Firstly, I would like to express my sincere thanks to my respectful supervisors: Thierry Jéron and Martin Quinson. They gave me this topic, helped me a lot during the past three years. I learned from them a lot, not only scientific knowledge but also skills for research, such as presentation skills, writing skills, and so on. I would like to thank them for patiently listening to me in every meetings, always motivating but not putting pressure on me over the three years.

I am grateful to all the jury

RÉSUMÉ Contexte

Les applications distribuées à passage de messages font partie intégrante de la technologie de l'information puisqu'elles produisent des performances supérieures à celles que l'on pourrait obtenir d'un seul ordinateur, afin de répondre aux tâches de calcul de plus en plus coûteuses d'aujourd'hui. La conception d'applications distribuées pose des problèmes de correction notoires. En plus des difficultés intrinsèques à la programmation concurrente (e.g., possibilité de race conditions), la programmation distribuée ajoute d'autres difficultés, comme l'absence de mémoire et d'horloge centralisées. Les applications modernes de calcul haute performance (HPC) doivent faire face à toutes ces difficultés lorsqu'elles tentent d'agréger et d'exploiter pleinement la puissance de calcul d'un ensemble de noeuds multicoeurs. Dans ce contexte, l'approche classique pour garantir la correction consiste à s'appuyer sur des modèles de communication rigides, afin d'éviter des scénarios de synchronisation complexes. Malheureusement, ces schémas de communication rigides passent mal à l'échelle. La taille des plates-formes de calcul modernes impose donc des applications dont les schémas de communication sont irréguliers et dynamiques. Cependant, il devient alors pratiquement impossible d'assurer l'exactitudela correction de ces applications par des méthodes classiques de test. Il en découle donc un fort besoin de nouveaux outils de vérification de correction qui reposent sur des méthodes formelles.

Les méthodes formelles [START_REF] Woodcock | Formal Methods: Practice and Experience[END_REF] sont des techniques mathématiques appliquées à la conception et l'analyse des systèmes matériels et du logiciel. Parmi les méthodes formelles, les techniques de vérification par modèles ou model-checking ont fortement attiré l'attention des chercheurs en raison de leur efficacité. Le model checking a été inventé au début des années 1980 et développé indépendamment par Clarke et Emerson [START_REF] Melson | Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic[END_REF] et par Queille et Sifakis [START_REF] Queille | Specification and verification of concurrent systems in CESAR[END_REF]. Après près de 40 ans de développement, elle est devenue une méthode populaire et efficace pour vérifier les systèmes matériels et logiciels. Étant donné un modèle d'un système et une propriété, la vérification par modèle vérifie automatiquement si la propriété est satisfaite sur ce modèle [START_REF] Baier | Principles of model checking[END_REF]. La technique est automatique en ce sens qu'un model-checker s'exécute automatiquement sans nécessiter aucune intervention de la part des utilisateurs. Le principe consiste généralement à explorer tous les comportements possibles du modèle du système. Cependant, l'espace d'états augmente exponentiellement avec le nombre de processus concurrents. La réduction par ordre partiel (POR) et la technique de dépliage sont deux techniques alternatives nées dans les années 90 candidates pour atténuer l'explosion de l'espace d'état et s'étendre à des applications de grande taille.

Les techniques de POR comprennent un ensemble de techniques d'exploration partageant l'idée que pour détecter les blocages, il suffit de couvrir chaque trace de Mazurkiewicz, i.e. chaque classe d'entrelacements équivalents par commutation d'actions consécutives indépendantes (i.e., deux actions sont indépendantes si l'une n'active ni ne désactive l'autre, et si leur ordre relatif n'a aucun effet sur le résultat final). Cette réduction de l'espace d'états est obtenue en choisissant, à chaque état exploré et en fonction de l'indépendance des actions, seulement un sous-ensemble d'actions à explorer (par exemple, ensemble persistant, ample set, ou stubborn set) ou à éviter (par exemple, sleep set).

La technique de réduction dynamique d'ordre partiel (DPOR) a été introduite plus tard pour réduire l'explosion de l'espace d'états pour la vérification sans mémorisation d'état (stateless) des programmes. Dans ce contexte, alors que POR repose sur une relation d'indépendance définie statiquement et potentiellement imprécise, DPOR peut être beaucoup plus efficace en collectant dynamiquement cette relation au cours de son exécution. Néanmoins, des explorations redondantes peuvent encore exister qui conduiraient à des entrelacements déjà visités, et détectés par l'utilisation de sleepsets. C'est ce qu'on appelle exploration sleep set blocked (SSB). Éviter les SSB pour obtenir l'optimalité est un défi et peut compter sur les dépliages pour l'obtenir.

Les dépliages sont un concept de théorie de la concurrence qui fournit une représentation compacte des comportements d'un modèle sous la forme d'une structure d'événements qui agrége à la fois les dépendances causales, la concurrence entre les événements, et les conflits qui indiquent des choix dans l'évolution du programme. Cette représentation peut être exponentiellement plus compacte qu'une sémantique d'entrelacement, tout en permettant de vérifier certaines propriétés, comme les propriétés de sûreté. Chaque configuration maximale du dépliage d'un programme correspond à une trace de Mazurkiewicz représentant une classe d'équivalence des exécutions du programme. UDPOR [START_REF] Rodríguez | Unfoldingbased Partial Order Reduction[END_REF] est une technique DPOR optimale qui combine les forces des POR et des dépliages et explore les comportements d'un programme sans exploration redondante de traces de Mazurkiewicz.

Notre objectif est de vérifier des applications distribuées asynchrones, à savoir des programmes MPI, en l'absence de modèle, mais avec la possibilité d'exécuter le code dans l'environnement de simulation SimGrid et de tirer profit de la technique UDPOR. La vérification des modèles se heurte alors déjà à de sérieux problèmes, comme la détermination des états globaux du système et la vérification de l'égalité des états. L'application d'UDPOR aux applications distribuées asynchrones pose de nouvelles difficultés. La détermination de la dépendance entre actions nécessite de spécifier la sémantique des programmes. Cependant, du fait du nombre important de types d'actions différents et de la complexité de leurs effets, préciser formellement la sémantique est une tâche très laborieuse et sujette à erreur. De plus, le calcul des extensions d'une configuration peut être coûteux (en gros, une configuration représente une classe d'équivalence d'exécutions, alors que ses extensions désignent des états qui sont directement accessibles à partir des états au cours ces exécutions). Par exemple, ce problème est NP-complet dans les réseaux de Petri. Par conséquent, UD-POR nécessite des algorithmes ingénieux pour calculer efficacement les dépliages. Or il n'est pas possible d'adapter directement une solution existante conçue pour des programmes concurrents ayant seulement des mutex [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF]. Pour ces raisons, nos contributions ainsi que nos solutions sont liées à cet objectif de recherche.

Contributions

-Nous définissons d'abord un modèle abstrait compact de programmes distribués asynchrones comprenant peu de primitives. Ce modèle abstrait peut être utilisé pour modéliser des applications distribuées asynchrones, en particulier pour simuler une grande classe de programmes MPI. Pour y parvenir, nous révisons et étendons un modèle abstrait existant de programmes distribués en ajoutant de nouvelles primitives de synchronisation. Bien que la plupart des applications distribuées soient asynchrones, il reste encore des tâches qui doivent être synchronisées (par exemple les appels MPI Win lock , MPI Win unlock dans la programmation RMA des programmes MPI). En ajoutant les primitives de synchronisation au modèle abstrait, il est possible de coder une plus grande classe de programmes MPI, mais le modèle abstrait reste toutefois compact avec seule-ment neuf primitives. Ainsi, au lieu de décrire la spécification formelle de la sémantique non triviale du standard MPI, nous ne décrivons formellement, dans le langage de spécification TLA+, que ce modèle abstrait comprenant seulement quelques primitives. En effet, notre modèle abstrait est facile à spécifier et sa spécification formelle est concise. Avec cette spécification précise du modèle abstrait, on peut alors raisonner sur les relations d'indépendance utiles pour les techniques de réduction d'ordre partiel. De plus, à partir de cette spécification, nous prouvons que dans notre modèle, une action tirable ne peut pas être désactivée en exécutant d'autres actions (propriété de persistance). Cette propriété est la clé de l'efficacité d'UDPOR pour notre modèle.

-Comme annoncé, nous avons comme objectif de tirer parti d'UDPOR pour la vérification de programmes MPI, dans le cadre du simulateur SimGrid. Puisque le modèle abstrait est capable d'exprimer une grande classe de programmes MPI, et que les primitives de notre modèle abstrait correspondent étroitement à celles fournies par le noyau de simulation SimGrid, nous adaptons la technique UDPOR sur le modèle abstrait plutôt que sur le modèle de programmation MPI général. Cependant, quel que soit le modèle de calcul, la question se pose de savoir comment calculer efficacement les extensions d'une configuration. Nous avons donc proposé les étapes permettant d'adapter UDPOR aux applications MPI qui peuvent être simulées par le simulateur SimGrid, en nous concentrant sur des algorithmes intelligents pour calculer les extensions. En exploitant la persistance du modèle abstrait et les observations précises sur les configurations et les relations d'indépendance entre les actions, nous avons proposé des méthodes efficaces pour calculer efficacement ces extensions (en temps polynomial).

-L'algorithme UDPOR étant récursif, le calcul des extensions d'une configuration obtenue en ajoutant un nouvel événement à une configuration obtenue à l'étape précédente conduit a priori à des recalculs de nombreux événements.

Nous avons donc proposé un algorithme incrémental pour notre modèle, éliminant presque tous ces calculs et ne s'appuyant que sur les actions qui sont tirables dans l'état de la configuration.

-Nous avons implémenté la version quasi-optimale d'UDPOR dans un prototype adapté à notre modèle de programmation abstrait, c'est-à-dire avec sa relation d'indépendance. Nous avons effectué quelques expériences et comparé UDPOR à une recherche exhaustive sans mémorisation d'état sur plusieurs critères. Le prototype est encore limité, pas encore connecté à l'environnement SimGrid, et ne peut donc être expérimenté que sur des exemples simples. Cependant, grâce aux premiers résultats prometteurs obtenus par ces expériences, nous pensons pouvoir affirmer que UDPOR peut être utilisé pour vérifier des applications MPI tout en atténuant l'explosion de l'espace d'état de ces applications.

En ce qui concerne les publications scientifiques de la thèse, les deux articles suivant ont été publiés au cours de la thèse :

-The Anh Pham, Thierry Jéron, Martin Quinson: Verifying MPI Applications with SimGridMC, In Proceedings of the First International Workshop on Software Correctness for HPC applications, CORRECTNESS@SC 2017, Denver, CO, USA, November 2017.

-The Anh Pham, Thierry Jéron, Martin Quinson, Unfolding-Based Dynamic Partial Order Reduction of Asynchronous Distributed Programs. In Proceedings of the FORTE conference, Kongens Lyngby, Denmark, June 2019.

Formal methods [START_REF] Woodcock | Formal Methods: Practice and Experience[END_REF] are applied mathematical techniques for the design and analysis of computer hardware and software. In formal methods, model checking technique attracts a lot of attention from researchers due to its effectiveness. Model checking was invented in the early 1980s, and independently developed by Clarke and Emerson [START_REF] Melson | Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic[END_REF] and by Queille and Sifakis [START_REF] Queille | Specification and verification of concurrent systems in CESAR[END_REF]. After nearly 40 years of development, it has become a popular and efficient method for verifying hardware and software systems. Given a model of a system and a property, model checking automatically checks whether the property holds for that model [START_REF] Baier | Principles of model checking[END_REF]. It is automatic in the sense that a model checker automatically runs the verification process without requiring any manipulation from users. The principle is usually to explore all possible behaviors of the system model. However, state spaces increase exponentially with the number of concurrent processes. Partial order reduction (POR) and unfolding are two alternative candidate techniques born in the 90's to mitigate this state space explosion and scale to large applications.

POR comprises a set of exploration techniques sharing the idea that to detect deadlocks it is sufficient to cover each Mazurkiewicz trace, i.e. a class of interleavings equivalent by commutation of consecutive independent actions (i.e., two actions are independent if one neither enables nor disables the other one, and their relative ordering has no impact on the final outcome). This state space reduction is obtained by choosing at each explored state, based on the independence of actions, only a subset of actions to explore (e.g., persistent set, ample set, stubborn set) or to avoid (e.g., sleep set).

Dynamic partial order reduction (DPOR) was introduced later to alleviate state space explosion for stateless model checking of software. In this context, while POR would rely on a statically defined and imprecise independence relation, DPOR may be much more efficient by dynamically collecting it at run-time. Nevertheless, redundant explorations may still exist that would lead to an already visited interleaving, and detected by using sleep-sets. This is called sleep-set blocked (SSB) exploration. Avoiding SSBs to get optimality is a challenge. One can rely on unfoldings to get it.

Unfoldings is a concept of concurrency theory providing a compact representation of the behaviors of a model in the form of an event structure aggregating causal dependencies or concurrency between events, and conflicts that indicate choices in the evolution of the program. This representation may be exponentially more compact than an interleaving semantics, while still allowing to verify some properties, such as safety. Each maximal configuration of the unfolding of a program corresponds to a Mazurkiewicz trace representing an equivalence class of executions of the program. UDPOR [START_REF] Rodríguez | Unfoldingbased Partial Order Reduction[END_REF] is an optimal DPOR technique that combines the strengths of PORs and unfoldings and explores the unfolding of a program without redundant explorations of Mazurkiewicz traces.

We aim at verifying asynchronous distributed applications, namely MPI programs, in the absence of a model, but with the possibility to run the code in the SimGrid simulation environment and leverage on the UDPOR technique. Model checking then already faces problems, like determining global states of the system and checking state equality. Applying UDPOR to asynchronous distributed applications brings new difficulties. Determining dependent actions requires to specify the semantics of the programs. However, with many different types of actions as well as their effects, which are very complex, formally specifying them is a very laborious and error-prone task. In addition, computing the extensions for a configuration may be expensive (roughly speaking, a configuration represents an equivalence class of executions while its extensions denote states that are directly reachable from states in that executions), for example, it is NP-complete in Petri-Nets. So, UDPOR requires clever algorithms to compute unfoldings efficiently, and we cannot directly adapt an existing solution tuned for concurrent programs with only mutexes [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF]. For those reasons, the contributions, as well as our solution, are related to the research target.

Contributions

-We first define a compact abstract model of asynchronous distributed programs consisting of few primitives. That abstract model can be used to model asynchronous distributed applications, in particular, it can simulate a large class of MPI programs. To achieve that, we revise and extend an existing abstract model of distributed programs by adding new synchronization primitives. Although most distributed applications are asynchronous, there are still tasks needing to be synchronized (e.g. MPI Win lock , MPI Win unlock calls in RMA programming of MPI programs). By adding the synchronization primitives to the abstract model, a larger set of MPI programs can be encoded, but the abstract model is still compact, with only nine primitives defined. Thus, instead of describing the formal specification of the non-trivial semantic of MPI standard, we only formally describe the abstract model with only a few primitives in the TLA+ specification language. Indeed, our abstract model is easy to specify, and the formal specification of the abstract model is brief. Having a precise specification of the abstract model, we can then reason about independence relations for partial order reduction techniques. In addition, from the specification, we prove that in our model, an enabling action can not be disabled by executing any other actions (persistence property). This property is the key to the efficiency of UDPOR in our model.

-As presented, we aim at leveraging UDPOR while verifying MPI programs in the setting of the SimGrid simulator. Because the abstract model is able to express a large class of MPI programs, and the primitives of our abstract model closely match the ones provided by SimGrid's simulation kernel, we adapt the UDPOR technique on the abstract model rather than the MPI programming model. However, regardless of the calculation model, a challenge arises as to how to effec-tively compute extensions for a configuration. We proposed steps to adapt UD-POR to model check MPI applications that can be simulated by the SimGrid simulator, focusing on smart algorithms to compute extensions. By exploiting the persistence of the abstract model and insightful observations about configurations and the independence relations between actions, we proposed efficient methods computing such extensions efficiently (in polynomial time).

-Since the UDPOR algorithm is recursive, computing the extensions for a configuration obtained by adding a new event to a particular configuration in the previous step leads to re-computations of many events. We proposed an incremental algorithm for our model, eliminating almost all such re-computations and relying on only the actions that are enabled at the state of the configuration.

-We implemented the quasi-optimal version of UDPOR, a variant of UDPOR, in a prototype adapted to the abstract programming model, i.e. with its independence relation. We performed some experiments comparing UDPOR with an exhaustive stateless search on several benchmarks. The prototype is still limited, not connected to the SimGrid environment, and can only be experimented on simple examples. However, with first promising results obtained through the experiments we believe that it is enough to claim that UDPOR can completely be used to model check MPI applications as well as mitigating the state space explosion of such applications.

Regarding the scientific publications of the thesis, two papers have been published during the thesis as follows:

-

INTRODUCTION 1.1 Introduction to distributed programs

From the early days when computers were invented, each computer acted as an independent entity; they could not connect to each other due to the lack of network infrastructure and connection protocols. Therefore computers worked independently of each other. In 1969, the first computer network, ARPANET (Advanced Research Projects Agency Network), was established. It is the first computer network employing packet switching allowing multiple computers to connect simultaneously.

Since then, due to the rapid development of technology, data exchange protocols have been completed, the network infrastructure has been developed and expanded. Computers that are separated from each other by geographical distance can be easily connected as well as exchange data at high speeds. In addition, computational tasks are also getting heavier. They require supercomputers that have a high computational speed or the connection of single computers to run simultaneously for solving a single task or job. For those reasons, computing systems composed of many networked computers are formed to satisfy specific computing tasks, and they are usually considered as distributed systems (or distributed computer systems).

There are various definitions of distributed systems in the literature, and it is difficult to choose the most satisfactory one. However, from an end-user point of view, a distributed system is a collection of autonomous computers communicating through messages passing over communications networks, and it appears to users as a single coherent system [START_REF] Van Steen | A brief introduction to distributed systems[END_REF]. Two properties can be seen through the definition. The first one is that each computer in a distributed system is autonomous, meaning it can operate independently from the other ones. There is neither shared memory nor common physical clock. Each computer can join or leave the system without breaking others. Besides, they are connected to solve a common task and communicate with others in the system by sending messages. The second property is that a distributed system 1.2 Formal methods should appear as a single coherent system. Although it includes various computers, the way in which the computers communicate is mostly hidden from users. End users should not be aware that they are working with a system where processes, data, and control are distributed over a computer network [START_REF] Van Steen | A brief introduction to distributed systems[END_REF].

A computer program that runs in a distributed system is called a distributed program. Since running in a distributed memory environment, processes in a distributed program work concurrently and also communicate by message passing not by sharing memory. There are no common variables between them; instead, each process has its own memory and local variables. One of the primary purposes of using distributed programs is to obtain much higher performance than one could get from a single computer. Thus they are also called high-performance computing applications (HPC).

Writing parallel and distributed programs poses notorious correctness challenges. In addition to intrinsic concurrent programming difficulties (e.g., possible race conditions), distributed programming adds some of its own, such as the lack of centralized memory and the lack of a centralized clock. Modern High-Performance Computing applications must take on all these difficulties when attempting to aggregate and fully exploit the computational power of a set of multi-core nodes. In this context, the classical approach to ensure correctness is to rely on rigid communication patterns, so as to avoid complex synchronization scenarios. Unfortunately, these rigid communication patterns scale poorly. The size of modern computer platforms thus mandates applications with communication patterns that are irregular and dynamic. However, it then becomes virtually impossible to ensure the correctness of such applications via classical testing approaches. There is thus a strong need for new correctness verification tools that rely on formal methods. The next section introduces formal methods.

Formal methods

Formal methods [START_REF] Woodcock | Formal Methods: Practice and Experience[END_REF] are applied mathematical techniques for the design and analysis of computer hardware and software. Software is ubiquitous in most areas of modern life, and software bugs can be costly. For example, the Y2K bug might be the most expensive bug since the development of informatics. It is estimated that around 500 million dollars had to be spent to fix this bug. Software testing is the most common method for debugging and verifying software systems. It is considered to be easy for users, but it can not prove that absolutely no unwanted behaviors exist in the system since users do not know how to create test-cases that trigger such bad behaviors, and exhaustive testing is not feasible for a complex software system. Formal methods can be used independently or as a complement to the testing technique in order to ensure the correct behavior of software systems.

In the software development life cycle, formal methods can be applied at several steps. It can also be used to model and analyze existing software systems. By using formal methods in the design phase, one can early identify faults, before implementing the software [START_REF] Hall | Seven Myths of Formal Methods[END_REF]. Two basic levels of formal methods are usually mentioned: specification and verification.

During the design process of the software life cycle, formal specification is the use of a formal language that has precise syntax, vocabulary, and formal semantics to describe the requirements that the system must achieve. The functionality and specific behaviors (e.g., safety properties) that are required from the system are explicitly defined in specifications [START_REF] Woodcock | Formal Methods: Practice and Experience[END_REF]. Obviously, a formal specification language (e.g., TLA+, Z notation, Lotos, CSP) cannot be a natural language because the semantics of a natural language is ambiguous and its syntax is not well-defined. So, a formal specification language must be based on mathematical concepts to avoid ambiguity. A system is considered correctly implemented if it meets all the requirements in the system specification. Depending on what kind of system and what level of specifications we want to document, a proper formal specification language should be used. For example, the Z notation, a formal specification language, is usually used in Model-based specification approach, can be used to specify non-functional properties of systems, such as usability, performance, size, and reliability, but it does not support concurrency [START_REF] Woodcock | Using Z: Specification, Refinement, and Proof[END_REF] that is supported by TLA+.

