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The observed and the projected log of death rates for British (UK), American (US) and French (FR) females and males. This gure compares trends obtained with the HU, the LC and the VAR-ENET models. . . . . . . . . . . . . . . . . Près de 2 500 ans plus tard, le domaine de la statistique a considérablement évolué de par ses champs d'application, les sources de données à disposition et les algorithmes utilisés. Hier le commandant athénien estimait la hauteur du mur adverse grâce à sa garnison, aujourd'hui l'actuaire calcule la prime d'assurance grâce à une forêt aléatoire. Ces dernières décennies, l'augmentation exponentielle des ux de données et de la puissance de calcul disponible sont à la fois une aubaine et un dé constant pour le statisticien, dont le travail consiste à "faire parler les données" en y extrayant et apprenant le maximum d'information. La partie quantitative jouant un rôle majeur dans cet apprentissage, de nombreux algorithmes ont été développés pour répondre aux diérentes problématiques rencontrées [START_REF] Hastie | The Elements of Statistical Learning : Data Mining, Inference, and Prediction, Second Edition[END_REF]. Néanmoins, cette science des données ne se limite pas à la continuelle sophistication des méthodologies calculatoires appliquées : le choix et la qualité des sources d'information utilisées ne doivent en aucun cas être négligés.

Dans une économie engendrant toujours plus de données, il n'est pas étonnant d'observer un domaine toujours plus vaste d'application de l'apprentissage statistique, dont nous donnons ici quelques exemples : reconnaissance de code postal écrit à la main [START_REF] Scholkopf | Comparing support vector machines with Gaussian kernels to radial basis function classiers[END_REF] ; détection de fraudes (Bolton et Hand, 2002) ; prédiction de la résiliation d'un contrat de télécommunication à partir des données clients (Lemmens et Croux, 2006) ; prédiction de l'évolution des prix de marché en analysant les sentiments sur un média social [START_REF] Thien | Sentiment analysis on social media for stock movement prediction[END_REF] ; orchestration automatique d'un morceau de piano [START_REF] Crestel | Live Orchestral Piano, a system for real-time orchestral music generation[END_REF].

Logiquement, les sciences actuarielles sont l'un des domaines impactés par ce récent développement de l'apprentissage statistique (e.g., [START_REF] Charpentier | Computational Actuarial Science with R[END_REF][START_REF] Bellina | Méthodes d'apprentissage appliquées à la tarication non-vie[END_REF][START_REF] Lopez | Thérond : Tree-based censored regression with applications in insurance[END_REF]. En eet, la genèse de cette discipline au XVII ème siècle est intimement liée à celle de la statistique. Elle remonte à la publication à Londres en 1662 par John Graunt, aidé par William Petty, de Observations naturelles et politiques sur les bulletins de mortalité, qui contient la première table de mortalité [START_REF] Hervé | Naissance de la mortalité[END_REF]. Cet ouvrage est souvent reconnu comme marquant la naissance commune de l'actuariat, de la démographie mais aussi de la statistique moderne.

Il est donc naturel que, de nos jours, les sciences actuarielles bénécient de ce nouvel essor dans les domaines de l'informatique et de la statistique, que l'on englobe communément par les termes anglophones de Data Science ou Machine Learning.

Structure

Dans cette thèse nous présentons quelques contributions de l'application des méthodologies d'apprentissage statistique aux sciences actuarielles et à la gestion des risques. Cette thèse s'articule en quatre chapitres indépendants, précédés d'une introduction générale. Dans cette dernière nous y décrivons notamment les motivations sous-jacentes à nos recherches et résumons les principales contributions de nos résultats. Les contributions issues de la thèse sont, quant à elles, détaillées dans les quatre chapitres.

Le Chapitre 1 reprend l'article "Forecasting mortality rate improvements with a high dimensional VAR", co-écrit avec Quentin Guibert et Olivier Lopez, publié dans Insurance : Mathematics & Economics. Nous y présentons un nouveau modèle de projection de taux de mortalité à l'aide d'un vecteur autorégressif dont l'estimation des coecients est régularisée pour prendre en compte les problématiques de grande dimension.

Le Chapitre 2 est issue du document de recherche "Bridging the LiCarter's gap : a locally coherent mortality forecasting approach", co-écrit avec Quentin Guibert, Stéphane Loisel et Olivier Lopez. Nous y introduisons une modélisation des dynamiques de mortalité entre de multiples populations à l'aide d'un vecteur autorégressif pénalisé.

Le Chapitre 3 est tiré de l'article "Applying economic measures to lapse risk management with machine learning approaches", co-écrit avec Stéphane Loisel et Cheng-Hsien Jason Tsai, soumis. Nous y analysons la détection des rachats de contrats d'assurance vie à l'aide d'algorithmes de classication supervisée que nous comparons entre eux à l'aide notamment de mesures de performance économiques.

Le Chapitre 4 reprend le papier "Can satellite data forecast valuable information from USDA reports ? Evidences on corn yield estimates", publié dans les actes de la NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management. Nous y étudions le potentiel des données satellite pour prédire les informations contenues dans les rapports du Département d'agriculture des État-Unis et ayant de la valeur pour les agents des marchés nanciers agricoles.

Dans la suite de cette introduction générale, nous commençons par exposer notre premier sujet d'étude qu'est l'actuariat vie. Plus précisément nous nous intéressons à deux risques particuliers auxquels cette discipline est confrontée. Ainsi nous introduisons dans un premier temps la problématique du risque de longévité. Puis nous décrivons le risque inhérent aux comportements des assurés en assurance vie, en particulier le rachat, tout en faisant le parallèle avec le risque de comportement d'attrition étudié dans la littérature du marketing quantitatif. Dans une troisième partie, nous nous attardons à l'importance de l'information, i.e. des données, dans les marchés nanciers et plus particulièrement dans les marchés agricoles. Ensuite, nous introduisons les outils d'apprentissage statistique (algorithmes et sources de données) que nous avons utilisés lors de nos travaux. Finalement, nous résumons les contributions aux sciences actuarielles et à la gestion du risque découlant de l'application de telles méthodologies.

Actuariat Vie L'actuariat vie est la discipline qui porte sur la gestion des risques de l'ensemble des contrats faisant naître des engagements dont l'exécution dépend de la durée de la vie humaine. A ce titre, nous pouvons citer quelques exemples connus de produit d'assurance comme l'assurance vie, la retraite, l'assurance décès ou l'assurance emprunteur. Notons que d'autres formes de contrat, moins répandus, existent aussi tels que la tontine ou le longevity swap. Au contraire, le système de retraite du Royaume-Uni est majoritairement un système dit par capitalisation, reposant notamment sur les quelques 100 000 fonds de pension que compte le pays. Ces fonds de pension sont parmis les plus grands investisseurs institutionnels, détenant plus de 2 900 2 milliards de dollars en divers actifs dont un tiers de l'ensemble des actions du pays et un cinquième des obligations d'État.

Les montants colossaux sous-jacents à ces contrats font que le système assurantiel présente un risque systémique, i.e. qu'un événement particulier pourrait avoir des conséquences négatives considérables sur l'ensemble de l'économie [START_REF] Harrington | The Financial Crisis, Systemic Risk, and the Future of Insurance Regulation[END_REF]. Le rôle de la gestion des risques, et donc de l'actuaire en particulier, y est alors primordial. A l'instar du système bancaire, le milieu de l'assurance s'est doté d'institutions de régulation comme le European Insurance and Occupational Pensions Authority (EIOPA) au niveau européen ou de l'Autorité de Contrôle Prudentiel et de Résolution (ACPR) en France. L'un des principaux rôles de ces régulateurs est de s'assurer de la bonne évaluation des risques portés par la société et de l'adéquation des fonds propres disponibles à ces derniers. Plusieurs référentiels réglementaires ont été mis en place pour évaluer l'exigence en capital dont la directive Solvabilité II pour l'Union Européenne, le Swiss Solvency Test en Suisse ou le Risk-Based Capital aux États-Unis (voir Holzmüller, 2009, pour une comparaison de ces trois régulations). Même si certaines hypothèses eectuées par ces cadres réglementaires peuvent être critiquées (e.g., [START_REF] Vedani | Market inconsistencies of market-consistent European life insurance economic valuations : pitfalls and practical solutions[END_REF], ces dispositifs n'en soulignent pas moins la grande importance de l'actuariat. La modélisation de ces risques, principalement par des outils statistiques et probabilistes, est fondamentale pour leur évaluation quantitative.

Les risques que l'actuariat vie se doit d'étudier sont de diverses natures. Ils peuvent, entre autres, être biométriques, nanciers ou comportementaux. Dans le cadre de cette thèse nous nous intéressons à l'analyse de deux risques particuliers : le risque de longévité et le risque de rachat. Le premier impacte principalement les produits incluant le paiement de rentes viagères, en particulier l'assurance retraite, et est donc supporté à la fois par des acteurs privés et publiques. Au contraire, le rachat n'aectant que les produits d'assurance vie souscrits auprès d'une compagnie ou mutuelle, c'est exclusivement le secteur privé qui est touché par ce risque de comportement des assurés. La cinquième étude quantitative d'impact (QIS 5) de la directive Solvabilité II estime que ces deux risques sont les deux plus substantiels portés par les compagnies d'assurances vie, signicativement plus importants que le risque de mortalité, d'invalidité, de coût ou de catastrophe (EIOPA, 2011).

Risque de Longévité

Depuis plus d'un demi-siècle, nous observons une augmentation de l'espérance de vie dans la majorité des pays développés (cf. Figure 0.1). Cet accroissement de la longévité humaine est un dé pour les sytèmes de retraite, qu'ils soient par répartition ou capitalisation. L'incertitude sur la projection future de la longévité est d'autant plus risquée que la valeur des passifs est importante et sensible aux changements de tendance. En eet, l'actuariat vie doit, entre autres, se soucier de l'évaluation des retraites des individus qui viennent de commencer à travailler :

en notant qu'en 2017 l'espérance de vie résiduelle d'une femme française âgée de 20 ans est de plus de 65 ans (en supposant un arrêt de l'accroissement de la longévité), nous comprenons l'ampleur de la tâche de l'actuaire. En 2017, l'ensemble des actifs des fonds de pension de l'Organisation de Coopération et de Développement Économique (OCDE) représentait une valeur supérieure à 28 000 3 milliards de dollars. Une année supplémentaire, et non anticipée par les actuaires, d'espérance de vie à 65 ans représente une augmentation d'environ 5%

des passifs de ces fonds (Blake et al., 2018), soit 1 400 milliards de dollars. [START_REF] Michaelson | Strategy for Increasing the Global Capacity for Longevity Risk Transfer : Developing Transactions That Attract Capital Markets Investors[END_REF] estiment qu'un événement de queue de distribution de l'accroissement de la longévité (i.e., 2,5 fois l'écart type) provoquerait une augmentation pouvant atteindre 10%, soit 2 800 milliards, i.e. de l'ordre de grandeur du PIB de la France. Notons bien que nous nous focalisons seulement sur le système des fonds de pension dans ces chires : nous n'y incluons pas les autres systèmes de retraite. Source : Nations Unies.

D'autres risques, nécessitant aussi la modélisation et la projection de la durée de vie humaine, peuvent venir mettre à mal les systèmes de retraites. Lorsque l'on s'attarde à l'analyse de la pyramide des âges et la projection de la population, des changements sur la structure en âge de la population peuvent compromettre les systèmes dit par répartition. C'est le cas par exemple de la France où la génération vieillissante dite du baby-boom, on parle d'ailleurs aujourd'hui de papy-boom, augmente signicativement le rapport de dépendance (cf. Table 0.2 Quantication de la mortalité L'évaluation du risque de longévité, i.e. l'étude de la durée de vie humaine, repose sur l'estimation et la projection des taux de mortalité, que l'on retrouve sous forme de tables de mortalité depuis les débuts de l'actuariat et de la démographie [START_REF] Hervé | Naissance de la mortalité[END_REF]. Notons τ la durée de vie d'un individu. La loi de cette variable aléatoire, en supposant qu'elle admette une densité, est dénie par sa probabilité de survie à l'âge a :

S paq P pτ ¡ aq exp où µ pxq est la force de mortalité à l'âge exact x. La fonction µ pxq peut aussi être vue comme la probabilité instantanée de décès à l'âge x en remarquant que µ pxq dx P px ¤ τ x dx | τ ¥ xq.

Néanmoins, à la vue de l'évolution de l'espérance de vie (cf. Figure 0.1), il est naturel de supposer que cette force de mortalité µ soit non seulement dépendante en âge x, mais aussi en fonction du temps t. (0.5) Même si elles semblent n'avoir que peu d'impact à première vue, certaines des hypothèses eectuées par les organismes nationaux peuvent avoir des conséquences signicatives sur l'estimation des taux de mortalité, qui servent ensuite de base aux études de longévité (cf. Cairns et al., 2016;[START_REF] Boumezoued | Improving HMD mortality estimates with HFD fertility data[END_REF].

Une seconde mesure possible de la mortalité est la probabilité de décès q px, tq, i.e. la probabilité qu'un individu d'âge exact x à l'année exacte t décède entre t et t 1. Sous les hypothèses énoncées précédemment, nous avons alors la relation q px, tq q x,t 1 ¡ exp p¡m x,t q . Ici nous en avons un exemple simple bien connu sur la diérence d'espérance de vie entre les hommes et les femmes. Mais des facteurs socio-économiques peuvent aussi inuer sur cette hétérogénéité de la mortalité comme par exemple le niveau de revenu ou le statut marital (voir par exemple [START_REF] Boumezoued | Measuring mortality heterogeneity with multi-state models and interval-censored data[END_REF]Cairns et al., 2019). Nous reviendrons par la suite sur les problématiques concrètes qu'une telle hétérogénéité peut induire dans la gestion du risque de longévité. Comme nous l'avons remarqué précédemment, les taux de mortalité m x,t dépendent non seulement de l'âge x mais aussi de l'année calendaire t. Pour analyser l'évolution temporelle de la mortalité au sein d'une population, une variable d'intérêt est le logarithme du taux d'amélioration de la mortalité ∆ log pm x,t q log pm x,t q ¡ log pm x,t¡1 q log ¡ mx,t m x,t¡1 (Toulemon et Barbieri, 2008;Izraelewicz, 2012). Pratiquement, une partie des personnes décédées à cause de la vague de chaleur à l'été 2003 avaient une faible espérance de vie résiduelle, et "auraient dû" mourir en 2004.

Le second eet observé se traduit graphiquement par des diagonales. Il s'agit de l'eet cohorte, i.e. des individus nés à la même date, ou par extension dans la même période de temps, présentent une dynamique de mortalité signicativement diérente des autres générations (Willets, 2004). Nous remarquons que les taux d'améliorations de la mortalité en l'Angleterre et du pays de Galles, représentés dans la Figure 0.6, exhibent un eet cohorte signicatif pour les individus né en 1920, représentée graphiquement par une diagonale bleue. 

Modèles de projection

Cette complexité démographique, couplée à l'intérêt toujours grandissant des institutions gouvernementales, fonds de pensions et compagnies d'assurances, a engendré le développement d'un grand nombre de modèles pour la compréhension, la modélisation et la gestion du risque de longévité (Barrieu et al., 2012).

Parmi les modèles de mortalité les plus utilisés en actuariat vie de nos jours, nous présentons dans un premier temps la famille reposant sur la décomposition des taux de mortalité en facteurs âge-période-cohorte, permettant ainsi de réduire les dimensions d'analyse. A l'origine de cette famille de modèles, nous retrouvons le Lee-Carter, sûrement le plus connu et utilisé en actuariat, introduit par Lee et Carter (1992) log m x,t α x β p1q

x κ t β p2q

x γ t¡x .

(0.10) A l'instar du Lee-Carter, l'estimation des facteurs du modèle de Renshaw et Haberman (2006) nécessite l'ajout de contraintes pour des questions d'identiabilité : où σx est l'écart-type des âges utilisés dans l'estimation. L'ajout d'un terme quadratique est dû historiquement à l'observation empirique de la surface des logit q x,t pour les données des États-Unis.

ţ κ t 0, x β p1q x 1, et x,t
En se fondant sur l'observation que les taux de mortalité sont en pratique des données compor- a priori la forme de la matrice de causalité de Granger (Granger, 1969). Enn, plus récemment encore, des techniques d'apprentissage statistique ont été appliquées à la modélisation et à la projection de la mortalité. Ainsi des modèles de type Lee-Carter ont été améliorés dans l' estimation de leurs paramètres et la projection de ceux-ci par des méthodes de bagging et de boosting 4 [START_REF] Deprez | Machine learning techniques for mortality modeling[END_REF][START_REF] Levantesi | Application of Machine Learning to Mortality Modeling and Forecasting[END_REF], ou par des réseaux de neurones articiels [START_REF] Nigri | A Deep Learning Integrated LeeCarter Model[END_REF]. [START_REF] Hainaut | A Neural-Network Analyzer for Mortality Forecast[END_REF] proposent une approche de projection grâce à des réseaux de neurones directement entrainés sur la surface de mortalité. [START_REF] Kamega | Modélisation prospective en l'absence de données sur les tendances passées et mesure des risques associés[END_REF]. Cependant les avis d'experts divergent fortement sur le sujet de l'évolution de la longévité à moyen-long terme [START_REF] Debonneuil | Do actuaries believe in longevity deceleration ?[END_REF]. Plusieurs scénarios macros s'opposent : la vision du transhumanisme présage une accélération exponentielle de la durée de vie humaine grâce aux futurs progrès de la médecine ;

les modèles que nous avons introduits sous-tendent généralement une augmentation linéaire de la longévité, tout du moins à l'échelle de projection d'une vie humaine ; certaines analyses de la mortalité aux âges élevés montrent que la longévité humaine semble atteindre une limite biologique [START_REF] Gavrilova | Are We Approaching a Biological Limit to Human Longevity[END_REF] ; le changement climatique et l'augmentation globale de la pollution de l'environnement peuvent se traduire par une diminution de la longévité dans le futur.

Transfert du risque de longévité 2001;[START_REF] Blake | Living with Mortality : Longevity Bonds and Other Mortality-Linked Securities[END_REF]Barrieu et al., 2012;Blake et al., 2018).

Parmi ces instruments de transfert de risques, notons en premier le q-forward [START_REF] Coughlan | q-Forwards : Derivatives for transferring longevity and mortality risk[END_REF], dont le nom provient de la notation de la probabilité de décès q x,t . 1. le choix d'un modèle de longévité ainsi que l'estimation de ses paramètres à partir des données disponibles au début de la période à risque ;

2. la dénition objective, avant la début de la période à risque, du processus de ré-estimation qui sera appliqué ;

3. la ré-estimation du modèle de longévité en utilisant les données supplémentaires obtenues durant la période à risque ;

4. le calcul la valeur de l'exposition résiduelle en utilisant le modèle ré-estimé. x ¨du M7 "a été inspiré par la possibilité d'une certaine courbature identiée dans les représentations graphiques du logit q pt, xq pour les données US" (Cairns et al., 2009).

Cette diérence entre les populations nous renvoie alors à la question de l'hétérogénéité en terme de mortalité que nous avons déjà abordée rapidement en constatant les diérences entre les sous-populations dénies par le sexe. Pratiquement, pour une compagnie d'assurances ou un fonds de pension particulier, la population à risque est en général diérente de la population agrégée du pays en terme de mortalité. Ainsi lorsqu'une compagnie d'assurances utilise les tables de mortalité nationales pour l'évaluation de ses passifs, il y a un risque que les taux de mortalité soient signicativement biaisés par rapport à ceux de la population à risque, i.e. celle du portefeuille de la compagnie. De même si un fonds de pension conclut un longevity swap dont le taux de mortalité de référence est celui de la population nationale, il y a un risque pour que la couverture ne soit pas parfaite car non alignée sur la mortalité réellement expérimentée par la population à risque. Ce risque de base est un sujet qui a récemment gagné en intérêt dans la littérature (e.g., Li et Hardy, 2011;[START_REF] Coughlan | Longevity Hedging 101[END_REF]Villegas et al., 2017a;Salhi et Loisel, 2017) 

Modèles multi-population

Pour quantier ce risque, de nombreux modèles stochastiques de mortalité à deux populations ont été développés. Ils permettent de projeter et de comparer les dynamiques de mortalité de diérentes populations tout en prenant en compte les potentielles dépendances entre ces dernières. La problématique revient à rajouter la dimension population dans la modélisation, nous nous intéressons donc maintenant aux taux de mortalité m px, t, iq m i x,t des individus d'âge x durant l'année calendaire t pour la population i. La majorité des modèles multipopulation utilisés actuellement peuvent être vus comme des généralisations des modèles de mortalité à une population que nous avons introduits précédemment. Ainsi Li et Lee (2005) proposent une extension du Lee-Carter en y ajoutant une tendance temporelle commune K t aux populations modélisées : 

log m i x,t α i x B x K t β i x κ i t , (0.17) où α i x , β i x et κ i t sont
φ 0 1 ¡ φ 1 ¡ φ 2 θ 0 1 ¡ θ 1 ¡ θ 2 . (0.21)
Le risque de base est souvent rencontré entre une population spécique de taille relativement petite par rapport à une population de référence à l'échelle nationale. Ainsi, plusieurs modèles de mortalité en multi-population font l'hypothèse qu'il existe a priori une population dominante, la plus grande, et une population dominée dont la mortalité suit alors un processus stochastique de retour à la moyenne. C'est le cas par exemple du modèle GRAVITY proposé par Dowd et al. (2011) qui est une extension du modèle Age-Période-Cohorte, ou du similaire modèle SAINT décrit par Jarner et Kryger (2011). De nombreux autres modèles multi-population ont récemment été développés. Nous pouvons y retrouver d'autres variantes d'extensions du Lee-Carter (e.g., Danesi et al., 2015;Enchev et al., 2016), mais aussi des modèles qui ajoutent des eets cohortes (e.g., Villegas et [START_REF] Andrés | On the Modeling and Forecasting of Socioeconomic Mortality Dierentials : An Application to Deprivation and Mortality in England[END_REF][START_REF] Yang | Cohort extensions of the Poisson common factor model for modelling both genders jointly[END_REF], ou encore des extensions de modèle de type CBD (e.g., Hahn, 2014;[START_REF] Siu | A step-by-step guide to building twopopulation stochastic mortality models[END_REF]. Villegas et al. (2017a) proposent une revue récente de la littérature sur ce sujet.

Au-delà de l'évaluation du risque de base, les modèles de multi-popualtion sont aussi aujourd'hui utilisés pour améliorer la projection de la mortalité pour une population spécique. En eet, ils permettent de prendre en compte des informations sur des populations avec des caractéristiques similaires. Ainsi, [START_REF] Antonio | Producing the Dutch and Belgian mortality projections : a stochastic multi-population standard[END_REF] utilisent un modèle de type Li et Lee (2005) pour projeter la mortalité des Pays-Bas et de la Belgique en s'appuyant sur les données agrégées d'un ensemble de 14 pays européens. L'idée sous-jacente n'est pas sans rappeler la théorie de la crédibilité [START_REF] Bühlmann | A Course in Credibility Theory and its Applications[END_REF] et ses applications dans l'évaluation de la mortalité (e.g., [START_REF] Hardy | A Credibility Approach to Mortality Risk[END_REF][START_REF] Salhi | Thérond et Julien Tomas : A credibility approach of the Makeham mortality law[END_REF]Salhi et Thérond, 2018). La décomposition d'une population hétérogène en plusieurs sous-populations plus homogènes, dont les dynamiques de mortalité sont ensuite étudiées au sein d'un modèle mutli-population, peut aussi apporter de l'information et une meilleure précision dans les projections (Danesi et al., 2015).

Cette prise en compte des relations de dépendance entre les populations reste cependant un dé pour la modélisation mathématique de la mortalité. En eet, elle rajoute une dimension supplémentaire à la structure, déjà complexe, de la dynamique de longévité en âge, période et cohorte. L'estimation d'un système complexe de dépendance implique un grand nombre de paramètres. Ainsi, nombre de modèles ne sont d'ailleurs seulement conçus que pour deux populations, ou imposent des contraintes a priori sur le système d'interdépendance comme par exemple la présence d'une population dominante. De plus, la profondeur des historiques des données est limitée : il est peu fréquent d'estimer les paramètres d'un modèle avec les données d'avant 1950, notamment à cause des changements importants qu'ont impliqués les deux Guerres mondiales. La problématique de la grande dimension nous apparait alors d'autant plus centrale dans le cas de la multi-population.

Risque de Rachat

Dans le cas de la longévité, le risque repose entièrement sur la variable de la durée de vie humaine de l'assuré qui est aléatoire à la fois du point de vue de la compagnie d'assurances mais aussi de l'individu qui reçoit la rente viagère. Ce dernier peut essayer d'augmenter son espérance de vie en adoptant un mode de vie plus sain avec par exemple la pratique d'une activité sportive et la non consommation de tabac. Cependant, le comportement de l'assuré, si nous excluons le suicide, ne peut pas avoir d'inuence certaine sur sa durée de vie qui reste une variable aléatoire. Au contraire, le risque de rachat repose sur l'asymétrie de choix possible entre l'assuré et la compagnie d'assurances. Le contrat d'assurance vie prévoit en eet que la compagnie garantit dénitivement le versement de prestations en fonction d'événements viagers de l'assuré : son décès ou sa survie. En retour le souscripteur s'engage à s'acquitter des cotisations, mais cet engagement est révocable : : il peut choisir à tout moment de racheter son contrat avant l'échéance, et ainsi récupérer son épargne en totalité (rachat total) ou seulement en partie (rachat partiel).

L'incertitude de la compagnie d'assurances sur le comportement de rachat de son portefeuille d'assurés a un fort impact sur l'anticipation de ses ux nanciers futurs, et donc constitue un risque économique important pour l'entreprise au niveau de sa rentabilité ou même de sa solvabilité. Le rapport QIS 5 (EIOPA, 2011) souligne d'ailleurs que ce risque de rachat est le risque le plus important selon la mesure décrite par la directive Solvabilité II. Par exemple, des rachats précoces peuvent compromettre la capacité de l'assureur à recouvrir ses frais d'acquisition et de gestion du contrat (Tsai et al., 2009;Pinquet et al., 2011). La compagnie prévoit de rentabiliser ses frais par les prots obtenus tout au long de la vie du contrat. Une mauvaise projection des rachats, et donc des ux nanciers sortants à dégager par l'assureur, peut entrainer une inadéquation avec la stratégie d'investissement de la compagnie. L'ecacité de la gestion actif-passif s'en retrouve alors impactée (Kim, 2005b;Eling et Kochanski, 2013).

Dans le cas d'un scénario de rachat de masse, la société fait face à un grand nombre de demandes de rachat et peut manquer de liquidité, de la même façon où un grand nombre de clients d'une banque viendraient retirer leur argent dans une période relativement courte. Elle doit alors vendre ses actifs à un moment qui n'est pas forcément optimal d'un point de vue nancier.

La dynamique des taux d'intérêt joue un rôle important dans le risque de rachat. Par exemple nous connaissons actuellement une période de taux historiquement faible : le taux OAT à 10 ans de la France est de ¡0, 19% au 1 er août 2019 ! Ainsi les sociétés d'assurances vie ne proposent pas de souscription avec des taux garantis élevés. Un scénario de hausse des taux serait alors théoriquement bénéque aux assureurs par rapport à ces dernières garanties, car les actifs auraient un rendement supérieur aux engagements pris. Une augmentation des rachats sur ces contrats diminuerait donc les prots futurs que la compagnie d'assurances pourrait obtenir.

Au contraire, actuellement un grand nombre d'anciens contrats d'assurance vie ont des taux garantis élevés en comparaison du rendement des actifs. A l'époque de la souscription les taux étant plus hauts, par exemple celui de l'OAT 10 ans était de 9, 22% au 1 er août 1991, les assureurs n'hésitaient pas à garantir des taux de capitalisation plus importants pour l'épargne de leurs assurés. Dans le contexte économique actuel, le risque de rachat est donc un risque de baisse du nombre de rachats au sein de ces contrats. Ces derniers sont en eet décitaires pour l'assureur qui doit continuer à tenir ses engagements.

Ainsi les rachats peuvent être un risque pour la compagnie d'assurances dès qu'ils dévient des projections eectuées par les actuaires, que cela soit à la hausse ou à la baisse, et sur lesquelles la stratégie d'actif-passif repose en grande partie. Les trois scénarios de chocs prévus par Solvabilité II pour l'estimation du SCR (Solvency Capital Requirement) sont une hausse durable du taux de rachat, une baisse durable du taux de rachat et un scénario de rachat de masse. La compagnie gardant alors le scénario le plus défavorable pour le calcul nal du capital réglementaire. Ceci montre l'importance de la modélisation et la projection les plus précises possibles de la dynamique des taux de rachat, d'autant plus lorsque l'on connait les sommes colossales que l'assurance vie représente. Il n'est donc pas étonnant qu'une large littérature se soit développée sur ce sujet (e.g., Eling et Kochanski, 2013;[START_REF] Bauer | Policyholder Exercise Behavior in Life Insurance : The State of Aairs[END_REF] Modélisation des rachats Dans la littérature actuarielle, la modélisation des causes de rachat se fonde principalement sur deux théories : l'hypothèse des taux d'intérêt [START_REF] James Pesando | The Interest Sensitivity of the Flow of Funds Through Life Insurance Companies : An Econometric Analysis[END_REF]Dar et Dodds, 1989) et l'hypothèse du besoin urgent de ressources [START_REF] Outreville | Whole-life insurance lapse rates and the emergency fund hypothesis[END_REF]. Dans cette seconde approche, les fonds de l'assurance vie sont rachetés dans le but de faire face un événement coûteux dans la vie personnelle de l'assuré. Par exemple ils peuvent permettre de surmonter des dicultés nancières rencontrées lors d'une période de chômage, ou de nancer l'achat d'un bien immobilier. Ainsi, les caractéristiques particulières de l'assuré, qui peuvent être inuencées par le cycle économique, sont intuitivement des causes probables de rachat. L'approche des taux d'intérêt repose sur l'hypothèse que les assurés sont des agents de marché rationnels. Si les taux d'intérêt du marché augmentent, des opportunités d'arbitrage apparaissent. L'assuré rationnel, souhaitant maximiser ses gains, résilie alors son contrat d'assurance vie an d'obtenir de meilleurs rendements nanciers.

Dans cette continuité de l'assuré rationnel et d'un monde risque neutre, un grand nombre d'études s'attardent sur l'évaluation nancière du rachat d'assurances vie. Dans cette littérature, le rachat est vu comme une option (par exemple américaine, bermudéenne ou encore quanto asiatique) dont l'assuré cherche le temps d'arrêt optimal pour maximiser son épargne.

Plusieurs modèles nanciers ont été appliqués à l'évaluation de cette option de rachat pour diérents types de contrats d'assurance vie. A titre d'exemples, nous pouvons citer : le modèle de Cox-Ross-Rubinstein qui se fonde sur des arbres binomiaux [START_REF] Grosen | Fair valuation of life insurance liabilities : The impact of interest rate guarantees, surrender options, and bonus policies[END_REF]Bacinello, 2003[START_REF] Rita | Endogenous model of surrender conditions in equity-linked life insurance[END_REF] ; le modèle de Longsta-Schwartz qui repose sur un algorithme des moindres carrés Monte Carlo [START_REF] Nordahl | Valuation of life insurance surrender and exchange options[END_REF][START_REF] Kling | The impact of policyholder behavior on pricing, hedging, and hedge eciency of withdrawal benet guarantees in variable annuities[END_REF] ; l'utilisation d'équation diérentielle partielle [START_REF] Jensen | A Finite Dierence Approach to the Valuation of Path Dependent Life Insurance Liabilities[END_REF]Bauer et al., 2006;[START_REF] Mackay | Hardy : Risk Management of Policyholder Behavior in Equity-Linked Life Insurance[END_REF] ; l'analyse de portefeuille réplicant (Consiglio et Giovanni, 2010).

Malgré leur grande utilité pour la compréhension de la dynamique de rachat, ces modèles d'évaluation d'option de rachat reposent sur des hypothèses qui ne reètent pas toujours la réalité. Des améliorations à ce cadre théorique ont récemment été proposées pour mieux prendre en compte les comportements des assurés. Par exemple, la question de la scalité spécique des contrats d'assurance vie, qui est une des raisons de leur popularité, impacte fortement l'évaluation subjective que l'assuré se fait de son épargne. [START_REF] Moenig | Revisiting the Risk-Neutral Approach to Optimal Policyholder Behavior : A Study of Withdrawal Guarantees in Variable Annuities[END_REF] proposent alors une méthodologie d'évaluation risque neutre subjective en prenant en compte les diérences de scalité entre les choix d'investissement pour plus de réalisme. De même la rationalité des assurés peut être restreinte [START_REF] Li | The eect of policyholders' rationality on unit-linked life insurance contracts with surrender guarantees[END_REF] pour mieux représenter le comportement des assurés.

En parallèle de ces cadres théoriques stochastiques, de nombreuses études empiriques ont été menées pour analyser le rachat en assurance vie d'un point de vue statistique. Cette littérature peut être séparée en deux parties suivant les variables explicatives étudiées. La première branche des recherches s'intéresse à l'impact de facteurs conjoncturels, tels que le contexte économique (e.g. l'évolution des taux d'intérêts, le taux de chômage, la croissance, le rendement des marchés) les caractéristiques de la compagnie d'assurances (e.g. son âge, son rating, sa taille, sa forme juridique) ou encore des variables de concurrence commerciale (e.g. le spread de taux de rendement, les frais de rachat). L'étude des rachats se fait alors d'un point de vue macro. A l'inverse, nous trouvons des études analysant le rachat à un niveau micro, i.e. en se focalisant sur des facteurs explicatifs structurels. Dans cette seconde partie de la littérature, les variables d'intérêt incluent généralement les caractéristiques de l'assuré (e.g. le sexe, la catégorie socio-professionnelle, l'âge), le type de produit (e.g. fonds euros, unités de compte, possibilité d'arbitrage) ou les caractéristiques du contrat (e.g. son ancienneté, la fréquence de la prime, le réseau de distribution).

