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Abstract

Nowadays, robotic prostheses of lower and upper extremities draw more and more of
academic and commercial interests. Such devices have the potential of significantly
improving the everyday live of the amputees. This is due to the growing versatility
and robustness of the robotic arms, forearms, and legs, including numerous low-cost
3d-printable designs that emerged in the last few years.

However, the wide functionality of the robotic part of a prosthesis requires an
adequate interface with the user. That is, a device that replaces a missing limb
cannot be controlled in the same way as a computer or a smartphone, i.e. using a
keyboard or voice commands. In order for the control to be comfortable and easy, it
should be perceived by the user as natural, require a small mental e↵ort and provide
fast responses to the commands with a possibility of an immediate adjustment.
Thus, prosthetic control should be based on a di↵erent source of information about
the command desired by the user.

The primary solution for the aforementioned problem is interfacing with the
neural system of the user. The desired command, or intent, originates in the motor
cortex and, via several intermediate levels, descends to the spinal cord, where it
is transformed into excitation-inhibition patterns applied to the muscles by means
of the activity spinal motor neurons. Thus, information about the intent can be
extracted from the three levels: supraspinal (motor cortex), spinal and muscular.
The first two, being actively studied in academia and, lately, by private companies,
remain impractical since they require complex invasive procedures. Muscular level,
in contrary, is much easier to interface, due to such tool as electromyography (EMG).

EMG is a recording of the electrical activity of muscles that accompanies their
contraction. It permits to assess the contraction patterns of residual muscles of the
stump, which can be then associated with the corresponding intent. There exist
numerous EMG-based approaches to prosthetic control and new ones are being
continuously proposed in academia. The majority of these approaches are based on
the so-called surface EMG (sEMG), i.e. the EMG acquired by electrodes applied to
the skin. In the first part of this work, we have conducted an experimental study of
a classic sEMG-based gesture classification approach in order to better understand
its advantages and limitations. The general relationship between the movement and
sEMG has also permitted us to apply a similar technique to detection of multiple
sclerosis in humans.

However, applicability of sEMG in the prosthetic control is limited by such fac-
tors as loose electrical contact between the electrode and the skin, skin and muscle



conductivity variation caused by sweat and fatigue, and variation of electrode’s po-
sition relative to the muscle. These factors can be partly alleviated using EMG
decomposition, a technique that decodes the activity of spinal motor neurons. This,
being the most direct representation of the neural command, is of interest in modern
prosthetic control.

EMG decomposition is widely used outside of prosthetic control, e.g. in studies
of the motor system and neurology. Usually, it is applied to pre-acquired signals in
an a posteriori setup. Although, during the last few years, a number of real-time
decomposition methods were presented in the literature. The real-time aspect makes
this technique applicable to prosthetic control. However, due to the computational
complexity of decomposition task, these methods propose simultaneous decoding
of only a few motor neurons (up to ten), which may be considered insu�cient for
establishing a precise prosthetic control.

The main interest of the present thesis is exploring the ways to extract maximum
possible information from this limited decomposition, in order to infer the underlying
intent. As we will show later in the text, a model-based approach that uses the
known relation between the intent and the firing behavior of motor neurons can
provide promising results for decomposition-based prosthetic control.

To provide fully controlled conditions for the tests of the proposed approach,
we have developed a simulation model of EMG and muscle contraction process.
This model yields a number of additional features that may be of interest in other
studies of motor control, such as a detailed simulation of multichannel recordings
by electrodes that change their position in the muscle.

Tests carried out on the base of both simulated and experimental data show that
the model-based approach to the intent inference from decomposition can outper-
form an existing commonly used one, especially when the number of decoded motor
neurons is small. These results strengthen the potential of the decomposition-based
approaches being applied in prosthetic control.



Résumé

Actuellement, des prothèses robotisées de bras suscitent de plus en plus d’intérêt
académique et commercial. Ces systèmes ont le potentiel d’améliorer considérablement
la vie quotidienne des amputés. Cela est dû aux capacités croissantes des bras et
jambes robotiques, y compris les nombreux modèles d’impression 3D bon marché,
qui sont apparus lors des dernières années.

Ces prothèses mécaniquement très sophistiquées nécessitent une interface ap-
propriée avec l’utilisateur. C’est-à-dire que la prothèse qui remplace un membre
manquant ne peut pas être pilotée de la même façon qu’un ordinateur ou smart-
phone : par l’intermédiaire de clavier ou commande vocale. Pour l’utilisateur, la
commande doit être naturelle, ne pas exiger de forte concentration mentale et fournir
la possibilité d’ajustement immédiat.

La solution principale pour le problème mentionné ci-dessus est l’interface avec
le système nerveux de l’utilisateur de la prothèse. La commande désirée, ou inten-
tion, provient de cortex moteur du cerveau, descend à travers de multiples couches
intermédiaires vers la moelle épinière, où elle est transformée en excitations et inhi-
bitions appliquées aux muscles. Ainsi, l’information sur l’intention peut être extraite
à partir de trois niveaux di↵érents : supra-vertébrale, vertébrale et musculaire. Les
deux premiers, étant un des intérêts de la recherche actuelle, restent toujours di�-
cilement réalisables en pratique. Le niveau musculaire, au contraire, est plus facile
à connecter grâce à l’électomyographie (EMG).

EMG est un enregistrement de l’activité électrique des muscles qui accompagne
leur contraction. Elle caractérise la contraction des muscles résiduels du moignon et
peut être associée à l’intention correspondante. Il existe de nombreuses méthodes de
pilotage de prothèse fondées sur les signaux EMG, ainsi que des nouvelles méthodes
apparaissent régulièrement. La plupart de ces approches sont fondées sur l’EMG de
surface (sEMG), l’EMG enregistré par une électrode placée sur la surface de peau.
Dans la première partie de cette thèse, nous avons réalisé une étude expérimentale
sur la reconnaissance des gestes classique fondée sur la sEMG, pour mieux compren-
dre ses avantages et inconvénients. Le lien général entre l’EMG et le mouvement
nous a permis d’appliquer une méthode similaire à la détection de la sclérose en
plaques chez les patients.

Par contre, le potentiel du sEMG dans le pilotage des prothèses est limité par
des facteurs spécifiques comme l’instabilité de contact entre l’électrode et la peau, la
variation de la conductivité de la peau entrâınée par la transpiration et la fatigue de
l’utilisateur, ainsi que par le déplacement des électrodes par rapport aux muscles.



Ces facteurs peuvent être partiellement réduit par la décomposition d’EMG, une
technique qui décode les activités des moto-neurones de la moelle épinière. Ces
activités, étant les représentations les plus directes de la commande neuronale, sont
intéressantes pour les approches modernes au pilotage des prothèses.

La décomposition d’EMG est largement utilisée hors du domaine de pilotage des
prothèses, par exemple pour l’étude du système moteur et en neurologie. Normale-
ment, elle est appliquée aux signaux déjà acquis, pourtant, lors des dernières années,
plusieurs méthodes de décomposition en temps réel ont été proposées. L’aspect
temps réel rend cette technique applicable au pilotage des prothèses. Cependant,
du fait de la complexité des calculs engendrés, ces méthodes ne fournissent que la
décomposition d’un nombre limité de motoneurones simultanément actifs. Cette in-
formation peut être considérée insu�sante pour représenter la commande neuronale
et, par conséquent, pour être utilisée dans le pilotage des prothèses.

L’intérêt principal de cette thèse est l’étude des méthodes d’extraction du maxi-
mum d’informations possible sur la commande neuronale à partir de la décomposition
limitée. Nous allons montrer qu’une méthode basée sur la modélisation de la relation
entre l’activité d’un motoneurone et l’intention, peut fournir des résultats promet-
teurs, qui soutiennent l’idée du pilotage fondé sur la décomposition.

Afin d’étudier la méthode proposée dans un environnement contrôlé, nous avons
développé un modèle de simulation d’EMG et de contraction de muscle. Ce modèle
possède plusieurs caractéristiques supplémentaires qui peuvent être utiles dans autres
études du système moteur, telles que la simulation des signaux EMG multi-canaux,
ainsi que l’EMG dans des électrodes qui changent leur position dans le muscle avec
le temps.

Les tests exécutés avec les données simulées et expérimentales montrent que la
méthode proposée d’inférence d’intention à partir de la décomposition peut sur-
passer les méthodes qui existent, en particulier quand le nombre des motoneurones
décomposés est très bas. Ces résultats renforcent le potentiel des méthodes fondées
sur décomposition dans les applications de pilotage des prothèses.
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Chapter 1

Introduction

Application of the electromyography (EMG) to upper limb prosthetics is widely
studied nowadays. This is due to the fact that control of a modern prosthetic device
is required to be intuitive, robust and provide wide information flow between the
user and the prosthesis. A way to ensure that is to establish a system that would
autonomously infer user’s intent and pass it to the mechanical part of the prosthesis
to execute it. EMG possesses some of the important features that can help meet
these requirements.

The requirements of intuitiveness and wide information flow are dictated by
increasing capabilities of the mechanical part of the prosthesis, which now provides
larger functionality than existing prosthetic control approaches can cover. As an
example, the individual finger manipulation in robotic hands was achieved a long
time ago [1, 2, 3], while the inference of corresponding intent from the user still stays
a problem that is not solved.

The EMG-based intent inference may be also considered in a more general con-
text of human-machine interfaces (HMI). There is a growing interest in versatile
HMIs, which brings in larger commercial interest to the field. Private companies,
such as Emotiv1, Neuralink2, and open-source projects, such as OpenBCI3, engage
more and more in the development of HMIs oriented to both prosthetic and non-
prosthetic use. The potential of EMG in such systems is supported by the commer-
cial success of a wearable gesture recognition device Thalmic MYO4.

Physiological manifestations of user intent may be captured on three di↵erent
levels: first is motor cortex, where the planning and onset of the motion is performed;
the second level is the spinal cord, which transforms the high-level input command
to low-level excitation-inhibition patterns; and the third level are the muscles, where
the incoming motor command is transformed into the mechanical action.

Methods of interfacing the first level are being actively developed in the domains
of neurorehabilitation and neuroscience. As an example, electroencephalography

1
Emotiv o�cial website

2
Neuralink o�cial website

3
OpenBCI website

4
Thalmic labs has ceased the production of MYO armbands and closed the corresponding

website. We provide a link to MYO programming packages instead.

11

https://www.emotiv.com/
https://neuralink.com/
https://openbci.com/
https://github.com/thalmiclabs
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(EEG) is a technique of recording the electrical activity of the brain using a grid of
non-invasive electrodes attached to the skull skin. A significant number of studies on
EEG-based BCIs were made, proposing a cursor control [4], motion intent classifica-
tion [5], and others [6]. The reasons why EEG-based interfaces are not being used in
commercial prostheses are, first of all, a requirement for the user to be highly con-
centrated on the performed task, as well as a low number of recognizable patterns,
and the fact that constant wearing of an array of electrodes is generally impractical.
Invasive brain and spinal cord interfaces that could overcome these limitations are
yet far from being widely used in humans [7]. However, a recent white paper by
Neuralink [8] suggests that basic invasive brain interfaces can be accessible on the
market in a few years.

At the moment, among the three mentioned interfacing approaches, muscle level
provides the most promising results. This is due to the fact that the user’s intent ul-
timately transforms into the muscle contraction process, which can be characterized
by the accompanying EMG. Techniques of EMG acquisition are far less demanding
than brain or spinal cord interfacing, which makes EMG a promising information
source in prosthetic control.

EMG-based prosthetic control is being studied in academia and industry for al-
ready 60 years, with an extensive growth of popularity within the last three decades.
However, there is a number of problems and limitations that were not yet overcome.
First, the control strategy that practically reaches the amputees is still very similar
to that used in the first myoelectric prostheses created in 1960s. Known disad-
vantages of this approach coupled with the imperfections and expensiveness of the
robotic parts lead to a high rejection rate among the amputees [9, 10]. A complex
development of new control strategies, more comfortable stump sockets and reliable
end-e↵ectors is still needed.

Another limitation of the EMG-based prosthetic control is the fact that in all
variety of amputation cases, muscles of interest may be missing. For example, in
the case of transhumeral amputation, none of the forearm muscles, which actuate
the hand, are present, and therefore a source of information about the intent of
hand motion is missing. One of the ways to overcome this limitation is to remap
the patterns used in intent inference, to other muscles, such as those of the lower
limb [11]. Another solution is targeted muscle reinnervation [12], a surgical method
involving the relocation of amputated limb’s nerves into a healthy muscle in order
to produce intent-related EMG.

In this chapter, we will cover the physiological and technical aspects of EMG, as
well as the organization of motor control. Then, we will discuss existing EMG-based
strategies of prosthetic control and their classification. Further, the potential roles
of intramuscular EMG and EMG decomposition will be analyzed. That will bring
us to the problematic of this thesis, which is a decomposition-based inference of user
intent.



1.1. BASIC NOTIONS OF EMG, MOTOR CONTROL AND EMGDECOMPOSITION13

1.1 Basic notions of EMG, motor control and EMG
decomposition

EMG is a recording of the electrical activity of muscle fibers that naturally accom-
panies their contraction during the execution of motor tasks. The contraction of
muscle fibers is regulated by alpha motor neurons (MN) of the spinal cord, which,
in their turn, are defined by supra-spinal commands originating in the motor cor-
tex, and are regulated by numerous inter-spinal mechanisms of excitation, inhibition,
and feedback. EMG is, therefore, a function of the total neural input to the muscle.
In prosthetic applications, this makes EMG a great source of information about
the user’s intent. In this section we will shortly cover the main point about the
physiology and modelling of EMG.

1.1.1 EMG signal generation

A motor unit (MU) is an elementary entity of the motor system. It consists of a MN
located in the spinal cord and of a set of muscle fibers innervated by its axon [13].
The last originates in the soma of MN and reaches the specific muscle or muscle
group as a part of an e↵erent nerve. The axon then separates from the nerve in
the vicinity of the muscle and forms a so-called terminal arborization to innervate
a certain number of muscle fibers, usually referred to as muscle unit (MsU).

As a nerve cell, MN responds to excitatory input by a series of its cell membrane
depolarizations. The last propagate through the axon in form of action potentials
(MNAP) up to the junction with the muscle fibers. Due to the specific interfacing
mechanism between an axon and a muscle fiber, called neuromuscular junction,
MNAP excites an action potential in the fiber (SFAP). SFAP travels along the
fiber, causing its contraction until it reaches the tendon and fades.

All fibers belonging to a single MU receive the MNAP almost synchronously with
specific delays determined by the di↵erences in their axon branch lengths. This
creates a unique spatial configuration of SFAPs, which, propagating along fibers
with di↵erent velocities, further de-synchronize with each other.

Each SFAP causes the variation of the electric potential field around the muscle
fiber, which can be detected by a metal electrode placed in its vicinity. Group
of SFAPs evoked by the same MNAP produce a potential variation that can have
unique temporal form when acquired by the electrode. The last also depends on the
mutual positioning of the electrode and muscle fibers, their shapes and sizes. These
shapes, as they are recorded by the electrode and the following acquisition system,
are called motor unit action potentials, MUAPs.

While receiving excitation, MN generates MNAPs in a rhythmic fashion, with
intervals between depolarizations of about 25 ms to 200 ms. A group of multiple
successive action potentials is usually referred to as spike train. Since fibers of MUs
are highly intermingled, an electrode usually records MUAPs from multiple MUs
at the same time. Each MUAP is caused by a MNAP of corresponding MN. Thus,
EMG is a mixture of repetitively appearing MUAPs of several di↵erent MUs located
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Figure 1.1: Illustration of mathematical model of EMG signal 1.1.

in the recording area of the electrode.
Despite being slightly out of physiological context, commonly used linear model

of EMG helps to the understanding of this process [14, 15]:

Y (t) =
NX

i

Hi ⇤ Ui(t) + w(t) (1.1)

where N is the total number of MUs, Ui(t) is a sequence of Dirac functions rep-
resenting the spike train of i-th MU, Hi is MUAP of i-th MU, symbol ⇤ denotes
convolution, and w(t) accounts for instrumentation noise of the acquisition system,
as well as for interferences recorded by the electrode. This model is illustrated in
Figure 1.1.

1.1.2 EMG electrodes

EMG electrodes are metallic bodies (usually silver or stainless steel) in an isolation
housing, destined to be in physical contact with the skin or the muscle fibers. The
size of the electrode and configuration of the front-end signal processing circuits
define its recording volume. SFAPs of fibers located within the recording volume
contribute to the total acquired EMG.

EMG electrodes are first classified as surface (sEMG) and intramuscular (iEMG).
The former are applied to the skin, while the latter are inserted subcutaneously into
the muscle belly. sEMG electrodes are usually larger than iEMG ones, covering
a considerable part of a muscle and thus having larger acquisition volume. This
makes sEMG useful when the global activity of the muscle is of interest, since it
integrates signals from multiple MUs at the same time. However, this also comes
with the inability of sEMG to record solely from a target muscle, capturing the
activity of neighboring ones. This e↵ect is usually referred to as cross-talk. The fact
that the electrode is positioned on the skin also means that MUAPs should travel
across skin tissues before being recorded, which introduces a considerable low-pass
filtering e↵ect to the EMG.
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iEMG electrodes, due to their subcutaneous nature, are small and therefore
record from a much smaller volume, permitting to target specific regions in the
muscle. Moreover, such electrodes can reach deeply-lying muscles that couldn’t be
accessed by sEMG, such as pronator and supinator of the hand. Muscle tissue has
better conductive properties than skin and fat, which makes iEMG preserve the high
frequency components of the MUAPs. However, invasiveness of iEMG brings risks
of infection, pain, and discomfort, which until recently made iEMG a very specific
choice, dedicated mostly to neurological studies, rather then to prosthetics.

The aforementioned features of sEMG and iEMG are illustrated in Figure 1.2.
Further classification of the electrodes is mostly based on their sizes and multi-
channel arrangements. That is, the smallest intramuscular electrodes record from a
single muscle fiber (SFEMG) [16]. Fine-wire electrodes record from a slightly larger
volume, capturing several MUs at considerable contraction levels. Monopolar and
concentric bipolar needles record from larger volumes of 0.02 - 0.1 mm3 detecting 10-
15 MUs even at moderate contractions. A subsequent increase in recording volumes
is achievable using multichannel intramuscular recordings [17]. Long-term record-
ings, including prosthetic control applications, can be achieved using chronically
implantable acquisition systems [18, 19, 20, 21, 22] (more on this type in Section
1.2.5).

sEMG electrodes can be classified accordingly. Myoelectric pattern recognition
approaches (see Section 1.2.2) widely use several (usually up to eight) sEMG elec-
trodes arranged around the wrist. Matrices of small sEMG sensors, arranged with
high density (HDEMG) are more and more used in academia for prosthetic control,
providing very detailed information on the spatial distribution of EMG activity
across the muscle.

The entire variety of existing EMG electrodes permits to choose the character-
istics of the signal that are best adapted to the specific problem. Some solutions,
like intramuscular recordings, are less practical than others when considered in the
context of prosthetic control. However, with the constant advance of technology,
new long-term intramuscular acquisition systems emerge, making iEMG a more and
more realistic choice for myoelectric control. At the same time, the full potential of
conventional sEMG is not yet realized in the existing prostheses.

1.1.3 Motor control

Motor command originates in the motor cortex of the brain. Then, across several
intermediate levels such as midbrain, pons, and medulla, it ”descends” to the spinal
cord. Along this path, it is transformed into excitation/inhibition patterns, which
are applied to the MNs of the spinal cord in order to contract or relax specific
muscles, ultimately leading to the execution of the intended movement.

Force of muscle contraction is modulated by two processes: recruitment/de-
recruitment of MNs and variation of their firing rates. An MN is recruited (i.e.,
starts firing) when the amount of its excitatory input reaches a so-called recruit-
ment threshold, specific to each MN. After recruitment, the following increase of
the excitatory input leads to the increase of firing rate. That is, the motor system



16 CHAPTER 1. INTRODUCTION

(a) Spatial selectivity of surface electrodes (b) Spatial selectivity of intramuscular elec-

trodes

Figure 1.2: Schematic illustration of spatial selectivity of intramuscular and sur-
face EMG electrodes. Sensitivity areas are not in scale and may vary for di↵erent
electrodes. Muscle cross-section reproduced from Gray’s Anatomy [23].

regulates the muscle contraction force using excitatory input to its MNs.
The entirety of MNs that innervate a single muscle is called a motor neuron pool

(MNP). MNs belonging to the same pool di↵er from each other by their size. That
is, the physical size of MN’s body defines its behavior in response to the neural
input [24], as well as the relative portion of the muscle that it innervates. That
is, larger MNs tend to have larger recruitment thresholds, i.e., during an increasing
contraction they are recruited later than the smaller ones. This phenomenon is
usually referred to as Henneman’s principle [25].

The excitation-rate curve of MN is also defined by its size. Commonly used
experimentally supported assumption is that at each level of contraction, firing rates
of smaller MNs are greater than those of the larger ones [26, 27]. This phenomenon
is usually referred to as onion-skin principle, since, if traced on the same axis, firing
rates of smaller MNs tend to always stay above those of larger ones.

It is common to represent an MNP as a functional unit, in which all the MNs
receive a common excitatory input, dedicated to elicit the contraction of the corre-
sponding muscle [28]. Experimental studies show that variations of firing rates of
MNs are highly correlated during changes in the contraction force [26, 28]. That
is, there is some degree of synchronicity with which MNs change their firing rates.
In order to explain this phenomenon, C.J. De Luca and Z. Erim have proposed the
notion of common drive [28], i.e., the existence of a single source of excitation for
all the MNs of a pool.

At first, the common drive was associated only the with supra-spinal command,
i.e, was supposed to be determined solely by the motor cortex. Later, it was shown
that the firing rate correlation is influenced by proprioceptive feedbacks (muscle
spindles and Golgi tendon organs) [29, 30] as well as by antagonistic and agonistic
muscles contractions [31, 32]. Considering more recent models [33] of motor control
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+

Figure 1.3: Illustration of EMG decomposition process as inverse of model 1.1 and
Figure 1.1. Ûi(t) and Ĥi are the estimates of spike train and MUAP of i-th MU.

organization on the spinal level, it may be also influenced by inhibitory feedback
introduced by Renshaw cells.

Common drive is considered to be a physiological tool that facilitates the motor
control for CNS. It is assumed to provide centralized control over an entire MNP
instead of independent control over each MN individually [34]. In the modelling of
the motor control, the common drive is a useful notion that permits to define the
input of the MN pool as a time-varying scalar function [35]. In di↵erent studies, it
may be referred to as common synaptic input or net excitation.

As we can see, EMG is a function of spike trains produced by MNs and therefore
is a function of the excitatory input to the MNP. That is, EMG characterizes the
excitatory input that causes muscle contraction. In the case of amputation, this in-
formation, based on the knowledge of the biomechanical function of the muscle, can
be used to infer the user’s intent: which movement he or she wants to be performed
and with which sti↵ness or speed, which constitutes the problem of prosthetic con-
trol. The following section will provide the necessary terminology and classification
of existing prosthetic control approaches.

1.1.4 EMG decomposition

As we have described earlier in this section, muscle contraction is the result of
the spiking activity of MNs that innervate this muscle. Studies in such fields as
neurology, motor control, biomechanics and, lately, myoelectric control, require the
assessment of this activity. Direct recordings in vivo from MNs ’ somas or axons are
possible, but the complexity of such procedures limits their application in practice.
Instead, spiking activity can be inferred from the EMG signal.

Expression (1.1) serves as a good illustration of this process. That is, we observe
an amount of EMG signal Y (t), t 2 [0, T ] and we want to estimate the following: the
number of MUs that contribute to the signal N , their MUAPs Hi and spike trains
Ui(t). This process is termed the decomposition of EMG. Figure 1.3 illustrates is
with respect to the model in Figure 1.1.

At first, it may seem that there’s an infinite amount of solutions to this problem,
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i.e., combinations of Hi and Ui that satisfy the equation (1.1). However, there
are some physiology-based constraints that one can apply to the possible solutions.
First of all, spike trains Ui(t) exhibit sparsity and regularity. That is, the intervals
between spikes are much longer than the duration of a MUAP, and the spikes, during
steady or slowly varying contractions, appear in a rhythmic fashion. Second, the
forms of MUAPs do not change in time or change much slower compared to the
frequency of their appearance, so that they can be e�ciently tracked.

Decomposition can be accomplished either manually as well as semi- or fully
automatically. In the first two cases, such tools as EMGLAB [36] can be used 1.
As for the automatic decomposition, there exist numerous techniques, the most
influential of which will be covered in this section.

Historically, the first approaches addressed the decomposition of iEMG, that is
much less cluttered compared to sEMG. In [37] and [38], template matching and clus-
tering algorithms were applied to detected MUAPs in order to sort them into distinct
groups with no attempt of superposition decomposition. In [39], prior knowledge on
spike regularity is used and decomposition of at most two superimposed MUAPs is
proposed. Automatic detection threshold adjustment, sub-sample level MUAP form
matching, and peeling-o↵ of the greater MUAPs before subsequent re-decomposition
were described in the ADEMG technique [40]. Adaptive MUAP clustering technique
was proposed in [41].

Commonly acclaimed EMGLAB package [36] includes a modified version of
ADEMG, as well as more advanced algorithm for multichannel iEMG decompo-
sition MTLEMG [42]. The last one extracts features from the MUAP shapes and
clusters them in order to obtain initial estimates of MUAPs and MUs. Then, clus-
ters that have similar forms and matching firing timings are merged. Estimated
MUAPs are then subtracted from the signal and another detection and clustering
phase is performed. Finally, all MUAP estimates are used to resolve superpositions.

Other techniques are also worth mentioning, such as density-based clustering
[43], autoencoder-based MUAP feature extraction [44], genetic optimization for su-
perposition resolution [45], Viterbi algorithm for spike train estimation [46].

It is also worth mentioning that the problem of iEMG decomposition is very
similar to the problem of spike sorting in recordings of neuronal activity. Mostly,
spike sorting techniques are based on detection and clustering phases, are variate
in terms of the used features and clustering techniques. Examples of spike sorting
techniques may be found in [47, 48, 49].

sEMG decomposition became possible due to the integration of information from
multichannel recordings using blind source separation [50, 51, 52], including the
tracking of changing MUAPs [53], as well as other techniques [54, 55]. Due to its
practicality, sEMG-based decomposition becomes is used more and more commonly
in the studies of biomechanics and motor control.

Due to the large variety of existing automatic decomposition methods, it may be
di�cult to choose one for use in a particular study. However, this choice is usually led

1
If reader has no experience of manual EMG decomposition, a very clear interactive example

is given in http://emglab.net/emglab/Software/Software.php.

http://emglab.net/emglab/Software/Software.php
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by the accessibility of the decomposition technique, i.e., whether it is implemented,
optimized and distributed in form of an open-source program, or as an additional
package for commercial hardware or software. An example of the former is EMGLAB
[36], MATLAB package for visualization and computer-aided manual decomposition
of iEMG signals. Examples of the latter are OTBioeletronica’s Decomponi (CKC-
based decomposition of high-density EMG signals)1, Demuse Matlab package2 and
Delsys systems3.

1.2 Existing myoelectric control strategies

1.2.1 Myoelectric control classification and terminology

In order to clearly describe a prosthetic control strategy, a classification of existing
strategies is required. In this work, we use the system proposed in [56], which we
will partly provide here.

First, this classification system introduces the notion of motor function, which
is a distinct type of prosthesis’ movement, disregarding the speed or direction, e.g.
hand gripping/opening, wrist flexion/extension, etc. Motor functions can involve
one or several degrees of freedom (DOFs) of the mechanical part, e.g. single phalanx
flexion/extension, wrist rotations, etc.

This system classifies prosthetic control strategies basing on three aspects:

• Input sources, the set of input information sources which can be surface EMG
(sEMG), intramuscular EMG (iEMG), body or stump trajectory (e.g., from
an inertial measurement unit), user input via a smartphone application and
others;

• Intent interpretation, or how many motor functions the approach permits to
control in total, and whether they can be controlled simultaneously (simulta-
neous control) or just one at a time (sequential control) (see Figure 1.4);

• Activation profile, or whether the approach permits to regulate some mechani-
cal output, such as joint angle or angular velocity, in a continuous (proportional
control) or binary way (on-o↵ control)

Most of the existing myoelectric control strategies can be e�ciently described
by this classification [56]. Up to this date, the simultaneous proportional control
strategy with multiple motor functions stays the main challenge of academic studies
in the domain of myoelectric control. In the next sections, we will describe principal
control strategies presented in the literature.

1
https://www.otbioelettronica.it/en/products/software

2
https://demuse.feri.um.si

3
https://www.delsys.com/timeline/first-non-invasive-system-for-decomposition-of-surface-

emg-signals/
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Figure 1.4: Illustration of prosthetic control taxonomy on the example of wrist ex-
tension/flexion and pronation/supination. Green zones represent attainable control
commands.

1.2.2 Dual-channel amplitude-based myoelectric control strat-
egy

The first publication on myoelectric prosthesis dates 1948 and is made by physics
student at Munich University, Reinhold Reiter [57]. This potentially revolutionary
concept didn’t achieve clinical nor commercial use [58] until the year 1960 when
Kobrinsky [59, 60] has proposed a more practical design, which became possible due
to advances in transistor technology. This device was capable of performing two
functions: closing and opening the hand, both triggered by activity in one of two
EMG electrodes placed above a pair of antagonist muscles groups of the forearm:
flexors and extensors of the wrist and fingers. EMG was amplified, low-pass filtered
and rectified to produce an estimate of the signal envelope, which was then compared
with a certain pre-defined threshold in order to trigger either closure or opening of
the gripper. The controller was also capable of detecting simultaneous contraction
in both muscles and interpreting it as a command to stop the motion.

