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Je tiens à remercier

Chapitre 1

Contexte général de la thèse et son fil conducteur "... Douter de tout ou tout croire, ce sont deux solutions également commodes, qui l'une et l'autre nous dispensent de réfléchir." Henri Poincaré, La Science et l'Hypothèse, 1902.

Les recherches présentées dans ce manuscrit s'inscrivent dans le domaine des systèmes dynamiques, de dimensions finie et infinie, et de l'application de la théorie qualitative des systèmes dynamiques aux problèmes de contrôle. Elles s'articulent essentiellement autour de différentes versions du théorème de la variété du centre (en dimension finie et infinie) et de différentes théories des formes normales (avec ou sans contrôle), voir [START_REF] Carr | Application of Center Manifold Theory[END_REF][START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[END_REF][START_REF] Califano | On the problem of feedback linearization[END_REF][START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF]. L'objectif commun à ces recherches est, d'une part, de prouver l'efficacité de ces méthodes dans des applications émanantes des problèmes de contrôle, et d'autre part, d'étendre leur applicabilité à des systèmes algébro-différentiels non-linéaires à retard et dépendant de paramètres. Ces deux théories permettent de réduire, localement (au voisinage d'un point d'équilibre), la structure, ainsi que la dimension des systèmes, sans toutefois perdre l'essentiel des dynamiques. Plus précisément, le théorème de la variété du centre réduit la dimension du système à celle de l'espace propre généralisé associé aux valeurs spectrales imaginaires pures. La théorie des formes normales permet de simplifier la structure du sytème, dans le cas d'un système de commande, en découplant l'état des entrées et en réduisant ses non-linéarités, voir [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[END_REF][START_REF] Bonnard | Mécanique céleste et contrôle des véhicules spatiaux[END_REF]. Il est commode de signaler que cette approche se base sur une succession de changements de variables proches de l'identité, ce qui présente un aspect symbolique permettant de conserver (localement) l'information sur les dynamiques importantes. Ces méthodes symboliques/formelles ont prouvé leur efficacité dans divers problèmes dans l'analyse qualitative des solutions de systèmes dynamiques, voir [START_REF] Barkatou | Sur les séries formelles solutions d'équations aux différences polynomiales[END_REF][START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF][START_REF] Abramov | D'alembertian series solutions at ordinary points of lode with polynomial coefficients[END_REF][START_REF] Quadrat | Algebraic and Symbolic Computation Methods in Dynamical Systems[END_REF]. En particulier, il est aussi intéressant de rappeler que ces méthodologies apportent un outil complémentaire aux méthodes numériques, surtout lorsqu'il s'agit de systèmes de grande dimension ou même en dimension infinie (équations aux dérivées partielles et systèmes à retard), voir [START_REF] Quadrat | A constructive algebraic analysis approach to Artstein's reduction of linear time-delay systems[END_REF][START_REF] Quadrat | A constructive study of the module structure of rings of partial differential operators[END_REF][START_REF] Zerz | Multidimensional behaviours : an algebraic approach to control theory for pde[END_REF].

Le fil conducteur des problèmes et sujets abordés dans ce projet est l'analyse qualitative de systèmes dynamiques au voisinage de points d'équilibre non hyperboliques, ce qui exclut le cadre du théorème de Hartman-Grobman. Ce dernier théorème est aussi connu sous le nom du théorème de linéarisation assurant, lorsqu'il s'agit de point d'équilibre hyperbolique, une équivalence topologique entre les flots du champs de vecteur (non linéaire) et son jacobien au point d'équilibre en question. Ainsi, il est question, soit (à travers le théorème de la variété du centre) d'exploiter ces valeurs spectrales à partie réelle nulle (lorsqu'elles existent, et lorsqu'il est techniquement possible de les identifier précisément avec leurs multiplicités), soit de caractériser ce type de valeurs spectrales (par caractériser on sous-entend les identifier ainsi que leurs multiplicités algébriques/géométriques respectives). Il en sort alors l'intérêt de préviligier des approches symboliques plus adaptées que les méthodes numériques pour mener à bien ce dernier objectif.

Ces travaux/projet de recherche présente(nt) deux volets. Le premier concerne les systèmes dynamiques en dimension finie, qui est dans la lignée naturelle des sujets traités pendant ma thèse, période pendant laquelle j'ai été guidé par Jean-Marie Strelcyn (Université de Rouen) et Raouf Chouikha (Université Paris Nord) dans la caractérisation (analytique/algébrique) de solutions périodiques des systèmes dynamiques en dimension finie. J'avais fait le choix, en particulier, de me consacrer au problème du centre et plus précisément celui de la propriété d'isochronie (solutions périodiques de période constante, indépendamment des conditions initiales confinées dans la région centrale) pour les systèmes bidimensionnels d'équations différentielles ordinaires. La caractéristique de ces derniers systèmes (2D) est un linéarisé au voisinage du point d'équilibre (souvent considéré, sans perte de généralité, l'origine de R 2 ) admettant deux valeurs spectrales ±jω, ce qu'on appelle souvent un point de Hopf. Ainsi, ces systèmes plans, peuvent être perçus comme une projection spectrale sur une variété invariante/attractive (variété du centre) d'un système de plus grande dimension ayant un point d'équilibre non hyperbolique dont la partie critique de son spectre ne comporte que ces deux valeurs spectrales (±jω chacune de multiplicité algébrique/géométrique identiquement égale à 1). Si de plus, le reste des valeurs spectrales du système étudié admet des parties réelles négatives alors les dynamiques d'un système 2D de ce type reflèteront (qualitativement) les dynamiques du système initial (de plus grande dimension). Toutefois, mon évolution dans cette thématique (d'analyse qualitative des systèmes de dimension finie) s'est également orientée vers des problèmatiques telles que le contrôle des systèmes en grande dimension (dépendant de paramétres) et la synchronisation de fréquence pour des systèmes non linéaires couplés.

Les résultats de ce volet sont présentés dans la Sous-partie A. Dans les deux premiers chapitres, il s'agit des résultats des travaux [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF] (en collaboration avec Raouf Chouikha et Jean-Marie Strelcyn) et [START_REF] Bardet | Isochronicity conditions for some planar polynomial systems {II}[END_REF] (en collaboration avec Magali Bardet, Raouf Chouikha et Jean-Marie Strelcyn), où une caractérisation/génération des conditions d'isochronie du centre à l'origine pour les systèmes plans de l'équation différentielle ordinaire de type Liénard est établie. Grâce à l'usage de la méthode itérative due à R. Chouikha [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF], fondée sur un théorème de Minuro Urabe (1961), nous déterminons de nouveaux cas de centre linéaire perturbé par une non-linéarité non homogène. En particulier, dans [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF] pour un centre linéaire perturbé par une non-linéarité homogène ẋ = y + P n (x, y)

ẏ = -x + Q n (x, y) , (1.1) 
de degré n arbitraire réductible à l'équation de type Liénard, nous avons identifié trois familles toujours linéarisables indépendamment du degré. Dans [START_REF] Bardet | Isochronicity conditions for some planar polynomial systems {II}[END_REF], nous présentons aussi une étude comparative d'efficacité dans le calcul des conditions d'isochronie pour des systèmes de type Liénard (Formes Normales VS C-Algorithme modifié). Nous exhibons également, une famille de systèmes avec un centre isochrone admettant une fonction d'Urabe non standard et une formule explicite de linéarisation est établie. Enfin, nous contribuons à un problème ouvert posé par Evgenii Volokitin (Académie des Sciences Russe, Institut Sobolev, Novosibirsk) portant sur les systèmes d'Abel ẋ = -y

ẏ = x(1 + P (y)), (1.2) 
avec P (y) = a 1 y + a 2 y 2 + a 3 y 3 + .... + a n y n . Dans le chapitre ??, les résultats de [START_REF] Bardet | Complexity reduction of c-algorithm[END_REF] sont repris. En collaboration avec Magali Bardet (Université de Rouen), nous obtenons une réduction de complexité de l'algorithme de Chouikha qu'on appelle par la suite CAR, avantageuse à plus d'un titre lorsqu'elle est comparée aux algorithmes des formes normales dans la caractérisation des systèmes linéarisables au voisinage du centre (dont l'existence est certifiée par un thérème de M. Sabatini) pour les systèmes de type Liénard plan :

-en coût de calcul, -en fournissant une condition suffisante, -en indiquant dans certains cas la linéarisation explicite. L'algorithme présenté prouve son efficacité surtout s'agissant de données rationnelles (ce qui est toujours le cas pour les systèmes polynomiaux plans). Le tableau suivant, dans lequel le temps de calcul est exprimé en secondes, témoigne de l'efficacité de l'algorithme proposé comparé à l'algorithme classique des formes normales dans la caractérisation de la linéarisabilité pour le système (1.2) en variant le degré n :

Par ailleurs, ce même problème d'isochronie peut être considéré comme étant un problème de synchronisation de fréquence indépendamment des conditions initiales (confinées dans l'anneau du centre). Ainsi, dans le chapitre 4, qui reprend les résultats de [START_REF] Boussaada | Amplitude independent frequency synchroniser for a cubic planar polynomial system[END_REF], une synchronisation de fréquence par un retour d'état monomial affectant une seule équation d'un système cubique plan initialement non linéarisable (donnant lieu à une dynamique linéaire) est établie. Les conditions nécessaires sont obtenues grâce au calcul explicite des formes normales.

Ensuite, une application directe de ces approches qualitatives/symboliques (formes normales et variété du centre) nous ont permis d'aborder les problèmes d'analyse et de contrôle d'un véhicule aérien équipé de quatre moteurs, "Quadrotor". Les résultats de [START_REF] Wang | Analysis and control of quadrotor via a normal form approach[END_REF] en collaboration avec Jing Wang (L2S), Silviu-Iulian Niculescu, Hugues Mounier et Arben Cela (ESIEE) sont repris dans le chapitre 5. Les résultats du deuxième volet sont présentés dans la Sous-partie B. Il reprend les sujets et résultats que j'aborde depuis octobre 2010 essentiellement avec Silviu-Iulian Niculescu et Hugues Mounier. Au début dans le cadre de mon activité postdoctorale en automatique au L2S (2010-2011), puis en tant que chercheur associé au L2S (depuis 2011). Il s'agit de la modélisation, de l'analyse et du contrôle des équations algébro-différentielles ainsi que l'étude des systèmes dynamiques en dimension infinie ; plus précisément, les sytèmes non linéaires à retard et les équations aux dérivées partielles hyperboliques. En effet, les systèmes de commande évoluent souvent en présence de retards, voir [START_REF] Mazenc | Reduction model approach for linear systems with sampled delayed inputs[END_REF]. Ces retards sont souvent justifiés par les latences entre l'acquisition de l'information et la prise de décision et entre la prise de décision et l'exécusion de cette décision. Le retard peut aussi être perçu comme un paramètre intrinsèque au système, et ce, typiquement dans des applications évoquant des phénomènes de propagation (propagation de vibrations en torsion et en traction-compression le long d'un train de tiges d'un système de forage pétrolier), ou des retards intentionnellement incorporés dans les lois de commandes afin d'éviter la démultiplication des capteurs, ou encore en raison de contraintes technologiques empêchant l'aquisition instantanée des informations sur l'état du système (telle la stabilisation d'un pendule inversé par des lois de commande retardées dispensant ainsi de l'usage d'un capteur de vitesse angulaire).

Dans ce contexte, trois pistes ont été essentiellement explorées. La première, consiste à exploiter des approches et résultats de l'analyse des équations différentielles fonctionnelles dans des problèmes concrets de contrôle. En effet, dans le chapitre 6, nous reprenons les résultats obtenus dans [START_REF] Boussaada | Inverted pendulum stabilization : Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains[END_REF] ainsi que dans [START_REF] Boussaada | Inverted pendulum stabilization via a pyragas-type controller : Revisiting the triple zero singularity[END_REF], deux travaux en collaboration avec Silviu-Iulian Niculescu et Constantin Morarescu (CRAN, Université de Lorraine), il s'agit de l'analyse des dynamiques induites par la commande retardée. Un système d'équations différentielles ordinaires non linéaires modélisant un pendule inversé sur un chariot est étudié. Suite à l'usage de commande de type proportionnel à plusieurs retards nous mettons en évidence l'apparition de dynamiques inhabituelles pour des systèmes en dimension finie. Nous identifions une bifurcation de co-dimension 3 au voisinage d'une valeur propre triple en zéro. Cette multiplicité dépasse la dimension du système initial (système plan). Nous élaborons une analyse non-linéaire basée sur le théorème de la variété du centre pour les systèmes en dimension infinie puis la forme normale des dynamiques centrales est analysée. L'étude se réduit à l'analyse d'un système tri-dimensionnel. Les bifurcations de Hopf et de fourche (Pitchfork) sont étudiées pour plusieurs lois de commandes retardées [START_REF] Boussaada | Inverted pendulum stabilization via a pyragas-type controller : Revisiting the triple zero singularity[END_REF]. La stabilisation du pendule est ensuite obtenue grâce à l'éclatement du paramètre de perturbation. Nous mettons également en évidence que la connaissance de l'état à deux instants τ 1 et τ 2 suffisamment proches permet d'éviter l'estimation de la vitesse souvent indispensable pour de bonnes performances de la loi de commande [10]. D'autre part, en collaboration avec Silviu-Iulian Niculescu, Hugues Mounier et Arben Cela, Belem Saldivar et Sabine Mondié (Conacyt, Mexique) nous nous intéressons à une application issue de l'industrie pétrolière. Cette partie est présentée dans les chapitres 7-9 qui reprennent des résultats de [START_REF] Boussaada | Analysis of drilling vibrations : A time-delay system approach[END_REF][START_REF] Boussaada | Control of drilling vibrations : A time-delay system-based approach[END_REF][START_REF] Saldivar Marquez | Analysis and Control of Oilwell Drilling Vibrations[END_REF][START_REF] Boussaada | Delay system modeling of rotary drilling vibrations[END_REF]. Il s'agit de la modélisation, de l'analyse et du contrôle des vibrations d'un système de forage. L'industrie de forage pétrolier localise des poches d'hydrocarbure de plus en plus profondes (actuellement de 3 à 7 km) ; de ce fait les vibrations de rotation (torsionnelles) et celles de traction-compression peuvent causer une fatigue et une usure prématurées du train de tiges. Notre travail porte sur l'analyse et le contrôle d'un modèle qui prend en considération les deux types de vibrations, et comporte deux équations d'ondes couplées (chacune décrit un type de vibration). En plus, le couplage de ces deux types de vibrations est pris en compte dans les conditions aux bord et il est considéré comme non linéaire. Tous ces éléments de modélisation permettent d'obtenir une description assez élaborée des dynamiques induites le long du train de tiges. Dans la modélisation qu'on considère, les vibrations en tractioncompression U (t, s) et les vibrations torsionnelles Φ(t, s) sont gouvernées par les 

                           Ü (t, s) = c 2 U (t, s), U (t, 0) = α E Γ ( U (t, 0) -H(t)), M Ü (t, L) = -E ΓU (t, L) + F ( U (t, L)), Φ(t, s) = c2 Φ (t, s), Φ (t, 0) = β G Γ ( Φ(t, 0) -Ω(t)),
J Φ(t, L) = -G Γ Φ (t, L) + F ( U (t, L)).

(1.3) où G est le module de Young de l'acier des tiges, E est le module de Young d'élasticité, J est l'inertie de rotation du système, M est masse du système, L est longueur des tiges, Γ est la section moyenne et ρ est la densité volumique, ainsi les vitesses d'onde s'écrivent : c = E ρ et c = G ρ . Notons que les profils de frottement F et F ont été modélisés par : z → k z k 2 z 2 +ζ avec 0 < ζ << 1 et k ∈ N * , voir figure 1.2. Le modèle d'EDP établi se ramène au système à retard de type neutre ẋ(t) -a ẋ(t -τ ) = f (x(t), x(tτ )) ẏ(t) -b ẏ(t -τ ) = g(x(t), x(tτ ), y(t), y(t -τ ))

(1.4) où g et f sont des fonctions non linéaires. En particulier, une analyse basée sur le théorème de la variété du centre et sur l'utilisation des formes normales est établie. Le choix de transformer le modèle d'EDP en DDE est justifié par le fait que le modèle physique sera accompagné d'un modèle de transmission (usage de technologie wifi qui induit naturellement un retard) permettant de recuillir des informations sur l'état de l'outil au fond du puits. Ces informations sont précieuses pour la tâche de contrôle. Afin d'éviter que les dynamiques des vibrations ne présentent des cycles limite, nous travaillons sur l'élaboration d'un contrôle qui dépende de la vitesse de rotation à l'extérieur du puits et de la force élévatrice appliquée sur les tiges en haut du puits également. Un travail de synthèse dans cette thématique est présenté dans [START_REF] Saldivar Marquez | Analysis and Control of Oilwell Drilling Vibrations[END_REF], il comporte de nouveaux modèles distinguant les différentes parties du système de forage, il inclut des modèles de transmission et les différentes lois de commandes connues pour stabiliser les vibrations le long du système de forage. Une des contributions essentielles de cette thèse, rentrant dans le cadre de l'étude des racines de quasipolynômes, est présentée dans les chapitres 10 et 11, elle reprend les résultats de [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials : A vandermonde-based approach[END_REF][START_REF] Boussaada | Computing the codimension of the singularity at the origin for time-delay systems in the regular case : A Vandermonde-based approach[END_REF][START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF][START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems : A link with Vandermonde and Birkhoff incidence matrices[END_REF].

Les résultats obtenus consolident les connaissances actuelles dans la caractérisation des valeurs spectrales imaginaires pures des systèmes à retard. En effet, des approches efficaces existent pour l'identification de telles valeurs spectrales (par exemple, l'approche des faisceaux matriciels, la transformée de Rekasius et d'autres encore), mais à notre connaissance, aucune d'entre elles ne permet d'établir la multiplicité de celles-ci. Ceci s'explique par l'apparition du retard dans les polynômes définissant les dérivées d'un quasipolynôme. L'intérêt de cette piste réside dans le fait que la dimension du projeté de l'état dans cette variété n'est autre que la dimension de l'espace propre généralisé associé aux valeurs spectrales imaginaires pures, d'où une caractérisation de la variété centrale associée à ces valeurs spectrales. En premier lieu, dans [START_REF] Boussaada | Computing the codimension of the singularity at the origin for time-delay systems in the regular case : A Vandermonde-based approach[END_REF] nous mettons en évidence l'aspect algébrique du problème de caractérisation de la multiplicité de la valeur spectrale en zéro. Dans ce travail nous avons obtenu une description, en terme de variétés et d'idéaux, des conditions (sur les paramètres d'un quasipolynôme) assurant une multiplicité admissible pour une valeur spectrale en zéro. Ce constat nous a permis dans [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF], d'établir un lien entre la multiplicité de zéro en tant que racine d'un quasipolynôme générique et le problème d'interpolation d'Hermite et ainsi les matrices Confluents de Vandermonde. Nous montrons par ce biais, que la borne de multiplicté de la singularité en zéro peut atteindre la borne de Polya-Szegö [START_REF] Polya | I : Series, Integral Calculus, Theory of Functions[END_REF] qui n'est autre que le degré du quasipolynôme considéré 1 et nous établissons explicitement les valeurs des paramétres du quasipolynôme assurant toute multiplicité admissible (inférieure ou égale à la borne 8 Chapitre 1. Contexte général de la thèse et son fil conducteur de Polya-Szegö). Nous démontrons également que la borne de multiplicité d'une valeur spectrale en zéro dépend de la structure du quasipolynôme plutôt que de son degré. Cela nous a permis de caractériser la structure d'un quasipolynôme par une matrice d'incidence de Birkhoff (mettant en évidence l'aspect creux des polynômes impliqués). Un travail de synthèse de ces résultats est présenté dans [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems : A link with Vandermonde and Birkhoff incidence matrices[END_REF], voir le chapitre 10.

Ce travail a été généralisé dans l'exploration de la multiplicité des valeurs spectrales imaginaires pûres. D'abord, la limitation d'autres approches dans la caractérisation de la multiplicité a été soulignée dans [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials : A vandermonde-based approach[END_REF]. En effet, au travers d'un exemple explicite il a été démontré que la substitution de Rekasius, par exemple, échoue dans de telles investigations. D'autre part, il est prouvé que la multiplicité d'une valeur spectrale de fréquence non nulle ne peut atteindre la multiplicité de Polya-Szegö. Une approche basée sur des matrices fonctionnelles confluentes de Vandermonde est proposée, une nouvelle borne plus fine pour la multiplicité de telles valeurs spectrales est établie ; voir le chapitre 11.

Toujours dans ce contexte de l'exploration des multiplicités admissibles d'une valeur spectrale et de leur incidence sur les dynamiques des systèmes à retard, cette étude nous a permis d'identifier des propriétés intéressantes. En premier lieu, dans [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials : A vandermonde-based approach[END_REF], pour une équation scalaire à retard discret, il a été démontré que la borne de multiplicité de Polya-Szegö peut être atteinte pour les valeurs spectrales réelles. En plus, une fois cette borne atteinte, alors le point d'equilibre est asymptotiquement stable. En terminologie algébrique (dans l'espace des paramètres), cela revient à dire que la sous variété définissant cette valeur spectrale multiple correspond à une sous variété stable du point d'équilibre. Cette propriété a été étendue pour des systèmes (à retard) plans dans [START_REF] Niculescu | Multiplicity and stable varieties of timedelay systems : A missing link[END_REF]. Ce résultat a été exploité dans le cadre de l'analyse du modèle de croissance du tournesol (Sunflower equation)

ẍ + a τ ẋ + b τ sin(x(t -τ )) = 0, (1.5) 
deux valeurs spectrales réelles doubles ont été retrouvées. Leur existence guaranti, localement et sous des conditions appropriées, la stabilité asymptotique du point d'équilibre à l'origine. Dans le cadre d'une collaboration en cours avec Silviu Niculescu, Tomas Vyhlidal (Prague University) et Hakki Unal (Inria Saclay), ayant pour objectif d'élaborer une approche de stabilisation basée sur cette propriété, les premières simulations de l'analyse de certains systèmes mécaniques motive l'intérêt de systèmatiser ce critère sous forme d'une procédure informatique.

Dans l'optique de proposer une approche d'analyse qualitative unifiée pour des systèmes comportant des équations différentielles fonctionnelles couplées à des équations algébriques, nous nous sommes proposé d'étendre l'applicabilité du théorème de la variété du centre à une classe de systèmes algébro-différentiels connue sous le nom de systèmes de propagation sans perte, ce qui fait l'objet du Chapitre 13, reproduisant les résultats obtenus dans [START_REF] Boussaada | Spectral analysis for delay differential-algebraic systems[END_REF] mais sous une forme étendue de ce travail en collaboration avec Silviu-Iulian Niculescu et Wim Michiels (CU Leuven, Belgique).

Ces systèmes sont souvent utilisés pour modéliser des systèmes complexes dont ils est difficile de mesurer une partie de l'état, nécessitant ainsi des observateurs pour les approcher. Pour ce faire, nous élaborons d'abord une projection spectrale pour un système de propagation sans perte (équation différentielle à retard couplée avec une équation aux différences à retard) dont une forme simplifiée et linéarisée est la suivante : ẋ(t) = A x(t) + B y(tτ ) y(t) = C x(t) + D y(tτ ) (1.6) avec (x, y) T ∈ C τ,n+m où C τ,n+m est l'espace de Banach des fonctions continues de [-τ, 0] dans R m+n . Etant donné qu'aucun retard n'est appliqué à x, cette variable peut être vue comme x ∈ R n . Ce type de systèmes apparait de manière naturelle dans les problèmes de commande, voir [START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF]. Ce problème est en général contourné en dérivant la deuxième equation de (1.6) pour obtenir le système à retard de type neutre comme dans [START_REF] Abolinia | Mixed problem for an almost linear hyperbolic system in the plane[END_REF] ẋ(t) = A x(t) + B y(tτ ) ẏ(t) -D ẏ(t -τ ) = C A x(t) + C B y(tτ ).

(1.7)

Cette manipulation permet de donner une idée des valeurs spectrales certes, mais malheureusement ne permet pas au système de propagation sans perte de bénéficier des conditions de stabilité et de stabilisation du système de type neutre. En effet, la projection spectrale sur la variété centrale du système neutre ne correspond pas à celle du système (1.6) puisqu'une valeur spectrale supplémentaire (en zéro) d'ordre k apparait dans (1.7). A titre d'exemple, il est possible d'avoir un système de propagation sans perte ayant un point d'équilibre asymptotiquement stable contrairement au système neutre. La contribution de [START_REF] Boussaada | Spectral analysis for delay differential-algebraic systems[END_REF] consiste à élaborer une projection spectrale associé à (1.6) sans passer par une équation de type neutre, pour ainsi établir une méthode fournissant une approximation en dimension finie (élimination du retard).

Nous exhibons également dans ce travail des conditions suffisantes pour la convergence du développement en série des solutions de ce type de système.

Pour conclure, cette section a succintement mis en évidence le fil conducteur des sujets abordés dans les chapitres qui suivent. L'ordre de présentation des chapitres n'est pas que chronologique ; il reflète l'enchènement du questionnement qui a conduit à ces travaux. La motivation principale est d'établir une méthdologie unifiée et effective dans la caractérisation de propriétés qualitatives des systèmes dynamiques (comportant certaines complexités). Les perspectives correspondant à ces recherches feront l'objet du chapitre 14.

Première partie

Analysis of finite dimensional dynamical systems and its applications Analyse de systèmes dynamiques de dimension finie et ses applications "... D'ailleurs, ce qui nous rend ces solutions périodiques si précieuses, c'est qu'elles sont, pour ainsi dire, la seule brèche par où nous puissions essayer de pénétrer dans une place jusqu'ici réputée inabordable." Henri Poincaré, Les méthodes nouvelles de la mécanique céleste, 1892.

Chapitre 2

Characterizing isochronous centers of Liénard-type planar systems A classical dynamical system is called isochronous if it features in its phase space an open, fully-dimensional, region where all of its solutions are periodic in all their degrees of freedom with the same, fixed period-independently from the initial data, provided they are inside the isochrony region (the center annulus) [44]. As emphasized in the historical note given in [START_REF] Romanovski | The center and cyclicity problems : a computational algebra approach[END_REF], the interest in the isochronicity property is an old problem which started with the history of clocks based on some sort of periodic motion, such as the swinging of a pendulum. Based on his knowledge that the cycloid is a tautochrone (a frictionless particle sliding down a wire in the shape of a cycloid reaches the lowest point in the same amount of time, regardless of its starting position). In the 17th century Huygens designed and built a pendulumclock. This is probably the earliest example of a nonlinear isochronous system. Since the last century, the interest in characterizing of such a property becomes a prolific literature topic, for instance, the number of 7571 publications listed in the data base of elsevier etitions contains the word "isochronous" (in different contexts). Of course, in the real world the examples of purely isochronous behavior are rather rare, otherwise life would be pretty dull, see [44].

In this chapter, we are concerned with planar systems of ordinary differential equations. The proofs of the results given in this chapter can be found in [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF]. We study the isochronicity of centers at O ∈ R 2 for systems ẋ = -y + A(x, y), ẏ = x + B(x, y), where A, B ∈ R[x, y], which can be reduced to the Liénard-type equation. Several new families of isochronous centers are provided. All these results are established using intensive computer algebra and Gröbner basis computations.

Introduction

Generalities

The hunting of isochronous centers is now a flourishing activity. By this chapter we would like to contribute to it.

Let us consider the system of real differential equations of the form dx dt = ẋ = -y + A(x, y), dy dt = ẏ = x + B(x, y),

Chapitre 2. Characterizing isochronous centers of Liénard-type planar systems where (x, y) belongs to an open connected subset U ⊂ R 2 , A, B ∈ C ∞ (U, R), where A and B as well as their first derivatives vanish at (0, 0). An isolated singular point p ∈ U of system (2.1) is a center if there exists a punctured neighborhood V ⊂ U of p such that every orbit of (2.1) lying in V is a closed orbit surrounding p. A center p is isochronous if the period is constant for all closed orbits in some neighborhood of p.

The simplest example is the linear isochronous center at the origin O = (0, 0) given by the system ẋ = -y, ẏ = x.

(2.

2)

The problem of caracterization of couples (A, B) such that O is an isochronous center (even a center) for the system (2.1) is largely open.

An overview of J. Chavarriga and M. Sabatini [START_REF] Chavarriga | A survey of isochronous centers[END_REF] present the basic results concerning the problem of the isochronicity, see also [START_REF] Amel'kin | Nonlinear oscillations in second-order systems[END_REF][START_REF] Chouikha | Monotonicity of the period function for some planar differential systems. I. Conservative and quadratic systems[END_REF][START_REF] Romanovski | The center and cyclicity problems : a computational algebra approach[END_REF].

The well known Poincaré Theorem assert that when A and B are real analytic, a center of (2.1) is isochronous if and only if in some analytic coordinate system it take the form of the linear center (2.2). Let us formulate now another theorem of the same vein (see for example [START_REF] Amel'kin | Nonlinear oscillations in second-order systems[END_REF], Th.13.1 and [START_REF] Romanovski | The center and cyclicity problems : a computational algebra approach[END_REF], Th.4.2.1). Theorem A ( [START_REF] Mardesic | Linearization of isochronous centers[END_REF], Th.3.3) Let us suppose that the origin O is an isochronous center of system (2.1). Let F (x, y) = x 2 +y 2 +o(|(x, y)| 2 ) be an analytic first integral defined in some neighborhood of O. Then there exists an analytic change of coordinates u(x, y) = x + o(|(x, y)|), v(x, y) = x + o(|(x, y)|) bringing the system (2.1) to the linear system u = -v, v = u and such that F (x, y) = u 2 (x, y) + v 2 (x, y).

We pass now to the heart of the matter. To make this chapter more accessible, we report all strictly technical remarks to Appendix, Section 7.

In some circumstances a system (2.1) can be reduced to the Liénard type equation ẍ + f (x) ẋ2 + g(x) = 0 (2.3) with f, g ∈ C 1 (J, R), where J is some neighborhood of 0 ∈ R and g(0) = 0. If this is so, the system (2.1) is called reducible. To the equation (2.3) one associate the two dimentional (planar) Liénard type system

ẋ = y ẏ = -g(x) -f (x)y 2 (2.4)
For reducible systems considered in this chapter, the nature of singular point O for both system (2.1) and (2.4) is the same (see Appendix, Sec.2.7) ; in particular this concerns the centers and isochronous centers.

Let us return now to the Liénard type equation (2.3). Let us define the following functions F (x) :=

x 0 f (s)ds, φ(x) :=

x 0 e F (s) ds.

(2.5)

When xg(x) > 0 for x = 0, define the function X by

1 2 X(x) 2 =
x 0 g(s)e 2F (s) ds (2.6) such that xX(x) > 0 for x = 0. Let us formulate now the following Theorems which are the departure point of this chapter. Theorem B ( [START_REF] Sabatini | On the period function of x + f (x)x 2 + g(x) = 0[END_REF], Th.1) Let f, g ∈ C 1 (J, R). If xg(x) > 0 for x = 0, then the system (2.4) has a center at the origin O. When f, g are analytic , this condition is also necessary.

When f, g ∈ C 1 (J, R), the first integral of the system (2.4) is given by the formula

I(x, ẋ) = 2
x 0 g(s)e 2F (s) ds + ( ẋe F (x) ) 2 (2.7)

Theorem C ( [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF], Th.2.1) Let f , g be real analytic functions defined in a neighborhood J of 0 ∈ R, and let xg(x) > 0 for x = 0. Then system (2.4) has an isochronous center at O if and only if there exists an odd function h which satisfies the following conditions X(x) 1 + h(X(x))

= g(x)e F (x) , (2.8)

the function φ(x) satisfies φ(x) = X(x) + X(x) 0 h(t)dt, (2.9) 
and X(x)φ(x) > 0 for x = 0.

In particular, when f and g are odd, then O is an isochronous center if and only if g(x) = e -F (x) φ(x), or equivalently h = 0.

The function h is called Urabe function. The above Theorem implies Corollary A ( [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF], Cor.2.4) Let f , g be functions analytic in a neighborhood of 0 ∈ R, and xg(x) > 0 for x = 0. The origin O is isochronous center of system (2.4) with Urabe function h = 0 if and only if g (x) + g(x)f (x) = 1

(2.10)

In [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF] the second author described how the use of Theorem C allows to an algorithm (C-algorithm, see Sec.2.7 Appendix for more details) for searching the cases when O is an isochronous center for reducible system (2.1), with application to the case when A and B are polynomials of degree 3. This work was continued in [START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF].

The main results obtained in the two last cited chapters are the necessary and sufficient conditions for isochronicity of the center at O in term of parameters for the cubic system ẋ = -y + axy + bx 2 y ẏ = x + a 1 x 2 + a 3 y 2 + a 4 x 3 + a 6 xy 2 (2.11)

The aim of this chapter is to extend investigations made in [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF][START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF] for systems with higher order perturbations of the linear center ẋ = -y, ẏ = x.
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Like in [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF], our main tool to investigate the isochronous centers for multiparameters systems reducible to Liénard type equation is C-algorithm. Nevertheless when searching only the isochronous centers with zero Urabe function the Corollary A give a much simpler method which is widely used in this chapter. It consists to identify the parameters values for which identity (3.10) is satisfied.

In all cases considered in [START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF] as well as in the present chapter the Urabe function is of the form h(X) = k 1 X s √ k 2 +k 3 X 2s where s is an odd natural number and k 2 > 0. Like in [START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF], we ask if the Urabe function of corresponding Lienard type equation (called in the future also the Urabe function of the isochronous center under consideration) is always of the above form.

The complexity of many examples of isochronous centers described in this chapter clearly indicate the end of purely enumerative study in this field.

In our investigations we have used Maple in its version 10. To compute the Gröbner basis (with DRL order) of the obtained systems of polynomial equations, we have used Salsa Software more precisely the implementation FGb [START_REF] Faugère | Fgb salsa software[END_REF].

Beyond the degree 3

We present now the list of reducible systems for which we study the isochronous centers at the origin.

1. In Section 2.2 we study the most general homogeneous perturbation of arbitrary degree n ≥ 3 of the linear center which belongs to the Case 1 from the Appendix, Sec.2.7 : ẋ = -y + ayx n-1 ẏ = x + bx n-2 y 2 + cx n (2.12)

Here we found 3 isochronous centers for even n ≥ 4 and 2 isochronous centers for odd n ≥ 3 which seems to be new.

2. In Sections 2.3 and 2.4 we study the most general polynomial perturbation of degree four of the linear center which belongs to the Case 1 from the Appendix Sec. First using Corollary A we identify all isochronous centers with zero Urabe function. Here we found 6 isochronous centers which seems to be new. The study of this system by C-algorithm can not be performed by our actual computer facilities. Thus, we select for investigation two sub-families ; the first one when a 1,1 = b 3,0 = 0 and the second one when a 1,1 = a 2,1 = 0. Here we found 8 isochronous centers which seems to be new.

3. In Section 2.5 we study the most general polynomial perturbation of degree five of the linear center which belongs to the Case 1 from the Appendix (2.14) Using Corollary A we identify all isochronous centers with zero Urabe function where b 50 = 0. Here we found eight isochronous centers which seems to be new. [START_REF] Ahlfors | Complex Analysis[END_REF]. In Section 2.6 we study the following Abel system of arbitrary degree n ≥ 2 which belongs to the Case 2 from the Appendix Sec. 2.7 :

ẋ = -y ẏ = n k=0 a k xy k ,        (2.15)
where a k ∈ R, for k = 0, . . . , n. Here we verify that up to n = 9 there are not other isochronous centers from the one found by Volokitin and Ivanov in [START_REF] Ivanov | Isochronicity and commutation of polynomial vector fields[END_REF].

Let us stress that by Theorem B, in all the above cases the origin O is always a center (indeed, the condition xg(x) > 0 for x = 0 is satisfied for sufficientely small |x| ; see Appendix Sec. 2.7).

When describing in Sec.2.3-2.6 the identified isochronous centers, all parameters intervaining in the formulas are arbitrary, except that one always suppose that the polynomials at the denominators are non zero. To avoid the misprints all formulas are written exactly in the form produced by Maple. All fractions which appear in the formulas are irreducible. In all cases when we was able to write down first integrals and linearizing changes of variables, the explicite formulas are reported.

Homogeneous perturbation of arbitrary degree

As it will be proven in Theorem 1, from Corollary A it easily follows that for arbitrary n ≥ 2, the system (2.12) admit exactly two isochronous centers with zero Urabe function.

Moreover, following Theorem C when n ≥ 3 is odd, other isochronous centers does not exist.

When n ≥ 4 is even the preliminary investigation of the system (2.12) performed by C-algorithm strongly suggest that for such n there exists exactly one additional isochronous center with non zero Urabe function. Its existence is proved in Theorem 2. Unfortunately, its uniqueness is not yet proved for arbitrary even n ≥ 4. For n = 4, 6, 8 the uniqueness was proved using Maple and Gröbner Basis technique.

Let us underline that our final proofs are done by the hand computations, without use of computer algebra.

Taking into account the condition g (x) + f (x)g(x) = 1 from Corollary A, one obtain easily the following Theorem Chapitre 2. Characterizing isochronous centers of Liénard-type planar systems Theorem 1. For n ≥ 2 the system (2.12) has an isochronous center at the origin O with zero Urabe function only in one of the following two cases ẋ = -y + ax n-1 y ẏ = x + ax n-2 y 2 (2. [START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF])

ẋ = y + b n x n-1 y ẏ = x + bx n-2 y 2 -b(n-1) n 2 x n
(2.17)

Moreover, for odd n ≥ 3 there are no other isochronous centers.

System (2.12) is reducible to the system (2.4) with

f (x) =
x n-2 (b + ana) 1 -ax n-1 and g(x) = 1 -ax n-1 (x + cx n ) (see Appendix, Sec.7.1) The condition g (x) + f (x)g(x) = 1 allows directly to the following two cases :

1. {a = b, c = 0} which gives the system (2.16).

2. c = -b(n-1) n 2 , a = b n which gives the system (2.17).

Applying Sabatini formula (2.7) using Maple, one see that for n = 4..8 the first integral of system (2.16) takes the form

H (2.16) = x 2 + y 2 (-1 + a x n-1 ) 2 n-1
Then Theorem A suggest that the linearizing change of coordinates is

u = x n-1 √ 1 -a x n-1 , v = y n-1 √ 1 -a x n-1 (2.18)
Now by hand computations one verify that H (2. [START_REF] Barkatou | On rational solutions of systems of linear differential equations[END_REF]) is always a first integral of system (2.16) and using Maple one easily check that (2.18) is a linearizing change of coordinates.

Exactly the same arguments work for the system (2.17). Its first integral is

H (2.17) = x 2 1 + cx n-1 2 + y 2 (n -1) 2 (n -1 + ncx n-1 ) 2n n-1
and its linearizing change of coordinates is

u = x 1 + cx n-1 (n -1) (n -1 + ncx n-1 ) n n-1 , v = y (n -1) (n -1 + ncx n-1 ) n n-1
Theorem 2. The system (2.12) with arbitrary even n ≥ 2 and a = 2b, c = -b, b = 0, has an isochronous center at the origin with non zero Urabe function

h(X) = bX n-1 √ 1 + b 2 X 2n-2 (2.19)
Indeed, when a = 2b and c = -b the system (2.12) writes ẋ = -y + 2byx n-1 ẏ = x + bx n-2 y 2 -bx n .

(2.20)

To simplify the formulas let us perform the following change of variables (x, y) -→ (x/b, y/b) the system (2.20) takes the form

ẋ = -y + 2yx n-1 ẏ = x + x n-2 y 2 -x n (2.21)
Which is reducible to the Liénard type equation (2.3) with

f (x) = (-1 + 2 n) x n-2 1 -2 x n-1 and g(x) = 1 -2 x n-1 (x -x n ) Then F (x) = x 0 f (s)ds = 1 -2 n 2n -2 ln 1 -2 x n-1
which gives the right hand side of the equality (2.8)

g(x)e F (x) = x(1 -x n-1 ) (1 -2 x n-1 ) 1 2n-2 .
On the other hand, e 2 F (x) = (1 -2 x n-1 ) 1-2 n n-1 . From the equation (2.6) we compute X(x) = 2 x 0 g(s)e 2F (s) ds = x

(1 -2 x n-1 )

1 2n-2 and h(X(x)) = X(x) n-1 1 + X(x) 2n-2 = x n-1 1 -x n-1
Then we compute the left hand side of the equality (2.8) :

X(x) 1 + h(X(x)) = x (1-2 x n-1 ) 1 2n-2 1 + x n-1 1-x n-1 = x(1 -x n-1 ) (1 -2 x n-1 ) 1 2n-2
Which proves that the equality (2.8) is satisfied. Let us stress that the above computations remains valid for every n ≥ 2. Nevertheless, for n odd h is not an odd function and thus it is not an Urabe function which is odd by definition. Theorem 3. For arbitrary n ≥ 2, the system (2.20) has the following first integral

H (2.20) =
x 2 + y 2 n-1 2bx n-1 -1 .
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Using formula (2.7), one easily compute by Maple the first integral for n = 4, 6, 8. The obtained results strongly suggest the veracity of formula for H (2.20) . Now one easily verify by hand computations that H (2.20) is a first integral.

Let us return to system (2.12). It is well known that for n = 2, this system has an isochronous center in exactly four cases, so called Loud isochronous centers (see [START_REF] Loud | The behavior of the period of solutions of certain plane autonomous systems near centers[END_REF][START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF]). They correspond to (a = b, c = 0), (a = b 2 , c = -b 4 ), (a = 2b, c = -b) and (b = a 4 , c = 0). The first two are those from Theorem 1 , the third is the one from Theorem 2. Let us note the Taylor expansion of the Urabe function h(X) = c 1 X + c 3 X 3 + . . .. As noted at the begining of the Section, for n = 4 one has exactly 3 cases of isochronous centers. Why such a difference ? The difference is in the algebraic structure of the equations generated by C-algorithm. For n = 2, the second of such equations is -3 c 1 + a -2 cb = 0 and c 1 can be non zero, while for n ≥ 3, the second such equation is always c 1 = 0. Thus the freedom for existence of non zero Urabe function is greater for n = 2 then for n ≥ 3.

Non homogeneous perturbation of degree four with zero Urabe function

Taking into account the condition g (x) + f (x)g(x) = 1 from Corollary A, using Maple one obtain easily the following Theorem. 

x 2 y 2                              V ẋ = -y - (-
                              
                    
where Z is the only real root of the equation 27 s 3 -47 s 2 + 13 s -1 = 0, which is equal to We would like to identify all its isochronous centers by C-algorithm, without taking into account the nature of its Urabe function. In full generality this problem is unattainable today for our actual computer possiblities. Indeed, we do not succeed to compute a Gröbner basis for the nine C-algorithm generated polynomials on 9 unknown {a ij } and {b sr } of all even degrees between 2 and 18.

Z = 1 81

Non homogeneous perturbations of degree four

Inspecting the system under consideration one sees that when annulations of some parameters {a ij } and {b rs } allows to substantial simplification of the system. This is the reason of our choice of two families presented below which have the codimension two in the parameters space.

First family

Let us assume a 11 = b 30 = 0, in this case (2.13) reduces to the system

ẋ = -y + a 21 x 2 y + a 31 yx 3 ẏ = x + b 20 x 2 + b 02 y 2 + b 12 xy 2 + b 22 x 2 y 2 + b 40 x 4
(2.22)

For this system having a center at the origin O, we give isochronicity necessary and sufficient conditions depending only on the following seven real parameters C-algorithm gives the six candidates to be isochronous centers. 19 derivatives was essential to obtain the necessary conditions of isochronicity. For the sake of brevity we omit all computer algebra details.

To perform the succesful application of C-algorithm, we add the two tricks explained in Appendix, Sec.2.7 : homogenization and reduction of the dimension of the parameters space by one. This allows to the proof that the cases I-VI of Theorem 5 satisfy the necessary conditions of isochronicity. We check that the necessary conditions are also sufficient by direct application of Corollary A to the cases I, III-VI. Indeed, in all those four cases g (x) + f (x)g(x) = 1. The case II is a particular case of the system (2.20) when n = 4, studied in Theorem 2.

Let us note that among the above six cases only the cases I, II and III with a 21 = 0 represent the homogeneous perturbations. All other cases are non-homogeneous.

Note also that the above three homogeneous cases was already identified by Theorems 2 and 1. But at the difference of the quoted Theorems, here we have the exhaustive list of isochronous centers for n = 4.

Second family

Consider system (2.13), with a 11 = a 21 = 0. We obtain the seven parameter real system of degree 4. 

f (x) = b 02 + b 12 x + (b 22 + 3a 31 )x 2 1 -a 31 x 3 , g(x) = (x + b 20 x 2 + b 30 x 3 + b 40 x 4 )(1 -a 31 x 3 )     
Theorem 6. The system (2.23) has an isochronous center at O if and only if its parameters satisfy one of the folowing seven cases :

The three cases I, II and III with a 21 = 0 from Theorem 5 given by homogeneous perturbations and the following four cases whose correspend to the non-homogeneous perturbations Chapitre 2. Characterizing isochronous centers of Liénard-type planar systems

IV ẋ = -y + 1/4 b 02 3 x 3 y ẏ = x -1/2 b 02 x 2 + b 02 y 2 + 1/2 b 02 2 xy 2 + 1/2 b 02 3 x 2 y 2 V ẋ = -y + 1 192 b 02 3 -21 + 5 √ 33 x 3 y ẏ = x -1/2 b 02 x 2 + b 02 y 2 + 1/48 b 02 2 9 - √ 33 x 3 +1/16 b 02 2 -1 + √ 33 xy 2 + 1 64 b 02 3 -21 + 5 √ 33 x 2 y 2    VI ẋ = -y -1 192 b 02 3 21 + 5 √ 33 x 3 y ẏ = x -1/2 b 02 x 2 + b 02 y 2 + 1/48 b 02 2 9 + √ 33 x 3 -1/16 b 02 2 1 + √ 33 xy 2 -1 64 b 02 3 21 + 5 √ 33 x 2 y 2    VII ẋ = -y + 2 3549 b 20 3 (-43 t 2/3 -7670 √ 3297+12112 3 √ t+52 3 √ t √ 3297-336886) t 2/3 x 3 y ẏ = x -2 b 2,0 y 2 -1 10647 b 2,0( -3822 b 2,0 t 2/3 -6242964 b 2,0 -127764 b 2,0 √ 3297+159432 b 2,0 3 √ t) t 2/3 xy 2 -1 10647 b 2,0( 1032 b 2,0 2 t 2/3 +184080 b 2,0 2 √ 3297-290688 b 2,0 2 3 √ t-1248 b 2,0 2 √ 3297 3 √ t+8085264 b 2,0 2 ) t 2/3 y 2 x 2 +b 2,0 x 2 -1 10647 b 2,0( -53144 b 2,0 3 √ t+2080988 b 2,0 +42588 b 2,0 √ 3297-5824 b 2,0 t 2/3 ) t 2/3 x 3 -1 10647 b 2,0( -2150 b 2,0 2 t 2/3 -11926 b 2,0 2 3 √ t+234 b 2,0 2 √ 3297 3 √ t+1085248 b 2,0 2 +18720 b 2,0 2 √ 3297) t 2/3 x 4                          where t = 22868 + 468 √ 3297
The necessary conditions of the isochronicity of the center at the origin for system (2.23) are the seven cases given in the theorem and can are obtained using C-algorithm. One easily checks that the obtained necessary conditions are also sufficient by direct application of Corollary A to the cases IV-VII. Indeed, in all those four cases g (x) + f (x)g(x) = 1.

The centers I -III of Theorem 2 have been already identified in [START_REF] Chen | Linearizability conditions of time-reversible quartic systems having homogeneous nonlinearities[END_REF].

Non homogeneous perturbation of degree five with zero Urabe function

By Corollary A the problem is reduced to solve the equation g (x)+f (x)g(x) = 1, with f and g defined in Appendix, Sec.7.1 with respect to the system (2.14). In this case the equation g (x)+f (x)g(x) = 1 is equivalent to some system of 8 polynomials depending on 12 unknown {a ij } and {b sr } of degree 2, 2, 2, 1, 2, 2, 2, 2. Applying the
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Gröbner basis method one obtain a basis of 90 polynomials whose degrees varies between 1 and 8. This system is too hard to handle. Inspecting the system under consideration one sees that when b 50 = 0 a great simplification of the system appears. This is the reason of our choice b 50 = 0. 2 ) 

x 3 y 2                                     
b 20 2 (-b20 3 +27 b 40) x 3 y 2                                            VII ẋ = -
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Abel polynomial system

By planar Abel system of order n we understand the system

ẋ = -y ẏ = n k=0 P k (x)y k        (2.25)
where {P k (x)} 0≤k≤n are smooth functions. This section is concerned by the following Abel system ẋ = -y

ẏ = x(1 + P (y)), (2.26) 
Chapitre 2. Characterizing isochronous centers of Liénard-type planar systems with P (y) = a 1 y + a 2 y 2 + a 3 y 3 + .... + a n y n , a k ∈ R, for k = 0, . . . , n. This is a particular Abel system (2.25) where P k (x) := a k x, 0 ≤ k ≤ n.

Characterization of isochronous centers

The system (2.36) is reducible (see Appendix, Sec. 7.1 case 2) to the Liénard type equation (2.3) with

f (x) = - P (x) (1 + P (x)) g(x) = x(1 + P (x))      (2.27)
Definitions (2.6),(2.5) and Theorems B and C from Sec. 2.1 remains valid. Applied to the Abel system (2.36) they give : Theorem 8. The origin O is a center for the system (2.36).

The center at O, is isochronous if and only if there exists an odd function h defined in some neighborhood of 0 ∈ R which satisfies the following conditions

X 1 + h(X) = x, φ(x) = X(x) + X(x) 0 h(t)dt
and X(x)φ(x) > 0 for x = 0.

In particular, when P is an even polynomial then the origin O is isochronous center if and only if P = 0.

The above result is obtained as follow. One has, xg(x) = x 2 (1 + P (x)) > 0 for x = 0 and |x| small enougth. Then the Theorem B implies that the origin O is a center of the system (2.36). Now

F (x) = x 0 f (s)ds = -ln(1 + P (x)), thus φ(x) = x 0 e F (s) ds = x 0 ds 1 + P (s) (2.28)
Then we obtain g(x)e F (x) = x(1

+ P (x))e -ln(1+P (x)) = x
Following Theorem C, one obtain

X(x) 1 + h(X(x)) = x
as well as the identity (2.9). For the particular case when P is even, it is easy to see that f and g are odd. Theorem C thus implies h = 0 and consequently X(x) = x. From (2.9) one deduce that φ(x) = X. Then (2.28) implies that P ≡ 0.

The following paragraph is devoted to illustrate the last theorem by example.

An application

Let us consider the Abel system (2.36) with n = 9 :

ẋ = -y ẏ = x + 9 i=1 a i xy i        (2.29) with a k ∈ R, 1 ≤ k ≤ 9.
As follows from Theorem 8, the origin O is always a center for (2.29).

Theorem 9. Only in the case

ẋ = -y ẏ = x + axy + a 2 3 xy 2 + a 3 27 xy 3    (2.30)
where a ∈ R

We apply C-algorithm for

f (x) = - P (x) (1 + P (x))
and g(x) = x(1 + P (x)),

where P (x) = 9 i=1 a i x i . We obtain the unique one-parameter family (2.30), and computations gives the Urabe function

h(X) = - a 1 X 3 = k 1 X k 2 2 + k 3 X 2 with k 1 = -a 1 /3, k 2 = 1, k 3 = 0.
By the evident rescalling a 3 x → x and a 3 y → y the system (2.30) take the form ẋ = -y

ẏ = x(1 + y) 3 .
(2.31)

The isochronous center at the origin O for the system (2.31) was already depisted in [START_REF] Ivanov | Isochronicity and commutation of polynomial vector fields[END_REF] by showing that the system (2.31) commutes with some transversal polynomial system, but its first integral nor the linearizing change of coordinates was not provided. We will now compute both of them.

-First integral In the variables u = y and v = x(1 + y) 3 the system (2.31) is reducible to the Liénard type equation ü + f (u) u2 + g(u) = 0 where f (u) = -3 1+u and g(u) = u(1 + u) 3 . By formula (2.7) from Theorem B one easily obtain that

I(u, v) = u 2 (1+u) 2 + v 2 (1+u) 6 is a first integral of the corresponding planar system u = v v = -g(u) -f (u)v 2 .
Returning to the variables (x, y) one recover first integral of the system (2.31) :

I (2.31) (x, y) = x 2 + y 2 (1 + y) 2 .
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-Linearization To this aim we use the method of [START_REF] Garcia | Linearization of analytic isochronous centers from a given commutator[END_REF] base on the exitence of vector field Y transversal to the vector field defined by the system (2.31) and commuting with it. Maple computations gives such field Y :

ẋ = x + xy ẏ = -x 2 y 3 + y 2 -3 y 2 x 2 + y -3 yx 2 -x 2 (2.32)
Following the method described in [START_REF] Garcia | Linearization of analytic isochronous centers from a given commutator[END_REF], we first establish an inverse integrating factor V (x, y) of the system (2.31) :

V (x, y) = -(y + 1) x 2 + 2 yx 2 + y 2 x 2 + y 2
which leads to the first integrals H (already known) and I of the systems (2.31) and (2.32) respectively :

H(x, y) = x 2 + y 2 (1 + y) 2 I(x, y) = -x + arctan (y + 1) x y        Let us define f (z) = z and g(z) = tan(z).
By the Theorem 4 of [START_REF] Garcia | Linearization of analytic isochronous centers from a given commutator[END_REF] we obtain the linearizing change of coordinates

u = f (H(x, y))g(I(x, y)) 1 + g2 (I(x, y)) v = f (H(x, y)) 1 + g2 (I(x, y))                   
Maple produce the following more explicit formulas that we reproduce without any change to avoid the misprints :

u(x, y) = -x 2 +2 yx 2 +y 2 x 2 +y 2 (y+1) 2 tan x -arctan (y+1)x y 1 + tan x -arctan (y+1)x y 2 v(x, y) = x 2 + 2 yx 2 + y 2 x 2 + y 2 (y + 1) 2 1 1 + tan x -arctan (y+1)x y 2 .                            (2.33)
The fact that this change of variables is really a linearizing one can be easily verified by Maple which gives u = -v, v = u as expected. In the light of Theorem 9, it is natural to ask if the system (2.30) is the unique system with isochronous center at the origin O inside the family (2.25).

Even for the system (2.25) whith n = 10, our actual computer possibilies are not sufficient to give an answer.

Appendix

Reduction to the Liénard type equation

At the present we know two cases when reduction of the system (2.1) to the Liénard type equation (2.3) is possible.

-Case 1 : When -y + A(x, y) = -y Ã(x) and x + B(x, y) = B(x) + C(x)y 2 the system (2.1) can be written

ẋ = -y Ã(x) ẏ = B(x) + C(x)y 2 (2.34)
By the change of coordinates (u, v) := (x, -y Ã(x)) we obtain .35) In this way we obtain the reduction to the system (2.3) with g(x) = Ã(x) B(x)

u = v v = -Ã(u) B(u) + ( Ã (u) -C(u)) Ã(u) v 2      . ( 2 
and f (x) = -( Ã (x)-C(x)) Ã(x)
.

-Case 2 : When A(x, y) = 0 and B(x, y) = xP (y) where P (0) = 0. In this case the system (2.1) can be written

ẋ = -y ẏ = x(1 + P (y)) . (2.36)
By the change of coordinates (u, v) := (y, x(1 + P (y))) we obtain

u = v v = -u(1 + P (u)) + v 2 P (u) 1 + P (u)     
We obtain the system (2.3) with f (x) = -P (x) 1+P (x) and g(x) = x(1 + P (x)).

In both cases the determinant of the Jacobian matrix of coordinate change does not vanish at (0, 0). Thus the nature of singular point O is the same for system (2.1) and (2.4).

C-Algorithm

Theorem C from Section 1 leads to an algorithm, first introduced in [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF] (see also [START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF]), in what follow called C-algorithm, which allows to obtain necessary conditions for isochronicity of the center at the origin O for equation (2.3).

Below we recall basic steps of the algorithm.
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Let h be the Urabe function defined in the Theorem C, and u = φ(x). We assume that function φ is invertible near the origin O .

g(u) := X 1 + h(X) , (2.37) 
where now X is considered as a function of u. Our further assumption is that functions f (x) and g(x) depend polynomially on certain numbers of parameters α := (α 1 , . . . , α p ) ∈ R p . By Theorem C, if the system (2.3) has isochronous center at the origin O, then the Urabe function h must be odd, so we have

h(X) = ∞ k=0 c 2k+1 X 2k+1 , (2.38) 
and moreover, x) , where x = φ -1 (u).

g(u) = g(x)e F (
(2.39)

Hence, the right hand sides of (2.37) and (2.39) must be equal. Hence, we expand the both right hand sides into the Taylor series around the origin O and equate the corresponding coefficients. To this end we need to calculate k-th derivatives of (2.37) and (2.39). For (2.37), by straightforward differentiation, we have

d k g(u) du k = d dX d k-1 g(u) du k-1 dX du (2.40)
Using induction, one can show that for (2.39) we obtain

d k g(u) du k = e (1-k)F (x) S k (x), (2.41) 
where S k (x) is a function of f (x), g(x) and their derivatives. Therefore to compute the first m conditions for isochronicity of system (2.3) we proceed as follows.

1. We fix m and write

h(X) = m k=1 c 2k-1 X 2k-1 + O(X 2m ), c := (c 1 , c 3 , . . . , c 2m-1 ).

Next, we compute

v k := d k g du k (0), w k = S k (0)
for k = 1, . . . , 2m + 1. Note that those quantities are polynomials in α and c.
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By the Theorem C we obtain the equations v k = w k for k = 1, . . . , 2m+1. Let us note that always v 1 = w 1 = 1 and thus the first equation is meaningless.

It appears that we can always eliminate parameters c from these equations.

For every k ≥ 0, c 2k+1 appear for the first time, and in a linear way, in the equation w 2k+2 = w 2k+2 . This allows to the formula c 2k+1 = ϕ 2k+1 (α) for some multivariate polynomial ϕ 2k+1 . This leads in natural way to the consecutive elimination of c 1 , c 3 , . . . , c 2m-1 . Finally, we obtain at most m polynomial equations s 1 = s 2 = s 3 = . . . = s M = 0 with p unknows α i . These equations gives M necessary conditions for isochronicity of system (2.3).

For more details see [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF][START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF].

The choice of an appropriate Gröbner basis

Let us consider the following system

ẋ = -y + a 11 yx + . . . + a n-1,1 yx n-1 ẏ = x + b 20 x 2 + b 02 y 2 + . . . + b n-2,2 x n-2 y 2 + b n,0 x n (2.42)
which is reducible to the equation (2.3) with

f (x) = b 02 + a 11 + . . . + (b n-2,2 + (n -1)a n-1,1 )x n-2 1 -a 11 x -. . . -a n-1,1 x n-1 , (2.43) 
g(x) = (x + b 20 x 2 + . . . + b n,0 x n )(1 -a 11 x -. . . -a n-1,1 x n-1
).

(2.44)

In this chapter we have investigated the two types of high degree polynomial perturbations, homogeneous and non-homogeneous ones. It seems that C-algorithm is efficient for computing isochronicity necessary conditions for higher degree homogeneous perturbations. In this case system (2.42) reduces to the following one

ẋ = -y + a k-1,1 yx k-1 ẏ = x + b k-2,2 x k-2 y 2 + b k,0 x k (2.45)
where k ∈ {2, . . . , n}.

For this homogeneous polynomial perturbation of the linear center, C-algorithm generate homogeneous polynomial equations in the parameters b k-2,2 , b k,0 and a k-1,1 . Solving these polynomials, gives all the parameters values for which the real polynomial differential system (2.45) is isochronous at the origin O.

However, for the non-homogeneous perturbation case, C-algorithm generate nonhomogeneous polynomial system. Moreover, non-homogeneous perturbations depend on a bigger number of parameters.

We note that for n = 3, C-algorithm succeeds to establish isochronicity criteria, however for n = 4 the obtained polynomials from the algorithm are much more involved. For example, for the system (2. To solve the first nine non-zero obtained polynomials requests high performance computer and the standard accessible computer algebra systems for solving polynomial equations are not able to find a solution.

For solving polynomial equations the Gröbner bases are used. It is well known, see [START_REF] Becker | Gröbner bases[END_REF], that the form and the size of the Göbner basis of a polynomial ideal depends strongly on a choice of monomial ordering. A bad choice of the monomial ordering can be a main reason why the Gröbner basis cannot be practically determined.

Our basic observation concerning algebraic structure of polynomial equations which give necessary conditions for the isochronicity in a case of non-homogeneous perturbations is the following. Although the polynomials are not homogeneous, a careful analysis shows that they are quasi-homogeneous. In fact, one can notice that polynomial P 2 given by (2.46) is homogeneous if we give weight 2 for a 21 , b 12 and b 30 , and weight 1 for the remaining variables. More importantly we can find such a choice of weights for which all the obtained polynomials are homogeneous.

The above observation shows that our main problem, i.e., finding a Gröbner basis, concerns as a matter of fact, finding a Gröbner basis of a homogeneous ideal. It is well know, see [19, p. 466], that homogeneous Gröbner bases have many 'nice' properties which make them extremely useful for solving large and computationally demanding problems.

In fact, for non-homogeneous case of (2.42), the use of weighted degree gives a homogeneous Gröbner base.

To incorporate our observation into the C-algorithm we choose a new parametrization for the problem. First, we observe that all polynomials which are obtained by means of the C-algorithm are homogeneous if we choose the following weights 1. i + j -1 for parameters a ij and b ij 2. 2i + 1 for c 2i+1 .
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Knowing this we introduced new parameters A ij , B ij , and C 2i+1 putting

A i+j-1 ij = a ij B i+j-1 ij = b ij , C 2i+1 2i+1 = c 2i+1 (2.47)
After this reparametrization system (2.42) reads

ẋ = -y + A 11 yx + . . . + A n-1 n-1,1 yx n-1 ẏ = x + B 20 x 2 + B 02 y 2 + . . . + B n-1 n-2,2 x n-2 y 2 + B n-1 n,0 x n (2.48)
As in the case of isochronous center the Urabe function is odd, we search it under the form

h(X) = ∞ k=0 C 2k+1 2k+1 X 2k+1 = C 1 X + C 3 3 X 3 + C 5 5 X 5 + C 7 7 X 7 + . . . (2.49) 
We emphasize that from the isochronicity conditions for (2.48), expressed in terms of its parameters, it is easy to reconstruct the parameters values for which the system (2.42) admits isochronous center at the origin O, by a simply use of (2.47).

The described reparametrization gives rise to homogeneous equations and allows to reduce the number of the parameters appearing in (2.48) by one. First, we assume B 20 = 0, and then solve the isochronicity problem for system (2.48) under this assumption. Next, for B 20 = 0, we apply on (2.48) the following change of coordinates

(x, y) → 1 B 20 (x, y) (2.50) 
We obtain

ẋ = -y + A 11 B 20 xy + .. + B n-1,1 B 20 n-1 yx n-1 ẏ = x + x 2 + B 02 B 20 y 2 + .. + B n-2,2 B 2,0 n-1 x n-2 y 2 + B n,0 B 20 n-1 x n          (2.51)
Hence, without loss of generality we can put B 20 = 1, and find the parameters values for which the center is isochronous.

We note that for an arbitrary k ∈ N, the problem of the isochonicity of the center for homogeneous perturbations of the form (2.45) reduces to solve a number of polynomial equations with 3 parameters.

Recall that linear center perturbed by homogeneous polynomial, was investigated by W.S. Loud in [START_REF] Loud | The behavior of the period of solutions of certain plane autonomous systems near centers[END_REF] for the quadratic case, and in [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF] Loud results are recovered by the described algorithm, see also [START_REF] Chouikha | Monotonicity of the period function for some planar differential systems. I. Conservative and quadratic systems[END_REF].

Homogeneous perturbations was also studied by Chavarriga and coworkers. For the fourth and fifth degree homogeneous perturbations, see [START_REF] Chavarriga | Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial[END_REF][START_REF] Chavarriga | Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomials[END_REF], where the homogeneous perturbations different from those studied in the present chapter are considered.

Note that the polynomials issued from the 19 derivations and associated eliminations for the system (2.13) (with 9 parameters), exceed the authorized memory of ordinary computers (2 Go of Random Access Memory ) in computations of the Gröbner basis by the known efficient implementation FGb [START_REF] Faugère | Fgb salsa software[END_REF].

Chapitre 3

Generating linearizable centers for

Liénard-type planar systems

In this chapter we explore a wider class of systems reducible to Liénard-type equations, which extends the approach presented in Chapter 2. Furthermore, we establish an explicit formula for linearizing such a class of systems having a constant Urabe function. The proofs of the results given in this chapter can be found in [START_REF] Bardet | Isochronicity conditions for some planar polynomial systems {II}[END_REF]. In this chapter, we study the isochronicity conditions for the center at the origin

O ∈ R 2 for systems ẋ = -y + A(x, y), ẏ = x + B(x, y),
where A, B ∈ R[x, y], which can be reduced to the Liénard-type equation. When deg(A) ≤ 4 and deg(B) ≤ 4, the so-called C-algorithm produced 36 new multiparameter families of isochronous centers. For a large class of isochronous centers we provide an explicit general formula for linearization. This chapter is a direct continuation of the previous one, but it can be read independently.

Introduction

Let us consider the system of real differential equations of the form

dx dt = ẋ = -y + A(x, y), dy dt = ẏ = x + B(x, y), (3.1) 
where (x, y) belongs to an open connected subset U ⊂ R 2 containing the origin O = (0, 0), with A, B ∈ C 1 (U, R) such that A and B as well as their first partial derivatives vanish at O. An isolated singular point p ∈ U of system (3.1) is a center if there exists a punctured neighborhood V ⊂ U of p such that every orbit of (3.1) lying in V is a closed orbit surrounding p. A center p is isochronous if the period is constant for all closed orbits in some neighborhood of p.

The simplest example is the linear system with an isochronous center at the origin O :

ẋ = -y, ẏ = x. (3.2)
The problem of characterization of couples (A, B) such that O is an isochronous center (even for a center) for the system (3. 1) is largely open. The well known Poincaré Theorem asserts that when A and B are real analytic, a center of (3.1) at the origin O is isochronous if and only if in some real analytic systems coordinate system it takes the form of the linear center (3.2) (see for example [START_REF] Amel'kin | Nonlinear oscillations in second-order systems[END_REF], Th.13.1, and [START_REF] Romanovski | The center and cyclicity problems : a computational algebra approach[END_REF], Th.4.2.1).

An overview [START_REF] Chavarriga | A survey of isochronous centers[END_REF] presents the basic results concerning the problem of the isochronicity, see also [START_REF] Amel'kin | Nonlinear oscillations in second-order systems[END_REF][START_REF] Chouikha | Monotonicity of the period function for some planar differential systems. I. Conservative and quadratic systems[END_REF][START_REF] Romanovski | The center and cyclicity problems : a computational algebra approach[END_REF]. As this chapter is a direct continuation of [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF], we refer the reader to it for general introduction to the subject. Here we will recall only the strictly necessary facts.

In some circumstances system (3.1) can be reduced to the Liénard-type equation

ẍ + f (x) ẋ2 + g(x) = 0 (3.3) with f, g ∈ C 1 (J, R),
where J is some neighborhood of 0 ∈ R and g(0) = 0. In this case, system (3.1) is called reducible. Equation (3.3) is associated to the equivalent, two dimensional, Liénard-type system 

ẋ = y ẏ = -g(x) -f (x)y 2 . ( 3 
The first integral of the system (3.4) is given by the formula ( [START_REF] Sabatini | On the period function of x + f (x)x 2 + g(x) = 0[END_REF], Th.1)

I(x, ẋ) = 1 2 ( ẋe F (x) ) 2 +
x 0 g(s)e 2F (s) ds.

(3.6)

When xg(x) > 0 for x = 0, define the function X by

1 2 ξ(x) 2 = x 0 g(s)e 2F (s) ds (3.7)
and xξ(x) > 0 for x = 0.

Theorem 10 ( [START_REF] Sabatini | On the period function of x + f (x)x 2 + g(x) = 0[END_REF], Theorem 2). Let f, g ∈ C 1 (J, R). If xg(x) > 0 for x = 0, then the system (3.4) has a center at the origin O. When f and g are real analytic, this condition is also necessary.

Theorem 11 ([62], Theorem 2.1). Let f and g be real analytic functions defined in a neighborhood J of 0 ∈ R, and let xg(x) > 0 for x = 0. Then system (3.4) has an isochronous center at O if and only if there exists an odd function h ∈ C 1 (J, R) which satisfies the following conditions

ξ(x) 1 + h(ξ(x)) = g(x)e F (x) , (3.8) 
the function φ(x) satisfying

φ(x) = ξ(x) + ξ(x) 0 h(t)dt, (3.9) 
and ξ(x)φ(x) > 0 for x = 0.

In fact by (3.7), it is easy to see that (3.8) and (3.9) are equivalent. When those equivalent conditions are satisfied, then the function h is analytic in the neighborhood J. h is called the Urabe function of system (3.4), or of its equivalent (3.3).

Corollary 1 ([62], Corollary 2.4). Let f and g be real analytic functions defined in a neighborhood of 0 ∈ R, and xg(x) > 0 for x = 0. The origin O is an isochronous center of system (3.4) with Urabe function h = 0 if and only if

g (x) + g(x)f (x) = 1 (3.10)
for x in a neighborhood of 0.

In the sequel we shall call the Urabe function of the isochronous center of reducible system (3.1) the Urabe function of the corresponding Liénard-type equation.

In [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF] the third author used Theorem 11 in order to build an algorithm (called C-Algorithm, see Appendix of [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF] for more details) to look for isochronous centers at the origin for reducible system (3.1). He applied it to the case where A and B are polynomials of degree 3. This work was continued in [START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF] and in [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF].

In this chapter we apply the so called Rational C-Algorithm introduced in [14] which is an adaptation of the C-Algorithm for the case of rational function f and g (see (3.3), (3.4)).

The aim of the present chapter is to extend these studies to the following real multiparameter family of polynomial system of differential equations :

ẋ = -y + a 1,1 xy + a 2,0 x 2 + a 2,1 x 2 y + a 3,0 x 3 + a 3,1 x 3 y + a 4,0 x 4 ẏ = x + b 0,2 y 2 + b 1,1 xy + b 2,0 x 2 + b 1,2 xy 2 + b 2,1 x 2 y + b 3,0 x 3 + b 2,2 x 2 y 2 + b 3,1 x 3 y + b 4,0 x 4 .
(3.11) The reported results, which are obtained by Maple computations are reproduced without almost any change to avoid misprints.

The chapter is organized as follows. In Section 3.2 we report the necessary background and describe the investigated subfamilies of system (3.11). In Sections 3.3 and 3.4 we describe the obtained new isochronous centers. In total we provide 36 new families of isochronous centers. Among them two Monsters (3.57) and (3.58) of extreme complexity, never encountered before.

Let us stress that when describing the Urabe functions of the isochronous centers from Section 3.3, for the first time we encounter the non-standard examples of it. Indeed, up to now all identified Urabe functions was always of the form h(ξ) = a ξ 2n+1 √ b+c ξ 4n+2 where a, b, c ∈ R, b > 0 and n a non negative integer (see for instance [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF][START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF]).

Finally, in Section 3.5, when Urabe function h = 0, we describe the explicit general formula for linearizing change of coordinates whose existence is insured by the Poincaré theorem. We report also 5 examples of such linearization. Chapitre 3. Generating linearizable centers for Liénard-type planar systems

Preliminaries

Choudhury-Guha Reduction

Let us consider the real polynomial system

ẋ = p 0 (x) + p 1 (x) y ẏ = q 0 (x) + q 1 (x) y + q 2 (x) y 2 , (3.12) 
where p 0 , p 1 , q 0 , q 1 , q 2 ∈ R[x].

We will always assume that O = (0, 0) ∈ R 2 is a singular point of (3.12), that is p 0 (0) = q 0 (0) = 0. Let us assume also that p 1 (0) = 0.

Let us note that the system (3.11) is a particular case of (3.12) when

p 0 (x) = a 2,0 x 2 + a 3,0 x 3 + a 4,0 x 4 p 1 (x) = -1 + a 1,1 x + a 2,1 x 2 + a 3,1 x 3 q 0 (x) = x + b 2,0 x 2 + b 3,0 x 3 + b 4,0 x 4 q 1 (x) = b 1,1 x + b 2,1 x 2 + b 3,1 x 3 q 2 (x) = b 0,2 + b 1,2 x + b 2,2 x 2                . (3.13)
The following change of coordinates x = x, z = p 0 (x) + p 1 (x) y transforms the system (3.12) to the system

ẋ = z ż = q 2 (x) p 1 (x) + p 1 (x) p 1 (x) z 2 + - (p 1 (x)) p 0 (x) p 1 (x) + q 1 (x) + p 0 (x) -2 q 2 (x) p 0 (x) p 1 (x) z + q 2 (x) (p 0 (x)) 2 p 1 (x) -q 1 (x) p 0 (x) + p 1 (x) q 0 (x)              . (3.14) If - (p 1 (x)) p 0 (x) p 1 (x) + q 1 (x) + p 0 (x) -2 q 2 (x) p 0 (x) p 1 (x) = 0, (3.15) 
the system (3.12) is of Liénard-type (3.4), with

f (x) = - q 2 (x) p 1 (x) + p 1 (x) p 1 (x) g(x) = - q 2 (x) (p 0 (x)) 2 p 1 (x) + q 1 (x) p 0 (x) -p 1 (x) q 0 (x)          . (3.16)
To the best of our knowledge, the above reduction of the system (3.12) to Liénardtype system (3.4) was proposed for the first time in a preliminary and never published version of [START_REF] Choudhury | On isochronous cases of the Cherkas system and Jacobi's last multiplier[END_REF]. It is then natural to name it Choudhury-Guha reduction. In all considered cases (see (3.13)) it is easy to see that for |x| small enough g(x) = x + x 2 g(x) where g is a real analytic function. Thus x g(x) > 0 for x = 0, |x| small enough and Theorem 11 insures that the origin O is a center for the system (3.4). Our aim is to decide when this center is isochronous.

When p 0 and q 1 identically vanish, (3.15) is satisfied and we recover the standard reduction from [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF] (see Case 1 from Sec. 1 of [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF]). Many particular cases of system (3.11) where studied, using this standard reduction.

1. In [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF] :

a 1,1 = a 2,0 = a 3,0 = a 3,1 = a 4,0 = b 2,2 = b 4,0 = b 3,1 = b 2,1 = b 1,1 = 0.
That means that p 0 (x) = q 1 (x) = 0, p 1 (x) = -1 + a 2,1 x 2 and deg(q 0 (x)) ≤ 3, deg(q 2 (x)) ≤ 1.

