
HAL Id: tel-02420950
https://hal.science/tel-02420950v1

Submitted on 20 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient state-space exploration for asynchronous
distributed programs: Adapting unfolding-based

dynamic partial order reduction to MPI programs
The Anh Pham

To cite this version:
The Anh Pham. Efficient state-space exploration for asynchronous distributed programs: Adapting
unfolding-based dynamic partial order reduction to MPI programs. Software Engineering [cs.SE]. ENS
Rennes, 2019. English. �NNT : �. �tel-02420950�

https://hal.science/tel-02420950v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

ÉCOLE NORMALE SUPÉRIEURE DE RENNES
COMUE UNIVERSITE BRETAGNE LOIRE

Ecole Doctorale N°601
Mathèmatique et Sciences et Technologies de l’Information et de la Communication
Spécialité : Informatique

The Anh PHAM
Efficient state-space exploration for asynchronous distributed programs

Adapting unfolding-based dynamic partial order reduction to MPI programs

Thèse présentée et soutenue à l’ENS RENNES, le 6 décembre 2019
Unité de recherche : IRISA / INRIA Rennes - Bretagne Atlantique
Thèse N° :

Rapporteurs avant soutenance :
Laure Petrucci Professeur, IUT de Villetaneuse, Université Paris 13.
Radu Mateescu Directeur de Recherche, Inria Grenoble - Rhône-Alpes.

Composition du Jury :
Président : François Taïani
Examinateurs : Radu Mateescu Directeur de Recherche, Inria Grenoble – Rhône-Alpes.

Laure Petrucci Professeur, IUT de Villetaneuse, Université Paris 13.
Stefan Leue Professor, Universität Konstanz (Deutschland).
Stephan Merz Directeur de Recherche, Inria Nancy – Grand Est.

Dir. de thèse : Martin Quinson Professeur, ENS Rennes.
Thierry Jéron Directeur de Recherche, Inria Rennes – Bretagne Atlantique.

ACKNOWLEDGMENT

Firstly, I would like to express my sincere thanks to my respectful supervisors:
Thierry Jéron and Martin Quinson. They gave me this topic, helped me a lot during
the past three years. I learned from them a lot, not only scientific knowledge but also
skills for research, such as presentation skills, writing skills, and so on. I would like to
thank them for patiently listening to me in every meetings, always motivating but not
putting pressure on me over the three years.

I am grateful to all the jury members for reading the manuscript and participating in
the defense of this thesis, especially the reviewers for instructive comments to improve
my dissertation.

I am grateful to the Sumo team, the Myriads team, and the INRIA Rennes for helping
me and giving me an excellent research environment, great friends, and colleagues. I
could not help but mention Loic Guegan and Arif Ahmed who encouraged me when I
was under difficulties, as well as had exciting discussions with me.

I thank the Vietnamese friends who have helped me a lot in my daily life. They gave
me happy and warm times like a family. I always regard them as family members, mak-
ing me feel less missed in my hometown and country.

And finally, it is impossible not to mention my family, which is strong support for me
during the past difficult period. Thank my lovely daughter, Pham Diep Chi, for giving
me the power to overcome all difficulties and challenges. This thesis is also a gift to my
parents, who I love the most.

TABLE OF CONTENTS

1 Introduction 14

1.1 Introduction to distributed programs . 14

1.2 Formal methods . 15

1.3 Model checking . 17

1.3.1 Process of model checking . 18

1.3.2 Linear Temporal Logic . 20

1.3.3 State space explosion . 21

1.3.4 Stateless model checking and stateful model checking 23

1.4 Introduction to SimGrid . 24

1.4.1 Model checking with SimGrid . 25

1.4.2 MPI verification in SimGrid . 26

1.5 Contributions of the thesis . 27

1.6 Organization of the manuscript . 29

2 State of the art 30

2.1 Partial order reduction . 30

2.2 Recent studies on DPOR . 32

2.3 Model checkers for MPI programs . 36

2.4 Conclusion . 37

3 Preliminaries 38

3.1 Interleaving and concurrent semantics 38

3.1.1 Labelled transition systems . 38

3.1.2 Independent actions . 41

3.1.3 Event structures . 42

3.2 Unfolding-based dynamic partial order reduction 46

3.3 Conclusion . 49

3

TABLE OF CONTENTS

4 Computation model of asynchronous distributed programs 51
4.1 Informal description of the model . 51
4.2 Model specification . 57
4.3 Persistence . 64
4.4 Independence theorems . 65
4.5 Encoding MPI programs . 72

4.5.1 Introduction to MPI programs . 72
4.5.2 Encoding . 75

4.6 Conclusion . 78

5 Adapting UDPOR 79
5.1 Computing extensions efficiently . 80

5.1.1 General properties . 82
5.1.2 Computing extensions for AsyncSend actions. 82
5.1.3 Computing extensions for AsyncReceive actions. 88
5.1.4 Computing extensions for WaitAny actions. 89
5.1.5 Computing extensions for TestAny actions. 91
5.1.6 Computing extensions for AsyncMutexLock actions. 92
5.1.7 Computing extensions for MutexUnlock actions. 94
5.1.8 Computing extensions for MutexWaitAny actions. 96
5.1.9 Computing extensions for MutexTestAny actions. 97
5.1.10 Computing extensions for LocalComp actions. 99

5.2 Computing extensions incrementally . 99
5.3 Computing dependence relations . 102

5.3.1 Computing dependencies for communication actions 105
5.3.2 Computing dependencies for synchronization actions 108

5.4 Experiments . 109
5.5 Conclusion . 112

6 Conclusion and perspectives 114
6.1 Conclusion . 114
6.2 Perspectives . 116

Bibliography 118

4

RÉSUMÉ

Contexte

Les applications distribuées à passage de messages font partie intégrante de la
technologie de l’information puisqu’elles produisent des performances supérieures à
celles que l’on pourrait obtenir d’un seul ordinateur, afin de répondre aux tâches de cal-
cul de plus en plus coûteuses d’aujourd’hui. La conception d’applications distribuées
pose des problèmes de correction notoires. En plus des difficultés intrinsèques à la pro-
grammation concurrente (e.g., possibilité de race conditions), la programmation dis-
tribuée ajoute d’autres difficultés, comme l’absence de mémoire et d’horloge central-
isées. Les applications modernes de calcul haute performance (HPC) doivent faire face
à toutes ces difficultés lorsqu’elles tentent d’agréger et d’exploiter pleinement la puis-
sance de calcul d’un ensemble de nœuds multicœurs. Dans ce contexte, l’approche
classique pour garantir la correction consiste à s’appuyer sur des modèles de com-
munication rigides, afin d’éviter des scénarios de synchronisation complexes. Mal-
heureusement, ces schémas de communication rigides passent mal à l’échelle. La
taille des plates-formes de calcul modernes impose donc des applications dont les
schémas de communication sont irréguliers et dynamiques. Cependant, il devient alors
pratiquement impossible d’assurer l’exactitudela correction de ces applications par des
méthodes classiques de test. Il en découle donc un fort besoin de nouveaux outils de
vérification de correction qui reposent sur des méthodes formelles.

Les méthodes formelles [53] sont des techniques mathématiques appliquées à la
conception et l’analyse des systèmes matériels et du logiciel. Parmi les méthodes
formelles, les techniques de vérification par modèles ou model-checking ont forte-
ment attiré l’attention des chercheurs en raison de leur efficacité. Le model checking
a été inventé au début des années 1980 et développé indépendamment par Clarke
et Emerson [10] et par Queille et Sifakis [40]. Après près de 40 ans de développe-
ment, elle est devenue une méthode populaire et efficace pour vérifier les systèmes
matériels et logiciels. Étant donné un modèle d’un système et une propriété, la vérifi-
cation par modèle vérifie automatiquement si la propriété est satisfaite sur ce modèle

5

TABLE OF CONTENTS

[6]. La technique est automatique en ce sens qu’un model-checker s’exécute automa-
tiquement sans nécessiter aucune intervention de la part des utilisateurs. Le principe
consiste généralement à explorer tous les comportements possibles du modèle du
système. Cependant, l’espace d’états augmente exponentiellement avec le nombre de
processus concurrents. La réduction par ordre partiel (POR) et la technique de dé-
pliage sont deux techniques alternatives nées dans les années 90 candidates pour
atténuer l’explosion de l’espace d’état et s’étendre à des applications de grande taille.

Les techniques de POR comprennent un ensemble de techniques d’exploration
partageant l’idée que pour détecter les blocages, il suffit de couvrir chaque trace
de Mazurkiewicz, i.e. chaque classe d’entrelacements équivalents par commutation
d’actions consécutives indépendantes (i.e., deux actions sont indépendantes si l’une
n’active ni ne désactive l’autre, et si leur ordre relatif n’a aucun effet sur le résultat final).
Cette réduction de l’espace d’états est obtenue en choisissant, à chaque état exploré
et en fonction de l’indépendance des actions, seulement un sous-ensemble d’actions
à explorer (par exemple, ensemble persistant, ample set, ou stubborn set) ou à éviter
(par exemple, sleep set).

La technique de réduction dynamique d’ordre partiel (DPOR) a été introduite plus
tard pour réduire l’explosion de l’espace d’états pour la vérification sans mémorisation
d’état (stateless) des programmes. Dans ce contexte, alors que POR repose sur une
relation d’indépendance définie statiquement et potentiellement imprécise, DPOR peut
être beaucoup plus efficace en collectant dynamiquement cette relation au cours de
son exécution. Néanmoins, des explorations redondantes peuvent encore exister qui
conduiraient à des entrelacements déjà visités, et détectés par l’utilisation de sleep-
sets. C’est ce qu’on appelle exploration sleep set blocked (SSB). Éviter les SSB pour
obtenir l’optimalité est un défi et peut compter sur les dépliages pour l’obtenir.

Les dépliages sont un concept de théorie de la concurrence qui fournit une représen-
tation compacte des comportements d’un modèle sous la forme d’une structure d’évé-
nements qui agrége à la fois les dépendances causales, la concurrence entre les
événements, et les conflits qui indiquent des choix dans l’évolution du programme.
Cette représentation peut être exponentiellement plus compacte qu’une sémantique
d’entrelacement, tout en permettant de vérifier certaines propriétés, comme les pro-
priétés de sûreté. Chaque configuration maximale du dépliage d’un programme corre-
spond à une trace de Mazurkiewicz représentant une classe d’équivalence des exécu-
tions du programme. UDPOR [27] est une technique DPOR optimale qui combine les

6

TABLE OF CONTENTS

forces des POR et des dépliages et explore les comportements d’un programme sans
exploration redondante de traces de Mazurkiewicz.

Notre objectif est de vérifier des applications distribuées asynchrones, à savoir des
programmes MPI, en l’absence de modèle, mais avec la possibilité d’exécuter le code
dans l’environnement de simulation SimGrid et de tirer profit de la technique UDPOR.
La vérification des modèles se heurte alors déjà à de sérieux problèmes, comme la
détermination des états globaux du système et la vérification de l’égalité des états.
L’application d’UDPOR aux applications distribuées asynchrones pose de nouvelles
difficultés. La détermination de la dépendance entre actions nécessite de spécifier
la sémantique des programmes. Cependant, du fait du nombre important de types
d’actions différents et de la complexité de leurs effets, préciser formellement la sé-
mantique est une tâche très laborieuse et sujette à erreur. De plus, le calcul des ex-
tensions d’une configuration peut être coûteux (en gros, une configuration représente
une classe d’équivalence d’exécutions, alors que ses extensions désignent des états
qui sont directement accessibles à partir des états au cours ces exécutions). Par ex-
emple, ce problème est NP-complet dans les réseaux de Petri. Par conséquent, UD-
POR nécessite des algorithmes ingénieux pour calculer efficacement les dépliages.
Or il n’est pas possible d’adapter directement une solution existante conçue pour des
programmes concurrents ayant seulement des mutex [34]. Pour ces raisons, nos con-
tributions ainsi que nos solutions sont liées à cet objectif de recherche.

Contributions

— Nous définissons d’abord un modèle abstrait compact de programmes distribués
asynchrones comprenant peu de primitives. Ce modèle abstrait peut être util-
isé pour modéliser des applications distribuées asynchrones, en particulier pour
simuler une grande classe de programmes MPI. Pour y parvenir, nous révisons
et étendons un modèle abstrait existant de programmes distribués en ajoutant
de nouvelles primitives de synchronisation. Bien que la plupart des applications
distribuées soient asynchrones, il reste encore des tâches qui doivent être syn-
chronisées (par exemple les appels MPI Win lock , MPI Win unlock dans la
programmation RMA des programmes MPI). En ajoutant les primitives de syn-
chronisation au modèle abstrait, il est possible de coder une plus grande classe
de programmes MPI, mais le modèle abstrait reste toutefois compact avec seule-

7

TABLE OF CONTENTS

ment neuf primitives. Ainsi, au lieu de décrire la spécification formelle de la sé-
mantique non triviale du standard MPI, nous ne décrivons formellement, dans le
langage de spécification TLA+, que ce modèle abstrait comprenant seulement
quelques primitives. En effet, notre modèle abstrait est facile à spécifier et sa
spécification formelle est concise. Avec cette spécification précise du modèle ab-
strait, on peut alors raisonner sur les relations d’indépendance utiles pour les
techniques de réduction d’ordre partiel. De plus, à partir de cette spécification,
nous prouvons que dans notre modèle, une action tirable ne peut pas être dés-
activée en exécutant d’autres actions (propriété de persistance). Cette propriété
est la clé de l’efficacité d’UDPOR pour notre modèle.

— Comme annoncé, nous avons comme objectif de tirer parti d’UDPOR pour la
vérification de programmes MPI, dans le cadre du simulateur SimGrid. Puisque
le modèle abstrait est capable d’exprimer une grande classe de programmes
MPI, et que les primitives de notre modèle abstrait correspondent étroitement à
celles fournies par le noyau de simulation SimGrid, nous adaptons la technique
UDPOR sur le modèle abstrait plutôt que sur le modèle de programmation MPI
général. Cependant, quel que soit le modèle de calcul, la question se pose de
savoir comment calculer efficacement les extensions d’une configuration. Nous
avons donc proposé les étapes permettant d’adapter UDPOR aux applications
MPI qui peuvent être simulées par le simulateur SimGrid, en nous concentrant
sur des algorithmes intelligents pour calculer les extensions. En exploitant la per-
sistance du modèle abstrait et les observations précises sur les configurations
et les relations d’indépendance entre les actions, nous avons proposé des méth-
odes efficaces pour calculer efficacement ces extensions (en temps polynomial).

— L’algorithme UDPOR étant récursif, le calcul des extensions d’une configura-
tion obtenue en ajoutant un nouvel événement à une configuration obtenue à
l’étape précédente conduit a priori à des recalculs de nombreux événements.
Nous avons donc proposé un algorithme incrémental pour notre modèle, élim-
inant presque tous ces calculs et ne s’appuyant que sur les actions qui sont
tirables dans l’état de la configuration.

— Nous avons implémenté la version quasi-optimale d’UDPOR dans un prototype
adapté à notre modèle de programmation abstrait, c’est-à-dire avec sa relation
d’indépendance. Nous avons effectué quelques expériences et comparé UDPOR
à une recherche exhaustive sans mémorisation d’état sur plusieurs critères. Le

8

TABLE OF CONTENTS

prototype est encore limité, pas encore connecté à l’environnement SimGrid, et
ne peut donc être expérimenté que sur des exemples simples. Cependant, grâce
aux premiers résultats prometteurs obtenus par ces expériences, nous pensons
pouvoir affirmer que UDPOR peut être utilisé pour vérifier des applications MPI
tout en atténuant l’explosion de l’espace d’état de ces applications.

En ce qui concerne les publications scientifiques de la thèse, les deux articles suiv-
ant ont été publiés au cours de la thèse :

— The Anh Pham, Thierry Jéron, Martin Quinson: Verifying MPI Applications with
SimGridMC, In Proceedings of the First International Workshop on Software Cor-
rectness for HPC applications, CORRECTNESS@SC 2017, Denver, CO, USA,
November 2017.

— The Anh Pham, Thierry Jéron, Martin Quinson, Unfolding-Based Dynamic Partial
Order Reduction of Asynchronous Distributed Programs. In Proceedings of the
FORTE conference, Kongens Lyngby, Denmark, June 2019.

9

ABSTRACT

Context

Distributed message passing applications are in the mainstream of information
technology since they produce higher performance than one could get from a single
computer to meet today’s increasingly heavy computational tasks. Writing distributed
applications poses notorious correctness challenges. In addition to intrinsic concurrent
programming difficulties (e.g., possible race conditions), distributed programming adds
some of its own, such as the lack of centralized memory and the lack of a centralized
clock. Modern High-Performance Computing applications must take on all these diffi-
culties when attempting to aggregate and fully exploit the computational power of a set
of multi-core nodes. In this context, the classical approach to ensure correctness is to
rely on rigid communication patterns, so as to avoid complex synchronization scenar-
ios. Unfortunately, these rigid communication patterns scale poorly. The size of modern
computer platforms, thus mandates applications with communication patterns that are
irregular and dynamic. However, it then becomes virtually impossible to ensure the cor-
rectness of such applications via classical testing approaches. There is thus a strong
need for new correctness verification tools that rely on formal methods.

Formal methods [53] are applied mathematical techniques for the design and anal-
ysis of computer hardware and software. In formal methods, model checking technique
attracts a lot of attention from researchers due to its effectiveness. Model checking was
invented in the early 1980s, and independently developed by Clarke and Emerson [10]
and by Queille and Sifakis [40]. After nearly 40 years of development, it has become
a popular and efficient method for verifying hardware and software systems. Given a
model of a system and a property, model checking automatically checks whether the
property holds for that model [6]. It is automatic in the sense that a model checker au-
tomatically runs the verification process without requiring any manipulation from users.
The principle is usually to explore all possible behaviors of the system model. However,
state spaces increase exponentially with the number of concurrent processes. Partial
order reduction (POR) and unfolding are two alternative candidate techniques born in

10

TABLE OF CONTENTS

the 90’s to mitigate this state space explosion and scale to large applications.

POR comprises a set of exploration techniques sharing the idea that to detect dead-
locks it is sufficient to cover each Mazurkiewicz trace, i.e. a class of interleavings equiv-
alent by commutation of consecutive independent actions (i.e., two actions are inde-
pendent if one neither enables nor disables the other one, and their relative ordering
has no impact on the final outcome). This state space reduction is obtained by choos-
ing at each explored state, based on the independence of actions, only a subset of
actions to explore (e.g., persistent set, ample set, stubborn set) or to avoid (e.g., sleep
set).

Dynamic partial order reduction (DPOR) was introduced later to alleviate state
space explosion for stateless model checking of software. In this context, while POR
would rely on a statically defined and imprecise independence relation, DPOR may be
much more efficient by dynamically collecting it at run-time. Nevertheless, redundant
explorations may still exist that would lead to an already visited interleaving, and de-
tected by using sleep-sets. This is called sleep-set blocked (SSB) exploration. Avoiding
SSBs to get optimality is a challenge. One can rely on unfoldings to get it.

Unfoldings is a concept of concurrency theory providing a compact representa-
tion of the behaviors of a model in the form of an event structure aggregating causal
dependencies or concurrency between events, and conflicts that indicate choices in
the evolution of the program. This representation may be exponentially more compact
than an interleaving semantics, while still allowing to verify some properties, such as
safety. Each maximal configuration of the unfolding of a program corresponds to a
Mazurkiewicz trace representing an equivalence class of executions of the program.
UDPOR [27] is an optimal DPOR technique that combines the strengths of PORs and
unfoldings and explores the unfolding of a program without redundant explorations of
Mazurkiewicz traces.

We aim at verifying asynchronous distributed applications, namely MPI programs,
in the absence of a model, but with the possibility to run the code in the SimGrid
simulation environment and leverage on the UDPOR technique. Model checking then
already faces problems, like determining global states of the system and checking state
equality. Applying UDPOR to asynchronous distributed applications brings new difficul-
ties. Determining dependent actions requires to specify the semantics of the programs.
However, with many different types of actions as well as their effects, which are very
complex, formally specifying them is a very laborious and error-prone task. In addition,

11

TABLE OF CONTENTS

computing the extensions for a configuration may be expensive (roughly speaking, a
configuration represents an equivalence class of executions while its extensions de-
note states that are directly reachable from states in that executions), for example, it is
NP-complete in Petri-Nets. So, UDPOR requires clever algorithms to compute unfold-
ings efficiently, and we cannot directly adapt an existing solution tuned for concurrent
programs with only mutexes [34]. For those reasons, the contributions, as well as our
solution, are related to the research target.

Contributions

— We first define a compact abstract model of asynchronous distributed programs
consisting of few primitives. That abstract model can be used to model asyn-
chronous distributed applications, in particular, it can simulate a large class of
MPI programs. To achieve that, we revise and extend an existing abstract model
of distributed programs by adding new synchronization primitives. Although most
distributed applications are asynchronous, there are still tasks needing to be syn-
chronized (e.g. MPI Win lock , MPI Win unlock calls in RMA programming of
MPI programs). By adding the synchronization primitives to the abstract model,
a larger set of MPI programs can be encoded, but the abstract model is still
compact, with only nine primitives defined. Thus, instead of describing the for-
mal specification of the non-trivial semantic of MPI standard, we only formally
describe the abstract model with only a few primitives in the TLA+ specification
language. Indeed, our abstract model is easy to specify, and the formal specifica-
tion of the abstract model is brief. Having a precise specification of the abstract
model, we can then reason about independence relations for partial order reduc-
tion techniques. In addition, from the specification, we prove that in our model, an
enabling action can not be disabled by executing any other actions (persistence
property). This property is the key to the efficiency of UDPOR in our model.

— As presented, we aim at leveraging UDPOR while verifying MPI programs in the
setting of the SimGrid simulator. Because the abstract model is able to express
a large class of MPI programs, and the primitives of our abstract model closely
match the ones provided by SimGrid’s simulation kernel, we adapt the UDPOR
technique on the abstract model rather than the MPI programming model. How-
ever, regardless of the calculation model, a challenge arises as to how to effec-

12

TABLE OF CONTENTS

tively compute extensions for a configuration. We proposed steps to adapt UD-
POR to model check MPI applications that can be simulated by the SimGrid simu-
lator, focusing on smart algorithms to compute extensions. By exploiting the per-
sistence of the abstract model and insightful observations about configurations
and the independence relations between actions, we proposed efficient methods
computing such extensions efficiently (in polynomial time).

— Since the UDPOR algorithm is recursive, computing the extensions for a configu-
ration obtained by adding a new event to a particular configuration in the previous
step leads to re-computations of many events. We proposed an incremental al-
gorithm for our model, eliminating almost all such re-computations and relying on
only the actions that are enabled at the state of the configuration.

— We implemented the quasi-optimal version of UDPOR, a variant of UDPOR, in
a prototype adapted to the abstract programming model, i.e. with its indepen-
dence relation. We performed some experiments comparing UDPOR with an ex-
haustive stateless search on several benchmarks. The prototype is still limited,
not connected to the SimGrid environment, and can only be experimented on
simple examples. However, with first promising results obtained through the ex-
periments we believe that it is enough to claim that UDPOR can completely be
used to model check MPI applications as well as mitigating the state space ex-
plosion of such applications.

Regarding the scientific publications of the thesis, two papers have been published
during the thesis as follows:

— The Anh Pham, Thierry Jéron, Martin Quinson: Verifying MPI Applications with
SimGridMC, In Proceedings of the First International Workshop on Software Cor-
rectness for HPC applications, CORRECTNESS@SC 2017, Denver, CO, USA,
November 2017.

— The Anh Pham, Thierry Jéron, Martin Quinson, Unfolding-Based Dynamic Partial
Order Reduction of Asynchronous Distributed Programs. In Proceedings of the
FORTE conference, Kongens Lyngby, Denmark, June 2019.

13

CHAPTER 1

INTRODUCTION

1.1 Introduction to distributed programs

From the early days when computers were invented, each computer acted as an
independent entity; they could not connect to each other due to the lack of network
infrastructure and connection protocols. Therefore computers worked independently
of each other. In 1969, the first computer network, ARPANET (Advanced Research
Projects Agency Network), was established. It is the first computer network employing
packet switching allowing multiple computers to connect simultaneously.

Since then, due to the rapid development of technology, data exchange protocols
have been completed, the network infrastructure has been developed and expanded.
Computers that are separated from each other by geographical distance can be easily
connected as well as exchange data at high speeds. In addition, computational tasks
are also getting heavier. They require supercomputers that have a high computational
speed or the connection of single computers to run simultaneously for solving a single
task or job. For those reasons, computing systems composed of many networked com-
puters are formed to satisfy specific computing tasks, and they are usually considered
as distributed systems (or distributed computer systems).

There are various definitions of distributed systems in the literature, and it is dif-
ficult to choose the most satisfactory one. However, from an end-user point of view,
a distributed system is a collection of autonomous computers communicating through
messages passing over communications networks, and it appears to users as a sin-
gle coherent system [48]. Two properties can be seen through the definition. The first
one is that each computer in a distributed system is autonomous, meaning it can oper-
ate independently from the other ones. There is neither shared memory nor common
physical clock. Each computer can join or leave the system without breaking others.
Besides, they are connected to solve a common task and communicate with others in
the system by sending messages. The second property is that a distributed system

14

1.2 Formal methods

should appear as a single coherent system. Although it includes various computers,
the way in which the computers communicate is mostly hidden from users. End users
should not be aware that they are working with a system where processes, data, and
control are distributed over a computer network [48].

A computer program that runs in a distributed system is called a distributed pro-
gram. Since running in a distributed memory environment, processes in a distributed
program work concurrently and also communicate by message passing not by sharing
memory. There are no common variables between them; instead, each process has its
own memory and local variables. One of the primary purposes of using distributed pro-
grams is to obtain much higher performance than one could get from a single computer.
Thus they are also called high-performance computing applications (HPC).

Writing parallel and distributed programs poses notorious correctness challenges.
In addition to intrinsic concurrent programming difficulties (e.g., possible race condi-
tions), distributed programming adds some of its own, such as the lack of centralized
memory and the lack of a centralized clock. Modern High-Performance Computing ap-
plications must take on all these difficulties when attempting to aggregate and fully
exploit the computational power of a set of multi-core nodes. In this context, the clas-
sical approach to ensure correctness is to rely on rigid communication patterns, so as
to avoid complex synchronization scenarios. Unfortunately, these rigid communication
patterns scale poorly. The size of modern computer platforms thus mandates appli-
cations with communication patterns that are irregular and dynamic. However, it then
becomes virtually impossible to ensure the correctness of such applications via clas-
sical testing approaches. There is thus a strong need for new correctness verification
tools that rely on formal methods. The next section introduces formal methods.

1.2 Formal methods

Formal methods [53] are applied mathematical techniques for the design and anal-
ysis of computer hardware and software. Software is ubiquitous in most areas of mod-
ern life, and software bugs can be costly. For example, the Y2K bug might be the most
expensive bug since the development of informatics. It is estimated that around 500
million dollars had to be spent to fix this bug. Software testing is the most common
method for debugging and verifying software systems. It is considered to be easy for
users, but it can not prove that absolutely no unwanted behaviors exist in the system

15

Chapter 1 – Introduction

since users do not know how to create test-cases that trigger such bad behaviors, and
exhaustive testing is not feasible for a complex software system. Formal methods can
be used independently or as a complement to the testing technique in order to ensure
the correct behavior of software systems.

In the software development life cycle, formal methods can be applied at several
steps. It can also be used to model and analyze existing software systems. By using
formal methods in the design phase, one can early identify faults, before implementing
the software [21]. Two basic levels of formal methods are usually mentioned: specifica-
tion and verification.

During the design process of the software life cycle, formal specification is the use
of a formal language that has precise syntax, vocabulary, and formal semantics to de-
scribe the requirements that the system must achieve. The functionality and specific
behaviors (e.g., safety properties) that are required from the system are explicitly de-
fined in specifications [53]. Obviously, a formal specification language (e.g., TLA+, Z
notation, Lotos, CSP) cannot be a natural language because the semantics of a natu-
ral language is ambiguous and its syntax is not well-defined. So, a formal specification
language must be based on mathematical concepts to avoid ambiguity. A system is
considered correctly implemented if it meets all the requirements in the system speci-
fication. Depending on what kind of system and what level of specifications we want to
document, a proper formal specification language should be used. For example, the Z
notation, a formal specification language, is usually used in Model-based specification
approach, can be used to specify non-functional properties of systems, such as usabil-
ity, performance, size, and reliability, but it does not support concurrency [52] that is
supported by TLA+.