Even nowadays, many commercial prosthetic systems are still based on this strat-
egy [61, 62]. Improvements mostly consider the mechanical part of the prosthesis:
its weight, robustness and wider range of possible movements. The control strategy,
on the other hand, undergone only a few modifications. Current strategies provide
the user with a choice among several grasps and gestures, although the switching be-
tween them is still triggered by the simultaneous contraction in both muscle groups.
Having chosen a gesture, the user may adjust it by the contraction of one of the
two muscle groups, e.g. flexion/extension for closing/opening the hand (see Figure
1.5). According to the classification provided above, this is a proportional control
strategy with a more restricted sequential approach. Such a technique is robust and
easy for the user to learn. However, it requires to remember which motor function
is currently chosen, as well as the number of co-contractions needed to activate the
next one.
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Figure 1.5: Graph representing the classic dual-channel myoelectric control strategy.
The user switches to the next motor function (grip) in the graph by performing a
co-contraction of antagonistic muscle groups. While a function is chosen, the user
can adjust it to the current task by contraction one of the muscle groups.

1.2.3 sEMG pattern recognition myoelectric control strat-
egy

The first attempts to avoid using the cyclic graph control were based on an increased
number of sEMG channels in combination with machine learning techniques. The
family of such strategies can be referred to as myoelectric pattern recognition. Then
involve placement of several electrodes around the forearm (usually around 8) either
symmetrically, or above specific muscles (targeting) [63], signal windowing, feature
extraction, and subsequent supervised classification.

The variety of all possible hand movements is discretized to form an acceptable
number of classes ([56, 64]). These classes are designed to cover the most important
motor functions and, at the same time, to be distinguishable by a classification
algorithm. The most frequently used classes are cylindrical grasp, hand rotations,
wrist flexions and extensions, radial and ulnar deviations ([65]).

In order to apply classification techniques to EMG, one should first reduce its
dimensionality. This is usually achieved by means of feature extraction and feature
selection. Features are scalars or vectors that represent temporal or spectral pa-
rameters of the signal, taken in a short window (usually not longer than 250 ms).
The number of feature types presented in the literature is large ([64]), and it is
shown that some of them are more e↵ective than others when applied to myoelectric
pattern recognition [66].

Feature extraction permits to encode various aspects of the signal, such as energy,



22 CHAPTER 1. INTRODUCTION

amplitude, spectral band, etc. It is hard and in most cases not possible to bond
these parameters into one physiology-based model. Thus, multivariate statistical
analysis and machine learning were considered to be suitable techniques for finding
such models automatically. Numerous approaches were investigated during last two
decades: Linear Discriminant Analysis [67, 68], Neural Networks [69] and Support
Vector Machines [70].

This strategy is essentially a sequential on-o↵ control. Its advantage over the
previous one is that the grip graph, compared to Figure 1.5 is fully connected.
That is, each grip or gesture is accessible from any other grip. However, the main
challenge for this approach is the fact that surface electrodes, that provide the
input for pattern recognition, shift during daily activities, which causes a drop of
the recognition accuracy since patterns are learned in the original position of the
electrodes [71, 72].

It took almost three decades for this strategy to be recognized and implemented
by companies producing myoelectric prostheses. At this moment, it is being imple-
mented in commercial prostheses [73], [74]. Rate of acceptance of such devices by
the amputees should be analyzed in the future. This is important since even the
classic two-electrode strategy sometimes fails to satisfy the user when exposed to
such factors as variable posture, sweat, and fatigue [75].

1.2.4 Other sEMG-based myoelectric control strategies

A strategy for simultaneous and proportional control of at least two motor functions
was presented in [76]. This approach supposes that each motor function is regulated
by a single excitatory input to the synergistic muscles that actuate it. Then, the
authors propose a model that links these inputs to the sEMG signal in electrodes
placed in the vicinity of the muscles. The model parameters are estimated from
training data using non-negative matrix factorization. Training data consists of the
motor function values and simultaneously acquired sEMG.

This method, since it is based on sEMG, may su↵er from the electrode shifts
and fatigue (as for the variation of contraction force, we note that it is included in
the model). However, authors have provided a separate study [77] on that cause
and, using high-density electrode matrices, have shown that both longitudinal and
transversal shifts do not significantly a↵ect the accuracy of this control strategy.
This method was tested on a commercial prosthesis and have provided considerable
acceleration on classic motor tests1 .

Another variant of pattern recognition and non-negative matrix factorization
arises from the use of high-density electrode matrices. As an example, for pattern
recognition, such features as spatial correlation, specific to these kinds of recordings,
are extracted and classified [78]. Model for non-negative matrix factorization can
be adapted to high-density electrodes [77].

Further improvements of existing strategies can be achieved using physiology-
based modelling of how the user’s intent transforms into sEMG in each of the avail-

1
A video example available under this link.

https://www.youtube.com/watch?time_continue=33&v=Me7h4EHQVYc
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able channels. In [79], a neuromusculoskeletal model defined to, first, transform
sEMG features to muscle contraction forces and, second, transform muscle contrac-
tion forces to a set of feasible prosthesis movements. In order to collect calibration
data for the model, the user is asked to mimic prosthesis movements with his or her
phantom limb. As authors suggest, neuromusculoskeletal modelling permits to con-
straint the derived intent to a set of feasible movements and provide more natural
control to the user.

To conclude, at the moment sEMG stays the only choice for interfacing the user’s
motor system in commercial prostheses. Electrode shifts, being one of the most
challenging issues, can in some cases be countered by choosing specific electrodes
and control strategy [77]. The lack of spatial selectivity in sEMG makes it impossible
to record solely from target muscles (so-called cross-talk), which complicates the
building of the control model. Incorporation of the cross-talk into the model, as in
non-negative matrix factorization approaches [76], can slacken this problem. Thus,
the full potential of sEMG-based strategies presented in the literature is yet to be
realized in market prostheses.

However, cross-talk and electrode shift problems can also be alleviated by using
a di↵erent acquisition approach, which is, for example, intramuscular EMG. In the
following section, let us consider existing applications of iEMG in prosthetic control.

1.2.5 iEMG-based myoelectric control strategies

Intramuscular EMG (iEMG) is an invasive method that involves the placement of
the electrodes either subcutaneously or in the interior of the muscle tissue. In the
prosthetic control perspective, iEMG has a number of advantages compared to much
more conventional sEMG, such as high spatial selectivity, access to deeper muscles
and lesser exposure to ambient noise and interference.

High spatial selectivity permits to record from a target muscle, avoiding interfer-
ence from the surrounding ones. As we have mentioned earlier, the last is a common
problem of sEMG-based control strategies. Moreover, intramuscular electrodes per-
mit to acquire iEMG from deeper muscles, such as pronator or supinator of the
hand.

Despite the aforementioned advantages, iEMG is considered impractical for pros-
thetic control due to its invasive nature that brings risks of infection, discomfort,
and pain to the user. However, there exists a number of studies [18, 19, 20, 21, 22]
that propose to surgically implant wireless acquisition system into the muscle. These
implantable myoelectric sensors (IMES) usually have cylindrical form, with a length
of 10 mm and diameter of 3 mm [18]. They consist of a single-channel analog in-
strumentation amplifier, pass-band filter, analog-digital converted, and a magnetic
coil for the wireless battery recharging and iEMG data transmission.

In such systems, as it is shown in [21], the total sampling frequency shared by all
channels may reach 14 kHz. A high sampling frequency is of interest when complex
iEMG processing approaches are used, such as decomposition. Alternatively, as in
a more recent study [22], the signal can be rectified and low-pass filtered on the
IMES and then transmitted with a much lower sampling frequency (e.g., 67 Hz in
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[22]). This is an optimal solution for strategies where rectified sEMG is used as an
estimate of muscle contraction force.

Rectified and low-pass filtered EMG was already used as an estimate of the
proportional intent in studies on iEMG applied to prosthetic control. For example,
[80] associate each motor function with one single iEMG channel and calculates the
proportional input for the prosthesis as a low-pass filtered rectified signal. In [81], a
slightly di↵erent approach is proposed, in which the proportional input is estimated
using the di↵erence between the rectified signals from two antagonistic muscles.

However, the small acquisition area of intramuscular electrodes can also be a
disadvantage in this case. This is due to the fact that observed muscle fibers may
not represent the muscle as a whole [82]. The same authors [83] propose to use
an artificial neural network to establish a non-linear regression model that relates
iEMG features to the proportional input.

To conclude, in prosthetic control, such advantages of iEMG as spatial selectivity
and access to deep muscles, come together with the need for complex technologi-
cal solutions, such as chronic implants with wireless data transmission. However,
the last ones are becoming more and more available since the technology is being
explored and improved by several independent research and engineer groups.

1.2.6 Existing decomposition-based control strategies

A real-time decomposition of hdEMG and subsequent gesture classification is pre-
sented in [84]. The decomposition is achieved using an iterative version of blind
source separation technique [85], reaching the decomposition of approximately up
to 15 MUs. Resulting individual firing rates are then low-pass filtered and passed as
an input to a support vector machine classifier, recognizing four di↵erent gestures.

The approach proposed in [86] decomposes a high-density EMG (hdEMG) of a
TMR1 subject using the convolution kernel compensation algorithm [50]. It groups
decomposed MUs into four categories depending on their approximate location in
the observable part of the muscle, corresponding to four quadrants of the HD elec-
trode. Their firing frequencies, along with their categories are then used as features
for a support vector machine classifier. Alternatively, in this study they use a neu-
romusculoskeletal model, similarly to the one we have mentioned in Section 1.2.4,
that is able to transform decomposed spike trains into joint torques of a calibrated
musculoskeletal model, that then are projected to plausible movements of the pros-
thesis.

In [87], it is proposed to estimate the common input to a motor neuron pool by
combining its individual estimates obtained from the decomposed spike train of each

1
Targeted Muscle Reinnervation (TMR) [12], a surgical technique consisting of, during trans-

humeral (shoulder) amputation, recovering the nerves of the amputated limb and placing them in

an intact muscle, such as pectoralis major (chest). During the first months after the operation, the

relocated nerve innervates the host muscle. Intended movements of the phantom limb, in that case,

result in the contraction of host muscle with coincident EMG generation, which can be captured

and analyzed for prosthetic control. TMR is an example of the more general concept that perceives

the muscle as a biological amplifier of the spinal command.
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single motor neuron. The authors use the common assumption that motor neurons
of one pool receive a common input that regulates their joint production of muscle
contraction force and, therefore, the mechanical parameter of the movement (in
their case - the angle of wrist rotation). They directly replace the common input by
angle measurements and model the angle-spike relationship as linear. Since angle
estimates obtained from di↵erent motor neurons will not be identical due to the
presence of individual inputs to the MNs, and decomposition errors, the authors use
median value across the pool as a global estimate of the angle.

Despite not being directly related to prosthetic control, [88] studies the rela-
tionship between smoothed composite spike train (CST1), as a measure of neural
drive to the muscle, and contraction force of a muscle. They suggest that CST is
better correlated with the force, especially at higher frequencies, than convenient
the integrated sEMG.

While previously mentioned approaches work with hdEMG decomposition pro-
viding spike trains of 10 up to 20 MNs, [89] aims to infer the contraction force from
a smaller number of MNs (1 to 10). Such numbers of decomposed trains are usu-
ally observed in the decomposition of fine-wire or needle iEMG at low contraction
forces. The authors propose to, first, estimate force-rate relationships for all decom-
posed MNs, then to use the inverse of these relationships to estimate force from each
currently observed inter-spike interval.

This approach can be applied either to the estimation of a single muscle con-
traction level or to the proportional control of an entire motor function. Former
will be of use in such control strategies as [79], where the contraction level of each
muscle feeds a musculoskeletal model that then produces motor commands for the
prosthesis. The latter application will be of use when EMG of only one muscle of
a synergistic muscle group is being observed, so that the neural drive to the muscle
group is estimated from this single muscle.

1.3 Problematic of decomposition-based myoelec-
tric control

Studies of decomposition-based control strategies appear much rarer compared to
those on pattern recognition or other sEMG-based approaches. This is due to the
high complexity of the decomposition task itself, both in terms of implementation
di�culty and of computation power that this procedure demands.

Prosthetic applications require that all the processing applied to the signal should
be performed online with a maximum delay of about 250 ms [90]. Up to this mo-
ment, there’s only three existing real-time full decomposition approaches [91, 84, 92]
that can provide decomposition with such a delay. The first is a recursive version
of the convolution kernel compensation algorithm [50]. It is able to decompose an
experimental signal acquired by a 6 ⇥ 5 matrix of sEMG electrodes in real-time.

1
CST (cumulative or composite spike train) is the spike trains of all decomposed MNs summed

up into one train as if it was produced by one single neuron. It usually serves as an estimate of

neural drive or excitation applied to the motor neuron pool.
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More specifically, their signal was generated during a 10% MVC isometric contrac-
tion of the tibialis anterior muscle. The algorithm was capable of decomposing 4±2
MUs, correctly identifying at least 90% of their discharges. The second is a recursive
version of blind source separation method [85], achieving decomposition of approx-
imately up to 14 MUs at contraction levels of up to 30%MVC on a standard PC,
using a matrix of 64 electrodes. Experiments were conducted on tibialis anterior
and flexor digitorum superficialis muscles.

Approach presented in [93] is based on [94] and is being constantly developed
by our team. It is based on state-space modelling of the MNs spiking activity,
sampling of possible spiking scenarios and Bayesian filtering of the state vector.
The advantages of this approach compared to the two previous ones are the use
of a single-channel signal, the capability of tracking the slowly-varying changes of
MUAPs’ shapes and adaptation to the additive noise level. Also, single channel
intramuscular EMG is potentially better adapted to the variety of muscle geometries,
while approaches based on hdEMG tend to perform worse on muscles whose fibers
are not parallel to each other and to the skin.

Originally not adapted to changes in the number of active MUs, our approach
was recently modified to decompose iEMG of dynamic contractions [93]. Next step
of its development [92] is a GPU1-based implementation permitting to perform real-
time decomposition of up to 10 concurrently active MUs during dynamic contraction
with global performance scores reaching 95%.

All of the presented methods are limited to the decomposition of a relatively
small number of MUs (up to 6 in [91], 10 in [92] and 14 in [84]), which questions
their applicability in prosthetic control. That is, these numbers are small compared
to the total numbers of MUs even in small muscles, such as first dorsal interosseous
(120 MUs [95]). Therefore, it is a question, whether such small number of MUs can
be a representative subset of the entire MU pool, compared to, e.g. the rectified
sEMG that integrates the activity of tens and hundreds of MUs.

In the case of [92], the number of decomposed MU is limited both by the avail-
able computational power and by the acquisition volume of the intramuscular EMG
electrode. An increase in the number of decomposed MUs by running several inde-
pendent instances of the algorithm on several spaced out electrodes does not seem
viable, at least for prosthetic control applications. This is due to the fact that
prosthesis-embedded GPU-based decomposition2 of one single channel is a challeng-
ing task by itself and is not yet achieved. This leads us to the problematic of this
research, which is: how to estimate the level of muscle contraction or of the neural
drive to the muscle, using a very limited number of decomposed MU ? More detailed
reasoning about this problem will be given in the following section.

1
GPU - Graphics processing unit, or graphic card. Originally destined to PC screen image

rendering, they are now widely used for parallel computations.
2
Possible approaches to this task may involve recently developed Nvidia Jetson Nano, a de-

veloper kit for embeddable GPU applications.

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
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1.4 Problematic of this research

1.4.1 Potential advantages of decomposition-based myoelec-
tric control

EMG is a function of not only neural command to the muscle. That is, it is influenced
by the form and position of the electrode, electrical properties of the conducting
medium, additive noise and condition of the muscle fibers, such as fatigue. All these
factors can vary in time and their influence on the EMG signal is hard to predict or
compensate for.

The decomposition of EMG breaks the signal down into its constituent spike
trains and MUAPs, naturally separating electrode-dependent aspects of the signal
(MUAPs) from the command-dependent one (spike trains). Thus, spike trains are
free from disturbances that are not related to the neural command, such as electrode
shifts, skin properties, and additive noise. This is with the exception of fatigue,
which may a↵ect both the MUAPs and spike trains.

Previously presented real-time decomposition algorithm [93] is capable of track-
ing slow variations of MUAPs that can be caused either by electrode shifts or by
gradual changes in the conducting medium properties. Moreover, it is capable of
adapting to the changes in the number of active MUs, thus providing a decompo-
sition of dynamic contractions. These features are vital for establishing a stable
decomposition of iEMG in prosthetic devices.

We believe that this algorithm, having strong mathematical formulation, can
be further adapted and optimized in order to fit very restrictive requirements of
embedded computing. In the future, with a stable on-board real-time decomposi-
tion, prosthetic control systems will be able to provide much finer simultaneous and
proportional control over multiple motor functions.

1.4.2 Challenges of decomposition-based myoelectric con-
trol

Along with the aforementioned advantages, decomposition-based myoelectric control
comes with challenges that need to be addressed in order for it to find an application
in prosthetics. These challenges come from the limitation of the existing real-time
decomposition algorithm:

• Decomposition requires much larger computational power than current pros-
thetic devices provide;

• Available computation power in embedded applications limits the number of
decomposable MUs, thus making only low-range contractions ;

• Decomposition is prone to errors;

Also, a number of challenges come from the intramuscular nature of the signal:

• Impracticality of iEMG in daily use;
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• Small portion of the muscle observed by an intramuscular electrode may not
represent the muscle as a whole;

In previous sections, we have already mentioned ways to overcome these chal-
lenges, let us list them here. The impracticality of iEMG in daily use may be tackled
by the usage of chronic intramuscular electrodes, such as ones described in [21]. Nec-
essary on-board computational power can be achieved by use of GPUs dedicated for
embedded applications, such as that of NVidia Jetson Nano. Errors of decompo-
sition should be accounted for by an appropriate modelling that includes the most
frequent errors, such as missed spikes, masking of small MUs and others.

The small size of the observed muscle volume and the limited number of decom-
posed MUs constitute, in fact, one single issue: whether decomposition can provide
su�cient information on the intent. In this work, we aim to propose a physiology-
based intent estimation model that extracts the maximum information from the
available decomposition.

1.4.3 Physiological basis for approaches that use small num-
ber of decomposed MUs

There are several physiological phenomena that support the possibility to establish
a proportional control based on the decomposition of a limited number of MUs,
detected in a small region of the muscle observable by an intramuscular electrode.

First, according to [96], fibers of di↵erent MUs are highly intermingled. That
is, in any location in the muscle, it is guaranteed that more that one MU will be
represented by their muscle fibers in the recording volume of the electrode. Thus,
they will contribute to the signal and will be decomposable, giving multiple sources
of information on the intent.

Second, it is known [26, 27] that each MN has its own force-rate curve, i.e., the
relationship between its instantaneous firing rate and the current force of muscle
contraction. One can model this relationship and fit its parameters using the de-
composition of contraction with a known profile (i.e, guided contraction). Then, for
a new contraction, one can obtain the estimates of the intended contraction force by
passing decomposed firing rates into the inverse of force-rate curves. These estimates
will contain noise due to the existence of individual neural inputs to the MNs. How-
ever, supposing that these inputs are independent (that is, all the correlated part of
the input is comprised in common drive), these estimates can be e↵ectively merged
into one in order to produce a global estimate of the intended contraction force.

As we have mentioned earlier, MNs of a motor neuron pool di↵er in sizes, which
define their recruitment thresholds, force-rate curves, and contribution to the muscle
contraction force. Obtaining a global estimate of the contraction force from only
small MNs may not be e↵ective at higher contraction forces since their force-rate
curves may saturate [27]. On the other hand, having only large MNs , that are
recruited at high contraction forces, will result in the impossibility to estimate the
intent at lower ones. That is, the diversity of sizes of decomposed MNs is of interest.
Experimental study [97] shows that fibers innervated by both large and small MNs
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are distributed randomly in human muscles, with no tendency of forming isolated
clusters of either type. Provided with that, one can count that both small and large
MNs will be represented in the decomposition, which, according to the authors’
experience, is usually the case in fine-wire and needle recordings.

1.5 Conclusion

Existing myoelectric control strategies utilize di↵erent modalities of EMG acquisi-
tion and of extracting intent from the signal. Most of them are based on surface
recordings and feature-extraction approaches with subsequent fitting of a general
machine learning model. Others attempt to establish a model-based approach, aim-
ing to infer and interpret user’s intent using knowledge about physiology and motor
control. In order to access the information on neural input to a particular muscle,
EMG decomposition can be used. It provides the most direct representation of the
neural input, not contaminated with intent-unrelated disturbances such as electrode
type or position.

This makes EMG decomposition a promising source of information in prosthetic
control. However, the last requires the intent estimation to be performed in real-
time, with the maximal delay of approximately 250 ms. This requirement becomes
extremely challenging when considering EMG decomposition. At the moment, there
are only two decomposition algorithms [91, 92] that meet it, one of which has the
advantage of being adaptive to the time-varying characteristics of EMG [93].

At the current development phase, use of [92] requires intramuscular EMG
recording. Above, we have listed some of the existing techniques that may pro-
vide iEMG in daily prosthetic use. The use of decomposition also brings in the
requirement of high on-board computational power. As it is shown in [92], compu-
tational power is the limiting factor to the number of simultaneously decomposed
MUs. This work presents a decomposition of up to 10 MUs using GPU Nvidia Tesla
K80, whose dimensions make its direct application in prosthetic control impossible.

Anticipating this method’s further acceleration on smaller computational pow-
ers, we address the problem of the small number of decomposed MUs in advance.
Besides, other techniques of real-time EMG decomposition may be proposed in the
near future, but the limitation of the small number of MUs will likely be still present.
The possibility of decomposition-based prosthetic control is supported by some prop-
erties of humans’ motor unit geometry and of motor control, provided in Section
1.4.3.

However, before addressing the iEMG decomposition, we will first describe our
works on the sEMG. In order to achieve a better understanding of its limitations,
as well as its acquisition and processing techniques, we have conducted two exper-
imental studies. The first consisted of a classic online gesture recognition based on
multichannel sEMG, feature extraction and classification. The second sough the
physiological markers contained in sEMG that would permit to detect the multiple
sclerosis in humans. Both studies will be presented in Chapter 2.

In the remainder of this work, we will cover the probabilistic models that incor-
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porate the recruitment thresholds and force-rate curves of MNs in order to produce
a global estimate of the user’s intent expressed in form of contraction force or joint
angle (see Chapter 3). Then, in order to study the properties of the proposed con-
trol model, we will establish a simulation of muscle contraction (see Chapter 5) and
of accompanying iEMG signal (Chapter 4. Results for both simulated and experi-
mental data will be presented in Chapter 6. Chapter 2 will describe our studies of
sEMG, applied to gesture recognition and diagnostics of multiple sclerosis.
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Chapter 2

Surface EMG studies. Gesture
classification and multiple sclerosis
diagnosis.

2.1 Introduction

This chapter describes two studies on sEMG that we have conducted during this
thesis. First study realizes a classic sEMG pattern recognition approach to the
intended gesture inference and tests its precision. The second seeks the EMG-
specific physiological markers related to the presence and progression of multiple
sclerosis (MS) in humans.

In both studies, we used MYO armband by Thalmic Labs Inc as a signal ac-
quisition system. This chapter will start with the description of the armband’s
characteristics, its strong and weak points. Next, we will separately describe each
study in Sections 2.2 and 2.3. Conclusions on the two projects, as well as general
conclusion on the device, will be given at the end of the chapter.

MYO™ armband is a device developed by Thalmic Labs Inc.™. It integrates
eight surface EMG (sEMG) sensors (see Figure 2.1) and an inertial measurement
unit (IMU). sEMG signal is sampled with eight bit precision at frequency of 200 Hz
and is wirelessly transmitted to a PC using Bluetooth Low Energy (BLE) protocol.
Its default software is capable of recognizing five di↵erent hand gestures based on
EMG, while IMU sensor provides pointer control. In academic studies, this device
was applied in prosthetic control [1], sign language gesture recognition [2] and control
of robotic manipulators [3], [4].

The first study addresses the development of a testing system for pattern-recognition-
based strategies of myoelectric control. The following section describes the structure
and components of the proposed system, as well as a process of its testing. The last
included an acquisition of an accompanying EMG, using Myo™ armband by Thalmic
Labs Inc.™, for six di↵erent gestures (classes) from seven subjects, as well as its pro-
cessing, feature extraction, training the classifier and further real-time validation.
The results show that system provides acceptable classification rates.
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Figure 2.1: MYO armband by Thalmic Labs Inc., adapted from from the o�cial
website

.

The second study used the same device to acquire EMG and IMU data from
both multiple sclerosis and control subjects in order to provide a diagnostic tool
based on EMG features. The Multiple sclerosis (MS) is a major auto-immune dis-
ease that is the leading cause of non-traumatic impairment of the central nervous
system (CNS) in young adults. Successful treatment of MS patients depends on
accurate tools for both the MS diagnosis and the disability progression. In current
and upcoming studies the authors aim to explore the capabilities of applying a com-
mercial electromyographic and inertial sensor, coupled with a multichannel signal
processing tool, to standard neurological examination of MS progression. In this
pilot study we formulate a two-class ”healthy control” - ”having MS” classification
problem. A dataset of electromyographic signals and inertial sensor measurements
from 71 individuals (31 MS patients and 40 healthy controls) was acquired during
standard neurological examination routine. Temporal and spectral features of the
signals were extracted in order to train and validate a classification model. Finally,
a Support Vector Machine classifier was obtained giving AUROC = 0.94, 95% CI =
[0.88, 0.99]. We propose a set of signal descriptors that correlate with the objective
components of the neurological examination. The proposed signal acquisition and
processing technique, being easy to integrate into the traditional neurological exam,
may have high potential for aiding in quantifying MS progression.

2.2 Real-time gesture classification using commer-
cial EMG armband1

2.2.1 Introduction

Myoelectric control, i.e. derivation of user’s intent from accompanying electromyo-
gram (EMG) emerges fast during last three decades. It finds its applications in
human-machine interfaces, such as virtual reality ([6]), electrical wheelchairs ([7]),

1
This section is based on the authors’ paper [5]
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exoskeletons ([8]) etc. Another challenging application of myoelectric control is
prosthetics, especially hand prosthetics due to its importance for amputees’ rehabil-
itation and complexity of the problem.

The most of the existing intent derivation algorithms are based on pattern recog-
nition. In this approach, the set of all possible hand gestures (including its positions
and velocities) is separated to form a number of discrete subsets, or classes ([9, 10]).
These subsets are chosen to cover gestures that are considered to be the most im-
portant and, at the same time, that they would be distinguishable by a pattern
recognition algorithm with a given accuracy. The most frequently accepted classes
are cylindrical grasp, hand rotations, wrist flexions and extensions, radial and ulnar
deviations ([11, 12]).

To apply classification techniques to EMG one should first reduce its dimension-
ality. This is usually achieved by means of feature extraction. Features are scalars or
vectors that represent temporal or frequency characteristics of the signal. Number
of their types presented in the literature is large ([13, 10]), and it is shown that some
of them are more e↵ective that others ([14, 13]).

Once features are extracted, they are arranged to form a so-called feature vector.
This vector is then used as an input for a classifier. Classifiers mostly used in related
studies are linear discriminant analysis ([15]), neural networks ([16]) and support
vector machines ([17]).

Performance of pattern-recognition-based control algorithms presented in the lit-
erature is usually higher than 98% (in terms of correct classification rate) even for
large sets of classes. But despite all the advances the application of this approach to
human-machine interfaces is developing slowly, especially when commercial prosthe-
ses are considered. There are several reasons for this situation ([18]), among which
are lack of adaptivity and robustness, absence of feedback and others. Finally, the
problem is aggravated by high costs of myoelectric prostheses which varies between
20.000 and 100.000$ [19].

The interest of this study was to develop a testing system for pattern-recognition-
based control strategies with a possibility of real-time operation. Generally, such
systems include EMG acquisition and data transmission hardware, a toolbox for
feature extraction and signal processing functions, an interface that automates the
test, and configurable classifier. To test the presented system, an experimental setup
was developed including signal acquisition, training and testing procedures, subject
position, etc. Details of realization are covered in the next section.

Several analogous systems are presented in the literature, mostly concerning
custom-made acquisition systems, which opens way to higher sampling rates and
problem-oriented design. In some systems such advantages lead to higher number of
classified gestures ([20]) or reduced number of channels ([21, 22]). But at the same
time a custom design is di�cult to reproduce only by following the related paper.
In contrary, this study is based on an acquisition system that has a generic design
and is easily accessible in many countries. System presented in ([23]) meets this
demand although it lacks a clear step-by-step explanation of data processing part.

The remainder of this section is organized as follows. Section 2.2.2 introduces
the equipment and software used in the study. Section 2.2.3 describes signal process-
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ing and classification methods. Section 2.2.5 presents several experimental results.
Section 2.2.6 o↵ers conclusions and suggestions about future work.

2.2.2 Experimental equipment and protocol

Equipment

In this study, to acquire electromyogram (EMG), we used MYO™ armband. To
collect, process and manage the database of received sEMG, an environment was
created on a base of MATLAB™. It consists of a graphical user interface and tools
for database management, signal processing and experiment planning.

To transfer data from o�cial standard Myo™ armband software Myo Connect to
MATLAB™, the Myo SDK MATLAB MEX Wrapper ([24]) was used. It is a library
that converts original C++ functions of MYO SDK into MEX files callable from
MATLAB™.

Experimental Protocol

This study involved seven normally limbed right-handed subjects: two females and
five males all are 23� 28 years old. One of them was familiar with the experimental
setup while the others were inexperienced.

During the experiment, each subject sit on a chair wearing the armband on
the right forearm. During signal acquisition, subjects were instructed to keep the
angle at the elbow joint at approximately 90°. Between sessions, the subject could
hang the hand down or put the elbow carefully on the table avoiding shifting of the
armband.

The armband was placed around the proximal portion of the forearm. Specifi-
cally, the lateral side of the armband coincided approximately with the middle of
the radius bone. The plane passing through centers of all electrodes of the armband
was perpendicular to the forearm and electrodes were aligned with each other. At
the beginning of the experiment the position of the armband was contoured by a
thin black marker, in order to keep trace of its starting position.

