of the tracking agent is
to adjust the bounding box based on a set of actions corresponding to displacements or
changes in scale. The role of the alignment agent is essentially to determine whether or
not it is necessary to continue the search process using continue/stop actions. Both tasks
are jointly conducted through the sequence of action defined by the two agents with an
emphasis on the quality of the alignment.

Figure 2.22: Joint detection and tracking using Deep Reinforcement Learning [81].
A tracking agent adjusts the bounding box based on a set of actions corresponding to
displacements or changes in scale. An alignment agent determines whether or not it is
necessary to continue the search process using continue/stop actions. The two agents
are trained interactively.
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Joint approaches are able to benefit from both detection and tracking while avoiding
their downsides. However, they do not take advantage of the dynamic nature of the
face. Other information, such as the trajectories of the landmarks through the image
sequence, seems relevant to consider.

2.2.5 Temporal Constrained Approaches

Whether explicit or implicit, the shape constraints present in most facial landmark de-
tection methods are crucial to obtain good performance under uncontrolled conditions.
In image sequences, an additional constraint may be applied to the trajectories of the
landmarks. One simple way to achieve this is to smooth predictions between frames to
avoid jittering and increase stability. Bayesian filters such as Kalman filters and their
extensions (e.g., particle filters) can be used for this purpose. However, they require
a complex design and tuning phase and are generally restricted to global rigid motion
tracking, i.e., tracking the detected bounding box [221, 173], ignoring local non-rigid
facial deformations. It has also been demonstrated that theses filters only provide a
marginal gain for video-based facial landmark detection [79, 32].

Figure 2.23: Semi-supervised training using the coherency of optical flow as a source
of supervision [56]. Lucas-Kanade tracker tracks landmarks on future frames based on
past predictions from the detector. The registration loss computes the distance between
these predictions and the ones from the detector. This allows to train a detector with
unlabeled videos to provide temporally consistent predictions.

To consider the whole shape, a stabilization model based on a Gaussian mixture has
been proposed [207]. The model is trained on a set of videos to learn the statistics of
different kinds of movements. A loss function with two terms to address time delay
and non-smooth issues is used to estimate its parameters. The model is then applied
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after landmark detection; it takes as an input all predictions from previous images and
produces a more accurate and stable result for the current image. A balance has to be
found between accuracy and stability.

Another way to reduce jittering in video is to take advantage of the coherency of
optical flow by using it as a source of supervision [56]. The main advantage is that no
manual labelling is required. The Lucas-Kanade tracker coupled with a registration loss
function can be used to train a detector with unlabeled videos to provide temporally
consistent predictions. The latter tracks landmarks on future frames based on past pre-
dictions from the detector. The registration loss computes the distance between these
predictions and the ones from the detector. The whole training procedure is illustrated
in Figure 2.23. Although optical flow registration can encourage temporal consistency
to improve existing facial landmark detectors, they still remain image-based detectors
with limited motion modeling capability.

Figure 2.24: Two-stream network which decomposes the video input to the spatial and
temporal streams [133]. The spatial stream aims to preserve the holistic facial shape
structure while the temporal stream focuses on temporal consistency to improve shape
refinements. A weighted fusion of both streams produces the final prediction.

RNNs are particularly suitable for time series analysis. They have proved to be ef-
fective for facial landmark detection using a CNN as a backbone to jointly estimate and
track visual features over time [162, 79, 89]. When training is done in conjunction with
a CNN, optimal features can be extracted and temporal dependencies at different scales
can be captured. As a result, RNNs help stabilize predictions over time and improve
robustness under uncontrolled conditions [79]. It is possible to start from a pre-trained
CNN and transform any pre-trained feed-forward layer into a recurrent layer [262]. As
depicted in Figure 2.24, spatial and temporal information processing can also be de-
coupled in order to explicitly exploit their complementarity [133]. The spatial stream
aims to preserve the holistic facial shape structure while the temporal stream focuses on
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temporal consistency to improve shape refinements. A weighted fusion of both streams
produces the final prediction.

However, these approaches only provide late temporal connectivity on small feature
maps with a possibly high level of abstraction at the level of the recurrent layer. This
layer is then able to compute global motion features (e.g., head motion) but may not be
capable of accurately detecting local motion (e.g., eye and lip movements) due to the
fact that CNNs cannot model any motion.

2.2.6 Summary

Existing solutions for video-based facial landmark detection have been reviewed in this
section. The first observation is that, even today, one of the most popular strategies for
this problem is tracking by detection. Despite being considered viable, this strategy re-
mains limited since it does not leverage temporal information at all.

More sophisticated solutions have been proposed. They take advantage of conven-
tional tracking and adaptive learning to improve accuracy. Although these solutions are
more accurate, they are likely to drift over time and thus require a reset mechanism.
Moreover, they do not sufficiently make use of the temporal information as they gener-
ally only use the prediction on the adjacent frames.

Since tracking is more accurate than detection but prone to drift and detection is
drift-free, they have been coupled in a joint approach. This solution allows the advan-
tages of both approaches to be exploited more effectively but it still makes limited use
of temporal information.

Similar to the shape constraint present in most image-based approaches, several so-
lutions have also been proposed to add temporals constraint in order to increase stability
over time: either using 2D models with specific training strategy or using RNNs. Due
to their nature, temporal-constrained 2D models are reduced to smoothing only. Re-
garding RNNs, the most recent and advanced methods suffer especially from limited
temporal connectivity since it relies on the use of a CNN as a backbone. However, the
CNN is unable to capture temporal information, which only allows to track high level
features (i.e., global motion). Fine motion cannot be easily modelled while they are just
as relevant for landmark detection.
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Most of the proposed approaches are based on tracking or temporal smoothing. The
main weakness of all these methods is that they do not fully exploit the dynamic nature
of the face. Taking this dynamic into account appears crucial to ensure high accuracy
and robustness under uncontrolled conditions, especially when the appearance is no
longer reliable.

There are many open questions. How can motion be modeled with more detail and
integrated into current approaches based on DL? How to combine local and global mo-
tion while taking advantage of their complementarity? The same question also arises
regarding spatial and temporal information. Finally, which level of time dependency is
necessary for a problem like facial landmarks detection?

2.3 Discussion

Throughout the years, research has always been focused on static images. The ap-
proaches proposed so far can be grouped into two major categories: generative and
discriminative. The fundamental differences between these two categories of approach
include:

• model fitting based on coefficient prediction or mapping between the image and
the shape;

• explicit shape model or implicitly embedded shape constraints;

• independent landmark prediction or joint prediction;

• holistic or part-based representation;

• one step prediction or coarse-to-fine strategy;

• the need of a shape initialization.

Many solutions have also been developed to address specific challenges and can be in-
tegrated into any type of approach. They are based on techniques including 3D model
[287], multiview model(s) [50], multitask learning [280], GANs [24], explicit occlu-
sions modeling [269]. However, these solutions can make dataset annotation and model
training much more complex.

Discriminative approaches perform landmark prediction through a mapping between
the image and the shape. This makes them faster and more accurate than the approaches

49



CHAPTER 2. FACIAL LANDMARK DETECTION

based on generative models [105, 178]. Landmarks are jointly predicted, which im-
plicitly integrates the shape constraints. The mapping is generally implemented using
a cascade of regressors, coarse-to-fine strategy, since direct mapping is hard to achieve.
Among the discriminative approaches, DL ones has gained increasing popularity [23].
They allow discriminative and problem-specific feature learning, as opposed to hand-
crafted features used in traditional approaches. The latter are generic and likely to be
suboptimal for facial landmark detection [122]. With DNNs, feature extraction and re-
gression are trained jointly. The relationship between images and shapes is modeled
more effectively. DL has notably been successful with direct mapping, showing that
DR remains a relevant solution [146, 148].

Current approaches still encounter difficulties under uncontrolled conditions [184].
Although most of the challenges have been addressed, this is often achieved with solu-
tions specific to one or a few challenges. There is a lack of approaches that can address
all the difficulties at once. With regard to the literature, temporal approaches appear
to be the most promising direction. Today, due to the increase in video data and their
potential benefits, the interest in temporal approaches is growing [193]. Currently, most
landmark detection approaches are unable to take advantage of the temporal informa-
tion. They are often applied in tracking-by-detection manner. More advanced strategies
have recently been proposed [32]. They mainly rely on tracking (e.g., box, landmark,
pose) along with incremental learning and for a smaller part on temporal smoothing
[56, 207]. However, these approaches are subject to drift and so far do not fully exploit
facial dynamics. The most advanced ones based on RNNs appear to be limited to the
global movements of the head [133, 89, 79]. The CNNs currently used as a backbone
cannot model any motion.

Moreover, given the overall progress accomplished, more attention should be paid
to evaluation protocols. There is a lack of comprehensive analysis to quantify the per-
formance of current approaches according to the different difficulties [271]. Regarding
temporal approaches, the contribution of the temporal information according to the dif-
ficulties, and compared to static approaches, is not well quantified. This would help to
better identify the remaining efforts to be made but could also be useful for anyone who
uses landmarks as a pre-processing in an application (e.g., expression recognition).

Consequently, the issues addressed in this work are related to the evaluation proto-
cols and temporal approaches. The first goal is to quantify the impact of major chal-
lenges on landmark detection on the one hand, and on the other, to quantify the contri-
bution of temporal approaches. The recent availability of datasets such as SNaP-2DFe
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[2] presents an opportunity to address these issues. The second goal is to better exploit
the dynamic nature of the face in order to obtain more stable predictions over time and
more robustness to the full set of variations that considerably impact facial appearance.
One hypothesis is that early temporal connectivity could help to model motion more
finely as well as complement current approaches. Among the open questions that are
also of interest are how to effectively combine facial motion information with the facial
appearance. To this end, CNNs appears to be an effective and versatile baseline tool.
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Landmark detection is a common and often crucial pre-processing step in the context
of facial analysis. Although its overall performance continues to improve, its impact on
subsequent tasks must be considered. Let us consider, for example, a typical expression
recognition process (see Figure 3.1). It relies on landmarks to normalize the face and
extract appearance, geometry or motion features. Poor landmark detections may lead
to confusion between expressions, decreasing the accuracy of the recognition process.
Hence, it is necessary to ensure the robustness and stability of facial landmark detection
under uncontrolled conditions and the suitability of the detected landmarks to the sub-
sequent task (here, expression recognition).

Figure 3.1: Typical facial expression recognition process. It relies on landmarks to
normalize the face and extract appearance, geometry or motion features.

To the light of the review in Chapter 2, we can observe a large number and variety
of approaches for facial landmark detection. Besides, these approaches are no longer
limited to images but also include video-based approaches. Nowadays, it may be dif-
ficult to clearly understand the current state of the problem. Hence, there is a need for
benchmarking to better identify the benefits and limits of the various approaches pro-
posed so far, especially deep learning ones. Beyond overall performance, there is also a
need to quantify the accuracy of these approaches according to the different challenges
mentioned in Section 1.3. This would help to address the problem more effectively.

An overview of each of the benchmarks conducted is provided in Section 3.1. In
Section 3.2, the datasets and evaluation metrics used in the literature to solve the facial
landmark detection problem are first covered. In Section 3.3, the overall performance of
image-based and video-based approaches is then reviewed. A comprehensive analysis
of a selection of approaches is also proposed in Section 3.4, with a focus on some critical
challenges for facial analysis, head pose and facial expressions, through a cross-dataset
evaluation. The results are finally discussed in Section 3.5.
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3.1 Overview

To get useful insights about the current state of the problem, figures that are available
in the literature have been collected. We focus on two widely used datasets, 300W
for still images and 300VW for videos. In this way, the figures of a large collection
of approaches can be gathered. It also gives the possibility to link these results to the
conclusions of the 300W [184] and 300VW [193] competitions. State-of-the-art ap-
proaches that perform fairly well on these datasets have then been selected and a third
benchmark has been conducted based on SNaP-2DFe. This video dataset emphasizes
two challenges, head pose and facial expressions, with annotations that allows an in-
depth analysis of the performance in the presence of these challenges, independently
and simultaneously. These measurements are especially relevant as landmark detec-
tion is critical for many facial analysis tasks, which are now shifting to uncontrolled
conditions. Overall, the results obtained through each of these benchmarks provide an
opportunity to discuss about:

• the respective value of the different types of approaches;

• the difference in performance between controlled and uncontrolled conditions;

• the most critical difficulties;

• the most impacted facial regions.

In order to properly interpret these benchmarks, a review of the datasets and evalu-
ation metrics used to solve the problem of facial landmark detection is first provided in
the following section.

3.2 Datasets and Evaluation Metrics

Datasets and evaluation metrics are fundamental to train and demonstrate the validity of
algorithms. In Section 3.2.1, the major datasets captured under uncontrolled conditions
to address the problem of facial landmark detection are first reviewed. The evolution of
the data sets, their specificities, and the annotation process are covered. The common
preprocessing and augmentation techniques are then presented in Section 3.2.2. The
latter has become more and more important to limit the dataset imbalance problem and
to obtain the amount of data needed by DL approaches. Evaluation metrics are similarly
reviewed in Section 3.2.3.
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3.2.1 Image and Video Datasets

In recent years, many datasets for facial landmark detection have been made available
to the scientific community (see Table 3.1). The images included in these datasets are
collected on social networks or image search services such as Google, Flickr, or Face-
book, bringing more realism to the data. The annotation is performed manually, which
is time consuming, but it can be alleviated with the help of the Amazon Mechanical
Turk platform 1 or using semi-automatic methods [193]. The quality of the annotations,
however, may vary [184, 23]. The annotation scheme used, i.e., the positions and the
number of landmarks, may also differ from one dataset to another [184]. Currently,
the scheme composed of 68 landmarks [78, 184] illustrated in Figure 3.2 is the most
widely used. Since this scheme does not fit extreme poses (typically, profile poses) due
to self-occlusions, as landmarks get stacked up, a 39-landmark scheme has also been
proposed for profile faces [78, 271]. Other schemes with either fewer landmarks (e.g.,
only the rigid ones for each facial component) or with over a hundred landmark (e.g.,
including the contours of the face and of each component) can also be useful depending
of the application (e.g., human-computer interaction, motion capture). Nonetheless, the
68-landmark-based scheme might be suitable for many applications with a reasonable
trade-off between annotation time and information capture.

Figure 3.2: 68-landmark (left) and 39-landmark (right) schemes [271]. These schemes
might be suitable for many applications with a reasonable trade-off between annotation
time and information capture.

300W [184] is one of the most used datasets in the literature to train and evaluate
facial landmark detection algorithms under uncontrolled conditions. This is the product
of a competition of the same name, which has federated several datasets, i.e., LFPW
[11], HELEN [121], AFW [286]. All these datasets have been re-annotated using the

1Crowdsourcing marketplace allowing individuals and companies to perform tasks, in exchange for
remuneration, that computers are currently unable to perform.
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68-landmark scheme and new images have been added for training and evaluation with a
total of 4350 images. Some challenges such as pose variations being under-represented,
an extension called 300W-LP [288] has been proposed in order to provide more images
with large pose variations. However, these new data, synthesized using the 3DMM [15]
contain artifacts that might affect the accuracy of landmarks.

Type Datasets Year #Images #Landmarks

Static

AFLW [109] 2011 25,993 21
AFW [286] 2012 205 6

HELEN [121] 2012 2,330 194
LFPW [11] 2013 1,432 29
COFW [25] 2013 1,007/507 29
IBUG [185] 2013 135 68
MTFL [279] 2014 12,995 5
MAFL [280] 2016 20,000 5
300W [184] 2016 600 68

300W-LP [288] 2016 61,225 68
MENPO [271] 2017 10,993/3852 68/39
WFLW [235] 2018 10,000 98

Dynamic
300VW [193] 2015 218,595 68

SNaP-2DFe [2] 2018 93,240 68

Table 3.1: Datasets captured under unconstrained conditions. The 68-landmark scheme
is the most widely used. There is only limited video data available.

