
HAL Id: tel-02414237
https://hal.science/tel-02414237v2

Submitted on 3 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing with relations, functions, and bindings
Ulysse Gerard

To cite this version:
Ulysse Gerard. Computing with relations, functions, and bindings. Logic in Computer Science [cs.LO].
Institut Polytechnique de Paris, 2019. English. �NNT : 2019IPPAX005�. �tel-02414237v2�

https://hal.science/tel-02414237v2
https://hal.archives-ouvertes.fr

626

N
N
T
:2
01
9I
PP

A
X
O
O
5

Computing with relations,
functions, and bindings

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École Polytechnique

École doctorale n∘626 École doctorale de l’Institut Polytechnique de Paris (ED IP Paris)
Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Palaiseau, le 18 octobre 2019, par

M. Ulysse Gérard

Composition du Jury :

Gilles Dowek
Directeur de Recherche, ENS Cachan (LSV) Président

Catherine Dubois
Directrice de Recherche, Ensiee Rapporteur

Hugo Herbelin
Directeur de Recherche, Inria/Université de Paris, (IRIF) Rapporteur

Chantal Keller
Maître de Conférences, Université Paris-Saclay (LRI) Examinatrice

Enrico Tassi
Chargé de Recherche, Inria Sophia Antipolis Examinateur

Dale Miller
Directeur de recherche, Inria Saclay Directeur de thèse

Résumé

Cette thèse s’inscrit dans la longue tradition de l’étude des relations entre logique
mathématique et calcul et plus spécifiquement de la programmation déclarative.
Nous nous intéresserons notamment à la programmation logique pour laquelle
l’exécution d’un programme correspond à la recherche d’une preuve ainsi qu’à la
programmation fonctionnelle dans laquelle les programmes sont des preuves dont
la simplification constitue l’exécution. Ce travail est divisé en deux contributions
principales. Chacune d’entre-elles utilise des résultats récents de la théorie de la
démonstration pour développer de techniques novatrices utilisant déduction logique
et fonctions pour effectuer des calculs.
La première contribution de ce travail consiste en la description et la formalisa-

tion d’une nouvelle technique utilisant le mécanisme de la focalisation (un moyen
de guider la recherche de preuve) pour distinguer les calculs fonctionnels qui se
dissimulent dans les preuves déductives. À cet effet nous formulons un calcul des
séquents focalisé pour l’arithmétique de Heyting où points-fixes et égalité sont défi-
nis comme des connecteurs logiques. Partant du fait que les prédicats encodant des
calculs fonctionnels peuvent êtres vus comme des singletons (un de leurs paramètres
est uniquement déterminé par la valeur des autres), il est toujours possible de posi-
tionner ces prédicats singletons dans les phases négatives de la preuve, les identifiant
ainsi avec un calcul fonctionnel. Ce positionnement est possible en raison de l’am-
biguïté de la polarité des singleton dans un système focalisé. Ce processus peut se
généraliser aux relations d’équivalences. Cette technique est intéressante car elle
elle n’étend en aucune façon la logique sous-jacente: ni opérateur de choix, ni règles
de réécritures ne sont nécessaires. Notre logique reste donc purement relationnelle
même lorsqu’elle calcule des fonctions. Afin d’éviter que les phases négatives se
poursuivent indéfiniment dans le cas de calculs plus complexes, nous introduisons
un mécanisme de suspensions, à mi-chemin entre focalisation forte et faible. Nous
proposons également, en nous basant sur ce travail théorique, un certain nombre
d’extensions simples de l’assistant de preuve Abella ayant pour but d’automatiser
certaines parties de la recherche de preuves.
La seconde contribution de cette thèse est la conception d’un nouveau langage

de programmation fonctionnelle: MLTS. De nouveau, nous utilisons des travaux
théoriques récents en logique: la sémantique de MLTS est ainsi une théorie au
sein de la logique 𝒢, la logique de raisonnement de l’assistant de preuve Abella. La
logique 𝒢 utilise un opérateur spécifique: ∇, qui est un quantificateur sur des noms
“frais” et autorise un traitement naturel des preuves manipulant des objets pouvant
contenir des lieurs. Ce traitement s’appuie sur la gestion naturelle des lieurs fournie
par le calcul des séquents. La syntaxe de MLTS est basée sur celle du langage de
programmation OCaml mais fournit des constructions additionnelles permettant
aux lieurs présents dans les termes de se déplacer au niveau du programme. Il

2

3

est ainsi possible de définir des types de données comprenant des lieurs et de dé-
construire ces types via une opération de pattern-matching adaptée: un nouveau
quantificateur *nab* permet de déclarer les nominaux apparaissant dans un pattern.
D’autres opérations sont fournies, comme la création d’un nouveau nominal frais
(opérateur *new*) et la construction d’abstractions (opérateur *backslash*). De
plus, toutes les opérations sur la syntaxe respectent l’alpha et la béta conversion.
Ces deux aspects forment l’approche syntaxique des lieurs appelée λ-tree syntax.
Cette partie présente longuement le language à l’aide de nombreux exemples puis
décrit son système de typage et sa sémantique naturelle. Le language obtenu appa-
raît syntaxiquement comme un ajout très succinct au language OCaml, mais est
doté d’une grande expressivité vis-à-vis des structures de données contenant des
lieurs. Un prototype d’implémentation du langage est fourni, permettant à chacun
d’expérimenter facilement en ligne (https://trymlts.github.io).
Ce travail a été effectué au sein de l’équipe Parsifal de l’Inria Saclay.

https://trymlts.github.io

Acknowledgments

First of all I would like to thank Dale who supervised this work and guided me
during these years. He provided the setting but also the freedom necessary to my
progress, and was always available to discuss and answer my interrogations.
I also want to thank Catherine Dubois and Hugo Herbelin who kindly accepted to

review my manuscript and whose precise remarks contributed to its improvement.
I also thank Gilles Dowek, Chantal Keller and Enrico Tassi who agreed to take part
in the jury of this thesis.
Finally I want to thank all the people who directly or indirectly contributed to

the realization of this work: Gabriel Scherer who showed me a fresh point of view
over my work, present and former members of the Parsifal team, my friends, my
parents and of course Milena.

4

Contents

Introduction 9

1 Theℋ proof system for Heyting arithmetic 13
1 The typed λ-calculus . 13

1.1 Syntax of terms . 14
1.2 Typing using sequent calculus 14
1.3 Computing with the λ-calculus 15

2 Terms and formulas forℋ . 16
3 Theℋ sequent calculus . 17

3.1 The logical core ofℋ . 18
3.2 The arithmetic part ofℋ . 20

2 Separating functional computation from relations 23
1 An introduction to focusing . 24

1.1 The ℱ⊃ calculus . 25
1.2 Polarity and proof search . 27

2 The ℱ calculus for Heyting arithmetic 28
2.1 Polarities of connectives . 28
2.2 Suspensions . 31
2.3 The complete ℱ calculus . 33

3 Juggling with phases . 35
3.1 Phases as abstractions . 35
3.2 The polarity ambiguity of singleton sets 35
3.3 An extension to equivalence classes 37

4 A practical use: automation in Abella 37
4.1 The 𝒢 Logic and the Abella Implementation 38
4.2 Proposal: Computation and Suspension 40
4.3 Proposal: Deterministic Computation using Singleton Predi-

cates . 41
4.4 Possible extensions . 44

5 Conclusion and perspectives . 44

3 A functional programming language using λ-tree syntax 47
1 Introduction . 47

1.1 A common example: substitution 49
1.2 A new language, MLTS . 51

2 The new features of MLTS . 51
3 MLTS examples . 52

5

6

3.1 The untyped λ-calculus . 52
3.2 Higher-order programming examples 57
3.3 Normalization by Evaluation (NBE) 60
3.4 The π-calculus . 60

4 Types and syntax . 63
4.1 Abstract syntax as untyped λ-calculus 63
4.2 Typing for the concrete syntax 65
4.3 Typing for the explicit syntax 67

5 Formalizing the design of MLTS . 67
5.1 Equality modulo α, β, η conversion 69
5.2 Pattern unification and matching 69

No repeated pattern variable occurrences 69
Restricted use of higher-order pattern variables. 70
All nab-bound variables must have a rigid occurrence. 71

5.3 β0 versus β . 72
5.4 Match rule quantification . 72
5.5 Nominal abstraction . 73

6 Natural semantic specification . 74
7 Formal properties of MLTS . 77
8 Interpreters for MLTS . 82

8.1 Nominal-escape checking 83
8.2 Binder mobility . 83
8.3 Costs of moving binders . 84
8.4 A web frontend for the interpreter 84

9 Related work . 85
9.1 Systems with two arrow type constructors 86
9.2 Systems with one arrow type constructor 87
9.3 Systems using nominal logic 87
9.4 Challenge problems and benchmarks 88

10 Perspectives for MLTS . 88

Conclusion 89

A A unification algorithm inMLTS 99

B A prototype implementation for MLTS 103
1 Terms and types . 103
2 Typing . 104
3 Interpreter . 105

A programming language is low level when its
programs require attention to the irrelevant.

Alan J. Perlis, Epigrams in Programming

7

8

Introduction

Mathematical logic and computer science are tightly intertwined. From the hard-
ware design of microprocessors to the creation of new programming languages and
analysis of programs, logic is an inevitable discipline to study and design digital
systems. However, the most widely used programming languages have often been
created incrementally, sometimes without clear semantics, and can have complex
and undefined behaviors. An important part of the effort of computer scientists is
to be able to understand and verify the correctness of programs written in these lan-
guages. But computer science tools can also be used to create new languages directly
inspired (and validated) by known mathematical methods. This document focuses
on this second aspect and especially on what is called Declarative Programming.
Declarative Programming is an umbrella term with multiple interpretations. We

consider here one of its commonly admitted meanings: a programming language is
said to be declarative if it is based onmathematical logic. By opposition to languages
created “from scratch” and usually inspired by low-level considerations on what
a microprocessor understands and how a computer is architectured, declarative
programming languages leverage well-knownmathematical and logical frameworks
to build their syntax and semantics. This has several decisive consequences and
one of them is that it is easier to reason about programs written in such languages
because of their direct relation with familiar formal mathematical systems. It is thus
much easier to prove formal properties over programs written in akin languages.
Such “declarative” languages are numerous, span multiple paradigms and make

different uses of mathematical logic in their conception. Two common examples of
such uses are “proof search as program execution” and “programs as proofs simplifi-
cation”: On the one hand logic is used to inspire syntax as in logic programming
languages. This is probably themost straightforwardmapping: programs are directly
written as sets of formulas and inference rules using variables to express facts and
relations about the problem to solve. Computation in logic programming is all about
the search for a proof with these given rules, using backtracking to find a path and
unification to instantiate variables. If no proof can be found, the answer is a failure,
if one or several proofs are found the correct substitutions of variables needed for
these successful proofs are returned. As a trivial example, consider the following
program made of two clauses terminated with a period:

mortal A :- cat A. % A is mortal if A is a cat
cat socrate. % socrate is a cat

When asked the query “mortal A.”, the program will search for matching rules or
facts and here it will discover that one way to be mortal is to be a cat. Therefore
it will try to prove “cat A” and doing that will find that the only possible proof
requires the substitution “A = socrate”.

9

10

On the other hand, in functional programming languages, a program is seen
as a proof and its execution corresponds to the simplification of that proof. This
correspondence is embodied by the Curry-Howard isomorphism which establishes
a bridge between proof systems and models of computation: A typed program
corresponds to a proof, and the formula it proves is the type of that program. This
duality between proof and programs, formulas and types, is very fertile and led to
broad research topics and to the creation of tools like the Coq system in which proofs
are seen as programs that can be formalized, checked and run.

The present thesis pursues the studies of interactions between mathematical
logic and computation, starting with modern proof theory results to design new
ways to compute with relations and with functions. The first part of this thesis uses
focused proof search to reveal functional computations from relations. Indeed, in
the arithmetic setting, most proofs involve some computations and those can lead
to tedious unfoldings in a proof assistant such as the Abella interactive theorem
prover. The focusing discipline (which was originally designed to control and reduce
the non-determinism of proof search in Gentzen-style sequent calculi) will allow
us to organize proofs in a way that highlights the computational parts and to treat
them as functional computation. This will lead us to propose partial automation
for proofs in Abella. The second part of this thesis describe the design of a new
functional programming language whose semantic is a theory inside 𝒢-logic, the
reasoning logic of Abella. 𝒢-logic uses a specific quantifier: ∇ (“nabla”), a fresh
name quantifier, which allows for a natural treatment of proofs over structures
with bindings based on the natural handling of bindings of sequent calculus (using
eigenvariables). We leverage this feature to give first class citizenship to binders in
datastructures in our new language. To syntactically encode theses structures we use
λ-tree syntax where terms are encoded as simply typed λ-terms with equality modulo
αβη-conversion and bound variables never become free: instead their binding scope
is allowed to move.

Outline of the thesis

• Chapter 1 serves as a technical introduction to the rest of the document. We
present in it the various notions and tools that are required for a good under-
standing of that thesis, namely the simply typed λ-calculus (lambda-calculus)
and the sequent calculus for intuitionistic logic and Heyting arithmetic. Only
common material for both chapters 2 and 3 will be introduced in this part,
specific notions will be introduced at the beginning of their respective chapter.

• Chapter 2 proposes a novel approach to isolate computational parts of arith-
metic proofs over relations as functions that does not extend the underlying
logic but uses the two-phase construction of focused proofs to capture func-
tional computation entirely within some of these phases. We also sketch a
few proposals aiming at adding some automation to the Abella proof assistant
based on this approach of computation which fits entirely within the logical
setting.

11

• Chapter 3 presents the design and prototyping of MLTS, a new functional
programming language that uses the λ-tree syntax approach to encode bind-
ings that appear within data structures. In this setting, bindings can never
become free nor escape their scope: instead, binders in data structures are
permitted tomove into binders within programs. By adding additional sites
within programs that directly support this movement of bindings we hope to
have achieved an elegant and natural approach to the age-old issue of bindings.
The natural semantic for this language can be seen as a logical theory with
a rich logic leveraging 𝒢-logic, the powerful and well-studied system behind
the Abella proof assistant.

The present document is based on the following publications:

• Functional programmingwithλ-tree syntax byUlysseGérard, DaleMiller,
and Gabriel Scherer. Draft dated 14 May 2019. Submitted.

• Functional programmingwithλ-tree syntax: aprogress report byUlysse
Gérard andDaleMiller. LFMTP2018: Logical Frameworks andMeta-Languages:
Theory andPractice, Oxford, 7 July 2018. https://hal.inria.fr/hal-01806129.

• Computation-as-deduction inAbella: work inprogress byKaustuvChaud-
huri, Ulysse Gérard, and Dale Miller. LFMTP 2018: Logical Frameworks
and Meta-Languages: Theory and Practice, Oxford, 7 July 2018. https:
//hal.inria.fr/hal-01806154.

• Separating Functional Computation from Relations by Ulysse Gérard
andDaleMiller. CSL 2017, page 23:1-23:17. http://www.lix.polytechnique.
fr/Labo/Dale.Miller/papers/csl2017.pdf.

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mlts-draft-may-2019.pdf
https://hal.inria.fr/hal-01806129
https://hal.inria.fr/hal-01806154
https://hal.inria.fr/hal-01806154
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/csl2017.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/csl2017.pdf

12

Chapter 1

The ℋ proof system for
Heyting arithmetic

This chapter serves as an introduction to the common material necessary to the
reading and comprehension of the rest of this document. This includes the syntax of
terms and formulas we will use and the basic intuitionisticℋ calculus for Heyting
arithmetic which adopts the axioms of Peano arithmetic, but uses intuitionistic logic
as its rules of inference. This base system will be augmented with more advanced
features in chapters 2 and 3.
Therefore, in this thesis we only manipulate proof systems for intuitionistic logic,

that is, systems that do not include the law of excluded middle (which states that for
any propositionA, eitherA is true or its negation is) nor double negation elimination
(which states that if A is true then it is not the case that A is not true).
The term language we are going to use is the simply typed λ-calculus originally

conceived by Church. We will only give a short introduction to this system in the
first part of this chapter, and the interested reader may find much more details in
textbooks like [Bar84] and [Bar92].
This chapter is organized in three sections. Section 1 presents the simply typed

λ-calculus, Section 2 presents the syntax of terms and formulas of ℋ. Section 3
presents the sequent calculus rules for the purely logical fragment ofℋ and then
for the arithmetic fragment.

1 The typed λ-calculus

The lambda-calculus is a formal system first introduced by Alonzo Church that
allows one to reason about syntax and computation. It is widely used as a mean to
model programming languages but can also serve to work with formulas using first
order quantifiers inmathematical logic— it was in fact first designedwith this intent.
We do not aim to give a full course about λ-calculus here, but instead will present
some of its core constructs and syntax that are necessary to the understanding of
the rest of this work.

13

14 CHAPTER 1. THE ℋ PROOF SYSTEM FOR HEYTING ARITHMETIC

1.1 Syntax of terms
The λ-calculus can be seen as a very basic functional programming language whose
terms are described by the following grammar:

𝑢, 𝑣 ⩴ terms
∣ 𝑥, 𝑦, 𝑧 (typed) variables
∣ 𝑐 (typed) constants
∣ λ𝑥τ. 𝑡 abstraction
∣ 𝑢 𝑣 application

Such a grammar should be read inductively as follows: “A term is either a variable
or a constant or an abstraction of a variable over a term or an application of two
terms”. We indistinctly designate terms as “expressions”.
The abstraction λ𝑥τ. 𝑢 represents the binding of a variable 𝑥 of type τ over the

expression 𝑢, which is called the body of the abstraction. We say that 𝑥 is bound in
𝑢. One can see 𝑢 as a term with holes labelled by 𝑥 that may be filled later by some
other term. Using the programming language analogy, it can be understood as “the
function that given a 𝑥 of type τ returns 𝑢”. If 𝑢 is of type τ2, we say that the term
λ𝑥τ. 𝑢 is of type τ → τ2. We will generally omit the type annotation in abstractions,
but it can often easily be inferred from the context.
Because of the abstraction mechanism, variables can be either free or bound in a

term. Here is the precise definition of these notions:

Definition 1.1. Given a term 𝑢, the set of the free variables of 𝑢 is denoted
FV(𝑢) and defined by induction:

1. FV(𝑥) = {𝑥}, for 𝑥 a variable
2. FV(λ𝑥. 𝑢) = FV(𝑢) \ {𝑥}
3. FV(𝑢 𝑣) = FV(𝑢) ∪ FV(𝑣)

Dually, BD(𝑢), the set of bound variables of 𝑢, is defined as:

1. BD(𝑥) = ∅, for 𝑥 a variable
2. BD(λ𝑥. 𝑢) = BD(𝑢) ∪ {𝑥}
3. BD(𝑢 𝑣) = BD(𝑢) ∪ BD(𝑣)

For example, in (λ𝑥. 𝑥 𝑦), 𝑥 is a bound variable and 𝑦 a free variable. But in the
subterm 𝑥 𝑦 both 𝑥 and 𝑦 are free variables.