Five hand gestures were chosen for classification in this study (Fig. 2.2): cylin-
drical grasp, lateral grasp, spread fingers, pronation and supination plus resting
position, having six motion classes in total.

The experiment consisted of three major phases. The first one was acquiring
training set and training the classifier. The second phase included the online vali-
dation of the gesture classification. The third one consisted of taking the armband
o↵ the hand and putting it back on its position, using previously drawn contours,
and repeating the second phase.

As was already mentioned, a software based on MATLAB™ was developed to
maintain the experimental process. It automatically instructed the subject when
and which gesture to perform.

The training set acquisition was divided in several similar trials, each containing
short sessions (about ten seconds each) of each gesture execution. Signal acquisition
always started three seconds after the subject reached target position of the hand.
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(a) Cylindrical Grasp (b) Lateral Grasp (c) Pronation

(d) Supination (e) Open hand (f) Resting hand

Figure 2.2: Grasp types or classes used in this study.

That ensures the acquired EMG be in steady-state. Subjects were also instructed
to maintain a medium force of contraction, but no constraints were set on it and no
monitoring had place.

During the online validation part, sEMG signal was processed and classification
was done in real-time with constant delay of about 250 ms which is considered
acceptable in this type of prosthetic control ([25]). It is important regarding the
fact that this system is to be used later in real-time control of a robotic hand.
Results of online classification were provided to the subject while he was executing
the gestures.

The overall duration of the experiment was about 35 minutes which included
ten minutes for data acquisition, five minutes for classifier training, five minutes for
each online validation and ten minutes for the equipment setup and instructing the
subject.

2.2.3 Feature extraction

In order to use EMG in classification, one should first compress it to reduce its
dimensionality and discard irrelevant information. This process is usually referred
as feature extraction. Many types of EMG features are presented in the literature
([10]), and for this study computationally the most simple and often used ones were
chosen ([26]): mean absolute value (MAV), zero crossings (ZC), slope sign changes
(SSL), waveform length (WL) and autoregressive coe�cients (AR). All these features
except AR are time-domain features, whereas AR was added to represent spectral
characteristics of the signal. All these features are calculated as follows ([27]).



44 CHAPTER 2. SURFACE EMG STUDIES.

(a) Signal windowing without overlap-

ping

(b) Signal windowing with overlapping.

Figure 2.3: Two types of signal windowing: (a) - without overlapping, (b) - with
overlapping. PT stands for processing time for a signal segment within one window.

Mean Absolute Value.

The Mean Absolute Value (MAV) feature provides an estimate of mean energy of
the signal x in a window containing N samples. It can be formulated as:

MAV =
1

N

NX

k=1

|xk| (2.1)

where:

• xk is the k-th sample in the window.

Waveform Length.

Waveform Length (WL) feature is the cumulative length of the signal waveform in
a window of N samples. Its formula is:

WL =
NX

k=2

|�xk| where �xk = xk � xk�1 (2.2)

It characterizes the complexity of signal waveform in a window.

Zero Crossing.

The Zero Crossing (ZC) feature counts the number of times the waveform passes by
zero. In practice, a threshold must be applied to this feature in order to suppress
noise-induces crossings. Considering threshold T , a signal window containing N

samples, and taking two consecutive samples xk and xk+1, there is a zero crossing
between the two if the following condition is satisfied:
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gZC(xk) =

(
1 if xkxk+1 < 0 and |xk � xk+1| � T

0 otherwise
(2.3)

For this study a threshold of 3% of maximum signal level was applied. This level
was defined by the acquisition equipement. Thus, the ZC feature is defined as:

ZC =
N�1X

k=1

gZC(xk) (2.4)

This feature summarises frequency-related properties of the signal.

Slope Sign Change.

The Slope Sign Change (SSC) feature counts the number of times the signal slope
changes its sign. The same threshold as for zero-crossings feature was applied to
suppress noise. Given threshold T , three consecutive samples xk�1, xk, and xk+1 of
a signal segment with N samples, change of slope sign condition is:

(xk � xk�1) (xk � xk+1) � T (2.5)

Autoregressive Coe�cients.

The Autoregressive (AR) process models time-varying stochastic processes, like
EMG signals, as auto-regression time series. The output variable of the AR model
is a linear combination of its own previous values plus gaussian white noise. It can
be defined as:

xk =
sX

i=1

ai xk�i + wk (2.6)

where:

• ai are the autoregressive coe�cients;

• s is the order of the AR model;

• wk is the residual term (gaussian white noise).

Autoregressive coe�cients can be estimated by fitting the AR model to the time
series using least squares procedure or method of moments (Yule-Walker equations).

Window overlapping

Since the processing time in online validation was found to be less than accepted
processing delay, an overlapped windowing was applied to the signals. Overlapping
permits to produce more classifications during the chosen processing delay and then,
applying a majority voting to them, increase the stability and accuracy of control
([10]). The principle of overlapped windowing is illustrated on Fig. 2.3. For this
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study, processing delay of 250 ms and overlap of 125 ms were chosen, making the
system produce classification results each 125 ms.

Features listed above were extracted from each signal segment, which produced
a vector of ten elements: four scalars features (MAV, ZC, SSL, WL) plus six AR
coe�cients. Having eight sEMG channels, one obtains a global vector of 80 features.

To reduce such a high dimensionality of feature vector, principle component
analysis (PCA) was applied. It is a common technique which consists of converting
the initial dataset into a set of uncorrelated values using orthogonal transformation.
As a result, nine principal components representing 97% of total variance were ex-
tracted. These components were mostly spanned by WL (waveform length), ZC
(zero crossing) and SSC (slope sign changes) and only four first AR coe�cients were
contributing in this set. Obtained principal components were used to project feature
vectors and decrease their dimensionality from 80 to nine.

2.2.4 Gesture classification

Choice of the classification model

As a classifier model for this study, support vector machine (SVM) with round-
based kernel function (RBF) was applied. SVMs are supervised learning models
that separate training samples into two classes in a way that the marge between
them is maximized. Associated problem is formulated as a regularized quadratic
programming with linear inequality constraints for which there are e↵ective methods
for finding solution. When classification problem is highly non-linear, so-called
kernel trick is used which is an implicit projection of training dataset to higher-
dimensional space where the classes may have better separability. Since SVMs use
matrix of pairwise scalar products instead of the dataset itself, replacing the standard
scalar product by a kernel function implicitly projects the data to other spaces. Our
choice of round-based kernel functions is the result of preliminary testing in which we
found this type of kernel to be the most e↵ective one. One-versus-one approach was
adopted to establish a multi-class classification. A MATLAB™ version of LIBSVM
(Library for Support Vector Machines, see [28]) was used to implement this classifier.

Training procedure

Before passing to the classifier, the feature vectors were scaled to the range [0, 1].
The main advantage of data scaling is avoiding attributes having greater numeric
ranges dominate those in smaller numeric ranges ([28]). The scaling factors were
saved in order to apply them to the testing dataset.

To train an SVM classifier, one should also find best values of SVM regularization
parameter C and of kernel parameter �. Since optimal values of these parameters
may di↵er from subject to subject it is necessary to estimate them for each exper-
iment. For that, a grid search was implemented, which is a common technique in
case of SVM classifier training. It consists of, having a discrete set of possible values
for each unknown parameter, repeating the training process for all their possible



2.2. REAL-TIME GESTURE CLASSIFICATION 47

combinations and then choosing the best one. Also cross-validation process was
automatically applied by LIBSVM during its training procedure.

Majority voting

During the online validation of gesture classification, final decision about class label
was corrected by majority voting. According to ([29]) majority voting considers the
most recent 2m+1 estimated classes (m-estimations before and m-estimations after
a considered estimation). Then it outputs the value that occurs most as correct
estimation. The majority voting technique introduces a delay in the generation of
the output, because it waits for the next m-estimations before producing an output.
As was already mentioned, processing delay was chosen to be equal to 250 ms.
Hence, real-time constraints impose ([29]): In this study m = 2 was chosen, that
implies an overlap of 125 ms.

All resulting class labels were collected and used later to compute confusion
matrices presented in the next section.

2.2.5 Results

Classifier training

Table 2.1: Cross-Validation accuracy for all subjects and classes across all trials.
Cross Validation accuracy of each motion class (%) Mean

Cylindr.
grasp

Open Lateral
grasp

Pron. Supin. Rest

Sub 1 100 100 100 98.9 100 100 99.81
Sub 2 96.6 100 94.4 99.4 98.9 97.2 97.75
Sub 3 93.3 100 97.8 93.3 100 100 97.4
Sub 4 98.9 100 97.8 100 100 100 99.45
Sub 5 98.9 100 100 98.9 100 98.9 99.45
Sub 6 100 100 100 100 100 100 100
Sub 7 99.4 100 98.3 99.4 98.9 100 99.3

Mean 98.16 100 98.3 98.56 99.68 99.44 99.023

Summary of training procedure results is presented in Table 2.1. It contains
rates (in percents) of correct classifications for given class and given subject, as well
as corresponding mean values. Confusion matrices for the best and worst subjects
(in the sense of classification results) are presented in Tables 2.2 and 2.3, CG stands
for cylindrical grasp, O for open hand, LG for lateral grasp, P for pronation, S for
supination and R for rest. Pairs of classes that produced the most errors across all
subjects were Lateral Grasp - Cylindrical Grasp and Pronation - Cylindrical Grasp.
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Table 2.2: Confusion matrix for user with best performance
Best subject

CG O LG P S R
CG 180 0 0 0 0 0
O 0 180 0 0 0 0
LG 0 0 180 0 0 0
P 0 0 2 178 0 0
S 0 0 0 0 180 0
R 0 0 0 0 0 180

Table 2.3: Confusion matrix for user with worst performance
Worst subject

CG O LG P S R
CG 168 0 0 12 0 0
O 0 180 0 0 0 0
LG 0 0 176 4 0 0
P 10 0 2 168 0 0
S 0 0 0 0 180 0
R 0 0 0 0 0 180

Online validation

For each class, three classification rates were calculated: the one of the training
procedure, and two obtained from online validation before and after taking-o↵ and
putting on the bracelet. All three, averaged across subjects, are shown on figure 2.4.
One can see that classification rate stays at considerably high level after the removal
and putting on the armband.

2.2.6 Conclusion

Testing system established in this study is simple and can be easily reproduced
by anyone since it is based on widely distributed hardware (Myo™ armband by
Thalmic Labs Inc.™ and an ordinary PC with Windows 7™ system), open source
libraries (LIBSVM, MYO MEX Wrapper) and MATLAB™.

We note that presented system supports real-time intent recognition and provides
it for current choice of features and classifier. Authors consider results of training
procedure and of online validation to be acceptable 1. The main reason of this study
was to assess the performance of the developed system, as well as performance of
its components, and this task is considered to be done.

System developed in this study can serve for testing new classification algorithms,

1
Video example available under this link

https://uncloud.univ-nantes.fr/index.php/s/x9oa5zWdHB4EKKJ
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Figure 2.4: Accuracies of, respectively: training (”o✏ine” in legend), online valida-
tion (”online”) and online validation after taking o↵ and putting the armband on
(”shift”).

Figure 2.5: Front and side views of the robotic hand used in the tests.

experiment protocols and signal features. It can also be used in benchmarking for
analysis of other algorithms of myoelectric control. Another way to use such a system
is real-time control of a robotic hand. We have already conducted1 preliminary
tests with one such hand (see Fig. 2.5). Following tests may include assessment
of applicability of existing control algorithms as well as usability of such kind of

1
Video example available under this link

https://uncloud.univ-nantes.fr/index.php/s/TxT3T7Y7rr7NfRq
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manipulators.
Gesture recognition based on sEMG can be straightforwardly implemented and

provide promising results in a laboratory environment. We did not aim to conduct
a full analysis of its applicability in the prosthetic control, including such factors
posture influence, sweat, skin state after a long-term use, and user’ fatigue. These
issues, however, are critical and make the control highly unreliable even in the much
simpler two-channel strategy. As we have mentioned in the Introduction (see Section
1.2.5), these factors can be partly alleviated by using the intramuscular EMG and
EMG decomposition. A strategy of user intent derivation from EMG decomposition
will be described in Chapter 3.

2.3 Aid in multiple sclerosis diagnosis using com-
mercial EMG armband1

2.3.1 Introduction

Multiple sclerosis (MS) is a chronic debilitating neurological disorder that mainly
a↵ects young individuals aged between 20 and 40 years old. As a cause of neuro-
logic disability MS is second only to trauma, having its prevalence estimated at 2.5
million worldwide in 2014. The actual cause of MS is yet to be identified, but a
complex interaction between genetic and environmental factors contributes to the
risk. To date, there is no reliable method to predict MS onset or progression. Suc-
cessful managing of the symptoms and attacks for MS patients highly depends on
an accurate and timely diagnosis as well as the possibility to measure disability
progression.

Diagnostic criteria for multiple sclerosis include a number of clinical and para-
clinical laboratory assessments [31, 32]: cerebrospinal fluid analysis, study of visual
evoked potentials, electromyography analysis, neuroimaging and motor/sensory/balance
function tests. The latter involves various motor tasks to be accomplished by the
subject: timed 25-foot walk [33], 9-hole peg test, finger-to-nose test [34], heel-knee-
shin test, finger tapping, foot tapping, etc.

The most common motor manifestations of MS are muscle fatigue, spasticity
and tremor. Listed symptoms involve abnormal functioning of skeletal muscles and
thus a↵ect their activation patterns. In such cases, deviations may be revealed
by analysis of limb trajectories and of involved muscles’ electromyography (EMG).
These measurements are proven to be e�cient in di↵erent studies of MS progression
[35, 36, 37]. Thus, an EMG recording along with the inertial measurement unit
(IMU) data may aid to characterise presence and severity of MS.

Common MS diagnosis and progression study approaches, as those listed above,
require specific equipment, procedures and clinical expertise. A lack of them may
slow down the diagnosis and evaluation of MS progression or even make it impossible,
which is a common case for low populated areas or developing countries. A possible

1
This section is based on the authors’ paper [30]
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way to overcome these di�culties is to apply a widespread cheap acquisition system,
along with unified assessment protocol and automated decision-making. As such an
acquisition system we propose the MYO armband.

Typical signal processing pipeline in these applications consists of the following
steps: windowing, feature extraction, dimensionality reduction and classification
using machine learning techniques [38, 39]. Such an approach may also be e↵ective
in an application to MS diagnostics since there is no strictly defined model of how
MS a↵ects surface EMG signals or limb trajectories. Other reasons to use machine
learning techniques in this case are the dimensionality of the data and the fact that
measurements are to be made with two di↵erent kinds of sensors (EMG and IMU).

In the sequel, we present the entire processing pipeline including the data acqui-
sition, signal preprocessing, dimensionality reduction and decision-making steps. At
last, experimental results involving MS patients and healthy controls are discussed.

In this study we focus on a basic two-class (healthy controls vs. diagnosed MS)
classification problem to investigate the discriminative capabilities of measurements
provided by aforementioned device. Solving such a problem is not intended to bring
any benefits compared to doctor examination, but instead is considered only as
proof-of-concept for future investigations.

2.3.2 Experimental equipment and protocol

This section contains description of our equipment, test protocol, data acquisition
software and data processing approaches.

Acquisition system

As it was already mentioned, a proposed acquisition device was an armband consist-
ing of eight blocks connected by an elastic rubber band. Each block has a di↵erential
surface EMG electrode on the side opposed to the skin. It also contains an inte-
grated IMU providing acceleration and orientation data. The armband hardware
itself performs filtering and sampling of the signals (EMG at 200 Hz and IMU at
50Hz, 10bit quantisation) and may be connected wirelessly to a PC using Bluetooth
Low Energy protocol.

A custom acquisition software with graphical user interface (figure 2.7) was de-
veloped to conduct the acquisition. It handled several major tasks: management of
acquisition database, indication of correct armband placement and real-time signal
visualisation. Back-end, or communication part of the software was developed using
myo-python library [40], that provides a Python wrapper for original MYO libraries.
Signals from all the channels were visualized during the acquisition, and then stored
to a database.

Acquisition protocol

During tests, the MYO armband was placed either on the dominant forearm or on
the lower leg, depending on the test. While on the forearm, the armband was placed
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Figure 2.6: Instruction for armband positioning on the forearm, example shown for
finger tapping test.

Figure 2.7: Graphical user interface developed for multiple sclerosis data acquisition.

so that its distal side was approximately in the middle of ulna bone and its logo-
block was aligned with virtual line passing through middle finger (figure 2.6). On
the lower leg, its distal side was set in the middle of tibia, with logo-block placed
laterally to it, covering tibialis anterior muscle. In function of limb size armband was
loosened or tightened using special clips to assert comfort of the subject and firm
contact of EMG electrodes to the skin. Electrodes were evenly distributed around
the limb.

The dataset for this publication was obtained during clinical follow-up of MS pa-
tients at Oslo University Hospital, Oslo, Norway. It consisted of 40 healthy controls
and 31 MS patients, who gave their informed consent according to local guidelines.
Tables 2.4 and 2.5 provide demographics and clinical evaluation statistics of the
participants. MS patients were not selected to fit a specific range of disease severity
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Table 2.4: Demographics of participants.

Variable, mean (SD)
Patients
N = 31

Healthy Controls
N = 40

Age 37.7 (7.4) 33.3 (6.8)
Gender (% of females) 70 75
Height 170.2 (7.5) 171.2 (8.8)
Weight 71.4 (16.4) 67.1 (12.4)
Right handed (%) 86.7 90

Table 2.5: Clinical evaluation of patients.
Variable, mean (SD, min-max) Value, patients
Age of first symptoms 28.1 (7.7, 12 - 42)
Age of MS onset 32.5 (7.5, 19 - 49)
Disease duration 5.7 (2.6, 1.3-12.0)
EDSS 2.1 (1.1, 0.0 - 4.0)
Total number of attacks 2.3 (1, 1 - 5)

or to have similar symptoms.
Each subject performed four motor function tests: timed 25 foot walk (T25FW),

finger tapping (FIT), finger-to-nose (FTN), foot tapping (FT). Subjects were in-
structed about each test protocol and were given time to train. Within each of the
tests, at least two acquisition trials were performed.

Dataset

MS patients and healthy controls (HC) formed two classes labelled by ”1” and ”0”
respectively. Each of the four tests was used to form a separate dataset for a separate
classification problem. Within the tests, each valid trial represented a sample. Later,
for each person, a classification score obtained for all trials of a selected test were
averaged to obtain a final score.

2.3.3 Classification

Feature extraction

Signals from all the trials were first visually analysed and regions of interest (ROIs),
containing only periodic part of the signal, were then manually extracted. This was
done in order to standardise the signals in which motion and acquisition onset times
were not synchronised and which in some cases contained acquisition artifacts. An
automatic ROI extraction procedure would be hard to implement because of the
variety of signal and artifact forms.

ROI lengths were then equalised by trimming longest signals. After, from each
EMG channel, twelve temporal features were extracted [39]: number of zero cross-
ings, waveform length (WL), slope sign change, Wilson amplitude (WA), root mean
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Table 2.6: Features most represented in first principal components.
Test Features (EMG channels)

T25FW WL(1), WA(1), EN(8, 1, 5, 2, 4, 6)
FT WL(4, 5), WA(4, 5), EN(2, 7, 5, 1, 8)

FIT
WL(2, 1), WA(1, 2), EN(8, 7, 5),
MNF(0-20Hz)(1,2,3,5,6)

FTN
WA(3, 5, 6, 4), WL(3, 5, 6, 4), EN(1, 6),
IEMG(2, 4, 5), MAV(2, 4, 5)

square, mean absolute value (MAV), integrated EMG (IEMG), signal variance and
auto-regressive coe�cients (4th order model).

Twelve spectral features were extracted as follows: the whole spectral band of
the signal was partitioned into three sub-bands (0-20Hz, 20-50Hz, 50-100Hz), within
each band mean and median frequencies (MNF and MDF) were calculated, as well as
energy (EN) and dispersion of spectrum. As for IMU, only accelerometer data was
taken into account, extracted features were mean and median frequencies, without
band partitioning.

Dimensionality reduction

Overall number of sample descriptors was 24 for each of eight EMG channels plus two
features for each of three accelerometer channels, giving an overall dimensionality
of 198 for each sample. In order to reduce the dimensionality of the dataset, PCA
was applied to the feature matrix of each test. Depending on the test, from six to
ten principal components were kept. Features that were mostly represented in first
principal components are EMG features: Wilson amplitude (WA), waveform length
(WL) and energy (EN) in all three sub-bands (listed in table 2.6).

Classification model

Support vector machine (SVM) models were learned from four datasets correspond-
ing to each of the tests, using svmlib library [28]. SVM scores for each patient were
obtained during 3-fold partitioning procedure in which 1/3 of scores were predicted
using other 2/3 of data as training set. Within each partition all trials of a given
patient were considered as separate samples. This way, during prediction phase, pa-
tient’s score was computed as average across all of his trials. Polynomial kernel was
used, best values of kernel and of regularization parameter were found using grid-
search over 10-fold cross-validation. The value of SVM score may be interpreted as
distance between the sample and separating hyperplane, while its sign represents
estimated class label.

2.3.4 Results

For each data sample (single test trial), SVM model output characterises the sample
score, probability of being either healthy or having MS. For each subject, scores
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Figure 2.8: ROC curves for MS-healthy classification on four motor function tests.
T25FW stands for timed 25 foot walk.

corresponding to multiple trials of the same test were averaged. Then, sigmoidal
function was applied to map the average scores onto the [0,1] interval to then trace
ROC curves for each of four tests (figure 2.8). Best performance obtained was for
T25FW (area under ROC 95% CI [0.88, 0.99]).

The obtained scores may be interpreted di↵erently, depending on a classification
strategy. Therefore, in the situations where one single decision (for example, ”no
MS”/”possible MS”) must be provided, the results obtained from the di↵erent tests
should be combined. As an example of a possible approach, we propose a rule that
consists of diagnosing a subject to have MS if 1) his most positive score is larger,
by its absolute value, than his scores for the other tests; or 2) if he has at least two
positive scores. Confusion matrix for that approach reveals its high true positive
rate (table 2.7). The fact that overall number of MS subjects in table 2.7 sums up to
27 instead of 31 (initial number of MS participants) is due to the fact that combined
classification was not performed on four patients that lacked valid trials for at least
one test. However, available within-test scores of these patients were included in
ROC analysis (figure 2.8).
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Table 2.7: Confusion matrix for combined classification approach.
Healthy controls Multiple Sclerosis

Healthy controls 30 10
Multiple Sclerosis 2 25

2.3.5 Conclusion and future work

In this study we assessed the classification capabilities of MYO armband and typical
EMG processing pipeline, applied to a sample of MS patients and healthy subject.
Timed 25 feet walk test has shown a superior performance (in terms of the area
under ROC curve) compared to other tests. Possible explanation is the fact that
walking requires coordination of the whole body and thus may be a↵ected by MS-
caused abnormalities in any body part. Other tests involve independent movement
of either upper or lower limb and thus may not represent the actual state of a subject
if his/her MS manifests elsewhere.

Possible development of this study have to consider, first of all, the acquisition
protocol. In order to compare the data acquired by two di↵erent groups, a com-
mon protocol should be established, including subject’s position and trajectory of
walking. Also, special care should be taken considering the intra-class variability
of the EMG signals caused by di↵erent skin and body fat conditions. Necessity of
EMG normalisation with respect to maximum voluntary contraction level should
be investigated. No common diagnostic protocol involving MYO armband may be
established until these questions are assessed.

Another mean of development will be a thorough feature selection using including
ANOVA tests. Finally, as possible follow-up based on this study we are investigating
the possibility of predicting MS disability based on regression of SVM scores on
EDSS (Expanded Disability Status Scale) [41]. For that purpose, another dataset
consisting only of MS patients with di↵erent levels of disability based on EDSS is
currently being acquired.

2.4 General conclusions on the MYO armband

MYO armband by Thalmic Labs is a simple in use, robust and accessible device,
which rapidly gained popularity both in academia and amateur community. A large
number of various libraries and bindings was created, making the armband usable in
more and more di↵erent ways. There were numerous papers on gesture recognition,
prosthetic control and human interfacing based on this device, in which we have also
contributed.

However, we note some of its disadvantages that are important for the research.
First is an uncontrollable gain, resulting in saturation of EMG during strong con-
tractions. Second is a small sampling frequency (200 Hz) which makes questionable
the extraction of temporal and spectral features of EMG. Third, inability to access
some of the important functionality without using low-level programming, while this
access itself is not clearly documented. The last one is the fact that since September
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2018 this device is no longer produced and no-longer supported by its developers.
However, MYO armband is still very well-suited for amateur use and gesture

recognition. Additionally, it has significantly promoted the EMG technology in
general, making public more familiar with it. Finally, the possible analogues coming
to market after the stop of its o�cial sales may address some of the aforementioned
issues, making this technology a strong basis for further development of EMG-based
methods.
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Chapter 3

Models for intent estimation from
EMG decomposition

3.1 Introduction and main definitions

3.1.1 Organization of motor control

Each motor function of the human body is carried out by a complex joint action of
skeletal muscles. Degrees and velocities of their contraction fully define the outcome
of the movement: its amplitude, speed, and trajectory. The contraction of each
skeletal muscle is regulated by the activity of spinal ↵ motor neurons (MN) that
innervate it.

MNs that innervate the muscle form a functional group that is called motor neu-
ron pool (MNP). They elicit a contraction of the muscle by generating action poten-
tial trains, also called firings or spike trains. Generally, the more action potentials
the muscle receives per a unit of time, the more intense the contraction is. There-
fore, there exist two mechanisms of contraction force regulation: recruitment/de-
recruitment of MNs and firing frequency variation.

The order in which the recruitment or de-recruitment are performed is structured
so that each MN has a specific level of contraction above which it fires, called
recruitment threshold (RT). According to Henemann’s principle [1], MNs with larger
physical sizes and larger contributions to the contraction force tend to have higher
RTs.

Once a MN is recruited, its contribution to the total contraction force is regulated
by the frequency of its firings, or firing rate. Experimental studies show that firing
rates of MNs of the same pool exhibit a significant covariation during the changes
of contraction force [2]. That permits to suppose that they receive a significant
proportion of common excitatory input, usually referred to as common drive.

Common drive largely defines the behavior of MNs of the entire pool and there-
fore defines the contraction force. An increase in the common drive leads to the
recruitment of new MNs and an increase in firing rates in the already recruited
ones. This permits to state that the contraction force is an increasing, generally
non-linear, function of the common drive.
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In fact, this principle can be applied to other mechanical manifestations of the
movement, that are increasing functions of the muscle contraction force, such as
joint angle, joint torque, or some more complex motor functions. In the following,
we are going to refer to all of them as the mechanical e↵ect, or simply the e↵ect,
and denote it as e.

3.1.2 Model that relates the e↵ect to the MN firing behavior

As we have stated earlier, the e↵ect and the firing behavior of MNs are defined
by the same source, which is the common drive. Establishing a relation between
them is one of the major subjects in motor control studies. Usually, such relation is
established between the contraction force and firing rate and is modeled as a linear
function, starting at the MN’s recruitment threshold [3, 4] and reaching saturation
at higher forces [5]:

'i(e) =

(
min

�
'
max
i , gi(e� ri) + '

min
i

�
, e > ri

0, e  ri

(3.1)

where 'i is firing rate of i-th MN, e is, in this case, the force of contraction; 'min
i and

'
max
i are the minimum and maximum firing rates; ri is its recruitment threshold and

gi is the slope of linear relation. Other approaches may include non-linear models,
such as one presented in [6].

In our work, we will adopt the linear modelling approach. We will also suppose
that it can be applied not only to the contraction force but to other types of the
e↵ect. To further adapt it to our application, we will not take into consideration
the saturation of e↵ect-rate curve, since it appears only at high contraction levels,
unreachable for currently available decomposition algorithms. Additionally, we will
break down this model into two parts by introducing a binary activation variable a

representing the MN’s recruitment state:

ai(e) =

(
1 if e > ri

0 if e  ri

'i(e) = ai (gie+ bi) (3.2)

The introduction of a is redundant since it exactly copies the on-o↵ relationship
between the firing rate and the e↵ect. However, we will show later how a can
be derived from the decomposition data, and that the e↵ect inference can be based
solely on this variable. While building an e↵ect estimator based on the instantaneous
firing rates, we will show how to eliminate this variable from the inference.

3.1.3 Definition of the intended e↵ect estimation problem
and main assumptions

Experimental studies show that common drive is influenced by proprioceptive feed-
back from muscle spindles and Golgi tendon organs [7, 8] as well as by concurrent
antagonist and agonist muscles contractions [9, 10]. That is, the common drive
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to a MNP is not only a function of supraspinal command, representing the intent
but also of multiple spinal level interactions with other pools and with the muscle.
However, we will suppose that the common drive to a MNP is still predominantly
defined by the supraspinal command and that elicited spike trains of the MNs are
functions of the intent.

After amputation, the biomechanical end-e↵ector, such as hand, is missing, while
the neural input to the residual muscles that actuate it, is still present. Thus, we seek
to establish a system that decomposes the spiking activity of MNs from the EMG
of residual muscles, estimates the intended e↵ect and hands it to the mechanical
part of the prosthesis. Together, these elements should provide the best possible
approximation of the original end-e↵ector’s movement. In this work, we concentrate
on the problem of estimation of the intent, which can be then transferred to the
motors of the mechanical part in order to realize the intended movement.

Given a formulation of an intent estimation model, one should identify its pa-
rameters when applying it to a new user or motor function. To do it, training data
are required, which consist of the intended e↵ect measures, taken synchronously
with the decomposed spike trains. However, the intended e↵ect itself is not observ-
able, since supraspinal command cannot be (or is very impractical to be) accessed.
Therefore we will accept, as it is generally done in other prosthetic control strategies,
that observed e↵ect is equivalent to the intended one, and therefore can be used to
identify an intent estimation model.

