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Summary

Machine Learning (ML) has enjoyed huge successes in recent years and an ever-
growing number of real-world applications rely on it. However, designing promising
algorithms for a specific problem still requires huge human effort. Automated Machine
Learning (AutoML) aims at taking the human out of the loop and develop machines
that generate / recommend good algorithms for a given ML task. AutoML is usually
treated as a algorithm / hyper-parameter selection problem, existing approaches include
Bayesian optimization (e.g. [51, 107, 35, 105]), evolutionary algorithms (e.g. [90])
as well as reinforcement learning (e.g. [121, 5]). Among them, auto-sklearn [35]
which incorporates meta-learning techniques in their search initialization[19], ranks
consistently well in AutoML challenges [42, 101, 56]. This observation oriented my
research to the Meta-Learning domain, leading to my recent paper [100] where active
learning and collaborative filtering [98] are used to assign as quickly as possible a
good algorithm to a new dataset, based on a meta-learning performance matrix S,
i.e. a matrix of scores of algorithms on given datasets or tasks. This direction led
me to develop a novel framework based on Markov Decision Processes (MDP) and
reinforcement learning (RL).

After a general introduction (Chapter 1), my thesis work starts with an in-depth
analysis of the results of the AutoML challenge (Chapter 2), for which I present
systematic experiments, published as a book chapter [56]. The methods that particu-
larly drew my attention in this analysis include wrapper methods from the Bayesian
Optimization family, built around the toolkit scikit-learn [85], such as auto-sklearn
and Freeze-Thaw [105, 72]. Such principled hyper-parameter selection methods were
interesting to compare with (1) heuristic search (e.g. Thakur2015) and (2) methods that
avoided model/hyper-parameter selection altogether or reduced its need to the greatest
possible extent, such as Selective Naive Bayes (SNB [18] and gradient boosting [110].
This analysis oriented my work towards meta-learning, leading me first to propose a
formulation of AutoML as a recommendation problem, following the seminal work
of [6, 7, 74], and ultimately to formulate a novel conceptualisation of the problem as a
MDP (Chapter 3).

In the MDP setting, the problem is brought back to filling up, as quickly and
efficiently as possible, a meta-learning matrix S, in which lines correspond to ML
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tasks and columns to ML algorithms. A matrix element Si, j is the performance of
algorithm j applied to task i. Searching efficiently for the best values in S allows us
to identify quickly algorithms best suited to given tasks. In the proposed MDP/RL
setting, the goal of AutoML is to develop an “agent” to search for the best algorithm
for each task by placing sequential “queries” i.e. training and testing an algorithm on a
given task to gain the knowledge of a new element Si, j. The system’s state consists
of the values of Si, j that have been revealed through this query process, each action
consisting in placing a new query. In terms of reward, each query costs the agent in
computational time, but this negative reward is compensated by a positive reward for
eventually discovering a better performing algorithm.

In Chapter 4 the classical hyper-parameter optimization framework (HyperOpt)
is first reviewed, and in particular the so-called CASH problem (Combined Algorithm
Selection and Hyperparameter optimization) [108]. No meta-learning is involved at
this stage; this corresponds to filling one line of matrix S, independently of others. In
Chapter 5 a first meta-learning approach is introduced along the lines of our paper
ActivMetaL [100] that combines active learning and collaborative filtering techniques
to predict the missing values in S. This allows us finding quicker than with other
baseline methods the best algorithm in each line of S [74, 100]. In this case, we are
using some lines of the matrix (performances of algorithms on known datasets) as
“training data” to help fill out new lines (predict performances on new datasets), but
the policy implemented by our “agent” is, in some sense, “hard-coded”. Our latest
research applies RL to the MDP problem we defined to learn an efficient policy to
explore S. We call this approach REVEAL and propose an analogy with a series of
toy games to help visualize agents’ strategies to reveal information progressively, e.g.
masked areas of images to be classified [120], or ship positions in a battleship game.
This line of research is developed in Chapter 6.

The main results of my PhD project are:

• HP / model selection: I have explored the Freeze-Thaw method and optimized
the algorithm to enter the first AutoML challenge, achieving 3rd place in the
final round (Chapter 3 in [56]).

• ActivMetaL: I have designed a new algorithm for active meta-learning (Ac-
tivMetaL) and compared it with other baseline methods on real-world and
artifical data. This study demonstrated that ActiveMetaL is generally able to
discover the best algorithm faster than baseline methods.

• REVEAL: I developed a new conceptualization of meta-learning as a Markov
Decision Process and put it into the more general framework of REVEAL games.
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With a master student intern, I developed agents that learns (with reinforcement
learning) to predict the next best algorithm to be tried. To develop this agent, we
used surrogate toy tasks of REVEAL games. We then applied our methods to
AutoML problems.

The work presented in my thesis is empirical in nature. Several real world meta-
datasets were used in this research, each of which corresponds to one score matrix S,
including the AutoML challenge result matrix, which I compiled by applying all meth-
ods of the challenge top ranking participants and other baseline methods to all datasets
of various challenge rounds, OpenML datasets, Statlog Dataset in UCI database, and
Cause-Effect pairs challenge datasets. Artificial and semi-artificial meta-datasets are
also used in my work: one was constructed from a matrix factorization in order to
guarantee a certain spectrum of singular values for S; another was constructed by
applying systematically various regression algorithms to simple univariate regression
problems from the cause-effect pair challenge dataset 1. The results indicate that RL is
a viable approach to this problem, although much work remains to be done to optimize
algorithms to make them scale to larger meta-learning problems.

1See book in preparation https://sites.google.com/a/chalearn.org/causality/
experimental-design.

http://automl.chalearn.org/
http://automl.chalearn.org/
http://automl.chalearn.org/
https://www.openml.org/
http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
https://www.kdnuggets.com/2013/04/chalearn-cause-effect-pairs-challenge.html
 https://sites.google.com/a/chalearn.org/causality/experimental-design.
 https://sites.google.com/a/chalearn.org/causality/experimental-design.


Résumé en français

L’apprentissage automatique (ML) a connu d’énormes succès ces dernières an-
nées et repose sur un nombre toujours croissant d’applications réelles. Cependant,
la conception d’algorithmes prometteurs pour un problème spécifique nécessite tou-
jours un effort humain considérable. L’apprentissage automatique (AutoML) a pour
objectif de sortir l’homme de la boucle. AutoML est généralement traité comme un
problème de sélection d’algorithme / hyper-paramètre. Les approches existantes inclu-
ent l’optimisation Bayésienne, les algorithmes évolutionnistes et l’apprentissage par
renforcement. Parmi eux, auto-sklearn, qui intègre des techniques de meta-learning à
l’initialisation de la recherche, occupe toujours une place de choix dans les challenges
AutoML. Cette observation a orienté mes recherches vers le domaine du meta-learning.
Cette orientation m’a amené à développer un nouveau cadre basé sur les processus de
décision Markovien (MDP) et l’apprentissage par renforcement (RL).

Après une introduction générale (chapitre 1), mon travail de thèse commence
par une analyse approfondie des résultats du Challenge AutoML (chapitre 2). Cette
analyse a orienté mon travail vers le meta-learning, menant tout d’abord à proposer une
formulation d’AutoML en tant que problème de recommandation, puis à formuler une
nouvelle conceptualisation du problème en tant que MDP (chapitre 3). Dans le cadre
du MDP, le problème consiste à remplir de manière aussi rapide et efficace que possible
une matrice S de meta-learning, dans laquelle les lignes correspondent aux tâches et
les colonnes aux algorithmes. Un élément de matrice S (i, j) est la performance de
l’algorithme j appliqué à la tâche i. La recherche efficace des meilleures valeurs dans
S nous permet d’identifier rapidement les algorithmes les mieux adaptés à des tâches
données. Dans le chapitre 4, nous examinons d’abord le cadre classique d’optimisation
des hyper-paramètres. Au chapitre 5, une première approche de meta-learning est
introduite, qui combine des techniques d’apprentissage actif et de filtrage collaboratif
pour prédire les valeurs manquantes dans S. Nos dernières recherches appliquent RL
au problème du MDP défini pour apprendre une politique efficace d’exploration de S.
Nous appelons cette approche REVEAL et proposons une analogie avec une série de
jeux pour permettre de visualiser les stratégies des agents pour révéler progressivement
les informations. Cette ligne de recherche est développée au chapitre 6.

Les principaux résultats de mon projet de thèse sont:
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• Sélection HP / modèle: j’ai exploré la méthode Freeze-Thaw et optimisé
l’algorithme pour entrer dans le premier challenge AutoML, obtenant la 3ème
place du tour final (chapitre 3).

• ActivMetaL: j’ai conçu un nouvel algorithme pour le meta-learning actif (Ac-
tivMetaL) et l’ai comparé à d’autres méthodes de base sur des données réelles et
artificielles. Cette étude a démontré qu’ActiveMetaL est généralement capable
de découvrir le meilleur algorithme plus rapidement que les méthodes de base.

• REVEAL: j’ai développé une nouvelle conceptualisation du meta-learning en
tant que processus de décision Markovien et je l’ai intégrée dans le cadre plus
général des jeux REVEAL. Avec un stagiaire en master, j’ai développé des
agents qui apprennent (avec l’apprentissage par renforcement) à prédire le
meilleur algorithme à essayer.

Le travail présenté dans ma thèse est de nature empirique. Plusieurs méta-données
du monde réel ont été utilisées dans cette recherche. Des méta-données artificielles
et semi-artificielles sont également utilisées dans mon travail. Les résultats indiquent
que RL est une approche viable de ce problème, bien qu’il reste encore beaucoup à
faire pour optimiser les algorithmes et les faire passer à l’échelle aux problèmes de
méta-apprentissage plus vastes.
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Chapter 1

Background and Motivation

1.1 Introduction

Until about ten years ago, machine learning (ML) was a discipline little known to the
public. Large internet corporations accumulating massive amounts of data such as
Google, Facebook, Microsoft and Amazon have popularized the use of ML and data
science competitions have engaged a new generation of young scientists in this wake.
Today, government and corporations keep identifying new applications of ML and with
the increased availability of open data and everyone seems to be in need of a learning
machine. Unfortunately, the success of ML applications in many domains relies
heavily on the skills of data scientists who design model architectures and/or select a
good set of hyper-parameters. My PhD thesis aims at advancing the field of Automated
Machine Learning (AutoML) to develop a methodology to automate the design of
learning machines as far as possible. Specifically, in the context of supervised learning
feature-based representations only, I am working on producing black-box machine
learning algorithm that can process “any data", in “any time", with “any resource". This
means selecting an appropriate model with its hyper-parameter values, and outputs
the desired type of predictions, taking into account available computational resources
and a computational time budget. Borrowing from the vocabulary of Reinforcement
Learning (RL) and my goal is to design an AutoML agent whose objective is to
quickly discover the best suited algorithm to solve a given task.

Although the acronym AutoML was coined recently by Frank Hutter and collab-
orators, the problems of automated machine learning, model selection, and hyper-
parameter optimization have been studied for several decades in the machine learning
community. The following brief overview borrows material from our paper [45].



2 Background and Motivation

1.2 Scope of AutoML

The overall AutoML problem covers a wide range of difficulties, which cannot be
addressed all at once in a single challenge. To name only a few: data “ingestion"
and formatting, pre-processing and feature/representation learning, detection and han-
dling of skewed/biased data, inhomogeneous, drifting, multimodal, or multi-view data
(hinging on transfer learning), matching algorithms to problems (which may include
supervised, unsupervised, or reinforcement learning, or other settings), acquisition of
new data (active learning, query learning, reinforcement learning, causal experimenta-
tion), management of large volumes of data including the creation of appropriately
sized and stratified training, validation, and test sets, selection of algorithms that satisfy
arbitrary resource constraints at training and run time, the ability to generate and reuse
workflows, and generating explicative reports.

Therefore, restricting the scope of our thesis work was of great importance to
ensure that intermediate milestones of immediate practical interest are reached, as
further discussed in the rest of this chapter.

1.2.1 The AutoML setting

For the purpose of this chapter, a predictive model (or model for short) has the form
y = f (xxx) = f (xxx;ααα) with a set of parameters ααα = [α0,α1,α2, ...,αn] trainable with a
learning algorithm (trainer). The trained model (predictor) y = f (xxx) produced by the
trainer is evaluated by an objective function J( f ), used to assess the model performance
on test data.

A model hypothesis space defined by a vector θθθ = [θ1,θ2, ...,θn] of hyper-parameters,
which may include both categorical variables corresponding to switching between
alternative models and other modeling choices such as preprocessing parameters, type
of kernel in a kernel method, number of units and layers in a neural network, or training
algorithm regularization parameters [93]. Some authors refer to this problem as full
model selection [31, 99], others as the CASH problem (Combined Algorithm Selection
and Hyperparameter optimization) [106].

We will then denote hyper-models as

y = f (xxx;θθθ) = f (xxx;ααα(θθθ),θθθ), (1.1)

where the model parameter vector ααα is an implicit function of the hyper-parameter
vector θθθ obtained by using a trainer for a fixed value of θθθ , and training data composed
of input-output pairs (xxxi,yi).
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The goal of AutoML is to devise algorithms capable of searching efficiently for
the best hyper-parameters θθθ .

1.3 Computational and statistical aspects of AutoML

As an optimization problem, model selection is a bi-level optimization program [24,
26, 10]; there is a lower objective to train the parameters ααα of the model (e.g. the
weights of a neural network), and an upper objective to train the hyper-parameters
θθθ (e.g. the number of layers and units per layer), both optimized simultaneously. A
related problem, not addressed in this thesis, is that of building optimal ensembles of
models in which “base learners” vote to make the final decision [20, 39, 22]. Practically,
computational resources are always limited: for each task there is always an upper
bound on execution time and memory available, and a given number of available CPUs
and/or GPUs. This places a constraint on the AutoML agents to produce a solution in
a given time, and hence to optimize the model search from a computational point of
view.

As a statistics problem, model selection is a problem of multiple testing in which
error bars on performance prediction degrade with the number of models/hyper-
parameters tried or, more generally, model complexity [115]. Two common pitfalls
should be avoided: over-fitting and under-fitting. By over-fitting we mean selecting a
too complex model that performs well on training data but performs poorly on unseen
data, i.e. models that do not generalize. By under-fitting we mean selecting a too
simple model, which does not capture the complexity of the data, and hence performs
poorly both on training and test data. The initial goal in this thesis was to jointly
address the problem of over-fitting/under-fitting and the problem of efficient search
for an optimal solution, as stated in [58]. But, while until recently, a key aspect of
AutoML was to avoid over-fitting, with the advent of “big data” and progress made
in learning theory, the emphasis has now shifted to the computational aspect of the
problem: that of finding quickly the best performing model and principally avoiding
under-fitting.

This was confirmed in our analysis of the first AutoML challenge summarized in
Chapter 2: we found that the computational contraints have been far more challenging
to challenge participants than the problem of overfitting. The main contributions of
the winners have been to devise novel efficient search techniques with cutting edge
optimization methods. Practically, if very large datasets are available, it is sufficient for
model selection to use a single training/validation set split and rely on the validation
set performances to rank algorithms, the additional refinement of performing cross-
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validation or using bootstrap estimators [48] providing only a minor advantage, given
the additional computational cost.1 Likewise, in several recent competitions [45],
we observed that the ranking of algorithms obtained using a (large) validation set,
providing immediate feed-back on the “public” leaderboard, was usually similar to
that obtained with another (large) independent test set concealed to the participants
(on a “private” leaderboard).

Based on these observations, in the remainder of my thesis, we make the simplify-
ing assumption that performances on the test set are the “gold standard” to determine
whether one algorithm is better than another.

1.4 Overview of hyper-parameter selection

Everyone who has modeled data has had to face some common modeling choices:
scaling, normalization, missing value imputation, variable coding (for categorical
variables), variable discretization, degree of nonlinearity and model architecture,
among others. ML has managed to reduce the number of hyper-parameters and
produce black-boxes to perform tasks such as classification and regression [48, 28].
Still, any real-world problem requires at least some preparation of the data before it can
be fitted into an “automatic" method, hence requiring some modeling choices. Much
progress have been made on end-to-end solutions for more complex tasks such as text,
image, video, and speech processing, using deep-learning methods [9]. However, even
these methods have many modeling choices and hyper-parameters. As part of our
initial thesis work, we surveyed the literature on hyper-parameter selection.

To simplify the discussion that follows, we lump all parameters describing models
and hyper-parameters in a single vector θθθ , but more elaborate structures, such as trees
or graphs can be used to define the hyper-parameter space [109].

Most practitioners use heuristics such as grid search or uniform sampling to
sample θθθ space, and use k-fold cross-validation as the upper-level objective [27]. In
this framework, the optimization of θθθ is not performed sequentially [11]. All the
parameters are sampled along a regular scheme, usually in linear or log scale. This
leads to a number of possibilities that exponentially increases with the dimension of θθθ .
There is a lack of principled guidelines to determine the number of grid points and the
value of k in k-fold cross-validation, and there is no guidance for regularizing the upper-
level objective. Although progress has been made in experimental design to reduce the
risk of over-fitting [57, 66], in particular by splitting data in a principled way [97], to

1The most popular such method is k-fold cross-validation. It consists of splitting the dataset into
k folds; (k−1) folds are used for training and the remaining fold is used for testing; eventually, the
average of the test scores obtained on the k folds is reported.
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our knowledge, no one has addressed the problem of optimally splitting data. However,
as noted before, the problems of optinally splitting data and regularizing the upper-level
objective are alleviated when big data are available.

When hyper-parameters are continuous, instead of discretizing them (as done with
grid search), efforts have been made to optimize directly continuous hyper-parameters
with bi-level optimization methods, using either the k-fold cross-validation estimator
[10, 78] or the leave-one-out estimator as the upper-level objective. The leave-one-out
estimator may be efficiently computed, in closed form, as a by-product of training
only one predictor on all the training examples (e.g. virtual-leave-one-out [44]). The
method was improved by adding a regularization term [23]. Gradient descent has been
used to accelerate the search, by making a local quadratic approximation of [60]. In
some cases, the full upper-level objective function can be computed from a few key
examples [47, 84]. Other approaches minimize an approximation or an upper bound
of the leave-one-out error, instead of its exact form [82, 114]. Nevertheless, these
methods are still limited to specific models and continuous hyper-parameters.

The so-called CASH problem (Combined Algorithm Selection and Hyperparameter
optimization) was coined in 2013 by Thornton and collaborators [108]. An early
attempt at solving the CASH problem in 2002 was the pattern search method that
uses k-fold cross-validation. It explores the hyper-parameter space by steps of the
same magnitude, and when no change in any parameter further decreases the objective
function, the step size is halved and the process repeated until the steps are deemed
sufficiently small [77]. In 2009, [31] addressed the CASH problem using Particle
Swarm Optimization, which optimizes a problem by having a population of candidate
solutions (particles), and moving these particles around the hyper-parameter space
using the particle’s position and velocity.

While regularizing the second level of inference is a recent addition to the fre-
quentist ML community, it has been an intrinsic part of Bayesian modeling via the
notion of hyper-prior. Some methods of multi-level optimization combine importance
sampling and Monte-Carlo Markov Chains [3]. The field of Bayesian hyper-parameter
optimization has rapidly developed and yielded promising results, in particular by
using Gaussian processes to model generalization performance [95, 104]. But Tree-
structured Parzen Estimator (TPE) approaches modeling P(xxx|y) and P(y) rather than
modeling P(y|xxx) directly [14, 13] have been found to outperform GP-based Bayesian
optimization for structured optimization problems with many hyperparameters in-
cluding discrete ones [30]. The central idea of these methods is to fit the upper-level
objective to a smooth function in an attempt to reduce variance and to estimate the
variance in regions of the hyper-parameter space that are under-sampled to guide
the search towards regions of high variance. These methods are inspirational and
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some of the ideas can be adopted in the frequentist setting. For instance, the random-
forest-based SMAC algorithm [52], which has helped speed up both local search and
tree search algorithms by orders of magnitude on certain instance distributions, has
also been found to be very effective for the hyper-parameter optimization of machine
learning algorithms, scaling better to high dimensions and discrete input dimensions
than other algorithms [30].