Formal specification brings several benefits. For instance, it not only helps software
developers have an insight understanding of user requirements but also avoids misin-
terpretation of the requirements. Besides, by using the mathematical concepts, it can
be studied and analyzed by using mathematical methods to detect errors in system
requirements at an early stage. Obviously, modifying an already implemented system
is usually more costly than correcting errors in the system requirements before deploy-
ment.

Besides the benefits of using formal specifications, applying it in practice has some
obstacles. Because of using mathematical concepts, formal specifications can be diffi-
cult to read and understand for software developers. So, it mandates training in formal

16

1.3 Model checking

specification techniques that most software engineers lack. In addition, specification
languages do not always adequately describe requirements of complex systems (e.g.,
Z notation and B do not support specifying concurrency). However, these obstacles
do not preclude the benefits that specification provides, so it is increasingly applied in
software engineering.

Formal verification is another level of formal methods. Formal verification [47] is re-
lated to the process of verifying the correctness of a system with respect to a particular
formal specification by using mathematical techniques. Two main techniques usually
mentioned in formal verification are theorem proving, and model checking. Theorem
proving is a deductive method, consisting in checking if a software system satisfies its
requirements (specification) by mathematical reasoning. Theorem proving is consid-
ered a laborious process for users since it requires expert knowledge in mathematics
and deep understanding of the system to express the system and requirements as
formulas in formal logic that can be understood by the target theorem prover. There-
fore, in practice, it is only used effectively by experts in this area and hard to be ex-
ploited widely by software developers. Whereas model checking becomes an efficient
and easy to use method for users if state spaces are finite or finite abstractions can
be exhibited. By exploring all behaviors of a system, it can answer whether the system
satisfied a particular property (requirement). Besides, it is entirely automatic technique,
and the verification process is performed automatically if the model and specification
are provided. However, writing the model and the specification as well as interpreting
results requires expertise from users. The following section gives more details of the
model checking method.

1.3 Model checking

Model checking technique was invented in the early 1980s, and independently de-
veloped by Clarke and Emerson [10] and by Queille and Sifakis [40]. After nearly 40
years of development, it has become a popular and effective method for verifying hard-
ware and software systems. Given a model of a system and a property, model checking
automatically checks whether the property holds for that model [6]. It is automatic in the
sense that a model checker automatically runs the verification process without requir-
ing any manipulation from users. The main principle of model checking is to traverse all
the reachable states and transitions of the system to check if the given property is sat-

17

Chapter 1 – Introduction

isfied. Since, using an exhaustive search, model checking is complete on the model,
produces reliable and sound outputs, all the states that violate the property can be
found. If the property is found not to hold in a particular execution, the model checker
can give a counterexample denoting an execution of the system model leading to the
bugs.

System model Property

Property is not satisfied

Counter-example

Property is satisfied Fail (out of time, out of memory....)

exhaustive
search

Figure 1.1 – Model checking scheme.

1.3.1 Process of model checking

Basically, there are three different states in the process of verifying a model with
model checking:

— Modeling: Modeling is the process in which a software system (here we are only
concerned with software) is described in a precise and compact way. Usually,
some high-level and abstract modeling language (e.g., Promela, SysML, Lotos)
is used. The output of this process is the model of the software system that can be
understood by the target model checker (i.e., the model checker that will be used
to check the model). The model can be made manually or automatically extracted
from the code of the software. Wherever the model comes from, it should be
compact as much as possible. Besides, critical properties that are relevant to
the verification process should be preserved. For example, deadlocks must be
retained in the model if one wants to verify deadlocks in the system. For a large,
complex system, the modeling process is hard, requiring experience and a deep
understanding of the system. So, ensuring that the model accurately reflects the

18

1.3 Model checking

operations of the system is challenging for users of model checking. They must
answer the question: is the model correct. There is no formal way to efficiently
prove if the model correctly reflects the behavior of the system. So, one can rely
on simulation to improve the quality of the model before running the verification
process.

— Specifying the properties: Property specification languages that can be under-
stood by the model checker are used in this phase to describe the properties. In
general, a property is a requirement in the specification of the system. Temporal
logic (e.g., Linear Temporal Logic, Computation Tree Logic) is often used to de-
scribe properties. The soundness of the specification of the properties should be
ensured, meaning that the specification must describe precisely the properties
that one wants to verify.

— Verifying: The model checker is run to check if the specified property is satisfied
or not. Basically, there are three possible outputs. Firstly, the property is satisfied.
Secondly, the property is not satisfied. In this case, the model checker produces
a counterexample showing an execution of the system model that leads to an
error state in which the property is violated. However, if the property is violated,
it does not mean that there is a corresponding error in the system. The model
may be incorrect, or it does not reflect accurately what the system performs. So,
the model should be improved, removing flaws, and precisely describing what the
system does. Another reason is that there is an error in formalizing the property;
the property is not exactly formalized. One must restart the verifying stage with a
correct model and an accurate specification property. The last output is a failure
(e.g., out of time, out of memory) since the number of states is too large to be
explored or to be stored in the computer memory. In this case, the model should
be reduced in some way.

As presented above, in traditional model checking, the input of a model checker is a
model and a property. After the model is verified, then the target system is built. How-
ever, in software model checking the situation is different because one wants to verify
properties of an already existing code. Software model checking has two broad vari-
ants: the first approach follows the manner of the traditional model checking, verifying
a model that is usually extracted from the source code of the program by using static
analysis; the second approach systematically explores the state space of the program.
So, in the latter approach, the model checker can take the real code of a software

19

Chapter 1 – Introduction

program [14], and Dynamic partial order reduction is the most prominent method for
exploring as well as reducing the state space of concurrent programs. It is the primary
technique discussed in the thesis.

1.3.2 Linear Temporal Logic

A natural language can be used to specify requirements, properties of systems. Un-
fortunately, natural languages are often ambiguous, and one phrase may have multiple
meanings. So they are not acceptable for system specification which requires high ac-
curacy and consistency. Therefore, there is a need for using a formal language which
is unambiguous and concise. Propositional logic can be chosen to specify systems
because of its precision and conciseness. However, it is not able to express how a sys-
tem changes over time. An extension of traditional propositional logic, Linear Temporal
Logic, can specify properties exhibiting the behavior of systems over time [6]. By using
LTL, a wide range of interesting properties can be specified.

In general, there are three main kinds of properties that are most interesting, namely
safety (nothing bad happens), liveness (something good eventually happens), fairness
(under certain conditions, something will occur infinitely often) [6]. For example, in mu-
tual exclusion algorithms, there is no situation such that two processes are in their criti-
cal sections (safety property), or each process will eventually occupy its critical section
(liveness). All processes will occupy the critical section infinitely often (fairness).

�

◯�

�

◊�

�

◻�

����

�2

��1 �2

�1�1�1

,�1 �2

��1 �2

�1�1�1 Figure 1.2 – Intuitive semantics of temporal operators.

20

1.3 Model checking

LTL formulas are built up from a finite set of propositional variables AP, the logical
operators ¬ (negation), ∧ (conjunction), ∨ (disjunction), → (implication), and temporal
operators U (until), X (next, also denoted by ©), F (eventually, also denoted by ♦), G
(globally, also denoted by �). LTL formulas are defined inductively.

Definition 1 Every atomic proposition p is an LTL formula. If ϕ1 and ϕ2 are LTL for-
mulas then: ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2, ©ϕ1, ♦ϕ1, �ϕ1, ϕ1 U ϕ2 are also LTL
formulas

Intuitively, ©ϕ denotes that ϕ holds in the next step after the current one while
�ϕ means that ϕ holds on all steps. ♦ϕ states that eventually ϕ holds. Finally, ϕ1

U ϕ2 expresses that ϕ1 must be true and remains true until when ϕ2 becomes true.
Figures 1.2 sketches the intuitive meaning of temporal operators in LTL.

1.3.3 State space explosion

Model checking is a complete method since it exploits an exhaustive search discov-
ering all states of a system. However, with an extensive system, the number of states
can be enormous. For a concurrent system, the number of states can grow exponen-
tially with respect to the number of components in the system (e.g., processes). This
dramatic growth is known as the state space explosion problem. The state space ex-
plosion problem is the main obstacle to avoiding model checking from being used in
practice. Unfortunately, the state space explosion problem is a regular phenomenon
in model checking of large scale systems. Several techniques have been proposed for
more than 30 years in order to combat the state space explosion problem. The following
section reviews some common methods.

— Partial Order Reduction (POR): POR is considered one of the most efficient tech-
niques for alleviating the state space explosion of concurrent programs. POR tries
to reduce the state space of a system by exploiting the commutativity between in-
dependent actions. The effect of concurrent actions may not depend on the order
in which they are executed. So, instead of exploring all orders, discovering only
one arbitrary order may be sound to verify safety properties. POR leverages on
that observation, exploring only a subset of enabled actions at every visited state
based on independence. There are several techniques to compute such subsets.
Valmari proposed stubborn sets [49] while ample sets [37] were developed by

21

Chapter 1 – Introduction

Peled. The last method, persistent sets was invented by Godefroid [17], and it is
probably most mentioned in the literature.

— Bounded model checking [7]: The principle of bounded model checking is quite
straightforward. It only traverses the model (a finite-state transition system) for
some fixed value k of steps and checks if a given property is satisfied within this
bound. All paths of length k of the model and the negation of the property are
encoded by a propositional logic formula and then this formula is passed to a
SAT solver (SAT-based Bounded Model Checking). If the formula is unsatisfiable,
the property holds. Otherwise, the property is not satisfied. One can start with
a small value of k , and then increase k until finding a counterexample or up
to the path diameter (i.e., the longest loop-free path between any two states).
When k is the path diameter, then the state space of the model is completely
discovered. An evolution of SAT-based Bounded Model Checking is SMT-based
Bounded Model Checking [4]. The SAT solver is replaced by an SMT solver 1, and
the formula is often more compact than those obtained with SAT-based Bounded
Model Checking.

— Symbolic Model Checking [29]: This method aims at compressing the state space
by using compact symbolic representations. Usually, states and transitions are
encoded by Boolean formulas represented by Binary Decision Diagrams. So,
symbolic model checking works with Boolean functions rather than explicit states
and transitions. In practice, the memory requirements for presenting Boolean
functions are usually smaller than for storing explicit states and transitions.

— Abstraction [12]: The idea is to generate a simple finite model (abstract model)
sufficient to verify the property from the system model. This can be done by elimi-
nating details irrelevant to the property, a set of states in the system model is rep-
resented by an abstract state in the abstract model, and then the model checking
procedures are applied on the abstract model rather than an actual model. For
example, counterexample-guided abstraction refinement called CEGAR-based
model checking [11] is a typical technique in this group. In this technique, one
first builds the initial abstract model from an original model (or concrete program).
After that, the abstract model is model-checked. If no bug is found, then the orig-
inal model is safe. If the abstract model admits a counterexample, there are two

1. SMT stands for satisfiability modulo theories.

22

1.3 Model checking

cases: (i) if the counterexample is present in the original model, then there is a
bug; (ii) otherwise, one must refine the abstraction to eliminate the behavior that
caused the erroneous counterexample, and then model-check again the new ab-
stract model.

1.3.4 Stateless model checking and stateful model checking

As presented model checking employs an exhaustive search traversing all states of
the model of the system that are reachable from the initial state. However, there may be
some states that are revisited by the search. To avoid re-exploring the same state, one
can record all the already visited states and check if a certain state is already visited,
in this case, we call it stateful model checking.

Algorithm 1 illustrates a naive search algorithm for stateful model checking [16].
The principle is trivial. The search will explore all successors of any states that it en-
counters. The set setStates includes all states whose successors must be explored.
The set visitedStates consists of all already visited states. Starting from s0, the search
recursively explores all successors of every state s in setStates by executing all enabled
actions at s. A state can only be explored if it is not in visitedStates.

Stateful model checking can avoid revisiting states; however, maintaining visited
states is costly in terms of memory usage. Besides, in software model checking, check-
ing whether two states of a program are equal is not trivial. Even if we assume that
each state can be represented by an identifier, computing unique identifiers for states
is hard [16], since a state relates to many factors (e.g., data, variables). The problem
is more difficult with distributed programs that contain many processes and communi-
cation channels. This problem has attracted attention from researchers. For example,
in [20], the authors proposed methods for checking state equality at run-time by using
memory introspection rather than relying on the source code analysis.

Due to the challenges to be solved with stateful model checking, stateless model
checking [16] was born with a new approach. In the stateless model checking, the
search only stores states of the current explored path, and other states are disre-
garded. Because only part of the exploration is traced, the search is not able to check
whether a state has been discovered before, this means that a state can be traversed
several times. Partial order reduction techniques which will be discussed in next chap-
ters are used in this context to alleviate that redundancy, and some of those techniques

23

Chapter 1 – Introduction

Algorithm 1: Stateful model checking exploration
1 setStates := {s0}
2 visitedStates is empty.
3 while setStates 6= ∅
4 do
5 s := a state in setStates
6 setStates := setStates \ {s}
7 if s /∈ visitedStates then
8 visitedStates := visitedStates ∪ {s}
9 foreach action t enabled at state s do

10 add the sucessor of s after t to setStates

are optimal, exploring only one (complete) execution per each equivalence class of ex-
ecutions if the state space of the model does not contain any cycles. In the case of
existing cycles, a pruning (cut-off) technique that requires state equality checking must
be used, but the problem becomes more complicated, and it is out of the scope of the
thesis.

1.4 Introduction to SimGrid

SimGrid [9] is a simulator of distributed applications. Several user interfaces are pro-
posed, ranging from the classical and realistic MPI formalism, to less realistic simgrid-
specific APIs that ease the expression of theoretical distributed algorithms. These user
interfaces are built upon a common interface, that is implemented either on top of a
performance simulator, or on top of a model checker exploring exhaustively all possible
outcomes from a given initial situation.

MPI interface Simplistic Interface

SMPI S4U

Application Code

Performance
Prediction

Formal Verification

SimGrid Mc SimGridclassical

Userland

Kernels

SimGrid Kernel Interface

Figure 1.3 – SimGrid architecture.

24

1.4 Introduction to SimGrid

SimGrid can emulate existing MPI applications using two virtualization mechanisms.
First, the distributed application is folded into a single image. All MPI processes are
compiled as threads within a single OS process. Second, all communication is medi-
ated through the simulator by a specific reimplementation of the MPI standard. This
virtualization, detailed in [13], was initially proposed as a way to leverage SimGrid’s
simulation model so as to predict the performance of unmodified MPI applications.
McSimGrid, a stateful model checker in SimGrid, exploits it to formally assess the cor-
rectness of the application.

1.4.1 Model checking with SimGrid

Principles When running in model checking mode, SimGrid explores all the possible
execution paths starting from an initial application configuration, for a fixed set of inputs.
This last restriction makes the tool better adapted to applications that are not data-
dependent.

Let’s consider a fully distributed model, in which each process executes sequentially
and only interacts with others through message exchanges. In this model, execution
paths are completely determined by the communications. The only indecision points
at which the execution can branch are situations where a given process is waiting for
a message that can come from more than one sender. For example, if two processes
(i.e., MPI ranks) rank1 and rank2 send a message to process rank0, which accepts any
incoming message, then McSimGrid will (1) completely explore the scenario where
the message of rank1 arrives first, then (2) rewind the application and (3) completely
explore the scenario where the message of rank2 arrives before that of rank1. Similarly,
the communication order can induce indecision points when functions such as MPI
Waitany() or MPI Testsome() are used.

As presented, the model checking approach suffers from the well known state space
explosion problem, meaning that the number of execution paths to explore can easily
become intractable in practice. However, many of the execution paths are redundant in
practice. SimGrid provides two reduction techniques to detect and avoid those redun-
dant paths: Dynamic Partial Ordering Reduction and State Equality.

Dynamic Partial Ordering Reduction was first proposed by Flanagan and Godefoid
in [14]. The key idea is that some events are independent of each other, meaning that
their relative ordering has no impact on the final outcome. For example, local events

25

Chapter 1 – Introduction

occurring on separate hosts are independent. If two events t1 and t2 are independent,
then two histories only differing by the order of t1 and t2 are semantically equivalent.
It is then sufficient to explore only one execution path in each such equivalence class.
McSimGrid implements a classical DPOR algorithm, at the level of point-to-point com-
munications.

The State Equality reduction technique is based on the simple idea that there is no
need to explore twice the outcome of a given state. In abstract models, detecting that
the verified system has returned to an already visited state is as simple as computing a
hash of all known variables values. In the case of MPI programs, the problem is much
more challenging since all information of the program must be introspected. The Sim-
Grid approach, detailed in [20], is to partially reconstruct the semantics of the process
memory (global variables, heap, and stack) using a set of tools and libraries that were
initially intended for use by debuggers. It is then possible to design a heuristic that
only considers relevant (i.e., actually used) bits during state comparison. The heuristic
that is implemented in SimGrid is efficient in practice even if it remains fallible because
memory semantics cannot always be perfectly reconstructed (e.g., the heap area).

1.4.2 MPI verification in SimGrid

This section highlights several typical use cases enabled by McSimGrid, namely,
the discovery of safety and liveness bugs. These use cases are for unmodified MPI
applications at small- to mid-range scale.

Safety Properties Safety properties are the simplest type of properties that can
be checked with McSimGrid, as they consist of simple assertions. To find a counter-
example, a model checker simply searches for a state in which the assertion does not
hold. McSimGrid is an explicit-state Model Checker that explores the state space by
systematically interleaving process executions in depth-first order, storing a stack that
represents the schedule history.

In [31], the authors showed how McSimGrid can efficiently find bugs in several
MPI programs that were specifically written as experimental test cases. The DPOR
technique was shown to greatly reduce the size of the explored state space during
exhaustive verifications. McSimGrid also found a bug in an implementation of the Chord
P2P protocol that proved challenging to isolate through testing.

26

1.5 Contributions of the thesis

Liveness Properties These properties are often expressed in Linear Time Logic
(LTL). As such, they combine first-order propositions with quantifiers over time. For
example, LTL allows one to express that a given property P holds at some point in the
future (noted 3P). The fact that once you press on the brake pedal the car will slow
down after a finite number of events is a classical liveness property. Counter-examples
to such properties are infinite execution paths taken by the application without reaching
the expected state. Since actual computer systems are finite, such infinite paths must
contain cycles. The Model Checker must thus search for cycles in the execution oc-
curring after an eventual triggering event ("the brake pedal is pressed" in our previous
example) and before the expected event ("the car slows down").

The classical approach is to build a Büchi automaton that represents the opposite
of the considered property (such automata encode and recognize infinite sequences)
and to explore in a double-DFS the cross-product of the automaton with the application.
Once the exploration reaches an accepting state (i.e., a state satisfying the triggering
condition) and until the ending event, the Model Checker actively searches for loops: if
it explores again a state that was already explored since the accepting state, then an
infinite loop that violates the property has been found.

When considering real applications, a key difficulty is to evaluate whether the ap-
plication has reached a state that was already explored. To address this difficulty, Mc-
SimGrid leverages the features that form the basis for the State Equality reduction
technique, presented earlier. McSimGrid was used to verify several applications from
the MPICH3 testsuite (consisting of up to 1,300 lines in C or Fortran), exhaustively
searching for non-progressive loops (i.e., livelocks) in various scenarios involving 2 to
6 processes. McSimGrid was able to verify these scenarios in less than a day with
State Equality reduction enabled, proving the absence of livelocks in these applica-
tions. McSimGrid was also able to find a bug in an erroneous implementation of mutual
exclusion in which the request of a given host was deliberately never answered. These
results are detailed in a research report [20].

1.5 Contributions of the thesis

We are inspired by the fact that HPC applications that are often implemented by
using MPI libraries are becoming increasingly popular, but ensuring their accuracy is
intractable. Besides, we also have an efficient simulator called SimGrid that can study

27

Chapter 1 – Introduction

the behavior of large-scale distributed computer systems. For example, SimGrid can
evaluate heuristics, prototype applications, or assess legacy MPI applications. In ad-
dition, in recent years, in research on software model checking, there has been a sig-
nificant step in mitigating the state space explosion problem of concurrent programs.
These reasons motivated us to study how to adapt recent studies to verify distributed
applications based on the setting of SimGrid simulator, especially MPI applications.
Therefore the contributions of the thesis revolve around these research questions, and
are follows:

— The thesis revises and extends an existing abstract model of distributed programs
by adding new synchronization primitives. Although most distributed applications
are asynchronous, there are still tasks needing to be synchronized. For example,
in Remote memory access mode in MPI, to synchronize distributed processes
that access the same target window (a shared memory declared by a particu-
lar process), one can use MPI synchronization functions (e.g., MPI Win lock ,
MPI Win unlock). Thus, there is a need for simulating such kind of tasks. By
adding the synchronization primitives to the abstract model, a larger set of MPI
programs can be encoded. However, the extended model also entails a re-analysis
in order to reason about independence relations for partial order reduction tech-
niques. Therefore, in this thesis, besides extending the abstract model, we specify
the abstract model in TLA+, and then study the model by simulations as well as
define and prove the independence relation.

— The main target of the thesis is efficiently adapting UDPOR (an optimal partial or-
der reduction technique) to verify MPI programs. In the UDPOR exploration algo-
rithm, computing extensions for a configuration can be costly (roughly speaking,
a configuration represents an equivalence class of executions while its exten-
sions denote states that are directly reachable from states in that executions).
A brute-force approach for computing such values would require to iterate over
all subsets of events in the configuration, resulting in an algorithm running in ex-
ponential time. By exploiting the properties of the abstract model and insightful
observations about configurations and the independence relations of the model,
we propose an algorithm that can avoid iterating over all the subsets and only
considers interesting ones that are identified by very few events. Finally, the algo-
rithm that computes the extensions runs in polynomial time.

— Since the UDPOR algorithm is recursive, computing the extensions for a configu-

28

1.6 Organization of the manuscript

ration obtained by adding a new event to a particular configuration in the previous
step leads to re-computations of many events. We proposed an incremental al-
gorithm for our model, eliminating almost all such re-computations and relying on
only the actions that are enabled at the state of the configuration.

— We implemented a prototype encoding UDPOR and a variant of UDPOR (UD-
POR with k-partial alternatives) exploiting our proposed methods and model. A
prototype has been experimented on some benchmarks, gaining promising first
results.

1.6 Organization of the manuscript

The rest of this manuscript is organized as follows.
Chapter 2 is mainly dedicated to present some notable studies on (Dynamic) POR.

Besides those works about POR techniques, we also review some model checkers
used to verify MPI programs.

Chapter 3 recalls notions of interleaving and concurrency semantics, and how a
transition system can be unfolded into an event structure with respect to an indepen-
dence relation. The UDPOR algorithm is also detailed in this chapter.

We use chapter 4 to describe our abstract model of distributed programs. Later,
the formal specification of the abstract model as well as independence theorems are
presented. The chapter is closed by demonstrations of how to encode some basic
functions of the MPI standard as well as simple MPI programs.

The adaptation of UDPOR to our programming model and how to make UDPOR
efficient are demonstrated in chapter 5. The adaptation is evaluated on several experi-
ments.

Finally, the last chapter concludes the thesis by summarizing our contributions and
discussing perspectives.

29

CHAPTER 2

STATE OF THE ART

This chapter will discuss some main critical features related to the evolution of par-
tial order reduction. Besides briefly presenting some recent studies on POR, the chap-
ter also presents some works applying DPOR to verify MPI programs. The chapter is
closed by reviews of some model checkers used for checking MPI programs.

2.1 Partial order reduction

POR techniques have been developed since the early 90s of the last century, and
it comprises a set of exploration techniques (see e.g. [17]), sharing the idea that, to
detect deadlocks (and, by extension, for checking safety properties) it is sufficient to
cover each Mazurkiewicz trace, i.e. a class of interleavings equivalent by commutation
of consecutive independent actions. This state space reduction is obtained by choosing
at each state, based on the independence of actions, only a subset of actions to explore
(ample, stubborn or persistent sets, depending on the method), or to avoid (sleep set).
Although PORs consist of several different variants, perhaps persistent set and sleep
set techniques are most often mentioned in studies of PORs.

Independent

P

S

a1
a2

a3 a4

a5
a6

a7

a8

Figure 2.1 – Persistent set.

30

2.1 Partial order reduction

Figure 2.1 visualizes the persistent set of state s. A subset P of enabled actions at
state s is a persistent set of s if all actions in P (i.e., a1 and a2) are independent with all
actions reachable from s (and outside P) without executing any action in P .

Early POR relies on a statically defined and imprecise independence relation. For
example, given two write actions write(arr [i]) and write(arr [j]) (they write a value to an
element of the array arr), a static analyzer always considers that they are dependent
because it is not able to detect whether i = j or not. However, if i 6= j the actions are
independent.

Dynamic partial order reduction (DPOR) [14] was later introduced to combat state
space explosion for stateless model checking of software. In this context, while POR
relies on a statically defined and imprecise independence relation, DPOR may be much
more efficient by dynamically collecting it at run-time. While executing a program,
DPOR can check exactly which threads/processes access which memory locations.
Figure 2.2 illustrates the main principle of the DPOR technique. While executing the
write action of thread red (*(0x2AAA) :=7), DPOR detects that it accesses the same
memory location as the write action (*(0x2AAA) :=5) of thread black accessed before.
Thus, the actions are dependent, and thread red is added to the persistent set of state
s. When backtracking, a transition of the thread red that is enabled at state s should be
explored from s. Obviously, in this example, DPOR precisely computes dependence
relation, and in practice, persistent sets computed by DPOR are often smaller than
those computed by static analyzers.

s

*(0x2AAA) := 5

*(0x2AAA) := 7

persistent set = {black, red }

dependent

Figure 2.2 – Dynamic partial order reduction.

31

Chapter 2 – State of the art

2.2 Recent studies on DPOR

Although often producing better reductions than those created by POR, redundant
explorations, named sleep-set blocked (SSB, i.e. the search must backtrack since it
detects that continuing exploring the current trace will lead to an already visited state),
may still exist in DPOR. Thus, DPOR is unable to always explore exactly one inter-
leaving per Mazurkiewicz trace. In the last few years, two research directions were
investigated to improve DPOR. The first one tries to refine the independence relation:
the more precise, the less Mazurkiewicz traces exist, thus the more efficient could be
DPOR. The second one focuses on minimizing the number of explored executions per
each Mazurkiewicz trace. Let’s take a look at some representatives in these directions.

DPOR with observers In [5] independence is built lazily, conditionally to future ac-
tions called observers. The principle is straightforward. In the original DPOR, if two
write actions concern the same variable, then they are always considered dependent.
However, in practice, changing the execution order of two dependent actions, that con-
cern the same variable, does not change the resulting executions if such a variable is
not read later. So, DPOR with observers only considers that two write actions concern-
ing the same memory location are dependent if at least one of them has a followed
read action concerning the same memory location.

S1 S6

S13S2 S4 S7

S5

S3

S0

S9

S10S3 S8

S11

S12 S14

x :=2 x := x*3 assert(x > 1)

x := x*3 assert(x > 1)

assert(x > 1) x := x*3 x :=2 assert(x > 1)

x :=2

x := x*3

x := x*3

x :=2

{ P1,P2,P3 }

{ P2, P3} {P3, P1} {P1, P2}

6 traces are explored by DPOR

S1 S6

S2 S4 S7

S5

S3

S0

S9

S10S3 S8

S11

S12

x :=2 x := x*3 assert(x > 1)

x := x*3 assert(x > 1)

assert(x > 1) x := x*3 x :=2 assert(x > 1)

x :=2

x := x*3

5 traces are explored by DPOR with Observers

{ P2, P3}

{ P1,P2,P3 }

{P3, P1} {P1}

Figure 2.3 – A comparison between DPOR and DPOR with observers.

For example, a program spawns three concurrent processes P1,P2, P3 executing

32

2.2 Recent studies on DPOR

x := 2, x := x ∗ 3 and assert(x > 1), respectively. Figure 2.3 depicts the explorations
of DPOR (left) and DPOR with observers (right). While the first method explores six
traces, the later one traverses only five traces. Let’s zoom in on state S3, because
x := 2 and x := x ∗ 3 concern the same variable, P2 is added to the persistent set of
S3, and then action x := x ∗ 3 is fired from S3. However, DPOR with observers does
not consider that x := 2 and x := x ∗ 3 are dependent since there is no read action
executed after them, then P2 is not performed from S3.

The idea can be lifted to message passing programs in the case where there are
some send actions concerning the same mailbox (see [5]) to get more reductions.