2.

In [START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF] :

a 2,0 = a 3,0 = a 3,1 = a 4,0 = b 2,2 = b 4,0 = b 3,1 = b 2,1 = b 1,1 = 0.
That means that p 0 (x) = q 1 (x) = 0 and we consider only cubic systems.

3. In [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF] three families are studied :

(a) a 2,0 = a 3,0 = a 4,0 = b 3,1 = b 2,1 = b 1,1 = 0 with zero Urabe function. (b) a 1,1 = b 3,0 = a 2,0 = a 3,0 = a 4,0 = b 3,1 = b 2,1 = b 1,1 = 0. (c) a 1,1 = a 2,1 = a 2,0 = a 3,0 = a 4,0 = b 3,1 = b 2,1 = b 1,1 = 0.

Investigated families

The exhaustive study of all isochronous center at the origin for the system (3.11) is hopeless at the present. Even for cubic system when all quartic terms vanish this problem is not yet solved.

Let us note that the condition (3.15) is equivalent to the following system of equations :

2 a 2,0 + b 1,1 = 0, -b 2,1 + a 1,1 b 1,1 + a 1,1 a 2,0 -2 b 0,2 a 2,0 -3 a 3,0 = 0, a 1,1 b 2,1 -4 a 4,0 -b 3,1 + 2 a 1,1 a 3,0 -2 b 0,2 a 3,0 -2 b 1,2 a 2,0 + a 2,1 b 1,1 = 0, -a 3,1 a 2,0 + 3 a 1,1 a 4,0 + a 2,1 b 2,1 -2 b 0,2 a 4,0 -2 b 2,2 a 2,0 + a 2,1 a 3,0 + a 1,1 b 3,1 + -2 b 1,2 a 3,0 + a 3,1 b 1,1 = 0, a 3,1 b 2,1 + a 2,1 b 3,1 + 2 a 2,1 a 4,0 -2 b 1,2 a 4,0 -2 b 2,2 a 3,0 = 0, a 3,1 b 3,1 -2 b 2,2 a 4,0 + a 3,1 a 4,0 = 0.                            . (3.17)
In the present chapter we determine all isochronous centers of the system (3.11) in each of the following three cases.

1. When the standard reduction is possible (i.e. p 0 (x) = 0 and q

1 (x) = 0, that is a 2,0 = a 3,0 = a 4,0 = b 3,1 = b 2,1 = b 1,1 = 0).
We provide all candidates for isochronous centers in the cases where either a 1,1 = 0, or b 2,0 = -3 b 0,2 . In all the cases but one (a subcase of b 2,0 = -3 b 0,2 ), we prove the isochronicity. The general case is not yet completely explored.

2. When Choudhury-Guha reduction for the cubic case is possible (i.e. conditions (3.17 That means that condition (3.17) and condition (3.10) for f and g defined by (3.16) are simultaneously satisfied. In this case we provide 25 examples of new isochronous centers and our analysis is not exhaustive.

Moreover, when the Urabe function h = 0, we give the explicit formulas for linearizing coordinates from Poincaré Theorem. We report 5 examples where such coordinates are explicitly computed.

Time-reversible systems

The general notion of time-reversible system of ordinary differential equations goes back to [START_REF] Devaney | Reversible diffeomorphisms and flows[END_REF] where the motivations and general discussion can be found. Here we follow Sec. 1 of [START_REF] Chavarriga | Isochronicity into a family of timereversible cubic vector fields[END_REF] (see also Sec. 3.5 [START_REF] Romanovski | The center and cyclicity problems : a computational algebra approach[END_REF]).

The planar system (3.1) of ordinary differential equation is time-reversible if there exists at least one straight line passing through the origin which is a symmetry axis of the phase portrait of the system under consideration. By appropriate rotation this straight line is mapped on the x-axis and the phase portrait of the rotated system is invariant with respect to symmetry (x, y) → (x, -y) if only one change time t into -t.

Note that a system ẋ = P (x, y), ẏ = Q(x, y), is time-reversible system with respect to x-axis if and only if P (x, -y) = -P (x, y) and Q(x, -y) = Q(x, y). When P and Q are polynomials, this means that the variable y appears in all monomials of P in odd power and in all monomials of Q in even power (0 included). Consequently, to decide if a polynomial center for system (3.1) is time-reversible or not, we consider the rotated system in coordinates (x α , y α ), where x α = x cosαy sinα and y α = x sinα + y cosα and we examine the parity of the powers of the variable y α for all angles α. This notion plays an essential role in our topics. Indeed, for system (3.1) the origin is either a center or a focus. Thus, if such system is time-reversible the focus case is excluded and the origin is necessarily a center.

To the best of our knowledge the majority of already known isochronous centers for polynomial system (3.1) are time-reversible. For instance, all systems studied in [START_REF] Urabe | The potential force yielding a periodic motion whose period is an arbitrary continuous function of the amplitude of the velocity[END_REF][START_REF] Chavarriga | Isochronicity into a family of timereversible cubic vector fields[END_REF][START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF][START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF][START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF][START_REF] Chen | Linearizability conditions of time-reversible cubic systems[END_REF] are time reversible. Moreover, among 27 polynomial isochronous centers presented in tables 3 -29 of [START_REF] Chavarriga | A survey of isochronous centers[END_REF] only 7 are not time-reversible ; indeed, those from tables 17 and 23 -28. In what concerns the cubic isochronous centers for system (3.1) the complete enumeration of those which are time reversible was obtained in [START_REF] Chen | Linearizability conditions of time-reversible cubic systems[END_REF] ; there are 17 such cases. In [START_REF] Chavarriga | A survey of isochronous centers[END_REF] one find 4 non time-reversible isochronous centers (tables 25 -28) and in the present chapter we present three new such cases which are described in Theorem 14. In [START_REF] Chen | Linearizability conditions of time-reversible quartic systems having homogeneous nonlinearities[END_REF] a complete list of quartic homogeneous time-reversible isochronous centers is provided, there are 9 such cases. In the present chapter we provide 33 new cases of quartic (non homogeneous) iso-chronous centers. Among them 8 are time reversible and at least 23 are not time reversible.

Background on Gröbner bases

The use of the Rational C-Algorithm leads to a system of polynomial equations

f 1 = 0, . . . , f m = 0 (3.18) with f i ∈ R[x 1 , . . . , x n ].
To solve this system we consider the ideal

f 1 , . . . , f m ⊂ R[x 1 , . . . , x n ].
For this aim, we use Gröbner Bases computations. In this section, we recall the basic facts about Gröbner bases, and refer the reader to [START_REF] Cox | Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra[END_REF] for details.

A monomial ordering is a total order on monomials that is compatible with the product and such that every nonempty set has a smallest element for the order. The leading term of a polynomial is the greatest monomial appearing in this polynomial.

A Gröbner basis of an ideal I for a given monomial ordering is a set G of generators of I such that the leading terms of G generate the ideal of leading terms of polynomials in I. A polynomial is reduced with respect to the Gröbner basis G when its leading term is not a multiple of those of G. The basis is reduced if each element g ∈ G is reduced with respect to G \ {g}. For a given monomial ordering, the reduced Gröbner basis of a given set of polynomials exists and is unique, and can be computed using one's favorite general computer algebra system, like Maple, Magma or Singular. The most efficient Gröbner basis algorithm is currently F 4 [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases (F 4 )[END_REF], which is implemented in the three above cited systems. For our computations, we use the FGb implementation of F 4 available in Maple [START_REF] Faugère | Fgb salsa software[END_REF].

The complexity of a Gröbner basis computation is well known to be generically exponential in the number of variables, and in the worst case doubly exponential in the number of variables. Moreover, the choice of the monomial ordering is crucial for time of the computation.

The grevlex ordering is the most suited ordering for the computation of the (reduced) Gröbner basis. The monomials are first ordered by degree, and the order between two monomials of the same degree

x α = x α 1 1 • • • x αn n and x β = x β 1 1 • • • x βn n
is given by x α x β when the last nonzero element of (α 1 -β 1 , . . . , α n -β n ) is negative. Thus, among the monomials of degree d, the order is

x d 1 x d-1 1 x 2 x d-2 1 x 2 2 • • • x d 2 x d-1 1 x 3 x d-2 1 x 2 x 3 x d-2 1 x 2 3 • • • x d n .
However, a Gröbner basis for the grevlex ordering is not appropriate for the computation of the solutions of the system (3.18). The most suited ordering for this computation is the lexicographical ordering (or lex ordering for short). The monomials are ordered by comparing the exponents of the variables in lexicographical order. Thus, any monomial containing x 1 is greater than any monomial containing only variables x 2 , . . . , x n .

Under some hypotheses (radical ideal with a finite number of solutions, and up to a linear change of coordinates), the Gröbner Basis of an ideal f 1 , . . . , f m for the systems lexicographical order x 1 > . . . > x n has the shape

{x 1 -g 1 (x n ), x 2 -g 2 (x n ), . . . , x n-1 -g n-1 (x n-1 ), g n (x n )}, (3.19) 
where the g i 's are univariate polynomials. In this case, the computation of the solutions of the system follows easily. In the general case, the shape of the Gröbner basis for the lexicographical ordering is more complicated, but it is equivalent to several triangular systems for which the computation of the solutions are easy. An important point is that a Gröbner basis for the lex order is in general hard to compute directly. It is much faster to compute first a Gröbner basis for the grevlex order, and then to make a change of ordering to the lex order.

The precise ordering we use to compute the Gröbner bases of the polynomial systems occuring in this chapter is a weighted order : we fix a weight i + j -1 for the variables a i,j and b i,j (see (3.11)), and use the weighted grevlex or lex ordering. For those orderings, the polynomials are homogeneous, which simplifies the computation. Indeed, without loss of generality, we can pick a variable a i,j and split the computations into two cases a i,j = 0 and a i,j = 1 (the same concerns b i,j ). The entire set of solutions can then be recovered in the standard way. For instance, all solutions with a 1,1 = 0 for system (3.11) are obtained from solutions with a 1,1 = 1 by the change of variables X = a 1,1 x and Y = a 1,1 y. This trick reduces by one the number of variables for the Gröbner basis computation and improves the time of the computations. In what follows, all results are presented up to such homogenization.

Finally 

The standard reduction

In this section we are concerned by system (3.11) with a 2,0 = a

3,0 = a 4,0 = b 3,1 = b 2,1 = b 1,1 = 0 which gives : ẋ = -y + a 1,1 xy + a 2,1 x 2 y + a 3,1 x 3 y ẏ = x + b 2,0 x 2 + b 3,0 x 3 + b 0,2 y 2 + b 1,2 xy 2 + b 2,2 x 2 y 2 + b 4,0 x 4 . (3.20)
Recall that all cases when the origin O is an isochronous center of the system (3.20) with zero Urabe function are described in [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF]. In the following theorem we omit all isochronous centers with zero Urabe function, as well as all cubic isochronous centers that where all described in [START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF][START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF].

For each case we prove the isochronicity by determining explicitly its Urabe function. For system (k) we will denote it by h (k) . 

= -y + 3 x 2 y ± √ 2x 3 y ẏ = x ± √ 2x 2 ∓ √ 2 2 y 2 + x 3 + 4 xy 2 ± 2 √ 2x 2 y 2 ± √ 2 4 x 4   
, where h (3.21) = -±ξ 2 + 9 ξ 2 .

(3.21) (3.24)

ẋ = -y + x 3 y ẏ = x + 1 2 x 2 y 2 - 1 2 x 4    ,
ẋ = -y -3 a 3,1 + 2 9 x 2 y + a 3,1 x 3 y + xy ẏ = x + -3 a 3,1 + 1 9 xy 2       
, where h (3.25) = ξ

(1 -27 a 3,1 )ξ 2 + 9 .

(3.25)

ẋ = -y + xy ẏ = x - 3 x 2 2 + y 2 + x 3 - x 4 4    , where h (3.26) = ξ 1 + ξ 2 . (3.26)
Moreover, all other possible isochronous centers at O for non cubic system (3.20), where either a 1,1 = 1 or b 2,0 = -3 b 0,2 , and with non vanishing Urabe functions, belong to the family

ẋ = -y + - 3 8 -2 b 2,2 x 2 y + 1 16 + b 2,2 x 3 y + xy ẏ = x - 3 x 2 4 + y 2 4 + 3 x 3 8 -2 b 2,2 xy 2 + b 2,2 x 2 y 2 - x 4 16 
       . (3.27)
In particular, when b 2,2 ∈ {-1 16 , 0, 1 16 }, the origin O is an isochronous center with non-standard Urabe functions :

h {b 2,2 =-1 16 } = √ 2 2 L ξ 2 4 + 8 ξ 2 L ξ 2 4 L ξ 2 4 + 3 L ξ 2 4 2 ξ L ξ 2 4 + 4 L ξ 2 4 + 1 , Chapitre 3.
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where L = LambertW is the Lambert function (see [START_REF]NIST Handbook of Mathematical Functions[END_REF]),

h {b 2,2 =0} = √ 2 -4+ξ 2 +2 √ 4+2 ξ 2 ξ 2 ξ ξ 2 + 2 4 + 2 ξ 2 + 2 (2 + ξ 2 ) 4 + 2 ξ 2 + 6 , h {b 2,2 = 1 16 } = √ 2ξ 2 ξ 2 + 32 ξ 2 + 12 2 (ξ 2 + 4) (ξ 2 + 16
) .

Necessary conditions are given by C-Algorithm. Indeed, 19 steps are necessary to find the algebraic conditions of isochronicity (see Appendix A of [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF]). We did not succeed in computing the full grevlex Gröbner basis of the corresponding system of polynomial equations. We restricted ourselves to the cases a 1,1 = 0, which gives the cases (3.21)- (3.22), and {a 1,1 = 1, b 2,0 = -3b 0,2 } which gives the cases (3.23)-(3.25) and (3.27). We also get case (3.26) as a particular solution.

For each case we determine its Urabe function, which shows that the obtained conditions are also sufficient. For systems (3.21)-(3.26) the procedure in Section 2 of [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF] is applied.

The search of the Urabe function for sytem (3.27) is more subtle. Indeed, we verified that for all values of parameters the first 20 necessary conditions of isochronicity given by C-algorithm are satisfied. This strongly suggests that for all values of parameters the system (3.27) has an isochronous center at the origin O. from formula (3.7) one obtains

ξ 2 (x) = 2 x 2 (2 -x) -2 (16 b 2,2 +1) -1 4 x 2 b 2,2 + 1/4 x 2 -x + 2 - 16 b 2,2 -1 16 b 2,2 +1 . (3.28) 
From formula (3.8) one deduces that

h(ξ(x)) = - x 12 -6 x + x 2 (x -4) (x 2 -2 x + 4)
.

Now the problem is to find the reciprocal function x = x(ξ). Unfortunately we succeeded in finding it only for b 2,2 ∈ {-1 16 , 0, 1 16 } because in those cases the equation (3.28) takes a sufficiently simple form. Note that the system (3.22) was already identified in Theorem 2.2 of [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF].

3.4 The Choudhury-Guha reduction

Cubic isochronous centers

Choudhury-Guha reduction is more general than the standard one used in preceding chapters [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF]. Here we provide the complete enumeration of all cubic systems from (3.11) and we find three new cases of isochronous centers at the origin. The system we consider is :

ẋ = -y + a 1,1 xy + a 2,0 x 2 + a 2,1 x 2 y + a 3,0 x 3 ẏ = x + b 2,0 x 2 + b 1,1 xy + b 0,2 y 2 + b 2,1 yx 2 + b 1,2 y 2 x + b 3,0 x 3 .
(3.29)

Condition (3.15) is equivalent to the following system of equations : 1. The standard reduction is possible, that means a 3,0 = a 2,0 = b 1,1 = b 2,1 = 0 and the system is one of those from Theorem 3 of [START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF].

2 a 2,0 + b 1,1 = 0 a 1,1 a 2,0 -3 a 3,0 -b 2,1 + a 1,1 b 1,1 -2 b 0,2 a 2,0 = 0 a 1,1 b 2,1 -2 b 0,2 a 3,0 + 2 a 1,1 a 3,0 + a 2,1 b 1,1 -2 b 1,2 a 2,0 = 0 a 2,1 a 3,0 + a 2,1 b 2,1 -2 b 1,2 a 3,0 = 0            . ( 3 
2. We are in one of the following cases : We exclude the standard reduction by adding to I the variable T and the polynomial

ẋ = -y -2 b 2,0 xy + x 2 + 2 b 2,0 x 3 ẏ = x -4 b 2,0 y 2 -2 xy + b 2,0 x 2 + 4 b 2,0 x 2 y + 2 x 3 , (3.31) ẋ = -y ± 2 √ 2xy + x 2 ∓ 2 √ 2x 3 ẏ = x ± 8 √ 2y 2 -2 xy ∓ 3 √ 2x 2 ∓ 12 √ 2x 2 y + 10 x 3 , (3.32) 
ẋ = -y - 1 2 b 2,0 xy + x 2 + 1 2 b 2,0 x 3 ẏ = x -b 2,0 y 2 -2 xy + b 2,0 x 2 + b 2,0 x 2 y + 2 + 1 4 b 2,0 2 x 3        . ( 3 
C 13 = (T a 3,0 -1)(T a 2,0 -1)(T b 1,1 -1)(T b 2,1 -1). systems
For a 2,0 = 0, a Gröbner basis of C 1 , . . . , C 12 , C 13 , a 2,0 is 1 (i.e. there is no solution), which implies that we can take a 2,0 = 1. We use the weighted order b

1,1 > b 2,1 > b 3,0 > b 1,2 > a 2,1 > b 0,2 > a 1,1 > b 2,0 > a 3,0 .
First, a Gröbner basis of system C 1 , . . . , C 6 for the weighted lex order contains the polynomial P = (a 1,1 + 2 b 0,2 )(a 2,1 -a 1,1 a 3,0 -a 2 3,0 ). We split our problem into two subcases according to this factorization.

-for a 1,1 + 2 b 0,2 = 0, we get only one real solution

ẋ = -y + x 2 ẏ = x -2xy + 2x 3 ,
which is a particular case of (3.33) with b 2,0 = 0. -for a 2,1 -a 1,1 a 3,0 -a 2 3,0 = 0, we eliminate the solutions that are not real by adding to the system the polynomials

P i • T i -1 for each P i in {16 a 2 3,0 +1, 4 a 2 3,0 +9, 4 a 2 3,0 +1, a 2 3,0 +4, a 2 3,0 +1, a 2 3,0 +16, a 2 3,0 +9-4 b 2,0 a 3,0 +4 b 2 2,0 }
that have no real solution. Then, the solutions of the resulting system are those quoted in the theorem. Sufficiency. For the cases (3.31) and (3.32) we have g (x) + f (x)g(x) = 1. Hence by Corollary 1 the origin is an isochronous center. Moreover we easily check that h (3.33) (ξ) = -1 2 b 2,0 ξ.

Quartic isochronous centers

Our first target was to identify all isochronous centers at the origin with zero Urabe function for the system (3.11)

ẋ = -y + a 1,1 xy + a 2,0 x 2 + a 2,1 x 2 y + a 3,0 x 3 + a 3,1 x 3 y + a 4,0 x 4 ẏ = x + b 0,2 y 2 + b 1,1 xy + b 2,0 x 2 + b 1,2 xy 2 + b 2,1 x 2 y + b 3,0 x 3 + b 2,2 x 2 y 2 + b 3,1 x 3 y + b 4,0 x 4
under the condition (3.17). That means finding all values of the 15 parameters for which the equation g (x) + f (x) g(x) = 1 is satisfied where f and g are defined by (3.16) (see Corollary 1).

When the standard reduction is possible, that means a 4,0 = a 3,0 = a 2,0 = b 1,1 = b 2,1 = b 3,1 = 0 all the 6 isochronous centers with zero Urabe function were described in Theorem 3.1 of [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF]. Otherwise when the Choudhury-Guha reduction needs to be applied the problem becomes substantially more complicated.

Taking in account the great complexity of the problem we did not succeed in solving it completely. Nevertheless, during our investigations we obtained 25 new isochronous centers for the system (3.11), two of them of extreme complexity, called Monsters. We are convinced that our list is not exhaustive.

The procedure to obtain the isochronous centers listed below consists in solving by Gröbner method the system (3.17) simultaneously with the set of equations on parameters which corresponds the equation g (x) + f (x) g(x) = 1. First, one applies the Solve routine of Maple (based on Gröbner basis technic) which splits the variety of solutions into 37 subvarieties. The cases (3.34)-(3.57) were obtained by detailed inspection of some of them. The remaining 7 isochronous centers (3.51)-(3.58) were obtained by restricting ourselves to b 2,2 = a 3,1 = 0 and by application of the standard Gröbner basis technique.

We verified also that all above isochronous centers are not time-reversible, except perhaps the two Monsters (3.57) and (3.58).

Theorem 15. The following quartic systems have an isochronous center at the origin O with zero Urabe function. 

ẋ = -y + b 0,2 xy + x 2 -b 0,2 x 3 ẏ = x + b 0,2 y 2 -2 xy + 2 x 3 -b 0,2 x 4 , (3.34) 
ẋ = -y + xy -a 3,0 x 2 + a 3,0 x 3 ẏ = x + y 2 + 2 a 3,0 xy + 2 a 3,0 2 x 3 -a 3,0 2 x 4 , (3.35) 
ẋ = -y + xy -a 3,0 x 2 + a 3,0 x 3 ẏ = x + 3 y 2 + 2 a 3,0 xy -x 2 + 4 a 3,0 x 2 y + 1 3 + 2 a 3,0 2 x 3 + a 3,0 2 x 4      , (3.36) 
ẋ = -y + xy -a 3,0 x 2 + a 3,0 x 3 ẏ = x + 4 y 2 + 2 a 3,0 xy - 3 x 2 2 + 6 a 3,0 x 2 y + 1 + 2 a 3,0 2 x 3 + - 1 4 + 2 a 3,0 2 x 4      , (3.37) 
ẋ = -y + b 0,2 xy 3 + x 2 - b 0,2 x 3 3 ẏ = x + b 0,2 y 2 -2 xy - b 0,2 x 2 3 - 4 b 0,2 x 2 y 3 + b 0,2 2 27 + 2 x 3 + b 0,2 x 4 3        , (3.38) 
ẋ = -y + b 0,2 xy 4 + x 2 - b 0,2 x 3 4 ẏ = x + b 0,2 y 2 -2 xy - 3 b 0,2 x 2 8 - 3 b 0,2 x 2 y 2 + b 0,2 2 16 + 2 x 3 + - 1 256 b 0,2 3 + b 0,2 2 x 4        , ( 3 
ẋ = -y + b 4,0 2 x 2 y 2 + x 2 - b 4,0 2 x 4 2 ẏ = x + b 4,0 y 2 -2 xy - b 4,0 x 2 2 + b 4,0 2 xy 2 -2 b 4,0 x 2 y + 2 x 3 -b 4,0 2 x 3 y + b 4,0 x 4        , (3.41) 
ẋ = -y + -2 + 2 √ 19 x 2 y + x 2 --2 + 2 √ 19 x 4 ẏ = x ± α 1 y 2 -2 xy ∓ α 1 x 2 2 + α 2 xy 2 ∓ 2 α 1 x 2 y + α 4 x 3 + α 3 x 3 y ± 4 α 1 x 4      , (3.42) 
ẋ = -y + xy ± √ 2 2 x 2 ∓ 2 √ 2 3 x 3 ± √ 2 6 x 4 ẏ = x + 6 y 2 ∓ √ 2xy - 5 2 x 2 ∓ 9 2 √ 2x 2 y + 13 3 x 3 ± 3 √ 2 2 x 3 y - 4 3 x 4        , (3.46) ẋ = -y ∓ 2 √ 2xy + x 2 ± 2 √ 2x 3 ẏ = x ∓ 6 √ 2y 2 -2 xy ± 2 √ 2x 2 ± 8 √ 2x 2 y + 14 3 x 3 ∓ 2 √ 2x 4    , (3.47) 
ẋ = -y + a 1,1 xy + a 1,1 2 x 2 y + x 2 -a 1,1 x 3 -a 1,1 2 x 4 ẏ = x + 3 a 1,1 y 2 -2 xy -a 1,1 x 2 + 2 a 1,1 2 xy 2 -4 a 1,1 x 2 y + 2 x 3 -2 a 1,1 2 x 3 y + a 1,1 x 4            , (3.48) 
ẋ = -y + a 1,1 xy + 3 a 1,1 2 x 2 y + x 2 -a 1,1 x 3 -3 a 1,1 2 x 4 ẏ = x + 4 a 1,1 y 2 -2 xy - 3 2 a 1,1 x 2 + 6 a 1,1 2 xy 2 -6 a 1,1 x 2 y + 2 x 3 -6 a 1,1 2 x 3 y + 2 a 1,1 x 4    , (3.49) 
ẋ = -y + a 1,1 xy + a 1,1 2 - 3 2 b 0,2 a 1,1 + 1 2 b 0,2 2 x 2 y + x 2 -a 1,1 x 3 -a 1,1 2 - 3 2 b 0,2 a 1,1 + 1 2 b 0,2 2 x 4 ẏ = x + b 0,2 y 2 -2 xy + 1 2 a 1,1 - 1 2 b 0,2 x 2 + 2 a 1,1 2 -3 b 0,2 a 1,1 + b 0,2 2 xy 2 + 2 a 1,1 2 - 3 2 b 0,2 a 1,1 + 1 2 b 0,2 2 -2 2 a 1,1 2 -3 b 0,2 a 1,1 + b 0,2 2 x 3 y + (-2 a 1,1 + b 0,2 ) x 4 + (2 a 1,1 -2 b 0,2 ) x 2 y + 2 x 3                                . (3.50)
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ẋ = -y + a 1,1 xy + x 2 -a 1,1 x 3 ẏ = x + 4 a 1,1 y 2 -2 xy - 3 2 a 1,1 x 2 -6 a 1,1 x 2 y + 2 + a 1,1 2 x 3 + 2 a 1,1 - 1 4 a 1,1 3 x 4      , (3.51) 
ẋ = -y + a 1,1 xy + x 2 -a 1,1 x 3 ẏ = x + 3 a 1,1 y 2 -2 xy -a 1,1 x 2 -4 a 1,1 x 2 y + 1 3 a 1,1 2 + 2 x 3 + a 1,1 x 4      , (3.52) 
ẋ = -y + 2 β xy + x 2 -2 β x 3 ẏ = x + 8 β y 2 -2 xy -3 β x 2 -12 β x 2 y + 14 x 3 -2 β x 4 , (3.53) 
where β = ± √ 3. 

ẋ = -y + α xy + x 2 - 4 3 α x 3 + 2 3 x 4 ẏ = x + 3 α y 2 -2 xy -α x 2 -3 α x 2 y + 8 3 x 3 + 2 x 3 y - 2 3 α x 4      , (3.55) 
where

α = ± √ 2. ẋ = -y + a 1,1 xy + x 2 + a 1,1 2 - 3 2 b 0,2 a 1,1 + 1 2 b 0,2 2 x 2 y -a 1,1 x 3 + -a 1,1 2 + 3 2 b 0,2 a 1,1 - 1 2 b 0,2 2 x 4 ẏ = x + b 0,2 y 2 -2 xy + 1 2 a 1,1 - 1 2 b 0,2 x 2 + 2 a 1,1 2 -3 b 0,2 a 1,1 + b 0,2 2 xy 2 + (2 a 1,1 -2 b 0,2 ) x 2 y + 2 x 3 + -2 a 1,1 2 + 3 b 0,2 a 1,1 -b 0,2 2 x 3 y + (-2 a 1,1 + b 0,2 ) x 4              , (3.56) 
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Finally, the two Monsters mentioned in Introduction are of the form

ẋ = -y + T xy + M x 2 y + x 2 -T x 3 -M x 4 ẏ = x + P y 2 -2 xy - P 2 x 2 + 5 M xy 2 -2 P x 2 y + Sx 3 -8 M x 3 y + 4 P x 4    , (3.57) 
ẋ = -y + α xy + M x 2 y + x 2 -α x 3 -M x 4 ẏ = x + 5 M xy 2 -8 M x 3 y -2 xy + B 0,2 12 ((M + 9) α β) y 2 - δ 12 (M + 9) α β x 2 - δ 3 (M + 9) α β x 2 y - B 3,0 2 (M + 9) β x 3 - B 4,0 12(M + 9) α β x 4              , (3.58) 
The exact description of their coefficients is too cumbersome to be reproduced here. They are written down in arXiv variant of the present chapter (arXiv :1005.5048, isochronous centers (4.23) and (4.30) respectively).
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Linearization formulas

Let us consider the Liénard type system (3.4)

ẋ = y ẏ = -g(x) -f (x)y 2
with a center at the origin (0, 0) where f and g are real analytic in a neighborhood of zero.

It is known by Sabatini formula (3.6) that the first integral associated to the system (3.4) can be written

I(x, ẋ) = x 0 g(s)e 2F (s) ds + 1 2 ( ẋe F (x) ) 2 (3.59)
where F (x) =

x 0 f (s)ds. Following [START_REF] Choudhury | On isochronous cases of the Cherkas system and Jacobi's last multiplier[END_REF] (see also [START_REF] Guha | Symplectic rectification and isochronous Hamiltonian systems[END_REF]), let us perform the following change of variables

p(x, ẋ) = ẋe F (x) q(x) = x 0 e F (s) ds      .
(3.60)
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As ∂(p, q) ∂(x, ẋ) = -e 2F (x) < 0 and p(0, 0) = q(0) = 0 then this is an analytic change of variables preserving the origin and well defined around it. Moreover, q (x) = e F (x) > 0 and thus the function x -→ q(x) is strictly increasing. In the (p, q) coordinates the first integral (3.59) becomes

I(x, ẋ) = H(p, q) = 1 2 p 2 + U (q), (3.61) 
where U is some uniquely defined real analytic function, U (0) = 0. Now it is easy to see that the system (3.4) in (p, q) coordinates can be written as

q = ∂H ∂p = p ṗ = - ∂H ∂q = - d dq U        (3.62)
that is as a Hamiltonian system corresponding to the Hamiltonian (3.61).

The main result of this Section is Theorem 16. Let us consider the Liénard-type system (3.4) with real analytic functions f and g such that x g(x) > 0 for x = 0. Then the origin O is an isochronous center with Urabe function h = 0 if and only if U (q) = q 2 2 .

Démonstration. It is easy to see that O is a center. Now, from Corollary 1, one knows that O is an isochronous center with Urabe function h = 0 if and only if g (x) + g(x)f (x) = 1 or equivalently g (x)e F (x) + g(x)f (x)e F (x) = e F (x) . The last equality is nothing else g(x)e F (x) =

x 0 e F (s) ds . As g(0)e F (0) = 0, when integrating one obtains g(x)e F (x) =

x 0 e F (s) ds or equivalently U (q) = q because ( dU dq )(q(x)) = g(x) e F (x) . Since U (0) = 0 one has U (q) = 1 2 q 2 . Consequently when the Urabe function h identically vanishes , the system of coordinate (p, q) defined by (3.60) is the linearizing system of coordinates for system (3.4). Indeed,

q = p ṗ = -q . (3.63)
It is interesting to compare the theorem 16 with Chalykh-Veselov theorem that we formulate only for potential U without pole at 0. Theorem 17 ([48], Theorem 1). Let us consider the Hamiltonian system with the Hamiltonian H(P, Q) = 1 2 P 2 + U (Q) where U is a rational function without pole at 0. Then O is an isochronous center for the associated Hamiltonian system Q = ∂H ∂P , Ṗ = -∂H ∂Q if and only if up to a shift Q → Q + a and adding a constant, 

U (Q) = k Q 2 for some k ∈ R -{0}.

Cubic examples

1. Consider the case 6 of Theorem 3 of [START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF], that is the system

ẋ = -y + a 1,1 xy + a 1,1 2 - 3 a 1,1 b 0,2 2 + b 0,2 2 2 x 2 y ẏ = x + - b 0,2 2 + a 1,1 2 x 2 + b 0,2 y 2 + 2 a 1,1 2 -3 a 1,1 b 0,2 + b 0,2 2 xy 2          .
(3.64) In this case the functions f and g are

f (x) = - b 0,2 + 2 a 1,1 2 -3 a 1,1 b 0,2 + b 0,2 2 x + a 1,1 + 2 a 1,1 2 - 3 a 1,1 b 0,2 2 + b 0,2 2 2 x -1 + a 1,1 x + a 1,1 2 - 3 a 1,1 b 0,2 2 + b 0,2 2 2 x 2 g(x) = 1 -a 1,1 x -a 1,1 2 - 3 a 1,1 b 0,2 2 + b 0,2 2 2 x 2 x + - b 0,2 2 + a 1,1 2 x 2              , (3.65 
) for which we obtain the following linearizing change of coordinates

q(x) = - (2 + a 1,1 x -b 0,2 x) xe 2 (a 1,1 -b 0,2 ) (A(x)-A(0)) √ -5 a 1,1 2 +6 a 1,1 b 0,2 -2 b 0,2 2 -2 + 2 a 1,1 x + 2 a 1,1 2 x 2 -3 x 2 a 1,1 b 0,2 + x 2 b 0,2 2 p(x, y) = -2y q(x) (2 + a 1,1 x -b 0,2 x) x            (3.66) where A(x) = arctan   2 a 1,1 2 x -3 x a 1,1 b 0,2 + xb 0,2 2 + a 1,1 -5 a 1,1 2 + 6 a 1,1 b 0,2 -2 b 0,2 2   . (3.67)
2. Consider system (3.31) from Theorem 14. In this case the functions f and g are

f (x) = -6 b 2,0 1 + 2 b 2,0 x g(x) = x 2 b 2,0 2 x 2 + 3 b 2,0 x + 1      , ( 3 
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for which we obtain the following linearizing change of coordinates

q(x) = x (b 2,0 x + 1) (1 + 2 b 2,0 x) 2 p(x, y) = -y + x 2 (1 + 2 b 2,0 x) 2          . (3.69)

Quartic examples

1. As a quartic example we consider the system III of Theorem 3.1 of [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF]. We choose the following restrictions on the parameters

a 21 = -3, b 0,2 = -4, b 20 = 1 2
to obtain simple, presentable expressions for linearizing variables.

ẋ = -y -3 xy -3 x 2 y -x 3 y ẏ = x + 1 2 x 2 -4 y 2 -4 xy 2 -2 x 2 y 2    . (3.70)
In this case the functions f and g are

f (x) = - 7 + 10 x + 5 x 2 1 + 3 x + 3 x 2 + x 3 g(x) = 1 2 1 + 3 x + 3 x 2 + x 3 x (2 + x)      , (3.71) 
for which we obtain the following linearizing change of coordinates

q(x) = 1 2 x (2 + x) e - x(2+x) (1+x) 2 (1 + x) -2 p(x, y) = -ye - x(2+x) (1+x) 2 (1 + x) -2      . (3.72)
2. We consider the system (3.57) of Theorem 15.

In this case the functions f and g are

f (x) = 4 a 1,1 2 x -6 xb 0,2 a 1,1 + 2 xb 0,2 2 + a 1,1 + b 0,2 1 -a 1,1 x -a 1,1 2 x 2 + 3/2 x 2 b 0,2 a 1,1 -1/2 x 2 b 0,2 2 g(x) = -1/4 x (a 1,1 x -xb 0,2 + 2) -2 + 2 a 1,1 x + 2 a 1,1 2 x 2 -3 x 2 b 0,2 a 1,1 + x 2 b 0,2 2      , (3.73 
) for which we obtain the following linearizing change of coordinates

q(x) = - x (a 1,1 x -xb 0,2 + 2) S (x) -2 + 2 a 1,1 x + 2 a 1,1 2 x 2 -3 x 2 b 0,2 a 1,1 + x 2 b 0,2 2 p(x, y) = 2 x 2 -y S (x) -2 + 2 a 1,1 x + 2 a 1,1 2 x 2 -3 x 2 b 0,2 a 1,1 + x 2 b 0,2 2          , (3.74) 
where

S (x) = e 2 ( a 1,1 -b 0,2)   arctan   2 a 1,1 2 x-3 xb 0,2 a 1,1 +xb 0,2 2 +a 1,1 √ -5 a 1,1 2 +6 b 0,2 a 1,1 -2 b 0,2 2   -arctan   a 1,1 √ -5 a 1,1 2 +6 b 0,2 a 1,1 -2 b 0,2 2     √ -5 a 1,1 2 +6 b 0,2 a 1,1 -2 b 0,2 2 
.
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Let us consider the system

ẋ = -y + yx 1 + x ẏ = x + y 2 1 + x      . (3.75)
In this case the functions f and g are

f (x) = 2 + x 1 + x g(x) = x 1 + x      , (3.76) 
for which we obtain the following linearizing change of coordinates

q(x) = xe x p(x, y) = ye x (1 + x) .
(3.77)

Comments

It is really astonishing that in all above cases the linearizing variables (p, q) are always expressed in "finite terms". This follows from the fact that if g (x)+f (x) g(x) = 1 then f = 1-g g . Moreover, as g(0) = 0 and g (0) = 1 the singularity of f at zero is spurious. In all examples considered in this and related chapters [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF][START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF][START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF] f and g always are rational functions. Then F (x) = x 0 f (s) ds is expressed in "finite terms" and thus also p(x, ẋ). The problem is slightly more delicate in what concerns q(x).

But e F (s) ds = e f (s) ds ds = e 1-g (s) g(s) ds ds = 1 g(s) e 1 g(s) ds ds = e 1 g(s) ds + const. g being a rational function, ds g(s) is obtained in "finite terms" and thus also e F (s) ds.

Chapitre 4

Amplitude Independent Frequency Synchroniser for a Cubic Planar Polynomial System

This work reproduces the results of [START_REF] Boussaada | Amplitude independent frequency synchroniser for a cubic planar polynomial system[END_REF] in which the isochronicity is seen as a synchronization property. Nonlinear feedbacks (monomials) are used to synchronize a coupled system of two agents. The chapter aim is to provide some insights on the use of (only) nonlinear interconnexions to design a realization qualitatively enabling a desired behavior. The problem of local linearizability of the planar linear center perturbed by a cubic nonlinearity in the whole system of parameters (14 parameters) is far from being solved. Synchronization problem [START_REF] Pikovsky | Synchronization : A Universal Concept in Nonlinear Sciences[END_REF][START_REF] Blekhman | Synchronisation in Science and Technology[END_REF] consists in bringing appropriate modifications on a given system to obtain a desired dynamic. The desired phase portrait throughout this paper contains a compact region around a singular point at the origin in which lies periodic orbits with the same period (independently from the chosen initial conditions). In this paper, starting from a 5-parameters non isochronous Chouikha cubic system [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF], we identify all possible monomial perturbations of degree d ∈ {2, 3} insuring local linearizability of the perturbed system.The necessary conditions are obtained by the Normal Forms method. These conditions are real algebraic equations (multivariate polynomials) in the parameters of the studied ordinary differential system. The efficient algorithm FGb [START_REF] Faugère | Fgb salsa software[END_REF] for computing the Gröbner basis is used. For the family studied in this paper, an exhaustive list of possible parameters values insuring local linearizability is established. All the found cases are already known in the literature but the context is different since our goal is the synchronisation not the classification. This paper can be seen as a direct continuation of several new works concerned with the hinting of cubic isochronous centers in particular [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF][START_REF] Chen | Linearizability conditions of time-reversible cubic systems[END_REF][START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF][START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF][START_REF] Bardet | Isochronicity conditions for some planar polynomial systems {II}[END_REF][START_REF] Bardet | Complexity reduction of c-algorithm[END_REF], as it may also be considered an adaptation of a qualitative theory method to a synchronization problem.

Problem statement

We consider the planar dynamical system,

dx dt = ẋ = X(x, y), dy dt = ẏ = Y (x, y), (4.1) 
where (x, y) belongs to an open connected subset U ⊂ R 2 , X, Y ∈ C k (U, R), and k ≥ 1. Due to Poincaré : an isolated singular point p ∈ U of (4.1) is a center if and only if there exists a punctured neighborhood V ⊂ U of p such that every orbit in V is a cycle surrounding p. A center is said to be isochronous if all the orbits surrounding it have the same period. An overview of J.Chavarriga and M.Sabatini [START_REF] Chavarriga | A survey of isochronous centers[END_REF] present the methods and basic results concerning the problem of the isochronicity, see also [START_REF] Françoise | Isochronous systems and perturbation theory[END_REF][START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF][START_REF] Bardet | Complexity reduction of c-algorithm[END_REF][START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF][START_REF] Bardet | Isochronicity conditions for some planar polynomial systems {II}[END_REF]. Synchronization problem consists in bringing appropriate modifications on a given system to obtain a desired dynamic, see [START_REF] Pikovsky | Synchronization : A Universal Concept in Nonlinear Sciences[END_REF][START_REF] Blekhman | Synchronisation in Science and Technology[END_REF]. Along this paper, the desired phase portrait contains a compact region around a singular point at the origin in which lies periodic orbits with the same period (independently from the chosen initial conditions which is not always the case). More concretely, in this paper we consider the following problem ; Starting from a non isochronous polynomial planar system, are there any polynomial perturbation which insures the local linearizability of the perturbed system. In this paper we adopt the normal forms method often used in qualitative theory investigations ; center-focus problem, bifurcation problem and local linearizability problem. The problem of local linearizability conditions of of the planar linear center perturbed by cubic nonlinearities (in all generalities on the system parameters 14 parameters) is far from being solved.

In this paper, starting from a 5-parameters non isochronous Chouikha cubic system [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF], we identify all possible monomial perturbations of degree d ∈ {2, 3} insuring local linearizability of the perturbed system. Investigations are based on the normal forms Theory.

In the following system as well as in all other considered systems, all parameters are reals.

Consider the real Liènard Type equation

ẍ + f (x) ẋ2 + g(x) = 0 (4.2)
or equivalently its associated two dimensional (planar) system

ẋ = y ẏ = -g(x) -f (x)y 2 (4.
3)

The study of isochronicity of (4.2) was established first in M. Sabatini paper [START_REF] Sabatini | On the period function of x + f (x)x 2 + g(x) = 0[END_REF].

The sufficient conditions of the isochronicity of the origin O for system (4.3) with f and g of class C 1 are given. In the analytic case, the necessary and sufficient conditions for isochronicity are given by A.R.Chouikha in [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF]. In the same paper, the author implemented a new algorithmic method for computing isochronicity conditions for system (4.3) called C-algorithm. As an application of this algorithm, the author studied the following cubic system ẋ = -y + ã1,2,1 x 2 y ẏ = x + ã2,2,0 x 2 + ã2,0,2 y 2 + ã2,3,0

x 3 + ã2,1,2 xy 2 (4.4)
where all the parameters values for which system (4.4) has an isochronous center at the origin are established in the following theorem. We note that the coefficient a i,j,k denotes the parameter of the monomial perturbation of the i th equation of the linear isochronous center ( ẋ = -y, ẏ = x) of degree j in x and of degree k in y Theorem 18 (Chouikha,[START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF]). System (4.4) has an isochronous center at 0 if and only if its parameters satisfy one of the following conditions

1. ã2,3,0 = -(2/3)ã 1,2,1 , ã2,1,2 = 3ã 1,2,1 , ã2,2,0 = ã2,0,2 = 0 2. ã2,1,2 = ã1,2,1 , ã2,2,0 = ã2,3,0 = ã2,0,2 = 0 3. ã2,3,0 = (1/14)ã 2 2,0,2 , ã2,1,2 = (3/7)ã 2 2,0,2 , ã1,2,1 = (1/7)ã 2 2,0,2 , ã2,2,0 = -(1/2)ã 2,0,2 4. ã2,1,2 = ã2
2,0,2 , ã2,3,0 = 0, ã1,2,1 = (1/2)ã 2 2,0,2 , ã2,2,0 = -(1/2)ã 2,0,2 . A 1-parameter perturbation of system (4.4) is studied in [START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF]. Namely, the following system

ẋ = -y + a 1,1,1 xy + a 1,2,1 x 2 y ẏ = x + a 2,2,0 x 2 + a 2,0,2 y 2 + a 2,3,0 x 3 + a 2,1,2 xy 2 (4.5)
which is system (4.4) perturbed by the underlined term. All the values of the parameters for which the above system (4.5) has an isochronous center at the origin were found. Note that the above system stills reducible to the Liénard type equation for wich C-algorithm is applicable, see [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF].

Section 2 is devoted to recall the head lines of the methodology of the Normal Forms algorithm, called in the sequel NF algorithm, which will allow us to obtain isochronicity necessary conditions.

The last section is concerned with the main result, which is an application of the NF method. Indeed, we consider an unknown 1-directional monomial perturbation of degree two or three of the system (4.4), namely

ẋ = -y + a 1,2,1 x 2 y + Ψ 1 (x, y) ẏ = x + a 2,2,0 x 2 + a 2,0,2 y 2 + a 2,3,0 x 3 + a 2,1,2 xy 2 + Ψ 2 (x, y) , (4.6) 
in which only one of the monomials

Ψ 1 or Ψ 2 is non zero monomial (Ψ 1 Ψ 2 = 0) of degree d ∈ {2, 3}.
The problem turns to study eight polynomial cubic systems which are not reducible by the transformations described in [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF] to Liénard type equation. For each system, we identify the values of the parameters for which the singular point at thea origin is an isochronous center. Hence it is done for (4.6).

The normal forms method

The normal form theory which is due essentially to Poincaré, presents a basic tool in understanding the qualitative behavior of orbit structures of a vector field Cubic Planar Polynomial System near equilibria [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[END_REF]. It was used for the study of center conditions and the nature of bifurcation of a given vector field. We also recall a pioneer work in this field established by Pleshkan (see [START_REF] Pleshkan | A new method of investigating the isochronicity of a system of two differential equations[END_REF]), in which the author presented an investigation method of isochronicity in the case of linear center perturbed by homogeneous cubic nonlinearity. The principle of Pleshkan's algorithm is very close to the one presented in Algaba et.al paper [START_REF] Algaba | Isochronicity via normal form[END_REF], where the normal form theory is used in the analysis of isochronicity and gave a recursive method for the isochronicity investigation. In the last cited paper, the autors studied cubic Liénard equation and obtained a characterization of the reversible Liénard equation having an isochronous center at the origin.

Let

x = (x 1 , x 2 ) ∈ R 2 and f (x 1 , x 2 ) ∈ R[x 1 , x 2 ] × R[x 1 , x 2 ]
and consider the general planar system

ẋ = Lx + f (x) = Lx + f 2 (x) + f 3 (x) + . . . + f k (x) + . . . , (4.7) 
where Lx represents the linear part, L the Jacobian matrix associated to system (4.7) and f k (x) denotes the k th order vector homogeneous polynomials of x. We assume that the system admits an equilibrium at the origin O. The essential idea of the Normal Form theory is to find a near identity transformation

x = y + h(y) = y + h 2 (y) + h 3 (y) + . . . + h k (y) + . . . , (4.8) 
by which the resulting system ẏ = Ly + g(x) = Ly + g 2 (y) + g 3 (y) + . . . + g k (y) + . . . , (4.9) becomes as simple as possible. In this sense, the terms that are not essential in the local dynamical behavior are removed from the analytical expression of the vector field. Let us denote by h k (y) and g k (y) the k th order vectors homogeneous polynomials of y. According to Takens normal form theory, we define an operator as follows :

L k : H k → H k , U k ∈ H k → L k (U k ) = [U k , u 1 ] ∈ H k (4.10)
where u 1 = Ly is the linear part of the vector field and H k denotes a linear vector space containing the k th degree homogeneous vector polynomials of y = (y 1 , y 2 ).

The operator [., .] is called the Lie Bracket, defined by

[U k , u 1 ] = LU k -D(U k )u 1
where D denotes the frechet derivative. Next, we define the spaces R k and K k as the range of L k and the complementary space of R k respectively. Thus, H k = R k + K k and one can then choose bases for K k and R k . The normal form theorem determines how it is possible to reduce the analytic expression of the vector field (see Gukenheimer-Holmes [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[END_REF]). The authors give explicitly an analysis for the quadratic and the cubic cases. Consequently, a 4.3. Main results : Applications of the NF algorithm to characterize cubic systems with linearizable center 65

vector homogeneous polynomial f k ∈ H k can be split into two parts, such that one of them can be spanned in K k and the remaining part in R k .

Normal form theory shows that the part belonging to R k can be eliminated and the remaining part can be retained in the normal form. By the equations (4.7), (4.8) and (4.9), we can obtain algebraic equations one order after another.

Theorem 19 ([222]). The recursive formula for computing the normal form coefficients and the nonlinear transformation are given by :

g k = f k + [h k , Ly] + k-1 i=2 (Df i h k-i+1 -Dh k-i+1 g i ) + [k/2] i=2 551 i! k-i j=i D i f j l 1 +l 2 +...+l i =k-(j-i) 2≤l 1 ,l 2 ,...,l i ≤k+2-(i+j) h l 1 h l 2 . . . h l i ,
for k = 2, 3, . . . see also [START_REF] Qinsheng | Symbolic computation of normal forms for semisimple cases[END_REF][START_REF] Yu | Computation of normal forms via a perturbation technique[END_REF]. System (4.9) can be transformed to the polar coordinate system with y 1 = rcos(θ), y 2 = rsin(θ) so that

ṙ = N j=1 α 2j+1 r 2j+1 + O(r 2N +3 ), θ = 1 + N j=1 β 2j+1 r 2j + O(r2N + 2). (4.11) 
Recall that a necessary condition to have a center at the origin is that all the focal values α 2j+1 vanish. By the Hilbert's basis theorem, the set of focal values has a finite basis in the ring of polynomials in the coefficients of the initial system (4.7). Since the non vanishing of one of the angular component coefficient implies dependency of an associated period constant, a necessary condition for which this center is isochronous is that β 2j+1 vanish.

Recall that our study is motivated by the interest of describing a synchronizer for a desired dynamic but also to underline the key role that can the classification of centers and isochronous centers of polynomial systems have in applications such that synchronization problems.

Main results : Applications of the NF algorithm to characterize cubic systems with linearizable center

In our study, we use Maple. To compute the Gröbner basis of the obtained polynomial equations in the ring of characteristic 0, we employ the Salsa Software [START_REF] Faugère | Fgb salsa software[END_REF]. More precisely we use the FGb algorithm which is the most efficient algorithm in computing Gröbner basis [START_REF] Becker | Gröbner bases[END_REF], at least for the polynomial systems studied in this paper. We note also that we have used DRL ordering in all computations established in this paper. Cubic Planar Polynomial System Since our approach in investigation of isochronicity conditions is based on an algorithmic method, then we can guess that every simplification is beneficial in the goal of speeding the computations and reducing the necessary memory size. Solving multivariate algebraic equations (real polynomials) can be a very hard task if we try to manipulate the polynomial equations without tricks. Interested readers can find in the website of Salsa Software [START_REF] Faugère | Fgb salsa software[END_REF], more precisely the page of J.C.Faugère, some important rules in solving polynomial systems and about Gröbner basis.

Let us consider the more general cubic perturbation of linear center :

ẋ = y + a 1,2,0 x 2 + a 1,0,2 y 2 + a 1,1,1 xy + a 1,3,0 x 3 + a 1,2,1 x 2 y + a 1,1,2 xy 2 + a 1,0,3 y 3 ẏ = -x + a 2,2,0 x 2 + a 2,0,2 y 2 + a 2,1,1 xy + a 2,30 x 3 + a 2,2,1 x 2 y + a 2,1,2 xy 2 + a 2,0,3 y 3 (4.
12) or equivalently the following one : ẋ = -y + ã1,2,0 x 2 + ã1,0,2 y 2 + ã1,1,1 xy + ã1,3,0 x 3 + ã1,2,1 x 2 y + ã1,1,2 xy 2 + ã1,0,3 y 3 ẏ = x + ã2,2,0 x 2 + ã2,0,2 y 2 + ã2,1,1 xy + ã2,30 x 3 + ã2,2,1 x 2 y + ã2,1,2 xy 2 + ã2,0,3 y 3 .

Observe that we can easily reconstruct the coefficient ãi,j,k from the ones in (4.12) by the change of coordinates (x, y) → (-x, y).

The classification of all the isochronous centers of the above system is a very hard task. By any recursive method from those quoted in [START_REF] Chavarriga | A survey of isochronous centers[END_REF], solving the isochronicity problem for system (4.12) is very difficult in the sense of solving multivariate polynomials. Here, the variables are the 14 parameters of the polynomial differential system (4.12). Hence it needs very important computation supports.

With a realistic point of view, several authors have chosen some particular cases of the above system for investigation like the homogeneous cubic perturbations of the linear center [START_REF] Pleshkan | A new method of investigating the isochronicity of a system of two differential equations[END_REF][START_REF] Chavarriga | A survey of isochronous centers[END_REF] and time reversible cubic systems [START_REF] Chen | Linearizability conditions of time-reversible cubic systems[END_REF][START_REF] Garcia | Contribution to the qualitative study of planar vector fields[END_REF].

In our case, we focus on an unknown 1-directional 1-parameter perturbation of the system (4.4) which is system (4.6). Therefore, we ramify our study to all possible cases.

In the sequel, every subsection will be concerned with a possible 1-parameter perturbation of system (4.4).

Recall that a i,j,k denotes the parameter of the monomial perturbation of the i th equation in system (4.4) of degree j in x and of degree k in y.

perturbation a 1,1,1

As a continuation of the result of [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF] on system (4.4), the authors in [START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF] investigated a 1-parameter perturbation of (4.4) which is (4.5).

Theorem 20 ([63]

). System (4.5) has an isochronous center at the origin O if and only if

a 1,2,1 = -a 1,1,1 +a 1,1,1 a 2,2,0 -10a 2
2,2,0 +5a 1,1,1 a 2,0,2 -10a 2,0,2 a 2,0,2 -4a 2 2,0,2 +9a 2,3,0 +3a 2,1,2 3 and it's parameters satisfy one of the following sets of conditions 4.3. Main results : Applications of the NF algorithm to characterize cubic systems with linearizable center 67

1. 2a 2,2,0 + a 2,0,2 -a 1,1,1 = 0 a 2 2,0,2 -3a 2,0,2 a 1,1,1 + 2a 2 1,1,1 -6a 2,3,0 - 4a 2,1,2 3 = 0 a 2,0,2 a 2,3,0 -3a 2,3,0 a 1,1,1 + a 2,1,2 a 1,1,1 6 - a 2,0,2 a 2,1,2 6 = 0 a 2 2,3,0 a 2 1,1,1 -3a 2 2,3,0 + a 2 1,1,1 a 2,3,0 a 2,1,2 6 + a 2 2,3,0 a 2,1,2 3 
+ 5a 2 2,1,2 a 2,3,0 36 - a 3 2,1,2 5 = 0 a 2,1,2 a 1,1,1 a 2,0,2 + 6a 2,3,0 a 2 1,1,1 -a 2,1,2 a 2 1,1,1 -18a 2 2,3,0 -a 2,3,0 a 2,1,2 + 2a 2 2,1,2 3 = 0 2. a 2,1,2 = 0 and (a) a 2,3,0 = a 2,0,2 -1/4a 1,1,1 = a 2,2,0 = 0 (b) 4a 2,3,0 -3a 1,1,1 = a 2,2,0 + a 1,1,1 = a 2 1,1,1 -3a 2,3,0 = 0 (c) a 2,0,2 -2a 1,1,1 = a 2,3,0 -a 2 1,1,1 = a 2,2,0 + 2a 1,1,1 = 0 (d) a 2,0,2 -1/3a 1,1,1 = a 2,2,0 + 2/3a 1,1,1 = 9/2a 2,3,0 -a 2 1,1,1 = 0 3. a 2,3,0 = 0 and (a) a 2,2,0 + 1/2a 2,0,2 -1/2a 1,1,1 = a 2 2,0,2 -3a 2,0,2 a 1,1,1 + 2a 2 1,1,1 -a 2,1,2 = 0 (b) 2a 2,0,2 -a 1,1,1 = 2a 2,2,0 + a 1,1,1 = 0 (c) a 2,0,2 -a 1,1,1 = a 2,2,0 = 0 (d) a 2,0,2 = a 2 1,1,1 -9a 2,1,2 = a 2,2,0 = 0
We contribute by classifying the isochronous centers of all the remaining 1parameter perturbations of system (4.4). Eight systems are studied to do this. For these perturbations, first, we check if the center (at the origin O) conditions are satisfied and after we give necessary and sufficient isochronicity conditions depending only on the six real parameters.

Perturbation a 1,0,3

We are concerned by the following system ẋ = y + a 1,2,1 x 2 y + a 1,0,3 y 3 ẏ = -x + a 2,2,0 x 2 + a 2,0,2 y 2 + a 2,3,0 x 3 + a 2,1,2 xy 2 (4.13) Lemma 1. The investigation of isochronicity criteria of system (4.13) reduces to the investigation in the following three cases

1. a 1,0,3 = 0 2. a 1,0,3 = 1 3. a 1,0,3 = -1
For the case a 1,0,3 = 0, two cases are to be analyzed. First we assume that a 1,0,3 > 0. We use on (4.13) the change of coordinates :

(x, y) → a 1/2 1,0,3 (x, y) (4.14) Cubic Planar Polynomial System to obtain ẋ = y + a 1,2,1 a 1,0,3 x 2 y + y 3 ẏ = -x + a 2,2,0 a 1/2 1,0,3 x 2 + a 2,0,2 a 1/2 1,0,3 y 2 + a 2,3,0 a 1,0,3 x 2 + a 2,1,2 a 1,0,3 xy 2        . (4.15)
When the solutions of the isochronicity problem of system (4.15) are established, we can easily reconstruct those of the original system (4.13) by the transformation

(x, y) → (1/a 1/2 1,0,3 )(x, y). (4.16)
If a 1,0,3 < 0, then (4.13) can be written as

ẋ = y + a 1,2,1 x 2 y -ã1,0,3 y 3 ẏ = -x + a 2,2,0 x 2 + a 2,0,2 y 2 + a 2,3,0 x 3 + a 2,1,2 xy 2
with -a 1,0,3 = ã1,0,3 > 0. Applying the following change of coordinates

(x, y) → ã1/2 1,0,3 (x, y) (4.17) yields ẋ = y + a 1,2,1 ã1,0,3 x 2 y -y 3 ẏ = -x + a 2,2,0 ã1/2 1,0,3 x 2 + a 2,0,2 ã1/2 1,0,3 y 2 + a 2,3,0 ã1,0,3 x 2 + a 2,1,2 ã1,0,3 xy 2        . ( 4.18) 
The reconstruction of the solutions of (4.13) can be obtained from those of (4.18), by the change of coordinates

(x, y) → (1/ã 1/2
1,0,3 )(x, y).

Remark 1. If one is concerned with quadratic perturbations of system (4.4) with the parameter a i,j,2-j we can consider the two cases namely,

1. a i,j,2-j = 0 2. a i,j,2-j = 1
Indeed, when a i,j,2-j = 0, the change of coordinates

(x, y) → a i,j,2-j (x, y)
reduces the problem to the case a i,j,2-j = 1. Lastly, thanks to the transformation (x, y) → 1/a i,j,2-j (x, y), we can easily reconstruct the solutions of the problem when a i,j,2-j = 0.

Theorem 21. System (4.13) has an isochronous center at O if and only if its parameters satisfy one of the following conditions :

4.3. Main results : Applications of the NF algorithm to characterize cubic systems with linearizable center 69

1. a 1,0,3 = 0 (a) a 1,2,1 = a 2,1,2 , a 2,2,0 = a 2,0,2 = a 2,3,0 = 0 (b) a 1,2,1 = -3/2 a 2,3,0 , a 2,1,2 = -9/2 a 2,3,0 , a 2,2,0 = a 2,0,2 = 0 (c) a 1,2,1 = a 2,2,0 = -1/2, a 2,0,2 = 1, a 2,1,2 = -1, a 2,3,0 = 0 (d) a 1,2,1 = -1/7, a 2,2,0 = -1/2, a 2,0,2 = 1, a 2,3,0 = -1/14, a 2,1,2 = -3/7 2. a 1,0,3 = 1 (a) a 1,2,1 = -9/2, a 2,1,2 = -3/2, a 2,2,0 = a 2,0,2 = a 2,3,0 = 0 (b) a 2,3,0 = 1, a 1,2,1 = a 2,1,2 = -3, a 2,2,0 = a 2,0,2 = 0 (c) a 2,0,2 = -3/2, a 2,3,0 = 0, a 2,1,2 = a 1,2,1 = a 2,2,0 = 0 (d) a 2,0,2 = 3/2, a 2,3,0 = 0, a 2,1,2 = a 1,2,1 = a 2,2,0 = 0 (e) a 1,2,1 = -1, a 2,2,0 = a 2,0,2 = ± √ 2 2 , a 2,1,2 = -2, a 2,3,0 = 0, 3. a 1,0,3 = -1 (a) a 2,3,0 = -1, a 1,2,1 = a 2,1,2 = 3, a 2,2,0 = a 2,0,2 = 0 (b) a 1,2,1 = 9/2, a 2,1,2 = 3/2, a 2,3,0 = a 2,2,0 = a 2,0,2 = 0
In this proof, we do not present the algorithm generated polynomials which are too long.

We use the strategy given in lemma 2. We note also that we investigate only the real values of the parameters for which system (4.13) has an isochronous center at the origin.

1. Assume a 1,0,3 = 0 and then solve the isochronicity problem for system (4.13) under this assumption. We use the following change of coordinates (x, y) → (-x, y) to obtain system (4.4) studied in [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF]. The investigation following the two cases :

(a) a 2,0,2 = 0 (b) a 2,0,2 = 1
covers, (with respect to a linear change of coordinates), all the values of the parameters for which the center at the origin of system (4.4), see Remark 1.

In [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF], the author used C-algorithm which characterizes isochronicity by establishing associated Urabe function.

2. Consider the case a 1,0,3 = 1. Computations of normal forms of the initial system in polar form give (4.11)

ṙ = N j=1 α 2j+1 r 2j+1 + O(r 2N +3 ), θ = 1 + N j=1 β 2j+1 r 2j + O(r 2N +2 )
we obtain in the radial component α 2j+1 = 0 until order N = 6. So that the first six necessary conditions to have a center are satisfied. Analyzing isochronicity involves the angular component. Using FGb for computing the Cubic Planar Polynomial System

Gröbner basis of the obtained first six quantities in the angular component, we obtain a Gröbner basis of 27 polynomials denoted G 1 such that it's first element is -a 2,3,0 a 2,2,0 -a 2 2,1,2 + 9 a 2,3,0 .

Then we analyze the isochronicity problem in the following three cases, which are given by the vanishing of one factor of the above expression.

(a) a 2,3,0 = 0, we substitute this condition into G 1 we compute again the associated Gröbner basis, we obtain a basis of 14 polynomials, when we solve it we obtain the following four real solutions to the problem :

i. a 1,0,3 = 1, a 2,1,2 = -3/2, a 1,2,1 = -9/2, a 2,3,0 = a 2,2,0 = a 2,0,2 = 0 ii. a 1,0,3 = 1, a 2,0,2 = 3/2, a 2,3,0 = a 1,2,1 = a 2,2,0 = a 2,1,2 = 0 iii. a 1,0,3 = 1, a 2,0,2 = -3/2, a 2,3,0 = a 1,2,1 = a 2,2,0 = a 2,1,2 = 0 iv. a 1,0,3 = 1, a 1,2,1 = -1, a 2,2,0 = a 2,0,2 = ± √ 2 2 , a 2,1,2 = -2 (b)
For a 2,2,0 = 0, substituting this assumption in G 1 , and computing it's associated Gröbner basis which contains 7 polynomials, after solving it we obtain the solutions :

i. a 1,0,3 = 1, a 2,0,2 = 3/2, a 2,2,0 = a 1,2,1 = a 2,3,0 = a 2,1,2 = 0 ii. a 1,0,3 = 1, a 2,0,2 = -3/2, a 2,2,0 = a 1,2,1 = a 2,3,0 = a 2,1,2 = 0 iii. a 1,0,3 = 1, a 2,1,2 = -3/2, a 1,2,1 = -9/2, a 2,2,0 = a 2,3,0 = a 2,0,2 = 0 iv. a 1,0,3 = a 2,3,0 = 1, a 2,1,2 = a 1,2,1 = -3, a 2,2,0 = a 2,0,2 = 0 (c) Similarly for a 2,3,0 = (1/9)a 2 2,1,2 , we obtain the solutions i. a 1,0,3 = 1, a 2,0,2 = -3/2, a 2,2,0 = a 1,2,1 = a 2,3,0 = a 2,1,2 = 0 ii. a 1,0,3 = 1, a 2,0,2 = 3/2, a 2,2,0 = a 1,2,1 = a 2,3,0 = a 2,1,2 = 0 iii. a 1,0,3 = a 2,3,0 = 1, a 2,1,2 = a 1,2,1 = -3, a 2,2,0 = a 2,0,2 = 0
It's easy to see that several solutions are repeated above. For example cases (10.11 ≡ 2(b)i) and (2(a)iii ≡ 2(b)ii). We claim that there are only 5 solutions to the problem when a 1,0,3 = 1 which are given in the theorem. Analysis of the theorem cases with a 1,0,3 = 1 -2a-In this case system (4.13) reduces to

ẋ = y -9/2yx 2 + y 3 ẏ = -x -3/2xy 2
which is a cubic homogeneous perturbation of linear center with isochronous center at the origin. Indeed, we use the change of coordinates

(x, y) → ( y √ 2 , x √ 
2 ) we obtain system S * 3 given in [START_REF] Chavarriga | A survey of isochronous centers[END_REF][START_REF] Pleshkan | A new method of investigating the isochronicity of a system of two differential equations[END_REF]. A first integral, a linearizing change of coordinate and a transversal commuting system are established for homogeneous perturbations (see [START_REF] Mardesic | Linearization of isochronous centers[END_REF][START_REF] Chavarriga | A survey of isochronous centers[END_REF]).
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-2b-System (4.13) reduces to

ẋ = y -3 x 2 y + y 3 ẏ = -x + x 3 -3 xy 2
which is an homogeneous perturbation of linear center, by the change of coordinates (x, y) → (y, x) reduces to system S * 1 of [START_REF] Pleshkan | A new method of investigating the isochronicity of a system of two differential equations[END_REF][START_REF] Mardesic | Linearization of isochronous centers[END_REF][START_REF] Chavarriga | A survey of isochronous centers[END_REF]]. -2c-and 2d-For these two cases system (4.13) reduces to

ẋ = y + y 3 ẏ = -x ± 3/2 y 2
We see that by the change of coordinate (x, y) → (y, x), we have a Liénard

systems x + f (x)x + g(x) = 0 satisfying g(x) = g (0)x + 551 x 3 ( x 0 sf (s)ds) 2 (4.19)
then the origin is an isochronous center. See [START_REF] Chouikha | Monotonicity of the period function for some planar differential systems. II. Liénard and related systems[END_REF][START_REF] Christopher | On the classification of lià c nard systems with amplitude-independent periods[END_REF][START_REF] Algaba | Isochronicity via normal form[END_REF] for more details about characterization of isochronicity for Liénard equation. -2e-In this case system (4.13) is a time-reversible system with an isochronous center at O. Indeed, in polar coordinates it reduces to

ṙ = -1/2 sin (θ) r 2 √ 2 + 1/2 r 3 sin (2 θ) θ = 1 + (-1/2 cos (2 θ) + 1/2) r 2 -1/2 r cos (θ) √ 2
which belongs to the family ii) (with

R 1 = r 1 = - √ 2 2 if a 2,2,0 = a 2,0,2 = √ 2 
2 ) and (R

1 = r 1 = √ 2 2 if a 2,2,0 = a 2,0,2 = - √ 2 
2 ) of the theorem 8.11 in Garcia thesis, see also system CR 4 of [START_REF] Chavarriga | A survey of isochronous centers[END_REF].

3. a 1,0,3 = -1. When executing the normal form Maple code, there is no change from the case a 1,0,3 = 1 : the coefficients of radial component of system (4.11) are such that α 2j+1 = 0 until order N = 6. The first six necessary conditions to have a center are satisfied. On a similar way as the case a 1,0,3 = 1, for analyzing isochronicity we are concerned by the angular component. We compute the Gröbner basis ,denoted G -1 , of the obtained first six quantities in the angular component. We obtain an ideal of 27 polynomials such that its first element is a 2,2,0 a 2,3,0 a 2 2,1,2 + 9a 2,3,0 .

Then we analyze the isochronicity problem in the following three cases, which are the vanishing of each of the factors of the above expression.

(a) For a 2,3,0 = 0, we substitute this assumption in G -1 . We compute again the Gröbner basis associated to this case. We obtain a basis of 14 polynomials. when we solve it we obtain the unique real solution to the problem :

Cubic Planar Polynomial System i. a 1,0,3 = -1, a 1,2,1 = 9/2, a 2,1,2 = 3/2, a 2,3,0 = a 2,2,0 = a 2,0,2 = 0 (b)
For a 2,2,0 = 0 we do the same as for the last case and obtain the two real solutions i.

a 1,0,3 = a 2,3,0 = -1, a 1,2,1 = a 2,1,2 = 3, a 2,2,0 = a 2,0,2 = 0 ii. a 1,0,3 = -1, a 1,2,1 = 9/2, a 2,1,2 = 3/2, a 2,3,0 = a 2,2,0 = a 2,0,2 = 0 (c) a 2,3,0 = -(1/9)a 2 2,1,2
in the same way as for the first and second cases we obtain i.

a 1,0,3 = a 2,3,0 = -1, a 1,2,1 = a 2,1,2 = 3, a 2,2,0 = a 2,0,2 = 0
We conclude that in the case a 1,0,3 = -1, we have only two solutions to the isochronicity problem.

Analysis of the theorem cases with a 1,0,3 = -1 These two solutions are cubic homogeneous perturbations of the linear center, which can be found in [START_REF] Chavarriga | A survey of isochronous centers[END_REF].

-3a-in this case, system (4.13) can be written

ẋ = y + 3 x 2 y -y 3 ẏ = -x -x 3 + 3 xy 2
by the change of coordinates (x, y) → (-x, -y), it reduces to system S * 1 of [START_REF] Pleshkan | A new method of investigating the isochronicity of a system of two differential equations[END_REF][START_REF] Mardesic | Linearization of isochronous centers[END_REF][START_REF] Chavarriga | A survey of isochronous centers[END_REF], which have an isochronous center at the origin. -3b-system (4.13) can be written

ẋ = y + 9/2yx 2 -y 3 ẏ = -x + 3/2xy 2 we use the change of coordinates (x, y) → ( y √ 2 , x √ 
2 ) we obtain system S * 3 with isochronous center at the origin O given in [START_REF] Chavarriga | A survey of isochronous centers[END_REF][START_REF] Pleshkan | A new method of investigating the isochronicity of a system of two differential equations[END_REF]. That ends the proof.

Perturbation a 1,3,0

Consider the system

ẋ = y + a 1,2,1 x 2 y + a 1,3,0 x 3 ẏ = -x + a 2,2,0 x 2 + a 2,0,2 y 2 + a 2,3,0 x 3 + a 2,1,2 xy 2 (4.20)
Theorem 22. System (4.20) with a 1,3,0 = 0 has no center at the origin. Moreover, system (4.20) has an isochronous center at the origin O if and only if it reduces to system (4.4) and its parameters satisfy one of isochronicity cases from those of Theorem 18.

Analogously to lemma 2 we have to analyse a 1,3,0 = ±1.
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Executing the Maple code, which gives the normal form of (4.20) in it's polar form (4.11)

ṙ = N j=1 α 2j+1 r 2j+1 + O(r 2N +3 ), θ = 1 + N j=1 β 2j+1 r 2j + O(r 2N +2 )
we obtain in the radial component such that α 3 = ± 3 8 , then in this case, the singular point can not be a center.

Perturbation a 2,0,3

This perturbation represents system (4.4) perturbed by the additional monomial with the parameter a 2,0,3

ẋ = y + a 1,2,1 x 2 y ẏ = -x + a 2,2,0 x 2 + a 2,0,2 y 2 + a 2,3,0 x 3 + a 2,1,2 xy 2 + a 2,0,3 y 3 (4.21)
Theorem 23. System (4.21) with a 2,0,3 = 0 has no center at the origin. Moreover, system (4.21) has an isochronous center at O if and only if it reduces to system (4.4) and its parameters satisfy one case of isochronicity conditions given in Theorem [START_REF] Bastin | Stability of linear density-flow hyperbolic systems under {PI} boundary control[END_REF].

Analogously to lemma 2. Consider a 2,0,3 = ±1. Executing the Maple code, which gives the normal form of (4.21) in it's polar form (4.11)

ṙ = N j=1 α 2j+1 r 2j+1 + O(r 2N +3 ), θ = 1 + N j=1 β 2j+1 r 2j + O(r 2N +2 )
we obtain in the radial component such that α 3 = ± 3 8 , then in this case, the singular point cant be a center.

Perturbation a 1,1,2

This case represents system (4.4) perturbed by the monomial with the parameter

a 1,1,2 ẋ = y + a 1,2,1 x 2 y + a 1,1,2 xy 2 ẏ = -x + a 2,2,0 x 2 + a 2,0,2 y 2 + a 2,3,0 x 3 + a 2,1,2 xy 2 (4.22)
Theorem 24. System (4.22) with a 1,1,2 = 0 has no center at the origin. Moreover, system (4.22) has an isochronous center at O if and only if it reduces to one case of isochronicity from those of system (4.4).

when a 1,1,2 = 0 we obtain in the radial component α 3 = ± 551 8 , then in this case, the singular point at the origin cant be a center.

Perturbation a 2,2,1

This case represents system (4.4) perturbed by the monomial with the parameter a 2,2,1

ẋ = y + a 1,2,1 x 2 y ẏ = -x + a 2,2,0 x 2 + a 2,0,2 y 2 + a 2,3,0 x 3 + a 2,1,2 xy 2 + a 2,2,1 x 2 y (4.23)
Theorem 25. System (4.23) with a 2,2,1 = 0 has no center at the origin. Moreover, system (4.23) has an isochronous center at O if and only if it reduces to one case of isochronicity from those of system (4.4).

By the same reason from the one of the last case, we substitute a 2,2,1 = ±1 in the system, then we obtain in the radial component α 3 = ± 551 8 , in this case, the singular point at the origin can not be a center.

Perturbation a 1,0,2

This perturbation represents system (4.4) with an additional monomial a 1,0,2 y 2 in the first equation .

ẋ = y + a 1,2,1 x 2 y + a 1,0,2 y 2 ẏ = -x + a 2,2,0 x 2 + a 2,0,2 y 2 + a 2,3,0 x 3 + a 2,1,2 xy 2 (4.24)
Theorem 26. System (4.24) with a 1,0,2 = 0 has no isochronous center at the origin. Moreover, system (4.24) has an isochronous center at O if and only if a 1,0,2 = 0 and it reduces (modulo a linear change of coordinates) to system (4.4) such as its parameters satisfy one of the four cases given in Theorem 18.