1.2 Typing using sequent calculus
Figure 1.1 presents the typing rules for our λ-terms in the form of a Gentzen’s
style sequent calculus [Gen35]. Sequent calculi are deductive systems composed
of inference rulesmanipulating sequents. The sequents represent the states of the
proof and are usually constituted of at least two zones separated by a metalogical
connective called turnstile (⊢). These zones can be either lists, sets, multisets
or singletons of terms and formulas. The inference rules, which describe steps
transforming the sequents —hence going from one state to another—, are of the
form:

<premise sequent(s)>
<conclusion sequent>

1. THE TYPED λ-CALCULUS 15

Var
Σ, 𝑥 ∶ τ ⊢ 𝑥 ∶ τ

𝑐 ∶ τ ∈ 𝒞 Cons
Σ ⊢ 𝑐 ∶ τ

Σ, 𝑥 ∶ τ1 ⊢ 𝑢 ∶ τ2 Lam
Σ ⊢ λ𝑥τ1. 𝑢 ∶ τ1 → τ2

Σ ⊢ 𝑢 ∶ τ1 → τ2 Σ ⊢ 𝑣 ∶ τ2 App
Σ ⊢ 𝑢 𝑣 ∶ τ2

Figure 1.1: The typing system for simply-typed λ-terms

In the proof-search setting, such rules should be read in a bottom-up fashion, that
is from their conclusion to their premises. We call a derivation a tree structure of
occurrences of inference rules: a derivation has one conclusion, its end sequent,
and possibly several premises. A derivation with no premises is called a proof.
The typing system of Fig. 1.1 makes use of sequents of the form Σ ⊢ 𝑢 ∶ τ, called

typing sequents which are formed of 3 zones: a set Σ of assignments of types to
variables on the left of the turnstile, a term on the right, and the type of this term
separated from it by a colon. An expression u is said to be a well-formed λ-term over
the set of constants 𝒞 when there is a context Σ such that the judgement Σ ⊢ 𝑢 ∶ τ is
derivable in that system. As we stated before, in the proof-search setting we usually
read such rules in a bottom-up fashion as we are looking for a proof of a given
sequent. For example, the rule “Lam” should be read “The term λ𝑥τ1. 𝑢 has type
τ1 → τ2 if 𝑢 has type τ2 knowing that 𝑥 is of type τ1”.

Example 1.2. The typing derivation for the term λ𝑥τ1→τ2. 𝑥 𝑐 where 𝑐 is a
constant of type τ1 is:

Var
{𝑥 ∶ τ1 → τ2} ⊢ 𝑥 ∶ τ1 → τ2

𝑐 ∶ τ1 ∈ 𝒞
Cons

{𝑥 ∶ τ1 → τ2} ⊢ 𝑐 ∶ τ1 App
{𝑥 ∶ τ1 → τ2} ⊢ 𝑥 𝑐 ∶ τ2 Lam

∅ ⊢ λ𝑥τ1→τ2. 𝑥 𝑐 ∶ (τ1 → τ2) → τ2

1.3 Computing with the λ-calculus
In this section we recall the definition of λ-conversion given in [MN12]. First of all
we say that 𝑢 is free for a variable 𝑥 in 𝑠 if the free occurrences of 𝑥 in 𝑠 are not in the
scope of any abstraction that binds free variables of 𝑢. For example the term 𝑓 𝑦 is
not free for 𝑢 in λ𝑦. (𝑔 𝑢 𝑦), and we cannot substitute 𝑢 by 𝑓 𝑦 in λ𝑦. (𝑔 𝑢 𝑦) without
capturing the free occurrence of 𝑦 in 𝑓 𝑦: λy. (𝑔 (𝑓 y) 𝑦).
We write 𝑡[𝑢/𝑥] to denote the term 𝑡 in which all free occurrences of 𝑥 have been

replaced by 𝑢. This operation is called substitution.

• We call α-rewriting the replacement of a subterm λ𝑥. 𝑢 by λ𝑦. 𝑢[𝑦/𝑥] when 𝑦
is free for 𝑥 in 𝑢 and 𝑦 is not free in 𝑢.

• α-conversion is the reflexive, symmetric and transitive closure of α-rewriting.
• We call β-contraction the replacement of a subterm (λ𝑥. 𝑢) 𝑣 by 𝑢[𝑣/𝑥]. β-
expansion is the converse operation.

• β-reduction is the reflexive and transitive closure of the union of α-conversion
and β-contraction. The symmetric and transitive closure of β-reduction is
called β-conversion.

16 CHAPTER 1. THE ℋ PROOF SYSTEM FOR HEYTING ARITHMETIC

• η-contraction is the replacement of a subterm λ𝑥. (𝑢 𝑥) by 𝑢, provided that 𝑥
is not free in 𝑢. The converse operation is called η-expansion.

• η-reduction is the reflexive and transitive closure of η-contraction and finally
η-conversion is the symmetric and transitive closure of η-reduction.

Example 1.3.

• The two terms λ𝑥. λ𝑦. 𝑓 (𝑔 𝑥) 𝑦 and λ𝑧. λ𝑡. 𝑓 (𝑔 𝑧) 𝑡 are related by
α-conversion.

• η-contraction of λ𝑥. (λ𝑦. 𝑓 (𝑔 𝑥) 𝑦) yields the term λ𝑥. 𝑓 (𝑔 𝑥).
• λ𝑥. λ𝑦. 𝑓 ((λ𝑢. λ𝑣. 𝑣) (𝑔 𝑦) (𝑔 𝑥)) 𝑦 β-contracts to λ𝑥. λ𝑦. 𝑓 ((λ𝑣. 𝑣) (𝑔 𝑥)) 𝑦

which β-contracts to λ𝑥. λ𝑦. 𝑓 (𝑔 𝑥) 𝑦.

The transitive closure of α, β and η conversions is called λ-conversion. These rules
define a computational behavior for the λ-calculus. A term of the form (λ𝑥. 𝑢) 𝑣 is
called a β-redex and in the programming language analogy represents the application
of a function to an argument. Such a term can be reduced by substituting 𝑥 by 𝑣 in 𝑢,
an operation denoted as: 𝑢[𝑣/𝑥]. This substitution yields the result of the function
application. A term with no β-redex is said to be in β-normal form.
The simple mechanism of λ-calculus can express many computational behaviors

using suited encodings. One of the most well known is Church’s encoding of natural
numbers. Natural numbers can be built using two things: the number zero (𝑧) and
the successor operation (𝑠) which adds 1 to a natural number. In this encoding the
number 3 is represented by λ𝑠. λ𝑧. 𝑠 (𝑠 (𝑠 (𝑧))).
One way to understand this representation is that the number 𝑛 is encoded by 𝑛

successive applications of the function 𝑠. The addition operation can thus be defined
as: λ𝑚. λ𝑛. λ𝑠. λ𝑧. 𝑚 𝑠 (𝑛 𝑠 𝑧).

Example 1.4. Successive β-reductions computing the addition of 1 and 2:

(λ𝑚. λ𝑛. λ𝑠. λ𝑧. 𝑚 𝑠 (𝑛 𝑠 𝑧)) (λ𝑠. λ𝑧. 𝑠 𝑧) (λ𝑠. λ𝑧. 𝑠 (𝑠 𝑧))
→×2

β λ𝑠. λ𝑧. (λ𝑠′. λ𝑧′. 𝑠′ 𝑧′) 𝑠 ((λ𝑠″. λ𝑧″. 𝑠″ (𝑠″ 𝑧″)) 𝑠 𝑧)

→×2
β λ𝑠. λ𝑧. (λ𝑠′. λ𝑧′. 𝑠′ 𝑧′) 𝑠 (𝑠 (𝑠 𝑧))

→×2
β λ𝑠. λ𝑧. 𝑠 (𝑠 (𝑠 𝑧))

(where →×𝑛
β denotes 𝑛 successive β-reductions)

Multiplication, division, exponentiation, boolean values and many more can be
defined using such encodings.

2 Terms and formulas for ℋ
Following Church’s simple theory of types [Chu40; And09], we will use simply typed
λ-terms to represent our terms and formulas. We call ο the type of formulas. Unlike
Church we do not use the single sort ι for terms which are not a formula. Instead
we consider any type in which ο does not appear to be a valid term type. We denote
such types by τ.
In more precise terms, the grammar of types and terms is the following:

3. THE ℋ SEQUENT CALCULUS 17

Definition 2.1.

Types α, β ⩴ ο | τ | α → β
Term types τ ⩴ τ ∈ 𝒯 | τ1 → τ2

Terms 𝑢, 𝑣 ⩴ 𝑥 | 𝑐τ ∈ 𝒞 | λ𝑥τ. 𝑢 | 𝑢 𝑣

where 𝒯 is a set of basic term types also called kinds and 𝒞 is a set of constants.

Propositional intuitionistic logic formulas are given by the logical connectives ∧,
∨, ⊃, ∀τ, ∃τ, the logical constants 𝑡 and 𝑓, and a set of atomic formulas 𝒜:

𝑡, 𝑓, 𝑎 ∈ 𝒜 ∶ ο
∧, ∨, ⊃ ∶ ο → ο → ο
∀τ, ∃τ ∶ (τ → ο) → ο

That is, the complete grammar of formulas is the following:

Definition 2.2.

A, B ⩴ 𝑡 | 𝑓 | 𝑎 ∈ 𝒜 | A ∧ B | A ∨ B
| A ⊃ B | ∀τ(λ𝑥τ. A) | ∃τ(λ𝑥τ. A)

This style of encoding quantifiers, also called λ-tree syntax [MP99] comes from
Church [Chu40] and should be familiar to the users of λProlog and Abella. This
syntax leverages the terms of the λ-calculus as a representation mechanism for
formulas, thus allowing a uniform treatment of bindings in terms and formulas.
For instance, in the formula ∃τ(λ𝑥τ. P(𝑥τ)) the λ-abstraction is used to describe the
usual scoping effect of the existential quantifier.
To ease the writing and reading of this document we will continue to use the

more lightweight concrete syntax ∃τ𝑥τ.𝑡 to denote such formulas in most cases. We
will also get rid of the subscripts indicating the types of terms when they can be
easily inferred from the context.
It is important to notice that in the arithmetic setting we will not make use of

the atomic formulas (𝒜) and their associated initial rule because all “atoms” will
be defined using the fixed point predicate. However having such undefined atomic
formulas is convenient for pedagogical purposes when describing the following
systemℋ and the proof-search and focusing mechanisms.

3 The ℋ sequent calculus
ℋ (the “h” stands for Heyting) is a sequent calculus proof system for arithmetic
where fixed points and term equality are logical connectives: that is, they are defined
via their left- and right-introduction rules. This work builds on earlier work by
McDowell & Miller [MM00] and Momigliano & Tiu [TM12]. It is important to
notice that we work with cut-free sequent calculi, that is, we are not interested in
the computational meaning provided by the cut-elimination procedure but by the
one carried by the search for a proof. The cut rule is still a part of ℋ, but we will
not make use of it. We will show this rule nonetheless in this introductory part, but

18 CHAPTER 1. THE ℋ PROOF SYSTEM FOR HEYTING ARITHMETIC

it won’t be reminded systematically in the following systems. Our presentation of
ℋmakes use of the sequent calculus formalism presented in Section 1.2 with one
more kind of sequent: proof sequents. The next definition provides a number of
notations that we are going to use.

Definition 3.1. Notations

- A, B, C denote formulas
- u, v denote terms in βη-long normal form
- τ denotes a term type
- Γ is a multiset of formulas called hypothesis
- Σ is a list of typed term variables, called the signature, which are consid-

ered bound over a sequent

We call βη-long normal form the variant of β-normal form that also takes into
account η-conversion. Typed λ-terms of this form have the following structure.

λ𝑥1 …λ𝑥𝑛. (ℎ 𝑡1 … 𝑡𝑝) for (𝑛, 𝑝 ≥ 0)

where ℎ is either a constant or a variable, the terms 𝑡𝑖 are also in βη-long normal
form and the body (ℎ 𝑡1 … 𝑡𝑝) has a type without arrows (a non-functional type).
Furthermore, we are going to assume that bindings only occur at the formula level

and not the term level, that is only in quantification and, later, fixpoints. Enforcing
this restriction allows us to stay in the realm of first-order unification and focus on
the core concepts of our work: the computational meaning of relations. (However
we could relax these restrictions as other papers have explored the full higher-order
situation like in [MM00].)

Definition 3.2. The ℋ calculus makes use of two kinds of sequents, both
composed of three zones:

proof sequents Σ ∶ Γ ⊢ A
typing sequents Σ ⊢ 𝑢 ∶ τ

In Fig. 1.2, when we write 𝑦 ∶ τ, Σ we imply that 𝑦 does not already appear as one
of the variables in Σ.

3.1 The logical core of ℋ
Fig. 1.2 shows the rules for a fragment ofℋ, including connectives ⊃, ∧ and ∨ and
the identity rules. This fragment corresponds to Gentzen’s LJ sequent calculus.

Identity While it will always remain a part of our systems, the usual axiom rule
that deals with “undefined” atoms will not be used when we manipulate arithmetic
terms because atoms will be defined as fixed-points. Moreover, as stated earlier, this
work will focus on cut-free formulas and thus we will not make use of the cut rule,
but it is still a part of the complete system.

Rules for ⊃, ∧ and ∨ are the standard rules for intuitionistic propositional logic.
As an example of how these rules should be understood in the proof search setting,
the rule ⊃𝑟 is to be read: “Knowing Γ, A implies B is true if, knowing Γ and A, B is

3. THE ℋ SEQUENT CALCULUS 19

Identity rules

ax
Γ,A ⊢ A

Γ ⊢ A Γ,A ⊢ B
cut

Γ ⊢ B

Propositional intuitionistic logic rules

𝑓
Γ, 𝑓 ⊢ A

𝑡
Γ ⊢ 𝑡

Γ, A ⊢ C Γ, B ⊢ C
∨𝑙Γ,A ∨ B ⊢ C

Γ ⊢ B𝑖 ∨𝑟,𝑖∈{1,2}Γ ⊢ B1 ∨ B2
Γ, B1, B2 ⊢ C

∧𝑙Γ, B1 ∧ B2 ⊢ C
Γ ⊢ A Γ ⊢ B ∧𝑟Γ ⊢ A ∧ B

Γ,A ⊢ B
⊃𝑟Γ ⊢ A ⊃ B

Γ ⊢ A Γ, B ⊢ C
⊃𝑙Γ,A ⊃ B ⊢ C

Figure 1.2: ℋ rules for ⊃, ∧ and ∨

true”. Notice that in this fragment of ℋ the Σ environment remains unused and
that is why it is not shown in these rules. Its usefulness will appear later with the
addition of rules for quantification and equality.

Example 3.3. The formula P ⊃ Q ⊃ (¬Q ⊃ ¬P), where ¬P denotes P ⊃ 𝑓 has
the following proof derivation (that should be read bottom-up) in ℋ.

ax
Q ⊃ 𝑓, P ⊢ P

ax
P,Q ⊢ Q

f
P,Q, 𝑓 ⊢ 𝑓

⊃𝑙Q ⊃ 𝑓, P,Q ⊢ 𝑓
⊃𝑙P ⊃ Q,Q ⊃ 𝑓, P ⊢ 𝑓

⊃𝑟P ⊃ Q,Q ⊃ 𝑓 ⊢ P ⊃ 𝑓
⊃𝑟P ⊃ Q ⊢ (Q ⊃ 𝑓) ⊃ (P ⊃ 𝑓)

⊃𝑟∅ ⊢ P ⊃ Q ⊃ ((Q ⊃ 𝑓) ⊃ (P ⊃ 𝑓))

Quantification In order to support first-order quantification we extend sequents
to permit the proof-level binding mechanism of eigenvariables [Gen35]. To that end,
we prefix all sequents with Σ ∶, where Σ is a list of variables that are considered
bound over the sequent. When we write a prefix as 𝑦 ∶ τ, Σ, we imply that 𝑦 does not
already appear as one of the variables in Σ. We use the expression B[𝑡/𝑥] to denote
the βη-long normal form of (λ𝑥. B) 𝑡.
The inference rules for quantification that should be added to the system shown

in Fig. 1.2 are as follows.

𝑦 ∶ τ, Σ ∶ Γ, B[𝑦/𝑥] ⊢ C
∃𝑙Σ ∶ Γ, ∃𝑥τ. B ⊢ C

Σ ⊢ 𝑡 ∶ τ Σ ∶ Γ ⊢ B[𝑡/𝑥]
∃𝑟Σ ∶ Γ ⊢ ∃𝑥τ. B

Σ ⊢ 𝑡 ∶ τ Σ ∶ Γ, B[𝑡/𝑥] ⊢ C
∀𝑙Σ ∶ Γ, ∀𝑥τ. B ⊢ C

𝑦 ∶ τ, Σ ∶ Γ ⊢ B[𝑦/𝑥]
∀𝑟Σ ∶ Γ ⊢ ∀𝑥τ. B

20 CHAPTER 1. THE ℋ PROOF SYSTEM FOR HEYTING ARITHMETIC

The ∃𝑟 and ∀𝑙 rulesmake use of a typing assumption (highlighted in green): Σ ⊢ 𝑡 ∶ τ
denotes the fact that 𝑡 is a term in βη-long form of type τ. The associated proof system
is the standard typing system for simply-typed λ-terms shown in Fig. 1.1.

3.2 The arithmetic part of ℋ
Finally, we extend the previously presented system for intuitionistic logic with
equality and fixed-points treated as logical connectives.

Term equality The inference rules for term equality are adapted from early papers
by Schroeder-Heister [Sch93] and Girard [Gir92] (see also [MM00]).

=𝑟Σ ∶ Γ ⊢ 𝑡 = 𝑡
=𝑙, 𝑠 and 𝑡 not unifiableΣ ∶ Γ, 𝑠 = 𝑡 ⊢ B

Σθ ∶ Γθ ⊢ Bθ =𝑙, θ the mgu of 𝑠 and 𝑡Σ ∶ Γ, 𝑠 = 𝑡 ⊢ B

Wheremgu stands for “most general unifier”.

Example 3.4. Proof of the transitivity of equality:
=𝑟𝑦 ∶ τ ∶ ∅ ⊢ 𝑦 = 𝑦

=𝑙 with θ = {𝑧 ↦ 𝑦}
𝑧 ∶ τ, 𝑦 ∶ τ ∶ 𝑦 = 𝑧 ⊢ 𝑦 = 𝑧

=𝑙 with θ = {𝑥 ↦ 𝑦}
𝑧 ∶ τ, 𝑦 ∶ τ, 𝑥 ∶ τ ∶ 𝑥 = 𝑦, 𝑦 = 𝑧 ⊢ 𝑥 = 𝑧

∧𝑙𝑧 ∶ τ, 𝑦 ∶ τ, 𝑥 ∶ τ ∶ 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ⊢ 𝑥 = 𝑧
⊃𝑟𝑧 ∶ τ, 𝑦 ∶ τ, 𝑥 ∶ τ ∶ ∅ ⊢ (𝑥 = 𝑦 ∧ 𝑦 = 𝑧) ⊃ (𝑥 = 𝑧)
∀𝑟𝑦 ∶ τ, 𝑥 ∶ τ ∶ ∅ ⊢ ∀𝑧τ. (𝑥 = 𝑦 ∧ 𝑦 = 𝑧) ⊃ (𝑥 = 𝑧)
∀𝑟𝑥 ∶ τ ∶ ∅ ⊢ ∀𝑦τ. ∀𝑧τ. (𝑥 = 𝑦 ∧ 𝑦 = 𝑧) ⊃ (𝑥 = 𝑧)
∀𝑟∅ ∶ ∅ ⊢ ∀𝑥τ. ∀𝑦τ. ∀𝑧τ. (𝑥 = 𝑦 ∧ 𝑦 = 𝑧) ⊃ (𝑥 = 𝑧)

Notice that while provability in the propositional fragment is known to be de-
cidable [Gen35], it has been shown in [VM10] that adding these rules for term
equality and quantification results in an undecidable logic even if we restrict to
just first-order terms and quantifiers and even without any predicate symbols (and,
hence, without atomic formulas).

Fixed-points There have been many treatments of fixed points and induction
within proof systems such as those involving Peano’s axioms and induction schemes
or those using a specially designed proof system such as Scott induction [GMW79].
Here, we restrict our attention to the rather minimalist setting where the fixed point
operator μ is treated as a logical connective in the sense that it has left- and right-
introduction rules: these rules simply unfold μ-expressions. While the resulting
fixed point operator is self-dual and rather weak, it can still play a useful role in
proving some weak theorems of arithmetic [Gir92; Sch93; MM00] and it can provide
an interesting proof theory for aspects of model checking [Bae08; HM17; TNM05].
It is possible to describe a more powerful proof system for fixed points that uses
induction and co-induction to describe the introduction rules for the least and
greatest fixed points [MM00; TM12].

