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Introduction	
	

	

The	main	motivation	of	my	doctoral	project	was	the	prevention	of	fall	in	older	people.	On	
the	basis	of	this	evocation,	one	could	obviously	expect	a	clinically	oriented	work,	testing	
rehabilitation	techniques	and	their	effect	on	the	propensity	to	fall.	However,	our	approach	
was	 mainly	 theoretical	 and	 methodological,	 based	 on	 hypotheses	 derived	 from	 the	
theories	of	complexity.		
Complexity	appears	a	key	concept	 for	 the	understanding	of	 the	perennial	 functioning	of	
biological	 systems.	 By	 definition,	 a	 complex	 system	 is	 composed	 of	 a	 large	 number	 of	
infinitely	 entangled	 elements	 (Didier	 Delignières	&	Marmelat,	 2012).	 In	 such	 a	 system,	
interactions	 between	 components	 are	 more	 important	 than	 components	 themselves,	 a	
feature	that	Van	Orden	et	al.	(2003)	referred	to	as	interaction-dominant	dynamics.		
Such	a	system,	characterized	by	a	myriad	of	components	and	sub-systems,	and	by	a	rich	
connectivity,	could	lose	its	complexity	in	two	opposite	ways:	either	by	a	decrease	of	the	
density	 of	 interactions	 between	 its	 components,	 or	 by	 the	 emergence	 of	 salient	
components	 that	 tend	 to	 dominate	 the	 overall	 dynamics.	 In	 the	 first	 case	 the	 system	
derives	towards	randomness	and	disorder,	in	the	second	towards	rigidity.	From	this	point	
of	 view	 complexity	 may	 be	 conceived	 as	 an	 optimal	 compromise	 between	 order	 and	
disorder	(Didier	Delignières	&	Marmelat,	2012;	Goldberger,	Peng,	&	Lipsitz,	2002;	Lipsitz	
&	 Goldberger,	 1992).	 Complexity	 represents	 an	 essential	 feature	 for	 living	 systems,	
providing	them	with	both	robustness	(the	capability	to	maintain	a	perennial	functioning	
despite	 environmental	 perturbations)	 and	 adaptability	 (the	 capability	 to	 adapt	 to	
environmental	changes)(Whitacre,	2010;	Whitacre	&	Bender,	2010).	These	relationships	
between	 complexity,	 robustness,	 adaptability	 and	 health	 were	 nicely	 illustrated	 by	
Goldberger,	Amaral	et	al.	(2002)	in	the	domain	of	heart	diseases.		
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The	experimental	approach	to	complexity	has	been	favored	by	the	hypothesis	that	 links	
the	complexity	of	systems	and	the	correlation	properties	of	the	time	series	they	produce,	
and	 the	 development	 of	 related	 fractal	 analysis	methods,	 and	 especially	 the	Detrended	
Fluctuation	 Analysis	 (Peng,	 Havlin,	 Stanley,	 &	 Goldberger,	 1995).	 A	 complex	 system	 is	
supposed	to	produce	long-range	correlated	series	(1/f	 fluctuations),	and	the	assessment	
of	 correlation	 properties	 in	 the	 series	 produced	 by	 a	 system	 allows	 determining	 the	
possible	 alterations	 of	 complexity,	 either	 towards	 disorder	 (in	 which	 case	 correlations	
tend	to	extinguish	in	the	series)	or	towards	rigid	order	(in	which	case	correlations	tend	to	
increase).		
This	interest	for	complexity	was	particularly	developed	in	the	research	on	aging.	Lipsitz	
and	 Goldberger	 (1992)	 proposed	 that	 aging	 could	 be	 defined	 by	 a	 progressive	 loss	 of	
complexity	 in	 the	 dynamics	 of	 all	 physiologic	 systems.	 This	 hypothesis	 has	 been	
developed	 in	 a	 number	 of	 subsequent	 papers	 (Goldberger,	 Amaral,	 et	 al.,	 2002;	
Goldberger,	Peng,	et	al.,	2002;	Sleimen-Malkoun,	Temprado,	&	Hong,	2014;	Vaillancourt	&	
Newell,	 2002).	 Of	 special	 interest	 for	 the	 present	 work,	 Hausdorff	 and	 collaborators	
showed	that	successive	step	durations	during	walking	presented	a	typical	structure	over	
time,	 characterized	 by	 the	 presence	 of	 long-range	 dependence	 (Hausdorff	 et	 al.,	 2001;	
Hausdorff,	 Peng,	 Ladin,	 Wei,	 &	 Goldberger,	 1995;	 Hausdorff	 et	 al.,	 1996).	 	 They	 also	
showed	that	these	fractal	properties	were	significantly	altered	in	aged	participants	and	in	
patients	suffering	 from	Huntington's	disease	 (Hausdorff	et	al.,	1997).	 In	 those	cases	 the	
fractal	 organization	 tended	 to	 disappear	 and	 step	 dynamics	 became	 more	 random.	
Additionally,	they	showed	that	the	loss	of	complexity	in	stride	duration	series	correlated	
with	the	propensity	to	fall.		

On	these	bases,	the	main	question	we	address	in	this	doctoral	project	was	the	following:	
could	it	be	possible	to	restore	complexity	in	older	people,	and	especially	in	the	locomotion	
system?		

The	 working	 hypothesis	 that	 sustains	 the	 present	 work	 is	 based	 on	 the	 concept	 of	
complexity	matching,	 initially	 introduced	 by	 West,	 Geneston	 and	 Grigolini	 (2008).	 The	
complexity	 matching	 effect	 refers	 to	 the	 maximization	 of	 information	 exchange	 when	
interacting	systems	share	similar	complexities.	This	effect	has	been	interpreted	as	a	kind	
of	 “1/f	 resonance”	 between	 systems	 (Aquino,	 Bologna,	 West,	 &	 Grigolini,	 2011).	 A	
working	 conjecture	 states	 that	 interacting	 systems	 tend	 to	match	 their	 complexities	 in	
order	to	enhance	their	synchronization	(Marmelat	&	Delignières,	2012).	This	attunement	
of	complexities	has	been	observed	 in	a	number	of	synchronization	experiments	(Abney,	
Paxton,	 Dale,	 &	 Kello,	 2014;	 Coey,	 Washburn,	 Hassebrock,	 &	 Richardson,	 2016;	 Didier	
Delignières	&	Marmelat,	 2014;	Marmelat	&	Delignières,	 2012;	 Stephen,	 Stepp,	Dixon,	&	
Turvey,	 2008),	 and	 interpreted	 as	 a	 transfer	 of	 multifractality	 between	 systems	
(Mahmoodi,	West,	&	Grigolini,	2017).	Finally,	Mahmoodi,	West,	&	Grigolini	(2017)	showed	
that	 when	 two	 systems	 of	 different	 complexity	 levels	 interact,	 this	 transfer	 of	
multifractality	operates	from	the	most	complex	system	to	the	less	complex	(and	not	the	
inverse),	yielding	an	increase	of	complexity	in	the	latter.	Then	our	main	hypothesis	could	
be	 expressed	 as	 follows:	 Is	 it	 possible	 to	 restore	 the	 complexity	 of	 locomotion	 in	 older	
people,	 through	 a	 complexity	 matching	 effect	 that	 could	 result	 from	 the	 exercise	 of	
synchronized	walking	with	young	and	healthy	partners?		

This	 doctoral	 project	 cannot	 be	 summarized,	 however,	 to	 the	 test	 of	 this	 essential	
hypothesis.	In	a	first	step	a	number	of	theoretical	and	methodological	problems	were	to	
be	 solved,	 and	 especially	 about	 the	 identification	 of	 relevant	 methods	 for	 measuring	
(multi)-fractality	 in	 experimental	 series,	 and	 for	 evidencing	 the	 presence	 of	 genuine	
complexity	matching	in	synchronized	series.	This	second	point	was	of	crucial	importance.	
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When	 we	 began	 this	 project,	 a	 number	 of	 papers	 tended	 to	 suggest	 that	 complexity	
matching	 could	 represent	 a	 very	 common	 phenomenon,	 present	 in	 all	 situations	 of	
interaction,	 cooperation,	 or	 synchronization.	 We	 thought,	 in	 contrast,	 that	 complexity	
matching,	in	the	initial	meaning	developed	by	West,	Geneston	and	Grigolini	(2008),	could	
be	less	frequent	and	maybe	quite	difficult	to	discern.		

In	a	second	step,	it	was	necessary	to	show	that	synchronized	walking,	between	young	and	
healthy	 participants,	 gave	 effectively	 rise	 to	 a	 complexity	 matching	 effect.	 This	 first	
experimental	contribution	was	difficult	to	organize	and	perform,	but	provided	satisfying	
results,	 allowing	 the	 final	 test	 of	 our	 main	 hypothesis.	 We	 showed	 that	 a	 complexity	
matching	 affect	was	present	 in	 synchronized	walking,	 and	 that	 this	 effect	was	 stronger	
when	the	two	partners	were	closely	coupled.		
Then	our	last	experiment	aimed	at	testing	the	possible	restoration	of	complexity	in	older	
participants.	 The	 protocol	 was	 particularly	 demanding,	 requiring	 from	 participants	 a	
prolonged	 involvement,	 and	 a	 large	 amount	 of	work.	 The	 recruitment	 and	 retention	 of	
participants	 posed	many	 problems	 and	 this	 experiment	was	 very	 long	 to	 achieve.	 This	
explains	our	request	for	an	additional	deadline	for	the	defense	of	this	doctoral	thesis.		

Considering	the	amount	of	papers	we	were	able	to	finalize	and	publish	during	this	work,	
we	decided	to	base	this	doctoral	thesis	on	the	presentation	of	five	scientific	papers.		

1.	In	the	first	one,	we	evaluate	an	improvement	of	the	Detrended	Fluctuation	analysis,	a	
widely	 used	 method	 in	 our	 domain	 of	 research.	 We	 show	 that	 evenly	 spacing,	 in	 the	
diffusion	plot,	significantly	reduces	the	variability	of	exponent	estimates.		

Almurad,	 Z.M.H.	 &	 Delignières,	 D.	 (2016).	 Evenly	 spacing	 in	 Detrended	
Fluctuation	Analysis.	Physica	A,	451,	63-69.	

2.	In	a	second	paper	we	present	a	new	method	for	testing	for	the	presence	of	a	genuine	
complexity	matching	effect	in	experimental	series.	This	method	is	based	on	the	analysis	of	
correlation	 functions	between	multifractal	 spectra,	 and	 tries	 to	overcome	 the	pitfalls	 of	
more	traditional	approaches.		

Delignières,	 D.,	 Almurad,	 Z.M.H.,	 Roume,	 C.	 &	 Marmelat,	 V.	 (2016).	
Multifractal	signatures	of	complexity	matching.	Experimental	Brain	Research,	
243(10),	2773-2785.		

3.	 In	 a	 third	 paper	 we	 show	 that	 synchronized	 walking;	 with	 young	 and	 healthy	
participants,	is	governed	by	a	complexity	matching	effect.		

Almurad,	Z.M.H.,	Roume,	C.	&	Delignières,	D.	(2017).	Complexity	matching	in	
side-by-side	walking.	Human	Movement	Science,	54,	125-136.		

4.	A	fourth	paper	is	devoted	to	a	formal	analysis	of	a	method	introduced	in	the	previous	
article,	the	Windowed	Detrended	Fluctuation	analysis.		

Roume,	C.,	Almurad,	Z.M.H.,	Scotti,	M.,	Ezzina,	S.,	Blain,	H.	and	Delignières,	D.	
(2018).	Windowed	 detrended	 cross-correlation	 analysis	 of	 synchronization	
processes.	Physica	A,	503,	1131-1150.	

4.	 Finally	 a	 fifth	 paper	 shows	 that	 complexity	matching	may	 restore	 the	 complexity	 of	
walking	in	older	people.		

Almurad,	Z.M.H.,	Roume,	C.,	Blain,	H.	and	Delignières,	D.	 (2018).	Complexity	
matching	 :	Restoring	 the	 complexity	 of	 locomotion	 in	older	people	 through	
arm-in-arm	walking.	Frontiers	in	Physiology	–	Fractal	Physiology,	9,	1766.	
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Chapter	1	
	

Methodological	Contribution:	Evenly	spacing	in	Detrended	Fluctuation	Analysis	

	

	
Fractal	 analyses	 are	 confronted	with	 important	methodological	 problems.	 A	 number	 of	
methods	have	been	proposed	for	assessing	the	fractal	properties	of	experimental	series,	
either	 in	 the	 time	 or	 in	 the	 frequency	 domain.	 Several	 studies	 tried	 to	 assess	 the	
performances	 of	 these	 methods,	 to	 evaluate	 their	 intrinsic	 biaises,	 or	 to	 propose	
methodological	 improvements	 (Delignieres	 et	 al.,	 2006;	 Eke	 et	 al.,	 2000;	 Eke,	 Herman,	
Kocsis,	&	Kozak,	2002)	

The	aim	of	this	chapter	was	to	evaluate	the	effects	of	evenly	spacing	on	the	accuracy	and	
variability	 of	 exponent	 assessment	with	 Detrended	 Flutuation	 Analysis	 (DFA).	 As	most	
fractal	 analyses,	 DFA	 seeks	 at	 determining	 the	 characteristic	 exponent	 of	 a	 power	 law.	
The	 two	 sides	 of	 the	 equations	 are	 submitted	 to	 a	 logarithmic	 transformation,	 and	 the	
slope	of	linear	regression	between	the	two	logarithmic	scales	gives	the	power	exponent.		
This	logarithmic	transformation	yields	a	typical	increase	of	the	concentration	of	points,	as	
the	abscissa	values	increase.	As	a	consequence,	the	higher	part	the	abscissa	scale	presents	
a	stronger	weight	in	the	determination	of	the	exponent.	Evenly	spacing	aims	at	correcting	
this	bias.		

	

 
Figure 1.  Two example diffusion plots, obtained with the same series. The left panel 
represents the logarithmically spaced plot, and the right panel an evenly spaced plot.  

	
	

A	number	a	previous	papers	using	DFA	introduced	evenly	spacing,	but	this	improvement	
of	the	original	algorithm	has	never	been	evaluated.		
In	this	paper	we	tested	two	methods:	the	evenly	spaced	DFA	selects	a	sample	of	abcissa	
value,	 evenly	 spaced	 on	 the	 logarithmic	 scale,	 and	 computed	 the	 regression	 on	 these	
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selected	 points.	 Evenly	 spaced	 average	 DFA	 determines	 non-overlapping	 intervals	 of	
equal	 length	on	the	abscissa	logarithmic	scale,	computes	the	average	values	within	each	
interval,	and	computes	the	regession	on	these	average	values.	The	first	method	has	been	
generally	used	by	the	authors	that	applied	evenly	spacing	with	DFA.	However,	the	second	
method	was	formally	expected	to	provide	more	satisfying	results.		

Our	 results	 showed	 that	 evenly	 spacing	 did	 not	 improve	 the	 accuracy	 of	 estimates.	
However,	we	 observed	 a	 significant	 decrease	 in	 variability	with	 the	 two	 evenly	 spaced	
methods,	as	compared	with	the	original	DFA	algorithm.	The	two	evenly	spaced	methods	
gave	similar	results.	The	average	decrease	in	variability	is	of	about	36%	for	evenly	spaced	
DFA,	and	35%	for	evenly	spaced	averaged	DFA,	as	compared	with	DFA.	We	showed	that	
evenly	spaced	DFA	methods	presented	a	variability	with	series	of	256	points	which	was	
roughly	similar	to	that	obtained	with	DFA,	with	series	of	1024	points.		

We	used	this	refinement	of	DFA	in	all	the	papers	that	are	presented	in	this	doctoral	thesis.	
Evenly	 spacing	was	 also	 incorporated	 in	 the	multifractal	 version	 of	 DFA	 (MF-DFA)	we	
used	for	determining	multifractal	signatures	of	complexity	matching.		
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Abstract	:	

	

 Detrended Fluctuation Analysis is a widely used method, which aims at assessing the level of 
self-similarity in time series. This method analyzes the diffusion properties of the signal, by 
computing the linear regression slope in the diffusion plot, representing in log–log coordinates 
the relationship between the variability of the signal and the length of the intervals over which 
this variability is computed. We compare in this paper the results obtained with logarithmically 
spaced and evenly spaced diffusion plots. The study shows the substantial benefits of evenly 
spacing, especially in the reduction of the variability of estimation. 
Key-words: Detrended Fluctuation Analysis, power laws, diffusion plot, evenly spacing. 

	

Introduction	

The Detrended Fluctuation Analysis (DFA), initially introduced by Peng et al. [1], is a widely 
used analysis method which aims at determining the level of self-similarity in a time series. A 
better understanding of this method supposes a short introduction to the underlying model. 
The DFA algorithm is based on the diffusion property of fractional Brownian motion (fBm), a 
family of stochastic processes introduced by Mandelbrot and Van Ness [2]. Here we focus on 
the discrete version of fBm, which corresponds to the nature of the series analyzed in 
experimental research. In such process variance is a power function of the length (n) of the 
interval over which it is computed. Consider a process xi: 

	 		 (1)	

Where H is the Hurst exponent, which can take any real value within the interval ]0, 1[. For H 
= ½, xi corresponds to ordinary Brownian motion, and variance is just proportional to the 
elapsed time (normal diffusion). For H ̸≠ ½, xi is characterized by anomalous diffusion: The 
process is said subdiffusive for H < ½, and superdiffusive for H > ½. 

  Var(xi ) ∝ n2 H
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Fig.  1.  Two example diffusion plots, obtained with the same series. The left panel 
represents the logarithmically spaced plot, and the right panel an evenly spaced plot. 
The slopes of the regression lines are 0.85 and 0.88, respectively. 

A second family of stochastic processes, fractional Gaussian noise (fGn), is defined as the 
series of increments within a fBm. By definition, a fGn is the series of differences in a fBm, 
and conversely the summation of a fGn gives a fBm. Each fBm series is then related to a 
specific fGn, and both are characterized by the same H exponent. H determines the nature of 
correlations between successive values in the fGn: for H < 0.5, successive values are negatively 
correlated, and the series is said to be anti-persistent. Conversely for H > 0.5 successive values 
are positively correlated, and the series is persistent. For H = 0.5, successive values are 
uncorrelated, and the series corresponds to white noise. An important difference between these 
two classes of processes is that fBm are non-stationary processes, as suggested by Eq. (1), 
whereas fGn series present stationary mean and variance over time. 
As presented in the first paragraphs of this article, fGn and fBm are defined as two distinct 
families, which can be considered superimposed, with their relationships of 
summation/differencing. A number of authors, however, have proposed to consider these two 
families as a continuum, surrounding the mythical border of ‘‘ideal’’ 1/f noise [3–6]. 
The Detrended Fluctuation Analysis (DFA), Ref. [1] can be applied to both fGn and fBm 
signals. The details of the DFA algorithm will be detailed later in this paper. Here we just 
present its general principles, in order to introduce the hypotheses underlying the present work. 
This method exploits a typical scaling law, which states that the standard deviation of the 
integrated series is a power function of the interval length over which it is computed, with an 
exponent α. Considering a time series xi:     

   

	 		 (2)	

This scaling just derives from the original definition of fBm, expressed in Eq. (1). fGn series 
are characterized by α exponents ranging from 0 to 1, and fBm by exponents ranging from 1 to 
2. α = 1 corresponds to 1/f noise. If the series xi is a fGn, Xi is the corresponding fBm and α is 
the Hurst exponent. If xi is a fBm, Xi belongs to another family of over-diffusive processes, 
characterized by α exponents ranging from 1 to 2, and in that case α = H + 1 [1]. 
The DFA algorithm works as follows : The series is first integrated, and then this integrated 
series is divided into non- overlapping intervals of length n. Within each interval the series is 
detrended, and the standard deviation of the residuals is computed. Then one calculates the 
average (detrended) standard deviation for the intervals of length n, noted F(n). This 
computation is repeatedly performed over all n values. In practice, the shortest interval length is 
chosen for allowing a valid estimate of standard deviation (for example n = 10), and the 
lengthiest for allowing at least two distinct estimates (e.g., n = N /2). Then F(n) is plotted 
against n in log–log coordinates, forming the so-called diffusion plot, and the exponent α is 
obtained as the slope of the linear regression (see Fig. 1, left panel). 

Xi = xk
k=0

i

∑

  SD( Xi ) ∝ nα
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An important consequence of this logarithmic transformation is that the density of points 
along the abscissa axis increases as interval length increases (see Fig. 1, left panel). And as 
regression analysis works on plane geometric principles, the weight of long intervals in the 
calculation of the slope becomes higher than that of short intervals. Moreover, the long-term 
region of the diffusion plot often presents irregularities around the linear trend, especially 
because the number of intervals involved in the computation of F(n) is smaller for long time 
scales [7]. This results in a greater uncertainty in the determination of the slope in the long-term 
region of the diffusion plot, where most points are concentrated. A solution for overcoming this 
problem is to define the diffusion plot over a set of points evenly spaced in the logarithmic 
scale (Fig. 1, right panel). 
Several methods have been proposed for obtaining a series of evenly spaced points in the log–
log plot. Some authors have proposed to select a set of interval lengths, evenly spaced on the 
logarithmic scale. This idea was initially introduced by Peng et al. [8]. For example Jordan, 
Challis, and Newell [9] used fifty interval lengths distributed between 4 and N/4 [10–16]. This 
method will be designed thereafter as evenly spaced DFA. 
However, this arbitrary selection of isolated, evenly spaced points in the original diffusion plot 
could raise some problems, especially in the long-term region of the diffusion plot, where 
points often present strong deviations from the regression line. A solution for accounting with 
this potential problem is to divide the range of log(n) into a series of intervals of equal length, 
and then to average the points that fall within each interval [17–19]. This method allows to 
exploit the whole information contained in the original diffusion plot, while satisfying the 
evenly spacing principle. This method will be designed thereafter as evenly spaced averaged 
DFA. 
While theoretically convincing, the advantages of evenly spacing have never been rigorously 
assessed, and a number of recent papers still work with logarithmically spaced points [20–31]. 
The aim of this paper is to assess the benefits of evenly spacing, in terms of accuracy and 
consistency of estimates. We hypothesize that evenly spacing should produce a lower 
variability in the estimation of exponents, and should allow working with shorter series. We 
also hypothesize that the evenly spaced averaged method should gave better results than simple 
evenly spacing. 

Methods 
Series simulation 
In order to assess the performances of DFA over the whole fGn/Bm model, we simulated series 
with the algorithm proposed by Davies and Harte [32]. This method is known to generate fGn 
series that preserve the expected correlation structure for a given H value. This algorithm has 
been used in a number of previous studies aiming at analyzing exact fractal series [4,33–35]. 
We first generated fGn series for H values ranging from 0.1 to 0.9, by steps of 0.1. A second set 
of fGn series was generated, for H values ranging from 0.1 to 0.9, by steps of 0.1, and these 
series were summed for obtaining fBm series for each corresponding H values. In each case we 
generated 120 series of 1024 data points. 

Detrended Fluctuation Analysis 
Here we present in detail the original algorithm of DFA [1]. Consider a series xi of length N. 
The series is first integrated, by computing for each i the accumulated departure from the mean 
of the whole series: 

   (3) 

This integrated series is divided into k non-overlapping intervals of length n. The last N − kn 
data points are excluded from analysis. Within each interval, a least squares line is fitted to the 
data (representing the trend in the interval). The series Xi is then locally detrended by 

Xi = x j − x( )
j=1

i

∑
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subtracting the theoretical values XTh given by the regression. For a given interval length n, the 
characteristic size of fluctuation for this integrated and detrended series is calculated by: 

   (4) 

This computation is repeated over all possible interval lengths. In the present paper we 
considered interval lengths ranging from n = 10 to n = N/2. Typically, F increases with interval 
length n. A power law is expected, as 

   (5). 

α is expressed as the slope of the double logarithmic plot of F(n) as a function of n (see Fig. 1, 
left panel).  

Evenly spaced DFA  

The papers using evenly spaced DFA remain often elusive about the selection of the points to 
introduce in the diffusion plot. Generally the shortest and lengthiest intervals are explicitly 
defined, and sometimes the number of points included in the diffusion plot. Quite often, 
however, this information is only accessible through the visual examination of the diffusion 
plots, when provided. The main idea is that the series of selected interval lengths should present 
a geometric progression: 

   (6) 

where a is a constant [8,10,15]. Here we propose a generic solution, considering the number of 
points to include in the diffusion plot (k), the minimum and maximum interval lengths (nmin 
and nmax, respectively). The k interval lengths, noted ni (i = 1,2,...,k), are defined as: 

   

   (7) 

The brackets signify that ni is rounded to the closest integer value. In the present analysis, for 
series of 1024 points, we set k = 18, nmin = 10, and nmax = 512 (N /2). We obtained the 
following ni values: 10, 13, 16, 20, 25, 32, 40, 51, 64, 80, 101, 128, 161, 203, 322, 256, 406, 
512. The regression slope was computed over the corresponding points. 
Evenly spaced averaged DFA �  
For obtaining the evenly spaced averaged diffusion plots, we divided the (log) abscissa into k 
bins of length (log10(nmax/nmin))/k, starting from log10(nmin). The k bins are then defined by: 

	 		 (8)	

With i = 1, 2, . . . , k. The corresponding bins in the natural scale are defined as: 

	

,	 (9)	

With i = 1, 2, . . . , k. In this natural scale, the length of the successive bins (and hence the 
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number of points that fall into each successive bin) presents a geometric progression: 

	 	 (10)	

Within each bin i, we computed the average interval length  and the average fluctuation size 

, and determined the diffusion plot with these k average points. In the present analyses, 
we set nmin = 10, nmax = 512, and k = 18. 

Statistical analyses 
The results of these analyses were examined in terms of accuracy and consistency. Accuracy 
refers to the difference between the mean estimate for a set of series and the true exponent that 
was used for its simulation. This aims at determining systematic biases that could occur in 
some parts of the fGn/fBm model [33]. Consistency refers to the standard deviation of 
exponent estimates in a set of series simulated with the same true exponent. In order to assess 
the effect of series length, we performed additional analyses with shorter series of 512 and 256 
data points. In both cases we considered the first segments of our simulated series. 
Results	
We present in Fig. 2 example diffusion plots obtained with the three methods on the same 
series. As expected, DFA produced a diffusion plot exhibiting large fluctuations around the 
linear trend in the long-term region. In contrast, the two other methods seem able to allow a 
more effective determination of the linear trend. Note that in this particular example, evenly 
spaced averaged DFA seems to present less deviations from the linear slope in the long-term 
region. 
 
 

	 	

Fig.	 2	:	 Example	 diffusion	 plots,	 obtained	 with	 a	 series	 with	 true	 α	=	0.9.	 Left	:	 DFA	;	
middle	:	evenly	spaced	DFA	;	right	:	evenly	spaced	averaged	DFA.		

	
We present in Fig. 3 the results of the three methods, in terms of accuracy of the mean 
estimates. All methods gave similar results for fGn series, and mean α estimates appear very 
close to the corresponding true α. In contrast, DFA tends to underestimate α for fBm series. 
This bias is also present in the two evenly spaced methods, which both present similar results. 
The length of series had no noticeable effect of the accuracy of methods for fGn series. 
Reducing length tended to increase the underestimation bias for fBm close to 1/f . 
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Fig.  3.  Mean α estimates, as a function of true α exponents, for DFA (left), evenly spaced 
DFA (middle), and evenly spaced averaged DFA (right). The solid line represents the theoretical 
equality between estimated and true exponents. 

We present in Fig. 4 (left panel), for the three methods, the standard deviation of the samples of 
estimates, as a function of true α. In all cases variability increases as true α increases, with a 
kind of ceiling effect for α > 1.5. 
The most interesting result is the clear decrease of variability with the two evenly spaced 
methods, as compared with DFA. Note that the two evenly spaced methods gave similar 
results. The average decrease in variability is of about 36% for evenly spaced DFA, and 35% 
for evenly spaced averaged DFA, as compared with DFA. 
We present in Fig. 4 (right panel) the standard deviation of α estimates as a function of series 
length, using evenly spaced DFA. As expected, variability increased as series length decreased. 
However, the examination of the two graphs shows that evenly spaced DFA presents a 
variability with series of 256 points which is roughly similar to that obtained with DFA, with 
series of 1024 points. Evenly spaced averaged DFA gave similar results. 
 

 
Fig.  4. Left: Standard deviation of the samples of estimated exponents, as a function of the true 
exponent, for the three tested methods. Right: Standard deviation of the samples of estimated 
exponents, as a function of the true exponent and according to series length (results obtained with 
evenly spaced DFA, evenly spaced averaged DFA gave similar results). 
 
 

Discussion 
The use of evenly spaced diffusion plots has been recommended for a long time in the 
literature, but its benefits have never been systematically assessed, and a number of recent 
papers still exploit logarithmically spaced diffusion plots. We show in this paper that evenly 
spacing provides substantial benefits, and especially increases the consistency of estimates. 
Evenly spacing provides reliable results with relatively short series, an important goal in 
psychological and behavioral sciences in the design of analysis methods [33]. 
We tested two distinct procedures, evenly spaced DFA and evenly spaced averaged DFA, 
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hypothesizing that the second one should give better results. Our analyses did not comfort 
this hypothesis, and both methods gave similar results. One should keep in mind, however, that 
the present study was performed with synthetic signals. One could suppose that such signals 
present a more homogeneous correlation behavior over time, and fewer deviations around the 
regression line in the diffusion plot, as compared with empirical series. Despite the absence of 
statistically significant results in the present work, the evenly spaced averaged method could in 
our mind be favored. 
Our results confirm the slight underestimation bias of DFA for fBm series, which has been 
already noticed in several studies [4,33]. It is important to keep in mind that DFA first 
integrates the series and then analyzes the diffusion properties of the resultant series. In other 
words the initial series is considered as increments, and DFA works on the diffusion   
properties of its cumulative sum. However, DFA is mainly sensitive to the correlation structure 
of the series of increments, and Delignières [36] showed that fGn and fBm presented 
completely different correlation structures. By definition, the cumulative sum of a fGn is a 
fBm, which possesses the diffusion property expressed in Eq. (1). In contrast, there is no 
guaranty that the correlation structure of fBm provides its cumulative sums with such a 
property. The global under- estimation bias with fBm series could be related to this problem. It 
seems important to notice that when the analyzed series is unambiguously characterized as fBm 
(e.g., with an α estimate higher than 1.2, see Ref. [33]), it could be considered to re-apply DFA, 
omitting the summation step. This procedure directly assesses the diffusion properties of the 
original signal (supposed to be a fBm), and gives an unbiased estimate of the Hurst exponent, 
which can be converted if necessary in α metrics (α = H + 1). 
Evenly spacing could also be of interest in the approach of crossovers, a rather common 
phenomenon in fractal analysis [37–39]. Scale invariance is theoretically revealed by the 
presence of a linear trend in the bi-logarithmic diffusion plot, over the whole range of time 
scales. Sometimes, however, correlations do not follow the same scaling law for all time scales, 
and a crossover can be observed between different scaling regions [37,40]. Such crossover 
could be related to the presence of a sinusoidal trend in the series, and in that case the timescale 
where this crossover occurs is inversely related to the oscillatory frequency that dominates the 
time series [38]. More generally, a crossover appears when series are bounded within upper and 
lower limits [41]. 

Because crossovers often appear in the long-term region of the diffusion plots, one could 
suppose that evenly spacing could allow a more accurate determination of the nature of the 
crossover [38], and in the case of genuine crossovers separating the diffusion plots in two 
clearly distinguishable scaling regimes, a better estimate of the crossover point, in order for 
example to filter out the troublemaking frequency [42]. 
The present paper focused more on evenly spacing than on DFA itself. However, some 
concluding remarks about this widely used method could represent an interesting complement. 
The DFA algorithm is based on the fGn/fBm model, and a number of experiments have proven 
the suitability of this model for accounting for the long-range correlation properties of a wide 
diversity of physiological signals. However, a blind application of DFA could yield irrelevant 
results, and one could wonder whether the fGn/fBm model can be used for any forms of 
physiological fluctuations [3,43]. Some recent experiments considered signals that clearly fell 
out of the scope of the fGn/fBm fluctuations [41,44]. Moreover, the fGn/fBm model presents 
an abrupt breakdown of correlation properties around the 1/f boundary, casting some doubts 
about its relevancy for accounting for 1/f behavior [36]. Some alternative models have been 
proposed for accounting for long-range correlation properties [45,46], which could be 
considered in order to design more suitable analysis methods. 

Despite these reserves, evenly spacing yields substantial benefits, and it seems reasonable to 
promote the systematic use of this procedure, in order to improve the performances of DFA. 
Note that this recommendation could be extended to all methods exploiting power laws, 
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including Power Spectral Density [4], Scaled Windowed Variance Analysis [47], Rescaled 
Range Analysis [48], or Dispersional Analysis [49,50]. 
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 Chapter 2 

	

Multifractal	signatures	of	complexity	matching	
	

	
Complexity matching and strong anticipation.  
As indicated in the introduction, complexity matching represents the central concept of this 
thesis. Complexity matching was introduced by West, Geneston and Grigolini (2008), who 
showed that information transfer between system is maximized when they present similar 
complexity. This theory, however, was not directly exploited in the domain of synchronization.  
For a long time, synchronization processes were mainly analyzed though the paradigm of 
synchronization with a regular metronome, and on the basis of representational models (for 
reviews, see Repp, 2005; Repp & Su, 2013). These models supposed that synchronization was 
mainly achieved by the correction of the asynchrony perceived by the individual, between the 
sounds emitted by the metronome and his/her actions (e.g., finger taps). These models received 
considerable support, but their relevancy was clearly linked to the regularity of the metronome, 
allowing to anticipate precisely the dates of the next occurences of the signals.  

A decade ago, some authors tried to overcome the limits of this initial paradigm: In real life, 
synchronization does not occur with regular metronomes, but rather with signals and rhythms 
that present marked fluctuations. This is especially the case for interpersonal synchronization, 
in which both partners tend to produce 1/f fluctuations. In such cases, precise predictions about 
the date of occurrence of the next event are difficult, and the traditional models based on error 
correction seem hardly sustainable.  

In a first step authors referred to the model proposed by Dubois (2003), who distinguished the 
processes of strong and weak anticipation (Vorberg & Wing, 1996). Synchronization with the 
environment has been often described in terms of anticipation: For example, when participants 
have to synchronize finger taps with the beats emitted by a metronome, a mean negative 
asynchrony is consistently reported, suggesting that participants do not react to auditory 
stimuli, but rather anticipate their occurrence. Such anticipatory behavior can be underlain by 
the formation of an internal model that allows short-term predictions about the time of 
occurrence of the next metronome signal. A number of representational models, based on phase 
correction (Vorberg & Wing, 1996) and/or period correction (Mates, 1994) have been proposed 
for explaining synchronization in tapping tasks (Repp, 2005). This kind of local, short-term 
anticipation, based on internal models and corrective processes, is referred by Dubois (2003) to 
as weak anticipation.  

Dubois (2003) evoked a second kind of anticipative behavior he called strong anticipation, 
which is supposed to occur without reference to any internal model (Stephen et al., 2008; Stepp 
& Turvey, 2010). According to the authors, strong anticipation is based on the embedding of 
the organism within its environment, creating a new, organism-environment system, which 
possesses lawful regularities that allow the emergence of anticipation.  
Stephen and Dixon (2011) noted that two divergent approaches to strong anticipation have to 
be distinguished. The first one suggests that strong anticipation results from an appropriate 
local coupling between the organism and its environment. For example the synchronization of 
the rhythmic oscillations of a limb with a periodic metronome has been successfully accounted 
for by a model of coupled oscillators, including a parametric driving function (Jirsa, Fink, Foo, 
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& Kelso, 2000; Torre, Balasubramaniam, & Delignières, 2010). More sophisticated models in 
physics have shown that during the synchronization between a slave and a master systems, the 
presence of time delays in the master system yields the slave system to synchronize with future 
states of the master (Voss, 2000). These models of coupled oscillators suggest that anticipation 
could emerge from the macroscopic properties of the organism-environment system. This 
conception supposes that anticipation is based on local time scales (Stepp & Turvey, 2010).  

A second approach considers that strong anticipation could be based on a more global 
coordination between the organism and its environment. Stephen, Stepp, Dixon, and Turvey 
(2008) analyzed synchronization with a chaotic metronome: In that case, local predictions are 
difficultly conceivable, because of the intrinsically unpredictable nature of the pacing signal. 
Indeed, the authors showed that tapping behavior in this situation exhibited a mix of reaction, 
proaction, and synchrony to metronome signals. Importantly, they observed a close matching 
between the fractal exponents of the chaotic signals and those of the corresponding inter-tap 
interval series. In this kind of strong anticipation, the organism is not adapted to the states of 
the environment but to their statistical structure. The presence of 1/f scaling in the environment 
is essential in this coordination process: the organism exploits the complexity of the 
environment, and especially the long-range correlated structure of its evolution over time, as a 
resource for a more adaptive and efficient behavior (Stephen et al., 2008; Stepp & Turvey, 
2010).  
Note that the concept of strong anticipation has been primarily introduced for accounting for 
the adaptation of (complex) organisms with their (complex) environment. Anticipation suggests 
a directional relationship, with a slave system attempting to anticipate the future states of a 
master system. The principles that underlie strong anticipation, however, can be extended more 
generally to coordination processes between equivalent systems (Marmelat & Delignières, 
2012). In that case systems mutually adapt, with a kind of bi-directional anticipation. Strong 
anticipation, in this context, suggests that the complexity of both systems is an essential 
resource for their effective coordination. For example Marmelat and Delignières (2012) 
analyzed inter-personal coordination in a task where participants had to move pendulums in 
synchrony. Results revealed a poor local correlation between the series of oscillation periods 
produced by the two participants of each dyad. The authors analyzed the scaling properties of 
the series of periods produced by participants, separating short-term and long-term scaling 
behaviors. They evidenced a close correlation between long-term fractal exponents, but in the 
short term series behaved more independently.  
The complexity matching effect 
More recently the study of synchronization between complex system was essentially based on 
the concept of complexity matching (Abney et al., 2014; Coey et al., 2016; Den Hartigh, 
Marmelat, & Cox, 2018; Fine, Likens, Amazeen, & Amazeen, 2015; Marmelat & Delignières, 
2012). Note that this substitution between strong anticipation and complexity matching cannot 
be considered as a renewal of theoretical foundations, but rather as a switch towards a more 
insightful perspective (Marmelat & Delignières, 2012). The weak/strong anticipation 
framework proposed a binary classification between representational and non-representational 
models of anticipation. The distinction proposed by Stepp and Turvey (2010) between the local 
and global forms of strong anticipation was just an ad hoc tinkering, that tried to distinguish the 
models of continuous coupling from “something else”, an amazing phenomenon that was 
observed and which cannot be accounted for neither by representational models, nor by 
continuous coupling models.  