Dans les études statistiques conjoncturelles des rachats, nous retrouvons logiquement l'utilisation de régressions temporelles classiques pour tester les hypothèses sur les conditions de rachat. Par exemple Dar et Dodds (1989) et [START_REF] Outreville | Whole-life insurance lapse rates and the emergency fund hypothesis[END_REF] présentent des résultats validant l'hypothèse du besoin urgent de ressources en utilisant respectivement des données du Royaume-Uni d'une part, et des Etats-Unis et Canada d'autre part. En utilisant les travaux sur la cointégration d'Engle et [START_REF] Robert | Co-Integration and Error Correction : Representation, Estimation, and Testing[END_REF], d'autres études se proposent de séparer la modélisation de la dynamique court-terme et les potentielles relations de long-terme des rachats en fonction des variables économiques. Ainsi [START_REF] Tsai | Early surrender and the distribution of policy reserves[END_REF] et Kuo et al. (2003) montrent des relations de long-terme signicatives entre les taux de rachat et les taux d'intérêt, vali-dant alors l'hypothèse éponyme. De potentielles relations entre les rachats d'assurances vie et d'autres variables conjecturelles ont aussi été examinées par l'utilisation de modèles linéaires généralisés, introduits par Nelder et Wedderburn (1972). A ce titre nous pouvons citer Kim (2005a) et [START_REF] Kiesenbauer | Main Determinants of Lapse in the German Life Insurance Industry[END_REF] qui utilisent la régression logistique, ou Cox et Lin (2006) qui proposent l'application d'un modèle Tobit.

L'utilisation des modèles linéaires généralisés (GLM) pour l'étude statistique des rachats fait écho aux travaux précurseurs de Renshaw et Haberman (1986) qui appliquent une régression logistique sur les caractéristiques particulières des assurés et des produits à partir des données de sept compagnies d'assurances vie en Écosse pour l'année 1976. Leur analyse met en avant quatre facteurs importants segmentant le risque de rachat : l'âge à la souscription, la compagnie ayant émis le contrat, l'ancienneté du contrat et le type de contrat. La problématique de segmentation du risque de rachat grâce à des facteurs structurels par l'utilisation de GLM au sein d'un portefeuille de contrats d'assurance vie a regagné en intérêt à partir de la n des années 2000 (e.g., Kagraoka, 2005;Cerchiara et al., 2008;Eling et Kiesenbauer, 2014).

Depuis, le spectre des techniques statistiques appliquées s'est agrandi. Ainsi, dans la suite des GLM, Milhaud (2013) propose l'application de mélange de régressions logistiques pour la prédiction des rachats. Milhaud et al. (2011) comparent la régression logistique avec les arbres de classication et de régression (CART), introduits par Breiman et al. (1984), pour la En conséquence des similitudes dans les risques de rachat et de l'attrition, il est cohérent de constater des réponses méthodologiques similaires. Ainsi les modèles de prédictions de la littérature du marketing quantitatif analysent aussi des facteurs structurels comme les caractéristiques des contrats et des clients an de prévoir le comportement de ces derniers, i.e. les futures résiliations. Les techniques d'apprentissage statistique employées dans les modèles de prédictions d'attrition sont aussi logiquement semblables à ceux de la littérature sur les rachats et de la détermination de leurs facteurs structurels. Les méthodes quantitatives appliquées pour l'attrition forment d'ailleurs un éventail historiquement plus large d'algorithmes qui inclue notamment : la régression logistique [START_REF] Eiben | Genetic modelling of customer retention[END_REF][START_REF] Hadden | Churn Prediction : Does Technology Matter[END_REF] ; les arbres de décisions [START_REF] Mozer | Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry[END_REF][START_REF] Hwang | An LTV model and customer segmentation based on customer value : a case study on the wireless telecommunication industry[END_REF] ; le bagging et les forêts aléatoires [START_REF] Larivière | Predicting customer retention and protability by using random forests and regression forests techniques[END_REF]Burez et [START_REF] Burez | CRM at a pay-TV company : Using analytical models to reduce customer attrition by targeted marketing for subscription services[END_REF] ; le boosting et le gradient boosting (Lemmens et Croux, 2006;[START_REF] Burez | Handling class imbalance in customer churn prediction[END_REF] les machines à vecteurs de support (SVM 5 ) [START_REF] Coussement | Churn prediction in subscription services : An application of support vector machines while comparing two parameter-selection techniques[END_REF]Xia et Jin, 2008) les réseaux de neurones articiels [START_REF] Hung | Applying data mining to telecom churn management[END_REF][START_REF] Tsai | Customer churn prediction by hybrid neural networks[END_REF] ; la classication naïve bayésienne (Nath et Behara, 2003;[START_REF] Huang | Customer churn prediction in telecommunications[END_REF].

Malgré leurs ressemblances méthodologiques apparentes, il existe néanmoins une diérence signicative entre l'analyse des comportements de rachat et d'attrition : l'objectif nal. Dans le cas des sciences actuarielles, les études sur les rachats servent essentiellement pour la compagnie d'assurances à évaluer ses passifs, ajuster sa stratégie de gestion actif-passif et estimer son besoin en capital réglementaire. L'actuaire se place dans une situation passive par rapport au rachat aléatoire de l'assuré. Au contraire, la vision du marketing quantitatif est plus active. La prédiction de l'attrition est un des piliers principaux de gestion de la relation client (CRM 6 ), et consiste seulement en la première étape de l'objectif nal qu'est la rétention du client.

Customer lifetime value

En eet, les clients sont modélisés comme des actifs dans la vision marketing [START_REF] Gupta | Customers as assets[END_REF], il est donc logique de vouloir les conserver pour en obtenir le maximum de prot. Comme tout actif, il s'agit alors d'évaluer leur valeur pour une gestion des risques ecaces. En ce sens, la valeur vie client (CLV 7 ) est dénie comme la valeur actuelle de tous les futurs prots obtenus d'un client durant la vie de sa relation avec l'entreprise [START_REF] Paul | Customer lifetime value : Marketing models and applications[END_REF][START_REF] Gupta | Valuing Customers[END_REF]Gupta et al., , 2006)) Informations sur les marchés agricoles 2012. Après avoir reçu 147 commentaires, consultables sur le site internet du NASS, l'USDA a choisi d'un "changement pour une publication à midi qui permet la meilleure liquidité dans les marchés, founit le meilleur accès au rapport durant les heures ouvrées aux États-Unis, et poursuis un accès égalitaire aux données pour toutes les parties 15 ". L'impact de changement a d'ailleurs étudié a posteriori. Adjemian et Irwin ( 2018) montrent que même si les agents ont plus de dicultés à distinguer les informations de valeurs contenues dans les rapports, le marché met à peu près le même temps pour les assimiler ; et de conclure que remettre une publication hors des horaires de marché allongerait le processus de découverte des prix.

Impact des rapports USDA

Toutes ces considérations nous laissent entrevoir l'importance des informations contenues dans ces diérents rapports de l'USDA. La valeur de ces dernières est un sujet de grand intérêt dans la littérature économique agricole depuis les années 1980 (e.g., [START_REF] Choi | An analysis of price responses to public information : a case study of the USDA corn crop forecasts[END_REF][START_REF] Nikolaos | The eects of USDA crop announcements on commodity prices[END_REF]. La majorité de ces travaux s'inscrivent dans le cadre de l'étude événementielle, i.e. de "déterminer si un eet prix "anormal" associé avec un événement inattendu" [START_REF] Mcwilliams | Event Studies In Management Research : Theoretical And Empirical Issues[END_REF]. La première étude de ce genre remonte aux travaux de [START_REF] Dolley | Characteristics an procedure of common stock split-ups[END_REF] Et de conclure que non seulement les rapports USDA apportent toujours de l'information, mais que l'eet de l'annonce du WASDE a augmenté au cours du temps. (e.g., McNew et Espinosa, 1994;[START_REF] Colling | Reaction of Wheat, Corn, and Soybean Futures Prices to USDA "Export Inspections" Reports[END_REF]Irwin et al., 2001;McKenzie, 2008;Dorfman et Karali, 2015;Gouel, 2018). Certaines analysent des biens agricoles diérents du maïs et du soja comme par exemple le riz [START_REF] Mckenzie | Information Content of USDA Rice Reports and Price Reactions of Rice Futures[END_REF], ou des animaux comme le porc ou le bétail [START_REF] Colling | The Reaction of Live Hog Futures Prices to USDA Hogs and Pigs Reports[END_REF][START_REF] Grunewald | Biere : Live Cattle Futures Response to Cattle on Feed Reports[END_REF][START_REF] Isengildina | Good : The Value of USDA Situation and Outlook Information in Hog and Cattle Markets[END_REF].

D'autes utilisent de nouvelles techniques statistiques pour évaluer l'impact des informations communiquées par l'USDA comme des systèmes de régressions (Adjemian, 2012) ou des mo-dèles GARCH multivariés [START_REF] Karali | Do USDA Announcements Aect Comovements Across Commodity Futures Returns[END_REF]. Plus récemment, Abbott et al. ( 2016) quantient à 301 millions de dollars la valeur de l'information contenue dans le WASDE pour l'ensemble des agents du marché dans le cas du maïs. En particulier, la valeur des statistiques sur les rendements agricoles est estimée à 188 millions de dollars.

La majorité de ces recherches s'intéressent aux eets de la publication des rapports mensuels de l'USDA (WASDE et Crop Production) sur les marchés. Lehecka (2014) 

Régression pénalisée

La régression linéaire est le modèle statistique le plus simple pour envisager l'impact de variables explicatives x R p sur une variable à expliquer y. Soient les données d'apprentissage D tpy i , x i qu, pour les observations i 1, 2, . . . , N ; le statisticien estime alors les paramètres pβ 0 , βq R ¢ R n du modèle

y β 0 x t β, (0.29) 
en minimisant le critère de perte des moindres carrés (OLS 16 )

L OLS pβ 0 , βq N i1 y i ¡ β 0 ¡ x t i β ¨2 .
(0.30)

Les estimateurs OLS sont connus pour avoir généralement un biais nul. Néanmoins, dans le cas où le nombre p de variables explicatives est important par rapport au nombre d'observations N , ils ont une forte variance, ce qui n'est pas souhaitable dans le cadre de la prédiction. Par ailleurs, plus la dimension p de l'espace des variables explicatives est grand, moins le modèle est interprétable. En xant certains coecients à 0, i.e. en se restreignant à un sous-ensemble de variables explicatives, la précision de prédiction ainsi que l'interprétation du modèle peuvent s'en retrouver améliorées, quitte à augmenter le biais des coecients.

Dans ce cadre, Tibshirani (1996) propose une nouvelle méthode d'estimation : le Least Absolute Shrinkage and Selection Operator ou "lasso". Le principe est de forcer l'estimation de certains coecients à zero lors de leur estimation. Pour ce faire Tibshirani (1996) ajoute une pénalisation portant sur la somme des valeurs absolues des coecients au critère de perte OLS :

16. Ordinary Least Square les prédictions ŷλ de la variable dépendante. En répétant ces opérations K fois, nous obtenons des prédictions sur l'ensemble total D des données. Nous appliquons alors une mesure de validation ρpy, ŷλ q an de comparer la précision du modèle selon le choix du paramètre λ.

L lasso pβ 0 , β, λq N i1 y i ¡ β 0 ¡ x t i β ¨2 λ p j1 |β j |, ( 0 
Dans le cas spécique de la régression linéaire, nous utilisons l'erreur quadratique en tant que mesure de validation, i.e. ρpy, ŷq

N °i1 py ¡ ŷq 2 .
Le lasso a deux limites principales :

en très grande dimension où p 4 N , le lasso ne peut sélectionner que N variables au maximum, i.e. seulement N coecients seront non nuls ;

si des variables explicatives sont fortement corrélées, le lasso a tendance à ne sélectionner qu'une seule variable parmi ce groupe.

Une autre forme de pénalisation, similaire au lasso, répond à ces deux problématiques : la régression ridge introduite par Hoerl et Kennard (1970). Dans ce cas les coecients ne sont plus régularisés selon la norme L 1 mais L 2 . Le critère de perte est alors 

L ridge pβ 0 , β, λq N i1 y i ¡ β 0 ¡ x t i β ¨2 λ p j1 |β j | 2 . ( 0 
L enet pβ 0 , β, λ, αq N i1 y i ¡ β 0 ¡ x t i β ¨2 λ £ α p j1 |β j | 1 ¡ α 2 p j1 |β j | 2 , (0.33)
où λ est le paramètre de régularisation général et α le paramètre de mélange entre le cas du lasso (α 1) et du ridge (α 0).

Avec le bon choix de mélange α, la pénalité elasticnet permet alors de surmonter les limites du lasso simple. Si des variables explicatives sont fortement corrélées, l'elasticnet aura tendance à soit sélectionner l'ensemble du groupe soit toutes les rejeter. De plus, il est possible à l'aide de l'elasticnet de sélectionner plus de N variables tout en estimant certains coecients à 0.

Support Vector Machine

Le Support Vector Machine (SVM) est un algorithme de classication en apprentissage statistique introduit au début des années 1990 par Boser et al. (1992) et Cortes et Vapnik (1995).

En alternative des réseaux de neurones, fortement appréciés à l'époque pour la classication, le SVM est devenu un algorithme populaire avec des domaines d'applications très variés : la reconnaissance de chires écrits à la main [START_REF] Scholkopf | Comparing support vector machines with Gaussian kernels to radial basis function classiers[END_REF] ou de visage [START_REF] Guo | Face recognition by support vector machines[END_REF], la détection de fraude [START_REF] Chen | Detecting Credit Card Fraud by Using Questionnaire-Responded Transaction Model Based on Support Vector Machines[END_REF]) ou d'attrition (Zhao et al., 2005), l'analyse sentimentale de texte [START_REF] Mullen | Sentiment Analysis using Support Vector Machines with Diverse Information Sources[END_REF]) ou encore l'analyse de gènes en bioinformatique [START_REF] Noble | Support vector machine applications in computational biology[END_REF]. Les erreurs de classication sont représentées par les ξ i ¡ 1, et sont associées au coût de pénalisation C. L'ensemble des données est projeté dans un espace de dimension supérieure grâce à la fonction φ dont le noyau sous-jacent est déni par K px i , x j q φpx i q t φpx j q.

min ω,b,ξ 1 2 ω t ω C N i1 ξ i , (0.34) avec les contraintes di, y i ω t φpx i q b ¨¥ 1 ¡ ξ i , et di, ξ i ¥ 0.
Beaucoup de noyaux ont été développés, cependant l'un des choix les plus communs est le noyau gaussien ou fonction de base radiale (RBF) : (Li et Belford, 2002).

K px i , x j q exp ¡γ x i ¡ x j 2 ¨,
Pour pallier cette instabilité dans les prédictions du CART, les méthodes d'apprentissage ensemblistes proposent des réponses séduisantes. Au lieu d'entraîner un seul arbre, nous en utilisons alors une multitude : une "forêt". Cette intuition est assez ancienne, souvenonsnous du commandant athénien en 428 avant J.C. qui n'utilise pas un soldat mais toute une garnison pour estimer la hauteur du mur adverse. Cependant dans le cas des CART, estimer deux fois l'algorithme sur le même ensemble ne changera rien car leur construction est déterministe. Il faut donc modier les données d'apprentissage.

Le principe du bagging, pour boostrap aggregating, vient répondre à cette problématique. Développée par Breiman (1996), cette méthode consiste à entraîner chaque arbre sur un échantillon aléatoire généré par tirages avec remise à partir de l'ensemble des données initiales, comme dans le cas du bootstrap. L'agrégation de tous les arbres donne la prévision nale. Dans le cas d'une classication nous pouvons choisir le vote majoritaire (comme au siège de Platée), alors que pour une régression la moyenne sera généralement préférée. Ainsi, pour réduire la variance de la prédiction, de l'aléatoire a été introduit dans les observations. Une alternative, proposée par Breiman (2001), est d'introduire de l'aléatoire dans les variables explicatives utilisées : on parlera alors de "forêts aléatoires" (random forests). Chaque arbre de la forêt ne sera entraîné que sur un sous-ensemble aléatoire des covariables.

Les techniques de bagging et de forêts aléatoires permettent de réduire la variance de l'estimateur. Cependant, puisque les arbres du bagging reposent du boostrap, le biais reste le même que pour un arbre simple. [START_REF] Schapire | The strength of weak learnability[END_REF] propose un algorithme d'apprentissage ensembliste répondant à cet objectif : le boosting. Le principe général est de combiner des modèles d'apprentissage "faibles" h (weak learners), par exemple des arbres avec une faible profondeur, pour en faire un modèle "fort" F (strong learner ) avec une bonne précision. A la diérence du bagging, où les arbres sont entraînés indépendamment sur les données initiales (à un bootstrap près), le boosting estime les modèles faibles itérativement sur les "résidus" du modèle précédent.

Vu que l'objectif de l'itération est d'améliorer la précision de prédiction, il est logique d'introduire une fonction de perte, notée L, qui pourra par exemple être logistique dans le cadre d'une classication ou quadratique pour une régression. Étant donné un ensemble d'apprentissage D tpy i , x i qu N 1 , nous cherchons un modèle fort F M comme combinaison de modèles faibles h m appartenant à une classe de modèles H : L pF m νhq L pF m q ν ∇L pF m q , h ¡, 

Indice de végétation

Les données des agences spatiales gouvernementales sont une des sources d'information libre dont l'accès a été récemment simplié. La NASA a par exemple mis à disposition une large catégorie d'observations atmosphériques (température, vent, précipitation, etc.) depuis le début des années 1980 par le biais du projet MERRA-2 [START_REF] Gelaro | The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)[END_REF]. De plus l'agence a dernièrement développé une plateforme permettant un accès groupé à l'ensemble de ses bases de données en accès libre : search.earthdata.nasa.gov. Parmi ces observations spatiales, nous nous intéressons aux indices de végétations, et plus particulièrement au normalized dierence vegetation index (NDVI).

Pionnier dans la télédétection en agriculture, Colwell (1956) montre que des photographies aériennes dans le spectre de l'infrarouge permettent de détecter les maladies des cultures agricoles. Plus tard, Kumar et Silva (1973) 
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Abstract

Forecasting mortality rates is a problem which involves the analysis of high-dimensional time series. Most of usual mortality models propose to decompose the mortality rates into several latent factors to reduce this complexity. These approaches, in particular those using cohort factors, have a good t, but they are less reliable for forecasting purposes. One of the major challenges is to determine the spatial-temporal dependence structure between mortality rates given a relatively moderate sample size. This paper proposes a large vector autoregressive (VAR) model tted on the dierences in the log-mortality rates, ensuring the existence of long-run relationships between mortality rate improvements. Our contribution is threefold.

First, sparsity, when tting the model, is ensured by using high-dimensional variable selection techniques without imposing arbitrary constraints on the dependence structure. The main interest is that the structure of the model is directly driven by the data, in contrast to the main factor-based mortality forecasting models. Hence, this approach is more versatile and would provide good forecasting performance for any considered population. Additionally, our estimation allows a one-step procedure, as we do not need to estimate hyper-parameters. The variance-covariance matrix of residuals is then estimated through a parametric form. Secondly, our approach can be used to detect nonintuitive age dependence in the data, beyond the cohort and the period eects which are implicitly captured by our model. Third, our approach can be extended to model the several populations in long run perspectives, without raising issue in

Introduction

Identifying patterns in the mortality dynamics of a population is a hard task due to the complex underlying phenomena that impact the death rates. This problem is of crucial interest for government policies, pension funds and insurance companies. A wide range of models has been developed since the introduction of the famous model proposed by Lee and Carter (1992).

Most of these approaches rely on time-series modeling with past data and forecast the main 2008); Barrieu et al. (2012). The purpose of the present paper is to provide a new exible modeling for the evolution of the mortality. Our high-dimensional vector autoregressive (VAR) approach, combined with an elastic-net penalty estimation method, aims to capture complex demographic eects without imposing a too restricting shape for the dynamics.

In recent years, some advances have been made to improve the forecast of mortality rates compared to the traditional factor-based models inspired by Lee and Carter (1992). This innovation has been provoked in particular by practitioners need for managing longevity risk and responding to the Solvency II requirements in insurance. Indeed, traditional models, even when a cohort eect is considered, have a reasonable t, but poorer forecasts, indicating that these models may overt the data. In such a context, one of the major concerns is to avoid the divergence of mortality rates between adjacent ages and dierent countries. Such inconsistency in the forecasting is pointed out for example by [START_REF] Börger | Modeling the Mortality Trend under Modern Solvency Regimes[END_REF], who explain that these low performances are due to the fact that traditional models mainly focus on the central trajectory projection. Several directions have been explored to overcome this issue. Recently, [START_REF] Bohk | Probabilistic mortality forecasting with varying agespecic survival improvements[END_REF] propose to approach the turning points of the mortality problem by combining trends of several countries.

Based on the observation that mortality rates are, in fact, noisy data, other alternative methods have emerged. If no exceptional event occurs, one can assume that the mortality surface is rather smooth over the age and time dimensions. Thus, functional data analysis and nonparametric smoothing techniques have been applied to mortality modeling, leading to a particular family of mortality models (see e.g. Currie et al., 2004;Hyndman and Ullah, 2007;Li et al., 2016;Dokumentov et al., 2018). These models are known to have good tting and forecasting performances, however they mostly consider future values as missing ones, making the stochastic generation of multiple prospective mortality scenarios non intuitive.

Other approaches focusing on the age-period dependency have recently been proposed with the constraint of being more data-driven. Christiansen et al. (2015) use spatial statistics to forecast ageperiod mortality rate improvements using a kriging method. Their approach is parsimonious and provides good performances for short-term projection. However, it seems that their long-term results are more questionable. Doukhan et al. (2017) also focus on the surface of mortality improvements and model it parsimoniously with an AR-ARCH specication for a random eld memory model. A valuable feature of their approach is that both dependencies between cohorts and the conditional heteroscedasticity of mortality are taken into account. Although they have good forecasting results, it is dicult to justify the size of the neighborhoods used to specify the memory process. Li and Lu (2017) choose a VAR process to consider the spatial dependence of mortality rates between neighboring ages adapted to short-term and long-term perspectives. These authors account for sparsity and stationarity in their VAR model by constraining the shape of the Granger causality matrix (Granger, 1969) as a lower triangular. Their model is also able to consider multiple populations.

In this paper, we propose an alternative approach that newly forecasts the age-period dependency using a large VAR specication on the log-mortality improvements. Although a VAR model is suitable for mortality time-series and is able to capture both long-term relationships and short-term shocks (see e.g. Salhi and Loisel, 2017), it is dicult to estimate accurately such models using an ordinary least square (OLS) technique, as these series are highly correlated and histories of data are relatively short. To avoid overparameterization, existing forecasting approaches impose an a priori spatio-temporal dependency structure between mortality rates or mortality improvements, which implies that only some selected series can interact. In contrast, our main contribution is the introduction of an estimation framework allowing for a large and exible VAR structure without excluding potentially relevant relationships. A great feature of such a VAR specication is that all classical mortality models could naturally be included in our specication, especially the so-called cohort and period eects as noted by Li and Lu (2017).

Following recent developments in economics and nance [START_REF] Fan | Sparse High Dimensional Models in Economics[END_REF]Furman, 2014), we develop a penalized VAR method based on the elastic-net (Zou and Hastie, 2005), which allows to take into account the sparsity correctly. Indeed, such a VAR model has a sparse structure in high dimension, which requires an accurate estimation method for shrinking zero coecients in the Granger causality matrix. Compared to a classical maximum likelihood estimation approach, the key idea behind the elastic-net is to incorporate a penalty, which constrains the parameters. This penalty is a combination of an L 2 term (as in a ridge regression) to avoid ill-conditioning matrices, and an L 1 term (as in a LASSO regression) to produce a sparse model. By sparse model, we mean that our data-driven automatic selection produces a model with a relatively small number of non-zero parameters. As noted by Furman (2014), this is an attractive alternative to Bayesian VAR procedures usually considered in an econometrical framework and developed for example by Hahn (2014) for multiple populations modeling.

Indeed, such approaches require to introduce relevant priors and do not address the sparsity's issue. The residuals are modeled as a Gaussian vector where the variance-covariance matrix is described using a parametric form for parsimony purposes.

Similarly to Doukhan et al. (2017), but contrary to Li and Lu (2017), our approach models the log of mortality improvements rather than the log of mortality rates. Several empirical elements have been advanced in the recent literature showing the interest of mortality improvements. [START_REF] Haberman | Parametric mortality improvement rate modelling and projecting[END_REF] show that a dual approach based on improvement rates can be followed for usual mortality models. They generally obtain quite comparable (but often better) forecasting results with this alternative route for the Lee-Carter model and its variants. As also noted by [START_REF] Bohk | Probabilistic mortality forecasting with varying agespecic survival improvements[END_REF], mortality improvements seem to be easier to analyze, which facilitates the identication of divergences in mortality. As our approach is highly exible, we expect that it can better capture complex patterns of mortality improvements. Another argument is that mortality improvements are generally stationary (see e.g. [START_REF] Celeste | A double-exponential GARCH model for stochastic mortality[END_REF], which is required for projection as our approach, contrary to Li and Lu (2017), does not impose constraints for guarantying stationarity.

We compare our high-dimensional VAR model to ve dierent benchmark mortality forecasting models: the usual Lee-Carter model (Lee and Carter, 1992) like ours on a high-dimensional VAR method, developed by Li and Lu (2017). Using the root mean squared error measure, we show that our approach leads to general better tting (in-sample) and forecasting (out-of-sample) of the mortality rate time series from the three countries we have focused our analysis on. Moreover, our data-driven model implies more stable errors over dierent countries while the benchmark models tend to have more variable predictive power depending on the considered population.

The remainder of this paper is organized as follows. In Section 1.2 we describe the VAR model we retained. The high-dimensional estimation of this model is then developed in Section 1.3.

We present the data we used, dierent results that we obtained and a comparison to other standard mortality models in Section 1.4. Finally, Section 1.5 proposes an extension of the VAR model to multi-population modeling, and Section 1.6 considers some ways of improvement and concludes.

1.2 A Vector Autoregression approach for mortality rate improvements

In this section, we introduce an econometric model to describe the mortality improvement dynamics jointly. The mortality models we introduce in the literature in Section 1.1 are initially based on an analysis of the main factors explaining a common trend of mortality rates. For instance, many models have been developed in the past for capturing the cohort eect, observed in the residuals for improvement rates plots (Willets, 2004). Conversely, our approach only imposes an autoregressive structure, which encountered these classical models 1 , as shown for example by Salhi and Loisel (2017) or Li and Lu (2017). In particular, the latter authors explain in details how the cohort and period eects can directly be captured in the VAR(1) representation, without dening specic factors explicitly.

Throughout this paper, we focus on the time series y i,t ln pm i,t q, where m i,t is the crude annual death rate at age i and at date t. These rates can be easily computed thanks to annual risk exposures and count of deaths for a country of interest. Those series are usually not stationary, as a trend can be observed in mortality rates and life expectancy. Since we want to apply our vector autoregressive model on stationary series, we compute the rst dierence of the log-mortality rate ∆y i,t y i,t ¡y i,t¡1 or, in other words, the log-mortality improvement rates. By working on these quantities, we remove a linear trend in the y i,t series.

With this notation, we specify the mortality rate improvement process by a stationary vector autoregressive model of temporal lag p or a VAR ppq. For a minimum age i min and a maximum age i max , we dene the d-dimensional vector of log-mortality rate improvements, with d i max ¡ i min 1, as ∆Y t p∆y i min ,t , ∆y i min 1,t , . . . , ∆y imax,t q t . Next, we assume the following dependence structure dynamic,

∆Y t C p ķ1 A k ∆Y t¡k E t , (1.1)
where, for k 1, . . . , p, A k are d ¢ d-autoregressive matrices, C is a d-dimensional vector of constants (an intercept), and E t is a d-dimensional Gaussian white noise with mean 0

1. More precisely, it is their alternatives using mortality improvements, as documented by [START_REF] Haberman | Parametric mortality improvement rate modelling and projecting[END_REF].

and Σ the related covariance matrix. We denote by i,t its marginals. The matrices A k , k t1, . . . , pu, capture the relationship between current mortality improvements and the k th lag of ∆Y t . In other words, this corresponds to the Granger causality between dierent cohorts for the mortality improvement rates. As a result, for a VAR(1) model, the coecients related to the rst subdiagonal of the Granger causality matrix capture a cohort eect for individuals born in the same year. As also noted by Li and Lu (2017), the terms of the diagonal can be interpreted as a period eect, since they measure an eect for a xed age between periods.

The VAR ppq model allows taking into account a more complex dependence structure than the usual mortality factor models. First, our model enables a larger exibility in the long-term spatio-temporal dependence structure through the autoregressive matrices than the standard factor models. For a given square pi, tq in the Lexis diagram, we let the possibility for the improvement mortality rates ∆y i,t to be dependent of all the ages among the d-dimensional space of ages, and through all the p temporal lags. In particular, we notice that this domain includes a cohort eect for these improvement rates. For each factor ∆y i¡1,t¡1 , . . . , ∆y i¡p,t¡p , this eect is indeed captured by the loading coecients positioned on the k th -subdiagonal of the matrix A k for each k t1, . . . , pu. Hence, the VAR ppq structure permits for the shocks to propagate through dierent periods. Compared to the model proposed by Li and Lu (2017), the lag order p can take a value greater than 1, allowing to capture a more complex dependence structure.

Furthermore, it has the ability to enlighten some eects that are not captured in the standard mortality literature, e.g. between neighboring cohorts, as we do not impose any constraint on the matrices A k , k t1, . . . , pu. Compared to most of factor models, the second improvement of our model on the dependence exibility is that it captures the long-term co-movement by the autoregressive matrices and the short-term dependence through the covariance matrix at the same time.

Nevertheless, the major issue of our VAR ppq model is that it is a natural high-dimensional problem. The number of parameters for the Granger causality matrices is pd 2 , without considering the covariance matrix and the constant vector. In mortality modeling studies, it is common to focus on the age range from 0 to 100, that is to say d 101, while the historical data for estimation rarely exceed 70 years. Given this, a VAR p3q implies 30, 704 parameters estimated on only 7, 070 observations, which makes the ordinary least-squares estimation not feasible. To avoid over-tting, additional constraints have to be added. In this direction, Li and Lu (2017) impose that some parameters have to be nil for guarantying that the model is sparse and stationary. Conversely, we choose a less arbitrary high-dimensional selection variables technique, developed in the next section, to ensure sparsity.

Similarly, the covariance matrix estimation is also a high-dimensional problem with d pd 1q 2 parameters. In order to estimate prediction intervals, we consider an additional specication for the residuals. Although some high-dimensional techniques do exist for covariance estimation (see e.g. [START_REF] Schäfer | A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics[END_REF][START_REF] Opgen-Rhein | From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data[END_REF][START_REF] Bickel | Covariance Regularization by Thresholding[END_REF][START_REF] Bien | Sparse estimation of a covariance matrix[END_REF], we rather choose a simple parametric form presented in the following part to reduce the number of parameters.

High-dimensional estimation of the VAR model

As highlighted in the previous section, the VAR ppq model estimation is a high-dimensional problem, especially with mortality data. The estimation can be decomposed into two parts:

rst, we estimate the pd 2 -dimensional autoregressive matrices, then the d 2 -dimensional covariance matrix. The dimension reduction in the autoregressive matrices is treated through an elastic penalization in Section 1.3.1. We tackle the problem of the covariance through the choice of a parametric form in Section 1.3.2.

Elastic-net

We now described the extension of the elastic-net regularization and variable selection method, proposed by Zou and Hastie (2005), for the high-dimensional estimation of our autoregressive matrices. This technique can be seen as the combination of the LASSO L 1 -penalty, introduced by Tibshirani (1996), and the ridge L 2 -penalty developed by Hoerl and Kennard (1970).

Elastic-net has similar properties of variable selection as the LASSO. Moreover, it provides a grouping eect: highly correlated variables tend to be selected or dropped together. LASSO and elastic-net have already been extended to VAR model (Gefang, 2014;[START_REF] Basu | Regularized estimation in sparse high-dimensional time series models[END_REF], mostly with an economic application (see e.g. Song and Bickel, 2011;Furman, 2014).

Therefore, we estimate the VAR ppq model presented in Equation (1.1) with T observations of the process ∆Y t for t t min , . . . , t max by minimizing the criterion

L pC, A 1 , . . . , A p q 1 T ¡ p tmax ţt min p }∆Y t ¡ C ¡ p ķ1 A k ∆Y t¡k } 2 2 ¡ αλ p ķ1 }A k } 1 ¡ p1 ¡ αq λ 2 p ķ1 }A k } 2 2 , (1.2)
where we dene for a d-dimensional vector b pb i q 1¤i¤d }b} 2 2

d i1 |b i | 2 ,
and for a d ¢ d-dimensional matrix B pb i,j q 1¤i¤d,1¤j¤d

}B} 1 d i1 d j1 |b i,j | and }B} 2 2 d i1 d j1 |b i,j | 2 .
The parameter α r0, 1s is a hyper-parameter which determines the mix between ridge and LASSO penalties. We use a 10-folds cross-validation method to choose the penalty coecient λ. It determines the strength of the penalties, for example in the LASSO case, the higher λ gets, the fewer number of variables are selected. The algorithm we used is described in Friedman et al. (2010). In theory, the LASSO L 1 -penalty part forces most of the coecients to 0. Nevertheless, in a more practical approach, the algorithm employed does not lead to exact zeroes. Thus, the R-package glmnet (Friedman et al., 2010) applies a threshold on the coecients. Furthermore, following [START_REF] Chatterjee | Bootstrapping Lasso Estimators[END_REF], the sparsevar R-package (Vazzoler et al., 2016) , as explained just before, and deduce the residuals Êα h ,t for t tt min p, . . . , t max u.

In the applications, we estimate the tuning parameters by minimizing the prediction error, that we obtain by computing the root-mean-square error

RMSE pα h q g f f e 1 d pT ¡ pq tmax ţt min p } Êα h ,t } 2 2 .
(1.3)

In our application, we considerate the grid t0.5, 0.6, 0.7, 0.8, 0.9, 1u in order to impose a larger weight to the LASSO penalty for sparsity purposes.

The choice of the lag order p for our VAR elastic-net (VAR-ENET) model diers signicantly from the usual lag order selection in the standard VAR models. The parameter p does not fully determine the number of parameters, since the LASSO penalty force the less signicant coecients to zero. By increasing the lag order, some non-null coecients can be forced to zero in favor of other coecients in autoregressive matrices of higher lag order. Moreover, if there is no signicant coecient above a certain lag order, all autoregressive matrice above the limit order are largely forced to zero. Thus, we chose a relatively large p to capture eventual high order lag eects, without being worried of over-tting.

Variance-covariance estimation

The autoregressive matrices are not the only high-dimensional problem of the VAR ppq model, the variance-covariance matrix estimation has dpd 1q 2

parameters. This number can quickly get higher than the number of observations while dealing with mortality modeling, and then can cause overtting, as noted e.g. by Li and Lu (2017).