More specific datasets have also been proposed. COFW [25] gives more empha-
sis to occlusions. Initially annotated with 29 landmarks, it has recently been updated
to the 68-landmark scheme. MTFL [279] and MAFL [280] focus on multitask learn-
ing and facial attributes, but with only 5 annotated landmarks. In an effort to increase
the number of challenging data, especially for DL approaches, MENPO [271] has been
developed, in conjunction with the competition of the same name. It contains 10,993 im-
ages for semi-frontal faces and 3852 for profile faces, obtained from large scale datasets,
AFLW [109] and FDDB [96], and respectively annotated with the 68-landmark and 39-
landmark schemes. Samples can be seen in Figure 3.3. However, these datasets make
it difficult to determine the sources of error. Recently, a new dataset, WFLW [235],
based on WIDER Face [260], has been published with rich annotations: 98 landmarks,
occlusions, pose, make-up, illumination, blur, and expression. It aims to enable a com-
prehensive analysis of existing algorithms.

In practical applications, facial landmark detection algorithms are commonly ap-
plied to videos. It appears crucial to have data that is representative of the problem in
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order to answer it. Static datasets do not cover all the difficulties encountered by ap-
plications; especially, the ones related to the movements of persons or cameras are not
currently considered. 300VW [193] is the only dataset developed for video-based land-
marks detection under uncontrolled conditions to be published. It contains 114 videos of
about 1 minute each and featuring one person annotated with 68 landmarks. 50 videos
are intended for training and 64 for testing. The test set is divided into 3 categories
of increasing difficulty: category 1 presents videos recorded in well-lit conditions with
various head poses, category 2 contains additional lighting variations, and category 3
includes severe difficulties such as lighting, occlusions, expression, and head pose (see
Figure 3.4). However, the challenging data are not as diverse and extreme as those found
in static datasets.

Figure 3.3: Illustration of the images contained in the MENPO dataset (a = pose; b =
occlusion; c = expression; d = illumination) [49].

Given the limited video data available, other video datasets have been reviewed, and
one of them has shown valuable specifications. SNaP-2DFe [2] is a video dataset re-
cently developed to quantify the impact of head movements on expression recognition
performance. As it contains landmark annotations, it also provides rich annotations,
movement and expression, to study video-based facial landmark detection. It consists
of 6 movements composed of a horizontal translation and/or a rotation (roll, pitch, yaw),
each associated with 7 acted expressions (neutral, happiness, fear, anger, disgust, sad-
ness, surprise) corresponding to the universal expressions suggested by [58]. The tem-
poral patterns of expression activation (i.e., neutral-onset-apex-offset-neutral) are also
provided, where apex refers to the highest intensity of an expression. Data from 15
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participants have been collected by two synchronized cameras (i.e., helmet and static
camera), with a total of 1260 videos. Samples with pitch movement and surprise ex-
pression are illustrated in Figure 3.5.

Figure 3.4: Illustration of each category of the 300VW dataset: (a) well-lit conditions,
(b) lighting variations, and (c) severe difficulties [32]. These difficulties are not as ex-
treme as in still image datasets.

Figure 3.5: Sample images of facial expressions recorded under pitch movements from
the SNaP-2DFe dataset (row 1: helmet camera, only expression movement; row 2: static
camera, expression and head movement). The bottom plot shows the different patterns
of a facial expression: neutral (green), onset (orange), apex (red), and offset (orange).
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3.2.2 Face Preprocessing and Data Augmentation

Various preprocessings are generally applied to facial images before being used for fa-
cial landmark detection. The most common and relevant are related to scale variations
and face region size. To reduce the variance of the regression target, scale variations are
removed by rescaling the bounding box produced by the face detector, e.g., to 256x256
pixels for the state-of-the-art Hourglass Network [23]. Depending on how the face re-
gion is obtained (e.g., different detectors give different bounding boxes), some land-
marks may be missing. It is useful to enlarge the region, e.g., by 30% [46], to ensure
that all landmarks are included. Histogram Equalization can be used to improve contrast
by adjusting the distribution of intensities. Normalization is also applied to ensure sim-
ilar data distribution. It is generally calculated by subtracting the mean from each pixel
followed by a division by the standard deviation. The resulting distribution is expected
to be a Gaussian centered at zero. When using ANNs, it can be necessary to scale the
data depending of the activation function to prevent saturation.

Today, due in particular to the emergence of DL approaches, it may be necessary
to have a large number of annotated images to reduce overfitting and improve robust-
ness, which existing datasets do not necessarily provide. In the literature, various aug-
mentation methods are used to circumvent this problem. Some simple operations (e.g.,
rotation, mirroring, blur, jittering of the position and size of the detection window, jitter-
ing of the initial landmarks) can be applied to images to generate new training samples
while preserving the ground truth (see Figure 3.6).

Figure 3.6: Illustration of different augmentation operations: (a) original image, (b)
mirroring, (c) rotation, (d) synthesized profile view.

Other more complex processes may also be used to provide new relevant samples
based on the initial training data. As mentioned in Section 3.2.1 about the 300W-LP
dataset, 3D approaches have proved [288] to be suitable for certain specific augmen-
tation. Inspired by face frontalization [85], it consists, once the depth of a face image
is predicted, in synthesizing the corresponding face image in profile view with a 3D
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rotation. The result is depicted in Figure 3.6-(d). However, current solutions may be
affected by undesirable artifacts. Besides, Hard Sample Mining (HSM) has become
a popular strategy to increase the number of training data while explicitly addressing
the data imbalance problem. This problem can result in overfitting on well-represented
samples and a poor adaptation to under-represented ones. HSM can be performed very
easily by looking at the error value during training. By following an offline strategy,
training samples with high error values are kept for a second training phase [114]. The
same process can be done online with DNNs by selecting about 70% of training samples
with the highest loss values during the forward pass, and only compute gradient values
for these selected samples in the backward pass to ignore the easiest cases [275]. More
advanced offline techniques that rely on PCA have also been used [66]. By projecting
the original shapes onto the space defined by the shape eigenvector controlling pose
variations, under-represented samples are highlighted and privileged for augmentation.

More recently, with the emergence of GANs, the joint optimization of data augmen-
tation and model training has also been proposed [165]. An augmentation network (A)
is used to generate augmentation operations online to improve the training of the target
network (T). The two networks being in competition with each other, A aims to ex-
ploit T’s weaknesses by generating hard augmentations while T learns from these hard
augmentations.

3.2.3 Evaluation Metrics

To evaluate the predictions of multiple landmarks on an image, the Root Mean Square
Error (RMSE) normalized by the interocular (or interpupil) distance (NRMSE) is gen-
erally used. The purpose of the normalization is to ensure the invariance to scale, to
avoid an undesirable impact of face size on the error. NRMSE can be expressed as:

NRMSE =
1

L

L∑
i=1

√
(xpi − x

g
i )

2 + (ypi − y
g
i )

2√
(xle − xre)2 + (yle − yre)2

(3.1)

whereL is the number of landmarks, pi the i-th predicted landmark, gi the corresponding
ground truth landmark, and le and re the left and right pupil centers from the ground
truth. The normalization by the interocular distance, although not very robust to extreme
poses due to non visible eyes, is the most widespread. Other normalization factors are
sometimes used, such as the face size obtained from the bounding box, or a distance
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computed on one side of the face, e.g., between an eye and the mouth [23, 32, 238]. On
a set of images, average NRMSE is the simplest and most intuitive evaluation metric. It
should be noted that it can be strongly affected by a few outliers. Figure 3.7 shows that
beyond an error value of 8%, landmarks are mostly not located correctly. Hence, the
prediction is generally considered as a failure.

Figure 3.7: Predictions quality for each error value [32]. Beyond an error value of 8%,
landmarks are mostly not located correctly.

Figure 3.8: Graphical representation of the CED function.

A graphical representation of the Cumulative Error Distribution (CED) function is
also widely used (see Figure 3.8). It corresponds to the proportion of images as a func-
tion of the NRMSE up to a certain threshold, e.g., 8%. The Area Under the Curve
(AUC) and the Failure Rate (FR), that is, the percentage of images for which the error
is greater than the threshold, are sometimes calculated from this representation.
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The AUC and FR are expressed as:

AUCα =

α∫
0

f(e)de (3.2)

FRα = 1− f(α). (3.3)

where f is the cumulative error distribution (CED) function and α the threshold. An-
other important evaluation criterion is the efficiency in terms of speed, which is calcu-
lated in Frames Per Second (FPS) using regular CPU/GPU hardware, and size of the
model.

3.2.4 Summary

Over the past few years, there has been an evolution towards datasets that are increas-
ingly complex and diversified to best represent natural conditions. Major challenges are
nowadays well represented along with extreme cases. The data are generally annotated
manually or using semi-automatic methods. There is a harmonization of the landmark
scheme with the most common used being the 68-landmark, along with a more restricted
version based on 39-landmark for profile faces. For extreme poses and profile faces, half
of the face being self-occluded, the 68-landmark scheme no longer makes sense as many
landmarks overlap. To limit dataset imbalance, various HSM techniques have also been
developed. Regarding evaluation, NRMSE in terms of accuracy and FPS in terms of ef-
ficiency are the metrics typically used. The normalization of the RMSE by the diagonal
of the bounding box appears to be a good choice as it is more robust to extreme pose
variations.

Due to the shift towards DL, there is a need for large scale datasets. Although
there have been efforts in this direction, it is not yet satisfactory. The difficulty of
building large datasets is probably related to the annotation of the landmarks, which
can be very time-consuming. Currently, the preferred solution to obtain more data is
to use augmentation techniques, which are becoming more and more sophisticated. As
the community focuses on static data, there is also only limited video data available.
Besides, with the continuous improvement of landmark detection approaches, richer
annotations are also required to allow more in-depth analysis of algorithm capabilities.
Datasets that were not originally designed for the landmark detection problem can still
be useful.
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3.3 Image and Video Benchmarks

In the following, the two benchmarks obtained by compiling the results from the litera-
ture are introduced. The first benchmark covers image-based algorithms and can notably
be used to confront traditional and deep learning approaches along with fine and chal-
lenging conditions. In the second benchmark, video-based algorithms are included to
provide an additional comparison between static and dynamic approaches. Full details
on the datasets and approaches used can be found in Section 2.1, 2.2, and 3.2.

3.3.1 Compiled Results on 300W

Figure 3.9: Samples of ESR, SDM, LBF and TCDCN on 300W [280]. Landmarks of
non-rigid facial structures, especially on the outline of the face, are found to be the most
difficult to detect.

The performances of leading methods for image-based facial landmark detection
are reported in Table 3.2. These methods were evaluated on the 300W dataset [184],
which is the most widely used dataset in the literature. As a reminder, it composed of
2 categories of variable difficulty. Category A corresponds to images that do not in-
clude severe difficulties. Category B contains more complex facial images with large
variations in pose, illumination, and expressions, as well as occlusions. First, note that
CSR based on various DNN architectures is the predominant approach (see for example,
CFAN, MDM, DAN, LAB). Secondly, for category B, the average error is more than
twice the one obtained on category A. Despite the quantity of methods proposed in the
literature and the recent major advances, these results show that the problems encoun-
tered under uncontrolled conditions are still far from being solved.
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Approach Method Year Category A Category B Full set

Traditional

DRMF [5] 2013 6.65 19.79 9.22/-/-
RCPR [25] 2013 6.18 17.26 8.35/-/-
SDM [248] 2013 5.57 15.40 7.52/42.94/10.89
ESR [27] 2014 5.28 17.00 7.58/43.12/10.45
ERT [105] 2014 - - 6.40/-/-
LBF [178] 2014 4.95 11.98 6.32/-/-

CFSS [285] 2015 4.73 9.98 5.76/49.87/5.08

Deep learning

CFAN [274] 2014 5.50 16.78 7.69/-/-
TCDCN [279] 2014 4.80 8.60 5.54/-/-
MDM [215] 2016 4.83 10.14 5.88/52.12/4.21

3DDFA [288] 2016 6.15 10.59 7.01/-/-
RAR [245] 2016 4.12 8.35 4.94/-/-
TSR [139] 2017 4.36 7.42 4.96/-/-
DRR [116] 2017 - - 4.90/-/-
DAN [111] 2017 - - 3.59/55.33/1.16

DVLN [236] 2017 3.94 7.62 4.66/-/-
FARN [89] 2018 4.23 7.53 4.88/-/-
TCD [114] 2018 3.67 7.62 4.44/-/-
RDN [134] 2018 3.31 7.04 4.23/-/-
LAB [235] 2018 3.42 6.98 4.12/-/-
SBR [56] 2018 3.28 7.58 4.10/-/-

Table 3.2: Performances of recent image-based methods on 300W. NRMSE is reported
for categories A and B. NRMSE/AUC/FR are reported for the full set. Numbers are
taken from the literature. CSR based on various DNN architectures is the predominant
approach. The average error on category B is more than twice the one obtained on
category A. The problems encountered under uncontrolled conditions are still far from
being solved.

By looking at qualitative results such as the ones in Figure 3.9, interesting obser-
vations can also be made. Because of their significant influence on facial appearance,
variations in pose and expression along with occlusions seem to be among the most
difficult challenges. Landmarks of non-rigid facial structures (e.g., those around the
mouth) are found to be the most difficult to detect as they can be strongly impacted
by deformations related to expressions. Landmarks on the outline of the face are even
more challenging, probably due to the lack of distinctive features. Deep learning ap-
proaches are now very popular and state-of-the-art. They demonstrate striking results
compared to traditional approaches, especially in category B. This is most likely related
to their ability to represent complex non-linear functions and to learn discriminative
task-specific features while benefiting from data augmentation. Nevertheless, they have
difficulty running in real-time, even on GPU. Traditional CSR approaches are much
faster, reaching up to 1000 to 3000 FPS [105, 178]. It should be noted that the training
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procedure (pre-training, training data, augmentation) is not always clearly provided and
may vary from one method to another, which can impact the results and make them
difficult to compare. However, similar observations with additional details are reported
in competition reports, which provide original evaluations with identical datasets and
protocols [184, 271].

3.3.2 Compiled Results on 300VW

Approach Method Year Category 1 Category 2 Category 3 Full set

Static

SDM [248] 2013 7.41 6.18 13.04 7.25
ESR [27] 2014 - - - 7.09

CFSS [285] 2015 7.68 6.42 13.67 6.13
CFAN [274] 2014 - - - 6.64

TCDCN [279] 2014 7.66 6.77 14.98 7.59

Dynamic
RED-NET [162] 2016 - - - 5.15

TSTN [133] 2018 5.36 4.51 12.84 -

Table 3.3: Performances of recent image-based and video-based methods on 300VW.
NRMSE is reported for categories 1, 2, and 3 and the full set. Numbers are taken
from the literature. DNNs based on RNN are the predominant approach. The results
demonstrate better robustness of temporal approaches under uncontrolled conditions.
Temporal constraints appear to be just as important as spatial constraints.

In the same way as image-based approaches, the performance of leading video-
based facial landmark detection methods are referenced in Table 3.3. These methods
were evaluated on the 300VW dataset [193] which, as a reminder, is composed of three
categories of increasing difficulty. It is currently the only video dataset available. Some
image-based methods (“Static” row in Table 3.3) have been included for comparison
[248, 27, 285, 274, 279]. Since the interest in video-based approaches is more recent,
possibly due to data availability, much fewer results are available.