The complexity matching framework provided a theoretical foundation to global strong 
anticipation. This theoretical step, however, was not so direct. The complexity matching effect 
was initially evidenced through the analysis of the efficiency of the transfer of information 
between and within complex systems (West et al., 2008). The authors showed that information 
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exchange is maximal when systems share the same complexity, and especially 1/f scaling. 
Delignières and Marmelat (2012) derived a simple conjecture for this seminal principle: “In 
interpersonal coordination tasks, a very efficient information transfer must support the process 
of coordination between systems: In this case, the best way of exchanging information is to 
match complexities. This interpretation implies that both systems modified their own dynamics 
in order to produce a stable pattern of coordination. One could argue that complex systems 
modify their internal functional organization (Kello, Beltz, Holden, & Van Orden, 2007) when 
they have to synchronize with another complex system” (Marmelat & Delignières, 2012). This 
conjecture allowed to deeper the theoretical analysis of processes underlying global strong 
anticipation.  

Complexity matching, from this point of view, is conceived as a multiscale coordination 
between systems (Den Hartigh et al., 2018). While the synergetics approach considered 
coordination as the continuous coupling between macroscopic features of both oscillators 
(Haken, Kelso, & Bunz, 1985), complexity matching suggest a more global form coordination, 
involving all time scales within the systems.  
Statistical matching and genuine complexity matching 
As previously indicated, the seminal paper in this domain was proposed by Stephen, Stepp, 
Dixon, and Turvey (2008). In this experiment, the main statistical evidence provided by the 
authors was the close correlation between the fractal exponents of the chaotic signals and those 
of the series produced by participants. Marmelat	and	Delignières	(2012)	evidenced	similar	
results.	Results	revealed	 low	 local	correlations	between	the	series	of	oscillation	periods	
produced	 by	 the	 two	 participants	 of	 each	 dyad.	 The	 authors	 analyzed	 the	 scaling	
properties	of	the	series	of	periods	produced	by	participants,	and	evidenced	a	very	close	
correlation	between	 fractal	exponents.	Similar	results	were	evidenced	by	Marmelat	and	
Delignières	 (2012),	 in	 an	 inter-personal	 coordination	 task	where	participants	oscillated	
pendulums	in	synchrony,	and	by	Abney,	Paxton,	Dale,	and	Kello	(2014),	in	the	analysis	of	
speech	signals	during	dyadic	conversations.		

We	 think,	 however,	 that	 the	 idea	 that	 the	 matching	 of	 scaling	 exponents	 could	 be	
considered	an	unambiguous	signature	of	complexity	matching	remains	questionable,	and	
it	 could	 be	 necessary	 to	 distinguish	 between	 a	 simple	 statistical	 matching	 (i.e.,	 the	
convergence	of	 scaling	exponents)	 and	 the	genuine	 complexity	matching	effect	 (i.e.,	 the	
attunement	 of	 complexities).	 Fine	 et	 al.	 (2015),	 in	 an	 experiment	 on	 rhythmic	
interpersonal	 coordination,	 observed	 a	 typical	 matching	 of	 scaling	 exponents,	 but	
suggested	 that	 this	 statistical	matching	 could	 just	 result	 from	 local	 phase	 adjustments,	
and	 not	 from	 a	 global	 attunement	 of	 complexities.	 As	 well,	 Delignières	 and	 Marmelat	
(2014)	analyzed	series	of	stride	durations	produced	by	participants	attempting	to	walk	in	
synchrony	with	 a	 fractal	 metronome.	 They	 tried	 to	 simulate	 their	 empirical	 results	 by	
means	of	a	model	based	on	local	corrections	of	asynchronies,	and	showed	that	this	model	
was	 able	 to	 adequately	 reproduce	 the	 statistical	 matching	 observed	 in	 experimental	
series.	The	authors	concluded	that	walking	in	synchrony	with	a	fractal	metronome	could	
essentially	 involve	 short-term	 correction	 processes,	 and	 that	 the	 close	 correlation	
observed	between	scaling	exponents	could	in	such	a	case	just	represent	the	consequence	
of	 local	 correction	 processes.	 Torre	 et	 al.	 (2013)	 also	 supported	 this	 hypothesis	 in	 a	
tapping	 task	 where	 participants	 synchronized	 with	 different	 non-isochronous	 auditory	
metronomes.	 They	 evidenced	 that	 inter-tap	 intervals	 could	 be	 modeled	 based	 on	 the	
previous	inter-beat	interval	of	the	metronome	and	a	correction	of	previous	asynchronies	
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to	the	metronome,	independently	of	the	level	of	1/f	fluctuations	of	the	metronome	(i.e.	
white	noise	or	pink	noise).		
Complexity matching and multifractality 

One	 of	 the	 most	 appealing	 hypotheses	 about	 the	 origin	 of	 fractal	 fluctuations	 in	 the	
behavior	 of	 complex	 systems	 refers	 to	 the	 idea	 that	 the	 interactions	 between	 system’s	
networks	 are	 governed	 by	 multiplicative	 cascade	 dynamics	 (Ihlen	 &	 Vereijken,	 2010).	
Such	dynamics	is	supposed	to	generate	multifractal,	rather	than	monofractal	fluctuations,	
and	 indeed	 Ihlen	 and	 Vereijken	 (2010)	 showed	 that	 it	 was	 the	 case	 in	 most	 previous	
analyzed	series	in	the	literature.	In	the	same	vein	Stephen	and	Dixon	(2011)	considered	
that	 complexity	 matching	 should	 be	 conceived	 as	 a	 product	 of	 multiplicative	 cascade	
dynamics,	 entailing	 a	 coordination	 of	 fluctuations	 among	 multiple	 time	 scales.	 More	
recently	 Mahmoodi,	 West,	 and	 Grigolini	 (2017) interpreted complexity matching as a 
transfer of multifractality between systems.  	
Statistical signatures of complexity matching 

Our	 goal	 in	 the	 present	 paper	 is	 to	 seek	 for	 statistical	 signatures	 that	 could	
unambiguously	 distinguish	 between	 genuine	 global	 complexity	 matching	 and	 local	
corrections	or	adjustments.	As	previously	explained,	most	previous	papers	 that	 tried	 to	
evidence	complexity	matching	effects	worked	on	the	basis	of	monofractal	analysis.	Here	
we	propose	to	adopt	multifractal	analyses	because	they	allow	for	a	more	detailed	picture	
of	 the	 complexity	 of	 time	 series,	 and	 also	 because	 the	 tailoring	 of	 fluctuations	 that	 is	
typical	 of	 complexity	 matching	 could	 be	 considered	 as	 the	 product	 of	 multifractality	
(Stephen	&	Dixon,	2011). 
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Abstract:	

The	complexity	matching	effect	supposes	that	synchronization	between	complex	systems	
could	 emerge	 from	 multiple	 interactions	 across	 multiple	 scales,	 and	 has	 been	
hypothesized	to	underlie	a	number	of	daily-life	situations.	Complexity	matching	suggests	
that	 coupled	 systems	 tend	 to	 share	 similar	 scaling	 properties,	 and	 this	 phenomenon	 is	
revealed	 by	 a	 statistical	matching	 between	 the	 scaling	 exponents	 that	 characterize	 the	
respective	behaviors	of	both	systems.	However,	 some	recent	papers	suggested	 that	 this	
statistical	 matching	 could	 originate	 from	 local	 adjustments	 or	 corrections,	 rather	 than	
from	a	genuine	complexity	matching	between	systems.	In	the	present	paper	we	propose	
an	 analysis	 method	 based	 on	 correlation	 between	 multifractal	 spectra,	 considering	
different	ranges	of	time	scales.	We	analyze	several	datasets	collected	in	various	situations	
(bimanual	coordination,	 interpersonal	coordination,	walking	 in	synchrony	with	a	 fractal	
metronome).	Our	results	show	that	this	method	is	able	to	distinguish	between	situations	
underlain	 by	 genuine	 statistical	 matching,	 and	 situations	 where	 statistical	 matching	
results	from	local	adjustments.		
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Introduction	

The	 concept	 of	 complexity	 matching	 (West	 et	 al.	 2008)	 states	 that	 the	 exchange	 of	
information	 between	 two	 complex	 networks	 is	maximized	when	 their	 complexities	 are	
similar.	This	particular	property	requires	both	networks	to	generate	1/f	fluctuations,	and	
has	been	interpreted	as	a	kind	of	“1/f	resonance”	between	networks	(Aquino	et	al.	2011).	
In	such	a	situation,	a	complex	network	responds	to	a	stimulation	by	another	as	a	function	
of	the	matching	of	their	measures	of	complexity,	i.e.	the	matching	of	their	1/f	fluctuations.	
In	contrast,	 the	 response	of	a	 complex	network	 to	a	harmonic	stimulus	 is	very	weak	as	
compared	with	 that	obtained	with	another	network	of	similar	complexity	(Aquino	et	al.	
2010;	Mafahim	et	al.	2015).		

A	 direct	 conjecture	 exploiting	 the	 complexity	 matching	 effect	 is	 when	 two	 complex	
systems	 become	 coupled,	 they	 should	 attune	 their	 complexities	 in	 order	 to	 optimize	
information	exchange.	This	conjecture	has	been	initially	tested	by	Stephen	et	al.	(2008),	in	
a	 task	 where	 participants	 had	 to	 synchronize	 finger	 taps	 with	 a	 chaotic	 metronome.	
Results	 showed	 that	despite	 the	unpredictable	nature	of	 the	 stimuli	 participants	where	
roughly	 able	 to	 synchronize	 with	 the	 chaotic	 metronome,	 with	 a	 mix	 of	 reaction	 and	
proaction.	 As	 expected	 the	 authors	 observed	 a	 close	 matching	 between	 the	 scaling	
properties	 of	 the	 inter-beat	 interval	 series	 of	 chaotic	 signals	 and	 those	 of	 the	
corresponding	inter-tap	interval	series	of	participants.		

Marmelat	 and	 Delignières	 (2012)	 evidenced	 similar	 results	 in	 an	 inter-personal	
coordination	task	where	participants	oscillated	pendulums	in	synchrony.	Results	revealed	
low	 local	 correlations	 between	 the	 series	 of	 oscillation	 periods	 produced	 by	 the	 two	
participants	 of	 each	 dyad.	 The	 authors	 analyzed	 the	 scaling	 properties	 of	 the	 series	 of	
periods	produced	by	participants,	and	evidenced	a	very	close	correlation	between	fractal	
exponents.	 Similar	 results	were	 evidenced	by	Abney,	Paxton,	Dale,	 and	Kello	 (2014),	 in	
the	analysis	of	speech	signals	during	dyadic	conversations.		

However,	 the	 idea	 that	 the	 matching	 of	 scaling	 exponents	 could	 be	 considered	 an	
unambiguous	 signature	 of	 complexity	 matching	 remains	 questionable,	 and	 it	 could	 be	
necessary	to	distinguish	between	the	statistical	matching	(i.e.,	the	convergence	of	scaling	
exponents)	 and	 the	 genuine	 complexity	 matching	 effect	 (i.e.,	 the	 attunement	 of	
complexities).	For	example	Fine	et	al.	(2015),	in	an	experiment	on	rhythmic	interpersonal	
coordination,	 observed	 as	 in	 previous	 experiments	 a	 typical	 matching	 of	 scaling	
exponents,	but	suggested	that	this	statistical	matching	could	just	result	from	local	phase	
adjustments,	and	not	from	a	global	attunement	of	complexities.	Delignières	and	Marmelat	
(2014)	analyzed	series	of	stride	durations	produced	by	participants	attempting	to	walk	in	
synchrony	with	 a	 fractal	 metronome.	 They	 tried	 to	 simulate	 their	 empirical	 results	 by	
means	of	a	model	based	on	local	corrections	of	asynchronies,	and	showed	that	this	model	
was	 able	 to	 adequately	 reproduce	 the	 statistical	 matching	 observed	 in	 experimental	
series.	The	authors	concluded	that	walking	in	synchrony	with	a	fractal	metronome	could	
essentially	 involve	 short-term	 correction	 processes,	 and	 that	 the	 close	 correlation	
observed	between	scaling	exponents	could	in	such	a	case	just	represent	the	consequence	
of	 local	 correction	 processes.	 Torre	 et	 al.	 (2013)	 also	 supported	 this	 hypothesis	 in	 a	
tapping	 task	 where	 participants	 synchronized	 with	 different	 non-isochronous	 auditory	
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metronomes.	 They	 evidenced	 that	 inter-tap	 intervals	 could	 be	 modeled	 based	 on	 the	
previous	inter-beat	interval	of	the	metronome	and	a	correction	of	previous	asynchronies	
to	 the	metronome,	 independently	of	 the	 level	of	1/f	 fluctuations	of	 the	metronome	 (i.e.	
white	noise	or	pink	noise).		

Our	 goal	 in	 the	 present	 paper	 is	 to	 seek	 for	 statistical	 signatures	 that	 could	
unambiguously	 distinguish	 between	 genuine	 global	 complexity	 matching	 and	 local	
corrections	 or	 adjustments.	 To	 date,	 most	 papers	 that	 tried	 to	 evidence	 complexity	
matching	effects	worked	on	the	basis	of	monofractal	analysis.	Here	we	propose	to	adopt	
multifractal	analyses	because	they	allow	for	a	more	detailed	picture	of	the	complexity	of	
time	series,	and	the	tailoring	of	fluctuations	that	is	typical	of	complexity	matching	could	
be	considered	as	the	product	of	multifractality	(Stephen	and	Dixon	2011).	One	of	the	most	
appealing	hypotheses	about	 the	origin	of	 fractal	 fluctuations	 in	 the	behavior	of	complex	
systems	refers	to	the	idea	that	the	interactions	between	system’s	networks	are	governed	
by	 multiplicative	 cascade	 dynamics	 (Ihlen	 and	 Vereijken	 2010).	 Such	 dynamics	 is	
supposed	to	generate	multifractal,	rather	than	monofractal	fluctuations,	and	indeed	Ihlen	
and	Vereijken	(2010)	showed	that	it	was	the	case	in	most	previous	analyzed	series	in	the	
literature.	 Stephen	 and	 Dixon	 (2011)	 consider	 that	 complexity	 matching	 should	 be	
conceived	 as	 a	 product	 of	 multiplicative	 cascade	 dynamics,	 entailing	 a	 coordination	 of	
fluctuations	among	multiple	time	scales.		

While	 monofractal	 processes	 are	 characterized	 by	 long-term	 correlations	 and	 a	 single	
scaling	 exponent,	 in	 multifractal	 time	 series	 subsets	 with	 small	 and	 large	 fluctuations	
scale	 differently,	 and	 their	 description	 requires	 a	 hierarchy	 of	 scaling	 exponents	
(Podobnik	 and	 Stanley	 2008).	 We	 propose	 to	 assess	 statistical	 matching	 through	 the	
point-by-point	 correlation	 function	 between	 the	 sets	 of	 scaling	 exponents	 that	
characterize	the	coordinated	series.		

In	 the	present	paper	we	used	the	Multifractal	Detrended	Fluctuation	analysis	(MF-DFA)	
introduced	 by	 Kantelhardt	 et	 al.	 (2002),	 which	 is	 an	 extension	 of	 the	 Detrended	
Fluctuation	 Analysis	 (DFA,	 Peng	 et	 al.	 1993).	 Just	 as	 DFA,	MF-DFA	 allows	 to	 select	 the	
range	 of	 intervals	 over	 which	 exponents	 are	 estimated.	 Usually	 authors	 considers	
intervals	 from	8	 or	 10	 data	 points,	 in	 order	 to	 allow	 a	 proper	 assessment	 of	 statistical	
moments,	up	to	N/4	or	N/2	(N	representing	the	length	of	the	analyzed	series),	in	order	to	
get	at	least	four	or	two	estimates	of	these	moments.	Quite	often,	however,	series	present	
different	scaling	regimes	over	the	short	and	the	long	term,	and	authors	perform	separate	
estimates	 over	 different	 ranges	 of	 intervals	 (Delignières	 and	Marmelat	 2014).	 Here	we	
propose	 to	 estimate	 the	 set	 of	 multifractal	 exponents	 in	 first	 over	 the	 entire	 range	 of	
available	 intervals	 (i.e.,	 from	 8	 to	 N/2),	 and	 then	 over	 more	 restricted	 ranges,	
progressively	excluding	the	shortest	 intervals	(i.e.,	 from	16	to	N/2,	 from	32	to	N/2,	and	
then	 from	 64	 to	 N/2).	 We	 expect	 to	 find	 in	 both	 cases	 (local	 corrections	 or	 global	
matching),	a	strong	correlation	pattern	between	exponents	when	considering	long	length	
intervals	(i.e,	64	to	N/2).	If	synchronization	is	just	based	on	local	corrections,	we	consider	
that	this	close	statistical	matching	in	 long	intervals	 is	 just	the	consequence	of	the	short-
term,	local	coupling	between	the	two	systems.	As	local	corrections	between	unpredictable	
systems	 remains	 approximate,	 we	 hypothesize	 that	 correlations	 should	 dramatically	
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decrease	when	intervals	of	shorter	durations	are	taken	into	consideration.	In	contrast,	
in	 the	 case	 of	 genuine	 complexity	 matching,	 the	 synchronization	 between	 systems	 is	
supposed	to	emerge	from	interactions	across	multiple	scales.	We	then	hypothesize	to	find	
in	this	case	close	correlations,	even	when	considering	the	entire	range	of	intervals,	from	
the	shortest	to	the	longest.		

Methods	

In	 the	present	paper	we	 re-analyze	 a	 set	 of	 experimental	 series	which	were	previously	
used	by	Delignières	and	Marmelat	(2014),	in	a	first	attempt	to	derive	statistical	signature	
of	complexity	matching	from	monofractal	analyses.	All	studies	have	been	approved	by	the	
local	ethics	committee	and	have	therefore	been	performed	in	accordance	with	the	ethical	
standards	 laid	 down	 in	 the	 1964	 Declaration	 of	 Helsinki.	 All	 participants	 gave	 their	
informed	consent	prior	to	their	 inclusion	in	the	study.	We	first	briefly	present	the	three	
sets	of	series	submitted	to	analysis.		

Bimanual	coordination.		

The	 first	 set	 of	 series	 was	 collected	 in	 an	 experiment	 where	 twelve	 participants	
performed	bimanual	oscillations	(Torre	and	Delignières	2008a;	Torre	and	Wagenmakers	
2009).	 This	 kind	 of	 bimanual	 coordination	 task	 has	 been	 extensively	 studied	 in	 the	
dynamical	 systems	 approach	 to	 coordination,	 in	 order	 to	 evidence	 the	 emergent	
properties	that	underlie	the	macroscopic	behavior	of	complex	systems	(Haken	et	al.	1985;	
Schöner	et	al.	1986).	The	two	limbs	are	considered	as	a	system	of	coupled	oscillators,	and	
bimanual	coordination	represents	a	nice	example	of	close	coordination	between	complex	
(sub)systems,	embedded	to	 form	a	global	 functional	system.	 In	the	present	context,	 this	
first	 set	 of	 series	 represents	 a	 limit	 case,	 where	 coordination	 should	 be	 achieved	 by	
complexity	matching	processes.		

Participants	were	instructed	to	perform	smooth	and	regular	forearm	oscillations	holding	
two	 joysticks,	synchronizing	 the	reversal	points	of	 the	motion	of	 the	 joysticks	(in-phase	
coordination).	This	experiment	used	the	synchronization-continuation	paradigm:	during	
30	sec	participants	synchronized	their	movements	with	a	video	model,	inducing	an	initial	
frequency	 of	 1.5	 Hz	 in	 a	 first	 condition,	 and	 2.0	 Hz	 in	 a	 second.	 Then	 the	 model	 was	
removed	and	participants	had	to	continue	following	the	initial	tempo	during	600	cycles.		

For	each	hand,	we	computed	the	series	of	periods,	defined	as	the	time	intervals	between	
two	successive	reversal	points	 in	maximal	pronation.	The	mean	period	of	oscillations	of	
the	 effectors	 was	 665.24	 ms	 (+/-	 63.01)	 in	 the	 1.5	 Hz	 condition,	 and	 524.05	 ms	 (+/-	
66.52)	 in	 the	 2.0	 Hz.	 The	 standard	 deviation	 of	 asynchronies	 (i.e.,	 the	 time	 intervals	
between	 the	 respective	pronation	 reversal	points	of	 the	 two	hands)	was	18.65	ms	 (+/-
5.26)	 in	 the	 1.5	 Hz	 condition	 and	 14.45	 ms	 (+/-	 2.62)	 in	 the	 2.0	 Hz	 condition,	
corresponding	 to	 a	 mean	 relative	 phase	 was	-	6.33°	 (+/-	 3.76),	 and	 -5.27°	 (+/-	 6.01),	
respectively.		

Interpersonal	synchronization	

The	second	set	of	 series	were	collected	 in	an	experiment	on	 interpersonal	coordination	
(Marmelat	 and	 Delignieres	 2012).	 In	 contrast	 with	 the	 previous	 example,	 these	 series	
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represent	 coordination	 between	 two	 physically	 independent	 systems	 that	 interact	 for	
achieving	 a	 common	 goal.	 Twenty-two	 participants	 were	 randomly	 paired	 into	 eleven	
dyads.	 Participants	 in	 each	 dyad	 were	 instructed	 to	 perform	 synchronized	 oscillations	
with	pendulums,	in	the	sagittal	plane,	following	an	in-phase	pattern	of	coordination.	They	
were	 instructed	 to	 oscillate	 at	 the	 preferred	 frequency	 of	 the	 dyad,	 as	 regularly	 as	
possible.	The	task	was	performed	in	three	conditions,	characterized	by	increasing	levels	
of	 coupling	 between	 participants.	 In	 the	weak	 coupling	 condition,	 audition	was	 limited	
with	earplugs,	and	participants	were	instructed	to	visually	fix	a	target	in	front	of	them	on	
the	 wall.	 In	 the	 normal	 coupling	 condition,	 visual	 and	 auditory	 feedbacks	 were	 fully	
available,	 and	 participants	were	 invited	 to	 visually	 fix	 their	 partner’s	 pendulum.	 In	 the	
strong	coupling	condition,	participants	were	instructed	to	cross	their	free	arms	(arm-in-
arm),	 in	order	to	add	haptic	 information	to	visual	and	auditory	feedbacks.	Series	of	512	
oscillations	 were	 collected	 in	 each	 condition.	 For	 each	 participant,	 we	 computed	 the	
series	of	periods,	defined	as	the	time	intervals	between	two	successive	reversal	points	in	
maximal	extension.		

Results	showed	that	dyads	were	able	to	perform	adequately	this	coordination	task,	with	a	
mean	relative	phase	of	-2.15°	(+/-	8.64)	in	the	low	coupling	condition,	-1.67°	(+/-	7.50)	in	
the	normal	coupling	condition,	and	-2.36°	(+/-	7.15)	in	the	strong	coupling	condition.	The	
mean	period	of	oscillations	of	the	effectors	was	1035.06	ms	(+/-	130.59),	1018.47	ms	(+/-	
126.70),	and	989.35	ms	(+/-	51.95),	respectively.	The	standard	deviation	of	asynchronies	
was	46.51	ms	(+/-	7.50),	34.78	ms	(+/-	9.10)	and	37.71	ms	(+/-	6.06),	respectively.		

Walking	in	synchrony	with	a	fractal	metronome	

In	 this	 experiment	 participants	 had	 to	 walk	 in	 synchrony	 with	 a	 fractal	 metronome.	
Eleven	 participants	were	 involved	 in	 this	 experiment.	 They	walked	 on	 a	 treadmill,	 and	
had	to	synchronize	the	right	heel	strikes	with	metronome	signals	administered	through	
an	earphone.	Metronome	signals	presented	fractal	fluctuations	with	a	mean	α	exponent	of	
about	 0.9,	 a	 mean	 value	 of	 1135	 ms,	 and	 their	 standard	 deviation	 was	 adjusted	 for	
obtaining	 a	 coefficient	 of	 variation	 of	 2%.	 Series	 of	 512	 strides,	 defined	 as	 the	 time	
intervals	between	two	successive	right	heel	strikes,	were	collected.	Results	showed	that	
participants	 were	 able	 to	 maintain	 synchrony	 with	 the	 metronome,	 with	 a	 mean	
asynchrony	of	about	-52.8	ms	(+/-	46.9).	The	mean	stride	duration	was	1135.53	ms	(+/-	
51.95),	and	the	standard	deviation	of	asynchronies	was	46.94	ms	(+/-	11.68).		

Multifractal	Detrended	Fluctuation	analysis	(MF-DFA)	
In	the	present	paper	we	used	the	MF-DFA	method,	initially	introduced	by	Kantelhardt	et	
al	(2002).	Consider	the	series	x(i),	i	=	1,	2,	…,	N.	In	a	first	step	the	series	is	centered	and	
integrated:	

	 		 (1)	

Next,	 the	 integrated	series	X(k)	 is	divided	into	Nn	non-overlapping	segments	of	 length	n	
and	in	each	segment	s	=	1,	...,	Nn	the	local	trend	is	estimated	and	subtracted	from	X(k).	

The	variance	is	calculated	for	each	detrended	segment:	
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	 		 (2)	

and	then	averaged	over	all	segments	to	obtain	qth	order	fluctuation	function	

	 		 (3)	

where	q	can	take	any	real	value	except	zero.	In	the	present	work	we	used	integer	values	
for	q,	 from	-15	to	+15.	Note	 that	Eq.	 (3)	cannot	hold	 for	q	=	0,	because	of	 the	diverging	
exponent.	A	logarithmic	averaging	procedure	is	used	for	this	special	case:		

	 		 (4)	

Repeating	this	calculation	for	all	lengths	n	provides	the	relationship	between	fluctuation	
function	Fq(n)	and	segment	length	n.	If	long-term	correlations	are	present,	Fq(n)	increases	
with	n	according	to	a	power	law:	

	 		 (5)	

The	 scaling	 exponent	h(q)	 is	 obtained	 as	 the	 slope	 of	 the	 linear	 regression	 of	 log	Fq(n)	
versus	log	n.	Note	that	for	stationary	time	series,	h(2)	is	identical	to	the	well-known	Hurst	
exponent	H,	and	therefore	h(q)	is	called	the	generalized	Hurst	exponent.	

For	 positive	 values	 of	 q	 the	 generalized	 Hurst	 exponent	 h(q)	 describes	 the	 scaling	
behavior	of	 large	 fluctuations,	while	 for	negative	 values	of	q,	h(q)	 describes	 the	 scaling	
behavior	of	small	fluctuations.	For	monofractal	time	series	h(q)	is	independent	of	q	,	while	
for	 multifractal	 time	 series	 small	 and	 large	 fluctuations	 scale	 differently	 and	 h(q)	 is	 a	
decreasing	function	of	q	.		

The	 results	 of	 the	 MF-DFA	 can	 then	 be	 converted	 into	 the	 more	 classical	 multifractal	
formalism	 by	 simple	 transformations	 (Kantelhardt	 et	 al.	 2002):	 first,	 generalized	Hurst	
exponents	h(q)	are	related	to	the	Renyi	exponents	τ(q)	defined	by	the	standard	partition	
function-based	multifractal	formalism:	

	 		 (6)	

For	monofractal	 signals	 τ(q)	 is	 linear	 function	 of	 q,	 and	 for	multifractal	 signals	 τ(q)	 is	
nonlinear	 function	 of	 q	 .	 Another	 way	 to	 characterize	 multifractal	 process	 is	 the	
singularity	spectrum	f(α)	which	is	related	to	τ(q)	through	the	Legendre	transform:	

	 		 (7)	

	 		 (8)	

where	 f(α)	 is	 the	 fractal	 dimension	 of	 the	 support	 of	 singularities	 in	 the	measure	with	
Lipschitz-Hölder	 exponent	 α.	 The	 singularity	 spectrum	 of	 monofractal	 signal	 is	
represented	 by	 a	 single	 point	 in	 the	 f(α)	 plane,	 whereas	 multifractal	 process	 yields	 a	
single	humped	function.	
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The	focus-based	approach	to	multifractal	analysis	
The	 classical	 MF-DFA	 algorithm	 was	 shown	 to	 perform	 as	 well	 as	 other	 multifractal	
methods	(Oswiecimka	et	al.	2006;	Schumann	and	Kantelhardt	2011).		However,	especially	
when	 applied	 on	 empirical	 series	 it	 is	 known	 to	 often	produce	 the	 so-called	 “inversed”	
spectra,	exhibiting	a	zig-zag	shapes	rather	than	the	expected	parabolic	shape	(Makowiec	
et	al.	2011;	Mukli	et	al.	2015).		
Mukli	 et	 al.	 (2015)	 have	 recently	 introduced	 a	 focus-based	 approach,	 which	 allows	 to	
avoid	this	pitfall.	The	standard	method	assesses	the	scaling	exponents	h(q)	independently	
for	 each	 q	 value.	 This	 procedure	 can	 be	 considered	 adequate	 if	 an	 assumption	 on	
homogeneous	structuring	holds	for	the	scaling	function.	This	property	however	may	not	
always	be	present	especially	in	empirical	signals.		
Theoretically,	the	moment-wise	scaling	functions,	for	all	q	values,	should	converge	toward	
a	 common	 limit	 value	 at	 the	 coarsest	 scale.	 Indeed,	 substituting	 signal	 length	 (N)	 to	
interval	length	(n)	in	Eq.	(3)	yields:		

	 		 (9)	

	can	then	be	considered	the	theoretical	focus	of	the	scaling	functions,	and	Mukli	et	
al.	(2015)	proposed	to	use	this	focus	as	a	guiding	reference	when	regressing	for	h(q).	In	
essence,	one	can	 iterate	on	h(q)	 as	 the	 ideal	multifractal	with	 its	given	 focus	and	set	of	
associated	 slopes	 best	 fitting	 to	 the	 observed	 data	 of	 the	 scaling	 function.	 Mukli	 et	 al.	
(2015)	showed	that	this	method	allowed	to	successfully	avoid	the	occurrence	of	inversed	
spectra.		

As	explained	in	the	introduction,	we	first	applied	MF-DFA	considering	the	widest	range	of	
intervals,	from	8	to	256	(N/2).	We	then	replicated	this	analysis	by	progressively	focusing	
on	longer	intervals:	16	to	256,	32	to	256,	and	64	to	256.		

We	 finally	 computed	 for	 each	q	 value	 the	 correlation	 between	 the	 individual	 Lipschitz-
Hölder	 exponents	 characterizing	 the	 two	 coordinated	 systems,	 α1(q)	 and	 α2(q),	
respectively,	yielding	a	correlation	function	r(q).	As	previously	explained,	we	expected	to	
find	 in	all	 cases	a	 correlation	 function	close	 to	1,	 for	all	q	 values,	when	only	 the	 largest	
intervals	 are	 considered.	 Increasing	 the	 range	 of	 considered	 intervals	 should	 have	 a	
negligible	impact	on	r(q)	when	coordination	is	based	on	a	complexity	matching	effect.	In	
contrast,	 if	 coordination	 is	 based	 on	 local	 corrections,	 a	 decrease	 in	 r(q)	 should	 be	
observed,	as	shorter	and	shorter	intervals	are	considered.		

Results	

Bimanual	coordination.		

We	 present	 in	 Figure	 1	 (upper	 panels)	 the	 averaged	multifractal	 spectra	 of	 the	 period	
series,	considering	intervals	from	8	to	256	points,	in	the	1.5	Hz	condition	(a)	and	the	2.0	
condition	(b).	The	spectra	of	the	right	and	the	left	hand	are	closely	superimposed	in	both	
conditions.	 The	 correlation	 functions	 between	 the	multifractal	 spectra	 are	 presented	 in	
bottom	panels.	Correlation	coefficients	are	plotted	against	 their	corresponding	q	values.	
Four	 correlation	 functions	 are	 displayed,	 according	 to	 the	 shortest	 interval	 length	
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considered	during	the	analysis	(8,	16,	32,	or	64).	In	all	cases	the	correlations	functions	
displayed	 very	 high	 values,	 close	 to	 1.0	 (Figure	 1,	 c	 and	 d).	 Especially	 in	 the	 1.5	 Hz	
condition	 the	 correlations	 between	 spectra	 appeared	 maximal,	 over	 all	 q	 values	 and	
whatever	 the	 considered	 intervals	 range.	 Correlations	 appeared	 slightly	 lower	 (around	
0.90),	 in	 the	 2.0	 Hz	 condition,	 for	 negative	 values	 of	 q,	 and	 when	 the	 entire	 range	 of	
intervals	were	considered.		

	
Figure	 1:	 Bimanual	 coordination.	 Upper	 panels:	Multifractal	 spectra	 for	 the	 right	 (black	
circles)	and	the	left	(white	circle)	effectors,	for	the	1.5	Hz	(a)	and	the	2.0	Hz	(b)	conditions.	
Bottom	panels:	Correlation	functions	r(q),	for	the	four	ranges	of	intervals	considered	(8	to	
N/2,	16	to	N/2,	32	to	N/2,	and	64	to	N/2)	,	for	the	1.5	Hz	(c)	and	the	2.0	Hz	(d)	conditions.	
q	represents	the	set	of	orders	over	which	the	MF-DFA	algorithm	was	applied.	

Interpersonal	synchronization.	

We	 present	 in	 Figure	 2	 (upper	 panels)	 the	 averaged	multifractal	 spectra	 of	 the	 period	
series	in	the	low	coupling	(a),	normal	coupling	(b)	and	strong	coupling	(c)	conditions.	As	
for	 the	previous	 experiment,	we	observed	 a	 close	 superimposition	of	 the	 two	averaged	
spectra,	 and	 the	 superimposition	 appeared	 closer	 as	 coupling	 strength	 increased.	 The	
correlation	functions	between	the	multifractal	spectra	are	presented	in	bottom	panels	(d,	
e	and	f).	In	all	cases	the	correlation	function	displayed	very	high	values,	close	to	1.0,	when	
analysis	focused	to	long	intervals	(i.e.	32	to	N/2	or	64	to	N/2).	
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Figure	2	:	Interpersonal	synchronization.	Upper	panels:	Multifractal	spectra	for	participant	
A	(black	circles)	and	participant	B	(white	circle),	for	the	low	(a),	normal	(b)	and	strong	(c)	
coupling	 conditions.	 Bottom	 panels:	 Correlation	 functions	 r(q),	 for	 the	 four	 ranges	 of	
intervals	 considered	 (8	 to	N/2,	 16	 to	N/2,	 32	 to	N/2,	 and	 64	 to	N/2),	 for	 the	 low	 (d),	
normal	(e)	and	strong	(f)	coupling	conditions.	

	
Walking	in	synchrony	with	a	fractal	metronome	
We	present	in	Figure	3	(panel	a)	the	averaged	multifractal	spectra	of	the	stride	duration	
series	(black	circles)	and	the	metronome	series	(white	circles).	In	this	experiment	a	shift	
was	observed	between	the	two	averaged	spectra,	indicating	a	lower	level	of	correlation	in	
participants	series,	with	respect	to	the	corresponding	metronomes	series.	The	correlation	
functions	between	the	multifractal	spectra	are	presented	in	the	right	panel	(b).	In	contrast	
with	 the	previous	 results,	 the	 considered	 range	of	 intervals	had	a	 strong	 impact	on	 the	
correlation	function.	When	the	smallest	range	was	considered	(64	to	N/2),	the	correlation	
function	 remained	 close	 to	1.0.	When	 the	 range	of	 interval	was	progressively	 enlarged,	
the	 correlation	 values	 decreased,	 especially	 for	 negative	q	 values	 corresponding	 to	 low	
variance	epochs	in	the	series.	When	all	available	intervals	are	considered	(i.e.	8	to	N/2),	
r(q)	presents	non	significant	values.		
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Figure	3:	Walking	 in	synchrony	with	a	 fractal	metronome.	Panel	a:	Multifractal	 spectra	
for	the	participant	(black	circles)	and	the	metronome	(white	circle).	Panel	b:	Correlation	
functions	r(q),	for	the	four	ranges	of	intervals	considered	(8	to	N/2,	16	to	N/2,	32	to	N/2,	
and	64	to	N/2).	

	

In	 order	 to	 provide	 a	 clearer	 picture	 of	 the	 evolution	 of	 correlations	with	 the	 range	 of	
considered	intervals	in	the	three	experiments,	we	present	in	Figure	4	a	set	of	scatter	plots	
representing	 the	 relationships	 between	 the	 α(2)	 samples	 characterizing	 the	 two	
coordinated	systems.	These	graphs	show	a	global	narrowing	of	exponent’s	samples,	as	the	
considered	range	of	 intervals	 increases.	However,	 the	decrease	of	correlation,	especially	
in	 the	 third	 experiment,	 clearly	 arises	 from	 a	 weakening	 of	 the	 relationships	 between	
exponents.		

	
Discussion	

The	 present	 results	 are	 based	 on	 the	 analysis	 of	 behavioral	 series	 of	 relatively	 short	
length.	 512	 data	 points	 could	 be	 considered	 insufficient	 for	 deriving	 reliable	 results,	
especially	 with	 multifractal	 analyses.	 However,	 the	 application	 of	 time	 series	 analyses	
supposes	that	the	system	under	study	remains	in	stable	state	during	the	whole	window	of	
observation,	 and	 in	 behavioral	 experiments	 the	 lengthening	 of	 the	 task	 could	 raise	
problems	 of	 fatigue	 or	 lack	 of	 concentration	 (Delignières	 et	 al.	 2005;	 Marmelat	 and	
Delignières	2011).	On	the	other	hand,	a	number	of	 improvements	have	been	introduced	
in	 fractal	 analyses,	which	 could	 allow	 to	 consider	with	 a	 certain	 confidence	 the	 results	
obtained	 from	 relatively	 short	 series	 (Delignières	 et	 al.	 2006;	 Almurad	 and	Delignières	
2016).	 Such	 series	 lengths	 are	 generally	 considered	 as	 an	 acceptable	 compromise	
between	 the	 requirements	 of	 time	 series	 analyses	 and	 the	 limitations	 of	 hebavioral	
human	experiments	(Gilden	1997;	Chen	et	al.	1997;	Gilden	2001;	Chen	et	al.	2001).		

We	are	aware	that	the	present	results	should	be	considered	with	caution,	and	have	to	be	
confirmed	by	further	analyses.	However,	the	differences	we	observed	between	the	three	
experiments	are	consistent	with	our	 initial	hypotheses	and	seem	sufficiently	 large	to	be	
regarded	with	some	confidence.			
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Figure	4:	Scatter	plots	of	the	samples	of	Hölder	exponents	α(2)	characterizing	the	coupled	
series,	in	the	three	experiments,	for	the	four	ranges	of	intervals	considered	(64	to	N/2,	32	
to	N/2,	16	to	N/2,	and	8	to	N/2).	Upper	row	(a):	bimanual	coordination,	F1;	Middle	row	
(b):	 interpersonal	 coordination,	 strong	 coupling;	 Bottom	 row	 (c):	 walking	 in	 synchrony	
with	a	fractal	metronome.		

Complexity	matching	vs	discrete	local	coupling	

The	main	result	of	 this	paper	 is	 the	clear	distinction	between	 the	 two	 first	experiments	
(bimanual	coordination	and	interpersonal	coordination)	and	the	third	one	(walking	with	
a	 fractal	 metronome).	 In	 the	 two	 first	 cases	 the	 correlation	 function	 revealed	 a	 clear	
statistical	 matching	 between	 multifractal	 spectra,	 whatever	 the	 range	 of	 intervals	
considered	 in	 the	 analysis.	 In	 contrast,	 in	 the	 third	 set	 of	 data	 the	 close	 statistical	
matching	 appeared	 only	when	 the	 range	was	 restricted	 to	 the	 lengthiest	 intervals	 (i.e.,	
from	64	to	256),	and	was	progressively	altered	when	wider	ranges	were	considered.		