Formal specification brings several benefits. For instance, it not only helps software developers have an insight understanding of user requirements but also avoids misinterpretation of the requirements. Besides, by using the mathematical concepts, it can be studied and analyzed by using mathematical methods to detect errors in system requirements at an early stage. Obviously, modifying an already implemented system is usually more costly than correcting errors in the system requirements before deployment.

Besides the benefits of using formal specifications, applying it in practice has some obstacles. Because of using mathematical concepts, formal specifications can be difficult to read and understand for software developers. So, it mandates training in formal specification techniques that most software engineers lack. In addition, specification languages do not always adequately describe requirements of complex systems (e.g., Z notation and B do not support specifying concurrency). However, these obstacles do not preclude the benefits that specification provides, so it is increasingly applied in software engineering.

Formal verification is another level of formal methods. Formal verification [START_REF] Spitzer | Digital avionics handbook: development and implementation[END_REF] is related to the process of verifying the correctness of a system with respect to a particular formal specification by using mathematical techniques. Two main techniques usually mentioned in formal verification are theorem proving, and model checking. Theorem proving is a deductive method, consisting in checking if a software system satisfies its requirements (specification) by mathematical reasoning. Theorem proving is considered a laborious process for users since it requires expert knowledge in mathematics and deep understanding of the system to express the system and requirements as formulas in formal logic that can be understood by the target theorem prover. Therefore, in practice, it is only used effectively by experts in this area and hard to be exploited widely by software developers. Whereas model checking becomes an efficient and easy to use method for users if state spaces are finite or finite abstractions can be exhibited. By exploring all behaviors of a system, it can answer whether the system satisfied a particular property (requirement). Besides, it is entirely automatic technique, and the verification process is performed automatically if the model and specification are provided. However, writing the model and the specification as well as interpreting results requires expertise from users. The following section gives more details of the model checking method.

Model checking

Model checking technique was invented in the early 1980s, and independently developed by Clarke and Emerson [START_REF] Melson | Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic[END_REF] and by Queille and Sifakis [START_REF] Queille | Specification and verification of concurrent systems in CESAR[END_REF]. After nearly 40 years of development, it has become a popular and effective method for verifying hardware and software systems. Given a model of a system and a property, model checking automatically checks whether the property holds for that model [START_REF] Baier | Principles of model checking[END_REF]. It is automatic in the sense that a model checker automatically runs the verification process without requiring any manipulation from users. The main principle of model checking is to traverse all the reachable states and transitions of the system to check if the given property is sat-isfied. Since, using an exhaustive search, model checking is complete on the model, produces reliable and sound outputs, all the states that violate the property can be found. If the property is found not to hold in a particular execution, the model checker can give a counterexample denoting an execution of the system model leading to the bugs.

System model

Process of model checking

Basically, there are three different states in the process of verifying a model with model checking:

-Modeling: Modeling is the process in which a software system (here we are only concerned with software) is described in a precise and compact way. Usually, some high-level and abstract modeling language (e.g., Promela, SysML, Lotos) is used. The output of this process is the model of the software system that can be understood by the target model checker (i.e., the model checker that will be used to check the model). The model can be made manually or automatically extracted from the code of the software. Wherever the model comes from, it should be compact as much as possible. Besides, critical properties that are relevant to the verification process should be preserved. For example, deadlocks must be retained in the model if one wants to verify deadlocks in the system. For a large, complex system, the modeling process is hard, requiring experience and a deep understanding of the system. So, ensuring that the model accurately reflects the operations of the system is challenging for users of model checking. They must answer the question: is the model correct. There is no formal way to efficiently prove if the model correctly reflects the behavior of the system. So, one can rely on simulation to improve the quality of the model before running the verification process.

-Specifying the properties: Property specification languages that can be understood by the model checker are used in this phase to describe the properties. In general, a property is a requirement in the specification of the system. Temporal logic (e.g., Linear Temporal Logic, Computation Tree Logic) is often used to describe properties. The soundness of the specification of the properties should be ensured, meaning that the specification must describe precisely the properties that one wants to verify.

-Verifying: The model checker is run to check if the specified property is satisfied or not. Basically, there are three possible outputs. Firstly, the property is satisfied. Secondly, the property is not satisfied. In this case, the model checker produces a counterexample showing an execution of the system model that leads to an error state in which the property is violated. However, if the property is violated, it does not mean that there is a corresponding error in the system. The model may be incorrect, or it does not reflect accurately what the system performs. So, the model should be improved, removing flaws, and precisely describing what the system does. Another reason is that there is an error in formalizing the property; the property is not exactly formalized. One must restart the verifying stage with a correct model and an accurate specification property. The last output is a failure (e.g., out of time, out of memory) since the number of states is too large to be explored or to be stored in the computer memory. In this case, the model should be reduced in some way.

As presented above, in traditional model checking, the input of a model checker is a model and a property. After the model is verified, then the target system is built. However, in software model checking the situation is different because one wants to verify properties of an already existing code. Software model checking has two broad variants: the first approach follows the manner of the traditional model checking, verifying a model that is usually extracted from the source code of the program by using static analysis; the second approach systematically explores the state space of the program. So, in the latter approach, the model checker can take the real code of a software program [START_REF] Flanagan | Dynamic partial-order reduction for model checking software[END_REF], and Dynamic partial order reduction is the most prominent method for exploring as well as reducing the state space of concurrent programs. It is the primary technique discussed in the thesis.

Linear Temporal Logic

A natural language can be used to specify requirements, properties of systems. Unfortunately, natural languages are often ambiguous, and one phrase may have multiple meanings. So they are not acceptable for system specification which requires high accuracy and consistency. Therefore, there is a need for using a formal language which is unambiguous and concise. Propositional logic can be chosen to specify systems because of its precision and conciseness. However, it is not able to express how a system changes over time. An extension of traditional propositional logic, Linear Temporal Logic, can specify properties exhibiting the behavior of systems over time [START_REF] Baier | Principles of model checking[END_REF]. By using LTL, a wide range of interesting properties can be specified.

In general, there are three main kinds of properties that are most interesting, namely safety (nothing bad happens), liveness (something good eventually happens), fairness (under certain conditions, something will occur infinitely often) [START_REF] Baier | Principles of model checking[END_REF]. For example, in mutual exclusion algorithms, there is no situation such that two processes are in their critical sections (safety property), or each process will eventually occupy its critical section (liveness). All processes will occupy the critical section infinitely often (fairness).

20

LTL formulas are built up from a finite set of propositional variables AP, the logical operators ¬ (negation), ∧ (conjunction), ∨ (disjunction), → (implication), and temporal operators U (until), X (next, also denoted by), F (eventually, also denoted by ♦), G (globally, also denoted by). LTL formulas are defined inductively.

Definition 1 Every atomic proposition p is an LTL formula. If ϕ 1 and ϕ 2 are LTL formulas then:

¬ϕ 1 , ϕ 1 ∧ ϕ 2 , ϕ 1 ∨ ϕ 2 , ϕ 1 → ϕ 2 , ϕ 1 , ♦ϕ 1 , ϕ 1 , ϕ 1 U ϕ 2 are

also LTL formulas

Intuitively, ϕ denotes that ϕ holds in the next step after the current one while ϕ means that ϕ holds on all steps. ♦ϕ states that eventually ϕ holds. Finally, ϕ 1 U ϕ 2 expresses that ϕ 1 must be true and remains true until when ϕ 2 becomes true. Figures 1.2 sketches the intuitive meaning of temporal operators in LTL.

State space explosion

Model checking is a complete method since it exploits an exhaustive search discovering all states of a system. However, with an extensive system, the number of states can be enormous. For a concurrent system, the number of states can grow exponentially with respect to the number of components in the system (e.g., processes). This dramatic growth is known as the state space explosion problem. The state space explosion problem is the main obstacle to avoiding model checking from being used in practice. Unfortunately, the state space explosion problem is a regular phenomenon in model checking of large scale systems. Several techniques have been proposed for more than 30 years in order to combat the state space explosion problem. The following section reviews some common methods.

-Partial Order Reduction (POR): POR is considered one of the most efficient techniques for alleviating the state space explosion of concurrent programs. POR tries to reduce the state space of a system by exploiting the commutativity between independent actions. The effect of concurrent actions may not depend on the order in which they are executed. So, instead of exploring all orders, discovering only one arbitrary order may be sound to verify safety properties. POR leverages on that observation, exploring only a subset of enabled actions at every visited state based on independence. There are several techniques to compute such subsets.

Valmari proposed stubborn sets [START_REF] Valmari | Stubborn sets for reduced state space generation[END_REF] while ample sets [START_REF] Doron | All from One, One for All: on Model Checking Using Representatives[END_REF] were developed by Peled. The last method, persistent sets was invented by Godefroid [START_REF] Godefroid | Partial-Order Methods for the Verification of Concurrent Systems -An Approach to the State-Explosion Problem[END_REF], and it is probably most mentioned in the literature.

-Bounded model checking [START_REF] Biere | Bounded Model Checking[END_REF]

Stateless model checking and stateful model checking

As presented model checking employs an exhaustive search traversing all states of the model of the system that are reachable from the initial state. However, there may be some states that are revisited by the search. To avoid re-exploring the same state, one can record all the already visited states and check if a certain state is already visited, in this case, we call it stateful model checking.

Algorithm 1 illustrates a naive search algorithm for stateful model checking [START_REF] Godefroid | Model Checking for Programming Languages using Verisoft[END_REF]. The principle is trivial. The search will explore all successors of any states that it encounters. The set setStates includes all states whose successors must be explored. The set visitedStates consists of all already visited states. Starting from s 0 , the search recursively explores all successors of every state s in setStates by executing all enabled actions at s. A state can only be explored if it is not in visitedStates.

Stateful model checking can avoid revisiting states; however, maintaining visited states is costly in terms of memory usage. Besides, in software model checking, checking whether two states of a program are equal is not trivial. Even if we assume that each state can be represented by an identifier, computing unique identifiers for states is hard [START_REF] Godefroid | Model Checking for Programming Languages using Verisoft[END_REF], since a state relates to many factors (e.g., data, variables). The problem is more difficult with distributed programs that contain many processes and communication channels. This problem has attracted attention from researchers. For example, in [START_REF] Guthmuller | System-Level State Equality Detection for the Formal Dynamic Verification of Legacy Distributed Applications[END_REF], the authors proposed methods for checking state equality at run-time by using memory introspection rather than relying on the source code analysis.

Due to the challenges to be solved with stateful model checking, stateless model checking [START_REF] Godefroid | Model Checking for Programming Languages using Verisoft[END_REF] was born with a new approach. In the stateless model checking, the search only stores states of the current explored path, and other states are disregarded. Because only part of the exploration is traced, the search is not able to check whether a state has been discovered before, this means that a state can be traversed several times. Partial order reduction techniques which will be discussed in next chapters are used in this context to alleviate that redundancy, and some of those techniques

Introduction to SimGrid

SimGrid [START_REF] Casanova | SimGrid: A Generic Framework for Large-Scale Distributed Experiments[END_REF] is a simulator of distributed applications. Several user interfaces are proposed, ranging from the classical and realistic MPI formalism, to less realistic simgridspecific APIs that ease the expression of theoretical distributed algorithms. These user interfaces are built upon a common interface, that is implemented either on top of a performance simulator, or on top of a model checker exploring exhaustively all possible outcomes from a given initial situation. SimGrid can emulate existing MPI applications using two virtualization mechanisms. First, the distributed application is folded into a single image. All MPI processes are compiled as threads within a single OS process. Second, all communication is mediated through the simulator by a specific reimplementation of the MPI standard. This virtualization, detailed in [START_REF] Degomme | Simulating MPI Applications: The SMPI Approach[END_REF], was initially proposed as a way to leverage SimGrid's simulation model so as to predict the performance of unmodified MPI applications.

McSimGrid, a stateful model checker in SimGrid, exploits it to formally assess the correctness of the application.

Model checking with SimGrid

Principles When running in model checking mode, SimGrid explores all the possible execution paths starting from an initial application configuration, for a fixed set of inputs. This last restriction makes the tool better adapted to applications that are not datadependent.

Let's consider a fully distributed model, in which each process executes sequentially and only interacts with others through message exchanges. In this model, execution paths are completely determined by the communications. The only indecision points at which the execution can branch are situations where a given process is waiting for a message that can come from more than one sender. For example, if two processes (i.e., MPI ranks) rank 1 and rank 2 send a message to process rank 0 , which accepts any incoming message, then McSimGrid will (1) completely explore the scenario where the message of rank 1 arrives first, then (2) rewind the application and (3) completely explore the scenario where the message of rank 2 arrives before that of rank 1 . Similarly, the communication order can induce indecision points when functions such as MPI Waitany() or MPI Testsome() are used.

As presented, the model checking approach suffers from the well known state space explosion problem, meaning that the number of execution paths to explore can easily become intractable in practice. However, many of the execution paths are redundant in practice. SimGrid provides two reduction techniques to detect and avoid those redundant paths: Dynamic Partial Ordering Reduction and State Equality.

Dynamic Partial Ordering Reduction was first proposed by Flanagan and Godefoid in [START_REF] Flanagan | Dynamic partial-order reduction for model checking software[END_REF]. The key idea is that some events are independent of each other, meaning that their relative ordering has no impact on the final outcome. For example, local events occurring on separate hosts are independent. If two events t 1 and t 2 are independent, then two histories only differing by the order of t 1 and t 2 are semantically equivalent. It is then sufficient to explore only one execution path in each such equivalence class. McSimGrid implements a classical DPOR algorithm, at the level of point-to-point communications.

The State Equality reduction technique is based on the simple idea that there is no need to explore twice the outcome of a given state. In abstract models, detecting that the verified system has returned to an already visited state is as simple as computing a hash of all known variables values. In the case of MPI programs, the problem is much more challenging since all information of the program must be introspected. The Sim-Grid approach, detailed in [START_REF] Guthmuller | System-Level State Equality Detection for the Formal Dynamic Verification of Legacy Distributed Applications[END_REF], is to partially reconstruct the semantics of the process memory (global variables, heap, and stack) using a set of tools and libraries that were initially intended for use by debuggers. It is then possible to design a heuristic that only considers relevant (i.e., actually used) bits during state comparison. The heuristic that is implemented in SimGrid is efficient in practice even if it remains fallible because memory semantics cannot always be perfectly reconstructed (e.g., the heap area).

MPI verification in SimGrid

This section highlights several typical use cases enabled by McSimGrid, namely, the discovery of safety and liveness bugs. These use cases are for unmodified MPI applications at small-to mid-range scale.

Safety Properties Safety properties are the simplest type of properties that can be checked with McSimGrid, as they consist of simple assertions. To find a counterexample, a model checker simply searches for a state in which the assertion does not hold. McSimGrid is an explicit-state Model Checker that explores the state space by systematically interleaving process executions in depth-first order, storing a stack that represents the schedule history.

In [START_REF] Merz | SimGrid MC: Verification Support for a Multi-API Simulation Platform[END_REF], the authors showed how McSimGrid can efficiently find bugs in several MPI programs that were specifically written as experimental test cases. The DPOR technique was shown to greatly reduce the size of the explored state space during exhaustive verifications. McSimGrid also found a bug in an implementation of the Chord P2P protocol that proved challenging to isolate through testing.

Contributions of the thesis

Liveness Properties These properties are often expressed in Linear Time Logic (LTL). As such, they combine first-order propositions with quantifiers over time. For example, LTL allows one to express that a given property P holds at some point in the future (noted 3P). The fact that once you press on the brake pedal the car will slow down after a finite number of events is a classical liveness property. Counter-examples to such properties are infinite execution paths taken by the application without reaching the expected state. Since actual computer systems are finite, such infinite paths must contain cycles. The Model Checker must thus search for cycles in the execution occurring after an eventual triggering event ("the brake pedal is pressed" in our previous example) and before the expected event ("the car slows down").

The classical approach is to build a Büchi automaton that represents the opposite of the considered property (such automata encode and recognize infinite sequences) and to explore in a double-DFS the cross-product of the automaton with the application. Once the exploration reaches an accepting state (i.e., a state satisfying the triggering condition) and until the ending event, the Model Checker actively searches for loops: if it explores again a state that was already explored since the accepting state, then an infinite loop that violates the property has been found. When considering real applications, a key difficulty is to evaluate whether the application has reached a state that was already explored. To address this difficulty, Mc-SimGrid leverages the features that form the basis for the State Equality reduction technique, presented earlier. McSimGrid was used to verify several applications from the MPICH3 testsuite (consisting of up to 1,300 lines in C or Fortran), exhaustively searching for non-progressive loops (i.e., livelocks) in various scenarios involving 2 to 6 processes. McSimGrid was able to verify these scenarios in less than a day with State Equality reduction enabled, proving the absence of livelocks in these applications. McSimGrid was also able to find a bug in an erroneous implementation of mutual exclusion in which the request of a given host was deliberately never answered. These results are detailed in a research report [START_REF] Guthmuller | System-Level State Equality Detection for the Formal Dynamic Verification of Legacy Distributed Applications[END_REF].

Contributions of the thesis

We are inspired by the fact that HPC applications that are often implemented by using MPI libraries are becoming increasingly popular, but ensuring their accuracy is intractable. Besides, we also have an efficient simulator called SimGrid that can study the behavior of large-scale distributed computer systems. For example, SimGrid can evaluate heuristics, prototype applications, or assess legacy MPI applications. In addition, in recent years, in research on software model checking, there has been a significant step in mitigating the state space explosion problem of concurrent programs. These reasons motivated us to study how to adapt recent studies to verify distributed applications based on the setting of SimGrid simulator, especially MPI applications. Therefore the contributions of the thesis revolve around these research questions, and are follows:

-The thesis revises and extends an existing abstract model of distributed programs by adding new synchronization primitives. Although most distributed applications are asynchronous, there are still tasks needing to be synchronized. For example, in Remote memory access mode in MPI, to synchronize distributed processes that access the same target window (a shared memory declared by a particular process), one can use MPI synchronization functions (e.g., MPI Win lock , MPI Win unlock). Thus, there is a need for simulating such kind of tasks. By adding the synchronization primitives to the abstract model, a larger set of MPI programs can be encoded. However, the extended model also entails a re-analysis in order to reason about independence relations for partial order reduction techniques. Therefore, in this thesis, besides extending the abstract model, we specify the abstract model in TLA+, and then study the model by simulations as well as define and prove the independence relation.

-The main target of the thesis is efficiently adapting UDPOR (an optimal partial order reduction technique) to verify MPI programs. In the UDPOR exploration algorithm, computing extensions for a configuration can be costly (roughly speaking, a configuration represents an equivalence class of executions while its extensions denote states that are directly reachable from states in that executions). A brute-force approach for computing such values would require to iterate over all subsets of events in the configuration, resulting in an algorithm running in exponential time. By exploiting the properties of the abstract model and insightful observations about configurations and the independence relations of the model, we propose an algorithm that can avoid iterating over all the subsets and only considers interesting ones that are identified by very few events. Finally, the algorithm that computes the extensions runs in polynomial time.

-Since the UDPOR algorithm is recursive, computing the extensions for a configu-1.6 Organization of the manuscript ration obtained by adding a new event to a particular configuration in the previous step leads to re-computations of many events. We proposed an incremental algorithm for our model, eliminating almost all such re-computations and relying on only the actions that are enabled at the state of the configuration.

-We implemented a prototype encoding UDPOR and a variant of UDPOR (UD-POR with k-partial alternatives) exploiting our proposed methods and model. A prototype has been experimented on some benchmarks, gaining promising first results.

Organization of the manuscript

The rest of this manuscript is organized as follows.

Chapter 2 is mainly dedicated to present some notable studies on (Dynamic) POR. Besides those works about POR techniques, we also review some model checkers used to verify MPI programs.

Chapter 3 recalls notions of interleaving and concurrency semantics, and how a transition system can be unfolded into an event structure with respect to an independence relation. The UDPOR algorithm is also detailed in this chapter.

We use chapter 4 to describe our abstract model of distributed programs. Later, the formal specification of the abstract model as well as independence theorems are presented. The chapter is closed by demonstrations of how to encode some basic functions of the MPI standard as well as simple MPI programs.

The adaptation of UDPOR to our programming model and how to make UDPOR efficient are demonstrated in chapter 5. The adaptation is evaluated on several experiments.

Finally, the last chapter concludes the thesis by summarizing our contributions and discussing perspectives. CHAPTER 2

STATE OF THE ART

This chapter will discuss some main critical features related to the evolution of partial order reduction. Besides briefly presenting some recent studies on POR, the chapter also presents some works applying DPOR to verify MPI programs. The chapter is closed by reviews of some model checkers used for checking MPI programs.