Démonstration. Since we have a quadratic perturbation of system (4.4), thanks to Remark 1 we study the cases a 1,0,2 ∈ {0, 1}. If a 1,0,2 = 0, system (4.24) admit an isochronous center at the origin if and only if it reduces to (4.4) and its parameters satisfy one the isochronicity conditions given by Theorem 18. We assume a 1,0,2 = 1, and we compute first the radial component of the normal form in polar coordinates. The first radial component α 3 = -a 2,0,2 /4, then we substitute the assumption a 2,0,2 = 0 in the remaining five α 2j+1 and we compute the associated Gröbner base, we find α 5 = a 2,2,0 (a 2,1,2 + a 1,2,1 ). We continue the analysis in the three cases :

1. a 2,2,0 = 0 2. (a 2,1,2 + a 1,2,1 ) = 0
Unfortunately, we computed in each case the Gröbner base and there are no common roots between the multivariate polynomials β 2j+1 of the angular component. Consider the system

ẋ = y + a 1,2,1 x 2 y + a 1,2,0 x 2 ẏ = -x + a 2,2,0 x 2 + a 2,0,2 y 2 + a 2,3,0 x 3 + a 2,1,2 xy 2 (4.25)
Theorem 27. System (4.25) with a 1,2,0 = 0 has an isochronous center at O if and only if ,modulo a linear change of coordinates, its parameters satisfy

a 2,3,0 = -4/9, a 2,1,2 = 0, a 1,2,1 = 0, a 2,2,0 = 0, a 2,0,2 = 0, a 1,2,0 = 1
Démonstration. Consider the case a 1,2,0 = 1. We compute first, under this assumption, the radial component of the normal form of system (4.25). We obtain α 3 = a 2,2,0 /4. Then the first necessary condition to have a center at the origin is the vanishing of a 2,2,0 . We substitute this additional assumption in the remaining coefficients of the radial component (α 5 . . . α 13 ). A common factor appears which is a 2,0,2 .

Hence we obtain two cases to analyse center conditions a 2,0,2 = 0 and a 2,0,2 = 0. For the case a 2,0,2 = 0, we divide all the expressions of the coefficients of the radial component by a 2,0,2 . We compute the associated Gröbner basis which is generated by 8 polynomials and gives 3 cases for each one the first six necessary conditions for the center are satisfied. Namely the following

{a 2,1,2 = 0, a 1,2,1 = 0, a 2,2,0 = 0, a 2,0,2 = 0, a 1,2,0 = 1, a 2,3,0 = -3/4} {a 2,2,0 = 0, a 1,2,0 = 1, a 2,3,0 = 0, a 2,0,2 = -1, a 2,1,2 = -a 1,2,1 } {a 2,2,0 = 0, a 1,2,0 = 1, a 2,3,0 = 0, a 2,1,2 = -a 1,2,1 , a 2,0,2 = 1}
The first solution is rejected, because we have assumed that a 2,0,2 = 0.

For the second and the third solution of center condition investigation, we substitute each of those into the angular component coefficients expressions. We compute the Gröbner bases of the obtained multivariate polynomial systems. Unfortunately in the two cases it gives Gröbner basis ≡ [START_REF] Abolinia | Mixed problem for an almost linear hyperbolic system in the plane[END_REF] which means that there are not common roots.

We return to the remaining case a 1,2,0 = 1, a 2,2,0 = a 2,0,2 = 0 which ensures the first six necessary conditions of the singular point at the origin to be a center. Substituting this assumption in the angular component coefficients and computing its associated Gröbner basis which is generated by three polynomials. This gives the unique solution to the problem of isochronicity

a 2,3,0 = -4/9, a 1,2,0 = 1, a 2,1,2 = a 1,2,1 = a 2,2,0 = a 2,0,2 = 0 Then system (4.25) reduces to ẋ = y + x 2 ẏ = -x -4/9 x 3
Which is a Liénard isochronous system with f (x) = -2 x, g(x) = x + 4/9 x 3 satisfying 

g(x) = g (0)x + 551 x 3 ( x 0 sf (s)ds) 2 4.3.9 Perturbation a 2,1,1 ẋ = y + a 1,2,1 x 2 y ẏ = -x + a 2,2,0 x 2 + a 2,0,2 y 2 + a 2,1,1 xy + a 2,3,0 x 3 + a 2,
1. a 2,1,1 = 1, a 2,3,0 = -1/9, a 2,1,2 = a 1,2,1 = a 2,2,0 = a 2,0,2 = 0 2. a 2,1,1 = 1, a 2,1,2 = -2/9, a 1,2,1 = 1/9, a 2,2,0 = a 2,0,2 = a 2,3,0 = 0 Démonstration. Consider the a 2,1,1 = 1
We compute first, under this assumption, the radial component of the normal form of system (4.26). We obtain α 3 = (a 2,0,2 + a 2,2,0 )/8, then the first necessary condition to have a center at the origin is the vanishing of α 3 .

We substitute this additional assumption a 2,0,2 = -a 2,2,0 in the following coefficient of the radial component α 5 = -1/48 a 2,0,2 (a 1,2,1 -a 2,1,2 + a 2,3,0 ), then it appears two cases to analyze : {a 2,0,2 = a 2,2,0 = 0} and {a 2,0,2 = -a 2,2,0 , a 1,2,1a 2,1,2 + a 2,3,0 = 0} 1. a 2,0,2 = a 2,2,0 = 0 We substitute this additional assumption in the remaining coefficients of the radial component α 7 , . . . , α 13 which gives α 3 = α 5 . . . = α 13 = 0. Hence, the first six center necessary conditions are satisfied.

Substituting the assumptions into the angular component coefficients expressions, computing associated Gröbner basis gives the two real solutions. The first one is

{a 2,1,1 = 1, a 2,3,0 = -1/9, a 2,1,2 = a 2,2,0 = a 2,0,2 = a 1,2,1 = 0}
under which system (4.26) reduces to

ẋ = y ẏ = -x + xy -1/9 x 3
we have an isochronous Liénard systems with

f (x) = -x and g(x) = x + 1/9 x 3 which satisfy g(x) = g (0)x + 551 x 3 ( x 0 sf (s)ds) 2
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The second one is

{a 2,2,0 = 0, a 2,0,2 = 0, a 2,1,1 = 1, a 2,3,0 = 0, a 2,1,2 = -2/9, a 1,2,1 = 1/9}
under which system (4.26) reduces to

ẋ = y + 1/9x 2 y ẏ = -x + xy -2/9 xy 2
By the change of coordinates (x, y) → (y, x) we obtain

ẋ = -y + xy -2/9 x 2 y ẏ = x + 1/9 xy 2 Which belongs to the Liénard Type equation (4.2) with f (x) = -3 (2 x -3) -1 and g(x) = 1/9 x (2 x -3) (x -3).
The isochronicity of this last system is proved since it belongs to the case 9 of the Theorem 3 of Chouikha et.al in [START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF].

2. a 2,0,2 = -a 2,2,0 and a 1,2,1 -a 2,1,2 + a 2,3,0 = 0 Unfortunately in this case, after computing Gröbner basis, no real solutions are found.

Theorem 29. System (4.4) has an amplitude independent frequency synchronizer at O if and only if its parameters satisfy one of the cases of Theorem 3-Theorem 11.

Conclusion

To summarize, for the eight monomial perturbations studied in this paper we have identified all possible amplitude independent frequency synchronizers. Moreover, we claim that all isochronous cases are known in a fragmented literature but our study insures that for the studied family there are no other (necessary conditions). Each of them was found in a classification of a specific family of planar differential systems which are different from the context of the ones studied in this paper (synchronization). For isochronous centers of Liénard systems the reader can see for instance [START_REF] Christopher | On the classification of lià c nard systems with amplitude-independent periods[END_REF][START_REF] Chavarriga | A survey of isochronous centers[END_REF]. The papers [START_REF] Chouikha | Isochronous centers of Lienard type equations and applications[END_REF][START_REF] Chouikha | Isochronicity of analytic systems via Urabe's criterion[END_REF] are concerned with the planar differential Liénard Type equations. For cubic time reversible systems see [START_REF] Chavarriga | A survey of isochronous centers[END_REF][START_REF] Garcia | Contribution to the qualitative study of planar vector fields[END_REF][START_REF] Chen | Linearizability conditions of time-reversible cubic systems[END_REF] and for cubic homogeneous perturbations of linear center see [START_REF] Chavarriga | A survey of isochronous centers[END_REF][START_REF] Garcia | Contribution to the qualitative study of planar vector fields[END_REF][START_REF] Mardesic | Linearization of isochronous centers[END_REF].

Chapitre 5

Analysis and control of quadrotor via a Normal Form approach

Arial vehicles are often modeled by high dimensional dynamical systems. This work shows that standard techniques of qualitative theory of differential equations (center manifold/normal forms) may be directly applied to such systems for control aim. The proofs of the results of this chapter can be found in [START_REF] Wang | Analysis and control of quadrotor via a normal form approach[END_REF].

This paper focuses on the analysis and control of some mathematical models representing the dynamics of a quadrotor. By using a normal form approach, the highly coupled parts in the quadrotor system are eliminated, while all possible properties of the original system are not changed. The bifurcations of the system are then analyzed. A two-dimensional system is deduced at the origin which can determine the stability and possible local bifurcations of the system. Based on the normal form and indirect method of Lyapunov, we propose a state feedback control method which, compared to a standard PID control, has faster response time and less tracking errors especially with wind disturbance.

Introduction

The quadrotor (see in Figure 5.1) is a mini unmanned aerial vehicle (UVA) with four rotors, which has been widely studied in the last decades [START_REF] Hoffmann | Distributed cooperative search using information-theoretic costs for particle filters with quadrotor applications[END_REF][START_REF] Bouabdallah | Backstepping and sliding-mode techniques applied to an indoor micro quadrotor[END_REF][START_REF] Besnard | Control of a quadrotor vehicle using sliding mode disturbance observer[END_REF][START_REF] Wang | Event driven intelligent pid controllers with applications to motion control[END_REF]. It is a system with four inputs, six outputs and highly coupled states. Due to its simplicity both in mechanical structure and maneuver, it is widely used in surveillance, search and rescue, mobile sensor networks [START_REF] Hoffmann | Distributed cooperative search using information-theoretic costs for particle filters with quadrotor applications[END_REF]. Many methods have been proposed for controlling quadrotors. For example, Bouabdallah et al. [START_REF] Bouabdallah | Backstepping and sliding-mode techniques applied to an indoor micro quadrotor[END_REF] have proposed a backstepping control used separately in two subsystems. Besnard et al. [START_REF] Besnard | Control of a quadrotor vehicle using sliding mode disturbance observer[END_REF] have proposed a sliding mode control driven by a disturbance observer. Wang et al. [START_REF] Wang | Event driven intelligent pid controllers with applications to motion control[END_REF] have presented an event driven model free control which can avoid heavy computation. However, to the best of the authors' knowledge, the bifurcation of the dynamical system have never been studied.

The method of normal forms is an useful approach in studying the dynamical system properties [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF]. Its purpose is employing successive coordinate transformations to construct the simplest form of the system. The normal form exhibits all possible properties of the original system. The normal forms of any degree with a single input were obtained by using change of coordinates and feedback [START_REF] Kang | Extended controller form and invariants of nonlinear control systems with a single input[END_REF]. For multi-input systems, the normal forms are deduced from the system with two inputs [START_REF] Tall | Normal forms for two-inputs nonlinear control systems[END_REF]. Based on the normal forms, the bifurcations and its control were studied by approach several authors [START_REF] Kang | Extended controller form and invariants of nonlinear control systems with a single input[END_REF][START_REF] Krener | Control bifurcations. Automatic Control[END_REF]. Center manifold is usually applied with the normal forms. It reduces the system to a center manifold associated with parts of the system with the eigenvalues with zero real parts at a bifurcation point [START_REF] Carr | Application of Center Manifold Theory[END_REF].

To the best of our knowledge, the normal form and center manifold theories have never been used in the analysis and control of quadrotor. In this paper, the normal form of the quadrotor system is firstly calculated. By using such a methodology, the highly coupled parts in quadrotor system are eliminated. Under certain control laws, the normal form is reduced into a two dimensional system at the bifurcation point by using center manifold theory. Also, a simple control method based on the normal form using state feedback is proposed. The control laws are proposed to ensure the asymptotical stability of the system by moving all the eigenvalues of the system to the open left half plane. Comparing to PID control, the proposed method has faster response time and less tracking errors especially when there is wind disturbance, as illustrated at the end of the paper. The interest of considering such control laws lies in the simplicity of the controller as well as in its practical implementation facility.

The paper is organized as follows : In Section 5.2, the model of quadrotor is given. In Section 5.3, the normal form of quadrotor is deduced. In Section 5.4, the bifurcation of the system under certain control laws is analyzed. In Section 5.5, simulations with and without wind disturbance using the proposed method and PID control are given.

The quadrotor model

The chosen model of quadrotor is depicted in equations (5.1). The rotation angles φ, θ and ψ are along the world axis x, y and z respectively, namely roll, pitch and yaw. w i (i = 1..4) are the accelerations caused by four rotors, which are the inputs of the system. (g = 9.8m/s 2 the gravity).

ẍ = -w 1 sinθ, ÿ = w 1 cosθsinφ, z = w 1 cosθcosφ -g, φ = w 2 , θ = w 3 , ψ = w 4 .
(5.1)
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We introduce the variables as

x 1 = x, x 2 = ẋ, x 3 = y, x 4 = ẏ, x 5 = z, x 6 = ż, x 7 = φ, x 8 = φ, x 9 = θ, x 10 = θ, x 11 = ψ, x 12 = ψ.
Therefore, we can rewrite the system as :

ẋ1 = x 2 , ẋ2 = -w 1 sin(x 9 ), ẋ3 = x 4 , ẋ4 = w 1 cos(x 9 )sin(x 7 ), ẋ5 = x 6 , ẋ6 = w 1 cos(x 9 )cos(x 7 ) -g, ẋ7 = x 8 , ẋ8 = w 2 , (5.2) ẋ9 = x 10 , ẋ10 = w 3 , ẋ11 = x 12 , ẋ12 = w 4 .

Normal form of the system

It is easy to see that the equilibria of the system (5.2) are x e = (c 1 , 0, c 2 , 0, c 3 , 0, kπ, 0, kπ, 0, c 4 , 0), w = (g, 0, 0, 0), where k = 0, ±1, ±2, ..., c i (i = 1..4) ∈ R are constants and g is the gravity. Note in the real control system, φ, θ ∈ (-π/2, π/2) and ψ ∈ [0, π). Therefore, without losing generality, only the equilibrium x 0 = (x, w) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, g, 0, 0, 0) is considered. We move x 0 to the origin by changing the coordinates of the inputs

w 1 = u 1 + g, w 2 = u 2 , w 3 = u 3 , w 4 = u 4 .
Then, using the Taylor series of function sin(x) and cos(x) at x = 0. The system (5.2) can be written in polynomial form as follows. Here, O 5 are the polynomials with 5th and higher degree :

ẋ1 = x 2 , ẋ2 = -gx 9 -u 1 x 9 + gx 3 9 6 + u 1 x 3 9 6 + O 5 , ẋ3 = x 4 , ẋ4 = gx 7 + u 1 x 7 - gx 3 7 6 - gx 2 9 x 7 2 - u 1 x 3 7 6 - u 1 x 2 9 x 7 2 + O 5 , ẋ5 = x 6 , ẋ6 = u 1 - gx 2 7 2 - gx 2 9 2 - u 1 x 2 7 2 - u 1 x 2 9 2 + gx 4 7 24 + gx 2 9 x 2 7 4 + gx 4 9 24 + O 5 , ẋ7 = x 8 , ẋ8 = u 2 , ẋ9 = x 10 , ẋ10 = u 3 , ẋ11 = x 12 , ẋ12 = u 4 .
Using the state and input transformation

y 1 = x 1 , y 2 = x 2 , y 3 = x 3 , y 4 = x 4 , y 5 = x 5 , y 6 = x 6 , y 7 = gx 7 , y 8 = gx 8 , y 9 = gx 9 , y 10 = gx 10 , y 11 = x 11 , y 12 = x 12 , v 1 = u 1 , v 2 = gu 2 , v 3 = gu 3 , v 4 = u 4
, we change the system (5.3) into Brunovsky form :

ẏ1 = y 2 , ẏ2 = -y 9 - v 1 y 9 g + y 3 9 6g 2 + v 1 y 3 9 6g 3 + O 5 , ẏ3 = y 4 , ẏ4 = y 7 + v 1 y 7 g - y 7 y 2 9 2g 2 - y 3 7 6g 2 - v 1 y 3 7 6g 3 - v 1 y 7 y 2 9 2g 3 + O 5 , (5.3) 
ẏ5 = y 6 , ẏ6 = v 1 - y 2 7 2g - y 2 9 2g - v 1 y 2 7 2g 2 - v 1 y 2 9 2g 2 + y 4 7 24g 3 + y 2 7 y 2 9 4g 3 + y 4 9 24g 3 + O 5 , ẏ7 = y 8 , ẏ8 = v 2 , ẏ9 = y 10 , ẏ10 = v 3 , ẏ11 = y 12 , ẏ12 = v 4 .
The system (5.3) can be written as :

ẏ = f (y) + g(y)v = Ay + f (2) (y) + f (3) (y) + Bv + g (1) (y)v + g (2) (y)v + O 4 (5.4)
where A, B are the coefficients of the linear parts, f (2) (y), g (1) (y)v are the second degree homogeneous polynomials of the system, f (3) (y), g (2) (y)v are the third degree homogeneous polynomials. approach

We take a third-degree homogeneous transformation for example [START_REF] Krener | Higher order linear approximations to nonlinear control systems[END_REF] :

y = z + φ (2) (z) + φ (3) (z) (5.5)
which z are the new states of the system. φ (2) (z) is a second degree homogeneous polynomial and φ (3) (z) is a third degree homogeneous polynomial of the states z, whose coefficients will be defined later.

We get the derivative of equation (5.5). Therefore, the derivative of the new states z are :

ż = (I + dφ (2) dz + dφ (3) dz ) -1 ẏ (5.6)
where,

(I + dφ (2) dz + dφ (3) dz ) -1 = I - dφ (2) dz - dφ (3) dz + ( dφ (2) dz ) 2 + ( dφ (3) dz ) 2 + 2 dφ (2) dz dφ (3) dz ...
In (5.4), we rewrite the f (y) and g(y) using the new states z.

f (y) = A(y) + f (2) (y) + f (3) (y) + O 4 = Az + Aφ (2) (z) + f (2) (z) + Aφ (3) (z) + f (3) (z)... g(y) = B + g (1) (y) + g (2) (y) + O 3 = B + g (1) (z) + g (1) (φ (2) (z)) + g (2) (z)...
Therefore, with the help of the equations (5.4), (5.6), by now we have the new system :

ż = Az + Bv + Aφ (2) (z) + f (2) (z) + g (1) (z)v - dφ (2) dz Az - dφ (2) dz Bv + Aφ (3) (z) +f (3) (z) + g (2) (z)v + g (1) (φ (2) (z))v - dφ (2) dz (Aφ (2) (z) + f (2) (z) + g (1) (z)v) - dφ (3) dz (Az + Bv) + ( dφ (2) dz ) 2 (Az + Bv) + O 4
For the simplicity of the system, the states z and the inputs v should be separated. In the third degree normal form, the polynomial g (1) (z)v, g (2) (z)v should be canceled.

g (1) (z) -dφ (2) dz B = 0

g (2) (z) + g (1) (φ (2) (z)) - dφ (2) dz g (1) (z) - dφ (3) dz B + ( dφ (2) dz ) 2 B = 0
Therefore, the transformation in equation (5.5) should be :

φ (2) (z) = (0, - z 6 z 9 g , 0, z 6 z 7 g
, 0, 0, 0, 0, 0, 0, 0, 0),

φ (3) (z) = (0, 0, 0, 0, 0, - z 6 z 2 7 2g 2 - z 6 z 2 9
2g 2 , 0, 0, 0, 0, 0, 0).

Using the same method, we can calculate the normal form of any degree. A Maple package 'QualitativeODE'(Available upon request) has been made for calculating the normal form of quadrotor. Using this programme, we get the third degree normal form of the system (5.3) as :

ż1 = z 2 - z 6 z 9 g , ż2 = -z 9 + z 6 z 10 g - z 3 9 3g 2 - z 2 7 z 9 2g 2 + O 4 , ż3 = z 4 + z 6 z 7 g , ż4 = z 7 - z 6 z 8 g + z 3 7 3g 2 + O 4 , (5.7 
)

ż5 = z 6 - z 6 z 2 7 2g 2 - z 6 z 2 9 2g 2 , ż6 = v 1 - z 2 7 2g - z 2 9 2g + z 6 z 7 z 8 g 2 + z 6 z 9 z 10 g 2 + O 4 , ż7 = z 8 , ż8 = v 2 , ż9 = z 10 , ż10 = v 3 , ż11 = z 12 , ż12 = v 4 .
5.4 Bifurcation and simplification of the control system

Bifurcation of the roots

It is easy to see that in the linear part of the equation (5.7), z 1 is related only to z 2 , z 9 , z 10 , v 3 ; z 3 is related to z 4 , z 7 , z 8 , v 2 ; z 5 is related to z 6 , v 1 ; z 11 is related to z 12 , v 4 . Therefore, the control laws can be defined as :

v 1 = K 11 z 5 + K 12 z 6 , v 2 = K 21 z 3 + K 22 z 4 + K 23 z 7 + K 24 z 8 , v 4 = K 41 z 11 + K 42 z 12 , v 3 = K 31 z 1 + K 32 z 2 + K 33 z 9 + K 34 z 10 .
In this way, we can move the related eigenvalues in each group separately without changing the eigenvalues in other groups. Here, we define v i (i = 1..4) as :

v 1 = -256z 5 + K 12 z 6 , v 2 = -100z 3 -308z 4 -256z 7 -32z 8 , v 4 = -1024z 11 + K 42 z 12 , v 3 = 100z 1 + 308z 2 -256z 9 -32z 10 .
The system has three equilibria P e 1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), P e 2 = (0, 0, 43.45, 0, -0.057, 0, -16.97, 0, 0, 0, 0, 0) and P e 3 = (0, 0, -43.45, 0, -0.057, 0, 16.97, 0, 0, 0, 0, 0). However, only the origin P e 1 can be stable when K 12 , K 42 change. approach At the equilibrium P e 1 , for simplicity K 12 = K 42 , when K 12 changes, the real and imaginary parts of the eigenvalues are in Figure 5.2. When K 12 < 0, the system has four eigenvalues with positive real parts, and the system becomes unstable. When K 12 > 0, the system has all eigenvalues with negative real parts, and the system is asymptotically stable. When K 12 = 0, the system has two pairs of pure imaginary eigenvalues ±16i and ±32i, and all other eigenvalues have negative real parts, which is a four dimensional center manifold. The stability cannot be determined by the linear part of the system. It depends on the nonlinearity of the system.

Center manifold : Hopf point

The aim of this part is to get the reduced system which can determine the stability and possible local bifurcations of the system at one bifurcation point [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[END_REF]. A system can be written as :

ẋ = A(b)x + F (x), x ∈ R n where b is a free parameter, b ∈ R. At its origin x = [0, ..., 0], J(b) is the Jordan form of the matrix A(b) and Q is a matrix which enables Q(b)J(b)Q -1 (b) = A(b)
. Therefore, we have :

ẋ = Q(b)J(b)Q -1 (b)x + F (x) ⇒ Q -1 (b) ẋ = J(b)Q -1 (b)x + Q -1 (b)F (x) we define y = Q -1 (b)x, then ẏ = J(b)y + Q -1 (b)F (Q(b)y) = J(b)y + F (y) (5.8)
we can separate the Jordan matrix J as matrices B and C whose eigenvalues have zero real parts and negative real parts respectively. Therefore, we can rewrite the system (5.8) at the origin with x = [0, ..., 0]. ẏ0 = By 0 + f (y 0 , y -), ẏ-= Cy 0 + g(y 0 , y -).

Since the center manifold is tangent to E c (the y -= 0 space), we define

y -= h(y 0 , b), h(0, 0) = Dh(0, 0) = 0, ḃ = 0.
(5.9)

We can calculate the function h(y 0 , b) by using

ẏ-= Dh(y 0 , b) ẏ0 = Dh(y 0 , b)[By 0 + f (y 0 , h(y 0 , b))] = Cy 0 + g(y 0 , h(y 0 , b))
Therefore, we can get the local evolution equations of y 0 which can determine the stability of the original system. In quadrotor center manifold analysis, the control laws are defined as :

v 1 = -256z 5 -bz 6 -z 3 5 , v 2 = -100z 3 -308z 4 -256z 7 -32z 8 , v 4 = -10z 11 -24z 12 , v 3 = 100z 1 + 308z 2 -256z 9 -32z 10 .
The bifurcation of the system is like in previous subsection. When b < 0, the system has two eigenvalues with positive real parts. When b > 0, the system has all eigenvalues with negative real parts. When b = 0, the system has two pure imaginary eigenvalues ±16i, and all other eigenvalues have negative real parts.

The stability depends on the nonlinear parts of the system. We can use the center manifold theory to simplify the system, and further simplify the study of the bifurcation of the system. In this control system, y 0 = [y 1 , y 2 ] T = [z 5 , z 6 ] T and y -= [y 3 , y 4 , y 5 , y 6 , y 7 , y 8 , y 9 , y 10 , y 11 ,

y 12 ] T = [z 1 , z 2 , z 3 , z 4 , z 7 , z 8 , z 9 , z 10 , z 11 , z 12 ] T .
We seek a quadratic center manifold (a are parameters to be defined later) :

y i = a i200 y 2 1 + a i020 y 2 2 + a i002 b 2 + a i110 y 1 y 2 + a i101 y 1 b + a i011 y 2 b, i = 3..12
Using the method mentioned before, we get h(y 0 , b) = [-0.62b 2 , -0.62b 2 , -0.76b 2 , -0.76b 2 , 0, 0, 0, 0, -0.42b 2 , -23.58b 2 ] in equation (5.9).

Therefore, the reduced system on the center manifold can be written : 

ẏ1 = 16y 2 -0.41b 4 -0.011b 8 -(b + 0.057b 4 )y 1 + 0.00024y 3 2 ẏ2 = -16y 1 + 0.

Quadrotor control

Here we propose a control method based on the normal form and Lyapunov theory. In equation (5.7), the Jacobian matrix of the system can be easily found. If the system is time invariant, the indirect method of Lyapunov says that if the eigenvalues of Jacobian matrix of the system at the origin are in the open left half complex plane, then the origin is asymptotically stable. Therefore, we can define the approach state feedback as follows to move all the eigenvalues of the system to the open left half plane. x r , y r , z r , ψ r are the references.

v 1 = -256(z 5 -z r ) -32z 6 , v 2 = -1700(z 3 -y r ) -1000z 4 -256z 7 -32z 8 v 4 = -256(z 11 -ψ r ) -32z 12 , v 3 = 1700(z 1 -x r ) + 1000z 2 -256z 9 -32z 10
The simulation task is to let quadrotor follow a square path with the length of 2m while hovering at the altitude of 10m, which is given in Figure 5.4. The totally sample time is 20s. For comparison, the simulations using PID control are also given. 

Simulation without wind disturbance

The simulation results are given in Figure 5.5. The response time using the proposed method is less than using PID control.

Simulation with wind disturbance

During the trajectory, there may have wind disturbance with velocity 1m/s as in Figure 5.4, which occurs in all x, y and z axis. The simulation results are given in Figure 5.6. Both methods can keep the stability during the wind disturbance. However, using the proposed method, there are less tracking errors.

Conclusion

In this paper, the normal form of quadrotor is deduced. A Maple package 'Qua-litativeODE'(Available upon request) has been written for calculating the normal form of any degree of the system. From equation (5.7), we can see that the highly coupled parts in quadrotor system are eliminated. This makes the analysis of the dynamical system easier. Under certain control laws, the system can be further deduced using center manifold theorem. A two dimensional system is deduced which can determine the stability and possible local bifurcations of the control system at the origin. Based on the normal form and indirect method of Lyapunov, we proposed a state feedback control method with computational simplicity as well as practical implementation facility. This method achieved good results. In the simulations, the system can remain stable with small tracking errors even if there is wind disturbance. Also, this method has faster response time than PID control. approach 

Deuxième partie

Qualitative analysis of functional Differentia algebraic equations and their applications

Analyse qualitative des équations algébro-differentielles fonctionnelles et leurs applications "... If the proof starts from axioms, distinguishes several cases, and takes thirteen lines in the text book ... it may give the youngsters the impression that mathematics consists in proving the most obvious things in the least obvious way." George Pólya, Mathematical Discovery : on Understanding, Learning, and Teaching Problem Solving, 1981.

Chapitre 6

Inverted Pendulum Stabilization : Characterization of Codimension-Three Triple Zero Bifurcation Via Multiple Delayed Proportional Gains

This work reproduces the results from [START_REF] Boussaada | Inverted pendulum stabilization via a pyragas-type controller : Revisiting the triple zero singularity[END_REF] and [START_REF] Boussaada | Inverted pendulum stabilization : Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains[END_REF], in which we design a multidelayed-proportional controllers allowing to stabilize the inverted pendulum by avoiding a relatively high codimension of the zero spectral value. The center manifold theorem for functional differential equations is exploited. The normal form of the projected dynamical equations in the center manifold is then analyzed. Namely, we consider the problem of stabilization of systems possessing a multiple zero eigenvalue at the origin. The controller that we propose, uses multiple delayed measurements instead of derivative terms. Doing so, we increase the performances of the closed loop in presence of system uncertainties and/or noisy measurements. The problem formulation and the analysis is presented through a classical engineering problem which is the stabilization of an inverted pendulum on a cart moving horizontally. On one hand, we perform a nonlinear analysis of the center dynamics described by a three dimensional system of ordinary differential equations with a codimension-three triple zero bifurcation. On the other hand, we present the complementary stability analysis of the corresponding linear time invariant system with two delays describing the behavior around the equilibrium. The aim of this analysis is to characterize the possible local bifurcations. Finally, the announced control scheme is numerically illustrated and discussed.

Introduction

In this paper, we employ the classical problem of stabilization of a balancing inverted pendulum on a horizontally moving cart (see for instance [10,[START_REF] Eker | A nonlinear observer for the inverted pendulum[END_REF][START_REF] Landry | Dynamics of an inverted pendulum with delayed feedback control[END_REF][START_REF] Muskinja | Swinging up and stabilisation of a real inverted pendulum[END_REF][START_REF] Shiriaev | On global properties of passivity-based control of an inverted pendulum[END_REF][START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF]) to illustrate the control design and performances of delayed proportional controllers. This problem is often used to discuss new ideas in control of nonlinear dynamical systems. This is certainly due to the richness of its dynamics despite the relative simple structure of the physical system. Among possible applications, we emphasize the modeling of the human balance control [START_REF] Milton | The time-delayed inverted pendulum : Implications for human balance control[END_REF].

It is well known that the pendulum has two equilibria, one is stable and it corresponds to the pendulum pointing downwards while the other one is unstable and corresponds to the upward position of the pendulum (inverted pendulum). Therefore, the pendulum can be maintained in the upward position only in presence of an appropriate control input. F.M. Atay pointed out (see [10]) that a simple position feedback is not sufficient to obtain satisfactory closed-loop performances. In order to solve the problem one needs additional knowledge such as the rate of change of the position. Thus, a classical controller will contain a derivative feedback term. In [10] the author proposed a proportional minus delay controller (PMD) to obtain asymptotic stability of undamped second-order systems modeling an inverted pendulum. Doing so, the effect of the derivative term is obtained by using a delayed feedback. A proportional controller that locally maintain the pendulum in the upright position was also designed in [START_REF] Landry | Dynamics of an inverted pendulum with delayed feedback control[END_REF]. In this work it is shown that, when the proportional controller is delayed and the time-delay is not too large, the controller still locally stabilizes the system. Among other results, the authors show the loss of stability when the delay exceeds a critical value, a supercritical Andronov-Hopf Bifurcation [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF] occurs generating stable limit cycles.

To the best of the authors' knowledge, PMD controllers were first introduced by I.H. Suh & Z. Bien in [START_REF] Suh | Proportional minus delay controller[END_REF] where it is shown that the conventional P-controller equipped with an appropriate time-delay performs an averaged derivative action and thus can replace the PD-controller. It was emphasized that this strategy provides quick responses to input changes but also the insensitiveness to high-frequency noise.

More recently ( [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF]), J. Sieber and & B. Krauskopf designed a delayed Proportional Derivative (PD) controller that stabilizes the inverted pendulum on a horizontally moving cart. Moreover, they complement the nonlinear analysis with the local stability analysis of the linearized system around equilibrium. The later characterizes all the possible local bifurcations and is based on the center manifold theory and normal forms, which are known to be powerful tools for the local qualitative study of the dynamics. The study emphasized the existence of a codimension-three triple zero bifurcation. It is also shown that the stabilization of the inverted pendulum in its upright position cannot be achieved by a delayed PD controller when the delay exceeds some critical value τ c . In [START_REF] Sieber | Extending the permissible control loop latency for the controlled inverted pendulum[END_REF], the authors investigate some modifications of the delayed PD scheme that allows extending the range of the admissible delay by taking into account the angular acceleration. An alternative possibility is to introduce an artificial delay in the angular position feedback. It is worth noting that, replacing the derivative with its numerical approximation will not allow to directly apply the results in [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF]. Indeed, the behavior of a system (even a linear one) may be different from the behavior of its approximation. In [START_REF] Morărescu | Synchronization of coupled nonlinear oscillators with gamma-distributed delays[END_REF], it has been shown that using a polynomial function (1-s τ n ) n of arbitrary degree n to approximate an exponential e -sτ allows finding stabilizing controller gains for the approximated system even when they do not necessarily exist for the original one. Furthermore, introducing a deliberately delay was suggested in [START_REF] Seuret | Static output feedback sliding mode control design via an artificial stabilizing delay[END_REF] to solve the static output feedback sliding mode control problem for a broader class of linear uncertain systems. In-deed, it is shown that the reduced order sliding mode dynamics are stabilized by the introduced artificial delay.

The use of PD controller needs the knowledge of the velocity history but in some circumstances we are only able to have approximate measurements due to technological constraints. In absence of measurements of the derivative, a classical idea is to use an observer to reconstruct the state, but this might degrade the performance to some extent [10] and it is, in general, computationally involved for delay systems. In fact, when the position measurements are accessible by sensors, one can avoid such degradation by restricting the design to delayed proportional gains. However, it is important to mention that in some circumstances, which can be justified by some technical or technological constraints, it may be more conceivable to use sensors for the velocity and the acceleration rather than a position sensor. The starting idea of our work is a result proposed by W. Michiels & S-I. Niculescu in [START_REF] Niculescu | Stabilizing a chain of integrators using multiple delays[END_REF]. As proven there, a chain of n integrators can be stabilized using n distinct delay blocks, where a delay block is described by two parameters : "gain" and "delay". The interest of considering control laws of the form m k=1 γ k y(tτ k ) lies in the simplicity of the controller as well as in its easy practical implementation. The performances of delayed controllers to overcome the challenge of stabilizing the inverted pendulum are emphasized in the following recent works [10,[START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF][START_REF] Landry | Dynamics of an inverted pendulum with delayed feedback control[END_REF].

The main contribution of the paper is the analysis of a proportional controller with artificial delays that is able to stabilize the inverted pendulum without the use of derivative measurements. This type of controllers will be called multi-delayedproportional controllers (MDP) in the sequel. Our analysis agrees with the claim of F.M. Atay [10] but extends it by proving that the knowledge of the delayed derivative gain considered in the delayed PD controller [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF] can be replaced by using two delayed position values. We firstly use MDP controllers to reach the configuration of multiple-zero eigenvalue described in [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF] and secondly, we identify the appropriate parameter values that stabilize the inverted pendulum avoiding the singularity. It is worth mentioning that, if the presence of the root at the origin is independent of the delay values, its multiplicity depends on the existing relations between the delays and the other parameters of the system. Moreover, such a root at the origin admits a bounded multiplicity [START_REF] Polya | I : Series, Integral Calculus, Theory of Functions[END_REF].

We show that, on the center manifold, the considered MDP controller achieves the same trajectories as the delayed PD considered in [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF]. Moreover, we point out that using the proposed MDP we are able to obtain the critical parameter values associated with a triple zero singularity for the delayed PD (see Remark 3). In some sense, this can be seen as a discretization of the feedback state derivative. By the way, such a constructive approach has been adopted in a different context for the controller design developed in [START_REF] Niculescu | Stabilizing a chain of integrators using multiple delays[END_REF][START_REF] Kharitonov | Static output feedback stabilization : necessary conditions for multiple delay controllers[END_REF]. The stability analysis of the delayed linearized system employs the geometrical interpretation of the corresponding characteristic equation proposed in [START_REF] Morărescu | Stability crossing curves of shifted gamma-distributed delay systems[END_REF][START_REF] Gu | On stability of crossing curves for general systems with two delays[END_REF][START_REF] Morărescu | On the geometry of stability regions of smith predictors subject to delay uncertainty[END_REF]]. An alternative technique for studying the stability of this class of systems is proposed in [START_REF] Sipahi | Complete robustness of third-order lti multiple timedelay systems[END_REF]. For more details on the existing techniques, the reader is referred to [START_REF] Insperger | Semi-Discretization for Time-Delay Systems : Stability and Engineering Applications[END_REF]. We point out that we are providing stability regions in delay parameter space. Thus, rounding the values due to numerical implementation does not generate troubles as far as the delays are far enough of the crossing curves. This issue is known in the literature as fragility of the controller and it mainly appears when the design is made for a continuous system but the implementation is done in a digital fashion. A non-fragile controller allows rounding numerical values without loosing stability properties. A methodology to design non-fragile PI, PD or PID controllers has been presented in previous works of the authors (see for instance [START_REF] Mendez-Barrios | On the fragility of pi controllers for time-delay siso systems[END_REF]). The main idea is to chose the controller parameters that maximize the distance to the closest tangent to the crossing stability manifold (i.e. the manifold that separates to regions with different number of unstable roots).

The remaining part of our paper is organized as follows. First, the model of the inverted pendulum on a cart is introduced as well as some mathematical notions used in the analysis. Next, a double delay block control strategy is presented and analyzed. The analysis of the proposed controller includes the linear stability analysis pointing out the Andronov-Hopf bifurcation as well as the multiple-zero singularity, which suggests a central dynamics analysis. Conclusions, comparisons and future work end the paper.

Settings and useful notions

Friction free model of an Inverted Pendulum on a Cart

In the sequel we consider the friction free model presented in [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF] by adopting the same notations. Denote the mass of the cart M , the mass of the pendulum m and let the relative mass be ε = m/(m + M ).

In the dimensionless form, if frictions are neglected, the dynamics of the inverted pendulum on a cart in figure 10.2 is governed by the following ODE, see also [START_REF] Sieber | Extending the permissible control loop latency for the controlled inverted pendulum[END_REF] :

1 - 3ε 4 cos 2 (θ) θ + 3ε 8 θ2 sin(2θ) -sin(θ) + D cos(θ) = 0, (6.1) 
where D represents the horizontal driving force exerted by the control law.

In the next section, the horizontal control force will be referred to as position feedback. This was suggested in [START_REF] Niculescu | Stabilizing a chain of integrators using multiple delays[END_REF][START_REF] Kharitonov | Static output feedback stabilization : necessary conditions for multiple delay controllers[END_REF] in the context of stabilizing a finite dimensional system consisting of a chain of 2-integrators : D = 2 k=1 a k θ(tτ k ). In the sequel, we explicitly design the controller that avoids the triple zero singularity.

Prerequisites : Space decomposition for time-delay systems

Consider the general discrete delayed autonomous first-order nonlinear system where its linear and nonlinear quantities are separated as follows : where A i are n × n real valued matrices, the delays τ k are ordered such that τ i < τ j when i < j, τ n = r and τ i ≥ 0.

d dt x(t) = n k=0 A k x(t -τ k ) + F(x(t), . . . , x(t -τ n )), (6.2) 
The latter system can be written as :

d dt x = Lx t + F(x t ), (6.3) 
where

x t ∈ C r,n = C([-r, 0], R n ), x t (θ) = x(t + θ) denotes the system state, L is a bounded linear operator such that Lφ = n k=0 A k φ(-τ k )
and F is assumed to be a sufficiently smooth function mapping C r,n into R n with F(0) = DF(0) = 0 where D is the Fréchet derivative. The linear operator L can be written in the integral form as Lφ = 0 -r dη(θ)φ(θ) where η is a real valued n × n matrix. The linearization of (13.56) is given by

d dt x = Lx t , (6.4) 
the solution of which is given by the operator T (t) defined by

T (t)(φ) = x t (. , φ) such that x t (. , φ)(θ) = x(t + θ, φ) for θ ∈ [-r, 0]
. This is a strongly continuous semigroup, the infinitesimal generator of which is A = dφ dθ with the domain

Dom(A) = φ ∈ C r,n : dφ dθ ∈ C r,n , φ(0) = dφ(0) dθ = Lφ .
It is also known that the spectrum of A is σ(A) = σ p (A) (point spectrum) and consists of complex values λ ∈ C satisfying the characteristic equation p(λ) = 0, (see [START_REF] Stepan | Retarded Dynamical Systems : Stability and Characteristic Functions[END_REF][START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF][START_REF] Insperger | Semi-Discretization for Time-Delay Systems : Stability and Engineering Applications[END_REF] for further insights on the stability of delay-differential equations).

In the spirit of [START_REF] Diekmann | of Applied Mathematical Sciences, Functional, complex, and nonlinear analysis[END_REF], let us denote by M λ the eigenspace associated with λ ∈ σ(A). We define C * r,n = C([-r, 0], R n * ) where R n * is the space of n-dimensional row vectors and consider the bilinear form on C * r,n × C r,n as proposed in [START_REF] Hale | Introduction to functional differential equations[END_REF] :

(ψ, φ) = ψ(0) φ(0) + 0 -r θ 0 ψ(τ -θ)dη(θ)φ(τ )dτ.
Let A T be the transposed operator of A, i.e., (ψ, Aφ) = (A T ψ, φ). The following result enables the decomposition of the space C r,n .

Theorem 30 (Banach space decomposition, [START_REF] Hale | Introduction to functional differential equations[END_REF]). Let Λ be a nonempty finite set of eigenvalues of A, let P = span{M λ (A), λ ∈ Λ} and P T = span{M λ (A T ), λ ∈ Λ}.

Then P is invariant under T (t), t ≥ 0 and there exists a space Q, also invariant under T (t), such that C r,n = P Q. Furthermore, if Φ = (φ 1 , . . . , φ m ) is a basis of P , and

Ψ = col(ψ 1 , . . . , ψ m ) is a basis of P T in C * r,n such that (Ψ, Φ) = Id, then Q = {φ ∈ C r,n | (Ψ, φ) = 0} and P = {φ ∈ C r,n | ∃b ∈ R m : φ = Φb}. (6.5) Also, T (t)Φ = Φ e Bt , where B is an m × m matrix such that σ(B) = Λ.
Consider the extension of the space C r,n that contains continuous functions on [-r, 0) with a possible jump discontinuity at 0, we denote this Banach space BC (identified to C n,r × R n ). A given function ξ ∈ BC can be written as ξ = ϕ + X 0 α, where ϕ ∈ C r,n , α ∈ R n and X 0 is defined by X 0 (θ) = 0 for -r ≤ θ < 0 and X 0 (0) = Id n×n . Then the Hale-Verduyn Lunel bilinear form [START_REF] Hale | Introduction to functional differential equations[END_REF] can be extended to the space C * r,n × BC by (ψ, X 0 ) = ψ(0). Under the above consideration one can write equation (13.56) as an abstract ODE :

ẋ = Ãx + X 0 F(x). (6.6) 
where

Ãφ = φ + X 0 [Lφ -φ(0)], (6.7) 
with domain

D( Ã) = C 1 n,r ([-r, 0], R n ).
Due to the projection Π : BC → P defined by Π(ϕ+X 0 α) = Φ[(Ψ, ϕ)+Ψ(0)α] and the state decomposition such that x = Φy+z where y ∈ R m and z ∈ Q ∩ C 1 r,n Q 1 . Then, the equation (13.56) can be split into two equations. Our interest lies essentially in the evolution equation for the finite dimensional part of the space, i.e., the first equation of the following system :

ẏ = By + Ψ(0)F(Φy + z), ż = ÃQ 1 z + (I -Π)F(Φy + z). (6.8) 
For more details and insights, see for instance, [START_REF] Hale | Introduction to functional differential equations[END_REF][START_REF] Faria | Normal forms for retarded functional-differential equations with parameters and applications to Hopf bifurcation[END_REF]. Assume now that F depends on some parameter p, and denote the semiflow generated by (6.8) as S(t, y, z, p), then S is equivalent to the semiflow generated by (13.56) :

Theorem 31 (Existence and Properties of the Center Manifold). Let k > 0 and U y × U z × U p be a small neighborhood of (0, 0,

p 0 ) ∈ R n × Q × R m . There exists a graph ω : U y × U p → Q of smoothness C k such that the following statements hold. 1. (Invariance) The manifold {(y, z) ∈ U y × Q : z = ω(y, p)} is invariant with respect to S relative to U y × U z .
2. (Exponential attraction) Let (y, z) be such that S(y, z, p) ∈ U y × U z ∀t ≥ 0.

Then there exists ỹ and t ≥ 0 such that S(t + t, y, z, p) -S(t, ỹ, ω(ỹ), p) ≤ Ke -tα for some positive real number α and for all t > 0.

Multiplicity of the root at the origin : Polya-Szegö Bound

Consider the quasipolynomial function ∆ : C × R N + → C of the form :

∆(λ, τ ) = P 0 (λ) + N k=1 P k (λ) e -τ k λ , (6.9) 
where τ k , k = 1, . . . , N are constant delays such that τ 1 < τ 2 . . . < τ N and τ = (τ 1 , . . . , τ N ) is the delays vector. Without any loss of generality, assume that the polynomial P 0 is a monic of degree n in λ and the polynomials P k are such that

deg(P k ) ≤ n -1, ∀1 ≤ k ≤ N .
One can prove that the quasipolynomial function (10.4) admits an infinite number of zeros, see for instance [START_REF] Ahlfors | Complex Analysis[END_REF][START_REF] Bellman | Differential-difference equations[END_REF]. However, the multiplicity of any root is bounded, in particular the root at the origin. The following result, due to Polya-Szegö, gives to such a bound :

Proposition 1 (Pólya-Szegö, [START_REF] Polya | I : Series, Integral Calculus, Theory of Functions[END_REF], pp.144). Let τ 1 , . . . , τ N denote real numbers such that τ 1 < τ 2 < . . . < τ N and d 1 , . . . , d N positive integers such that

d 1 + d 2 + . . . + d N = D.
Let f i,j (s) stand for the function f i,j (s) = s i-1 e τ j s , for 1 ≤ i ≤ d j and 1 ≤ j ≤ N . Let be the number of zeros of the function

f (s) = 1≤j≤N,1≤i≤d j c i,j f i,j (s), that are contained in the horizontal strip α ≤ I(z) ≤ β. Assuming that 1≤k≤d 1 |c k,1 | > 0 and 1≤k≤d N |c k,N | > 0, then (τ N -τ 1 ) (β -α) 2 π -D + 1 ≤ ≤ (τ N -τ 1 ) (β -α) 2 π + D -1.
The proof of the mentioned Pólya-Szegö result is mainly based on Rouché's Theorem [START_REF] Ahlfors | Complex Analysis[END_REF]. It can be generically exploited to establish a bound for the multiplicity of the zero spectral value that we denote by P S . Indeed, setting α = β = 0 we get P S ≤ D -1. This gives a sharp bound when all the system parameters are left free. Nevertheless, it is obvious that the Pólya-Szegö bound does not change if certain coefficients c i,j vanish without affecting the degree of the quasipolynomial function.

The above result from [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with birkhoff incidence matrices[END_REF] sets the necessary and sufficient conditions guaranteeing the Pólya-Szegö multiplicity for the zero singularity.

Proposition 2 ([38]

). The multiplicity of the zero singularity reaches the Pólya-Szegö a bound if and only if the parameters of (10.4) satisfy simultaneously :

a 0,k = - N i=1   a i,k + k-1 j=0 (-1) j+1 a i,j τ i k-j (k -j)!   , 0 ≤ k ≤ # -1. (6.10)
where a i,l stands for the coefficient of the monomial λ l for the polynomial P i for

1 ≤ i ≤ N .
Furthermore, it is shown in [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with birkhoff incidence matrices[END_REF] that, under the nondegeneracy of an appropriate functional Birkhoff matrix, the multiplicity of the zero root for the quasipolynomial function (10.4) cannot be larger than n plus the number of nonzero coefficients of the polynomial family (P k ) 1≤k≤N , which is sharper than P S .

Remark 2. Increasing the multiplicity of the zero singularity induces richer (more complex) dynamics in the neighborhood of the steady state. We show in the sequel that the proposed methodology is able to stabilize the solutions around the unstable equilibrium point even when the multiplicity of the zero singularity reaches its maximum value.

Double Delay Block

Let the horizontal driving force exerted by the control law be D = a θ(tτ 1 ) + b θ(tτ 2 ). Thus, equation (10.36) can be written as a Delay-Differential Equation (DDE) of the form :

ẋ = f (x(t), x(t -τ 1 ), x(t -τ 2 ), λ), (6.11) 
where

x = (x 1 , x 2 ) T = θ(t), θ (t) 
T and λ = (a, b, τ 1 , τ 2 ). The right hand side 2 is given by :

f : R 2 × R 2 × R 2 × R 4 → R
f 1 (x, y, z, λ) = x 2 f 2 (x, y, z, λ) = -3 ε 8 sin(2 x 1 )x 2 2 + sin(x 1 ) -cos(x 1 ) (a y 1 + b z 1 ) 1 -3 ε 4 cos 2 (x 1 )
. (6.12)

where y = θ(tτ 1 ), θ(tτ 1 ) and z = θ(tτ 2 ), θ(tτ 2 ) . The phase space of (6.11)-(6.12) is the space of continuous functions over the delay interval

[-max(τ 1 , τ 2 ), 0] with values in R 2 . Obviously f (-x, -y, -z, λ) = -f (x, y, z, λ),
and thus, the origin represents always an equilibrium point.

Linear Stability Analysis

As emphasized in Remark 2, we consider the maximum multiplicity for the zero spectral value (the most complex configuration). Taking the relative mass ε = 3 4 guaranties such a maximum multiplicity. Note that, if ε ∈ (0, 1), and regardless of the multiplicity of the zero singularity, all the following steps apply albeit in a simpler fashion. One easily checks that the zero multiplicity is less than four (otherwise τ 1 and τ 2 have opposite signs). Indeed, the linearization of f with respect to its three arguments, x, y and z at the origin is given by :

∂ 1 f (0, 0, 0, λ) = 0 1 16 7 0 , ∂ 2 f (0, 0, 0, λ) = 0 0 -16 7 a 0 , ∂ 3 f (0, 0, 0, λ) = 0 0 -16 7 b 0 .
Then, the characteristic function reads :

∆(z) = z 2 + 16 7 (a e -z τ 1 + b e -z τ 2 -1).
Several approaches can be used for characterizing imaginary crossing roots of quasipolynomials as well as their crossing directions, see for instance [START_REF] Olgac | An exact method for the stability analysis of time delayed linear time-invariant (lti) systems[END_REF][START_REF] Sipahi | Complete robustness of third-order lti multiple timedelay systems[END_REF]. Here, we follow the idea proposed by [START_REF] Gu | On stability of crossing curves for general systems with two delays[END_REF][START_REF] Morărescu | Stability crossing curves of shifted gamma-distributed delay systems[END_REF]. We introduce the stability crossing curves T, which represents the set of (τ 1 , τ 2 ) such that ∆(z) has imaginary solutions. As the parameters (τ 1 , τ 2 ) cross the stability crossing curves, some characteristic roots cross the imaginary axis. Introduce also the crossing set Ω, which is defined as the collection of all ω > 0 such that there exists a parameter pair (τ 1 , τ 2 ) such that ∆(jω, τ 1 , τ 2 ) = 0. Using Proposition 3.1 in [START_REF] Gu | On stability of crossing curves for general systems with two delays[END_REF] the following stability characterization can be deduced : Proposition 3. For a + b < 1, the crossing set Ω is empty so the system is delay independently unstable. When a + b > 1, the crossing set Ω reduces to one interval (0, ω r ] and T is a series of open-ended curves T ± u,v where T - u,v and T + u,v+1 are connected at ω r .

We emphasize that -when a + b > 1, a > b the crossing set Ω contains only simple solution of ∆ -when a + b > 1, a < b one has frequencies ω ∈ Ω which are solution of multiplicity 2 for ∆. The function ∆ has a root 0 along the red solid red curve in figure 6. [START_REF] Ahlfors | Complex Analysis[END_REF] given by a + b = 1, where the origin undergoes a pitchfork bifurcation.

In a similar way, we can introduce the stability crossing curves A in the parameter space (a, b) and the corresponding crossing set Γ. Thus A is the set of (a, b) for which ∆(z) has imaginary solutions while Γ consist of those frequencies ω for which there exists a parameter pair (a, b) such that ∆(jω, a, b) = 0. The stability analysis in the (a, b) parameter space is summarized as follows :

Proposition 4. The crossing set Γ consists of all frequencies satisfying :

0 < ω < π τ 1 -τ 2 ,
and for any given τ 1 and τ 2 the crossing curves are defined by :

         a = - sin(ωτ 2 ) sin(ωτ 1 ) b, b = 1 + 7 16 ω 2 cos(ωτ 2 ) -sin(ωτ 2 )
sin(ωτ 1 ) cos(ωτ 1 )

, ∀ω ∈ Γ. (6.13) It is always possible to normalize one of the delays by a simple scaling of time. Without any lack of generality, assume that τ 1 = 1. As can be seen in figure 6.3, when ω approaches 0 the crossing curve approaches the line a + b = 1.

The quasipolynomial function ∆ has a purely imaginary root i ω if the gains a and b satisfy (6.13). Thus, equation (6.13) defines the curve of Hopf Bifurcation in [START_REF] Sieber | Extending the permissible control loop latency for the controlled inverted pendulum[END_REF] where the linear analysis and a comparative study is made (PMD vs Acceleration-dependent control). It is also shown that the "optimal" value of the control loop latency is reached when δ = 0. Remark 3. In [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF], the authors consider D = a θ(tτ ) + b θ(tτ ) and prove that the truncated cubic central dynamics reduces to :

* 1 = 1 2 ( √ δ 2 + 8 -6ε -δ) already identified in
u =   0 1 0 0 0 1 α β γ   u +   0 0 u 3 1   ,
where α, β and γ are small parameters, showing that the triple zero singularity can be avoided. To recover the analysis established in [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF], consider a horizontal driving force

D = aθ(t -τ 1 ) + b(θ(t -τ 1 ) -θ(t -τ 1 -h)) where b = b
h and, without loss of generality, assume that τ 1 ≤ τ 2 , that is h ≥ 0. Then lim h→0 D = aθ(tτ 1 ) + b θ(tτ 1 ). Thus, the configuration of a triple zero eigenvalue is ensured by the set

of conditions a = 1, b = τ 1 , h = --1+τ 1 2 τ 1 , τ 2 = τ 1 -1
. By imposing h to converge to zero, τ 1 tends to τ * 1 = 1 so that the gain b tends to b * = τ * 1 = 1 which are, as expected, the identified values in [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF]. In Figure 6.5 we represent the delay difference τ 2 -τ 1 .

Remark 4. It is worth noting that the delay normalization (setting τ 1 = 1) does not affect the existence of the triple zero eigenvalue. Indeed, when τ 1 is left free the set of conditions :

a = -7 8 τ 1 -7 , b = 8τ 1 2 8 τ 1 2 -7 , τ 2 = 7 8 τ 1
ensures this configuration. Now, to argue the above normalization, let us consider the simplest demonstrative example ; a scalar equation with two delays : ẋ = a 0 x(t)+a 1 x(t-τ 1 )+a 2 x(t-τ 2 ). We introduce the following time scaling t = ζτ 1 and consider a new variable v(ζ) = x(t). Thus, the dynamics of the new variable v is governed by

v (ζ) = dv(ζ) dζ = ẋ(t) dt dζ = τ 1 (a 0 x(t) + a 1 x(t -τ 1 ) + a 2 x(t -τ 2 )) = b 0 v(ζ) + b 1 v(ζ -1) + b 2 v(ζ -τ )
where b i = a i /τ 1 for i = 0, . . . , 2 and τ = τ 2 /τ 1 . Which justifies as expected the adopted normalization.

Normal Form of the Central Dynamics

Several approaches exist to establish the decomposition of the Banach space of continuous functions, see for instance [START_REF] Campbell | Calculating centre manifolds for delay differential equations using maple[END_REF][START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF]11]. In the sequel, we follow the elegant approach based on the computation of the spectral projection presented in [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF]. It is worth to mention that this spectral projection is mainly based on the bilinear form presented in the previous section justifying the universality of the spectral decomposition modulo the chosen base of the generalized eigenspace associated with pure imaginary spectral values.

The parameter point

λ 0 = (a 0 , b 0 , τ 1 * , τ 2 * ) = (-7, 8, 1, 7 8 
) characterizes a triple zero eigenvalue at the origin. As said above, it is always possible to re-scale the time in order to normalize one of the delays to 1 (τ 1 becomes 1 and τ 2 becomes τ 2 /τ 1 ) so the rescaled system (6.11)-(6.12) reads

     f 1 (x, λ) = x 2 , f 2 (x, λ) = -9 32 sin (2 x 1 ) x 2 2 + τ 1 2 sin (x 1 ) -τ 1 2 cos (x 1 ) (ay 1 + bz 1 ) 1 -9 16 (cos (x 1 )) 2 . (6.14) Let X be the Banach space R 2 × C([-1, 0], R 2 ). Consider D(H) := {(y, ỹ) ∈ R 2 × C 1 ([-1, 0], R 2 ) : ỹ(0) = y} ⊂ X,
and define the linear operator

H : D(H) ⊂ X → X, H y ỹ = ∂ 1 f (0, 0, 0, λ)ỹ(0) + ∂ 2 f (0, 0, 0, λ)ỹ(-1) + ∂ 3 f (0, 0, 0, λ)ỹ(-7 8 ) ∂ s ỹ , (6.15) 
where the spatial variable in

C 1 ([-1, 0], R 2 ) is denoted by s.
The operator H is a closed unbounded operator. It generates a strongly continuous semigroup

T (t) of bounded operators in Y = {(y, ỹ) ∈ R 2 × C([-1, 0], R 2 ) : ỹ(0) = y} ⊂ X. The semigroup T (.) is compact for t > 1.
Let g be the nonlinear part of f i.e.

g y ỹ , λ = g 0 (ỹ(0), ỹ(-1), ỹ(-7 8 ), λ) 0 , (6.16) 
where

g 0 (ỹ(0), ỹ(-1), ỹ(- 7 8 ), λ) = f (ỹ(0), ỹ(-1), ỹ(- 7 8 ), λ)- ∂ 1 f (0, 0, 0, λ)ỹ(0) + ∂ 2 f (0, 0, 0, λ)ỹ(-1) + ∂ 3 f (0, 0, 0, λ)ỹ(- 7 8 
) .

System (6.11)-(6.12) is equivalent to the autonomous evolution equation :

ẋ = Hx + g(x, λ). (6.17)
The decomposition of the Banach space reads X = P Q where P is the Hinvariant generalized eigenspace associated to the triple zero singularity and is isomorphic to R 3 , and Q is also H-invariant of infinite dimension. Next, we compute Φ a basis of P satisfying HΦ = ΦJ, where :

Φ(s) = [φ 1 , φ 2 , φ 3 ] =        1 0 1 0 1 0 1 s s 2 2 + 1 0 1 s       
, and

J =     0 1 0 0 0 1 0 0 0     .
We also compute the invariant spectral projection P : 

X → P satisfying Px = Res z=0 (z I -H) -1 . Thus, Px = l 1 (x)φ 1 + l 2 (x)φ 2 + l 3 (x)
)dt, which allows decomposing (6.17) to :

v = Jv + Ψ(0)g 0 ( Φ(0)v + w0 , Φ(-1)v + w(-1), Φ(- 7 8 )v + w(- 7 8 
)

) ẇ0 = ∂ 1 f w0 + ∂ 2 f w(-1) + ∂ 3 f w( 7 8 
)

+ (I -Φ(0)Ψ(0))g 0 ( Φ(0)v + w0 , Φ(-1)v + w(-1), Φ(- 7 8 )v + w(- 7 8 
))

ẇ = ∂ s w -ΦΨ(0)g 0 ( Φ(0)v + w0 , Φ(-1)v + w(-1), Φ(- 7 8 )v + w(- 7 8 
)),

where w0 = w(0) and : 

Ψ(0) =    
0 8 5     , Φ(s) = 1 s 1 + s 2 2 0 1 s .
By using the Center Manifold Theorem presented in the previous section and the following changes of coordinates :

a = -7 - 35 128 α r 6 , b = 8 + 5 16 γ r 2 , τ 1 = 1 - 7 768 β r 4 , (6.18 
)

v 1 = r 3 u 1 , v 2 = r 5 u 2 , v 3 = r 7 u 3 , w = r 3 q, (6.19)
where r is a sufficiently small parameter, we arrive to the expansion of the graph (the center manifold) in power of r which is of order 6, i.e., q(u, µ, r) = r 6 q 6 (u, µ, r), where µ = (α, β, γ) and the expression of the flow on the local center manifold is

u =   0 1 0 0 0 1 α β γ   u +   0 0 u 3 1   + r 2 R(u, µ, r), (6.20) 
where the remainder is a smooth function R :

R 3 × R 3 × R → R 3 .

Concluding remark

It is important to recall that, in a neighborhood of the origin, the stability of the solution of the normal form (6.20) in the center manifold proves the local stability of the solution of the initial infinite dimensional system (6.11). Moreover, one can easily establish values for α, β and γ so that the matrix associated with the linear part of the normal form (6.20) be Hurwitz (all eigenvalues with negative real part). Thus, choosing a sufficiently small value for the scale parameter r and using (6.18) allow us to establish the values of the gains and the delays guaranteeing the stability of the inverted pendulum.

It is important to note that the global bifurcation diagram is beyond the scope of this paper. Furthermore, it is clear from the literature that the bifurcation diagram for the triple zero singularity (in all generality) is very complicated not only from a theoretical point of view but also from a numerical point of view [START_REF] Dumortier | Nilpotent singularities in generic 4-parameter families of 3-dimensional vector fields[END_REF][START_REF] Dumortier | New aspects in the unfolding of the nilpotent singularity of codimension three[END_REF][START_REF] Freire | A note on the triple-zero linear degeneracy : Normal forms, dynamical and bifurcation behaviors of an unfolding[END_REF]. However, under the Z 2 symmetry as for the cubic truncation of (6.20), we refer the reader to [START_REF] Algaba | Some results on chua's equation near a triple-zero linear degeneracy[END_REF] where such a type of symmetry is identified for the Chua equations. The global analysis established in [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF] applies for the present configuration since the same cubic truncated normal form is considered.

Remark 5. We point out that a larger multiplicity for the zero singularity might occur when using a controller consisting in three delay blocks D = 3 k=1 a k θ(tτ k ), this is a natural consequence of Proposition 21 , see also [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with birkhoff incidence matrices[END_REF] for further details. Indeed, the zero singularity codimension bound is equal to 4 inducing richer dynamics. Such a configuration is guaranteed by the following values of coefficients :

                 a 1 = 7 8 8 τ 2 2 + 7 (8 τ 2 τ 1 2 -14 τ 1 -7 τ 2 ) (-τ 2 + τ 1 ) , a 2 = - 7 8 8 τ 1 2 + 7 (-7 τ 1 + 8 τ 1 τ 2 2 -14 τ 2 ) (-τ 2 + τ 1 ) , a 3 = 64 τ 1 2 τ 2 2 -112 τ 1 τ 2 + 49 (8 τ 1 τ 2 -7) 8 (8 τ 2 τ 1 2 -14 τ 1 -7 τ 2 ) (-7 τ 1 + 8 τ 1 τ 2 2 -14 τ 2 ) , τ 3 = 7 τ 2 + τ 1 8 τ 1 τ 2 -7
,

where τ 1 = τ 2 , τ 1 = 14 τ 2 -7 + 8 τ 2 2 , τ 2 = 14 τ 2 -7 + 8 τ 1 2 and 8 τ 1 τ 2 > 7.
(6.21)

Pyragas-Type controller

By Pyragas controller, we understand a controller of the form

u(t) := α(θ(t) -θ(t -τ )).
It is worth mentioning that such a controller proved interest in the stabilization of unstable periodic orbits, see for instance, [START_REF] Pyragas | Continuous control of chaos by self-controlling feedback[END_REF][START_REF] Pyragas | Control of chaos via an unstable delayed feedback controller[END_REF]. Furthermore, in Laplace domain, the corresponding characteristic function includes an additional root at the origin.

In this section we consider the control law

D(t) = a (θ(t) -θ(t -τ 1 )) + b (θ(t) -θ(t -τ 2 )) + c θ(t),
and consider the relative mass ε = 3/4. Equation (10.36) can be written as a DDE of the form :

ẋ = f (x(t), x(t -τ 1 ), x(t -τ 2 ), λ), (6.22) 
where x = (x 1 , x 2 ) = θ(t), θ(t) and λ = (a, b, τ 1 , τ 2 ). The right hand side

f : R 2 × R 2 × R 2 × R 4 → R 2 is given by :                f 1 (.λ) = x 2 , f 2 (., λ) = -9 32 sin (2 x 1 ) x 2 2 + sin (x 1 ) 1 -9 16 (cos (x 1 )) 2 - cos (x 1 ) (a (x 1 -y 1 ) + b (x 1 -z 1 ) + cx 1 ) 1 -9 16 (cos (x 1 )) 2 , (6.23) 
where y = (y 1 , y 2 ) = (θ(t-τ 1 ), θ(t-τ 1 )) and z = (z 1 , z 2 ) = (θ(t-τ 2 ), θ(t-τ 2 )) .

Linear Stability Analysis

It is always possible to normalize one of the delays by a simple scaling of time, let τ 1 = 1. The linearization of f with respect to its three arguments, x, y and z at the origin is given by

∂ 1 f (0, λ) = 0 1 16 (1-a-b-c) 7 0 , ∂ 2 f (0, λ) = 0 0 16 7 a 0 , ∂ 3 f (0, λ) = 0 0 16 7 b 0
, where f (0, λ) designate f (0, 0, 0, λ). Then, the characteristic function is given by

∆(λ) = λ 2 + 16 (a + b + c -1) 7 - 16 7 e -λ τ 1 a - 16 7 e -λ τ 2 b. (6.24)
The stability analysis follows from Proposition 3.1 in [START_REF] Gu | On stability of crossing curves for general systems with two delays[END_REF].

Remark 6. The crossing set Ω associated to the system described by the characteristic equation (6.24) consists of a finite union of intervals. Moreover, when c = 1, all the intervals are closed while for c = 1 all the intervals are closed excepting the first one which has the left end equals zero i.e. a value that does not belong to the crossing set. The stability crossing curves are either open ended or closed as explained in the classification proposed by [START_REF] Gu | On stability of crossing curves for general systems with two delays[END_REF] (see figure 6.6 for the case c = 1 which is relevant for this study). In the (a, b, c) parameter space instead of crossing curves we have stability crossing surfaces referred to as A. The corresponding crossing set is again dented by Γ. Thus, A is the set of (a, b, c) such that ∆(z) has imaginary solutions while Γ consist of those frequencies ω such that there exists a parameter triple (a, b, c) such that ∆(jω, a, b, c) = 0. The stability analysis in (a, b, c) parameter space is summarized as follows : 

         a ∈ R b = - sin(ωτ 1 ) sin(ωτ 2 ) a c = 1 + 7 16 ω 2 -a -b + a cos(ωτ 1 ) + b cos(ωτ 2 )
.

It is easy to see that as ω approaches 0 the parameter c approaches 1 (for illustration see figure 6.7). We note that substituting a and b into the second derivative of ∆ and by setting w = 0 one gets the relation a τ 1 = -b τ 2 guarateeing a zero eigenvalue of algebraic multiplicity 2. Finally, a zero eigenvalue of algebraic multiplicity 3 is given by

a = 7 8 1 (τ 1 -τ 2 ) τ 1 , b = - 7 8 1 τ 2 (τ 1 -τ 2 ) , c = 1.
This shows that the configuration of a triple zero eigenvalue can not be achieved when one of the gains a or b vanishes, in other words, two Pyragas controllers are necessary to reach this multiplicity. Equation Note also, that when τ 1 τ 2 = 0 a zero eigenvalue of multiplicity 4 is not possible since the fourth derivative at zero gives 2 (τ 1 + τ 2 ).

Central Dynamics

We show that a triple zero eigenvalue occurs for arbitrary value of the delay τ 2 . Then let us restrict to the case of a fixed value for the delay τ 2 = 2, the parameter point λ 0 = (a 0 , b 0 , c 0 , τ 1 * , τ 2 * ) = (-7 8 , 7 16 , 1, 1, 2) characterize a triple zero eigenvalue at the origin. System (6.23)-(6.22) can be normalized by setting τ 1 = 1 leading to :

               f 1 (., λ) = x 2 , f 2 (., λ) = -9 32 sin (2 x 1 ) x 2 2 + τ 1 2 sin (x 1 ) 1 -9 16 (cos (x 1 )) 2 - τ 1 2 cos (x 1 ) (a (x 1 -y 1 ) + b (x 1 -y 1 ) + c x 1 ) 1 -9 16 (cos (x 1 )) 2 . (6.26) Let X be the Banach space R 2 × C([-1, 0], R 2 ). Consider D(H) := {(y, ỹ) ∈ R 2 × C 1 ([-1, 0], R 2 ) : ỹ(0) = y} ⊂ X,
and define the linear operator H y ỹ

= ∂ 1 f (0, λ)ỹ(0) + ∂ 2 f (0, λ)ỹ(-1) + ∂ 3 f (0, λ)ỹ(-2) ∂ s ỹ ,
where the spatial variable in

C 1 ([-2, 0], R 2
) is denoted by s. Let g be the nonlinear part of f i.e.

g y ỹ , λ = g 0 (ỹ(0), ỹ(-1), ỹ(-2), λ) 0 , (6.27) 
where :

g 0 (ỹ(0), ỹ(-1), ỹ(-2), λ) = f (ỹ(0), ỹ(-1), ỹ(-2), λ)- ∂ 1 f (0, λ)ỹ(0) + ∂ 2 f (0, λ)ỹ(-1) + ∂ 3 f (0, λ)ỹ(-2) .
System (6.22)-(6.23) is equivalent to the autonomous evolution equation :

ẋ = Hx + g(x, λ). (6.28)
The decomposition of the Banach space X = P Q such that P is the H-invariant generalized eigenspace associated to triple zero sigularity which is isomorphic to R 3 and Q also H-invariant of infinite dimension. Next, we compute Φ a basis of P satisfying HΦ = ΦJ where

Φ(s) = [φ 1 , φ 2 , φ 3 ] =        1 0 1 0 1 0 1 s s 2 2 + 1 0 1 s        , and J =     0 1 0 0 0 1 0 0 0     .
We compute the invariant spectral projection P : X → P such that Px = Res z=0 (z I-6.4. Pyragas-Type controller 113 H) -1 . In other words, Px = l 1 (x)φ 1 + l 2 (x)φ 2 + l 3 (x)φ 3 where :

                                                                 l 1 (x) = 7 12 ỹ1 (0) - 131 144 ỹ2 (0) + 131 72 1 0 ỹ1 (t -1) dt - 131 144 
2 0 ỹ1 (t -2) dt + 7/6 1 0 tỹ 1 (t -1) dt - 7 12 2 0 tỹ 1 (t -2) dt - 1 0 t 2 ỹ1 (t -1) dt + 1/2 2 0 t 2 ỹ1 (t -2) dt, l 2 (x) =ỹ 1 (0) + 7 12 ỹ2 (0) -7/6 1 0 ỹ1 (t -1) dt + 7 12 2 0 ỹ1 (t -2) dt + 2 1 0 tỹ 1 (t -1) dt - 2 0 tỹ 1 (t -2) dt, l 3 (x) =ỹ 2 (0) -2 1 0 ỹ1 (t -1) dt + 2 0 ỹ1 (t -2) dt,
which allows decomposing equation (6.28) to :

           v = Jv + Ψ(0)g 0 ẇ0 = ∂ 1 f w0 + ∂ 2 f w(-1) + ∂ 3 f w(-2)
+ (I -Φ(0)Ψ(0))g 0 ẇ = ∂ s w -ΦΨ(0)g 0 , g 0 designate g 0 ( Φ(0)v + w0 , Φ(-1)v + w(-1), Φ(-2)v + w(-2)) and w0 = w(0) and

Ψ(0) =     7 12 -131 144 1 7 12 0 1     , Φ(s) = 1 s 1 + s 2 2 0 1 s .
By using the Center Manifold Theorem presented in the previous section and the following changes of coordinates :

a = - 7 8 + 7 8 α r 2 , b = 7 16 + 7 16 β r 2 , c = 1 + 7 16 σ r 2 , τ 1 = 1 + 1 2 δ r 4 , v 1 = r 3 u 1 , v 2 = r 5 u 2 , v 3 = r 7 u 3 , w = r 3 q,
we arrive to the expansion of the graph (the center manifold) in power of r which is of order 6 i.e. q(u, µ, r) = r 6 q 6 (u, µ, r) where µ = (α, β, γ) and the expression of the flow on the local center manifold :

u =   0 1 0 0 0 1 -α β γ   u +   0 0 u 3 1   + r 2 R(u, µ, r),
where α = δ (σ + β), β = 3δ, γ = ασ -3β and R is the remainder, a smooth function in u, µ and r.

Notes and comments

The use of multiple delay blocks was suggested in [START_REF] Niculescu | Stabilizing a chain of integrators using multiple delays[END_REF][START_REF] Kharitonov | Static output feedback stabilization : necessary conditions for multiple delay controllers[END_REF] for stabilizing chains of integrators. In this paper, we design such a multi-delayed-proportional controllers allowing to stabilize the inverted pendulum by avoiding a triple zero eigenvalue singularity. This singularity was already identified in [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF] through the use of a delayed PD controller. Such a singularity underlines an interesting observation : the multiplicity of the zero spectral value might exceed the dimension of the control-free system [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with birkhoff incidence matrices[END_REF]. We have shown that a multi-delayed-proportional controller allows to offset the derivative gain while keeping the same performance. These results agree with the claim of [10], that is, the effect of the delay is similar to derivative feedback in modifying the behavior of the system. However, we extend the claim to the nonlinear analysis by proving that the cubic truncated normal form of the center manifold dynamics is the same as the one obtained by using a delayed PD regulator. Thus, the global analysis for the codimension-3 triple zero bifurcation established in [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF] applies for the presented configuration.