These	results	suggest	that	in	the	two	first	experiments	synchronization	was	governed	by	
a	 global,	multiscale	 coordination	between	 the	 two	 interacting	 systems,	 and	 in	 the	 third	
experiment	 synchronization	 was	 the	 result	 of	 local	 corrective	 processes.	 As	 in	 this	
experiment	 participants	 had	 to	 synchronize	with	 a	 series	 of	 discrete	 stimuli,	 one	 could	
hypothesize	 that	 these	 correction	 processes	 work	 on	 a	 discrete,	 step-to-step	 basis,	 as	
suggested	 by	 Marmelat	 and	 Delignières	 (2012).	 One	 could	 argue,	 however,	 that	 this	
hypothesis	 should	be	considered	with	caution,	as	 the	 task	used	 in	 the	 third	experiment	
strongly	differs	 from	 those	used	 in	 the	others,	 and	 especially	 the	walking	 task	 involves	
very	 large	masses	 compared	 to	 the	other	 tasks.	Note,	however,	 that	Torre	et	 al.	 (2013)	
proposed	 a	 similar	hypothesis	 in	 an	 experiment	where	participants	had	 to	 synchronize	
finger	taps	with	fluctuating	metronomes.		
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It	could	be	interesting,	for	reinforcing	this	hypothesis,	to	check	whether	a	model	based	
on	 such	 discrete,	 local	 correction	 processes,	 could	 generate	 series	 yielding	 comparable	
results.	We	 then	 tried	 to	 simulate	 series	 that	 could	 result	 from	 a	 local	 coupling	with	 a	
fractal	 metronome.	 In	 this	 modeling	 study	 we	 considered	 that	 the	 organism	 produces	
intrinsically	 long-range	 correlated	 series.	 Indeed,	 a	 number	 of	 previous	 studies	 have	
shown	that	organisms	produced	long-range	correlated	series	in	self-paced	conditions,	and	
that,	 during	 synchronization	 with	 a	 regular	 metronome,	 this	 source	 of	 long-range	
correlation	 was	 still	 at	 work	 and	 had	 to	 be	 considered	 for	 properly	 modeling	 the	
synchronisation	 process	 (Torre	 and	 Delignières	 2008b;	 Torre	 and	 Delignières	 2009;	
Delignières	 and	 Marmelat	 2014).	 We	 then	 proposed	 that	 the	 organism	 corrects	 the	
interval	 it	 intended	 to	 intrinsically	 produce	 on	 the	 basis	 of	 the	 previous	 asynchronies	
(Delignières	and	Marmelat	2014).	We	worked	with	a	two-order	auto-regressive	model	:		

	 ,	 (10)	

	 		 (11)	

where	x(i)	represents	the	series	of	periods	effectively	produced	by	the	organism,	y(i)	the	
series	 of	 virtual	 periods	 produced	 by	 the	 organism,	 and	 z(i)	 the	 fractal	 metronome.	
ASYN(i)	is	the	series	of	asynchronies	between	the	events	produced	by	the	organism	and	
the	 signals	 of	 the	 metronome.	 y(i)	 and	 z(i)	 were	 both	 modeled	 as	 fractional	 Gaussian	
noises	with	H	=	0.9	(mean	=	1000	and	SD	=	20).	Finally	ε(i)	is	a	white	noise	process	with	
zero	mean	and	unit	variance.		
This	 model	 suggests	 that	 periods	 are	 corrected	 on	 the	 basis	 of	 the	 two	 previous	
asynchronies,	 a	 hypothesis	 consistent	 with	 the	 cross-correlation	 functions	 obtained	 in	
this	experiment	(Delignières	and	Marmelat	2014).		
For	the	present	simulations	we	used	a=	0.2,	b	=	0.4,	c	=	12,	and	we	generated	12	series	of	
512	data	points.	We	present	in	Figure	5	(panel	a)	the	averaged	multifractal	spectra	for	the	
‘participant’	(black	circles)	and	the	‘metronome’	(white	circles).	Note	that	these	simulated	
results	 are	 characterized	 by	 a	 shift	 of	 the	 first	 spectrum,	 similar	 to	 that	 observed	 in	
experimental	data	(see	Figure	3).	Panel	b	represents	the	correlation	functions	r(q),	for	the	
four	 ranges	 of	 intervals	 considered.	 As	 can	 be	 seen	 we	 obtained	 a	 pattern	 of	 results	
similar	to	that	obtained	with	experimental	results:	when	focusing	on	long-term	intervals	
the	correlation	 function	 remained	close	 to	one,	 and	progressively	extinguished	as	more	
and	more	shorter-term	intervals	were	taken	into	consideration.		

	
Figure	 5:	 Simulation	 of	 the	 synchronization	 to	 a	 fractal	 signal	 by	 local	 corrections	 of	
asynchronies.	 Panel	 a:	 Multifractal	 spectra	 for	 the	 ‘participant’	 (black	 circles)	 and	 the	
‘metronome’	 (white	 circle).	 Panel	 b:	 Correlation	 functions	 r(q),	 for	 the	 four	 ranges	 of	
intervals	considered	(8	to	N/2,	16	to	N/2,	32	to	N/2,	and	64	to	N/2).		
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Another	 difference	 between	 our	 experiments	 lies	 in	 the	 coupling	 between	 systems:	 in	
bimanual	 coordination	 and	 interpersonal	 synchronization	 the	 systems	 mutually	
interacted	but	synchronization	with	a	fractal	metronome	is	characterized	by	the	presence	
of	 a	 ‘master’	 (the	metronome)	 and	 a	 ‘slave’	 (the	 participant).	 Interestingly,	 our	 results	
revealed	an	asymmetry	 in	 the	alteration	of	 correlations	when	 larger	ranges	of	 intervals	
were	considered:	we	especially	observed	a	dramatic	decrease	of	correlations	for	negative	
q-values,	corresponding	to	low-variance	epochs	in	the	signals	(Figure	3).	This	result	was	
particularly	 obvious	 in	 the	 third	 experiment,	 and	 suggests	 that	high	variance	 epochs	 in	
the	 metronome	 signals	 allow	 a	 better	 synchronization,	 reinforcing	 the	 hypothesis	 of	 a	
discrete,	perceptual	basis	of	synchronization.		

These	 results	 question	 a	 number	 of	 recent	 experiments	 dealing	with	 the	 use	 of	 fractal	
metronomes	with	the	perspective	of	rehabilitation	purposes	(Stephen	et	al.	2008;	Hove	et	
al.	2012;	Kaipust	et	al.	2013;	Torre	et	al.	2013;	Rhea	et	al.	2014;	Marmelat	et	al.	2014).	In	
their	seminal	paper,	Stephen	et	al.	(2008)	suggested	that	synchronization	with	a	chaotic	
metronome	 was	 not	 based	 on	 local	 adjustments	 but	 rather	 on	 a	 global,	 multiscale	
coordination	with	the	metronome.	The	present	results	cast	doubt	on	this	conclusion	(see	
also	Delignières	&	Marmelat,	2014;	Torre	et	al.,	2013).	Fractal	metronomes	have	recently	
sparked	a	great	interest,	suggesting	that	they	could	mimic	natural	variability,	and	be	used	
for	 conceiving	 artificial	 devices	 for	 training	 and	 rehabilitation,	 based	on	 the	 complexity	
matching	 effect.	 Mimicking	 natural	 variability,	 especially	 with	 discrete	 signal	 series,	
seems	not	 sufficient	 to	generate	 the	global	and	multiscale	coordination	hypothesized	 in	
complexity	matching.		

Complexity	matching	vs	continuous	local	coupling	

Our	 results,	 however,	 do	 not	 prove	 that	 the	 strong	 statistical	 matching	 observed	 in	
bimanual	coordination	and	interpersonal	coordination	is	due	to	complexity	matching,	as	
defined	in	the	introduction.	Recently,	Fine	et	al	(2015)	questioned	the	global	complexity	
matching	 hypothesis,	 and	 suggested	 that	 a	 local	 and	 continuous	 coupling	 between	
systems	could	underlain	the	statistical	matching	observed	in	such	situations.		
The	 dynamical	 systems	 approach	 to	 coordination	 promoted	 a	 phenomenological	model	
based	 on	 a	 continuous	 coupling	 between	 oscillators	 (Haken	 et	 al.	 1985;	 Schöner	 et	 al.	
1986).	 This	 so-called	 HKB	 model	 accounts	 for	 coordination	 by	 non-linear	 coupling	
between	 two	hybrid	 limit-cycle	 oscillators,	 based	on	 the	 two	oscillators’	 state	 variables	
(position	and	velocity):	
	

	 		

	 		 (12)	

	
where	 xi	 is	 the	 position	 of	 oscillator	 i,	 and	 the	 dot	 notation	 represents	 derivation	with	
respect	to	time.	The	left	side	of	the	equations	represents	the	limit	cycle	dynamics	of	each	
oscillator	determined	by	a	 linear	stiffness	parameter	(ω)	and	damping	parameters	(δ,	λ,	
and	γ),	and	the	right	side	represents	 the	coupling	 function	determined	by	parameters	a	
and	b.	This	model	has	been	proven	to	adequately	account	for	most	empirical	features	in	
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bimanual	coordination	tasks,	such	as	the	differential	stability	of	in-phase	and	anti-phase	
coordination	modes,	and	the	transition	from	anti-phase	to	in-phase	coordination	with	the	
increase	of	oscillation	frequency	(Haken	et	al.	1985;	Schöner	et	al.	1986).		

One	can	indeed	suppose	that	this	kind	of	continuous	coupling	could	be	at	the	origin	of	the	
strong	statistical	matching	observed	 in	coordination	experiments	 (Fine	et	al.	2015),	but	
the	multifractal	signature	proposed	in	this	paper	could	be	unable	to	distinguish	between	
genuine	 complexity	 matching	 and	 such	 local	 and	 continuous	 coupling.	 A	 solution	 for	
disentangling	these	two	hypotheses	is	to	analyze	the	series	produced	by	this	model,	and	
to	compare	them	to	those	empirically	observed.		

However,	 in	 order	 to	 account	 for	 empirical	 features,	 the	 original	HKB	model	 should	 be	
slightly	modified.	Especially,	it	has	been	proven	that	in	bimanual	coordination,	the	series	
of	periods	produced	by	each	effector	and	the	series	of	relative	phase	contained	long-range	
correlations,	a	property	that	the	original	HKB	model	was	unable	to	generate	(Torre	and	
Delignières	2008a).	The	authors	proposed	 to	account	 for	 this	behavior	by	replacing	 the	
fixed	linear	stiffness	parameter	ω	in	equations	(12)by	a	two	independent	discrete	series	
ω1,i	 and	 ω2,i,	 exhibiting	 long-range	 correlation	 properties,	 and	 representing	 the	 inner	
frequencies	of	oscillators	1	and	2,	respectively,	at	cycle	i.		

	 		

	 		 (13)	

	
Note	 that	 they	 also	 introduced	 white	 noise	 terms	 of	 strength	 Q	 in	 the	 limit	 cycle	
equations,	as	suggested	by	Schöner	et	al.	(1986).	Torre	and	Delignières	(2008a)	showed	
that	 a	 relevant	 set	 of	 parameters	 allowed	 to	 simulate	 a	 stable	 in-phase	 coordination	
between	 the	 two	 oscillators,	 despite	 the	 intrinsic	 long-range	 correlated	 fluctuations	
injected	 in	 each	 oscillator.	 Their	 results	 replicated	 most	 empirical	 results,	 in	 terms	 of	
mean	and	standard	deviation	of	relative	phase,	and	also	concerning	the	presence	of	long-
range	correlations	in	the	series	of	relative	phase.		

We	used	this	model	for	generating	pairs	of	series	of	coordinated	periods.	We	attempted	to	
generate	 series	 reproducing	 the	 main	 features	 of	 the	 inter-personal	 coordination	
experiment,	 in	 the	strong	coupling	condition.	We	used	 the	same	set	of	parameters	 than	
Torre	and	Delignières	(2008a):	δ	=	0.5,	λ	=	0.02,	γ	=	1.0,	Q	=	0.4.	We	used	the	“hopping	
model”	 (Delignières	 et	 al.	 2008;	 Torre	 and	 Delignières	 2008a)	 for	 simulating	 the	 long-
range	correlated	series	ω1,i	 and	ω2,i	 around	a	mean	value	of	4π.	For	stabilizing	 in-phase	
coordination	between	 the	 two	systems,	 the	coupling	parameters	were	set	 to	a	=	12	and	
b	=	6.	These	values	were	much	stronger	than	those	commonly	reported	in	the	literature	
(Fink	 et	 al.	 2000;	 Assisi	 et	 al.	 2005;	 Leise	 and	 Cohen	 2007),	 but	 were	 necessary	 for	
obtaining	a	stable	coordination	(Delignières	et	al.	2008;	Torre	and	Delignières	2008a).	We	
simulated	12	sets	of	series	of	512	data	points.	

Simulated	series	broadly	reproduced	experimental	results,	with	a	mean	relative	phase	of	
0.74°	 (+/-	 6.93).	 The	 mean	 period	 of	 oscillations	 was	 1001.14	 ms	 (+/-	 50.07).	 The	
standard	deviation	of	 asynchronies	was	19.34	ms	 (+/-	3.38).	We	present	 in	Figure	6	 (a	

 !!x1 +δ !x1 + λ !x1
3 + γ x1

2 !x1 +ω1,i
2x1 + Qε1,t = ( !x1 − !x2 )[a + b(x1 − x2 )

2 ]

 !!x2 +δ !x2 + λ !x2
3 + γ x2

2 !x2 +ω 2,i
2x2 + Qε2,t = ( !x2 − !x1)[a + b(x2 − x1)
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and	b)	the	result	of	the	multifractal	analysis	of	these	coordinated	series.	As	can	be	seen,	
the	 correlation	 function	 r(q)	 exhibited	 very	 high	 values,	 even	 when	 considering	 the	
widest	 range	 of	 intervals.	 This	 result	 appears	 similar	 to	 that	 obtained	 with	 the	
experimental	 series	 (Figure	 2),	 suggesting	 that	 this	 kind	 of	 local,	 continuous	 coupling,	
could	indeed	underlay	the	observed	statistical	matching	between	series.		

However,	 a	 closer	 look	 to	 the	 coupled	 period	 series	 casts	 some	 doubts	 about	 this	
conclusion.	We	present	 in	Figure	6	 two	examples	subsets	of	 coupled	series	 (50	points),	
the	 first	 graph	 (c)	 corresponding	 to	 representative	experimental	 series,	 and	 the	 second	
(d)	to	simulated	series.	These	graphs	suggest	that	while	providing	comparable	statistical	
results,	 interpersonal	 coordination	 and	 the	 coupled	 oscillator	model	 works	 differently.	
The	simulated	series	present	very	close	dynamics,	resulting	from	the	continuous	coupling	
of	 positions	 and	 velocities	 in	 the	 model.	 In	 contrast,	 experimental	 series	 appear	 more	
independent,	at	least	on	this	local	scale.	In	order	to	quantify	these	local	dependences,	we	
computed	 the	 average	 local	 cross-correlation	 coefficient,	 using	 a	 sliding	 window	 of	 15	
points	 (Marmelat	 and	 Delignieres	 2012).	 The	 average	 cross-correlation	 coefficient	 was	
0.87	for	simulated	series,	but	close	to	zero	for	experimental	series.		
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Figure	 6:	 Panel	 a:	 Average	 multifractal	 spectra	 for	 the	 two	 simulated	 oscillators.	 Panel	 b:	
Correlation	functions	r(q),	for	the	four	ranges	of	intervals	considered	(8	to	N/2,	16	to	N/2,	32	
to	N/2,	and	64	 to	N/2).	Panel	 c:	Representative	 subsets	of	 coupled	experimental	 series	 (50	
points).	 Panel	 d:	 Representative	 subsets	 of	 coupled	 simulated	 series	 (symmetric	 model).	
Panel	d:	Representative	subsets	of	coupled	simulated	series,	with	a	10%	detuning.		

	

One	could	argue,	however,	 that	although	 the	stiffness	series	ω1,i	 and	ω2,i	included	 in	 the	
model	are	 independent,	 they	still	have	 the	same	average	values,	and	 that	more	realistic	
results	 could	 be	 obtained	 by	 introducing	 an	 asymmetry,	 i.e.	 a	 difference	 between	 the	
natural	 frequencies	 of	 the	 two	 systems.	 In	 order	 to	 check	 this	 point,	 we	 performed	
additional	simulations	introducing	a	10%	detuning	between	the	two	oscillators	(mean	ω1,i	
=	 4π,	 and	 mean	 ω2,i	 =	 4.4π).	 All	 others	 parameters	 were	 unchanged.	 This	 new	 set	 of	
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simulations	 gave	 essentially	 similar	 results,	 suggesting	 that	 the	 symmetry	 of	 the	 first	
model	 cannot	 per	 se	 explain	 the	 strong	 local	 convergence	 of	 the	 simulated	 series.	 We	
present	 in	 Figure	 6	 (panel	 e)	 an	 example	 subset	 of	 series	 simulated	 with	 these	 new	
settings.		

These	results	suggest	that	a	local	continuous	coupling,	as	proposed	in	the	HKB	model,	can	
indeed	 mimic	 the	 statistical	 matching	 supposed	 to	 emerge	 from	 complexity	 matching.	
However,	 this	 kind	 of	 coupling	 generates	 a	 very	 close	 correspondence	 between	 the	
trajectories	 of	 oscillators,	 which	 seems	 unrealistic	 in	 view	 of	 the	 experimental	
observations.		

Conclusion		

Complexity	 matching	 is	 a	 very	 innovative	 hypothesis,	 which	 has	 recently	 motivated	 a	
number	 of	 theoretical	 and	 experimental	 contributions.	 In	 this	 paper	 we	 introduce	 a	
method,	 based	 on	multifractal	 analysis,	 for	 distinguishing	 between	 genuine	 complexity	
matching	 and	 local	 discrete	 coupling.	 Our	 results	 show	 that	 some	 situations	 that	were	
considered	 prototypic	 of	 complexity	 matching,	 where	 participants	 had	 to	 synchronize	
with	 a	 fractal	 metronome,	 seem	 controlled	 through	 local	 adjustments.	 In	 contrast,	
genuine	complexity	matching	seems	occurring	when	two	complex	systems	are	mutually	
coupled.		

Complexity	matching	and	local	discrete	coupling,	however,	are	not	necessarily	exclusive.	
One	 could	 conceive,	 for	 example,	 that	 in	 some	 tasks	 synchronization	 could	be	 achieved	
through	 a	 mix	 of	 the	 two	 processes.	 Moreover,	 the	 respective	 contribution	 of	 each	
processes	could	differ	among	participants	(see,	for	example,	Delignieres	and	Torre	2011).	
Further	 investigations,	 focusing	 on	 individual	 series	 and	 based	 on	 cross-correlations	
should	provide	some	insights	about	this	hypothesis.		
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Concluding	remarks	
	
In this paper we proposed a method that went beyond the “classical” correlation of mono-fractal 
exponents and explored more deeply the intimacy of synchronized series. We concluded that 
multi-fractal correlation function could be able to unambiguously distinguish between 
asynchrony correction and complexity matching. This conclusion, however, was maybe 
premature… 
Scotti (2017) analyzed series produced interpersonal tapping and forearm oscillation tasks. 
Applying our multi-fractal correlation test, he found evidence of complexity matching in both 
situations. However, applying Windowed Detrended Fluctuation analysis (see chapters 3 and 4), 
he showed that both tasks involved asynchrony correction. Deeper analyses led us to abandon the 
idea of exclusive or ideal models (i.e., asynchrony correction models vs complexity matching 
models), and to propose hybrid models, containing both processes but suggesting a possible 
dominance of one process on the other. This will be developed in the next chapter.  

To date, we consider that the multi-fractal correlation function effectively account for the 
presence of a complexity matching effect, but can not provide clear indication about its strength 
and its relative dominance with regards of asynchrony correction. Additional tests, and 
especially the Windowed Detrended Fluctuation analysis (see chapters 3 and 4) seem necessary 
for definitively concluding about the effective nature of synchronization processes in a given 
situation.  
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 Chapter 3 
 

Complexity	matching	in	side-by-side	walking	
 
 
At this stage in our project, we have proposed a clear definition of the complexity matching 
effect: A multi-scale coordination between complex systems. We also highlighted the role of 
multi-fractality in this process.  

We also introduced a first method for distinguishing complexity matching from other kinds of 
synchronization processes, especially asynchronies corrections. This method exploits the 
multifractal properties of complexity matching, and is based on the analysis of the correlations 
between the multifractal spectra produced by the two systems in coordination. We supposed 
that complexity matching induced strong correlations, over the entire range of the spectra, and 
even when short intervals were considered. In contrast, we supposed that in the case of short-
term coupling, significant correlation functions should appear only when long-term interval 
were considered, but should extinguish when shorter intervals were introduced in the analysis. 
This method especially allowed to show that walking in synchrony with a fractal metronome 
was mainly performed through asynchrony correction, and presented no trace of complexity 
matching.  
Our aim in the present chapter was to show that synchronization, in side-by-side walking, was 
dominated by a complexity matching effect. This demonstration was a necessary step, in order 
to pursue our final project, which aimed at testing the hypothesis that complexity matching 
could allow restoring complexity in deficient systems.  
The experiment we designed aimed at analyzing synchronization during synchronized walking, 
with young and healthy participants. In order to test the effect of coupling strength, we tested 
two experimental conditions: side-by-side and arm-in-arm walking: coupling is obviously 
supposed to be stronger in the latter condition. A third condition of independent walking served 
as control. We analyzed stride duration series with the multi-fractal correlation analysis 
presented in the previous chapter. We also introduced another method, the Windowed 
Detrended Cross-correlation analysis. These two methods converged toward the evidence of a 
clear complexity matching effect in synchronized walking, and that effect was stronger in the 
strong coupling condition.  
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Abstract		

	Interpersonal	 coordination	 represents	 a	 very	 common	 phenomenon	 in	 daily-life	
activities.	 Three	 theoretical	 frameworks	 have	 been	 proposed	 to	 account	 for	
synchronization	processes	 in	such	situations	 :	 the	 information	processing	approach,	 the	
coordination	dynamics	perspective,	and	the	complexity	matching	effect.	On	the	basis	of	a	
theoretical	 analysis	 of	 these	 frameworks,	 we	 propose	 three	 statistical	 tests	 that	 could	
allow	 to	 distinguish	 between	 these	 theoretical	 hypotheses	 :	 the	 first	 one	 is	 based	 on	
multifractal	 analyses,	 the	 second	 and	 the	 third	 ones	 on	 cross-correlation	 analyses.	We	
applied	 these	 tests	 on	 series	 collected	 in	 an	 experiment	 where	 participants	 were	
instructed	to	walk	 in	synchrony.	We	contrasted	three	conditions	 :	 independent	walking,	
side-by-side	 walking,	 and	 arm-in-arm	 walking.	 The	 results	 are	 consistent	 with	 the	
complexity	matching	hypothesis.	

Keywords	:	Synchronized	walking	Complexity	matching	Multifractals	Cross-correlation	

	

Introduction	
Interpersonal	 synchronization	 represents	 a	 very	 common	 phenomenon	 in	 daily	 life	
activities,	 for	example	when	people	walk	 together,	dance,	play	music,	 etc.	However,	 the	
processes	 that	sustain	 this	kind	of	coordination	are	still	poorly	understood,	and	several	
theoretical	 frameworks	 are	 in	 competition	 for	 explaining	 how	 interpersonal	
synchronization	occurs.	

In	the	present	paper	we	focus	on	a	very	usual	activity,	side-by-side	walking.	The	final	goal	
of	 this	 line	 of	 research	 is	 concerned	 by	 rehabilitation	 purposes,	 and	 this	 point	 will	 be	
developed	 in	the	concluding	section.	The	main	aim	of	 the	current	paper	 is	 to	enrich	the	
theoretical	approach	of	 the	alternative	 frameworks	 that	compete	 in	 this	domain,	and	 to	
propose	 a	 statistical	 strategy	 for	 disentangling	 these	 different	 points	 of	 view.	We	 then	
apply	this	theoretical	and	statistical	background	in	an	experimental	study	on	side-by-side	
walking.	In	a	first	step	it	seems	necessary	to	shortly	introduce	the	theoretical	paradigms	
that	that	have	been	proposed	in	the	study	of	interpersonal	synchronization.	
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The	information-processing	approach	
The	 first	 framework	 suggests	 that	 interpersonal	 synchronization	 is	 based	 on	 cognitive,	
representational	 processes	 of	 anticipation.	 This	 information-processing	 paradigm	
originates	 in	 the	 analysis	 of	 sensorimotor	 synchronization	 (SMS),	 focusing	 at	 the	
experimental	level	on	the	synchronization	of	simple	movements	(e.g.,	finger	tapping)	with	
a	regular	metronome	(Repp,	2005;	Repp	&	Su,	2013).	A	number	of	studies	suggested	that	
in	such	tasks	synchronization	is	achieved	by	a	systematic	correction	of	the	current	inter-
tap	interval,	on	the	basis	of	the	last	asynchronies	(Pressing	&	Jolley-Rogers,	1997;	Torre	&	
Delignières,	 2008;	Vorberg	&	Wing,	 1996).	This	 corrective	process	 can	be	 expressed	as	
follows:	

	 		 (1)	

where	ITIn	represents	the	inter-tap	interval	produced	by	the	participant	at	the	nth	tap,	and	
ASYNn	 the	 asynchrony	 between	 the	 nth	 tap	 and	 the	 nth	 onset	 of	 the	 metronome.	 ITIthn	
represents	the	inter-tap	interval	that	should	be	intrinsically	produced.	ITIthn	is	supposedly	
produced	 by	 an	 internal	 timekeeper,	 and	 is	 corrected	 by	 a	 fraction	 of	 the	 preceding	
asynchrony.	Finally	εn	is	a	white	noise	process.	

In	order	to	account	for	synchronization	with	more	realistic	environments,	this	paradigm	
has	 been	 extended	 to	 the	 study	 of	 synchronization	with	 non-isochronous	metronomes.	
The	first	studies	focused	on	metronomes	with	regularly	modulated	deviations	around	the	
basic	tempo	(Madison	&	Merker,	2005;	Thaut,	Tian,	&	Azimi-Sadjadi,	1998).	More	recently	
a	 number	 of	 studies	 analyzed	 synchronization	 with	 metronomes	 presenting	 fractal	
variabilities,	which	are	 supposed	 to	 represent	more	closely	 the	kind	of	 fluctuations	one	
encounters	with	 natural	 situations,	 and	 especially	 with	 human	 partners	 (Delignières	 &	
Marmelat,	 2014;	 Hunt,	 McGrath,	 &	 Stergiou,	 2014;	 Kaipust,	 McGrath,	 Mukherjee,	 &	
Stergiou,	 2013;	 Marmelat,	 Torre,	 Beek,	 &	 Daffertshofer,	 2014;	 Rankin	 &	 Limb,	 2014;	
Torre,	Varlet,	&	Marmelat,	 2013).	 These	 experiments	 generally	 showed	 that	 individuals	
tracked	 the	 timing	 variations	 of	 the	 sequence	 at	 a	 lag	 of	 one	 event	 (Delignières	 &	
Marmelat,	 2014;	 Thaut	 et	 al.,	 1998;	 Torre	 et	 al.,	 2013).	 This	 tracking	 behavior	 is	
essentially	similar	to	that	supposed	by	the	basic	model	proposed	in	Eq.	(1).	

This	 information	 processing	 approach	 to	 sensorimotor	 synchronization	 has	 been	
extended	 to	 interpersonal	 synchronization,	 especially	 in	 the	 study	 of	 dyadic	 finger	
tapping	 tasks	 (Konvalinka,	 Vuust,	 Roepstorff,	 &Frith,	 2010	 ;	 Nowicki,	 Prinz,	 Grosjean,	
Repp,	&	Keller,	2013	;	Pecenka	&	Keller,	2011).	These	experiments	and	their	results	will	
be	presented	and	discussed	latter	in	this	paper.	

The	coordination	dynamics	perspective	

A	 second	 theoretical	 framework	 has	 been	 proposed	 by	 the	 coordination	 dynamics	
perspective	(Schmidt,	Carello,	&	Turvey,	1990).	This	approach	was	initially	developed	in	
the	analysis	of	bimanual	coordination,	and	promoted	a	phenomenological	model	based	on	
a	continuous	coupling	between	oscillators	(Haken,	Kelso,	&	Bunz,	1985	;	Schöner,	Haken,	
&	Kelso,	1986)	:	

ITIn = ITIthn −αASYNn−1 + γεn
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	 		 (1)	

where	 xi	 is	 the	 position	 of	 oscillator	 i,	 and	 the	 dot	 notation	 represents	 derivation	with	
respect	to	time.	The	left	side	of	the	equations	represents	the	limit	cycle	dynamics	of	each	
oscillator	determined	by	a	 linear	stiffness	parameter	(ω)	and	damping	parameters	(δ,	λ,	
and	γ),	and	the	right	side	represents	 the	coupling	 function	determined	by	parameters	a	
and	b.	This	model	has	been	proven	to	adequately	account	for	most	empirical	features	in	
bimanual	coordination	tasks,	such	as	the	differential	stability	of	in-phase	and	anti-	phase	
coordination	modes,	and	the	transition	from	anti-phase	to	in-phase	coordination	with	the	
increase	of	oscillation	frequency	(Haken	et	al.,	1985;	Schöner	et	al.,	1986).	

Schmidt	et	al.	 (1990),	 in	a	 series	of	experiments	 in	which	 two	seated	participants	were	
asked	 to	 visually	 coordinate	 their	 lower	 legs,	 showed	 that	 interpersonal	 coordination	
presents	 strong	 similarities	 with	 bimanual	 coordination:	 anti-phase	 and	 in-phase	
coordination	 patterns	 also	 emerged	 as	 intrinsically	 stable	 behaviors,	 with	 anti-phase	
being	less	stable	than	in-phase	coordination,	and	spontaneous	transitions	from	anti-phase	
to	 in-phase	 coordination	were	 also	 observed	with	 increasing	 frequency.	 Similar	 results	
were	 obtained	 in	 diverse	 interpersonal	 tasks,	 such	 as	 rocking	 side-by-side	 in	 rocking	
chairs	 (Richardson,	 Marsh,	 Isenhower,	 Goodman,	 &	 Schmidt,	 2007),	 or	 swinging	
pendulums	together	(Schmidt,	Bienvenu,	Fitzpatrick,	&	Amazeen,	1998).	Some	important	
predictions	of	the	original	model,	such	as	the	effect	of	a	difference	between	the	uncoupled	
eigenfrequencies	of	the	two	oscillators,	were	also	evidenced	in	interpersonal	coordination	
tasks	(Schmidt	et	al.	1998).	

Complexity	matching	

Complexity	 matching	 represents	 a	 third,	 alternative	 framework	 that	 has	 been	 recently	
proposed	for	accounting	for	interpersonal	coordination	processes	(Abney,	Paxton,	Dale,	&	
Kello,	2014;	Delignières	&	Marmelat,	2014;	Marmelat	&	Delignières,	2012).	The	concept	of	
complexity	matching,	introduced	by	West,	Geneston,	and	Grigolini	(2008),	states	that	the	
exchange	 of	 information	 between	 two	 complex	 networks	 is	 maximized	 when	 their	
complexities	are	similar.	The	response	of	a	complex	network	to	the	stimulation	of	another	
network	 is	a	 function	of	 the	matching	of	 their	complexities.	This	property	requires	 that	
both	 networks	 generate	 1/f	 fluctuations,	 and	 has	 been	 interpreted	 as	 a	 kind	 of	 “1/f	
resonance”	(Aquino,	Bologna,	West,	&	Grigolini,	2011)	

An	 interesting	 conjecture	 exploiting	 the	 complexity	 matching	 effect	 supposes	 that	 two	
coupled	 complex	 systems	 tend	 to	 attune	 their	 complexities	 in	 order	 to	 optimize	
information	 exchange.	 This	 conjecture	 suggests	 a	 close	 matching	 between	 the	 scaling	
exponents	characterizing	the	series	produced	by	the	coupled	systems.	Such	results	have	
been	 evidenced	 by	Marmelat	 and	 Delignières	 (2012)	 in	 an	 inter-personal	 coordination	
task	where	participants	oscillated	pendulums	in	synchrony,	and	by	Abney	et	al.	(2014),	in	
the	analysis	of	speech	signals	during	dyadic	conversations.	

The	 processes	 that	 underlain	 this	 tailoring	 of	 fluctuations	 remain	 not	 fully	 understood.	
Stephen	 and	 Dixon	 (2011)	 propose	 an	 interesting	 hypothesis,	 which	 explains	 this	
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attunement	 as	 a	 case	 of	 multifractal	 cascade	 dynamics	 in	 which	 perceptual-motor	
fluctuations	 are	 coordinated	 across	 multiple	 time	 scales.	 This	 coordination	 among	
multiple	time	scales	could	support	the	apparently	predictive	aspects	of	behavior	without	
requiring	an	internal	model.	

These	 three	 theoretical	 frameworks	 have	 been	 jointly	 considered	 in	 a	 series	 of	 papers	
dedicated	 to	 the	 analysis	 of	 anticipation	 processes,	 and	 distinguishing	 several	 forms	 of	
anticipation	 (Dubois,	 2003	 ;	 Stephen	 &	 Dixon,	 2011;	 Stepp	 &	 Turvey,	 2010).	 Dubois	
(2003)	 considered	 that	 synchronization	with	 fluctuating	 environments	was	 based	 on	 a	
kind	of	“prediction”	of	its	upcoming	behavior	(Delignières	&	Marmelat,	2014	;	Marmelat	&	
Delignières,	 2012	 ;	 Stephen	 &	 Dixon,	 2011	 ;	 Stephen,	 Stepp,	 Dixon,	 &Turvey,	 2008).	
Dubois	 suggested	 that	 a	 first	 form	 of	 anticipation	 was	 based	 on	 representational	
processes,	allowing	to	predict	the	future	of	the	environment	with	which	the	systems	has	
to	 coordinate.	 The	 information-processing	 approach	 we	 previously	 presented	
corresponds	 to	 this	 kind	 of	 processes.	 Dubois	 (2003)	 proposed	 to	 refer	 this	 form	 of	
anticipation	to	as	‘‘weak’’	anticipation.	

The	author	proposed	a	‘‘strong’’	alternative	that	does	not	rely	on	internal	models.	Strong	
anticipation	 suggests	 that	 the	 organism	 is	 embedded	 within	 its	 environment.	 This	
embedding	 asserts	 lawful	 constraints	 upon	 both	 the	 actions	 of	 the	 organism	 and	 the	
environmental	effects	on	those	actions,	and	anticipation	emerges	as	a	lawful	regularity	of	
the	organism–environment	system.	

Stephen	and	Dixon	(2011)	argued	that	two	approaches	to	strong	anticipation	have	to	be	
distinguished.	The	first	one	suggests	that	strong	anticipation	results	from	an	appropriate	
coupling	 between	 the	 organism	 and	 its	 environment.	 An	 interesting	 example	 was	
presented	by	Voss	(2000),	who	showed	that	during	the	synchronization	between	a	slave	
and	a	master	systems,	the	presence	of	time	delays	in	the	master	system	yields	the	slave	
system	to	synchronize	with	future	states	of	the	master.	The	models	of	coupled	oscillators	
proposed	 by	 the	 coordination	 dynamics	 perspective	 clearly	 refer	 to	 this	 kind	 of	 local	
strong	 anticipation	 processes.	 This	 conception	 supposes	 that	 anticipation	 is	 based	 on	
local	 time	scales,	and	the	quality	of	anticipation	 is	supposed	to	be	closely	related	to	 the	
strength	of	coupling	between	the	two	systems	(Stepp	&	Turvey,	2010).	

A	 second	 approach	 supposes	 that	 strong	 anticipation	 is	 based	 on	 a	 more	 global	
coordination	between	the	organism	and	its	environment.	Stephen	et	al.	(2008)	were	the	
first	 to	 evidence	 this	 kind	 of	 strong	 anticipation	 in	 an	 experiment	 which	 analyzed	
synchronization	 with	 a	 chaotic	 metronome.	 In	 such	 a	 situation,	 local	 predictions	 seem	
difficultly	 conceivable,	 because	 of	 the	 intrinsically	 unpredictable	 nature	 of	 the	 external	
pacing	 signal.	 Despite	 this	 unpredictability,	 the	 authors	 reported	 a	 quite	 acceptable	
synchronization	with	the	metronome.	They	also	observed	a	close	matching	between	the	
fractal	exponents	of	the	chaotic	signals	and	those	of	the	corresponding	inter-tap	interval	
series.	 Such	 global	 strong	 anticipation	 corresponds	 to	 the	 previously	 presented	
complexity	matching	effect.	

These	 three	 theoretical	 frameworks	 have	 received	 considerable	 supports	 in	 their	
respective	 fields	 of	 emergence,	 including	 interpersonal	 coordination	 tasks.	We	 are	 not	
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sure,	however,	that	these	frameworks	represent	alternative	hypotheses	for	accounting	
for	 similar	 phenomena.	 Depending	 on	 the	 nature	 and	 the	 constraints	 of	 the	 situation,	
different	 synchronization	 processes	 could	 be	 at	work,	 and	 each	 framework	 could	 offer	
satisfying	 accounts	 in	 specific	 tasks.	 The	 information	 processing	 approach	 seems	
particularly	relevant	for	accounting	for	situations	where	one	has	to	synchronize	discrete	
movements	 (e.g.,	 tapping)	with	series	of	discrete	signals	 (Konvalinka	et	al.,	2010;	Repp,	
2005).	The	coordination	dynamics	perspective	was	essentially	developed	for	accounting	
for	 the	 coordination	 of	 continuous,	 oscillatory	 movements	 (Schmidt	 et	 al.,	 1990).	 The	
scope	 of	 complexity	matching	 remains	 to	 define,	 but	 it	 has	 been	 previously	 applied	 to	
very	 diverse	 situations,	 including	 non	 periodic	 interactions	 between	 complex	 systems	
(e.g.,	Abney	et	al.,	2014).	

In	 order	 to	 test	 the	 relevance	 of	 these	 frameworks	 in	 specific	 situations,	 we	 need	
statistical	signatures	that	could	be	able	to	unambiguously	identify	the	processes	at	work	
in	interpersonal	coordination.	In	the	following	parts	we	present	three	possible	tests	:	the	
first	 one	 is	 based	 on	 multifractal	 analyses,	 and	 has	 been	 proposed	 by	 Delignières,	
Almurad,	Roume,	and	Marmelat	(2016),	the	second	and	the	third	exploit	cross-correlation	
analyses.	

