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Dipartimento di Matematica (Gênes, Italie)
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Titre : Stratégies d’Optimisation Proximales et de Points Intérieurs en Reconstruction d’Images

Mots clés : algorithmes proximaux, points intérieurs, algorithme déroulé, imagerie hyperspectrale, imagerie
ultrasonore, algorithme de Langevin

Résumé : Les problèmes inverses en traitement
d’images peuvent être résolus en utilisant des méthodes
variationnelles classiques, des approches basées sur
l’apprentissage profond, ou encore des stratégies
bayésiennes. Bien que différentes, ces approches
nécessitent toutes des algorithmes d’optimisation ef-
ficaces. L’opérateur proximal est un outil important
pour la minimisation de fonctions non lisses. Dans
cette thèse, nous illustrons la polyvalence des algo-
rithmes proximaux en les introduisant dans chacune
des trois méthodes de résolution susmentionnées.
Tout d’abord, nous considérons une formulation va-
riationnelle sous contraintes dont la fonction objectif
est composite. Nous développons PIPA, un nouvel al-
gorithme proximal de points intérieurs permettant de
résoudre ce problème. Dans le but d’accélérer PIPA,
nous y incluons une métrique variable. La convergence
de PIPA est prouvée sous certaines conditions et nous
montrons que cette méthode est plus rapide que des al-
gorithmes de l’état de l’art au travers de deux exemples
numériques en traitement d’images.
Dans une deuxième partie, nous étudions iRestNet,
une architecture neuronale obtenue en déroulant un
algorithme proximal de points intérieurs. iRestNet

nécessite l’expression de l’opérateur proximal de la
barrière logarithmique et des dérivées premières de
cet opérateur. Nous fournissons ces expressions pour
trois types de contraintes. Nous montrons ensuite que
sous certaines conditions, cette architecture est robuste
à une perturbation sur son entrée. Enfin, iRestNet
démontre de bonnes performances pratiques en restau-
ration d’images par rapport à une approche variation-
nelle et à d’autres méthodes d’apprentissage profond.
La dernière partie de cette thèse est consacrée à
l’étude d’une méthode d’échantillonnage stochastique
pour résoudre des problèmes inverses dans un cadre
bayésien. Nous proposons une version accélérée de
l’algorithme proximal de Langevin non ajusté, bap-
tisée PP-ULA. Cet algorithme est incorporé à un
échantillonneur de Gibbs hybride utilisé pour réaliser
la déconvolution et la segmentation d’images ultra-
sonores. PP-ULA utilise le principe de majoration-
minimisation afin de gérer les distributions non
log-concaves. Comme le montrent nos expériences
réalisées sur des données ultrasonores simulées et
réelles, PP-ULA permet une importante réduction du
temps d’exécution tout en produisant des résultats de
déconvolution et de segmentation très satisfaisants.

Title : Proximal and Interior Point Optimization Strategies in Image Recovery

Keywords : proximal algorithms, interior points, unfolded algorithm, hyperspectral imaging, ultrasound ima-
ging, Langevin-based schemes

Abstract : Inverse problems in image processing can
be solved by diverse techniques, such as classical va-
riational methods, recent deep learning approaches, or
Bayesian strategies. Although relying on different prin-
ciples, these methods all require efficient optimization
algorithms. The proximity operator appears as a cru-
cial tool in many iterative solvers for nonsmooth opti-
mization problems. In this thesis, we illustrate the ver-
satility of proximal algorithms by incorporating them
within each one of the aforementioned resolution me-
thods.
First, we consider a variational formulation including a
set of constraints and a composite objective function.
We present PIPA, a novel proximal interior point algo-
rithm for solving the considered optimization problem.
This algorithm includes variable metrics for accelera-
tion purposes. We derive convergence guarantees for
PIPA and show in numerical experiments that it com-
pares favorably with state-of-the-art algorithms in two
challenging image processing applications.
In a second part, we investigate a neural network archi-
tecture called iRestNet, obtained by unfolding a proxi-

mal interior point algorithm over a fixed number of
iterations. iRestNet requires the expression of the lo-
garithmic barrier proximity operator and of its first
derivatives, which we provide for three useful types of
constraints. Then, we derive conditions under which
this optimization-inspired architecture is robust to an
input perturbation. We conduct several image deblur-
ring experiments, in which iRestNet performs well with
respect to a variational approach and to state-of-the-
art deep learning methods.
The last part of this thesis focuses on a stochastic
sampling method for solving inverse problems in a
Bayesian setting. We present an accelerated proximal
unadjusted Langevin algorithm called PP-ULA. This
scheme is incorporated into a hybrid Gibbs sampler
used to perform joint deconvolution and segmentation
of ultrasound images. PP-ULA employs the majorize-
minimize principle to address non log-concave priors.
As shown in numerical experiments, PP-ULA leads to
a significant time reduction and to very satisfactory
deconvolution and segmentation results on both simu-
lated and real ultrasound data.
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Résumé

Cette thèse de doctorat porte sur le développement de méthodes de résolu-
tion pour les problèmes inverses rencontrés en traitement d’images. Ce do-
maine connâıt d’importants changements en raison de l’émergence de méth-
odes dites d’apprentissage profond, très performantes pour la vision par
ordinateur. Ces méthodes récentes concurrencent des approches plus tra-
ditionnelles telles que les méthodes variationnelles ou les stratégies bayési-
ennes. Bien que différentes, les approches mentionnées précédemment ont
toutes recours à des algorithmes d’optimisation. Il apparâıt donc nécessaire
de développer des solveurs itératifs fiables et efficaces, en particulier dans
un contexte où la taille des bases de données ainsi que des données elles-
mêmes, par exemple dans le cas d’applications 3D, ne cesse de crôıtre. Des
outils mathématiques spécifiques sont alors nécessaires. Un exemple d’outil
de ce type est l’opérateur proximal, qui joue un rôle important dans la min-
imisation de fonction non lisses ainsi que dans la résolution de problèmes
de grande taille. Cette opérateur a permis le développement d’algorithmes
présentant de bonnes performances pratiques et dont la convergence est
garantie sous certaines conditions. Dans cette thèse, nous illustrons la poly-
valence des algorithmes proximaux au moyen de trois méthodes combinant
l’opérateur proximal et des techniques utilisées pour le traitement d’images.

Les méthodes variationnelles sont des techniques classiques qui découlent
des modèles utilisés dans la formulation de problèmes inverses; elles se car-
actérisent par l’étude approfondie de leurs propriétés mathématiques. Ces
stratégies consistent à formuler une fonction objectif dont le minimiseur est
un bon estimé de l’image ou du signal recherché. Ces méthodes offrent la
possibilité d’incorporer au problème d’optimisation des informations préal-
ablement connues sur la solution ou des propriétés que cette dernière doit
satisfaire. C’est le cas en particulier des méthodes de points intérieurs, qui
sont bien adaptées à la résolution de problèmes d’optimisation sous con-
traintes présentant une fonction objectif différentiable. Dans le Chapitre 3,
nous proposons de recourir à l’opérateur proximal afin d’étendre le champ
d’application des méthodes de points intérieurs. Nous considérons une for-
mulation variationnelle dont la fonction objectif est composite et comprend
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des contraintes. Nous présentons un nouvel algorithme proximal de points
intérieurs pour résoudre ce problème d’optimisation. L’algorithme proposé,
appelé PIPA, inclut une barrière logarithmique qui permet aux contraintes
d’être toujours strictement satisfaites. Nous utilisons également une métrique
variable qui permet d’accélérer la convergence de PIPA. Nous obtenons des
garanties de convergence pour l’algorithme proposé, puis nous présentons
des résultats numériques démontrant les bonnes performances de PIPA par
rapport à d’autre algorithmes dans deux applications en traitement d’image:
le démélange hyperspectral et la décomposition en géométrie-texture et re-
construction jointes de données tomographiques.

La création de bases de données de grande taille a permis le développe-
ment de méthodes d’apprentissage profond qui atteignent l’état de l’art pour
des tâches en vision par ordinateur telles que la segmentation d’images ou la
classification. Le développement de ces techniques s’accompagne d’un ques-
tionnement concernant leur fiabilité et leur stabilité. Les réseaux de neurones
comportent, par nature, de nombreux degrés de liberté, ce qui rend leur anal-
yse difficile et leur interprétation limitée. Malgré des stratégies différentes,
les approches variationnelles et celles d’apprentissage profond ont des avan-
tages et des inconvénients complémentaires qui permettent de les combiner.
Nous proposons de mettre en oeuvre cette idée dans le Chapitre 4 de cette
thèse, où nous étudions un réseau de neurones appelé iRestNet, et dont
l’architecture est obtenue en déroulant un algorithme proximal de points
intérieurs. iRestNet requiert les expressions de l’opérateur proximal de la
barrière logarithmique et de ses dérivées premières. Nous fournissons ces
expressions pour trois types de contraintes usuelles. Nous montrons ensuite
que sous certaines conditions, cette architecture inspirée de l’optimisation
est robuste à une perturbation sur son entrée. Enfin, nous procédons à
des expériences numériques en défloutage d’images. iRestNet démontre de
bonnes performances par rapport à l’approche variationnelle classique et à
des méthodes d’apprentissage profond, y compris d’autre architectures issues
d’algorithmes déroulés.

La dernière partie de cette thèse est consacrée à l’étude d’une méthode
d’échantillonnage stochastique pour résoudre des problèmes inverses dans
un cadre bayésien. De même que les méthodes d’apprentissage profond, les
techniques de simulation stochastiques estiment de manière automatique les
hyperparamètres d’un problème inverse ainsi que ses variables d’intérêt. Les
approches bayésiennes nécessitent la connaissance des distributions de prob-
abilité a priori des différentes variables du modèle considéré. Ainsi, comme
pour les méthodes variationnelles, la solution peut être amenée à satisfaire
certaines propriétés désirées suivant le choix de ces distributions. Les méth-
odes de simulation stochastiques ont l’avantage de présenter des garanties
de convergence, cependant elles souffrent parfois d’un temps d’exécution
très long qui peut rendre impossible leur utilisation pour des applications
en temps réel. Dans le Chapitre 5, nous proposons une version accélérée de
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l’algorithme proximal de Langevin non ajusté, baptisée PP-ULA. Cet al-
gorithme est incorporé à un échantillonneur de Gibbs hybride utilisé pour
réaliser la déconvolution et la segmentation d’images ultrasonores. PP-ULA
utilise le principe de majoration-minimisation afin de gérer les distributions
non log-concaves. Comme le montrent nos expériences réalisées sur des don-
nées ultrasonores simulées et réelles, PP-ULA permet une importante réduc-
tion du temps d’exécution tout en produisant des résultats de déconvolution
et de segmentation très satisfaisants.

Dans le Chapitre 6, nous résumons nos principales contributions et nous
proposons plusieurs pistes pour étendre les résultats présentés dans cette
thèse.





Notation

R, R+, R∗ : sets of real, positive real and non-zero real numbers
Rm : set of vectors with m entries
Rm×n : set of matrices with m rows and n columns
N, N∗ : sets of positive and non-zero positive integers
Sm : set of symmetric matrices in Rm×m
S+
m : set of symmetric positive-definite matrices in Rm×m
� : Loewner partial order for matrices
s : scalars will be denoted by lowercase letters
v : vectors will be denoted by lowercase bold letters
M : matrices will be denoted by uppercase bold letters
M>, M−1 : transpose and inverse of M , respectively
Im : square identity matrix in Rm×m
1m : vector of Rm with all entries equal to 1
0m×n : matrix in Rm×n with all entries equal to 0
0m : vector of Rm with all entries equal to 0
vi : ith coefficient of v
Mi,j : element in the ith row and jth column of M
|s| : absolute value of s
〈·, ·〉 : Euclidean inner product
‖v‖ : `2 norm of v
‖v‖M : norm induced by M ∈ S+

m and equal to 〈v,Mv〉 12
|||M ||| : spectral norm of M
Diag(v) : diagonal matrix whose elements are given by v
∇f(v) : gradient vector of the function f at v
∇2f(v) : Hessian matrix of f at v
ıC : indicator function of the set C
dist(v, C) : infw∈C ‖v −w‖, Euclidean distance between v and the set C
N (µ, σ2) : Gaussian distribution with mean µ ∈ R and variance σ2 ∈ R∗+
U(a, b) : uniform distribution in [a, b]
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Acronyms

ADMM : alternating direction method of multipliers
A-PDS : accelerated primal-dual splitting
CNN : convolutional neural network
CNR : contrast-to-noise ratio
CT : computed tomography
DFB : dual forward-backward
DNN : deep neural network
FB : forward-backward
GFBS : generalized forward-backward splitting
HMC : Hamiltonian Monte Carlo
IPM : interior point method
KL : Kurdyka- Lojasiewicz
l.s.c. : lower semicontinuous
MAP : maximum a posteriori
MCMC : Markov Chain Monte Carlo
MH : Metropolis-Hasting
MM : majorize-minimize
MMSE : minimum mean squared error
OA : overall accuracy
PDS : primal-dual splitting
PSF : point-spread function
PSNR : peak signal-to-noise ratio
P-ULA : proximal unadjusted Langevin algorithm
ReLU : rectified linear unit
RF : radio-frequency
SSIM : structural similarity measure
TRF : tissue reflectivity function
US : ultrasound
VMFB : forward-backward variable metric
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- Chapter 1 -

General introduction

§ 1.1 Context

In this work, we develop and investigate resolution methods for inverse prob-
lems, and more specifically for applications related to signal and image pro-
cessing. This field has undergone major changes due to the emergence of
very powerful deep learning methods, which compete with more traditional
approaches, such as variational strategies or Bayesian methods.

At the crossroads of the aforementioned approaches lies optimization.
Optimization algorithms occur either in the design or implementation of the
methods used to solve inverse problems. Consequently, there is a need for
reliable and adequate iterative solvers. In particular, dealing with the ever-
growing size of databases and datapoints, for instance in 3D applications,
requires powerful mathematical tools. The proximity operator notably plays
an important role in large-scale and nondifferentiable optimization. It has
led to competitive algorithms with convergence guarantees, available conver-
gence rates and noteworthy practical performance. The goal of this thesis is
to illustrate the versatility of proximal algorithms in the context of inverse
problems. To that end, we develop three methods combining the proximity
operator with different techniques.

Variational methods are classical model-based methods with well-known
mathematical properties. The variational strategy consists in designing an
objective function whose minimizer is an appropriate estimate of the desired
signal or image. Hence, prior knowledge about the solution can be incorpo-
rated into the resulting optimization problem. This applies to interior point
methods, which are well suited for constrained problems in linear program-
ming. In Chapter 3, we show that the scope of the logarithmic barrier method
can be extended by combining it with a proximal iterative scheme.

The generalization of data collection and the creation of diverse and
large databases have enabled deep learning methods to reach state-of-the-

1
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art results for tasks such as image restoration, compressive sensing, image
recovery and classification, to name only a few. Together with the massive
development of these approaches, concerns regarding their reliability and
stability are growing. Artificial neural networks include, by nature, many
degrees of freedom, which makes their study very intricate and their in-
terpretation limited. Although variational and deep learning methods are
based on distinct principles, they have complementary benefits and draw-
backs, and therefore can greatly benefit from each other. Accordingly, in
Chapter 4 we propose an interpretable neural network architecture inspired
from a proximal interior point algorithm.

Similarly to machine learning, stochastic simulation methods estimate
automatically the variables of interest. The Bayesian framework requires
knowledge of prior distributions for the involved variables. Therefore, like in
variational strategies, desirable properties for the solution can be promoted
based on the choice of these priors. Stochastic simulation methods also offer
convergence guarantees. Nonetheless, they may suffer from prohibitively long
computational times. In Chapter 5, we propose to accelerate a stochastic
sampling method by introducing a novel update strategy based on proximal
tools.

We show in numerical experiments that the proposed methods compare
favorably with state-of-the-art approaches on several challenging image pro-
cessing applications. Hence, the outcomes of our work have both a mathe-
matical and an applicative component.

§ 1.2 Main contributions

Chapter 3 includes the following contributions.

(i) We combine the proximity operator with the logarithmic barrier me-
thod in a new proximal interior point algorithm called PIPA. One
interesting feature of PIPA is its ability to handle variable metrics,
which can be used to boost its convergence.

(ii) We also provide convergence results for this algorithm under a mild
boundedness condition on the involved variable metrics. Furthermore,
we show that the inner loop in PIPA has a linear convergence rate
under some suitable assumptions.

(iii) Finally, the performance of the proposed algorithm is evaluated on
two applications, namely hyperspectral unmixing, and joint geometry-
texture decomposition and reconstruction of computed tomography
data. PIPA compares favorably with state-of-the-art algorithms on
these two examples.

Our main contributions from Chapter 4 are listed hereafter.
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(i) We propose a novel neural network architecture called iRestNet, which
is obtained by unfolding a proximal interior point algorithm over a
finite number of iterations. One key feature of this network is that
prior knowledge can be directly incorporated into iRestNet thanks to
a logarithmic barrier.

(ii) We derive expressions for the proximity operator of the barrier and
for its first derivatives for three useful types of contraints. In particu-
lar, this allows our network to be trained using backpropagation and
gradient descent.

(iii) We study the robustness of the proposed network with regards to an
input perturbation, and derive conditions ensuring its stability in a
useful case.

(iv) Numerical experiments performed on several non-blind image deblur-
ring examples show that iRestNet compares favorably with respect to
other variational and deep learning methods, including other neural
networks based on deep unfolding. Finally, iRestNet benefits from a
short execution time per image without any parameter search.

In Chapter 5, we consider a Bayesian framework and contribute to this area
as follows.

(i) We propose a new sampling algorithm referred to as PP-ULA. This
method is an original accelerated preconditioned version of the prox-
imal unadjusted Langevin algorithm. PP-ULA takes advantage of a
splitting strategy. It also includes variable metrics used for accelera-
tion.

(ii) We present an efficient solver based on the majorize-minimize principle
to tackle the involved non log-concave priors.

(iii) The proposed PP-ULA is then incorporated within a hybrid Gibbs
sampler, yielding a substantial reduction of the computational time
needed to perform joint high-quality deconvolution and segmentation
of ultrasound images.

§ 1.3 Collaborations

Some parts of this thesis have been done in collaboration with other re-
searchers.

We have worked conjointly with Denis Kouamé and Jean-Yves Tourneret
from the IRIT laboratory (UMR CNRS 5505), Toulouse, France, on a Bayesian
approach for solving a challenging inverse problem in ultrasound imaging.
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More precisely, the topic of this project was to accelerate a hybrid Gibbs
sampler using proximal tools, with the aim of performing joint deconvolu-
tion and segmentation of ultrasound medical images. I spent two weeks in
the TéSA laboratory in Toulouse as part of this collaboration. The results
of this work are presented in Chapter 5.

We have also worked with Carla Bertocchi and Marco Prato from the
university of Modena, Italy, on an optimization-inspired neural network ar-
chitecture. Our goal was to apply deep unfolding to a proximal interior point
algorithm. During this research collaboration, I spent one month in the uni-
versity of Modena to work on this project. The corresponding results are
presented in Chapter 4.

§ 1.4 Publications

For articles with the ∗ symbol, authors are listed in the alphabetical order,
as it is customary in mathematical journals.

Submitted journal articles

E. Chouzenoux, M.-C. Corbineau, J.-C. Pesquet (2019). A proximal inte-
rior point algorithm with applications to image processing∗. In hal-
02120005.

Accepted or published journal articles

C. Bertocchi, E. Chouzenoux, M.-C. Corbineau, J.-C. Pesquet, M. Prato
(2018). Deep unfolding of a proximal interior point method for im-
age restoration∗. To appear in Inverse Problems, doi:10.1088/1361-
6420/ab460a.

M.-C. Corbineau, D. Kouamé, E. Chouzenoux, J.-Y. Tourneret, J.-C. Pes-
quet (2019). Preconditioned P-ULA for joint deconvolution-segmenta-
tion of ultrasound images. In IEEE Signal Processing Letters, 26(10),
pp.1456-1460, doi:10.1109/LSP.2019.2935610.

Conference proceedings

M.-C. Corbineau, C. Bertocchi, E. Chouzenoux, M. prato, J.-C. Pesquet.
Learned image deblurring by unfolding a proximal interior point algo-
rithm. In Proceedings of the 26th IEEE International Conference on
Image processing (ICIP). Taipei, Täıwan, September 2019.

M.-C. Corbineau, E. Chouzenoux, J.-C. Pesquet. Geometry-texture decom-
position/reconstruction using a proximal interior point algorithm. In
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Proceedings of the 10th IEEE Sensor Array and Multichannel Signal
Processing Workshop (SAM). Sheffield, UK, July 2018, pp.435-439.

M.-C. Corbineau, E. Chouzenoux, J.-C. Pesquet. PIPA : a new proximal in-
terior point algorithm for large-scale convex optimization. In Proceed-
ings of the 43rd IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). Calgary, Canada, April 2018, pp.1343-
1347.

Talks

Deep unfolding of a proximal interior point algorithm for image restoration.
In mini-symposium ‘MS-24 From inverse problems to machine learn-
ing and back’, Applied Inverse Problems Conference (AIP). Grenoble,
France, 8 July 2019.

Joint geometry-texture decomposition and reconstruction of CT scans using
a proximal interior point algorithm. In Young Researchers in Imaging
Seminars. Institut Henri Poincaré, Paris, France, 27 February 2019.

Proximal interior point algorithm for large scale image processing prob-
lems. In mini-Symposium ‘MS-59 Approaches for fast optimisation in
imaging and inverse problems’, SIAM Conference on Imaging Science.
Bologna, Italy, 7 June 2018.

A proximal interior point algorithm for large-scale convex optimization. In
Journées annuelles 2017 des GdR 3273 mathématiques de l’optimisa-
tion et applications (MOA) et 2286 mathématiques de l’imagerie et de
ses applications (MIA). Bordeaux, France, 18 Octobre 2017.

§ 1.5 Outline

This manuscript is organized as follows.
In Chapter 2, we provide a general formulation for the study of inverse

problems in Section 2.1.1 and describe briefly the three resolution methods
mentioned previously, namely variational strategies (Section 2.1.2), Bayesian
methods (Section 2.1.3) and deep learning techniques (Section 2.1.4). In
particular, we introduce in Section 2.1.4.3 the concept of deep unfolding
used in machine learning. Then, we introduce in Section 2.2.1 the main
mathematical tools and notation that are used in this thesis. We end this
chapter by presenting the optimization algorithms used in the proposed
methods or as comparisons in numerical experiments (Section 2.2.2-2.2.5).
A special attention is devoted to interior point methods in Section 2.2.5.

Chapter 3 is dedicated to the study of a new proximal interior point
algorithm. For clarity, after describing the proposed method in Section 3.3,
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we provide our main convergence results in Section 3.4 before detailing the
corresponding proofs in Section 3.5. Finally, the results from two numerical
experiments are presented in Sections 3.6 and 3.7. The first application is
hyperspectral unmixing, while in the second application two tasks are jointly
performed: geometry-texture image decomposition, and reconstruction of
computed tomography data.

In Chapter 4, we investigate a novel neural network architecture designed
by unfolding a proximal interior point algorithm. We start by describing in
Section 4.2 the algorithm which is at the core of our method. Then, in
Section 4.3 we derive the expressions of the proximity operator of the bar-
rier and of its first derivatives for three types of constraints. These results
are followed by a description of the proposed architecture called iRestNet
(Section 4.4), whose robustness to an input perturbation is studied in Sec-
tion 4.5. Finally, in Section 4.6 we evaluate iRestNet and compare it with
state-of-the-art methods in numerical experiments related to non-blind im-
age deblurring.

In Chapter 5, we consider a Bayesian setting and study a new proximal
sampling strategy with applications in ultrasound imaging. We first describe
the considered inverse problem in Section 5.1, which can be formulated as a
joint deconvolution and segmentation of ultrasound images. Next, we detail
in Section 5.3 the proposed preconditioned proximal unadjusted Langevin
algorithm, referred to as PP-ULA. We then present the investigated hi-
erarchical Bayesian model in Section 5.4, whereupon the proposed hybrid
Gibbs sampler including PP-ULA is detailed in Section 5.5. Lastly, numer-
ical experiments on both simulated and real ultrasound data are presented
in Section 5.6.

Finally, we draw some conclusions and perspectives in Chapter 6.

§ 1.6 General notation

Throughout this document, R, R+ and R∗ denote the sets of real, positive
real and non-zero real numbers, respectively. The set of vectors with m
entries is noted Rm, while the set of matrices with m rows and n columns is
referred to as Rm×n. We use the standard notations N and N∗ for the sets of
positive and non-zero positive integers. Scalars will be denoted by lowercase
letters, vectors will be denoted by lowercase bold letters, matrices will be
denoted by uppercase bold letters and, finally, function will be denoted by
lowercase or uppercase letters. For every vector v = (vi)1≤i≤m ∈ Rm, vi
denoted its ith coefficient. For every matrix M = (Mi,j)1≤i≤m,1≤j≤n ∈
Rm×n, Mi,j denotes the element in the ith row and jth column of M .
For every matrix M ∈ Rm×n, M>, M−1 and |||M ||| denote its transpose,
inverse and spectral norm, respectively. The square identity matrix in Rm×m
is referred to as Im, while the vector of Rm with all entries equal to 1 is noted
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1m. The matrix in Rm×n with all entries equal to 0 is noted 0m×n, and the
vector of Rm with all entries equal to 0 is denoted as 0m. For every s ∈ R,
the absolute value of s is noted |s|. The Euclidean inner product is denoted
as 〈·, ·〉 and, for every v ∈ Rm, ‖v‖ is the `2 norm of v.
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- Chapter 2 -

Background

In many practical cases, the acquired data are an indirect measurement of
the desired information. This can be due to physical constraints, for instance
in astronomy, or to safety measures, as in medical diagnostics. Furthermore,
the data are often degraded or incomplete, either because of the acquisi-
tion process or on account of restricted storage capacity. These limitations
can induce a significant loss of information. In this context, estimating the
sought signal or image constitutes a challenging inverse problem. Optimiza-
tion plays a critical role in designing efficient algorithms and methods for
solving problems of this type.

In this chapter, we provide a mathematical formulation for inverse prob-
lems in Section 2.1.1 and introduce three different resolution approaches that
are investigated in this thesis: variational strategies (Section 2.1.2), stochas-
tic simulations (Section 2.1.3) and deep learning (Section 2.1.4). Finally,
after presenting some key mathematical tools in Section 2.2.1, we present in
Sections 2.2.2-2.2.5 useful optimization algorithms that are used through-
out this work. A special attention is devoted to interior point methods in
Section 2.2.5.

§ 2.1 Inverse problems

Inverse problems arise in a wide range of domains such as astronomy [Lucy,
1994; Bertero et al., 2009], machine learning [De Vito et al., 2005; Jenat-
ton et al., 2010], geophysics [Menke, 2018], image processing, which includes
for instance image restoration [Benvenuto et al., 2008] and image super-
resolution [Yang et al., 2010]; and medical imaging [Bertero and Piana,
2006], with applications like computed tomography (CT), magnetic reso-
nance imaging, and fluorescence microscopy.

9



10 Chapter 2. Background

2.1.1 Formulation

In this thesis we consider the following formulation for inverse problems,

y = D(H(x)), (2.1)

where y ∈ Rn gathers observations, x ∈ Rm is the variable of interest, H :
Rm → Rn is the observation operator, and D : Rn → Rn is the degradation
operator.

The degradation operator represents a loss of information, which can
come from the devices used to collect observations. For instance, optical sen-
sors are generally subject to internal fluctuations, which are usually modelled
as an additive white Gaussian noise independent from the signal of interest
[Oliveira et al., 2009]. There exist more realistic models where, for instance,
the noise variance is a function of the sought signal [Moser, 2012]. In some
applications such as medical ultrasound [Sudha et al., 2009] or synthetic
aperture radar [López-Martínez and Fabregas, 2003], measurements are cor-
rupted by speckle noise, which is a multiplicative noise [Durand et al., 2010].
We can also mention impulsive noise [Cai et al., 2010], Poisson noise [Salmon
et al., 2014], which occurs in photon-counting devices, and noises that are a
mixture of the abovementioned noise models [Chouzenoux et al., 2015].

Regarding the observation operator, it accounts for the fact that the ob-
servation is an indirect measurement of the desired signal. In image deblur-
ring for instance, H is frequently modelled as a linear operator representing
the circular convolution of the image with a blur caused by optical defects
[Bertero et al., 2009] or sensor motion [Levin et al., 2009]. This operator is
also linear in applications such as hyperspectral unmixing [Iordache et al.,
2012] and compressive sensing [Dai and Milenkovic, 2009], but there exist
nonlinear observation models too, e.g. [Dobigeon et al., 2013]. Throughout
this thesis, we assume that H is known, i.e. we do not address blind inverse
problems.

Solving problem (2.1) consists in finding a proper estimate x∗ of x given
y. Assume that the observation operator is a linear operator, modelled by a
matrix H ∈ Rn×m, and that the noise is Gaussian. Then, an estimate of x
can be produced by solving the following least-squares problem,

minimize
x∈Rm

‖y −Hx‖2, (2.2)

where ‖ · ‖ is the Euclidean norm. However, (2.2) is generally ill-posed
[Hadamard, 1902], which means that, sometimes, there does not exist a
solution, or when it exists, this solution is not necessarily unique, and it can
be very sensitive to the presence of noise. Hence, there is a need for more
performant approaches for solving inverse problems.

In the next sections, we introduce three different strategies that are in-
vestigated in this thesis, namely variational strategies, stochastic simulation
methods and neural networks.
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2.1.2 Variational strategy

Inverse problems can be efficiently solved by finding a minimizer of a given
objective function. We refer to this approach as variational strategy.

2.1.2.1 Formulation

In order to find an appropriate solution to an inverse problem like (2.1), vari-
ational methods incorporate prior information on the sought signal through
a penalization term [Demoment, 1989]. This leads to the following minimiza-
tion problem,

minimize
x∈C

f(H(x),y) + λR(x), (2.3)

where f : Rn × Rn →] − ∞,+∞] is a data fidelity function, R : Rm →
] −∞,+∞] is a regularization function, λ ∈ R+ is a regularization param-
eter and C is a subset of Rm. The data fidelity function is directly related
to the degradation model D. For instance, when the noise is assumed to be
Gaussian with variance σ2, then f(·,y) = 1

2σ2 ‖y − ·‖2. The regularization
term allows to enforce some desirable property in the solution like sparsity
[Tibshirani et al., 2005; Zhu et al., 2015], smoothness [Poddar and Jacob,
2015] or grouping [Zou and Hastie, 2005], while the feasible set C can embed
problem-related constraints [Musse et al., 2001; Klodt and Cremers, 2011].
Some classical choices for R are sparsity-promoting functions [Bouman and
Sauer, 1996; Bect et al., 2004; Bach et al., 2012; Pustelnik et al., 2016] and
the total variation and its various extensions [Rudin et al., 1992; Chambolle,
2004; Aujol, 2009], which promote piecewise constant solutions. The regu-
larization parameter λ is used to weight the prior information with respect
to the data fidelity term. When problem (2.3) does not have a closed-form
solution, it must be solved by an iterative solver such as the ones presented
in Section 2.2.

2.1.2.2 Limitations

Although useful, variational approaches are sometimes limited by their com-
plexity: solving (2.3) may require advanced algorithms that may be too slow
for real-time applications. In addition, λ is a parameter that needs to be set
and R is usually parametrized by one or several parameters, whose optimal
choice may strongly depend on the data at hand. These parameters are often
tuned manually or computed using, for instance, cross validation, the dis-
crepancy principle [Scherzer, 1993], or methods based on Stein unbiased risk
estimates (SURE) [Deledalle et al., 2014]. However, these methods are often
time-consuming and their success is not always guaranteed. Furthermore,
despite numerous efforts in designing sophisticated models, the solution to
(2.3) could be further away from x than an intermediate iterate produced by
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a given algorithm used for solving (2.3). Such phenomenon justifies the devel-
opment of early stopping methods, where the iterative procedure is stopped
before convergence [Yao et al., 2007; Rosasco and Villa, 2015]. Finding the
optimal stopping time depends on the algorithm and requires the use of an
oracle such as SURE, which may explain why these techniques are currently
restricted to relatively simple objective functions.

In view of these limitations, an alternative to classical variational meth-
ods is the Bayesian approach. Accordingly, we present in the next section
stochastic simulation methods, which can be used to solve inverse problems
in a Bayesian setting.

2.1.3 Bayesian approaches

Bayesian theory leads to useful simulation methods that have demonstrated
their efficiency for solving inverse problems such as image restoration [Besag
et al., 1991], classification [Corander et al., 2006], compressive sensing [Xu
et al., 2014b] and source separation [Moussaoui et al., 2006]. In this section
we consider a Bayesian setting, in the sense that y and x from Section 2.1.1
are assumed to be random variables [Bernardo and Smith, 2009]. After high-
lighting the links between Bayesian approaches and variational strategies,
we are going to briefly introduce the simulation methods used in Chapter 5.

2.1.3.1 Links with the variational strategy

Although stochastic simulation approaches are quite different from varia-
tional methods, Bayesian theory provides an insightful reinterpretation of
the data fidelity term and regularization function introduced in Section 2.1.2.
Let p(y|x) be the likelihood of the observations and p(x) be the prior density
associated to the variable of interest. Assume that p(y|x) ∝ exp(−f(x,y))
and that p(x) ∝ exp(−R(x)). Then, problem (2.3) is equivalent to

maximize
x∈Rm

p(y|x)p(x). (2.4)

According to the Bayes rules we have p(y|x)p(x) = p(y)p(x|y), where p(y)
is the prior density of the observations, and p(x|y) is the posterior density
of the sought variable. Hence, problem (2.4) can be reformulated as

maximize
x∈Rm

p(x|y), (2.5)

and a solution given by the variational strategy from Section 2.1.2 is then
the maximum a posteriori (MAP) estimator of x [Lermé et al., 2014].

It is worth noting that Bayesian approaches can be used to obtain
other estimators than the MAP, such as the minimum mean squared er-
ror (MMSE) estimator [Lesieur et al., 2015], i.e. the expectation of x with
regards to the density p(x|y). In addition, the Bayesian setting can help
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derive useful uncertainty information about the estimate, for instance its
variance.

In the next section, we introduce a class of stochastic methods called
Markov chain Monte Carlo methods, which are widely used for solving in-
verse problems.

2.1.3.2 Markov chain Monte Carlo methods

Considering an inverse problem as defined in Section 2.1, the goal of Bayesian
methods is to estimate x from the posterior probability distribution p(x|y).
When this law is not easy to sample from, one can rely on Markov chain
Monte Carlo (MCMC) methods [Brooks et al., 2011; Robert and Casella,
2013; Pereyra et al., 2016], which generate a Markov chain whose stationary
distribution is the target law. In Chapter 5 we use two well-known MCMC
methods, which are the Metropolis-Hastings random walk algorithm and the
Gibbs sampler.