To overcome this issue, we propose an approach to estimate the covariance matrix with a parametric covariance function, in a manner similar to [START_REF] Spodarev | Extrapolation of stationary random elds[END_REF]. Firstly, for each age i, we estimate the standard empirical variance σ2

i of the residual, and for each couple of ages pi, jq ti min , . . . , i max u 2 , we estimate the empirical correlation ri,j σi,j σi σj ,

where σi,j is the empirical covariance. Then, guided by the form of the empirical correlation matrices and by the approach of Christiansen et al. ( 2015), we use a parametric form close to the stable family of covariance functions r i,j βe ¡pa i a j q¢|i¡j| ¢ 1 ti$ju 1 tiju ,

(1.4)

with β ¥ 0 and a i ¥ 0 for each age i. We t the model based on the empirical correlation as the OLS solution. Thus, after determining β and pâ i min , . . . , âimax q, we compute our parametric correlation ri,j given by Equation (1.4). Finally, for each couple of ages pi, jq we estimate the covariance by σi,j ri,j ¢ σi σj .

Empirical analysis

In this section, we apply our high-dimensional VAR-ENET model to real data and show its strengths in estimating and forecasting populations. Dierent populations are considered and we analyze both our in-sample and out-sample results compared to those obtained with retained benchmark models. In the following, the computations are carried out with the R software (R Core Team, 2019). Our scripts are available upon request.

Data

The dataset that we analyze comes from the HMD (2019). We choose to illustrate our approach with historical mortality data from the England and Wales (UK), the United States (US) and France (FR), as these populations have been largely studied, but have specic features. At rst, the overall population is considered, and then both males and females are segregated. We select the age-period observation t45, . . . , 99u ¢t1950, . . . , 2016u which was available for these 3 countries when the data was extracted. We begin our analysis by a visual inspection of our data. Figure 1.1 describes the shape of the period log-mortality improvements for populations on a Lexis diagram where the trajectory of one cohort follows a 45 degree line. Dierent cohort eects can be observed for these countries with pink (resp. green) shades for positive (resp. negative) improvements, indicating a lower (resp. higher) survival.

On the center, UK improvement rates do exhibit some signicant diagonal patterns corresponding to the so-called cohort eects. A diagonal stands out, more precisely for individuals aged 45 in 1965. Several vertical patterns corresponding to period eects are also observed, especially for the older ages. Diagonal and vertical structures associated with cohort and period eects also stand out in the American data, even if the patterns are less marked than in the English data. Contrary to English and American mortality, the French mortality data doesn't clearly display any diagonal structures, but only period eects. We note that the cohort eects (also observable on residual plots), which used to appear in the French data, were strongly reduced with the correction developed by Boumezoued (2016), thanks to fertility rates. Female and male data are displayed in Appendix 1.7.1.

We have chosen to apply the VAR-ENET to the rst dierence of log-mortality rates series because they are known in the literature as stationary time series. In order to verify this point, we perform a Phillips-Perron test [START_REF] Perron | Trends and random walks in macroeconomic time series[END_REF]) and an augmented Dickey-Fuller test [START_REF] Said | Testing for unit roots in autoregressive-moving average models of unknown order[END_REF] on every age mortality series for each of the nine populations of interest.

All of these time series satisfy the Phillips-Perron test at a condence level of 1%, and 93%

of them are considered as stationary by the augmented Dickey-Fuller test at a level of 5%.

These results strengthen our choice to focus on the rst dierence of time-series.

Benchmark models

In this section, we present the benchmark mortality models that we compare to the VAR-ENET.

First, we retain two models from the standard factor-based family:

the usual Lee-Carter (LC) model (Lee and Carter, 1992), estimated with the approach of [START_REF] Brouhns | A Poisson log-bilinear regression approach to the construction of projected lifetables[END_REF] and given by y i,t α i β i κ t ,

(1.5)

with the hyper-parameters α i and β i , and the mortality trend κ t , the M7 model developed by Cairns et al. (2009), which considers a quadratic and a cohort eect, i.e.

y i,t κ p1q t pi ¡ īq κ p2q t κ p3q t ¡ pi ¡ īq 2 ¡ σ2 i © γ t¡i , (1.6)
where κ pjq t , j 1, 2, 3, are period eects, γ t¡i is a cohort eect, ī is the average age in the data, and σ2

i is the average value of pi ¡ īq 2 . These last models are estimated using the R-package StMoMo (Villegas et al., 2017) following their usual two-stage tting procedure: rst, we estimate the factor coecients of each model, and then we forecast it using univariate ARIMA processes, automatically selected by the Rpackage using an AIC criterion. To be comparable with our one-stage tting approach, the results for these models are those obtained after tting the time-series parameters.

We also consider two recent models based on smoothing methodologies :

the classical model proposed by Hyndman and Ullah (2007) (HU) which estimates a non-parametric smoothing function f t piq for every period t that smooths mortality rates over the age dimension, and is then decomposed

f t piq µpiq K ķ1 β t,k φ k piq, (1.7)
where µpiq is a measure of location of f t piq, pφ k piqq i1,...,K is a set of orthonormal basis functions of dimension K ¥ 1. This model is applied thanks to the R-package demography [START_REF] Hyndman | demography: Forecasting Mortality, Fertility, Migration and Population Data[END_REF] based on weighted penalized regression splines for smoothing.

The recent RESPECT model, developed by Dokumentov et al. (2018) and implemented in the R-package smoothAPC (Dokumentov and Hyndman, 2018), which uses L 1 -regularized bivariate smoothing over the age and period dimensions, and further allows identication of period and cohort eects on the smoothing residuals.

Finally, we retain a model closer to the methodology of the VAR-ENET, which is based on a spatial-temporal autoregressive framework: the STAR method, introduced by Li and Lu (2017). It models the dynamic of the log mortality rates through a large rst-order VAR, of which autoregressive matrix's parameters are forced to a sparse estimation by the following constraints:

y i min ,t 1 y i min ,t m i min , (1.8) 
y i min 1,t 1 p1 ¡ α i min 1 qy i min 1,t α i min 1 y i min ,t m i min 1 ,

(1.9) and

y i 1,t 1 p1 ¡ α i 1 ¡ β i 1 qy i 1,t α i 1 y i,t β i 1 y i¡1,t m i 1 ,
(1.10) for i ti min 2, . . . , i max u, m i 1 a parameter, and α i 1 and β i 1 two positive parameters that are smaller than 1. The model is estimated using the benchmark ordinary least square proposed by the authors.

In-sample analysis

In this section, we present the results of our empirical estimations with the VAR-ENET model for each population. We especially focus on the study of the estimated Granger causality matrices that describe the long-term underlying mortality dynamic of the model. The goodness of t is analyzed by comparing the in-sample results with the benchmark models presented in Section 1.4.2.

Parameters estimation

Let us present our estimated results on the period 1950 ¡2016. The parameters are estimated as described in Section 1.3. For the lag order p, we choose the value 7, which represents between 10% and 15% of the observation, depending if we analyze the in-sample or, as in the latter sections, out-sample. Table 1.1 reports the list of the estimated hyper-parameters for each population of interest. We note that, for some populations, we retain the value 1 for α,

i.e. we estimate the model with the LASSO constraint only. The rst Granger causality matrix A 1 for each population is displayed in Figure 1.2. These estimated matrices are sparse, i.e. most of the coecients are estimated to 0 while minimizing the criterion given in Equation (1.2). We identify two main structures by observing the nonzero coecients. We interpret these patterns in terms of demographic eects, basing our explanations on the underlying mortality dynamic of the model induced by the matrices and described in Equation (1.1).

First, an expected cohort eect, induced by individuals belonging to the same generation, is older ages.

Third, we notice some age-specic eects corresponding to vertical structure of non-zero coecients. This third type of patterns reveal non-trivial interactions between dierent cohorts which are non-necessary within a close neighboring. More concretely, a vertical pattern on the i th column of A 1 reveals a persistent eect from the term ∆y i,t¡1 on t∆y j 1 ,t , . . . , ∆y j l ,t u, with tj 1 , . . . j l u ti min , . . . , i max u. It means that the mortality improvement of a single specic age i seems to impact the mortality improvement on a group of ages tj 1 , . . . j l u one year after. Similar structures can be observed on the matrices A k for k t2, . . . , 7u (not shown here).

This latter eect, underlined by our data-driven approach, has not been well documented in

the literature yet to our knowledge. These patterns are quite dicult to interpret and to explain within the demographic framework with the available dataset. Disaggregated data would be very useful to explore these eects further. Indeed, these patterns could result from biological, environmental or societal causes, unless it is due to some anomalies in the HMD (Cairns et al., 2016a;Boumezoued, 2016). At this point, we are unable to conclude on the very causes of such age-eects.

On the contrary, the observed cohort and period eects have already been well studied in the literature. However, our model highlights this result in a more data-driven way. Indeed, the existing models either detect these eects in the residuals (e.g. Lee and Carter, 1992;Dokumentov et al., 2018), or force the estimation of specic parameters (e.g. Cairns et al., 2009;Li and Lu, 2017). In our case, we notice these eects by analyzing the parameters estimated without imposing any specic constraints. To exhibit how our data-driven approach can adapt to these eects, we estimate two VAR-ENETp1q models on the French male population over the period 1950-2012, but with the data downloaded from the HMD at two dierent dates: 2 nd October 2017 and 28 th January 2019. Indeed, between these two dates, the HMD data had been updated, following the work of Cairns et al. (2016a); Boumezoued (2016) using fertility rates. With this correction, the residual plots display a cohort eect which is substantially lessened. The two Granger causality matrices estimated are displayed in Figure 1.3. In the old version, we clearly remark a subdiagonal in the estimated parameters. In the new estimation, where many false cohort eects had been removed, the pattern on the rst subdiagonal is virtually nil, whereas the negative period eect on the main diagonal is only slightly reduced.

In-sample model comparison

We now study how our approach ts well and captures better the mortality pattern on these subsets compared to the benchmark models we retained in Section 1.4. these two methods. The results for females and males are given in Appendix 1.7.2 with similar ndings.

Some of the period peaks may be explained by specic events that have an unexpected impact on the mortality rates, such as an inuenza epidemic or a heat wave (Huynen et al., 2001).

Indeed, this type of exogenous stresses is dicult to predict with only mortality rate series, which explains why the peaks are observable for the three models. For example, we try to explain the relatively high RMSE in France in 2004. In 2003 a heat wave led to one of the hottest summer ever recorded in France and, as a direct consequence, to higher mortality rates during this year, especially for the elderly. Then, the mortality was much lower in 2004 due to the so-called harvesting eect (Toulemon and Barbieri, 2008;Izraelewicz, 2012).

On the contrary, in the calculation of the RMSE, the mortality rates of the year 2004 are forecasted from the observation of the 2003 rates in accordance with the temporal dynamics we have imposed; in this way, the 2004 mortality was expected to be relatively high. This must explain why we observe a RMSE peak in 2004 for the French population. 

Out-of-sample performance

For risk management in insurance or more generally for demographers or public policy purposes, mortality rates require being predicted based on the past information. A quite usual test for accuracy is to analyze how the model is able to reproduce the mortality rates correctly.

Note that this objective is more demanding than measuring the prediction power on the residual life expectancy. A reasonable model should be able to predict a kind of convergence for mortality at a similar level.

We focus on the prediction power of the VAR-ENET model compared to the benchmark models through an analysis of the out-sample forecasting performance on the same age-period space.

To this end, we rst estimate each model based on the observations from 1950 to 2000, then we py i,t ¡ ŷi,t q 2 , (1.11) where t 0 is the year 2000 and h equals to 16 years in our study.

We compare the predictive power of the dierent models on the period 2001 ¡ 2016 for the 3 populations (overall, female, male) of the 3 countries of interest. The results are displayed in Table 1.4 and 1.5 (we also display the results for dierent estimation years but with the same forecasting period in Appendix 1.7.3). We note in Table 1.5 that the average RMSFE is smaller with the VAR-ENET than with the benchmark models, indicating that the former one has higher predictive power in general. However, it is locally outperformed by other models for some populations. Thus, we note for example that the RESPECT model slightly outperforms the VAR-ENET on the French data, and the STAR's RMSFE value on the US male population (5%) is signicantly lower than the one obtained with the VAR-ENET (11.6%) and the other models.

Furthermore, we observe that, in the VAR-ENET applications, all the forecasting errors are of the same order of magnitude, no matter the selected population. This point is highlighted by the standard deviation of RMSFE values over the 9 populations displayed in Table 1.5 for each model. Although the RESPECT and STAR models locally outperform the VAR-ENET, they are more sensible to population considered, leading to a signicantly higher standard deviation (respectively 9.4% and 11.3% against only 1.4% for our model). The M7, and to a lesser extent the LC and HU models, also tend to have more variable forecasting errors, depending on the considered population. These results highlight the stability of the prediction error of the VAR-ENET over dierent populations compared to the other benchmark models due to the more data-driven approach of the rst one, allowing it to better capture the features of each populations' mortality dynamic. By analyzing the results displayed in Appendix 1.7.3, we also notice a better stability of the VAR-ENET over dierent estimation periods. We plot the RMSFE in Figure 1.6 for the overall population of our three countries of interest.

The results for female and male populations are postponed in Appendix 1.7.3. First, we note that the forecasting errors from most models tend to converge with the projection horizon, suggesting that obtaining a signicant enhancement of the forecasting accuracy on the long term seems very challenging. However, we observe that for specic population, some models fail to capture the mortality dynamics, therefore the RMSFE strongly diverges, see e.g. M7

and STAR on the French data or HU on the English data. Nevertheless, our model doesn't suer from this drawback. Furthermore, it always belongs among the best models for any population and any period considered in this study. We now focus on the forecasting error by age groups. We choose to separate the age dimension into 5 classes and compute the RMSFE at a projection horizon of 10 years. By doing so, we compare the predictive power over the dierent ages. Indeed, depending on the purpose of the mortality forecasting application, one could be more interested in producing accurate predictions for some specic ages. We show the results of the three models in Figure 1.7.

Yet again, we observe that the VAR-ENET is the most stable model over the age classes, when analyzing the forecasting errors at a 15 years projection horizon. While the M7 consistently fails to capture the mortality dynamic at higher ages, the other models have more local issues.

For example, we note poorer predictions for the STAR on the French age class 85-94. On the English mortality, the two models LC and HU, and the RESPECT methodology, have respectively higher RMSFE on the age classes 65-74 and 85-94. This point highlights the capacity of our model to uniformly forecast the mortality rates over the age dimension for any of the considered populations.

The results presented in this section suggest that our model slightly outperforms the benchmark methodologies in average for the considered data, even though it doesn't lead to the best accuracy for every population. In all the tested situation, it is at least a credible competitor compared to the best model. More importantly, the VAR-ENET seems to be more stable according to the selected population. This last point is the most noticeable dierence between our in and out-of-sample results. Whereas, in our in-sample study, the models' t seems to be relatively equally stable in respect of the considered population, the out-of-sample analysis emphasizes a noticeable heterogeneity in the outcomes depending on the selected dataset. In that regard, the VAR-ENET tends to provide signicantly more consistent forecasts.

Forecasting application

Figure 1.8 displays the median forecasts of the log of death rates for ages in t45, 65, 85, 95u

using the VAR-ENET model from 2017 to 2066. We note that the trends seem rather realistic.

We remark that the male and female mortality rates tend to converge rapidly for the UK population. This forecasting result has already been observed in the literature with other models with a similar estimation period (see e.g. [START_REF] Bohk | Probabilistic mortality forecasting with varying agespecic survival improvements[END_REF]). We note on the forecasted series that there are some limited shocks during the rst projection years, followed by a linear trend. This eect is characteristic of the VAR model and shows how it can propagate innovation shocks among a cohort for example.

Figure 1.9 compares the median forecasts of the log of death rates of two popular models LC, the HU model with the VAR-ENET model from 2013 to 2062. First, we note that for many of the forecasted series, the three models produce very similar projections, especially on the female populations at higher ages. On the contrary, for the British male mortality dynamics, the forecasts are noticeably dierent. While the LC and HU models predict a stabilization of the mortality rates, and even a slight increase at age 45 for the smoothing methodology, our VAR-ENET forecasts a decrease consistent with the average longevity improvement over the last decades. The two benchmark models seems to be more impacted by the slowdown of this enhancement observed during the very recent years. To a lesser extent, we also notice a comparable results on the French male population. 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 1960 1970 1980 1990 2000 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 1960 1970 1980 1990 2000 

A multi-population extension

Some of the standard mortality forecasting models can be extended to multi-population.

However, many of these extensions suer from limits. One of the recurrent limits in multipopulation mortality modeling is the restriction of the extension to only 2 populations. For example, we can note the GRAVITY model of Dowd et al. (2011) or the Bayesian model of Cairns et al. (2011). Another restriction imposed by some existing multi-population models is the necessity to determine a dominant population and sub-populations, see e.g. the SAINT model of Jarner and Kryger (2011), or a common trend for the dierent populations like in Li and Lee (2005). In this section, we explore the possibility of extending our model for multi-population mortality forecasting and we give the needed details.

We denote M the number of selected populations and y m,i,t the log of mortality rates for the m th population. We suppose that the pair pi min , i max q is the same for all the populations to avoid exaggerated notations, although we could have chosen M dierent pairs of age limits.

Thus, we dene M dierent d-dimensional vectors ∆Y m,t that we concatenate into a single M d-dimensional vector ∆Y t p∆y 1,i min ,t , . . . , ∆y 1,imax,t , ∆y 2,i min ,t , . . . , ∆y M,imax,t q t . We then apply the same model as in Equation (1.1) except that the dimension equals now to M d.

The pMdq ¢ pMdq-dimensional autoregressive matrices and the M d-dimensional vector of constants are estimated through the same elastic-net methodology as in the single population problem. However, the covariance matrix estimation needs to be extended since its structure may change signicantly compared to the single population case.

In the multi-population context, the covariance matrix Σ is pMdq¢pMdq-dimensional. where Rm is an upper triangular matrix. Finally, for a couple of populations pm, nq we estimate the covariance submatrix as

Σm,n ρ m,n ¢ Rt m Rn ,
where ρ m,n r¡1, 1s is the empirical Pearson's correlation coecient between the observations of residuals p m,i,t q pi,tq and p n,i,t q pi,tq for pi, tq ti min , . . . , i max u ¢ tt min p, . . . , t max u. , meaning that we do not add many parameters for covariance estimation while modeling M populations together compared to tting M single models.

Conclusion

In this paper, we have proposed a vector-autoregression elastic-net (VAR-ENET) model on the dierentiated log-mortality, leading to three key results. First, this new high-dimensional time series analysis outperforms in tting the mortality rate series of each of the nine populations we considered, compared with the three stochastic benchmark models (LC, M7 and STAR).

Moreover, in average, it leads to in-sample errors of same order as the two smoothing benchmark models (HU and RESPECT). Even though our model doesn't produce the most accurate forecasts on each population, it leads to relatively close results compared to the best model each time. In addition, the average RMSFE over the 9 population is lower than the one obtained with any other benchmark models. Furthermore, thanks to its data-driven approach, the VAR-ENET leads to more stable errors than the benchmark models over populations,

showing its power of adaptability to the specic mortality dynamics of dierent populations.

Compared to the usual strategy which requires to compare a variety of possible models and then select the best for a particular age-period population, our approach gives directly and with little eort a serious candidate for a consistent modeling of the mortality, regardless of the population features. The second key result is that, although we let a large freedom in the spatio-temporal dependence structure without imposing a priori constraints, the VAR-ENET model enlightens three main eects: the so-called cohort and period eects and a specic age eect. While the rst two models have already been well studied in many papers on mortality modeling, we develop in this paper a new ways for detect the eects for any population. The last eect is less known or possibly even unknown in the literature. Future researches are needed, probably on a nest dataset to understands such a phenomena. Finally, the proposed extension of the VAR-ENET to multi-population mortality modeling seems a priori straightforward, without raising unavoidable issues on the number of populations or on the hierarchy between them, considering the estimation process.

Some points should however be improved and need further researches. The rst one concerns the interpretation of the results given by our VAR-ENET model. Although it seems to have a better forecasting and adaptability power than the standard factor-based models, the last ones do benet from a greater interpretability. Indeed, even if most of the coecients in the autoregressive matrices are estimated to zero in the VAR-ENET and that the non-null coecients seems to form specic patterns, the comprehension of the underlying dynamics remains complex. On the contrary, it is much easier to understand the mortality dynamics in terms of period, age and cohort eects, which are directly visible through the use of the classical factor-based models.

Second, we are also aware that some of the hyper-parameter selection techniques we applied can be improved. Firstly, we imposed the lag order p equals to 7 for all the population. In a sensibility analysis, we have noted that according to the considered population, the highest predictive power of the VAR-ENET(p) model is not reached at the same lag order p. These results suggest that an optimization on the hyper-parameter p could be developed. The second hyper-parameter to be improved is the mixing weight parameter α between the LASSO and ridge penalties. In the general context of elastic-net regression, it is usually selected with a grid search. However, Friedman et al. (2010) propose to optimize it through a cross-validation by following the same methodology as the λ selection.

Third, the log-mortality rates series y i,t are known to not be stationary, but also to be cointegrated (see e.g. [START_REF] Chen | Multi-population mortality models: A factor copula approach[END_REF]Salhi and Loisel, 2017;Li and Lu, 2017). In our paper, we choose to study the rst dierence in the log mortality-rates and, by doing so, we lose some information about the long-term co-movement. Another way that we can deal with the non-stationarity and co-integration is to rather select the Vector Error Correcting Model (VECM). Nevertheless, although high-dimensional VAR model has been relatively well studied and recently documented especially in nancial econometrics, VECM sparse estimation with elastic-net or other techniques seems to be a new eld (see e.g. [START_REF] Wilms | Forecasting using sparse cointegration[END_REF], and could be developed further for the mortality projection. A major improvement of our model would be to implement the elastic-net procedure to VECM estimation and apply it to the log-mortality series.

Finally, even though we introduce an extension to multi-population mortality forecasting of our model, we don't show any empirical studies on that subject in this paper, which rather focuses on the single population case. Many points need to be analyzed in greater detail to correctly assess the behavior of the VAR-ENET model applied to multi-population. It notably includes the examination of a broader list of countries, the specic case of sub-regional populations and the comparison of forecasts to recent multi-population models. Further more specic studies should be conducted to examine the multi-population model. for the HU, the LC, the M7, the RESPECT, the STAR and the VAR-ENET p4q models estimated on the period 1970¡2000. We compare this indicator for males, females and the overall populations for FR, UK and US. for the HU, the LC, the M7, the RESPECT, the STAR and the VAR-ENET p4q models estimated on the period 1980¡2000. We compare this indicator for males, females and the overall populations for FR, UK and US. populations to switch from one coherence group to another. We then analyze its incidence on longevity hedges basis risk assessment.
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Introduction

Around the world, the life expectancy of many countries has signicantly risen over the past decades. This general augmentation implicitly suggests that common drivers are shared between populations such as lifestyle factors, the level of socioeconomic inequalities or the quality of the health system. However, this improvement is not equally shared among all groups of populations, precisely because the driving features are heterogeneous at an individual level.

The links and dierences between groups are important to understand for demographic and actuarial studies, since they may cause issues in managing social security system, pension funds or in dening longevity risk hedging solution. This explains the growing interest in mortality forecasting of multiple populations, especially to understand the eect of sub-groups on an overall population (Danesi et al., 2015;[START_REF] Bergeron-Boucher | Coherent Modeling and Forecasting of Mortality Patterns for Subpopulations Using Multiway Analysis of Compositions: An Application to Canadian Provinces and Territories[END_REF]Cairns et al., 2019) or to enhance the projections robustness for populations with not well-known trend (see e.g [START_REF] Li | Coherent Mortality Forecasting for Less Developed Countries[END_REF].

Since the introduction of the augmented common factor approach by Li and Lee (2005), many multi-population models have been developed. Most of them are extensions of the Lee and Carter (1992) model or the CDB models (Cairns et al., 2006), and rely on a so-called coherence principle (see Villegas et al., 2017, for a review). This concept, introduced by Li and Lee (2005), consists in imposing that the mortality rates of two populations (or more) do not diverge in the long run. In such a specication, common age and period eects are estimated for a group of mortality data, the population specic trend being therefore modeled via mean-reverting process. This principle is also introduced in the so-called GRAVITY model (Dowd et al., 2011) or the Common Age Eect (CAE) model (Kleinow, 2015;Enchev et al., 2016). Although this assumption may be relevant for close populations, Li et al. (2017) have pointed out that it is often only suitable for specic populations and over limited time windows. Hence, this approach is more likely to become unsatisfactory when it is applied to a large collection of populations. Furthermore, by inhibiting the divergence between populations, an irrelevant use of the mortality convergence principle may thereby distort the projections spectrum of mortality dispersion among the populations. In that context, extending the current mortality forecasting models for a large number of populations is challenging as it involves to cluster together similar countries and separately forecasting those with diverging mortality dynamics, as noted by [START_REF] Richman | A Neural Network Extension of the Lee-Carter Model to Multiple Populations[END_REF].

Motivated by the need of applying stochastic mortality models to a large collection of populations, our aim in this paper is to nd a trade-o between the full coherence principle between populations and the noncoherence situation where single stochastic mortality models are considered independently. These two situations can be considered as border cases of the inter-group dependence possibilities, and are both undesirable, in a general context, for life insurers which are assisted by stochastic mortality multi-population models in their longevity risk solvency capital assessment. Indeed, a fully coherent model can overestimate the capital requirement through the concentration between the populations it imposes, whereas the use of independent single-population models may induce an underestimation of this capital. Similar problem appears also for the pricing and the hedging of longevity risk transfer solutions where an accurate risk assessment is required, especially for the corresponding basis risk.

To overcome this issue, Li et al. (2017) introduce the concept of semicoherence which contains the mortality dierentials into a tolerance corridor. In other words, the two population mortality dynamics can diverge over certain periods of time, but not permanently. Their semicoherent mortality projection is based on a threshold vector autoregressive process, which can be seen as a vector autoregressive (VAR) model characterized by a parameter set and autoregressive order which change according of the time series regime switch. [START_REF] Zhou | Changes of Relation in Multi-Population Mortality Dependence: An Application of Threshold VECM[END_REF] recently improve this approach by introducing a threshold vector error correction model and taking into account long-term equilibrium between time series. However, these models are developed for only two populations and their VAR structure contained many parameters, which is a serious limitation in the large-scale mortality forecasting framework.

In this paper, we propose an alternative approach, named "local coherence", which allows us to model simultaneously a large collection of populations by assuming the mortality coherence principle is satised for several subgroups of populations. Although our approach is mainly based on existing models, such as the Lee-Carter or the Li-Lee models, it intends to gain in exibility by oering a trade-o between diverging mortality forecasts, obtained with a single stochastic mortality model, and fully coherence forecasts. In that way, our goal is similar to the Li et al. ( 2017) semicoherence one, i.e. oering a compromise between the fully coherence and the independence situations, even if the approach diers. Notably, in our case the size of the populations collection is not an issue and the proposed model includes the two boarder cases.

Within a locally coherent group, the dynamics of the mortality is based on a Li and Lee (2005) model. To capture both long-term relationships and short-term interactions between groups, a VAR process models the improvements in the common mortality trends of each group. A similar specication for a small group of populations is proposed by several authors in the literature (see Zhou et al., 2014;Kleinow, 2015;Enchev et al., 2016, among others).

However, a VAR model may suer of over-tting issue when the size of the group increases, since historical series are relatively short and strongly correlated. For our large-scale general context, we then use a VAR-ENET approach. Based on an elastic-net regularization technique, this VAR estimation is relevant with high dimensional time series and oers good in-sample and out-of-sample performances in a mortality forecasting framework (Guibert et al., 2019).

For illustrative purpose, we estimate our locally coherent model on a collection of 16 European countries, by distinguishing the gender. We propose two approaches to cluster these populations in coherent groups, regarding to the historical mortality rates data or expert judgments.

Our results highlight a better control of the mortality rates dispersion forecasting among the populations. In addition, we show the importance of having an accurate level of variability when considering the solvency capital requirement of an European life insurer exposed to longevity risks from multiple populations.

Furthermore, we extend our model to a dynamic point of view of the coherence property by allowing the populations to switch from one group of coherence to another. Thus, the coherence is local not only in the spatial dimension (i.e. according to the populations) but also in the temporal dimension. Such switch can be caused by changes in socio-economic features driving the mortality dynamics. We underpin the importance this extension by analyzing the impact of a specic switch on a Longevity Divergence Index Value, similar to the one that the Kortis bond is based on.

The remainder of this paper is organized as follows. In Section 2.2, we recall the usual Lee-Carter and Li-Lee models and show the mortality dispersion forecasting issue. Section 2.3

introduces our locally coherent model and shows how it lls the gap between a fully coherent and an independent approach. We also present the VAR-ENET estimation method retained in the paper. Section 2.4 presents two clustering approaches for identifying coherent groups:

one based on expert judgments and a data-driven approach. The results obtained on the groups composed of 32 European populations is discussed in Section 2.5, and demonstrate the interest for the risk-based capital requirement of a life insurer in presence of multipopulation exposures. Section 2.6 extends our model to a dynamic local coherence, and illustrates its impact on a basis risk assessment example. Finally, Section 2.7 concludes the paper and gives several improvements for future researches.

The mortality dispersion issue 2.2.1 Notation

As noted in the Section 2.1, a large range of models have been developed for mortality modeling and forecasting within the multipopulation framework. In this paper, we do not limit our study to the specic two-population context: we consider a more general scope of a collection I of populations, where its cardinal I is potentially high. Furthermore, we note X and T the collections of integer ages and calendar years respectively.

For pi, x, tq I ¢ X ¢ T , we note D piq

x,t the number of people in the i-th population who die in year t and aged x at their last birthday. The so-called "exposure to risk", noted E piq

x,t , represents the amount of person years lived by people of population i aged rx, x 1q in year rt, t 1q. Thus, the central death rate m piq

x,t is given by m piq

x,t D piq

x,t E piq

x,t .

(2.1)

In the two populations framework, the coherence can be analyzed by focusing on the dierence of logmortality rates at a specic age x, which we note δ x,t ln m p1q

x,t ¡ln m p2q

x,t . The coherence hypothesis species that for all x X , the series pδ x,t q t do not diverge. We extend this measure to the general multipopulation case where I is potentially important. Thus, for an age and time px, tq, and a collection I of populations, we dene δ I

x,t the dispersion of mortality rates:

δ I x,t d 1 I ¡ 1 iI ¡ ln m piq x,t ¡ ln m x,t © 2 , (2.2) 
where ln m x,t 1 I °iI ln m piq

x,t is the mean of log mortality rates of the dierent populations from the collection I. In a way, this measure allows us to evaluate the heterogeneity of the mortality levels among a set of population. The specic case of a coherent multipopulation model corresponds to a situation where for all x X the dispersion δ I

x,t ¨t is controlled and can not diverge.

The Lee-Carter model

There is a broad variety of mortality models that have been introduced in the actuarial science and demography literature. In this paper, we choose to focus on the Lee-Carter model, which is one of the most used by practitioners. We rst quickly recall the model using the previous notation and adopting a multipopulation point of view. Thus, Lee and Carter (1992) propose to model the central death rates such as

ln m piq x,t α piq x β piq x κ piq t piq x,t , (2.3) 
where α piq x and β piq x are age-specic eect parameters, κ piq t represent the temporal mortality dynamics, and piq

x,t are residual terms. For the sake of the uniqueness of the solution we impose the usual constraints in the estimation process: ţT κ piq t 0 and xX β piq

x 1.

(2.4) Thus, α piq

x are set to be the averages of log mortality central rates over the period T considered, and the series of parameters β piq

x and κ piq t are estimated thanks to the application of the singular value decomposition (SVD) method.

Furthermore, we model the dynamic of the time series κ piq t as a random walk with a drift c piq :

κ piq t c piq κ piq t¡1 e piq t , (2.5) 
where the innovations ¡ e piq t © t iI is an Idimensional Gaussian white noises with mean 0 and a diagonal variancecovariance matrix Σ 1 .

The Lee-Carter (LC) being a single population mortality model, we note that no relationships between the dierent populations are taken into account. As a consequence, the derived mortality forecasts are independent and can diverge, creating a large diversication eect when forecasting the longevity risk within a stochastic multi-population framework.

The coherent Li-Lee model

On the contrary, Li and Lee (2005) (2.6)

The coherence is then enforced by modeling the dynamic of time series κ piq t to be a mean- reverting process. We retain here a rst order autoregressive (AR) model:

κ piq t a piq κ piq t¡1 r piq t , (2.7) 
where the innovations ¡ r piq t © t iI are an Idimensional Gaussian white noises with mean 0 and a diagonal variancecovariance matrix Σ 2 .

We denote m I

x,t the mortality rates of the global population, i.e. the gathering of all popula- tions from the collection I:

m I x,t D I x,t E I x,t , (2.8) 
where D I

x,t °iI D piq

x,t and E I

x,t °iI E piq

x,t . Thus, the tting of a Lee-Carter model on these series, under the usual constraints °tT K I t 0 and °xX β I

x 1, gives the common trend factor estimates. Like in the single population context, the agepopulation specic series of parameters α piq

x are set to be the averages of log-mortality central rates over the training period T . Finally, the populationspecic temporal dynamic factors β piq x κ piq t are obtained thanks to the SVD method, with the constraints °tT κ piq t 0 and °xX β piq

x 1, for each i I.

Similarly to the LeeCarter model, time series K I t is modeled as a random walk with drift:

K I t c I K I t¡1 e I t , (2.9) 
where e I t is a Gaussian white noise with mean 0 and related variance σ 2

I .
Thus dened, the LiLee (LL) extension enforces the specic mortality rates of the whole collection I of populations to follow the same trend and converge in the long-run. Even if the populationspecic temporal factors κ piq t allow a population to slightly derives from this trend for a short period of time, the meanreverting property brings it back to the common dynamic.

From a longevity risk management point of view, it then implies a limited diversication among the population in a stochastic evaluation context.

Mortality dispersion on the HMD

Let us now focus on a group of 16 western European countries, namely: Austria (AUT), Belgium (BEL), Switzerland (CHE), West Germany (DEUW), Denmark (DNK), Spain (ESP), Finland (FIN), France (FRA), Ireland (IRL), Italy (ITA), Luxembourg (LUX), Netherlands (NLD), Norway (NOR), Portugal (PTR), Sweden (SWE) and Great Britain (GBR). Furthermore, we consider separately the male and female populations for each country. Thus, our collection I of interest is composed of I 32 populations, each one of them being dened by a couple pcountry, sexq. The data is extracted from the Human Mortality Database (HMD, 2019). For the ageperiod training set, we retain X ¢ T t45, . . . , 90u ¢ t1960, . . . , 2014u, and we t single LC models as well as a LL model, as described in Sections 2.2.2 and 2.2.3.