We also notice that Bayesian optimization methods often combine with other
techniques such as meta-learning and ensemble methods [35] in order to gain advantage
in some challenge settings with time budget limit [43]. Some of these methods consider
jointly the two-level optimization and take time cost as a critical guidance for hyper-
parameter search [105, 62].

Besides Bayesian optimization, several other families of approaches exist in the
literature and have gained much attention with the recent rise of deep learning. Ideas
borrowed from reinforcement learning have recently been used to construct optimal
neural network architectures [121, 5]. These approaches formulate the hyper-parameter
optimization problem in a reinforcement learning flavor, with for example states
being the actual hyper-parameter setting (e.g. network architecture), actions being
added or deleting a module (e.g. a CNN layer or a pooling layer), and reward being
the validation accuracy. They can then apply off-the-shelf reinforcement learning
algorithms (e.g. RENFORCE, Q-learning, Monte-Carlo Tree Search) to solve the
problem. Other architecture search methods use evolutionary algorithms [90, 4].
These approaches consider a set (population) of hyper-parameter settings (individuals),
modify (mutate and reproduce) and eliminate unpromising settings according to
their cross-validation score (fitness). After several generations, the global quality of
the population increases. One important common point of reinforcement learning
and evolutionary algorithms is that they both deal with the exploration-exploitation
trade-off. Despite the impressive results, these approaches require huge amount of
computational resources and some (especially evolutionary algorithms) are hard to
scale. [87] recently proposed the weight sharing among child models to largely speed
up [121] while achieving comparable results.

Finally, splitting the problem of parameter fitting into two levels can be extended
to multiple levels, at the expense of extra complexity—i.e. need for a hierarchy of data
splits to perform multiple or nested cross-validation [29], insufficient data to train and
validate at the different levels, and increase of the computational load.

In conducting this survey and analyzing the results of the AutoML challenge
(Chapter 2), we arrived at the conclusion that, while still an active area of research,
hyper-parameter selection has arrived at a good level of maturity, and this is no
longer the bottleneck of AutoML. In contrast, meta-learning remains a very uncharted
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territory, with very promising initial results. Hence we focused most of our effort in
this thesis on meta-learning.

1.5 Filter, wrappers, and embedded methods

Borrowing from the conventional classification of feature selection methods [63, 16,
44], model search strategies can be categorized into filters, wrappers, and embedded
methods. Filters are methods for narrowing down the model space, without train-
ing the learner. Such methods include preprocessing, feature construction, kernel
design, architecture design, choice of prior or regularizers, choice of noise model,
and filter methods for feature selection. Although some filters use training data,
many incorporate human prior knowledge of the task or knowledge compiled from
previous tasks. Recently, [8] proposed to apply collaborative filtering methods to
model search. Wrapper methods consider learners as a black-box capable of learning
from examples and making predictions once trained. They operate with a search
algorithm in the hyper-parameter space (grid search or stochastic search) and an evalu-
ation function assessing the trained learner’s performance (cross-validation error or
Bayesian evidence). Embedded methods are similar to wrappers, but they exploit
the knowledge of the learning machine algorithm to make the search more efficient.
For instance, some embedded methods compute the leave-one-out solution in a closed
form, without leaving anything out, i.e. by performing a single model training on all
the training data (e.g. [44]). Other embedded methods jointly optimize parameters and
hyper-parameters [60, 79, 78].

The focus of this thesis is on filter and wrapper methods. In Chapter 2, in the
context of the work I performed on the AutoML challenge, I present methods of
hyper-parameter selection, which are typically wrapper methods. In Chapters 5 and
6, I turn to meta-learning, whose objective is to produce filters (methods to select
algorithms without actually training and testing them).

1.6 Summary of my thesis objectives

The original focus of the AutoML community was on over-fitting avoidance. But with
the emergence of “big data” the current emphasis is on model search efficiency. Novel
effective approaches have been proposed in the academic literature that have become
wide spread among practitioners because they are both theoretically well founded
and practically efficient, e.g. Bayesian optimization (BO). Such approaches build a
posterior p(model|data) by applying candidate models to the input data and use this
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posterior distribution to guide the search (e.g. [53], [105]). Complementary to such
approaches, Meta Learning develops a set of meta-features capturing the nature of
data, which are then used to infer the model performance based on past experiences on
similar data, without actually training the model (e.g. [81]). Meta learning has been
used to initialize BO search [35]).

The original formulation of the problem of AutoML is limited to search for the
best model/hyper-parameters for a single dataset/task. In this thesis, my ambitions
are to tackle a Lifelong Machine Learning problem, which, 1) given a dataset, can
suggest promising models; 2) given available models, can suggest suitable datasets to
learn to reinforce its problem solving capacity. To that end, I developed Meta Learning
techniques to perform these tasks using first active learning (see Chapter 5), then
Reinforcement Learning (RL) to learn an optimized model search policy (see Chapter
6).



Chapter 2

Empirical setting

In this chapter, we first give a brief account of the main findings of our post-hoc
analysis of the first AutoML challenge (2015-2016) [45]. This competition challenged
the participants to submit code that solve classification and regression problems from
fixed-length feature representations, without any human intervention. The challenge
setting and the datasets have been used extensively thoughout my thesis work and the
lessons learned from the challenge have influenced my research directions towards
meta-learning.

The Code for the challenge analysis is at
https://github.com/LishengSun/AutoML-2016-simulations-and-analyses.

2.1 Lessons learned from the AutoML challenge

The objective of the AutoML challenge series (http://automl.chalearn.org) is to push
research towards creating “universal learning machines” capable of learning and
making predictions without human intervention. This means that the participants must
deliver code, which is blind tested on datasets never released before. The first AutoML
challenge (to which I participated) was limited to:

• Supervised learning problems (classification and regression).

• Feature vector representations.

• Homogeneous datasets (same distribution in the training, validation, and test
set).

• Medium size datasets of less than 200 MBytes.

• Limited computer resources with an execution times of less than 20 minutes
per dataset on an 8 core x86_64 machine with 56 GB RAM.

https://github.com/LishengSun/AutoML-2016-simulations-and-analyses
http://automl.chalearn.org
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Within this constrained setting, the testbed was composed of 30 datasets from a
wide variety of application domains (medical diagnosis, speech recognition, credit
rating, prediction of drug toxicity/efficacy, classification of text, prediction of customer
satisfaction, object recognition, protein structure prediction, action recognition in
video data) and ranged across different types of complexity (class imbalance, sparsity,
missing values, categorical variables). In this limited framework, there remain many
modeling choices.

Many robust learning machines with a reduced number of hyper-parameters have
emerged in the recent years in an effort to produce perfect black-boxes to perform tasks
such as classification and regression [48, 28]. But the availability of toolboxes rich in
such models, e.g. Weka [46] or scikit-learn [86], has not eliminated modeling choices.
Similarly to AI, which has endeavored to pass the Turing test, ML has undertaken
the task of beating the “no free lunch theorem”, stating that no ML algorithm can
be superior to all others on every task. Tools like AUTO-SKLEARN [37, 35, 38]1, a
wrapper around the scikit-learn library built by the winners of the AutoML challenge
have made big strides towards that goal.

Statistical complexity vs. computational complexity

The dilemma of model selection is to avoid “searching too hard” (and falling in
the trap of over-fitting) and “not searching hard enough” (and falling in the trap of
under-fitting). One often refers to as statistical complexity all ailments related to
the “curse of dimensionality” or solving ill-posed problems, in which not enough
training data is available to ensure good generalization. Another notion of complexity,
complementing the first one, is computational complexity: exploring exhausively (or
very intensively) a very large model space by evaluating “all” (or very many) models
is generally infeasible because of the combinatorial nature of the problem of probing
simultaneouly several hyper-parameters. Success in the AutoML challenge depends
on addessing both types of complexity.

Best practices for model selection converge towards the Ockham’s razor principle,
which prescribes limiting model complexity to the minimum necessary to explain the
data, or shave off unnecessary parameters. This has been grounded in theory over
the past few years in such frameworks as regularization, Bayesian priors, Minimum
Description Length, Structural Risk Minimization (SRM), and the bias/variance trade-
off [92, 41, 48, 28, 115]. With modern learning machines designed to regularize and
prevent overfitting, good practitioners usually do not over-train their models. Indeed,
in the challenge, our analyses revealed no over-fitting of models. Two means of com-

1https://automl.github.io/auto-sklearn/stable/

https://automl.github.io/auto-sklearn/stable/
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Fig. 2.1 Learning Curve of ‘aad_freiburg’ (yellow) and ‘abhishek’ (blue) for the
evita dataset.

Abhishek starts with a better solution but performs a less efficient exploration. In
contrast, aad_freiburg starts lower but ends up with a better solution. In green: the

‘aad_freiburg’ learning curve keeps improving beyond the time limit imposed in the
challenge (20 min).

batting over-fitting are pervasive: using cost functions penalizing model complexity
and ensembling. The latter has been adopted by all winners, see Section 2.1.

The most pressing problem in today’s AutoML research is therefore that of under-
fitting, which cannot be solved by brute-force search if computational resources are
limited. In the next section, we review what “clever search” entails in today’s state-of-
the art.

Heuristic search vs. Bayesian optimization

Model search (including hyper-parameter search, jointly referred to as HP search)
involves two necessary components: (1) a means of estimating the performance of
the model on future data (estimator), and (2) a strategy for exploring the search space
(policy).

For problem 1, there is presently a large consensus for the choice of estimators.
Obviously, when vast amounts of training data are available, reserving a single subset
of the training data for validation is simple and efficient. Otherwise, common practice
is to use some form of cross-validation (CV). K-fold CV and its variants are a favorite,
in front of bootstrapping (e.g. bagging used in Random Forests). For K, most people
use K=10, although there is no clear theoretical foundation for this choice. It has been
known for decades that a special kind of CV estimator, the leave-one-out estimator, can
be efficiently approximated by training a single model (e.g. virtual-leave-one-out [44]).
Yet such methods are not applicable to all algorithms and require dedicated code, so
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they are not popular amongst practitionners, which prefer using plain CV in a wrapper
setting. Likewise, techniques of bilevel optimization, optimizing simultaneously
parameters and hyper-parameters (e.g. [10, 78]) have not gained in popularity for the
same reason.

Problem 2 is presently the main focus in AutoML research: develop efficient search
policies. The ‘aad_freiburg’ team (who developped AUTO-SKLEARN [37, 35, 38] and
dominated both the 2015-2016 AutoML challenge and its 2018 sequel) used a method
inspired by Bayesian optimization [30]. The key idea is to guide the search with a
“cheap” evaluation of models. CV is thus used to evaluate only a few candidate points
in HP space. A predictor of model performance in HP space is built with a form of
active learning. Random Forest (RF) regressors lend themselves particularly well to
this exercise and have superseded Gaussian processes [Hutter et al.]. One reason is
that they are based on decision trees, which are hierarchical in nature, thus making it
easy to map a hierarchy of hyper-parameters. Another reason is that, as an ensemble
method, RF yields also an estimator of the variance of the predictions. Armed with an
estimation of the expectation and the variance of the model to be evaluated, Bayesian
optimization methods estimate the expected benefit of effectively training and testing
a new model. Typically, this is a function expressing the exploration/exploitation
tradeoff, i.e. you want to explore regions of high variance (where your predictions are
least confident) but not waste too much time exploring if there are low hanging fruits
(models with good performances candidates for winning).

Another form of Bayesian optimization, which was very strong in the first AutoML
challenge, is “freeze-thaw” (introduced by J. Lloyd in the first phases whose code
was overtaken by S. Sun, placing 3rd in the final phase) [72]. Other top ranking
participants used various forms of heuristic search with performances that ended
up nearly as good. It is difficult to tell apart at this stage the influence of various
factors in the success of methods. Initialization played an important role. We show
a typical example of learning curve in Figure 2.1. Given enough time, the Bayesian
optimization method (‘aad_freiburg’) ends up with better performance, but Abhishek
has a better initialization.

The strongest contender to such “clever search” methods is plain grid search
applied to models having only very few hyper-parameters. Grid search applied to
gradient tree boosting is a typical illustration of such approach, which has been very
successful in challenges, since at least 2006 [73]. The Intel team produced very good
results with such methods in the AutoML challenge.

Finally, search free methods are worth mentionning. Marc Boullé applied the
Selective Naive Bayes (SNB) [17, 18] extending the Naive Bayes method for classifica-
tion and regression. His software developed by Orange Labs and in use in production,
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was used in the challenge with minimal adaptation to make it compliant to the chal-
lenge settings. Without any further tuning, it returned a solution with honorable results,
within the time limit of the challenge. It is therefore a very strong baseline.

Meta-learning

Meta-learning aims at defining some general principles over different datasets2. The
‘aad_freiburg’ team investigated meta-learning applied to the initialization of Bayesian
search. Specifically, they considered 140 datasets from openml.org[112] (a platform
which allows to systematically run algorithms on datasets) and they defined meta-
features of datasets, including simple statistics characterizing input and output space,
and the performance of a few landmark algorithms such as one nearest neighbor (1NN)
and decision tree. They also ran AUTO-SKLEARN on these datasets and recorded the
best performing algorithm for each dataset. Given a new dataset, and considering its
neighbors in terms of meta-features, they can then initialize the HP search for the new
dataset with the algorithms performing best on its neighbors, resulting in significant
improvements compared to random initialization of the HP search.

To further understand the success of this method, we investigated which meta-
features are most predictive of the best performing models. To that end we performed
the following experiment using scikit-learn. We excluded landmark models from the
set of meta-features and built a linear discriminant classifier (LDA) to predict which
of four basic models would perform best on the 30 datasets of the challenge, thus
defining a 4-class classification problem. Basic models included Naive Bayes (NB),
Stochastic Gradient Descent linear model (SGD-linear), K=Nearest neighbor (KNN),
and Random Forest (RF), with default hyper-parameter settings. The results shown in
Figure 2.1 reveal three clusters in the space of the two first LDA components. Further,
the features that contribute most to the first two LDA components are the fraction of
missing values and features characterizing the distribution of target values.3

2Meta-learning differs from transfer learning, which is concerned with transferring mod-
els/knowledge among tasks. Transfer learning can take various forms depending on the type of
information that overlaps between tasks [83], i.e. similarity of input space distribution and/or similarity
of outputs/labels. In the AutoML challenge framework however, the diversity among the application
domains and types of learning difficulties hinders transfer learning, that will not be considered further
in the paper. Actually, the help of using transfer learning in such competition is an open question. We
have seen in other past challenges lending themselves to transfer learning that most (if not all) the
participants did not do any transfer learning, even through on the long run transfer learning proved to be
useful. The main problem may be that challenges are time constrained and transfer learning pays off
only if you do it right and have enough time.

3Given the small size of available datasets (only 30 datasets in total), the LDA is trained on all
datasets, and the model has no generality.
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Fig. 2.2 Linear Discriminant Analysis. (a)We trained LDA using (X=meta features, except
landmarks; y=which model won of four basic models (NB, SGD-linear, KNN, RF). The models
were trained with default hyper parameters. In the space of the two first LDA components,
each point represents one dataset. The colors code for the winning basic models. The color
transparency reflects the scores of the corresponding winning model (better is darker).
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Although the ‘aad_freiburg’ team showed in their 2015 paper [35] that this initial-
ization faired better than random initialization, there is still room for improvement.
Indeed, learning curves of the first AutoML (of which an example is shown in Fig-
ure 2.1) have revealed that other competitors had far better initializations.

For the 2018 edition of the AutoML challenge, the ‘aad_freiburg’ team introduced
a novel strategy: Portfolio Successive Halving-AUTO-SKLEARN. As a form of
meta-learning, they created a fixed portfolio of machine learning pipelines using
over 400 datasets. At each period, the less successful pipelines (as estimated from the
Bayesian optimization model), are discarded along the so-called Bayesian Optimization
HyperBand (BO-HB) [32, 34].

Towards AutoML: engineering vs. principles

Overall, we can ask ourselves whether the AutoML challenge helped pushing “the
science of AutoML” and whether some design guidelines have emerged and whether
the “no free lunch” theorem has been beaten.

One thing is sure: ensembling always helps4, whether you choose a homogeneous
ensemble like Random Forests or a heterogeneous ensemble, built e.g. with the method
of [22]. Other design choices regarding meta-learning and search are still evolving.
However, what drives most progress in the field is the emergence of simple new
concepts that researchers can share and re-implement to reproduce results. In that
respect, Bayesian optimization has been helpful.

To reproduce the results of the challenge, there is one good news and one bad news.
The good news is that all the code is open-sourced5. The bad news is that if you want to
write your own code based on e.g. scikit-learn and the principles outlined in this paper,
it will be a significant amount of engineering. First, most methods of scikit-learn will
die on you for many datasets (out-of-memory or out-of-time). Second, there are a lot
of tricks of the trade to perform meta-learning and get Bayesian optimisation to work.

So it may be far easier to create your own code from scratch and create your
own “universal approximator” with a handful of hyper-parameters tunable with grid
search. But be careful, many other people have tried; scikit-learn is full of such
models. Figure 2.3 shows the performance of “pure models” vs. the performances of
the challenge winners. They are lagging behind. It is not so easy to beat the “no free
lunch” theorem.

Other engineering aspects play an important role. In the third round of the challenge
when large sparse datasets were introduced, the vast majority of methods failed blind

4This phenomenon has also been observed heavily in Kaggle competitions[Kag]
5http://automl.chalearn.org

http://automl.chalearn.org
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testing by either running out of time or out of memory. Ironically, the winners
won thanks to proper exception handling (they returned random results rather than
failing). During the “tweakathon” phase that followed blind testing the participants
had an opportunity to fix their code. This revealed that the tasks of round 3 were not
particularly difficult, once engineering problems were dealt with.

You may also be tempted to go beyond Bayesian optimization in the line of research
pursuing heterogeneous model search, by performing better meta-learning or even
by learning policies with reinforcement learning. Some ideas along these lines have
been proposed in the literature [121, 5] and for the first time in 2018, one of the top
participants (wiWangl) used Q-Learning to learn machine learning pipelines.

You may be tempted to use neural networks or deep learning. Unfortunately, for
such time constrained challenge, even with GPUs (we provided GPUs in round 4 of
the first AutoML challenge), they are not among the best performing methods.

In conclusion, it is fair to say that the winners provided a well engineered solution
satisfying the constraint of the challenge in terms of time budget and robustness to
algorithm failures, but for any new proposed task, manually selected and fined tuned
algorithms may still perform better.

Discussion: challenge and benchmark design

The diversity of the 30 datasets of our first AutoML challenge was both a feature
and a curse: it allowed us to test the robustness of software across a variety of
situations, but made meta-learning difficult (datasets being different with respect to
meta-features). Likewise, we attached different metrics (loss functions) to each dataset.
This contributed to making the tasks more realistic and more difficult, but also made
meta-learning harder. Consequently external datasets must be used if meta-learning is
to be explored for the AutoML challenge tasks. As previously mentioned, this was the
strategy adopted by the AAD Freiburg team, which used the OpenML data for meta
training. They used over 400 datasets for meta-learning in last challenge edition.

With respect to task design, we learned that the devil is in the details. Challenge
participants generally solve exactly the task proposed by the organizers, to the point
that their solution may not be adaptable to seemingly similar scenarios. In the case
of the AutoML challenge, we pondered whether the metric of the challenge should
be the area under the learning curve (plotting performance as a function of time) or
one point on the learning curve (the performance obtained after a fixed maximum
computational time elapsed). We ended up favoring the second solution for practical
reasons. Examining after the challenge the learning curves of some participants, it
is quite clear that the two problems are radically different, particularly with respect
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Fig. 2.3 Comparison of methods (2015-2016 challenge) including basic methods (-def
suffix), basic methods with optimised HP (-auto suffix), and challenge winners. Winners
in general win over basic methods, even with optimized HPs. There is no basic method that
dominates all others. Though RF-auto (Random Forest with optimised HP) is very strong, it is
often outperformed by other methods and sometimes by RF-def (Random Forest with default
HP). Thus, under the tight computational constraints of the challenge, optimizing HP does not
always pay. For KNN though, time permitting, optimizing HP generally helps by a long shot.
Interestingly, KNN wins, even over the challenge winners, on some datasets.

to strategies mitigating “exploration” and “exploitation”. This prompted us to think
about the differences between “fixed time” learning (the participants know in advance
the time limit and are judged only on the solution delivered at the end of that time)
and “any-time” learning (the participants can be stopped at any time and asked to
return a solution). Both scenarios are useful: the first one is practical when models
must be delivered continuously at a rapid pace, e.g. for marketing applications; the
second one is practical in environments when computational resources are unreliable
and interruption may be expected (e.g. people working remotely via an unreliable
connection). This will influence the design of future challenges.