Metropolis-Hastings random walk algorithm

The Metropolis-Hastings (MH) random walk algorithm proposed in [Roberts
et al., 1997] is a special case of the original MH sampling method from
[Metropolis et al., 1953] and [Hastings, 1970]. For every µ ∈ Rm and σ ∈ R∗+
we denote by N (µ, σ2Im) the Gaussian distribution with mean µ and vari-
ance σ2Im. In addition, for every (a, b) ∈ R2 such that a ≤ b, we refer to
the uniform distribution in [a, b] as U(a, b). Algorithm 1 draws sample from
the target distribution p(x|y) by generating candidates from a proposal law
that are accepted with a certain probability. These candidate samples are
produced by adding to the current iterate a perturbation which is propor-
tional to a realization of the standard normal distribution. Then, an accep-
tance test is performed such that, samples that are more probable to be
produced by the target law than the current iterate are always accepted,
and samples that are less probable states are accepted with a probability
p(x̃k+1|y)/p(xk|y) < 1.

The scale γ of the perturbation is a key element that drives the speed of
convergence of Algorithm 1. In practice, the first iterations of the random
walk are used to adjust γ based on some heuristics derived from the accep-
tance rate [Gelman et al., 1996]. The iterates produced during this burn-in
period are then discarded from the Markov chain. Therefore, the computa-
tion of the empirical MMSE estimate xMMSE from T samples (x(t0+t))1≤t≤T
produced after t0 burn-in iterations reads

xMMSE =
1

T

T∑
t=1

x(t0+t). (2.6)
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Algorithm 1: Metropolis-Hastings random walk [Roberts et al., 1997]
Let γ > 0.
Initialization: x0 ∈ Rm.
for k = 0, 1, . . . do

x̃k+1 = xk + γωk with ωk ∼ N (0m, Im);
tk ∼ U(0, 1);

if tk < min
(

1,
p(x̃k+1|y)
p(xk|y)

)
then

Accept: xk+1 = x̃k+1;
else

Reject: xk+1 = xk;
end

end

Gibbs sampler

One can take advantage of the specific structure of a variable x ∈ Rm that
can be decomposed into q ∈ N blocks (x(i))1≤i≤q, such that (∀i ∈ {1, . . . , q})
x(i) ∈ Rmi and

∑q
i=1mi = m. The Gibbs sampler [Casella and George,

1992], which is detailed in Algorithm 2, consists in sampling alternatively
each block from its conditional distribution given observations y and the
latest samples for the other blocks. This strategy is relevant when sampling
from the individual conditional densities is simpler than drawing samples
from the joint distribution. It can be shown that, after a long enough burn-
in period, the samples generated by the Gibbs sampler follow the target law
p(x|y) [Robert and Casella, 2013, Section 10.2].

Algorithm 2: Gibbs sampler

Initialization: x0 = (x(i))1≤i≤q ∈ Rm. for k = 0, 1, . . . do

Generate x(1)
k+1 ∼ p

(
x(1)|y,x(2)

k , . . . ,x
(q)
k

)
;

Generate x(2)
k+1 ∼ p

(
x(2)|y,x(1)

k+1,x
(3)
k , . . . ,x

(q)
k

)
;

...
Generate x(q)

k+1 ∼ p
(
x(q)|y,x(1)

k+1, . . . ,x
(q−1)
k+1

)
;

end

When Algorithm 2 is combined with other MCMC methods, it is called
a hybrid Gibbs sampler. For instance, when a MH step is used to sample
each block, then the convergence of the resulting hybrid Gibbs sampler still
holds [Robert and Casella, 2013, Section 10.3].
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Although complex inverse problems can be solved using the Bayesian frame-
work, sampling methods can be of prohibitive computational cost. As men-
tioned previously, Markov chains require burn-in iterations before reaching
the target distribution. Then, more iterations are needed to explore this
distribution. Furthermore, the fact that the produced samples are not sys-
tematically accepted can slow down the process. These different factors can
result in a very large computational cost for MCMC methods. Nonethe-
less, MCMC methods can sometimes be accelerated using specific tech-
niques [Orieux et al., 2012; Gilavert et al., 2014; Robert et al., 2018]. We
address this topic in Chapter 5, where we propose an acceleration method
related to the proximal sampling scheme from [Pereyra, 2016].

In the next section, we introduce deep learning methods, which are in-
vestigated in Chapter 4.

2.1.4 Neural networks for solving inverse problems

As detailed in the review article [McCann et al., 2017], neural networks
provide a popular and efficient alternative to variational methods for solving
inverse problems. We clarify in Section 2.1.4.1 the vocabulary which is going
to be used regarding neural networks. Then, we discuss in Section 2.1.4.2
some of their characteristics in the context of inverse problems. Lastly, we
present in Section 2.1.4.3 the concept of deep-unfolding, which is at the core
of Chapter 4.

2.1.4.1 Scope and vocabulary

In Chapter 4, we will focus on feedforward neural networks [Schmidhuber,
2015]. The latters do not include any cycle, as opposed to recurrent neural
networks. A neural network can be thought of as a function h(·,θ), where
θ ∈ Rp gathers parameters that are usually trained in a supervised man-
ner [Goodfellow et al., 2016, Section 5.1]. This means that a training set of
observations (yj)1≤j≤n with associated solutions (xj)1≤j≤n to problem (2.1)
is available. In this context, parameters in θ are trained such that the out-
puts (h(yj ,θ))1≤j≤n generated by the network on the training set minimize
a given objective function. The latter is referred to as loss function, and is
supposed to measure the distance between the solutions to the considered
inverse problem and the outputs of the network. This training step may be
accelerated by using batch normalization after each layer of the neural net-
work [Ioffe and Szegedy, 2015]. A validation set can also help monitoring
the training without explicitely acting on the trainable parameters of the
network [Goodfellow et al., 2016, Section 5.3]. This thesis does not address
issues related to unsupervised training.

Although this training step can be both time and resource consuming, it
is generally performed offline. Hence, as opposed to classical variational and
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MCMC methods, neural networks benefit from very competitive execution
times. This has contributed to their considerable development, including for
solving inverse problems.

For some inverse problems, it might be easier for the network to learn
the residual y − D(H(x)) instead of the solution x itself, because pushing
the residual to zero may appear easier than fitting an identity mapping by a
stack of layers [He et al., 2016; Zhang et al., 2017b]. This strategy is called
residual learning and is implemented using skip connections between layers.
This strategy may also be used to avoid the problem of vanishing gradient
during training [Tong et al., 2017].

Simple feedforward networks can be expressed as

RK−1 ◦ (WK−1 ·+bK−1) ◦ · · · ◦ R0 ◦ (W0 ·+b0), (2.7)

whereK ∈ N∗ is the number of layers, (Rk)0≤k≤K−1 are nonlinear activation
functions, (Wk)0≤k≤K−1 are weight operators, also called linear layers, and
(bk)0≤k≤K−1 are bias parameters. Among classical activation functions, one
can mention the rectified linear unit (ReLU), x 7→ max(0, x), and Sigmoid,
x 7→ 1/(1 + exp(−x)). In Chapter 4, we use two common linear layers that
are the fully connected [Pal and Mitra, 1992] and convolutional layers [Good-
fellow et al., 2016, Chapter 9]. In convolutional layers, the upsampling factor
between the filter points is called dilation factor. Augmenting the dilation
factor enables to increase the receptive field of the filter without increasing
the number of its parameters [Holschneider et al., 1990; Chen et al., 2017].

2.1.4.2 Neural networks and inverse problems

Deep Neural Networks (DNNs), and in particular Convolutional Neural Net-
works (CNNs), have demonstrated outstanding performance for various ap-
plications, such as denoising [Zhang et al., 2017b], non-blind and blind de-
blurring [Xu et al., 2014a; Schuler et al., 2013, 2016], super-resolution [Ledig
et al., 2017], or computed-tomography reconstruction [Jin et al., 2017]. As
detailed in [McCann et al., 2017], DNNs for inverse problems are very often
preceded by a pre-processing step, which consists in finding a rough estima-
tion of the sought signal by solving (2.2). This procedure tends, however,
to strongly amplify noise. Hence, in this context, DNNs are often used as
denoisers and artifact-removers. However, since prior knowledge about its
output can hardly be incorporated into a DNN, which in most of the cases
is viewed as a black-box, the explainability and reliability of such methods
could be questioned [Szegedy et al., 2013]. Furthermore, the pre-processing
step, in itself, can include a penalty, thus amounting to solving a problem
of the form (2.3), where the regularization weight strongly depends on the
noise level, e.g. [Schuler et al., 2013; Boublil et al., 2015].

The aforementioned limitations can be overcome by using deep unfolding,
which combines neural networks and classical optimization algorithms. This
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approach is used in Chapter 4 and presented hereafter.

2.1.4.3 Deep unfolding

Consider a model-based method relying on an iterative solver A. At each
iteration k ∈ N, this algorithm depends on several parameters which can
be concatenated in a vector θk ∈ Rp. These hyperparameters are either
derived from the model or related to the algorithm itself. Assuming that
the convergence of A is proven, several iterates are produced as follows for
k = 0, 1, . . .

xk+1 = A(xk,θk),

until an appropriate stopping criterion is satisfied. Unfolding or unrolling
this method consists in setting the number of iterations to K ∈ N∗, and
treating the different hyperparameters (θk)0≤k≤K−1 as learnable parameters
of a neural network with K layers [Hershey et al., 2014]. This leads to the
following feed-forward architecture,

A
(
·,L(θ)

K−1(·)
)
◦ · · · ◦ A

(
·,L(θ)

0 (·)
)
,

where every hidden layer L(θ)
k is used to infer θk as follows, L(θ)

k (xk) = θk.
Interestingly, the fact that this technique makes use of a limited number

of layers can be viewed as an analogue of early stopping methods [Rosasco
and Villa, 2015]. It is however worth mentioning that, in unfolded algo-
rithms, the number of iterations (i.e., layers) is tuned during the off-line
training step and is then fixed for all test images, which differs from early
stopping strategies where the iteration number usually differs for each pro-
cessed image.

Related works apply deep unfolding to probabilistic models, such as
Markov random fields [Hershey et al., 2014] or topic models [Chien and Lee,
2018], and to different algorithms like primal-dual solvers [Wang et al., 2016]
or the proximal gradient method [Mardani et al., 2017; Diamond et al., 2017].
Classic optimization algorithms can be unfolded to perform many different
tasks in image processing. For instance, FISTA and ISTA can be unfolded
to perform sparse coding [Gregor and LeCun, 2010; Kamilov and Mansour,
2016], while the same ISTA and ADMM can be unfolded for image com-
pressive sensing [Zhang and Ghanem, 2018; Sun et al., 2016]. However, in
the aforementioned works, some functions and operators are learned, which
weakens the link between the resulting network and the original algorithm.
Deep unfolding is also used to learn shrinkage functions, which can be viewed
as proximity operators of sparsity-promoting functions [Schmidt and Roth,
2014; Sun and Xu, 2015], or to optimize hyperparameters in nonlinear reac-
tion diffusion models [Chen and Pock, 2017].

It can be stressed that optimization plays an important role in the three
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approaches that have been introduced in Sections 2.1.2-2.1.4 for solving in-
verse problems. For this reason, we present hereafter the main optimization
algorithms that are used in this thesis.

§ 2.2 Optimization algorithms

Here, we focus on convex optimization problems of the following type,

minimize
x∈Rm

f(x) + g(x) + h(Lx), (2.8)

where f : Rm →] − ∞,+∞], g : Rm →] − ∞,+∞], g is assumed to be
differentiable, L ∈ Rn×m and h : Rn →] − ∞,+∞]. The purpose of this
section is to present the optimization algorithms that either play a role in the
proposed methods, or are used as comparisons in the numerical experiments.
First, we present in Section 2.2.1 some mathematical notions that are closely
related to the algorithms presented in Sections 2.2.2-2.2.5.

2.2.1 Mathematical analysis tools

We start by introducing some mathematical definitions.

2.2.1.1 Notation and definitions

The following definitions set up our framework for convex analysis and sub-
differential calculus.

Definition 2.2.1 Let f : Rm →]−∞,+∞].

(i) The domain of f is the set defined by

dom (f) = {x ∈ Rm | f(x) < +∞}.

(ii) The function f is proper if dom (f) is not empty.

(iii) The function f is convex if for every α ∈]0, 1[ the following holds,

(∀(x,y) ∈ dom (f)) f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

(iv) The function f is coercive if

lim
‖x‖→+∞

f(x) = +∞.

(v) The function f is lower semicontinuous (l.s.c.) if, for every x0 ∈ Rm,

lim inf
x→x0

f(x) ≥ f(x0).
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(vi) The conjugate of f is the function f∗ : Rm → [−∞,+∞] defined by

(∀x ∈ Rm) f∗(x) = sup
y∈Rm

(〈x,y〉 − f(y)) .

We denote by Γ0(Rm) the set of functions from Rm to ]−∞,+∞] that
are proper, l.s.c. and convex. We use the notion of subdifferential as it was
introduced by Moreau [Moreau, 1966] and Rockafellar [Rockafellar, 1970] in
the 1960’s, and whose definition is recalled below.

Definition 2.2.2 Let f : Rm →]−∞,+∞]. The subdifferential of f is the
set-valued operator ∂f defined by

(∀x ∈ Rm) ∂f(x) = {u ∈ Rm | (∀y ∈ Rm) 〈y − x,u〉+ f(x) ≤ f(y)}.

The subdifferential can be linked to the set of minimizers of a function
using Fermat’s rule, as stated below.

Theorem 2.2.3 (Fermat’s rule) [Bauschke and Combettes, 2017, Theo-
rem 16.3] Let f ∈ Rm →]−∞,+∞] be proper. Then,

Argmin
x∈Rm

f(x) = {x ∈ Rm | 0m ∈ ∂f(x)}.

In the next section, we introduce a fundamental tool in nonconvex opti-
mization.

2.2.1.2 Kurdyka- Lojasiewicz property

The Kurdyka- Lojasiewicz (KL) inequality was first introduced by  Lojasiewicz
for real analytic functions [Lojasiewicz, 1963], and then extended by Kur-
dyka [Kurdyka, 1998] to differentiable functions that are definable in a
o-minimal structure [van den Dries et al., 1994]. Following the seminal work
of  Lojasiewicz and Kurdyka, the KL property has been extensively used for
proving the convergence [Bolte et al., 2007, 2014; Chouzenoux et al., 2014b]
and obtaining convergence rates [Attouch and Bolte, 2009; Attouch et al.,
2010] of optimization methods for possibly nondifferentiable functions, both
in the convex and nonconvex case.

The KL inequality is based on the idea that a large number of functions
can be re-parametrized such that they are sharp around their minimizers.
This re-parametrization is based on the class of functions specified below.

Definition 2.2.4 For every η ∈ R∗+, Φη is the set of continuous concave
functions φ : [0, η[→ [0,+∞[ such that

(i) φ(0) = 0,

(ii) φ is C1 on ]0, η[ and continuous at 0,
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Figure 2.1: Illustration of the KL re-parametrization of the nonconvex func-
tion f : x ∈ R 7→ −|x2− 1|, which is a KL function with exponent 1

2 [Li and
Pong, 2018, Corollary 5.2], with φ : s ∈ [0, 1[7→ s

1
2 at the point x = 0.

(iii) for every s ∈]0, η[, φ′(s) > 0.

We introduce the following notation for the Euclidean distance between
a vector v ∈ Rm and a set C, dist(v, C) = infw∈C ‖v−w‖. A general form of
the KL inequality has been proposed in [Bolte et al., 2014] and is recalled
hereafter.

Definition 2.2.5 [Bolte et al., 2014, Definition 3] Let f : Rm →]−∞,+∞]
be proper and l.s.c. The function is said to have the Kurdyka- Lojasiewicz
property at x ∈ dom (∂f) = {x ∈ Rm | ∂f(x) 6= ∅} if there exist η ∈ R∗+, a
neighborhood Ω of x, and a function φ ∈ Φη such that, for all x such that

f(x) < f(x) < f(x) + η,

the following inequality holds

φ′(f(x)− f(x)) dist(0m, ∂f(x)) ≥ 1.

If f satisfies the KL property at each point of dom (∂f), then f is called a
KL function.

The KL property is satisfied in most practical optimization applications
and, for a wide class of functions, the re-parametrization φ has a specific
form which is detailed below and illustrated in Figure 2.1.

Definition 2.2.6 [Li and Pong, 2018, Definition 2.3] Let f : Rm →] −
∞,+∞] be a proper l.s.c. function satisfying the KL property at x ∈
dom (∂f) within a neighborhood Ω for η ∈ R∗+. If there exist c ∈ R∗+ and
α ∈ [0, 1[ such that the corresponding re-parametrization φ ∈ Φη can be
chosen as

(∀s ∈ [0, η[) φ(s) = cs1−α,
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then f is said to have the KL property at x with exponent α. In other words,
there exists c ∈ R∗+ such that, for every x ∈ Ω such that f(x) < f(x) <
f(x) + η, the following inequality is satisfied,

dist(0m, ∂f(x)) ≥ c(f(x)− f(x))α.

If f has the same exponent α at any x ∈ dom (∂f), then f is said to be a
KL function with exponent α.

It is worth noting that this particular form of φ encompasses the origi-
nal inequality introduced by  Lojasiewicz in the 1960’s. In addition, the KL
exponent can be computed explicitly under some conditions, as detailed in
[Li and Pong, 2018]. This is of particular interest because this exponent can
help to derive convergence rates for many optimization methods, as proven
for instance in [Attouch and Bolte, 2009, Theorem 2] or [Attouch et al.,
2010, Theorem 3.4].

In the next section we introduce the proximity operator, which is a very
useful mathematical tool in optimization.

2.2.1.3 Proximity operators

The proximity operator has been first introduced in [Moreau, 1965] as an
extension of the projection on a closed convex set. The proximity operator
of a convex function f ∈ Γ0(Rm) at a point x ∈ Rm is then defined as the
unique minimizer of y 7→ f(y) + 1

2‖y − x‖2, namely,

(∀x ∈ Rm) proxf (x) = argmin
y∈Rm

f(y) +
1

2
‖y − x‖2.

The above definition can be extended to nonconvex functions [Attouch
and Bolte, 2009]. Furthermore, it can be made more general by using a
weighted norm instead of the Euclidean norm [Becker and Fadili, 2012;
Combettes and Vũ, 2014; Chouzenoux et al., 2014b]. In this thesis, weighted
norms will be noted as follows; for every v ∈ Rm, ‖v‖M = 〈v,Mv〉 12 is the
norm of v induced by M ∈ S+

m, with S+
m the set of symmetric positive-

definite matrices in Rm×m.
These considerations lead to the following general definition, which will

be used in the rest of this document.

Definition 2.2.7 Let f : Rm →] − ∞,+∞] be proper and l.s.c., and let
M ∈ S+

m and x ∈ Rm. The proximity operator of f at x with regards to
the norm induced by M is defined as the set

proxMf (x) = Argmin
y∈Rm

(
f(y) +

1

2
‖y − x‖2M

)
.
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If the above set is reduced to a singleton, then, for simplicity, this unique
element will also be noted proxMf (x). When the Euclidean norm is used, i.e.
M = Im, the proximity operator will be noted proxf (x).

Throughout this thesis, M and its induced norm will be referred to as
preconditioner and variable metric, respectively. It is worth noting that, if
f ∈ Γ0(Rm), then the proximity operator of f is uniquely defined on Rm
since the objective function to be minimized is strongly convex.

Remark 2.2.8 Let f ∈ Γ0(Rm), x ∈ Rm and M ∈ S+
m. The proximity

operator of f at x in the norm induced by M can be re-written as

proxMf (x) = M− 1
2 prox

f◦M−
1
2

(
M

1
2x
)
.

This reformulation can be used to compute the proximity operator of a
function in a variable metric.

In view of its widespread use in applications related to signal and image
processing, the proximity operator has been extensively studied, in par-
ticular in the convex case [Hiriart-Urruty and Lemaréchal, 1996; Chaux
et al., 2007; Briceño-Arias and Combettes, 2009; Bauschke and Combettes,
2017]. We mention below some useful properties of the proximity opera-
tor that are used in this thesis. This results correspond to [Bauschke and
Combettes, 2017, Theorem 14.3(ii), Proposition 12.28, Proposition 16.44,
Proposition 24.8(v) and Corollary 24.15], respectively.

Theorem 2.2.9 (Moreau’s decomposition) Let f ∈ Γ0(Rm), x ∈ Rm
and γ ∈ R∗+. Then,

x = proxγf (x) + γprox f∗
γ

(
x

γ

)
.

Proposition 2.2.10 (Nonexpansiveness) Let f ∈ Γ0(Rm) and M ∈
S+
m. Then, proxMf is nonexpansive with respect to ‖ · ‖M .

Proposition 2.2.11 (Characterization) Let f ∈ Γ0(Rm), M ∈ S+
m and

x ∈ Rm. Then,

y = proxMf (x) ⇐⇒ x− y ∈M−1∂f(y).

Proposition 2.2.12 (Translation) Let f ∈ Γ0(Rm), x ∈ Rm, y ∈ Rm,
γ ∈ R∗+ and µ ∈ R∗. Set g = f(µ · −z). Then,

proxγg(x) =
1

µ
(y + proxγµ2f (µx− y))
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Proposition 2.2.13 (Composition) Let f ∈ Γ0(R), x ∈ Rm and y ∈
Rm \ {0m}. Set g = f(〈·, y〉). Then,

proxg(x) = x+
prox‖y‖2f (〈x,y〉)− 〈x,y〉

‖y‖2 y.

An explicit or closed-form expression of the proximity operator has been
derived for many useful functions, e.g. see 1 for a collection of known prox-
imity operators with associated codes. Hereafter, we list two examples that
are relevant to this thesis.

Example 2.2.14 In Chapter 5, we consider functions of the type ‖ · ‖pp for
p ∈ R∗+. Since the proximity operator of ‖ · ‖pp is separable with regards
to its entries, we consider here functions of the form | · |p. When p ≥ 1,
| · |p is convex and we can obtain an closed-form expression of the proximity
operator for some specific values of p. The resulting operators are illustrated
in Figure 2.2.

(i) If p = 1, we have the `1-norm, which is widely used in optimization to
promote sparsity [Bach et al., 2012], and whose proximity operator is
known as the soft-thresholding operator defined by

(∀γ ∈ R∗+)(∀x ∈ R) proxγ|.|(x) = sign(x) max{|x| − γ}.

(ii) If p ∈ {4
3 ,

3
2 , 2, 3, 4}, then we can use the results from [Chaux et al.,

2007, Examples 4.3 and 4.4] which are recalled below for every γ ∈ R∗+
and every x ∈ R.

proxγ|·|p(x) =



x+ 4γ

3×2
1
3

(
(ξ − x)

1
3 − (ξ + x)

1
3

)
if p = 4

3 ;
with ξ =

(
x2 + 256

729γ
3
) 1

2

x+ 9
8γ

2sign(x)

(
1−

(
1 + 16|x|

9γ2

) 1
2

)
if p = 3

2 ;

x
2γ+1 if p = 2;

sign(x) (1+12γ|x|)
1
2−1

6γ if p = 3;(
ξ+x
8γ

) 1
3 −

(
ξ−x
8γ

) 1
3

if p = 4;

with ξ =
(
x2 + 1

27γ

) 1
2

Example 2.2.15 Our second example is the logarithmic barrier, which is
classically used in interior point methods (see Section 2.2.5).

1http://proximity-operator.net/

http://proximity-operator.net/
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Figure 2.2: Function | · |p (left) and its proximity operator (right) for dif-
ferent values of p.

(i) The barrier associated with the feasible set [0,+∞[, also called the
negative Burg entropy, is the function defined by

(∀x ∈ R) f(x) =

{
− ln(x) if x ∈ R∗+,

+∞ else.

For every γ ∈ R∗+ we get the proximity operator of γf from [Bauschke
and Combettes, 2017, Example 24.40] as follows,

(∀x ∈ R) proxγf (x) =
x+ (x2 + 4γ)

1
2

2
.

(ii) If we consider the compact feasible set [a, b], with a < b, then the
corresponding logarithmic barrier g is defined as follows,

(∀x ∈ R) g(x) =

{
− ln (x− a)− ln (b− x) if x ∈ ]a, b[ ,

+∞ else.

The proximity operator of g can be found in [Chaux et al., 2007, Ex-
ample 4.15]: for every γ ∈ R∗+ and every x ∈ R, proxγg(x) = κ, where
κ is the unique solution in ]a, b[ to

κ3 − (a+ b+ x)κ2 + (ab+ (a+ b)x− 2γ)κ− abx+ (a+ b) γ = 0.

The solution κ to the above cubic equation can be found using Car-
dano’s method. As one can see in Figure 2.3, the smaller γ is, the closer
the proximity operator is to the projection on [a, b].

In the next section, we introduce some properties related to operators.
These notions are used in the convergence analysis presented in Chapter 3,
and in the robustness study discussed in Section 4.5.
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Figure 2.3: Logarithmic barrier function (left) and its proximity operator
(right) for different values of multiplicative factor γ.

2.2.1.4 Operator properties

The Lipschitz continuity presented hereafter gives an upper bound for the
rate of change of a given operator.

Definition 2.2.16 Let T : Rm → Rn.

(i) The operator T is Lipschitz continuous with constant α ∈ R+, or α-
Lipschitz continuous, if

(∀(x,y) ∈ Rm × Rm) ‖T (x)− T (y)‖ ≤ α‖x− y‖.

(ii) The operator T is nonexpansive if it is Lipschitz continuous with con-
stant equal to 1.

(iii) A differentiable function f : Rm →] −∞,+∞] is said to be Lipschitz
differentiable with constant α ∈ R+ if its gradient ∇f is α-Lipschitz
continuous.

Next, we introduce the notion of averageness, which can be seen as a
generalization of nonexpansiveness.

Definition 2.2.17 [Bauschke and Combettes, 2017, Definition 4.33] Let
T : Rm → Rm and α ∈]0, 1[. The operator T is averaged with constant α, or
α-averaged, if there exists a nonexpansive operator R : Rm → Rm such that
T = (1− α)Im + αR.

The following proposition provides an upper bound of the effect of an in-
put perturbation, which depends on the averageness constant. In particular,
the smaller the constant is, the more stable the operator is.
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Proposition 2.2.18 [Bauschke and Combettes, 2017, Remark 4.34, Propo-
sition 4.35] Let T : Rm → Rm and α ∈]0, 1].

(i) If T is averaged, then it is nonexpansive.

(ii) The operator T is α-averaged if and only if, for every (x,y) ∈ Rm×Rm,

‖T (x)− T (y)‖2 ≤ ‖x− y‖2 − 1− α
α
‖(Im − T )(x)− (Im − T )(y)‖2.

Now that we have introduced important mathematical tools used in this
thesis, we present in the next sections the main algorithms that we use either
for designing the proposed methods or as comparisons.

2.2.2 Forward-backward algorithms

First, we consider the case when h is the zero function. Then, (2.8) reads

minimize
x∈Rm

f(x) + g(x). (2.9)

The well-known forward-backward (FB) algorithm [Chen and Rockafellar,
1997; Tseng, 2000] addresses separately the two terms in the composite ob-
jective function, which leads to two steps for each iteration, namely a gra-
dient (i.e. forward) step on the differentiable term g, and a proximal (i.e.
backward) step on the nonsmooth term f .

2.2.2.1 Variable metric forward-backward algorithm

The FB algorithm can be accelerated by using a variable metric. This idea
was already introduced in the original version of the FB algorithm in [Chen
and Rockafellar, 1997], where the authors obtain the convergence of the
algorithm in the convex setting assuming that the preconditioning matrices
converge to a given operator [Chen and Rockafellar, 1997, Theorem 5.2].
The variable metric forward-backward (VMFB) algorithm has recently been
extended in [Combettes and Vũ, 2014], where the authors consider summable
errors in the computation of the gradient and of the proximity operator.
The convergence of this algorithm is obtained in [Combettes and Vũ, 2014,
Theorem 4.1] under a monotonicity assumption on the variable metrics.
Some recent works, relying on the KL inequality, extend this convergence
result to nonconvex problems under milder boundedness conditions on the
variable metrics [Chouzenoux et al., 2014b; Frankel et al., 2015].

Algorithm 3 corresponds to a simplified version of the VMFB algorithm
without the summable errors. By taking (∀k ∈ N) Mk = Im in Algorithm 3,
we retrieve the classical FB algorithm.
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Algorithm 3: Variable metric forward–backward [Combettes and Vũ,
2014] (exact version)
For every k ∈ N, let γk ∈ R∗+, λk ∈ R∗+, and Mk ∈ S+

m.
Initialization: Take x0 ∈ Rm.
for k = 0, 1, . . . do

xk+1 = xk + λk

(
proxMk

γkf

(
xk − γkM−1

k ∇g(xk)
)
− xk

)
;

end

2.2.2.2 Generalized forward-backward algorithm

The FB algorithm can be generalized to the case when f can be written as
f =

∑p
i=1 fi. Then, problem (2.8) reads

minimize
x∈Rm

p∑
i=1

fi(x) + g(x). (2.10)

The generalized forward-backward splitting (GFBS) scheme in Algorithm 4
was proposed in [Raguet et al., 2013] for solving (2.10) using the proximity
operator of each fi. This algorithm will be used as a comparison in Sec-
tion 3.6 with p = 2 and dom (f1) = Rm. The convergence of GFBS in this
case is ensured by [Raguet et al., 2013, Theorem 2.1].

Algorithm 4: Generalized forward-backward [Raguet et al., 2013]
Let ω ∈]0, 1[p be such that

∑p
i=1 ωi = 1.

For every k ∈ N, let γk ∈ R∗+ and λk ∈ R∗+.
Initialization: For every i ∈ {1, . . . , p}, let z(i)

0 ∈ Rm.
Set x0 =

∑p
i=1 ωiz

(i)
0 .

for k = 0, 1, . . . do
for i ∈ {1, . . . , p} do

z
(i)
k+1 = z

(i)
k + λk

(
prox γk

ωi
fi

(
2xk − z(i)

k − γk∇g(xk)
)
− xk

)
;

end

xk+1 =
∑p

i=1 ωiz
(i)
k ;

end

2.2.2.3 Dual forward-backward algorithm

If f is the zero function and g = 1
2‖ ·−y‖2 for some y ∈ Rm, then, (2.8) can

be re-written as follows,

minimize
x∈Rm

1

2
‖x− y‖2 + h(Lx), (2.11)
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In the dual problem associated to (2.11), h∗ and L are decoupled. Hence,
using duality can lead to iterative solvers that only require the proximity
operator of h∗, which can easily be derived from the one of h using Moreau’s
decomposition from Theorem 2.2.9. We present in Algorithm 5 a simplified
version of the dual forward-backward (DFB) algorithm proposed in [Com-
bettes et al., 2011] applied to problem (2.11), where we assume that there is
no error in the computation of the proximity operator of h∗. The convergence
result for Algorithm 5 is given in [Combettes et al., 2011, Theorem 2.2].

Algorithm 5: Dual forward–backward [Combettes et al., 2011] (exact
version) applied to problem (2.11)

Set ρ = |||L|||−2 and let ε ∈]0,min{1, ρ}[.
For every k ∈ N, let γk ∈ [ε, 2ρ− ε] and λk ∈ [ε, 1].
Initialization: Let u0 ∈ Rn.
for k = 0, 1, . . . do

xk = y −L>uk;
uk+1 = uk + λk

(
proxγkh∗ (uk + γkLxk)− uk

)
;

end

It is worth noting that problem (5) is equivalent to computing proxh(L·)(y).
Following this remark, in Section 3.6 and Chapter 5 we will use Algorithm 5
in combination with Remark 2.2.8 for computing the proximity operator of
a function in a variable metric.

2.2.3 Primal-dual algorithms

In this section we focus on optimization algorithms that make use of both
primal and dual updates.

2.2.3.1 Primal-dual splitting algorithm

In [Condat, 2013] and [Vũ, 2013], the authors propose a primal-dual splitting
(PDS) algorithm, which relies on a forward-backward scheme to split the
differentiable term g and the nonsmooth function f , and which uses duality
to decouple h andL. Algorithm 6 is a simplified version of the PDS algorithm
where we assume that there is no error in the computation of the proximity
operators and of the gradient. Note that, if g is the zero function, then we
retrieve the algorithm proposed in [Chambolle and Pock, 2011].

The convergence result for the primal sequence in Algorithm 6 is given in
[Condat, 2013, Theorem 3.1]. We use Algorithm 6 as a comparison method
in Section 3.6.
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Algorithm 6: Primal-dual splitting [Condat, 2013; Vũ, 2013] (exact
version)
Let σ ∈ R∗+, τ ∈ R∗+, and (∀k ∈ N) let λk ∈]0, 2[.
Initialization: Let (x0,v0) ∈ Rm × Rn.
for k = 0, 1, . . . do

yk = proxτf
(
xk − τ

(
∇g(xk) +L>vk

))
;

uk = proxσh∗ (vk + σL(2yk − xk));
xk+1 = λkyk + (1− λk)xk;
vk+1 = λkuk + (1− λk)vk;

end

2.2.3.2 Accelerated primal-dual splitting algoritm

In [Chambolle and Pock, 2011], the authors proposed an accelerated version
of the previous algorithm when g is the zero function and f is strongly
convex, i.e. there exists βf ∈ R∗+ such that for every x ∈ dom (∂f),

(∀u ∈ ∂f(x))(∀y ∈ Rm) f(x) + 〈u,y − x〉+
βf
2
‖y − x‖2 ≤ f(y).

Then, problem (2.8) reads

minimize
x∈Rm

f(x) + h(Lx). (2.12)

The accelerated primal-dual splitting (A-PDS) algorithm is given in Algo-
rithm 7. The convergence of this algorithm is proven in [Chambolle and
Pock, 2011, Theorem 2].

Algorithm 7: Accelerated primal-dual splitting [Chambolle and Pock,
2011, Algorithm 2]

Initialization: Let τ0 ∈ R∗+ and σ0 = (τ0|||L|||2)−1.
Set (x0,y0) ∈ Rm × Rn and x0 = x0.
for k = 0, 1, . . . do

yk+1 = proxσkh∗ (yk + σkLxk);
xk+1 = proxτkf

(
xk − τkL>yk+1

)
;

θk = (1 + 2βfτk)
− 1

2 , τk+1 = θkτk, σk+1 = σk/θk;
xk+1 = xk+1 + θk(xk+1 − xk);

end

Since the function f = 1
2‖ · ‖2 is strongly convex, in Section 3.7 we

combine Algorithm 7 with Remark 2.2.8 to compute the proximity operator
of a function in a variable metric.
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2.2.3.3 Alternating direction method of multipliers

Finally, we consider the following problem,

minimize
x∈Rm

f(Jx) + g(Kx) + h(Lx), (2.13)

with J ∈ Rp×m,K ∈ Rq×m and L ∈ Rr×m. If J = K = Im, then we recover
our starting problem (2.8). Problem (2.13) can be reformulated as follows,

minimize
(x,y)∈Rm×Rn

f̃(y)

s.t. Ax+By = 0n
(2.14)

where n = p+ q + r,

A =

JK
L

 , B = −In,

and where every y ∈ Rn can be decomposed into a triplet (y(p),y(q),y(r)) ∈
Rp × Rq × Rr, such that

y =

y(p)

y(q)

y(r)

 , and f̃(y) = f
(
y(p)

)
+ g

(
y(q)

)
+ h

(
y(r)

)
.