DNNs are also the predominant approach. They tend to provide more stable pre-
dictions without large errors since they take advantage of the temporal coherence (see
Figure 3.10). Temporal constraints appear to be just as important as spatial constraints,
as proved by the results that demonstrate better robustness under uncontrolled condi-
tions. RNN-based approaches are currently very popular [162, 79], especially two-
stream architectures [133]. The lack of data being more important when considering
videos (more complex model, redundancy in data), one of the advantages of such archi-
tectures is that fine-tuning can be performed for the spatial stream from models trained
on static datasets. Although the results demonstrate the usefulness of temporal infor-
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mation, the trend to use RNNs turns out to be limited. Combining CNNs and RNNs
provides late temporal connectivity, most certainly capable of detecting only global mo-
tion from high level feature maps, e.g., head movements, since the CNNs used cannot
detect any motion.

Figure 3.10: Mean error of RED-NET with and without recurrent learning on 300VW
[162]. Recurrent learning tends to provide more stable predictions without large errors.

3.4 Cross-Dataset Benchmark

Relying on popular datasets does not allow for a comprehensive analysis of the results.
In recent years, many datasets have been published and have helped to improve the
robustness of facial landmark detection algorithms. Although these datasets currently
exhibit a wide range of difficulties, they do not allow a straightforward identification and
quantification of the weaknesses of algorithms with regard to these difficulties. This
is actually difficult to determine the origins of failures as the data are not annotated
by challenge. They lack suitable annotations as well as similar data captured in the
absence of challenges in order to provide a rigorous evaluation. The performance of
the approaches cannot therefore be effectively measured in the presence of head pose,
facial expression, or any other difficulty. However, new datasets with richer annotations,
such as SNaP-2DFe [2], have been introduced, allowing for a comprehensive analysis
regarding major challenges. SNaP-2DFe represents a great candidate for our third and

67



CHAPTER 3. EFFECTIVENESS OF FACIAL LANDMARK DETECTION

last benchmark. In this section, the evaluation protocol is first presented, and then an
in-depth analysis is conducted to investigate both the impact of head pose and facial
expressions on facial landmark detection.

3.4.1 Evaluation Protocol

The aim of the following benchmark is not to make a comparison between approaches
in order to find the best one but rather to evaluate their aptitudes in the presence of head
pose and facial expression. Note that we chose not to do any fine-tuning on SNaP-
2DFe. One reason is that the generalization capacity of current landmark detection
approaches can also be assessed by doing so. As the models used are trained on un-
controlled datasets where data are more challenging, they should provide equivalent
performance on SNaP-2DFe.

Selected Dataset

As already mentioned, SNaP-2DFe has been selected to conduct the third benchmark.
Unlike other datasets, annotations of 6 head movements and 7 facial expressions along
with the temporal pattern of their activation (i.e., neutral-onset-apex-offset-neutral) are
provided. Only the data from the static camera (sc) is used, which represents a total of
630 videos. The 6 head movements include horizontal translation and/or rotation (i.e.,
Static, Translation-x, Roll, Yaw, Pitch, Diagonal). The 7 facial expressions correspond
to the universal expressions (i.e., Neutral, Happiness, Fear, Anger, Disgust, Sadness,
Surprise).

Selected Approaches

Given the large number of facial landmark detection approaches in the literature, we
select a subset of recent approaches representative of the current state of the problem.
Deep learning approaches based on state-of-the-art models for coordinate (DAN [111])
and heatmap (HG, SAN [23, 55]) regression are included. Complementary multi-task
(TCDCN [280]) and dynamic solutions (SBR, FHR [56, 207]) are considered.

Unfortunately, the temporal component of the selected dynamic approaches was not
provided by the authors. Due to the lack of code and critical details for implementation,
we were not able to successfully integrate it. These approaches have still been kept as
image-based algorithms and therefore the focus has been narrowed down to a static 2D
landmark evaluation.
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Since the code and the pre-trained models provided by the respective authors are
used, it is important to consider the datasets used to train these approaches. As shown
in Table 3.4, most approaches are trained mainly on 300W, HELEN, and AFLW. HG,
TCDCN, SBR, and FHR made use of additional datasets, either to improve performance
by limiting overfitting, or to provide the necessary multi-task component.

Table 3.4: The different datasets used to train the selected approaches. Most approaches
are trained mainly on 300W, HELEN, and AFLW.

Dataset HG TCDCN DAN FHR SBR SAN
300W [184] 3 3 3 3 3 3

HELEN [121] 3 3 3 3 3 3

AFLW [109] 3 3 3 3 3 3

COFW [25] - 3 - - - -
MAFL [280] - 3 - - - -

300W-LP [288] 3 - - - - -
Mempo [271] 3 - 3 - - -
300VW [193] 3 - - - - -

Evaluation Metrics

The RMSE normalized by the diagonal of the ground truth bounding box,
√
width2 + height2,

is used as evaluation metric for its robustness to head pose variations [32]. From this
metric, the AUC and FR with a 4% threshold are computed. Above this threshold, the
prediction is considered as a failure, since a facial component can be mismatched. In
some experiments, the difference in performance between a static neutral face and a face
with the different variations, performancevariations− performancestatic neutral, is also
used.

3.4.2 Comparison of Selected Approaches

In the following experiments, the robustness of the selected facial landmark detection
approaches in the presence of head pose variations and facial expressions is investigated.
An overall performance analysis is first performed in order to identify which factor of
variation challenges the approaches studied the most. The analysis then focuses on each
facial landmark individually in order to identify more precisely which facial regions are
more difficult to characterize due to facial expressions and head pose variations.
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Overall Performance Analysis

In this experiment, the objective is to determine which movement, from the one caused
by head pose variations or the one produced by facial expressions, has the greatest im-
pact on facial landmark detection. Table 3.5 shows the performance of the selected
approaches in the presence of head pose variations only (i.e., neutral face with the 6
head movements), facial expressions only (i.e., static face with the 6 facial expressions),
and head pose variations combined with facial expressions (i.e., the 6 facial expressions
along with the 6 head movements). For each approach, AUC and FR are computed over
the entire sequences.

Table 3.5: AUC/FR by head pose variation and facial expression on SNaP-2DFe. AUC
is lower and FR higher in the presence of head pose variations than in the presence of fa-
cial expressions for all approaches. Head pose variations appears to be more challenging
than facial expressions for facial landmark detection.

Head pose only Expressions only Head pose & expressions Average
HG 54.30 / 0.42 55.35 / 0.05 52.94 / 0.58 54.19 / 0.35

TCDCN 54.86 / 4.49 59.73 / 0.00 52.97 / 5.01 55.85 / 3.16
DAN 68.73 / 8.44 71.77 / 6.41 67.88 / 8.34 69.46 / 7.73
FHR 69.90 / 0.17 71.84 / 0.00 68.52 / 0.64 70.08 / 0.27
SBR 70.44 / 1.02 73.76 / 0.57 68.86 / 2.02 71.02 / 1.20
SAN 70.97 / 0.21 73.80 / 0.00 70.27 / 0.44 71.68 / 0.21

Average 64.87 / 2.46 67.71 / 1.17 63.57 / 2.84 65.38 / 2.15

Table 3.5 indicates that the AUC is lower and the FR higher in the presence of head
pose variations than in the presence of facial expressions for all approaches. These re-
sults suggest that head pose variations are more challenging than facial expressions for
facial landmark detection. This is not surprising since the appearance is generally much
more affected by a change in pose than a change in expression. In the simultaneous
presence of both challenges, the performance tends to decrease further.

In order to obtain more accurate performance measurements of each approach ac-
cording to head pose variations and facial expressions, the previous results on the full
set (i.e., head pose variations and expressions) are detailed by activation pattern in Ta-
ble 3.6.

As shown in Table 3.6, the accuracy of all approaches decreases the most for images
adjacent to the apex state. More specifically, it corresponds to the moment where the
expression and most head pose variations are at their highest intensity. As soon as the
face gets closer to a neutral expression and a frontal pose, the accuracy improves. These
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results suggest that facial expressions with head pose variations remain a major difficulty
for facial landmark detection and show that not only the presence of an expression, but
also its intensity, impact landmark detection.

Table 3.6: AUC/FR by activation pattern on SNaP-2DFe in the presence of facial ex-
pressions and head pose variations. These results suggest that facial expressions with
head pose variations remain a major difficulty for facial landmark detection. Not only
the presence of an expression, but also its intensity, impact landmark detection.

Neutral / Onset Onset / Apex Apex / Offset Offset / Neutral All
HG 55.21 / 0.06 49.30 / 1.73 48.58 / 1.56 51.74 / 0.65 52.94 / 0.58

TCDCN 55.55 / 3.17 44.70 / 11.77 45.99 / 9.64 51.84 / 4.92 52.97 / 5.01
DAN 69.87 / 7.91 62.35 / 9.95 64.07 / 8.99 67.51 / 8.34 67.88 / 8.34
FHR 71.57 / 0.04 64.14 / 2.37 63.24 / 1.67 67.15 / 0.62 68.52 / 0.64
SBR 71.74 / 1.04 62.22 / 5.12 63.75 / 3.42 67.35 / 2.83 68.86 / 2.02
SAN 72.79 / 0.00 65.65 / 1.22 66.41 / 1.08 68.86 / 0.56 70.27 / 0.44

Average 66.12 / 2.04 58.06 / 5.36 58.67 / 4.39 62.41 / 2.99 63.57 / 2.84

Robustness to Head Pose Variation

In this experiment, we place the emphasis on head pose variations, by highlighting
which type of head pose presents the most difficulties. In Table 3.7, the results are split
by head pose variations. AUC and FR are computed on all sequences where the face
is neutral between the onset and the offset phase. The results (∆AUC and ∆FR) corre-
spond to the difference in performance between a static neutral face and a neutral face
in the presence of the different head poses. Negative (resp. positive) values for ∆AUC
(resp. ∆FR) indicate difficulties in the presence of the given head pose.

According to the results in Table 3.7, some head pose variations seem more difficult
to handle than others. Diagonal and Pitch lead to a severe drop in the AUC and a consid-
erable increase in the FR, suggesting that these pose variations are the most challenging.
They involve out-of-plane rotations, some of them on several rotation axes, which has
a significant impact on the face appearance. This may also be related to an insufficient
amount of training data for these movements. There is a drop in the AUC for Yaw, Roll,
and Translation-x as well, but with an almost zero failure rate, showing a better ability
of the approaches to manage these variations. The errors generated are fairly small and
do not result in landmark detection failures. Even for SAN, which has the best overall
performance, the average ∆AUC remains high with a value of -5.48 with, however, a
average ∆FR of 0.
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Table 3.7: ∆AUC / ∆FR between a static neutral face and the different head pose vari-
ations on SNaP-2DFe. Diagonal and Pitch lead to a severe drop in the AUC and a
considerable increase in the FR. These pose variations are the most challenging.

Translation-x Roll Yaw Pitch Diagonal Average
HG -0.89 / 0.0 +0.67 / 0.0 -4.17 / 0.0 -1.19 / +0.67 -10.18 / +3.67 -3.15 / +0.86

TCDCN -0.36 / 0.0 -1.36 / 0.0 -21.33 / +24.0 -9.39 / 0.0 -30.65 / +33.67 -12.61 / +11.53
DAN -4.0 / +2.0 -13.15 / +15.0 -1.76 / -1.0 -8.8 / +0.66 -15.79 / +4.33 -8.7 / +4.19
FHR -0.97 / 0.0 -1.69 / 0.0 -0.66 / 0.0 -10.08 / 0.0 -7.5 / +2.0 -4.18 / +0.4
SBR -4.21 / -0.33 -2.82 / -1.0 -7.15 / -0.33 -12.36 / +0.0 -16.71 / +1.67 -8.65 / 0.0
SAN -0.75 / 0.0 -5.22 / 0.0 -2.36 / 0.0 -8.02 / 0.0 -11.08 / 0.0 -5.48 / 0.0

Average -1.86 / +0.28 -3.93 / +2.33 -6.24 / +3.78 -8.31 / +0.22 -15.32 / +7.56 -7.13 / +2.83

Robustness to Facial Expressions

In this experiment, we emphasize facial expressions, by highlighting which type of fa-
cial expression presents the most difficulties. In Table 3.8 the results are split by facial
expression. AUC and FR are computed on all sequences where the face is static from
the onset to the offset of the facial expression activation. The results (∆AUC and ∆FR)
correspond to the difference in performance between a static neutral face and a static
face with the different facial expressions. Negative (resp. positive) values for ∆AUC
(resp. ∆FR) indicate difficulties in the presence of the given facial expression.

Table 3.8: ∆AUC / ∆FR of between a static neutral face and the different facial expres-
sions on SNaP-2DFe. Disgust and Sadness lead to a significant drop in the AUC. These
facial expressions are the most challenging.

Happiness Anger Disgust Fear Surprise Sadness Average
HG -4.85 / +0.36 -4.41 / 0.0 -8.68 / 0.0 -1.75 / 0.0 -1.35 / 0.0 -3.39 / 0.0 -4.07 / 0.06

TCDCN -3.12 / 0.0 +1.51 / 0.0 -8.1 / 0.0 -0.02 / 0.0 +0.55 / 0.0 -4.57 / 0.0 -2.29 / 0.0
DAN +0.48 / -4.30 -0.86 / -0.22 -7.04 / +0.74 -1.29 / -2.16 -1.21 / -0.12 -3.11 / -2.67 -2.17 / -1.45
FHR -1.44 / 0.0 -2.28 / 0.0 -6.62 / 0.0 -0.96 / 0.0 +0.93 / 0.0 -4.09 / 0.0 -2.41 / 0.0
SBR +0.04 / -0.64 -0.37 / -1.00 -7.27 / -0.63 -3.49 / +2.01 -0.37 / -1.00 -4.03 / -0.38 -2.58 / -0.27
SAN +0.34 / 0.0 +1.0 / 0.0 -7.41 / 0.0 -1.52 / 0.0 -1.61 / 0.0 -4.12 / 0.0 -2.22 / 0.0

Average -1.43 / -0.76 -0.90 / -0.20 -7.52 / +0.02 -1.51 / -0.03 -0.51 / -0.19 -3.89 / -0.51 -2.62 / -0.28

The results reported in Table 3.8 show that some facial expressions seem more dif-
ficult to handle than others. Disgust and Sadness lead to a significant drop in the AUC.
These expressions involve complex mouth motions with significant changes in appear-
ance, which may explain why the different approaches have more difficulties handling
them. Besides, they also present a wider range of activation patterns and intensities,
and may be less present in the datasets considered for training. The decrease in the
AUC is less marked for happiness, anger, fear, and surprise, which seems to be handled
better. As previously, if the focus is on the best selected approach in terms of overall
performance (SAN), a large value of the average ∆AUC, -2.22, is observed.
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Analysis at the Landmark Level

To better identify the strengths and weaknesses of facial landmark detection approaches,
a more detailed analysis at the level of each landmark is proposed. Figure 3.11 illus-
trates the landmark error rates of the different approaches according to the head pose
variations (Figure 3.11-A), the facial expressions (Figure 3.11-B) and the combination
of both (Figure 3.11-C).

Figure 3.11: Heatmaps of landmark detection error (A: per head pose, B: per facial
expression, C: in all). Eyebrows, facial edges, and the mouth are among the regions that
are the most affected by head pose and facial expression.