Multifractal	signatures	

Most	experiments	seeking	to	evidence	a	complexity	matching	effect	tried	to	reveal	a	close	
attunement	 of	 the	 (mono)fractal	 properties	 of	 the	 series	 produced	 by	 the	 coordinated	
systems.	 Typically,	 the	 authors	 showed	 close	 correlations	 between	 scaling	 exponents	
(Delignières	&	Marmelat,	 2014	 ;	Marmelat	&	Delignières,	 2012	 ;	Marmelat,	Delignières,	
Torre,	Beek,	&	Daffertshofer,	2014;	Stephen	et	al.2008).	

However,	Delignières	et	al.	(2016)	claimed	that	the	matching	of	scaling	exponents	could	
not	be	considered	an	unambiguous	signature	of	complexity	matching.	They	proposed	to	
distinguish	between	statistical	matching	(i.e.,	 the	convergence	of	scaling	exponents)	and	
genuine	 complexity	matching	 effect	 (i.e.,	 the	 attunement	 of	 complexities).	 Some	 recent	
papers	showed	that	the	matching	of	scaling	exponents	could	result	from	local,	short-term	
adjustments	 or	 corrections	 (Delignières	 &	 Marmelat,	 2014	 ;	 Fine,	 Likens,	 Amazeen,	 &	
Amazeen,	 2015;	 Torre	 et	 al.,	 2013).	 For	 example,	 Delignières	 and	 Marmelat	 (2014)	
analyzed	 series	 of	 stride	 durations	 produced	 by	 participants	 attempting	 to	 walk	 in	
synchrony	 with	 a	 fractal	 metronome.	 They	 evidenced	 a	 close	 correlation	 between	 the	
scaling	exponents	of	the	series	of	stride	durations	produced	by	the	participants	and	those	
of	the	series	of	inter-onset	intervals	of	the	corresponding	metronomes.	The	authors	tried	
to	 simulate	 their	 empirical	 results	 by	 means	 of	 a	 model	 based	 on	 local	 corrections	 of	
asynchronies,	 and	 showed	 that	 this	 model	 was	 able	 to	 adequately	 reproduce	 the	
statistical	matching	observed	in	experimental	series.	The	authors	concluded	that	walking	
in	 synchrony	with	 a	 fractal	metronome	 could	 essentially	 involve	 short-term	 correction	
processes,	 and	 that	 the	 close	 correlation	 observed	 between	 scaling	 exponents	 could	 in	
such	a	case	just	represent	the	consequence	of	these	local	corrections.	

Delignières	 et	 al.	 (2016)	 proposed	 a	 more	 binding	 method	 for	 distinguishing	 genuine	
complexity	 matching	 from	 local	 corrective	 processes.	 They	 first	 suggested	 to	 base	 the	
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analysis	 of	 statistical	matching	 on	 a	multifractal	 approach,	 rather	 than	 the	monofractal	
analyses	 previously	 employed.	 This	 choice	 was	 motivated	 by	 the	 point	 developed	 by	
Stephen	 and	 Dixon	 (2011),	 arguing	 the	 tailoring	 of	 fluctuations	 that	 is	 typical	 of	
complexity	matching	could	be	considered	as	the	product	of	multifractality,	and	also	by	the	
fact	that	multifractals	allow	for	a	more	detailed	picture	of	the	complexity	of	time	series.	

Multifractal	 processes	 present	more	 complex	 fluctuations	 than	monofractal	 series,	 and	
cannot	be	characterized	by	a	single	scaling	exponent.	 In	multifractal	series	subsets	with	
small	and	large	fluctuations	scale	differently,	and	their	description	requires	a	hierarchy	of	
scaling	 exponents	 (Podobnik	 &	 Stanley,	 2008).	 Delignières	 et	 al.	 (2016)	 proposed	 to	
assess	 the	 statistical	matching	 through	 the	point-by-point	 correlation	 function	between	
the	sets	of	scaling	exponents	that	characterize	the	coordinated	series.	

The	 authors	 used	 the	Multifractal	Detrended	 Fluctuation	Analysis	 (MFDFA,	 see	Method	
section),	 which	 is	 based	 in	 its	 first	 steps	 on	 the	 analysis	 of	 the	 evolution	 of	 average	
statistical	 moments	 with	 the	 length	 of	 the	 intervals	 over	 which	 these	 moments	 are	
computed.	This	method	allows	to	choose	the	range	of	 interval	 lengths	that	 is	 taken	 into	
account.	The	authors	proposed	to	estimate	the	set	of	multifractal	exponents	in	first	over	
the	entire	range	of	available	intervals	(i.e.,	from	8	to	N/2,	N	representing	the	length	of	the	
series),	 and	 then	 over	 more	 restricted	 ranges,	 progressively	 excluding	 the	 shortest	
intervals	 (i.e.,	 from	 16	 to	N/2,	 from	 32	 to	N/2,	 and	 then	 from	 64	 to	N/2).	 They	 then	
computed	 the	 point-by-point	 correlation	 functions	 characterizing	 the	 four	 ranges	 of	
interval	lengths	considered.	

		The	 authors	 supposed	 that	 if	 synchronization	 is	 just	 based	 on	 local	 corrections,	 the	
statistical	 matching	 in	 long	 intervals	 is	 just	 the	 consequence	 of	 the	 short-term,	 local	
coupling	between	 the	 two	systems.	As	 local	 corrections	between	unpredictable	systems	
remains	 approximate,	 correlations	 should	 dramatically	 decrease	 when	 intervals	 of	
shorter	 durations	 are	 taken	 into	 consideration.	 In	 contrast,	 in	 the	 case	 of	 genuine	
complexity	matching,	the	synchronization	between	systems	is	supposed	to	emerge	from	
interactions	 across	multiple	 scales.	 The	 authors	 hypothesized	 to	 find	 in	 this	 case	 close	
correlations,	even	when	considering	the	entire	range	of	intervals,	from	the	shortest	to	the	
longest.	

	

We	present	 in	Fig.	1	 the	results	obtained	by	 the	authors	 in	 three	experiments.	The	 first	
one	analyzed	the	series	of	periods	produced	by	the	two	hands	of	participants	performing	
in-phase	 bimanual	 coordination.	 The	 correlation	 functions	 obtained	 remained	 close	 to	
one,	whatever	the	range	of	intervals	considered	(Fig.	1,	left	panel).	The	second	one	was	an	
interpersonal	 coordination	 task	 in	 which	 participants	 were	 instructed	 to	 oscillate	
pendulums	 in	phase	 (Fig.	 1,	 central	panel).	 In	 this	 experiment	 the	 correlation	 functions	
remained	 significant,	 while	 a	 little	 bit	 lesser	 than	 in	 the	 first	 example.	 In	 the	 third	
experiment	participants	had	to	walk	in	synchrony	with	a	fractal	metronome	(Fig.	1,	right	
panel).	 In	 that	 case	 a	 close-to-one	 correlation	 function	 was	 only	 obtained	 when	 the	
longest	intervals	were	considered	(i.e.,	from	64	to	N/2).	When	widest	ranges	of	intervals	
were	considered,	correlation	functions	lose	statistical	significance.	
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Fig.	 1.	Correlation	 functions,	 for	 the	 four	ranges	of	 intervals	considered	(8	 to	N/2,	16	 to	
N/2,	 32	 to	N/2,	 64	 to	N/2),	 for	 bimanual	 coordination	 (left),	 interpersonal	 coordination	
(middle),	and	walking	in	synchrony	with	a	fractal	metronome	(right).	From	Delignières	et	
al.	(2016).	

The	authors	concluded	that	in	bimanual	coordination	and	in	interpersonal	coordination,	
the	statistical	matching	resulted	from	a	genuine	complexity	matching	between	systems.	In	
contrast	during	walking	 in	synchrony	with	a	 fractal	metronome,	 the	apparent	statistical	
matching	was	just	the	result	of	local	adjustments.	

This	 multifractal	 approach	 allows	 to	 clearly	 distinguishing	 between	 weak	 anticipation	
processes	 (i.e.	 local	 discrete	 correction)	 and	 strong	 anticipation	 processes.	 However,	 it	
seems	 unable	 to	 distinguish	 between	 the	 local	 and	 global	 forms	 of	 strong	 anticipation	
(Delignières	et	al.,	2016).	
	
Cross-correlation	peaks	

A	 second	 kind	 of	 signatures	 can	 be	 obtained	 from	 cross-correlation	 analyses.	 As	
previously	 evoked,	 a	 number	 of	 recent	 studies	 analyzed	 synchronization	 with	 non-
isochronous	 metronomes,	 and	 especially	 metronomes	 presenting	 fractal	 fluctuations.	
These	 studies	 showed	 that	 synchronization	 in	 such	 situations	 was	 sustained	 by	 local	
corrections	 of	 the	 recent	 asynchronies,	 as	 expected	 from	 Eq.	 (1).	 Such	 behavior	 is	
typically	revealed	by	a	positive	peak	of	cross-correlation	at	lag	−1,	between	the	series	of	
asynchronies	and	the	series	of	periods	produced	by	the	participant,	or	between	the	series	
of	periods	produced	by	 the	participant	and	 that	produced	by	 the	metronome.	Note	 that	
some	 more	 complicated	 models	 have	 been	 proposed,	 involving	 corrective	 processes	
taking	 into	 account	 more	 previous	 asynchronies	 (Pressing	 &	 Jolley-Rogers,	 1997).	 For	
example	Delignières	 and	Marmelat	 (2014),	 in	 an	 experiment	where	participants	 had	 to	
walk	 in	 synchrony	 with	 a	 fractal	 metronome,	 evidenced	 positive	 peaks	 of	 cross-
correlations	at	lag	−2	and	lag	−1	between	the	series	of	asynchronies	and	the	series	of	step	
durations.	

The	principle	 of	 phase	 correction	 can	 also	 be	 applied	 to	 interpersonal	 synchronization.	
When	 two	 individuals	 perform	 a	 rhythmic	 task	 in	 synchrony	 (e.g.	 tapping),	 phase	
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correction	 suggests	 that	 participant	 A	 adapts	 his/her	 current	 inter-tap	 interval	 on	 the	
basis	on	 the	 last	asynchrony	he/she	perceived	with	his/her	partner,	and	conversely	 for	
participant	B.	This	mutual	phase	correction	process	could	be	modeled	as	follows	:	

	 		 (3)	

where	 ITIA,n	 represents	 the	 inter-tap	 interval	 produced	 by	 participant	 A	 at	 the	 nth	 tap,	
ASYNA-B,n	the	asynchrony	between	the	nth	tap	of	participant	A	and	the	nth	tap	of	participant	
B	 (hence,	ASYNA-B,n	 =	 −ASYNB-A,n).	 As	 in	 the	 previous	model	 (Eq.	 (1)),	 ITIthA,n	 is	 a	 long-
range	correlated	series	with	Hurst	exponent	H,	mean	M	and	variance	σ2,	representing	the	
series	of	taps	that	should	be	 intrinsically	produced	by	participant	A,	and	εA,n	 is	a	white	
noise	process	with	zero	mean	and	unit	variance.	We	generated	12	sets	of	coupled	series	
with	 this	 simple	model,	with	 the	 following	parameters:	H	=	0.9,	α	=	0.3,	M	=	1000,	σ2	=	
400,	and	γ	=	300.	We	then	computed	the	cross-correlation	 function,	 from	lag	−10	to	 lag	
+10,	between	the	obtained	ITI	series	(ITIA,n	and	ITIB,n).	We	present	in	Fig.	2	the	averaged	
cross-correlation	function.	This	model	typically	produces	positive	lag	−1	and	lag	+1	cross-
correlations,	and	a	negative	lag	0	cross-correlation.	The	positive	lag	−1	and	lag	+1	cross-
correlations	reflect	 the	correction	of	asynchronies,	and	 the	negative	correlation	at	 lag	0	
results	from	this	mutual	tendency	of	each	participant	to	adapt	towards	the	previous	ITI	of	
the	 other.	 This	 typical	 pattern	 of	 cross-correlation	 was	 evidenced	 by	 Konvalinka	 et	 al.	
(2010),	 in	 an	 experiment	 where	 participants	 had	 to	 synchronize	 their	 taps,	 and	 by	
Delignières	 and	 Marmelat	 (2014)	 in	 an	 experiment	 where	 each	 participant	 in	 a	 dyad	
swung	a	hand-	held	pendulum,	and	were	instructed	to	swing	in	synchrony.	

	
Fig.	2.	Averaged	cross-correlation	function	obtained	from	series	simulated	with	Eq.	(3).	

	

In	contrast,	both	coupled	oscillators	models	and	complexity	matching	are	likely	to	result	
in	a	unique,	positive	peak	of	cross-	correlation,	located	at	lag	0.	Indeed,	coupled	oscillators	
models	suggest	a	local,	continuous	coupling	within	the	limit	cycle,	and	the	oscillators	are	

ITIA,n = ITIthA,n −αASYNA−B,n−1 + γεA,n
ITIB,n = ITIthB,n −αASYNB−A,n−1 + γεB,n
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clearly	 expected	 to	 synchronize	 their	 frequencies.	 Generally	 the	 authors	 working	 on	
coordination	 dynamics	 focus	 on	 the	 stability	 of	 relative	 phase,	 and	 ignore	 the	 possible	
serial	 dependencies	 between	 the	 series	 produced	 by	 the	 two	 oscillators.	 However,	
Delignières	 and	 Marmelat	 (2014)	 and	 Coey,	 Washburn,	 Hassebrock,	 and	 Richardson	
(2016)	 clearly	 evidenced	 a	 peak	of	 cross-correlation	 at	 lag	 0	 between	 the	 two	 limbs	 in	
bimanual	 coordination.	 Complexity	matching	 does	 not	 suggest	 such	 local	 coupling,	 but,	
rather,	 a	global	and	multiscale	 coordination	between	systems	 (Stephen	&	Dixon,	2011).	
This	 should	 induce	 a	 close	 tailoring	 of	 fluctuations,	 which	 should	 also	 be	 expected	 to	
result	in	a	peak	at	lag	0	in	the	cross-correlation	function.	

Then	the	location	of	the	peak(s)	of	cross-correlation	between	the	series	produced	by	the	
two	 members	 of	 the	 dyad,	 could	 allow	 to	 distinguish	 between	 weak	 and	 strong	
anticipation	processes,	but	not	between	the	local	and	global	forms	of	strong	anticipation.	
We	 suggest,	 however,	 that	 the	 magnitude	 of	 the	 lag	 0	 cross-correlation	 peak	 could	
represent	 an	 interesting	 test	 for	 the	 respective	 relevancy	 of	 the	 two	 last	 competing	
models.	

Lag	0	windowed	cross-correlation	

Cross-correlations	 are	 strongly	 affected	 by	 trends,	which	 could	 spuriously	 increase	 the	
obtained	values.	In	order	to	control	these	biases	and	to	focus	on	local	processes,	one	could	
compute	 the	Windowed	 Detrended	 Cross-Correlation	 function	 (WDCC).	 In	 this	method	
the	series	are	divided	into	non-overlapping	intervals	of	short	length	(e.g.,	15	data	points),	
and	detrended	within	each	interval.		

The	local	cross-correlation	function	is	then	computed	within	each	interval,	and	averaged	
over	 all	 intervals	 (Coey	 et	 al.	 2016	 ;	 Delignières	 &	 Marmelat,	 2014;	 Konvalinka	 et	 al.,	
2010).	Fine	 et	 al.	 (2015)	 suggested	 that	 the	 local	 and	 continuous	 coupling	 involved	 in	
coordination	 dynamics	models	 could	 be	 at	 the	 origin	 of	 the	 strong	 statistical	matching	
observed	in	interpersonal	synchronization	experiments.	However,	several	recent	studies	
showed	 that	 in	 such	 situations,	 statistical	matching	 occurs	 despite	 a	 lack	 of	 substantial	
short-term	 cross-correlation,	 considered	 as	 evidence	 against	 the	 local	 coupling	
hypothesis	 (Abney	 et	 al.,	 2014	 ;	Marmelat	&	Delignières,	 2012;	 Rhea,	 Kiefer,	 D’Andrea,	
Warren,	&	Aaron,	2014;	Washburn,	Kallen,	Coey,	Shockley,	&	Richardson,	2015).	

Delignières	et	al.	(2016)	performed	a	simulation	study	based	on	the	HKB	model	(Eq.	(2)).	
In	order	to	account	for	the	presence	of	1/f	fluctuations	in	limb	oscillations,	they	provided	
the	stiffness	parameters	(ω2)	of	both	equations	with	independent	fractal	properties.	They	
showed	that	this	model	required	very	high	coupling	parameters	(i.e.,	a	and	b	 in	Eq.	(2))	
for	maintaining	the	stability	of	coordination	patterns.	As	a	consequence,	the	local	coupling	
between	 oscillators	 was	 strong	 and	 the	 mean	 lag	 0	 WDCC,	 computed	 from	 these	
simulated	 series,	was	of	 about	0.84.	 In	 contrast,	 Coey	et	 al.	 (2016)	 and	Delignières	 and	
Marmelat	(2014)	obtained	lag	0	WDCCs	of	about	0.4	in	bimanual	coordination	tasks,	and	
Coey	 et	 al.	 (2016)	 observed	 a	 value	 of	 about	 0.2	 in	 an	 interpersonal	 synchronization	
tapping	 task.	On	 the	basis	of	 these	 results,	 one	 can	 consider	 that	 the	 lag	0	WDCC	value	
could	 allow	 distinguishing	 between	 the	 alternative	 models	 of	 strong	 anticipation	 :	
Coupled	oscillators	dynamics	should	be	revealed	by	a	significant	peak	of	WDCC	at	 lag	0,	
but	in	the	case	of	complexity	matching	this	peak	should	remain	non-significant.	
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The	aim	of	the	present	work	was	to	clarify	the	nature	of	synchronization	in	side-by-side	
walking.	We	 applied	 the	 three	previously	 presented	 statistical	 tests	 to	 empirical	 series,	
and	we	 hypothesized	 to	 evidence	 the	 typical	 signatures	 of	 complexity	matching	 in	 this	
situation.	

	

Methods	
Participants	

26	participants	(16	male	and	10	female,	mean	age	:	28.07	yrs	±	8.88,	mean	weight	:	68.65	
kg	±	10.5,	mean	height	:	172.92	cm	±	9.67)	were	involved	in	the	experiment.	Participants	
were	paired	into	13	dyads.	The	pairing	procedure	was	performed	in	order	to	preserve	the	
homogeneity	 of	weights	 and	heights	within	 each	dyad.	 Participants	 signed	 an	 informed	
consent	approved	by	the	local	ethic	committee	and	were	not	paid	for	their	participation.	
All	work	was	conducted	in	accordance	with	the	1964	Declaration	of	Helsinki.	

Experimental	procedure	

The	experiment	was	performed	around	an	indoor	running	track	(circumference	200	m),	
and	comprised	three	experimental	conditions	:	

–	 	Condition	 1:	 Independent	 walking.	 Each	 participant	 walked	 individually	 at	 his/her	
preferred	velocity		

–		Condition	2	:	Side-by-side	walking.	The	two	members	of	the	dyad	walked	together,	side-
by-side.	They	were	explicitly	instructed	to	Synchronize	their	steps	during	the	whole	trial.		
–		Condition	3:	Arm-in-arm	walking.	The	two	members	of	the	dyad	walked	together,	arm-
in-arm.	 They	 were	 explicitly	 instructed	 to	 Synchronize	 their	 steps	 during	 the	 whole	
trial.	Each	trial,	in	the	three	conditions,	lasted	16	min.	Participants	had	a	resting	period	of	
at	 least	 10	min	 between	 two	 successive	 trials.	 	Independent	walking	was	 performed	 at	
first.	The	order	of	the	two	last	conditions	was	counterbalanced	within	dyads.		

Data	collection		

Data	were	recorded	with	two	Mobility	Lab	systems	(APDM,	Inc),	one	for	each	member	of	
the	 dyads.	 Two	 body-worn	 inertial	 sensors	 were	 attached	 on	 the	 shanks	 of	 each	
participant.	 Data	 were	 then	 wirelessly	 streamed	 to	 a	 laptop.	 The	 device	 performed	
automated	analyses	providing	a	set	of	raw	series	(stride	duration,	stride	length,	etc.,	 for	
both	limbs).	In	the	present	paper	we	focused	on	the	series	of	right	stride	durations.		

Statistical	analyses		

Multifractal	 detrended	 fluctuation	 analysis	 (MF-DFA).	We	 performed	 multifractal	
analyses	 with	 the	 MF-DFA	 method,	 initially	 introduced	 by	 Kantelhardt	 et	 al.	 (2002).	
Consider	the		series	x(i),	i	=	1,	2,	...,	N.	In	a	first	step	the	series	is	centered	and	integrated:		

	 		 (2)	

Next,	the	integrated	series	X(k)	is	divided	into	Nn	non-overlapping	segments	of	length	n,	
and	in	each	segment	s	=	1,	...,	Nn.	Within		each	segment	the	local	trend	Xn,s(k)	is	estimated	
and	subtracted	from	X(k).	The	variance	is	calculated	for	each	detrended	segment	:		

F2 n, s( ) = 1
n

X k( )− Xn,s k( )⎡⎣ ⎤⎦
k=(s−1)n+1

sn

∑
2
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	 		 (3)	

And	then	averaged	over	all	segments	to	obtain	qth	order	fluctuation	function	

	 		 (6)	

Where	q	can	take	any	real	value	except	zero.	In	the	present	work	we	used	integer	values	
for	q,	 from	−15	to	+15.	Note	 that	Eq.	 (6)	cannot	hold	 for	q	=	0.	A	 logarithmic	averaging	
procedure	is	used	for	this	special	case	:	

	 		 (4)	

This	calculation	is	repeated	for	all	lengths	n	(practically,	one	considers	intervals	from	8	or	
10	data	points,	in	order	to	allow	a	proper	assessment	of	statistical	moments,	up	to	N/4	or	
N/2).	 If	 long-term	correlations	are	present,	Fq(n)	 should	 increase	with	n	 according	 to	a	
power	law:	

	 		 (5)	

The	 scaling	 exponent	h(q)	 is	 obtained	as	 the	 slope	of	 the	 linear	 regression	of	 log	Fq(n)	
versus	log	n.	h(q)	is	called	the	generalized	Hurst	exponent.	

These	results	are	then	converted	into	the	more	classical	multifractal	formalism	by	simple	
transformations	 (Kantelhardt	 et	 al.,	 2002):	 first,	 generalized	 Hurst	 exponents	 h(q)	 are	
converted	into	Renyi	exponents	τ(q)	by:	
	
	 		 (6)	

The	singularity	spectrum	f(α)	is	then	derived	through	the	Legendre	transform	:	
	

	 		 (7)	

	 		 (8)	

Where	 f(α)	 is	 the	 fractal	 dimension	 of	 the	 support	 of	 singularities	 in	 the	measure	with	
Lipschitz-Hölder	exponent	α.	

Note	that	for	avoiding	to	obtain	“inversed”	spectra,	exhibiting	a	zig-zag	shapes	rather	than	
the	 expected	 parabolic	 shape	 in	 the	 singularity	 spectrum,	 we	 applied	 the	 focus-based	
approach	 introduced	by	Mukli,	Nagy,	 and	Eke	 (2015).	This	 approach	 considers	 that	 the	
moment-wise	 scaling	 functions,	 for	 all	 q	 values,	 should	 theoretically	 converge	 toward	a	
common	limit	value	at	the	coarsest	scale.	Indeed,	substituting	signal	length	(N)	to	interval	
length	(n)	in	Eq.	(6)	yields:	
	

	 		 (9)	

F2 n, s( ) = 1
n

X k( )− Xn,s k( )⎡⎣ ⎤⎦
k=(s−1)n+1

sn

∑
2

Fq (n) =
1
Nn

F2 n, s( )⎡⎣ ⎤⎦
s=1

Nn

∑
q/2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1/q

F0 (n) = exp
1
2Nn

ln F2 n, s( )⎡⎣ ⎤⎦
s=1

Nn

∑⎛
⎝⎜

⎞
⎠⎟

Fq n( )∝ nh(q)

τ (q) = qh(q)−1

α (q) = dτ (q)
dq

f (α ) = qα −τ (q)

Fq (N ) =
1
NN

F2 N , s( )⎡⎣ ⎤⎦
s=1

NN

∑
q/2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1/q

= F2 N , s( )q/2{ }1/q = F N , s( )
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F(N,s)	can	then	be	considered	the	theoretical	focus	of	the	scaling	functions,	and	this	focus	
is	used	as	a	guiding	reference	when	regressing	for	h(q)	(Delignières	et	al.,	2016;	Mukli	et	
al.,	2015).	

Correlation	functions	

Just	 as	 DFA,	 MF-DFA	 allows	 to	 select	 the	 range	 of	 intervals	 over	 which	 exponents	 are	
estimated.	As	previously	 indicated,	usually	authors	consider	 intervals	 from	8	or	10	data	
points,	up	 to	N/4	or	N/2.	Quite	often,	however,	 series	present	different	 scaling	 regimes	
over	the	short	and	the	long	term,	and	authors	perform	separate	estimates	over	different	
ranges	of	intervals	(Delignières	&	Marmelat,	2014).	Here	we	propose	to	estimate	the	set	
of	multifractal	exponents	in	first	over	the	entire	range	of	available	intervals	(i.e.,	from	8	to	
N/2),	and	then	over	more	restricted	ranges,	progressively	excluding	the	shortest	intervals	
(i.e.,	 from	16	 to	N/2,	 from	32	 to	N/2,	and	 then	 from	64	 to	N/2).	We	then	computed	 for	
each	 q	 value	 the	 correlation	 between	 the	 individual	 Lipschitz-Hölder	 exponents	
characterizing	 the	 two	 coordinated	 systems,	 α1(q)	 and	 α2(q),	 respectively,	 yielding	 a	
correlation	 function	 r(q).	 As	 previously	 explained,	 we	 expected	 to	 find	 in	 all	 cases	 a	
correlation	 function	 close	 to	 1,	 for	 all	 q	 values,	 when	 only	 the	 largest	 intervals	 were	
considered	 (i.e.	 64	 to	N/2).	 Increasing	 the	 range	 of	 considered	 intervals	 should	 have	 a	
negligible	impact	on	r(q)	when	coordination	is	based	on	a	complexity	matching	effect.	In	
contrast,	 if	 coordination	 is	 based	 on	 local	 corrections,	 a	 decrease	 in	 r(q)	 should	 be	
observed,	as	shorter	and	shorter	intervals	are	considered.	

Cross-correlation	analyses	

We	first	computed	the	cross-correlation	function	between	the	series	produced	by	the	two	
members	of	each	dyad	in	each	condition.	Cross-correlations	were	computed	for	each	dyad	
from	 lag	 −60	 to	 lag	 +60,	 and	 the	 cross-correlation	 functions	 were	 point-by-point	
averaged.	In	a	second	step	we	computed	for	each	dyad	WDCC	functions,	from	lag	−10	to	
lag	10,	between	the	series	produced	by	the	two	participants.	WDCC	were	computed	over	
non-overlapping	 windows	 of	 short	 length	 (15	 data	 points),	 and	 data	 were	 linearly	
detrended	 within	 each	 window	 before	 the	 computation	 of	 cross-correlations.	 WDCC	
functions	were	then	point-by-point	averaged.	

Results	

The	length	of	the	collected	stride	series	obviously	depended	of	the	walking	speed	of	each	
dyad.	For	the	independent	walking	condition,	we	deleted	for	each	dyad	the	last	points	of	
the	 longest	 series,	 in	 order	 to	 obtain	 two	 series	 of	 equal	 lengths.	 For	 the	 two	 other	
conditions,	 we	 occasionally	 deleted	 some	 short	 segments,	 which	 presented	
synchronization	errors,	either	at	the	beginning	of	the	trial	(due	to	difficulties	to	enter	in	
synchronization)	 or	 at	 the	 end	 of	 the	 trial	 (due	 to	 fatigue	 or	 boredom).	 The	 resulting	
series	lengths	ranged	from	801	to	990	data	points	for	independent	walking,	from	716	to	
1004	data	points	 for	side-by-side	walking,	and	 from	650	 to	990	data	points	 for	arm-in-
arm	walking.	
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We	 present	 in	 Fig.	 3	 (upper	 panel)	 two	 example	 stride	 intervals	 series	 recorded	 in	 a	
representative	dyad	in	the	arm-in-arm	condition.	This	first	graph	shows	how	medium-	or	
long-term	 fluctuations	 are	 synchronized	 within	 the	 dyad.	 The	 bottom	 panel	 of	 Fig.	 3	
represents	 a	 focus	of	 the	previous	 series	 (one	hundred	 strides).	 This	 graph	 suggests	 in	
contrast	 a	 quite	 poor	 synchronization	 on	 local	 scales.	 We	 analyze	 these	 points	 more	
deeply	in	the	following	section	

	
Fig.	3.	Upper	panel:	Two	example	stride	intervals	series	recorded	in	a	representative	dyad	in	
the	arm-in-arm	condition.	For	a	better	readability,	the	series	are	vertically	shifted	by	0.15	ms.	
Bottom	panel:	A	focus	on	the	previous	series,	between	strides	#550	and	#650.	

	
Multifractal	analysis	

We	present	 in	Fig.	4	 the	correlation	 functions	r(q)	between	 the	multifractal	 spectra,	 for	
the	 three	 experimental	 conditions.	 Correlation	 coefficients	 are	 plotted	 against	 their	
corresponding	 q	 values.	 Four	 correlation	 functions	 are	 displayed,	 according	 to	 the	
shortest	 interval	 length	 considered	 during	 the	 analysis	 (8,	 16,	 32,	 or	 64).	 For	 the	
independent	 walking	 condition	 (left	 panel),	 the	 correlation	 functions	 remained	 non-
significant,	 whatever	 the	 considered	 range	 of	 intervals.	 In	 contrast,	 the	 correlation	
functions	were	systematically	above	the	threshold	of	significance,	whatever	the	range	of	
interval	considered,	for	side-by-side	walking	(middle	panel)	and	for	arm-in-arm	walking	
(right	 panel).	 The	 correlation	 functions	were	 close	 to	 one	 in	 the	 arm-in-arm	 condition,	
when	 the	 shortest	 ranges	 of	 intervals	were	 considered	 (i.e.	 32	 to	N/2	 and	 64	 to	N/2).	
They	 appeared	 a	 little	 bit	 lower	 in	 the	 side-by-side	 condition,	 where	 the	 correlation	
functions	for	the	same	interval	ranges	were	on	average	around	0.9	for	positive	q	values,	
and	around	0.82	for	negative	q	values.	
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Fig.	 4.	 Correlation	 functions	r(q),	 for	 the	 four	 ranges	of	 intervals	 considered	 (8	 to	
N/2,	16	to	N/2,	32	to	N/2,	and	64	to	N/2),	 for	independent	walking	(left),	side-by-
side	walking	(middle)	and	arm-in	arm	walking	(right).	q	represents	the	set	of	orders	
over	which	the	MF-DFA	algorithm	was	applied.	

	

Cross-correlation	analyses	

We	 present	 in	 Fig.	 5	 (left	 panel)	 the	 averaged	 cross-correlation	 functions	 in	 the	 three	
conditions.	 In	 the	 first	 condition	 (independent	 walking),	 no	 correlation	 was	 observed	
over	 the	 investigated	 range	 of	 lags.	 In	 contrast,	 in	 the	 two	 conditions	 of	 synchronized	
walking	cross-correlation	functions	were	organized	around	a	marked	peak	at	lag	0,	with	
an	average	 lag	0	coefficient	of	about	0.45	 in	condition	2,	and	0.57	 in	condition	3.	Cross-
correlations	 remained	 significant	 up	 to	 the	 negative	 and	 positive	 extrema	 of	 the	
investigated	range.	Finally,	cross-correlations	were	systematically	higher	 in	condition	3,	
showing	 the	 effectiveness	 of	 the	 reinforcement	 of	 coupling	 in	 arm-in-arm	 walking,	 as	
compared	with	simple	side-by-side	walking.	

The	 averaged	 WDCC	 functions	 are	 reported	 in	 Fig.	 5	 (right	 panel).	 These	 functions	
present	a	peak	at	 lag	0	for	side-by-side	and	arm-in-arm	walking.	However	in	both	cases	
these	peaks	did	not	present	significant	values	(0.16	and	0.24,	respectively).	Note	that	 in	
contrast	with	the	previous	analysis,	the	decay	of	cross-correlations	was	very	fast,	in	both	
negative	and	positive	directions.	
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Fig.	 5.	 Left	 panel:	 Averaged	 cross-correlation	 functions,	 from	 lag	 −60	 to	 lag	 60,	 for	
independent	walking	 (light	 grey),	 side-by-side	walking	 (dark	 grey),	 and	 arm-in-	 arm	
walking	 (black).	 The	 horizontal	 dashed	 line	 indicates	 the	 significance	 threshold	 (p	 =	
0.05).	Right	panel:	Averaged	windowed	detrended	cross-correlation	functions,	from	lag	
−10	to	lag	10,	for	independent	walking	(light	grey	circles),	side-by-side	walking	(dark	
grey	circles),	and	arm-in-arm	walking	(black	circles).	
	

Discussion	

These	results	present	strong	evidence	for	the	presence	of	a	complexity	matching	effect	in	
synchronized	walking.	The	first	analysis	focused	on	multifractal	correlation	functions,	and	
the	results	gave	strong	support	for	strong	anticipation	processes	in	both	side-by-	side	and	
arm-in-arm	walking.	Whatever	 the	 range	 of	 intervals	 considered,	 correlation	 functions	
remained	above	the	threshold	of	significance	in	both	conditions.	Note	that	we	expected	to	
find	 stronger	 correlations	 in	 arm-in-arm	 walking,	 whatever	 the	 considered	 range	 on	
intervals	 considered.	 This	was	 observed	 for	 the	 shortest	 ranges,	 focusing	 on	 long-term	
intervals	 (i.e.	 32	 to	N/2	 and	 64	 to	N/	 2):	 the	 correlation	 functions	were	 in	 both	 cases	
consistently	close	 to	one,	while	 they	were	between	0.8	and	0.9	 for	side-by	side	walking	
(see	Fig.	4).	When	the	widest	range	of	intervals	was	considered	(8	to	N/2),	however,	the	
correlation	 function	presents	 somewhat	 lesser	values	 in	arm-in-arm	walking,	 especially	
for	negative	q	values.	We	confess	 that	we	have	no	satisfying	explanation	 for	 this	 result.	
Obviously,	 we	 did	 not	 obtain	 any	 significant	 correlation	 in	 the	 independent	 walking	
condition.	

Cross-correlation	 analyses	 confirmed	 these	 first	 results.	 The	 averaged	 cross-correlation	
functions	in	the	first	condition	presented	non-significant	values	over	the	whole	range	of	
investigated	 lags,	 a	 result	 which	 was	 obviously	 expected	 from	 independent	 series.	 In	
contrast,	a	unique	and	sharp	peak	was	observed	at	lag	0	for	both	side-by-side	and	arm-in-
arm	walking,	clearly	showing	the	absence	of	local	cycle-to-cycle	adjustments.	The	second	
important	 observation	 is	 the	 persistence	 of	 cross-correlations,	 at	 least	 over	 the	
considered	range,	from	lag	−60	to	lag	60.	This	kind	of	long-range	cross-correlations	could	
be	interpreted	as	an	evidence	for	complexity	matching.	Short-term	adjustments	are	likely	
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to	 produce	 a	 quicker,	 exponential-like	 decay	 in	 cross-correlations.	 However,	 this	
persistence	 of	 cross-correlations	 could	 also	 be	 due	 to	 the	 presence	 of	 common	 local	
trends	 in	 the	 synchronized	 series.	 Finally,	 we	 observed	 systematically	 higher	 cross-
correlation	coefficients	 in	arm-in-arm	walking,	as	compared	 to	side-by-side.	This	shows	
that	 the	 experimental	 manipulation	 (side-by-side	 vs	 arm-in-arm)	 induced	 an	 effective	
difference	in	coupling	strength	between	the	two	members	of	the	dyads.	

As	 evoked	 in	 the	 introduction	 of	 this	 paper,	 such	 cross-correlation	 analyses	 have	 also	
been	 applied	 in	 studies	 about	 synchronization	 in	 music,	 and	 especially	 for	
synchronization	 with	 expressively	 interpreted	 musical	 sequences	 (Dixon,	 Goebl,	 &	
Cambouropoulos,	2006;	Rankin,	Fink,	&	Large,	2014;	Rankin,	Large,	&	Fink,	2009;	Repp,	
1999,	2002,	2006).	Repp	(2002,	2006)	showed	that	when	participants	were	required	to	
tap	 along	with	 recordings	 of	 such	 expressively	 performed	music,	 one	 observed	 a	 lag	 0	
peak	 of	 cross-correlation	 between	 the	 series	 of	 inter-tap	 intervals	 and	 the	 inter-onset	
intervals	of	the	corresponding	tones	in	the	musical	excerpt.	In	contrast,	when	participants	
were	 asked	 to	 tap	 along	 with	 a	 sequence	 of	 simple	 clicks	 reproducing	 the	 expressive	
timing	pattern	of	a	complex	piece	of	music,	the	peak	in	the	cross-correlation	function	was	
shifted	by	one	lag.	Repp	(2002)	considered	this	latter	result	as	evidence	that	participants	
tracked	the	timing	variations	of	the	sequence,	at	a	lag	of	one	event.	In	contrast,	the	author	
considered	 that	 the	 lag	 0	 peak	 of	 cross-correlation	 in	 the	 first	 condition	 showed	 that	
participants	 adjusted	 their	 inter-tap	 intervals	 on	 the	 basis	 of	 upcoming	 rather	 than	
preceding	inter-onset	intervals	in	the	music.	In	other	words,	they	seem	able	to	anticipate	
or	predict	ongoing	timing	fluctuations.	

Analyzing	 the	 perfect	 synchronization	 to	 musical	 sequences	 in	 terms	 of	 prediction	 is	
obviously	 consistent	with	 the	 representa-	 tional	 point	 of	 view	 of	 the	 author.	 However,	
considering	that	musical	sequences,	when	expressively	 interpreted	by	expert	musicians,	
present	fractal	fluctuations	(Rankin	et	al.,	2009),	one	could	consider	such	synchronization	
as	a	typical	case	of	strong,	non	representational	anticipation.	Note	also	that	these	results	
confirm	 that	 artificial	 signals	 mimicking	 natural	 variability	 do	 not	 allow	 strong	
anticipation	to	occur	(Delignières	&	Marmelat,	2014	;	Delignières	et	al.,	2016).	