3. THE ℋ SEQUENT CALCULUS 21

The logical constant μ is parameterized by a list of typed constants as follows:

μ𝑛τ1,…,τ𝑛 ∶ ((τ1 → … → τ𝑛 → ο) → τ1 → … → τ𝑛 → ο) → τ1 → … → τ𝑛 → ο

where 𝑛 ≥ 0 and τ1, … , τ𝑛 are simple types and ο is the type of formulas.
Expressions of the form μ𝑛τ1,…,τ𝑛B𝑡1 … 𝑡𝑛 will be abbreviated as simply μB ̄𝑡 (where ̄𝑡

denotes the list of terms 𝑡1 … 𝑡𝑛). We shall also restrict fixed point expressions to use
onlymonotonic higher-order abstraction: that is, in the expression μ𝑛τ1,…,τ𝑛B𝑡1 … 𝑡𝑛
the expression B is equivalent (via βη-conversion) to λPτ1→⋯→τ𝑛→𝑜 λ𝑥1τ1 …λ𝑥

𝑛
τ𝑛 B

′

where all occurrences of the variable P in B′ occur to the left of an implication an
even number of times.
The unfolding of the fixed point expressionμB ̄𝑡 yieldsB(μB) ̄𝑡 and the introduction

rules for μ establish the logical equivalence of these two expressions. The inference
rules for the μ connective are:

Σ ∶ Γ, B(μB) ̄𝑡 ⊢ C
μ𝑙Σ ∶ Γ, μB ̄𝑡 ⊢ C

Σ ∶ Γ ⊢ B(μB) ̄𝑡
μ𝑟Σ ∶ Γ ⊢ μB ̄𝑡

Example 3.5. Assume that we have a primitive type 𝑖 and that there are two
typed constants 𝑧 ∶ 𝑖 and 𝑠 ∶ 𝑖 → 𝑖. We shall abbreviate the terms 𝑧, (𝑠 𝑧),
(𝑠 (𝑠 𝑧)), (𝑠 (𝑠 (𝑠 𝑧))), etc by 0, 1, 2, 3, etc. The following two named fixed
point expressions define the natural number predicate and the ternary relation
of addition.

nat =μλNλ𝑛(𝑛 = 0 ∨ ∃𝑛′(𝑛 = 𝑠 𝑛′ ∧ N 𝑛′))
plus =μλPλ𝑛λ𝑚λ𝑝((𝑛 = 0 ∧ 𝑚 = 𝑝) ∨ ∃𝑛′∃𝑝′(𝑛 = 𝑠 𝑛′ ∧ 𝑝 = 𝑠 𝑝′ ∧ P 𝑛′ 𝑚 𝑝′))

The following theorem states that the plus relation describes a (total) functional
dependency between its first two arguments and its third.

∀𝑚, 𝑛(nat 𝑚 ⊃ ∃𝑘(plus 𝑚 𝑛 𝑘))∧∀𝑚, 𝑛, 𝑝, 𝑞(𝑝𝑙𝑢𝑠 𝑚 𝑛 𝑝 ⊃ 𝑝𝑙𝑢𝑠 𝑚 𝑛 𝑞 ⊃ 𝑝 = 𝑞)

Fig. 1.3 shows the completeℋ proof system. With only unfolding on fixpoints
and no induction mechanism very few proofs of properties about all numbers are
achievable usingℋ. It is a simplification we assume for the design we will present
in Chapter 2. Indeed induction is important to deduction but plays an irrelevant
role in computation which is our main subject of study.

22 CHAPTER 1. THE ℋ PROOF SYSTEM FOR HEYTING ARITHMETIC

Identity rule
ax

Σ ∶ Γ,A ⊢ A
Propositional intuitionistic logic rules

𝑓
Σ ∶ Γ, 𝑓 ⊢ A

𝑡
Σ ∶ Γ ⊢ 𝑡

Σ ∶ Γ,A ⊢ C Σ ∶ Γ, B ⊢ C
∨𝑙Σ ∶ Γ,A ∨ B ⊢ C

Σ ∶ Γ ⊢ B𝑖 ∨𝑟,𝑖∈{1,2}Σ ∶ Γ ⊢ B1 ∨ B2
Σ ∶ Γ, B1, B2 ⊢ C

∧𝑙Σ ∶ Γ, B1 ∧ B2 ⊢ C
Σ ∶ Γ ⊢ A Σ ∶ Γ ⊢ B ∧𝑟Σ ∶ Γ ⊢ A ∧ B

Σ ∶ Γ,A ⊢ B
⊃𝑟Σ ∶ Γ ⊢ A ⊃ B

Σ ∶ Γ ⊢ A Σ ∶ Γ, B ⊢ C
⊃𝑙Σ ∶ Γ,A ⊃ B ⊢ C

Typed first-order quantification rules

𝑦 ∶ τ, Σ ∶ Γ, B[𝑦/𝑥] ⊢ C
∃𝑙Σ ∶ Γ, ∃𝑥τ. B ⊢ C

Σ ⊢ 𝑡 ∶ τ Σ ∶ Γ ⊢ B[𝑡/𝑥]
∃𝑟Σ ∶ Γ ⊢ ∃𝑥τ. B

Σ ⊢ 𝑡 ∶ τ Σ ∶ Γ, B[𝑡/𝑥] ⊢ C
∀𝑙Σ ∶ Γ, ∀𝑥τ. B ⊢ C

𝑦 ∶ τ, Σ ∶ Γ ⊢ B[𝑦/𝑥]
∀𝑟Σ ∶ Γ ⊢ ∀𝑥τ. B

Equality rules

=𝑙, 𝑠 and 𝑡 not unifiable
Σ ∶ Γ, 𝑠 = 𝑡 ⊢ B

=𝑟Σ ∶ Γ ⊢ 𝑡 = 𝑡

Σθ ∶ Γθ ⊢ Bθ =𝑙, θ the mgu of 𝑠 and 𝑡
Σ ∶ Γ, 𝑠 = 𝑡 ⊢ B

fixed-point rules

Σ ∶ Γ, B(μB) ̄𝑡 ⊢ C
μ𝑙Σ ∶ Γ, μB ̄𝑡 ⊢ C

Σ ∶ Γ ⊢ B(μB) ̄𝑡
μ𝑟Σ ∶ Γ ⊢ μB ̄𝑡

Figure 1.3: The proof system ℋ for intuitionistic logic

Chapter 2

Separating functional
computation from relations

The development of the logical foundations of arithmetic generally starts with the
first-order logic of relations to which constructors for zero and successor have been
added. Various axioms (such as Peano’s axioms) are then added to that framework
in order to define the natural numbers and various relations among them. Of course,
it is often natural to think of some computations, such as say, the addition and
multiplication of natural numbers, as being functions instead of relations.
A common way to introduce functions into the relational setting is to enhance the

equality theory. For example, Troelstra in [Tro73, Section I.3] presents an intuition-
istic theory of arithmetic in which all primitive recursive functions are treated as
black boxes and every one of their instances, for example 23 + 756 = 779, is simply
added as an equation. A modern and more structured version of this approach is
that of the λΠ-calculusmodulo framework proposed by Cousineau &Dowek [CD07]:
in that framework, the dependently typed λ-calculus (a presentation of intuitionistic
predicate logic) is extended with a rich set of terms and rewriting rules on them.
When rewriting is confluent, it can be given a functional programming implemen-
tation: the Dedukti proof checker [Ass+16] is based on this hybrid approach to
treating functions in a relational setting.
A predicate can, of course, encode a function. For example, assume that we have

a (𝑛 + 1)-ary (𝑛 ≥ 0) predicate R for which we can prove that the first 𝑛 arguments
uniquely determine the value of its last argument. That is, assume that the following
formula is provable (here, ̄𝑥 denotes the list of variables 𝑥1, … , 𝑥𝑛):

∀ ̄𝑥([∃𝑦.R(̄𝑥, 𝑦)] ∧ ∀𝑦∀𝑧[R(̄𝑥, 𝑦) ⊃ R(̄𝑥, 𝑧) ⊃ 𝑦 = 𝑧]).

In this situation, an 𝑛-ary function 𝑓R exists such that 𝑓R(̄𝑥) = 𝑦 if and only if R(̄𝑥, 𝑦).
In order to formally describe the function 𝑓R, Hilbert [HB39] and Church [Chu40]
evoked choice operators such as ϵ and ι which (along with appropriate axioms) are
able to take a singleton set and return the unique element in that set. For example,
in Church’s Simple Theory of Types [Chu40], a definition of 𝑓R is provided by the
expression λ𝑥1 …λ𝑥𝑛ι(λ𝑦.R(𝑥1, … , 𝑥𝑛, 𝑦)).
In this chapter, we present a different approach to separating functional com-

putations from more general reasoning with relations. We shall not extend the
equational theory beyond the minimal equality on terms and we shall not use choice
principles.

23

24 CHAPTER 2. FROM RELATIONS TO FUNCTIONS

Although this approach to separating functions from relations is novel, it does
not need any new theoretical results: we simply make direct use of several recent
results in proof theory.

Chapter outline

1. We introduce focused proof systems as developed by Andreoli, Baelde, and
Liang&Miller [And92; LM09; Bae12]. Such inference systems structure proofs
into two phases: the negative phase organizes don’t-care nondeterminismwhile
the positive phase organizes don’t-know nondeterminism. This introduction
to focusing will be based on the progressive transformation ofℋ into ℱ, its
focused counterpart.

2. Having our focused system, we notice that the construction of a negative phase
(reading it as a mapping from its conclusion to its premises) determines a
function and the construction of the positive phase determines a more general
nondeterministic relation.

3. Since ∀𝑥[P(𝑥) ⊃ Q(𝑥)] ≡ ∃𝑥[P(𝑥) ∧ Q(𝑥)] whenever predicate P denotes a
singleton set, the resulting ambiguity of polaritymakes it possible to position
such singleton predicates always into the negative phase. As mentioned above,
a suitable treatment of singleton sets allows for a direct treatment of functions.

4. The resulting proof system provides a means to take the specification of a
relation and use it directly to compute a function (something that is not
available directly when applying choice operators).

These various steps lead to the systematic construction of a single, expressive proof
system in which functional computation is abstracted away from quantificational
logic. Finally we propose in Section 4 two additions to the Abella proof assistant
that could automate some of the computations happening in proofs.

1 An introduction to focusing
Gentzen’s style sequent calculus has encountered a lot of success in giving a proof
theory to classical, intuitionistic and linear logics. However its main feature, tiny
low-level building blocks, is also a major drawback for proof generation. Simple
algorithms based on it give rise to an unbearable amount of non-determinism.
Moreover, this chaotic behavior allows for numerous proofs of the same formula
implying a lack of canonicity: multiple proofs exist for the same formula, and these
proofs often seem essentially the same: a lot of “administrative” work can be done
in many different orders thus leading to proofs of which macro structure is the same
but where internal differences appear.
Focusing techniques appeared as a means to guide the proving process and to

reduce mayhem in the application of inference rules in LJ, a sequent calculus for
intuitionistic logic and LK, its classical counterpart. One of these early techniques,
uniform proofs [Mil+91], consists in an alternation of two phases: goal-directed
search and backchaining. It was developed for the purpose of enriching logic pro-
gramming languages. The result of this operation is the λProlog language [MN12]
which we will use as a prototyping tool in Chapter 3.
Then Andreoli extended the same two-phases technique to linear logic giving

birth to focusing [And92]. Later, several systems appeared with different flavors of

1. AN INTRODUCTION TO FOCUSING 25

focusing such as Herbelin’s LJT [Her95] and Dyckhoff & Lengrand’s LJQ [DL06]
and the LJF system elaborated by Liang and Miller [LM07].
In this section we will illustrate the focusing discipline on a very simple proof

system with the implication as sole connective. We call this system ℱ⊃ and we will
take it as a basis to build the ℱ proof system for arithmetic, a focused version ofℋ.

1.1 The ℱ⊃ calculus
The main principle of focusing is to classify inference rules in two groups, invertible
ones and non-invertible ones. Then it is possible to organize proofs in an alternation
of two phases: the asynchronous phase during which are applied invertible rules
only and the synchronous phase when non-invertible rules are applied.

Definition 1.1. We call invertible the rules whose conclusion and premises are
equiprovable.

Two invertible rules can always be permuted in the tree of inferences. Thus the
application order of a series of invertible rules has no impact on the derivability of a
formula and such rule applications are guaranteed not to affect the provability of the
goal formula. In the two-phases process these sequences of invertible rules, eagerly
applied, constitute the asynchronous phase. In Section 2 and Section 3 we will
show how invertible phases can provide for a natural treatment of computational
behavior. In contrast, the synchronous phases, where non-invertible rules are used,
require choices to be made in order to progress in the proof. One example of such a
choice is the necessity to exhibit a witness for an existentially quantified formula.
When a synchronous phase is entered, the proof is focused on a particular formula
which is then used to indicate followup synchronous rules, maintaining focus as
long as possible. This drastically reduces the choice points in the proof, since after a
focus has been decided the choices are constrained to those relevant to that chosen
formula.
Connectives whose right introduction rules are invertible will be called negative

or asynchronous whereas the others will be called positive or synchronous. We will
use the following set of notations in all our focused systems:

Definition 1.2. Notations

- A, B, C denote formulas
- N𝑎 and P𝑎 respectively range over negatively polarized atoms and positively

polarized atoms
- E denotes either a positive formula or a negative atom
- C denotes either a negative formula or a positive atom
- t, u, v denote terms in βη-long normal form
- τ denotes a term type
- Γ is a multiset of formula
- Θ is a list of formulas
- Σ is a list of typed term variables, called the signature, which are consid-

ered bound over a sequent. To lighten the sequents the signature will be
omitted when not necessary.

- Δ1 and Δ2 are two multisets of formulas such that Δ1 ∪ Δ2 contains one
and unique formula.

- We use dots (⋅) to materialize empty zones.

26 CHAPTER 2. FROM RELATIONS TO FUNCTIONS

Structural rules

Γ,N ⇓ N ⊢ ⋅ ⇓ E
D𝑙Γ,N ⇑ ⋅ ⊢ ⋅ ⇑ E

C, Γ ⇑ Θ ⊢ Δ1 ⇑ Δ2 S𝑙Γ ⇑ C,Θ ⊢ Δ1 ⇑ Δ2

Γ ⇑ P ⊢ ⋅ ⇑ E
R𝑙Γ ⇓ P ⊢ ⋅ ⇓ E

Γ ⇓ ⋅ ⊢ P ⇓ ⋅
D𝑟Γ ⇑ ⋅ ⊢ ⋅ ⇑ P

Γ ⇑ ⋅ ⊢ ⋅ ⇑ E
S𝑟Γ ⇑ ⋅ ⊢ E ⇑ ⋅

Γ ⇑ ⋅ ⊢ N ⇑ ⋅
R𝑟Γ ⇓ ⋅ ⊢ N ⇓ ⋅

Negative phase introduction rules

Γ ⇑ A ⊢ B ⇑ ⋅
⊃𝑟Γ ⇑ ⋅ ⊢ A ⊃ B ⇑ ⋅

Positive phase introduction rules

Γ ⇓ ⋅ ⊢ A ⇓ ⋅ Γ ⇓ B ⊢ ⋅ ⇓ E
⊃𝑙Γ ⇓ A ⊃ B ⊢ ⋅ ⇓ E

I𝑙Γ ⇓ N𝑎 ⊢ ⋅ ⇓ N𝑎
I𝑟Γ, P𝑎 ⇓ ⋅ ⊢ P𝑎 ⇓ ⋅

Figure 2.1: The ℱ⊃ proof system

Note that atoms can be assigned any bias (positive or negative) without modifying
the provability of the formula. But formulas’ polarity depends on the invertibility of
the right introduction rule of their topmost connective.
The formulas (denoted A, B…), positive formulas (P,Q…) and negative formulas

(N,M…) of ℱ⊃ are:

• A, B ⩴ P | N

• P,Q ⩴ P𝑎
• N,M ⩴ N𝑎 | A ⊃ B

The implementation of the focusing mechanism requires the use of a set of six
“structural” rules that mediate between phases. By restricting ourselves to the
implicative fragment of intuitionistic we will be able to focus efficiently on these
new features.
We momentarily exit the “all predicates (such as nat, plus, and times) be defined”

setting, and again consider the usual approach to propositional logic where formulas
can contain “undefined” atoms. The provability of a formula is not changed by the
choice of polarities attributed to its atoms. That is, erasing the polarities of atoms
and connective of a provable formula in LJF always leads to a provable formula
in LJ.

Definition 1.3. The ℱ⊃ calculus makes use of three kinds of sequents:

unfocused sequents Σ ∶ Γ ⇑ Θ ⊢ Δ1 ⇑ Δ2
focused sequents Σ ∶ Γ ⇓ Θ ⊢ Δ1 ⇓ Δ2

typing sequents Σ ⊢ 𝑡 ∶ τ

1. AN INTRODUCTION TO FOCUSING 27

Since we are considering only single-focused proof systems (as opposed tomultifo-
cused proof systems [CMS08]), we require that sequents of the form Σ ∶ Γ ⇓ Θ ⊢
Δ1⇓Δ2 have the property that the union of Δ1 andΘ is always a singleton. Moreover,
because we are working with intuitionistic logic, the union of Δ1 and Δ1 is always a
singleton.
A derivation that contains only negative (unfocused) sequents is a negative phase:

such a phase contains introduction rules for negative connectives, and the storage
rules (S𝑙 and S𝑟). A derivation that contains only positive (focused) sequents is a
positive phase: such a phase contains introduction rules for positive connectives.
An unfocused sequent of the form Σ ∶ Γ ⇑ ⋅ ⊢ ⋅ ⇑ E is also called a border sequent.

A bipole is a derivation whose conclusion and premises are all border sequents: also,
when reading the inference rules from the bottom to the top, the first inference
rule is a decide rule (either D𝑙 or D𝑟); the next rules are positive introduction rules;
then there is a release rule (either R𝑙 or R𝑟); followed by negative introduction rules
and storage rules (either S𝑙 or S𝑟). In other words, a bipole is the joining of a single
positive phase and possibly several negative phases.
Fig. 2.1 shows the ℱ⊃ proof-system. It’s rules are divided in three groups:

• Asynchronous rules used during the negative phases;

• Synchronous rules used during the focusing phases;

• Structural rules whichmediate between the phases: decide rules start focusing
and release rules stop it.

In the asynchronous phase we chose to consume the list Θ in the left-most order
until it is empty and then Δ1 (this choice does not impact the provability of the
formula). In this system the phases are maximal, that is to say it is not possible to
focus on the left if the right formula is not positive (or a negative atom) and the
foci can’t be released until it turns positive. Therefore Γ will always contain only
negative formulas or positive atoms.

1.2 Polarity and proof search

One of the noteworthy features of focusing based on polarity is that it is possible to
change the proof search strategy with different choices of atom’s polarities. We will
illustrate this with the standard forward/backward-chaining example.
Let us consider the following start sequent:

Γ ⇑ ⋅ ⊢ ⋅ ⇑ 𝑐 where Γ = {𝑎, 𝑎 ⊃ 𝑏, 𝑏 ⊃ 𝑐}

Forward chaining On the one hand, choosing positive polarities for both 𝑎, 𝑏 and
𝑐 forces to adopt the forward chaining style (where 𝑎 ⊃ 𝑏 is processed before 𝑏 ⊃ 𝑐).
Indeed starting by focusing over 𝑏 ⊃ 𝑐 and then applying ⊃𝑙 would require the use
of the rule I𝑙 with atom 𝑐 which would fail because 𝑐 is positive. This leads to the
proof derivation shown in Fig. 2.2. Note that, given the sequent Γ ⇓ ⋅ ⊢ 𝑎 ⇓ ⋅, it is
not allowed to use a release on the right rule (in order to store, decide on the left
and finish with initial on the left) because 𝑎 is positive.

