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CHAPITRE 1
Contexte général de la thése et
son fil conducteur

”... Douter de tout ou tout croire, ce sont deuz solutions également com-
modes, qui ['une et l’autre nous dispensent de réfiéchir.”
Henri Poincaré, La Science et I’Hypothése, 1902.

Les recherches présentées dans ce manuscrit s’inscrivent dans le domaine des
systémes dynamiques, de dimensions finie et infinie, et de ’application de la théorie
qualitative des systémes dynamiques aux problémes de controle. Elles s’articulent
essentiellement autour de différentes versions du théoréme de la variété du centre
(en dimension finie et infinie) et de différentes théories des formes normales (avec ou
sans controle), voir [47, 111, 43, 134]. L’objectif commun & ces recherches est, d’une
part, de prouver l'efficacité de ces méthodes dans des applications émanantes des
problémes de controéle, et d’autre part, d’étendre leur applicabilité & des systémes
algébro-différentiels non-linéaires a retard et dépendant de paramétres. Ces deux
théories permettent de réduire, localement (au voisinage d’un point d’équilibre), la
structure, ainsi que la dimension des systémes, sans toutefois perdre I'essentiel des
dynamiques. Plus précisément, le théoréme de la variété du centre réduit la dimen-
sion du systéme a celle de I’espace propre généralisé associé aux valeurs spectrales
imaginaires pures. La théorie des formes normales permet de simplifier la structure
du sytéme, dans le cas d’'un systéme de commande, en découplant I’état des entrées
et en réduisant ses non-linéarités, voir [111, 25]. Il est commode de signaler que cette
approche se base sur une succession de changements de variables proches de l’iden-
tité, ce qui présente un aspect symbolique permettant de conserver (localement)
I'information sur les dynamiques importantes. Ces méthodes symboliques/formelles
ont prouvé leur efficacité dans divers problémes dans ’analyse qualitative des so-
lutions de systémes dynamiques, voir [17, 16, 3, 182|. En particulier, il est aussi
intéressant de rappeler que ces méthodologies apportent un outil complémentaire
aux méthodes numériques, surtout lorsqu’il s’agit de systémes de grande dimen-
sion ou méme en dimension infinie (équations aux dérivées partielles et systémes a
retard), voir [180, 181, 224].

Le fil conducteur des problémes et sujets abordés dans ce projet est I’analyse
qualitative de systémes dynamiques au voisinage de points d’équilibre non hyperbo-
liques, ce qui exclut le cadre du théoréme de Hartman-Grobman. Ce dernier théo-
réme est aussi connu sous le nom du théoréme de linéarisation assurant, lorsqu’il
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s’agit de point d’équilibre hyperbolique, une équivalence topologique entre les flots
du champs de vecteur (non linéaire) et son jacobien au point d’équilibre en question.
Ainsi, il est question, soit (& travers le théoréme de la variété du centre) d’exploi-
ter ces valeurs spectrales a partie réelle nulle (lorsqu’elles existent, et lorsqu’il est
techniquement possible de les identifier précisément avec leurs multiplicités), soit
de caractériser ce type de valeurs spectrales (par caractériser on sous-entend les
identifier ainsi que leurs multiplicités algébriques/géométriques respectives). Il en
sort alors l'intérét de préviligier des approches symboliques plus adaptées que les
méthodes numériques pour mener & bien ce dernier objectif.

Ces travaux/projet de recherche présente(nt) deux volets. Le premier concerne
les systémes dynamiques en dimension finie, qui est dans la lignée naturelle des su-
jets traités pendant ma thése, période pendant laquelle j’ai été guidé par Jean-Marie
Strelcyn (Université de Rouen) et Raouf Chouikha (Université Paris Nord) dans la
caractérisation (analytique/algébrique) de solutions périodiques des systémes dyna-
miques en dimension finie. J'avais fait le choix, en particulier, de me consacrer au
probléme du centre et plus précisément celui de la propriété d’isochronie (solutions
périodiques de période constante, indépendamment des conditions initiales confinées
dans la région centrale) pour les systémes bidimensionnels d’équations différentielles
ordinaires. La caractéristique de ces derniers systémes (2D) est un linéarisé au voi-
sinage du point d’équilibre (souvent considéré, sans perte de généralité, I'origine de
R?) admettant deux valeurs spectrales +jw, ce qu'on appelle souvent un point de
Hopf. Ainsi, ces systémes plans, peuvent étre percus comme une projection spec-
trale sur une variété invariante/attractive (variété du centre) d’un systéme de plus
grande dimension ayant un point d’équilibre non hyperbolique dont la partie cri-
tique de son spectre ne comporte que ces deux valeurs spectrales (+jw chacune de
multiplicité algébrique/géométrique identiquement égale a 1). Si de plus, le reste
des valeurs spectrales du systéme étudié¢ admet des parties réelles négatives alors
les dynamiques d’un systéme 2D de ce type refleteront (qualitativement) les dyna-
miques du systéme initial (de plus grande dimension). Toutefois, mon évolution dans
cette thématique (d’analyse qualitative des systémes de dimension finie) s’est égale-
ment orientée vers des problématiques telles que le controle des systémes en grande
dimension (dépendant de paramétres) et la synchronisation de fréquence pour des
systémes non linéaires couplés.

Les résultats de ce volet sont présentés dans la Sous-partie 1. Dans les deux
premiers chapitres, il s’agit des résultats des travaux [30] (en collaboration avec
Raouf Chouikha et Jean-Marie Strelcyn) et [15] (en collaboration avec Magali Bar-
det, Raouf Chouikha et Jean-Marie Strelcyn), ol une caractérisation/génération des
conditions d’isochronie du centre a l'origine pour les systémes plans de ’équation
différentielle ordinaire de type Liénard est établie. Grace a l'usage de la méthode
itérative due a R. Chouikha [62], fondée sur un théoréme de Minuro Urabe (1961),
nous déterminons de nouveaux cas de centre linéaire perturbé par une non-linéarité
non homogeéne. En particulier, dans [30] pour un centre linéaire perturbé par une



non-linéarité homogéne

(1.1)

{¢=y+FM%w
§=—2+ Qnlz,y)’

de degré n arbitraire réductible & 1’équation de type Liénard, nous avons identi-
fié trois familles toujours linéarisables indépendamment du degré. Dans [15], nous
présentons aussi une étude comparative d’efficacité dans le calcul des conditions
d’isochronie pour des systémes de type Liénard (Formes Normales VS C-Algorithme
modifié). Nous exhibons également, une famille de systémes avec un centre isochrone
admettant une fonction d’Urabe non standard et une formule explicite de linéarisa-
tion est établie.

Enfin, nous contribuons & un probléme ouvert posé par Evgenii Volokitin (Aca-
démie des Sciences Russe, Institut Sobolev, Novosibirsk) portant sur les systémes

d’Abel
{?:_y (1.2)
y=z(1+ P(y)),

avec P(y) = a1y + azy? + azy® + ... + any™.

Dans le chapitre 4, les résultats de [14] sont repris. En collaboration avec Magali
Bardet (Université de Rouen), nous obtenons une réduction de complexité de 'algo-
rithme de Chouikha qu’on appelle par la suite CAR, avantageuse & plus d’un titre
lorsqu’elle est comparée aux algorithmes des formes normales dans la caractérisation
des systémes linéarisables au voisinage du centre (dont l'existence est certifiée par
un théréme de M. Sabatini) pour les systémes de type Liénard plan :

— en coft de calcul,

— en fournissant une condition suffisante,

— en indiquant dans certains cas la linéarisation explicite.

L’algorithme présenté prouve son efficacité surtout s’agissant de données rationnelles
(ce qui est toujours le cas pour les systémes polynomiaux plans). Le tableau suivant,
dans lequel le temps de calcul est exprimé en secondes, témoigne de 'efficacité de
I’algorithme proposé comparé a ’algorithme classique des formes normales dans la
caractérisation de la linéarisabilité pour le systéme (1.2) en variant le degré n :

Par ailleurs, ce méme probléme d’isochronie peut étre considéré comme étant
un probléme de synchronisation de fréquence indépendamment des conditions ini-
tiales (confinées dans 'anneau du centre). Ainsi, dans le chapitre 5, qui reprend les
résultats de [28], une synchronisation de fréquence par un retour d’état monomial
affectant une seule équation d’un systéme cubique plan initialement non linéarisable
(donnant lieu & une dynamique linéaire) est établie. Les conditions nécessaires sont
obtenues grace au calcul explicite des formes normales.

Ensuite, une application directe de ces approches qualitatives/symboliques (formes
normales et variété du centre) nous ont permis d’aborder les problémes d’analyse et
de contréle d’un véhicule aérien équipé de quatre moteurs, "Quadrotor". Les résul-
tats de [216] en collaboration avec Jing Wang (L2S), Silviu-Tulian Niculescu, Hugues
Mounier et Arben Cela (ESIEE) sont repris dans le chapitre 6.
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TABLE 1.1 — Temps CPU sur un Pentium cadencé a 1,46 GHz 4Go

’ n ‘ CAR ‘ Formes Normales ‘
(2] ~0s | 0,060 s |
| 3]0,001s | 0,160 s |
| 4]0,0045s | 0,784 s |
| 5]0,008s | 4,728 s \
| 60,0165 | 31,430 s \
| 7]00525 | 263,033 s |
18]0,1165 | 2335,962 s |
’ 9 ‘ 0,284 s ‘ A court de mémoire ‘

Ca

2

",

Plus précisément, un modéle dynamique 12- dimensionnel a été réduit a un systéme
dynamique plan.

Les résultats du deuxiéme volet sont présentés dans la Sous-partie A. Il re-
prend les sujets et résultats que j’aborde depuis octobre 2010 essentiellement avec
Silviu-Tulian Niculescu et Hugues Mounier. Au début dans le cadre de mon activité
post-doctorale en automatique au L2S (2010-2011), puis en tant que chercheur asso-
cié au L2S (depuis 2011). 11 s’agit de la modélisation, de I’analyse et du controle des
équations algébro-différentielles ainsi que 1’étude des systémes dynamiques en di-
mension infinie ; plus précisément, les sytémes non linéaires a retard et les équations
aux dérivées partielles hyperboliques. En effet, les systémes de commande évoluent
souvent en présence de retards, voir [147]. Ces retards sont souvent justifiés par les
latences entre 'acquisition de I'information et la prise de décision et entre la prise
de décision et 'exécusion de cette décision. Le retard peut aussi étre per¢u comme
un paramétre intrinséque au systéme, et ce, typiquement dans des applications évo-
quant des phénomeénes de propagation (propagation de vibrations en torsion et en
traction-compression le long d’un train de tiges d’un systéme de forage pétrolier), ou
des retards intentionnellement incorporés dans les lois de commandes afin d’éviter
la démultiplication des capteurs, ou encore en raison de contraintes technologiques



empéchant 'aquisition instantanée des informations sur 1’état du systéme (telle la
stabilisation d’'un pendule inversé par des lois de commande retardées dispensant
ainsi de l'usage d’un capteur de vitesse angulaire).

Dans ce contexte, trois pistes ont été essentiellement explorées. La premiére,
consiste & exploiter des approches et résultats de ’analyse des équations différen-
tielles fonctionnelles dans des problémes concrets de controle. En effet, dans le cha-
pitre 7, nous reprenons les résultats obtenus dans [34] ainsi que dans [35], deux tra-
vaux en collaboration avec Silviu-Iulian Niculescu et Constantin Morarescu (CRAN,
Université de Lorraine), il s’agit de 'analyse des dynamiques induites par la com-
mande retardée. Un systéme d’équations différentielles ordinaires non linéaires mo-
délisant un pendule inversé sur un chariot est étudié. Suite a 'usage de commande
de type proportionnel & plusieurs retards nous mettons en évidence ’apparition de
dynamiques inhabituelles pour des systémes en dimension finie. Nous identifions
une bifurcation de co-dimension 3 au voisinage d’une valeur propre triple en zéro.
Cette multiplicité dépasse la dimension du systéme initial (systéme plan). Nous éla-
borons une analyse non-linéaire basée sur le théoréme de la variété du centre pour
les systémes en dimension infinie puis la forme normale des dynamiques centrales
est analysée. L’étude se réduit & l'analyse d’un systéme tri-dimensionnel. Les bi-
furcations de Hopf et de fourche (Pitchfork) sont étudiées pour plusieurs lois de
commandes retardées [35]. La stabilisation du pendule est ensuite obtenue grace a
I’éclatement du paramétre de perturbation. Nous mettons également en évidence que
la connaissance de ’état & deux instants 71 et 79 suffisamment proches permet d’évi-
ter I’estimation de la vitesse souvent indispensable pour de bonnes performances de
la loi de commande [10].

D’autre part, en collaboration avec Silviu-Tulian Niculescu, Hugues Mounier et Ar-
ben Cela, Belem Saldivar et Sabine Mondié (Conacyt, Mexique) nous nous inté-
ressons 4 une application issue de 'industrie pétroliere. Cette partie est présentée
dans les chapitres 8-10 qui reprennent des résultats de [36, 29, 146, 42|. Il s’agit
de la modélisation, de ’analyse et du controle des vibrations d’un systéme de fo-
rage. L’industrie de forage pétrolier localise des poches d’hydrocarbure de plus en
plus profondes (actuellement de 3 & 7 km); de ce fait les vibrations de rotation
(torsionnelles) et celles de traction-compression peuvent causer une fatigue et une
usure prématurées du train de tiges. Notre travail porte sur I’analyse et le controle
d’un modéle qui prend en considération les deux types de vibrations, et comporte
deux équations d’ondes couplées (chacune décrit un type de vibration). En plus,
le couplage de ces deux types de vibrations est pris en compte dans les conditions
aux bord et il est considéré comme non linéaire. Tous ces éléments de modélisa-
tion permettent d’obtenir une description assez élaborée des dynamiques induites
le long du train de tiges. Dans la modélisation qu’on considére, les vibrations en
traction-compression U(t,s) et les vibrations torsionnelles ®(t,s) sont gouvernées
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From/to
~"mud pumps

Drill collars

Bit

FIGURE 1.1 — Systéme de forage rotatif

005 oo

FIGURE 1.2 — Modéle de frottement

par les equations d’ondes suivantes :

( U(t,s)=c U”(t s),
U'(t,0) = ( (t,0) — H(t)),
MU(t, L) = —EFU’(t L)+ F(U(t, L)),
d(t,s) = & d"(t,s), (1)
¥(1,0) = Lo ((2,0) - (1),
Jé(t, L) = —Grcb(t L)+ F(U(t, L)),

ou G est le module de Young de I'acier des tiges, E est le module de Young d’élasti-
cité, J est l'inertie de rotation du systéme, M est masse du systéme, L est longueur
des tiges, I' est la section moyenne et p est la densité volumique, ainsi les vitesses

d’onde s’écrivent : ¢ = 1/% et ¢ = \/g. Notons que les profils de frottement F' et

F ont été modélisés par : z — avec 0 < ( << 1 et k € N*, voir figure 1.2. Le

kz
k2 22+<



modéle d’EDP établi se raméne au systéme a retard de type neutre

{ z(t) —az(t—71) = f(z(t),z(t —T)) (1.4)
y(t) = byt —7) = glz(t), z(t —7),y(t),y(t — 7)) '

ou g et f sont des fonctions non linéaires. En particulier, une analyse basée sur le
théoréme de la variété du centre et sur I'utilisation des formes normales est établie.
Le choix de transformer le modéle d’EDP en DDE est justifié par le fait que le modéle
physique sera accompagné d’un modéle de transmission (usage de technologie wifi
qui induit naturellement un retard) permettant de recuillir des informations sur
I’état de 'outil au fond du puits. Ces informations sont précieuses pour la tache de
controle. Afin d’éviter que les dynamiques des vibrations ne présentent des cycles
limite, nous travaillons sur I’élaboration d’un contréle qui dépende de la vitesse de
rotation & l'extérieur du puits et de la force élévatrice appliquée sur les tiges en
haut du puits également. Un travail de synthése dans cette thématique est présenté
dans [146], il comporte de nouveaux modeéles distinguant les différentes parties du
systéme de forage, il inclut des modéles de transmission et les différentes lois de
commandes connues pour stabiliser les vibrations le long du systéme de forage.

Une des contributions essentielles de cette thése, rentrant dans le cadre de ’étude
des racines de quasipolynomes, est présentée dans les chapitres 11 et 12, elle reprend
les résultats de [41, 31, 37, 40].

Les résultats obtenus consolident les connaissances actuelles dans la caracté-
risation des valeurs spectrales imaginaires pures des systémes a retard. En effet,
des approches efficaces existent pour I'identification de telles valeurs spectrales (par
exemple, I'approche des faisceaux matriciels, la transformée de Rekasius et d’autres
encore), mais a notre connaissance, aucune d’entre elles ne permet d’établir la mul-
tiplicité de celles-ci. Ceci s’explique par 'apparition du retard dans les polynémes
définissant les dérivées d'un quasipolynome. L’intérét de cette piste réside dans le
fait que la dimension du projeté de I’état dans cette variété n’est autre que la dimen-
sion de 'espace propre généralisé associé aux valeurs spectrales imaginaires pures,
d’ou une caractérisation de la variété centrale associée a ces valeurs spectrales. En
premier lieu, dans [31] nous mettons en évidence I’aspect algébrique du probléme de
caractérisation de la multiplicité de la valeur spectrale en zéro. Dans ce travail nous
avons obtenu une description, en terme de variétés et d’idéaux, des conditions (sur
les paramétres d’un quasipolynéme) assurant une multiplicité admissible pour une
valeur spectrale en zéro. Ce constat nous a permis dans [37], d’établir un lien entre
la multiplicité de zéro en tant que racine d’un quasipolynéme générique et le pro-
bléme d’interpolation d’Hermite et ainsi les matrices Confluents de Vandermonde.
Nous montrons par ce biais, que la borne de multiplicté de la singularité en zéro
peut atteindre la borne de Polya-Szego [176] qui n’est autre que le degré du quasipo-
lynome considéré! et nous établissons explicitement les valeurs des paramétres du
quasipolynéme assurant toute multiplicité admissible (inférieure ou égale & la borne

1. Le degré d’un quasipolyndéme n’est autre que la somme des degrés des polyndmes impliqués
plus leur nombre moins un.
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de Polya-Szegd). Nous démontrons également que la borne de multiplicité d'une va-
leur spectrale en zéro dépend de la structure du quasipolynoéme plutét que de son
degré. Cela nous a permis de caractériser la structure d’un quasipolynéme par une
matrice d’incidence de Birkhoff (mettant en évidence 'aspect creux des polynémes
impliqués). Un travail de synthése de ces résultats est présenté dans [40], voir le
chapitre 11.

Ce travail a été généralisé dans ’exploration de la multiplicité des valeurs spec-
trales imaginaires piires. D’abord, la limitation d’autres approches dans la caracté-
risation de la multiplicité a été soulignée dans [41]. En effet, au travers d’un exemple
explicite il a été démontré que la substitution de Rekasius, par exemple, échoue dans
de telles investigations. D’autre part, il est prouvé que la multiplicité d’une valeur
spectrale de fréquence non nulle ne peut atteindre la multiplicité de Polya-Szego.
Une approche basée sur des matrices fonctionnelles confluentes de Vandermonde est
proposée, une nouvelle borne plus fine pour la multiplicité de telles valeurs spectrales
est établie ; voir le chapitre 12.

Toujours dans ce contexte de l’exploration des multiplicités admissibles d’une
valeur spectrale et de leur incidence sur les dynamiques des systémes a retard, cette
étude nous a permis d’identifier des propriétés intéressantes. En premier lieu, dans
[41], pour une équation scalaire a retard discret, il a été démontré que la borne de
multiplicité de Polya-Szego peut étre atteinte pour les valeurs spectrales réelles. En
plus, une fois cette borne atteinte, alors le point d’equilibre est asymptotiquement
stable. En terminologie algébrique (dans l’espace des paramétres), cela revient a dire
que la sous variété définissant cette valeur spectrale multiple correspond & une sous
variété stable du point d’équilibre. Cette propriété a été étendue pour des systémes
(a retard) plans dans [122]. Ce résultat a été exploité dans le cadre de l'analyse du
modéle de croissance du tournesol (Sunflower equation)

a b
P+ @+ —sin(z(t — 7)) =0 1.5
T+ 7_93 + = sin(z(t — 7)) , (1.5)

deux valeurs spectrales réelles doubles ont été retrouvées. Leur existence guaranti,
localement et sous des conditions appropriées, la stabilité asymptotique du point
d’équilibre a 'origine.

Dans le cadre d’une collaboration en cours avec Silviu Niculescu, Tomas Vyhlidal
(Prague University) et Hakki Unal (Inria Saclay), ayant pour objectif d’élaborer
une approche de stabilisation basée sur cette propriété, les premiéres simulations de
I’analyse de certains systémes mécaniques motive 'intérét de systématiser ce critére
sous forme d’une procédure informatique.

Dans l'optique de proposer une approche d’analyse qualitative unifiée pour des
systémes comportant des équations différentielles fonctionnelles couplées & des équa-
tions algébriques, nous nous sommes proposé d’étendre 'applicabilité du théoréme
de la variété du centre a une classe de systémes algébro-différentiels connue sous le
nom de systémes de propagation sans perte, ce qui fait 'objet du Chapitre 14, repro-
duisant les résultats obtenus dans [32] mais sous une forme étendue de ce travail en
collaboration avec Silviu-Iulian Niculescu et Wim Michiels (CU Leuven, Belgique).



Ces systémes sont souvent utilisés pour modéliser des systémes complexes dont ils
est difficile de mesurer une partie de I’état, nécessitant ainsi des observateurs pour
les approcher. Pour ce faire, nous élaborons d’abord une projection spectrale pour
un systéme de propagation sans perte (équation différentielle a retard couplée avec
une équation aux différences a retard) dont une forme simplifiée et linéarisée est la
suivante :

{ @(t) = Ax(t)+ By(t—1) (1.6)

y(t) =Cux(t)+ Dy(t—r71)

avec (z, y)T € Crntm ot Crpym est I'espace de Banach des fonctions continues de
[—7,0] dans R™*™. Etant donné qu’aucun retard n’est appliqué a x, cette variable
peut étre vue comme x € R™.

Ce type de systémes apparait de maniére naturelle dans les problémes de com-
mande, voir [151]. Ce probléme est en général contourné en dérivant la deuxiéme
equation de (1.6) pour obtenir le systéme a retard de type neutre comme dans [1]

{ z(t) = Az(t)+ By(t — 1) (1.7)
y(t) =Dyt —7)=CAxz(t)+CBy(t—7). '

Cette manipulation permet de donner une idée des valeurs spectrales certes, mais
malheureusement ne permet pas au systéme de propagation sans perte de bénéfi-
cier des conditions de stabilité et de stabilisation du systéme de type neutre. En
effet, la projection spectrale sur la variété centrale du systéme neutre ne correspond
pas & celle du systéme (1.6) puisqu'une valeur spectrale supplémentaire (en zéro)
d’ordre k apparait dans (1.7). A titre d’exemple, il est possible d’avoir un systéme de
propagation sans perte ayant un point d’équilibre asymptotiquement stable contrai-
rement au systéme neutre. La contribution de [32] consiste & élaborer une projection
spectrale associé a (1.6) sans passer par une équation de type neutre, pour ainsi éta-
blir une méthode fournissant une approximation en dimension finie (élimination du
retard).

Standard
transformation

Lossless propagation model Neutral FDE
Infinite dimensional system ’ Infinite dimensional system

The proposed Center
Direct Method Manifold
Theorem

CM approximation for

Lossless propagation model System of ODE
Finite dimensional H Finite dimensional system
Structure
reconstruction

Nous exhibons également dans ce travail des conditions suffisantes pour la conver-
gence du développement en série des solutions de ce type de systéme.
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Pour conclure, cette section a succintement mis en évidence le fil conducteur
des sujets abordés dans les chapitres qui suivent. L’ordre de présentation des cha-
pitres n’est pas que chronologique; il refléte I’enchénement du questionnement qui
a conduit a ces travaux. La motivation principale est d’établir une méthdologie
unifiée et effective dans la caractérisation de propriétés qualitatives des systémes
dynamiques (comportant certaines complexités). Les perspectives correspondant a
ces recherches feront 'objet du chapitre 15.



Premiére partie

Analysis of finite dimensional dy-
namical systems and its applications

Analyse de systémes dynamiques de
dimension finie et ses applications
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”... D’ailleurs, ce qui nous rend ces solutions périodiques si précieuses,
c’est qu’elles sont, pour ainsi dire, la seule bréche par ol mous puissions
essayer de pénétrer dans une place jusqu’ict réputée inabordable.”

Henri Poincaré, Les méthodes nouvelles de la mécanique céleste, 1892.






CHAPITRE 2
Characterizing isochronous centers
of Liénard-type planar systems

A classical dynamical system is called isochronous if it features in its phase space
an open, fully-dimensional, region where all of its solutions are periodic in all their
degrees of freedom with the same, fixed period-independently from the initial data,
provided they are inside the isochrony region (the center annulus) [44]|. As empha-
sized in the historical note given in [188], the interest in the isochronicity property
is an old problem which started with the history of clocks based on some sort of
periodic motion, such as the swinging of a pendulum. Based on his knowledge that
the cycloid is a tautochrone (a frictionless particle sliding down a wire in the shape
of a cycloid reaches the lowest point in the same amount of time, regardless of its
starting position). In the 17th century Huygens designed and built a pendulumclock.
This is probably the earliest example of a nonlinear isochronous system. Since the
last century, the interest in characterizing of such a property becomes a prolific li-
terature topic, for instance, the number of 7571 publications listed in the data base
of elsevier etitions contains the word "isochronous” (in different contexts).

Of course, in the real world the examples of purely isochronous behavior are rather
rare, otherwise life would be pretty dull, see [44].

In this chapter, we are concerned with planar systems of ordinary differential
equations. The proofs of the results given in this chapter can be found in [30]. We
study the isochronicity of centers at O € R? for systems & = —y + A(z,y), ¢ =
x + B(z,y), where A, B € R[z,y], which can be reduced to the Liénard-type equa-
tion. Several new families of isochronous centers are provided. All these results are
established using intensive computer algebra and Grobner basis computations.

2.1 Introduction

2.1.1 Generalities

The hunting of isochronous centers is now a flourishing activity. By this chapter
we would like to contribute to it.
Let us consider the system of real differential equations of the form
dx . dy
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where (z,y) belongs to an open connected subset U C R%, A, B € C*°(U,R), where
A and B as well as their first derivatives vanish at (0,0). An isolated singular point
p € U of system (2.1) is a center if there exists a punctured neighborhood V' C U of
p such that every orbit of (2.1) lying in V' is a closed orbit surrounding p. A center
p is isochronous if the period is constant for all closed orbits in some neighborhood
of p.
The simplest example is the linear isochronous center at the origin O = (0,0)
given by the system
T=-y, y=uc. (2.2)

The problem of caracterization of couples (A, B) such that O is an isochronous
center (even a center) for the system (2.1) is largely open.

An overview of J. Chavarriga and M. Sabatini [52] present the basic results
concerning the problem of the isochronicity, see also |7, 60, 188].

The well known Poincaré Theorem assert that when A and B are real analytic,
a center of (2.1) is isochronous if and only if in some analytic coordinate system it
take the form of the linear center (2.2). Let us formulate now another theorem of
the same vein (see for example [7], Th.13.1 and [188], Th.4.2.1).
Theorem A ([145], Th.3.3) Let us suppose that the origin O is an isochronous center
of system (2.1). Let F(x,y) = 22 +y?+o(|(z,y)[?) be an analytic first integral defined
in some neighborhood of O. Then there exists an analytic change of coordinates
u(z,y) = x4+ o(|(z,v)]), v(z,y) =z + o(|(z,y)|) bringing the system (2.1) to the
linear system 1 = —v, ¥ = u and such that F(z,y) = u*(z,y) + v*(z,y).

We pass now to the heart of the matter. To make this chapter more accessible,
we report all strictly technical remarks to Appendix, Section 7.

In some circumstances a system (2.1) can be reduced to the Liénard type equation

i+ f(z)i* +g(x) =0 (2:3)

with f, g € C'(J,R), where J is some neighborhood of 0 € R and g(0) = 0. If this is
so, the system (2.1) is called reducible. To the equation (2.3) one associate the two
dimentional (planar) Liénard type system

T =y
§ = —gla) - f(sc)y?} .

For reducible systems considered in this chapter, the nature of singular point O
for both system (2.1) and (2.4) is the same (see Appendix, Sec.2.7); in particular
this concerns the centers and isochronous centers.

Let us return now to the Liénard type equation (2.3). Let us define the following
functions

F(x) ::/ f(s)ds, o&(x) ::/ ") ds. (2.5)
0 0
When zg(z) > 0 for x # 0, define the function X by

~X(x)* = /Ox g(s)e?F)ds (2.6)
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such that zX (z) > 0 for x # 0.

Let us formulate now the following Theorems which are the departure point of
this chapter.
Theorem B ([194], Th.1) Let f, g € C*(J,R). If zg(x) > 0 for x # 0, then the
system (2.4) has a center at the origin O. When f, g are analytic , this condition
is also necessary.

When f, g € C*(J,R), the first integral of the system (2.4) is given by the formula

I(2,4) = 2 / 9(5)e2F ) ds + (el )2 (2.7)
0

Theorem C ([62], Th.2.1) Let f, g be real analytic functions defined in a neighbo-
rhood J of 0 € R, and let xg(x) > 0 for x # 0. Then system (2.4) has an isochronous
center at O if and only if there exists an odd function h which satisfies the following

conditions X(a)
the function ¢(x) satisfies
X(z)
o(x) = X(x) +/ h(t)dt, (2.9)
0

and X (x)p(x) > 0 for x # 0.

In particular, when f and g are odd, then O is an isochronous center if and only
if g(x) = e F @ (x), or equivalently h = 0.

The function h is called Urabe function. The above Theorem implies
Corollary A (62|, Cor.2.4) Let f, g be functions analytic in a neighborhood of
0 € R, and zg(x) > 0 for x # 0. The origin O is isochronous center of system (2.4)
with Urabe function h = 0 if and only if

J(@) + g(a)f(2) = 1 (2.10)

In [62] the second author described how the use of Theorem C allows to an
algorithm (C-algorithm, see Sec.2.7 Appendix for more details) for searching the
cases when O is an isochronous center for reducible system (2.1), with application
to the case when A and B are polynomials of degree 3. This work was continued in
[63].

The main results obtained in the two last cited chapters are the necessary and
sufficient conditions for isochronicity of the center at O in term of parameters for
the cubic system

- 2
T =—y+ary+ bx°y } (2.11)

§ =z + arx® + asy® + asx® + agry?

The aim of this chapter is to extend investigations made in [62, 63| for systems
with higher order perturbations of the linear center & = —y, vy = =.
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Like in [62], our main tool to investigate the isochronous centers for multipa-
rameters systems reducible to Liénard type equation is C-algorithm. Nevertheless
when searching only the isochronous centers with zero Urabe function the Corol-
lary A give a much simpler method which is widely used in this chapter. It consists
to identify the parameters values for which identity (3.10) is satisfied.

In all cases considered in [63] as well as in the present chapter the Urabe function
is of the form h(X) = —2XZ__ where s is an odd natural number and ky > 0. Like

\ ka+k3 X 28

in [63], we ask if the Urabe function of corresponding Lienard type equation (called
in the future also the Urabe function of the isochronous center under consideration)
is always of the above form.

The complexity of many examples of isochronous centers described in this chap-
ter clearly indicate the end of purely enumerative study in this field.

In our investigations we have used Maple in its version 10. To compute the
Grobner basis (with DRL order) of the obtained systems of polynomial equations,
we have used Salsa Software more precisely the implementation FGb [93].

2.1.2 Beyond the degree 3

We present now the list of reducible systems for which we study the isochronous
centers at the origin.

1. In Section 2.2 we study the most general homogeneous perturbation of arbi-
trary degree n > 3 of the linear center which belongs to the Case 1 from the
Appendix, Sec.2.7 :

s n—1
r =-y-+tayr } (2.12)

=z +bx" 2y + ca”

Here we found 3 isochronous centers for even n > 4 and 2 isochronous centers
for odd n > 3 which seems to be new.

2. In Sections 2.3 and 2.4 we study the most general polynomial perturbation
of degree four of the linear center which belongs to the Case 1 from the
Appendix Sec. 2.7 :

&= —y+ anyr + anyr? + azyr’
- 2 3 2 2 2 2 4 (2.13)
¥ = x + bagx” + b3px” + booy” + broxy” + bogx”y” + byox

First using Corollary A we identify all isochronous centers with zero Urabe
function. Here we found 6 isochronous centers which seems to be new. The
study of this system by C-algorithm can not be performed by our actual
computer facilities. Thus, we select for investigation two sub-families; the
first one when a1,; = b3 o = 0 and the second one when a1,; = as,;1 = 0. Here
we found 8 isochronous centers which seems to be new.

3. In Section 2.5 we study the most general polynomial perturbation of degree
five of the linear center which belongs to the Case 1 from the Appendix
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Sec.2.7 :
T=—-y+anyr+ aglyaz2 + a31y:r:3 + a41yx4
O 2 3 2 2 2.2 3,2 4 5
Y = + bogx” 4 b3gx” + booy” + bioxy” + bosx“y” + bzox”y” + byox” + bspx

(2.14)
Using Corollary A we identify all isochronous centers with zero Urabe func-
tion where bs9 = 0. Here we found eight isochronous centers which seems to
be new.

4. In Section 2.6 we study the following Abel system of arbitrary degree n > 2
which belongs to the Case 2 from the Appendix Sec. 2.7 :

T = -y
n
i (2.15)
§=> apy”,
k=0
where a;, € R, for kK = 0,...,n. Here we verify that up to n = 9 there are
not other isochronous centers from the one found by Volokitin and Ivanov

in [83].

Let us stress that by Theorem B, in all the above cases the origin O is always a
center (indeed, the condition zg(x) > 0 for x # 0 is satisfied for sufficientely small
|z| ; see Appendix Sec. 2.7).

When describing in Sec.2.3-2.6 the identified isochronous centers, all parameters
intervaining in the formulas are arbitrary, except that one always suppose that the
polynomials at the denominators are non zero. To avoid the misprints all formulas
are written exactly in the form produced by Maple. All fractions which appear in the
formulas are irreducible. In all cases when we was able to write down first integrals
and linearizing changes of variables, the explicite formulas are reported.

2.2 Homogeneous perturbation of arbitrary degree

As it will be proven in Theorem 1, from Corollary A it easily follows that for
arbitrary n > 2, the system (2.12) admit exactly two isochronous centers with zero
Urabe function.

Moreover, following Theorem C when n > 3 is odd, other isochronous centers
does not exist.

When n > 4 is even the preliminary investigation of the system (2.12) performed
by C-algorithm strongly suggest that for such n there exists exactly one additional
isochronous center with non zero Urabe function. Its existence is proved in Theo-
rem 2. Unfortunately, its uniqueness is not yet proved for arbitrary even n > 4. For
n =4, 6, 8 the uniqueness was proved using Maple and Grobner Basis technique.

Let us underline that our final proofs are done by the hand computations, wi-
thout use of computer algebra.

Taking into account the condition ¢'(x) + f(x)g(z) = 1 from Corollary A, one
obtain easily the following Theorem
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Theorem 1. For n > 2 the system (2.12) has an isochronous center at the origin
O with zero Urabe function only in one of the following two cases

. n—1
r =—-y+tax y} (2.16)

Yy =z +azx" %y

i o=y + 2anly
n _ 2.17
g =+ ban2y? Mg (2.17)

Moreover, for odd n > 3 there are no other isochronous centers.
System (2.12) is reducible to the system (2.4) with

2" 2(b+an —a)
1—axn1

fx) = and g(z) = (1— a:n”_l) (z + cz™)

(see Appendix, Sec.7.1)
The condition ¢'(z) + f(z)g(z) = 1 allows directly to the following two cases :

1. {a = b,c =0} which gives the system (2.16).
2. {c = —b(’;—gl), a= %} which gives the system (2.17).

Applying Sabatini formula (2.7) using Maple, one see that for n = 4..8 the first
integral of system (2.16) takes the form

(:1:2 + y2)
(—1+ am"fl)%

H16) =

Then Theorem A suggest that the linearizing change of coordinates is

x y
=t =Y 2.18
"V1—axn1 "V1—azn! (2.18)

Now by hand computations one verify that H(s 16) is always a first integral of sys-
tem (2.16) and using Maple one easily check that (2.18) is a linearizing change of
coordinates.