Regarding head pose variations (Figure 3.11-A), in-plane transformations (Static,
Translation-x, and Roll) do not have a strong impact on most approaches. Eyebrows,
nose, and facial edges are among the regions where landmark detection lacks precision,
especially for TCDCN, HG, and DAN. Out-of-plane (Yaw, Pitch and Diag) variations,
however, result in much more significant decreases of the accuracy. These transforma-
tions tend to stack up landmarks due to self-occlusions of certain parts of the face. Pitch
and Diagonal movements challenge all approaches; during them, eyebrows and facial
edges are generally poorly detected. In the presence of facial expressions (Figure 3.11-
B), eyebrows and facial edges are also the most impacted regions for all approaches.
Disgust and sadness are among the most challenging expressions as they produce com-
plex inner motions, which also lead to poor detection around the mouth. When both
challenges occur (Figure 3.11-C), eyebrows, facial edges and mouth are therefore heav-
ily affected. Note however that inner landmarks present less noise, especially around
the mouth. This could simply be related to the training data or an implicitly stronger
shape constraint during simultaneous variations.
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3.5 Discussion

The first image-based benchmark has shown that the average error under uncontrolled
conditions is more than twice the one obtained in good condition. It was also noted that
the trend towards deep learning approaches has spread to this problem. While large
datasets are not currently available, performance already tends to show the positive
contribution of these approaches. However, regarding computation times, traditional
approaches seem better as long as DNN optimization techniques (as presented in Sec-
tion 2.1.3) are excluded. The second video-based benchmark highlighted that temporal
consistency could help to address some of the difficulties encountered under uncon-
trolled conditions.

The third and last cross-dataset benchmark showed that the accuracy of current facial
landmark detection approaches is still not satisfactory in presence of head pose varia-
tions and/or facial expressions. The difficulties encountered are mainly related to certain
expressions (disgust and sadness), due to their complex motion, and to certain head pose
variations (Pitch, Diag), due to out-of-plane transformations. Another reason could be
their limited representation in the training datasets. The combination of both, which is
closer to the data captured under uncontrolled conditions, naturally increases the diffi-
culty of the detection. Eyebrows, facial edges, and the mouth are among the regions that
are the most affected by these difficulties. This may be explained by a potential lack of
distinctive features, especially for outline landmarks, and the propensity of landmarks
to overlap in these regions. The landmark-wise analysis could be extended. Depending
on the application, it may not be necessary to accurately detect all facial landmark to
properly characterize a face.

Facial landmark detection approaches tend to become increasingly robust in the
presence of head pose variations and facial expressions but are not yet robust enough
to detect facial landmarks under uncontrolled conditions. It is reasonable to believe
that the development and use of training datasets such as SNaP-2DFe will help to de-
sign algorithms that meet the expectations of the underlying tasks. While some suggest
adding more data and/or building deeper models, a clever design of the model and/or
the training protocol could greatly contribute to improve the robustness and general-
ization capacity of DNNs. SAN, which relies on the use of style-aggregated images,
is a good illustration and has shown its effectiveness. Unfortunately, video-based ap-
proaches were unable to be included in the third benchmark but given the performance
of FHR [207] and SBR [56] without their temporal component, one can still imagine
the potential benefit it could have brought. For instance, the authors of FHR report a
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decrease in the average error close to 20% on 300VW category 3 by adding the tem-
poral component. However, these methods only rely on image-based models. We have
seen that more advanced temporal approaches based on RNNs have also been proposed.
Although their performance in the video-based benchmark appears promising, these
approaches still suffer from some limitations, e.g., may only handle global head move-
ments (see Section 2.2).

We can go further by considering local motion through the learning of spatio-temporal
features. Dynamic features such as motion patterns, guided by appearance or not, could
be used to add a constraint on the landmark trajectories in addition to the spatial con-
straint. As illustrated in Figure 3.12, the temporal evolution of the texture in each land-
mark during an expression variation shows specific patterns that could be exploited,
especially for the mouth, eyes, and outline of the face. Capturing such information
could help to avoid errors such as mismatches or drifts that can be observed with image-
based and tracking approaches. This could provide more robustness and accuracy in
uncontrolled conditions, which strongly encourages us to investigate this direction.

Figure 3.12: Temporal evolution of the texture in each landmark during an expression
variation. The sequence is from 300VW, category 3. Specific patterns can be observed
and could be exploited, especially for the mouth, eyes, and outline of the face.
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Despite considerable progress in recent years, the performance of facial landmark
detection under uncontrolled conditions is still not fully satisfactory (see Section 3.3)
and even today, this problem continues to be studied largely from still images. Yet, with
the ubiquity of video sensors, the vast majority of applications rely on videos. Current
approaches, when applied to videos, usually track landmarks by detecting them and are
therefore not able to leverage the temporal dimension (see Section 2.2). Recent work
has proved that taking into account video consistency help to deal with the variability in
facial appearance and ambient environment encountered under uncontrolled conditions.
It generally involves a CNN coupled to a RNN, which provides only limited temporal
connectivity on feature maps with a high level of abstraction. Such architectures can
model global motion (e.g., head motion) but not as easily local motion like the move-
ments of the eyes or the lips, which are important to detect facial landmarks accurately.

Video analysis has been studied for a long time to tackle a variety of problems in-
cluding human behaviour understanding. The interest for video has been growing today
due to the explosion in the number of videos shared on the Internet, media, surveillance,
medicine, and the need to understand them. The diversity and complexity of videos
make their analysis very challenging. In addition to the issues related to video quality
and changes in the visual context (e.g., illumination, occlusions), which are also found
in still images, it requires to handle motion-related issues, e.g., displacements of the
camera and the targeted object, motion blur, duration. All these works can provide use-
ful insights to improve video-based facial landmark detection.

An overview of the objectives of this work is provided in the next section (Sec-
tion 4.1). In Section 4.2, current possibilities for spatio-temporal modeling are described
in a broader context. Both hand-crafted features and DL approaches are reviewed. A
solution proposal is then introduced in Section 4.3. Our 2D baseline architectures are
covered as well as their extension to the temporal domain. The experimental protocol,
implementation details, and results with their analysis are presented in Section 4.4. Ex-
periments on two datasets, 300VW [193] and SNaP-2DFe [2], are conducted in order to
evaluate the results obtained and to compare them with state-of-the-art approaches. A
more in-depth study of temporal integration is also performed in Section 4.5 through de-
sign investigations. Finally, the chapter ends with Section 4.6 by discussing the benefits
and limits of the proposed approach.
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4.1 Overview

Facial landmark detection remains difficult due to the many variations encountered un-
der uncontrolled conditions. The purpose of this work is to better exploit the dynamic
nature of the face in order to obtain more stable predictions over time and more ro-
bustness to variations that considerably impact facial appearance. We have seen that
recent video-based approaches have begun to show their benefits. However, popular
approaches do not sufficiently take advantage of the temporal information. They suf-
fer from limited temporal connectivity, allowing only global motion to be modeled. We
believe that with a better temporal modeling more robust predictions to the various chal-
lenges encountered in uncontrolled conditions can be achieved.

Even today the gap between handcrafted and DL approaches for video analysis is
not as wide as it was with still images when AlexNet [112] was proposed. The design
of a compact and efficient descriptor for video remains challenging. For this reason, it
is still worthwhile to consider handcrafted approaches, to have a better understanding of
the development of video analysis. Through this work, a particular interest is given to
the following aspects:

• integration of local motion;

• complementarity between both local and global motion;

• complementarity between both spatial and temporal information.

• application to both predominant models of the literature, coordinate regression
networks and heatmap regression networks.

4.2 Spatio-Temporal Modeling Review

Spatio-temporal modeling is generally built upon image-based solutions that are ex-
tended to video. Many handcrafted spatio-temporal feature detectors and descriptors
have been proposed [117, 52, 190, 232, 263, 108]. A detector identifies sparse or
dense spatio-temporal locations and scales. Spatial or spatio-temporal gradient or mo-
tion based features capture shape or motion information around the selected locations.
Following the breakthrough of DL, the interest has shifted to the design of deep archi-
tectures for video [83]. Features from individual frames can be extracted using CNNs
trained on images followed by their temporal integration using pool layers or RNNs.
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More advanced approaches involve the use of 3D convolutions, which allow spatio-
temporal feature learning, and two-stream architectures, which fuse the features from
RGB and optical flow images. In this section, both handcrafted and DL approaches are
reviewed.

4.2.1 Hand-Crafted Approaches

To obtain a compact representation of video without any complex processing such as ob-
ject tracking or motion segmentation, a commonly used solution is to extend the notion
of spatial interest points into the spatio-temporal domain. Different kinds of detectors
with variable sparsities have been proposed. Space-time interest points [117] is an ex-
tension of the Harris detector [84] in which the detected points are characterized by
large variation of the image values in all three directions altogether, i.e., spatio-temporal
corners (see Figure 4.1). Corners being sparse, cuboids [52, 18] let more features to be
detected using Gabor filters. In these methods, global information is ignored. Yet, it
can be integrated by extracting structural information, allowing more relevant interest
points to be detected [233]. Features that are scale-invariant, both spatially and tem-
porally, can also be obtained by combining a point detector and scale selection using
the Hessian matrix [232]. However, all these detectors remain sparse and only detect
salient motion. Dense sampling of local features has proved to be more effective [227].
It consists of the extraction of video blocks at regular positions and scales in space and
time, usually with overlap.

Figure 4.1: Space-time interest points detection [117]. The detected points are char-
acterized by large variation of the image values in all three directions altogether, i.e.,
spatio-temporal corners.

A different approach is to work with trajectories instead of cuboids. Trajectory and
cuboid are shown in Figure 4.2. The spatial and temporal domains having different
properties, they should be handled differently. Points are no longer detected at certain
positions in space and time, but are tracked over time using an optical flow algorithm.
The motion information of trajectories can be leveraged in the process. To extract tra-
jectories, the Kanade–Lucas–Tomasi (KLT) tracker [137] can be used along with the
extended Harris detector [144] or simply by relying on ”good features to track” [147].
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They can also be computed by matching SIFT descriptors between two consecutive
frames [203]. The KLT tracker and SIFT descriptors can be combined as well [202].
The use of dense trajectories has also been proposed [224], as dense sampling was found
to give superior performance. This involves densely sampled points tracked using a
dense optical flow field, ensuring good coverage and tracking. When the focus is on a
specific subject, e.g., in action recognition, dense trajectories can benefit from explicit
camera motion estimation [220, 234, 158, 95]. If camera motion is known, unwanted
trajectories in the background can be removed to only keep the trajectories of the object
of interest. The optical flow is then corrected, which improves the performance of mo-
tion descriptors. To do so, Speeded Up Robust Features (SURF) [10] descriptors and
dense optical flow can be used to match feature points between frames. Theses matches
serve for homography estimation with RANdom SAmple Consensus (RANSAC) [69]
and an object detector to remove inconsistent matches [226].

Figure 4.2: Difference between a cuboid and a trajectory [225]. Cuboid corresponds to
a straight 3D bloc while trajectory follows the optical flow.

For each given sample point, a feature descriptor is computed to describe its neigh-
bourhood (see Figure 4.3). HOG and HOF [118] are among the descriptors that have
been found to perform well [118, 227]. The success of image-based descriptors led
to their generalization to videos. Spatio-temporal extensions such as 3D SIFT [190],
extended SURF [232], local trinary patterns [263] and HOG 3D [108] have been in-
troduced. For the latter, integral images have been extended to integral videos for the
efficient computation of 3D gradients. New motion descriptors have also been pro-
posed. Motion boundary histograms [45] are based on spatial derivatives of optical flow
calculated separately in x and y, which are then quantized into a histogram. The use
of derivatives reduces the influence of the camera movements by removing constant
motion. Features are generally combined to capture shape, appearence, and motion in-
formation and improve performance [45]. Once the features have been extracted, they
are encoded into Bag of Features (BoFs) [167] or Fisher Vectors (FVs) [169], generally
pooled using a spatio-temporal pyramid, and then fed to an SVMs classifier.
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Figure 4.3: Extraction and characterization of dense trajectories [225]. For each given
sampled and tracked point, a feature descriptor is computed to describe the trajectory of
the point.

4.2.2 Deep Learning Approaches

Following the breakthrough of DNNs on still images [112], state-of-the-art handcrafted
approaches have been adapted to DL or even replaced and new video representations
have been proposed. Trajectory-pooled deep convolutional descriptors [228] use CNNs
to learn discriminative feature maps from which local trajectory-aligned descriptors are
computed. Deep Fisher networks [168] are composed of multiple layers of FVs and
allow a refined hierarchical representation of information. Attention quickly turned to
the design of CNN architectures to best capture temporal patterns with a good balance
between computational cost and accuracy. Many attempts to DL for spatio-temporal
learning have been made, relying on different modalities: RGB, optical flow [94], and
different kinds of aggregation (pooling, RNN [268]). As early work has shown [104],
expecting the model to learn spatio-temporal motion-dependent features can be a diffi-
cult task.

Figure 4.4: Strategies to extend CNNs to the temporal domain (red = conv layer; green
= normalization layer; blue = pool layer) [104]. Slow fusion was found to be the best
strategy.

82



CHAPTER 4. FACIAL LANDMARK DETECTION WITH IMPROVED
SPATIO-TEMPORAL MODELING

Several ways to incorporate and fuse temporal information from multiple frames
have been investigated, either at the first layers or later in the architecture [104]. The
different strategies are illustrated in Figure 4.4. Early fusion operates at the pixel level
by extending the first convolution to the temporal domain and taking a stack of images
as input. Late fusion is based on two streams that share their parameters and take images
spaced apart in time as input. Neither of the two streams is able to detect any motion.
The first fc layer computes global motion features by comparing the outputs of each
stream. Slow fusion is a combination of the two previous strategies. Temporal infor-
mation is merged using 3D convolutions so that the last layers of the network gradually
access more global information in both the spatial and temporal domains. The latter
was found to be the best strategy but does not seem to capture the motion well as it
performed similarly to the network operating on individual frames.

Figure 4.5: Feature pooling architectures (blue = pool layer; green = time-domain conv
layer; yellow = fc layer; orange = softmax layer) [268]. Temporal pooling of conv layers
was found to be the best strategy.

This kind of approach focusing only on small periods of time, temporal aggregation
has also been studied [268] through the use of a shared CNNs along with pooling or
RNN in order to process long sequences. Many pooling strategies have been considered:
over conv layers, late (after the fc layer), slow (hierarchically combining information),
local (combining only frame level information), and using 3D convolutions. They are
all shown in Figure 4.5. Temporal pooling of conv layers performs better than the other
four. However, RNNs provide slightly better results than pooling and may have better
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modeling capacities as they consider the temporal structure. It is also shown that opti-
cal flow is not always helpful, especially when videos are captured under uncontrolled
conditions.

Over the last years, 3 approaches have emerged and continue to widen the gap with
image-based and handcrafted video-based solutions:

• explicit models of motion using two-stream architectures (spatial and temporal
streams);

• embedding the temporal dimension into CNNs using 3D convolutions;

• video understanding as sequence modeling by combining CNNs and RNNs.

Figure 4.6: Two-stream network. Residual connections between the spatial stream
and the temporal stream enforce the relationship between what is captured by the two
streams [62].

Explicit models of motion using two-stream architectures draw their inspiration
from neurosciences, in which the hypothesis that humans possess separate visual path-
ways is made [140]. The ventral pathway responds to spatial features while the dorsal
pathway is sensitive to object transformations and their spatial relationships. HMAX
[113] is one of the first two-stream biologically-inspired model that has been proposed
and it has been naturally generalized to DL with CNNs [196, 63, 231, 229]. In such
an architecture, a video is decomposed into spatial and temporal components (see Fig-
ure 4.6). The spatial stream extracts spatial features from RGB images while the tempo-
ral stream extracts motion features from the optical flow, which is stacked on multiple
frames. This way appearance and motion across frames are captured. Two types of
motion representations can be used, by sampling the optical flow either at the same
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locations across several frames or along the motion trajectories, as with handcrafted de-
scriptors [196]. To enable an interaction between the two streams and thus enforce the
relationship between what is captured by the spatial stream and the motion captured by
the temporal stream, residual connections between the two streams can be established
[62].