Partial order reduction

POR techniques have been developed since the early 90s of the last century, and it comprises a set of exploration techniques (see e.g. [START_REF] Godefroid | Partial-Order Methods for the Verification of Concurrent Systems -An Approach to the State-Explosion Problem[END_REF]), sharing the idea that, to detect deadlocks (and, by extension, for checking safety properties) it is sufficient to cover each Mazurkiewicz trace, i.e. a class of interleavings equivalent by commutation of consecutive independent actions. This state space reduction is obtained by choosing at each state, based on the independence of actions, only a subset of actions to explore (ample, stubborn or persistent sets, depending on the method), or to avoid (sleep set). Although PORs consist of several different variants, perhaps persistent set and sleep set techniques are most often mentioned in studies of PORs. A subset P of enabled actions at state s is a persistent set of s if all actions in P (i.e., a 1 and a2) are independent with all actions reachable from s (and outside P) without executing any action in P .

Early POR relies on a statically defined and imprecise independence relation. For example, given two write actions write(arr [i]) and write(arr [j]) (they write a value to an element of the array arr), a static analyzer always considers that they are dependent because it is not able to detect whether i = j or not. However, if i = j the actions are independent.

Dynamic partial order reduction (DPOR) [START_REF] Flanagan | Dynamic partial-order reduction for model checking software[END_REF] was later introduced to combat state space explosion for stateless model checking of software. In this context, while POR relies on a statically defined and imprecise independence relation, DPOR may be much more efficient by dynamically collecting it at run-time. While executing a program, DPOR can check exactly which threads/processes access which memory locations. Figure 2.2 illustrates the main principle of the DPOR technique. While executing the write action of thread red (*(0x2AAA) :=7), DPOR detects that it accesses the same memory location as the write action (*(0x2AAA) :=5) of thread black accessed before. Thus, the actions are dependent, and thread red is added to the persistent set of state s. When backtracking, a transition of the thread red that is enabled at state s should be explored from s. Obviously, in this example, DPOR precisely computes dependence relation, and in practice, persistent sets computed by DPOR are often smaller than those computed by static analyzers.

Recent studies on DPOR

Although often producing better reductions than those created by POR, redundant explorations, named sleep-set blocked (SSB, i.e. the search must backtrack since it detects that continuing exploring the current trace will lead to an already visited state), may still exist in DPOR. Thus, DPOR is unable to always explore exactly one interleaving per Mazurkiewicz trace. In the last few years, two research directions were investigated to improve DPOR. The first one tries to refine the independence relation: the more precise, the less Mazurkiewicz traces exist, thus the more efficient could be DPOR. The second one focuses on minimizing the number of explored executions per each Mazurkiewicz trace. Let's take a look at some representatives in these directions. [START_REF] Aronis | Optimal Dynamic Partial Order Reduction with Observers[END_REF] independence is built lazily, conditionally to future actions called observers. The principle is straightforward. In the original DPOR, if two write actions concern the same variable, then they are always considered dependent. However, in practice, changing the execution order of two dependent actions, that concern the same variable, does not change the resulting executions if such a variable is not read later. So, DPOR with observers only considers that two write actions concerning the same memory location are dependent if at least one of them has a followed read action concerning the same memory location.

DPOR with observers In

S1 S6 S13 S2 S4 S7 S5 S3 S0 S9 S10 S3 S8 S11 S12 S14
x :=2

x := x*3 assert(x > 1)

x := x*3 assert(x > 1) assert(x > 1)

x := x*3

x :=2 assert(x > 1)

x :=2

x := x*3

x := x*3 x :=2 { P1,P2,P3 } { P2, P3} {P3, P1} {P1, P2}
6 traces are explored by DPOR

S1 S6 S2 S4 S7 S5 S3 S0 S9 S10 S3 S8 S11 S12 x :=2 x := x*3 assert(x > 1)
x := x*3 assert(x > 1) assert(x > 1)

x := x*3 x :=2 assert(x > 1)

x :=2

x := x*3 For example, a program spawns three concurrent processes P 1, P 2, P 3 executing

x := 2, x := x * 3 and assert(x > 1), respectively. Figure 2.3 depicts the explorations of DPOR (left) and DPOR with observers (right). While the first method explores six traces, the later one traverses only five traces. Let's zoom in on state S 3, because

x := 2 and x := x * 3 concern the same variable, P 2 is added to the persistent set of S 3, and then action x := x * 3 is fired from S 3. However, DPOR with observers does not consider that x := 2 and x := x * 3 are dependent since there is no read action executed after them, then P 2 is not performed from S 3.

The idea can be lifted to message passing programs in the case where there are some send actions concerning the same mailbox (see [START_REF] Aronis | Optimal Dynamic Partial Order Reduction with Observers[END_REF]) to get more reductions. [START_REF] Godefroid | Refining Dependencies Improves Partial-Order Verification Methods (Extended Abstract)[END_REF] where commutations are specified by constraints. Using conditional independence can avoid more unnecessary exploration. For example, two processes P 1, P 2 of a concurrent program fire two atomic actions if (a > 1)x := 1 and x := x * 2. DPOR with unconditional dependence considers that the two actions are dependent even if a ≤ 1 (an independence constraint) without considering the constraint if (a > 1). Constrained DPOR takes into account constraints when computing dependence of actions, and uses an SMT solver to synthesize them. Experiments in [START_REF] Albert | Constrained Dynamic Partial Order Reduction[END_REF] show that in almost all the benchmarks, constrained DPOR outperforms the standard DPOR on all the following aspects: number of explored traces, run time and number of visited states. [START_REF] Albert | Context-Sensitive Dynamic Partial Order Reduction[END_REF] is another extension of DPOR and exploits context-sensitive independence to extend the performance of sleep sets. Standard DPORs are based on context-insensitive independence and require two actions to be independent in all contexts, while Context-Sensitive DPOR considers two actions might be independent in the particular explored context. From the implementation point of view, Context-Sensitive DPOR is equipped with a state equality detection, that checks if the execution order of two dependent actions does not change the overall result, to cut more unnecessary explorations.

Constrained DPOR In [3], Elvira et al. propose an extension of DPOR called constrained DPOR. It considers conditional independence relations

Context-Sensitive DPOR Context-Sensitive DPOR

Let's look at the example shown in Figure 2.4. A concurrent program contains three processes p1, p2 and p3 executing x := 3, x := 3 and y := x , respectively. Similar to DPOR, Context-Sensitive DPOR firstly explores an execution, suppose it is p1p2p3 (here we consider actions named by process names). Since p1 and p2 are depen- dent, p2 is added to the backtracking set of state s0. However, p1.p2 and p2.p11 lead to the same state, Context-Sensitive DPOR annotates at s0 that p1 should not be executed after p2, meaning that p1 should not be fired from s5. Similarly, it annotates that, after executing p3 from s1, p2 should not be fired. Obviously, more reductions are obtained by using Context-Sensitive DPOR. However, it also requires implementing a state equality detection that may be a challenge for some applications, such as distributed applications.

Minimizing the number of explored executions This direction proposes alternatives to persistent sets in order to minimize the number of explored interleavings. Remember that optimality is obtained when exactly one interleaving per Mazurkiewicz trace is built. In [START_REF] Parosh | Optimal dynamic partial order reduction[END_REF] authors propose source sets that are often smaller than persistent sets and operates over interleaving semantics. Although DPOR with source sets outperforms the traditional DPOR, it may still lead to sleep-set blocked explorations. To explore exactly one interleaving per Mazurkiewicz trace, and never encounter sleepset blocking, the authors combine source sets with a novel mechanism, called wakeup trees, leading to an optimal DPOR algorithm.

In [START_REF] Rodríguez | Unfoldingbased Partial Order Reduction[END_REF] the authors propose unfolding-based DPOR (UDPOR), an optimal DPOR method combining the strengths of PORs and unfoldings with the notion of alterna-tives and operating over concurrent semantics. The approach is generalized in [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF] with a notion of k -partial alternative allowing to balance between optimal DPOR and sometimes more efficient sub-optimal DPOR. UDPOR will be detailed in section 3.2.

Distributed DPOR Besides the above mentioned methods that focus on reducing the number of explored traces, some other techniques improve the performance of DPOR by proposing new schemes of implementations. For example, in [START_REF] Yang | Distributed dynamic partial order reduction[END_REF], the authors distributed DPOR on a computer cluster. Each node in the cluster is responsible for exploring some backtracking points of some backtracking set (persistent set). However, performing DPOR in a distributed environment can lead to a situation where two nodes explore the same backtracking point in the persistent set of the same visited state. Two avoid this situation, the persistent set of a state is only distributed when it has been completely constructed.

DPOR in the verification of MPI programs Some approaches already try to use

DPOR techniques for the verification of asynchronous distributed applications, such as MPI programs (Message Passing Interface). In the absence of model, determining global states of the system and checking equality [START_REF] The | Verifying MPI Applications with SimGridMC[END_REF] are already challenging. In [START_REF] Palmer | Semantics Driven Dynamic Partial-order Reduction of MPI-based Parallel Programs[END_REF], an approach is taken that is tight to MPI. A significant subset of MPI primitives is considered, formally specified in order to define the dependency relation, and then to use the DPOR technique of [START_REF] Flanagan | Dynamic partial-order reduction for model checking software[END_REF].

In [START_REF] Sharma | A Sound Reduction of Persistent-Sets for Deadlock Detection in MPI Applications[END_REF], the efficiency DPOR is improved by focusing on particular deadlocks (i.e. orphaning deadlocks that happen when there is no matching send for a particular receive in some MPI program execution), but at the price of incompleteness. The work develops an effective heuristic for reducing persistent sets to alleviate exponential schedule explosion caused by non-deterministic receives. The heuristic hinges on some observations; for example, the fact that the number of sends is not equal to the number of receives in a particular program execution can cause a deadlock. Experiments in [START_REF] Sharma | A Sound Reduction of Persistent-Sets for Deadlock Detection in MPI Applications[END_REF] demonstrated a significant saving in exploring the state space of a program in order to detect deadlocks, however, it fails to detect deadlocks in some particular MPI programs.

Recent research in [START_REF] Böhm | State-Space Reduction of Non-deterministically Synchronizing Systems Applicable to Deadlock Detection in MPI[END_REF] focuses on detecting deadlocks in MPI programs but in the context where the dependence, causality relation between actions are not clearly defined. Because the semantics of MPI is ambiguously defined, depending on "zero buffering" or "infinite buffering" mode, send operations and collective operations may or may not block. However, the modes are not decided by users but depends on some factors, such as the availability of the internal storage, the MPI implementation. For example, in the zero buffering mode, an MPI Send must wait for a matching posted MPI Receive to return, but it can return without waiting for any matching MPI Receive operation in the infinite buffering mode. To apply DPOR, the dependence and causality relations of MPI programs must be rigorously defined. The authors proposed a method in which an MPI program is firstly explored by (Dynamic) Partial order reduction in the infinite buffering mode to get the reduced state space. After that, a proposed "postprocessing" algorithm is applied to the reduced state space to detect deadlocks.

Model checkers for MPI programs

The idea of applying model checking to actual programs originated in the late 90s [START_REF] Godefroid | Model Checking for Programming Languages using Verisoft[END_REF][START_REF] Musuvathi | CMC: A Pragmatic Approach to Model Checking Real Code[END_REF]. It was later applied to many systems and interfaces such as Java [START_REF] Visser | Model Checking Programs with Java PathFinder[END_REF], multithreaded programs [START_REF] Musuvathi | Finding and Reproducing Heisenbugs in Concurrent Programs[END_REF] or distributed programs [START_REF] Yang | MODIST1: Transparent Model Checking of Unmodified Distributed Systems[END_REF]. In the context of MPI-based parallel programs also, several tools have been proposed [START_REF] Ganesh Gopalakrishnan | Formal Analysis of MPI-based Parallel Programs[END_REF].

Runtime instrumentation tools such as Marmot [START_REF] Krammer | MARMOT: An MPI analysis and checking tool[END_REF] or MUST [START_REF] Hilbrich | MUST: A Scalable Approach to Runtime Error Detection in MPI Programs[END_REF] intercept and verify every MPI call. This catches API misusages, such as type mismatch between a send and the corresponding receive. In addition, a dependency graph of the calls (either centralized in Marmot or distributed in MUST) can catch some deadlocks. Unfortunately, such testing tools only explore some of the possible execution paths.

Several static tools based on code analysis were proposed. TASS [START_REF] Siegel | Automatic Formal Verification of MPIbased Parallel Programs[END_REF] and CIVL [START_REF] Stephen | CIVL: The Concurrency Intermediate Verification Language[END_REF] rely on symbolic execution and state enumeration techniques to propagate the interval of values taken by the application variables. It requires source code annotations specifying bounds on input variables to reduce the number of false positives. Similarly, PARCOACH [START_REF] Saillard | PARCOACH: Combining static and dynamic validation of MPI collective communications[END_REF] detects through static analysis potentially problematic sections of code and adds assertions which are then checked at runtime. This does not require any code annotations but will miss failures that occur on unexplored execution paths. Formal approaches, such as that implemented in this work, are needed for exhaustive coverage.

Hermes [START_REF] Khanna | Dynamic Symbolic Verification of MPI Programs[END_REF] implements a hybrid technique combining explicit-state dynamic verification with symbolic analysis to discover deadlocks in MPI programs. The dynamic verification component is responsible for executing interesting traces of programs while the symbolic one encodes a set of interleavings of the observed trace into a formula and then verifies it to detect communication deadlocks. If there are no property violations, an analysis is performed to obtain another trace that has not already been verified. Hermes outperforms some other verification tools (e.g., CIVIL tool) in some benchmarks, however, it also has some limitations, for example, it assumes that the data that is received by a non-deterministic receive and then used in a conditional statement in programs is an integer variable or a tag.

One of the first formal tools specifically designed for MPI programs was MPI-Spin [START_REF] Stephen | Model Checking Nonblocking MPI Programs[END_REF], an extension to the classical Spin model checker. But it requires the user to manually build an abstracted model of the application. Gauss [START_REF] Palmer | Gauss: A Framework for Verifying Scientific Computing Software[END_REF] is an automated model extractor, but it remains limited to small applications because much information that is required to build an efficient and accurate model of the application is only known at runtime.

Many tools use the PMPI instrumentation layer of MPI to observe and steer the application. Nasty-MPI [START_REF] Kowalewski | Nasty-MPI: Debugging Synchronization Errors in MPI-3 One-Sided Applications[END_REF] delays the calls to experience pessimistic schedules that often trigger bugs in the application. ISP [START_REF] Vo | Formal Verification of Practical MPI Programs[END_REF] and DAMPI [START_REF] Vo | A Scalable and Distributed Dynamic Formal Verifier for MPI Programs[END_REF] are formal tools that dynamically explore all the possible execution paths while applying adequate reduction techniques to not re-explore Mazurkiewicz traces when possible.

Conclusion

As stated, (Dynamic)POR has attracted a lot of attention from the formal methods community. In recent years there have been many notable studies to improve the POR techniques, typically optimizing the number of explored executions and refining independence relations. However, studies seem to be largely focused on shared memory programs, but less focused on message passing ones, typically MPI programs. In order to adapt these studies into message passing applications, it often takes a lot of effort. Some tools use methods outside of DPOR such as static analysis, symbolic analysis to verify MPI programs. However, they also have certain limitations as stated, and such techniques are out of the scope of this thesis. This thesis focuses mainly on verification of MPI programs by exploiting a state of the art method, namely UDPOR. To the best of our knowledge, this is the first attempt to adapt UDPOR to verify MPI applications.

CHAPTER 3

PRELIMINARIES

This chapter introduces labelled transition systems (LTS) that is a typical mathematical concept in computer science usually used to model behaviors of hardware as well as software systems. Besides introducing labelled transition systems, concurrency semantics, specifically unfolding semantics, will be mentioned in detail. Different aspects of unfolding semantics are reviewed, ranging from the basic notions, dependency relation, and definitions as well as how to build the unfolding of a program from its LTS semantics. The chapter is closed by a detailed presentation of Unfolding-based DPOR.

Interleaving and concurrent semantics

Labelled transition systems

A labelled transition system is a graph where nodes represent states, and edges express transitions between the states. A state describes the information of the system at a particular time. For instance, a state of a multi-threaded program may indicate the current values of all global variables as well as local variables, and the current value of the program counter while a global state of a distributed program is the union of the states of the individual processes and the states of communication channels. Each edge can be labelled by an action that triggers the transformation of the system from one state to another. Definition 2 (Labelled transition system) A labelled transition system (LTS) is a tuple T = S , I , Σ, → where S is the set of states, I ⊆ S is the set of initial states, Σ is the alphabet of actions, and →⊆ S × Σ × S is the transition relation. ing machine that delivers either tea or coffee. The state space is S = {s 0 , s 1 , s 2 , s 3 }, and the set of initial states is I = {s 0 }. The set of actions of the LTS is Σ = {get tea, coin, get coffee, τ }. In the figure symbols τ denote some internal activity of the machine that may not be of interest. In total, five transitions are defined in the LTS: (s 0 , coin, s 1), (s 1 , τ, s 2), (s 1 , τ, s 3), (s 2 , get tea, s 0), and (s 3 , get coffee, s 0). For convenience, we often write s a -→ s instead of (s, a, s), and if (s

a 1 -→ s), (s a 2 -→ s), we can write (s a 1 .a 2 ---→ s).
Intuitively, the behavior of the transition system can be described as follows. The transition system starts from the initial state (s 0). From that state, according to the transition relation, the transition system evolves. If s is the current state and s a -→ s is a transition, then action a is executed and the transition system evolves from state s into the state s . There may exist more than one possible transition from some state. In that case, the LTS can arbitrarily select a transition to evolve. The evolution of the LTS stops when encountering a state where there is no outgoing transition.

Consider the example in Figure 3.1, from the initial state s 0 , there is only one possible transition s 0 coin --→ s 1 . So, the transition s 0 coin --→ s 1 is selected and taken, then the LTS evolves from s 0 to s 1 after performing a coin action. In s 1 , there are two internal steps. Thus, an internal step is selected arbitrarily, either selecting

s 1 τ - → s 2 or s 1 τ - → s 3 . If s 1 τ - → s 2 is
selected and taken the LTS moves from s 1 to s 2 , and after that an action get tea is performed. Otherwise, s 1 τ -→ s 3 is selected, the LTS moves from s 1 to s 3 and then a get coffe is performed.

We have notions related to labelled transition systems as follows:

Post states: Let T = S , I , Σ, → be a labelled transition system. Given a state s, the set of direct successors of s after performing action a is defined as follows:

PostState(s, a) = {s ∈ S | s a - → s }
PostState(s) includes all states reachable from state s by performing any action.

PostState(s) = a ∈ Σ PostState(s, a)
Similarly, we define Pre states:

Pre states: Let T = S , I , Σ, → be a labelled transition system. Given a state s and an action a, the set of direct predecessors of s is defined as follows:

PreState(s, a) = {s ∈ S | s a - → s}
PreState(s) includes all states that can reach s by performing any action a.

PreState(s) = a ∈ Σ PreState(s, a)
Enabling actions: Let T = S , I , Σ, → be a labelled transition system. Given a state s ∈ S , the set of transitions enabled at state s denoted enabled (s) is defined as follows:

enabled (s) = {a ∈ Σ | ∃s ∈ S , s a - → s }.
Terminal state: A state s in a labelled transition system T is called terminal (or deadlock) if and only if enabled (s) = ∅.

Roughly, terminal states of a labelled transition system T are states without any outgoing transitions. When modeling a program, a terminal state represents the termination or a deadlock of the program. Hence, when T encounters a terminal state, the real program modeled by T terminates or encounters a deadlock.

Deterministic Transition System:

Let T = S , I , Σ, → be a labelled transition sys- tem. T is said deterministic if: 1. |I | = 1,
that is, there is only one initial state, and 2. ∀a ∈ Σ and ∀s ∈ S , |PostState(s, a)| ≤ 1, that is, for all actions and states, performing an action from a given state leads to at most one successor state.

Otherwise, T is said non-deterministic.

Reachable states: Let T = S , I , Σ, → be a transition system. A state s ∈ S is called reachable in T if there exists a sequence of states and actions s 0 a 0 s 1 a 1 s 2 a 2 ...s n such that s 0 is an initial state, s i a i -→ s i+1 , ∀i ≥ 0, and s n = s.

Executions: An execution (or run) describes a possible behavior of the transition system, it can be formally defined as follows:

Definition 3 (Executions) Let T = S , I , Σ, → be a transition system. An execution of T can be finite or infinite:

-A finite execution of T is a finite sequence of states and actions: s 0 a 0 s 1 a 1 ...s n s.t.

s 0 is an initial state, s i a i
-→ s i+1 , ∀i ≥ 0, and if s n is a terminal state, we say that T is a complete execution.

-An infinite execution of T is an infinite sequence of states and actions:

s 0 a 0 s 1 a 1 s 2 a 2 ... such that s 0 is an initial state, s i a i -→ s i+1 , ∀i ≥ 0.
In the example shown in Figure 3.1, "s 0 coin s 1 τ s 2 get tea s 0 ..." is an execution of the LTS while "s 1 τ s 2 get tea s 0 coin s 1 " is not an execution because s 1 is not the initial state.