Exactly the same arguments work for the system (2.17). Its first integral is

z? (1 + cx”_l)Q + 42
(n—1)? (n — 1 4 nean1)

Hepar =

2n
n—1
and its linearizing change of coordinates is

T (1 + cx"‘l) Y Y
(n—1) ((n—l%—ncx”*l)ﬁ), (n—1) ((n—l—kncx”*l)%)

u =

Theorem 2. The system (2.12) with arbitrary evenn > 2 and a = 2b, ¢ = —b, b #
0, has an isochronous center at the origin with non zero Urabe function

bXn—l

"X = e

(2.19)
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Indeed, when a = 2b and ¢ = —b the system (2.12) writes

i = —y+2bya"! } (2.20)

Y =x+ b:U"_Zy2 — bx"

To simplify the formulas let us perform the following change of variables (x,y) —
(x/b,y/b) the system (2.20) takes the form

i = —y+2ya" !
2.21
Z-/ :x+xn—2y2_$n ( )
Which is reducible to the Liénard type equation (2.3) with

(=1 +2n)z" 2
1—2gn1

f(z) = and g(z) = (1- 2x”_1) (x —z")

Then Lo
—<n . n—1
P In (1 2x )

xX
F)= [ fo)ds =
0
which gives the right hand side of the equality (2.8)
P (=2 .
(1—2zn-1)z2

1-2n

On the other hand, e2F(®) = (1 — 227 1)1
From the equation (2.6) we compute

X(z) = \/2/ g(s)e2F(5)ds = - ;
0 (1—2zn"1)2n—2

T n—1 xn—l
h(X(@)) = D

1 —1
1 + X(x)2n72 1 xn

and

Then we compute the left hand side of the equality (2.8) :

T

X(x) _ m - 1’(1—1’"‘1)
L+ h(X(2) 142 (1- 20 1)z

Which proves that the equality (2.8) is satisfied. Let us stress that the above com-
putations remains valid for every n > 2. Nevertheless, for n odd h is not an odd
function and thus it is not an Urabe function which is odd by definition.

Theorem 3. For arbitrary n > 2, the system (2.20) has the following first integral

(33‘2 + yg)n—l

He20) = g1
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Using formula (2.7), one easily compute by Maple the first integral for n = 4,6, 8.
The obtained results strongly suggest the veracity of formula for H(j 59). Now one
easily verify by hand computations that H(; ) is a first integral.

Let us return to system (2.12). It is well known that for n = 2, this system
has an isochronous center in exactly four cases, so called Loud isochronous centers
(see [140, 62]). They correspond to (a = b, ¢ = 0), (a = g, c= —g), (a =2b, c =
—b) and (b = §, ¢ = 0). The first two are those from Theorem 1 , the third is
the one from Theorem 2. Let us note the Taylor expansion of the Urabe function
h(X) = c1X 4+ c3X? +.... As noted at the begining of the Section, for n = 4 one
has exactly 3 cases of isochronous centers. Why such a difference ? The difference is
in the algebraic structure of the equations generated by C-algorithm. For n = 2, the
second of such equations is —3¢; +a—2c—b = 0 and ¢; can be non zero, while for
n > 3, the second such equation is always ¢; = 0. Thus the freedom for existence of

non zero Urabe function is greater for n = 2 then for n > 3.

2.3 Non homogeneous perturbation of degree four with
zero Urabe function

Taking into account the condition ¢’(z) + f(x)g(z) = 1 from Corollary A, using
Maple one obtain easily the following Theorem.

Theorem 4. The system (2.13) has an isochronous center at the origin O with zero
Urabe function only in one of the following six cases, where one suppose that all
denominators are non zero polynomaials.

& = —y+ by + asix’y + as1 23y }
U =+ booy? + azwy? + azi1x’y?

& = —y+ bogxy — 3/2bsox?y + boobsor’y
y =+ boay® + bsoxr® — 9/2bgoxy? + 3 borbsor?y?

@ = —y+ (boz + 2bao) Y + a2’y + (baoan1 — bozbzo® — 4b20”®) 2y

Yy =x+ boox? + bogy2 + (a21 ~+ bo2bog + 4 b202) xy2
+ (2bz0a21 — 2bozbag® — 8bgo®) 22y
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—9b30ba0? —b2o?az1+2 b2 +4 baoaz: +6 bso?)
bao (—b20?+4b30)
b3o(—2bsobao® —bzo?az1+4bzoas1 +6 b30?) 3
bao (—b202+4bso) v

x :—y+(

+a21x2y +

2 2 4 2

. 9, (—17b3oba0?—bao2az1+4boo* +4bs0a21+6b30?) o
= + boox” +

y 20 bao (—b202+4 b3o)

2 2 2
3 (—bao?as1+4bsoaz +bsob2o?—3b30”) o
+hsor” + 2 —b20>+4 b3o Ty

b30(—2b3,0b20% —b20az1+4 bzoaz1 +6 bzo*) 2202
b20(—b2o>+4b30) y )

+3

T =-—y-—

(—32b40b30b202 442 bao?b20+8 baobao? +baobso? —2 bao?bao>+7 bo®bao ) .
—b302b20°% 44 a2 4,0b20° — 18 bagbzob20+27 bao? +4 bz
(630" =2 b20?b30° —27 baob20b30>+8 b3obaob2o®+39 b3obao > —4 bao>b20?) 22

3530317202-1-4 bagbao>—18 b48b30b20 +27 bao?+4 b3o>
_9 bao (—b30?b202 —14 baob3ob20+18 bao? +4 baob2o®+3b30®) 3

—b302b20%+4 baob20>® — 18 bagbzoba0+27 bao 2 +4 bso>

 —x+b $2 _ (—68 b40b30b20%+96 bao2b2o-+16 baobao? +baobzo? —4 b3o2bao>+15 b303b20) 9
Yy 20 . ) —230217202-&-41740172203—18b40b30%20+27b402-54b3032 , y
bz — 2 (930" —3 b20?b30° —40 baob20b30%+12 b3 baobao>+60 bzobao® —8 bao2bao )x 2
30 —b302b202+4 bagb20> —18 bagbsobag+27 bag? +4 bzo® y
b40(—b302b202—14b40b30b20+18b402+4b40b203+3b3033 9 9 4
-8 — 2, 2 3 2 =27y + byox
b30“b20"+4 baob20° —18 baob30b20+27 byo~+4 bz

& = —y+ (2byo + bo2) TY — bg—§ (567 Z2bao + 24 Zbgy — 804 Zbag + 113 bgg — 8 bpz) 3y
bao (13032 Z2boy —4488 Zboo+68719 Z2byo—22970 Zboo+384ba+1943b20) o
+ 24(387 Z2—144 Z+13) Yy

. 2 2 Zbx?%(271Z-17) 3
y —x—i-bgox +b02y — T Iyi2Z

—b20 (108 Z%bgs + 1053 Z2bag + 152 Zbgy — 1964 Zbog — 76 boz + 155 bag) 29>
—220% (567 Z2byg + 24 Zbgs — 804 Zbag + 113bog — 8boa) 22y + 1/4 Zbsg**

where Z is the only real root of the equation 27 s3 — 47 s? +13s — 1 = 0, which is
equal to

1156 1 i
81 /39428 + 32493 81

1
Z = 31 §/39428+324\/93+

2.4 Non homogeneous perturbations of degree four
Let us consider system (2.13)

i =—y+anyr + anyr® + azyz®
U =z + boox? + b3z + boay? + brazy? + boax?y? + byoa?
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We would like to identify all its isochronous centers by C-algorithm, without
taking into account the nature of its Urabe function. In full generality this problem
is unattainable today for our actual computer possiblities. Indeed, we do not succeed
to compute a Groébner basis for the nine C-algorithm generated polynomials on 9
unknown {a;;} and {bs,} of all even degrees between 2 and 18.

Inspecting the system under consideration one sees that when annulations of
some parameters {a;;} and {b,s} allows to substantial simplification of the system.
This is the reason of our choice of two families presented below which have the
codimension two in the parameters space.

2.4.1 First family

Let us assume a7 = bgg = 0, in this case (2.13) reduces to the system
T =-y+ a21x2y + a31y$3 (2.22)
§ =+ box? + boay? + biowy? + baox?y? + byoz? '

For this system having a center at the origin O, we give isochronicity necessary
and sufficient conditions depending only on the following seven real parameters

a1, ast, b2o, bo2, b12, b2z, bag.

Theorem 5. The system (2.22) has an isochronous center at O if and only if its
parameters satisfy one of the folowing six conditions :

T =y+ %x?’y
U =+ bypaly® — 3?%9:4

& = —y + 2bgya3

U =+ boa?y? —bypat [’
T =-y+ a21x2y + a31x3y

U =+ anzy® + azgr’y?

& = —y+2/3bog?x%y — 4/3by>z3y
U =z + bogx® — 2booy?® + 8/3 bagxy® — 8/3 by x2y?

T =—-y+ 2/3 b202x2y - 4/3 b203$3y
y =+ b20$2 -2 b20y2 + 8/3 b202$y2 — 8/3 b203x2y2
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& = —y+ b’ (2 + If;%) 2y + g1’y
§ =2+ baoa? — 2bgoy® + bao” (4 + %) zy? + 2 az12%y?
where byg #£ 0.

C-algorithm gives the six candidates to be isochronous centers. 19 derivatives
was essential to obtain the necessary conditions of isochronicity. For the sake of
brevity we omit all computer algebra details.

To perform the succesful application of C-algorithm, we add the two tricks ex-
plained in Appendix, Sec.2.7 : homogenization and reduction of the dimension of the
parameters space by one. This allows to the proof that the cases I-VI of Theorem 5
satisfy the necessary conditions of isochronicity. We check that the necessary condi-
tions are also sufficient by direct application of Corollary A to the cases I, I1I-VI.
Indeed, in all those four cases ¢'(x) + f(x)g(x) = 1. The case II is a particular case
of the system (2.20) when n = 4, studied in Theorem 2.

Let us note that among the above six cases only the cases I, II and III with a9 =
0 represent the homogeneous perturbations. All other cases are non-homogeneous.

Note also that the above three homogeneous cases was already identified by
Theorems 2 and 1. But at the difference of the quoted Theorems, here we have the
exhaustive list of isochronous centers for n = 4.

2.4.2 Second family

Consider system (2.13), with a;; = ag; = 0. We obtain the seven parameter real
system of degree 4.

i =—y+azyz’
4 31Y } (2.23)

y=x+ bgon + bong + bgo.’L‘g + blgxy2 + b22x2y2 + b40$4

For this system having a center at the origin O, we give isochronicity necessary and
sufficient conditions depending only on these seven real parameters bsg, as1, b2g, bo2, b12, b2g, bag.
System (2.23) reduces to the equation (2.3) with

 bog + biow + (baz + 3az)z?
N 1-— 031$3

f(x)
g(x) = ( + baoa® + bgox® + baoz®)(1 — az12?)

)

Theorem 6. The system (2.23) has an isochronous center at O if and only if its
parameters satisfy one of the folowing seven cases :

The three cases I, II and I with as; = 0 from Theorem 5 given by homogeneous
perturbations and the following four cases whose correspend to the non-homogeneous
perturbations
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& = —y+ 1/4bg323y
y =2z —1/2bgax? + booy?® +1/2 boa2xy? + 1/2 boo>z2y?

&= —y+ 15 bo2® (—21 4 5+/33) 2%y
g =z —1/2bpx? + booy? + 1/48bge? (9 — V/33) 23
+1/16 bg2* (=1 + v/33) 2y + &5 boo® (=21 + 5/33) 2%y?

& = —y— 15 bo2” (21 4+ 5/33) 23y
g =1z —1/2boox? + boay® + 1/48bga? (9 + v/33) 23
—1/16bg2? (1 + v/33) 2y® — & bo2® (21 + 5/33) 22y

9 bao®(—43¢2/3-7670 /3297412112 V/t+52 V/1/3297—336886) 3
-y

T =-Y+ 3xn 273
. 9 1 bz?o(—3822 b2,0t2/3—6242964 b2,0—127764 b2,0v 32974159432 b2 o \3/i) 2
Yy =x—2 bQ,O?J — 10647 1273 Ty
1 b2,0(1032b2,02t2/34+184080 bg 02 v/3297—290688 b0 V/E—1248 by 02 v/3297 V/1+8085264b2,0%) o o
10647 273 yr
9 1 bo,0(—53144by o V142080988 by 0+42588 by 0v/3297—5824 by 0t2/3) 3
+02,00" — 15657 t2/3 r
1 b2,0(—2150b2,0%t2/3 11926 by 0% ¥/1+234 b 02/3297 V/1+1085248 by 02 +18720 bg 0% V/3297) 4
— X
10647 12/3

where t = 22868 + 468 /3297

The necessary conditions of the isochronicity of the center at the origin for sys-
tem (2.23) are the seven cases given in the theorem and can are obtained using
C-algorithm. One easily checks that the obtained necessary conditions are also suf-
ficient by direct application of Corollary A to the cases IV-VII. Indeed, in all those
four cases ¢'(z) + f(z)g(x) = 1.

The centers I — I'11 of Theorem 2 have been already identified in [55].

2.5 Non homogeneous perturbation of degree five with
zero Urabe function

By Corollary A the problem is reduced to solve the equation ¢'(x)+ f(x)g(x) = 1,
with f and g defined in Appendix, Sec.7.1 with respect to the system (2.14). In this
case the equation ¢'(z)+ f(x)g(z) = 1 is equivalent to some system of 8 polynomials
depending on 12 unknown {a;;} and {bs} of degree 2,2,2,1,2,2,2,2. Applying the
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Grobner basis method one obtain a basis of 90 polynomials whose degrees varies
between 1 and 8. This system is too hard to handle. Inspecting the system under
consideration one sees that when bsg = 0 a great simplification of the system appears.
This is the reason of our choice b5y = 0.

Theorem 7. The system (2.14) where bsg = 0 has an isochronous center at the
origin O with zero Urabe function only in one of the following eight cases, where
one suppose that all denominators are non zero polynomials.

i = —y+anry + biaz’y + az1 23y + byaxty }
U =z +any® + biozy? + aziz’y® + bsaxdy?

i =-y+anzy+anzdy — 3/4anaznzty
y =+ any? +4azr’y? — 3/4zxtaz — 3araz iy’

T =—-y+ %my + (3b39 + b12) 1‘23/ + a31x3y + (9/2 bgo2 + b12bgo) x4y
y =+ Py® + byox® + biazy® + 3azizy? + (2 b3o® + 3 biobsg) 23y>

i = —y+anzy+ (biz — 2b0” — a11ba) 2%y + azxdy+
(—b12b2o® + 4bao" + 2a11b20® + agiba) 'y

§ =+ boor? + (—2bgo + a11) y? + biazy® + (brabo — 4b2® — 2 a11ba0” + agi) %y?
+ (=2 b12bao® 4+ 8bag? + dar1bag® + 2 azibag) 23y>

T =-—y+anry+ a31x3y
(13 b302bog—11b3b20> —5 bgoa11b20”+2 b205+a11b204+a31b202—4a31b30+4a11b302)xg
b2o (4 bao—b20?)
b30(—b30a11b20+7 b30>b20—2 b3obao® —4 az1bzo+4 a11bzo* +az1ba0®) 4
b20 (4 b30—b2o? )

y =x+ b20$2 + (—2 bao + a11) y2 + b30x3
(25 b30%b20—22 b30b20° —9 b30@11b20° +4 b20°+2 a11b20* +a31b20> —4 a31b30+4 a11b30”)
b20(4 bzo—b20?)

(7b302b20—2 b3oba0® —b3oa11b202 —2 az1b20? +8 az1bzo+4 a11b30%) 9 o

+ 2 Y
2 oy 2030 20" 2 2
b3o (—b30a11b202+7 b3o2b20—2 bzob20’ —4 az1bzo+4 ar1b30’ +az1b20%) 3 o
-3 2 -y
b2o (4 bso—b20?)

l’y2
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(108 b102 —42 baoboo3+81 az1bag+b20%—3 b203t131)
b20? (—b20®+27 bao )
(=3 baob20® —b20®az1+27 az1bao+36 bao?)
bao (—b20>+27 bao)
bao (—b20°az1+36 bao?+27 az1bao) 4
b20? (—b20®+27 bao )

T =-y

+3 22y + az1 23y

+3

b20%—32 baob2o®+36 bao?+27 az1bao—bao®as1) o
b20? (—b20>+27 bao)
3 3 : 2
2 3 (—4ba0b20® —b20°a31+27 az1bao+36 bao?) o
+1/3 by 2 + 6 T
/3 b2 b20 (—b20°+27bao)
_3 (b20®az1—27 az1bao+12 b402)x2 2
762034?27 b403 ‘g )
bgo(—b20°a31+36 bgo“+27 az1b
4 40 (—b20"a31 40 31b40) 3 9
+bgox™ + 12 x
40 b20? (—bao®+27 bao ) v )

U :I+b20$2+3(

. bso(13bao?+2b30%) o
TS oyt anTy =3 n
_ (5b30ba0+36 bao®—27 a11b30bao® —4 a11b30*) 3

27 bgo? 44 b3o® y
T bao (baob302+27 a11ba0®+4 a11b30°) 24
27bao” +4 b0 Y

b30 (3 b30°+20 bag?) 202

— 2 3 _
y =ztany +bypr’ — 6=

_3 (727a11b30b40274a11b304+7b303b40+48b403)xz 2
bao (b 2Zb4202+4b30§ 2 b3o®) ’
4 40 ( b40b30°+27 a11b40”+4 a11b30 3 9
+b40x + 4 27b402+4 b303 x y )
VIII
. 2 3 4
T =—Y+a11yxr + a1yxr” + az1yr” + aq1yx
_— 2 3 2 2 2 2 3,2 4 5
Y = x + boox” + b3ox” + bo2y” + b121Y” + boox”y” + b3ox”y” + baor” + bsow
(2.24)
where
P35y _ bao Py Py Psy Py Pry Py

a3r = —~, a y @ :7)b :771) ==, 11 = —(~, V22 =
31 Q 21 Q 41 Q 32 Q 02 Q 1 Q Q
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such that

P31 = 9bso” + 2b30b12 — 3b30?b20? — 46 bagbaobso® — 1/2 b3o>b12bag?
+14 b30%bag3bag — 9 b3o>bagbiabag + 60 bso>bag? + 2 b3gbagbiobog®
+2L bgb12bao? + 20 bsgbao?bao® — 36 bag>bag — 8 bao*bao?

Py = —13baobso®b2o + 2 baobiabao® — 9 baobsobi2bao + 3 b3o® — 4 bao?bap?
+20 b12bao® + 21 bag?bso — b3o®bao® — 1/2b30?bag®b12 + 4 baobsobao® + 2 bi2bso®

Py = Z b1gbao® + 60 bao>bso + 2 baobi2bso® + 12 bag>b3obao® — 8 bagbag®
—1/2 bagb302b20%b12 — 9 bag>bsobizbag + 9 bagbzo” + 2 bao?b1abag® — 3 bagbso>bag?
—40 bao?b302bao

P3y = 54b12bag® + 240 bag®b3o + 8 bagb12b30® + 48 bao?bsobao® — 32 bag>bap?
—2b4ob302b20°b12 — 36 bao?b3ob12bag + 36 bagbzo + 8 bag?b1abag®
—12baob303b20? — 160 bag>b30?bao

Py =-16 b40b205 + 80 b4ob30b203 — 104 b402b202 +4 b302b204 — 18 b303bgo2
—41 baob3®b20 + 2 baobr2bao® — 9 baobsobi2bao + 9bso” + & bizbao®
+60 bso?b3o — 1/2 b3o2bao?br2 + 2 b12b3o”

Pyy = 180b30%bao? — 144 bso>bog — 32 bag?bag? + 6 bpbagbiabag® + 27 bso® + 6 bso*b1a
—9b30%b20? + & b3obr2bao® — 144 bagbaobso® + 44 bsy?bao®bao
+88 b3obao®bao® — 27 b3o?baob12bao — 3/2 bso b12b2p?

P11 = —41byobzo2bag + 2 bagb1abag® — 9 bagbsobizbag + 9b3o? — 8 bagbao®
—50b40%b20” + 2 br2bao? + 60 bao*bso — 10 b3o>bao® + 2 bzo?bag?
—1/2b302b202b1g + 44 baobzobao® + 2 b1ab3o®

Q = 4byba® — 18 bagbsobag? + 27 bag?bag — bso2bao® + 4 bogbsg®

2.6 Abel polynomial system

By planar Abel system of order n we understand the system

&=y
j= Zn: Py(a)y" (229)
k=0

where {Py(z)}o<k<n are smooth functions.
This section is concerned by the following Abel system

t=-v } (2.26)
y=xz(1+ P(y)),



Chapitre 2. Characterizing isochronous centers of Liénard-type planar
30 systems

with P(y) = a1y + a2y® + azy® + ... + apy”, ar € R, for k = 0,...,n. This is a
particular Abel system (2.25) where Py(z) := agz, 0 < k < n.

2.6.1 Characterization of isochronous centers

The system (2.36) is reducible (see Appendix, Sec. 7.1 case 2) to the Liénard
type equation (2.3) with
f@) =~ D
(1+ P(z)) (2.27)
g9(x) = z(1+ P(x))
Definitions (2.6),(2.5) and Theorems B and C from Sec. 2.1 remains valid. Applied
to the Abel system (2.36) they give :

Theorem 8. The origin O is a center for the system (2.36).
The center at O, is isochronous if and only if there exists an odd function h
defined in some neighborhood of 0 € R which satisfies the following conditions

X
1+ A(X)

:l"

and X (x)p(x) > 0 for x # 0.

In particular, when P is an even polynomial then the origin O is isochronous
center if and only if P = 0.

The above result is obtained as follow. One has, xg(x) = z2(1 + P(z)) > 0 for
x # 0 and |z| small enougth. Then the Theorem B implies that the origin O is a
center of the system (2.36).

Now

meifj@@:_mu+mm%

thus

¢(x):/0 €F(S)d8:/0x1jj% (2.28)

g(x)ef @ = 2(1 + P(z))e”MIFP@) — 4

Following Theorem C, one obtain

Then we obtain

X(z)
L+ a(X(2)
as well as the identity (2.9).

For the particular case when P is even, it is easy to see that f and g are odd.
Theorem C thus implies h = 0 and consequently X (z) = z. From (2.9) one deduce
that ¢(z) = X. Then (2.28) implies that P = 0.

The following paragraph is devoted to illustrate the last theorem by example.
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2.6.2 An application
Let us consider the Abel system (2.36) with n =9 :
T =Yy
, 9 . (2.29)
y=x+ Z a;xy’
i=1

with ar € R, 1 < k < 9. As follows from Theorem 8, the origin O is always a center
for (2.29).

Theorem 9. Only in the case

T=—y
) =2 +av +a—2332+ajx3 (230
Y= Y+ 3T ooy

where a € R

We apply C-algorithm for
P'(x)
0=~ @)

where P(z) = Z?:l a;z'. We obtain the unique one-parameter family (2.30), and

and g(z) = z(1 + P(z)),

computations gives the Urabe function

X ki X
h(X) =82 — L

3 \ k22 + k3 X2

with kl = —a1/3, /{32 = 1, k3 =0.
By the evident rescalling §x — x and §y + y the system (2.30) take the form

b=y } (2.31)

g=z(1+y)°

The isochronous center at the origin O for the system (2.31) was already depisted
in [83] by showing that the system (2.31) commutes with some transversal polyno-
mial system, but its first integral nor the linearizing change of coordinates was not
provided. We will now compute both of them.
— First integral In the variables u = y and v = z(1 +%)? the system (2.31) is
reducible to the Liénard type equation i + f(u)u? + g(u) = 0 where f(u) =
3

—1is and g(u) = u(l + u)®. By formula (2.7) from Theorem B one easily

obtain that I(u,v) = ﬁ + ﬁ is a first integral of the corresponding

planar system

U=
0= —g(u) — fu)o®.
Returning to the variables (x, y) one recover first integral of the system (2.31) :

2 y2

Tosy(z,y) =27 + t+9?
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— Linearization To this aim we use the method of [101] base on the exitence
of vector field Y transversal to the vector field defined by the system (2.31)
and commuting with it. Maple computations gives such field Y :

T=z+zy

g = —a2y® 4+ — 3022 +y — 3yz? — 22
Following the method described in [101], we first establish an inverse inte-
grating factor V' (z,y) of the system (2.31) :

(2.32)

V(z,y)=—(y+1) (2 +2y2° +y°a® + %)
which leads to the first integrals H (already known) and I of the systems
(2.31) and (2.32) respectively :

y2

(1+y)?

I(x,y) = —x + arctan <

H(z,y) =22+

)

(y“)m)

Let us define f(z) = z and §(z) = tan(z).
By the Theorem 4 of [101] we obtain the linearizing change of coordinates
F(H(z,9))3(1(z,y))

T+ (1)

f(H(z,y))
1+ g*(I(z,y)) )

Maple produce the following more explicit formulas that we reproduce wi-

thout any change to avoid the misprints :

\/x2+2 yx2+y 2?+9% tan <x — arctan (7(‘1”1):0))
(y+1)* y
2
Y1+ (1o (o — anctan (121
22 + 2yx? + y2a? + y? 1
Y \/1 + (tan (m — arctan (W)))
(2.33)
The fact that this change of variables is really a linearizing one can be easily
verified by Maple which gives & = —v, ¥ = u as expected.

In the light of Theorem 9, it is natural to ask if the system (2.30) is the unique
system with isochronous center at the origin O inside the family (2.25).

Even for the system (2.25) whith n = 10, our actual computer possibilies are
not sufficient to give an answer.
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2.7 Appendix

2.7.1 Reduction to the Liénard type equation

At the present we know two cases when reduction of the system (2.1) to the
Liénard type equation (2.3) is possible.

— Case 1 : When —y + A(z,y) = —yA(z) and z + B(z,y) = B(z) + C(z)y?
the system (2.1) can be written

i = —yA(x)
= = 2.34
j=B(x)+ c<x>y2} (2.34)
By the change of coordinates (u,v) := (z, —yfl(x)) we obtain
b= —Aw)Blu) + AW =Cw) 50 (2.35)

A(u)

In this way we obtain the reduction to the system (2.3) with g(z) = A(z)B(z)
_ _(A@)-C)
and f(z) = — i
— Case 2 : When A(z,y) = 0 and B(x,y) = xP(y) where P(0) = 0. In this

case the system (2.1) can be written

b=y } (2.36)
y=uz(1+P(y))

By the change of coordinates (u,v) := (y,x(1 4+ P(y))) we obtain

- P'(u)
0 =—u(l+ P(u)) + ’U21 P

We obtain the system (2.3) with f(x) = —LTT% and g(z) = z(1 4+ P(x)).
In both cases the determinant of the Jacobian matrix of coordinate change does not

vanish at (0,0). Thus the nature of singular point O is the same for system (2.1)
and (2.4).

2.7.2 C-Algorithm

Theorem C from Section 1 leads to an algorithm, first introduced in [62] (see
also[63]), in what follow called C-algorithm, which allows to obtain necessary condi-
tions for isochronicity of the center at the origin O for equation (2.3).

Below we recall basic steps of the algorithm.
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Let h be the Urabe function defined in the Theorem C, and u = ¢(x). We assume
that function ¢ is invertible near the origin O .

X

g(u) := T+ h(X)’ (2.37)

where now X is considered as a function of w. Our further assumption is that
functions f(z) and g(x) depend polynomially on certain numbers of parameters
a:=(oq,...,ap) €RP.

By Theorem C, if the system (2.3) has isochronous center at the origin O, then
the Urabe function h must be odd, so we have

h(X) = copa XHH (2.38)
k=0
and moreover,
Gu) = g(x)ef @ where = ¢ (u). (2.39)

Hence, the right hand sides of (2.37) and (2.39) must be equal. Hence, we expand
the both right hand sides into the Taylor series around the origin O and equate the
corresponding coefficients. To this end we need to calculate k-th derivatives of (2.37)
and (2.39).

For (2.37), by straightforward differentiation, we have

d*g(u)  d <dk_1§(u)> dX
— (2.40)

dub - dX \ duF T ) du
Using induction, one can show that for (2.39) we obtain

d*g(u)
duk

= I=RIF@) G, (1), (2.41)

where Si(x) is a function of f(x), g(z) and their derivatives.
Therefore to compute the first m conditions for isochronicity of system (2.3) we
proceed as follows.

1. We fix m and write

h(X) = Z CgkleQkil + O(sz), C = (61, C3,..., Cgm_l).
k=1

2. Next, we compute

_ 4
T duF

for k=1,...,2m+ 1. Note that those quantities are polynomials in o and c.

(0), w = Sk(0)
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3. By the Theorem C we obtain the equations vy = wi fork =1,...,2m+1. Let
us note that always v; = wy = 1 and thus the first equation is meaningless.
It appears that we can always eliminate parameters ¢ from these equations.
For every k > 0, cop4+1 appear for the first time, and in a linear way, in
the equation wag49 = wag+o. This allows to the formula copt1 = port1()
for some multivariate polynomial ¢ory1. This leads in natural way to the
consecutive elimination of ci,cs,...,com—1. Finally, we obtain at most m
polynomial equations s; = so = s3 = ... = sy = 0 with p unknows «;. These
equations gives M necessary conditions for isochronicity of system (2.3).

For more details see [62, 63].

2.7.3 The choice of an appropriate Grobner basis

Let us consider the following system

T =-y+anyr+...+ an,l,ly:n"_l
: 2 2 n—2,2 n (2.42)
Y =+ baox” + bo2y” + ... + bp—222" Y + by oz
which is reducible to the equation (2.3) with
b oot (bne — Dag—1,1)z" 2
l—apnz—...— an,l,lx"*1
g(z) = (z +bpr® + ...+ bpor™)(1 —ayx — ... — ap_112" ). (2.44)

In this chapter we have investigated the two types of high degree polynomial
perturbations, homogeneous and non-homogeneous ones. It seems that C-algorithm
is efficient for computing isochronicity necessary conditions for higher degree homo-
geneous perturbations. In this case system (2.42) reduces to the following one

o=yt apet } (2.45)

U =+ by_g0a" 2y? + by gk

where k € {2,...,n}.

For this homogeneous polynomial perturbation of the linear center, C-algorithm
generate homogeneous polynomial equations in the parameters by,_2 2, by o and ap_11.
Solving these polynomials, gives all the parameters values for which the real poly-
nomial differential system (2.45) is isochronous at the origin O.

However, for the non-homogeneous perturbation case, C-algorithm generate non-
homogeneous polynomial system. Moreover, non-homogeneous perturbations de-
pend on a bigger number of parameters.

We note that for n = 3, C-algorithm succeeds to establish isochronicity criteria,
however for n = 4 the obtained polynomials from the algorithm are much more
involved. For example, for the system (2.42) with n = 4 reduces to

T =—y+anyr+ a21yCL‘2 + (1312/333
y=z+ b20$2 + b30$3 + bong + b12:1:y2 + b22x2y2 + b40$4
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its associated first two non-zero polynomials obtained by applying C-algorithm are
the followings

Py, =3as1—3b12 +a112 —bgpar1 —9bgo+4 b022 —5a11bg2 +10 6202 +10 bygbga, (2.46)

Py = 72 a1 4 396 byga11b1z + 90 aq1boabia + 36 a11boy + 324 az1boy
— 36 ag1bia — 468 bagariazy + 612 bagasiboe — 4116 a11b20bg2
+ 108 bagasgr — 540 bgas — 324 bagar1 + 1566 bsgai1bos — 288 baghas
— 459 bagar1? — 1296 byoboa — 306 az1a11bos + 1428 bagar1 2oz
+ 153 ag1a11? — 117 a112b1a — 191 bagair® + 180 bagbgabia + 43 a11?
— 2319 bagai1bo2’ — 289 a113bga — 360 bgabas — 36 b1a? — 171 ag1bgs>
+ 513 b3gba? + 537 a112bo2? + 351 boa2bia — 271 a11bg2® + 542 bagbga®
+ 756 bagbsoboa + 2268 bagbspar1 — 20 boa® + 1120 bag* + 798 a112bag>
— 2240 a11boo® — 1512 bogbyg + 1008 byg?az; — 252 bag?bio
+ 1806 bag?bga? + 2240 bag>bos

To solve the first nine non-zero obtained polynomials requests high performance
computer and the standard accessible computer algebra systems for solving polyno-
mial equations are not able to find a solution.

For solving polynomial equations the Grobner bases are used. It is well known,
see [19], that the form and the size of the Gobner basis of a polynomial ideal depends
strongly on a choice of monomial ordering. A bad choice of the monomial ordering
can be a main reason why the Grobner basis cannot be practically determined.

Our basic observation concerning algebraic structure of polynomial equations
which give necessary conditions for the isochronicity in a case of non-homogeneous
perturbations is the following. Although the polynomials are not homogeneous, a
careful analysis shows that they are quasi-homogeneous. In fact, one can notice that
polynomial P, given by (2.46) is homogeneous if we give weight 2 for as1, b12 and
b3o, and weight 1 for the remaining variables. More importantly we can find such a
choice of weights for which all the obtained polynomials are homogeneous.

The above observation shows that our main problem, i.e., finding a Groébner
basis, concerns as a matter of fact, finding a Grobner basis of a homogeneous ideal.
It is well know, see [19, p. 466], that homogeneous Grébner bases have many 'nice’
properties which make them extremely useful for solving large and computationally
demanding problems.

In fact, for non-homogeneous case of (2.42), the use of weighted degree gives a
homogeneous Grobner base.

To incorporate our observation into the C-algorithm we choose a new parame-
trization for the problem. First, we observe that all polynomials which are obtained
by means of the C-algorithm are homogeneous if we choose the following weights

1. ¢+ j — 1 for parameters a;; and b;;

2. 2i+ 1 for cgi41.
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Knowing this we introduced new parameters A;;, B;;, and Cy;41 putting
i
= Qij BE? = bij, C§f+11 C2i+1 (2.47)

After this reparametrization system (2.42) reads
T=—-y+Anyxr+ .. —i—A”llyw -1 }

O 2 n— n22 n—1_mn (248>
Yy = + Bogx +Bo2y +...+ B 221‘ +Bn0 T

As in the case of isochronous center the Urabe function is odd, we search it under

the form
oo

h(X) =) Col X =X + C3X* + C5X° + CIXT + (2.49)
k=0

We emphasize that from the isochronicity conditions for (2.48), expressed in terms
of its parameters, it is easy to reconstruct the parameters values for which the
system (2.42) admits isochronous center at the origin O, by a simply use of (2.47).
The described reparametrization gives rise to homogeneous equations and al-
lows to reduce the number of the parameters appearing in (2.48) by one. First, we
assume Bgy = 0, and then solve the isochronicity problem for system (2.48) under
this assumption. Next, for Byy # 0, we apply on (2.48) the following change of

coordinates )

B—m(;v, Y) (2.50)

(z,y) =
We obtain

. Ay n—1,1 n-t n—1
T :—y+<320>xy+ +( Bm’) yx

(2.51)
n—1 n—1
j =x+a’+ (ggf;) v+t (—Bg;ff) 2" 2y? + (%00) "
Hence, without loss of generality we can put By = 1, and find the parameters values
for which the center is isochronous.

We note that for an arbitrary & € N, the problem of the isochonicity of the
center for homogeneous perturbations of the form (2.45) reduces to solve a number
of polynomial equations with 3 parameters.

Recall that linear center perturbed by homogeneous polynomial, was investigated
by W.S. Loud in [140] for the quadratic case, and in [62] Loud results are recovered
by the described algorithm, see also [60].

Homogeneous perturbations was also studied by Chavarriga and coworkers. For
the fourth and fifth degree homogeneous perturbations, see [50, 51|, where the ho-
mogeneous perturbations different from those studied in the present chapter are
considered.

Note that the polynomials issued from the 19 derivations and associated elimi-
nations for the system (2.13) (with 9 parameters), exceed the authorized memory
of ordinary computers (2 Go of Random Access Memory ) in computations of the
Grobner basis by the known efficient implementation FGb [93].






CHAPITRE 3
Generating linearizable centers for
Liénard-type planar systems

In this chapter we explore a wider class of systems reducible to Liénard-type
equations, which extends the approach presented in Chapter 2. Furthermore, we
establish an explicit formula for linearizing such a class of systems having a constant
Urabe function. The proofs of the results given in this chapter can be found in [15].
In this chapter, we study the isochronicity conditions for the center at the origin
O € R? for systems

where A, B € R[z,y], which can be reduced to the Liénard-type equation. When
deg(A) < 4 and deg(B) < 4, the so-called C-algorithm produced 36 new multi-
parameter families of isochronous centers. For a large class of isochronous centers
we provide an explicit general formula for linearization. This chapter is a direct
continuation of the previous one, but it can be read independently.

3.1 Introduction

Let us consider the system of real differential equations of the form

b=yt Ay, Y j=utBay) (3.1)
where (z,y) belongs to an open connected subset U C R? containing the origin
O = (0,0), with A, B € C'(U,R) such that A and B as well as their first partial
derivatives vanish at O. An isolated singular point p € U of system (3.1) is a center
if there exists a punctured neighborhood V' C U of p such that every orbit of (3.1)
lying in V' is a closed orbit surrounding p. A center p is isochronous if the period is
constant for all closed orbits in some neighborhood of p.
The simplest example is the linear system with an isochronous center at the
origin O :
T=-y, y=uc. (3.2)

The problem of characterization of couples (A, B) such that O is an isochronous
center (even for a center) for the system (3.1) is largely open.

The well known Poincaré Theorem asserts that when A and B are real analytic,
a center of (3.1) at the origin O is isochronous if and only if in some real analytic
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coordinate system it takes the form of the linear center (3.2) (see for example [7],
Th.13.1, and [188], Th.4.2.1).

An overview [52] presents the basic results concerning the problem of the iso-
chronicity, see also |7, 60, 188]. As this chapter is a direct continuation of [30], we
refer the reader to it for general introduction to the subject. Here we will recall only
the strictly necessary facts.