28 CHAPTER 2. FROM RELATIONS TO FUNCTIONS

I𝑟𝑎 ∈ Γ ⇓ ⋅ ⊢ 𝑎 ⇓ ⋅

I𝑟Γ, 𝑏 ⇓ ⋅ ⊢ 𝑏 ⇓ ⋅

I𝑟Γ, 𝑏, 𝑐 ⇓ ⋅ ⊢ 𝑐 ⇓ ⋅
D𝑟Γ, 𝑏, 𝑐 ⇑ ⋅ ⊢ ⋅ ⇑ 𝑐
R𝑙 + S𝑙Γ, 𝑏 ⇓ 𝑐 ⊢ ⋅ ⇓ 𝑐
⊃𝑙Γ, 𝑏 ⇓ 𝑏 ⊃ 𝑐 ⊢ ⋅ ⇓ 𝑐

D𝑙Γ, 𝑏 ⇑ ⋅ ⊢ ⋅ ⇑ 𝑐
R𝑙 + S𝑙Γ ⇓ 𝑏 ⊢ ⋅ ⇓ 𝑐
⊃𝑙Γ ⇓ 𝑎 ⊃ 𝑏 ⊢ ⋅ ⇓ 𝑐

D𝑙Γ ⇑ ⋅ ⊢ ⋅ ⇑ 𝑐

Figure 2.2: Forward chaining proof

Backward chaining On the other hand, and for a similar reason to the previous
case, with negative atoms the proof becomes:

I𝑙Γ ⇓ 𝑎 ⊢ ⋅ ⇓ 𝑎
D𝑙Γ ⇑ ⋅ ⊢ ⋅ ⇑ 𝑎
R𝑟 + S𝑟Γ ⇓ ⋅ ⊢ 𝑎 ⇓ ⋅

I𝑙Γ ⇓ 𝑏 ⊢ ⋅ ⇓ 𝑏
⊃𝑙Γ ⇓ 𝑎 ⊃ 𝑏 ⊢ ⋅ ⇓ 𝑏

D𝑙Γ ⇑ ⋅ ⊢ ⋅ ⇑ 𝑏
R𝑟 + S𝑟Γ ⇓ ⋅ ⊢ 𝑏 ⇓ ⋅

I𝑙Γ ⇓ 𝑐 ⊢ ⋅ ⇓ 𝑐
⊃𝑙Γ ⇓ 𝑏 ⊃ 𝑐 ⊢ ⋅ ⇓ 𝑐

D𝑙Γ ⇑ ⋅ ⊢ ⋅ ⇑ 𝑐

In fact these two strategies are the ones implemented in the focused sequent calculi
LJQ [DL06] (Dyckhoff & Lengrand) and LJT (Herbelin [Her95]) which turned out
to be fragments of LJF1. However, in the scope of this work, this is mostly a matter
of folklore. Our main application to arithmetic will not show this kind of proof
behavior because of the systematic employ of fixed-points definitions instead of
atomic formulas. We presented it for pedagogical purposes, as it can be helpful to
give a working understanding of how focusing works.

2 The ℱ calculus for Heyting arithmetic
In this section we give a focused version of theℋ system. To do that we start by
discussing the polarities of the connectives we used inℋ.

2.1 Polarities of connectives
Propositional intuitionistic logic As we have seen in Chapter 1 propositional
intuitionistic logic formulas are constructed using the logical connectives ∧, ∨, and
⊃, the logical constants 𝑡 and 𝑓, and atomic formulas. The focused system in Fig. 2.3

1. It is interesting to note that the λ-calculus associated with these systems (seeing these as
typing systems) will respectively adopt the call-by-name and call-by-value reduction strategies.

2. THE ℱ CALCULUS FOR HEYTING ARITHMETIC 29

Structural rules

Γ,N ⇓ N ⊢ ⋅ ⇓ E
D𝑙Γ,N ⇑ ⋅ ⊢ ⋅ ⇑ E

C, Γ ⇑ Θ ⊢ Δ1 ⇑ Δ2 S𝑙Γ ⇑ C,Θ ⊢ Δ1 ⇑ Δ2

Γ ⇑ P ⊢ ⋅ ⇑ E
R𝑙Γ ⇓ P ⊢ ⋅ ⇓ E

Γ ⇓ ⋅ ⊢ P ⇓ ⋅
D𝑟Γ ⇑ ⋅ ⊢ ⋅ ⇑ P

Γ ⇑ ⋅ ⊢ ⋅ ⇑ E
S𝑟Γ ⇑ ⋅ ⊢ E ⇑ ⋅

Γ ⇑ ⋅ ⊢ N ⇑ ⋅
R𝑟Γ ⇓ ⋅ ⊢ N ⇓ ⋅

Negative phase introduction rules

Γ ⇑ Θ ⊢ Δ1 ⇑ Δ2 𝑡+
Γ ⇑ 𝑡+, Θ ⊢ Δ1 ⇑ Δ2

𝑡−
Γ ⇑ ⋅ ⊢ 𝑡− ⇑ ⋅

𝑓+
Γ ⇑ 𝑓+, Θ ⊢ Δ1 ⇑ Δ2

Γ ⇑ A,Θ ⊢ Δ1 ⇑ Δ2 Γ ⇑ B,Θ ⊢ Δ1 ⇑ Δ2 ∨𝑙Γ ⇑ A ∨ B,Θ ⊢ Δ1 ⇑ Δ2

Γ ⇑ A ⊢ B ⇑ ⋅
⊃𝑟Γ ⇑ ⋅ ⊢ A ⊃ B ⇑ ⋅

Γ ⇑ A, B,Θ ⊢ Δ1 ⇑ Δ2 ∧+𝑙Γ ⇑ A ∧+ B,Θ ⊢ Δ1 ⇑ Δ2

Γ ⇑ ⋅ ⊢ A ⇑ ⋅ Γ ⇑ ⋅ ⊢ B ⇑ ⋅
∧−𝑟Γ ⇑ ⋅ ⊢ A ∧− B ⇑ ⋅

Positive phase introduction rules

Γ ⇓ B𝑖 ⊢ ⋅ ⇓ E
∧−𝑙,𝑖∈{1,2}Γ ⇓ B1 ∧− B2 ⊢ ⋅ ⇓ E

𝑡+
Γ ⇓ ⋅ ⊢ 𝑡+ ⇓ ⋅

Γ ⇓ ⋅ ⊢ B𝑖 ⇓ ⋅
∨𝑟,𝑖∈{1,2}Γ ⇓ ⋅ ⊢ B1 ∨ B2 ⇓ ⋅

Γ ⇓ ⋅ ⊢ B1 ⇓ ⋅ Γ ⇓ ⋅ ⊢ B2 ⇓ ⋅
∧+𝑟

Γ ⇓ ⋅ ⊢ B1 ∧+ B2 ⇓ ⋅
Γ ⇓ ⋅ ⊢ A ⇓ ⋅ Γ ⇓ B ⊢ ⋅ ⇓ E

⊃𝑙Γ ⇓ A ⊃ B ⊢ ⋅ ⇓ E

Figure 2.3: The propositional fragment of cut-free LJF

30 CHAPTER 2. FROM RELATIONS TO FUNCTIONS

contains not formulas but polarized formulas. Such polarized formulas differ from
unpolarized formulas in two ways. First, in the same way as in ℱ⊃, every atomic
formula is assigned either a positive or negative polarity in an arbitrary but fixed
fashion. Thus, one can fix the polarity of atomic formulas (propositional variables)
such that they are all positive or all negative or somemixture of positive and negative.
Second, the conjunction is replaced with two conjunctions ∧+ and ∧− and the unit
of conjunction 𝑡 with 𝑡+ and 𝑡−. The disjunction connective only has a positive
occurrence, ∨, because of the intuitionistic setting (but the⊃ connective can be seen
to be a form of ∨− that needs to be “controlled”). A polarized formula is positive if it
is a positive atomic formula or its top-level logical connective is either 𝑡+, 𝑓, ∧+, or
∨. A polarized formula is negative if it is a negative atomic formula or its top-level
logical connective is either 𝑡−, ∧−, or ⊃.
Fig. 2.3 contains the structural and introduction rules for the propositional frag-

ment of the LJF focused proof system [LM09]. An invariant in the construction
of LJF proofs is that Γ will be a multiset that can contain only negative formulas
and positive atoms. Every sequent in LJF denotes a standard sequent in LJ: simply
replace ⇑ and ⇓ with commas.
Figure 2.3 contains neither the initial rule nor the cut rule. As we stated before,

even if the cut rule and the cut-elimination theoremplay important roles in justifying
the design of focused proof systems, they play a minor role in this thesis (as cut-
elimination is not part of our notion of computation). The initial rule will be
important but not globally: we will introduce it later when we need (variants of) it.

Quantification and term equality The following rules show the focused versions
of the rules for quantification and term equality seen in Chapter 1.

Term equality

Σθ ∶ Γθ ⇑ Θθ ⊢ Δ1θ ⇑ Δ2θ θmgu of 𝑠 and 𝑡
=𝑙θΣ ∶ Γ ⇑ 𝑠 = 𝑡, Θ ⊢ Δ1 ⇑ Δ2

𝑡 and 𝑠 not unifiable =𝑙Σ ∶ Γ ⇑ 𝑠 = 𝑡, Θ ⊢ Δ1 ⇑ Δ2
=𝑟Σ ∶ Γ ⇓ ⋅;Ω ⊢ 𝑡 = 𝑡 ⇓ ⋅

Quantification

𝑦 ∶ τ, Σ ∶ Γ ⇑ B[𝑦/𝑥], Θ ⊢ Δ1 ⇑ Δ2 ∃𝑙Σ ∶ Γ ⇑ ∃𝑥τ. B, Θ ⊢ Δ1 ⇑ Δ2

Σ ⊢ 𝑡 ∶ τ Σ ∶ Γ ⇓ ⋅;Ω ⊢ B[𝑡/𝑥] ⇓ ⋅
∃𝑟Σ ∶ Γ ⇓ ⋅;Ω ⊢ ∃𝑥τ. B ⇓ ⋅

Σ ⊢ 𝑡 ∶ τ Σ ∶ Γ ⇓ B[𝑡/𝑥]; Ω ⊢ ⋅ ⇓ E
∀𝑙Σ ∶ Γ ⇓ ∀𝑥τ. B;Ω ⊢ ⋅ ⇓ E

𝑦 ∶ τ, Σ ∶ Γ ⇑ ⋅ ⊢ B[𝑦/𝑥] ⇑ ⋅
∀𝑟Σ ∶ Γ ⇑ ⋅ ⊢ ∀𝑥τ. B ⇑ ⋅

Formulas with a top-level ∀ have negative polarity while formulas with a top-level
∃ or equality have positive polarity. This polarity assignment follows the intuitive
thought: to prove a goal starting with forall requires only the introduction of a new
variable, it’s an invertible operation while the proof of a goal starting with a there
exist needs a witness term to be chosen. This choice can be hard and clearly belong
to the positive phase.

Fixed-point Momentarily ignoring the † and ‡ provisos, Fig. 2.4 shows the natural
rules for unfolding μ-expressions. Here, we have assigned to such expressions the

2. THE ℱ CALCULUS FOR HEYTING ARITHMETIC 31

Fixed point rules

Σ ∶ Γ ⇑ B(μB) ̄𝑡 ⊢ Δ1 ⇑ Δ2† μ𝑙Σ ∶ Γ ⇑ μB ̄𝑡 ⊢ Δ1 ⇑ Δ2

Σ ∶ Γ ⇓ ⋅;Ω ⊢ B(μB) ̄𝑡 ⇓ ⋅
μ𝑟Σ ∶ Γ ⇓ ⋅;Ω ⊢ μB ̄𝑡 ⇓ ⋅

Modified versions of the decide and release rules

Σ ∶ Γ,N ⇓ N;Ω ⊢ ⋅ ⇓ E
‡ D𝑙Σ ∶ Γ,N ⇑ Ω ⊢ ⋅ ⇑ E

Σ ∶ Γ ⇓ ⋅;Ω ⊢ P ⇓ ⋅
‡ D𝑟Σ ∶ Γ ⇑ Ω ⊢ ⋅ ⇑ P

Σ ∶ Γ ⇑ P,Ω ⊢ ⋅ ⇑ E
R𝑙Σ ∶ Γ ⇓ P;Ω ⊢ ⋅ ⇓ E

Σ ∶ Γ ⇑ Ω ⊢ N ⇑ ⋅
R𝑟Σ ∶ Γ ⇓ ⋅;Ω ⊢ N ⇓ ⋅

Initial rule

P ∈ Ω I𝑟Σ ∶ Γ ⇓ ⋅;Ω ⊢ P ⇓ ⋅

The proviso † requires that μB. ̄𝑡 does not
satisfy 𝒮. The proviso ‡ requires Ω to be
a multiset of μ-expressions that satisfy 𝒮.

Figure 2.4: Rules governing fixed point unfolding, suspensions, and initial sequents
in ℱ

positive polarity. Since the left-introduction and right-introduction rules for μ-
expressions are the same (i.e., they are unfolded), they could have been polarized
negatively as well.
Focused sequent calculus proof systems were originally developed for quan-

tificational logic—as opposed to arithmetic—and in that setting the bottom-up
construction of the negative phase causes sequents to get strictly smaller (counting,
for example, the number of occurrences of logical connectives). As a result, it was
possible to design focused proof systems in which decide rules were not applied
until all invertible rules were applied. We shall say that such proofs systems are
strongly focused proof systems: examples of such systems can be found in [And92;
LM09].
As is obvious from the first two inference rules in Figure 2.4, the size of the for-

mulas in the negative phase can increase when μ-expressions are unfolded. Thus,
a more flexible approach to building negative phases should be considered. Some
focused proof systems have been designed in which a decide rule can be applied
without consideration of whether all or some of the invertible rules have been ap-
plied. Following [SP11], such proof systems are called weakly focused proof systems:
an early example of such a proof system is Girard’s LC [Gir91]. Since we wish to
use the negative phase to do functional style, determinate computation, a weakly fo-
cused system—with its possibility to stop in many different configurations—cannot
provide the foundations that we need.

2.2 Suspensions
Instead of strongly and weakly focused proof systems, we modify the notion of
strongly focusing by allowing certain explicitly described μ-expressions appearing

32 CHAPTER 2. FROM RELATIONS TO FUNCTIONS

in the negative phase to be suspended. In that case, one can switch from a negative
phase to a positive phase (using a decide rule) when the only remaining formulas
in the negative phase are suspendable. In that case, those formulas are “put aside”
(in a zone) during the processing of the positive phase and are reinstated when the
positive phase switches to the negative phase (using a release rule). In more detail,
let 𝒮 denote a suspension predicate: this predicate is defined only on μ-expressions
and if 𝒮 holds for (μB ̄𝑡) then we say that this expression is suspended. The μ𝑙 rule
in Figure 2.4 has the proviso that 𝒮 does not hold for the μ-expression that is the
subject of that inference rule. In order to accommodate suspended formulas, ⇓-
sequents need to contain a new multiset zone, denoted by the syntactic variable
Ω: in particular, they now have the structure Σ ∶ Γ ⇓ Θ;Ω ⊢ Δ1 ⇓ Δ2. All positive
introduction rules ignore this new zone: for example, the left-introduction of ∧−
will now be written as

Σ ∶ Γ ⇓ B𝑖; Ω ⊢ ⋅ ⇓ E
∧−𝑙,𝑖∈{1,2}Σ ∶ Γ ⇓ B1 ∧− B2; Ω ⊢ ⋅ ⇓ E

Moreover, border sequent are nowof the formΣ∶Γ⇑Ω ⊢ ⋅⇑Ewhere all μ-expressions
of the multiset Ω satisfy 𝒮.
The suspension property 𝒮 is defined at the meta-level and, as a result, can make

use of syntactic details about μ-expressions. For example, this property could be
defined to hold for a μ-expression that contains more than, say, 100 symbols or when
the first term in the list ̄𝑡 is an eigenvariable. However, in order to guarantee that
the negative phase is determinate, we need to require the following property:

(∗) For all μ-expressions (μB ̄𝑡) and for all substitutions θ defined on
the eigenvariables free in that μ-expression, if 𝒮 holds for (μB ̄𝑡)θ then 𝒮
holds for (μB ̄𝑡).

That is, if an instance of a μ-expression satisfies 𝒮 after a substitution is applied, it
must satisfy 𝒮 before it was applied. This condition rules out the possible suspension
condition “holds if it contains 100 symbols” but it allows the condition “holds if the
first term in ̄𝑡 is an eigenvariable”.
In addition, suspension properties should not, in general, be invariant under

substitution since otherwise a suspended formula could remain suspended during
the construction of a proof: it can only be used within the initial rule.

Example 2.1. Consider the suspension predicate that is true of μ-expressions
μB 𝑡1 … 𝑡𝑛 if and only if 𝑛 ≥ 2 and 𝑡1 and 𝑡2 are the same variable. Clearly,
property (∗) does not hold and the construction of the negative phase can be
non-confluent. For example, let A be μλ𝑝λ𝑥λ𝑦.𝑥 = 𝑎 (where 𝑎 is a constant)
and consider the sequent Γ ⇑ 𝑢 = 𝑣,A 𝑢 𝑣 ⊢ ⋅ ⇑ (E 𝑢). Since A𝑢𝑣 is a
μ-expression for which 𝒮 does not hold, unfolding is applicable and yields
the sequent Γ ⇑ 𝑢 = 𝑣, 𝑢 = 𝑎 ⊢ ⋅ ⇑ (E 𝑢) which then leads to the border
sequent Γ ⇑ ⋅ ⊢ ⋅ ⇑ (E 𝑎). However, the first step in the negative phase of
the original sequent could have been the equality introduction, which yields
Γ ⇑ A 𝑢 𝑢 ⊢ ⋅ ⇑ (E 𝑢) and this must mark the end of the negative phase since
A 𝑢 𝑢 is a suspended formula.

Fortunately, this non-confluent behavior is ruled out by the (∗) property above.
To see this, let 𝒞 be a ⇑-sequent and let Ξ be a negative phase that has 𝒞 as its end
sequent and with premises that are border sequents. If we collect the premises

2. THE ℱ CALCULUS FOR HEYTING ARITHMETIC 33

of Ξ into a set, say, 𝒫, then we call 𝒫 an invertible decomposition of 𝒞. It is easy
to show, via permutations of inference rules, that if 𝒞 has 𝒫1 and 𝒫2 as invertible
decompositions, then 𝒫1 = 𝒫2. The (∗) condition enables the permutation of the
equality left-introduction rule and the μ𝑙 rule.
More examples of suspension predicates will be found in Section 4.2.
Theorem 2.2. Under a suspension predicate 𝒮 satisfying the (∗) property, the
decomposition of a given asynchronous sequent into border sequents is independent
of the order in which the asynchronous rules are applied.

Without suspensions, this standard property of focused proof systems stems from
the fact that all asynchronous rules are invertible and thus can permute over each
over. Thus, any sequence of inference rules that comprises the asynchronous phase
(starting with the release rule and ending with a border sequent) can be permuted
to any other sequent. Thus, the border sequent is the same no matter how these
inference rules are applied.
However, when suspensions are involved, border sequents can have formulas in
their asynchronous context that all satisfy the suspension predicate. Let’s assume
that there are two formulas, B and C that are in that asynchronous zone. If they are
both introducible (that is if corresponding rules can be applied), we should be able
to introduce B or C in any order. Let’s suppose we cannot:
Imagine we select B and apply an introduction rule. Then we will move to a sequent
containingB′ andCθ (since some eigenvariablemight get bound). Now, let’s suppose
thatwe cannot do the introduction onCθ because it is suspended. Then the condition
(∗) ensures that C was also suspended. Thus, if a permutation is not possible after
applying the inference rule, it was not possible before applying the inference rule.
That is, if we could have introduced either B or C, then picking one means that the
other one can still be done afterwards.

Definition 2.3. [Purely positive formula] A polarized formula in which all
occurrences of logical connectives are polarized positively is called a purely
positive formula. A μ-expression that is also purely positive will also be called
a purely positive fixed point expression.

Horn clauses2 (such as in Prolog) can provide immediate examples of purely
positive fixed points as illustrated in Example 3.5 (using the positive version of
conjunction). Let B be a purely positive formula. If Σ∶Γ⇑ ⋅ ⊢ B⇑ ⋅ is provable then
all proofs of that sequent are built of only positive right-introduction rules for 𝑡+,
∧+, ∨, ∃, μ (unfolding) and equality. Similarly, if Σ ∶ Γ ⇓ B ⊢ ⋅ ⇓ ⋅ is provable then
all proofs of that sequent are built of only negative left-introduction rules for 𝑡+, ∧+,
∨, ∃, μ (unfolding), and equality. Thus, focused proofs of B and B ⊃ 𝑓 are achieved
by using only one phase. In particular, such proofs do not contain structural rules
nor the initial rule. As a result, synthetic inference rules that abstract away the
construction of phases are not decidable since they can encode arbitrary Horn clause
specifications.