The Figure 2.1 represents the dispersion δ I 85,t estimated on the historical data, i.e. T , and on the projections over 50 years obtained with the stochastic mortality models. For the latter, we plot the median together with the 95% prediction intervals derived from 500 simulations.

First, we remark that the dispersion measure at age 85 has nearly doubled between the 1960's and the 2000's, and seems more stable in recent years. As expected, the predicted dispersion is signicantly dierent between the results from the LC and the LL models. In the rst case, both the median and the width of the prediction intervals of the dispersion increase linearly with the projection horizon. In other words, the mortality rates at age 85 of the considered populations become more and more dissimilar in average, and this heterogeneity signicantly varies from one stochastic scenario to another. On the contrary, the LL's forecasts exhibit a strongly stable dispersion. Not only the median is constant over time, but also the condence intervals are very narrow comparing to the historical data and their bandwidth does not augment with the projection horizon. In term of generated mortality scenarios, it implies that a considerable majority of them lead to very similar pattern of mortality rates, even in the long term.

Both the LC and LL models present drawbacks when analyzing the projected dispersion in a longevity risk management framework. By not imposing any relationships between the population mortality dynamics, the LC model articially creates some diversication in term of longevity risk. Contrariwise, the LL model imposes a strong coherence hypothesis on all the populations, thus leaving no signicant scope for even a limited deviation of the mortality between the populations: it assumes a high concentration risk in the longevity evaluation.

Intuitively, a longevity risk manager may want to consider some intermediate scenarios between the exaggerated LC's diversication and LL's overconcentration.

A locally coherent approach

To bridge the gap between the LeeCarter's diversication and the LiLee's concentration, we

propose a new model based on the idea that the populations are coherent by homogeneous groups, and not all together at the same time. In the populations space, it can be seen as a locality of the coherence property.

The model

Keeping the notation introduced before, we now denote J a partition of the populations collection I in J distinct groups. Let φ : I Ñ J be the corresponding classication function that labels a population to a specic group. We then propose the following model for each

population i I : ln m piq x,t α piq x B φpiq x K φpiq t 1 t#φpiq¡1u β piq x κ piq t piq x,t , (2.10) 
where # : J Ñ N is the cardinal function of a group, and φ piq denotes the coherence group of the population i.

Similarly to the LL model, for each group j J , the local common trend factors B j

x and K j t are estimated by tting a LeeCarter thanks to the SVD method on the group log mortality rates data, m

where D j

x,t °ij D piq

x,t and E j x,t °ij E piq

x,t , with the usual uniqueness constraints. For each population i, the series of age factors α piq

x are set to be the averages of log mortality rates over the estimation period T . Finally, the populationspecic mortality dynamic parameters β piq

x and κ piq t are again estimated through SVD, if the considered population i is assumed coherent with at least one other population.

To impose the local coherence, we keep the AR(1) dynamic of Equation (2.7) for the population specic period factors, but, in the present more general denition, we do not impose the variancecovariance matrix Σ 2 of the innovations ¡ r piq t © t iI to be diagonal anymore. Thus, we catch shortterm relationships between the populations.

Likewise, we also generalize the temporal dynamics of the period group factors to capture possible relationships between the dierent clusters of populations. Following the underlying ideas of Kleinow (2015) and Zhou et al. (2014), we retain a vector autoregressive (VAR) model.

For j J , we note ∆K j t K j t ¡ K j t¡1 the common mortality improvement of the cluster.

Given a temporal lag p, the dynamic of the VARppq is then given by

∆K t C p ķ1 A k ∆K t¡k E t , (2.12) 
where ∆K t ¡ ∆K j t © t jJ is the vector of mortality improvements at a group level, for k 1, . . . , p, A k are J ¢ J-autoregressive matrices, C is a Jdimensional vector of drifts, and E t is a Jdimensional Gaussian white noise with mean 0 and Σ 1 the related covariance matrix.

The matrices A k , k t1, . . . , pu, capture the longrun relationships of mortality improvements between groups of coherent populations, while the variancecovariance matrix Σ 1 estimates the shortterm dependence structure of innovation chocks.

Border cases

Before continuing to the practical application of the model and its assessment, we focus on two special border cases. Indeed, by choosing some particular clusters and setting specic parameters, we note that our model includes the original LeeCarter and LiLee models.

To recover the LC model we need to impose the following specications.

All the coherence clusters contain only one population, i.e. di I, φ piq tiu. In other words we do not impose any coherence between the populations of interest.

The temporal lag p of the VAR dynamic is set to 0. This point can also be approximated by applying a high λ in the elasticnet estimation process. The vector C of Equation ( 2.12) is then equivalent to the concatenation of the populationspecic drifts c piq from Equation (2.5).

A diagonal structure is enforced to the variancecovariance matrix Σ 1 , i.e. no short term dependence structure is estimated between the populations.

Similarly, we can also retrieve the LL framework from our model.

By grouping all the populations into a single cluster, i.e. di I, φ piq I, the coherence property is imposed to the whole demographic set.

The temporal lag p of the VAR dynamic is set to 0. In particular, we remark that it is a 1dimensional VAR due to the partition specication.

A diagonal structure is enforced to the variancecovariance matrix Σ 2 . Further more, Σ 1 being a 1¢1matrix, we recover the σ 2 I of the LL's common temporal trend dynamic.

Hence, our model framework can be seen as a bridge between the LeeCarter and the LiLee ones. Thereby, for the rest of this paper, we denote it by LCLL.

VAR ElasticNet

In a general context, one can consider a large number J of groups by assuming that the coherence hypothesis is too strong for the populations of interest, thereby increasing dramatically the number of parameters to be estimated in the VARppq. From a statistic point of view, it may lead to highdimensional problems that we want to avoid. Thus, we decide to apply the extension of the elastic-net regularization and variable selection method, proposed by Zou and Hastie (2005), for the high-dimensional estimation of our autoregressive matrices. This technique can be seen as the combination of the LASSO L 1 -penalty, introduced by Tibshirani (1996), and the ridge L 2 -penalty developed by Hoerl and Kennard (1970). Elastic-net has similar properties of variable selection as the LASSO. Moreover, it provides a grouping eect:

highly correlated variables tend to be selected or dropped together. LASSO and elastic-net have already been extended to VAR model (Gefang, 2014;[START_REF] Basu | Regularized estimation in sparse high-dimensional time series models[END_REF], mostly with an economic application (see e.g. Song and Bickel, 2011;Furman, 2014) and more recently for mortality forecasting purpose (Guibert et al., 2019).

Therefore, we estimate the VAR ppq model presented in Equation ( 2.12) with T observations of the process ∆K t for t T tt min , . . . , t max u by minimizing the criterion

L pC, A 1 , . . . , A p q 1 T ¡ p tmax ţt min p }∆K t ¡ C ¡ p ķ1 A k ∆K t¡k } 2 2 ¡ αλ p ķ1 }A k } 1 ¡ p1 ¡ αq λ 2 p ķ1 }A k } 2 2 , (2.13) 
where } . } 1 and } . } 2 respectively denote the L 1 and L 2 norms, λ ¡ 0 determines the strength of the penalization, and α r0, 1s represents the mix between ridge pα 0q and LASSO pα 1q penalties. In particular, when α is set such as some LASSO penalty is enforced, i.e. α ¡ 0, the higher λ gets, the fewer number of variables is selected.

For sparsity purpose we impose a larger weight to the LASSO penalty by setting α to 0.9. The hyper-parameter λ is then estimated thanks to a 10-folds cross-validation method. To apply this estimation process, we use the sparsevar R-package (Vazzoler et al., 2016), which is based on the glmnet one (Friedman et al., 2010). Furthermore, we choose to retain a temporal lag p 4.

Population clustering

In this section, we examine some possibilities of retained clustering method to determine the coherence groups among the population collection. The aim here is rather to give an outlook of some alternatives rather than describing an exhaustive list of options and how to optimize the choice, if an optimal solution can be dened / found. At rst glance, the methods can roughly be split between those based on expert opinions and those more datadriven. In the following, we give one example of each for the collection of western European countries studied in the Section 2.2.4.

Coherence by country

In our case, the set of countries we are focusing on tend to strengthen their gender policy.

Thus, in the long run, one can assume that within a single country both male and female populations have similar lifestyle with access to the same level of education, wealthiness and healthcare, leaving mostly only biological dierences. Thereby, we dene the partition J M F such as it clusters the populations by countries. The number of groups J equals then to 16.

The corresponding model is noted LCLL(MF).

An interesting point of this approach, is that the VAR model estimates a dependence structure between the countries, allowing a rather easy reading of the autoregressive matrices that represent the underlying dynamics. Indeed, the common period factors The matrix A 1 (Figure 2.2a) exhibits mostly negative coecients, shaped into a diagonal structure. We hereby capture the countryspecic period eect. Indeed, when modelling the single population LC's κ piq t dynamics by an AR(1), we generally obtain negative autoregressive estimates. Displayed in a matrix way for a multipopulation point of view, it leads to a negative diagonal matrix. This result, outlined by the use of elasticnet estimation process, recall the diagonal structure found by Guibert et al. (2019) in a single population study.

We also remark some vertical patterns within the Granger causality matrices. In term of mortality dynamics, this should be interpreted as a persistent eect of a single country to a group countries. For example, in the autoregressive matrix A 3 (Figure 2.2c), we note the existence of a positive vertical structure on the Swiss population. Hence, the Swiss mortality improvement seems to Granger cause the mortality improvement on 6 other countries, namely BEL, DEUW, GBR, IRL, NLD and PRT. A chock in the mortality rates in the Switzerland would then reverberate 3 years later in the 6 countries. In this way, the vertical structure can be seen as some kind of leader eect.

A data mining approach

The main idea of the coherence in the LiLee model is to impose a common trend K I t ¨tT in the mortality dynamics of each population i. This is done by tting a LeeCarter on the overall population of the retained collection I (see Section 2.2.3). Hence, for a single population i, we consider its time series ¡ κ piq t © tT , derived from the LC tting, as a signature of the mortality dynamics. To determine the coherence groups, we then apply an unsupervised clustering method on these signatures. We choose the well-known hierarchical cluster analysis (HCA) method. In particular, we retain the Euclidean metric and Ward's criterion as dissimilarity measure and linkage criterion respectively. We display the corresponding dendrogram in the We remark that, unlike the previous clustering, the populations are not gathered by country.

It even seems to be the contrary: the sex tends to be one of the major splitting criteria. Yet, we note one exception to this comment: Denmark. The two Danish populations are clustered together, apart from other countries, suggesting that the Danish mortality dynamic exhibits some specic features when comparing to other western European countries.

For the following numerical applications, we choose to retain 8 dierent clusters, which are emphasized in the Figure 2.3 through the colors and recalled in the Table 2.1. We denote the LCLL mortality model based on this clustering by LCLL(HCA8), and the corresponding partition by J HCA8 .

Table 2.1 8 groups of populations determined by HCA on the LC's κ t .

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 

DEUW M NOR M GBR M NOR F DNK M PRT F DEUW F FRA F BEL M NLD M ITA M NLD F DNK F FIN M BEL F CHE F FRA M SWE M AUT M SWE F AUT F FIN F GBR F LUX M IRL F ITA F PRT M IRL M CHE M ESP F ESP M LUX F

Numerical applications

In this section, we compare the forecasting results from the dierent models that we introduced:

LC, LL, LCLL(MF) and LCLL(HCA8). Rather than focusing on the main mortality trends that can be derived from these models, in the scope of this paper we are more interesting to the stochastic scenarios spectrum they are producing.

Dispersion forecasting

Following the Section 2.2.4, we display on Figures 2.4 In the LCLL(MF) case, we note that the dispersion level is comparable to the LL's projection during the rst years, however both the mean dispersion and the width of the condence intervals are increasing with the projection horizon like in the LC model. This increase is yet signicantly slower than the one obtained with the single population framework. While the latter causes a doubling of the dispersion within 50 years, the LCLL(MF) leads to a dispersion spectrum relatively close to the historical observations of this measure since the 1990's. When focusing on the LCLL(HCA8), we observe that the dispersion dynamic is similar to the LC: both of the models leads to a signicant augmentation of the dispersion compared to the historical data. However, in the multipopulation model, the increases of the main trend and condence intervals are more limited. In term of longevity risk, it leads to a signicant lower diversication level among the populations.

Solvency Capital Requirement evaluation

We now quantify the impact that the dierent models could have for a global (re)insurance company in her solvency capital requirement evaluation of the longevity risk. To do so, we analyze a simplied situation where the liabilities are pensions to be paid between ages 60 to 90 for each of the 32 populations. Moreover, we focus only on the cohort aged 59 in 2014 and assume that at the date of evaluation, i.e. end of 2014, the number of pensioners is the same in every population. We retain an annual pension of 100 paid at the end of the year, and a discount rate of 1%. First, we remark that the choice of the model, among the collection we explore in this paper, does not impact much the provision. The dierence between the highest provision estimate and the lowest one is of 190, which represents less than 0.3% of the latter. On the contrary, the range of SCR is signicantly wider. As expected, the LC leads to the lowest value because the mortality scenarios are independent from one population to another, thus creating diversication. In comparison, the SCR estimated by the LL is nearly 3.7 times bigger. Indeed, in this case the mortality rate dynamics of all populations follow the same trend, thereby implying a concentration risk on this trend. Finally, between these two extreme modellings, our locally coherent approach leads to intermediate levels of SCR. For the coherent groups determined in Section 2.4, we retrieve approximately the average between the LC and the LL.

Toward a dynamic local coherence

In our model introduced in Section 2.3.1, we have supposed that the classication function φ : I Ñ J is constant through time. In other words, a population indenitely belongs to the same group of coherence. However, in a more general longevity risk assessment framework, it could be interesting to study scenarios in which populations are allowed to switch from one coherence group to another. One of the motivations for such sensitivities is driven by the evaluation of basis risk in some longevity risk hedges. In this Section, the main interest is to describe the stochastic forecasts of the mortality rates, we do not tackle the statistical or expert-based tting methods for the extended model.

Trend switching model

Hereafter, the groups of local coherence j J are rather to be considered as dominant mortality trends which lead the mortality dynamics of their related specic populations. Thus, as long as a group of populations are lead by the same dominant trend, they are coherent between them. On the contrary to the model of Section 2.3.1, J is not necessarily a partition of the retained collection of populations I anymore. However it can always be viewed as a partition of a larger collection Ω, which is not fully observed. Thus, depending of the time period, some of the dominant trends j J may not be linked to any retained population i I. During such periods, they can be viewed as dominant trends exogenous from the retained collection of populations. In the same way, we can suppose that dj J , #j ¡ 1, even if it implies assuming the existence of populations in Ω not present in the retained collection of populations I. 2.12) and κ piq t are driven by AR(1) models.

The fact that the classication function φ t is now dynamic, it may happen that the switch from one dominant trend to another creates a signicant leap in the mortality dynamics. Indeed, for two dierent dominant trends pj 1 , j 2 q and a couple ageperiod px, tq, we do not impose the term B j 2 x K j 2 t ¡B j 1

x K j 1 t to be limited since it describes the dierence between two non-coherent mortality dynamics. Thus, to avoid such jumps in the mortality level each time a population changes of dominant trend, we need to add adjustment mortality levels:

ad piq x,t t şt 0 1 B φ s¡1 piq x K φ s¡1 piq s ¡ B φspiq x K φspiq s , (2.15) 
where t 0 is a time such as ad piq

x,t 0 0 for all ages x X . In a practical point of view, φ t 0 piq denes the initial dominant trend of the population i. Furthermore, we note that, in the nonswitching model case, we have ds T , φ s¡1 piq φ s piq φ piq, so dt T , ad piq t,x 0. Hence, we retrieve the dynamics of the LC-LL with constant groups of coherence (cf. Equation 2.10).

Kortis bond

As previously stated, this extension is motivated by the assessment of basis risk in longevity risk hedges. We choose to focus on one practical example: the Longevity Divergence Index Value (LDIV), which the Swiss Re Kortis bond is based on [START_REF] Hoerl | Ridge Regression: Biased Estimation for Nonorthogonal Problems[END_REF].

Issued in December 2010, the Kortis bond was designed to hedge the basis risk resulting from Swiss Re's "partial natural hedge" in longevity risk. Indeed, the reinsurer was globally exposed to mortality risk on the US male population aged between 55 and 65; longevity risk on the UK male population aged between 75 and 85.

Even though these two exposures create a natural longevity hedge, a signicant basis risk remains between them two, especially if the mortality trends of the corresponding populations diverge. In our model, it would be implied by the fact that the two populations are not linked to the same dominant trend.

The payout of the Kortis bond is based on the level of the LDIV in 2016. To compute this value, we rst need to observe the annualized mortality improvement of each population i: © p55, 65q. Finally, the LDIV at time t is obtained by LDIV ptq Index pt, i 1 q ¡ Index pt, i 2 q , (2.18) where in the Swiss Re case pi 1 , i 2 q pUK, USq and t 2016.

Improvement piq n px, tq 1 ¡ m piq x,t m piq x,t¡n ' 1 n , ( 2 

European LDIV

To illustrate the impact on the basis risk of a switch of dominant trend in our model, we consider an European LDIV. More specically, we retain: the Swiss female population, aged between 75 and 85, for the longevity risk exposure i 1 ; the French female population, aged between 55 and 65, for the mortality risk exposure i 2 ; a risk period n of 8 years, which ends at year t 2024. Moreover we suppose that at t 0 2014, the mortality dynamics of the collection of populations I follow the model of Section 2.4.2, i.e. the LC-LL(HCA8). Thus, the classication function φ t 0 can be described thanks to Table 2.1. Finally, we suppose that at a time T ¡ t 0 , the French female population switches from its original dominant trend to the dominant trend that the Belgian and German female populations are initially linked to. No further switch are considered. Hence, for t ¡ t 0 , we have: φ t piq 6 9 8 9 7 φ t 0 piq if i $ FRA F , φ t 0 pFRA Fq if i FRA F and t T, φ t 0 pBEL Fq if i FRA F and t ¥ T.

(2.19) Figure 2.6 displays the sensibility of our European LDIV(2024) to the switching time T . To obtain the results, we simulate 10,000 stochastic mortality scenarios thanks to our model for each switching time between 2016 (i.e. the start of the risk period) and 2024 (i.e. the end of the risk period). We then retain the median scenario in term of LDIV(2024). As expected, the sooner the switch occurs, the more signicant the Longevity Divergence Index Value is. In particular, we remark that the LDIV is 1.8 times higher when the switch happens in 2016 than in 2024. Indeed, the longer the French and Swiss female populations are linked to dierent dominant trends, i.e. the longer they are not coherent, the more they diverge.

Thus, our extended model allows the longevity risk manager to evaluate the impact of a wide spectrum of stochastic longevity scenarios on her portfolio and the potential hedges, together with the corresponding basis risks. In a context where basis risk is one the main challenges that the longevity risk transfer market is facing (Blake et al., 2018), our model provides an innovative point of view for its assessment.

Conclusions

In this paper we have proposed a new notion for multipopulation mortality forecasting that we have named local coherence. Indeed, we remark that full independence and "full" coherence approaches both suer from drawbacks when considering the projections. To highlight this point we have compared the dispersion over 32 European populations of mortality rate forecasts derived from Lee and Carter (1992) and Li and Lee (2005) models. In the rst case, the diversication in the stochastic scenarios is overestimated, whereas, in the second method, the concentration is exaggerated.

To overcome this issue, our locally coherent mortality forecasting model allows to cluster populations by coherence groups. Within a specic group, the projections are coherent. However, the longterm relationships between inter-group populations are only modelled through a VAR process without any coherence constraints. Thus, it oers a trade-o between the two boarder coherence cases, which are included in our model. The practitioner has then the possibility to simulate a larger spectrum of longevity scenarios to evaluate her risks compared to the usual models cited before.

To assess the behavior of our model, we have compared it with the Lee-Carter and Li-Lee's ones over the set of European countries for some numerical applications. We notably show that the retained coherence hypothesis can have a major impact on the longevity risk solvency capital requirement for a global life insurance company within the Solvency II framework. Thereby, the large freedom of our model allows to evaluate more precisely this crucial risk measure.

Finally, we have extended the locality coherence property of our model to the temporal dimension. By allowing populations to switch from one group of coherence to another, we expand the spectrum of possible stochastic mortality scenarios. This innovative methodology is particularly interesting in a longevity hedges basis risk assessment framework. Thus, we propose a new tool that should be useful for the development of the longevity risk transfer market. 

Introduction

Lapse risk is the most signicant risk associated with life insurance when compared with longevity risk, expenses risk, and catastrophe risk. Policyholders of life insurance may choose to surrender their policies at any time for cash values, or opt to stop paying premiums and leave policies to become invalid eventually. Lapses have signicant impacts on the protability, or even on the solvency, of a life insurer as many studies demonstrate. They may reduce expected prots [START_REF] Hwang | Dierentiating Surrender Propensity from Lapse Propensity across Life Insurance Products[END_REF], cause underwriting expenses unrecovered (Tsai et al., 2009;Pinquet et al., 2011), impair the eectiveness of an insurer's asset-liability management (Kim, 2005c;Eling and Kochanski, 2013) and bring in liquidity threats as experienced by US life insurers in the late 1980s.

When lapses vary with interest rates as suggested by Dar and Dodds (1989); Kuo et al. (2003); Kim (2005a,b); Cox and Lin (2006), they become even more detrimental to life insurers (Tsai et al., 2009). Many papers argue that the option to surrender a policy for the cash value might account for a large proportion of the policy value, e.g., [START_REF] Albizzati | Interest Rate Risk Management and Valuation of the Surrender Option in Life Insurance Policies[END_REF]; [START_REF] Grosen | Fair valuation of life insurance liabilities : The impact of interest rate guarantees, surrender options, and bonus policies[END_REF]; Bacinello (2003); Bauer et al. (2006); [START_REF] Gatzert | Anders Grosen and Peter Løchte Jørgensen. Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies[END_REF]; Consiglio and Giovanni (2010). The above reasoning and nding may be the reasons why the fth Quantitative Impact Study (QIS5), conducted by the European Insurance and Occupational Pensions Authority (EIOPA) in 2011 regarding the implementation of Solvency II, reports that lapse risk accounts for about 50% of the life underwriting risks.

The signicance of lapse risk draws attentions of scholars to study what causes policyholders to lapse their policies. We may classify the literature into being macro-or micro-oriented.

Macro-oriented papers (e.g., Dar and Dodds, 1989;Kuo et al., 2003;Kim, 2005a,b;Cox and Lin, 2006) focus on how lapse rates (the proportion of lapsed policies to the total number of sampled policies within a period of time) are aected by environmental variables such as interest rates, unemployment rates, gross domestic product, and returns in capital markets, as well as by company characteristics like size and organizational form.

machine learning algorithms including Extreme Gradient Boosting (XGBoost) and Support

Vector Machine (SVM) to lapse behavior modeling. These two advanced algorithms have their merits over other approaches used in the literature such as generalized linear models (i.e., binomial and Poisson models and logistic regression), Classication and Regression Tree (CART) analysis, and the proportional hazards model. Secondly, we adopt economic measures in addition to statistical accuracy in evaluating the performance of dierent algorithms. Such an adoption better demonstrates how dierent algorithms may benet the insurer.

Thirdly, we transform the optimization objective from classication accuracy to economic gains to demonstrate the benet of integrating modeling with prot maximization. Such an integration can increase life insurers' protability, improve insurers' customer management through taking preventive measures to reduce lapses, and retain more of the so-called Contractual Service Margin (CSM) in International Financial Reporting Standard (IFRS) 17. It also links us to the literature on churn management and its impact on the customer lifetime value (e.g., Neslin et al., 2006;Lemmens and Croux, 2006;Lemmens and Gupta, 2017).

The results from applying dierent algorithms to a large dataset consisting of more than six hundred thousand life insurance policies show that XGBoost and SVM outperform CART and logistic regression with respect to statistic accuracy. The results further show that XGBoost is the most robust across training samples.

The advantages of XGBoost and SVM are more apparent with respect to retention gains.

The retention gain takes into account the costs of providing incentives to policyholders to reduce their propensities towards lapses, the benets of retaining policies, and the costs of false alarms. XGBoost and SVM generate much higher retention gains than logistic regression and CART do.

Last but not least, we conrm that economic gains can be further enhanced when the optimization is done on a function linked to the gains rather than on statistic accuracies. The resulted retention gains are 126% of those from applying XGBoost to pursue classication accuracies, and the increase in retention gains remains to be signicant under an alternative policyholder retention scheme. An insurer, therefore, should apply robust machine learning algorithms like XGBoost to its economic objective to achieve optimal lapse management.

The organization of the paper is as follows. Section 3.2 contains explanations about XGBoost and SVM, followed by brief descriptions on CART and logistic regression. In Section 3.3

we delineate two performance metrics to be used. One is the commonly seen accuracy, i.e., a statistical validation metric, while the other one is an economic metric considering the expected prots and costs of lapse management. We describe the data obtained from a medium-sized life insurer in Section 3.4. Section 3.5 displays the comparison results across the four algorithms in terms of the statistical and economic metrics. We explain how to integrate algorithms with the prot maximization goal at the beginning of Section 3.6, and then compare the results from optimizing prot objectives with those from optimization statistic accuracy. Section 3.7

summarizes and concludes the paper.

Binary classication algorithms

The problem that we want to tackle is detecting whether a policyholder will lapse her/his policy or not, i.e., y i t0, 1u. Popular predictive models include logistic regression and CART models. More advanced machine learning models that we introduce in this paper are SVM and XGBoost.

XGBoost

XGBoost is an extension of the gradient boosting introduced by Friedman (2001). The gradient boosting tree is an ensemble method, i.e., multiple weak learners h are combined to become a strong learner F in order to achieve a better predictive performance. The following descriptions are summarized from Friedman (2002)).

Given a training sample ty i , x i u N 1 where x i R n and y i t0, 1u, one would like to nd a strong learner F ¦ pxq which minimizes a loss function Ψ py, F pxqq:

F ¦ pxq arg min F pxq E y,x Ψ py, F pxqq $ . (3.1)
The strong learner is an additive expansion of weak learners h ¡ x, tR lm u L 1 , ȳlm © that will be a L-terminal node regression tree in our case:

F M pxq M m0 β m h ¡ x, tR lm u L 1 , ȳlm © M m0 L ļ1 β m ȳlm 1 px R lm q , (3.2)
where tR lm u L 1 and ȳlm are the L-disjoint regions and the corresponding split points determined by the mth regression tree, respectively, and beta m are the expansion coecients. This strong learner is estimated through a stage-wise method that begins with an initial guess F 0 pxq. Then the pseudo-residuals for m 1, 2, . . . , M are computed:

ỹim ¡ δΨ py i , F px i qq δF px i q & F pxqF m¡1 pxq . (3.3)
The regions tR lm u L 1 are obtained by estimating the mth L-terminal node regression tree on the sample tỹ i , x i u N 1 . The product β m ȳlm γ lm is set to optimize the loss function Ψ:

γ lm arg min γ xi R lm Ψ py i , F m¡1 px i q γq. (3.4)
At the nal stage, the strong learner is updated,

F m pxq F m¡1 pxq ν.γ lm 1 px R lm q , (3.5)
where ν p0, 1s is a shrinkage parameter that controls how much information is used from the new tree.

The gradient boosting tree method may be summarized as the following algorithm extracted from Friedman (2002). Source : Friedman (2002) Inspired by previous general works on statistical learning, many extensions to the gradient boosting tree method have been developed. The stochastic gradient boosting technique (Friedman, 2002) is based on the same principle as the bagging technique (Breiman, 1996). It introduces randomness in the observation: given a random permutation π of the integers t1, . . . , N u and Ñ N , the new weak learner tree is estimated on the random subsample 2 ỹπpiqm , x πpiq @ Ñ 1

. Another way to inject randomness that has been popularized by Breiman (2001) is randomly selecting a subspace of the explanatory variables. More specically, given a random permutation π ¦ of integers t1, . . . , nu and ñ n, the new weak learner tree is estimated on tỹ im , P ¦ pxq i u N 1 in which P ¦ pxq 2

x π ¦ p1q , . . . , x π ¦ pñq @ .

To avoid overtting, some extensions follow the general idea of the ridge regression (Hoerl and Kennard, 1970) and lasso regression (Tibshirani, 1996) and adopt the penalized optimization point of view. Instead of optimizing a loss function Ψ py, F pxqq, the problem is modied as the optimization on an objective function O that is the sum of a loss function Ψ and a regularization term Ω:

O py, F pxqq Ψ py, F pxqq ΩpF q.

(3.6) Among all the boosting packages that have been developed, the XGBoost system (Chen and Guestrin, 2016) has become the most popular due to its exibility and computing performances. It has also become the most popular machine learning algorithm in data science challenges such as Kaggle for structured data. We list the main parameters that need to be tuned, using the package's terminology and the notation of (Friedman, 2002), as follows.

1. nrounds is the number of trees to grow: M ; 2. eta is the shrinkage parameter: M ν;

3. gamma is the regularization parameter which is used in Ω;

4. max_depth is the number of nodes of a tree: L;

5. min_child_weight is the minimal number of observations in a node and min l,m °N i1 1px i R lm q should be higher than this value; 6. subsample is the relative size of the random subsample used in the case of a stochastic gradient boosting: Ñ {N;

7. colsample_bytree is the relative size of the random subspace of explanatory variables selected at each new tree: ñ{n.

Since we are interested in a binary classication in this paper, we use the logistic loss function:

Ψpy, ŷq N i1 y i ln ¡ 1 e ¡ŷ i © p1 ¡ y i q ln 1 e ¡y i ¨% , (3.7) and the error function as the metric for cross-validation:

errorpy, ŷq °N i1 1 py i $ round pŷ i qq N , (3.8) where round pŷ i q 5 1 if ŷi ¥ 0.5, 0 if ŷi 0.5.

The tuning method that we adopt consists of two nested cross-validations. We rst perform a grid search on the parameters except nrounds with a 2-folds cross-validation (the grid of values is reported in Appendix 3.8.1). Then we determine the best nrounds through a 5-folds cross-validation up to 200 for every possible set of parameters in the grid.

SVM

The theory of SVM was introduced in the 1990's by Boser et al. (1992); Cortes and Vapnik (1995). It has become a popular algorithm for classication problems and for churn prediction in particular (e.g., Zhao et al., 2005;Xia and Jin, 2008) Its predictive power is rather good compared to other classication algorithms (e.g., Vafeiadis et al., 2015;[START_REF] Wainer | Comparison of 14 dierent families of classication algorithms on 115 binary datasets[END_REF].

The SVM algorithm can be described by geometrical terms. The main idea is to nd a hyperplane that separates the observation space into two homogeneous subspaces that is as far apart from each other as possible. This solution is dened as the maximum-margin hyperplane. To deal with misclassications, a soft margin (i.e., a penalty determined by the user) is imposed upton the SVM. Another way to deal with classication errors is to project the data to a higher-dimensional space through a kernel function. A more complete geometrical description of SVM can be found in Noble (2006).

In the following, we adopt a formula-based description of the SVM by using the notation of [START_REF] Hsu | A Practical Guide to Support Vector Classication[END_REF]. Given a training sample ty i , x i u N 1 where x i R n and y i t 1, ¡1u, the SVM algorithm is the solution of the following optimization problem:

min ω,b,ξ 1 2 ω t ω C N i1 ξ i , (3.9) 
with the constraints y i ω t φpx i q b ¨¥ 1 ¡ ξ i , ξ i ¥ 0.

(3.10)

The separating hyperplane is determined by the orthogonal vector ω and constant b. The soft margin penalty cost is denoted as C. The data may be projected to a higher dimension space by the function φ, and the underlying kernel function is dened by K px i , x j q φpx i q t φpx j q.

In our case we choose to consider the radial basis function kernel (also called RBF kernel) that is the most commonly used in practice and determined by K px i , x j q exp ¡γ x i ¡ x j 2 ¨, (3.11) with γ ¡ 0 being the kernel parameter.

Then we use the e1071 R package [START_REF] Meyer | Misc Functions of Department of Statistics, Probability, Theory Group (Formely : E1071)[END_REF] to implement the SVM algorithm.

To tune the SVM parameters pC, γq, we perform a grid search on a 2-folds cross-validation and adopt the misclassication error function as the validation metric. The grid of values is reported in Appendix 3.8.2.

CART

CART was rst introduced by Breiman et al. (1984). The underlying idea is straight forward: dening a class by following a list of decision rules on the explanatory variables. To determine these rules, the data space is iteratively separated by binary split into two disjointed subspaces.

At each step or node of this top-down construction, the explanatory variable and the dividing point are chosen to minimize the Gini impurity of the node.

More specically, given a node l of N l observations of response y i t0, 1u with i l, the proportion of observations in the node is dened by p l 1 N l °il y i . Then use an algorithm to partition the parent node into two nodes l L and l R by maximizing

I G plq ¡ rI G pl L q ¡ I G pl R qs , (3.12)
where I G is the Gini impurity of the node and computed by I G plq N l p l p1 ¡ p l q. (3.13) This construction is applied up to obtaining a node for every observation point. The tree obtained is thus designated as the saturated model. Although tting the response on the training sample perfectly, it generally leads to low predictive performance when applied to new samples. Hence the tree needs to be pruned, i.e., the number of nal nodes needs to be reduced to increase its predictive power.

Many criteria can be used to prune the tree, e.g., the minimum number of observations in a nal node. We choose L, the number of terminal nodes, that minimizes the misclassication error:

errorpy, ŷq °N i1 1 py i $ ŷi q N .

(3.14)

L is estimated by a 10-folds cross-validation methodology. We use the rpart R package [START_REF] Therneau | Recursive partitioning and regression trees[END_REF] to implement CART.

Logistic Regression

The logistic regression is a special case of the generalized linear models (Nelder and Wedderburn, 1972) obtained with the Bernoulli distribution. The goal is to model the probability of a binary event such as the lapse probability p i of the policyholder i. Given a training sample ty i , x i u N 1 where x i R n and y i t0, 1u, the regression model is specied as:

ln p i 1 ¡ p i β 0 x t i β.
(3.15)

The parameters pβ 0 , βq R ¢ R n can be estimated by the maximum-likelihood method: 1 if ŷi ¥ 0.5, 0 if ŷi 0.5.