Independent actions

Independence is a key notion in both POR techniques and unfoldings, linked to the possibility to commute actions: Definition 4 (Commutation and independence) Two actions a 1 , a 2 of an LTS T = S , {s 0 }, Σ, → commute in a state s if they satisfy the two conditions:

-executing one action does not enable nor disable the other one:

a 1 ∈ enabled (s) ∧ s a 1 -→ s =⇒ (a 2 ∈ enabled (s) ⇔ a 2 ∈ enabled (s)) (3.1)
-their execution order does not change the overall result:

a 1 , a 2 ∈ enabled (s) =⇒ (s a 1 •a 2 ---→ s ∧ s a 2 •a 1 ---→ s =⇒ s = s) (3.2)
A relation I ⊆ Σ × Σ is a valid independence relation if it under-approximates commutation, i.e. ∀a 1 , a 2 , I (a 1 , a 2) implies that a 1 and a 2 commute in all states. Conversely a 1 and a 2 are dependent and we note D(a 1 , a 2) when ¬(I (a 1 , a 2)).

A Mazurkiewicz trace is an equivalence class of complete executions (or interleavings) of an LTS T obtained by commuting adjacent independent actions. By the second item of Definition 4, all these interleavings reach a unique state. The principle of all POR approaches is precisely to reduce the state space exploration while covering at least one execution per Mazurkiewicz trace. If a deadlock exists, a Mazurkiewicz trace leads to it and will be discovered. More generally, safety-property violations in any acyclic state space can be detected by POR algorithms.

Event structures

Besides labelled transition systems, an event structure is another mathematical concept that is usually used to model computer programs. An event structure consists of a set of events that are bound by one of three relations: concurrency, conflict, and causality. While two conflicting events cannot be performed together, two events that are causally related have a dependency, one of the two events can only happen after the other. A classical model of true concurrency is prime event structures. Definition 5 (Prime event structure) Given an alphabet of actions Σ, a Σ-prime event structure (Σ-PES) is a tuple E = E , <, #, λ where E is a set of events, < is a partial order relation on E , called the causality relation, λ : E → Σ is a function labelling each event e with an action λ(e), # is an irreflexive and symmetric relation called the conflict relation such that the set of causal predecessors or history of any event e, e = {e ∈ E : e < e} is finite, and conflicts are inherited by causality:

∀e, e , e ∈ E , e#e ∧ e < e =⇒ e#e .

Intuitively, e < e means that e must happen before e , and e#e that those two events cannot belong to the same execution. Two distinct events that are neither causally ordered nor in conflict are said concurrent. An event e can be characterized by a pair λ(e), H where λ(e) is its action, and H = e its history. A configuration C is characterized by its causally maximal events since it is exactly the union of local configurations of these events: C = e ∈ maxEvents(C) [e]; conversely a conflict free set K of incomparable events for < defines a configuration config(K) and

C = config(maxEvents(C)).
A configuration C , together with the causal and independence relations define a Mazurkiewicz trace: all interleavings are obtained by causally ordering all events in the configuration C but commuting concurrent ones. We use conf (E) for the set of configurations of E. We also have new definitions based on the immediate conflict. While # i (e) contains all events in E in immediate conflict with e, # i U (e) consists of the same set of events but restricted to U , formally # i (e) := {e ∈ E : e# i e }, # i U (e) := # i (e) ∩ U . Given a PES that is built from a LTS by Definition 6, we define the state of a configuration C in the PES, and denote by state(C), the state s of the LTS obtained by executing all the actions associated with the events in C in any order compatible with the causality order. We write enab(C) = enabled (state(C)) ⊆ Σ for the set of actions enabled at state(C), while actions(C) denotes the set of actions labelling events in C , i.e. We first create an empty unfolding (demonstrated by a ⊥ symbol in the figure) with only one empty configuration. Step 2 is creating all new events by finding a configuration C that enables an action a which is dependent on all maxEvents(C). Having only one empty configuration with no maximal events, and two enabled actions at initial state: x := a and y := b, we create events e 1 and e 2 .

Maximal configuration:

A configuration C is said maximal if C cannot

Extensions

The unfolding now has three configurations to consider: {e 1 }, {e 2 }, and {e 1 , e 2 }. Action y := b is enabled at state({e 1 }) and it is dependent on λ(e 1), so we create e 3 . Similarly action x := a ∈ enabled (state({e 2 })), and it is dependent on λ(e 2), we then create e 8 . Both actions y := b and x := a are enabled at state({e 1 , e 2 }) and they are dependent on λ(e 1) and λ(e 2) where both e 1 and e 2 are maximal events of the configuration {e 1 , e 2 }. Thus, e 6 and e 7 are created. Similarly, we can create the remaining events: e 4 , e 5 , e 9 , and e 10 .

There are in total three maximal configurations, which are {e 1 , e 3 , e 4 , e 5 }, {e 1 , e 2 , e 6 , e 7 }, and {e 2 , e 8 , e 9 , e 10 }.

Unfolding-based dynamic partial order reduction

The unfolding semantics is a compact representation for modeling behaviors of concurrent programs. Each maximal configuration of the unfolding of a program corresponds to a Mazurkiewicz trace representing an equivalence class of executions of the program. UDPOR [START_REF] Rodríguez | Unfoldingbased Partial Order Reduction[END_REF] is an optimal DPOR technique that explores a reduced LTS of the program, based on the unfolding semantics, without redundant explorations of Mazurkiewicz traces. Algorithm 2 presents the UDPOR exploration algorithm of [START_REF] Rodríguez | Unfoldingbased Partial Order Reduction[END_REF]. As other DPOR algorithms, it explores only a part of the LTS of a given terminating distributed program P according to an independence relation I , while ensuring that the explored part is sufficient to detect all deadlocks. The particularity of UDPOR is to use the concurrency semantics explicitly, namely unfoldings, which makes it both complete and optimal, in the sense that it explores exactly one interleaving per Mazurkiewicz trace, never reaching any sleep-set blocked execution.

11 if ∃J ∈ Alt(C , D ∪ {e}) then 12 Explore(C , D ∪ {e}, J \ C) 13 U := U ∩ Q C ,D
The algorithm works as follows. Executions are represented by configurations, thus equivalent to their Mazurkiewicz traces. The set U , initially empty, contains all events met so far in the exploration. The procedure Explore has three parameters: a configuration C encoding the current execution; a set D (for disabled) of events to avoid, playing a role similar to a sleep set in [START_REF] Godefroid | Partial-Order Methods for the Verification of Concurrent Systems -An Approach to the State-Explosion Problem[END_REF], thus preventing revisits of configurations; a set A (for add) of events conflicting with D and used to guide the search to events in conflicting configurations in cex (C) to explore alternative executions.

First, all extensions of C are computed and added to U (line 4). The search backtracks (line 6) in two cases: when C is maximal (en(C) = ∅, i.e. a deadlock (or the program end) is reached), or when all events enabled in C should be avoided (en(C) ⊆ D), which corresponds to a redundant call, thus a sleep-set blocked execution. Otherwise, an enabled event e is chosen (lines 7-10) in A if this guiding information is non empty (line 10), and a "left" recursive exploration Explore(C ∪ {e}, D, A \ {e}) is called (line 11) from this extended configuration C ∪ {e}, it continues trying to avoid D, but e is removed from A in the guiding information. When this call is completed, all configurations containing C and e have been explored, thus it remains to explore those that contain C but not e.

Alternatives (see Definition 7)

(i) J ∪ C is a configuration, (ii) ∀e ∈ D, ∃e ∈ (C ∪ J) : e ∈ # i U (e)
In order to avoid sleep-set blocked executions (SSB) and obtain the optimality of DPOR, the function Alt(C , D ∪ {e}) has to solve an NP-complete problem [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF]: find a subset J of U that can be used for backtracking, conflicts with all D ∪ {e} thus necessarily leading to a configuration C ∪ J that is not already visited. In this case the condition en(C) ⊆ D can then be replaced by en(C) = ∅ in line 5. Note that with a different encoding, Optimal DPOR must solve the same problem [START_REF] Parosh | Optimal dynamic partial order reduction[END_REF] as explained in [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF]. In [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF], a variant of the algorithm is proposed for the function Alt that computes k -partial alternatives rather than alternatives, i.e., sets of events J conflicting with only k events in D, not necessarily all of them. Depending on k , (e.g. k = ∞ (or k = |D| + 1) for alternatives, k = 1 for source sets of [START_REF] Parosh | Optimal dynamic partial order reduction[END_REF]) this variant allows to tune between an optimal or a quasi-optimal algorithm that may be more efficient. [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF]) Let D and U be sets of events, C ⊆ U a configuration, k ∈ Z (a non-negative integer). A configuration J is a k-partial alternative to D after C if there is some D ⊆ D such that | D| = k and J is an alternative to D after C .

Definition 8 (k-partial alternative

While an alternative needs to conflict with all events in D, a k-partial alternative requires conflicting with only k events. Obviously, by reducing the number of events that a k-partial alternative needs to conflict with, computing a k-partial alternative could be faster than computing an alternative. However, since conflicting with only k events, a k-partial alternative can guide the UDPOR exploration to revisit some Mazurkiewicz trace, leading to a sleep-set blocked execution. Thus, the k-partial alternative is a tradeoff solution between accepting sleep-set blocked executions and having redundant explorations versus solving the NP-complete problem. Surprisingly, in some experiments in [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF], with low values of k , using k-partial alternative UDPOR is still optimal. The optimality may be explained by the fact that the calculation of k-partial alternatives was fortunate, since conflicting with only k events in D is enough to conflict with all other events. In [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF], authors propose a new concept of comb that facilitates the computation of k-partial alternatives in polynomial time.

Conclusion

This chapter provides some basic notions related to interleaving semantics, namely labelled transition systems and its properties. Besides, concurrent semantics, namely event structures, are also discussed. Besides introducing concurrent and interleaving semantics, UDPOR, an optimal Dynamic partial order reduction, is also described. While most standard dynamic partial order reduction methods are based on the interleaving semantics, UDPOR operates over a concurrent semantics named prime event structure. The next chapter will introduce a proposed abstract model for asynchronous distributed programs that we consider throughout the thesis as well as how we specify the model and prove independence relations.

CHAPTER 4

COMPUTATION MODEL OF ASYNCHRONOUS DISTRIBUTED

PROGRAMS

This chapter aims to present our abstract model of distributed programs. The properties of the model, as well as the independence theorems that will be utilized to compute independence relations between actions, are also discussed. The abstract model is compact, it consists of only nine actions, but many MPI functions can be simulated by this abstract model in the SimGrid simulator. Determining dependent actions requires to specify the semantics of the programs. Thus, we formally describe the semantics of the abstract model in TLA+. Having a precise specification of the model, we can then reason about the dependency of actions.

Informal description of the model

In our model [START_REF] The | Unfolding-Based Dynamic Partial Order Reduction of Asynchronous Distributed Programs[END_REF], we consider that an asynchronous distributed program P consists of a set of n actors Actors = {A 1 , A 2 , ...A n } that perform local actions, communicate asynchronously with each other, and share some resources. We assume that the program is terminating, which implies that all actions are terminating. All local actions are abstracted into a unique one LocalComp. Communication actions are of four types: AsyncSend, AsyncReceive, TestAny , and WaitAny . Actions on shared resources called synchronizations are of four types: AsyncMutexLock , MutexUnlock , MutexTestAny , and MutexWaitAny . At the semantic level, P is a tuple P = Actors, Network, Synchronization where Network and Synchronization respectively describe the abstract objects, and the effects on these of the communication and synchronization actions. The Network subsys- tem provides facilities for the Actors to asynchronously communicate with each other, while the subsystem Synchronization allows the synchronization of actors on the access to shared resources.

Network subsystem. The state of the Network subsystem is defined as a pair:

Mailboxes, Communications , where Mailboxes is a set of mailboxes storing unpaired communications, while Communications stores only paired ones. Each communication c has a status in {send, receive, done}, ids of source and destination actors, data addresses for those.

A mailbox is a rendez-vous point where send and receive communications meet. It is modelled as an unbounded FIFO queue that is either empty or stores communications with all same send or receive status, waiting for a matching opposite communication. When matching occurs, this paired communication gets a done status and is appended to the set Communications.

We now detail the effect in actor A i of the communication actions on Mailboxes and Communications:

c = AsyncSend(m, data) drops an asynchronous send communication c to the mailbox m. If pending receive communications exist in the mailbox, c is paired with the oldest one c to form a communication with done status in Communications, the receive communication is removed from m and the data is copied from the source to the destination. Otherwise, a pending communication with send status is appended to m.

c = AsyncReceive(m , d) drops an asynchronous receive communication to mailbox m ; the way a receive communication is processed is similar to send.

If pending send communications exist, c is paired with the oldest one c to form a communication with done status in Communications, the send communication is removed from m, and the data of the send is copied to d . Otherwise, a pending communication with receive status is appended to m.

-TestAny (Com) tests a set of communications Com of A i . It returns a boolean which value is true if and only if a communication in Com with done status exists.

-WaitAny (Com) waits for a set of communications Com of A i . The action is blocking until at least one communication in Com has a done status.

Example 4 Figure 4.2 visualizes the main steps of sending data between two actors

A i and A j . Actor A i firstly drops a send communication to a particular mailbox. Suppose the mailbox is empty before the send communication arrives, then now only the send communication is stored in the mailbox. Secondly, actor A j posts a receive communication to the same mailbox. The send and receive communications are paired to create a done communication in Communications, and then data is copied from A i to A j . When applying the reverse order in which the receive communication is posted to the mailbox before the send communication arrives, we also get the same result, creating a done communication and copying the data from A i to A j . Actor A i and A j can test if their communications are done by executing TestAny actions or wait for their communications by performing WaitAny actions. Mutexes, Requests where Mutexes is a set of asynchronous mutexes used to synchronize the actors, and Requests is a vector indexed by actors ids of sets of requested mutexes. Each mutex m j is represented by a FIFO queue of actors ids i who declared their interest on a mutex m j by executing the action AsyncMutexLock (m j) as depicted in Figure 4.3. A mutex m j is free if its queue is empty, busy otherwise. The owner is the actor whose id is the first in the queue. In actor A i , the effect of the synchronization actions on Mutexes and Requests is as follows:

-AsyncMutexLock (m j) requests a mutex m j with the effect of appending the actor id i to m j 's queue and adding j to Requests[i]. A i is waiting until owning m j but, unlike classical mutexes, waiting is not necessarily blocking.

-MutexUnlock (m j) removes its interest to a mutex m j by deleting the actor id i from the m j 's queue and removing j from Requests[i]. -MutexTestAny (M) checks if actor A i owns some previously requested mutex m j in set M (j is in Requests[i]), returning true if it is the case.

-MutexWaitAny (M) blocks until A i owns some mutex m j in M . Note that Mutex-TestAny (resp. MutexWaitAny) are similar to TestAny (resp. WaitAny) and could be merged. We keep them separate here for simplicity of explanations. Two actors A i and A j want to access a shared resource that is protected by a mutex.

The actors declare their interests on the mutex by executing AsyncMutexLock actions. Suppose actor A i executes an AsyncMutexLock first, then it is the owner of the mutex. If actor A j executes an AsyncMutexLock later, it is the second actor in the waiting queue of the mutex (its id is the second element in the waiting queue). Then A i tests if it is the owner of the mutex by performing a MutexTestAny. Since the test returns true, A i enters the shared resource. Meanwhile A j is blocked because it waits to become the owner of the mutex by employing a MutexWaitAny action. After working with the shared resource, A i executes a MutexUnlock to remove its interest on the mutex. Removing the id of A i from the waiting queue entails A j becomes the mutex owner, and A j can execute the MutexWaitAny action. After that A j can access the shared resource. We specified our model of asynchronous distributed systems in the formal language TLA+ [START_REF] Lamport | Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers[END_REF]. Our TLA+ model, presented in the following, is also available online 1 . It focuses on how actions transform the global state of the system. An instance P of a program is described by a set of actors and their actions (representing their source code). Following the semantics of TLA+, and since programs are terminating, the interleaving semantics of a program P can be described by an acyclic LTS representing all its behaviors. Formally, the LTS of P is a tuple T P = S , s 0 , Σ, → where Σ represents the actions of P ; a state s =< l , g > in S consists of the local state l of all actors (i.e. local variables, Requests) and the state g of all shared objects including Mutexes, Mailboxes and Communications. In the initial state s 0 , all actors are in their initial local state, sets and FIFO queues are empty. A transition t : s a -→ s ∈ → is defined if, ac-cording to the TLA+ model, the action encoded by a is enabled at s and executing a transforms the state from s to s .

Notice that when verifying a real program, we only observe its actions and assume that they respect the proposed TLA+ model and the independence relation discussed below. These assumptions are necessary to suppose that the LTS correctly models the actual program behaviors.

Model specification

In order to get the formal semantics of the abstract model, we use the TLA+ language [START_REF] Lamport | Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers[END_REF]. TLA+ is a formal specification language for high-level modeling of concurrent systems. The language that first appeared in 1999 was developed by Leslie Lamport. The TLA+ specification of a system describes all possible actions (behaviors) of the system by using the Temporal Logic of Actions (TLA). So, each action is specified as a formula of TLA describing how the states of the system evaluate, in which a state is characterized by values of variables. The evolution of the system starts at the initial state (initial predicate) denoting the initial condition, and it transforms into a new state depending on what action is taken, in which the action is decided by the system's nextstate relation. One of the main advantages of TLA+ is that a TLA+ specification can be model-checked by using the TLC model checker to verify given properties defined by users.

The figure 4.5 presents the data model of the abstract model. The state of the system is represented by six variables: Communications, Mailboxes, Memory, Mutexes, nbComMbs and Requests. Communications is the set of all paired communications in the system (i.e. when a pair of send and receive requests have been matched). Mailboxes is an array indexed by MailboxesIds. Mailboxes[i] is a FIFO queue which stores send or receive communications (unpaired communications). Memory is an array indexed by Actors (a set of ids), and Memory[i] is a memory local to the actor i used to store ids of communications and indexed by Adresses. Mutexes is an array indexed by MutexIds, and Mutexes[i] is a FIFO queue that remembers which actors have required the mutex i . Requests is an array indexed by Actors; Requests[i] is the set of mutexes (ids of mutexes) requested by the actor i . Lastly, nbComMbs is a array indexed by MailboxIds, and it is used to set ids for communications concerning Mailboxes[i]. The actor aId sends a "send" communication to the mailbox mbId . If a pending "receive" communication already exists, they are combined to create a "done" paired communication in Communications and data is copied from the source to the destination, otherwise a new communication with "send" status is created. Address data addr of actor aId contains the data to transmit while memory address comm addr of actor aId is assigned the id of the communication.

TypeInv ∆ = ∧ Communications ∈ SUBSET Comm ∧ ∀ c ∈ Communications : c.status = "done" ∧ Mailboxes ∈ [MailboxesIds → Seq(Comm)] ∧ ∀ mbId ∈ MailboxesIds : ∀ i ∈ 1 . . Len(Mailboxes[mbId]) : ∧ Mailboxes[mbId][i].status ∈ {"send", "receive"} ∧ Mailboxes[mbId][i].status = Mailboxes[mbId][1].status ∧ Mutexes ∈ [MutexIds → Seq(Actors)] ∧ ∀ mId ∈ MutexIds : ∀ id ∈ DOMAIN Mutexes[mId] : Mutexes[mId][id] ∈ Actors ∧ Requests ∈ [Actors → Seq(MutexIds)] ∧ Memory ∈ [Actors → [Addresses → STRING]] ∧ nbComMbs ∈ Nat
AsyncSend (aId , mbId , data addr , comm addr AsyncReceive specification. Similarly, the actor aId posts a "receive" communication to the mailbox mbId . If there is a pending "send" communication in the same mailbox mbId , they are combined to create a "done" communication in Communications and data is copied from the source to the destination, otherwise a new communication is created with "receive" status. Figure 4.7 presents the specification of the AsyncReceive action.

) ∆ = ∧ aId ∈ Actors ∧ mbId ∈ MailboxesIds ∧ data addr ∈ Addresses ∧ ∨ ∧ ∨ Len(Mailboxes[mbId]) = 0 ∨ ∧ Len(Mailboxes[mbId]) > 0 ∧ Head (Mailboxes[mbId]).status = "send" ∧ LET comm ∆ = [id → converToString(nbComMbs[mbId], "Mb", mbId), status → "send", src → aId , dst → NoActor , data src → data addr , data dst → NoAddr] IN ∧ Mailboxes = [Mailboxes EXCEPT ![mbId] = Append (Mailboxes[mbId], comm)] ∧ Memory = [Memory EXCEPT ![aId][comm addr] = comm.id] ∧ UNCHANGED Communications ∧ nbComMbs = [nbComMbs EXCEPT ![mbId] = nbComMbs[mbId] + 1] ∨ ∧ Len(Mailboxes[mbId]) > 0 ∧ Head (
AsyncReceive(aId , mbId , data addr , comm addr

) ∆ = ∧ aId ∈ Actors ∧ mbId ∈ MailboxesIds ∧ ∨ ∧ ∨ Len(Mailboxes[mbId]) = 0 ∨ ∧ Len(Mailboxes[mbId]) > 0 ∧ Head (Mailboxes[mbId]).status = "receive" ∧ LET comm ∆ = [id → converToString(nbComMbs[mbId], "Mb", mbId),

Persistence

The model presented in the previous section may appear unusual because the lock action on mutexes is split into an AsyncMutexLock and a MutexWaitAny while most works in the literature consider atomic locks. Our model does not induce any loss of generality since synchronous locks can trivially be simulated with asynchronous locks. One reason to introduce this specificity is that this entails the following lemma, that is the key to the efficiency of UDPOR in our model.

Lemma 1

Let u be a prefix of an execution v of a program in our model. If an action a is enabled after u, it is either executed in v or still enabled after v .