2.3 The complete ℱ calculus
Following the previous discussions about the polarity of connectives, the complete
grammar of formulas of ℱ⊃ is the following:

2. Horn clauses are clauses, that is disjunctions of literals, with at most one unnegated literal.

34 CHAPTER 2. FROM RELATIONS TO FUNCTIONS

Identity and structural rules

Σ ∶ Γ,N ⇓ N;Ω ⊢ ⋅ ⇓ E
‡ D𝑙Σ ∶ Γ,N ⇑ Ω ⊢ ⋅ ⇑ E

Σ ∶ C, Γ ⇑ Θ ⊢ Δ1 ⇑ Δ2 S𝑙Σ ∶ Γ ⇑ C,Θ ⊢ Δ1 ⇑ Δ2

Σ ∶ Γ ⇑ P,Ω ⊢ ⋅ ⇑ E
R𝑙Σ ∶ Γ ⇓ P;Ω ⊢ ⋅ ⇓ E

Σ ∶ Γ ⇓ ⋅;Ω ⊢ P ⇓ ⋅
‡ D𝑟Σ ∶ Γ ⇑ Ω ⊢ ⋅ ⇑ P

Σ ∶ Γ ⇑ ⋅ ⊢ ⋅ ⇑ E
S𝑟Σ ∶ Γ ⇑ ⋅ ⊢ E ⇑ ⋅

Σ ∶ Γ ⇑ Ω ⊢ N ⇑ ⋅
R𝑟Σ ∶ Γ ⇓ ⋅;Ω ⊢ N ⇓ ⋅

P ∈ Ω I𝑟Σ ∶ Γ ⇓ ⋅;Ω ⊢ P ⇓ ⋅

Negative phase introduction rules

Σ ∶ Γ ⇑ Θ ⊢ Δ1 ⇑ Δ2 𝑡+
Σ ∶ Γ ⇑ 𝑡+, Θ ⊢ Δ1 ⇑ Δ2

𝑡−
Σ ∶ Γ ⇑ ⋅ ⊢ 𝑡− ⇑ ⋅

𝑓+
Σ ∶ Γ ⇑ 𝑓+, Θ ⊢ Δ1 ⇑ Δ2

Σ ∶ Γ ⇑ A ⊢ B ⇑ ⋅
⊃𝑟Σ ∶ Γ ⇑ ⋅ ⊢ A ⊃ B ⇑ ⋅

Σ ∶ Γ ⇑ A, B,Θ ⊢ Δ1 ⇑ Δ2 ∧+𝑙Σ ∶ Γ ⇑ A ∧+ B,Θ ⊢ Δ1 ⇑ Δ2

Σ ∶ Γ ⇑ ⋅ ⊢ A ⇑ ⋅ Σ ∶ Γ ⇑ ⋅ ⊢ B ⇑ ⋅
∧−𝑟Σ ∶ Γ ⇑ ⋅ ⊢ A ∧− B ⇑ ⋅

Σ ∶ Γ ⇑ A,Θ ⊢ Δ1 ⇑ Δ2 Σ ∶ Γ ⇑ B,Θ ⊢ Δ1 ⇑ Δ2 ∨𝑙Σ ∶ Γ ⇑ A ∨ B,Θ ⊢ Δ1 ⇑ Δ2

Σ ∶ Γ ⇑ B(μB) ̄𝑡 ⊢ Δ1 ⇑ Δ2† μ𝑙Σ ∶ Γ ⇑ μB ̄𝑡 ⊢ Δ1 ⇑ Δ2

𝑦 ∶ τ, Σ ∶ Γ ⇑ B[𝑦/𝑥], Θ ⊢ Δ1 ⇑ Δ2 ∃𝑙Σ ∶ Γ ⇑ ∃𝑥τ. B, Θ ⊢ Δ1 ⇑ Δ2

𝑦 ∶ τ, Σ ∶ Γ ⇑ ⋅ ⊢ B[𝑦/𝑥] ⇑ ⋅
∀𝑟Σ ∶ Γ ⇑ ⋅ ⊢ ∀𝑥τ. B ⇑ ⋅

Σθ ∶ Γθ ⇑ Θθ ⊢ Δ1θ ⇑ Δ2θ θ mgu of 𝑠 and 𝑡
=𝑙θΣ ∶ Γ ⇑ 𝑠 = 𝑡, Θ ⊢ Δ1 ⇑ Δ2

𝑡 and 𝑠 not unifiable =𝑙Σ ∶ Γ ⇑ 𝑠 = 𝑡, Θ ⊢ Δ1 ⇑ Δ2

Positive phase introduction rules

=𝑟Σ ∶ Γ ⇓ ⋅;Ω ⊢ 𝑡 = 𝑡 ⇓ ⋅
𝑡+

Σ ∶ Γ ⇓ ⋅;Ω ⊢ 𝑡+ ⇓ ⋅
Σ ∶ Γ ⇓ ⋅;Ω ⊢ B𝑖 ⇓ ⋅

∨𝑟,𝑖∈{1,2}Σ ∶ Γ ⇓ ⋅;Ω ⊢ B1 ∨ B2 ⇓ ⋅

Σ ∶ Γ ⇓ B𝑖; Ω ⊢ ⋅ ⇓ E
∧−𝑙,𝑖∈{1,2}Σ ∶ Γ ⇓ B1 ∧− B2; Ω ⊢ ⋅ ⇓ E

Σ ∶ Γ ⇓ ⋅;Ω ⊢ B1 ⇓ ⋅ Σ ∶ Γ ⇓ ⋅;Ω ⊢ B2 ⇓ ⋅
∧+𝑟

Σ ∶ Γ ⇓ ⋅;Ω ⊢ B1 ∧+ B2 ⇓ ⋅

Σ ⊢ 𝑡 ∶ τ Σ ∶ Γ ⇓ B[𝑡/𝑥]; Ω ⊢ ⋅ ⇓ E
∀𝑙Σ ∶ Γ ⇓ ∀𝑥τ. B;Ω ⊢ ⋅ ⇓ E

Σ ⊢ 𝑡 ∶ τ Σ ∶ Γ ⇓ ⋅;Ω ⊢ B[𝑡/𝑥] ⇓ ⋅
∃𝑟Σ ∶ Γ ⇓ ⋅;Ω ⊢ ∃𝑥τ. B ⇓ ⋅

Σ ∶ Γ ⇓ ⋅;Ω ⊢ A ⇓ ⋅ Σ ∶ Γ ⇓ B;Ω ⊢ ⋅ ⇓ E
⊃𝑙Σ ∶ Γ ⇓ A ⊃ B;Ω ⊢ ⋅ ⇓ E

Σ ∶ Γ ⇓ ⋅;Ω ⊢ B(μB) ̄𝑡 ⇓ ⋅
μ𝑟Σ ∶ Γ ⇓ ⋅;Ω ⊢ μB ̄𝑡 ⇓ ⋅

Figure 2.5: The ℱ proof system. The proviso † requires that μB ̄𝑡 does not satisfy 𝒮.
The proviso ‡ requires Ω to be a multiset of μ-expressions that satisfy 𝒮.

3. JUGGLING WITH PHASES 35

• A, B ⩴ P | N
• P,Q ⩴ P𝑎 | 𝑡 | 𝑓 | A ∧+ B | A ∨ B | ∃𝑥.A | μ(λP. λ ̄𝑥. B) ̄𝑡
• N,M ⩴ N𝑎 | A ⊃ B | A ∧− B | ∀𝑥.A

Fig. 2.5 shows the full ℱ system.

3 Juggling with phases
3.1 Phases as abstractions
Focused proof systems make it possible to define new inference rules by abstracting
away details used in the construction of phases. Such composite rules are sometimes
called synthetic or macro rules. The positive phase allows a simple abstraction since
there is exactly one formula under focus in a positive sequent. A positive phase can
be seen as the (derived) inference rule with a conclusion that is a border sequent
and with premises that are marked by release rules.
There are, however, at least two challenges to making abstractions of negative

phases. First, the premises of a negative phase may repeat the same sequents many
times since there can be many paths to compute the result of a function. We shall
choose to denote as the collections of premises of the negative phase the set of border
sequents (instead of as amultiset). Second, there are many ways to process the don’t-
care nondeterminism that is possiblewhen applying invertible rules. Wewill abstract
away from those differences by simply ignoring how a phase is constructed since all
constructions yield the same border sequents.
The first challenge above stems from the same motivation used in confluent

rewriting systems: once a path to a normal form is found, no other paths need to be
considered since all other paths must yield the same normal form.

3.2 The polarity ambiguity of singleton sets
As we mentioned in the introduction, singleton sets can be used to help convert
relations to functions: if the (𝑛 + 1)-ary relation R describes a function from its first
𝑛 arguments to its last argument then the expression (λ𝑦.R(𝑥1, … , 𝑥𝑛, 𝑦)) denotes a
singleton set (given fixed values for 𝑥1, … , 𝑥𝑛). The choice operators ϵ or ι can then
be applied to this singleton set to extract that element, resulting in a proper function
λ𝑥1 …λ𝑥𝑛ι(λ𝑦.R(𝑥1, … , 𝑥𝑛, 𝑦)).
Singleton sets play a role here as well. In fact, let P be a predicate of one argument

so that it is provable that P is a singleton, namely,

(∃𝑥.P(𝑥)) ∧ (∀𝑥, 𝑦.P(𝑥) ⊃ P(𝑦) ⊃ 𝑥 = 𝑦)

As a consequence, the formulas ∃𝑥.P(𝑥) ∧ Q(𝑥) and ∀𝑥.P(𝑥) ⊃ Q(𝑥) are equivalent.
If we used the ι-operator, these formulas would also be equivalent to Q(ιP).
Note that the sequent calculus treatments of ∃𝑥.P(𝑥) ∧ Q(𝑥) and ∀𝑥.P(𝑥) ⊃ Q(𝑥)

are strikingly different. In particular, a proof of Σ ∶ Γ ⇓ ⋅ ⊢ ∃𝑥.P(𝑥) ∧ Q(𝑥) ⇓ ⋅
proceeds by guessing a term 𝑡 and then attempting to prove Σ ∶ Γ ⇓ ⋅ ⊢ P(𝑡) ⇓ ⋅ and
Σ ∶ Γ ⇓ ⋅ ⊢ Q(𝑡) ⇓ ⋅. Of course, since P denotes a singleton, there is at most one
correct guess 𝑡 and that guess is confirmed after it is inserted into the proof.
On the other hand, a proof of Σ ∶ Γ ⇑ ⋅ ⊢ ∀𝑥.P(𝑥) ⊃ Q(𝑥) ⇑ ⋅ can be seen as

computing the value that satisfies P. Proof construction for that sequent leads to

36 CHAPTER 2. FROM RELATIONS TO FUNCTIONS

proving Σ ∶ Γ ⇑ P(𝑦) ⊢ Q(𝑦) ⇑ ⋅. As mentioned before, this phase will move to
completion by repeatedly unfolding fixed points and if the phase completes, the
eigenvariable 𝑦 will be instantiated to be the unique term 𝑡. Thus, the premises of
this completed phase will have the shape Σ ∶ Γ ⇑ ⋅ ⊢ ⋅ ⇑Q(𝑡) (assuming for the sake
of argument that Q(𝑡) is a positive formula).

Example 3.1. Using the definitions in Example 3.5, consider the construction
of a negative phase of the form 𝑥, Σ ∶ Γ⇑ plus 2 3 𝑥 ⊢ ⋅⇑ (Q 𝑥). Since plus is
a μ-expression, this sequent is proved by a μ𝑙 inference rule (assuming that 𝒮 is
false for all μ-expressions, i.e., nothing should be suspended). Unfolding yields
an expression with a top-level disjunction, namely, 𝑥, Σ ∶ Γ ⇑ ((2 = 0 ∧+ 3 =
𝑥) ∨ ∃𝑛′∃𝑥′(2 = 𝑠 𝑛′ ∧+ 𝑥 = 𝑠 𝑥′ ∧+ plus 𝑛′ 3 𝑥′)) ⊢ ⋅ ⇑ (Q 𝑥). Following the
left-introduction for that disjunction, we are left with proving two sequents: the
left premise, 𝑥, Σ ∶ Γ ⇑ 2 = 0 ∧+ 3 = 𝑥 ⊢ ⋅ ⇑ (Q 𝑥) is proved immediately since
2 = 0 is not unifiable. A proof of the second premise must proceed as follows

𝑥′, Σ ∶ Γ ⇑ plus 1 3 𝑥′ ⊢ ⋅ ⇑ (Q (𝑠 𝑥′))
𝑥, 𝑛′, 𝑥′, Σ ∶ Γ ⇑ 2 = 𝑠 𝑛′ ∧+ 𝑥 = 𝑠 𝑥′ ∧+ plus 𝑛′ 3 𝑥′ ⊢ ⋅ ⇑ (Q 𝑥)
𝑥, Σ ∶ Γ ⇑ ∃𝑛′∃𝑥′(2 = 𝑠 𝑛′ ∧+ 𝑥 = 𝑠 𝑥′ ∧+ plus 𝑛′ 3 𝑥′) ⊢ ⋅ ⇑ (Q 𝑥)

(Here, the double line between sequents denotes the application of possibly
several inference rules.) After several more inference steps, the negative phase
terminates with the border premise Σ ∶ Γ ⇑ ⋅ ⊢ ⋅ ⇑ (Q 5). By ignoring the
internal structure of phases, we have just the synthetic inference rule

Σ ∶ Γ ⇑ ⋅ ⊢ ⋅ ⇑ (Q 5)
𝑥, Σ ∶ Γ ⇑ plus 2 3 𝑥 ⊢ ⋅ ⇑ (Q 𝑥)

Note that the actual specification of the relation plus is used to compute the
addition as a function.
Example 3.2. Employing the suspension mechanism makes it possible for
functional computation to be mixed with symbolic computation. For example,
let multiplication be defined as the following fixed point expression.

times = μλPλ𝑛λ𝑚λ𝑝((𝑛 = 0 ∧+ 𝑝 = 0)
∨ ∃𝑛′∃𝑝′(𝑛 = 𝑠 𝑛′ ∧+ P 𝑛′ 𝑚 𝑝′ ∧+ plus 𝑝 ′ 𝑚𝑝))

The theorem that states that (0 × (𝑥 + 1)) + 𝑦 = 𝑦 can be encoded and
proved in this setting by taking two steps. First we translate this expression
into the following sequent.

𝑦, Σ ∶ Γ ⇑ ⋅ ⊢ ∀𝑢. times 0 (𝑠 𝑥) 𝑢 ⊃ ∀𝑣. plus 𝑢 𝑦 𝑣 ⊃ 𝑣 = 𝑦 ⇑ ⋅

Here, we assume the (rather typical) suspension mechanism that classifies
μ-expressions as suspendable if they are built from plus and times and their
first argument is an eigenvariable. Thus, when this sequent is reduced to

𝑢, 𝑣, 𝑦, Σ ∶ Γ ⇑ times 0 (𝑠 𝑥) 𝑢, plus 𝑢 𝑦 𝑣 ⊢ 𝑣 = 𝑦 ⇑ ⋅

only the times-expression can be unfolded. After that unfolding, the eigenvari-
able 𝑢 will be instantiated and the plus-expression can then also be unfolded.

4. A PRACTICAL USE: AUTOMATION IN ABELLA 37

Finally, the negative phase ends with the border sequent 𝑦, Σ ∶ Γ⇑ ⋅ ⊢ ⋅⇑ 𝑦 = 𝑦
which is proved by a D𝑟 rule followed by the right-introduction rule for equality.

3.3 An extension to equivalence classes
Equivalence relations play important roles in computation and reasoning. Occa-
sionally, we have a relation that is not functional but all the possible outcomes are
equivalent, for some specific equivalence relation. For example, if two lists are
considered equivalent when they are permutations of each other, then the equiva-
lence class of lists modulo that relation encodes multisets. Similarly, if two pairs
of integers (𝑥, 𝑦) and (𝑤, 𝑧) (where 𝑦 and 𝑧 are not zero) are considered equivalent
when 𝑥𝑧 = 𝑤𝑦 then equivalence classes encode rational numbers.
The ambiguity of singletons can be lifted to computation with equivalence classes

in the following sense. Let ρ be an equivalence relation. The familiar notation [𝑥]ρ
for the ρ-equivalence class containing 𝑥 is just syntactic sugar for λ𝑦.𝑥ρ𝑦. (We define
logical equivalence in the usual way: A ≡ B is an abbreviation for (A ⊃ B)∧(B ⊃ A).)
Assume that ρ is an equivalence relation and that the following holds if Q ∶ 𝑖 → 𝑜.

∀𝑥∀𝑦. 𝑥 ρ 𝑦 ⊃ [Q(𝑥) ≡ Q(𝑦)]

(Note that this theorem is immediate for all Q ∶ 𝑖 → 𝑜 when ρ is equality.) The
following equivalence holds.

[∀𝑥. 𝑥 ∈ [𝑦]ρ ⊃ Q(𝑥)] ≡ [∃𝑥. 𝑥 ∈ [𝑦]ρ ∧ Q(𝑥)]

In a more informal mathematical notation, one might replace either the above exis-
tential or universal expression with Q([𝑦]ρ). While we shall not use this expression
(it involves a typing error), it conveys the usual mathematical sense of this ambiguity:
if we show that one member of an equivalence class satisfies such a propertyQ then
all members of that equivalence class satisfy Q.
Obviously, we can generalize the notion of functional dependency to the following

∀ ̄𝑥([∃𝑦.R(̄𝑥, 𝑦)] ∧ ∀𝑦∀𝑧[R(̄𝑥, 𝑦) ⊃ R(̄𝑥, 𝑧) ⊃ 𝑦ρ𝑧]),

which states that the 𝑛-ary relation is a total function up to ρ. Thus, during the
construction of a proof where one is asked to pick a term 𝑡 that makes R(𝑥1, … , 𝑥𝑛, 𝑡)
true, one can instead compute just any term 𝑡′ such that R(𝑥1, … , 𝑥𝑛, 𝑡′) (as long as
the established property Q is ρ-invariant). In that setting, we can also extend the
phase-abstraction mechanism to exclude border premises that differ up to ρ.

4 A practical use: automation in Abella
Currently, the Abella proof assistant has rather limited forms of automation. Our
work on separating computation from deduction using focusing appears to be an
interesting framework for exploring possible means of adding more automation to
Abella.
To achieve thiswewill apply themethod described in the previous sections and use

focusing to compose the ordinary sequent rules that operate on single connectives at
a time into compound rules that work on a collection of connectives, called synthetic
connectives, that have similar properties. In the presence of inductive and coinduc-
tive definitions, such synthetic connectives can involve the unbounded unfolding

38 CHAPTER 2. FROM RELATIONS TO FUNCTIONS

of fixed points, thereby incorporating arbitrary deterministic and nondeterministic
computation within synthetic inference rules.
Thus, even if full focused proof search as a broad basis for the automation of

Abella is an interesting project, in this section we only explore a limited applica-
tion of focusing to recover computation, following the method described in the
previous sections. We learned that focusing in an intuitionistic logic with fixed
points (essentially, Heyting arithmetic) can be used to turn relational specifications
into functional computations. We now present a concrete proposal for a slight and
orthogonal extension of Abella that allows it to perform such computations without
any change to its underlying logical basis.
We will first give a short introduction to the inner workings of Abella which is

built around a two logics system. Then we describe two proposals that automate the
proof process.

4.1 The 𝒢 Logic and the Abella Implementation
TheAbella system implements two logics. The specification logic is a simple fragment
of intuitionistic logic that is rich enough to specify many λProlog logic programs.
This aspect of Abella is not the major concern of this work and we ignore it here.
Instead we concentrate on the reasoning logic of Abella, known as 𝒢 [GMN11],
which is an extension of intuitionistic first-order logic with: (1) higher-order λ-terms
together with the equational theory induced by αβη-equivalence, (2) inductive and
coinductive fixed point definitions, and (3) nominals, nominal abstraction, and
generic (∇) quantification. We give a brief introduction to 𝒢 using the concrete
syntax of Abella [Bae+14].3
The terms in 𝒢 are well-typed terms of Church’s simple theory of types [Chu40],

where a given type signature declares a collection of basic types and constants that
are interpreted as constructors for these declared basic types. For instance, the
following is a declaration of two basic types, nat and bool, that are both declared
to be types using the Kind keyword, and their constructors are indicated with Type
declarations.