L N ¹ i1 £ e x T i β 1 e x T i β y i ¢ 1 1 e x T i β 1¡y i . ( 3 
(3.17)

Validation metrics

For each policy, the observed lapse y i and the forecasted lapse ŷi are binary variables: py i , ŷi q t0, 1u 2 . The four dierent outputs of a binary classication model are named true positive p1, 1q, true negative p0, 0q, false positive p0, 1q and false negative p1, 0q while the number of each case is usually laid out in the so-called confusion matrix. Denote N pj, kq as the coecients of the confusion matrix in which j t0, 1u stands for the observed lapse indicator and k t0, 1u the predicted lapse indicator. Given a set of response variables ty i , ŷi u N 1 , we estimate N pj, kq as:

N pj, kq N i1 1 py i , ŷi kq .

(3.18)

Statistical metric

Based on the confusion matrix, dierent metrics can be developed. We rst focus on the accuracy metric, the ratio of correctly classied predictions over the total number of predictions:

accuracypy, ŷq N p1, 1q N p0, 0q N 1 ¡ errorpy, ŷq.

(3.19)

Economic metric

Although we adopt mathematical algorithms to predict lapses, the risk is an economic issue after all. We thus would like to analyze and compare the classication algorithms by an economic metric. More specically, we will estimate the impacts of dierent classication results on the expected prots from policies, also called customer lifetime values. In order to do so, we plan to adopt an economic model inspired by Neslin et al. (2006); Gupta et al. (2006).

Suppose that policy i stays Θ i years in the portfolio pΘ i Nq. The protability ratio at time t can be represented by p i,t and the face amount by F i,t . The lifetime value for policy i is computed as:

CLV i Θ i ţ0 p i,t F i,t p1 d t q t , , (3.20) 
where d t is the discount rate.

Assuming a deterministic time horizon T N, we dene the pT 1q-dimensional real vectors p i , F i , r i and d for protability ratios, face amounts, retention probabilities, and interest rates respectively. Given the four vectors, the customer lifetime value is

CLV i pp i , F i , r i , dq T ţ0 p i,t F i,t r i,t p1 d t q t , , (3.21) 
The lapse management strategy is modelled by the oer of an incentive δ i R T 1 to policyholder i who is contacted with a cost c. The incentive is accepted with the probability γ i , and the acceptance will change the vector of the probabilities of staying in the portfolio from r i to r ¦ i R T 1 . We further make the following simplifying assumptions:

1. p i are the same for all policies and denoted as p hereafter;

2. δ i are the same for all contacted policies and denoted as δ hereafter;

3. p i,t , F i,t and d t remain constant across time;

4. r i equals to r lapse or r stay p1, 1, . . . , 1q and r lapse is estimated on the dataset and will be given in Section 3.5.2;

5. if r i r stay , the incentive is accepted with probability γ i 1 and r ¦ i r stay ; 6. if r i r lapse , the incentive is accepted with probability γ i γ and r ¦ i r stay . 2 Policyholders who reject the oers (probability 1 ¡ γ) will lapse their policies, i.e. r ¦ i r lapse .

2. These simplications assume that the protability ratio, the incentive, and the probability to accept the incentive is the same across policyholders, respectively. Upon the availability of data, we may compute an expected protability ratio for each policy. The incentive oered to each policyholder can then be set as a function of the policy's protability. The probability of accepting the oer can also be a function of the incentive, but such a function is dicult to estimate in practice. Face amount may be variable for some products, which increases the diculty in estimating the expected protability ratio. The retention probabilities may change with time, and this calls for a dynamic model of lapse propensities

The mean and medium of policy inception dates are in the second quarter of 2005, and the standard deviation around this quarter is almost 5 years. The face amount of the sampled policies has an average of 17,165 US dollars 5 with big variations: the largest policy reaches 2 million dollars, the smallest one is only 333 dollars 6 , and the standard deviation is about twenty-eight thousand dollars. Around 3% of the samples are single-premium policies. 46.6% of samples are mandatory-participating policies while 37.2% are non-participating ones. Almost all policies are traditional types of products ; interest-adjustable and investment-linked types of products are merely 3% of our samples. 88% of policies are dominated in NTD. Table 3.1 also shows that selling life insurance through tied agents is the major way (94%) of this insurer while the sampled policies sold through direct marketing are smaller than 3%. It further shows that the most popular way of paying premiums is through automatic/recurring transfers from bank accounts or credit cards (71%). Since post oces and convenient stores providing money transferring services are conveniently around, about 10% of our samples have premiums paid in places like these.

Result with respect to statistical and economic metrics

Our focus is on the predictive performance of dierent algorithms. We thus conduct out-ofsample tests using the following procedure. First, we randomly split the dataset D into 10 subsamples tD 1 , . . . , D 10 u of equal size and then train an algorithm on D k , k t1, . . . , u. The estimated model is subsequently applied to the other subsamples to obtain forecasts ŷ of lapses.

In the last step, we compare these predictions with the observed lapses y by the validation metric ρpy, ŷq to measure the predictive performance of the algorithm. This procedure enables us to make sure that every observation is used, at some point of an algorithm, as both training and testing samples. It is similar to the k-fold cross-validation technique in which the training subsample is composed of D ¡ D k and the testing subsample is set to D k . We use the k-fold cross-validation to tune parameters in training some of the algorithms.

Results with respect to the statistical metric

The mean accuracy computed using the above cross-validation procedure is displayed in the Table 3.3 and Figure 3.2 for each binary classication algorithm. As expected, the more sophisticated the model is, the more accurate the predictions will be. XGBoost ranks number one, followed by SVM, CART, and logistic regression (LR). XGBoost surpasses logistic regression by 2.24% on average, which represents a signicant improvement of 12,684 correctly classied policies. Moreover, the smallest standard deviation of accuracy of the XGBoost, 5. The exchange rate used in the paper is 30 NTD/1 USD. 6. This policy is a whole life insurance with a one-year old insured and the death benet of ten thousand NTD (a little over three hundred USD). There are other small policies with death benets smaller than three thousand USD. These policies constitute less than one percent of our samples. The time horizon T is set to 12 years according to the length of the sampling period. We estimate the retention probability vector r lapse from the dataset and obtain the vector displayed in Table 3.8. We propose two dierent incentive strategies: an aggressive one and a moderate one. The incentive vectors are described in Table 3.9 Incentive 2 (in bp) 0 0 1.5 1.5 3 3 4.5 4.5 6 6 6 6 6

We further assume that the probabilities of accepting the incentives for a would-lapse policyholder are γ 1 20% and γ 2 10% respectively.

The results from comparing dierent classication algorithms by the economic metric with the aggressive incentive strategy are displayed in Then we look at algorithms' performances when the incentive strategy is moderate and leads to lower acceptance probabilities. The results are displayed in the Table 3.11 and the Figure 3.4.

We rst notice XGB and SVM remains to be ranked No. 1 and No. 2, respectively. Next we observe that the improvement ratio of the best algorithm over the worst is smaller but remains to be signicant (56%). Thirdly, retention gains are signicantly lower with the moderate incentive strategy. For instant, XGB achieves a gain of 5.2 million dollars with the aggressive incentive strategy but the gain reduces to 3.3 million dollars when incentives oered to policyholders are moderate. Under our assumptions, the company should rather set the aggressive incentive strategy up to optimize her gains. However, in practice, one would need a more complete sensitivity study on the incentive to be oered and the corresponding acceptance probability to fully optimize the lapse management. 

Optimization on protability instead of classication

It is obvious that insurers would not seek to optimize the classication accuracy but focus on economic gains resulted from the classication algorithms when forming a lapse management strategy. When our aim is to maximize the protability of the lapse management strategy, binary classications might be unsuitable since they are not designed to meet such a need. Ascarza et al. (2018) emphasize the dierence between the at-risk population (e.g., customers 

Methodology

Let the new response variable z R j i represents the retention gain or loss resulting from proposing the incentive j t1, 2u (cf. Section 3.5.2) to policyholder i. More specically, we dene z R j i as z We expect that the benet of integrating the algorithm with the goal is robust across incentive strategies. This is conrmed by the results in Table 3.16 and Figure 3.7. XGB_R2 generates retention gain of 3.9 million dollars that is nearly 600 thousand dollars more than that achieved by the second place XGB. The increase in retention gains is 18%. The increases with respect to the commonly seen LR and CART reach 47% and 85%. The results in this section demonstrate the benet of having a specic objective. If senior managers of an insurer are able to specify an objective to be optimized (e.g., maximizing retention gain), the sta should apply an advanced algorithm like XBG directly to such an objective to achieve the optimum. The enhanced gain relative to the case having no specic objective other than classication accuracy can be substantial.

R j i 5 ¡CLV pδ j , F i , r stay , dq ¡ c if y i 0, γ j . rCLV pp ¡ δ j , F i , r stay , dq ¡ CLV pp, F i , r lapse , dqs ¡ c if y i 1.

Conclusion

Lapse risk is the most signicant risk associated with life insurance. Lapses may cause losses, reduce expected prots, lead to stringent liquidity, result in mis-pricing, impair the risk management, or even pose solvency threats. Employing a good algorithm to model policyholder lapse behavior is therefore valuable.

In this study, we adopt innovative viewpoints on lapse management in addition to introducing machine learning algorithms to lapse prediction. Applying XGBoost and SVM to predicting whether a policyholder will lapse her/his policy is new to the literature. Secondly, we adopt not only a statistical metric in evaluating algorithms' prediction performance but also an economic metric based on customer lifetime value and retention gains.

The goal of classication accuracy has no direct link to the insurer's costs and prots. It thus might lead to a biased strategy (Powers, 2011). Following the churn literature, we dene a specic validation metric based on the economic gains. This constitutes our third contribution:

we are the rst to set up a prot-based loss function so that we may directly optimize the economic gains. More specically, we change the usual statistical idea of classication to a gain regression in which prots are to be maximized.

The two machine learning algorithms, XGBoost and SVM, perform a little bit better than classic CART and logistic regression in terms of statistical accuracy on a large dataset consisting of more than six hundred thousand life insurance policies with information on policy terms and policyholders' characteristics. XGBoost has another advantage over other algorithms: it is less dependent upon the choice of training samples.

The advantages of XGBoost and SVM are more apparent with respect to retention gains. The retention gains incorporate the costs of providing incentives to policyholders to reduce lapse propensities and the benets of retaining policies. XGBoost and SVM generate much higher retention gains than logistic regression and CART do. For instance, XGBoost produces 1.2 to 2.6 million dollars more economic gains than CART.

In the last section, we demonstrate that the economic gains can be further enhanced when the optimization is done on a function linked to economic gains rather than on statistic accuracies.

The results show that the retention gains with an aggressive incentive strategy resulted from XGB_R1 is 126% of those from applying XGBoost to pursue classication accuracies, in particular by reducing the false alarm rates. An insurer should therefore apply advanced machine learning algorithms like XGB to its economic objective so that lapse management can be really optimized.

crop condition improvement on the prices change, which is a rational outcome in respect with the supply and demand theory.

More recently, other concerns have been raised with the signicant increase of available information from multiple sources and the essor of Big Data. Intuitively, the augmentation of existing data sources should lower the impact of the USDA reports on the commodities market. However, Karali et al. (2019) and [START_REF] Ying | Is the Value of USDA Annoucement Eects Declining over Time ?[END_REF] examine this hypothesis and conclude that the eects are not decreasing. Furthermore, it even seems that the informational value of some reports tends to enhance. Alternatively, [START_REF] Milacek | Trading Based on Knowing the WASDE Report in Advance[END_REF], based on the assumption that a private rm would have developed a WASDE reports forecasting model for trading purpose, determine the informational value of this latter. [START_REF] Abbott | Valuing Public Information in Agricultural Commodity Markets: WASDE Corn Reports[END_REF] also quantify the value of corn information contained in the WASDE reports to $301 million, and, in particular, assess the corn yield information to $188 million.

One of the data sources that private rms might use to forecast the USDA reports is satellite imagery. In this paper we focus on a specic vegetation index: the Normalized Dierence Vegetation Index (NDVI), which is a reectance index. Colwell (1956) was the rst to explore the detection of crops healthiness by aerial infrared photographs. Kumar and Silva (1973) study into details the link between one crop reectance and its chlorophyll activity. Indeed, they remark a specic signature in the near-infrared. Introduced by Rouse et al. (1974), the NDVI is nowadays one of the most used and studied vegetation index and is dened as follows

N DV I R N IR ¡ R R R N IR R R , (4.1) 
where R N IR and R R are the reectance in the near-infrared and in red, respectively. Thus, a dense tropical forest NDVI value is positive from 0.6 to 0.8, while the bare soil leads to lower value around 0.1, and rock or snow have negative NDVI values.

The NDVI is widely used in agricultural remote sensing, and more specically in crop yield forecasting. Many forecasting models have been developed based on simple linear regression, in particular for corn (Prasad et al., 2006), soybeans (Ma et al., 2001) and wheat (Mkhabela et al., 2011). Other more sophisticated algorithms have also been applied, such as Li et al.

(2007) who use neural networks. Dierent variables, derived from the NDVI time series, can be used for yield forecasting. Thus, Mkhabela et al. (2011) estimate crop yield thanks to the mean NDVI value over the growth period, while Zhang et al. (2012) split the series into two distinct periods: from re-greening to heading and from heading to maturity. Numerous models exist due the specicity of each research project. Indeed, studies have been conducted

in many countries such as, for examples, Zimbabwe (Svotwa et al., 2014), Hungary (Ferencz et al., 2004), China (Ren et al., 2008) or the U.S. (Prasad et al., 2006;Becker-Reshef et al., 2010b). Dierent data sources can be used, like the Advanced Very High Resolution Ra-diometer (AVHRR) [START_REF] Rasmussen | Operational yield forecast using AVHRR NDVI data: Reduction of environmental and inter-annual variability[END_REF], the Moderate Resolution Imaging Spectroradiometer (MODIS) [START_REF] Paul | Application of MODIS derived parameters for regional crop yield assessment[END_REF], or Sentinel-2 (Skakun et al., 2017b). Applications cover a large number of crop types (corn, soybeans, wheat, barley, rice, tobacco, potato, sugarcane, etc.). Furthermore, in some studies, authors associate NDVI with weather data, like rainfall estimates and humidity index (Prasad et al., 2006), to improve the forecasting model accuracy.

In general, these studies conclude to a high and signicant correlation between NDVI and crop yield, with a R 2 regularly up to 0.9.

More recently, with the improvement of satellite data resolution, more sophisticated remote sensing studies have emerged. Thus, Pervez and Brown (2010) manage to determine if a land is irrigated or not with an accuracy of 92% in California, while Peterson et al. (2011) detect the irrigation for dierent crops in Kansas with an accuracy of 88%. Beyond irrigation detection, crop mapping studies have gained even more interests (e.g., Wardlow andEgbert, 2008, 2010;Skakun et al., 2017a;[START_REF] Gao | Toward mapping crop progress at eld scales through fusion of Landsat and MODIS imagery[END_REF][START_REF] Zhong | Deep learning based multi-temporal crop classication[END_REF]. The development of such maps is useful since it signicantly improve the crop yield forecasting models [START_REF] Maselli | Analysis of GAC NDVI Data for Cropland Identication and Yield Forecasting in Mediterranean African Countries[END_REF]Kastens et al., 2005).

In this paper, we investigate whether one can forecast some of the valuable information from the USDA reports through satellite open-access data. We focus on the corn yield early estimates information from the NASS reports of August, September and October over the period 2000-2016, by observing the reaction of the corn futures with a maturity in December. The chosen satellite data is the NDVI values derived from MODIS abroad the NASA's satellites Terra and Aqua.

First, we test, on the data we base our study on, that the commodity market rationally reacts to the early yield estimates from the NASS reports. To do so, we follow the general econometric methodology of Lehecka (2014) to model the valuable information contained in the USDA announcements. Then, during the growing season, we use the MODIS NDVI data to forecast the corn yield through linear regression models, trained on the nal crop yields. Finally, we focus on three specic NDVI-based estimates, which are the ones obtained around two weeks before the publication of the WASDE report, therefore forecasting the valuable information contained in the next governmental report. Following again the methodology of Lehecka (2014), we test the correlation between our NDVI-based forecasts of valuable information and the commodity market reactions.

Our ndings show signicant and rational correlations between our modeled information contained in the reports and the nancial returns of corn futures. This result is in accordance with the existing literature (Irwin et al., 2001;Lehecka, 2014). Moreover, the correlation between the nancial returns and our NDVI-based forecasted information is also signicant and in line with the supply and demand theory. Since the NDVI data needed is available, at least, one week before USDA announcements, it highlights the possibility of knowing in advance some 

Methodology

Event study analysis

Following already existing event study methodologies (Irwin et al., 2001;Isengildina-Massa et al., 2008), we rst check that the commodity market reacts to the release of the reports over the period of interest. We focus our research on the future returns to test if the variability is higher in the trading session just after the WASDE release than normal, i.e., sessions in a temporal window of 5 days before and after. Since we carry out our study over the period 2000-2016, we need to pay attention to the futures return denition. Indeed, before the year 2013, USDA reports were released at 8:30 a.m., while, since January 1, 2013, the statistical reports have now been published at 12:00 p.m. 1 Thus, if a market reaction exists, its timing might have changed over the years.

Therefore, we dene the futures return of interest as spectively the opening and the closing price of corn futures with a maturity in December of year N for the session t of the event pi, N q, i.e., the WASDE release of month i of year N .

Descriptive statistics of the dened nancial returns are displayed in Table 4.2.

Then, we perform a F -test of equality of variances to compare the variability of the returns in the session just following the release of the report (t 0) with the sessions of the event window (t t¡5, . . . , ¡1, 1, . . . , 5u). Under market eciency assumption, if the market participants consider that the reports contain new and reliable information, the futures price variability should be higher on the announcement date. 

Regression analysis -USDA reports

The tests described in Section 4.3.1 are only designed to detect that new and reliable information is contained in the reports. However, this methodology doesn't allow us to know to which information the market exactly reacts to. Indeed, WASDE and NASS reports contain a large amount of statistics. In particular, [START_REF] Abbott | Valuing Public Information in Agricultural Commodity Markets: WASDE Corn Reports[END_REF] show that corn yield forecasts represent a signicant value of $188 million for the market. Inspired by Lehecka (2014) methodology, we test if the crop yield estimates are considered as valuable information.

Indeed, the early yield estimates are crucial data for the commodity market in the growing season. With the harvested area, it gives an early forecast of the next harvest production and, therefore, an outlook of the supply. All other factors being equal, a change in the crop yield forecasts should impact the futures price. More precisely, if the USDA scales up her expectation in terms of yield, the futures price should decrease, since the supply augments.

In the NASS report of month i, published in the year N , new early corn yield estimates, noted Y k,i,N , are displayed for each state of interest k. We also note Y k,N the nal yield estimates of state k for the year N . We focus on the reports released in August, September and October. In the current paper, we suppose that no other information is integrated by the market between two WASDE reports publication (this latter hypothesis will be discussed later in Section 4.5). Thus, for September and October, we model the new information provided by the report i t9, 10u of year N as However, this modeling cannot be applied to the August release since it is the rst early NASS yield forecast of the year. We therefore dene the information by

X k,8,N ln ¢ Y k,8,N Y k,N
¢ 100, The 5-years Olympic mean is a major index, and is notably used in the Agricultural Risk Coverage Program (ARC) [START_REF] Kim | Performance of 5-Year Olympic Moving Average in Forecasting U.S. Crop Year Revenue for Program Crops[END_REF].

Finally, and similarly to Lehecka (2014), we perform a regression analysis to determine the possible market reaction to the news by r 0,i,N β 0 β 1 X k,i,N .

(4.7)

With this equation, one can assess the signicance of the linear correlation between the modeled USDA information contained in the reports and the future returns. However, the market reaction might not necessary be linear with the governmental news. Thus, we also estimate the Kendall rank correlation coecient between r 0,i,N and X k,i,N to release the linear relation hypothesis.

Regression analysis -NDVI forecats

In this section, we explore the possibility of forecasting the NASS reports information through the MODIS NDVI data. These images are highly correlated to the vegetation conditions, and therefore to corn conditions. The World Agricultural Outlook Board (WAOB) and the Foreign Agricultural Service (FAS) teams actually already use satellite imagery and weather analysis to monitor crop conditions in order to prepare the WASDE 2 . Hence, it is logical to use similar data when aiming to predict its information.

First, we develop corn yield forecasting models based on MODIS NDVI time series for each of the 10 states considered in the study. We recall the period notation used in the MODIS NDVI time series in Table 4.1. We note V k,P,N the mean value of NDVI over the state k during the period P of the year N . Then, for each period between 9 and 17, we dene two variables derived from the MODIS NDVI time series: the growing phase total NDVI value, dened as follows,

G k,P,N P p9

V k,p,N , where Y k,N is the nal yield estimates of year N for the State k and k,P,N is an error term.

We estimate the coecients through the ordinary least square methods, leading to βk,P,l for each state k, l t0, 1, 2, 3u and P t13, 15, 17u. Thus, we obtain NDVI-based early yield estimates Ŷ N DV I k,P,N βk,P,0 βk,P,1 .N βk,P,2 .M k,P,N βk,P,3 . pG k,P,N ¡ M k,P,N q . In this methodology, we note two major points. Firstly, the NASS early yield estimates are never used to train the NDVI-based yield forecasting models: we only rely on the governmental nal yield. We chose to do so to avoid overtting issue that training on the NASS early yield estimates may have raised. Secondly, the three NDVI periods we train our models on, are ending on the July 27, August 28 and September 29. The data needed is therefore available before the WASDE releases of August, September and October respectively.

Hence, following the same underlying idea developed in Section 4. 

Market reaction

In this section, we present the results obtained about the impact of the report releases on the commodities market. First, we display in Figures 4.1,4.2 and 4.3 the mean absolute value of the nancial returns according to session t relative to the report publication. For the months of August (Figure 4.1) and October (Figure 4.3), we note a higher value of the mean absolute return of the futures for the session just following the WASDE reports. However, for the September reports (Figure 4.2), results are less convincing: even though the reports session has one of the highest value, the dierence is not clear when comparing to other sessions.

Intuitively, we would conclude that the August and October reports contain new and reliable information for the commodity market, which therefore reacts, while the September ones have less impacts. To validate this graphical intuition, we perform a F -test, whose results are presented in Table 4.3. Return variance for all reports session considered is 4.2 times more important than pre and post reports return variance, and this dierence is signicant at a 0.001% level. However, we note that all the reports don't seem to have the same impact on the commodity market.

Thus, the ratio of variances is around 5 for the releases of August and October, and only of 2.4 for September reports. This result is highlighted by the p-values, which indicate levels of condence lower than 0.001% for both August and October, while the September one is around 1%. We now test more specically whether the information contained in the NASS early yield reestimation have an impact on the corn futures market. Results of the Equation (4.7) are displayed in Table 4.4, together with the Kendall rank correlation coecient. First, we note that, for all the statistics, the estimates are negative with levels of condence at least of 2%.

This suggests that not only the future prices react to NASS early yield changes, but also that the reaction is rational. The signicant negative sign of the estimated coecient is consistent with the economic theory: a reduction (res. augmentation) of the crop yield expectations leads to an increase (res. decrease) of the commodity prices. Nevertheless, we remark that the signicance levels dier depending of the publication month. As anticipated in the variances test, the reaction is less marked for September releases. Indeed, the p-values of Pearson's r and Kendall's τ are respectively only of 1.8% and 1.1%, while for other months the tests lead to a minimum of 0.03% level of condence.

The results obtained in this market reaction study are consistent with the existing literature, like for example Isengildina-Massa et al. (2008) who also detect a lower, while still statistically signicant, impact of the September reports on the market. Thus, we can conclude on the fact WASDE reports provide overviews of the supply and demand for these crops all around the world. For example, a careful attention is given to European (European Union, Ukraine and Russia) wheat market or Brazilian soybeans market. The agricultural commodities we focus on being storable, the dierent nancial markets are linked one to another. Hence, to improve the forecasting performance of the market reactions to the WASDE releases, one would need to develop a more global model, in term of both crop type and localisation. Since the MODIS data cover the entire world, no major data problems should be expected.

Thirdly, in this research we focus on the public information contained in the USDA. More specically, we evaluate the market reaction to the reestimation of yields as if no other information sources, public or private, were considered as newsworthy by the market participants. However, it is known that other governmental reports, published between two WASDE ones, contain valuable information on the crop conditions, notably the Crop Progress reports (Lehecka, 2014). In addition, many market participants have access to private forecasts on the future agricultural supply and demand (Karali et al., 2019). Therefore, it would be benecial to take into account other sources of information in the modelling of the commodities market reaction to the WASDE release.

Last but not least, we highlight signicant and rational correlations in our results. For a practical implementation in the commodities market, the general idea of the current paper has to be converted into a trading strategy. Moreover, the performance should be assessed through a backtesting methodology before being put into practice. This method is an out-sample one, contrary to the study we conduct here. Thus, overtting mentioned in Section 4.3.3 is no longer an issue. Hence, to increase the accuracy of the governmental valuable information forecasts, one should train the NDVI-based early yield model (Equation (4.10)) not with the NASS nal yield estimates Y k,N , but rather with the corresponding NASS early yield estimates Y k,i,N .

Conclusion

In this paper, we retrieve, over the period 2000-2016, the well-known result that corn futures market reacts to the WASDE report releases. Then, we evaluate the informational value contained in the early yield estimations from the NASS, published together with the WASDE.

We nd out that the changes in these estimations are signicantly and rationally correlated to the nancial returns of the corn futures. Then, we propose an econometric model to obtain early yield forecasts based on MODIS NDVI time series, available around two weeks before the actual publication of the WASDE reports. Finally, we show that changes between two of the NDVI-based early yield estimates are also signicantly and rationally correlated to the corn future returns. Therefore, it seems possible to forecast some valuable information from the USDA announcements thanks to MODIS NDVI data.

Even though we do not pursue our work on this subject, our study can inspire commodity traders or agricultural insurance companies to optimize their nancial and risk management strategies. Indeed, the value of the information is important for the market participants.

Moreover, since the databases are provided in open access, the data acquisition cost can be considered as null. Hence, the incentives seem high enough for the private sector to invest in developing remote sensing tools for the commodities price risk management. Indeed, the approach presented in the current paper is only to be seen as a proof of concept rather than a directly useable methodology. In this perspective, we have proposed some improvements that one would need to focus on before putting the method into practice.

Nevertheless, giving that the data is provided by the NASA, i.e. a reliable governmental institution, the derived information can be considered as public. Hence, in the long term, if all market participants have developed such methodology, it may decrease the impact of the USDA reports. 
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 01 Figure 0.1 Évolution de l'espérance de vie à la naissance.

  ), i.e. le rapport entre le nombre de personnes âgées entre 15 et 65 ans exclu et les individus âgés de plus de 65 ans. Ce dernier est une estimation de la taille de la population active par rapport à la population des retraités. Cet indicateur est donc crucial pour la stabilité des systèmes par répartition, son évolution doit de fait être modélisée et analysée attentivement. Ainsi en France, le risque de longévité pesant sur les retraites est d'autant plus fort pour cette cohorte particulière du baby-boom.
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 02 Figure 0.2 Projection du rapport de dépendance en France entre 2008 et 2108.

  taux de mortalité non plus sur l'ensemble de la population française, mais en diérentiant cette dernière par le sexe, nous observons des diérences signicatives entre ces deux populations. Sur la Figure 0.4 nous remarquons premièrement une mortalité plus élevée pour les hommes à partir de 15 ans environ. Au contraire, la mortalité infantile est relativement identique pour les deux sexes. Enn, la bosse des accidents apparait beaucoup plus marquée pour les hommes. Ces remarques nous amènent à un point crucial dans la gestion du risque de longévité : l'hétérogénéité des risques biométriques dans les populations.
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 04 Figure 0.4 Taux de mortalité en France en 2017 par sexe.
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 05 Figure 0.5 Logarithme des taux d'amélioration de la mortalité en France entre 1980 et 2016.
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 06 Figure 0.6 Logarithme des taux d'amélioration de la mortalité en Angleterre et Pays de Galles entre 1980 et 2016.

  Il s'agit d'un contrat entre deux parties qui permet d'échanger à maturité un montant proportionnel à la mortalité réalisée d'une certaine population contre un montant proportionnel à une mortalité xe dénie à la signature du contrat. Le fonctionnement du q-forward est schématisé dans la Figure 0.7. Avec cette mécanique un fond de pension peut transférer une partie de son risque de longévité en choisissant de payer le taux variable et en recevant le taux xe.
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 07 Figure 0.7 Fonctionnement d'un q-forward.
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 08 Figure 0.8 Taux de mortalité avant, pendant et après la période à risque.
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 09 Figure 0.9 Projection sur 50 ans des taux de mortalité des hommes français de la cohorte d'âge 50 ans en 2016 selon plusieurs modèles de mortalité.

  Figure 0.11 Gestion de la rétention client. Source : traduit d'Ascarza et al. (2018)

(

  Figure 0.12 donne une représentation graphique des résultats. Ils montrent alors que l'eet de l'annonce du WASDE est d'autant plus important lorsqu'il est publié avec le Crop Production.

Figure 0 .

 0 Figure 0.12 Variance des rendements fermetureouverture des futures sur le maïs et le soja pour tous les mois de communication du WASDE. Janvier 1985 -Décembre 2006. Source : Isengildina-Massa et al. (2008)

  , quant à lui, s'attarde sur la valeur des informations contenues dans les rapports Crop Progress hebdomadaires au cours de la période 1986-2012 pour le maïs et le soja. L'auteur régresse le rendement fermetureouverture des futures en fonction du pourcentage des cultures en excellente ou bonne condition. Les résultats présentent une corrélation signicative et négative entre l'amélioration des conditions des cultures et les changements de prix, soulignant ainsi une réaction rapide et rationnelle des marchés face cette information de l'USDA. Les réactions sont d'autant plus fortes lorsque les conditions météorologiques sont les plus critiques pour les cultures, i.e. en juillet et en août. Plus récemment, avec l'essor du Big data, les chercheurs se demandent, avec les mêmes motivations que Fortenbery et Sumner (1993), si les rapports de l'USDA contiennent toujours des informations utiles pour le marché. Intuitivement, la multiplication signicative des sources d'informations devrait en eet diminuer les eets de la publication des rapports comme le WASDE ou le Crop Production. Karali et al. (2019) et Ying et al. (2019) examinent la question et concluent que l'impact de la communication de ces rapports n'a pas diminué, certains eets semblant même gagner en importance. Si le Big data ne semble pas altérer l'inuence des rapports gouvernementaux sur les marchés, il est cependant peut-être possible capable de prédire les informations contenues dans ces publications grâce à l'apprentissage statistique. En partant de l'hypothèse qu'une entreprise ait développé un modèle prédictif pour le WASDE, Milacek et Brorsen (2017) évaluent le gain potentiel qu'elle en tirerait sur le maïs et le soja. Un tel modèle serait bénéque pour les traders présents sur le marchés. En particulier, nous noterons que les assureurs agricoles sont concernés dans le cas des États-Unis car la majorité des produits d'assurance agricole y sont de type revenus, i.e. que l'agriculteur transfert à la fois son risque de rendement agricole et son risque de prix de vente. Aujourd'hui les données en libre accès sont légion, et même si elles sont publiques, le big open data peut amener certains agents à détenir de l'information supplémentaire sans qu'elle ne soit considérée comme privilégiée, dans le sens où le reste des agents y ont aussi théoriquement accès. A l'instar du risque d'obfuscation où un demandeur d'assurance se retrouve noyé sous la multitude d'ores et choisit de façon sous-optimale sa couverture (Mouminoux et al., 2018), l'agent des marchés nanciers est submergé dans les téraoctets en accès libre et choisit peut-être de façon sous-optimale les sources d'informations. Ainsi, les données nécessaires à la création d'un modèle de prédiction du WASDE sont potentiellement déjà disponibles dans l'océan de l'open data.Introduction des outils statistiquesNous introduisons maintenant les algorithmes ainsi que les données issues de l'open data utilisés dans les méthodologies d'apprentissage statistique sur lesquels nous nous focalisons dans cette thèse. L'objectif de cette partie n'est pas leur application spécique à nos cas d'étude, mais plutôt de fournir une description des techniques employées dans un cas général. Sans pleinement détailler les théories mathématiques, nous donnons les principales idées sous-jacentes an de comprendre leurs fonctionnements. L'ensemble des travaux statistiques de cette thèse ont été eectués à l'aide du logiciel R (R Core Team, 2019).
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 0 Figure 0.13 Gauche : deux hyperplans diérents séparant le même ensemble de données. Droite : l'hyperplan à marge maximale.

Figure 0 .

 0 Figure 0.14 Gauche : cas non séparable linéairement en dimension 1. Droite : séparation linéaire possible après projection de l'ensemble de données en dimension 2.

  (0.35) Dans ces notations, l'hyperplan est déterminé par le vecteur orthogonal ω et la constante b.