Observation of the e↵ect is not possible in the amputees, and therefore the
problem of training data collection arises. In this case, bilateral training approach
is possible, in which the subject tries to symmetrically move both the phantom and
the intact limbs (mirrored bilateral training [11]). The e↵ect is observed from the
last, while the residual muscles of the missing limb provide the EMG data. Another
approach consists in the subject following a virtual e↵ect trajectory with his or her
phantom limb (prosthesis-guided training [12]).

3.1.4 General approach to the decomposition-based e↵ect
estimation problem

The classic objective of myoelectric control is to establish a model that permits
to infer the intended mechanical e↵ect from the parameters of the EMG signal.
Considering this and the previous section, the general strategy of decomposition-
based control can be the following. Decomposition identifies the firing instants
of MNs, which permits to tell which MNs are currently active and to estimate
their instantaneous firing rates. This information can be passed to the inverse of a
previously introduced e↵ect-rate model in order to infer the e↵ect.

As follows from the e↵ect-rate model (3.2), the e↵ect can theoretically be fully
determined by the firing rate of one single MN, once it is recruited. In an idealistic
scenario, where the MNs receive only noise-free common drive, and where firing rates
can be perfectly estimated from decomposition, all the estimates of e↵ect made from
active MNs will be in consensus (see Figure 3.1).

However, since alongside with the common drive, MNs receive noisy individual
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Figure 3.1: Estimates of the e↵ect given by individual e↵ect-rate models (3.2) and
firing rates of each decomposed MN, coincide in an idealistic scenario where the
estimated firing rates contain no noise or perturbations

neural inputs, observed IPIs are random. Additionally, neural command to the
muscle can change very fast, so that the current contraction can be defined by a
very short time span of the most recent spike trains. This limits the number of IPIs
available for the averaging when estimating the firing rates. As an example, the
typical window of 250 ms, chosen for the decision taking in prosthetic control, may
contain a very limited amount of IPIs (approximately from one to six). Moreover,
estimation of firing rate is not possible until at least one IPI (i.e., two spikes) is
available, which may introduce a significant delay to the estimation at low firing
rates.

Due to the joint impact of these factors, the estimates of firing rate can contain
a significant amount of noise, which leads to the inability of producing a viable
estimate of the e↵ect from one the spike train of one single MN. Moreover, estimates
from other MNs will not be in consensus anymore. Thus, we look for a way to
e↵ectively merge them into one, providing a more precise result.

To achieve this, in the following sections of this chapter, we will establish three
probabilistic models that link the decomposed spike trains with the e↵ect. Specifi-
cally, we will first establish a model that infers the e↵ect solely from the recruitment
of MNs (Section 3.2). Secondly, we will present an approach to use the e↵ect-rate
model in order to obtain a finer estimate of the e↵ect (Section 3.3.1). Finally, we
will merge these two models, combining the advantages of both (Section 3.3.6).
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3.2 Inference of the intended e↵ect from the mo-
tor neurons recruitment

3.2.1 Probabilistic model of MN recruitment

The value of e↵ect at which the MN starts to fire varies across trials of the same
contraction profile [13]. To account for this variability, we will proceed by modelling
the recruitment threshold (RT) as a random variable instead of a fixed one.

In [13], the distribution of the RTs was reported as ”quasi-normal”, thus, to
model the RT distribution, we consider the family of unimodal location-scale prob-
ability density functions (PDFs). Let us denote this PDF and the corresponding
cumulative distribution function (CDF) as w(ri,!i) andW (ri,!i), where !i is vector
containing the location and scale parameters. A concrete choice of the RT PDF is
not necessary for establishing the probabilistic model and will be provided later in
this section.

Let us denote the RT of i-th MN as Ri. Here and further the uppercase letters
(E, Ri) will denote the random variables, while their lowercase versions (e, ri) will
denote values that these variables can take. In cases of distributions, uppercase and
lowercase letters will denote, respectively, CDFs and PDFs.

Let us denote the fact that i-th MN is recruited, or active, by a random binary
variable Ai. This variable is a function of RT Ri and of the intended e↵ect E:

Ai =

(
1 if Ri  E

0 if Ri > E

Relationship between Ri, Ai and E can be represented by a graph illustrated
in Figure 3.2. Probabilistic formulation Pr(Ai|E,Ri) of this relationship can be
represented as follows:

Pr(Ai = 1|E,Ri) =

(
1 if Ri  E

0 if Ri > E

Pr(Ai = 0|E,Ri) =

(
0 if Ri  E

1 if Ri > E

(3.3)

The intended e↵ect E is the target variable that we want to estimate in order
to control a prosthesis. Activation Ai, being an output of the EMG decomposition
algorithm, can be considered the observation from which we will infer the target
variable. Relationship between the two is established by recruitment model (3.3)
with its parameter Ri distributed according to PDF w(ri,!i).

More specifically, we are interested in the conditional distribution Pr(Ai|E,⌦i).
It can be calculated using RT CDFW (ri,!i) and (3.3) using total probability rule, as
well as the facts that Pr(Ri  E|⌦i) = W (E,!i) and Pr(Ri > E|⌦i) = 1�W (E,⌦i)
(see Appendix A for full derivation):

Pr(Ai = ai|E,⌦i) =

(
W (E,⌦i) if ai = 1

1�W (E,⌦i) if ai = 0
(3.4)
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⌦ R A E

Figure 3.2: Bayesian graph representing the probabilistic model of recruitment of a
MN. Parameter ⌦ define the distribution of RT R. In its turn, RT, together with
the intended e↵ect E, define the activation of the MN A.

⌦1 R1 A1

⌦2 R2 A2

...
...

...

⌦N RN AN

E

Figure 3.3: Bayesian graph representing the probabilistic model of recruitment of
multiple MNs. Probabilities of activation in each MN are independent, given the
e↵ect E.

3.2.2 Recruitment model for multiple MNs

Model 3.4 describes the probability that MN is recruited, given the current e↵ect
value and parameters of its RT distribution. To establish a joint probabilistic model
for multiple MNs, we will make a number of assumptions about the corresponding
distributions. We illustrate these assumptions using the Bayesian graph provided in
Figure 3.3.

That is, we assume that the distributions Pr(Ai|E,⌦i) for all the MNs i 2 {1:N}
are conditionally independent given E. Therefore, joint distribution Pr

�
A|E,⌦

�
is a

product of the individual ones. By defining vectors of parametersA = {A1, A2 . . . , AN}
and ⌦ = {⌦1,⌦2 . . . ,⌦N}, we have:

Pr
�
A = {a1, a2, . . . , aN}|E,⌦

�
=

NY

i=1

Pr(Ai = ai|E,⌦i) (3.5)

which is a joint function likelihood function for RT distribution parameters ⌦ and
e↵ect E.

Using this formulation, we can solve the following problems:

• Model identification, or estimation of parameters ⌦ of the distribution (3.5).
This can be achieved by maximization of likelihood P (A|E,⌦) over a training
dataset D = {(a, e)(1), (a, e)(2), . . . , (a, e)(D)}. It is common to assume that
the training samples in D are independently and identically distributed, given
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parameters ⌦. The joint likelihood over the data set is a product of likelihoods
for each sample:

L(D,!1,!2, . . . ,!N) =
NY

i=1

DY

d=1

Pr(Ai = a
(d)
i |E = e

(d)
, ⌦i = !i) (3.6)

Thus, the negative log-likelihood cost function:

C(D,!1,!2, . . . ,!N) = �
NX

i=1

DX

d=1

log Pr(Ai = a
(d)
i |E = e

(d)
, ⌦i = !i) (3.7)

can be optimized separately for each motor neuron i, to estimate its RT distri-
bution parameters, by minimizing the corresponding negative log-likelihood:

C
T
i (D,!i) = �

DX

d=1

log Pr(Ai = a
(d)
i |E = e

(d)
, ⌦i = !i) (3.8)

!̂i = argmin
!i

C
T
i (D,!i)

• E↵ect inference, or estimation of the e↵ect by minimization of joint negative
log-likelihood (3.5) given A = a and the identified ⌦ = !̂:

C
I(a, e, !̂1, !̂2, . . . , !̂N) = �

NX

i=1

log Pr(Ai = ai|E = e, ⌦i = !̂i) (3.9)

ê = argmin
!i

C
I(a, e, !̂1, !̂2, . . . , !̂N)

Training set D includes values of the e↵ect and of the MN activation acquired
synchronously during the training phase, using either mirror bilateral or prosthesis-
guided approaches. The activation is extracted from the decomposition of the iEMG
that accompanies the e↵ect. In the inference phase, we use the model parameters
estimated during the training phase to infer the intended e↵ect from the available
online decomposition data.

Both tasks of model identification and of e↵ect inference can be solved by mini-
mization of their negative log-likelihood cost functions (3.8) and (3.9). An approach
to that will be presented in the following sections. Before that, we will specify the
type of PDF that we use to model the distribution of the RT. Let us address this
question in the next section.
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(a) Logistic PDF (b) Logistic CDF

Figure 3.4: Examples of logistic probability and cumulative distribution functions.
As can be seen, parameter k sets the position of the mode, while � defines the shape
of the distribution.

3.2.3 Choice of PDF for RT distribution

Until now, we have not specified the actual type of RT PDF, only requiring it to be
unimodal of location-scale family. In this section, we will narrow down the class of
acceptable PDFs and propose logistic distribution as one of the classic choices.

Equation (3.4) defines the conditional probability of a MN to be active using the
CDF of RT W (ri,!i). Then, logarithm of this conditional law appears in the cost
functions (3.8) and (3.9). In order to e↵ectively minimize them, it is useful to have
CDF of RT provided in closed form. That excludes number of distributions, such
as normal, Rayleigh, Chi-squared, etc.

Let us consider logistic law as the distribution of RT. It meets the aforementioned
requirements of having location and scale parameters, as well as closed-form CDF.
Also, it is widely studied in statistics and machine learning, having a number of
proven useful mathematical properties, such as convexity of the corresponding ML
cost function. Let us provide the corresponding CDF and PDF (also see Figure 3.4):

W (ri,�i, ki) =
1

1 + exp
h
� ri��i

ki

i (3.10)

w(ri,�i, ki) =
1

ki
W (ri,�i, ki)

�
1�W (ri,�i, ki)

�
(3.11)

where �i and ki are, respectively, location and scale parameters of logistic distribu-
tion.

As a disadvantage of this choice, we note the fact that its support is [�1,1],
while the e↵ect is non-negative and is bounded by a maximal value. However, as
we will see from the following sections, this fact does not prevent the model from
fitting to the data and providing correct inference.
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3.2.4 Cost function for ML-estimation of RT distribution
parameters

RT distribution parameters !i = {�i, ki} of i-th MN can be calculated using opti-
mization of the cost function presented in (3.8). Using (3.4), one can formulate C

T

the following way:

C
T
i = �

DX

d=1

a
(d)
i · log

⇣
W (e(d),!i)

⌘
+
⇣
a
(d)
i � 1

⌘
· log

⇣
1�W (e(d),!i)

⌘

Using Logistic CDF formula (3.10), we can rewrite it:

C
T
i =

DX

d=1

a
(d)
i log

0

@1 + exp

"
�e

(d) � �i
ki

#1

A+
⇣
a
(d)
i � 1

⌘
log

0

@1 + exp

"
e
(d) � �i
ki

#1

A

(3.12)
Let us demonstrate the convexity of this cost function with respect to pa-

rameters �, k. Exponent ±(e � �)/k, using �̃ = �/k, k̃ = 1/k, can be rewrit-
ten as ±(k̃e � �̃). The last is an a�ne function of �̃, k̃ and is therefore con-
vex. Function f(x) = log

�
1 + exp(x)

�
is convex due to positivity of its Hessian

f
00(x) = exp(x)

�
1 + exp(x)

��2
. It is also an increasing function, and thus, by com-

position rule, f
⇣
±(k̃e� �̃)

⌘
is convex with respect to �̃, k̃. Thus finally, CT

i is a

non-negative linear mixture of convex functions and therefore is also convex. Once
optimization procedure is accomplished, we get back to the original parameters using
k = 1/k̃,� = �̃/k.

This cost function can be minimized using a standard unconstrained non-linear
optimization. That is, examples presented here and later in this chapter were ob-
tained using Matlab’s fminsearch function. Figure 3.5 demonstrates the e↵ect esti-
mation for a data set simulated by the direct use of (3.4) and (3.10) with parameters
�=0.5 and k=0.05. Blue dots (see Figure 3.5(a)) designate the activation ai observed
at di↵erent values of the e↵ect during several trials of contractions. For this example,
these values were drawn from logistic distribution

We note here that in the special case of separation of samples (i.e., when are

is such �i, ki for which the rule W (e(d)i ,�i, ki) � 1/2 correctly identifies all samples

with a
(d)
i = 1) estimation of parameter k is not possible [14]. Parameter �i, however,

can still be estimated, and ki can be chosen as Fk�i, where Fk < 1 is a constant
proportionality coe�cient.

3.2.5 Cost function for ML-estimation of e↵ect from avail-
able MU activation data

Similarly to the training, inference cost function C
I (3.9) can be formulated the

following way, using logistic CDF (3.10):

C
I = �

NX

i=1

ai log
�
W (e, !̂i)

�
+ (1� ai) log(1�W (e, !̂i))
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(a) (b)

Figure 3.5: Example of ML-estimation of RT distribution parameters on a simulated
data set containing e↵ect samples close to the RT. (a) - Black solid is the true CDFs
of RT for �=0.5, k = 0.05; blue dots (rigth y-axes) - observed activation a of the
MN from several contraction trials; green dashed line - CDF estimated from the
observed activation. (b) - Contour plot of the corresponding C

T cost function.

C
I =

NX

i=1

ai log

0

@1 + exp

"
�e� �̂i

k̂i

#1

A+ (1� ai) log

0

@1 + exp

"
e� �̂i
k̂i

#1

A (3.13)

Convexity of cost function C
I with respect to e can be proved by composition

rule, similarly to C
T . Since the normalized e↵ect is constrained between zero and

one, the minimum of CI exists. Intuitively, the minimum is not on either of the
borders when both active and inactive MNs are included to the inference, that is,
when 0 <

PN
i=1 ai < N . In cases when

PN
i=1 ai = 0 or

PN
i=1 ai = N , the estimated

e↵ect is equal to, respectively, zero or one.
As well as CT , it can be optimized using unconstrained non-linear optimization.

For illustration, we simulate a set of three MNs with specified values of �=[0.35,
0.45, 0.55] and k=[0.01, 0.01, 0.01]. We then set the following vector of activation
a=[1, 0, 0] so that the first MN is active, while the rest are inactive. Left solid
dot curve in Figure 3.6 designates the position of the cost function’s minimum for
activation vector a=[1, 0, 0].

Next, we activate the 2-nd MN, which gives us a=[1, 1, 0]. One can see how
the activation of the 2-nd MN a↵ects the position of the minimum (Figure 3.6). In
fact, each of the summands of CI provides a soft bound for optimal value of the
e↵ect. The orientation of this bound depends on MN’s activation ai; as an example,
on figure 3.6 solid and dashed (not dash-dotted) green lines correspond to the 2-nd
MN’s summand in C

I which imposes either a left (a2=1) or right (a2=0) bound to
the optimal e↵ect.

Finally, we note that ê = f(a,!) and since a is a binary vector, there is only 2N

possible values of ê for a given !. These values can be pre-calculated for all possible
combinations of a, and therefore the optimization of CI can be replaced by very fast
check in a look-up table.
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Figure 3.6: Cost function for di↵erent e↵ect values as function of the set of active
MNs. Lines ”MN1”, ”MN2” and ”MN3” designate the values of the summands in
C

I formula (3.13), while black line is the total sum. First black marker (a2 = 0)
indicates the position of the minimum for activation a=[1, 0, 0], while the second
one (a2 = 1) is for a=[1, 1, 0].

3.2.6 Example on simulation data

To study the characteristics of the proposed estimator, we have simulated a set of
contractions using the model presented in Chapter 5 and set of parameters presented
in Chapter 6. Data set included three ramp profiles with di↵erent slopes: 2.5%/s
and 10%/s for training and 5%/s for testing. All contractions reached 25% MVC.

Training set was used to estimate parameters � and k for the corresponding
MNs, using training cost function (3.8). It contained spike trains of, in total, N=11
MUs. The estimate was capped to the maximal observed contraction level eM , so
that fully activated vector a, such that

P
n an = N , gives ê = eM . Another way

to bound the estimate is to add a virtual (N + 1)-th MU with �N+1 = eM and
kN+1 ⌧ kN that is always inactive.

Testing set contained a single ramp contraction reaching 15% MVC (see Figure
3.7). Estimates of parameters � and k were used to infer the e↵ect by optimization
of inference cost function (3.9). As one can see in Figure 3.7, the estimate remains
constant in time intervals where no recruitment occurs. This behavior is expected
considering the analysis provided in previous section (3.2.5).

Figure 3.8 shows the progression of the C
I cost function along the contraction

(� logCI , for better illustration). One can see that cost function is flat around its
minimum, similarly to Figure 3.6. This means that the position of the minimum
can be easily adjusted by the inclusion of an additional term to the inference cost
function.

This can be realized in order to smooth the estimate between recruitment mo-
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Figure 3.7: Simulated contraction force (solid black) and its estimate (solid greed)
obtained by minimization of RT-based inference cost function (3.13). Blue dots
designate the spike trains of MNs provided by decomposition.

ments. Such an additional term may, for example, be dependent on the instanta-
neous firing rate of active MNs. Or, it can be any other continuous function of the
e↵ect, such as rectified EMG amplitude. Conversely, summands of the inference cost
function C

I can be considered as penalties to the e↵ect values that are not adequate
to the current activation vector.
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Figure 3.8: Values of cost function for RT-based inference during the contraction
in Figure 3.7. Negative logarithm of cost function (� log(CI)) is shown for better
illustration

.

3.3 E↵ect inference from firings rates of motor
neurons

The estimation model proposed in the previous section utilizes the recruitment phe-
nomena to infer the intended e↵ect. As the provided examples show, the estimate
is limited to a set of discrete values. This may not be a problem if the number
of decomposable MUs is large. In that case, one may consider the gaps between
the discrete estimates to be small enough for a comfortable proportional control.
However, existing real-time decomposition approaches do not provide the decompo-
sition of concurrent activity of more than 10 MUs [15]. Additionally, recruitment
thresholds of observed MUs may be distributed non-uniformly, creating large gaps
between consecutive discrete estimates.

Contraction force modulation is achieved by means of not only recruitment of
new MUs, but also by firing rates of already recruited ones, which, until this point,
were not taken into account by the estimation model. In fact, in the interval between
two consecutive recruitments, the increase of excitation should result in an increase
of the firing rates. This could provide additional information needed to fill the gaps
between discrete estimates.

In the remainder of this chapter, we will propose a probabilistic model that
incorporates the e↵ect-rate curves to provide a continuous estimate of the intended
e↵ect. Then, we will join it with the RT distribution model in order to regularize
the estimate.
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3.3.1 Hidden Markov model of a spike train

In this section we partly follow the modelling approach proposed in [16, 17]. That
is, we introduce a random variable �i denoting an inter-pulse interval of i-th MN.
Then, a sparse sequence of zeros and ones Ui[n] that denotes the spike train of i-th
MN in discrete time. Next, we define the sojourn time T [n] representing the discrete
amount of time passed since the last pulse of i-th MN. That is, U [n] = �(T [n]), where
�(·) is Kronecker delta, and:

T [n+ 1] =

(
T [n] + 1 if U [n] = 0

0 if U [n] = 1
(3.14)

We will assume that inter-pulse intervals (IPIs) are independently and identi-
cally distributed following some probability density function with parameters ⇥, E,
functions of the intended e↵ect E. Concrete choice of this PDF will be covered in
next section. As it is shown in [17], sequence Ti[n] is Markovian in this case. The
corresponding transition law can be written with the help of IPI distribution law’s
hazard rate function h

�
Ti[n�1],⇥i, E

�
(see definition and details in Section 3.3.2):

Pr(Ti[n] = ti[n] |⇥i, E, Ai[n] = 1) =

(
h
�
Ti[n�1],⇥i, E

�
if ti[n] = 0

1� h
�
Ti[n�1],⇥i, E

�
if ti[n] = Ti[n� 1] + 1

Pr(Ti[n] = ti[n] |⇥, Ei, Ai[n] = 0) =

(
0 if ti[n] = 0

1 if ti[n] = Ti[n� 1] + 1

(3.15)

where h(·) is the hazard rate function h (t,⇥i, E) = Pr(�i = t |�i � t,⇥i, E) and
⇥i are the parameters of IPI distribution. Activation Ai[n] has the same meaning
as in previous section and can be approximated from decomposition as:

Ai[n] =

(
1 if Ti[n] < Tlim

0 otherwise
(3.16)

where Tlim can be chosen accordingly to the minimal observed firing rate among
the MNs. Typical value can be Tlim=250 ms. Relation between U [n], T [n] and
A[n] is illustrated in Figure 3.9. Alternatively, activation variable can be eliminated
from the inference using total probability formula and conditional law (3.4). This
question will be addressed later in Section 3.3.6.

Relation between the intended e↵ect E[n], IPI distribution parameters ⇥[n],
activation A[n] and sojourn time process T [n], can be described by a hidden Markov
model, illustrated using Bayesian graph in Figure 3.10. Following the modelling
approach proposed in [17], we will, at first, suppose that e↵ect is constant in time
and its transition law is:

E[n] = E[n� 1] (3.17)

However, e↵ect is essentially a time-varying value, thus an approach to its tracking
will be presented in the sequel.
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Figure 3.9: Relation between sawtooth sequence T [n], spike train U [n] and activation
A[n].

3.3.2 Inter-pulse interval distribution

Inter-pulse intervals (IPI) of MNs are known to be random values concentrated
around an average that is inversely proportional to the firing rate. Therefore, PDF
of IPI is usually modeled using some unimodal law, such as normal distribution [5].
However, the last does not have a closed-form hazard rate. In this work, we will
model IPI PDF as the logistic distribution, which has a simple closed-form hazard
function and easily interpretable location and scale parameters. Another eligible
choice is discrete Weibull distribution, used in [17]. However, we find it preferable
to have both the RT and IPI distributions of the same type.

Logistic distribution is defined on a continuous domain, while the process T [n]
is in discrete time. We will suppose that the sampling rate is su�ciently high so
that the continuous distribution can be used directly instead of the corresponding
probability mass function.

Let us first define the logistic CDF of IPI of i-th MN:

S (t,⇥i, E) =
1

1 + exp


� 1

⌃i

⇣
t� 1

GiE+Bi

⌘� (3.18)

with the following notation:

• Vector ⇥i is a concatenation of parameters ⇥i = {Gi, Bi,⌃i}.

• Term 1/(GiE + Bi) defines the average value of IPI. That is, since firing rate
�i of a MN is a function of the intended e↵ect (see Equation 3.2), so is the
average IPI, that can be approximated as 1/�i.

• Parameter ⌃i regulates the standard deviation of IPI. We suppose that within
the low contraction range it can be approximated by a constant value. That
is: ⌃i(E) = ⌃i = const.



78 CHAPTER 3. MODELS FOR INTENT ESTIMATION

. . . E[n�1] E[n] E[n+1] . . .

�i[n�1] �i[n] �i[n+1]Ai[n�1] Ai[n] Ai[n+1]

. . . Ti[n�1] Ti[n] Ti[n+1] . . .

Figure 3.10: Bayesian graph representing the hidden Markov model of MN neuron
firing activity. E↵ect E[n] is a hidden variable that defines the i-th MN’s proba-
bility of being recruited, via node Ai[n]. Additionally, it defines its instantaneous
firing rate �i[n] and, therefore, its IPI distribution, via parameters ⇥i[n]. Saw-
tooth sequence Ti[n] is an observed value, available from decomposition. At first,
we will assume that activation Ai[n] can also be observed using formula (3.16). This
assumption will be released later in section 3.3.6

.

Logistic PDF can be easily obtained from its CDF, using the derivative of logistic
function.

Pr
�
�i = t|⇥i, E

�
=

1

⌃i
S (t,⇥i, E)

�
1� S (t,⇥i, E)

�
(3.19)

Corresponding hazard function, by its definition, is:

h (t,⇥i, E)
def
=

Pr
�
�i = t |⇥i, E

�

Pr
�
�i � t |⇥i, E

� =
1

⌃i
S (t,⇥i, E) (3.20)

3.3.3 Criteria for IPI-based estimation model fitting and
inference

Using Markov chain rule, we can write the negative log-likelihood for spike train of
i-th MN. Denoting T

n = T [1..n] and t
n = t[1..n]:

Ci(t
n
i , a

n
i ,⇥i, E) = � log Pr

�
T

n
i = t

n
i |⇥i, E, A

n
i = a

n
i

�
=

� 1

n

nX

k=1

ai[k] log Pr
�
Ti[k] = ti[k] | Ti[k � 1] = ti[k � 1],⇥i, E

�
(3.21)

Similarly to the approach we used to formulate the recruitment-based cost func-
tion, we will suppose that spike trains of di↵erent MNs are independent. That
is, joint negative log-likelihood of spike trains of all MNs is a sum of individual
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log-likelihoods:

C(tn, an,⇥, E) = � log Pr
�
T

n = t
n |⇥, E, A

n = a
n
�
=

NX

i=1

Ci(t
n
i , a

n
i ,⇥i, E) (3.22)

Model identification and e↵ect inference can be realized by optimization of this
cost function with respect to parameters ⇥ or intended e↵ect E:

• Model identification. Log-likelihood (3.21) can be used to estimate param-
eters G, B and ⌃ that relate e↵ect to the IPI distribution. Similarly to the
recruitment-based cost function, (3.21) can be optimized for each MN indepen-
dently, having a training set of spike trains D = {aDi , tDi , eD}, where exponent
D denotes all the samples belonging to the training set. That is, the cost
function for model identification:

C
T
i (D, ✓i) = � log Pr

⇣
T

D
i = t

D
i | E = e

D
, A

D
i = a

D
i , ⇥i = ✓i

⌘
(3.23)

✓̂i = argmin
✓i

C
T
i (D, ✓i)

• Inference. Having t
n[n] and a

n[n] observed from decomposition and ✓̂i esti-
mated in training procedure, we can infer the e↵ect value optimizing (3.22):

C
I
⇣
t
n
, a

n
, e, ✓̂

⌘
= �

NX

i

log Pr
⇣
T

n
i = t

n
i | E = e, A

n
i = a

n
i ,⇥i = ✓̂i

⌘
(3.24)

ê = argmin
e

C
I
⇣
t
n
, a

n
, e, ✓̂

⌘

3.3.4 Iterative inference procedure

As we have stated earlier, e↵ect E is essentially a time-varying variable. In order
to obtain an estimate that is adequate to the current intent, we will establish a
recursive estimation and assign exponentially decaying weights to the decomposi-
tion observations. E↵ect estimation should be performed in real-time, thus we are
interested in a fast iterative approach. That is, we will use Newton method [18],
which provides the following update of the e↵ect estimate:

ê[n] = ê[n�1] � 1

`[n]
G

�1[n]
@

@e
C

I
⇣
t[n], a[n], e, ✓̂

⌘����
ê[n�1]

(3.25)

where G[n] is a smoothed hessian of the inference cost function:

G[n] =

✓
1� 1

`[n]

◆
G[n�1] +

1

`[n]

@
2

@e2
C

I
⇣
t[n], a[n], e, ✓̂

⌘����
ê[n�1]

(3.26)
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and `[n] is a time-varying weight that changes according to the following law [18]:

`[1] = 1, `[n] =

✓
1� 1

`1

◆
`[n� 1] + 1 (3.27)

where `1 is an equivalent to window length, which can be chosen as 250 ms.
Both the first and second derivatives of the inference cost function can be cal-

culated analytically from (3.24) with respect to e↵ect e. Corresponding expressions
are provided in Appendix B.

3.3.5 Example on simulation data

We have simulated spike trains of four MNs using the model described above. More
specifically, recruitment thresholds were set to r = [0.05, 0.3, 0.5, 0.75], IPI distribu-
tion parameters were g = [20, 17.5, 15, 12.5] Hz, b = [7, 6, 5, 4] Hz, � = [5, 5, 5, 5] ms.
Activation was directly simulated as ai[n] = e[n] > ri, and transition law (3.15) was
used to generate spike trains. E↵ect followed a triangular profile from e=0 to e=1
within 5 s duration.

Simulated spike trains were used to estimate the model parameters by optimiza-
tion of training cost function (3.23). Obtained values are: ĝ = [20.2, 16.0, 17.0, 12.7],
b̂ = [6.9, 6.4, 3.9, 4.4], �̂ = [5.2, 5.7, 5.7, 6.7].

New spike trains were simulated using true distribution parameters for the same
e↵ect profile. The estimated model was then used to infer the e↵ect using iterative
formula (3.25). Results of estimation are presented in Figure 3.3.5. One can see
that the smoothness and precision of the estimate increase with the number of
active MNs.
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Figure 3.11: Example of IPI-based estimation of e↵ect, on simulated spike trains.
Recursive estimation formula (3.25) was used.

3.3.6 Joint e↵ect estimation model based on recruitment
and IPI distribution

Previously, we have assumed that activation A[n] can be approximated from ob-
servation T [n], using (3.16). However, using total probability rule and conditional
distribution of activation (3.4), variable A[n] can be eliminated from the inference.
That is, transition law (3.15) can be rewritten the following way:

Pr(Ti[n] = ti[n] |⇥i,⌦i, E) =
8
<

:
Pr(Ai[n]=1|E,⌦i)·h

�
Ti[n�1],⇥i, E

�
if ti[n] = 0

Pr(Ai[n]=1|E,⌦i)·
⇣
1�h

�
Ti[n�1],⇥i, E

�⌘
+Pr(Ai[n]=0|E,⌦i) if ti[n]=Ti[n�1]+1

(3.28)

or, applying conditional law (3.4) and rearranging the terms:

Pr(Ti[n] = ti[n]|⇥i,⌦i, E) =

(
W (E,⌦i)·h

�
Ti[n�1],⇥i, E

�
if ti[n] = 0

1�W (E,⌦i)·h
�
Ti[n�1],⇥i, E

�
if ti[n]=Ti[n�1]+1

(3.29)
We do not provide an iterative optimization procedure for this cost function.