The lemma implies the following condition that can be formally expressed as follows2 : ∀ action1, action2 ∈ {AsyncMutexLock (,), MutexUnlock (,), MutexWaitAny(,), MutexTestAny(, ,), AsyncSend (, , ,), AsyncReceive(, , ,), TestAny(, ,), WaitAny(, ,), LocalComp()} : Proof 1 (Sketch) When a is a LocalComp, AsyncSend, AsyncReceive, TestAny, Async-MutexLock, MutexUnlock, or MutexTestAny action, a cannot be disabled by any new action. Indeed, these actions are never blocking (e.g. AsyncMutexLock (m) comes down to the addition of an element in a FIFO, which is always enabled) and only depend on the execution of the action right before them by the same actor.

∧ action1 = action2 ∧ (ENABLED action1 ∧ ENABLED action2) =⇒ (action1 =⇒ (ENABLED action2
WaitAny and MutexWaitAny may seem more complex. If a is a WaitAny, being enabled after u means that one communication it refers to was paired. Similarly, if a is a MutexWaitAny, being enabled after u means that the corresponding actor is first in the FIFO of a mutex it refers to. In both cases, these facts cannot be modified by any subsequent action of any other actors, so a remains enabled until executed.

Intuitively, this lemma induces that once enabled, actions are never disabled by any subsequent action and remain enabled until executed. This does not hold for classical synchronous locks, as an enabled action lock(m) of an actor may be disabled by another actor locking the same mutex first.

Independence theorems

In order to use DPOR algorithms for our model of distributed programs, and in particular UDPOR that is based on the unfolding semantics, we need to define a valid independence relation for this model. This relation is formally expressed in TLA+ as so-called "independence theorems". We use the term "theorem" since the validity of the independence relation with respect to commutation should be proved 3 . We proved them manually and implemented them as rules in our model checker. Some independence theorems could be enlarged by finding other conditions inducing independence, but this requires expressing more detailed and complex conditions. We give these for simplicity. Intuitively, two actions in distinct actors are independent when they do not compete on shared objects, such as Mailboxes, Communications, or Mutexes. This is formally expressed in theorem 4.4.1. Notice that with the Lemma 1, the enableness of an action is never changed by firing any action in our model. Thus, the disabling condition in Eq3.1 page 41 (i.e., one does not disable the other one) does not need to be checked when we prove the theorems.

Let ReadVariables(a) denote the set of variables (or variable parts in case of sets) that are read while evaluating the transition a. Similarly, let WriteVariables(a) denote the set of variable parts that are modified when the transition a is taken. Finally, we note Variables(a) the set of all variable parts involved in transition a. Variables(a) = ReadVariables(a) ∪ WriteVariables(a). Thus if ReadVariables(a2) ∩ Variables(a1) = ∅ then the execution of a1 has no impact on whether a2 is enabled. Eq3.1 is thus verified in this case.

In addition, if WriteVariables(a1) ∩ WriteVariables(a2) = ∅ then the order in which actions a1 and a2 are executed does not impact on the final state because the state modifications are separated. Eq3.2 is thus verified in this case.

Please note that this theorem only introduces a necessary condition to the dependence, but some actions may still involve the same variables and be independent under some conditions. However simple cases of independence will rely on Theorem 4.4.1 as we will now see. (ii) Otherwise, if they concern the same mailbox Mailboxes[i], we have the following cases:

-If the mailbox is empty, c s and c r will be paired together regardless of the order in the mailbox (FIFO queue). The final state after a s .a r and after a r .a s are thus identical.

-If there are some pending sends in the mailbox Mailboxes[i], c s is added to the tail of the mailbox while c r is paired with the first pending send communication of the mailbox. In this case, also the final state after a s .a r and after a r .a s are identical.

-Conversely, if the are some pending receive communications in the mailbox, c r is added to the tail of the mailbox while c s is paired with the first pending receive communication of the mailbox. We also get the same final state with any order of execution.

Concerning the second condition (Eq3.1), since the conditions (e.g, mnId ∈ MaiboxesIds) enabling AsyncSend and AsyncReceive actions are not affected by executing other actions, then the condition is satisfied. Besides, executing one action does not change conditions (e.g., aId ∈ Actors) enabling the other one. Hence, we have I(t 1 , t 2). Similarly, we have the proof for two Wait-Any actions, and a WaitAny action and a TestAny action. In the above formal expression, we suppose that function firstPaired (Coms) returns the id of the first paired communication in the set Coms.

Proof 6 Let's start with a TestAny (Coms) (called action a 1) and an AsyncSend (m,) (called action a 2). Suppose they are enabled at a particular state and do not both concern the first done communication c in Coms. There are two cases: (i) if there is no done communication in Coms, action a 1 returns a "false" value. (ii) if there are some done communications in Coms, a 1 needs only the first done communication (the first paired AsyncSend, AsyncReceive) in Coms to return "true". Similarly, the effect of action a 2 only depends on the state of the mailbox m, regardless of the order in which the actions are executed. Furthermore, both actions cannot be disabled by executing the other action. Hence, they are independent. The proof for other pairs of actions can be done similarly. ∀ act1, act2 ∈ Actors, m ∈ MutexIds, requests ∈ SUBSET MutexIds :

∧ act1 = act2 ∧ TypeInv ∧ ∨ ¬∃ m ∈ M : m = m ∨ act1, act2 / ∈ firstTwoOwners(m) ∨ m = firstExecutedUnlock (M) =⇒ ∧ I (MutexUnlock (act1, m), MutexWaitAny(act2, M)) ∧ I (MutexUnlock (act1, m), MutexTestAny(act2, M ,))
In the above expression, we suppose that function firstTwoOwners(mt) returns true if the two actors are the first two actors in mutex mt, otherwise it returns false. Function firstExecutedUnlock (M) gives the first mutex m in M concerned by a MutexUnlock .

Proof 11 Let's start with a MutexTestAny (M) (called action a 1) and an MutexUnlock (m) (called action a 2). Suppose they are enabled at a particular state.

-If they do not concern the same mutex, then according to theorem 4.4.1 they are independent.

-If they concern the same mutex, there are two cases:

(i) If at least one of them is not in firstTwoOwners(m). Executing a 1 returns "true" if the actor of a 1 is the first actor in some mutex in M , otherwise it returns "false". Executing a 2 is removing the actor (actually id of the actor) of action a 2 from Mutexes[m]. Changing the execution order, we get the same output because the effects of both actions do not depend on any execution order.

(ii) If they are both in firstTwoOwners(m). If a 2 is not equal to firstExecutedUnlock (M). In any execution order, MutexTestAny (M) always returns a "true" value, since there is some MutexUnlock already executed, resulting in a 1 is the first actor in some mutex in M . If we change the execution order, we get the same overall outcome. From the above reasons, they are independent. For other pairs of actions, we can prove similarly. Proof 12 Let's prove for a AsyncMutexLock and a MutexWaitAny. If both actions are enabled, their effects do not depend on the order of execution. Indeed, after executing AsyncMutexLock, the id of the mutex is added to the request set of the actor that fires AsyncMutexLock while the id of the actor is enqueued to the mutex. Besides, firing MutexWaitAny does not change any variables. From the above arguments, we can conclude that they are independent. For the pair of AsyncMutexLock and Mutex-TestAny, we can prove similarly.

Encoding MPI programs

In this section, we will introduce some information about MPI as well as some of its basic functions. Then the way we encode MPI programs through the abstract model will also be presented briefly.

Introduction to MPI programs

The Message Passing Interface Standard (MPI) [START_REF]Message Passing Forum[END_REF] is a standard message passing library defining the syntax and semantics of core routines that will be used to write message-passing programs in C, C++, and Fortran. The first version (version 1.0) of MPI was released in June 1994 after some modifications of a draft MPI standard. Currently, MPI has version 3.1, there has been many changes compared to the first version along with having many functions formally specified. There are several library implementations of MPI, for example, MPICH, Intel MPI, and OpenMPI.

Many high-performance computing applications have been implemented by using MPI libraries. By providing a variety of useful functions and efficient ways for writing distributed programs, they may still be the first choice for HPC application developers in the coming years. Figure 4.16 displays an MPI program written in C. Each MPI program comprises some autonomous processes deployed on different computers. It inherits the properties of distributed applications such as processes communicating with others by exchanging messages via calling MPI communication functions. For example, the function MPI Send is used to send a message from a particular process to a destination process while receiving a message can be done by calling a function MPI Receive. To increase performance as well as flexibility, MPI provides a range of communication modes, including point-to-point communications, collective communications, one-sided communications. Which function to use depends on the computation requirements as well as users experience. The remainder of the section introduces some point-to-point communication primitives that are closely similar to the primitives in our abstract model of distributed programs.

Point-to-Point Communication

Point-to-point communication is a fundamental form of message-passing communication. Two nodes are involved: one sends a message to the other. There are several MPI functions defined in this mode, and they can be divided for sending data where buf is the initial address of the data buffer that will be transferred to the destination node, count (an integer) is the number of elements in send buffer, datatype is the datatype of the data in buf, dest is the rank of destination node, tag is the message tag, and comm is the MPI communicator, finally request is the communication request.

-MPI Irecv(void *buf, int count, MPI Datatype datatype, int source, int tag, MPI Comm comm, MPI Request * request): a non-blocking function for receiving data where buf is the initial address of the memory where the receiving data will be stored, and source is the rank of the source process sending the data that will be received, count is the maximum number of elements in receive buffer. MPI Irecv function can receive data from any source process by setting source to MPI ANY SOURCE. Other parameters have the same semantics as described for MPI Isend.

-MPI Send(const void *buf, int count, MPI Datatype datatype, int dest, int tag, MPI Comm comm): similar to MPI Isend , it is used to send data, but while MPI Isend is a non-blocking function, MPI Send is a blocking one. The param-eters in MPI Send have the same semantics as presented for MPI Isend. Note that here buf does not refer to the runtime buffer in the next section (a motivating example).

-MPI Recv(void *buf, int count, MPI Datatype datatype, int source, int tag, MPI Comm comm, MPI Status * status): a blocking function where status stores information about the receive operation after it completes. Other parameters have the same semantics as described in MPI Irecv.

To check the status of a non-blocking MPI Isend and MPI Irecv, one can use MPI Test or MPI Testany.

-MPI Test(MPI Request * request, int *flag, MPI Status * status) : MPI TEST returns flag = true if the operation identified by request is completed. In that case, the information on the completed operation is stored in the status object.

Otherwise, the function returns flag = false, and the value of the status object is undefined.

- -MPI Wait(MPI Request *req, MPI Status *status): waits for the completion of the request identified by the parameter req. An instance of MPI Status that keeps information of the request is returned in status as soon as the request req is completed.

-MPI Waitany(int count, MPI Request array of requests, int *index, MPI Status *status) : waits for an array of requests (array of requests). The action is blocked until at least one communication in the array is completed. Parameter index stores the index of the first completed request in array of requests while status keeps the status of the completed request.

-

MPI Waitall(int count, MPI Request array of requests[], MPI Status array of statuses[]): waits for an array of requests (array of requests). The action is

blocked until all communications in the array is completed.

Encoding

We aim at leveraging UDPOR while verifying MPI programs. Since our computational model is more abstract than MPI, this section presents how MPI primitives can be encoded in our model. A motivating example We begin with a simple example shown in Figure 4.17. Suppose we have an MPI program consisting of two processes P 0 and P 1. Both processes try to send a message to the other by executing a MPI Send function. After performing sending functions, they both execute MPI Recv to receive the message from the other. At first glance, we may think that running that program can encounter a deadlock since there is a dependency cycle (MPI send of the first process waits for MPI Recv of the second one while MPI Send of the second process waits for the MPI Recv of the first one). Interestingly, depending on presence or absence of buffering (finite or zero buffering) in MPI nodes, the deadlock may or may not appear. The semantics of MPI Send functions are ambiguously defined. A MPI Send is an asynchronous call under zero buffering (messages have no buffering) while under infinite buffering (messages are copied into a runtime buffer) it does not wait for a matching MPI Recv to be completed. Therefore, the scenario in Figure 4.17 may or may not have a deadlock. Our programming model can encode MPI functions in the both infinite buffering and zero buffering semantics.

Encoding MPI programs Based on the semantics of MPI functions and the abstract model, we can represent MPI functions by using the primitives of the abstract model. Table 4.18 presents the correspondence between some MPI functions and the actions in the abstract model. There is a minor difference between the two modes in the table. While in infinite buffering mode, an MPI Send is represented by an AsyncSend action, it is encoded by a pair composed of an AsyncSend action and a WaitAny action in the zero buffering mode.

MPI functions

Infinite We now easily encode the MPI program in Figure 4.17. Each process in the program is represented by an actor. There are two mailboxes mb0 and mb1. Actor0 posts a send communication to mb1 and a receive one to mb0. Meanwhile in the opposite direction, Actor1 sends a communication to mb0 and a receive one to mb1. Figure 4.19 demonstrates the encoding of the MPI program in the two modes (zero buffering mode in the right and infinite buffering mode in the left). There is only one difference between the two modes related to the encoding of MPI Send function. Obviously, the zero buffering mode version encounters a deadlock since both actors are blocked; the communications they wait for can not become done communications because there are no matching communications for them to pair with in the mailboxes. Consider now a more complex program shown in the left of the Figure 4.20. In the zero buffering mode, with any executing orders, the program encounters deadlocks because P 0 and P 1 wait for each other. The encoding of that program (in zero buffering mode) is shown in the right of Figure 4.20. In the encoding, the MPI Waitall function is simulated by using two WaitAny actions. In the general case, a function MPI Waitall that waits a set of n requests can be simulated by n WaitAny actions where each action waits for an individual request. The corresponding actions encode other MPI functions in the program.

Simple MPI programs can be easily encoded through the abstract model. However, encoding complex programs with many types of MPI functions becomes more complicated. For instance, encoding an MPI function may need a block of actions in the abstract model, or creating mailboxes for communications should be efficient. The primitives of our abstract model closely match the ones provided by SimGrid's simulation kernel. SimGrid provides a programming environment for the simulation of MPI applications, namely SMPI. SMPI runs MPI applications on top of that kernel thanks to a re-implementation of the MPI primitives on top of the simulation kernel and its primitives. So, it can simulate 160 MPI functions [START_REF] Degomme | Simulating MPI Applications: The SMPI Approach[END_REF]. Besides, 60 MPI proxy apps that are considered as representatives of massive HPC applications are supported by the SMPI implementation 4 .

Conclusion

In this chapter we presented our abstract model of asynchronous distributed programs. From the formal point of view, a significant advantage of the abstract model is that it can cover a large class of MPI applications based on a very small amount of kernel primitives. After defining the abstract model, TLA+ is used to specify the abstract model. Independence theorems between the actions in the model are also formalized in TLA+ and informally proved. The theorems will be used as rules to compute independence between actions in concrete MPI programs in model checking. Besides, specifying the abstract model, the chapter also demonstrates an important property of the model, namely persistence. All the actions in the abstract model are persistent. In the next chapter, we will see that persistence is essential in the efficiency of UDPOR.

4. https://framagit.org/simgrid/SMPI-proxy-apps time O(n 2 log(n)), using the fact that events have a maximum of two causal predecessors, thus limiting the subsets to consider. This chapter tunes the algorithm to our abstract model, using the fact that the amount of causal predecessors of events is also bounded. Besides, the chapter also shows how to incrementally compute ex (C) to avoid recomputations.

Computing extensions efficiently

This section mandates some additional notations. Given a configuration C and an extension with action a, let pre(a) denote the action right before a in the same actor, while preEvt(a, C) denotes the event in C associated with pre(a) (formally e = preEvt(a, C) ⇐⇒ e ∈ C , λ(e) = pre(a)). Given a set of events F ⊆ E , Depend (a, F) means that a depends on all actions labeling events in F .

The definition of ex (C) (set of extensions of a configuration C)

ex (C) = {e ∈ E \ C : e ⊆ C } (5.1)
can be rewritten using the definitions of section 3.1.3 as follows:

ex (C) = {e = a, H ∈ E \ C : a = λ(e) ∧ H = e ∧ H ∈ 2 C ∩ conf (E) ∧ a ∈ enab(H)}. (5.2)
Fortunately, it is not necessary to enumerate all subsets H of C , that are in exponential number, to compute this set. According to the unfolding construction in Definition 6, an event e = a, H only exists in ex (C) if the action a is dependent on the actions of all maximal events of H . This gives:

ex (C) = {e = a, H ∈ E \ C : a = λ(e) ∧ H = e ∧ H ∈ 2 C ∩ conf (E) ∧ a ∈ enab(H) ∧ Depend (a, maxEvents(H))}.
(

Now ex (C) can be simplified and decomposed by enumerating Σ, yielding to:

ex (C) = a ∈ Σ { a, H : H ∈ S a,C } \ C where S a,C = {H ∈ conf (E) : H ⊆ C ∧ a ∈ enab(H) ∧ Depend (a, maxEvents(H))}. (5.4)
The above formulation of ex (C) iterates on all actions in Σ.

However, interpreting Lemma 1 on page 64 (an enabled action cannot be disabled by executing any other action) for configurations H and C with H ⊆ C entails that an action is enabled at state(H) can not be disabled by executing any action in C . Thus, for two configurations H and C with H ⊆ C , an action a in enab(H) is either in actions(C) or in enab(C).

Therefore, ex (C) can be rewritten by restricting a to actions(C) ∪ enab(C) :

ex (C) = (a ∈ actions(C)∪enab(C) { a, H : H ∈ S a,C }) \ C (5.5)
Now, since a configuration is uniquely characterized by its set of maximal events, instead of enumerating possible configurations H ∈ S a,C , we can enumerate maximal sets K = maxEvents(H). Hence, ex (C) can be written as One can then specialize the computation of ex (C) according to the type of action a. The remainder of this section now illustrates how to compute such extensions according to the type of action a. We will see that an event can only depend on very few and easily identifiable maximal events, and can thus be implemented efficiently.

ex (C) = (a ∈ actions(C)∪enab(C) { a, config(K) : K ∈ S max a,C }) \ C (5.6) with S max a,C = {K ∈ 2 C : K is maximal ∧ a ∈ enab(config(K)) ∧ Depend (a, K))} and K is maximal if (e, e ∈ K : e < e).

General properties

Given a configuration C , we have some general properties that will be used for computing extensions as follows:

+ All AsyncSend(m,) events in C are causally related. Indeed, because their actions are dependent (two AsyncSend actions that concern the same mailbox are dependent), those events cannot be concurrent. Besides, they are in the same configuration, they cannot conflict. For those reasons, they are causally related.

+ Similarly, we have that all AsyncReceive(m,) are causally related.

+ All AsyncMutexLock (mtx) events in C are causally related. Because their actions are dependent (they concern the same mutex mtx), they cannot be concurrent. Besides, since they are in the same configuration, they cannot conflict. Thus, they are causally related.

Computing extensions for AsyncSend actions.

Let C be a configuration, and a an action of type c = AsyncSend(m,) of an actor A i . We want to compute the set S max a,C of sets K of maximal events from which a depends.

According to independence theorems (see theorem 4.4.2, theorem 4.4.3, theorem 4.4.5, theorem 4.4.6, and theorem 4.4.12), a can only depends on the following actions: pre(a), all AsyncSend(m,) actions of distinct actors A j which concern the same mailbox m, and all WaitAny (resp. TestAny) actions that wait (resp. test) a AsyncReceive which concerns the same communication c. Considering this, we now examine the composition of maximal events sets K in S max a,C , and prove that its cardinality is bounded by 3.

First, according to the general properties, two events labelled by AsyncSend(m,) actions cannot co-exist in K (they are causally related), formally e, e ∈ K : λ(e), λ(e) are AsyncSend(m,) (see Example 6 for illustration).

Second, if a WaitAny (Com) action concerns communication c, there are two cases: (i) either c is not the first done communication in Com, then WaitAny (Com) and the action a are independent; or (ii) c is the first done communication in Com and WaitAny is enabled only after a (see Example 7 for illustration). Thus the only possibility for a maximal event to be labelled by a WaitAny is when pre(a) is a WaitAny of the same actor. We can then write: e ∈ K : λ(e) is WaitAny ∧λ(e) = pre(a).

Third, all AsyncReceive events for the mailbox m are causally related in configuration C , and c can only be paired with one of them, say c . Thus a can only depend on actions TestAny (Com) such that c ∈ Com and c and c form the first done communication in Com , and all those TestAny events are ordered. Thus, there is at most one event e labelled by TestAny in K such that λ(e) = pre(a) (see Example 8 for illustration).

To conclude, K contains at most three events: preEvt(a, C), an event labelled with an AsyncSend action on the same mailbox, and a TestAny for some matching Async-Receive communication. There is thus only a cubic number of such sets, which is the worse case among considered action types as will be seen in the sequel. each event has at most one successor which is an AsyncSend event. Besides, if two AsyncSend events are not causally related, they will conflict. For example, event e 4 and event e 6 are not in the same configuration, and they conflict; event e 6 and event e 8 belong to different configurations and also conflict. All AsyncSend events in the same configuration are causally related. For example, events e 1 , e 4 , and e 5 are in the same configuration and are causally related. Similarly, events e 2 , e 8 , and e 9 belong to the same configuration and are causally related.