Also regarding task design, both AutoML challenges differ in the sequence of
difficulties tackled in each round. In the 2015/2016 challenge, round 0 introduced five
datasets representing a sample of all types of data and difficulties (types of targets,
sparse data or not, missing data or not, categorical variables of not, more examples
than features or not). Then each round ramped up difficulty introducing each time 5
new datasets. But in fact the datasets of round 0 were relatively easy. Then during each
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round, the code of the participants was blind tested on data that were one notch harder
than in the previous round. Hence transfer was quite hard. In the 2018 challenge, we
had only 2 phases, each with 5 datasets of similar difficulty and the datasets of the
first phase were each matched with one corresponding dataset on a similar task in the
second phase. As a result, transfer was made simpler.

Concerning the starting kit and baseline methods, we provided code that ended up
being the basis of the solution of the majority of participants (with notable exceptions
from industry such as Intel and Orange who used their own “in house” packages).
Thus, we can question whether the software provided biased the approaches taken.
Indeed, all participants used some form of ensemble learning, similarly to the strategy
used in the starting kit. However, it can be argued that this is a “natural” strategy for
this problem. But, in general, the question of providing enough starting material to the
participants without biasing the challenge in a particular direction remains a delicate
issue.

From the point of view of challenge protocol design, we learned that it is difficult
to keep teams focused for an extended period of time and go through many challenge
phases. We attained a large number of participants (over 600) over the whole course of
the AutoML challenge, which lasted over a year (2015/2016) and was punctuated by
several events (such as hackathons). However, few teams participated to all challenge
rounds and despite our efforts to foster collaboration, the general spirit was competitive.
It may be preferable to organize yearly events punctuated by workshops. This is a
natural way of balancing competition an cooperation since workshops are a place of
exchange where participants get rewarded by the recognition they gain via the system
of scientific publications. As a confirmation of this conjecture, the second instance
of the AutoML challenge (2017/2018) lasting only 4 months attracted nearly 300
participants.

One important novely of our challenge design was “code submission”. Having
the code of the participants executed on the same platform under rigorously similar
conditions is a great step towards fairness and reproducibility, as well as ensuring
the viability of solutions from the computational point of view. We have imposed
to the winners to release their code under an open source licence to win their prizes.
This was good enough an incentive to obtain several publicly available software as
the “product” of the challenges we organized. In our second challenge (AutoML
2018), we have made use of dockers. Distributing the docker makes it possible for
anyone downloading the code of the participants to reproduce easily the results without
stubling upon installation problems due to inconsistencies in computer environments
and libraries. Still the hardware may be different and we find that, in post-challenge
evaluations, changing computer may yield significant differences in results. Hopefully,
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with the generalization of use of cloud computing that is becoming more affordable,
this will become less of an issue.

2.2 Design of benchmarking meta-learning datasets

The AutoML challenge described in the previous section kick-started our research on
meta-learning by providing a wealth of datasets and performances of many algorithms
on the tasks defined on such datasets. This yielded our first meta-learning dataset,
which is a “big matrix” S containing all algorithm performances (datasets in lines
and algorithms in columns). However, in meta-learning, each “example” being a task
(or dataset), it is difficult to gather enough examples to get a good benchmark. Our
solution to that problem has been to create a collection of meta-learning datasets from
several sources.

In this section, we describe all meta-learning datasets we have generated / gathered
for the study of meta-learning in Chapters 3, 5, 6. Table 2.1 summarizes the statistics
our six resulting meta-learning datasets, which we now describe in further detail.

2.2.1 Real-world meta-datasets: AutoML, StatLog, OpenML

This section describes three real-world meta-datasets: AutoML from the previously
introduced AutoML challenge, OpenML from the OpenML platform and used in
[74, 100], as well as StatLog from the UCI database.

AutoML meta-dataset

The main product of our post-challenge studies of the first AutoML challenge 2015/2016,
from the point of view of the long term research, is the meta-learning dataset (meta-
dataset) that we generated, consisting of a “big matrix” S grouping the performance of
17 learning algorithms applied on all 30 datasets of the challenge. This is an essential
resource we use to develop meta-learning algorithms addressing the AutoML problem
as a MDP in later Chapters 3, 5 and 6.

We visualized the data in Figure 2.4. We will show a similar visualization for other
meta-datasets described in the remainder of the chapter. From top to bottom:

TOP - Two-way hierarchical clustering. This allows us to see that there is some
structure in data, which can potentially be exploited by meta-learning algorithms,
although there is not a very marked “block” structure, which would indicate that
some subsets of algorithms are more suitable to solve some subsets of tasks.
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Table 2.1 Statistics of benchmark meta-datasets used. #Datasets=number of datasets,
#Algo=number of algorithms, Rank=rank of the performance matrix.

Artificial StatLog OpenML 2015/2016
AutoML

CEP MNIST-
patch

#Dataset 50 22 76 30 8608 70,000
#Algo 20 24 292 17 163 49
Rank 20 22 76 17 118 947
Metric None Error rate Accuracy BAC or

R2
Error rate Averaged

pixel
values

Pre-
processing

None Take
square
root

None Scores
for
aborted
algo. set
to 0

Normal.
on X (i.e.
features),
Errors for
aborted
algo. set
to 1

Neighbor.
average
within a
square
window

Source Generated
by
authors

StatLog
Dataset
in UCI
database

Alors
[74]
website

2015/2016
AutoML

Generated
by the
authors
from
Causality
chal-
lenge

Generated
by the
authors
from
MNIST
dataset

http://archive.ics.uci.edu/ml/datasets/StatLog+(australian+credit+approval)
http://archive.ics.uci.edu/ml/datasets/StatLog+(australian+credit+approval)
http://archive.ics.uci.edu/ml/datasets/StatLog+(australian+credit+approval)
http://archive.ics.uci.edu/ml/datasets/StatLog+(australian+credit+approval)
https://www.lri.fr/~sebag/Alors/as_datasets/openml-ai-accuracy.csv
https://www.lri.fr/~sebag/Alors/as_datasets/openml-ai-accuracy.csv
https://www.lri.fr/~sebag/Alors/as_datasets/openml-ai-accuracy.csv
https://competitions.codalab.org/competitions/2321
https://competitions.codalab.org/competitions/2321
http://www.causality.inf.ethz.ch/cause-effect.php?page=data
http://www.causality.inf.ethz.ch/cause-effect.php?page=data
http://www.causality.inf.ethz.ch/cause-effect.php?page=data
https://pytorch.org/docs/stable/_modules/torchvision/datasets/mnist.html
https://pytorch.org/docs/stable/_modules/torchvision/datasets/mnist.html
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MIDDLE - Spectrum of singular values. This shows that, even though the matrix
is full rank, some singular values 6 are more prominent and “explain” a large
fraction of the variance in data, confirming the potential for meta-learning
algorithms.

BOTTOM - Top ranking algorithms. We indicate with a red dot the best algorithm.
This shows that the winning method is not always the same and therefore that
an automatic method that could predict which algorithm performs best would be
useful.

• Datasets of the AutoML challenge (lines of SAutoML) We describe now in detail
the datasets of the 2015/2016 AutoML challenge, which we used not only to
create our fist benchmark meta-learning dataset, but also to generate the plots
mentioned in section 2.1 and other post-challenge studies [45].

The organizers of the challenge gathered a pool of 70 datasets during the summer
2014 with the help of numerous collaborators, and ended up selecting 30 datasets
for the 2015/2016 challenge (see Table 2.2), chosen to illustrate a wide variety
of domains of applications: biology and medicine, ecology, energy and sustain-
ability management, image, text, audio, speech, video and other sensor data
processing, Internet social media management and advertising, market analysis
and financial prediction. They preprocessed data to obtain feature representa-
tions (i.e., each example consists of a fixed number of numerical coefficients).
Text, speech, and video processing tasks were included in the challenge, but not
in their native variable length representations.

• Algorithms applied to the AutoML challenge (columns of SAutoML)

Following the AutoML challenge, we designed a challenge “re-match” called
“Beat auto-sklearn”7, whose purpose was to stimulate the community to try to
beat the winners of the first challenge. This encouraged the AAD Freiburg team,
creator of the winning entry auto-sklearn (a wrapper around the well-known
machine learning scikit-learn library [86]), to exhibit their programmatic inter-
face to scikit-learn (a.k.a. sklearn). In this way, it became easy to decouple their
hyper-parameter optimization (hyperopt) algorithm from its interface to scikit-
learn. This allowed us, in particular, to test other hyper-parameter optimization
strategies (using the same model space) or to optimize the hyper-parameters of
single models with the auto-sklearn hyperopt engine.

6The singular values are from SVD decomposition.
7The challenge is no longer running, but we still have the Codalab worksheet at https://worksheets.

codalab.org/worksheets/0x107449520d9c48aaaceef240d557ba88.

https://worksheets.codalab.org/worksheets/0x107449520d9c48aaaceef240d557ba88
https://worksheets.codalab.org/worksheets/0x107449520d9c48aaaceef240d557ba88
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Fig. 2.4 AutoML meta-dataset: SAutoML after global normalization (i.e. we subtracted
the global mean and divided by the global standard deviation). TOP: Two-way hierar-
chical clustering based on normalized SAutoML. MIDDLE: Singular values (from SVD
decomposition) of normalized SAutoML. BOTTOM: Normalized SAutoML with columns
arranged based on their medians (from highest to lowest), the maximum values for
each dataset are marked with a red dot.
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We applied various types of learning algorithms to the 30 AutoML datasets to
obtain the performance on held-out test sets. These algorithms pertain to two
families:

– Winner solutions: The code of winning entries (in at least some of the
challenge rounds) was run systematically on all 30 datasets 8, because some
participants entered late or abandoned early, we did not have performances
for all methods on all datasets.

– Basic scikit-learn learning algorithms: Many participants used the scikit-
learn (sklearn) package, including the winning group AAD Freiburg, which
produced the auto-sklearn software. We used the auto-sklearn API to
conduct post-challenge systematic studies of the effectiveness of hyper-
parameter optimization. We compared the performances obtained with
default hyper-parameter settings in scikit-learn and with hyper-parameters
optimized with auto-sklearn9, both within the time budgets as imposed
during the challenge, for four “representative” basic methods: k-nearest
neighbors (KNN), naive Bayes (NB), Random Forest (RF), and a linear
model trained with stochastic gradient descent (SGD-linear10).

The metrics used to measure the performance of algorithms are BAC (for classi-
fication tasks) / R2 (for regression tasks), they produce values between 0 and
1 (one is best). The missing values (performance of algorithms aborted due
to execution time constraints) were replaced by 0. This first meta-learning
matrix SAutoML took weeks of human effort to generate, especially adapting and
debugging scikit-learn implementation to meet different tasks. The experiments
were run on a x86_64 machine with 8 CPU. The time limit allocated to each
task was the same as in the challenge. The Code and results for these post-
challenge studies are at Github. We have also built a docker image lisesun /
codalab_automl2016 for reproducibility purposes.

• Difficulties encountered with the AutoML challenge meta-dataset: The fore-
most difficulty we faced when generating these meta-learning matrices is the
failure of algorithms when applying them on large and/or sparse datasets, due
to the limitation of computational resources. This resulted in many missing
values in the performance matrix SAutoML, which, for practical purposes, are
replaced by 0. We started investigating this issue by comparing various KNN

8The public winner codes can be found at http://automl.chalearn.org/.
9We use scikit-klearn 0.16.1 to mimic the challenge environment, and auto-sklearn 0.4.0.

10We set the loss of SGD to be ‘log’ in scikit-learn for these experiments.

https://github.com/LishengSun/AutoML-2016-simulations-and-analyses
https://hub.docker.com/r/lisesun/codalab_automl2016
https://hub.docker.com/r/lisesun/codalab_automl2016
http://automl.chalearn.org/
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implementations. Specifically, we compared the sklearn-KNN implementation
to that of FLANN [80]. on the AutoML 2015-2016 Round 0 datasets. The
results in Figure 2.5 11 show that FLANN is generally faster than scikit-learn.

One interesting way in which algorithms can be evaluated is to monitor their
learning curve (performance progress as a function of time) rather than just their
final performance at the end of a fixed time budget. The Area Under the Learning
curve is indeed the metric used in the more recent AutoDL challenge http:
//autodl.chalearn.org, in which we made contributions at the design level. We
attempted to generate learning curves for all datasets and all learning algorithms
studied in the first AutoML challenge. Some algorithms lend themselves well to
generating learning curves. For example, ensemble methods such as Random
Forests (RF) or boosted ensembles of trees (Gradient boosting) allow us to
increase progressively the number of trees. Also, algorithms based on stochastic
gradient descent keep cycling over all training examples and can be interrupted
and re-started easily to generate learning curves. But, for many algorithms
(e.g. KNN or SVM) one needs to wait until the model is fully trained to get
predictions and no further improvement is gained afterwards. This leads to
learning curves that are just step-functions. Conceivably, such algorithms could
be re-written to generate smooth learning curves, but we did not have time to
undertake such endeavor.

As a result of these difficulties, we focused on the “fixed time” learning setting
in which algorithms must be executed (for training and testing) within a fixed
time budget, as opposed to the “any-time” learning setting in which algorithms
can be stopped at any time. In the former case, the metric of success is the test
set performance at the end of the time budget whereas in the latter case it is the
area under the learning curve.

• Meta-data for the AutoML challenge: To perform the meta-learning exper-
iments in Section 2.1, we have recomputed, for each of the 30 datasets, the
meta-features implemented in [37, 35, 38]12. Here is the full list of used
meta-features, including the landmarks excluded in experiments in Section 2.1,
but used in our later Reinforcement learning experiments in Section 2.2.2 and
Section 6.3.1.

– ClassProbabilityMin =mini=1...n(p(Classi))=mini=1...n(
NumberO f Instances_Classi
TotleNumberO f Instances )

11This experiment is run on a x86_64 machine with 8 CPU.
12Kurtosis, Skewness, KurtosisPCA and SkewnessPCA are intermediate metafeatures used to calcu-

late some other metafeatures

http://autodl.chalearn.org
http://autodl.chalearn.org
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Fig. 2.5 Round 0 datasets by sklearn-KNN and FLANN-KNN. X axis is the total
time of fitting plus predicting. Y axis is the performance expressed using BAC / R2
score for classification / regression tasks. k=5 in both cases. The KNN algorithm used
to compute the nearest neighbors in sklearn is set to ‘auto’, i.e. sklearn can decide
the most appropriate algorithm among {ball-tree, kd-tree, brute force} based on the
dataset. We can see that FLANN is generally faster than sklearn, especially datasets
with many features like newsgroups or many samples like adult, but performance
sometimes degrades.
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– ClassProbabilityMax =maxi=1...n(p(Classi))=maxi=1...n(
NumberO f Instances_Classi
TotleNumberO f Instances )

– ClassEntropy = mean(−∑
n
i=1 p(Classi)ln(p(Classi))) where p(Classi) is

the probability of having an instance of Class_i

– ClassOccurences = number of examples for each class

– ClassProbabilityMean = mean( ClassOcurrences
NumberO fClasses)

– ClassProbabilitySTD = std( ClassOcurrences
NumberO fClasses)

– DatasetRatio = NumberO f Features
NumberO f Instances

– InverseDatasetRatio = NumberO f Instances
NumberO f Features

– LogInverseDatasetRatio = log(DatasetRatio)

– Landmark[Some_Model]: accuracy of [Some_Model] applied on dataset.

– LandmarkDecisionNodeLearner & LandmarkRandomNodeLearner: Both
are decision tree with max_depth=1. ‘DecisionNode’ considers all features
when looking for best split, and ‘RandomNode’ considers only 1 feature,
where comes the term ‘random’.

– Skewnesses: Skewness of each numerical features. Skewness measures the
symmetry of a distribution. A skewness value > 0 means that there is more
weight in the left tail of the distribution. Computed by scipy.stats.skew.

– SkewnessMax / SkewnessMin / SkewnessMean / SkewnessSTD: max /
min / mean / std over skewness of all features.

– NumSymbols: Sizes of categorical features: for each categorical feature,
compute its size (number of values in the category).

– SymbolsMax / SymbolsMin / SymbolsMean / SymbolsSTD / SymbolsSum
= max / min / mean / std / sum over NumSymbols

– NumberOfCategoricalFeatures: Number of categorical features.

– NumberOfNumericFeatures: Number of numerical features

– RatioNumericalToNominal = NumberO f NumericFeatures
NumberO fCategoricalFeatures

– RatioNominalToNumerical = NumberO fCategoricalFeatures
NumberO f NumericFeatures

– Kurtosis = Fourth central moment divided by the square of the variance =
E[(xi−E[xi])

4]
[E[(xi−E[xi])4]]2

where xi is the i-th feature. Computed using scipy.stats.kurtosis.

– KurtosisMax / KurtosisMin / KurtosisMean / KurtosisSTD = max / min /
mean / std of kurtosis over all features

– PCAKurtosis: Transform data by PCA, then compute the kurtosis
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– NumberOfInstances = Number of examples

– NumberOfFeatures = Number of features

– NumberOfClasses = Number of classes

– LogNumberOfFeatures = log(NumberO f Features)

– LogNumberOfInstances = log(NumberO f Instances)

– MissingValues: Boolean matrix of dim (NumberOfInstances , NumberOf-
Features), indicating if an element of is a missing value.

– NumberOfMissingValues: Total number of missing value

– NumberOfInstancesWithMissingValues: Number of examples containing
missing values.

– NumberOfFeaturesWithMissingValues: Number of features containing
missing values.

– PCA: PCA decomposition of data.

– PCAFractionOfComponentsFor95PercentVariance: Fraction of PCA com-
ponents explaining 95% of variance of the data.

– PCAKurtosisFirstPC: Kurtosis of the first PCA component.

– PCASkewnessFirstPC: Skewness of the first PCA component.

StatLog meta-dataset

The StatLog [61] meta-dataset is a public dataset from the UCI database ( http:
//archive.ics.uci.edu/ml/datasets/StatLog+(australian+credit+approval). We took the
square root of the performances to equalize the distribution of scores (avoid a very long
distribution tail). Figure 2.6 shows the visualization of the StatLog meta-dataset. We
see the hierarchical clustering (TOP) is homogeneous both in datasets and algorithms.
It’s challenging to find sub-sets of algorithms / datasets. The median-arranged matrix
(BOTTOM) also shows no specific algorithms outperform on multiple datasets.

OpenML meta-dataset

This meta-dataset is a subset of the OpenML platform [113] (https://www.openml.org/)
and used in [74]. Figure 2.7 shows the visualization of the OpenML meta-dataset.
We see clear block structures in the hierarchical clustering (TOP) on both dataset and
algorithm directions, suggesting that sub-sets of datasets and algorithms can be found,
this is coherent with the median-arranged matrix (BOTTOM) where a large number

http://archive.ics.uci.edu/ml/datasets/StatLog+(australian+credit+approval
http://archive.ics.uci.edu/ml/datasets/StatLog+(australian+credit+approval
https://www.openml.org/
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Fig. 2.6 StatLog meta-dataset: SStatLog after global normalization (i.e. we subtracted
the global mean and divided by the global standard deviation). TOP: Two-way hierar-
chical clustering based on normalized SStatLog. MIDDLE: Singular values (from SVD
decomposition) of normalized SStatLog. BOTTOM: Normalized SStatLog with columns
arranged based on their medians (from highest to lowest), the maximum values for
each dataset are marked with a red dot.
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of algorithms are good at multiple datasets, and many datasets have more than one
best algorithms. In this sense, the OpenML meta-dataset, compared to others, is more
suitable for meta-learning.

2.2.2 Synthetic and toy meta-datasets: Matrix factorization, CEP,
MNIST patches

This section describes three synthetic meta-datasets: Artificial constructed from a
matrix factorization, CEP generated from the Cause-Effect Pairs challenge, and MNIST
patches from the MNIST dataset.