Chapitre 7

Delay System Modeling of Rotary Drilling Vibrations

Vibrations in rotary drilling systems are oscillations occurring without being intentionally provoked. They often have detrimental effects on the system performance and are an important source of economic losses ; drill bit wear, pipes disconnection, borehole disruption and prolonged drilling time. By this chapter, we provide an improved modeling for the rotary drilling system. Among others, the proposed modeling takes into account the infinite dimensional settings of problem, as well as, the nonlinear interconnected dynamics. This chapter reproduces mainly the results of [START_REF] Saldivar Marquez | Analysis and Control of Oilwell Drilling Vibrations[END_REF][START_REF] Boussaada | Delay system modeling of rotary drilling vibrations[END_REF].

Introduction

A rotary drilling structure is mainly composed of a rig, a drillstring, and a bit. In oil well drilling operations, one of the most important problem to deal with consists in suppressing harmful vibrations yielding to stick-slip and bit-bouncing oscillations. Indeed, these undesired dynamics can cause various damages such as pipes and bit break. This spoilage has a leaden economical effect. The drilling control failure is mainly due to poor modeling and/or control. This chapter focuses on the modeling task upon which the analysis and control rely on. The modeling must entail two aspects. The first one, "physics dynamics", consists in describing the motions equations of the phenomena occurring during the drilling process. The second, "sensing and transmission model", amounts to write down equations allowing to obtain informations on the bit state, an essential information to overcome the above mentioned problems. Unfortunately, this information is degraded and/or delayed, due to technological constraints. In this chapter, we are concerned solely by physical modeling, yet, we are taking into account transmission in deriving an overall system's model. In the literature, one may find several types of models ranging from partial differential equations to ordinary differential equation ones with one or several degrees of freedom representing the dynamics of drilling systems. This contribution is organized as follows : In the first section, we report the most relevant works concerned by the physical modeling of the drilling vibrations. The second section is devoted to present the PDE model that we build to account for axial and torsional vibrations. The proposed model improves the known models since it addresses several critical issues that arise when the latter are considered. The chapter is completed by insights on Wireless sensing transmission models, as well as on actuating and related motor types. Finally, we derive a model covering most of the dynamics needed to be taken into account for control purposes. The chapter ends with some comments in wireless-transmission and real-time control methodology.

State of the Art

To the best of the authors' knowledge, torsional drilling vibrations have received much more attention compared to axial vibrations.

As underlined in [START_REF] Tucker | On the effective control of torsional vibrations in drilling systems[END_REF], the simplest approximation consists in neglecting the effects of the axial and lateral vibrations and in ignoring the finite propagation time of torsional waves along the drillstring. The model turns to be a simple forced torsional pendulum under nonlinear damping at the bit. Thus, the full spectrum of the torsional vibrations is replaced by a simple torsional spring that couples the torque Φ top from the top-drive with the torque Φ bit generated in the bit/rock interface. Such an approximation leads to the following coupled system model

Φtop + G top (Φ top -Φ bit ) = T motor (Φ top , Φ bit , Φtop , t), Φbit + G bit (Φ bit -Φ top ) = -F( Φbit ), (7.1) 
where F designates the bit-torque friction, G bit G top are the coupling physical constants, G top = G/ρ is some positive constant proportional to the torsional rigidity of the drillstring, G bit = GJ top /J bit and T motor is the top control torque. Here G denotes the shear modulus of drilling steel, ρ is the steel density, J top and J bit are respectively the inertia moment of a pipe section and the inertia moment of the drill collar section.

In [START_REF] Barreto Jijon | Adaptive observer design under low data rate transmission with applications to oil well drill-string[END_REF], the drillstring system is modeled as two coupled masses as shown in Figure 7.1. J top and J bit are two inertial masses locally damped by d top and d bit . 

ẋ(t) = Ax(t) + Bv(t) + Ψ(t)µ (7.
2)

y o = C o x = Φtop ,
where the state x = [x 1 x 2 x 3 ] T is defined as follows :

x 1 = Φ top -Φ bit , x 2 = Φtop , x 3 = Φbit (7.3) and A =    0 1 -1 -k Jtop - dtop+c Jtop c Jtop k J bit c J bit -c+d bit J bit    , B =    0 1 Jtop 0    H =   0 0 -1 J bit   , C o = 0 1 0 (7.4)
In [START_REF] Navarro-López | An alternative characterization of bit-sticking phenomena in a multi-degree-of-freedom controlled drillstring[END_REF], a piecewise-smooth model of three degrees of freedom, which exhibits friction-induced stick-slip oscillations, is considered in order to describe a simplified torsional lumped-parameter model of an oilwell drillstring. In [START_REF] Navarro-López | Practical approach to modelling and controlling stick-slip oscillations in oilwell drillstring[END_REF] a piecewise finite dimensional multi degree of freedom (multi DOF) model is considered for describing the torsional motion. In [START_REF] Navarro-López | Modelling and analysis of stick-slip behavior in a drillstring under dry friction[END_REF], a more general nonlinear differential equation-based model of a drillstring is analyzed. The aim of the proposed drillstring model is to avoid simulation problems due to the discontinuities originated by dry friction. Namely, the system of ordinary differential equations

ẋ(t) = Ax(t) + Bu(t) + T f (x(t)), (7.5) 
where x(t) is the state, A and B are constant matrices of appropriate dimension and T f is the torque on bit. In [START_REF] Navarro-López | Practical approach to modelling and controlling stick-slip oscillations in oilwell drillstring[END_REF], the authors reproduce stick-slip vibrations under different operating conditions. The model used for the torque on the bit is the main difference with respect to other models proposed in the literature. In [START_REF] Navarro-López | Sliding-mode control of a multi-dof oilwell drillstring with stick-slip oscillations[END_REF], a discontinuous lumped parameter torsional model of four degrees of freedom is considered. This model allows to describe drill pipes and drill collars behavior. The closed-loop system has two discontinuity surfaces where one of them gives rise to self-excited bit stick-slip oscillations and bit sticking phenomena.

Several PDE models were introduced in the literature for specific describing torsional vibrations. For instance, in [12], torsional vibrations are modeled by a wave equation and the stick-slip dynamics are numerically characterized. In [START_REF] Rouchon | Flatness and stick-slip stabilization[END_REF] a similar model is studied and a flatness-based approach that avoids such undesired dynamics is introduced. In [START_REF] Saldivar | Drilling vibration reduction via attractive ellipsoid method[END_REF] and [START_REF] Saldivar | Suppressing axial torsional coupled vibrations in oilwell drillstrings[END_REF], a wave equation model to reproduce torsional drilling dynamics is proposed, this model is coupled to a damped harmonic oscillator model described by an ODE to approximates the longitudinal dynamics of the drilling system. In [187] as well as in [START_REF] Germay | Modeling and analysis of self-excited drill bit vibrations[END_REF] a nonlinear analytical study is introduced for the case of simple nonlinearities that occurs for a simplified frictional weight and torque which are proportional to 1 + sign(dU /dt) where U denotes the axial vibration. This model corresponds to a simplified torsional lumped-parameter model of an oilwell drillstring. An alternative method to characterize the stick-slip motion and other bit-sticking problems in such a drilling system is proposed. The method is based on the study of the relationships between the different types of system equilibria and the existing sliding motion when the bit velocity is zero. It is shown that such a sliding motion plays a key role in the presence of non-desired bit oscillations and transitions. Furthermore, a proportional-integral-type controller is designed in order to drive the rotary velocities to a desired value. The ranges of the controller and the system parameters which lead to a closed-loop system without bit-sticking phenomena are identified.

Unfortunately, the models considered in [START_REF] Navarro-López | An alternative characterization of bit-sticking phenomena in a multi-degree-of-freedom controlled drillstring[END_REF][START_REF] Navarro-López | Sliding-mode control of a multi-dof oilwell drillstring with stick-slip oscillations[END_REF][START_REF] Navarro-López | Practical approach to modelling and controlling stick-slip oscillations in oilwell drillstring[END_REF][START_REF] Navarro-López | Modelling and analysis of stick-slip behavior in a drillstring under dry friction[END_REF] are linear ones, a quite crude approximation to the nonlinearities of the drillstring system leading to impoverish the possible dynamics. Moreover, the friction torque is always considered as a piecewise linear function of the state, which can be improved by the friction law that we are discussing in some of the following paragraphs.

Wave equation modelling

We consider a solid homogeneous metal flexible bar of length L and of section σ 0 . We are concerned by axial vibrations. Let q(x, t) be the displacement at time t of a point x of the bar with respect to its equilibrium position. Let T (x, t) be the tension applied on the bar at the point x at time t.

The fundamental elasticity law establishes a relation between the elongation dl := ll 0 and the infinitesimal tension dT := T -T 0 (where we consider an element of length l 0 under the mean tension T 0 ) by :

dT σ 0 = E 0 dl l 0 , (7.6) 
where E 0 designates the Young modulus, or elasticity factor under the tension T 0 . This law can be applied only for a sufficiently small relative elongation dl/l 0 . Since at time t, the segment (x, x + ∆x) is of static length l 0 and occupies the position (x + q(x, t), x + ∆x + q(x + ∆x, t)). The length of the segment passes from l 0 = ∆x 7.4. PDE models 119 to l = l 0 + dl = ∆x + ∂ x q∆x, we then have dl l 0 = ∂ x q, and the elasticity law implies :

T -T 0 = E 0 σ 0 ∂ x q. (7.7)
Let ρ 0 be the linear density at the equilibrium of the bar (that is the rate of mass 

x x+∆x q(x,t) q(x+∆x,t) u σ 0 ∂ x q(x,t) ∂ x q(x+∆x,t)
ρ 0 ∂ 2 t q = E 0 σ 0 ∂ 2 x q, (7.8) 
which is a wave equation with speed ν = E 0 σ 0 ρ 0 .

The axial vibrations of a solid bar constitute the essential of the sound propagation phenomena. The obtained model can be normalized, yielding to :

∂ 2 t q(x, t) = ∂ 2 x q(x, t) (7.9a) ∂ x q(0, t) = -u(t) ∂ x q(1, t) = 0 (7.9b) q(x, 0) = q 0 (x) ∂ t q(x, 0) = q t 0 (x) (7.9c) 
where x ∈ [0, 1]. The equation (7.9a) is the normalized wave equation (7.8) where (7.9b) is the boundary condition and (7.9c) is the initial equation. By Eq.(7.7) and (7.9b), one can see that we apply a control law at the point x = 0 and no tension is applied on the free end (x = 1).

PDE models

The lumped parameter model of the drillstring described in [12] consists of an angular pendulum of stiffness C ended with a lumped inertia J and a mass M . The latter two are free to move axially and represent the BHA as a unique rigid body. At the top of the drillstring, an upward force H and a constant angular velocity Ω are imposed. It is assumed that the weight-on-bit provided by the drillstring to the bit W 0 = W s -H is constant, which implies that the hook load H is adjusted to compensate for the varying submerged weight of the drillstring W s . More precisely, the authors describe the torsional motion of a driven drillstring by the following wave equation with boundary conditions :

     ∂ 2 t Φ(t, s) = c 2 ∂ 2 s Φ(t, s), ∂ t Φ(t, 0) = Ω, J ∂ 2 t Φ(t, L) = -G Γ ∂ s Φ(t, L) + F (∂ t Φ(t, L)), (7.10) 
c is a constant wave speed : c = G/ρ, L is the bit position with respect to the s axis, F (∂ t Φ(t, L)) the reaction frictional torque at the bit and GΓ ∂ s Φ(t, L) is the contact torque along the drillstring, (here ∂ s = ∂()/∂s is the derivation with respect to s). In this work, the authors reduce the study of the model to the study of the associated neutral differential equation for which they establish an analytical linearized stability criterion and give some numerical bifurcation elements. Certainly, the infinite dimensional aspect of the above model is adequate for describing the drilling process, but ignoring the axial vibrations and their influence on the global dynamics is disadvantageous when the aim is to establish a steadfast model.

A similar model but with different boundary conditions was already established in [START_REF] Rouchon | Flatness and stick-slip stabilization[END_REF] and exploits the flatness property of the wave equation for suppressing the stick-slip undesired dynamics. Indeed, the author proves that the use of the top velocity measures ensures the control and the stabilization of the torsional vibrations.

The contribution [START_REF] Fridman | Bounds on the response of a drilling pipe model[END_REF] is worth mentioning, where a wave equation with different boundary conditions is used to model torsional vibrations for which the authors establish ultimate bounds for a distributed drill pipe model. The result is obtained through an analysis based on a difference equation model and on a wave equation description achieved through the direct Lyapunov method.

Next, in [187] as well as in [START_REF] Germay | Nonlinear drilling dynamics analysis[END_REF], the authors considered a simplified drillstring model which describes not only the torsional vibration but also the axial one :

     I d dt 2 Φ(t) + C(Φ(t) -Ω t) = -T (t), M d dt 2 U (t) = W 0 -W (t). (7.11) 
The variables U and Φ denote the vertical and the angular positions of the drag bit, respectively. The reacting weight-on-bit W (t) originates from the process of rock destruction occurring at the bit-rock interface and T (t) is the reacting torque-onbit. The stick-slip dynamics is numerically studied in [187] and in [START_REF] Germay | Nonlinear drilling dynamics analysis[END_REF] a nonlinear analytical study is conducted for a simple frictional weight and torque proportional to 1 + sign(dU /dt). On the one hand, the model depicted in (7.10) neglects axial vibrations and on the other hand the lumped model (7.11) loses the infinite dimensional character of a PDE model.

In [START_REF] Tucker | On the effective control of torsional vibrations in drilling systems[END_REF], the authors consider a PDE modeling the torsional vibrations and propose a mechanism called torsional rectification and compare it with existing softtorque devices through a series of mathematical models. Both analytic and numerical simulations indicate that many of the volatilities suffered by existing soft-torque feedback approaches used to avoid slip-stick can be eliminated by their proposed alternative. Ignoring the axial vibrations and their influence on the torsional dynamics is disadvantageous since the study concerns exclusively the control of torsional vibrations.

A System-Oriented Approach : Interconnected dynamics

We aim at presenting an improved partial differential equations model with more realistic coupled nonlinear boundary conditions. This model takes into account the axial and torsional vibrations along the drilling system. Furthermore, an adjustable three dependent parameters analytic model is taken for the torque on bit. The proposed friction law is a nonlinear function allowing to continuously reproduce classical empirical friction profiles. Moreover, the established physical model can be transformed into a time-delay system. This fact is noteworthy since the measurement of the bit state is delayed, due to technological constraints. In our opinion, this is thus a natural way to design a model with unified structure.

The description of the considered model governing the mechanical axial/torsional vibrations follows.

Drillstring mechanics

Denoting by U the axial vibrations and by Φ the torsional vibrations, the improved model is :

     ∂ 2 t U (t, s) = c 2 ∂ 2 s U (t, s), E Γ ∂ s U (t, 0) = α 1 ∂ t U (t, 0) -α 2 H(t), M ∂ 2 t U (t, L) = -E Γ∂ s U (t, L) + F (∂ t U (t, L)), (7.12) 
and

     ∂ 2 t Φ(t, s) = c2 ∂ 2 s Φ(t, s), G Σ ∂ s Φ(t, 0) = β 1 ∂ t Φ(t, 0) -β 2 Ω(t), J ∂ 2 t Φ(t, L) = -G Σ ∂ s Φ(t, L) + F (∂ t U (t, L)). (7.13)
Here G is the shear modulus of the drillstring steel and E the Young's elasticity modulus. Then, the wave speeds can be expressed by c = E/ρ and c = G/ρ. The inertia J = M r 2 where r is taken as the averaged radius of the drill pipes, Γ is the averaged section of the drill pipes and Σ is the quadratic momentum. The nonlinear nature of the model is considered by taking appropriate models of the friction profiles F and F of the form : z → pk z/(k 2 z 2 + ζ), where the parameters 1 and 0 < k < 1) are positive integers responsible of the sharpness of the friction force function and p is acting on its amplitude, see [START_REF] Boussaada | Analysis of drilling vibrations : A time-delay system approach[END_REF][START_REF] Boussaada | Control of drilling vibrations : A time-delay system-based approach[END_REF]. Moreover, the behavior of the chosen friction model is close from the empirical model (the white friction force) but its smoothness is very useful in experimental identifications, see Figure 7.4.

The contributions of the proposed model can be summarized as follows : -Infinite-dimensional setting for modeling : As emphasized by (7.12)-(7.13), each type of vibrations is described by a PDE. The first equation of (7.12) means that axial vibrations U are governed by a wave equation with velocity c. In the second equation of (7.12), the reacting force due to the drillstring at the top is seen as the difference between the imposed vertical upward force and the actual drillstring friction force of viscous type at the top α∂ t U (t, 0). The second equation of (7.12) describes a behavior equation 7.5. A System-Oriented Approach : Interconnected dynamics 123 sampled at the top of the hole. It simply expresses that the difference between the H the brake motor control (upward hook force) and the force generated by the gradient of the axial vibration at the top α∂ s U (t, 0) is nothing else than a friction force of viscous type α∂ t U (t, 0). Furthermore, for equation (7.13), torsional vibrations are also assumed to obey to a wave equation with velocity c. In the second equation of (7.13) the right hand side describes the difference between the motor speed and angular velocity of the first pipe.

Finally, the third equation of (7.12) and (7.13) are established by applying the Fundamental Laws of Motion [START_REF] Abraham | Foundations of Mechanics[END_REF] at the bit. -Coupled dynamics : The third equation of (7.13) generates the interconnection between the two dynamics. Indeed, it is generally recognized that the torque on bit, which is the main generator for friction in the drilling torsional vibrations, is expressed as a function of the axial vibration (see for instance [START_REF] Germay | Modeling and analysis of self-excited drill bit vibrations[END_REF]). -Nonlinear dynamics : Both of the functions F and F are assumed to be nonlinear functions allowing to reproduce continuously the classical empirical friction profile.

Actuating part and motor types

The drilling system includes three motors, which convert electrical energy into mechanical energy : one for the rotary table, one for the drawworks, and one for the mud pump, yielding three control variables. Each machine is modeled by a system of mechatronic equations as follows. The motor types have to be quite resistant, wherefrom the following choices. DC motor. A first type of motor is the direct current armature control motor. The torque developed by the motor is proportional to the stator's flux and the current in the armature and we have Γ = k f ψ K a I where Γ is the shaft torque, ψ is the magnetic flux in the stator field, which is assumed to be constant, I is the current in the motor armature. Since the flux is maintained constant, we can also write

Γ = k T I where k T = k f ψ K a .
When a current carrying conductor passes through a magnetic field, a voltage V b appears, corresponding to the so-called back electromagnetic force V b = k e ω where ω is the rotation speed of the motor shaft. The constant k T and k e have the same value. Kirchhoff's law yields the electronic equation of the motor :

V -V res -V coil -V b = 0, (7.14) 
where V is the input voltage, V res = -R I the armature resistor voltage (R being the armature resistor), V coil = L İ the armature inductance voltage (L being the armature inductance). The motor's electrical equation is then

L İ = -k e ω -R I + V. (7.15)
Induction motor. A second type of motor is the induction machine. When AC current is applied to such a machine, the rotating magnetic field is set up in the 124 Chapitre 7. Delay System Modeling of Rotary Drilling Vibrations stator. This rotating field is moving with respect to the rotor windings and thus induces a current flow in the rotor. The current flowing in the rotor windings sets up it own magnetic field. In the stationary reference frame (ω S = 0) the stator voltage vector can be expressed as v s S = R s i s S + ψS s where i S S and ψ S S are the stator current and rotor flux vectors. In the same way the rotor voltage vector can be expressed in the rotor fixed reference frame rotating with ω R : v r R = R r i r R + ψR r , whereas i R r and ψ R r are the rotor current and rotor flux vectors. The transformation in an arbitrary reference frame rotating with ω k yields :

v k s = R s i k s + ψk s + jpω k ψ k s v k r = R r i k r + ψk r + jp(ω k -ω r )ψ k r . (7.16) 
The flux vectors may be expressed as :

ψ k s = L s i k s + L m i k r ψ k r = L r i k r + L m i k s .
(7.17)

In the following the so-called D/Q-reference frame which is aligned to the rotor flux vector will be used and the superscript will be omitted, i.e. ψ r = ψ rd + jψ rq = ψ r S e -jρ , whereas ρ is the rotor flux angle in the stationary reference frame. Substituting the stator flux and rotor current vectors in (7.16) using (7.17) and introducing We thus obtain conclude with the description of the induction machine model : its electric model and its mechanical model which respectively consist of four and a two dimensional nonlinear system. Indeed, the current/flux equations are given by

η = 1 -(L 2 m /L s L r ), χ = L 2 m R r /σL s L 2 r + R s /σL s , ζ = R
                     ψd = -ζ(ψ d -L m I d ) ρ = pω R + ζL m I d ψ d İd = -χI d + ζξψ d + pω R I q + ζL m I 2 q ψ d + v d ηL s İq = -χI q -pξω R I d -ζL m I q I d ψ d + v q ηL s , (7.18) 
and the mechanical model is defined by

J ωR = µψ rd I sq -T l θR = ω R , (7.19) 
whereas µ = 3pM/2L r and θ R is the rotor angle and T l the load torque. 

Pipe Drillstring

The pipe drillstring deformation is modelled through a wave equation with both internal viscoelastic Kelvin-Voigt damping, and simple viscous damping :

ρA p ∂ 2 t U p (t, s) = EA p ∂ 2 s U p (t, s) + ε i Up ∂ t ∂ s U p (t, s) + γ v Up ∂ t U p (t, s) ρJ p ∂ 2 t Φ p (t, s) = GJ p ∂ 2 s Φ p (t, s) + ε i Φp ∂ t ∂ s Φ p (t, s) + γ v Φp ∂ t Φ p (t, s), (7.20) 
where 0 < s < L p , the internal damping coefficients are ε i Up , ε i Φp , and the viscous damping coefficients are γ v Up , γ v Φp . Additionnally, ρ is the steel density, E (resp. G) denotes Young's (resp. the shear) modulus of drillstring steel, and A p , J p are the cross-section and polar inertia moment of one section, given by :

A p = π(r 2 po -r 2 pi ), J p = π 2 (r 4 po -r 4 pi ),
with r pi and r po the inner and outer pipe radius.

Top Boundary Conditions At s = 0, we consider the following boundary condition for Φ p :

J top ∂ 2 t Φ p (t, 0) = GJ p ∂ s Φ p (t, 0) + u T (t), (7.21) 
with J top the top drive inertia, and u T the torque produced by the rotary table motor, taken as a control input. which is a more realistic boundary condition compared to the one in [START_REF] Germay | Modeling and analysis of self-excited drill bit vibrations[END_REF]12] : Φ p (t, 0) = Ω 0 t. Note that eq. ( 7.21) can also be completed by the mechanical equation of an induction machine in place of (7.19).

The upward force H acts in the top hole device composed mainly of the derrick, the crown block and the traveling block. This whole setting is modeled as a two coupled mass spring system, following [START_REF] Pavone | Analyse et modélisation du comportement dynamique d'un rig de forage[END_REF] 

M rg 1 ζrg 1 (t) + γ rg 1 ζrg 1 (t) + M rg 1 g = u F (t) + k rg 12 (ζ rg 2 (t) -ζ rg 1 (t)) -k rg 01 ζ rg ini (t) M rg 2 ζrg 2 (t) + γ rg 2 ζrg 2 (t) + M rg 2 g = -H(t) -k rg 12 (ζ rg 2 (t) -ζ rg 1 (t)). ( 7 
(t) = k rg 01 (ζ rg 1 (t)-ζ rg 0 (t)
) is a tension force in the cable at the drawworks level, taken as a control input (being directly related to the drawworks rotation motor). The parameters M rg i , γ rg 1 and k rg ij are equivalent masses, damping coefficients and stiffness coefficients, respectively.

For U p consider the boundary condition at s = 0 :

M top ∂ 2 t U p (t, 0) = EA p ∂ s U p (t, 0) + H(t). (7.23)
with M top the top drive mass. In [START_REF] Germay | Modeling and analysis of self-excited drill bit vibrations[END_REF], a simpler boundary condition is adopted :

EA p ∂ s U p (t, 0) = H(t). The initial conditions are taken such that Φ p , ∂ t Φ p , ∂ s Φ p , U p , ∂ t U p , ∂ s U p vanish at t = 0.
Drill Collars The BHA equations for axial vibrations U b and torsional vibrations Φ b are given by

ρA b ∂ 2 t U b (t, s) = GA b ∂ 2 s U b (t, s) + ε i U b ∂ t ∂ s U b (t, s) + γ v U b ∂ t U b (t, s) ρJ b ∂ 2 t Φ b (t, s) = EJ b ∂ 2 s Φ b (t, s) + ε i Φ b ∂ t ∂ s Φ b (t, s) + γ v Φ b ∂ t Φ b (t, s), (7.24) 
where L p < s < L, and A b , J b are, as above, the cross-section and polar inertia moment of one section, given by

A b = π(r 2 bo -r 2 bi ), J b = π 2 (r 4 bo -r 4 bi ),
with r bi and r bo are inner and outer drill collar radius.

Pipe/Drill Collar Continuity Conditions

To achieve continuity in speed and effort, Φ p , Φ b , U b and U p satisfy the connexion conditions :

                 ∂ t Φ b (t, L p ) = ∂ t Φ p (t, L p ) ∂ s Φ b (t, L p ) = J p J b ∂ s Φ p (t, L p ) ∂ t U b (t, L p ) = ∂ t U p (t, L p ), ∂ s U b (t, L p ) = A p A b ∂ s U p (t, L p ), (7.25) 
where J * and A * are

J * = π(r 4 * o -r 4 * i )/2 and A * = π(r 2 * o -r 2 * i ).

Bottom Hole Boundary Conditions

The boundary conditions at s = L for torsional vibrations Φ b are

J bit ∂ 2 t Φ b (t, L) = -G J b ∂ s Φ p (t, L) + T bit (t), (7.26) 
where T bit is the reaction torque at the bit. For axial vibrations, the bottom boundary condition is where M bit is the bit's mass, and W bit (t), the reaction force at the bit due to the so called dynamic weight on bit (DWOB).

M bit ∂ 2 t U b (t, L) = -EA b ∂ s U p (t, 0) + W bit (t). ( 7 
Forces/Moments Expressions The bottom hole force and moment can be decomposed into a cutting and a frictional part

T bit = T c + T f , W bit = W c + W f , (7.28) 
Friction Force/Moment. The expressions for T f and W f are taken as (see for instance [START_REF] Germay | Modeling and analysis of self-excited drill bit vibrations[END_REF] and [START_REF] Parfitt | Drilling guidlines from the cosserat dynamics of a drill-rig assembly[END_REF]) :

T f (t) = a 2 2 γµσl F( V b (L, t) ), W f (t) = alσ F( V b (L, t) ),
where a is the bit radius, l the length of the wearflat, σ the contact stress, γ accounts for the distribution and orientation of the frictional forces acting at the wearflat/rock interface, µ the ratio between the horizontal and the vertical components of the frictional force, V b = (∂ t U p , ∂ t Φ p ) and sgn(V b ) designate the orientation of V b with respect to the horizontal plane, and F is an adimensional friction function. We consider the following expressions for such an F, as for instance in [START_REF] Parfitt | Drilling guidlines from the cosserat dynamics of a drill-rig assembly[END_REF] 

F(r) = αr √ r 2 + ε 2 , (7.29) 
or in [START_REF] Tucker | The excitation and control of torsional slip-stick in the presence of axial vibrations[END_REF] F(r) = β tanh(r) + γ 1 1 + γ 2 r 2 .

(7.30)

Cutting Force/Moment. The expressions for T c and W c are taken as (see e.g. [START_REF] Germay | Modeling and analysis of self-excited drill bit vibrations[END_REF]) :

T c (t) = a 2 2 εd(t), W c (t) = aζεd(t),
where a is the bit radius, d the depth of cut, ε is the intrinsic specific energy, and ζ the ratio of the vertical to the horizontal force for a sharp cutter. Here the cut depth d(t) is deduced from the relation

d(t) = n(U b (t, L) -U b (t -t n , L)), (7.31) 
where n is the bit number of blades and t n is implicitly given through the relation

2π n = Φ b (t, L) -Φ b (t -t n , L). (7.32)
The range of t n is given by t n 0 = 2π/(nΩ 0 ), with Ω 0 a nominal rotating speed at the top. Note that, in [START_REF] Parfitt | Drilling guidlines from the cosserat dynamics of a drill-rig assembly[END_REF], T c is defined by : 

T c (t) = -a 4 (F( V b (L, t) )))

Full Model Summary

Let us rewrite the previous model in a more compact form.

Pipe Drillstring Pipes wave equation (torsion-traction/compression)

ρA p ∂ 2 t U p (t, s) = EA p ∂ 2 s U p (t, s) + ε i Up ∂ t ∂ s U p (t, s) + γ v Up ∂ t U p (t, s), (7.34a 
)

ρJ p ∂ 2 t Φ p (t, s) = GJ p ∂ 2 s Φ p (t, s) + ε i Φp ∂ t ∂ s Φ p (t, s) + γ v Φp ∂ t Φ p (t, s). (7.34b)
Top Boundary Conditions Induction motor (torsion) :

ψΦd = -ζ Φ (ψ Φd -L Φm I d ) (7.35a) ρΦ = pω ΦR + ζ Φ L Φm I Φd ψ Φd (7.35b) İΦd = -χ Φ I Φd + ζ Φ ξ Φ ψ Φd + p Φ ω ΦR I Φq + ζ Φ L Φm I 2 Φq ψ Φd + v Φd η Φ L Φs (7.35c) İΦq = -χ Φ I Φq -p Φ ξ Φ ω ΦR I Φd -ζ Φ L Φm I Φq I Φd ψ Φd + v Φq ηL Φs . (7.35d)
Drill pipes top boundary condition (torsion) :

J top ∂ 2 t Φ p (t, 0) = GJ p ∂ s Φ p (t, 0) + u T (t). (7.36) 
Induction motor (traction/compression) :

ψUd = -ζ U (ψ U d -L U m I d ) (7.37a) ρU = pω U R + ζ U L U m I U d ψ U d (7.37b) İUd = -χ U I U d + ζ U ξ U ψ U d + p U ω U R I U q + ζ U L U m I 2 U q ψ U d + v U d η U L U s (7.37c) İUq = -χ U I U q -p U ξ U ω U R I U d -ζ U L U m I U q I U d ψ U d + v U q ηL U s . (7.37d) 
Top hole assembly (traction/compression) :

M rg 1 ζrg 1 (t) + γ rg 1 ζrg 1 (t) + M rg 1 g = u F (t) + k rg 12 (ζ rg 2 (t) -ζ rg 1 (t)) -k rg 01 ζ rg ini (t) (7.38a) M rg 2 ζrg 2 (t) + γ rg 2 ζrg 2 (t) + M rg 2 g = -H(t) -k rg 12 (ζ rg 2 (t) -ζ rg 1 (t)). (7.38b) 
Drill pipes top boundary condition (traction/compression) :

M top ∂ 2 t U p (t, 0) = EA p ∂ s U p (t, 0) + H(t). (7.39) Drill Collars ρA b ∂ 2 t U b (t, s) = GA b ∂ 2 s U b (t, s) + ε i U b ∂ t ∂ s U b (t, s) + γ v U b ∂ t U b (t, s), (7.40a 
) 

ρJ b ∂ 2 t Φ b (t, s) = EJ b ∂ 2 s Φ b (t, s) + ε i Φ b ∂ t ∂ s Φ b (t, s) + γ v Φ b ∂ t Φ b (t, s). ( 7 
∂ t Φ b (t, L p ) = ∂ t Φ p (t, L p ) (7.41a) ∂ s Φ b (t, L p ) = J p J b ∂ s Φ p (t, L p ) (7.41b) ∂ t U b (t, L p ) = ∂ t U p (t, L p ) (7.41c) ∂ s U b (t, L p ) = A p A b ∂ s U p (t, L p ). (7.41d) 
Bottom Hole Boundary Conditions Drill collar bit boundary condition (torsion) :

J bit ∂ 2 t Φ b (t, L) = -G J b ∂ s Φ p (t, L) + T bit (t). (7.42) 
Drill collar bit boundary condition (traction/compression) :

M bit ∂ 2 t U b (t, L) = -EA b ∂ s U p (t, 0) + W bit (t). (7.43) 
Forces/Moments Expressions Bottom hole force and moment :

T bit = T c + T f , W = W c + W f . (7.44) 
Friction Force/Moment :

T f (t) = a 2 2 γµσl F( V b (L, t) ), W f (t) = alσ F( V b (L, t) ).
Adimensional friction function expressions :

F(r) = αr √ r 2 + ε 2
First expression (7.45)

F(r) = β tanh(r) + γ 1 1 + γ 2 r 2
Second expression (7.46) Cutting Force/Moment :

T c (t) = a 2 2 εd(t), W c (t) = aζεd(t) Cut depth d(t) defined by d(t) = n(U b (t, L) -U b (t -t n , L)). One revolution duration t n such that 2π n = Φ b (t, L) -Φ b (t -t n , L).

Wireless-transmission and Real-time control methodology

In this section, we focus on the way to bring the measurement from downhole to surface so we can use it in order to improve the observer/controller behavior. There are mainly three types of transmission : i) through telemetry signals along the drilling fluid, often referred to as mud-pressure pulses, ii) through acoustic waves along the drillstring [START_REF] Clayer | Procédé de transmission acoustique de données de forage d'un puits[END_REF], iii) through wired drill pipes.

In most of the literature, electronic equipments are designed for data acquisition and for modulation purpose. It should be implemented as an autonomous system energized either by a mud operated electrical turbine or by a battery pack [START_REF] Tubei | Mud-pulser telemetry system for down hole measurement-while-drilling[END_REF].

Mud-pulse telemetry This technology uses the mud that goes through the drilling system as a transmission media. The data will be represented by pressure pulses.

According to [START_REF] Tubei | Mud-pulser telemetry system for down hole measurement-while-drilling[END_REF], the pulser actuator (a stepper-motor-based device) and a main valve restricts the flow and creates some pressure-pulse sequence. A piezoelectric device captures these variations that are then analyzed by a micro-controller. Evidently, due to the irregular nature the mud flow, the low frequency vibrations produced by mud pumps and pulsation dampeners the signals are corrupted by noise. Furthermore, they have an important attenuation. Some characteristics to highlight are [START_REF] Liu | Transmission behavior of mud-pressure pulse along well bore[END_REF], [START_REF] Clayer | Procédé de transmission acoustique de données de forage d'un puits[END_REF], [START_REF] Drumheller | The propagation of sound waves in drill strings[END_REF] its cost-effective data transfer, its very low bite rate (1 or 2 bits per second). Mud-pulse velocity declines with the disturbances of mud density, gas content and mud compressibility. It becomes more difficult with increasing well depth. Pulse waves travel through the borehole at 1200 meters per second [START_REF] Liu | Transmission behavior of mud-pressure pulse along well bore[END_REF], hence the measure arrives with some delay that increases up to tmax τ max ≈ 6.6 seconds.

Acoustic data transmission over a drill string Since the acoustic wave propagation velocity in the string material is at least three times superior to that in the mud of the borehole [START_REF] Clayer | Procédé de transmission acoustique de données de forage d'un puits[END_REF], and a higher transmission rate is possible (typically 6 bps), acoustic transmission seems to be the best way to emit pulses to the surface. These acoustic waves are generated by torsional contractions created by magneto restrictive rings set inside the pipe [START_REF] Drumheller | An overview of acoustic telemetry[END_REF]. In this case τ max ≈ 2.2 secons. It is useful to note that there exists an attenuation of around 4 dB/300m [START_REF] Drumheller | Acoustical properties of drill strings[END_REF]. However, we can neglect it because there is always a possibility of setting a repeater at any joint at each 10 -15 meters of the section. We consider that this fact does not add any extra considerable delay since the repeater's amplification can occur almost instantaneously.

The telemetry system sends signals directly to the surface through the channel. Usually, there is an embedded sensor measuring φb downhole. A measurement noise S(t) is added to the data and then coded all together, so that it can be transmitted through the acoustic channel G. At surface, a receiver will read the encoded signal with the noise N (t). Furthermore, a digital algorithm is used to decode this data and make it available for the use for further treatments. Both methods can be modeled by the schematic as shown in Figure 7.5. On the bit state measurement side, there are mainly three types of transmission : Transmission delay range and friction hypothesis Due to technical considerations we can assume that the transmission media is, as a first approximation, like a pure delay system with delay time τ ∈ [0, τ max ]. Moreover, the well's depth increases at a very slow rate and it stops each 10 -15 meters. In this procedure, the delay can be recalculated. Hence, the delay can be defined as a constant, that is τ = 0. On the other hand, we will consider that the friction coefficient is constant or at least slow time variant τ ≈ 0. This approximation is often assumed in the context of adaptive control. This hypothesis means that the rate of variation of the rock friction coefficient does not exhibit substantial changes during drill-operation. Even if the drilled surfaces may have different friction characteristics, the rate of penetration remains small ( ḋ ≈ 0).

Real-time control

The general real time control architecture has to handle output signal transmission, state observation under variable delay and signal noises presence as well as the state feedback control calculation and actuation update. A detailed description of a such an architecture is given in [START_REF] Barreto Jijon | Adaptive observer design under low data rate transmission with applications to oil well drill-string[END_REF] where more emphasis is put on observer performance in presence of transmission delay variations, noise perturbation and friction coefficient variation. Due to these parameter variation the overall observer/controller order is increased which has to be considered in the specification of real time control architecture. We will not go further in the specification and the design of overall real time communication and calculation architecture which is out of the scope of this work, but it is important to emphasize the fact that the reliability, bandwidth and signal to noise ratio of data transmission channel is of great importance in the quality of state observation and control.

Concluding Remarks :

The complete description of a Drilling oilwell machine involves three interconnected systems : i) A mechanical system, more precisely, the drillstring that is the down-hole part of the drilling device, ii) The mechatronic system : composed mainly from two induction machines : the first acting axially and the second acting in rotation, iii) A transmission system that consists from sensors (piezoelectric) and a transmission vector that can be for instance the wireless technology.

Briefly, the interconnection of such components can be summarized as follows : The drilstring and the induction machine are connected via the derrick, the crown and the traveling block for the axial actions and via the rotary table for angular rotation. Moreover, the induction motors are the only actuators leading to the control for guaranteeing a regular drilling process. The success of such a task lies mainly on the bit-data (the mechanical system) furnished by the sensors and transmitted by wireless to the top. The transmitted data are then responsible on the motor actions.

Finally, it is worthy to note that the preceding model does not take into account the bending vibrations (leading to whirling) of the drilling collar, nor the drilling fluid dynamics. 

Appendix : Notations table

Bifurcation analysis of the drilling system

On the one hand, Bifurcation theory is concerned with the study of changes in the qualitative structure of the solutions of a given family of differential equations. In dynamical systems, a bifurcation occurs when a small smooth alteration of the parameter values (the bifurcation parameters) causes a sudden qualitative or topological change in its behavior. Bifurcations occur in both continuous systems (described by ODEs, DDEs or PDEs), and discrete systems (described by maps). The term bifurcation was introduced in 1885 by Henri Poincaré [START_REF] Tucker | L'équilibre d'une masse fluide animée d'un mouvement de rotation[END_REF]. Bifurcations can be classified into two main categories : global bifurcations, which occur when larger invariant sets of the system collide with each other, or with the equilibrium point of the system ; and local bifurcations, which can be analyzed through variations of the local stability properties of the equilibrium point. Some examples of reduced codimension bifurcations' of local type are : Pitchfork bifurcation, Andronov-Hopf bifurcation and Bogdanov-Takens bifurcation. On the other hand, a wide range of applications involve hyperbolic PDEs in modelling interesting and relatively complex dynamical phenomena. These hyperbolic PDEs themselves may be reducible to neutral functional differential equations, see for instance the wave equations modelling of wind instruments given in [START_REF] Novel | Wind instruments as time delay systems. part i : modeling*[END_REF][START_REF] Novel | Wind instruments as time delay systems. part ii : control and estimation*[END_REF] and the linear density-flow hyperbolic systems studied in [START_REF] Bastin | Stability of linear density-flow hyperbolic systems under {PI} boundary control[END_REF] or to a non autonomous difference equations as established in [START_REF] Chitour | Stability of non-autonomous difference equations with applications to transport and wave propagation on networks[END_REF][START_REF] Chitour | Stability of non-autonomous difference equations with applications to transport and wave propagation on networks[END_REF]. In our context, in order to characterize the qualitative dynamic response of the rotary drilling system, this chapter addresses its local bifurcation analysis. Based on the center manifold theorem [START_REF] Carr | Application of Center Manifold Theory[END_REF] and normal forms theory [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[END_REF], a set of neutral-type time-delay equations that model the coupled axial-torsional drilling vibrations is reduced via spectral projections to a finite-dimensional system described by an ODE which simplifies the analysis and control task. This chapter reproduces mainly the results from [START_REF] Saldivar Marquez | Analysis and Control of Oilwell Drilling Vibrations[END_REF].

Local bifurcation analysis

Consider the following system of equations describing the coupled axial-torsional drilling vibrations :

                 ∂ 2 U ∂s 2 (s, t) = c 2 ∂ 2 U ∂t 2 (s, t), c = ρ a E EΓ ∂U ∂s (0, t) = α ∂U ∂t (0, t) -u H (t) EΓ ∂U ∂s (L, t) = -M B ∂ 2 U ∂t 2 (L, t) + F ∂U ∂t (L, t)
and

                 ∂ 2 Φ ∂s 2 (s, t) = c 2 ∂ 2 Φ ∂t 2 (s, t), c = ρ a G GJ ∂Φ ∂s (0, t) = β ∂Φ ∂t (0, t) -u T (t) GJ ∂Φ ∂s (L, t) = -I B ∂ 2 Φ ∂t 2 (L, t) -F ∂U ∂t (L, t)
where U (s, t) and Φ(s, t) are the rotary angle and the longitudinal position respectively. The system is controlled through the upward hook force u H and the rotary table motor torque u T . The nonlinear aspect of the model is considered by taking functions F and F of the form :

z → p k z/( k2 z 2 + ζ),
where the parameters k, ζ (0 < ζ 1 and 0 < k < 1) are positive integers responsible of the sharpness of the friction force function and p is acting on its amplitude.

Using d'Alembert theorem, the above PDE model can be transformed into the following pair of coupled neutral-type time-delay equations :

Üb (t) -Υ Üb (t -2τ ) = -Ψ Ub (t) -Υ Ψ Ub (t -2τ ) + 1 M B F Ub (t) - 1 M B ΥF Ub (t -2τ ) + Πu H (t -τ ), Φb (t) -Υ Φb (t -2τ ) = -Ψ Φb (t) -ΥΨ Φb (t -2τ ) + 1 I B F Ub (t) - 1 I B Υ F Ub (t -2τ ) + Πu T (t -τ ),
where

Π = 2 Ψ α + cEΓ , Υ = α -cEΓ α + cEΓ , Ψ = cEΓ M B , τ = cL, Π = 2Ψ β + cGJ , Υ = β -cGJ β + cGJ , Ψ = cGJ I B , τ = cL,
and Ub (t), Φb (t) are the the axial and angular velocities at the bottom extremity, respectively.
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A normalization of the above model yields the following dimensionless equations :

Üb (t) -Υn Üb (t -2) = -Ψn Ub (t) -Υn Ψn Ub (t -2) (8.1) + 1 M B F Ub (t) - 1 M B Υn F Ub (t -2) + Πn u H (t -1), Φb (t) -Υ n Φb (t -2τ ) = -Ψ n Φb (t) -Υ n Ψ n Φb (t -2τ ) (8.2) 
+ 1 I B F Ub (t) - 1 I B Υ n F Ub (t -2τ ) + Π n u T (t -τ ),
where τ is the ratio of the speeds τ = c/c and

Πn = 2 Ψn α + 1 , Υn = α -1 α + 1 , Ψn = 1 M B , Π n = 2cGJ I B (cEΓβ + cGJ) , Υ n = cEΓβ -cGJ cEΓβ + cGJ , Ψ n = cGJ cEΓI B .
First, we analyze the uncontrolled system (u H = u T = 0). Denote by x 1 and x 2 the axial and angular velocities at the bottom extremity ( Ub and Φb respectively). The state-space matrix representation of the system is written as follows :

ẋ(t) =D 1 ẋ(t -2) + D 2 ẋ(t -2c/c) + A 0 x(t) + A 1 x(t -2) + A 2 x(t -2c/c) + F(x(t), x(t -2), x(t -2c/c)) (8.3) 
where x = (x 1 , x 2 ) T , F : R n ×R n ×R n → R n is a mapping representing the nonlinear part of the system (8.1)-(8.2), and the matrices D 1 , D 2 , A 0 , A 1 , A 2 are given by :

D 1 = Υn 0 0 0 , D 2 = 0 0 0 Υ n , A 0 =   - Ψn(p k+ζ) ζ 0 p k Jζ -Ψ n   , A 1 =   - Υn Ψn(p k+ζ) ζ 0 0 0   , A 2 =   0 0 -Υnp k ζI B -Υ n Ψ n   .
The characteristic equation is a powerful tool for analysing stability of the steady state solution of functional differential equation. In what follows we discuss the stability conditions of the drilling system based in the bifurcation parameters p (parameter related to the amplitude of the friction forces F and F ) and α (viscous friction coefficient at the top extremity) [START_REF] Boussaada | Analysis of drilling vibrations : A time-delay system approach[END_REF]. The numerical values of the model parameters are given in Table 9.4, see also [START_REF] Saldivar Marquez | Analysis and Control of Oilwell Drilling Vibrations[END_REF] for further discussion the system parameters.

Here the friction force amplitude p as well as the mass at the BHA M B are left free and are considered as the bifurcation parameters. When p = p c then zero is an eigenvalue with algebraic and geometric multiplicity 1. Moreover, zero is the only eigenvalue with zero real part and the remaining eigenvalues have negative real parts. Furthermore, there exists a Pitchfork bifurcation, which comes from the Z 2 symmetry structure of the system. When in addition the mass at the BHA M B reaches some critical value M B = M * , then zero is an eigenvalue of algebraic multiplicity 2 and of geometric multiplicity 1. Furthermore, under such conditions zero is the only eigenvalue with zero real part and the remaining eigenvalues have negative real parts. The zero eigenvalue is non-semisimple and the singularity is of Bogdanov-Takens type. Finally, although there are no characteristic roots with positive real parts, the system (8.3) is formally stable, but not asymptotically stable.

As discussed in [START_REF] Saldivar Marquez | Analysis and Control of Oilwell Drilling Vibrations[END_REF], the characteristic equation of system (8.3) is given by

det(∆) = F 1 (λ) F 2 (λ, p) = λ(1 -e -λ τ 2 Υ n ) -Υ n + e -λ τ 2 Υ n Ψ n × λ(1 -e -2λ Υn ) + Υn Ψn p k + ζ ζ e -2λ + Ψn p k + ζ ζ .
For the sake of simplicity, let us consider separately the factors F 1 (λ) and F 2 (λ, p). The first factor is given by :

F 1 (λ) = λ(1 -e -λ τ 2 Υ n ) -Υ n + e -λ τ 2 Υ n Ψ n .
Notice that F 1 (λ) is a scalar first order quasi-polynomial of neutral type. It is easy to prove that the associated continuous-time difference equation is asymptotically stable. Indeed, the scalar quasi-polynomial satisfy the conditions of the Pontryagin theorem leading to prove that all spectral values have negative real part (for further insights on the proof see [START_REF] Weedermann | Hopf Bifurcation calculations for scalar delay differential equations[END_REF]). Thus, one concludes that there are no imaginary crossing roots for the factor F 1 . Consider now the second factor F 2 (λ, p) defined as :

F 2 (λ, p) = λ(1 -e -2λ Υn ) + Υn Ψn p k + ζ ζ e -2λ + Ψn p k + ζ ζ .
Similarly, it is easy to show that apart from ω 0 = 0, there are no spectral values with zero real part. Moreover, p = p c = 6.66749 is the only possible value of p leading to a spectral value in zero. Considering the parameterization µ = α -30 p and using the model parameters given in Table 9.4 of Section 8.5, F 2 can be written as : , there exists then, a double root of non-semisimple type at zero. Moreover, in such a particular case, and for the same reasons as for the first factor, the remaining roots of F 2 have negative real parts.

F 2 (λ, M B , p) = -M B + 0.99 M B e -
In conclusion, the system is formally stable but not asymptotically stable (although there are no characteristic roots with positive real parts) and the singularity is of Bogdanov-Takens type [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF].

Remark 7. The multiplicity of the root at the origin can not exceed two for the considered parameter values. However, it is worthy of note that, for general secondorder systems of neutral type the maximal multiplicity of the characteristic root at the origin is less than the degree of the generic quasipolynomial.

Model reduction

Generally speaking, Functional Differential Equations (FDE) share some properties with Ordinary Differential Equations (ODE). This section presents a normal form theory-based technique allowing to approximate a Neutral Delay Differential Equation (NDDE) by an ODE. The transformation method, based in the Center Manifold Theorem, simplifies the system structure, preserving the qualitative dynamic of the system in a neighborhood of the equilibrium state.

Consider the general form of a discrete time-delay autonomous first-order nonlinear system of neutral-type :

d dt [x(t) + n k=1 A k x(t -τ k )] = n k=0 B k x(t -τ k ) + F(x(t), . . . , x(t -τ n )), (8.4) 
where A i , B j are n × n real valued matrices (there is at least one matrix A k = 0 for some k ∈ {1, 2, . . . , n}). The time-delays are such that τ 0 = 0, τ i < τ j for i < j and τ n = r. System (13.55) can be written in compact form as follows :

d dt Dx t = Lx t + F(x t ), (8.5) 
where

x t ∈ C = C([-r, 0], R n ), x t (θ) = x(t + θ).
The bounded linear operators D and L are such that Dφ = φ(0) The linear part of system (13.56) is given by :

+ n k=1 A k φ(-τ k ) and Lφ = n k=0 B k φ(-τ k ), F is a sufficiently smooth function mapping C into R n with F(0) = DF(0) = 0.
d dt Dx t = Lx t . (8.6) 
Let T (t)(φ) = x t (. , φ), with x t (. , φ)(θ) = x(t + θ, φ) for θ ∈ [-r, 0], the solution operator associated with the linear system. T (t) is a strongly continuous semigroup with the infinitesimal generator given by A = dφ dθ with the domain

Dom(A) = {φ ∈ C : dφ dθ ∈ C, D dφ dθ = Lφ} .
The spectrum of A, σ(A) = σ p (A), consists of complex values λ ∈ C satisfying the characteristic equation : p(λ) = det∆(λ) = 0. See [START_REF] Stepan | Retarded Dynamical Systems : Stability and Characteristic Functions[END_REF][START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF] for further details. Denote by M λ , the eigenspace associated with λ ∈ σ(A). We define C * = C([-r, 0], R n * ), where R n * is the space of n-dimensional row vectors. Consider the bilinear form on C * × C, proposed in [START_REF] Hale | Introduction to functional differential equations[END_REF] :

(ψ, φ) = φ(0) ψ(0) - 0 -r d[ θ 0 ψ(τ -θ)dµ(τ )] + 0 -r θ 0 ψ(τ -θ)dη(θ)φ(τ )dτ . ( 8 

.7)

Let A T be the transposed operator of A, i.e., (ψ, Aφ) = (A T ψ, φ). The following result leads to an appropriate decomposition of the space C.

Theorem 32. [START_REF] Hale | Introduction to functional differential equations[END_REF] Let Λ be a nonempty finite set containing the eigenvalues of A and let P = span{M λ (A), λ ∈ Λ} and P T = span{M λ (A T ), λ ∈ Λ}. Then P is invariant under T (t), t ≥ 0 and there exists a space Q, also invariant under T (t) such that C = P Q. Furthermore, if Φ = (φ 1 , . . . , φ m ) forms a basis of P , and

Ψ = col(ψ 1 , . . . , ψ m ) is a basis of P T in C * , such that (Φ, Ψ) = Id, then Q = {φ ∈ C \ (Ψ, φ) = 0} , P = {φ ∈ C \ ∃b ∈ R m : φ = Φb}. (8.8)
Moreover, T (t)Φ = Φ e Bt , where B is a m × m matrix such that σ(B) = Λ.

Denote by BC, the extension of the space C containing continuous functions on [-r, 0) with a possible jump discontinuity at 0. A given function ξ ∈ BC can be written as : ξ = ϕ + X 0 α, where ϕ ∈ C, α ∈ R n and X 0 (θ) = 0 for -r ≤ θ < 0, X 0 (0) = Id n×n . The Hale-Verduyn Lunel bilinear form (8.7) can be extended to the space C * × BC by (ψ, X 0 ) = ψ(0), and the infinitesimal generator A is extended to an operator à (defined in C 1 ) into the space BC as follows :

Ãφ = Aφ + X 0 [Lφ -Dφ ].
(8.9)

On the basis of the above considerations, equation (13.56) can be written as an abstract ODE [START_REF] Fantoni | Topics in functional differential and difference equations[END_REF], as follows :

ẋt = Ãx t + X 0 F(x t ). (8.10)
The projection Π : BC → P , satisfying Π(ϕ + X 0 α) = Φ[(Ψ, ϕ) + Ψ(0)α], yields x t = Φy(t) + z t , where y(t) ∈ R m . Equation (13.56) can be represented as :

ẏ = By + Ψ(0)F (Φy + z) ż = ÃQ + (I -Π)X 0 F(Φy + z). (8.11) 
After writing z as a function of y, we focus only on the first equation.

The center manifold of a dynamical system is composed by orbits whose behavior around the equilibrium point is not managed by the attraction of the stable manifold (given by the eigenspace of eigenvectors corresponding to eigenvalues with negative real) nor by the repulsion of the unstable manifold. The analysis of the center manifold requires the equilibrium point to be hyperbolic. Center manifolds play an important role in bifurcation theory because interesting system behavior takes place on it.

Center manifold and normal forms theory

The center manifold is a powerful tool to analyze the dynamic behavior of a given system in a neighborhood of a non-hyperbolic equilibrium point x * . Definition 1. Consider a C 1 map h : R → Q. The graph of h is said to be a local manifold associated with system (13.56), if h(0) = Dh(0) = 0. Remark 8. There exists a neighborhood V of 0 ∈ R n such that for each ξ ∈ V , δ = δ(ξ) > 0. The solution x of system (13.56) with initial data Φξ + h(ξ) exists on the interval ] -δr, δ[ ; it is given by x t = Φy(t) + h(y(t)) for t ∈ [0, δ[, where y(t) is the unique solution of the ODE :

ẏ = By + Ψ(0)F (Φy + h(y)), y(0) = ξ. (8.12) 
Only a few works have investigated the center manifold that arise when considering different matrices B ; see for instance [11], where the characterization of the function h in equation (8.12) is detailed. On this basis, it is possible to decompose the eigenspace into the subspace containing all imaginary eigenvalues (having real part equal to zero) and the one with the remaining spectral values (that are assumed to have negative real parts).

In what follows, we adopt the formulations introduced in [START_REF] Milton | The time-delayed inverted pendulum : Implications for human balance control[END_REF] for the study of the center manifold, originally developed for delay differential equations.

It is worthy of note that y ∈ R 2 for the most common singularities ; for instance, the (one-parameter) Andronov-Hopf bifurcation and the (two-parameter) Bogdanov-Takens bifurcation. See for instance [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF].

It is well known that, normal forms theory is useful in analyzing local dynamics in the neighborhood of singular points. Among other problems, local bifurcation and stability analysis take advantage of it.

Let x = (x 1 , . . . , x n ) ∈ R n , and let f (x 1 , . . . , x n ) be a polynomial vector with components in R[x 1 , . . . , x n ]. Consider the general n-dimensional system of ODE :

ẋ = Lx + f (x) = Lx + f 2 (x) + f 3 (x) + . . . , (8.13) 
where L is the Jacobian matrix associated with system (8.13), Lx represents the linear part of the system, and f k (x) denotes the k th homogeneous polynomial vector.

We assume that the system admits an equilibrium at the origin "o". The basic idea of the normal form theory is to find a near-identity transformation :

x = y + h(y) = y + h 2 (y) + h 3 (y) + . . . + h k (y) + . . . , (8.14) 
so that, the resulting system, ẏ = Ly + g(x) = Ly + g 2 (y) + g 3 (y) + . . . + g k (y) + . . . , (8.15) be as simple as possible. In that sense, the terms that are not essential in the local dynamic behavior are removed from the analytical expression of the vector field. Let us denote by h k (y) and g k (y), the k th homogeneous polynomial vectors of y.

According to Takens normal form theory [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[END_REF], we define the following operators :

L k : H k → H k , U k ∈ H k → L k (U k ) = [U k , u 1 ] ∈ H k , (8.16) 
where u 1 = Ly is the linear part of the vector field, and H k denotes a linear vector space containing the k th homogeneous polynomial vector of y = (y 1 , . . . , y n ). The operator [., .], called Lie Bracket, is defined as :

[U k , u 1 ] = LU k -D(U k )u 1 ,
where D denotes the Frechet derivative. The next step is to determine the spaces R k and K k ; the range of H k ; and the complementary space of R k , so that H k = R k + K k . Now, bases for K k and R k can be chosen. The normal form theorem establishes a transformation of the analytic expression of the vector field, see for instance [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[END_REF], where a detailed analysis of the quadratic and cubic cases is given.

Consequently, a homogeneous polynomial vector f k ∈ H k can be divided into two parts ; one of them can be spanned in K k , and the remaining one in R k . Normal form theory suggests that the part belonging to R k can be disregarded and the one of K k can be retained in normal form. Through this method, algebraic equations are obtained from (8.13), (8.14) and (8.15).

Next, we aim to apply the above ideas to analyze the qualitative behavior of the drilling system.

Drilling system analysis

In [START_REF] Faria | Normal forms for retarded functional-differential equations with parameters and applications to Hopf bifurcation[END_REF], a decomposition method to compute the normal form of a singular delay system linearly dependent on one parameter (of the class studied in [START_REF] Hale | Period doubling in singularly perturbed delay equations[END_REF]) is proposed. We aim to extend the proposed techniques to the case of NFDE systems. To this end, system (8.3) is rewritten as :

d dt D x t : = L 0 x t + Fp, M B (x t ) = L 0 x t + (L -L 0 ) x t + F µ,pε (x t ), (8.17) 
where F is regarded as a perturbation, L 0 = L| {p=pc, M B =M * } , and

F p = -0.006750 px 3 1 (t) + 0.006682px 3 1 (t -2) -1.875 px 3 1 (t) + 1.874998 px 3 1 (t -3.176)
.

Clearly,

d dt D x t = L 0 x t , (8.18) 
corresponds to the perturbation-free system. Following [START_REF] Milton | The time-delayed inverted pendulum : Implications for human balance control[END_REF], we compute first, the evolution equation associated to the center manifold of system (8.18).

Considering the drilling system parameters given in Table 9.4, the matrix Φ, depending on θ, is defined as : The associated bilinear form is given by :

Φ(θ) = 1 -θ 1 
u(t) =D 1 u(t + 2) + D 2 u (t + 2c/c) -A 0 u(t) -A 1 u(t + 2) -A 2 u (t + 2c/c) . ( 8 
(ψ, ϕ) =ψ(0)(ϕ(0) -D 1 ϕ(-2) -D 2 ϕ(-3.176)) + 0 -2 ψ(ξ + 2)A 1 ϕ(ξ)dξ + 0 -3.176 ψ(ξ + 3.176)A 2 ϕ(ξ)dξ - 0 -2 ψ (ξ + 2)D 1 ϕ(ξ)dξ - 0 -3.176 ψ (ξ + 3.176)D 2 ϕ(ξ)dξ.
Notice that, according to the bilinear form, we have that (Ψ, Φ) = Id. Hence, the space C can be decomposed as C = P Q, where P = {ϕ = Φz; z ∈ R 2 } and Q = {ϕ ∈ C; (Ψ, ϕ) = 0}. It is important to emphasize that the subspaces P and Q are invariant under the semigroup T (t). Matrix B (referred in 8.12), satisfying AΦ = ΦB, is given by :

B = 0 0 -1 0 . (8.20)
Consider the following decomposition x t = Φy(t) + z(t), where z(t) ∈ Q, y(t) ∈ R 2 , z(t) = h(y(t)) and h is some analytic function such that h : P → Q. The explicit solution corresponding to the center manifold is determined by :

ẏ(t) = By(t) + Ψ(0)F[Φ(θ)y(t) + h(θ, y(t))], (8.21 
)

∂h dy {By + Ψ(0)F[Φ(θ)y + h]} + Φ(θ)Ψ(0)F[Φ(θ)y + h], =    ∂h dθ , -3.176 θ 0, L(h(θ, y)) + F[Φ(θ)y + h(θ, y)], θ = 0, (8.22) 
where h = h(θ, y), and F is defined in (8.17). Further details are given in [START_REF] Milton | The time-delayed inverted pendulum : Implications for human balance control[END_REF].

It is easy to show that, the evolution of the solutions of system (8.18) on the center manifold can be determined by solving (8.22) (subject to p = p c , M B = M * ) for h(θ, y), and (8.21) for y(t) (considering the truncation order). Notice that F is an odd function, which implies that it is the computation of h is not required to obtain a cubic truncation.

Based on these assessments, and considering p = p c , M B = M * , the system of neutral-type time-delay equations (8.1)-(8.2), describing the coupled axial-torsional drilling dynamics, is reduced to the following third-order ODE : In order to analyze the parameter bifurcations, we compute the evolution equation of the trajectories of the perturbed system (8.17) on the center manifold. Now, p and M B are given respectively by p = p c + µ 1 and M B = M * + µ 2 where µ 1,2 are small parameters (recall that the approximation associated to the perturbation-free system (8.18) was developed with p = p c and M B = M * ). The introduction of a time scaling as well as a small scaling parameter (blow-up parameter) allows zooming the neighborhood of the singularity, see for instance [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF].

ẏ(t) = 0 0 -1 0 y 1 y 2 +      0.
The cubic normal form reduction of system (8.3) :

ż1 = γ z 1 + δ z 2 -z 1 z 2 2 ż2 = -z 1 (8.24)
is obtained by considering the change of coordinates,

µ 1 = 1326.69991 γ r 2 , p = p c +µ 1 , µ 2 = 17, 87 δr, M B = M * +µ 2 , y 1 = r 2 z 1 , y 2 = rz 2 ,
and the time scaling defined by t old = r t new . Figure 8.1 shows phase space portraits of the reduced model (8.24) on the center manifold, in different scenarios : perturbation-free system (p = p c ) and system subject to perturbations (p = p c + µ 1 ), for γ = -2 and γ = 2.

Notes and references

Bifurcation theory provides a framework for understanding the behavior of dynamical systems, playing a key role in the study of several real-world problems. For instance, in the context of biological systems, the ability of making dramatic changes in the system output is essential for proper body functioning ; bifurcations are therefore ubiquitous in biological networks [START_REF] Angeli | Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems[END_REF]. A different application example is given in [START_REF] Hale | Period doubling in singularly perturbed delay equations[END_REF], where physiological systems, modeled by delay differential equations with double-zero eigenvalue singularity, are analyzed in the light of Bogdanov-Takens bifurcations. Another application field is presented in [START_REF] Kirillov | Nonlinear physical systems : spectral analysis, stability and bifurcations[END_REF], where bifurcations arising in mechanical and physical systems, modeled by nonlinear partial differential equations, are investigated.

A wide range of tools and techniques of the qualitative theory of differential equations and bifurcation principles to the study of nonlinear oscillations can be found in [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[END_REF]. Detailed studies on one and two-parameter bifurcations in continuous and discrete time dynamical systems are presented in [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF].

Qualitative analysis of the drilling system presented in this chapter is based on a reduced model. The infinite-dimensional representation of the coupled axialtorsional drilling dynamics, given by the set of neutral-type time-delay equations (8.1)-(8.2), is reduced to an ODE allowing a simplified qualitative system analysis. The model transformation is developed by using normal forms theory concepts. On that basis, the stability of the steady-state of system (8.3) is investigated.

An alternative stability analysis of the drilling system developed in the frequency domain framework is presented in [START_REF] Nandakumar | Stability analysis of a state dependent delayed, coupled two dof model of drill-string vibration[END_REF] ; it uses the lumped parameter model describing the coupled axial-torsional drilling dynamics described also in [START_REF] Saldivar Marquez | Analysis and Control of Oilwell Drilling Vibrations[END_REF], coupled to the bit-rock interface model. The steady-state solution of the model is considered and its stability to small perturbations is analyzed. Some stability charts are derived from such analysis, thus deducing the stable operating regime in the WoB-rotary speed parameter plane. It is concluded that large speeds are eventually stable for all weights on bit, but such large speeds may not be practically feasible. As we shall see in subsequent chapters, an increase of the rotary velocity constitutes a well-known empirical practice to avoid drilling oscillations.

A different analysis approach to derive operational guidelines for avoiding the stick-slip phenomenon is presented in [START_REF] Navarro-López | Avoiding harmful oscillations in a drillstring through dynamical analysis[END_REF] ; it uses a n-dimensional lumped parameter model. The model is assumed to be coupled to a frictional torque on bit approximated by a combination of the switch model (Dry friction plus Karnopp's model). The identification of key drilling parameters ranges for which non-desired torsional oscillations are present is carried out by analyzing Hopf bifurcations in the vicinity of the system equilibrium point when rotary velocities are greater than zero. Changes in drillstring behavior are studied through variations in three parameters : the weight on the bit, the rotary speed at the top-rotary drillstring system and the torque given by the surface motor. The intersection of the region of parameters where no Hopf bifurcations are present with the region where no stuck bit is possible provides a good estimation of the system parameters which provide safe drilling operations. See also [START_REF] Rahman | Solving stickslip dilemma : dynamic modeling system significantly reduces vibration, increases rop by 54%[END_REF], where an optimum range of operating parameters with different WOB and revolutions per minute combinations were provided to ensure the highest possible ROP. The underlying idea of avoiding the stick-slip phenomenon is to drive the rotary velocities of drillstring components to specified values. A discontinuous lumped-parameter torsional model of four degrees of freedom, coupled to the torque on bit model is considered.

Bifurcation analysis methods to characterize the system response are carried out through frequency-domain techniques. Alternative strategies to investigate the stability and the dynamic response of the drilling system are developed through the temporal approach. The following chapter addresses a dissipativity analysis of the system without control actions. This analysis, developed within the time-domain framework, allows concluding on the system's practical stability.

Drilling system parameters

This section presents the numerical values of the drilling system parameters reflecting typical operating conditions in real oilwell drilling platforms. Chapitre 9
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Low-order controllers

Drillstring platforms usually operate with reduced-order simple control laws which make the drillstring rotate at a constant speed ; only a few of them include controllers to tackle the vibration problem.

This chapter presents some of the most frequently used low-order controllers to regulate the angular velocity and tackle the stick-slip phenomenon.

First, a PI-like control law is derived to maintain a constant rotary speed. The controller is designed under the basis of a two DOF lumped parameter model ; its gains are adjusted by means of the classic two-time-scales separation method [START_REF] Canudas De Wit | Theory of robot control[END_REF].

Next, two classic solutions to counteract the stick-slip phenomenon are discussed : the soft torque and the torsional rectification controllers. The torsional rectification control constitutes an improved version of the classical PI speed controller ; it allows the absorption of the energy at the top extremity to avoid the reflection of torsional waves back down to the drillstring. The soft-torque is one of the most popular vibration control methods ; it has the form of a standard speed controller but includes a high-pass filtered torque signal. Both control methods are evaluated in this chapter ; furthermore, an analytic treatment is developed to characterize the torsional energy reflection provided by the torsional rectification controller.

Finally, a novel technique to reduce the stick-slip and bit-bounce is introduced. Based on the bifurcation analysis of the drilling system, a pair of low-order controllers aimed at eliminating axial and torsional coupled vibrations are designed : delayed proportional and delayed PID. The performances of the proposed control techniques are highlighted through simulation of the coupled system. This chapter reproduces mainly the results from [START_REF] Saldivar Marquez | Analysis and Control of Oilwell Drilling Vibrations[END_REF].

Angular velocity regulation

A simple technique to overcome the problem of angular speed regulation is proposed in [START_REF] Canudas De Wit | D-oskil : A new mechanism for controlling stick-slip oscillations in oil well drillstrings[END_REF]. The low-order controller presented below is designed on the basis of the following two DOF lumped parameter model describing the drillstring torsional dynamics :

I p Φp + c Φp -Φb + k (Φ p -Φ b ) + d p Φp = u T I b Φb -c Φp -Φb -k (Φ p -Φ b ) + d b Φb = -T ( Φb ), (9.1) 
where Φp and Φb denote the angular velocity at the top and bottom extremities, respectively, u T is the motor torque provided by the rotary table and T ( Φb ) is the frictional torque describing the bit-rock interaction.

The angular velocity regulation control law is defined as :

u T = k 1 Ω 0 -Φp + k 2 Ω 0 -Φp dt -k 3 Φp -Φb . (9.2)
This reduced-order controller, aimed at regulating the rotational velocity to a certain reference velocity Ω 0 . and Ω 0 = 10rad s -1 , respectively. The numerical values of the system parameters are given in [START_REF] Saldivar Marquez | Analysis and Control of Oilwell Drilling Vibrations[END_REF].

Notice the controller (9.2) is not able to regulate the angular velocity at the bottom end for Ω 0 = 5rad s -1 .

Synthesis of the controller

There are different methods for adjusting the controller gains ; one of them is the classic two-time-scales separation method [START_REF] Canudas De Wit | Theory of robot control[END_REF] detailed below.

Following [START_REF] Canudas De Wit | D-oskil : A new mechanism for controlling stick-slip oscillations in oil well drillstrings[END_REF], a variable z and a constant κ defined as : According to the drilling model (9.1), the dynamics of Φ p and z are described by :

z = k (Φ p -Φ b ) , κ 2 = 1 k , are introduced.
u T = I p Φp + cκ 2 ż + z + d p Φp κ 2 z = Φp -Φb = - 1 I p + 1 I b z -κ 2 c I p + c I b ż - d p I p Φp + d b I b Φb + 1 I p u T + 1 I b T ( Φb ),
which can be written as :

u T = I p Φp + cκ 2 ż + z + d p Φp κ 2 z = - z I eq -κ 2 c I eq - d b I b ż + d b I b - d p I p Φp + u T I p + T ( Φb ) I b , (9.3) 
with

I eq = 1 Ip + 1 I b -1
.

Since the torsional stiffness takes large values, it is assumed that κ 2 0 ; then it follows that

u T s = I p Φp + z + d p Φp (9.4) 0 = - z I eq + d b I b - d p I p Φp + u T s I p + T ( Φb ) I b , (9.5) 
where the rotary torque u T is split into slow (u T s ) and fast (u T f ) modes :

u T = u T s + κu T f . (9.6) 
From (9.5), we have that

z = I eq d b I b - d p I p Φp + u T s I p + T ( Φb ) I b ,
by substituting the above equation into (9.4) we obtain :

Φp + d b + d p I p + I b Φp = 1 I p + I b u T s - 1 I p + I b T ( Φb ).
Assume that u T s is chosen as :

u T s = k 1 + k 2 s Ω 0 -Φp ,
and define the variable Φp as follows

Φp = Ω 0 -Φp then, Φp = Ω 0 -Φp s and Φp = -Φp . For (d b + d p ) (I p + I b ), we have that Φp + k 1 I p + I b Φp + k 2 I p + I b Φp = 1 I p + I b T ( Φb ).
Then, by imposing a damping δ r and natural frequency ω n in the closed-loop dynamics, the values of k 1 and k 2 can be computed from

k 1 = (I p + I b ) 2δ r ω n - d b + d p I p + I b k 2 = (I p + I b ) ω 2 n .
Substituting (9.6) into (9.3) gives :

κ 2 z = - z I eq -κ 2 c I eq - d b I b ż + d b I b - d p I p Φp + u T s I p + κ I p u T f + T ( Φb ) I b . (9.7) 
Following the two-time scales separation approach, it is assumed that the slow mode has reached its steady state value, thus, equation (9.7) can be rewritten as :

κ 2 z = - z I eq -κ 2 c I eq - d b I b ż + κ I p u T f + T ( Φb ) I b + ρ p Φ * p , Φ * p , (9.8) 
where the superscript * denotes the steady-state value and

ρ p Φ * p , Φ * p = d b I b - d p I p Φ * p + u T s Φ * p , Φ * p I p = z * I eq - T ( Φb ) I b .
Defining the fast error coordinate as ζ = zz * , equation (9.8) can be rewritten as :

ζ + c I eq + d b I b ζ + 1 κ 2 I eq ζ = 1 I p κ u T f .
By choosing u T f = -k 3 ζ, we obtain :

ζ + c I eq + d b I b + k 3 I p κ ζ + 1 κ 2 I eq ζ = 0,
then, prescribing a damping value for the torsion dynamics δ tor , the value of k 3 can be computed as follows

k 3 = I p √ k 2δ tor √ kI eq - c I eq - d b I b .

Drilling vibration control

The control law (9.2) is designed to regulate the drillstring angular velocity, but it does not considers the vibration problem. This section presents a pair of reducedorder torque feedback controllers aimed at maintaining a constant rotary speed while reducing torsional vibrations.

Torsional rectification control

A torsional rectification method to suppress the stick-slip phenomenon is proposed in [START_REF] Tucker | On the effective control of torsional vibrations in drilling systems[END_REF] ; the strategy takes advantage of the fact that the general solution of the wave equation describing torsional drillstring vibrations allows the identification of both "up" and "down" moving components.

The underlying idea consists in maintaining the energy of the "down" traveling wave constant in the presence of the nonlinear boundary conditions describing the bit-rock frictional interface.

Without loss of generality, it is assumed that the speed of torsional waves is one ; the torsional excitations of the drilling system, described by the drillstring angular displacement Φ(s, t), are modeled by the wave equation :

∂ 2 Φ ∂t 2 (s, t) = ∂ 2 Φ ∂s 2 (s, t), 0 s 1 (9.9)
with boundary conditions

∂ 2 Φ ∂t 2 (0, t) = F 0 ∂Φ ∂t (0, t), ∂Φ ∂s (0, t), Φ(0, t), t ∂ 2 Φ ∂t 2 (1, t) = F 1 ∂Φ ∂t (1, t), ∂Φ ∂s (1, t), Φ(1, t), t
where s = 0 denotes the connection of the drillstring with the rotary table, and s = 1 the bottom extremity. The functions F 0 and F 1 are determined by the top drive and friction torques at the upper and bottom extremities respectively. The general solution of the wave equation is given by

Φ(s, t) = φ(t + s) + ψ(t -s),
where φ and ψ are arbitrary continuously differentiable real-valued functions, with φ representing an arbitrary up-traveling wave and ψ an arbitrary down-traveling wave. The time and spatial derivatives of Φ(s, t) are

∂Φ ∂t (s, t) = φ(t + s) + ψ(t -s), ∂Φ ∂s (s, t) = φ(t + s) -ψ(t -s),
respectively. Since the contact torque at any point "s" of the drillstring is proportional to ∂Φ ∂s (s, t), ψ represents the transmission of torque to the BHA. In order to drive the angular velocity to a prescribed constant rotary speed, ψ must be maintained close to a constant value. To this end, the quantity Ψ(t) defined by

Ψ(t) = ∂Φ ∂t (0, t) - ∂Φ ∂s (0, t) = 2 ψ(t) (9.10) 
must be monitored. A Newton-type equation is chosen to describe the top boundary condition :

∂ 2 Φ ∂t 2 (0, t) = G top ∂Φ ∂s (0, t) + u T (t) (9.11)
where G top is proportional to the torsional rigidity of the drillstring (G top = GJ LI T ) see [START_REF] Saldivar Marquez | Analysis and Control of Oilwell Drilling Vibrations[END_REF] for further details.