Kind bool type.
Type tt, ff bool.

Kind nat type.
Type z nat.
Type s nat -> nat.

Formulas of 𝒢 are terms of type prop, built from the constructors /\ (for conjunction),
\/ (for disjunction), and -> (for implication), all of type prop -> prop -> prop and
written as infix; true and false of type prop for the constants; and forall, exists,
and nabla of type (α -> prop) -> prop (for every type α not containing prop).
The term abstraction λx. t is written concretely as x\ t, and quantified formulas are
written in a more natural style rather than using abstractions, i.e., as (forall x, f)
instead of forall (x\ f).
Atomic formulas can be created from predicates of target type prop that may be

declared with a Type declaration. More interestingly, 𝒢 also allows atomic formulas
to be built using inductively or coinductively defined fixed points. For instance, the
following inductive definition characterizes all terms of type nat built from z and s:

3. 𝒢 logic will also be a crucial tool for the next chapter of this thesis.

4. A PRACTICAL USE: AUTOMATION IN ABELLA 39

Define nat : nat -> prop by
nat z ;
nat (s X) := nat X.

Such definitions consist of a list of clauses where each clause begins with a head and
is optionally followed by a body separated by :=. (An omitted body is understood
to stand for true.) The head is always atomic using the predicate being defined,
but the body can be any arbitrary formula; moreover, the head and body can share
variables that are universally quantified over the entire clause and written using
capital letters. Thus, the way to read the second clause above is: for every X, the atom
nat (s X) holds if and only if nat X holds.
Note that in 𝒢 and Abella the only form of induction or coinduction is with such

defined predicates. There is no induction principle for the types— indeed, there is no
reasoning principle of any kind for the types. Types are just used to enforce syntactic
categories. As a consequence, we cannot prove the formula forall (X:nat), nat
X: when we want to prove a theorem by structural induction on natural numbers, we
need to explicitly use the nat predicate as a corresponding assumption. To illustrate
this, let us introduce the predicate plus that relates two numbers to their sum and
proceeds by structural induction on its first argument.

Define plus : nat -> nat -> nat -> prop by
plus z X X ;
plus (s X) Y (s Z) := plus X Y Z.

Here is a simple theorem that would need to be proved by structural induction on
the first argument.

Theorem plus_z2 : forall X, nat X -> plus X z X.

Such a theorem would be proved by means of the induction tactic. In this case,
we would proceed by induction on 1, i.e., on the first antecedent of the chain of
implications in the theorem. This would generate an inductive hypothesis IH:4

IH : forall X, (nat X)* -> plus X z X

This is apparently the same as the theorem itself, except the inductive argument is
marked with a size restriction *. The meaning of (nat X)* is that it can be applied
to any derivation of (nat X) that is strictly smaller than that of the (nat X) we
started the induction on originally. That original derivation is itself indicated with
(nat X)@, which is to say that the result of the induction tactic is to change the
goal to the following after assuming the IH.

forall X, (nat X)@ -> plus X z X

This goal is proved by means of ordinary logical reasoning, together with the
case tactic5 that explores all the ways in which an inductively defined assumption
may have been derived, i.e., it performs an inversion on its definition. This case
step in turn changes the @ annotation to a * to indicate that it has strictly reduced
the size of the derivation; this reduction makes the IH applicable. More precisely,
inverting (nat X)@ produces two subgoals; in the first, X is instantiated to z, and in
the other X is instantiated to (s X1) for a new variable X1, and we get the additional

4. The parentheses we use here for didactic reasons are omitted by Abella, i.e., Abella writes
nat X* instead of (nat X)*.

5. Notice that several Abella tactics share common names with Coq tactics. This is intended
even if they work in quite different ways.

40 CHAPTER 2. FROM RELATIONS TO FUNCTIONS

assumption (nat X1)*. Abella also has a collection of lower level tactics such as
unfold, witness, split, apply, etc. for ordinary logical reasoning.

4.2 Proposal: Computation and Suspension
Our first proposed extension of Abella is rather simple: the addition of a compute
tactic that performs unfolding and subsequent asynchronous steps for assumptions
involving predicates with a fully positive definition. Thus, for instance, if we have
an assumption

H : plus (s z) (s z) X

then the invocation compute H would repeatedly unfold the definition of plus and
handle the resulting subgoals eagerly if it can use purely asynchronous steps. In
this particular case, the effect will be the removal of H entirely and the instantiation
of X with (s (s z)). The compute tactic is allowed to produce multiple branches.
For instance, in the following case:

H : plus X Y (s (s z))

the invocation compute H would produce three subgoals, one each for the three
ways there are to decompose 2 into a sum of two natural numbers.
This kind of feature has long been recognized as an important need in Abella.6 A

very common form is encountered in meta-theoretic proofs involving memberships
in contexts, which are represented as lists in Abella, where we have an assumption
such as:

H : member X (E1 :: E2 :: Rest)

In this case we would like compute H to yield three subgoals (in addition to the
assumption): the first with X = E1, the second with X = E2, and the last with
member X Rest.
Amore interesting scenario is when the compute tactic is used on a purely positive

predicate that cannot be fully solved. For instance, given:

H : nat (s (s X))

where X is an eigenvariable, it can be asynchronously simplified to (nat X) by just
using the second clause of the definition of nat. However, to go further we would
need to consider the cases where X = z and the case for X = s X1, and we would be
left with a further assumption nat X1. We can repeat this process now with X1 and
so on. This eager treatment of nat not only leads to non-terminating search (which
will eventually be forcefully terminating because it reaches a depth bound), but may
be unwarranted before we know anything else about X. In this case, it would be
useful to suspend the eager unfolding of nat.
To account for this premature unfolding of definitions when the inductive struc-

ture is already a variable, we add a new kind of Suspend declaration that will make
Abella stop the asynchronous phase prematurely as we described in Section 2.2. The
following declaration declares that (nat X) should not be unfolded if X is a variable;
we call this a suspension condition.

Suspend nat X on X.

6. See, for instance, https://github.com/abella-prover/abella/issues/35.

https://github.com/abella-prover/abella/issues/35

4. A PRACTICAL USE: AUTOMATION IN ABELLA 41

A suspension condition can list more than one argument: unfolding is suspended if
any of the indicated arguments is a variable. For example:

Suspend plus X Y _ on X, Y.

Note this declaration means that computewould terminate early even on a situation
such as:

H : plus (s z) Y Z

even though we could have finished the phase with Z instantiated with (s Y), even
though Y isn’t ground. This is fine because we could have left out the Y from the
suspension conditions. Also note that although the suspension condition mentions
variables, the suspension declaration itself can be any arbitrary pattern. For instance:

Suspend plus (s X) _ _ on X.

suspends unfolding on plus before its first argument is a variable. The pattern can
also have repetitions such as:

Suspend plus X X _ on X.

Finally, a given predicate can have multiple suspension declarations: unfolding is
suspended if any suspension declaration matches or if the predicate has no sus-
pension declarations at all. The following pair is equivalent to the first Suspend
declaration above.

Suspend plus X _ _ on X.
Suspend plus _ Y _ on Y.

The compute tactic has been implemented in prototype form already in Abella
—which in fact led to the discovery of the need for Suspend—but the full proposal
is still being debated by the Abella community. One obvious extension would be
to perform the asynchronous phase on all assumptions instead of a specific one.
Another issue to consider is whether we should allow compute to operate on goals
as well. What would be the equivalent notion of Suspend for goals? Another open
question is if the Suspend declarations can be inferred from the form of the definition
itself.

4.3 Proposal: Deterministic Computation using Singleton Pred-
icates

A monadic predicate p that holds for exactly one argument is a singleton. As we
have seen in Section 3, singletons are interesting from the perspective of focusing.
The formula forall x, p x -> Q x and exists x, p x /\ Q x are equivalent if
and only if p is a singleton. That is, the following is a theorem of higher-order logic:

(forall q, ((forall x, p x -> q x)
<-> (exists x, p x /\ q x)))
<-> singleton p

where singleton has the following definition:

Define singleton : (A -> prop) -> prop by
singleton P :=

(exists X, P X)
/\ (forall X Y, P X -> P Y -> X = Y).

42 CHAPTER 2. FROM RELATIONS TO FUNCTIONS

As a consequence, the formulas forall x, p x -> Q x and exists x, p x /\
Q xmay be freely converted into each other in the course of proof search.
Now, since Abella does not allow predicate quantification, the definition and

theorem above are not acceptable. The theorem is explicitly ruled out because
Abella does not allow universal quantification over terms whose types contain prop.
The definition is accepted with a stratification warning, because the higher-order
parameter P is used in a negative position, to the left of ->. Such definitions can
be used in trivial ways to prove false and hence for consistency Abella refuses to
certify developments using such definitions.
Both the proof theory of sequent calculus and the tactics of Abella require that to

make progress on proving exists x, p x /\ Q x, we must first supply a witness
term t such that (p t) is true, and then the goal can become (Q t). If we know
that p is a singleton, then this requirement is unfortunate since one might hope
that we could use Abella to actually compute this witness term t by means of the
compute tactic in the previous section. It is tempting to extend Abella with logic
variables or placeholder variables such as ?X so that we can change the query to
p ?X /\ Q ?X, and then in the course of proving the first conjunct p ?X we would
replace the variablewith thewitness term. Such variables have been a part of Isabelle
and Agda from the very beginning and have also been introduced to Coq (see, for
example, [ZS15]).
We propose a more lightweight treatment, admitting the definition singleton to

Abella (and syntactically preventing its abuse such as applying singleton to itself).
Then, the issue of computing thewitness term t is no different from transforming the
goal exists x, p x /\ Q x to forall x, p x -> Q x, introducing the variable
and its hypothesis (using intros), and then using compute on that hypothesis. Thus,
we switch from “guess t and check (p t)” to “compute the t for which (p t).”
As we have seen before, singleton predicates arise whenever a relation is actually a

function. In particular, the fact that an 𝑛-ary predicate R actually specifies a function
from its, say, first 𝑛 − 1 arguments to its 𝑛th argument can be captured by:

forall x1 x2 … x𝑛−1,
singleton (x\ R x1 x2 ⋯ x𝑛−1 x)

Note that we could have η-contracted the argument to singleton above to just
(R x1 ⋯ x𝑛−1). More generally, the relation R may be a singleton only under
certain conditions on its “input” arguments, in which case we would add them as
antecedents in an implication chain. For example, consider the plus relation from
before; its third argument is always uniquely determined by its first two, assuming
that they are natural numbers. Hence, we can prove the following theorem.

Theorem plus_funct: forall X Y, nat X -> nat Y ->
singleton (plus X Y).

This is an ordinary Abella theorem that can be readily proved by induction on
1. As another illustration, consider the partial relation pred for predecessors that
relates natural numbers greater than 0 to their predecessor.

Define pred : nat -> nat -> prop by
pred (s X) X.

To show that it is a function, wehave to supply the precondition that its first argument
is a natural number greater than z, which we can do as follows.

4. A PRACTICAL USE: AUTOMATION IN ABELLA 43

Define nat_gt : nat -> nat -> prop by
nat_gt (s X) z := nat X ;
nat_gt (s X) (s Y) := nat_gt X Y.

Theorem pred_funct: forall X, nat_gt X z ->
singleton (pred X).

To make use of singleton to convert between the two exists and forall forms,
we add new tactic forms to witness and apply. When the goal has the form:

==
exists X, P X /\ Q X

then the invocation witness compute first attempts to prove singleton P from the
same context, and then continues with modified goals of the form:

H : P X
==
Q X

and follows up with compute H. Dually, whenever we have a hypothesis of the form:

H : forall X, P X -> Q X

then an invocation apply compute Hhas the effect of first trying to prove (singleton
P) and then continuing with the modified hypotheses

H1 : P X
H : Q X

following up with compute H1.
In both cases, the proof of (singleton P) must be trivial: the way it will be

implemented is that the proved lemmas such as plus_funct will be searched for a
predicate that matches P, and if so the antecedents of that lemma will be attempted
to be proved with simple proofs. An important consideration in these simple proofs
is that assumptions on predicates such as nat or nat_gt are attempted eagerly
first to reduce them to their simplest forms. This will be done with the compute
tactic as defined in Section 4.2. Note that it is important to supply suitable Suspend
declarations for such antecedents to prevent infinite loops in the implicitly invoked
compute invocations.
The above could have been done with a weaker assumption than singleton; it

would have sufficed for the predicate p to be non-empty, which is just the first con-
junct in the definition of singleton. The real power of the singleton assumption
comes from the fact that it makes the computations deterministic. This means that
whenever we perform compute on a singleton predicate, we never need to consider
any but a single possibility. In other words, conjunctive branches in the search space
caused by unfolding the singleton predicate can be pruned eagerly. To illustrate this,
suppose we had the following variant definition of plus:

Define plus : nat -> nat -> nat -> prop by
plus z X X ;
plus (s X) Y (s Z) := plus X Y Z ;
plus X Y Z := plus Y X Z.

It is still a function from its first two arguments to its third one, but unfolding the
definition of plus is not unitary: the third clause overlaps with the first two. The

44 CHAPTER 2. FROM RELATIONS TO FUNCTIONS

compute tactic should be satisfied (and thus stop) with the first unfolding sequence
it finds, and not get distracted computing variants that have different numbers of
uses of the third clause.

4.4 Possible extensions
There are a few ways in which these proposals can be generalized further. First, as
we have seen in Section 3.3 the notion of singleton can be relaxed to a notion of
singleton up to equivalence as hinted by the discussion in Section 3.3. For instance,
we can say:

Define singleton_upto :
(A -> A -> prop) -> (A -> prop) -> prop by
singleton_upto Eq P :=

(exists X, P X)
/\ (forall X Y, P X -> P Y -> Eq X Y).

As long as Eq is an equivalence relation, we get all of the benefits of the singleton
definition, such as the free conversion of exists goals into forall goals. This
more general definition can be very useful in meta-theoretic proofs that reason
about contexts: ordinarily they are represented as lists, but two contexts-as-lists
that are merely permutations are considered to represent the same context. It has
been observed in [CLR16] that a majority of the effort in formalizing standard
meta-theorems such as cut-elimination is due to the complications resulting from
reasoning about lists up to permutations.
A second obvious extension has to do with data defined by higher-order type

signatures, such as terms represented using λ-tree syntax (sometimes known as
higher-order abstract syntax). Many common relations that are defined on such
higher-order data can be seen as functions, but it takes a bit more care to use the
singleton relations. In particular, with higher-order representations the “typing
relation” such as nat are no longer a natural fit for the reasoning logic; in this case,
it is usually simpler to write these relations using the specification logic, using the
two-level logic approach [GMN12]. Recent extensions of Abella to handle the full
hereditary Harrop specification language [Wan+13] have allowed the expression
of arbitrary higher-order (and even dependently typed) relations in terms of the
specification language (see, e.g.,[SC14] for the LF dependent type theory). In these
cases, not only the antecedents but also the argument to the singleton relation may
well be a specification-language sequent.

5 Conclusion and perspectives
We presented in Section 3 a treatment of functional computation based on relations.
Principles in proof theory provided a means of organizing Gentzen-style introduc-
tion rules so that functional computations can be identified as one specific phase of
computation (the negative phase). Since this view of computation is based on the
construction of cut-free proofs, it is rather different from, say, the Curry-Howard
correspondence.
While we have illustratedmost of thismechanismusing first-order term structures

(such as Peano’s numerals), the proof theory behind LJF (onwhichℱ is based) works
at all finite types. As a result, this approach to functional computation is a possible

5. CONCLUSION AND PERSPECTIVES 45

avenue to explore how functional programming might be extended to treat terms
containing λ-bindings. Furthermore, the proof theory presented here is compatible
with the proof theory for least and greatest fixed points that has been developed
in a series of papers [MM00; GMN08; GMN11; TM12] and in the Abella theorem
prover [Bae+14; 12; Gac08] that we described in Section 4.
The small extensions to Abella’s tactics we proposed could enable it to perform

deterministic computation without step-by-step guidance by the user. We leave the
kernel and the core tactics of Abella untouched, but adding a new compute tactic
that is designed to perform the asynchronous phase of focused proof search for
inductively defined predicates whose definitions are fully positive. Together with
this mechanism is a new declaration that allows eager unfolding of definitions to
be suspended when it is premature to continue unfolding, for instance where the
arguments involve variables in “input” positions. Finally, we propose to allowAbella
to express specific lemmas that prove that a given relation on a given collection of
inputs determines a singleton on its output, meaning that the output both exists and
is uniquely determined. Such lemmas can be used to transform an existential goal to
a universal goal and move from a guess and check to a compute and use paradigm. A
crucial feature of this use of singletons is that it treats computations as deterministic
functions. The community of Abella users has still to agree on these basic extensions
and to implement them.

46 CHAPTER 2. FROM RELATIONS TO FUNCTIONS

Chapter 3

A functional programming
language using λ-tree syntax

In Chapter 2 we described a way to identify computational behavior in proofs and
to guide proof-search in using as much computation as possible with the focusing
discipline. In the remainder of this thesis we will approach the relationship between
logic and computation from another point-of-view and see how recent developments
in logic programming can guide us toward the design of a new functional program-
ming language featuring a novel approach to encode bindings that appear within
data structures.

1 Introduction
Nowadays, programming languages are the most common way to give instructions
to a computing device. Some of these languages reflect closely the hardware archi-
tecture they pilot like assembly languages: writing programs in such languages is
a tedious and error prone task, because only a very small set of generic low-level
instructions can be used. This situation is analogical to the exercise of building a
proof of a complex theorem with only a basic set of axioms and inference rules,
without cuts. It is possible, but the interesting parts of the program (or the proof)
will be obfuscated by all the low-level administrative work one has to do. To cope
with this difficulty, so called high-level languages provide abstractions that allow a
simpler expression of the programmer’s problems and then translate these high-level
instructions to their lower-level equivalent which is usually much more verbose.
This translation process is called compilation.
Today there exists a large variety of more-or-less-high-level programming lan-

guages, often designed explicitly to ease the creation of programs answering a
specific set of problems. Like so, functional programming languages have been used
from their earliest days to build systems that manipulate the syntax of other pro-
gramming languages and logics. Actually, the ML language (which stands for “Meta
Language”) was initially developed as a tactic language for an interactive theorem
prover [GMW79]. Other functional languages such as Lisp were common to build
theorem provers, interpreters, compilers, parsers, etc. While these various tasks
involve the manipulation of syntax, none of these earliest functional programming
languages provided support for a key feature of almost all programming languages

47

48 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

and logics: variable binding. For instance, bindings are involved in logical quantifi-
cation operators (𝑥 is bound in the formula ∀𝑥. P(𝑥)), in programming languages
functions (𝑥 is bound in int f(int x) = { return 2 * x }), etc.
Of course, due to their omnipresence, bindings in syntactic expressions have been

given a range of different treatments within the functional programming setting.
Each of these treatments has its advantages and disadvantages when dealing with
standard problems such as testing equality of terms or to perform capture avoiding
substitution.
In this chapter we present a new functional programming language with native

treatment of bindings in datastructures, inspired by Abella, named MLTS. This
acronym stands for Mobility and λ-tree syntax.

Chapter outline

• Section 1 provides an overview of some techniques used to deal with bindings
and what led us to design a new system.

• Sections 2 and 3 presents the new structures for MLTS, our new language,
along with numerous example programs in an attempt to give a working
understanding of the language.

• Sections 4 to 7 contain the material needed to understand the foundations of
MLTS. We give a typing system and a natural semantic of MLTS along with a
few formal results. However this work is primarily focused on trying to get
the design right.

• In Section 8 we present the current prototype implementation of MLTS.

• Finally in Section 9we consider someworks related to this design andhighlight
how they compare to our new system (when they can be compared).

But before all this we need to describe the syntax we are going to use in our examples.