Artificial meta-dataset

The Artificial meta-dataset is constructed from a matrix factorization to create a
simple benchmark we understand well, which allows us to easily vary the problem
difficulty. 13 More precisely, the artificial matrix SArti f icial is obtained as a product
of three matrices UΣV , U and V being orthogonal matrices and Σ a diagonal matrix
of “singular values”, whose spectrum is chosen to be exponentially decreasing, with
Σii = exp(−β i), β = 100 in our experiments. Figure 2.8 shows the visualization of
the Artificial meta-dataset.

Compared to other real-world meta-datasets (e.g. Figure 2.4), we notice that a
block structure is more apparent in the hierarchical clustering (TOP), indicating that
it should be easier to find subsets of algorithms, which are better on subsets of tasks.
However, surprisingly, the BOTTOM picture indicates that only a few algorithms (e.g.
algorithm #3 and #13, representing 2 algorithm families that are good at different
subsets of tasks.) seem to be better at a large number of tasks. This is because only the
absolute maximal values are red-marked in each dataset, while multiple algorithms
have performance just slightly lower than the maximum (e.g. algorithm #2 compared
to #3, and algorithm #7 compared to #13 for many tasks).

CEP meta-dataset

The CEP meta-dataset was constructed using data from the cause-effect pair challenge
(https://www.kdnuggets.com/2013/04/chalearn-cause-effect-pairs-challenge.html) with-
out making any use of underlying causal relationship. The meat-dataset includes
samples of pairs of variables (CE pairs), continuous, binary, or categorical. We used a
subset of these pairs to create univariate “machine learning tasks”: classification or

13The Code for generating the artificial meta-dataset is at https://github.com/LishengSun/
ActiveMetaLearn/blob/master/src/utils/make_artificial_matrix.py.

https://www.kdnuggets.com/2013/04/chalearn-cause-effect-pairs-challenge.html
https://github.com/LishengSun/ActiveMetaLearn/blob/master/src/utils/make_artificial_matrix.py
https://github.com/LishengSun/ActiveMetaLearn/blob/master/src/utils/make_artificial_matrix.py
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Fig. 2.7 OpenML meta-dataset: SOpenML after global normalization (i.e. we sub-
tracted the global mean and divided by the global standard deviation). TOP: Tow-way
hierarchical clustering based on normalized SOpenML. MIDDLE: singular values (from
SVD decomposition) of normalized SOpenML . BOTTOM: Normalized SOpenML with
columns arranged based on their medians (from highest to lowest), the maximum
values for each dataset are marked with a red dot (because of the large number of
algorithms, only some of them are indexed on y-axis).
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Fig. 2.8 Artificial meta-dataset: SArti f icial after global normalization (i.e. we sub-
tracted the global mean and divided by the global standard deviation). TOP: Two-way
hierarchical clustering based on normalized SArti f icial . MIDDLE: Singular values
(from SVD decomposition) of normalized SArti f icial . BOTTOM: Normalized SArti f icial
with columns arranged based on their medians (from highest to lowest), the maximum
values for each dataset are marked with a red dot.
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regression problems using a SINGLE input variable. Thus each little task/dataset in
our meta problem is one of the CE pairs. Our experiments thus far have been limited
to one continuous input variable and one categorical output variable (classification
problem), ignoring the causal direction. The present CEP meta-dataset consists of
8608 classification datasets, 163 algorithms and 16 meta-features. The performance
of algorithms are measured by BAC. The evaluation time of each (dataset, algorithm)
pair is also recorded, giving an extra time matrix SCEP_time. Figure 2.9 shows the
visualization both on performance and time matrix. We see that block structures
are more pronounced in datasets in the performance matrix, but in algorithms when
looking at time matrix. But the overall structure is rather homogeneous, high similarity
presents both in datasets and algorithms. However, thanks to a large number of datasets,
the CEP meta-dataset provides a suitable learning source for a simple meta-learning
problem.

• Algorithms applied to the CEP datasets: To ensure the similarity in algo-
rithms so that meta-learning is possible, 163 basic learning algorithms were
selected from diverse families: "KNN", "DecisionTree", "RandomForest", "Gra-
dientBoostingTree", "AdaBoost", "lSVM", "kSVM", "Logit", "Perceptron",
"GaussianNaiveBayes", "MultiLayerPerceptron", "ExtraTrees". All algorithms
used are from scikit-learn. For each hyper-parameter in these algorithms, some
values are sampled in an ad-hoc fashion, then each possible combination of
these hyper-parameters form one algorithm. Failures of simulation are marked
as 0 (worst BAC) in the matrix of performance and 1 second in the time matrix.

• Meta-features of CEP datasets : 16 Meta-features are also computed for
each dataset in CEP to help tackle the cold start problem in meta-learning
when using RL in Chapter 6: ’NumberOfInstances’, ’LogNumberOfInstances’,
’NumberOfClasses’, ’ClassProbabilityMin’, ’ClassProbabilityMax’, ’ClassProb-
abilityMean’, ’ClassProbabilitySTD’, ’Kurtosisses’, ’Skewnesses’, ’ClassEn-
tropy’, ’LandmarkLDA’, ’LandmarkNaiveBayes’, ’LandmarkDecisionTree’,
’LandmarkDecisionNodeLearner’, ’LandmarkRandomNodeLearner’, ’Land-
mark1NN’. The definition of these meta-features is given in Section 2.2.1.

MNIST-patch meta-dataset

In Chapter 6, we will use the MNIST dataset [67] to create an exploration game,
which is a toy example before addressing the more difficult meta-learning problem.
This section will first describe this meta-dataset(for more information, please refer to
Section 6.2.2). The original MNIST dataset is a handwritten digit database largely



34 Empirical setting

Fig. 2.9 200 randomly sampled datasets from CEP meta-dataset, which con-
tains 2 matrices of same dimension: SCEP_per f for algorithm performances and
SCEP_time for algorithm computational times. 1st panel: Tow-way hierarchical
clustering based on normalized SCEP_per f . 2nd panel: singular values (from SVD
decomposition) of normalized SCEP_per f . 3rd panel: Normalized SCEP_per f with
columns arranged based on their medians (from highest to lowest), the maximum
values for each dataset are marked with a red dot (because of the large number of
algorithms, only some of them are indexed on y-axis). 4th panel: Tow-way hierarchical
clustering based on SCEP_time after taking natural logarithm.
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used to train various image related machine learning systems. It consists of a training
set (60,000 images) and a test set (10,000 images). The digit classes range from 0 to
9.

The MNIST dataset first caught our attention when it was presented in the Natural
Image game in [120] where it was used to create a game environment in which an
RL agent is trained to efficiently reveal a masked MNIST image and predict its label.
We then drew the link between a MNIST image and a machine learning dataset, and
realized that if an agent can be trained to navigate in the pixel space, under additional
assumptions, it should be able to train it to navigate in the algorithm performance
space, i.e. our meta dataset matrices S. We then created a meta-dataset where each
row is a flatten MNIST image. However, if we simply flatten the MNIST image to a
32×32 = 1024 vector 14, the searching space will be too large for the agent to learn
efficiently, additionally, there are many equal pixel values in a image, making this space
very redundant. We thus use a square window of size 5 to average the neighboring
pixels, this is interpreted as a patch brightness, The notion of patch reduces the size of
the vector to 49. This (70000,49) 15 matrix is our final MNIST-patch meta-dataset, it
is similar to other meta-datasets we present so far, where an image is equivalent to a
dataset, and a patch brightness value is equivalent to an algorithm performance value.
Figure 2.10 shows a sub-sample of 200 images randomly (without replacement) drawn
from the whole MNIST-patch meta-data train set. A clear block structure presents
in columns (i.e. the direction of patch), this is not surprising because most MNIST
images have digit in the center of the image, which corresponds to a common bright
area. However, there is no clear block structure in rows (i.e. the direction of images),
meaning that the images are rather i.i.d. This observation shows that training an agent
to find brightest patches across different digits is possible.

2.3 Summary of experimental setting chapter

This chapter presented the experimental setting used in the remainder of this thesis.
The analysis of the AutoML challenge (2015-2016), which was summarized at the
beginning of the chapter, was a pivotal element in outlining the importance of meta-
learning. The AutoML challenge datasets were used to create a novel meta-learning
dataset. Several other meta-learning datasets were added to create a benchmark of

14One original MNIST image is of size 28× 28. We used the version of [120] where images are
transformed to size of 32×32 for algorithm compatibility.

1560,000 images from train set and 10,000 from test set, each of them has 49 patches and therefore
49 brightness values.
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Fig. 2.10 200 random sampled images from MNIST-patch meta-dataset: This
form a 200×49 matrix SMNISTpatch , in which one row is one flatten MNIST image, one
column is one patch, the value is the brightness. TOP: Two-way hierarchical clustering
based on SMNISTpatch . MIDDLE: singular values (from SVD) of SMNISTpatch . BOTTOM:
SMNISTpatch with columns arranged based on their medians (from highest to lowest), the
maximum values for each row are marked with a red dot (because of the large number
of patches, only some of them are indexed on y-axis).
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meta-learning, including datasets borrowed from the literature (StatLog and OpenML),
and synthetic/toy datasets (simple matrix factorization, CEP, MNIST patches).

Thus, the main contribution of this chapter is a collection meta-datasets, which are
used in this thesis and are made available (at https://github.com/LishengSun/REVEAL/
upload/master/env/meta_learning_env/meta_learning_matrices) to the research com-
munity to further explore the meta-learning problem. As my attention moved from
standard Hyper-parameter selection to meta-learning, these meta-datasets will serve
as meta-learning sources and will be extensively used in Chapter 5 and 6, where the
framework of meta-learning as a Markov Decision Process (MDP) is introduced.

https://github.com/LishengSun/REVEAL/upload/master/env/meta_learning_env/meta_learning_matrices
https://github.com/LishengSun/REVEAL/upload/master/env/meta_learning_env/meta_learning_matrices




Chapter 3

Mathematical statement of the
AutoML problem as a MDP

In this chapter, we formulate the problem of algorithm (or model) selection, which
is at the hart of the AutoML problem, as a Markov Decision Process (MDP). This
will provide us with a formal framework to address the problem of hyper-parameter
selection and meta-learning in a principled way. In a MDP, the system under study is a
Markov process, hence has a finite number of states and the next state is determined (via
state transition probabilities) from (a finite number of) recent past states and actions. In
our problem of interest, states encode our knowledge of the performance of algorithms
on given tasks (the performance of machine learning methods on given datasets);
actions encode our next move in “information space”, i.e. which algorithm (learning
machine) we decide to run on a particular dataset to reveal it performance (AutoML
MDPs actually belong to a larger family of problems, which we baptized REVEAL
games). Our goal is to uncover as far as possible the best performing algorithm(s). To
that end, we will define objective functions or “rewards” to guide our meta-learning
algorithms. For example, an immediate reward (that can be used by reinforcement
Learning algorithms) could be the improvement in algorithm performance.

3.1 Notations and problem setting

A Markov Decision Process (MDP) is a sequential decision making process. It is
described by a 4-tuple (state st , action at , transition probability p(st+1|st ,at), reward
rt+1). In each time step, the process is in some state st , the decision maker, also
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called the agent, has access to information on st
1 that allows it to decide its action

at , the process responds with a transition to a next state st+1 drawn from a model
p(st+1|st ,at) and a reward rt+1 to inform the agent about the quality of its action. The
goal of the agent is to maximize the reward accumulated over time. Meta-learning can
be formulated as a MDP, in the sense that the agent (human or any AutoML system),
placed in some state (a partially filled row in the meta-dataset matrix S), is moving in
that row (i.e. the algorithm performance space) to find the position of the highest value
(i.e. the algorithm with highest performance). At each time step, the action of the agent
is to choose one algorithm to evaluate. After each evaluation, the agent gains more
information (one more value in matrix S): this is the next state. The improvement in
evaluation score of the algorithm could play the role of reward. After seeing enough
datasets (i.e. many rows, one at a time), the agent builds a prior knowledge on the
algorithm space across datasets, this allows it to find more efficiently the best algorithm
for a new dataset drawn from the same mother distribution, which is the underlying
probability distribution from which the datasets (i.e. the rows in S) are sampled.

To address the problem of finding an optimal policy (a good agent in our MDP
setting), it is helpful to view solutions to AutoML problems as algorithm recommender
Systems (RS), seeking the algorithm best suited to a given dataset [98]. Two ap-
proaches exist: (1) Sequential Optimization that searches for the maximal performance
on ONE particular dataset (thus one row in S). Examples include hyper-parameter
optimization (Chapter 4) and Collaborative Filtering (Chapters 5); (2) Reinforcement
Learning (RL) that searches for a policy that leads to the maximal performance on
ANY task (Chapter 6). The advantage of RL compared to Sequential Optimization is
the learned policy can be applied on new datasets.

Compared to standard MDPs, the AutoML MDP has two specific features: (1)
it has finite time horizon, i.e. we limit the number of decision making steps in each
episode; (2) an action only gains more information about the state, it has no effect
on the data generating process. We have identified a whole family of games that
share these same specifications, which we call REVEAL games. Section 3.2 gives
the definition and examples of REVEAL games, which allowed us to test various RL
algorithms and visualize their behavior. Section 3.3 explains how AutoML can be
formulated as a REVEAL game.

1If the agent has access to partial information about the state st , the process is a Partially Observable
Markov Decision Process (POMDP). In this chapter, we assume that the agent has access to full
information about st and restrict the discussion to a MDP framework.
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3.2 A game of REVEAL

To project the above formulation into a realistic setting, let’s imagine a REVEAL
game, in which the game board is filled with face-down information cards. A game
player picks a card and flips it to reveal the hidden information to earn a reward. The
overall goal is to accumulate rewards as quickly as possible. We now give a more
formal definition of a REVEAL game.

3.2.1 REVEAL definition

Definition 1 (REVEAL game). A REVEAL game is a MDP, fully defined by a 4-
element tuple: (S,A, p(St+1|St ,at),R∥∆), where ∆ = {β ,τ,a•} is the set of game
parameters:

• State: S is a matrix of dimension M×D×N. It contains M channels, each of
them is a D×N matrix encoding one type of information, e.g. D is for datasets
and N for algorithms. The game starts at s0 which is the empty S. st is the
partially revealed matrix at time t defined by a triplet

st =

{ik, jk,S(ik, jk)} for k = 1, . . . , t−1 if t < τ and at ̸= a•

s• if t = τ or at = a•
(3.1)

where (ik, jk) is revealed at time k with action ak. The game terminates when
the time t exceeds the time budget τ or when the action at hits the goal a• . The
set of states is thus S = {s0,st(t = 1, . . . ,τ−1),s•}

• Action: The set of actions at time t is noted At: .

At =

P if t < τ and st ̸= s•

/0 otherwise
(3.2)

– When t < τ or when the goal is not achieved (i.e.st ̸= s•), the agent can
choose to reveal a position in S, this is noted by P . It can be (but not
necessary) the union of set of row indices I and column indices J , i.e.
P = I ×J . In this case, at = (it , jt).

– The game terminates when t = τ or when the goal is achieved, the action
space is empty.
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• p(st+1|st ,at) is the transition probability. If S is assumed pre-computed, the
transition is deterministic given st and at :

st+1 =

st
⋃
{it , jt ,S(it , jt)} if t < τ and at ̸= a•

s• otherwise
(3.3)

• r(t) is the reward function containing a positive term r+(t) : S →R represent-
ing how good to be in the current state st , and a negative term r−(t) : S → R
representing how much the agent actually pays for being in that state. β controls
this performance-cost trade-off.

r(t) = r+(t)−β r−(t) with β > 0 (3.4)

3.2.2 REVEAL game examples

To gain a better understanding of class of MDP problems that we called REVEAL
games and thus guide our design of meta-learning algorithms, we created a suite of
toy REVEAL games. In this section we describe a few. We parameterize each game
using our previously described notation.

Battleship: REVEAL(β = 0,a• = ship locations)

2 One of the simplest example is the famous game of “battleship”: “ships” are placed
on a grid, hidden to the player (agent). The player must blindly aim at the position
of ships to try to sink them. At each try, the player gains the information whether a
ship (partially) occupies the targeted location, i.e. whether the player touched or sank
a ship. The game is usually played with 2 players, each providing a puzzle to the other.
Formally:
S = the game board. A = set of all locations on the game board. Goal = uncovering
ship locations to destroy them faster than the opponent. If the game is not put under
any time limit specified by the game designer, the time limit is bounded by the board
game.

2β = 0 if we don’t “charge” the agent for revealing any position, it can be changed freely to suit the
need of the game designer.
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Reveal a MNIST image to predict its digit: REVEAL(β = 1,τ = 100,a•= correct
digit label)

This game is proposed in [120], the agent initially placed in the center of a fully masked
MNIST digit image should learn to reveal that image progressively to predict its label
within 100 time steps. The state is a 2-channel matrix S of dimension 2× 32× 32
including the under being revealed 32×32 image and another 32×32 image encoding
the agent’s current location. The actions are close moves related to the current position:
P = {Le f t,Right,U p,Down}. After each move, the agent predicts the label, if the
prediction is correct, the game board transits to s• and the game terminates. 3 Since
the game is also put under a time limit τ = 100 steps , it terminates automatically
when t = τ even the prediction is always wrong. Each action costs r− =−0.01, only
correct prediction is rewarded positively with r+ = 1.

Reveal a MNIST image progressively to find the brightest patches: REVEAL(β =

0.5,τ = 20,a• = positions of the brightest patches)

We have modified the setting of the previous game to make the problem more alike
to AutoML. Now the goal of the agent is to reveal the image to find the brightest
patches. States are still the (2,32,32) matrix, action space is now all possible positions
in the image but we don’t require the agent to predict the label anymore. The game
terminates automatically when one of the brightest patches is found or when the time
budget exceeds τ , thus, P = I ×J during the game. τ = 20 steps; The rewards is
also modified to combine the performance and cost: r+(t) = mean(S[0,at ]), β = 0.5,
r−(t) =−0.05. In Chapter 6, we use RL to train the agent that successfully learns to
navigate the the brightest patches in an unseen MNIST image. Figure 6.6 shows this
agent performing one test episode.

3.3 AutoML as a REVEAL game

The AutoML problem itself can be viewed as a REVEAL game: given a sparse matrix
S of dimension M×D×N where Sm,i, j is the value of channel m of algorithm j
applied on dataset i, reveal more of its values by running more algorithms on datasets.
Different channels may contain information such as: performance, computational cost,
value revealed-or-not, etc. The missing values in S correspond to the pairs (algorithm,
dataset) that are not yet revealed, i.e. the algorithm was not run yet on the particular
dataset. The purpose of the agent is to find the best algorithm for a dataset of interest

3This game has two actions (move, predict) where the second action ‘predict’ is performed by a
pre-trained classifier.
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as quickly as possible. This setting assumes that we have a finite number of algorithms
and datasets. It is similar to the “brightest patch” MNIST REVEAL game, where
MNIST images play the role of one row in the meta-learning dataset (i.e. images are
“flattened” as a line vector of the S matrix).

3.3.1 1D AutoML: REVEAL(β = 0.1,τ = 20,a• = position of the
best algorithm)

There are 2 possible settings in this problem: 1D and 2D. The 1D setting is similar to
the segment game in 6.2.1. The agent is given 1 dataset (i.e. 1 row) at a time, its goal
is to reveal and find the best algorithm for this dataset. In this setting:

• States: the matrix S is M× 1×N. It contains 1 dataset and N algorithms 4,
it can have M > 1 channels: performance channel, revealed-or-not channel
(that is 1 for positions the agent has revealed and 0 otherwise), computational
time channel, etc. Hence, if we note the index of the dataset of interest as
d, S:,d, j, j ∈ (1, . . . ,N) is a M-dimensional vector. M = 2 in our experiments
in Chapter 6 containing performance and computational time. All values in
S:,d, j = NAN if the position j is not revealed yet, and channel values otherwise.
In the real-world, the matrix S can be infinite because it grows with more and
more datasets/algorithms added to the agent’s experience, i.e. the action space
can be enormous compared to a small time budget τ . In this case, the agent
might not be able to achieve the goal a• within τ , the game termination thus is
wholly determined by the condition t = τ , and the agent is rewarded according
to the best algorithm found within τ .