Example 7 Let's study the distributed program and its unfolding in Figure 5.3 to support the claim that a WaitAny event cannot be a direct ancestor of an AsyncSend event of another actor. In the program, the action WaitAny of the first actor depends on the first AsyncReceive of the second actor since they concern the same first done communication (obtained by pairing c 0 and c 1). Obviously c 0 cannot be "done" without c 1 . Hence, the action WaitAny is only enabled after the first AsyncReceive.

We are now considering the WaitAny action of the second actor. Although the WaitAny action and the second AsyncSend action of the first actor concern the same communication, but they are independent because they do not concern the first done communication in the set {c 1 , c 1 }. The first done communication in {c 1 , c 1 } is the communication created by the combination between c 0 and c 1 . Therefore, the first AsyncSend of the Actor 0 is dependent on such a WaitAny action. However, without executing the first AsyncSend of Actor 0 , such a done communication cannot be created. That is why the action WaitAny can only be enabled after the action AsyncSend. And we can see that in the unfolding there is no AsyncSend whose direct ancestor is a WaitAny event. candidate K is built, and ensuring that K is composed of only concurrent events (line 12 to line 15). Then if there is a dependence between a and λ(e t) then a new event e is created. The algorithm only checks the dependence between a and λ(e t) because for other events in K (i.e. preEvt(a, C) and AsyncSend(m,) events) their actions are always dependent on a.

Actor 0 : c 0 = AsyncReceive(m,)

c 0 = AsyncReceive(m,)
TestAny({c 0 })

Actor 1 : c 1 = AsyncSend(m,)
Actor 2 : localComp c 2 = AsyncSend(m,) We then iterate on all AsyncSend events in C , combining them with e 2 to create the maximal event set K (lines 2-8 in the algorithm). We only have one AsyncSend event e 3 . Since ¬(e 2 < e 3) and ¬(e 3 < e 2), we form a first set K = {e 2 , e 3 }, and then create e 7 = AsyncSend, {e 2 , e 3 } . Next, all TestAny events that concern the mailbox m should be considered. Events e 2 and e 5 can be combined to form a new maximal event set K = {e 2 , e 5 }, but since a and λ(e 5) are not related to the same communication, D(a, λ(e 5)) is not satisfied and no event is created. Finally, combinations of e 2 with an AsyncSend event and a TestAny event are examined (lines 9-17 in the algorithm). We then get K = {e 2 , e 5 , e 3 }, and e 8 is added to ex (C) since D(a, λ(e 5)) holds in the configuration config({e 2 , e 5 , e 3 }).

Computing extensions for AsyncReceive actions.

Since an AsyncReceive action and an AsyncSend action are completely symmetrical, thus we can also conclude that K contains at most three events: preEvt(a, C), and an event labelled with an action AsyncReceive on the same mailbox, and a Test-Any for a particular matching AsyncSend communication. Thus, similar to computing extensions for AsyncSend actions, only a cubic number of such sets exist which is the worse case among considered action types.

Computing extensions for WaitAny actions.

Given a configuration C , and a an action of type WaitAny (Com) of an actor A i . This section presents how to compute the set S max a,C of sets K of maximal events from which a depends.

According to independence theorems (see theorem 4.4.5, theorem 4.4.6, and theorem 4.4.12), a can only depend on the following actions: pre(a), AsyncSend(m,) actions or AsyncReceive(m,) actions of a distinct actor A j which concern the first done communication in Com. We now examine the composition of maximal events sets K in S max a,C . Suppose c = AsyncSend(m,) is the first done communication in Com, and is paired with c = AsyncReceive(m,) of some actor A j . Thus, action a and the action AsyncReceive(m,) are dependent. Besides, c becomes done after pairing with c , and the action WaitAny (Com), a blocking action, becomes enabled after the pairing. In addition, according to the general properties (section 5.1.1), all AsyncSend(m,) events in C are causally related, and all AsyncReceive(m,) events in C are also causally related, thus there exists only one order to pair AsyncSend(m,) events with AsyncReceive(m,) events to form done communications in the configuration C . So there is a unique c = AsyncReceive(m,) in C that can be paired with c. For those reasons, there is at most one event e labelled by an AsyncReceive(m,) action in K such that λ(e) = pre(a). Similarly if c = AsyncReceive(m,) then there is at most one event e labelled by AsyncSend(m,) in K such that λ(e) = pre(a).

To conclude, K contains at most two events: preEvt(a, C), an event labelled with an AsyncSend or AsyncReceive that concerns the first done communication in Com.

Algorithm 6 simply computes all events associated with action a. If a is enabled at state(config({preEvt(a, C)})) then it creates a new event characterized by a and config({preEvt(a, C)}). After that, it iterates on all events e in the configuration C . If e is an AsyncReceive(m,) or an AsyncSend(m,) event, then e can possibly be a direct ancestor of a new event labelled by a. If e and preEvt(a, C) are concurrent, both events are added to a set K . Otherwise, one of them, the event that is not an ancestor of the other, is added to K (line 6 to line 7 of the algorithm). If there is a dependence between a and the action of e (i.e. they concern the first done communication), then a new event e is created.

Computing extensions for TestAny actions.

There is only one difference between a TestAny action and a WaitAny action, that is, while the TestAny action is a non-blocking action (i.e., its enableness depends only on its previous action), the WaitAny action is blocking one (i.e., its enableness depends not only on its previous action but also the status of communications that it waits for). Thus, we can use almost the arguments as presented in computing extensions for WaitAny actions. So, given a configuration C , and a an action of type TestAny (Com) of an actor A i . We can conclude that K contains at most two events: preEvt(a, C), and an event labelled with an action AsyncSend or AsyncReceive that concerns the first done communication in Com.

Algorithm 7 is used to compute all events labelled by action a, belonging to ex (C). It first iterates on all events e in the configuration C . If e is preEvt(a, C), a new event e = a, config(preEvt(a, C)) is created (lines 3-4). Event e is created because a and pre(a) are dependent, and a is a non-blocking action, enabled after executing pre(a).

Next if e is an AsyncReceive(m,) or AsyncSend(m,) event, then e can possibly be a direct ancestor of a new event labelled by a. If e and preEvt(a, C) are concurrent, both events are added to a set K . Otherwise, one of them is added to K (lines 8-9). If there is a dependence between a and the action of e (i.e. they concern the first done communication), then the algorithm creates a new event e .

Computing extensions for AsyncMutexLock actions.

Given a configuration C , and a an action of type AsyncMutexLock (m j) of an actor A i , this section presents how to compute the set S max a,C of sets K from which a depends. According to independence theorems (see 4.4.6, theorem 4.4.7, theorem 4.4.8, theorem 4.4.11, theorem 4.4.12), action a only depends on the following actions: pre(a), and AsyncMutexLock (m j) actions of distinct actors A k which concern the same mutex m j . In addition, according to the general properties (section 5.1.1), two events labelled with AsyncMutexLock (m j) actions cannot co-exist in K (they must be causally related), formally e, e ∈ K : λ(e), λ(e) are AsyncMutexLock (m j). We can conclude that, K contains at most two events: preEvt(a, C), and an event labelled with an action AsyncMutexLock (m j) that concerns the same mutex as a. . Event e is created because a and pre(a) are dependent, and a is enabled after executing pre(a). Next, if event e is an AsyncMutexLock (m j) event, then e can possibly be a direct ancestor of a new event labelled by a. If e and preEvt(a, C) are concurrent, both events are added to the set K . Otherwise, one of them, the event not ancestor of the other, is added to K (line 8-9). After that, the algorithm creates a new event e .

Computing extensions for MutexUnlock actions.

Let C be a configuration, and a an action of type MutexUnlock (m) of an actor A i . This section presents how to compute the set S max a,C of sets K of maximal events from which a depends.

According to independence theorems (see 4.4.6, theorem 4.4.7, theorem 4.4.8, theorem 4.4.10, and theorem 4.4.12) a depends on pre(a). It can also depends on all MutexTestAny (M), and MutexWaitAny (M) actions of distinct actors A j if m ∈ M and the two actors are the first two actors in the waiting queue of the mutex m. Recall that each mutex maintains a FIFO queue to store actors interests. If A i is one of the first two actors in the queue, there is only one A j such that it is also one of the first two actors. For that reason there is only one MutexTestAny (M) or MutexWaitAny (M) of some A j depending on a, so there is at most one event e labelled by MutexTestAny (M) or MutexWaitAny (M) such that λ(e) = pre(a).

To conclude, K contains at most two events: preEvt(a, C), and an event labelled with an action MutexTestAny (M) or MutexWaitAny (M) on the same mutex. Algorithm 9 is used to compute all events labelled by a MutexUnlock action, and belonging to ex (C). Similar to Algorithm 8, it first iterates on all events e in the configuration C . If e is preEvt(a, C), a new event e = a, config(preEvt(a, C)) is created (lines 3-4 in the algorithm). If event e is a MutexTestAny (M) or MutexWaitAny (M) event (lines 7-8), a set K is created. If e and preEvt(a, C) are concurrent, both events are added to set K . Otherwise, one of them, the event not ancestor of the other, is added to K . If there is a dependence between a and the action of e, then the algorithm creates a new event e = a, config(K) , adding e to ex (C).

Computing extensions for MutexTestAny actions.

Let C be a configuration, and a an action of type MutexTestAny ({M }) of an actor A i . This section presents how to compute the set S max a,C of sets K of maximal events from which a depends. Compared to MutexWaitAny actions, MutexTestAny actions are not blocking, the main difference is that a MutexTestAny action a becomes enabled after executing its previous action (pre(a)) while a MutexWaitAny action becomes enabled if its actor is the owner of some mutex. We can use almost the arguments in the pre-vious section to compute extensions labelled by MutexTestAny actions. Thus, we can conclude that K contains at most two events: preEvt(a, C), an event labelled with an action MutexUnlock (m) such that m ∈ M .

Computing extensions for LocalComp actions.

Let C be a configuration, and a an action of type LocalComp of an actor A i , computing extensions for action a is trivial since a is only dependent on the previous action of the same actor (pre(a)), and it becomes enabled after executing pre(a). Hence, we can make a conclusion about the set K of maximal events from which a depends: K includes only preEvt(a, C). Algorithm 12 computes all events in ex (C) labelled by action a.

Computing extensions incrementally

In the UDPOR exploration algorithm, after extending a configuration C by adding a new event e, one must compute the extensions of C = C ∪ {e}, thus resulting in redundant computations of events. Thanks to the persistence property, almost all such recomputations can be eliminated. The next theorem provides an incremental computation of extensions. Theorem 5.2.1 Suppose C = C ∪ {e} where e is the last event added to C by the Algorithm 2. We can compute ex (C) incrementally as follows:

ex (C) = (ex (C) ∪ a ∈ enab(C) {< a, H >: H ∈ S a,C }) \ {e} (5.7) where S a,C = {H ∈ 2 C ∩ conf (E) : a ∈ enab(H) ∧ Depend (a, maxEvents(H))}.
With the definition of S a,C as above, recall that (see equation 5.5)

ex (C) = (a ∈ actions(C)∪enab(C) { a, H : H ∈ S a,C }) \ C (5.8)
Similarly we have:

ex (C) = (a ∈ actions(C)∪enab(C) { a, H : H ∈ S a,C }) \ C (5.9)
We have the following lemma that will be used to prove theorem 5.

ex (C) = (a ∈ actions(C)∪(enab(C)\λ(e)) { a, H : H ∈ S a,C }) \ C
First, separating action(C) from the rest in both ex (C) and ex (C), and according to lemma 2, we have that :

a ∈ actions(C) {< a, H >: H ∈ S a,C } = a ∈ actions(C) {< a, H >: H ∈ S a,C } (5.13)
Second, since C ⊆ C , according to Lemma 1, (enab(C) \ {λ(e)}) ⊆ enab(C). We extensions require determining the dependence between actions. Usually checking dependence/independence of actions is a trivial task. For example, if we consider that two write actions, or a write action and a read action are dependent if they concern the same variable, then by examining the memory locations where the actions access and what they do with that memory one can get their relation. In our model, in order to compute dependencies based on independence theorems, and for some pairs of actions, we must rely on events that have been performed before. This section illustrates how dependencies are computed.

In [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF], authors consider a computation model consisting of only three kinds of actions: lock, unlock, and local actions. Two lock actions that require the same mutex are dependent, or a lock action and an unlock action involving the same mutex are dependent. Hence, checking the dependence between two actions of programs in such a model is simple. Besides, the relation between actions is independent of the context (context-insensitive dependence) in the sense that if two actions are dependent, they will be dependent in all configurations (executions) in the unfolding of the program.

In our computation model, there are some dependence relations of actions that are context-insensitive (e.g., two AsyncSend actions concerning the same mailbox, two AsyncReceive concerning the same mailbox, and two AsyncMutexLock requiring the same mutex). Such kind of relations is easy to determine by checking which mailboxes or mutexes they involve.

Besides context-insensitive dependence, some dependencies are context-sensitive: two dependent actions in a particular configuration can become independent actions in another configuration. Consider the example shown in For communication actions, context-sensitive dependencies arise because different configurations may have different combinations of AsyncSend and AsyncReceive communications to produce done communications. According to the independence theorems, an AsyncSend(m) or an AsyncReceive(m) and a TestAny ({C }) or a WaitAny ({C }) are dependent if they concern the first done communication c ∈ C . Two actions concerning a first done communication in a particular configuration may not be involved in a first done communication in another configuration. Thus, checking dependence entails specifying which AsyncSend, AsyncReceive communications are paired to produce done communications. Similarly, context-sensitive relations of synchronization actions come from the fact that changing the execution order of AsyncMutexLock actions involved in a mutex leads to different owners of that mutex. So, first two actors in the waiting queue of the mutex in different configurations are not always identical. Thus, dependence can be checked by checking which actors are being stored in the waiting queues of mutexes and in which order. The next sections demonstrate how dependence can be detected between two actions involved by a context-sensitive relation.

Computing dependencies for communication actions

As presented, checking context-sensitive dependencies between two communication actions entails examining done communications. Consider the example in Let us zoom in closer on the histories of events e 7 and e 9 . At state(C 1), there are three AsyncSend and two AsyncReceive communications posted. Communication c 0 is the second AsyncSend communication posted to mailbox m after c 0 . Hence, c 0 is paired with c 1 (the second AsyncReceive communication posted to the mailbox) and then D(λ(e 7), λ(e 5)). Regarding event e 9 , we have three AsyncSend communications and only one AsyncReceive communication posted to mailbox m at state(C 2). Because c 0 is the second AsyncSend communication, it will be matched with c 2 after executing λ(e 9). Thus, λ(e 8), and λ(e 9) concern the same communication and then D(λ(e 8), λ(e 9)).

From the above example, we see that counting the number of AsyncReceive and AsyncSend communications can helps us determine whether a TestAny (or Wait-Any) action and an AsyncSend (or AsyncReceive) action are dependent or not. Let nbSend (m, H) and nbReceive(m, H) denote the number of AsyncSend(m,) events and number of AsyncReceive(m,) events in configuration H , respectively. Checking dependence between a TestAny (or a WaitAny) action and an AsyncSend (or an Async-Receive) action can leverage on Lemma 3. Given a TestAny ({c}) (resp. WaitAny ({c})) action a that is enabled at state(C) and tests (resp. waits) a AsyncSend(m,) communication. Algorithm 14 checks whether a depends on the action of some event e in the configuration C or not. We can easily lift up this idea to check dependencies of other cases of communication actions (e.g., c is an AsyncReceive communication, a is an AsyncSend or AsyncReceive action).

Computing dependencies for synchronization actions

Let C be a configuration, a a MutexTestAny ({mtx }) action of actor A i enabled at state(C). Suppose that we must find all events e ∈ C such that D(a, λ(e)). According to independence theorems (see theorem 4.4.10), action a only depends on some action MutexUnlock (mtx) b of actor A j if A i and A j are the first two actors in mtx . So, if at state C , A i is not the first actor in mtx then there is no MutexUnlock (mtx) action b in C such that D(a, b). Otherwise, the last executed MutexUnlock (mtx) of some actor A j is dependent on a. Because, after executing that action, A i becomes the first owner of the mutex. Obviously, before executing it, A i and A j are the first two actors in the mutex mtx .

Experiments

We implemented the quasi-optimal version of UDPOR with k -partial alternatives [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF] in a prototype adapted to the distributed programming model of chapter 4, i.e. with its independence relation. The computation of k -partial alternatives is essentially inspired by [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF]. Recall that the algorithm reaches optimality when k = |D| + 1 (recall that we avoid to explore events in D), while k = 1 corresponds to Source DPOR [START_REF] Parosh | Optimal dynamic partial order reduction[END_REF]. The prototype is still limited, not connected to the SimGrid environment because SimGrid needs an API to integrate new exploration and reduction algorithms. Thus, it can only be experimented on simple examples. Besides, because of the fact that it has not been integrated into SimGrid, the input of the prototype is the encoding of an MPI

Comparison

We first compare optimal UDPOR with an exhaustive stateless search on several benchmarks (see Table 5.1). The first 8 benchmarks come from Umpire Tests1 , while DTG and RMQ-receiving belong to [START_REF] Khanna | Dynamic Symbolic Verification of MPI Programs[END_REF] and [START_REF] Daniel | A Simple Model of Communication APIs -Application to Dynamic Partial Order Reduction[END_REF], respectively. The last benchmark is an implementation of a simple Master-Worker pattern. We expressed them in our programming model and explored their state space with our prototype. The experiments were performed on an HP computer, Intel Core i7-6600U 2.60GHz pro-cessors, 16GB of RAM, and Ubuntu version 18.04.1. Table 5.1 presents the number of explored traces and running time for both an exhaustive search and optimal UD-POR. In all benchmarks, UDPOR outperforms the exhaustive search. For example, for RMQ-receiving with four processes, the exhaustive search explores more than 20000 traces in around 8 seconds, while UDPOR explores only six traces in 0.2 seconds. Besides, UDPOR is optimal, exploring only one execution per Mazurkiewicz trace. For example, in RMQ-receiving with five processes, with only four AsyncSend actions that concern the same mailbox, UDPOR explores exactly 24 (=4!) non-equivalent executions. Similarly, the DTG benchmark has only two dependent AsyncSend actions, thus two non-equivalent traces. Furthermore, deadlocks are also detected in the prototype.

Variations on k

We also tried to vary the value of k in the computation of k-partial alternatives. When k is decreased, one gains in efficiency in computing alternatives, but loses optimality by producing more traces. It is then interesting to analyze whether this can be globally more efficient than optimal UDPOR. Similar to [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF], we observed that in some cases, fixing small values of k may improve efficiency. Let us comment on some instances:

-For RMQ-receiving with five processes, k = 7 is optimal (2.5s), but reducing to k = 4 still produces 24 traces (thus is optimal) a bit more quickly (2.3 seconds), while for k = 3, it is not optimal, generating one SSB (the number of traces is 25), but the run time reduces to only 2 seconds. When k = 2, both the number of traces and the run time grows quickly, it timeouts (after 10 minutes).

-For RMQ-receiving with six processes, k = 11 is optimal, and the run time is 47 seconds as presented in the above table. When k = 5, it is still optimal and takes 34 seconds to cover the 120 traces. One SSB is produced when k = 4 (121 traces are traversed), but the run time drops to only 28 seconds. Besides, it timeouts if

k = 3.
-The run time of the Master-worker benchmark with five processes also varies when changing the value of k . k = 7 is optimal (60s), but if k = 5 it is still optimal, exploring the same traces (24 traces) in 57 seconds. When k = 4, the run time goes down to 51 seconds, and there is no SSB.

Note that with our simple prototype, we do not yet make experiments with concrete programs (e.g. MPI programs), for which the run time may diverge. We expect to make it in the future and then experiment the algorithms in more depth. However, we believe that the results are already significant and that UDPOR is effective for asynchronous distributed programs.

Conclusion

This chapter intensively discusses how to compute extensions of a configuration efficiently. Given a configuration C and an action a, to compute ex (C) we could use a naive algorithm iterating all subsets of C , building history candidates for new events labelled by action a. However this algorithm leads to an exponential number of subsets. Using the fact that each configuration (candidate) H is identified by its maximal events maxEvents(H), instead of building H we build the maximal event set K of H . We have proved that the number of events in K is bounded. If a is a LocalComp action, |K | is always equal to 1. If action a is AsyncSend or AsyncReceive, in the worse case |K | = 3, and for the others types of actions (i.e., TestAny , WaitAny , AsyncMutex-Lock , MutexTestAny , MutexWaitAny), |K | = 2. Thus, extensions can be computed in polynomial time. Table 5.2 summarizes possible values of K according to the type of action a.

Besides presenting how to compute extensions efficiently, this chapter also demonstrates a theorem avoiding recomputation of many events. The UDPOR algorithm is recursive, and after extending a configuration C by adding a new event e the algorithm computes ex (C ∪ {e}). Thus many events that are already computed in ex (C) are recomputed in ex (C ∪ {e}). Thanks to the persistence property of the model, the theorem eliminates most of this redundant computations and shows that considering only actions that are enabled at state(C) is enough.