In some circumstances system (3.1) can be reduced to the Liénard-type equation

i+ f(x)i® +g(x) =0 (3.3)

with f, g € C1(J,R), where J is some neighborhood of 0 € R and ¢(0) = 0. In this
case, system (3.1) is called reducible. Equation (3.3) is associated to the equivalent,
two dimensional, Liénard-type system

T=y
j=—g(x) - fla)y*]
For reducible systems considered in this chapter, the nature (center and isochroni-

city) of the singular point O for both systems (3.1) and (3.4) is the same.
Let us return now to the Liénard-type equation (3.3). Let us define the following

/ F(s)ds,  olx) i /O " PO g, (3.5)

The first integral of the system (3.4) is given by the formula ([194], Th.1)

(3.4)

functions

1 X
(o, 8) = ¢ (ae" @) + /0 o(5)e2F ) ds. (3.6)
When zg(x) > 0 for x # 0, define the function X by
1 x
3@ = [ gl s (37)
0

and z€(x) > 0 for z # 0.

Theorem 10 ([194], Theorem 2). Let f, g € C1(J,R). If xg(z) > 0 for x # 0, then
the system (3.4) has a center at the origin O. When f and g are real analytic, this
condition is also necessary.

Theorem 11 ([62], Theorem 2.1). Let f and g be real analytic functions defined
in a neighborhood J of 0 € R, and let xg(x) > 0 for x # 0. Then system (3.4) has
an isochronous center at O if and only if there exists an odd function h € C'(J,R)
which satisfies the following conditions

§x) )P @)
the function ¢(x) satisfying
&(x)
o) =)+ [ nioyar (39)

and &(xz)p(x) > 0 for x # 0.
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In fact by (3.7), it is easy to see that (3.8) and (3.9) are equivalent. When those
equivalent conditions are satisfied, then the function A is analytic in the neighbo-
rhood J. h is called the Urabe function of system (3.4), or of its equivalent (3.3).

Corollary 1 ([62], Corollary 2.4). Let f and g be real analytic functions defined in
a neighborhood of 0 € R, and xzg(x) > 0 for x # 0. The origin O is an isochronous
center of system (3.4) with Urabe function h = 0 if and only if

¢(2) + g(x) f(2) = 1 (3.10)
for x in a neighborhood of 0.

In the sequel we shall call the Urabe function of the isochronous center of redu-
cible system (3.1) the Urabe function of the corresponding Liénard-type equation.

In [62] the third author used Theorem 11 in order to build an algorithm (called
C-Algorithm, see Appendix of [30] for more details) to look for isochronous centers
at the origin for reducible system (3.1). He applied it to the case where A and B
are polynomials of degree 3. This work was continued in [63| and in [30].

In this chapter we apply the so called Rational C-Algorithm introduced in [14]
which is an adaptation of the C-Algorithm for the case of rational function f and g
(see (3.3), (3.4)).

The aim of the present chapter is to extend these studies to the following real
multiparameter family of polynomial system of differential equations :

. 2 2 4
T=-—y+a12y + ag0r” + a1y + ag,oxg + a371333y + as0x

y=x+ b0,2y2 + bley + b2,0x2 + 1)172$y2 + bg7lx2y + 6370I3 + b272:z2y2 + b371x3y + b4701’4

(3.11)
The reported results, which are obtained by Maple computations are reproduced
without almost any change to avoid misprints.

The chapter is organized as follows. In Section 3.2 we report the necessary back-
ground and describe the investigated subfamilies of system (3.11). In Sections 3.3
and 3.4 we describe the obtained new isochronous centers. In total we provide 36
new families of isochronous centers. Among them two Monsters (3.57) and (3.58) of
extreme complexity, never encountered before.

Let us stress that when describing the Urabe functions of the isochronous centers
from Section 3.3, for the first time we encounter the non-standard examples of it.
Indeed, up to now all identified Urabe functions was always of the form h(¢) =

a §2n+1

\/W where a, b, ¢c € R, b > 0 and n a non negative integer (see for instance[62,

30]).

Finally, in Section 3.5, when Urabe function h = 0, we describe the explicit
general formula for linearizing change of coordinates whose existence is insured by
the Poincaré theorem. We report also 5 examples of such linearization.

} |
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3.2 Preliminaries

3.2.1 Choudhury-Guha Reduction

Let us consider the real polynomial system

& =po(z) +p1(2)y }

y=qo(x)+q (x)y+aq(v) > (3.12)

where po, p1, g0, q1, 2 € R[z].

We will always assume that O = (0,0) € R? is a singular point of (3.12), that is
p0(0) = qo(0) = 0. Let us assume also that p;(0) # 0.

Let us note that the system (3.11) is a particular case of (3.12) when

4

Ppo (T

D1 —1+ay 12+ a2,1$2 +azx

(x) ag,on + a370373 + a0z
(x)

qo (2) = & + bagx® + bz o® + bagxt . (3.13)
(z)
(

x) = 3

q1 (2) = by 1z + byga® + by 12°

@2 () = b o + by o + by 22?

The following change of coordinates x = z, z = pg (z) + p1 (z) y transforms the
system (3.12) to the system

(@@  Pi@)Y 2, ([ () po(z) ) o () — 9 2@ P (@)
= (o) o) (P e ) -2 2 )
+M — g1 (@) po (z) + p1 ()
o (@) q1 () po (z) + p1 () qo (x)
(3.14)
If .
(" (;)25)0 (z) b1 (2) +ph () — 2 72 (;)g)(fﬂ) _o, (3.15)
the system (3.12) is of Liénard-type (3.4),
with
flz) = — q (z) +p/1 (z)
<p1 () m (x)) (3.16)

_ @@ (p(x)’
g(r) = ——————=——
p1 ()
To the best of our knowledge, the above reduction of the system (3.12) to Liénard-
type system (3.4) was proposed for the first time in a preliminary and never publi-
shed version of [59]. It is then natural to name it Choudhury-Guha reduction.

In all considered cases (see (3.13)) it is easy to see that for |z| small enough
g(z) = v+ 2% §(x) where § is a real analytic function. Thus z g(x) > 0 for z # 0, |z|
small enough and Theorem 11 insures that the origin O is a center for the system
(3.4). Our aim is to decide when this center is isochronous.

+ q1 () po (z) — p1(2) o (2)
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When po and ¢; identically vanish, (3.15) is satisfied and we recover the stan-
dard reduction from [30] (see Case 1 from Sec. 1 of [30]). Many particular cases of
system (3.11) where studied, using this standard reduction.

1. In [62] : a11 = a2 = azo =az1 = as0 =bao =byo=0b31 =ba1 =b11=0.
That means that po(z) = q1(z) = 0, p1(x) = —1+az12? and deg(qgo(z)) < 3,
deg(ga2(z)) < 1.

2. In [63] . az,() = a3’0 = a371 = CL470 = 62’2 = b4,0 = b3,1 = 5271 = b1’1 = (. That
means that po(z) = ¢1(z) = 0 and we consider only cubic systems.

3. In [30] three families are studied :
(a) azp =aso = as0=bs1 = by = b1 1 =0 with zero Urabe function.
(b) a1,1 = b3 = az0 = azo = asg = bz1 =ba1 = b1 = 0.

(€) a11 =az1 = agp =azo=aso=">b31 =by1 =b11 =0.

3.2.2 Investigated families

The exhaustive study of all isochronous center at the origin for the system (3.11)
is hopeless at the present. Even for cubic system when all quartic terms vanish this
problem is not yet solved.

Let us note that the condition (3.15) is equivalent to the following system of
equations :

2az0+b11 =0,

—bg1 +ai1bi1 +aia20 —2bo2a20 —3azo =0,

aiba1 —4aso —b31+2ar1a30 — 2bo2a3,0 — 2b1 2020 + az;1b1,1 =0,
—az1a2,0 +3a1,1040 + a2,1b21 — 2bg2a4,0 — 2b22a20 + az1a3,0 + a1,1b31+
—2b1pa3p + az1b1,1 =0,

a3 1ba1 +ag1b31 +2a2,1a40 — 2b1 2040 — 2b22a309 = 0,

as bz —2bz2a40+aziaso = 0. )
(3.17)
In the present chapter we determine all isochronous centers of the system (3.11)

in each of the following three cases.

1. When the standard reduction is possible (i.e. po(z) = 0 and ¢;(z) = 0, that
is agp = azp = as0 = b3 = ba1 = b1,1 = 0). We provide all candidates for
isochronous centers in the cases where either a1 = 0, or byg = —3bg2. In
all the cases but one (a subcase of by g = —3bg2), we prove the isochronicity.
The general case is not yet completely explored.

2. When Choudhury-Guha reduction for the cubic case is possible (i.e. condi-

tions (3.17) are satisfied and a3 = a4 = b3 = bao = by = 0 ). For this
case we obtain the exhaustive list of all isochronous centers at the origin.
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3. When Choudhury-Guha reduction is possible and the Urabe function is null.
That means that condition (3.17) and condition (3.10) for f and g defined
by (3.16) are simultaneously satisfied. In this case we provide 25 examples of
new isochronous centers and our analysis is not exhaustive.

Moreover, when the Urabe function h = 0, we give the explicit formulas for
linearizing coordinates from Poincaré Theorem. We report 5 examples where such
coordinates are explicitly computed.

3.2.3 Time-reversible systems

The general notion of time-reversible system of ordinary differential equations
goes back to 74| where the motivations and general discussion can be found. Here
we follow Sec. 1 of [49] (see also Sec. 3.5 [188]).

The planar system (3.1) of ordinary differential equation is time-reversible if
there exists at least one straight line passing through the origin which is a symmetry
axis of the phase portrait of the system under consideration. By appropriate rotation
this straight line is mapped on the x-axis and the phase portrait of the rotated system
is invariant with respect to symmetry (z,y) — (z, —y) if only one change time ¢
into —t.

Note that a system

&= P(z,y), § = Qz,y),

is time-reversible system with respect to x-axis if and only if P(z, —y) = —P(z,y)
and Q(z,—y) = Q(z,y). When P and @ are polynomials, this means that the
variable y appears in all monomials of P in odd power and in all monomials of @) in
even power (0 included).

Consequently, to decide if a polynomial center for system (3.1) is time-reversible
or not, we consider the rotated system in coordinates (zq, Yo ), where x, = z cosa —
ysina and y, =  sina + ycosa and we examine the parity of the powers of the
variable y, for all angles a.

This notion plays an essential role in our topics. Indeed, for system (3.1) the
origin is either a center or a focus. Thus, if such system is time-reversible the focus
case is excluded and the origin is necessarily a center.

To the best of our knowledge the majority of already known isochronous centers
for polynomial system (3.1) are time-reversible. For instance, all systems studied
in [213, 49, 62, 63, 30, 56| are time reversible. Moreover, among 27 polynomial iso-
chronous centers presented in tables 3 — 29 of [52] only 7 are not time-reversible;
indeed, those from tables 17 and 23 — 28. In what concerns the cubic isochronous
centers for system (3.1) the complete enumeration of those which are time reversible
was obtained in [56] ; there are 17 such cases. In [52] one find 4 non time-reversible
isochronous centers (tables 25 — 28) and in the present chapter we present three
new such cases which are described in Theorem 14. In [55] a complete list of quartic
homogeneous time-reversible isochronous centers is provided, there are 9 such cases.
In the present chapter we provide 33 new cases of quartic (non homogeneous) iso-
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chronous centers. Among them 8 are time reversible and at least 23 are not time
reversible.

3.2.4 Background on Grobner bases

The use of the Rational C-Algorithm leads to a system of polynomial equations

fi=0,....,fm=0 (3.18)
with f; € Rlz1,...,zy,]. To solve this system we consider the ideal (fi,..., fm) C
R[z1,...,2,]. For this aim, we use Grobner Bases computations. In this section, we

recall the basic facts about Grobner bases, and refer the reader to [68| for details.

A monomial ordering is a total order on monomials that is compatible with the
product and such that every nonempty set has a smallest element for the order. The
leading term of a polynomial is the greatest monomial appearing in this polynomial.

A Grobner basis of an ideal Z for a given monomial ordering is a set G of
generators of Z such that the leading terms of G generate the ideal of leading terms
of polynomials in Z. A polynomial is reduced with respect to the Grébner basis G
when its leading term is not a multiple of those of G. The basis is reduced if each
element g € G is reduced with respect to G \ {g}. For a given monomial ordering,
the reduced Grobner basis of a given set of polynomials exists and is unique, and
can be computed using one’s favorite general computer algebra system, like Maple,
Magma or Singular. The most efficient Grobner basis algorithm is currently Fy [94],
which is implemented in the three above cited systems. For our computations, we
use the FGb implementation of Fy available in Maple [93].

The complexity of a Grobner basis computation is well known to be generically
exponential in the number of variables, and in the worst case doubly exponential in
the number of variables. Moreover, the choice of the monomial ordering is crucial
for time of the computation.

The greviex ordering is the most suited ordering for the computation of the
(reduced) Grobner basis. The monomials are first ordered by degree, and the order
between two monomials of the same degree z, = 27" --- 20" and 25 = ;"' - - zhy
is given by x4 > xg when the last nonzero element of (a1 — B1,...,a, — By) is
negative. Thus, among the monomials of degree d, the order is

xﬁl > :U‘li_l:rg > ac‘li_Qac% e - xg > x‘f_lzvg - $(11_2.%'2.TU3 > x‘li_%g e e xz.

However, a Grobner basis for the grevlex ordering is not appropriate for the
computation of the solutions of the system (3.18). The most suited ordering for this
computation is the lexicographical ordering (or lex ordering for short). The mono-
mials are ordered by comparing the exponents of the variables in lexicographical
order. Thus, any monomial containing x; is greater than any monomial containing
only variables xa, ..., Ty,.

Under some hypotheses (radical ideal with a finite number of solutions, and up
to a linear change of coordinates), the Grobner Basis of an ideal (fy,. .., fy,) for the
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lexicographical order z; > ... > x, has the shape

{21 —g1(xn), 22 — 92(Tn), - - s Tn1 — gn-1(Tn-1), gn(xn)}, (3.19)

where the g;’s are univariate polynomials. In this case, the computation of the
solutions of the system follows easily. In the general case, the shape of the Grobner
basis for the lexicographical ordering is more complicated, but it is equivalent to
several triangular systems for which the computation of the solutions are easy.

An important point is that a Grébner basis for the lex order is in general hard to
compute directly. It is much faster to compute first a Grobner basis for the grevlex
order, and then to make a change of ordering to the lex order.

The precise ordering we use to compute the Grobner bases of the polynomial
systems occuring in this chapter is a weighted order : we fix a weight ¢« + 7 — 1 for
the variables a; ; and b; ; (see (3.11)), and use the weighted grevlex or lex ordering.
For those orderings, the polynomials are homogeneous, which simplifies the compu-
tation. Indeed, without loss of generality, we can pick a variable a;; and split the
computations into two cases a;; = 0 and a;; = 1 (the same concerns bi,j). The
entire set of solutions can then be recovered in the standard way. For instance, all
solutions with a;; # 0 for system (3.11) are obtained from solutions with a;; =1
by the change of variables X = a; 12 and Y = a;;y. This trick reduces by one
the number of variables for the Grobner basis computation and improves the time
of the computations. In what follows, all results are presented up to such
homogenization.

Finally, we use repeatedly the Radical Membership Theorem :

Theorem 12 ([68]). Let I = (f1,..., fs) be an ideal of k[x1,...,xy], then f belongs
to \/T Zf(]/ﬂd OTLly ’Lf <f1>"'7f5a]- _yf> = <1> = k[xla"'a'xnay]‘

3.3 The standard reduction

In this section we are concerned by system (3.11) with asg = asp = as0 =
bs1 = ba1 = b1,1 = 0 which gives :

&=~y +ayizy + az12’y + azpa’y } (3.20)

§ = +boox” + b307° + boay” + b1 awy® + boox’y? + byor

Recall that all cases when the origin O is an isochronous center of the system
(3.20) with zero Urabe function are described in [30]. In the following theorem we
omit all isochronous centers with zero Urabe function, as well as all cubic isochronous
centers that where all described in 63, 62].

For each case we prove the isochronicity by determining explicitly its Urabe
function. For system (k) we will denote it by h .
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Theorem 13. The following particular cases of system (3.20) have an isochronous
center at the origin O.

jc——y—i—3:v2y:|:\[:c3y

+£
2 y where h(3.21) e
y:g;i\/iﬁ;*[ux + 4 xy? i2fx2y2i\4[4 2+9¢2
(3.21)
i =—y+ady ¢
1 1 , where h(3.99) = —F———. (3.22)
?J:“ﬁf—f“ o= ire
22 28 3 2 2,2 g (0 where hgaz) = 75
—fc—?’i+y—+5x I 16 + 92
Y 4 T4 8 16 48
(3.23)
i=—y+92%y+ 623y +ay ¢
3 2 2 4 s whereh3.24 E
y:x—i-Tx—%+x3+12xy2+12w2y2+% (3.24) 4+ 49¢2
(3.24)
2
i=—y— <3a3,1+9> 2%y + az 2’y + wy ¢
, where Iz .25 =

. 1 1_9 2 :
y=z+ <_3a3,1 + 9) xy’ V= 2Ta51)e 49

(3.25)
T=—-y+ay ¢
3 2 4 », where hz96 = —. (3.26)
yzﬁ—%+y2+x3—% G207 Tye
Moreover, all other possible isochronous centers at O for non cubic system (3.20)
where either a1 = 1 or bag = —3bg2, and with non vanishing Urabe functions,
belong to the family
T=-y+ | -5 —2b2 |y + (5 +b2 )y +ay
8 16
: (3.27)
PR L . LTS I i
y= 4 1 3 2 2wy 2 296 Z/ 16

In particular, when by o € {_1167
with non-standard Urabe functions :

va2n(5) +8 [y (£(5) +3) £ (%)
(L (9) ) (H(5) )

, 16} the origin O is an isochronous center

h{b2,2=*%} =
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where L = LambertW s the Lambert function (see [89]),

\/5\/_4+52+§2‘/W£ (52 +2/4+28 4 2)
(2+&?) (\/4+2§2 +6)

V26 /262 + 32 (¢ +12)

") T T (@ (@10

by n=0y =

bl

Necessary conditions are given by C-Algorithm. Indeed, 19 steps are necessary
to find the algebraic conditions of isochronicity (see Appendix A of [30]). We did not
succeed in computing the full grevlex Grébner basis of the corresponding system of
polynomial equations. We restricted ourselves to the cases a;; = 0, which gives the
cases (3.21)-(3.22), and {a1; = 1,b20 = —3bp 2} which gives the cases (3.23)-(3.25)
and (3.27). We also get case (3.26) as a particular solution.

For each case we determine its Urabe function, which shows that the obtained
conditions are also sufficient. For systems (3.21)-(3.26) the procedure in Section 2
of [30] is applied.

The search of the Urabe function for sytem (3.27) is more subtle. Indeed, we
verified that for all values of parameters the first 20 necessary conditions of isochro-
nicity given by C-algorithm are satisfied. This strongly suggests that for all values
of parameters the system (3.27) has an isochronous center at the origin O. For this

system
fa) 20 — 96 xby 2 + 6422095 — 122 + 322
T)=—
—16 — 622 — 32 1‘25272 + 16 x3bz72 +a3+ 162
and
1
9(z) = 5e (-16 - 62° — 322%bg2 + 16 2°by g + 2° + 162) 2 (—16 + 122 — 6 2% + 2°) .

from formula (3.7) one obtains

16bg 9—1

(42%bop + 1/42% —z +2) 002271 (3.28)

52(1:) — 9,2 (2 - $)72(16b2,2+1)_1

From formula (3.8) one deduces that

z (12 — 6z + 2?)

h(f(x)):—($_4)($2_2x+4).

Now the problem is to find the reciprocal function x = z(£). Unfortunately we suc-
1
16°
(3.28) takes a sufficiently simple form.

Note that the system (3.22) was already identified in Theorem 2.2 of [30].

ceeded in finding it only for by o € {—¢, 0, %} because in those cases the equation
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3.4 The Choudhury-Guha reduction

3.4.1 Cubic isochronous centers

Choudhury-Guha reduction is more general than the standard one used in pre-
ceding chapters [30]. Here we provide the complete enumeration of all cubic systems
from (3.11) and we find three new cases of isochronous centers at the origin. The
system we consider is :

T =—y+a1ry + a2,0x2 + a271x2y + ag,osc?’ } (3.29)
y=x+ 62701’2 +biazy + bo,Qy2 + by 1ya? + by oy’x + bz ox® .
Condition (3.15) is equivalent to the following system of equations :
2a20+ 011 =0
aia,0 —3azo —ba1+ay b1 —2bg2a20 =0 (3.30)

a1,1b21 —2bopaz o+ 2a1,1a30 + a,1b1,1 —2b12a00 =0

as1a3,0 + az1b21 — 2b12a30 =0
Theorem 14. Under the assumptions (3.30) the origin O is an isochronous center
of System (3.29) only in one of the following cases :

1. The standard reduction is possible, that means azog = az9 = b11 = ba1 =0
and the system is one of those from Theorem 3 of [63].

2. We are in one of the following cases :

T=—-y—2 b27ol‘y + x? + 2 b270$3 (3 31)
Yy=x— 4b2,0y2 —2xy + b270x2 + 4b2,0x2y + 223 ’ .
x':—y:l:2\/§xy+$2:|:2\/§x3 (3.32)
y:xi8\/§y2—23:y2|23\@x22|212\f2x2y+10$3 ’ .
1 1
T=—y— 3 b oy + 2+ 3 b27oa:3
(3.33)

. 1
y=x— bQ,OyQ —2zy + 527()%2 + 52701'23/ + <2 + 1 b2702> .21?3

Démonstration. The necessary conditions are given by the solutions of the polyno-
mial system of equations consisting of equations (3.30) (called C1,...,Cy4) and the
8 equations obtained from the Rational C-Algorithm (15 steps), called Cs, ..., Cia.
Let us denote by I the ideal generated by C1, ..., Cho.
We exclude the standard reduction by adding to I the variable T and the poly-
nomial
013 == (Ta3’0 - 1)(T(L270 - 1)(Tb1’1 - 1)(Tb271 — 1)
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For azo = 0, a Grobner basis of (Ci,...,Ci2,Ci3,a20) is (1) (i.e. there is no
solution), which implies that we can take agp = 1. We use the weighted order
bia > b1 > b3 >bia> a1 >bo2 > ai > byo > azp.

First, a Grobner basis of system (C1, . .., Cg) for the weighted lex order contains

the polynomial
P = (a11 +2bo2)(az,1 — ar1asp — a3 ).

We split our problem into two subcases according to this factorization.
— for ai,1 +2bg2 = 0, we get only one real solution

&= —y+a?
y:x—2:vy+2:n3 7
which is a particular case of (3.33) with by = 0.

— for a1 —a11a3,0 — a:%,o = 0, we eliminate the solutions that are not real by
adding to the system the polynomials P; - T; — 1 for each P; in

{1643 0+1,40a3049,4 a3 g+1, a3 g+4, a3 g+1, a3 +16, a5 g+9—4 ba g az0+4 3 o}

that have no real solution. Then, the solutions of the resulting system are

those quoted in the theorem.
Sufficiency. For the cases (3.31) and (3.32) we have ¢'(z) + f(x)g(z) = 1. Hence
by Corollary 1 the origin is an isochronous center. Moreover we easily check that

h(3.33)(€) = — 3 ba,o€. O

3.4.2 Quartic isochronous centers

Our first target was to identify all isochronous centers at the origin with zero
Urabe function for the system (3.11)

T = -y + a1 1xry + CL270$2 + a271x2y + a3,0x3 + a371x3y + a470x4
y=z+ 60723/2 + b1,1xy + b270x2 + blygny + 52,1:132]; + 53,01‘3 + b2,2x2y2 + 5371x3y + b4,0x4

under the condition (3.17). That means finding all values of the 15 parameters for
which the equation ¢'(z) + f(x) g(z) = 1 is satisfied where f and g are defined by
(3.16) (see Corollary 1).

When the standard reduction is possible, that means a4 = a3o = a2 = b11 =
ba;1 = b31 = 0 all the 6 isochronous centers with zero Urabe function were described
in Theorem 3.1 of [30]. Otherwise when the Choudhury-Guha reduction needs to be
applied the problem becomes substantially more complicated.

Taking in account the great complexity of the problem we did not succeed in
solving it completely. Nevertheless, during our investigations we obtained 25 new
isochronous centers for the system (3.11), two of them of extreme complexity, called
Monsters. We are convinced that our list is not exhaustive.

The procedure to obtain the isochronous centers listed below consists in solving
by Grobner method the system (3.17) simultaneously with the set of equations on
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parameters which corresponds the equation ¢'(z) + f(z) g(z) = 1. First, one applies
the Solve routine of Maple (based on Grobner basis technic) which splits the variety
of solutions into 37 subvarieties. The cases (3.34)-(3.57) were obtained by detailed
inspection of some of them. The remaining 7 isochronous centers (3.51)-(3.58) were
obtained by restricting ourselves to b 2 = a3 1 = 0 and by application of the standard
Grébner basis technique.

We verified also that all above isochronous centers are not time-reversible, except
perhaps the two Monsters (3.57) and (3.58).

Theorem 15. The following quartic systems have an isochronous center at the
origin O with zero Urabe function.

i = —y+ boory + 2% — by o’ (3.34)
y:x+bo,2y2—2xy+2x3—bo,gmA‘ ’ '
L 2 3
T =—y+xy—azor” + azoer
. 2 2.3 2.4( (3.35)
y=x+y +2a30ry+2a30°c” —azo’r
L 2 3
T =—y+xy—azoxr” + azopx
, (3.36)

. 1
Y=+ 3 y2 + 2 as,ory — 1’2 +4 a370$2y + <3 +2 a3702> ZL’S + a3,02x4

T=—y+axy— a3,0x2 + ag’oiﬂs
. 2 3a? 2 2\ .3 1 2\ . 4 (>
y=x+4y +2a370xy—7+6a3,0$ y+(1+2a370)x + —Z+2a370 x
(3.37)
b bo 223
by 0228 o Dot
3 3 (3.38)
) b — 2 bo2r?  4bgox’y bo 2* PAPE booxt (7 '
=x —2xy — — T —
Yy 0,2Y Y 3 3 o7 3
PR bo,2y a2 bo 23
vy 4
) 3bo2x?  3bpoziy by, 1 bo 2 ’
—_ b 2 9 _ 5 _ ) ) ) 3 —_——p 3 20,2 4
Yy =2+ 0p2y Ty 3 9 + 16 + x° + 556 0:2 + 5 T

(3.39)
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45 45
:t:—y——a:2y—|—x2+fx4
8 8
, (3.40)
. 225 o5 19 4 3
y:foxyf?xy +?aj + 45 x°y

bao*z%y e byo’z?
2 2
b4,0$2

T=—-y+

+ b4702xy2 -2 b470932y +22% — b4,02$3y + b470x4
(3.41)

y:x+b4,oy2—2my—

i=—y+(—2+2V19) %y +2° - (—2+2V19) 2!
2 3
+ agazy2 F2 a1x2y + 0449[:3 + a3x3y +4 a1x4

(3.42)

a1

y=ztoy®—2ayF

where
a; = V=106 43419, as = —10 + 10V19, a3 = 16 — 1619, ay = —13 +
3v19.

. 15 15

= -y -+ a11TyY + g a1712x2y + 312 — 33‘3CL171 — g $4a1’12
2

Y=z — % —2zy+

3ajpz? 15 15 5ai xt
Ll 4 = a1,12xy2 + 3a171x2y 4223 — T a1712x3y A

4 4
(3.43)

2 2
T=—-YF 35 aszy + a6x2y + 2%+ 35 a5x3 — a6334
2 b
3 6 38
y=x =+ a;g —2xy F %a5$2 + 5a6xy2 F £a5:132y+a7$3 — 8046:U3yj: £oz5m4
(3.44)
where

as = \/—TT798 + 1162 V4691, ag = — 334 4 OVI09L "y, — 2183 4 27 /4697
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3 2 4
x':—y+xy—%+a3,gx3—%
. 3asory 9a30x2y 1 9 3a30x3y 3as ozt
_ 2 ; .2 ; A 2\ .3 _ ; _ )
y=x+3y° + 5 z° + 1 + 3+8a370 x 4 g
(3.45)
2 2+/2 2
x':—y—i-a:yi\g:z:QZF\fscgi\[at4
53 9 " 13 3v2 4 4 (3.46)
J=x+6y° FV2y— -2t F o V2uiy+ — a3+ "2ty — — a2t
2 2 3 2 3
i::—y:FQ\/Q:Ey—i—m?:I:Q\an:?’
, (3.47)

14
y:x:FG\/in—2xyi2\/§x2i8\/§x2y+§x3$2\f2w4

T = -y + a1,1TyY + a1712x2y + .562 — a171x3

ot (3.48)
y=x+ 3a171y2 —2xy — a1,1$2 + 2 a1712xy2 ’ '

—day 2ty +22° — 2011203y + ag 12

. 2.2 2 3 2,4
Tr = —y+a1,1xy+3a171 Ty +x —a;1r —3a1,1 X

)

3
)= x + 4a171y2 —2xy — 3 a171x2 + 6a1,12xy2 — 6a1,1x2y +223 — 6a1712:c3y + 2(11,1334
(3.49)

. 3 1
T=—-y+axy+ <CL1,12 —3 booai,1 + 3 50,22> z?y
2 3 2 3 L9\ 4
tat—art - (a1 -5 bo2a1,1 + 3 bo2” | ©
. 1 1
y=x+ b0,2y2 —2xy + (2 ai, — 5 6072) z2 + (2 a1,12 -3 b072a171 + b0722) :L‘y2

3 1
+ (2 <a1,12 — B b072a1,1 + 5 60722> -2 (2 a1712 - 31)072a171 + b0722)> a:3y

+(—2a11 + bo2) a' + (2a11 — 2bo ) 2%y + 227 J
(3.50)
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:b:—y+a17137y+:c2—a171x3
. 3 1 )
y=x+ 4a171y2 —2zy — B a1,1x2 — 6a1,1:v2y + (2 + a1712) 2+ (2 a1 — 1 a1713> z?
(3.51)
T = -y + a11xyY + .’E2 — ale?’
. 1 )
y=x+ 3a171y2 —2xy — a171x2 — 4a1,1x2y + <3 a1712 + 2) 2+ a171x4
(3.52)
it=—y+28ay+a?—-2823 (3.53)
y=x+8B8y> —2ay—3Ba%*—1282%y+ 142> —282* [’ '
WhereB::t\/g.
i=—y+ary+a®—4/3az®+2/32"
26 , (3.54)
y:x+6ay2—2xy—5/2a:c2—9a$2y+§x3+6x3y—8/3a934
4 2
3'c:—y—|—ozxy+$2—fax3+fx4
3 3 (3.55)
8 2 4(’ '
g):x+3ay2—2xy—a;132—3ax2y+§w3+2x3y—§afc

where o = + /2.

. 3 1 3 1

i =—y+azy+ a2+ <a1,12 —3 booai,1 + 3 b0,22> z?y — a2’ + <6L1,12 + 5 bo2a1,1 — 3 50,22> z*t
. 1 1

y=x+ 1)0721/2 —2xy + (2 a1 — B b0,2> 2 + (2 a1,12 —3bo2ai, + b0722) l’yQ

+ (2 a1 — 2 bgyg) 3323/ + 2 23 + (*2 a1,12 +3 b072a171 — b0722) :c3y + (*2 a1+ b072) z?
(3.56)
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Finally, the two Monsters mentioned in Introduction are of the form

i =—y+Tary + Maz?y + 2® — T2 — Ma?

P
y=x+ Py*—2ay — §x2+5M:cy2—2P:c2y+5w3—8Mx3y+4Px4

(3.57)
bt=—y+ary+MazPy+a2®—azd— Ma?
. Boz 1)
— 5M 2_8M3 -9 ) 2 2
y=o+oMry TSIt DM+ 9ap)?! T2 19)as” b
0 2 Bz 3 Bay 4
- Ty — x° — T
3(M+9)ap 2(M +9)3 12(M +9)ap
(3.58)

The exact description of their coefficients is too cumbersome to be reproduced
here. They are written down in arXiv variant of the present chapter (arXiv :1005.5048,
isochronous centers (4.23) and (4.30) respectively).

3.5 Explicit Linearization

3.5.1 Linearization formulas

Let us consider the Liénard type system (3.4)

T=y }
j=—g(z) - f(2)y*

with a center at the origin (0,0) where f and g are real analytic in a neighborhood
of zero.

It is known by Sabatini formula (3.6) that the first integral associated to the
system (3.4) can be written

I(:c,:[c):/ g(s)ez‘F(S)der%(zeF(@)? (3.59)
0

where F(xz) = [ f(s)ds.
Following [59] (see also [112]), let us perform the following change of variables

(3.60)



Chapitre 3. Generating linearizable centers for Liénard-type planar
56 systems

As 220
O, &)

of variables preserving the origin and well defined around it. Moreover, ¢'(z) =
F(z)

= —2F'(®) < 0 and p(0,0) = ¢(0) = 0 then this is an analytic change

e > 0 and thus the function x —— ¢(z) is strictly increasing. In the (p,q)

coordinates the first integral (3.59) becomes

I(e,8) = H(p.q) = 57 + U(0), (3.61)

where U is some uniquely defined real analytic function, U(0) = 0. Now it is easy
to see that the system (3.4) in (p,q) coordinates can be written as

. OH
Gg=——=p
dp
_on_ a4, (3.62)
P="%8 = dq

that is as a Hamiltonian system corresponding to the Hamiltonian (3.61).
The main result of this Section is

Theorem 16. Let us consider the Liénard-type system (3.4) with real analytic func-
tions f and g such that x g(x) > 0 for x # 0. Then the origin O is an isochronous
center with Urabe function h = 0 if and only if U(q) = %.

Démonstration. It is easy to see that O is a center. Now, from Corollary 1, one
knows that O is an isochronous center with Urabe function h = 0 if and only
if ¢'(x) + g(z)f(z) = 1 or equivalently ¢'(x)ef® + g(z)f(x)ef @ = F'@) The
last equality is nothing else (g(w)eF(‘”))/ = (fy eF(s)ds)/. As g(0)ef©) = 0, when
integrating one obtains g(z)ef(*) = fom ef')ds or equivalently U’(q) = ¢ because
(%)(q(z)) = g(z) @) Since U(0) = 0 one has U(q) = 2¢°. O

Consequently when the Urabe function h identically vanishes , the system of
coordinate (p,q) defined by (3.60) is the linearizing system of coordinates for sys-

tem (3.4). Indeed,
=P }. (3.63)

p=—q

It is interesting to compare the theorem 16 with Chalykh-Veselov theorem that
we formulate only for potential U without pole at 0.

Theorem 17 (|48], Theorem 1). Let us consider the Hamiltonian system with the
Hamiltonian H(P,Q) = %PQ + U(Q) where U is a rational function without pole
at 0. Then O is an isochronous center for the associated Hamiltonian system @ =

H . H
ZP’ P = —@ if and only if up to a shift Q@ — @ + a and adding a constant,
U(Q) = kQ? for some k € R — {0}.
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3.5.2 Examples

Now applying formula (3.60) we provide 5 examples of linearization of isochro-
nous centers with zero Urabe function. The reduction to Liénard-type system (3.4) is
always obtained by standard or Choudhury-Guha reduction. To compute variables
(p,q) see ((3.60)) we use Maple, and the identity (3.63) was verified in all cases.
Our choice is somewhere random, because all reported examples with zero Urabe
function are good for such purpose.