Constrained DPOR In [3], Elvira et al. propose an extension of DPOR called con-
strained DPOR. It considers conditional independence relations [18] where commu-
tations are specified by constraints. Using conditional independence can avoid more
unnecessary exploration. For example, two processes P1,P2 of a concurrent program
fire two atomic actions if (a > 1)x := 1 and x := x ∗ 2. DPOR with unconditional depen-
dence considers that the two actions are dependent even if a ≤ 1 (an independence
constraint) without considering the constraint if (a > 1). Constrained DPOR takes into
account constraints when computing dependence of actions, and uses an SMT solver
to synthesize them. Experiments in [3] show that in almost all the benchmarks, con-
strained DPOR outperforms the standard DPOR on all the following aspects: number
of explored traces, run time and number of visited states.

Context-Sensitive DPOR Context-Sensitive DPOR [2] is another extension of DPOR
and exploits context-sensitive independence to extend the performance of sleep sets.
Standard DPORs are based on context-insensitive independence and require two ac-
tions to be independent in all contexts, while Context-Sensitive DPOR considers two
actions might be independent in the particular explored context. From the implementa-
tion point of view, Context-Sensitive DPOR is equipped with a state equality detection,
that checks if the execution order of two dependent actions does not change the overall
result, to cut more unnecessary explorations.

Let’s look at the example shown in Figure 2.4. A concurrent program contains three
processes p1, p2 and p3 executing x := 3, x := 3 and y := x , respectively. Similar
to DPOR, Context-Sensitive DPOR firstly explores an execution, suppose it is p1p2p3
(here we consider actions named by process names). Since p1 and p2 are depen-

33

Chapter 2 – State of the art

s0

p1

s1

p2

s2

p3

dependent

dependent

{ p2 }

s3

{p2.p1}

s5

s4

p2

p1{ p3 } {p3.p2}

s4

p3

p2

p1 p2 p3

x := 3 x := 3 y := x

Figure 2.4 – Context-sensitive DPOR

dent, p2 is added to the backtracking set of state s0. However, p1.p2 and p2.p1 1 lead
to the same state, Context-Sensitive DPOR annotates at s0 that p1 should not be ex-
ecuted after p2, meaning that p1 should not be fired from s5. Similarly, it annotates
that, after executing p3 from s1, p2 should not be fired. Obviously, more reductions
are obtained by using Context-Sensitive DPOR. However, it also requires implement-
ing a state equality detection that may be a challenge for some applications, such as
distributed applications.

Minimizing the number of explored executions This direction proposes alterna-
tives to persistent sets in order to minimize the number of explored interleavings. Re-
member that optimality is obtained when exactly one interleaving per Mazurkiewicz
trace is built. In [1] authors propose source sets that are often smaller than persistent
sets and operates over interleaving semantics. Although DPOR with source sets out-
performs the traditional DPOR, it may still lead to sleep-set blocked explorations. To
explore exactly one interleaving per Mazurkiewicz trace, and never encounter sleep-
set blocking, the authors combine source sets with a novel mechanism, called wakeup
trees, leading to an optimal DPOR algorithm.

In [27] the authors propose unfolding-based DPOR (UDPOR), an optimal DPOR
method combining the strengths of PORs and unfoldings with the notion of alterna-

1. Both p1.p2 and p2.p1 must be executed.

34

2.2 Recent studies on DPOR

tives and operating over concurrent semantics. The approach is generalized in [34]
with a notion of k -partial alternative allowing to balance between optimal DPOR and
sometimes more efficient sub-optimal DPOR. UDPOR will be detailed in section 3.2.

Distributed DPOR Besides the above mentioned methods that focus on reducing
the number of explored traces, some other techniques improve the performance of
DPOR by proposing new schemes of implementations. For example, in [55], the au-
thors distributed DPOR on a computer cluster. Each node in the cluster is responsible
for exploring some backtracking points of some backtracking set (persistent set). How-
ever, performing DPOR in a distributed environment can lead to a situation where two
nodes explore the same backtracking point in the persistent set of the same visited
state. Two avoid this situation, the persistent set of a state is only distributed when it
has been completely constructed.

DPOR in the verification of MPI programs Some approaches already try to use
DPOR techniques for the verification of asynchronous distributed applications, such
as MPI programs (Message Passing Interface). In the absence of model, determining
global states of the system and checking equality [39] are already challenging. In [36],
an approach is taken that is tight to MPI. A significant subset of MPI primitives is con-
sidered, formally specified in order to define the dependency relation, and then to use
the DPOR technique of [14].

In [43], the efficiency DPOR is improved by focusing on particular deadlocks (i.e. or-
phaning deadlocks that happen when there is no matching send for a particular receive
in some MPI program execution), but at the price of incompleteness. The work devel-
ops an effective heuristic for reducing persistent sets to alleviate exponential schedule
explosion caused by non-deterministic receives. The heuristic hinges on some obser-
vations; for example, the fact that the number of sends is not equal to the number of
receives in a particular program execution can cause a deadlock. Experiments in [43]
demonstrated a significant saving in exploring the state space of a program in order to
detect deadlocks, however, it fails to detect deadlocks in some particular MPI programs.

Recent research in [8] focuses on detecting deadlocks in MPI programs but in
the context where the dependence, causality relation between actions are not clearly
defined. Because the semantics of MPI is ambiguously defined, depending on "zero
buffering" or "infinite buffering" mode, send operations and collective operations may

35

Chapter 2 – State of the art

or may not block. However, the modes are not decided by users but depends on some
factors, such as the availability of the internal storage, the MPI implementation. For
example, in the zero buffering mode, an MPI Send must wait for a matching posted
MPI Receive to return, but it can return without waiting for any matching MPI Receive
operation in the infinite buffering mode. To apply DPOR, the dependence and causality
relations of MPI programs must be rigorously defined. The authors proposed a method
in which an MPI program is firstly explored by (Dynamic) Partial order reduction in the
infinite buffering mode to get the reduced state space. After that, a proposed "post-
processing" algorithm is applied to the reduced state space to detect deadlocks.

2.3 Model checkers for MPI programs

The idea of applying model checking to actual programs originated in the late 90s
[16, 32]. It was later applied to many systems and interfaces such as Java [30], multi-
threaded programs [33] or distributed programs [54]. In the context of MPI-based par-
allel programs also, several tools have been proposed [19].

Runtime instrumentation tools such as Marmot [26] or MUST [22] intercept and ver-
ify every MPI call. This catches API misusages, such as type mismatch between a send
and the corresponding receive. In addition, a dependency graph of the calls (either cen-
tralized in Marmot or distributed in MUST) can catch some deadlocks. Unfortunately,
such testing tools only explore some of the possible execution paths.

Several static tools based on code analysis were proposed. TASS [46] and CIVL
[45] rely on symbolic execution and state enumeration techniques to propagate the in-
terval of values taken by the application variables. It requires source code annotations
specifying bounds on input variables to reduce the number of false positives. Simi-
larly, PARCOACH [42] detects through static analysis potentially problematic sections
of code and adds assertions which are then checked at runtime. This does not require
any code annotations but will miss failures that occur on unexplored execution paths.
Formal approaches, such as that implemented in this work, are needed for exhaustive
coverage.

Hermes [23] implements a hybrid technique combining explicit-state dynamic ver-
ification with symbolic analysis to discover deadlocks in MPI programs. The dynamic
verification component is responsible for executing interesting traces of programs while
the symbolic one encodes a set of interleavings of the observed trace into a formula

36

2.4 Conclusion

and then verifies it to detect communication deadlocks. If there are no property vio-
lations, an analysis is performed to obtain another trace that has not already been
verified. Hermes outperforms some other verification tools (e.g., CIVIL tool) in some
benchmarks, however, it also has some limitations, for example, it assumes that the
data that is received by a non-deterministic receive and then used in a conditional
statement in programs is an integer variable or a tag.

One of the first formal tools specifically designed for MPI programs was MPI-Spin
[44], an extension to the classical Spin model checker. But it requires the user to man-
ually build an abstracted model of the application. Gauss [35] is an automated model
extractor, but it remains limited to small applications because much information that is
required to build an efficient and accurate model of the application is only known at
runtime.

Many tools use the PMPI instrumentation layer of MPI to observe and steer the
application. Nasty-MPI [25] delays the calls to experience pessimistic schedules that
often trigger bugs in the application. ISP [51] and DAMPI [50] are formal tools that
dynamically explore all the possible execution paths while applying adequate reduction
techniques to not re-explore Mazurkiewicz traces when possible.

2.4 Conclusion

As stated, (Dynamic)POR has attracted a lot of attention from the formal methods
community. In recent years there have been many notable studies to improve the POR
techniques, typically optimizing the number of explored executions and refining inde-
pendence relations. However, studies seem to be largely focused on shared memory
programs, but less focused on message passing ones, typically MPI programs. In order
to adapt these studies into message passing applications, it often takes a lot of effort.

Some tools use methods outside of DPOR such as static analysis, symbolic analy-
sis to verify MPI programs. However, they also have certain limitations as stated, and
such techniques are out of the scope of this thesis. This thesis focuses mainly on
verification of MPI programs by exploiting a state of the art method, namely UDPOR.
To the best of our knowledge, this is the first attempt to adapt UDPOR to verify MPI
applications.

37

CHAPTER 3

PRELIMINARIES

This chapter introduces labelled transition systems (LTS) that is a typical mathemat-
ical concept in computer science usually used to model behaviors of hardware as well
as software systems. Besides introducing labelled transition systems, concurrency se-
mantics, specifically unfolding semantics, will be mentioned in detail. Different aspects
of unfolding semantics are reviewed, ranging from the basic notions, dependency re-
lation, and definitions as well as how to build the unfolding of a program from its LTS
semantics. The chapter is closed by a detailed presentation of Unfolding-based DPOR.

3.1 Interleaving and concurrent semantics

3.1.1 Labelled transition systems

A labelled transition system is a graph where nodes represent states, and edges
express transitions between the states. A state describes the information of the system
at a particular time. For instance, a state of a multi-threaded program may indicate the
current values of all global variables as well as local variables, and the current value
of the program counter while a global state of a distributed program is the union of
the states of the individual processes and the states of communication channels. Each
edge can be labelled by an action that triggers the transformation of the system from
one state to another.

Definition 2 (Labelled transition system) A labelled transition system (LTS) is a tu-
ple T = 〈S , I ,Σ,→〉 where S is the set of states, I ⊆ S is the set of initial states, Σ is
the alphabet of actions, and→⊆ S × Σ× S is the transition relation.

Example 1 Figure 3.1 shows an example of an LTS modelling a simple beverage vend-
ing machine that delivers either tea or coffee. The state space is S = {s0, s1, s2, s3},
and the set of initial states is I = {s0}. The set of actions of the LTS is Σ = {get tea,

38

3.1 Interleaving and concurrent semantics

coin, get coffee, τ}. In the figure symbols τ denote some internal activity of the machine
that may not be of interest. In total, five transitions are defined in the LTS: (s0, coin, s1),
(s1, τ, s2), (s1, τ, s3), (s2, get tea, s0), and (s3, get coffee, s0).

s0

s1

coin

s3s2

get_
tea

get_coffee

τ τ

Figure 3.1 – A transition system of a simple beverage vending machine.

For convenience, we often write s a−→ s ′ instead of (s , a, s ′), and if (s a1−→ s ′), (s ′ a2−→
s ′′), we can write (s a1.a2−−−→ s ′′). Intuitively, the behavior of the transition system can
be described as follows. The transition system starts from the initial state (s0). From
that state, according to the transition relation, the transition system evolves. If s is the
current state and s a−→ s ′ is a transition, then action a is executed and the transition
system evolves from state s into the state s ′. There may exist more than one possible
transition from some state. In that case, the LTS can arbitrarily select a transition to
evolve. The evolution of the LTS stops when encountering a state where there is no
outgoing transition.

Consider the example in Figure 3.1, from the initial state s0, there is only one pos-
sible transition s0

coin−−→ s1. So, the transition s0
coin−−→ s1 is selected and taken, then the

LTS evolves from s0 to s1 after performing a coin action. In s1, there are two internal
steps. Thus, an internal step is selected arbitrarily, either selecting s1

τ−→ s2 or s1
τ−→ s3.

If s1
τ−→ s2 is selected and taken the LTS moves from s1 to s2, and after that an action

get tea is performed. Otherwise, s1
τ−→ s3 is selected, the LTS moves from s1 to s3 and

then a get coffe is performed.

We have notions related to labelled transition systems as follows:

Post states: Let T = 〈S , I ,Σ,→〉 be a labelled transition system. Given a state s, the
set of direct successors of s after performing action a is defined as follows:

PostState(s , a) = {s ′ ∈ S | s a−→ s ′}

39

Chapter 3 – Preliminaries

PostState(s) includes all states reachable from state s by performing any action.

PostState(s) =
⋃

a ∈ Σ
PostState(s , a)

Similarly, we define Pre states:

Pre states: Let T = 〈S , I ,Σ,→〉 be a labelled transition system. Given a state s and
an action a, the set of direct predecessors of s is defined as follows:

PreState(s , a) = {s ′ ∈ S | s ′ a−→ s}

PreState(s) includes all states that can reach s by performing any action a.

PreState(s) =
⋃

a ∈ Σ
PreState(s , a)

Enabling actions: Let T = 〈S , I ,Σ,→〉 be a labelled transition system. Given a state
s ∈ S , the set of transitions enabled at state s denoted enabled(s) is defined as follows:
enabled(s) = {a ∈ Σ | ∃s ′ ∈ S , s a−→ s ′}.

Terminal state: A state s in a labelled transition system T is called terminal (or dead-
lock) if and only if enabled(s) = ∅.

Roughly, terminal states of a labelled transition system T are states without any
outgoing transitions. When modeling a program, a terminal state represents the termi-
nation or a deadlock of the program. Hence, when T encounters a terminal state, the
real program modeled by T terminates or encounters a deadlock.

Deterministic Transition System: Let T = 〈S , I ,Σ,→〉 be a labelled transition sys-
tem. T is said deterministic if:

1. |I | = 1, that is, there is only one initial state, and

2. ∀a ∈ Σ and ∀s ∈ S , |PostState(s , a)| ≤ 1, that is, for all actions and states, per-
forming an action from a given state leads to at most one successor state.

Otherwise, T is said non-deterministic.

40

3.1 Interleaving and concurrent semantics

Reachable states: Let T = 〈S , I ,Σ,→〉 be a transition system. A state s ∈ S is called
reachable in T if there exists a sequence of states and actions s0a0s1a1s2a2...sn such
that s0 is an initial state, si

ai−→ si+1, ∀i ≥ 0, and sn = s.

Executions: An execution (or run) describes a possible behavior of the transition
system, it can be formally defined as follows:

Definition 3 (Executions) Let T = 〈S , I ,Σ,→〉 be a transition system. An execution of
T can be finite or infinite:

— A finite execution of T is a finite sequence of states and actions: s0a0s1a1...sn s.t.
s0 is an initial state, si

ai−→ si+1, ∀i ≥ 0, and if sn is a terminal state, we say that T
is a complete execution.

— An infinite execution of T is an infinite sequence of states and actions:

s0a0s1a1s2a2... such that s0 is an initial state, si
ai−→ si+1, ∀i ≥ 0.

In the example shown in Figure 3.1, ”s0 coin s1 τ s2 get tea s0...” is an execution of
the LTS while ”s1 τ s2 get tea s0 coin s1” is not an execution because s1 is not the initial
state.

3.1.2 Independent actions

Independence is a key notion in both POR techniques and unfoldings, linked to the
possibility to commute actions:

Definition 4 (Commutation and independence) Two actions a1, a2 of an LTS T =
〈S , {s0},Σ,→〉 commute in a state s if they satisfy the two conditions:

— executing one action does not enable nor disable the other one:

a1 ∈ enabled(s) ∧ s a1−→ s ′ =⇒ (a2 ∈ enabled(s)⇔ a2 ∈ enabled(s ′)) (3.1)

— their execution order does not change the overall result:

a1, a2 ∈ enabled(s) =⇒ (s a1·a2−−−→ s ′ ∧ s a2·a1−−−→ s ′′ =⇒ s ′ = s ′′) (3.2)

41

Chapter 3 – Preliminaries

A relation I ⊆ Σ× Σ is a valid independence relation if it under-approximates commu-
tation, i.e. ∀a1, a2, I (a1, a2) implies that a1 and a2 commute in all states. Conversely a1

and a2 are dependent and we note D(a1, a2) when ¬(I (a1, a2)).

A Mazurkiewicz trace is an equivalence class of complete executions (or interleav-
ings) of an LTS T obtained by commuting adjacent independent actions. By the second
item of Definition 4, all these interleavings reach a unique state. The principle of all POR
approaches is precisely to reduce the state space exploration while covering at least
one execution per Mazurkiewicz trace. If a deadlock exists, a Mazurkiewicz trace leads
to it and will be discovered. More generally, safety-property violations in any acyclic
state space can be detected by POR algorithms.

3.1.3 Event structures

Besides labelled transition systems, an event structure is another mathematical
concept that is usually used to model computer programs. An event structure con-
sists of a set of events that are bound by one of three relations: concurrency, conflict,
and causality. While two conflicting events cannot be performed together, two events
that are causally related have a dependency, one of the two events can only happen
after the other. A classical model of true concurrency is prime event structures.

Definition 5 (Prime event structure) Given an alphabet of actions Σ, a Σ-prime event
structure (Σ-PES) is a tuple E = 〈E , <,#, λ〉 where E is a set of events, < is a
partial order relation on E , called the causality relation, λ : E → Σ is a function la-
belling each event e with an action λ(e), # is an irreflexive and symmetric relation
called the conflict relation such that the set of causal predecessors or history of any
event e, dee = {e ′ ∈ E : e ′ < e} is finite, and conflicts are inherited by causality:
∀e, e ′, e ′′ ∈ E , e#e ′ ∧ e ′ < e ′′ =⇒ e#e ′′.

Intuitively, e < e ′ means that e must happen before e ′, and e#e ′ that those two
events cannot belong to the same execution. Two distinct events that are neither causally
ordered nor in conflict are said concurrent. An event e can be characterized by a pair
〈λ(e),H 〉 where λ(e) is its action, and H = dee its history.

Example 2 Figure 3.2 illustrates a PES modeling a concurrent program. In the PES
each box represents an event with a number that is the event identifier while arrows

42

3.1 Interleaving and concurrent semantics

illustrate the causality relation, and dotted lines denote conflict relation 1. The set of
events is E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}, and regarding the labeling function λ,
for instance λ(e1) = 〈0, x := a〉, λ(e8) = 〈1, x := a ′〉. Causality and conflict relations are
such that e1 < e6, e3 < e4, e3#e8 for example.

e1

e4

e3
e6

e2

e9

e8

e5 e10

e7

<0, x := a>

<0, y :=b >

<1, y := b'>

<1, x := a'>

<1, y := b'>

<1, x := a'>

<0, x :=a >

<0, y := b>

<0, y := b> <1, x := a'>

Figure 3.2 – A prime event structure

Configuration and maximal events:
A configuration is a set of events C ⊆ E that is both causally closed (e ∈ C =⇒

dee ⊆ C) and conflict free (e, e ′ ∈ C =⇒ ¬(e#e ′)). For example {e1, e2, e6} is a
configuration; {e1, e4, e5} is not a configuration since it is not causality closed; {e1, e2, e3}
is not a configuration because e2#e3.

Maximal events of a configuration C denoted by maxEvents(C) is the set containing
all events e ∈ C such that e does not belong to the history of any other event e ′ in C .
Formally maxEvents(C) = {e ∈ C : @e ′ ∈ C , e < e ′}. For instance, maxEvents({e1, e2,

e6, e7}) = {e6, e7}.

Local configuration: The local configuration of event e denoted by [e] is the config-
uration containing e as well as all events in the history of e. Formally [e] := dee ∪ {e}.
For example [e4] = {e4, e3, e1}.

A configuration C is characterized by its causally maximal events since it is exactly
the union of local configurations of these events: C = ⋃

e ∈ maxEvents(C)[e]; conversely a

1. Here only initial conflicts are drawn, and note that conflicts are inherited by causality.

43

Chapter 3 – Preliminaries

conflict free set K of incomparable events for < defines a configuration config(K) and
C = config(maxEvents(C)).

A configuration C , together with the causal and independence relations define a
Mazurkiewicz trace: all interleavings are obtained by causally ordering all events in
the configuration C but commuting concurrent ones. We use conf (E) for the set of
configurations of E .

Maximal configuration: A configuration C is said maximal if C cannot be extended
to a new configuration by adding some event e ∈ E . Formally, C is maximal if @e ′ ∈ E :
e ′ /∈ C ,C∪{e ′} is a configuration. For example {e1, e2, e6, e7} is a maximal configuration,
but {e1, e2, e7} is not maximal.

Immediate conflict: Two events e and e ′ are in immediate conflict, denoted by e#ie ′,
iff e#e ′ and both dee∪ [e ′] and de ′e∪ [e] are configurations. For instance, e1#ie8, e2#ie3.

We also have new definitions based on the immediate conflict. While #i(e) contains
all events in E in immediate conflict with e, #i

U (e) consists of the same set of events
but restricted to U , formally #i(e) := {e ′ ∈ E : e#ie ′}, #i

U (e) := #i(e) ∩ U .

Extensions: The set of extensions of C is ex (C) = {e ∈ E \ C : dee ⊆ C}, i.e. the
set of events not in C but whose causal predecessors are all in C . For example,
ex ({e1, e2}) = {e3, e6, e7, e8}, ex ({e2}) = {e8}.

When appending an extension to C , only resulting conflict-free sets of events are
indeed configurations. These extensions constitute the set of enabled events en(C) =
{e ∈ ex (C) : @e ′ ∈ C , e#e ′} while the other ones are conflicting extensions cex (C) :=
ex (C) \ en(C). For example en{e1, e2} = {e6, e7} while cex ({e1, e2}) = ex (e1, e2) \
en({e1, e2}) = {e3, e8}.

Parametric Unfolding Semantics. Given an LTS T and an independence relation
I , one can build a prime event structure E such that each linearization of a maximal
configuration (i.e., a total ordering of all the events in the configuration that respects the
causality relation) represents an execution in T , and conversely, to each Mazurkiewicz
trace in T corresponds a configuration in E [34].

44

3.1 Interleaving and concurrent semantics

Definition 6 (Unfolding) The unfolding of an LTS T under an independence relation
I is the Σ-PES E = 〈E , <,#, λ, 〉 incrementally constructed from the initial Σ-PES
〈∅, ∅, ∅, ∅〉 by the following rules until no new event can be created:

— for any configuration C ∈ conf (E), any action a ∈ enabled(state(C)), if for any
e ′ ∈ maxEvents(C), ¬I (a, λ(e ′)), add a new event e = 〈a,C 〉 to E ;

— for any such new event e = 〈a,C 〉, update <, # and λ as follows: λ(e) := a and
for every e ′ ∈ E \ {e}, consider three cases:
(i) if e ′ ∈ C then e ′ < e,
(ii) if e ′ /∈ C and ¬I (a, λ(e ′)), then e#e ′,
(iii) otherwise, i.e. if e ′ /∈ C and I (a, λ(e ′)), then e and e ′ are concurrent.

e1

e4

e3
e6

e2

e9

e8

e5 e10

e7

<0, x := a>

<0, y :=b >

<1, y := b'>

<1, x := a'>

<1, y := b'>

<1, x := a'>

<0, x :=a >

<0, y := b>

<0, y := b> <1, x := a'>

P0 P1

x := a
y := b

y := b'
x := a'

Figure 3.3 – A toy program, and its unfolding semantics.

Given a PES that is built from a LTS by Definition 6, we define the state of a con-
figuration C in the PES, and denote by state(C), the state s of the LTS obtained by
executing all the actions associated with the events in C in any order compatible with
the causality order. We write enab(C) = enabled(state(C)) ⊆ Σ for the set of actions
enabled at state(C), while actions(C) denotes the set of actions labelling events in C ,
i.e. actions(C) = {λ(e) : e ∈ C}.

Example 3 Figure 3.3 displays a concurrent program P composed of two concurrent
processes P0 and P1. There are two global variables x and y . Both processes P0 and

45

Chapter 3 – Preliminaries

P1 write values to the two global variables. The independent relation is I (x := a, y :=
b ′) and I (x := a ′, y := b). We now build the unfolding semantics for the program.

We first create an empty unfolding (demonstrated by a ⊥ symbol in the figure) with
only one empty configuration. Step 2 is creating all new events by finding a config-
uration C that enables an action a which is dependent on all maxEvents(C). Having
only one empty configuration with no maximal events, and two enabled actions at initial
state: x := a and y := b, we create events e1 and e2.

The unfolding now has three configurations to consider: {e1}, {e2}, and {e1, e2}.
Action y := b is enabled at state({e1}) and it is dependent on λ(e1), so we create
e3. Similarly action x := a ′ ∈ enabled(state({e2})), and it is dependent on λ(e2), we
then create e8. Both actions y := b and x := a ′ are enabled at state({e1, e2}) and
they are dependent on λ(e1) and λ(e2) where both e1 and e2 are maximal events of
the configuration {e1, e2}. Thus, e6 and e7 are created. Similarly, we can create the
remaining events: e4, e5, e9, and e10.

There are in total three maximal configurations, which are {e1, e3, e4, e5}, {e1, e2, e6, e7},
and {e2, e8, e9, e10}.

Definition 6 presents how to build a Σ-PES from an LTS . Conversely, from a Σ-
PES E = 〈E , <,#, λ, 〉 one can define a corresponding LTS T = 〈S , I ,Σ,→〉 where
S = conf (E), I = {⊥}, and the transition relation→= {(s , a, s ′) | s , s ′ ∈ config(E), s ′ =
s ∪ {e}, e ∈ E , λ(e) = a}.

3.2 Unfolding-based dynamic partial order reduction

The unfolding semantics is a compact representation for modeling behaviors of
concurrent programs. Each maximal configuration of the unfolding of a program cor-
responds to a Mazurkiewicz trace representing an equivalence class of executions of
the program. UDPOR [27] is an optimal DPOR technique that explores a reduced LTS
of the program, based on the unfolding semantics, without redundant explorations of
Mazurkiewicz traces. Algorithm 2 presents the UDPOR exploration algorithm of [27].
As other DPOR algorithms, it explores only a part of the LTS of a given terminating
distributed program P according to an independence relation I , while ensuring that the
explored part is sufficient to detect all deadlocks. The particularity of UDPOR is to use
the concurrency semantics explicitly, namely unfoldings, which makes it both complete

46

3.2 Unfolding-based dynamic partial order reduction

and optimal, in the sense that it explores exactly one interleaving per Mazurkiewicz
trace, never reaching any sleep-set blocked execution.

Algorithm 2: Unfolding-based POR exploration
1 Procedure Explore(C ,D ,A)
2 Compute extensions of C (ex (C))
3 Add all events in ex (C) to U
4 if en(C) ⊆ D then
5 Return
6 if (A = ∅) then
7 choose e from en(C) \ D
8 else
9 choose e from A ∩ en(C)

10 Explore(C ∪ {e},D ,A \ {e})
11 if ∃J ∈ Alt(C ,D ∪ {e}) then
12 Explore(C ,D ∪ {e}, J \ C)
13 U := U ∩QC ,D

The algorithm works as follows. Executions are represented by configurations, thus
equivalent to their Mazurkiewicz traces. The set U , initially empty, contains all events
met so far in the exploration. The procedure Explore has three parameters: a configura-
tion C encoding the current execution; a set D (for disabled) of events to avoid, playing
a role similar to a sleep set in [17], thus preventing revisits of configurations; a set A (for
add) of events conflicting with D and used to guide the search to events in conflicting
configurations in cex (C) to explore alternative executions.

First, all extensions of C are computed and added to U (line 4). The search back-
tracks (line 6) in two cases: when C is maximal (en(C) = ∅, i.e. a deadlock (or the pro-
gram end) is reached), or when all events enabled in C should be avoided (en(C) ⊆ D),
which corresponds to a redundant call, thus a sleep-set blocked execution. Otherwise,
an enabled event e is chosen (lines 7-10) in A if this guiding information is non empty
(line 10), and a "left" recursive exploration Explore(C ∪ {e},D ,A \ {e}) is called (line
11) from this extended configuration C ∪ {e}, it continues trying to avoid D , but e is re-
moved from A in the guiding information. When this call is completed, all configurations
containing C and e have been explored, thus it remains to explore those that contain
C but not e.

Alternatives (see Definition 7) are computed (line 12) with the function call Alt(C ,D∪
{e}). Alternatives play a role similar to “backtracking sets" in the original DPOR algo-

47

Chapter 3 – Preliminaries

rithm, i.e. sets of actions that must be explored from the current state. If an alternative
J exists, a right "recursive" exploration is called Explore(C ,D ∪ {e}, J \ C): C is still
the configuration to extend, but e is now also to be avoided, thus added to D , while
events in J \ C are used as guides. Upon completion (line 14), U is intersected with
QC ,D which includes all events in C and D as well as every event in U conflicting with
some events in C ∪ D , formally QC ,D := C ∪ D ∪ ⋃

e ∈ (C∪D),e′ ∈ #i
U (e)[e ′].