A commonly used control law to maintain a constant angular velocity Ω 0 is given by : u

T (t) = k p ξ(t) + k i ξ(t), (9.12) 
where k p > 0 and k i are the proportional and integral gain variables respectively and

ξ(t) = Ω 0 t -Φ(0, t) + ξ 0 ξ(t) = Ω 0 - ∂Φ ∂t (0, t),
where ξ 0 denotes the displacement of the drillstring at the upper extremity from its reference value.

In [START_REF] Tucker | On the effective control of torsional vibrations in drilling systems[END_REF], an improved control strategy is proposed ; the contact torque between the drillstring and the rotary table can be monitored by introducing a compensating drive torque that rectifies the up-travelling torsional waves on the drillstring. The control law is written as :

u T (t) = k p ξ(t) + k i ξ(t) -λΨ(t), (9.13) 
where λ 0 and Ψ(t) is given in (9.10). The torsional rectification control law (9.13) is evaluated in [START_REF] Tucker | On the effective control of torsional vibrations in drilling systems[END_REF] for different values of the control gains k p , k i , and λ ; besides, the effect of an incident torsional harmonic wave on the rotary table is explored. By analytical and numerical analyses it is concluded that the reflected torsional energy from the upper extremity can be decreased by increasing the control parameter λ.

Soft-torque control

The soft-torque, introduced in [START_REF] Halsey | Torque feedback used to cure slip-stick motion[END_REF], is a control approach widely used in the drilling industry to tackle torsional vibrations. This controller has the form of the standard speed controller (9.12) but it includes a high-pass filtered torque signal, i.e., u

T (t) = κ p ξ(t) + κ i ξ(t), (9.14) 
with

ξ(t) = Ω 0 t -h T f (t)dt -Φ(0, t) + ξ 0 , (9.15) 
ξ(t) = Ω 0 -hT f (t) - ∂Φ ∂t (0, t),
where h is an additional control parameter and T f is defined as :

T f (t) ≡ T contact (t) -T c (t),
T c denotes the output of a low-pass filter applied to the contact torque :

T contact (t) = -G top ∂Φ ∂s (0, t),
measured at the upper extremity. An AC low-pass filter is modeled by :

Ṫc (t) = ω c (T contact (t) -T c (t)) ,
where ω c is the cut-off angular frequency. By considering that

T f (t) dt = 1 ω c Ṫc (t)dt = 1 ω c T c (t),
equation (9.15) can be rewritten as :

ξ(t) = Ω 0 t - h ω c T c (t) -Φ(0, t) + ξ 0 .

Torsional energy reflection and stick-slip reduction

The performance of the torsional rectification controller (9.13) can be evaluated through the analysis of the energy reflection at the top extremity. To this end, consider the following solution to the equation (9.9) which describes a harmonic wave :

Φ(s, t) = A φ,ω sin (ω (t + s)) + A ψ,ω sin (ω (t -s) + α ω ) + Ω 0 t + C 0 s
where ω is the angular frequency, A φ,ω is the amplitude of the wave incident on the rotary from below, and A ψ,ω is the amplitude of the reflected wave. The constants C 0 , α ω and the ratio A ψ,ω /A φ,ω are determined from equations (9.11)-(9.13) as follows :

C 0 = λΩ 0 -k i ξ 0 G top + λ , α ω = tan -1 2ω k i -ω 2 (G top + λ) ω 4 -(2k i + (G top -k p ) η) ω 2 + k 2 i A ψ,ω A φ,ω = k i -ω 2 (k i -ω 2 ) cos (α ω ) + ωη sin (α ω ) η = G top + k p + 2λ,
the reflection coefficient is thus defined as The absorption of vibrational energy is greater when the reflection coefficient takes small values. It is easy to prove that the torsional energy reflected from the rotary table is reduced by increasing the control parameter λ. This is shown in Figure 9.3 which depicts the shape of the reflection coefficient r ω as a function of the angular frequency ω for different values of λ. Different data sets are considered : Notice that as the torsional rectification feedback λ is increased, the reflection coefficient r ω uniformly decreases ; this behavior corresponds to an increase of torsional vibration absorption.

r ω = A ψ,ω A φ,ω = ω 4 + aω 2 + k 2 i ω 4 + bω 2 + k 2 i where a = (G top -k p ) 2 -2k i , b = η 2 -2k i .
A similar analysis for evaluating the performance of the soft torque controller (9.14) is presented in [START_REF] Tucker | On the effective control of torsional vibrations in drilling systems[END_REF] ; it is concluded that the shape of the reflection coefficient does not varies uniformly with the control parameter h. Besides, it is proven that the torsional rectification controller exhibits an improved performance compared with the soft torque one.

In order to asses the ability of the torque feedback controllers (9.12), (9.13) and (9.14) in eliminating the stick-slip phenomenon, we propose to test them by using two different modeling approaches. A lumped parameter model describing the torsional drilling behavior coupled to the simplified ToB model given in [START_REF] Saldivar Marquez | Analysis and Control of Oilwell Drilling Vibrations[END_REF] is first considered. Next, we use an a neutral-type time-delay model derived from a distributed parameter representation of the coupled torsional-axial drilling dynamics, subject to the ToB model, which is inspired by the Karnopp friction law. According to the geometrical formulation of elasticity laws established in [START_REF] Antman | [END_REF], the boundary conditions of the wave equation can be modeled as follows :

∂ 2 Φ ∂t 2 (0, t) -G top ∂Φ ∂s (0, t) -u T (t) = 0 ∂ 2 Φ ∂t 2 (1, t) + G bit ∂Φ ∂s (1, t) + T ∂Φ ∂t (1, t) = 0
where T describes the frictional torque at the bit, u T (t) the motor torque considered as a control input. The top drive and BHA inertias are scaled into the constants An approximation of the drillstring torsional dynamics is obtained by ignoring the infinite-dimensional character of the system and considering it as a torsional pendulum that couples the top drive torque with the frictional torque arising from the bit-rock contact. By defining the torsional displacements at the top and bottom extremities Φ(0, t), Φ(1, t) as Φ p and Φ b , respectively, and by considering ∂Φ ∂s (1, t) Φ b -Φ p , the equations of motion are given by :

G top = GJ LI T and G bit = GJ LI B .
Φp + G top (Φ p -Φ b ) -u T (t) = 0 (9.16) Φb + G bit (Φ b -Φ p ) + T Φb = 0.

Drilling vibration control 159

The frictional torque T can be approximated by the following function :

T ( Φb (t)) = 2 kp Φb (t) Φ2 b (t) + k2
, k > 0, p > 0.

(9.17) Figures 9.4 and 9.5 show the system response to the torque feedback controllers : standard (9.12), torsional rectification (9.13) and soft torque (9.14) for Ω 0 =5rad s -1 and Ω 0 =10rad s -1 , respectively.

Notice that, as remarked in [START_REF] Tucker | On the effective control of torsional vibrations in drilling systems[END_REF], the torsional rectification controller provides superior performance when the simplified model (9.16)-(9.17) is considered.

Consider now, the neutral-type time-delay model of the torsional-axial coupled drilling dynamics given by :

ż(t) -Υ ż(t -2τ ) = -Ψz(t) -ΥΨz(t -2τ ) - 1 I B T (z(t)) + 1 I B ΥT (z(t -2τ )) + ΠΩ(t -τ ), (9.18) 
where z(t) is the angular velocity at the bottom extremity, and

Π = 2Ψβ β + cGJ , Υ = β -cGJ β + cGJ , Ψ = cGJ I B , τ = I GJ L, cGJ = √ IGJ.
(9.19) Similarly, the wave equation with boundary conditions, corresponding to the axial drilling dynamics is transformed into the following neutral-type equation :

ẏ(t) -Υ ẏ(t -2τ ) = -Ψy(t) -Υ Ψy(t -2τ ) - 1 M B T (z(t)) + 1 M B ΥT (z(t -2τ )) + Πu H (t -τ ), (9.20) 
where y(t) is the axial velocity at the bottom extremity, and

Π = 2 Ψ α + cEΓ , Υ = α -cEΓ α + cEΓ , Ψ = cEΓ M B , τ = cL. (9.21) 
Also consider the model frictional torque on bit

T Φb (t) = c b Φb (t) + W ob R b µ b Φb (t) sgn Φb (t) . (9.22)
The term c b Φb (t) represents the viscous damping torque at the bottom end and the expression W ob R b µ b Φb (t) sgn Φb (t) approximates the dry friction torque. Notations R b and W ob stand for the bit radius and the weight on bit, respectively. The term c b Φb (t) represents the viscous damping torque at the bottom end and the expression W ob R b µ b Φb (t) sgn Φb (t) approximates the dry friction torque. Notations R b and W ob stand for the bit radius and the weight on bit, respectively. The friction coefficient µ b ( Φb (t)) is given by :

µ b Φb (t) = µ cb + (µ sb -µ cb )e -γ b| Φb (t)| , (9.23) 
where µ cb , µ sb denote the Coulomb and static friction coefficients, the constant 0 < γ b < 1 defines the velocity decrease rate. Consider also the frictional torque on bit model, derived from the Karnopp friction law, see [START_REF] Boussaada | Delay system modeling of rotary drilling vibrations[END_REF][START_REF] Saldivar Marquez | Analysis and Control of Oilwell Drilling Vibrations[END_REF]. Obviously, this system representation constitutes a more reliable description of the dynamics taking place during the drilling performance. Figures 9.6 and 9.7 show the system trajectories in closed loop with the controllers (9.12), (9.13) and (9.14). Observe that, under this modeling approach, the soft-torque control method performs better than the standard speed controller and than the torsional rectification one ; in fact, these last ones are unable to eliminate the stick-slip for low angular velocities. 

Bifurcation analysis-based controllers

This section presents a pair of control schemes to tackle both axial and torsional vibrations occurring along a rotary oilwell drilling system. It will be shown that the implementation of low-order delayed feedback controllers allows reducing undesired vibrations leading to an acceptable drilling performance.

Consider the following coupled torsional-axial model : 

                 ∂ 2 U ∂s 2 (s, t) = c 2 ∂ 2 U ∂t 2 (s, t), c = ρ a E EΓ ∂U ∂s (0, t) = α ∂U ∂t (0, t) -u H (t) EΓ ∂U ∂s (L, t) = -M B ∂ 2 U ∂t 2 (L, t) + F ∂U ∂t (L, t) (9.24) 
and

                 ∂ 2 Φ ∂s 2 (s, t) = c 2 ∂ 2 Φ ∂t 2 (s, t), c = ρ a G GJ ∂Φ ∂s (0, t) = β ∂Φ ∂t (0, t) -u T (t) GJ ∂Φ ∂s (L, t) = -I B ∂ 2 Φ ∂t 2 (L, t) -F ∂U ∂t (L, t) (9.25) 
where U and Φ stand for the axial and the torsional position, and the control inputs u H and u T correspond to the brake motor control and the torque provided by the rotary table.

By using the d'Alembert transformation, the system of PDE (9.24)-(9.25) is reduced to the following system of Neutral Delay Differential Equations (NDDE) :

Üb (t) -Υn Üb (t -2) = -Ψn Ub (t) -Υn Ψn Ub (t -2) (9.26) + 1 M B F Ub (t) - 1 M B Υn F Ub (t -2) + Πn u H (t -1), Φb (t) -Υ n Φb (t -2τ ) = -Ψ n Φb (t) -Υ n Ψ n Φb (t -2τ ) (9.27) + 1 I B F Ub (t) - 1 I B Υ n F Ub (t -2τ ) + Π n u T (t -τ ),
with

Πn = 2 Ψn α + 1 , Υn = α -1 α + 1 , Ψn = 1 M B , Π n = 2cGJ I B (cEΓβ + cGJ) , Υ n = cEΓβ -cGJ cEΓβ + cGJ , Ψ n = cGJ cEΓI B ,
where τ is the ratio of the speeds τ = c c , and U b and Φ b are respectively the axial and torsional bit positions, U b (t) = U (L, t), Φ b (t) = Φ(L, t). For the sake of simplicity, we consider functions F and F of the form : z → p k z/( k2 z 2 + ζ) where the parameters p, k, ζ are positive constants related to the sharpness of the top angle of the friction force, satisfying 0 < ζ 1 and 0 < k < 1, and the constant p provides the amplitude of the friction force.

Following the ideas introduced in Chapter 8, the qualitative analysis based on the center manifold theorem [START_REF] Carr | Application of Center Manifold Theory[END_REF] and normal forms theory [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[END_REF] is applied to reduce the model to a singularly perturbed system of ordinary differential equations (ODE) by means of a spectral projection.

Delayed proportional feedback controller

Setting x = (x 1 , x 2 , x 3 , x 4 ) T , x 1 = U b , x 2 = Φ b , x 3 = Ub , x 4 =
Φb , and defining :

u H (t) =p H U b (t -1) u T (t) =p Ω Φ b (t -τ ), (9.28) 
the drilling model can be rewritten as :

ẋ(t) =D 1 ẋ(t -2) + D 2 ẋ(t -2c/c) + A 0 x(t) + A 1 x(t -2) + A 2 x(t -2c/c) + F(x(t), x(t -2), x(t -2c/c)) (9.29)
where F is the nonlinear part of the system (9.26)-(9.27) and the system matrices are defined below,

D 1 = 0 2 0 2 0 2 d1 , D 2 = 0 2 0 2 0 2 d2 , A 0 = 0 2 I 2 0 2 ã0 , A 1 = 0 2 0 2 pH ã1 , A 2 = 0 2 0 2 pΩ ã2
where 0 2 and I 2 are the zero and the identity 2 × 2 matrices, and

d1 = Υn 0 0 0 , d2 = 0 0 0 Υ n , pH = p H 0 0 0 , pΩ = 0 0 0 p Ω , ã0 =   - Ψn(p k+ζ) ζ 0 p k Jζ -Ψ n   , ã1 =   - Υn Ψn(p k+ζ) ζ 0 0 0   , ã2 =   0 0 -Υnp k ζI B -Υ n Ψ n   .
Setting the numerical values of the physical parameters given in Table of Appendix 8.5, the following proposition is established. Proposition 6. The following properties are established for system (9.29), depending on the values of the gains p H and p Ω in (9.28). For p Ω = p H = 0 :

-Zero is the only eigenvalue with zero real part and the remaining eigenvalues are with negative real parts. Moreover, zero is an eigenvalue of algebraic multiplicity 2 and of geometric multiplicity 1, that is, the zero eigenvalue is non-semisimple and the singularity is of Bogdanov-Takens-type, see [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[END_REF]. -The system (9.29) is formally stable but not asymptotically stable (although there are no characteristic roots with positive real parts). For p H = -24δ r and p Ω = 45µr 2 10 for a small enough r : -The dynamics of (9.29) are reduced on a cubic center manifold to

ż1 = z 2 ż2 = δz 1 + µz 2 -3z 2 z 2 1 (9.30)
for which the function

I(z) = 1 2 z 1 2 - 1 2 z 2 2 δ - 1 2 δ z 1 2 z 2 2 + 1 4 δ 2 z 1 4 + 1 4 z 2 4
is a Lyapunov function. For δ < 0 and µ < 0, the system is globally asymptotically stable.

Remark 9. When the quasipolynomial function corresponding to a neutral functional equation has no root on the imaginary axis, then one can use the delay-dependent stability criteria based on the definite integral stability method (originated from the Argument Principle) proposed in [START_REF] Xu | Delay-dependent stability analysis by using delay-independent integral evaluation[END_REF].

Sketch of the proof :

The first assertion is obtained by establishing a linear analysis of the system. Indeed, it can be easily verified by computing the associated characteristic equation and substituting the physical values. Numerical tools as the Quasi-Polynomial Mapping Based Rootfinder QPMR [START_REF] Vyhlidal | Mapping based algorithm for large-scale computation of quasi-polynomial zeros[END_REF] are useful for locating the spectral values.

Next, we address the second part of the proposition concerning the nonlinear analysis. Following the approach described in [START_REF] Hale | Period doubling in singularly perturbed delay equations[END_REF], which considers a singular delay system linearly dependent on one parameter, and in the same spirit of the decomposition established in [START_REF] Faria | Normal forms for retarded functional-differential equations with parameters and applications to Hopf bifurcation[END_REF], with the goal of computing the normal form of delay systems, we extend the scheme of computing the center manifold to the case of NDDE. System (9.29) is regarded as a perturbation of

d dt D x t = L 0 x t , where L 0 = L| {p H =0, p Ω =0} , (9.31) 
Indeed, system (9.29) can be written as

d dt D x t : = L 0 x t + F(x t ) = L 0 x t + (L -L 0 ) x t + F(x t ), (9.32) 
such that

F µ,p = -0.0405 x 3 1 (t) + 0.0377 x 3 3 (t -2) + p H x 1 (t -2) -1.875 px 3 1 (t) + 1.874998 px 3 1 (t -1.264911064)
.

Next, following the theoretical schemes presented in [START_REF] Milton | The time-delayed inverted pendulum : Implications for human balance control[END_REF], the computations steps for obtaining the evolution equation of system's (9.31) solutions on the center manifold are given. First, we compute the basis of the generalized eigenspace corresponding to the double eigenvalue λ 0 = 0.

Φ(θ)

T = 1 + θ 1 + 2 θ 1 2 1 2 0 0
, where θ ∈ [-2, 0]. Recall that the adjoint linear equation associated to (9.29) is

u(t) =D 1 u(t + 2) + D 2 u(t + 2c/c) -A 0 u(t) -A 1 u(t + 2) -A 2 u(t + 2c/c). ( 9 

.33)

A basis for the generalized eigenspace associated to the double eigenvalue zero can be defined as

Ψ(θ) = -1 -3 -7 -13
ξ + 1 3 ξ + 2 7 ξ + 3 13 ξ + 4 .

Let us consider the bilinear form, see [START_REF] Hale | Introduction to functional differential equations[END_REF] (ψ, ϕ) =ψ(0

)(ϕ(0) -D 1 ϕ(-2) -D 2 ϕ(-1.264911)) + 0 -2 ψ(ξ + 2)A 1 ϕ(ξ)dξ + 0 -1.264911 ψ(ξ + 1.264911)A 2 ϕ(ξ)dξ - 0 -2 ψ (ξ + 2)D 1 ϕ(ξ)dξ - 0 -1.264911 ψ (ξ + 1.264911)D 2 ϕ(ξ)dξ.
(9.34) By using (9.34), we can easily normalize Ψ such that (Ψ, Φ) = I d , thus the space C can be decomposed as C = P Q, where

P = {ϕ = Φz; z ∈ R 2 } and Q = {ϕ ∈ C; (Ψ, ϕ) = 0}.
Recall that each of these subspaces is invariant under the semigroup T (t) and that the matrix B (concerned by the theoretical settings), satisfying AΦ = ΦB, is given by

B = 0 0 1 0 . (9.35)
Let us first set the following decomposition x t = Φy(t) + z(t), where z(t) ∈ Q, y(t) ∈ R 2 , z(t) = h(y(t)) and h is some analytic function h : P → Q. Following [START_REF] Milton | The time-delayed inverted pendulum : Implications for human balance control[END_REF], the explicit solution on the center manifold is given by ẏ(t) = By(t) + Ψ(0)F[Φ(θ)y(t) + h(θ, y(t))],

(9.36)

∂h dy {By + Ψ(0)F[Φ(θ)y + h]} + Φ(θ)Ψ(0)F[Φ(θ)y + h] =    ∂h dθ , -2 θ 0, L(h(θ, y)) + F[Φ(θ)y + h(θ, y)], θ = 0, (9.37) 
where h = h(θ, y) and F is defined in (9.32). Since our aim is to establish the parameter values of p H and p Ω guaranteeing an asymptotic suppression of the vibrations after some fixed time t 0 , we investigate the parameter bifurcations. The computation of the evolution equation on the center manifold of the solutions of system (9.32) is required.

The next step consists in introducing a small scaling parameter r in order to zoom the neighborhood of the singularity. Consider the following change of coordinates :

p H = -24δ r, p Ω = 45µr 2 10 , y 1 = rz 1 , y 2 = r 2 z 2 .
A time scaling defined by t old = r t new , leads to the following cubic normal form reduction of (9.29), ż1 = z 2 ,

ż2 = δz 1 + µz 2 -z 3 1 ,
for which a normal form is given by (9.30).

If µ is a positive function beyond (0, 0) and δ < 0, then,

İ(z 1 , z 2 ) = - z 2 2 µ δ + 3 z 2 2 z 1 2 δ -δ z 1 2 z 2 2 µ + 3 δ z 1 4 z 2 2 + z 2 4 µ -3 z 2 4 z 1 2
which is always negative. Thus the system is globally asymptotically stable and the undesired vibrations are suppressed. The proposed scheme offset the computation of a Lyapunov function for a system of PDE with nonlinear boundary conditions. Figures 9.8 and 9.9 show a substantial reduction of drilling vibrations through the delayed feedback controllers :

u H (t) = -24δrU b (t -1) (9.38) u T (t) = 4.5µr 2 Φ b (t -τ ) (9.39)
for r = 0.1, δ = -1000 and µ = -10. the matrix representation of the system is given by :

Delayed PID controller

Setting x = (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) T , x 3 = U b , x 4 = Φ b , x 5 = Ub , x 6 = Φb , x 1 = t 0 x 3 (s)
u H (t) =H p U b (t -1) + H d Ub (t -1) u T (t) =Ω p Φ b (t -τ ) + Ω i t-τ 0 Φ b (s)ds,
ẋ(t) = D1 ẋ(t -2) + D2 ẋ(t -2c/c) + Â0 x(t) + Â1 x(t -2) + Â2 x(t -2c/c) + F(x(t), x(t -2), x(t -2c/c)) (9.41)
where F is the nonlinear part of the system (9.26)-(9.27) and the system matrices are defined below,

D1 = 0 4×4 0 4×2 0 2×4 d1 , D2 = 0 4×4 0 4×2 0 2×4 d2 , Â0 =   0 2 I 2 0 2 0 2 0 2 I 2 Ωi Hp ã0 + Hd   , Â1 = 0 4×4 0 4×2 0 2×4 ã1 , Â2 = 0 4×4 0 4×2 0 2×4 ã2 ,
where 0 m×n is the zero matrix of m × n dimension, and

Ωi = 0 0 0 Ω i , Hp = H p 0 0 Ω p , Hd = H d 0 0 0 . Proposition 7.
The following properties are established for system (9.41), depending on the values of the gains H p , H d , Ω p and Ω i in (9.40).

For

Ω p = Ω i = H p = H d = 0 :
-Zero is the only eigenvalue with zero real part and the remaining eigenvalues have negative real parts. Moreover, zero is an eigenvalue of algebraic multiplicity 4 and of geometric multiplicity 1, i.e., there is a generalized Bogdanov-Takens singularity, see [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[END_REF].

-The system (9.41) is formally stable but not asymptotically stable (although there are no characteristic roots with positive real parts). For H d = 13.27 r 11 δ 3 , H p = 26.55 r 12 δ 2 , Ω i = -11.47 r 13 δ 1 , Ω p = 11.47 r 10 δ 4 and a small parameter r :

-The dynamics of (9.41) reduces on a degree 15 center manifold to

ż1 = z 2 , ż2 = z 3 , ż3 = z 4 ż4 = δ 1 z 1 + δ 2 z 2 + δ 3 z 3 + δ 4 z 4 -z 3 4 (9.42)
for which the linear part is written as a companion matrix :

A =        0 1 0 0 0 0 1 0 0 0 0 1 δ 1 δ 2 δ 3 δ 4       
thus there exist values for δ 1 , δ 2 , δ 3 , and δ 4 such that A is Hurwitz, which guaranteeing local asymptotic stability.

Sketch of the proof : Similar to the case of the delayed feedback controller, the spectral projection methodology is applied. The singularity here is zero with algebraic multiplicity 4 and geometric multiplicity 1. A basis for the generalized eigenspace M 0 can be defined by

Φ(θ) =              1 6 θ 3 + θ 2 + θ -1 1 2 θ 2 + 2 θ + 1 θ + 2 1 -1 6 θ 3 + 1 2 θ 2 -θ + 2 -1 2 θ 2 + θ -1 -θ + 1 -1 θ 2 + θ 2 θ + 1 2 0 θ + 1 1 0 0 4 θ 4 0 0 1 0 0 0              .
The matrix B, satisfying AΦ = BΦ, is given by

B =        0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0       
.

A basis Ψ of the adjoint space satisfying (Ψ, Φ) = I d , evaluated at zero is given by : 

Ψ(0) =        -0.
      
The change of coordinates given in the second assertion of Proposition 6 leads to the reduced system (9.42). Figure 9.10 shows the performance of the delayed PID feedback controllers : 

u H (t) = 26.55 r 12

Notes and references

The torsional rectification method reviewed in this chapter is based on the identification of both "up" and "down" moving components of the general solution of the wave equation describing torsional drillstring vibrations. A similar approach is proposed in [START_REF] Kreuzer | Controlling torsional vibrations of drill strings via decomposition of traveling waves[END_REF] ; the suggested method allows reducing torsional vibrations by exactly decomposing the drill string dynamics into two traveling waves : those traveling in the direction of the top extremity and those traveling in the direction of the bit. The decomposition is achieved with two sensors that can be placed at the top drive and at a short distance below the top drive. The velocity of the top drive is controlled in order to absorb the wave traveling in the direction of the top drive, thus achieving a reflection coefficient of zero for the frequency range of the undesired torsional vibrations. The performance of the control algorithm was evaluated through a small-scale experimental setup.

The design of low-order controllers presented in Section 9.3 was conducted by an analytic treatment of the NFDE describing the coupled axial-torsional drilling dynamics. Via spectral projection, a finite-dimensional approximation of the PDE model allowing preserving essential dynamics of the original system is obtained ; then, the Lyapunov function guaranteeing the global stability of the reduced model ensures the local stability of the infinite-dimensional system. The model transformation procedure is explained in detail in [START_REF] Boussaada | Analysis of drilling vibrations : A time-delay system approach[END_REF].

Drilling system analysis led to the identification of a local bifurcation of Bogdanov-Takens type (double zero eigenvalues) which has not been studied for NDDE, except for [START_REF] Boussaada | Analysis of drilling vibrations : A time-delay system approach[END_REF], where an analytical study of the uncontrolled drilling vibrations is developed. A similar analysis approach is presented in [START_REF] Hale | Period doubling in singularly perturbed delay equations[END_REF], where a physiological system described by a DDE with double-zero eigenvalue singularity is investigated. In [START_REF] Weedermann | Hopf Bifurcation calculations for scalar delay differential equations[END_REF], explicit conditions for a Hopf bifurcation to occur are derived ; using center manifold reduction and normal form theory the stability coefficient of the periodic orbit on the center manifold is explicitly determined.

There are some computational techniques to determine center manifolds. For instance, [11] presents an algorithm to establish the center manifold of a neutral functional differential equation ; Bogdanov-Takens and Hopf singularities are considered. In [START_REF] Milton | The time-delayed inverted pendulum : Implications for human balance control[END_REF], an overview on the theoretical settings for calculating center manifolds is provided ; furthermore, it is shown how the computations may be implemented in the symbolic algebra package Maple.

So far we have studied some simple control techniques that help reducing unwanted drilling oscillations. It has been shown that its performance is acceptable, however, it is natural to think that more sophisticated control methods could produce better results. The following chapter concerns the design of a control strategy that exploits an intrinsic characteristic of the system : its flatness property. As will be seen later, this property is useful to solve trajectory tracking problems ; based on this idea, we design a pair of controllers aimed at steering the system trajectories to prescribed paths, achieving in this way the elimination of axial and torsional vibrations.

Chapitre 10

Characterizing the Codimension of Zero Singularities for Time-Delay Systems : A Link with

Vandermonde and Birkhoff incidence Matrices

The analysis of time-delay systems mainly relies on detecting and understanding the spectral values bifurcations when crossing the imaginary axis. This chapter deals with the zero singularity, essentially when the zero spectral value is multiple. The simplest case in such a configuration is characterized by an algebraic multiplicity two and a geometric multiplicity one, known as the Bogdanov-Takens singularity. Moreover, in some cases the codimension of the zero spectral value exceeds the number of the coupled scalar-differential equations. Nevertheless, to the best of our knowledge, the bounds of such a multiplicity have not been deeply investigated in the literature. It is worth mentioning that the knowledge of such an information is crucial for nonlinear analysis purposes since the dimension of the projected state on the center manifold is none other than the sum of the dimensions of the generalized eigenspaces associated with spectral values with zero real parts. Motivated by control-oriented problems, this paper provides an answer to this question for timedelay systems, taking into account the parameters' algebraic constraints that may occur in applications. We emphasize the link between such a problem and the incidence matrices associated with the Birkhoff interpolation problem. In this context, symbolic algorithms are also proposed for LU-factorization for functional confluent Vandermonde as well as some classes of bivariate functional Birkhoff matrices. Some of the results proposed in this work have been presented in The 13th European Control Conference, June 24-27, 2014, Strasbourg, France [START_REF] Boussaada | Computing the codimension of the singularity at the origin for time-delay systems in the regular case : A Vandermonde-based approach[END_REF] and The 21st International Symposium on Mathematical Theory of Networks and Systems July 7-11, 2014, Groningen, The Netherlands [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with birkhoff incidence matrices[END_REF]. This chapter reproduces the results of an extended version [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems : A link with Vandermonde and Birkhoff incidence matrices[END_REF] which is not yet available online, the proofs are then presented in the manuscript.

Introduction

Matrices arising from a wide range of problems in mathematics and engineering typically display a characteristic structure. Exploiting such a structure is the means to the design of efficient algorithms, see for instance [START_REF] Bini | A fast algorithm for approximate polynomial gcd based on structured matrix computations[END_REF]. This study is a crossroad between the investigation of a class of such structured matrices originally involved in Multivariate Interpolation Problems (namely, the well-known Birkhoff Interpolation Problem) and the estimation of the upper bound for the codimension of spectral values of linear Time-Delay Systems (TDS) (which are the zeros of some characteristic entire function called characteristic quasipolynomial ). The aim of this paper is three fold : firstly, it emphasizes the link between the above two quoted issues. Secondly, it shows that the codimension of the zero spectral value of a given TDS is characterized by some algebraic properties of an appropriate functional Birkhoff Matrix. Finally, it shows the effectiveness of the proposed constructive approach by exploring the generic settings as well as investigating some specific but significant sparsity patterns. In both cases, symbolic algorithms for LU-factorization are established for some novel classes of Birkhoff matrices. It is worth mentioning that such an attempt can be exploited for further classes of Birkhoff matrices and should be of interest in some linear algebra problems involving structured matrices as well as in applications including polynomial interpolation.

The class of systems considered throughout this paper is infinite-dimensional with N discrete (constant) delays. Let z = (z 1 , . . . , z n ) ∈ R n denote the state-vector, then the system reads as follows

ż = N k=0 A k z(t -τ k ), (10.1) 
under appropriate initial conditions belonging to the Banach space of continuous functions C([-τ N , 0], R n ). Here τ k , k = 1 . . . N are strictly increasing positive constant delays such that τ 0 = 0 and τ = (τ 1 , . . . , τ N ), and

A k ∈ M n (R) for k = 0 . . . N .
It is well known that the exponential stability of the solutions of (12.1) is derived by the location of the spectrum χ, where χ designates the set of roots of the characteristic function [START_REF] Diekmann | of Applied Mathematical Sciences, Functional, complex, and nonlinear analysis[END_REF][START_REF] Bellman | Differential-difference equations[END_REF]. Notice that such a function, denoted in the sequel ∆(λ, τ ), is transcendental in the Laplace variable λ. Such a spectrum χ can be split as

χ = χ + ∪ χ 0 ∪ χ -where χ + = {λ ∈ C, ∆(λ, τ ) = 0, (λ) > 0}, χ -= {λ ∈ C, ∆(λ, τ ) = 0, (λ) < 0} and χ 0 = {λ ∈ C, ∆(λ, τ ) = 0, (λ) = 0}.
More precisely, the characteristic function of system (12.1) ∆ :

C × R N + → C which reads as ∆(λ, τ ) = det λ I -A 0 - N k=1 A k e -τ k λ , (10.2) 
One can prove that the quasipolynomial function (12.2) admits an infinite number of zeros, see for instance the references [START_REF] Bellman | Differential-difference equations[END_REF][START_REF] Ahlfors | Complex Analysis[END_REF][START_REF] Levin | Distribution of zeros of entire functions[END_REF]. The study of zeros of an entire function [START_REF] Levin | Distribution of zeros of entire functions[END_REF] of the form (12.2) plays a crucial role in the analysis of asymptotic stability of the zero solution of some given system (12.1). Indeed, the zero solution is asymptotically stable if all the zeros of (12.2) are in the open left-half complex plane [START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF]. Accordingly to this observation, the parameter space which is spanned by the coefficients of the polynomials P i , can be split into domains, each of them with a constant number of right half-plane characteristic roots (which is nothing but the so-called D-decomposition, see for instance [START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF][START_REF] Insperger | Semi-Discretization for Time-Delay Systems : Stability and Engineering Applications[END_REF] and references therein). These domains are separated by a boundary corresponding to the case when at least one characteristic root belongs to the spectrum. In the stability analysis of TDS, we are particularly interested by the stability domains (all characteristic roots with strictly negative real parts) as well as their boundary. Moreover, under appropriate algebraic restrictions, a given root associated to such a boundary may have high codimension. In this paper, we are concerned with the codimension of the zero spectral value. The typical example for non-simple zero spectral value is the Bogdanov-Takens singularity which is characterized by an algebraic multiplicity two and a geometric multiplicity one. Cases with higher order multiplicities of the zero spectral value are known to us as generalized Bogdanov-Takens singularities.

Those types of configurations are not only theoretical and are involved in concrete applications. Indeed, the Bogdanov-Takens singularity is identified in [START_REF] Hale | Period doubling in singularly perturbed delay equations[END_REF] where the case of two coupled scalar delay equations modeling a physiological control problem is studied. In [START_REF] Boussaada | Analysis of drilling vibrations : A time-delay system approach[END_REF] and [START_REF] Saldivar Marquez | Analysis and Control of Oilwell Drilling Vibrations[END_REF] this type of singularity is also encountered in the study of coupled axial-torsional vibrations of some oilwell rotary drilling system. Moreover, the paper [START_REF] Campbell | Zero singularities of codimension two and three in delay differential equations[END_REF] is devoted to the analysis of such type of singularities where codimension two and three are studied, and the associated center manifolds are explicitly computed. It is commonly accepted that the time-delay induces desynchronizing and/or destabilizing effects on the dynamics. However, new theoretical developments in control of finite-dimensional dynamical systems suggest the use of delays in the control laws for stabilization purposes. For instance, [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF][START_REF] Boussaada | Inverted pendulum stabilization : Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains[END_REF] are concerned by the stabilization of the inverted pendulum by delayed control laws and provide concrete situations where the codimension of the zero spectral value exceeds the number of the coupled scalar equations modeling the inverted pendulum on cart.

In [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF], the authors prove that the delayed proportional-derivative (PD) controller stabilizes the inverted pendulum by identifying a codimension three singularity for a system of two coupled delay equations. In [START_REF] Boussaada | Inverted pendulum stabilization : Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains[END_REF], the same singularity is characterized by using a particular delay block configuration. It is shown that two delay blocks offset a PD delayed controller.

Although the algebraic multiplicity of each spectral value of a time-delay system is finite (a direct consequence of Rouché Theorem, see [START_REF] Polya | I : Series, Integral Calculus, Theory of Functions[END_REF]), to the best of the author's knowledge, the computation of the upper bound of the codimension of the zero spectral value did not receive a complete characterization especially in the case when the physical parameters of a given time-delay model are subject to algebraic constraints. Namely, if the root at the origin is invariant with respect to the delay parameters, however, its multiplicity is strongly dependent on the existing links between the delays and the other parameters of the system.

Furthermore, the knowledge of the codimension of such a spectral value as well as the number of purely imaginary spectral values counting their multiplicities are valuable information. For instance, such an information allows to estimate the number of unstable roots ; card(χ + ) where χ + = {λ ∈ C, ∆(λ, τ ) = 0, (λ) > 0} for a given time-delay system (12.1). Actually, the main theorem from [119, p. 223], which is reported in the Appendix, emphasizes the link between card(χ + ) and card(χ 0 ) (Multiplicity is taken into account). In the light of the quoted result and its potential consequences on designing new approaches for the characterization of the linear stability analysis of time-delay systems, the need of for greater emphasis on the study of the zero singularity and, more generally, the imaginary roots becomes obvious. Finally, it is worth mentioning that such a study is also interesting from a nonlinear analysis viewpoint, which gives another motivation for the present investigation. When the unstable spectrum is an empty set or equivalently χ = χ -∪ χ 0 , a complete knowledge of the imaginary roots as well as their multiplicities becomes crucial predominatingly when the center manifold and the normal forms theory are involved for deriving an accurate local qualitative description of the studied dynamical system, see [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[END_REF]. In particular, in this case, when the zero spectral value is the only spectral value with zero real part ; χ 0 = {0}, then the center manifold dimension is none other than the codimension of the generalized Bogdanov-Takens singularity [START_REF] Carr | Application of Center Manifold Theory[END_REF][START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[END_REF][START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF].

In the context mentioned above, as a first estimation on the bound for the codimension of the zero spectral value for quasipolynomial functions, we emphasize the Pólya-Szegö bound [176, pp. 144], which will be denoted P S in the sequel. The proof of such a result is based on the Rouché Theorem and Cauchy's argument principle. Recall that P S bound is nothing but the degree of the considered quasipolynomial function, see also [START_REF] Wielonsky | A Rolle's theorem for real exponential polynomials in the complex domain[END_REF] for a modern formulation of the mentioned result. Originally, the Pólya-Szegö result, which is reported in the Appendix, gives a bound for the number of roots of a quasipolynomial function in a horizontal strip α ≤ I(z) ≤ β. Setting α = β = 0 provides a bound for the number of real spectral values, which is a natural bound for the multiplicity of the zero spectral value. It will be stressed in the sequel that the Pólya-Szegö bound is a sharp bound for the zero spectral value multiplicity in the case of quasipolynomial functions consisting in the so-called complete or dense polynomials. Nevertheless, it is obvious that the Pólya-Szegö bound remains unchanged when certain coefficients c i,j vanish without affecting the degree of the quasipolynomial function. Such a simple remark allows us claiming that Pólya-Szegö bound does not take into account the algebraic constraints on the parameters. However, such constraints appear naturally in applications. In fact, models issued from applications often consist in lacunary ou sparse structures [START_REF] Marden | Geometry of Polynomials[END_REF], illustrative examples will be given in the next section concerned by motivations. Moreover, when one needs conditions insuring a given multiplicity bounded by P S , then computations of the successive differentiations of the quasipolynomial have to be made.

In the sequel, among others, we emphasize a systematic approach allowing to a sharper bound for the zero spectral value multiplicity. Indeed, the proposed approach does not only take into account the algebraic constraints on the coefficients c i,j but it also gives appropriate conditions guaranteeing any admissible multiplicity.

Furthermore, the symbolic approach we adopt in this study underlines the connection between the codimension of the zero singularity problem and incidence matrices of the so-called Confluent Vandermonde Matrix as well as the Birkhoff Matrix, see for instance [START_REF] Björck | Algorithms for confluent Vandermonde systems[END_REF][START_REF] Gautshi | On inverses of Vandermonde and confluent Vandermonde matrices[END_REF][START_REF] Gautshi | On inverses of Vandermonde and confluent Vandermonde matrices ii[END_REF][START_REF] Gonzalez-Vega | Applying quantifier elimination to the Birkhoff interpolation problem[END_REF]. To the best of the author's knowledge, the first time the Vandermonde matrix appears in a control problem is reported in [126, p. 121], where the controllability of a finite dimensional dynamical system is guaranteed by the invertibility of such a matrix, see also [START_REF] Ha | A note on the determinant of a functional confluent Vandermonde matrix and controllability[END_REF]. Next, in the context of time-delay systems, the use of the standard Vandermonde matrix properties was proposed by [START_REF] Niculescu | Stabilizing a chain of integrators using multiple delays[END_REF][START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF] when controlling one chain of integrators by delay blocks. Here we further exploit the algebraic properties of such matrices into a different context.

The remaining paper is organized as follows. Section 2 presents some prerequisites and the problem statement. It is concluded by a more focused description of the paper objectives and contributions. Section 3 exhibits some motivating examples including some illustrations of the limitations of the Pólya-Szegö bound P S . Next, the main results are proposed and proved in Section 4 and Section 5. Namely, Section 4 provides some symbolic algorithms for the LU-factorisation associated to some classes of functional Birkhoff Matrices. Then, the results of the later section are exploited in Section 5 which provides an adaptive bound for the multiplicity of the zero spectral value for quasipolynomial functions. Various illustrative examples and control-oriented discussions are presented in Section 6. Finally, some concluding remarks end the paper.

Prerequisites and statement of the problem

Let us start by setting a new parametrization for the quasipolynomial function (12.2) characterizing the time-delay system (12.1) and defining some useful notations adopted through the paper.

Some straightforward computations give the following formal expression of the quasipolynomial function (12.2)

∆(λ, σ) = P 0 (λ) + M k ∈S N,n P M k (λ) e σ M k λ , (10.3) 
where σ M k = -M k τ T and S N,n is the set of all the possible row vectors

M k = (M k 1 , . . . , M k N ) belonging to N N such that 1 ≤ M k 1 +. . .+M k N ≤ n.
Furthermore, by running the index from 1 to the cardinality ÑN,n card(S N,n ) the quasipolynomial (10.3) is written in the following compact form

∆(λ, σ) = P 0 (λ) + ÑN,n k=1 P k (λ) e σ k λ . (10.4)
For instance, S 3,2 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)} , is ordered first by increasing sums ( N i=1 M k i ) then by lexicographical order. In this case one has :

M 2 = (0, 1, 0) and Ñ3,2 = 9.
A generical property of retarded systems (12.1) allow considering P 0 as a monic polynomial of degree n in λ and the polynomials P M k satisfying deg(

P M k ) = n - N s=1 M k s ≤ (n -1) ∀M k ∈ S N,n .
In the sequel, P 0 (λ) will be called the delay-free polynomial and the quasipolynomial function ÑN,n k=1 P M k (λ) e σ k λ will be called the transcendental part of the quasipolynomial.

Next, let define a j,k as the coefficient of the monomial λ k for the polynomial P M j , 1 ≤ j ≤ ÑN,n , and denote P M 0 = P 0 . Thus, a 0,n = 1 and a j,k = 0 ∀k ≥ d j = n -N s=1 M j s , here d j -1 is nothing but the degree of P M j . Furthermore, the following notations are adopted : a 0 = (a 0,0 , a 0,1 , . . . , a 0,n-1 ) T is the vector of the coefficients of the delay-free polynomial and a j = (a j,0 , a j,1 , . . . , a j,d j -1 ) T is the vector of the coefficients of the polynomial associated to the auxiliary delay σ j for 1 ≤ j ≤ ÑN,n . Next, set the delay auxiliary vector σ = (σ 1 , σ 2 , . . . , σ ÑN,n ) and a = (a 1 / a 2 / . . . / a ÑN,n ) T where (x/y) = (x 1 , . . . , x dx , y 1 , . . . , y dy ) T for x = (x 1 , . . . , x dx ) T and y = (y 1 , . . . , y dy ) T . Let us denote by ∆ (k) (λ, σ) the k-th derivative of ∆(λ, σ) with respect to the variable λ. We say that zero is an eigenvalue of algebraic multiplicity/codimension m ≥ 1 for (12.1) if ∆(0, σ * ) = ∆ (k) (0, σ * ) = 0 for all k = 1, . . . , m -1 and ∆ (m) (0, σ * ) = 0. We assume also in what follows that σ k = σ k for any k = k where k, k ∈ S N,n . Indeed, if for some value of the delay vector τ there exists some k = k such that σ k = σ k , then the number of auxiliary delays and the number of polynomials is reduced by considering a new family of polynomials P satisfying PM k = P M k + P M k . In the sequel, D q will designate the degree of the transcendental part of the quasipolynomial. 1Now, to characterize the structure of a given quasipolynomial function one needs to introduce a vector V, which will be called in the sequel incidence vector, reproducing the data on the vanishing components of the vector "a" defined above. Thus, V is a sparsity patterns indicator for the transcendental part of the quasipolynomial. To do so, we introduce the symbol "star " ( ) to indicate the vanishing of a given coefficient of the transcendental part of the quasipolynomial.

To illustrate the notion of "incidence vector" as well as the symbol "star ", let consider the following quasipolynomial function : ∆(λ, σ) = P 0 (λ) + (a 1,0,0,0 + a 1,0,0,1 λ) e σ 1,0,0 λ + a 0,1,0,2 λ 2 e σ 0,1,0 λ + a 0,0,1,1 λ e σ 0,0,1 λ .

(10.5)

According to the above considerations, P 0 is a polynomial with deg(P 0 ) = n ≥ 3.

The transcendental part of (10.5), is characterized by the following incidence vector

V = (x 1 , x 1 , , , x 2 , , x 3 ). (10.6)
Namely, the first two components of V indicate that P M 1 is a complete polynomial of degree 1, the three components , , x 2 , indicate that a 0,1,0,0 = a 0,1,0,1 = 0 and P M 2 is a lacunary polynomial of degree 2 and finally, the last components , x 3 say that a 0,0,1,0 and P M 3 is lacunary polynomial of degree 1.

Let us better formalize the description of the shape of a given incidence vector. As a matter of fact, the above definition, may help in the sequel, for describing the organisation of the distribution of symbol in the components of the incidence vector V.

Definition 2. The symbol appearing in a given incidence vector V is classified as follows :

-If the symbol (or a sequence of the symbol ) starts a sequence of an interpolating point x k in the incidence vector V then we call it a starter star. -If the symbol (or a sequence of the symbol ) is strictly included in a sequence of an interpolating point x k (the symbol is not located at the border of a given sequence x k ) in the incidence vector V it is called an intermediate star.

-The length of a sequence of "stars" is the number of the repetition of symbol without interruption.

We recognize that the notion of incidence vectors we introduced above is closely inspired from the notion of the incidence matrices. Such matrices are known to be involved in defining the structure of the well known Birkhoff matrices. Initially, Birkhoff and Vandermonde matrices are derived from the problem of polynomial interpolation of some unknown function g, this can be presented in a general way by describing the interpolation conditions in terms of incidence matrices, see for instance [START_REF] Lorentz | Birkhoff interpolation[END_REF]. For given integers n ≥ 1 and r ≥ 0, the matrix

E =    e 1,0 . . . e 1,r . . . . . . e n,0 . . . e n,r   
is called an incidence matrix if e i,j ∈ {0, 1} for every i and j. Such a matrix contains the data providing the known information about the function g. Let x = (x 1 , . . . , x n ) ∈ R n such that x 1 < . . . < x n , the problem of determining a polynomial P ∈ R[x] with degree less or equal to ι (ι + 1 = 1≤i≤n, 1≤j≤r e i,j ) that interpolates g at (x, E), i.e. which satisfies the conditions :

P (j) (x i ) = g (j) (x i ),
is known as the Birkhoff interpolation problem. Recall that e i,j = 1 when g (j) (x i ) is known, otherwise e i,j = 0. Furthermore, an incidence matrix E is said to be poised if such a polynomial P is unique. This amounts to saying that, if, n = n i=1 r j=1 e i,j then the coefficients of the interpolating polynomial P are solutions of a linear square system with associated square matrix Υ that we call Birkhoff matrix in the sequel. This matrix is parametrized in x and is shaped by E. It turns out that the incidence matrix E is poised if, and only if, the Birkhoff matrix Υ is non singular for all x such that x 1 < . . . < x n . The characterization of poised incidence matrices is solved for interpolation problems of low degrees. As a matter of fact, the problem is still unsolved for any degree greater than six, see for instance [START_REF] Gonzalez-Vega | Applying quantifier elimination to the Birkhoff interpolation problem[END_REF][START_REF] Rouillier | Solving the Birkhoff interpolation problem via the critical point method : An experimental study[END_REF].

Remark 10. Unlike Hermite interpolation problem, for which the knowledge of the value of a given order derivative of the interpolating polynomial at a given interpolating point impose the values of all the lower orders derivatives of the interpolating polynomial at that point, the Birkhoff interpolation problem release such a restriction. Thereby justifying the qualification of "lacunary" to describe the Birkhoff interpolation problem.

The analogy between the introduced incidence vector V for time-delay system analysis purposes and the incidence matrix E characterizing multivariate interpolation problems can be interpreted as follows. Each k-th row of E indicate the distribution of the symbol in the sequence of x k corresponding to V. Namely, in that row of E, each "1" corresponds to an x k of V and each "0" (situated at the left of at least a "1") corresponds to a symbol in V. Proposition 8. There exists a one to one mapping between V and E. Now, to illustrate the analogy between the two concepts of incidence vector/matrix, let us consider the reduced example from [START_REF] Rouillier | Solving the Birkhoff interpolation problem via the critical point method : An experimental study[END_REF] where the incidence matrix E is given by

E =   1 1 0 0 0 0 1 0 0 1 0 0   . (10.6')
The first row of E indicates that g(x 1 ) and g (x 1 ) are known. In terms of timedelay systems purposes, this reproduces the first two components of V, namely, x 1 , x 1 . The second row of E says that only g (x 2 ) is known, which in terms of V, reproduces the components , , x 2 . Finally, the third row says that only g (x 3 ) is known, which reproduces the last two components , x 3 of V. This, shows that the incidence matrix (10.6') and the incidence vector (10.6) reproduce exactly the same information. For the sake of saving space, it is more appropriate to consider V in the sequel. Recall that one associates to (10.6') (or equivalently to (10.6)) the following Birkhoff matrix

Υ =     1 0 0 0 x 1 1 0 1 x 2 1 2x 1 2 2x 3 x 3 1 3x 2 1 6x 2 3x 2 3     .
Accordingly, the interpolation problem is solvable if, and only if, does not vanish for all values of x such that x 1 < x 2 < x 3 .

In the spirit of the definition of functional confluent Vandermonde matrices introduced in [START_REF] Ha | A note on the determinant of a functional confluent Vandermonde matrix and controllability[END_REF], we provide a definition for functional Birkhoff matrices. Definition 3. The square functional Birkhoff matrix Υ is associated to a sufficiently regular function and an incidence matrix E (or equivalently an incidence vector V) and is defined by :

Υ = [Υ 1 Υ 2 . . . Υ M ] ∈ M δ (R) (10.7)
where

Υ i = [κ (k i 1 ) (x i ) κ (k i 2 ) (x i ) . . . κ (k i d i ) (x i )] (10.8) such that k i l ≥ 0 for all (i, l) ∈ {1, . . . , M } × {1, . . . , d i } and M i=1 d i = δ where κ(x i ) = (x i )[1 . . . x δ-1 i ] T , for 1 ≤ i ≤ M. (10.9)
Remark 11. In the sequel, for the time-delay systems analysis purposes, we shall be concerned with square functional Birkhoff matrices such that (x i ) = x s i , where s is a given positive integer. Furthermore, in terms of the quasipolynomial function (10.4), the degree of the delay-free polynomial P 0 is fixed thanks to the explicit choice of the function (x i ) = x s i . More precisely, n s -1. Analogously to the Birkhoff interpolation problem, the non degeneracy of such functional Birkhoff matrices will be a fondamental assumption for investigating the codimension of the zero spectral values for time-delay systems.

Remark 12. When s = 0, the matrix Υ is nothing but the standard Birkhoff matrix and thus (x i ) = 1. If, in addition, V does not contain "stars" then we recover the confluent Vandermonde matrix [START_REF] Ha | A note on the determinant of a functional confluent Vandermonde matrix and controllability[END_REF]. The particular case d i = 1 for i = 1 . . . M corresponds to the standard Vandermonde matrix and in this case M = δ since Υ is assumed to be a square matrix.

The explicit development of numeric/symbolic algorithms for LU-factorization and inversion of the confluent Vandermonde and Birkhoff matrices [149,[START_REF] Respondek | On the confluent Vandermonde matrix calculation algorithm[END_REF][START_REF] Olver | On multivariate interpolation[END_REF] is still an attracting topic due to their specific structure and their implications in various applications, see, for instance, [START_REF] Kailath | Linear Systems. Prentice-Hall information and system sciences series[END_REF][START_REF] Hou | Inversion of confluent Vandermonde matrices[END_REF] and references therein. It is worth mentioning that one of the contributions of this paper is to propose an explicit recursive formula for the LU-factorization for several configurations of the functional Birkhoff matrix defined by (10.7)-(10.9). The proposed formulas are in the spirit of the symbolic expressions established in [START_REF] Olver | On multivariate interpolation[END_REF] for the standard Vandermonde case. To the best of the author's knowledge, such an explicit formulas seems to be unavailable in the open literature, see e. g., [START_REF] Gonzalez-Vega | Applying quantifier elimination to the Birkhoff interpolation problem[END_REF][START_REF] Olver | On multivariate interpolation[END_REF]. In fact, the historical note in [START_REF] Olver | On multivariate interpolation[END_REF] emphasizes that rather the extensive numerical literature on practical solutions to Vandermonde systems fails to reveal the explicit factorization formula for the LUfactorization as well as to the symbolic inversion of the standard Vandermonde matrix.

The functional Birkhoff matrix configurations we consider are : the first one, no "stars" in the incidence vector V, that is the functional confluent Vandermonde matrix. Next, the second configuration is when we deal with starter "stars". Finally, an LU-factorization in the case of successive intermediate "stars" is established. We claim that, the characterization we present through the paper yields some new possibilities to get formulae in cases combining the two configurations (starter/intermediate "stars"), but, this needs careful inspection of the implicated polynomials and then by adapting the proposed formula to the specific incidence vector V. Since the formulas depend explicitly on the choice of the specific incidence matrix E, then it makes no sense that one goes further in defining some deeper classification. Furthermore, as a byproduct of the approach, we first propose a different proof for the Pólya-Szegö bound P S of the origin multiplicity deduced from proposition 14 (presented in the appendix), then, we shall establish a sharper bound for such a multiplicity under the non degeneracy condition of an appropriate Birkhoff matrix.

To summarize, the contribution of the present paper is threefold :

1. In the general case, the Birkhoff interpolation problem may or may not have a unique solution. To the best of the author's knowledge, no general pattern for its determinant is known, and thus no general formula for the interpolating polynomial (when it exists) is known. Moreover, it seems that the problem is still unsolved [START_REF] Gonzalez-Vega | Applying quantifier elimination to the Birkhoff interpolation problem[END_REF][START_REF] Rouillier | Solving the Birkhoff interpolation problem via the critical point method : An experimental study[END_REF] since such a formula depends directly on the chosen incidence matrix among a multitude of configurations. As an attempt, we propose an explicit recursive formula for the LU-factorization of the functional confluent Vandermonde matrix as well as some classes of the functional Birkhoff matrix.

2. We introduce incidence matrices for describing quasipolynomial functions. Then, we identify the existing link between the multiplicity of the zero singularity of time-delay systems (even in the presence of coupling delays) and an appropriate functional Birkhoff matrix, as defined in Definition 3.

3. Finally, in the generic case (all the polynomials P M k k≥0 are complete), the Pólya-Szegö bound P S is completely recovered using an alternative Vandermondebased method. Moreover, when at least one of the polynomials is lacunary [START_REF] Marden | Geometry of Polynomials[END_REF] (contains a "star" or a sequence of successive "stars"), then under the non degeneracy of an appropriate functional Birkhoff matrix, we establish a bound for the multiplicity of the zero singularity which is sharper than the Pólya-Szegö bound P S .

In order to increase the readability of the paper, the following notations are adopted. Let ξ stand for the real vector composed from x i counting their repetition

d i through columns of Υ, that is ξ = (x 1 , . . . , x 1 d 1 , . . . , x M , . . . , x M d M ).
For instance, one has ξ 1 = x 1 and ξ d 1 +d 2 +1 = ξ d 1 +d 2 +d 3 = x 3 . Accordingly and setting d 0 = 0, without any loss of generality, we have : k) , where 0 ≤ r ≤ M -1 and α ≤ d r+1 ; here (k) denotes the index of the component of x associated with ξ k , that is x (k) = ξ k and by κ(k) the order of ξ k in the sequence of ξ composed only by x (k) . Obviously, (k) = r + 1 and κ(k) = α.

ξ k = ξ d 0 +...+dr+α = ξ (k)-1 l=0 d l +κ(

Motivating examples and further observations

A Vector Disease Model

Consider first a simple scalar differential equation with one delay representing some biological model discussed by Cooke in [START_REF] Cooke | Stability analysis for a vector disease model[END_REF] describing the dynamics of some disease. Namely, the infected host population x(t) is governed by :

ẋ(t) + a 0 x(t) + a 1 x(t -τ ) -a 1 x(t -τ ) x(t) = 0, (10.10) 
where a 1 > 0 designates the contact rate between infected and uninfected populations and it is assumed that the infection of the host recovery proceeds exponentially at a rate -a 0 > 0 ; see also [START_REF] Ruan | Delay differential equations in single species dynamics[END_REF] for more insights on the modeling and stability results. The linearized system is given by

ẋ(t) + a 0 x(t) + a 1 x(t -τ ) = 0, (10.11) 
with

(a 0 , a 1 , τ ) ∈ R 2 × R * + , then the associated characteristic (transcendental) func- tion ∆ becomes ∆(λ, τ ) = λ + a 0 + a 1 e -λτ , (10.12) 
for which, the corresponding incidence vector is V = (x 1 ).

Zero is a spectral value for (10.11) if, and only if, ∆ vanishes at zero which is equivalent to a 0 + a 1 = 0. Computations of the first derivatives of (10.12) with respect to λ give, using the notation " ∂. ∂λ = . ",

∆ (λ, τ ) = 1 -τ a 1 e -λτ , ∆ (λ, τ ) = τ 2 a 1 e -λτ . (10.13)
The vanishing of the two first derivatives allows us to conclude that the codimension of the zero spectral value is at most two (Bogdanov-Takens singularity) since the algebraic multiplicity two is insured by τ = 1/a 1 , a 0 = -a 1 and ∆ (0) = 0 (τ ∈ R * + ). This provides the simplest example showing that the codimension of the zero spectral value can exceed the number of scalar equations defining a given system. Moreover, this emphasizes that the codimension of the zero singularity is less than the number of the free parameters involved in the associated (quasipolynomial) characteristic function. In this case, the number of free parameters is three and the upper bound of the codimension is two, which is exactly the Pólya-Szegö bound P S .

Furuta Pendulum

Consider now the rotary Furuta inverted pendulum, which consists of a driven arm that rotates in the horizontal plane and a pendulum attached to that arm which is free to rotate in the vertical plane, see figure 10.1. This device has two rotational degrees of freedom and only one actuator and is thus an under-actuated system. Balancing the pendulum in the vertical unstable equilibrium position requires continuous correction by a control mechanism, see [START_REF] Fantoni | Non-Linear Control for Underactuated Mechanical Systems[END_REF]. We focus now on the use of multiple delayed proportional gain as suggested by [START_REF] Boussaada | Inverted pendulum stabilization : Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains[END_REF] in controlling the inverted pendulum on cart. Using the Lagrange formalism and adopting the Quanser 

where T is the control law acting on the motor torque. Define

T (t) =β 1,0 θ(t) + γ 1,0 α(t) + β 1,1 θ(t -τ 1 ) + β 1,2 θ(t -τ 2 ) + γ 1,1 α(t -τ 1 ) + γ 1,2 α(t -τ 2 ). (10.15) 
Recall that it is always possible to normalize one of the delays by a simple scaling of time. Thus, without any loss of generality, τ 1 = 1. With the later remark, when T is defined by (10.15), the linearization around the origin associated with system (10.14) is given by

ẋ = A 0 x + A 1 x(t -1) + A 2 x(t -τ 2 ), (10.16) 
where A k = (a k,i,j ) (i,j)∈{1,...,4}×{1,...,4} ∈ M 4 (R) for k = 0, 1, 2

A 0 =        0 0 1 0 0 0 0 1 a 0,3,1 a 0,3,2 0 0 a 0,4,1 a 0,4,2 0 0        , A 1 =        0 0 0 0 0 0 0 0 a 1,3,1 a 1,3,2 0 0 a 1,4,1 a 1,4,2 0 0        , A 2 =        0 0 0 0 0 0 a 2,3,1 a 2,3,2 0 a 2,4,1 a 2,4,2 0        .
where (10.17) for which is associated the incidence vector V = (x 1 , , x 1 , x 2 , , x 2 ). A zero singularity of codimension five is insured by :

a 0,3,1 = - 16670584 51593 γ 1,0 , a 0,3,2 = - 16670584 51593 β 1,0 + 7338380 154779 , a 0,4,1 = 11741408 51593 γ 1,0 , a 0,4,2 = - 24009265 309558 + 11741408 51593 β 1,0 , a 1,3,1 = - 16670584 51593 γ 1,1 , a 1,3,2 = - 16670584 51593 β 1,1 , a 1,4,1 = 11741408 51593 γ 1,1 , a 1,4,2 = 11741408 51593 β 1,1 , a 2,3,1 = - 16670584 51593 γ 1,2 , a 2,3,2 = - 16670584 51593 β 1,
β 1,0 = 1710742793353 4582037506368 , β 1,1 = 51593 2935352 , β 1,2 = - 257965 10689112 , τ 2 = 72 265 , γ 1,0 = 1654329545 542135726972 , γ 1,1 = 29777931810 26158048826399
, γ 1,2 = -438397329425 104632195305596 .

(10.18) Also, by this example, it is easy to see that, under the delay effect, the codimension of the zero singularity exceeds the dimension of the uncontrolled system (which is free of delays). Moreover, by using the Pólya-Szegö result, one has P S = D -1 = 10 which is far from the effective sharp bound computationally established. The bound P S loses its effective value due to the existence of algebraic constraints relating some parameters (with the notations of Proposition 14, c 2,1 = c 2,2 = c 2,3 = 0. Such algebraic constraints are not taken into account by the Pólya-Segö approach).

Further insights on the Pólya-Segö bound

As shown in the examples above, P S bound for the zero root multiplicity of a given quasipolynomial function is still represents a generic bound. To be more precise, consider for instance the following three quasipolynomial functions :

                 ∆ 1 =λ 3 + a 0,2 λ 2 + a 0,1 λ + a 0,0 + a 1,2 λ 2 + a 1,1 λ + a 1,0 e -λτ 1 + a 2,2 λ 2 + a 2,1 λ + a 2,0 e -λτ 2 , ∆ 2 =λ 3 + a 0,2 λ 2 + a 0,1 λ + a 0,0 + a 1,2 λ 2 + a 1,1 λ + a 1,0 e -λτ 1 + a 2,2 λ 2 + a 2,0 e -λτ 2 , ∆ 3 =λ 3 + a 1,2 λ 2 e -λτ 1 + a 2,2 λ 2 e -λτ 2 . (10.19)
It is easy to see that all of them reduce to polynomials of degree three when the delays vanish τ 1 = τ 2 = 0. The quasipolynomial function ∆ 1 characterizes the generic dynamical system consisting in three coupled differential equation with two discrete delays. One easily observes that ∆ 1 has complete polynomials with the corresponding incidence vector V 1 = (x 1 , x 1 , x 1 , x 2 , x 2 , x 2 ), which is not the case for the quasipolynomials ∆ 2 (characterized by V 2 = (x 1 , x 1 , x 1 , x 2 , , x 2 )) and ∆ 3 (characterized by V 3 = ( , , x 1 , , , x 2 )).

Indeed, ∆ 2 has the so-called intermediate "star" since the polynomial associated with the second delay τ 2 is sparse ; a 2,1 = 0. However, ∆ 3 has two connected sequences of starter "stars", since a 2,0 = a 2,1 = 0 and a 1,0 = a 1,1 = 0 . Moreover, P S (∆ 1 ) = P S (∆ 2 ) = P S (∆ 3 ) because the degree of such quasipolynomials are equal.

Nevertheless, intuitively, the multiplicity of the zero root of ∆ 3 is less or equal to the multiplicity of such a root for ∆ 1 . In addition, the above observation stresses the fact that the zero multiplicity depends on the number of the free parameters as well as on the particular structure of the system rather than on the degree of the quasipolynomial which is a generic bound of the number of free parameters. The next sections provide the main results of the paper. Section 10.4 provides some new LU developments for classes of functional Birkhoff matrices. In Section 10.5 , we first recover the Pólya-Segö bound by an effective computational approach, then we establish a sharper bound for the multiplicity of the zero spectral value taking into account the above observation.

LU-factorization for some classes of functional Birkhoff matrices

In all generality, the Birkhoff interpolation problem and the "poised"-ness of its incidence matrices are yet open problems [START_REF] Gonzalez-Vega | Applying quantifier elimination to the Birkhoff interpolation problem[END_REF]. In some reduced cases (two variables), related to our class of systems, we give the explicit LU-factorization of Birkhoff matrices. To the best of the author's knowledge, such formulae seem to be new and then it yields some new possibilities for tackling the Birkhoff interpolation problem.

In this section we intentionally separate the two configurations : the first one, is the regular case, that is all the polynomials of the delayed part of the studied quasipolynomial are complete. However, the second configuration occurring when the incidence vector V contains at least one star.

On functional confluent Vandermonde matrices

It is well known that Vandermonde and confluent Vandermonde matrices V can be factorized into a lower triangular matrix L and an upper triangular matrix U where V = LU , see for instance [START_REF] Oruc | factorization of the Vandermonde matrix and its applications[END_REF][START_REF] Melkemi | Confluent Vandermonde matrices using Sylvester's structures[END_REF]. In what follows, we show that the same applies for the functional confluent Vandermonde matrix (10.7)-(10.9) by establi-shing explicit formulas for L and U where Υ = LU . The factorization is unique if no row or column interchanges are made and if it is specified that the diagonal elements of L are unitary. The following theorem concerning (10.7)-(10.9) with s = n + 1 will be used in the sequel, but the same arguments can be easily adapted for any positive integer s.

Theorem 33. Given the functional confluent Vandermonde matrix (10.7)-(10.9) with incidence vector V wanting "stars" , the unique LU-factorization with unitary diagonal elements L i,i = 1 is given by the formulae :

           L i,1 =x i-1 1 for 1 ≤ i ≤ δ, U 1,j =Υ 1,j for 1 ≤ j ≤ δ, L i,j =L i-1,j-1 + L i-1,j ξ j for 2 ≤ j ≤ i, U i,j =(κ(j) -1) U i-1,j-1 + U i-1,j x (j) -ξ i-1 for 2 ≤ i ≤ j. (10.20) 
Proof of Theorem 12. Define a matrix Ω by :

Ω i,j = D k=1 L i,k U k,j = i k=1 L i,k U k,j 1 ≤ i, j ≤ δ. (10.21) 
In what follows, we prove that Ω i,j = Υ i,j ∀(i, j) 1 ≤ i, j ≤ δ. The proof is a total 2D recurrence-based that can be summarized as follows :

-Initialization by proving :

-Ω i,j = Υ i,j for i = 1 and 1 ≤ j ≤ δ that is Υ 1,j .

-Ω i,j = Υ i,j for j = 1 and 1 ≤ i ≤ δ that is Υ i,1 . -Assuming Ω i,j = Υ i,j holds for any 1 ≤ i ≤ i 0 -1 and 1 ≤ j ≤ j 0 -1 and proving :

-

Ω i 0 ,j 0 -1 = Υ i 0 ,j 0 -1 .
-

Ω i 0 -1,j 0 = Υ i 0 -1,j 0 .
-Ω i 0 ,j 0 = Υ i 0 ,j 0 . -Conclude that Ω i,j = Υ i,j for 1 ≤ i ≤ δ and 1 ≤ j ≤ δ Since L is a lower triangular matrix with a unitary diagonal and U is an upper triangular, using (10.20) one proves

Ω 1,j = U 1,j ≡ Υ 1,j and Ω i,1 = L i,1 U 1,1 ≡ Υ i,1
for any 1 ≤ j ≤ δ and any 1 ≤ i ≤ δ. Hence, the initialization assumption holds. Assume now that Ω i,j = Υ i,j is satisfied for any 1 ≤ i ≤ i 0 -1 and 1 ≤ j ≤ j 0 -1. According to (10.20), one gets :

L i 0 ,k =L i 0 -1,k-1 + L i 0 -1,k ξ k , U k,j 0 -1 =(κ(j 0 -1) -1) U k-1,j 0 -2 + U k-1,j 0 -1 x (j 0 -1) -ξ k-1 , then L i 0 ,k U k,j 0 -1 =(κ(j 0 -1) -1) L i 0 -1,k-1 U k-1,j 0 -2 + x (j 0 -1) L i 0 -1,k-1 U k-1,j 0 -1 -ξ k-1 L i 0 -1,k-1 U k-1,j 0 -1 + ξ k L i 0 -1,k U k,j 0 -1 .
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Ω i 0 ,j 0 -1 = x (j 0 -1) i 0 k=1 L i 0 -1,k U k,j 0 -1 + i 0 k=1 (κ(j 0 -1) -1) L i 0 -1,k U k,j 0 -2 = x (j 0 -1) Υ i 0 -1,j 0 -1 + (κ(j 0 -1) -1) Υ i 0 -1,j 0 -2 Υ i 0 ,j 0 -1 .

The same argument gives

L i 0 -1,k =L i 0 -2,k-1 + L i 0 -2,k ξ k , U k,j 0 =(κ(j 0 ) -1) U k-1,j 0 -1 + U k-1,j 0 x (j 0 ) -ξ k-1 , then L i 0 -1,k U k,j 0 =x (j 0 ) L i 0 -2,k-1 U k-1,j 0 + (κ(j 0 ) -1) L i 0 -2,k-1 U k-1,j 0 -1 -ξ k-1 L i 0 -2,k-1 U k-1,j 0 + ξ k L i 0 -2,k U k,j 0 .
Thus,

Ω i 0 -1,j 0 = x (j 0 ) i 0 k=1 L i 0 -2,k U k,j 0 + i 0 k=1 (κ(j 0 ) -1) L i 0 -2,k U k,j 0 -1 = x (j 0 ) Υ i 0 -2,j 0 + (κ(j 0 ) -1) Υ i 0 -2,j 0 -1 Υ i 0 -1,j 0 .
By using again (10.20) one obtains :

L i 0 ,k =L i 0 -1,k-1 + L i 0 -1,k ξ k , U k,j 0 =(κ(j 0 ) -1) U k-1,j 0 -1 + U k-1,j 0 x (j 0 ) -ξ k-1 ,
leading to :

L i 0 ,k U k,j 0 =x (j 0 ) L i 0 -1,k-1 U k-1,j 0 + (κ(j 0 ) -1) L i 0 -1,k-1 U k-1,j 0 -1 + ξ k L i 0 -1,k U k,j 0 -ξ k-1 L i 0 -1,k-1 U k-1,j 0 .
Hence, we have :

Ω i 0 ,j 0 = x (j 0 ) Υ i 0 -1,j 0 + (κ(j 0 ) -1) Υ i 0 -1,j 0 -1 Υ i 0 ,j 0 ,
which ends the proof.

The explicit computation of the determinant of the functional confluent Vandermonde matrix Υ follows directly from (10.20) :

Corollary 2. The determinant of the functional confluent Vandermonde matrix Υ is given by :

det(Υ) = δ j=1 (U j,j ) ,
where U j,j for 1 ≤ j ≤ δ are defined by :

     U 1,1 = x n+1 1 , U j,j = U j-1,j x (j) -ξ j-1 if j > 1 and κ(j) = 1,
U j,j = (κ(j) -1) U j-1,j-1 otherwise.
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Démonstration. Obviously, the determinant of Υ is equal to the determinant of U since det(L) = 1 (triangular with unitary diagonal). The second equation from (10.20) gives :

U 1,1 = x n+1 1 
. Substituting i = j in the last equation from (10.20), and consider j ≡ 1 mod (d 0 + . . . + d r ) where 1 ≤ r ≤ M that is κ(j) = 1 then U j,j = U j-1,j x (j) -ξ j-1 otherwise x (j) = ξ j-1 which ends the proof.

Corollary 3. The diagonal elements of the matrix U associated with the functional confluent Vandermonde matrix Υ are obtained as follows :

             U 1,1 = x n+1 1 , U j,j = x n+1 k+1 k l=1 (x k+1 -x l ) d l if j = 1 + d k for 1 ≤ k ≤ M -1, U j,j = (j -1 -d k ) U j-1,j-1 if d k + 1 < j ≤ d k+1 for 1 ≤ k ≤ M -1,
Moreover, the functional confluent Vandermonde matrix Υ is non degenerate if, and only if, ∀ 1 ≤ i = j ≤ δ we have x i = 0 and x i = x j .

Démonstration. Using (10.20) one easily identifies the induction :

                       U 1+d l ,1+d l = (κ(1 + d l ) -1) U d l ,d l + U d l ,1+d l x (1+d l ) -ξ d l = U d l ,1+d l (x l+1 -ξ d l ) , U d l ,1+d l = U d l -1,1+d l (x l+1 -ξ d l -1 ) , . . . U 2,1+d l = U 1,1+d l (x l+1 -ξ 1 ) , U 1,1+d l = x n+1 l+1 .
This ends the proof.

Non degeneracy domain for two classes of 2D-functional Birkhoff matrices : An LU-factorization

Polynomials in nature (e.g. from applications and modeling) are not necessarily generic. They often have some additional structure which we would like to take into account showing what it reflects in the multiplicity bound for the zero spectral value for time-delay systems.

In this section, we consider functional Birkhoff matrices with incidence vector V containing "stars" . Two configurations are investigated. The first one consists in a sequence of starter "stars" and the second one, involves a sequence of intermediate "stars" in a sequence of x i , i > 1. We claim that if the particular incidence matrix under study contains "stars" in the two configurations (starter/intermediate) one can benefit from the understanding of each situation separately owing the following results.

In what follows, we present an attempt to extend the results of the previous section to the case of Birkhoff matrix (10.7)-(10.9) but with one sequence of x 1 wanting "stars" and a second x 2 containing "stars" . Explicit formulas for LU -factorization will be given in two subclasses. Such developments can be easily adapted in the study of 2D-Birkhoff interpolation problem.