Cubic examples

1. Consider the case 6 of Theorem 3 of [63], that is the system

) 3aiboa . bo2?
r=—-y+ta1ry+ <a1,12 - 9 + 9 552.@

. b a
=x+ <—0’2 + 11) 2? + bo2y® + (2a11% — 3ai1bo2 + bo2?) 2y°

2 2
(3.64)
In this case the functions f and g are
2
boz + (2a11% — 3a1,1bo2 + bo2?) T + ar,1 + 2 (611,12 - 73(11’21110’2 + bo’; ) x

flx) =—

3a1,1b bo,2*
1+ a7+ (a1,12 — Bortbos 4 %) 22

3ai b bo 2> b a
g9(x) = (1 a1 - (Cll,l2 - 1; 22 4 O; >x2) (m + ( ;’2 + ;1> 562)

(3.65)
for which we obtain the following linearizing change of coordinates
9 (a1 1—b (A2)-A(0))
(2 + a1 12 — bgox) zE ot V/=5a112 461,150,220,
q(z) = - ’ ’ 2.2 2 2p 2
(—2 +2 a1,1T + 2 a1,1°T* — 3 a171b072 +x boyg )
—2yq(x)
T,Yy) =
p( y) (2 +ay1x — bo’g.%) x
(3.66)
where
2a11%r — 3 b bo 2*
A(zx) = arctan el Tar102 + Thoa” + 911 (3.67)

\/—5 a112 + 6ay1bo2 — 2bo o>

2. Consider system (3.31) from Theorem 14. In this case the functions f and g
are

b2.,0
-6 —=7
f(x> 142 b270$

g(z) ==z (2 b2’02x2 + 3 b7 + 1)

: (3.68)



Chapitre 3. Generating linearizable centers for Liénard-type planar
58 systems

for which we obtain the following linearizing change of coordinates

2 (boox + 1
o) = (1(+2§ b z))2
2,0
b a? (3.69)
p(z,y) =

(1 +2 6270:13)2

Quartic examples

1. As a quartic example we consider the system III of Theorem 3.1 of [30]. We
choose the following restrictions on the parameters as; = —3,bg2 = —4, b =
% to obtain simple, presentable expressions for linearizing variables.

i =—y—3zy— 322y — 2y

1 (3.70)
y=a+ 51'2 —4y? —day?® — 22%)°
In this case the functions f and g are
7+ 10 + 527
f(l‘) = 2 3
1 ’ '
g(z) = 5 (1+3x+3x2+x3)x(2+x)
for which we obtain the following linearizing change of coordinates
1 _z(2+4x) _9
q(z)=zx(2+x)e +* (14 1x)
2 : (3.72)

_ z(2+4x) 9
pl,y) = —ye 0% (1+z)"

2. We consider the system (3.57) of Theorem 15.

In this case the functions f and g are
f(:E) _ 4a1,12$ — 6xb0,2a171 + 2 J:b0722 +a11+ b072
1-— a1,1T — (11,12372 + 3/2 x2b072a171 — 1/2 x260722

g(IE) = *1/41‘ (alyll‘ — l‘bo}g + 2) (*2 + 2 a11x + 2 CL1712LE2 — 3m2b072a171 + :E2b0722)

(3.73)
for which we obtain the following linearizing change of coordinates
o) = — x(az — by + 2) S (z)
=24 2a112 4+ 2a11%2% — 3a2bogar + $2b0,22 (3.74)
(z* —y) S (2) B
p(z,y) =2

—242 a1,1x + 2 a1712:c2 — 3x2b0y2a1,1 + $2b0722

where
2 . 2
2ay,1"z—3abg a1 1+abg 2" +ay g a1,1
2(a1,1—b0,2) arctan y 2222 2 2= | —arctan ]
\/f5a1,12+6 bo,201,1—2bg, 22 \/f5a1,12+6 bo,2a1,1—2bg 22

S (l‘) —e \/—5 a1,12+6bg 2a1,1—2bg 22
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A rational example

Let us consider the system

. yr
T 1+x
2 : (3.75)
y=zx+ Y
1+=z
In this case the functions f and g are
24z
fa) =17
I (3.76)
9(x) = 1+z

for which we obtain the following linearizing change of coordinates

a(@) = ae” } . (3.77)
p(z,y) = ye’ (1 + )

3.5.3 Comments

It is really astonishing that in all above cases the linearizing variables (p, ¢) are al-
ways expressed in “finite terms”. This follows from the fact that if ¢'(z)+ f(z) g(z) =
1 then f = 1_79/' Moreover, as g(0) = 0 and ¢'(0) = 1 the singularity of f at zero is
spurious. In all examples considered in this and related chapters [62, 63, 30] f and ¢
always are rational functions. Then F(z) = [ f(s) ds is expressed in “finite terms”

and thus also p(z, ). The problem is slightly more delicate in what concerns ¢(z).
1—-g'(s)

But feF(s) ds = feff(s)dsds = fef 9(s) dsds = fﬁefﬁs)dsds = efﬁds +

const. g being a rational function, [ % is obtained in “finite terms” and thus also
) F(s) g
e s.







CHAPITRE 4

An effective symbolic algorithm
for computing isochronicity
conditions for analytic
Liénard-type planar systems

During the preparation of [15] and [30], the authors experienced the limitations
of C-algorithm in exploring the isochronicity property for multivariate systems (with
polynomials of degree greater than 2. This chapter reproduce the results of [14] in
which a reduced complexity algorithm is provided. The C-Algorithm introduced
in [62] is designed to determine isochronous centers for Liénard-type differential
systems, in the general real analytic case. However, it has a large complexity that
prevents computations, even in the quartic polynomial case.

The main result of this chapter is an efficient algorithmic implementation of
C-Algorithm, called ReCA (Reduced C-Algorithm). Furthermore, a version which
is adapte to the rational case called RCA (Rational C-Algorithm) is proposed and
extensively used in [15] and [30] to exhibit many new examples of isochronous centers
for the Liénard-type equation.

4.1 Introduction

The use of symbolic computations and Computer Algebra Systems in the Quali-
tative investigations of ordinary differential equations becomes a standard way, see
for instance [82]. One of the important problems in this field is the characterization
and the explicit description of isochronous centers for planar polynomials vector
fields. See for example [188].

This is a companion paper of |15, 30] which are devoted to the seeking out of
isochronous centers for real planar polynomial Liénard type equation. These inves-
tigations are based on the C-Algorithm introduced in [62] and used in [63] for the
cubic case.

The C-Algorithm in its original form has a large computational cost. In the
real analytic case as well as in the particular rational case the careful inspection
of the formulas used leads to more efficient algorithms, called ReCA (Reduced C-
Algorithm) and RCA (Rational C-Algorithm) respectively. The aim of this note is
to give a detailed description of them.
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Consider the Liénard type differential equation
i+ f(x)a® +g(x) =0 (4.1)

where f and g are defined in a neighborhood of 0 € R, or equivalently its associated
two dimensional (planar) system

T =y
j = —g(a) - f<x>y2} | (42)

In this paper, we assume that g(0) = 0, which insures that O is a critical point, and
xzg(xz) > 0 in a punctured neighborhood of 0 € R, which insure that the origin is a
center. Moreover, we suppose that ¢’(0) = 1, so that system (4.2) is a perturbation
of the linear isochronous center & = y,y = —z.

It appears the isochronicity problem for (4.1) was studied for the first time in M.
Sabatini’s paper [194], where sufficient conditions for the isochronicity of the origin
O are given for C! functions f and g defined in some neighborhood of 0.

In the real analytic case, necessary and sufficient conditions for isochronicity are
given by A. R. Chouikha in [62], where Theorem 18 is proved. We use the same
notations as in [62] :

Flz) = /0 " f(s)ds, o(x) = /O " g, (4.3)

As zg(z) > 0 for z # 0, the function ¢ is well defined by the relation

362 = [ o) as (4.4

and the condition z&(x) > 0, Vo # 0. Such function ¢ is real analytic in some
neighborhood of 0 and £'(0) = 1.

Theorem 18 (Chouikha,[62]). Let f and g be real analytic functions in a neighbo-
rhood of 0, such that g(0) = 0 and xg(x) > 0 for x # 0. Then system (4.1) has an
isochronous center at O if and only if there exists an odd real analytic function h,
called the Urabe function, satisfying the following conditions :

&) o F@)
ETEE R -
and £(@)
o(x) = £(x) + /0 h(t)dt, (4.6)

where F(z), ¢(z) and &(x) are defined by (4.3)—(4.4).

Taking into account (4.4), it is easy to see that (4.5) and (4.6) are equivalent.
This theorem leads to an algorithmic method, named C-Algorithm, which gives
necessary conditions for isochronicity by computing the first coefficients of the power
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series expansion around 0 of both sides of (4.5). Then, the sufficiency is insured by
establishing explicitly the odd Urabe function. More details about the C-Algorithm
can be found in 62, 63, 30, 15].

In particular, in [30, 15], the authors investigate the practical applicability of
the C-Algorithm to the following family of planar polynomial systems, which are
perturbations of the linear isochronous center & = y,y = —x :
= po () +p1(2)y } (4.7
§=q0 () +a(2)y+a(x)y

where po,p1,q0,q1,¢2 € R[z], po(0) = pp(0) = 0, p1(0) = 1, go(0) = 0, go(0) =
—1, ¢1(0) = 0. Actually, under some restrictions, such systems are reducible to
Liénard type differential equation (4.1) with rational functions f and g, and in this
case the RCA described in Section 4.3 is much more efficient then the standard
C-Algorithm.

4.2 The C-Algorithm and the ReCA

In [62], the change of variable u = ¢(z) = & + fog h(s)ds is introduced. Let us
denote by g(u) the function of u represented by both sides of (4.5)

§(x)

g(u) = T4 hE@) g(z)e" @), (4.8)

The derivative of u with respect to x (resp. &) can easily be expressed in terms of z

(resp. &),
du

du
7 = ¢ an i + h(§)

The C-Algorithm is based on the two sides computations of the derivatives of
g(u) with respect to u in terms of £ and z, which consists in computing the following

quantities :
5o &
0(§) = TEh(E)
5 o dPeq(8) 1
PO =" ) (19)

Q@) = ()"
Guta) = T2 v

dzr )

where k > 1 and evaluating them at 0, that is P;(0) = Q(0). As

& (g(@)eF @)

g
1+h ~
(5) ) ’uan and Qk (0) = duk ’u:07

) @ (
Fi.(0) = duk
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by analycity, (4.5) is equivalent to the equalities Qx(0) = P,(0), k > 0.

In the next theorem we describe the Reduced C-Algorithm, which takes care of
significant multiplicative factors appearing in the formulas. The paper [30] is based
on it.

Theorem 19 (Reduced C-Algorithm - ReCA). Let f and g be real analytic functions
defined in a neighborhood of 0, such that g(0) = 0, ¢'(0) = 1 and xg(x) > 0 for
x # 0. Then system (4.1) has an isochronous center at O if and only if, there exists
an odd analytic function h such that for all k > 0,

Po(€) =¢ w
A = PO (11 ) - 2k - 1) s

9) : (4.10)
Qo(z) = g(x)

() = W — (k=2)f(2)Qx-1()

Moreover, for all M > 0, the M first necessary conditions of isochronicity, ]3k(0) =
Qr(0) for 1 < k < M can be obtained by computing the truncated power series
expansions around 0 of Px(§) and Qg(x) up to the order M — k.

Démonstration. First, the computation of the first two derivatives of g(u) with res-
pect to u in terms of both x and & gives

I S A (S f—f_d
I =~ her R @@ @),
S (1 h(©) € G + 35 (1 h() - ¢ BE)
S 1+ 1)
2 i x X
= (24 () s g T e,

These formulas strongly suggest that the k' derivative of §(u) can be written
both in terms of x and & as follows :

Pi(6)

g(k’) (u) W

with P, and @\k verifying the induction formulas (4.10).
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Then, we assume that this is so up to the order n — 1. Differentiating the two
sides of the equality g(”_l)(u) with respect to w in terms of x and £ gives

P(€)

(1+ h(€))2n+t = Qpn(z) el F@),

" (u) =

where ]Sn(f ) and @n(m‘) satisfy formulas (4.10) as expected.

_ As F(0) = 0 and h(0) = 0, necessary and sufficient conditions are given by
Pi(0) = Q(0),k > 0.

When our aim is to establish a fixed number M of necessary conditions, we
restrict ourselves to the power series expansion around 0 of ﬁk and @k for1<k<M
up to the order M — k, which is the minimal necessary truncation order. Indeed,
by formulas (4.10), to obtain Py (0) and Qa7(0) it is sufficient to compute a power
series expansion around 0 of Py (¢) and Q () up to order 0 (i.e. constant terms)
which require the power series expansion around 0 of ﬁM_l(ﬁ) and @ M—1(x) up to
order 1, and so on. O

In the practical use of the described algorithm we are concerned with a finite
number M of necessary conditions. When a candidate for an isochronous center is
identified, we try to write down its Urabe function under a closed-form expression,
and prove the sufficiency using again Theorem 18.

4.3 The RCA

In this section we restrict ourselves to systems (4.2) for which f and g are
rational functions. For this particular case, we describe an easy to handle couple of
polynomial recursive formulas which give the k-th derivatives of each side of (4.5).
Those formulas apply in particular to systems (4.7) when they are reducible to
Liénard type differential equation. The paper [15] is based on it.

We denote f(x) = Ny(x)/Dys(x) (resp. g(x) = Ng(x)/Dy(z)), where Ny, Ny,
Dy and Dy are polynomials such that D(0) = 1, Dy(0) = 1 and pged(Ny, Dy) =1,
pgcd(Ng, Dy) = 1.

Theorem 20 (Rational C-Algorithm - RCA). There exists a positive integer My,
such that for any M > My the following assertions are equivalents :

1. the origin O of system (4.2) is an isochronous center;

2. there exists a real analytic odd function h satisfying

P(0) = Qx(0)



Chapitre 4. An effective symbolic algorithm for computing
66 isochronicity conditions for analytic Liénard-type planar systems

for all 0 < k < M, where

Py(§) =¢ )
R© = (P ) e n©) - @r-n A O B
Qo(x) = Ny(z) . (4.11)
Qr(z) = Qr—1(x)Dy(x) <(1 — k) dli‘{;x) +(2-k) Nf(a:)>
k Q)P p 0y ¢ WL )

Moreover, as we only need the values of the P, and Qy, at 0, it is sufficient to compute
the power series expansions of Py(x) and Qr(x) at order M — k, i.e. to truncate the
polynomials P and Qr up to degree M — k.

Démonstration. As in the proof of the previous theorem, those formulas are found
by induction on k :

(1+h(€)2*F — Dy(w)* Dy(x)k+!

It remains to prove that there exists a finite M such that the M first conditions
are sufficient. This comes from the Hilbert Basis Theorem, and more precisely the

5 () = Pi(§) Qr(z) LR F(@) (4.12)

Ascending Chain Condition (see [68]) applied to the ascending chain of ideals I; =
(Pr(0)—Qr(0), 0 <k <j). Then there exists an My > 0 such that Ip;, = Inf+1 =
v =T ]

4.4 Efficiency of the RCA

The original C-Algorithm which is based on (4.9) will be denoted by Ag. In this
section we study the efficiency of the algorithms resulting from Theorems 19 and 20,
that will be denoted by Ao, A3, A4 and As :

— A is a truncated C-algorithm. It is based on the formulas (4.9), for which

we apply the truncation procedure using power series.

— Aj is the algorithm based on the formulas (4.10) of Theorem 19 where the

truncation procedure is applied, that is ReCA.

— Az is the algorithm based on the formulas (4.10) of Theorem 19 without

truncations.

— Ay is the algorithm based on the formulas (4.11) of Theorem 20 where the

truncation procedure is applied, that is RCA.

— Aj is the algorithm based on the formulas (4.11) of Theorem 20 without

truncations.
To compare the efficiency of the above 6 algorithms we will apply them to the quartic
system

&= —y+ a2y + ag 2’y + az 12’y } (4.13)

§ =+ boox? + b3 02® + b 2y® + b1 27y® + ba27?y? + by gt
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that is system (15) from [30] or system (3.1) from [15]. By standard reduction this
system is reducible to Liénard type equation (4.1) with

. b072 + b17233 + b272x2 + ai,1 + 2(1271$ + 3(1371332
1— a11T — CL271$2 — CL371£E3

f(x)

and
g(z) = (1 —a11T — a2,11:2 — a371$3) (a: + bQ’O:L'Q + b370x3 + b470334) )

There are 18 unknowns, 9 for the a; ; and b; ; and 9 for the coefficients of the power
series expansion of h up to order 17 (remember that h is odd). Then, it is reasonable
to compute the conditions (4.11) at least up to order M = 19. Since the depth of
the isochronous center still an open problem for system (4.13), then investigations
need a higher number of necessary conditions. In our comparative study which is
summarized in table 4.1 we ask for the first 30 necessary conditions by each of the
presented algorithms.

Order of | C-Algorithm ReCA RCA
derivation Ag A As Az Ay Ag
10 230,8 0,52 0,0 6,7 0,0 5,7
15 5920,2 19,1 0,6 | 523,4 0,4 | 520,0

20 1168,6 4,6 2,6

30 168,7 84,9

TABLE 4.1 — CPU time in seconds on Pentium 2,4 GHz with 4 Gb of memory

The superiority of ReCA and RCA is obvious as well as the role of the truncation.
The absence of values means that in that case the computations failed by lack of
memory.

4.5 Examples and comments

Let us recall that the isochronicity problem for planar cubic systems (linear
center perturbed by cubic nonlinearity) is still open. This fact is due to the huge
number of parameters (14 parameters). In the same time, several recent works have
proven the power of the algorithmic methods in the characterization of isochronous
centers. For instance we quote the normal forms approach described in [188] and
used in [56, 76, 55|. Particularly, this method has proven its performance in the
study of time-reversible isochronous centers. Indeed, the paper [56] contains the
complete set of time reversible isochronous centers of linear center perturbed by
cubic nonlinearity. Hence the cubic isochronicity problem is still open only in the
case of non time-reversible systems.

Using Algorithm RCA, with coauthors, we succeeded to establish several new
cubic and quartic isochronous centers |15, 30]. Among others, we found in [15] three
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families of new non time-reversible cubic isochronous systems

(4.14)

&= —y—2byozy + 1>+ 2byo2>
y=x—4 b2,0y2 —2xy + 62,0332 +4 172,03523»/ +2a°

—y + 222y + 2% 72223 (4.15)
y=x+8v2y% — 22y T 3v22% F12V22%y + 1023 7 .

1 1
—y — = byozy + 2 4 5 ba
27 27
1 . (4.16)
Y=z — b2,0y2 —2xy + 5270.%'2 + bg,ony + (2 + Z bg,o2> $3

In [55] time-reversible isochronous centers of homogeneous quartic perturbation
of the linear center are completely established. In [15], using RCA we found a large
list of new non time-reversible quartic isochronous centers. We also found the follo-
wing family of systems, for which we conjecture it has an isochronous center at O

3 1
—y+ (== —2bya ) 2Py + + by | TPy + ay
8 16
: (4.17)
LN LAY +b 2t
=r—— 4+ =+ — - T Y
Y= 4 4 3 2,2 y 2,2 y 16
We were able to prove the isochronicity of the system in few particular cases, for

instance for bg o € {— 16, 0, %6}, by computing explicitly the Urabe function :

) V26282 +32(82 4+ 12)
Ut = o @ @ i)

ﬂmﬁ (5)+9)2(%)
2e(n(5)+a) (£(5)+1)

where L = LambertW is the Lambert function (see [89])

h{bQ 2——*

\[\/ 4+§2+22\/4+2§2§ (§2+2 /744‘2452—1'2)
h .
=0y (8 (2 +€2) <\/4+2§2+6)



CHAPITRE 5

Amplitude Independent
Frequency Synchroniser for a
Cubic Planar Polynomial System

This work reproduces the results of [28] in which the isochronicity is seen as
a synchronization property. Nonlinear feedbacks (monomials) are used to synchro-
nize a coupled system of two agents. The chapter aim is to provide some insights
on the use of (only) nonlinear interconnexions to design a realization qualitatively
enabling a desired behavior. The problem of local linearizability of the planar li-
near center perturbed by a cubic nonlinearity in the whole system of parameters
(14 parameters) is far from being solved. Synchronization problem [174, 24| consists
in bringing appropriate modifications on a given system to obtain a desired dyna-
mic. The desired phase portrait throughout this paper contains a compact region
around a singular point at the origin in which lies periodic orbits with the same
period (independently from the chosen initial conditions). In this paper, starting
from a 5-parameters non isochronous Chouikha cubic system [62], we identify all
possible monomial perturbations of degree d € {2, 3} insuring local linearizability of
the perturbed system.The necessary conditions are obtained by the Normal Forms
method. These conditions are real algebraic equations (multivariate polynomials) in
the parameters of the studied ordinary differential system. The efficient algorithm
FGb [93] for computing the Grobner basis is used. For the family studied in this pa-
per, an exhaustive list of possible parameters values insuring local linearizability is
established. All the found cases are already known in the literature but the context
is different since our goal is the synchronisation not the classification. This paper
can be seen as a direct continuation of several new works concerned with the hin-
ting of cubic isochronous centers in particular |62, 56, 63, 30, 15, 14], as it may also
be considered an adaptation of a qualitative theory method to a synchronization
problem.

5.1 Problem statement

We consider the planar dynamical system,

dx dy
= 7 = X _—=
t=Xy),

= i =Y (). (1)
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where (z,y) belongs to an open connected subset U C R?, X,Y € C*(U,R), and
k > 1. Due to Poincaré : an isolated singular point p € U of (5.1) is a center if and
only if there exists a punctured neighborhood V' C U of p such that every orbit in V' is
a cycle surrounding p. A center is said to be isochronous if all the orbits surrounding
it have the same period. An overview of J.Chavarriga and M.Sabatini [52] present
the methods and basic results concerning the problem of the isochronicity, see also
[66, 62, 14, 30, 15].

Synchronization problem consists in bringing appropriate modifications on a
given system to obtain a desired dynamic, see [174, 24]. Along this paper, the desired
phase portrait contains a compact region around a singular point at the origin in
which lies periodic orbits with the same period (independently from the chosen
initial conditions which is not always the case). More concretely, in this paper we
consider the following problem ; Starting from a non isochronous polynomial planar
system, are there any polynomial perturbation which insures the local linearizability
of the perturbed system. In this paper we adopt the normal forms method often used
in qualitative theory investigations; center-focus problem, bifurcation problem and
local linearizability problem. The problem of local linearizability conditions of of
the planar linear center perturbed by cubic nonlinearities (in all generalities on the
system parameters 14 parameters) is far from being solved.

In this paper, starting from a 5-parameters non isochronous Chouikha cubic
system [62], we identify all possible monomial perturbations of degree d € {2,3}
insuring local linearizability of the perturbed system. Investigations are based on
the normal forms Theory.

In the following system as well as in all other considered systems, all parameters
are reals.

Consider the real Liénard Type equation

i+ f(x)i? +g(x) =0 (5.2)

or equivalently its associated two dimensional (planar) system

=y
§ = —g(a) - f<x>y2} (53)

The study of isochronicity of (5.2) was established first in M. Sabatini paper [194].
The sufficient conditions of the isochronicity of the origin O for system (5.3) with f
and g of class C! are given. In the analytic case, the necessary and sufficient condi-
tions for isochronicity are given by A.R.Chouikha in [62]. In the same paper, the
author implemented a new algorithmic method for computing isochronicity condi-
tions for system (5.3) called C-algorithm. As an application of this algorithm, the
author studied the following cubic system

. ~ 2

T=—-Y+0a121T°Y

. ~ 2, =~ 2 =~ 3.~ 2 (5.4)
Y =T+ a20T" +a202y" + a230%° + 42,127y
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where all the parameters values for which system (5.4) has an isochronous center at
the origin are established in the following theorem.

We note that the coefficient a; ;j denotes the parameter of the monomial per-
turbation of the i equation of the linear isochronous center (# = —y, § = x) of
degree j in z and of degree k in y

Theorem 21 (Chouikha,[62]). System (5.4) has an isochronous center at 0 if and
only if its parameters satisfy one of the following conditions

1. az30 = —(2/3)a12,1, G212 = 3a12,1, G220 = d202 =0

2. ag12 = a1271, 4220 = 4230 = a2,02 = 0

3. gz = (1/14)a3 9, G212 = (3/7)a3 5, G121 = (1/7)d5 g5, G220 = —(1/2)az0.2
4. G212 = &%,072, ag3o =0, a121 = (1/2)&%,0,2, 22,0 = —(1/2)az0,2-

A 1-parameter perturbation of system (5.4) is studied in [63]. Namely, the follo-
wing system

T=—-y+a 10y + 01,2,13022/
(5.5)

. 2 2 3 2
Y =2+ ag20%" +a202y" + a2302" + 021,22y

which is system (5.4) perturbed by the underlined term. All the values of the pa-
rameters for which the above system (5.5) has an isochronous center at the origin
were found.

Note that the above system stills reducible to the Liénard type equation for wich
C-algorithm is applicable, see [30].

Section 2 is devoted to recall the head lines of the methodology of the Normal
Forms algorithm, called in the sequel NF algorithm, which will allow us to obtain
isochronicity necessary conditions.

The last section is concerned with the main result, which is an application of the
NF method. Indeed, we consider an unknown 1-directional monomial perturbation
of degree two or three of the system (5.4), namely

&= —y+a217%y + Vq(z,y) } (5.6)

y=z+ a2,2,0372 + a2,0,23/2 + a2,3,0963 + az,1,2$y2 + Uy(z,y)

in which only one of the monomials ¥ or ¥y is non zero monomial (V1 Wy = 0) of
degree d € {2, 3}.

The problem turns to study eight polynomial cubic systems which are not re-
ducible by the transformations described in [30] to Liénard type equation. For each
system, we identify the values of the parameters for which the singular point at thea
origin is an isochronous center. Hence it is done for (5.6).

5.2 The normal forms method

The normal form theory which is due essentially to Poincaré, presents a basic
tool in understanding the qualitative behavior of orbit structures of a vector field
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near equilibria [111]. It was used for the study of center conditions and the nature
of bifurcation of a given vector field. We also recall a pioneer work in this field
established by Pleshkan (see[175]), in which the author presented an investigation
method of isochronicity in the case of linear center perturbed by homogeneous cubic
nonlinearity. The principle of Pleshkan’s algorithm is very close to the one presented
in Algaba et.al paper [5], where the normal form theory is used in the analysis of
isochronicity and gave a recursive method for the isochronicity investigation. In
the last cited paper, the autors studied cubic Liénard equation and obtained a
characterization of the reversible Liénard equation having an isochronous center at
the origin.

Let © = (z1,22) € R? and f(z1,22) € R[z1,22] x Rz, 22] and consider the
general planar system

&= Lx+ f(x) = Lx + fa(z) + fa(z)+ ...+ fulz)+ ..., (5.7)

where Lx represents the linear part, L the Jacobian matrix associated to system
(5.7) and fr(z) denotes the k' order vector homogeneous polynomials of 2. We
assume that the system admits an equilibrium at the origin O. The essential idea of
the Normal Form theory is to find a near identity transformation

r=y+hy)=y+ho(y)+h3(y)+... + ha(y)+ ..., (5.8)

by which the resulting system

y=Ly+g(x)=Ly+ge(y) +g3(y) + ... +gr(y) +..., (5.9)

becomes as simple as possible. In this sense, the terms that are not essential in
the local dynamical behavior are removed from the analytical expression of the
vector field. Let us denote by hi(y) and gi(y) the k™ order vectors homogeneous
polynomials of y. According to Takens normal form theory, we define an operator
as follows :

Ly : H. — Hyp, UkEHk'—)Lk(Uk>: [Uk,ul] € Hy, (5.10)

where w1 = Ly is the linear part of the vector field and Hj denotes a linear vector
space containing the k' degree homogeneous vector polynomials of 3 = (y1,y2).
The operator [.,.] is called the Lie Bracket, defined by

[Ug,u1] = LUy, — D(Up)uq

where D denotes the frechet derivative.

Next, we define the spaces Ry and K, as the range of Ly and the complementary
space of Ry respectively. Thus, Hy = R + Kj and one can then choose bases for
K. and Rj. The normal form theorem determines how it is possible to reduce the
analytic expression of the vector field (see Gukenheimer-Holmes [111]). The authors
give explicitly an analysis for the quadratic and the cubic cases. Consequently, a
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vector homogeneous polynomial fr, € Hj can be split into two parts, such that one
of them can be spanned in K} and the remaining part in Ry.

Normal form theory shows that the part belonging to Ry, can be eliminated and
the remaining part can be retained in the normal form. By the equations (5.7), (5.8)
and (5.9), we can obtain algebraic equations one order after another.

Theorem 22 ([222|). The recursive formula for computing the normal form coeffi-
cients and the nonlinear transformation are given by :

k—1
gk = [+ [hi, Lyl + > (D fihk—iv1 — Dhy—i119:)
=2
/2 o ki
+ZTZD% > hihay - hy,,
=2 =i Il oeHl=h— (=) 2<11 2, ls <k 42— (i5)
fork=23,...

see also [179, 221].
System (5.9) can be transformed to the polar coordinate system with y; =
rcos(0),ya = rsin() so that

N N
F= agr T 0N, =1+ Byur¥ + O(r2N +2).  (5.11)
j=1 j=1

Recall that a necessary condition to have a center at the origin is that all the focal
values apj11 vanish. By the Hilbert’s basis theorem, the set of focal values has a finite
basis in the ring of polynomials in the coefficients of the initial system (5.7). Since the
non vanishing of one of the angular component coefficient implies dependency of an
associated period constant, a necessary condition for which this center is isochronous
is that (2,11 vanish.

Recall that our study is motivated by the interest of describing a synchronizer
for a desired dynamic but also to underline the key role that can the classification
of centers and isochronous centers of polynomial systems have in applications such
that synchronization problems.

5.3 Main results : Applications of the NF algorithm to
characterize cubic systems with linearizable center

In our study, we use Maple. To compute the Grobner basis of the obtained
polynomial equations in the ring of characteristic 0, we employ the Salsa Software
[93]. More precisely we use the FGb algorithm which is the most efficient algorithm
in computing Grébner basis [19], at least for the polynomial systems studied in this
paper. We note also that we have used DRL ordering in all computations established
in this paper.
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Since our approach in investigation of isochronicity conditions is based on an
algorithmic method, then we can guess that every simplification is beneficial in the
goal of speeding the computations and reducing the necessary memory size. Solving
multivariate algebraic equations (real polynomials) can be a very hard task if we try
to manipulate the polynomial equations without tricks. Interested readers can find
in the website of Salsa Software [93|, more precisely the page of J.C.Faugére, some
important rules in solving polynomial systems and about Grébner basis.

Let us consider the more general cubic perturbation of linear center :

. 2 2 3 2 2 3
rT=y+ai20r” +a102y + 01,112y + 01302 +a1212°Y + 01,122y~ + 01,0,3Y }

. 2 2 3 2 2 3
Y=—T+a220%" +0a202y" + a21,12Y + 62307 + a2212°Y + 42,122y~ + a2,03Y
(5.12)
or equivalently the following one :
. ~ 2, - 2, ~ ~ 3, ~ 2 ~ 2, ~ 3
T =—Y+ai20r” +aie2y” +0a1,110yY +a13,07° + a12177Y + a1,127Y" + a1,0,3Y
. ~ 2, ~ 2, =~ ~ 3, ~ 2 ~ 2, =~ 3
Y =2+ a220%" + 02,02y + 021,1TY + 02,302° + G2212°Y + A2,122Y" + 42,0,3Y

Observe that we can easily reconstruct the coefficient @;;j from the ones in (5.12)
by the change of coordinates (z,y) — (—x,y).

The classification of all the isochronous centers of the above system is a very
hard task. By any recursive method from those quoted in [52], solving the isochro-
nicity problem for system (5.12) is very difficult in the sense of solving multivariate
polynomials. Here, the variables are the 14 parameters of the polynomial differential
system (5.12). Hence it needs very important computation supports.

With a realistic point of view, several authors have chosen some particular cases
of the above system for investigation like the homogeneous cubic perturbations of
the linear center [175, 52| and time reversible cubic systems [56, 100].

In our case, we focus on an unknown 1-directional 1-parameter perturbation of
the system (5.4) which is system (5.6). Therefore, we ramify our study to all possible
cases.

In the sequel, every subsection will be concerned with a possible 1-parameter
perturbation of system (5.4).

Recall that a; j; denotes the parameter of the monomial perturbation of the ith
equation in system (5.4) of degree j in x and of degree k in y.

5.3.1 perturbation a;

As a continuation of the result of [62] on system (5.4), the authors in [63] inves-
tigated a 1-parameter perturbation of (5.4) which is (5.5).

Theorem 23 (|63]). System (5.5) has an isochronous center at the origin O if and
only if

N —a1,1,1+a1,1,1a2,2,0—10@%,2,0-1—5&1,1,1(12,0,2—10a2,0,2a2,0,2—4a§,072+9a2,3,0+3a2,1,2 d
ar21 = an

3
it’s parameters satisfy one of the following sets of conditions
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1. 2a320 +asp2 —ai1,1 =0 )
2 2 a2,1,2 _
4302 — 3a9,0,201,1,1 + 2a1’171 —6asz0 — %2 =0

G2,1,201,1,1 (2,0,202,1,2 __
a2,0,202,3,0 — 302,3,001,1,1 + G - G =0
2 2 2 3
2 2 2 a7.1,192,3,002,1,2 a3 3,092,1,2 5a3 1,902,3,0 a312
a3 300711 — 34330+ 6 + 3 + 36 -5 =0

2
(21,201,1,1042,0,2 + 6a2,3,0a%,171 - a2,1,20%71,1 - 18@%,370 —a23,002,1,2+t 2%% =0
2. az12 =0 and
(a) az30 = azp2 — 1/4a11,1 = az20 =10
(b) 4az30—3a111 =a220+a11,1 = a%,l,l —3a230=0
(¢) azp2 —2a1,1,1 = ag30 — a3 = az20+2a1,1,1 =0
(d) azp2 —1/3a111 = azp0 +2/3a1,1,1 = 9/2a230 — a%,l,l =
3. CL27370 =0 and
(a) az20+1/2a202 —1/2a111 = a%,(),g —3az2,0,201,1,1 + 2a%7171 —az12 =70
(b) 2a202 —ai11 = 2a220+ay,1,1 =0
(c) azp2 —ai1,1 = az20 =0
(d) az02 =ai ;) —9a212 = az0 =0
We contribute by classifying the isochronous centers of all the remaining 1-
parameter perturbations of system (5.4). Eight systems are studied to do this.
For these perturbations, first, we check if the center (at the origin O) conditions are

satisfied and after we give necessary and sufficient isochronicity conditions depending
only on the six real parameters.

5.3.2  Perturbation a3

We are concerned by the following system

&=y + ay217%y + a1 03y (5.13)

. 2 2 3 2
Yy=—x+az20r" + a20,2y" + a230%" + a2,127Y

Lemma 1. The investigation of isochronicity criteria of system (5.13) reduces to
the investigation in the following three cases

1. a1,0,3 = 0
2. ai,0,3 = 1
3. a1,0,3 = —1

For the case a1,03 # 0, two cases are to be analyzed.
First we assume that a; 93 > 0. We use on (5.13) the change of coordinates :

(2,9) = arg5(2,y) (5.14)

)
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to obtain 191
a'c:y—i—r =y 4y
. 6’127,2,0 2, @202 9 G230 o 4212 o (- (5.15)
y=—-x+ 2 L + 12 z° + Ty
ar'’o.3 atln.3 a1,0,3 a1,0,3

When the solutions of the isochronicity problem of system (5.15) are established,
we can easily reconstruct those of the original system (5.13) by the transformation

1/2
(2,9) = (1/ar/5)(,9). (5.16)
If a1 03 <0, then (5.13) can be written as
&=y +a1018%y — d103y° }

. 2 2 3 2
Yy =—+a220r" + a20,2y" + a23,0%" + 62,127y

with —a1,03 = G1,0,3 > 0. Applying the following change of coordinates

~1/2
(2.9) = ayps(x.y) (5.17)
yields
. a
Tr=19y-+ ﬂﬁy — y3
03 (5.18)
a a a a . .
j=—x+ ?/22709”24' f’/02723/2+ ~2,3,ox2+ ~2,1,2:E 2
a a al,O,3 a1,0,3
1,0,3 1,0,3

The reconstruction of the solutions of (5.13) can be obtained from those of (5.18),
by the change of coordinates

(2,y) = (L/arlys) (2, y).

Remark 1. If one is concerned with quadratic perturbations of system (5.4) with the
parameter a; ;o ;
we can consider the two cases namely,

1' a/747.]72_.] = 0
2' azy.]727.] = 1

Indeed, when a; jo—; # 0, the change of coordinates

(‘T7 y) = Aj,5,2—j (CL‘, y)

reduces the problem to the case a;j2—; = 1.
Lastly, thanks to the transformation

(:E) y) = 1/@1',]',2,]'({13, y)a

we can easily reconstruct the solutions of the problem when a; j2—; # 0.

Theorem 24. System (5.13) has an isochronous center at O if and only if its
parameters satisfy one of the following conditions :
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1. a103=0
(a) a121 = az1,2,a220 = a202 = a230 =0
(b) a121 = —3/2a230, az12 =—9/2a230, a220 = a202 =0
(c) a121 =az20=—1/2, agp2=1, ag12=—1, as30=0

(d) a121=—1/7, azp0=—1/2, asp2 =1,
az30 = —1/14, a212 = —3/7

2. a17073 =1
(a) a121 = —9/2, az12 = —3/2, a0 = az02 = az30 =0
(b) az30=1, a121 =az12=—3, ag20=a202 =0
(c) azp2=—3/2, az30=0, az12 =a121=a20 =0

(d) az02 =3/2, as30=0, az12 =ai21 = a220="0

2
(e) a121 = —1,a220 = a202 = ﬂ:§, az12 = —2, az3o =0,
3. a1,0,3 = -1
(a) az30=—1, a121 =a12 =3, azp0 = a202 =0

(b) a121=9/2,a212 =3/2,a230 = a220 = a202 =0

In this proof, we do not present the algorithm generated polynomials which are
too long.

We use the strategy given in lemma 2. We note also that we investigate only the
real values of the parameters for which system (5.13) has an isochronous center at
the origin.

1. Assume a3 = 0 and then solve the isochronicity problem for system (5.13)
under this assumption. We use the following change of coordinates (z,y)
(—x,y) to obtain system (5.4) studied in [62]. The investigation following the
two cases :

(a) azp2=0

(b) agp2=1

covers, (with respect to a linear change of coordinates), all the values of the
parameters for which the center at the origin of system (5.4), see Remark 1.
In [62], the author used C-algorithm which characterizes isochronicity by
establishing associated Urabe function.

2. Consider the case a103 = 1. Computations of normal forms of the initial
system in polar form give (5.11)

al N
r = Za2j+17"2]+1 + O(T2N+3)7 9 =1 + 262j+1r2] + O(T2N+2)
Jj=1 e
we obtain in the radial component agj11 = 0 until order N = 6. So that

the first six necessary conditions to have a center are satisfied. Analyzing
isochronicity involves the angular component. Using FGb for computing the
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Grobner basis of the obtained first six quantities in the angular component,
we obtain a Grobner basis of 27 polynomials denoted G such that it’s first
element is

—az30a220 (—a315+9a230).
Then we analyze the isochronicity problem in the following three cases, which
are given by the vanishing of one factor of the above expression.