Definition 7 (Alternatives [27]) Let D and U be sets of events, and C ⊆ U a config-
uration. An alternative to D after C in U is a configuration J such that: (i) J ∪ C is a
configuration, (ii) ∀e ∈ D ,∃e ′ ∈ (C ∪ J) : e ′ ∈ #i

U (e)

In order to avoid sleep-set blocked executions (SSB) and obtain the optimality of
DPOR, the function Alt(C ,D ∪ {e}) has to solve an NP-complete problem [34]: find
a subset J of U that can be used for backtracking, conflicts with all D ∪ {e} thus
necessarily leading to a configuration C ∪ J that is not already visited. In this case
the condition en(C) ⊆ D can then be replaced by en(C) = ∅ in line 5. Note that with
a different encoding, Optimal DPOR must solve the same problem [1] as explained
in [34]. In [34], a variant of the algorithm is proposed for the function Alt that computes
k -partial alternatives rather than alternatives, i.e., sets of events J conflicting with only
k events in D , not necessarily all of them. Depending on k , (e.g. k =∞ (or k = |D |+ 1)
for alternatives, k = 1 for source sets of [1]) this variant allows to tune between an
optimal or a quasi-optimal algorithm that may be more efficient.

Definition 8 (k-partial alternative [34]) Let D and U be sets of events, C ⊆ U a con-
figuration, k ∈ Z (a non-negative integer). A configuration J is a k-partial alternative to
D after C if there is some D̂ ⊆ D such that |D̂ | = k and J is an alternative to D̂ after
C .

While an alternative needs to conflict with all events in D , a k-partial alternative
requires conflicting with only k events. Obviously, by reducing the number of events
that a k-partial alternative needs to conflict with, computing a k-partial alternative could
be faster than computing an alternative. However, since conflicting with only k events,
a k-partial alternative can guide the UDPOR exploration to revisit some Mazurkiewicz
trace, leading to a sleep-set blocked execution. Thus, the k-partial alternative is a trade-
off solution between accepting sleep-set blocked executions and having redundant ex-
plorations versus solving the NP-complete problem. Surprisingly, in some experiments

48

3.3 Conclusion

in [34], with low values of k , using k-partial alternative UDPOR is still optimal. The op-
timality may be explained by the fact that the calculation of k-partial alternatives was
fortunate, since conflicting with only k events in D is enough to conflict with all other
events. In [34], authors propose a new concept of comb that facilitates the computation
of k-partial alternatives in polynomial time.

3.3 Conclusion

This chapter provides some basic notions related to interleaving semantics, namely
labelled transition systems and its properties. Besides, concurrent semantics, namely
event structures, are also discussed.

P1 P2 P3

w : write(x) r : read(x) r : read(x)

 I(r, r)

e1

e2 e3

e4

e6

e5

w

r r

r

w

r

e8
w

e7

e10

e9

r

w

r

w

r

r

w

r

r

 r

w

r

 r

w

r

 r

r

w

 r

r

w

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

w

r

r

r

r

r

r

w r

r

r
w

w
r

(a) A program (b) The TLS that models the program

(c) Mazurkiewicz traces (d) The unfolding of the program

Figure 3.4 – The connection between interleaving semantics and unfolding semantics.

49

Chapter 3 – Preliminaries

Figure 3.4 summarizes the connection between interleaving semantics and unfold-
ing semantics on an example. A concurrent program consists of three processes shown
in Figure 3.4 a. This program can be modeled by a simple LTS (Figure 3.4 b) includ-
ing six different executions belonging to four different Mazurkiewicz traces (Figure 3.4
c). The behaviors of the program can also be represented by a compact presentation,
its unfolding semantics (Figure 3.4 d). In the unfolding, each maximal configuration (in
dashed lines) corresponds to a Mazurkiewicz trace.

Besides introducing concurrent and interleaving semantics, UDPOR, an optimal
Dynamic partial order reduction, is also described. While most standard dynamic par-
tial order reduction methods are based on the interleaving semantics, UDPOR oper-
ates over a concurrent semantics named prime event structure. The next chapter will
introduce a proposed abstract model for asynchronous distributed programs that we
consider throughout the thesis as well as how we specify the model and prove inde-
pendence relations.

50

CHAPTER 4

COMPUTATION MODEL OF

ASYNCHRONOUS DISTRIBUTED

PROGRAMS

This chapter aims to present our abstract model of distributed programs. The prop-
erties of the model, as well as the independence theorems that will be utilized to com-
pute independence relations between actions, are also discussed. The abstract model
is compact, it consists of only nine actions, but many MPI functions can be simulated by
this abstract model in the SimGrid simulator. Determining dependent actions requires
to specify the semantics of the programs. Thus, we formally describe the semantics of
the abstract model in TLA+. Having a precise specification of the model, we can then
reason about the dependency of actions.

4.1 Informal description of the model

In our model [38], we consider that an asynchronous distributed program P con-
sists of a set of n actors Actors = {A1,A2, ...An} that perform local actions, com-
municate asynchronously with each other, and share some resources. We assume
that the program is terminating, which implies that all actions are terminating. All lo-
cal actions are abstracted into a unique one LocalComp. Communication actions are
of four types: AsyncSend , AsyncReceive, TestAny , and WaitAny . Actions on shared
resources called synchronizations are of four types: AsyncMutexLock , MutexUnlock ,
MutexTestAny , and MutexWaitAny .

At the semantic level, P is a tuple P = 〈Actors,Network,Synchronization〉 where
Network and Synchronization respectively describe the abstract objects, and the ef-
fects on these of the communication and synchronization actions. The Network subsys-

51

Chapter 4 – Computation model of asynchronous distributed programs

A0

A1

An-1

An

Mailbox0

Mailboxm

Mutex0

Mutexk

Action

Action

Action

Action

paired comm

paired com Commmunications

Synchronization
 Subsystem

Network
 Subsystem

Actors

Figure 4.1 – Main elements of the model: Actors, Network and Synchronization.

tem provides facilities for the Actors to asynchronously communicate with each other,
while the subsystem Synchronization allows the synchronization of actors on the ac-
cess to shared resources.

Network subsystem. The state of the Network subsystem is defined as a pair:
〈Mailboxes,Communications〉, where Mailboxes is a set of mailboxes storing unpaired
communications, while Communications stores only paired ones. Each communica-
tion c has a status in {send , receive,done}, ids of source and destination actors, data
addresses for those.

A mailbox is a rendez-vous point where send and receive communications meet.
It is modelled as an unbounded FIFO queue that is either empty or stores communi-
cations with all same send or receive status, waiting for a matching opposite commu-
nication. When matching occurs, this paired communication gets a done status and is
appended to the set Communications.

We now detail the effect in actor Ai of the communication actions on Mailboxes and
Communications:

52

4.1 Informal description of the model

— c = AsyncSend(m, data) drops an asynchronous send communication c to the
mailbox m. If pending receive communications exist in the mailbox, c is paired
with the oldest one c ′ to form a communication with done status in Communica-
tions, the receive communication is removed from m and the data is copied from
the source to the destination. Otherwise, a pending communication with send sta-
tus is appended to m.

— c ′ = AsyncReceive(m ′, d) drops an asynchronous receive communication to
mailbox m ′; the way a receive communication is processed is similar to send .
If pending send communications exist, c′ is paired with the oldest one c to form a
communication with done status in Communications, the send communication is
removed from m, and the data of the send is copied to d . Otherwise, a pending
communication with receive status is appended to m.

— TestAny(Com) tests a set of communications Com of Ai . It returns a boolean
which value is true if and only if a communication in Com with done status exists.

— WaitAny(Com) waits for a set of communications Com of Ai . The action is block-
ing until at least one communication in Com has a done status.

Example 4 Figure 4.2 visualizes the main steps of sending data between two actors
Ai and Aj . Actor Ai firstly drops a send communication to a particular mailbox. Sup-
pose the mailbox is empty before the send communication arrives, then now only the
send communication is stored in the mailbox. Secondly, actor Aj posts a receive com-
munication to the same mailbox. The send and receive communications are paired to
create a done communication in Communications, and then data is copied from Ai to
Aj . When applying the reverse order in which the receive communication is posted
to the mailbox before the send communication arrives, we also get the same result,
creating a done communication and copying the data from Ai to Aj . Actor Ai and Aj

can test if their communications are done by executing TestAny actions or wait for their
communications by performing WaitAny actions.

53

Chapter 4 – Computation model of asynchronous distributed programs

Ai

c= AsyncSend(m, d)

s

c'= AsyncReceive(m, d')

WaitAny({ c })

Aj

TestAny({ c' })

Ai

c= AsyncSend(m, d)

s

c'= AsyncReceive(m, d')

WaitAny({ c })

Aj

TestAny({ c' })

RR

Ai

c= AsyncSend(m, d) c'= AsyncReceive(m, d')

WaitAny({ c })

Aj

TestAny({ c' })

d is copied to d' Communications
done

mailbox fifo pairing

Figure 4.2 – Main steps of the communication

Synchronization subsystem. The Synchronization subsystem consists in a pair:
〈Mutexes,Requests〉 where Mutexes is a set of asynchronous mutexes used to syn-
chronize the actors, and Requests is a vector indexed by actors ids of sets of requested
mutexes. Each mutex mj is represented by a FIFO queue of actors ids i who declared
their interest on a mutex mj by executing the action AsyncMutexLock(mj) as depicted
in Figure 4.3. A mutex mj is free if its queue is empty, busy otherwise. The owner is
the actor whose id is the first in the queue. In actor Ai , the effect of the synchronization
actions on Mutexes and Requests is as follows:

— AsyncMutexLock(mj) requests a mutex mj with the effect of appending the actor
id i to mj ’s queue and adding j to Requests[i]. Ai is waiting until owning mj but,
unlike classical mutexes, waiting is not necessarily blocking.

— MutexUnlock(mj) removes its interest to a mutex mj by deleting the actor id i
from the mj ’s queue and removing j from Requests[i].

54

4.1 Informal description of the model

Mutexes

waitingQueue0

FIFO

Aid0 (owner)

Aid1

Aid1 (owner) Aid0 Aid2

waitingQueue1

Aid3 (owner) Aid5 Aid6 Aid4

waitingQueuek-1

waitingQueuek

Figure 4.3 – Each mutex uses a waiting queue consisting of actor identifiers.

— MutexTestAny(M) checks if actor Ai owns some previously requested mutex mj

in set M (j is in Requests[i]), returning true if it is the case.

— MutexWaitAny(M) blocks until Ai owns some mutex mj in M . Note that Mutex-
TestAny (resp. MutexWaitAny) are similar to TestAny (resp. WaitAny) and could
be merged. We keep them separate here for simplicity of explanations.

Example 5 Figure 4.4 visualizes how synchronization actions work in a simple case.
Two actors Ai and Aj want to access a shared resource that is protected by a mutex.
The actors declare their interests on the mutex by executing AsyncMutexLock actions.
Suppose actor Ai executes an AsyncMutexLock first, then it is the owner of the mu-
tex. If actor Aj executes an AsyncMutexLock later, it is the second actor in the waiting
queue of the mutex (its id is the second element in the waiting queue). Then Ai tests if
it is the owner of the mutex by performing a MutexTestAny. Since the test returns true,
Ai enters the shared resource. Meanwhile Aj is blocked because it waits to become
the owner of the mutex by employing a MutexWaitAny action. After working with the
shared resource, Ai executes a MutexUnlock to remove its interest on the mutex. Re-
moving the id of Ai from the waiting queue entails Aj becomes the mutex owner, and
Aj can execute the MutexWaitAny action. After that Aj can access the shared resource.

55

Chapter 4 – Computation model of asynchronous distributed programs

Ai

r= AsyncMutexLock(mt)
r'= AsyncMutexLock(mt)

Aj

i j

Ai Aj

i j

shared
resource

MutexTestAny({ r })

shared
resource

access

Ai Aj

i j

shared
resource

MutexUnlock(r)

Ai Aj

j

shared
resource

access

MutexWaitAny({r'})

MutexWaitAny({r'})

MutexWaitAny({r'})

mutex fifo policy

Figure 4.4 – Actors are synchronized by using synchronization actions

In addition to the above actions, a program can have local computations named
LocalComp actions. Such actions do not intervene with shared objects (Mailboxes,
Mutexes and Communications), and they can be responsible for I/O tasks.

We specified our model of asynchronous distributed systems in the formal language
TLA+ [28]. Our TLA+ model, presented in the following, is also available online 1. It fo-
cuses on how actions transform the global state of the system. An instance P of a
program is described by a set of actors and their actions (representing their source
code). Following the semantics of TLA+, and since programs are terminating, the inter-
leaving semantics of a program P can be described by an acyclic LTS representing all
its behaviors. Formally, the LTS of P is a tuple TP = 〈S , s0,Σ,→〉 where Σ represents
the actions of P ; a state s =< l , g > in S consists of the local state l of all actors
(i.e. local variables, Requests) and the state g of all shared objects including Mutexes,
Mailboxes and Communications. In the initial state s0, all actors are in their initial local
state, sets and FIFO queues are empty. A transition t : s a−→ s ′ ∈ → is defined if, ac-

1. https://github.com/pham-theanh/simixNetworks

56

4.2 Model specification

cording to the TLA+ model, the action encoded by a is enabled at s and executing a
transforms the state from s to s ′.

Notice that when verifying a real program, we only observe its actions and assume
that they respect the proposed TLA+ model and the independence relation discussed
below. These assumptions are necessary to suppose that the LTS correctly models the
actual program behaviors.

4.2 Model specification

In order to get the formal semantics of the abstract model, we use the TLA+ lan-
guage [28]. TLA+ is a formal specification language for high-level modeling of concur-
rent systems. The language that first appeared in 1999 was developed by Leslie Lam-
port. The TLA+ specification of a system describes all possible actions (behaviors) of
the system by using the Temporal Logic of Actions (TLA). So, each action is specified
as a formula of TLA describing how the states of the system evaluate, in which a state
is characterized by values of variables. The evolution of the system starts at the initial
state (initial predicate) denoting the initial condition, and it transforms into a new state
depending on what action is taken, in which the action is decided by the system’s next-
state relation. One of the main advantages of TLA+ is that a TLA+ specification can be
model-checked by using the TLC model checker to verify given properties defined by
users.

The figure 4.5 presents the data model of the abstract model. The state of the
system is represented by six variables: Communications, Mailboxes, Memory , Mutexes,
nbComMbs and Requests. Communications is the set of all paired communications in the
system (i.e. when a pair of send and receive requests have been matched). Mailboxes
is an array indexed by MailboxesIds. Mailboxes [i] is a FIFO queue which stores send or
receive communications (unpaired communications). Memory is an array indexed by
Actors (a set of ids), and Memory [i] is a memory local to the actor i used to store ids
of communications and indexed by Adresses. Mutexes is an array indexed by MutexIds,
and Mutexes [i] is a FIFO queue that remembers which actors have required the mu-
tex i . Requests is an array indexed by Actors; Requests [i] is the set of mutexes (ids of
mutexes) requested by the actor i . Lastly, nbComMbs is a array indexed by MailboxIds,
and it is used to set ids for communications concerning Mailboxes [i].

57

Chapter 4 – Computation model of asynchronous distributed programs

MODULE abstractModel

EXTENDS Integers , Naturals , Sequences , FiniteSets , TLC
CONSTANTS Actors , MailboxesIds , MutexIds , Addresses
VARIABLES Communications , Memory , Mutexes , Requests , Mailboxes , nbComMbs
NoActor ∆= “NoActor”
NoAddr ∆= “NoAddress”
Comm ∆= [id : STRING,

status : {“send”, “receive”, “done”},
src : Actors ∪ {NoActor},
dst : Actors ∪ {NoActor},
data src : Addresses ∪ {NoAddr},
data dst : Addresses ∪ {NoAddr}]

TypeInv ∆= ∧ Communications ∈ SUBSET Comm
∧ ∀ c ∈ Communications : c.status = “done”
∧Mailboxes ∈ [MailboxesIds → Seq(Comm)]
∧ ∀mbId ∈ MailboxesIds : ∀ i ∈ 1 . . Len(Mailboxes [mbId]) :

∧Mailboxes [mbId][i].status ∈ {“send”, “receive”}
∧Mailboxes [mbId][i].status = Mailboxes [mbId][1].status

∧ Mutexes ∈ [MutexIds → Seq(Actors)]
∧ ∀mId ∈ MutexIds : ∀ id ∈ DOMAIN Mutexes [mId] : Mutexes [mId][id] ∈ Actors
∧ Requests ∈ [Actors → Seq(MutexIds)]
∧Memory ∈ [Actors → [Addresses → STRING]]
∧ nbComMbs ∈ Nat

Figure 4.5 – TLA+ specification of the abstract model: data model.

AsyncSend specification. Figure 4.6 expresses the specification for the AsyncSend
action. The actor aId sends a "send" communication to the mailbox mbId . If a pending
"receive" communication already exists, they are combined to create a "done" paired
communication in Communications and data is copied from the source to the destina-
tion, otherwise a new communication with "send" status is created. Address data addr
of actor aId contains the data to transmit while memory address comm addr of actor
aId is assigned the id of the communication.

58

4.2 Model specification

AsyncSend(aId , mbId , data addr , comm addr) ∆=
∧ aId ∈ Actors
∧mbId ∈ MailboxesIds
∧ data addr ∈ Addresses
∧ ∨ ∧ ∨ Len(Mailboxes [mbId]) = 0

∨ ∧ Len(Mailboxes [mbId]) > 0
∧ Head(Mailboxes [mbId]).status = “send”

∧ LET comm ∆=
[id 7→ converToString(nbComMbs [mbId], “Mb”, mbId),
status 7→ “send”, src 7→ aId , dst 7→ NoActor ,
data src 7→ data addr , data dst 7→ NoAddr]

IN

∧Mailboxes ′ = [Mailboxes EXCEPT ! [mbId] = Append(Mailboxes [mbId], comm)]
∧Memory ′ = [Memory EXCEPT ! [aId][comm addr] = comm.id]
∧ UNCHANGED 〈Communications〉
∧ nbComMbs ′ = [nbComMbs EXCEPT ! [mbId] = nbComMbs [mbId] + 1]

∨ ∧ Len(Mailboxes [mbId]) > 0
∧ Head(Mailboxes [mbId]).status = “receive”
∧ LET comm ∆= Head(Mailboxes [mbId])

IN ∧ Communications ′ =
Communications ∪ {[comm EXCEPT

! .status = “done”, ! .src = aId ,
! .data src = data addr]}

∧Mailboxes ′ = [Mailboxes EXCEPT ! [mbId] = Tail(Mailboxes [mbId])]
∧Memory ′ = [Memory EXCEPT ! [comm.dst][comm.data dst] =

Memory [aId][data addr]]
∧ UNCHANGED 〈nbComMbs〉

∧ UNCHANGED 〈Mutexes , Requests〉

Figure 4.6 – TLA+ specification of the abstract model: AsyncSend action.

AsyncReceive specification. Similarly, the actor aId posts a "receive" communica-
tion to the mailbox mbId . If there is a pending "send" communication in the same mail-
box mbId , they are combined to create a "done" communication in Communications and

59

Chapter 4 – Computation model of asynchronous distributed programs

data is copied from the source to the destination, otherwise a new communication is
created with "receive" status. Figure 4.7 presents the specification of the AsyncReceive
action.

AsyncReceive(aId , mbId , data addr , comm addr) ∆=
∧ aId ∈ Actors
∧mbId ∈ MailboxesIds
∧ ∨ ∧ ∨ Len(Mailboxes [mbId]) = 0

∨ ∧ Len(Mailboxes [mbId]) > 0
∧ Head(Mailboxes [mbId]).status = “receive”

∧ LET comm ∆=
[id 7→ converToString(nbComMbs [mbId], “Mb”, mbId),
status 7→ “receive”, src 7→ NoActor , dst 7→ aId ,
data src 7→ NoAddr , data dst 7→ data addr]

IN

∧Mailboxes ′ = [Mailboxes EXCEPT ! [mbId] = Append(Mailboxes [mbId], comm)]
∧Memory ′ = [Memory EXCEPT ! [aId][comm addr] = comm.id]
∧ UNCHANGED 〈Communications〉
∧ nbComMbs ′ = [nbComMbs EXCEPT ! [aId] = nbComMbs [aId] + 1]

∨ ∧ Len(Mailboxes [mbId]) > 0
∧ Head(Mailboxes [mbId]).status = “send”
∧ LET comm ∆= Head(Mailboxes [mbId])

IN ∧ Communications ′ =
Communications ∪ {[comm EXCEPT

! .status = “done”, ! .dst = aId ,
! .data dst = data addr]}

∧Memory ′ = [Memory EXCEPT ! [aId][data addr] =
Memory [comm.src][comm.data src]]

∧Mailboxes ′ = [Mailboxes EXCEPT ! [mbId] = Tail(Mailboxes [mbId])]
∧ UNCHANGED 〈nbComMbs〉

∧ UNCHANGED 〈Mutexes , Requests〉

Figure 4.7 – TLA+ specification of the abstract model: AsyncReceive action.

60

4.2 Model specification

WaitAny action specification. The actor aId waits for at least one communication
from a given set comm addrs (a list of addresses in the memory where ids of communi-
cations are stored) to complete. If at least one communication is already "done", there
is nothing to do, else the function is blocking.

WaitAny(aId , comm addrs) ∆=
∧ aId ∈ Actors
∧ ∃ comm addr ∈ comm addrs , comm ∈ Communications :

comm.id = Memory [aId][comm addr]
∧ UNCHANGED 〈Mutexes , Requests , Mailboxes , nbComMbs , Memory , Communications〉

Figure 4.8 – TLA+ specification of WaitAny action.

TestAny specification. Actor aId tests a set of communications comm addrs, and
returns a boolean value at memory address testResult Addr . If there is at least one
done communication, then the function returns value "true", otherwise it returns value
"false". Besides, the function is never blocking.

TestAny(aId , comm addrs , testResult Addr) ∆=
∧ aId ∈ Actors
∧ ∨ ∧ ∃ comm addr ∈ comm addrs , comm ∈ Communications :

comm.id = Memory [aId][comm addr]
∧Memory ′ = [Memory EXCEPT ! [aId][testResult Addr] = “true”]

∨ ∧ ¬∃ comm addr ∈ comm addrs , comm ∈ Communications :
comm.id = Memory [aId][comm addr]

∧Memory ′ = [Memory EXCEPT ! [aId][testResult Addr] = “false”]
∧ UNCHANGED 〈Mutexes , Requests , Mailboxes , Communications , nbComMbs〉

Figure 4.9 – TLA+ specification of TestAny action.

AsyncMutexLock specification. The actor aId requests a lock on mutex mId . If
it has no pending request on the mutex, a new request is created and added to
Requests [aId] and the id of the actor is appended to Mutexes [mId] .

61

Chapter 4 – Computation model of asynchronous distributed programs

AsyncMutexLock(aId , mId) ∆=
∧ aId ∈ Actors
∧mId ∈ MutexIds
∧ req addr ∈ Addresses
∧ ¬isMember(aId , Mutexes [mId])
∧ Requests ′ = [Requests EXCEPT ! [aId] = Requests [aId] ∪ {mId}]
∧ Mutexes ′ = [Mutexes EXCEPT ! [mId] = Append(Mutexes [mId], aId)]
∧ UNCHANGED 〈Communications , Mailboxes , nbComMbs , Memory〉

Figure 4.10 – TLA+ specification of AsyncMutexLock action.

MutexUnlock specification. Actor aId releases mutex mId . It is either a normal un-
lock when aId owns the mutex, or a cancel of the pending request otherwise. In both
cases all links between the mutex and the actor in Mutexes [mId] and Requests [aId] are
removed.

MutexUnlock(aId , mId) ∆=
∧ aId ∈ Actors
∧ ∨ ∧ isMember(aId , Mutexes [mId])

∧Mutexes ′ = [Mutexes EXCEPT ! [mId] = remove(aId , Mutexes [mId])]
∧ Requests ′ = [Requests EXCEPT ! [aId] = Requests [aId] \ {mId}]
∧ UNCHANGED 〈Memory , Communications , Mailboxes , nbtest , nbComMbs〉

∨ ∧ ¬isMember(aId , Mutexes [mId])
∧ UNCHANGED 〈Memory , Communications , Mailboxes , nbComMbs ,

Requests , Mutexes〉

Figure 4.11 – TLA+ specification of MutexUnlock action.

MutexWaitAny specification. Actor aId waits for a set of lock requests requests. If
the actor owns at least one mutex, this functions is enabled; otherwise, it is blocked.

62

4.2 Model specification

MutexWaitAny(aId , requests) ∆=
∧ aId ∈ Actors
∧ ∃ req ∈ requests : isHead(aId , Mutexes [req])
∧ UNCHANGED 〈Memory , Mutexes , Requests , Communications , Mailboxes , nbComMbs〉

Figure 4.12 – TLA+ specification of MutexWaitAny action.

MutexTestAny specification. Actor aId tests for a set of lock requests requests. If
the actor owns at least one mutex, the "true" value is assigned to the memory of actor
aId at address testResult Addr otherwise a "false" value is assigned to testResult Addr .

MutexTestAny(aId , requests , testResult Addr) ∆=
∧ aId ∈ Actors
∧ testResult Addr ∈ Addresses
∧ ∨ ∧ ∃ req ∈ requests : isHead(aId , Mutexes [req])

∧Memory ′ = [Memory EXCEPT ! [aId][testResult Addr] = “true”]
∨ ∧ ¬∃ req ∈ requests : isHead(aId , Mutexes [req])
∧Memory ′ = [Memory EXCEPT ! [aId][testResult Addr] = “false”]

∧ UNCHANGED 〈Mutexes , Requests , Communications , Mailboxes , nbComMbs〉

Figure 4.13 – TLA+ specification of MutexTestAny action.

LocalComp specification. A local computation of the actor aId can change the
value of this actor’s memory at any address.

Local(aId) ∆=
∧ aId ∈ Actors
∧Memory ′ ∈ [Actors → [Addresses → {“ ”}]]
∧ UNCHANGED 〈Communications , Mutexes , Requests , Mailboxes , nbComMbs〉

Figure 4.14 – TLA+ specification of LocalComp action.

63

Chapter 4 – Computation model of asynchronous distributed programs

4.3 Persistence

The model presented in the previous section may appear unusual because the lock
action on mutexes is split into an AsyncMutexLock and a MutexWaitAny while most
works in the literature consider atomic locks. Our model does not induce any loss of
generality since synchronous locks can trivially be simulated with asynchronous locks.
One reason to introduce this specificity is that this entails the following lemma, that is
the key to the efficiency of UDPOR in our model.

Lemma 1 Let u be a prefix of an execution v of a program in our model. If an action a
is enabled after u, it is either executed in v or still enabled after v .

The lemma implies the following condition that can be formally expressed as fol-
lows 2:
∀ action1, action2 ∈ {AsyncMutexLock(,),MutexUnlock(,),MutexWaitAny(,),
MutexTestAny(, ,),AsyncSend(, , ,),AsyncReceive(, , ,),TestAny(, ,),
WaitAny(, ,),LocalComp()} :

∧ action1 6= action2
∧ (ENABLED action1 ∧ ENABLED action2)
=⇒ (action1 =⇒ (ENABLED action2)′)

c

c

a

b

c

Figure 4.15 – Action c remains enabled until being executed.

Proof 1 (Sketch) When a is a LocalComp, AsyncSend, AsyncReceive, TestAny, Async-
MutexLock, MutexUnlock, or MutexTestAny action, a cannot be disabled by any new ac-
tion. Indeed, these actions are never blocking (e.g. AsyncMutexLock (m) comes down

2. The lemma can be fully expressed in TLA+, but we keep like that for simplicity.

64

4.4 Independence theorems

to the addition of an element in a FIFO, which is always enabled) and only depend on
the execution of the action right before them by the same actor.

WaitAny and MutexWaitAny may seem more complex. If a is a WaitAny, being en-
abled after u means that one communication it refers to was paired. Similarly, if a is
a MutexWaitAny, being enabled after u means that the corresponding actor is first in
the FIFO of a mutex it refers to. In both cases, these facts cannot be modified by any
subsequent action of any other actors, so a remains enabled until executed.

Intuitively, this lemma induces that once enabled, actions are never disabled by any
subsequent action and remain enabled until executed. This does not hold for classi-
cal synchronous locks, as an enabled action lock(m) of an actor may be disabled by
another actor locking the same mutex first.