However, to establish the tracking, we can optimize the corresponding log-likelihood
cost function in a finite-length window for k = [n� `w : n], where `w is the window
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Figure 3.12: Example of joint e↵ect estimation (violet), on simulated spike trains.
Also, RT-based (red) and IPI-based (yellow) estimations are provided for compari-
son.

length. This estimation approach will be used in the following section, as well as in
the Results chapter 6.

3.3.7 Example on simulation data

We use the same model parameters as in previous example in Section 3.3.5, that
is: r = [0.05, 0.3, 0.5, 0.75], g = [20, 17.5, 15, 12.5] Hz, b = [7, 6, 5, 4] Hz, � =
[5, 5, 5, 5] ms. We generate training data using triangular profile with 20 s dura-
tion and estimate the model parameters, obtaining: ĝ = [21.0, 16.9, 14.9, 15.0],
b̂ = [6.5, 6.0, 5.0, 2.0], �̂ = [9.4, 10.0, 11.2, 10.0], �̂ = [0.04, 0.28, 0.51, 0.74], k̂ =
[0.03, 0.02, 0.02, 0.02].

Figure 3.3.7 shows the results for RT-based (red line, minimization of cost func-
tion (3.9)), IPI-based (yellow line, non-recursive minimization of (3.24)) and joint
e↵ect estimation (violet line). One can see that joint estimation, compared to IPI-
based, exhibits lesser variation. This is due to the regularization introduced by joint
transition law (3.28). One can also see that both estimates coincide in the interval
where all four MNs are active. This is explained by the fact, that when all MUs are
active and the current estimate of e↵ect is larger than last MN’s RT, recruitment
stops adding any information to the inference, which in this case, starts to be based
solely on T [n].
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3.4 Conclusion

In this chapter, we have introduced the notion of e↵ect, which generalizes the me-
chanical output of muscle contraction and can represent either a force of contraction,
joint torque or joint angle. Then we have assumed, that during movement, the ob-
served e↵ect is equivalent to the intended e↵ect, and therefore can be used to train an
intent estimation model. Later, we have introduced a model that links the observed
e↵ect with recruitment and instantaneous firing rates of motor neurons.

Next, three e↵ect estimation models based on probabilistic inference were pro-
posed. The first one (recruitment-threshold-based, see Section 3.2) operates solely
with the fact that certain motor neurons are recruited or de-recruited, which can be
directly observed from decomposition. Due to the discrete nature of its information
source, this model provides stepped estimates of the e↵ects. It can be a viable esti-
mation model under the condition that recruitment thresholds of decomposable MNs
finely cover the interval of possible e↵ect values. The advantage of this approach
is the fact that, instead of a full decomposition, it requires only occasional occur-
rences of MUAPs that can be detected by, for example, a form-matching algorithm.
Also, we have shown that the inference cost function of this model is flat around
the optimal value with further fast growth. This defines an interval of reasonable
estimates in which the cost function optimum can be easily displaced by additional
e↵ect-related information, such as EMG amplitude.

The second estimation model (IPI-based, see Section 3.3.1) uses Hidden Markov
modelling, where the intended e↵ect is a hidden variable and sojourn times T [n]
of MNs are observations available from decomposition. Transition law of motor
neurons’ sojourn times is regulated by their instantaneous firing rates, which, in
their turn, are linear functions of the intended e↵ect. Parameters of the e↵ect-rate
relationship and of the transition law can be estimated from decomposition of a
contraction with known measured e↵ect. Then, e↵ect inference from new decom-
position data can be performed, using the learned model. A recursive estimation
algorithm is proposed to accelerate the inference.

The first two models assume that motor neuron activation can be directly ob-
served from the decomposition data (see (3.16)). Third estimation model (Joint
model, see Section 3.3.6) joins the first two by eliminating the activation from the
inference, using its conditional distribution with respect to e↵ect (3.4). This permits
to regularize the estimate provided by the IPI-based model using the information
about recruitment thresholds. Finally, an example of the three models functioning
on the same simulated data set is provided (see Figure 3.3.7).

Results on intended e↵ect estimation for data simulated using the model pre-
sented in Chapter 5, as well as for experimental data, will be provided in Chapter
6.
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Appendix A. Total probability law for the MN re-
cruitment

Total probability law applied to the conditional distribution of activity of i-th MN
Pr(Ai|Ei,⌦i), gives:

Pr(Ai = ai|E,⌦i) =

Z 1

0

Pr(Ai = ai|E,Ri = ri)Pr(Ri = ri|E,⌦i) dri (3.30)

Using (3.3), we have, for ai=1:

Pr(Ai = 1|E,⌦i) =

Z E

0

1 · Pr(Ri = ri|E,⌦i) dri +

Z 1

E

0 · Pr(Ri = ri|E,⌦i) dri

=

Z E

0

Pr(Ri = ri|E,⌦i) dri = W (E,⌦i)

(3.31)

Similarly, for ai = 0:

Pr(Ai = 0|E,⌦i) =

Z 1

E

Pr(Ri = ri|E,⌦i) dri = 1�W (E,⌦i) (3.32)

Appendix B. Expressions for the first and second
derivatives of IPI-based inference cost function

Cost function (3.21) is a sum of, essentially, two types of terms: � log
�
h (t,⇥i, E)

�

and � log
�
1� h (t,⇥i, E)

�
. In this section we provide the first and second deriva-

tives of these terms relative to the intended e↵ect E. First, let us provide the
expression for hazard function h(·):

h (t,⇥i, E) =
1

�i
S (t,⇥i, E) (3.33)

where ⇥i = Gi, Bi,⌃i and S(·) is a logistic function defined as follows:

S (t,⇥i, E) =
1

1 + exp


� 1

⌃i

⇣
t� 1

GiE+Bi

⌘� (3.34)

For brevity, let us replace the notations h(t,⇥i, E) and S(t,⇥i, E) by, respectively
h and S. First-order derivatives are as follows:

@ log h

@E
=

1

⌃i
(1� S)

Gi

(GiE +Bi)2
(3.35)

@ log (1� h)

@E
= � h

1� h

@ log h

@E
(3.36)
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Second-order derivatives are:

@
2 log h

@E2
= �@ log h

@E

✓
h+

Gi

GiE +Bi

◆
(3.37)

@
2 log (1� h)

@E2
= � @ log h

@E

h

1� h

✓
1

⌃i

1� S

1� h
� 2Gi

GiE +Bi
� h

◆
(3.38)

Since 0 < S < 1 and 0 < h < 1/⌃i, one can see that @ log h/@E is positive, as
long as Gi stands positive (negative value would not be physiologically reasonable).
Thus, @ log (1� h)/@E is negative. Second derivative �@2 log h/@E2 is positive as
long as GiE + Bi, which equals to a firing rate, returns a positive value. However,
@
2 log (1� h)/@E2 changes sign. Thus, the corresponding cost function is not con-

vex. However, in practice this does not cause any divergence of the corresponding
iterative optimization procedure.

Bibliography

[1] E. Henneman, G. Somjen, and D. O. Carpenter, “Functional significance of cell
size in spinal motorneurons,” Journal of Neurophysiology, vol. 28, pp. 560–580,
May 1965.

[2] C. J. De Luca and Z. Erim, “Common drive of motor units in regulation of
muscle force,” Trends in Neurosciences, vol. 17, pp. 299–305, Jan. 1994.

[3] D. Kernell, “The Limits of Firing Frequency in Cat Lumbosacral Motoneurones
Possessing Di↵erent Time Course of Afterhyperpolarization,” Acta Physiologica
Scandinavica, vol. 65, no. 1-2, pp. 87–100, 1965.

[4] D. Kernell and H. Sjöholm, “Repetitive Impulse Firing: Comparisons between
Neurone Models Based on ‘Voltage Clamp Equations’ and Spinal Motoneu-
rones,” Acta Physiologica Scandinavica, vol. 87, pp. 40–56, Jan. 1973.

[5] A. J. Fuglevand, D. A. Winter, and A. E. Patla, “Models of recruitment and rate
coding organization in motor-unit pools,” Journal of neurophysiology, vol. 70,
no. 6, pp. 2470–2488, 1993.

[6] C. J. De Luca and P. Contessa, “Hierarchical control of motor units in voluntary
contractions,” Journal of Neurophysiology, vol. 107, pp. 178–195, Jan. 2012.

[7] S. J. Garland and T. S. Miles, “Control of motor units in human flexor dig-
itorum profundus under di↵erent proprioceptive conditions,” The Journal of
Physiology, vol. 502, pp. 693–701, Aug. 1997.

[8] C. J. De Luca, J. A. Gonzalez-Cueto, P. Bonato, and A. Adam, “Motor Unit
Recruitment and Proprioceptive Feedback Decrease the Common Drive,” Jour-
nal of Neurophysiology, vol. 101, pp. 1620–1628, Mar. 2009.



86 CHAPTER 3. MODELS FOR INTENT ESTIMATION

[9] C. J. De Luca and Z. Erim, “Common Drive in Motor Units of a Synergistic
Muscle Pair,” Journal of Neurophysiology, vol. 87, pp. 2200–2204, Apr. 2002.

[10] C. J. De Luca and B. Mambrito, “Voluntary control of motor units in human
antagonist muscles: Coactivation and reciprocal activation,” Journal of Neuro-
physiology, vol. 58, pp. 525–542, Sept. 1987.

[11] J. L. G. Nielsen, S. Holmgaard, N. Jiang, K. B. Englehart, D. Farina, and P. A.
Parker, “Simultaneous and Proportional Force Estimation for Multifunction
Myoelectric Prostheses Using Mirrored Bilateral Training,” IEEE Transactions
on Biomedical Engineering, vol. 58, pp. 681–688, Mar. 2011.

[12] A. L. Fougner, Ø. Stavdahl, and P. J. Kyberd, “System training and assess-
ment in simultaneous proportional myoelectric prosthesis control,” Journal of
Neuroengineering and Rehabilition, p. 13, 2014.

[13] P. Romaiguere, J.-P. Vedel, and S. Pagni, “Comparison of fluctuations of motor
unit recruitment and de-recruitment thresholds in man,” Experimental Brain
Research, vol. 95, Aug. 1993.

[14] A. Albert and J. A. Anderson, “On the Existence of Maximum Likelihood
Estimates in Logistic Regression Models,” Biometrika, vol. 71, no. 1, pp. 1–10,
1984.

[15] T. Yu, K. Akhmadeev, E. L. Carpentier, Y. Aoustin, and D. Farina, “On-line
recursive decomposition of intramuscular EMG signals using GPU-implemented
Bayesian filtering,” IEEE Transactions on Biomedical Engineering, p. 12, 2019.

[16] J. Monsifrot, Model of Electromyographic Signals by Renewal Processes - Bayes
Filter for a Sequential Estimation of Parameters given to the Command of an
Upper Limb Prosthesis. Theses, Université de Nantes, Dec. 2013.
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Chapter 4

Simulation of iEMG

Table 4.1: Main acronyms and notations
MF Muscle fiber
MU Motor unit
MNAP Motor neuron action potential
SFAP Single fiber action potential
MUAP Motor unit action potential
NMJ Neuromuscular junction
FPS Farthest point sampling
fs, Ts Sampling frequency and sampling period of the simulation model
N , F , B, P , D Respectively, total numbers of MNs (MUs), MFs, axon branches,

observation points and trajectory nodes. Also, N is the index
of the largest motor neuron

·n, ·f , ·b, ·p Indices designating a specific MN (MU), MF, axon branch and
observation point

Fn, Bn Total numbers of MFs and axon branches in n-th MU
rn, sn, an Recruitment threshold, size and innervation area of n-th motor

neuron
�fp(t) SFAP of f -th MF in observation point p
�np(t) MUAP of n-th MN in observation point p
yp(t) EMG signal in observation point p
YE(t) EMG signal in multichannel electrode E; other symbols in bold

designate matrices and vectors, instead of scalars
Note: Notation from previous chapter does not apply in this one, except for general
terms such as EMG, MU, MN and MUAP, as well as recruitment threshold r.
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4.1 Introduction

Intramuscular EMG (iEMG) modeling supports the interpretation of the iEMG
signal generation in human muscles. It permits to variate the parameters of both
the motor neuron pool and the muscle in order to test and validate iEMG-based
computational methods, such as decomposition and motor neuron (MN) territory
assessment.

Di↵erent applications require simulation models of di↵erent complexities. For
example, iEMG decomposition algorithms have been often tested using signals sim-
ulated by phenomenological EMG models [1]. These approaches involve convolu-
tion of experimental or simulated spike trains with experimental motor unit action
potentials (MUAPs) and provide known spike trains and adjustable level of addi-
tive noise. However, they lack modeling of the neuromuscular jitter, morphological
MUAPs variability, distant motor units’ noise, and electrode geometry.

Compared to the phenomenological approach, biophysical modelling of iEMG
includes the calculation of each single fiber action potential (SFAP) as a function
of the fibers’ morphology and of the electrode’s relative position. This approach
provides an infinitely wide dictionary of MUAPs, permits to vary the sampling rate
and may take into consideration the electrode position and the neuromuscular jitter.
Moreover, a biophysical EMG simulation can be complemented by a force generation
model in order to establish a complete model of the muscle electrical and mechanical
responses [2, 3]. In this chapter, we present a new biophysical MUAPs simulation
model.

Development of this simulation model pursued two main goals: generation of
a decomposable set of motor units and simulation of neural command to the con-
tracting muscle. The modelling approaches to the second goal will be discussed in
Chapter 5. The first goal involves modelling of motor neurons’ innervation zones, of
electrode geometry and of motor unit action potentials. We choose to model these
aspects since they define the amplitudes and forms of the MUAPs, as well a the
level distant MUs noise. These parameters usually determine the choice of MUs
that should be included in the decomposition.

That is, the simulation model proposed in this chapter will address a physio-
logically correct generation of MUAPs and iEMG with respect to the geometries
of MN innervation territories and of the electrode. It will consist of several major
sub-models: motor neuron pool, motor unit innervation areas, terminal arborization
geometry and jitter, muscle fiber morphology, action potentials generation, and, fi-
nally, electrode and noise modeling. As we will see, the established model will also
permit to simulate multichannel iEMG, as well as the recordings from electrodes
that move during the acquisition process. This result broadens the area of possible
applications of this model.

For this purpose, we targeted the simulation of MUAPs recorded by gradually
shifting (or scanning) multichannel electrodes, which requires a biophysical approach
to simulation, including modelling of the motor unit (MU) territories, neuromuscular
junctions (NMJ) locations, and muscle fiber (MF) parameters.

For example, the models described in [4] and [5] provide the simulation of a single
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MUAP, not considering the mutual arrangement of MU territories. This problem
was later addressed in [6] by using a geometric model of MU territory locations in
the muscle cross-section. However, this previous approach assigns an exact number
of MFs to each MN, which forces the innervation of MFs at large distances from
the imposed territory. While this issue minimally influences the single-channel,
localized, intramuscular recordings, we have observed that it has a substantial e↵ect
on the multi-channel ones.

Also the unimodal Gaussian and uniform distributions used to generate the NMJ
locations in previous approaches [6, 7] produce an excessive scattering of single fiber
action potentials (SFAPs) propagation delays. This makes the simulated MUAP
waveforms more complex and with greater changes across the channels than in ex-
perimental observations [8, 9]. It was suggested in [8] that the axial distribution
of the neuromuscular junctions (NMJs) should be instead composed of smaller sub-
distributions corresponding to the separate branches of the axon.

In order to address these issues, we propose a new modelling approach that
modifies several aspects of the previous modelling works, while preserving some of
their properties [6, 10, 4, 11].

In this work, we propose several novel techniques that altogether provide a sim-
ulation of physiologically correct MUAPs recorded by intramuscular multi-channel
electrodes. These approaches can also be used in combination with previous ones
[6, 11, 10, 4] to pursue di↵erent simulation goals. More specifically, the new elements
we propose include: 1) a new way to generate even distributions of MF coordinates
and MU territory centers; 2) a controllable and accurate method for MF-MN assign-
ment; 3) an improved model of MN axon terminal arborization; 4) multi-channel
intramuscular electrode modeling; 5) extension to shifting or scanning intramuscular
electrode modeling;

Although the proposed model focuses on the simulation of MUAPs, it can be
easily extended to a full iEMG generation. This requires an appropriate MN pool
model for the generation of spike trains, such as that presented in [7]. The corre-
sponding modeling will be addressed in 5.

The remainder of this chapter is organized as follows. MFs and innervation
centers distributions in the muscle cross-section are presented in section 4.2. Next,
the fiber-neuron assignment procedure is described in section 4.2.4. Section 4.3.4
explains the modelling of terminal arborizations and of MN action potential (MNAP)
propagation delays. Finally, the simulation of MUAPs recorded by multichannel and
scanning electrodes is described in Section 4.4.7. Examples that demonstrate the
performance of the proposed sub-models will be presented within the corresponding
sections.
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4.2 Modeling of motor unit territories and muscle
fiber innervation

4.2.1 Recruitment thresholds and sizes of motor neurons

It is well known from the Hennemann size principle [12] that motor neurons are
recruited and de-recruited in a certain order, depending on their sizes. That is,
during increasing contraction the smaller motor neurons are recruited earlier than
the larger ones. This is due to the fact that the input resistance of a motor neuron
is inversely proportional to its physical size, which makes the smaller motor neurons
start firing at lower values of the net excitatory drive. These values are called motor
neuron’s recruitment thresholds.

The authors of [7] have proposed a model of recruitment thresholds distribution
across the motor neurons of a muscle. According to their model, thresholds are
distributed exponentially, so that the number of early-recruited motor units is larger
compared to the later-recruited ones, which reflects the distributions obtained in the
experiments [12].

We suppose that the excitatory input to the motor neuron pool is normalized
to fit the interval between 0 and 1, so that the input corresponding to maximum
voluntary contraction is equal to 1. Thus, the recruitment thresholds (RTs) of MNs
will be measured as the value of excitatory input at which the MN is recruited (i.e.,
starts to fire). The sizes of MNs will be considered proportional to the recruitment
thresholds and normalized to the same interval.

We define the distribution of MN RTs, similarly to the one proposed in [7]:

rn = k exp (a[n� 1]) (4.1)

where n denotes the n� th motor neuron, while a and k are respectively slope and
normalization parameters.

In order to identify a, one applies the constraint rN/r1 = R, where R denotes
the magnitude of the RT distribution (RT of the largest MN related to RT of the
smallest one). This gives a = ln(R)/(N�1). Normalization parameter k is identified
by constraining rN = M , where M  1 is the maximum RT in the pool, which gives:

1

k
=

1

M
exp

✓
N � 1

N � 1
lnR

◆
=

R

M

So that the final equation for RT distribution:

rn =
R

M
exp

✓
n� 1

N � 1
lnR

◆
(4.2)

We suppose that the MN sizes are proportional to their RTs and are bound to
the interval (0, 1], so that:

sn = rn/rN (4.3)
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Units of MN size s and RT r are arbitrary, only their relative magnitudes will
be used in further calculations. These are the key parameters to the following parts
of the model since they define the motor neurons’ firing rates across the entire
activation range and motor units’ innervation areas.

4.2.2 Distribution of the innervation centers in the muscle
cross-section

Following the approach used in previous studies, [6, 11, 13], we approximate the
muscle by a cylinder where all MFs are parallel to the z-axis and where the xy

plane constitutes the muscle cross-section (see Figure 4.1). In order to assign MFs
to MNs and simulate MUAPs, the territories of the MUs in the muscle cross-section
should be first defined. A MU territory is a circular region in the muscle cross-
section determined by two parameters: the xy coordinates of its center and its area.
Anatomically, it is the area that includes all the MFs innervated by the MN. In this
section, we describe a new method to generate the territory centers, while the areas
will be addressed later in Section 4.2.4.

In the existing models [7, 11], the coordinates of MN territory centers are assumed
to evenly fill the muscle cross-section. For this purpose, the territory centers are
drawn from a uniform distribution over the muscle cross-section. However, the
uniform distribution provides very uneven arrangement of the points (see Figure 4.2
for illustration). In turn, this leads to uneven and physiologically incorrect densities
of the innervated MFs, as shown in [14]. Another simulation model [6] generates
centers as randomly altered nodes of a rectangular grid, which partly resolves this
problem, but may be inconvenient to implement due to the fact that the generated
centers may end up outside of the admissible region.

We propose an alternative approach that consists of using the farthest point
sampling (FPS) [15, 16]. FPS is a family of algorithms that fill an enclosed 2D
domain by iteratively adding points that are maximally distant from the previously
added ones. This property of the FPS algorithms allows to maximally disperse the
MU territory centers in the muscle cross-section, thus achieving an even scattering.
At the same time, the generated points are quasi-random (e.g., their arrangement
solely depends on the form of the region and on the position of the initial point) and
do not follow any regular pattern, such as the rectangular grid. A similar approach
was proposed in [14], where the Mitchell’s Best Candidate method was applied [17].

FPS algorithms provide an additional feature that may be of interest in iEMG
simulation. They place each new territory center as far as possible from the pre-
viously generated ones. The subsequent assignment of the territory centers to the
MUs can be performed either randomly or in a specific order. If it is performed in
the order of decreasing MN sizes, the centers of the MUs with similar sizes will be as
distant from each other as possible, thus achieving an even distribution of MUs of
di↵erent sizes in the cross-section. An illustration is provided in Figure 4.3, where
the circles around the territory centers indicate the relative sizes of corresponding
MUs. In this example, the muscle cross-section is evenly filled with territory centers
of MUs of di↵erent sizes. This property is relevant when an even distribution of size-



92 CHAPTER 4. SIMULATION OF EMG

x
z
y

(xf, yf)

Lm

 
Rm

Figure 4.1: Geometrical model of the muscle: a cylinder with radius Rm and height
Lm; muscle fibers (red), are straight parallel lines characterized by their position in
the muscle’s cross-section (xf , yf ).

dependent parameters in the muscle cross section is of interest. Possible examples
are the distributions of MFs of types I and II [18] (types I and II are predominant in,
respectively, smaller and larger MUs [12]), as well as MF diameters [19, 20] (MFs of
type I tend to have smaller diameters than those of type II [21]). Even distribution
of MUs of di↵erent sizes will contribute to an even distribution of such parameters
in the muscle cross section. Alternatively, MNs can be assigned to the territory
centers in a randomized order if the aforementioned structure is not required.

4.2.3 Muscle fibers geometry and distribution in the muscle
cross section

In this model, similarly to [6, 13, 22], MFs are modeled as straight parallel lines
with their extremities located in the tendon regions, while the muscle is modeled as
a cylinder (see Figure 4.1).

The distribution of MFs in the muscle cross-section (xy-plane) should be uniform
and, preferably, should take into consideration the diameters of MFs. In previous
works [7, 11], the MFs’ locations were drawn from the uniform distribution within
the corresponding MU territory. As it was noted above, this method, combined
with previous approaches to the territory centers generation, does not guarantee the
global uniformity of MF density in the entire muscle cross-section. Alternatively, in
[6] MFs were positioned prior to the generation of the territory centers in the nodes
of a regular rectangular grid.

We propose to generate the MFs locations using the aforementioned FPS algo-
rithms family. In our simulation model, we generate them independently from the
territory centers, and simulate the MF-MN assignment in following steps, similarly
to [6]. Figure 4.2 provides a comparison of the locations generated by this method
with those drawn from the constant distribution. In our simulation we use constant
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(a) Independent samples from the uni-

form distribution

(b) Farthest point sampling

Figure 4.2: Example of 100 points (territory centers or MF locations) drawn from
the uniform distribution (a) and generated by the FPS (b). An even quasi-random
arrangement of the points, such as the one provided by the FPS, is not achievable
when using the uniform distribution.

Figure 4.3: Territory centers of N=100 MN (magnitude R=50) across the cross-
section area of the muscle; blue circles are drawn to illustrate the relative sizes of
the corresponding MUs (and not their territories). The FPS method allows an even
distribution of not only the centers, but also of the sizes of MUs.
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density of 400 MFs per mm2. However, it is worth mentioning that the FPS also
allows a variable local density of MFs.

4.2.4 Assignment of muscle fibers to the motor neurons

We establish a randomized procedure in which fibers are assigned to motor neurons
according to several physiological factors: the expected number of fibers innervated
by the neuron, fiber’s proximity to the innervation center and presence of neighbor-
ing fibers already assigned to that motor neuron. For each neuron-fiber pair, the
probability of assignment is represented by a score that combines influences of each
factor:

Pf (n) ⇠ P
a
n · P g

n(xf , yf ) · P d(n, f, nc) (4.4)

where

• Pf (n) is the score that characterizes the probability of the f -th MF to be
assigned to the n-th MN, given the size of the MN, positions of the MF and
MN’s territory center, and neighboring MFs innervation;

• P
a
n denotes the a priori probability of assignment, i.e., solely given the size of

the MN;

• P
g
n(xf , yf ) denotes the probability of MF with coordinates (xf , yf ) to be in-

nervated by n-th MN, given its territory center location;

• P
d
n(n, f, nc) is an indicator function returning 0 if any of nc closest neighbors

of f -th MF is already assigned to n-th unit, and 1 otherwise.

The pseudocode of the fiber assignment algorithm is presented in Algorithm 1.
Let us consider each multiplier in (4.4) in a detailed way.

A priori probability of assignment

A priori probability of an MF being innervated by n-th MN is proportional to the
total number of MFs that this MN should innervate. We suppose that this number is
itself proportional to the size of the MN. Thus, we calculate the a priori probability
P

a
n of MF innervation in the following way:

P
a
n =

snPN
n=1 sn

(4.5)

where sn is the size of the n-th MN which can be modeled using an exponential
distribution for recruitment thresholds, as proposed in [7].
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Distribution of MF coordinates around an innervation center

We assume that the innervation territories of MNs are circular; this assumption is
common to most EMG simulation models and is supported by experimental data
[23]. We model the P

g
n as a symmetrical two-dimensional Gaussian distribution:

P
g
n(x, y) =

1

Sn
· 1

2⇡�g
n
exp

"
�
(x� µ

g
nx)

2 + (y � µ
g
ny)

2

2�g
n
2

#
(4.6)

where x and y are the coordinates of the MF; mean µ
g
i is coincident with the territory

center of n-th MN; Sn is an out-of-border coe�cient (see explanation below in this
section); standard deviation �

g
n = an/⇡C is proportional to the MN’s innervation

area an with scattering coe�cient C.
We assume that the innervation areas of MNs are proportional to their sizes

with a scaling factor A/k: an = sn/sN · A/k, where A is the area of the muscle
cross-section. The value of k sets up the area of the largest MN as a fraction of the
muscle cross-section area: k = A/aN . The value of k varies across muscles. In our
simulation, we have chosen a value of k=4. The value of the scattering coe�cient
C regulates the tightness of the Gaussian distribution of MFs around the territory
center. We calculate it assuming that an is the area of 0.99 confidence circle for the
corresponding distribution, giving us C = inv-�2(0.99, 2) = 9.21.

Innervation areas of some MNs may partly lie outside of the muscle border.
Coe�cient Sn takes this fact into consideration and normalizes the corresponding
distribution (4.6) in order to ensure that the number of innervated MFs will still be
correct. Sn is calculated as a double integral of the original Gaussian distribution
in (4.6) above the domain corresponding to the muscle cross-section. Thus, the
probability P

g
n sums to 1 while integrating over the muscle region. Considering the

classification proposed in [19], this approach can be assigned to uniform-augmented
territory placement.

Adjacency of fibers innervated by the same motor neuron

Due to the phenomena of self-avoiding in the arborizations of MNs axons, MFs of
the same motor unit rarely lie next to each other. This fact is reflected in eq. (4.4)
by using an additional factor P d(n, f, nc), which equals to zero if at least one of nc

closest fibers is already innervated by n-th motor neuron. This principle is also in
accord with the maps of glycogen-depleted muscle fibers belonging to a single motor
neuron, obtained in the experiments [24].

The value of nc also regulates the scattering of MNs’ fibers across the muscle
cross-section. We suggest nc = 5 for a regular modeling strategy. This choice pre-
vents the formation of dense clusters of fibers while authorizing a limited adjacency.

4.2.5 Results of the MFs innervation modeling

In order to demonstrate the performance of the fiber innervation model, we simulated
a muscle of 10 mm in diameter with a mean fiber density of 400/mm2, resulting in
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Algorithm 1 Fiber assignment procedure
1: while not all fibers are assigned do
2: w = zeros(N ,1);
3: f = random non-assigned fiber;
4: for each motor neuron n do
5: wn  P

a
n · P g

n(xf , yf ) · P d(n, f, nc);
6: end for
7: assign fiber f to a random neuron n with weight wn;
8: end while

approximately F=34000 fibers. It was innervated byN=100 motor neurons with size
magnitude R=50. The resulting numbers Fn of innervated fibers per motor neuron
are shown in Figure 4.4. This distribution follows very closely the one imposed by
the model Fn = F · sn/

PN
n=1 sn.

The resulting innervation areas also lie close to their model-imposed values. They
can be calculated both as areas of convex hulls or areas of 0.99 confidence ellipsoids.
An example of resulting innervation territories’ forms is provided in Figure 4.5.

4.2.6 MF diameters and conduction velocities modeling

The diameter of a MF defines its conduction velocity and transmembrane potential
current density (see Eq. (4.12)). We simulate the diameters following the procedure
described in previous model [6]. This approach seeks to keep the global distribution
of diameters to be normal with mean and standard deviation of respectively 55 µm
and 9 µm, as observed in experiments. At the same time, it assigns larger diameters
to the MFs of larger MNs, as it is also supported by experimental data.