We consider (10.7)-(10.9) with (x) = x s where s = n + 1, but the same algorithms can be easily exploited for any functional Birkhoff matrix with the same incidence matrix and a sufficiently regular function , in particular, for any integer s ≥ 0. Moreover, such a restriction to the two variables case x = (x 1 , x 2 ) may be extended to higher number of variables.

In terms of zeros of quasipolynomial functions, this amounts to say that all the illustrations we provide are focused on the two-delay case.

Starter stars : Polynomial LU-factorization

In all generality, a functional Birkhoff matrix (10.7)-(10.9) with incidence vector

V = (x 1 , . . . , x 1 d 1 , , . . . , d * , x 2 , . . . , x 2 d 2
) admits an LU -factorization where the associated L and U matrices are with rational coefficients in the variables x 1 and x 2 . This claim is illustrated by the following simple example.

Example 1. Let consider the functional Birkhoff matrix Υ E associated with the incidence vector V = (x 1 , x 1 , , x 2 , x 2 ), thus, n = 4 :

Υ =        x 1 4 4 x 1 3 4 x 2 3 12 x 2 2 x 1 5 5 x 1 4 5 x 2 4 20 x 2 3 x 1 6 6 x 1 5 6 x 2 5 30 x 2 4 x 1 7 7 x 1 6 7 x 2 6 42 x 2 5       
for which one can computes the LU factorization that gives :

L =         1 0 0 0 x 1 1 0 0 x 1 2 2 x 1 1 0 x 1 3 3 x 1 2 7 x 2 2 +7 x 1 x 2 -8 x 1 2 2 (3 x 2 -2 x 1 ) 1         , U =         x 1 4 4 x 1 3 4 x 2 3 12 x 2 2 0 x 1 4 x 2 3 (5 x 2 -4 x 1 ) 4 x 2 2 (5 x 2 -3 x 1 ) 0 0 2 x 2 3 (3 x 2 -2 x 1 ) (-x 1 + x 2 ) 2 x 2 2 15 x 2 2 + 6 x 1 2 -20 x 1 x 2 0 0 0 x 2 3 (-x 1 +x 2 )(10 x 1 2 -28 x 1 x 2 +21 x 2 2 ) 3 x 2 -2 x 1         .
Even the coefficients of L and U are rational functions in x = (x 1 , x 2 ), the determinant of Υ E still have polynomial expression in x as expected. For instance, in the considered example, the denominator of U 4,4 will be canceled by a factor from U 3,3 .

LU-factorization 189

Nevertheless, there exists a unique configuration in which L and U conserve their polynomial structure (as in the regular case), which occurs when d 2 = 1 independently from d 1 and d * . The following theorem provides an explicit LU -factorization for a functional Birkhoff matrix in such a special case : Theorem 34. Given the functional Birkhoff matrix (10.7)-(10.9) with incidence vector

V = (x 1 , . . . , x 1 d 1 , , . . . , d * , x 2 ) (10.22)
the unique LU-factorization with unitary diagonal elements L i,i = 1 is given by the formulae :

                   L i,1 =x i-1 1 for 1 ≤ i ≤ d 1 + 1, U 1,j =Υ 1,j for 1 ≤ j ≤ d 1 + 1, L i,j =L i-1,j-1 + L i-1,j ξ j for 2 ≤ j ≤ i ≤ d 1 + 1, U i,j =(κ(j) -1) U i-1,j-1 + U i-1,j x (j) -ξ i-1 for 2 ≤ i ≤ j ≤ d 1 , U i,d 1 +1 = Υ i,j -(i -1) x 1 0 U i-1,d 1 +1 (y, x 2 )dy, for 2 ≤ i ≤ d 1 + 1. (10.23) 
where ξ = (x 1 , . . . , x 1 d 1 , x 2 ).
The proofs of Theorem 34 is provided in the appendix.

Remark 13. The proposed formulas given in Theorem 34 can be easily extended to incidence matrices :

V = (x 1 , . . . , x 1 d 1 , . . . , x n-1 , . . . , x n-1 d n-1 , , . . . , d * , x n ), (10.24) 
allowing to investigate multiple zero spectral values for the n-delays case.

As a direct consequence of the above Theorem a nondegeneracy condition is given in the following corollary : Corollary 4. Let x 1 and x 2 be two distinct nonzero real numbers. The Birkhoff matrix Υ defined by (10.7)-(10.9) with incidence vector

V = (x 1 , . . . , x 1 d 1 , , . . . , d * , x 2 ) is invertible if, and only if, U d 1 +1,d 1 +1 = 0.

Intermediate stars : Polynomial LU-factorization

Similarly to the starting "stars" case, a nondegenerate functional Birkhoff matrix (10.7)-(10.9) with incidence vector

V = (x 1 , . . . , x 1 d 1 , x 2 , . . . , x 2 d - 2 , , . . . , d * , x 2 , . . . , x 2 d + 2 )
admits an LU -factorization where the associated L and U matrices are with rational coefficients in the variables x 1 and x 2 . Here, we provide an illustrative simple example.

Example 2. Let consider the functional Birkhoff matrix Υ E associated with the incidence vector V = (x 1 , x 2 , , x 2 , x 2 ) and n = 4 :

Υ =        x 1 5 x 2 5 20 x 2 3 60 x 2 2 x 1 6 x 2 6 30 x 2 4 120 x 2 3 x 1 7 x 2 7 42 x 2 5 210 x 2 4 x 1 8 x 2 8 56 x 2 6 336 x 2 5        .
The corresponding quasipolynomial function is for which one can computes the LU factorization that gives :

L =        1 0 0 0 x 1 1 0 0 x 1 2 x 2 + x 1 1 0 x 1 3 x 2 2 + x 1 x 2 + x 1 2 13x 2 2 -5x 1 x 2 -5x 1 2 6 x 2 -5 x 1 1        , U =         x 1 5 x 2 5 20 x 2 3 60 x 2 2 0 x 2 6 -x 1 x 2 5 30 x 2 4 -20 x 1 x 2 3 120 x 2 3 -60 x 1 x 2 2 0 0 12 x 2 5 -10 x 1 x 2 4 90 x 2 4 -60 x 1 x 2 3 0 0 0 6 x 2 4 (21 x 2 2 -35 x 1 x 2 +15 x 1 2 ) 6 x 2 -5 x 1         .
Even the coefficients of L and U are rational functions in x = (x 1 , x 2 ), the determinant of Υ E still have polynomial expression in x as expected. For instance, in the considered example, the denominator of U 4,4 will be canceled by a factor from U 3,3 .

The unique configuration in which L and U conserve their polynomial structure (as in the regular case as well the stating "stars" case with d 2 = 1), which occurs when d + 2 = 1. The following theorem provides an explicit LU -factorization for a functional Birkhoff matrix in such a special case : Theorem 35. Given the functional Birkhoff matrix (10.7)-(10.9) with incidence vector

V = (x 1 , . . . , x 1 d 1 , x 2 , . . . , x 2 d - 2 , , . . . , d * , x 2 ) (10.25)
the unique LU-factorization with unitary diagonal elements L i,i = 1 is given by the 

L i,1 =x i-1 1 for 1 ≤ i ≤ d 1 + d - 2 + 1, (10.26) 
U 1,j =Υ 1,j for 1 ≤ j ≤ d 1 + d - 2 + 1, (10.27) 
L i,j =L i-1,j-1 + L i-1,j ξ j for 2 ≤ j ≤ i ≤ d 1 + d - 2 + 1, (10.28) 
U i,j =(κ(j) -1) U i-1,j-1 + U i-1,j x (j) -ξ i-1 for 2 ≤ i ≤ j ≤ d 1 + d - 2 , (10.29) 
U i,j =Υ i,j -(i -1) x 1 0 U i-1,j (y, x 2 ) dy for j = d 1 + d - 2 + 1 and 2 ≤ i ≤ d 1 + 1, (10.30) 
U i,j =(j + d * -(i -1)) x 2 0 U i-1,j (x 1 , y) dy for j = d 1 + d - 2 + 1 and d 1 + 2 ≤ i ≤ j, (10.31) 
where ξ = (x 1 , . . . , x 1

d 1 , x 2 , . . . , x 2 d - 2 +1 
).

Remark 14. The proposed formulas given in theorem 35 can be easily extended to incidence matrices :

V = (x 1 , . . . , x 1 d 1 , . . . , x n-1 , . . . , x n-1 d n-1 , x n , . . . , x n d - n , , . . . , d * , x n ) (10.32)
As a direct consequence of the above Theorem as well as the auxiliary Lemmas 4-6 presented in the appendix, one can compute analytically the determinant of the considered Birkhoff matrix and then easily deduce its nondegeneracy domain. The above Corollary is in the same spirit of Corollary 2 for the functional confluent Vandermonde matrices. Corollary 5. Let x 1 and x 2 be two distinct nonzero real numbers. The determinant of the functional Birkhoff matrix Υ defined by (10.7)-(10.9) with incidence vector

V = (x 1 , . . . , x 1 d 1 , x 2 , . . . , x 2 d - 2 , , . . . , d * , x 2 )
is given by :

det(Υ) = d - 2 +d 1 +1 j=1 (U j,j ) , where U j,j for 1 ≤ j ≤ d - 2 + d 1 + 1 are defined by :                              U 1,1 = x n+1 1 , U d 1 +1,d 1 +1 = x n+1 2 (x 2 -x 1 ) d 1 U d 1 +d - 2 +1,d 1 +d - 2 +1 = d * -1 µ=0 (d - 2 + d * -µ) d 1 l=0 d 1 l (-1) l x l 1 x 2 0 . . . x 2 0 d - 2 Υ d 1 +1-l,d 1 +d - 2 +1 (x 1 , y) dy . . . dy d - 2 , U j,j = (κ(j) -1) U j-1,j-1 otherwise.
Moreover, the functional Birkhoff matrix Υ is invertible if, and only if,

U d 1 +d - 2 +1,d 1 +d - 2 +1 = 0 .
We emphasize that the results obtained above can be easily adapted for computing the LU-factorization for any functional Birkhoff matrix (with the same V) with different sufficiently regular function .

Codimension of zero Singularities of TDS

This section includes the main contributions of the paper. In its first part, we give an adaptive bound for the zero spectral value taking into account the system structure. The proof of this proposition is constructive and as such underlines and exploit the existing links between the multiplicity of the zero singularity and Birkhoff matrices. Additionally, it gives the values of the system parameters guaranteeing an admissible multiplicity for the zero spectral value. The second part is devoted to recover the Pólya-Szegö generic bound. In this framework, the provided explicit expressions for the LU-factorization of the functional confluent Vandermonde matrices. Finally, the third part, entitled "On beyond of the Pólya-Segö Bound", concerns some classes of functional Birkhoff matrices.

In the light of the above results on LU-factorization of the considered classes of functional Birkhoff matrices, we are now able to establish a sharper bound for the zero multiplicity under the assumption of nondegeneracy of appropriate functional Birkhoff matrices. Indeed, the following result applies even when the delay associated polynomials are sparse. Proposition 9. The following assertions hold :

i) The multiplicity of the zero root for the generic quasipolynomial function (10.4) cannot be larger than P S = D + ÑN,n , where D is the sum of degrees of the polynomials involved in the quasipolynomial and ÑN,n +1 is the number of the associated polynomials. Moreover, such a bound is reached if, and only if, the parameters of (10.4) satisfy simultaneously :

a 0,k = - i∈S N,n a i,k + k-1 l=0 a i,l σ i k-l (k -l)! , for 0 ≤ k ≤ P S -1.
(10.33)
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ii Consider a quasipolynomial function (10.4) containing at least one incomplete polynomial for which we associate an incidence vector V Ẽ (which is nothing other than V E given by (10.34) where a component associated with a vanishing coefficient is indicated by a "star").

When the associated functional Birkhoff matrix Υ Ẽ is nonsingular, then the multiplicity of the zero root for the quasipolynomial function (10.4) cannot be larger than "n" plus the number of nonzero coefficients of the polynomial family

(P M k ) M k ∈S N,n .
Remark 15. In the generic case, the Pólya-Szegö bound P S is completely recovered by the first assertion of 9. But, its advantage consists in providing the parameter values insuring any admissible multiplicity fo the zero singularity. The proof of Proposition 9 provides a constructive linear algebra alternative for identifying such a bound.

Remark 16. Obviously, the number of non-zero coefficients of a given quasipolynomial function is bounded by its degree plus its number of polynomials. Thus, the bound elaborated in Proposition 9 ii) is sharper than P S , even in the generic case, that is all the parameters of the quasipolynomial are left free, these two bounds are equal. Indeed, in the generic case, that is when the number of the left free parameters is maximal, the Pólya-Szegö bound P S = D + ÑN,n = n + D q + ÑN,n which is nothing else than n plus the number of parameters of the polynomial family

(P M k ) M k ∈S N,n .
Remark 17. When the matrix Υ Ẽ is singular, one keeps the generic Pólya-Szegö bound P S .

Remark 18. The above proposition can be interpreted as follows. Under the hypothesis :

∆(iω) = 0 ⇒ ω = 0 (H)
(that is, all the imaginary roots are located at the origin), the dimension of the projected state on the center manifold associated with zero singularity for equation (10.4) is less or equal to its number of nonzero coefficients minus one. Indeed, under (H), the codimension of the zero spectral value is identically equal to the dimension of the state on the center manifold since, in general, the dimension of the state on the center manifold is none other than the sum of the dimensions of the generalized eigenspaces associated with the spectral values having a zero real part.

Since we are dealing only with the values of ∆ k (0), we suggest to translate the problem into the parameter space (the space of the coefficients of the P i ). This is more appropriate and consider a parametrization by σ. In the appendix we introduce a lemma that allows to establish an m-set of multivariate algebraic functions (polynomials) vanishing at zero when the multiplicity of the zero root of the transcendental equation ∆(λ, τ ) = 0 is equal to m.

Proof of Proposition 9 :

The condition (10.33) follows directly from Lemma 2 (see Appendix). Hereafter, we recover the bound P S by explicit use of functional Vandermonde matrices. Then, assuming that some coefficients of the quasipolynomial vanish without affecting its degree, we show that a sharper bound can be related to the number of nonzero parameters rather than the degree. i) More precisely, we shall consider the variety associated with the vanishing of the polynomials ∇ k (defined in Lemma 2 in the appendix) , that is ∇ 0 (0) = . . . = ∇ m-1 (0) = 0 and ∇ m (0) = 0 and we aim to find the maximal m (codimension of the zero singularity).

Let us exhibit the first elements from the family

∇ k                            ∇ 0 (0) = 0 ⇔ ÑN,n s=0 a s,0 = 0, ∇ 1 (0) = 0 ⇔ ÑN,n s=0 a s,1 + ÑN,n s=1 a s,0 σ s = 0, ∇ 2 (0) = 0 ⇔ 2! ÑN,n s=0 a s,2 + 2! ÑN,n s=1 a s,1 σ s + N s=1 a s,0 σ 2 s = 0.
If we consider a i,j and σ k as variables, the derived algebraic system is nonlinear and solving it in all its generality (without attributing values for n and N ) becomes a very difficult task. In fact, even the use of Gröbner basis methods [START_REF] Cox | Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra[END_REF] seems to be very challenging since the set of variables depends on N and n. However, considering a i,j as variables and σ k as parameters helps in simplifying the problem to a linear one, as seen in (10.33). Consider the ideal I 1 generated by polynomials < ∇ 0 (0), ∇ 1 (0), . . . , ∇ n-1 (0) > .

As it can be seen from (10.33) and Lemma 2 (see appendix), the variety V 1 associated with the ideal I 1 has the following linear representation a 0 = Υ a

such that Υ ∈ M n,Dq+ ÑN,n (R[σ]
) where D q is the degree of ÑN,n k=1 P M k and D q = Dn (D the degree of the quasipolynomial (10.4)). Somehow, in this variety there are no restrictions on the components of a if a 0 is left free. Since a 0,k = 0 for all k > n, the remaining equations consist of an algebraic system only in a and parametrized by σ. Consider now the ideal denoted I 2 and generated by the D q + ÑN,n polynomials defined by I 2 =< ∇ n+1 (0), ∇ n+2 (0), . . . , ∇ D+ ÑN,n (0) >. It can be observed that the variety V 2 associated with I 2 can be written as Ῡ a = 0 which is nothing but a homogeneous linear system with Ῡ ∈ M Dq+ ÑN,n (R[σ]). More precisely, Ῡ is a functional confluent Vandermonde matrix (10.7)-(10.9) with x = σ, s = n, M = ÑN,n and δ = D q + ÑN,n which is associated with some incidence vector :

V = (σ M 1 , . . . , σ M 1 n-N s=1 M 1 s , σ M 2 , . . . , σ M 2 n-N s=1 M 2 s , . . . , σ M ÑN,n , . . . , σ M ÑN,n ). (10.34) 
Now, using Corollaries 2 and 3 and the assumption that σ i are distinct non zero auxiliary delays, we can conclude that the determinant of Ῡ cannot 10.6. Illustrative examples : An effective approach vs Pólya-Szegö Bound 195 vanish. Thus the only solution for this subsystem is the zero solution, that is, a = 0.

Finally, consider the polynomial defined by ∇ n (0), Lemma 2 states that (see appendix)

∇ n (0) = 0 ⇔ 1 = - ÑN,n i=1 n-1 s=0 a i,s σ i n-s (n -s)!
Now, substituting the unique solution of V 2 into the last equality leads to an incompatibility result. In conclusion, the maximal codimension of the zero singularity is less or equal to D q + ÑN,n + n which is exactly the Pólya-Szegö bound P S = D q + (n + 1)

D+ ÑN,n proving i).
ii) She same arguments apply when z coefficients from the polynomial family (P M k ) M k ∈S N,n vanish without affecting the degree of the quasipolynomial, then a T ∈ R Dq+ ÑN,n -z and thus the matrix

Ῡ of i) becomes Υ Ẽ ∈ M Dq+ ÑN,n -z (R[σ]).
Thus, the invertibility of the later matrix allows to : the maximal codimension of the zero singularity is less or equal to D q + ÑN,nz + n < P S . Which ends the proof.

Remark 19. It is noteworthy that the codimension of the zero singularity may decrease if the vector parameter a 0 is not left free. Indeed, if some parameter component a 0,k is fixed for 0 ≤ k ≤ n -1, then the variety associated to the first ideal I 1 may impose additional restrictions on the vector parameter a.

Illustrative examples : An effective approach vs Pólya-Szegö Bound

A natural consequence of Proposition 9 is to explore the situation when the codimension of zero singularity reaches its upper bound. Starting the section by a generic example, we show the convenience of the proposed approach even in the case of cross-talk between the delays. Then the obtained symbolic results are applied to identify an effective sharp bound in the case of concrete physical system (with constraints on the coefficients). Namely, the stabilization of an inverted pendulum on cart via a multi-delayed feedback. Next, the LU-factorizations are illustrated in the two configurations starter "stars"/intermediate "stars" and then interpreted in terms of the codimension of the zero singularity. This section is ended by a control oriented discussion.

Two scalar equations with two delays : An inverted pendulum on cart with delayed feedback

We associate to the general planar time-delay system with two positive delays τ 1 = τ 2 the quasipolynomial function : ∆(λ, σ) =λ 2 + a 0,0,1 λ + a 0,0,0 + (a 1,0,0 + a 1,0,1 λ) e λ σ 1,0 + (a 0,1,0 + a 0,1,1 λ) e λ σ 0,1 + a 2,0,0 e λ σ 2,0 + a 1,1,0 e λ σ 1,1 + a 0,2,0 e λ σ 0,2 .

(10.35) Generically, the multiplicity of the zero singularity is bounded by P S = 9. However, in what follows, we present two configurations where such a bound cannot be reached. The first, corresponds to the case when σ i = σ j for i = j and the second, when some components of the coefficient vector a = (a 1,0,0 , a 1,0,1 , a 0,1,0 , a 0,1,1 , a 2,0,0 , a 1,1,0 , a 0,2,0 ) T vanish.

Formula (10.33) allows us to explicitly computing the confluent Vandermonde matrices Υ and Ῡ and the expression of ∇ 2 (0) from the proof of Proposition 9 such that Υ a = a 0 , ∇ 2 (0) = 0 and Ῡ a = 0 where a 0 = (a 0,0,0 , a 0,0,1 ) T :

Υ = 1 0 1 0 1 1 1 σ 1,0 1 σ 0,1 1 σ 2,0 σ 1,1 σ 0,2 , ∇ 2 (0) -2 = σ 1,0 2 2 σ 1,0 σ 0,1 2 2 σ 0,1 σ 2,0 2 σ 1,1 2 σ 0,2 2 a Ῡ =                                 .
As shown in the proof of Proposition 9, Ῡ is a singular matrix when σ i = σ j for i = j. For instance, when σ 2,0 = σ 0,1 that is 2τ 1 = τ 2 , then the bound of multiplicity of the zero singularity decrease since the polynomials P 2,0 and P 0,1 will be collected P0,1 = P 0,1 + P 2,0 .

Consider now a system of two coupled equations with two delays modeling a friction free inverted pendulum on cart. The adopted model is studied in [10,[START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF][START_REF] Sieber | Extending the permissible control loop latency for the controlled inverted pendulum[END_REF][START_REF] Boussaada | Inverted pendulum stabilization : Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains[END_REF] and in the sequel we keep the same notations. In the dimensionless form, the dynamics of the inverted pendulum on a cart in figure 10.2 is governed by the following second-order differential equation : where ε = m/(m + M ), M the mass of the cart and m the mass of the pendulum and D represents the control law that is the horizontal driving force. A generalized Bogdanov-Takens singularity with codimension three is identified in [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF] by using U = a θ(t-τ )+b θ(t-τ ). Motivated by the technological constraints, it is suggested in [START_REF] Boussaada | Inverted pendulum stabilization : Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains[END_REF][START_REF] Boussaada | Inverted pendulum stabilization via a pyragas-type controller : Revisiting the triple zero singularity[END_REF] to avoid the use of the derivative gain that requires the estimation of the angular velocity that can induce harmful errors for real-time simulations and propose a multi-delayed-proportional controller U = a 1,0 θ(tτ 1 ) + a 2,0 θ(tτ 2 ), this choice is argued by the accessibility of the delayed state by some simpler sensor. By this last controller choice and by setting ε = 3 4 , the associated quasipolynomial function ∆ becomes :

1 - 3ε 4 cos 2 (θ) θ + 3ε 8 θ2 sin(2θ) -sin(θ) + U cos(θ) = 0, (10.36 
∆(λ, τ ) = λ 2 - 16 7 + 16 a 1,0 7 
e -λ τ 1 + 16 a 2,0 7 e -λ τ 2 . (10.37)

Thus, the associated incidence vector is V = (x 1 , x 2 ). A zero singularity with codimension three is identified in [START_REF] Boussaada | Inverted pendulum stabilization : Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains[END_REF], see Figure 10.3 for the map of local bifurcations in the (a 1,0 , a 2,0 ) plan. Moreover, it is shown that the upper bound of the codimension for the zero singularity for (10.36) is three (can be easily checked by (10.33)) and this configuration is obtained when the gains and delays satisfy simultaneously :

a 1,0 = - 7 -7 + 8 τ 1 , a 2,0 = 8τ 1 2 -7 + 8 τ 1 2 , τ 2 = 7 8 τ 1 .
However, using Pólya-Szegö result, one has P S = D -1 = (3 + 2 + 2) -1 = 6 exceeding the effective bound which is three. This is a further justification for the algebraic constraints on the parameters imposed by the physical model, for instance the sparsity pattern of the delay-free polynomial, namely, the vanishing of a 0,1 .

The nondegeneracy of a 2D-functional Birkhoff matrix : incidence vector with starter stars

As an illustration of the result given in Corollary 4, consider the functional Birkhoff matrix Υ characterized by the incidence vector V = (x 1 , x 1 , x 1 , x 1 , x 1 , , , x 2 ). Thus, one has x 1 13 13 x 1 12 156 x 1 11 1716 x 1 10 17160 x 1 9 156

Υ =              x 1 8 8 x 1
x 2 11              . (10.38) 
Under the assumptions x 1 x 2 = 0 and x 1 = x 2 , the matrix Υ is a non singular matrix if, and only if, the bivariate polynomial 39 x 2 2 -48 x 2 x 1 + 14 x 1 2 = 0, see Figure 10.4. Consider, the corresponding quasipolynomial function

∆(λ, σ) = λ 7 + 6 k=0 a 0,k λ k + e σ 1,0 λ 4 k=0 a 1,0,k λ k + a 0,1,2 λ 2 e σ 0,1 λ . ( 10.39) 
In terms of time-delay systems analysis purpose, the result above asserts that if the auxiliary non zero distinct delays σ 1,0 and σ 0,1 satisfy 39 σ 0,1 2 -48 σ 0,1 σ 1,0 + 14 σ 1,0 2 = 0, then, the codimension of the zero singularity is bounded by 13. Furthermore, such a multiplicity bound is reached if, and only if, the parameter vectors a and a 0 satisfy equality (10.33) for k = 0, . . . , 12. Notice that, in this configuration, the Pólya-Segö bound P S = 15.

The nondegeneracy of a 2D-functional Birkhoff matrix : incidence vector with intermediate stars

As an illustration of the result given in Corollary 5, consider the functional Birkhoff matrix Υ characterized by the incidence vector V = (x 1 , x 1 , x 1 , x 1 , x 2 , , , x 2 ). σ 1,0 13 13 σ 1,0 12 156 σ 1,0 11 1716 σ 1,0 10 σ 0,1 13 1716 σ 0,1 10

             .
Under the assumptions x 1 x 2 = 0 and x 1 = x 2 , the matrix Υ is a non singular matrix if, and only if, the bivariate polynomial 33 x 2 2 -44 x 2 x 1 + 14 x 1 2 = 0, see Figure 10.5. Now, consider the corresponding quasipolynomial function

∆(λ, σ) = λ 7 + 6 k=0 a 0,k λ k + e σ 1,0 λ 4 k=0 a 1,0,k λ k + a 0,1,0 + +a 0,1,3 λ 3 e σ 0,1 λ . (10.40)
The result above asserts that if the auxiliary non zero distinct delays σ 1,0 and σ 0,1 satisfy 33 σ 0,1 2 -44 σ 0,1 σ 1,0 + 14 σ 1,0 2 = 0, then, the codimension of the zero singularity is bounded by 14. Furthermore, such a multiplicity bound is reached if, and only if, the parameter vectors a and a 0 satisfy equality (10.33) for k = 0, . . . , 13. Notice that, in this configuration, the Pólya-Segö bound P S = 16. 

Controlling Generalized Bogdanov-Takens Singularity

Commonly, the generalized Bogdanov-Takens singularity (typically a chain of integrators) represents an undesired configuration when dealing with stability problems. Our control idea is based on it and it can be summarized as follow : first, we introduce sufficiently many delayed proportional controllers with free gains [START_REF] Niculescu | Stabilizing a chain of integrators using multiple delays[END_REF][START_REF] Kharitonov | Static output feedback stabilization : necessary conditions for multiple delay controllers[END_REF]. Next we identify the appropriate parameters (delays and gains) values allowing to reach the configuration of a spectrum consisting of stable spectrum and a multiplezero singularity. Hence, we develop the spectral projection in the finite dimensional subspace (the generalized eigenspace) associated with the zero singularity. This suggests the computation of the center manifold and the normal form of the equations governing the dynamics on it for the parameters-perturbed system ; which are known to be powerful tools for the local qualitative study of the dynamics. In other words, this reduces our problem to the control of a finite dimensional dynamical system. It is well known that the stability of the obtained finite dimensional projected dynamics means the stability of the original time-delay system, see [START_REF] Carr | Application of Center Manifold Theory[END_REF]. Moreover, the matrix associated with the linear part of the finite dimensional projection of the parametersperturbed system (associated with the generalized Bogdanov-Takens singularity) is nothing but a companion matrix (depending on the parameters-perturbation). It is always possible to design an appropriate perturbation that makes this matrix Hurwitz, [START_REF] Niculescu | Stabilizing a chain of integrators using multiple delays[END_REF][START_REF] Kharitonov | Static output feedback stabilization : necessary conditions for multiple delay controllers[END_REF]. This approach proved its efficiency particularly in suppressing undesired dynamics of mechanical systems. In [10] it is shown that the only use of a proportional controller is not sufficient in stabilizing the inverted pendulum and it is proved that an additional delay in the control signal is necessary for a successful stabilization. The described approach is emphasized in some recent contribution of 10.7. Concluding remarks and future work 201 J. Sieber & B. Krauskopf [START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF] for stabilizing the inverted pendulum by designing a delayed PD controller. Moreover, they established a linearized stability analysis allowing to characterize all the possible local bifurcations additionally to the nonlinear analysis. This analysis involves the center manifold theory and normal forms. The study underlined the existence of a codimension-three triple zero bifurcation. It is also shown that the stabilization of the inverted pendulum in its upright position cannot be achieved by a PD controller when the delay exceeds some critical value τ c . In [START_REF] Sieber | Extending the permissible control loop latency for the controlled inverted pendulum[END_REF], the authors investigate some modifications of the delayed PD scheme allowing to extend the range of the permissible delays by introducing an additional parameter. For that, two options were proposed, either to additionally take into account the angular acceleration or to consider an intentional additional delay in the angular position feedback. In [START_REF] Boussaada | Inverted pendulum stabilization : Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains[END_REF] the authors introduce a multi-delayedproportional controller allowing the stabilization of the inverted pendulum without the use of derivative measurements. Usually, the use of PD controller needs the knowledge of the velocity history but in general we are only able to have approximate measurements due to technological constraints. In absence of measurement of the derivative, a classical idea is to use an observer to reconstruct the state, but this task is computationally involved. It is shown in [START_REF] Boussaada | Inverted pendulum stabilization via a pyragas-type controller : Revisiting the triple zero singularity[END_REF] that this type of singularity (triple zero singularity) can be avoided by offsetting the delayed derivative gain by introducing two-delayed-proportional controller. The interest of considering control laws of the form m k=1 γ k x(tτ k ) lies in the simplicity of the controller as well as in its practical implementation facility, suggesting the only use of position sensor. In a similar manner other type of singularities can be avoided. In [START_REF] Landry | Dynamics of an inverted pendulum with delayed feedback control[END_REF], S.A. Campbell et. al. considered a proportional controller to locally maintain the pendulum in the upright position. The authors have shown that when this proportional is delayed and if the time-delay sampling is not too large, the controller still locally stabilizes the system. Among others, using the center manifold theorem and normal forms, they show the loss of stability when the delay exceeds a critical value and a supercritical Andronov-Hopf Bifurcation [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF] occurs generating stable limit cycles. Finally, the described approach as well as all the above cited results emphasize the importance of the imaginary roots and motivate investigations making them more understood.

Concluding remarks and future work

This paper addressed the problem of characterizing the dimension of the generalized eigenspace associated with a zero singularity for time-delay systems (the explicit conditions guaranteeing a given dimension) as well as an effective sharp bound for such a dimension. The existing links between the codimension of the zero singularity and functional Birkhoff matrices are emphasized. It is shown that the codimension bound of the zero singularity relies on the number of nonzero coefficients rather than the degree of the corresponding quasipolynomial. As a matter of fact, for generic quasipolynomials, a linear algebra alternative proof for the Pólya-Segö bound [START_REF] Polya | I : Series, Integral Calculus, Theory of Functions[END_REF] is proposed. In the case of sparse quasipolynomials, a sharper bound τ a delay vector. σ an auxiliary delay vector. z the vector state of the dynamical system. n the number of scalar differential equations defining a system. N the number of the delays involved in the dynamical system. ∆(λ, τ ) a quasipolynomial function.

P i (λ) the quasipolynomial associated polynomials. a ,l coefficient of λ l of the -th polynomial of ∆. χ spectrum associated to a given quasipolynomial. χ + the set of instable spectral values. χ -the set of stable spectral values. χ 0 the set of critical spectral values i.e. crossing imaginary roots. cardinality of a set. g unknown function to interpolate. x i interpolating points. P interpolating polynomial. E incidence matrix. V the corresponding incidence vector. e i,j entries of the incidence matrix. Υ a functional Birkhoff matrix corresponding to a sufficiently regular function . Υ coalescence matrix associeted to Υ.

Let us start by reporting some useful results from the mentioned literature. When a given quasipolynomial function corresponding to a retarded system has no roots on the imaginary axis, then the main result from [START_REF] Stepan | On the stability of linear differential equations with delay[END_REF] gives the exact number of unstable roots, see also [START_REF] Stepan | Retarded Dynamical Systems : Stability and Characteristic Functions[END_REF]]. The proof of such a result is maily based on the argument principle. Motivated by a potential application in bifurcation theory, the main theorem from [START_REF] Hassard | Counting roots of the characteristic equation for linear delaydifferential systems[END_REF], which is strongly inspired from Stepan's theorem, relaxes the assymption card(χ 0 ) = ∅. Thus, it emphasizes the link between card(χ + ) and card(χ 0 ), both take into account the multiplicity.

Theorem 36 (Hassard,[START_REF] Hassard | Counting roots of the characteristic equation for linear delaydifferential systems[END_REF], pp. 223). Consider the quasipolynomial function ∆ defined by (10.4). Let ρ 1 , . . . , ρ r be the positive roots of R(y) = (i n ∆(i y)), counted by their multiplicities and ordered so that 0 < ρ 1 ≤ . . . ≤ ρ r . For each j = 1, . . . , r such that ∆(i ρ j ) = 0, assume that the multiplicity of iρ j as a zero of ∆(λ, τ ) is the same as the multiplicity of ρ j as a root of R(y). Then card(χ + ) is given by the formula :

card(χ + ) = n -card(χ 0 ) 2 + (-1) r 2 sgnI (µ) (0) + r j=1 sgnI(ρ j ), (10.41) 
where µ designate the multiplicity of the zero spectral value of ∆(λ, τ ) = 0 and I(y) = (i -n ∆(iy)). Furthermore, card(χ + ) is odd (respectively, even) if ∆ (µ) (0) < 0 (∆ (µ) (0) > 0). If R(y) = 0 has no positive zeros, set r = 0 and omit the summation term in the expression of card(χ + ). If λ = 0 is not a root of the characteristic equation, set µ = 0 and interpret I (0) (0) as I(0) and ∆ (0) (0) as ∆(0).

The following result from [START_REF] Polya | I : Series, Integral Calculus, Theory of Functions[END_REF] gives a valuable information allowing to have a first estimation on the bound for the codimension of the zero spectral value.

Proposition 10 (Pólya-Szegö, [START_REF] Polya | I : Series, Integral Calculus, Theory of Functions[END_REF], pp. 144). Let τ 1 , . . . , τ N denote real numbers such that τ 1 < τ 2 < . . . < τ N , and d 1 , . . . , d N positive integers satisfying

d 1 ≥ 1, d 2 ≥ 1 . . . d N ≥ 1, d 1 + d 2 + . . . + d N = D + N.
Let f i,j (s) stands for the function f i,j (s) = s j-1 e τ i s , for 1 ≤ j ≤ d i and 1 ≤ i ≤ N . Let be the number of zeros of the function

f (s) = 1≤i≤N,1≤j≤d i c i,j f i,j (s),
that are contained in the horizontal strip α ≤ I(z) ≤ β.

Assuming that

1≤k≤d 1 |c 1,k | > 0, . . . , 1≤k≤d N |c N,k | > 0, then (τ N -τ 1 ) (β -α) 2 π -D + 1 ≤ ≤ (τ N -τ 1 ) (β -α) 2 π + D + N -1.
Setting α = β = 0, the above Proposition allows to P S ≤ D + N -1 where D stands for the sum of the degrees of the polynomials involved in the quasipolynomial function f and N designate the associated number of polynomials. This gives a sharp bound in the case of complete polynomials.

In the sequel, we present some useful lemmas as well as the proofs of the claimed theorems.

Lemma 2. Zero is a root of ∆ (k) (λ) for k ≥ 0 if, and only if, the coefficients of P M j for 0 ≤ j ≤ ÑN,n satisfy the following assertion

a 0,k = - i∈S N,n a i,k + k-1 l=0 a i,l σ i k-l (k -l)! . (A.1)
Démonstration. We define the family ∇ k for all k ≥ 0 by

∇ k (λ) = ÑN,n i=0 d k dλ k P M i (λ) + k-1 j=0   k j ÑN,n i=1 σ i k-j d j dλ j P M i (λ)   , (A.2)
here, M 0 0 and d 0 dλ 0 f (λ) f (λ). Obviously, the defined family ∇ k is polynomial since P i and their derivatives are polynomials. Moreover, zero is a root of ∆ (k) (λ) for k ≥ 0 if, and only if, zero is a root of ∇ k (λ). This can be proved by induction. More precisely, differentiating k times ∆(λ, τ ) the following recursive formula is obtained :

∆ (k) (λ) = ÑN,n i=0 d k dλ k P M i (λ) e σ i λ + k-1 j=0   k j ÑN,n i=1 σ i k-j d j dλ j P M i (λ) e σ i λ   .
Since only the zero root is of interest, we can set e σ i λ = 1 which define the polynomial functions ∇ k . Moreover, careful inspection of the obtained quantities presented in (A.2) and substituting d k dλ k P i (0) = k! a i,k leads to the formula (A.1).

Here, we prove the results given in section 10.4.2, that is, we consider the incidence vector :

V = (x 1 , . . . , x 1 d 1 , , . . . , d * , x 2 ).
The right hand side of the last equality from (10.23) 

defining U i,d 1 +1 for 2 ≤ i ≤ d 1 +1
can be also written as follows.

Lemma 3. For 2 ≤ i ≤ d 1 + 1 the following equality is satisfied : Now, let assume that for 2 ≤ i ≤ p where p < d 1 + 1 the following equality is satisfied :

Υ i,d 1 +1 -(i -1) x 1 0 U i-1,d 1 +1 (y, x 2 )dy = i-1 k=0 i -1 k (-1) i-1-k x i-1-k 1 Υ k+1,d 1 +1 . Proof of Lemma 3. First, one has U 2,d 1 +1 = Υ 2,d 1 +1 -x 1 Υ 1,d 1 +1 = Υ 2,d 1 +1 - x 1 0 U 1,d 1 +1 (y, x 2 ) dy since U 1,d1+1 = Υ 1,d 1 +1 (x 2 ).
i-1 l=0 i -1 l (-1) i-1-l x i-1-l 1 Υ l+1,d 1 +1 = Υ i,d 1 +1 -(i -1) x 1 0 U i-1,d 1 +1 (y, x 2 ) dy.
One has to show that for i = p + 1 :

p l=0 p l (-1) p-l x p-l 1 Υ l+1,d 1 +1 = Υ p+1,d 1 +1 -(p) x 1 0 U p,d 1 +1 (y, x 2 ) dy.
Indeed,

                         - x 1 0 p U p,d 1 +1 (y, x 2 ) dy = - x 1 0 p p-1 l=0 p -1 l (-1) p-1-l s p-1-l Υ l+1,d 1 +1 ds, = - p-1 l=0 p! l! (p -l -1)! (-1) p-1-l Υ l+1,d 1 +1 x 1 0 s p-1-l ds, = p-1 l=0 p l (-1) p-l x p-l 1 Υ l+1,d 1 +1 .
Proof of Theorem 34. The only difference between algorithms (10.23) and (10.20) lies in definition of the last column of the matrix U . Thus, one has to show that for any 2 ≤ i ≤ d 1 + 1 the following equality holds

Υ i,d 1 +1 = i k=1 L i,k U k,d 1 +1
. By definition, one has

           Υ 2,d 1 +1 = 2 k=1 L 2,k U k,d 1 +1 = L 2,1 U 1,d 1 +1 + L 2,2 U 2,d 1 +1 = x 1 Υ 1,d 1 +1 + U 2,d 1 +1 . (10.42)
Now, let assume that for 2 ≤ i ≤ p where p < d 1 + 1 the following equality is satisfied :

U i,d 1 +1 = Υ i,d 1 +1 -(i -1) x 1 0 U i-1,d 1 +1 (y, x 2 ) dy,
or equivalently, from Lemma 3

U i,d 1 +1 = i-1 l=0 i -1 l (-1) i-1-l x i-1-l 1 Υ l+1,d 1 +1 .
It stills to show that the last equality from (10.23) holds for U p+1,d 1 +1 when p < d 1 + 1. Indeed, by definition

U p+1,d 1 +1 = Υ p+1,d 1 +1 - p k=1 L p+1,k U k,d 1 +1 .
Moreover, (for same arguments as the ones given in the proof of Lemma 7 presented in the sequel), one has

L p+1,k = 1 k-1 ∂L p+1,k-1 ∂x 1 . Thus, L p+1,k = 1 (k-1)! ∂ k-1 L p+1,1 ∂x k-1 1 = 1 (k-1)! ∂ k-1 x p 1 ∂x k-1 1 = p! x p-k+1
1 (p-k+1)! (k-1)! . So that, one has :

L p+1,k = p k -1 x p-(k-1) 1 . (10.43)
Now, by definition of U p+1,d 1 +1 and using (10.43) as well as the recurrence assumption, we obtain

                         U p+1,d 1 +1 = Υ p+1,d 1 +1 - p =1 L p+1, U ,d 1 +1 = Υ p+1,d 1 +1 - p =1 k-1 l=0 -1 l p -1 (-1) -l-1 x -l-1 1 x p-(-1) 1 Υ l+1,d 1 +1 = Υ p+1,d 1 +1 - p =1 -1 l=0 -1 l p -1 (-1) -1-l x p-l 1 Υ l+1,d 1 +1
Thus, one has to prove that

p-1 k =0 p k (-1) p-k x p-k 1 Υ k+1,d 1 +1 = - p =1 -1 l=0 -1 l p -1 (-1) -1-l x p-l 1 Υ l+1,d 1 +1 .
(10.44) Recall that, the two side expressions of (10.44) are polynomials in x 1 and x 2 . The only quantities depending in

x 2 are (Υ k,d 1 +1 ) 1≤k≤p . Since, deg(Υ k,d 1 +1 ) = deg(Υ k ,d 1 +1
) for k = k , it will be enough to we examine the equality of coefficients of the two side expressions in Υ m+1,d 1 +1 for arbitrarily chosen 0 ≤ m ≤ p -1. So that, let m = k 0 for which corresponds m = l 0 in the right hand side quantity from (10.44). Then consider the coefficient of x p-m 1 Υ m+1,d 1 +1 from the two sides of (10.44) . Now, one easily check that p =m -1 m p -1 (-1) -m = (-1) p-m p m is always satisfied, which ends the proof.

In what follow, we propose some lemmas exhibiting some interesting properties of functional Birkhoff matrices. Those will be useful for the analytical proof of Theorem 35.

Lemma 4. Equation (10.30) is equivalent to :

U i,j = i-1 l=0 i -1 l (-1) l x l 1 Υ i-l,j for j = d 1 +d - 2 +1 and 2 ≤ i ≤ d 1 +1. (10.45)
Proof of Lemma 4. The equality (10.45) follows directly by induction. First, one checks that

Υ 2,d 1 +d - 2 +1 = U 2,d 1 +d - 2 +1 + x 1 Υ 1,d 1 +d - 2 +1 . Indeed,              Υ 2,d 1 +d - 2 +1 = 2 k=1 L 2,k U k,d 1 +d - 2 +1 = L 2,1 U 1,d 1 +d - 2 +1 + L 2,2 U 2,d 1 +d - 2 +1 = x 1 Υ 1,d 1 +d - 2 +1 + U 2,d 1 +d - 2 +1 , (10.46) 
since L 2,2 = 1. Now, let assume that 

U i,j = i-1 l=0 i -1 l (-1) l x l 1 Υ i-l,j for j = d 1 +d - 2 +1
U p+1,d 1 +d - 2 +1 = Υ p+1,d 1 +d - 2 +1 -p x 1 0 U p,d 1 +d - 2 +1 (y, x 2 )dy.
Using (10.47), one has,

                                     U p+1,d 1 +d - 2 +1 =Υ p+1,d 1 +d - 2 +1
p

x 1 0 Υ p,d 1 +d - 2 +1 (y, x 2 ) + p-1 l=1 p -1 l (-1) l y l Υ p-l,d 1 +d - 2 +1 (y, x 2 ) dy = Υ p+1,d 1 +d - 2 +1 -p Υ p,d 1 +d - 2 +1 x 1 + p-1 l=1 p p -1 l (-1) l Υ p-l,d 1 +d - 2 +1 x 1 0 y l dy = p l=0 p l (-1) l x l 1 Υ p+1-l,d 1 +d - 2 +1 .
which ends the proof.

Lemma 5.

Υ i+1,j = x 2 Υ i,j +(d - 2 +d * ) x 2 0 Υ i,j (y) dy for j = d 1 +d - 2 +1 and 1 ≤ i ≤ d 1 +d - 2 . (10.48)
Proof of Lemma 5. Let consider the coalescence [START_REF] Lorentz | Multivariate Birkhoff Interpolation[END_REF] confluent Vandermonde matrice Υ which regularize the considered Birkhoff matrice Υ. That is Υ is the rectangular matrix associated with the incidence matrix

V = (x 1 , . . . , x 1 d 1 , x 2 , . . . , x 2 d - 2 , x 2 , . . . , x 2 d * , x 2 ).
Here, the "stars" in (10.32) are simply replaced by x 2 . Thus, Υ and Υ have the same number of rows, but the number of columns of Υ exceeds the columns number of Υ by d * . We point out that Υ i+1,d 1 +d - 2 +1 is nothing but Υi+1,d 1 +d - 2 +1+d * . This means that the term (d - 2 + d * )

x 2 0 Υ i,j in (10.48) is exactly Υi+1,d 1 +d - 2 +d * . Thus, equality (10.48) turns to be Ῡi+1,j = x 2 Ῡi,j + Ῡi,j-1

for j = d 1 + d - 2 + 1 + d * and 1 ≤ i ≤ d 1 + d - 2 .
This last equality can be easily proved by using a 2-D recurrence in terms of Ῡ (regular matrix) as in the proof of Theorem 12 to show that it applies even for

d 1 + 2 ≤ j ≤ d 1 + d - 2 + 1 + d * .
The following Lemma provides an other way defining the components of U given by (10.30). Lemma 6. for all i = 1, . . . , d 1 and j = d 1 + d - 2 + 1 the following equality applies

U i+1,j * = (x 2 -x 1 ) U i,j * + (d - 2 + d * )
x 2 0 U i,j * (y)dy.

(10.49)

Proof of Lemma 6. Let set

I k = U k+1,j * + (x 1 -x 2 ) U k,j * -(d - 2 + d * ) x 2 0 U k,j * (y)dy.
where (10.45) from lemma 4 in I k , to obtain

j * = d 1 + d - 2 + 1 + d * and 1 ≤ k ≤ d 1 + 1. Substitute equation
I k = k l=0 k l (-1) l x l 1 Υ k+1-l,j * - k-1 l=0 k -1 l (-1) l x l 1 (x 2 -x 1 )Υ k-l,j * + (d - 2 + d * )
x 2 0 Υ k-l,j * (y)dy .

Using lemma 5, one obtains

I k = k-1 l=1 (-1) l x l 1 k l - k -1 l Υ k+1-l,j * + x 1 k -1 l Υ k-l,j * + (-1) k x k 1 Υ 1,j * + x 1 Υ k,j * = k-1 l=1 (-1) l x l 1 k -1 l -1 Υ k+1-l,j * + x 1 k -1 l Υ k-l,j * + (-1) k x k 1 Υ 1,j * + x 1 Υ k,j *
which is as expected identically zero, that ends the proof.

The following Lemma provides a differential relation between the coefficients of L matrix. The following result applies when dealing with Υ i,j and Υ i,j-1 are in the same variable block. We emphasize that such a property is inherited by the expressions of L defined in (10.28).

Proof of Lemma 7. The proof is 2-D recurrence-based. First, one easily check that for p = 2 then k = 1

L d 1 +2,d 1 +2 = ∂L d 1 +2,d 1 +1 ∂x 2
since by definition of L one has

L d 1 +2,d 1 +1 = L d 1 +1,d 1 +x 2 L d 1 +1,d 1 +1 = L d 1 +1,d 1 +x 2 and ∂L d 1 +1,d 1 ∂x 2 = 0. When assuming that L d 1 +p,d 1 +2 = ∂L d 1 +p,d 1 +1 ∂x 2 ,
and again, using the definition of L, one obtains,

L d 1 +p+1,d 1 +2 = L d 1 +p,d 1 +1 + x 2 L d 1 +p,d 1 +2 , L d 1 +p+1,d 1 +1 = L d 1 +p,d 1 + x 2 L d 1 +p,d 1 +1 ,
which as expected gives :

∂L d 1 +p+1,d 1 +1 ∂x 2 = L d 1 +p,d 1 +1 + x 2 ∂L d 1 +p,d 1 +1 ∂x 2 = L d 1 +p,d 1 +1 + x 2 L d 1 +p,d 1 +2 = L d 1 +p+1,d 1 +2 .
Let assume that for any 2 < p < d - 2 + 1 and k = 1, . . . , p -1 one has

∂L d 1 +p,d 1 +k ∂x 2 = k L d 1 +p,d 1 +k+1 .
One has to prove the following equalities :

               ∂L d 1 +p+1,d 1 +k ∂x 2 = k L d 1 +p+1,d 1 +k+1 , ∂L d 1 +p,d 1 +k+1 ∂x 2 = (k + 1) L d 1 +p,d 1 +k+2 , ∂L d 1 +p+1,d 1 +k+1 ∂x 2 = (k + 1) L d 1 +p+1,d 1 +k+2 . (10.51)
Let us consider the first equality of (10.51), using the definition of L that asserts that

L d 1 +p+1,d 1 +k+1 = L d 1 +p,d 1 +k + x 2 L d 1 +p,d 1 +k+1 L d 1 +p+1,d 1 +k = L d 1 +p,d 1 +k-1 + x 2 L d 1 +p,d 1 +k .
Which gives

∂L d 1 +p+1,d 1 +k ∂x 2 = ∂L d 1 +p,d 1 +k-1 ∂x 2 + x 2 ∂L d 1 +p,d 1 +k ∂x 2 + L d 1 +p,d 1 +k = (k -1)L d 1 +p,d 1 +k + k L d 1 +p,d 1 +k+1 + L d 1 +p,d 1 +k = k L d 1 +p+1,d 1 +k+1
.

By the same way, the remaining two equality from (10.51) are obtained :

∂L d 1 +p,d 1 +k+1 ∂x 2 = ∂ (L d 1 +p-1,d 1 +k + x 2 L d 1 +p-1,d 1 +k+1 ) ∂x 2 = ∂L d 1 +p-1,d 1 +k ∂x 2 + x 2 ∂L d 1 +p-1,d 1 +k+1 ∂x 2 + L d 1 +p-1,d 1 +k+1 = kL d 1 +p-1,d 1 +k+1 + (k + 1) x 2 L d 1 +p-1,d 1 +k+2 + L d 1 +p-1,d 1 +k+1 = (k + 1) L d 1 +p,d 1 +k+2 ,
and

∂L d 1 +p+1,d 1 +k+1 ∂x 2 = ∂ (L d 1 +p,d 1 +k + x 2 L d 1 +p,d 1 +k+1 ) ∂x 2 = ∂L d 1 +p,d 1 +k ∂x 2 + x 2 ∂L d 1 +p,d 1 +k+1 ∂x 2 + L d 1 +p,d 1 +k+1 = kL d 1 +p,d 1 +k+1 + (k + 1) x 2 L d 1 +p,d 1 +k+2 + L d 1 +p,d 1 +k+1 = (k + 1) L d 1 +p+1,d 1 +k+2 .
that ends the proof.

Proof 

U d 1 +2,j * =(d - 2 + d * ) x 2 0 U d 1 +1,j * (x 1 , y) dy.
From the one side, using lemma 5 one has

Υ d+2,j * = x 2 Υ d+1,j * + (d - 2 + d * ) x 2 0 Υ d+1,j * (y) dy, = x 2 d 1 +1 k=1 L d 1 +1,k U k,j * + (d - 2 + d * ) x 2 0 d 1 +1 k=1 L d 1 +1,k U k,j * (y) dy.
Since by definition one has

L d 1 +1,d 1 +1 = 1 and L d 1 +1,k = L d 1 +1,k (x 1 ) for k ∈ {1, . . . , d 1 } then Υ d+2,j * =x 2 d 1 +1 k=1 L d 1 +1,k U k,j * + (d - 2 + d * ) d 1 k=1 L d 1 +1,k x 2 0 U k,j * (y)dy + (d - 2 + d * ) x 2 0 U d 1 +1,j * (y)dy.
From the other side and by definition of Υ,

Υ d 1 +2,j * = d 1 +2 k=1 L d 1 +2,k U k,j * = U d 1 +2,j * + d 1 +1 k=1 L d 1 +2,k U k,j * .
To prove (10.31) for i = d 1 + 2 one has to prove that

d 1 +1 k=1 L d 1 +2,k U k,j * = x 2 d 1 +1 k=1 L d 1 +1,k U k,j * + (d - 2 + d * ) d 1 k=1 L d 1 +1,k x 2 0 U k,j * (y)dy,
or equivalently to prove

d 1 +1 k=1 (L d 1 +2,k -x 2 L d 1 +1,k ) U k,j * -(d - 2 + d * ) d 1 k=1 L d 1 +1,k x 2 0
U k,j * (y)dy = 0.

(10.52)

Using equation (10.28), one obtain

L d 1 +2,k -x 2 L d 1 +1,k = L d 1 +1,k-1 + (x 1 -x 2 ) L d 1 +1,k , for k = 1, . . . , d 1 , L d 1 +2,d 1 +1 -x 2 L d 1 +1,d 1 +1 = L d 1 +1,d 1 .
Thus, the right hand side of (10.52) becomes

d 1 k=1 L d 1 +1,k U k+1,j * + (x 1 -x 2 ) d 1 k=1 L d 1 +1,k U k,j * -(d - 2 + d * ) d 1 k=1 L d 1 +1,k x 2 0 U k,j * (y)dy = d 1 k=1 L d 1 +1,k U k+1,j * + (x 1 -x 2 ) U k,j * -(d - 2 + d * )
x 2 0 U k,j * (y)dy .

Lemma 6 asserts that for all i = 1, . . . , d 1 and j = d 1 + d - 2 + 1 one has 

U k+1,j * + (x 1 -x 2 ) U k,j * -(d - 2 + d * ) x 2 0 U k,
Υ d 1 +p+1,j * =x 2 Υ d+p,j * + (d - 2 + d * ) x 2 0 Υ d+p,j * (y) dy, =x 2 
d 1 +p k=1 L d 1 +p,k U k,j * (d - 2 + d * ) d 1 +p-1 k=1 x 2 0 L d 1 +p,k U k,j * (y)dy + (d - 2 + d * ) x 2 0 U d 1 +p,j * (y)dy =x 2 d 1 +p k=1 L d 1 +p,k U k,j * + (d - 2 + d * ) d 1 +p-1 k=1 x 2 0 L d 1 +p,k U k,j * (y)dy + (p -1) x 2 0 U d 1 +p,j * (y)dy + (d - 2 + d * -p + 1) x 2 0 U d 1 +p,j * (y)dy
From the other side, we obtain

Υ d 1 +p+1,j * = d 1 +p k=1 L d 1 +p+1,k U k,j * + U d 1 +p+1,j * .
Hence, we have to prove that

d 1 +p k=1 L d 1 +p+1,k U k,j * -x 2 d 1 +p k=1 L d 1 +p,k U k,j * -(d - 2 + d * ) d 1 +p-1 k=1 x 2 0 L d 1 +p,k U k,j * (y)dy = (p -1)
x 2 0 U d 1 +p,j * (y)dy.

Now, using the result from Lemma 6, one has to prove that (10.57) Differentiating E given in (10.57) with respect to the variable x 2 one obtains

d 1 +p k=d 1 +2 L d 1 +p+1,k U k,j * -x 2 d 1 +p k=d 1 +2 L d 1 +p,k U k,j * (10.54) -(d - 2 + d * ) d 1 +p-1 k=d 1 +1 x 2 0 L d 1 +p,k U k,j * (y)dy (10.55) = (p -1)
∂E ∂x 2 = p-1 k=1 ∂L d 1 +p,d 1 +k ∂x 2 U d 1 +k+1,j * + L d 1 +p,d 1 +k ∂U d 1 +k+1,j * ∂x 2 -(d - 2 + d * ) p-1 k=1 L d 1 +p,d 1 +k U d 1 +k,j * -(p -1)U d 1 +p,j * = p-1 k=1 ∂L d 1 +p,d 1 +k ∂x 2 U d 1 +k+1,j * + p-1 k=1 L d 1 +p,d 1 +k ∂U d 1 +k+1,j * ∂x 2 -(d - 2 + d * )U d 1 +k,j * -(p -1)U d 1 +p,j *
By using the recurrence assumption, one obtains,

∂E ∂x 2 = p-1 k=1 ∂L d 1 +p,d 1 +k ∂x 2 U d 1 +k+1,j * -(p -1)U d 1 +p,j * + p-1 k=1 L d 1 +p,d 1 +k (d - 2 + d * -(k -1))U d 1 +k,j * -(d - 2 + d * )U d 1 +k,j * = p-1 k=1 ∂L d 1 +p,d 1 +k ∂x 2 U d 1 +k+1,j * - p-1 k=2 (k -1) L d 1 +p,d 1 +k U d 1 +k,j * -(p -1)U d 1 +p,j * = p-2 k=1 ∂L d 1 +p,d 1 +k ∂x 2 -k L d 1 +p,d 1 +1+k U d 1 +1+k,j * + ∂L d 1 +p,d 1 +p-1 ∂x 2 -(p -1) U d 1 +p,j * ≡ 0,
which is as expected zero since Lemma 7 asserts that each factor is identically zero, that ends the proof.

Chapitre 11

Tracking the Algebraic Multiplicity of Crossing Imaginary Roots for Generic Quasipolynomials : A Vandermonde-Based Approach A standard approach in analyzing dynamical systems consists in identifying and understanding the eigenvalues bifurcations when crossing the imaginary axis, see for instance [START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF][START_REF] Insperger | Semi-Discretization for Time-Delay Systems : Stability and Engineering Applications[END_REF]. Efficient methods for crossing imaginary roots identification exist. However, to the best of our knowledge, the multiplicity of such roots was not deeply investigated. In recent papers by the authors [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF][START_REF] Boussaada | Computing the codimension of the singularity at the origin for time-delay systems in the regular case : A Vandermonde-based approach[END_REF], it is emphasized that the multiplicity of the zero spectral value can exceed the number of the coupled scalar delay-differential equations and a constructive Vandermonde-based approach leading to an adaptive bound for such a multiplicity is provided. Namely, it is shown that the zero spectral value multiplicity depends on the system structure (number of delays and number of non zero coefficients of the associated quasipolynomial) rather than the degree of the associated quasipolynomial [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems : A link with Vandermonde and Birkhoff incidence matrices[END_REF]. This chapter extends the constructive approach in investigating the multiplicity of crossing imaginary roots j ω where ω = 0 and establishes a link with a new class of functional confluent Vandermonde matrices. A symbolic algorithm for computing the LU-factorization for such matrices is provided. As a byproduct of the proposed approach, a bound sharper than the Polya-Szegö generic bound arising from the principle argument is established. This chapter reproduces mainly the results of [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials : A vandermonde-based approach[END_REF].

Introduction

Roughly speaking, discretization of nonlinear PDEs in domains with geometrical symmetries arising in fluid mechanics, structural mechanics, reaction-diffusion problems, often display equivariance conditions, rendering symmetry to become an important topic in nonlinear dynamical systems. Typical example for problems with symmetries are networks consisting in identical n-agents reaction problems with diffusion between neighboring agents. For instance, in [START_REF] Dellnitz | Computational methods for bifurcation problems with symmetries-with special attention to steady state and hopf bifurcation points[END_REF] a network composed from four identical Brusselator chemical reactors is considered, through which it is ob-served that the existence of multi-dimensional irreducible representations of the symmetry group may force a spectral value to be multiple. In particular, it is emphasized that such underlying symmetries often induce multiple Hopf bifurcation points 1 . As another example where multiple Hopf points occur is reported in [START_REF] Steindl | Bifurcations of the equilibrium of a spherical double pendulum at a multiple eigenvalue[END_REF], where the loss of stability of the down hanging equilibrium position of tubes covering fluid is studied. Due to symmetries, it is shown that Crossing Imaginary Roots (CIR) (associated with a Multiple Hopf point) are necessarily double. Furthermore, in time-delay systems context, the paper [START_REF] Zhang | Multiple hopf bifurcations of symmetric BAM neural network model with delay[END_REF] provides a characterization of the 1 :1 resonant Hopf points (double Hopf points with the same frequency ω) in a 6-agents Bidirectional Associative Memory (BAM) neural network. For further discussion about multiple Hopf points and the richness of their induced dynamics one refers the reader to the work [START_REF] Govaerts | Defining functions for multiple hopf bifurcations[END_REF]. As a matter of fact, it is shown that the Hopf points near a 1 :1 resonant double Hopf point in a general three-dimensional parameter space form a Whitney umbrella, a phenomena which cannot occur near the standard Hopf points (corresponding to a single crossing frequency), see also [START_REF] Van Gils | Hopf bifurcation with nonsemisimple 1 :1 resonance[END_REF] for further insights about such resonance cases and we refer the reader to [START_REF] Egea | Bifurcations of the hamiltonian fourfold 1 :1 resonance with toroidal symmetry[END_REF] which describes a configuration of Hopf point with higher multiplicity, in particular the fourfold 1 :1 resonance (i.e. 1 :1 :1 :1 resonance) with toroidal symmetry.

In this paper, we are interested in characterizing CIRs for the following class of time-delay systems :

ẋ = N k=0 A k x(t -τ k ) (11.1)
where x = (x 1 , . . . , x n ) ∈ R n denotes the state-vector, under appropriate initial conditions belonging to the Banach space of continuous functions C([-τ N , 0], R n ).

Here τ j , j = 1 . . . N are strictly increasing positive constant delays, τ 0 = 0, τ = (τ 1 , . . . , τ N ) and the matrices A j ∈ M n (R) for j = 0 . . . N . It is well known that the asymptotic behavior of the solutions of (11.1) is determined from the spectrum ℵ designating the set of the roots of the associated characteristic function denoted in the sequel ∆(z, τ ), often called quasipolynomial, that is a transcendental polynomial in the Laplace variable z in which appear exponential terms induced by delays, see for instance [START_REF] Bellman | Differential-difference equations[END_REF]. The study of the zeros of such a class of entire functions [START_REF] Levin | Distribution of zeros of entire functions[END_REF] plays a crucial role especially in the analysis of the asymptotic stability of the zero solution associated with System (11.1). Indeed, the zero solution is asymptotically stable if all the spectral values of (11.1) are in the open left-half complex plane [START_REF] Stepan | Retarded Dynamical Systems : Stability and Characteristic Functions[END_REF][START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF]. Accordingly, the parameter space which is spanned by the coefficients of the polynomials P i (the polynomials associated to ∆), can be split into stability and instability domains (the so-called D-decomposition, see for instance [START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF] and references therein). These two domains are separated by a boundary corresponding

1. An equilibrium point is called a Hopf point if the Jacobian at that point has a conjugate pair of purely imaginary spectral values ±iω, ω > 0. If there are two such pairs ±iω1, ±iω2 then it is called a double Hopf point. If additionally, ω1 = ω2 then it is called a 1 :1 resonant double Hopf point.

to CIRs. Identification of such CIRs may be done for instance by Rekasius substitution [START_REF] Olgac | An exact method for the stability analysis of timedelayed lti systems[END_REF] or matrix pencil [START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF] to mention only a few. However, to the best of the authors' knowledge, the multiplicity of such roots was not deeply investigated. For instance, in [START_REF] Chen | An eigenvalue perturbation approach to stability analysis, part i : Eigenvalue series of matrix operators[END_REF][START_REF] Chen | An eigenvalue perturbation approach to stability analysis, part ii : When will zeros of time-delay systems cross imaginary axis ?[END_REF] the interest in characterizing the algebraic/geometric multiplicities corresponding to such CIR is emphasized. As a matter of fact, such multiplicities characterize the local behavior of CIR under small variation of the system's parameters. Furthermore, the computation of the upper bound of the algebraic multiplicity of CIR is still unsolved.

For linear stability analysis purposes, a complete characterization of CIR allows to estimate the number of the spectral values with positive real part (elements of ℵ + = {z ∈ C, ∆(z, τ ) = 0, (z) > 0}) for a given Time-delay system (11.1). Indeed, the main theorem from [START_REF] Hassard | Counting roots of the characteristic equation for linear delaydifferential systems[END_REF] underscores the link between the cardinality card(ℵ + ) and ℵ 0 (the set of all CIR), both counted by multiplicity. Thus, the quoted result and its potential consequences on the design of a new approach on the linear stability analysis of time-delay systems, underline the importance of studying CIRs. Such an issue is also pointed up from a nonlinear analysis viewpoint, which gives another motivation for the present investigation. Particularly, when the unstable spectrum is an empty set or equivalently the spectrum ℵ = ℵ -∪ ℵ 0 (elements of ℵ -= {z ∈ C, ∆(z, τ ) = 0, (z) < 0}), a complete knowledge of CIR as well as their multiplicities becomes crucial predominatingly when performing a reduction of the infinite dimensional problem to a system of bifurcation equations on the center manifold, the dimension of which is equal to the number of critical spectral values (multiplicities are taken into account). Namely, the center manifold and the normal forms theory are known to provide an accurate local qualitative description of the studied dynamical system.

A stimulating idea from [START_REF] Niculescu | Stabilizing a chain of integrators using multiple delays[END_REF], which consists in exploiting the properties of Vandermonde matrices to control one chain of integrators by delay blocks, enticed the authors in [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF] and [START_REF] Boussaada | Computing the codimension of the singularity at the origin for time-delay systems in the regular case : A Vandermonde-based approach[END_REF] to extend the investigation of such structured matrices. A complete characterization of the root at the origin can be found in [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF][START_REF] Boussaada | Computing the codimension of the singularity at the origin for time-delay systems in the regular case : A Vandermonde-based approach[END_REF]. It is shown that the multiplicity of such a root for a generic system is bounded by the degree of the associated quasipolynomial, i.e, the sum of the number of its polynomials plus their respective degrees minus one. This bound was already depicted in [START_REF] Polya | I : Series, Integral Calculus, Theory of Functions[END_REF]. Furthermore, in the sparse case, a sharper bound is established in [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF] exhibiting the link between the maximal multiplicity and the number of the non vanishing parameters rather than the degree of the quasipolynomial.

The present work is a natural continuation of [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF][START_REF] Boussaada | Computing the codimension of the singularity at the origin for time-delay systems in the regular case : A Vandermonde-based approach[END_REF] and [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems : A link with Vandermonde and Birkhoff incidence matrices[END_REF]. Its aim is fourfold : first, it provides a symbolic algorithm for the LU-decomposition for functional confluent Vandermonde matrices, which generalizes the class considered in [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF] (section 11.3). Secondly, it extends the Vandermonde constructive approach established in [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF] to characterize CIR with non zero frequencies (section 11.4). Furthermore, to the best of the authors' knowledge, there does not exists any characterization for such multiple CIRs. Finally, as a byproduct of the established approach, it provides a sharp bound of the algebraic multiplicity for a given non zero CIR (section 11.4).

Prerequisites

Notations and problem formulation

The characteristic function associated with System (11.1) is a quasipolynomial ∆ : C × R N + → C of the form :

∆(z, τ ) = det z I -A 0 - N k=1 A k e -τ k z . (11.2)
Without any loss of generality and for the sake of simplicity, the quasipolynomial function can be written

∆(z, τ ) = P 0 (z) + Ñ k=1 P k (z) e σ k z , (11.3) 
where σ k are admissible combinations of the components of the delay vector τ := (τ 1 , . . . , τ N ) ; σ k := -N l=1 α k,l τ l such that 0 ≤ α k,l ≤ n, Ñ the cardinality of all admissible σ k , which is a positive integer satisfying Ñ ≥ N . Without any loss of generality, all the σ k are assumed to be distinct and σ := (σ 1 , . . . , σ N ) is considered as an auxiliary delay vector for the quasipolynomial, see for instance [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems : A link with Vandermonde and Birkhoff incidence matrices[END_REF]. It is also assumed that a i,j stands for the coefficient of the monomial z j in P i , a 0 := (a 0,0 , . . . , a 0,n ) is the vector composed from the coefficients of the polynomial P 0 and p := a 1,0 , . . . , a 1,n 1 -1 , . . . , a Ñ ,0 , . . . , a Ñ ,n Ñ -1 . It follows from (11.2) that P 0 is a monic polynomial of degree n in z and the polynomials P k are such that deg(P k ) := d k -1 = n -N l=1 α k,l ≤ (n -1). A given complex number z 0 is said to be a spectral value for (11.1) if ∆(z 0 , τ * ) = 0 for some delay vector τ * . We denote by ∂ k z ∆(z, τ ) the k-th derivative of ∆(z, τ ) given by (11.3) with respect to the variable z. A spectral value z 0 is of algebraic multiplicity m ≥ 1 if ∆(z 0 , τ * ) = ∂ z ∆(z 0 , τ * ) = . . . = ∂ m-1 z ∆(z 0 , τ * ) = 0 and ∂ m z ∆(z 0 , τ * ) = 0. A generic bound for the multiplicity of a given spectral value is deduced from a complex analysis result by Pólya and Szegö in [176, p. 144]. Their proof is mainly based on Rouché's Theorem and the principal argument. It gives a bound of the number of quasipolynomial roots in any horizontal strip β ≤ Im(z) ≤ α. Setting α = β = ω gives the number of spectral values z with Im(z) = ω, which is a natural bound for the multiplicity of a given CIR z = jω, denoted in the sequel PS. See also [START_REF] Wielonsky | A Rolle's theorem for real exponential polynomials in the complex domain[END_REF] for a modern formulation of the mentioned result.

Integrator+two delay blocks :

For the general linear scalar time-delay systems of arbitrary order with two delays, the geometric criterion from [START_REF] Gu | On stability crossing curves for general systems with two delays[END_REF] allows to identify all CIRs. Nevertheless, such a criterion doesn't take into account multiple CIRs, which corresponds to the fourth degenerate configuration listed in [START_REF] Gu | On stability crossing curves for general systems with two delays[END_REF]Sec. 7]. The following result gives the maximum admissible multiplicities for real spectral values as well as for CIRs.

Proposition 11. For each pair (τ 1 , τ 2 ) ∈ R * + × R * + (τ 1 = τ 2 ), the equation ẋ(t) + a 1 x(tτ 1 ) + a 2 x(tτ 2 ) = 0 admits a triple spectral value at z 0 = -(τ 1 + τ 2 )/(τ 1 τ 2 ) if, and only if, a 1 = τ 2 e -τ 1 z 0 / τ 2 τ 1 -τ 2 1 , a 2 = τ 1 e -τ 2 z 0 / τ 2 τ 1 -τ 2 2 . Moreover, under this configuration, the zero solution is asymptotically stable. However, the maximal multiplicity of a CIR jω 0 is two and it is reached if, and only if,

a 1 = ω 0 cos (ω 0 τ 2 ) sin (ω 0 (τ 1 -τ 2 ))
, a 2 = ω 0 cos (ω 0 τ 1 ) sin (ω 0 (τ 2 -τ 1 )) , (11.4) where ω 0 = ±tan (α 0 )/τ 1 , τ 2 = -τ 1 α 0 /tan (α 0 ) and α 0 is a fixed point of α → tan • tan(α) (which exists). To prove these results, we start by considering the configuration allowing a spectral value z 0 with multiplicity three. Indeed, z 0 is obtained as a solution of the system of equations ∆(z 0 , τ ) = . . . = ∂ k z ∆(z 0 , τ ) = 0 for k ∈ {1, 2} and ∂ 3 z ∆(z 0 , τ ) = 0 where the characteristic function is ∆(z) = z + a 1 e -zτ 1 + a 2 e -zτ 2 , which can be also written as

∆(z) = (z -z 0 )   1 + τ 2 e -(z-z 0 ) τ 1 τ 1 (τ 2 -τ 1 ) + τ 1 e -(z-z 0 ) τ 2 τ 2 (τ 1 -τ 2 ) + z 0 (z -z 0 )   .
Démonstration. To prove the asymptotic stability of the zero solution, let us assume that there exists z 1 = ζ + j η a root of ∆(z) = 0 such that ζ ≥ 0. So that, z 1 is a root of the second factor of ∆, which gives :

1 = 2 i=1 c i e -(z 1 -z 0 ) τ i -1 τ i (z 1 -z 0 ) , where c i = 2 l=1 l =i τ l (τ l -τ i ) Hence, 1 = 2 i=1 c i 1 0 cos(η τ i t) e -(ζ-z 0 ) τ i t dt.
Without any loss of generality, one assumes that τ 1 < τ 2 which implies : 1 ≤ 1 0 e -(ζ-z 0 ) τ 1 t dt, proving the inconsistency of the hypothesis ζ > 0.

Now, let us check that the upper bound of the multiplicity for CIR is two. Such a multiplicity is reached for jω 0 if, and only if, ∆(jω 0 , τ ) = ∂ z ∆(jω 0 , τ ) = 0. Let us proceed by elimination. The first equation ∆(jω 0 , τ ) = 0 gives, a 1 cos (ω 0 τ 1 ) + a 2 cos (ω 0 τ 2 ) + (ω 0 -a 1 sin (ω 0 τ 1 ) -a 2 sin (ω 0 τ 2 )) j = 0. The vanishing of the real part leads to a 2 = -a 1 cos (ω 0 τ 1 )/cos (ω 0 τ 2 ), which is substituted in the imaginary part. After equating the resulting expression one has a 1 = ω cos (ω τ 2 )/sin (ω τ 1 -ω τ 2 ). The obtained value for a 1 is then itself substituted in a 2 . The final values of a 1 and a 2 are then substituted in the equation ∂ z ∆(jω, τ ) = 0, which provides two equations (real and imaginary terms) depending on the three left free parameters ω, τ 1 and τ 2 , leading as expected, to the expression of the crossing frequency ω 0 as well as τ * 2 (τ 1 still being free).

Under such settings, if the delay τ 2 is considered as a bifurcation parameter, then Figure 11.1 provides the local bifurcation scenario ; the double CIR splits into one stable and one unstable spectral values.

Remark 20. For a given quasipolynomial function, the multiplicity of real roots may reach the Polya-Szegö bound, see [START_REF] Boussaada | Computing the codimension of the singularity at the origin for time-delay systems in the regular case : A Vandermonde-based approach[END_REF][START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF]. However, the multiplicity of an imaginary crossing root may exceed the dimension of the delay-free system but never reach the Polya-Szegö bound.