The UDPOR algorithm, together with our ideas, are implemented in a prototype. Experiments conducted on several benchmarks in the chapter show significant reductions obtained by the prototype when verifying MPI programs. We also run k-partial alternatives with different values of k. The results obtained by experiments once again confirm that in some cases, with low values of k, we still obtain optimal results, and k-partial alternatives can be faster than optimal DPOR if the benchmark contains few SSBs. However, this chapter also opens some works to be done. For example, we need to compare the prototype with state-of-the-art verification tools for MPI programs, as well as proposing an automated method to propose good values of k in calculating CHAPTER 6

CONCLUSION AND PERSPECTIVES

Conclusion

Using model checking techniques to verify concurrent programs is still a challenge for the formal methods community because of an intractable problem, that is, the state space explosion. Since the model checking method was born, much attention has been paid to mitigate this problem, typically studies of POR techniques. In the last few years, we have seen the birth of two new efficient methods outperforming the POR techniques, namely UDPOR and optimal DPOR. They are considered optimal since completely avoiding redundant explorations. Besides, distributed programs are in the mainstream of information technology. When writing HPC programs, MPI libraries are usually chosen by developers because they provide many useful functions and manners for developing such kind of applications. For that reason, many HPC applications that run on super-computing platforms are written by using MPI libraries. HPC applications can bring intensive performances, but verifying them is an error-prone task. So, they have attracted interest from researchers in the model checking community, typically Ganesh Gopalakrishnan and his colleagues. Similar to verifying other concurrent programs, model checking of MPI programs also faces the state space explosion problem since concurrency and non-determinism that mainly result in state space explosion are main features of MPI applications where many processes operate simultaneously.

The main goal of the thesis aims at adapting a state of the art method that is Unfolding-based DPOR to model-check real MPI programs in the setting of the Sim-Grid simulator. Figure 6.1 depicts the workflow that we use in order to reach the main target of the thesis, verifying MPI applications. Let's summarize some mains steps in the thesis.

Abstract model

In the thesis, we defined a compact abstract model with very few kernel actions. At the semantic level, the abstract model consists of a set of actors and first attempt to verify message passing programs by using UDPOR. However, verifying such programs requires efficiently computing extensions of configurations. By careful observation of the relationship between events in a configuration, and using the persistence property of the abstract model, we proposed methods to efficiently compute the extensions in the context of our model. The main flavor of the methods is that when computing events for a given action a and a configuration C , we point out that a can only depend on the actions of very few and easily identifiable events in C . Thus we can compute new events efficiently. Implementation All our proposed algorithms are implemented in a prototype, and some benchmarks have also been experimented. Although the prototype now works with simple benchmarks since it has not been yet integrated into the SimGrid environment. These experiments have implications in demonstrating that UDPOR is fully applicable to ensure that MPI programs do not have unwanted behaviors. Besides, the implementation of the quasi-optimal version of UDPOR with k -partial alternatives and varying the value of k in some benchmarks reveals that using k -partial alternatives in message passing programs can also gain benefits: UDPOR can still be optimal with a low value of k ; or it can have redundant explorations, but the run time decreases.

Perspectives

Our work opens a number of perspectives. In this section, we discuss the most promising ones.

Integration As presented, the prototype now has not been integrated into SimGrid since it needs an API that in turn needs rather intrusive refactoring of the framework. In the future, we aim at extending our model of asynchronous distributed systems, while both preserving good properties, and implementing UDPOR in the SimGrid model checker and verify real MPI applications. Once done, we should experiment UDPOR more deeply, and compare it with state of the art tools on more significant benchmarks, get a more precise analysis about the efficiency of UDPOR compared to simpler DPOR approaches, analyze the impact of quasi-optimality on efficiency.

Improving performance

We now check conflicts between two events by scanning the local configuration of the two events and checking for immediate conflicts between the causes. This is rather slow. In [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF], the authors proposed an efficient method for deciding causality and conflicts between the events of an unfolding of a data-race-free program that uses mutexes. We believe that the method can be extended for our model to improve the performance of UDPOR.

Refining the independence relation A simple solution to have a better reduction of UDPOR is to refine the independence relation: the more precise, the less Mazurkiewicz traces exist, thus the more efficient could be UDPOR. For example, we now have that two AsyncSend actions are dependent if they concern the same mailbox. However, if they send the same data, they should be independent, or if the program future behavior and the property do not depend on the value of the data, then they can be considered independent. We believe that this solution can helps us get good reductions in many cases in practice.

Liveness property

We now assume that the state space of the MPI program that we consider is acyclic. However, UDPOR can work with non-acyclic state spaces by using a cut-off technique [START_REF] Rodríguez | Unfoldingbased Partial Order Reduction[END_REF]. Besides, we have a great advantage since SimGrid is equipped with a state equality tool allowing to check if two application states are equal. Hence, we can extend the prototype to verify non-acyclic state spaces. Besides, like most other studies on POR, our work now only focuses on safety property. One direction to extend UDPOR is to check LTL-X properties (LTL properties do not contain the next operator (X)). We believe that there are promising results to get in this direction, but it will require a lot of efforts.

Parallelization and distribution

Another direction that can be tried to get better performance of UDPOR is to parallelize or distribute UDPOR. One simple scheme is that each trace (alternative) can be explored by a thread/process. We will need a scheduler to cleverly assign alternatives to threads/processes and avoid the situation that two threads/process explore the same alternative, but we think that's a promising way.

Figure 1 . 2 -

 12 Figure 1.2 -Intuitive semantics of temporal operators.

Figure 1 . 3 -

 13 Figure 1.3 -SimGrid architecture.

1. 4

 4 Introduction to SimGrid

Figure 2 . 1 -

 21 Figure 2.1 -Persistent set.

Figure 2 .

 2 Figure2.1 visualizes the persistent set of state s. A subset P of enabled actions at state s is a persistent set of s if all actions in P (i.e., a 1 and a2) are independent with all actions reachable from s (and outside P) without executing any action in P .Early POR relies on a statically defined and imprecise independence relation. For example, given two write actions write(arr [i]) and write(arr [j]) (they write a value to an element of the array arr), a static analyzer always considers that they are dependent because it is not able to detect whether i = j or not. However, if i = j the actions are independent.Dynamic partial order reduction (DPOR)[START_REF] Flanagan | Dynamic partial-order reduction for model checking software[END_REF] was later introduced to combat state space explosion for stateless model checking of software. In this context, while POR relies on a statically defined and imprecise independence relation, DPOR may be much more efficient by dynamically collecting it at run-time. While executing a program, DPOR can check exactly which threads/processes access which memory locations. Figure2.2 illustrates the main principle of the DPOR technique. While executing the write action of thread red (*(0x2AAA) :=7), DPOR detects that it accesses the same memory location as the write action (*(0x2AAA) :=5) of thread black accessed before. Thus, the actions are dependent, and thread red is added to the persistent set of state

Figure 2 . 2 -

 22 Figure 2.2 -Dynamic partial order reduction.

Figure 2 . 3 -

 23 Figure 2.3 -A comparison between DPOR and DPOR with observers.

Figure 2 . 4 -

 24 Figure 2.4 -Context-sensitive DPOR

Example 1

 1 Figure 3.1 shows an example of an LTS modelling a simple beverage vend-

 Figure 3.1 -A transition system of a simple beverage vending machine.

Example 2

 2 Figure 3.2 illustrates a PES modeling a concurrent program. In the PES each box represents an event with a number that is the event identifier while arrows illustrate the causality relation, and dotted lines denote conflict relation 1 . The set of events is E = {e 1 , e 2 , e 3 , e 4 , e 5 , e 6 , e 7 , e 8 , e 9 , e 10 }, and regarding the labeling function λ, for instance λ(e 1) = 0, x := a , λ(e 8) = 1, x := a . Causality and conflict relations are such that e 1 < e 6 , e 3 < e 4 , e 3 #e 8 for example.

Figure 3 . 2 -

 32 Figure 3.2 -A prime event structure

:

 The set of extensions of C is ex (C) = {e ∈ E \ C : e ⊆ C }, i.e. the set of events not in C but whose causal predecessors are all in C . For example, ex ({e 1 , e 2 }) = {e 3 , e 6 , e 7 , e 8 }, ex ({e 2 }) = {e 8 }. When appending an extension to C , only resulting conflict-free sets of events are indeed configurations. These extensions constitute the set of enabled events en(C) = {e ∈ ex (C) : e ∈ C , e#e } while the other ones are conflicting extensions cex (C) := ex (C) \ en(C). For example en{e 1 , e 2 } = {e 6 , e 7 } while cex ({e 1 , e 2 }) = ex (e 1 , e 2) \ en({e 1 , e 2 }) = {e 3 , e 8 }. Parametric Unfolding Semantics. Given an LTS T and an independence relation I , one can build a prime event structure E such that each linearization of a maximal configuration (i.e., a total ordering of all the events in the configuration that respects the causality relation) represents an execution in T , and conversely, to each Mazurkiewicz trace in T corresponds a configuration in E [34]. Definition 6 (Unfolding) The unfolding of an LTS T under an independence relation I is the Σ-PES E = E , <, #, λ, incrementally constructed from the initial Σ-PES ∅, ∅, ∅, ∅ by the following rules until no new event can be created: -for any configuration C ∈ conf (E), any action a ∈ enabled (state(C)), if for any e ∈ maxEvents(C), ¬I (a, λ(e)), add a new event e = a, C to E ; -for any such new event e = a, C , update <, # and λ as follows: λ(e) := a and for every e ∈ E \ {e}, consider three cases: (i) if e ∈ C then e < e, (ii) if e / ∈ C and ¬I (a, λ(e)), then e#e , (iii) otherwise, i.e. if e / ∈ C and I (a, λ(e)), then e and e are concurrent.

Figure 3 . 3 -

 33 Figure 3.3 -A toy program, and its unfolding semantics.

Example 3

 3 actions(C) = {λ(e) : e ∈ C }. Figure 3.3 displays a concurrent program P composed of two concurrent processes P 0 and P 1. There are two global variables x and y. Both processes P 0 and P 1 write values to the two global variables. The independent relation is I (x := a, y := b) and I (x := a , y := b). We now build the unfolding semantics for the program.

Definition 6

 6 presents how to build a Σ-PES from an LTS . Conversely, from a Σ-PES E = E , <, #, λ, one can define a corresponding LTS T = S , I , Σ, → where S = conf (E), I = {⊥}, and the transition relation →= {(s, a, s) | s, s ∈ config(E), s = s ∪ {e}, e ∈ E , λ(e) = a}.

Algorithm 2 : 2 3 5 6 if 8 else 9 choose

 2235689 Unfolding-based POR exploration 1 Procedure Explore(C , D, A) Compute extensions of C (ex (C)) Add all events in ex (C) to U 4 if en(C) ⊆ D then Return (A = ∅) then 7 choose e from en(C) \ D e from A ∩ en(C) 10 Explore(C ∪ {e}, D, A \ {e})

Definition 7 (

 7 are computed (line 12) with the function call Alt(C , D∪ {e}). Alternatives play a role similar to "backtracking sets" in the original DPOR algo-rithm, i.e. sets of actions that must be explored from the current state. If an alternative J exists, a right "recursive" exploration is called Explore(C , D ∪ {e}, J \ C): C is still the configuration to extend, but e is now also to be avoided, thus added to D, while events in J \ C are used as guides. Upon completion (line 14), U is intersected with Q C ,D which includes all events in C and D as well as every event in U conflicting with some events inC ∪ D, formally Q C ,D := C ∪ D ∪ e ∈ (C ∪D),e ∈ # iU (e)[e]. Alternatives[START_REF] Rodríguez | Unfoldingbased Partial Order Reduction[END_REF]) Let D and U be sets of events, and C ⊆ U a configuration. An alternative to D after C in U is a configuration J such that:

Figure 3 . 4 -

 34 Figure 3.4 -The connection between interleaving semantics and unfolding semantics.

Figure 3 .

 3 Figure 3.4 summarizes the connection between interleaving semantics and unfolding semantics on an example. A concurrent program consists of three processes shown in Figure 3.4 a. This program can be modeled by a simple LTS (Figure 3.4 b) including six different executions belonging to four different Mazurkiewicz traces (Figure 3.4 c). The behaviors of the program can also be represented by a compact presentation, its unfolding semantics (Figure 3.4 d). In the unfolding, each maximal configuration (in dashed lines) corresponds to a Mazurkiewicz trace.Besides introducing concurrent and interleaving semantics, UDPOR, an optimal Dynamic partial order reduction, is also described. While most standard dynamic partial order reduction methods are based on the interleaving semantics, UDPOR operates over a concurrent semantics named prime event structure. The next chapter will introduce a proposed abstract model for asynchronous distributed programs that we consider throughout the thesis as well as how we specify the model and prove independence relations.

Figure 4 . 1 -

 41 Figure 4.1 -Main elements of the model: Actors, Network and Synchronization.

Figure 4 . 2 -

 42 Figure 4.2 -Main steps of the communication

Figure 4 . 3 -

 43 Figure 4.3 -Each mutex uses a waiting queue consisting of actor identifiers.

Example 5

 5 Figure 4.4 visualizes how synchronization actions work in a simple case.

Figure 4 . 4 -

 44 Figure 4.4 -Actors are synchronized by using synchronization actions

 MODULE abstractModelEXTENDS Integers, Naturals, Sequences, FiniteSets, TLC CONSTANTS Actors, MailboxesIds, MutexIds, Addresses VARIABLES Communications, Memory, Mutexes, Requests, Mailboxes, nbComMbs NoActor ∆ : STRING, status : {"send", "receive", "done"}, src : Actors ∪ {NoActor }, dst : Actors ∪ {NoActor }, data src : Addresses ∪ {NoAddr }, data dst : Addresses ∪ {NoAddr }]

Figure 4 . 5 -

 45 Figure 4.5 -TLA+ specification of the abstract model: data model.

Figure 4 .

 4 [START_REF] Baier | Principles of model checking[END_REF] expresses the specification for the AsyncSend action.

=

 Mailboxes[mbId]).status = "receive" ∧ LET comm ∆ Head (Mailboxes[mbId]) IN ∧ Communications = Communications ∪ {[comm EXCEPT !.status = "done", !.src = aId , !.data src = data addr]} ∧ Mailboxes = [Mailboxes EXCEPT ![mbId] = Tail (Mailboxes[mbId])] ∧ Memory = [Memory EXCEPT ![comm.dst][comm.data dst] = Memory[aId][data addr]] ∧ UNCHANGED nbComMbs ∧ UNCHANGED Mutexes, Requests

Figure 4 . 6 -

 46 Figure 4.6 -TLA+ specification of the abstract model: AsyncSend action.

 status → "receive", src → NoActor , dst → aId , data src → NoAddr , data dst → data addr]IN ∧ Mailboxes = [Mailboxes EXCEPT ![mbId] = Append (Mailboxes[mbId], comm)] ∧ Memory = [Memory EXCEPT ![aId][comm addr] = comm.id] ∧ UNCHANGED Communications ∧ nbComMbs = [nbComMbs EXCEPT ![aId] = nbComMbs[aId] + 1] ∨ ∧ Len(Mailboxes[mbId]) > 0 ∧ Head (Mailboxes[mbId]).status = "send" ∧ LET comm ∆ = Head (Mailboxes[mbId]) IN ∧ Communications = Communications ∪ {[comm EXCEPT !.status = "done", !.dst = aId , !.data dst = data addr]} ∧ Memory = [Memory EXCEPT ![aId][data addr] = Memory[comm.src][comm.data src]] ∧ Mailboxes = [Mailboxes EXCEPT ![mbId] = Tail (Mailboxes[mbId])] ∧ UNCHANGED nbComMbs ∧ UNCHANGED Mutexes, Requests

Figure 4 . 7 -

 47 Figure 4.7 -TLA+ specification of the abstract model: AsyncReceive action.

Figure 4 . 8 -

 48 Figure 4.8 -TLA+ specification of WaitAny action.

Figure 4 . 9 -

 49 Figure 4.9 -TLA+ specification of TestAny action.

Figure 4 .

 4 Figure 4.10 -TLA+ specification of AsyncMutexLock action.

Figure 4 . 11 -

 411 Figure 4.11 -TLA+ specification of MutexUnlock action.

Figure 4 . 12 -

 412 Figure 4.12 -TLA+ specification of MutexWaitAny action.

Figure 4 .

 4 Figure 4.13 -TLA+ specification of MutexTestAny action.

Figure 4 .

 4 Figure 4.14 -TLA+ specification of LocalComp action.

Figure 4 . 15 -

 415 Figure 4.15 -Action c remains enabled until being executed.

Theorem 4 . 4 . 1 Proof 2

 4412 Any two actions a1 and a2 can only be dependent if they have some shared variables. Formally, (Variables(a1) ∩ Variables(a2) = ∅) ⇒ I (a1, a2) Whether a2 is enabled depends only on the state that is in ReadVariables(a2).

Theorem 4 . 4 . 2 Proof 3 Theorem 4 . 4 . 3 Proof 4

 44234434 Any pair of communication actions in distinct actors concerning distinct mailboxes are independent. ∀ act1, act2 ∈ Actors, mbId 1, mbId 2 ∈ MailboxesIds : ∧ act1 = act2 ∧ mbId 1 = mbId 2 ∧ TypeInv =⇒ ∧ I (AsyncSend (act1, mbId 1, ,), AsyncSend (act2, mbId 2, ,)) ∧ I (AsyncReceive(act1, mbId 1, ,), AsyncReceive(act2, mbId 2, ,)) ∧ I (AsyncSend (act1, mbId 1, ,), AsyncReceive(act2, mbId 2, ,)) Because the two actions concern different mailboxes, and if they produce new communications, such communications are distinct. Thus, they do not share any variable and according to Theorem 4.4.1, they are independent. An AsyncSend is independent of an AsyncReceive of another actor. ∀ act1, act2 ∈ Actors : act1 = act2 ∧ TypeInv =⇒ I (AsyncSend (act1, , ,), AsyncReceive(act2, , ,)) Suppose we have two actions: a s of act1, and a r of act2. Both actions are enabled at a state s = Communications, Mailboxes, nbComMbs, Memory, Mutexes, Requests , the first action is c s = AsyncSend, and second action is c r = AsyncReceive. Let's firstly prove that Eq3.2 (page 41) is true. (i) If two actions concern different mailboxes, according to Theorem 4.4.2, they are independent.

Theorem 4 . 4 . 4

 444 Any pair of actions in {TestAny, WaitAny} in distinct actors is independent. ∀ act1, act2 ∈ Actors : act1 = act2 ∧ TypeInv =⇒ ∧ I (WaitAny(act1,), WaitAny(act2,)) ∧ I (TestAny(act1, ,), TestAny(act2, ,)) ∧ I (WaitAny(act1,), TestAny(act2, ,))

Theorem 4 . 4 . 5

 445 Any action in {TestAny(Coms), WaitAny(Coms)} is independent with any action of another actor in {AsyncSend, AsyncReceive} as soon as they do not both concern the first paired communication in the set Coms. ∀ act1, act2 ∈ Actors, data, comm addr , comms ∈ SUBSET Addresses : ∧ act1 = act2 ∧ TypeInv ∧ firstPaired (Coms) = Memory[act2][comm addr] =⇒ ∧ I (WaitAny(act1, Coms), AsyncSend (act2, , , comm addr)) ∧ I (WaitAny(act1, Coms), AsyncReceive(act2, , , comm addr)) ∧ I (TestAny(act1, Coms,), AsyncSend (act2, , , comm addr)) ∧ I (TestAny(act1, Coms,), AsyncReceive(act2, , , comm addr))

Theorem 4 . 4 . 6 Proof 7 Theorem 4 . 4 . 7 Proof 8 Theorem 4 . 4 . 8 Proof 9

 446744784489 Any synchronization action is independent of any communication action of a distinct actor. ∀ act1, act2 ∈ Actors, ∀ action1 ∈ {AsyncMutexLock (act1,), MutexUnlock (act1,), MutexWait(act1,), MutexTest(act1, ,)}, ∀ action2 ∈ {AsyncSend (act2, , ,), AsyncReceive(act2, , ,), TestAny(act2, ,), WaitAny(act2, ,)} : act1 = act2 ∧ TypeInv =⇒ I (action1, action2) According to Theorem 4.4.1, they are independent because they concern different variables. Any pair of synchronization actions of distinct actors concerning distinct mutexes are independent.∀ act1, act2 ∈ Actors, mt1, mt2 ∈ MutexIds, requests ∈ SUBSET MutexIds :∨ act1 = act2 ∧ mt1 = mt2 ∧ TypeInv =⇒ ∧ I (AsyncMutexLock (act1, mt1), AsyncMutexLock (act2, mt2)) ∧ I (AsyncMutexLock (act1, mt1), MutexUnlock (act2, mt2)) ∧ I (MutexUnlock (act1, mt1), MutexUnlock (act2, mt2)) ∨ act1 = act2, requests ∈ SUBSET Requests[act2] ∧ ¬∃ req ∈ requests : req = mt1 =⇒ ∧ I (AsyncMutexLock (act1, mt1), MutexTestAny(act2, requests,)) ∧ I (AsyncMutexLock (act1, mt1), MutexWaitAny(act2, requests)) ∧ I (MutexUnlock (act1, mt1), MutexUnlock (act2, mt2)) ∧ I (MutexUnlock (act1, mt1), MutexWaitAny(act2, requests)) ∧ I (MutexUnlock (act1, mt1), MutexTestAny(act2, requests,)) According to Theorem 4.4.1, they are independent because they concern different variables. An AsyncMutexLock is independent with a MutexUnlock of another actor. ∀ act1, act2 ∈ Actors : act1 = act2 ∧ TypeInv =⇒ I (AsyncMutexLock (act1,), MutexUnlock (act2,)) Suppose that an action AsyncMutexLock and an action MutexUnlock are executed by actor act1 and actor act2, respectively. If they relate to different mutexes, they are independent by the Theorem 4.4.1. Conversely, if they concern the same mutex m, we firstly examine the execution order where AsyncMutexLock executes before Mutex-Unlock. If executing AsyncMutexLock the id of act1 is added to Mutexes[m], and the id of m is added to the request set of the actor act1. After that, firing MutexUnlock results in removing the id of mutex m and the id of actor act2 from the request set of act2 and Mutexes[m], respectively. Similarly, with the reverse order, we get the same outcome. Besides, they do not change the conditions making each other become enabled. Thus, they are independent.