Resulting distribution of MF diameters, generated using this procedure and in-
nervation numbers obtained from our assignment algorithm, is illustrated in Figure
4.6. Resulting histogram closely fits the experimental distribution, which signifies
that the two simulation models (previous and the presented one) interact correctly.

MF conduction velocities (MFCVs) are proportional to the fiber diameters. Ac-
cording to [4], MFCVs can be simulated by a linear mapping of the experimental
diameter range to the velocities range. That is, we use their parameters that estab-
lish a linear mapping from 22-85 µm to 2.2-5.5 m/s, directly giving the values of
MFCVs from MF diameters.

4.3 Neuromuscular junction modeling

The neuromuscular junction is the biological interface between a MF and the axon
innervating motor neuron axon. In order to innervate all its fibers, an axon splits into
smaller branches, forming a complex and uneven tree structure with neuromuscular
junctions at its leaves [25].

Motor neuron action potential (MNAPs) originates in the soma of the MN and
propagates along the MN axon branches until reaching each of the innervated MFs.
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Figure 4.4: The number of fibers assigned to each motor neuron for a simulated
muscle with radius of 5 mm, 31400 fibers, N=100 neurons and R=50. Red curve:
model, according to motor neuron sizes; bar plot: proposed assignment procedure.

The lengths of the paths to each fiber vary due to the scattering of the neuromuscular
junctions in the muscle. This causes the scattering of MNAP propagation delays,
which a↵ects the morphology of the MUAPs.

In this section, we will show how our simulation model calculates the coordinates
of neuromuscular junctions and MNAP propagation delays.

4.3.1 Structure of the axon branching model

A MN axon can be represented as a root of a tree structure that splits into several
branches of smaller radii. This process is then repeated several times within each
branch until each muscle fiber is reached.

In our model. we suppose that split is done only twice (see Figure 4.7). Thus,
each muscle fiber and its neuromuscular junction are assigned not only to a motor
neuron but to a specific branch of its axon. We establish such a model in order to
constrain the complexity of MUAPs while providing physiologically correct distri-
butions of NMJs along the muscles.

4.3.2 Fiber-branch assignment

We assume that the number of branches is proportional to the MU’s size and that its
value defines the number of phases in its action potential. The following expression
provides the numbers of branches/phases that correspond to the experimental action
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Figure 4.5: Simulated innervation territories of MNs from the same simulation as in
Figure 4.4, drawn as convex hulls of innervated fibers coordinates; a random subset
of 50 out of 100 MN is shown to avoid clutter. Points of the same color as borders
represent the innervated MFs’ locations.
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Figure 4.6: Histogram of simulated fiber diameters. Diameters are simulated in the
function of the size of innervating MN. Here, the total histogram across the muscle
is provided, overlaid with the typical experimental distribution.

MN axon

Br1 Br2 BrB

... ... ...

First branching point

Neuromuscular 
junctions

Terminal 
arborization root

Terminal 
arborization

Branch

Figure 4.7: Structure of motor neuron axon branching, modeled as a tree with a
single bifurcation, where the axon is the root and neuromuscular junctions are the
leaves. Leaves are organized into terminal arborizationsBri using k-means clustering
of fiber positions in the cross-sectional plane.
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Figure 4.8: Neuromuscular junction z-coordinates distribution model: combination
of Gaussians scattered across end-plate zone, each associated with a cluster of MFs
in the muscle cross-section.

potentials for small motor units (1-2 phases) as well as for the largest ones (4-6
phases):

Bn = 1 + bln(sn/s1)e (4.7)

where sn is size of n-th motor unit and b·e stands for rounding to the nearest integer.
For each motor unit, in order to assign each MF to a specific branch, we first

define the number Bn of branches using equation (4.7) and then run the k-means
clustering algorithm over the motor unit’s fibers coordinates in the cross-sectional
plane, looking for Bn clusters. In this case k-means seeks for Bn groups of closely-
located MFs of a MU. Then the MFs of each group are assigned to a single axon
branch.

4.3.3 Coordinates of neuromuscular junctions

Neuromuscular junctions coordinates in cross-sectional plane (x, y) are the same as
their fibers’ coordinates. The assignment of the MFs to specific branches permits
to generate a multimodal distribution of the neuromuscular junctions along the z-
axis (Figure 4.8). Such distribution has an advantage over previously used uniform
or unimodal Gaussian [6] in terms of MUAP waveforms, especially in case of large
motor units, where unimodal distributions tend to excessively scatter the SFAP
delays, leading to the generation of abnormally polyphasic MUAPs.

Figure 4.8 demonstrates the distribution of MFs of two di↵erent branches in the
cross-sectional area (left), as well as the densities of their neuromuscular junctions
along the z-axis (right). These densities are modeled as Gaussian clusters with
mean values scattered across the z-axis of the muscle and standard deviations much
smaller than the muscle length.

We calculate mean value µb
n and standard deviations �b

n of intra-cluster densities
using the following model:
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µ
b
n ⇠ g
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L/2, �n

�
, �n = aµ + bµ ·

nX
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sk/
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k=1

sk

�
b
n = a� + b� ·

nX

k=1

sk/

NX

k=1

sk

(4.8)

where parameters aµ, bµ, a�, b� in combination with fiber and axon conduction
velocities define the dispersion of the MNAP propagation delays, and, thus, the
durations of MUAPs.

In order to obtain an initial estimate of these parameters, we impose the largest
and the smallest MUs to have MUAPs with durations of 2.5 ms and 7.5 ms respec-
tively, in a multichannel setup, where the electrodes cover the entire area of the MU.
Considering mean conduction velocities of their fibers to be 2500 mm/s and 5000
mm/s [4], we can approximately calculate the necessary span of their neuromuscular
junctions, giving correspondingly lmin = 6.25 mm and lmax = 37.5 mm. We also
assume that the standard deviation of the cluster centers �n is larger than the intra-
cluster deviation �b

n, since a MUAP usually contains several distinct phases. In the
simulation, we have found it convenient to set d = �n/�

b
n to 4. Finally, we note that

the span of neuromuscular junctions locations along the z-axis for n-th motor unit
can be roughly calculated as 3(�n + �

b
n).

These considerations give us the following system of equations:

8
>>>><

>>>>:

3(aµ + a�) = lmin,

3(aµ + a� + bµ + b�) = lmax,

bµ/b� = d,

aµ/a� = d;

(4.9)

solution of which for d = 4 gives a� = 0.4, b� = 2.1, aµ = 1.7, bµ = 8.3 (all in
millimeters). We should consider these values as upper estimates, since MUAPs’
lengths are also influenced by MNAP propagation delays (see Section 4.3.4 for de-
tails) which were not yet taken into account. According to our observations and for
MNAP propagation delays listed in Section 4.3.4, a set a� = 0.25, b� = 1, aµ = 1,
bµ = 2.5 produces MUAPs with physiologically correct forms and lengths.

4.3.4 Delay of MNAP propagation

Once all the MFs of a motor unit are assigned to their branches and the z-coordinates
of NMJs are generated, we can calculate the delays of MNAP propagation towards
each junction. We divide the lengths of each segment of the axon (see Figure 4.7)
by their propagation velocities, thus, the delay for f -th fiber assigned to b-th branch
of n-th motor unit is:

df =
|xc

n � xb
k|

vb
+

|xb
k � xj

f |
vt

(4.10)

where
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• xj
f are coordinates of the neuromuscular junction of f -th fiber in k-th branch

of n-th motor unit.

• xb
k are coordinates of the terminal arborization root at the k-th branch of

the n-th motor neuron’s axon, calculated as the mean of positions of the
neuromuscular junctions:

xb
k =

NkX

f=1

xj
f

• xc
n are coordinates of the first branching point of n-th motor unit, which is

calculated as the mean of arborization roots:

xc
n =

KnX

k=1

xb
k

• vb is MNAP propagation velocity in a branch of the motor neuron axon;

• vt is MNAP propagation velocity in a terminal arborization of the motor neu-
ron axon;

We assume that branches’ propagation velocities are much smaller than that of
the axon due to their smaller diameter and the absence of myelination in case of
terminal arborization. Values that we used in our model are: vb = 10 m/s, vt = 1
m/s (for comparison, typical propagation velocity of an MN axon is 50 m/s). To
our best knowledge, there is yet no experimental data on vt and vb in the literature.

4.4 MUAP and EMG modeling for multichannel
and shifting electrodes

The generation of muscle fiber and motor unit action potentials is a complex bioelec-
trical process. In order to establish the simulation of SFAPs and MUAPs, we have
studied its available models [26, 27, 4, 28, 10]. We did not alter these models, and in
our simulation approach, we have adapted them as they are. For the consistency of
our method description, these models will be provided in the two following sections.

The arrival of motor neuron action potential to the neuromuscular junction of
a muscle fiber causes the depolarization of its cells positioned right next to the
junction. This process provokes the depolarization of cells lying next to the first
ones, and so on, until this chain reaction reaches the tendon regions of the muscle.
Depolarization wave propagates along the muscle fiber with a constant speed of
2.5-5.0 m/s, depending on its diameter.

Depolarization of the muscle fiber consists of a short alteration of the electric
potential di↵erence between the inside and the outside of the fiber, called transmem-
brane potential. This potential di↵erence induces a distribution of so-called trans-
membrane current sources along the muscle fiber [10]. These elementary sources
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MNAP arrival,
depolariza-
tion of MF

Gradient of
transmem-

brane potential
dVm(z)/ dz

(4.11)

Transmembrane
current density
I(z, t) (4.12)

Single fiber
action potential
�pf (t) (4.14)

Figure 4.9: Scheme of the SFAP generation model adopted in the simulation.

are considered to form the electric potential field that, measured in the vicinity
of the fiber against a neutral point, form the electromyographic signal. We have
schematically illustrated this process (see Figure 4.9) in order to simplify the reader’s
navigation through the following sections.

4.4.1 Transmembrane potential and current density

Transmembrane current density is usually modeled as being proportional to second
derivative of transmembrane potential [26] along z-axis, which has the following
form:

Vm(z) =

(
Az

3 exp (�z) + B, z > 0

0, z  0
(4.11)

where A is a proportionality coe�cient, equal to 96mV· mm-3, and B is potential
at rest, equal to -90 mV.

As it was proposed in [10], transmembrane current density If (z, t) of f-th muscle
fiber can be modeled in time-space domain as follows:

If (z, t) = df
@

@z
[ (z � z0f � vf t) · pLf

(z � z0f � Lf/2)�

�  (�z + z0f � vf t) · pRf
(z � z0f �Rf/2)] (4.12)

where

• df is the diameter of the muscle fiber; values of the diameters are modeled as
proposed in [6];

• z0f is position of f -th fiber’s neuromuscular junction;

• Lf and Rf are distances from the neuromuscular junction of f -th fiber to the
left and right tendon regions respectively;

•  (z) = dVm(z)/dz;

• pLf
(z) and pRf

(z) are indicating functions equal to 1 if, respectively, �Lf/2 
z  Lf/2 and �Rf/2  z  Rf/2;

• vf is fiber’s conduction velocity.
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4.4.2 Single fiber action potential modelling

In order to simulate single fiber action potentials (SFAPs) we define a potential
induced in an observation point p = [xp, yp, zp]> by an elementary current source
located at a narrow fiber’s slice at coordinate z [27, 4]:

�fp =
1

4r
· Ieq

r
2
fpr/z + (zp � z)2

= hfp(zp � z)Ie (4.13)

where

• Ie is an elementary current source;

• z and zp are locations of the elementary current source and of the observation
point respectively;

• rfp is radial distance between muscle fiber f and observation point p, that is,
rfp =

p
(xp � xf )2 + (yp � yf )2;

• r and z are radial and axial conductivities of the muscle tissue (0.063 S/m
(Siemens per meter) and 0.33 S/m respectively [4]);

As we noted earlier, during contraction, transmembrane current sources are con-
tinuously distributed along the fiber, according to (4.12). Individual potential �fp(t)
of fiber f at the observation point p, generated by this distribution can be calculated
by integration [4]:

�fp(t) =

Z 1

�1
hf (zp � z)If (z, t) dz (4.14)

That is, the single fiber action potential is a convolution of transmembrane cur-
rent density distribution and elementary current potential. While the former is
fiber-specific, the latter is determined by the relative position of the fiber and of the
observation point.

4.4.3 Motor unit action potential modelling

The action potential of a MU is modeled as a linear sum of its muscle fibers’ SFAPs
[6]. Taking into consideration the MNAP propagation delays and neuromuscular
jitter [29], a MUAP can be calculated the following way (see also Figure 4.10 for
illustration):

�np(t) =
FnX

f=1

�fp(t� df � ⇣) (4.15)

where �np(t) is the MUAP of n-th motor unit, observed in point p; Fn is the number
of fibers innervated by this motor unit; �fp(t) is SFAP of f -th muscle fiber of n-th
motor unit, observed in point p; df is the delay between the MNAP discharge and
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Figure 4.10: E↵ect of propagation delays of MNAPs (dn) and SFAPs (df ) on result-
ing motor unit action potential.

its arrival to the neuromuscular junction of the fiber (see expression (4.10)); ⇣ is a
delay caused by neuromuscular jitter.

Equations (4.14) and (4.15) operate with continuous arguments and therefore
permit to calculate the MUAPs and EMG with infinite temporal precision. Practi-
cally, in order to accelerate the simulation, we pre-calculate �fp(tn) for each discrete
time value tn = {0, Ts, . . . , (N � 1)Ts}, where Ts is sampling period and is N su�-
ciently big for tn to cover the entire action potential.

This helps to significantly accelerate the simulation since the calculation of intra-
cellular action potentials and SFAPs for each new realization of a MUAP is no longer
necessary. However, this restricts the MUAPs to be calculated only for discrete-time
arguments. This disallows the simulation of time delays that are smaller than Ts,
such as those caused by neuromuscular jitter. Additionally, the spike arrival times
Ink are, as well, not restricted to discrete-time values.

In order to resolve these issues, we calculate the total temporal delay in the
argument of each SFAP in (4.15) and take the modulo � and quotient � of its
division by the sampling period Ts:

� = (df � ⇣ � Ink) mod Ts

� = (df � ⇣ � Ink � �)/Ts
(4.16)

Pre-calculated SFAPs are then simply delayed by the quotient �. Then, the ob-
tained waveform �np(t) can be shifted by delay � using sub-sample shifting technique
proposed in [30]. That is:

�np(t) =
FnX

f=1

�̃fp(t��) (4.17)
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(a) (b)

Figure 4.11: E↵ect of the neuromuscular jitter on MUAP waveform.

where �̃fp(t) is pre-calculated vector �fp(tn) shifted by sub-sample delay �.
As an example, we provide an original simulated MUAP waveform (see Figure

4.11) and its multiple realizations for neuromuscular jitter with a standard deviation
of 25 µs [6]. One can see that even the typical level of jitter, observed in healthy
subjects, considerably a↵ects the form of the MUAP. This underlines the importance
of the possibility to simulate fine temporal delays in iEMG modelling.

4.4.4 EMG in a single observation point

EMG is modeled as a linear sum of contributions from all MUs [1], while each con-
tribution is a convolution of a spike train and MUAP. We formulate the expression
for simulated EMG, acquired in observation point p, in the following way:

yp(t) =
NX

n=1

card(Un)X

k=1

�np(t� Ink) (4.18)

where yp(t) is the simulated EMG signal in observation point p, Un is a vector of
spikes’ time instants for n-th motor neuron; and k is the index of a spike in Un.

4.4.5 EMG in a single-channel electrode

Since a metallic electrode is a conductor, the electric potential is constant across its
volume. Its value can be approximated by an average field in the observation points
adjacent to the electrode [6]. Therefore, a SFAP detected by an electrode can be
calculated as an integral of the potential �(t) over the electrode’s surface. Due to
the linearity of (4.15) and (4.18), the same applies to MUAPs and the overall signal
detected by the electrode.

In our model, we approximate the recording surface by a number of elements
with observation points [p1, p2, . . . , pP ] associated to the center of each element.
The electrode potential is, thus, equal to the sum of element potentials weighted by
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their areas:

YE(t) =
h
±e1 ±e2 ... ±eP

i
·

2

6664

y1(t)
y2(t)
...

yP (t)

3

7775
= EY(t) (4.19)

where ep is area of the electrode’s element associated to p-th observation point, its
sign depends on the polarity of corresponding amplifier input; yp(t) is EMG signal
calculated at observation point p using equation (4.18); in following, E and Y(t)
will be referred to as electrode matrix and observation vector.

As an example, a fine wire electrode can be approximated by a pair of points
with equal areas. In the case of bipolar acquisition, the resulting signal is equal to
the di↵erence between potentials observed in the two points (see expression (4.19)):

YE(t) =
h
1 �1

i
·
"
y1(t)
y2(t)

#

Similarly, single-channel MUAP can be calculated in the following way:

�E
n (t) =

h
±e1 ±e2 ... ±eP

i
·

2

6664

�n1(t)
�n2(t)
...

�nP (t)

3

7775
= EY(t) (4.20)

4.4.6 EMG in a multichannel electrode

Multichannel electrodes are arrays or matrices of electrodes. Calculation of a multi-
channel EMG signal can be conveniently represented by a stack of electrode matrices
E:

YE(t) =

2

6664

E1

E2

...

EM

3

7775

2

6664

y1(t)
y2(t)
...

yP (t)

3

7775
= EY(t) (4.21)

where electrode matrix E has a sense of mixing matrix.
For example, a signal acquired by an array of point electrodes with consecutive

di↵erentiation can be represented as follows (see expression (4.21)):

YE(t) =

2

6664

�1 1 0 ... 0
0 �1 1 ... 0

...

0 ... �1 1

3

7775

2

6664

y1(t)
y2(t)
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yP (t)

3

7775

Multichannel MUAPs can be obtained in the similar way:

�E
n (t) =

2

6664

E1

E2

...

EM

3

7775

2

6664

�n1(t)
�n2(t)
...

�nP (t)

3

7775
= E�n(t) (4.22)
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4.4.7 EMG in a shifting electrode

Shifts can be modeled as a combination of translations and rotations of the electrode
along a specified trajectory in the muscle. This trajectory can be approximated by
a number of nodes D linked by successive rigid transformations T1

0, T
2
1,. . . , T

D
D�1.

The current position of the electrode on the trajectory curve can be specified by
a continuous path parameter 0  �  D � 1, where D denotes the overall number
of nodes in the trajectory. Observation vector Yd(t) in trajectory node d is defined
as follows:

Yd(t) =

2

6664

y
d
1(t)
y
d
2(t)
...

y
d
P (t)

3

7775
(4.23)

where y
d
p(t) is observation obtained in point p

d, position of the point p after d-th
transformation along the path: pd = Td

d�1 . . .T
1
0 · p

The signal, as a function of the current position of the electrode, can be calculated
as follows:

YE(t,�) = E
h
I1(�) I2(�) ... ID(�)

i

2

6664

Y1(t)
Y2(t)
...

YD(t)

3

7775
(4.24)

where, for d = {1, 2, . . . D}, Id(�) = I · �(�� (d�1)), �(·) is the Dirac delta function
and I is identity matrix of size P ; Yd(t) is the observation vector in the trajectory
node d.

As an example, assuming that the electrode’s trajectory is approximated by only
two nodes, an EMG signal from a fine-wire electrode, before the shift (� = 0) and
after the shift (� = 1) can be expressed as (see equation (4.24)):
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where the lower index of y corresponds, as previously, to the electrode element, while
its upper index denotes the trajectory node.

The signal acquired in positions located between the trajectory nodes can be
linearly interpolated, given a su�ciently fine trajectory sampling. One can express
the signal acquired in a specific position � on the trajectory:

YE(t,�) = E
h
Î1(�) Î2(�) ... ÎD(�)

i

2

6664

Y1(t)
Y2(t)
...

YD(t)

3

7775
(4.25)
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where, for d = {1, 2, . . . D}, Îd(�) is a weighted identity matrix determined as func-
tion of the electrode position �:

Îd(�) = I ·max
⇥
0, 1�|d� 1� �|

⇤
(4.26)

Function (4.26) is equal to one when � = d� 1 (i.e. when calculating the signal
exactly in trajectory node d), and linearly weights the neighboring nodes d and d+1
when d � 1 < � < d. An example of a MUAP captured by a fine-wire electrode,
that moved transversely to the MFs, is shown in Figure 4.12.

Applying expression (4.25) to the previous example, we can calculate the signal
acquired at 1/4-th of the way (� = 0.25):

YE(t, 0.25) =
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Similarly to previous examples, MUAP in a shifting electrode can be calculated
as:

�E(t,�) = E
h
Î1(�) Î2(�) ... ÎD(�)

i

2

6664

�1(t)
�2(t)
...

�D(t)

3

7775
(4.27)

Path parameter � can be a function of force or time since usually electrode shifts
occur due to either muscle deformation during contraction or other factors that can
be described as functions of time.

4.4.8 Results and application example for multichannel MUAP
simulation

To assess the performance of the proposed multichannel MUAP modelling, we es-
tablish a simulation case showed in Figure 4.12: an array of 16 equidistant electrodes
spaced by 1 mm gap was inserted into the muscle at the angle of 30 degrees to the
fibers. This array simulates recently proposed intramuscular electrodes for human
studies [31]. In total, 15 channels were obtained by consecutive di↵erentiation of the
signals in the electrodes. We have chosen a MU for which the center of the territory
lied close to the electrodes. The length of the muscle in this simulation was 50 mm,
and the end-plate zone was positioned around the center of the muscle, as stated in
formula (4.8). The array was placed in one of the halves of the muscle and didn’t
cross the MU’s end-plate zone.

From Figure 4.12, we notice several relevant results. First, the amplitudes of the
MUAPs are inversely proportional to the distance between the channel’s electrodes
and the center of the MU’s territory. Second, the centers of energy of the MUAPs
shift to the right as the distance between the channel and the end-plate increases,
due to the simulation of SFAP conduction. Third, the transformations between
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Figure 4.12: Lower half: a multichannel array of 16 equidistant electrodes spaced by
1 mm gap, inserted into the muscle at the angle of 30 degrees to the fibers. Consec-
utive di↵erentiation is applied to the multichannel signal, providing 15 di↵erential
channels. Upper half: MUAPs in each of the resulting 15 di↵erential channels. All
MUAP plots have the same vertical axis scale. The black round markers designate
the trigger time, similar for all the MUAP plots.

MUAPs in neighboring channels are consistent and MUAPs have physiologically
correct durations (approximately 5 ms).

4.4.9 Results and application example for scanning acquisi-
tion simulation

Equation (4.25) permits to simulate a ”scan” of a motor unit territory. An example is
presented in Figure 4.13 where a MUAP is shown at 10 equidistant nodes positioned
along a straight trajectory that goes across a large MU’s territory through its center.
The overall duration of the generated MUAP is approximately 5 ms. This result is
qualitatively in agreement with experimental observations [9, 8].
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Figure 4.13: A scan simulated with a two-point di↵erential electrode which was
shifted transversely along a 10 mm-long trajectory across the territory of a MU.
Black dots on the right plane are 1 mm increments of the electrode position, for
which the MUAPs (black solid lines) are calculated. Intermediate values of MUAPs
are obtained using scanning and interpolation formula (4.25).
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(a) Location of the innervation terri-

tories of detectable MUs in the cross-

section of the muscle. Black dots - elec-

trode locations, numbers - indices of

MUs, colored lines - territories’ borders.

(b) Estimated (D̂, circles) and true (D,

crosses) diameters of MUs territories.

Colors are matched with the left figure

for easier correspondence.

Figure 4.14: Results of territory assessment simulation.

4.4.10 Results and application example for MUs territory
assessment

The multichannel MUAP model permits to simulate the studies that aim at the
estimation of MUs’ innervation territories. As an example, here we have simulated a
procedure that is similar to a previous experimental study [32]. More specifically, we
have simulated a 10-mm long array of 11 equally spaced intramuscular electrodes,
making ten channels with consecutive di↵erentiation, inserted to a 10-mm wide
muscle at an angle of 90� to the fibers. The diameters of the territories are estimated
as the number of the channels where the MUAP’s peak was four times greater than
the standard deviation of the baseline noise [33, 32]. The SNR was set to 15 dB
in this study. Only MUs with recruitment thresholds that are below of 50% MVC
were considered for the analysis.

From Figure 4.14, the estimated diameters generally correlate with their true
values. However, this simulation highlights the fact that, for most of the MUs,
the electrode array does not cross the center of their innervation territories, which
results in an underestimation of the diameters (e.g., see MUs 40, 43, 55 in Figure
4.14). Also, we note the low resolution of this technique which limits the estimated
diameters to be multiples of the inter-electrode distance. The proposed simulation
model can be used to test and evaluate more complex approaches to MU territory
assessment based on multichannel iEMG decomposition.

4.5 Annotation and MUAP dictionary generation

In order to test and evaluate the decomposition and decomposition-based approaches,
the simulated iEMG signal should be annotated, i.e. the underlying spike trains and
MUAP dictionary should be provided. Obtaining the spike trains is straightforward:
one can simply take the trains used in the simulation of the signal. However, only
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those MUs that are close enough to the electrode and, thus, are detectable in the
signal, should be included to the annotation. In the case of manual decomposition,
this choice is made by a trained specialist, otherwise, it is done automatically by a
decomposition algorithm, based on an estimate of the baseline noise.

While simulating an EMG signal, one is free to set an arbitrary level of baseline
noise. This will a↵ect the annotation of the signal, by either excluding MUs whose
MUAPs are ”drowned” in the noise, or adding MUs that su�ciently emerge from it.
Additionally, on high levels of contraction, small MUAPs are completely masked by
the larger ones even if these MUAPs were clearly detectable compared to the baseline
noise. Such MUAPs, in that case, would never appear in manual or automatic
decomposition due to the lack of their distinct non-superimposed occurrences in the
signal. In cases when a decomposition algorithm is being evaluated, an inclusion of
such MUs to the annotation may be unfair and leads to the drop of the evaluation
scores.

Additionally, when establishing a simulation model for decomposition-based con-
trol, it is convenient to exclude the decomposition algorithm from the loop and use
the true annotation instead. This simplifies the testing process and permits to con-
centrate on the evaluation of the control model and avoid decomposition-specific
issues in the process.

In order to automatically produce a ”fair” annotation that includes only de-
tectable MUs, we use a two-stage approach based both on the MUAP comparison
with the baseline noise and on its contribution to the overall signal. In the remain-
der of this section, we will present the strategy of setting the baseline noise level for
simulation and to select the MUs that are prominent enough to be detected by a
decomposition algorithm.

4.5.1 Instrumentation noise level setting for simulation

In experimental EMG acquisitions, there are two main sources of noise: the in-
strumentation and distant motor unit activity. While the former remains constant
during acquisition, the latter changes depending on the contraction level.

Instrumentation noise level is usually defined in terms of Signal-to-Noise ratio
(SNR), that is, as 20 log10(�s/�n). The standard deviation of instrumentation noise
can be measured in the absence of a contraction, and is considered constant. How-
ever, the standard deviation of the EMG signal grows with the contraction force due
to the recruitment of larger MUs and increasing firing rates. Therefore, the SNR
varies while the real level of instrumentation noise is constant.

In order to standardize the instrumentation noise level between di↵erent contrac-
tion profiles, we calculate the SNR for the EMG signal only at the maximal value
of net excitation:

�s = 10�
SNR
10 ⇤

s
1

T

Z T

0

S
2
100%(t) dt (4.28)

where T is su�ciently long for the contraction to stabilize at its maximum value
(usually T=5 s is enough).
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In multichannel EMG simulation, instrumentation noise is calculated separately
for each channel and then averaged to produce a single value for all channels.

4.5.2 Selection of detectable MUs

Selection of detectable MUs for annotation is based on the prominence of their
MUAPs in the overall signal. In our simulation, we select detectable MUAPs using
two criteria: first is MUAP’s prominence in the instrumentation noise, second is
MUAP’s contribution to the total signal power.

The first criterion is based on comparison of the MUAP’s maximum absolute
value with the standard deviation of instrumentation noise. In our simulation, a
MUAP is considered detectable if its peak value is 6 times greater than �n.

The second criterion uses the contribution of the MUAP to the power of EMG
signal. That is, we want to keep only those MUs whose APs are large enough
compared to the others. We calculate the contribution of n-th MU to the signal
power in the following way:

Pn(rn) = 'n(rn)

Z T

0

�n(t)
2 dt (4.29)

where 'n(·) is the firing rate of n-th MN as function of net excitation, rn is re-
cruitment threshold of n-th MN and T is the duration of MUAP �n(t). Relative
contribution of n-th MU is:

Cn =
Pn(rn)PN
i=1 Pi(rn)

(4.30)

Thus, the contribution is calculated at the level of contraction corresponding
to the recruitment threshold of the MN. That is, we state that if the MUAP is
not prominent at the recruitment level of its MN, it will not become prominent at a
higher level of contraction. A MU is considered detectable if its relative contribution
is greater than a specified threshold. In our simulations we use the rule Cn �
0.01. This criterion excludes those MUs from the annotation, whose MUAPs will
be repeatedly masked by the larger ones and thus won’t be detectable.

Finally, a MU is added to the annotation if its MUAP satisfies both criteria:
its peak is greater than six times the noise standard deviation, and its relative
contribution is higher than a specified threshold. In the cases of multichannel iEMG
simulation, a MU is considered detectable if the rules are satisfied in at least one
channel. This approach produces choices that are close to the ones made intuitively
by an expert or a by detection phase of a decomposition algorithm.

4.5.3 Annotation and dictionary generation for a simulated
signal

As we have stated earlier, decomposition annotation consists of simulated spike
trains of detectable motor units. In our implementation, the spike timings coincide
with the moments of MNAP arrival to the first branching point of the terminal
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arborization. Due to the integration of MNAP and SFAP propagation times, the
resulting MUAPs appear with a specific delay relative to the spike timings.