  (0.36) où γ ¡ 0 est un paramètre du noyau. Dans la pratique, l'optimisation du paramètre de pénalisation d'erreur C et des paramètres du noyaux, seulement γ pour le cas du RBF, est eectuée par validation croisée. Extreme Gradient Boosting Les arbres de décision, et plus particulièrement les arbres de classication et de régression (CART pour Classication and Regression Trees) introduits par Breiman et al. (1984) sont des outils simples d'interprétation, rapides dans leur estimation et permettant de s'aranchir des structures linéaires. Le principe est de dénir la valeur réponse de l'algorithme en suivant une suite de règles de décision sur les variables explicatives. Pour déterminer ces règles, l'espace des données est successivement séparé par des divisions binaires en sous-espaces disjoints. A chaque étape, ou n÷ud, de cette construction descendante, la variable explicative sur laquelle se fait la séparation ainsi que le point de division sont choisis pour optimiser un critère d'homogénéité, comme par exemple l'indice de Gini pour une classication ou la perte quadratique dans le cadre d'une régression. Bien qu'ils orent une lecture facile, ces arbres sont aussi connus pour être relativement instables. Un faible changement dans les données initiales peut impliquer des règles de décisions fortement diérentes

  tant que processus de construction itératif, supposons que l'étape m soit terminée et que nous ayons ainsi un modèle fort F m . L'itération suivante se fait alors par

F m 1 F

 1 m arg min hH N i1L py i , F m px i q νh px i qq , (0.38) où ν est un paramètre de "shrinkage " permettant de limiter la vitesse d'apprentissage lors des étapes d'itération. Dans le reste de la thèse, nous considérons le cadre spécique où les modèles faibles h sont des CART.Dans le cas où la fonction de perte est diérentiable et que la vitesse d'apprentissage est relativement lente,Friedman (2001) propose d'utiliser une descente de gradient pour estimer le modèle faible h m . Cet algorithme dit de gradient boosting repose sur les approximations par séries de Taylor :

  (0.39) où par abus de notation L pFq N °i1 L py i , F px i qq. Récemment, Chen et Guestrin (2016) ont proposé une variante du gradient boosting en y incorporant d'autres méthodes d'apprentissage statistique an d'améliorer le modèle fort nal : l'extreme gradient boosting (XGBoost).A la manière du bagging, chaque arbre faible est entraîné sur un sous-ensemble d'observations tirées aléatoirement (sans remise). Cette amélioration, que l'on nomme gradient boosting stochastique, avait déjà été proposée parFriedman (2002).Comme pour les forêts aléatoires, chaque arbre faible est estimé sur un sous-ensemble des covariables.Une fonction de régularisation Ω, faisant intervenir des pénalisations de type lasso ou ridge, est ajoutée à la fonction de perte L an de limiter le surapprentissage. L'optimisation se fait alors sur une fonction objective O L Ω.L'algorithme XGBoost est vite devenu très populaire dans le milieu de l'apprentissage statistique pour toutes les problématiques faisant intervenir des données structurées. En regroupant diérentes techniques, il permet d'obtenir de très bonnes performances de prédiction comparativement aux autres méthodologies, notamment en orant les outils pour traiter le compromis biais-variance avec précision. De plus, l'implémentation en langage informatique (R, Python, etc.) a été optimisée avec notamment l'utilisation du calcul en parallèle sur plusieurs c÷urs, permettant ainsi un temps d'estimation relativement faible. Enn, une grande liberté est laissée à l'utilisateur dans les choix des paramètres, ce que ne propose pas forcément d'autres librairies de boosting.

  analysent en détail le lien entre l'activité chlorophyllienne d'une plante et sa réectivité, i.e. la proportion d'énergie électromagnétique (la lumière en l'occurrence) rééchie à la surface d'un matériau. Ils montrent alors que le spectre de réectivité de la végétation comporte une signature spécique dans le proche infrarouge (λ 700 ¡ 1300 nm) et le rouge visible (λ 550 ¡ 700 nm). La Figure 0.15 montre graphiquement cette signature dans le cas général, et son changement selon la santé de la plante considérée. Nous remarquons une forte augmentation de la réectivité entre le rouge et le proche infrarouge, l'amplitude de cet écart diminuant avec la santé de la plante. Par ailleurs, nous notons un faible pic de réectivité dans le vert : c'est la raison pour laquelle nous voyons la végétation en général de cette couleur. L'augmentation de la réectivité dans le rouge pour les plantes en mauvaise santé donne l'explication des couleurs automnales. Introduit par Rouse et al. (1974), le NDVI repose sur cette caractéristique du spectre électromagnétique de la végétation. Il est dénit par

  factors inuencing the force of mortality, see among other[START_REF] Booth | Applying Lee-Carter under conditions of variable mortality decline[END_REF];[START_REF] Brouhns | A Poisson log-bilinear regression approach to the construction of projected lifetables[END_REF];Cairns et al. (2006Cairns et al. ( , 2009));[START_REF] Renshaw | On simulation-based approaches to risk measurement in mortality with specic reference to Poisson LeeCarter modelling[END_REF];[START_REF] Plat | On stochastic mortality modeling[END_REF];[START_REF] Hunt | A General Procedure for Constructing Mortality Models[END_REF]. Some reviews are available in the literature, see e.g.[START_REF] Booth | Mortality Modelling and Forecasting: a Review of Methods[END_REF] Cairns et al. (

  [START_REF] Li | Extending the Lee-Carter method to model the rotation of age patterns of mortality-decline for long-term projection[END_REF] develop an approach letting the age coecients rotate over time, based on an expert judgment.[START_REF] Hunt | Robustness and convergence in the LeeCarter model with cohort eects[END_REF] add an additional constraint on the cohort eect extensions of theRenshaw and Haberman (2006) model to overcome the convergence and robustness issues induced by the two-stage tting algorithm for parameters. Regarding mortality trends of multiple populations, a relatively wide literature is organized around the idea of a biological convergence at a long horizon, see Dowd et al. (2011); Jarner and Kryger (2011); Li and Lee (2005); Enchev et al. (2016); Cairns et al. (2016b) among others. These approaches estimate the mortality model by bringing together the data of several countries.

  and the M7 model developed by Cairns et al. (2009) which are standard factor-based models; a reference model in smoothing methodologies developed by Hyndman and Ullah (2007) and the more recent smoothing RE-SPECT model introduced by Dokumentov et al. (2018); and nally the STAR model, based
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 11 Figure 1.1 The period log-mortality improvements for England and Wales (UK), the United States (US) and France (FR) on the age-period observation t45, . . . , 99u ¢ t1950, . . . , 2016u for overall populations.

  Figure 1.5 The RMSE for England and Wales (UK), the United States (US) and France (FR) grouped by period for the overall populations.
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 18 Figure 1.8 The observed and the projected log of death rates for British (UK), American (US) and French(FR) females and males with the 97.5% prediction intervals, obtained from the VAR-ENET model.
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 19 Figure1.9 The observed and the projected log of death rates for British (UK), American (US) and French (FR) females and males. This gure compares trends obtained with the HU, the LC and the VAR-ENET models.

  Firstly, we propose to consider this matrix as a block matrix broken into M 2 dierent d¢d-dimensional submatrices noted Σ m,n for each population couple pm, nq t1, . . . , M u 2 . Then, for each population m, we estimate the diagonal submatrix Σ m,m through the same methodology as in the single population, obtaining in this way Σm,m . Since Σm,m is a positive-denite matrix, we dene its Cholesky decomposition Σm,m Rt m Rm ,

  extend the Lee-Carter model to the multi-population scope by imposing a common trend B Ix K I t to the collection I of considered populations:
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 21 Figure 2.1 Dispersion at age 85 in the western European populations: historical data and median projections by Lee-Carter and Li-Lee models with the corresponding 95% prediction intervals.
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 422 Figure 2.2 Estimated autoregressive matrices of the VAR-ENET from the LCLL(MF) model.
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 2 Figure 2.3.
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 23 Figure 2.3 Dendrogram associated with the HCA applied on the LC's κ t , colored according to 8 nal clusters.

  and 2.5 the historical dispersion δ I 85,t for the 32 populations of I at age 85, derived from the historical data, the LC and LL model forecasts but, this time, together with the projection from the LCLL(MF) and LCLL(HCA8) respectively. The same graphs are displayed in Appendix 2.8 for age 70, 75, 80 and 90. As expected, the dispersion predictions produced by the LCLL models are contained between the LC and LL ones.
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 24 Figure 2.4 Dispersion at age 85 in the western European populations: historical data and median projections by LC, LL and LCLL(MF) models with the corresponding condence intervals at 5% and 95%.
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 25 Figure 2.5 Dispersion at age 85 in the western European populations: historical data and median projections by LC, LL and LCLL(HCA8) models with the corresponding condence intervals at 5% and 95%.
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 2 Figure 2.6 Median European LDIV(2024) according to the switching time of the French female population.
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 28 Figure 2.8 Dispersion in the western European populations: historical data and median projections by LC, LL and LCLL(HCA8) models with the corresponding condence intervals at 5% and 95%.
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 31 Figure 3.1 Pseudocode of the Gradient Tree Boosting algorithm.
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 33 Figure 3.3 Box plot of retention gains with the aggressive strategy.
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 34 Figure 3.4 Box plot of retention gains with the moderate strategy.
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 35 Figure 3.5 Box plot of statistical accuracies obtained with the economic loss functions.
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 36 Figure 3.6 Box plot of retention gains with the aggressive strategy.
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 37 Figure 3.7 Box plot of retention gains with the moderate strategy.

  Y k,N represents the Olympic mean of the nal yields from the last 5 years before N , N ¡n ¡ max nt1,...5u tY k,N ¡n u ¡ min nt1,...5u tY k,N ¡n u(4.6) 

  NDVI peak value reached during the season, M k,P,N max p¤P V k,p,N .

  model the NDVI-based yield forecasts by the following linear regressions for each state Y k,N β k,P,0 β k,P,1 .N β k,P,2 .M k,P,N β k,P,3 . pG k,P,N ¡ M k,P,N q k,P,N ,(4.10) 

3 . 2 ,

 32 we model the new information provided in the WASDE reports to the market participants by August, September and October releases.Finally, we perform a regression analysis to determine if this modelled information is correlated enough with the information contained in the governmental reports. In other words, we test whether the NDVI-based information forecasts could have been statistically considered as information regarding the corn future price changes at the WASDE release dates. Similarly to Section 4.3.2, we test this hypothesis thanks to the following regression, r 0,i,N β 0 β 1 XNDV I k,i,N .
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 41 Figure 4.1 Mean absolute future returns relative to the August reports session during the period 2000-2016
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 42 Figure 4.2 Mean absolute future returns relative to the September reports session during the period 2000-2016
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 43 Figure 4.3 Mean absolute future returns relative to the October reports session during the period 2000-2016
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 4 Figure 4.5 MODIS NDVI time series of Kansas over the year 2016.

ConclusionL

  'objet de notre conclusion n'est pas de détailler une nouvelle fois les contributions issues de cette thèse. En eet ces dernières ont déjà été abordées dans le résumé global, l'introduction générale et dans les conclusions de chaque chapitre. Nous proposons dans cette conclusion générale quelques perspectives de recherche qui s'inscrivent dans la continuité des travaux présentés.Dans le Chapitre 1, nous appliquons une régularisation elastic-net lors de l'estimation du modèle VAR dans une optique de projection de la mortalité. La problématique de grande dimension est avant tout d'éviter le sur-apprentissage. Néanmoins, l'obtention de matrices autorégressives parcimonieuses, nous permet aussi de détecter des eets démographiques connus, tels que les eets période ou cohorte, par les structures des coecients ainsi estimés. Les matrices deviennent alors une signature de la dynamique des taux de mortalité et rendent possible les comparaisons entre populations. La parcimonie impliquée par la pénalisation lasso peut alors être vu comme un outil de classication non-supervisée plutôt que de régression et de projection.En particulier, la parcimonie des matrices met empiriquement en avant des structures verticales de coecients ne correspondant pas à des eets démographiques qui nous sont connus.Ces motifs sont observés, plus ou moins nettement, dans plusieurs populations de la Human Mortality Database. L'application pratique du modèle sur cette importante base d'information nous porte à supposer qu'il puisse s'agir d'anomalies dans les données que notre modèle VAR-ENET permettrait de mettre en évidence. Une étude plus approfondie, se fondant notamment sur des données simulées, conforterait cette hypothèse.La problématique de classication de populations en fonction de la dynamique des taux de mortalité est aussi un sujet de préoccupation du Chapitre 2. En eet, dans ce dernier nous regroupons les populations de manière à créer des groupe de cohérence. Bien que nous ne nous attardons pas beaucoup sur cette classication dans cette thèse, notre contribution reposant essentiellement sur l'introduction de la notion de cohérence locale et ses implications, ce problème n'en reste pas moins attrayant. Les futures recherches se devront de développer des méthodes de classication de séries temporelles adaptées à la détermination des groupes de cohérence.
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2.1 Dispersion at age 85 in the western European populations: historical data and median projections by Lee-Carter and Li-Lee models with the corresponding 95% prediction intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Estimated autoregressive matrices of the VAR-ENET from the LCLL(MF) model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Median European LDIV(2024) according to the switching time of the French female population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . de la Grèce antique, lors de la guerre du Péloponnèse entre Athènes et Sparte, au V ème siècle avant notre ère. Thucydide (411 av. J.-C.) décrit comment, au siège de Platée durant l'hiver 428 avant J.-C., les Athéniens mesurèrent les murs ennemis. Pour ce faire, plusieurs soldats comptèrent le nombre de rangées de briques. Même si plusieurs d'entre eux purent se tromper, la majorité obtinrent le juste compte. Ainsi, en multipliant le nombre le plus fréquemment observé par ses soldats, i.e. le mode en vocabulaire statistique, par l'épaisseur d'une brique, le commandant athénien put en déduire la hauteur du mur adverse an d'évaluer si une percée des lignes ennemies était possible. Avec une terminologie spécique à l'apprentissage statistique, anglophone et anachronique, nous pourrions dire que le commandant grec a utilisé une méthode d'ensemble learning dans laquelle chaque soldat est un weak learner.

  les régimes obligatoires ont été de 302 milliards d'euros alors que les organismes d'assurances complémentaires n'ont versé que 5,7 milliard (soit environ 2% du montant global).

	Le produit d'assurance vie est depuis plusieurs années le placement d'épargne préféré des
	français. Ainsi, en 2018, la collecte nette pour l'ensemble des 54 millions de contrats a atteint
	22,4 1 milliards d'euros. L'encours sous-jacent, i.e. la somme des provisions mathématiques
	et des provisions pour participation aux bénéces, s'élevait à 1 700 milliards d'euros à n
	décembre 2018. En comparaison le montant des engagements des compagnies d'assurance au
	titre de l'assurance retraite ne s'élève qu'à 190 milliards à n 2016. Cependant ce chire est à

Ces contrats peuvent être gérés par des compagnies d'assurances, des mutuelles, des fonds de pension, mais aussi par des organisations étatiques comme par exemple la Caisse nationale d'assurance vieillesse pour une partie des retraites françaises. prendre avec du recul dans le cas de la France car les retraites sont essentiellement nancées par un système dit par répartition. En 2015, les versements de prestations au titre de la retraite par

  Nous dénissons alors µ px, tq la force de mortalité des individus d'âge x au temps t. En notant ν la date de naissance d'un individu, sa durée de vie est alors caractérisée par la fonction de survie : S pa | νq P pτ ¡ a | νq exp Cependant cette fonction µ px, tq est dicilement estimable en pratique par les statisticiens car elle est dénie en temps continu. Ainsi, l'hypothèse simplicatrice régulièrement retenue lors de l'analyse des dynamiques de mortalité est que pour tout âge entier x et année entière t, et pour tout 0 ¤ u, s 1, on a µ px u, t sq µ px, tq, i.e. que la force de mortalité est constante sur chaque âge entier et sur chaque année calendaire. Nous dénissons alors m px, tq µ px, tq comme le taux central de mortalité. Une estimation de ce taux est donnée par :

		¢	¡	» a	µ px, ν xq dx	.	(0.2)
				0		
	» 1	P px, t sq ds,		(0.4)
	0					

m px, tq m x,t D px, tq E px, tq , (0.3) où D px, tq représente le nombre d'individus décédés l'année t et d'âge x à leur dernier anniversaire avant leur mort, et E px, tq est l'exposition centrale au risque. Cette exposition est théoriquement dénie comme la durée totale vécue dans l'année t par les individus d'âge x à leur dernier anniversaire. Mathématiquement, nous écrivons donc E px, tq où P px, sq est le nombre de personnes d'âge x à leur dernier anniversaire au temps exact s. Pratiquement, les données disponibles, notamment au niveau national, ne sont pas susantes pour estimer E px, tq de manière able. Des hypothèses simplicatrices supplémentaires sont alors posées. Ainsi, au Royaume-Uni l'Oce for National Statistics (ONS) estime l'exposition centrale par la population à mi-année, i.e. E px, tq P ¢ x, t 1 2 .

  . Ce dernier décrit la dynamique des taux de mortalité par deux séries d'eet âge α x et β x , ainsi qu'une série d'eet période κ t : log m x,t α x β x κ t .

(0.7) Cependant, nous pouvons remarquer que pour tout réel a et b et étant donné une solution formée des séries α x , β x , κ t ; alors les nouveaux estimateurs αx , βx et κt , dénis par αx α x bβ x , βx β x a, κt a pκ t ¡ bq , (0.8) sont aussi une solution du modèle. Ceci implique donc un problème d'identiabilité dans l'estimation des diérents facteurs. Pour résoudre ce dernier, nous avons besoin d'imposer des contraintes. Les plus régulièrement retenue sont les suivantes : ţ κ t 0 et x β x 1.

(0.9) Ainsi dénis, α x représente le niveau moyen de mortalité à chaque âge au cours du temps ; la série κ t décrit la dynamique temporelle d'amélioration de la mortalité et β x précise la sensibilité de la mortalité à chaque âge par rapport à κ t . A l'origine,

Lee et Carter (1992) 

proposent une estimation des paramètres α x , β x et κ t par une méthode de décomposition en valeurs singulières. Depuis, l'estimation par vraisemblance est plus commune, notamment dans les packages informatiques qui ont été développés (e.g.,

Villegas et al., 2017b)

. Cette estimation est fondée sur l'hypothèse que le nombre de décès D px, tq suit une loi de Poisson ayant pour moyenne la force totale de mortalité, i.e. E px, tq ¢ m px, tq. Enn, une fois ces séries de paramètres estimées, une seconde étape d'analyse des séries temporelles des diérents facteurs permet une projection stochastique des taux de mortalité.

Depuis sa publication, le modèle Lee-Carter a engendré de nombreuses variantes et extensions.

Ainsi

Renshaw et Haberman (2006) 

proposent d'inclure un eet cohorte, non présent dans le modèle initial, par l'ajout d'une nouvelle série de paramètres d'eet cohorte γ t¡x :

  tant du bruit, une troisième famille de modèle est apparue. Si aucun évènement exceptionnel ne se produit, nous pouvons supposer que la surface de mortalité est plutôt lisse dans les dimensions de la période et de l'âge. Ainsi, des méthodes d'analyse fonctionnelle et des techniques de lissage non-paramétrique ont été appliquées à la modélisation de la mortalité. Currie et al. de mortalité et la considèrent comme un champ aléatoire avec une structure causale. La dépendance entre cohortes adjacentes y est modélisée par un AR-ARCH permettant alors de capturer l'eet cohorte et les corrélations entre générations.Li et Lu (2017) appliquent un processus de type Vecteur Autoregressif (VAR) sur la surface des taux de mortalité logarithmiques. An d'obtenir un modèle parcimonieux et stationnaire, ils contraignent

	(2004) introduisent l'utilisation de P-spline pour ajuster les taux de mortalité. Globalement,
	ces derniers sont modélisés par :			
	log m x,t	i,j	θ i,j B i,j t pxq ,	(0.15)

où B i,j sont une base de fonctions cubiques et θ i,j des paramètres à estimer. Les taux de mortalité sont ainsi lissés sur l'historique des données, permettant d'en extraire les diérents chocs. La tendance générale est alors déduite et les taux futurs sont considérés comme des données manquantes.

Hyndman et Ullah (2007) 

proposent un lissage non-paramétrique f t pxq de la courbe des taux de mortalité log m x,t pour chaque période t de l'historique. Ces courbes sont ensuite décomposées par une approche d'analyse fonctionnelle de la manière suivante :

f t pxq µ pxq K ķ1 β t,k φ k pxq , (0.16)

où µ pxq est une mesure de position de f t pxq et pφ k q k1,...,K est une base orthonormée de fonctions. La projection des futurs taux de mortalité passe ici par la modélisation univariée de la dynamique temporelle des K séries β t,k . D'autres modèles dit de lissage ont été développés par la suite (e.g.,

Li et al., 2016; Dokumentov et al., 2018)

, même si cette troisième famille de modèles a rencontré moins de succès que les modèles à facteurs de type Lee-Carter ou CBD dans la pratique actuarielle. D'autres méthodes plus récentes s'attardent sur la structure de dépendance spatio-temporelle de la mortalité. Ainsi Christiansen et al. (2015) utilisent des techniques de statistiques spatiales, le krigeage plus précisément, pour la projection des taux d'amélioration de la mortalité suivant les dimensions âge et période. Doukhan et al. (2017) s'appuient aussi sur cette surface d'amélioration

  risque de longévité est bien supérieur aux capitaux que le secteur global de l'assurance peut y consacrer de manière réaliste. Ils soulignent alors que les marchés nanciers globaux sont la seule source pouvant orir les montants substantiels nécessaire au risque de longévité. Il est donc nécessaire de transformer le risque de longévité en un actif susamment attractif pour drainer d'importants capitaux. C'est dans cette optique que plusieurs outils de transfert de risque de longévité ont été développés depuis le début des années 2000 (e.g.,Blake et Burrows, 

	Ainsi, même si les compagnies d'assurances et les fonds de pensions ont a leur disposition
	de nombreuses méthodes d'évaluation quantitative, l'incertitude reste omniprésente dans la
	projection de la longévité. Comme nous l'avons déjà noté, le risque de longévité des retraites
	porte sur des montants colossaux. Michaelson et Mulholland (2014) remarquent d'ailleurs que

4. Nous introduirons dans un deuxième temps les diérents algorithmes d'apprentissage statistique sur lesquels notre thèse se focalise. A ce point du manuscrit, le lecteur peut se référer à Hastie et al. (2016) ou Charpentier et al. (2018) pour les détails des méthodologies citées.

le

  . Dans le cas des transferts de risques aux marchés nanciers, il peut cependant être économiquement intéressant pour les fonds de pensions d'accepter de garder une partie de ce risque de base. En eet, l'utilisation d'indice de longévité standardisé plutôt que la mortalité d'une population spécique permet en général une couverture certes moins ecace mais moins chère. Blake et al.

(2018) soulignent que, dans l'objectif du développement d'un marché de la longévité viable et ecace, les participants se doivent de trouver un arbitrage optimal entre le risque de base d'un indice standard et le risque de liquidité d'un indice fait sur mesure. Néanmoins, il convient dans tous les cas d'évaluer et le plus précisément possible le risque de base.

  modèle est la notion de cohérence dans les projections. Celle ci suppose qu'à long terme, les taux de mortalité des diérentes populations ne peuvent diverger indéniment, ce qui n'est pas raisonnable d'un point de vue biologique. Bien que cette hypothèse soit parfois critiquée (par exempleLi et al., 2017, proposent une hypothèse plus faible de semi-cohérence), t ¡ 1 et t ; φ 0 , φ 1 , φ 2 , θ 0 , θ 1 et θ 2 sont des paramètres du modèle à estimer ; 1

				(0.18)
	Les dynamiques des séries temporelles K t et κ i t sont ensuite modélisées indépendamment, et
	notamment de telle sorte que les κ i t tendent vers une constante à long terme. Une hypothèse
	fondamentale de ce t ¡ κ 2 t
	soit modélisée de telle sorte qu'il y ait un retour à la moyenne. Zhou et al. (2014) soumettent
	alors trois dynamiques temporelles, dont le vecteur autorégressif (VAR) selon lequel nous
	avons :			
	∆κ 1 t φ 0 φ 1 ∆κ 1 t¡1 ∆κ 2 t θ 0 θ 1 ∆κ 1 t¡1	φ 2 ∆κ 2 t¡1 θ 2 ∆κ 2 t¡1	1 t , t , 2	(0.20)
	où ∆κ i t κ i t ¡ κ i t¡1 est le changement de la mortalité au niveau global dans la population i
				t et 2 t sont
	des chocs d'innovations suivant une loi normale bivariée centrée avec une matrice de covariance
	constante. L'obtention de la cohérence se fait alors en imposant la contrainte suivante dans le
	processus d'estimation :			

des eets âge et période spéciques à chaque population, et B x un eet âge global. Ces séries de paramètres sont estimées en suivant une procédure en deux étapes basée sur la décomposition en valeur singulière : d'abord les eets communs B x et K t sont obtenus sur les données agrégées, puis les eets spéciques de chaque pays sont calculés. Comme dans le cas du Lee-Carter, des contraintes doivent être imposées pour des raisons d'identiabilité des paramètres : ţ K t 0 et x B x 1 pour les termes communs, ţ κ i t 0 et x β i x 1 pour chaque i. la majorité des modèles existant repose sur cette hypothèse centrale. Alors que le modèle introduit par Li et Lee (2005) s'assure de la cohérence par la présence d'un eet période commum K t , d'autres extensions du Lee-Carter à la multi-population proposent un eet âge commun an de vérier la propriété de cohérence. Ainsi Zhou et al. (2014) présentent la modélisation suivante :

log m i x,t α i x β x κ i t ,

(0.19)

où l'eet âge β x est commun à toutes les populations considérées. Notons que

Kleinow (2015) 

propose parallèlement un modèle similaire où le terme β x κ i t est remplacé par °p β x,p κ i t,p plus général. Pour atteindre la cohérence il ne sut plus que de s'assurer que la diérence κ 1 entre

Table 0 .1 Matrice de confusion.

 0 rβγ pCLV ¡ c ¡ δq ¡ β p1 ¡ γq c ¡ p1 ¡ βq pc δqs ¡ A N α rβ rγCLV δ p1 ¡ γqs ¡ δ ¡ cs ¡ A, CLV la valeur vie client, i.e. la valeur pour l'entreprise si le client est retenu ; A les coûts administratifs xes de la campagne de rétention. Cette modélisation de la campagne de rétention est représentée schématiquement dans la Figure0.10. Ce cadre a permis le développement de mesures économiques spéciques à la problématique de la détection d'attrition pour comparer les modèles mis en place : le meilleur est alors celui produisant le plus de prots pour l'entreprise (e.g.,[START_REF] Burez | CRM at a pay-TV company : Using analytical models to reduce customer attrition by targeted marketing for subscription services[END_REF][START_REF] Verbeke | New insights into churn prediction in the telecommunication sector : A prot driven data mining approach[END_REF][START_REF] Tamaddoni | Comparing Churn Prediction Techniques and Assessing Their Performance : A Contingent Perspective[END_REF].

			Prédite
			Attrition	Non Attrition
	Réalisée	Attrition Non Attrition	Vrais Positifs (TP) Faux Positifs (FP)	Faux Négatifs (FN) Vrais Négatifs (TN)
	Dans le cadre général des statistiques, de nombreuses mesures ont été développées, an de com-
	parer ces matrices d'un modèle à l'autre. Certaines des plus communes incluent par exemple
	la précision, i.e. la proportion de bonnes classications parmi l'ensemble des éléments classiés
	comme pertinents,			
			précision T P T P F P	,	(0.23)
	8. Discounted cash ows		

Figure 0.10 Représentation schématique des gains d'une campagne de rétention.

Optimisation de l'

approche Prenons à présent un peu de recul sur les méthodes d'apprentissage statistique qui sont ap- pliquées. La problématique est de trouver le meilleur modèle suivant une mesure d'évaluation

  

	L	N ¹ i1	£	e x t i β 1 e x t i β	y i ¢	1 1 e x t i β	1¡y i	.	(0.28)
	En d'autres termes, les modèles de prédiction d'attrition sont entrainés de façon à bien classier
	les clients qui vont arrêter leur relation avec l'entreprise et ceux qui vont la continuer ; mais ils
	ignorent complètement l'aspect économique de la campagne de rétention comme par exemple
	la valeur spécique de chaque client pour l'entreprise, le coût économique d'une mauvaise
	classication, le prot potentiel d'une rétention réussie, etc. Le problème à maximiser n'est
	pas équivalent dans les deux cas, et par conséquent, la solution optimale de l'un n'est a
	priori pas celui de l'autre. Quelques réponses ont été proposées par certains chercheurs dans
	le cas de la détection de l'attrition. Glady et al. (2009), en redénissant l'attrition comme
	un changement de comportement du client diminuant le prot, proposent un algorithme de
	spécique déterminée par le practicien. Or les algorithmes employés sont mathématiquement
	conçus pour minimiser la mauvaise classication. Ceci est du à leur vraisemblance ou à leur
	fonction de perte. Or il est connu depuis longtemps que le choix de la fonction de perte pour
	l'estimation des paramètres est cruciale et dénit implicitement le modèle (Engle, 1993; Chris-
	toersen et Jacobs, 2004). Prenons l'exemple simple de la régression logistique, étant donné
	un échantillon d'apprentissage ty i , x i u N 1 où x i R n et y i t0, 1u, le modèle est spécié de la
	façon suivante :								
	ln	¢ P rY 1 | X xs P rY 0 | X xs	β 0 x t β,		(0.27)
	où les paramètres pβ 0 , βq R ¢ R n sont estimés par maximisation de la vraisemblance	

boosting dont la fonction de perte est dénie à partir du gain en CLV obtenu par une action de retention. Plus récemment,

Lemmens et Gupta (2017) 

introduisent une fonction de perte fondée sur le prot ainsi qu'une méthodologie pour son application aux diérents modèles de classication. Ils montrent alors empiriquement que le gain en prot peut atteindre 62% pour une campagne de rétention.

  Depuis plusieurs années, on constate que le volume de données générées augmente exponentiellement, et en particulier les données dont l'accès est totalement public et libre de droit.Nous sommes entrés non seulement dans l'ère du Big data mais aussi de l'Open data. Weekly and Crop Bulletin, publié toute l'année, qui rassemble des informations sur la météo pertinentes pour les cultures, dont la température et les précipitations par exemple.Enn, le World Agricultural Supply and Demand Estimates (WASDE), décrit comme la "pierre angulaire des rapports" fournis par l'USDA, apporte une vision globale de l'ore et de la demande. Ce rapport mensuel contient des statistiques sur l'ensemble des marchés mondiaux

	dont notamment :
	la production ;
	la consommation ;
	les imports et exports ;
	les stocks ;
	les prix.

L'apprentissage statistique ne se limite pas à l'application du meilleur modèle possible : choix de l'algorithme, de la méthodologie d'estimation des paramètres, de la fonction de perte, etc. Le rôle des données primaires est crucial. Le statisticien doit avant tout s'assurer que les données utilisées sont de bonne qualité, sans quoi il ne peut obtenir de bons résultats, et ce quel que soit le niveau de sophistication des techniques mathématiques appliquées. L'expression consacrée en informatique, généralement attribuée au programmeur d'IBM George Fuechsel, nous résume cette problématique : "Garbage in, garbage out 10 ". L'ingénierie des données est alors une étape initiale indispensable et se doit de collecter, homogénéiser et nettoyer les données avant leur analyse statistique. Un autre objectif du traitement des données, moins primordial mais qui peut s'avérer fortement bénéque, est d'établir des liens pertinents entre les diérentes sources de données an d'augmenter l'information disponible pour la prédiction.

Ces liens peuvent être établis entre des environnements plus ou moins disjoints au sein d'une même entreprise, mais peuvent aussi faire appel à des bases de données externes, acquises 9.

Campbell et al. (2014)

, page 14, Very often actuaries are still more focused on tting a curve to past experience, with less emphasis on the why and so what ? aspects 10. Littéralement : des déchets en entrée, des déchets en sortie. auprès d'un organisme privé ou disponibles publiquement. Le principe d'utiliser des données extérieures à un problème spécique rencontré est bien connu des actuaires qui l'utilisent d'une certaine façon dans la théorie de la crédibilité

[START_REF] Bühlmann | A Course in Credibility Theory and its Applications[END_REF]

. Un cadre d'application apparaît par exemple lorsque l'entreprise ne possède pas beaucoup d'informations sur ses clients, mais connaît tout de même son code postal. En utilisant les données socioéconomiques disponibles à la maille géographique d'intérêt par le biais d'un organisme étatique (par exemple l'INSEE en France), la compagnie peut alors augmenter sa connaissance de ses clients. Le secteur privé a bien compris l'intérêt grandissant pour l'open data, et a récemment développé des moteurs de recherche de bases de données comme par exemple Quandl 11 , spécialisé dans les séries nancières et économiques, ou Google Dataset Search 12 plus généraliste dans les bases de données référencées. Néanmoins, la multiplication des informations en libre accès est avant tout une volonté gouvernementale. Plusieurs pays proposent des plateformes d'accès à une multitude de bases de données gouvernementales : data.gouv.fr pour la France, data.gov pour les États-Unis, data.gov.uk pour le Royaume-Uni, ouvert.canada.ca pour le Canada. Les villes ont aussi développé des outils similaires : opendata.paris.fr pour Paris, opendata.cityofnewyork.us pour New-York, data.london.gov.uk pour Londres. A une plus grande échelle, les institutions internationales proposent les mêmes services : data.worldbank.org pour la Banque Mondiale, data.imf.org pour le Fonds Monétaire International. Des agences gouvernementales plus spéciques se sont dotées de portails avec ce même objectif de simplier l'accès à la donnée, nous notons en particulier les agences spatiales : search.earthdata.nasa.gov pour la NASA, scihub.copernicus.eu pour Copernicus (le programme européen de surveillance de la Terre). Cet avènement du Big Open data est évidemment à la fois source d'opportunités et de dés pour l'apprentissage statistique. Mais l'ouverture des données au plus grand nombre a bien d'autres avantages : politiques, sociaux et économiques (Janssen et al., 2012). En eet, les objectifs initiaux principaux sont souvent, pour les initiatives gouvernementales, l'amélioration de l'ecacité de l'action publique et du fonctionnement démocratique en orant plus de transparence aux citoyens. L'open data a aussi des bénéces économiques, par exemple en réutilisant ces données dans de nouveaux services à forte valeur ajoutée, elle stimule l'innovation économique et sociale. Enn, toujours d'un point de vue économique, l'ouverture des données améliore la disponibilité de l'information et notamment son caractère d'accès égalitaire pour les entreprises et les investisseurs. Asymétrie d'information 11. quandl.com 12. toolbox.google.com/datasetsearch d'amende. Outre le fait de sanctionner les délits d'initiés, les pouvoirs publiques obligent les entreprises faisant appel aux investisseurs nanciers à faire preuve de transparence, et notamment de communiquer sur leurs performances, positions nancières ou modications importantes de l'actionnariat à l'ensemble des agents du marché. Ce devoir de déclaration d'informations est aussi familier des actuaires, particulièrement depuis la mise en place de la directive Solvabilité II, dont le troisième pilier décrit les obligations de communication au public. De même, l'ouverture des données gouvernementales s'inscrit ainsi dans cette volonté institutionnelle de diminuer l'asymétrie d'information sur les marchés.

Information et marchés nanciers agricoles

L'un des marchés où le gouvernement s'investit historiquement le plus dans la diusion de l'information est le marché des biens agricoles. L'agriculture est en eet un secteur stratégique, qui implique des volumes importants d'échanges et dont les prix sont fortement volatiles, ce qui est notamment du à la forte météo-sensibilité des rendements et donc de l'ore agricole.

Ceci est d'autant plus vrai si l'on se replace dans le contexte de la n du XIX ème , où la majorité de la population était encore dépendante de l'agriculture dans l'ensemble des pays.