An overview of the syntax
In this chapter, examples of ML-style programs are given in the OCaml [OCa18]
concrete syntax, and the new language we present uses an extended version of this
syntax. Here is a list of some key-points of the syntax of OCaml, illustrated with
short examples:

• Comments are multiline, and delimited by (* and *). They can be nested.

• Instructions like type and function definitions and single expressions are
terminated by ;;

(In OCaml these double semi-colons can be omitted most of the time because
they are optional before another definition or at the end of a file.)

• Global definition of an immutable variable: let x = 4;;

• Local definition of an immutable variable: let x = 4 in 2 + x;;

• Global (/ Local) definition of a function: let f x y = 2 * x + y (in ..);;

• Recursive functions must be declared with the keyword rec: let rec f ..

• Function parameters can be annotated with types: (x : int)

1. INTRODUCTION 49

• Function application is done without englobing parentheses: f 2 (1 + 2)
will yield the result 8.

• Functions always return the value of the last expression of their body. The
unit value is ().

• Expressions formed of sequences of expressions can be constructed using
the binary operator ; which type is unit -> 'a -> 'a (where 'a is a type
variable).

• If-expressions also return a value and both branches must have the same
type: let x = (if 3 = 4 then 42 else 36);;. The operator = in 3 = 4
tests the structural equality (and may dive in the recursive definition of a type)
while == tests the physical equality.

• Recursive types with constructors can be defined in the following way:

type int_list = (* a list of |-separated constructors *)
| EmptyList
| Cons of int * int_list

This should be read: a int_list is either the empty list or the pair of an int
and an int_list.

• Such types can be scrutinized under pattern matching:

match l with (* a list of |-separated match clauses *)
| EmptyList -> printf("The list is empty")
| Cons(i, tail) -> printf("The list is an int and a tail")

This should be read: if l is the empty list then do something, else if l is a list
made of a int (named i) and a list (named tail) then do some other thing.

Of course this is merely a glimpse of the complete OCaml syntax, but it is enough
to understand the examples populating the rest of this thesis. The interested reader
can find valuable documentation for the complete OCaml system on the main
website: https://ocaml.org

1.1 A common example: substitution
To illustrate possible treatments for binders in datastructures, let’s consider the
implementation of substitution in the untyped λ-calculus. Our goal is to write in
an ML-style language a function subst : tm -> var -> tm such that, given two
terms t and u of type tm, x a variable, subst t x u is 𝑡[𝑥\𝑢], that is, the result of the
substitution of 𝑥 by 𝑢 in 𝑡. The following discussion will list different approaches
one can take in dealing with the “variable case”.

Named variable A common and straightforward way to represent variable is to
use names which are strings of characters. Consider the following ML type:

type tm =
| Var of string
| App of tm * tm
| Abs of string * tm

https://ocaml.org

50 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

It seems natural to use strings to encode variables, and the term λ𝑥.𝑥 𝑦would then
be represented as Abs(Var "x", App(Var "x", Var "y")). Then the substitution
function could be naively defined as follows:

let rec subst (t : tm) (x : string) (u : tm) =
match t with
| Var y -> if x = y then u else Var y
| App(m, n) -> App(subst m x u, subst n x u)
| Abs(y, body) -> Abs(y, subst body x u)

But this design is flawed because variable capture can happen in the last case
of the match if, for example, a variable named x also appears in u. A more subtle
mechanism is needed to ensure capture-free substitution, such as performing α-
conversion over t when a collision with x occurs.
This is one of the many caveats of this naive representation for variables andmore

generally binders in datastructures. It needs to be very carefully handled to ensure
the consistency of programs. It is a well known issue and so are its mitigations, but
implementing them is an inexhaustible source of errors.

De Bruijn’s nameless dummies In this representation bound variables are rep-
resented by an index giving the number of binders between the variable and its own
binding term [Bru79]. Name collisions do not appear anymore but a very careful
implementation is also needed to keep the indexes updated. It is a widely used way
of representing bindings and numerous libraries and languages are built upon it.
This technic is forgetful of the names of variables and several variants exist such as
the locally nameless approach [Cha11; Gor94; MM04] in which bound variables are
represented by de Bruijn indices and free variables by names.

Higher order abstract syntax Another way to encode bindings is to use some
sort of Higher Order Abstract Syntax (HOAS). The trick here is to make use of the
built-in support of functions (and thus binders) of the host language to represent
abstraction. A possible ml type for this would be:

type tm =
| App of tm * tm
| Abs of tm -> tm

Where tm -> tm is the type of a function from terms to terms. Because there is
no variable constructors, we cannot directly build terms with free variables in this
setting. Instead, we need to bind such variable outside of the term using the host
language functions. For example, the term λ𝑥.𝑥 𝑦 would be encoded as fun y ->
(Abs(fun x -> App(x, y))).
In that case, the substitution function is nothing else than the application in the

host language. We can define the following delegating subst function:

let subst (f : tm -> tm) (t : tm) = (f t);;

It is a clever way to make use of the host language features. Unfortunately, such
encoding technique often lacks adequacy (since “exotic terms” can appear [DFH95]),
and structural recursion can slip away [GP99]. Moreover a defect of this technique
when using the OCaml language is that we loose the ability to test for the structural
equality of two terms or to pattern-match efficiently on them. Our approach in
MLTS looks similar to this one, but allows to recover these important properties.

2. THE NEW FEATURES OF MLTS 51

1.2 A new language, MLTS

Extending a functional programming language with features that support bindings
in data has also already been considered before: for example, there have been
the FreshML [SPG03; Pot07] and CαML [Pot06] extensions to ML-style functional
programming languages. There also exists libraries such as Bindlib [LR18] forOCaml
that ease the use of bindings. Also, entirely new functional programming languages,
such as the dependently typed Beluga [PD10] language, have been designed and
implemented with the goal to support bindings in syntax. In the domain of logic
programming and theorem provers conception, several designs and implemented
systems exist that incorporate approaches to binding: such systems include Isabelle’s
generic reasoning core [Pau89], Nominal Isabelle [Urb08], λProlog [NM88; MN12],
Qu-Prolog [CRS91], Twelf [PS99], αProlog [CU04], the Minlog prover [Sch06], and
the Abella theorem prover [Bae+14].
In the rest of this thesis, we present the design of a new functional programming

language, MLTS, that extends (the core of) ML and incorporates the λ-tree syntax
approach to encoding the abstract syntax of data structures containing binders.
Briefly, the λ-tree syntax approach to syntax can be defined as following the next
three tenets:

1. Syntax is encoded as simply typed λ-terms in which the primitive types are
identified with syntactic categories.

2. Equality of syntax must include αβη-conversion (see Section 5.2).
3. Bound variables never become free: instead, their binding scope can move.

This latter tenet introduces the most characteristic aspect of λ-tree syntax which
is often called binder mobility. In this setting, bindings never become free nor escape
their scope: instead, binders in data structures are permitted tomove into binders
within programs. MLTS is, in fact, an acronym formobility and λ-tree syntax.

2 The new features of MLTS
We chose the concrete syntax of MLTS to be an extension of that of the OCaml
programming language (a program in MLTS not using the new language features
should be accepted by the ocamlc compiler). We assume that the reader is familiar
with basic syntactic conventions of OCaml [OCa18], many of which are shared
with most ML-like programming languages. MLTS contains the following five new
language features.

1. Datatypes can be extended to contain new nominal constants and the (new X
in body) program phrase provides a binding that declares that the nominal X
is new within the lexical scope given by body.

2. A new typing constructor => is used to type bindings within term structures.
This constructor is an addition to the already familiar constructor -> used for
the typing of functional expressions.

3. The backslash (\ as an infix symbol that associates to the right) is used to
form an abstraction of a nominal over its scope. For example, (X\body) is
a syntactic expression that hides the nominal X in the scope body. Thus the
backslash introduces an abstraction.

52 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

4. The @ eliminates an abstraction: for example, the expression ((X\body) @ t)
denotes the result of substituting the abstracted nominal X with the term t in
body.

5. Clauseswithinmatch-expressions can also contain the (nab X in rule) bind-
ing expression: in the scope of this binder, the symbol X can match existing
nominals introduced by the new binder and the \ operator. Note that X is
bound over the entire match rule (including both the left and right-side of the
rule).

These new term operators have the following precedence from highest to lowest:
@, new and \. Other operators have the same precedences and associativity than in
OCaml. Thus the expression fun r -> X\ new Y in r @ X reads as: fun r ->
(X\ (new Y in (r @ X))).
All three binding expressions—(X\body), (new X in body) and (nab X in

rule)—are subject to α-renaming of bound variables, just as the names of variables
bound in let declarations and function definitions. As we shall see, nominals are
best thought of as constructors: as a consequence, we follow the OCaml convention
of capitalizing the name of their binders. We are assuming that, in all parts of MLTS,
the names of nominals (or bound variables in general) are not available to programs
since α-conversion (the alphabetic change of bound variables) is always applicable.
Thus, compilers are free to implement nominals in any number of ways, even ways
in which they do not have, say, print names.
Expressions involving @ are greatly restrictedwithin patterns of match expressions:

in particular the expression (m @ X1 ... Xj) is restricted so that m is a pattern
variable and X1, …, Xj are distinct nominals bound within the scope of the pattern
variable binding off m. This restriction is essentially the same as the one required by
higher-order pattern unification [Mil91]: as a result, pattern matching in this setting
is a simple generalization of usual first-order pattern matching.
We note that the expression (X\ r @ X) is interchangeable with the simple ex-

pression r: that is, when r is of => type, η-equality holds.

3 MLTS examples
We now present several sets of examples of MLTS programs and the Appendix
contains an additional longer example. We hope that the informal semantics given
above plus the simplicity of the examples will give a working understanding of the
semantics of MLTS. We delay the formal definition of the operational semantics of
MLTS until Section 5.

3.1 The untyped λ-calculus
The untyped λ-terms can be defined in MLTS as the following datatype:

type tm =
| App of tm * tm
| Abs of tm => tm;;

The use of the => type constructor here indicates that the argument of Abs is a
binding abstraction of a tm over a tm. It should be reminiscent of the HOAS example
in Section 1.1 but we don’t use the host language function type constructor ->

3. MLTS EXAMPLES 53

anymore and the type tm is now implicitly extended to contain nominal constant. It
is said to be an open type and by default all user-defined types are open.
Just as the type tm denotes a syntactic category of untyped λ-terms, the type

tm => tm denotes the syntactic category of terms abstracted over such terms.
Following usual conventions, expressions whose concrete syntax have nested

binders using the same name are disambiguated by the parser by linking the named
variable with the closest binder. Thus, the concrete syntax (Abs(X\ Abs(X\ X))) is
parsed as a term α-equivalent to (Abs(Y\ Abs(X\ X))). Similarly, the expression
(let n = 2 in let n = 3 in n) is parsed as an expression α-equivalent to (let
m = 2 in let n = 3 in n): this expression has value 3.

Size Fig. 3.1 shows theMLTS program that computes the size of an untyped λ-term:
For example, (size (App(Abs(X\X), Abs(X\X)))) evaluates to 5. In the second
match rule, the match-variable r will be bound to an expression of type tm => tm
built using the backslash. On the right of that rule, r is applied to a single argument
which is a newly provided nominal constructor of type tm. The third match rule
contains the nab binder that allows the token X to match any nominal: alternatively,
that last clause could have matched any non-App and non-Abs term by using the
clause | _ -> 1. Note that as written, the three match rules used to define size
could have been listed in any order. The following sequence of expressions shows
the evolution of a computation involving the size function1:

size (Abs (X\ Abs (Y\ App(X,Y))));;
1 + new X in size (Abs (Y\ App(X,Y)));;
1 + new X in 1 + new Y in size (App(X,Y));;
1 + new X in 1 + new Y in 1 + size X + size Y;;
1 + new X in 1 + new Y in 1 + 1 + 1;;

The first call to size will bind the pattern variable r to X\ Abs(Y\ App(X,Y)). It is
important to note that the names of bound variables within MLTS programs and
data structures are fictions: in the expressions above, binding names are chosen for
readability. It is also important to know that all nominals should be always bound
in an MLTS program. Escaping nominals (like in the expression new X in X) will
be treated as stuck terms and trigger an evaluation error.

Equality Fig. 3.2 shows the MLTS program that checks the equality of two terms
of type tm. Both terms are recursively matched together: the application case
is standard and self explanatory but the abstraction case is more interesting: the
pattern variables r1 and r2 will be bound to two expressions of type tm => tm, in
the body of that rule we declare a new nominal X and use it to “open” the bodies
of r1 and r2. That is, to move the top level bindings of r1 and r2 at the new X in
binder level. The nominal cases are then simply checking if both nominals are the
same of if they are different. Here is another sequence of expressions showing a
computation involving the eq function:

1. It does not intend to reflect the precise control-flow of the program, that is call-by-value
execution, it is simply a series of equivalent expressions illustrating the meaning of size

54 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

let rec size t =
match t with
| App(n, m) -> 1 + size n + size m
| Abs(r) -> 1 + new X in size (r @ X)
| nab X in X -> 1;;

Figure 3.1: The function that computes the size of a term.

let rec eq t1 t2 =
match (t1, t2) with
| (App(l1, l2), App(r1, r2)) ->

eq l1 r1 && eq l2 r2
| (Abs r1, Abs r2) ->

new X in eq (r1 @ X) (r2 @ X)
| nab X in (X, X) -> true
| nab X Y in (X, Y) -> false
| _ -> false ;;

Figure 3.2: The function that checks the equality (modulo α-renaming) of two terms.

let rec subst t x u = match (x,t) with
| nab X in (X,X) -> u
| nab X Y in (X,Y) -> Y
| (x, Abs r) -> Abs(Y\ subst (r @ Y) x u)
| (x, App(m,n)) -> App(subst m x u, subst n x u)

;;

Figure 3.3: The function for computing the substitution 𝑢[𝑥/𝑡] where x is free in u.

let subst t u = new X in
let rec aux t = match t with

| X -> u
| nab Y in Y -> Y
| App(u, v) -> App(aux u, aux v)
| Abs r -> Abs(Y\ aux (r @ Y))

in aux (t @ X);;

Figure 3.4: The function for computing the substitution 𝑢@ 𝑡 for 𝑢 of type tm ⇒ tm

3. MLTS EXAMPLES 55

eq (Abs(X\ App(X, Abs(Y\ X)))) (Abs(U\ App(U, Abs(V\ V))));;
new X in eq (App(X, Abs(Y\ X))) (App(X, Abs(V\ V)));;
new X in eq X X && eq (Abs(Y\ X)) (Abs(V\ V));;
new X in true && eq (Abs(Y\ X)) (Abs(V\ V));;
new X in true && new Y in eq X Y;;
new X in true && new Y in false ;;
true && false ;;
false ;;

Substitution Figure 3.3 shows a first version of the substitution function (of type
tm -> tm -> tm -> tm) where (subst t X u) replaces “free” occurrences in u of
the nominal X by t. Of course, since there are no free nominals in MLTS, Xmust
be bound outside of the scope of the call to subst. This version of the substitution
function is mostly self-explanatory: the function dives recursively in the term t and
when a subterm is a nominal, it is replaced by u if it is an occurrence of X.
A more idiomatic version of the substitution can be provided: Figure 3.4 defines

the function (subst t u) that takes an abstraction over a term t and a term u and
returns the result of substituting the (top-level) bound variable of t with u. This
function works by first introducing a new nominal X and then defining an auxiliary
function that replaces that nominal in a term with the term u. Finally, that auxiliary
function is called on the expression (t @ X) which is the result of “moving” the
top-level bound variable in t to the binding occurrence of the expression new X in.
This substitution function has the type (tm => tm) -> (tm -> tm): that is, it is
used to inject the abstraction type => into the function type ->.

β-reduction Substitution is then used by the function of Figure 3.5, beta, to com-
pute the β-normal form of a given term of type tm. Given the following Church
numeral for 2 and operations for addition and multiplication on Church numerals
(see Section 1.3).

let two = Abs(F\ Abs(X\ App(F, App(F, X))));;
let plus = Abs(M\ Abs(N\ Abs(F\ Abs(X\

App(App(M, F), App(App(N, F),
X))))));;

let times = Abs(M\ Abs(N\ Abs(F\ Abs(X\
App(App(M, App(N, F)),

X)))));;

In the resulting evaluation context, the values computed by (beta (App(App(plus,
two), two))) and (beta (App(App(times, two), two))) are both the Church
numeral for 4.

Vacuous For another example, consider a program that returns true if and only if
its argument, of type tm => tm, is such that its top-level bound variable is a “vacuous”
binding, that is, it does not appear in the body of the term. Figure 3.6 contains
three implementations of this boolean-valued function. The first implementation
proceeds by matching patterns with the prefix X\, thereby, matching expressions of
type tm => tm. The second implementation uses a different style: it creates a new
nominal X and proceeds to work on the term t @ X, in the same fashion as the size
example. The internal aux function is then defined to search for occurrences of X

56 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

let rec beta t = match t with
| nab X in X -> X
| Abs r -> Abs(Y\ beta (r @ Y))
| App(m, n) -> let m = beta m in let n = beta n in

begin match m with
| Abs r -> beta (subst r n)
| _ -> App(m, n)

end ;;

Figure 3.5: The (partial) function that computes the β-normal form of its argument.

let rec vacp1 t = match t with
| X\ X -> false
| nab Y in X\ Y -> true
| X\ App(m @ X, n @ X) -> vacp1 m && vacp1 n
| X\ Abs(Y\ r @ X Y) -> new Y in vacp1 (X\ r @ X Y);;

let rec vacp2 t = new X in
let rec aux term = match term with

| X -> false
| nab Y in Y -> true
| App(m, n) -> aux m && aux n
| Abs(r) -> new Y in aux (r @ Y)

in aux (t @ X);;

let vacp3 t = match t with
| X\ s -> true
| _ -> false ;;

Figure 3.6: Three implementations for determining if an abstraction is vacuous.

let rec assoc x alist = match alist with
| (u,y)::tl -> if (u = x) then y else assoc x tl;;

type tm' = | App ' of tm' * tm' | Abs ' of tm' => tm ';;

let rec id g term = match term with
| App(m,n) -> App '(id g m, id g n)
| Abs(r) -> new X in Abs '(Y\ id ((X, Y)::g) (r @ X))
| nab X in X -> assoc X g;;

Figure 3.7: Translating from tm to its mirror version tm'.

3. MLTS EXAMPLES 57

in that term. The third implementation, vacp3, is not (overtly) recursive since the
entire effort of checking for the vacuous binding is done during pattern matching.
The first match rule of this third implementation is essentially asking the question:
is there an instantiation for the (pattern) variable 𝑠 so that the λ𝑥.𝑠 equals 𝑡? This
question can be posed as asking if the logical formula ∃𝑠.(λ𝑥.𝑠) = 𝑡 can be proved.
In this latter form, it should be clear that since substitution is intended as a logical
operation, the result of substituting for 𝑠 never allows for variable capture. Hence,
every instance of the existential quantifier yields an equation with a left-hand side
that is a vacuous abstraction. Of course, this kind of pattern matching requires a
recursive analysis of the term 𝑡.

Mirror For another simple example of computing on the untyped λ-calculus,
consider introducing a mirror version of tm, as is done in Figure 3.7, and writ-
ing the function that constructs the mirror term in tm' from an input term tm.
This computation is achieved by adding a context (an association list) as an ex-
tra argument that maintains the association of bound variables of type tm and
those of type tm'. The value of id [] (Abs(X\ Abs(Y\ App(X,Y)))) is (Abs'(X\
Abs'(Y\ App'(X,Y)))) (the types of X and Y in these two expressions are, of course,
different).

De Bruijn indices Figure 3.8 presents a datatype for the untyped λ-calculus in De
Bruijn’s style nameless dummies [Bru72] as well as the functions that can convert
between that syntax and the one with explicit bindings. The auxiliary functions
nth and index take a list of nominals as their second argument: nth takes also an
integer n and returns the 𝑛𝑡ℎ nominal in that list while index takes a nominal and
returns its ordinal position in that list. For example, the value of

trans [] (Abs(X\ Abs(Y\ Abs(Z\ App(X, Abs(W\ Z))))));;

is the term DAbs(DAbs(DAbs(DApp(Dvar 2, DAbs(Dvar 1))))) of type deb.
If dtrans [] is applied to this second term, the former term is returned (modulo

α-renaming, of course).