In order to provide an annotation that is consistent with the corresponding iEMG
signal, we need to compensate for these delays. We estimate the delay for each MU
and shift the corresponding spike train to align the spikes with the centers of the
MUAPs. In order to estimate the position of the center of the MUAP of n-th MU
we identify the time ⌧n for which:

Z ⌧n

�1
�n(t)

2 dt =

Z 1

⌧n

�n(t)
2 dt (4.31)

In case of a multichannel acquisition, for each MU, the delay is calculated using
channel c where its MUAP has maximal energy:

Z 1

�1
Ec�n(t)

2 dt (4.32)

In the case of the electrodes shifting to distances longer than 1 mm, the delays
become variable and di�cult to track. We did not implement any specific approach
to this problem. It can be solved by recalculating the delays in each node of the
electrode trajectory using (4.31) and (4.27).

Dictionary of MUAPs can be generated using formula (4.27) for each channel and
in each node of the trajectory. Additionally, MUAPs are centered and their lengths
should be equalized. We set standard length of a MUAP to 5 ms for simulations
that don’t include contractions exceeding 50% MVC. For other cases, larger MUs
are recruited, so that the dictionary should be extended to 7.5 ms or 10 ms to fit
the larger MUAPs.

Finally, an annotation that positions the spike at the center of the MUAP is con-
sidered non-causal since the first half of a MUAP appears before the corresponding
spike. Such annotation is used in EMGLAB [34]. In order to produce a causal an-
notation, spikes should be shifted to the left by the half of the MUAP length. This
type of annotation is of use when testing our Bayesian-filtering based decomposition
algorithm [35].

4.5.4 Results and application example for multichannel iEMG
decomposition

We present the results of the application of a decomposition algorithm to the sim-
ulated signals. In order to generate an iEMG signal for decomposition, we have
implemented the motor neuron pool model proposed in [7].

A linear array of five electrodes (1-mm interelectrode distance) with consequent
di↵erentiation, providing four iEMG channels, was used for this simulation. We
measured the average power of the simulated signal in all channels at maximal
net excitation in order to obtain a reference value for calculation of the standard
deviation � of the additive noise. MUAPs whose maximal absolute value exceeded
4� in at least one of the four channels were considered detectable and their MUs
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were included to the annotation of the signal. The SNR in all channels was set to
15dB and a trapezoidal contraction reaching 20% MVC was generated.

The simulated EMG signal was decomposed by MTL, the multichannel version
of the algorithm proposed in [36, 34]. We have compared the simulated annotation
with the decomposition provided by MTL. The decomposition was evaluated us-
ing classification phase sensitivity and positive predictivity [37] averaged across 11
detected MUs, which resulted in, respectively, 0.93 ± 0.04 and 0.97 ± 0.03.

4.6 Conclusion

Simulation signal is a key tool for understanding the nature of intramuscular EMG.
Signals simulated in a fully controlled environment help to test and validate various
approaches to iEMG processing. In this chapter, we have presented a set of models
that, together, simulate physiologically correct MUAPs and iEMG signals.

More specifically, we combine existing methods with novel approaches in order
to achieve such goals as:

• Controllable and stable simulation of MU territories;

• Ability to simulate multichannel recordings for arbitrary and time-varying
locations of the electrode in the muscle;

• Ability to constrain the complexity of MUAPs waveforms and establish their
consistency in multichannel recordings.

The first goal is achieved using the farthest point sampling algorithm applied to
the generation of MU territory centers, and of Gaussian-based modelling of muscle
fibers innervation. The second is addressed by modelling the electrode as a set of
points having equal potential in the electric field generated by surrounding muscle
fibers. Multichannel and scanning recordings are obtained using linear transforma-
tions of the signals calculated in such points, taking into consideration the polarity.
The third goal is achieved by means of multi-modal distribution of the neuromuscu-
lar junctions along the muscle fibers, which defines the action potential propagation
delays and directly a↵ects the MUAP shapes.

Finally, we have presented examples of applications of the simulated signals, such
as MU territory assessment, iEMG decomposition, multichannel MUAP simulation.
Using this model along with the one presented in the following chapter, we will
establish a prosthetic control simulation model for tests and validation of intent
estimation techniques. The model was implemented on Matlab and is accessible
on-line on the authors’ repository 1.

1
Link: https://github.com/smetanadvorak/iemg simulator

https://github.com/smetanadvorak/iemg_simulator
https://github.com/smetanadvorak/iemg_simulator
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Chapter 5

Simulation of muscle contraction

5.1 Introduction

The model presented in the previous chapter permits to simulate motor unit ac-
tion potentials (MUAPs). In order to generate EMG, they should be convolved
with individual spike trains of the corresponding motor neurons (MNs). Hence, the
presented model should be further extended by spike generation model.

Originally, spikes, or firings, are produced by motor neurons (MNs) of the spinal
cord during the polarization-depolarization process. The last one is caused and reg-
ulated by synaptic inputs to the motor neurons, consisting of supraspinal command
and internal spinal-level feedbacks. Following the approach used in other studies [1],
we will consider a single synaptic input, common to all the motor neurons, termed
common drive [2] or, as we will further refer to it, the excitation.

Contraction force is an increasing function of excitation. That is, larger values of
excitation entail larger numbers of recruited MNs and more intensive firing activity
of already recruited ones [2]. The firing behavior of MNs is usually described in
terms of instantaneous frequency of their firings, or firing rate (FR). As we will
describe in the next section, the relationship between the excitation and firing rate,
called excitation-rate curve is individual for each MN and depends on its size. Study
of this exact relationship requires a complex experimental setup [3]. More often, a
force-rate curve is studied [4], which also exhibits an onion-skin relationship.

Firing instants of an individual MN can be modeled as a binary stochastic pro-
cess with intervals between the spikes modulated by its FR. Most of the existing
approaches [5, 6] model the inter-spike interval (IPI) as normally distributed with
mean inversely proportional to the FR. IPIs are then added-up the in order to define
the firing timings. Another approach [7] is to use survival models and Markov chains
in order to generate firings in a sample-by-sample recursive fashion.

Spike trains simulated using a combination of the aforementioned methods can
then be used to generate EMG signals (knowing the MUAP shapes) and, having
an appropriate model of the muscle, to simulate a contraction force level. Such
a model builds up similarly to the linear EMG model. That is, short elementary
contractions of MUs provoked by singular spikes, called twitches [8], are summed up
to produce total contraction power of the muscle. This approach is widely used in

121



122 CHAPTER 5. SIMULATION OF MUSCLE CONTRACTION

other contraction force simulation models [9, 6].
The final challenge of EMG modelling comes from the fact that typical target

contraction is defined in the terms of kinematic parameters of its trajectory or, more
often, contraction force. That is, to generate target force, an appropriate excitation
should be applied to the model of firings instants. However, it is not possible to
obtain a closed-form inverse of the firing and force models. Following existing ap-
proaches [10, 11, 12], we use feedback controller and nonlinearity compensation in
order to resolve this issue.

The rest of this chapter is organized as follows. First, a model of the excitation-
rate curve will be introduced, followed by the description of firing instants gener-
ation approach. Next, twitch and total contraction force models will be provided.
Then, static nonlinearity compensation, polynomial model of the excitation-force re-
lationship and PID controller tuning will be presented. Finally, we will cover some
implementation details of both the EMG and contraction force models.

5.2 Contraction force simulation model

5.2.1 Excitation-rate curves

Firing rate of a motor neuron is a function of its size and excitation. In [5], this
relationship is modeled as linear, following experimental observations [3]. In our
simulation we use the following linear model proposed in [5]:

'i(") =

(
min

�
'
max
i , '

sl
i ("� ri) + '

min
i

�
, " > ri

0, "  ri

(5.1)

where " is excitation to the motor neuron pool (0  "  1); 'min
i and 'max

i are the
minimum and maximum firing rates of i-th MN; ri is its recruitment threshold and
'
sl
i is the slope of its rate-excitation relationship. The form of this relationship is

illustrated in Figure 5.2.1.
The values of 'min

i , 'max
i and gi are themselves linear functions of recruitment

rates, according to previous simulation studies [5, 13]. Parameters of these relation-
ships will be provided in section 6.1.

5.2.2 Firing instants modelling

In order to generate the firing instants of motor neurons, most of the existing meth-
ods [5, 6] use the following approach. That is, k-th firing instant for i-th MN is
calculated as follows:

Ii,k = Ii,k�1 +�i,k(") (5.2)

where �i(") is i-th MN’s next inter-spike interval (IPI), a random value with dis-
tribution usually modeled as normal one g

�
µi("), cv(")µi(")

�
; where µi(") = 1/'i(")

and cv is a coe�cient of variation usually set to a constant value between 1/10 and
1/3 [5].
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Figure 5.1: Excitation-rate relationships of motor neurons modeled as linear satu-
rated functions, the rate is expressed in pulses per second (pps). Increasing space
between the lines is the result of exponential model of recruitment thresholds ([5],
also see Section 4.2.1).

This approach permits to modulate both the IPI and its variation in function of
excitation. However, it uses current value of excitation in order to produce future
spike timing, disregarding possible changes of excitation between the two. This is
not in agreement with more precise leaky fire-and-integrate models of neurons, in
which the inter-spike intervals depend on the entirety of excitation values between
the two spikes. This can be critical at low firing rates of up to 10 Hz when the
spiking model is unresponsive to the changes of excitation during at least 100 ms.

This problem can be addressed by using the following probabilistic model. We
will use hazard function to define the probability of MN firing at each time step.
Let us denote the PDF of IPI as Pr(�i= t) = V (t,⇥i(")), a unimodal distribution
with parameters ⇥i("), functions of excitation. If this PDF has a closed-form hazard
function:

h(t,⇥i) = Pr(�i = t|�i � t,⇥i) =
V (t,⇥i)

1�
R t

0 V (t̄,⇥i) dt̄
(5.3)

then the firing instants can be generated stochastically using the Markov chain
model proposed in [7]. That is, similarly to Section 3.3.1, we define Ti[t] as sojourn
time or time passed since the previous spike of i� th MN at time instant t. As an
example, Ti[t] = 0 signifies that i-th MN has fired at time n. Markov assumption
says that the probability distribution of the next state of MN depends only on its
current state. That is:
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Pr
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if t̄ = Ti(t) + 1

0 otherwise

(5.4)

This expression permits to generate spike trains in a recursive sample-by-sample
way. In order to modulate this process in function of excitation, the parameter
that defines the position of the PDF mode (i.e., the most probable value of IPI),
usually referred to as scale parameter, should be set to the inverse of the firing rate.
Variation of the IPI is usually modeled using coe�cient of variation cv = �

2
/µ, which

is a parameter specific to normal distribution. When using other distributions to
model IPI, the variation is set by the scale parameter. Its appropriate value can be
obtained by finding the best fit of that PDF to the normal one available from the
experiments. We note here that excitation-dependent parameters ⇥[t] in (5.4) a↵ect
the transition probability at each time instant, thus fast changes of excitation can
be taken into account.

Possible choice of IPI PDF is, e.g., Discrete Weibull distribution [7], which has a
closed-form hazard function and easily interpretable location parameter. However,
its scale parameter is hard to tune when trying to generate IPIs with the coe�cient
of variation close to that available in the literature for normal distribution. For
that reason, logistic PDF can be used instead (see Section 3.3.1). It has its hazard
function in closed form, and can approximate normal distribution by setting µl = µn

and �l = �n/1.702 [14], where µl, �l are location and scale parameters of logistic
PDF, µn, �n are the mean and standard deviation of normal PDF.

We note that this approach, having the aforementioned advantage, is more com-
putationally demanding. That is, the hazard function should be calculated at each
time instant, making the complexity of our approach proportional to the sampling
frequency. In the previous approach, expression (5.2) is evaluated only at each spike
timing. However, this problem can be e↵ectively solved by generating spikes at lower
rates than the rest of the simulation.

5.2.3 Twitch model

The ensemble of all muscle fibers (MFs) belonging to one single motor unit (MU)
is called muscle unit. The arrival of a motor neuron action potential (MNAP) to
the neuromuscular junctions (NMJs) of a muscle unit provokes short contraction of
all its MFs. The average time duration of these elementary contractions (30ms -
100ms [15]) is large compared to the variance of delays of MNAP propagation in the
terminal arborization. This permits to neglect the modeling of the individual fiber
contractions and model the contraction of a muscle unit as a whole. That is, the
combined contraction of an entire muscle unit is usually referred to as twitch.

At high firing rates, a train of subsequent spikes drives the muscle unit to create a
continuous (tetanic) contraction that consists of overlapped (fused) twitches. At low
firing rates, smoothness of the global muscle contraction is achieved by recruiting
multiple motor units, all exhibiting an asynchronous firing behavior. Several twitch
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models are proposed in the literature [5, 6], all built around the critically damped
second-order linear system impulse response:

fi(t) =
Pi

Ti
· t · exp(�t/Ti) (5.5)

where Pi and Ti are i-th motor unit’s peak twitch force and time until reaching
the peak. These parameters depend on the size of the corresponding MN. In our
simulation, for their values, we use the assignment procedure proposed in [5].

5.2.4 Total force produced by a muscle

This section demonstrates the classic model of the contraction force [5], we provide
it here for consistency of the simulation model description. Total muscle force can
be modeled by a linear sum of contributions from all motor units:

F (t) =
NX

i=1

|Ii|X

k=1

fi(t� Ii,k) (5.6)

where index i denotes i-th motor unit, k denotes k-th spike in its spike train; fi(t)
is i-th motor unit’s twitch function (5.5), Ii is vector of i-th motor unit’s firing
instants.

Force produced by a single motor unit exhibits a nonlinear behavior in function
of the stimulus rate (a value inversely proportional to current inter-spike interval
�) [5]. In general, the higher the stimulus rate is, the more the produced force
deviates from its linearly determined value towards higher ones. This phenomenon
is usually referred to as the change of nerve-muscle system gain. We use a model
of gain proposed in [5], where at low firing rates, when Ti/�k  0.4, gain gik is
assigned to 1, otherwise:

gik =
1� exp(�2(Ti/�k)3)

Ti/�k
, Ti/�k > 0.4 (5.7)

so that gain is a sigmoid function of excitation with peak at T = �. Final equation
for total muscle contraction force is, thus [5]:

F (t) =
NX

i=1

|Ii|X

k=1

gi,k · fi(t� Ii,k) (5.8)

That is, total contraction force is a sum of spike trains convoluted with corre-
sponding twitch waveforms and weighted by a non-linear rate-depended coe�cient.

5.3 Target profile

The final goal of this simulation and the one presented in the previous chapter (see
Chapter 4) is to establish a complete model that generates both the contraction that
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follows a specified profile and an accompanying iEMG signal. However, the already
presented parts of the model are not yet su�cient for the generation of specific
contraction profiles.

While the input of the motor neuron pool is represented by excitation, target
profiles are usually expressed in terms of contraction force or joint angle. Thus, in
order to make the simulated muscle follow a target profile, one should either invert
the muscle’s excitation-force behavior or implement a closed-loop controller [1, 10].
In our simulation, we combine both approaches [6].

Excitation-force nonlinearity compensation and closed-loop controller roughly
approximate the joint contributions of the supraspinal command and internal feed-
backs appearing on the spinal level, such as Renshaw cells, muscle spindle, and Golgi
tendon outputs. Figure 5.2 illustrates this principle. We also focus solely on the
force generation and do not establish any biomechanical model that would transform
this force into the mechanical e↵ect, such as joint angle or velocity.

5.3.1 Compensation of excitation-force nonlinearity

The motor command pathway and bio-mechanical system make the relation between
initial command (issued by motor cortex) and its kinematic manifestation very com-
plex. However, humans are able to predict the kinematics of their body with high
precision, inferring on its current state and currently applied motor command. This
signifies that our motor cortex should have some model of this relationship in order
to e�ciently compensate for it.

We would like to introduce this idea into our model by adding a compensation
block that will directly transform the force intent into the excitation needed to
achieve it. Spike trains in equation (5.8) are functions of firing rate, which, in their
turn, are functions of excitation. A closed mathematical form of the inverse of this
relationship (force-excitation) is not achievable, thus we are going to approximate
it instead.

We generate a slow ramp contraction with the excitation increasing linearly from
0 to 1 during a very long period of time (60 seconds). Then, we calculate the resulting
force using (5.8) and fit a 5-order polynomial curve to the relationship between force
and excitation. We weight the measures inversely proportionally to the excitation
values in order to obtain a better fit in the low values of force (see Figure 5.3).

5.3.2 Identification of excitation-force model

To compensate for inconsistencies of the previously defined force-excitation model
during dynamic movements, we will introduce a closed-loop regulator of the con-
traction force. As shown in Figure 5.2, it receives the target profile as input while
its output acts on the rest of the system.

In order to tune a PID controller, we approximate the rest of the system with
an output-error polynomial model. That is, the firing model, the force model, and
the nonlinearity compensation are replaced by a single block (see Figure 5.4).
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(a) Schematic representation of motor control sys-

tem.

(b) Schematic representa-

tion of simulated motor

control system.

Figure 5.2: (a) Schematic representation of motor control system. Dashed line
encloses the parts for which we have established a simulation model. (b) Schematic
representation of simulated motor control system. The target profile replaces the
intent; the end-e↵ector block’s transfer function is 1, meaning that we do not model
the bio-mechanical part of the system and consider the contraction force to be the
target output.
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Figure 5.3: Red: Excitation-force data from a simulated slow contraction with ex-
citation linearly increasing from 0 to 1. Force is normalized to its maximum value
obtained by averaging force measures at excitation equal to 1. Blue: Fifth-order
polynomial fit obtained by weighted least squares. Weights are assigned to each sam-
ple, depending on its excitation value: w(") = (1.25 � ")/1.25, so that w 2 [0.2, 1].
The fitting curve is forced to pass through 0.
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Figure 5.4: Blocks transforming the excitation to force (enclosed by gray area on
(a)) are altogether replaced by a polynomial first order output-error model to tune
the PID controller (b).
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Figure 5.5: Identification and validation of the linear OE model of excitation-force
relation dynamic.

In [16], the excitation-force model is constructed of two first-order low-pass filters
representing pool activation and muscle contraction dynamics. For simplicity, we
don’t establish separate models for these processes and instead we consider them
one joint first-order low-pass filter.

We estimate its parameters from muscle’s response to a step excitation, using
the least-squares method (Matlab’s oe function). The identification and validation
signals consisted of binary rectangular excitation pulses of random duration (0.5 -
5 seconds). The validation results are shown in Figure 5.5, obtained output-error
model is F (z) = 1 � 0.82z�1 at sampling rate of 50 Hz. We consider the obtained
validation results satisfying. The first-order low-pass filter closely approximates the
overall muscle dynamics during zero-to-maximal contractions.

5.3.3 Tuning of a PI controller

To calculate the necessary excitation at the input of the motor neuron pool, we
introduce a PI controller. An example of such an approach can be found in [10]. The
P and I parameters are tuned using pidtune function fromMatlab’s Dynamic System
toolbox. We didn’t impose any specific requirements on response time/robustness
trade-o↵, using default parameters of the pidtune function.

After the coe�cients were identified, we have manually adjusted the output of the
controller. First, it is artificially bounded into [0, 1] interval. Second, the integrated
error is reset to zero each time the target force reaches zero to avoid trailing output
that cannot be compensated since excitation cannot take negative values and there
is no antagonist muscle in the model. Results for trapezoidal contraction reaching
100% MVC are shown on figure 5.6. PI coe�cients for this example are Kp = 0.2,
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Figure 5.6: An example of simulated contraction with trapezoidal target profile.

Ki = 10.4 at sampling rate of 50 Hz. Simulation parameters for this model are listed
in Section 6.1.

Resulting simulated force closely follows the target profile, at the same time
exhibiting oscillations. This is also observed in the experimental data when the
subject fails to exactly follow the profile, which results in a series of errors and
over-compensations. PID controller, together with the nonlinearity compensation,
permits to simulate muscle contractions with a specific target profile. This will be
used in the next chapter (see Chapter 6) to generate simulated force-decomposition
data-sets for training and evaluation of an e↵ect estimation model.

5.4 Implementation details

The project with Matlab code of this simulation model is available on the authors’
repository 1. In this section, we would like to highlight some details of its imple-
mentation.

5.4.1 Global simulation model structure

The presented force simulation model works jointly with the iEMG simulation model
described in the previous chapter. That is, the common part of both is the motor
neuron pool, as well as the feedback controller and the nonlinearity compensation
block (see Figure 5.7). Motor neuron pool produces spikes in function of the excita-
tory input provided by the feedback controller, according to excitation-rate curves
(5.1) and spike generation models (5.2) or (5.4). Simulated spikes are then passed
to both the force generation model (5.8) and the EMG model (4.18). The output of

1
Link: https://github.com/smetanadvorak/iemg simulator

https://github.com/smetanadvorak/iemg_simulator
https://github.com/smetanadvorak/iemg_simulator
https://github.com/smetanadvorak/iemg_simulator
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Figure 5.7: Global outline of the simulation model.

the force generation model is potentially passed to a biomechanical model that con-
verts a single force or multiple forces into a mechanical e↵ect. We do not attempt to
establish such a model and replace it with a unity transfer function. The resulting
e↵ect is then passed to the feedback controller to adjust the excitation and follow
the target profile.

5.4.2 Class structure

In order to simplify the work with the model we have implemented several Matlab
classes:

• Motor neuron pool class that encapsulates the MN sizes, recruitment thresh-
olds, innervation centers, and areas, as well as functions that generate them;

• Motor unit pool class encapsulates an instance of the previous one, the coor-
dinates of muscle fibers and their assignment to the MNs, the lengths of axon
branches, and delays of MNAP propagation;

• Electrode class permits to generate di↵erent types of electrodes and specify
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their position and orientation in the muscle. It outputs the observation points
and their positions in all trajectory nodes for SFAPs calculation;

• Motor unit class uses Electrode and Motor unit pool objects as arguments and
encapsulates the functions that permit to generate of SFAPs and MUAPs, and
stores their pre-calculated values.

• Force model class receives Motor unit pool object as an argument, it generates
and stores twitch forms, simulates the force in the function of passed spike
trains and encapsulates nonlinearity compensation model.

• Profile class permits to set up the parameters of contraction profile, generate
its form, di↵erentiate the recruitment, de-recruitment, no-contraction, and
steady contraction phases.

Despite the fact that an e↵ort has been made to separate the model implemen-
tation from its usage by encapsulating its parts into classes, it is still hard to use
for a novice. If the community shows interest in this model, we will try to further
optimize it and provide a graphical user interface for it.

5.4.3 Sub-sampling of the force

As we have already mentioned, the simulation model works at two di↵erent sampling
frequencies: fsl and fsh (fs ”low” and ”high”). Former is used for the contraction
profile setting, nonlinearity compensation, PID control, and the output force, while
the latter is for SFAP, MUAP and EMG modelling.

The necessity to down-sample the force control part comes from the fact that
force as a signal lies in a narrow low-frequency spectral band that is bounded by
approximately 10 Hz. However, down-sampling this process to 20 Hz would intro-
duce a delay of at least 50 ms between the establishment of new force output value
and generation of new compensatory command. Sampling this part at fsh=20 kHz
makes the coe�cients of PID controller and of the linear model of excitation-force
relationship hard to interpret. Thus, we have chosen a value of 50 Hz that gives an
acceptable trade-o↵ between the two e↵ects.

The parts of the simulation model that run at di↵erent frequencies are illustrated
in Figure 5.8. That is, green color indicates the part of the system that runs at the
low sampling frequency, blue at the high frequency and grey is for the motor neuron
pool model that generates spike trains with continuous values of time instants. The
last holds if firing timings are generated using (5.2), while in case of (5.4) the timings
are discrete simulated at fsh.

5.4.4 Incremental computation

Since the output of the force model is used as the feedback to the PID controller,
the excitation becomes a function of output force. Therefore, the firing instances
generation, EMG and force models should be implemented in a way that permits
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Figure 5.8: Schematic representation of the parts of the simulation model that run
in continuous time as well as in high (fsh=20 kHz) and low (fsl=50 Hz) sampling
frequencies. Zero-order-hold upsampler and averaging downsampler are used.
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incremental computation of their outputs. That is, the state of these models should
be retained between the calls on subsequent frames of their inputs.

Firing instants generation model proposed above naturally fits this requirement,
saving only vector T [n] = {T1[n], T2[n], . . . , Tn[n]} of MN sojourn times between the
calls. Force and EMG models involve the convolution of spike trains with corre-
sponding waveforms, which implementation in an incremental way is also straight-
forward. To speed up the calculation that does not require the feedback control,
these models have also normal fully vectorized implementations.

5.4.5 Data-set generation

The most computationally expensive part of the entire simulation model is the pre-
calculation of SFAPs using equation (4.14) and the sub-sample shift of SFAPs during
the generation of new realizations of MUAPs. The latter can be skipped in simula-
tions that do not require precise EMG modeling (e.g., simulation of neuromuscular
jitter and sub-sample firing instants). On the other hand, the former is necessary
and should be done at least once in order to establish the EMG model. That is, the
SFAPs can be pre-calculated and stored for future use.

Once, the model is set up, EMG and force signals are generated in the function of
the target profile specified by the user. The system automatically names the output
files for the signals, generates annotation, MUAP dictionary and stores them in a
separate folder. To automate the data-set generation process, this functionality can
be wrapped into a loop that goes through the contraction profiles. The model can
be o↵-loaded from the Matlab memory and uploaded again from a file.

5.5 Conclusion

In this chapter, we have provided a step-by-step description of our muscle contraction
simulation model. First, a model of excitation-rate curve was introduced, permitting
to define the instantaneous firing rate of MN as a function of excitation. Next, we
described the spike train generation approach based on hazard rate function and
Markov chains modulated by the instantaneous firing rate. Then, classic twitch
and total contraction force models were presented. That is, the total force is a
sum of spike trains convoluted with twitches and weighted by a non-linear rate-
dependent coe�cient. Since our objective was the generation of force following
a target profile, the PID controller and the compensation of the excitation-force
relationship nonlinearity were introduced. In order to tune the PID contoller, blocks
transforming the excitation into force were altogether modeled by a first-order low-
pass filter. Finally, we have covered the class structure of our implementation of
this simulation model, as well as its specific features.

The exact values of parameters that we used for simulation of contraction data
will be provided in Chapter 6. Additionally, we will describe the target profiles
that we used to generate datasets with various contraction properties. Finally, this
simulation model is capable of providing both training and testing data for intent
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derivation algorithms presented in Chapter 3.
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Chapter 6

Simulation and experimental
results

In this chapter, we will illustrate and analyze the e↵ectiveness of decomposition-
based e↵ect estimation models presented in Chapter 3. First, we will use a simulated
data set, generated using the models in Chapters 4 and 5. Then, an experimental
data set, acquired from first dorsal interosseous muscle during index finger abduc-
tion, will be presented and used for the testing.

Between the estimation models presented in Chapter 3, we have chosen the one
based on the joint transition law (Section 3.3.6), as the most detailed and providing
the best estimates of e↵ect. In the following, we will refer to it as ”Joint law”
or as ”proposed model”. As a reference model, we pick the force estimator based
on cumulative spike train, presented in [1], to which we will refer as ”CST-based”
or ”reference model”. To quantitatively compare the performance of both, we use
the coe�cient of determination R

2, a measure commonly used in the domain of
prosthetic control [2, 1, 3, 4].

Tests on simulated and experimental data will be further divided into two setups:
o✏ine and online estimation. Term ”o✏ine estimation” will be applied when the
decomposition and e↵ect data are pre-simulated or pre-acquired, and the estimation
is made a posteriori, in an open-loop fashion. That is, the result of the estimation
is not fed back to the subject and does not a↵ect the contraction process. On the
contrary, ”online estimation” will refer to the setup where the estimate is provided
to the subject in real-time, thus permitting him or her to adjust the neural input to
the muscle to reach a specific value of the estimated e↵ect.

O✏ine setup is commonly used in prosthetic control studies. It is relatively
simple, allows to reproduce the results, and permits to use the same data set in
di↵erent approaches in order to compare them. However, it lacks the possibility
for the subject to adapt to the control strategy for better performance. Online
setup, on the contrary, involves immediate feedback of the results to the subject,
providing him with the possibility of adjustment. We have established both setups
using simulation models presented in Chapters 4 and 5. Our experimental study
presented in this chapter, however, currently involves only o✏ine setup. The online
experimental setup, its current state, and future perspectives will be discussed at

139



140 CHAPTER 6. SIMULATION AND EXPERIMENTAL RESULTS

the end of the chapter.

6.1 Simulated data set generation

Muscle geometry and motor neuron pool parameters

To select the parameters of the simulation model and make this simulation as close
as possible to our experimental setup, we will try to approximate a real muscle that
we used our experimental studies, which is first dorsal interosseous (FDI).

Considering multiple assumptions that were made while establishing this sim-
ulation model, precise simulation of muscle dynamics and bioelectric properties is
not possible. However, we can use a number of muscle characteristics provided by
experimental studies [5].

Table 6.1 presents the parameters used in the simulation. We try to support the
entries of this table by a corresponding reference or example. In the entries where
references are missing, we assign values that are, to our best knowledge, the most
physiologically consistent.

Parameters of excitation-rate relationship

Parameters of the excitation-rate model are linear functions of the MN’s size si (see
Section 4.2.1). The decrease of minimal and maximal rates, as well as of the slope,
is in accord with experimental studies [8]; the actual values of the parameters are
within physiological range [9].

Parameters of innervation and terminal arborization geometry

Parameters of innervation and arborization geometry are important only when ac-
tual forms of MUAPs is of interest. This is not the case in this simulation study,
since decomposition of simulated iEMG does not take place, and simulated spike
trains are directly used instead. However, the set MNs whose spike trains are in-
cluded to the decomposition is defined by the amplitudes of MUAPs, according to
criterion described in Section 4.5.2.