Problem (2.14) can be solved with the alternating direction method of mul-
tipliers (ADMM) [Gabay and Mercier, 1976; Fortin and Glowinski, 2000],
which can be viewed as a primal-dual algorithm [Komodakis and Pesquet,
2015]. The convergence of Algorithm 8 is obtained from [Eckstein and Bert-
sekas, 1992, Theorem 8].

Algorithm 8: Alternating direction method of multipliers for (2.14)
Let A have full column rank and take µ ∈ R∗+.
Initialization: Let λ0 ∈ Rn and y0 ∈ Rn.
for k = 0, 1, . . . do

xk+1 =
(
A>A

)−1
A> (λk −Byk);

yk+1 = proxf̃/µ (Axk+1 − λk);
λk+1 = λk −Axk+1 −Byk+1;

end

Although the proximity operator of f̃/µ is separable with respect to y(p),
y(q), and y(r), the computation of the inverse of A>A is a serious shortcom-
ing of this algorithm. Nonetheless, reformulation (2.14) is not unique. For
instance, another formulation is presented in [Iordache et al., 2012], where
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the inverse of A>A is easier to compute, but where proxf̃/µ is not separa-
ble. In practice, alternating the minimization on the components of y may
perform well [Iordache et al., 2012], but the convergence is not guaranteed
in this case [Chen et al., 2016]. We use Algorithm 8 in Sections 3.6 and 3.7
as a comparison method.

When addressing (2.8) directly is too difficult, an interesting strategy con-
sists in replacing the original problem by a sequence of intermediate prob-
lems that are easier to solve. This idea is at the core of the approaches
presented in the next sections, namely the majorize-minimize principle and
interior point methods.

2.2.4 Majorize-Minimize Principle

The majorize-minimize principle (MM) was first introduced in [Ortega and
Rheinboldt, 1970]. This principle is built on the notion of majorant, which
is defined hereafter.

Definition 2.2.19 (Majorant) Let f : Rm →] − ∞,+∞]. The function
h : Rm × Rm →]−∞,+∞] is said to be a majorant of f at y ∈ Rm if

h(y,y) = f(y) and (∀x ∈ dom (f)) h(x,y) ≥ f(x).

There exist different strategies for designing a majorant. For instance, if the
function f is differentiable, then a quadratic majorant of f can be created
as follows [Böhning and Lindsay, 1988]

(∀x ∈ Rm)(∀y ∈ Rm)

h(x,y) = f(y) +∇f(y)>(x− y) +
1

2
(x− y)>A(y)(x− y),

where A(y) ∈ S+
m is such that the conditions in Definition 2.2.19 are sat-

isfied. In addition, if f is Lipschitz differentiable with constant L ∈ R+,
then A(·) can be set equal to αIm with α ≥ L. More generally, A can be
chosen such that A(y)−∇2f(y) ∈ S+

m [Hunter and Lange, 2004]. As shown
in [Chouzenoux et al., 2016], this strategy can be used for designing effi-
cient preconditioning matrices in the VMFB algorithm. We will follow this
approach in Chapters 3 and 4 for choosing the involved variable metrics.

Finding a minimizer of the majorant can be easier than computing a
solution to the original optimization problem. For instance, if the majorant
is quadratic, then its minimizer has an explicit expression. Therefore, the
MM principle consists in the following approach, instead of minimizing f
directly, a sequence of iterates is produced where each iterate is a minimizer
of a majorant of f taken at the previous iterate. This leads to the following
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scheme, where for every iteration k ∈ N the update rule reads

xk+1 = argmin
x∈dom (f)

h(x,xk),

with h a majorant of f at xk. The convergence of this algorithm was estab-
lished under some assumptions [Jacobson and Fessler, 2007]. Furthermore,
this approach has demonstrated good performance in various applications,
such as image recovery [Sotthivirat and Fessler, 2002; Erdogan and Fessler,
1999], denoising [Selesnick, 2012] or quantile regression [Hunter and Lange,
2000]. It is worth noting that this algorithm can be applied in a nonconvex
setting [Chouzenoux et al., 2013a]. In Chapter 5, we derive an algorithm
based on the MM principle to solve a nonconvex minimization problem.

In the next section, we present a specific class of methods used to address
constrained optimization problems.

2.2.5 Interior point methods

Interior point methods (IPMs) encompass a wide range of methods which
share the ability to handle constraints [Boyd and Vandenberghe, 2004, Chap-
ter 11]. In this section we introduce the fundamental ideas and interior point
methods that are used in Chapters 3 and 4.

IPMs became very popular from 1980 onwards due to the polynomial-
time projection algorithm proposed in [Karmarkar, 1984], and which was
later reinterpreted as an IPM in [Gill et al., 1986]. These approaches then
demonstrated excellent performance in linear programming [Wright, 1992].
They were extended to nonlinear problems [Forsgren et al., 2002] thanks to
the notion of self-concordance [Nesterov and Nemirovskii, 1994], which will
be explained hereafter. IPMs have been applied to a wide variety of applica-
tions, including large-scale portfolio optimization [Gondzio and Grothey,
2005], semidefinite programming [Alizadeh, 1995] and image reconstruc-
tion [Kim et al., 2007]. Although IPMs are well-established methods, there
are still new developments to be made regarding these approaches [Gondzio,
2012; Armand and Benoist, 2013; Ge et al., 2019].

2.2.5.1 Principle

Let us consider the following variational formulation,

minimize
x∈C

f(x), (2.15)

where the feasible set C is defined using p inequality constraints,

C = {x ∈ Rm | (∀i ∈ {1, . . . , p}) ci(x) ≤ 0}. (2.16)
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Figure 2.4: Illustration of the merit function and influence of the barrier
parameter when the barrier is chosen as the logarithmic one. In this example,
the feasible set is taken as C = {x ∈ R | 0.2 ≤ x ≤ 0.9}.

Barrier methods are standard IPMs in which the original problem (2.15)
is replaced by a sequence of intermediate unconstrained problems (Pµk)k∈N
parametrized by a sequence of barrier coefficients (µk)k∈N. For every µ ∈ R∗+,
Pµ is defined as

Pµ : minimize
x∈Rm

f(x) + µB(x), (2.17)

where B is a barrier function. The objective function in (2.17) is called the
merit function and, for every µ ∈ R∗+, it is noted Ψµ = f + µB. The barrier
can be seen as an approximation of the indicator function of the feasible set;
its purpose is to ensure that the constraints involved in C are always strictly
satisfied. As illustrated in Figure 2.4, it should be chosen such that the
continuity properties of the constraints are preserved and such that it goes
to infinity at the border of the feasible set [Forsgren et al., 2002]. There exist
various barrier functions in the literature [Carroll, 1961; Kowalik, 1966], the
most popular one being the logarithmic barrier, defined as follows

B : Rm → ]−∞,+∞]

x 7→

−
p∑
i=1

ln(−ci(x)) if (∀i ∈ {1, . . . , p}) ci(x) < 0,

+∞ otherwise.

The logarithmic barrier has interesting features, in particular it is self-
concordant for every affine or quadratic constraints [Boyd and Vanden-
berghe, 2004, Chapter 9]. This means that B is three times continuously
differentiable on its domain and that

(∀x ∈ dom (B)) |B′′′(x)| ≤ 2B′′(x)3/2.

In addition, if Assumption 2.2.20 below holds and if the barrier is chosen as
the logarithmic one, then the sublevel sets of the merit function are compact.
This result is detailed in Theorem 2.2.21 hereafter.
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Assumption 2.2.20 Consider problem (2.15), and assume that f ∈ Γ0(Rm)
and (∀i ∈ {1, . . . , p}) ci ∈ Γ0(Rm). Let B be the logarithmic barrier asso-
ciated with the set C defined in (2.16). Assume in addition that dom (B) is
nonempty, C ⊂ dom (f), and that the set of solutions to problem (2.15) is
nonempty and bounded.

Theorem 2.2.21 [Wright, 1992, Theorem 4]2 Under Assumption 2.2.20,
for every (µ, τ) ∈ R∗+ × R, the τ -lower level set of Ψµ = f + µB, defined by

lev≤τ (Ψµ) = {x ∈ dom (B) | Ψµ(x) ≤ τ},

is compact.

From now on, B will refer to the logarithmic barrier. The path-following
method presented hereafter is a specific barrier method where each interme-
diate problem Pµk is solved before decreasing the barrier coefficient µk.

2.2.5.2 Path-following method

If there exists a solution to every intermediate problem (2.17), then one can
define a trajectory x∗ where, for every µ ∈ R∗+, x∗(µ) is a solution to Pµ.
The standard path-following interior point method detailed in Algorithm 9
follows this trajectory called central path. A general convergence result re-
garding this algorithm is given in Theorem 2.2.22.

Algorithm 9: Path-following barrier method
Let ρ > 1 and ε ∈ R∗+.
Initialization: Take x0 ∈ dom (B) and µ0 ∈ R∗+.
for k = 0, 1, . . . do

Find x∗(µk) a solution to Pµk using an iterative solver initialized
with xk;
xk+1 = x∗(µk);
Stop if pµk ≤ ε;
µk+1 = µk/ρ;

end

Theorem 2.2.22 [Wright, 1992, Theorem 5 (iv)]2 Under Assumption 2.2.20,
if (xk)k∈N is a sequence generated by Algorithm 9, then there exists at least
one convergent subsequence, and every of its cluster point is a solution to
problem (2.15).

2 It is straightforward to extend the original theorem, which was established assuming
continuous functions, to l.s.c. functions.
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Figure 2.5: Illustration of Algorithm 9 applied to problem (2.18) with
c = (1, 2)>, and where the feasible set is represented as a blue polytope.
Hyperparameters are chosen such that µ0 = 10, ρ = 4 and ε = 0.02. Brown
dotted lines show the iso-B contours.

We illustrate in Figure 2.5 the central path trajectory given by Algo-
rithm 9 applied to the following linear programming problem,

minimize
x∈Rm

c>x

s.t. Ax− b ∈]−∞, 0]p,
(2.18)

where p = 5, m = 2,

c =

(
1
2

)
, A =


−1 −1
−1 1
0.7 1
3 −1

0.5 −1

 , and b =


2
2
1
3
1

 .

This problem will be used in Section 3.7 and serves as an illustration in the
remaining of this section.

The Lagrangian theory provides an interesting reinterpretation of the
path-following method.

Link with the Lagrangian theory

We consider problem (2.18) and make the following assumption.

Assumption 2.2.23 Consider problem (2.18) and assume that there exists
x ∈ Rm such that Ax − b ∈] −∞, 0[p. In addition, assume that for every
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τ ∈ R, the sublevel set {x ∈ Rm | Ax − b ∈] −∞, 0]p and c>x ≤ τ} is
bounded.

Under Assumption 2.2.23, Slater’s constraint qualification is satisfied, and
finding a solution x∗ to problem (2.18) is equivalent to finding a saddle point
of the Lagrangian L, which is defined as follows,

(∀x ∈ Rm)(∀λ ∈ [0,+∞[p) L(x,λ) = c>x+ λ>(Ax− b).

Saddle points of L are characterized by the Karush-Kuhn-Tucker (KKT)
conditions; for every solution x∗ to problem (2.18), there exists λ∗ ∈ Rp
such that the following system of equations is satisfied,

c+A>λ∗ = 0p, (2.19)
(∀i ∈ {1, . . . , p}) λ∗i ≥ 0 and (Ax∗ − b)i ≤ 0, (2.20)
(∀i ∈ {1, . . . , p}) λ∗i (Ax∗ − b)i = 0. (2.21)

For every µ ∈ R∗+, Pµ can be rewritten as follows,

minimize
(x,z)∈Rm×Rp

c>x+ µB̃(z)

s.t. z = Ax− b,

where B̃(z) = −∑p
i=1 ln(−zi) if z ∈] −∞, 0[p, +∞ otherwise. Finding the

solution x∗(µ) to Pµ is equivalent to identifying a saddle point of the asso-
ciated Lagrangian Lµ defined by

(∀x ∈ Rm)(∀z ∈ Rp)(∀λ ∈ Rp)
Lµ(x, z,λ) = c>x+ µB̃(z) + λ>(Ax− b− z).

There exist z∗ ∈ Rp and λ∗ ∈ Rp such that the following KKT conditions
are satisfied 

c+A>λ∗ = 0p, (2.22)
(∀i ∈ {1, . . . , p}) (Ax∗(µ)− b)i < 0, (2.23)
(∀i ∈ {1, . . . , p}) λ∗i (Ax∗(µ)− b)i = −µ, (2.24)
z∗ = Ax∗(µ)− b. (2.25)

In the above system of equations, the complementary slackness from (2.21)
is replaced by condition (2.24). Hence, the path-following method consists
in finding solutions to modified KKT conditions such that the iterates pro-
duced by Algorithm 9 almost satisfy (2.19)-(2.21) when µ is small.

It is worth noting that strict complementarity always holds in linear
programming [Bonnans and Shapiro, 2013, Theorem 3.133], i.e. there exists
(x∗,λ∗) a solution to the KKT conditions (2.19)-(2.21) such that, for every
i ∈ {1, . . . , p}, if (Ax∗ − b)i = 0 then λ∗i > 0.
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Remark 2.2.24 (Strict complementarity) In a more general context
than that of linear programming, strict complementarity is not always neces-
sary, see for instance [Jittorntrum, 1984], [Bonnans et al., 2006, Chapter 18]
and the concept of linear monotone complementarity used in [Bonnans et al.,
2006, Chapter 20] for quadratic programming. However, this assumption is
often made for deriving convergence results regarding IPMs [Wright, 1992].
Note that this assumption will also be used in Chapter 3.

Algorithm 9 assumes that one can easily compute a solution to each
intermediate problem. We present hereafter the Newton barrier method,
which uses Newton’s method at each iteration to find a solution to Pµk . The
Newton barrier method is used in particular in Section 3.7.

2.2.5.3 Newton barrier method

Algorithm 10: Newton barrier method
Let ρ > 1, ρn > 1, ε ∈ R∗+, εn ∈ R∗+ and α ∈]0, 1

2 [.
Initialization: Take x0 ∈ dom (B) and µ0 ∈ R∗+.
Set µ← µ0.
for k = 0, 1, . . . do

∆xk = −∇2Ψµ(xk)
−1∇Ψµ(xk) (Newton’s direction);

dk = −∇Ψµ(xk)
>∆xk (Newton’s decrement);

if dk/2 ≤ εn then
Stop if pµ ≤ ε;
µ← µ/ρ;

else
γ ← 1;
while Ψµ(xk + γ∆xk) > Ψµ(xk)− αγdk do

γ ← γ/ρn (Backtracking);
end
xk+1 = xk + γ∆xk;

end
end

The Newton barrier method is presented in Algorithm 10. In prob-
lem (2.18), the cost is linear and the constraints are affine, hence the merit
function is self-concordant. This important property leads to the following
result regarding the convergence rate of Algorithm 10.

Theorem 2.2.25 [Boyd and Vandenberghe, 2004, Section 11.5.3] Consider
problem (2.18) and assume that Assumption 2.2.23 is satisfied. Let (xk)k∈N
be generated by Algorithm 10. Then,

(∀k ≥ kε) ‖c>xk − c>x∗‖ ≤ ε,
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where kε is defined by

kε =

⌈
ln(pµ0/ε)

ln(ρ)

⌉(
p(ρ− 1− ln(ρ))

η1
+ η2

)
,

with

η1 =
α(1− 2α)2

ρn(20− 8α)
and η2 = log2(log2(1/εn)).

It is worth noting that the Newton direction can also be derived from
the modified KKT conditions by replacing λ∗ in (2.22) by its expression
given in (2.24), and then applying Newton’s method on the resulting equa-
tion. Following this remark, it is also possible to apply Newton’s method
directly on the modified KKT conditions without first eliminating λ∗. This
approach leads to primal-dual barrier methods with search directions on
both the primal and dual variables. In particular, one can mention the in-
feasible primal-dual path-following algorithm presented in [Gondzio, 2012]
which has polynomial complexity.

We introduce one last concept related to IPMs, which is the analytic
center.

2.2.5.4 Analytic center

Definition 2.2.26 (Analytic center) Let C by defined as in (2.16) and
let K be defined by a set of equalities,

K = {x ∈ Rm | (∀i ∈ {1, . . . , q}) hi(x) = 0},

where (∀i ∈ {1, . . . , q}) hi : Rm →] − ∞,+∞]. Let B be the logarithmic
barrier associated to C. If there exists a unique solution to the following
problem,

minimize
x∈K

B(x),

then this point is called the analytic center of C ∩ K.
This notion has led to a specific class of IPMs called analytic center meth-
ods [Sonnevend, 1986] [Jarre, 1992, Section 2.1]. The analytic center of a
set of inequalities can be thought of as the feasible point which maximizes
the product of its margins with regards to the boundaries of this set [Boyd
and Vandenberghe, 2004, Section 8.5.3]. It is worth noting that the analytic
center depends on how the feasible set is specified. Adding a redundant in-
equality in the definition of C will change the position of the analytic center.
Figure 2.6 illustrates this observation.

Consider problem (2.15) and let JP be the set of indices i ∈ {1, . . . , p}
such that there exists a solution to (2.15) for which the ith constraint is not
active. In addition, let C̃ and K be defined as follows,

C̃ = {x ∈ Rm | (∀i ∈ JP ) ci(x) < 0},
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Figure 2.6: Left: analytic center xa of the feasible set defined by the affine
blue constraints. Right: influence of a redundant constraints in the definition
of the feasible set on the position of the analytic center. Colors represent the
logarithmic barrier value.

K = {x ∈ Rm | (∀i ∈ {1, . . . , p} \ JP ) ci(x) = 0 and f(x) = f∗},
where f∗ is the minimum value of f in C. Then, if it exists, the analytic
center of the set C̃ ∩ K is a solution to problem (2.15). When it exists, this
specific solution is referred to as the analytic center of the solution set to
(2.15). This insightful characterization will be used in Chapter 3.

In this section, we have presented classical IPMs which have proven their
effectiveness, in particular for linear and quadratic programming. However,
when dealing with more general optimization problems, these methods have
some notable drawbacks. For instance, they require the inversion of a linear
system at each iteration, and they are usually restricted to twice-differentiable
objective functions. In addition, results about their pointwise convergence
might be limited, as illustrated in Theorem 2.2.22. We address these issues in
Chapter 3, where we propose to combine the barrier method with proximal
tools.

§ 2.3 Summary

In this chapter, we have introduced a mathematical formulation for inverse
problems, as well as three resolution methods investigated in the next chap-
ters. The notation and mathematical definitions used throughout this doc-
ument have been presented in Section 2.2.1. As mentioned previously, the
goal of this thesis is to illustrate the versatility of the proximity operator in
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the context of inverse problems, by combining it with each one of the three
aforementioned approaches.

In Chapter 3, we propose a variational method based on a new algo-
rithm combining the proximity operator with the barrier method, which has
been presented in Section 2.2.5. Chapter 4 is dedicated to the study of an
optimization-inspired neural network. The proposed architecture is obtained
by applying the concept of deep unfolding presented in Section 2.1.4.3, on
a proximal interior point iterative scheme. Lastly, in Chapter 5 we consider
a Bayesian setting and propose to accelerate a hybrid Gibbs sampler with a
new sampling algorithm based on the proximity operator.
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A fast proximal interior point algorithm for
constrained variational formulations

As pointed out in Section 2.1.2, many problems in image processing, such
as segmentation [Chan and Vese, 2001], classification [Briceño-Arias et al.,
2017], or restoration [Malgouyres, 2002; Nikolova, 2004], can be formulated
as the minimization of a convex objective function under convex constraints.
Such problem can be successfully addressed by interior point methods, which
have been presented in Section 2.2.5. From a numerical perspective, IPMs
have demonstrated very good performance on several challenging applica-
tions, such as image reconstruction and multispectral image unmixing [John-
son et al., 2000; Chouzenoux et al., 2014a]. However, it is worth noting that
lots of interior point approaches rely on second-order methods and, therefore,
assume that the objective function is at least twice-differentiable [Armand
et al., 2000; Bonettini and Serafini, 2009a]. This characteristic restricts their
scope of application since the quality of the solution to an inverse problem
and its robustness to noise, can often be improved by including a nondif-
ferentiable regularization term in the objective function. Although IPMs
can handle the `1 norm [Fu et al., 2006; Kim et al., 2007; Fountoulakis
and Gondzio, 2016], for more general non-smooth penalizations, optimiza-
tion approaches relying on the proximity operator seem more appropriate
[Combettes and Pesquet, 2011]. In this chapter, we propose to combine a
proximal algorithm with the logarithmic barrier method, leading to a proxi-
mal interior point algorithm referred to as PIPA. One advantage of PIPA is
that it can handle nonsmooth functions while ensuring that the constraints
are always satisfied. In addition, PIPA includes a variable metric that can
be used to boost its speed of convergence.

This chapter is organized as follows. After describing the challenges in-
volved and motivating our approach in Section 3.1, we introduce the varia-
tional formulation and our assumptions in Section 3.2. The proposed method
is then presented in Section 3.3 and summarized in Algorithms 11 and 12.

41
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Our main theoretical results are provided in Section 3.4, while the proofs for
these results are given in Section 3.5. Numerical experiments are presented
in Sections 3.6 and 3.7.

§ 3.1 Challenges and motivation

Combining a proximal algorithm with the classical barrier method requires
to address two main challenges that are discussed in this section: (i) handling
the barrier term while maintaining acceptable computational complexity and
speed, (ii) ensuring the convergence of the algorithm without the gradient-
Lipschitz property. The first difficulty will be addressed thanks to a splitting
strategy and a variable metric, while the second point will be tackled by
including an appropriate line search in the proposed algorithm.

In most applications, the objective function is composite, in that it can be
split into a nonsmooth term and a differentiable term. In particular, interme-
diate problems (2.17) arising in the barrier method may have this composite
nature. As detailed in Section 2.2.2, some proximal resolution methods take
advantage of this decomposition, like the VMFB algorithm, summarized in
Algorithm 3, where a variable metric can be used for acceleration or simplifi-
cation. The KL inequality presented in Section 2.2.1.2 proves to be a central
argument for proving the convergence of this algorithm [Chouzenoux et al.,
2014b; Frankel et al., 2015], and for deriving convergence rates [Attouch and
Bolte, 2009; Attouch et al., 2013].

Proximal and interior point methods can be combined to produce effi-
cient solvers, as illustrated in [Kaplan and Tichatschke, 1998], where the au-
thors proposed an algorithm that minimizes a convex differentiable function
over convex inequality constraints. However, this framework does not make
use of any splitting strategy, hence it assumes that the proximity operator
of the merit function is easy to compute. More recently, a preconditioning
strategy based on the logarithmic barrier was proposed in [Valkonen, 2017]
to modify the dual update in a proximal primal-dual algorithm.

A major challenge, when dealing with IPMs is that the logarithmic bar-
rier does not satisfy the gradient-Lipschitz property. Therefore, specific line
search strategies, like the majorize-minimize line search [Chouzenoux et al.,
2012], have to be designed in order to preserve the convergence properties of
the methods used to solve the intermediate problems. This question has also
been addressed in the context of VMFB algorithms, when the gradient of the
smooth term in the objective function is not globally Lipschitz-continuous.
Following the work of [Tseng and Yun, 2009], Armijo-type line searches were
proposed in [Bello Cruz and Nghia, 2016; Bonettini et al., 2016], where the
convergence of the algorithm is obtained in a convex setting under suit-
able assumptions on the variable metrics. However, the line search strategy
in [Bello Cruz and Nghia, 2016] requires multiple gradient computations,
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while [Bonettini et al., 2016] requires the domain of the nondifferentiable
function to be closed. Other line searches have also been studied in [Salzo,
2017], where convergence guarantees and convergence rate in terms of func-
tion values are provided for the convex case. It is worth noting that, similarly
to [Bonettini and Prato, 2015b], [Salzo, 2017] considers a relaxed version of
the monotonicity condition on the variable metrics from [Combettes and
Vũ, 2014], where the metrics converge to a multiple of the identity operator,
with a multiplicative factor which is allowed to vary along iterations. This
assumption still remains restrictive compared to the conditions required in
[Chouzenoux et al., 2014b], where the proof of convergence is carried out
using the KL property.

In this chapter, we propose to combine the VMFB algorithm with the
logarithmic barrier method, leading to our proposed algorithm PIPA. We
will make use of one of the line searches investigated in [Salzo, 2017] to
determine the stepsize value for each iteration of the proposed algorithm.
Although our assumptions on the function domains are different from those
in [Salzo, 2017], we prove that the line search remains valid in our context.
Furthermore, we carry out the convergence analysis of the proposed algo-
rithm under a mild boundedness condition on the involved variable metrics.
Under some additional assumptions, we derive a linear convergence rate for
the inner loop involved in PIPA.

§ 3.2 Optimization problem and assumptions

In this chapter we consider the following constrained minimization problem,

P0 : minimize
x∈C

f(x) + g(x) (3.1)

where the feasible set C is defined as follows,

C = {x ∈ Rm | (∀i ∈ {1, . . . , p}) ci(x) ≤ 0}.

We also define the set D as

D = {x ∈ Rm | (∀i ∈ {1, . . . , p}) ci(x) < 0},

and assume that Assumption 3.2.1 below is satisfied.

Assumption 3.2.1

(i) The set of solutions to P0 is nonempty and bounded.

(ii) Functions f , g and (ci)1≤i≤p belong to Γ0(Rm), and f + g is bounded
from below. The set D is assumed to be nonempty, open, and C ⊂
dom (f) ⊂ dom (g).
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(iii) Functions g and (ci)1≤i≤p are differentiable on C; ∇g and (∇ci)1≤i≤p
are Lipschitz–continuous on any compact subset of C.

Since the functions (ci)1≤i≤p are l.s.c., the closure of D is equal to C.

Remark 3.2.2 (Role of the constraints) In image processing, the con-
straints can be derived from the underlying geometry of the problem [Hariza-
nov et al., 2013]. For instance, inequality constraints are used in a problem
of deformable image matching in [Musse et al., 2001] to ensure that the
estimated image deformation is injective and preserves the topology. Con-
straints can also serve to enforce some a priori knowledge about the solution,
and act as regularization terms, as in the image segmentation approach in
[Klodt and Cremers, 2011], where bound constraints are imposed on the
segmented areas and their barycenters.

Following the framework of IPMs, we propose to reformulate the con-
strained problem P0 as a sequence (Pµj )j∈N of modified subproblems para-
metrized for every j ∈ N by a barrier coefficient µj > 0 and defined as

Pµj : minimize
x∈Rm

f(x) + g(x) + µjB(x) (3.2)

where B is the logarithmic barrier associated with the constraints:

B : Rm → ]−∞,+∞]

x 7→

−
p∑
i=1

ln(−ci(x)) if x ∈ D

+∞ otherwise.

For simplicity, for every x ∈ Rm we introduce the shorter notation
c(x) = (ci(x))1≤i≤p ∈ Rp, and the following functions,

(∀µ > 0) ϕµ = g + µB, and Ψµ = f + ϕµ,

where Ψµ is designated as the merit function.

§ 3.3 PIPA algorithm

The proposed method, PIPA, is made of two interlocked loops. These are
detailed in Algorithms 11 and 12, where � denotes the Loewner partial order
for matrices.

Given j ∈ N, Algorithm 11 produces an approximate solution to Pµj
via VMFB iterations consisting in a gradient step on the smooth term ϕµj ,
and a proximal step on the nondifferentiable term f . The proximity oper-
ators are computed within the metric induced by symmetric definite pos-
itive preconditioning matrices, whose eigenvalues are bounded from below
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Algorithm 11: Aµ(x0, δ, θ, γ, ε, ν, ν)

Inputs are such that (δ, θ) ∈]0, 1[2, (γ, µ) ∈ (R∗+)2, ε ∈ R+ and
0 < ν ≤ ν;

Initialization: x0 ∈ D;
for k = 0, 1, . . . do

Choose Mk ∈ S+
m such that νIm �Mk � νIm;

for l = 0, 1, . . . do
x̃k,l = proxMk

γθlf

(
xk − γθlM−1

k ∇ϕµj (xk)
)
;

Exit loop if (3.3) is satisfied;
end
xk+1 = x̃k,l;
γk = γθl;
vk+1 = 1

γk
Mk(xk − xk+1)−∇ϕµ(xk) +∇ϕµ(xk+1);

Stop if ‖vk+1‖ < ε;
end
Return (xk+1,vk+1);

Algorithm 12: Proximal Interior Point Algorithm (PIPA)
Let (δ, θ) ∈]0, 1[2, (γ, µ0) ∈ (R∗+)2, x0 ∈ D, and let (µj)j∈N and
(εj)j∈N satisfy Assumption 3.3.1;

for j = 0, 1, . . . do
Let 0 < νj ≤ νj ;
(xj+1,vj+1) = Aµj (xj , δ, θ, γ, εj , νj , νj);
λj+1 =

(
− µj
ci(xj+1)

)
1≤i≤p

;

end
Return xj+1;
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and from above (using ν and ν positive constants). For well-chosen matri-
ces, this variable metric strategy can significantly improve the convergence
speed. Preconditioning matrices can be determined for instance through a
majorize-minimize procedure [Chouzenoux et al., 2016].

It must be emphasized that, since the barrier is logarithmic, the gradient
of ϕµj is not Lipschitz-continuous on Rm. Thus, the VMFB algorithm must
be associated with a line search to find an appropriate value for the stepsize
so as to guarantee convergence of the scheme. In Algorithm 11, we use the
backtracking line search method investigated in [Salzo, 2017, LS1], itself a
generalization of [Bello Cruz and Nghia, 2016]. At iteration k ∈ N, this
backtracking procedure stops if

ϕµ(x̃k,l)− ϕµ(xk)− 〈x̃k,l − xk,∇ϕµ(xk)〉 ≤
δ

γ̄θl
‖x̃k,l − xk‖2Mk

, (3.3)

for some l ∈ N. Such line search ensures both sufficient decrease of the cri-
terion and feasibility of the next iterate. It is interesting to note that if the
whole cost function in P0 is smooth (f = 0), then it reduces to the stan-
dard Armijo line search along the steepest direction. Applications related to
`p-norms, with 1 < p < 2, and Bregman distances where considered in
[Salzo, 2017], but, to the best of our knowledge, it is the first time that this
line search is applied in the context of an interior point approach.

The resolution of the inner subproblem through Algorithm 11 is stopped
once a certain accuracy is reached. In practice, we propose to stop the it-
erations once the norm of one element of the sequence (vk+1)k∈N, where
(∀k ∈ N) vk+1 ∈ ∂Ψµ(xk+1), is sufficiently small. As stated in Assump-
tion 3.3.1 below, the sequence (εj)j∈N and the barrier parameter (µj)j∈N,
have to be chosen properly to secure the convergence of the sequence of
iterates produced by Algorithm 12 to a solution to the initial problem P0.
Hence, the decrease of the barrier parameter in Algorithm 12 is chosen such
that Assumption 3.3.1 is satisfied ; examples of such decrease strategies can
be found in Sections 3.6 and 3.7.

Assumption 3.3.1 (Hyperparameters) For every j ∈ N, µj > 0 and
εj > 0. In addition, limj→+∞ µj = 0 and limj→+∞ εj/µj = 0.

Remark 3.3.2 The sequence (λj+1)j∈N, produced by Algorithm 12, can
be linked to the Lagrangian parameters associated with the constrained
problem P0. This is used in proof of convergence in Section 3.5.3.

3.3.1 Related works

It can be noted that there exist links between the proposed PIPA algo-
rithm and a different class of methods called diagonal or penalization meth-
ods [Attouch et al., 2011b; Garrigos et al., 2018], for which a general study
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was recently provided for the continuous setting in [Attouch et al., 2018].
In [Attouch et al., 2011a], the authors proposed a similar approach in the
discrete setting based on the FB algorithm. However, they assume that the
gradient of the penalization function, which is the equivalent of our barrier,
is Lipschitz continuous, and they let the penalization parameter tend to in-
finity, whereas our barrier parameter decreases to zero. In addition, their
method does not solve a problem of the form (3.1), instead, it performs a hi-
erarchical minimization [Attouch et al., 2011a, Eq. (6)]. This key difference
is also highlighted in [Alvarez and Cabot, 2006] and [Cabot, 2005], in the
continuous and discrete settings, respectively. In [Cabot, 2005] the author
studied the proximal point algorithm, without any forward-backward step,
and considered a penalization parameter that, similarly to our barrier pa-
rameter, vanishes to zero. The optimization problem that is solved by this
algorithm then depends on the rate of reduction chosen for this coefficient.
In addition, it is assumed that the penalization function is bounded from
below, which is not necessarily satisfied by the logarithmic barrier.

Related works also include Bregman distance approaches and entropy-
like proximal algorithms [Iusem et al., 1994; Brito et al., 2012; Quiroz et al.,
2015], where the Euclidean norm in the definition of the proximity operator
is replaced by a divergence measure. The latter can be chosen such that feasi-
bility is ensured at each iteration. However, the computation of the modified
proximity operator in such methods is usually not straightforward.

In the next sections, we provide a convergence study of PIPA.

§ 3.4 Main convergence results

In this section we state our main theoretical results.

3.4.1 Well-definedness of Algorithm 11

First, Theorem 3.4.1 guarantees that the stopping criterion in Algorithm 11
is well-defined.

Theorem 3.4.1 Under Assumption 3.2.1, for every (δ, θ) ∈]0, 1[2,
(γ, µ, ν) ∈ (R∗+)3, ν ∈]0, ν] and x0 ∈ D, for every ε ∈ R∗+ there exists
k ∈ N such that ‖vk+1‖ < ε.

Proof. See Section 3.5.1.4.
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3.4.2 Convergence rate of Algorithm 11

An important feature of Algorithm 11 is the decay rate of the sequence
(‖vk+1‖)k∈N. This rate can be made explicit for the particular instance of
linear inequality constraints. More precisely, we focus on the case when the
constrained problem takes the form:

minimize
x∈Rm

g̃(Hx) + f(x)

subject to Ax− b ∈]−∞, 0]p,
(3.4)

where g̃ : Rn →]−∞,+∞],H ∈ Rn×m, A ∈ Rp×m, b ∈ Rp, and the involved
functionals satisfy the following assumption.