Figure 4.7: Comparison of 2D (a) and 3D (b) convolutions with a temporal depth of 3
[97]. A new dimension to the filters in order to obtain a hierarchical representation of
spatio-temporal data.

3D convolution is probably the most natural way to extend CNNs to the temporal
domain, allowing both appearance and motion to be modeled simultaneously. It was first
used in human behavior-related problems [97, 7], while also studied for unsupervised
learning of spatio-temporal features [208, 120]. As illustrated in Figure 4.7, a new
dimension corresponding to the temporal depth is added to the filters in order to obtain a
hierarchical representation of spatio-temporal data. A 3D convolution can be expressed
as:

vxyzij = bij +
∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqrijmv
(x+p)(y+q)(z+r)
(i−1)m (4.1)

where vxyzij is the value at position (x, y, z) on the j-th feature map in the i-th layer,
b is the bias, m is the index of the feature map in the previous layer, P,Q,R are re-
spectively the height, width and depth of the kernel, and w is the value of the kernel
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(weight). 3D CNNs have rapidly achieved superior performance over 2D ones. They
have become competitive with other approaches [211], and have demonstrated a good
generalization capacity [149, 156]. A few studies have been conducted to better under-
stand how to design and parameterize such an architecture and what kind of features
they learn [211]. Shallow and very deep architectures have been investigated on cur-
rently available datasets with the idea that 3D CNNs have the potential to follow the
same achievement as their 2D counterpart on still images [83]. However, video datasets
equivalent to ImageNet [47] do not seem to be available yet, while 3D CNNs imply
more parameters resulting in more difficulty to train from scratch, i.e., time consuming,
overfitting. To address these issues, several ways to initialize 3D weights using pre-
trained 2D ones have been proposed: supervision transfer [51], averaging by temporal
size, initializing the first timestep with the 2D weights and others to zero, as well as
variants of these [141]. Besides reducing overfitting and speeding up training, they also
lead to improvements in accuracy.

Another growing solution to facilitate the training of 3D CNNs is to factorize 3D
convolutional filters into separate spatial and temporal components [204, 213]. While
being easier to optimize, it also allows for more nonlinearities, which yields a significant
gain in accuracy. Various strategies to decompose 3D convolutions have been formu-
lated, the most successful being to use a 2D spatial convolution followed directly by a
1D temporal convolution [174]. Moreover, motion may not be extracted across all the
network. A trade-off between speed and accuracy can be found by replacing many of
the 3D convolutions by 2D ones [213], depending on the application. Evolutionary al-
gorithms have also been used to explore models with different types and combinations
of conv layers to discover new and potentially optimal video architectures [170].

As already mentioned in Section 2.1.3, RNNs [182], historically FC-RNNs, use their
past inputs to compute their output, by maintaining an internal state, which accumulates
contextual information. Beyond this state, RNNs have the ability to capture temporal
orderings and long-term dependencies. For the purpose of visual understanding, a CNN
is usually used as a backbone to extract discriminative features, which are then fed into
the RNN [261, 283]. Following the philosophy of DL, a stack of RNNs is often used to
obtain a more efficient representation with a high level of abstraction and potentially op-
erate at different time scales [54, 268]. RNNs have also been extended to convolutional
architectures instead of fc ones, for both the input-to-state and state-to-state connections,
which are therefore 3D tensors [8, 247]. As a result, ConvRNNs turn out to be better
than FC-RNNs at handling spatio-temporal correlations. A visual comparison of both
architectures is shown in Figure 4.8.
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Figure 4.8: Comparison of different RNN architectures: (a) ConvGRU, (b) GRU, and
(c) traditional RNN [230]. Compared to traditional RNN, GRU adopts a memory cell
coupled with gating functions to control the flow of information. Using ConvGRU,
the input and state are 3D tensors and convolutions are used for both input-to-state and
state-to-state connections instead of matrix multiplications.

RNNs have also been used for unsupervised learning [200]. To better understand
how a RNN works, studies have been conducted on visualization and the importance of
the gates, structure, and depth [76, 102, 103, 159]. However, it only concerns language
and audio modeling and only few studies focus on visual sequences. Yet, they have spe-
cific properties such as redundancy and variable temporal dependencies depending on
the applications [189]. Recently, a solution has been proposed to leverage a pre-trained
CNN by transforming any of its layers, either conv or fc, into a recurrent one [262]. An
analysis of the distribution of gate activations has shown that pre-trained RNNs make
better use of the temporal context. Also, one RNN is enough since when two RNNs
are stacked, the second one behaves like an fc layer and does not take advantage of the
previous hidden state.

4.2.3 Summary

Although the immediate purpose of the reviewed work is different from ours, they offer
interesting insights for video-based facial landmark detection. There is also a need to
encode spatio-temporal information. Handcrafted approaches rely on the description of
cuboid or trajectories obtained through sparse or dense points sampling. Different kinds
of descriptors, gradient-based or motion-based descriptors, are used and generally com-
bined. They are then encoded in BoFs or FVs and classified using SVMs. Such solution
can also benefit from explicit camera motion estimation. Although dense trajectories
improved by camera estimation provide interesting performance [226], it is at a high
computational cost, which makes them intractable on large-scale datasets.
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Video analysis based on DL approaches has undergone considerable development in
recent years. While early work has shown that learning spatio-temporal motion depen-
dent features can be a difficult task for such approaches [104], recent work continues to
suggest otherwise. They are mainly based on three architectures: two-stream networks,
3D CNNs, and RNNs combined with a CNN as a backbone. All these solutions are not
mutually exclusive and potentially complementary. Two-stream networks and 3D con-
volutions may have facilities in capturing low-level motion, as opposed to RNNs, which
may be better with higher-level variations. Additionally, explicit motion integration us-
ing an optical flow combined with raw images may still help to improve the temporal
representation. There have already been attempts to combine two-stream networks and
3D convolutions [28], 3D convolutions and RNNs [149, 7, 276], and two-stream net-
works and RNNs [209, 284] with promising results.

The work discussed in the following sections focuses on CNNs for facial landmark
detection, as they provide an effective and versatile baseline tool to solve this problem.
In Section 2.2, we have seen that current video-based facial landmark detection ap-
proaches [133, 162, 79, 89] rely mainly on late temporal connectivity based on RNNs,
which encode motion at a large scale. In contrast to this work, the proposed solution
aims to improve the temporal connectivity of deep CNNs for video-based facial land-
mark detection, to include local motion to the model. To the best of our knowledge,
this is the first work to focus on local motion and on the learning of low-level spatio-
temporal features for this problem. To do so, 3D convolutions are used to perform
spatio-temporal convolutions. This provides early temporal connectivity directly at the
pixel level, allowing both appearance and motion to be modeled within all layers of
the same network. 3D convolution has already been used for other tasks such as action
recognition, and has shown its ability to learn relevant spatio-temporal features [213].
This makes it a natural candidate to model local motion in facial landmark detection,
which can be easily applied to existing work.

4.3 Architecture Design

This section describes the architectures developed in this work to extend the connectivity
of CNN-based landmark detectors to include local motion through early connectivity.
We consider lightweight architectures to isolate the contribution of local motions from
other factors.
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4.3.1 Coordinate Regression Networks

2D Baseline. The proposed 2D baseline coordinate regression model (coord-2D), in
Figure 4.9-(a), follows the philosophy of VGG network [197] and is inspired by recent
work on facial landmark detection [66]. It contains only convolutions with a kernel size
of 3× 3, a stride of 1 and a padding of 2. The number of filters increases by a factor of
2 at each of the 5 convolutions, from 32 to 512, to accommodate the increase in abstrac-
tion. Each convolution is followed by a batch normalization layer, an ELU activation
layer and a max-pooling layer with a pool size and stride of 2. ELU activation [35] was
chosen as activation function as it provides better performance than the commonly used
ReLu [150]. Batch normalization layers further improve the training procedures. This
model produces feature maps of size 2x2x512 from an input image of size 64x64x3.
These maps are vectorized and passed on to two fc layers to aggregate the most relevant
information from the conv layers and thus obtain the landmark predictions. The first fc

layer has a capacity of 1,024 units and is followed by a batch normalization layer and
an ELU activation layer. We add a dropout layer [199] with a rate of 0.2 for regulariza-
tion. The second and last fc layer outputs 136 values corresponding to the 68 landmark
coordinates. As already stated, we limited the complexity of the model to facilitate ex-
periments and to clearly highlight the contribution of temporal information, especially,
no cascaded regression is used.

Figure 4.9: The proposed coordinate regression networks. (a; coord-2D) Baseline 2D
architecture, (b; coord-3D) early temporal connectivity based on 3D convolutions, (c;
coord-2RNN) late temporal connectivity based on RNNs, and (d; coord-3DRNN) both
connectivity levels. These four lightweight architectures are used to evaluate the contri-
bution of local motion to coordinate regression.

Convolutional Neural Network with Temporal Connectivity. We experiment with
different types of connectivities:

• early connectivity (coord-3D), which is direct at the pixel level and based on 3D
convolutions;
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• late connectivity(coord-2DRNN), which occurs after a series of convolution and
is based on RNNs;

• combination of early and late connectivity (coord-3DRNN).

Each architecture with temporal connectivity takes as an input a temporal window of 3
frames as this value seems suitable for facial landmark detection (see Appendix A.1).
The use of a greater depth was investigated without any benefit. Long-term temporal
dependencies may not be necessary for facial landmark detection.

As shown in Figure 4.9-(b), local motion information is added through early tem-
poral connectivity by extending the conv and pool layers by one dimension [97]. This
allows the network to detect local motion patterns and learn a hierarchy of motion fea-
tures. We use the same parameters as for spatial dimensions, as suggested in [211],
except for pooling. Since the temporal depth of the input is only 3, we do not apply any
pooling along this dimension to preserve the temporal information.

Finally, we integrate late connectivity by replacing the first fc layer by a long short-
term memory (LSTM) [247, 79] recurrent layer with identical capacity (see Figure 4.9-
(c) and 4.9-(d)). The 2D CNN model is distributed in time with shared parameters.
By processing the output of the streams, the recurrent layer is able to compute global
motion features. Dropout is also performed on recurrent connections, with the same rate
as for feed forward connections. We keep only the last timestep of the LSTM, which
should encode relevant spatio-temporal context to predict landmarks on the last frame
of the sequence.

4.3.2 Heatmap Regression Networks

2D Baseline. The proposed 2D heatmap regression model is designed by adapting the
2D base architecture from Section 4.3.1 to a fully-convolutional auto-encoder architec-
ture. This model has the potential to better handle spatial correlations since there is no
fc layer and therefore no vectorization of the features maps. Inspired by recent advances
in the literature [152, 23], we adopt an hourglass-like architecture. At the encoder level,
we remove the spatial pooling and replace it by convolutions with strides to obtain a
fully-convolutional structure. We use a constant number of 256 filters and a stride of 2
along spatial dimensions. Note that we are not necessarily looking for optimal values
but rather values that facilitate our experiments. The decoder has an equivalent number
of transposed convolutions with identical parameters. Two conv layers with a kernel
size of 1×1, a stride of 1 and a padding of 2 are applied after the decoder in order to
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generate heatmap predictions. The first one has 512 filters and is followed by a batch
normalization layer and an ELU activation layer. The second one outputs 68 heatmaps,
one for each facial landmark. Regularization techniques such as dropout works well on
coordinate regression models especially on fc layers. However, they are not as effective
on fully convolutional models [128]. Therefore, no dropout is applied to the conv layers.
Also, we did not integrate residual connections between encoder and decoder, since in
some experiments these connections caused a drop in performance (see Appendix A.2).

Fully-Convolutional Network (FCN) with Temporal Connectivity. As before, the
transition from 2D to 3D is done by extending the convolutions to the temporal domain
with the same parameters as for spatial dimensions and a temporal depth of 3. Late
connectivity is integrated through the use of a convolutional LSTM layer between the
encoder and the decoder, with the same parameters as the other convolutions, except
the stride which is set to 1 to preserve the spatial information. ConvLSTM turns out
to be better than FC-LSTM at handling spatio-temporal correlations [247] and allows
to preserve a fully-convolutional architecture. Unlike FC-LSTM, the input and state
are 3D tensors and convolutions are used for both input-to-state and state-to-state con-
nections instead of matrix multiplications. Decoding is done in 2D by keeping only
the feature maps of the last timestep of the convolutional LSTM layer. We still used
dropout on recurrent connections, with a rate of 0.2. Models with late temporal connec-
tivity (heat-2DFCRNN) and both connectivity levels (heat-3DFCRNN) are illustrated
in Figure 4.10-(a) and Figure 4.10-(b).

Figure 4.10: The proposed heatmap regression networks. (a; heat-2DFCRNN) Late
temporal connectivity based on RNNs, and (b; heat-3DFCRNN) both connectivity lev-
els. These two lightweight architectures are used to evaluate the contribution of local
motion for heatmap regression.
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4.4 Experiments

We conduct experiments on two datasets, 300VW [193] and SNaP-2DFe [2]. 300VW
is the reference dataset for video-based facial landmark detection. SNaP-2DFe allows
the study of the impact of head movements and facial expressions on facial landmark
detection and to identify the respective benefits of early and late connectivities. Quali-
tative results are provided, especially to illustrate what the proposed models learn and
their limits through failure cases. We also analyze the performance of each model in
terms of speed, size and number of parameters.

4.4.1 Datasets and Evaluation Protocols

300VW. As already described in Section 3.2.1, 300VW [193] contains 114 videos. 50
videos are intended for training and 64 for testing. The test set is divided into 3 cate-
gories of increasing difficulty. We keep the same split as the 300VW challenge [193]
for training and testing, without adding any external data. 20% of randomly selected
training data was used for validation.

SNaP-2DFe. SNaP-2DFe [2] consists of 6 movements composed of a horizontal trans-
lation and/or a rotation (roll, pitch, yaw), each associated with 7 acted expressions (neu-
tral, joy, fear, anger, disgust, sadness, surprise). Data from 12 participants has been
collected at the time of the experiments. We use data from subjects 1 to 6 for fine-
tuning, 7 to 8 for validation and 9 to 12 for testing.

Pre-processing. For 300VW, all models are trained from scratch without any pre-
training. For SNaP-2DFe, we fine-tune the models trained on 300VW due to the limited
number of images present in SNaP-2DFe. Training data is augmented by reversing each
image sequence and flipping each image horizontally. Motion augmentation using re-
sampling has been evaluated but found to be harmful (see Appendix A.3). The same
data is used for each training session. The input of each 2D network is an RGB image
cropped from the face bounding box, resized to a size of 64x64x3 and normalized as
explained in Section 3.2.2. For their 3D counterpart, we opt for an input window of
size 3x64x64x3. Each video of the training set is then split into several non-overlapping
image sequences of size 3. This ensures a reasonable amount of training data. Ground
truth coordinates are normalized between [-0.5; 0.5]. Ground truth heatmaps are gener-
ated by computing a bivariate Gaussian of bandwidth 3 × 3 centered at the location of
the landmarks.
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Evaluation metrics. In the experiments, we use the metrics introduced in [32], i.e.,
RMSE normalized by the diagonal of the ground truth bounding box. We compute the
AUC and failure rate at thresholds of 8% and 4%. We choose this metric for its robust-
ness to pose variations. The 8% threshold is mainly used in the literature. As already
mentioned in Section 3.2.3, beyond this threshold, landmarks are mostly not located
correctly. AUC can be high using a 8% threshold, especially on SNaP-2DFe, because
the accepted error is large. We also provide some results with a 4% threshold. This
threshold corresponds to predictions that are mostly acceptable. For a fair compari-
son with other existing approaches, we also use the average RMSE normalized by the
interocular distance as in the 300VW challenge.