• Actions: P = J = {0, . . . ,N−1} = any position in the row. at = jt

• Reward is the combination of performance (computed as the difference of
performance of current action S0,d, jt

5 and the best performance in the action
history) and cost (computed as the computational time required to evaluate the
chosen algorithm S1,d, jt ):

rt = r+(t)−β r−(t)

r+(t) = |S(d, jt)per f −maxt−1
k=0(S(d, jk)per f )|

r−(t) = S(d, jt)time

(3.5)

4An algorithm can be a learning machine, a meta feature, or other information about the dataset
5Assume the 0th channel is the algorithm performance and 1th channel is the algorithm computational

time.
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3.3.2 2D AutoML

Similar setting as in 1D, except now the agent is given more than one rows at a time.
The purpose of this 2D setting is to mimic a challenge environment, in which the
agent should solve multiple datasets within a resource budget τ , and the final reward is
defined upon the average performance over all datasets. The agent thus needs to learn
how to schedule its resource across datasets.

• States: the matrix S is M×d×N. It contains d datasets and N algorithms.

• Actions: P = I ×J = {0, . . . ,d−1}×{0, . . . ,N−1} = any position in the
(d×N) matrix;

• Reward: we use the same reward shaping as in 1D setting, but instead of
considering per dataset, we take the average at each time steps.

3.4 Evaluation procedure in REVEAL games

How do we evaluate the performance of a REVEAL agent? There are mainly two
ways:

• Online learning: No train/test split. Each new game is first treated as a test
instance and solved by the agent trained with previous games. During the test
time, the agent keeps adapting its parameters. Hence, the test instance is also a
training instance. In the case of meta-learning, a game is equivalent to a dataset,
i.e., a row in the matrix S.

• Off-line learning: There is a clear train/test split, i.e. we maintain a train set
from which we sample games for the agent to solve during its training time.
Then, once the training terminates, the parameters of the agent are frozen, and
the testing starts, the agent is asked to solve games sample from the test set. The
reward, in this case, is the average reward over the test set. For the meta-learning
problems shown in Chapters 5 and 6, for large meta-datasets such as CEP, we
use 70% of rows for training and the remaining 30% of rows for testing; for
smaller meta-datasets (AutoML, OpenML, StatLog, Artificial), we perform 10
fold cross-validation by testing on one fold at a time.

3.5 Summary on the MDP setting

In this chapter, the AutoML meta-learning problem was formulated as a Markov
Decision Process (MDP). This formulation allows us to develop different policies to
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solve the AutoML problem in later chapters: Hyper-parameter selection where no
meta-learning is performed to find a best algorithm for a particular dataset (Chapter 4),
Collaborative filtering where a hard-coded policy is used to find the best algorithm in
a greedy fashion (Chapter 5) and Reinforcement learning where an agent is trained to
learn a policy that is useful for new datasets. (Chapter 6)

Clearly, this simplified formulation has limitations that we will discuss in the last
chapter, including that of a discrete finite state space. We also did not impose any
particular constraints on action space, which could implement some prior knowledge
on hyper-parameter space. We will also discuss in the last chapter possible extensions
that we did not develop in this thesis, including representing the problem as a POMDP
(Partially Observable Markov Decision Process), exploring continuous state-action
spaces (for example continuous hyper-parameters), and revealing matrix S not only line-
wise (give an particular dataset), but column-wise (task selection) of bi-bidirectionally
(finding the best overall match of algorithms to tasks).



Chapter 4

Algorithm selection and
Hyperparameter Optimization: No
meta-learning at all

As claimed in Chapter 3, the goal of AutoML is to build an agent to learn a policy
p(a|s) in a MDP: the action a can be seen as choosing an algorithm to use, when in
the state s. The state s encodes all information exposed to the agent so far, making the
whole process a MDP. How to build such agent? There are 3 possibilities: (1) Let the
agent learn from trial and error (Chapter 6); (2) Treat unknown algorithm performances
as missing values and hard code the policy to choose the algorithm with maximal
estimated value (Chapter 5). Both (1) and (2) make use of knowledge gained from past
experiences, while (3) Hyperparameter selection looks solely at the task at hand, and
assigns appropriate algorithm to it through the optimization of a metric function L

that encodes the task preference (e.g. a loss function that measures the performance
of the algorithm applied on the dataset under consideration, or a customized scoring
function that trades off between the performance and the computational cost of the
algorithm).

4.1 Hyperparameter selection as a CASH problem

No algorithm is best for all tasks. The best choice depends on the task (its data
distribution D , the metric L it uses to measure the performance) and the fact that
whether the algorithm is well tuned. Auto-WEKA [108] first proposed Combined
Algorithm Selection and Hyperparameter optimization (CASH) to formulate this
dependence jointly:
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Definition 2. CASH Given a set of algorithm A = {A(1), . . . ,A(k)} with associated
hyperparameter spaces Λ(1), . . . ,Λ(k), we define the combined algorithm selection and
hyperparameter optimization problem (CASH) as computing

A∗
λ ∗ ∈ argminA( j)∈A ,λ∈Λ( j)

1
K

K

∑
i=1

L (A( j),D
(i)
train,D

(i)
valid)

where L (A( j),D
(i)
train,D

(i)
valid) is the metric value achieved by A trained on D

(i)
train and

evaluated on D
(i)
valid)

This way, the agent policy is hard coded as:

p(a|s) =

1− ε if a = A∗
λ∗

ε otherwise

where s encodes the current task, and ε trades off exploration - exploitation.
CASH setting is a particular way of formulating the Hyper-parameter optimization

problem, but others are possible (e.g. having a single validation set or even using the
training error if we have really "big data").

4.1.1 How to solve CASH?

The first solution family is BlackBox Optimization: without knowledge about the
real function L , we can only query algorithm points A( j)

λ
and observe its the value of

L (A( j)
λ
). Then we can choose building a model of L (model-based) or not (model-

free). The examples of model-free optimization include grid search (exhaustive search
over hyperparameter space Λ( j))); random search [12] (starting from a random position
λ j in Λ( j)), sample a neighbor position λ ′j from the hypersphere of a given radius

surrounding λ j, update the searching center to the new position if L (A( j′)
λ

)>L (A( j)
λ
).

Because the metric function L has usually a low effective dimension (i.e. some
dimensions of D are more relevant to L than other), random search is proven to
be more efficient than grid search in practice, especially when the dimension of D

grows); population-based optimization (e.g. evolutionary algorithm [90], particle
swarm optimization [31], which maintain an algorithm population and perform local
mutation, recombination on these candidate to achieve better algorithm generations).

The standard approach of model-based optimization is Bayesian Optimization
(BO) [21]. BO combines the Baye’s Theorem and an acquisition function for efficient
sampling in the search space Λ( j) to optimize an objective function L . The Bayes’
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theorem
p(L |{A( j)

λ
,L (A( j)

λ
)}) ∝ p({A( j′)

λ
,L (A( j′)

λ
)}|L )p(L )

allows the optimization to start from a prior p(L ) encoding our belief about the
unknown objective function. After some observations (or queries) {A( j)

λ
,L (A( j)

λ
)}

we can update the likelihood probability p({A( j)
λ
,L (A( j)

λ
)}|L ), and the product of

both allows us to refine progressively the posterior probability which is our model
of L given observations. In practice, p(L ) is usually approximated using Gaussian
process (GP) [89]1. Random Forest can also be used in the place of GP for its good
performance on high-dimensional and discrete data [54, 107, 35]. At each iteration,
an acquisition function is used to decide the next point A( j)

λ
(t + 1) to sample while

automatically trades off the exploration and exploitation, some examples include
expected improvement [76] and entropy search [49].

Instead of directly modeling the posterior p(L |{A( j)
λ
,L (A( j)

λ
)}) like in GP, Tree-

structured Parzen Estimator Approach (TPE) [15] proposed to model the likelihood
p({A( j′)

λ
,L (A( j′)

λ
)}|L ) using 2 non-parametric densities l(A) and g(A), where l(A) is

built using all observations {A( j′)
λ

such that L (A( j′)
λ

)}< L∗ and g(A) using remaining
observations. Expected improvement is then used as acquisition function for next-point
sampling. TPE is the sub-routine in AutoML toolkit Hyperopt-sklearn [64].

As BlackBox optimization receives algorithm performance as feedback, it can
suffer when the performance evaluation gets expensive. This brings out the second
family: Multi-Fidelity optimization, which trades off between the performance approx-
imation and the evaluation complexity. One example is HyperBand [68] which starts
the evaluation with randomly sampled HP configurations and successively halve the
less promising ones. BOHB [33] replaces the random sampling in HyperBand with
BO.

4.2 Freeze-Thaw: My exploration on HP selection

My first experience in AutoML was the AutoML0 challenge in 2015-2016, at that
time AutoML and HP selection were equivalent to me. My final submission to
the challenge was a re-implementation of the Freeze-Thaw Ensemble Construction
algorithm (FTEC). FTEC was first implemented by a top participant ‘jlr44’ [72] where
an ensembling was added on-the-fly on top of the original Freeze-Thaw algorithm
[105] to profit from the data mining experiences.

1GP is a distribution over functions, it is fully defined by a mean function m(A) and a kernel k(A,A′)
that expresses the covariance between 2 points A and A′.
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Freeze-Thaw Bayesian Optimization (BO) suggests to repeatedly stop less promis-
ing algorithms and resume / start promising ones so that limited computational resource
can be concentrated on training good candidates. This is done by building 2 models:
(1) model of HP from which new configurations A( j)

λ
are sampled, this is an infinite

mixture of exponential decays Gaussian Process (GP); (2) learning curve model for
each sampled configuration, this is a smooth GP over time. BO with entropy search as
acquisition function is then used to decide which algorithm to explore further. These
ingredients together make Freeze-Thaw an any-time interruptible algorithm suitable
for AutoML challenge. FTEC implements FT in the scikit-learn searching space, and
uses cross-validation to evaluate the candidates. FTEC furthermore implements a
stacking ensembling and memory management (e.g. quick predictions generated by
pilot algorithms trained on reduced size data as a backup for algorithm failures) to
reinforce the algorithm’s power during the challenge. I then improved the FTEC by
replacing all detected failures with a heuristic search to make it more task-flexible,
hence less failures in the challenge environment 4.1.

4.3 Summary of the chapter on HP selection

In this chapter, the first level of AutoML was explored: no meta-learning at all, i.e. solv-
ing the “model/algorithm selection” problem for individual datasets independently,
focusing only on hyper-parameter (HP) selection. The approach taken was that of
Freeze-Thaw, which includes core techniques commonly used in HP selection, such
as Bayesian optimization and learning curve estimation. Even pure HP selection
solutions achieve good results in many applications, including the AutoML challenge,
their limitation lying in the absence of meta-learning. This greatly limits the AutoML
system’s ability to learn from its own past, i.e. across datasets. Therefore, in the
follwing chapters, we will start exploring meta-learning.
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Fig. 4.1 The original FTEC implemented by ‘jlr44’ has been repaired after the chal-
lenge, and compared with my adapted version, which avoids a large number of failures
(with performance 0). The simulations are rerun in a challenge-like environment with
the same time budgets. X-axis are challenge dataset names. On y-axis the perfor-
mances are computed using the specific metric associated to each dataset used in the
challenge, error bars are computed through boostraping.





Chapter 5

Active Meta-learning

In Chapter 3, we cast the AutoML problem as a MDP, fully represented by the tuple
(S,A,PSt+1|St ,at ,R) where state S is the Meta-learning matrix, A is the set of actions
(usually the set of positions in S available for the agent to reveal), P is the transition
probability from St to St+1 when at is taken and R is the reward function.

One way to solve this AutoML MDP is to use Reinforcment learning, where an
agent is trained to learn a good policy to explore S efficiently, i.e. achieving the region
of maximum values within as few steps as possible. This is our next main contribution
detailed in Chapter 6.

In this chapter, we explore meta-learning with policies that are NOT learned. Since
the central problem is deciding which position in S to explore in the next step, the
policy can be hard-coded with the help of an estimator (or surrogate score) Ŝ of
missing values in S. In this case, the agent chooses the element in Ŝ satisfying some
criterion (e.g. the one with highest predicted value or highest expected improvement
in a Bayesian optimization context). The surrogate score is refined over time when
more and more elements of matrix S are revealed. We call this approach active
Meta-learning.

The code for experiments in this Chapter is at https://github.com/LishengSun/
ActiveMetaLearn. 1

5.1 Active Meta-learning as a Recommendation prob-
lem

Recommender systems belong to a subclass of information filtering systems, which
seek to predict the "rating" or "preference" that a user would give to an item. They are

1To run the code, CofiRank must be installed. We recommend using the Docker [Doc] image we
built for this purpose. The repository also includes a Jupyter-notebook to demonstrate the experiments.

https://github.com/LishengSun/ActiveMetaLearn
https://github.com/LishengSun/ActiveMetaLearn


54 Active Meta-learning

widely used by platforms like Amazon, Ebays, etc. to propose products to purchase.
This problem can be represented by a sparse rating matrix S where Si, j is the rating
if user i has rated item j, otherwise Si, j is a missing value. One common design
of recommendation system is Collaborative Filtering (CF), which is based on the
assumption that similar users would like similar items. This can be translated to the
fact that the rating matrix S (of size (D,N) where D is the number of users and N the
number of items) can be approximated as product of 2 matrices S ∼UV ′ (U of size
(D,d), V of size (N,d) with d ⩽ min(D,N)) under the assumption that S is of low
rank d. A common approach to solve this approximation is to take it as a regression
problem and let UV ′ estimate directly the ratings in S (e.g. Maximum Margin Matrix
Factorization [96, 91] minimizes the trade-off between the complexity of UV ′ and
the hinge loss between UV ′ and S computed on known values in S, the complexity
of UV ′ actually plays the role of regularizer to ensure the generalization to unknown
values). However, the authors of CofiRank [118] argue that approximating the ratings
is actually a harder problem because ratings are biased by individual users, and that
one should instead estimate the ranking (of the ratings). In this context, CofiRank
propose to build a matrix F that maximize the ranking measure NDCG between S and
F . CofiRank is used as a subroutine in our algorithm ACTIVMETAL, section 5.2.1
gives more detail about CofiRank.

Meta-learning can be thought of an algorithm recommender system in that a dataset
likes more a particular algorithms because the latter performs better on it. In this sense,
the rating matrix S becomes our Meta-learning matrix (of size (D,N) where D is the
number of datasets and N the number of algorithms 2). CF techniques can then be
used to estimate the missing performances (MMMF) or their rakings (CofiRank), and
the one with highest estimated value will be recommended.

Alors [74] applies CofiRank to build such algorithm recommender. However, there
is still a challenge in algorithm recommender system: the cold start problem, i.e. how
to deal with a brand new dataset (a complete empty line appended to S). This requires
the dimension augmentation from D to D+1 in S. Alors uses dataset meta-features X
of size (d′,D) to learn a mapping from X to U , since the new task has its meta-features
of size (d′,1), the learned mapping brings it to (1,d) which is then appended to U and
the dimension augmentation is complete, standard CF techniques such as CofiRank
can then be applied. There are other approaches to deal with the cold start, in our

2According to Chapter 3, the dimension of S is M×D×N where M is the number of channels.
Here when we treat the problem as a recommender system, we consider only M = 1 channel which is
the performance as the sole learning source. We note Sd, j the value of position (d, j) in this 1-channel
matrix S.
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ACTIVMETAL [100], we augment the dimension by random selection or selecting the
column with highest median over old tasks.

Probabilistic Matrix Factorization for AutoML [40] proposes a similar approach
than ACTIVMETAL, but models the performance using a Gaussian Process [89]:
p(S|U,V,σ2) = ∏

N
n=1 N Sn|UnV ′,σ2I), the GP is refined by optimizing the log like-

lihood on known entries, and Bayesian optimization is used to recommend the next
algorithm to evaluate.

5.2 The ACTIVMETAL algorithm

Our paper [100] proposes to treat the AutoML problem as an algorithm recommender
system and use collaborative ranking technique (CofiRank[118]) to find as quickly
as possible the best algorithm for a new task. Section 5.2.1 give a brief summary on
CofiRank, section 5.2.2 introduces the algorithm ACTIVMETAL and its application to
real world problems.

5.2.1 CofiRank: the subroutine for recommendation

Given the sparse rating matrix S ∈ R(N,D) of N users and D items, CofiRank proposes
to build a full low-rank matrix F ∈R(N,D), F ∼UV ′ in such a way that ranking entries
in F is equivalent to ranking entries in S. The performance of F is measured by
Normalized Discounted Cumulative Gain (NDCG [116]):

R(F,S) =
N

∑
i=1

NDCG@k(Πi,Si) (5.1)

where Πi = argsort(−F i) is the sorted row (i.e. user) i of matrix F .

DCG@k(s,π) =
k

∑
i=1

2sπi −1
log(i+2)

(5.2)

where sπi is the vector s (thus a certain row in S) after the permution π . DCG is
designed to focus on the top k ranked items via the denominator, k is the truncation
value. DCG is then normalized to be bouneded in [0,1], 1 when Π = Π∗:

DCG@k(s,π) =
DCG@k(Πi,Si)

DCG@k(Πi
s,Si)

(5.3)

Given a F , we can have its performance measure R(F,Ytrain), but we want to
maximize R(F,Ytest), this is done by restricting the complexity of F (detailed later).
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But R(F,Y ) is non-convex, to solve the maximization, we will instead minimize a
convex upper bound of −NDCG(π,s) for each individual user and sum them up. This
convex upper bound is defined as:

l( f ,s) := max
π

[∆(π,s)+< c, fπ − f >]≥ ∆(π,s∗) (5.4)

where ∆(π,s) := 1−NDCG(π,s) brings NDCG to a regret loss. < c, fπ − f > is
the inner product between a decreasing sequence c and f permutated by π , this
maps the rating f to a real value such that maximizing the latter yields argsort( f )
(Polya-Littlewood-Hardy inequality).

Now, maximizaing R becomes minimizing l( f ,s) over all users i:

L(F,S) =
N

∑
i=1

l(F i,Si) (5.5)

Replacing F by UV ′ and adding a regularizer Ω[F ] := 1
2minU,V [trUU ′+ trVV ′], we

get the final optimization problem:

min
U,V

L(UV ′,Strain)+
1
2
[U,V [trUU ′+ trVV ′] (5.6)

U (size (N,d)) and V ′ (size (d,D)) are respectively the user and item matrix that
captures the user / item specifics. The rank d in CofiRank is rather computational
concerns, d = 10 or 100 in their rating matrix experiments. The problem 5.6 is solved
by minimizing alternatively U and V . Because the term L is expensive to minimize,
they use bundle methods for a quicker converge rate.

5.2.2 ACTIVMETAL

In our paper ACTIVMETAL [100], we define the active meta-learning problem in a
collaborative filtering recommender setting as follows:
GIVEN:

• An ensemble of datasets (or tasks) D of elements d (not necessarily finite);

• A finite ensemble of n algorithms (or machine learning models) A of elements
a j, j = 1, · · · ,N ;

• A scoring program S (d,a) calculating the performance (score) of algorithm
a on dataset d (e.g. by cross-validation). Without loss of generality we will
assume that the larger S (d,a), the better. The evaluation of S (d,a) can be
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computationally expensive, hence we want to limit the number of times S is
invoked.

• A training matrix S, consisting of p lines (corresponding to example datasets
di, i = 1, · · · p drawn from D) and n columns (corresponding to all algorithms in
A ), whose elements are calculated as Si j = S (di,a j), but may contain missing
values (denoted as NaN).

• A new test dataset dt ∈ D , NOT part of training matrix S. This setting can
easily be generalized to test matrices with more than one line.

GOAL: Find “as quickly as possible” j∗ = argmax j(Sdt ,a j). For the purpose of this

paper “as quickly as possible” shall mean by evaluating as few values of Sdt ,a j , j =
1, · · · ,n as possible. This can be broken down to 2 processes: (1) INITIALIZATION-
SCHEME(S) which chooses the first algorithm to evaluate on the new dataset dt ; (2)
SELECTNEXT(S, t) which select the next algorithm to evalute at time t, this is where
CofiRank can be applied. Algorithm 1 gives the general algorithm, in which different
strategies can be plugged into those two above processes. In the paper we compared
ActiveMetaLearningCofiRank (initialization = best median, selection according to
ranking returned by CofiRank at each time step) with 3 baselines Random (random ini-
tialization and selection), SimpleRankMedian (initialization and selection according
to the ranking of median over all old datasets), MedianLandmarks1CofiRank (initial-
ization = best median, selection according to ranking returned by CofiRank at t). We
applied our methods on 1 Artificial dataset and 3 real-world datasets, the result is
shown in Figure 5.1. For more details please refer to the full paper [100].