Assumption 3.4.2

(i) f is a polyhedral function, i.e. its epigraph a finite intersection of closed
halfspaces.

(ii) g̃ is l.s.c. with an open domain, it is strongly convex on any compact
subset of dom (g̃) and it is twice continuously differentiable on dom (g̃).

(iii) f + g̃ ◦H is proper and it is continuous on the domain of its subdif-
ferential.

Remark 3.4.3 Assumption 3.4.2 holds for instance if g̃ = 1
2‖ · −y‖2 with

y ∈ Rn and if f = κ‖W ·‖1 where κ ≥ 0 andW ∈ Rq×m is a linear transform
(e.g., a wavelet analysis operator [Pustelnik et al., 1999; Chaux et al., 2010]).
This corresponds to an `1-regularized least-squares problem, at the core of
many applications such as denoising [Rudin et al., 1992], image restoration
[Fu et al., 2006], machine learning, or biological data analysis [Hastie et al.,
2009, Chapter 18.4].

The following result can be deduced from existing results concerning the
use of the KL inequality in optimization.

Theorem 3.4.4 Let µ > 0 and consider the barrier problem Pµ associated
to problem (3.4). Under Assumptions 3.2.1 and 3.4.2, for every (δ, θ) ∈
]0, 1[2, (γ, ν) ∈ (R∗+)2, ν ∈]0, ν], and x0 ∈ D, the sequence (vk+1)k∈N gener-
ated by Algorithm 11 converges linearly to 0 when ε = 0.

Proof. See Section 3.5.2.2.
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3.4.3 Convergence of Algorithm 12

We finally present results regarding the convergence of the proposed method
PIPA, i.e. Algorithm 12.

Theorem 3.4.5 Suppose that Assumptions 3.2.1 and 3.3.1 hold for every
(δ, θ) ∈]0, 1[2, (γ, µ0) ∈ (R∗+)2 and x0 ∈ D. Then, any sequence
(xj+1,λj+1)j∈N generated by Algorithm 12 is bounded. In addition, every
of its cluster point (x∗,λ∗) is a primal-dual solution to P0, i.e. (x∗,λ∗) is
a saddle point for the Lagrangian defined in (3.35).

Proof. See Section 3.5.3.1.

A stronger convergence result can be obtained under additional assumptions.
In particular, the following condition will turn out to play an important role.

Assumption 3.4.6 Either the constraints are affine, i.e. c : x 7→ Ax −
b where A ∈ Rp×m and b ∈ Rp, and A has full column rank (i.e. A is
injective), or there exists i ∈ {1, . . . , p} such that ci is strictly convex.

Let SP be the set of solutions to P0 (primal solutions), and let SD be the
set of solutions to the Lagrange dual problem associated with P0 (dual
solutions), whose definition is recalled below [Boyd and Vandenberghe, 2004,
Section 5.2].

maximize
λ∈[0,+∞[p

inf
x∈Rm

f(x) + g(x) + λ>c(x)

In addition, let

JP = {i ∈ {1, . . . , p}|(∃x ∈ SP ) ci(x) < 0}, (3.5)

and
JD = {i ∈ {1, . . . , p}|(∃λ ∈ SD) λi > 0}. (3.6)

Our main convergence result, summarized in Theorem 3.4.7, provides a use-
ful characterization for the limit point of Algorithm 12 using the notion of
analytic center introduced in Section 2.2.5.4. The definition and the proof
of existence of the analytic center are given in Section 3.5.3.2.

Theorem 3.4.7 Under Assumptions 3.2.1 and 3.3.1, the following state-
ments hold.

(i) If there exists only one element in SP (resp. SD), then the sequence
(xj+1)j∈N (resp. (λj+1)j∈N) produced by Algorithm 12 converges to this
unique primal (resp. dual) solution to P0.
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(ii) Suppose that there exist at least two distinct elements in SP (resp. SD),
that Assumption 3.4.6 holds, and that P0 has the strict complementar-
ity property, i.e. JP ∪ JD = {1, . . . , p}. Then the sequence (xj+1)j∈N
(resp. (λj+1)j∈N) produced by Algorithm 12 converges to a primal (resp.
dual) solution to P0, which is the analytic center of SP (resp. SD).

Proof. See Section 3.5.3.3.

The next sections providing the proofs for the aforementioned theorems
are organized as follows. First, we show in Section 3.5.1.2 that, under the
considered assumptions, the chosen line search is well-defined. Then, we
derive Lemma 3.5.6, Corollary 3.5.8 and Lemma 3.5.10 in Section 3.5.1.3,
which lead to the proof of Theorem 3.4.1 in Section 3.5.1.4. Section 3.5.2 is
dedicated to the convergence analysis and convergence rate of Algorithm 11.
In Section 3.5.2.1 we start by deriving Lemma 3.5.12 which, together with
Lemmas 3.5.6 and 3.5.10, ensures that the sufficient decrease, relative error
and continuity conditions required in [Attouch et al., 2013, Theorem 2.9] are
satisfied. This leads to Proposition 3.5.13. We then derive Proposition 3.5.14
which directly leads to the proof of Theorem 3.4.4 in Section 3.5.2.2. Finally,
we study the convergence of Algorithm 12 in Section 3.5.3 based on a La-
grangian approach. The proof for Theorem 3.4.5 is given in Section 3.5.3.1
and the proof of Theorem 3.4.7 is provided in 3.5.3.3.

§ 3.5 Proofs

3.5.1 Well-definedness of Algorithm 11

3.5.1.1 Preliminary results

First, we show that there exists a solution to every intermediate prob-
lem (3.2).

Corollary 3.5.1 Under Assumption 3.2.1, for every µ ∈ R∗+, the solution
set to Pµ is a nonempty convex compact subset of D.

Proof. Let µ ∈ R∗+. By assumption, there exists x0 ∈ D such that x0 ∈
dom (Ψµ). The set lev≤Ψµ(x0) (Ψµ) = {x ∈ D |Ψµ(x) ≤ Ψµ(x0)} is nonempty
since it includes x0, it is convex since D is convex and Ψµ ∈ Γ0(Rm), and
it is compact in view of Theorem 2.2.21. Solving Pµ amounts to minimizing
Ψµ over lev≤Ψµ(x0) (Ψµ). Hence, the solution set to Pµ is nonempty, convex,
closed and bounded, as a subset of lev≤Ψµ(x0) (Ψµ) which is compact.
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Next, we derive a preliminary result about functions ϕµ and Ψµ with µ > 0.

Lemma 3.5.2 Under Assumption 3.2.1(iii), for every µ > 0, ∇ϕµ is Lips-
chitz-continuous on every compact subset of D.
Proof. Let K be a compact subset of D. By assumption, for every i ∈
{1, . . . , p}, ci is differentiable on K, so it is continuous on K and, according
to the extreme value theorem, it is bounded on K and it attains its bounds.
Thus, there exist (c, c) ∈] − ∞, 0[2 such that (∀i ∈ {1, . . . , p})(∀x ∈ K)
c ≤ ci(x) < c. Hence, for every (x,y) ∈ K2,

‖∇B(x)−∇B(y)‖ ≤
p∑
i=1

‖ci(y)∇ci(x)− ci(x)∇ci(y)‖
|ci(x)ci(y)|

≤
p∑
i=1

|ci(y)|
c2
‖∇ci(x)−∇ci(y)‖

+
|ci(y)− ci(x)|

c2
‖∇ci(y)‖. (3.7)

In addition, by assumption, for every i ∈ {1, . . . , p}, ∇ci is Li-Lipschitz con-
tinuous on K for some Li > 0; in particular, it is bounded by some constant
Ki > 0. Hence, for every i ∈ {1, . . . , p}, ci is Ki-Lipschitz continuous on K
and we deduce from (3.7) that

‖∇B(x)−∇B(y)‖ ≤
(

p∑
i=1

cLi +K2
i

c2

)
‖x− y‖.

Therefore, for every µ > 0, ∇ϕµ = ∇g+ µ∇B is Lipschitz continuous on K.

3.5.1.2 Line search

We show in this section that the chosen line search is well-defined given our
assumptions. Let (γ, µ) ∈ (R∗+)2, θ ∈]0, 1[ andM ∈ S+

m. Let h be such that

(∀x ∈ D)(∀l ∈ N) h(x, l) = proxMγθlf

(
x− γθlM−1∇ϕµ(x)

)
.

Note that, from Proposition 2.2.11, for every x ∈ D and l ∈ N,

M(x− h(x, l))− γθl∇ϕµ(x) ∈ γθl∂f(h(x, l)). (3.8)

First, we check that, in the backtracking procedure, if the stepsize tends to
zero then the expression for the next iterate in Algorithm 11 converges to
the current iterate.
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Lemma 3.5.3 Under Assumption 3.2.1, for every θ ∈]0, 1[, (γ, µ) ∈ (R∗+)2

and M ∈ S+
m, if x ∈ D, then

lim
l→+∞

h(x, l) = x. (3.9)

Proof. Let l ∈ N and x ∈ D. From Proposition 2.2.10 we have

‖h(x, l)− proxMγθlf (x)‖M ≤ γθl‖M−1∇ϕµ(x)‖M . (3.10)

Taking the limit in (3.10) we deduce that,

lim
l→+∞

‖h(x, l)− proxMγθlf (x)‖M = 0 (3.11)

In addition, M−1∂f is a maximally monotone operator with respect to
‖ · ‖M . From [Bauschke and Combettes, 2017, Proposition 16.27] and since
∅ 6= intdom (f) ⊂ dom (∂f), we have

D ⊂ C ⊂ dom (f) ⊂ dom (f) = intdom (f) ⊂ dom (∂f).

Thus, [Bauschke and Combettes, 2017, Theorem 23.48] leads to

lim
l→+∞

‖proxMγθlf (x)− x‖M = 0. (3.12)

Finally, from (3.11) and (3.12) and the triangular inequality it follows that
liml→+∞ ‖h(x, l)− x‖M = 0, hence the result since M ∈ S+

m.

We now show that, [Salzo, 2017, Lemma 3.6(ii)] holds for the line search.

Lemma 3.5.4 Under Assumption 3.2.1, for every θ ∈]0, 1[, (γ, µ) ∈ (R∗+)2

and M ∈ S+
m, if x ∈ D \Argmin(f + ϕµ), then

lim
l→+∞

γθl(ϕµ(h(x, l))− ϕµ(x)− 〈h(x, l)− x,∇ϕµ(x)〉)
‖h(x, l)− x‖2M

= 0.

Proof. Take l ∈ N and x ∈ D \ Argmin(f + ϕµ). If x = h(x, l) then, from
(3.8), it follows that 0 ∈ ∂f(x) +∇ϕµ(x) and x is a minimizer of f + ϕµ,
which leads to a contradiction. Hence, ‖h(x, l)−x‖M 6= 0. SinceM−1∂f is
a maximally monotone operator with respect to ‖ · ‖M , [Huang and Dong,
2014, Lemma 1] leads to

‖x− h(x, l)‖M
γθl

≤ ‖x− h(x, l + 1)‖M
γθl+1



3.5. Proofs 53

and (γθl/‖h(x, l) − x‖M )l∈N is a decreasing sequence. Hence, there exists
l0 ∈ N and a ∈ R∗+ such that

(∀l > l0)
γθl

‖x− h(x, l)‖M
≤ a. (3.13)

In addition, from Lemma 3.5.3 we deduce that (3.9) holds. According to
Assumption 3.2.1(iii), D is an open set, so there exist l1 ≥ l0 and a convex
subset K of D such that x ∈ K and for every l ≥ l1, h(x, l) ∈ K. From
Lemma 3.5.2 it follows that ∇ϕµ is uniformly continuous on any compact
subset of K. Thus, [Salzo, 2017, Corollary 3.4 (ii)] and the norm equivalence
λmin(M)1/2‖ · ‖ ≤ ‖ · ‖M ≤ λmax(M)1/2‖ · ‖, where λmin(M) and λmax(M)
are the minimal and maximal eigen values of M , lead to

lim
l→+∞

ϕµ(h(x, l))− ϕµ(x)− 〈h(x, l)− x,∇ϕµ(x)〉
‖h(x, l)− x‖M

= 0. (3.14)

Combining (3.13) and (3.14) completes the proof.

Finally, we derive Corollary 3.5.5 below which states that the line search
performed at each iteration of Algorithm 11 is properly defined.

Corollary 3.5.5 Let (δ, θ) ∈]0, 1[2, (γ, µ, ν) ∈ (R∗+)3, ν ∈]0, ν], and x0 ∈
D. Suppose that Assumption 3.2.1 holds and that Algorithm 11 is run at
iteration k ∈ N. Then, xk+1 ∈ D and condition (3.3) is met for some l ∈ N.

Proof. Let us prove the result by induction. First, note that x0 ∈ D. Assume
that the property is satisfied at iteration k − 1 if k ≥ 1. Under Assump-
tion 3.2.1, if xk ∈ D is not a minimizer of f +ϕµ then we can apply Lemma
3.5.4, which implies that the line search will stop: for any δ > 0, (3.3) will be
satisfied for a finite l. If xk ∈ Argmin(f + ϕµ), then x̃k,0 = xk and the line
search is satisfied for l = 0. Moreover, if xk+1 6∈ D then ϕµ(xk+1) = +∞
and the inequality (3.3) could not be satisfied. Hence, xk+1 ∈ D.

3.5.1.3 Key elements for the proof of Theorem 3.4.1

Let us first show the following sufficient decrease property regarding the
values of the merit function.
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Lemma 3.5.6 (Sufficient decrease) For every (δ, θ) ∈]0, 1[2, (γ, µ, ν) ∈
(R∗+)3, ν ∈]0, ν], and x0 ∈ D, if Assumption 3.2.1 holds, then the sequence
(xk)k∈N produced by Algorithm 11 with ε = 0 satisfies, for every k ∈ N, the
inequality

Ψµ(xk+1) ≤ Ψµ(xk)−
ν(1− δ)

γ
‖xk+1 − xk‖2. (3.15)

Proof. Let k ∈ N. The stopping criterion (3.3) for the backtracking procedure
on γk leads to

Ψµ(xk+1) ≤ ϕµ(xk) + 〈xk+1 − xk,∇ϕµ(xk)〉

+
δ

γk
‖xk+1 − xk‖2Mk

+ f(xk+1). (3.16)

In addition, we have

Mk(xk − xk+1)− γk∇ϕµ(xk) ∈ γk∂f(xk+1),

and it follows from the definition of the subdifferential that

γkf(xk) ≥ 〈Mk(xk − xk+1)− γk∇ϕµ(xk),xk − xk+1〉+γkf(xk+1). (3.17)

Re-writing (3.17) in a more convenient form yields

〈xk+1 − xk,∇ϕµ(xk)〉+ f(xk+1) ≤ f(xk)−
1

γk
‖xk − xk+1‖2Mk

. (3.18)

Plugging (3.18) into (3.16) and using νIn �Mk completes the proof.

Remark 3.5.7 It is worth noting that, without the assumption of existence
of bounds (ν, ν) on matrices (Mk)k∈N, the proof of Lemma 3.5.6 still allows
us to conclude that the sequence (Ψµ(xk))k∈N is decreasing. Thus, in view of
Theorem 2.2.21, there exists a compact K ⊂ D such that (∀k ∈ N) xk ∈ K.
Therefore, by the continuity of function c on K we deduce that there exist
c and c in ]−∞, 0[ such that (∀k ∈ N)(∀i ∈ {1, . . . , p}) c ≤ ci(xk) ≤ c < 0.
This remark will be useful in Sections 3.6 and 3.7 to prove that the chosen
variable metrics satisfy the boundedness condition.

Before deriving a lowerbound for (γk)k∈N in Lemma 3.5.9, we show that
the distance between two iterates produced by Algorithm 11 tends to zero
and that the iterates are bounded.

Corollary 3.5.8 Under Assumption 3.2.1, for every (δ, θ) ∈]0, 1[2,
(γ, µ, ν) ∈ (R∗+)3, ν ∈]0, ν], and x0 ∈ D, the sequence (xk)k∈N produced
by Algorithm 11 with ε = 0 satisfies the following properties:
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(i) limk→+∞ ‖xk+1 − xk‖ = 0;

(ii) there exists a compact K ⊂ D such that (∀k ∈ N) xk ∈ K.

Proof. (i) Summing (3.15) for k = 0 to N − 1 ≥ 0 gives

N−1∑
k=0

‖xk+1 − xk‖2 ≤ γ

ν(1− δ) (Ψµ(x0)−Ψµ(xN )) (3.19)

≤ γ

ν(1− δ)
(

Ψµ(x0)−Ψµ

)
, (3.20)

where Ψµ = minx∈Rm Ψµ(x). The existence of Ψµ is ensured by Corol-
lary 3.5.1. Letting N tend to infinity gives

∑∞
k=0 ‖xk+1 − xk‖2 < +∞,

which leads directly to the result.
(ii) From Theorem 2.2.21, the set {x ∈ D | Ψµ(x) ≤ Ψµ(x0)} is compact,
and from Lemma 3.5.6, for every k ∈ N, xk belongs to this set, which com-
pletes the proof.

Before deriving relative error and continuity conditions, we show that,
for every barrier problem, the stepsize computed with the line search is
bounded below from zero.

Lemma 3.5.9 Under Assumption 3.2.1, for every (δ, θ) ∈]0, 1[2, (γ, µ, ν) ∈
(R∗+)3, ν ∈]0, ν], and x0 ∈ D, there exists γ

µ
> 0 such that the sequence

(γk)k∈N generated by Algorithm 11 with ε = 0 is bounded below by γ
µ
.

Proof. Let I be the set of iterations in Algorithm 11 for which the stepsize
value produced by the backtracking is strictly smaller than γ, i.e. I = {k ∈
N | γk < γ}. For every k ∈ I there exists an integer lk > 0 such that
γk = γθlk . By applying [Huang and Dong, 2014, Lemma 1], we have

(∀k ∈ I)
‖xk − x̃k,lk−1‖Mk

γθlk−1
≤ ‖xk − x̃k,lk‖Mk

γθlk
,

which leads to

(∀k ∈ I) ‖xk − x̃k,lk−1‖ ≤
1

θ

(
ν

ν

) 1
2

‖xk − xk+1‖. (3.21)

From Corollary 3.5.8(ii), there exists a compact subset K of D such that,
for every k ∈ N, xk ∈ K. Let ϑ : K → [0,+∞[ : x 7→ dist(x,Rm \ D). ϑ is
a continuous function defined on a compact set and, since D is open, it is
positive valued. It follows from the extreme value theorem, that there exists
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η ∈]0,+∞[ such that η = minx∈K ϑ(x). For every z ∈ K, let B(z, η/2)
be the open ball with center z and radius η/2. For every y ∈ B(z, η/2),
‖y − z‖ ≤ η/2 < η ≤ dist(z,Rm \ D), which implies that y 6∈ Rm \ D, that
is y ∈ D. This shows that

(∀z ∈ K) B(z, η/2) ⊂ D. (3.22)

On the other hand, since ∪z∈KB(z, η/4) is a cover of K, it follows from the
compactness of this latter set that there exists (zj)1≤j≤J in K such that

K ⊂
J⋃
j=1

B(zj , η/4). (3.23)

Let S = ∪Jj=1B(zj , η/2). It follows from (3.22) and (3.23) that this set is a
compact subset of D including K. From (3.23), for every k ∈ I, there exists
jk ∈ {1, . . . , J} such that

‖xk − zjk‖ <
η

4
. (3.24)

On the other hand, according to Corollary 3.5.8(i), there exists k0 ∈ N such
that

(∀k ≥ k0) ‖xk − xk+1‖ ≤ θ
(ν
ν

) 1
2 η

4
. (3.25)

Set I0 = {k ∈ I | k ≥ k0}. By applying the triangle inequality, we deduce
from (3.21), (3.24), and (3.25) that

(∀k ∈ I0) ‖x̃k,lk−1 − zjk‖ <
η

2
,

which shows that x̃k,lk−1 ∈ S. Since ϕµ is convex, the following inequality
holds for every k ∈ I0:

〈x̃k,lk−1 − xk,∇ϕµ (x̃k,lk−1)−∇ϕµ(xk)〉 ≥
ϕµ (x̃k,lk−1)− ϕµ(xk)− 〈x̃k,lk−1 − xk,∇ϕµ(xk)〉 . (3.26)

In addition, lk is the smallest integer such that (3.3) is satisfied. Hence, (3.3)
is not satisfied for x̃k,lk−1 and, for every k ∈ I0, the following holds,

ϕµ (x̃k,lk−1)− ϕµ(xk)− 〈x̃k,lk−1 − xk,∇ϕµ(xk)〉 >
νθδ

γk
‖x̃k,lk−1 − xk‖2 .

(3.27)
Necessarily, xk 6= x̃k,lk−1. From (3.26) and (3.27), it follows that (∀k ∈ I0),

‖x̃k,lk−1 − xk‖ ‖∇ϕµ (x̃k,lk−1)−∇ϕµ(xk)‖ >
νθδ

γk
‖x̃k,lk−1 − xk‖2 .

Moreover, according to Lemma 3.5.2, ∇ϕµ is Lipschitz continuous on S.
Hence, there exists LS ∈ R∗+ such that

(∀k ∈ I0) γk >
νθδ

LS
.
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In addition, (∀k 6∈ I) γk = γ, and the set I \ I0 has a finite number of ele-
ments. Hence, the proof is complete by setting γ

µ
= min

{
γ, νθδLS , (γk)k∈I\I0

}
.

We are now ready to identify a sequence of subgradients of Ψµ converging
to zero.

Lemma 3.5.10 (Relative error condition) Under Assumption 3.2.1, for
every (δ, θ) ∈]0, 1[2, (γ, µ, ν) ∈ (R∗+)3, ν ∈]0, ν], and x0 ∈ D, the sequence
(vk+1)k∈N produced by Algorithm 11 when ε = 0 is such that (∀k ∈ N)
vk+1 ∈ ∂Ψµ(xk+1) and

(∃Kµ > 0)(∀k ∈ N) ‖vk+1‖ ≤ Kµ‖xk+1 − xk‖.

Proof. Let k ∈ N. By definition of xk+1 and vk+1,

vk+1 −∇ϕµ(xk+1) =
1

γk
Mk(xk − xk+1)−∇ϕµ(xk) ∈ ∂f(xk+1). (3.28)

By definition of Ψµ, it follows that vk+1 ∈ ∂Ψµ(xk+1). In addition, the
triangle inequality and Lemma 3.5.9 lead to

‖vk+1‖ ≤
ν

γ
µ

‖xk − xk+1‖+ ‖∇ϕµ(xk+1)−∇ϕµ(xk)‖.

From Corollary 3.5.8(ii) and Lemma 3.5.2, we know that (xk)k∈N belongs
to a compact subset K of D, on which ∇ϕµ is Lipschitz-continuous for some
constant LK > 0. Setting Kµ = ν/γ

µ
+ LK completes the proof.

Remark 3.5.11 It can also be deduced from (3.28) that, for every k ∈ N,
vk+1 − µ∇B(xk+1) ∈ ∂(f + g)(xk+1).

3.5.1.4 Proof of Theorem 3.4.1

In view of Lemma 3.5.10 and Corollary 3.5.8(i), for every ε ∈ R∗+, there
exists k ∈ N such that ‖vk+1‖ < ε.
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3.5.2 Convergence analysis of Algorithm 11

3.5.2.1 Preliminary results

We first derive the following continuity condition.

Lemma 3.5.12 (Continuity condition) Under Assumptions 3.2.1, let
(δ, θ) ∈]0, 1[2, (γ, µ, ν) ∈ (R∗+)3, ν ∈]0, ν] and x0 ∈ D. If the sequence
(xk)k∈N is produced by Algorithm 11 with ε = 0, then there exists a sub-
sequence (xkq)q∈N and there exists x ∈ D such that

lim
q→+∞

xkq = x and lim
q→+∞

Ψµ(xkq) = Ψµ(x). (3.29)

Proof. From Corollary 3.5.8(ii) we know that (xk)k∈N belongs to a compact
subset K of D. Hence, there exists a subsequence (xkq)q∈N converging to an
element x ∈ D. Since Ψµ is l.s.c., we have

Ψµ(x) ≤ lim inf
q→+∞

Ψµ(xkq). (3.30)

Without loss of generality one can assume that k0 > 0. From Lemma 3.5.10,
for every q ∈ N, vkq belongs to ∂Ψµ(xkq) and ‖vkq‖ ≤ Kµ‖xkq − xkq−1‖.
For every q ∈ N, we have

Ψµ(xkq) ≤ −
〈
vkq ,x− xkq

〉
+ Ψµ(x)

≤ Kµ‖xkq − xkq−1‖‖x− xkq‖+ Ψµ(x). (3.31)

From Corollary 3.5.8(i), ‖xkq − xkq−1‖ → 0 as q → +∞. Hence, taking the
limit in (3.31) yields the following inequality

lim sup
q→+∞

Ψµ(xkq) ≤ Ψµ(x). (3.32)

Altogether (3.30) and (3.32) lead to lim
q→+∞

Ψµ(xkq) = Ψµ(x).

The next result guarantees that, in the absence of stopping rule, Algo-
rithm 11 converges to a solution to the barrier problem.

Proposition 3.5.13 Let (δ, θ) ∈]0, 1[2, (γ, µ, ν) ∈ (R∗+)3, ν ∈]0, ν], and
x0 ∈ D. Suppose that Ψµ is a KL function and that Assumption 3.2.1 holds.
Then the sequence (xk)k∈N produced by Algorithm 11 with ε = 0 converges
to a solution to Pµ and has a finite length, i.e.

+∞∑
k=0

‖xk+1 − xk‖ < +∞.
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Proof. Under Assumption 3.2.1, Lemmas 3.5.6, 3.5.10 and 3.5.12 hold. If,
in addition, Ψµ is a KL function, then we can apply [Attouch et al., 2013,
Theorem 2.9]. Thus, (xk)k∈N converges to a critical point of Ψµ and has
finite length. By convexity, every critical point of Ψµ is a global minimizer
of Ψµ, and a solution to Pµ.

We now show that, for a useful special case, Algorithm 11 converges linearly
in terms of iterate and objective function value.

Proposition 3.5.14 Let µ ∈ R∗+ and consider the barrier problem Pµ as-
sociated to problem (3.4). Under Assumptions 3.2.1 and 3.4.2, for every
(δ, θ) ∈]0, 1[2, (γ, ν) ∈ (R∗+)2, ν ∈]0, ν], and x0 ∈ D, the sequence (xk)k∈N
generated by Algorithm 11 with ε = 0 converges linearly to a solution x∗ to
Pµ, and (Ψµ(xk))k∈N converges linearly to Ψ(x∗).

Proof. Let µ ∈ R∗+. Under Assumptions 3.2.1 and 3.4.2 we can apply [Li
and Pong, 2018, Corollary 5.1] which states that Ψµ is a KL function with
exponent 1/2. The convergence of (xk)k∈N to a solution x∗ ∈ D to Pµ is
guaranteed by Proposition 3.5.13. From Lemmas 3.5.6, 3.5.10 and 3.5.12, we
can apply [Frankel et al., 2015, Theorem 4(ii)]. Hence, there exist c ∈ R∗+
and k0 ∈ N such that for every k ≥ k0,

Ψµ(xk)−Ψµ(x∗) = O
(

exp(−cKµ)k
)

(3.33)

and
‖x∗ − xk‖ = O

(
exp(−cKµ/2)k

)
. (3.34)

The linear convergence properties follow from the fact that exp(−cKµ) < 1
and exp(−cKµ/2) < 1.

3.5.2.2 Proof of Theorem 3.4.4

Proposition 3.5.13 ensures the convergence of (xk)k∈N to some x∗. According
to Lemma 3.5.10, there exists Kµ > 0 such that

(∀k ∈ N) ‖vk+1‖ ≤ Kµ‖xk+1 − xk‖
≤ Kµ(‖xk+1 − x∗‖+ ‖x∗ − xk‖).

We then deduce from Proposition 3.5.14 that there exists c ∈ R∗+ such that
‖vk+1‖ = O

(
exp(−cKµ/2)k

)
.
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3.5.3 Convergence analysis of Algorithm 12

We are now ready to establish the convergence of Algorithm 12 to a solution
to problem P0 described in (3.1). Under Assumption 3.2.1, finding a solution
to P0 is equivalent to finding a saddle point of the associated Lagrangian
L0, which is defined, for every x ∈ Rm and λ ∈ [0,+∞[p, as

L0(x,λ) = f(x) + g(x) + λ>c(x). (3.35)

For every x ∈ C, let ∇c(x) be the matrix in Rm×p such that (∀i ∈ {1, . . . , p})
its ith column is equal to ∇ci(x). For every v ∈ Rp let Diag(v) denotes the
diagonal matrix whose elements are given by v. A point (x∗,λ∗) is a saddle
point of L0 if and only if the following optimality conditions are satisfied.

0 ∈ ∂f(x∗) +∇g(x∗) +∇c(x∗)λ∗ (3.36)
Diag(λ∗)c(x∗) = 0p (3.37)
λ∗ ∈ [0,+∞[p and c(x∗) ∈]−∞, 0]p (3.38)

We prove in the following section that the sequences (xj)j∈N and
(λj+1)j∈N, produced by Algorithm 12, converge to a saddle point of L0. We
remind that, for every j ∈ N, the dual variable λj+1 is defined as follows,

λj+1 =

(
− µj
ci(xj+1)

)
1≤i≤p

. (3.39)

As it is detailed in Section 2.2.5.2, (3.39) can be seen as a perturbation of
condition (3.37) and, in the case of affine inequality constraints, (3.39) can
be directly derived from the Lagrangian formulation of the barrier problem.

We first show that the primal and dual sequences produced by Algo-
rithm 12 are bounded.

Lemma 3.5.15 Under Assumptions 3.2.1 and 3.3.1, for every (δ, θ) ∈]0, 1[2,
(γ, µ0) ∈ (R∗+)2, and x0 ∈ D, the sequences (xj+1)j∈N and (λj+1)j∈N pro-
duced by Algorithm 12 are bounded.

Proof. Let j ∈ N. According to Lemma 3.5.10, vj+1 belongs to ∂Ψµj (xj+1).
Using the definition of the subdifferential, the stopping criterion ‖vj+1‖ ≤ εj ,
and the Cauchy-Schwarz inequality leads to

Ψµj (xj+1) ≤ 〈vj+1,xj+1 − x0〉+ Ψµj (x0)

≤ εj‖xj+1 − x0‖+ Ψµj (x0). (3.40)

Eq. (3.40) is equivalent to

(f + g)(xj+1) ≤ µj(B(x0)−B(xj+1)) + εj‖xj+1−x0‖+ (f + g)(x0). (3.41)
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Moreover, since B is convex,

(f + g)(xj+1) ≤ −µj 〈∇B(x0),xj+1 − x0〉+ εj‖xj+1 − x0‖+ (f + g)(x0)

≤ (εj + µj‖∇B(x0)‖)‖xj+1 − x0‖+ (f + g)(x0). (3.42)

Assume that (xj+1)j∈N is unbounded. Then there exists a subsequence
(dq)q∈N = (xjq+1)q∈N of (xj+1)j∈N such that the sequence (tq)q∈N =
(‖xjq+1‖)q∈N has only strictly positive elements and satisfies

lim
q→+∞

tq = +∞, lim
q→+∞

dq
tq

= d ∈ Rm and ‖d‖ = 1. (3.43)

The last two equalities are derived from the compactness of the unit ball.
Let x∗ be a solution to P0 and let t ∈ R∗+. For every q0 ∈ N, let τq0 =
min{tq | q ≥ q0}. Since (∀i ∈ {1, . . . , p}) ci(x∗) ≤ 0, (∀q ∈ N) ci(dq) < 0,
and ci is convex, we have

(∀q ≥ q0)

(
1− τq0

tq

)
x∗ +

τq0
tq
dq ∈ D.

By taking the limit in the above inclusion as q →∞, we obtain x∗+τq0d ∈ C.
In addition, for every q ≥ q0,

(f + g)

((
1− τq0

tq

)
x∗ +

τq0
tq
dq

)
≤
(

1− τq0
tq

)
(f + g)(x∗) +

τq0
tq

(f + g)(dq).

(3.44)
We deduce from (3.42) that

1

tq
(f + g)(dq) ≤ (εjq + µjq‖∇B(x0)‖)

∥∥∥∥dqtq − x0

tq

∥∥∥∥+
1

tq
(f + g)(x0). (3.45)

As q → +∞, we have εjq → 0, µjq → 0, tq → +∞ and ‖dq/tq −x0/tq‖ → 1.
Hence, taking the limit in (3.45) leads to lim supq→∞(f + g)(dq)/tq ≤ 0.
Using now the lower-semicontinuity of f + g and letting q tend to +∞ in
(3.44) lead to

(∀q0 ∈ N) (f + g)
(
x∗ + τq0d

)
≤ lim inf

q→+∞
(f + g)

((
1− τq0

tq

)
x∗ +

τq0
tq
dq

)
≤ (f + g)(x∗) + lim sup

q→+∞

τq0
tq

(f + g)(dq)

≤ (f + g)(x∗).

Therefore, for every q0 ∈ N, x∗ + τq0d is a solution to P0. Since τq0 →
+∞ as q0 → +∞, the set of solution to P0 is unbounded. This is however
in contradiction with Assumption 3.2.1(i), thus showing that (xj+1)j∈N is
bounded.
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Similarly, we prove that (λj)j∈N is bounded. Let j ∈ N and i ∈ {1, . . . , p}.
Since ci is convex, ci(xj+1) < 0 and µj > 0, the following inequality holds

µj
ci(x0)

ci(xj+1)
≤ µj +

µj
ci(xj+1)

〈∇ci(xj+1),x0 − xj+1〉 . (3.46)

Summing (3.46) for all i ∈ {1, . . . , p} leads to

− 〈c(x0),λj+1〉 ≤ µjp− µj 〈∇B(xj+1),x0 − xj+1〉 . (3.47)

In addition, from Remark 3.5.11 and the definition of the subdifferential of
f + g, we deduce that

(f + g)(xj+1) ≤ −〈vj+1 − µj∇B(xj+1),x0 − xj+1〉+ (f + g)(x0). (3.48)

Combining (3.47) and (3.48) yields

−〈c(x0),λj+1〉 ≤ µjp+ (f + g)(x0)− (f + g)(xj+1) + εj‖x0 − xj+1‖.

Moreover, every component of λj+1 and of −c(x0) is strictly positive, hence

0 < −〈c(x0),λj+1〉 ≤ µjp+ (f + g)(x0)− (f + g)(x∗) + εj‖x0 − xj+1‖,

where x∗ is a solution to P0. Since (µj , εj) → (0, 0) as j → +∞, and since
(xj+1)j∈N has been shown to be bounded, we conclude that −〈c(x0),λj+1〉
is bounded and so is (λj+1)j∈N.