(a) az30 = 0, we substitute this condition into G; we compute again the
associated Grobner basis, we obtain a basis of 14 polynomials, when we
solve it we obtain the following four real solutions to the problem :

ioarp3z =1, a2 =-3/2, a121 = —-9/2, as30=a220 = a202 =0

ii. a103 =1, az02 =3/2,a230=0a121 =a220=a212=0

ii. a103 =1, ago2 = —3/2, as30=ai121 =a220=a12=0
. 2
. a103 =1, ai21 = —1, ag20 =az02 = i%,am,z =-2

(b) For az20 = 0, substituting this assumption in Gp, and computing it’s
associated Grobner basis which contains 7 polynomials, after solving it
we obtain the solutions :

i ai03=1, a2 =3/2, as20=a121 = az30=az12 =0

ii. a3 =1, ag02 = —3/2, az20=a12,1 = az30 =a212 =0
ii. a103 =1, ag12=—-3/2, a121 = —9/2, azp0 = az30 = a202 =0
v. a103 =a230=1, ag12 =a121 = —3, as20 =azp2 =0

(c) Similarly for ag 3o = (1/9)a3 ; 5, we obtain the solutions
ia1p3 =1, azp2 = —3/2, a0 =a121 =az30=az12 =0

i a103 =1, az02=3/2, az20=a121=az30=az12=0

. a1 03 =az30=1, az12=a121 = -3, ag20=azp2 =0
It’s easy to see that several solutions are repeated above. For example cases
(11.11 = 2(b)i) and (2(a)iii = 2(b)ii). We claim that there are only 5 solutions
to the problem when a3 = 1 which are given in the theorem.
Analysis of the theorem cases with a;93 =1

— 2a- In this case system (5.13) reduces to

b=y —9/2yz* +°
§ = —x — 3/2xy>

which is a cubic homogeneous perturbation of linear center with iso-

chronous center at the origin. Indeed, we use the change of coordinates

(x,y) — (%, %) we obtain system S*3 given in [52, 175]. A first integral,

a linearizing change of coordinate and a transversal commuting system

are established for homogeneous perturbations (see[145, 52]).
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— 2b- System (5.13) reduces to
i=y—32%y+4°
§=—x+2° -3y’

which is an homogeneous perturbation of linear center, by the change of
coordinates (x,y) — (y,x) reduces to system S*; of [175, 145, 52].
— 2c¢- and 2d- For these two cases system (5.13) reduces to

T=y+ y3

y=—x+3/2y>
We see that by the change of coordinate (z,y) — (y, z), we have a Liénard
systems z” + f(x)z’ 4+ g(z) = 0 satisfying

o) = ¢ (0)z + 2o /0 s (s)ds)? (5.19)

then the origin is an isochronous center. See [61, 64, 5] for more details
about characterization of isochronicity for Liénard equation.

— 2e- In this case system (5.13) is a time- reversible system with an isochro-
nous center at O. Indeed, in polar coordinates it reduces to

7= —1/2sin (0) r2V/2 + 1/273sin (26)
0 =1+ (-1/2cos(26) +1/2)r% —1/27cos () V2

which belongs to the family ii) (with Ry = r —@ if ago0 =ag02 =

SH

g) and (R =71 = 72 if a0 = asp2 = — 22) of the theorem 8.11 in
Garcia thesis, see also system C'Ry4 of [52].
3. a1,0,3 = —1. When executing the normal form Maple code, there is no change

from the case a1 93 = 1 : the coefficients of radial component of system (5.11)
are such that agjy1 = 0 until order N = 6. The first six necessary condi-
tions to have a center are satisfied. On a similar way as the case a3 = 1,
for analyzing isochronicity we are concerned by the angular component. We
compute the Grobner basis ,denoted GG_1, of the obtained first six quantities
in the angular component. We obtain an ideal of 27 polynomials such that
its first element is

2
(2,2,002,3,0 (a2,1,2 + 9(12,3,0) .

Then we analyze the isochronicity problem in the following three cases, which
are the vanishing of each of the factors of the above expression.

(a) For az 30 = 0, we substitute this assumption in G_;. We compute again
the Grobner basis associated to this case. We obtain a basis of 14 po-
lynomials. when we solve it we obtain the unique real solution to the
problem :
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iaros=—-1,a121=9/2,a212=3/2,a230=a220=azp2 =0
(b) For az 20 = 0 we do the same as for the last case and obtain the two real
solutions
L ajo3=as30=—1, a121 =az12 =3, az20=az02 =0
. a103=—1,a121=9/2,a212 =3/2,a230 =a220 = a202=0
(¢) agz0=—(1/9)a3 5 in the same way as for the first and second cases we
obtain
L ajp3=as30=—1, a121 =az12 =3, az20=az02 =0
We conclude that in the case a1,03 = —1, we have only two solutions to the isochro-

nicity problem.

Analysis of the theorem cases with a;93 = —1

These two solutions are cubic homogeneous perturbations of the linear center,
which can be found in [52].

— 3a- in this case, system (5.13) can be written

& =y+3ay -y’
y=—x—a>+3ay°

by the change of coordinates (z,y) — (—x, —y), it reduces to system S*; of
[175, 145, 52|, which have an isochronous center at the origin.
— 3b- system (5.13) can be written

b=y +9/2yz* —?
§ = —x 4 3/2xy>
x

V2
with isochronous center at the origin O given in [52, 175].

That ends the proof.

we use the change of coordinates (z,y) — (%, ) we obtain system S*3

5.3.3  Perturbation a3

Consider the system

&=y +a1212% + a1 307 } (5.20)

y=-—x+ a2,2,0332 + a2,0,2y2 + a2,3,0$3 + 02,1,23Uy2
Theorem 25. System (5.20) with a3 # 0 has no center at the origin. Moreover,
system (5.20) has an isochronous center at the origin O if and only if it reduces

to system (5.4) and its parameters satisfy one of isochronicity cases from those of
Theorem 21.

Analogously to lemma 2 we have to analyse a1 309 = £1.
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Executing the Maple code, which gives the normal form of (5.20) in it’s polar
form (5.11)

N N
P23 anr i E 00N, d= 143 yar® + 0N
j=1 j=1

we obtain in the radial component such that ag = j:%, then in this case, the singular
point can not be a center.

5.3.4  Perturbation asg3

This perturbation represents system (5.4) perturbed by the additional monomial
with the parameter as 3

T=y+a z?
Yy 1,2,1T7Y } (5.2”

. 2 2 3 2 3
Yy=—+a220r" +az0,2y" + a230x" + a2122Y" + 02,0,3Y

Theorem 26. System (5.21) with azp3 # 0 has no center at the origin. Moreover,
system (5.21) has an isochronous center at O if and only if it reduces to system (5.4)
and its parameters satisfy one case of isochronicity conditions given in Theorem (21).

Analogously to lemma 2.

Consider ag 3 = 1.

Executing the Maple code, which gives the normal form of (5.21) in it’s polar
form (5.11)

N N
P = Za2j+1r2j+l L O, =11 Z@jﬂrgj + O(r2N+2)
Jj=1 j=1

we obtain in the radial component such that az = :I:%, then in this case, the singular
point cant be a center.

5.3.5  Perturbation a;

This case represents system (5.4) perturbed by the monomial with the parameter
a1,1,2

T=y+ a1,2,1$2y + CL1,1,295?J2 } (5.22)

= —x + ag202” + az02y” + az302° + ag,1 27y
Theorem 27. System (5.22) with a11,2 # 0 has no center at the origin. Moreover,

system (5.22) has an isochronous center at O if and only if it reduces to one case of
isochronicity from those of system (5.4).

when a1,12 # 0 we obtain in the radial component a3 = i%, then in this case,
the singular point at the origin cant be a center.
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5.3.6  Perturbation ass;

This case represents system (5.4) perturbed by the monomial with the parameter

a2,2,1

. 2
r=9y+a121x
yrmery } (5.23)

. 2 2 3 2 2
Yy=—T+az202" +a20,2y" + 02302 + 02122y~ + 02212y

Theorem 28. System (5.23) with az21 # 0 has no center at the origin. Moreover,
system (5.23) has an isochronous center at O if and only if it reduces to one case of
isochronicity from those of system (5.4).

By the same reason from the one of the last case, we substitute as21 = %1 in
the system, then we obtain in the radial component ag = j:%l, in this case, the
singular point at the origin can not be a center.

5.3.7 Perturbation a; >

This perturbation represents system (5.4) with an additional monomial aj ¢ 21>
in the first equation .

T=y+ a1,2,1562y + CL1,0,2?J2 } (5.24)

. 2 2 3 2
Yy=—2+a220r" + a20,2y" + 62307 + a2,127Y

Theorem 29. System (5.24) with a1,02 # 0 has no isochronous center at the origin.
Moreover, system (5.24) has an isochronous center at O if and only if a192 = 0
and it reduces (modulo a linear change of coordinates) to system (5.4) such as its
parameters satisfy one of the four cases given in Theorem 21.

Démonstration. Since we have a quadratic perturbation of system (5.4), thanks to
Remark 1 we study the cases ajo2 € {0,1}. If a192 = 0, system (5.24) admit
an isochronous center at the origin if and only if it reduces to (5.4) and its para-
meters satisfy one the isochronicity conditions given by Theorem 21. We assume
a1,02 = 1, and we compute first the radial component of the normal form in po-
lar coordinates. The first radial component oy = —ag0,2/4, then we substitute the
assumption as g2 = 0 in the remaining five ap;41 and we compute the associated
Grobner base, we find a5 = a2, (a2,1,2 + a1,2,1). We continue the analysis in the
three cases :

1. as20=0
2. (agn2+ai21)=0

Unfortunately, we computed in each case the Grébner base and there are no common
roots between the multivariate polynomials (241 of the angular component.
O
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5.3.8 Perturbation a5

Consider the system

T=y+ a172,1:172y + (ILQ’O:L'Q } (5 25)

. 2 2 3 2
Yy=—x+az20r" + a20,2y" + a230%" + a2,127Y

Theorem 30. System (5.25) with aj 20 # 0 has an isochronous center at O if and
only if ,modulo a linear change of coordinates, its parameters satisfy

as30 = —4/9,a212=0,a121=0,a220=0,a202 =0,a120=1

Démonstration. Consider the case aj20 = 1. We compute first, under this as-
sumption, the radial component of the normal form of system (5.25). We obtain
a3 = ag20/4. Then the first necessary condition to have a center at the origin is
the vanishing of ag 2. We substitute this additional assumption in the remaining
coefficients of the radial component (as . ..a13). A common factor appears which is
a2,0,2-

Hence we obtain two cases to analyse center conditions as 92 = 0 and az g2 # 0.
For the case ag 2 # 0, we divide all the expressions of the coefficients of the radial
component by as 2. We compute the associated Grobner basis which is generated
by 8 polynomials and gives 3 cases for each one the first six necessary conditions for
the center are satisfied. Namely the following

{a212 =0,a121=0,a220=0,a202 =0,a120=1,a230 = —3/4}
{asp0=10,a120=1,a230=0,a202=—1,a212=—a121}
{a220=0,a120=1,a230=0,a212 = —ai21,a202 = 1}

The first solution is rejected, because we have assumed that as 2 7 0.

For the second and the third solution of center condition investigation, we substi-
tute each of those into the angular component coefficients expressions. We compute
the Grobner bases of the obtained multivariate polynomial systems. Unfortunately
in the two cases it gives Grobner basis = [1] which means that there are not common
roots.

We return to the remaining case a120 = 1, a220 = a202 = 0 which ensures
the first six necessary conditions of the singular point at the origin to be a center.
Substituting this assumption in the angular component coefficients and computing
its associated Groébner basis which is generated by three polynomials. This gives the
unique solution to the problem of isochronicity

as3,0 = —4/9, a1p0 =1, az12 = a121 = a22,0 = a202 =0

Then system (5.25) reduces to

i =y+ 2>
y=—x—4/923
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Which is a Liénard isochronous system with f(x) = —2z, g(z) = = + 4/92® satis-
fying

, 551, [* 9
9(x) =g (0)z + —5 ([ sf(s)ds)
0
]
5.3.9  Perturbation ay ;
. 2
rT=y+ai21r7y
. 9 9 3 9 (5.26)
Yy=—x+ag20xr" + a202y" + 0a21,1TY + a230T" + a212TY

Theorem 31. System (5.26) with az 11 # 0 has an isochronous center at O if and
only if its parameters satisfy one of the following two cases

1. as11 =1, asz0=—1/9, a2 =a121 = az20 = a202 =0

2. az11 =1, az12 = —-2/9, a121 =1/9, a220 = azp2 = a230 =10
Démonstration. Consider the ag 11 =1

We compute first, under this assumption, the radial component of the normal

form of system (5.26). We obtain a3 = (ag,0,2 + a2,2,0)/8, then the first necessary
condition to have a center at the origin is the vanishing of ag.

We substitute this additional assumption a2 = —a220 in the following co-
efficient of the radial component as = —1/48a202 (a1,2,1 — @212 + az3,0), then it
appears two cases to analyze : {a27072 = a22,0 = 0} and {a27072 = —a220, @1,2,1 —

az12+ azz30 =0}

1. ag02 = az2,0 = 0 We substitute this additional assumption in the remaining
coefficients of the radial component asz, ..., a3 which gives a3 = a5... =
a13 = 0. Hence, the first six center necessary conditions are satisfied.

Substituting the assumptions into the angular component coefficients expres-
sions, computing associated Grobner basis gives the two real solutions. The
first one is

{a21 =1,a230=—1/9,a212 = a220 = a202 = a1 21 = 0}

under which system (5.26) reduces to

T=1
§=—x+ay—1/92°
we have an isochronous Liénard systems with
f(z) = —zand g(z) =z +1/923

which satisfy
p 551, [* 9
o(@) =g O+ (| sr(eyis
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The second one is
{as20=0,a202=0,a211=1,a230=0,a212=—2/9,a121 = 1/9}

under which system (5.26) reduces to

@ =y +1/92%y
y=—x+xy—2/9xy°

By the change of coordinates (z,y) — (y,x) we obtain

i = —y+ay—2/92%y
y=x+1/9xy>

Which belongs to the Liénard Type equation (5.2) with f(z) = —=3 (22 —3) ™"
and g(z) = 1/9x (2x — 3) (x — 3). The isochronicity of this last system is
proved since it belongs to the case 9 of the Theorem 3 of Chouikha et.al
in [63].

2. a2 = —ag20 and ajp1 —az12+az30 =0

Unfortunately in this case, after computing Groébner basis, no real solutions
are found.

O

Theorem 32. System (5.4) has an amplitude independent frequency synchronizer
at O if and only if its parameters satisfy one of the cases of Theorem 3-Theorem 11.

5.4 Conclusion

To summarize, for the eight monomial perturbations studied in this paper we
have identified all possible amplitude independent frequency synchronizers. Moreo-
ver, we claim that all isochronous cases are known in a fragmented literature but our
study insures that for the studied family there are no other (necessary conditions).
Each of them was found in a classification of a specific family of planar differen-
tial systems which are different from the context of the ones studied in this paper
(synchronization). For isochronous centers of Liénard systems the reader can see
for instance |64, 52]. The papers [62, 63| are concerned with the planar differential
Liénard Type equations. For cubic time reversible systems see [52, 100, 56| and for
cubic homogeneous perturbations of linear center see [52, 100, 145].






CHAPITRE 6
Analysis and control of quadrotor
via a Normal Form approach

Arial vehicles are often modeled by high dimensional dynamical systems. This
work shows that standard techniques of qualitative theory of differential equations
(center manifold /normal forms) may be directly applied to such systems for control
aim. The proofs of the results of this chapter can be found in [216].

This paper focuses on the analysis and control of some mathematical models
representing the dynamics of a quadrotor. By using a normal form approach, the
highly coupled parts in the quadrotor system are eliminated, while all possible pro-
perties of the original system are not changed. The bifurcations of the system are
then analyzed. A two-dimensional system is deduced at the origin which can de-
termine the stability and possible local bifurcations of the system. Based on the
normal form and indirect method of Lyapunov, we propose a state feedback control
method which, compared to a standard PID control, has faster response time and
less tracking errors especially with wind disturbance.

6.1 Introduction

The quadrotor (see in Figure 6.1) is a mini unmanned aerial vehicle (UVA)
with four rotors, which has been widely studied in the last decades [120, 27, 21,
217|. Tt is a system with four inputs, six outputs and highly coupled states. Due
to its simplicity both in mechanical structure and maneuver, it is widely used in
surveillance, search and rescue, mobile sensor networks [120]. Many methods have
been proposed for controlling quadrotors. For example, Bouabdallah et al.[27] have
proposed a backstepping control used separately in two subsystems. Besnard et
al.[21] have proposed a sliding mode control driven by a disturbance observer. Wang
et al.[217] have presented an event driven model free control which can avoid heavy
computation. However, to the best of the authors’ knowledge, the bifurcation of the
dynamical system have never been studied.

The method of normal forms is an useful approach in studying the dynamical
system properties [134]. Its purpose is employing successive coordinate transforma-
tions to construct the simplest form of the system. The normal form exhibits all
possible properties of the original system. The normal forms of any degree with a
single input were obtained by using change of coordinates and feedback [127]. For
multi-input systems, the normal forms are deduced from the system with two inputs
[208]. Based on the normal forms, the bifurcations and its control were studied by
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FIGURE 6.1 — The quadrotor(right) from Ascending technologies(Available at
ESIEE).

several authors [127, 131]. Center manifold is usually applied with the normal forms.
It reduces the system to a center manifold associated with parts of the system with
the eigenvalues with zero real parts at a bifurcation point [47].

To the best of our knowledge, the normal form and center manifold theories have
never been used in the analysis and control of quadrotor. In this paper, the normal
form of the quadrotor system is firstly calculated. By using such a methodology, the
highly coupled parts in quadrotor system are eliminated. Under certain control laws,
the normal form is reduced into a two dimensional system at the bifurcation point
by using center manifold theory. Also, a simple control method based on the normal
form using state feedback is proposed. The control laws are proposed to ensure the
asymptotical stability of the system by moving all the eigenvalues of the system to
the open left half plane. Comparing to PID control, the proposed method has faster
response time and less tracking errors especially when there is wind disturbance, as
illustrated at the end of the paper. The interest of considering such control laws lies
in the simplicity of the controller as well as in its practical implementation facility.

The paper is organized as follows : In Section 6.2, the model of quadrotor is
given. In Section 6.3, the normal form of quadrotor is deduced. In Section 6.4, the
bifurcation of the system under certain control laws is analyzed. In Section 6.5,
simulations with and without wind disturbance using the proposed method and
PID control are given.

6.2 The quadrotor model

The chosen model of quadrotor is depicted in equations (6.1). The rotation angles
¢, 0 and v are along the world axis z, y and z respectively, namely roll, pitch and
yaw. w;(i = 1..4) are the accelerations caused by four rotors, which are the inputs
of the system. (g = 9.8m/s? the gravity).

T = —wysind, 1 = wicoshsing, Z = wicosbcosp — g,
o = w, 6 = w, W = wy. (6.1)
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We introduce the variables as 1 = =, x9 = &, x3 = ¥y, T4 = Y, T5 = 2, Tg = 2,
T7 = ¢, T8 = gb, r9g =0, 10 = 9 T11 = Y, T12 = d) Therefore, we can rewrite the

system as :
T1 = x9, 9= —wisin(xg), T3 = T4, x4 = wycos(xg)sin(xr),
T5 = xg, &= wicos(xg)cos(zy)—g, I7=xg, Ty = wa, (6.2)
T9 = X109, %10 = W3, T11 = T12, T12 = wy.

6.3 Normal form of the system

It is easy to see that the equilibria of the system (6.2) are x. = (c1,0, ¢2,0, ¢3,0, km, 0, km, 0, ¢4, 0),

w = (g,0,0,0), where k = 0,+1,£2, ..., ¢;(i = 1..4) € R are constants and ¢ is the

gravity. Note in the real control system, ¢, 0 € (—m/2,7/2) and ¢ € [0, 7). Therefore,

without losing generality, only the equilibrium zy = (z,w) = (0, 0,0,0,0,0,0,0,0,0,0,0, g,0,0,0)

is considered. We move xg to the origin by changing the coordinates of the inputs

w1 = ul + g, w2 = U9, w3 = ug,ws = u4. Then, using the Taylor series of function

sin(x) and cos(z) at © = 0. The system (6.2) can be written in polynomial form as

follows. Here, O® are the polynomials with 5th and higher degree :

. . gxg ulx
Tl = T2, 9622—9969—%1%9—#?4- 69+O5
3 2 3 2
. . gr gragxy uir U1 TT7
i3 = x4, ©4 = grr+ugwy — ot — 970 L _ 9L 4+ 05,
6 2 6 2
2 2 2 2,.2 4
. . qx qzr U1 ulx gx gryT gr
g5 = g, dg=up — r — 2 — L 9 T ST 4 29 4 O
2 2 2 2 24 4 24
T7 = Tg, g = U2, T9 = T10, L10 = U3, T11 = T12, L12 = U4.

Using the state and input transformation y; = x1, yo = X2, Y3 = X3, Y4 = 4,

Ys = Ts, Y6 = L6, Y7 = g&7, Ys = g8, Y9 = gxg, Yio = gxio, Y11 = T11, Y12 = 212,
v] = uy, V2 = gug, U3 = gug, V4 = u4, we change the system (6.3) into Brunovsky

form :
U1 = Y2, Yo =—Yg— Ulgyg 69 2 + ?gyE’ +0°
Us = Y1, Ya=yr+ % - % - é{i - 1231;3; - v12@;7y9 + 0%, (6.3)
B B B B ap R e
Yr = yYs, Ys=U2, Yo =1UYi0, Y10 =703, Y11 =VYi2, Y12 = V4.

The system (6.3) can be written as :

g =fy) + 9= Ay + fOy) + fOy) + Bv + gV (y)v + ¢@ (y)v + @'4)

where A, B are the coefficients of the linear parts, f(y), ¢/ (y)v are the second
degree homogeneous polynomials of the system, £ (y), ¢ (y)v are the third degree
homogeneous polynomials.
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We take a third-degree homogeneous transformation for example [132] :
y=2+¢2() + ¢ (2) (6:5)

which z are the new states of the system. ¢(2)(z) is a second degree homogeneous
polynomial and gb(3)(z) is a third degree homogeneous polynomial of the states z,
whose coefficients will be defined later.

We get the derivative of equation (6.5). Therefore, the derivative of the new
states z are :

dp@  dep® oy

2=I+ P + 7 (6.6)
where,
dp@  de®) o de®  dp® do? ) dop®) ) dp@ dp3)
1 =1- — 2
(I+ dz + dz dz dz + dz )+ dz * dz dz

In (6.4), we rewrite the f(y) and ¢g(y) using the new states z.

f) = AW+ P + Oy +0* = Az + AP (2) + fD(2) + AP (2) + fP)(2)...
9y) = B+gPy) +9@ @) +0°=B+gY(z)+ P (6P (2) + 9P (2)...

Therefore, with the help of the equations (6.4), (6.6), by now we have the new
system :

(2) )
do® | do

(3)
oA Bv+ A¢' (2)

i =Az+ Bu+ 4¢P (2) + fP(2) + ¢V (2)v —

)

O + 0D+ V@O~ 0 (46D () + 1O (2) + V(o)
dop®) do® 1

% (Az + Bv) + ( P )?(Az + Bv) + O

For the simplicity of the system, the states z and the inputs v should be separated. In
the third degree normal form, the polynomial ¢(V)(z)v, g(® (2)v should be canceled.

2
_dT g

dz 0

g (z)

dzg & dz + dz

(2) (3) (2)
90 () + g (6 () - B gy~ 90 g (00

Therefore, the transformation in equation (6.5) should be :

2629 2627

¢(2)(Z) = (07 _7707 77070707070707070)7

2 2
B3)(5) = _ 2627 2629
¢ (z) = (0,0,0,0,0, 27 22V 0,0,0,0,0).
Using the same method, we can calculate the normal form of any degree. A Maple
package ‘QualitativeODE’(Available upon request) has been made for calculating the
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normal form of quadrotor. Using this programme, we get the third degree normal
form of the system (6.3) as :

3 2
. 2629 . 26210 29 Z729 4
2= 22—, Z9 = —Z9 + — 535" 52 1O,
g 3g 2
3
. 2627 . Z6R8 z 4
z3 = Z4-|—77 2’4:27—74-7724-0, (67)
g g 39
Z6Z$ 262’3 Z% Zg Z6RTR8 2629210 4
BT Mg e ATV g gt et O
g g g g g g
&7 = 28, 28 = V2, Z9 = 210, 210 = V3, 211 = 12, 212 = V4.

6.4 Bifurcation and simplification of the control system

6.4.1 Bifurcation of the roots

It is easy to see that in the linear part of the equation (6.7), z1 is related only
to 29, 29, 210, V3 ; 23 is related to zy4, 27, 28, o ; 25 is related to zg, vy ; 211 is related to
212, v4. Therefore, the control laws can be defined as :

v = Kiizs + Koz, vy = Ko123 + Koozg + Kozzr + Koyzg,
vy = Kuzi1 + Kaszio, v3 = K3121 + K3229 + K3329 + K34210.

In this way, we can move the related eigenvalues in each group separately without
changing the eigenvalues in other groups. Here, we define v;(i = 1..4) as :

v = —256z5 + K226, vy = —1002z3 — 30824 — 25627 — 3223,
vy = —1024z211 + Ky2219, v3 = 10021 + 30829 — 25629 — 32219.

The system has three equilibria Pf = (0,0, 0,0,0,0,0,0,0,0,0,0), Ps = (0,0, 43.45,

100+ 30

501

-50

\ / 50 100

() (k)

-1004

FIGURE 6.2 — The eigenvalues when Kjs changes from -150 to 150 : (a) the real
parts. (b) the imaginary parts.

0,-0.057,0,-16.97,0,0,0,0,0) and P§ = (0,0, —43.45,0,—-0.057,0,16.97,0,0,0,0,0).
However, only the origin P can be stable when K9, K42 change.
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At the equilibrium Pf, for simplicity K12 = K2, when K9 changes, the real and
imaginary parts of the eigenvalues are in Figure 6.2. When K79 < 0, the system has
four eigenvalues with positive real parts, and the system becomes unstable. When
Kis > 0, the system has all eigenvalues with negative real parts, and the system is
asymptotically stable. When Kjs = 0, the system has two pairs of pure imaginary
eigenvalues £16¢ and +32¢, and all other eigenvalues have negative real parts, which
is a four dimensional center manifold. The stability cannot be determined by the
linear part of the system. It depends on the nonlinearity of the system.

6.4.2 Center manifold : Hopf point

The aim of this part is to get the reduced system which can determine the
stability and possible local bifurcations of the system at one bifurcation point [111].
A system can be written as :

&= A(b)x + F(x), x € R"

where b is a free parameter, b € R.
At its origin « = [0, ...,0], J(b) is the Jordan form of the matrix A(b) and @ is
a matrix which enables Q(b)J(b)Q1(b) = A(b). Therefore, we have :

Po= QUIMQ e+ FE) = Q)i = JHQ B+ QT (B F ()
we define y = Q71 (b)x, then
j=J0)y+Q ' DFQ(b)y) = J(b)y + F(y) (6.8)

we can separate the Jordan matrix J as matrices B and C' whose eigenvalues have
zero real parts and negative real parts respectively. Therefore, we can rewrite the
system (6.8) at the origin with z = [0, ..., 0].

Yo = Byo+[f(yo,y-),  9-=Cyo+9(y,y-)
Since the center manifold is tangent to E¢(the y_ = 0 space), we define
y_ = h(yo,b), h(0,0) = Dh(0,0) =0, b=0. (6.9)

We can calculate the function h(yo, b) by using

y— = Dh(yo,b)yo = Dh(yo,b)[Byo + f(yo, M(v0,b))] = Cyo + g(yo, h(yo, b))

Therefore, we can get the local evolution equations of 4y which can determine the
stability of the original system.
In quadrotor center manifold analysis, the control laws are defined as :

vy = —2b56z5 —bzg — zg’, vg = —10023 — 30824 — 25627 — 3223,
V4 = *10211 — 242’12, V3 = 10021 + 30822 — 25629 — 32210.
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The bifurcation of the system is like in previous subsection. When b < 0, the sys-
tem has two eigenvalues with positive real parts. When b > 0, the system has
all eigenvalues with negative real parts. When b = 0, the system has two pure
imaginary eigenvalues +16¢, and all other eigenvalues have negative real parts.
The stability depends on the nonlinear parts of the system. We can use the cen-
ter manifold theory to simplify the system, and further simplify the study of the
bifurcation of the system. In this control system, yo = [y1,%2]7 = [z5,26]7 and
Yo = Y3, Y4, Y5, Y6 Y75 Y85 Y9, Y10, Y11, Y12) " = [21, 22, 23, 24, 27, 28, 29, 210, 211, 212"

We seek a quadratic center manifold (a are parameters to be defined later) :

Yi = ainool; + @io20Y3 + @ioo2b® + aitioyiy2 + aio1y1b + aioniyed, i =3..12

Using the method mentioned before, we get h(yo, b) = [—0.62b, —0.62b%, —0.76b,
—0.76b%,0,0,0,0, —0.42b%, —23.58b%] in equation (6.9).

Therefore, the reduced system on the center manifold can be written :

g1 = 16ys — 0.416* — 0.0116° — (b + 0.0576%)y; + 0.00024y3
o = —16y; 4+ 0.67b%y (6.10)

In the reduced system, when b is positive (negative), the origin is a stable (unstable)
focus. When b = 0, the origin is a center. The phase portrait of equation (6.10) when
b= —-0.5,b=0and b= 0.5 are depicted in Figure 6.3.
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FIGURE 6.3 — The phase portrait of the reduced system : (a) b=-0.5. (b) b=0. (c)
b=0.5.

6.5 Quadrotor control

Here we propose a control method based on the normal form and Lyapunov
theory. In equation (6.7), the Jacobian matrix of the system can be easily found.
If the system is time invariant, the indirect method of Lyapunov says that if the
eigenvalues of Jacobian matrix of the system at the origin are in the open left half
complex plane, then the origin is asymptotically stable. Therefore, we can define the
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state feedback as follows to move all the eigenvalues of the system to the open left
half plane. z,,y,, z», ¥, are the references.

v] = —256(25 — 2,) — 3226, vg = —1700(23 — y,) — 100024 — 25627 — 3223
—256(211 — ¢r) — 322’12, V3 = 1700(2’1 — .21?7«) + 100022 — 25629 — 32210

V4

The simulation task is to let quadrotor follow a square path with the length of
2m while hovering at the altitude of 10m, which is given in Figure 6.4. The totally
sample time is 20s. For comparison, the simulations using PID control are also given.
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FIGURE 6.4 — (a) Reference trajectory for the quadrotor. (b) Wind disturbance.

6.5.1 Simulation without wind disturbance

The simulation results are given in Figure 6.5. The response time using the
proposed method is less than using PID control.

6.5.2 Simulation with wind disturbance

During the trajectory, there may have wind disturbance with velocity 1m/s as
in Figure 6.4, which occurs in all x, y and z axis. The simulation results are given
in Figure 6.6. Both methods can keep the stability during the wind disturbance.
However, using the proposed method, there are less tracking errors.

6.6 Conclusion

In this paper, the normal form of quadrotor is deduced. A Maple package ‘Qua-
litativeODE’(Available upon request) has been written for calculating the normal
form of any degree of the system. From equation (6.7), we can see that the highly
coupled parts in quadrotor system are eliminated. This makes the analysis of the
dynamical system easier. Under certain control laws, the system can be further de-
duced using center manifold theorem. A two dimensional system is deduced which
can determine the stability and possible local bifurcations of the control system at
the origin. Based on the normal form and indirect method of Lyapunov, we proposed
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(b) PID control.
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: (a) the proposed method.

a state feedback control method with computational simplicity as well as practical
implementation facility. This method achieved good results. In the simulations, the
system can remain stable with small tracking errors even if there is wind disturbance.
Also, this method has faster response time than PID control.
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Deuxiéme partie

Qualitative analysis of functional Differentis
algebraic equations and their appli-
cations

Analyse qualitative des équations
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”... If the proof starts from axioms, distinguishes several cases, and takes
thirteen lines in the text book ... it may give the youngsters the impression
that mathematics consists in proving the most obvious things in the least
obvious way.”

George Polya, Mathematical Discovery : on Understanding, Learning,
and Teaching Problem Solving, 1981.






CHAPITRE 7

Inverted Pendulum Stabilization :
Characterization of
Codimension-Three Triple Zero

Bifurcation Via Multiple Delayed
Proportional Gains

This work reproduces the results from [35] and [34], in which we design a multi-
delayed-proportional controllers allowing to stabilize the inverted pendulum by avoi-
ding a relatively high codimension of the zero spectral value. The center manifold
theorem for functional differential equations is exploited. The normal form of the
projected dynamical equations in the center manifold is then analyzed. Namely, we
consider the problem of stabilization of systems possessing a multiple zero eigenvalue
at the origin. The controller that we propose, uses multiple delayed measurements
instead of derivative terms. Doing so, we increase the performances of the closed
loop in presence of system uncertainties and/or noisy measurements. The problem
formulation and the analysis is presented through a classical engineering problem
which is the stabilization of an inverted pendulum on a cart moving horizontally.
On one hand, we perform a nonlinear analysis of the center dynamics described by a
three dimensional system of ordinary differential equations with a codimension-three
triple zero bifurcation. On the other hand, we present the complementary stability
analysis of the corresponding linear time invariant system with two delays descri-
bing the behavior around the equilibrium. The aim of this analysis is to characterize
the possible local bifurcations. Finally, the announced control scheme is numerically
illustrated and discussed.

7.1 Introduction

In this paper, we employ the classical problem of stabilization of a balancing
inverted pendulum on a horizontally moving cart (see for instance [10, 85, 135, 157,
199, 200]) to illustrate the control design and performances of delayed proportional
controllers. This problem is often used to discuss new ideas in control of nonlinear
dynamical systems. This is certainly due to the richness of its dynamics despite the
relative simple structure of the physical system. Among possible applications, we
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emphasize the modeling of the human balance control [152].

It is well known that the pendulum has two equilibria, one is stable and it cor-
responds to the pendulum pointing downwards while the other one is unstable and
corresponds to the upward position of the pendulum (inverted pendulum). There-
fore, the pendulum can be maintained in the upward position only in presence of an
appropriate control input. F.M. Atay pointed out (see [10]) that a simple position
feedback is not sufficient to obtain satisfactory closed-loop performances. In order to
solve the problem one needs additional knowledge such as the rate of change of the
position. Thus, a classical controller will contain a derivative feedback term. In [10]
the author proposed a proportional minus delay controller (PMD) to obtain asymp-
totic stability of undamped second-order systems modeling an inverted pendulum.
Doing so, the effect of the derivative term is obtained by using a delayed feedback. A
proportional controller that locally maintain the pendulum in the upright position
was also designed in [135]. In this work it is shown that, when the proportional
controller is delayed and the time-delay is not too large, the controller still locally
stabilizes the system. Among other results, the authors show the loss of stability
when the delay exceeds a critical value, a supercritical Andronov-Hopf Bifurcation
[134] occurs generating stable limit cycles.

To the best of the authors’ knowledge, PMD controllers were first introduced
by I.H. Suh & Z. Bien in [207]| where it is shown that the conventional P-controller
equipped with an appropriate time-delay performs an averaged derivative action and
thus can replace the PD-controller. It was emphasized that this strategy provides
quick responses to input changes but also the insensitiveness to high-frequency noise.

More recently ([200]), J. Sieber and & B. Krauskopf designed a delayed Propor-
tional Derivative (PD) controller that stabilizes the inverted pendulum on a horizon-
tally moving cart. Moreover, they complement the nonlinear analysis with the local
stability analysis of the linearized system around equilibrium. The later characterizes
all the possible local bifurcations and is based on the center manifold theory and
normal forms, which are known to be powerful tools for the local qualitative study
of the dynamics. The study emphasized the existence of a codimension-three triple
zero bifurcation. It is also shown that the stabilization of the inverted pendulum in
its upright position cannot be achieved by a delayed PD controller when the delay
exceeds some critical value 7.. In [201], the authors investigate some modifications
of the delayed PD scheme that allows extending the range of the admissible delay
by taking into account the angular acceleration. An alternative possibility is to in-
troduce an artificial delay in the angular position feedback. It is worth noting that,
replacing the derivative with its numerical approximation will not allow to directly
apply the results in [200]. Indeed, the behavior of a system (even a linear one) may
be different from the behavior of its approximation. In [153], it has been shown that
using a polynomial function (1—s7)" of arbitrary degree n to approximate an expo-

—57 allows finding stabilizing controller gains for the approximated system

nential e
even when they do not necessarily exist for the original one. Furthermore, introdu-
cing a deliberately delay was suggested in [197] to solve the static output feedback

sliding mode control problem for a broader class of linear uncertain systems. In-
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deed, it is shown that the reduced order sliding mode dynamics are stabilized by
the introduced artificial delay.