Algorithm 1 ACTIVMETAL
1: procedure ACTIVMETAL(A , S , S, dt , nmax)
2: n← size(S,2) ▷ Number of algorithms to be evaluated on dt

3: t← NaNvector(n) ▷ Algorithm scores on dt are initialized w. missing values
4: j+←INITIALIZATIONSCHEME(S) ▷ Initial algorithm a j+ ∈A is selected
5: while n < nmax do
6: t[ j+]←S (dt ,a j+) ▷ Complete t w. one more prediction score of a j+ on

dt

7: j+ = SELECTNEXT(S, t)
8: n←length(notNaN(t)) ▷ number of algorithms evaluated on dt

9: return j+

ACTIVMETAL differs from other traditional algorithm selection techniques by the
facts: (1) it is purely meta-learning, the only learning source is the performance of
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(a) Artificial data. (b) AutoML data.

(c) StatLog data. (d) OpenML data.

Fig. 5.1 Meta-learning curves. We show results of 4 methods on 4 meta-learning
datasets, using the leave-one-dataset-out estimator. The learning curves represent
performance of the best model trained/tested do far, as a function of the number of
models tried. The curves have been averaged over all datasets held-out. The method
Active Meta-learning w. CofiRank (red curve) generally dominates other methods.
It always performs at least as well as the median of random model selection (blue
curve), a hard-to-beat benchmark. The more computationally economical Median
Landmark w. 1 CofiRank consisting in training/testing only 3 models (Landmarks)
to rank methods using only 1 call to CofiRank (pink curve) generally performs well,
except on OpenML data for which it would be most interesting to use it, since this is
the largest Meta-learning datasets. Thus active learning cannot easily be replaced by
the use of Landmarks, lest more work is put into Landmark selection. The method
SimpleRank w. median that ranks algorithm with their median performance (green
curve) is surprisingly a strong contender to Active Meta-learning w. CofiRank for the
StatLog and OpenML datasets, which are cases in which algorithms perform similarly
on all datasets.
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algorithms on past tasks; (2) it is active learning, it queries Sdt ,a j on the fly to improve
its estimations; (3) it is flexible, other matrix factorization technique can be used in
place of CofiRank. Based on these properties, it will serve as a baseline in our work
on treating Meta-learning as a REVEAL game (Chapter 6).

5.2.3 Comparison of algorithms for some single dataset

In this section, we compare different meta-learning algorithms on some single dataset
for each of the meta-datasets. In all figures, not surprisingly, we see the two active
meta-learning algorithms (red and violet curves) outperform other algorithms for
most of the time. The computationally cheap simple rank with median algorithm
(green curves) sounds in OpenML, as we have remarked before. The observations are
consistent with that in the average curves 5.1.
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Fig. 5.2 Artificial DATA: the comparison of Meta-learning algorithms for 5 single test
datasets are shown. The random curves are median over 1000 runs, the shading area
are 5%, 25%, 75% and 95% quantiles.
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Fig. 5.3 AutoML DATA: the comparison of Meta-learning algorithms for 5 single test
datasets are showed. The random curves are median over 1000 runs, the shading area
are 5%, 25%, 75% and 95% quantiles.
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Fig. 5.4 OpenML DATA: the comparison of Meta-learning algorithms for 5 single test
datasets are showed. The random curves are median over 1000 runs, the shading area
are 5%, 25%, 75% and 95% quantiles.
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Fig. 5.5 StatLog data: the comparison of Meta-learning algorithms for 4 single test
datasets are showed. The random curves are median over 1000 runs, the shading area
are 5%, 25%, 75% and 95% quantiles.

5.2.4 Comparison with SVD-based algorithms

We have tested other SVD-based ranking methods: Instead of using median (over
performances of all datasets in S) to obtain an algorithm ranking, we can also use SVD
decomposition and rank the algorithms according to their projections on S’s column
space, i.e. S∼UV ′, S:,k ·U:,0 is the projection of kth algorithm of S on column space
U’s first component. The higher this value is, the better k’s ranking is. .
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• SVD-landmarks w. 1 CofiRank: Run only once CofiRank, which is warm-started
by the first SVD-ranked algorithm, to obtain a single ranking according to which
the selection is performed.

• Simple rank w. SVD / median: No CofiRank is used in this case. The single
ranking is given by SVD median.

Fig. 5.6 Meta-learning curves with SVD-based ranking. We show results of 5
methods on 3 meta-learning datasets, using the leave-one-dataset-out estimator. The
learning curves represent performance of the best model trained/tested do far, as a
function of the number of models tried. The curves have been averaged over all
datasets held-out. The conclusion remain unchanged as in 5.1: the method Active
Meta-learning w. CofiRank (red curve), warm-started with the best medien algorithm,
generally dominates other methods. The new added method SimpleRank w. SVD
performs competitively well on Artificial and OpenML (which catches up quickly
after a low initialization) where the low-rank assumption of SVD is better ensured (see
visualization on singular values of these meta data in Section 2.2).

5.3 Summary of the chapter on ACTIVMETAL

In this chapter, we proposed a first meta-learning solution to the AutoML MDP called
ACTIVMETAL. The objective of ACTIVMETAL is to find the best algorithm for a



5.3 Summary of the chapter on ACTIVMETAL 65

particular new dataset by evaluating as few algorithms as possible. This is done by
a greedy policy that chooses the algorithm with the highest estimated performance.
Even though ACTIVMETAL achieves promising results in the investigated real-world
meta-datasets, its limitation lies in the fact that each selection step requires a new
matrix factorization. ACTIVMETAL thus becomes computationally costly when the
meta-dataset is large. Therefore, in the next chapter, we will start exploring the RL
approach that learns a policy across datasets and can be used directly by any new
dataset.





Chapter 6

RL solutions to meta learning

In this chapter, we experiment with novel techniques of Reinforcement Learning (RL)
in an attempt to push the frontiers of meta-learning, which was previously defined
as a MDP, or more precisely, a REVEAL game in Chapter 3. The central idea is to
learn a policy from past tasks/datasets, then apply it to search for the best algorithm
solving a new task. We apply “Deep” Reinforcement learning techniques, especially
Double Deep Q-Networks (Double DQN). After an introduction to RL in Section 6.1,
we introduce two toy REVEAL games to illustrate our problem-solving methodology
using Double DQN (Section 6.2). We then present experimental results on meta-
learning as a REVEAL game, and compare them with various baselines, including
ACTIVMETAL, the method we introduced in Chapter 5.

The Code for this chapter is found at https://github.com/LishengSun/REVEAL.

6.1 Overview of Reinforcement Learning (RL)

We briefly review a few concepts of Reinforcement Learning, which are necessary to
understand our approach (see e.g. [102] for a more complete treatment). In supervised
learning, the “correct answer” (also called ground truth or target value) y is provided to
the learning machine for each training input x, such that the learning machine (or agent)
can learn to produce correct desired outputs. This setting is typical of classification or
regression problems. In contrast, in Reinforcement Learning (RL), the agent is given a
reward instead of the correct answer and must learn by trial and error to produce the
correct answer, without ever being told that answer. This setting is typical of control
problems, games, and Markov Decision Processes (MDPs).

See Figure 6.1 for an overview of our system.

https://github.com/LishengSun/REVEAL
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(a) RL setting for meta-learning REVEAL games

(b) Deep Q-Learning Network (DQN)

Fig. 6.1 System overview: In this chapter, we consider that the RL agent’s aim is to learn a policy to
solve a MDP problem, more specifically a REVEAL game. Thus, what is usually referred to as “the
environment” or the “world” is the “board” of our REVEAL game (a row of the meta-data matrix in
the particular case of meta-learning). (a) Matrix S contains pre-computed meta-learning knowledge
(the meta-dataset), which plays the role of our environment. In a given game episode, the environment
“decides” on which row of matrix S to work on (the hidden “game board”). The agent takes successive
actions to reveal algorithm performances and computational times on the particular dataset (values in
the two-dimentional matrix row). The actions are decided by the agent’s policy learned using "double"
Deep Q-Learning (DQN), see text. (b) In our DQN architecture, the input to the neural network is the
state, a two-dimensional vector representing the current partially revealed scores and computational
time. An embedding of the state is then learned via the first network block to which meta-features are
appended. A second block network is then used to estimate the action values, which is the output.
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6.1.1 Notations and definitions

We consider RL solutions to Markov Decision Processes. RL algorithms’ goal is to
find a policy that maximizes an expected (discounted) reward. This is usually achieved
by estimating the value of a state under that policy, or more conveniently the value of
a state-action pair. We recall such definitions and the Bellman equations providing
conditions for finding an optimal policy.

MDP

In what follows, we assume a finite MDP, defined as follows:

• S : set of states s ∈S

• A : set of actions a ∈A

• r: rewards

• π(a|s) : S →A : a policy specifying the probability of taking action a in state s

• p(s′,r|s,a): transition probability, i.e. model of environment

The goal of an agent is to learn or propose a policy that maximizes the expected
return Gt , an accumulation of future rewards. This expected return is defined differently
depending on the episodic or continuous nature of the task. If the decision process
{s0,a0,r1, . . . ,st ,at ,rt+1, . . . ,} terminates naturally at t = T with a transition to a
terminal state s•, the task is called episodic, with episode length T . The expected
return Gt is then defined as:

Gt =
T

∑
k=t

rk (6.1)

In contrast, if the decision process never ends (T → ∞), the task is a continuing task.
In that case, the expected return Gt is defined as:

Gt =
T

∑
k=0

γ
krt+k+1 , (6.2)

γ being called the discounting factor (0 < γ < 1). This allows us to define Gt as a
moving average and avoids dealing with an ever growing quantity. In what follows
adopt this definition even for episodic tasks, granted that, if T is finite (0 < γ ≤ 1).
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State value vπ(s)

The value of a state s under some policy π is the total reward the agents will accumulate
by starting from s and following π thereafter. Therefore, by definition:

vπ(s) = Eπ [Gt |st = s] (6.3)

One simple policy would be to move to state s′ with largest vπ(s′). It can be shown
that:

vπ(s) = ∑
a

π(a|s)∑
s′,r

p(s′,r|s,a)[r+ γvπ(s′)],∀s ∈ S (6.4)

Eq. 6.4 is called the Bellman equation for vπ . This recursive equation relies on
the sometimes unknown quantity p(s′,r|s,a)). It is conceptually useful to derive
algorithms to compute exactly or approximate vπ(s′).

State-action value qπ(s,a)

Another useful quantity is qπ(s,a), which evaluates an action in a particular state:

qπ(s,a) = Eπ [Gt |st = s,at = a] (6.5)

This yields the Bellman equation for qπ(s,a):

qπ(s,a) = ∑
s′,r

p(s′,r|s,π(s))[r+ γqπ(s′,π(s))],∀s ∈ S (6.6)

Note that vπ(s) is a weighted sum of qπ(s,a) over all possible actions.
A policy can then be defined e.g. by taking the maximum q value over all allowed

actions. Similarly as before, this new Bellman equation is conceptually useful to derive
algorithms to compute exactly or approximate qπ(s,a).

Optimal policy and Bellman optimal equations

Solving a RL task means searching a policy that achieves a best reward over the long
run. Such a policy is called optimal policy π∗, it must satisfy

vπ∗(s) = max
π

vπ(s),∀s ∈S (6.7)

The Bellman optimal equations are:

vπ∗(s) = max
a∈A (s)

∑
s′,r

p(s′,r|s,a)[r+ γv∗π(s
′)] (6.8)
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π
∗(s) = arg max

a∈A (s)
∑
s′,r

p(s′,r|s,a)[r+ γv∗π(s
′)] (6.9)

qπ∗(s,a) = ∑
s′,r

p(s′,r|s,a)[r+ γ max
b∈A (s)

qπ∗(s′,b)] (6.10)

π
∗(s) = arg max

a∈A (s)
qπ∗(s′,a)] (6.11)

vπ∗(s) = max
a∈A (s)

qπ∗(s,a) (6.12)

They express the fact that the value of s under the optimal policy must equal the
expected value of the best action in s. Once the value of the optimal policy is computed,
the optimal policy can be recovered by always choosing the action with the highest
value. The importance of Bellman equations in RL lies in the fact that they allow us
to compute the state value (e.g. s) from the value of other states (e.g. s′). This offers
the possibility for iterative approaches for calculating the value for each action, the
so-called q−value, used in Q-learning methods, which we use in the thesis.

6.1.2 Tabular RL algorithms

In this section we present a first taxonomy of RL algorithms concerning small dis-
crete action spaces, for which the q−values of state-action pairs can be exhaustively
estimated.

Such methods often iterate two steps policy evaluation and policy improvement.
How we do these two things depends on the RL task. In general, RL algorithms can
be classified based on these facts:

• Is the environment model known? Yes→Model-based (Dynamic Programming
(DP)); No→Model-free (Monte Carlo (MC) and Temporal Difference (TD))

• Is a new estimation based on previous estimations? Yes→ Bootstrapping (DP
and TD); No→ No bootstrapping (MC)

To put things in context, we briefly review these various approaches, although we are
mostly concerned with function approximation methods developed in the next section
(Section 6.1.3).

Model-based: Dynamic Programming (DP)

Dynamic Programming (DP): DP computes the optimal policy given the model through
bootstrapping. There exists two approaches:
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1. Policy Iteration = Policy evaluation + Policy improvement:

• Policy evaluation: Using Bellman equation as a update rule:

vk+1(s) = ∑
a

π(a|s)∑
s′,r

p(s′,r|s,a)[r+ γvk(s′)] (6.13)

will converge to the true value vπ(s) when the number of iterations is large
enough. Note that vk+1 is estimated on the basis of previous estimations
for its successor states vk(s′). This is called bootstrapping.

• Policy improvement: Make a new policy π ′ that is better than the current
one π , by acting greedily with respect to the value function of the current
policy:

π
′(s) = argmax

a
qπ(s,a) = argmax

a ∑
s′,r

p(s′,r|s,a)[r+ γvπ(s′)] (6.14)

• Policy Iteration: Once a policy π ’s value vπ is estimated, we can use it
to improve π and yield an better policy π ′. This process is called policy
iteration, and will converge to the optimal policy π∗ with its value vπ∗ .

2. Value Iteration = extreme case of Policy Iteration: In policy iteration, the
policy improvement occurs only after the current policy evaluation converges.
Actually, we don’t need to wait to the exact evaluation convergence. One extreme
case is when policy evaluation is stopped after just one sweep, this is called
value iteration.

Model-free

We introduce two principled algorithms in model-free RL:

• Monte Carlo (MC): When we don’t have any model of the environment, one
possible workaround is to learn from experiences. Suppose we want to estimate
vπ(s), we can generate a set of episodes passing through s by following π , then
average over all returns we get from these episodes. When the number of such
episodes is large enough, the average actually approaches the true value of
vπ(s). This is what Monte Carlo methods do. Policy evaluation and policy
improvement in MC is done only after one episode ends (episode-by-episode
basis).

• Temporal Difference (TD) and Q-learning: Temporal difference (TD) learn-
ing is a class of model-free RL methods which learn by bootstrapping from the
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Fig. 6.2 Q learning algorithm. Image source: [103].

current value estimates. Similar to MC, TD methods also learn from experience
samples, but they update estimates based on other previously learned estimates,
without waiting for the termination of episode. In the TD family, one popular
algorithm is Q-learning [117]. This is a off-policy TD algorithm. The term
‘off-policy’ means in Q-learning, the optimal value q∗ is directly approximated,
independently of the actual policy, with an exploration policy (e.g. ε-greedy,
i.e. random action is chosen with probability of ε , and the action argmax

a
q(s,a)

is chosen with probability of 1− ε). Once the q∗ is learned, the optimal policy
can be easily recovered via Bellman equations. The Q-learning algorithm is
given in 6.2. The algorithms we use to solve the REVEAL problems in this
chapter will be a function approximation version of Q-learning.

6.1.3 Function approximation methods for larger action spaces

DQN, Double DQN

In the previous section, we introduced RL algorithms in “tabular situations” for which
q−values can be estimated separately for each state-action. However, In our cases
of interest, the action space A is too large to learn each action value in each state
separately (e.g. |A |= 49 in MNIST-patch, |A |= 163 in meta-learning with CEP.).
Instead, we use a parametric function to approximate those values. In particular, in
Q-learning the state-action values q(s,a) are parameterized as q̂(s,a;θt) and updated
using fitted Q-iteration:

θt+1 = θt +α(Y q
t − q̂(st ,at ;θt))∇θt q̂(st ,at ;θt)) (6.15)
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where the target is similar to that in the tabular case:

Y q
t = rt+1 + γ max

a
q̂(st+1,a;θt) (6.16)

The algorithm minimizes the loss L(θ) = (q̂−Y q
t )

2 via gradient descent.
A deep Q network (DQN) uses a neural network as the Q value approximator. The

parameters θ in this case correspond to the weights in the network. A milestone in
RL is to use DQN to successfully solve a series of Atari games [75]. In this work, in
order to stabilize the learning, they developed a method called “experience replay”, a
biologically inspired mechanism where the agent keeps track of the outputs of previous
actions {st ,at ,st+1,rt+1}, which are then sampled to train the network.

In our cases of interest, the action space is large. Due to the “max” operator in the
Bellman equation that drives the agent to choose the action with highest estimated Q
value, even with a ε-greedy, it is known that DQN suffers from the maximization bias,
where it tends to overestimate the value functions. The maximization bias leads to
divergences and unstable behaviour. We then use a Double DQN which was proposed
to correct this drawback (DDQN [111]). The DDQN corrects this bias by instantiating
two separate identical DQN networks and randomly swapping between them at each
optimization update, one being used as the target, and one being used as the policy.
The neural network architecture we used to implement the DDQN for meta-learning is
shown in Fig. 6.1.

Other RL algorithms

There exist many other RL algorithms. Among them: REINFORCE [119], Natural
Policy Gradient [59], Trust Region Policy Optimization (TRPO [94]) are policy gradi-
ent methods, where the policy π is parameterized and learned directly and the agent
maximizes the rewards by taking actions with high rewards more likely; Actor-Critic
methods [65] combine policy gradient and value approximation by splitting the model
into two parts: one actor to choose actions based on a state, and one critic to estimate
the Q values of the action; Deep Deterministic Policy Gradient (DDPG [70]) is an
actor-critic approach for continuous actions; etc. These are possible algorithms that
we are going to try in future work to solve the meta-learning problems. In this work
we focus on DDQN because it is reportedly easiest to deploy in applications, other
methods requiring elaborate hyper-parameter tuning.
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6.2 Toy REVEAL examples

In Chapter 3, various REVEAL games were introduced: the 1D meta learning problem;
revealing a bi-color segment to find its first black element; revealing a MNIST image
to find its brightest patches (3.2.2); etc. In this section, we are going to present RL
solutions to some of them. We begin with toy examples having similarity with the our
meta-learning problem of interest, then move the to 1D meta-learning problem.

6.2.1 Reveal a bi-color segment to find its first black element

This toy game was created to serve as a simplified version of the 1D meta learning
problem.

Game setting

The agent initially faces to a fully masked 1D bi-color segment of length l, in which
elements are white until some random position, after which all elements are black.1

The position of the first black element (transition from black to white) is sampled
randomly (Top panel of Figure 6.3). The goal of the agent is to reveal and predict the
first black element. The state is the partially revealed segment. At each time step, the
agent can choose to reveal an element in the segment. After each time step, the agent
predicts the position of the first black element, the episode ends with a reward of 1 if
the prediction is right, otherwise the agent fails after l steps. Before the termination
of the episode, the agent receives a negative reward of 0.1 for revealing at each time
steps; this is to help the agent learn to shorten the episode.

Double DQN architecture and Results

The RL agent has a double DQN architecture. It consists of two identical DQNs as
shown in Fig. 6.1.The bottom panel of Figure 6.3 shows the learning curve of the RL
agent compared with the well-known optimal solution which is binary search. We
see the agent learns to perform the optimal search after ∼ 22000 episodes of training.
Succeeding in this toy segment game gives us hope to tackle the more complex 1D
meta learning problem. This small example allowed us to perform a sanity check of
our algorithm implementation.