Rekasius Substitution for a Second Order System

It is well known that Rekasius substitution is a way for identifying the crossing roots for a given quasipolynomial, [START_REF] Sipahi | Complete stability robustness of third-order {LTI} multiple time-delay systems[END_REF]. It consists in offsetting the exponential type transcendental terms in a given quasypolynomial function by the following rational function : e -zτ = (1 -T z)/(1 + T z), where T is some positive real number. This transformation is accompanied with the relation : τ = 2 ωc (arctan(ω c T ) + kπ) , k = 0, 1, . . . where ω c ∈ R * + and ω c denotes the crossing frequency. It is worthy to note that such a relation associates each solution of the transformed characteristic function (in the auxiliary variable T ) to a 2π/ω c -periodic countably infinite set of solutions of the original characteristic quasipolynomial function (in the variable τ ), see for instance [START_REF] Olgac | An exact method for the stability analysis of timedelayed lti systems[END_REF][START_REF] Munz | Stability analysis of time-delay systems with incommensurate delays using positive polynomials[END_REF]. However, the question of roots multiplicity-conservation by such a transformation may be more deeply investigated. For instance, in the following example, we show that even for the delay margin 2 τ 0 , such a multiplicity is not preserved by the Rekasius substitution. Let us consider the quasipolynomial function :

f (z, τ ) = a 0,0 + a 0,1 z + z 2 + (a 1,0 + a 1,1 z) e -τ z (11.5)

2. Rekasius substitution asserts that when an imaginary root jω0 is associated to a given delay τ 0 then it is also associated to each value of the delay among the family {τ k } k∈Z = {τ 0 +k 2π |ω 0 | } k∈Z . But, as it was underlined in [START_REF] Jarlebring | Invariance properties in the root sensitivity of time-delay systems with double imaginary roots[END_REF], if j ω0 is a double crossing root associated with the delay τ = τ 0 then, j ω0 is a simple crossing root for any τ k . with a 0,0 = π 2 +4 π 2 -4 , a 0,1 = a 1,0 = -4π π 2 -4 , a 1,1 = -8 π 2 -4 . First, one knows that the CIRs of f are the imaginary roots of the following rational function in the variables z and T :

f (z, T ) = P(z, T ) Q(z, T )
where Q(z, T ) = 1 + T 1 z and

P(z, T ) = a 0,0 z + a 0,1 z 2 + z 3 -a 1,0 z -a 1,1 z 2 T + a 0,0 + a 0,1 z + z 2 + a 1,0 + a 1,1 z.
Elementary algebraic manipulations show that z 0 = j is a root of f when T * = 1. Thus, z 0 = j is a root of f where the associated delay τ 0 = π/2 is easily deduced. Finally, we check that if τ = τ 0 , then z 0 = j is a double root for f , see Figure 11.2 for the local bifurcation scenario. However, the evaluation of ∂ z f at (z, T ) = (z 0 , T * ) gives : ∂ z f (z 0 , T * ) = 2 (πj -2)/(π + 2). Thus, z 0 = j is a simple root for f when T = T * , leading us to the following : Remark 21. For a given quasipolynomial function, Rekasius substitution yields all roots on the imaginary axis but does not necessarily preserve their multiplicity. Furthermore, the other limitations of such a substitution arise when at least one of the polynomials (involved in the considered quasipolynomial) depend on z and τ . This is obviously the case when exploring the multiplicity of CIR. Lemma 8. An imaginary complex number z = j ω is a root of ∂ k z ∆(z, τ ) = 0 for k ≥ 0 if, and only if, the coefficients of P i for 0 ≤ i ≤ Ñ satisfy α k + αk = 0 and β k + βk = 0, (11.8) where

                     α 0 = n i=0, i even (-1) i 2 ω i a 0,i and β 0 = n i=1, i odd (-1) i 2 ω i a 0,i , α k = -∂ ω β k-1 and β k = ∂ ω α k-1 ∀k ≥ 1, αk = Ñ i=1 d i l=0 a i,l ∂ l c i σ i k ∂σ l i and βk = Ñ i=1 d i l=0 a i,l ∂ l s i σ i k ∂σ l i .
The proof of Lemma 8 is given in Section 11.7.

Remark 22. If one investigates multiple zero singularities, then (11.8) reduces to

a 0,k = - Ñ i=0 a i,k + k-1 l=0 a i,l σ i k-l (k -l)!
, see for instance [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF].

Let us set γ k = (α k + αk ) 2 + (β k + βk ) 2 and for a given positive integer m let α m , β m stand for the vectors : as well as the respective functions g A (x) = cos(ωx) and g B (x) = sin(ωx). As a direct consequence of the above Lemma 8, one has : Proposition 13. An imaginary crossing root z = j ω for Eq (11.3) is of multiplicity m if, and only if, one of the following equivalent assertions hold :

1. The variety V m is non empty and γ m+1 = 0, where

V m =    (ω, a 0,0 , . . . , a Ñ ,d Ñ , σ 1 , . . . , σ Ñ ) ∈ R n+δ+1 × R Ñ + , γ k = 0 for k = 0, . . . , m -1    .

The frequency ω satisfies the following linear system :

A m (ω, σ).p = V m (a 0 , ω), B m (ω, σ).p = W m (a 0 , ω). approach in solving such systems of nonlinear trigonometric polynomials consists in considering sin(ωσ i ) and cos(ωσ i ) functions as new variables s i and c i respectively and then intentionally add some equations expressing s 2 i + c 2 i = 1. Thus, Groebner basis approaches may be involved to characterize the algebraic variety corresponding to the modified problem's solutions, see for instance [START_REF] Cox | Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra[END_REF]. However, the added algebraic equations emphasize the links between the variables s i and c i but doesn't take into account the link between s i (as well as c i ) with the variables ω and σ i (which are involved in the argument of cos and sin functions). Thus, to avoid the possible induced inconsistant solutions one has to consider only the intersection of the obtained algebraic variety with some transcendental relations, for instance c i = arccos(ωσ i ).

The second assertion of the above proposition provides an effective linear algebra alternative for the above described approach.

Démonstration. Both assertions of the above proposition are direct consequences of Lemma 8. They follow by considering two ideals consisting in the real part α k + αk , (respectively the imaginary part β k + βk ) of the successive derivatives of the quasipolynomial function. Namely, a careful inspection of the coefficients αk and βk from Lemma 8 allows to a linear system where the involved matrices are nothing but the functional confluent Vandermonde matrices A m and B m , leading to (11.10). Corollary 6. If the square matrices A and B are non degenerate then the multiplicity of any imaginary crossing root z = j ω 0 for Eq (11.3) is bounded by . Démonstration. For m = +1, the inconsistency of (11.10) follows from the Kronecker-Rouché-Capelli Theorem, see [START_REF] Shafarevich | Matrices and determinants[END_REF]. Indeed, rows of the functional confluent Vandermonde matrix A +1 (respectively B +1 ) are functionally dependent but linearly independent provided that A , (respectively B ) is non degenerate. Thus, the rank of the augmented matrix A +1 : V +1 , (B +1 : W +1 ), which is equal to + 1 is greater than the rank of the matrix A +1 , (B +1 ).

Corollary 7. The functional confluent Vandermonde matrix A , respectively B , is non degenerate if, and only if, ∀ 1 ≤ i = j ≤ Ñ , ωσ i = π/2 + kπ and σ i = σ j , respectively ωσ i = kπ and σ i = σ j . Remark 24. A necessary and sufficient condition for A and B to be non degenerate is σ i = σ j ∀ 1 ≤ i = j ≤ Ñ and ωσ i = kπ/2, k ∈ N. Moreover, a given CIR has the multiplicity if the linear systems given by (11.10) admit a real solution. The Polya-Szegö bound PS is never reached. Indeed, the above multiplicity bound for a given CIR is sharper than PS since by definition PS = n + Ñ i=1 d i .

Illustrative Examples

Scalar equation with two delays

Consider now the scalar delay equation : ẋ(t) + a 1,0 x(tτ 1 ) + a 0,1 x(tτ 2 ) + a 0,0 x(t) = 0. Here p = (a 1,0 , a 0,1 ) and Ñ = 2. According to Corollary 6, the maximal multiplicity of a given CIR is bounded by = 2 < PS = 3. Moreover, a necessary condition for a CIR to reach multiplicity two is τ 1 = τ 2 and ωτ i = kπ/2. Indeed, in such a configuration, we have σ 1,0 = -τ 1 , σ 0,1 = -τ 2 and the functional Vandermonde matrices :

A 2 = cos(σ 1,0 ω) cos(σ 0,1 ω) σ 1,0 cos(σ 1,0 ω) σ 0,1 cos(σ 0,1 ω) , V 2 = -a 0,0 -1 B 2 = sin(σ 1,0 ω) sin(σ 0,1 ω) σ 1,0 sin(σ 1,0 ω) σ 0,1 sin(σ 0,1 ω) , W 2 = -ω 0 .
Using Proposition 12, one proceeds by LU-factorization for each of the matrices given in System (11.10) and obtains a necessary and sufficient condition for a given CIR to reach its maximal multiplicity (two).

(a 0,0 σ 0,1 -1)sin (ω σ 1,0 ) = ω σ 0,1 cos (ω σ 1,0 ) (a 0,0 σ 1,0 -1)sin (ω σ 0,1 ) = ω σ 1,0 cos (ω σ 0,1 )

When a 0,0 = 0, one recovers example 11.2.2.

D3-equivariant BAM neural network with delay

Let us revisit a generic version of BAM neural network with one constant delay considered in [START_REF] Zhang | Multiple hopf bifurcations of symmetric BAM neural network model with delay[END_REF], the linearization of which around the origin of R 6 is given by : (11.11) where a i , b i , c i , d i ∈ R such that a i > 0. One easily checks that the corresponding characteristic quasipolynomial associated to (11.11) is given by : ∆(z, τ ) = a 0,0 + a 0,1 z+a 0,2 z 2 +a 0,3 z 3 +a 0,4 z 4 +a 0,5 z 5 +z 6 + a 2,0 + a 2,1 z + a 2,2 z 2 + a 2,3 z 3 + a 2,4 z 4 e -2τ z + a 4,0 + a 4,1 z + a 4,2 z 2 e -4τ z + a 6,0 e -6τ z with appropriate values of a i,j as polynomials in the parameters a k , b k , c k , d k . Let us assume that a i,j = 0. Then Corollary 7 asserts that the maximum multiplicity of a given CIR is at most 9 if A 9 and B 9 are invertible. However, the Polya-Szegö bound is PS = 13. Furthermore, if, a i = a, b i = b, c i = d i = c for i = 1, . . . , 6 then one recovers precisely the BAM network considered in [START_REF] Zhang | Multiple hopf bifurcations of symmetric BAM neural network model with delay[END_REF] where the 1 :1 resonance Hopf point is studied. It is pointed out that the classical Hopf bifurcation theory cannot be applied to such a system due to its symmetry. Namely, it is shown that the structure of the system (11.11) can be represented by a dihedral group D3 of order 6, which is generated by the cyclic subgroup Z 3 together with a flip of order 2. In such a case, the characteristic function of (11.11) 

                     ẋ1 = -a 1 x 1 + b 1 x 4 (t -τ ) + c 1 x 5 (t -τ ) + d 1 x 6 (t -τ ), ẋ2 = -a 2 x 2 + b 2 x 5 (t -τ ) + c 2 x 6 (t -τ ) + d 2 x 4 (t -τ ), ẋ3 = -a 3 x 3 + b 3 x 6 (t -τ ) + c 3 x 4 (t -τ ) + d 3 x 5 (t -τ ), ẋ4 = -a 4 x 4 + b 4 x 1 (t -τ ) + c 4 x 2 (t -τ ) + d 4 x 3 (t -τ ), ẋ5 = -a 5 x 5 + b 5 x 2 (t -τ ) + c 5 x 3 (t -τ ) + d 5 x 1 (t -τ ), ẋ6 = -a 6 x 6 + b 6 x 3 (t -τ ) + c 6 x 1 (t -τ ) + c 6 x 2 (t -τ ),
reduces to ∆(z, τ ) = (z + a ± (2c + b)e -zτ ) (z + a ± (b -c)e -zτ ) 2 .
Some straightforward numerical computations show that a Hopf point with higher multiplicity than 2 may occur. Indeed, the multiplicity 3 is possible for arbitrarily chosen (ω * , τ * ) ∈ R * + × R * + and the remaining parameters satisfy a = ω * cos(ω * τ * )/sin(ω * τ * ), b = ±ω * /3 sin(ω * τ * ), c = ∓2ω * /3sin(ω * τ * ). In such a case, richer dynamics may occur, see for instance [START_REF] Egea | Bifurcations of the hamiltonian fourfold 1 :1 resonance with toroidal symmetry[END_REF].

Conclusion

In this paper we addressed the question of characterizing multiple CIRs (with non zero frequencies) for time-delay systems as well as their admissible and maximal multiplicities, provided that one is able to explicitly compute the associated characteristic quasipolynomial function. The considered configuration is generic, allowing among others to link such a problem with some Hermite interpolation problem through functional confluent Vandermonde matrices with trigonometric inputs. A general formula for LU-factorization of such matrices is established. To the best of the authors' knowledge, the use of this class of matrices as well as their factorization is new. Finally, we bear down on the immediate extension of our approach to characterize CIRs for neutral systems.

Proof of Lemma 8

We point out that the coefficient α k (respectively β k ) is the real part (respectively the imaginary part ) of the polynomial P (k) 0 (jω). Furthermore, α k and β k are multivariate polynomials in ω and in the components of a 0 (the coefficients of P 0 in z). It is also important to note that, α s+1 = β s+1 = 0 for every integer s ≥ n. Consider the quasipolynomial given in (11.3). A complex number jω is a root of ∆(z, τ ) = 0 if, and only if, P 0 (jω) + Ñ k=1 P k (jω) e jσ k ω = 0 which gives :

a 0,0 + . . . + a 0,n (jω) n + a 1,0 + . . . + a 1,d 1 (jω) d 1 e jσ 1 ω + . . . + a Ñ ,0 + . . . + a Ñ ,d Ñ (jω) d Ñ e jσ Ñ ω = 0.
Using Euler formula, one obtains :

α 0 + jβ 0 + a 1,0 + . . . + a 1,d 1 (jω) d 1 (c 1 + js 1 ) + . . . + a Ñ ,0 + . . . + a Ñ ,d Ñ (jω) d Ñ c Ñ + js Ñ = 0.
Now, extracting the real and imaginary parts of the above expression allows us to prove (11.8) for k = 0 :

                                 α 0 + c 1 a 1,0 -ωs 1 a 1,1 -ω 2 c 1 a 1,2 + . . . + ω d 1 ∂ d 1 c 1 ∂σ d 1 1 a 1,d 1 + . . . + c Ñ a Ñ ,0 + . . . + ω d Ñ ∂ d Ñ c Ñ ∂σ d Ñ Ñ = 0, β 0 + s 1 a 1,0 + ωc 1 a 1,1 -ω 2 s 1 a 1,2 + . . . + ω d 1 ∂ d 1 s 1 ∂σ d 1 1 a 1,d 1 + . . . + s Ñ a Ñ ,0 + . . . + ω d Ñ ∂ d Ñ s Ñ ∂σ d Ñ Ñ = 0.
Consider the first partial derivatives of the quasipolynomial :

∂ z ∆(z, τ ) = P 0 (z) + Ñ i=1 (P i (z) + σ i P i (z)) e σ i z , ∂ 2 z ∆(z, τ ) = P 0 (z) + Ñ i=1 (P i (z) + 2σ i P i (z) + σ 2 i P i (z))e σ i z .
By induction we arrive to :

∂ k z ∆(z, τ ) = P (k) 0 (z) + Ñ i=1 e σ i z k m=0 m k σ k-m i P (m) i (z).
Now, assume that z = jω is a root of ∂ k z ∆(z, τ ) = 0 for k ≥ 1 and let us show that (11.8) is satisfied.

0 = P (k) 0 (jω) + Ñ i=1 k m=0 m k σ k-m i P (m) i (jω) (c i + js i ) . Thus, α k = -Re( Ñ i=1 k m=0 m k σ k-m i P (m) i (jω) (c i + js i )). Obviously, when k ≥ n then P (k) 0 (jω) = α k + jβ k = 0.
The right-hand side of the above equality is nothing but αk . Indeed, 

Re   Ñ i=1 k m=0 m k σ k-m i d i l=0 a i,l z l (m) z=jω (c i + js i )   = Re   Ñ i=1 d i l=0 a i,l k m=0 m k σ k-m i z l (m) z=jω (c i + js i )   = Ñ i=1 d i l=0 a i,l Re k m=0 m k σ k-m i z l (m) z=jω (c i + js i ) = αk
∂ l c i σ i k ∂σ l i = Re k m=0 m k σ k-m i z l (m) z=jω (c i + js i ) .
Chapitre 12

Multiplicity and Stable Varieties of Time-delay Systems : A Missing Link

Multiple spectral values in dynamical systems are often at the origin of complex behaviors as well as unstable solutions. However, in some recent studies, an unexpected property is emphasized. More precisely, an example of real scalar delay system is constructed, where the maximal multiplicity of an appropriate delay-dependant real and negative spectral value leads to a negative spectral abscissa and, as a consequence, the asymptotic stability of the corresponding steady state solution. In algebraic terms (with respect to the parameter space), the variety corresponding to such a multiple root defines a stable variety for the steady state. Furthermore, for the reduced examples we consider, we show that, under mild assumptions, such a multiple spectral value is nothing but the spectral abscissa. To the best of our knowledge, such a property was not deeply investigated. Motivated by the potential implication of such a property in control systems applications, this chapter is devoted to better explore the connetion between those varieties. Finally, the sunflower dynamical equation illustrates the study. The results of this chapter are borrowed from [START_REF] Niculescu | Multiplicity and stable varieties of timedelay systems : A missing link[END_REF].

Introduction

Symmetries in networked dynamical systems often induce equivariance conditions, which may be associated to multiple spectral values. For instance, it is observed in [START_REF] Dellnitz | Computational methods for bifurcation problems with symmetries-with special attention to steady state and hopf bifurcation points[END_REF] that the existence of multi-dimensional irreducible representations of the symmetry group may force a spectral value to be multiple. Such multiple roots may induce complex behaviors, for instance, in the case of multiple Hopf points' dynamics one refers the reader to the work [START_REF] Govaerts | Defining functions for multiple hopf bifurcations[END_REF]. As a matter of fact, it is shown that the Hopf points near a 1 : 1 resonant double Hopf point in a general threedimensional parameter space form a Whitney umbrella, a phenomenon which cannot occur near the standard Hopf points. Furthermore, it is well known the crucial effect of multiplicities (algebraic/geometric) of a given spectral values on the stability of the steady-state of the corresponding dynamical system, see for instance [START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF]. As an example, the loss of stability of the down hanging equilibrium position of tubes covering fluid is observed in [START_REF] Steindl | Bifurcations of the equilibrium of a spherical double pendulum at a multiple eigenvalue[END_REF]. It is shown that such an instability is due to a multiple Hopf point, which is, itself, due to some symmetries. Recent works by the authors [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials : A vandermonde-based approach[END_REF][START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems : A link with Vandermonde and Birkhoff incidence matrices[END_REF][START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF] characterized multiple Crossing Imaginary Roots (CIR) for time-delay systems using an approach Birkhoff/Vandermonde-based. In [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems : A link with Vandermonde and Birkhoff incidence matrices[END_REF] it is shown that the admissible multiplicity of the zero spectral value is bounded by the generic Polya and Szegö bound denoted P S B , which is nothing than the degree of the corresponding quasipolynomial, see for instance [START_REF] Polya | I : Series, Integral Calculus, Theory of Functions[END_REF]. In [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials : A vandermonde-based approach[END_REF] it is shown that a given CIR with non vanishing frequency never reach P S B and a sharper bound for its admissible multiplicities is established. However, even the characterization of the multiplicty of a given complex (non real) spectral value may be carried out by the same approach, it involves hyperbolic/trigonometric functional confluent Vandemonde matrices. Furthermore, in such a case the P S B can never be reached. Furthermore, an example of scalar retarded equation with two delays is studied in [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials : A vandermonde-based approach[END_REF] where it is shown that the multiplicity of real spectral values may reach the P S B . The corresponding system has some further interesting properties : (i) it is asymptotically stable, (ii) its spectral abscissa (rightmost root) corresponds to this maximal allowable multiple root located on the imaginary axis. Such observations open the perspective to further explore the exhibiting links between the existence and maximal allowable multiplicity of some negative spectral value reaching P S B (or the quasipolynomial degree) and the stability of the corresponding dynamical system. In the sequel, the above property is called multiplicity induced stability.

Most of the stability analysis in feedback systems is based on the mathematical model of the considered system. However, in practice, it is not possible to find a single fixed model for any physical system such that its behaviour matches with actual system. Therefore, the stability analysis should be done by taking into account the possible perturbations on the parameters of the mathematical model to be considered. In order to find a set of perturbed plants, where the feedback system is stable for all possible plants in this set, the small-gain theorem [START_REF] Zames | On the input-output stability of time-varying nonlinear feedback systems part one : Conditions derived using concepts of loop gain, conicity, and positivity. Automatic Control[END_REF], is widely used.

The present work is a natural continuation of [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials : A vandermonde-based approach[END_REF] and [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems : A link with Vandermonde and Birkhoff incidence matrices[END_REF], its aim is to better understand the correspondence between the multiple spectral value variety and the stable variety corresponding to the steady state solution.

The remaining chapter is organized as follows. Section 2 starts by presenting the prerequisite as well as the problem statement. Some motivating example is briefly discussed in section 3. Next, the main results are proposed and proved in Section 4. In Section 5, the multiplicity induced stability is explored for the sunflower equation. Concluding remarks end the chapter.

Problem Formulation and Prerequisite

In this chapter, we are concerned by the following class of time-delay systems : where x = (x 1 , . . . , x n ) ∈ R n denotes the state-vector, under appropriate initial conditions belonging to the Banach space of continuous functions C([-τ N , 0], R n ).

Here τ j , j = 1 . . . N are strictly increasing positive constant delays, τ 0 = 0, τ = (τ 1 , . . . , τ N ) and the matrices A j ∈ M n (R) for j = 0 . . . N . It is well known that the asymptotic behavior of the solutions of (12.1) is determined from the spectrum ℵ designating the set of the roots of the associated characteristic function denoted in the sequel ∆(z, τ ), often called quasipolynomial, that is a transcendental polynomial in the Laplace variable z in which appear exponential terms induced by delays, see for instance [START_REF] Bellman | Differential-difference equations[END_REF]. The study of the zeros of such a class of entire functions [START_REF] Levin | Distribution of zeros of entire functions[END_REF] plays a crucial role especially in the analysis of the asymptotic stability of the zero solution associated with System (12.1). Indeed, the zero solution is asymptotically stable if all the spectral values of (12.1) are in the open left-half complex plane [START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF].

The characteristic function corresponding to System (12.1) is a quasipolynomial

∆ : C × R N + → C of the form : ∆(z, τ ) = det z I -A 0 - N k=1 A k e -τ k z . (12.2) 
Without any loss of generality, and for the sake of simplicity, the quasipolynomial function can be written

∆(z, τ ) = P 0 (z) + Ñ k=1 P k (z) e σ k z , (12.3) 
where σ k are admissible combinations of the components of the delay vector τ := (τ 1 , . . . , τ N ) ; σ k := -N l=1 α k,l τ l such that 0 ≤ α k,l ≤ n, Ñ the cardinality of all admissible σ k , which is a positive integer satisfying Ñ ≥ N . Without any loss of generality, all the σ k are assumed to be distinct and σ := (σ 1 , . . . , σ N ) is considered as an auxiliary delay vector for the quasipolynomial, see for instance [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems : A link with Vandermonde and Birkhoff incidence matrices[END_REF]. It is also assumed that a i,j stands for the coefficient of the monomial z j in P i , a 0 := (a 0,0 , . . . , a 0,n ) is the vector composed from the coefficients of the polynomial P 0 and p := a 1,0 , . . . , a 1,n 1 -1 , . . . , a Ñ ,0 , . . . , a Ñ ,n Ñ -1 . It follows from (12.2) that P 0 is a monic polynomial of degree n in z and the polynomials P k are such that deg(P k ) := d k -1 = n -N l=1 α k,l ≤ (n -1). A given complex number z 0 is said to be a spectral value for (12.1) if ∆(z 0 , τ * ) = 0 for some delay vector τ * . We denote by ∂ k z ∆(z, τ ) the k-th derivative of ∆(z, τ ) given by (12.3) with respect to the variable z. A spectral value z 0 is of algebraic multiplicity

m ≥ 1 if ∆(z 0 , τ * ) = ∂ z ∆(z 0 , τ * ) = . . . = ∂ m-1 z ∆(z 0 , τ * ) = 0 and ∂ m z ∆(z 0 , τ * ) = 0.
R n and M n (R) are, respectively, the set of n-dimensional vectors and n × ndimensional matrices with real numbers denoted as R. For A ∈ M n (R), z i (A) denotes its i.th eigenvalue, i = 1, 2, . . . , n. Re(•) and Im(•) respectively represent the real and imaginary parts of (•). jR := {jω | ω ∈ R} is the set of imaginary numbers, where j is the imaginary unit. C is the set of complex numbers, R + is the set positive real numbers. 

∞ is G ∞ := sup s∈Co G(s) = sup ω∈R G(jω) , where • is the spectral norm. We call G is a stable if G ∈ H ∞ .
As mentioned in the introduction, the aim of this chapter is to better understand the link between the variety defined by a given multiple (of course stable) root for time-delay systems and the asymptotic stability variety corresponding to steady state solution of the system.

Let us recall some notions and results which will be used in the sequel.

Proposition 14 (Pólya-Szegö, [START_REF] Polya | I : Series, Integral Calculus, Theory of Functions[END_REF], pp. 144). Let 1 , . . . , N denote real numbers such that 1 < . . . < N , and d 1 , . . . , d N positive integers satisfying

d 1 ≥ 1, d 2 ≥ 1 . . . d N ≥ 1, d 1 + d 2 + . . . + d N = D + N.
Let f i,j (s) stands for the function f i,j (s) = s j-1 e i s , for 1 ≤ j ≤ d i and 1 ≤ i ≤ N . Let be the number of zeros of the function

f (s) = 1≤i≤N,1≤j≤d i c i,j f i,j (s) 
, that are contained in the horizontal strip α ≤ I(z) ≤ β.

Assuming that

1≤k≤d 1 |c 1,k | > 0, . . . , 1≤k≤d N |c N,k | > 0, then ( N -1 ) (β -α) 2 π -D + 1 ≤ ≤ ( N -1 ) (β -α) 2 π + D + N -1.
The above result gives a bound on the number of characteristic roots of the quasipolynomial function in the horizontal strip α ≤ I(z) ≤ β. Its proof is based on the argument principal, see also [START_REF] Wielonsky | A Rolle's theorem for real exponential polynomials in the complex domain[END_REF] for a modern formulation of the mentioned result. Now, if one sets α = β in the formulation above, then one lets a bound of the number of the quasipolynomial roots such that Im(z) = β, which turns to be a bound for the multiplicity of any root z 0 such that Im(z 0 ) = β. This bound is nothing else than the degree of the quasipolynomial i.e. the number of the involved delays including the case where the delay is zero, plus the degrees minus 1. Such a bound is sharp when the corresponding quasipolynomial consists in complete polynomials i. e. polynomials having all their terms ordered from the greatest degree up to the independent term. 

stable if G 1 G 2 ∞ < 1.

The stability of interconnected system implies

(1 -G 1 G 2 ) -1 ∈ H ∞ , hence, ∆(s) = det(I -G 1 (s)G 2 (s)
) has no zeros in C + . By this interpretation of the theorem, if G 1 is a known, stable transfer function, and G 2 represents a set of perturbations, however, its gain is bounded by 1 G 1 ∞ , then, the interconnected system is stable for all possible poerturbations.

Motivating example

Let us start with a simple scalar differential equation with one delay representing a biological model discussed by K. L. Cooke in [START_REF] Cooke | Stability analysis for a vector disease model[END_REF] for describing the dynamics of a vector disease model where the infected host population x(t) is governed by :

ẋ(t) + a 0 x(t) + a 1 x(t -τ 1 ) -a 1 x(t -τ 1 ) x(t) = 0, (12.4) 
here a 1 > 0 designates the contact rate between infected and uninfected populations and it is assumed that the infection of the host recovery proceeds exponentially at a rate -a 0 > 0, see also [START_REF] Ruan | Delay differential equations in single species dynamics[END_REF] for more insights on the modeling and stability results. Let us focus on the linearized system which is given by :

ẋ(t) + a 0 x(t) + a 1 x(t -τ ) = 0. (12.5) 
Proposition 15. For a given delay τ ∈ R + , system (12.5) admits a double spectral value at z = z 0 if and only if

z 0 = - a 0 τ + 1 τ and a 1 = e -a 0 τ -1 τ . (12.6)
If in addition, a 0 > -1 τ then the zero solution of system (12.5) is asymptotically stable and z 0 is the corresponding rightmost root. If a 0 = -1 τ then z 0 = 0 is the only double spectral value of (12.5) on the imaginary axis and the set of unstable spectra σ + = ∅.

Démonstration. One knows that z = z 0 is a spectral value of (12.5) if and only if z 0 is a root of the characteristic equation ∆(z) = z + a 0 + a 1 e -zτ = 0.

(12.7)

Thus, for a fixed delay τ one has a 1 = -(z 0 + a 0 ) e z 0 τ . Furthermore, z 0 is a double spectral value for (12.5) if and only if ∂ z ∆(z 0 , τ ) = 0 and ∂ 2 zz ∆(z 0 , τ ) = 0. Hence, one substitute the condition above (guaranteeing that z 0 is a spectral value of (12.5)) in the expression of ∂ z ∆(z, τ ) one obtains : 1 + z 0 τ + a 0 τ = 0 which gives z 0 = -a 0 τ +1 τ . Now, it can be easily checked that, under the conditions (12.6) we have ∂ 2 zz ∆(z 0 , τ ) = 0. Thus, as expected, the maximal multiplicity is two. Now, when a 1 satisfies (12.6), then one can write the characteristic function (12.7) as :

∆(z, τ ) = z + a 0 + 1 τ 1 + e -τ (z+a0+ 1 τ ) -1 τ z + a 0 + 1 τ = z + a 0 + 1 τ 1 - 1 0 e -τ (z+a0+ 1 τ ) t dt (12.8) 
To prove that σ + = ∅, assume that there exists some z 1 = ζ 1 + j η 1 a root of (12.8) such that ζ 1 > 0. Then ;

1 = 1 0 e -τ (ζ1+j η 1 +a 0 + 1 τ ) t dt = 1 0 e -τ (ζ1+j η 1 +a 0 + 1 τ ) t dt ≤ 1 0 e -τ (ζ1+j η 1 +a 0 + 1 τ ) t dt ≤ 1 0 e -τ (ζ1+a0+ 1 τ ) t dt.
(12.9)

But, when a 0 ≥ -1 τ for a positive delay τ ,

1 0 e -τ (ζ1+a0+ 1 τ ) t dt < 1 (12.10)
which proves the inconsistency of the hypothesis ζ 1 > 0. Furthermore, if one assumes that ζ 1 > z 0 , inequality (12.10) leads to the inconsistency of such assumption, which guarantees that z 0 is the corresponding dominant root (rightmost root).

As an example, consider the linear scalar time-delay systems with two discrete delays. The stability analysis of such a class of systems can be done by using the geometric approach established in [START_REF] Gu | On stability crossing curves for general systems with two delays[END_REF]. In [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials : A vandermonde-based approach[END_REF], the following proposition is proved :

Proposition 16 ([41]). For each pair (τ 1 , τ 2 ) ∈ R * + × R * + (τ 1 = τ 2 ), the equation ẋ(t) + a 1 x(t -τ 1 ) + a 2 x(t -τ 2 ) = 0 (12.11) admits a triple spectral value at z 0 = -(τ 1 + τ 2 )/(τ 1 τ 2 ) if, and only if, a 1 = τ 2 e τ 1 z 0 / τ 2 τ 1 -τ 2 1 , a 2 = τ 1 e τ 2 z 0 / τ 2 τ 1 -τ 2 2 .
Moreover, under this configuration, z 0 is the rightmost root and the zero solution is asymptotically stable. When additionally, the system parameters a 1 , a 2 ∈ R + then any spectral value is simple.

If the parameters of the system are left free, the above proposition establishes conditions for z 0 to be triple root of (12.11) for any arbitrarily chosen positive delays τ 1 and τ 2 . It is important to emphasize that, for an arbitrarily chosen triplet (z 0 , τ 1 , τ 2 ) with z 0 ∈ C, the set of conditions a 1 = τ 2 e τ 1 z 0 / τ 2 τ 1 -τ 2 1 , a 2 = τ 1 e τ 2 z 0 / τ 2 τ 1 -τ 2 2 , guarantees that z 0 is a double root for (12.11). That is, the multiplicity three imposes only the negative value of such a root z 0 = -(τ 1 + τ 2 )/(τ 1 τ 2 ). Furthermore, it is important to recall that no any spectral value can have an algebraic multiplicity greater than three, which is the Polya and Szegö bound P S B .

From an application point of view, when additional restrictions on the system's parameters are set, then such a multiplicity may not be reached. For instance, a wide range of applications in physics and biology may consider a positivity constraint on the system parameters, see for instance [START_REF] Gopalsamy | Stability and Oscillations in Delay Differential Equations of Population Dynamics[END_REF]. In such a case, any spectral value z 0 is simple. Indeed, a root to be double for (12.11), demand that a 1 a 2 < 0. Lemma 9. Let us consider the following delay-differential equation

ẋ(t) = Ax(t -τ ), (12.12) 
where τ is a positive real number, A ∈ M n (R) with real eigenvalues. Then, the characteristic function of (12.12) has at a zero on the imaginary axis if and only if

τ :=      1 |z i (A)| ( π 2 + 2N π), z i (A) < 0 1 |z i (A)| ( π 2 + (2N + 1)π), z i (A) > 0 c z i (A) = 0
, at least for i = 1, 2, . . . , n, N is a non-negative integer, and c is any positive real number.

Démonstration. By the eigenvalue-decomposition of A, there exists a non-singular matrix V ∈ M n (R) such that V -1 AV = z, where z is a block diagonal matrix, whose non-zero entries are eigenvalues of A. Then, by utilizing the similarity transformation y := V x, the characteristic function of (12.12) can be written as

∆(z, τ ) := n i=1 (z -z i (A)e -zτ ) m i , (12.13) 
where m i is the multiplicity of z i (A), n i=1 m i = n. From (12.13), ∆(jω * , τ * ) = 0 for some non-negative (ω * , τ * )-pair if and only if

rClω * + z i (A) sin(ω * τ * ) = 0 (12.14) z i (A) cos(ω * τ * ) = 0 (12.15)
holds at least for one i, i = 1, . . . , n. Note, (12.15) is satisfied at frequencies ω * = 1 τ * ( π 2 + N π), where N is arbitrary but positive integer, if z i (A) is non-zero. Then, the imaginary axis crossing frequencies are only points, whose magnitudes correspond to the magnitudes of eigenvalues of A. Therefore, (12.14-12.15) is satisfied for ω Now, let us consider some more general case :

* = -z i (A) at τ * = 1 ω * π 2 + 2N π , when z i (A) < 0, and ω * = z i (A) at τ * = 1 ω * π 2 + (2N + 1)π , when z i (A) > 0.
Proposition 17. Consider system (12.1). Suppose that for some k = 0, .., N , there exists index such that

τ * k < min π 2 1 z mk * , 3π 2 
1 z pk * , (12.19) 
where z mk * , z pk * , which are defined in (12.17,12.18) for the corresponding A k , are non-zero. Then, the characteristic equation of (12.1) has no right-half-plane zeros for all

τ k , k = {1, ..N }\{k * }, if N k=0,k =k * A k 2 < 1 (zI -A * k e -zk * ) -1 ∞ , (12.20) 
Démonstration. Let for some k = 1, .., N , say k = k * , there exists τ * k satisfying (12.19). Then, since ∆(z, τ * k ) := det((zI

-A * k e -zτ k )) has no zeros in C + , G 1 (s) := (zI -A * k e -zτ * k ) -1 ∈ H ∞ . In addition, since e -τ z ∈ H ∞ for any τ > 0, G 2 := N k=0,k =k * A k e -zk ∈ H ∞ . Then, from (12.20), since G 1 G 2 ∞ ≤ G 1 ∞ N k=0,k =k * A k 2 < 1, by Theorem 37, I - G 2 (z) G 1 (z) -1 ∈ H ∞ , (12.21) 
which implies that det(zI-N k=0 A k e -zτ k ) has no zeros in C + , ∀ τ k , k = {1, ..N }\{k * }.

Let us now discuss the robustness of the stability criteria established in Proposition 16. For that, consider System (12.11) with fixed delays (τ 1 , τ 2 ) = (τ * 1 , τ * 2 ) and assume that (a * 1 , a * 2 ) are chosen such that the maximal multiplicity is reached. Then, consider a perturbation of the delay vector (τ 1 , τ 2 ) = (τ * 1 + ε 1 , τ * 2 + ε 2 ) (thus z * 0 is no further a triple spectral value for Equation (12.11)). 

[τ * 1 , τ * 1 + ε 1 ) and τ 2 ∈ [τ * 2 , ∞), where ε 1 < π/2 1 a 2 2 -a 1 2 + 2a
i = τ * j e τ * i z * 0 (τ * j -τ * i )τ * i , i, j = 1, 2, i = j. Note, since τ * 2 > τ * 1 , a 1 > |a 2 |, where a 2 is negative. In addition, since |a i | < 1, i = 1, 2, 1 a 2 2 -a 1 2 + 2a 1 > 0. (12.23) Then, if G 1 (z) := 1 z+a 1 e -(τ * 1 +ε 1 )z ∈ H ∞ ,
by utilizing the small-gain theorem and from (12.23), since

sup ω∈R a 2 e -jτ * ω jω + a 1 e -(τ * 1 +ε 1 )jω 2 < a 2 2 ( π 2 1 τ * 1 +ε 1 ) 2 + a 1 2 -2a 1 < 1, (12.24) 
for a positive τ * , the characteristic function of (12.11) has no C + zeros for all

τ 1 ∈ [τ * 1 , τ * 1 + ε 1 ) and τ 2 ∈ [τ * 2 , ∞). Note, since 1 > a 1 > |a 2 |, (τ * 1 + ε)a * 1 < π/2, then, by Lemma 9, G 1 (z) is stable.
As shown in Figure 12.3, the characteristic function of (12.11), where (a * 1 , a * 2 ) are chosen such that the maximal multiplicity is reached, has no any zeros in C + for sufficiently large τ 2 values, while τ 1 a * 1 < π/2. 

Main result

In this section, we shall extend the result of Proposition 16 for two more general classes of systems. The first is nothing than the scalar equation with N delay blocks. The second is the general planar system with two delays.

A scalar equation with N-delay blocks

The following proposition generalizes the result of [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials : A vandermonde-based approach[END_REF] given in Proposition 16. to linear systems with N constant delays given by : .25) where τ 0 = 0 and τ l < τ i for l < i. 

ẋ(t) + N i=0 a i x(t -τ i ) = 0. ( 12 
               z 0 = -a 0 - N i=1 1 τ i and 
a i = e z 0 τ i τ i N l=1 l =i τ l (τ l -τ i )
for i = 1, . . . , N.

(12.26)

If in addition, z 0 < 0 then the zero solution of system (12.25) is asymptotically stable.

Démonstration. A spectral value z 0 of (12.25) is a root of the characteristic equation

∆(z) = z + N i=0
a i e -zτ i . (12.27) Some tedious algebraic computations allow to check that when the system parameters satisfy (12.26) then ∆(z 0 , τ ) = . . . = ∂ N z,...,z ∆(z 0 , τ ) = 0 and ∂ N +1 z,...,z ∆(z 0 , τ ) = 0. Now, when a i satisfy (12.26), then one can write the characteristic equation (12.27) as :

∆(z) = z + a 0 + N l=1 1 τ l      1 + N i=1 e -z+a 0 + N l=1 1 τ l τ i τ i N l=1 l =i τ l (τ l -τ i ) -N i=1 1 τ i z + a 0 + N l=1 1 τ l      . ( 12.28) 
To prove that σ + = ∅, let assume that there exists z

1 = ζ 1 +j η 1 a root of (12.28) such that ζ 1 > 0. Let us set c i = N l=1 l =i τ l (τ l -τ i ) , then, we have 1 = N i=1 c i e -(z 1 -z 0 ) τ i τ i (z 1 -z 0 ) - N i=1 1 τ i (z 1 -z 0 ) (12.29)
Interestingly, the following equality which can be easily shown by induction gives considerable simplification on the above expression

N i=1 c i τ i = N i=1 1 τ i and c i = N l=1 l =i τ l (τ l -τ i ) (12.30)
Thus, (12.29) can be written :

1 = N i=1 c i 1 0 e -(z 1 -z 0 ) τ i t dt, (12.31) 
which implies :

1 = | N i=1 c i 1 0 e -(ζ 1 -z 0 ) τ i t dt| ≤ N i=1 |c i 1 0 e -(ζ 1 -z 0 ) τ i t | dt (12.32)
But, when a 0 ≥ -1 τ , for a positive delay τ ,

1 0 e -τ (γ1+a0+ 1 τ ) t dt < 1, (12.33) 
which proves the inconsistency of the hypothesis ζ 1 > 0.

In the sequel, we will present some sufficient conditions to discuss the stability margins of linear systems defined as in (12.25).

Lemma 11. The characteristic function of the linear system given in (12.25) has no zeros in C + for all positive τ i values satisfying either

N i=1,i =k 1 τ i < 2a k (1 -sin(a k τ k )), (12.34) 
where a k τ k < π/2, and a k = 0, or

N i=1 1 τ i < a 0 , (12.35) 
if N i=1 a i < a 0 .

Démonstration. Let us assume that a 0 in (12.25) equals to 0 and at least one a i , i = 1, . . . , N , say a k , a k τ 2 < π/2. Then, by Corollary 8, ∆ k (z, τ k ) = (z + a k e -sτ k ) has no zeros in C + , where z is the Laplace variable. Note, since the characteristic function of (12.25) can be written as

∆(z, τ ) = (z + a k e -zτ k ) 1 - N i=1,i =k a i e -zτ i z + a k e -zτ k , ( 12.36) 
by the small-gain theorem, ∆(z, τ ) has no zeros in 

C + if N i=1,i =k a i e -zτ i z + a k e -zτ k ∞ < 1. (12.37) Now, let G 1 (z) := 1 z+a k e -zτ k and G 2 (z) := N i=1,i =k a i e -zτ i . Then, since ∂ ∂ω |G 1 (jω)| 2 = 2ω -2a k sin(ωτ k ) -2ωa k τ k cos(ωτ k ) ω 2 + a 2 k -2ωa k sin(ωτ k ) 2 , 12 
ω * = a k sin(ω * τ k ) 1 -a k τ k cos(ω * τ k ) . Then, since G 1 ∈ H ∞ , G 1 ∞ ≤ 1 2a k (1 -sin(a k τ k )) < ∞. (12.38) 
In addition, since G 2 ∈ H ∞ , by (12.30),

G 2 ∞ ≤ N i=1 a i = i=1,N 1 τ i .
Therefore, by the small-gain theorem, the characteristic functions of (12.25) has no zeros for delay values satisfying (12.34).

For the case of a 0 = 0, since a 0 > 0 and G 1 : (z) = 1 z+a 0 is in H ∞ and its H ∞ norm is bounded by (1/a 0 ). Then, by the small-gain theorem, the characteristic functions of (12.25) has no zeros for parameters satisfying (12.35).

Revisiting sunflower dynamics

In this section we revisit a standard model describing the helical movement of a growing plant, known as the Sunflower model :

ẍ + a τ ẋ + b τ sin(x(t -τ )) = 0 (12.39)
Such a model is known to reproduce the dynamics of the upper part of the stem of the plant, which performs a rotating movement. Here the state x(t) designates the angle of the plant with respect to the vertical line and the delay τ corresponds to a geotropic reaction time and a and b some positive parameters, see for instance [START_REF] Zhao | Center manifold analysis of the delayed lienard equation[END_REF].

In the sequel, we consider the linearized system with α = a/τ and β = b/τ :

ẍ + α ẋ + βx(t -τ ) = 0 (12.40)
The following proposition emphasizes again the effect of the multiplicity of a given spectral value on the asymptotic stability of the zero solution of (12.40).

Proposition 19. System (12.40) admits a spectral value at z with multiplicity 2 if and only if (α, z) = (α + , z + ) or (α, z) = (α -, z -) where :

                           α -= -2 + 4 + τ 2 β 2 e 1/2 τ -β-2+ √ 4+τ 2 β 2 τ τ -2 , z -= - β 2 - 2 + 4 + τ 2 β 2 2τ α + = -2 + 4 + τ 2 β 2 e 1/2 τ -β+ -2+ √ 4+τ 2 β 2 τ τ -2 , z + = - β 2 + -2 + 4 + τ 2 β 2 2τ (12.41) Furthermore, when (z, α) = (z + , α + ) (respectively (z -, α -)) and τ β > 2 √ 3 (τ β < 2 √
3) then z + (respectively z -) is a the rightmost root and the corresponding steady state solution is asymptotically stable.

Démonstration. The vanishing of the corresponding quasipolynomial as well as its first derivative gives the two admissible solutions presented in (12.41). Here, the bound of the multiplicity is reached since P S B (∆) = 2. Furthermore, for a fixed

(τ, β) ∈ R * + × R + if α = α + one has z = z + is a double root of ∆ + (z, τ ) = 0.
One can writes the corresponding equation as :

∆ + (z, τ ) = (z -z + ) 2 1 + ∆ + (z, τ ) -(z -z + ) 2 (z -z + ) 2 = 0. (12.42)
Similarly to the proof of Proposition 15, equation (12.42) gives :

∆ + (z, τ ) = (z -z + ) 2 1 + 1 0 s 0 τ (2 z 0 + β) e -τ (z-z 0 )t dt ds = 0. (12.43) 
Let z 1 = γ 1 + jω 1 be a root of the second factor of ∆ + such that γ 1 > z 0 and βτ > 2 √ 3 then,

1 < 1 0 s 0 2e -τ (z 1 -z 0 )t dt ds. (12.44) 
Thus, the assymption is inconsistent and the root z + is the rightmost root. Finally, the zero solution is asmptotically stable. The proof for z -is similar.

Further remarks : Sensitivity of multiple spectral value

Consider the quasipolynomial 

∆(λ, τ ) = λ 3 -1 + b λ + a e -λ τ . ( 12 

Concluding Remarks

In this note we studied a link between the variety corresponding to a multiple spectral value and the one corresponding to the asymptotic stability of the steady state solution for Time-delay systems. Furthermore, such an emphasized link allows Here we use QPMR algorithm from [START_REF] Vyhlidal | Mapping based algorithm for large-scale computation of quasi-polynomial zeros[END_REF].

to drive some simple algebraic criteria for stability based on the explicit analytic identification of the rightmost root. In addition, it is shown that presence of multiple spectral value may allow large perturbations on the delay parameter values of the system. Finally, such a criterion may have a potential implication in control system applications due to its simplicity in design as well as its robustness.

Chapitre 13

A Spectral Analysis for a class of Lossless Propagation Models

The aim of this chapter is the study of the stability properties of a class of systems expressed by functional differential equations coupled with difference equations. More precisely, the study concerns the spectral theory of Lossless propagation models. First, by introducing an appropriate bilinear form, we extend the spectral projection methodology for simple spectral values for Lossless propagation models. For multiple spectral values an explicit spectral projection formula is provided involving a Dunford calculus. Moreover, a sufficient criteriun for the convergence of series expansions of solutions of Lossless propagation models is established. For the nonlinear case, the center manifold theorem is extended to this class of systems leading to approximate qualitatively the solutions behavior of the infinite dimensional system by the dynamics of a finite dimensional system. Finally, the paper provides illustrative examples for the obtained results. Part from the provided results was already published in a short conference paper [START_REF] Boussaada | Spectral analysis for delay differential-algebraic systems[END_REF]. The proofs of the results given in this chapter can be found in [START_REF] Boussaada | Further remarks on spectral analysis of delay differential-algebraic systems[END_REF].

Introduction

We are concerned with systems of functional differential equations coupled with difference equations where the elements of interconnection are represented by the delay terms. More precisely, the study concerns the spectral properties of Lossless propagation models called also Hybrid systems, see [START_REF] Hale | Variation of constants for hybrid systems of functional differential equations[END_REF]. This class of systems is frequently encountered in control problems where the delay terms come naturally from the feedback. In general by Lossless propagation it is understood the phenomenon associated with long transmission lines for physical signals. In engineering, this problem is strongly related to electric and electronic applications, e.g. circuit structures consisting of multipoles connected through LC transmission lines, this can also be seen in steam and water pipes [START_REF] Niculescu | Delay Effects on Stability, A Robust Control Approach[END_REF][START_REF] Fu | On the Stability of Linear Delay-Differential Algebraic Systems : Exact Conditions via Matrix Pencil Solutions[END_REF]. The linear and simpler form of such systems can be written

ẋ(t) = A x(t) + B y(t -τ ) y(t) = C x(t) + D y(t -τ ) (13.1)
where the variables x and y are not necessarily of the same dimension, and the matrix D not necessarily invertible. In [START_REF] Fu | On the Stability of Linear Delay-Differential Algebraic Systems : Exact Conditions via Matrix Pencil Solutions[END_REF], the authors establish an efficient matrix pencil method with high precision in the study of stability.

From another point of view, this type of systems implies but not equivalent to Functional Differential Equations of Neutral type (NFDE)

ẋ(t) = A x(t) + B y(t -τ ) ẏ(t) -D ẏ(t -τ ) = C A x(t) + C B y(t -τ ) . ( 13.2) 
To the best of our knowledge this treatment by letting y(t) = ż(t) was suggested first in [START_REF] Abolinia | Mixed problem for an almost linear hyperbolic system in the plane[END_REF] also applied in [START_REF] Rǎsvan | Absolute stability of time lag control systems[END_REF] and in [START_REF] Hale | Stability in neutral equations[END_REF]. This transformation will be called in what follows Standard Transformation. This type of systems is subject to prolific interest due to its frequent use in the modeling for physical and biological phenomenas [START_REF] Rasvan | Oscillations in lossless propagation models : a liapunov-krasovskii approach[END_REF][START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF][START_REF] Fantoni | Topics in functional differential and difference equations[END_REF][START_REF] Gopalsamy | Stability and Oscillations in Delay Differential Equations of Population Dynamics[END_REF]. In [START_REF] Hale | Introduction to functional differential equations[END_REF] a bilinear form associated to this systems class is defined, which allows [START_REF] Frasson | Large Time Behavior of Neutral Delay Systems[END_REF] to establish an efficient spectral projection procedure. Indeed, [START_REF] Frasson | Large Time Behavior of Neutral Delay Systems[END_REF] is concerned with large time behavior of solutions of linear autonomous NFDE.

We underline the fact that defining such spectral projections represents an important tool to the study of nonlinear systems. Indeed, it permits to restrict the flow to a finite dimensional subspace which is invariant under the solution semigroup. For instance the study of local bifurcations often needs the computation of the center manifold which is characterized by spectral values with zero real part. Unfortunately, spectral projection defined for (13.2) can not be directly invested in the study of the center manifold associated to system (13.1) since the algebraic multiplicity of the zero spectral value increase when using the standard reduction from (13.1) to (13.2) which induces additional dynamics.

Motivated by this fact, we focus this work on establishing a direct way for analyzing such hybrid systems avoiding the use of the standard reduction. To this end, we first introduce a bilinear form associated to (13.1) and then describe a procedure for computing spectral projection associated with simple and multiple spectral values. Then we shall address the question whether the solution of (13.1) can be represented by a series of elementary solutions. This question was tackled for the retarded case [START_REF] Banks | Projection series for retarded functional differential equations with applications to optimal control problems[END_REF] and neutral one [START_REF] Kappel | Linear autonomous functional differential equations[END_REF] and [START_REF] Verduyn | Series expansions for functional differential equations[END_REF] but never asked for Lossless systems.

For the sake of self containment, we recall the outlines of the general theory of NFDE at the appendix. We first start by recalling a theorem giving necessary and sufficient conditions for the solution of NFDE to be represented by a series of elementary solutions. 

dt [x(t) -D 0 x(t -r) - ∞ k=1 D k x(t -τ n )] = h 0 dζ(θ)x(t -θ)
where ζ is an n × n matrix function of bounded variation, for j = 1, 2, . . . , τ j < r and D 0 is a nonsingular matrix, and | D j |→ 0 as j → ∞. Let λ j , j = 0, 1, . . . the 13.2. Spectral Projection for Lossless propagation model 249 associated set of spectral values and P λ j the associated spectral projection given by

P λ = 1 2Πi Γ λ (zI -A) -1 dz. (13.3)
where A is the infinitesimal generator associated with the semigroup T (t). Then the semigroup T (t) extends to a group of bounded linear operators and for every ϕ ∈ C, we have

lim N →∞ || T (t)ϕ - 1 N N -1 k=0 k j=0 T (t)P λ j ϕ ||= 0, t ∈ R + (13.4)
uniformly on compact t-sets.

The invertibility of D 0 ensure that the generator semigroup T (t) has a complete system of eigenvectors and generalized eigenvectors, see [START_REF] Verduyn | Series expansions for functional differential equations[END_REF] and [START_REF] Kappel | Linear autonomous functional differential equations[END_REF]. Accordingly, the invertibility of D 0 guaranties the exclusion of small solutions, thus, the backward integration is possible via

ẋ(t) = D -1 0 [ ẋ(t + r) - n k=1 A k ẋ(t -τ n + r) + h 0 dζ(θ)x(t -θ)].
For more details about completeness of system of eigenvectors and generalized eigenvectors see [START_REF] Lunel | About completeness for a class of unbounded operators[END_REF].

Unfortunately, this theorem can not be directly applied to Lossless systems (13.1) by the only use of the Standard transformation. Indeed, the difference matrix D 0 = 0 0 0 D of the transformed system (13.2) is not invertible.

The remaining paper is organized as follow. The second section is devoted to the main results : first, we extend the spectral projection associated with simple spectral values by defining a bilinear form associated with Lossless systems. Next, Dunford calculus is involved for computing the spectral projection associated with arbitrary multiplicity nonzero spectral values. Moreover, some sufficient conditions for series convergence although in some special cases when the matrix D is singular. In the light of these results, in section 3, we extend the center manifold theorem to a class of nonlinear Lossless propagation models, namely, ẋ(t) = A x(t) + B y(tτ ) + f 1 (x(t), y(t), y(tτ )) y(t) = C x(t) + D y(tτ ) + f 2 (x(t), y(t), y(tτ ))

.

(13.5)

The section 4 ends the paper by illustrative examples. Analogously, to the well prescribed general theory for functional differential equations [START_REF] Hale | Introduction to functional differential equations[END_REF][START_REF] Hale | Introduction to functional differential equations[END_REF][START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF][START_REF] Gopalsamy | Stability and Oscillations in Delay Differential Equations of Population Dynamics[END_REF], the infinitesimal generator associated with the semigroup of the solution operator T (t) is given by The associated characteristic matrix is

∆(z) = z I n -A -e -z τ B -C I m -e -z τ D , (13.7) 
thus λ is said to be a spectral value if H(λ) = det(∆(λ)) = 0.

Bilinear Form for Lossless propagation model

Let us consider ϕ an m + n column vector and ψ an m + n row vector,

ϕ =           v 1 . . . v n v n+1
. . .

v n+m          
and ψ = (u 1 , . . . , u n , u n+1 , . . . , u n+m ) .

Moreover, let us set ψ = ψ 1 +ψ 2 = (u 1 , . . . , u n , 0, . . . , 0)+(0, . . . , 0, u n+1 , . . . , u n+m ). Analogously, let us set for a block matrix 

J = L M N Q then J = J1 + J2 = L M 0 0 + 0 0 N Q .

Zero characteristic root

Substituting λ = 0 in the characteristic equation, allows us to say that the stability of the system is delay-independent. Thus, the system (13.1) with zero characteristic root is stable (instable) if the system (13.1)| τ =0 is stable (instable). Then a zero characteristic root can be seen as associated to the system (13. this is a homogeneous ODE with an algebraic equation, which can be solved directly by considering the first equation to obtain a solution for x, then by deducing a solution for y by substituting the solution for x in the algebraic equation.

Computing spectral projections using Dunford Calculus : non zero spectral values with arbitrary order

By the standard spectral theory, the spectral projection onto M λ along R((λ I -A) k λ ) is associated to a Dunford integral, see [START_REF] Frasson | Large Time Behavior of Neutral Delay Systems[END_REF][START_REF] Verduyn | Series expansions for functional differential equations[END_REF] and references therein for further details. Indeed,

P λ = 1 2Πi Γ λ (zI -A) -1 dz (13.11)
where Γ λ is a small circle containing λ but no other poles of the resolvent (zI -A) (13.12)

Theorem 39. The resolvent (zI d -A) -1 of the infinitesimal generator A defined by (13.6) associated to the system (13.1) is given by

(zI d -A) -1 ϕ = -e z.
. 0 e -zt φ1 (t)dt + e z. ∆(z) -1 H(z, ϕ), (13.13) where the characteristic matrix ∆(z) is defined by (13.41) and H(z, .) : C → C is the operator defined by (13.23). Moreover, if λ ∈ σ(A), then the spectral projection P λ onto M λ along R((λI -A) k λ ) is given by P λ ϕ = Res z=λ e z. ∆(z) -1 H(z, ϕ) . Thus we obtain explicitly the expression of ψ as a function of ∆ and H , then the resolvent that ends the proof.

Series Expansion for Lossless Systems

The question whether the solution of retarded systems can be represented by a series of elementary solutions and the deal with the convergence of the series expansion of the solution is studied in [START_REF] Banks | Projection series for retarded functional differential equations with applications to optimal control problems[END_REF]. In [START_REF] Verduyn | Series expansions for functional differential equations[END_REF] some convergence results based on the Cesaro sum are given for neutral type system when the matrix associated to the greatest delay (A n of (13.55)) of the difference equation is nonsingular. A weaker result for the singular case is also established but under the hypothesis that the matrix associated with the greatest delay (B m of (13.55)) is nonsingular. Those regularity conditions on A n in [START_REF] Verduyn | Series expansions for functional differential equations[END_REF] ensure that the generator semigroup T (t) has a complete system of eigenvectors and generalized eigenvectors, see also [START_REF] Kappel | Linear autonomous functional differential equations[END_REF].

A natural question arise : whether the solution of a given Lossless system (13.1) can be represented by a series of elementary solutions and under which conditions the convergence is insured. The main idea is to expand the state into a linear combination of eigenvectors (ϕ λ k (θ) = p k (θ)e λ k θ ) and generalized eigenvectors : The following two theorems give sufficient conditions for convergence of the power series associated with solutions for (13.1). uniformly on compact t-sets.

x t (θ) =
The trick here is to identify for (13.1) its system of eigenvalues, and to prove that it is a complete system. In other words, we design an appropriate Neutral system having the same set of eigenvectors as (13.1) (apart from those associated with the zero spectral value), for which we can prove the convergence of its series expansion by using Verduyn-Lunel theorem 38, see [START_REF] Verduyn | Series expansions for functional differential equations[END_REF].

Démonstration. Let us consider system (13.1) and apply the Standard transformation which leads to system (13. Here we can not directly apply the result of the theorem 38 since the associated matrix D 0 = 0 0 0 D , (the matrix of the difference equation associated with the greatest delay) is singular. However, we write down y(t-τ ) = D -1 y(t)-D -1 Cx(t) from the second equation of (13.1). We substitute this fact in the first equation, we have ẋ(t) = (A + BD -1 C) x(t) + BD -1 y(t) y(t) = C x(t) + D y(tτ ).

A rescaling of time by τ of the first equation gives ẋ(t -τ ) = (A + BD -1 C) x(tτ ) + BD -1 y(tτ ).

Subtracting the last equality from the first equation of (13.1) and derivating its second equation lead to ẋ(t) -ẋ(t -τ ) = (A + BD -1 C) (x(t) -x(tτ )) + BD -1 (y(t) -y(tτ )) ẏ(t) -D ẏ(t -τ ) = CA x(t) + CB y(tτ ). Note that the set of the spectral values of the characteristic equation associated with (13.1) belongs to the set of spectral values of the characteristic equation associated with (13.27). Moreover, the only additional spectral value is zero with multiplicity m. Thus the set of eigenvalues associated with (13.27) represents a complete set. But for τ = 0, zero is not a spectral value for (13.1), then P 0 ϕ = 0, ∀ϕ ∈ C. uniformly on compact t-sets.

Démonstration. The same trick as the one used to prove the last theorem is applied here ; that is the design of an appropriate Neutral system having the same set of eigenvectors as (13.1) (apart from those associated with the zero spectral value), for which we are able to prove the convergence of its series expansion (invertible matrix D 0 ).

Finite dimensional approximation : Center Manifold theorem for Lossless propagation model

As recalled in the first section, using the standard reduction (by letting y(t) = ż(t)) one can transform a Lossless system to a NFDE. Certainly this approach increases the number of spectral values to the system and thus the computation of the center manifold for the NFDE will not be valid for Lossless system but detailed inspection shows that there are only a zero additional spectral value with multiplicity m = dim(y). Thus, by the standard reduction some additional dynamics are induced. When the left eigenvector associated with a given spectral value (other than zero) is the same for both the neutral structure as for the Lossless structure, then one can carefully distinguish the concrete spectral projections and reject the generalized eigenspace associated to the zero value and then compute a center manifold expansion. Finally, one has to translate the obtained result in terms of Lossless system structure. But in the the remaining case (different left eigenvectors) this approach becomes very difficult. In conclusion, even this procedure still possible in some configurations but seems to be a complicated task.

In the light of the obtained results in the previous subsections for Lossless propagation model : the design of an appropriate bilinear form, the definition of the spectral projection and the study of the series expansion for a given solution, we show that the extension of the center manifold theorem to the system (13.5) is possible. Thus, we are able by now to present a direct center manifold computations for Lossless systems (13.5). In what follows, we give the computations schemes that will be illustrated in the last section by an example for the Hopf-bifurcation Like case.

In this section our aim is to reduce the dimension of the system (13.5), namely, ẋ(t) = A x(t) + B y(tτ ) + f 1 (x(t), y(t), y(tτ )) y(t) = C x(t) + D y(tτ ) + f 2 (x(t), y(t), y(tτ )) .

where such that z t (. , φ)(θ) = z(t + θ, φ) for θ ∈ [-r, 0] is a strongly continuous semigroup. Obviously, σ(A) = σ p (A) (since the spectrum of a Lossless system is included in the spectrum of delay system of neutral type) and the spectrum of A consists of complex values λ ∈ C which satisfy the characteristic equation p(λ) = det∆(λ) = 0.

Let us denote by M λ the eigenspace associated with λ ∈ σ(A). We define C * = C([-r, 0], R (n+m) * ) where R (n+m) * is the space of (n + m)-dimensional row vectors and consider the defined bilinear form. Let A T be the transposed operator of A, i.e., < ψ, Aϕ >=< A T ψ, ϕ >. We underline also the fact that the Banach space decomposition Theorem [START_REF] Hale | Introduction to functional differential equations[END_REF] is extended to lossless propagation model under the prescribed sttings. Thus we obtain a decomposition of the space C = P Q where P = span{M λ (A), λ ∈ Λ} and Q (the infinite dimensional complementary subspace) are invariant under T (t), t ≥ 0. Note also, that such a basis Φ satisfies : T (t)Φ = Φ e Lt , where L is a d×d-matrix where the spectrum of L is σ(L) = Λ.

In order to decompose equation (13.40) according to C = P Q, the phase space C must be extended to the space BC of functions which are continuous on [-τ, 0) and may have a finite jump discontinuity at θ = 0. Functions ξ ∈ BC can be written as ξ = ϕ + X 0 α, where ϕ ∈ C, α ∈ R n+m , and X 0 (θ) = 0 for -τ ≤ θ < 0 and X 0 (0) = Id d×d . Then the bilinear form from Sec. 13.2 can be extended to the space C * × BC by < ψ, X 0 >= ψ(0) and the infinitesimal generator A extends to an operator à (defined in C 1 ) onto the space BC as follow The above decomposition theorem can be easily exploited in the aim of computing the the evolution of solutions on the center manifold (the dimensional reduced system) as well as the explicit expression of the center manifold.

Définition 1. Given a C 1 map h from R d into Q. The graph of h is said to be a local manifold if h(0) = Dh(0) = 0 and there exists a neighborhood V of 0 ∈ R d such that for each ξ ∈ V , there exists δ = δ(ξ) > 0 and the solution z of (13.40) with initial data Φξ +h(ξ) exists on the interval ]-δ -r, δ[ and it is given by z t = Φu(t)+h(u(t)) for t ∈ [0, δ[ where u(t) is the unique solution of the finite dimensional hybrid system The aim of this example is not the computations of the center manifold itself but is to provide a finite dimensional approximation of (13.5) in the sense of the convergence criteria based on Cesaro Sum given by (13.26). Thus, for the sake of simplicity, we ask for a finite dimensional approximation up to order three and we select the case where the nonlinearity of (13.5) does not contain quadratic terms, see [START_REF] Milton | The time-delayed inverted pendulum : Implications for human balance control[END_REF] for more hints about such a choice.

Consider system (13.5) with the delay τ = π and matrices

A = 1, B = 1 -5 2 , C = 0 1 , D = 1 5 0 0 -2 ,
and the nonlinear part is defined by f 1 (x(t), y(t), y(t-τ )) = x 3 (t) and f 2 (x(t), y(t), y(tτ )) = (0, y 3 2 (t -τ )) T . By straightforward computations made by QPMR-algorithm (Quasi-Polynomial Mapping based Root-finder, developed for computing the spectrum of both Retarded and Neutral Time-Delay Systems) presented in [START_REF] Vyhlidal | Mapping based algorithm for large-scale computation of quasi-polynomial zeros[END_REF] show that λ 0 = ± i 2 are the only spectral values with zero real part and are of algebraic and geometric multiplicity 1. Moreover, all remaining spectral values are of negative real part. Thus the phase space can be split into an invariant center variety of dimension 2 and a stable variety. Here we compute some important elements for describing the solutions dynamics on the center manifold. For λ 0 = ± i 2 , the associated right-eigenvector is

ϕ i 2 (θ) =      e iθ 2 0 1 5 (1 + 2 i) e iθ 2     
Thus we consider the real part and the imaginary part separately :

ϕ 1 i 2 (θ) =     cos( θ 2 ) 0 1 5 cos( θ 2 ) -2 5 sin( θ 2 )    
The normalized basis of Q denoted Ψ is obtained by using the defined bilinear form (13.8) such that < Ψ, Φ >= I d , thus we have . Hence, the dynamics of (13.5) in the center manifold is given by the top equation of (13.47) which can be written 

Ψ = ψ 1,

Outlines of the General Theory of NFDE

Let us consider the general discretely delayed autonomous first order nonlinear system NFDE where we separate its linear and nonlinear quantities as follow where A i , B j are n × n real valued matrix and the delays τ k are ordered such that τ j < τ j when i < j and let τ n = r. It is also known that σ(A) = σ p (A) and the spectrum of A consists of complex values λ ∈ C which satisfy the characteristic equation p(λ) = det∆(λ), see [START_REF] Michiels | Stability and stabilization of time-delay systems, volume 12 of Advances in Design and Control[END_REF] for further details on spectral properties of linear functional differential equations. Let us denote by M λ the eigenspace associated with λ ∈ σ(A). We define C * = C([-r, 0], R n * ) where R n * is the space of n-dimensional row vectors and consider the bilinear form on C * × C which is proposed in [START_REF] Hale | Introduction to functional differential equations[END_REF] (ψ, ϕ) = ψ(0) ϕ(0) - In [START_REF] Milton | The time-delayed inverted pendulum : Implications for human balance control[END_REF], the author give a procedure based on the above bilinear form allowing to the the explicit computation of the center variety for delay systems. The following Theorem [START_REF] Hale | Introduction to functional differential equations[END_REF] permits the decomposition of the space C.

Theorem 42. Let Λ be a nonempty finite set of eigenvalues of A and let P = span{M λ (A), λ ∈ Λ} and P T = span{M λ (A T ), λ ∈ Λ}. Then P is invariant under T (t), t ≥ 0 and there exists a space Q, also invariant under T (t) such that C = Let us consider the extension of the space C that contains continuous functions on [-r, 0) with possible jump discontinuity at 0, we denote this space BC. A given function ξ ∈ BC can be written ξ = ϕ + X 0 α, where ϕ ∈ C, α ∈ R n and X 0 is defined by X 0 (θ) = 0 for -r ≤ θ < 0 and X 0 (0) = Id n×n . Then Hale-Verduyn Lunel bilinear form [START_REF] Hale | Introduction to functional differential equations[END_REF] can be extended to the space C * × BC by (ψ, X 0 ) = ψ(0) and the infinitesimal generator A extends to an operator à (defined in C 1 ) onto the space BC as follow Ãφ = Aφ + X 0 [Lφ -Dφ ] (13.60)

Under the above consideration one can write equation (13.56) as an abstract ODE ẋt = Ãx t + X 0 F(x t ), (

see [START_REF] Fantoni | Topics in functional differential and difference equations[END_REF]. Thanks to the projection Π : BC → P such that Π(ϕ + X 0 α) = Φ[(Ψ, ϕ) + Ψ(0)α] hence x t = Φy(t) + z t where y(t) ∈ R m and then equation (13.56) can be split to ẏ = By + Ψ(0)F (Φy + z) ż = ÃQ + (I -Π)X 0 F(Φy + z), (13.62) and the interest turns to be focused only on the first equation after writing z as a function of y ; that is the flow restriction on the finite dimensional subspace P .

Chapitre 14

Conclusion et perspectives

Cette partie comporte une description succinte des travaux en cours ainsi que les développements futurs. Elle présente la suite à donner aux travaux de ce manuscrit ainsi que les nouvelles thématiques auxquelles je m'intéresse. Ces perspectives s'articulent essentiellement autour de trois sujets : les deux premiers concernent deux questions théoriques (la linéarisation explicite au voisinage de points de Hopf et l'étude des propriétés et de la distribution des zéros de fonctions analytiques et notamment les quasipolynômes) et le troisième sujet consiste à explorer les applications en sciences du vivant et exploiter les outils de la théorie qualitative dans l'analyse et le contrôle de leurs dynamiques.

Linéarisation explicite au voisinage d'un point d'équilibre non hyoperbolique

Plusieurs perspectives sont envisagées dans ce contexte ; l'exploration de la profondeur d'isochronie, l'élaboration de formules de linéarisation explicite au voisinage d'un centre isochrone, l'adaptation de l'approche de synchronisation de fréquences aux systèmes couplés et enfin la caractérisation de centres isochrones pour des systèmes à retard. Les coefficients α k sont appelés coefficients de Lyapunov. Les coefficients β k ne sont autres que les coefficients du développement de la fonction période. Le calcul des coefficients de Lyapunov permet de résoudre le problème du Foyer-Centre. En effet, la non nullité d'un coefficient de Lyapunov implique l'existence d'un foyer. Dans ce cas, le signe (positif/négatif) du coefficient (non nul) du monôme de plus bas degré (en r) décide de l'instabilité/stabilité du foyer. Le problème de profondeur du centre consiste à déterminer k, le nombre des premiers coefficients de Lyapunov, dont la nullité implique la nullité de tous les cofficients de Lyapunov (conséquence du théorème de Hilbert). D'une manière analogue, le problème de profondeur d'isochronie consiste à déterminer k, le nombre des premiers coefficients de la fonction période, dont la nullité implique la nullité de tous les cofficients de la fonction période. A titre d'exemple, pour la famille des systèmes de type Liénard (2.21) de degré arbitraire n, nous arrivons à identifier une formule explicite pour la profondeur d'isochronie (sachant que l'existence d'un centre à l'origine est assurée dans cette classe), cette conjecture est vérifiée pour les systèmes de degré n 20, voir [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF]. Travailler sur l'élaboration d'une preuve de cette formule déterminant la profondeur en fonction du degré, est une des perspectives envisagées (sachant qu'on dispose d'un ensemble de relations de recurrences explicites entre les coefficients de la fonction période). L'idée est de démontrer que les k premiers coefficients forment une base pour les coefficients suivants.

Linéarisation explicite

D'après le Théorème de H. Poincaré (linéarisation au voisinage d'un centre), un centre est isochrone s'il admet un changement de variables analytique linéarisant. Les méthodes classiques utilisées dans la caractérisation des conditions d'isochronie, telle que la méthode des formes normales et l'établissement d'un commutateur transversal (s'il est de plus analytique mais non polynomial) ne fournissent pas d'information sur la linéarisation explicite. L'avantage de notre approche, basée sur le critère d'Urabe est de lier cette propriété d'isochronie à l'identification d'une fonction impaire, dite la fonction d'Urabe, qui satisfait un certain nombre de conditions. Dans [START_REF] Bardet | Isochronicity conditions for some planar polynomial systems {II}[END_REF], une formule explicite de linéarisation est établie dans le cas où la fonction d'Urabe est constante. Dans [START_REF] Boussaada | Isochronicity conditions for some planar polynomial systems[END_REF] une forme spécifique de fonction d'Urabe (appelée forme standard) a été identifiée h(ξ) = a ξ 2n+1 √ b+c ξ 4n+2 avec a, b, c ∈ R, b > 0 et n ∈ N * pour la majorité des centres isochrones décelés. Puis dans [START_REF] Bardet | Complexity reduction of c-algorithm[END_REF][START_REF] Bardet | Isochronicity conditions for some planar polynomial systems {II}[END_REF] il a été démontré que cette forme standard même si elle est aussi fréquente n'est pas la seule possible mais des formes plus complexes peuvent exister (pour des systèmes d'ordres supérieurs). Il est important d'établir le lien entre les formules de linéarisation et la fonction d'Urabe non constante. Un point de départ envisagé est celui de commencer par les fonctions sous forme standard. admet un centre isochrone dans le plan (x, y). Ce problème est en cours d'exploration, il est fortement lié aux problèmes de platitude.

Centres isochrones pour des systèmes à retard

L'investigation des centres isochrones d'un système à retard se ramène à la caractérisation de tels centres pour un système plan d'équations différentielles ordinaires correspondants. En effet, étant donné un système à retard ẋ = f (x t ) (x t ∈ C = C([-r, 0], R n ), x t (θ) = x(t + θ)), dont le linéarisé autour d'un point de Hopf (point d'équilibre non hyperbolique admettant une unique fréquence de coupure ω 0 ) n'admet que des valeurs spectrales telles que (σ) ≤ 0. Ainsi, grâce à la décomposition spectrale x t s'écrit x t = Φy(t) + z t avec y(t) ∈ R 2 et Φ une base de l'espace propre M jω 0 . Puis, en se basant sur le théorème de la variété du centre, (dans la variété du centre z t = h(y)) on sait que les dynamiques dominantes du système initial seront gouvernées par ẏ = By + Ψ(0)F (Φy + h(y)). L'exploration de cette propriété d'isochronie pour de tels systèmes n'a jamais été étudiée et fera partie des perspectives envisagées.