Note that we encountered difficulties (overfitting) in fine-tuning heatmap regression
models on SNaP-2DFe, regularization using dropout not being helpful. For the latter,
we only provide results on 300VW which is anyway the reference dataset. The compre-
hensive analysis using SNaP-2DFe is therefore only performed on coordinate regression
models.

4.4.2 Implementation Details

Network weights are initialized with the Xavier uniform initializer. The Adam optimizer
with L2 loss is used for all models, following the original paper parameters except for
the learning rate that we set to 10−4. During training, the learning rate is reduced by a
factor of 0.1 when the error on the validation set has not improved for 10 epochs. We
performed several training sessions of 100 epochs for each model and report the best
run. Batch sizes of 8 and 4 are used for the 2D and 3D models, respectively. These
parameters have been found to be optimal based on empirical tuning. We observed the
same convergence behavior for both types of models, i.e., coordinate regression and
heatmap regression.

4.4.3 Evaluation on SNaP-2DFe

Table 4.1 summarizes the performance of coordinate regression models over the entire
SNaP-2DFe test set in terms of AUC and FR with thresholds at 8% and 4%. We observe
a performance gain between coord-2D and coord-3D approaches; it is larger when the
threshold is 4%, showing a better robustness in a more challenging evaluation context.
This underlines the effectiveness of 3D convolutions for landmark localization. Early
temporal connectivity provides a significant gain in accuracy while reducing the failure
rate. The results of models with RNN suggest that early and late temporal connectivities
may be complementary.
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Table 4.1: Comparison of the different architectures presented in Section 4.3.1 on SNaP-
2DFe (subjects 9 to 12). AUCs and failure rates at thresholds of 8% and 4% are reported.
Early temporal connectivity provides a significant gain in accuracy while reducing the
failure rate.

Method AUC @8% FR @8% AUC @4% FR @4%

coord-2D 78.53 0.27 57.44 0.79
coord-3D 79.57 0.15 59.44 0.64

coord-2DRNN 83.32 0.08 66.83 0.35
coord-3DRNN 84.12 0.09 68.41 0.28

In order to better understand the strengths and weaknesses of these models, we com-
pute the error for each type of head movement (i.e., Static, Translation-x, Roll, Yaw,
Pitch, Diagonal) and facial expression (i.e., Neutral, Happiness, Fear, Anger, Disgust,
Sadness, Surprise). Table 4.2 presents the results regarding head movements. A notable
performance gain is observed for all movements by applying early temporal connectiv-
ity only. However, when no movement occurs, there is a drop in performance, which
may indicate a weakness of 3D convolution in static conditions. It could also be due to
the fc layer since this weakness is not found when a recurrent layer is used instead. With
the addition of late temporal connectivity, there is also an improvement in performance,
but it is more modest. This can be explained by the fact that the RNN is already capable
of capturing global motion, as shown by the significant improvement from coord-2D to
coord-2DRNN.

Table 4.3 presents the results with respect to facial expressions. The performance
gain for this kind of motion is more significant than with head movements, even with the
addition of late temporal connectivity. Facial expressions consist of local motion pat-
terns that RNNs cannot capture, unlike 3D convolution. In the absence of any expression
(i.e., neutral sequences), with early connectivity alone, we obtain lower performances
potentially due to the lack of motion, as observed earlier. These results clearly illus-
trate the value of local motion for facial landmark detection. They also demonstrate the
complementarity of local motion modeling and global motion modeling with RNNs.
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Table 4.2: Comparison of the different architectures presented in Section 4.3.1 on SNaP-
2DFe (subjects 9 to 12; motion only). AUCs at thresholds of 8% and 4% are reported.
Early temporal connectivity provides performance gain for all movements. Note, how-
ever, the drop in performance when no movement occurs. These results also suggest a
complementarity between early and late temporal connectivity.

Method
coord-2D coord-3D coord-2DRNN coord-3DRNN

@8% @4% @8% @4% @8% @4% @8% @4%

Nothing 82.11 64.22 81.19 62.39 86.20 72.41 86.84 73.68
Diagonal 82.29 64.58 82.77 65.54 85.28 70.55 85.40 70.81

Pitch 82.69 65.37 83.56 67.12 84.76 69.51 85.26 70.52
Roll 79.72 59.43 80.90 61.80 83.38 66.75 84.01 68.02

Translation-x 80.43 60.87 82.14 64.27 85.28 70.55 85.33 70.66
Yaw 82.64 65.29 84.23 68.47 85.42 70.83 85.23 70.47

Table 4.3: Comparison of the different architectures presented in Section 4.3.1 on SNaP-
2DFe (subjects 9 to 12; emotion only). AUCs at thresholds of 8% and 4% are reported.
Early temporal connectivity provides performance gain for all facial expressions. Note,
however, the drop in performance when no movement occurs. These results also suggest
a complementarity between early and late temporal connectivity.

Method
coord-2D coord-3D coord-2DRNN coord-3DRNN

@8% @4% @8% @4% @8% @4% @8% @4%

Neutral 82.11 64.22 81.19 62.39 86.20 72.41 86.84 73.68
Anger 77.97 55.94 79.27 58.53 83.54 67.09 84.16 68.33

Disgust 76.35 52.70 78.76 57.52 83.57 67.15 84.49 68.98
Fear 77.51 55.01 78.48 56.95 83.92 67.85 84.32 68.64

Happiness 80.69 61.37 83.80 67.60 85.60 71.20 86.42 72.83
Sadness 76.75 53.49 79.15 58.31 82.33 64.67 84.63 69.26
Surprise 77.29 54.59 80.93 61.85 84.33 68.67 85.36 70.72
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4.4.4 Evaluation on 300VW

Table 4.4: Comparison of the different architectures presented in Section 4.3.1 on the
three categories of the 300VW test set. AUC and FR at a threshold of 8% are reported.
By applying early temporal connectivity, more accurate predictions are obtained in cat-
egories 1 and 2, while in category 3 a lower failure rate is observed.

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

coord-2D 71.82 1.73 67.17 0.61 65.48 4.54
coord-3D 72.26 1.88 67.62 2.21 64.23 4.22

coord-2DRNN 76.04 1.52 73.45 0.14 71.25 2.83
coord-3DRNN 76.21 1.60 73.14 0.17 70.86 2.70

Coordinate Regression Networks. Table 4.4 shows the performance of coordinate re-
gression models in terms of AUC and FR with an 8% threshold on the 3 categories of
300VW. Compared to the results obtained on SNaP-2DFe, the contribution of early tem-
poral connectivity is not as clear. However, a gain is systematically observed for models
without late temporal connectivity, either in terms of AUC or FR. In categories 1 and
2, we obtain more accurate predictions, while in category 3 we observe a lower failure
rate. According to these results and considering the observations made on SNaP-2DFe,
it seems that the 3D convolution is affected by the lack of motion and by occlusions,
which are common in 300VW.

Table 4.5: Comparison of the different architectures presented in Section 4.3.2 on the
three categories of the 300VW test set. AUC and FR at a threshold of 8% are reported.
Early temporal connectivity applied to heatmap regression networks brings significant
and consistent performance gains over the 3 categories of 300VW.

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

2DFCRNN 73.99 3.79 73.73 0.30 70.55 4.91
3DFCRNN 75.25 2.50 74.23 0.30 71.60 4.40

Heatmap Regression Networks. The performance of heatmap regression networks in
terms of AUC and FR with an 8% threshold is reported in Table 4.5. Early temporal con-
nectivity brings here significant and consistent performance gains over the 3 categories
of 300VW. Despite the decoding from 2D feature maps, local motion information is
preserved well in the reconstruction, which may explain the variance of the results with
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coordinate regression models. As previously reported, the latter might be mostly due to
their fc layers. Due to their fully-convolutional structure, heatmap regression networks
seem more suitable to handle spatio-temporal correlations.

4.4.5 Comparison with Existing Models

Table 4.6 shows the average error of the best models with major models from the liter-
ature on the full 300VW test set. Numbers are reported from [133]. The comparison
includes static methods with handcrafted [248, 285] and learned features [280], and ap-
proaches that leverage temporal information [133]. The results show the effectiveness
of the proposed models, especially on Category 3, which is the most challenging one.
Despite their simplicity, coordinate regression (coord-3DRNN) and heatmap regression
model (heat-3DFCRNN) are among the top-performing methods. Thanks to their abil-
ity to capture both local and global motion, they outperform static methods and show
competitive performance with other, more complex, video-based approaches.

Table 4.6: Comparison of the best proposed models, coord-3DRNN and heat-
3DFCRNN, with existing models on the three categories of the 300VW test set. Mean
error is reported. Despite their simplicity, coord-3DRNN and heat-3DFCRNN are
among the top-performing methods.

Method Category 1 Category 2 Category 3

SDM [248] 7.41 6.18 13.04
CFSS [285] 7.68 6.42 13.67

TCDCN [280] 7.66 6.77 14.98
TSTN [133] 5.36 4.51 12.84

coord-3DRNN 5.34 5.01 8.14
heat-3DFCRNN 5.73 4.83 8.70

4.4.6 Qualitative Results

Figure 4.11 shows some failure case and qualitative results from 300VW data set. We
observe that under static conditions (a), 3D model has issues with accuracy. However,
during expression variations (b), it shows the best performance especially around the
mouth area. Notice the lack of influence of the RNN in this type of situation. Early
connectivity proves to be more suitable for modeling local motions. In the presence of
large head movements (c), coord-3DRNN provides more robustness than 3D alone. The
RNN shows its ability to model global motions. The complementarity between early
and late connectivities is also highlighted.
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Figure 4.11: Failure case and qualitative results from 300VW data set. coord-3D model
is less accurate under static conditions (a) but handles local motions better (b). When
combined with a RNN, the robustness to large motions is improved (c).

In Figure 4.12, we show the inputs that activate the filters and the filter weights in the
first layer for the coord-2D, coord-3D and coord-3DRNN models. It helps to understand
what kind of patterns activate the filters. The coord-2D model encodes local patterns and
color while the coord-3D and coord-3DRNN models encode variations of local patterns
and color.

Figure 4.12: Activation maximization of two filters of the first layer (top) and their
weights (bottom), for the coord-2D (left), coord-3D (center) and coord-3DRNN (right)
models. The top images are sub-sampled while the bottom images are upsampled to fa-
cilitate viewing. The coord-2D model encodes local patterns and color while the coord-
3D and coord-3DRNN models encode variations of local patterns and color.
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4.4.7 Properties of the Networks

Table 4.7 presents different properties of the architectures proposed in this paper: num-
ber of parameters, size of the model, and prediction speed (in frames per second – FPS)
on CPU and GPU. Runs are performed on an Intel Xeon E5 3.50GHz CPU and a Nvidia
GeForce GTX 1080 Ti GPU. Although the number of parameters and the size increase
considerably when the temporal dimension is added, the models remain light with less
than 20M parameters and 70 MB. As a comparison, an architecture such as VGG16 1,
used for instance in [79, 163], has more than 130M parameters and a size of more than
500 MB. We can also observe that all models run in real time on GPU, and all coordinate
regression models on CPU. Moreover, we believe that, by revising the architectures or
by applying techniques such as binarization [22], real time could be reachable on CPU
for FCN models too.

Table 4.7: Comparison of the proposed architectures regarding their numbers of param-
eters, model sizes and speeds. All models run in real time on GPU, and all coordinate
regression models on CPU. VGG16 properties are also provided for comparison pur-
poses.

Method #params (M) Size (MB)
Speed (FPS)

CPU GPU

coord-2D 3.8 15 178 285
coord-3D 11.1 43 40 205

coord-2DRNN 14.2 55 60 252
coord-3DRNN 17.4 67 36 205

heat-2DFCRNN 10.2 40 14 104
heat-3DFCRNN 14.9 58 11 99

VGG16 130 500 0.3 24

4.5 Design Investigations

From the results of the first experiments, heatmap regression models may handle better
spatial correlations than coordinates regression models due to their fully convolutional
structure. The latter rely on fully connected layers which involve feature map vector-
ization with spatial information loss. The same may also be true for spatio-temporal
correlations. Hence, we focus the rest of the experiments on heatmap regression mod-
els. Efficient 3D hourglasses are not trivial to design, as experienced in Section 4.3. The

1https://github.com/jcjohnson/cnn-benchmarks
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architecture initially proposed is first revised in Section 4.5.1 with an emphasis on de-
coding. Two different approaches to better leverage the complementarity between spa-
tial and temporal information are then investigated in Section 4.5.2. Either through the
use of a two-stream architecture or by decoupling convolutions within a single stream
architecture. Finally, in Section 4.5.3, the complementarity between local and global
motion has also been subject to new experiments.

4.5.1 Encoder-Decoder

Given the lack of hindsight regarding the design and parameterization of hourglass-like
architectures for facial landmark detection, we investigated:

• different strategies to encode image or image sequence into feature maps, i.e.,
convolutions with stride or max-pooling;

• different strategies to decode these feature maps into heatmaps, i.e., transposed
convolution or upsampling;

• studied the influence of specific layers and connections, i.e., connections between
encoder and decoder;

• studied the impact of regularization techniques, i.e., dropout.

Figure 4.13: The proposed baseline network for heatmap regression. Compared to the
models of Section 4.3.2, the encoder and decoder use max-pooling and upsampling
rather than convolutions with stride.

We did not notice any significant difference between the aforementioned encoding
and decoding strategies in terms of performance. The convolution with stride reduces
process and the transposed convolution does not use a predefined interpolation method
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and has learnable parameters. However, we opted for the use of max-pooling and
upsampling to avoid potential unwanted artifacts (checkerboard pattern) [154], which
could potentially lead to a loss of accuracy. The addition of dropout, at different po-
sitions and with different rates, as well as residual connections between encoder and
decoder systematically resulted in no or even negative outcome. Dropout can lead to
a decrease in performance when combined with batch normalization [128]. Since we
use shallow networks, residual connections may be unnecessary. The results of these
experiments are available in Appendix A.2. Figure 4.13 shows the new proposed 2D
baseline for heatmap regression (2DFCN).

Figure 4.14: The proposed heatmap regression networks with early temporal connectiv-
ity based on 3D convolutions. (a) 2D decoding with early global temporal pooling and
(b) 3D decoding with late global temporal pooling.

When it comes to decoding, the question arises as to whether it should be done in
2D or in 3D. 2D decoding appears to be appropriate and lightweight. As we want to
perform the prediction on a single image, the last one of the sequence, the temporal
dimension may not be necessary during decoding. However, to better consider motion
information, it can be relevant to consider 3D decoding. Both strategies have been set
up to assess the need of a 2D or a 3D decoding. Figure 4.14-(a) shows the 2D decoding
(3DFCN-a). A global temporal pooling operation (max pooling with pool size equals
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to the size of the input) is performed between the encoder and the decoder. 2D feature
maps are then obtained, which encode the spatio-temporal context. Then 2D decoding is
performed. Figure 4.14-(b) shows the 3D decoding (3DFCN-b). In the same way as for
the encoder, the convolutions were extended by one dimension to also reconstruct the
temporal dimension. Then follows a step of global temporal pooling in order to perform
the prediction on a single image using the last convolution, which has been kept in 2D.