3.5.3.1 Proof of Theorem 3.4.5

According to Lemma 3.5.15, the sequences (xj+1)j∈N and (λj+1)j∈N are
bounded. Hence, there exists a subsequence (xjq+1,λjq+1)q∈N converging to
some point (x∗,λ∗). By construction, for every q ∈ N, c(xjq+1) ∈] −∞, 0[p

and λjq+1 ∈]0,+∞[p. Since (∀i ∈ {1, . . . , p}) ci is l.s.c., taking the limit
as q → +∞ yields (3.38). Moreover, by definition, for every q ∈ N we
have Diag(λjq+1)c(xjq+1) = −µjq1p. Since (∀i ∈ {1, . . . , p}) ci is continuous
on C, letting q → +∞ in the previous equality leads to (3.37). Let q ∈
N. From Remark 3.5.11, it follows that xjq+1 = proxf+g(xjq+1 + vjq+1 −
µjq∇B(xjq+1)). In addition, proxf+g is nonexpansive. Hence,∥∥xjq+1 − proxf+g (x∗ −∇c(x∗)λ∗)

∥∥
≤
∥∥xjq+1 + vjq+1 − µjq∇B(xjq+1)− x∗ +∇c(x∗)λ∗

∥∥ . (3.49)
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By applying the triangle inequality, we deduce from (3.49) that∥∥x∗ − proxf+g (x∗ −∇c(x∗)λ∗)
∥∥ ≤ 2‖x∗ − xjq+1‖+ εj

+

p∑
i=1

‖(λjq+1)i∇ci(xjq+1)− λ∗i∇ci(x∗)‖. (3.50)

The sequence (xj+1)j∈N is a bounded sequence in D. Therefore, all its cluster
points belong to a compact subset of C. In view of Assumption 3.2.1(iii), ∇ci
is continuous at x∗. Thus, taking the limit in (3.50) as q → +∞ leads to

x∗ = proxf+g (x∗ −∇c(x∗)λ∗) , (3.51)

which is equivalent to (3.36). Finally, (x∗,λ∗) is a saddle-point for the La-
grangian (3.35), which completes the proof.

3.5.3.2 Analytic center

When there are several primal or dual solutions to the constrained prob-
lem (3.1), assumptions are needed to prove the uniqueness of the cluster
point exhibited in Theorem 3.4.5. Under these assumptions, the analytic
center introduced in Section 2.2.5.4 provides an insightful characterization
for the limit point. We show in this section the existence of a primal and a
dual analytic centers.

Let us recall that under Assumption 3.2.1, strong duality holds and the
set of saddle points for the Lagrangian L0 is equal to SP × SD where SP
and SD are the so-called sets of primal and dual solutions to P0 [Boyd and
Vandenberghe, 2004, Section 5.4.2]. We derive the following result for these
sets.

Proposition 3.5.16 Under Assumptions 3.2.1(i)-(ii), SP and SD are non-
empty bounded convex sets.

Proof. The results for SP directly follows from Assumptions 3.2.1(i)-(ii).
The convexity of SD follows from standard results [Boyd and Vandenberghe,
2004, Section 5.2]. The fact that SD is not empty also follows from Assump-
tion 3.2.1(i)-(ii). For every (x∗,λ∗) ∈ SP ×SD, the inequality (f + g)(x∗) ≤
(f+g)(x0)+λ∗>c(x0) holds for every x0 ∈ D. If SD is unbounded, then the
right-hand side can tend to −∞ which is in contradiction with (f + g)(x∗)
being a finite number. So SD is bounded.
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We also show that under an additional assumption, the sets JP , defined
in (3.5), and JD, defined in (3.6), are nonempty. The number of elements in
JP and JD are noted #JP and #JD, respectively.

Proposition 3.5.17 If Assumption 3.4.6 holds and if the set SP (resp. SD)
contains at least two distinct elements, then the set JP (resp. JD) is non-
empty.

Proof. Assume that there are at least two distinct elements x1 and x2 in SP .
Then, for every i ∈ {1, . . . , p}, ci(x1) ≤ 0 and ci(x2) ≤ 0. Assume that As-
sumption 3.4.6 holds. If the constraints are affine, i.e. c : x 7→ Ax − b,
with A an injective matrix, then there exists i0 ∈ {1, . . . , p} such that
(Ax1)i0 6= (Ax2)i0 and ci0(x1) 6= ci0(x2). The same conclusion obviously
holds if i0 ∈ {1, . . . , p} is such that ci0 is strictly convex. Hence, we have
either ci0(x1) < 0 or ci0(x2) < 0, that is i0 ∈ JP .
Assume that there are at least two distinct elements λ1 and λ2 in SD.
Both λ1 and λ2 belong to [0,+∞[p. Since λ1 and λ2 are distinct there
exists i0 ∈ {1, . . . , p} such that (λ1)(i0) 6= (λ2)(i0). Hence, we have either
(λ1)(i0) > 0 or (λ2)(i0) > 0, that is i0 ∈ JD.

If JP is nonempty, we define the following quantities: for every x ∈ Rm,
cJP (x) = (ci(x))i∈JP and BJP (x) = −∑i∈JP ln(−ci(x)) if cJP (x) ∈] −
∞, 0[#JP , +∞ otherwise. We also consider the following problem.

PP : minimize
x∈Rn

BJP (x)

subject to x ∈ SP and cJP (x) ∈]−∞, 0[#JP .
(3.52)

Similarly, if JD is nonempty, we define the following quantities: for every
λ ∈ Rp, λJD = (λi)i∈JD and bJD(λ) = −∑i∈JD ln(λi) if λJD ∈]0,+∞[#JD ,
+∞ otherwise. We also consider the following problem.

PD : minimize
λ∈Rp

bJD(λ)

subject to λ ∈ SD and λJD ∈]0,+∞[#JD
(3.53)

Lemma 3.5.18 Under Assumptions 3.2.1 and 3.4.6, if SP (resp. SD) does
not reduce to a singleton, then there exists a unique solution to PP (resp.
PD) called the analytic center of SP (resp. SD).
Proof. Assume that SP does not reduce to a singleton. According to Propo-
sition 3.5.16, SP is nonempty and it thus contains at least two distinct ele-
ments. It then follows from Proposition 3.5.17 that the set JP is nonempty.
In addition, by invoking again Proposition 3.5.16, SP is bounded and con-
vex. Since the constraint functions (ci)1≤i≤p are convex, we deduce that the
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feasible set of PP is bounded and convex. Because of the convexity of the
set SP and the functions (ci)1≤i≤p, it can be checked that this feasible set is
nonempty. In addition, under Assumptions 3.2.1 and 3.4.6, BJP is l.s.c. and
strictly convex, and it is finite-valued on {x ∈ Rm | cJP (x) ∈]−∞, 0[#JP }.
Hence, there exists a unique solution to PP . Assume that SD does not re-
duce to a singleton. It then follows from Propositions 3.5.16 and 3.5.17 that
JD 6= ∅. By using a similar reasoning as for PP we deduce that there exists
a unique solution to PD.

The complementary slackness property in (3.37) ensures that JP ∩ JD =
∅. We say that P0 has the strict complementarity property if JP ∪ JD =
{1, . . . , p}. It follows from [Bonnans and Shapiro, 2013, Theorem 3.133] that
strict complementarity always holds in linear programming. We refer to
Remark 2.2.24 for a discussion regarding this assumption.

3.5.3.3 Proof of Theorem 3.4.7

(i) The result follows from Theorem 3.4.5.
(ii) Let (x∗,λ∗) be a primal-dual solution to P0. Let (x,λ) be a cluster point
of (xj+1,λj+1)j∈N and let (xjq+1,λjq+1)q∈N be a subsequence converging to
this point. Pick q ∈ N. In view of Remark 3.5.11 and (3.36) we have that

vjq+1 −∇c(xjq+1)λjq+1 ∈ ∂(f + g)(xjq+1),

and
−∇c(x∗)λ∗ ∈ ∂(f + g)(x∗).

Since f +g is convex, we deduce from the monotonicity of its subdifferential
that

0 ≤
〈
xjq+1 − x∗,vjq+1

〉
−
〈
xjq+1 − x∗,∇c(xjq+1)λjq+1 −∇c(x∗)λ∗

〉
.

(3.54)
In addition, ‖vjq+1‖ ≤ εjq and (∀i ∈ {1, . . . , p}) ci is convex. Hence, we
deduce from (3.54) that

0 ≤ ‖xjq+1 − x∗‖εjq +
(
c(xjq+1)− c(x∗)

)>
λ∗ +

(
c(x∗)− c(xjq+1)

)>
λjq+1.
(3.55)

From (3.37) and (3.39), c(x∗)>λ∗ = 0 and, for every i ∈ {1, . . . , p},
ci(xjq+1)(λjq+1)i = −µjq . Hence,

0 ≤ ‖xjq+1 − x∗‖
εjq
µjq

+ p−
p∑
i=1

λ∗i
(λjq+1)i

+
ci(x

∗)

ci(xjq+1)
. (3.56)

Note that (∀i 6∈ JP ) ci(x
∗) = 0 and (∀i 6∈ JD) λ∗i = 0. If JP (resp. JD) is

nonempty, we can then choose x∗ (resp. λ∗) such that cJP (x∗) ∈]−∞, 0[#JP
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(resp. λ∗JD ∈]0,+∞[#JD). Consequently, by using Assumption 3.3.1, as q →
+∞ ,(3.56) becomes

∑
i∈JD

λ∗i
λi

+
∑
i∈JP

ci(x
∗)

ci(x)
≤ p, (3.57)

where we necessarily have

(∀i ∈ JD) λi > 0 and (∀i ∈ JP ) ci(x) < 0. (3.58)

Because of the strict complementarity, there are exactly p positive terms
in the left-hand side of (3.57). Therefore, we can apply the arithmetic-
geometric mean inequality which leads to∏

i∈JD

λ∗i
λi

∏
i∈JP

ci(x
∗)

ci(x)

 ≤ 1, (3.59)

with the convention that, if JP (resp. JD) is empty, the corresponding prod-
uct is equal to 1. From Theorem 3.4.5, we deduce that (x,λ) is a primal-dual
solution to P0. Hence, (x∗,λ) and (x,λ∗) are also primal-dual solutions to
P0. Therefore, because (x,λ) satisfies (3.58), (3.59) also holds when either
λ∗ = λ or x∗ = x. Consequently,∏

i∈JP

(−ci(x∗)) ≤
∏
i∈JP

(−ci(x)) and
∏
i∈JD

λ∗i ≤
∏
i∈JD

λi. (3.60)

If there exist at least two distinct elements in SP (resp. SD) then, from
Propositions 3.5.16 and 3.5.17, JP (resp. JD) is nonempty. It follows from
(3.60) that x (resp. λ) is a solution to PP (resp. PD). In turn, Lemma
3.5.18 guarantees that PP (resp. PD) has a unique solution. Thus, there ex-
ists a unique cluster point for the primal (resp. dual) sequence and (xj+1)j∈N
(resp. (λj+1)j∈N) converges to the analytic center of SP (resp. SD).

Now that we have established some theoretical guarantees regarding the
proposed algorithm, we show that PIPA performs well with respect to state-
of-the-art methods on two applications in image processing, namely hy-
perspectral unmixing and joint geometry-texture decomposition and recon-
struction of computed tomography data. Our numerical experiments demon-
strate in addition the benefits of using a variable metric to accelerate the
convergence.
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§ 3.6 Application: Hyperspectral unmixing

Hyperspectral imaging devices are remote sensing systems that acquire the
emitting light spectrum of a distant scene, here modeled as a 2D image
[Bioucas-Dias et al., 2012]. Let s and r be respectively the number of ac-
quired spectral bands and pixels in the image, and let Y ∈ Rs×r denote
the measured hyperspectral cube. Assume that we have access to a library
S ∈ Rs×q, where each column of S contains the spectral signatures of one
material (or endmember) among q that are expected to be present in the
scene. The proportion or abundance of every material in every pixel is de-
scribed through the abundance matrixX ∈ Rq×r. The following linear model
is frequently used to relate the data, the endmembers and the abundances,
when there is no microscopic interaction between the materials:

Y = SX + Ω,

with Ω ∈ Rs×r a realization of an additive white Gaussian noise. The esti-
mation of X from Y and S is an inverse problem called unmixing [Chan
et al., 2018].

3.6.1 Problem formulation

Following [Iordache et al., 2012; Moussaoui et al., 2012; Chouzenoux et al.,
2014a], we propose to formulate the following constrained minimization
problem to perform the unmixing task,

minimize
X∈Rq×r

1
2‖Y − SX‖22 + κ

q∑
i=1
‖(WXi)d‖1

subject to (∀j ∈ {1, . . . , r})
q∑
i=1

Xi,j ≤ 1

(∀i ∈ {1, . . . , q})(∀j ∈ {1, . . . , r}) Xi,j ≥ 0,

(3.61)

where ‖ · ‖2 denotes the Frobenius norm, (∀i ∈ {1, . . . , q}) Xi ∈ Rr is the
ith line of the abundance matrix X, W ∈ Rr×r is a wavelet decomposition
operator, ‖(·)d‖1 is the `1-norm of the detail wavelet coefficients, and κ ∈ R+

is a regularization parameter. It is worth noting that the linear constraints
account for the atmospheric absorption [Keshava and Mustard, 2002] since,
for every pixel, the sum of all fractional abundances may be less than one.
Moreover, the wavelet-based penalization [Pustelnik et al., 1999] allows us
to enforce useful spatial regularity on the sought abundance maps.

From this point forward, the vectorizations of X ∈ Rq×r and Y ∈ Rs×r,
in lexicographic order, are denoted by x ∈ Rm with m = qr and y ∈ Rsr,
respectively, and ⊗ denotes the Kronecker product. Problem (3.61) can thus
be re-written as in (3.1), with p = m + r and (∀x ∈ Rm) g(x) = 1/2‖y −
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(Ir ⊗ S)x‖2, f(x) = κ
∑q

i=1 ‖(WPix)d‖1, (∀i ∈ {1, . . . , q}) Pi ∈ Rr×m is a
decimation matrix such that Pix = Xi, and c(x) = Ax− b with

A =

(
Ir ⊗ 1>q
−Im

)
and b =

(
1r
0m

)
.

The resulting minimization problem satisfies Assumptions 3.2.1, 3.4.2 and
3.4.6. Hence, Theorems 3.4.1, 3.4.4 and 3.4.5 regarding convergence and con-
vergence rate of Algorithm 11 hold. In addition, in the considered example,
the rank of S is equal to q, so there exists a unique solution to (3.61) and
Theorem 3.4.7(i) holds.

3.6.2 Realistic data simulation and test configuration

In order to simulate Y , we make use of the Urban1 dataset, which provides
the spectral signatures and abundance maps for q = 6 materials in s = 162
spectral bands. We consider images of size r = 256 × 256. The product of
the spectral library and attenuated abundance map is corrupted with an
additive white Gaussian noise with a standard deviation of 0.06. Let the
signal-to-noise ratio be defined as

SNR = 20 log10(‖x‖/‖x− x‖),

where x is the ground-truth for x. In addition, for each material
i ∈ {1, . . . , q}, the signal-to-noise ratio of its associated abundance map
Xi ∈ Rr is

SNRi = 20 log10

(
‖Xi‖/‖Xi −Xi‖

)
.

The regularization weight κ is tuned by a grid search so as to reach the
largest SNR, in that case κ = 0.01. Regarding the operator W , we selected
an orthogonal Daubechies 4 wavelet decomposition performed over 2 resolu-
tion levels. As for the variable metric, we consider two cases: the proposed
method without variable metric (taken as the identity matrix), which is re-
ferred to as PIPA; and PIPA-VM, which denotes the case when, following
the strategy in [Becker and Fadili, 2012], for every j ∈ N, the variable metric
is chosen as the Hessian of ϕµj . The proximity operator of the regularization
term in the variable metric is computed numerically using Algorithm 5.

Let us now discuss the boundedness condition required for the variable
metrics in PIPA-VM. For every x ∈ D, we have

ϕµ(x) =
1

2
‖y − (Ir ⊗ S)x‖2 − µ

p∑
i=1

ln(bi −A>i x),

1www.escience.cn/people/feiyunZHU/Dataset_GT.html

www.escience.cn/people/feiyunZHU/Dataset_GT.html
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where Ai ∈ Rm (resp. bi ∈ R) is the ith row (resp. component) of A (resp.
of b). For every µ ∈ R∗+ and x ∈ D, the Hessian of ϕµ at x is equal to

∇2ϕµ(x) = Ir ⊗ (S>S) + µ

p∑
i=1

AiA
>
i

(A>i x− bi)2
.

Finally, in view of Remark 3.5.7, we deduce that there exist c and c in ]−∞, 0[
such that, for every k ∈ N and every i ∈ {1, . . . , p}, c ≤ A>i xk − bi ≤ c < 0.
Since the rank of A is equal to m, for every µ ∈ R∗+, the aforementioned
variable metrics are bounded from below and above by strictly positive con-
stants, as required in Algorithm 11.

According to Assumption 3.3.1, the precision with which the subproblem
is solved must decrease faster to zero than the barrier parameter. Hence,
in order to satisfy Assumption 3.3.1, we choose the barrier parameter and
precision sequences as follows,

(∀j ∈ N) εj = ε
µj
ζj
, and µj+1 =

µj
ρj
, (3.62)

where ρj ≥ ρ > 1, ζ > 1 and ε > 0. Regarding PIPA, we take ε = 103, µ0 = 1,
ρj = 1.5 for every j ∈ N and ζ = 1+10−5. For PIPA-VM we choose ε = 105,
µ0 = 0.01, ζ = 1+10−5 and, to avoid numerical instabilities when µj is very
small, we pick ρj = 1.5 for every j ∈ N such that µj ≥ 10−6, and decrease it
gradually: if 4× 10−9 ≤ µj < 10−6 then ρj = 1.1, if 10−12 ≤ µj < 4× 10−9

then ρj = 1.01, and finally, if µj < 10−12, then ρj = 1.001.
We compare PIPA and PIPA-VM with three state-of-the-art convex op-

timization algorithms: ADMM [Setzer et al., 2010; Iordache et al., 2012],
which is presented in Algorithm 8, PDS [Komodakis and Pesquet, 2015;
Combettes et al., 2014], summarized in Algorithm 6, and GFBS [Raguet
et al., 2013], which is presented in Algorithm 4.

We also implement preconditioned versions of ADMM and GFBS, which
are referred to as ADMM-VM and GFBS-VM, respectively. ADMM-VM is
based on [Shefi and Teboulle, 2014, Algorithm 2], where the metrics are
taken constant as in [Shefi and Teboulle, 2014, Example 3.4]. Regarding
GFBS-VM, we implement [Raguet and Landrieu, 2015, Algorithm 1] with a
modified metric based on the Hessian of the data-fitting term in (3.61). All
computational times are given for experiments run on Matlab 2018b on an
Intel Xeon CPU E5-1650 at frequency 3.20 GHz.

3.6.3 Results

The solution to (3.61) with κ = 0, i.e. without regularization, can be ob-
tained with the primal-dual interior point method from [Chouzenoux et al.,
2014a]. It is referred to as IPLS and yields SNR = 11.02 dB after about 12
seconds, whereas solving the same problem with κ = 0.01 leads to a better
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Figure 3.1: SNR as a function of time.

reconstruction with SNR = 12.45 dB, illustrating the benefits of regularizing
in this example. Figure 3.1 shows that the SNR increases faster with PIPA-
VM than with the other algorithms. Moreover, it can be clearly seen in this
figure that PIPA-VM exhibits a much faster convergence than PIPA, which
demonstrates the advantage of using a variable metric in this example. The
SNR obtained for each material after running the different methods for 11
seconds can be found in Table 3.1. For 5 out of 6 endmembers, the SNR
of the abundance maps obtained with PIPA-VM after 11 seconds is better
than for all other methods. In addition, for all materials PIPA-VM gives
better results after 11 seconds than the non-regularized solution IPLS.

Visual results for Asphalt and Dirt materials are displayed in Figure 3.2,
where we only show the results for IPLS, ADMM and PIPA-VM, since they
outperformed the other methods. One can notice that, after running all
algorithms for 11 sec, the abundance maps produced by PIPA-VM for these
two materials are visually more satisfactory than the ones obtained with
ADMM, while the non-regularized solution IPLS is significantly noisy.

In order to evaluate the algorithms based on their pointwise convergence,
we let them run for a very large number of iterations and compute the rel-
ative distance between the current iterate and the solution x∞. As one can
see on Figure 3.3, the sequence generated by PIPA-VM converges faster to
the solution than the iterates produced by the other algorithms. It is finally
worth noticing that, although an inexact computation of the proximity op-
erator is performed in PIPA-VM, the method appears to be robust to the
error generated by this approximation.
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Asphalt Grass Tree Roof Metal Dirt

IPLS 10.12 11.21 11.86 14.91 4.90 13.68
PDS 2.23 3.65 4.83 8.56 7.12 10.30

GFBS 2.31 3.82 4.88 9.38 0.40 10.24
GFBS-VM 2.50 3.58 4.86 7.46 -0.42 10.71

ADMM 7.40 11.37 12.45 15.08 7.25 12.34
ADMM-VM 2.78 4.90 4.01 8.02 0.70 6.79

PIPA 1.71 2.17 2.90 2.20 -0.94 8.51
PIPA-VM 11.31 12.25 13.04 15.27 7.12 14.52

Table 3.1: Signal-to-noise ratio (SNRi)1≤i≤6 (in dB) for each material after
11 seconds.

(a) (b) (c) (d)

Figure 3.2: Abundance map of Asphalt road (first row) and Dirt (second
row): (a) ground-truth, (b) IPLS solution, visual results after running (c)
ADMM and (d) PIPA-VM for 11 seconds.

§ 3.7 Application: Joint geometry-texture de-
composition and reconstruction

3.7.1 Geometry-texture decomposition

Various problems in image processing and computer vision can be formulated
as the decomposition of a natural image into texture and geometry compo-
nents. One can mention, for instance, texture segmentation [Frecon et al.,
2016], classification [Aujol and Chan, 2006], or digital inpainting [Bertalmio
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Figure 3.3: Relative distance from current iterate to limit point as a func-
tion of time.

et al., 2003]. In the following, we will denote by xt ∈ Rr and xg ∈ Rr,
the texture and geometry components of a natural image xt+g ∈ Rr, so that
xt+g = xt+xg. The geometry xg represents a piecewise smooth version of the
image, and can be extracted by using the total variation semi-norm [Osher
et al., 2003]. The texture highlights local components with higher spatial fre-
quencies. Depending on the considered application, different texture models
can be found in the literature, based on wavelet decompositions [Briceño-
Arias et al., 2011] or on the Hölder exponent [Pustelnik et al., 2013], to
name only a few. Here, we will focus on material images in which the tex-
ture is located near the boundaries of different objects, as it can happen
for instance in material image analysis, where the samples are subject to
erosion and microporosity. Therefore, we will rely on the Laplacian detector
for texture extraction, as the latter is known to be useful for edge and blob
detection [Haralick, 1979]. Another issue is the acquisition procedure used
for this type of images.

3.7.2 X-ray computed tomography

X-Ray Computed Tomography (CT) is a fast non-destructive scanning tech-
nique [Kak and Stanley, 2001], which is frequently used to acquire images
from material samples. The acquisition process in CT consists in measuring
the absorption of an object along a sampled grid of size L for Nθ angular
positions. It can be modeled through the discrete Radon projection opera-
tor H ∈ Rn×r, with r the number of pixels and n = L × Nθ the number
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of measurements. Although matrix H is sparse, it is also high-dimensional
and ill-conditioned. Hence, reconstructing the image from the measured data
y ∈ Rn (also called sinogram) is a challenging inverse problem [Chouzenoux
et al., 2013b], which involves ringing artifacts, contrast issues due to beam
hardening, and noise caused by sensor motion [Ketcham and Carlson, 2001].
These artifacts can be partially removed by improving scanning techniques
or by increasing the number of measurements, but this comes at a price and
lots of applications can benefit from a faster subsampled CT acquisition.

Reconstructing the image from the acquired data is a heavy processing
step which can introduce a bias in subsequent image processing tasks, such
as the classification of material components [Gouillart et al., 2013]. There-
fore, we propose to perform jointly two tasks: the reconstruction and the
geometry-texture decomposition. We show that this decomposition can be
performed in a reasonable time with PIPA.

3.7.3 Problem formulation

We consider the following variational formulation,

minimize
(xt,xg)∈Rr×Rr

1
2‖Fxt‖2 + κTV(xg)

subject to xt + xg ∈ [xmin, xmax]r

xt ∈ [−α, α]r

‖H(xt + xg)− y‖∞ ≤ χ

(3.63)

where xmin = 0 and xmax = 1 are the minimal and maximal pixel intensity
values, α > 0 is a range value parameter for the texture, κ > 0 is a regulariza-
tion parameter, χ > 0 is an upperbound on the measurement uncertainty,
TV denotes the isotropic total variation semi-norm with (zero) Dirichlet
boundary conditions. Moreover, F = Ir −∆ ∈ Rr×r where ∆ ∈ Rr×r is
the Laplacian associated with the following 2D kernel padded with circulant
assumption: 0 1 0

1 −4 1
0 1 0

 .

The first term in the objective function enforces edge detection in the tex-
ture, while the geometry is made piecewise smooth thanks to the total vari-
ation regularization. The first set of constraints represents bounds on the
pixel values of the natural image. The texture, which is supposed to capture
small variations in the image, is modeled as a zero-centered component in
the second set of constraints, where we take α = xmax/3. The last constraint
is the data-fit term, which can be decomposed into 2×n linear inequalities.
Hence, the constraints can be reformulated as Ax − b ∈] − ∞, 0]p where



74 A fast proximal IPM for constrained variational formulations

x = [(xt)>, (xg)>]>, M ∈ Rp×m, b ∈ Rp, p = 2(n+ 2r), m = 2r,

M =



Ir Ir
−Ir −Ir
Ir 0r×r
−Ir 0r×r
H H
−H −H

 and b =



xmax1r
−xmin1r
α1r
α1r

y + χ1n
−y + χ1n

 . (3.64)

As in the previous example, (3.63) is an instance of Problem (3.1) where
(∀x ∈ Rm) f(x) = κTV(Pgx) and g(x) = 1/2‖FPtx‖2, with Pt = (Ir 0r×r)
and Pg = (0r×r Ir). It can be noted that Assumptions 3.2.1 and 3.4.6 are
satisfied. Thus, Theorems 3.4.1 and 3.4.5 hold. Since Assumption 3.4.2 does
not hold, Theorem 3.4.4 does not apply here. The solution to (3.63) is not
necessarily unique. Although the strict complementarity required to apply
Theorem 3.4.7 is difficult to check, the convergence of PIPA to a single
cluster point was observed in practice.

3.7.4 Initialization

In order to find an initial point that satisfies strictly the constraints, we
set xt to zero. Following the method in [Boyd and Vandenberghe, 2004,
Chap. 11.4], we solve the minimization problem below to initialize xg,

minimize
(s,xg)∈R×Rr

s

subject to s ≥ 0, xg ∈ [xmin, xmax]r

‖Hxg − y‖∞ ≤ χ+ s,

(3.65)

where s ≥ 0 is the maximal infeasibility. The ground-truth natural image
xt+g satisfies ‖Hxt+g − y‖∞ < χ so that the solution to (3.65) is reached
for s = 0. Problem (3.65) is a linear programming problem just like problem
(2.18). In addition, it is straightforward to check that Assumption 2.2.23
is satisfied. Hence, we can use the Newton barrier method summarized in
Algorithm 10 for solving problem (3.65). We use the code from [Boyd and
Vandenberghe, 2004, Chap. 11.4] which is available online2 This algorithm
generates iterates that belong to ]xmin, xmax[r so that, in our numerical ex-
periments, we are able to find a strictly feasible initial point in a reasonable
time.

3.7.5 Variable metric and hyperparameters

Let µj ∈ R∗+ and k ∈ N. For every x ∈ D, the Hessian of ϕµj at x ∈ Rm is
equal to

∇2ϕµj (x) =

(
F>F + µjDiag(d3(x)) +G(x) G(x)

G(x) G(x)

)
, (3.66)

2https://web.stanford.edu/~boyd/cvxbook/cvxbook_examples/chap11/

https://web.stanford.edu/~boyd/cvxbook/cvxbook_examples/chap11/
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where
G(x) = µj

(
Diag(d1(x)) +H>Diag(d2(x))H

)
. (3.67)

Hereabove, Diag(d1(x)), Diag(d2(x)) and Diag(d3(x)) are the diagonal ma-
trices whose elements are given by d1(x) ∈ Rr, d2(x) ∈ Rn, and d3(x) ∈ Rr,
respectively. These vectors are defined as follows.

(∀i ∈ {1, . . . , r}) (d1(x))i =
((
xt+g

)
i
− xmin

)−2
+
(
xmax −

(
xt+g

)
i

)−2

(∀j ∈ {1, . . . , n}) (d2(x))j =
((
Hxt+g − y

)
j

+ χ
)−2

+((
y −Hxt+g

)
j

+ χ
)−2

(∀i ∈ {1, . . . , r}) (d3(x))i =
((
xt
)
i
+ α

)−2
+
(
α−

(
xt
)
i

)−2

Given the huge size and ill-conditioning ofH, the inversion of ∇2ϕµj (x)
is hardly feasible. Hence, instead of using the full Hessian of ϕµj for the
variable metric as in Section 3.6, we propose to use an upper bound of it,
i.e. Mk ∈ S+

m such that Mk −∇2ϕµj (xk) also belongs to S+
m. We propose

to majorize µjDiag(d3(x)) by β(x)Ir where

β(x) = max
1≤i≤r

µj(d3(x))i.

For H>Diag(d2(x))H, we propose to follow the strategy in [Chouzenoux
et al., 2014c] and upper-bound it by the diagonal matrix Diag(P>d2(x)) ∈
Rr×r, where P ∈ Rn×r is such that for every i ∈ {1, . . . , r} and j ∈
{1, . . . , n},

Pj,i = Hj,i

r∑
s=1

Hj,s.

This leads to the following variable metric in Algorithm 11,

(∀k ∈ N) Mk =

(
F>F + β(xk)Ir +D(xk) D(xk)

D(xk) D(xk)

)
(3.68)

where
D(xk) = µj

(
Diag(d1(xk)) + Diag(P>d2(xk))

)
.

Since D(xk) is diagonal, the operatorMk is straightforward to invert using
the Schur formula.

In addition, similarly to Section 3.6, we deduce from Remark 3.5.7 that
matrix (3.68) satisfies the boundedness condition required in Algorithm 11.
In order to compute the proximity operator of f in such variable metric, we
use Algorithm 7. Regarding the hyperparameters in the proposed method,
in order to satisfy Assumption 3.3.1, as in the previous example, we take
sequences of the form (3.62) with µ0 = 10−3, ζ = 1 + 10−5, ε = 8.3 × 103

and ρj = 1.1 for every j ∈ N.
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0 0.5 1 0 0.5 1

Figure 3.4: Natural images: (left) phase-separated barium borosilicate glass
sample, imaged at the ESRF synchrotron (courtesy of David Bouttes), (right)
mushroom Agaricus bisporus (courtesy of DigiMorph.org, The University
of Texas High-Resolution X-ray CT Facility (UTCT), and NSF grant IIS-
0208675).

3.7.6 Test settings

We perform the joint reconstruction and decomposition of two high-quality
scans, referred to as Glass and Agaricus, which are displayed in Figure 3.4.
These images are of size r = 128×128. The discrete Radon operatorH mod-
els parallel projections along Nθ = 180 angular positions on a detector grid
of size L = 128, so that n = 180× 128. To account for measurement uncer-
tainty, the sinograms are degraded with a uniform noise with an amplitude
χ equal to 2% of the maximal entry of y. We set manually the regularization
parameter κ so that it leads to a visually satisfatory decomposition: it is set
to 0.25 for Glass and to 0.5 for Agaricus. The proposed algorithm PIPA-VM
is compared to ADMM summarized in Algorithm 8, which was the most
competitive method in Section 3.6. Remark that, in order to make the im-
plementation of ADMM feasible, we follow the same strategy as in [Iordache
et al., 2012], and alternate the minimization on the splitting variables. In our
example, we need seven splitting variables. Since ADMM does not require a
feasible starting point, we run it with two different initializations: ADMM1
refers to ADMM initialized like PIPA-VM, and ADMM2 refers to ADMM
initialized with xt taken as the zero vector and xg set to 1/2(xmin +xmax)1r.

All computational times are given for experiments run on Matlab 2018b
on an Intel Xeon CPU E5-1650 at frequency 3.20 GHz.

3.7.7 Results

To compare the convergence speed of the different methods, we plot for
each of them the relative distance between the current iterate x and the
final solution x∞, obtained after running the algorithms for 12 hours. As
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Figure 3.5: Relative distance from the iterates to the limit point as a func-
tion of time for Glass.

one can see in Figures 3.5 and 3.6, PIPA-VM converges faster to its limit
point than ADMM for both initializations. Remark that the time necessary
to solve (3.65) and to find a feasible point is taken into account in the graphs.
The results clearly show the advantage of using a feasible starting point over
a simple initial guess.

To assess the visual quality of the geometry-texture decomposition we
consider the solution obtained after reaching the stopping criterion
‖x− x∞‖/‖x∞‖ ≤ 10−2. This accuracy is reached first for PIPA-VM after
14 min for Glass and 18 min for Agaricus. The corresponding visual decom-
position and reconstruction after these durations are given in Figure 3.7. As
one can see in this figure, PIPA-VM identifies correctly the geometry as an
almost piecewise-constant image, free from locally-fast varying components
like the gills in the Agaricus mushroom. Moreover, the texture obtained
for Glass image captures well the elements on the borders between the two
species in presence, and the Agaricus gills can be found in the texture (Fig-
ure 3.7 bottom left).

Finally, we evaluate the reconstruction quality based on the signal-to-
noise ratio:

SNR = 20 log10(‖xt+g‖/‖xt+g − xt+g‖), (3.69)

where xt+g denotes the ground-truth image. The SNR values obtained with
the three methods for the reconstructions xt+g after the same durations
are summarized in Table 3.2. This table shows that the SNR obtained with
PIPA-VM is better than with the other methods after the same durations.

It can be further observed in Figures 3.8 and 3.9, that even if the SNR
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Figure 3.6: Relative distance from the iterates to the limit point as a func-
tion of time for Agaricus.