1In an analogy with meta-learning, white is supposed to represent bad algorithms and black good
ones.
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Fig. 6.3 ‘Segment’ REVEAL game. We show results of the game in which the board
is one-dimensional and finite. The goal is to find the position of the transition of black
and white. This game has an optimal non-RL agent (no training at all), which performs
iterative Dichotomic search. TOP: Two instances of the ‘segment’ REVEAL game.
BOTTOM: graph of accumulated reward over the time of an episode as a function
of the episode number, we consider 25,000 episodes. Test performance is average
over 15 test datasets. At some point the blue line is going above the red line because
the optimal agent is optimal only when averaging over all possible datasets, here we
tested only on 15 datasets. During the RL training, we do ε-greedy for exploration,
which explains the occasional drops in reward. Test performances are more stable (no
exploration).

6.2.2 Revealing digits progressively to find their brightest patches

We designed a REVEAL game analogous to our meta-learning problem, which uses
real-world data and provides intuitive visual feed-back. This game was inspired by
the “Natural Image” games proposed in [120] and described in Section 3.2.2. The
goal of the original game was modified from predicting the class of a handwritten
digit by uncovering progressively its pixels to searching for its brightest patches in as
few steps as possible. This is to make the whole setting more similar to a 1D meta
learning problem: one (flattened) image is equivalent to one dataset, and searching for
the brightest patches is equivalent to searching for the best algorithm.

Game setting

We use the MNIST handwritten digit database [67] to create the REVEAL game
environment where the agent initially faces a fully masked image. This masked image
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can be any class of MNIST, i.e. from 0 to 9. The state consists of the partially revealed
32× 32 image and its already revealed positions. At each time step, the agent can
choose any position in the image to reveal a square window w of the image. The goal
of the agent is to find one of the 3 2 brightest patches in the image, where each patch
corresponds to a window-sized square. The brightness of a patch is computed as the
average pixel value in the patch window. The episode ends when the goal is achieved
and the agent receives a reward of 1, otherwise it fails after a maximum 32×32

w steps.
During the game, the immediate reward of each step is the combination of step cost 3

and the improvement on the best brightness found so far.

RL CNN agent vs. upper-baseline supervised CNN agent

We have developed 2 agents to play the game: a RL agent, which learns a policy from
trial and errors, and a supervised CNN agent (CCN upper-baseline), which learns to
imitate a hard-coded policy based on the full image (not available for learning to the
RL agent).

• RL agent: we use a Double DQN architecture to train the RL agent. As intro-
duced before, the Double DQN method includes two networks with identical
architecture shown in Figure 6.4, which are randomly swapped at each optimiza-
tion update to serve as target and policy network. The policy network is used
to generate actions. The architecture contains a CNN identical to that used in
the CNN supervised upper-baseline, followed by an extra linear layer before
generating the Q values. The input to the RL agent is the state, i.e. already
visited positions plus the partially revealed image. The output of the RL agent
is the action that has highest estimated Q value (this is the case at test time;
during training, we use an ε-greedy policy forcing the agent to act randomly
with probability ε and follow the DQN policy otherwise, where ε decays with
the number of training episodes. This allows the agent to explore more at the
beginning of learning. Once training is done, the CNN weights are “frozen” for
the testing and one of the two CNNs is used to predict action values (ε = 0).

• Supervised upper-baseline CNN agent: This agent uses a CNN (contains 3
convolutional layers and ReLU nonlinearities) to predict the full image from a
partially revealed image. That is, during training, the true full image is given as
target at each time step for the agent to learn. In the first few actions, since only a

2The reason of having 3 targets instead of 1 is that sometimes there are more than one patches with
the same brightness in the image.

3the step cost is −1
lep

, where lep is the length of one episode, which, in our setting, equals the maximum

number of steps 32×32
w .
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Fig. 6.4 RL DQN architecture used in MNIST brightest patch game: In the ex-
periments we use a “double DQN architecture”, which includes two CNNs used in
alternance during training, to stabilize the learning procedure. The CNN gets the
partially revealed image as input and uses one of the two CNNs to estimate the Q-value
of each action. At test time, either CNNs can be used to select the most promising
action (deterministic policy). During training, we use an ε-greedy policy: one CNN is
used to select the action; the parameters of the other are updated using the Q-learning
algorithm.

Fig. 6.5 Supervised learning upper-baseline CNN architecture, used MNIST
brightest patch game: The agent gets the partially revealed image as input, uses
a CNN to learn to predict the full image, and selects the estimated brightest patch that
has not been revealed yet as its action.
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few bright pixels will be visible, predicting the full image is very difficult, hence,
the CNN agent is expected to predict a ‘mixture’ of all images, which is bright
at the center and dark everywhere else (as shown in Figure 6.5). The agent then
chooses the patch with highest predicted brightness that has not been revealed
yet. During testing, the CNN is frozen, the agent then uses this pre-trained CNN
to estimate the full image and acts accordingly.

These two agents have some significant differences: (1) Full vs. Partial learning
information: the RL agent never sees the underlying full image, it learns upon partial
information, however, the CNN agent during the training is given the full image to
learn, which allows it to build a strong ‘prior’ on how an ‘average’ image will be
like, this is its first advantage; (2) Repeating actions: The CNN agent is hard-coded
to choose actions only among those that have not been revealed yet 4; the RL agent,
in contrast, should learn through the reward not to repeat actions (because repeating
actions will cause negative reward and make the episode longer). This is the second
advantage of the CNN agent. These two properties make the CNN agent a very difficult
upper-baseline to beat.

Even though the CNN is a very difficult baseline to beat, it is not impossible to
beat. Indeed, its objective is to predict the full digit with a mean-square-error loss, not
focusing particularly on the next action, whose goal is to uncover the brightest patch.
In contrast, the RL agent gets reinforced to do well on that specific task.

Results

The purpose of the experiments in to show that RL can approach or exceed the
performances of the supervised upper-baseline CNN and show that the RL agent can
learn difficult things like not visiting several times the same patch.

We first show two runs of our algorithms for illustrative purposes. In Figures 6.6
and 6.7 we show respectively the RL agent and the baseline CNN agent acting on a
same test image after being trained for 2000 episodes. Two observations can be made:

• RL agent learns not to re-visit patches: While the CNN agent was pro-
grammed not to repeat itself (in a hard-coded manner), the RL agent had to
LEARN not to revisit several times the same patch. Thus it is impressive that
it terminates the game in only 2 steps, compared to CNN baseline agent which
takes 5 steps.

4this is because the general prior that the CNN is expected to learn won’t change dramatically from
one step to another, which means the action with the highest predicted brightness will stay the same for
many steps, and the CNN will always choose the same action if repeated actions are allowed
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(a) RL agent: t = 1 (b) RL agent: t = 2

Fig. 6.6 One test episode of MNIST brightest patch game realised by a RL agent that
can repeat actions.The agent takes 2 steps to terminate the episode.

• RL agent is agile: From the Q value images, we see that the RL agent changes
a lot its “opinion” on what the next best action should be, conditionally on the
state. In contrast, the CNN baseline agent keeps mostly the same Q value image.

These observations can be further evaluated quantitatively. In Figure 6.8, we show
learning curves for the MNIST brightest patch problem. The metric of success is
episode duration (the shorter the better; an episode ends when the brightest spot is
found). On the x axis, each episode correspond to one image. On the y axis, the
episode duration is the number of steps the agent takes to terminate the episode, so
lower is better. The learning curves are averaged over 3 training runs. The shaded
areas represent 68% and 95% confidence interval.

In Figure 6.8.a we show the training performance. Compared to the CNN baseline
agent (green curve), we see that RL agents perform less well especially at the beginning
(red curve). This is due to two factors: (1) the CNN baseline agent is programmed
not to repeat actions; when this prohibition of repeating actions is imposed to the RL
agent (violet curve), the performance improves, compared to the red curve. (2) RL
agents perform exploration at the beginning of learning, due to the ε-greedy policy; as
ε decays towards the end of the learning curve, the performance difference between
RL and CNN baseline agent decreases.

Figure 6.8.b represents the “test time”. The agents are frozen each 100 training
episodes and tested on 1000 images sampled from the separate test set. The learning
curves shown are first averaged over those 1000 test images at each frozen point,
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(a) Baseline CNN agent: t = 1 (b) Baseline CNN agent: t = 2

(c) Baseline CNN agent: t = 3 (d) Baseline CNN agent: t = 4

(e) Baseline CNN agent: t = 5

Fig. 6.7 Same test episode of MNIST brightest patch game realised by a Baseline
CNN agent. The agent takes 5 steps to terminate the episode.
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then averaged over 3 training runs. All agents perform a deterministic policy (i.e. the
exploration is turned off for RL agents: ε = 0) during testing, this explains the better
performance of RL agents at the beginning of the episodes, compared to that during
the training time. The RL agrent is still allowed to repeat actions (red curve), while
the CNN baseline isn’t (green curve). Even in this case, we see the RL agent, after
only 1000 of training episodes, achieves the same performance as the CNN baseline.
If we prohibit the RL agent from repeating actions (violet curve), it beats completely
the CNN agent from the very beginning.

represents two different behaviors: averaging over very short successful episodes
and very long failed episodes for the RL agent (red curve), and averaging over longer
but more stable episodes for the baseline CNN agent (green curve).

6.3 RL setting for 1D Meta-learning problem

In this section, we come back to the 1D meta-leaning setting, which is the focus
of interest of this thesis. We recall that the objective of this problem is to find the
algorithm with the highest performance score for ONE particular dataset (never seen
before), i.e. the highest value in a new row of matrix S. We use meta-datasets: CEP,
AutoML, OpenML, Statlog and Artificial introduced in Section 2.2 to benchmark RL
against other methods. We treat the problem essentially as a collaborative filtering
problem, i.e. predicting missing values in S from values already known. However,
to help the agent tackle the cold-start problem (an empty row at the beginning of
each episode), we also explore adding meta-features, as described in Section 2.2.2
by appending 16 meta-features to the learned features of the inner layer of our neural
network, as shown in 6.1 . Another particularity of our setting is to freeze our agents
at test time and evaluate the policy on new “test datasets”. Finally, our reward function
allows us to monitor the tradeoff between effectiveness of the policy to find best
performing algorithms and computational efficiency. All these various aspects are
investigated in the experiments that we describe after providing some useful details on
the experimental setting.

6.3.1 Experimental setting

RL framework and reward function

Figure 6.1.a illustrates the RL meta-learning system. If we translate the 1D meta-
leaning setting to a RL framework, we have:
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(a) Learning curves on training data

(b) Learning curves on test data

Fig. 6.8 MNIST-patch Learning curves. The episode duration is plotted as a function
of the number of training episodes. (a) Episode duration for training datasets. (b)
Episode duration for test datasets.
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Environment is the entire meta-dataset matrix S (with datasets in row and
algorithms in columns), not directly accessible to the agent, and a chosen row
index d indicating on which dataset the agent is working. This selected row is
our hidden “game board” and it is associated to a game episode.

Observation / State is the already revealed information of the current dataset
S(d, :), that is S(d,revealed) if revealed is the list of indices of the already
revealed algorithm performances.

Action Space includes all algorithm indices (positions in the current dataset/game
board), e.g. for a dataset with 10 algorithms, the action space is j∈{1,2,3, . . . ,10}.

Reward is attributed to each action as rt to help the agent to refine its policy, it
combines the improvement on performance score |S(d, jt)per f −maxt−1

k=0(S(d, jk)per f )|
and cost S(d, jt)time traded off by a hyper-parameter β :

rt = |S(d, jt)per f −
t−1
max
k=0

(S(d, jk)per f )|−βS(d, jt)time (6.17)

An interesting aspect of the game is to see how the agent’s behavior changes with
respect to the score-time tradeoff governed by hyper-parameter β in Eq. 6.17. β

expresses the preference of the game designer and has a real-world meaning: when β

is large, the evaluation time is more precious, and the agent will be penalized more for
choosing a slow algorithm no matter how good its performance score is; when β is
small, the time matters less, and the focus concentrates on score; when β is 0, only the
score is considered.

Train-test split

Splitting data and measuring performances is performed in a classical machine learning
way, at the meta-dataset level. We proceed in either one of two ways: single train/test
split or 10-fold cross-validation. For a large (meta-)dataset like the CEP meta-dataset,
we do a single train/test split. For other smaller (meta-)datasets, we do 10-fold cross-
validation.

For ease of explanation, let us focus on a single train/test split. For instance, the
whole CEP meta-dataset is split into a train set (70%) and a test set (30%). At training
time, for each episode, we sample one dataset from the CEP training set; this is a
2x163 matrix including score and computational time for 163 algorithms. The initial
row is empty, in each time step, the agent can move to all positions in the row, which
reveals the score and computational time of the algorithm in that position. After each
time step, the agent receives a reward that combines the improvement on the best
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score found so far, and the action computational cost (Eq. 6.17). The episode length is
truncated at 20 steps (although its maximum value in principle could be as large as
the total number of values to be revealed). Once the training phase is terminated, the
agent’s parameters are frozen to enter into the test phase in which the policy is used
without further adaptation. New datasets not used during training are sampled from
the test set, one at a time. The final best performance score after 20 steps is averaged
over all test datasets to obtain the test score.

The agent’s performance is evaluated by learning curves, i.e. performance as a
function of number of training episodes, in two ways:

• Training performance: the accumulated reward during the current training
episode (over 20 steps), averaged over 3 runs.

• Test performance: The final best performance score after 20 steps on a test
dataset, average over all test datasets.

In what follows, we show only the test performance.

RL algorithm under investigation

We use a double DQN architecture as introduced in Section 6.1. The input to the net-
work is the state, a two-dimensional vector representing the current partially revealed
scores and computational time. An embedding of the state is then learned via the first
network block, when meta-features are used, they are appended to the learned features.
A second block network is then used to estimate the Q values.

Baseline algorithms

We compare the RL agent against two baselines:

• Random search: This is a stochastic method which makes random decisions
every time when choosing an algorithm. Each selection is repeated 1000 times
(100 times for the CEP meta-dataset for computational concerns), the median
and quantiles are computed and shown in the results figures.

• ActivMetaL: (Chapter 5): This is a deterministic baseline. It chooses the best
estimated performance each time. The ACTIVMETAL baseline is considered
only when the meta-dataset is small (i.e. AutoML, OpenML, StatLog, Artificial)
and when the computational time is ignored in the game (i.e. β = 0).5

5This is because the original ACTIVMETAL: (1) only uses the algorithm performance as its single
learning source, and its final performance is computed based solely on that, it does not take into account
computational time; (2) requires matrix factorization for each selection step, it becomes computationally
non affordable when the meta-matrix is large.



86 RL solutions to meta learning

6.3.2 Results on CEP

In this section, we first show experimental results for the CEP meta-dataset. In this
meta-dataset, each “task” is a univariate multi-class classification problem, i.e. the
target variable must be predicted from a single variable. Hence, it was easy for us
to produce a large meta-dataset, each learning problem (training and testing a single
variable classifier) being fast to evaluate. This allowed us to generate a meta-dataset
lending itself to benchmarking RL algorithms in favorable conditions, since RL agents
are known to be “data hungry”.

There are a few experimental settings specific of the CEP dataset:

• Because the meta-dataset is large, we do not need to resort to cross-valiation and
perform a single train/test split: 70% of the datasets for training and 30% for
testing, resulting in 6025 datasets in the (meta-)training set and 2583 datasets in
the (meta-)test set.

• We fix the episode length to be 20 i.e. each episode consists of 20 algorithm
selection steps. This number 20 is small compared to the total number of
algorithms 163. The agents thus need to learn to search efficiently.

• Rather than representing score as “best algorithm performance so far”, in an
effort to spread out algorithm that are near ties, we sometimes use “reverse
algorithm rank” as score/immediate reward. The ranks are computed according
to the ground truth: the best algorithm has rank 162 (we have reversed the
ranking, so higher is better, because we have totally 163 algorithms and we
count from 0). This is thus a way to represent the performance score of the
algorithms.

Ability to find high-performance algorithms in a short episode

In this experiment, we turn off the performance-time tradeoff (β = 0) and compare the
performance of the final best algorithm found by RL agents (with and without meta-
features) with that found by the random search baseline. Figure 6.9 shows the result
averaged over the whole test set. We see that both RL agents, which are deterministic,
work at least as well as the random search baseline. This is a very positive result,
because the random agent, being repeating 100 times, actually explore the action
space much more than the RL agents, who explore only a small portion (20 steps /
163 possible choices). The RL agents furthermore have better searching initialization
compared to the random average. Surprisingly the RL agent without meta-features
achieves the best final performance. This remains to be further investigated, but could
be fortuitous, given the error bars.
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Fig. 6.9 CEP meta-dataset: RL vs. Random search on the problem of finding high-
performance algorithms at test time a.k.a 1D meta-learning. The RL agents (with and
without meta-features) show performances that match random search. The RL agent
without meta-features achieves the best final performance. One single train/test split
is used. The performance error bars of RL agents tested on 2583 test datasets are the
standard errors. The quantiles for random search (no training) are computed for each
test dataset using 100 repeats, then averaged over all datasets.

Score vs. time tradeoff

How does the RL agent change its behavior according to performance score vs. com-
putational time tradeoff parameter β? To answer this question, we have trained 3
RL agents for 20000 episodes (each episode corresponds to one dataset randomly
sampled from the (meta-)training set) without meta-features acts, in the environment
with different β values {0.1,0.05,0.01}.

The importance of computational time increases with β (Equation 6.17). Fig-
ure 6.10 shows how the ranking of the best algorithm found so far varies with the
accumulated evaluation time in an averaged test episode.

Because the fixed episode length 20 is less than the total number of algorithms
163, the best rank the agents found can be far from 162. Higher is better for these
reversed ranks. The ranks and time are averaged over 100 test datasets. We see that,
the agents with larger β have much less accumulated evaluation time, but the best
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algorithm found within this small time interval is also worse, which is actually a good
behavior because in this case, time is more precious, finding a ‘good enough’ algorithm
in a short period of evaluation time is actually what is appreciated. The agents with
smaller β (e.g. orange), however, have learned to choose algorithms that require more
evaluation time but give better ranking, which is also an expected behavior, because
now the time consumed is penalized less in the reward.

Fig. 6.10 CEP meta-dataset: Performance - time trade-off on the problem of find-
ing high-performance algorithms at test time a.k.a 1D meta-learning. On the x axis we
show accumulated algorithm time during a test episode. On the y axis we use “reverse
algorithm rank” as performance measure (instead of algorithm best performance so
far); this emphasizes near ties, but higher values are better, as before. The curves
are averaged over only 100 test datasets. The RL agents show a good trade-off abil-
ity: when time is precious (large value of β ), time-efficient but less score-effective
algorithms are chosen (green curve); otherwise, slow algorithms with better score are
chosen (orange curve). The standard error for the rank of the final algorithm is less
than 1.5.

Does RL need a lot of training examples?

We used the CEP dataset to allow us to benchmark data hungry RL algorithms without
being limited by small-size meta-datasets. However, a legitimate question is: how
many training (meta-)samples are needed to obtain good performance. To investigate
this, we have varied the size of the (meta-)training set from which we sample the
datasets for training the agent, to see how this affect the agents’ performance at test
time. Figure 6.11 shows the results: the test performance improves in with the size of
training set, up to 500 training datasets. After that, the test performance remains almost
the same (actually slightly decreases for reasons that we have not fully elucidated so
far and might have to do with our RL algorithm implementation). Hence, at least on
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this task, RL learning is possible with a relatively modest number of training samples,
which raises hope that meta-learning with RL is feasible. We will now investigate it
on small but more realistic (meta-)datasets.

Fig. 6.11 CEP meta-dataset: Performance as a function of number of training
examples.Performance on the y axis is reverse rank of best algorithm found so far
on test datasets. x axis is the number of algorithm tested so far in an episode. We
show influence of training set size on learning curves. We see that test performance
improves when more training datasets are used up to about 500 datasets.

6.3.3 Results on other meta-datasets

In this section, we benchmark RL on real-world meta-datasets against various agents.
This allows us to investigate the behaviour of RL in more realistic cases, but, unfortu-
nately, with (meta-)datasets, which are small and do not have algorithm computational
time records. One advantage of having small datasets is that it allows us to make
comparisons against ACTIVMETAL (an effective but slow algorithm that we proposed
in Chapter 5).