4.4 Independence theorems

In order to use DPOR algorithms for our model of distributed programs, and in par-
ticular UDPOR that is based on the unfolding semantics, we need to define a valid
independence relation for this model. This relation is formally expressed in TLA+ as
so-called "independence theorems". We use the term "theorem" since the validity of
the independence relation with respect to commutation should be proved 3. We proved
them manually and implemented them as rules in our model checker. Some indepen-
dence theorems could be enlarged by finding other conditions inducing independence,
but this requires expressing more detailed and complex conditions. We give these for
simplicity. Intuitively, two actions in distinct actors are independent when they do not
compete on shared objects, such as Mailboxes, Communications, or Mutexes. This is
formally expressed in theorem 4.4.1. Notice that with the Lemma 1, the enableness
of an action is never changed by firing any action in our model. Thus, the disabling
condition in Eq3.1 page 41 (i.e., one does not disable the other one) does not need to
be checked when we prove the theorems.

Let ReadVariables(a) denote the set of variables (or variable parts in case of sets)
that are read while evaluating the transition a. Similarly, let WriteVariables(a) denote
the set of variable parts that are modified when the transition a is taken. Finally, we

3. What we prove is that actions commute, thus considering them as independent is valid.

65

Chapter 4 – Computation model of asynchronous distributed programs

note Variables(a) the set of all variable parts involved in transition a. Variables(a) =
ReadVariables(a) ∪WriteVariables(a).

Theorem 4.4.1 Any two actions a1 and a2 can only be dependent if they have some
shared variables. Formally, (Variables(a1) ∩ Variables(a2) = ∅)⇒ I (a1, a2)

Proof 2 Whether a2 is enabled depends only on the state that is in ReadVariables(a2).
Thus if ReadVariables(a2) ∩ Variables(a1) = ∅ then the execution of a1 has no impact
on whether a2 is enabled. Eq3.1 is thus verified in this case.

In addition, if WriteVariables(a1) ∩WriteVariables(a2) = ∅ then the order in which
actions a1 and a2 are executed does not impact on the final state because the state
modifications are separated. Eq3.2 is thus verified in this case.

Please note that this theorem only introduces a necessary condition to the depen-
dence, but some actions may still involve the same variables and be independent under
some conditions. However simple cases of independence will rely on Theorem 4.4.1
as we will now see.

Theorem 4.4.2 Any pair of communication actions in distinct actors concerning distinct
mailboxes are independent.
∀ act1, act2 ∈ Actors , mbId1, mbId2 ∈ MailboxesIds :
∧ act1 6= act2 ∧mbId1 6= mbId2 ∧ TypeInv =⇒

∧ I (AsyncSend(act1, mbId1, ,), AsyncSend(act2, mbId2, ,))
∧ I (AsyncReceive(act1, mbId1, ,), AsyncReceive(act2, mbId2, ,))
∧ I (AsyncSend(act1, mbId1, ,), AsyncReceive(act2, mbId2, ,))

Proof 3 Because the two actions concern different mailboxes, and if they produce new
communications, such communications are distinct. Thus, they do not share any vari-
able and according to Theorem 4.4.1, they are independent.

Theorem 4.4.3 An AsyncSend is independent of an AsyncReceive of another actor.
∀ act1, act2 ∈ Actors : act1 6= act2 ∧ TypeInv =⇒

I (AsyncSend(act1, , ,), AsyncReceive(act2, , ,))

Proof 4 Suppose we have two actions: as of act1, and ar of act2. Both actions are
enabled at a state s = 〈 Communications, Mailboxes, nbComMbs, Memory, Mutexes,

66

4.4 Independence theorems

Requests〉, the first action is cs = AsyncSend, and second action is cr = AsyncReceive.
Let’s firstly prove that Eq3.2 (page 41) is true.

(i) If two actions concern different mailboxes, according to Theorem 4.4.2, they are
independent.

(ii) Otherwise, if they concern the same mailbox Mailboxes[i], we have the following
cases:

— If the mailbox is empty, cs and cr will be paired together regardless of the order
in the mailbox (FIFO queue). The final state after as .ar and after ar .as are thus
identical.

— If there are some pending sends in the mailbox Mailboxes[i], cs is added to the tail
of the mailbox while cr is paired with the first pending send communication of the
mailbox. In this case, also the final state after as .ar and after ar .as are identical.

— Conversely, if the are some pending receive communications in the mailbox, cr

is added to the tail of the mailbox while cs is paired with the first pending receive
communication of the mailbox. We also get the same final state with any order of
execution.

Concerning the second condition (Eq3.1), since the conditions (e.g ,mnId ∈ MaiboxesIds)
enabling AsyncSend and AsyncReceive actions are not affected by executing other ac-
tions, then the condition is satisfied.

Theorem 4.4.4 Any pair of actions in {TestAny,WaitAny} in distinct actors is indepen-
dent.
∀ act1, act2 ∈ Actors : act1 6= act2 ∧ TypeInv =⇒

∧ I (WaitAny(act1,), WaitAny(act2,))
∧ I (TestAny(act1, ,), TestAny(act2, ,))
∧ I (WaitAny(act1,), TestAny(act2, ,))

Proof 5 Let’s start with two TestAny actions. Let t1 and t2 be TestAny({Coms1}) action
and TestAny(Coms2) action, respectively. Suppose they are both enabled at state s.
With any execution orders, t1 returns a true boolean value if there is at least one done
communication in Coms1, otherwise, it returns false. Similarly, t2 also returns a boolean
value decided by the status of communications in Coms2. So, the returned values do
not depend on the execution orders but depend on the state of communications in
Coms1 and Coms2 independently of Coms1 = Coms2 or not.

67

Chapter 4 – Computation model of asynchronous distributed programs

Besides, executing one action does not change conditions (e.g., aId ∈ Actors) en-
abling the other one. Hence, we have I(t1, t2). Similarly, we have the proof for two Wait-
Any actions, and a WaitAny action and a TestAny action.

Theorem 4.4.5 Any action in {TestAny(Coms),WaitAny(Coms)} is independent with
any action of another actor in {AsyncSend,AsyncReceive} as soon as they do not
both concern the first paired communication in the set Coms.
∀ act1, act2 ∈ Actors , data, comm addr , comms ∈ SUBSET Addresses :

∧ act1 6= act2 ∧ TypeInv
∧ firstPaired(Coms) 6= Memory [act2][comm addr] =⇒
∧ I (WaitAny(act1, Coms), AsyncSend(act2, , , comm addr))
∧ I (WaitAny(act1, Coms), AsyncReceive(act2, , , comm addr))
∧ I (TestAny(act1, Coms ,), AsyncSend(act2, , , comm addr))
∧ I (TestAny(act1, Coms ,), AsyncReceive(act2, , , comm addr))

In the above formal expression, we suppose that function firstPaired(Coms) returns the
id of the first paired communication in the set Coms.

Proof 6 Let’s start with a TestAny (Coms) (called action a1) and an AsyncSend (m,
) (called action a2). Suppose they are enabled at a particular state and do not both
concern the first done communication c in Coms. There are two cases: (i) if there
is no done communication in Coms, action a1 returns a "false" value. (ii) if there are
some done communications in Coms, a1 needs only the first done communication (the
first paired AsyncSend,AsyncReceive) in Coms to return "true". Similarly, the effect of
action a2 only depends on the state of the mailbox m, regardless of the order in which
the actions are executed. Furthermore, both actions cannot be disabled by executing
the other action. Hence, they are independent. The proof for other pairs of actions can
be done similarly.

Theorem 4.4.6 Any synchronization action is independent of any communication ac-
tion of a distinct actor.
∀ act1, act2 ∈ Actors ,∀ action1 ∈ {AsyncMutexLock(act1,),MutexUnlock(act1,),
MutexWait(act1,),MutexTest(act1, ,)},∀ action2 ∈ {AsyncSend(act2, , ,),
AsyncReceive(act2, , ,),TestAny(act2, ,),WaitAny(act2, ,)} :
act1 6= act2 ∧ TypeInv =⇒ I (action1, action2)

68

4.4 Independence theorems

Proof 7 According to Theorem 4.4.1, they are independent because they concern dif-
ferent variables.

Theorem 4.4.7 Any pair of synchronization actions of distinct actors concerning dis-
tinct mutexes are independent.
∀ act1, act2 ∈ Actors , mt1, mt2 ∈ MutexIds , requests ∈ SUBSET MutexIds :
∨ act1 6= act2 ∧mt1 6= mt2 ∧ TypeInv =⇒

∧ I (AsyncMutexLock(act1, mt1), AsyncMutexLock(act2, mt2))
∧ I (AsyncMutexLock(act1, mt1), MutexUnlock(act2, mt2))
∧ I (MutexUnlock(act1, mt1), MutexUnlock(act2, mt2))

∨ act1 6= act2, requests ∈ SUBSET Requests [act2] ∧ ¬∃ req ∈ requests : req = mt1 =⇒
∧ I (AsyncMutexLock(act1, mt1), MutexTestAny(act2, requests ,))
∧ I (AsyncMutexLock(act1, mt1), MutexWaitAny(act2, requests))
∧ I (MutexUnlock(act1, mt1), MutexUnlock(act2, mt2))
∧ I (MutexUnlock(act1, mt1), MutexWaitAny(act2, requests))
∧ I (MutexUnlock(act1, mt1), MutexTestAny(act2, requests ,))

Proof 8 According to Theorem 4.4.1, they are independent because they concern dif-
ferent variables.

Theorem 4.4.8 An AsyncMutexLock is independent with a MutexUnlock of another
actor.
∀ act1, act2 ∈ Actors : act1 6= act2 ∧ TypeInv =⇒

I (AsyncMutexLock(act1,), MutexUnlock(act2,))

Proof 9 Suppose that an action AsyncMutexLock and an action MutexUnlock are exe-
cuted by actor act1 and actor act2, respectively. If they relate to different mutexes, they
are independent by the Theorem 4.4.1. Conversely, if they concern the same mutex m,
we firstly examine the execution order where AsyncMutexLock executes before Mutex-
Unlock. If executing AsyncMutexLock the id of act1 is added to Mutexes [m], and the id
of m is added to the request set of the actor act1. After that, firing MutexUnlock results
in removing the id of mutex m and the id of actor act2 from the request set of act2 and
Mutexes [m], respectively. Similarly, with the reverse order, we get the same outcome.
Besides, they do not change the conditions making each other become enabled. Thus,
they are independent.

69

Chapter 4 – Computation model of asynchronous distributed programs

Theorem 4.4.9 Any pair of actions in {MutexWaitAny,MutexTestAny} of distinct actors
is independent.
∀ act1, act2 ∈ Actors : act1 6= act2 ∧ TypeInv =⇒
∧ I (MutexTestAny(act1, ,), MutexTestAny(act2, ,))
∧ I (MutexWaitAny(act1,), MutexWaitAny(act2,))
∧ I (MutexWaitAny(act1,), MutexTestAny(act2, ,))

Proof 10 Let’s first prove the theorem for two MutexWaitAny actions. If both actions
are enabled in a particular state, with any order of execution, they only modify the
local state of their actors (changing program counters to the next actions), and do
not modify any shared data structure (e.g., mutexes, mailboxes). So, swapping them
does not change their effects. Besides, whether they are enabled or not depends only
on the state of the communications they wait on regardless of the execution of the
other action. For those reasons they are independent. We can prove it similarly for two
MutexTestAny actions, or a MutexWaitAny action and MutexTestAny action.

Theorem 4.4.10 Let firstTwoOwners(m) be the set containing first two actors in mutex
m. Let firstExecutedUnlock(M) be the first mutex m in M concerned by a MutexUnlock.
Consider the action a1 is a MutexUnlock (m) of actor Act1 and a2 is a MutexTestAny(M)
or MutexWaitAny(M) executed by actor act2. Then a1 and a2 are independent if at least
one of the actors act1 and Act2 is not in firstTwoOwners(m) for any m in M , or m is not
firstExecutedUnlock(M).
∀ act1, act2 ∈ Actors , m ∈ MutexIds , requests ∈ SUBSET MutexIds :
∧ act1 6= act2 ∧ TypeInv
∧ ∨ ¬∃m ′ ∈ M : m = m ′

∨ act1, act2 /∈ firstTwoOwners(m)
∨m 6= firstExecutedUnlock(M)

=⇒ ∧ I (MutexUnlock(act1, m), MutexWaitAny(act2, M))
∧ I (MutexUnlock(act1, m), MutexTestAny(act2, M ,))

In the above expression, we suppose that function firstTwoOwners(mt) returns true if
the two actors are the first two actors in mutex mt , otherwise it returns false. Function
firstExecutedUnlock(M) gives the first mutex m in M concerned by a MutexUnlock .

Proof 11 Let’s start with a MutexTestAny (M) (called action a1) and an MutexUnlock
(m) (called action a2). Suppose they are enabled at a particular state.

70

4.4 Independence theorems

- If they do not concern the same mutex, then according to theorem 4.4.1 they are
independent.

- If they concern the same mutex, there are two cases:

(i) If at least one of them is not in firstTwoOwners(m). Executing a1 returns "true"
if the actor of a1 is the first actor in some mutex in M , otherwise it returns "false".
Executing a2 is removing the actor (actually id of the actor) of action a2 from Mutexes [m].
Changing the execution order, we get the same output because the effects of both
actions do not depend on any execution order.

(ii) If they are both in firstTwoOwners(m). If a2 is not equal to firstExecutedUnlock(M).
In any execution order, MutexTestAny (M) always returns a "true" value, since there is
some MutexUnlock already executed, resulting in a1 is the first actor in some mutex in
M . If we change the execution order, we get the same overall outcome. From the above
reasons, they are independent. For other pairs of actions, we can prove similarly.

Theorem 4.4.11 An AsyncMutexLock is independent of any MutexWaitAny and Mutex-
TestAny of another actor.
∀ act1, act2 ∈ Actors : act1 6= act2 ∧ TypeInv =⇒

∧ I (AsyncMutexLock(act1,), MutexWaitAny(act2,))
∧ I (AsyncMutexLock(act1,), MutexTestAny(act2, ,))

Proof 12 Let’s prove for a AsyncMutexLock and a MutexWaitAny. If both actions are
enabled, their effects do not depend on the order of execution. Indeed, after executing
AsyncMutexLock, the id of the mutex is added to the request set of the actor that
fires AsyncMutexLock while the id of the actor is enqueued to the mutex. Besides,
firing MutexWaitAny does not change any variables. From the above arguments, we
can conclude that they are independent. For the pair of AsyncMutexLock and Mutex-
TestAny, we can prove similarly.

Theorem 4.4.12 A LocalComp is independent with any other action of another actor.
∀ action1 ∈ {AsyncMutexLock(act1,),MutexUnlock(act1,),MutexWait(act1,),

MutexTestAny(act1, ,),AsyncSend(act1, , ,),AsyncReceive(act1, , ,),
TestAnyAny(act1, ,),WaitAny(act1, ,), localComp(act1)},
∀ action2 ∈ {LocalComp(act2)} : act1 6= act2 ∧ TypeInv

=⇒ I (action1, action2)

Proof 13 According to Theorem 4.4.1 they must be independent because they con-
cern different variables.

71

Chapter 4 – Computation model of asynchronous distributed programs

4.5 Encoding MPI programs

In this section, we will introduce some information about MPI as well as some of its
basic functions. Then the way we encode MPI programs through the abstract model
will also be presented briefly.

4.5.1 Introduction to MPI programs

The Message Passing Interface Standard (MPI) [15] is a standard message pass-
ing library defining the syntax and semantics of core routines that will be used to write
message-passing programs in C, C++, and Fortran. The first version (version 1.0) of
MPI was released in June 1994 after some modifications of a draft MPI standard. Cur-
rently, MPI has version 3.1, there has been many changes compared to the first version
along with having many functions formally specified. There are several library imple-
mentations of MPI, for example, MPICH, Intel MPI, and OpenMPI.

Many high-performance computing applications have been implemented by using
MPI libraries. By providing a variety of useful functions and efficient ways for writing
distributed programs, they may still be the first choice for HPC application develop-
ers in the coming years. Figure 4.16 displays an MPI program written in C. Each MPI
program comprises some autonomous processes deployed on different computers. It
inherits the properties of distributed applications such as processes communicating
with others by exchanging messages via calling MPI communication functions. For ex-
ample, the function MPI Send is used to send a message from a particular process
to a destination process while receiving a message can be done by calling a function
MPI Receive. To increase performance as well as flexibility, MPI provides a range of
communication modes, including point-to-point communications, collective communi-
cations, one-sided communications. Which function to use depends on the computa-
tion requirements as well as users experience. The remainder of the section introduces
some point-to-point communication primitives that are closely similar to the primitives
in our abstract model of distributed programs.

Point-to-Point Communication Point-to-point communication is a fundamental form
of message-passing communication. Two nodes are involved: one sends a message to
the other. There are several MPI functions defined in this mode, and they can be divided

72

4.5 Encoding MPI programs

#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])
{
int rank, world_size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
printf("Hello, i am %d of %d \n", rank, world_size);
MPI_Finalize();
return 0;
}

Figure 4.16 – A simple MPI program

into two groups: blocking and non-blocking. A process may wait for a blocking function
until success while it will not wait to complete a non-blocking function, executing the
next action immediately.

— MPI Isend(const void *buf, int count, MPI Datatype datatype, int dest, int
tag, MPI Comm comm, MPI Request *request): it is a non-blocking function
for sending data where buf is the initial address of the data buffer that will be
transferred to the destination node, count (an integer) is the number of elements
in send buffer, datatype is the datatype of the data in buf, dest is the rank of
destination node, tag is the message tag, and comm is the MPI communicator,
finally request is the communication request.

— MPI Irecv(void *buf, int count, MPI Datatype datatype, int source, int tag,
MPI Comm comm, MPI Request * request): a non-blocking function for receiv-
ing data where buf is the initial address of the memory where the receiving data
will be stored, and source is the rank of the source process sending the data
that will be received, count is the maximum number of elements in receive buffer.
MPI Irecv function can receive data from any source process by setting source to
MPI ANY SOURCE. Other parameters have the same semantics as described
for MPI Isend.

— MPI Send(const void *buf, int count, MPI Datatype datatype, int dest, int
tag, MPI Comm comm): similar to MPI Isend , it is used to send data, but while
MPI Isend is a non-blocking function, MPI Send is a blocking one. The param-

73

Chapter 4 – Computation model of asynchronous distributed programs

eters in MPI Send have the same semantics as presented for MPI Isend. Note
that here buf does not refer to the runtime buffer in the next section (a motivating
example).

— MPI Recv(void *buf, int count, MPI Datatype datatype, int source, int tag,
MPI Comm comm, MPI Status * status): a blocking function where status stores
information about the receive operation after it completes. Other parameters have
the same semantics as described in MPI Irecv.

To check the status of a non-blocking MPI Isend and MPI Irecv, one can use MPI Test
or MPI Testany.

— MPI Test(MPI Request * request, int *flag, MPI Status * status) : MPI TEST
returns flag = true if the operation identified by request is completed. In that
case, the information on the completed operation is stored in the status object.
Otherwise, the function returns flag = false, and the value of the status object is
undefined.

— MPI Testany(int count, MPI Request array of requests[], int *index, int *flag,
MPI Status *status): tests an array of requests (array of requests) with size =
count. If at least one request is completed then flag is set to true and returns in
index the index of the completed request, otherwise flag is set to false.

To wait for a blocking MPI Isend and MPI Irecv, one can use MPI Wait, MPI Wait-
any, or MPI Waitall.

— MPI Wait(MPI Request *req, MPI Status *status): waits for the completion of
the request identified by the parameter req. An instance of MPI Status that keeps
information of the request is returned in status as soon as the request req is
completed.

— MPI Waitany(int count, MPI Request array of requests, int *index, MPI Sta-
tus *status) : waits for an array of requests (array of requests). The action is
blocked until at least one communication in the array is completed. Parameter
index stores the index of the first completed request in array of requests while
status keeps the status of the completed request.

— MPI Waitall(int count, MPI Request array of requests[], MPI Status array
of statuses[]): waits for an array of requests (array of requests). The action is
blocked until all communications in the array is completed.

74

4.5 Encoding MPI programs

4.5.2 Encoding

We aim at leveraging UDPOR while verifying MPI programs. Since our computa-
tional model is more abstract than MPI, this section presents how MPI primitives can
be encoded in our model.

MPI_Send

MPI_Receive

P0 P1

MPI_Send

MPI_Receive

Figure 4.17 – An MPI program with a potential deadlock

A motivating example We begin with a simple example shown in Figure 4.17. Sup-
pose we have an MPI program consisting of two processes P0 and P1. Both processes
try to send a message to the other by executing a MPI Send function. After perform-
ing sending functions, they both execute MPI Recv to receive the message from the
other. At first glance, we may think that running that program can encounter a deadlock
since there is a dependency cycle (MPI send of the first process waits for MPI Recv
of the second one while MPI Send of the second process waits for the MPI Recv of
the first one). Interestingly, depending on presence or absence of buffering (finite or
zero buffering) in MPI nodes, the deadlock may or may not appear.

The semantics of MPI Send functions are ambiguously defined. A MPI Send is
an asynchronous call under zero buffering (messages have no buffering) while under
infinite buffering (messages are copied into a runtime buffer) it does not wait for a
matching MPI Recv to be completed. Therefore, the scenario in Figure 4.17 may or
may not have a deadlock. Our programming model can encode MPI functions in the
both infinite buffering and zero buffering semantics.

Encoding MPI programs Based on the semantics of MPI functions and the abstract
model, we can represent MPI functions by using the primitives of the abstract model.

75

Chapter 4 – Computation model of asynchronous distributed programs

Table 4.18 presents the correspondence between some MPI functions and the actions
in the abstract model. There is a minor difference between the two modes in the table.
While in infinite buffering mode, an MPI Send is represented by an AsyncSend action,
it is encoded by a pair composed of an AsyncSend action and a WaitAny action in the
zero buffering mode.

MPI functions Infinite buffering Zero buffering

MPI Send
AsyncSend

AsyncSend + WaitAny

MPI Isend AsyncSend

MPI Recv AsyncReceive + WaitAny AsyncReceive + WaitAny

MPI Irecv AsyncReceive AsyncReceive

MPI Test
TestAny TestAny

MPI Testany

MPI Wait
WaitAny WaitAny

MPI Waitany

MPI Win lock
AsyncMutexLock +

MutexWaitAny

AsyncMutexLock +

MutexWaitAny

MPI Win unlock MutexUnlock MutexUnlock

Figure 4.18 – Representations of some basic MPI functions in the two modes.

Actor0
c = AsyncSend(mb1)
c1 = AsyncReceive(mb0)
WaitAny({c1})

Actor1
c2 = AsyncSend(mb0)
c3 = AsyncReceive(mb1)
WaitAny({c3})

Actor0
c = AsyncSend(mb1)
WaitAny({c})
c1 = AsyncReceive(mb0)
WaitAny({c1})
Actor1
c2 = AsyncSend(mb0)
WaitAny({c2})
c3 = AsyncReceive(mb1)
WaitAny({c3})

Figure 4.19 – Encoding of a MPI program in two modes infinite and zero buffering.

76

4.5 Encoding MPI programs

We now easily encode the MPI program in Figure 4.17. Each process in the pro-
gram is represented by an actor. There are two mailboxes mb0 and mb1. Actor0 posts
a send communication to mb1 and a receive one to mb0. Meanwhile in the opposite
direction, Actor1 sends a communication to mb0 and a receive one to mb1. Figure 4.19
demonstrates the encoding of the MPI program in the two modes (zero buffering mode
in the right and infinite buffering mode in the left). There is only one difference be-
tween the two modes related to the encoding of MPI Send function. Obviously, the
zero buffering mode version encounters a deadlock since both actors are blocked; the
communications they wait for can not become done communications because there
are no matching communications for them to pair with in the mailboxes.

P0
MPI Irecv (from P1, &reqs[0]);
MPI Irecv (from P1, &reqs[1]);
MPI Waitall (2, reqs);
MPI Send (to P1);

P1
MPI Isend (to P0, &reqs[0]);
MPI Isend (to P2, &reqs[1]);
MPI Waitall (2, reqs, statuses);
MPI Recv (from P0);
MPI Recv (from P0);

P2
MPI Recv (from P1);

Actor0
c = AsyncReceive (mb0);
c1 = AsyncReceive (mb0);
WaitAny({ c });
WaitAny({ c1 });
c3 = AsyncSend (mb1);
WaitAny({ c3 });

Actor1
c4 = AsyncSend (mb0);
c5 = AsyncSend (mb2);
WaitAny({ c4 });
WaitAny({ c5 });
c6 = AsyncReceive (mb1);
WaitAny(c6);
c7 = AsyncReceive (mb1);
WaitAny({ c7 });

Actor2 c8 = AsyncReceive (mb2);
WaitAny({ c8 });

Figure 4.20 – An MPI program (in the left) and its encoding (in the right).

Consider now a more complex program shown in the left of the Figure 4.20. In

77

Chapter 4 – Computation model of asynchronous distributed programs

the zero buffering mode, with any executing orders, the program encounters deadlocks
because P0 and P1 wait for each other. The encoding of that program (in zero buffering
mode) is shown in the right of Figure 4.20. In the encoding, the MPI Waitall function is
simulated by using two WaitAny actions. In the general case, a function MPI Waitall
that waits a set of n requests can be simulated by n WaitAny actions where each action
waits for an individual request. The corresponding actions encode other MPI functions
in the program.

Simple MPI programs can be easily encoded through the abstract model. How-
ever, encoding complex programs with many types of MPI functions becomes more
complicated. For instance, encoding an MPI function may need a block of actions in
the abstract model, or creating mailboxes for communications should be efficient. The
primitives of our abstract model closely match the ones provided by SimGrid’s simu-
lation kernel. SimGrid provides a programming environment for the simulation of MPI
applications, namely SMPI. SMPI runs MPI applications on top of that kernel thanks
to a re-implementation of the MPI primitives on top of the simulation kernel and its
primitives. So, it can simulate 160 MPI functions [13]. Besides, 60 MPI proxy apps that
are considered as representatives of massive HPC applications are supported by the
SMPI implementation 4.

4.6 Conclusion

In this chapter we presented our abstract model of asynchronous distributed pro-
grams. From the formal point of view, a significant advantage of the abstract model is
that it can cover a large class of MPI applications based on a very small amount of ker-
nel primitives. After defining the abstract model, TLA+ is used to specify the abstract
model. Independence theorems between the actions in the model are also formalized
in TLA+ and informally proved. The theorems will be used as rules to compute in-
dependence between actions in concrete MPI programs in model checking. Besides,
specifying the abstract model, the chapter also demonstrates an important property of
the model, namely persistence. All the actions in the abstract model are persistent. In
the next chapter, we will see that persistence is essential in the efficiency of UDPOR.

4. https://framagit.org/simgrid/SMPI-proxy-apps

78

CHAPTER 5

ADAPTING UDPOR

Recall that the behavior of a concurrent program can be represented compactly by
using its unfolding semantics (section 3.2). UDPOR operates over the unfolding se-
mantics and explores a reduced LTS without redundant explorations of Mazurkiewicz
traces.

Algorithm 3: Unfolding-based POR exploration

1 Set U := ∅
2 call Explore(∅, ∅, ∅)
3 Procedure Explore(C ,D ,A)
4 Compute ex (C), and add all events in ex (C) to U
5 if en(C) ⊆ D then
6 Return
7 if (A = ∅) then
8 chose e from en(C) \ D
9 else

10 choose e from A ∩ en(C)
11 Explore(C ∪ {e},D ,A \ {e})
12 if ∃J ∈ Alt(C ,D ∪ {e}) then
13 Explore(C ,D ∪ {e}, J \ C)
14 U := U ∩QC ,D

In order to get optimality (i.e. exploring exactly one interleaving per each Mazurkiewicz
trace), the function Alt(C ,D ∪ {e}) has to solve an NP-complete problem. Besides,
computing the extensions ex (C) of a configuration C may also be costly in general.
It is, for example, an NP-complete problem for Petri Nets since all sub-configurations
must be enumerated. Fortunately, this algorithm can be specially tuned for sub-classes.
In particular for the programming model of [34] it is tuned in an algorithm working in

79

Chapter 5 – Adapting UDPOR

time O(n2log(n)), using the fact that events have a maximum of two causal prede-
cessors, thus limiting the subsets to consider. This chapter tunes the algorithm to our
abstract model, using the fact that the amount of causal predecessors of events is
also bounded. Besides, the chapter also shows how to incrementally compute ex (C)
to avoid recomputations.

5.1 Computing extensions efficiently

This section mandates some additional notations. Given a configuration C and an
extension with action a, let pre(a) denote the action right before a in the same ac-
tor, while preEvt(a,C) denotes the event in C associated with pre(a) (formally e =
preEvt(a,C) ⇐⇒ e ∈ C , λ(e) = pre(a)). Given a set of events F ⊆ E , Depend(a,F)
means that a depends on all actions labeling events in F .