-0.1 -0.05 0 0.05 0.1 0 0.2 0.4 0.6 0.2 0.4 0.6 0.8

-0.2 -0.1 0 0.1 0 0.2 0.4 0.6 0.2 0.4 0.6 0.8

Figure 3.7: Visual results for PIPA-VM. (Top) Glass obtained after 14 min.
(Bottom) Agaricus obtained after 18 min. Left to right: texture, geometry,
reconstruction xt+g.
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Glass (14 min) Agaricus (18 min)

PIPA-VM 19.0 20.57
ADMM1 18.74 20.32
ADMM2 18.69 20.32

Table 3.2: SNR (dB) of the reconstruction xt+g obtained after running the
algorithms for the same duration.

Figure 3.8: SNR (dB) for xt+g as a function of time for Glass.

converges to the same value for the three methods, PIPA-VM follows a path
which would lead to a better SNR if stopped before convergence.

§ 3.8 Summary

In this chapter, we have shown that it is possible to combine efficiently two
powerful optimization frameworks: proximal splitting methods and interior
point algorithms. One interesting feature of the resulting iterative method is
the use of a variable metric, which can boost the convergence, as illustrated
in our hyperspectral unmixing application. The convergence of the proposed
method, as well as a convergence rate for the inner loop, have been obtained
under suitable assumptions. Regarding numerical performance, as shown on
two large-scale image processing applications, our method compares favor-
ably in terms of speed of convergence with state-of-the-art algorithms.

Although we are able to produce fast algorithms for solving optimization
problems, they are often sensitive to hyperparameters that need to be set
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Figure 3.9: SNR (dB) for xt+g as a function of time for Agaricus.

carefully. Moreover, variational strategies for addressing inverse problems
may suffer from downsides, some of which are mentioned in Section 2.1.2.2.
In that regard, neural networks appear as a powerful alternative, which is
studied in the next chapter.



- Chapter 4 -

An optimization-inspired neural network
architecture for image deblurring

As we mentioned in Section 2.1.4.2, neural networks demonstrate state-of-
the-art performance in several applications linked to inverse problems. How-
ever, these methods suffer from important downsides including a lack of in-
terpretability, few mathematical results, and no real possibility for imposing
constraints on their parameters. On the other hand, variational formula-
tions, whose limitations are discussed in Section 2.1.2.2, allow to incorpo-
rate some a priori knowledge or desirable properties for the solution, and
the convergence results regarding classical optimization algoritms are well
established. Hence, DNNs and variational-based methods can be considered
as complementary. One straightforward way to combine the benefits of both
approaches is to unfold an iterative method and untie the parameters of
both the model and the algorithm across the layers of the network [Hershey
et al., 2014].

In this chapter, we propose a novel neural network architecture called
iRestNet, which is obtained by unfolding a proximal interior point algorithm
over a finite number of iterations. More information about deep unfolding
methods can be found in Section 2.1.4.3. One key feature of this algorithm is
that it produces only feasible iterates thanks to a logarithmic barrier. This
barrier enables prior knowledge to be directly incorporated into iRestNet
and, as opposed to a projection onto the feasible set, it allows differentia-
tion and gradient backpropagation throughout the network. Hence, gradient
descent can be used for training. The stepsize, barrier parameter, and reg-
ularization weight are untied across the network and learned for each layer.
Thus, once the network has been trained, its application on test images re-
quires only a short execution time per image without any parameter search,
as opposed to traditional variational methods.

This chapter is organized as follows. First, we present our contributions
with regards to related works in Section 4.1, then, in Section 4.2, we describe

81
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the algorithm which is at the core of our method. Since the proposed algo-
rithm requires the computation of the proximity operator of the barrier, we
provide the latter for three useful cases in Section 4.3. The proposed neural
network architecture and its associated backpropagation method are pre-
sented in Section 4.4. Then, in Section 4.5, we conduct a stability analysis
of the proposed network when the data fidelity term and the regularization
function are quadratic. Section 4.6 is dedicated to numerical experiments
and comparison to state-of-the-art methods for image deblurring; finally,
some conclusions are drawn in Section 4.7.

§ 4.1 Link with related works

Several recent works consider replacing handcrafted algorithms by learned
iterative methods [Andrychowicz et al., 2016; Li and Malik, 2016]. In these
approaches, the goal is to find the minimizer of a given objective function,
whereas, in the proposed method, the architecture is inspired by an opti-
mization strategy applied to the minimization of an objective function, but a
better indicator of perceptual quality is optimized during the training step.

Only a few works so far have considered combining IPMs with deep
learning. Every layer of the network from [Amos and Kolter, 2017] solves a
small quadratic problem using an IPM, while in [Trafalis et al., 1997], hard
constraints are enforced on weights by using the logarithmic barrier function
during training. More recently, an interior point strategy was used to design
a recurrent network, whose purpose is to solve a specific convex constrained
problem [Krasopoulos and Maratos, 2014]. In our case, however, we have two
distinct objective functions. The first one leads to a constrained problem
from which the proposed architecture is inspired, while the second one is
used during training as a loss function. It is worth noting that the output
of the trained network is not necessarily a minimizer of the first objective.
Moreover, the second objective could not be a substitute to the first one
since it requires the knowledge of the ground-truth, which is available for
training time but not in testing conditions. In addition, iRestNet appears to
have more flexibility since the regularization weight can vary among layers.

To the best of our knowledge, this chapter presents the first architecture
corresponding to a deep unfolded version of an interior point algorithm with
untied stepsize and regularization parameter. As opposed to other unfolding
methods like [Mardani et al., 2017; Diamond et al., 2017], the proximity
operator and the regularization term are kept explicit, which establishes
a direct relation between the original algorithm and the network. Other
contributions of this work include the expression of the required proximity
operator, and of its corresponding gradient, for three standard variational
formulations, along with numerical experiments demonstrating the benefit
of using the proposed approach over other machine learning and variational
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methods for image deblurring.

§ 4.2 Proposed algorithm

4.2.1 Variational formulation and assumptions

Let us focus on inverse problems related to model (2.1), where the observa-
tion model is linear. Under this assumption, (2.1) becomes

y = D(Hx), (4.1)

where y ∈ Rn is the observed data, x ∈ Rm is the sought signal or image,
H ∈ Rn×m is the observation operator, and D is the noise perturbation
operator. The linear operator H is assumed to be known from a physical
model or prior identification step [Lagendijk and Biemond, 2005; Xu and
Jia, 2010].

As detailed in Section 2.1.2, the sought image x can be classically ap-
proximated by the minimizer of a penalized cost function expressed as the
sum of a data-fitting term, which measures the fidelity of the solution to
the observation model (4.1), and a regularization term, which is introduced
so as to avoid meaningless solutions and improve stability relative to noise.
This leads to problem (2.3), which is rewritten below in the case of a linear
observation model.

minimize
x∈C

f(Hx,y) + λR(x) (4.2)

In the remaining of this chapter, we will assume that, for every y ∈ Rn,
f(·,y) ∈ Γ0(Rn) and R ∈ Γ0(Rm) are twice-differentiable functions. Note
that such assumption is necessary to define the derivative steps involved in
the backpropagation procedure for the training of our network. The feasible
set C is defined by p inequality constraints, which enforce the fulfillment of
some properties that are expected to be satisfied a priori by the image:

C = {x ∈ Rm | (∀i ∈ {1, . . . , p}) ci(x) ≤ 0}, (4.3)

where, for every i ∈ {1, . . . , p}, ci ∈ Γ0(Rm). The strict interior of the feasible
domain is equal to

D = {x ∈ Rm | (∀i ∈ {1, . . . , p}) ci(x) < 0},

and it is assumed to be nonempty. The interest of such constraints in the
resolution of inverse problems has been discussed in the previous chapter in
Remark 3.2.2.

Finally, we will assume that either f(H·,y) + λR is coercive, or C is
bounded. Then the existence of solutions for (4.2) is guaranteed. It is worthy
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to emphasize that a large class of penalized formulations encountered in
the literature of image restoration fulfills the above requirements, see e.g.
[Durand and Nikolova, 2006] and references therein. For simplicity, for all
(x,y, λ) ∈ Rm × Rn × R+, we define

h(x,y, λ) = f(Hx,y) + λR(x),

and
∇1h(x,y, λ) = H>∇1f(Hx,y) + λ∇R(x),

where ∇1f is the partial gradient of f with respect to its first variable.
In general, problem (4.2) does not have a closed-form solution on account

of the inequality constraints, even for simple regularizations, hence an itera-
tive solver must be used. Several resolution approaches are available, either
based on projected gradient strategies [Iusem, 2003; Bonettini and Prato,
2015a], ADMM [Boyd et al., 2011], primal-dual schemes [Komodakis and
Pesquet, 2015], or interior point techniques [Bonettini and Serafini, 2009b].
As it is shown in Chapter 3, combining the interior point framework with
a proximal forward–backward strategy leads to very competitive solvers for
inverse problems. As detailed in Section 2.2.5, the idea behind IPMs is to
replace the initial constrained optimization problem by a sequence of un-
constrained subproblems of the form:

min
x∈Rm

f(Hx,y) + λR(x) + µB(x) (4.4)

where µ ∈ R∗+ is the barrier parameter and B : Rm →] − ∞,+∞] is the
logarithmic barrier function whose definition is recalled below.

(∀x ∈ Rm) B(x) =

 −
p∑
i=1

ln(−ci(x)) if x ∈ D,

+∞ otherwise.
(4.5)

We have made the assumption that either f(H·,y) + λR is coercive, or C
is bounded, hence, the set of solutions to (4.2) is bounded. Since D is not
empty, we can apply Corollary 3.5.1, which ensures the existence of solutions
to (4.4).

4.2.2 Proposed iterative schemes

Thanks to the proximity operator, the IPM from [Kaplan and Tichatschke,
1998] does not require any matrix inversion, as opposed to the classical New-
ton barrier method. When the proximity operator is computed in an exact
manner, the proposed IPM can be rewritten as Algorithm 13, whose conver-
gence has been proven under some assumptions [Kaplan and Tichatschke,
1998, Theorem 4.1].
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Algorithm 13: Exact version of the proximal IPM in [Kaplan and
Tichatschke, 1998] applied to problem (4.2).

Let γ ∈ R∗+ and (γk)k∈N be a sequence such that (∀k ∈ N) γ ≤ γk;
Initialization: Let x0 ∈ D;
for k = 0, 1, . . . do

xk+1 = proxγk(h(·,y,λ)+µkB) (xk)

end

Algorithm 13 requires evaluating the proximity operator of the sum of
the barrier and the regularized cost function, which can be an issue since,
in most of the cases, this operator does not have a closed-form expression.
This is the reason why we propose to modify it by introducing a forward
step, which leads to Algorithm 14.

Algorithm 14: Proposed forward–backward proximal IPM.
Let γ ∈ R∗+ and (γk)k∈N be a sequence such that (∀k ∈ N) γ ≤ γk;
Initialization: Let x0 ∈ D;
for k = 0, 1, . . . do

xk+1 = proxγkµkB (xk − γk∇1h (xk,y, λ))

end

To the best of our knowledge, there is no available convergence study for
Algorithm 14 among the literature of interior-point methods. There exist
links between the above algorithm and the diagonal or penalization method
introduced in [Czarnecki et al., 2016]. Indeed, taking A ≡ 0 and Ψ1 ≡ 0 in
[Czarnecki et al., 2016] leads to Algorithm 14, whose convergence is proven.
However, there are some key differences between both approaches, namely
i) in [Czarnecki et al., 2016], the barrier parameter tends to infinity while
it goes to zero in our case, and ii) the algorithm in [Czarnecki et al., 2016]
solves a hierarchical minimization problem instead of the constrained opti-
mization problem (4.2). It is worth noting that Algorithm 14 only requires
computing the proximity operator of the logarithmic barrier. We will provide
its expression in Section 4.3 for three different types of constraints.

4.2.3 Limitations

In IPMs, the barrier parameter and stepsize sequences, (µk)k∈N and (γk)k∈N,
are usually set by following some heuristic rules, which ensure the conver-
gence of the method to a minimizer of the considered objective function.
However, handcrafted variational formulations do not necessarily capture
perceptual image quality well. These heuristics can thus lead to a loss in
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terms of efficiency and versatility of the resulting restoration schemes. More-
over, as already mentioned, an accurate setting of the regularization weights
is particularly critical in order to obtain a satisfactory image quality when
using such penalized restoration approaches. Existing approaches for select-
ing λ, which are based on statistical considerations, are usually associated
with a substantial increase of the computational cost.

To overcome these limitations, we propose to unfold Algorithm 14 over
a given number of iterations and to learn the stepsize, the barrier and the
regularization parameters for every iteration in a supervised fashion. Our
machine learning method will make use of gradient backpropagation for its
training step. The latter requires the derivatives of the proximity operator
in Algorithm 14 with respect to its input and to the aforementioned param-
eters which are to be learned. Therefore, we first conduct an analysis of the
proximity operator of the barrier and of its derivatives, for three examples
of interest in Section 4.3.

§ 4.3 Proximity operator of the barrier

Let B be defined as in (4.5) and for all µ ∈ R∗+, γ ∈ R∗+ and x ∈ Rm, let ϕ
be defined as follows:

ϕ(x, µ, γ) = proxγµB(x).

We provide in this section expressions of ϕ and of its derivatives with respect
to its input variable x and the involved barrier and stepsize parameters
(µ, γ), for three common types of constraints. The latter will be necessary
for training the proposed neural network using a gradient backpropagation
scheme.

4.3.1 Affine constraints

Let us first consider the following half-space constraint:

C = {x ∈ Rm | a>x ≤ b}, (4.6)

with a ∈ Rm \ {0m} and b ∈ R.

Proposition 4.3.1 Let γ ∈ R∗+, µ ∈ R∗+, and let B be the function associ-
ated to (4.6), defined as

(∀x ∈ Rm) B(x) =

{
− ln(b− a>x) if a>x < b,

+∞ otherwise.

Then, for every x ∈ Rm, the proximity operator of γµB at x is given by

ϕ(x, µ, γ) = x+
b− a>x−

√
(b− a>x)2 + 4γµ‖a‖2

2‖a‖2 a. (4.7)
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In addition, the Jacobian matrix of ϕ with respect to x and the gradients of
ϕ with respect to µ and γ are given by

J (x)
ϕ (x, µ, γ) = Im −

1

2‖a‖2

(
1 +

a>x− b√
(b− a>x)2 + 4γµ‖a‖2

)
aa>, (4.8)

∇(µ)
ϕ (x, µ, γ) =

−γ√
(b− a>x)2 + 4γµ‖a‖2

a, (4.9)

and
∇(γ)
ϕ (x, µ, γ) =

−µ√
(b− a>x)2 + 4γµ‖a‖2

a. (4.10)

Proof. The expression for the proximity operator (4.7) directly follows from
Example 2.2.15(i), and Propositions 2.2.12 and 2.2.13. Taking the derivative
of (4.7) with respect to x, µ and γ leads to (4.8)–(4.10).

4.3.2 Hyperslab constraints

We now consider the following hyperslab set:

C = {x ∈ Rm | b ≤ a>x ≤ b}, (4.11)

where a ∈ Rm \ {0m}, b ∈ R and b ∈ R with b < b.

Proposition 4.3.2 Let γ ∈ R∗+, µ ∈ R∗+, and let B be the barrier function
associated to (4.11), defined as

(∀x ∈ Rm) B(x) =

{
− ln(b− a>x)− ln(a>x− b) if b < a>x < b,

+∞ otherwise.

Then, for every x ∈ Rm, the proximity operator of γµB at x is given by

ϕ(x, µ, γ) = x+
κ(x, µ, γ)− a>x

‖a‖2 a, (4.12)

where κ(x, µ, γ) is the unique solution in ]b, b[, of the following cubic equa-
tion:

0 = z3 − (b+ b+ a>x)z2 + (bb+ a>x(b+ b)− 2γµ‖a‖2)z

− bba>x+ γµ(b+ b)‖a‖2. (4.13)
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In addition, the Jacobian matrix of ϕ with respect to x and the gradients
of ϕ with respect to µ and γ are given by

J (x)
ϕ (x, µ, γ) = Im +

1

‖a‖2
(

(b− κ(x, µ, γ))(b− κ(x, µ, γ))

η(x, µ, γ)
− 1

)
aa>,

(4.14)

∇(µ)
ϕ (x, µ, γ) =

−γ(b+ b− 2κ(x, µ, γ))

η(x, µ, γ)
a, (4.15)

and

∇(γ)
ϕ (x, µ, γ) =

−µ(b+ b− 2κ(x, µ, γ))

η(x, µ, γ)
a, (4.16)

where

η(x, µ, γ) = (b− κ(x, µ, γ))(b− κ(x, µ, γ))

− (b+ b− 2κ(x, µ, γ))(κ(x, µ, γ)− a>x)− 2γµ‖a‖2.

Proof. Let x ∈ Rm, γ ∈ R∗+, and µ ∈ R∗+. The expression for the proximity
operator (4.12) follows from Example 2.2.15(ii) and Proposition 2.2.13. Let
F be defined as follows:

F (x, µ, γ, z) = (b− z)(b− z)(z − a>x) + γµ(b+ b− 2z)‖a‖2, (4.17)

for z ∈]b, b[. Expanding (4.17) gives the following:

F (x, µ, γ, z) = z3 − (a>x+ b+ b)z2 + (bb+ a>x(b+ b)− 2γµ‖a‖2)z

− bba>x+ γµ(b+ b)‖a‖2.

Hence, by definition of κ(x, µ, γ), we have F (x, µ, γ, κ(x, µ, γ)) = 0. In ad-
dition, the derivative of F with respect to its last variable is equal to

∇F (z)(x, µ, γ, z) = (b− z)(b− z)− (b+ b− 2z)(z − a>x)− 2γµ‖a‖2.

By construction, (b−κ(x, µ, γ))(b−κ(x, µ, γ)) < 0. Moreover, −2γµ‖a‖2 < 0
and, since F (x, µ, γ, κ(x, µ, γ)) = 0, it follows that (b+ b− 2κ(x, µ, γ)) and
κ(x, µ, γ)− a>x share the same sign. Hence,

η(x, µ, γ) = ∇F (z)(x, µ, γ, κ(x, µ, γ)) 6= 0.

From the implicit function theorem [Dontchev and Rockafellar, 2009, The-
orem 1B.1], we deduce that the gradient of κ with respect to x and the
partial derivatives of κ with respect to µ and γ exist and are equal to

∇κ(x)(x, µ, γ) =
(b− κ(x, µ, γ))(b− κ(x, µ, γ))

η(x, µ, γ)
a, (4.18)
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∇κ(µ)(x, µ, γ) =
−γ‖a‖2(b+ b− 2κ(x, µ, γ))

η(x, µ, γ)
, (4.19)

and

∇κ(γ)(x, µ, γ) =
−µ‖a‖2(b+ b− 2κ(x, µ, γ))

η(x, µ, γ)
. (4.20)

Differentiating (4.12) with respect to x, µ and γ and using (4.18)–(4.20)
yields (4.14)–(4.16).

It can be noted that Example 2.2.15(ii) is a special case of Proposi-
tion 4.3.2. The three roots of (4.13) can easily be computed using the Car-
dano formula.

4.3.3 Bounded `2-norm

We now consider the case when the feasible set in (4.2) is a Euclidean ball,

C = {x ∈ Rm | ‖x− c‖2 ≤ α}, (4.21)

with α ∈ R∗+ and c ∈ Rm.

Proposition 4.3.3 Let γ ∈ R∗+ and let µ ∈ R∗+. Let B be the barrier func-
tion associated to (4.21), defined as

(∀x ∈ Rm) B(x) =

{
− ln(α− ‖x− c‖2) if ‖x− c‖2 < α,

+∞ otherwise.

Then, for every x ∈ Rm, the proximity operator of γµB at x is given by

ϕ(x, µ, γ) = c+
α− κ(x, µ, γ)2

α− κ(x, µ, γ)2 + 2γµ
(x− c), (4.22)

where κ(x, µ, γ) is the unique solution in [0,
√
α[ of the cubic equation:

0 = z3 − ‖x− c‖z2 − (α+ 2γµ)z + α‖x− c‖. (4.23)

In addition, the Jacobian matrix of ϕ with respect to x and the gradients of
ϕ with respect to µ and γ are given by

J (x)
ϕ (x, µ, γ) =

α− ‖ϕ(x, µ, γ)− c‖2
α− ‖ϕ(x, µ, γ)− c‖2 + 2γµ

M(x, µ, γ), (4.24)

∇(µ)
ϕ (x, µ, γ) =

−2γ

α− ‖ϕ(x, µ, γ)− c‖2 + 2γµ
M(x, µ, γ)(ϕ(x, µ, γ)− c),

(4.25)
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and

∇(γ)
ϕ (x, µ, γ) =

−2µ

α− ‖ϕ(x, µ, γ)− c‖2 + 2γµ
M(x, µ, γ)(ϕ(x, µ, γ)− c),

(4.26)
where

M(x, µ, γ) = Im−
2(x− ϕ(x, µ, γ))(ϕ(x, µ, γ)− c)>

α− 3‖ϕ(x, µ, γ)− c‖2 + 2γµ+ 2(ϕ(x, µ, γ)− c)>(x− c) .
(4.27)

Proof. Let x ∈ Rm, γ ∈ R∗+, µ ∈ R∗+. Let us first consider the case when
c = 0. We denote with ϕ0 the following proximity operator:

ϕ0(x, µ, γ) = argmin
u∈D

1

2
‖x− u‖2 − γµ ln(α− ‖u‖2).

Hence, ‖ϕ0(x, µ, γ)‖2 < α and ϕ0(x, µ, γ) is a solution to the following
equation:

0 = ϕ0(x, µ, γ)− x+
2γµ

α− ‖ϕ0(x, µ, γ)‖2ϕ0(x, µ, γ). (4.28)

Since α− ‖ϕ0(x, µ, γ)‖2 + 2γµ > 0, (4.28) becomes

ϕ0(x, µ, γ) =
α− ‖ϕ0(x, µ, γ)‖2

α− ‖ϕ0(x, µ, γ)‖2 + 2γµ
x. (4.29)

By taking the norm in both sides of (4.29), we deduce that ‖ϕ0(x, µ, γ)‖ =
κ(x, µ, γ) is a solution to the cubic equation (4.23). Since the proximity
operator at a given x is uniquely defined, there exists only one real solution
to (4.23) which belongs to [0,

√
α[. Plugging the latter into (4.29) leads to

(4.22). The analysis when c 6= 0 is deduced from the case c = 0 by using
Proposition 2.2.12: the proximity operator of γµB at x is given by

ϕ(x, µ, γ) = c+ ϕ0(x− c, µ, γ). (4.30)

Now we can study the derivatives of ϕ0. For every v ∈ Rm, let F be defined
as

F (x, µ, γ,v) = (α− ‖v‖2)(v − x) + 2γµv.

The Jacobian of F with respect to its last variable is equal to

J
(v)
F (x, µ, γ,v) = (α− ‖v‖2 + 2γµ)Im + 2(x− v)v>.

Since α − ‖ϕ0(x, µ, γ)‖2 > 0, according to the Sherman–Morrison Lemma
[Bartlett, 1951], J (v)

F (x, µ, γ, ϕ0(x, µ, γ)) is invertible if and only if

α− ‖ϕ0(x, µ, γ)‖2 + 2γµ+ 2ϕ0(x, µ, γ)>(x− ϕ0(x, µ, γ)) 6= 0.
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Furthermore, it follows from (4.28) that

F (x, µ, γ, ϕ0(x, µ, γ)) = 0m. (4.31)

Applying ϕ0(x, µ, γ)> on (4.31) leads to ϕ0(x, µ, γ)>(x − ϕ0(x, µ, γ)) ≥ 0.
In addition, α−‖ϕ0(x, µ, γ)‖2 + 2γµ > 0. Hence, J (v)

F (x, µ, γ, ϕ0(x, µ, γ)) is
invertible and its inverse is given by the Sherman–Morrison formula:

J
(v)
F (x, µ, γ, ϕ0(x, µ, γ))−1 =

1

α− ‖ϕ0(x, µ, γ)‖2 + 2γµ
×[

Im −
2(x− ϕ0(x, µ, γ))ϕ0(x, µ, γ)>

α− 3‖ϕ0(x, µ, γ)‖2 + 2γµ+ 2ϕ0(x, µ, γ)>x

]
.

From the implicit function theorem [Dontchev and Rockafellar, 2009, The-
orem 1B.1] we deduce that the Jacobian of ϕ0 with respect to x and the
gradients of ϕ0 with respect to µ and γ exist and are equal to

J (x)
ϕ0

(x, µ, γ) = −J (v)
F (x, µ, γ, ϕ0(x, µ, γ))−1J

(x)
F (x, µ, γ, ϕ0(x, µ, γ)),

∇(µ)
ϕ0

(x, µ, γ) = −J (v)
F (x, µ, γ, ϕ0(x, µ, γ))−1∇(µ)

F (x, µ, γ, ϕ0(x, µ, γ)),

and

∇(γ)
ϕ0

(x, µ, γ) = −J (v)
F (x, µ, γ, ϕ0(x, µ, γ))−1∇(γ)

F (x, µ, γ, ϕ0(x, µ, γ)).

When c 6= 0, the derivatives of ϕ are deduced from those of ϕ0 using (4.30):

J (x)
ϕ (x, µ, γ) = −J (v)

F (x− c, µ, γ, ϕ(x, µ, γ)− c)−1×
J

(x)
F (x− c, µ, γ, ϕ(x, µ, γ)− c),

∇(µ)
ϕ (x, µ, γ) = −J (v)

F (x− c, µ, γ, ϕ(x, µ, γ)− c)−1×
∇(µ)
F (x− c, µ, γ, ϕ(x, µ, γ)− c),

and

∇(γ)
ϕ (x, µ, γ) = −J (v)

F (x− c, µ, γ, ϕ(x, µ, γ)− c)−1×
∇(γ)
F (x− c, µ, γ, ϕ(x, µ, γ)− c),

which lead to (4.24)-(4.26).

Similarly to the previous case, the three solutions to (4.23) can be ob-
tained thanks to the Cardano formula. The form of the resulting proximity
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Figure 4.1: Proximity operator of the logarithmic barrier:
(
proxγµB(x)

)
1

for a constraint on the `2-norm as in Section 4.3.3 with α = 0.7.

operator for m = 2 is plotted on Figure 4.1 for α = 0.7, c = 0, and sev-
eral values of γµ and x; for symmetry reasons, only the first component(
proxγµB(x)

)
1
is represented.

As shown in this section, the proximity operator of the barrier is easily
computable and differentiable for several classic types of constraints. Next,
we detail the proposed approach in Section 4.4.

§ 4.4 iRestNet architecture

4.4.1 Overview

Our proposal is to adopt a supervised learning strategy in order to deter-
mine, from a training set of images, an optimal setting for the parameters of
Algorithm 14, which should lead to an optimal image restoration quality. To
this aim, Algorithm 14 is unfolded over K iterations and the regularization
parameter λ is untied across the network, so as to provide more flexibility
to the approach [Hershey et al., 2014]. The update rule at a given iteration
k ∈ {0, . . . ,K − 1} reads

xk+1 = A (xk, µk, γk, λk)

with

A (xk, µk, γk, λk) = proxγkµkB (xk − γk∇1h (xk,y, λk)) . (4.32)

For every k ∈ {0, . . . ,K − 1}, we build the kth layer Lk as the association
of three hidden structures, L(µ)

k , L(γ)
k and L(λ)

k , followed by the update A.
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Figure 4.2: iRestNet global architecture.

Structures L(µ)
k , L(γ)

k , and L(λ)
k aim at inferring the barrier parameter µk,

the stepsize γk and the regularization weight λk, respectively. Since a finite
number K of layers (i.e., updates) is used, the convergence of the resulting
scheme is not an issue. Note that we also allow in our framework the use of a
post–processing step after going through the K layers, that will be denoted
as Lpp. The resulting architecture is depicted in Figure 4.2.

4.4.2 Hidden structures

Let us now provide more details about the hidden structures. For every
k ∈ {0, . . . ,K − 1}, the outputs (µk, γk, λk) of the structures L(µ)

k , L(γ)
k ,

and L(λ)
k must be positive. To enforce such constraint, we use the Softplus

function [Dugas et al., 2001], defined below, which can be viewed as a smooth
approximation of the ReLU activation function:

(∀z ∈ R) Softplus(z) = ln(1 + exp(z)).

Unlike the ReLU, the gradient of Softplus is never strictly equal to zero,
which, given our architecture, helps propagate the gradient through the
network. The stepsize is estimated as follows,

(∀k ∈ {0, . . . ,K − 1}) γk = L(γ)
k = Softplus (ak) , (4.33)

where (ak)0≤k≤K−1 are scalar parameters of the network learned during
training. The barrier parameter is obtained using two convolutional and
average pooling layers followed by a fully connected layer. The detailed ar-
chitecture of L(µ)

k is depicted in Figure 4.3.
Traditional methods for estimating the regularization parameter gener-

ally depend on the signal-to-noise ratio and on the image statistics [Vogel,
2002]. For most applications the noise level is unknown and can be esti-
mated, for instance, by applying a median filter over the wavelet diagonal
coefficients of the image [Mallat, 1999; Ramadhan et al., 2017]. This strategy
is used in the numerical experiments presented in Section 4.6. The advantage
is to yield a network which can handle datasets for which the signal-to-noise
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Figure 4.3: Architecture of L(µ)
k .

ratio is unknown and can vary within a reasonable range. The expression of
L(λ)
k is then problem–dependent since its expression depends on the regular-

ization function R. A specific example is given in Section 4.6 for the total
variation regularization function.

Regarding the post-processing step Lpp, its detailed architecture also
depends on the task to be performed. An example is provided in Section 4.6
for the case of deblurring: the purpose of Lpp is then to remove remaining
artifacts using convolutional layers, residual learning, batch normalization,
and dilation (the aforementioned notions are defined in Section 2.1.4.1).

4.4.3 Differential calculus

To train the neural network presented in Figure 4.2 using gradient descent,
one needs to compute the gradient of xK with respect to the different param-
eters of the network. The chain rule can be applied since most of the steps
in the network correspond to operators having straightforward derivatives.
However, particular care should be taken when differentiatingA. Since f and
R are assumed to be twice differentiable, the only area of concern is related
to proxγµB. If proxγµB is simple enough, automatic differentiation [Paszke
et al., 2017] can be used. Otherwise, as shown in Section 4.3, for common
examples of barrier functions, the differential of this term is well-defined.
The corresponding expressions for the derivatives are provided in Proposi-
tions 4.3.1–4.3.3.

§ 4.5 Network stability

There is a growing interest for interpretable and stable deep learning archi-
tectures [Zhang et al., 2018; Malgouyres and Landsberg, 2019]. One critical
issue concerning neural networks is to guarantee that their performance re-
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mains acceptable when the input is perturbed. For example, the authors of
[Szegedy et al., 2013] show that the class prediction made by AlexNet can
be arbitrarily changed by using small nonrandom perturbations on the test
image. For some applications involving high risk and legal responsibility, for
instance in medical image processing, the lack of theoretical guarantees is a
significant curb on the utilization of deep learning approaches.

A recent work [Combettes and Pesquet, 2018] provides a theoretical
framework which enables to evaluate the robustness of a network. In this
section, we will focus on a subclass of problem (4.2) where both f(·,y)
and R are quadratic functions. After highlighting the similarities between
the proposed architecture and generic feedforward networks in that case,
we will give explicit conditions under which the robustness of the proposed
architecture is ensured.

4.5.1 Relation to generic deep neural networks

Although the proposed architecture may seem specific to Algorithm 14, it
is actually very similar to generic feedforward neural networks, which are
presented in Section 2.1.4.1. For the sake of simplicity, we will consider the
variational problem,

minimize
x∈C

1

2
‖Hx− y‖2 +

λ

2
‖Dx‖2, (4.34)

where y ∈ Rm, H ∈ Rm×m, D ∈ Rm×m, and C is defined as in (4.3).
Moreover, we assume that no post–processing layer Lpp is used. Following
the notation of Section 4.4, (∀k ∈ {0, . . . ,K − 1}) (µk, γk, λk) are given
positive real numbers, K being the number of layers of the network. Then,
for every k ∈ {0, . . . ,K − 1}, layer Lk corresponds to the following update,

xk+1 = proxγkµkB

(
xk − γk

(
H> (Hxk − y) + λkD

>Dxk

))
= proxγkµkB

([
Im − γk

(
H>H + λkD

>D
)]
xk + γkH

>y
)
,

where B is defined as in (4.5). For every k ∈ {0, . . . ,K − 1}, we set

Wk = Im − γk
(
H>H + λkD

>D
)
,

bk = γkH
>y,

Rk = proxγkµkB.
(4.35)

Then, the K-layer network LK−1 ◦ · · · ◦ L0 is equivalent to (2.7):

RK−1 ◦ (WK−1 ·+bK−1) ◦ · · · ◦R0 ◦ (W0 ·+b0),

where (Wk)0≤k≤K−1 and (bk)0≤k≤K−1 are interpreted as weight operators
and bias parameters, respectively. The operators (Rk)0≤k≤K−1 defined in
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(4.35) can be viewed as specific activation functions since, as shown in
[Combettes and Pesquet, 2018], every standard activation function can be
derived from a proximity operator. In addition, using [Bauschke and Com-
bettes, 2017, Proposition 24.8(iii)], for every k ∈ {0, . . . ,K − 1}, Rk can
be re-written as the sum of a proximal activation operator [Combettes and
Pesquet, 2018, Definition 2.20] and a bias.

4.5.2 Preliminary results

Before stating our main stability theorem, we recall the result from [Com-
bettes and Pesquet, 2018, Lemma 3.3] in Proposition 4.5.1 below. We then
derive Proposition 4.5.2, which will appear useful when addressing the ro-
bustness of the global network. Here, Sm denotes the set of symmetric ma-
trices in Rm×m.

Proposition 4.5.1 [Combettes and Pesquet, 2018] Let K ≥ 1 be an integer
and set θ−1 = 1. For every k ∈ {0, . . . ,K − 1}, let Wk ∈ Rm×m and let θk
be defined by

θk = |||Wk ◦ · · · ◦W0|||+
k−1∑
`=0

∑
0≤j0<···<j`≤k−1

|||Wk ◦ · · · ◦Wj`+1|||×∣∣∣∣∣∣Wj` ◦ · · · ◦Wj`−1+1

∣∣∣∣∣∣ · · · |||Wj0 ◦ · · · ◦W0|||.

Then, for every k ∈ {0, . . . ,K − 1}, θk =
∑k

`=0 θ`−1|||Wk ◦ . . . ◦Wl|||.

Proposition 4.5.2 Let K ∈ N∗, θ ∈ R∗+, and α ∈ [1/2, 1]. Let W ∈ Sm

and let β− and β+ denote the smallest and largest eigenvalues ofW , respec-
tively. Then, the condition∣∣∣∣∣∣W − 2K(1− α)Im

∣∣∣∣∣∣− |||W |||+ 2θ ≤ 2Kα (4.36)

is satisfied if and only if one of the following conditions holds:

(i) β+ + β− ≤ 0 and θ ≤ 2K−1(2α− 1);

(ii) 0 ≤ β+ + β− ≤ 2K+1(1− α) and 2θ ≤ β+ + β− + 2K(2α− 1);

(iii) 2K+1(1− α) ≤ β+ + β− and θ ≤ 2K−1.