Localisation des zéros de quasipolynômes

La stabilité d'un quasipolynôme ∆(λ, τ ) se traduit par la mise en évidence d'un réel σ > 0 tel que toutes les racines λ k de ∆(λ, τ ) soient à partie réelle strictement inférieure à -σ. Ainsi, tester la stabilité pour un systéme à retard revient à vérifier l'absence de racines à partie réelle positive de son quasipolynôme caractéristique.

Caractérisation des fréquences de coupures d'un quasipolynôme

La variété du centre joue un rôle important dans l'analyse qualitative des systèmes à retard non linéaires. La dimension du projeté de l'état dans cette variété n'est autre que la dimension de l'espace propre généralisé associé aux valeurs spectrales imaginaires pures. Il existe différentes approches pour identifier ces valeurs spectrales pour les quasipolynômes de la forme ∆(λ, τ ) = N k=0 P k (λ)e -λτ k avec τ 0 = 0, 0 < τ 1 < τ 2 < . . . < τ N et τ = (τ 1 , τ 2 , . . . , τ N ). D'autre part, différentes applications issues de la biologie (équations structurées en âge) ou même de l'astrophysique (dynamique de satellites) sont modélisés par des systèmes à retard dont les paramètres dépendent également du retard. Ce qui suggère l'intérêt de considérer les quasipolynômes de la forme ∆(λ, τ ) = N k=0 P k (λ, τ )e -λτ k . Cette dépendance paramétrique en le retard s'avère être une limitation pour les approches classiques dans l'identification des fréquences de coupure. A titre d'exemple, la transformation de Rekasius ne permet pas d'explorer la multiplicité d'une valeur spectrale imaginaire pure. Ce problème s'inscrit dans les perspectives envisagées ; des questions auxiliaires ont été abordées dans ce manuscrit. L'exploration de cette classe est une problèmatique adressée dans la thèse en cours (2015-2018) de Chi Jin.

Comportement des valeurs spectrales d'un système à retard en présence de perturbations

Une technique standard dans la stabilisation de systèmes à retard consiste à établir les fréquences de coupure puis à identifier le vecteur perturbation permettant de migrer ces valeurs spectrales vers le demi-plan complexe gauche. Toutefois, cette migration dépend fortement des multiplicités (algébrique/géométrique) de ces valeurs spectrales. L'idée consiste à considérer que la valeur spectrale et les vecteurs propres correspondants comme fonctions en la perturbation et de considérer leur développement en série (de Taylor dans le cas d'une racine semi-simple) comme suit : (dans le cas non semi-simple, les puissances deviennent des fractions rationnelles, car il s'agit d'un developpement en série de Puiseux) λ = λ 0 + r i=1 ε i λ i + . . . , u = u 0 + r i=1 ε i u i + . . . . Nous abordons actuellement deux directions. La première dans le cadre de la thèse en cours (2014-2017) de Dina Irofti, où la perturbation est due à une incertitude sur la valeur du vecteur retard. La seconde, dans le cadre de la thèse de Chi Jin, où on considère des incertitudes sur les coefficients du quasipolynôome qui à leur tour dépendent du retard. Dans une collaboration en cours avec Wim Michiels (UC Leuven), nous étudions la migration des racines multiples correspondant au problèmesaux valeurs propres non linéaire :

M (λ, ε)u = 0, λ ∈ C, u = 0.
où M est un opérateur dépendant de la variable λ et du paramétre ε.

Interpolation de Birkhoff

Le lien explicite entre le problème d'interpolation de Birkhoff et la multiplicité des zéros de quasipolynôme a été souligné dans ce manuscrit. Exploiter ce type de matrices structurées dans des problèmes de stabilisation est à notre connaissance un usage nouveau qui nous fera bénificier de leurs propriétés. Ce sujet est envisagé dans mes perspectives. 

Applications en biologie/biochimie

Le monde du vivant est très représentatif d'un domaine où les dynamiques à retard se manifestent. Par exemple, les célébre modèle de croissance du tournesol [START_REF] Zhao | Center manifold analysis of the delayed lienard equation[END_REF] (sunflower equation) ou celui décrivant le processus physiologique de production des cellules sanguines [START_REF] Mackey | Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis[END_REF][START_REF] Cunha Orfao | Qualitative properties and stabilizability of a model for blood thrombin formation[END_REF] ou bien les éléments figurés du sang, aux comportements dynamiques nombreux et variés, sont apparus comme des modèles mathématiques à la fois simples et fidèles aux désordres des phénomènes observés. Le retard engendré par ces phénomènes de transport dans un milieu biologique complexe, s'observe également dans le monde du vivant lors du transport des influx nerveux dans les réseaux de neurones, et dans les communications internes du cerveau (vitesse finie, relativement lente, de propagation de l'influx nerveux). Voir aussi des application en concérologie, en particulier l'analyse de modèles de leucémie aigue myéloblastique dans [START_REF] Fridman | Stability of the cell dynamics in acute myeloid leukemia[END_REF][START_REF] Bonnet | A Discrete-Maturity Interconnected Model of Healthy and Cancer Cell Dynamics in Acute Myeloid Leukemia[END_REF]. Dans cette thématique deux problèmes sont envisagés dans mes perspectives.

Dynamiques des populations impliquant retard et termes stochastiques

Dans le cadre d'une collaboration en cours avec Paul Reynaud de Fitte (LMRS, Université de Rouen) nous nous intéressons à l'analyse des dynamiques prédateur/proie avec refuge dont une modèle mathématique (normalisé) est donné par :

         ẋ = x (1 -x) -
ay (x -m) + k 1 + (x -m) + , ẏ = by 1 -y k 2 + (x -m) + , où x ≥ 0 est la densité de proie, y ≥ 0 est la densité de prédateur, m ≥ 0 modélise le refuge pour la proie i.e. la quantité (x -m) + := max (x -m, 0) désigne la densité de proie accessible au prédateur et les paramétres physiques a, b, k 1 , k 2 ∈ R * + . Le premier objectif est d'établir une analyse qualitative paramétrique des solutions de ce modèle (positivité, bornitude, stabilité, périodicité). L'étape suivante consiste à considérer le retard qui existe naturellement dans les interconnexions en plus d'éventuels termes stochastiques.

Analyse des réseaux en chimie/biochimie

Motivé par une classe de systèmes à retards étudiée dans la théorie des réseaux de réactions biochimiques (systèmes provenant du principe d'action de masse retardée), et à l'aide de techniques du calcul formel et de la théorie des graphes, le but de cette collaboration avec Silviu Niculescu, Alban Quadrat, Yacine Bouzidi (Inria, Lille) et Marc Roussel (Leithbridge University, Canada) est de développer une analyse générale de la stabilité des systèmes interconnectés définis par des équations différentielles polynomiales à retards et de leurs sensibilités aux variations des retards et des paramètres du système (existence de points d'équilibre positifs, stabilité, comportement oscillatoire, bifurcations de Hopf, . . . ).

En particulier, nous abordons un modèle décrivant le mécanisme irreversible de la réaction de Belousov-Zhabotinskii, le modèle Oregonator donné par les equations cinétiques :

A + Y k 1 -→ X + P X + Y k 2 -→ 2P B + X k 3 -→ 2X + Z 2X k 4 -→ A + P Z k 5 -→ f Y
où A l'ion Bromate et B un composé organique, Y l'ion bromure, X l'acide bromique et Z le cérium sont les variables chimiques, P un produit, les k i , i = 1, 2, . . . , 5,sont des constantes positives représentant les constantes de vitesse/cinétiques et f un coefficient stoichiométrique. Etant donné que la loi d'action de masse suggère que la vitesse de réaction est proportionnelle au produit des concentrations des réactants, l'Oregonator est décrit par le système dynamique :

Ẋ(t) = k 1 AY (t) -k 2 X(t)Y (t) + k 3 BX(t) -2k 4 X(t) 2 Ẏ (t) = -k 1 AY (t) -k 2 X(t)Y (t) + f k 5 Z(t)
Ż(t) = k 3 BX(t) -k 5 Z(t).

(*)

Nous exploitons une idée de modélisation, proposée dans [START_REF] Roussel | The use of delay differential equations in chemical kinetics[END_REF], qui consiste à généraliser la loi d'action de masse en prenant en considération (dans un sous ensemble des réactions) le temps nécessaire pour l'apparition de produits (composés chimiques intermédiare) résultant de la transformation des réactants. Cette approche permet d'agréger ces modèles en introduisant des retard et en éliminant les variables intermédiaires dans l'équation dynamique. Concrètement, dans le cadre de l'analyse de l'Oregonator, cette idée permet de se focaliser uniquement sur les deux premières équations et considérer que la variable Z(t) (variable intermédiaire) est proportionnelle à X(tτ ) où τ est le temps de la réaction pour obtenir :

Ẋ(t) = k 1 AY (t) -k 2 X(t)Y (t) + k 3 BX(t) -2k 4 X(t) 2 Ẏ (t) = -k 1 AY (t) -k 2 X(t)Y (t) + αf k 5 X(t -τ ) (**)
Il a été démontré dans [START_REF] Roussel | The use of delay differential equations in chemical kinetics[END_REF] que les solutions respectives de (*) et de (**) ont les mêmes propriétés qualitatives (point d'equilibre, oscillations, points de Hopf de fréquences respectives ω * et ω * * ), voir aussi [START_REF] Epstein | Differential delay equations in chemical kinetics. nonlinear models : The cross-shaped phase diagram and the oregonator[END_REF]. Une des problèmatiques que nous considérons est d'établir le lien entre ces fréquences d'une part et le retard de modélisation τ et les paramétres du système (interconnections) d'autre part.
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 27 ẋ = -y + a 11 yx + a 21 yx 2 + a 31 yx 3 ẏ = x + b 20 x 2 + b 30 x 3 + b 02 y 2 + b 12 xy 2 + b 22 x 2 y 2 + b 40 x 4(2.13)
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 27 ẋ = -y + a 11 yx + a 21 yx 2 + a 31 yx 3 + a 41 yx 4 ẏ = x + b 20 x 2 + b 30 x 3 + b 02 y 2 + b 12 xy 2 + b 22 x 2 y 2 + b 32 x 3 y 2 + b 40 x 4 + b 50 x 5

Theorem 4 . 2 + 2 b-8 b 20 3 x 2 y 2  9 bb 20 ( -b 20 2 +4 b 30) xy +a 21 x 2 y + b 30 ( -2 b 30 b 20 2 -b 20 2 a 21 +4 b 30 a 21 +6 b 30 2 )b 20 ( -b 20 2 +4 b 30 ) x 3 yb 20 ( -b 20 2 +4 b 30) y 2 +b 30 x 3 + 2 (-b20 2 a 21 +4 b 30 a 21 +b 30 b 20 2 -3 b 30 2 ) 2 +3b 30 ( -2 b 3 ,0 b 20 2 -b 20 2 a 21 +4 b 30 a 21 +6 b 30 2 )b 20 ( -b 20 2

 42229202302122023032022221222303212202 The system (2.13) has an isochronous center at the origin O with zero Urabe function only in one of the following six cases, where one suppose that all denominators are non zero polynomials. 22I ẋ = -y + b 02 xy + a 21 x 2 y + a 31 x 3 y ẏ = x + b 02 y 2 + a 21 xy 2 + a 31 x 2 y 2 II ẋ = -y + b 02 xy -3/2 b 30 x 2 y + b 02 b 30 x 3 y ẏ = x + b 02 y 2 + b 30 x 3 -9/2 b 30 xy 2 + 3 b 02 b 30 x 2 y 2 III ẋ = -y + (b 02 + 2 b 20 ) xy + a 21 x 2 y + b 20 a 21 -b 02 b 20 2 -4 b 20 3 x 3 y ẏ = x + b 20 x 2 + b 02 y 2 + a 21 + b 02 b 20 + 4 b 20 2 xy 20 a 21 -2 b 02 b 20 2 30 b 20 2 -b 20 2 a 21 +2 b 20 4 +4 b 30 a 21 +6 b 30 2 ) ẏ = x + b 20 x 2 + (-17 b 30 b 20 2 -b 20 2 a 21 +4 b 20 4 +4 b 30 a 21 +6 b 30 2 ) +4 b 30)
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  Let us consider system (2.13) ẋ = -y + a 11 yx + a 21 yx 2 + a 31 yx 3 ẏ = x + b 20 x 2 + b 30 x 3 + b 02 y 2 + b 12 xy 2 + b 22 x 2 y 2 + b 40 x 4 systems

Theorem 5 . 2 + a 31 x 2 y 2 IV ẋ = -y + 2 /3 b 20 2 x 2 y - 4 /3 b 20 3 x 3 y ẏ = x + b 20 x 2 -2 b 20 y 2 + 8 /3 b 20 2 xy 2 - 8 /3 b 20 3 x 2 y 2 Vx 2 y 2 VIẋ = -y + b 20 2 2 + a 31 b 20 3 x 2 y 4 + a 31 b 20 3 xy 2 + 2 a 31 x 2 y 2 

 5222242282822324322 a 21 , a 31 , b 20 , b 02 , b 12 , b 22 , b 40 . The system (2.22) has an isochronous center at O if and only if its parameters satisfy one of the folowing six conditions : 22I ẋ = y + b 22 4 x 3 y ẏ = x + b 22 x 2 y 2 -3b 22 16 x 4 II ẋ = -y + 2b 22 yx 3 ẏ = x + b 22 x 2 y 2 -b 22 x 4 . III ẋ = -y + a 21 x 2 y + a 31 x 3 y ẏ = x + a 21 xy ẋ = -y + 2/3 b 20 2 x 2 y -4/3 b 20 3 x 3 y ẏ = x + b 20 x 2 -2 b 20 y 2 + 8/3 b 20 2 xy 2 -8/3 b 20 3 + a 31 x 3 y ẏ = x + b 20 x 2 -2 b 20 y 2 + b 20 2

  ẋ = -y + a 31 yx 3 ẏ = x + b 20 x 2 + b 02 y 2 + b 30 x 3 + b 12 xy 2 + b 22 x 2 y 2 + b 40 x 4 (2.23) For this system having a center at the origin O, we give isochronicity necessary and sufficient conditions depending only on these seven real parameters b 30 , a 31 , b 20 , b 02 , b 12 , b 22 , b 40 . System (2.23) reduces to the equation (2.3) with

Theorem 7 .b 30 2 + 3 b 12 b 30 x 3 y 2 IV-b 12 b 20 2 + 4 b 20 4 + 2 a 11 b 20 3 +-2 a 11 b 20 2 + a 31 x 2 y 2 + -2 b 12 b 20 2 + 8 b 20 4 + 4 a 11 b 20 3 + 2 a 31 b 20 x 3 y 2 - (13 b 30 2 b 20 -11 b 30 b 20 3 -5 b 30 a 11 b 20 2 +2 b 20 5 +a 11 b 20 4 +a 31 b 20 2 -4 a 31 b 30 +4 a 11 b 30 2 ) b 20 ( 4 b 30 -b 20 2 ) x 2 y - b 30 ( -b 30 a 11 b 20 2 +7 b 30 2 b 20 -2 b 30 b 20 3 -4 a 31 b 30 +4 a 11 b 30 2 +a 31 b 20 2 )b 20 ( 4 b 30 -b 20 2 ) x 4 y ẏ = x + b 20 x 2 + (-2 b 20 + a 11 ) y 2 + b 30 x 3 - ( 25 b) xy 2 + ( 7 b 2 x 2 y 2 - 3 b 30 (

 72224322243220322302202302033022022201123252722330 The system (2.14) where b 50 = 0 has an isochronous center at the origin O with zero Urabe function only in one of the following eight cases, where one suppose that all denominators are non zero polynomials. 22I ẋ = -y + a 11 xy + b 12 x 2 y + a 31 x 3 y + b 32 x 4 y ẏ = x + a 11 y 2 + b 12 xy 2 + a 31 x 2 y 2 + b 32 x 3 y 2 II ẋ = -y + a 11 xy + a 31 x 3 y -3/4 a 11 a 31 x 4 y ẏ = x + a 11 y 2 + 4 a 31 x 2 y 2 -3/4 x 4 a 31 -3 a 11 a 31 x 3 y 2 III ẋ = -y + a 31 b 30 xy + (3 b 30 + b 12 ) x 2 y + a 31 x 3 y + 9/2 b 30 2 + b 12 b 30 x 4 y ẏ = x + a 31 b 30 y 2 + b 30 x 3 + b 12 xy 2 + 3 a 31 x 2 y 2 + 27 2 ẋ = -y + a 11 xy + b 12 -2 b 20 2 -a 11 b 20 x 2 y + a 31 x 3 y+ a 31 b 20 x 4 y ẏ = x + b 20 x 2 + (-2 b 20 + a 11 ) y 2 + b 12 xy 2 + b 12 b 20 -4 b 20 3 y + a 11 xy + a 31 x 3 y 30 2 b 20 -22 b 30 b 20 3 -9 b 30 a 11 b 20 2 +4 b 20 5 +2 a 11 b 20 4 +a 31 b 20 2 -4 a 31 b 30 +4 a 11 b 30 2 ) b 20( 4 b 30 -b 20 2 30 2 b 20 -2 b 30 b 20 3 -b 30 a 11 b 20 2 -2 a 31 b 20 2 +8 a 31 b 30 +4 a 11 b 30 2 ) 4 b 30 -b 20 -b 30 a 11 b 20 2 +7 b 30 2 b 20 -2 b 30 b 20 3 -4 a 31 b 30 +4 a 11 b 30 2 +a 31 b 20 2 ) b 20( 4 b 30 -b 20

Chapitre 2 . 20 2b 20 ( -b 20 3 +27 b 40 )x 2 y + a 31 x 3 y +3 b 40 ( -b 20 3 a 31 +36 b 40 2 +27 a 31 b 40) b 20 2 20 2 (-b20 3 +27 b 40) y 2 +1/3 b 20 2 x 3 + 6 (- 4 bb 20 ( -b 20 3 +27 b 40) xy 2 - 3 (+27 b 40 x 2 y 2 +b 40 x 4 + 12 b 40 (

 22020340240220203264203234021240 Characterizing isochronous centers of Liénard-type planar systems VI ẋ = -y + (108 b 40 2 -42 b 40 b 20 3 +81 a 31 b 40 +b 20 6 -3 b 20 3 a 31) b (-b20 3 +27 b 40) xy +3 (-3 b 40 b 20 3 -b 20 3 a 31 +27 a 31 b 40 +36 b 40 2 ) (-b20 3 +27 b 40) x 4 y ẏ = x + b 20 x 2 + 3 (b20 6 -32 b 40 b 20 3 +36 b 40 2 +27 a 31 b 40 -b 20 3 a 31) b 40 b 20 3 -b 20 3 a 31 +27 a 31 b 40 +36 b 40 2 ) b20 3 a 31 -27 a 31 b 40 +12 b 40 2 ) -b 20 3 -b 20 3 a 31 +36 b 40 2 +27 a 31 b 40)

y + a 11 xy - 3 b 30 (- ( 5 bb 40 ( b 40 b 30 2 +27 a 11 b 40 2 +4 a 11 b 30 3 )ẏ = x + a 11 y 2 + b 30 x 3 - 6 b 30 ( 40 2 +4 b 30 3 x 2 y 2 +b 40 x 4 + 4 b 40 ( b 40 b 30 2 +27 a 11 b 40 2 +4 a 11 b 30 3 )

 33054022326304032440223 30 3 b 40 +36 b 40 3 -27 a 11 b 30 b 40 2 -4 a 11 b 30 4 ) a 11 b 30 b 40 2 -4 a 11 b 30 4 +7 b 30 3 b 40 +48 b 40 3 ) 27 b

- 50 b 40 2 b 20 2 + 27 2 b 12 b 40 2 + 60 b 40 2 b 30 -10 b 30 3 b 20 2 + 2 b 30 2 b 20 4 - 1 /2 b 30 2 b 20 2 b 12 + 44 b 40 b 30 b 20 3 + 2 b 12 b 30 3 Q = 4 b 40 b 20 4 -

 5023024112334 y + a 11 yx + a 21 yx 2 + a 31 yx 3 + a 41 yx 4 ẏ = x + b 20 x 2 + b 30 x 3 + b 02 y 2 + b 12 xy 2 + b 22 x 2 y 2 + b 32 x 3 y 2 + b 40 x 4 + b 50 x 5 (2.24) where a 31 = P 31 Q , a 21 = b 20 P 21 Q , a 41 = P 41 Q , b 32 = P 32 Q , b 02 = P 02 Q , a 11 = P 11 Q , b 22 = P 22 Q 18 b 40 b 30 b 20 2 + 27 b 40 2 b 20 -b 30 2 b 20 3 + 4 b 20 b 30 3

P 3 = 72 a 21 2 +b 02 + 108 b 22 -459 b 30 a 11 2 -b 02 + 153 a 21 a 11 2 -117 a 11 2 b 12 -191 b 20 a 11 3 + 180 b 20 b 02 b 12 + 43 a 11 4 -2319 b 20 a 11 b 02 2 --171 a 21 b 02 2 + 3 +b 20 2 - 12 + 1806 b 20 2 b 02 2 +

 32021082220221231242232122 42) with n = 4 reduces to ẋ = -y + a 11 yx + a 21 yx 2 + a 31 yx 3 ẏ = x + b 20 x 2 + b 30 x 3 + b 02 y 2 + b 12 xy 2 + b 22 x 2 y 2 + b 40 x 4 systems its associated first two non-zero polynomials obtained by applying C-algorithm are the followings P 2 = 3 a 21 -3 b 12 +a 11 2 -b 20 a 11 -9 b 30 +4 b 02 2 -5 a 11 b 02 +10 b 20 2 +10 b 20 b 02 , (2.46) 396 b 20 a 11 b 12 + 90 a 11 b 02 b 12 + 36 a 11 b 22 + 324 a 31 b 02 -36 a 21 b 12 -468 b 20 a 11 a 21 + 612 b 20 a 21 b 02 -4116 a 11 b 20 2 20 a 31 -540 b 30 a 21 -324 b 40 a 11 + 1566 b 30 a 11 b 02 -288 b 20 b 1296 b 40 b 02 -306 a 21 a 11 b 02 + 1428 b 20 a 11 2 289 a 11 3 b 02 -360 b 02 b 22 -36 b 12 2 513 b 30 b 02 2 + 537 a 11 2 b 02 2 + 351 b 02 2 b 12 -271 a 11 b 02 3 + 542 b 20 b 02 756 b 20 b 30 b 02 + 2268 b 20 b 30 a 11 -20 b 02 4 + 1120 b 20 4 + 798 a 11 2 2240 a 11 b 20 3 -1512 b 20 b 40 + 1008 b 20 2 a 21 -252 b 20 2 b 2240 b 20 3 b 02

. 4 ) 0 eF

 40 For reducible systems considered in this chapter, the nature (center and isochronicity) of the singular point O for both systems (3.1) and (3.4) is the same.Let us return now to the Liénard-type equation(3.3). Let us define the following functions F (x) := x f (s)ds, φ(x) :=x (s) ds.

  ) are satisfied and a 3,1 = a 4,0 = b 3,1 = b 2,2 = b 4,0 = 0 ). For this case we obtain the exhaustive list of all isochronous centers at the origin. systems 3. When Choudhury-Guha reduction is possible and the Urabe function is null.

3. 3 . The standard reduction 47 Theorem 13 .

 34713 The following particular cases of system (3.20) have an isochronous center at the origin O.

  ẋ

  For this system f (x) = -20 -96 xb 2,2 + 64 x 2 b 2,2 -12 x + 3 x 2 -16 -6 x 2 -32 x 2 b 2,2 + 16 x 3 b 2,2 + x 3 + 16 x and g(x) = 1 256 -16 -6 x 2 -32 x 2 b 2,2 + 16 x 3 b 2,2 + x 3 + 16 x x -16 + 12 x -6 x 2 + x 3 .

ẋ = -y + α xy + x 2 - 4 /3 α x 3 + 2 /3 x 4 ẏ = x + 6 α y 2 - 2 xy - 5 /2 α x 2 -9 α x 2 y + 26 3 x 3 + 6 x 3 y - 8 /3 α x 4 

 243242252384 
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 37538 Main results : Applications of the NF algorithm to characterize cubic systems with linearizable center Perturbation a 1,2,0
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 51 Figure 5.1 -The quadrotor(right) from Ascending technologies(Available at ESIEE).

Figure 5 . 2 -

 52 Figure 5.2 -The eigenvalues when K 12 changes from -150 to 150 : (a) the real parts. (b) the imaginary parts.

67b 4 y 1 ( 5 . 10 )

 1510 In the reduced system, when b is positive (negative), the origin is a stable (unstable) focus. When b = 0, the origin is a center. The phase portrait of equation (5.10) when b = -0.5, b = 0 and b = 0.5 are depicted in Figure 5.3.
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 53 Figure 5.3 -The phase portrait of the reduced system : (a) b=-0.5. (b) b=0. (c) b=0.5.
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 54 Figure 5.4 -(a) Reference trajectory for the quadrotor. (b) Wind disturbance.
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 55 Figure 5.5 -The simulation without wind disturbance : (a) the proposed method. (b) PID control.

Figure 5 . 6 -

 56 Figure 5.6 -The simulation with wind disturbance : (a) the proposed method. (b) PID control.
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 61 Figure 6.1 -Inverted Pendulum on a cart

2 Figure 6 . 2 -Figure 6 . 3 -

 26263 Figure 6.2 -Stability in delay parameter space for a = 4 5 , b = 3 5 on the left and for a = 4 5 , b = 7 5 on the right

Figure 6 . 4 - 1 10(

 641 Figure 6.4 -Bifurcations curves of (6.11)-(6.12) in the gains (a,b) plan (solid red=Pitchfork, discontinuous blue=Hopf) with τ 1 = 1 and τ 2 such that (top left) τ 2 = 7 8 (top right) τ 2 = 7 8 the neighborhood of (-7,8) (bottom left) τ 2 = 7 8 + 1 10
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 65 Figure 6.5 -The delay difference h = τ 2 -τ 1 vs τ 1 for conserving a triple eigenvalue at zero

2 Figure 6 . 6 - 6 5

 2666 Figure 6.6 -The crossing curves associated to the first interval (0, ω r ] for a = 6 5 , b = 3 5 and c = 1. The curves T - u,v and T + u,v+1 are connected at ω r .

Proposition 5 . 110 Chapitre 6 .

 51106 The crossing set Γ consist of all frequencies satisfying0 < ω < π τ 1 -τ 2, Inverted Pendulum Stabilization and the crossing surfaces are defined ∀ω ∈ Γ by :

Figure 6 . 7 -

 67 Figure 6.7 -The stability crossing surface in the (ω, b, c) parameter space for τ 1 = 1, τ 2 = 1 2 and a = 2

  (6.25) defines the curve of Hopf Bifurcation in the (a, b) plane in figure7.2 for c = 1 and several values of the delay τ 2 , thus there are coexistence of Pitchfork and Hopf bifurcation on this curves.
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 68 Figure 6.8 -Hopf curves for (6.23)-(6.22) in the gains plan (a,b) with c = τ 1 = 1 and τ 2 such that (top left) τ 2 = 2 (top right) τ 2 = 3 (bottom left) τ 2 = 4 (bottom right) τ 2 = 1 2

  r+Tf r . c b φ b+Tf b.
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 71 Figure 7.1 -Drill string two-coupled masses model.
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 72 Figure 7.2 -(Left) Flexible Bar, (Right) Tension applied in a short segment of the bar

Figure 7 . 3 -Figure 7 . 4 -

 7374 Figure 7.3 -Simplified scheme depicting an oilwell rotary drilling system

  r /L r and ξ = L m /σL s L r . To further simplify the notations, we shall set : I sd = I d , I sq = I q , the stator current components in the D/Q reference frame, ψ rd = ψ d the rotor flux D component, v sd = v d , v sq = v q the stator voltage components in the D/Q reference frame.

7. 6 . 125 7. 6

 61256 Integration into a more complete Traction-Compression/Torsional Model Integration into a more complete Traction-Compression/Torsional Model 7.6.1 Step by step description A more complete model can be established by considering the BHA length and vibrations, neglected in the previous model. Thus, the length of the drillistring L denotes L p + L b where L p is the pipes length and L b is the BHA length. Here, the vibrations along the pipes will be distinguished from the ones along the BHA. Thus the model for axial vibrations U p and torsional vibrations Φ p along the pipes and axial vibrations U b and torsional vibrations Φ b along the BHA are governed by the system of PDE (7.20)-(7.27).

.27) 7 . 6 .

 76 Integration into a more complete Traction-Compression/Torsional Model 127

Figure 7 . 5 -

 75 Figure 7.5 -Testbed schematics with sonar pulses

1 A

 1 2 λ λ + (-29.7 p -0.99) e -2 λ + 30 psimple substitution of λ = 0 into F 2 shows that p = p c leads to a first spectral value on the imaginary axis λ 1 = 0 ; a Pitchfork bifurcation comes from the Z 2 symmetry structure of the system. If additionally (p = p c ) M B = M * , then the first derivative of F 2 vanish at λ 2 = 0. Since the null space N (λ 0 Id -A) have only one eigenvector : v 0 = 1 4.853 × 10 11

  The linear operators D and L can be written in the integral form as Lφ = 0 -r dη(θ)φ(θ) and Dφ = φ(0) + 0 -r dµ(θ)φ(θ), where µ and η are two real valued n × n matrices.

. 19 )

 19 Consider the following basis for the generalized eigenspace corresponding to the double eigenvalue λ 0 = 0 evaluated at θ = 0

Figure 8 . 1 -

 81 Figure 8.1 -Phase portrait of the reduced form of the axial-torsional drilling system model (8.3), given by (8.24). (a) Perturbed system case (p = p c + µ), γ = -2. (b) Perturbed system case (p = p c + µ), γ = 2. (c) Perturbation-free case (p = p c ), γ = 0.

1 )Figure 9 . 1 -

 191 Figure 9.1 -Simulation of the lumped parameter model (9.1) coupled to the frictional torque model from [146] Trajectories of the drilling system in closed loop with the speed regulation controller (9.2) with k 1 = 15725, k 2 = 30576, k 3 = 194, for a reference angular velocity Ω 0 = 5rad s -1 . (a) Angular velocity at the bottom extremity. (b) Angular velocity at the upper extremity.

Figures 9 .

 9 Figures 9.1 and 9.2 show the control performance for Ω 0 = 5rad s -1 and Ω 0 = 10rad s -1 , respectively. The numerical values of the system parameters are given in[START_REF] Saldivar Marquez | Analysis and Control of Oilwell Drilling Vibrations[END_REF].Notice the controller (9.2) is not able to regulate the angular velocity at the bottom end for Ω 0 = 5rad s -1 .

1 )Figure 9 . 2 -

 192 Figure 9.2 -Simulation of the lumped parameter model (9.1) coupled to the frictional torque model from [146].Trajectories of the drilling system in closed loop with the speed regulation controller (9.2) with k 1 = 15725, k 2 = 30576, k 3 = 194, for a reference angular velocity Ω 0 = 10rad s -1 . (a) Angular velocity at the bottom extremity. (b) Angular velocity at the upper extremity.

Figure 9 . 3 -

 93 Figure 9.3 -Reflection coefficient r ω as a function of the frequency ω with λ = 0 (solid line), λ = 1 (dashed line) and λ = 10 (dotted line). (a) Shape of r ω for the parameters kp = 1.314, k i = 0.08336, G top = 0.4836. (b) Shape of r ω for the parameters k p = 0.3658, k i = 0.1672, G top = 0.5765.

Figure 9 .

 9 3(a) uses the parameters kp = 1.314, k i = 0.08336, G top = 0.4836, and Figure 9.3(b) the parameters k p = 0.3658, k i = 0.1672, G top = 0.5765.

1 )Figure 9 . 4 -

 194 Figure 9.4 -Simulation of the simplified model (9.16)-(9.17). Trajectories of the drilling system in closed loop with the standard speed controller (9.12) (dotted line), the torsional rectification control law (9.13) (dashed line), and the soft torque control (9.14) (solid line) with k p = 0.3658, k i = 0.1672, λ = 1, for a reference angular velocity Ω 0 = 5rad s -1 . (a) Angular velocity at the bottom extremity. (b) Angular velocity at the upper extremity.

1 )Figure 9 . 5 -

 195 Figure9.5 -Simulation of the simplified model (9.16)-(9.17). Trajectories of the drilling system in closed loop with the standard speed controller (9.12) (dotted line), the torsional rectification control law (9.13) (dashed line), and the soft torque control (9.14) (solid line) with k p = 0.3658, k i = 0.1672, λ = 1, for a reference angular velocity Ω 0 = 10rad s -1 . (a) Angular velocity at the bottom extremity. (b) Angular velocity at the upper extremity.

1 )Figure 9 . 6 -

 196 Figure 9.6 -Simulation of the neutral-type time-delay model (9.18)-(9.20) coupled to the frictional torque model (9.22)-(9.23). Trajectories of the drilling system in closed loop with the standard speed controller (9.12) (dotted line), the torsional rectification control law (9.13) (dashed line), and the soft torque control (9.14) (solid line) with k p = 0.3658, k i = 0.1672, λ = 0.01, for a reference angular velocity Ω 0 = 10rad s -1 . (a) Angular velocity at the bottom extremity. (b) Axial velocity at the bottom extremity.

1 )Figure 9 . 7 -

 197 Figure 9.7 -Simulation of the neutral-type time-delay model (9.18)-(9.20) coupled to the frictional torque model (9.22)-(9.23). Trajectories of the drilling system in closed loop with the standard speed controller (9.12) (dotted line), the torsional rectification control law (9.13) (dashed line), and the soft torque control (9.14) (solid line) with k p = 0.3658, k i = 0.1672, λ = 0.01, for a reference angular velocity Ω 0 = 15rad s -1 . (a) Angular velocity at the bottom extremity. (b) Axial velocity at the bottom extremity.

1 )Figure 9 . 8 -

 198 Figure 9.8 -Simulation of the coupled torsional-axial model (9.26)-(9.27). Angular velocity at the bottom extremity for a reference velocity of 10rad s -1 . (a) Trajectory without control actions (stick-slip). (b) Reduction of stick-slip oscillations by means of the delayed feedback controllers (9.38)-(9.39).

  ds and x 2 = t 0 x 4 (s) ds and considering :

1 )Figure 9 . 9 -

 199 Figure 9.9 -Simulation of the coupled torsional-axial model (9.26)-(9.27). Axial velocity at the bottom extremity for a reference velocity of 0.1m s -1 . (a) Trajectory without control actions (bit-bounce). (b) Reduction of bit-bounce oscillations by means of the delayed feedback controllers (9.38)-(9.39).

δ 2 U 1 )Figure 9 . 10 -

 21910 Figure 9.10 -Simulation of the coupled axial-torsional model (9.26)-(9.27). Reduction of stick-slip and bit-bounce oscillations by means of the delayed PID feedback controllers (9.43)-(9.44). (a) Angular velocity at the bottom extremity Φb (t) for a reference velocity of 10rad s -1 . (b) Axial velocity at the bottom extremity Ub (t) for a reference velocity of 0.1m s -1 .
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 101 Figure 10.1 -Inverted Pendulum on a cart

) 10 . 6 . 197 Figure 10 . 2 -

 106197102 Figure 10.2 -Inverted Pendulum on a cart
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 103 Figure 10.3 -Bifurcations curves of (10.37) in the gains (a 1,0 , a 2,0 ) plan (solid red=Pitchfork singularity i.e. the zero singularity, discontinuous blue=Hopf singularity ) for the fixed value τ 2 = 7 8 .

10. 6 . 199 Figure 10 . 4 -

 6199104 Figure 10.4 -In blue, the 3D plot of the surface defined by 39 x 2 2 -48 x 2 x 1 +14 x 1 2 . The red curves are associated to the degeneracy domain (in the (x 1 , x 2 ) plane) of the matrix Υ.
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 105 Figure 10.5 -In blue, the 3D plot of the surface defined by 33 x 2 2 -44 x 2 x 1 +14 x 1 2 . The red curves are associated to the degeneracy of the matrix Υ.
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 7 Concluding remarks and future work 205

10. 7 . 209 Lemma 7 .

 72097 Concluding remarks and future work for all 1 ≤ k ≤ p the following equality holds∂L d 1 +p,d 1 +k ∂x 2 = k L d 1 +p,d 1 +k+1(10.50) 

x 2 0U d 1

 21 +p,j * (y)dy.(10.56) Using equation (10.28), one obtainsL d 1 +p+1,k -x 2 L d 1 +p,k = L d 1 +p,k-1 , for k = d 1 + 2, . . . , d 1 + p.

10. 7 . 213 FinallyL d 1 2 0L d 1 2 0U d 1

 721312121 Concluding remarks and future work+p,d 1 +k U d 1 +k+1,j * -(d - 2 + d * ) +p,d 1 +k U d 1 +k,j * (y)dy -(p -1)x +p,j * (y)dy = 0.
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 111 Figure 11.1 -Bifurcation of the double imaginary crossing root defined by (11.4) up to the standard normalization τ * 2 = 1, the crossing frequency ω 0 = 11.53849769 and the delay τ * 1 = 0.1436275981 is subject to a positive perturbation (ε = 0 . . . 6). The evolution of the spectral value from the nominal value ε = 0 (yellow) to the final value ε = 6 (red). Representative bifurcation diagrams have been computed using QPmR[START_REF] Vyhlidal | Mapping based algorithm for large-scale computation of quasi-polynomial zeros[END_REF].

Figure 11 . 2 -

 112 Figure 11.2 -Bifurcation of the double imaginary crossing root of (11.5) where the delay τ is subject to a positive perturbation (ε = 0 . . . 6). The evolution of the spectral value from the nominal value ε = 0 (yellow) to the final value ε = 6 (red).

V 1 ,

 1 m (a 0 , ω) = -(α 0 , . . . , α m-1 ) , W m (a 0 , ω) = -(β 0 , . . . , β m-1 ) . (11.9) Let = Ñ i=1 d i , we define the functional confluent matrices A m and B m belonging to M m, (R) and characterized by the incidence vector ξ = (σ 1 , . . . , σ 1 d . . . , σ Ñ , . . . , σ Ñ d Ñ )

(11. 10 )

 10 Remark 23. The first assertion of the above proposition provides a system of trigonometric polynomials to solve. Which characterizes multiple CIRs. A standard 11.5. Illustrative Examples 225

A

  k x(tτ k ) (12.1)

  C o := {s ∈ C | Re(s) > 0} is the open right-half-plane, C + := C o ∪ jR is the closed right-half-plane. H ∞ represents the Hardy space of real functions which are bounded and analytic on C 0 . L n 2 consists of all square integrable and Lebesgue measurable functions. The norm on H

6 -Figure 12 . 1 -

 6121 Figure 12.1 -Feedback System.

  Figure 12.3 gives the stability crossing curves for Equation (12.11).

Figure 12 . 2 -

 122 Figure 12.2 -Stability crossing curves corresponding to Equation (12.11) in (τ 1 , τ 2 ) plane where (a 1 , a 2 ) = (a * 1 , a * 2 ) defined by 16 with (τ * 1 , τ * 2 ) = (1, 2). Here we use the algorithm from [109].

Figure 12 . 3 -

 123 Figure12.3 -Imaginary axis curve seperating the (τ 1 -τ 2 ) delay-parameter space into two regions for the system in(12.11) in (τ 1 , τ 2 ) plane where (a 1 , a 2 ) = (a * 1 , a * 2 ) defined by 16 with (τ * 1 , τ * 2 ) = (1, 2). The plots are obtained by using DDE-BIFTOOL[START_REF] Engelborghs | DDE-BIFTOOL v.2.00 : a Matlab package for bifurcation analysis of delay differential equations[END_REF][START_REF] Engelborghs | Numerical bifurcation analysis of delay differential equations using dde-biftool[END_REF] 

12. 4 . Main result 241 Proposition 18 .

 424118 System (12.25) admits a rightmost spectral value at z = z 0 with multiplicity N + 1 if and only if

. 4 .

 4 Main result 243 ∂ ∂ω |G 1 (jω)| 2 = 0 for some ω = ω * , where ω * is the solution of

. 45 )

 45 The parameter values a * = 3 e -1 , b * = 3/2 3 √ 2, τ * = 3 √ 2 guarantee the existence of a quadruple spectral value at λ 0 = -2 2/3 2 . If one considers the particular quasipolynomial ∆ * (λ, τ ) = λ 3 -1 + b * λ + a * e -λ τ . (12.46)and a delay τ ∈ (τ * -ε, τ * + ε) for a sufficiently small positive ε one can observe that the dominant root is the most sensitive to the delay variation see Figure12.4.3. Furthermore, for τ = τ * + ε there are always two real roots, see Figure12.4.3.
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 124 Figure 12.4 -Sensitivity of the roots of (12.46) near τ = τ * . The dominant root is the most sensitive. Here we use QPMR algorithm from [215].
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 125 Figure 12.5 -Migration of the quadruple root corresponding to (12.46) near τ = τ * .Here we use QPMR algorithm from[START_REF] Vyhlidal | Mapping based algorithm for large-scale computation of quasi-polynomial zeros[END_REF].

Theorem 38 (

 38 [START_REF] Verduyn | Series expansions for functional differential equations[END_REF]). Let C = C([-r, 0], R n ) denote the Banach space of continuous functions endowed with the supremum norm and let T (t) : C → C denote the semigroup of solution operators associated with

  d

13. 2

 2 Main Result : Spectral Projection for Lossless propagation model Consider the system (13.1) where x ∈ R m and y ∈ R n and A, B, C, D are real valued matrices. Thus A ∈ M m,m (R), B ∈ M m,n (R), C ∈ M n,m (R), D ∈ M n,n (R).

L

  Dom(A) = {ϕ = (ϕ 1 , ϕ 2 ) T ∈ C, s.t. ϕ = (Aϕ 1 (0) + Bϕ 2 (-τ ), Cϕ 1 (0) -ϕ 2 (0) + Dϕ 2 (-τ )) T , D ϕ = (ϕ 1 (0), 0) T .(13.6) 

ψ 2

 2 Let denote by Γ(θ) the m + n square matrix where = I d -Ĩd1 , and for all s ∈ [-τ, 0] Γ(s) = Γ(0) + s τ (Γ(0) -Γ(-τ )) and thus we define the bilinear form < ., . >:C * × C → C by < ψ, ϕ >= -ψ 1 (0)ϕ(0) -(τ + θ)ϕ(θ)dθ.(13.8)13.2.2 Computing spectral projections using duality : Simple non zero spectral valuesBy analogy with the theory of NFDE outlined in the appendix, when λ is a simple nonzero eigenvalue of an operator A, then the spectral projection onto the eigenspace M λ is given byP λ (ϕ) =< ψ λ , ϕ > ϕ λ , where ψ λ (ξ) = e -λ ξ d λ , 0 ≤ ξ ≤ r, d λ ∆(λ) = 0(13.9) ϕ λ (θ) = e λ θ c λ , -r ≤ θ ≤ 0, ∆(λ) c λ = 0. (13.10)

  1) without delay. Let us assume for this case that(I d -D) is invertible, thus ẋ(t) = A x(t) + B y(t) (I d -D)y(t) = C x(t) which gives ẋ(t) = A + B(I d -D) -1 C x(t) y(t) = (I d -D) -1 C x(t)

- 1 .

 1 Let us first define the following decomposition of a given vector function ξ ξ 1 , ξ 2 ) T = ξ1 + ξ2 where ξ1 = (ξ 1 , 0) T and ξ2 = (0, ξ 2 ) T .

Démonstration. 0 eeee 0 dη(θ) θ 0 e

 000 Let us fix ϕ and define ψ = (zI -A) -1 ϕ, then ψ ∈ Dom(A) and zψ -Aψ = ϕ. From the definition of the infinitesimal generator(13.6), it follows that ψ satisfies the following ODE with boundary condition zψ -.14) and using the variation of constants we obtainψ(θ) = e zθ [ψ(0) -θ -z s ϕ(s)ds].(13.16)Moreover, applying D in (13.14) and using the property of ψ ∈ Dom(A) leads to zDψ -L ψ = Dϕ. (13.17)In standard notations we haveLψ = Aψ 1 (0) + Bψ 2 (-τ ) Cψ 1 (0) + Dψ 2 (-τ ) -ψ 2 (0) = τ 0 dη(θ)ψ(-θ)13.2. Spectral Projection for Lossless propagation model 253 thus using (13.17) with the decomposition (13.12) allow to0 = z ψ1 (0) -τ 0 dη(θ)( ψ1 (-θ) + ψ2 (-θ)) -Dϕ(13.18)hence, it follows from a substitution of (13.16) 0 = z ψ1 (0) --z s ϕ(s)ds -φ1 (0)(13.20) As in our analysis z = 0 and from (13.16) we obtain0 = ∆(z) ψ(0) + -z(s+θ) ϕ(s)ds -φ1 (0), -zθ ϕ(sθ)ds -φ1 (0).(13.22)That is ∆(z) ψ(0) = H(z, ϕ) where H(z, ϕ) = τ -zθ ϕ(sθ)ds + φ1 (0).(13.23) 

∞T

  k=0 p k (t + θ)e λ k (t+θ) , -h ≤ θ ≤ 0, t ≥ 0 (13.24)in other words, in operator language,T (t)ϕ = ∞ k=0 (t) P λ k ϕ, t ≥ 0. (13.25) 

Theorem 40 .T

 40 Let C = C([-r, 0], R n+m ) and let T (t) : C → C denote the semigroup of solution operators associated with Lossless system (13.1) such that the matrix D ∈ M m (R) is invertible, λ j , j = 0, 1, . . . the associated set of eigenvalues and P λ j the associated spectral projection given by(13.11) . Then the semigroup T (t) extends to a group of bounded linear operators and for every ϕ ∈ C, we havelim N →∞ || T (t)ϕ -(t)P λ j ϕ ||= 0, t ∈ R +(13.26) 

  2) :ẋ(t) = A x(t) + B y(tτ ) ẏ(t) -D ẏ(t -τ ) = CA x(t) + CB y(tτ )

2 .

 2 Spectral Projection for Lossless propagation model 255 Then we obtain a neutral system with non-singular matrix D 0 = I d 0 0 D , thus the theorem 38 can be applied.

29 )T

 29 Let us consider the system(13.1) with a two-block singular matrix D = D 11 D 12 D 21 D 22 such that D 11 is a non-singular matrix and B = (B 1 B 2 ) and C = C 1 C 2. Under some restrictions we are able to prove the convergence of the series expansion of the solution.Theorem 41. Let C = C([-r, 0], R n+m ) and let T (t) : C → C denote the semigroup of solution operators associated with Lossless system (13.1) such that λ j , j = 0, 1, . . . the associated set of eigenvalues and P λ j the associated spectral projection given by (13.11) and one of the following sets of conditions hold 1.B 2 = B 1 D -1 11 D 12 D 22 = D 21 D -1 11 D 12 C 2 = D 21 DThen the semigroup T (t) extends to a group of bounded linear operators and for every ϕ ∈ C, we have lim (t)P λ j ϕ ||= 0, t ∈ R + (13.30)

  x ∈ R m and y ∈ R n and A, B, C, D are real valued matrices.Thus A ∈ M m,m (R), B ∈ M m,n (R), C ∈ M n,m (R), D ∈ M n,n (R).

  linear part of (13.5), namely, (13.1) which can be represented asd dt Dz t = Lz t (13.40)where the infinitesimal generator A and the operators D and L are such thatDom(A) = {ϕ = (ϕ 1 + ϕ 2 ) ∈ C, s.t. ϕ = (Aϕ 1 (0) + Bϕ 2 (-τ ), Cϕ 1 (0) -ϕ 2 (0) + Dϕ 2 (-τ )) T , D ϕ = (ϕ 1 (0), 0) T .13.3. Center Manifold theorem for Lossless propagation model 259The associated characteristic matrix is∆(λ) = λ I n -A -e -λ τ B -C I m -e -λ τ D (13.41)and the solution operator T (t) defined by T (t)(φ) = z t (. , φ)(13.42) 

  Furthermore, if Φ = (φ 1 , . . . , φ m ) forms a basis of P , Ψ = col(ψ 1 , . . . , ψ m ) is a basis of P T in C * such that (Φ, Ψ) = Id, then Q = {φ ∈ C \ (Ψ, φ) = 0} and P = {φ ∈ C \ ∃b ∈ R d : φ = Φb}. (13.43) 

Ãφ=

  Aφ + X 0 [Lφ -Dφ ] (13.44) Under the above consideration one can write equation (13.5) as an abstract ODE coupled with an algebraic equation d dt z t = Ãz t + X 0 F(z t ). (13.45) where F represents the nonlinear part of the system. Thanks to the projection Π : BC → P such that Π(ϕ + X 0 α) = Φ[(Ψ, ϕ) + Ψ(0)α] we obtain z t = Φv(t) + w t where v(t) ∈ R d and then equation (13.5) can be split to d dt v = Lv + Ψ(0)F(Φv + w) d dt w = ÃQ w + (I -Π)X 0 F(Φv + w), (13.46)

1 1

 1 d dt u = Lu + Ψ(0)F(Φu + h(u)) where u(0) = ξ. (13.47)13.3.1 Spectral Projection : Double Semi-simple Characteristic rootLet us consider the system (13.1) with a delay τ = π and matrices λ = 1 is a spectral value with algebraic multiplicity 2 and geometric multiplicity 2, for which the associated right-eigenvectors (ξ) = 1 1 0 0 0 , ψ 2 1 (ξ) = 1 0 2 (2 e π -1) -1 0 0 .

13. 3 .Simplek 1 ϕ l 1 = 1 - 2 φ 3 2 Thus, λ = 2 i. 2 - 4 - 3 + 3600 iπ θ + 146880 iθ π 4 -242815 π 2 4 + 1169600 θ π 3 - 20425 2 - 2 -3600 θ + 13026983 4 iπ 2 - 4 + 4154590 θ π 2 - 2 -19200 π 5 p 4 (θ) = - 5113208 3 π 3 + 181248 π 4 -195840 θ π 3 2 -3209984 iπ 3 + 3059230 θ π 2 - 3 + 3 +π 13 . 3 . 3

 311232224342422242254343232331333 Center Manifold theorem for Lossless propagation model 261 = π, λ 0 = 1)ϕ k 1 = 0, ψ k 1 ∆(τ = π, λ 0 = 1) = 0, ψ δ k,l , ∀k, l ∈ {1, 2}The spectral projection ofϕ(θ) = [φ 1 (θ), φ 2 (θ), φ 3 (θ), φ 4 (θ), φ 5 (θ)] T onto M 1 is P 1 (ϕ(θ)) = θ φ 1 (0) + π 0 e -t φ 3 (t -π) dt + 2 φ 3 (0)-1/2 φ 3 (-π)+1/2 π 0 e -t φ 3 (t-π)dt 2 e π -1 e θ φ 2 (0) -π 0 e -t φ 3 (t -π) dt -2 φ 3 (0)-1/2 φ 3 (-π)+1/2 π 0 e -t φ 3 (t-π)dt 2 e π -1 0 e θ φ 1 (0)+ π 0 e -t φ 3 (t-π)dt 4 e π -(0)-1/2 φ 3 (-π)+1/2 π 0 e -t φ 3 (t-π)dt -8 e 2 π +6 e π -1 e θ φ 1 (0)+ π 0 e -t φ 3 (t-π)dt 4 e π +1 + φ 2 (0)-π 0 e -t φ 3 (t-π)dt 4 Spectral Projection : Double non-Semi-simple Characteristic root Let us consider the system (13.1) with a delay τ = π and matrices is a spectral value with algebraic multiplicity 2 and geometric multiplicity 1, for which the associated right-eigenvector ϕ 2i (θ) = and left-eigenvector ψ 2i (ξ) = -ie -2 iξ π e -2 iξ (-32 + 2 i) e -2 iξ e -2 iξ (-3 π + 12) 20 e -2 iξ . Let us consider ϕ such that The spectral projection of ϕ onto M 2i is given by P 2i (ϕ(θ)) = e -2 iθ π -15 -896 π -160 π 2 + 90 iπ + 2304 iπ 2 2 123690 θ π -146880 θ π 3 + 600 iπ 4 + 15225 iθ -10200 iθ π 3 -19800 π 5 -10200 θ π 4 -6600 π + 123690 iθ π 2 + 15225 θ π 4800 i + 905620 iθ π 1463344 iπ 3 + 119808 iπ 5 -190995 iπ -20400 θ π 93240 θ π -3561256 iπ 4 + 15225 iθ -4599045 iθ π 3 164920 θ π -288660 iπ + 16000 3 iπ 4 + 20300 iθ -13600 iθ π 3 + 3720335 3 iθ π -15061165 18 π p 5 (θ) = -69888 π 5 -32640 θ π 4 + 4811806 θ π 2 -50232 θ π + 1988864 θ π 3 -755712 iπ 5 -109660 iπ -8170 -3840 i -14527024 iπ 4 -2880 θ -12180 iθ -7350312 iθ π 3 + 755587 iθ π + 470016 iθ π 4 -3148169 6 Symbolic computations for center manifolds : Hopf-bifurcation Like case

.u 1 3 -876 + 184 π + 85 π 2 + 96 25 (- 3 + π) u 2 u 1 2 -876 + 184 π + 85 π 2 - 48 25 (- 3 + π) u 2 2 u 1 - 25 (- 3 + π) u 2 3 -u 1 3 - 25 ( 4 + π) u 2 u 1 2 -876 + 184 π + 85 π 2 - 216 25 ( 4 + π) u 2 2 u 1 -876 + 184 π + 85 π 2 + 36 25 ( 4 + π) u 2 3 -876 + 184 π + 85 π 2 (

 3253224825312533325422216254125432 0)F (Φu + h(u)).(13.53) where the matrix L characterizing the linear part of the approximation is given by Thus using(13.53), straightforward computations allows us to the following finite dimensional approximation 876 + 184 π + 85 π 2 + 8 876 + 184 π + 85 π 2 + 432 13.54)

A

  k x(tτ k )] = m k=0 B k x(tτ k ) + F(x(t), . . . , x(tτ n ))(13.55) 

The latter system can be written d dt Dx t =

 t Lx t + F(x t )(13.56) wherex t ∈ C = C([-r, 0], R n ), x t (θ) = x(t + θ), D, L are bounded linear operators such that Lφ = n k=0 B k φ(-τ k ), Dφ = φ(0)+ n k=1 A k φ(-τ k )and F is sufficiently smooth function mapping C into R n with F(0) = DF(0) = 0. We point out that the linear operators D and L can be written in the integral form by Lφ = 0 -r dη(θ)φ(θ) and Dφ = φ(0) + 0 -r dµ(θ)φ(θ), where µ and η are two real valued n × n matrix. The linearized equation of (13.56) is given by d dt Dx t = Lx t (13.57)for which the solution operator T (t) defined byT (t)(φ) = x t (. , φ) (13.58) such that x t (. , φ)(θ) = x(t + θ, φ) for θ ∈ [-r, 0]is a strongly continuous semigroup with the infinitesimal generator A which has the domain Dom(A) = {φ ∈ C : dφ dθ ∈ C, D dφ dθ = Lφ} and is given by Aφ = dφ dθ .

  θ)dη(θ)φ(τ )dτ and let A T be the transposed operator of A, i.e., (ψ, Aϕ) = (A T ψ, ϕ).Note that in the particular case, when D = I d then the bilinear form reduces to(ψ, ϕ) = ψ(0) ϕ(0) -θ)dη(θ)φ(τ )dτ
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 4 Outlines of the General Theory of NFDE 267 P Q. Furthermore, if Φ = (φ 1 , . . . , φ m ) forms a basis of P , Ψ = col(ψ 1 , . . . , ψ m ) is a basis of P T in C * such that (Φ, Ψ) = Id, then Q = {φ ∈ C \ (Ψ, φ) = 0} and P = {φ ∈ C \ ∃b ∈ R m : φ = Φb}. (13.59) Also, T (t)Φ = Φ e Bt , where B is an m × m matrix such that σ(B) = Λ.

14. 1 . 1 α

 11 Profondeur d'isochronieConsidérons la forme normale à l'ordre 2N + 1 en coordonnées polaires d'un centre linéaire non-linéairement perturbé :2j+1 r 2j+1 + O(r 2N +3 ), θ = 1 + N j=1 β 2j+1 r 2j + O(r 2N +2 ).(14.1)

14. 1 . 3

 13 Synchronisation de fréquence par couplage non linéaire d'oscillateursEtant donné un système d'EDO n'ayant pas la propriété d'isochronie ni dans le plan (x, y) ni dans le plan (w, z) :y + f 1 (x, y) ẏ = x + f 2 (x, y) ẇ = -z + f 3 (w, z) ẏ = w + f 4 (w, z) 14.2. Localisation des zéros de quasipolynômes 271 où f 1 , f 2 ∈ R[x, y] et f 3 , f 4 ∈ R[w,z] représentent la nonlinéarité du système. Sous quelles conditions existe-il g 1 , g 2 , g 3 , g 4 ∈ R[x, y, w, z] tel que le système y + f 1 (x, y) + g 1 (x, y, z, w) ẏ = x + f 2 (x, y) + g 2 (x, y, z, w) ẇ = -z + f 3 (w, z) + g 3 (x, y, z, w) ẏ = w + f 4 (w, z) + g 4 (x, y, z, w)

14. 3 .
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Table 1 .

 1 1 -Temps CPU sur un Pentium cadencé à 1,46 GHz 4Go

	n	CAR	Formes Normales
	2	∼ 0 s	0,060 s
	3 0,001 s	0,160 s
	4 0,004 s	0,784 s
	5 0,008 s	4,728 s
	6 0,016 s	31,430 s
	7 0,052 s	263,033 s
	8 0,116 s	2335,962 s

9 0,284 s A court de mémoire Plus précisément, un modèle dynamique 12-dimensionnel a été réduit à un système dynamique plan.

  , we use repeatedly the Radical Membership Theorem :

	Theorem 12 ([68]). Let I = f 1 , . . . , f s be an ideal of k[x 1 , . . . , x n ], then f belongs to √ I if and only if f 1 , . . . , f s , 1 -yf = 1 = k[x 1 , . . . , x n , y].

  φ 3 where :

	l 1 (x) =	169 300	ỹ1 (0) -	222179 144000	ỹ2 (0) -	222179 9000	0	1	ỹ1 (t -1)dt
	+	222179 7875	0	7 8	ỹ1 (t -	7 8	)dt -	676 75	0	1	tỹ 1 (t -1)dt +	5408 525	0	7 8	tỹ 1 (t -	7 8	)dt
	+	64 5		0	1	t 2 ỹ1 (t -1)dt -	512 35	0	7 8	t 2 ỹ1 (t -	7 8	)dt,
	l 2 (x) =	8 5	ỹ1 (0) +	169 300	ỹ2 (0) +	676 75	0	1	ỹ1 (t -1)dt -	5408 525	0	7 8	ỹ1 (t -	7 8	)dt
		-	128 5	0	1	tỹ 1 (t -1)dt +	1024 35	0	7 8	tỹ 1 (t -	7 8	)dt,
	l 3 (x) =	8 5	ỹ2 (0) +	128 5		0	1	ỹ1 (t -1)dt -	1024 35

  The inertias are coupled through an elastic shaft of stiffness k and damping c. Let us define Φ top , Φ bit as the angular positions of the rotary and the bit respectively ; Φtop , Φbit as their angular velocities, u(t) = W oB is the weight on the bit control signal, v(t) is the rotary table torque control signal used to regulate Φtop , µ is the friction coefficient ; A, B, H, C o are model matrices given in(7.4), Ψ(t) = Ψ (u(t)) = Hu(t), x is the state vector and y o is the output variable. For a more detailed description, see, for instance,[START_REF] Canudas De Wit | D-oskil : A new mechanism for controlling stick-slip oscillations in oil well drillstrings[END_REF]. With the above notations, the model is represented as follows :

	7.2. State of the Art	117

  .22) Here, ζ rg 1 accounts for vibrations in all drilling rig elements except the drilling string, BHA, cables, drawworks, travelling and crown blocks ; ζ rg 2 accounts for elasticity 126 Chapitre 7. Delay System Modeling of Rotary Drilling Vibrations in cables, crown and travelling blocks ; the effort k rg 01 ζ rg ini represents the ground reaction force and u F

  Young's, shear modulus of drillstring steel A p , J p Cross-section and polar inertia moment of one pipe section A b , J b Cross-section and polar inertia moment of one drill collar section r po , r pi Outer, inner pipe radius r bo , r bi Outer, inner drill collar radius Ψ Φd , Ψ U d D component of rotary table (torsion) induction motor flux L Φm , L U m Rotary table motor torque, taken as a control input H Force acting in the top hole device ζ rg 1 accounts for vibrations in all drilling rig elements except the drilling string, BHA, cables, drawworks, travelling and crown blocks ζ rg 2 accounts for elasticity in cables, crown and travelling blocks k rg 01 ζ rg ini ground reaction force u F (t) = k rg 01 (ζ rg 1 (t) -ζ rg 0 (t)), tension force in the cable at the drawworks level, taken as a control input M rg i , γ rg 1 , k rg ij equivalent masses, damping coefficients and stiffness coefficients M top

	W bit (t)	Reaction force at the bit	Chapitre 8
	T c , W c	Bottom hole cutting torque and force
	T f , W f	Bottom hole friction torque and force
		a	Bit radius
		l	Length of the wearflat
		σ	Contact stress
		γ	accounts for the distribution and orientation of the frictional
			forces acting at the wearflat/rock interface
	Variable µ	Ratio between the horizontal and the vertical components of the Signification frictional force
	L p	V b	Pipe length = (∂ t U p , ∂ t Φ p )
	L b sgn(V b )	Bor Hole Assemble length designate the orientation of V b with respect to the horizontal
	L		= L p + L b plane
	U p , U b F	Pipe, drill collar traction/compression deformation Adimensional friction function
	Φ p , Φ b ε i d Up , ε i Φp ε	Pipe, drill collar torsional deformation Depth of cut Internal damping coefficients Intrinsic specific energy
	γ v Up , γ v Φp ζ	Viscous damping coefficients Ratio of the vertical to the horizontal force for a sharp cutter
	ρ	n	Steel density Bit blade number
	E , G	
			Torsion, traction/compression induction motor mutual induc-
			tance
	I Φd , I Φq	D, Q component of stator current in torsion induction motor
	I U d , I U q	D, Q component of stator current in traction/compression induc-
			tion motor
	J top		Top drive inertia
	u T		
			Top drive mass
	U b , Φ b	axial, torsional vibrations
	T bit		Bit reaction torque
	M bit	Bit's mass

Table 8 .

 8 1: Numerical values of the drilling system parameters corresponding to the coupled axial-torsional model[START_REF] Boussaada | Analysis of drilling vibrations : A time-delay system approach[END_REF].

		Parameter	Numerical value
	L	String length	3000 m
	G	Shear modulus	80x10 9 N m -2
	E	Young modulus	200x10 9 N m -2
	I B	Moment of inertia of the drill bit	144 kg m 2
	ρ a	Density	8000 Kg/m 3
	R b	Bit radius	6 cm
	Γ	Drillstring's cross-section	35 cm 2
	J	Drillstring's second moment of area	19 cm 4
	M B	Mass at the BHA	40000 Kg
	α	Viscous friction coefficient	200.025 kg/s
	β	Angular momentum	2000 Nms
	p	Friction force amplitud	35
	k	Constant of the friction top angle	0.3
	ζ	Constant of the friction top angle	0.01

Table 10 .

 10 1 -Table of the Main Notations λ a complexe number. R(λ) real part of λ. I(λ) imaginary part of λ.

  and 2 ≤ i ≤ p and p < d 1 +1,

	(10.47)
	From Equation (10.30) one has

  of Theorem 35. The only change occurring in (10.26)-(10.31) compared with (10.20) is the way in defining the column d 1 + d - 2 + 1 of U . Moreover, such a column is only involved in computing the column d 1 + d - 2 + 1 of Υ. Thus, it stills to show that the equalities (10.30) and (10.31) ; this will be done by recurrence. Equation (10.30) follow directly by induction from lemma 4. Let us focus now on (10.31) and denote j * = d 1 + d - 2 + 1. First, let us check that

  Let assume now that,(10.31) is satisfied for i = d 1 + 2, . . . , d 1 + p where 1 < p < d - 2 + d * . It stills to prove that (10.31) is satisfied for i = d 1 + p + 1. By the same argument as for i = d 1 + 2, one has

	j * (y)dy = 0	(10.53)
	which implies that (10.31) applies for i = d 1 + 2.	

  Theorem 37([223]). Let us consider the standard feedback configuration in Figure 12.1, where u 1 ∈ L m 2 , u 2 ∈ L n 2 , and G 1 and G 2 are appropriate dimensional, stable, causal, transfer function matrices. Then, the interconnected system is

  Corollary 8. The characteristic function of(12.12) for A ∈ M n (R) with real nonzero eigenvalues has no any zeros in C + if and only if Démonstration. Since the imaginary axis crossing frequencies of (12.12) are the magnitudes of eigenvalues of A, the minimum τ * for which the (12.14-12.15) holds for negative eigenvalues of A, if exists, is τ * = π/2| min {i=1,2,...,n} z i (A)|. Similarly, the minimum τ * for which the (12.14-12.15) holds for positive eigenvalues of A, if exists, is τ * = 3π/2 max i=1,2,...,n z i (A).

	τ < min	π 2z m	,	3π 2z p	,	(12.16)
	where					
	z m = | min i=1,..,n	z i (A)|,		(12.17)
	z p = max i=1,..,n	|z i (A)|.		(12.18)

  1 ψ 1,2 ψ 2,1 ψ 2,2.

	such that : ψ 1,1 =	-256 cos( ξ 2 )+272 sin( ξ 2 )+104 π cos( ξ 2 )-128 π sin( ξ 2 ) -876+184 π+85 π 2
	ψ 1,2 =	120 cos( ξ 2 )-40 π cos( ξ 2 )-400 sin( ξ 2 )+180 π sin( ξ 2 ) -876+184 π+85 π 2
	ψ 2,1 =	368 cos( ξ 2 )+704 sin( ξ 2 )+128 π cos(1/2 ξ)+104 π sin( ξ 2 ) -876+184 π+85 π 2
	ψ 2,2 =	-720 cos( ξ 2 )-180 π cos( ξ 2 )-520 sin( ξ 2 )-40 π sin( ξ 2 ) -876+184 π+85 π 2

It is obvious that such a controller implies an additional coefficient

The sum of the degrees of the polynomials involved in the quasi-polynomial plus the number of polynomials involved minus one is called the degree of a given quasi-polynomial. Further discussions on such a notion can be found in[START_REF] Wielonsky | A Rolle's theorem for real exponential polynomials in the complex domain[END_REF].

-12 x 

x 1 -6 x 2

Remerciements

for the codimension of the zero singularity is established under the non degeneracy of an appropriate functional Birkhoff matrix. It is worth noting, that the established LU-developments yields some new possibilities in the study of "poised"-ness of Birkhoff incidence matrices.

Finally, we emphasize that the proposed approach can be extended to wider classes of functional equations, for instance, neutral systems and delay-difference equations. In the next step, the effect of the rational dependency of the delays on the codimension bound of the zero singularity will be explored.

Appendix

In this section, we first summarize the main notations in Table 10.1. Then, for the sake of self-containment, we report some results selected from the literature. Finally, some useful auxiliary lemmas are presented and proved. The proofs of Theorem 34 and Theorem 35 are provided.

Functional Confluent Vandermonde matrices

By functional confluent Vandermonde matrix Φ we designate for given positive integers l, δ and M , the matrix defined by :

for a sufficiently regular function g ∈ C k (R), see [START_REF] Ha | A note on the determinant of a functional confluent Vandermonde matrix and controllability[END_REF]. In the sequel, we are particularly interested by square matrices where it is assumed that M i=1 d i = δ = l. If, g(x) = 1 then we are dealing with the so-called confluent Vandermonde matrix, see [START_REF] Ha | A note on the determinant of a functional confluent Vandermonde matrix and controllability[END_REF]. If, additionally, d i = 1 for i = 1 . . . N then we recover the classical Vandermonde matrix and in this case M = δ since Φ is assumed to be a square matrix, see [START_REF] Olver | On multivariate interpolation[END_REF]. The explicit development of numeric/symbolic algorithms for LU-factorization and inversion of the confluent Vandermonde and Birkhoff matrices [START_REF] Respondek | On the confluent Vandermonde matrix calculation algorithm[END_REF][START_REF] Olver | On multivariate interpolation[END_REF] is still an attracting topic due to their specific structure and their implications in various applications, see [START_REF] Kailath | Linear Systems. Prentice-Hall information and system sciences series[END_REF] and references therein. It is worth mentioning that one of the contributions of this paper is to propose an explicit recursive formula for the LUfactorization for the functional confluent Vandermonde matrix defined by (11.6). The proposed formulas are in the spirit of the symbolic expressions established in [START_REF] Olver | On multivariate interpolation[END_REF] for the standard Vandermonde case. To the best of the authors' knowledge, such an explicit formulas seems to be unavailable in the open literature, see e. g., [START_REF] Gonzalez-Vega | Applying quantifier elimination to the Birkhoff interpolation problem[END_REF][START_REF] Olver | On multivariate interpolation[END_REF]. In fact, the historical note in [START_REF] Olver | On multivariate interpolation[END_REF] emphasizes that the rather extensive numerical literature on practical solutions to Vandermonde systems fails to reveal the explicit factorization formula for the LU-factorization as well as the symbolic inversion of Vandermonde matrices. We point out that an explicit recursive formula for the LU-factorization for a class of functional confluent Vandermonde matrices characterized by g(x) = x k is available in [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF] or in its extended version [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems : A link with Vandermonde and Birkhoff incidence matrices[END_REF]. The following notations are adopted. Let ξ stands for the vector composed by σ i repeated d i (nothing but deg(P i ) + 1) times through columns of a given matrix Φ, i.e.

It is important to note that the vector ξ, called in the sequel the incidence vector, is a compact way to depict the incidence matrix corresponding to a given functional confluent matrix Φ, see for instance [START_REF] Gonzalez-Vega | Applying quantifier elimination to the Birkhoff interpolation problem[END_REF]. It characterizes a given square functional confluent matrix Φ defined in (11.6) by specifying its variables as well as their repetitions by indicating the associated orders of derivations through its columns. In terms of the corresponding quasipolynomial, the incidence vector indicates the degree of the polynomials P k .

In [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF], as well as in [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems : A link with Vandermonde and Birkhoff incidence matrices[END_REF], a particular class of functional confluent Vandermonde matrices with g(x) = x s is considered and the corresponding LU-factorization is 11.4. Characterizing the Multiplicity of CIR : Computational Issues & Links with Functional Vandermonde Matrices 223 provided. The following result extends the applicability of the symbolic algorithm for LU-factorization given in [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems : A link with Vandermonde and Birkhoff incidence matrices[END_REF] (as well as in [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems : The missing link with Birkhoff incidence matrices[END_REF]) to any functional confluent Vandermonde matrix with a sufficiently regular function g.

Proposition 12. For the functional confluent Vandermonde square matrix Φ given in (11.6) the following hold :

1. Φ admits the following LU-factorization :

for 2 ≤ i ≤ j.

(11.7)

2. The determinant of Φ is given by det(Φ) = δ j=1 (U j,j ) where U j,j for 1 ≤ j ≤ δ are defined by :

Démonstration. Even the functional confluent Vandermonde matrix we consider generalizes the particular one considered in [37, Theorem 3], we follow the same steps of its proof. Namely, one proceeds by a total 2-D recurrence, which can be summarized as follows. First, one defines a matrix Ω by

where, L i,k and U k,j are defined in (11.7). Then we prove that Ω i,j = Φ i,j ∀(i, j) 1 ≤ i, j ≤ δ. The initialization of the recurrence is done by showing that Ω 1,j = Φ 1,j and Ω i,1 = Φ i,1 for 1 ≤ i, j ≤ δ. Hence, one assumes that Ω i,j = Φ i,j holds for any 1 ≤ i ≤ i 0 -1 and 1 ≤ j ≤ j 0 -1. Finally, proving that Ω i 0 ,j 0 -1 = Φ i 0 ,j 0 -1 , Ω i 0 -1,j 0 = Φ i 0 -1,j 0 , Ω i 0 ,j 0 = Φ i 0 ,j 0 allows to conclude that Ω i,j = Φ i,j for 1 ≤ i ≤ δ and 1 ≤ j ≤ δ. The determinant of the functional confluent Vandermonde matrix Φ follows directly from (11.7) since L i,i = 1.

Characterizing the Multiplicity of CIR : Computational Issues & Links with Functional Vandermonde Matrices

Let us set c k = cos(σ k ω) and s k = sin(σ k ω) and, for a given real positive number x, we denote by x the integer part of x or equivalently the floor function at x.

Chapitre 13. Spectral Analysis for a Propagation Model

Let us consider system (13.1)

and let y(t) = col(y 1 (t), y 2 (t)) which implies

then from the second equation of (13.31) and the invertibility of the matrix D 11 we have .32) Substituting this las equality into the first and third equations of (13.31) which gives

Let us consider separately the two cases.

1. Assume that (13.28) is satisfied, then its first three conditions give

Thus, the third equation gives :

wich leads to

hence the fourth and the third equalities of (13.28) lead to

Spectral Projection for Lossless propagation model

which implies

Obviously, we obtain a neutral system with non-singular matrix associated with the greatest delay of the difference equation ;

thus the theorem 38 can be applied.

2. Assume that (13.29) is satisfied, then

which implies 

Résumé :

Les travaux présentés s'inscrivent dans le domaine des systèmes dynamiques de dimensions finie et infinie. Ils portent plus particulièrement sur l'application de la théorie qualitative des systèmes dynamiques aux problèmes de stabilité (asymptotique) et de contrôle. Ces travaux s'articulent essentiellement autour de différentes versions du théorème de la variété du centre et de différentes théories des formes normales pour les équations différentielles fonctionnelles. L'objectif commun à ces recherches est, d'une part, de prouver l'efficacité de ces méthodes dans des applications émanant des problèmes de contrôle, et d'autre part, d'étendre leur applicabilité à des systèmes algébro-différentiels non-linéaires à retard et dépendant de paramètres. En particulier, des liens entre différents concepts ont été établis et ont, notamment, permis de mettre en évidence une nouvelle approche de stabilisation utilisant la commande retardée basée sur la multiplicité des valeurs spectrales. Ce paradigme a été appliqué successivement à la stabilisation du pendule inversé, la stabilisation du quadrotor en présence de rafale de vent, le contrôle des vibrations se propageant le long d'un système de forage, le contrôle d'un modèle de transmission de maladie et l'analyse de croissance du tournesol.

Mots clés : Systèmes dynamiques, systèmes à retard, stabilité, solutions périodiques, foyer-centre, centres isochrones, linéarisation, points de Andronov-Hopf, systèmes nilpotents, variété du centre, formes normales, bifurcations locales, synchronisation de fréquence, racines de quasi-polynômes, interpolation de Birkhoff, caractérisation de multiplicité, commande retardée, contôle de vibrations, système de forage, pendule inversée