Ainsi, le Département de l'Agriculture des États-Unis (USDA), publie chaque mois le rapport Crop Production qui rassemble les données sur les récoltes à travers l'ensemble du pays, et ce depuis 1866

(USDA, 2018)

. L'ensemble de ces données est d'ailleurs toujours en libre accès via le portail quickstats.nass.usda.gov dédié à cet eet. De plus, l'USDA produit aussi, dès 1893, des rapports sur la production des cultures les plus importantes à travers le monde (USDA, 1893). Ces rapports jouent un rôle central dans la determination des prix sur les marchés agricoles

[START_REF] Schnepf | Price Determination in Agricultural Commodity Markets : A Primer[END_REF]

. Le début de la publication de ces rapports coïncide avec la création du Chicago Board of Trade (CBOT). En eet à la n des années 1840, les agriculteurs commencèrent à vendre leurs récoltes aux marchands de Chicago en utilisant des contrats à terme an de se protéger de prix défavorables sur les marchés des céréales. Cependant le risque A ces Crop Production mensuels s'ajoutent aussi des rapports hebdomadaires : le Crop Progress, communiqué pendant la saison de croissance (d'avril à novembre), qui résume les conditions générales (exprimées pourcentage des cultures réparties en cinq classes allant de "très mauvaise" à "excellente") et la progression des semis et de la moisson ; le La préparation de ce dernier rapport, publié en même temps que le Crop Production, se fait dans la plus grande vigilance pour éviter tout risque de délit d'initié. Ainsi pour la préparation du WASDE nous pouvons lire sur le site de l'USDA que "pour s'assurer que les informations fortement sensibles pour le marché soient communiquées simultanément à l'ensemble des utilisateurs naux, et non prématurément à aucune personne en particulier, le rapport WASDE est préparé sous haute sécurité dans une zone conçue spécialement dans le Bâtiment Sud de l'USDA. Le matin de la publication, les portes dans la zone du huis clos sont sécurisées, les stores des fenêtres sont scellés, le téléphone et les communications Internet sont bloqués. Une fois que les analystes ont présenté leur accréditation à un garde, ils entrent dans la zone sécurisée pour naliser le rapport WASDE. Les communications avec le monde extérieur sont suspendues jusqu'à ce que le rapport soit publié à midi pile, heure de la côte Est 14 ". Des mesures draconiennes s'il on peut dire... Les précautions vont même jusqu'au choix de l'heure de la parution du rapport. Jusqu'au 1 er janvier 2013, elle avait lieu à 8 :30. Mais, à cause de changements d'horaires de marché, l'USDA a sollicité les observations du public sur l'heure de communication entre le 8 juin et le 9 juillet 14. To assure the highly market-sensitive information is released simultaneously to all end-users, and not prematurely to any one, the WASDE report is prepared under tight security in a specially designed area of USDA's South Building. The morning of release, doors in the lockup area are secured, window shades are sealed, and telephone and Internet communications are blocked. Once analysts present their credentials to a guard, they enter the secured area to nalize the WASDE report. Communications with the outside world are suspended until the report is released at 12 :00 noon Eastern time.

  .31) où λ ¡ 0 est le paramètre de régularisation. Intuitivement, les coecients apportant le moins d'information ne font pas assez diminuer le terme OLS par rapport à leur pénalisation en norme L 1 . Ainsi, plus la valeur de λ est grande, plus nombreux sont les coecients β j estimés à exactement 0. Les variables explicatives sont alors sélectionnées automatiquement selon un critère de minimisation.Cependant, il nous reste encore une question à ce problème : quel niveau de régularisation λ faut-il choisir ? Une méthode commune est la validation croisée, plus particulièrement la Kfold cross validation. Elle consiste à séparer aléatoirement ses données initiales D en K

sous-échantillons tD 1 , . . . , D k u de taille identique. Soit un λ xé, pour chaque k t1, . . . , Ku nous entraînons le modèle, i.e. nous estimons ¡ β0 , β© λ avec la pénalité λ, sur l'ensemble d'apprentissage D ¡ D k . Puis nous appliquons le modèle sur l'ensemble test D k pour obtenir

  Partant des diérences de chacune de ces approches dans leurs limites et leurs forces ,Zou et Hastie (2005) proposent un mélange entre les deux démarches : l'elasticnet. Il est ajouté au critère de perte OLS des termes de pénalisation des coecients à la fois en norme L 1 et en

	.32)
	Comme le lasso, la régression ridge permet de diminuer la variance des coecients en aug-
	mentant leur biais. Elle se comporte cependant diéremment. Ainsi aucun coecient n'est
	exactement estimé à 0, donc aucune sélection de variable n'est eectuée, et ce même dans le

cas où p 4 N . Par ailleurs, si des variables explicatives sont fortement corrélées, le ridge aura tendance à estimer les coecients concernés à la même valeur. norme L 2 :

  SVM. Soit les données d'apprentissage tpy i , x i qu N 1 , où x i R p sont les variables explicatives et y i t 1, ¡1u la variable dépendante, l'algorithme du SVM cherche la solution du problème d'optimisation suivant

  sont la réectivité respectivement dans le proche infrarouge et le rouge. Les indemnités reçues par ces derniers sont alors calculées en fonction de la série temporelle NDVI observée sur leur exploitation. Ces assurances peuvent porter sur les cultures dont nous venons de discuter(Turvey et Mclaurin, 2012), mais aussi sur les prairies[START_REF] Vroege | Finger : Index insurances for grasslands A review for Europe and North-America[END_REF] ou même sur le bétail en mesurant la mortalité due à la sécheresse[START_REF] Vrieling | Historical extension of operational NDVI products for livestock insurance in Kenya[END_REF]. L'utilisation de cette structure indicielle est d'autant plus bénéque pour les pays en voie de développement où elle permet aux agriculteurs la souscription d'assurance à un prix raisonnable[START_REF] Smith | Index based agricultural insurance in developing countries : Feasibility, scalability and sustainability[END_REF][START_REF] Miranda | Index Insurance for Developing Countries[END_REF][START_REF] Jensen | Agricultural Index Insurance for Development[END_REF]. La récente démocratisation des drones, a amené à l'utilisation du NDVI en tant qu'outil de prévention des risques agricoles.Les drones associés à des spectroradiomètres adaptés permettent le suivi détaillé de chaque parcelle de culture. Ce suivi est plus spécique que les images satellites, que ce soit au niveau spatial ou temporel, permettant alors une agriculture de précision[START_REF] Puri | Agriculture drones : A modern breakthrough in precision agriculture[END_REF] Mogili et .e. tous les 16 jours nous observons la moyenne des valeurs NDVI sur la période passée. En eet, en tant qu'indice de réectivité, le NDVI est sensible aux conditions météorologiques, comme par exemple les nuages, lorsqu'il est observé depuis un satellite(Whitcraft et al., 2015). ce chapitre, qui correspond à Guibert et al. (2019), nous proposons une modélisation VAR des logarithmes des taux de mortalité diérenciés pour la projection de la longévité. Nous laissons ainsi une grande liberté dans la structure de dépendance spatio-temporelle à long terme des taux d'amélioration de mortalité. An de s'assurer de la parcimonie des matrices autorégressives, nous incluons une pénalisation de type elastic-net dans la procédure d'estimation, i.e. sans contrainte a priori sur la forme de la structure de dépendance. L'utilisation de cette régularisation permet au modèle de s'adapter aux spécicités de chaque population tout en évitant le surapprentissage. Nous soulignons quantitativement cette aptitude en eectuant une comparaison des performances de projection à courtmoyen terme de notre approche sur second chapitre de cette thèse s'inscrit dans la continuité du premier dans le sens où une problématique de grande dimension rencontré dans le cadre de la modélisation des dynamiques de mortalité est traitée à l'aide d'un VAR estimé grâce à une pénalisation elasticnet. Néanmoins, nous nous concentrons ici sur les dynamiques interpopulation : le VAR est appliqué sur les facteurs temporels issus de l'estimation de modèlesLee et Carter (1992) ouLi et Lee (2005). La diculté réside alors dans la volonté de modéliser simultanément un nombre important de populations, nous prenons pour l'exemple de notre étude un groupe de 16 pays européens dont les populations sont divisées par sexes. Notre modèle propose en outre une nouvelle notion, que nous dénissons de "locale", de la cohérence des projections de taux de mortalité dans le cadre de la multi-population. Au lieu qu'aucune population ne puisse diverger en terme de dynamique de mortalité (i.e. la dénition de la cohérence), nous classions les populations par groupe de cohérence : les dynamiques de mortalité au sein du même groupe ne peuvent diverger mais cette contrainte est relâchée pour les dynamiques intergroupe. contrat de type retraite simplié. Nous estimons alors le capital réglementaire (SCR) prescrit par la directive Solvabilité II grâce des scénarios stochastiques de mortalité générés par les diérents modèles. Même si la provision est sensiblement la même, le SCR est signicativement impacté selon l'hypothèse de cohérence retenue : globale, locale ou inexis-des futures sur le maïs réagit à la publication des rapports WASDE et Crop Production pendant la période retenue (20002016), suggérant que des informations de valeur s'y trouvent pour les agents du marché. Ensuite, nous soulignons à l'aide d'une approche de régression, que ces dernières peuvent, en partie, être expliquées par les projections des rendements agricoles fournis par le NASS. Dans un second temps, nous proposons un modèle de prédiction de ces mêmes rendements agricoles grâce aux séries temporelles NDVI. Au lieu d'envoyer des agents dans les champs et interroger les agriculteurs sur la progression de leur plantation comme peut le faire l'USDA, nous nous basons seulement sur des images satellites libre d'accès. Dans les deux cas, les observations sont fortement corrélées avec la santé des cultures. En appliquant la même méthodologie qu'avec les projections gouvernementales, nous trouvons alors que les informations obtenues grâce au NDVI sont rationnellement et signicativement corrélées avec les réactions de marché. Ceci ouvre la possibilité du développement d'un outil de gestion de risques nanciers fondé sur un modèle utilisant les images satellite et permettant de connaître en avance les informations contenues dans les rapports gouvernementaux.

	Chapitre 1
	Modèle VAR pénalisé pour la
	Deepak, 2018). projection des taux d'amélioration de
	mortalité
	Une forêt tropicale a alors des valeurs comprises entre 0,6 et 0,8, le sol donne des NDVI
	proches de 0, enn les pierres ou la neige mènent à des valeurs négatives. Le NDVI mesurant
	l'activité chlorophyllienne, son niveau uctue au cours de l'année en fonction de la phase de tante. an de d'améliorer la précision du modèle de prédiction (Prasad et al., 2006). En général, Bien que nous donnons les fondements d'une telle extension, nous n'analysons pas en détail développement et de la santé des plantes lorsque cellesci sont sensibles aux saisons, comme ces études montrent une bonne prédiction des rendements agricoles par le NDVI, les modèles cette application précise dans ce chapitre. Finalement, nous étendons la localité de la propriété de cohérence du modèle à la dimension les cultures agricoles. ayant régulièrement des R 2 jusqu'à 0,9. temporelle. En permettant aux populations de passer d'un groupe de cohérence à un autre,
	nous élargissons le spectre des scénarios stochastiques de mortalité possibles. Cette métho-

Le NDVI est aujourd'hui l'un des indices de végétation les plus utilisés dans la télédétection en agriculture. Il permet notamment de prédire les rendements agricoles des cultures. La régression linéaire est souvent employée pour les modèles de prédiction de rendement de maïs

(Prasad et al., 2006)

, de soja

(Ma et al., 2001) 

ou de blé

(Mkhabela et al., 2011)

. D'autres Figure 0.15 Spectres de réectivité de la végétation en bonne et mauvaise santé, et du sol.

Source :

[START_REF] Giusti | NDVI Index[END_REF] 

algorithmes plus sophistiqués ont aussi été appliqués dans une moindre mesure, comme par exemple les réseaux de neurones

(Li et al., 2007)

. Le NDVI étant une série temporelle observée à plusieurs moments donnés durant la vie d'une culture, diérentes variables d'agrégation peuvent être utilisées dans les modèles de projection de rendement. Ainsi, Mkhabela et al.

(2011) exploitent la valeur moyenne du NDVI pendant la période de croissance, alors que

Zhang et al. (2012) 

séparent la série temporelle en deux périodes distinctes : de la levée à la oraison, puis de la oraison à la maturation. Un grand nombre de modèles a été développé à cause des spécicités de chaque projet. Ces dernières peuvent être géographiques, des études ayant été menées dans beaucoup de pays comme, par exemple, le Zimbabwe

(Svotwa et al., 2014)

, la Hongrie

(Ferencz et al., 2004)

, la Chine

(Ren et al., 2008)

, ou les États-Unis

(Becker- Reshef et al., 2010b)

. Les particularités peuvent aussi être agronomiques, l'analyse pouvant être conduite sur diérentes espèces de cultures : le maïs, le soja, le blé mais aussi l'orge, le riz, la tabac, les pommes de terre, la canne à sucre, etc. De plus, le NDVI peut parfois être associé à des données météorologiques, comme les précipitations ou des indices d'humidité, Cette forte corrélation entre la santé des cultures et le NDVI a permis le développement d'outils de gestion de risque dans l'agriculture. L'observation de l'indice grâce au satellite a facilité le suivi de la progression des cultures partout dans le monde. Ainsi, des instruments de transfert de risques comme l'assurance indicielle sont désormais proposés aux agriculteurs. Avec l'amélioration de la résolution des données satellite, des sujets d'étude de télédétection, plus sophistiqués que la prédiction des rendements agricoles, ont émergés. Ainsi, certains chercheurs ont analysé la possibilité de la détection d'irrigation dans les cultures à l'aide des séries temporelles NDVI

[START_REF] Md | Mapping Irrigated Lands at 250-m Scale by Merging MODIS Data and National Agricultural Statistics[END_REF] Peterson et al., 2011)

. Cependant le sujet qui a le plus gagné en intérêt est la cartographie générale des cultures (e.g.,

Wardlow et Egbert, 2010;[START_REF] Zheng | A support vector machine to identify irrigated crop types using time-series Landsat NDVI data[END_REF] Skakun et al., 2017)

. En eet, l'utilisation d'une telle cartographie permet d'améliorer signicativement la précision des modèles de prédiction de rendements agricoles (Kastens et al., 2005; Zhang et al., 2019). Plusieurs sources de données satellite NDVI sont disponibles en libre accès. Elles proviennent de diérents programmes spatiaux, pour la plupart européens ou américains, et ont des résolutions spatiales et temporelles variées. Dans notre thèse, nous utilisons les informations transmises par les satellites Terra et Aqua, qui font partie du programme Earth Observing System (EOS) de la NASA. Ils embarquent tous les deux le ModerateResolution Imaging Spectroradiometer (MODIS) qui fournit, entre autres, des observations NDVI de l'ensemble de la terre depuis février 2000. L'accès aux données a été simplié pour le public grâce au Global Agriculture Monitoring Project (Becker-Reshef et al., 2010a), initié entre la NASA, l'Université du Maryland et le Service agriculture étrangère (FAS) de l'USDA. La résolution spatiale des données est de 250 mètres. Nous utilisons une résolution temporelle de 16 jours, iContributions Pour conclure cette introduction générale, nous résumons désormais les contributions issues de cette thèse. Elles seront détaillées par la suite dans les Chapitres 1 à 4.

Chapitre 1 : Modèle VAR pénalisé pour la projection des taux d'amélioration de mortalité. Dans neuf populations par rapport à cinq modèles de référence. Nos erreurs de prédiction sont en moyenne plus faibles, mais restent relativement proches de celles des modèles classiques comme le

Lee et Carter (1992) 

ou le

Hyndman et Ullah (2007)

. Au contraire, nous remarquons une augmentation signicative de la stabilité des erreurs selon la dimension population. De plus, les projections à long terme sont cohérentes. Ces capacités de notre modèle en font une approche intéressante pour obtenir facilement de "bonnes" projections de mortalité, et ce quelque soit la population considérée.

La parcimonie des matrices de Granger, obtenue grâce à la régularisation lasso, permet de détecter graphiquement des eets démographiques. En particulier, notre modèle met en lumière les eets période et cohorte, déjà connus de la littérature. Cependant, nous remarquons qu'au contraire des approches déjà développées, l'eet cohorte est obtenu sans contrainte spécique, i.e. nous ne forçons pas son estimation par des paramètres particuliers. En plus de ces eets période et cohorte, un autre type de motif récurrent est aussi observé dans les matrices autorégressive. Néanmoins, son interprétation ne correspond à aucun eet démographique étudié à notre connaissance, et nous n'en avons pas trouvé explicitement sa cause. Cette structure de dépendance estimée peut être causée par des phénomènes environnementaux ou sociétaux complexes, à moins qu'elle ne soit due à des anomalies dans les données de la HMD.

Enn, nous montrons que notre approche peut être étendue à la modélisation de la mortalité dans le cadre de la multi-population sans que la question de la grande dimension ne vienne perturber la procédure d'estimation. Cette faculté est directement liée à la pénalisation utilisée.

Chapitre 2 : Elasticnet et cohérence locale pour la modélisation des dynamiques de mortalité interpopulation.

Le

En eet, la propriété de cohérence, qu'une large majorité de la littérature suppose pour les modèles multi-population, a récemment été remise en cause à la vue des données historiques à disposition

(Li et al., 2017)

. Pour étudier cette hypothèse dans le cadre de multiples populations, nous proposons une mesure de dispersion des taux de mortalité. Ainsi, nous montrons pour l'exemple des 32 populations européennes que le modèle cohérent LiLee implique des projections qualitativement insatisfaisantes de cette dispersion. Les dynamiques sont trop peu dispersées entre elles au vue de l'historique, créant alors une concentration articielle en terme de risque de longévité. A l'opposé, des LeeCarter estimés indépendamment provoquent une diversication exagérée. Notre modèle permet alors l'obtention d'un large spectre de possibilités intermédiaires entre ces deux extrêmes. Nous proposons deux exemples de classication : l'un fondé sur des jugements d'expert, l'autre déni par une approche plus statistique. Comme attendu, les projections de la dispersion sont plus satisfaisante. An de montrer l'importance que ces choix de cohérence peuvent avoir pour la gestion des risques de longévité, nous nous plaçons dans le cadre d'un assureur vie exposé aux 32 populations pour un dologie innovante est particulièrement intéressante dans un cadre d'évaluation du risque de base des transferts du risque de longévité. Nous proposons par ailleurs l'analyse d'un exemple concret, le Longevity Divergence Index Value, à l'aide de cette approche. marché Enn, nous proposons des pistes d'amélioration à examiner avant une mise en pratique de ce potentiel. En eet, notre approche doit être plutôt vue en tant que démonstration de faisabilité (proof of concept), et non comme une méthodologie directement applicable. Plus généralement, cette étude montre que la gestion des risques peut bénécier de l'intégration d'information issues de l'open data dans les modèles d'apprentissage statistique.

Ce chapitre reprend l'article "Forecasting mortality rate improvements with a highdimensional VAR", coécrit avec Quentin Guibert et Olivier Lopez.

  enables to apply a more tailor-made threshold for time-series estimationThe hyper-parameter α is determined through a grid search. For every value α h of a pre-dened grid tα 1 , . . . , α H u, we estimate the parameters of the VAR model

	which equals to	c	1 pd ln T	, that we retain for our model.
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Table 1 .

 1 1 The estimated VAR-ENET hyper-parameters.

	Country	Population	α	λ
	FR	Female	0.8	0.0012
	FR	Male	0.6	0.0003
	FR	Total	0.8	0.0006
	US	Female	0.6	0.0010
	US	Male	1.0	0.0005
	US	Total	1.0	0.0005
	UK	Female	0.6	0.0004
	UK	Male	1.0	0.0003
	UK	Total	0.8	0.0005
	Note: This table displays the estimated
	hyper-parameters α and λ in Equa-tion (1.2) for the VAR p7q models. We
	consider males, females and the overall
	populations for FR, UK and US.	

Table 1 .

 1 2 The RMSE of the VAR-ENET and benchmark models.

	Country		Model	RMSE Female	RMSE Male	RMSE Overall
	FR		VAR	0.032		0.013	0.021
	FR		HU	0.022		0.024	0.017
	FR		LC	0.054		0.050	0.041
	FR		M7	0.076		0.071	0.065
	FR	RESPECT	0.021		0.025	0.022
	FR		STAR	0.042		0.045	0.038
	UK		VAR	0.014		0.015	0.018
	UK		HU	0.024		0.029	0.021
	UK		LC	0.052		0.059	0.050
	UK		M7	0.058		0.049	0.044
	UK	RESPECT	0.022		0.027	0.016
	UK		STAR	0.040		0.044	0.035
	US		VAR	0.020		0.017	0.017
	US		HU	0.017		0.016	0.014
	US		LC	0.045		0.049	0.042
	US		M7	0.048		0.050	0.046
	US	RESPECT	0.010		0.009	0.006
	US		STAR	0.025		0.024	0.023
	Model		Mean	Standard Deviation	Minimum	Maximum
	VAR		0.019	0.006		0.013	0.032
	HU		0.020	0.005		0.014	0.029
	LC		0.049	0.006		0.041	0.059
	M7		0.056	0.012		0.044	0.076
	RESPECT	0.018	0.008		0.006	0.027
	STAR		0.035	0.009		0.023	0.045
	Note: This table reports statistics of the RMSE values obtained after
	tting the VAR-ENET and the considered benchmark models over the

2. Table 1.2 contains the values of the RMSE, as dened in Equation (1.3) for each model and each population. Table 1.3 displays summary statistics of RMSE values over all the populations considered for each model. Benchmark models and the VAR-ENET have quite comparable results. Although Note:

This table reports the RMSE values obtained after tting the VAR-ENET and the considered benchmark models. We compare this indicator for males, females and the overall populations for FR, UK and US.

Table

1

.3 Summary statistics for the RMSE of the VAR-ENET and the benchmark models.

males, females and the overall populations for FR, UK and US.

Table 1 .

 1 4 The RMSFE of the VAR and the benchmark models estimated on the period 1950 ¡ 2000.

	Country	Model	RMSFE Female	RMSFE Male	RMSFE Overall
	FR	VAR	0.088		0.110	0.078
	FR		HU	0.082		0.112	0.067
	FR		LC	0.111		0.113	0.067
	FR		M7	0.676		0.193	0.257
	FR	RESPECT	0.083		0.091	0.071
	FR	STAR	0.098		0.127	0.417
	UK	VAR	0.095		0.087	0.080
	UK		HU	0.109		0.138	0.122
	UK		LC	0.142		0.141	0.138
	UK		M7	0.228		0.099	0.145
	UK	RESPECT	0.281		0.230	0.296
	UK	STAR	0.083		0.115	0.156
	US	VAR	0.078		0.116	0.078
	US		HU	0.061		0.141	0.085
	US		LC	0.085		0.122	0.087
	US		M7	0.237		0.144	0.135
	US	RESPECT	0.110		0.081	0.075
	US	STAR	0.071		0.050	0.049
	Model		Mean	Standard Deviation	Minimum	Maximum
	VAR		0.090	0.014		0.078	0.116
	HU		0.102	0.030		0.061	0.141
	LC		0.112	0.027		0.067	0.142
	M7		0.235	0.174		0.099	0.676
	RESPECT	0.146	0.094		0.071	0.296
	STAR		0.129	0.113		0.049	0.417
	Note: This table reports statistics of the out-of-sample performance via
	the RMSFE values for the VAR-ENET and the considered benchmark models models estimated on the period 1950 ¡ 2000 over the males, fe-

Note: This table reports the out-of-sample performance via the RMSFE values for the HU, the LC, the M7, the RESPECT, the STAR and the VAR-ENET models estimated on the period 1950 ¡ 2000. We compare this indicator for males, females and the overall populations for FR, UK and US.

Table

1

.5 Summary statistics for the RMSFE of the VAR-ENET and the benchmark models. males and the overall populations for FR, UK and US.

Table 1 .

 1 Improvement rates data for females and males Figures 1.10 and 1.11 describe the log-mortality improvements for females and males. 6 The RMSFE of the VAR and the benchmark models estimated on the period 1970 ¡ 2000.
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		Figure 1.11 The period log-mortality improvements for England and Wales (UK), the
					United States (US) and France (FR) on the age-period observation t45, . . . , 99u ¢ t1950, . . . , 2016u for males.	
	1.7.2 In-sample analysis for females and males						
	Figures 1.12 and 1.13 present the in-sample performance in terms of RMSE for females. Fig-

Figure 1.10 The period log-mortality improvements for England and Wales (UK), the United States (US) and France (FR) on the age-period observation t45, . . . , 99u ¢ t1950, . . . , 2016u for females. ures 1.14 and 1.15 present the in-sample performance in terms of RMSE for males.

Figure 1.14 The RMSE for England and Wales (UK), the United States (US) and France (FR) grouped by age for the male populations. Tables 1.6 and 1.8 present the out-of-sample performance in terms of RMSFE for dierent model estimation period, respectively t1970, . . . , 2000u and t1980, . . . , 2000u. Tables 1.7

and 1.9 outlines the global statistics of out-sample performance in terms of RMSFE.

Figures 1.16 and 1.17 present the out-of-sample performance in terms of RMSFE for females. Figures 1.18 and 1.19 present the out-of-sample performance in terms of RMSFE for males. Note: This table reports the out-of-sample performance via the RMSFE values

Table 1 .

 1 7 Summary statistics for the RMSFE of the VAR-ENET and the benchmark models estimated on the period 1970 ¡ 2000.

	Model	Mean	Standard Deviation	Minimum	Maximum
	VAR	0.088	0.017	0.067	0.116
	HU	0.101	0.025	0.058	0.134
	LC	0.109	0.031	0.055	0.146
	M7	0.151	0.051	0.097	0.266
	RESPECT	0.151	0.096	0.074	0.321
	STAR	0.097	0.033	0.069	0.172
	Note: This table reports statistics of the out-of-sample performance via

the RMSFE values for the VAR-ENET and the considered benchmark models models estimated on the period 1970 ¡ 2000 over the males, females and the overall populations for FR, UK and US.

Table 1 .

 1 [START_REF] Mkhabela | Crop yield forecasting on the Canadian Prairies using MODIS NDVI data[END_REF] The RMSFE of the VAR and the benchmark models estimated on the period 1980 ¡ 2000.

	Country	Model	RMSFE Female	RMSFE Male	RMSFE Overall
	FR	VAR	0.092	0.092	0.077
	FR	HU	0.071	0.093	0.068
	FR	LC	0.068	0.088	0.065
	FR	M7	0.219	0.113	0.125
	FR	RESPECT	0.091	0.086	0.072
	FR	STAR	0.295	0.081	0.764
	UK	VAR	0.088	0.095	0.079
	UK	HU	0.106	0.124	0.110
	UK	LC	0.114	0.125	0.113
	UK	M7	0.111	0.099	0.097
	UK	RESPECT	0.286	0.269	0.197
	UK	STAR	0.236	0.065	0.288
	US	VAR	0.122	0.122	0.109
	US	HU	0.106	0.121	0.096
	US	LC	0.107	0.121	0.097
	US	M7	0.161	0.129	0.141
	US	RESPECT	0.101	0.085	0.080
	US	STAR	0.942	0.088	0.322

Note: This table reports the out-of-sample performance via the RMSFE values

Table 1 .

 1 9 Summary statistics for the RMSFE of the VAR-ENET and the benchmark models estimated on the period 1980 ¡ 2000.

	Model	Mean	Standard Deviation	Minimum	Maximum
	VAR	0.097	0.017	0.077	0.122
	HU	0.099	0.020	0.068	0.124
	LC	0.100	0.022	0.065	0.125
	M7	0.133	0.038	0.097	0.219
	RESPECT	0.141	0.086	0.072	0.286
	STAR	0.342	0.309	0.065	0.942
	Note: This table reports statistics of the out-of-sample performance via

the RMSFE values for the VAR-ENET and the considered benchmark models models estimated on the period 1980 ¡ 2000 over the males, females and the overall populations for FR, UK and US. Figure 1.19 The RMSFE for England and Wales (UK), the United States (US) and France (FR) grouped by age for the male populations.

  Hence, to evaluate the corresponding provision the actuary needs to forecast the mortality rates m piq 59 t, 2014 t for pi, tq I ¢ t1, . . . , 32u. Following the Solvency II framework, the associated longevity risk solvency capital requirement (SCR) is obtained by estimating the Value at Risk (VaR) at a 99.5% level. This is done by simulating 2,000 longevity scenarios through the stochastic mortality models. We display in the Table2.2 the results of such approach for the

	LC, LL, LCLL(MF) and LCLL(HCA8) models.		
	Table 2.2 Provisions and Solvency capital requirement estimates.
		LC	LL	LCLL(MF)	LCLL(HCA8)
	Provisions (mean)	67,513	67,577	67,675	67,485
	VaR 99.5 %	68,059	69,591	68,999	68,954
	SCR (VaR -mean)	547	2,014	1,323	1,469

  Thus, for pi, x, tq I ¢ X ¢ T , we propose the following dynamics for the central mortality

	rates:					
	ln m piq x,t α piq x	B φtpiq x	K t φtpiq	β piq x κ piq t	ad piq x,t ,	(2.14)
	where φ t : I Ñ J is a set of classication functions, α piq x are specic population mortality lev-els, ¡ B j x , K j t © dene the dominant mortality trends, ¡ β piq x , κ © piq represent specic population t mortality dynamics, ad piq x,t are adjustment mortality levels. Considering the time series, we keep
	the dynamics of the previous model, i.e. ∆K t follows a VAR(p) model (see Equation

  Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301320, April 2005. ISSN 1467-9868. doi: 10.1111/j.1467-9868.2005.00503.x.

Table 3 .

 3 1 Descriptive statistics of categorical explanatory variables.

	Variables	Category	Percentage
	Gender		
		Female	48
		Male	52
	Occupation		
		Tier one	80.5
		Requiring extra screening	19.5
	Physical Examination		
		Exempted	96.4
		Required	3.6
	Distribution Channel		
		TA	93.9
		BK	3.4
		DM	2.4
		Others 7	0.3
	Premium Payment		
		Single premium	3.1
		Non single premium	96.9
	Premium Paying Method		
		Insurer	18.8
		B&C	70.8
		P&C	10.4
	Participation		
		Non-participating	37.2
		Participating	16.2
		Mandatory participating	46.6
	Product Type		
		Interest-adjustable	1.7
		Investment-linked	1.2
		Traditional	97.1
	Currency Domination		
		NTD	88.1
		Others	11.9

Table 3 .

 3 2 Descriptive statistics of continuous explanatory variables.

		Mean	Medium	St. Dev. Minimum Maximum
	Age	28.3	27	16.8	0	80
	# of non-life policies	1.2	0	2	0	33
	Inception date	06/06/2005	21/04/2005	4.8 (years)	01/01/1998	31/07/2013
	Face Amounts (in USD)	17,165	10,000	28,050	333	2,000,000

Table 3 .

 3 4 Average confusion matrix of XGB.

			Predicted
			Stay	Lapse
	Actual	Stay Lapse	309,111 81,177	38,450 137,660
	Table 3.5 Average confusion matrix of SVM.
			Predicted
			Stay	Lapse
	Actual	Stay Lapse	310,258 88,339	37,303 130,498

Table 3 .

 3 6 Average confusion matrix of CART.

			Predicted
			Stay	Lapse
	Actual	Stay Lapse	296,320 78,209	51,241 140,628
	Table 3.7 Average confusion matrix of LR.
			Predicted
			Stay	Lapse
	Actual	Stay Lapse	304,025 88,775	43,537 130,062

Table 3 .

 3 8 Estimated retention probability r lapse .

	Year	0	1	2	3	4	5	6	7	8	9	10	11	12
	Retention probability 0.96 0.87 0.67 0.37 0.27 0.21 0.15 0.12 0.10 0.08 0.06 0.05 0.04
	Other parameters are set as follows:										
		the protability ratio p 0.5%;										

the discount rate d 2%; the cost to contact a policyholder c 10 USD.

Table 3 .

 3 9 Incentive strategies.

	Year	0	1	2	3	4	5	6	7	8	9	10	11	12
	Incentive 1 (in bp) 0 0	3	3	6	6	9	9	12	12	15	15	18

Table 3 .

 3 10 and Figure 3.3. The winner looks to be XGBoost: it has the highest retention gain with the smallest standard deviation across subsampling. Figure 3.3 further illustrates that XGBoost and SVM lead to similar retention gain compared to logistic regression and CART.Notice that the dierences across the algorithms are wider in terms of the economic metric than the statistical metric. The accuracies of the models are between 76.64% and 78.88%,

which means an improvement ratio of 2.9%. The retention gains, on the other hand, range from 2.7 and 5.2 million USD, indicating an enhancement of 96%. Therefore, choosing a good algorithm is more important in terms of economic reality (dollar amount) than by statistical accuracy. It appears that CART produces the lowest retention gain: $2,680,012. This is mostly because CART has the highest false alarm rate (cf. Table

3c

) which means oering the incentive to many policyholders who have no intention to lapse their policies. Furthermore, CART leads to the highest contacting cost since it predicts the highest lapses. The prots are thus reduced.

Table 3 .

 3 10 Cross-validated retention gains with the aggressive strategy.

		LR	CART	SVM	XGB
	Mean Retention Gain	4,046,602	2,680,012	5,028,737	5,243,913
	Standard Deviation	133,993	209,220	139,102	115,415

Table 3 .

 3 11 Cross-validated retention gains with the moderate strategy.

		LR	CART	SVM	XGB
	Mean Retention Gain	2,618,396	2,085,599	3,113,900	3,261,029
	Standard Deviation	63,693	85,184	54,169	45,928
	In summary, XGB and SVM consistently perform better than CART and LR no matter which
	performance index, statistical accuracy or retention gains with alternative incentive strategies,
	is used. The drawbacks of XGB and SVM relative to CART and LR that we may think of are
	not related to performance. For instance, XGB and SVM are less transparent, more complex,
	demanding more computing power, and more dicult to be comprehended by inexperienced
	persons than CART and LR.				

Table 3 .

 3 13 Average confusion matrix of XGB_R1.

			Predicted
			Stay	Lapse
	Actual	Stay Lapse	329,357 113,948	18,204 104,889

Table 3 .

 3 [START_REF] Luciano Danesi | Forecasting mortality in subpopulations using LeeCarter type models: A comparison[END_REF] Average confusion matrix of XGB_R1. retention gains. XGB_R1 therefore would naturally perform the best when compared with other algorithms optimizing other objectives (such as classication accuracies).