The use of PD controller needs the knowledge of the velocity history but in
some circumstances we are only able to have approximate measurements due to
technological constraints. In absence of measurements of the derivative, a classical
idea is to use an observer to reconstruct the state, but this might degrade the
performance to some extent [10] and it is, in general, computationally involved for
delay systems. In fact, when the position measurements are accessible by sensors,
one can avoid such degradation by restricting the design to delayed proportional
gains. However, it is important to mention that in some circumstances, which can be
justified by some technical or technological constraints, it may be more conceivable
to use sensors for the velocity and the acceleration rather than a position sensor.
The starting idea of our work is a result proposed by W. Michiels & S-I. Niculescu
in [166]. As proven there, a chain of n integrators can be stabilized using n distinct
delay blocks, where a delay block is described by two parameters : "gain" and
"delay". The interest of considering control laws of the form > ;" | v y(t — ;) lies
in the simplicity of the controller as well as in its easy practical implementation.
The performances of delayed controllers to overcome the challenge of stabilizing the
inverted pendulum are emphasized in the following recent works [10, 200, 135].

The main contribution of the paper is the analysis of a proportional controller
with artificial delays that is able to stabilize the inverted pendulum without the use
of derivative measurements. This type of controllers will be called multi-delayed-
proportional controllers (MDP) in the sequel. Our analysis agrees with the claim of
F.M. Atay [10] but extends it by proving that the knowledge of the delayed derivative
gain considered in the delayed PD controller [200] can be replaced by using two
delayed position values. We firstly use MDP controllers to reach the configuration of
multiple-zero eigenvalue described in [200] and secondly, we identify the appropriate
parameter values that stabilize the inverted pendulum avoiding the singularity. It
is worth mentioning that, if the presence of the root at the origin is independent
of the delay values, its multiplicity depends on the existing relations between the
delays and the other parameters of the system. Moreover, such a root at the origin
admits a bounded multiplicity [176].

We show that, on the center manifold, the considered MDP controller achieves
the same trajectories as the delayed PD considered in [200]. Moreover, we point
out that using the proposed MDP we are able to obtain the critical parameter va-
lues associated with a triple zero singularity for the delayed PD (see Remark 3).
In some sense, this can be seen as a discretization of the feedback state derivative.
By the way, such a constructive approach has been adopted in a different context
for the controller design developed in [166, 129]|. The stability analysis of the de-
layed linearized system employs the geometrical interpretation of the corresponding
characteristic equation proposed in [155, 110, 154]. An alternative technique for stu-
dying the stability of this class of systems is proposed in [202]. For more details on
the existing techniques, the reader is referred to [123]. We point out that we are
providing stability regions in delay parameter space. Thus, rounding the values due
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to numerical implementation does not generate troubles as far as the delays are far
enough of the crossing curves. This issue is known in the literature as fragility of the
controller and it mainly appears when the design is made for a continuous system
but the implementation is done in a digital fashion. A non-fragile controller allows
rounding numerical values without loosing stability properties. A methodology to
design non-fragile PI, PD or PID controllers has been presented in previous works
of the authors (see for instance [150]). The main idea is to chose the controller
parameters that maximize the distance to the closest tangent to the crossing stabi-
lity manifold (i.e. the manifold that separates to regions with different number of
unstable roots).

The remaining part of our paper is organized as follows. First, the model of the
inverted pendulum on a cart is introduced as well as some mathematical notions
used in the analysis. Next, a double delay block control strategy is presented and
analyzed. The analysis of the proposed controller includes the linear stability analysis
pointing out the Andronov-Hopf bifurcation as well as the multiple-zero singularity,
which suggests a central dynamics analysis. Conclusions, comparisons and future
work end the paper.

7.2 Settings and useful notions

7.2.1 Friction free model of an Inverted Pendulum on a Cart

In the sequel we consider the friction free model presented in [200] by adopting
the same notations. Denote the mass of the cart M, the mass of the pendulum m
and let the relative mass be ¢ = m/(m + M).

In the dimensionless form, if frictions are neglected, the dynamics of the inverted
pendulum on a cart in figure 11.2 is governed by the following ODE, see also [201] :

3 . 3e.
<1 - f cos2(9)> b+ geﬂ sin(20) — sin(6) + D cos(6) = 0, (7.1)
where D represents the horizontal driving force exerted by the control law.

In the next section, the horizontal control force will be referred to as position
feedback. This was suggested in [166, 129] in the context of stabilizing a finite
dimensional system consisting of a chain of 2— integrators : D = Zi:l a 0(t — 7).

In the sequel, we explicitly design the controller that avoids the triple zero sin-
gularity.

7.2.2 Prerequisites : Space decomposition for time-delay systems

Consider the general discrete delayed autonomous first-order nonlinear system
where its linear and nonlinear quantities are separated as follows :

%x(t) = ZAk x(t — 1) + F(x(t),...,z(t — 1)), (7.2)
k=0
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F1GURE 7.1 — Inverted Pendulum on a cart

where A; are n x n real valued matrices, the delays 75 are ordered such that 7; < 7;
when ¢ < j, 7, =r and 7; > 0.
The latter system can be written as :

b~ Lo+ Fla), (7.3)
dt

where 2 € C,., = C([—7,0],R"), 24(0) = z(t + 0) denotes the system state, L is a
bounded linear operator such that Lo = >}, Ay ¢(—7x) and F is assumed to be a
sufficiently smooth function mapping C,,, into R” with F(0) = DF(0) = 0 where D
is the Fréchet derivative. The linear operator £ can be written in the integral form
as Lo = fi)r dn(0)¢(0) where 7 is a real valued n x n matrix.

The linearization of (14.56) is given by

d

7T = Ly, (7.4)
the solution of which is given by the operator 7 (¢) defined by T (¢)(¢) = (., )
such that z(.,¢)(0) = x(t + 0,¢) for 6 € [—r,0]. This is a strongly continuous
semigroup, the infinitesimal generator of which is A = % with the domain

Dom(A) = {d) €Crp: % € Crp,d(0) = dq;(GO) = E(;S} .
It is also known that the spectrum of A is o(A) = 0,(A) (point spectrum) and
consists of complex values A € C satisfying the characteristic equation p(A) = 0, (see
[206, 151, 123] for further insights on the stability of delay-differential equations).
In the spirit of [75], let us denote by M the eigenspace associated with A € o(A).
We define Cy;,, = C([-r, 0], R"*) where R™* is the space of n-dimensional row vectors
and consider the bilinear form on Cy,, x C;.,, as proposed in [115] :

0 0
(¥, ¢) = 1(0) ¢(0) —1—/_ /0 (1 — 0)dn(0)p(T)dT.
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Let AT be the transposed operator of A, i.e., (¢, A¢) = (AT, ¢). The following

result enables the decomposition of the space C .

Theorem 33 (Banach space decomposition, [115]). Let A be a nonempty finite set of
eigenvalues of A, let P = span{M(A), A € A} and PT = span{ M (AT), X € A}.
Then P is invariant under T (t),t > 0 and there exists a space Q, also invariant
under T (t), such that C,, = P@ Q. Furthermore, if & = (¢1, ..., ¢m) is a basis
of P, and W = col(v1, ..., ¥m) is a basis of PT in Cy., such that (¥, ®) = Id, then

Q:{¢€Cr,n|(\l’,¢)=0}and
P={$p€Crpn|beR™: ¢ = Db}.

Also, T (t)® = ® B!, where B is an m x m matriz such that o(B) = A.

(7.5)

Consider the extension of the space (), that contains continuous functions on
[-7,0) with a possible jump discontinuity at 0, we denote this Banach space BC
(identified to Cy,,» x R™). A given function £ € BC' can be written as { = ¢ + Xo a,
where ¢ € Cyp, a € R" and Xy is defined by X¢(d) = 0 for —r < 6 < 0 and
X0(0) = Idyxyn. Then the Hale-Verduyn Lunel bilinear form [115] can be extended
to the space Cy;,, x BC by (¢, Xo) = ¥(0). Under the above consideration one can
write equation (14.56) as an abstract ODE :

i = Az + XoF (). (7.6)

where

Ad = ¢ + Xo[Lo — ¢(0)], (7.7)
with domain D(A) = Cp.+([=7,0],R™). Due to the projection II : BC' — P defined
by I(p+Xoa) = ®[(V, ¢)+¥(0)a] and the state decomposition such that z = Py+2z
where y € R"™ and z € Q@ N C’,}’n £ @Q'. Then, the equation (14.56) can be split into
two equations. Our interest lies essentially in the evolution equation for the finite
dimensional part of the space, i.e., the first equation of the following system :

{y = By + ¥(0)F(®y + 2),

' (75)
z=Agz+ (I - I)F(Py + 2).

For more details and insights, see for instance, [115, 92|. Assume now that F depends
on some parameter p, and denote the semiflow generated by (7.8) as S(¢, y, z, p), then
S is equivalent to the semiflow generated by (14.56) :

Theorem 34 (Existence and Properties of the Center Manifold). Let k > 0 and
Uy x Uy x Uy be a small neighborhood of (0,0,pp) € R™ x Q x R™. There ezists a
graph w : Uy x U, — Q of smoothness C* such that the following statements hold.
1. (Invariance) The manifold {(y,z) € Uy x Q : z = w(y,p)} is invariant with
respect to S relative to Uy x U..

2. (Ezponential attraction) Let (y,z) be such that S(y,z,p) € Uy x U, Vt > 0.
Then there exists § and t > 0 such that ||S(t +t,y,z,p) — S(t,§,w(7),p)|| <
Ke™t for some positive real number o and for all t > 0.
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7.2.3 Multiplicity of the root at the origin : Polya-Szeg6 Bound

Consider the quasipolynomial function A : C x RV, — C of the form :

N
ANT) =PRA) + > PN e ™7, (7.9)

k=1
where 7, K = 1,..., N are constant delays such that m < ... < 7v and 7 =
(1, ..., 7v) is the delays vector. Without any loss of generality, assume that the

polynomial Py is a monic of degree n in A and the polynomials Py are such that
deg(Pr) < n—1,V1 < k < N. One can prove that the quasipolynomial function
(11.4) admits an infinite number of zeros, see for instance [4, 20]. However, the
multiplicity of any root is bounded, in particular the root at the origin. The following
result, due to Polya-Szegd, gives to such a bound :

Proposition 1 (Polya-Szego, [176], pp.144). Let 11, ..., v denote real numbers
such that 71 < 19 < ... < 7N and dy, ..., dy positive integers such that di + do +
...+dy=D.

Let fi j(s) stand for the function f; ;(s) = s""1e™® for1<i<d; and1<j <
N. Let § be the number of zeros of the function

fis)= Y cijfig(s),

1<j<N,1<i<d;

=J IV, Lt

that are contained in the horizontal strip a < Z(z) < 5.

Assuming that
Z lck1| >0 and Z lex,n| > 0,
1<k<d1 1<k<dn

then
(v —m1) (B—q) (v —71) (B—«)
27 27
The proof of the mentioned Pélya-Szegd result is mainly based on Rouché’s

-D+1<t< +D—1.

Theorem [4]. It can be generically exploited to establish a bound for the multiplicity
of the zero spectral value that we denote by fipg. Indeed, setting a = 8 = 0 we get
fips < D —1. This gives a sharp bound when all the system parameters are left free.
Nevertheless, it is obvious that the Polya-Szegé bound does not change if certain
coefficients ¢; ; vanish without affecting the degree of the quasipolynomial function.

The above result from [38] sets the necessary and sufficient conditions guaran-
teeing the Poélya-Szegd multiplicity for the zero singularity.

Proposition 2 ([38]). The multiplicity of the zero singularity reaches the Pdlya-
Szego a bound if and only if the parameters of (11.4) satisfy simultaneously :

N k—1 (_1)j+1 a; 7k
ak=-> |aix+ L , 0<k<#-1 (7.10)
i=1 §=0 (k—j)!

where a;; stands for the coefficient of the monomial X for the polynomial P; for
1<i<N.
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Furthermore, it is shown in [38] that, under the nondegeneracy of an appropriate
functional Birkhoff matrix, the multiplicity of the zero root for the quasipolynomial
function (11.4) cannot be larger than n plus the number of nonzero coefficients of
the polynomial family (Py)i1<k<n, which is sharper than fpg.

Remark 2. Increasing the multiplicity of the zero singularity induces richer (more
complex) dynamics in the neighborhood of the steady state. We show in the sequel
that the proposed methodology is able to stabilize the solutions around the uns-
table equilibrium point even when the multiplicity of the zero singularity reaches its
maximum value.

7.3 Double Delay Block

Let the horizontal driving force exerted by the control law be D = a 6(t — 1) +
bO(t — 12). Thus, equation (11.36) can be written as a Delay-Differential Equation
(DDE) of the form :

= f(x(t),x(t —11),z(t —12),\), (7.11)

. N\T
where # = (x1,29)7 = (9(t),9(t)> and A\ = (a,b,71,72). The right hand side
f:RZxR%xR?xR*— R?is given by :

fl(%%za >\) = T2
Falz, 1, 2 \) = —%‘E sin(2x1)x3 + sin(z1) — cos(z1) (ay1 + bz1) (7.12)
2\, Y, 2, - 3476C082($1) )

where y = (B(t — 7). 0(t ~ ﬁ))T and = = (9(t —2).0(t - @)T

The phase space of (7.11)-(7.12) is the space of continuous functions over the delay
interval

[~ max(71,72), 0] with values in R%. Obviously f(—xz,—y,—2z,\) = —f(x,9,2,A),
and thus, the origin represents always an equilibrium point.

7.3.1 Linear Stability Analysis

As emphasized in Remark 2, we consider the maximum multiplicity for the zero
spectral value (the most complex configuration). Taking the relative mass ¢ = %
guaranties such a maximum multiplicity. Note that, if € € (0, 1), and regardless of
the multiplicity of the zero singularity, all the following steps apply albeit in a simpler
fashion. One easily checks that the zero multiplicity is less than four (otherwise 7

and 7o have opposite signs). Indeed, the linearization of f with respect to its three
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arguments, x, y and z at the origin is given by :

0 1 0 0
alf(070707)‘):[ 16 0]782f(0a0a07)‘):[ 16 ]7

7

85£(0,0,0, ) [ ) 0]
3 ,» Uy Uy = .
~%p 0

Then, the characteristic function reads :
Az) = 2% + 1—76(616_”1 +be *™2 —1).

Several approaches can be used for characterizing imaginary crossing roots of
quasipolynomials as well as their crossing directions, see for instance [167, 202].
Here, we follow the idea proposed by [110, 155]. We introduce the stability cros-
sing curves T, which represents the set of (79,72) such that A(z) has imaginary
solutions. As the parameters (71, 72) cross the stability crossing curves, some cha-
racteristic roots cross the imaginary axis. Introduce also the crossing set €2, which is
defined as the collection of all w > 0 such that there exists a parameter pair (71, 72)
such that A(jw, 71, 7) = 0. Using Proposition 3.1 in [110] the following stability
characterization can be deduced :

Proposition 3. For a+ b < 1, the crossing set ) is empty so the system is delay
independently unstable. When a + b > 1, the crossing set ) reduces to one interval

(0,w"] and T is a series of open-ended curves Ty and TIUH are

v Where T,

v
connected at w".

We emphasize that

— when a + b > 1, a > b the crossing set §2 contains only simple solution of A

— when a +b > 1, a < b one has frequencies w € ) which are solution of

multiplicity 2 for A.

The function A has a root 0 along the red solid red curve in figure 7.4 given by
a + b =1, where the origin undergoes a pitchfork bifurcation.

In a similar way, we can introduce the stability crossing curves A in the para-
meter space (a,b) and the corresponding crossing set I". Thus A is the set of (a,b)
for which A(z) has imaginary solutions while I" consist of those frequencies w for
which there exists a parameter pair (a,b) such that A(jw,a,b) = 0. The stability
analysis in the (a,b) parameter space is summarized as follows :

Proposition 4. The crossing set I' consists of all frequencies satisfying :

I<w<

T —T2|
and for any given 11 and To the crossing curves are defined by :
sin(wTy)

sin(wty) :
14 22 , Vwel. (7.13)

sin(wT2)
sin(wTy)

b=

cos(wtg) — cos(wTy)
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Stability crossing curves Stability crossing curves

210 <10
8 8
6 6
4 4
2 2
% 5 10 15 20 % 5 10 15 20
T1 T

FIGURE 7.2 — Stability in delay parameter space for a = %, b= % on the left and
for a = %, b= % on the right

FIGURE 7.3 — Left : Dashed curve represents the stability crossing curve in (a,b)
parameter space for 71 = 1, 79 = % while the solid curve is the line a+b = 1. Right :
Zoom in the neighborhood of w = 0.

It is always possible to normalize one of the delays by a simple scaling of time.
Without any lack of generality, assume that 71 = 1. As can be seen in figure 7.3,
when w approaches 0 the crossing curve approaches the line a +b = 1.

The quasipolynomial function A has a purely imaginary root ¢ w if the gains a
and b satisfy (7.13). Thus, equation (7.13) defines the curve of Hopf Bifurcation in
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FIGURE 7.4 — Bifurcations curves of (7.11)-(7.12) in the gains (a,b) plan (solid
red=Pitchfork, discontinuous blue=Hopf) with 71 = 1 and 72 such that (top left)
Ty = I (top right) 7» = I the neighborhood of (-7,8) (bottom left) 7 = I + &
(bottom right) 7o = % - &

the (a,b) plane, dashed blue line in figure 7.4. We note also that substituting w = 0
in the expressions of a and b allows deriving the values of the gain guarateeing
an eigenvalue at zero of algebraic multiplicity 2. Substituting these values into the
third derivative of characteristic function A and replacing 75 = 71 + § leads to the
control loop latency 77 = 3(v/62 + 8 — 6 — ) already identified in [201] where the
linear analysis and a comparative study is made (PMD vs Acceleration-dependent
control). It is also shown that the "optimal" value of the control loop latency is
reached when ¢ = 0.

Remark 3. In [200], the authors consider D = a 6(t — 7) + b0(t — 7) and prove that
the truncated cubic central dynamics reduces to :

0 1 0 0
u=|[(0 0 1 |u+| O |,
a B oy u}
where «, 8 and « are small parameters, showing that the triple zero singularity can
be avoided.
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FI1GURE 7.5 — The delay difference h = 7 —71 vs 71 for conserving a triple eigenvalue
at zero

To recover the analysis established in [200], consider a horizontal driving force
D = ab(t — 1) + b0t — 1) — O(t — 71 — h)) where b = 2 and, without loss of
generality, assume that 71 < 7o, that is o > 0. Then limy_,oc D = af(t — 1) +
bé(t — 71). Thus, the configuration of a triple zero eigenvalue is ensured by the set
of conditions {a =1,b=7,h= 7%1712,7'2 = 7'1_1}. By imposing h to converge
to zero, 71 tends to 7 = 1 so that the gain b tends to b* = 7" = 1 which are,
as expected, the identified values in [200]. In Figure 7.5 we represent the delay

difference 7 — 7.

Remark 4. It is worth noting that the delay normalization (setting 71 = 1) does not
affect the existence of the triple zero eigenvalue. Indeed, when 7 is left free the set

-7 ) 872 7
a: = 7’ = —
St —7" 8m2—7"° 8n

ensures this configuration.

of conditions :

Now, to argue the above normalization, let us consider the simplest demonstra-
tive example ; a scalar equation with two delays : & = agz(t)+a1z(t—71)+a2x(t—72).
We introduce the following time scaling ¢ = (71 and consider a new variable v({) =
x(t). Thus, the dynamics of the new variable v is governed by

— dv(C) = x(t)jz =11 (apz(t) +arz(t — 1)+ axx(t — 1))

= by v(¢) +bro(¢ —1) +byv(¢ —7)

where b; = a;/7 for i = 0,...,2 and 7 = 7o/7. Which justifies as expected the
adopted normalization.
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7.3.2 Normal Form of the Central Dynamics

Several approaches exist to establish the decomposition of the Banach space
of continuous functions, see for instance [45, 200, 11]. In the sequel, we follow the
elegant approach based on the computation of the spectral projection presented
in [200]. It is worth to mention that this spectral projection is mainly based on
the bilinear form presented in the previous section justifying the universality of
the spectral decomposition modulo the chosen base of the generalized eigenspace
associated with pure imaginary spectral values.

The parameter point A\g = (ag, bo, 1%, 2*) = (=7,8,1, %) characterizes a triple
zero eigenvalue at the origin. As said above, it is always possible to re-scale the time
in order to normalize one of the delays to 1 (71 becomes 1 and 79 becomes 75/71) so

the rescaled system (7.11)-(7.12) reads

fl(x’)‘) = T2,
Fol, \) = (=% sin (221) 22 + 742 sin (z1) — 74 cos (z1) (ays +bz1))  (7.14)
T 1= 3 (con (o)) '

Let X be the Banach space R? x C([—1,0],R?). Consider

D(H) :={(y,9) € R* x C([-1,0],R?) : §(0) =y} C X,

and define the linear operator

H:D(H)C X - X,
H |: Yy :| — |: alf(oa 07 07 A)g(o) + an(()?O?O’ )‘)g(_l) + a3f(07 07 07 )‘)g(_%)
y 95y ’
(7.15)

where the spatial variable in C*([—1,0],R?) is denoted by s. The operator H is a
closed unbounded operator. It generates a strongly continuous semigroup 7'(t) of
bounded operators in Y = {(y,7) € R? x C([-1,0],R?) : §(0) = y} C X. The
semigroup 7'(.) is compact for ¢ > 1.

Let g be the nonlinear part of f i.e.

Yy _ gO(g(O)’g(_l)vg(_z)’)‘)
o([F])-[ree  ew
where
N N 7 - . 7
gO(y(0)7y(_1)7y(_§)7)\) = f(y(0>7y(_1)7y(_§)>)\)_

~ . 7
(01(0,0,0,0)5(0) + 82(0,0,0,)5(~1) + B (0, 0,0, V)i(~)).
System (7.11)-(7.12) is equivalent to the autonomous evolution equation :

&= Hzx+ g(z, ). (7.17)
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The decomposition of the Banach space reads X = P Q where P is the H-
invariant generalized eigenspace associated to the triple zero singularity and is iso-
morphic to R?, and @ is also H-invariant of infinite dimension. Next, we compute
® a basis of P satisfying H® = ®J, where :

10 1
010
01 0
(I)(S):[(ﬁl,(ﬁg,(ﬁg]: 2 ,andJ: 0 01
I s 5+1
0 00
| 0 1 s ]

We also compute the invariant spectral projection P : X — P satisfying Px =
Res,—o(z I — H)™L. Thus, Px = l1(2)¢1 + la(x) g2 + I3(7)¢3 where :

169 222179 222179 !
l —1(0) — y2(0) — g1(t —1)d
(@) = 350 0) = T000) — S | it =1
222179 7 676 5408 7
t—=)dt — — t t—1)dt+ —— t t— =)dt
7S7E /0 71 ( ) 75 A 1 ( )dt + 525 J, ?/1( 8)

512 7
t/‘tolt-—l )dt — t2~(t——§)dt
0

169 676 5408 7
l Z31(0) + == 3jo(0) + — t—1)dt — == t— =)dt
2(a) = ﬁﬂ)+3mm(%%%‘éyﬂ it — Ow( 9
128 1024 7
1 -+ 22 [P - Dar
8 128 [! 1024 (% 7
I3(z) = —32(0) + — | G1(t — 1)dt — — dt
() = S0 + 2 [ anle=na- = [Tinie-
which allows decomposing (7.17) to
, . o i A N
0 = Ju+W(0)go(®(0)v + o, D(=1)v + @(=1), B(=g)v +i(-3))

iy = 00 i + 0o (1) + D5 (L)

+ (I = 2(0)¥(0))go (B(0)v + g, S(=1)v + (1), (= v + B(~ )
w=&w—éwm%@mw+wm@—nwmu4»@egw+we£»
where wy = w(0) and :
169 222179
300 144000 1 s 14 s2
vo)=| & L é(s)::[ ?
0 1 s
0 8

5
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By using the Center Manifold Theorem presented in the previous section and the
following changes of coordinates :

35 4 5 9 7 4
=-7-—— b=8+ — 1 q
“ 7 128" 8 16" 768Br ’ (7.18)
vy = 13Uy, ve = U, v = ug, w = ¢, (7.19)

where r is a sufficiently small parameter, we arrive to the expansion of the graph
(the center manifold) in power of 7 which is of order 6, i.e., q(u, p, 1) = r8qs(u, u1, 1),
where p = (a, 3,7) and the expression of the flow on the local center manifold is

0 1 0 0
w=10 0 1 |u+| 0 | +r’R(u,pr), (7.20)
a B v

uf

where the remainder is a smooth function R : R? x R?® x R — R3.

7.3.3 Concluding remark

It is important to recall that, in a neighborhood of the origin, the stability of the
solution of the normal form (7.20) in the center manifold proves the local stability
of the solution of the initial infinite dimensional system (7.11). Moreover, one can
easily establish values for «, 8 and ~ so that the matrix associated with the linear
part of the normal form (7.20) be Hurwitz (all eigenvalues with negative real part).
Thus, choosing a sufficiently small value for the scale parameter r and using (7.18)
allow us to establish the values of the gains and the delays guaranteeing the stability
of the inverted pendulum.

It is important to note that the global bifurcation diagram is beyond the scope of
this paper. Furthermore, it is clear from the literature that the bifurcation diagram
for the triple zero singularity (in all generality) is very complicated not only from
a theoretical point of view but also from a numerical point of view [80, 81, 96].
However, under the Zy symmetry as for the cubic truncation of (7.20), we refer the
reader to [6] where such a type of symmetry is identified for the Chua equations.
The global analysis established in [200] applies for the present configuration since
the same cubic truncated normal form is considered.

Remark 5. We point out that a larger multiplicity for the zero singularity might oc-
cur when using a controller consisting in three delay blocks D = Zzzl arf(t — 1),
this is a natural consequence of Proposition 21, see also [38] for further details. In-
deed, the zero singularity codimension bound is equal to 4 inducing richer dynamics.

1. It is obvious that such a controller implies an additional coefficient
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Such a configuration is guaranteed by the following values of coefficients :

7 8722 + 7 7 8112+ 7
a; = = ag = —<
! 8 (87‘27’12—147'1—77‘2)(—’7’2—|-7'1)7 2 8 (—77’1+8T1T22—147’2) (—7‘2—1—7’1)’

(647’127'22 — 1127119 + 49) (87119 — 7) 7 T2 + 11
a = pry —_—
ST RBnn?—ldr —Tm) (—Tn+8mmi—ldr) T Brm—1
14 14

where T1 7é T, T1 ?é f’;ZTQZ, T2 7é f,;%r]? and 87'17'2 > T.

(7.21)

7.4 Pyragas-Type controller
By Pyragas controller, we understand a controller of the form
u(t) == a(0(t) — 0(t — 1)).

It is worth mentioning that such a controller proved interest in the stabilization
of unstable periodic orbits, see for instance, [177, 178|. Furthermore, in Laplace
domain, the corresponding characteristic function includes an additional root at the
origin.

In this section we consider the control law

D(t)=a (0(t) —0(t—11)) +b (6(t) — 6(t — 12)) + cO(t),

and consider the relative mass ¢ = 3/4. Equation (11.36) can be written as a DDE
of the form :

&= f(z(t),x(t — 1), x(t — 12),\), (7.22)

AT
where z = (z1,23) = (0(t),0(t)> and A = (a,b,71,72). The right hand side
f:RZxR%xR?xR*— R?is given by :

fl()\) = I,
- — 2 sin (221) 2% + sin (21)
folo M) == 2 (cos (21))” (7.23)
~cos (@1) (a(x1 —y1) + b (w1 — 21) + ca1)

1-— 1% (cos (x1))?

)

where y = (y1,92) " = (0(t—71),0(t—71))" and 2 = (21,22) " = (0(t—72),0(t—72))".

7.4.1 Linear Stability Analysis

It is always possible to normalize one of the delays by a simple scaling of time,
let 7y = 1. The linearization of f with respect to its three arguments, x, y and z at



7.4. Pyragas-Type controller 117

the origin is given by

0 1
81f(07 )\) - 16 (1—a—b—c) ’
— 0

7

0 O 0 O
82'][.(07)\)_[16 0]’83]0(0’)\)_[16[) 0]7
T

where f(0,\) designate f(0,0,0,\). Then, the characteristic function is given by

16(a+b+c—1) 16 16
AN =N+ (a+7+c )_76‘“%—7

The stability analysis follows from Proposition 3.1 in [110].

e "2p, (7.24)

Remark 6. The crossing set 2 associated to the system described by the characte-
ristic equation (7.24) consists of a finite union of intervals. Moreover, when ¢ # 1,
all the intervals are closed while for ¢ = 1 all the intervals are closed excepting the
first one which has the left end equals zero i.e. a value that does not belong to the
crossing set. The stability crossing curves are either open ended or closed as explai-
ned in the classification proposed by [110] (see figure 7.6 for the case ¢ = 1 which is
relevant for this study).

Stability crossing curves

FIGURE 7.6 — The crossing curves associated to the first interval (0,w"] for a =
g, b= % and ¢ = 1. The curves T, , and quvﬂ are connected at w".

In the (a, b, ¢) parameter space instead of crossing curves we have stability cros-
sing surfaces referred to as A. The corresponding crossing set is again dented by I'.
Thus, A is the set of (a, b, ¢) such that A(z) has imaginary solutions while I" consist
of those frequencies w such that there exists a parameter triple (a,b,c) such that
A(jw,a,b,c) = 0. The stability analysis in (a,b,c) parameter space is summarized
as follows :

Proposition 5. The crossing set I' consist of all frequencies satisfying

I<w<

)

T — T2
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and the crossing surfaces are defined Vw € T by :

a€R

sin(wTy)

b= a

~ sin(wy)
c=1+ £w?—a—b+ acos(wr) + beos(wr)

It is easy to see that as w approaches 0 the parameter ¢ approaches 1 (for
illustration see figure 7.7).

FIGURE 7.7 — The stability crossing surface in the (w,b,c) parameter space for
=1 1=z anda=2

The function A with arbitrary gain ¢ has a purely imaginary root iw if :

7 sin (wrp) w? + 16 sin (wr2) — 16 sin (wry) ¢
16 sin (wry) — 16 sin (wry — w) — 16 sin (w)
—7 sin (w) w? — 16 sin (w) + 16 sin (w) ¢

~ 16 sin (wrg) — 16 sin (wrp — w) — 16 sin (w) "

(7.25)

We note that substituting a and b into the second derivative of A and by setting
w = 0 one gets the relation a m; = —b 7y guarateeing a zero eigenvalue of algebraic
multiplicity 2. Finally, a zero eigenvalue of algebraic multiplicity 3 is given by

7 1 - 7 1 _1
“= 8 (1 — 7)1’ T8 7o (11 — T2)’ c= b
This shows that the configuration of a triple zero eigenvalue can not be achieved
when one of the gains a or b vanishes, in other words, two Pyragas controllers are
necessary to reach this multiplicity.
Equation (7.25) defines the curve of Hopf Bifurcation in the (a, b) plane in figure
8.2 for ¢ = 1 and several values of the delay 79, thus there are coexistence of Pitchfork
and Hopf bifurcation on this curves.
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4 ¢ 4 1 o1 o1k ]K\{
a

FIGURE 7.8 — Hopf curves for (7.23)-(7.22) in the gains plan (a,b) withc=m =1
and 7o such that (top left) 75 = 2 (top right) 7 = 3 (bottom left) 7 = 4 (bottom
right) 7 = 1

Note also, that when 7 75 # 0 a zero eigenvalue of multiplicity 4 is not possible
since the fourth derivative at zero gives 2 (11 + 72).

7.4.2 Central Dynamics

We show that a triple zero eigenvalue occurs for arbitrary value of the delay 7o.
Then let us restrict to the case of a fixed value for the delay 7 = 2, the parameter
point A\g = (ao, by, co, 1%, 72%) = (—%, %, 1,1, 2) characterize a triple zero eigenvalue

at the origin. System (7.23)-(7.22) can be normalized by setting 71 = 1 leading to :

fl(.,)\) = I,
9 2 2
_ —ggsin (2x1) 2% + 71 sin (x1)
f2( ) = 1= 2 (cos (1)) (7.26)
_ 712 cos (z1) (a(z1 — y1) + b (z1 —y1) + cx1)
L 1-— % (cos (:El))2 '

Let X be the Banach space R? x C([—1,0],R?). Consider

D(H) :={(y,9) € R* x C([-1,0],R?) : §(0) =y} C X,
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and define the linear operator H [ Z ]

_ [ 91f(0, \)g(0) + 92/ (0, \)g(=1) + 05(0,\)5(=2)
05y ’

where the spatial variable in C1([—2,0],R?) is denoted by s. Let g be the nonlinear
part of f i.e.

o([1].2) = [ I D2 o)

where :

90((0), H(=1),7(=2), A) = F(H(0), H(=1),5(~2), A)—
(910, N)5(0) + B2£(0. M)5(=1) + B£(0. V)i (=2)).

System (7.22)-(7.23) is equivalent to the autonomous evolution equation :
&= Hzx+ gz, ). (7.28)

The decomposition of the Banach space X = P @ @ such that P is the H-invariant
generalized eigenspace associated to triple zero sigularity which is isomorphic to R?
and @) also H-invariant of infinite dimension. Next, we compute ® a basis of P
satisfying H® = ®J where

1 0 1
0 10
01 0
¢(S):[¢17¢27¢3]: 9 >andj: 0 01
1 s 5+1
0 0O
| 0 1 s

We compute the invariant spectral projection P : X — P such that Px = Res,—o(z I—
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H)~7!. In other words, Pz = l1(z)¢1 + lo(x)d2 + l3(x)p3 where
1

)
131 131
— / g (t—1)dt
0

7
I1(x) Eyl (0) 144
131 2. t
2

1
! tyl(t—z)dt—/t2gl(t—1)dt

— 72(0) + -
)

12 0
+1/2/t2g1 (t —2)dt,
0
1
b(a) =i (0) + 1572 (0)=7/6 [ i (= 1)
+1—72 2y1( )dt+2/01tgj1(t—1)dt

2
—/ww—m%
0

2

1
@) = (0) =2 [ (e Vs [ -2,
0 0
which allows decomposing equation (7.28)
0 = Ju+U(0)go
—1) + Osfu(-2)

Wy = Oy fig + s fii(
+ (I = 2(0)¥(0))go

W = s — U(0)go,
go designate go(®(0)v + o, (—1)v +w(—1), ®(—2)v + w(—2)) and ¥y = w(0) and
7 131
12 14 ] s 14 %
vo)y=| 1 < , D(s) =
01 s

By using the Center Manifold Theorem presented in the previous section and the

2

)

following changes of coordinates
T 7T 5 7 7
=—=+4- b=—+ — =1
CTTRTEYT T 16 T 16 o= T
=14 =6r" v, =r3u;, vs = rPug,vg =17 us, w =3¢,

we arrive to the expansion of the graph (the center manifold) in power of r which
B,7) and the expression of

is of order 6 i.e. q(u,u,r) = 756 (u, 1, 7) where u = (

the flow on the local center manifold
0 1 0 0
a=| 0 0 1 |u+]| 0 | +r*R(u,p,r),
/ ui{)

—a' By
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where o/ =0 (0 + ), f/ = 30,7 = a— o0 — 36 and R is the remainder, a smooth
function in u, p and r.

7.5 Notes and comments

The use of multiple delay blocks was suggested in [166, 129] for stabilizing chains
of integrators. In this paper, we design such a multi-delayed-proportional controllers
allowing to stabilize the inverted pendulum by avoiding a triple zero eigenvalue
singularity. This singularity was already identified in [200] through the use of a
delayed PD controller. Such a singularity underlines an interesting observation : the
multiplicity of the zero spectral value might exceed the dimension of the control-free
system [38]. We have shown that a multi-delayed-proportional controller allows to
offset the derivative gain while keeping the same performance. These results agree
with the claim of [10], that is, the effect of the delay is similar to derivative feedback
in modifying the behavior of the system. However, we extend the claim to the
nonlinear analysis by proving that the cubic truncated normal form of the center
manifold dynamics is the same as the one obtained by using a delayed PD regulator.
Thus, the global analysis for the codimension-3 triple zero bifurcation established
in [200] applies for the presented configuration.



CHAPITRE 8
Delay System Modeling of Rotary
Drilling Vibrations

Vibrations in rotary drilling systems are oscillations occurring without being in-
tentionally provoked. They often have detrimental effects on the system performance
and are an important source of economic losses ; drill bit wear, pipes disconnection,
borehole disruption and prolonged drilling time. By this chapter, we provide an
improved modeling for the rotary drilling system. Among others, the proposed mo-
deling takes into account the infinite dimensional settings of problem, as well as,
the nonlinear interconnected dynamics. This chapter reproduces mainly the results
of [146, 42].

8.1 Introduction

A rotary drilling structure is mainly composed of a rig, a drillstring, and a bit. In
oil well drilling operations, one of the most important problem to deal with consists
in suppressing harmful vibrations yielding to stick-slip and bit-bouncing oscillations.
Indeed, these undesired dynamics can cause various damages such as pipes and bit
break. This spoilage has a leaden economical effect. The drilling control failure is
mainly due to poor modeling and /or control. This chapter focuses on the modeling
task upon which the analysis and control rely on. The modeling must entail two
aspects. The first one, "physics dynamics", consists in describing the motions equa-
tions of the phenomena occurring during the drilling process. The second, "sensing
and transmission model", amounts to write down equations allowing to obtain infor-
mations on the bit state, an essential information to overcome the above mentioned
problems. Unfortunately, this information is degraded and/or delayed, due to tech-
nological constraints. In this chapter, we are concerned solely by physical modeling,
yet, we are taking into account transmission in deriving an overall system’s model.
In the literature, one may find several types of models ranging from partial diffe-
rential equations to ordinary differential equation ones with one or several degrees
of freedom representing the dynamics of drilling systems. This contribution is orga-
nized as follows : In the first section, we report the most relevant works concerned
by the physical modeling of the drilling vibrations. The second section is devoted to
present the PDE model that we build to account for axial and torsional vibrations.
The proposed model improves the known models since it addresses several critical
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issues that arise when the latter are considered. The chapter is completed by in-
sights on Wireless sensing transmission models, as well as on actuating and related
motor types. Finally, we derive a model covering most of the dynamics needed to
be taken into account for control purposes. The chapter ends with some comments
in wireless-transmission and real-time control methodology.