The definition of ex (C) (set of extensions of a configuration C)

ex (C) = {e ∈ E \ C : dee ⊆ C} (5.1)

can be rewritten using the definitions of section 3.1.3 as follows:

ex (C) = {e = 〈a,H 〉 ∈ E \ C : a = λ(e) ∧ H = dee ∧ H ∈ 2C ∩ conf (E) ∧ a ∈ enab(H)}.
(5.2)

Fortunately, it is not necessary to enumerate all subsets H of C , that are in expo-
nential number, to compute this set. According to the unfolding construction in Defi-
nition 6, an event e = 〈a,H 〉 only exists in ex (C) if the action a is dependent on the
actions of all maximal events of H . This gives:

ex (C) = {e = 〈a,H 〉 ∈ E \ C : a = λ(e) ∧ H = dee ∧ H ∈ 2C ∩ conf (E)
∧ a ∈ enab(H) ∧ Depend(a,maxEvents(H))}.

(5.3)

80

5.1 Computing extensions efficiently

Now ex (C) can be simplified and decomposed by enumerating Σ, yielding to:

ex (C) =
⋃

a ∈ Σ
{〈a,H 〉 : H ∈ Sa,C} \ C

where Sa,C = {H ∈ conf (E) : H ⊆ C ∧ a ∈ enab(H) ∧ Depend(a,maxEvents(H))}.
(5.4)

The above formulation of ex (C) iterates on all actions in Σ.
However, interpreting Lemma 1 on page 64 (an enabled action cannot be disabled

by executing any other action) for configurations H and C with H ⊆ C entails that an
action is enabled at state(H) can not be disabled by executing any action in C . Thus, for
two configurations H and C with H ⊆ C , an action a in enab(H) is either in actions(C)
or in enab(C).

Therefore, ex (C) can be rewritten by restricting a to actions(C) ∪ enab(C) :

ex (C) = (
⋃

a ∈ actions(C)∪enab(C)
{〈a,H 〉 : H ∈ Sa,C}) \ C (5.5)

Now, since a configuration is uniquely characterized by its set of maximal events,
instead of enumerating possible configurations H ∈ Sa,C , we can enumerate maximal
sets K = maxEvents(H). Hence, ex (C) can be written as

ex (C) = (
⋃

a ∈ actions(C)∪enab(C)
{〈a, config(K)〉 : K ∈ Smax

a,C }) \ C (5.6)

with Smax
a,C = {K ∈ 2C : K is maximal ∧ a ∈ enab(config(K)) ∧ Depend(a,K))} and K

is maximal if (@e, e ′ ∈ K : e < e ′).

C
H

en

K

Figure 5.1 – A configuration C , extended by a new event en , with history H of maximal
events K .

81

Chapter 5 – Adapting UDPOR

One can then specialize the computation of ex (C) according to the type of action a.
The remainder of this section now illustrates how to compute such extensions accord-
ing to the type of action a. We will see that an event can only depend on very few and
easily identifiable maximal events, and can thus be implemented efficiently.

5.1.1 General properties

Given a configuration C , we have some general properties that will be used for
computing extensions as follows:

+ All AsyncSend(m,) events in C are causally related. Indeed, because their ac-
tions are dependent (two AsyncSend actions that concern the same mailbox are
dependent), those events cannot be concurrent. Besides, they are in the same
configuration, they cannot conflict. For those reasons, they are causally related.

+ Similarly, we have that all AsyncReceive(m,) are causally related.

+ All AsyncMutexLock(mtx) events in C are causally related. Because their actions
are dependent (they concern the same mutex mtx), they cannot be concurrent.
Besides, since they are in the same configuration, they cannot conflict. Thus, they
are causally related.

5.1.2 Computing extensions for AsyncSend actions.

Let C be a configuration, and a an action of type c = AsyncSend(m,) of an ac-
tor Ai . We want to compute the set Smax

a,C of sets K of maximal events from which a
depends.

According to independence theorems (see theorem 4.4.2, theorem 4.4.3, theorem
4.4.5, theorem 4.4.6, and theorem 4.4.12), a can only depends on the following actions:
pre(a), all AsyncSend(m,) actions of distinct actors Aj which concern the same mail-
box m, and all WaitAny (resp. TestAny) actions that wait (resp. test) a AsyncReceive
which concerns the same communication c. Considering this, we now examine the
composition of maximal events sets K in Smax

a,C , and prove that its cardinality is bounded
by 3.

82

5.1 Computing extensions efficiently

First, according to the general properties, two events labelled by AsyncSend(m,)
actions cannot co-exist in K (they are causally related), formally @e, e ′ ∈ K : λ(e), λ(e ′)
are AsyncSend(m,) (see Example 6 for illustration).

Second, if a WaitAny(Com) action concerns communication c, there are two cases:
(i) either c is not the first done communication in Com, then WaitAny(Com) and the
action a are independent; or (ii) c is the first done communication in Com and WaitAny
is enabled only after a (see Example 7 for illustration). Thus the only possibility for a
maximal event to be labelled by a WaitAny is when pre(a) is a WaitAny of the same
actor. We can then write: @e ∈ K : λ(e) is WaitAny ∧λ(e) 6= pre(a).

Third, all AsyncReceive events for the mailbox m are causally related in configu-
ration C , and c can only be paired with one of them, say c ′. Thus a can only depend
on actions TestAny(Com ′) such that c ′ ∈ Com ′ and c and c′ form the first done com-
munication in Com ′, and all those TestAny events are ordered. Thus, there is at most
one event e labelled by TestAny in K such that λ(e) 6= pre(a) (see Example 8 for
illustration).

To conclude, K contains at most three events: preEvt(a,C), an event labelled with
an AsyncSend action on the same mailbox, and a TestAny for some matching Async-
Receive communication. There is thus only a cubic number of such sets, which is the
worse case among considered action types as will be seen in the sequel.

e3

e4

e2<1, AsyncSend> <2, AsyncSend>

<1, AsyncSend>

e1<0, AsyncSend>

e14e10

e5
<2, AsyncSend>

<1, AsyncSend>e6

e7 e11

e8<2, AsyncSend>

e9
<1, AsyncSend>

e12

e13 e15

<0, AsyncSend>

<0, AsyncSend> <2, AsyncSend> <0, AsyncSend><1, AsyncSend>

Actor0

Actor1

Actor2

c0 = AsyncSend(m,_)

c1 = AsyncSend(m,_)

c2 = AsyncSend(m,_)

Figure 5.2 – The pseudo-code of a distributed program and its unfolding

Example 6 Figure 5.2 presents the pseudo-code of a distributed program and its un-
folding. The program consists of three actors, and each actor sends an AsyncSend
request to mailbox m. Altogether the unfolding includes 15 AsyncSend events, but

83

Chapter 5 – Adapting UDPOR

each event has at most one successor which is an AsyncSend event. Besides, if two
AsyncSend events are not causally related, they will conflict. For example, event e4

and event e6 are not in the same configuration, and they conflict; event e6 and event e8

belong to different configurations and also conflict. All AsyncSend events in the same
configuration are causally related. For example, events e1, e4, and e5 are in the same
configuration and are causally related. Similarly, events e2, e8, and e9 belong to the
same configuration and are causally related.

Example 7 Let’s study the distributed program and its unfolding in Figure 5.3 to sup-
port the claim that a WaitAny event cannot be a direct ancestor of an AsyncSend event
of another actor. In the program, the action WaitAny of the first actor depends on the
first AsyncReceive of the second actor since they concern the same first done com-
munication (obtained by pairing c0 and c1). Obviously c0 cannot be "done" without c1.
Hence, the action WaitAny is only enabled after the first AsyncReceive.

We are now considering the WaitAny action of the second actor. Although the
WaitAny action and the second AsyncSend action of the first actor concern the same
communication, but they are independent because they do not concern the first done
communication in the set {c1, c′1}. The first done communication in {c1, c ′1} is the com-
munication created by the combination between c0 and c1. Therefore, the first AsyncSend
of the Actor0 is dependent on such a WaitAny action. However, without executing the
first AsyncSend of Actor0, such a done communication cannot be created. That is why
the action WaitAny can only be enabled after the action AsyncSend. And we can see
that in the unfolding there is no AsyncSend whose direct ancestor is a WaitAny event.

Actor0 : c0 = AsyncSend(m,)
c ′0= AsyncSend(m,)
WaitAny({c0})

Actor1 : c1= AsyncReceive(m,)
c ′1= AsyncReceive(m,)
WaitAny({c1, c′1})

e2 <1, AsyncReceive>e1<0, AsyncSend>

e5e3

e4

<0, AsyncSend>

<0, WaitAny> e6

<1, AsyncReceive>

<1, WaitAny>

Figure 5.3 – The pseudo-code of a distributed program and its unfolding.

84

5.1 Computing extensions efficiently

Example 8 This example supports the statement: an AsyncSend event has at most
one direct TestAny predecessor that belongs to another actor. Indeed, in Figure 5.4, the
unfolding of a distributed program has several AsyncSend events and TestAny events,
but all the AsyncSend events satisfy the condition.

There are four maximal configurations: C1 = {e1, e2, e4, e10, e11}, C2 = {e1, e4, e5, e6, e8},
C3 = {e1, e4, e5, e7, e9}, and C4 = {e2, e3, e12, e13, e14}. In all the maximal configurations,
the action AsyncSend only concerns one communication. For example, in configuration
C1, it only combines with AsyncReceive of the first actor to form a done communication.
Similarly, in the configuration C4 the AsyncSend action and the AsyncReceive of Actor2

build another done communication. Besides, in different configurations, the AsyncSend
action is dependent on different TestAny actions, but the statement is still satisfied. In-
deed, in configurations C2 and C3, the AsyncSend action is dependent on both TestAny
actions of Actor0, but each AsyncSend event (e.g., e6) has at most one TestAny event
in its predecessors.

Actor0:
c0= AsyncReceive(m,)
TestAny({c0})
TestAny({c0})

Actor1:
c1= AsyncSend(m,)

Actor2:
c2= AsyncReceive(m,)

e3 <2, AsyncReceive>e1<0, AsyncReceive>

e12e10

e11

<0, TestAny>

<0, TestAny> e13

<0, AsyncReceive>

<0, TestAny>

e2 <1, AsyncSend>

e4<2, AsyncReceive> e5

e6

e8<0, TestAny>

e7

e9

<0, TestAny>

<1, AsyncSend> <0, TestAny>

e14 <0, TestAny><1, AsyncSend>

Figure 5.4 – The pseudo-code of a distributed program and its unfolding.

85

Chapter 5 – Adapting UDPOR

Algorithm 4: createAsyncSendEvt(a, C)

1 create e ′ : = 〈a, config(preEvt(a,C))〉, and ex (C) := ex (C) ∪ {e ′}
2 foreach e ∈ C s.t. λ(e) ∈ {AsyncSend(m,),TestAny(Com)}
3 where Com contains a matching c′ = AsyncReceive(m,) with a do
4 K := ∅;
5 if ¬(e < preEvt(a,C) then K := K ∪ {e};
6 if ¬(preEvt(a,C) < e) then K := K ∪ {preEvt(a,C)};
7 if DK (a, λ(e)) then create e ′ = 〈a, config(K)〉, and ex (C) := ex (C) ∪ {e ′};
8 foreach es ∈ C s.t. λ(es) = AsyncSend(m,) do
9 foreach et ∈ C s.t. λ(et) = TestAny(Com)

10 where Com contains a matching c ′ = AsyncReceive(m,) with a do
11 K := ∅;
12 if ¬(es < preEvt(a,C)) and ¬(es < et) then K := K ∪ {es};
13 if ¬(et < preEvt(a,C) and ¬(et < es) then K := K ∪ {et};
14 if ¬(preEvt(a,C) < es) and ¬(preEvt(a,C) < et) then

K := K ∪ {preEvt(a,C)};
15 if DK (a, λ(et)) then create e ′ : = 〈a, config(K)〉, and

ex (C) := ex (C) ∪ {e ′};

Remark 1 Note that in the above algorithm we use the notion DK since in our model,
dependency can be context sensitive (i.e. depend on the configurations, see below in
section 5.3). Thus, DK (a, b) denotes the fact that actions a and b are dependent in the
configuration config(K).

Algorithm 4 generates all events in ex (C) labelled by an AsyncSend action a. It
first creates a new event e ′ labelled by the action a (line 1), and event preEvt(a,C) is
the unique predecessor of that event. Since a is dependent on pre(a) and if a is an
AsyncSend action, it becomes enabled after executing pre(a). So that is why e ′ is cre-
ated. Next the algorithm iterates on all events e in {AsyncSend(m,), TestAny(Com)}
(line 2), then building set K . Line 5 and line 6 ensure that K includes only concurrent
events. If a is dependent on the action of e, a new event is created. To simplify the
presentation we always check the dependence between a and λ(e) (line 7), but if e is
AsyncSend(m,) the condition is always satisfied. The rest of the algorithm (from line
9) is mainly dedicated to create new events with three direct predecessors. Firstly the

86

5.1 Computing extensions efficiently

candidate K is built, and ensuring that K is composed of only concurrent events (line
12 to line 15). Then if there is a dependence between a and λ(et) then a new event e ′

is created. The algorithm only checks the dependence between a and λ(et) because
for other events in K (i.e. preEvt(a,C) and AsyncSend(m,) events) their actions are
always dependent on a.

Actor0 : c0 = AsyncReceive(m,)
c′0= AsyncReceive(m,)
TestAny({c′0})

Actor1: c1= AsyncSend(m,)

Actor2: localComp
c2 = AsyncSend(m,)

e3

e4

e2<2, localComp> <1, AsyncSend>

<0, AsyncReceive>

e1<0, AsyncReceive>

e5 e7e6

e8

<0, TestAny>

<2, AsyncSend>

<2, AsyncSend> <2, AsyncSend>

Figure 5.5 – A program, and a configuration C with extensions by action AsyncSend.

Example 9 We illustrate the Algorithm 4 by the example shown in Figure 5.5. Suppose
we want to compute the extensions of C = {e1, e2, e3, e4, e5} associated with a, the ac-
tion c2 = AsyncSend(m,) of Actor2. First e6 = 〈AsyncSend, {e2}〉 ∈ ex (C) because
preEvt(a,C) = e2. We then iterate on all AsyncSend events in C , combining them with
e2 to create the maximal event set K (lines 2-8 in the algorithm). We only have one
AsyncSend event e3. Since ¬(e2 < e3) and ¬(e3 < e2), we form a first set K = {e2, e3},
and then create e7 = 〈AsyncSend, {e2, e3}〉. Next, all TestAny events that concern the
mailbox m should be considered. Events e2 and e5 can be combined to form a new
maximal event set K = {e2, e5}, but since a and λ(e5) are not related to the same com-
munication, D(a, λ(e5)) is not satisfied and no event is created. Finally, combinations
of e2 with an AsyncSend event and a TestAny event are examined (lines 9-17 in the
algorithm). We then get K = {e2, e5, e3}, and e8 is added to ex (C) since D(a, λ(e5))
holds in the configuration config({e2, e5, e3}).

87

Chapter 5 – Adapting UDPOR

5.1.3 Computing extensions for AsyncReceive actions.

Since an AsyncReceive action and an AsyncSend action are completely symmet-
rical, thus we can also conclude that K contains at most three events: preEvt(a,C),
and an event labelled with an action AsyncReceive on the same mailbox, and a Test-
Any for a particular matching AsyncSend communication. Thus, similar to computing
extensions for AsyncSend actions, only a cubic number of such sets exist which is the
worse case among considered action types.

Algorithm 5: createAsyncReceiveEvt(a, C)

1 create e ′ : = < a, config(preEvt(a,C)) >, and ex (C) := ex (C) ∪ {e ′}
2 foreach e ∈ C s.t. λ(e) ∈ {AsyncReceive(m,),TestAny(Com)}
3 where Com contains a matching c′ = AsyncSend(m,) with a do
4 K := ∅;
5 if ¬(e < preEvt(a,C) then K := K ∪ {e};
6 if ¬(preEvt(a,C) < e) then K := K ∪ {preEvt(a,C)};
7 if DK (a, λ(e)) then create e ′ = 〈a, config(K)〉 and ex (C) := ex (C) ∪ {e ′};
8 foreach er ∈ C s.t. λ(er) = AsyncReceive(m,) do
9 foreach et ∈ C s.t. λ(et) = TestAny(Com)

10 where Com contains a matching c ′ = AsyncSend(m,) with a do
11 K := ∅;
12 if ¬(er < preEvt(a,C)) and ¬(er < et) then K := K ∪ {er};
13 if ¬(et < preEvt(a,C)and ¬(et < er) then K := K ∪ {et};
14 if ¬(preEvt(a,C) < er) and ¬(preEvt(a,C) < et) then

K := K ∪ {preEvt(a,C)};
15 if DK (a, λ(et)) then create e ′ = 〈a, config(K)〉, and

ex (C) := ex (C) ∪ {e ′};

Algorithm 5 generates all events in ex (C) labelled by an AsyncReceive action a. It
has the same structure as the previous algorithm. The main difference is that while the
former algorithm iterates on AsyncSend events the later one iterates on AsyncReceive
events.

88

5.1 Computing extensions efficiently

5.1.4 Computing extensions for WaitAny actions.

Given a configuration C , and a an action of type WaitAny(Com) of an actor Ai . This
section presents how to compute the set Smax

a,C of sets K of maximal events from which
a depends.

According to independence theorems (see theorem 4.4.5, theorem 4.4.6, and the-
orem 4.4.12), a can only depend on the following actions: pre(a), AsyncSend(m,)
actions or AsyncReceive(m,) actions of a distinct actor Aj which concern the first
done communication in Com. We now examine the composition of maximal events
sets K in Smax

a,C .

Suppose c = AsyncSend(m,) is the first done communication in Com, and is
paired with c ′ = AsyncReceive(m,) of some actor Aj . Thus, action a and the action
AsyncReceive(m,) are dependent. Besides, c becomes done after pairing with c′,
and the action WaitAny(Com), a blocking action, becomes enabled after the pairing.
In addition, according to the general properties (section 5.1.1), all AsyncSend(m,)
events in C are causally related, and all AsyncReceive(m,) events in C are also
causally related, thus there exists only one order to pair AsyncSend(m,) events with
AsyncReceive(m,) events to form done communications in the configuration C . So
there is a unique c ′ = AsyncReceive(m,) in C that can be paired with c. For those
reasons, there is at most one event e labelled by an AsyncReceive(m,) action in K
such that λ(e) 6= pre(a). Similarly if c = AsyncReceive(m,) then there is at most one
event e labelled by AsyncSend(m,) in K such that λ(e) 6= pre(a).

To conclude, K contains at most two events: preEvt(a,C), an event labelled with an
AsyncSend or AsyncReceive that concerns the first done communication in Com.

Algorithm 6 simply computes all events associated with action a. If a is enabled
at state(config({preEvt(a,C)})) then it creates a new event characterized by a and
config({preEvt(a,C)}). After that, it iterates on all events e in the configuration C . If e is
an AsyncReceive(m,) or an AsyncSend(m,) event, then e can possibly be a direct
ancestor of a new event labelled by a. If e and preEvt(a,C) are concurrent, both events
are added to a set K . Otherwise, one of them, the event that is not an ancestor of the
other, is added to K (line 6 to line 7 of the algorithm). If there is a dependence between
a and the action of e (i.e. they concern the first done communication), then a new event
e ′ is created.

89

Chapter 5 – Adapting UDPOR

Algorithm 6: createWaitEvt(a,C)
1 if a is enabled at state(config({preEvt(a,C)})) then
2 create e ′ := 〈a, config({preEvt(a,C)})〉; ex (C) := ex (C) ∪ {e ′};
3 foreach event e in C do
4 if λ(e) is AsyncReceive(m,) or AsyncSend(m,) then
5 K := ∅;
6 if ¬(e < preEvt(a,C)) then K := K ∪ {e};
7 if ¬(preEvt(a,C) < e) then K := K ∪ {preEvt(a,C)};
8 if DK (a, λ(e)) then
9 create e ′ := 〈a, config(K)〉;

10 ex (C) := ex (C) ∪ {e ′};

Example 10 Let us look at the example presented in Figure 5.6. The distributed pro-
gram consists of two actors, the first one executes an AsyncSend(m,), a localComp
action and a WaitAny action, the second one only performs an AsyncReceive(m,) ac-
tion. Suppose we have to compute extensions for the WaitAny action in ex (C) with C
= {e1, e2, e3}. Searching all AsyncReceive events in C , we only find e2. Since ¬(e2 < e3),
we add e2 to the set K . Besides, we have ¬(e3 < e2), thus e3 is added to K , forming
K = {e2, e3}. We can then create e4 = 〈WaitAny, {e2, e3}〉 because D(a, λ(e2)).

Actor0 : c0= AsyncSend(m,)
localComp
WaitAny({c})

Actor1 : c1= AsyncReceive(m,)

e2<1, AsyncReceive>

<0, WaiAny>

e1<0, AsyncSend>

e4

e3
<0, localComp>

Figure 5.6 – A program and a configuration C with extensions by action WaitAny.

90

5.1 Computing extensions efficiently

5.1.5 Computing extensions for TestAny actions.

There is only one difference between a TestAny action and a WaitAny action, that
is, while the TestAny action is a non-blocking action (i.e., its enableness depends only
on its previous action), the WaitAny action is blocking one (i.e., its enableness depends
not only on its previous action but also the status of communications that it waits for).
Thus, we can use almost the arguments as presented in computing extensions for
WaitAny actions. So, given a configuration C , and a an action of type TestAny(Com)
of an actor Ai . We can conclude that K contains at most two events: preEvt(a,C), and
an event labelled with an action AsyncSend or AsyncReceive that concerns the first
done communication in Com.

Algorithm 7 is used to compute all events labelled by action a, belonging to ex (C).
It first iterates on all events e in the configuration C . If e is preEvt(a,C), a new event
e ′ = 〈a, config(preEvt(a,C))〉 is created (lines 3-4). Event e ′ is created because a and
pre(a) are dependent, and a is a non-blocking action, enabled after executing pre(a).
Next if e is an AsyncReceive(m,) or AsyncSend(m,) event, then e can possibly be
a direct ancestor of a new event labelled by a. If e and preEvt(a,C) are concurrent,
both events are added to a set K . Otherwise, one of them is added to K (lines 8-9). If
there is a dependence between a and the action of e (i.e. they concern the first done
communication), then the algorithm creates a new event e ′.

Algorithm 7: createTestEvt(a,C)
1 foreach event e in C do
2 if λ(e) = pre(a) then
3 K := {preEvt(a,C)};
4 create e ′ := 〈a, config(K)〉;
5 ex (C) := ex (C) ∪ {e ′};
6 else if λ(e) is AsyncSend(m,) or AsyncReceive(m,) then
7 K := ∅;
8 if ¬(e < preEvt(a,C)) then K := K ∪ {e};
9 if ¬(preEvt(a,C) < e) then K := K ∪ {preEvt(a,C)};

10 if DK (a, λ(e)) then
11 create e ′ := 〈a, config(K)〉;
12 ex (C) := ex (C) ∪ {e ′};

91

Chapter 5 – Adapting UDPOR

Actor0: c0 = AsyncReceive(m,)
WaitAny({c})
c′0= AsyncReceive(m,)

Actor1: c1= AsyncSend(m,)
c′1= AsyncSend(m,)
TestAny({c ′1})

e2

e4

<1, AsyncSend>e1<0, AsyncReceive>

e7

e5

<1, TestAny>

e3

e6<1, TestAny>

<0, WaitAny>

<0, AsyncReceive> <1, AsyncSend>

Figure 5.7 – A program, and a configuration C with extensions by action TestAny.

Example 11 Let us illustrate how the Algorithm 7 works through the example given in
Figure 5.7. Let C = {e1, e2, e3, e4, e5} and the action a is a TestAny action of Actor1.
Checking every event e in C , we have that λ(e5) = pre(a), then creating event e6 =
〈TestAny, {e5}〉. In C, there are two AsyncReceive events. First considering event e1,
we can create K = {e1, e5} since ¬(e1 < e5) and ¬(e5 < e1). However, the condition
D(a, λ(e1)) is not satisfied, so we can not create a new event characterized by the ac-
tion a and a configuration config(K). Secondly, e4 is examined, because ¬(e5 < e4) and
¬(e4 < e5) we build K = {e4, e5}. Since, D(a, λ(e4)) holds, event e7 = 〈TestAny, {e4, e5}〉
is created.

5.1.6 Computing extensions for AsyncMutexLock actions.

Given a configuration C , and a an action of type AsyncMutexLock(mj) of an actor
Ai , this section presents how to compute the set Smax

a,C of sets K from which a depends.

According to independence theorems (see 4.4.6, theorem 4.4.7, theorem 4.4.8, the-
orem 4.4.11, theorem 4.4.12), action a only depends on the following actions: pre(a),
and AsyncMutexLock(mj) actions of distinct actors Ak which concern the same mu-
tex mj . In addition, according to the general properties (section 5.1.1), two events la-
belled with AsyncMutexLock(mj) actions cannot co-exist in K (they must be causally
related), formally @e, e ′ ∈ K : λ(e), λ(e ′) are AsyncMutexLock(mj). We can conclude
that, K contains at most two events: preEvt(a,C), and an event labelled with an action
AsyncMutexLock(mj) that concerns the same mutex as a.

92

5.1 Computing extensions efficiently

Algorithm 8: createLockEvt(a,C)
1 foreach event e in C do
2 if λ(e) = pre(a) then
3 K := {preEvt(a,C)};
4 create e ′ := 〈a, config(K)〉;
5 ex (C) := ex (C) ∪ {e ′}
6 else if λ(e) is AsyncMutexLock(mj) then
7 K := ∅
8 if ¬(e < preEvt(a,C) then K := K ∪ {e};;
9 if ¬(preEvt(a,C) < e) then K := K ∪ {preEvt(a,C)} ;

10 create e ′ := 〈a, config(K)〉;
11 ex (C) := ex (C) ∪ {e ′};

Algorithm 8 is used to compute all events labelled by action a, belonging to ex (C).
It first iterates on all events e in the configuration C . If e is preEvt(a,C), a new event
e ′ = 〈a, config(preEvt(a,C))〉 is created (lines 3-5). Event e ′ is created because a and
pre(a) are dependent, and a is enabled after executing pre(a). Next, if event e is an
AsyncMutexLock(mj) event, then e can possibly be a direct ancestor of a new event
labelled by a. If e and preEvt(a,C) are concurrent, both events are added to the set K .
Otherwise, one of them, the event not ancestor of the other, is added to K (line 8-9).
After that, the algorithm creates a new event e ′.

Actor0: localComp
AsyncMutexLock(m)

Actor1: AsyncMutexLock(m)

e2

e3

<1, AsyncMutexLock>e1<0, localComp>

e4<0, AsyncMutexLock> <0, AsyncMutexLock>

Figure 5.8 – A program and a configuration C with extensions by AsyncMutexLock .

Example 12 Let’s zoom in on the example presented in Figure 5.8. The distributed pro-

93

Chapter 5 – Adapting UDPOR

gram consists of two actors, the first one executes two actions: a LocalComp action and
an AsyncMutexLock(m) action, the second one performs an action AsyncMutexLock(m).
Suppose we have to compute events labelled by action AsyncMutexLock(m) of Actor0

in the extension of a configuration C = {e1, e2}. Iterating on all events e in C , we have e1

= preEvt(AsyncMutexLock(m),C), creating e3 = 〈AsyncMutexLock (m), {e1}〉. Next we
find that e2 is an AsyncMutexLock(m). Since ¬(e1 < e2) and ¬(e2 < e1), both e1 and e2

are added to the set K . And then we can create e4 = 〈AsyncMutexLock(m), {e1, e1}〉.

5.1.7 Computing extensions for MutexUnlock actions.

Let C be a configuration, and a an action of type MutexUnlock(m) of an actor Ai .
This section presents how to compute the set Smax

a,C of sets K of maximal events from
which a depends.

According to independence theorems (see 4.4.6, theorem 4.4.7, theorem 4.4.8,
theorem 4.4.10, and theorem 4.4.12) a depends on pre(a). It can also depends on all
MutexTestAny(M), and MutexWaitAny(M) actions of distinct actors Aj if m ∈ M and
the two actors are the first two actors in the waiting queue of the mutex m. Recall that
each mutex maintains a FIFO queue to store actors interests. If Ai is one of the first two
actors in the queue, there is only one Aj such that it is also one of the first two actors.
For that reason there is only one MutexTestAny(M) or MutexWaitAny(M) of some
Aj depending on a, so there is at most one event e labelled by MutexTestAny(M) or
MutexWaitAny(M) such that λ(e) 6= pre(a).