			Predicted
			Stay	Lapse
	Actual	Stay Lapse	329,413 119,405	18,149 99,432
	signicantly lower standard deviation ($53,460). The increase in retention gain is 26% (1.3
	million USD) higher than that generated by XGB (the second-best algorithm) and 146% (3.9
	million USD) better than that produced by CART. Looking back to Table 3.13, we see that
	XGB_R1 leads to reduce the number of false alarms (18,204) in optimizing the retention

gain, even if this also reduces the correct detection

(104,889)

. The good results of XGB_R1 in achieving retention gain demonstrate the benet of integrating the algorithm with the goal to be achieved. The objective function for XGB_R1 to minimize, Equation (3.28), is about predicting

Table 3 .

 3 15 Cross-validated retention gains with the aggressive strategy.

		LR	CART	SVM	XGB	XGB_R1
	Mean Retention Gain	4,046,602	2,680,012	5,028,737	5,243,913	6,586,357
	Standard Deviation	133,993	209,220	139,102	115,415	53,460

Table 3 .

 3 16 Cross-validated retention gains with the moderate strategy.

		LR	CART	SVM	XGB	XGB_R2
	Mean Retention Gain	2,618,396	2,085,599	3,113,900	3,261,029	3,852,782
	Standard Deviation	63,693	85,184	54,169	45,928	39,163

Table 4 .

 4 1 NDVI image periods and corresponding calendar dates.

	Period	Starting Date	Ending Date
	1	01 Jan.	16 Jan.
	2	17 Jan.	01 Feb.
	3	01 Feb.	17 Feb.
	4	18 Feb.	05 Mar.
	5	06 Mar.	21 Mar.
	6	22 Mar.	06 Apr.
	7	07 Apr.	22 Apr.
	8	23 Apr.	08 May
	9	09 May	24 May
	10	25 May	09 Jun.
	11	10 Jun.	25 Jun.
	12	26 Jun.	11 Jul.
	13	12 Jul.	27 Jul.
	14	28 Jul.	12 Aug.
	15	13 Aug.	28 Aug.
	16	29 Aug.	13 Sep.
	17	14 Sep.	29 Sep.
	18	30 Sep.	15 Oct.
	19	16 Oct.	31 Oct.
	20	01 Nov.	16 Nov.
	21	17 Nov.	02 Dec.
	22	03 Dec.	18 Dec.
	23	19 Dec.	03 Jan.

Table 4 .

 4 2 Descriptive statistics of corn future returns over the period2000-2016. 

		r	|r|
	Mean	0.009	0.772
	Median	-0.044	0.456
	1st Qu.	-0.468	0.189
	3rd Qu.	0.442	0.442
	Min	-17.477	0.000
	Max	24.429	24.429
	Variance	1.939	1.343

Table 4 .

 4 3 Future return volatility test results for WASDE reports in Corn Markets, August-October, 2000-2016.

	Reports August	Reports Variance 7.554	Pre/Post Reports Variance 1.467	F -statistic p-value 5.152 1.10 ¡5
	September October All Reports	2.073 7.822 5.727	0.879 1.737 1.360	2.362 4.503 4.211	0.0068 1.10 ¡5 1.10 ¡5

Table 4 .

 4 5 Regression results of nal corn yield estimate to NDVI time series, 2000-2016 The levels of signicance are noted as: ¦ ¦ ¦ for 0.1%, ¦¦ for 1%, ¦ for 5% and . for 10%.

	States Illinois Indiana Iowa Kansas Michigan Minnesota Nebraska Ohio South Dakota Wisconsin	Period	Dependant variable estimates Intercept Year Maximum pG ¡ M q ¡3809 ¦ 1.8 ¦ 681 ¦¦¦ ¡81 ¦ ¡2863 ¦¦ 1.2 ¦ 575 ¦¦¦ 25 ¡2042. 0.78 415 ¦¦ 59 ¦ ¡1784 0.84 458 ¦¦¦ ¡49 ¦ ¡3219 ¦¦ 1.4 ¦¦ 623 ¦¦¦ 33 ¦ ¡2656 ¦¦ 1.1 ¦ 472 ¦¦¦ 56 ¦ ¡3085 ¦ 1.5 ¦ 407 ¦ ¡46 ¡2903 ¦¦ 1.2 ¦ 693 ¦¦¦ 1.9 ¡2352 ¦¦ 0.97 ¦ 487 ¦¦ 32. ¡3777 0.15 292 ¦ 20 303 ¦¦ ¡0.19 57 58 ¦ 964 ¡0.52 90 39 ¦ ¡4284 ¦¦¦ 2.2 ¦¦¦ 224 ¦¦ ¡51 ¡3478 ¦¦¦ 1.6 ¦¦ 407 ¦¦¦ 40 ¦ ¡3033 ¦¦ 1.3 ¦¦ 397 ¦¦ 45 ¦ ¡3186 ¦ 1.5 ¦ 265 17 ¡1799. 0.6 613 ¦¦ 54 ¦¦ ¡1576. 0.52 477 ¦¦ 63 ¦¦¦ ¡3483 ¦¦ 1.7 ¦¦ 175 ¦ 28 ¡3103 ¦¦ 1.5 ¦¦ 108 39. ¡3072 ¦¦¦ 1.5 ¦¦¦ 0.7 47 ¦¦ ¡3055 1.5 201. 64 ¡1157 0.34 569 ¦¦¦ 48 ¦¦ ¡1620. 0.57 293. 79 ¦¦ ¡4122 ¦ 2.0 ¦ 224 ¦ 5.8 ¡3701 ¦¦ 1.8 ¦ 233 ¦ 21 ¡3517 ¦¦ 1.7 ¦¦ 98 49 ¦¦ ¡3124 ¦¦¦ 1.5 ¦¦ 207 ¦¦ 36 ¡3001 ¦¦ 1.4 ¦¦ 310. 47 ¦ ¡3167 ¦¦¦ 1.4 ¦¦¦ 215 50 ¦¦	Adjusted-R 2 0.60 0.84 0.86 0.61 0.85 0.87 0.46 0.77 0.82 0.60 0.64 0.61 0.81 0.87 0.88 0.54 0.77 0.85 0.71 0.77 0.89 0.53 0.91 0.91 0.64 0.73 0.84 0.80 0.79 0.83
	Note:			

Table 4 .

 4 6 Area planted for corn, soybeans and winter wheat in Iowa and Kansas in 2016 (thousands of acres).

	State	Crop	Planted area
	Iowa	Corn	13,900
	Iowa	Soybeans	9,500
	Iowa	Wheat	25
	Kansas	Corn	5,100
	Kansas	Soybeans	4,050
	Kansas	Wheat	8,500

Source : Fédération Française de l'Assurance

Source : Organisation de coopération et de développement économiques

Source : OCDE Global Pension Statistics

Analysons à présent la courbe des taux de mortalité ainsi dénis. Les données que nous utilisons proviennent de la Human Mortality Database[START_REF] Hmd | Human Mortality Database[END_REF]. La Figure 0.3 représente les taux de mortalité par âge pour l'ensemble de la population française en 2017, ainsi que leur logarithme. En eet, les taux de mortalité croissant exponentiellement aux âges élevés, il est usuel de les analyser en échelle logarithmique pour une meilleure comparaison aux diérents âges. La première année de vie nous remarquons une mortalité infantile élevée comparée aux autres âges, suivie de faible taux aux alentours de 10 ans. Notons ensuite la bosse des accidents dans le voisinage des 20 ans, et enn une augmentation environ linéaire du logarithme de la force de mortalité en fonction de l'âge au-delà de 40 ans. Cette dernière observation nous renvoie à l'un des premiers modèles de mortalité celui de Gompertz (1825) selon lequel la force de mortalité croit exponentiellement à partir d'un certain âge, i.e. µ pxq α exp pβxq.Figure 0.3 Taux de mortalité en France en 2017.

détection des variables explicatives des rachats. Très récemment, des méthodes d'apprentissage statistique plus sophistiquées, comme par exemple le boosting et le bagging, ont été utilisées pour à la modélisation du risque de rachat en fonction de facteurs structurels[START_REF] Jamal | Lapse Risk Modeling with Machine Learning Techniques : an Application to Structural Lapse Drivers[END_REF][START_REF] Aleandri | Modeling Dynamic Policyholder Behavior through Machine Learning Techniques[END_REF].Risque d'attritionCes modèles statistiques et leur contexte d'utilisation, i.e. la segmentation du risque de rachat en fonction de facteurs sectoriels, nous renvoient à une discipline a priori éloignée des sciences actuarielles : le marketing quantitatif. Plus exactement, nous nous intéressons à la littérature concernant le risque d'attrition (churn en anglais). Prenons le temps d'une courte analogie.Le rachat est le fait qu'un assuré résilie son assurance vie an de récupérer son épargne.En remplaçant la terminologie actuarielle, "assuré" et "assurance vie", par la terminologie plus généraliste du marketing, respectivement "client" et "contrat avec l'entreprise", nous obtenons une dénition de l'attrition. La dénition générale d'attrition est néanmoins encore plus large, et se focalise plutôt sur l'arrêt des relations cliententreprise, an d'englober les secteurs où le terme de contrat n'est pas forcément pertinent. Cette littérature s'est attardée sur le risque d'attrition dans diérents secteurs tels que la télécommunication, la banque de détail, la presse écrite, le jeu vidéo, etc. Le milieu assurantiel, nonvie et santé essentiellement, est aussi impacté par cette problématique que les actuaires commencent à s'approprier (e.g.,[START_REF] Günther | Modelling and predicting customer churn from an insurance company[END_REF][START_REF] Gerber | The impact of churn on client value in health insurance, evaluation using a random forest under random censoring[END_REF] 

Ce chapitre, correspondant à Loisel et al. (2019), analyse la segmentation du risque de rachat par rapport aux facteurs structurels d'un portefeuille de contrats d'assurance vie, environ 600 000, provenant d'une compagnie taïwanaise de taille moyenne. Pour ce faire nous y appliquons deux modèles de classication supervisée de référence : la régression logistique et le CART. Nous utilisons aussi des techniques plus sophistiquées d'apprentissage statistique : le SVM et le XGBoost. An de comparer la performance de classication des diérents algorithmes, nous eectuons une validation croisée et analysons la précision totale des prédictions. Comme attendu, le SVM et le XGBoost orent de meilleures prévisions. En se référant à la littérature sur le risque d'attrition, nous proposons une nouvelle mesure des performances de prédiction des modèles. Cette dernière estime le prot économique d'eorts de rétention sur les assurés classiés comme à risque par les algorithmes de segmentation. La comparaison des modèles en est alors fortement modiée. En particulier, nous remarquons que le XGBoost, qui est signicativement meilleur que le SVM en terme de précision statistique, amène désormais à des résultats peu diérents par rapport à ce dernier. De plus, la régression logistique donne de meilleures classications que le CART avec la vision économique, alors que nous observons le contraire lors de la comparaison basée sur la mesure purement statistique.S'inspirant deLemmens et Gupta (2017), nous proposons alors une méthodologie pour optimiser la mesure de prot économique. Nous transformons la problématique de la classication du risque de rachat, en une régression du prot attendu de l'eort de rétention. Pour ce faire nous modions la fonction de perte utilisée dans l'algorithme du XGBoost. Si la prédiction du gain est positive, l'assuré est alors classié comme risqué. La variable à optimiser ayant changé, nous constatons des modications manifestes dans les performances de prédiction : la précision statistique diminue fortement, atteignant même des niveaux inférieurs à la régression logistique dans certains cas ; la mesure de prot augmente signicativement par rapport aux algorithmes de classication classique.Cette étude montre ainsi l'importance du choix de la fonction de perte selon l'objectif exact de l'analyse menée par l'actuaire.Chapitre 4 : Potentiel des données satellite dans la gestion des risquesnanciers agricoles.Dans ce chapitre, tiré de Piette (2019), nous explorons la possibilité de prédire une partie des informations contenues dans les rapports USDA à partir de données satellite en libre accès : les séries NDVI MODIS. Premièrement, grâce à des tests statistiques, nous montrons que le

Micro-oriented papers secure data from insurers on individual policies to investigate the determinants of the lapse propensities/tendencies. The identied determinants include the characteristics of policyholders and the features of life insurance products/policies (seeRenshaw and Haberman, 1986; Kagraoka, 2005; Cerchiara et al., 2008; Milhaud et al., 2011; Pinquet et al., 2011; Eling and Kiesenbauer, 2014, among others) .Eling and Kochanski (2013); Campbell et al. (2014) provide extensive reviews of the literature on lapses 1 . This paper extends the micro-oriented line of literature in two ways. Firstly, we introduce 1. There are some papers on the subject of modeling early terminations that do not t our macro-micro classication on empirical, explanatory studies. They impose specic assumptions on the transition probabilities to early terminations[START_REF] Buchardt | Cash ows and policyholder behaviour in the semi-Markov life insurance setup[END_REF], the early terminations' intensity[START_REF] Barsotti | Lapse risk in life insurance: Correlation and contagion eects among policyholders' behaviors[END_REF], or the early termination rates[START_REF] Loisel | From deterministic to stochastic surrender risk models: Impact of correlation crises on economic capital[END_REF] Milhaud, 2013).

https://www.usda.gov/oce/commodity/wasde/prepared.htm
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de crédit posant encore des dicultés, le CBOT fut alors créé en 1848. Parmi les rapports gouvernementaux publiés par l'USDA, nous notons donc le mensuel Crop Production, dont la préparation est assurée par le National Agricultural Statistics Service (NASS), et qui couvre les céréales, les plantes oléagineuses et le coton cultivés aux États-Unis. Les données sont disponibles à plusieurs mailles géographiques : au niveau du pays, des régions, des États ou encore des comtés. Suivant la saisonnalité des cycles de chaque culture, les informations sont publiées à diérents moments de l'année et peuvent être des estimations, i.e. une observation d'un fait accompli, ou des prévisions, i.e. à propos d'un processus non ni. Dans les statistiques mises à disposition par l'USDA au marché nous retrouvons : les rendement agricoles ; les surfaces plantées et récoltées ; les productions.

highlighted by allocated coecients on the k th subdiagonal for A k for k t1, . . . , pu. Indeed, those coecients in the VAR model describe the Granger causality of ∆y i¡k,t¡k on ∆y i,t . This eect appears positively mainly for the younger ages of our dierent samples. It is more diuse between the ages of 65 and 85 years old. In Figure 1.2, the dierence between countries appears clearly and the so-called cohort eect is relatively strong for the US population, compared to the FR and the UK. The cohort eect is also clearly visible for k t2, . . . , 7u (not shown here).

Second, negative period eects are observed on the main diagonals in just about any population, especially between the ages of 85 and 95. Females in France are more impacted by this eect also for younger ages, whereas almost no cohort eect appears for this group. An opposite situation emerges for the US, where the period eect remains limited to the very the VAR-ENET has not the lowest value for each population, it globally leads to one of the best in-sample results with the HU and RESPECT model (around 2% in average). More particularly, the RESPECT model outperforms the VAR-ENET on the US populations.

The RMSE value is also computed for each age and each year, and the results are displayed respectively on Figures 1.4 and 1.5 for all of the overall populations. First, we note that, on top of having one the lowest RMSE with the smoothing models, the VAR-ENET leads to a more stable error over the age. This is clearly noticeable on the higher ages, especially for the French and English data. For example we observe that the M7's tting error drastically increases for ages above 95. More generally, on these two populations, all the benchmark model tend to have an increasing age-marginal RMSE starting from 90 years old, while our model's tting error stays relatively stable. On the American data, the results are more nuanced: whereas we still notice an increase of RMSE values at higher ages for the stochastic benchmark models (LC, M7 and STAR), the smoothing ones and the VAR-ENET lead to stable errors.

The RMSE patterns across periods are more erratic. While the errors of smoothing models (HU and RESPECT) are quite stable over the periods, many peaks are observed for all the stochastic models. More particularly, we note that these peaks tend to occur at the same period for all the concerned models, especially on the French and American data. We remark that, among the stochastic models, the VAR-ENET is the one producing the peaks of the lowest amplitude, and is the closest of the smoothing models in terms of goodness-of-t. Finally, we notice that, on the American data, the errors of the VAR-ENET and the STAR model are highly correlated, mainly starting from 1985. This shows the methodological closeness of 

Abstract

Countries with common features in terms of social, economic and health systems generally have mortality trends which evolve in a similar manner. Drawing on this, many multi-population models are built on a coherence assumption which inhibits the divergence of mortality rates between two populations, or more, on the long run. However, this assumption may prove to be too strong in a general context, especially when it is imposed to a large collection of countries.

We also note that the coherence hypothesis signicantly reduces the spectrum of achievable mortality dispersion forecasts for a collection of populations when comparing to the historical observations. This may distort the longevity risk assessment of an insurer. In this paper, we

propose a new model to forecast multiple populations assuming that the long-run coherent principle is veried by subgroups of countries that we call the "locally coherence" property.

Thus, our specication is built on a trade-o between the Lee-Carter's diversication and Li-Lee's concentration features and allows to t the model to large number of populations simultaneously. A penalized vector autoregressive (VAR) model, based on the elastic-net regularization, is considered for modeling the dynamics of common trends between subgroups.

Furthermore, we apply our methodology on 32 European populations mortality data and discuss the behavior of our model in terms of simulated mortality dispersion. Within the Solvency II directive, we quantify the impact on the longevity risk solvency capital requirement of an insurer for a simplied pensions product. Finally, we extend our model by allowing Chapitre 3

Apprentissage statistique et mesures économiques pour la gestion du risque de rachat

Ce chapitre reprend l'article "Applying economic measures to lapse risk management with machine learning approaches", coécrit avec Stéphane Loisel et Cheng-Hsien Jason Tsai.

Abstract

Modeling policyholders lapse behaviors is important to a life insurer since lapses aect pricing, reserving, protability, liquidity, risk management, as well as the solvency of the insurer.

Lapse risk is indeed the most signicant life underwriting risk according to European Insurance and Occupational Pensions Authority's Quantitative Impact Study QIS5. In this paper, we introduce two advanced machine learning algorithms for lapse modeling. Then we evaluate the performance of dierent algorithms by means of classical statistical accuracy and protability measure. Moreover, we adopt an innovative point of view on the lapse prediction problem that comes from churn management. We transform the classication problem into a regression question and then perform optimization, which is new for lapse risk management.

We apply dierent algorithms to a large real-world insurance dataset. Our results show that XGBoost and SVM outperform CART and logistic regression, especially in terms of the economic validation metric. The optimization after transformation brings out signicant and consistent increases in economic gains.

Keywords: lapse; machine learning; SVM; XGBoost; life insurance; loss function.

The application of a segmentation algorithm to the tested samples produces two confusion matrices: one with respect to number of policies while the other in term of face amount.

For the latter matrix, we denote F pj, kq as the coecients of the matrix with regard to face amount, where j stands for the indicator of the policyholder's lapse in real life, k the indicator by the algorithm's prediction, and pj, kq t0, 1u 2 . More specically,

while N is dened in Equation (3.18).

We dene the reference portfolio value (RPV) as the customer lifetime value of all policies if no customer relationship management about lapses are carried out to be:

Given a segmentation algorithm, we compute the lapse managed portfolio value (LMPV) by LM P V pδ, γ, cq CLV pp, F p0, 0q, r stay , dq CLV pp, F p1, 0q p1 ¡ γqF p1, 1q, r lapse , dq CLV pp ¡ δ, F p0, 1q γF p1, 1q, r stay , dq ¡ c pNp0, 1q N p1, 1qq .

(3.24)

Then we dene the economic metric of the algorithm as the retention gain:

RGpδ, γ, cq LM P V pδ, γ, cq ¡ RP V, (3.25) that can be simplied as RGpδ, γ, cq γ rCLV pp ¡ δ, F p1, 1q, r stay , dq ¡ CLV pp, F p1, 1q, r lapse , dqs CLV pδ, F p0, 1q, r stay , dq ¡ c pNp0, 1q N p1, 1qq . policies out of all samples were lapsed, and 5,486 insureds died during the sampling period.

We specify several variables based on the literature and the data provided by the insurer as input to the algorithms of Section 3.2. Firstly we are able to identify from the data the age, gender, and occupation of an insured at the time when the policy was issued. Female is designated as 1 while male 0 for the dummy variable Gender. Then we designate the dummy variable Occupation as 1 for the occupations that the insurers in Taiwan would undertake extra screening/underwriting. The data also record whether the insured is required to have a physical examination when purchasing life insurance and how many non-life policies (health and long-term care) a person are listed as the insured (since a person may purchase multiple policies).

The data also contain the inception date and face amount of each policy. There are three types of policies. The most popular type is traditional policies like term life, whole life, and endowment. Investment-linked and interest-adjustable types of products appeared in 2000s. We also able to identify whether a policy is a single-premium one or not. There are ; there are some policies dominated in other currencies.

We further set up two nominal variables. Firstly, we categorize distribution channels as Tied Agents (denoted by TA), Direct Marketing (DM), and Banks (BK) 3 . Secondly, premium pay- ing methods are classied into three ways: collected by the personnel of the insurer (denoted as Insurer), automatic transfers from banks or payments by credit cards (B&C) 4 , and going to the post oce or convenient stores in person (P&C).

Table 3.1 and 3.2 present the descriptive statistics of the above explanatory variables. The average age of the sampled insureds is 28 and the standard deviation of the insureds' age is 17.

The minimum, medium, and maximum age is 0, 27, and 80, respectively. The samples consist of relatively equivalent portions of male and female insureds. About 20% of the insureds work in riskier occupations that call for extra underwriting. Most insureds (over 96%) were not required to go through physical examination in purchasing life insurance. Many insureds are associated with multiple non-life policies so that the average number of non-life policies a person are listed as the insured is 1.2. There is a person who is listed as the insured for 33 non-life policies.

3. Few policies are also sold by independent agents, brokers that we gather in the same category. 

Results with respect to the economic metric

To evaluate the algorithms by the economic metric, we rst need to specify the parameters of the cash ows model. Since no data is available for us to estimate these parameters, we have to make assumptions. We had conducted sensitivity analyses and conrmed that the comparison results remain the same in general.

and as the metric for cross-validation.

In the last step, lapse ŷi is forecasted if the estimated gain is positive:

By this way we can apply the same metrics described in previous sections. Here ŷi is better to be understood as the estimation of the protability about oering an incentive to the policyholder i rather than the forecast on the policyholder's lapse.

The two new classications are denoted as XGB_R1 and XGB_R2, respectively, for applying XGBoost to z R 1 and z R 2 . The tuning method that we apply to estimating the parameters is described in Appendix 3.8.3.

Results

Table 3.12 and Figure 3.5 display the prediction accuracies. Table 3.12 shows that XGB_R1 and XGB_R2 produce relatively low mean accuracy of respectively 76.7% and 75.7% While XGB_R2 is clearly the worst model in term of accuracy, XGB_R1 generates similar results

to the logistic regression which is the worst binary classication model regarding the accuracy measure. These seemingly unsatised results are understandable since both XGB_R1 and XGB_R2 are not designed to predict whether a policy would be lapsed or not. What they aim for are economic gains. The numbers in Table 3.13 and 3.14 tell us more about why XGB_R1 and XGB_R2 performs badly in statistical accuracy. They result in the smallest correct identications on lapses (resp.

104,889 and 99,432) and produce the most false-sense-of-security (resp. 113,948 and 119,405).

However, we will see very soon that XGB_R1 and XGB_R2 stand out when we switch focus to retention gain. The values of the grid search are chosen by a previous sensitivity study in which we apply the same methodology on a subsample of the whole database but with a coarser grid. Then we focus on a ner grid to obtain better results within a reasonable time period. In addition, the fact that we only test subsample with the value of 1 means that we do not adopt the stochastic gradient boosting of Friedman (2002).

SVM Tunning

The values of the parameters tested in the grid search for the tuning of SVM are as follows:

Cost : 0.5, 1, 2, 5, 10; gamma : 0.25, 0.5, 0.75, 1, 1.25.

Similar to the previous section, the values of the grid search are chosen by a previous sensitivity study in which we apply the same methodology on a subsample of the whole database but with a coarser grid. Then we focus on a ner grid to obtain better results. This is necessary so that the computing can be done within a reasonable time period.

XGBoost Tuning -Protability

We adopt the values of most parameters generated by a previous sensitivity study as: eta : 0.005; gamma : 1; max_depth : 15; min_child_weight : 15; subsample : 0.7; colsample_bytree : 0.8.

Then, we determine the best nrounds through a 5-folds cross-validation with this parameter tested up to 1,000.

Chapitre 4

Potentiel des données satellite dans la gestion des risques nanciers agricoles Ce chapitre reprend l'article "Can satellite data forecast valuable information from USDA reports ? Evidences on corn yield estimates".

Abstract

On the one hand, recent advances in satellite imagery and remote sensing allow one to easily follow in near-real time the crop conditions all around the world. On the other hand, it has been shown that governmental agricultural reports contain useful news for the commodities market, whose participants react to this valuable information. In this paper, we investigate whether one can forecast some of the newsworthy information contained in the USDA reports through satellite data. We focus on the corn futures market over the period 2000-2016. We rst check the well-documented presence of market reactions to the release of the monthly WASDE reports through statistical tests. Then we investigate the informational value of early yield estimates published in these governmental reports. Finally, we propose an econometric model based on MODIS NDVI time series to forecast this valuable information. Results

show that market rationally reacts to the NASS early yield forecasts. Moreover, the modeled NDVI-based information is signicantly correlated with the market reactions. To conclude, we propose some ways of improvement to be considered for a practical implementation.

Keywords: Commodities market; Data Enrichment; Market information; MODIS; NDVI;

USDA reports.

Introduction

The value of public information in agricultural commodity markets has been a topic of great attention for many years in the literature (e.g., [START_REF] Sumner | Are Harvest Forecasts News? USDA Announcements and Futures Market Reactions[END_REF]Garcia et al., 1997;Isengildina-Massa et al., 2008;Dorfman and Karali, 2015;Gouel, 2018). More recently, with the improvement of data access and the emergence of the Big Data era, the interest in this subject has enhanced, especially on the possible declining value of USDA reports (Karali et al., 2019;[START_REF] Tack | The Potential Implications of 'Big Ag Data' for USDA Forecasts[END_REF][START_REF] Ying | Is the Value of USDA Annoucement Eects Declining over Time ?[END_REF]. Indeed, the recent advances in satellite data and remote sensing allow one to easily follow in near-real time the crop progress all over the world thanks to weather data or vegetation index (e.g., Prasad et al., 2006;Mkhabela et al., 2011). Nevertheless, untill now, studies show that USDA reports still have a signicant impact on the commodities market. The purpose of this paper is to provide evidences that some valuable information contained in the governmental reports can be forecasted by using satellite data. Our regression analysis shows signicant correlation between our satellite databased forecasted information and the corn futures market reactions to the report releases. We also suggest some needed enhancements of our methodology for a practical application.

The monthly World Agricultural Supply and Demand Estimates (WASDE) report, provided by the United States Department of Agriculture (USDA), together with, for some specic months, the National Agricultural Statistics Service (NASS) Crop Production report, are the most valuable public sources of information for the U.S. commodities market. An extensive literature already examines the impact of these governmental report releases on the commodities market. [START_REF] Sumner | Are Harvest Forecasts News? USDA Announcements and Futures Market Reactions[END_REF] were the rst to use an event-study framework to explore the impact of USDA reports on corn and soybean future prices over the period . They conclude that the information included in the governmental forecasts are considered as new and reliable by the market participants, since the changes in prices on days just following the publication are signicantly higher than on other days. Isengildina-Massa et al. (2008) nd consistent results by testing dierences in variance of nancial returns over the period 1985-2006 for the same commodities. Other similar studies have been conducted, and a large majority of them conclude on the fact that the commodities market is signicantly impacted by the WASDE report releases (Garcia et al., 1997;Irwin et al., 2001;McKenzie, 2008).

On the contrary to the previous investigations, which rely on statistical tests such as F or Chisquared test, other studies base their analysis on a regression model. Thus, Fortenbery and Sumner (1993) regress the changes in prices on, amongst other, a zero-one dummy variable for report dates. Lehecka (2014) quanties the futures price reaction by using the crop condition information included in the weekly Crop Progress reports over the period 1986-2012. The author regresses the close-to-open return on the change in the percentages of the crop in excellent and good condition. The results highlight a signicant and negative inuence of the of the valuable information contained in the reports.

The remainder of this paper is organized as follows. In Section 4.2 we describe the data we base our study on. The methodology we apply is dened in Section 4.3. We present the results that we obtained in Section 4.4. Furthermore, Section 4.5 considers future possible improvements of the current work for a practical implementation. Finally, Section 4.6 concludes. The geographic resolution is of 250 meters and the temporal one is 16 days (MOD44 16-days product). Thus, every 16 days, we obtain a mean image of the period. This methodology is due to the fact that NDVI is a reectance index, and is therefore sensitive to weather conditions such as clouds when estimated from satellite (Whitcraft et al., 2015). The release of these images is done at a constant pace in the year (cf. Table 4.1). We also apply the standard water and crop mask (MOD 12) to focus on the crop conditions. MODIS data are available since February 2000.

Data

Futures Data

On the contrary to Irwin et al. (2001) and Isengildina-Massa et al. (2008), we don't explore the market reaction through the futures whose maturity are the closest to the session of interest.

We rather base our study on the corn futures with the December maturity of the very year.

Since our results may be useful for the agricultural insurance companies' risk management, we focus on the price at risk for the revenue protection products, which is the new-crop harvest price, i.e., December for corn in the U.S.

Crop yield estimates

Finally, to model the valuable information contained in the NASS reports, we use the early corn yield estimates of 10 states from the Corn Belt, namely Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Nebraska, Ohio, South Dakota and Wisconsin. Indeed, these states represent between 82 and 85% of the corn production in the United States. More particularly, we explore the market reaction to the release of August, September and October yield estimates over the period 2000-2016.

In order to train our NDVI-based yield forecasting model, we also use the nal corn yield estimates, communicated by the NASS in the January following the harvest. 

Forecasting valuable information

In this section, we display the results from the NDVI-based analysis. First, we present in Table 4.5 estimates of the early yield forecasting models for each state based on the MODIS NDVI time series described in Equation (4.10). We note that the end of September models (period 17) achieve high adjusted-R 2 values, between 0.82 and 0.91, for almost every state.

On the contrary, Kansas corn forecast model fail to fulll such level of accuracy, even though it leads to a rather correct R 2 of 0.61. Similarly, the adjusted-R 2 increases throughout the growing season for all the states except Kansas and, to a lesser extent, Wisconsin. Thus, for example in Minnesota, at end of July the models lead to an accuracy of 0.54, which augments up to 0.77 around end of August and nally achieves an adjusted-R 2 of 0.85 at end of September. The special case of Kansas must be due to the fact that, contrary to other states where the two main crop types are corn and soybeans, Kansas is also a large winter wheat producer (cf. Table 4.6 for example). Hence, MODIS NDVI time series from wheat interfere with the corn ones when estimating the NDVI at a state level.

The NDVI-based early yield forecasting model results are in line with the WASDE's aim at providing accurate information about future yields, and perfecting it along the growing season.

Thus, it is a logical candidate to model the information given by the WASDE reports. We therefore plot the modeled NDVI-based information (estimated with the Equations (4.12) to We graphically observe a positive correlation, which is statistically validated. The Pearson's r and Kendall's τ correlation coecients are equal respectively to 0.68 and 0.35, both with a signicance level of 0.1%. Although the NDVI-based information is signicantly correlated to the early NASS yield estimation changes, the main goal of our study is to determine whether this correlation is strong enough for our NDVI-based yield estimation changes to be signicantly correlated with the commodities market reactions. To assess this point we present the results of the Equation (4.15), together with the Kendall's τ , in Table 4.7. We remark that, when considering the three reports, the Pearson's correlation is signicant at a 0.2% level. Furthermore, the β1 estimate is negative (¡5), and therefore in line with the expectations. However, when focusing on specic month, we note that for the September one, no signicant estimation emerge, the estimate even appear to be positive. This poor performance on the September reports is not completely a surprise. Indeed, these releases lead to the less important, but still statistically signicant, market reactions quantied through the variance or regression analysis (cf. Table 4.3 and 4.4 and Figure 4.2). Kendall's τ study also indicates that the correlation is negative and signicant for the August and October reports, while, for the September release, no signicance arises. However, and on the contrary to the linear model, the rank correlation is not statistically signicant when considering all reports together.

Perspectives

The results we present in the current paper are promising, however we believe that the methodology needs to be enhanced before a concrete and eective application on the commodities forecast some of the valuable information contained in the USDA reports through the use of satellite data. These rst ndings should incite the private sector to invest in the development of similar methodologies for their risk management. We therefore propose some improvements that should be further investigate for a practical implementation.

First, we have only used NDVI to obtain our early yield estimates. To improve the accuracy of our model, a relative easy upgrade would be to also consider weather data (Mkhabela et al., 2011), or other vegetation index such as Enhanced Vegetation Index [START_REF] Michael | Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods[END_REF]. The use of a larger period to train the models could also be useful. In the current paper, we focus on the MODIS data, i.e. from 2000, while older data sources exist such as the AVHRR. However, the instruments and resolution being dierent, data rst needs to be reprocessed [START_REF] Pedelty | Generating a long-term land data record from the AVHRR and MODIS Instruments[END_REF]. This issue will surely raise again in the future with the continuous enhancement of the satellite resolution [START_REF] Skakun | Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring[END_REF]. More sophisticated data upgrades can be applied. Indeed, even though we apply a crop mask (MOD 12) to the MODIS NDVI data, we still conduct our study at a state level. Yet, many dierent crop types can be grown in a single state. It, therefore, leads to interferences between crops in the resulting NDVI time series. For example, Figure 4.5 displays the MODIS NDVI time series over the year 2016 in Kansas. We observe two peaks: one around the period 9 (mid May)

and one around the period 15 (mid August). This results from the fact that Kansas is an important winter wheat producer (rst peak), but also of corn and soybeans (second peak), as shown in Table 4.6. Recent studies highlight the possibility to elaborate a crop mapping thanks to remote sensing methods (Skakun et al., 2017a,b). Applying such a map should result to a better yield forecasting accuracy [START_REF] Maselli | Analysis of GAC NDVI Data for Cropland Identication and Yield Forecasting in Mediterranean African Countries[END_REF]Kastens et al., 2005;Zhang et al., 2019). Furthermore, if the map can be estimated early enough, it could also be used to forecast another valuable information from the USDA reports: the planted area.

Indeed, the value to the market participants of such information is estimated to $145 million [START_REF] Abbott | Valuing Public Information in Agricultural Commodity Markets: WASDE Corn Reports[END_REF].

The multiple crops problematic raises another limit of our paper: we focus on the corn future market only. The WASDE reports also contain valuable information about other agricultural commodities such as soybeans, wheat, barley, rice, etc. Moreover, as the "W" suggests, the