Parameters of innervation, such as the adjacency restriction parameter nc and
scattering coe�cient C are adjusted in order to provide MU’s innervation areas and
numbers that are close to their model-imposed values (see Section 4.2.4 and Figure
6.1).

Parameters of terminal arborization geometry are tuned in such a way that they
provide MUAPs with correct physiological lengths of 2.5 ms to 10 ms. Their values,
as well as the parameters of innervation geometry, are presented in Table 6.1

Electrode simulation parameters and contraction profiles

The electrode was simulated as two observation points, arranged in a di↵erential
configuration. The points were placed in xy (cross-sectional) plane of the muscle, in
its center, with 1 mm of the distance between the two.
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(a) Innervation numbers of simulated MUs (b) Innervation zone areas of sim-

ulated MUs

Figure 6.1: Simulated innervation numbers and innervation territories areas, com-
pared to their values imposed by the model.

Contraction profiles, used for training and testing data simulation, mimic typical
profiles used in experimental studies. That is, all contractions are limited to 25%
MVC, the training data set contains two ramps with slopes of 5 and 10 % MVC/s,
while the testing set consists of trapezoidal contractions reaching 25% MVC with
slopes of 5 and 10 % MVC/s.

All simulations are performed at two sampling frequencies. The first, fsh=10
kHz, is for iEMG simulation, while the second one, fsl=50 Hz, applies to the force
profile, force feedback and PID controller output calculation, as shown in Figure 5.8
in Chapter 5. These parameters are outlined in Table 6.1.

6.2 Experimental data set

Experimental iEMG was acquired from first dorsal interosseous muscle of a healthy
28 years-old man during the abduction of the index finger in the vertical plane.
A needle electrode (30G Myoline disposable concentric needle) was inserted in the
muscle belly at a depth of approximately 3 mm. iEMG was conditioned using the
OTBioelettronica MEBA amplifier with band-pass filtering between 100 Hz and 4
kHz and sampled at a frequency of 10 kHz. The angle of abduction was acquired
by an inertial measurement unit (IMU) MPU9250 attached to the tip of the index
finger. The measured angle was shown to the subject on a PC screen. The rest of
the hand, except for the index finger, was immobilized by a combination of foam
rubber constraints.

Full abduction angle (around 35 degrees) was considered as the maximum con-
traction level, to which all contraction profiles were defined relative to. The subject
was asked to abduct the index finger to match the measured angle with a specified
profile. Three forms of profiles were used: slowly growing ramp, trapezoidal and
constant level. Trials where the subject failed the matching, were rejected. Each
profile lasted at most 25 seconds. One minute of the rest was given to the subject
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between the acquisitions. IMU’s harness was designed to be lightweight, the subject
did not report any fatigue between the trials or at the end of the acquisition.

In total, two ramp profiles reaching 50% of maximum abduction angle (MAA),
two trapezoidal profiles reaching 25% MAA and two constant profiles at each level
of contraction between 10 and 50% MAA with a step of 10% were acquired. The
iEMG data was decomposed by hand using EMGLAB software, annotations were
aligned in such a way that each MU had the same index in di↵erent trials.

6.3 Evaluation methods

6.3.1 Criterion of estimation quality

For comparison with existing methods, we will use the joint model based on re-
cruitment and IPI distribution described in Section 3.3.6. Corresponding estimates
will be referred to as ”Joint law” or ”proposed model”. Estimates provided by an
existing reference model will be denoted as ”CST-based”. The reference model will
be described in the following section.

In order to compare the e↵ect estimates by the proposed and reference models, we
will provide corresponding plots, using testing simulation and experimental profiles.
As a numerical measure of fit, we will use the coe�cient of determination R

2. It is
calculated as a portion of the e↵ect variation that is explained by the estimate:

R
2 = 1�

P
n(e[n]� ê[n])2P

n(e[n]� 1
N

P
n e[n])

2
(6.1)

where e[n] is n-th e↵ect sample from the contraction data, ê[n] is its estimate pro-
vided by the estimation model, based on the decomposition data, N is the total
number of samples.

The maximal value of R2 is 1, which appears in the case of perfect estimation,
i.e. when the mean square of the estimation error is equal to zero.

6.3.2 Reference e↵ect estimation model

In this and in the following sections, the proposed e↵ect estimation model is com-
pared to an existing decomposition-based estimation approach, proposed in [1]. It
consists of summing up the decomposed spike trains in one vector, called cumulative
spike train (CST). Then, it is convoluted by an impulse response of a second order
critically damped linear system, representing a generalized MU twitch [7]. In fact,
this approach approximates the linear model of total muscle contraction force (5.6),
using one single twitch form and decomposed spike trains:

ê(t) =
NX

i=1

|Ii|X

k=1

⌧(t� Ii,k) ⌧(t) =
P⌧

T⌧
· t · exp(�t/T⌧ ) (6.2)

where Ii,k is the time of k-th spike in i-th MN’s spike train and ⌧(t) is the twitch
response.
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Figure 6.2: Estimates provided by CST-based and joint estimation models, on the
simulated trapezoidal force profile reaching 25% MVC. Spikes of MNs are traced on
their estimated recruitment threshold mean values � (see Section 3.2.3).

Parameters P⌧ and T⌧ are identified by minimizing the sum of squares of the
errors between the observed e↵ect and its estimate. This procedure will be performed
in each of the following examples, using the same training data as for the presented
estimation model.

6.4 O✏ine e↵ect estimation for simulated data

Using the simulation model with parameters provided in 6.1, we have generated a
trapezoidal profile reaching 25% MVC. Both CST-based and the proposed model
were identified on the same training set (two ramp profiles with 5 and 10 % MVC
slopes reaching 25% MVC). In total, ten MNs were considered decomposable for
this contraction and included in the decomposition.

Figure 6.2 shows the outputs of estimation models. As we can see, both are visu-
ally very close to the true value of the e↵ect, providing high R

2 measures. This result
shows that both methods can perform equally good when the number of decomposed
spike trains reaches an approximate limit of current real-time decomposition algo-
rithm capability [10] (see Section 1.3 for details).

Let us assess their performance on a reduced number of decomposed MNs. Com-
paring to the presented simulation, the number of decomposed MNs can be smaller
due to an increase of additive noise or the use of an electrode with a smaller ac-
quisition area. In order to assess the estimators’ performance in such cases, we will
generate random subsets of these ten MNs and evaluate R

2 for the estimates pro-
duced using the corresponding spike trains. More specifically, we have generated
all the possible 1023 combinations of ten MNs and ran the estimation on a ran-
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Figure 6.3: Average values and standard deviations of R2 measure for the estima-
tions performed by the proposed and CST-based models. Estimations are made
using spike trains of random subsets of the original set of decomposable MNs. R

2

values are averaged across subsets with the same sizes, i.e., numbers of included
MNs.

dom subset of 256 of them. We then ran the estimation for all the possible missing
combinations of one and two MNs.

Figure 6.3 demonstrates the mean and standard deviation of the R
2 calculated

for di↵erent numbers of MUs included in the subset, for both estimation mod-
els. One can see that the proposed model provides significantly better results for
smaller numbers of decomposed MNs, both in terms of the average R

2 value and
its standard deviation. With the growing number of MNs, both models converge to
approximately R

2=0.95.

Both models profit from larger numbers of decomposed spike trains. As we have
noted earlier, CST-based estimation is an approximation of total force formula and
therefore works better when it is provided with more spike trains. The proposed
model e�ciently merges the information from multiple spike trains as well, being
also able of properly weighting their contributions when provided with small num-
bers of MNs. CST-based model, on the contrary, considers MNs to exhibit similar
contributions to the e↵ect production, thus su↵ering from the cases when small
numbers of decomposed MNs have very di↵erent e↵ect-rate curves.
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Figure 6.4: Estimation of abduction angle during experimental ramp contraction
reaching 50% of maximum angle. Estimates are provided by the proposed model
(Joint law) and by CST-based reference model.

6.5 O✏ine e↵ect estimation for experimental data

6.5.1 Ramp contractions

At first, we will train and test the estimation models on two di↵erent trials of the
same ramp contraction profile reaching 50% MAA. Figure 6.4 presents the results of
testing data. Estimates provided by the two models are highly covariated (coe�cient
of covariation 0.97) due to the occasional drops in the instantaneous firing rates of
MNs. The proposed model shows a better fit in the lower range of contractions.
Similar analysis on random subsets of MNs as in Section 6.4 is provided in Figure
6.5. One can see that, in this setup, the proposed model performs consistently better
than CST-based.

6.5.2 Trapezoidal and constant contractions

Now let us use a di↵erent setup, in which two ramp contractions constitute training
data set, while a trapezoidal contraction and three constant contractions at di↵erent
levels are used for testing. This setup is more challenging because testing and
training profiles have now di↵erent slopes (3.5 degrees per second for the ramp,
2.5 degrees per second for the trapezoidal, vertical slope for constant contractions).
Moreover, profiles now contain constant and decreasing e↵ect intervals.

Results for the trapezoidal testing profile are shown in Figure 6.6. As we can
see, both models fail to correctly fit the decreasing e↵ect. Overlaid spike trains show
that MNs’ behavior on the negative slope is di↵erent from that on the positive slope,
e.g.: MNs tend to de-recruit at a higher level of the e↵ect. Additionally, 2nd MN,
whose mean RT, estimated from ramp contractions, is lower than that of the 3rd
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Figure 6.5: Average values and standard deviations of R2 measure for the estima-
tions performed by the proposed and CST-based models on experimental ramp data
set. Estimations are made using spike trains of random subsets of the original set
of decomposable MNs. R

2 values are averaged across subsets with the same sizes,
i.e., numbers of included MNs.

MN, de-recruits faster, which is inconsistent with the proposed model.
Results for constant testing profile at 10%, 20% and 30% of maximum abduction

angle (MAA) are shown in Figure 6.7. Both models successfully detect the onset of
the movement, providing, however, very noisy estimates of the e↵ect at its plateau.
This is due to the small number of spike trains used for estimation (correspondingly
3 and 4 for contractions at 10% versus contractions at 20% and 30% MAA).

6.6 Online simulated e↵ect estimation

6.6.1 Virtual subject

In this section, we will present and discuss the results of the estimation in a closed-
loop setup. That is, the e↵ect estimation will be integrated into the force simulation
model described in Chapter 5. This setup simulates the prosthetic control by an
amputee, when the biomechanical end-e↵ector, as well as the e↵ect it produces,
are missing. Instead, the amputee is provided with an estimate of the e↵ect made
by a decomposition-based estimation model. In this section, we aim to study the
adaptation and closed-loop compensation capability of a simulated amputee user in
cases of the proposed and the reference estimation models.

Figure illustrates the used approach. A model of an intact subject is presented in
6.8(a), we use it to generate the training data for e↵ect estimation model. In a real
experimental setup, this procedure could be realized using either mirrored bilateral
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Figure 6.6: Results of angle estimation for experimental trapezoidal contraction.
Spiking behavior of MNs di↵ers for negative and positive slopes, causing both models
to provide poor estimates of the angle.

Figure 6.7: Results of angle estimation for experimental constant contraction profile.
Both models correctly detect the onset of the movement, providing, however, noisy
estimates at its plateau due the small number of available spike trains.
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training or prosthesis-guided approach. Next, model of an amputee is presented
in 6.8(b). That is, now the muscle block and the end-e↵ector are missing, while a
decomposition-based estimation model is added. The estimate of the e↵ect produced
by this model becomes the target variable that the virtual subject seeks to control
by following a specified profile.

We will use the same simulation model parameters as in the previous, o✏ine,
case. Also, the same pre-simulated ramp contraction data will be used to identify the
estimation models. Next, we will estimate the static nonlinearity of the estimate by
measuring it during a slow linearly increasing ramp contraction. This nonlinearity
will be approximated by a 6-th order polynomial curve. Next, similarly to Section
5.3.3, we will tune a PID controller that will adjust the excitatory input to the MN
pool in order for the estimator to output a specified e↵ect value. The updated blocks
are indicated by blue color in Figure 6.8.

6.6.2 Results

First, we simulate a close-loop control using all the ten available MNs. Correspond-
ing results are present in Figure 6.9. Both models provide very consistent estimation,
as in the o✏ine setup (see Figure 6.2).

Next, let us apply the same analysis method as in previous cases: we will gen-
erate all possible combinations of these ten MNs in the decomposition, rerun the
simulation for each case and calculate the corresponding R2 measures. The PID con-
troller coe�cients, calculated for the case of all ten MNs, were left constant across
the simulations. However, the nonlinearity pre-compensation was recalculated for
both models in each new MNs subset to adapt to the new spiking behavior (espe-
cially necessary for the CST-based model, as we have seen in the previous section).
The CST-based model was re-identified for each new MN subset.

Results of this test are presented in Figure 6.10. As we can see, the proposed
model provides a better average R

2 with less variation for all numbers of MNs in a
subset.
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(a) (b)

Figure 6.8: Schematic representation of the simulation model in cases of training
(a) and testing (b) of the e↵ect estimation model for online setup. (a) - E↵ect and
decomposition data are generated simultaneously during a contraction with specific
profile. Corresponding decomposition and e↵ect data are used to identify the e↵ect
estimation model. (b) - The e↵ect simulation part of the model is now missing,
decomposition is passed to the estimation model to infer the e↵ect. The output of
the estimation model is directed to the controller that seeks to compensate for the
possible errors. Spikes* signifies decomposed spike trains, small subset of the entire
MU pool. Green block represents the parts of the model that should be re-calibrated
after replacement of the e↵ect simulation by e↵ect estimation.
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Figure 6.9: Results of estimation for a simulated trapezoidal contraction in online
setup.

Figure 6.10: Average value and variance of R2 measures as functions of resulting
number of MNs included in the decomposition, online simulated setup.
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6.7 Online experimental e↵ect estimation: cur-
rent state and perspectives

In our recent study [10], we have implemented recursive decomposition algorithm [11]
and have achieved real-time decomposition of iEMG. More specifically, experimental
signals containing up to eight MUs were decomposed with a precision exceeding 95%,
and with a maximum delay of 70 ms, using GPU Nvidia Tesla K80. However, in the
corresponding tests, the online setup was simulated by frame-by-frame processing
of pre-acquired signals. A real experimental setup, on the contrary, would require
the acquisition and processing of a signal to be performed simultaneously.

In this section, we will describe our approach to this problem, as well as our pilot
setup for an experimental study of real-time decomposition implementation. Unfor-
tunately, we could not yet perform an online decomposition-based e↵ect estimation.
However, as we will show later in this section, the established decomposition system
is functional and can be used for this purpose in the near future.

6.7.1 Description of the real-time decomposition system

As an iEMG acquisition system, we used MEBA by OTBioelettronica. The cor-
responding Windows application, OTBiolab, continuously publishes the iEMG and
auxiliary data on a specified local port of the PC. This software package also con-
tains a Java class that can be used in Matlab to access these data frames. Thus,
we created a Matlab script that transmits the iEMG data to the GPU and receives
back the decomposition results for further visualization and processing.

The problem of data transmission was complicated by the fact that the selected
GPU was physically located on a remote computer, accessible via the local net-
work. Thus, we have decided to transmit the iEMG and decomposition frames using
TCP/IP protocol. Since the remote computer accepted only encrypted connections
through Port 22, we have used a so-called SSH-tunnel, which virtually connects two
local ports on two di↵erent devices via Port 22. Matlab (on the acquisition com-
puter) and the decomposition software (on the remote computer) interacted their
local ports using TCP/IP sockets (tcp function in Matlab and iostream library in
C++). The structure of this approach is illustrated in Figure 6.11.

The size of the data frame was chosen to be 50 ms, to ensure the smoothness of
decomposition-based estimates. Due to the nature of the used real-time decomposi-
tion algorithm, spike trains in older frames could be corrected using iEMG data in
the newer ones. Thus, a longer window (250 ms) of the most recent decomposition
results was transmitted within each frame.

In the test runs, the established system has shown real-time decomposition re-
sults similar to the ones obtained in [10], while transmitting the same experimental
signal in a frame-by-frame mode from the acquisition PC to the remote GPU. The
maximal lag between newly acquired iEMG signal and its decomposition was ap-
proximately 150 ms after the recruitment of eight MUs.

A Matlab-based GUI was also developed to control the acquisition parameters,
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Figure 6.11: Structure of the real-time decomposition system. Gray squares repre-
sent physically separate devices, green squares represent independent Matlab ses-
sions.

observe the signal and its decomposition in real-time, and to provide the visual
feedback to the subject. A technical detail worth mentioning: iEMG signal acqui-
sition, communication with GPU and further processing were running in a single
Matlab session, while the visualization was running in a separate one. Although
the same computational power is used, this two-sessions setup provides much faster
plotting that a normal one. A short video illustrating the functioning of the system
is provided1.

6.7.2 Pilot setup for experimental real-time decomposition

As a next step, we have tested a setup in which real-time decomposition was provided
for an iEMG signal acquired from the FDI muscle of an intact subject. The protocol
was similar to the one described at the beginning of this chapter (see Section 6.2).
Since it was a pilot study, the contraction was limited in order to have at most four
active MUs at the same time.

First, a short portion of iEMG was decomposed by hand using EMGLAB to
obtain initial estimates of MUAP forms. Then, MUAPs were shortened to 5 ms and
re-scoped to make each MUAP start with a value significantly di↵erent from the
level of the instrumentation noise. This procedure, as described in [11], increases
the quality of decomposition. Then, the resulting forms of MUAPs were transmitted
to the GPU.

The testing contraction was limited to a lower value to ensure the absence of
non-identified higher threshold MUs in the iEMG. Correct real-time decomposition
of three concurrently active MUs was finally obtained. Its quality was assessed us-
ing the residual signal after reconstruction. This result is purely qualitative and is
reported to demonstrate the principal viability of the established real-time decom-
position system.

Unfortunately, we could not yet conduct the tests that would involve online
intent estimation in a real subject. However, results obtained so far show that it

1
Real-time decomposition example.

https://uncloud.univ-nantes.fr/index.php/s/B3aX6aggb2NmCot
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is technically feasible in the near future. These results also suggest that the GPU
needs not to be physically located in the same device that acquires the iEMG or
uses the decomposition results. This is a promising feature for an application in
prosthetics, since the use of GPUs in a wearable device is undesirable, due to their
size and power supply requirements. TCP/IP protocol scales to other means of
communication, such as the internet which widens the possible solutions.

6.8 Discussion and conclusion

In this chapter, we have described our simulation and experimental protocols, as
well as the reference estimation model and a comparison criterion. The reference
model was proposed in a recent study [1] and consists of smoothing a cumulative
spike train by a twitch response [7]. The coe�cient of determination R

2, commonly
used in related studies, was used as a measure of the estimation quality.

Simulation data consisted of force observations combined with simulated spike
trains of MUs considered detectable and decomposable in the given protocol. We
have identified the parameters of both models using ramp contraction data. The
force inference was tested on a trapezoidal contraction. Provided with the maximal
number of decomposed MNs (ten), both models show good performance with R

2
>

0.95. Further, we analyzed the robustness of both models in the case of smaller
numbers of available MNs, which have showed that the proposed model performs
consistently better on such reduced inputs that the reference.

Experimental data consisted of manually decomposed iEMG of FDI muscle ac-
quired during index finger abduction. Contrary to the simulation data, estimation
models were predicting abduction angle instead of force. In the setup where both
training and testing contraction data were of the same profile (ramp), both models
provided correct estimates of the angle (R2

> 0.85), with the proposed one being
more robust to the reduction of the number of available MNs in the decomposition.
Moreover, Figure 6.4 shows that the proposed model provides better fit at all levels
of contraction, while the CDR-based model, treating all MNs as having similar con-
tributions to the e↵ect production, fits the data only at a specific level of contraction
and fails at the others.

In the experimental setup where the models were identified using ramp con-
traction data and tested on a trapezoidal profile, the inconsistencies in the firing
behavior of MNs during positive and negative slopes of the profile have significantly
a↵ected the performance of the both.
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Table 6.1: Simulation parameters.

Muscle geometry and motor neuron pool
Number of muscle fibers (MFs), F 40000 [5]
Density of MFs, Dm 400 per mm2 [6]
Muscle radius

p
F/⇡Dm=5.65 mm

Muscle (and fibers) length, L 30 mm
Number of MNs, N 120 [5]
Magnitude of RT distribution, R 50
Maximal RT, M 0.75 (in normalized excitation)

Parameters of the excitation-rate curves [7]
Minimum firing rate, 'min

'
min
i = �5 · si + 10

Maximum firing rate, 'max
'
max
i = �10 · si + 40

Slope of excitation-rate line, 'sl
'
sl
i = �20 · si + 50

Coe�cient of variation of IPI, Cv 1/8

Innervation and terminal arborization
Adjacency restriction parameter, nc 5 (see Section 4.2.4)
Scattering coe�cient, Cs inv-�2(0.99, 2) = 9.21 (see Section 4.2.4)
NMJ clusters centers scattering parameters aµ = 1.5, bµ = 4 (see Eq. (4.8))
NMJ within-cluster scattering parameters a� = 1.5, b� = 4
MNAP velocity of an axon branch vb = 5 m/s
MNAP velocity in terminal arborization vt = 2 m/s
Neuromuscular jitter standard deviation 0.025 ms [6]

Sampling frequencies
EMG and twitches sampling frequency, fsh 10 kHz
Contraction force sampling frequency, fsl 50 Hz
Training and testing data sampling frequency 1 kHz
Spatial sampling step along z-axis, 0.5 mm
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Conclusion and perspectives

Results

The aim of this study was the establishment and evaluation of decomposition-based
prosthetic control. This was to be done with respect to the limit of number of
simultaneously decomposed spike trains provided by existing real-time decomposi-
tion approaches. Simulation and experimental studies were conducted in order to
evaluate the proposed intent estimation model and compare it to an existing one.

Development of the simulation model pursued two main goals: generation of
decomposition results similar to the ones observed in experiments and simulation of
neural command to the contracting muscle. The first goal involved the modeling of
motor neuron innervation zones, of the electrode geometry and motor unit action
potentials. As an additional result, we have obtained a simulation model for multi-
channel iEMG with a possibility to dynamically vary the location of the electrode
and model its e↵ect on the acquired signal. We have provided several examples of
how this model can be used to emulate existing studies on motor neuron innervation
territories and multichannel decomposition. Finally, modelling of motor unit action
potentials permitted to simulate the experimental decomposition, i.e. to automat-
ically decide which MUs would be present in the final decomposition of the iEMG
signal and thus generate simulated data sets.

Simulation of neural command to a contracting muscle involved the use of classic
models of motor neuron firing behavior and of muscle contraction force, as well
as closed-loop control and nonlinearity compensation. This model permitted to
generate spike trains of motor neurons in the function of a specified force profile.
That, in its turn, was used to generate data sets for evaluation of intent estimation
models.

While developing the proposed intent estimator, we pursued a model-based ap-
proach. That is, we have used existing relations between the instantaneous firing
rate and currently produced mechanical e↵ect in order to infer the latter from the
former. Three di↵erent approaches to this inference problem were proposed: one is
based purely on the fact that certain motor neurons are recruited or de-recruited,
the second is based on the inter-pulse interval statistics as a function of the e↵ect,
while the third approach merges the first two. As the tests on simulation and ex-
perimental data show, this last approach provides consistently better estimations
than the reference model. We have also shown that, compared to the last, the pre-
sented approach shows better performance when provided with reduced number of

157
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concurrently decomposed spike trains.

Perspectives

Intended e↵ect estimation

The model-based approach to the estimation of intended e↵ect proposed in Chapter
3 can be further modified within a number of principal directions.

RT-based cost function. As we have mentioned in Section 3.2.6, the recruitment-
based e↵ect estimation model provides a cost function that penalizes the e↵ect esti-
mates that are inconsistent with the current activation vector and the recruitment
threshold distributions of the MNs. When not penalizing, this cost function is flat,
so that the position of its minimum can be easily adjusted by an additional term in
its expression. Such term may be a continuous function of the e↵ect (e.g., sEMG
envelope), which will permit to produce smooth estimates of the e↵ect instead of
the discrete ones presented in Section 3.2.6. These estimates will be still regularized
due to the penalization e↵ect of the e↵ect-recruitment model.

Iterative inference for the joint model. Also, in this work we could not
provide an iterative e↵ect estimation for the joint model presented in Section 3.3.6.
An iterative approach, analogous to the one presented in Section 3.3.4, is of in-
terest since it will significantly accelerate the e↵ect inference when using the joint
estimation model.

Integration with the decomposition algorithm. The joint e↵ect estimation
model (see Section 3.3.6) and the decomposition algorithm we used in this work
[1] are both based on hidden Markov modeling (HMM) and both operate with
similar variables, such as motor neuron sojourn time T [n], activation A[n] and IPI
distribution parameters ⇥[n]. However, while in [1] the hidden variables are ⇥[n],
the proposed model has a single hidden variable, which is the intended e↵ect E.

These two HMMs can be merged, which may be of interest due to the following
potential outcomes. First, instead of estimating ⌦[n] of each MN, the decomposition
algorithm will need to estimate only one hidden variable, which is the intended
e↵ect E, thus reducing the computation requirements. Second, Bayesian filtering
of the E[n], taking place in this case, may provide better estimates of the e↵ect
than the model proposed in this work. Third, probabilities of MNs activation will
become functions of the intended e↵ect, instead of being defined as constants, as it is
currently done in [1]. This also has a potential to reduce the calculation requirements
of the decomposition algorithm due to the pruning of the decomposition scenarios
that are inconsistent with the recruitment model.

Possible approach to the estimation at higher contraction levels. All
of the three proposed estimation models produce the estimates of the e↵ect by
accumulating information from spike trains of all available MNs. Inclusion of a
new MN to decomposition (or exclusion of an existing one from it) will a↵ect the
precision of the estimate, but not the very possibility to produce it. Thus, these
models will be viable in a hypothetical setup where a decomposition algorithm, in
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order to not exceed the maximum possible number of concurrently decomposed MNs,
excludes the least important ones from the decomposition. Naturally, importance
of a MN can be defined by its contribution to the energy of EMG signal, relatively
to the contributions of other active MNs. The MN that contributes the most at
low contraction level can be completely masked by the larger ones at higher forces.
Since most of the decomposition algorithms seek to minimize the residuals between
the observed EMG and its reconstruction from decomposition, the contribution of
such MN may become too insignificant to keep the track of it. The reduction of
the computational complexity of the decomposition procedure after the exclusion of
such MN from the model will outweigh the resulting minor loss of precision. Such
an approach can be a solution to the limitation of low contraction forces in the
existing real-time decomposition algorithms, while the proposed estimation models
are capable of producing the e↵ect estimates using corresponding decomposition
data.

iEMG simulation model

Additionally to the applications of the intramuscular MUAP and EMG simulation
model presented in this work, there potentially can be more of them. Let us provide
a number of examples.

Simulation of myopathic signals. Myopathic iEMG signals are characterized
by abnormally high firing rates of MNs, which is the result of reduction of the total
number of functioning muscle fibers and, as consequence, of the total force produced
by the muscle. This e↵ect can be simulated by decreasing the amplitudes of the MU
twitch responses proportionally to the their losses of muscle fibers. The feedback
controller, facing the lack of produced force, will increase the excitation which will
entail the increase of firing rates.

Simulation of neuropathic signals. Neuropathic iEMG signals are character-
ized by the presence of large complex MUAPs, which result from the re-innervation
of denervated muscle fibers by the adjacent MUs. This process can be simulated
by the choice of a random subset of MUs with subsequent redistribution of their
muscle fibers among other MUs, according to the probabilistic procedure described
in Section 4.2.4. Branch assignment can be performed based on the distance to the
closest centroid originally identified by k-means algorithm. Locations of neuromus-
cular junctions can be re- drawn from the distributions in corresponding branches
of the new MU.

Evaluation of approaches to MU territories estimation. As it is shown
in 4, the estimation of MN innervation territory based on the amplitudes of its
MUAP in di↵erent channels will produce poor results when the electrode does not
pass through the center of the territory. As the simulation has shown, the farther
the electrode is from the territory center, the lower its amplitude is and the lesser
amount of high-frequency components it contains. Comparative analysis of MUAPs
acquired from di↵erent MNs may give an approximate span of these frequencies.
Estimation of the territory diameter can be thus based not only on the amplitude
of the corresponding MUAP in di↵erent locations of the muscle, but also on its
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frequency content. The simulation model proposed in this work can be used to test
and validate such estimation approaches.
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et montrons qu’elle fournit de meilleurs résul-
tats même quand elle est alimentée avec un
nombre très bas de motoneurones décompo-
sés. Pour évaluer sa performance dans un en-
vironnement contrôlé, nous avons développé
un modèle physiologique de simulation d’EMG
et de contraction de muscle. De plus, une ana-
lyse sur les signaux expérimentaux a été réa-
lisée.

Title: Probabilistic models based on EMG decomposition for prosthetic control

Keywords: electromyography, prosthetics, EMG decomposition, EMG simulation

Abstract: Modern prosthetic control can be
significantly enhanced due to the use of EMG
decomposition. This technique permits to ex-
tract the activity of motor neurons that con-
trol the movement, thus giving a direct repre-
sentation of neural command. This activity, be-
ing unaltered by factors non-related to motion,
such as type and position of EMG electrode,
is of great interest in prosthetic control. Ex-
isting real-time decomposition methods, how-
ever, provide activities of a very limited num-
ber of motor neurons (up to ten). This can
be considered insufficient for intent inference.
In this work, we present a probabilistic ap-

proach to intent inference that uses existing
models of relations between the behavior of
motor neurons and the movement. We com-
pare our approach with a conventional one
presented in the literature and show that it
produces significantly better results when pro-
vided with a small number of decomposed mo-
tor neurons. To assess its performance in a
fully controlled environment, we have devel-
oped a physiology-based simulation model of
EMG and muscle contraction. Moreover, the
analysis was also performed using experimen-
tal recordings of muscle contractions.
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