Proof. Let α ∈ [1/2, 1]. Since W ∈ Sm, we have, |||W ||| = max{β+,−β−},
and∣∣∣∣∣∣W − 2K(1− α)Im

∣∣∣∣∣∣ = max
{
β+ − 2K(1− α),−β− + 2K(1− α)

}
.

(4.37)
Three different cases arise that we review below.
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(i) If β+ + β− ≤ 0 then |||W ||| = −β− and

β+ − 2K(1− α) ≤ −β− + 2K(1− α). (4.38)

From (4.37) and (4.38), we deduce that
∣∣∣∣∣∣W − 2K(1− α)Im

∣∣∣∣∣∣ = −β−+
2K(1− α). Replacing |||W ||| and

∣∣∣∣∣∣W − 2K(1− α)Im
∣∣∣∣∣∣ by their value

in (4.36) leads to Proposition 4.5.2(i).

(ii) If 0 ≤ β+ + β− ≤ 2K+1(1−α) then |||W ||| = β+ and (4.38) is satisfied.
Hence,

∣∣∣∣∣∣W − 2K(1− α)Im
∣∣∣∣∣∣ = −β− + 2K(1 − α). Replacing |||W |||

and
∣∣∣∣∣∣W − 2K(1− α)Im

∣∣∣∣∣∣ by their value in (4.36) leads to Proposi-
tion 4.5.2(ii).

(iii) If 2K+1(1− α) ≤ β+ + β− then |||W ||| = β+ and

β+ − 2K(1− α) ≥ −β− + 2K(1− α). (4.39)

From (4.37) and (4.39), we deduce that
∣∣∣∣∣∣W − 2K(1− α)Im

∣∣∣∣∣∣ = β+−
2K(1− α). Replacing |||W ||| and

∣∣∣∣∣∣W − 2K(1− α)Im
∣∣∣∣∣∣ by their value

in (4.36) leads to Proposition 4.5.2(iii), which completes the proof.

4.5.3 Robustness of iRestNet to an input perturbation

Nonexpansiveness can be used to measure the stability of an operator. For
instance, let T : Rm → Rm be a nonexpansive operator and let x and δx be
in Rm, where δx can be seen as an input perturbation. From the definition
of a nonexpansive operator (Section 2.2.1.4), we deduce that the distance
between the perturbed and the original outputs is bounded by the norm of
the perturbation; namely, ‖∆T (x)‖ ≤ ‖δx‖, with ∆T (x) = T (x+δx)−T (x).

An even stronger indicator of robustness is given by the notion of aver-
ageness. If we assume that T is an averaged operator, then we deduce from
Proposition 2.2.18 that, as ‖δx‖ tends to 0, ∆T (x) tends to δx. Hence, the
notion of averageness, in addition to providing a tighter bound on the norm
of the ouput perturbation, also provides an insight regarding its direction.

Let us consider problem (4.34), where we assume additionally thatH>H
and D>D are diagonalizable in a same basis denoted P. The latter is satis-
fied for instance if H and D are the results of cyclic convolutive operators.
Theorem 4.5.3 below gives sufficient conditions under which the proposed
network applied to problem (4.34) is averaged.
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Theorem 4.5.3 Let α ∈ [1/2, 1], (Wk, bk, Rk)0≤k≤K−1 be defined by (4.35),
and (θk)−1≤k≤K−1 be defined as in Proposition 4.5.1. Let β− and β+ be the
smallest and largest eigenvalues of W = WK−1 ◦ · · · ◦W0, respectively.
For every p ∈ {1, . . . ,m} and every k ∈ {0, . . . ,K − 1}, let β(p)

k = 1 −
γk

(
β

(p)
H + λkβ

(p)
D

)
, where β(p)

H and β(p)
D denote the pth eigenvalue of H>H

and D>D in P, respectively. Then, β−, β+, and (∀k ∈ {0, . . . ,K − 1}) θk
can be computed as follows:

β− = min
1≤p≤m

K−1∏
k=0

β
(p)
k , β+ = max

1≤p≤m

K−1∏
k=0

β
(p)
k , (4.40)

and

θk =
k∑
l=0

θl−1 max
1≤ql≤m

∣∣∣β(ql)
k . . . β

(ql)
l

∣∣∣ . (4.41)

In addition, if one of the following conditions is satisfied

(i) β+ + β− ≤ 0 and θK−1 ≤ 2K−1(2α− 1);

(ii) 0 ≤ β+ + β− ≤ 2K+1(1− α) and 2θK−1 ≤ β+ + β− + 2K(2α− 1);

(iii) 2K+1(1− α) ≤ β+ + β− and θK−1 ≤ 2K−1,

then the operator RK−1◦(WK−1 ·+bK−1)◦· · ·◦R0◦(W0 ·+b0) is α–averaged.

Proof. If H>H and D>D are diagonalizable in the same basis then W ∈
Sm, which, combined with Proposition 4.5.1, leads to (4.40) and (4.41).
If one of the conditions (i)–(iii) is satisfied, then we deduce from Proposi-
tion 4.5.2 thatW satisfies [Combettes and Pesquet, 2018, Proposition 3.6(iii)]
and [Combettes and Pesquet, 2018, Condition 3.1]. In addition, for every
k ∈ {0, . . . ,K − 1}, Rk(·+ bk) is firmly nonexpansive [Bauschke and Com-
bettes, 2017, Proposition 12.28]. Finally, [Combettes and Pesquet, 2018,
Theorem 3.8] completes the proof.

The conditions provided by Theorem 4.5.3 can be easily checked using (4.40).
Theorem 4.5.3 provides a framework under which iRestNet is robust to a
perturbation of its input: the upper bound of the output perturbation can
then be derived from Proposition 2.2.18.

§ 4.6 Numerical experiments

In this section, we present numerical experiments on a set of problems of
image restoration, demonstrating that in many cases the proposed approach
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yields a better reconstruction quality than standard variational and machine
learning methods.

4.6.1 Image deblurring

We consider the non-blind color image deblurring problem, whose degrada-
tion model reads

y = Hx+ ω,

where n is the number of pixels, y = (y(j))1≤j≤3 ∈ R3n is the blurred RGB
image, x = (x(j))1≤j≤3 ∈ R3n is the ground-truth, H ∈ R3n×3n is a linear
operator that models the circular convolution of a known blur kernel with
each channel of the color image, and ω ∈ R3n is a realization of an additive
white Gaussian noise with standard deviation σ. An estimate of x can be
derived from the following penalized formulation, which includes a smoothed
total variation regularization, also called `2 − `1 norm or edge-preserving
regularization [Charbonnier et al., 1997],

minimize
x∈C

1

2
‖Hx− y‖2 + λ

3n∑
i=1

√
(Dvx)2

i + (Dhx)2
i

δ2
+ 1, (4.42)

where the feasible set C is the hypercube [xmin, xmax]3n, xmin and xmax are a
lower and an upper bound on the pixel intensity, respectively, Dv ∈ R3n×3n

and Dh ∈ R3n×3n are the vertical and horizontal gradient operators, respec-
tively, δ ∈ R∗+ is a smoothing parameter and λ ∈ R+ is the regularization
parameter. Here, xmin = 0, xmax = 1 and we set δ = 0.01 in all experiments,
which appears as an appropriate order of magnitude. To find this value for δ,
we solved problem (4.42) for a small set of images of the database and used
the simplex method to find the best values for δ and λ in terms of image
quality. It is worth noting that the value for δ has not been fine-tuned, but
that the proposed architecture could also be easily modified to include the
inference of δ. The update A, defined in (4.32), is derived from (4.42), and is
unfolded over K iterations, as it is described in Section 4.4. The bound con-
straints in problem (4.42) fall under the framework studied in Section 4.3.2,
which provides the expression for the proximity operator of the barrier and
its gradient.

4.6.2 Network characteristics

The tuning of the number of unfolded iterations K must achieve a compro-
mise between training time, memory requirement, and performance. In or-
der to determine a suitable setting for K, we trained networks with different
numbers of layers and increased the number of layers until the performance
of the network did not improve significantly. Using this procedure, the depth
of iRestNet is taken equal to K = 40.
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Figure 4.4: Architecture of Lpp. BN: batch normalization.

Regarding the hidden structures (L(λ)
k )0≤k≤K−1, which estimate the reg-

ularization parameter, they are chosen in view of the regularization function
used in problem (4.42) and have the following expression,

(∀k ∈ {0, . . . ,K − 1}) λk = L(λ)
k (xk) =

Softplus (bk) σ̂(y)

η(xk) + Softplus (ck)
, (4.43)

where (bk, ck) is a pair of scalars learned by the network, η(xk) is the stan-
dard deviation of [(Dvxk)

>(Dhxk)
>], which are the concatenated spatial

gradients of xk, and σ̂(y) is an approximation of the noise level in the blurred
image. The noise level is estimated as in [Mallat, 1999, Section 11.3.1]

σ̂(y) = median(|WHy|)/0.6745,

where |WHy| is the vector gathering the absolute value of the diagonal
coefficients of the first level Haar wavelet decomposition of y. It is worth
noticing that the proposed architecture does not require any prior knowledge
about the noise level, in particular the noise standard deviation does not
have to be the same for all input images.

The architecture of the post-processing layer Lpp is inspired from [Zhang
et al., 2017c], it is made of 9 convolutional layers with filters of size 3 × 3.
The dilation factor changes from one layer to another, so as to widen the
receptive field without creating memory issues. There is little correlation
between the artifacts that remain in the image after going through the 40
blocks of iRestNet and the ground-truth image. Hence, it is easier for the
network to learn the residual mapping instead of the image itself. Therefore,
we add a skip connection between the input of Lpp and its output. Finally, a
ReLU activation function is used after each convolution, the final activation
function is chosen as the Sigmoid function, and residual learning is combined
with batch normalization, a technique which is widely used in deep learning
to accelerate and stabilize the training process [Zhang et al., 2017c]. The
final architecture of Lpp can be found in Figure 4.4.



4.6. Numerical experiments 101

4.6.3 Dataset and experimental settings

The training set is made of 1200 RGB images: 200 images stem from the
Berkeley segmentation (BSD500) training set, while the remaining 1000 im-
ages are taken from the COCO training set. We use the BSD500 validation
set, which is made of 100 images, to monitor the training and check if there
is overfitting. The performance of the proposed method is evaluated on two
different test sets: the BSD500 test set, which is made of 200 RGB images,
and the Flickr30 test set used in [Xu et al., 2014a], which is made of 30
RGB images. The test images have been center-cropped using a window of
size 256× 256. Blurry images are produced using the following 25× 25 blur
kernels and noise levels:

- A Gaussian kernel, which models atmospheric turbulence, with a stan-
dard deviation of 1.6 pixels, and a Gaussian noise standard deviation
of σ = 0.008. This configuration is denoted as GaussianA. To evalu-
ate the robustness of the proposed method with respect to the noise
level, the same kernel is used with a Gaussian noise whose standard
deviation is uniformly distributed between 0.01 and 0.05. The latter is
denoted as GaussianB.

- The Gaussian kernel with a standard deviation of 3 pixels, and a Gaus-
sian noise standard deviation of σ = 0.04, denoted as GaussianC.

- The eighth and third motion test kernels from [Levin et al., 2009],
which are real-world camera shake kernels, with a Gaussian noise stan-
dard deviation of σ = 0.01. These settings are denoted as MotionA and
MotionB, respectively.

- The square uniform kernel of size 7×7, with a Gaussian noise standard
deviation of σ = 0.01. This configuration is referred to as Square.

4.6.4 Training

For each degradation model, one iRestNet network is trained. We use a
greedy approach for training the first 30 layers. For L0, a minibatch of 10
images is selected at every iteration, randomly cropped using a window of
size 256 × 256, blurred with the given kernel, and degraded with Gaussian
noise; the training of L0 stops after a fixed number of epochs. Then, for
each image of the training set, a random crop of size 256 × 256 is selected,
blurred, corrupted with noise and passed through L0, the output is saved
and used as an input to train L1. When the training of L1 is complete, its
output is used to train the next layer, etc... This training strategy is chosen
with regards to its low memory requirement: the number of layers is not
limited by the hardware.
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GaussianA GaussianB GaussianC

Rates (0.01,0.001) (0.01,0.001) (0.001,0.001)
Epochs (40,393) (40,340) (40,300)

Table 4.1: Training information for Gaussian blur kernels: initial learning
rates and number of epochs. For every couple, the first and second numbers
correspond to the training of (Lk)0≤k≤29 and Lpp◦L39◦. . .◦L30, respectively.

MotionA MotionB Square

Rates (0.01,0.002) (0.01,0.001) (0.01,0.005)
Epochs (40,1200) (40,1250) (40,740)

Table 4.2: Training information for motion and square blur kernels: initial
learning rates and number of epochs. For every couple, the first and second
numbers correspond to the training of (Lk)0≤k≤29 and Lpp ◦ L39 ◦ . . . ◦ L30,
respectively.

The rest of the network, Lpp ◦ L39 ◦ . . . ◦ L30, is trained as one block
and the learning rate is multiplied by 0.9 every 50 epochs. To accelerate
the training, for every k ∈ {1, . . . ,K − 1}, the weights of Lk are initialized
with those of Lk−1. Detailed information about learning rates and number
of epochs can be found in Tables 4.1 and 4.2 below.

The validation set is used to monitor this last step of the training. In
particular, the configuration of network parameters that gives the best per-
formance on the validation set during the training is the one saved and used
for the tests. Note that for the first 30 layers, after each layer the quality of
the restored training images should improve. This property comes from the
training strategy, it is not encoded in the network: if memory was not an
issue, then iRestNet could be trained in an end-to-end fashion.

We use the Adam optimizer [Kingma and Ba, 2014] to minimize the
training loss, which is taken as the negative of the structural similarity mea-
sure (SSIM) [Wang et al., 2004] defined below

SSIM(x,x) =
(2µxµx + c1)(2σxσx + c2)(2covxx + c3)

(µ2
x + µ2

x + c1)(σ2
x + σ2

x + c2)(σxσx + c3)
,

where x is the ground truth, x is the restored image, (µx, σx) and (µx, σx)
are mean and standard deviation of x and x, respectively, covxx is the
cross–covariance of x and x, and c1, c2 and c3 are constants. As explained
in [Wang et al., 2004], the SSIM is a good measure of perceived visual quality,
since it is based on how the human eye extracts structural information from
an image. Hence, it is more discriminative with regards to artifacts than
the mean square error for instance. The gradient of the SSIM loss with
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respect to the trainable parameters of the network is computed using a code
available online1 and based on [Wang et al., 2004], the chain rule, automatic
differentiation [Paszke et al., 2017], and the expression given in Section 4.3.2
for the derivatives of the barrier proximity operator.

Codes are implemented in Pytorch. Some hidden layers in the post-
processing part make use of ReLU, which is not differentiable everywhere.
Since this nondifferentiability happens only at specific points for which the
left and right derivatives are well–defined, Pytorch can handle it as ex-
plained in [Goodfellow et al., 2016]. All trainings are conducted using a
GeForce GTX 1080 GPU or a Tesla V100 GPU. The training, which can
be performed off-line, takes approximately 3 to 4 days for each blur kernel,
while the time taken per test image is only about 1.4 sec on a GeForce GTX
1080 GPU.

4.6.5 Evaluation metrics and competitors

The restoration is evaluated in terms of the SSIM metric. The reconstruc-
tion given by the proposed approach is compared with a solution to prob-
lem (4.42) obtained using the projected gradient algorithm [Iusem, 2003].
For every blurred image, the pair (λ, δ) which leads to the best SSIM is
selected using the simplex method. The solution given by this variational
approach is referred to as VAR. The latter is an unrealistic scenario since
it assumes that there is a perfect estimator of the error for selecting the
hyperparameters, but it gives an upper bound on the image quality that
one can expect by solving (4.42). We also use the following deep learning
image restoration methods for comparison.

(i) EPLL [Zoran and Weiss, 2011] corresponds to a Bayesian approach
where the authors divide images into patches and assign a prior to each
patch. This results in a Gaussian mixture model whose parameters are
learnt. The deblurred image is then a maximum a posteriori estimate
of the image.

(ii) MLP refers to the Multi-Layer Perceptron network proposed in [Schuler
et al., 2013], which is fed with a pre-deconvolved image produced by a
Wiener deconvolution filter. The network is trained for each blurring
kernel.

Finally, we include comparisons with three unfolded-based methods.

(iii) In IRCNN [Zhang et al., 2017c], an empirical algorithm derived from
an augmented Lagrangian formulation is unfolded over 30 iterations2,

1https://github.com/Po-Hsun-Su/pytorch-ssim
2In [Zhang et al., 2017c], this algorithm is improperly called half-quadratic splitting,

but it does not correspond to usual half-quadratic optimization methods described for
instance in [Allain et al., 2006]. Actually, the algorithm unfolded in [Zhang et al., 2017c]
can be interpreted as a preconditioned forward-backward algorithm.

https://github.com/Po-Hsun-Su/pytorch-ssim


104 An optimization-inspired neural network for image deblurring

and a CNN is used as a denoiser to update the splitting variable.

(iv) In FCNN [Zhang et al., 2017a], the authors unfold the same algorithm
as in the previous reference, and use a network to learn an effective
regularization function.

(v) The method from [Meinhardt et al., 2017] is referred to as PDHG.
The authors perform a maximum of 30 iterations of a primal dual
hybrid gradient algorithm, and the proximity operator of the second
regularization function is replaced by a neural network.

For FCNN, we use the code that is available online, in which the authors
provide a model that has only been trained for motion blurs. Hence, for
a fair comparison, we only provide the results of FCNN on MotionA and
MotionB, and we specify that this method is not applicable (n/a) to the
other configurations. Similarly, for MLP and PDHG, the authors do not
provide models that were trained specifically for MotionB and Square, so
we do not test these methods on these two configurations.

Since MLP, EPLL and IRCNN require the knowledge of the noise level,
for the GaussianB degradation model, we make use of the estimation of
the noise standard deviation given by the method in [Mallat, 1999, Sec-
tion 11.3.1]. In addition, since some comparison methods, like EPLL for
instance, do not estimate well the borders of the images, the SSIM index
is computed excluding a 6-pixel-wide frame for all images and all tested
methods.

4.6.6 Results and discussion

The average SSIM obtained with the different methods for the various blur
kernels and noise levels on the BSD500 test set can be found in Table 4.3.
The mean SSIM achieved with iRestNet on this test set is greater than
those obtained with the other methods for all degradation models except
MotionA. For this kernel, the average SSIM achieved with iRestNet is the
second highest value after IRCNN, which appears as the most competitive
method. IRCNN involves two steps: first, a Wiener filter is applied to the
blurred image, then, a neural network is used to predict the residual and
denoise the image. These two steps are repeated 30 times, for 30 different
manually tuned regularization parameters. In contrast, iRestNet does not
require any tuning from the user regarding the regularization parameters
during training. For completeness, the SSIM of all images of the BSD500
test set are plotted in Figure 4.5 for the 6 different degradation models. As
one can see, iRestNet performs well in terms of SSIM on most of the images.

Since no image was taken from Flickr for training iRestNet, the results on
the Flickr30 test set show how well the performance of the trained networks
are transferable on test sets with statistics that are different from those of
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GaussianA GaussianB GaussianC MotionA MotionB Square

Blurred 0.676 0.526 0.326 0.383 0.549 0.544
VAR 0.804 0.723 0.587 0.819 0.829 0.756
EPLL 0.800 0.708 0.565 0.816 0.839 0.755
MLP 0.821 0.734 0.608 0.854 n/a n/a
PDHG 0.796 0.716 0.563 0.801 n/a n/a
IRCNN 0.841 0.768 0.619 0.902 0.907 0.834
FCNN n/a n/a n/a 0.794 0.847 n/a
iRestNet 0.853 0.787 0.641 0.898 0.910 0.840

Table 4.3: SSIM results on the BSD500 test set.

GaussianA GaussianB GaussianC MotionA MotionB Square

Blurred 0.723 0.545 0.355 0.376 0.590 0.579
VAR 0.857 0.776 0.639 0.856 0.869 0.818
EPLL 0.860 0.770 0.616 0.857 0.887 0.827
MLP 0.874 0.798 0.668 0.891 n/a n/a
PDHG 0.853 0.781 0.623 0.855 n/a n/a
IRCNN 0.885 0.819 0.676 0.927 0.930 0.886
FCNN n/a n/a n/a 0.801 0.890 n/a
iRestNet 0.892 0.833 0.696 0.919 0.930 0.886

Table 4.4: SSIM results on the Flickr30 test set.

the training set. Table 4.4 contains the average SSIM obtained with the
different methods on the Flickr30 test set. Similarly to the BSD500 test set,
iRestNet compares favorably with the other approaches on the Flickr30 test
set.

Examples of visual results obtained with the different methods can be
found in Figures 4.6 and 4.7 for two images from the BSD500 test set and
the blur kernels GaussianB and Square, respectively. We also provide the
results obtained for one image from the Flickr30 test set that has been de-
graded with MotionB. As one can see from inspecting these pictures, details
from the snake’s and caterpillar’s skin patterns are better retrieved with
iRestNet, which provides more visually-satisfactory results than competi-
tors. Similarly, on Figure 4.8, competitors tend to smooth too much the
details on the leaves as it can be seen in the top left-hand corner. Regarding
Figure 4.6, which belongs to the test set with a level-varying noise, it is
worth noting that, on the result obtained with the proposed method, the
green background is free from artifacts, which is not the case for the other
methods, in particular for PDHG and IRCNN. This suggests that those two
competitors are not robust to a small change in the noise level.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Sorted improvement of iRestNet with regards to other methods
on the BSD500 test set using the SSIM metric: a negative value indicates a
better performance of iRestNet. (a): GaussianA, (b): GaussianB, (c): Gaus-
sianC, (d): MotionA, (e): MotionB, (f): Square.

Figure 4.9 shows the stepsize, barrier parameter and regularization weight
sequences obtained by passing the image from Figure 4.6 through the 40 lay-
ers of iRestNet.
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Ground-truth Blurred: 0.509 VAR: 0.833 EPLL: 0.839

MLP: 0.860 PDHG: 0.772 IRCNN: 0.840 iRestNet: 0.883

Figure 4.6: Visual results and SSIM obtained with the different methods on
one image from the BSD500 test set degraded with GaussianB.

Ground-truth Blurred: 0.344 VAR: 0.622 EPLL: 0.553

IRCNN: 0.685 iRestNet: 0.713

Figure 4.7: Visual results and SSIM obtained with the different methods on
one image from the BSD500 test set degraded with Square.

§ 4.7 Summary

From a variational formulation of an inverse problem, we have derived in
this chapter a novel neural network architecture by unfolding a proximal
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Ground-truth Blurred: 0.576 VAR: 0.844 EPLL: 0.849

IRCNN: 0.906 FCNN: 0.856 iRestNet: 0.909

Figure 4.8: Visual results and SSIM obtained with the different methods on
one image from the Flickr30 test set degraded with MotionB.

Figure 4.9: Left to right: estimated stepsize (γk)0≤k≤K−1, barrier parame-
ter (µk)0≤k≤K−1 and regularization weight (λk)0≤k≤K−1 for the image from
Figure 4.6 passed through the network layers.

interior point algorithm. It can be noted that the proposed approach can be
extended to a set of regularization functions, or to penalizations which are
parametrized by several variables. Useful constraints on the sought solution
can be enforced thanks to a logarithmic barrier, so providing more control
over the output of the network. We have shown for three standard types
of constraints that the involved proximity operator can easily be computed,
and that its derivatives are well-defined and computable. In the case of a
quadratic cost function, the theoretical result of Section 4.5 regarding the
robustness of the network with respect to an input perturbation, ensures the
reliability of the proposed method, which is crucial for many applications.
It would be interesting to extend the scope of this study to a wider class of
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problems, and to illustrate this stability result by numerical experiments on
different applications like classification. As demonstrated by our experiments
in image restoration, iRestNet performs favorably compared to state-of-the-
art variational and machine learning methods. An advantage of the proposed
approach is that, in contrast with its evaluated competitors, it does not
require any knowledge about the noise level and it does not involve any
hand-selection of the regularization parameters. One limitation of iRestNet
is that the network needs to be trained for a given blur kernel. A direction for
future works is to extend the method to situations in which the observation
model is not fully known, so as to address blind or semi-blind deconvolution
problems.

The unfolded approach proposed in this chapter overcomes a limitation of
classical variational strategies, which is the setting of their hyperparameters.
Another alternative to address this issue is to use the Bayesian framework,
which leads to useful stochastic simulation methods. In addition, similarly
to iRestNet whose training is based on a better indicator of the error than
the original objective function, Bayesian approaches allow to derive insight-
ful estimators other than the MAP, like the MMSE for instance (please
refer to Section 2.1.3 for more details). In the next chapter, we propose to
incorporate a proximal algorithm in a Bayesian approach.
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- Chapter 5 -

A preconditioned proximal sampling algorithm
with applications in ultrasound imaging

Ultrasound (US) imaging is a non-invasive procedure which is widely used
in medical applications, such as obstetrics or cardiology. Although the quasi
absense of side-effects caused by this procedure, and its low cost and aqui-
sition time, make it the norm for numerous diagnostic exams [Szabo, 2004],
ultrasonic measurements suffer from some downsides, including a low signal-
to-noise ratio, attenutation, speckle, shadows and a limited resolution [Noble
and Boukerroui, 2006; Ploquin et al., 2015].

The echo signals recorded during an ultrasound exam are processed to
produce radio-frequency (RF) images. While image processing tasks are
commonly performed directly on the resulting RF image [Nair et al., 2002],
or on its B-mode [Noble and Boukerroui, 2006], which is a log-compression
of its envelope, useful information can also be drawn from the statistics
of the scatterer field, also called tissue reflectivity function (TRF) [Jensen,
1991; Ng et al., 2006]. Since the TRF models well tissue inhomogeneity, it
can be used to perform efficiently segmentation [Pereyra et al., 2012], tissue
characterization [Bernard et al., 2006], or classification [Alessandrini et al.,
2011]. Estimating the TRF given the RF image is a challenging inverse prob-
lem, which we are going to tackle jointly with the segmentation task in this
chapter.

Models that are studied in US imaging are derived from the physical laws
governing the involved aquisition process. Such models may be significantly
complex depending of the task to be performed. The Bayesian framework
and stochastic simulation methods, like the ones described in Section 2.1.3,
have proven to be very useful for solving inverse problems arising in US imag-
ing [Comer and Delp, 2000; Husby and Rue, 2004; Dobigeon et al., 2012].
In the context of Bayesian theory, we propose in this chapter a precondi-
tioned proximal sampling algorithm for the TRF, which is incorporated in
a hybrid Gibbs sampler with the aim of performing joint deconvolution and
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segmentation of US images.
This chapter is organized as follows. After formulating the studied in-

verse problem in Section 5.1 and motivating our approach in Section 5.2, we
detail the proposed strategy used to sample the TRF in Section 5.3. Sec-
tion 5.4 then describes the investigated hierarchical Bayesian model, while
the proposed hybrid Gibbs sampler is detailed in Section 5.5. Finally, nu-
merical experiments on both simulated and real US data are presented in
Section 5.6 and some conclusions are drawn in Section 5.7.

§ 5.1 Problem statement

Let x ∈ Rm and y ∈ Rm be the vectorized TRF and radio-frequency image,
respectively. The following simplified model is used [Jensen et al., 1993; Ng
et al., 2006]

y = Hx+ ω, (5.1)

where H ∈ Rm×m is a linear operator that models the convolution with
the point spread function (PSF) of the probe, and ω ∼ N (0m, σ

2Im). In
this chapter, we assume that the PSF is known, while the variance of the
Gaussian noise σ2 ∈ R∗+ is an unknown parameter to be estimated. The TRF
is comprised of K different tissues, which are identified by a hidden label
field z = (zi)1≤i≤m ∈ {1, . . . ,K}m. For every k ∈ {1, . . . ,K}, the kth region
is modeled by a generalized Gaussian distribution (GGD) [Alessandrini et al.,
2011; Zhao et al., 2016], which is parametrized by a shape parameter αk ∈
[0, 3], related to the scatterer concentration, and a scale parameter βk ∈ R∗+,
linked to the signal energy. Given y andH, the aim is to estimate a deblurred
image x [Jensen, 1992; Michailovich and Tannenbaum, 2007], as well as the
noise variance σ2, the GGD parameters α = (αk)1≤k≤K and β = (βk)1≤k≤K ,
and the label field z.

§ 5.2 Motivation

Due to the interdependence of the unknowns introduced in the previous sec-
tion, it is beneficial to perform the deconvolution and segmentation tasks in
a joint manner [Ayasso and Mohammad-Djafari, 2010; Pirayre et al., 2017].
This is achieved in [Zhao et al., 2016] by considering a hierarchical Bayesian
model, which is used within an MCMC method1 to sample x, σ2, α, β, and
z according to the full conditional distribution. Despite promising results
in image restoration and segmentation, the method in [Zhao et al., 2016] is
of significant computational complexity, in particular due to the adjusted

1Please refer to Section 2.1.3.2 for more information about MCMC methods.
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Hamiltonian Monte Carlo (HMC) method [Neal, 2011; Robert et al., 2018]
used to sample the TRF.

Recently, efficient and reliable stochastic sampling strategies have been
devised [Durmus et al., 2018; Pereyra, 2016; Schreck et al., 2016] using the
proximity operator presented in Section 2.2.1.3, which is known as a use-
ful tool for large-scale nonsmooth optimization [Combettes and Pesquet,
2011]. In this work, we investigate an MCMC algorithm to perform the joint
deconvolution and segmentation of US images, where the TRF is sampled
with a scheme inspired from the proximal unadjusted Langevin algorithm
(P-ULA) [Pereyra, 2016]. P-ULA generates samples according to an approx-
imation of the target distribution without acceptance test, while being ge-
ometrically ergodic, whereas classical unadjusted Langevin algorithms may
have convergence issues.

In the next section, we propose an original accelerated preconditioned
version of P-ULA (PP-ULA), which relies on the use of a variable metric
forward-backward strategy [Stuart et al., 2004; Chouzenoux et al., 2014b].
We also introduce in Section 5.5.2 an efficient solver based on the majorize-
minimize (MM) principle to tackle the involved non log-concave priors. The
proposed PP-ULA is then incorporated within a new hybrid Gibbs sam-
pler summarized in Algorithm 17, yielding a substantial reduction of the
computational time needed to perform joint high-quality deconvolution and
segmentation of US images.

§ 5.3 Preconditioned P-ULA sampling algorithm

In this section, after reminding results about the Langevin diffusion and its
discretization using Euler’s scheme, we provide details about the derivation
of the proposed sampling algorithm, called PP-ULA. This algorithm will be
used to sample the TRF in Section 5.5.

5.3.1 Discrete Langevin diffusion

An m-dimensional Langevin diffusion is a continuous time Markov process
x : R+ → Rm, which is the solution to the following stochastic differential
equation [Roberts and Stramer, 2002],

(∀t ∈ R+) dx(t) = b(x(t))dt+ V (x(t))dB(t), (5.2)

where B : R+ → Rm is a Brownian motion, V : Rm → Rm×m is the volatility
matrix-valued function, and the drift term b : Rm → Rm is such that, for
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every x ∈ Rm

(∀i ∈ {1, . . . ,m}) (b(x))i =
1

2

m∑
j=1

[
(A(x))i,j

∂ log π(x)

∂xj

+det(A(x))
1
2

m∑
k=1

∂

∂xj

(
(A(x))i,kdet(A(x))−

1
2

)]
.

In the above definition, (∀x ∈ Rm) A(x) = V (x)V (x)> ∈ Rm×m is a sym-
metric positive definite matrix, and det(A(x)) denotes its determinant. In
addition, π is the density of the stationary distribution of the diffusion.
Euler’s discretization scheme can be used on (5.2) to generate a Langevin
Markov chain (x(t))t∈N as follows

(∀t ∈ N) x(t+1) = x(t) + 2γb(x(t)) +
√

2γ(A(x(t)))
1
2ω(t).

Hereabove, (∀t ∈ N) ω(t) is generated using a zero-mean Gaussian distri-
bution N (0m, Im), and γ ∈ R∗+ is the discretization stepsize that controls
the length of the jumps, while the scale matrix A(·) drives their direction.
Instead of letting A(·) be the identity operator as in the standard Metropolis
adjusted Langevin algorithm [Roberts and Tweedie, 1996], we follow [Stuart
et al., 2004; Marnissi et al., 2018] and use a preconditioning matrix A ∈ S+

m

to accelerate the Langevin scheme, which leads to

(∀t ∈ N) x(t+1) = x(t) + γA∇ log π(x) +
√

2γA
1
2ω(t+1). (5.3)

5.3.2 Approximation of the target diffusion

Let f : Rm →] − ∞,+∞] and let g ∈ Γ0(Rm) be differentiable on Rm
with a Lipschitz-continuous gradient. Assume that the target distribution π
satisfies the following relation,

(∀x ∈ Rm) π(x) ∝ exp(−(f + g)(x)).

Let γ ∈ R∗+ and M ∈ S+
m. Following [Pereyra, 2016], we replace π by its

Moreau approximation πMγ defined by

(∀x ∈ Rm) πMγ (x) = sup
u∈Rm

π(u) exp

(
−‖u− x‖

2
M

2γ

)
.

Note that we dropped the normalization constant and that, for convergence
acceleration purposes, we have introduced the preconditioning matrix M ,
which was not included in [Pereyra, 2016]. When M is not specified, the
identity matrix is used, i.e. M = Im. Hence, the approximated version of
(5.3) reads

(∀t ∈ N) x(t+1) = x(t) + γA∇ log πMγ (x) +
√

2γA
1
2ω(t+1). (5.4)

We can then deduce the following result when f + g is convex.



5.3. Preconditioned P-ULA sampling algorithm 115

Proposition 5.3.1 For every γ ∈ R∗+, M ∈ S+
m and x ∈ Rm, if (f + g) ∈

Γ0(Rm), then we have

∇ log πMγ (x) = M
proxMγ(f+g)(x)− x

γ
.

Proof. By definition of πMγ , we have for all x ∈ Rm

log πMγ (x) = −(f + g)
(

proxMγ(f+g)(x)
)
− 1

2γ

∥∥∥proxMγ(f+g)(x)− x
∥∥∥2

M
.

Hence, applying [Combettes and Wajs, 2005, Lemma 2.5] in the metric in-
duced by M directly leads to the result.

From Proposition 5.3.1, (5.4) becomes

(∀t ∈ N) x(t+1) = x(t) + γAM
proxMγ(f+g)(x

(t))− x(t)

γ
+
√

2γA
1
2ω(t+1).