To conclude, K contains at most two events: preEvt(a,C), and an event labelled
with an action MutexTestAny(M) or MutexWaitAny(M) on the same mutex.

Algorithm 9 is used to compute all events labelled by a MutexUnlock action, and
belonging to ex (C). Similar to Algorithm 8, it first iterates on all events e in the con-
figuration C . If e is preEvt(a,C), a new event e ′ = 〈a, config(preEvt(a,C))〉 is created
(lines 3-4 in the algorithm). If event e is a MutexTestAny(M) or MutexWaitAny(M)
event (lines 7-8), a set K is created. If e and preEvt(a,C) are concurrent, both events
are added to set K . Otherwise, one of them, the event not ancestor of the other, is
added to K . If there is a dependence between a and the action of e, then the algorithm
creates a new event e ′ = 〈a, config(K)〉, adding e ′ to ex (C).

94

5.1 Computing extensions efficiently

Algorithm 9: createUnlockEvt(a,C)
1 foreach event e in C do
2 if λ(e) = pre(a) then
3 K := {preEvt(a,C)};
4 create e ′ := 〈a, config(K)〉; ex (C) := ex (C) ∪ {e ′}
5 else if λ(e) is MutexTestAny(M) or MutexWaitAny(M) then
6 K := ∅;
7 if ¬(e < preEvt(a,C) then K := K ∪ {e};
8 if ¬(preEvt(a,C) < e) then K := K ∪ {preEvt(a,C)} ;
9 if DK (a, λ(e)) then

10 create e ′ := 〈a, config(K)〉;
11 ex (C) := ex (C) ∪ {e ′};

Actor0: localComp
AsyncMutexLock(m)
MutexUnlock(m)

Actor1: localComp
AsyncMutexLock(m)
MutexTestAny({m})

e2

e4

<1, localComp>e1<0, localComp>

e3

<1, AsyncMutexLock>

<0, AsyncMutexLock>

e5 <1, MutexTestAny>

e7 <0, AsyncMutexUnlock>

e6<0, AsyncMutexUnlock>

Figure 5.9 – A program, and a configuration C with extensions by MutexUnlock.

Example 13 We illustrate the Algorithm 9 by the example of Figure 5.9. Suppose we
want to compute the extensions of C = {e1, e2, e3, e4, e5} associated with a, the action
MutexUnlock(m) of Actor0. By iterating all events in C , we find that e3 = preEvt(a,C),
then creating e6. The configuration C has only one MutexTestAny event, event e5. Note
that Actor0 and Actor1 are the first two owners of the mutex m, then action a and action
MutexTestAny are dependent. Besides, since e3 < e5, only event e5 is added to the set

95

Chapter 5 – Adapting UDPOR

K . Thus, we create e7 = 〈a, {e5}〉.

5.1.8 Computing extensions for MutexWaitAny actions.

Let C be a configuration, and a an action of type MutexWaitAny({M }) of an actor
Ai . This section presents how to compute the set Smax

a,C of sets K of maximal events
from which a depends.

Let M1 be the subset of M composed of mutexes m ′ having Ai as one of the
first two actors in their waiting queues. First, according to independence theorems
(see theorem 4.4.6, theorem 4.4.7, theorem 4.4.10, theorem 4.4.12), a depends on a
MutexUnlock(m) action of a distinct actor Aj if m is the first mutex in M1 concerned by
a MutexUnlock , and Aj is one of the first two actors in the waiting queue of the mu-
tex m. Second, similar to the above section (section 5.1.7), if Ai is one of the first two
actors in the queue, there is only one Aj such that it is also one of the first two actors
in that queue. Thus, there is at most one event e in K labelled by MutexUnlock(m)
such that λ(e) 6= pre(a). In addition, a also depends on pre(a). To conclude, K con-
tains at most two events: preEvt(a,C), and possibly an event labelled with an action
MutexUnlock(m) such that m ∈ M .

Algorithm 10: createMutexWaitEvt(a,C)
1 foreach event e in C do
2 if λ(e) = pre(a) and Ai is the owner of some mutex m ∈ M then
3 K := {preEvt(a,C)};
4 create e ′ := 〈a, config(K)〉;
5 ex (C) := ex (C) ∪ {e ′};
6 else if λ(e) is MutexUnlock then
7 K := ∅;
8 if ¬(e < preEvt(a,C) then K := K ∪ {e};
9 if ¬(preEvt(a,C) < e) then K := K ∪ {preEvt(a,C)} ;

10 if DK (a, λ(e)) then
11 create e ′ := 〈a, config(K)〉; ex (C) := ex (C) ∪ {e ′} ;

Algorithm 10 trivially generates all events in ex (C) labelled by an MutexWaitAny({M })
action of actor Ai . It first iterates on all events e in the configuration C . If λ(e) is
pre(a) and Ai is the owner of some mutex m ∈ M then it creates a new event e ′ =

96

5.1 Computing extensions efficiently

〈a, config(preEvt(a,C))〉. If e is a MutexUnlock event, then it builds a set K such that
all events in K are concurrent. If the condition D(a, λ(e)) holds then it creates a new
event e ′ = 〈a, config(K)〉, adding it to ex (C).

Actor0: LocalComp
AsyncMutexLock(m)
MutexUnlock(m)

Actor1: LocalComp
AsyncMutexLock(m)
MutexWaitAny(m)

e2

e4

<1, localComp>e1<0, localComp>

e3

<1, AsyncMutexLock>

<0, AsyncMutexLock>

e5<0, MutexUnlock>

e6 <1, MutexWaitAny>

Figure 5.10 – A program, and a configuration C with extensions by MutexWaitAny .

Example 14 We illustrate the Algorithm 10 by the example of Figure 5.10. Suppose
we want to compute the extensions of C = {e1, e2, e3, e4, e5} associated with action a,
the action MutexWaitAny(m) of actor Actor1. The configuration C has only one Mutex-
Unlock event, event e5. We also have that Actor0 and Actor1 are the first two owners of
the mutex m, then action a and action MutexUnlock are dependent. Because event e4

and e5 are concurrent, both e4 and e5 are added to the set K . Thus, we create a new
event e6 = 〈a, {e4, e5}〉 in ex (C).

5.1.9 Computing extensions for MutexTestAny actions.

Let C be a configuration, and a an action of type MutexTestAny({M }) of an actor Ai .
This section presents how to compute the set Smax

a,C of sets K of maximal events from
which a depends. Compared to MutexWaitAny actions, MutexTestAny actions are not
blocking, the main difference is that a MutexTestAny action a becomes enabled after
executing its previous action (pre(a)) while a MutexWaitAny action becomes enabled
if its actor is the owner of some mutex. We can use almost the arguments in the pre-

97

Chapter 5 – Adapting UDPOR

vious section to compute extensions labelled by MutexTestAny actions. Thus, we can
conclude that K contains at most two events: preEvt(a,C), an event labelled with an
action MutexUnlock(m) such that m ∈ M .

Algorithm 11: createMutexTestEvt(a, C)

1 foreach event e in C do
2 if λ(e) = pre(a) then
3 K := {preEvt(a,C)};
4 create e ′ := 〈a, config(K)〉; ex (C) := ex (C) ∪ {e ′};
5 else if λ(e) is MutexUnlock then
6 K := ∅;
7 if ¬(e < preEvt(a,C)) then K := K ∪ {e};
8 if ¬(preEvt(a,C) < e) then K := K ∪ {preEvt(a,C)};
9 if DK (a, λ(e)) then

10 create e ′ := 〈a, config(K)〉; ex (C) := ex (C) ∪ {e ′};

Algorithm 11 creates all events in ex (C) labelled by a MutexTestAny action. It first
iterates on all events e in the configuration C . If e is preEvt(a,C) then it creates a new
event 〈a, config(K)〉. If e is a MutexUnlock event, it builds a set K such that all events
in K are concurrent. When the condition D(a, λ(e)) is satisfied, it creates a new event
e ′ = 〈a, config(K)〉, and then adds that event to ex (C).

Actor0: localComp
AsyncMutexLock(m)
MutexUnlock(m)

Actor1: localComp
AsyncMutexLock(m)
MutexTestAny({m})

e2

e4

<1, localComp>e1<0, localComp>

e3

<1, AsyncMutexLock>

<0, AsyncMutexLock>

e5<0, MutexUnlock>

e7<1, MutexTestAny> e6<1, MutexTestAny>

Figure 5.11 – A program, and a configuration C with extensions by MutexTestAny .

98

5.2 Computing extensions incrementally

Example 15 We illustrate the Algorithm 11 by the example of Figure 5.11. Suppose we
want to compute the extensions of C = {e1, e2, e3, e4, e5} associated with a, the action
MutexTestAny({m}) of Actor1. Since event e4 is preEvt(a,C), we create e6. Next, e5 is
a MutexUnlock event in configuration C , and e4 and e5 are concurrent then we build
K = {e4, e5}. We also have that Actor0 and Actor1 are the first two owners of the
mutex m. Hence, action a and action MutexUnlock are dependent. Thus, we create
e7 = 〈a, {e4, e5}〉.

5.1.10 Computing extensions for LocalComp actions.

Let C be a configuration, and a an action of type LocalComp of an actor Ai , com-
puting extensions for action a is trivial since a is only dependent on the previous action
of the same actor (pre(a)), and it becomes enabled after executing pre(a). Hence, we
can make a conclusion about the set K of maximal events from which a depends: K
includes only preEvt(a,C). Algorithm 12 computes all events in ex (C) labelled by ac-
tion a.

Algorithm 12: createLocalCompEvt(a,C)
1 foreach event e in C do
2 if λ(e) = pre(a) then
3 K := {preEvt(a,C)};
4 create e ′ := 〈a, config(K)〉;
5 ex (C) := ex (C) ∪ {e ′};

5.2 Computing extensions incrementally

In the UDPOR exploration algorithm, after extending a configuration C ′ by adding
a new event e, one must compute the extensions of C = C ′ ∪ {e}, thus resulting
in redundant computations of events. Thanks to the persistence property, almost all
such recomputations can be eliminated. The next theorem provides an incremental
computation of extensions.

Theorem 5.2.1 Suppose C = C ′ ∪ {e} where e is the last event added to C by the

99

Chapter 5 – Adapting UDPOR

Algorithm 2. We can compute ex (C) incrementally as follows:

ex (C) = (ex (C ′) ∪
⋃

a ∈ enab(C)
{< a,H >: H ∈ Sa,C}) \ {e} (5.7)

where Sa,C = {H ∈ 2C ∩ conf (E) : a ∈ enab(H) ∧ Depend(a,maxEvents(H))}.

With the definition of Sa,C as above, recall that (see equation 5.5)

ex (C) = (
⋃

a ∈ actions(C)∪enab(C)
{〈a,H 〉 : H ∈ Sa,C}) \ C (5.8)

Similarly we have:

ex (C ′) = (
⋃

a ∈ actions(C ′)∪enab(C ′)
{〈a,H ′〉 : H ′ ∈ Sa,C ′}) \ C ′ (5.9)

We have the following lemma that will be used to prove theorem 5.2.1.

Lemma 2 Suppose C = C ′∪{e} where e is the last event added to C by the Algorithm
2. We have the following relation:

⋃
a ∈ actions(C)

{< a,H >: H ∈ Sa,C} =
⋃

a ∈ actions(C)
{< a,H ′ >: H ′ ∈ Sa,C ′} (5.10)

where Sa,C = {H ∈ 2C ∩ conf (E) : a ∈ enab(H) ∧ Depend(a,maxEvents(H))} and
Sa,C ′ = {H ′ ∈ 2C ′ ∩ conf (E) : a ∈ enab(H ′) ∧ Depend(a,maxEvents(H ′))}.

Proof 14 (⊇) This inclusion is obvious since C ⊇ C ′, and thus Sa,C ⊇ Sa,C ′.
(⊆) Suppose there exists some event en =< a,H > belonging to the left but not the
right set. If a = λ(en) = λ(e), then H ∈ Sa,C ∩ Sa,C ′, so en is in both sets, resulting in a
contradiction. If a = λ(en) 6= λ(e), there are two cases: (i) either e /∈ H then H ∈ Sa,C ′

and en belongs to the right set, a contradiction. Or (ii) e ∈ H , then λ(en) ∈ actions(C) \
{λ(e)} = actions(C ′), thus there is another event e ′ ∈ C ′ such that λ(e ′) = λ(en), then
e ′ cannot belong to H (one action a cannot appear twice in dene). Besides, e is the
last event explored in C , thus a depends on λ(e) by Definition 6. Then, e ′ conflicts with
e, contradicting their membership to the same configuration C (see Figure 5.12). This
proves (5.10). �

100

5.2 Computing extensions incrementally

C'

e
C

en

e'

λ(e'), H><

(e'), H'><

λ

Figure 5.12 – Since D(λ(e), λ(e ′)), events e and e ′ are in conflict.

We now can prove theorem 5.2.1 as follows:

Proof 15 We have:

ex (C) = (
⋃

a ∈ actions(C)∪enab(C)
{〈a,H 〉 : H ∈ Sa,C}) \ C (5.11)

and
ex (C ′) = (

⋃
a ∈ actions(C ′)∪enab(C ′)

{〈a,H ′〉 : H ′ ∈ Sa,C ′}) \ C ′ (5.12)

Exploring e from C ′ leads to C , which entails that λ(e) belongs to enab(C ′) and actions(C ′)∪
{λ(e)} = actions(C), thus the range of a in ex (C ′) which is actions(C ′) ∪ enab(C ′) can
be rewritten actions(C)∪(enab(C ′)\{λ(e)}), and the equation 5.12 changes as follows:

ex (C ′) = (
⋃

a ∈ actions(C)∪(enab(C ′)\λ(e))
{〈a,H ′〉 : H ′ ∈ Sa,C ′}) \ C ′

First, separating action(C) from the rest in both ex (C) and ex (C ′), and according
to lemma 2, we have that :

⋃
a ∈ actions(C)

{< a,H >: H ∈ Sa,C} =
⋃

a ∈ actions(C)
{< a,H ′ >: H ′ ∈ Sa,C ′} (5.13)

Second, since C ′ ⊆ C , according to Lemma 1, (enab(C ′) \ {λ(e)}) ⊆ enab(C). We

101

Chapter 5 – Adapting UDPOR

thus have:

⋃
a ∈ enab(C ′)\{λ(e)}

{< a,H ′ >| H ′ ∈ Sa,C ′} ⊆
⋃

a ∈ enab(C)
{< a,H >| H ∈ Sa,C} (5.14)

Now, using equations (5.13) and (5.14), ex (C) can be rewritten as follows:

ex (C) = (
⋃

a ∈ actions(C)∪(enab(C ′)\λ(e))
{〈a,H ′〉 : H ′ ∈ Sa,C ′}

∪
⋃

a ∈ enab(C)
{〈a,H 〉 : H ∈ Sa,C}) \ (C ′ ∪ {e})

(5.15)

But since no event in
⋃

a ∈ enab(C){〈a,H 〉 : H ∈ Sa,C} is in (C ′ ∪ {e}), equation (5.15)
can be rewritten as Equation (5.7) in Theorem 5.2.1. �

Algorithm 13: Computing extensions for a configuration

1 ex (C) := ex (C ′) \ {e}
2 foreach action a ∈ enab(C) do
3 if (λ(e) = AsyncSend) then call createAsyncSendEvt(a,C);
4 if (λ(e) = AsyncReceive) then call createAsyncReceiveEvt(a,C);
5 if (λ(e) = TestAny) then call createAsyncTestEvt(a,C);
6 if (λ(e) = WaitAny) then call createAsyncWaitEvt(a,C);
7 if (λ(e) = AsyncMutexLock) then call createLockEvt(a,C);
8 if (λ(e) = MutexUnlock) then call createUnlockEvt(a,C);
9 if (λ(e) = MutexTestAny) then call createMutexTestEvt(a,C);

10 if (λ(e) = MutexWaitAny) then call createMutexWaitEvt(a,C);
11 if (λ(e) = LocalComp) then call createLocalCompEvt(a,C);

Algorithm 13 is a complete algorithm computing the extension for a configuration
C . It calls the algorithms presented in the previous sections. After assigning ex (C) :=
ex (C ′)\{e}, it iterates on all actions a enabled at the state of configuration C , and then
a function is called based on the type of a.

5.3 Computing dependence relations

As presented previously, computing the extensions of a configuration can be spe-
cialized according to the type of action; most of the presented algorithms computing

102

5.3 Computing dependence relations

extensions require determining the dependence between actions. Usually checking
dependence/independence of actions is a trivial task. For example, if we consider that
two write actions, or a write action and a read action are dependent if they concern the
same variable, then by examining the memory locations where the actions access and
what they do with that memory one can get their relation. In our model, in order to com-
pute dependencies based on independence theorems, and for some pairs of actions,
we must rely on events that have been performed before. This section illustrates how
dependencies are computed.

In [34], authors consider a computation model consisting of only three kinds of
actions: lock, unlock, and local actions. Two lock actions that require the same mutex
are dependent, or a lock action and an unlock action involving the same mutex are
dependent. Hence, checking the dependence between two actions of programs in such
a model is simple. Besides, the relation between actions is independent of the context
(context-insensitive dependence) in the sense that if two actions are dependent, they
will be dependent in all configurations (executions) in the unfolding of the program.

In our computation model, there are some dependence relations of actions that are
context-insensitive (e.g., two AsyncSend actions concerning the same mailbox, two
AsyncReceive concerning the same mailbox, and two AsyncMutexLock requiring the
same mutex). Such kind of relations is easy to determine by checking which mailboxes
or mutexes they involve.

Besides context-insensitive dependence, some dependencies are context-sensitive:
two dependent actions in a particular configuration can become independent actions
in another configuration. Consider the example shown in Figure 5.13, a distributed pro-
gram composed of three actors. Let’s zoom in on the unfolding of the program. In con-
figuration C1 = {e1, e2, e5, e7, e8} (the configuration in the red line), action AsyncSend
of Actor1 and action TestAny of Actor0 are dependent because they concern the first
done communication in mailbox m. Besides, in that configuration, action TestAny of
Actor2 is independent with action AsyncSend of Actor1. However, in another configu-
ration C2 = {e2, e3, e9, e10, e11}, action AsyncSend is dependent on TestAny of Actor2

and independent with TestAny of Actor0. Obviously some dependencies of pairs of
communication actions are context-sensitive.

103

Chapter 5 – Adapting UDPOR

Actor0:
c0= AsyncReceive(m,)
TestAny({c})

Actor1:
c1= AsyncSend(m,)

Actor2:
c2= AsyncReceive(m,)
TestAny({c2})

e3

e8

e2<1, AsyncSend> <2, AsyncReceive>

<0, TestAny>

e1<0, AsyncReceive>

e4 e9<2, AsyncReceive> <2, TestAny>

e6 <2, TestAny>

e5<0, TestAny>

e7<1, AsyncSend>

e10

<0, TestAny>e11 <1, AsyncSend>

e12<0, AsyncReceive>

e13

<2, TestAny>

Figure 5.13 – The pseudo-code of a distributed program and the it’s unfolding.

Actor0:
r0 = AsyncMutexLock(mtx)
MutexUnlock(mtx)

Actor1:
r1 = AsyncMutexLock(mtx)
MutexTest({r1})

Actor2:
r2 = AsyncMutexLock(mtx)
MutexUnlock(mtx)

e2

e4<1, AsyncMutexLock>

e1<0, AsyncMutexLock>

e3 e7 <2, MutexUnlock><0, MutexUnlock> e8 <1, AsyncMutexLock>

e6e5 e9 e10<1, MutexTestAny><2, AsyncMutexLock>

<2, AsyncMutexLock>

<1, MutexTestAny> <0, AsyncMutexLock>

Figure 5.14 – The pseudo-code of a distributed program and two configurations.

104

5.3 Computing dependence relations

Let’s consider another example presented in Figure 5.14. A distributed program
consists of three actors executing some actions. To keep it simple, we illustrate only two
maximal configurations marked with dashed lines. In the first configuration (marked by
the red line), action MutexTestAny of Actor1 and MutexUnlock of Actor0 are dependent,
while in the second configuration (marked by the blue line) they are independent.

Through the two above examples, we can conclude that with communication ac-
tions the relations between an AsyncSend action or an AsyncReceive and a TestAny
or a WaitAny are context-sensitive. Similarly, with synchronization actions, the rela-
tions between a MutexUnlock and a MutexTestAny or MutexWaitAny are also context-
sensitive. Therefore, one of the critical technical challenges is how to determine the
dependence between actions in case of context-sensitive dependence.

For communication actions, context-sensitive dependencies arise because different
configurations may have different combinations of AsyncSend and AsyncReceive com-
munications to produce done communications. According to the independence theo-
rems, an AsyncSend(m) or an AsyncReceive(m) and a TestAny({C}) or a WaitAny({C})
are dependent if they concern the first done communication c ∈ C . Two actions con-
cerning a first done communication in a particular configuration may not be involved in a
first done communication in another configuration. Thus, checking dependence entails
specifying which AsyncSend , AsyncReceive communications are paired to produce
done communications. Similarly, context-sensitive relations of synchronization actions
come from the fact that changing the execution order of AsyncMutexLock actions in-
volved in a mutex leads to different owners of that mutex. So, first two actors in the
waiting queue of the mutex in different configurations are not always identical. Thus,
dependence can be checked by checking which actors are being stored in the waiting
queues of mutexes and in which order. The next sections demonstrate how depen-
dence can be detected between two actions involved by a context-sensitive relation.

5.3.1 Computing dependencies for communication actions

As presented, checking context-sensitive dependencies between two communica-
tion actions entails examining done communications. Consider the example in Fig-
ure 5.15, a distributed program with three actors. In the figure we draw a part of the
unfolding of the program. Let us zoom in on events e7, e9, they have the corresponding
maximal event sets: (their fathers) Ke7 = {e5, e6} and Ke9 = {e2, e3, e8}, respectively.

105

Chapter 5 – Adapting UDPOR

Actor0:
c0 = AsyncSend(m)
c′0 = AsyncSend(m)
c′′0 = AsyncSend(m)
TestAny({c ′0})

Actor1:
c1 = AsyncReceive(m)
c′1 = AsyncReceive(m)

Actor2:
LocalComp
c2 = AsyncReceive(m)

e3
e2e1<0, AsyncSend>

e4

e8

<1, AsyncReceive>

e5

e7
e9

<0, TestAny>

<2, AsyncReceive>

<0, AsyncSend> <1, AsyncReceive>

<0, TestAny>

<2, LocalComp>

e6<0, AsyncSend>

Figure 5.15 – The pseudo-code of a distributed program and two configurations.

Besides, λ(e7) is enabled at the state of configuration C1 = {e1, e2, e3, e4, e5, e6} while
λ(e9) is enabled at the state of configuration C2 = {e1, e2, e3, e4, e6, e8}. We have that
D(λ(e5), λ(e7)) because they concern the first done communication in {c ′0} that is a pair-
ing between c′0 and c′1. However, how do we know that c ′0 and c′1 are paired to form the
first done communication? One can rely on the information stored at state(C1) to know
how the first done communication is created.

Things become more complicated for the case of e9. Event e9 is created because
λ(e9) is dependent on all actions of events in Ke9 = {e2, e3, e8} in which λ(e2) (action
AsyncReceive(m) of Actor1) and λ(e9) (AsyncReceive(m) of Actor2) concern the same
mailbox, λ(e3) = pre(λ(e9)) (LocalComp of Actor2) while λ(e8) (TestAny of Actor0) and
λ(e9) concern a first done communication in {c ′0}. The same question is why λ(e8) and
λ(e9) concern the first done communication in {c ′0} (i.e., the done communication is the
result of pairing c′0 and c2). Using information which is stored at state(C2) is not helpful
since c2 has not previously posted to mailbox m at that state.

Let us zoom in closer on the histories of events e7 and e9. At state(C1), there are
three AsyncSend and two AsyncReceive communications posted. Communication c ′0
is the second AsyncSend communication posted to mailbox m after c0. Hence, c′0 is
paired with c ′1 (the second AsyncReceive communication posted to the mailbox) and

106

5.3 Computing dependence relations

then D(λ(e7), λ(e5)). Regarding event e9, we have three AsyncSend communications
and only one AsyncReceive communication posted to mailbox m at state(C2). Be-
cause c ′0 is the second AsyncSend communication, it will be matched with c2 after
executing λ(e9). Thus, λ(e8), and λ(e9) concern the same communication and then
D(λ(e8), λ(e9)).

From the above example, we see that counting the number of AsyncReceive and
AsyncSend communications can helps us determine whether a TestAny (or Wait-
Any) action and an AsyncSend (or AsyncReceive) action are dependent or not. Let
nbSend(m,H) and nbReceive(m,H) denote the number of AsyncSend(m,) events and
number of AsyncReceive(m,) events in configuration H , respectively. Checking de-
pendence between a TestAny (or a WaitAny) action and an AsyncSend (or an Async-
Receive) action can leverage on Lemma 3.

Lemma 3 Let C be a configuration, a be a TestAny ({c}) (or WaitAny ({c})) action such
that a is enabled at state(C), and c is an AsyncSend communication that is posted
to the mailbox m by an event e: c = AsyncSend(m,). Action a is dependent on
the action of some event in e ′ : c ′ = AsyncReceive(m,) (in C) if nbSend(m, dee) =
nbReceive(m, de ′e).

Proof. Suppose n = nbSend(m, dee) = nbReceive(m, de ′e). According to general
properties (in page 82), in the configuration C , all AsyncSend(m,) events are causally
related, and all AsyncReceive(m,) events are also causally related. Beside, remem-
ber that mailbox m is a FIFO queue. Hence, in the mailbox m, the first n AsyncSend
communications posted to m by n AsyncSend(m,) events in dee are combined with
the first n AsyncReceive communications that are issued by n AsyncReceive(m,)
events in de ′e. For those reasons, c (n +1th AsyncSend communication posted to m by
e) and c ′ (n + 1th AsyncReceive communication issued by e ′) are combined to create
a done communication, and thus a and λ(e ′) are dependent.

Algorithm 14: ChekingDependence(a, e,C)
1 if λ(e) is an AsyncReceive (m,) action then
2 e1 := the event whose action issues the communication c;
3 return (nbSend(m, de1e) == nbReceive(m, dee));
4 else
5 return false;

107

Chapter 5 – Adapting UDPOR

Given a TestAny({c}) (resp. WaitAny({c})) action a that is enabled at state(C) and
tests (resp. waits) a AsyncSend(m,) communication. Algorithm 14 checks whether a
depends on the action of some event e in the configuration C or not. We can easily lift
up this idea to check dependencies of other cases of communication actions (e.g., c is
an AsyncReceive communication, a is an AsyncSend or AsyncReceive action).

5.3.2 Computing dependencies for synchronization actions

Let C be a configuration, a a MutexTestAny({mtx}) action of actor Ai enabled at
state(C). Suppose that we must find all events e ∈ C such that D(a, λ(e)). According to
independence theorems (see theorem 4.4.10), action a only depends on some action
MutexUnlock(mtx) b of actor Aj if Ai and Aj are the first two actors in mtx . So, if at
state C , Ai is not the first actor in mtx then there is no MutexUnlock(mtx) action b in
C such that D(a, b). Otherwise, the last executed MutexUnlock(mtx) of some actor Aj

is dependent on a. Because, after executing that action, Ai becomes the first owner of
the mutex. Obviously, before executing it, Ai and Aj are the first two actors in the mutex
mtx .

Actor0: r0 = AsyncMutexLock(mtx)
MutexUnlock(mtx)

Actor1: r1 = AsyncMutexLock(mtx)
MutexTest({r1})
MutexUnlock(mtx)

Actor2: r2 = AsyncMutexLock(mtx)
MutexTest({r2})

e3<1, AsyncMutexLock>

e1<0, AsyncMutexLock>

e2 <0, MutexUnlock>

e5e4 <1, MutexTestAny><2, AsyncMutexLock>

e6<1, MutexUnlock>

e7<2, MutexTestAny>

Figure 5.16 – a program and a configuration C.

Let us start with the example presented in Figure 5.16 to illustrate the above idea. In

108

5.4 Experiments

the example, a part of the unfolding of a distributed program is illustrated. At the state
of a configuration C = {e1, e2, e3, e4, e5, e6}, action MutexTestAny({r2}) is enabled. Sup-
pose we must find all actions MutexUnlock in C depending on action MutexTestAny({r2}).
We see that MutexUnlock of Actor1 is the last executed MutexUnlock concerning the
mutex mtx . Thus, MutexUnlock of Actor1 and MutexTestAny({r2}) are dependent, and
then e7 is created.