8.2 State of the Art

To the best of the authors’ knowledge, torsional drilling vibrations have received
much more attention compared to axial vibrations.

As underlined in [211], the simplest approximation consists in neglecting the
effects of the axial and lateral vibrations and in ignoring the finite propagation
time of torsional waves along the drillstring. The model turns to be a simple forced
torsional pendulum under nonlinear damping at the bit. Thus, the full spectrum
of the torsional vibrations is replaced by a simple torsional spring that couples
the torque @y, from the top-drive with the torque ®p;; generated in the bit/rock
interface. Such an approximation leads to the following coupled system model

{ (.I.)top + Gtop(q)top - q)bit) = Tmotor(q)topa q)bita d)t0p7 t)a (8 1)

Dy + Gpit (Ppit — Prop) = *]:(Ci)bit),

where F designates the bit-torque friction, G%; Giop are the coupling physical
constants, G, = G/p is some positive constant proportional to the torsional ri-
gidity of the drillstring, Gpit = GJiop/ Jpit and Totor is the top control torque. Here
G denotes the shear modulus of drilling steel, p is the steel density, Jip and Jp;
are respectively the inertia moment of a pipe section and the inertia moment of the
drill collar section.

In [125], the drillstring system is modeled as two coupled masses as shown in
Figure 8.1. Jiop and Jp; are two inertial masses locally damped by dyop, and dy.

—g P+ Ty,

P

Db

—g de’/ﬁT/},

Py

FIGURE 8.1 — Drill string two-coupled masses model.
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The inertias are coupled through an elastic shaft of stiffness £ and damping c. Let
us define ®4,,, Pp;¢ as the angular positions of the rotary and the bit respectively ;
<i>t0p, dp;y as their angular velocities, u(t) = WoB is the weight on the bit control
signal, v(t) is the rotary table torque control signal used to regulate étop, Wois
the friction coefficient; A, B, H, C, are model matrices given in (8.4), ¥(t) =
U (u(t)) = Hu(t), = is the state vector and y, is the output variable. For a more
detailed description, see, for instance, [71]. With the above notations, the model is
represented as follows :

#(t) = Ax(t) + Bo(t) + U(t)u (8.2)
Yo=Cox = (i)topa

where the state x = [r1 2o x3])7 is defined as follows :

I = (I)top — Ppit, w2 = Cbtopy T3 = Cbbit (83)
and
0 1 -1 0
k diop+c 1
A = T Jiop Jtp0p JtCOP ) B = Jtop
k C _C+dbit 0
Joit Joit Jbit
0
H = 0 , Co=(010) (8.4)
1
" Toie

In [164], a piecewise-smooth model of three degrees of freedom, which exhibits
friction-induced stick-slip oscillations, is considered in order to describe a simplified
torsional lumped-parameter model of an oilwell drillstring. In [163] a piecewise finite
dimensional multi degree of freedom (multi DOF) model is considered for describing
the torsional motion. In [162], a more general nonlinear differential equation-based
model of a drillstring is analyzed. The aim of the proposed drillstring model is
to avoid simulation problems due to the discontinuities originated by dry friction.
Namely, the system of ordinary differential equations

(t) = Az(t) + Bu(t) + Ty (z(t)), (8.5)

where z(t) is the state, A and B are constant matrices of appropriate dimension
and Ty is the torque on bit. In [163|, the authors reproduce stick-slip vibrations
under different operating conditions. The model used for the torque on the bit is
the main difference with respect to other models proposed in the literature. In [161],
a discontinuous lumped parameter torsional model of four degrees of freedom is
considered. This model allows to describe drill pipes and drill collars behavior. The
closed-loop system has two discontinuity surfaces where one of them gives rise to
self-excited bit stick-slip oscillations and bit sticking phenomena.
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Several PDE models were introduced in the literature for specific describing
torsional vibrations. For instance, in [12], torsional vibrations are modeled by a
wave equation and the stick-slip dynamics are numerically characterized. In [189] a
similar model is studied and a flatness-based approach that avoids such undesired
dynamics is introduced. In [195] and [196], a wave equation model to reproduce
torsional drilling dynamics is proposed, this model is coupled to a damped harmonic
oscillator model described by an ODE to approximates the longitudinal dynamics
of the drilling system. In [187] as well as in [104] a nonlinear analytical study is
introduced for the case of simple nonlinearities that occurs for a simplified frictional
weight and torque which are proportional to 1 + sign(dU /dt) where U denotes the
axial vibration. This model corresponds to a simplified torsional lumped-parameter
model of an oilwell drillstring. An alternative method to characterize the stick-slip
motion and other bit-sticking problems in such a drilling system is proposed. The
method is based on the study of the relationships between the different types of
system equilibria and the existing sliding motion when the bit velocity is zero. It is
shown that such a sliding motion plays a key role in the presence of non-desired bit
oscillations and transitions. Furthermore, a proportional-integral-type controller is
designed in order to drive the rotary velocities to a desired value. The ranges of the
controller and the system parameters which lead to a closed-loop system without
bit-sticking phenomena are identified.

Unfortunately, the models considered in [164, 161, 163, 162| are linear ones, a
quite crude approximation to the nonlinearities of the drillstring system leading to
impoverish the possible dynamics. Moreover, the friction torque is always considered
as a piecewise linear function of the state, which can be improved by the friction
law that we are discussing in some of the following paragraphs.

8.3 Wave equation modelling

We consider a solid homogeneous metal flexible bar of length L and of section
0o. We are concerned by axial vibrations. Let g(z,t) be the displacement at time ¢
of a point z of the bar with respect to its equilibrium position. Let T'(x,t) be the
tension applied on the bar at the point x at time t.

The fundamental elasticity law establishes a relation between the elongation
dl := 1 — lp and the infinitesimal tension dT" := T — T (where we consider an
element of length /y under the mean tension Tp) by :

dr dl
— = Ey— 8.6

where Ejy designates the Young modulus, or elasticity factor under the tension Tjp.
This law can be applied only for a sufficiently small relative elongation dl/ly. Since
at time ¢, the segment (z,z + Az) is of static length ly and occupies the position
(z+q(z,t), x+ Ax+q(x+ Ax,t)). The length of the segment passes from lp = Ax
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dl
tol =lp+dl = Ax+ 9,qAx, we then have 7 = Oet; and the elasticity law implies :
0

T— TQ = angﬁzq. (87)

Let po be the linear density at the equilibrium of the bar (that is the rate of mass

N
N
Y
‘\‘ 0.q(x+Ax,t)
~ S —
. N
J e
\ P ¢
\ ~ b
) \
A q(x+Ax,t) \ |

q(x.1)

by
FIGURE 8.2 — (Left) Flexible Bar, (Right) Tension applied in a short segment of the
bar
per a length unit). The fundamental principle of dynamics reads po02qAx = 9,Tdx,
by using (8.7) we have

pod;q = Eooodig, (8.8)

Eyo
which is a wave equation with speed v = 070,

Po
The axial vibrations of a solid bar constitute the essential of the sound propa-
gation phenomena. The obtained model can be normalized, yielding to :

dq(x,t) = 07q(x, 1) (8.9a)
0,q(0,t) = —u(t 0.q(1,t) =0 (8.9b)
q(x,0) = qo(x) 0rq(z,0) = qi, () (8.9¢)

where = € [0, 1]. The equation (8.9a) is the normalized wave equation (8.8) where
(8.9b) is the boundary condition and (8.9¢) is the initial equation. By Eq.(8.7) and
(8.9b), one can see that we apply a control law at the point x = 0 and no tension is
applied on the free end (z = 1).

8.4 PDE models

The lumped parameter model of the drillstring described in [12] consists of an
angular pendulum of stiffness C ended with a lumped inertia J and a mass M. The
latter two are free to move axially and represent the BHA as a unique rigid body.
At the top of the drillstring, an upward force H and a constant angular velocity {2
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are imposed. It is assumed that the weight-on-bit provided by the drillstring to the
bit Wy = W5 — H is constant, which implies that the hook load H is adjusted to
compensate for the varying submerged weight of the drillstring Ws. More precisely,
the authors describe the torsional motion of a driven drillstring by the following
wave equation with boundary conditions :

OFD(t,s) = * 92D(t, s),
9, ®(t,0) = Q, (8.10)
JO?®(t,L) = —GT 0;®(t, L) + F(9;®(t, L)),

¢ is a constant wave speed : ¢ = \/G/p, L is the bit position with respect to the
s axis, F(0;®(t,L)) the reaction frictional torque at the bit and GI'9s®(¢, L) is
the contact torque along the drillstring, (here d; = 9()/0s is the derivation with
respect to s). In this work, the authors reduce the study of the model to the study
of the associated neutral differential equation for which they establish an analytical
linearized stability criterion and give some numerical bifurcation elements. Certainly,
the infinite dimensional aspect of the above model is adequate for describing the
drilling process, but ignoring the axial vibrations and their influence on the global
dynamics is disadvantageous when the aim is to establish a steadfast model.

A similar model but with different boundary conditions was already established
in [189] and exploits the flatness property of the wave equation for suppressing the
stick-slip undesired dynamics. Indeed, the author proves that the use of the top ve-
locity measures ensures the control and the stabilization of the torsional vibrations.

The contribution [98] is worth mentioning, where a wave equation with different
boundary conditions is used to model torsional vibrations for which the authors
establish ultimate bounds for a distributed drill pipe model. The result is obtained
through an analysis based on a difference equation model and on a wave equation
description achieved through the direct Lyapunov method.

Next, in [187] as well as in [105], the authors considered a simplified drillstring
model which describes not only the torsional vibration but also the axial one :

d
I—50(t) + C(@(t) - Q1) = ~T(1),
d

M —5U(t) = Wo = W(t).

(8.11)

The variables U and ® denote the vertical and the angular positions of the drag bit,
respectively. The reacting weight-on-bit W (t) originates from the process of rock
destruction occurring at the bit-rock interface and 7'(¢) is the reacting torque-on-
bit. The stick-slip dynamics is numerically studied in [187] and in [105] a nonlinear
analytical study is conducted for a simple frictional weight and torque proportio-
nal to 1 4 sign(dU/dt). On the one hand, the model depicted in (8.10) neglects
axial vibrations and on the other hand the lumped model (8.11) loses the infinite
dimensional character of a PDE model.
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In [211], the authors consider a PDE modeling the torsional vibrations and pro-
pose a mechanism called torsional rectification and compare it with existing soft-
torque devices through a series of mathematical models. Both analytic and numeri-
cal simulations indicate that many of the volatilities suffered by existing soft-torque
feedback approaches used to avoid slip-stick can be eliminated by their proposed
alternative. Ignoring the axial vibrations and their influence on the torsional dyna-
mics is disadvantageous since the study concerns exclusively the control of torsional
vibrations.

8.5 A System-Oriented Approach : Interconnected dy-
namics

We aim at presenting an improved partial differential equations model with more
realistic coupled nonlinear boundary conditions. This model takes into account the
axial and torsional vibrations along the drilling system. Furthermore, an adjustable
three dependent parameters analytic model is taken for the torque on bit. The
proposed friction law is a nonlinear function allowing to continuously reproduce
classical empirical friction profiles. Moreover, the established physical model can be
transformed into a time-delay system. This fact is noteworthy since the measurement
of the bit state is delayed, due to technological constraints. In our opinion, this is
thus a natural way to design a model with unified structure.

The description of the considered model governing the mechanical axial /torsional
vibrations follows.

8.5.1 Drillstring mechanics

Denoting by U the axial vibrations and by ® the torsional vibrations, the im-
proved model is :

OMU(t,s) = 2 O2U(t, s),
ET0,U(t,0) = a10,U(t,0) — aa H (t), (8.12)
MU (t,L) = —ETO,U(t, L) + F(d,U(t, L)),
and
DXD(t,5) = & D2D(t, s),
G X 0:9(t,0) = 810,P(t,0) — B29(2), (8.13)
JO?D(t, L) = —G L 9,8(t, L) + F(8,U(t,L)).
Here G is the shear modulus of the drillstring steel and E the Young’s elasticity
modulus. Then, the wave speeds can be expressed by ¢ = \/E/p and ¢ = /G/p.
The inertia J = M r? where r is taken as the averaged radius of the drill pipes, I'
is the averaged section of the drill pipes and ¥ is the quadratic momentum. The

nonlinear nature of the model is considered by taking appropriate models of the
friction profiles F' and F of the form : z + pk z/(k? 22 4 (), where the parameters
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FI1GURE 8.4 — The profile of the friction F'

k, ¢ (0 < (< 1and0 <k < 1) are positive integers responsible of the sharpness of
the friction force function and p is acting on its amplitude, see [36, 29]. Moreover, the
behavior of the chosen friction model is close from the empirical model (the white
friction force) but its smoothness is very useful in experimental identifications, see
Figure 8.4.

The contributions of the proposed model can be summarized as follows :

— Infinite-dimensional setting for modeling : As emphasized by (8.12)-
(8.13), each type of vibrations is described by a PDE. The first equation of
(8.12) means that axial vibrations U are governed by a wave equation with
velocity c. In the second equation of (8.12), the reacting force due to the
drillstring at the top is seen as the difference between the imposed vertical
upward force and the actual drillstring friction force of viscous type at the
top ad:U(t,0). The second equation of (8.12) describes a behavior equation
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sampled at the top of the hole. It simply expresses that the difference between
the H the brake motor control (upward hook force) and the force generated
by the gradient of the axial vibration at the top adsU(t,0) is nothing else
than a friction force of viscous type ad;U(t,0). Furthermore, for equation
(8.13), torsional vibrations are also assumed to obey to a wave equation with
velocity é. In the second equation of (8.13) the right hand side describes the
difference between the motor speed and angular velocity of the first pipe.
Finally, the third equation of (8.12) and (8.13) are established by applying
the Fundamental Laws of Motion [2] at the bit.

— Coupled dynamics : The third equation of (8.13) generates the intercon-
nection between the two dynamics. Indeed, it is generally recognized that the
torque on bit, which is the main generator for friction in the drilling torsional
vibrations, is expressed as a function of the axial vibration (see for instance
[104]).

— Nonlinear dynamics : Both of the functions ' and F are assumed to be
nonlinear functions allowing to reproduce continuously the classical empirical
friction profile.

8.5.2 Actuating part and motor types

The drilling system includes three motors, which convert electrical energy into
mechanical energy : one for the rotary table, one for the drawworks, and one for the
mud pump, yielding three control variables. Each machine is modeled by a system
of mechatronic equations as follows. The motor types have to be quite resistant,
wherefrom the following choices.

DC motor. A first type of motor is the direct current armature control motor. The
torque developed by the motor is proportional to the stator’s flux and the current
in the armature and we have I' = k1 K, I where I' is the shaft torque, v is the
magnetic flux in the stator field, which is assumed to be constant, I is the current
in the motor armature. Since the flux is maintained constant, we can also write
I' = kr I where kr = kf ) K,.

When a current carrying conductor passes through a magnetic field, a voltage V;
appears, corresponding to the so-called back electromagnetic force V;, = k. w where
w is the rotation speed of the motor shaft. The constant k7 and k. have the same
value. Kirchhoff’s law yields the electronic equation of the motor :

V= Vies = Veoit = Vo = 0, (8.14)

where V' is the input voltage, V,..s = —R I the armature resistor voltage (R being
the armature resistor), Vio;; = LI the armature inductance voltage (L being the
armature inductance). The motor’s electrical equation is then

LI=—-kw—RI+V. (8.15)

Induction motor. A second type of motor is the induction machine. When AC
current is applied to such a machine, the rotating magnetic field is set up in the
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stator. This rotating field is moving with respect to the rotor windings and thus
induces a current flow in the rotor. The current flowing in the rotor windings sets
up it own magnetic field. In the stationary reference frame (wg = 0) the stator
voltage vector can be expressed as vs° = Ryis® —i—wf where zg and wg are the stator
current and rotor flux vectors. In the same way the rotor voltage vector can be
expressed in the rotor fixed reference frame rotating with wg : v, = Ri, + d}ﬁ,
whereas i and ¥ are the rotor current and rotor flux vectors. The transformation
in an arbitrary reference frame rotating with wy yields :

b = Ryl + 0% + jpwrl (5.16)
v = Reiy + 4y + jplwr, — wp) Py
The flux vectors may be expressed as :
wf = Lsi]; + Lmif
. . L (8.17)
Yy = Lyi; + L.

In the following the so-called D /Q-reference frame which is aligned to the rotor flux
vector will be used and the superscript will be omitted, i.e. ¥, = ¥.q + jbry =
% e79P_ whereas p is the rotor flux angle in the stationary reference frame. Substi-
tuting the stator flux and rotor current vectors in (8.16) using (8.17) and introducing
n=1-(L2/LsL,), x = L2, R./oLsL? + Rs/oLs, ( = R./L, and £ = L,,/oLsL,.
To further simplify the notations, we shall set : I,q = Ig, Isq = I, the stator current
components in the D/Q reference frame, 1.4 = 14 the rotor flux D component,
Usd = Vg, Usq = Uq the stator voltage components in the D/Q reference frame.

We thus obtain conclude with the description of the induction machine model :
its electric model and its mechanical model which respectively consist of four and a
two dimensional nonlinear system. Indeed, the current/flux equations are given by

(g =—C(Yg — Lin 1)

Iq
) = pwr + (Lpy—
p=pwr+( va
: [q Ud , (8.18)
Iqs = —xlq+ (&¥a +pwrlq + CLm @7
. 1 Id (%
I, = —xI, — Iy— (L, ~ < 1
and the mechanical model is defined by
Jwr = phrglsq — T
R wralsq — T (8.19)
Or = wr,

whereas u = 3pM /2L, and 6p is the rotor angle and 7; the load torque.
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8.6 Integration into a more complete Traction-Compression/Torsional
Model

8.6.1 Step by step description

A more complete model can be established by considering the BHA length and
vibrations, neglected in the previous model. Thus, the length of the drillistring L
denotes L, + L where L, is the pipes length and L; is the BHA length. Here, the
vibrations along the pipes will be distinguished from the ones along the BHA. Thus
the model for axial vibrations U, and torsional vibrations ®, along the pipes and
axial vibrations U, and torsional vibrations ®; along the BHA are governed by the
system of PDE (8.20)-(8.27).

Pipe Drillstring The pipe drillstring deformation is modelled through a wave
equation with both internal viscoelastic Kelvin-Voigt damping, and simple viscous
damping :

{ pALOU,(t, s) = EA, 02U, (t,s) + sbp&g@SUp(t, s) +70,0Up(t, s) (8.20)

pJp0i®,(t,s) = GJ, 02®,(t, s) + efppatasép(t, $) + 7,0t ®p(t, 5),

where 0 < s < L,, the internal damping coefficients are E%'Jp, sfbp, and the viscous
damping coefficients are V0, Vo, - Additionnally, p is the steel density, E (resp. G)
denotes Young’s (resp. the shear) modulus of drillstring steel, and A,, J, are the
cross-section and polar inertia moment of one section, given by :

7T
AP = 7-‘-(7012)0 - rii)’ Jp = 5 (rﬁo - T;i)a

with r,; and r,, the inner and outer pipe radius.

Top Boundary Conditions At s = 0, we consider the following boundary condi-
tion for @, :
Jiop02 @, (t,0) = G J,05 @ (t, 0) + ur(t), (8.21)

with Jiop the top drive inertia, and ur the torque produced by the rotary table motor,
taken as a control input. which is a more realistic boundary condition compared to
the one in [104, 12| : ®,(¢,0) = Qot. Note that eq. (8.21) can also be completed by
the mechanical equation of an induction machine in place of (8.19).

The upward force H acts in the top hole device composed mainly of the derrick,
the crown block and the traveling block. This whole setting is modeled as a two
coupled mass spring system, following [173]

{ Mrglérm (t) + 7o érg1 (t) + Mg g = up(t) + krgis (Grgs (t) = Grgi (£)) = Frgoy Grgim: (£)
Mgy Crgs (8) + VrgaCras (t) + Mgy g = —H (t) = krgyy (Grgs () — Cry (1))

(8.22)
Here, ¢4, accounts for vibrations in all drilling rig elements except the drilling string,
BHA, cables, drawworks, travelling and crown blocks; (.4, accounts for elasticity
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in cables, crown and travelling blocks; the effort k,gy, (rg;,,; Tepresents the ground
reaction force and up (t) = krgo, (Crgy (t) —Grgo (t)) is a tension force in the cable at the
drawworks level, taken as a control input (being directly related to the drawworks
rotation motor). The parameters M., , ¥rg, and kg, are equivalent masses, damping
coefficients and stiffness coefficients, respectively.

For U, consider the boundary condition at s =0 :

Myop0fUp(t,0) = EA,0sU,(t,0) + H(t). (8.23)

with My, the top drive mass. In [104], a simpler boundary condition is adopted :
EA,0;Up(t,0) = H(t). The initial conditions are taken such that ®,, 0;®,, 0:®),
Up, 0tUp, 0sUp vanish at t = 0.

Drill Collars The BHA equations for axial vibrations U, and torsional vibrations
®y, are given by

{ pAvO;Us(t, s) = GAy O;U(t, 5) + 15, 0:0:Up(t, 5) + 11, O Us(t, 5) (8.24)

pra,?(bb(t, S) = EJ{, 8?‘1’1,(75, S) + efbbc‘)taséb(t, S) + v(%bat@b(t, 8),

where L, < s < L, and Ay, J are, as above, the cross-section and polar inertia
moment of one section, given by

™
Ap = W(Tgo - rl?i)ﬂ Jp = 5 (T;)lo - Tgi)ﬂ

with rp; and 1, are inner and outer drill collar radius.

Pipe/Drill Collar Continuity Conditions To achieve continuity in speed and
effort, ®,, ®;, Uy and U, satisfy the connexion conditions :

OnPy(t, Lp) = 0r®p(t, Lyp)
0,®y(t, L) = Pacb( )
(8.25)
OUs(t, Ly) = 0:Up(t, Lp),
| 001, ) = iia Ut L),

*7

where J, and A, are J, = 7(ri, — rl)/2 and A, = 7(r2, —r2).

Bottom Hole Boundary Conditions The boundary conditions at s = L for
torsional vibrations ®; are

Joit07®p(t, L) = —G Jp 05®,(t, L) + Tyt (1), (8.26)

where Tj;; is the reaction torque at the bit. For axial vibrations, the bottom boundary
condition is
Mbita?Ub(ta L) = 7EAbasUp(tv O) + szt(t) (827)
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where My, is the bit’s mass, and Wy (1), the reaction force at the bit due to the so
called dynamic weight on bit (DWOB).

Forces/Moments Expressions The bottom hole force and moment can be de-
composed into a cutting and a frictional part

Toir =T + Tf, Wyt = We + Wf, (8.28)

Friction Force/Moment. The expressions for Ty and W are taken as (see for instance
[104] and [172]) :

a2

Ty(t) = 5 ol F(IVe (L, D)), Wy() = alo F([[Vs(L, 1)]]),

where a is the bit radius, [ the length of the wearflat, o the contact stress, v accounts
for the distribution and orientation of the frictional forces acting at the wearflat /rock
interface, p the ratio between the horizontal and the vertical components of the
frictional force, Vj, = (0;U,, 0;®p) and sgn(V}) designate the orientation of V4 with
respect to the horizontal plane, and F is an adimensional friction function. We
consider the following expressions for such an F, as for instance in [172]

ar

F(r) = = (8.29)
or in [212]
_ gt
Fir)= 5 (tanh(r) T WQ) . (8.30)

Cutting Force/Moment. The expressions for T, and W, are taken as (see e.g. [104]) :
a2
Tt) = Ted(t), Wlt) = aced(r),

where a is the bit radius, d the depth of cut, € is the intrinsic specific energy, and
¢ the ratio of the vertical to the horizontal force for a sharp cutter. Here the cut
depth d(t) is deduced from the relation

d(t) = n(Us(t, L) — Up(t — tn, L)), (8.31)

where n is the bit number of blades and t,, is implicitly given through the relation

2
% = ®y(t, L) — By(t — tn, L). (8.32)

The range of ¢, is given by t,, = 27/(nf)), with € a nominal rotating speed at
the top. Note that, in [172], T, is defined by :

To(t) = —as(F(|Vo(L, 1)[)))*d(2). (8.33)
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8.6.2 Full Model Summary

Let us rewrite the previous model in a more compact form.

Pipe Drillstring Pipes wave equation (torsion—traction/compression)

pALOU(t, s) = EA, 02U, (t,s) + 5%]p8t85Up(t, s) +70,0Up(t, 5), (8.34a)
pJp0i®,(t, s) = GJ, 02®,(t, s) + 5%p8t85<1>p(t, $) + 73,0t ®p(t, 5). (8.34b)

Top Boundary Conditions Induction motor (torsion) :

Yoa = —Co(Voa — Lom Ia) (8.35a)
. 1
po = pwar + Co Lam (8.35D)
VYaa
P I3, Vod
Ipqg = —xolod + Coéotpod + poworlog + CoLam—— (8.35¢)
Yoa  NoLas
. loglog — vaq
Ioq = —Xxolog — polowsrled — CoLom : (8.35d)
Yod  NLlas
Drill pipes top boundary condition (torsion) :
Jiop02®,(t,0) = GJ,05®,(t,0) + up(t). (8.36)
Induction motor (traction/compression) :
Yua = —Cu(Yva — Lum Ia) (8.37a)
. I
pu = pwuR + CuLvm o (8.37b)
Yud
I' _ I(2]q Vud
vd = —xvlva + ulvvva + pvwurlug + CuLum— + (8.37c)
Yuda  nmulus
. Iyql v
Ivq = —xvlvg — prévwurlva — CoLum —0% 4 10 (8.37d)
Yua  nlLus

Top hole assembly (traction/compression) :

MTgl 57‘91 (t) + Trg1 érgl (t) + MT91g =ur (t) + krgu (Crgz (t) - Chlh (t)) - k7”901 Crgini (t)

(8.382)
Myg,Grgs (8) + VrgaGraa (8) + Mrgyg = —H () = Krgys (Grga (8) — Grga (£)). (8.38D)
Drill pipes top boundary condition (traction/compression) :
Myop02Uy(t,0) = EA,0U,(t,0) + H(t). (8.39)
Drill Collars
pALOEU(t,5) = GA, D2Up(t, s) + 6}']b8t8$Ub(t, s) +0,0eUn(t, 5), (8.40a)

pJy0; ®y(t, s) = EJy 0204t 5) + €5, 0105y (L, 5) + 78,01 Po (2, 5). (8.40b)
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Pipe/Drill Collar Continuity Conditions
0y ®y(t, Lp) = 0:Pp(t, Lp) (8.41a)
@%m%p:%@( ) (8.41Db)
0:Up(t, Lp) = 0:Up(t, L) (8.41c¢)
i%L@@,Lp):'Apal](tl;) (8.41d)

Ay

Bottom Hole Boundary Conditions Drill collar bit boundary condition (tor-

sion) :

Joit07®y(t, L) = —G J, 0@, (t, L) + Thit(t).
Drill collar bit boundary condition (traction/compression) :
My 02Uy (t, L) = —EAp0sUp(t,0) 4+ Wit (1).
Forces/Moments Expressions Bottom hole force and moment :
Tyie = Te + T, W =W.+ W;.

Friction Force/Moment :
2
a
Ty (t) = 5 ol F(IVe (L, D)l), - Wy(t) = alo F(|[V5(L, )]])-

Adimensional friction function expressions :

ar : :
F(r)= N First expression
F(r)y=p <tanh(7’) + 1+7rlyﬂ2> Second expression

Cutting Force/Moment :
a2
Te(t) = 5 ed(t), We(t) = aCed(t)

Cut depth d(t) defined by d(t) = n(Uy(t, L) — Uy(t — tn, L)).
One revolution duration ¢, such that 2% = ®(t, L) — ®y(t — t,, L).

(8.42)

(8.43)

(8.44)

(8.45)

(8.46)

8.7 Wireless-transmission and Real-time control metho-

dology

In this section, we focus on the way to bring the measurement from downhole

to surface so we can use it in order to improve the observer/controller behavior.

There are mainly three types of transmission : i) through telemetry signals along
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the drilling fluid, often referred to as mud-pressure pulses, ii) through acoustic waves
along the drillstring [65], iii) through wired drill pipes.

In most of the literature, electronic equipments are designed for data acquisition
and for modulation purpose. It should be implemented as an autonomous system
energized either by a mud operated electrical turbine or by a battery pack [209].

Mud-pulse telemetry This technology uses the mud that goes through the drilling
system as a transmission media. The data will be represented by pressure pulses.
According to [209], the pulser actuator (a stepper-motor-based device) and a main
valve restricts the flow and creates some pressure-pulse sequence. A piezoelectric
device captures these variations that are then analyzed by a micro-controller. Evi-
dently, due to the irregular nature the mud flow, the low frequency vibrations pro-
duced by mud pumps and pulsation dampeners the signals are corrupted by noise.
Furthermore, they have an important attenuation. Some characteristics to highlight
are [137], [65], [79] its cost-effective data transfer, its very low bite rate (1 or 2
bits per second). Mud-pulse velocity declines with the disturbances of mud density,
gas content and mud compressibility. It becomes more difficult with increasing well
depth. Pulse waves travel through the borehole at 1200 meters per second [137],
hence the measure arrives with some delay that increases up to tmax 7,4 ~ 6.6
seconds.

Acoustic data transmission over a drill string Since the acoustic wave pro-
pagation velocity in the string material is at least three times superior to that in
the mud of the borehole [65], and a higher transmission rate is possible (typically 6
bps), acoustic transmission seems to be the best way to emit pulses to the surface.
These acoustic waves are generated by torsional contractions created by magneto
restrictive rings set inside the pipe [78]. In this case Tyyar =~ 2.2 secons. It is useful
to note that there exists an attenuation of around 4 dB/300m [77|. However, we
can neglect it because there is always a possibility of setting a repeater at any joint
at each 10 — 15 meters of the section. We consider that this fact does not add any
extra considerable delay since the repeater’s amplification can occur almost instan-
taneously.

The telemetry system sends signals directly to the surface through the channel.
Usually, there is an embedded sensor measuring éb downhole. A measurement noise
S(t) is added to the data and then coded all together, so that it can be transmitted
through the acoustic channel G. At surface, a receiver will read the encoded signal
with the noise N (t). Furthermore, a digital algorithm is used to decode this data and
make it available for the use for further treatments. Both methods can be modeled
by the schematic as shown in Figure 8.5. On the bit state measurement side, there
are mainly three types of transmission :

Transmission delay range and friction hypothesis Due to technical considera-
tions we can assume that the transmission media is, as a first approximation, like a
pure delay system with delay time 7 € [0, Tjnq]. Moreover, the well’s depth increases
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coder ]—>[ G ]—>?—>{ receiver ]—)[ decoder ]—Véb

S(1) Ny

FIGURE 8.5 — Testbed schematics with sonar pulses

at a very slow rate and it stops each 10 — 15 meters. In this procedure, the delay
can be recalculated. Hence, the delay can be defined as a constant, that is 7 = 0.
On the other hand, we will consider that the friction coefficient is constant or at
least slow time variant 7 =~ 0. This approximation is often assumed in the context
of adaptive control. This hypothesis means that the rate of variation of the rock
friction coefficient does not exhibit substantial changes during drill-operation. Even
if the drilled surfaces may have different friction characteristics, the rate of penetra-
tion remains small (d ~ 0).

Real-time control The general real time control architecture has to handle output
signal transmission, state observation under variable delay and signal noises presence
as well as the state feedback control calculation and actuation update. A detailed
description of a such an architecture is given in [125] where more emphasis is put on
observer performance in presence of transmission delay variations, noise perturba-
tion and friction coefficient variation. Due to these parameter variation the overall
observer /controller order is increased which has to be considered in the specification
of real time control architecture. We will not go further in the specification and the
design of overall real time communication and calculation architecture which is out
of the scope of this work, but it is important to emphasize the fact that the relia-
bility, bandwidth and signal to noise ratio of data transmission channel is of great
importance in the quality of state observation and control.

8.8 Concluding Remarks :

The complete description of a Drilling oilwell machine involves three intercon-
nected systems : i) A mechanical system, more precisely, the drillstring that is the
down-hole part of the drilling device, ii) The mechatronic system : composed mainly
from two induction machines : the first acting axially and the second acting in ro-
tation, iii) A transmission system that consists from sensors (piezoelectric) and a
transmission vector that can be for instance the wireless technology.

Briefly, the interconnection of such components can be summarized as follows :
The drilstring and the induction machine are connected via the derrick, the crown
and the traveling block for the axial actions and via the rotary table for angular ro-
tation. Moreover, the induction motors are the only actuators leading to the control
for guaranteeing a regular drilling process. The success of such a task lies mainly on
the bit-data (the mechanical system) furnished by the sensors and transmitted by
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wireless to the top. The transmitted data are then responsible on the motor actions.
Finally, it is worthy to note that the preceding model does not take into account

the bending vibrations (leading to whirling) of the drilling collar, nor the drilling

fluid dynamics.

Appendix : Notations table

Variable Signification
L, Pipe length
Ly Bor Hole Assemble length
L =L, + Ly
Up, Uy Pipe, drill collar traction/compression deformation
o, Oy Pipe, drill collar torsional deformation
6617, Efl,p Internal damping coefficients
y}}p, %%p Viscous damping coefficients
p Steel density
E.G Young’s, shear modulus of drillstring steel
Ap, Jp Cross-section and polar inertia moment of one pipe section
Ay, Jp Cross-section and polar inertia moment of one drill collar section
Tpo, Tpi Outer, inner pipe radius
Tbos Thi Outer, inner drill collar radius
You, Yyg D component of rotary table (torsion) induction motor flux
Lam, Lym Torsion, traction/compression induction motor mutual induc-
tance
Isq, log D, Q component of stator current in torsion induction motor
Iya, Iyg D, Q component of stator current in traction/compression induc-
tion motor
Jtop Top drive inertia
ur Rotary table motor torque, taken as a control input
H Force acting in the top hole device
Cra1 accounts for vibrations in all drilling rig elements except the
drilling string, BHA, cables, drawworks, travelling and crown
blocks
Crgs accounts for elasticity in cables, crown and travelling blocks
Ergo1 Crgini ground reaction force
up(t) = Krgo1 (Grgi (t) — Grgo (%)), tension force in the cable at the draw-

Mrgz‘v ’7T91 ) krgij

works level, taken as a control input

equivalent masses, damping coeflicients and stiffness coefficients
Top drive mass

axial, torsional vibrations

Bit reaction torque

Bit’s mass
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Whit(t)
T., W,
Ty, Wy

2 Q9 —~ 2

sgn(Vy)

IS oo Y

Reaction force at the bit

Bottom hole cutting torque and force

Bottom hole friction torque and force

Bit radius

Length of the wearflat

Contact stress

accounts for the distribution and orientation of the frictional
forces acting at the wearflat /rock interface

Ratio between the horizontal and the vertical components of the
frictional force

= (U} 0,®,)

designate the orientation of Vj, with respect to the horizontal
plane

Adimensional friction function

Depth of cut

Intrinsic specific energy

Ratio of the vertical to the horizontal force for a sharp cutter
Bit blade number







CHAPITRE 9

Bifurcation analysis of the drilling
system

On the one hand, Bifurcation theory is concerned with the study of changes
in the qualitative structure of the solutions of a given family of differential equa-
tions. In dynamical systems, a bifurcation occurs when a small smooth alteration
of the parameter values (the bifurcation parameters) causes a sudden qualitative or
topological change in its behavior. Bifurcations occur in both continuous systems
(described by ODEs, DDEs or PDEs), and discrete systems (described by maps).
The term bifurcation was introduced in 1885 by Henri Poincaré¢ [210|. Bifurcations
can be classified into two main categories : global bifurcations, which occur when
larger invariant sets of the system collide with each other, or with the equilibrium
point of the system ; and local bifurcations, which can be analyzed through variations
of the local stability properties of the equilibrium point. Some examples of reduced
codimension bifurcations’ of local type are : Pitchfork bifurcation, Andronov-Hopf
bifurcation and Bogdanov-Takens bifurcation. On the other hand, a wide range of
applications involve hyperbolic PDEs in modelling interesting and relatively com-
plex dynamical phenomena. These hyperbolic PDEs themselves may be reducible
to neutral functional differential equations, see for instance the wave equations mo-
delling of wind instruments given in [69, 70| and the linear density-flow hyperbolic
systems studied in [18] or to a non autonomous difference equations as established
in [58, 57]. In our context, in order to characterize the qualitative dynamic response
of the rotary drilling system, this chapter addresses its local bifurcation analysis.
Based on the center manifold theorem [47] and normal forms theory [111], a set of
neutral-type time-delay equations that model the coupled axial-torsional drilling vi-
brations is reduced via spectral projections to a finite-dimensional system described
by an ODE which simplifies the analysis and control task. This chapter reproduces
mainly the results from [146].