Table 4.8 shows the performance of 2D and 3D heatmap regression models in terms
of AUC and FR with a 4% threshold on the three categories of 300VW. The 3D models
produce better results than the 2D baseline in the three categories of the dataset and for
the two metrics. 3D decoding in this configuration does not seem to have any major
importance considering the marginal gain in performance obtained. Max and average
pooling have also been evaluated for global temporal pooling without showing any sig-
nificant difference (see Appendix A.2).

Table 4.8: Comparison of the different architectures presented in Section 4.5.1 on the
three categories of the 300VW test set. AUC and FR at a threshold of 4% are reported.
3D models produce better results. 2D decoding performs on par with 3D decoding.

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

2DFCN 55.11 5.67 49.77 2.93 49.17 7.32
3DFCN-a 56.28 4.24 50.52 2.45 50.57 6.96
3DFCN-b 56.55 4.53 51.10 3.24 50.57 6.76

4.5.2 Complementarity between Spatial and Temporal Information

In the first experiments, we observed a weakness of 3D convolution in static conditions.
When designing a spatio-temporal model, decoupling/factorizing the processing of spa-
tial and temporal information can help to better leverage the complementarity between
both types of information. We propose two approaches which we present below.

Two-stream Fully Convolutional Network
The first approach is an architecture with a two-stream encoder, i.e., spatial and spatio-
temporal stream (2SFCN). The goal of the spatial stream is to extract static features
from still images while the temporal stream aims to extract the dynamic features of the
face from an image sequence. The outputs of the two streams are concatenated and de-
coded in 2D. The same 2D and 3D encoders from Section 4.5.1 are used, as well as the
2D decoder.
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Figure 4.15: The proposed two-stream heatmap regression network. The same 2D and
3D encoders from Section 4.5.1 are used, as well as the 2D decoder.

Fully Convolutional Network with Decoupled Convolutions
In the second approach (D3DFCN), we decouple the 3x3x3 convolution kernel into a
spatial kernel and a temporal kernel of dimensions 1x3x3 and 3x1x1 respectively. The
complementarity between both types of information can therefore be exploited within a
single stream. As seen in Section 4.2.2, the decomposition also facilitates the optimiza-
tion and allows more complex functions to be represented by doubling the number of
activation [213], i.e., additional non linear activation layer between spatial and temporal
convolution. Several ways are proposed to apply these convolutions, as illustrated in
Figure 4.16. The difference lies in the influence that the two types of filters can have on
each other and on the output.

It should be noted that unlike [174] we do not use residual connections in the pro-
posed architecture given its shallow depth (as in Section 4.5.1). In Figure 4.16-(a), the
two convolutions are stacked by first applying spatial filters and then temporal ones. We
therefore have a direct influence between the two types of information, and only the sec-
ond convolution, i.e., the temporal one, is connected to the output. In Figure 4.16-(b),
the two convolutions are applied in parallel, each along a different path. We therefore
have an indirect influence between them. The outputs of the two convolutions are then
cumulated. Finally, in Figure 4.16-(c), a balance between the two previous options is

103



CHAPTER 4. FACIAL LANDMARK DETECTION WITH IMPROVED
SPATIO-TEMPORAL MODELING

made. We have a direct influence between the two types of convolutions, and both are
connected to the output.

Figure 4.16: The proposed 3D convolution factorization strategies. The difference lies
in the influence that the two types of filters can have on each other and on the output.

Table 4.9 presents the results of both two-stream and decoupled 3D convolutions on
the three categories of 300VW. AUC and FR with a 4% threshold are reported. Overall,
both approaches provide a performance gain over the use of a single vanilla 3D stream.
Among the factorization strategies, (a) performed best, followed by (c) and then (b).
Note that the latter results in a negative outcome. Inspired by the idea of structural
diversity [278], we have also evaluated a random mix of the proposed factorization
strategies: a-b-c-b-a. It was however unsuccessful. Compared to two-stream networks,
factorization (a) shows slightly better results while being more advantageous since it
requires a single stream.

Table 4.9: Comparison of the different architectures presented in Section 4.5.2 on the
three categories of the 300VW test set. AUC and FR at a threshold of 4% are reported.
Two-stream and factorization approaches provide a performance gain over the use of a
single vanilla 3D stream. Among the factorization strategies, (a) performed best.

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

3DFCN-a 56.28 4.24 50.52 2.45 50.57 6.96
2SFCN 56.24 4.43 52.16 1.66 51.43 6.69

D3DFCN-a 57.61 3.84 52.08 2.56 52.11 7.06
D3DFCN-b 55.32 5.03 49.81 2.91 49.55 7.23
D3DFCN-c 57.07 4.81 51.32 2.28 51.95 6.89

D3DFCN-mix (a-b-c-b-a) 56.63 4.24 50.59 2.58 50.72 7.05
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4.5.3 Complementarity between Local and Global Motion

The main purpose of the proposed architecture is to model local motions through early
temporal connectivity, i.e., directly at the pixel level. This connectivity provides a better
robustness when local motions such as expression variations occur and complements
existing work that focuses on global head movements, i.e., pose variations. In the fol-
lowing, different architectures are proposed to revise the combination of these two ap-
proaches and to better exploit their complementarity. We are especially interested in the
necessity of having a ConvRNN layer in a fully convolutional architecture as 3D con-
volutions alone could be enough for short-term dependencies such as in facial landmark
detection.

Figure 4.17: The proposed 2D (a) and 3D (b) recurrent networks for heatmap regression.
The late temporal connectivity approach is followed using a ConvLSTM as it allows to
preserve a fully-convolutional architecture.

Fully Convolutional Recurrent Network
Most architectures dealing with global motions perform coordinate regression and in-
tegrate a FC-RNN (LSTM, GRU) layer after the conv layers, in order to capture tem-
poral information on high level vectorized feature maps. When designing the recur-
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rent encoder-decoder network, we followed the late temporal connectivity approach but
opted for the use of a ConvLSTM layer between the encoder and the decoder. Con-
vLSTM turns out to be better than FC-LSTM at handling spatio-temporal correlations
[247] as it allows to preserve a fully-convolutional architecture.

Figure 4.17 shows the proposed baseline, which consists of the FCN from Sec-
tion 4.5.1 to which we add a ConvLSTM with the same parameters as the other con-
volutions (2DFCRNN). The encoder is distributed in time with shared parameters. By
processing the output of the streams, the recurrent layer is able to compute global mo-
tion features. Decoding is done in 2D by keeping only the feature maps of the last
timestep of the ConvLSTM layer. To integrate both local and global motions, the same
changes have been made to the FCN with temporal connectivity from Section 4.5.1
(3DFCRNN). We add a ConvLSTM between the 3D encoder and the 2D decoder with
the same parameters as the other convolutions. No dropout and no recurrent dropout
have been used. By combining 3D convolutions and ConvLSTM, the complementarity
between local and global motions might be better exploited.

Figure 4.18: The proposed fully recurrent network for heatmap regression. The encoder
is composed exclusively of ConvLSTM as it also enables temporal connectivity at the
pixel level.

In addition, we also designed a model whose encoder is composed exclusively of
ConvLSTM (FCRNN, see Figure 4.18). Due to its convolutional structure, ConvLSTM
can also provide temporal connectivity at the pixel level. By doing so, we can determine
which of 3D convolution or ConvLSTM is the most appropriate to deal with both local
and global motions and get better insights on their complementarity.
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Table 4.10: Comparison of the different architectures presented in Section 4.5.3 on
the three categories of the 300VW test set. AUC and FR at a threshold of 4% are
reported. Only a small gain is observed between static and recurrent models. The use of
an encoder composed only of ConvRNN demonstrates performance in favour of early
temporal connectivity.

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

2DFCN 55.11 5.67 49.77 2.93 49.17 7.32
2DFCRNN 55.46 5.66 51.25 1.81 49.55 7.84
3DFCN-a 56.28 4.24 50.52 2.45 50.57 6.96

3DFCRNN 56.49 4.40 51.31 2.49 50.26 7.87
FCRNN 57.37 3.99 52.19 1.97 52.14 6.41

Table 4.10 summarizes the performance of recurrent models for heatmap regression
over the three categories of 300VW in terms of AUC and FR with thresholds at 4%.
The contribution of the recurrent layer for both 2D and 3D models is less significant
than with coordinate regression models. Only a small gain is observed between static
and recurrent models. However, the use of an encoder composed only of ConvRNN has
demonstrated better performances than 3D convolutions except when the 3D convolu-
tions are factorized. This demonstrates the importance of early temporal connectivity.
Still, this type of architecture is much more costly to train.

4.6 Discussion

Experiments on two datasets confirm that modeling local motion improves the results
(e.g. especially with expressions, see Table 4.3 in Section 4.4.3), and that it is comple-
mentary to RNNs, which model global motion. In Chapter 3, the difficulty of current
approaches in the presence of pose and expression variations has been highlighted. By
considering temporal information, a performance gain up to 30% for critical expressions
(disgust and sadness) and 10% for critical poses (Pitch and Diagonal) can be observed
on SNaP-2DFe for coordinate regression models. In light of the results obtained on
300VW, this gain is likely to be even greater for heatmap regression models.

In Table 4.11, a summary of the performance of all the proposed approaches is
provided. By decoupling spatial and temporal information processing, either via a two-
stream architecture or via 3D convolution factorization, accuracy can be improved. Fac-
torization has been found to perform better while being lightweight and easier to train.
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Table 4.11: Comparison of the different architectures presented in Section 4.5.1, 4.5.2
and 4.5.3 on the full 300VW testset. AUCs and failure rates at thresholds of 8% and 4%
are reported. 3D convolution factorization was found to perform the best.

Method AUC @8% FR @8% AUC @4% FR @4%

2DFCN 74.88 1.55 52.35 5.31
2DFCRNN 75.19 1.71 53.01 5.12
3DFCN-a 75.57 1.48 53.46 4.37
2SFCN 75.88 1.47 54.07 4.20

D3DFCN-a 76.37 1.23 54.90 4.22
3DFCRNN 75.57 1.65 53.71 4.67

FCRNN 76.28 1.50 54.82 4.00

Given the fully convolutional structure of the proposed architectures, the interest and
usage of a RNN for this type of architecture was also questioned. One of the advantages
of a ConvRNN is that it can be applied directly to the first layers of a network, allowing
early temporal connectivity. Although it is more difficult to train, it gives interesting
performances close to the ones of factorized 3D convolution. This tends to show the im-
portance of temporal connectivity at the pixel level. However, 3D convolution alone, if
properly exploited, might be sufficient to handle both local and global motions through
hierarchical learning.

In summary, this work has demonstrated that:

• capturing temporal information significantly contributes to facial landmark detec-
tion, especially during pose and expression variations;

• fully convolutional networks seem more inclined to handle spatio-temporal cor-
relations;

• it is equally important to consider both local and global motion;

• it is crucial to decouple the processing of spatial and temporal information.

There is some room for improvement. Due to overfitting problems, heatmap re-
gression models were unable to be evaluated on SNaP-2DFe. Although the results on
300VW confirmed the validity of the approach, quantifying the impact of head pose
and expression would provide more insights regarding these models. Besides, our anal-
ysis by challenge is limited only to head pose and expression. Given the difficulties
encountered on 300VW and the temporal nature of our approach, the impact of occlu-
sions should be evaluated. In Section 4.5, we performed a design investigation based
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mainly on the figures obtained on 300VW. To improve the understanding of the pro-
posed architectures, it could be worth working on feature visualization aspects. Lastly,
our approach may be limited by the lack of an appropriate loss function for the temporal
domain. The explicit use of landmark trajectories could be helpful.
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The goal of our work was to investigate facial landmark detection under uncon-
trolled conditions. The first line of work focused on performance analysis of current
methods. We highlighted a weakness in the commonly used evaluation protocols. They
rely on datasets with limited annotations and do not allow for exhaustive performance
analysis. It is especially complex to quantify the performance of approaches according
to the challenges encountered. Our efforts were therefore directed towards this issue.

The second line of work focused on the development of a solution capable of cop-
ing with most of the difficulties encountered under uncontrolled conditions (e.g., pose,
expression, illumination, occlusion, motion blur). Based on the results of our initial
work, we considered video-based solutions. Unlike the popular still-image approaches
which are unable to take advantage of temporal information, video-based approaches
leverage temporal coherence to provide more robustness under uncontrolled conditions.
We noted that the approaches proposed so far provide only partial temporal modeling
and addressed this issue.

5.1 Summary of the Contributions

In this thesis, contributions for facial landmark detection are made in both the analysis
of the performance of current approaches and in the modeling of temporal information.

5.1.1 Impact of Pose and Expression Variations

As part of the performance analysis, two benchmarks, one with image and one with
video data, were conducted using methods compilation from the literature. They helped
analyze the performance of a large number of methods and obtain useful insights about
the current state of the problem. The datasets currently used in experiments remain
limited and do not allow for a comprehensive analysis. Given the relevance of such an
analysis, an experimental study was conducted using a recently released video dataset,
SNaP-2DFe [2], with more exhaustive annotations. The impact of pose and expression
variations on current facial landmark detection approaches has been quantified. Among
the selected approaches are coordinate (DAN [111]) and heatmap (HG, SAN [23, 55]
) deep regression models, including multi-task (TCDCN [280]) and dynamic solutions
(SBR, FHR [56, 207]). Performance measurements for each pose, expression, and their
different combination have been achieved. These measurements were also compared to
the performances obtained on static neutral faces. In addition, an analysis at multiple
scales, at the level of the shape and at the level of each landmark, was performed to
identify the most critical regions of the face.
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The overall performance in the presence of pose, expression or both is still worse
than on static neutral face. Average ∆AUC / ∆FR for head poses and facial expressions
are respectively -7.13 / +2.83 and -2.62 / -0.28. Eyebrows, facial edges, and the mouth
are the regions that are the most affected. These observations are also valid for the best
method despite its fair overall performance. Through this evaluation, the most challeng-
ing poses and expressions have been identified. With respect to SNaP-2DFe annotations,
they include Pitch and Diag for pose (average ∆AUC / ∆FR of -8.31 / +0.22 and -15.32
/ +7.56 respectively), and Disgust and Sadness for expressions (average ∆AUC / ∆FR
of -7.52 / +0.02 and -3.89 / -0.51 respectively). They represent combination of complex
motions which are very localized. The results illustrate the importance of suitable tem-
poral modeling which can effectively capture the dynamics of the face. This complex
dynamics involves both global motion, as in head movements, as well as local motion at
the level of each components of the face. This distinction had not yet been considered in
the literature; until now, temporal coherence has been exploited in global fashion only.

5.1.2 Spatio-Temporal Modeling

The objective then focused on improving the temporal modeling of landmark detec-
tion, by considering local motion in addition to global motion. By combining CNN
with RNN, only limited temporal modeling on feature maps with high level of abstrac-
tion can be provided since CNN is not able to capture any motion. As a consequence,
local motion can hardly be captured. An extensive review of the literature of spatio-
temporal modeling highlighted the benefits of spatio-temporal convolution to address
this problem. It was therefore this solution that has been chosen to improve the tempo-
ral connectivity of landmark detection and integrate local motion modeling.

To evaluate the contribution of local motion to facial landmark detection, several
architectures have been designed based on the two main models in the literature: co-
ordinate regression networks and heatmap regression networks. Experiments on two
datasets confirm that local motion modeling improves results. Regarding challenging
head poses such as Pitch and Diag on SNaP-2DFe, an increase of AUC@4 from 65.37
to 67.12 and from 64.58 to 65.54 respectively is achieved by adding early temporal con-
nectivity to the proposed 2D coordinate baseline. A greater gain is observed for facial
expressions. Regarding challenging facial expressions such as Disgust and Sadness,
AUC@4 increased from 52.70 to 57.52 and from 53.49 to 58.31 respectively.
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These experimentations were followed by the study of the complementarity between
spatial and temporal information as well as local and global motion. The emphasis
was placed on heatmap regression as it appears more suitable to handle spatio-temporal
correlations. Through this study, the design of the initially proposed architectures has
been revised and improved. In particular, it has been shown that decoupling spatial and
temporal information processing has benefits, especially through the factorization of
spatio-temporal convolutions. As a result, AUC@4 / FR@4 on 300VW improved from
53.46 / 4.37 to 54.90 / 4.22. By leveraging these complementarities more effectively,
competitive performance with current state-of-the-art approaches have been achieved,
despite the simplicity of the proposed models.