Algorithm 15: ChekingDependence(a, e,C)
1 if the actor of action a is the owner of mtx then
2 if λ(e) is the last executed action concerning mtx then
3 return true;
4 else
5 return false;

6 else
7 return false;

Let a be a MutexTestAny(mtx) action that is enabled at the state of a configuration
C . Let e be an MutexUnlock({mtx}) event in C , Algorithm 15 checks whether a and
λ(e) are dependent or not. For other pairs of actions (e.g., MutexWaitAny and Mutex-
Unlock), we proceed similarly.

5.4 Experiments

We implemented the quasi-optimal version of UDPOR with k -partial alternatives [34]
in a prototype adapted to the distributed programming model of chapter 4, i.e. with
its independence relation. The computation of k -partial alternatives is essentially in-
spired by [34]. Recall that the algorithm reaches optimality when k = |D |+1 (recall that
we avoid to explore events in D), while k = 1 corresponds to Source DPOR [1]. The
prototype is still limited, not connected to the SimGrid environment because SimGrid
needs an API to integrate new exploration and reduction algorithms. Thus, it can only
be experimented on simple examples. Besides, because of the fact that it has not been
integrated into SimGrid, the input of the prototype is the encoding of an MPI program,
not a real MPI program.

109

Chapter 5 – Adapting UDPOR

Benchmarks #P Deadlock
Exhaustive search UDPOR

#Traces Time #Traces Time

wait-deadlock 2 yes 2 <0.01 1 <0.01

send-recv-ok 2 no 24 0.03 1 <0.01

sendrecv-deadlock 3 yes 105 0.06 1 0.01

complex-deadlock 3 yes 36 0.03 1 <0.01

waitall-deadlock 3 yes 1458 1.2 1 <0.01

no-error-wait-any-src 3 no 21 0.02 1 0.01

any-src-waitall-deadlock 3 no 105 0.05 1 0.01

any-src-can-deadlock3 3 yes 999 0.65 2 0.03

DTG 5 yes - TO 2 0.07

RMQ-receiving
4 no 20064 8.15 6 0.2

5 no - TO 24 2.52

6 no - TO 120 47

Master-worker
3 no 1356444 1038 2 0.2

4 no - TO 6 2.5

5 no - TO 24 60

Table 5.1 – Comparing exhaustive exploration and UDPOR. TO: timeout after 30 min-
utes; #P: number of processes; Deadlock: deadlock exists; #Traces: number of traces

Comparison We first compare optimal UDPOR with an exhaustive stateless search
on several benchmarks (see Table 5.1). The first 8 benchmarks come from Umpire
Tests 1, while DTG and RMQ-receiving belong to [24] and [41], respectively. The last
benchmark is an implementation of a simple Master-Worker pattern. We expressed
them in our programming model and explored their state space with our prototype. The
experiments were performed on an HP computer, Intel Core i7-6600U 2.60GHz pro-

1. http://formalverification.cs.utah.edu/ISP-Tests/

110

http://formalverification.cs.utah.edu/ISP-Tests/

5.4 Experiments

cessors, 16GB of RAM, and Ubuntu version 18.04.1. Table 5.1 presents the number
of explored traces and running time for both an exhaustive search and optimal UD-
POR. In all benchmarks, UDPOR outperforms the exhaustive search. For example, for
RMQ-receiving with four processes, the exhaustive search explores more than 20000
traces in around 8 seconds, while UDPOR explores only six traces in 0.2 seconds.
Besides, UDPOR is optimal, exploring only one execution per Mazurkiewicz trace. For
example, in RMQ-receiving with five processes, with only four AsyncSend actions that
concern the same mailbox, UDPOR explores exactly 24 (=4!) non-equivalent execu-
tions. Similarly, the DTG benchmark has only two dependent AsyncSend actions, thus
two non-equivalent traces. Furthermore, deadlocks are also detected in the prototype.

Variations on k We also tried to vary the value of k in the computation of k-partial
alternatives. When k is decreased, one gains in efficiency in computing alternatives,
but loses optimality by producing more traces. It is then interesting to analyze whether
this can be globally more efficient than optimal UDPOR. Similar to [34], we observed
that in some cases, fixing small values of k may improve efficiency. Let us comment on
some instances:

— For RMQ-receiving with five processes, k = 7 is optimal (2.5s), but reducing to
k = 4 still produces 24 traces (thus is optimal) a bit more quickly (2.3 seconds),
while for k = 3, it is not optimal, generating one SSB (the number of traces is
25), but the run time reduces to only 2 seconds. When k = 2, both the number of
traces and the run time grows quickly, it timeouts (after 10 minutes).

— For RMQ-receiving with six processes, k = 11 is optimal, and the run time is 47
seconds as presented in the above table. When k = 5, it is still optimal and takes
34 seconds to cover the 120 traces. One SSB is produced when k = 4 (121 traces
are traversed), but the run time drops to only 28 seconds. Besides, it timeouts if
k = 3.

— The run time of the Master-worker benchmark with five processes also varies
when changing the value of k . k = 7 is optimal (60s), but if k = 5 it is still optimal,
exploring the same traces (24 traces) in 57 seconds. When k = 4, the run time
goes down to 51 seconds, and there is no SSB.

Note that with our simple prototype, we do not yet make experiments with concrete
programs (e.g. MPI programs), for which the run time may diverge. We expect to make

111

Chapter 5 – Adapting UDPOR

it in the future and then experiment the algorithms in more depth. However, we believe
that the results are already significant and that UDPOR is effective for asynchronous
distributed programs.

5.5 Conclusion

This chapter intensively discusses how to compute extensions of a configuration
efficiently. Given a configuration C and an action a, to compute ex (C) we could use
a naive algorithm iterating all subsets of C , building history candidates for new events
labelled by action a. However this algorithm leads to an exponential number of subsets.
Using the fact that each configuration (candidate) H is identified by its maximal events
maxEvents(H), instead of building H we build the maximal event set K of H . We have
proved that the number of events in K is bounded. If a is a LocalComp action, |K |
is always equal to 1. If action a is AsyncSend or AsyncReceive, in the worse case
|K | = 3, and for the others types of actions (i.e., TestAny , WaitAny , AsyncMutex-
Lock , MutexTestAny , MutexWaitAny), |K | = 2. Thus, extensions can be computed in
polynomial time. Table 5.2 summarizes possible values of K according to the type of
action a.

Besides presenting how to compute extensions efficiently, this chapter also demon-
strates a theorem avoiding recomputation of many events. The UDPOR algorithm is
recursive, and after extending a configuration C by adding a new event e the algo-
rithm computes ex (C ∪ {e}). Thus many events that are already computed in ex (C)
are recomputed in ex (C ∪ {e}). Thanks to the persistence property of the model, the
theorem eliminates most of this redundant computations and shows that considering
only actions that are enabled at state(C) is enough.

The UDPOR algorithm, together with our ideas, are implemented in a prototype.
Experiments conducted on several benchmarks in the chapter show significant reduc-
tions obtained by the prototype when verifying MPI programs. We also run k-partial
alternatives with different values of k. The results obtained by experiments once again
confirm that in some cases, with low values of k, we still obtain optimal results, and
k-partial alternatives can be faster than optimal DPOR if the benchmark contains few
SSBs. However, this chapter also opens some works to be done. For example, we
need to compare the prototype with state-of-the-art verification tools for MPI programs,
as well as proposing an automated method to propose good values of k in calculating

112

5.5 Conclusion

k-partial alternative.

Type of action Description of K

AsyncSend K ⊆ {preEvt(a,C), AsyncSend , TestAny }

AsyncReceive K ⊆ {preEvt(a,C), AsyncReceive, TestAny }

TestAny
K ⊆ { preEvt(a,C), AsyncSend (or AsyncReceive) }

WaitAny

AsyncMutexLock K ⊆ {preEvt(a,C), AsyncMutexLock }

MutexUnlock K ⊆ {preEvt(a,C), MutexTestAny }

MutexTestAny
K ⊆ {preEvt(a,C), MutexUnlock }

MutexWaitAny

LocalComp K ⊆ {preEvt(a,C)}

Table 5.2 – Possible values of K according to the type of action a

113

CHAPTER 6

CONCLUSION AND PERSPECTIVES

6.1 Conclusion

Using model checking techniques to verify concurrent programs is still a challenge
for the formal methods community because of an intractable problem, that is, the state
space explosion. Since the model checking method was born, much attention has
been paid to mitigate this problem, typically studies of POR techniques. In the last
few years, we have seen the birth of two new efficient methods outperforming the POR
techniques, namely UDPOR and optimal DPOR. They are considered optimal since
completely avoiding redundant explorations. Besides, distributed programs are in the
mainstream of information technology. When writing HPC programs, MPI libraries are
usually chosen by developers because they provide many useful functions and man-
ners for developing such kind of applications. For that reason, many HPC applications
that run on super-computing platforms are written by using MPI libraries. HPC applica-
tions can bring intensive performances, but verifying them is an error-prone task. So,
they have attracted interest from researchers in the model checking community, typi-
cally Ganesh Gopalakrishnan and his colleagues. Similar to verifying other concurrent
programs, model checking of MPI programs also faces the state space explosion prob-
lem since concurrency and non-determinism that mainly result in state space explosion
are main features of MPI applications where many processes operate simultaneously.

The main goal of the thesis aims at adapting a state of the art method that is
Unfolding-based DPOR to model-check real MPI programs in the setting of the Sim-
Grid simulator. Figure 6.1 depicts the workflow that we use in order to reach the main
target of the thesis, verifying MPI applications. Let’s summarize some mains steps in
the thesis.

Abstract model In the thesis, we defined a compact abstract model with very few
kernel actions. At the semantic level, the abstract model consists of a set of actors and

114

6.1 Conclusion

Unfolding-based
DPOR

Simgrid
Observation

MPI program
+

Safety properties

Reduced
LTSAbstract model TLA+ specification

 Independence theorems

Exhautive
LTS

Figure 6.1 – Workflow.

two subsystems, namely the synchronization subsystem and the communication sub-
system. Actors can execute three kinds of actions, namely local computation actions,
synchronization actions, and communication actions. The synchronization subsystem
is composed of some FIFO mailboxes where communications meet and pair, and a
Communications object that stores all done communications in the system. The syn-
chronization subsystem includes some mutexes used for actors synchronization tasks.
From a formal point of view, a significant advantage of the abstract model is that with
a very small amount of kernel actions, it can be used to encode a large class of MPI
programs. So, instead of formalizing a huge number of MPI functions that is an error-
prone task, specifying the semantics of these actions to reason about the dependency
of actions becomes easy.

Specification of the abstract model As presented, Partial order reduction methods
reduce the state space of a program by exploiting the commutation of independent
actions. Determining whether actions are independent requires a precise formal se-
mantics of the program. So, after defining it abstractly, the abstract model is specified
in TLA+ in order to obtain its semantics. Then, independence theorems are proved
based on the formal TLA+ specification, and they are later used as an input of UDPOR
to compute independence relations between actions of programs to be verified.

Adapting UDPOR Experiments already showed that UDPOR efficiently combats the
state space explosion of concurrent programs consisting of several processes that
communicate through mutexes. However, to the best of our knowledge, it has not been
applied to distributed programs where message passing is employed. This work is the

115

Chapter 6 – Conclusion and perspectives

first attempt to verify message passing programs by using UDPOR. However, verifying
such programs requires efficiently computing extensions of configurations. By careful
observation of the relationship between events in a configuration, and using the per-
sistence property of the abstract model, we proposed methods to efficiently compute
the extensions in the context of our model. The main flavor of the methods is that when
computing events for a given action a and a configuration C , we point out that a can
only depend on the actions of very few and easily identifiable events in C . Thus we can
compute new events efficiently.

Implementation All our proposed algorithms are implemented in a prototype, and
some benchmarks have also been experimented. Although the prototype now works
with simple benchmarks since it has not been yet integrated into the SimGrid envi-
ronment. These experiments have implications in demonstrating that UDPOR is fully
applicable to ensure that MPI programs do not have unwanted behaviors. Besides, the
implementation of the quasi-optimal version of UDPOR with k -partial alternatives and
varying the value of k in some benchmarks reveals that using k -partial alternatives in
message passing programs can also gain benefits: UDPOR can still be optimal with a
low value of k ; or it can have redundant explorations, but the run time decreases.

6.2 Perspectives

Our work opens a number of perspectives. In this section, we discuss the most
promising ones.

Integration As presented, the prototype now has not been integrated into SimGrid
since it needs an API that in turn needs rather intrusive refactoring of the framework. In
the future, we aim at extending our model of asynchronous distributed systems, while
both preserving good properties, and implementing UDPOR in the SimGrid model
checker and verify real MPI applications. Once done, we should experiment UDPOR
more deeply, and compare it with state of the art tools on more significant benchmarks,
get a more precise analysis about the efficiency of UDPOR compared to simpler DPOR
approaches, analyze the impact of quasi-optimality on efficiency.

116

6.2 Perspectives

Improving performance We now check conflicts between two events by scanning
the local configuration of the two events and checking for immediate conflicts between
the causes. This is rather slow. In [34], the authors proposed an efficient method for
deciding causality and conflicts between the events of an unfolding of a data-race-free
program that uses mutexes. We believe that the method can be extended for our model
to improve the performance of UDPOR.

Refining the independence relation A simple solution to have a better reduction of
UDPOR is to refine the independence relation: the more precise, the less Mazurkiewicz
traces exist, thus the more efficient could be UDPOR. For example, we now have that
two AsyncSend actions are dependent if they concern the same mailbox. However, if
they send the same data, they should be independent, or if the program future behavior
and the property do not depend on the value of the data, then they can be considered
independent. We believe that this solution can helps us get good reductions in many
cases in practice.

Liveness property We now assume that the state space of the MPI program that we
consider is acyclic. However, UDPOR can work with non-acyclic state spaces by using
a cut-off technique [27]. Besides, we have a great advantage since SimGrid is equipped
with a state equality tool allowing to check if two application states are equal. Hence,
we can extend the prototype to verify non-acyclic state spaces. Besides, like most other
studies on POR, our work now only focuses on safety property. One direction to extend
UDPOR is to check LTL-X properties (LTL properties do not contain the next operator
(X)). We believe that there are promising results to get in this direction, but it will require
a lot of efforts.

Parallelization and distribution Another direction that can be tried to get better per-
formance of UDPOR is to parallelize or distribute UDPOR. One simple scheme is that
each trace (alternative) can be explored by a thread/process. We will need a scheduler
to cleverly assign alternatives to threads/processes and avoid the situation that two
threads/process explore the same alternative, but we think that’s a promising way.

117

REFERENCES

[1] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos F. Sago-
nas, « Optimal dynamic partial order reduction », in: 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL, San Diego,
CA, USA, January, 2014.

[2] Elvira Albert, Puri Arenas, Maria Garcia de la Banda, Miguel Gómez-Zamalloa,
and Peter J. Stuckey, « Context-Sensitive Dynamic Partial Order Reduction », in:
Computer Aided Verification - 29th International Conference, Heidelberg, Ger-
many, July, 2017.

[3] Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, and Albert Rubio, « Con-
strained Dynamic Partial Order Reduction », in: 30th International Conference on
Computer Aided Verification, Oxford, UK, July, 2018.

[4] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania, « Bounded model
checking of software using SMT solvers instead of SAT solvers », in: STTT 11.1
(2009).

[5] Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas, « Op-
timal Dynamic Partial Order Reduction with Observers" », in: Tools and Algo-
rithms for the Construction and Analysis of Systems, Thessaloniki, Greece, April,
Springer, 2018.

[6] Christel Baier and Joost-Pieter Katoen, Principles of model checking, MIT Press,
2008, ISBN: 978-0-262-02649-9.

[7] Armin Biere, « Bounded Model Checking », in: Handbook of Satisfiability, 2009.

[8] Stanislav Böhm, Ondrej Meca, and Petr Jancar, « State-Space Reduction of
Non-deterministically Synchronizing Systems Applicable to Deadlock Detection
in MPI », in: Formal Methods - 21st International Symposium, Limassol, Cyprus,
November, 2016.

118

[9] Henri Casanova, Arnaud Legrand, and Martin Quinson, « SimGrid: A Generic
Framework for Large-Scale Distributed Experiments », in: Tenth International
Conference on Computer Modeling and Simulation, Cambridge, UK, April, 2008.

[10] Edmund Melson Clarke and E. Allen Emerson, « Design and Synthesis of Syn-
chronization Skeletons Using Branching Time Temporal Logic », in: 25 Years of
Model Checking - History, Achievements, Perspectives, 2008.

[11] Edmund Melson Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith, « Counterexample-Guided Abstraction Refinement », in: Computer Aided
Verification, 12th International Conference, CAV, Proceedings, Chicago, IL, USA,
July, 2000.

[12] Edmund Melson Clarke, Orna Grumberg, and David E. Long, « Model Checking
and Abstraction », in: Proceedings of the 19th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, Albuquerque, New Mexico, USA,
1992.

[13] Augustin Degomme, Arnaud Legrand, George S. Markomanolis, Martin Quinson,
Mark Stillwell, and Frédéric Suter, « Simulating MPI Applications: The SMPI Ap-
proach », in: IEEE Transactions on Parallel and Distributed Systems 28.8 (2017).

[14] Cormac Flanagan and Patrice Godefroid, « Dynamic partial-order reduction for
model checking software », in: Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Long Beach, California,
USA, January, vol. 40, 2005.

[15] Message Passing Forum, MPI: A Message-Passing Interface Standard, tech.
rep., Knoxville, TN, USA, 1994.

[16] Patrice Godefroid, « Model Checking for Programming Languages using Verisoft »,
in: Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, Papers Presented at the Sym-
posium, Paris, France, January, 1997.

[17] Patrice Godefroid, Partial-Order Methods for the Verification of Concurrent Sys-
tems - An Approach to the State-Explosion Problem, vol. 1032, Lecture Notes in
Computer Science, Springer, 1996, ISBN: 3-540-60761-7.

119

[18] Patrice Godefroid and Didier Pirottin, « Refining Dependencies Improves Partial-
Order Verification Methods (Extended Abstract) », in: Proc. Computer Aided Ver-
ification, 5th International Conference, CAV, Elounda, Greece, June, 1993.

[19] Ganesh Gopalakrishnan, Robert M. Kirby, Stephen Siegel, Rajeev Thakur, William
Gropp, Ewing Lusk, Bronis R. De Supinski, Martin Schulz, and Greg Bronevet-
sky, « Formal Analysis of MPI-based Parallel Programs », in: Communication of
the ACM 54.12 (Dec. 2011), ISSN: 0001-0782.

[20] Marion Guthmuller, Gabriel Corona, and Martin Quinson, « System-Level State
Equality Detection for the Formal Dynamic Verification of Legacy Distributed Ap-
plications », Research Report, 2015.

[21] Anthony Hall, « Seven Myths of Formal Methods », in: IEEE Softw. 7.5 (Sept.
1990), ISSN: 0740-7459.

[22] Tobias Hilbrich, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller,
« MUST: A Scalable Approach to Runtime Error Detection in MPI Programs », in:
Proceedings of the 3rd International Workshop on Parallel Tools for High Perfor-
mance Computing, Springer Berlin Heidelberg, 2010, ISBN: 978-3-642-11261-4.

[23] Dhriti Khanna, Subodh Sharma, César Rodríguez, and Rahul Purandare, « Dy-
namic Symbolic Verification of MPI Programs », in: 22nd International Sympo-
sium on Formal Methods, FM’18, Oxford, UK, 2018.

[24] Dhriti Khanna, Subodh Sharma, César Rodríguez, and Rahul Purandare, « Dy-
namic Symbolic Verification of MPI Programs », in: 22nd International Sympo-
sium on Formal Methods, Oxford, UK, July, 2018.

[25] Roger Kowalewski and Karl Fürlinger, « Nasty-MPI: Debugging Synchronization
Errors in MPI-3 One-Sided Applications », in: Euro-Par 2016: Parallel Process-
ing: 22nd International Conference on Parallel and Distributed Computing, Pro-
ceedings, Springer International Publishing, 2016.

[26] Bettina Krammer, K. Bidmon, M.S. Müller, and M.M. Resch, « MARMOT: An
MPI analysis and checking tool », in: Advances in Parallel Computing 13 (2004),
Parallel Computing, pp. 493 –500.

[27] César Rodríguez , Marcelo Sousa , Subodh Sharma , Daniel Kroening, « Unfolding-
based Partial Order Reduction », in: 26th International Conference on Concur-
rency Theory, Madrid, Spain, September, 2015.

120

[28] Leslie Lamport, Specifying Systems, The TLA+ Language and Tools for Hard-
ware and Software Engineers, Addison-Wesley, 2002, ISBN: 0-3211-4306-X.

[29] Kenneth McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993,
ISBN: 0792393805.

[30] Willem Visser, Peter C. Mehlitz, « Model Checking Programs with Java PathFinder »,
in: Proceedings of Model Checking Software, 12th International SPIN Workshop,
San Francisco, CA, USA, August, 2005.

[31] Stephan Merz, Martin Quinson, and Cristian Rosa, « SimGrid MC: Verification
Support for a Multi-API Simulation Platform », in: Formal Techniques for Dis-
tributed Systems - Joint 13th IFIP WG 6.1 International Conference, FMOODS,
and 31st IFIP WG 6.1 International Conference, FORTE, Proceedings, Reyk-
javik, Iceland, June, 2011.

[32] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, and
David L. Dill, « CMC: A Pragmatic Approach to Model Checking Real Code »,
in: 5th Symposium on Operating System Design and Implementation,Boston,
Massachusetts, USA, December, 2002.

[33] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Piramanayagam
Arumuga Nainar, and Iulian Neamtiu, « Finding and Reproducing Heisenbugs in
Concurrent Programs », in: 8th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2008, December 8-10, 2008, San Diego, Califor-
nia, USA, Proceedings, 2008.

[34] Huyen T. T. Nguyen, César Rodríguez, Marcelo Sousa, Camille Coti, and Laure
Petrucci, « Quasi-Optimal Partial Order Reduction », in: 30th International Con-
ference on Computer Aided Verification, Oxford, UK, July, 2018.

[35] Robert Palmer, Steve Barrus, Yu Yang, Ganesh Gopalakrishnan, and Robert M
Kirby, « Gauss: A Framework for Verifying Scientific Computing Software », in:
Electronic Notes in Theoretical Computer Science 144.3 (2006).

[36] Robert Palmer, Ganesh Gopalakrishnan, and Robert M. Kirby, « Semantics Driven
Dynamic Partial-order Reduction of MPI-based Parallel Programs », in: Proceed-
ings of the ACM Workshop on Parallel and Distributed Systems: Testing and De-
bugging, PADTAD ’07, London, United Kingdom, 2007.

121

[37] Doron A. Peled, « All from One, One for All: on Model Checking Using Repre-
sentatives », in: Computer Aided Verification, 5th International Conference, CAV,
Proceedings, Elounda, Greece, June, 1993.

[38] The Anh Pham, Thierry Jéron, and Martin Quinson, « Unfolding-Based Dynamic
Partial Order Reduction of Asynchronous Distributed Programs », in: Formal
Techniques for Distributed Objects, Components, and Systems - 39th IFIP WG
6.1 International Conference, Held as Part of the 14th International Federated
Conference on Distributed Computing Techniques, Kongens Lyngby, Denmark,
June, 2019.

[39] The Anh Pham, Thierry Jéron, and Martin Quinson, « Verifying MPI Applications
with SimGridMC », in: Proceedings of the 1st International Workshop on Soft-
ware Correctness for HPC Applications, Denver, CO, USA, November, 2017.

[40] Jean-Pierre Queille and Joseph Sifakis, « Specification and verification of con-
current systems in CESAR », in: International Symposium on Programming, 5th
Colloquium, Proceedings,Torino, Italy, April, 1982.

[41] Cristian Daniel Rosa, Stephan Merz, and Martin Quinson, « A Simple Model of
Communication APIs - Application to Dynamic Partial Order Reduction », in: 10th
International Workshop on Automated Verification of Critical Systems, Düssel-
dorf, Germany, Septembre, 2010.

[42] Emmanuelle Saillard, Patrick Carribault, and Denis Barthou, « PARCOACH: Com-
bining static and dynamic validation of MPI collective communications », in: In-
ternational Journal of High Performance Computing Applications (2014).

[43] Subodh Sharma, Ganesh Gopalakrishnan, and Greg Bronevetsky, « A Sound
Reduction of Persistent-Sets for Deadlock Detection in MPI Applications », in:
Formal Methods: Foundations and Applications, Natal, Brazil, September, 2012,
pp. 194–209.

[44] Stephen F. Siegel, « Model Checking Nonblocking MPI Programs" », in: 8th Inter-
national Conference on Verification, Model Checking, and Abstract Interpretation,
Nice, France, January, Springer Berlin Heidelberg, 2007.

[45] Stephen F. Siegel, Manchun Zheng, Ziqing Luo, Timothy K. Zirkel, Andre V. Mar-
ianiello, John G. Edenhofner, Matthew B. Dwyer, and Michael S. Rogers, « CIVL:
The Concurrency Intermediate Verification Language », in: Proceedings of the

122

International Conference for High Performance Computing, Networking, Storage
and Analysis, Austin, Texas, USA, November, ACM, 2015.

[46] Stephen F. Siegel and Timothy K. Zirkel, « Automatic Formal Verification of MPI-
based Parallel Programs », in: SIGPLAN Not. (2011).

[47] C.R. Spitzer, Digital avionics handbook: development and implementation. Avion-
ics, CRC Press, 2007, ISBN: 9780849384417.

[48] Maarten van Steen and Andrew S. Tanenbaum, « A brief introduction to dis-
tributed systems », in: Computing 98.10 (2016), ISSN: 1436-5057.

[49] Antti Valmari, « Stubborn sets for reduced state space generation », in: Inter-
national Conference on Applications and Theory of Petri Nets, Bonn, Germany,
June, 1989.

[50] Anh Vo, S. Aananthakrishnan, Ganesh Gopalakrishnan, Bronis R. de Supinski,
Martin Schulz, and Greg Bronevetsky, « A Scalable and Distributed Dynamic For-
mal Verifier for MPI Programs », in: 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, New Orleans,
LA, USA, IEEE Computer Society, 2010.

[51] Anh Vo, Sarvani S. Vakkalanka, Michael Delisi, Ganesh Gopalakrishnan, Robert
M. Kirby, and Rajeev Thakur, « Formal Verification of Practical MPI Programs »,
in: ACM SIGPLAN Notices 44.4 (2009).

[52] Jim Woodcock and Jim Davies, Using Z: Specification, Refinement, and Proof,
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996, ISBN: 0-13-948472-8.

[53] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald, « For-
mal Methods: Practice and Experience », in: ACM Comput. Surv. 41.4 (2009).

[54] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin,
Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou, « MODIST1: Transparent
Model Checking of Unmodified Distributed Systems », in: Proceedings of the
6th USENIX Symposium on Networked Systems Design and Implementation,
Boston, MA, USA, April, 2009.

[55] Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby, « Dis-
tributed dynamic partial order reduction », in: STTT 12.2 (2010), pp. 113–122.

123

	Introduction
	Introduction to distributed programs
	Formal methods
	Model checking
	Process of model checking
	Linear Temporal Logic
	State space explosion
	Stateless model checking and stateful model checking

	Introduction to SimGrid
	Model checking with SimGrid
	MPI verification in SimGrid

	Contributions of the thesis
	Organization of the manuscript

	State of the art
	Partial order reduction
	Recent studies on DPOR
	Model checkers for MPI programs
	Conclusion

	Preliminaries
	Interleaving and concurrent semantics
	Labelled transition systems
	Independent actions
	Event structures

	Unfolding-based dynamic partial order reduction
	Conclusion

	Computation model of asynchronous distributed programs
	Informal description of the model
	Model specification
	Persistence
	Independence theorems
	Encoding MPI programs
	Introduction to MPI programs
	Encoding

	Conclusion

	Adapting UDPOR
	Computing extensions efficiently
	General properties
	 Computing extensions for AsyncSend actions.
	 Computing extensions for AsyncReceive actions.
	Computing extensions for WaitAny actions.
	Computing extensions for TestAny actions.
	Computing extensions for AsyncMutexLock actions.
	 Computing extensions for MutexUnlock actions.
	 Computing extensions for MutexWaitAny actions.
	 Computing extensions for MutexTestAny actions.
	 Computing extensions for LocalComp actions.

	Computing extensions incrementally
	Computing dependence relations
	Computing dependencies for communication actions
	Computing dependencies for synchronization actions

	Experiments
	Conclusion

	Conclusion and perspectives
	Conclusion
	Perspectives

	Bibliography