Theorem 4 . 4 . 9

 449 Any pair of actions in {MutexWaitAny, MutexTestAny} of distinct actors is independent. ∀ act1, act2 ∈ Actors : act1 = act2 ∧ TypeInv =⇒ ∧ I (MutexTestAny(act1, ,), MutexTestAny(act2, ,)) ∧ I (MutexWaitAny(act1,), MutexWaitAny(act2,)) ∧ I (MutexWaitAny(act1,), MutexTestAny(act2, ,)) Proof 10 Let's first prove the theorem for two MutexWaitAny actions. If both actions are enabled in a particular state, with any order of execution, they only modify the local state of their actors (changing program counters to the next actions), and do not modify any shared data structure (e.g., mutexes, mailboxes). So, swapping them does not change their effects. Besides, whether they are enabled or not depends only on the state of the communications they wait on regardless of the execution of the other action. For those reasons they are independent. We can prove it similarly for two MutexTestAny actions, or a MutexWaitAny action and MutexTestAny action.

Theorem 4 . 4 . 10

 4410 Let firstTwoOwners(m) be the set containing first two actors in mutex m. Let firstExecutedUnlock (M) be the first mutex m in M concerned by a MutexUnlock. Consider the action a 1 is a MutexUnlock (m) of actor Act1 and a 2 is a MutexTestAny(M) or MutexWaitAny(M) executed by actor act 2 . Then a 1 and a 2 are independent if at least one of the actors act 1 and Act 2 is not in firstTwoOwners(m) for any m in M , or m is not firstExecutedUnlock (M).

Theorem 4 . 4 . 11

 4411 An AsyncMutexLock is independent of any MutexWaitAny and Mutex-TestAny of another actor. ∀ act1, act2 ∈ Actors : act1 = act2 ∧ TypeInv =⇒ ∧ I (AsyncMutexLock (act1,), MutexWaitAny(act2,)) ∧ I (AsyncMutexLock (act1,), MutexTestAny(act2, ,))

Theorem 4 . 4 . 12 A

 4412 LocalComp is independent with any other action of another actor. ∀ action1 ∈ {AsyncMutexLock (act1,), MutexUnlock (act1,), MutexWait(act1,), MutexTestAny(act1, ,), AsyncSend (act1, , ,), AsyncReceive(act1, , ,), TestAnyAny(act1, ,), WaitAny(act1, ,), localComp(act1)}, ∀ action2 ∈ {LocalComp(act2)} : act1 = act2 ∧ TypeInv =⇒ I (action1, action2) Proof 13 According to Theorem 4.4.1 they must be independent because they concern different variables.

Figure 4 .

 4 Figure 4.16 -A simple MPI program

 MPI Testany(int count, MPI Request array of requests[], int *index, int *flag, MPI Status *status): tests an array of requests (array of requests) with size = count. If at least one request is completed then flag is set to true and returns in index the index of the completed request, otherwise flag is set to false. To wait for a blocking MPI Isend and MPI Irecv, one can use MPI Wait, MPI Waitany, or MPI Waitall.

Figure 4 . 17 -

 417 Figure 4.17 -An MPI program with a potential deadlock

Figure 4 . 18 -Figure 4 . 19 -

 418419 Figure 4.18 -Representations of some basic MPI functions in the two modes.

P0

 MPI Irecv (from P1, &reqs[0]); MPI Irecv (from P1, &reqs[1]); MPI Waitall (2, reqs); MPI Send (to P1); P1 MPI Isend (to P0, &reqs[0]); MPI Isend (to P2, &reqs[1]); MPI Waitall (2, reqs, statuses); MPI Recv (from P0); MPI Recv (from P0); P2 MPI Recv (from P1); Actor0 c = AsyncReceive (mb0); c1 = AsyncReceive (mb0); WaitAny({ c }); WaitAny({ c1 }); c3 = AsyncSend (mb1); WaitAny({ c3 }); Actor1 c4 = AsyncSend (mb0); c5 = AsyncSend (mb2); WaitAny({ c4 }); WaitAny({ c5 }); c6 = AsyncReceive (mb1); WaitAny(c6); c7 = AsyncReceive (mb1); WaitAny({ c7 }); Actor2 c8 = AsyncReceive (mb2); WaitAny({ c8 });

Figure 4 . 20 -

 420 Figure 4.20 -An MPI program (in the left) and its encoding (in the right).

Figure 5 . 1 -

 51 Figure 5.1 -A configuration C , extended by a new event e n , with history H of maximal events K .

Figure 5 . 2 -Example 6

 526 Figure 5.2 -The pseudo-code of a distributed program and its unfolding

Actor 0 :Figure 5 . 3 -

 053 Figure 5.3 -The pseudo-code of a distributed program and its unfolding.

Example 8 Figure 5 . 4 -

 854 Figure 5.4 -The pseudo-code of a distributed program and its unfolding.

Figure 5 . 5 -Example 9

 559 Figure 5.5 -A program, and a configuration C with extensions by action AsyncSend.

Algorithm 7 : 3 K 7 K := ∅; 8 ifActor 1 : c 1 =Figure 5 . 7 -

 73781157 Figure 5.7 -A program, and a configuration C with extensions by action TestAny.

Algorithm 8 : 3 K 7 K := ∅ 8 if

 8378 createLockEvt(a,C) 1 foreach event e in C do 2 if λ(e) = pre(a) then := {preEvt(a, C)}; 4 create e := a, config(K) ; 5 ex (C) := ex (C) ∪ {e } 6 else if λ(e) is AsyncMutexLock(m j) then ¬(e < preEvt(a, C) then K := K ∪ {e};; 9 if ¬(preEvt(a, C) < e) then K := K ∪ {preEvt(a, C)} ; 10 create e := a, config(K) ; 11 ex (C) := ex (C) ∪ {e }; Algorithm 8 is used to compute all events labelled by action a, belonging to ex (C). It first iterates on all events e in the configuration C . If e is preEvt(a, C), a new event e = a, config(preEvt(a, C)) is created (lines 3-5)

Figure 5 . 8 -

 58 Figure 5.8 -A program and a configuration C with extensions by AsyncMutexLock .

 ex (C) := ex (C) ∪ {e };

Figure 5 . 9 -Example 13

 5913 Figure 5.9 -A program, and a configuration C with extensions by MutexUnlock.

Figure 5 .Example 14

 514 Figure 5.10 -A program, and a configuration C with extensions by MutexWaitAny .

Algorithm 11 : 3 K 6 K

 1136 createMutexTestEvt(a, C) 1 foreach event e in C do 2 if λ(e) = pre(a) then := {preEvt(a, C)}; 4 create e := a, config(K) ; ex (C) := ex (C) ∪ {e }; 5 else if λ(e) is MutexUnlock then := ∅;7 if ¬(e < preEvt(a, C)) then K := K ∪ {e}; 8 if ¬(preEvt(a, C) < e) then K := K ∪ {preEvt(a, C)};9 if D K (a, λ(e)) then 10 create e := a, config(K) ; ex (C) := ex (C) ∪ {e }; Algorithm 11 creates all events in ex (C) labelled by a MutexTestAny action. It first iterates on all events e in the configuration C . If e is preEvt(a, C) then it creates a new event a, config(K) . If e is a MutexUnlock event, it builds a set K such that all events in K are concurrent. When the condition D(a, λ(e)) is satisfied, it creates a new event e = a, config(K) , and then adds that event to ex (C).

Figure 5 .Example 15

 515 Figure 5.11 -A program, and a configuration C with extensions by MutexTestAny .

Algorithm 12 : 3 K

 123 createLocalCompEvt(a,C) 1 foreach event e in C do 2 if λ(e) = pre(a) then := {preEvt(a, C)}; 4 create e := a, config(K) ; 5 ex (C) := ex (C) ∪ {e };

2 . 1 . 2

 212 Lemma Suppose C = C ∪{e} where e is the last event added to C by the Algorithm 2. We have the following relation:a ∈ actions(C) {< a, H >: H ∈ S a,C } = a ∈ actions(C) {< a, H >: H ∈ S a,C } (5.10)whereS a,C = {H ∈ 2 C ∩ conf (E) : a ∈ enab(H) ∧ Depend (a, maxEvents(H))} and S a,C = {H ∈ 2 C ∩ conf (E) : a ∈ enab(H) ∧ Depend (a, maxEvents(H))}.Proof 14 (⊇) This inclusion is obvious since C ⊇ C , and thus S a,C ⊇ S a,C . (⊆) Suppose there exists some event e n =< a, H > belonging to the left but not the right set. If a = λ(e n) = λ(e), then H ∈ S a,C ∩ S a,C , so e n is in both sets, resulting in a contradiction. If a = λ(e n) = λ(e), there are two cases: (i) either e / ∈ H then H ∈ S a,C and e n belongs to the right set, a contradiction. Or (ii) e ∈ H , then λ(e n) ∈ actions(C) \{λ(e)} = actions(C), thus there is another event e ∈ C such that λ(e) = λ(e n), then e cannot belong to H (one action a cannot appear twice in e n). Besides, e is the last event explored in C , thus a depends on λ(e) by Definition 6. Then, e conflicts with e, contradicting their membership to the same configuration C (see Figure5.12). This proves (5.10).

Figure 5 .

 5 Figure 5.12 -Since D(λ(e), λ(e)), events e and e are in conflict.

Figure 5 .

 5 13, a distributed program composed of three actors. Let's zoom in on the unfolding of the program. In configuration C 1 = {e 1 , e 2 , e 5 , e 7 , e 8 } (the configuration in the red line), action AsyncSend of Actor 1 and action TestAny of Actor 0 are dependent because they concern the first done communication in mailbox m. Besides, in that configuration, action TestAny of Actor 2 is independent with action AsyncSend of Actor 1 . However, in another configuration C 2 = {e 2 , e 3 , e 9 , e 10 , e 11 }, action AsyncSend is dependent on TestAny of Actor 2 and independent with TestAny of Actor 0 . Obviously some dependencies of pairs of communication actions are context-sensitive.

Figure 5 . 14 -

 514 Figure 5.14 -The pseudo-code of a distributed program and two configurations.

 Figure 5.15, a distributed program with three actors. In the figure we draw a part of the unfolding of the program. Let us zoom in on events e 7 , e 9 , they have the corresponding maximal event sets: (their fathers) K e 7 = {e 5 , e 6 } and K e 9 = {e 2 , e 3 , e 8 }, respectively.

Figure 5 . 15 -

 515 Figure 5.15 -The pseudo-code of a distributed program and two configurations.

Lemma 3 Algorithm 14 :

 314 Let C be a configuration, a be a TestAny ({c}) (or WaitAny ({c})) action such that a is enabled at state(C), and c is an AsyncSend communication that is posted to the mailbox m by an event e: c = AsyncSend(m,). Action a is dependent on the action of some event in e : c = AsyncReceive(m,) (in C) if nbSend (m, e) = nbReceive(m, e). Proof. Suppose n = nbSend (m, e) = nbReceive(m, e). According to general properties (in page 82), in the configuration C , all AsyncSend(m,) events are causally related, and all AsyncReceive(m,) events are also causally related. Beside, remember that mailbox m is a FIFO queue. Hence, in the mailbox m, the first n AsyncSend communications posted to m by n AsyncSend(m,) events in e are combined with the first n AsyncReceive communications that are issued by n AsyncReceive(m,) events in e . For those reasons, c (n + 1th AsyncSend communication posted to m by e) and c (n + 1th AsyncReceive communication issued by e) are combined to create a done communication, and thus a and λ(e) are dependent. ChekingDependence(a, e, C) 1 if λ(e) is an AsyncReceive (m,) action then 2 e1 := the event whose action issues the communication c;

3 return

 3 (nbSend (m, e1) == nbReceive(m, e));

Figure 5 .

 5 Figure 5.16 -a program and a configuration C.

Algorithm 15 :

 15 ChekingDependence(a, e, C) 1 if the actor of action a is the owner of mtx then 2 if λ(e) is the last executed action concerning mtx then 3 Let a be a MutexTestAny (mtx) action that is enabled at the state of a configuration C . Let e be an MutexUnlock ({mtx }) event in C , Algorithm 15 checks whether a and λ(e) are dependent or not. For other pairs of actions (e.g., MutexWaitAny and Mutex-Unlock), we proceed similarly.

Algorithm 1: Stateful model checking exploration

	1 setStates := {s 0 }
	2 visitedStates is empty.
	3 while setStates = ∅
	4 do	
	5	s := a state in setStates
	6	setStates := setStates \ {s}
	7	if s / ∈ visitedStates then
	8	visitedStates := visitedStates ∪ {s}
	9	foreach action t enabled at state s do
	10	add the sucessor of s after t to setStates
	are optimal, exploring only one (complete) execution per each equivalence class of ex-
	ecutions if the state space of the model does not contain any cycles. In the case of
	existing cycles, a pruning (cut-off) technique that requires state equality checking must
	be used, but the problem becomes more complicated, and it is out of the scope of the
	thesis.	

 be extended to a new configuration by adding some event e ∈ E . Formally, C is maximal if e ∈ E : e / ∈ C , C ∪{e } is a configuration. For example {e 1 , e 2 , e 6 , e 7 } is a maximal configuration, but {e 1 , e 2 , e 7 } is not maximal. Two events e and e are in immediate conflict, denoted by e# i e , iff e#e and both e ∪ [e] and e ∪ [e] are configurations. For instance, e 1 # i e 8 , e 2 # i e 3 .

	Immediate conflict:

Proof 5

 5 Let's start with two TestAny actions. Let t 1 and t 2 be TestAny({Coms1}) action and TestAny(Coms2) action, respectively. Suppose they are both enabled at state s. With any execution orders, t 1 returns a true boolean value if there is at least one done communication in Coms1, otherwise, it returns false. Similarly, t 2 also returns a boolean value decided by the status of communications in Coms2. So, the returned values do not depend on the execution orders but depend on the state of communications in

Coms1 and Coms2 independently of Coms1 = Coms2 or not.

 a, config(preEvt(a, C)) . If e is a MutexUnlock event, then it builds a set K such that all events in K are concurrent. If the condition D(a, λ(e)) holds then it creates a new event e = a, config(K) , adding it to ex (C).

	Actor 0 : LocalComp				
	AsyncMutexLock (m) MutexUnlock (m)	<0, localComp>	e 1		<1, localComp>	e 2
	Actor 1 : LocalComp				e 3	<0, AsyncMutexLock>
	AsyncMutexLock (m)				
	MutexWaitAny (m)	<0, MutexUnlock>	e 5	<1, AsyncMutexLock>	e 4
					e 6 <1, MutexWaitAny>

Table 5 .

 5 program, not a real MPI program. 1 -Comparing exhaustive exploration and UDPOR. TO: timeout after 30 minutes; #P: number of processes; Deadlock: deadlock exists; #Traces: number of traces

	Benchmarks	#P Deadlock	Exhaustive search UDPOR	
				#Traces	Time	#Traces Time
	wait-deadlock	2	yes	2	<0.01	1	<0.01
	send-recv-ok	2	no	24	0.03	1	<0.01
	sendrecv-deadlock	3	yes	105	0.06	1	0.01
	complex-deadlock	3	yes	36	0.03	1	<0.01
	waitall-deadlock	3	yes	1458	1.2	1	<0.01
	no-error-wait-any-src	3	no	21	0.02	1	0.01
	any-src-waitall-deadlock	3	no	105	0.05	1	0.01
	any-src-can-deadlock3	3	yes	999	0.65	2	0.03
	DTG	5	yes	-	TO	2	0.07
	RMQ-receiving	4	no	20064	8.15	6	0.2
		5	no	-	TO	24	2.52
		6	no	-	TO	120	47
	Master-worker	3	no	1356444	1038	2	0.2
		4	no	-	TO	6	2.5
		5	no	-	TO	24	60

Both p1.p2 and p2.p1 must be executed.

Here only initial conflicts are drawn, and note that conflicts are inherited by causality.

https://github.com/pham-theanh/simixNetworks

The lemma can be fully expressed in TLA+, but we keep like that for simplicity.

What we prove is that actions commute, thus considering them as independent is valid.

ex (C) := ex (C) ∪ {e };

http://formalverification.cs.utah.edu/ISP-Tests/

CHAPTER 5

ADAPTING UDPOR

Recall that the behavior of a concurrent program can be represented compactly by using its unfolding semantics (section 3.2). UDPOR operates over the unfolding semantics and explores a reduced LTS without redundant explorations of Mazurkiewicz traces. In order to get optimality (i.e. exploring exactly one interleaving per each Mazurkiewicz trace), the function Alt(C , D ∪ {e}) has to solve an NP-complete problem. Besides, computing the extensions ex (C) of a configuration C may also be costly in general. It is, for example, an NP-complete problem for Petri Nets since all sub-configurations must be enumerated. Fortunately, this algorithm can be specially tuned for sub-classes. In particular for the programming model of [START_REF] Huyen | Quasi-Optimal Partial Order Reduction[END_REF] it is tuned in an algorithm working in Algorithm 4 generates all events in ex (C) labelled by an AsyncSend action a. It first creates a new event e labelled by the action a (line 1), and event preEvt(a, C) is the unique predecessor of that event. Since a is dependent on pre(a) and if a is an AsyncSend action, it becomes enabled after executing pre(a). So that is why e is created. Next the algorithm iterates on all events e in {AsyncSend(m,), TestAny (Com)} (line 2), then building set K . Line 5 and line 6 ensure that K includes only concurrent events. If a is dependent on the action of e, a new event is created. To simplify the presentation we always check the dependence between a and λ(e) (line 7), but if e is AsyncSend(m,) the condition is always satisfied. The rest of the algorithm (from line 9) is mainly dedicated to create new events with three direct predecessors. Firstly the if ¬(e t < preEvt(a, C)and ¬(e t < e r) then K := K ∪ {e t };

then create e = a, config(K) , and

Algorithm 5 generates all events in ex (C) labelled by an AsyncReceive action a. It has the same structure as the previous algorithm. The main difference is that while the former algorithm iterates on AsyncSend events the later one iterates on AsyncReceive events. K . Thus, we create e 7 = a, {e 5 } .

Computing extensions for MutexWaitAny actions.

Let C be a configuration, and a an action of type MutexWaitAny ({M }) of an actor A i . This section presents how to compute the set S max a,C of sets K of maximal events from which a depends.

Let M 1 be the subset of M composed of mutexes m having A i as one of the first two actors in their waiting queues. First, according to independence theorems (see theorem 4.4.6, theorem 4.4.7, theorem 4.4.10, theorem 4.4.12), a depends on a MutexUnlock (m) action of a distinct actor A j if m is the first mutex in M 1 concerned by a MutexUnlock , and A j is one of the first two actors in the waiting queue of the mutex m. Second, similar to the above section (section 5.1.7), if A i is one of the first two actors in the queue, there is only one A j such that it is also one of the first two actors in that queue. Thus, there is at most one event e in K labelled by MutexUnlock (m) such that λ(e) = pre(a). In addition, a also depends on pre(a). To conclude, K contains at most two events: preEvt(a, C), and possibly an event labelled with an action MutexUnlock (m) such that m ∈ M .

Now, using equations (5.13) and (5.14), ex (C) can be rewritten as follows:

{ a, H :

Computing dependence relations

As presented previously, computing the extensions of a configuration can be specialized according to the type of action; most of the presented algorithms computing k-partial alternative.

Type of action

Description of K two subsystems, namely the synchronization subsystem and the communication subsystem. Actors can execute three kinds of actions, namely local computation actions, synchronization actions, and communication actions. The synchronization subsystem is composed of some FIFO mailboxes where communications meet and pair, and a Communications object that stores all done communications in the system. The synchronization subsystem includes some mutexes used for actors synchronization tasks. From a formal point of view, a significant advantage of the abstract model is that with a very small amount of kernel actions, it can be used to encode a large class of MPI programs. So, instead of formalizing a huge number of MPI functions that is an errorprone task, specifying the semantics of these actions to reason about the dependency of actions becomes easy.

Specification of the abstract model As presented, Partial order reduction methods reduce the state space of a program by exploiting the commutation of independent actions. Determining whether actions are independent requires a precise formal semantics of the program. So, after defining it abstractly, the abstract model is specified in TLA+ in order to obtain its semantics. Then, independence theorems are proved based on the formal TLA+ specification, and they are later used as an input of UDPOR to compute independence relations between actions of programs to be verified.

Adapting UDPOR Experiments already showed that UDPOR efficiently combats the state space explosion of concurrent programs consisting of several processes that communicate through mutexes. However, to the best of our knowledge, it has not been applied to distributed programs where message passing is employed. This work is the