The	two	first	analyses	clearly	discarded	the	hypothesis	of	local	error	corrections	(or	weak	
anticipation).	The	last	problem	was	to	distinguish	between	the	two	remaining	theoretical	
accounts:	 coordination	 dynamics	 and	 complexity	 matching.	 The	 windowed	 detrended	
cross-	correlation	analysis	confirmed	the	presence	of	a	unique	peak	of	cross-correlation	
at	 lag	 0,	 but	 showed	 that	 local	 synchronization	 remained	 weak,	 and	 on	 average	 non	
significant.	 This	 result	 is	 consistent	with	 the	 graphical	 example	we	 presented	 in	 Fig.	 2.	
This	represents	in	our	mind,	in	conjunction	with	previous	results,	a	strong	argument	for	
complexity	matching.	The	weakness	of	short-term	cross-correlation	has	been	considered	
in	 several	 previous	 studies	 as	 evidence	 discarding	 the	 local	 coordination	 account	 and	
favoring	the	complexity	matching	hypothesis	(Abney	et	al.,	2014;	Marmelat	&	Delignières,	
2012;	Rhea	et	al.,	2014;	Washburn	et	al.,	2015).	
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Conclusion	

The	complexity	matching	effect	 could	appear	a	quite	 strange	phenomenon,	and	 it	 could	
certainly	 hurts	 common	 conceptions	 and	 models.	 However,	 this	 framework	 clearly	
proposes	 innovative	 and	 fruitful	 ways	 of	 thinking	 about	 coordination	 between	 living	
systems.	 The	 information-processing	 and	 the	 coordination	 dynamics	 approaches	 have	
been	 supported	 by	 a	 number	 of	 (strongly	 controlled)	 experimental	 protocols,	 but	 their	
relevancy	could	be	limited	to	these	restricted	and	artificial	contexts.	The	analysis	of	more	
complex,	 daily-life	 like	 situations,	 suggests	 that	 coordination	 between	 living	 systems	
relies	 on	 other	 kinds	 of	 processes,	 which	 could	 be	 accounted	 for	 by	 the	 complexity	
matching	 effect.	 We	 propose	 in	 the	 present	 paper	 a	 set	 of	 statistical	 tests	 that	 aim	 to	
distinguish	genuine	complexity	matching	from	other	kinds	of	synchronization	processes	
that	could	mimic	some	aspects	of	the	complexity	matching	effect.	

Evidencing	 the	 presence	 of	 a	 complexity	matching	 effect	 in	 side-by-side	 or	 arm-in-arm	
synchronized	 walking	 could	 have	 important	 implication,	 especially	 for	 rehabilitation	
purposes.	 The	 presence	 of	 fractal	 fluctuations	 in	 stride	 duration	 series	 have	 been	
evidenced	for	a	long	time,	suggesting	the	complexity	of	the	locomotor	system	(Hausdorff,	
Peng,	 Ladin,	 Wei,	 &	 Goldberger,	 1995).	 However,	 Hausdorff	 et	 al.	 (1997)	 evidenced	 a	
typical	 extinguishing	 of	 fractal	 scaling	 in	 elderly	 and	 patients	 suffering	 from	
neurodegenerative	diseases.	Additionally,	they	showed	that	the	level	of	fractality	in	stride	
duration	series	was	predictive	of	fall	propension.	These	results	were	consistent	with	the	
hypothesis	of	the	loss	of	complexity	with	age	and	disease	(Goldberger	et	al.,	2002).	This	
raises	a	central	question,	from	a	rehabilitation	perspective	:	could	it	be	possible	to	restore	
complexity	in	a	deficient	system	?	

The	complexity	matching	effect	could	offer	some	interesting	perspectives	in	this	regard.	If	
a	 deficient	 (simplified)	 system	 is	 entrained	 by	 a	 healthy	 (complex)	 system,	 one	 could	
suppose	that	the	complexity	matching	effect	should	result	in	a	momentary	attunement	of	
complexities	among	systems,	and	especially	an	increase	of	the	complexity	of	the	former.	
In	 other	words,	 if	 an	 elderly	 person	 is	 invited	 to	walk	 in	 synchrony	with	 a	 young	 and	
healthy	 companion,	 one	 could	 expect	 to	 observe	 (at	 least	 temporarily)	 a	 restoration	 of	
complexity.	We	currently	try	to	test	this	hypothesis,	and	future	work	will	aim	to	analyze	
the	long-term	effects	of	a	prolonged	training	in	such	situation.	
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Concluding	remarks	
	

This	main	result	of	 this	experiment	was,	as	expected,	 to	show	that	synchronized	walking	
was	essentially	governed	by	a	complexity	matching	effect.	As	explained	in	the	introduction,	
this	 demonstration	 was	 necessary	 for	 engaging	 our	 final	 experiment	 about	 the	 possible	
restoration	of	complexity	through	complexity	matching.		

We	also	showed	that	the	complexity	matching	effect	was	stronger	when	participants	were	
mechanically	 coupled	 (arm-in-arm	 walking)	 than	 when	 they	 were	 just	 informationally	
coupled.	This	should	be	taken	into	account	in	the	design	of	our	final	protocol.		

Finally	this	experiment	convinced	us	of	the	heuristic	power	of	cross-correlation	analyses,	
and	especially	 the	windowed	detrended	analysis,	 for	determining	 the	exact	nature	of	 the	
synchronization	processes	involved	in	such	tasks.	This	motivated	that	next	paper,	in	which	
we	engaged	a	formal	analysis	of	this	method.		
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 Chapter 4 

 
 
 

Windowed	detrended	cross-correlation	analysis	of	synchronization	processes 
	

In	the	paper	presented	in	Chapter	2	(Delignières	et	al.,	2016),	we	proposed	a	multifractal	
signature	of	complexity	matching.	In	Chapter	3	(Almurad	et	al.,	2017)	we	completed	our	
approach	 with	 a	 new	 method,	 the	 Windowed	 Detrended	 Cross-Correlation	 analysis	
(WDCC).		

This	 method	 has	 been	 previously	 used,	 with	 some	 methodoligical	 variants,	 by	 some	
authors	(Coey	et	al.	2015,	2016;	Delignières	&	Marmelat,	2014;	Konvalinka	et	al.,	2010).	
However,	the	premises	and	the	expectation	of	the	method	remained	intuitive,	and	rather	
rudimentary.	In	the	present	paper	we	propose	a	formal	analysis	of	the	WDCC	algorithm,	
in	order	to	provide	a	satisfactory	support	to	the	obtained	results.		

WDCC	 is	 designed	 for	 identifying	 the	 processes	 that	 underlie	 intra-	 or	 interpersonal	
synchronization.	The	principle	of	windowed	cross-correlation	was	initially	introduced	by	
Boker,	 et	 al.	 	 (2002)	 for	 analyzing	 the	 association	 between	 behavioral	 series	 in	
longitudinal	 studies.	 The	 authors	 considered	 that	 in	 such	 situations	 the	 assumption	 of	
stationarity	 of	 the	 association	 over	 the	whole	 time	 series	might	 not	 be	warranted.	 The	
nature	and	the	strength	of	the	association	could	change	over	time,	and	cross-correlations	
computed	over	the	whole	series	may	only	provide	a	poor	picture	of	the	true	nature	of	the	
relationships	 between	 the	 two	 series.	 The	 authors	 propose	 to	 compute	 the	 cross-
correlation	 function	 within	 a	 short	 sliding	 window,	 in	 order	 to	 analyze	 the	 possible	
evolution	of	the	association	over	time.		

This	method	was	used	by	Konvalinka	et	al	(2010),	for	analyzing	synchronization	in	a	task	
of	 interpersonal	 synchronized	 tapping.	 However,	 the	 authors	 considered	 that	 in	 such	
controlled	experiment	 the	association	was	sufficiently	consistent	over	 time	 for	allowing	
the	 consideration	 of	 the	 average	windowed	 cross-correlation	 function.	 Delignières	 and	
Marmelat	(2014)	proposed	to	add	a	detrending	procedure	within	each	window	before	the	
computation	of	the	cross-correlation	function.		

WDCC	 aims	 at	 assessing	 the	 average	 cross-correlation	 function,	 over	 intervals	 of	 short	
(fixed)	length.	It	explicitly	focuses	on	local	processes	of	synchronization.	This	method	has	
been	recently	used	 in	several	publications,	 sometimes	with	some	minor	methodological	
variants,	note	that	in	the	previous	study	and	the	others,	the	series	are	divided	into	non-
overlapping	 intervals	 of	 short	 length	 (e.g.,	 15	 data	 points),	 and	 detrended	within	 each	
interval.	The	 local	cross-correlation	function	 is	 then	computed	within	each	 interval,	and	
averaged	 over	 all	 intervals	 (Coey	 et	 al.	 2015,	 2016;	 Delignières	 &	 Marmelat,	 2014;	
Konvalinka	 et	 al.,	 2010).	 In	 contrast,	 in	 the	 Windowed	 Detrended	 Cross-Correlation	
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analysis	 (WDCC),	which	 is	 presented	 and	 discussed	 in	 the	 following	work	we	 used	 a	
sliding	window,	as	initially	proposed	by	Boker	et	al.	(2002).	
	
We	 consider	 that	 this	 method	 provides	 a	 more	 complete	 picture	 of	 cross-correlations	
between	the	two	series.	We	formally	derive	the	WDCC	results	that	could	be	expected	from	
three	 theoretical	 frameworks	 that	 has	 been	 proposed	 for	 accounting	 for	 inter-personal	
synchronization:	 (1)	 the	 information-processing	 approach,	 (2)	 the	 coupled	 oscillators	
model	and	(3)	 the	complexity	matching	effect.	These	 theoretical	accounts	differ	 in	 their	
basic	assumptions,	but	also	in	the	kind	of	tasks	or	activities	that	they	consider.	We	show	
by	simulation	that	each	model	allows	generating	series	that	 fit	 the	expected	results.	We	
also	 analyze	 experimental	 data	 sets	 collected	 in	 situations	 that	 were	 supposed	 to	
selectively	 elicit	 the	 synchronization	 processes	 depicted	 in	 the	 three	 theoretical	
frameworks.	 Our	 results	 show	 that	 the	 information-processing	 and	 the	 complexity	
matching	processes	are	both	present	in	each	situation,	but	with	a	clear	dominance	of	one	
of	these	processes	on	the	other.	Finally	our	results	lead	us	to	cast	some	doubts	about	the	
relevance	of	the	coupled	oscillators	model	in	interpersonal	synchronization.		
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Abstract	
The	 aim	 of	 this	 paper	was	 to	 propose	 a	 formal	 approach	 of	 the	Windowed	 Detrended	
Cross-Correlation	(WDCC)	analysis,	a	method	designed	for	identifying	the	processes	that	
underlie	intra-	and	interpersonal	synchronization.	We	present	the	three	main	theoretical	
frameworks	 that	have	been	proposed	 for	 accounting	 for	 synchronization	processes,	 (1)	
the	 information-processing	 approach,	 (2)	 the	 coupled	 oscillators	 model	 and	 (3)	 the	
complexity	matching	effect.	We	formally	derive	the	WDCC	results	that	could	be	expected	
from	each	model.	We	show	by	simulation	that	each	model	allows	generating	series	that	fit	
the	expected	results.	We	also	analyze	experimental	data	sets	collected	 in	situations	that	
were	 supposed	 to	 selectively	 elicit	 the	 synchronization	 processes	 depicted	 in	 the	 three	
theoretical	 frameworks.	 Our	 results	 show	 that	 the	 information-processing	 and	 the	
complexity	 matching	 processes	 are	 both	 present	 in	 each	 situation,	 but	 with	 a	 clear	
dominance	of	one	of	these	processes	on	the	other.	Finally	our	results	lead	us	to	cast	some	
doubts	 about	 the	 relevance	 of	 the	 coupled	 oscillators	 model	 in	 interpersonal	
synchronization.		

Key-words:	 Synchronization,	 asynchronies	 correction,	 coupled	 oscillators	 model,	
complexity	matching	
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1.	Introduction:	Synchronization	processes	
Interpersonal	 synchronization	 represents	 a	 very	 common	 phenomenon	 in	 daily	 life	
activities,	 for	example	when	people	walk	 together,	dance,	play	music,	 etc.	However,	 the	
processes	 that	sustain	 this	kind	of	behavior	remain	still	poorly	understood,	and	several	
theoretical	 frameworks	 are	 in	 competition	 for	 explaining	 how	 interpersonal	
synchronization	 occurs.	 According	 to	 Almurad,	 Roume,	 &	 Delignières	 [1],	 three	 main	
theoretical	paradigms	have	been	proposed	for	accounting	for	synchronization	processes:	
(1)	 the	 information-processing	 approach,	 (2)	 the	 coupled	 oscillators	model	 and	 (3)	 the	
complexity	matching	effect.	These	theoretical	accounts	differ	 in	their	basic	assumptions,	
but	also	in	the	kind	of	tasks	or	activities	that	they	consider.		

1.1.	The	information-processing	approach.	

This	 approach	 suggests	 that	 interpersonal	 synchronization	 is	 based	 on	 cognitive,	
representational	 processes	 of	 anticipation.	 This	 paradigm	 originates	 in	 the	 analysis	 of	
sensorimotor	synchronization,	focusing	at	the	experimental	level	on	the	synchronization	
of	simple	movements	(e.g.,	finger	tapping)	with	a	regular	metronome	[2,3].	A	number	of	
studies	 suggested	 that	 in	 such	 tasks	 synchronization	 is	 achieved	 by	 a	 systematic	
correction	of	the	current	inter-tap	interval,	on	the	basis	of	the	last	asynchronies	[4–6].		

In	order	to	account	for	synchronization	with	more	realistic	environments,	this	paradigm	
has	 been	 extended	 to	 the	 study	 of	 synchronization	with	 non-isochronous	metronomes,	
and	 some	 recent	 studies	 focused	 on	 synchronization	 with	 metronomes	 that	 presented	
fractal	 variabilities,	 which	 are	 supposed	 to	 represent	 the	 kind	 of	 fluctuations	 one	
encounters	 with	 natural	 situations,	 and	 especially	 with	 human	 partners	 [7–12].	 These	
experiments	 generally	 showed	 that	 individuals	 tracked	 the	 timing	 variations	 of	 the	
metronome	 sequence	 by	 a	 discrete	 correction	 of	 the	 last	 asynchrony	 [8,9,13].	 This	
tracking	 behavior	 is	 essentially	 similar	 to	 that	 supposed	 by	 the	 classical	 work	 on	
synchronization	with	regular	metronomes.		

This	 information	 processing	 approach	 has	 also	 been	 extended	 to	 interpersonal	
synchronization,	 especially	 in	 the	 study	 of	 dyadic	 finger	 tapping	 tasks	 [14–16].	 As	
previously,	 the	 results	 suggested	 that	 interpersonal	 synchronization	was	 achieved	 by	 a	
mutual	correction	of	the	last	asynchrony.		
1.2.	The	coupled	oscillators	model.	

A	 second	 theoretical	 framework	 has	 been	 proposed	 by	 the	 coordination	 dynamics	
perspective,	 which	 was	 originally	 developed	 for	 accounting	 for	 bimanual	 coordination	
[17,18].	This	approach	was	based	on	the	hypothesis	of	a	continuous	coupling	between	the	
two	effectors,	considered	as	self-sustained	oscillators.	Schmidt,	Carello,	and	Turvey	[19]	
suggested	to	apply	this	model	to	interpersonal	synchronization.	They	showed,	in	a	series	
of	experiments	in	which	two	seated	participants	were	asked	to	visually	coordinate	their	
lower	 legs,	 that	 interpersonal	 coordination	presented	 strong	 similarities	with	bimanual	
coordination:	 anti-phase	 and	 in-phase	 coordination	 patterns	 emerged	 as	 intrinsically	
stable	 behaviors,	 with	 anti-phase	 being	 less	 stable	 than	 in-phase	 coordination,	 and	
spontaneous	 transitions	 from	 anti-phase	 to	 in-phase	 coordination	 were	 also	 observed	
with	 increasing	 frequency.	 Similar	 results	were	obtained	 in	diverse	 interpersonal	 tasks,	
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such	as	rocking	side-by-side	in	rocking	chairs	[20],	or	swinging	pendulums	together	[21].	
Some	 important	 predictions	 of	 the	 original	 model,	 such	 as	 the	 effect	 of	 a	 difference	
between	 the	 uncoupled	 eigenfrequencies	 of	 the	 two	 oscillators,	were	 also	 evidenced	 in	
interpersonal	 coordination	 tasks	 [21].	 In	 contrast	 to	 the	 previous	 approach,	 the	
coordination	dynamics	perspective	does	not	suggest	any	 form	of	discrete,	cycle-to-cycle	
correction	of	asynchronies.		

1.3.	The	complexity	matching	effect.		

Complexity	matching	represents	a	third	 framework	that	has	been	recently	proposed	for	
accounting	 for	 interpersonal	 coordination	 processes	 [1,9,22–24].	 The	 concept	 of	
complexity	matching	was	introduced	by	West	et	al.	[25],	and	states	that	the	exchange	of	
information	 between	 two	 complex	 networks	 is	maximized	when	 their	 complexities	 are	
similar.	 The	 response	 of	 a	 complex	network	 to	 the	 stimulation	of	 another	network	 is	 a	
function	of	the	matching	of	their	complexities.	This	property	requires	that	both	networks	
generate	1/f	fluctuations,	and	has	been	interpreted	as	a	kind	of	“1/f	resonance”	[26].	

An	 interesting	 conjecture	 exploiting	 the	 complexity	 matching	 effect	 supposes	 that	 two	
coupled	 complex	 systems	 tend	 to	 attune	 their	 complexities	 in	 order	 to	 optimize	
information	 exchange.	 This	 conjecture	 suggests	 a	 close	 matching	 between	 the	 scaling	
exponents	characterizing	the	series	produced	by	each	system.	The	processes	that	underlie	
this	 tailoring	 of	 fluctuations	 remain	 not	 fully	 understood.	 Stephen	 and	 Dixon	 [27]	
proposed	 an	 interesting	 hypothesis,	 which	 explained	 this	 attunement	 as	 a	 case	 of	
multifractal	 cascade	 dynamics	 in	 which	 perceptual-motor	 fluctuations	 are	 coordinated	
across	multiple	time	scales.	This	coordination	among	multiple	time	scales	could	support	
the	apparently	predictive	aspects	of	behavior	without	requiring	an	internal	model.		

These	 three	 theoretical	 frameworks	 have	 received	 considerable	 supports	 in	 their	
respective	 fields	 of	 emergence,	 including	 interpersonal	 coordination	 tasks.	We	 are	 not	
sure,	however,	that	these	frameworks	represent	alternative	hypotheses	for	accounting	for	
similar	 phenomena.	 Depending	 on	 the	 nature	 and	 the	 constraints	 of	 the	 situation,	
different	 synchronization	 processes	 could	 be	 at	work,	 and	 each	 framework	 could	 offer	
satisfying	 accounts	 in	 specific	 tasks.	 The	 information	 processing	 approach	 seems	
particularly	relevant	for	accounting	for	situations	where	one	has	to	synchronize	discrete	
movements	 (e.g.,	 tapping)	 with	 series	 of	 discrete	 signals	 [2,14].	 The	 coordination	
dynamics	 perspective	was	 essentially	 developed	 for	 accounting	 for	 the	 coordination	 of	
continuous,	 oscillatory	movements	 [19].	 The	 scope	 of	 complexity	matching	 remains	 to	
define,	 but	 it	 has	 been	 previously	 applied	 to	 very	 diverse	 situations,	 including	 non	
periodic	interactions	between	complex	systems	[22].		
Almurad,	Roume,	and	Delignières	[1]	proposed	a	set	of	statistical	signatures,	 in	order	to	
test	the	respective	relevance	of	these	frameworks	in	specific	situations.	Their	goal	was	to	
determine	statistical	tests	that	could	be	able	to	unambiguously	 identify	the	processes	at	
work	in	interpersonal	coordination.	They	proposed	three	possible	tests:	the	first	one	was	
based	on	multifractal	analyses,	and	has	been	initially	proposed	by	Delignières	et	al.	[23],	
the	 second	 and	 the	 third	 exploited	 cross-correlation	 analyses.	 In	 the	 present	 paper	we	
focus	 on	 the	 Windowed	 Detrended	 Cross-Correlation	 analysis.	 This	 method	 has	 been	
applied	 in	 some	 recent	 papers,	 but	 its	 formal	 properties	 have	 never	 been	 explicitly	
analyzed.		
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2.	Windowed	Detrended	Cross-Correlation	Analysis	

The	 principle	 of	 windowed	 cross-correlation	 was	 initially	 introduced	 by	 Boker,	 Hu,	
Rotondo	 and	 King	 [28],	 for	 analyzing	 the	 association	 between	 behavioral	 series	 in	
longitudinal	 studies.	 The	 authors	 considered	 that	 in	 such	 situations	 the	 assumption	 of	
stationarity	 of	 the	 association	 over	 the	whole	 time	 series	might	 not	 be	warranted.	 The	
nature	and	the	strength	of	the	association	could	change	over	time,	and	cross-correlations	
computed	over	the	whole	series	may	only	provide	a	poor	picture	of	the	true	nature	of	the	
relationships	between	the	two	series.	They	proposed	to	analyze	cross-correlations	over	a	
short	sliding	window,	in	order	to	account	for	the	evolution	of	the	association	over	time.		

This	method	was	used	by	[14],	in	a	laboratory	experiment	where	paired	participants	had	
to	 tap	 in	 synchrony	 with	 each	 other.	 Auditory	 feedback	 was	 manipulated	 in	 order	 to	
induce	 specific	 coupling	 mode	 between	 the	 two	 participants	 (i.e.,	 no	 coupling,	 uni-
directional	coupling	or	bi-directional	coupling).	However,	the	authors	considered	that	in	
such	 controlled	 experiment	 the	 association	 was	 sufficiently	 consistent	 over	 time	 for	
allowing	the	consideration	of	the	average	windowed	cross-correlation	function.	

Delignières	 and	 Marmelat	 [9]	 proposed	 to	 add	 a	 detrending	 procedure	 within	 each	
window	 before	 the	 computation	 of	 the	 cross-correlation	 function.	 Note	 that	 this	
windowing-detrending	combination	was	initially	introduced	by	Lemoine	and	Delignières	
[29],	in	order	to	improve	the	performance	of	auto-correlation	analyses	for	distinguishing	
between	 the	 event-based	 and	 the	 emergent	 modes	 of	 timing.	 The	 introduction	 of	
detrending	by	Delignières	and	Marmelat	[9]	was	motivated	by	the	recurrent	observation	
that	 behavioral	 time	 series	 typically	 exhibited	 1/f-like	 fluctuations,	 and	 then	 presented	
various	interpenetrated	trends,	over	diverse	time	scales.	Such	trends	could	strongly	affect	
cross-correlations,	and	spuriously	increase	the	obtained	values.	The	so-called	Windowed	
Detrended	 Cross-Correlation	 analysis	 (WDCC)	 explicitly	 aims	 at	 focusing	 on	 local	
processes	 of	 synchronization,	 and	 it	 has	 been	 recently	 used	 in	 several	 publications	
[1,9,30,31].		

We	 now	 present	 in	 details	 the	WDCC	 algorithm,	 as	 discussed	 and	 used	 in	 the	 present	
paper.	Consider	two	series	I1(n)	and	I2(n)	with	length	N.	The	main	principle	is	to	compute	
the	cross-correlation	function,	from	lag	–kmax	to	lag	kmax,	considering	windows	of	length	L.	
The	 first	 considered	 window	 is	 the	 interval	 [I1(kmax+1),	 I1(kmax+1+L)].	 The	 cross-
correlation	of	lag	k,	k	=	–kmax,…,	0,	…,	kmax,	is	the	correlation	r(k)	between	this	first	interval	
and	the	interval	[I2(kmax+1+k),	I2(kmax+1+L+k)].		

The	first	 interval	 is	 then	 lagged	by	one	point,	and	a	second	cross-correlation	function	 is	
computed.	 This	 process	 is	 repeated	 up	 to	 the	 last	 interval	 [I1(N-kmax-L-1),	 I1(N-kmax-1)].	
Note	that	 in	most	previous	papers	WDCC	used	non-overlapping	windows	[1,9,30,31].	 In	
the	present	work	we	used	a	sliding	window,	as	initially	proposed	by	Boker	et	al.	[28].	We	
consider	 that	 this	 method	 provides	 a	 more	 complete	 picture	 of	 cross-correlations	
between	the	two	series.		

Before	the	computation	of	each	cross-correlation	functions,	the	data	within	the	window	in	
I1(n)	and	the	lagged	windows	in	I2(n)	are	linearly	detrended.	Then	the	cross-correlation	
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functions	are	point-by-point	averaged.	Note	 that	before	averaging,	 the	cross-correlation	
coefficients	r(k)	are	transformed	in	z-Fisher	scores	Zr(k):		

	 		 (1)	

Then	the	Zr(k)	coefficients	are	averaged	over	all	windows	and	backward	transformed	in	
correlation	metrics:		

	 		 (2)	

Because	WDDC	uses	very	narrow	windows	(L	=	15	data	points	in	the	present	paper),	and	
excludes	linear	trends,	one	can	difficultly	expecting	to	find	significant	correlations,	in	the	
classical	sense	(i.e.,	on	the	basis	of	the	Bravais-Pearson’s	correlation	test).	WDCC	provides	
local	 traces	 of	 the	 original	 correlations,	 and	we	 are	more	 interested	 in	 the	 sign	 of	 the	
average	 WDCC	 coefficients,	 than	 in	 their	 statistical	 significance.	 Therefore	 we	 test	 the	
signs	 of	 averaged	 coefficients	 with	 two-tailed	 location	 t-tests,	 comparing	 the	 obtained	
values	to	zero.		

Note	also	that	we	conduct	in	the	following	parts	of	this	paper	a	formal	analysis	at	the	level	
of	 covariance,	 which	 is	 more	 easily	 decomposable	 than	 correlations,	 but	 we	 present	
graphical	results	in	terms	of	correlations	in	order	to	allow	a	better	readability	and	a	direct	
comparison	between	data	sets.	By	definition,	the	signs	of	covariance	and	correlation	are	
identical.	

3.	Experimental	data	sets	

In	 the	 present	 article	we	 used	 four	 sets	 of	 experimental	 data,	 in	 order	 to	 illustrate	 the	
main	steps	of	our	argumentation.	These	data	were	previously	exploited	 in	dissertations	
and	 published	 papers,	 and	 the	 details	 of	 the	 respective	 protocols	 are	 presented	 in	 the	
Appendix.	 The	 first	 data	 set	 represents	 series	 of	 inter-tap	 intervals	 produced	 in	 an	
experiment	 where	 two	 participants	 were	 instructed	 to	 perform	 finger	 tapping	 in	
synchrony	 [32].	 This	 kind	 of	 task	 was	 supposed	 to	 specifically	 elicit	 synchronization	
processes	based	on	discrete	asynchrony	correction.	The	second	data	set	was	recorded	in	
an	experiment	during	which	participants	performed	bimanual	 forearm	oscillations	[33].	
In	this	situation	synchronization	was	supposed	to	be	governed	by	a	continuous	coupling	
between	 effectors.	 The	 third	 one	 was	 collected	 in	 an	 experiment	 where	 dyads	 had	 to	
oscillate	pendulums	in	synchrony	[24].	This	experimental	situation	was	also	expected	to	
be	sustained	by	continuous	coupling	[21].	Finally	the	fourth	data	set	was	collected	in	an	
experiment	 where	 dyads	 walked	 in	 synchrony,	 arm-in-arm,	 around	 an	 indoor	 running	
track	[1].	The	authors	presented	this	task	as	sustained	by	a	complexity	matching	effect.		

4.	Basic	properties	of	asynchronies	in	synchronization	data.		
In	 a	 first	 step	 we	 highlight	 some	 basic	 properties	 that	 should	 be	 present	 in	 all	
synchronized	 series,	 from	 the	 moment	 where	 the	 two	 systems	 are	 effectively	
synchronized.	 Let	 I1(n)	 and	 I2(n)	 be	 the	 time	 intervals	 produced	 by	 the	 first	 and	 the	

Zr(k) = log((1+ r(k)) / (1− r(k))
2

r (k) = exp(2Zr(k))−1
exp(2Zr(k)))+1
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second	 system,	 respectively.	A1(n)	 represents	 the	 asynchrony	 of	 I1(n)	with	 respect	 to	
I2(n),	and	is	defined	as:		

	 		 (3)	

where	A1(0)	 represents	 the	 initial	 asynchrony.	 By	 definition,	A1(n)<0	 signifies	 that	 the	
first	 system	 leads	 the	 second.	 Note	 that	 the	 reverse	 asynchrony	 A2(n)	 could	 also	 be	
considered,	 with	 A2(n)=	 -A1(n).	 Considering	 that	 the	 two	 systems	 are	 (closely)	
synchronized,	A1(n)	should	be	a	stationary	process,	with	stable	mean	and	variance	over	
time.		

Whichever	 way	 synchronization	 is	 produced,	 an	 increase	 in	 I1(n)	 should	 induce	 an	
increase	of	the	concomitant	asynchrony	A1(n).	Then,		

	 		 (4)	

As	well,	in	order	to	maintain	synchronization,	an	increase	in	A1(n)	should	be	followed	by	a	
decrease	in	the	next	interval.		

	 		 (5)	

We	checked	these	assumptions	by	computing	the	cross-correlation	function	between	I1(n)	
and	A1(n)	in	the	four	previously	presented	data	sets.	In	order	to	get	useful	estimates	for	
the	next	sections	we	applied	 the	WDCC	algorithm.	We	present	 in	Figure	1	 the	averaged	
WDCC	 functions,	 from	 lag-10	 to	 lag	 10.	 In	 all	 cases,	 the	 WDCC	 function	 presented,	 as	
expected,	a	positive	peak	at	 lag	0,	and	negative	peaks	at	 lag	 -1	and	 lag	1.	As	previously	
explained,	we	 tested	 the	 signs	 of	 averaged	 cross-correlation	 coefficients	 by	means	 of	 a	
two-tailed	location	t-test.	In	all	cases,	the	lag	0	cross-correlation	was	positive	(data	set	#1:	
t9	=	27.36,	p<.01;	data	set	#2:	t11	=	14.85,	p<.01;	data	set	#3:	t10	=	39.12,	p<.01;	data	set	
#4:	t10	=	8.33,	p<.01).	The	lag	-1	cross-correlation	was	negative	(data	set	#1:	t9	=	-11.76,	
p<.01;	data	set	#2:	t11	=	-5.44,	p<.01;	data	set	#3:	t10	=	-7.10,	p<.01;	data	set	#4:	t10	=	-3.47,	
p<.01),	as	well	as	the	lag	1	cross-correlation	(data	set	#1:	t9	=	-11.05,	p<.01;	data	set	#2:	
t11	=	-7.38,	p<.01;	data	set	#3:	t10	=	-4.42,	p<.01;	data	set	#4:	t10	=	-3.22,	p<.01).		

A1(n) = A1(0)+ I1(k)−
k=1

n

∑ I2 (k)
k=1

n

∑

cov I1(n),A1(n)[ ] > 0

cov A1(n), I1(n +1),[ ] < 0
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Figure	 1:	 Windowed	 detrended	 cross-correlation	 functions,	 from	 lag-10	 to	 lag	 10,	
between	intervals	and	asynchronies.	a:	data	set	#1,	interpersonal	tapping	task;	b:	data	
set	#2,	bimanual	oscillations;	 c:	data	 set	#3,	 interpersonal	pendulum	 task;	d:	data	 set	
#4,	walking	in	synchrony	(*:	p<.01).		

The	properties	described	by	Eq.	(4)	and	Eq.	(5)	suggest	that	the	lag	1	auto-covariance	of	
A1(n)	should	be	negative:	

	 		 (6)	

We	checked	this	assumption	by	computing	the	auto-correlation	function	of	asynchronies	
in	 our	 four	 data	 sets.	 As	 previously,	 we	 used	 a	 windowed	 detrended	 auto-correlation	
algorithm,	based	on	the	same	principles	of	WDCC.	We	computed	auto-correlations	 from	
lag	1	to	lag	20.	We	present	in	Figure	2	the	average	auto-correlation	functions,	for	the	four	
data	 sets.	As	 expected,	 the	 average	 lag	1	 auto-correlation	was	negative	 in	 all	 cases.	We	
tested	the	signs	of	the	lag	1	auto-correlation	coefficients	by	means	of	a	two-tailed	location	
t-test,	which	revealed	significant	differences	to	zero	in	all	data	sets	(data	set	#1:	t9	=	-9.60,	
p<.01;	data	set	#2:	t11	=	-38.62,	p<.01;	data	set	#3:	t10	=	-7.63,	p<.01;	data	set	#4:	t10	=	-
4.30,	p<.01).		

5.	Detrending	and	windowing	
Detrending	supposes	that	a	series	can	be	decomposed	as	the	sum	of	the	linear	trend	and	
the	residuals	(i.e.,	the	difference	between	the	original	value	and	the	trend):	

	 		 (7)	

The	 WDCC	 algorithm	 uses	 linear	 detrending.	 This	 choice	 was	 motivated	 by	 the	
assumption	 that	 with	 a	 narrow	 windowing	 (15	 points),	 the	 linear	 trend	 should	 be	
relevant	 in	most	 intervals.	Note	 that	 if	 the	series	 is	 stationary	with	zero	mean,	xres(n)	=	
x(n).		
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	Figure	2:	Windowed	detrended	auto-correlation	functions	of	asynchronies.	a:	data	set	#1,	
interpersonal	 tapping	 task;	 b:	 data	 set	 #2,	 bimanual	 oscillations;	 c:	 data	 set	 #3,	
interpersonal	pendulum	task;	d:	data	set	#4,	walking	in	synchrony	(*:	p<.01).		

Behavioral	 series	 are	often	modeled	as	 the	 linear	 combination	of	 component	 series	 [4–
6,34,35].	Some	of	 these	components	are	stationary:	 this	 is	 the	case	 for	asynchronies,	as	
previously	stated,	and	also	for	the	error	series	that	are	modeled	as	uncorrelated	noises.	
Some	 others	 components,	 in	 contrast,	 exhibit	 1/f	 fluctuations	 [34,36,37].	 These	 series	
have	been	characterized	as	 fractional	Gaussian	noises	(fGn),	and	as	such	are	considered	
stationary	on	the	long	term.	However,	such	series,	as	previously	noticed,	present	various	
interpenetrated	 trends,	over	diverse	 time	scales	 (see	Figure	3,	 graph	a).	 In	 such	a	 case,	
windowing	is	supposed	to	isolate	narrow	segments	in	the	series	that	could	be	effectively	
stationarized	by	linear	detrending,	within	each	window.		

Figure	3	(graphs	b	and	c)	illustrates	the	effect	of	detrending	within	a	window	of	15	data	
points.	The	original	points	 (graph	b)	present	a	positive	 trend,	 and	 the	detrended	series	
(graph	c)	 is	stationary,	with	zero	mean.	1/f	 series	are	considered	stationary	around	the	
local	 trend.	 On	 this	 local	 scale,	 this	 graph	 suggests	 a	 kind	 of	 alternation	 of	 successive	
points	around	the	trend.		

We	 present	 in	 graph	 d	 (black	 circles)	 the	 average	 autocorrelation	 function,	 computed	
from	lag	1	to	 lag	30,	over	12	simulated	series	of	1024	data	points,	with	Hurst	exponent	
H	=	0.9.	 As	 expected,	 the	 autocorrelation	 function	 shows	 long-range	 persistence:	 auto-
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correlation	remains	significant	over	30	lags.	Graph	d	represents	also	in	white	circles	the	
average	 windowed	 detrended	 autocorrelation	 function,	 using	 a	 sliding	 window	 of	 15	
points,	 over	 the	 same	 set	 of	 series.	 As	 can	 be	 seen,	 persistence	 is	 extinguished	 by	 the	
windowed	detrending	procedure.	This	suggests	that	persistence,	 in	 fGn	series,	 is	mainly	
sustained	 by	 trends.	 More	 interestingly,	 a	 location	 t-test	 shows	 that	 autocorrelation	
coefficients	 are	 negative,	 from	 lag	 2	 to	 lag	 9.	 This	 reinforces	 the	 idea	 that	within	 each	
window,	the	detrended	series	presents	a	kind	of	anti-persistence	around	 its	 local	 trend.	
This	observation	will	have	some	importance	in	the	following	parts	of	this	paper.		

	

	
	

Figure	3:	a:	fGn	simulated	series	with	H=	0.9.	b:	an	interval	of	15	point	extracted	from	
the	series	of	graph	a.	The	dashed	line	represents	the	linear	trend	within	the	interval.	c:	
The	same	 interval,	 after	detrending.	d,	black	circles:	 average	autocorrelation	 function,	
from	lag	1	to	lag	30,	over	12	simulated	series	of	1024	data	points,	with	H	=	0.9.	d,	white	
circles:	averaged	windowed	detrending	autocorrelation	 function,	 from	 lag	1	 to	 lag	30,	
with	a	sliding	window	of	15	points,	over	the	set	of	12	simulated	series.	

	
In	the	following	parts	of	this	paper,	we	analyze	the	models	that	have	been	proposed	in	the	
three	 theoretical	 frameworks	we	 presented	 in	 the	 introduction,	 and	we	 try	 to	 formally	
derive	the	results	that	could	be	expected	in	each	case	with	the	application	of	WDCC.		
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6.	Mutual	correction	of	asynchronies	

This	 first	 model	 is	 supposed	 to	 account	 for	 the	 synchronization	 of	 two	 participants	 in	
event-based	timing	tasks	(e.g.,	in	synchronized	tapping).	It	represents	an	extension	of	the	
model	proposed	by	Vorberg	and	Wing	[4]	or	Pressing	and	Jolley-Rogers	[5]	for	accounting	
for	 tapping	 in	 synchronization	 with	 a	 regular	 metronome.	 This	 initial	 model	 could	 be	
expressed	as	follows:		

	

	 	,	 (8)	

where	 I(n)	 represents	 the	 inter-tap	 intervals	 produced	 by	 the	 participant,	 I*(n)	 the	
interval	provided	by	an	internal	timekeeper,	A(n)	the	asynchrony	between	the	nth	tap	and	
the	 nth	 metronome	 signal,	 and	 B(n)	 a	 white	 noise	 process	 corresponding	 to	 the	 error	
produced	 by	 the	motor	 component	 at	 the	 nth	 tap.	 The	 presence	 of	 a	 differenced	white	
noise	term	[B(n)-B(n-1)]	is	related	to	the	event-based	nature	of	the	task:	I(n)	is	defined	by	
the	production	of	 two	successive	taps,	and	then	is	affected	by	the	two	successive	motor	
errors	[35].	Initially	I*(n)	was	considered	a	white	noise	source	[4,35],	but	the	analysis	of	
prolonged	 trials	 showed	 that	 the	 series	 of	 intervals	 produced	 by	 the	 timekeeper	
presented	fractal	properties,	and	should	be	modeled	as	a	1/f	source	[36,37].	

This	model	can	be	extended	as	follows	for	synchronized	tapping:	

	 		 (9)	

where	 I1(n)	and	 I2(n)	represent	 the	 inter-tap	 intervals	produced	by	participant	1	and	2,	
respectively,	I1*(n)	and	I2*(n)	the	intervals	provided	by	their	respective	timekeepers,	A1(n)	
and	A2(n)	their	mutual	asynchronies,	and	B1(n)	and	B2(n)	their	respective	error	terms.	At	
this	 stage,	we	have	no	 specific	 assumption	about	 a	possible	 relationship	between	 I1*(n)	
and	I2*(n),	which	could	be	considered	either	independent	or	cross-correlated.		