Finally, we set A = M−1, which leads to

(∀t ∈ N) x(t+1) = proxMγ(f+g)(x
(t)) +

√
2γM− 1

2ω(t+1). (5.5)

Next, we introduce a splitting strategy in (5.5).

5.3.3 Forward-backward approximation

By assumption, g is differentiable on Rm and its gradient ∇g is Lipschitz-
continuous. It is worth noting that the computation of the proximity op-
erator of the sum of two functions is generally intractable [Pustelnik and
Condat, 2017]. Hence, as suggested in [Pereyra, 2016], we use a first-order
Taylor expansion to approximate the proximity operator of f + g and in-
troduce a forward step in the proposed PP-ULA iteration. Let o denotes
Landau’s notation.2

Let x ∈ Rm and u ∈ Rm. Using

g(u) = g(x) + (u− x)>∇g(x) + o(‖u− x‖),

we have

(f + g)(u) +
1

2γ
‖u− x‖2M = f(u) + g(x) +

1

2γ
‖u− x‖2M

+ (u− x)>∇g(x) + o(‖u− x‖),
2Following Landau’s notation, we will write that F (u) = o(‖u−x‖), where F : Rm → R

and x ∈ Rm, if F (u)/‖u− x‖ → 0 as u→ x.
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which can be re-written as

(f + g)(u) +
1

2γ
‖u− x‖2M = f(u) + g(x) +

1

2γ
‖u− x+ γM−1∇g(x)‖2M

− γ

2
‖M− 1

2∇g(x)‖2 + o(‖u− x‖).

Hence, the proximity operator of f + g can be expressed as follows,

proxMγ(f+g)(x) = argmin
u∈Rm

(f + g)(u) +
1

2γ
‖u− x‖2M

= argmin
u∈Rm

(
f(u) +

1

2γ
‖u− x+ γM−1∇g(x)‖2M

+o(‖u− x‖)
)
.

In addition, we have

proxMγf (x− γM−1∇g(x)) = argmin
u∈Rm

f(u) +
1

2γ
‖u− x+ γM−1∇g(x)‖2M .

Therefore, when γ is small, proxMγf (x − γM−1∇g(x)) is a good approx-
imation of proxMγ(f+g)(x). Plugging this preconditioned forward-backward
scheme [Combettes and Pesquet, 2011] in (5.5) leads to the proposed sam-
pling method PP-ULA,

(∀t ∈ N) x(t+1) = proxMγf (x(t)− γM−1∇g(x(t))) +
√

2γM− 1
2ω(t+1). (5.6)

Now that we have presented our proposed sampling strategy PP-ULA,
we describe in the next section the Bayesian model to which it is going to
be applied.

§ 5.4 Bayesian model

In this section, we describe the hierarchical Bayesian model attached to the
variables introduced in Section 5.1. This model follows the same strategy as
in [Zhao et al., 2016] and is illustrated in Figure 5.1.

5.4.1 Priors

The likelihood corresponding to the RF image y, which follows from the
Gaussian nature of the noise, is derived from (5.1) and expressed below.

p(y|x, σ2) =
1

(2πσ2)m/2
exp

(
−‖y −Hx‖

2

2σ2

)
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Figure 5.1: Hierarchical Bayesian model. Parameters in boxes are fixed in
advance.

The TRF is a mixture of GGDs which, under the assumption that the pixel
values are independent given the segmentation labels z, leads to the following
prior

p(x|α,β, z) =

m∏
i=1

1

2β
1/αzi
zi Γ(1 + 1/αzi)

exp

(
−|xi|

αzi

βzi

)
, (5.7)

where Γ is the Gamma function. For every set C, let ıC denote the indicator
function of this set. Uninformative Jeffreys priors are assigned to the noise
variance σ2 and scale parameters β, while the shape parameters α are as-
sumed to be uniformly distributed between 0 and 3. These assumptions lead
to the following priors for these variables,

p(σ2) =
1

σ2
ıR+(σ2),

p(α) =

K∏
k=1

1

3
ı[0,3](αk), and p(β) =

K∏
k=1

1

βk
ıR+(βk).

The segmentation labels z are modeled by a Potts Markov random field
with prior

p(z) =
1

C(θ)
exp

 m∑
i=1

∑
j∈V(i)

θδ(zi − zj)

 , (5.8)

with δ the Kronecker function, C(θ) ∈ R∗+ a normalizing constant, θ ∈ R∗+
a granularity coefficient, and V(i) the set of four closest neighbours of the
ith pixel.

The different variables are sampled according to their conditional distri-
butions, which are provided in the next section.

5.4.2 Conditional distributions

The conditional distribution of the noise variance is derived from the Bayes
theorem and can be expressed as follows,

p(σ2|y,x) ∝ IG
(
m

2
,
‖y −Hx‖2

2

)
, (5.9)
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where IG denotes the inverse gamma distribution. Assuming that the differ-
ent regions have independent shape and scale parameters, for every region
k ∈ {1, . . . ,K}, we obtain

p(αk|x,β, z) ∝
∏
i∈Ik

ı[0,3](αk)

2β
1/αk
k Γ (1 + 1/αk)

exp

(
−|xi|

αk

βk

)
, (5.10)

and

p(βk|x,α, z) ∝ IG

mk

αk
,
∑
i∈Ik

|xi|αk
 , (5.11)

with Ik = {i ∈ {1, . . . ,m} | zi = k} and mk the number of elements in Ik.
For every pixel i ∈ {1, . . . ,m} and every region k ∈ {1, . . . ,K}, the Bayes
rule applied to the segmentation labels leads to the following probability
distribution,

p(zi = k|x,α,β, zV(i)) ∝
exp

(∑
j∈V(i) θδ(zj − k)− |xi|αkβk

)
2β

1/αk
k Γ(1 + 1/αk)

, (5.12)

where zV(i) denotes the vector made of the labels in the neighborhood of
the ith pixel. Finally, the conditional distribution of the TRF is equal to

π(x) = p(x|y, σ2,α,β, z) ∝ exp (−f(x)− g(x)) , (5.13)

where, for every x ∈ Rm,

f(x) =

m∑
i=1

|xi|
βzi

αzi
and g(x) =

‖y −Hx‖2
2σ2

. (5.14)

§ 5.5 Hybrid Gibbs sampler

We can now describe the proposed hybrid Gibbs sampler used to perform
joint deconvolution and segmentation of ultrasound images. A special at-
tention is devoted to the sampling scheme of the TRF, which is our main
contribution.

5.5.1 Sampling from the conditional distributions

Samples for the noise variance σ2 and scale parameters β can easily be
drawn from their respective conditional distribution (5.9) and (5.11). Re-
garding the shape parameters α, we use the Metropolis-Hastings random
walk Algorithm 1, presented in Section 2.1.3.2, to generate samples accord-
ing to distribution (5.10). For the segmentation labels z, we first suitably
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normalize the distributions given by (5.12). The resulting normalized con-
ditional probabilities are given below

(∀i ∈ {1, . . . ,m})(∀k ∈ {1, . . . ,K}) p̃i,k =
p(zi = k|x,α,β, zV(i))∑K
l=1 p(zi = l|x,α,β, zV(i))

.

(5.15)
Hence, for every pixel i ∈ {1, . . . ,m}, label zi is drawn from {1, . . . ,K} using
the probabilities (p̃i,k)1≤k≤K defined above. Finally, we propose to apply
our PP-ULA scheme (5.6) to the conditional distribution (5.13) in order to
generate samples for the TRF x. This leads to the following scheme,

(∀t ∈ N) x(t+1) = proxMγf (x̃t) +
√

2γM− 1
2ω(t+1), (5.16)

where f is defined as in (5.14), M ∈ S+
m is a preconditioning matrix used

for acceleration, ω(t+1) ∼ N (0m, Im), and

x̃(t) = x(t) − γ

σ2
M−1H>(Hx(t) − y). (5.17)

It can be noted that, in Proposition 5.3.1, f is assumed to be convex, which
is not necessarily satisfied in our case. However, for simplicity, we take the
discrete scheme (5.16) even in the nonconvex case. Since the proposed sam-
pling strategy is unadjusted, (5.16) is not followed by an acceptance test.
The bias with respect to π increases with γ, as the speed of convergence of
the algorithm. A compromise must be found when setting γ.

As described in the next section, when there exist shape parameters that
are below 1, we use the MM principle [Schifano et al., 2010] introduced in
Section 2.2.4 to replace the nonconvex minimization problem involved in the
computation of proxMγf with a sequence of convex surrogate problems.

5.5.2 MM principle for computing the proximity operator

The function f defined in (5.14) can be written as the sum of a convex term
and a nonconvex term. We propose to approximate the nonconvex part using
the MM principle.

Let σ ∈ R∗+, α ∈ [0, 3]K , β ∈ (R∗+)K and z ∈ {1, . . . ,K}m. We define
the sets I<1 = {i ∈ {1, . . . ,m} | αzi < 1} and I≥1 = {1, . . . ,m} \ I<1. Let
J ⊂ I<1. We define hJ at every (u,v) ∈ Rm × (R∗+)m by

hJ (u,v) =
∑
i∈I≥1

|ui|αzi
βzi

+
∑
j∈J

(1− αzj )v
αzj
j + αzjv

αzj−1

j |uj |
βzj

.

From concavity, we deduce that, for every v ∈ (R∗+)m and u ∈ Rm such that
J ⊂ {i ∈ I<1 | |ui| > 0}, the following majoration property holds

hJ (u,v) ≥
∑

i∈I≥1∪J

|ui|αzi
βzi

= hJ (u, (|ui|)1≤i≤m).
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Since hJ (·,v) is convex and separable, its proximity operator in the Eu-
clidean metric is straightforward to compute. More precisely, for every i ∈
I≥1, η ∈ R∗+ and s ∈ R, proxη−1|·|αzi (s) has either a closed form, given in
Example 2.2.14, or can be found using a bisection search in [0, |s|].

The dual forward-backward Algorithm 5 is then combined with Re-
mark 2.2.8 in order to compute the proximity operator of the convex func-
tion hJ (·,v) in any metric. This leads to Algorithm 15 below, which gener-
ates a sequence (s(p))p∈N converging to proxMhJ (·,v)(x) for any x ∈ Rm and
M ∈ S+

m.

Algorithm 15: DFB algorithm to compute proxMhJ (·,v)(x)

Set ρ = 1/
∣∣∣∣∣∣M−1

∣∣∣∣∣∣, ε ∈]0,min{1, ρ}[, η ∈ [ε, 2ρ− ε];
Initialization: dual variable w(1) ∈ Rm;
for p = 1, ... do

s(p) = x−M−1w(p);
w(p+1) = w(p) + ηs(p) − ηproxη−1hJ (·,v)(η

−1w(p) + s(p))

end

Finally, Algorithm 16 generates a sequence (u(q))q∈N estimating proxMγf (x̃(t)).

Algorithm 16: MM principle to compute proxMγf .

Initialize u(1) ∈ Rm;
for q = 1, ... do
J (q) = {i ∈ I<1 | |u(q)

i | > 0};
v(q) = (|u(q)

i |)1≤i≤m;
u(q+1) = proxM

γhJ (q) (·,v(q))(x̃
(t)) (using Algorithm 15)

end

5.5.3 Proposed sampler

The resulting hybrid Gibbs sampler is summarized in Algorithm 17. It is
evaluated on six different experiments in the next section.
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Algorithm 17: Hybrid Gibbs sampler

1 Sample the noise variance σ2 according to (5.9);

2 Sample the shape parameter α using Algorithm 1 applied to (5.10);

3 Sample the scale parameter β according to (5.11);

4 Sample the hidden label field z using (5.15) ;

5 Sample the TRF x using PP-ULA (5.16)-(5.17).

§ 5.6 Numerical experiments

5.6.1 Experimental settings

Simu1 and Simu2 refer to simulated images with two and three regions, re-
spectively. Kidney denotes the tissue-mimicking phantom produced from 106

scatterers uniformly distributed over a digital image of human kidney tissue
provided with the Field II ultrasound simulator [Jensen, 2004]. The ampli-
tude of each scatterer is produced using a zero-mean Gaussian distribution,
whose variance is linked to the amplitude of the corresponding point on the
digital image. The PSF for the aforementioned simulations is obtained with
Field II and corresponds to a 3.5 MHz linear probe. The number of regions
K is set to 2 for Simu1, and it is set to 3 for Simu2 and Kidney.

We also perform tests on three real ultrasound images. Thyroid denotes a
real RF image of thyroidal flux obtained in vivo with a 7.8 MHz probe. The
unknown PSF is identified using the RF image of a wire cross-section which
was acquired with the same probe. Since the diameter of the wire is of the
order of a few µm, its cross-section can almost be viewed as a point. Thus, its
RF image provides a good approximation of the PSF. Finally, Bladder and
KidneyReal refer to the RF images of a mouse bladder and mouse kidney,
respectively. Both images were obtained in vivo with a 20 MHz probe. The
PSF for these two real images is estimated using the same method as for
Thyroid. The number of regions K is set to 2 for KidneyReal, and it is set
to 3 for Thyroid and Bladder.

Test settings are summarized Table 5.1, while the simulated and real RF
images used in these numerical experiments are shown in Figure 5.2.

The TRF is initialized using a pre-deconvolved image obtained with a
Wiener filter, while the segmentation is initialized by applying a 7×7 median
filter, followed by the Otsu method [Otsu, 1979], to the B-mode of the initial
TRF. Shape and scale parameters are randomly selected in [0.5, 1.5], and
[1, 200], respectively. The granularity parameter θ for the Potts model (5.8) is
adjusted to ensure that the percentage of isolated points in the segmentation,
obtained with a 3×3 median filter, is close to 0.05, 0.1, 0.8, 0.08, 0.08 and 0.08
for Simu1, Simu2, Kidney, Thyroid, Bladder and KidneyReal, respectively.
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Experiment Size Data type
Ground-truth

x (α,β) z

Simu1 256×256 Simulated X X X
Simu2 256×256 Simulated X X X
Kidney 294×354 Tissue-mimicking X - -
Thyroid 870×140 Real in vivo - - -
Bladder 370×256 Real in vivo - - -

KidneyReal 350×200 Real in vivo - - -

Table 5.1: Test settings: size of test images, data type, and availability of
the ground-truth for the TRF, GGD parameters and the segmentation.

(a) (b) (c)

(d) (e) (f)

Figure 5.2: B-mode of RF images for (a) Simu1, (b) Simu2, (c) Kidney,
(d) Thyroid, (e) Bladder and (f) KidneyReal. Blue boxes indicate regions
used to compute the CNR.

5.6.2 Comparisons and evaluation metrics

All computational times are given for simulations run on Matlab 2018b on
an Intel Xeon CPU E5-1650 3.20 GHz. The code for the proposed method is
available online3. In addition to comparing Algorithm 17 with HMC [Zhao
et al., 2016], the quality of the deconvolution is compared with the one

3https://github.com/mccorbineau/PP-ULA

https://github.com/mccorbineau/PP-ULA
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obtained with a Wiener filter, where the noise level has been estimated
as in [Mallat, 1999], and with the solution to the Lasso problem, where
the regularization weight is set i) manually when the ground-truth is not
available, or ii) using a golden-section search to maximize the peak signal-
to-noise ratio (PSNR) defined as

PSNR = 10 log10

(
m

max1≤i≤m(xi, x
∗
i )

2

‖x− x∗‖2
)
, (5.18)

with x ∈ Rm the true TRF and x∗ ∈ Rm the estimated one. We also com-
pare our results with the segmentation given by Otsu’s method [Otsu, 1979]
applied to the Wiener-deconvolved image, and with the SLaT method [Cai
et al., 2017] applied to the Lasso-deconvolved image. The proposed method,
PP-ULA, is used with γ = 0.09 and M an approximation of the Hes-
sian of the differentiable term in (5.13) [Becker and Fadili, 2012], M =
(H>H + λIm)/σ2, with λ = 0.1 so that the inverse of M is well-defined.

In order to evaluate the deconvolution results, we compute the PSNR
and the structural similarity measure (SSIM) [Wang et al., 2004] between
the restored TRF and its ground-truth. The contrast in the restored TRF
is assessed according to the contrast-to-noise ratio (CNR) [Krishnan et al.,
1997] between two windows from different regions of the B-mode TRF im-
ages. The CNR is defined as follows,

CNR = |µ1 − µ2|/(ν1 + ν2)1/2,

where (µ1, µ2) and (ν1, ν2) are, respectively, the means and variances of the
two windows. The segmentation is evaluated according to the percentage of
correctly predicted labels, which is referred to as overall accuracy (OA). The
minimum mean square error (MMSE) estimators of all parameters in HMC
and PP-ULA are computed after the burn-in regime. Moreover, to evaluate
the mixing property of the Markov chain after convergence, we compute
the mean square jump (MSJ) per second, which is the ratio of the MSJ to
the time per iteration. The MSJ is obtained using T samples of the TRF
(x(t0+1), . . . ,x(t0+T )) generated after the burn-in period, i.e.

MSJ =

(
1

T − 1

T−1∑
t=1

∥∥∥x(t0+t) − x(t0+t+1)
∥∥∥2
)1/2

.

First, we present the results obtained on the proposed simulated data.

5.6.3 Results on simulated data

The convergence speed of Algorithm 17 is empirically observed for Simu1
and Simu2, as illustrated in Figure 5.3, where we also display the results of
the non-preconditioned P-ULA, for which M = Im and γ = 1.99σ2/|||H|||2.
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Iterations Time Mixing

Burn-in Total Duration
PP-ULA MSJ
speed gain (per sec)

Simu1
P-ULA 70000 140000 2 h 27 min 12.2 665
HMC 4000 8000 1 h 08 min 5.7 173

PP-ULA 4000 8000 12 min 1 970

Simu2
P-ULA 70000 140000 3 h 06 min 4.8 590
HMC 10000 20000 4 h 14 min 6.6 22

PP-ULA 10000 20000 39 min 1 793

Table 5.2: Number of iterations, computational time and MSJ per sec for
experiments Simu1 and Simu2.

Simu1 Simu2

σ2 α1 β1 α2 β2 σ2 α1 β1 α2 β2 α3 β3

True 0.013 1.5 1.0 0.60 1.0 33 1.5 100 1.0 50 0.50 4.0
P-ULA 0.041 2.0 0.5 0.59 1.0 122 2.0 330 2.0 3186 0.48 3.4
HMC 0.013 1.8 1.2 0.61 1.0 34 1.4 66 1.1 111 0.54 5.2

PP-ULA 0.013 1.4 0.9 0.62 1.1 35 2.3 2676 1.2 122 0.55 5.8

Table 5.3: MMSE Estimates of the noise variance and GGD parameters.

Comparing P-ULA and PP-ULA on these simulated data allows us to study
the effect of adding a preconditioner in the proposed sampling scheme. As
reported in Table 5.2, P-ULA needs more iterations and more time to con-
verge than PP-ULA: the proposed method is 12.2 and 4.8 times faster than
P-ULA on Simu1 and Simu2, respectively. In addition, from Table 5.3 and
Figure 5.4, we deduce that P-ULA is more biased than PP-ULA, which sam-
ples correctly the target distributions. Finally, as one can see in Figure 5.3
and Table 5.4, P-ULA leads to lower PSNR, SSIM and OA values than PP-
ULA. These results clearly emphasize the benefits of preconditioning in this
example.

From Table 5.2, PP-ULA is 5.7 and 6.6 times faster than HMC on Simu1
and Simu2 and has better mixing properties, as shown by the MSJ per sec-
ond. Visual results from Figures 5.5 and 5.6, and CNR values in Table 5.4
show that the contrast obtained with PP-ULA is better than with com-
petitors on Simu2, and is second best after P-ULA on Simu1. However, it
should be noted that the PSNR and SSIM obtained on Simu1 with P-ULA
are much lower than with the other methods. In addition, the PSNR and
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Figure 5.3: PSNR along time for Simu1. Dotted lines indicate the PSNR
of the MMSE estimator of the TRF after the burn-in regime.

Figure 5.4: Simu1, GGD distributions (5.7) of regions 1 (left) and 2 (right).

Simu1 Simu2

PSNR SSIM CNR OA PSNR SSIM CNR OA

Wiener - Otsu 37.1 0.57 1.26 99.5 35.4 0.63 0.97 96.0
Lasso - SLaT 39.2 0.60 1.15 99.6 37.8 0.70 0.99 98.3

P-ULA 38.9 0.45 1.82 98.7 37.1 0.57 1.59 94.9
HMC 40.0 0.62 1.47 99.7 36.4 0.64 1.59 98.5

PP-ULA 40.3 0.62 1.51 99.7 38.6 0.71 1.64 98.7

Table 5.4: PSNR, SSIM, CNR and segmentation OA for simulated data.

SSIM values from Table 5.4 obtained with PP-ULA are equivalent or higher
than all competitors for these two experiments. Visual segmentation results
are shown in Figures 5.7 and 5.8, and OA values can be found in Table 5.4.
For these simulated images, more pixels are correctly labeled with PP-ULA
than with competitors.
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: B-mode visualization of the TRF for Simu1: (a) ground-truth,
(b) Wiener, (c) Lasso, (d) P-ULA, (e) HMC, (f) PP-ULA.

(a) (b) (c)

(d) (e) (f)

Figure 5.6: B-mode visualization of the TRF for Simu2: (a) ground-truth,
(b) Wiener, (c) Lasso, (d) P-ULA, (e) HMC, (f) PP-ULA.
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: Segmentation results for Simu1: (a) ground-truth, (b) Otsu, (c)
SLaT, (d) P-ULA, (e) HMC, (f) PP-ULA. Main differences are circled in
green.

Iterations Time Mixing

Burn-in Total Duration
PP-ULA MSJ
speed gain (per sec)

Kidney
HMC 7000 14000 4 h 23 min 6.3 167

PP-ULA 7000 14000 42 min 1 657

Thyroid
HMC 3000 6000 2 h 09 min 3.7 175

PP-ULA 3000 6000 35 min 1 950

Bladder
HMC 5000 10000 2 h 45 min 5.2 13

PP-ULA 5000 10000 32 min 1 1396

KidneyReal
HMC 5000 10000 1 h 49 min 5.8 11

PP-ULA 5000 10000 19 min 1 1361

Table 5.5: Number of iterations, computational time and MSJ per sec for
experiments on the tissue-mimicking phantom and on real data.

5.6.4 Results on a tissue-mimicking phantom and on real
data

The convergence of Algorithm 17 is also empirically observed for the ex-
periments on the tissue-mimicking phantom and on real data, i.e. Kidney,
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: Segmentation results for Simu2: (a) ground-truth, (b) Otsu, (c)
SLaT, (d) P-ULA, (e) HMC, (f) PP-ULA. Main differences are circled in
green.

Thyroid, Bladder and KidneyReal. As mentioned in Table 5.5, the proposed
method leads to a significant acceleration since it is between 3.7 and 6.3 times
faster than HMC on these experiments. Visual results from Figures 5.9 and
5.10, and CNR values in Table 5.6 show that the contrast obtained with PP-
ULA is better than with competitors on all these test images. In addition,
the PSNR and SSIM values from Table 5.6 obtained with PP-ULA on the
Kidney experiment are equivalent or higher than all competitors.

Kidney Thyroid Bladder KidneyReal

PSNR SSIM CNR CNR CNR CNR

Wiener 27.6 0.58 0.66 0.56 1.66 1.61
Lasso 28.5 0.59 0.67 0.99 1.76 1.76
HMC 29.5 0.62 1.10 1.52 2.23 1.88

PP-ULA 29.3 0.62 1.14 1.56 2.48 1.93

Table 5.6: PSNR, SSIM and CNR results.

Although the ground-truth of the segmentation is not available for these
experiments, one can see from the visual segmentation results shown in
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Figure 5.11, that the segmentation based on the Potts model (PP-ULA and
HMC) gives more homogeneous areas than Otsu, and recovers more details
than SLaT.

(a) (b) (c)

(d) (e)

Figure 5.9: B-mode visualization of the TRF results for Kidney. (a) ground-
truth, (b) Wiener, (c) Lasso, (d) HMC, (e) PP-ULA.

§ 5.7 Summary

In this chapter, we have investigated a new method based on a precon-
ditioned proximal unadjusted Langevin algorithm for the joint restoration
and segmentation of ultrasound images, which showed faster convergence
than an existing Hamiltonian Monte Carlo algorithm. Hence, the proposed
method has the potential to speed-up the approach proposed in [Pereyra
et al., 2012] for the segmentation of ultrasound images. Another direction
for future work is to extend this framework to a spatially variant, possibly
unknown, PSF.
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(a) (b) (c) (d)

Figure 5.10: B-mode visualization of the TRF results for real data: (a)
Wiener, (b) Lasso, (c) HMC, (d) PP-ULA. From top to bottom: Thyroid,
Bladder and KidneyReal.
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(a) (b) (c) (d)

Figure 5.11: Segmentation: (a) Otsu, (b) SLaT, (c) HMC, (d) PP-ULA.
Top to bottom: Kidney, Thyroid, Bladder, KidneyReal. Main differences are
circled in green.
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- Chapter 6 -

Conclusion

§ 6.1 Summary

During this thesis, our main axes of research aimed at studying the use of
the proximity operator in different contexts, and at building bridges between
distinct methods through optimization. Accordingly, we have investigated
three new methods for solving challenging inverse problems.

First, we have focused on the traditional variational strategy, which consists
in finding a solution to an inverse problem by minimizing an objective func-
tion. Interior point methods are a specific class of variational methods that
are well suited for constrained optimization problems. Despite their impres-
sive performance in linear and quadratic programming, they progressively
lost popularity to give rise to more flexible techniques, such as proximal
algorithms.

In Chapter 3, we have combined the logarithmic barrier method with
the proximal variable metric forward-backward algorithm, leading to the
proposed PIPA algorithm. In the case of composite objective functions, PIPA
benefits from a splitting strategy. In addition, it includes variable metrics,
which can be used to boost its convergence as proven in our numerical
experiments. Last but not least, the logarithmic barrier in PIPA ensures
that every iterate satisfies strictly the constraints, which might be critical
if, for instance, these constraints model a safety margin or if they have a
physical meaning.

We have then carried out a mathematical analysis of the proposed al-
gorithm. The convergence of PIPA was obtained under mild boundedness
conditions on the variable metrics, and we have shown that, under some
assumptions, the inner loop in PIPA converges linearly. Finally, we have
evaluated the performance of PIPA on two applications in image process-
ing. The first example concerns hyperspectral unmixing and the second one
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addresses joint geometry-texture decomposition and reconstruction of CT
data. In both experiments, we have formulated a constrained optimization
problem, with a nondifferentiable term in the objective function, for solving
the corresponding inverse problem. PIPA compares favorably with widely-
used state-of-the-art algorithms on these two applications.

Second, we have considered the framework offered by recent deep learn-
ing methods for solving inverse problems. Neural networks have reached
outstanding performances in applications related to computer vision. They
may however suffer from a lack of interpretability and mathematical guar-
antees.

In Chapter 4, we have applied deep-unfolding to a proximal interior
point algorithm. This algorithm has been unfolded over a fixed number of
iterations identified with the network layers. As opposed to other unfolded
methods, we have maintained the link between the original algorithm and
the resulting architecture by keeping the proximal update explicit, so that
only hyperparameters are inferred by the network.

In order to train the proposed network, referred to as iRestNet, using
gradient descent and backpropagation, we have derived explicit expressions
for the proximity operator of the barrier and for its first derivatives for
three common types of constraints. It is worth noting that the logarithmic
barrier allows to incorporate prior knowledge or desired properties about
the solution within iRestNet. Moreover, when the optimization problem is
quadratic, we have derived sufficient conditions under which iRestNet is
robust with regards to an input perturbation. Such stability property is very
important to promote the use of deep neural networks in fields involving high
responsibility, such as medical imaging.

Lastly, we have demonstrated the good performance of iRestNet on image
deblurring for several types of blurring kernels and noise levels. It is worth
noting that iRestNet compares favorably in terms of image restoration with
the classical variational approach and state-of-the-art neural network ap-
proaches for image deblurring, including architectures derived from other
types of unfolded algorithms.

Third, we have combined proximal tools with a Bayesian approach. The
Bayesian framework provides useful stochastic simulation methods, that can
be used as alternatives to variational methods which may require setting hy-
perparameters. In addition, Bayesian methods can help derive useful estima-
tors, other than the MAP, such as the MMSE. However, Bayesian techniques
can suffer from high computational costs.

In Chapter 5, we have introduced a new accelerated proximal unadjusted
Langevin algorithm called PP-ULA. The preconditioning matrices and split-
ting scheme used in PP-ULA constitute two original features of this algo-
rithm. Since PP-ULA is an unadjusted sampling method, it is not followed by
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an acceptance test. Then, we have considered a hybrid Gibbs sampler which
has been derived for a specific application, the deconvolution and segmen-
tation of ultrasound images. We have incorporated PP-ULA into this Gibbs
sampler so as to accelerate the method. Finally, we have conducted tests on
six different images, half of which are synthetic images, and the remaining
are real in vivo ultrasound data. Using the proposed PP-ULA has led to
a significant reduction of the computational time compared to an Hamilto-
nian Monte Carlo algorithm known for its good performance. In addition,
the proposed method also produced better deconvolution and segmentation
results than several variational approaches used as comparisons.

In the next section, we propose several extensions of the aforementioned
methods that could be investigated for future works.

§ 6.2 Perspectives

The proximal interior point algorithm studied in Chapter 3 could be further
improved as suggested hereafter.

Study the convergence of PIPA for nonconvex functions One inter-
esting lead to extend the scope of application of PIPA would be to
conduct its convergence analysis in a nonconvex setting. This could be
done for instance by better relying on the KL property, as in the follow-
ing works [Attouch and Bolte, 2009; Attouch et al., 2010; Chouzenoux
et al., 2014b].

Consider inexact proximity operators in PIPA In our numerical ex-
periments from Sections 3.6 and 3.7, we use an iterative scheme to
compute the proximity operator in the variable metric. Despite this in-
exact computation, we still observe the practical convergence of PIPA
in both applications. Therefore, another improvement in the analysis
of this algorithm would be to prove mathematically its convergence
assuming that the proximity operator is computed in an inexact man-
ner. Inexact proximity operators have been addressed for example in
[Salzo and Villa, 2012], where the authors consider several types of er-
rors. It is worth noting that, depending on the error type, the sequence
of errors does not necessarily need to be summable for convergence to
hold.

Derive accelerated versions of PIPA Based on the seminal work [Nes-
terov, 1983], accelerated versions of proximal algorithms have been
recently proposed, for example in [Calatroni and Chambolle, 2019].
It would be interesting to integrate these acceleration techniques into
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PIPA and to perform numerical experiments to test if the resulting
algorithm performs better than the simple version of PIPA.

Conduct experiments with nonlinear constraints It should be noted
that the convergence results presented in Section 3.4 do not require
the constraints to be linear. However, in the numerical experiments
presented in Sections 3.6 and 3.7, constraints are taken linear. Hence,
it would be insightful to use PIPA for an application that includes
nonlinear constraints, like quadratic constraints for instance. This new
setting could influence the choice of the variable metrics since it would
modify the Hessian of the logarithmic barrier.

Building on the neural network architecture presented in Chapter 4, we
propose the following research directions related to deep learning methods.

Extend the stability result of iRestNet The result obtained in Secti-
on 4.5 regarding the robustness of iRestNet holds under the assump-
tion that the objective function is quadratic. Providing mathematical
guarantees regarding the behavior of a neural network under an in-
put perturbation is a prerequisite in many real-world applications.
Therefore, we could consider studying the robustness of iRestNet in
a more general setting so as to widen the scope of this method. In
addition, this result could be improved by considering the hidden and
post-processing layers in the study.

Improve the architecture of the hidden layers The proposed neural
network makes use of very simple hidden layers to predict the hyper-
parameters involved in the unfolded algorithm, namely the stepsize,
the barrier parameter, and the regularization coefficient. Using more
sophisticated and deeper hidden layers could improve the restoration
results. For instance, we could make the stepsize depend on the input
image, as it is done for the barrier parameter. Moreover, the regu-
larization parameter could depend on additional features in the image
such as the mean, the variance, or second order spatial derivatives. We
could also treat the parameter δ used to smooth the total variation as
a learnable parameter.

Perform experiments with more complex models The numerical ex-
amples presented in Chapter 4 could be supplemented by additional
experiments with different noise models. For instance, we could con-
sider a Poisson noise or a Poisson-Gaussian mixture noise, which would
lead to a different data fidelity function f as detailed in [Chouzenoux
et al., 2015]. Furthermore, as opposed to classical variational meth-
ods, iRestNet is not limited by the number of hyperparameters. Hence,
considering the local total variation used in Section 4.6, it would be
interesting to introduce one regularization weight per pixel, or per
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group of pixels, and to measure the influence of this modification on
the quality of the deblurred image. More sophisticated regularization
functions could also be used, such as nonlocal regularization functions
[Peyré et al., 2008], which have demonstrated better performances than
local strategies for several examples in image restoration [Kindermann
et al., 2005; Li et al., 2017].

Extend iRestNet to blind deconvolution One limitation of the propo-
sed architecture is that we need to train one network per blurring ker-
nel. It would be interesting to include the inference of the observation
operator H in iRestNet for the purposes of bringing more flexibility
to the method and reducing the training time.

Finally, we suggest the following improvements and future leads related to
our study of a Bayesian approach in Chapter 5.

Include the estimation of the granularity The hierarchical Bayesian
model introduced in Section 5.4 includes a granularity coefficient in
the segmentation Potts model. The segmentation result highy depends
on the value of this parameter. In our numerical experiment we set it in
a semi-automatic way that requires launching several Markov chains.
The proposed method could be improved by considering the granu-
alrity as a random variable and estimating it jointly with the other
variables in the Gibbs sampler. This could however slow down the
simulation.

Extend the Bayesian approach to nonblind deconvolution For real
in vivo ultrasound data, the PSF of the probe is not known. In our
experiments, we have estimated the PSF from the RF image of a thin
wire. It would be interesting to include the estimation of the PSF in
the proposed model, so as to improve the performance of the method
on real data.

Study the convergence of PP-ULA Studying the convergence of the full
hybrid Gibbs sampler is very challenging since PP-ULA is an unad-
justed algorithm. Nonetheless, we could start by studying the con-
vergence of PP-ULA alone by building on the results derived for the
classical proximal unadjusted Langevin algorithm in [Pereyra, 2016].

Investigate parallelization Although PP-ULA leads to a significant re-
duction of the time needed to perform joint deconvolution and seg-
mentation of US images, the computational cost remains too long for
online applications. We have implemented our method using Matlab.
The proposed approach would greatly benefit from an implementation
in a language with better performance. In addition, we have not made
use of any parallelization or GPU implementation, which could be
promising research directions for improving the efficiency of PP-ULA.
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