5.2 Future Work

Several perspectives have been identified to extend this work and go further in solving
the problem of landmark detection. They concern the training strategy, model design,
benchmarking, data, applications, and algorithm reliability.

5.2.1 Training Strategy

In Chapter 4, efforts have been focused on architecture design. The next step is the
design of the loss function. In image-based work, some authors have shown the impor-
tance of taking into account geometric constraints [30, 273]. Assuming that constraints
on trajectories can be just as important, an adversarial term could be added to the MSE
loss by using a discriminator during training, which would distinguish between correct
and incorrect trajectories. This would ensure consistent facial motion. Since the shape
can be represented as a graph, the use of a graph neural network for the discriminator
seems promising [254].

Among the major challenges are the occultations that could not be quantified in the
benchmarks of Chapter 3 due to the absence of annotations. Some results are available
for image-based approaches [235] and give a good illustration of the impact of occul-
tations on facial landmark detection. Inspired by the work on deep generative models
[110], one way to improve the robustness to occlusions could be to jointly train face
deocclusion and landmark detection. Face deocclusion suffers from a lack of structural
information which affects the appearance of reconstructed faces [266]. Landmarks are
affected by occlusions but ultimately represent the structural information of the face.
The joint training of both tasks could improve individual performance. Using a tem-
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poral approach like the one proposed in this work, face deocclusion could also benefit
from temporal information (i.e., landmarks trajectories) and therefore could have a bet-
ter chance to correctly generate the occluded part.

5.2.2 Model Design

In Chapter 4, lightweight architectures have been used in order to better isolate the con-
tribution of local motion to facial landmark detection. Experiments have shown the
benefits of local motion modeling, especially for challenges such as expressions. These
architectures could be enriched with some concepts, such as attention mechanism [267]
or region of interest pooling [89], currently used in 2D models but extended to the tem-
poral domain. A spatio-temporal attention mechanism could help to capture more rel-
evant spatio-temporal features related to landmarks and thus further boost performance
[131]. 3D region of interest pooling could also reduce computation complexity [250].

With the recent availability of multi-face datasets (i.e., images showing two or more
faces) such as the AISA dataset [242], the evolution of the models proposed in this work
towards the support of multiple faces is a possible direction of research. Existing image-
based work generally integrate a bridge between face detection and landmark detection
using a face proposal network [50], which helps remove the sensitivity issues related to
the bounding box (see Section 2.1.2). A similar strategy could be used using a tube pro-
posal network [72]. Lately, datasets such as MENPO [271] or 300VW [270] offer 3D
landmark annotations. The integration of 3D information into the models of this work
also seems interesting to match the 3D nature of the real world. 3D information can
help to preserve the semantic meaning of landmarks, by handling invisible landmarks
during extreme variations, and further improve performance [23, 287].

The memory footprint and execution time of DNNs also need to be considered.
Spatio-temporal models, due to the integration of an additional dimension, require more
effort in design optimization. It is worth investigating compression techniques (e.g.,
binarization) on spatio-temporal models and to compare the speed-accuracy trade-offs
with 2D models. Some authors also suggest that motion modeling is not crucial across
all layers of the model, but without any general consensus: is motion related to low-
level features, high-level features, both, or is it problem-dependent [246]? A mixture of
conv2D, conv3D, and convRNN has been manually explored [276], resulting in a slow
sub-optimal design process.

Overall, architecture engineering can be difficult and time-consuming process as ex-
perienced in Section 4.5. A way to streamline this process that seems promising is neural
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architecture search and evolution, i.e., automatically exploring models and finding the
one that optimally captures features for the problem [170, 212]. This could be applied
to landmark detection and could lead to the discovery of new architecture structures.
At the same time, improving the interpretability of models through more appropriate
visualization techniques could also contribute greatly to the design of models [155].

5.2.3 Benchmarking

The problem of facial landmark detection is currently being studied as an isolated prob-
lem when in fact it is a key component for many applications such as facial expression
recognition. Although performance has improved considerably according to the com-
mon metrics such as RMSE, this does not guarantee that an approach with a lower
RMSE, a higher AUC, or a lower FR would give better performances when used for
a subsequent task. The community is working with, perhaps, a vision of the problem
that is not broad enough, without knowing whether the current performance of facial
landmark detection is good enough for these tasks [49]. In Chapter 3, the difficulty
to quantify the performance of methods according to the different challenges encoun-
tered in uncontrolled conditions has been highlighted. Then a benchmark was con-
ducted to address this problem. This work could be extended to measure the impact
of landmark detection on expression recognition. By leveraging all the data provided
by SNAP-2DFe (i.e., static and helmet camera and expression annotations), an in-depth
benchmark could be achieved to identify which approach works best for expression
recognition, which landmarks are the most critical, and evaluate whether the instability
of static methods is a problem for dynamic analyses. Besides, answering these interro-
gations could lead to new metrics as well as provide some feedback to extend it to other
applications. It is also desirable to find an appropriate way to integrate temporal and 3D
approaches into this benchmark. Beyond SNaP-2DFe and expression recognition, other
datasets could be used to evaluate facial landmark detection in more contexts. As an
example, VGGFace2 appears relevant for face recognition [26].

5.2.4 Data

In Chapter 3, it was pointed out that sufficiently annotated data is needed to conduct a
comprehensive analysis and thus be able to quantify the impact of the various difficul-
ties encountered under uncontrolled conditions. SNaP-2DFe is a dataset that was used
to achieve a benchmark focused on pose and expression variations. These results pro-
vide interesting feedback on the performance of current approaches. SNaP-2DFe could
be extended to other major challenges, including occlusions. It is possible to artificially
add static and/or dynamic occlusions to current data. This would be an opportunity to
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extend the benchmark of Section 3.4. The impact of dynamic occlusions is an interest-
ing topic regarding temporal approaches.

Currently the datasets for video-based facial landmark detection are limited. Al-
though these datasets seem to contain much more data than still image datasets, this
is only an illusion, given the redundancy present in videos. This results in datasets
with much less variety. To limit these weaknesses, a first solution, presented in Sec-
tion 4.2.2, consists in initializing video-based models based on pre-trained image-based
models. However, the temporal dimension may not be correctly initialized. A second
solution is to increase the amount of data through data augmentation (Section 3.2.2).
Still, this is currently very limited since it only implies the use of spatial augmentation
or resampling. There is a lack of relevant motion augmentation techniques. It seems
useful to take an interest in these issues, which remains crucial considering the popu-
larity of deep learning and could greatly contribute to video analysis. A potential lead
would be to perform video augmentation on static datasets using video prediction from
still images [129]. This would allow to benefit from the advantages of these datasets
while considerably increase the amount of video data. An alternative could be to take
advantage of photorealistic video games as already done for other tasks such as human
pose estimation [60]. The annotation process can be considerably simplified with such
a solution. Although the resulting data remains artificial, fine-tuning on real data can
provide performance equivalent or even superior to a training with real data alone [214].
As opposed to these solutions which are intended to provide additional data, another al-
ternative might be to develop a few-shot regression algorithm, i.e., able to learn from
a limited amount of training data [68]. These approaches seem to be under-studied for
regression problems and have not yet been considered for facial landmark detection.

5.2.5 Application

The visible spectrum is not the only light range studied in computer vision. Applications
in the visible range can also make sense in the thermal infrared range (e.g., for surveil-
lance). However, in the latter, it is difficult if not impossible to rely on the appearance
and shape, which are missing or severely altered, especially within the face. The use of
motion seems relevant to address facial landmark detection in thermal infrared images.
Therefore, it seems interesting to extend the present work to this type of data. Given the
lack of annotated data, another idea would be to perform domain change, from thermal
infrared to visible spectrum, using GANs. It has already been experimented for facial
recognition and can be used to exploit models trained on images from the visible present
in larger quantities [277].
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Still focusing on the face, the detection of landmarks can not only be performed
on human faces but also on those of animals. Applications are also numerous (e.g.,
pain detection, surveillance). However, facial landmark detection on animals is much
more difficult since the variability in terms of shape and appearance is more important,
even within the same species. Some authors have already investigated the performance
of algorithms initially designed for the human face [21] or have proposed solutions
for transferring knowledge gained from human faces [176]. It would be interesting to
evaluate the contribution of motion on animal faces, as it may help handle their high
degree of variability.

5.2.6 Reliability

When using facial analysis in real-world applications, it is relevant to think about how
malicious people will try to compromise algorithms. Regarding facial analysis, glasses
have been specially designed to impersonate another person in the eyes of a DNN-based
recognition system [192]. In various contexts (e.g., surveillance, security, autonomous
agents) this kind of attack can lead to dangerous situations. Beyond spoofing attacks
[70], which are generally independent of the type of algorithm used, some are instead
targeted at specific approaches. Deep learning has become more popular over the years
and it is all the more important to focus on these security aspects since it has been shown
that it is easy to deceive a neural network [1]. A small imperciptible perturbation added
to the input [74], which can be applied only to a single pixel [201], can result in er-
rors, even with a well-trained model. These carefully crafted modifications are called
adversarial perturbation and make DNNs vulnerable. Adversarial attacks were initially
performed in the digital domain but have been successfully generalized to the physical
domain, i.e., perturbations are physically added to the objects themselves, making them
even more critical [59, 115, 20]. Although these attacks have shown generic properties
called transferability and are therefore likely to succeed on different models and prob-
lems, there doesn’t seem to be any work on facial landmark detection. Landmarks are
rather directly used for geometry-based attack [42]. Adversarial attacks are widely stud-
ied in the context of classification but only a few work has been conducted on regression
problems [153]. It might be interesting to evaluate adversarial robustness of the models
of this work, which are representative of the literature, to the different possible attacks
and to develop defense solutions if needed. Such adversarial attacks could interfere
with any facial analysis system, landmark detection being commonly one of their major
building block. An approach could be to give little confidence or attention to unseen
regions.
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This appendix contains additional independent experiments related to Chapter 4.
The protocol used may vary from the one described in Section 4.4.1, especially the
amount of training data, which can be more limited due to the nature of the experiment,
e.g., larger input size, sub-sampling. The results obtained influenced our choices when
designing the architectures from Section 4.3 and 4.5.

A.1 Influence of the Size of the Temporal Window

One of the parameters supposed to be critical for our spatio-temporal models from 4
is the size of the temporal window. Three values have been evaluated, i.e., 3, 6, and 9
(see Table A.1). The worst performances are obtained with a temporality of 6 images.
Similar performances are observed with values of 3 and 9. We were unable to evaluate
any larger value due to the limited amount of training data. As already mentioned in
Section 4.4.1, each video of the training set is split into several non-overlapping im-
age sequences of size T . When T > 9, the number of training data is considerably
reduced, which leads to overfitting problems. Based on these results, a short-term tem-
poral dependency might be sufficient for facial landmark detection. Long-term motion
may provide irrelevant information. Different sizes of convolution kernel, i.e., 7, 5, 3,
have also been investigated. As in [211], a constant size of 3 over all layers provides the
best results.

Table A.1: Influence of the size of the temporal window on the three categories of the
300VW test set. AUC and FR at a threshold of 8% are reported. Short term temporal
dependency might be sufficient for facial landmark detection. A constant kernel size of
3 over all convolution layers provides the best results.

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

FCN 3D (a) w/ T = 3 74.99 2.27 73.44 0.26 71.85 4.27
FCN 3D (a) w/ T = 6 74.48 2.50 73.42 0.28 71.21 4.45
FCN 3D (a) w/ T = 9 74.96 2.06 74.02 0.25 71.65 4.30

FCN 3D (a) w/ T = 9 + kernel variation 72.21 4.17 70.36 0.61 70.08 4.64

A.2 Encoder-Decoder Design

There is currently a lack of insights about the design and parameterization of heatmap
regression architectures for facial landmark detection. Therefore, we conducted several
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experiments to inform our design decisions. We compared the most commonly used
encoding-decoding strategies in the literature:

• conv with stride (> 1) and conv with max pooling for encoding;

• transposed conv and oversampling with conv for decoding.

No significant differences can be observed. Among the other experiments that have
been conducted, we investigated the importance of multiple 1x1 conv output layers and
residual connections between the encoder and the decoder, which are two characteristics
found in the HG [23]. We also investigated the use of dropout regularization to prevent
overfitting. The results are reported in Table A.2.

Table A.2: 2D designs evaluation on the three categories of the 300VW test set. AUC
and FR at a threshold of 8% are reported. Regarding the different encoding and decoding
strategies, no significant differences can be observed. One output layer appears to be
sufficient. The addition of dropout and residual connections alters performance.

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

2DFCN w/ stride + deconv 75.69 2.39 74.64 0.23 71.91 3.91
2DFCN w/ stride + upsamp 76.16 1.54 73.87 0.19 71.17 3.43
2DFCN w/ pool + upsamp 75.89 1.44 74.18 0.15 71.52 2.86

2DFCN w/ stride + upsamp + connections 74.88 2.48 71.39 0.31 70.11 4.31
2DFCN w/ stride + upsamp + dropout 75.69 1.57 72.77 0.22 70.80 3.41
2DFCN w/ stride + upsamp w/o 1x1 76.12 2.06 74.64 0.30 72.06 3.94

One output layer appears to be sufficient in our case. The removal of the first 1x1
conv layer did not affect the performance. However, the addition of dropout on the
conv layers or residual connections between the encoder and the decoder can signifi-
cantly alters performance. We already discussed in Section 4.3 that the combination of
dropout with batch normalization can lead to a decrease in performance [128]. Regard-
ing residual connections, they may be unnecessary for shallow networks such as the
ones proposed in this work.

We also investigated the use of max and average pooling for global temporal pooling
between the 3D encoder and the 2D decoder. Both seem relevant to process motion
information. Max pooling shows the best performance but with a relatively marginal
gain (see Table A.3). Important motion clues may be missed by average pooling.
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Table A.3: 3D designs evaluation on the three categories of the 300VW test set. AUC
and FR at a threshold of 8% are reported. Max pooling shows the best performance but
with a relatively marginal gain.

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

3DFCN-a w/ max pool 75.79 2.23 74.80 0.26 72.34 4.31
3DFCN-a w/ average pool 75.27 2.69 75.24 0.27 72.26 4.39

A.3 Data Augmentation

Since we encountered overfitting problems when training our models from Chapter 4,
we investigated video-based data augmentation. Temporal sub-sampling of 2x was per-
formed on all video sequences of 300VW training set. The resulting data has been used,
in addition to the original data, to train our heatmap regression model with early tem-
poral connectivity (3DFCN-a) from Section 4.5.1. However, as shown in Table A.4,
a decrease in performance is observed compared to the model trained without such an
augmentation. The motion introduced may not be natural enough and irrelevant to the
test set.

Table A.4: Influence of 2x sub-sampling data augmentation on the three categories of
the 300VW test set. AUC and FR at a threshold of 8% are reported. A decrease in
performance is observed on all categories when the sub-sampled data are used.

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

3DFCN-a w/o sub-sampling 74.26 2.73 73.22 0.31 70.96 4.51
3DFCN-a w/ sub-sampling 73.47 3.06 72.70 0.33 70.72 4.50
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