Now	consider	the	effect	of	detrending.	Each	inter-tap	interval	can	be	decomposed	as	the	
sum	of	the	theoretical	interval	given	by	the	linear	regression	and	the	associated	residual.	
For	participant	1:		

	 		 (10)	

Combining	Eq.	(9)	and	(10)	yields:		

	

	 		

	 		 (11)	

As	 previously	 stated	A1(n)	 should	 be	 stationary	 and	 for	 simplicity	we	 suppose	 that	 the	
asynchronies	 are	 centered	 around	 zero	 (note	 that	 this	 assumption	 supposes	 that	
corrections	are	reciprocal,	without	systematic	leader/follower	relationship).	On	the	other	

I(n) = I *(n)−αA(n −1)+ γ B (n)− B (n −1)[ ]

I1(n) = I1
*(n)−α1A1(n −1)+ γ 1 B1(n)− B1(n −1)[ ]

I2 (n) = I2
*(n)−α 2A2 (n −1)+ γ 2 B2 (n)− B2 (n −1)[ ]

⎧
⎨
⎪

⎩⎪

I1(n) = I1trend (n)+ I1res (n)

I1(n) = I1trend
* (n)+ I1res

* (n)−α1A1trend (n −1)−α1A1res (n −1)

+γ 1B1trend (n)+ γ 1B1res (n)−γ 1B1trend (n −1)−γ 1B1res (n −1)
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hand,	B1(n)	is	by	definition	a	zero	mean	and	stationary	process.	Then	A1res(n)	=	A1(n)	and	
B1res(n)	=	B1(n).	On	the	basis	on	these	assumptions	Eq.	(11)	could	be	simplified	as:		

	 		 (12)	

Combining	Eq.	(10)	and	(12)	yields:		

	

	 		 (13)	

Finally,	and	considering	again	A1(n)	and	B1(n)	as	stationary	processes,	one	could	suppose	
that	the	essential	contribution	to	trends	in	I1(n)	comes	from	I1*(n).	Then,		

	

	 		 (14)	

The	whole	system	could	then	be	rewritten	as:		

	 			 		 (15)	

The	distributivity	of	covariance	[4]	allows	to	derive	an	expression	of	the	lag	k	covariance	
between	the	residuals	of	the	inter-tap	intervals	series	produced	by	the	two	participants:		

	 		

	 		

	 		

	 		

	 		

	 		

	 		

	 		

	 		

	 		

	 		

	 		

I1(n) = I1trend
* (n)+ I1res

* (n)−α1A1(n −1)+ γ 1B1(n)−γ 1B1(n −1)

I1res (n) = I1trend
* (n)− I1trend (n)+ I1res

* (n)−α1A1(n −1)+ γ 1 B1(n)− B1(n −1)[ ]

I1trend
* (n) = I1trend (n)

I1res (n) = I1res
* (n)−α1A1(n −1)+ γ 1 B1(n)− B1(n −1)[ ]

I2res (n) = I2res
* (n)−α1A2 (n −1)+ γ 2 B2 (n)− B2 (n −1)[ ]

⎧
⎨
⎪

⎩⎪

cov I1res (n), I2res (n + k)[ ] = cov I1res
* (n), I2res

* (n + k)⎡⎣ ⎤⎦

−α 2cov I1res
* (n),A2 (n + k −1)⎡⎣ ⎤⎦

+γ 2cov I1res
* (n),B2 (n + k)⎡⎣ ⎤⎦

−γ 2cov I1res
* (n),B2 (n + k −1)⎡⎣ ⎤⎦

−α1cov A1 (n −1), I2res
* (n + k)⎡⎣ ⎤⎦

+α1α 2cov A1 (n −1),A2 (n + k −1)⎡⎣ ⎤⎦

−α1γ 2cov A1 (n −1),B2 (n + k)⎡⎣ ⎤⎦

+α1γ 2cov A1 (n −1),B2 (n + k −1)⎡⎣ ⎤⎦

+γ 1cov B1(n), I2res
* (n + k)⎡⎣ ⎤⎦

−α 2γ 1cov B1(n),A2 (n + k −1)⎡⎣ ⎤⎦

+γ 1γ 2cov B1(n),B2 (n + k)⎡⎣ ⎤⎦

−γ 1γ 2cov B1(n),B2 (n + k −1)⎡⎣ ⎤⎦
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	 		 (16)	

This	expression	can	be	simplified,	considering	that	A1(n)	=	-A2(n),	and	that	all	covariances	
involving	 white	 noise	 are	 zero,	 except	 covariances	 between	 simultaneous	 noises	 and	
asynchonies.	 Indeed	 at	 the	 nth	 tap,	 B1(n)	 and	 B1(n-1)	 should	 directly	 affect	 A1(n),	 in	
opposite	directions,	cov[A1(n),B1(n)]	being	positive,	and	cov[A1(n),B1(n-1)]	negative.	Then	
we	can	derive	the	following	expression:			

	 		

	 		

	 		

	 		

	 		

	 		

	 		

	 		 (17)	

For	the	lag	1	covariance	(k	=	1)	

	 		

	 		

	 		

	 		

	 		

	 		

	 		

	 		 (18)	

−γ 1cov B1(n −1), I2res
* (n + k),⎡⎣ ⎤⎦

+α 2γ 1cov B1(n −1),A2 (n + k −1)⎡⎣ ⎤⎦

−γ 1γ 2cov B1(n −1),B2 (n + k)⎡⎣ ⎤⎦

+γ 1γ 2cov B1 (n −1),B2 (n + k −1)⎡⎣ ⎤⎦

cov I1res (n), I2res (n + k)[ ] = cov I1res
* (n), I2res

* (n + k)⎡⎣ ⎤⎦

+α 2cov I1res
* (n),A1 (n + k −1)⎡⎣ ⎤⎦

+α1cov A2 (n −1), I2res
* (n + k)⎡⎣ ⎤⎦

−α1α 2cov A1 (n −1),A1 (n + k −1)⎡⎣ ⎤⎦

+α1γ 2cov A2 (n −1),B2 (n + k)⎡⎣ ⎤⎦

−α1γ 2cov A2 (n −1),B2 (n + k −1)⎡⎣ ⎤⎦

+α 2γ 1cov B1(n),A1 (n + k −1)⎡⎣ ⎤⎦

−α 2γ 1cov B1(n −1),A1 (n + k −1)⎡⎣ ⎤⎦

cov I1res (n), I2res (n +1)[ ] = cov I1res
* (n), I2res

* (n +1)⎡⎣ ⎤⎦

+α 2cov I1res
* (n),A1 (n)⎡⎣ ⎤⎦

+α1cov A2 (n −1), I2res
* (n +1)⎡⎣ ⎤⎦

−α1α 2cov A1 (n −1),A1 (n)⎡⎣ ⎤⎦

+α1γ 2cov A2 (n −1),B2 (n +1)⎡⎣ ⎤⎦

−α1γ 2cov A2 (n −1),B2 (n)⎡⎣ ⎤⎦

+α 2γ 1cov B1(n),A1 (n)⎡⎣ ⎤⎦

−α 2γ 1cov B1(n −1),A1 (n)⎡⎣ ⎤⎦
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In	the	right	part	of	Eq.	(18),	the	first	term	should	be	negligible,	even	if	the	timekeepers	are	
positively	cross-correlated:	As	previously	shown	(see	Figure	3),	the	windowed	detrending	
procedure	tends	to	extinguish	correlations	in	fGn	series.	According	to	Eq.	(4),	the	second	
term	should	be	positive.	In	contrast,	the	third	term	should	be	negligible,	considering	that	
the	two	terms	are	separated	by	two	lags.	According	to	Eq.	(6)	the	fourth	term	should	be	
positive,	 its	 strength	depending	of	 the	 level	 of	 correction	 in	 the	model	 (α1	 and	α2).	Our	
assumptions	concerning	 the	 relationships	between	noise	and	asynchronies	 suggest	 that	
the	fifth	term	should	be	negative.	The	sixth	term	should	be	negligible,	considering	that	the	
two	terms	are	separated	by	two	lags.	In	contrast	the	seventh	and	the	eighth	terms	should	
be	 positive.	 On	 the	 whole,	 the	 lag	 1	 covariance	 between	 the	 residuals	 of	 the	 interval	
produced	 by	 the	 two	 participants	 should	 be	 positive.	 Considering	 the	 symmetry	 of	 Eq.	
(15),	the	same	reasoning	holds	for	the	lag	-1	covariance,	which	should	also	be	positive.		

Now	consider	the	lag	0	covariance:		

	 		

	 		

	 		

	 		

	 		

	 		

	 		

	 		 (19)	

The	first	term	of	the	right	side	of	Eq.	(19)	should	be	positive,	its	strength	depending	of	the	

level	of	cross-correlation	between	the	two	timekeepers.	In	contrast,	Eq.	(5)	suggests	that	

the	second	and	third	terms	are	negative,	and	obviously	the	 fourth	term	is	negative.	The	

fifth	and	the	seventh	terms	should	be	negligible,	but	the	sixth	and	the	eighth	terms	should	

both	be	negative.	Then	the	sign	of	covariance	depends	on	the	opposite	 influences	of	the	

level	 of	 cross-correlation	 between	 the	 two	 timekeepers	 and	 the	 strength	 of	 the	 error	

components.		

We	tried	to	simulate	the	system	depicted	in	Eq.	(9),	 in	order	to	analyze	the	effect	of	the	
correlation	between	I1*	and	I2*	on	the	WDCC	function.	For	simulating	I1*	and	I2*,	we	used	
two	long-range	correlated	series,	obtained	by	means	of	the	method	described	in	Zebende	
[38]	and	Balocchi	et	al.	[39].	In	this	method,	two	long-range	cross-correlated	series,	x(n)	
and	y(n),	are	obtained	as:		

cov I1res (n), I2res (n)[ ] = cov I1res
* (n), I2res

* (n)⎡⎣ ⎤⎦

+α 2cov I1res
* (n),A1 (n −1)⎡⎣ ⎤⎦

+α1cov A2 (n −1), I2res
* (n)⎡⎣ ⎤⎦

−α1α 2cov A1 (n −1),A1 (n −1)⎡⎣ ⎤⎦

+α1γ 2cov A2 (n −1),B2 (n)⎡⎣ ⎤⎦

−α1γ 2cov A2 (n −1),B2 (n −1)⎡⎣ ⎤⎦

+α 2γ 1cov B1(n),A1 (n −1)⎡⎣ ⎤⎦

−α 2γ 1cov B1(n −1),A1 (n −1)⎡⎣ ⎤⎦
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	 		 (20)	

where	ε1i	and	ε2i	denote	two	independent	white	noise	processes	with	zero	mean	and	unit	
variance,	 δ1	 and	 δ2	 represent	 the	 relative	 strengths	 of	 these	 noise	 components,	 with	
respect	 to	 X(n)	 and	 Y(n),	 which	 are	 two	 independent	 auto-regressive	 fractionally	
integrated	moving-average	(ARFIMA)	processes,	defined	as	:		

	 		 (21)	

where	an(d)	are	statistical	weights	defined	by	:	

	 		 (22),	

In	this	equation	Γ	denotes	the	Gamma	function,	and	d	are	parameters	ranging	from	−0.5	
to	0.5.	d	is	related	to	the	Hurst	exponent	by	H	=	d	+	0.5.	In	Eq.	(22),	W	is	a	free	parameter	
ranging	 from	0.5	 to	 1.0	 and	 controlling	 the	 strength	 of	 cross-correlations	 between	 x(n)	
and	y(n).	W	=	0.5	gives	the	highest	cross-correlation,	while	the	total	absence	of	correlation	
is	obtained	for	W	=	1.		

In	the	present	simulation	we	set	for	simplicity	δ1	=	δ2	=	0,	and	we	generated	12	pairs	of	
series	of	1024	points,	for	6	values	of	W	(0.5,	0.6,	0.7,	0.8,	0.9,	and	1.0).	In	all	cases	we	used	
d1	=	d2	=	0.4	(H	=	0.9).	The	average	lag	0	cross-correlation,	computed	over	these	simulated	
series,	was	1.0,	0.92,	0.71,	0.45,	0.20,	and	-0.02,	respectively.	Then	we	generated	the	series	
of	 inter-tap	 intervals,	 I1(n)	 and	 I2(n),	 according	 to	Eq.	 (9),	with	 I1*(n)=	x(n)	 and	 I2*(n)=	
y(n),	and	setting	α1=	α2	=	0.4,	and	γ1	=	γ2	=	0.5.	The	average	WDCC	functions	between	the	
obtained	I1(n)	and	I2(n)	series,	for	the	six	W	values,	is	reported	in	Figure	4.		

x(n) =WX(n)+ 1−W( )Y (n)i +δ1ε1i
y(n) = 1−W( )X(n)+ W( )Y (n)+δ 2ε2i

X(n) = ak
k=1

∞

∑ d1( )xn−k

Y (n) = ak
k=1

∞

∑ d2( )yn−k

ak d( ) = Γ(k − d)
Γ(−d)Γ(1+ k)
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Figure	 4:	 Average	 windowed	 detrended	 cross-correlation	 function	 for	 a	 set	 of	 12	
series,	simulated	from	Eq.	(9),	for	W	values	ranging	from	0.5	to	1.0.	*:	p<.01.	

	
As	expected,	the	average	lag	-1	and	lag	1	WDCC	were	positive	in	all	cases,	and	the	level	of	
cross-correlation	 between	 I1*	 and	 I2*	 had	 a	 negligible	 effect	 on	 the	 obtained	 values.	 In	
contrast,	the	level	of	cross-correlation	between	I1*	and	I2*	had	a	strong	influence	on	lag	0	
WDCC,	which	was	positive	 for	 the	highest	 levels	of	 cross-correlation	 (W	 =	0.5	and	0.6),	
and	became	negative	 for	W=	0.8,	 0.9,	 and	1.0.	Note,	 however,	 that	 the	highest	 levels	 of	
cross-correlation	remain	unrealistic	in	interpersonal	synchronization.		

We	applied	WDCC	to	 the	series	of	 the	data	set	#1,	which	was	collected	 in	 interpersonal	
synchronized	tapping	[32].	We	present	in	Figure	5	the	obtained	average	WDDC	function.	
Results	reveal	positive	peaks	at	lag	-1	and	lag	1,	and	a	negative	peak	at	lag	0.	Location	t-
tests	showed	that	 the	mean	cross-correlation	was	positive	at	 lag	-1	and	 lag	1	(t9	=	5.36,	
p<0.01	 and	 t9	=	6.32,	 p<0.01,	 respectively),	 and	 conversely	 negative	 at	 lag	 0	 (t9=	 -4.40,	
p<0.01).	A	similar	result	has	been	evidenced	by	Konvalinka	et	al.	[14],	with	a	mean	cross-
correlation	at	lag	0	of	about	-0.35,	and	mean	cross-correlations	at	lag	-1	and	lag	1	of	about	
0.3.	 However,	 the	 obtained	 values	 should	 be	 compared	 with	 caution	 with	 the	 present	
ones,	 because	 the	 authors	 did	 not	 use	 detrending	 in	 their	 approach.	 Our	 average	 lag	 0	
WDCC	 roughly	 corresponds	 to	 those	 obtained	 by	 simulation	 for	W	 =	 0.8	 and	W	 =	 0.9,	
suggesting	 that	 the	 two	 timekeepers	 are	 moderately	 cross-correlated,	 which	 could	 be	
interpreted	as	the	presence	of	a	complexity	matching	effect	between	the	two	timekeepers.	
This	 hypothesis	 requires	 additional	 investigations,	 as	 asynchrony	 correction	 and	
complexity	matching	were	previously	considered	as	mutually	exclusive	[1].		

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

-10 -5 0 5 10

W
in

do
w

ed
 D

et
re

nd
ed

 C
ro

ss
-C

or
re

la
�o

n

Lag

W = 1.0

**

*

* *

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

-10 -5 0 5 10

W
in

do
w

ed
 D

et
re

nd
ed

 C
ro

ss
-C

or
re

la
�o

n

Lag

**

*

* *

W = 0.9

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

-10 -5 0 5 10

W
in

do
w

ed
 D

et
re

nd
ed

 C
ro

ss
-C

or
re

la
�o

n

Lag

* *
*

* *

* *

W = 0.8

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

-10 -5 0 5 10

W
in

do
w

ed
 D

et
re

nd
ed

 C
ro

ss
-C

or
re

la
�o

n

Lag

** * ** *

* *

W = 0.7

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

-10 -5 0 5 10

W
in

do
w

ed
 D

et
re

nd
ed

 C
ro

ss
-C

or
re

la
�o

n

Lag

** ** ** * * *

*
* *

W = 0.6

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

-10 -5 0 5 10

W
in

do
w

ed
 D

et
re

nd
ed

 C
ro

ss
-C

or
re

la
�o

n

Lag

** ** * ** * *

*
* *

W = 0.5



	

92	
	
	
	

	

	
Figure	5:	Averaged	windowed	detrended	cross-correlation	function	for	data	set	#1	
(interpersonal	tapping	task).	*:	p<.01.	

	
In	 conclusion,	 WDCC	 seems	 able	 to	 clearly	 identify	 trial-to-trial	 discrete	 correction	
processes,	essentially	though	the	presence	of	positive	peaks	at	lag	-1	and	lag	1,	and	the	lag	
0	 WDCC	 provides	 information	 about	 the	 level	 of	 cross-correlation	 between	 the	 two	
timekeepers.	Note	also	that	the	WDCC	function	could	exhibit	an	asymmetry	between	the	
lag-1	 and	 the	 lag	 1	 coefficients,	 revealing	 a	 leader/follower	 relationship	 between	
participants.	 The	 leader	 is	 supposed	 to	 present	 a	 lower	 correction	 parameter	 than	 the	
follower	 (e.g.,	α1≪	α2),	 and	 in	 such	 a	 case	 the	 sum	of	 the	 four	 last	 terms	 of	 Eq.	 (18)	 is	
different	for	lag	-1	and	lag	1.		

Finally,	the	correction	process	could	be	more	complex,	taking	into	account	a	wider	range	
of	 previous	 asynchronies.	 For	 example	 Pressing	 and	 Jolley-Rogers	 [5]	 or	 Vorberg	 and	
Wing	 [4]	 proposed	 models	 based	 on	 the	 correction	 of	 the	 two	 previous	 asynchronies.	
Such	models	could	be	expressed	as	follows:		

	 		 		 (23)	

This	kind	of	correction	process	should	result	 in	the	presence	of	positive	peaks	at	 lag	-2,	
lag	-1,	lag	1	and	lag	2	in	the	WDCC	function.		

7.	Coupled	oscillators	model	

As	previously	 explained,	 this	model	was	 initially	 developed	 in	 the	 analysis	 of	 bimanual	
coordination,	and	was	based	on	the	hypothesis	of	a	continuous	coupling	between	the	two	
effectors,	considered	as	self-sustained	oscillators	[17,18].	This	model	could	be	written	as	
follows:		

	 		 (24)	
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I1(n) = I1
*(n)−α1A1(n −1)− β1A1(n − 2)+ γ 1 B1(n)− B1(n −1)[ ]

I2 (n) = I2
*(n)−α 2A2 (n −1)− β2A2 (n − 2)+ γ 2 B2 (n)− B2 (n −1)[ ]

⎧
⎨
⎪

⎩⎪

 

!!x1 +δ !x1 + λ !x1
3 + γ x1

2 !x1 +ω
2x1 = ( !x1 − !x2 )[a + b(x1 − x2 )

2 ]
!!x2 +δ !x2 + λ !x2

3 + γ x2
2 !x2 +ω

2x2 = ( !x2 − !x1)[a + b(x2 − x1)
2 ]

⎧
⎨
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where	 xi	 is	 the	 position	 of	 oscillator	 i,	 and	 the	 dot	 notation	 represents	 derivation	with	
respect	to	time.	The	left	side	of	the	equations	represents	the	limit	cycle	dynamics	of	each	
oscillator,	determined	by	a	linear	stiffness	parameter	(ω)	and	damping	parameters	(δ,	λ,	
and	γ),	and	the	right	side	represents	 the	coupling	 function	determined	by	parameters	a	
and	b.	This	model	has	been	proven	to	adequately	account	for	most	empirical	features	in	
bimanual	coordination	tasks,	such	as	the	differential	stability	of	in-phase	and	anti-phase	
coordination	modes,	and	the	transition	from	anti-phase	to	in-phase	coordination	with	the	
increase	of	oscillation	frequency	[17,18].		

Here	we	consider	a	modified	version	of	 this	model,	where	 the	 fixed	 linear	stiffness	ω	 is	
replaced	 by	 a	 variable	 parameter	 ωn,	 representing	 discrete,	 cycle-to-cycle	 changes	 in	
stiffness	[33].	This	modification	aimed	to	account	 for	the	presence	of	1/f	 fluctuations	 in	
the	series	of	periods	produced	by	an	oscillating	effector	[34],	and	in	the	series	of	relative	
phases	during	bimanual	coordination	[33].			

	 		 (25)	

where	ωi	is	a	fractal	process	with	Hurst	exponent	H,	mean	ω0	and	standard	deviation	σ.	ε1	
and	 ε2	 are	 white	 noise	 processes	 with	 zero	 mean	 and	 unit	 variance,	 representing	 a	
continuous	 perturbation	 independently	 affecting	 each	 oscillator,	 with	 respective	
strengths	q1	and	q2.		

This	model	suggests	that	the	two	oscillators	share	the	same	(variable)	stiffness,	and	that	
perturbations	are	counterbalanced	by	the	coupling	function.	Considering	that	the	period	
of	 an	 oscillator	 is	 essentially	 determined	 by	 stiffness,	 this	 continuous	 model	 could	 be	
translated	at	the	cycle	level	as	follows,	using	the	preceding	notation:	

	 	 		 (26)	

I*(n)	representing	a	common	“timekeeper”,	corresponding	to	the	series	of	stiffness	ωn	in	
Eq.	 (25),	and	the	noise	 terms	summarizing	perturbations	at	 the	cycle	 level.	Note	 that	 in	
contrast	with	the	model	of	Eq.	(9),	synchronization	is	not	obtained	by	means	of	a	cycle-to-
cycle	correction	of	asynchronies,	but	simply	by	the	presence	of	a	common	“timekeeper”.		

This	system	predicts	that	the	lag	0	covariance	between	the	two	inter-tap	intervals	series	
is	equal	to	the	variance	of	the	timekeeper,	and	then	positive:		

	 	 		 (27)	

Considering	 the	 other	 lags,	 our	previous	 assumptions	 about	 the	 influence	of	windowed	
detrending	on	the	auto-correlation	of	fGn	could	be	applied	(see	Figure	3),	and	one	could	
predict	to	observe	slightly	negative	covariances,	especially	below	lag	-1	and	above	lag	1.		

 

!!x1 +δ !x1 + λ !x1
3 + γ x1

2 !x1 +ω n
2x1 = ( !x1 − !x2 )[a + b(x1 − x2 )

2 ]+ q1ε1
!!x2 +δ !x2 + λ !x2

3 + γ x2
2 !x2 +ω n

2x2 = ( !x2 − !x1)[a + b(x2 − x1)
2 ]+ q2ε2

⎧
⎨
⎪

⎩⎪

I1(n) = I
*(n)+ γ 1B1(n)

I2 (n) = I
*(n)+ γ 2B2 (n)

⎧
⎨
⎪

⎩⎪

cov I1res (n), I2res (n)[ ] = var Ires
* (n)⎡⎣ ⎤⎦
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We	simulated	Eq.	 (25),	 setting	δ	=	0.5,	λ	=	0.02,	 and	γ	=	1,	a	=	1	and	b	 =	0.25.	ωi	was	
accounted	for	by	fGn	series	with	H	=	0.9,	ω0	=	4π	and	σ	=	0.04,	and	we	set	q1	=	q2	=	0.03.	
Simulations	 were	 performed	 using	 a	 four-stage	 Runge–Kutta	 algorithm,	 following	 the	
scheme	 described	 by	 Burrage,	 Lenane,	 and	 Lythe	 [40],	 for	 second-order	 stochastic	
differential	 equations	with	 additive	noise.	We	used	 a	 fixed	 step	 size	 of	 0.001	 s,	 and	we	
generated	12	pairs	of	period	series	of	1024	data	points.	The	average	WDCC	function	for	
these	 simulated	 series	 is	 displayed	 in	 Figure	 6	 (left	 panel).	 As	 expected,	we	 obtained	 a	
positive	peak	at	 lag	0	(t11=	47.86,	p<0.01),	and	negative	cross-correlations	at	 lags	-5,	 -4,	
and	-3,	and	from	lag	3	to	lag	6.		

We	finally	applied	WDCC	to	the	experimental	bimanual	coordination	series	of	data	set	#2.	
The	average	WDCC	function	is	displayed	in	Figure	6	(right	panel).	The	results	are	similar	
to	those	obtained	by	the	simulation,	with	a	positive	peak	at	lag	0	(t11=	10.40,	p<0.01),	and	
negative	 values	 below	 lag	 -2	 and	 above	 lag	 1.	 This	 confirms	 that	 during	 bimanual	
coordination,	the	two	effectors	share	the	same	stiffness	fluctuations.		

	
Figure	 6:	 Left:	Average	windowed	detrended	cross-correlation	 function	 for	a	 set	of	12	
series,	simulated	from	Eq.	(25).	Right:	Averaged	windowed	detrended	cross-correlation	
function	for	data	set	#2	(bimanual	oscillations).	*:	p<.01.	

As	previously	 indicated,	 the	coupling	oscillator	model	has	been	extended	for	accounting	
for	interpersonal	coordination,	especially	in	tasks	involving	continuous	movements	[19–
21].	Our	third	data	set,	collected	in	an	experiment	were	dyads	had	to	oscillate	pendulums	
in	synchrony	[24],	clearly	corresponds	to	this	kind	of	situations.		

We	present	in	Figure	7	the	average	WDCC	function	obtained	with	this	data	set.	Clearly	the	
results	 are	 different	 than	 those	 expected	 from	 the	 coupled	 oscillators	 hypothesis.	 We	
obtained	positive	peaks	at	lag	-1	and	lag	1,	and	a	negative	peak	at	lag	0.	Location	t-tests	
showed	 that	 the	mean	 cross-correlation	 at	 lag	 0	was	 negative	 (t10=	 -5.63,	 p<0.01),	 and	
conversely	 positive	 at	 lag	 -1	 and	 lag	 1	 (t10	 =	 3.90,	 p<0.01	 and	 t10	 =	 4.38,	 p<0.01,	
respectively).	Note	that	the	average	cross-correlation	was	also	positive	at	lag	-2	and	lag	2	
(t10	=	3.78,	p<0.01	and	t10	=	4.94,	p<0.01,	respectively),	suggesting	that	a	more	complete	
model,	including	a	correction	of	the	two	last	asynchronies	should	be	more	relevant:		
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	 		 		 (28)	

Note	that	in	Eq.	(28)	included	a	single	error	term,	and	not	differenced	noise	as	in	Eq.	(15).	
This	 corresponds	 to	 the	 hypothesis	 that	 such	 continuous	 task	 should	 elicit	 emergent	
timing	processes	[36].	 It	can	be	easily	shown	that	 this	should	not	affect	 the	signs	of	 the	
expected	windowed	detrended	covariances.		

Quite	 surprisingly,	 these	 results	 show	 that	 synchronization,	 in	 this	 experiment,	 was	
governed	 by	 discrete,	 cycle-to-cycle	 corrective	 processes,	 and	 clearly	 contradicts	 the	
relevance	of	coupled	oscillators	models	in	such	interpersonal	coordination	tasks.	Further	
investigations	 are	 currently	 in	 progress	 in	 our	 lab	 for	 testing	 the	 reliability	 of	 these	
results	and	understanding	its	determinants.		

	

	
Figure	 7:	 Averaged	 windowed	 detrended	 cross-correlation	 function	 for	 data	 set	 #3	
(interpersonal	pendulum	task).	*:	p<.01.		

8.	Complexity	matching	
Finally	 we	 turn	 to	 the	 third	 theoretical	 framework	we	 evoked	 in	 the	 introduction,	 the	
complexity	matching	hypothesis.	Complexity	matching	supposes	a	model	quite	similar	to	
that	 advocated	 for	 the	 continuous	 coupling	model,	 except	 that	 the	 two	 systems	are	not	
driven	by	a	common	“timekeeper”,	but	tend	to	attune	their	complexity.	This	model	could	
be	expressed	as	follows:	

	 	 		 (29)	

I*1(n)	and	I*2(n)	being	considered	as	long-range	cross-correlated	fGn	series.	Importantly,	
the	 complexity	matching	hypothesis	 supposes	 that	 synchronization	 is	 achieved	without	
any	 process	 of	 asynchronies	 correction.	 On	 the	 basis	 of	 this	 model,	 one	 can	 obviously	
expect	to	observe	a	positive	covariance	peak	at	lag	0.	

I1(n) = I1
*(n)−α1A1(n −1)− β1A1(n − 2)+ γ 1B1(n)

I2 (n) = I2
*(n)−α 2A2 (n −1)− β2A2 (n − 2)+ γ 2B2 (n)

⎧
⎨
⎪
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We	generated	12	pairs	of	series	I1(n)	and	I2(n).	I*1(n)	and	I*2(n)	were	long-range	cross-
correlated	 fGn	series,	 simulated	by	 the	ARFIMA	procedure	presented	 in	Eqs.	 (20),	 (21),	
and	(22),	with	d1=	d2	=	0.4	(i.e.,	H	=	0.9)	and	W	=	0.7.	Eq.	(9)	was	implemented	setting	γ1=	
γ2	=	0.5.	The	average	WDCC	function,	for	these	simulated	series,	is	presented	in	Figure	8	
(left	panel).	As	expected,	the	WDCC	function	presented	a	positive	peak	at	lag	0.	Location	t-
tests	showed	that	the	mean	cross-correlation	at	lag	0	was	positive	(t11=	23.46,	p<.01),	and	
was	also	positive	at	lag	-1	and	lag	1	(t11	=	3.01,	p<.05	and	t11	=	4.62,	p<.01,	respectively).	
We	also	observed	negative	correlations	at	lag	-4,	-5	and	-6	(t11	=	-3.82,	p<.01,	t11	=	-2.94,	
p<.05	and	 t11	=	-3.85,	p<.01,	 respectively),	as	well	as	 lags	3,	4,	5,	6,	7	and	8	(t11	=	-2.76,	
p<.05,	t11	=	-2.42,	p<.05,	t11	=	-2.33,	p<.05,	t11	=	-2.74,	p<.05,	t11	=	-2.48,	p<.05,		and	t11	=	-
3.44,	p<.01,	respectively).	

We	finally	applied	WDCC	to	data	set	#4.	The	average	WDCC	function,	for	this	data	set,	is	
presented	 in	 Figure	 8	 (right	 panel).	 This	 function	 presents	 a	 similar	 shape	 than	 that	
obtained	in	the	simulation	study.	Location	t-test	showed	that	the	mean	cross-correlation	
at	lag	0	was	positive	(t10=	5.56,	p<.01),	and	was	also	positive	at	lag	-1	and	lag	1	(t10	=	5.71,	
p<.01	and	t10	=	4.60,	p<.01,	respectively).	We	also	observe	negative	correlations	at	lag	-6	
and	lag	-4	(t10	=	-4.39,	p<.01	and	t10	=	-3.57,	p<.01,	respectively),	as	well	as	lags	4	and	6	
(t10	=	-6.67,	p<.01	and	t10	=	-4.51,	p<.01,	respectively).		

	
Figure	 8:	 Left:	 Averaged	 windowed	 detrended	 cross-correlation	 function	 for	 12	
simulations	of	Eq.	(29).	Right:	Averaged	windowed	detrended	cross-correlation	function	
for	data	set	#4	(walking	in	synchrony).	+:	p<.05;	*:	p<.01.	

However,	one	can	notice	 that	 the	cross-correlation	coefficients	at	 lag	 -1	and	 lag	1	 seem	
higher	in	the	experimental	WDCC	function	than	in	that	obtained	by	simulation.	This	could	
be	explained	by	a	slight	process	of	stride-to-stride	correction	that	could	be	superimposed	
to	the	complexity	matching	effect.	This	could	be	expressed	by	the	following	model:		

	 		 (30)	
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This	model	 is	 close	 to	 that	of	Eq.	 (9),	 except	 that	 the	differenced	white	noise	 term	was	
replaced	by	a	single	noise	term	for	accounting	for	the	continuous	nature	of	the	task	(see	
also	Eq.	 (28)).	 As	 in	 the	previous	 simulation,	we	 generated	12	pairs	 of	 series	 I1(n)	 and	
I2(n).	 I*1(n)	 and	 I*2(n)	 were	 long-range	 cross-correlated	 fGn	 series,	 simulated	 by	 the	
ARFIMA	procedure	with	d1=	d2	=	0.4,	W	=	0.7	and	γ1=	γ2	=	0.5.	We	used	low	values	for	the	
correction	 parameters:	 α1	 =	 α2	 =	 0.2.	 The	 average	WDCC	 function,	 for	 these	 simulated	
series,	is	presented	in	Figure	9.	As	can	be	seen,	the	introduction	of	slight	corrections	did	
not	affect	the	global	shape	of	the	WDCC	function,	but	selectively	enhance	the	average	level	
of	correlation	at	lag	-1	and	lag	1.		

This	 simulation	 shows	 that	 complexity	 matching,	 which	 tends	 to	 dominate	
synchronization	 in	 this	 situation	 of	 synchronized	 walking,	 should	 be	 completed	 by	 a	
slight,	 discrete	 stride-to-stride	 correction	 process.	 We	 currently	 try	 to	 test	 this	
hypothesis,	 in	 an	 experiment	 where	 participants	 walk	 in	 synchrony	 with	 a	 clear	
leader/follower	relationship.	Preliminary	results	tend	to	confirm	that	the	lag	-1	and	lag	1	
WDCC	coefficients	reflect	this	asymmetry,	confirming	that	a	discrete	correction	process	is	
at	work	during	synchronization.			

	

	
Figure	 9:	 Averaged	 windowed	 detrended	 cross-correlation	 function	 for	 12	
simulations	of	Eq.	(30).	*:	p<.01.	

9.	Discussion	

In	this	paper	we	proposed	a	formal	approach	of	WDCC,	completed	with	simulation	studies	
and	 empirical	 data	 analysis.	 We	 show	 that	 the	 WDCC	 function	 contains	 information	
revealing	 the	 various	 processes	 that	 underlie	 synchronization.	 The	 WDCC	 function	 is	
especially	 affected	 by	 (1)	 the	 strength	 of	 discrete	 corrective	 processes,	 (2)	 the	 level	 of	
cross-correlation	between	‘timekeepers’,	and	(3)	the	level	of	noise	in	the	system.		

Trial-to-trial	or	cycle-to-cycle	discrete	corrective	processes	are	revealed	by	the	presence	
of	positive	WDCC	at	lag	-1	and	lag	1.	Correction	could	be	distributed	over	more	successive	
trials	 or	 cycles,	 and	 in	 that	 case	 cross-correlation	 appears	 positive	 over	more	 lags	 (for	
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example	at	lags	-2,	-1,	and	1,	2,	see	data	set	#3).	Finally,	an	asymmetry	between	positive	
and	negative	lags	is	likely	to	reveal	leader/follower	relationships	in	synchronization.		

The	 lag	0	WDCC	reflects	 the	 level	of	 cross-correlation	between	 the	 two	 timekeepers.	 In	
the	 limit	 case	 of	 bimanual	 tasks,	 in	 which	 both	 hands	 are	 governed	 by	 the	 same	
timekeeper	 (as	 in	 the	bimanual	 oscillation	 task	of	 data	 set	#2),	WDDC	 should	 exhibit	 a	
strong	 positive	 peak	 at	 lag	 0.	 When	 the	 two	 synchronized	 systems	 are	 governed	 by	
distinct,	but	long-range	cross-correlated	fractal	processes,	as	expected	in	situations	where	
synchronization	 is	 sustained	 by	 a	 complexity	 matching	 effect,	 a	 positive	 peak	 is	 also	
expected	at	 lag	0,	but	with	rather	moderate	values,	as	compared	with	the	previous	case	
(see	data	set	#4).		

We	show,	however,	that	the	lag	0	WDCC	is	also	affected	by	noise	and	corrective	processes.	
Obtaining	a	close-to-zero	or	even	negative	lag	0	WDCC	does	not	indicate	that	timekeepers	
are	independent	or	anti-correlated.	This	kind	of	result	simply	provides	information	about	
the	respective	importance	of	the	different	factors	affecting	lag	0	WDCC.		

This	 is	 maybe	 the	 main	 message	 of	 the	 present	 work,	 beyond	 the	 theoretical	 and	
methodological	presentation	of	WDCC.	In	our	previous	papers	we	presented	the	different	
frameworks	for	the	analysis	of	interpersonal	synchronization	as	alternative,	and	exclusive	
hypotheses,	referring	to	processes	selectively	elicited	by	specific	task	constraints	[1,23].	
The	present	analyses	suggest	a	different	point	of	view.	We	show	in	the	analysis	of	our	first	
data	 set	 (interpersonal	 tapping)	 that	 beyond	 a	 clear	 discrete	 process	 of	 trial-to-trial	
correction	 of	 asynchronies,	 a	matching	 of	 complexities	 between	 the	 timekeepers	 of	 the	
two	partners	 should	be	considered	 for	a	 complete	account	of	 empirical	 correlations.	As	
well,	 we	 show	 in	 the	 analysis	 of	 our	 last	 data	 set	 (walking	 in	 synchrony)	 that	 beyond	
complexity	matching,	a	slight	but	effective	discrete	stride-to-stride	correction	process	 is	
at	 work.	 In	 each	 situation,	 synchronization	 seems	 dominated	 either	 by	 asynchrony	
correction	 or	 by	 complexity	 matching,	 but	 the	 discreet	 influence	 of	 the	 other	 process	
cannot	be	 ignored.	All	 situations	could	be	accounted	 for	by	a	single	model,	which	could	
simply	differ	through	the	relative	strength	of	its	essential	components.		

Another	unexpected	result	in	the	present	paper	was	the	evidence	that	inter-personal	held	
pendulum	 task	 was	 dominated	 by	 corrective	 processes.	 Because	 of	 its	 oscillatory	
character,	 this	 task	was	a	good	candidate	 for	revealing	the	essential	 features	of	coupled	
oscillator	models,	 and	especially	 a	 strong	 cross-correlation	between	 “timekeepers”,	 and	
the	absence	of	cycle-to-cycle	correction.	This	was	clearly	not	the	case,	and	recently	Scotti	
[32]	 obtained	 	 similar	 results	 in	 a	 task	 where	 two	 participants	 had	 to	 perform	
synchronized	 forearm	 oscillations.	 This	 quite	 deceptive	 result	 merits	 further	
investigations,	 considering	 the	 amount	 of	 theoretical	 and	 experimental	 work	 that	 has	
been	devoted	during	the	last	decades	to	the	application	of	the	coupled	oscillators	models	
to	interpersonal	coordination.		

Finally	 one	 might	 ask	 what	 are	 the	 advantages	 of	 WDCC	 over	 the	 conventional	 cross-
correlational	approach?	We	present	in	Figure	10	the	average	cross-correlation	functions,	
computed	over	the	entire	series,	from	lag	-60	to	lag	60,	for	our	four	data	sets.		
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Figure	10:	Average	cross-correlation	functions,	computed	from	lag	-60	to	lag	60.	a:	data	
set	#1,	interpersonal	tapping	task;	b:	data	set	#2,	bimanual	oscillations;	c:	data	set	#3,	
interpersonal	 pendulum	 task;	 d:	 data	 set	 #4,	 walking	 in	 synchrony.	 The	 dashed	 line	
represents	the	probability	threshold	p	=	.05.		