9.1 Local bifurcation analysis

Consider the following system of equations describing the coupled axial-torsional
drilling vibrations :
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( ?;g(s,t)—g%:(s t), c= %
EF%—U(O,IS) _ a%—[t](o,t) —un(®)
EF%U(L £) = MB%Zg(L,t) +F<%Z(L t))
and
( 22(5(5, ) = 52%25(5,75), &= %‘
ng‘fm,t) - 5%‘f<o¢> ~ur(t)

o® @ ~ (0U

where U(s,t) and ®(s, t) are the rotary angle and the longitudinal position respec-
tively. The system is controlled through the upward hook force ugy and the rotary
table motor torque up. The nonlinear aspect of the model is considered by taking
functions F and F of the form :

2 phz/ (k2 + (),

where the parameters k, ( (0 < ¢ < 1 and 0 < k < 1) are positive integers
responsible of the sharpness of the friction force function and p is acting on its
amplitude.

Using d’Alembert theorem, the above PDE model can be transformed into the
following pair of coupled neutral-type time-delay equations :

Up(t) — YUu(t — 27) = —TUy(t) — TOU(t — 27)
+—F( »(t)) — —TF(Ub(t - 27)) + Tug (t — 7),

By(t) — Tyt — 27) = —Wdhy(t) — TUD,(t — 27)
+IBF(Ub( )) . ;TF(Ub(t - 27)) + Tug(t — 1),

where
. 20U - a—cEl - CcET
17 = — — Y= " U= —— T L
o+ cET’ o+ cET’ Mg
T o -
_ 2~ , T:B ?GJ’ \P:cGJ’ =L,
B+ c¢GJ B+ c¢GJ Ip

and Uy(t), ®y(t) are the the axial and angular velocities at the bottom extremity,
respectively.
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A normalization of the above model yields the following dimensionless equations :

Up(t) — ToUp(t —2) = —U,Up(t) — T, 0, Up(t — 2) (9.1)
+]\;BF<U;,(1S)) - ]\;BT,LF<Ub(t - 2)) Ty (t— 1),
Dy(t) — Tu®p(t —27) = —U,&y(t) — T, 0, dy(t — 27) (9.2)
+iF(U' (t)) Ly F(U (t — 27)) + Iup(t — 7)
IB b IB n b nUT )

where 7 is the ratio of the speeds 7 = ¢/c and

~ 20, - a—1 ~ 1
" a4 1’ "a+41] " Mg’
2¢GJ cETB — ¢GJ cGJ

II

T,=—F—7+, Y,=

"7 I5 (cETB + ¢GJ)’ T CETB+éGJ " ¢ElIg

First, we analyze the uncontrolled system (ugy = up = 0). Denote by z1 and
the axial and angular velocities at the bottom extremity (U, and ®; respectively).
The state-space matrix representation of the system is written as follows :

(9.3)

i(t) =Dy #(t — 2) + Do i(t — 28/¢) + Ag x(t) + Ay 2(t — 2)
+ Ay x(t — 2¢/c) + F(x(t),z(t — 2),z(t — 2¢/c))

where z = (21, 22)7, F : R*xR"xR" — R" is a mapping representing the nonlinear
part of the system (9.1)-(9.2), and the matrices D1, Do, Ao, A1, Ay are given by :

T, 0 0 0
Dl = ) D2 = )
0 0 0 T
_\iln(pgﬁ'f'C) 0 _Tn\iln(pl_chC) 0 T 0 0
_ _ ¢ _
AO - pic ) Al - ; A2 - _Tan oy
7 -v, 0 0 ] Clp n¥n

The characteristic equation is a powerful tool for analysing stability of the steady
state solution of functional differential equation. In what follows we discuss the
stability conditions of the drilling system based in the bifurcation parameters p
(parameter related to the amplitude of the friction forces F' and F) and a (viscous
friction coefficient at the top extremity) [36]. The numerical values of the model
parameters are given in Table 10.4, see also [146] for further discussion the system
parameters.

Here the friction force amplitude p as well as the mass at the BHA Mp are
left free and are considered as the bifurcation parameters. When p = p. then zero
is an eigenvalue with algebraic and geometric multiplicity 1. Moreover, zero is the
only eigenvalue with zero real part and the remaining eigenvalues have negative
real parts. Furthermore, there exists a Pitchfork bifurcation, which comes from the
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Zo symmetry structure of the system. When in addition the mass at the BHA
Mp reaches some critical value Mg = M™*, then zero is an eigenvalue of algebraic
multiplicity 2 and of geometric multiplicity 1. Furthermore, under such conditions
zero is the only eigenvalue with zero real part and the remaining eigenvalues have
negative real parts. The zero eigenvalue is non-semisimple and the singularity is
of Bogdanov-Takens type. Finally, although there are no characteristic roots with
positive real parts, the system (9.3) is formally stable, but not asymptotically stable.
As discussed in [146], the characteristic equation of system (9.3) is given by

det(A) = F1(X\) Fa (A, p)
_ ()\(1 —eATY) T, e_’\TQTn\Iln) x

For the sake of simplicity, let us consider separately the factors Fj(\) and
F5(X\, p). The first factor is given by :

P\ = ()\(1 AT — T e_’\TZTn\IJn) .

Notice that Fi()\) is a scalar first order quasi-polynomial of neutral type. It is easy
to prove that the associated continuous-time difference equation is asymptotically
stable. Indeed, the scalar quasi-polynomial satisfy the conditions of the Pontryagin
theorem leading to prove that all spectral values have negative real part (for further
insights on the proof see [218]). Thus, one concludes that there are no imaginary
crossing roots for the factor Fj. Consider now the second factor Fa(\, p) defined as :

8 T,V (pk + ¥, (pk +

B(\p) = [ 1 —eT,) + 22 (pk +¢) ey e >/ (pk +¢) :
¢ ¢

Similarly, it is easy to show that apart from wg = 0, there are no spectral values with

zero real part. Moreover, p = p. = 6.66749 is the only possible value of p leading to

a spectral value in zero. Considering the parameterization 4 = o — 30 p and using

the model parameters given in Table 10.4 of Section 9.5, F5 can be written as :
Fy(\, Mp,p) = (—MB +0.99 MBe’2A> A+ (=20.7p — 0.99)e 2> +30p — 1

A simple substitution of A = 0 into F> shows that p = p. leads to a first spectral
value on the imaginary axis A\; = 0; a Pitchfork bifurcation comes from the Zs
symmetry structure of the system. If additionally (p = p.) Mp = M*, then the first
derivative of Fy vanish at A2 = 0. Since the null space N'(Ag Id — A) have only one
eigenvector :

1
Vo = )
4.853 x 101!
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there exists then, a double root of non-semisimple type at zero. Moreover, in such a
particular case, and for the same reasons as for the first factor, the remaining roots
of F, have negative real parts.

In conclusion, the system is formally stable but not asymptotically stable (al-
though there are no characteristic roots with positive real parts) and the singularity
is of Bogdanov-Takens type [134].

Remark 7. The multiplicity of the root at the origin can not exceed two for the
considered parameter values. However, it is worthy of note that, for general second-
order systems of neutral type the maximal multiplicity of the characteristic root at
the origin is less than the degree of the generic quasipolynomial.

9.2 Model reduction

Generally speaking, Functional Differential Equations (FDE) share some pro-
perties with Ordinary Differential Equations (ODE). This section presents a normal
form theory-based technique allowing to approximate a Neutral Delay Differential
Equation (NDDE) by an ODE. The transformation method, based in the Center
Manifold Theorem, simplifies the system structure, preserving the qualitative dyna-
mic of the system in a neighborhood of the equilibrium state.

Consider the general form of a discrete time-delay autonomous first-order non-
linear system of neutral-type :

d

%[:c(t) + Y Apa(t—7)] =) Bra(t —7) + F(z(t), ..., x(t — 7)), (9.4)
k=1 k=0

where A;, Bj are n x n real valued matrices (there is at least one matrix Ay # 0 for
some k € {1, 2,..., n}). The time-delays are such that 79 = 0, 7; < 7; for i < j and
T =T.

System (14.55) can be written in compact form as follows :

d
ant = Lay + F(xy), (9.5)

where z; € C' = C([—r,0],R"), () = x(t + #). The bounded linear operators D

and £ are such that D¢ = ¢(0) + >} Ax ¢(—7%) and L& = > ) Br ¢(—7%), F

is a sufficiently smooth function mapping C' into R” with F(0) = DF(0) = 0. The

linear operators D and £ can be written in the integral form as L¢ = fBr dn(0)p(0)

and D¢ = ¢(0) + f?r du(0)o(0), where p and 7 are two real valued n x n matrices.
The linear part of system (14.56) is given by :

d

Let T(t)(¢) = x(.,¢), with z(.,¢)(0) = z(t + 0,¢) for § € [—r,0], the solution

operator associated with the linear system. 7 (¢) is a strongly continuous semigroup

with the infinitesimal generator given by A = % with the domain
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d¢ d¢
Dom(A)={peC: 0 € C,D@ = Lo} -
The spectrum of A, o(A) = 0,(A), consists of complex values A € C satisfying the
characteristic equation : p(\) = detA(X) = 0. See [206, 151] for further details.
Denote by M, the eigenspace associated with A € o(A). We define C* =
C([-r,0],R™), where R™* is the space of n-dimensional row vectors. Consider the

bilinear form on C* x C| proposed in [115] :

0 0
(16, 6) = 3(0) (0) — / d] /0 (r — B)dp()
- . (9.7)

i /_0 /09 (7 = 0)dn(6)¢(r)dr

Let AT be the transposed operator of A, i.e., (¢, A¢) = (AT, ¢). The following
result leads to an appropriate decomposition of the space C.

Theorem 35. [115] Let A be a nonempty finite set containing the eigenvalues of A
and let P = span{Myx(A), A € A} and P = span{ M (AT), X € A}. Then P is
invariant under T(t), t > 0 and there exists a space Q, also invariant under T (t)
such that C = P@ Q. Furthermore, if ® = (¢1, ..., ¢m) forms a basis of P, and
U = col(¢1, ..., ¥m) is a basis of PT in C*, such that (®,V) = Id, then

Q={pcC\(¥,9)=0},

(9.8)
P={pcC\IER™: ¢=Db}.

Moreover, T (t)® = ® Pt where B is a m x m matriz such that o(B) = A.

Denote by BC, the extension of the space C' containing continuous functions on
[-7,0) with a possible jump discontinuity at 0. A given function & € BC can be
written as : £ = ¢ + Xpa, where ¢ € C, € R" and X(0) = 0 for —r < 6 < 0,
X0(0) = Idyxn. The Hale-Verduyn Lunel bilinear form (9.7) can be extended to the
space C* x BC' by (¢, Xo) = ¢(0), and the infinitesimal generator A is extended to
an operator A (defined in C'!) into the space BC as follows :

Ap = Ap + Xo[Lp — D¢']. (9.9)

On the basis of the above considerations, equation (14.56) can be written as an
abstract ODE [91], as follows :

iy = Axy + XoF (). (9.10)

The projection II : BC' — P, satisfying II(p + Xoa) = ®[(¥, p) + ¥(0)a], yields
xt = Py(t) + 2z¢, where y(t) € R™. Equation (14.56) can be represented as :

{ y = By + U(0)F(dy + 2)

o (9.11)
2=Ag+ (I —I)XoF(Py + 2).
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After writing z as a function of y, we focus only on the first equation.

The center manifold of a dynamical system is composed by orbits whose beha-
vior around the equilibrium point is not managed by the attraction of the stable
manifold (given by the eigenspace of eigenvectors corresponding to eigenvalues with
negative real) nor by the repulsion of the unstable manifold. The analysis of the
center manifold requires the equilibrium point to be hyperbolic. Center manifolds
play an important role in bifurcation theory because interesting system behavior
takes place on it.

9.3 Center manifold and normal forms theory

The center manifold is a powerful tool to analyze the dynamic behavior of a
given system in a neighborhood of a non-hyperbolic equilibrium point z*.

Definition 1. Consider a C' map h : R — Q. The graph of h is said to be a local
manifold associated with system (14.56), if A(0) = Dh(0) = 0.

Remark 8. There exists a neighborhood V of 0 € R™ such that for each £ € V,
d =0(&) > 0. The solution = of system (14.56) with initial data ®& + h(&) exists on
the interval | — § — r, 0[; it is given by x; = ®y(t) + h(y(t)) for t € [0, ], where y(t)
is the unique solution of the ODE :

¥ = By + ¥ (0)F(Py + h(y)),
y(0) =¢.
Only a few works have investigated the center manifold that arise when consi-

dering different matrices B ; see for instance [11]|, where the characterization of the
function A in equation (9.12) is detailed. On this basis, it is possible to decompose

(9.12)

the eigenspace into the subspace containing all imaginary eigenvalues (having real
part equal to zero) and the one with the remaining spectral values (that are assumed
to have negative real parts).

In what follows, we adopt the formulations introduced in [152] for the study of
the center manifold, originally developed for delay differential equations.

It is worthy of note that y € R? for the most common singularities ; for instance,
the (one-parameter) Andronov-Hopf bifurcation and the (two-parameter) Bogdanov-
Takens bifurcation. See for instance [134].

It is well known that, normal forms theory is useful in analyzing local dynamics
in the neighborhood of singular points. Among other problems, local bifurcation and
stability analysis take advantage of it.

Let x = (x1,...,2,) € R™, and let f(x1,...,2,) be a polynomial vector with
components in R[x1,...,z,]. Consider the general n-dimensional system of ODE :
&= Lx+ f(x) = Lx + fa(z) + fs(z) + ..., (9.13)

where L is the Jacobian matrix associated with system (9.13), Lz represents the
linear part of the system, and f;(z) denotes the k' homogeneous polynomial vector.
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We assume that the system admits an equilibrium at the origin "o". The basic idea
of the normal form theory is to find a near-identity transformation :

x=y+h(y)=y+ho(y)+hs(y)+...+he(y)+..., (9.14)

so that, the resulting system,

y=Ly+g(x)=Ly+ge(y) +g5(y) + ... +gr(y) +..., (9.15)

be as simple as possible. In that sense, the terms that are not essential in the local
dynamic behavior are removed from the analytical expression of the vector field.
Let us denote by hi(y) and gi(y), the k*® homogeneous polynomial vectors of .
According to Takens normal form theory [111], we define the following operators :

Ly:Hy — Hy, Up€ Hp— Lk(Uk) = [Uk,ul] € Hy, (916)
where u; = Ly is the linear part of the vector field, and H} denotes a linear vector
space containing the k** homogeneous polynomial vector of 4y = (yi,...,,). The
operator [.,.], called Lie Bracket, is defined as :

[Uk, ul] = LU]c — D(Uk)ul,

where D denotes the Frechet derivative.

The next step is to determine the spaces Ri and K} ; the range of Hy ; and the
complementary space of Ry, so that Hy = Ry + Kj. Now, bases for K and Ry can
be chosen. The normal form theorem establishes a transformation of the analytic
expression of the vector field, see for instance [111], where a detailed analysis of the
quadratic and cubic cases is given.

Consequently, a homogeneous polynomial vector fr € Hj can be divided into
two parts; one of them can be spanned in K}, and the remaining one in Rj. Normal
form theory suggests that the part belonging to Ry can be disregarded and the one
of Kj can be retained in normal form. Through this method, algebraic equations
are obtained from (9.13), (9.14) and (9.15).

Next, we aim to apply the above ideas to analyze the qualitative behavior of the
drilling system.

9.3.1 Drilling system analysis

In [92], a decomposition method to compute the normal form of a singular delay
system linearly dependent on one parameter (of the class studied in [114]) is propo-
sed. We aim to extend the proposed techniques to the case of NFDE systems. To
this end, system (9.3) is rewritten as :

d _
—Duaxy:= Lo xp+ Fp, mp(xt)

= (9.17)
= Lozt + (L — ACO) T + ]:M,pe(‘rt)v
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where F is regarded as a perturbation, £y = L|{p=pc,MB=M*}7 and

—0.006750 pz3(t) + 0.006682px} (t — 2)

Fp= —1.875 pz3(t) + 1.874998 px3 (t — 3.176) |-
Clearly,
Ly (9.18)
dt Tt = Lo Tt, .

corresponds to the perturbation-free system.

Following [152], we compute first, the evolution equation associated to the center
manifold of system (9.18).

Considering the drilling system parameters given in Table 10.4, the matrix ®,
depending on 6, is defined as :

1-6 1
®(0) = 11 11 11
4.853 x 10** — 4.853 x 10*60 4.853 x 10

where 6 € [-3.176,0]. The adjoint linear equation associated to system (9.3) is given
by :

u(t) =Dyu(t 4+ 2) + Dot (t + 2¢/c) — Agu(t) — Aju(t + 2) — Asu (t + 2¢/c) .
(9.19)
Consider the following basis for the generalized eigenspace corresponding to the
double eigenvalue A\g = 0 evaluated at 6 = 0,

—86050 0

) . £€[0,3.176].
—8.810 x 102 4 0.4924583¢ 0

v(f) = [
The associated bilinear form is given by :

(10, 0) =(0)((0) — D1p(—2) — Daip(—3.176))

0
+/‘¢@+®Aw@M€
—2

0
+/ B(E + 3.176) Agp(€)de

—3.176

0

—/QW@+me@mg
0

—/ (€ + 3.176) Do (€) .
—3.176

Notice that, according to the bilinear form, we have that (¥, ®) = Id. Hence, the
space C' can be decomposed as C = P@ Q, where P = {¢ = ®2; 2z € R?} and
Q={p e C; (¥,p) =0}. It is important to emphasize that the subspaces P and
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@ are invariant under the semigroup 7'(t). Matrix B (referred in 9.12), satisfying
A® = ®B, is given by :
0 O
. (9.20)

-1 0

B =

Consider the following decomposition x; = ®y(t) + z(t), where z(t) € Q, y(t) € R?,
z(t) = h(y(t)) and h is some analytic function such that A : P — Q. The explicit
solution corresponding to the center manifold is determined by :

y(t) = By(t) + U(0)F[2(0)y(t) + h(0, y(1))]; (9-21)

32{39 + W(0)F[®(0)y + hl} + (0)W(0)F[®(0)y + hl,

Oh
—{ dy’
L(h(0,y)) + F[2(0)y + n(0,y)], 6=0,

where h = h(f,y), and F is defined in (9.17). Further details are given in [152].

It is easy to show that, the evolution of the solutions of system (9.18) on the
center manifold can be determined by solving (9.22) (subject to p = p., Mp = M*)
for h(0,y), and (9.21) for y(¢) (considering the truncation order). Notice that F is
an odd function, which implies that it is the computation of h is not required to

3176 < 0 <0, (9.22)

obtain a cubic truncation.

Based on these assessments, and considering p = p., Mg = M*, the system of
neutral-type time-delay equations (9.1)-(9.2), describing the coupled axial-torsional
drilling dynamics, is reduced to the following third-order ODE :

0 0
. Y1
t) =
y(t) [_1 0] [w}
0.65 1% + 1.025 y1 %o (9.23)
—0.140 122 + 0.102

+
2.54 413 — 1.554 1%y,
+0.267 y1922 — 0.0004 123

In order to analyze the parameter bifurcations, we compute the evolution equa-
tion of the trajectories of the perturbed system (9.17) on the center manifold. Now,
p and Mp are given respectively by p = p. + p1 and Mp = M™* + g where piq 2 are
small parameters (recall that the approximation associated to the perturbation-free
system (9.18) was developed with p = p. and Mp = M™*). The introduction of a time
scaling as well as a small scaling parameter (blow-up parameter) allows zooming the
neighborhood of the singularity, see for instance [200].

The cubic normal form reduction of system (9.3) :

2

(9.24)

231:")/2’1+522—Z122
22:—21
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is obtained by considering the change of coordinates,
H1 = 13266999177‘27 D = Detpi1, p2 = 177 87 5T7 MB = M*+M2, Y1 = T2Zlu Y2 = Tzg,

and the time scaling defined by t,q = 7 thew-

Figure 9.1 shows phase space portraits of the reduced model (9.24) on the center
manifold, in different scenarios : perturbation-free system (p = p.) and system
subject to perturbations (p = p. + 1), for vy = —2 and v = 2.

9.4 Notes and references

Bifurcation theory provides a framework for understanding the behavior of dy-
namical systems, playing a key role in the study of several real-world problems. For
instance, in the context of biological systems, the ability of making dramatic changes
in the system output is essential for proper body functioning; bifurcations are the-
refore ubiquitous in biological networks [8]. A different application example is given
in [114], where physiological systems, modeled by delay differential equations with
double-zero eigenvalue singularity, are analyzed in the light of Bogdanov-Takens
bifurcations. Another application field is presented in [130], where bifurcations ari-
sing in mechanical and physical systems, modeled by nonlinear partial differential
equations, are investigated.

A wide range of tools and techniques of the qualitative theory of differential
equations and bifurcation principles to the study of nonlinear oscillations can be
found in [111]. Detailed studies on one and two-parameter bifurcations in continuous
and discrete time dynamical systems are presented in [134].

Qualitative analysis of the drilling system presented in this chapter is based
on a reduced model. The infinite-dimensional representation of the coupled axial-
torsional drilling dynamics, given by the set of neutral-type time-delay equations
(9.1)-(9.2), is reduced to an ODE allowing a simplified qualitative system analysis.
The model transformation is developed by using normal forms theory concepts. On
that basis, the stability of the steady-state of system (9.3) is investigated.

An alternative stability analysis of the drilling system developed in the frequency
domain framework is presented in [158]; it uses the lumped parameter model des-
cribing the coupled axial-torsional drilling dynamics described also in [146], coupled
to the bit-rock interface model. The steady-state solution of the model is considered
and its stability to small perturbations is analyzed. Some stability charts are derived
from such analysis, thus deducing the stable operating regime in the WoB-rotary
speed parameter plane. It is concluded that large speeds are eventually stable for all
weights on bit, but such large speeds may not be practically feasible. As we shall see
in subsequent chapters, an increase of the rotary velocity constitutes a well-known
empirical practice to avoid drilling oscillations.

A different analysis approach to derive operational guidelines for avoiding the
stick-slip phenomenon is presented in [160]; it uses a n-dimensional lumped pa-
rameter model. The model is assumed to be coupled to a frictional torque on bit
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approximated by a combination of the switch model (Dry friction plus Karnopp’s
model). The identification of key drilling parameters ranges for which non-desired
torsional oscillations are present is carried out by analyzing Hopf bifurcations in the
vicinity of the system equilibrium point when rotary velocities are greater than zero.
Changes in drillstring behavior are studied through variations in three parameters :
the weight on the bit, the rotary speed at the top-rotary drillstring system and
the torque given by the surface motor. The intersection of the region of parameters
where no Hopf bifurcations are present with the region where no stuck bit is pos-
sible provides a good estimation of the system parameters which provide safe drilling
operations. See also [159], where an optimum range of operating parameters with
different WOB and revolutions per minute combinations were provided to ensure
the highest possible ROP. The underlying idea of avoiding the stick-slip phenome-
non is to drive the rotary velocities of drillstring components to specified values. A
discontinuous lumped-parameter torsional model of four degrees of freedom, coupled
to the torque on bit model is considered.

Bifurcation analysis methods to characterize the system response are carried
out through frequency-domain techniques. Alternative strategies to investigate the
stability and the dynamic response of the drilling system are developed through the
temporal approach. The following chapter addresses a dissipativity analysis of the
system without control actions. This analysis, developed within the time-domain
framework, allows concluding on the system’s practical stability.

9.5 Drilling system parameters

This section presents the numerical values of the drilling system parameters
reflecting typical operating conditions in real oilwell drilling platforms.

Symbol Parameter Numerical value
L String length 3000 m
G Shear modulus 80x10° N m—2
E Young modulus 200x10° N m~2
Ip Moment of inertia of the drill bit 144 kg m?>
Pa Density 8000 Kg/m?
Ry Bit radius 6 cm
r Drillstring’s cross-section 35 cm?
J Drillstring’s second moment of area 19 cm?
Mp Mass at the BHA 40000 Kg

Viscous friction coefficient 200.025 kg/s
Angular momentum 2000 Nms

Constant of the friction top angle 0.3

e
s
P Friction force amplitud 35
k
¢ Constant of the friction top angle 0.01
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TABLE 9.1: Numerical values of the drilling system parame-
ters corresponding to the coupled axial-torsional model [36].
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FIGURE 9.1 — Phase portrait of the reduced form of the axial-torsional drilling system
model (9.3), given by (9.24). (a) Perturbed system case (p = p. + 1), v = —2. (b)

Perturbed system case (p = p. + p),
v=0.

= 2. (c¢) Perturbation-free case (p = p.),



CHAPITRE 10

Low-order controllers

Drillstring platforms usually operate with reduced-order simple control laws
which make the drillstring rotate at a constant speed; only a few of them include
controllers to tackle the vibration problem.

This chapter presents some of the most frequently used low-order controllers to
regulate the angular velocity and tackle the stick-slip phenomenon.

First, a Pl-like control law is derived to maintain a constant rotary speed. The
controller is designed under the basis of a two DOF lumped parameter model; its
gains are adjusted by means of the classic two-time-scales separation method [72].

Next, two classic solutions to counteract the stick-slip phenomenon are discus-
sed : the soft torque and the torsional rectification controllers. The torsional rectifi-
cation control constitutes an improved version of the classical PI speed controller ;
it allows the absorption of the energy at the top extremity to avoid the reflection
of torsional waves back down to the drillstring. The soft-torque is one of the most
popular vibration control methods; it has the form of a standard speed controller
but includes a high-pass filtered torque signal. Both control methods are evaluated
in this chapter ; furthermore, an analytic treatment is developed to characterize the
torsional energy reflection provided by the torsional rectification controller.

Finally, a novel technique to reduce the stick-slip and bit-bounce is introdu-
ced. Based on the bifurcation analysis of the drilling system, a pair of low-order
controllers aimed at eliminating axial and torsional coupled vibrations are desi-
gned : delayed proportional and delayed PID. The performances of the proposed
control techniques are highlighted through simulation of the coupled system. This
chapter reproduces mainly the results from [146].

10.1 Angular velocity regulation

A simple technique to overcome the problem of angular speed regulation is pro-
posed in [71]. The low-order controller presented below is designed on the basis of
the following two DOF lumped parameter model describing the drillstring torsional
dynamics :

I,d, +c (cbp — ci>b> +k(®p— Dp) +dp®p = ur

b, —c (‘i’p - ¢>b> — k(D — 0p) +dpd, = —T(Dy), (10.1)
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where <i>p and ®; denote the angular velocity at the top and bottom extremities,
respectively, up is the motor torque provided by the rotary table and T(<i>b) is the
frictional torque describing the bit-rock interaction.

The angular velocity regulation control law is defined as :

ur =k (90— &, ) + k2/<90 ) dt — ks (&) — D). (10.2)

This reduced-order controller, aimed at regulating the rotational velocity to a
certain reference velocity .
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FIGURE 10.1 — Simulation of the lumped parameter model (10.1) coupled to the
frictional torque model from [146] Trajectories of the drilling system in closed loop
with the speed regulation controller (10.2) with k3 = 15725, ko = 30576, k3 = 194,
for a reference angular velocity €y = 5rad s~!. (a) Angular velocity at the bottom
extremity. (b) Angular velocity at the upper extremity.

Figures 10.1 and 10.2 show the control performance for Qy = 5rad s~! and
Qo = 10rad s !, respectively. The numerical values of the system parameters are
given in [146].

Notice the controller (10.2) is not able to regulate the angular velocity at the
bottom end for ©y = 5rad s~ 1.

10.1.1 Synthesis of the controller

There are different methods for adjusting the controller gains; one of them is
the classic two-time-scales separation method [72] detailed below.
Following |71], a variable z and a constant x defined as :
9 1
z2=Fk(®p,— D), /ﬁ:%,

are introduced.
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FIGURE 10.2 — Simulation of the lumped parameter model (10.1) coupled to the
frictional torque model from [146].Trajectories of the drilling system in closed loop
with the speed regulation controller (10.2) with k1 = 15725, ko = 30576, k3 = 194,
for a reference angular velocity €y = 10rad s~!. (a) Angular velocity at the bottom
extremity. (b) Angular velocity at the upper extremity.

According to the drilling model (10.1), the dynamics of ®, and z are described
by :

ur = Ipép +er?i 42+ dp<i>p
. . 1 1 c c
2.. 2 .
" g ’ (Ip+Ib>z " <Ip+Ib>Z
dp . db . 1 1 .
-+ — Q)+ — —T(®
1, p + 1, b+ IpuT + I (Py),
which can be written as :
ur = L0, +ck?s+ 2+ dp®,
9. z of ¢ db> . <db dp> . ur  T(Dy)
KZ2 = —— K| ——— |2+ |- |Pp+—+ , (103
I (qu I, L L,) 7" I, I, (103)

: 1 1\
with Iy = <E n E) .
Since the torsional stiffness takes large values, it is assumed that 2 ~ 0; then
it follows that

urs = Lo, +z+d,®, (10.4)
2 (dy d > urs | T(®y)

0 = —+(=—2 |0+ ——+ , 10.5

Iy (Ib L) " I, I (105)

where the rotary torque ur is split into slow (uzs) and fast (urf) modes :

ur = urs + Kury. (10.6)
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From (10.5), we have that

dy  dp) s T(®
Z:qu[<b p>@p+uT n (®p)

9

I, 1, I, I,

by substituting the above equation into (10.4) we obtain :

. dy+dy)\ 1 1 -
o P, = — T (D).
p+(@+@)p I+1, " @+@(b)

Assume that up, is chosen as :

UTs = <k1 + k:) (Qo — (I)p> ,

and define the variable i)p as follows
b, =0y — b,

then, (fp = QO;% and (i;p = —<i>p.

For (dy + dy) < (I + Ip), we have that

= kjl < kQ = 1 .
o d ) T(Py).
p+(@+n>p+<%+@>p L )
Then, by imposing a damping §,, and natural frequency w, in the closed-loop dyna-
mics, the values of k1 and ks can be computed from

db +dp>
Ip—|—Ib

ky :(@+@(%MW-
ky = (I, + L) w2,

Substituting (10.6) into (10.3) gives :

92.. z 9 C db . db dp . Urts K T((i)b)
== === 221 — . (10.7
K K (qu Ib>z—|—<[b I, p+ I —i—Ipqu—i— A (10.7)

Following the two-time scales separation approach, it is assumed that the slow mode
has reached its steady state value, thus, equation (10.7) can be rewritten as :

d T(® :
2 A Hz(c ~ b)z- gy + <I 0 4 (&5.9;).  (os)
p b

where the superscript * denotes the steady-state value and

% d*

- dy dp\ ., UTs (‘I)W(I)p)

i) - (3-7)%
zt T(dy)
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Defining the fast error coordinate as ( = z — z*, equation (10.8) can be rewritten

as :
i c dp\ : 1 1
C"’ (qu + Ib><+ H2I?q< = mUTf
By choosing ury = —kgé, we obtain :
Cc db k‘g 1
—+ =+ — 0
ot (qu " Iy " Ip”>c+ 2qu< 7

then, prescribing a damping value for the torsion dynamics 440, the value of ks can
be computed as follows

I c dp
kg = 2 20trVEklpyg — — — — | .
’ \/E( ! \F ! qu Ib)

10.2 Drilling vibration control

The control law (10.2) is designed to regulate the drillstring angular velocity,
but it does not considers the vibration problem. This section presents a pair of
reduced-order torque feedback controllers aimed at maintaining a constant rotary
speed while reducing torsional vibrations.

10.2.1 Torsional rectification control

A torsional rectification method to suppress the stick-slip phenomenon is propo-
sed in [184] ; the strategy takes advantage of the fact that the general solution of the
wave equation describing torsional drillstring vibrations allows the identification of
both “up” and “down” moving components.

The underlying idea consists in maintaining the energy of the “down” traveling
wave constant in the presence of the nonlinear boundary conditions describing the
bit-rock frictional interface.

Without loss of generality, it is assumed that the speed of torsional waves is one ;
the torsional excitations of the drilling system, described by the drillstring angular
displacement ®(s,t), are modeled by the wave equation :

*® *®

W(S,t) = @(S,t), 0 < S < 1 (109)

with boundary conditions

O’ 0P 0P
Za00 = (5005 0.0.00.0.0)
>’ 0P P
Sato = A(Fan.Fan.enn.)

where s = 0 denotes the connection of the drillstring with the rotary table, and
s = 1 the bottom extremity. The functions Fy and F} are determined by the top
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drive and friction torques at the upper and bottom extremities respectively. The
general solution of the wave equation is given by

D(s,t) =p(t+s)+(t —s),

where ¢ and v are arbitrary continuously differentiable real-valued functions, with
¢ representing an arbitrary up-traveling wave and @ an arbitrary down-traveling
wave. The time and spatial derivatives of ®(s,t) are

o® . .
St = dlt+s)+ilt—s)

Tst) = v s) - di-)

respectively. Since the contact torque at any point “s” of the drillstring is proportio-
nal to %—‘f(s, t), 1 represents the transmission of torque to the BHA. In order to drive
the angular velocity to a prescribed constant rotary speed, ¥ must be maintained
close to a constant value. To this end, the quantity W(¢) defined by
0P 0P .
U(t) = —(0,t) — =—(0,t) = 29(t 10.10
(1) = 50,0 = S2(0,0) = 260 (10.10)

must be monitored.
A Newton-type equation is chosen to describe the top boundary condition :

2*® foL
w(@,t) = Gtopa(o,t) + UT(t) (1011)
where G is proportional to the torsional rigidity of the drillstring (Giop = LGT‘;)
see [146] for further details.

A commonly used control law to maintain a constant angular velocity g is given

by : .
ur(t) = kp&(t) + ki&(t), (10.12)

where k, > 0 and k; are the proportional and integral gain variables respectively
and

£t) = Qot—D(0,8) +&
: 0P

t) = Qo——(0,t),
e = -5 0.1)
where &y denotes the displacement of the drillstring at the upper extremity from its
reference value.

In [184], an improved control strategy is proposed ; the contact torque between
the drillstring and the rotary table can be monitored by introducing a compensating
drive torque that rectifies the up-travelling torsional waves on the drillstring. The
control law is written as :

ur(t) = kpé(t) + kil (1) — AU(t), (10.13)
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where A > 0 and U(#) is given in (10.10). The torsional rectification control law
(10.13) is evaluated in [184] for different values of the control gains k,, k;, and
A; besides, the effect of an incident torsional harmonic wave on the rotary table
is explored. By analytical and numerical analyses it is concluded that the reflected
torsional energy from the upper extremity can be decreased by increasing the control
parameter \.

10.2.2 Soft-torque control

The soft-torque, introduced in [118], is a control approach widely used in the
drilling industry to tackle torsional vibrations. This controller has the form of the
standard speed controller (10.12) but it includes a high-pass filtered torque signal,

ur(t) = rpl () + ki E(1), (10.14)
with
&) _s%pJJQ@ﬁ—¢@w+@, (10.15)
) = 00— T - 50,0

where h is an additional control parameter and T is defined as :
Tf (t) = Tcontact(t) — Tc(t),

T. denotes the output of a low-pass filter applied to the contact torque :

0P
Tcontact (t) - _Gtop 75 (07 t),

measured at the upper extremity. An AC low-pass filter is modeled by :
Tc(t) = We (Tcontact (t) - Tc(t)) s

where w, is the cut-off angular frequency.
By considering that

/@@ﬁ:i/ﬁ@ﬁ:in@

equation (10.15) can be rewritten as :

E(t) = ot — Tt — 2(0,8) + &0,

We
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10.2.3 Torsional energy reflection and stick-slip reduction

The performance of the torsional rectification controller (10.13) can be evaluated
through the analysis of the energy reflection at the top extremity. To this end,
consider the following solution to the equation (10.9) which describes a harmonic
wave :

P(s,t) = Apwsin(w(t+5)) + Ay wsin (w (t — s) + ay,) + Qot + Cos

where w is the angular frequency, Ay, is the amplitude of the wave incident on the
rotary from below, and Ay, is the amplitude of the reflected wave. The constants
Co, o, and the ratio Ay, /As,, are determined from equations (10.11)-(10.13) as
follows :

AQy — ki&o
Gtop + A7
oy = tan~* d (kz _ WQ) (Gtop i )\) 2
wt — (2k; + (Giop — kp) n) w? + k;
Ai/’#’ k‘i - w2
Ap (ki — w?) cos (ay) + wnsin (ay)
n = Gtop + k’p + 2>\a

Co

the reflection coefficient is thus defined as
w4 aw? +
o\ w4 bw? + k?

a = (Gop — kp)*> — 2k;,  b=n*—2k;.

Ay w
Agpw

-

where

The absorption of vibrational energy is greater when the reflection coefficient
takes small values. It is easy to prove that the torsional energy reflected from the
rotary table is reduced by increasing the control parameter A. This is shown in
Figure 10.3 which depicts the shape of the reflection coefficient 7, as a function of
the angular frequency w for different values of A. Different data sets are considered :
Figure 10.3(a) uses the parameters kp = 1.314, k; = 0.08336, Gy,p = 0.4836, and
Figure 10.3(b) the parameters k, = 0.3658, k; = 0.1672, Gt,p = 0.5765.

Notice that as the torsional rectification feedback A is increased, the reflection
coefficient r,, uniformly decreases; this behavior corresponds to an increase of tor-
sional vibration absorption.

A similar analysis for evaluating the performance of the soft torque controller
(10.14) is presented in [184] ; it is concluded that the shape of the reflection coefficient
does not va