Experimental setting

The RL architecture is the same as in the CEP experiments. We report all results as
learning curves, in which on the x axis we have the number of actions performed so
far by the agent (number of algorithms tried on the given dataset) and on the y axis the
best algorithm performance so far.

The differences in experimental setting compared to previous experiments on CEP
data are as follows:
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• Baselines: RL agents will be compared with two baselines: one deterministic
(ACTIVMETAL), and one stochastic (Random search).

• No efficacy/efficiency tradeoff. We focus on algorithm performance score
(β = 0 for all experiments in this section, individual algorithm computational
time not available).

• Cross-validation. Since real-world meta-datasets are small, we evaluate our
agents using 10 fold cross-validation at the (meta-)dataset level, instead of the
70/30% (meta-)train/test split used in the CEP meta-dataset.

• More repeats on random search. Random search agents are averaged over
1000 repeats (instead of 100 in the CEP meta-dataset). As before, random search
repeats allow us to compute quantile learning curves for each test dataset; they
are then averaged over all test datasets.

• Test performances only. The performances reported in this section are those
on test datasets (in each fold).

• Error bars. Error bars are standard deviations of cross-validation performances

computed as: σ( j) = 1
10

√
∑

9
i=0(µ

( j)−µ
( j)
i )2 for jth point on the learning curve,

where µ( j) is the mean over all test datasets for jth point, and µ
( j)
i is the mean

over datasets in the ith fold for jth point.

Note that the performance scores of matrix S do not need to be between 0 and 1
nor be normalize in any particular way.

Results

The learning curve results are presented in Figure 6.12. The results confirm previous
previous experiments on CEP data, which showed that RL performs at least as well as
does Random Search on average. Since RL policies are deterministic (selection of the
next algorithm with the best Q-value), they do not suffer as much variance as Random
Search, which is a distinctive advantage.

In these experiments, we can use ACTIVMETAL as baseline (since the datasets
are of smaller size than CEP). This allows to make comparisons against a strong
algorithm, and we are pleased to see that RL fares well, except on the Artificial dataset.
ACTIVMETAL strongly outperforms RL on Artificial data. This can be exaplined by
the fact that Artificial data was constructed from a matrix factorization, hence they
are well-suited to be solved with an algorithm like ACTIVMETAL based on matrix
factorization.
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(a) AutoML (b) StatLog

(c) OpenML (d) Artificial

Fig. 6.12 RL vs. ACTIVMETAL and Random search on the 1D meta-learning
problem of finding high-performance algorithms on test datasets. The RL agents (with
or without meta-features) show performances that match or exceed random search.
On real-world datasets, RL fares well, and, given the error bars does as well or better
than ACTIVMETAL. The error bars are 10-fold cross-validation standard deviation
(see text). The points have been slighly translated for ease of visualization, so they do
not overlap.

6.3.4 Computational considerations

Compared to ACTIVMETAL, the main interest of using RL to solve the meta-learning
MDP lies in its computational advantage at test time. In ACTIVMETAL, at test time,
each selection step requires one re-factorization of the entire matrix S, which costs
O(DN2) if D > N (O(ND2) otherwise, D is the number of datasets and N the number
of algorithms (lines and columns of S). In contrast, RL training delivers a policy,
which can be applied to a new dataset at test time, without further training. Thus,
one selection step requires only one forward pass through the neural network, which
costs O(N +Nh), where Nh is the number of hidden units. When the meta-dataset gets
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Table 6.1 Computational effort comparison between ACTIVMETAL and RL. D =number
of datasets in S, N =number of algorithms in S. Nepisode =number of training episodes with
RL. Nactions =number of possible actions. TrCostNN = (Tfwpass+Tbwpass)×(N +Nh), where
Tfwpass = time of a forward calculation per weight, i.e. one multiply-add; Tbwpass = time
to update a weight in backprop, i.e. compute gradient, per weight; N and Nh are respectively
number of input weights (it equals the number of algorithms) and number of hidden units.
TeCostNN = Tfwpass ×(N +Nh)

Method Dim. of S Training effort Test time effort
ACTIVMETAL D×N None Factorize matrix S

O(DN2) if D > N;
O(ND2)otherwise

RL D× N Nepisode×
Nactions×TrCostNN

TeCostNN
=Tfwpass×(N +
Nh) = O(N +Nh)

larger, the advantage of using RL becomes more significant. Table 6.1 summarizes the
orders of magnitude for the computational efforts of either method.

6.4 Summary of the RL chapter

In this section, we have explored solving meta-learning problems with RL techniques
to learn a policy. Our preliminary experimental results demonstrate that: (1) with
either collaborative filtering (ACTIVMETAL) or RL we have matched the performances
that Random Search achieved on average; this is an important achievement because
Random Search has a huge variance (it performs sometimes well but sometimes very
bad) while our deterministic policies perform well consistently; (2) We are happy that
we could match with RL the performances of the strong collaborative filtering baseline
and we are hoping that with some more efforts we can exceed it; (3) Even if we do not
exceed it, the RL policy is still interesting because it is computationally advantageous
at test time since it does not require matrix factorization at every time step.

These promising results encourage us to go even further in the future and explore,
for example, 2D meta-learning, that is the simultaneous selection of datasets and algo-
rithms. Another avenue of research would be to explore continuous hyper-parameter
spaces. We will give some more details about such research directions in the following
chapter.



Chapter 7

Discussion and further work

This chapter puts in perspective the work, which was performed in this thesis. First
we place our work in the Liu-Xu framework that was recently proposed [71]. Then
we indicate further directions of research that would be a logical continuation of our
effort and that we hope other students or researchers be interested in pursuing.

7.1 The Liu-Xu α−β − γ framework

Liu and Xu introduced a novel generic mathematical formulation of AutoML, resting
on formal definitions of hyper-parameter optimization (HPO) and meta-learning [71].
They decomposed various algorithms and show that HPO methods such as most works
on Neural Architecture Search [122, 88] don’t really address the AutoML problem
more than “classical” machine learning algorithms, while meta-learning does. Table
7.1 summarizes the involved classes of algorithms.

In all cases, one assumes that an “autonomous agent” is delivered to solve an
AutoML problem. Briefly, the levels consist of:

• α-level imposing that the “autonomous agent” consist of a pre-trained model,
solely equipped with a “test” method making predictions on new examples,
hence, implicitly, training data and unlabeled test data (in the supervised learning
setting) are provided outside of the scope of evaluation to the algorithm designer;

• β -level imposing that the “autonomous agent” include training and test meth-
ods, hence both training and unlabeled test data are solely available to the
autonomous agent, NOT to the algorithm designer;

• γ-level imposing that the “autonomous agent” include also a meta-learn method
to be used for training it to deliver a β -level algorithm. Thus while in α and
β -level settings the agent is trained and tested independently on all tasks, in the
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Table 7.1 Supervised learning illustration of the three-level formulation. An algo-
rithm’s level is entirely determined by its type of input and output. For a given task,
finding a good α-level algorithm is the ultimate goal. γ-level algorithms exploit data
from all past experience, in the form of a “meta-dataset”, to allow us to select a better
β -level algorithm, which in turn exploits the dataset of a given task to produce an
α-level algorithm by training.

Level Input Output Examples Encoded by
α-
level

sample or
example
(e.g. an
image)

prediction
of label
(e.g. ‘dog’
or ‘cat’)

heuristically hard-
coded classifier
or already trained
classifier

parameters,
hyper-parameters
(if any) and
meta-parameters
(if any)

β -
level

task/dataset
(e.g.
MNIST,
CIFAR-
10)

α-level al-
gorithm

learning algorithms
(e.g. SVM, CNN);
HPO algorithms
(e.g. grid search
cross-validation,
SMAC [55],
NAS [122])

hyper-parameters
and meta-
parameters
(if any)

γ-
level

meta-
dataset (e.g.
OpenML
[113])

β -level al-
gorithm

meta-learning algo-
rithms (e.g. meta-
learning part in
Auto-sklearn [36]);
algorithms from this
thesis.

meta-parameters

γ-level setting, the autonomous agent can learn from past tasks to perform better
on next tasks (meta-learning).

One of the insights drawn from the Liu-Xu framework is that hyperparameter optimiza-
tion (HPO) methods (e.g. Neural Architecture Search [121, 88]) do not really address
fully the AutoML problem more than “classical” machine learning algorithms, in the
sense that they remain at the β -level (no meta-learning). In this thesis, we clearly
addressed the γ-level.

7.2 Generalization to other meta-learning settings

The main focus of this thesis has been on the scenario of model/algorithm selection,
in which we assume that a new task arrives, and, capitalizing on prior experience of
solving similar tasks, an “autonomous agent” finds the best algorithm. This is the most
common setting considered in meta-learning.
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However, other settings are possible. Considering the meta-dataset matrix S,
with datasets (or tasks) in lines and models (or algorithms) in columns, one may be
interested in the dual problem of selecting tasks that an algorithm is most capable of
solving (the equivalent of transposing matrix S). This problem would be of interest
to an algorithm developer for instance. More generally, one might be interested in
navigating in the S matrix in two dimensions: given a matrix partially filled with
values, fill it rapidly (starting with the most promising scores).

Thus, even though we only addressed one particular setting, the algorithms we
developed lend themselves to solving a variety of problems, some of which are listed
below:

1. Model (or algorithm) selection: This is the setting that we focused on. This
is the problem of a machine learning consultant who gets periodically new tasks
(datasets) and wants sot solve them as quickly as possible to make good money,
i.e. learn from solving past tasks to quickly solve new ones. It is the problem
we have called “1D meta-learning” setting: the “game board” has no particular
structure and we represent it as a vector (though the position of algorithms in
the vector does not inform on algorithm resemblance).

2. Dataset (or task) selection: The role of the datasets and algorithms are
swapped. This is still a “1D meta-learning” setting, but this is the dual problem
of the first one. It is the problem faced by startups developing good ML toolkits.
Every so often, new algorithms appear in the literature, which may they want
to add to their toolkit. To that end they have a set of benchmark datasets on
which they evaluate algorithms systematically. They want to know on which
problems a new algorithm performs well are good as quickly as possible to
evaluate whether it is worth adding to the toolkit. Technically this problem is
similar to the first one.

3. Algorithm selection for multiple datasets (simultaneously): As in the Au-
toML challenge (Chapter 2), the autonomous agent can be given a set of several
datasets, corresponding e.g. to related but different tasks, and a fixed time budget.
Its final ranking then depends on the average over all datasets of the its chosen
algorithm for each dataset. Thus, this is a multi-objective problem. The agent
must allocate the right amount of time to each dataset e.g. depending on how hard
they are. In this setting, the “game board” includes multiple datasets. In order
to learn, the agent should experience many game boards of this type extracted
from a meta-dataset organized in blocks of tasks sharing some similarities. The
meta-datasets we have used in this thesis do not lend themselves particularly
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well to this setting, but it should be of practical interest, and thus it would be
worthwhile generating a suitable benchmark for this problem.

4. Simultaneous model and dataset selection: This setting is more far-fetched.
It concerns the search for the best pairs (task,algorithm) by exploring matrix
S in two dimensions. As mentioned, if one task/dataset is associated to a data
science challenge, this problem would concerns a challenge participant eager to
maximize its prize wins. This may have some practical value in the real world
too as data science service providers may also be interested in maximizing their
profit in a similar way. Constructing a benchmark from a full matrix S is easy as
it simply amounts to randomly occluding part of the values in the matrix and try
to fill in missing data as fast as possible, prioritizing best scores.

5. Learning curve climbing: Here we consider another case of 2D meta-learning,
but aiming only as model selection. As an additional dimension, we add the
(discretized) progression of algorithm performance as a function of training time
steps (epochs). The problem is back to simply finding the best model/algorithm
for a new task/dataset. But the “game board” becomes two-dimensional, with
algorithm in one dimension and training time in the other. This setting is similar
to that of Freeze-Thaw (Chapter 4.2), in which we were interested in finding
the optimal time scheduler. The autonomous agent is expected to learn to
mitigate exploration and exploitation of learning curves. Freeze Thaw does this
through Gaussian processes that samples candidate algorithms and estimate the
future learning curves for the sampled candidates and Bayesian optimization
that decides in which candidate to invest time. The policy is hard-coded in
Freeze-Thaw. Can we could use RL to learn the policy. It would be worth
generating a benchmark dataset including learning curves for each algorithm
instead of just final performances.

6. Continuous state and/or action spaces: Another extension would be to con-
sider continuous state spaces, e.g. training the agent to navigate in a continuous
HP space. Additionally, the action space can be made continuous too, includ-
ing for example the possibility for the agent to decide how much to “pay” for
partially revealing an element. Price to reveal may be one way to implement
continuous learning curves and/or taking into account “real” cost of evaluating
an algorithm or a given dataset in terms of computational and human resources.
The implications on RL algorithms of such changes are likely to be more impor-
tant that the previous ones we considered because of the traditional separation
between discrete optimization and continuous optimization techniques.
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7.3 Relating MDP, POMDP, REVEAL, and bandits

In this thesis,the AutoML problem has been viewed as a sequential decision making
process and formulated it as a MDP, with the introduction of REVEAL games. The
definition of REVEAL has been tailored to be as simple as possible and amenable
to off-the-shelf RL algorithms for first explorations. However, as outlined in the
definition of a REVEAL game, the actions of the agent affect only the amount of
information available to the agent NOT the data generating process. This hints at the
fact that a REVEAL game might be better described by a POMDP than a regular MDP.

In a Partially Observable MDP (POMDP), the state st is hidden from the agent;
what is available is the observation ot which is function of st (Figure 7.1). A
POMDP is defined using a 7-tuple (state st , action at+1, state transition probability
p(st+1|st ,at+1), reward rt+1), observable information ot , conditional observation prob-
ability p(ot |st ,at), and conditional reward probability p(rt+1|st ,at ,ot ,st+1,at+1,ot+1).
Importantly, the reward is “second order Markov”1.

A POMDP is convenient represented as a Directed Acyclic Graph (DAG), see
Figure 7.1. The graph is a faithful representation of Markovian properties as long as
each node represents a memory-less state variable or vector. This holds for all nodes in
the graph except A: A represents an “ autonomous agent” performing actions, which
may have an internal memory, even a long-term one like a recurrent neural network.

We can map the AutoML problem to a POMDP in one of several ways. We
describe here what is closest to our MDP “board game” setting for the 1-D meta-
learning “game”:

• State: In a given episode, the state is constant and equal to the ground truth of
(pre-computed) scores of algorithms on datasets, i.e. one row i in matrix S. For
all t, st = S(i, :).

• Action: Same as in MDP setting, an index j of the next algorithm whose
performance on the dataset j under consideration must be revealed.

• State transition probability: Deterministic. p(st+1|st ,at) = 1
with st+1 = st = S(i, :).

• Reward: Same as in MDP:
rt = |S(i, jt)per f −

t−1
max
k=0

(S(i, jk)per f )|−βS(d, jt)time

Reward calculation deterministic.

• Observable information: ot = S(i, j).

1https://artint.info/html/ArtInt_230.html

https://artint.info/html/ArtInt_230.html
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• Conditional observation probability: Deterministic. p(ot |st ,at) = 1.

• Conditional rewards probability: Deterministic. p(rt+1|st ,at ,ot ,st+1,at+1,ot+1)=

1

This setting results in a REVEAL game (Figure 7.2). Unlike a standard POMDP
in which the actions DIRECTLY influence the next state, in a REVEAL-POMDP, the
action only affects the amount of information revealed. Note that, in this variant, the
agent must remember which index values j it already visited if it does not want to
get multiple times the same information. Other ways of coding state, action, etc. are
possible.

This formulation makes is easy to compare REVEAL games with multi-armed
bandits, which have been used to formulate the AutoML problem [69]. The authors
proposed that finding the best algorithm is analogous to finding the best arm of the
bandit, given particular given dataset. The only factor that influences the agent’s action
is the reward it receives from trying different arms, the state information is not used.

Contextual bandits can be seen as an extension of multi-armed bandit by adding
the information of the state (called ‘context’). Formulating meta-learning as contextual
bandit is possible because the agent can learn to act based on different contexts
(datasets).

In Figure 7.3 we show the DAGs for both bandits with drift and contextual ban-
dits. It is clear that they are NOT identical to REVEAL games. Hence treating the
AutoML meta-learning problem as multi-armed bandit is a simplification, which may
be harmful.

7.4 Conclusion

This work has been an exploration of putting the meta-learning problem in the frame-
work of Markov Decision processes. Although such a framework may appear to be
reductionist, as it makes the simplifying assumption of a search space that is discrete
and finite, it is a practical setting often faced in applications since many algorithms
have default hyper-parameter values that work well in practice, or have an internal
optimizer of hyper-parameters. Another way of bringing back the problem to a dis-
crete search space is obviously to discretize hyper-parameters. Hence remains the
discrete choice of the best algorithm for a given task. This can be cast as a recom-
mendation problem. Since finding the best algorithm is usually an iterative trial and
error problem, a natural extension is to turn to active learning, hence our effort to
develop an active meta-learning algorithm ACTIVMETAL, based on the collaborative
filtering algorithm CofiRank as a sub-routine. This method has turned out to be very
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powerful and delivered results beating our baselines. To go beyond this approach and
avoid the computational burden of inverting a matrix at every recommendation step,
we developed an approach based on Deep Reinforcement Learning, which learns a
policy. Although RL does not beat ACTIVMETAL at this stage, we view it as our most
interesting and promising avenue of research for several reasons: learned policies are
very computationally efficient, adaptive, and lend themselves to strategic planning. On
the flip side, learning policies with little data is difficult and meta-learning datasets
are usually small in size. This is a challenge to advance RL algorithms and make
them tackle better “small data”. In parallel, RL is being applied in other ways to some
aspects of AutoML than meta-learning, including neural architecture [122] search
and data augmentation [25]. This prefigures possibilities of a unified RL approach to
various AutoML problems and multi-level meta-learning strategies. We also discussed
extensions of our formulation to 2D search (finding simultaneously the best algorithm
and the best dataset) and to POMDP (Partially Observable Markov Decision Processes).
The latter connection outlines that REVEAL games are distinct but related to contex-
tual bandits and form a particular family of MDP problems. This could build bridges
to other fields and open the door to solving a broader class of problems using a similar
setting. On another note, we borrowed data from a causal challenge without touching
upon causal modeling. However, extending our approaches to selecting causal models
would be a natural and legitimate extension. Finally, this thesis work started being
motivated by participating in a challenge and analyzing its results. One possible next
step would be to organize a meta-learning challenge. We hope to collaborate further
on a project of Automated Deep Learning (AutoDL) to which we have contributed and
help put together a life-long-learning challenge with the 100+ datasets of the AutoDL
challenge series. The availability of the Jean Zay super-computer (1000 GPUs) makes
it possible to build an unprecedented meta-learning dataset.
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(a) without reward (b) with reward

Fig. 7.1 POMDP: A Partially Observable Markov Decision Process (POMDP) differs
from a regular MDP in that state (S) in visible to agent (A) only through (partial)
observation (O): A′ ⊥ S | (O,A) Thus if S = O, POMDP=MDP . The reward may
depend from current and previous variable values (here we consider second order
dependence). The agent may not be Markovian i.e. , as opposed to the other nodes, it
is not necessarily memory-less.

(a) without reward (b) with reward

Fig. 7.2 REVEAL: The difference with a regular POMDP is the missing link between
action (A) and state (S), hence in e REVEAL game, the agent cannot influence the data
generating process S, its action only affect the information it receives. REVEAL
games resemble “bandits with drift” and “contextual bandits”, but critically differ in
the second order Markov dependence of the reward: in a REVEAL game, the reward
depends on the information gain.

(a) Bandit with drift (b) Contextual bandit

Fig. 7.3 Bandits: The difference between bandits with drift and contextual bandits is
the information available to the agent (performing actions). In the bandit with drift, the
hidden state (S), responsible for the reward distribution drift, is invisible to the agent
(the reward is the observable state R = O). The key Markov property is R′⊥ R | (A′,S′).
In the contextual bandit, the reward distribution change is influenced by an observable
state (S = O) called “context”. The key Markov property is R′ ⊥ R | (A′,O′). A
REVEAL game does NOT have such Markov properties. In the case where R = S = O
the model is a simple bandit and simply R′ ⊥ R | A′ (not shown).
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