The	 essential	 information	 provided	 by	 WDCC	 is	 obviously	 discernible	 in	 these	 cross-
correlation	functions	(especially	the	peaks	at	lag-1	and	lag	1	for	data	sets	#1	and	#3,	the	
stronger	 lag	 0	 peak	 for	 data	 set	 #2,	 as	 compared	 with	 data	 set	 #4).	 WDCC	 has	 the	
advantage	to	focus	on	short-term	processes,	and	to	normalize	results	over	a	standardized	
window	 size,	 allowing	 comparisons	 among	 experimental	 situations.	 As	 shown	 in	 the	
previous	 sections	 of	 this	 paper,	 WDCC	 allows	 to	 finely	 disentangling	 the	 multiple	
processes	 that	 could	 underlie	 synchronization.	 Cross-correlation	 functions,	 however,	
provide	 additional	 information	 about	 the	 persistence	 and	 the	 rate	 of	 decay	 of	 cross-
correlations,	 which	 are	 hidden	 by	 the	 WDCC	 algorithm,	 but	 remain	 essential	 for	
accounting	 for	 the	 long-range	 nature	 of	 cross-correlations	 in	 the	 complexity	 matching	
framework.		

Finally	we	would	like	to	insist	on	the	fact	that	the	WDCC	function	should	be	considered	as	
a	pattern,	and	not	as	a	sample	of	correlation	coefficients.	Comparing	Figure	10	with	the	
previous	 figures	 of	 this	 paper	 allows	 understanding	 why	 we	 consider	 that	 WDCC	
functions	 only	 contain	 traces	 of	 the	 original	 cross-correlations.	 Each	 experimental	
situation	 seems	 characterized	 by	 a	 specific	 WDCC	 pattern,	 and	 the	 proper	 way	 for	
analyzing	WDCC	 functions	 is	 to	 test	 the	 consistency	of	 the	obtained	pattern	over	dyads	
performing	 in	similar	conditions	 (which	was	done	with	our	 location	 t-tests),	 and	not	 to	
look	for	the	statistical	significance	of	each	WDCC	coefficients.		
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Appendix	

Data	set	#1:	Inter-individual	coordination	in	tapping.	

This	 data	 set	 was	 presented	 in	 Scotti	 [32].	 20	 participants	 were	 involved	 in	 this	
experiment	(11	male	and	9	female,	mean	age	22.5	±	4.3).	They	were	randomly	paired	into	
10	 dyads.	 The	 series	 exploited	 in	 the	 present	 paper	 was	 collected	 in	 a	 part	 of	 the	
experiment	 where	 the	 two	 participants	 of	 each	 dyad	 were	 invited	 to	 perform	 finger	
tapping	 in	synchrony.	Participants	were	sitting	 face-to-face	and	 tapped	with	 their	 index	
finger	 on	 a	 flat	 pressure	 sensor	 fixed	 on	 a	 table.	 The	 tempo	 was	 initially	 given	 by	 a	
metronome	 that	 emitted	 10	 successive	 beeps	 at	 a	 frequency	 of	 1	 Hz,	 and	 participants	
were	instructed	to	synchronize	their	taps	with	the	metronome.	Then	the	metronome	was	
removed	 and	 the	 participants	 were	 invited	 to	 maintain	 their	 synchronization	 for	 10	
minutes.	The	data	set	exploited	 in	 the	present	paper	 is	 the	series	of	 inter-taps	 intervals	
produced	by	each	participant	in	each	dyad.			

Data	set	#2:	Bimanual	forearm	oscillations	

This	data	set	was	initially	presented	in	Torre	and	Delignières	[33].	Twelve	participants	(8	
male	 and	 4	 female,	 mean	 age	 29	 ±	 7)	 took	 part	 in	 the	 experiment.	 They	 individually	
performed	two	bimanual	tasks:	bimanual	 forearm	oscillations,	and	bimanual	tapping.	 In	
the	present	paper	we	used	the	series	collected	in	the	first	task.		

Participants	were	 seated	 comfortably,	with	 the	 elbows	 slightly	 flexed	 and	 the	 forearms	
supported	 in	 a	 horizontal	 position.	 The	 task	 consisted	 in	 performing	 simultaneous	 in-
phase	 forearm	 oscillations	 (by	 definition	 in	 this	 mode	 of	 coordination	 the	 two	 hands	
move	 in	 mirror	 symmetry).	 They	 held	 two	 wooden	 joysticks,	 15	 cm	 in	 length,	 with	 a	
single	degree	of	freedom	in	the	frontal	plane.	Participants	were	instructed	to	perform	the	
oscillations	 as	 smoothly	 and	 regularly	 as	 possible,	with	 an	 amplitude	 of	 approximately	
45°	 on	 either	 side	 of	 the	 vertical	 axis.	 The	 angular	 displacement	 of	 the	 joysticks	 was	
captured	by	two	potentiometers.		

Each	trial	was	introduced	by	a	30-s	video	showing	in	close-up	two	hands	performing	the	
task	 at	 the	 required	 frequency	 (2	 Hz).	 Then	 participants	 immediately	 began	 the	 task,	
following	 the	 required	 frequency	as	accurately	as	possible,	up	 to	 the	production	of	600	
oscillation	 cycles.	 The	 data	 set	 exploited	 in	 the	 present	 paper	 is	 the	 series	 of	 periods	
(computed	as	 the	 time	between	 two	 successive	maximal	pronations)	produced	by	 each	
hand.		

Data	set	#3:	inter-individual	coordination	in	pendulum	swinging	

This	data	set	was	initially	presented	in	Marmelat	and	Delignières	[24].	22	volunteers	(16	
male	 and	 6	 female,	 mean	 age	 24.5	 ±	 2.9)	 were	 involved	 in	 the	 experiment,	 and	 were	
randomly	paired	 into	11	dyads.	 Participants	were	 seated	 side-by-side	between	 the	 two	
pendulums.	Participant	A	held	his/her	pendulum	with	 the	right	hand,	and	participant	B	
with	 the	 left	 hand.	 In	 each	 dyad,	 participants	 were	 randomly	 assigned	 to	 the	 A	 or	 B	
position.	 Pendulums	 oscillated	 in	 the	 sagittal	 plane.	 The	 distance	 between	 the	 two	
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pendulums	was	1.10	m,	 their	 length	was	0.48	m	 (from	 the	bottom	of	 the	handle	 to	 the	
bottom	of	the	pendulum).	A	mass	of	0.150	kg	was	fixed	at	the	bottom	of	each	pendulum.	A	
potentiometer	located	at	the	rotation	axis	of	each	pendulum	allowed	recording	the	angle	
position.	Participants	were	 instructed	to	 firmly	sustain	 the	handle	with	 the	entire	hand,	
and	 to	 manipulate	 the	 pendulum	 with	 the	 wrist	 joint,	 in	 an	 abduction-adduction	
movement.	The	forearm	was	kept	parallel	to	the	floor,	without	any	support.		

The	data	set	exploited	in	the	present	paper	was	collected	in	a	condition	were	participants	
had	to	perform	synchronized	oscillations	with	the	two	pendulums,	following	an	in-phase	
pattern	of	 coordination.	They	were	 instructed	 to	oscillate	 at	 the	preferred	 frequency	of	
the	dyad,	as	regularly	as	possible.	Visual	and	auditory	feedbacks	were	fully	available.	The	
trial	 lasted	12	minutes.	The	data	 set	 is	 composed	by	 the	 series	 of	 periods	produced	by	
each	participant.		

Data	set	#4:	Synchronized	walking	
This	data	set	was	initially	presented	in	Almurad	et	al.	[1].	26	participants	(16	male	and	10	
female,	mean	age	28.1		±	8.9,)	were	involved	in	the	experiment.	Participants	were	paired	
into	 13	 dyads.	 The	 pairing	 procedure	 was	 performed	 in	 order	 to	 preserve	 the	
homogeneity	 of	weights	 and	 heights	within	 each	 dyad.	 The	 experiment	was	 performed	
around	 an	 indoor	 running	 track	 (circumference	 200m).	 The	 data	 set	 exploited	 in	 the	
present	paper	was	collected	 in	a	condition	where	 the	 two	members	of	 the	dyad	walked	
together,	arm-by-arm.	They	were	explicitly	 instructed	 to	synchronize	 their	 steps	during	
the	whole	trial.	The	trial	lasted	16	minutes.		

Data	were	recorded	with	two	Mobility	Lab	systems	(APDM,	Inc),	one	for	each	member	of	
the	 dyad.	 Two	 body-worn	 inertial	 sensors	 were	 attached	 on	 the	 shanks	 of	 each	
participant.	 Data	 were	 then	 wirelessly	 streamed	 to	 a	 laptop.	 The	 device	 performed	
automated	analyses	providing	a	set	of	raw	series	(stride	duration,	stride	length,	etc.,	 for	
both	limbs).	In	the	present	paper	we	focused	on	the	series	of	right	stride	durations.		
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Concluding	remarks	
The	first	aim	of	this	paper	was	to	propose	a	formal	demonstration	of	the	properties	of	the	
Windowed	 Detrended	 Cross-Correlation	 analysis.	 In	 most	 previous	 presentation	 of	
Windowed	 Cross-correlation	 analysis,	 authors	 remained	 quite	 allusive	 concerning	 the	
exact	 meaning	 of	 the	 sign	 and	 the	 magnitude	 of	 the	 correlation	 coefficients	 within	 the	
obtained	 function	 (Coey,	 2015;	 Coey	 et	 al.,	 2016;	 Didier	 Delignières	 &	 Marmelat,	 2014;	
Konvalinka,	Vuust,	Roepstorff,	&	Frith,	2010).	Our	approach	was	inspired	by	that	adopted	
by	Wing	and	Kristofferson	(1973),	in	their	analysis	of	the	auto-covariance	function	of	inter-
tap	 intervals	 in	 self-paced	 tapping.	 We	 used	 a	 systematic	 decomposition	 of	 covariance	
expressions,	for	determining	the	signs	of	cross-correlations	at	diverse	lags.		

Hybrid	models	

Our	approach	was	initially	based	on	the	properties	of	“ideal”	models,	each	referring	to	the	
three	 theoretical	 frameworks	 we	 previously	 identified	 (asynchronies	 correction,	
continuous	 coupling,	 and	 complexity	 matching).	 In	 all	 cases	 we	 identified	 the	 expected	
signatures	 of	 each	 model	 and	 we	 showed	 that	 the	 corresponding	 experimental	 data,	 in	
most	cases,	produced	those	signatures.		

Our	results,	however,	revealed	a	more	complex	picture	than	that	expected	by	ideal	models.	
We	 evidenced	 traces	 of	 complexity	matching	 in	 interpersonal	 tapping,	 even	 if	 the	 global	
WDCC	 pattern	 was	 clearly	 dominated	 by	 asynchrony	 correction.	 As	 well,	 the	 WDCC	
function	obtained	for	synchronized	walking	was	that	expected	from	a	complexity	matching	
effect,	but	we	found	clear	traces	of	asynchrony	correction.	These	results	lead	us	to	propose	
hybrid	models,	such	as	that	depicted	in	equation	30,	containing	both	asynchrony	correction	
and	complexity	matching	terms:		

	 		

In	such	model,	the	dominance	of	one	process	on	the	other	just	depends	on	the	parameters	
that	regulate	the	strength	of	their	respective	terms	in	the	model.		

Asynchrony	correction	in	synchronized	oscillations	
An	other	surprising	result	was	a	discovery	of	 the	dominance	of	asynchrony	correction	 in	
the	pendulum	swinging	task.	We	obviously	expected	in	that	case	a	WDCC	function	similar	
to	that	obtained	in	bimanual	coordination,	with	a	clear	dominance	of	complexity	matching.	
This	was	not	 the	 case,	 and	 this	 results	 leads	 to	 cast	 some	doubt	 on	 the	 relevancy	 of	 the	
coupled	 oscillator	 model	 for	 interpersonal	 coordination.	 Interestingly,	 this	 result	 was	
previously	presented	by	Delignières	and	Marmelat	(2014),	who	exploited	the	same	data	set	
(see	 Figure	 5,	 p.	 10).	 The	 authors	 did	 not	 notice	 nor	 discuss	 this	 result,	 which	 clearly	
contradicted	 their	 expectations.	 Obviously,	 this	 paper	 focused	 on	 another	 method,	 the	
Detrended	 Cross-Correlation	 analysis	 (DCCA),	 an	 extention	 of	 Detrended	 Fluctuation	
analysis,	and	the	presentation	of	WDCC	results	remained	anecdotic.	However,	the	fact	that	
the	 authors	 ignored	 this	 result	 represents	 an	 intriguing	 example	 of	 scientific	 negligence,	
which	should	be	analyzed	from	an	epistemological	perspective.		

I1(n) = I1
*(n)−α1A1(n −1)+ γ 1B1(n)

I2 (n) = I2
*(n)−α 2A2 (n −1)+ γ 2B2 (n)

⎧
⎨
⎪

⎩⎪
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Recently	Scotti	 (2017)	confirmed	this	result	 in	a	 task	were	participants	had	to	perform	
synchronized	forearm	oscillations	with	joysticks.	The	obtained	WDCC	function	is	reported	
in	the	following	figure:		

	

	
Figure	1:	Average	WDCC	function	in	synchronized	forearm	oscillations	performed	with	
joysticks	(Scotti,	2017).	

Again,	 the	 WDCC	 function	 revealed	 a	 clear	 dominance	 of	 asynchrony	 correction,	 with	
characteristic	 positive	 peak	 at	 lag	 -1	 and	 lag	 1.	 However,	 one	 could	 note	 that	 the	 cross-
correlation	 at	 lag	 0	 also	 positive,	 suggesting	 a	 non-marginal	 complexity	matching	 effect.	
This	 effect	 was	 clearly	 stronger	 that	 in	 the	 pendulum	 task.	 Further	 investigations	 are	
needed	 for	 a	 deeper	 understanding	 for	 the	 factors	 that	 influence	 the	 balance	 between	
asynchrony	correction	and	complexity	matching	in	such	tasks.		

Mechanistic	vs	nomothetic	models	

This	article	is	a	nice	illustration	of	the	research	strategy	of	our	group,	which	has	sometimes	
been	 referred	 to	 as	 a	 “mechanistic”	 approach	 (Diniz	 et	 al.,	 2011;	Torre	&	Wagenmakers,	
2009).	This	approach	is	characterized	by	the	construction	of	models	that	incorporate	“1/f	
sources”,	 in	combination	with	other	short-term	processes,	such	as	asynchrony	correction.	
In	the	present	paper	we	went	a	step	beyond	by	the	use	of	long-range	correlated	series	with	
the	 aim	of	 accounting	 for	 complexity	matching.	This	 approach	has	been	 criticized	by	 the	
proponents	 of	 a	 “nomothetic”	 approach,	 considering	 that	 this	 kind	 of	 model	 suggest	 a	
“localization”	of	fractal	processes	within	the	systems,	whereas	this	type	of	fluctuation	must	
be	considered	as	a	global	product	of	 complexity.	These	mechanistic	models,	however,	do	
not	 postulate	 a	 structural	 localization	 of	 fractality,	 but	 rather	 a	 statistical	 localization,	
allowing	 to	disentangle	 the	 respective	 influences	of	 long-term	and	 short-term	 sources	 of	
fluctuations	(Diniz	et	al.,	2011).		

Our	 strategy	 could	 be	 summarized	 as	 follows:	 (1)	 determining,	 on	 the	 basis	 of	 previous	
theories,	the	models	that	could	account	for	the	production	of	performance	series	in	a	given	
situation,	 (2)	 simulating	 series	with	 the	 obtained	models,	 and	 (3)	 checking	whether	 the	
simulated	 series	 consistently	 reproduce	 the	 properties	 of	 experimental	 series.	 This	
approach,	 directly	 inspired	 by	 the	 seminal	 papers	 by	 Wing	 and	 Kristofferson	 (1973),	
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allowed	 our	 group	 to	 overcome	 some	 erroneous	 interpretations	 in	 previous	 papers	 (D.	
Delignières	&	Torre,	2011;	Torre	et	al.,	2010;	Torre,	Delignières,	&	Lemoine,	2007;	Torre	&	
Delignières,	 2008a,	2008b).	The	present	paper,	 and	especially	 the	 results	 concerning	 the	
hybridization	of	models	and	 the	presence	of	asynchrony	correction	most	 inter-individual	
coordination	 tasks,	 provide	 additional	 evidence	 for	 the	 relevancy	 of	 this	 mechanistic	
approach.		
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	Chapter	5	
	

	

	
Restoring	the	complexity	of	locomotion	in	older	people	through	arm-in-arm	

walking	
 

 
This	 final	 chapter	 is	 devoted	 to	 the	 test	 of	 the	 hypothesis	 that	 initially	motivated	 this	
doctoral	project:	the	restoration	of	complexity	through	complexity	matching.		

At	 the	 beginning	 of	 our	 work,	 we	 supposed	 that	 the	 most	 complex	 system,	 being	
intrinsically	 more	 stable	 than	 the	 less	 complex	 one,	 should	 not	 be	 affected	 by	
synchronization.	 In	 contrast,	 the	 less	 complex	 system,	unstable	by	definition,	 should	be	
“attracted”	 by	 the	most	 complex	 one.	 This	 initial	 hypothesis	 was	 just	 sustained	 by	 the	
basic	 postulate	 relating	 complexity	 and	 stability:	 complexity	 confers	 systems	 with	
robustness	and	stability,	allowing	them	to	resist	to	external	perturbations	and	to	maintain	
their	 functioning.	 This	 hypothesis	 was	 fortunately	 reinforced	 by	 the	 formal	
demonstration	of	Mahmoodi,	West,	and	Grigolini	(2017),	showing	that	when	two	systems	
of	 different	 complexity	 levels	 interact,	 the	 transfer	 of	multifractality	 operates	 from	 the	
most	complex	system	to	the	less	complex.		

This	 experiment	 was	 essentially	 exploratory.	 Our	 previous	 results	 showed	 that	
synchronized	walking	was	dominated	by	a	complexity	matching,	and	that	this	effect	was	
stronger	 when	 systems	 were	 closely	 coupled.	 We	 supposed,	 however,	 that	 a	 short	
experience	 of	 complexity	matching	 should	 not	 be	 sufficient	 for	 obtaining	 the	 expected	
restoration,	 and	 that	 a	prolonged	practice	 should	be	necessary.	 In	 the	 first	 steps	of	 the	
experiment,	 we	 decided	 to	 pursue	 the	 training	 in	 synchronized	 walking	 up	 to	 the	
obtaining	of	 a	 statistically	 significant	 effect	on	 stride	 series	 complexity.	 Fortunately,	we	
observed	 with	 our	 first	 participants	 an	 increase	 of	 complexity	 after	 three	 weeks	 of	
training.	This	observation	allowed	us	to	finally	fix	the	protocol	to	four	complete	weeks	of	
practice.		

As	indicated	in	the	paper,	this	protocol	was	very	challenging,	for	the	participants	as	well	
as	 for	 the	 experimenter.	 It	 required	 a	 large	 amount	 of	 practice,	 a	 constant	 availability	
during	 the	 four	weeks	of	 the	protocol.	 It	 took	up	 to	14	months	 for	achieving	 the	whole	
protocol	for	the	24	participants.	Some	participants,	initially	involved	in	the	protocol,	have	
been	 excluded	 because	 they	 were	 unable,	 for	 personal	 or	 familial	 reasons,	 to	 strictly	
follow	the	training	schedule,	which	was	conceived	to	be	performed	without	interruption	
nor	 delay	 during	 four	 weeks,	 three	 days	 a	 week.	 It	 seems	 important	 to	 keep	 these	
constraints	in	mind	during	the	reading	of	paper	that	follows...	 
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Abstract  

The complexity matching effect refers to a maximization of information exchange, when 
interacting systems share similar complexities. A working conjecture states that interacting 
systems tend to match their complexities in order to enhance their synchronization. This effect 
has been observed in a number of synchronization experiments, and interpreted as a transfer of 
multifractality between systems. Finally, it has been shown that when two systems of different 
complexity levels interact, this transfer of multifractality operates from the most complex 
system to the less complex, yielding an increase of complexity in the latter. This theoretical 
framework inspired the present experiment that tested the possible restoration of complexity in 
older people. In young and healthy participants, walking is known to present 1/f fluctuations, 
reflecting the complexity of the locomotion system, providing walkers with both stability and 
adaptability. In contrast walking tends to present a more disordered dynamics in older people, 
and this whitening was shown to correlate with fall propensity. We hypothesized that if an aged 
participant walked in close synchrony with a young companion, the complexity matching effect 
should result in the restoration of complexity in the former. Older participants were involved in 
a prolonged training program of synchronized walking, with a young experimenter. 
Synchronization within the dyads was dominated by complexity matching. We observed a 
restoration of complexity in participants after three weeks, and this effect was persistent two 
weeks after the end of the training session. This work presents the first demonstration of a 
restoration of complexity in deficient systems.  

Key words: Complexity matching, restoration of complexity, interpersonal coordination, arm-
in-arm walking, rehabilitation. 
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1. Introduction 

Complexity appears a key concept for the understanding of the perennial functioning of 
biological systems. By definition, a complex system is composed of a large number of 
infinitely entangled elements (Delignières and Marmelat, 2012). In such a system, interactions 
between components are more important than components themselves, a feature that Van 
Orden et al. (2003) referred to as interaction-dominant dynamics.  

Such a system, characterized by a myriad of components and sub-systems, and by a rich 
connectivity, could lose its complexity in two opposite ways: either by a decrease of the density 
of interactions between its components, or by the emergence of salient components that tend to 
dominate the overall dynamics. In the first case the system derives towards randomness and 
disorder, in the second towards rigidity. From this point of view complexity may be conceived 
as an optimal compromise between order and disorder (Delignières and Marmelat, 2012). 
Complexity represents an essential feature for living systems, providing them with both 
robustness (the capability to maintain a perennial functioning despite environmental 
perturbations) and adaptability (the capability to adapt to environmental changes). These 
relationships between complexity, robustness, adaptability and health were nicely illustrated by 
Goldberger, Amaral et al. (2002a) in the domain of heart diseases.  

The experimental approach to complexity has been favored by the hypothesis that links the 
complexity of systems and the correlation properties of the time series they produce, and the 
development of related fractal analysis methods, and especially the Detrended Fluctuation 
Analysis (Peng et al., 1995). A complex system is supposed to produce long-range correlated 
series (1/f fluctuations), and the assessment of correlation properties in the series produced by a 
system allows determining the possible alterations of complexity, either towards disorder (in 
which case correlations tend to extinguish in the series) or towards rigid order (in which case 
correlations tend to increase).  

This interest for complexity was particularly developed in the research on aging. Lipsitz and 
Goldberger (1992) proposed that aging could be defined by a progressive loss of complexity in 
the dynamics of all physiologic systems. This hypothesis has been developed in a number of 
subsequent papers (Goldberger et al., 2002a, 2002b; Sleimen-Malkoun et al., 2014; 
Vaillancourt and Newell, 2002). Of special interest for the present work, Hausdorff and 
collaborators showed that successive step durations during walking presented a typical 
structure over time, characterized by the presence of long-range dependence (Hausdorff et al., 
1995, 1996, 2001). They also showed that these fractal properties were significantly altered in 
aged participants and in patients suffering from Huntington's disease (Hausdorff et al., 1997). 
In those cases the fractal organization tended to disappear and step dynamics became more 
random. Additionally, they showed that the loss of complexity in stride duration series 
correlated with the propensity to fall. The main question we address in the present paper is the 
following: could it be possible to restore complexity in older people, and especially in the 
locomotion system?  
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The working hypothesis that sustains the present work is based on the concept of complexity 
matching, initially introduced by West, Geneston and Grigolini (2008). The complexity 
matching effect refers to the maximization of information exchange when interacting systems 
share similar complexities. This effect has been interpreted as a kind of “1/f resonance” 
between systems (Aquino et al., 2011). A working conjecture states that interacting systems 
tend to match their complexities in order to enhance their synchronization (Marmelat and 
Delignières, 2012). This attunement of complexities has been observed in a number of 
synchronization experiments (Abney et al., 2014; Almurad et al., 2017; Coey et al., 2016; 
Delignières and Marmelat, 2014; Marmelat and Delignières, 2012; Stephen et al., 2008), and 
interpreted as a transfer of multifractality between systems (Mahmoodi et al., 2017). Finally, it 
has been shown that when two systems of different complexity levels interact, this transfer of 
multifractality operates from the most complex system to the less complex (and not the 
inverse), yielding an increase of complexity in the latter (Mahmoodi et al., 2017).  

The very first experimental approaches to complexity matching considered that a close 
correlation between the mono-fractal exponents characterizing the two synchronized systems 
could represent a satisfactory evidence for complexity matching (Delignières and Marmelat, 
2014; Marmelat et al., 2014; Marmelat and Delignières, 2012; Stephen et al., 2008). However, 
Delignières et al. (2016) claimed that the matching of scaling exponents should not be 
considered an unambiguous signature of complexity matching. They proposed to distinguish 
between a simple statistical matching (i.e., the convergence of scaling exponents) and a genuine 
complexity matching effect (i.e., the attunement of complexities). Indeed, some studies showed 
that the matching of scaling exponents could result just from local, short-term adjustments or 
corrections (Delignières and Marmelat, 2014; Fine et al., 2015; Torre et al., 2013). For 
example, Delignières and Marmelat (2014) analyzed series of stride durations produced by 
participants attempting to walk in synchrony with a fractal metronome. They evidenced a close 
correlation between the scaling exponents of the series of stride durations produced by the 
participants and those of the series of inter-onset intervals of the corresponding metronomes. 
The authors tried to simulate their empirical results by means of a model based on local 
corrections of asynchronies, and showed that this model was able to adequately reproduce the 
statistical matching observed in experimental series. They concluded that walking in synchrony 
with a fractal metronome could essentially involve short-term correction processes, and that the 
close correlation observed between scaling exponents could in such a case just represent the 
consequence of these local corrections.  

Delignières et al. (2016) proposed a more binding method for distinguishing genuine 
complexity matching from local corrective processes. They suggested to base the analysis of 
statistical matching on a multifractal approach, rather than on the monofractal analyses 
previously employed. This choice was motivated by the point developed by Stephen and Dixon 
(2011), arguing that the tailoring of fluctuations that is typical of complexity matching could be 
considered as the product of multifractality, and also by the fact that multifractals allow for a 
more detailed picture of the complexity of time series. In the same vein, Mahmoodi et al. 
(2017) proposed to consider complexity matching as a transfer of multifractality between 
system.  
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Multifractal processes present more complex fluctuations than monofractal series, and cannot 
be characterized by a single scaling exponent. In multifractal series subsets with small and 
large fluctuations scale differently, and their description requires a hierarchy of scaling 
exponents (Podobnik and Stanley, 2008). Delignières et al. (2016) proposed to assess the 
statistical matching through the point-by-point correlation function between the sets of scaling 
exponents that characterize the coordinated series. More precisely, they proposed to assess this 
correlation function over different ranges of scales in the series, in first over the entire range of 
available intervals (e.g., from 8 to N/2, N representing the length of the series), and then over 
more restricted ranges, progressively excluding the shortest intervals (i.e., from 16 to N/2, from 
32 to N/2, and then from 64 to N/2). The authors supposed that if synchronization is based on 
local corrections, the statistical matching in long intervals is just the consequence of the short-
term, local coupling between the two systems. As local corrections between unpredictable 
systems remains approximate, correlations should dramatically decrease when intervals of 
shorter durations are taken into consideration. In contrast, in the case of genuine complexity 
matching, the synchronization between systems is supposed to emerge from interactions across 
multiple scales. The authors hypothesized to find in this case close correlations, even when 
considering the entire range of intervals, from the shortest to the longest (Delignières et al., 
2016). 

Almurad et al. (2017) and Roume et al. (2018) proposed another method, the Windowed 
Detrended Cross-Correlation analysis (WDCC), based on the analysis of cross-correlations 
between the series produced by the two systems. In this method, the series is divided into 
intervals of short length (e.g., 15 data points), and detrended within each interval. The local 
cross-correlation function is then computed within each interval (e.g. from lag -10 to lag 10), 
and averaged over all intervals, yielding an averaged windowed detrended cross-correlation 
function (WDCC). Windowing allows focusing on local synchronization processes, and 
detrending controls the effect of local trends, which tends to spuriously inflate cross-
correlations. Similar approaches were already employed in other papers, albeit differing in 
some methodological settings (Coey et al., 2016; Delignières and Marmelat, 2014; Den Hartigh 
et al., 2018; Konvalinka et al., 2010).  

WDCC allows distinguishing complexity matching from synchronization processes based on 
discrete asynchronies corrections: in the first case the cross-correlation function presents a 
positive peak at lag 0, whereas in the second case one obtains positive peaks at lags -1 and 1, 
and a negative peak at lag 0 (Almurad et al., 2017; Konvalinka et al., 2010; Roume et al., 
2018). Additionally, complexity matching seems characterized by quite moderate levels of lag 
0 cross-correlation, in contrast with those expected in continuous coupling models (Coey et al., 
2016; Delignières and Marmelat, 2014).  

Almurad et al. (2017) used these two methods for clarifying the nature of synchronization in 
side-by-side walking. In this experiment the authors applied these tests on series collected in 
three conditions: independent walking, side-by-side walking, and arm-in-arm walking. They 
evidenced clear signatures of complexity matching in the two last conditions: In both cases the 
correlation functions between multi-fractal spectra remained significant, whatever the range of 
intervals considered, and the WDCC functions showed a positive peak at lag 0. Additionally, 
this experiment showed that complexity matching was more intense in arm-in-arm than in side-
by-side walking.  
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The hypotheses that are tested in the present work derive from the preceding considerations. 
Our goal was to investigate the possible restoration of complexity in deficient systems. We 
supposed, as indicated by Hausdorff et al. (1997), that aging should result in a decrease of the 
complexity of locomotion, as compared with young and healthy persons.  

1. If an older person is invited to walk in synchrony, arm-in-arm with a healthy partner, we 
should observe a complexity matching effect within the dyad. 

2. Considering the asymmetry of complexities, complexity matching should result in an 
increase of complexity in the older person. 

3. A prolonged training of walking in synchrony with healthy partners should induce a 
perennial restoration of complexity in older persons.  

2. Materials and Methods 

2.1.Participants 

24 participants (7 male and 17 female, mean age: 72.46 yrs ± 4.96) were involved in the 
experiment. They were recruited in local retiree associations, and could be considered as 
presenting a normal aging. They were free from disease that could affect gait, including any 
neurological, musculoskeletal, cardiovascular, or respiratory disorders, and had no history of 
falls. They were randomly assigned to two groups: an experimental group (N = 12, 2 male and 
10 female, mean age: 72.83 yrs ± 6.01, mean weight: 64.25 kg ± 10.89, mean height: 162.92 
cm ± 6.02), and a control group (N = 12, 5 male and 7 female, mean age: 72.08 yrs ± 3.87, 
mean weight: 69.91 kg ± 8.63, mean height: 166.50 cm ± 10.39). All work was conducted in 
accordance with the 1964 Declaration of Helsinki, and was approved by the Euromov 
International Review Board (n°1610B). Participants signed an informed consent and were not 
paid for their participation. 

2.2. Experimental procedure 

The experiment was performed around an indoor running track (circumference 200m). 
Participants were submitted to a walking training during four consecutive weeks, herein noted 
as week 1, week 2, week 3, and week 4. Each week comprised three training sessions, 
performed on Monday, Wednesday, and Friday.  

Each week, the Monday session began with a solo sequence, during which the participant was 
instructed to walk individually around the track, as regularly as possible, at his/her preferred 
speed, for 15 minutes. The aim of this solo sequence was to assess the complexity of the stride 
duration series produced by the participant. This solo sequence was performed at the beginning 
of each week, in order to avoid any effect of fatigue.  

Then participants performed during each week three duo sequences in the Monday session and 
four in the Wednesday and Friday sessions. During these sequences, they were invited to walk 
with the experimenter, for 15 minutes. All participants walked with the same experimenter 
(female, 46 yrs). This methodological choice was motivated by the aim of standardizing 
experimental conditions among participants. In the experimental group, the participant walked 
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arm-in-arm with the experimenter, and was explicitly instructed to synchronize its steps with 
those of the experimenter during the whole trial. In the control group, the participant and the 
experimenter walked together, without any instruction of synchronization. Note that this 
control condition cannot be assimilated to the side-by-side condition used by Almurad et al. 
(2017), in which participants were explicitly instructed to synchronize heel strikes. In both 
groups, the experimenter was instructed to adapt her velocity to that spontaneously adopted by 
the participant.  

Participants had a resting period of at least 10 minutes between two successive sequences. Each 
participant performed 44 duo sequences during the whole training program (i.e., 11 walking 
hours, approximately 67 km). Note that all participants performed approximately the same 
amount of walk (in terms of duration). The experimental and control groups differed only by 
the imposed synchronization with the experimenter.  

Finally, a solo sequence (post-test) was performed two weeks after the end of the training 
program (i.e. in week 7).  

2.3. Data collection 

Data were recorded with two force sensitive resistors (FSR), integrated in soles at heel level. 
These sensors where wired connected to a Schmitt trigger (LM 393AN), a signal conditioning 
device that digitally shape the analogic signal of FSR sensors. This device removes noise from 
the original signal and turns the FSR sensors in on/off switches. The output of the Schmitt 
trigger was connected to the GPIO interface of a Raspberry Pi model A+. Then, a Wi-Fi dongle 
(EDIMAX EW7811Un) was plugged in the USB port of the Raspberry and configured as a 
Hotspot, allowing to launch and remote the device with another. The Schmitt trigger, the 
Raspberry Pi and a battery (2000 mAh) where packed in a small box entering in a waist bag 
that was wear on the belt by the participants. 

On the software side, the Raspberry Pi was powered by the 2016 February 9th version of the 
Raspbian distribution. To retrieve the data we wrote a script in Python 3 language, using the 
internal clock of the Raspberry to time each heel strike, and then to compute stride durations 
series.  

2.4. Statistical analyses 

In the present paper we focused on the series of right stride durations. The raw series comprised 
700 to 1300 data points. Fractal analyses are known to be highly sensitive to the presence of 
local trends in the series, which tend to spuriously increase the assessed level of long-range 
correlation. In the present experiment, such local trends are related to transient periods of 
acceleration or deceleration. These local trends are essentially present in the first part of the 
series, where participants seek for their most comfortable velocity, and at the end of the 
sequences, essentially due to fatigue, or boredom. The corresponding segments were deleted 
before analysis.  

For solo sequences the resulting series had an average length of 924 points (+/- 148, max = 
1257, min = 448), and for duo sequences 963 points (+/-64, max= 1198, min = 397). One could 
consider that most series satisfied the minimal length required for a valid application of fractal 
analyses (Delignieres et al., 2006).  
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We assessed the complexity of each series with the Detrended Fluctuation Analysis (Peng et 
al., 1994). In the application of DFA, we used intervals ranging from 10 to N/2 (N representing 
the length of the series). We applied the evenly spaced algorithm proposed by Almurad and 
Delignières (2016), which was shown to significantly enhance the accuracy of the original 
method.  

In order to assess the effect of training on the complexity of series in solo sequences, we used a 
two-way ANOVA 2 (group) X 5 (week), with repeated measurement on the second factor 
(including the 4 training weeks and the post-test). Probabilities were adjusted by the Huyn-Feld 
procedure.  

The analysis of synchronization during duo sequences was performed using the methods 
proposed by Delignières et al. (2016), Almurad et al. (2017) and Roume et al. (Roume et al., 
2018). We first analyzed the multifractal signature proposed by Delignières et al. (2016). In this 
method the series are first analyzed by means of the Multifractal Detrended Fluctuation 
analysis (Kantelhardt et al., 2002). MF-DFA was successively applied considering four 
different ranges of intervals: from 8 to N/2, 16 to N/2, 32 to N/2, and 64 to N/2. We used q 
values ranging from -15 to 15, by steps of 1. The obtained generalized Hurst exponents were 
then converted into the more classical multifractal formalism by simple transformations 
(Kantelhardt et al., 2002). We finally obtained singularity spectra, relating the fractal dimension 
of the support of singularities in the measure f(α) to the Lipschitz-Hölder exponents α(q). We 
then computed for each q value the correlation between the individual Lipschitz-Hölder 
exponents characterizing the two coordinated systems, α1(q) and α2(q), respectively, yielding a 
correlation function r(q). As previously explained, we expected to find in all cases a correlation 
function close to 1, for all q values, when only the largest intervals were considered (i.e. 64 to 
N/2). Increasing the range of considered intervals should have a negligible impact on r(q) when 
coordination was based on a complexity matching effect. In contrast, if coordination was based 
on local corrections, a decrease in r(q) should be observed, as shorter and shorter intervals were 
considered.  

Then we computed for each dyad WDCC functions, from lag -10 to lag 10. We used the sliding 
version of the method, proposed by Roume et al. (2018). Consider two series I1(n) and I2(n) 
with length N. The main principle is to compute the cross-correlation function, from lag –kmax 
to lag kmax, considering windows of length L. The first considered window is the interval 
[I1(kmax+1), I1(kmax+1+L)]. The cross-correlation of lag k, k = –kmax,…, 0, …, kmax, is the 
correlation r(k) between this first interval and the interval [I2(kmax+1+k), I2(kmax+1+L+k)]. The 
first interval is then lagged by one point, and a second cross-correlation function is computed. 
This process is repeated up to the last interval [I1(N-kmax-L-1), I1(N-kmax-1)]. Before the 
computation of each cross-correlation functions, the data within the window in I1(n) and the 
lagged windows in I2(n) are linearly detrended. Then the cross-correlation functions are point-
by-point averaged. Before averaging, the cross-correlation coefficients r(k) are transformed in 
z-Fisher scores. Then the z-coefficients are averaged over all windows and backward 
transformed in correlation metrics.  

Because WDDC uses very narrow windows and excludes linear trends, one can difficultly 
expect to find significant correlations, in the classical sense (i.e., on the basis of the Bravais-
Pearson’s correlation test). WDCC provides local traces of the original correlations, and we are 
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more interested in the sign of the average WDCC coefficients, than in their statistical 
significance. Therefore we tested the signs of averaged coefficients with two-tailed location t-
tests, comparing the obtained values to zero (Roume et al., 2018).  

3. Results 

We present in Figure 1 the evolution of the average α-DFA exponents computed for 
participants in solo sequences, for the two groups, over the 4 training weeks and the post-test. 
The ANOVA revealed a significant interaction effect between Group and Week (F(4,88) = 
5.084, p = .001, partial η2 = 0.19). The main effect of Week was also significant (F(4,88) = 
6.44, p = .00014, partial η2 = 0.23). A Fisher LSD post-hoc test showed a significant difference 
between, on the one hand, the average α-DFA obtained in the experimental group during the 
fourth week and the post-test, and on the other hand the entire set of other average results.  

 
Figure 1: Average α-DFA exponents computed for participants in solo sequences (red: 
experimental group, blue: control group), over the 4 training weeks and the post-test. Error 
bars represent standard deviation. ** : p<. 01. 

 
We report in Figure 2 the evolution of individual α-DFA exponents, obtained in solo sequences 
over the 4 training weeks and the post-test, for the participants of the experimental group. A 
detailed examination of this graph reveals some inter-individual differences in the evolution of 
the scaling parameter. The increase of α exponent at the beginning of the fourth week appeared 
clearly for 6 participants (# 5, 2, 3, 5, 6, 9, 12), but it occurred early (at the beginning of the 
third week) for participants 7 and 8. Participant 4 presented at the beginning of the experiment 
an α exponent close to 1.0, and in that case the protocol had no noticeable effect. One could 
also note the contrasted evolutions of the exponents between the fourth week and the post-test, 
with a mix of increases and decreases among participants.  
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Figure 2: Individual α-DFA exponents in solo sequences, over the 4 training weeks and the 
post-test, for the 12 participants of the experimental group.  

 
Figure 3 presents the evolution of the average α-DFA exponents during the four weeks of the 
experiment, in the solo and the duo sequences. Because the average α-DFA exponents for the 
experimenter were obtained from a single individual, the analysis of variance cannot be applied 
in the present case. These figures, however, suggest a close convergence of the mean exponents 
of the experimenter and those of the participants in the experimental group, over the four 
weeks. Note also that this convergence appears very early during the experiment, in the first 
week. This convergence appears less obvious in the control group. We present in Table 1 the 
average correlations between the α-DFA exponents of the participants and the corresponding 
exponents for the experimenter, computed over the four weeks, in the two groups. High 
correlations were observed in the experimental group, revealing a close statistical matching 
between the series simultaneously produced by the participants and the experimenter. The 
following analyses will check whether this statistical matching corresponds to a genuine 
complexity matching effect, or rather to a more local mode of synchronization. In contrast, 
correlations appeared moderate and extremely variable in the control group, suggesting a poor 
statistical matching between series.  
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Figure 3: Evolution of the average α-DFA exponent during the four weeks (red: experimenter, blue: 
participants, squares: solo sequences, circles: duo sequences). Left: experimental group; right: 
control group.  

 

Interestingly, one could observe in Figure 3 that in the experimental condition, the 
experimenter seems poorly affected by synchronization. In contrast, participants appear 
strongly attracted towards the experimenter, as predicted by the complexity matching 
framework. In contrast, in the control condition the experimenter and the participants seem 
converging towards a median level of complexity, halfway between their solo levels.  

Table 1: Average correlation between the α-DFA exponents of the participants and the 
corresponding exponents for the experimenter (standard deviations in brackets), computed over 
the four weeks of the experimental protocol.  

 ____________________________________________________________  
 Week 1 Week 2 Week 3 Week 4 
 ____________________________________________________________  
Experimental group 0.95 0.97 0.96 0.98 
 (0.05) (0.04) (0.05) (0.01) 
 ____________________________________________________________  
Control group 0.34 0.51 0.33 0.44 
 (0.44) (0.30) (0.39) (0.33) 
 ____________________________________________________________  

	
We present in Figure 4 the average correlation functions r(q) between the multifractal spectra, 
for the experimental group (top row) and the control group (bottom row), and for the four 
weeks. Correlation coefficients are plotted against their corresponding q values. Four 
correlation functions are displayed, according to the shortest interval length considered during 
the analysis (i.e.: 8, 16, 32, or 64). For the experimental group, the correlation functions are 
significant, whatever the considered range of intervals. This result suggests the presence of a 
complexity matching effect within the dyads (Delignières et al., 2016). Note that the 
complexity matching effect appears from the first week of the experiment, and tends to become 
stronger over weeks. In contrast, in the control group, the correlation functions exhibit lower, 
and often non-significant values, especially when the largest ranges of intervals are considered 
(i.e. 8 to N/2 and 16 to N/2). 
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Figure 4: Correlation functions r(q), for the four ranges of intervals considered (8 to N/2, 16 to 
N/2, 32 to N/2, and 64 to N/2), for the experimental group (top row) and the control group (bottom 
row), and over the four weeks. q represents the set of orders over which the MF-DFA algorithm 
was applied.  

 
The averaged WDCC functions are reported in Figure 5, for the experimental group (top row) 
and the control group (bottom row), and for the four weeks. These functions systematically 
present a peak at lag 0, which appears higher for the experimental group (about 0.3) than for 
the control group (about 0.15). In both groups and all weeks, however, the location t-tests, 
comparing the obtained values to zero, are significant.  The rather moderate values obtained in 
the experimental group are conformable to that previously obtained in similar experiments 
(Coey et al., 2016; Delignières and Marmelat, 2014; Den Hartigh et al., 2018; Konvalinka et 
al., 2010), and to that expected from a complexity matching synchronization (Almurad et al., 
2017; Roume et al., 2018). These results provide evidence that synchronization, in this 
condition, is dominated by a complexity matching effect. In contrast, the values observed in the 
control group are very low, and suggest a quite poor, or just intermittent synchronization within 
dyads.  
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Figure 5: Averaged WDCC functions, from lag -10 to lag 10, for the experimental group (top row) 
and the control group (bottom row), and for the four weeks. Stars (*) indicate coefficients significantly 
different from zero.  

Another interesting indication is provided by the cross-correlation values at lag -1 and lag 1, 
which appear positive and significantly different from zero in the experimental group. This 
shows that synchronization, while clearly dominated by a complexity matching effect, also 
involves cycle-to-cycle discrete correction processes: both partners tend to (moderately) correct 
their current step duration on the basis of the asynchrony they perceived at the preceding heel-
strike (see Roume et al., 2018, for a deeper analysis of WDCC properties). One could note a 
dissymmetry in these correction processes, the lag 1 values being higher than the lag-1 value: 
According to our conventions, this indicates that participants corrected his/her step duration to 
a greater extent than the experimenter did. Additionally this dissymmetry, negligible during the 
first week, becomes more and more salient over weeks. In contrast, we found no trace of 
correction processes in the control condition.  

4. Discussion 

The three hypotheses that motivated this experimental work are validated: 

1. When an older person is invited to walk in synchrony, arm-in-arm, with a healthy partner, 
synchronization is mainly achieved through complexity matching. This hypothesis was 
validated by the two analysis methods we applied to the collected series: The correlation 
functions between multi-fractal spectra remained significant, whatever the range of exponents 
considered, revealing a global, multi-scale synchronization between series, and the WDCC 
functions exhibited a typical positive peak at lag 0, suggesting an immediate synchronization 
between systems. WDCC results showed that synchronization was clearly dominated by a 
complexity matching effect, even if slight cycle-to-cycle correction processes were also 
present, especially for participants, which tended to correct their steps on the basis of previous 
asynchronies. The main important result, at this level, was to show that forced synchronization, 
between systems of different levels of complexity, is based on similar processes than forced 
synchronization between systems of similar complexities (Almurad et al., 2017). Interestingly, 
the complexity matching effect appeared immediately, from the very first duo sequences, from 
the moment that the instruction of close synchrony with the experimenter was provided and 
respected. 
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2. Considering two systems of different levels of complexity, complexity matching results in 
an attraction of the less complex system towards the more complex one. This result is one of 
the most interesting of this experiment, clearly in line with the complexity matching theory 
(Mahmoodi et al., 2017). One could also argue that a complex system being intrinsically more 
stable, this attraction results from the relative instability of the less complex one. However, the 
results in the control group (both systems being equally attracted by each other) seems 
contradicting this alternative explanation.  

3. A prolonged experience of complexity matching, between two systems of different levels of 
complexity, allows enhancing the complexity of the less complex system, this effect being 
persistent over time. In the context of our experiment this result suggests a possible restoration 
of complexity in older people. Note that we tested the persistence of this restoration through a 
unique post-test, performed two weeks after the end of the training sessions. Further 
investigations are necessary for analyzing the persistence of this effect, its probable decay over 
time, and the effects of an additional training session when a significant decay is observed (one 
could hypothesize that restoration could occur more quickly during a second administration of 
the rehabilitation protocol).  

As far as we know, this is the first evidence for a possible restoration of complexity in deficient 
systems. Recently Warlop et al. (2017) evoked the effects of Nordic Walking for restoring 
complexity in patients suffering from Parkinson’s disease, but their experiment focused 
essentially on the immediate effects of the adoption of a specific locomotion pattern, rather 
than on the long-term effects of a rehabilitation protocol.  

In this experiment a statistical effect was obtained at the beginning of the fourth week. During a 
pre-testing period, we tried to pursue training up to the obtaining of an increase of long-range 
correlations. We systematically obtained this effect at the beginning of the fourth week, and 
decided to limit the protocol to four successive weeks. However, the analysis of individual 
results shows that this restoration could occur early, at the beginning of the third week. The 
most important observation is that complexity matching does not spontaneously induce a 
restoration of complexity in solo sequences, and a repeated and prolonged experience of 
complexity matching seems necessary. The results of the control group show that an intense 
training in walking is not sufficient. Walking in close synchrony with a healthy partner appears 
a key factor in the restoration process, and our analyses about the duo sequences suggest that 
complexity matching may be the essential ingredient.  

Some limitations of the present study have to be pointed out. First, it should be noticed that we 
evidence in this experiment the possibility of a restoration of complexity, and we just suppose, 
on the basis on previous assumptions, that this should result in a more adaptable and stable 
locomotion, and a decrease of fall propensity. Longitudinal studies, using clinical tests and 
systematic follow-up survey, should be necessary for confirming this hypothesis. However, this 
was clearly beyond the scope of the present work.  

Second, this experiment was extremely difficult to organize (due to the availability of the 
indoor track), and was very challenging for both the participants and the experimenter. It took 
up to 14 months for performing the whole protocol for the 24 participants. For practical 
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reasons, we decided to design the protocol with a single experimenter, who performed all 
sequences with all participants. This had the advantage of standardizing the experimental 
conditions, but introduced a possible bias, as our results could be related to some hidden and 
unsuspected qualities of this specific person. It seems obviously necessary to replicate these 
results with other accompanying persons. A second experiment is currently engaged in our 
laboratory for clarifying this point.  

Finally, considering the intrinsic difficulty of the experimental protocol, we recruited 
participants that presented a normal, non-pathological aging, and consequently a rather 
moderate loss of complexity. The average DFA exponent characterizing the step duration series 
of our participants was of about 0.83, clearly higher than the mean value reported by Hausdorff 
et al. (1997) in their group of elderly participants (0.68). Further investigations are required for 
adapting and testing this kind of protocol with patients suffering of more pronounced 
locomotion diseases and greater losses of complexity.  

In conclusion, this experiment should not be considered a clinical study, aiming at validating 
and promoting a rehabilitation strategy, but rather a fundamental work testing a theoretical 
hypothesis (the restoration of complexity in living organisms through complexity matching). 
We hope, obviously, that it could inspire clinicians for developing, validating and diffusing 
effective rehabilitation protocols. Currently most research in locomotion rehabilitation focuses 
on sophisticated devices, involving virtual reality, metronomic guidance, robotic assistance, 
etc. We are not sure, however, that genuine complexity matching could occur in the interaction 
with an artificial device (Delignières and Marmelat, 2014). Our experiment suggests that 
rehabilitation could be achieved with simpler, less expensive and also more humane means. We 
think especially to countries and situations where the access to sophisticated medical care 
remains difficult, and often unconceivable. We would be proud that our work can give 
scientific support to this simple prescription: “Take your eldest's arm and walk together”. 
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Concluding	remarks	
The	 results	 of	 the	 present	 experiment	 were	 obviously	 expected.	 They	 show	 that	 a	
restoration	of	complexity	in	deficient	systems	could	be	conceivable.	However,	we	evoke	in	
the	conclusion	of	the	paper	the	limitations	of	our	study.	Our	goal	was	not	to	propose	and	
test	 an	 effective	 protocol	 of	 rehabilitation,	 but	 rather	 to	 test	 a	 more	 fundamental	
hypothesis,	 related	 to	 the	 effects	 of	 the	 prolonged	 experience	 of	 complexity	 matching.	
This	experiment	was	more	driven	by	theoretical	issues	than	by	clinical	purposes.		

The	 proposed	 protocol	 was	 very	 challenging,	 and	 as	 such	 we	 decided	 to	 recruit	
participants	 from	 a	 population	 presenting	 a	 “normal	 aging”,	 without	 any	 gait	 disorder.	
The	expected	complexity	deficit	was	present,	but	rather	moderate,	and	we	cannot	provide	
any	information	about	the	effect	of	this	kind	of	protocol	of	actually	frail	patients.		

A	 second	 problematic	 point	 is	 obviously	 the	 fact	 that	 this	 result	 was	 obtained	 using	 a	
unique	“healthy	companion”.	The	generalization	of	this	result	remains	difficult,	as	it	was	
obtained	in	very	specific	and	personalized	conditions.	As	mentioned	in	the	paper,	it	could	
be	 related	 to	 some	 “hidden”	 qualities	 of	 the	 experimenter,	 at	 the	 relational	 or	
motivational	 levels.	 A	 second	 experiment	 is	 currently	 in	 progress,	 in	 order	 to	 replicate	
this	results	with	others	experimenters.		

Despite	these	limitations,	this	result	remains	essential	at	a	more	theoretical	level:	the	loss	
of	 complexity	 cannot	 be	 considered	 an	 ineluctable	 phenomenon,	 and	 a	 restoration	 of	
complexity	 could	 be	 conceivable.	 A	 more	 detailed	 analysis	 of	 the	 series	 produced	 by	
participants	 is	 necessary	 for	 a	 better	 understanding	 of	 this	 restoration	 process.	 Our	
results	 focus	 at	 the	 behavioral	 level,	 and	 we	 evidenced	 a	 significant	 increase	 of	 the	
complexity	 of	 stride	 interval	 series.	 The	 next	 step	 should	 be	 to	 infer	 the	 causes	 of	 this	
evolution,	in	terms	of	interactions	within	the	system,	degeneracy	properties,	etc.		
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General	conclusion	
	
	

This	thesis	combines	theoretical,	methodological,	and	experimental	contributions.	On	the	
theoretical	 side,	we	 tried	 to	 deepen	 the	 analysis	 of	 the	 complexity	matching	 effect.	We	
especially	 tried	 to	 establish	 the	 distinction	 between	 statistical	 matching	 and	 genuine	
complexity	matching.	For	a	long	time	the	matching	of	scaling	exponents	was	considered	a	
satisfying	signature	for	the	presence	of	a	complexity	matching	effect	 in	synchronization.	
Delignières	 and	Marmelat	 (2014),	 however,	 showed	 that	 the	matching	 of	 mono-fractal	
exponents	 could	 just	 represent	 the	 consequence	 of	 local	 correction	 processes.	 Genuine	
complexity	 matching	 seems	 related	 to	 a	 more	 global,	 multi-scale	 synchronization,	 in	
which	multi-fractal	synchronization	a	likely	to	play	a	central	role.		

At	 the	 methodological	 level,	 we	 introduced	 two	 novel	 methods,	 the	 Multifractal	
Correlation	function,	and	the	Windowed	Detrended	Cross-correlation	analysis.	These	two	
methods	exploit	the	previous	theoretical	analysis,	and	allow	disentangling	the	respective	
influences	of	short-term	correction	processes	and	genuine	complexity	matching.	The	first	
method	is	based	on	the	theoretical	link	between	multi-fractals	and	complexity	matching.	
This	method	computes	correlation	functions	between	the	multifractal	spectra	of	the	two	
synchronized	 series,	 considering	 different	 ranges	 of	 scales.	 We	 hypothesized	 that	 the	
cross-correlation	 function	 should	 be	 significant	 in	 all	 cases	 when	 only	 long-term	 scale	
were	 investigated.	However,	when	shorter	and	shorter	 intervals	were	 introduced	 in	 the	
analysis,	we	supposed	that	correlations	should	lose	significance	in	the	case	of	short-term	
corrective	 processes	 and	 conversely	 maintain	 a	 significance	 level	 in	 the	 complexity	
matching	case.	This	method	allows	exploring	the	intimacy	of	synchronization,	far	beyond	
the	 global	 level	 of	 mono-fractal	 exponents.	 The	 Multifractal	 Correlation	 function,	
however,	presents	the	disadvantage	to	be	only	applicable	at	the	group	level.		

In	 contrast,	 the	 second	 method	 could	 be	 considered	 very	 simple,	 exploiting	 a	 simple	
cross-correlation	 function,	 between	 the	 series	 produced	 by	 the	 two	 synchronized	
systems.	We	enriched	this	approach	by	windowing	and	detrending	procedures,	in	the	aim	
to	focus	on	local	processes	and	to	avoid	biases	related	to	non-stationarities	in	the	series.	
The	 formal	 analysis	 we	 conducted	 on	 this	 method	 allowed	 to	 clearly	 establish	 the	
signatures	that	could	be	expected	from	local	correction	processes,	on	the	one	hand,	and	
from	 complexity	matching	 on	 the	 other.	Note	 also	 that	 this	method	 is	 applicable	 at	 the	
dyad	level.		

Quite	 surprisingly,	 these	 methods	 allowed	 to	 evidence	 that	 in	 most	 situations,	
synchronization	was	achieved	through	a	mix	of	these	processes.	Even	if	it	seems	possible	
to	 determine	 a	 dominance	 of	 one	 process	 on	 the	 other,	 especially	 for	 asynchrony	
correction	 in	 synchronized	 tapping,	 and	 complexity	matching	 in	 synchronized	walking,	
the	 second	 process	 still	 appears	 at	work,	 albeit	 to	 a	 lesser	 extend.	 Further	 research	 is	
necessary	for	determining	the	factors	that	explain	the	emergence	of	these	processes,	and	
their	mutual	balance.		
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At	the	experimental	level,	our	most	spectacular	result	is	the	restoration	of	complexity	we	
observed	in	the	last	work.	We	are	obviously	aware	of	the	clinical	interest	of	this	result,	in	
terms	of	frailty	and	fall	prevention,	but	we	are	also	aware	of	the	limits	of	this	experiment,	
as	 expressed	 in	 the	 conclusion	 of	 the	 previous	 chapter.	 Our	 main	 goal	 was	 to	 test	 a	
hypothesis	directly	linked	to	the	complexity	matching	framework,	and	to	that	end	it	was	
necessary	(1)	to	check	for	the	presence	of	a	complexity	matching	effect	 in	synchronized	
walking	 between	 young	 and	 healthy	 participants,	 and	 (2)	 to	 test	 the	 effects	 of	 the	
prolonged	 experience	 of	 complexity	 matching,	 between	 two	 systems	 characterized	 by	
contrasted	 levels	of	 complexity.	Currently,	a	number	of	papers	 investigate	 the	effects	of	
the	 entrainment	 of	walking	with	metronomes,	 and	 especially	with	 variable,	 fractal-like	
metronomes.	The	hypothesis	 that	underlies	 these	experiments	 is	 that	such	metronomes	
mimic	 the	 “natural”	 variability	 and	 should	help	 to	 reinforce	walking	dynamics.	None	of	
those	 papers,	 however,	 evidenced	 a	 restoration	 of	 complexity,	 nor	 a	 retention	 effect	 as	
that	observed	in	our	experiment.	As	previously	explained,	we	think	that	artificial	devices,	
mimicking	a	“natural”	variability,	are	unable	 to	generate	 the	complexity	matching	effect	
which	seems	necessary	for	restoring	complexity	in	deficient	systems.		
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Substantial summary 
This thesis work focuses on interpersonal coordination. Several theoretical frameworks have 
attempted to account for the processes underlying inter-individual synchronization. Cognitivist 
theories, derived from works on the synchronization of discrete movements with a regular 
metronome (Repp, 2005) suggest that interpersonal synchronization is achieved through a 
discrete and mutual correction of asynchronies between the two partners (see for example 
Konvalinka et al., 2010). Dynamic theories, mainly supported by bimanual coordination studies 
(Haken et al., 1985), have been extended to interpersonal coordination and are based on the 
assumption of a continuous coupling between the two systems, designed as self-sustaining 
oscillators (Schmidt et al., 1990). Finally, the complexity matching model, is based on the 
assumption that the transfer of information is optimized when two interacting systems have 
similar complexities (West et al., 1999). In this context inter-system synchronization is supposed 
to emerge from a multi-scale coordination between the two interacting systems (Marmelat & 
Delignières, 2012). 
 
These three theoretical frameworks have received convincing empirical validations, most often 
in very specific experimental tasks. Cognitive models of mutual correction of asynchrony thus 
seem to adequately account for synchronization in discrete tasks such as tapping, and the model 
of oscillators coupling in continuous tasks such as pendulum oscillations. The essential question 
that we asked ourselves was to determine whether these three theoretical frameworks represent 
alternative interpretative frameworks of a single reality, or if we could conceive a multiplicity of 
synchronization processes, depending in particular on the nature of the implemented tasks. The 
first objective of this thesis was to develop statistical tests to identify in the experimental data the 
typical signatures of these three modes of coordination. 
 
We propose two procedures: the first one is based on the analysis of the correlations between the 
multifractal spectra characterizing the series produced by the two interacting systems, and the 
second on a windowed cross-correlation analysis, which makes it possible to reveal the local 
processes of synchronization. 
 
The development of the first method was prepared by validating an improvement of Detrended 
Fluctuation Analysis (DFA). The DFA, which has been in operation for almost 30 years, 
calculates scaling invariants by estimating the regression slope of a bi-logarithmic graph plotting 
the interval lengths in the series on the abscissa and the mean standard deviations calculated for 
each interval length on the ordinate. The logarithmic distribution of the points logically induces a 
more massive contribution of the values recorded for the longest intervals. We propose to rectify 
this bias by calculating the regression on the basis of regularly spaced points on the logarithmic 
scale. This adjustment of the DFA was previously exploited by a number of authors, but its 
interest in the traditional method had never been evaluated. We therefore proposed a precise 
formalization of this method (known as evenly-spaced DFA), and we were able to show that it 
made it possible to reduce by 36% the variability of the estimates, compared to the original 
method. We also show that the variability of estimates produced by the evenly-spaced DFA with 
256-point series is equivalent to that produced by the DFA with 1024-point series [Almurad, 
Z.M.H. & Delignières, D. (2016). Evenly spacing in Detrended Fluctuation Analysis. Physica A, 
451, 63-69.]. 
 
The first interpersonal coordination analysis method we have developed exploits Multifractal 
Detected Fluctuation Analysis, a variant of the DFA, to which we have obviously added the 
previously validated evenly spacing. In the last ten years or so, complexity matching was mainly 
characterized by the presence of a strong correlation between the characteristic mono-fractal 
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exponents of the series produced by the two interacting systems (Stephen & Dixon, 2008). It has 
however been shown that this signature was insufficient, being in fact observed in all cases, from 
the moment when two systems entered in synchronization (Delignières & Marmelat, 2014). The 
method we propose aims at calculating the correlation functions between the multifractal spectra 
produced by the two interacting systems. These correlation functions are calculated first of all 
over the available intervals, then progressively over smaller ranges, focusing on the longest 
intervals. We assume that in all cases the correlation function should be significant when only 
long intervals are taken into consideration. If coordination is based on mutual correction of 
asynchronies, correlations should decrease as shorter intervals are considered. On the other hand, 
in the case of a continuous coupling or of complexity matching, these correlations should remain 
significant. The results confirm these hypotheses, and show in particular that the synchronization 
of walking with a fractal metronome is performed on the basis of a correction of asynchrony 
[Delignières, D., Almurad, ZMH, Roume, C. & Marmelat, V. (2016). Multifractal signatures of 
complexity matching. Experimental Brain Research, 243 (10), 2773-2785]. 
 
The second method consists in calculating the local cross-correlation function between the two 
series produced by the interacting systems. This correlation function is calculated over intervals 
of 15 points, on lags of -10/+10. The intervals considered are systematically detrended before 
calculating the cross-correlation coefficients. The calculation is carried out in a sliding manner 
over all the series, and an average function is then calculated. This method, called Windowed 
Detrended Cross-Correlation Analysis (WDCC), was introduced in a first article [Almurad, 
Z.M.H., Roume, C. & Delignières, D. (2017). Complexity matching in side-by-side walking. 
Human Movement Science, 54, 125-136. ], and then formally analyzed in a second [Roume, C., 
Almurad, Z.M.H., Scotti, M., Ezzina, S., Blain, H. and Delignieres, D. (2018). Windowed 
detrended cross-correlation analysis of synchronization processes. Physica A, 503, 1131-1150.]. 
We show that the three processes assumed by the three theoretical frameworks previously 
exposed are revealed by separate signatures. The mutual correction of asynchronies is revealed 
by the presence of positive cross-correlations at lags -1 and 1. This signature is notably observed 
in an interpersonal tapping situation. Continuous coupling must produce a positive and 
significant lag 0 cross-correlation (around 0.5). This signature is obtained on bimanual 
coordination data, but never on interpersonal coordination data.  
 
Finally, the complexity matching is supposed to produce a positive cross-correlation at lag 0, but 
more modest than in the case of a continuous coupling. This result is highlighted for 
synchronized walking. Finally, our analyses show that the different processes are not exclusive, 
but can be exploited simultaneously. Thus in an interpersonal tapping task the synchronization is 
dominated by the correction of the asynchronies, but a cross-correlation of the internal clocks 
also seems present, supposing a certain degree of complexity matching. On the other hand, in 
synchronized walking, if the coordination is dominated by the complexity matching, 
asynchronous correction processes also seem to be present. Synchronization can thus reveal 
hybrid mechanisms mixing, in particular, correction of asynchronies and complexity matching. 
 
These studies have also allowed us to revisit a number of previous works. We show that if the 
synchronization of discrete tasks such as tapping relies on discrete correction processes of 
asynchronies, the synchronization of continuous tasks such as pendulum oscillations is 
essentially based on the same principles of discrete correction, and not on a continuous coupling 
of the effectors. An important result of these studies is the demonstration that synchronized 
walking implements a dominant effect of complexity matching, all the more significant as the 
two partners are closely linked. We show that complexity matching is more intense in arm-to-
arm-down than in walking side-by-side. 
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The previous results allowed us to initiate a last experiment, intended to test the hypothesis of a 
possible restoration of the complexity of locomotion in the elderly [Almurad, ZMH, Roume, C., 
Blain, H. and Delignières , D. (2018). Complexity matching: Restoring the complexity of 
locomotion in older people through arm-in-arm walking. Frontiers in Physiology - Fractal 
Physiology, 9, 1766]. If in young subjects the analysis of the series of step duration during 
walking reveals 1/f fluctuations, suggesting the optimal complexity of the locomotor system, 
aging is characterized by a loss of complexity of the series of steps, and this loss of complexity 
correlated with falling propensity (Hausdorff et al., 1997). The more general hypothesis of a loss 
of complexity related to age and illness is a fruitful line of research. 
 
As mentioned earlier, the theory of complexity matching assumes that two interacting systems 
tend to align their complexity levels. It also assumes that when two systems of different levels of 
complexity interact, the more complex system tends to attract the least complex, causing an 
increase in complexity in the second (Mahmoodi et al., 2918). We proposed a protocol in which 
older people were invited to walk arm-in-arm with a young companion. Participants were 
exposed to extended training for 4 weeks, with 3 sessions per week, each session consisting of 3 
or 4 16-minute sessions. A control group performed the same training, but without physical 
contact with the accompanying person (walking side by side) and without explicit 
synchronization instructions. 
 
The results show that synchronization between the two partners is achieved through a 
Complexity matching effect. This effect is more intense in the experimental group than in the 
control group. During synchronized walking sequences, there is a clear attraction of the 
complexity of the elderly participants to that of their companion. This effect does not appear in 
the control group. Lastly, prolonged training in a synchronized way makes it possible to restore 
the complexity of locomotion in the elderly. This effect appears only in the experimental group, 
and persists during a post-test performed two weeks after the end of training. This result, in 
addition to reinforcing one of the essential aspects of the theory of complexity matching, opens 
new avenues of research for the design of rehabilitation and fall prevention strategies. 
  



	

137	
	
	
	

Résumé	:	 Plusieurs	 cadres	 théoriques	 rendent	 compte	 des	 processus	 de	 synchronisation	
interpersonnelle.	 Les	 théories	 cognitivistes	 suggèrent	 que	 la	 synchronisation	 est	 réalisée	 par	 le	
biais	d’une	correction	des	asynchronies.	Les	 théories	dynamiques	supposent	un	couplage	continu	
des	 deux	 systèmes,	 conçus	 comme	 oscillateurs	 auto-entretenus.	 Enfin	 le	 complexity	 matching	
repose	 sur	 l’hypothèse	 d’une	 coordination	 multi-échelle	 entre	 les	 deux	 systèmes	 en	 interaction.	
Dans	 un	 premier	 temps,	 nous	 développons	 des	 tests	 statistiques	 permettant	 de	 repérer	 les	
signatures	typiques	de	ces	trois	modes	de	coordination.	Nous	proposons	notamment	une	signature	
multifractale,	basée	sur	l’analyse	des	corrélations	entre	les	spectres	multifractals	caractérisant	les	
séries	 produites	 par	 les	 systèmes	 en	 interaction.	 Nous	 développons	 également	 une	 analyse	 de	
cross-corrélation	fenêtrée,	qui	permet	de	dévoiler	les	processus	locaux	de	synchronisation	mis	en	
œuvre.	Nous	montrons	que	si	la	synchronisation	de	tâches	discrètes	telles	que	le	tapping	repose	en	
effet	 sur	 des	 processus	 de	 correction	 discrète	 des	 asynchronies,	 la	marche	 synchronisée	met	 en	
œuvre	 un	 effet	 dominant	 de	 complexity	 matching.	 Nous	 proposons	 dans	 un	 second	 temps	
d’exploiter	 ce	 résultat	 pour	 tester	 la	 possibilité	 d’une	 restauration	 de	 la	 complexité	 chez	 les	
personnes	 âgées.	 Le	 vieillissement	 a	 été	 caractérisé	 comme	 un	 processus	 de	 perte	 graduelle	 de	
complexité,	et	dans	le	domaine	de	la	marche	cette	perte	de	complexité	corrèle	avec	la	propension	à	
la	 chute.	 La	 théorie	du	complexity	matching	 suppose	que	deux	 systèmes	 en	 interaction	 tendent	 à	
aligner	 leurs	 niveaux	 de	 complexité,	 et	 que	 	 lorsque	 deux	 systèmes	 de	 niveaux	 différents	 de	
complexité	interagissent,	le	système	le	plus	complexe	tend	à	attirer	le	moins	complexe,	engendrant	
un	 accroissement	 de	 la	 complexité	 chez	 le	 second.	 Nous	 montrons,	 dans	 un	 protocole	 au	 cours	
duquel	 des	 personnes	 âgées	 sont	 invitées	 à	 marcher	 bras-dessus-bras-dessous	 avec	 un	
accompagnant	jeune,	que	la	synchronisation	entre	les	deux	partenaires	est	réalisée	au	travers	d’un	
effet	 d’appariement	 des	 complexités,	 et	 que	 l’entrainement	 prolongé	 en	 marche	 synchronisée	
permet	une	restauration	de	la	complexité	de	la	locomotion,	qui	perdure	lors	d’un	post-test	réalisé	
après	 deux	 semaines.	 Ce	 résultat	 ouvre	 de	 nouvelles	 voies	 pour	 la	 conception	 de	 stratégies	 de	
réhabilitation.		

Mots-clés	:	 Coordination	 interpersonnelles,	 appariement	 des	 complexités,	 vieillissement,		
restauration	de	la	complexité	

	

Abstract:	 Several	 theoretical	 frameworks	 could	 account	 for	 interpersonal	 synchronization.	
Cognitive	 theories	 suggest	 that	 synchronization	 is	 achieved	 through	 discrete	 corrections	 of	
asynchronies.	 The	 dynamic	 theories	 suppose	 a	 continuous	 coupling	 between	 the	 two	 systems,	
conceived	as	self-sustained	oscillators.	Finally,	complexity	matching		is	based	on	the	assumption	of	
a	 multi-scale	 coordination	 between	 the	 two	 interacting	 systems.	 As	 a	 first	 step,	 we	 develop	
statistical	tests	 in	order	to	 identify	the	typical	signatures	of	these	three	modes	of	coordination.	 In	
particular,	we	propose	a	multifractal	signature,	based	on	the	analysis	of	correlations	between	the	
multifractal	spectra	characterizing	the	series	produced	by	the	interacting	systems.	We	also	develop	
a	 windowed	 cross-correlation	 analysis,	 which	 aims	 at	 revealing	 the	 nature	 of	 the	 local	
synchronization	processes.	We	show	 that	 if	 the	 synchronization	of	discrete	 tasks	 such	as	 tapping	
relies	 on	 discrete	 correction	 processes	 of	 asynchronies,	 synchronized	 walking	 is	 based	 on	 a	
dominant	effect	of	complexity	matching.	We	propose	in	a	second	step	to	exploit	this	result	to	test	
the	 possibility	 of	 a	 restoration	 of	 complexity	 in	 the	 elderly.	 Aging	 has	 been	 characterized	 as	 a	
process	of	gradual	loss	of	complexity,	and	considering	walking	this	loss	of	complexity	correlates	in	
older	 people	with	 the	 propensity	 to	 fall.	 Complex	matching	 theory	 assumes	 that	 two	 interacting	
systems	 tend	 to	 align	 their	 complexity	 levels,	 and	 that	 when	 two	 systems	 of	 different	 levels	 of	
complexity	interact,	the	more	complex	system	tends	to	attract	the	less	complex,	causing	an	increase	
in	complexity	in	the	second.	We	show,	in	a	protocol	in	which	older	people	are	invited	to	walk	arm-
in-arm	 with	 a	 younger	 companion,	 that	 synchronization	 between	 the	 two	 partners	 is	 achieved	
through	 a	 complexity	matching	 effect,	 and	 that	 prolonged	 training	 in	 such	 synchronized	walking	
allows	a	restoration	of	 the	complexity	of	 locomotion,	which	persists	during	a	post-test	conducted	
after	 two	 weeks.	 This	 result	 opens	 new	 avenues	 of	 research	 for	 the	 design	 of	 rehabilitation	
strategies.	

Key-words	:	Interpersonal	coordination,	complexity	matching,	aging,	complexity	restoration	
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Appendix:  1	
Mobility Lab  used for the  first  experience (chapter3)     

                             
Movement Monitors :  Movement monitors combine a number of sensors within a single package, 
including a 3 axis accelerometer, a 3 axis gyro, a 3 axis magnetometer, and a temperature sensor. The 
accelerometers can be configured in a high 6G mode, or a low 2G mode depending on the testing 
requirements. There are a number of options for securing the monitors on subjects using a selection of 
straps 

 
 
 
 
 

Docking Station :  The docking station is used to 
charge and configure the movement monitors. Depending on 
your configura- tion, you may have up to 6 docking stations chained together into a single unit. 

                             
 
  Access Point :  The wireless access control point (access point for short) allows for wireless 
communication between the host computer and Opal movement monitors. A single access point can support up to 6 
Opals.    

                                
Instrumenting the Subject :  Testing requires 6 different sensors to be placed on the subject: � 
• Left and right wrists (monitors with velcro strap attachments)  

ct  
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• Left and right ankles (monitors with velcro strap attachments) 

 
• Trunk (monitor with the chest holster) 

 
• Lumbar (monitor with the elastic belt attachment) 

 
Use the following visual guide and written tips for instrumenting the subject with the monitors: 

 
Gait  :Gyroscopes attached on the shanks are used to detect the basic gait events, i.e. time feet 
hit the ground and leave the ground (initial and terminal contacts). Temporal gait measures are 
then calculated based on the time of gait events. In the next step, ranges of motions (RoM) of the 
shank segments are estimated by integrating the gyroscopes signals. Finally, spatial gait 
measures are estimated using a biomechanical model [6]. 
 Gait measures are reported for individual gait cycles in the CSV export. A gait cycle is defined 
as the period between two consecutive initial contacts (heel-strike) of the right foot. 
 

 

Spatial gait  measures :Test 
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Measures Unit Sensors Description 

Stride Length % of Subjects body height* Shanks 
Distance between two consecutive foot falls at the moments of 
ini- tial contacts. Averaged for left and right side. The value is 
normal- ized for height. 

Stride Length R % of Subjects height* Shanks Distance between two consecutive right foot falls at the 
moments of initial contacts 

Stride Length L % of Subjects height* Shanks Distance between two consecutive left foot falls at the moments 
of initial contacts 

Stride Velocity % of Subjects height / second* Shanks Walking speed. Average of the right and left sides. 

Stride Velocity R % of Subjects height / second* Shanks Walking speed of right leg 

Stride Velocity L % of Subjects height / second* Shanks Walking speed of left leg 

*Values are given relative to the subject’s body height to enable comparison to normative data. If the subject’s 
height is entered through Mobility Lab, then values will additionally be provided in units of meters. 
Temporal gait measures 

Measures Unit Sensors Description 

Cadence Steps / minute Shanks Stepping rate 

Gait  Cycle 
Time Time (seconds) Shanks Duration of a complete gait cycle 

Double Support % of GCT Shanks Percentage of a gait cycle that both feet are on the ground 

Swing % of GCT Shanks Average percentage of a gait cycle that either foot is off the ground 

Swing R % of GCT Shanks Percentage of a gait cycle that right foot is off the ground 

Swing L % of GCT Shanks Percentage of a gait cycle that left foot is off the ground 

Stance % of GCT Shanks Average percentage of a gait cycle that either foot is on the ground 

Stance R % of GCT Shanks Percentage of a gait cycle that right foot is on the ground 

Stance L % of GCT Shanks Percentage of a gait cycle that left foot is on the ground 

Initial Contact R Time (seconds) Shanks The time (relative to the beginning of the trial) that right foot hits the 
ground. Sometimes referred to as heel-strike. 

Terminal Contact 
L Time (seconds) Shanks The time (relative to the beginning of the trial) that right foot leaves the 

ground. Sometimes referred to as toe-off. 

Initial Contact L Time (seconds) Shanks The time (relative to the beginning of the trial) that left foot hits the 
ground. 

Terminal Contact 
L Time (seconds) Shanks The time (relative to the beginning of the trial) that left foot leaves the 

ground. 
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Appendix: 2 
 
 
	
 
Raspberry Pi and force sensitive resistors (FSR) for Second experience: 
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Walk 
 
 
 

Apparatus: 
 

                
                                         Footsteps connected to a Raspberry Pi 

 
Method : 
Measure: inter-step interval 
 
References: 
Hausdorff et al. (1997) : 
• Comparison of the complexity of the intervals between the stages of walking between 10 healthy elderly 
people (age> 70 years) and 22 young adults (age = 24.6 ± 1.9) 
• Walking at a preferential rate for 15 minutes on a circular passage of 200 m 
 
 
 
 
 

 

old youth 

ɑ 0,68 ± 0,14 0,87 ± 0,15 

IIP (s) 1,05 ± 0,10 1,05 ± 0,07 

IIP CV (%) 2,0 ± 0,7 1,9 ± 0,4 

Speed (m/s) 1,24 ± 0,18 1,42 ± 0,21 

up and go test (s) 7,6 ± 1,0 7,4 ± 1,3 
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