3.2 Higher-order programming examples
In this section we present several classic examples involving higher-order program-
ming. That is, functions which take other functions as arguments and/or return
functions. Recall the familiar “fold-right” higher-order function:

let rec foldr f a lst = match lst with
| [] -> a
| x :: xs -> f x (foldr f a xs);;

This function can be viewed as replacing all occurrences of :: with the binary
function f and [] with a. The higher-order program maptm in Figure 3.9 does the
analogous operation on the datatype of untyped λ-terms tm. In particular, the
constructors App and Abs are replaced by functions fapp and fabs, respectively.
In addition, the function fvar is applied to all nominals encountered in the term.
This higher-order function can be used to define a number of other useful and
familiar functions. For example, mapvar function is a specialization of the maptm
function that just applies a given function to all nominals in an untyped λ-term.

58 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

type deb =
| Dapp of deb * deb
| Dabs of deb
| Dvar of int;;

let rec nth n l = match (n, l) with
| (0, x::k) -> x
| (c, x::k) -> nth (c - 1) k;;

let index x l =
let rec aux c x k = match (x, k) with

| nab X in (X, X::(l @ X)) -> c
| nab X Y in (X, Y::(l @ X Y)) ->

aux (c + 1) x (l @
X Y)

in aux 0 x l;;

let rec trans prefix term = match term with
| App(m, n) -> Dapp(trans prefix m, trans prefix n)
| Abs r -> new X in Dabs(trans (X:: prefix) (r @

X))
| nab Y in Y -> Dvar (index Y prefix);;

let rec dtrans prefix term = match term with
| Dapp(m, n) -> App(dtrans prefix m, dtrans prefix n)
| Dabs r -> Abs(X\ dtrans (X:: prefix) r)
| Dvar c -> nth c prefix ;;

Figure 3.8: De Bruijn’s nameless dummy syntax and its conversions with type tm.

The application of a substitution (an expression of type (tm * tm) list) to a term
of type tm can then be seen as the result of applying the lookup function to every
variable in the term (using mapvar). Using the functions in Figure 3.9, the three
expressions:

Abs(X\
mapvar (fun x -> X) (Abs(U\ Abs(V\ App(U, V))))

);;

new X in new Y in
lookup ((X, Abs(U\U))::(Y, Abs(U\ App(U,U)))::[]) X;;

new X in new Y in
lookup ((X, Abs(U\U))::(Y, Abs(U\ App(U,U)))::[]) Y;;

evaluate respectively to the following three λ-terms.

Abs(X\ Abs(Y\ Abs(Z\ App(X, X))))
Abs(X\ X)
Abs(X\ App(X, X))

3. MLTS EXAMPLES 59

let rec maptm fapp fabs fvar t = match t with
| App(m,n) -> fapp (maptm fapp fabs fvar m)

(maptm fapp fabs fvar n)
| Abs r ->

fabs (fun x -> maptm fapp fabs fvar (r @ x))
| nab X in X -> fvar X;;

let lookup sub var = match var with
| nab X in X ->

let rec aux s = match s with
| [] -> X
| (X,t)::sub -> t
| (y,t)::sub -> aux sub

in aux sub;;

let mapvar = maptm (fun m -> fun n -> App (m, n))
(fun r -> Abs (X \ r X));;

let rec mem x l = match l with
| [] -> false
| n::tl -> if n = x then true else mem x tl;;

let rec union l k = match l with
| [] -> k
| h::tl -> if mem h k then union tl k else

h::(union tl k);;

let rec remove x l = match l with
| [] -> []
| h::tl -> if h = x then remove x tl else

h::(remove x tl);;

let fv term =
maptm union (fun r -> new X in remove X (r X))

(fun x -> x::[]) term;;

let size term = maptm (fun x -> fun y -> 1 + x + y)
(fun r -> new X in 1 + (r X))
(fun x -> 1) term;;

let terminals term = maptm (fun x -> fun y -> x + y)

Figure 3.9: Various computations on untyped λ-terms using higher-order programs.

60 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

Three additional functions are defined in Figure 3.9: fv constructs the list of free
variables in a term; size is a re-implementation of the size function presented
in Section 3; and terminals counts the number of variable occurrences (terminal
nodes) in its argument.

3.3 Normalization by Evaluation (NBE)
Fig. 3.10 shows one possible implementation of NBE in MLTS. NBE is a two steps
process. Terms of type tm are first evaluated into values and functions (type sem)
encoded via the ones of the host language, here MLTS functions. Then these values
are reified back to the term syntax level at any time.
The implementation we provide is mostly inspired by the one given as an example

program for the FreshML language in [SPG03]. The main difference in our imple-
mentation is that, because MLTS will check for escaping nominals when evaluating
a function’s arguments, intermediate values of type semmust explicitly bind locally
“free” nominals that will disappear at the time of reification. To do that we added a
constructor “New” to the type “sem” (see lines 2, 15, 36, 39).
We see this added complexity as a feature of MLTS, in fact, it is a crucial aspect of

the language that variables can never be free at the program level. This forces the
user to have a more precise understanding of what is happening in his programs
and keep track of bound variables at all times, and move their binders as necessary
until throughout their whole lifetime.

3.4 The π-calculus
The π-calculus [MPW92; Mil90b] is a language for modeling processes in which
interactions are name-based. In particular, this calculus permits communication
via named channels, including the communication of the names of the channels
themselves. The basic calculus has two syntactic categories: names and processes.
Process expressions are defined by the following syntax rule.

P ∶= 0 | P | P | P + P | 𝑥(𝑦).P | ̄𝑥𝑦.P | [𝑥 = 𝑦].P | τ.P | (𝑦)P | ! P.

Here, 𝑥 and 𝑦 range over names. The process 0 cannot perform any actions. The
expressions P | P and P + P denote, respectively, the parallel composition and the
choice of two processes. The next four expressions are prefixed processes:

• 𝑥(𝑦).P represents a process that can accept a name on the channel 𝑥 and will
then become P with 𝑦 bound to the input name;

• ̄𝑥𝑦.P is a process that can output the name 𝑦 on the channel 𝑥;
• [𝑥 = 𝑦].P is a process that can become P provided that the names 𝑥 and 𝑦 are
equal;

• τ.P is a process that can evolve through a silent action.

The expression (𝑦)P represents the restriction of the name 𝑦 to P: interactions can
take place internally to P through this name but the process cannot communicate
externally along the channels ̄𝑦 or 𝑦. Finally, ! P denotes the parallel composition of
any number of copies of P.
To represent expressions of the π-calculus in MLTS, we define the two datatypes

name and proc for names and processes that are given in Figure 3.11. Note that the

3. MLTS EXAMPLES 61

type sem =
| New of tm => sem
(* functions *)
| L of (unit -> sem) -> sem

5 (* neutral values *)
| N of neu

and neu =
| V of tm
(* neutral app *)

10 | A of neu * sem;;

(* sem -> tm *)
let rec reify s =

match s with
15 | New r -> new Z in reify (r @ Z)

| L f -> Abs(X\ reify (f (fun () -> N (V X))))
| N n -> reifyn n

(* neu -> tm *)
20 and reifyn n =

match n with
| nab Y in V Y -> Y
| A (n, s) -> App (reifyn n, reify s);;

25 (* (tm * (unit -> sem)) list -> tm -> sem *)
let rec evals env term =

match term with
| nab X in X ->

begin match env with
30 | [] -> N (V X)

| (X, v)::env -> v ()
| nab Y in (Y, v)::env -> evals env X
end

| Abs t ->
35 L (fun v ->

New (Z\ evals ((Z,v)::env) (t @ Z)))
| App(t1, t2) ->

let rec apply s = match s with
| New r -> New (Z\ apply (r @ Z))

40 | L f -> f (fun () -> evals env t2)
| N n -> N (A (n, evals env t2))

in
apply (evals env t1);;

45 (* tm -> sem *)
let eval t = evals [] t;;

(* tm -> tm *)
let norm t = reify (eval t);;

Figure 3.10: Normalization By Evaluation.

62 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

type name = | A | B | C;;

type proc =
| Null (* 0 *)
| Plus of proc * proc (* P + P *)
| Par of proc * proc (* P|P *)
| In of name * (name => proc) (* x(y).P *)
| Out of name * name * proc (* xy.P *)
| Eqn of name * name * proc (* [x=y].P *)
| Taup of proc (* tau.P *)
| Bang of proc (* !P *)
| Nu of name => proc;; (* (y)P *)

Figure 3.11: Two data types for encoding the π-calculus.

let rec trans gamma term = match term with
| App(m, n) ->

let p = trans gamma m in
let q = trans gamma n in
(U\ Nu(V\ Par(

p @ V,
Nu(X\ Out(V, X, Out(V, U, Bang(In(X, q))))))))

| Abs(m) ->
new X in (U\ In(U, Y\

let p = trans ((X,Y)::gamma) (m @ X) in
In(U, V\ p @ V)))

| nab X in X -> (U\ Out(assoc X gamma , U, Null));;

Figure 3.12: Encoding of the call-by-name evaluation of untyped λ-terms into the
π-calculus.

two process expressions 𝑥(𝑦).P and (𝑦)P embody a binding notion. The λ-terms for
these expressions will accordingly include an explicit abstraction. For example, the
two π-calculus expressions

(𝑦) ̄𝑎𝑦.((𝑦(𝑤).0) | (̄𝑏𝑏.0)) and (𝑦) ̄𝑎𝑦.((𝑦(𝑤). ̄𝑏𝑏.0) + (̄𝑏𝑏.𝑦(𝑤).0))

are encoded in MLTS with the terms, respectively.

Nu(Y\ Out(A,Y,Par(In(Y, W\ Null),Out(B,B,Null))))
Nu(Y\ Out(A,Y,Plus(In(Y, W\ Out(B,B,Null)),

Out(B,B, In(Y, W\ Null)))))

In this encoding of the π-calculus (Figure 3.11), the type namemust be considered
open (in the sense described in Section 4.2) while the type proc is not open. The oper-
ational semantics of the π-calculus is generally described using a non-deterministic,
labeled transition systems. That semantics is easily specified in λProlog [MN12] and
reasoned with in Abella [Bae+14].
One way to demonstrate the expressiveness of the π-calculus is to encode within

it the call-by-name evaluation of the untyped λ-calculus. Such a translation function

4. TYPES AND SYNTAX 63

was given by Milner in [Mil90b] and it can be written as follows.

[[𝑥]](𝑢) = ̄𝑥𝑢.0
[[λ𝑥 M]](𝑢) = 𝑢(𝑥).𝑢(𝑣).[[M]](𝑣)
[[(M N)]](𝑢) = (𝑣).([[M]](𝑣) | (𝑥).(̄𝑣𝑥. ̄𝑣𝑢.!𝑥(𝑤).[[N]](𝑤)))

Here, the translation function [[M]](𝑢) takes an untyped λ-termM and a name 𝑢 and
returns a process that encodes the λ-termM in such a way that it expects to receive
its arguments on channel 𝑢. In Figure 3.12, we provide an MLTS implementation of
this translation: in particular, if [[M]](𝑢) is the process calculus expression P, then
the function trans, when applied to (the encoding of)M would yield (the encoding
of) λ𝑢.P. (The function assoc used here is defined in Figure 3.7.) For example, the
value of (transf [] Abs(X\X)) is

(U\ In(U,X\ In(U,(Y\ Out(X,Y, Null))))).

4 Types and syntax
Three different syntaxes coexist in our actual description of MLTS. The first one
is the concrete syntax, the one that users should use to write their programs and
that is understood by the parser. It is quite verbose and not very suited to formal
reasoning. We provide a more appropriate syntax, mostly isomorphic to it that we
call source syntax. In both the concrete syntax and the source syntax, following
standard convention in ML, languages pattern variables are implicitly quantified at
the beginning of a pattern (and thus outside of the nabla-bound nominals). However,
our formal reasoning will be done on another slightly different abstract syntax that
we call explicit syntax. The major difference with the source syntax is that pattern
variables must be explicitly bound before using them in explicit syntax. For example,
the following pattern matching clause in source syntax:

nab X in (X, y) -> y

would correspond in explicit syntax to:

all y. nab X in (X, y) -> y

Fig. 3.13 shows the (combined) source syntax and explicit syntax for the interpre-
tation of MLTS. Source syntax can be immediately deduced from it by removing the
all rule. When proving formal results for MLTS we will use the explicit syntax.

4.1 Abstract syntax as untyped λ-calculus
Although MLTS is designed as a strongly typed functional programming language,
evaluation for this language is fundamentally untyped. The abstract syntax for
MLTS is based on the untyped λ-calculus along with a few extensions to capture the
new features of MLTS.
Recall the semantic description of the untyped λ-calculus given by Scott in [Sco70].

Scott was able to present a semantic domain D that was isomorphic to its own
function space: that is, D ≡ [D → D]. This equivalence is witnessed by the two
continuous mappings Φ∶ D → (D → D) (encoding application) and Ψ∶ (D →
D) → D (encoding abstraction). For example, the untyped λ-term λ𝑥λ𝑦((𝑥 𝑦) 𝑦) is
encoded as a value in domain D using the expression (Ψ(λX(Ψ(λY(Φ(Φ X Y) X)))))).

64 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

M,N ∶∶= terms
∣ 𝑥, 𝑦, 𝑧 term variables
∣ X nominals
∣ λ𝑥.M function abstraction
∣ M N application
∣ X\M name abstraction
∣ M @ X name application
∣ new X in M name generation
∣ rec 𝑥 in M Fixpoints
∣ C(M1 …M𝑛) data constructor
∣ match M with R1 ∣ ⋯ ∣ R𝑛 pattern matching

R ∶∶= pattern-matching clause
∣ nab X in R nabla-bound nominal
∣ all 𝑥. R pattern-bound variable
∣ 𝑝 → M match arm

𝑝 ∶∶= patterns
∣ 𝑥 variable
∣ X nominal
∣ C(𝑝1 …𝑝𝑛) constructor
∣ _ wildcard
∣ X\ 𝑝 name abstraction
∣ 𝑥 @ X1 …X𝑛 name application

𝑣 ∶∶= λ𝑥.M values
∣ C(𝑣1 …𝑣𝑛)
∣ X\ 𝑣

Figure 3.13: explicit syntax of MLTS terms (removing the red rule one obtains the
source syntax for MLTS)

4. TYPES AND SYNTAX 65

Note that syntactically, application in the untyped λ-calculus is captured by two
domain-level features: function application and the mapping Φ. Similarly, abstrac-
tion is captured by two domain-level features: function abstraction (the creation
of an element of [D → D]) and the mapping Ψ. We can thus identify two different
syntactic categories in this encoding: those denoted by the domain D and those
identified by the domain of (continuous) functions D → D. In what follows, we
need to make a similar distinction between (λ𝑥.T) of type D → D and (Ψ(λ𝑥.T)) of
type D. In order to give suggestive names for this distinction, we shall borrow a bit
of terminology from Martin-Löf’s notion of arity typing [NPS90]. In particular, we
will say that a term of type D has arity type 0 while a term of type D → D has arity
type 0 → 0. Other arity constructors are possible but they are not needed in the
current design of MLTS.
In most formalizations of ML-style programming languages, expressions of non-

zero arity generally only arise in the application of a function to its argument: all
other features of the language only take arguments of arity type 0. In MLTS, expres-
sions of non-zero arity play extended roles: for example, in MLTS, pattern matching
variables can have non-primitive arity while in most ML-languages, pattern vari-
ables are always of primitive arity. In fact, higher arity expressions are first class
citizen in MLTS since they can be passed as parameters and returned as values. It is
important to keep arity typing and ML-style typing separated. For example, the type
of subst in Section 3.2 can be inferred to be (tm => tm) -> tm -> tm. The arity
typing of subst is, however, the simple expression (0 → 0) → 0 → 0: that is, the
first argument given to substmust be a binding at the level of the abstract syntax.
As we shall see in the following sections, the arity typing is used in the specification
of the operational semantics of MLTS.

4.2 Typing for the concrete syntax
While most of the formalism we will introduce later relies on the explicit syntax, we
think that giving typing rules for the source syntax users interact with is important
to have a good understanding of the intended usage of MLTS. This typing system
will only differ from the one for explicit syntax when dealing with pattern matching,
which is slightly more complex for the source syntax because of the implicit pattern
variables.
Given that MLTS is a rather mild extension to OCaml at the syntax level, a typing

system for MLTS is quite simple to present and follows standard practices. Fig-
ure 3.14 contains the rules for typing the new features of MLTS: additional rules
for encoding let and let rec constructions (as well as for built-in types such as
integers) must also be added, but these follow the usual pattern. The inference rules
in this figure involve the following typing judgments.

Γ ⊢ M ∶ A Γ ⊢ A ∶ R ∶ B Γ ⊢ M ∶ A ⊢ Δ open A

In all of these rules, Γ is the usual association between bound variables and a type:
in our situation, Γ will associate both variables and nominals to type expressions.
(We also assume that the order of pairs in Γ is not important.) The first of these
judgments is the usual typing judgment between a program expression M and A. The
second of these judgments is used to type a pattern-matching clause R that has a
left-hand side of type A and a right-hand side of type B. For example, the following
typing judgment should be provable.

Γ ⊢ tm ∶ Abs(r) -> 1 + (new X in size (r @ X)) ∶ int

66 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

Expression typing judgment Γ ⊢ C ∶ A

Γ, 𝑥 ∶ C ⊢ 𝑥 ∶ C Γ, X ∶ A ⊢ X ∶ A
Γ ⊢ M ∶ A → B Γ ⊢ N ∶ A

Γ ⊢ M N ∶ B

Γ, 𝑥 ∶ A ⊢ M ∶ B
Γ ⊢ (λ𝑥.M) ∶ A → B

C ∶ A1, … , A𝑛 → B Γ ⊢ M1 ∶ A1 … Γ ⊢ M𝑛 ∶ A𝑛
Γ ⊢ C(M1, … ,M𝑛) ∶ B

Γ, 𝑥 ∶ B ⊢ M ∶ B
Γ ⊢ rec 𝑥 in M ∶ B

Γ, X ∶ A ⊢ M ∶ B open A
Γ ⊢ X\M ∶ A ⇒ B

Γ ⊢ M ∶ A ⇒ B Γ ⊢ X ∶ A
Γ ⊢ M @ X ∶ B

Γ, X ∶ A ⊢ M ∶ B open A
Γ ⊢ new X in M ∶ B

Γ ⊢ M ∶ A Γ ⊢ A ∶ R1 ∶ B … Γ ⊢ A ∶ R𝑛 ∶ B
Γ ⊢ match M with R1 ∣ ⋯ ∣ R𝑛 ∶ B

Pattern-matching clauses typing judgment Γ ⊢ A ∶ R ∶ B

Γ, X ∶ C ⊢ A ∶ M ∶ B open C
Γ ⊢ A ∶ nab X in M ∶ B

Γ ⊢ L ∶ A ⊣ Δ Γ, Δ ⊢ R ∶ B
Γ ⊢ A ∶ L → R ∶ B

Pattern typing judgment Γ ⊢ 𝑝 ∶ A ⊣ Δ

Γ ⊢ 𝑥 ∶ C ⊣ 𝑥 ∶ C Γ, X ∶ A ⊢ X ∶ A ⊣ ∅

C ∶ A1, … , A𝑛 → B Γ ⊢ 𝑝1 ∶ A1 ⊣ Δ1 … Γ ⊢ 𝑝𝑛 ∶ A𝑛 ⊣ Δ𝑛
Γ ⊢ C(𝑝1, … , 𝑝𝑛) ∶ B ⊣ Δ1, … , Δ𝑛

Γ, X ∶ A ⊢ 𝑝 ∶ B ⊣ Δ open A
Γ ⊢ X\𝑝 ∶ A ⇒ B ⊣ Δ

Γ ⊢ X1 ∶ A1 … Γ ⊢ X𝑛 ∶ A𝑛 open A1 … open A𝑛
Γ ⊢ 𝑥 @ X1 …X𝑛 ∶ A ⊣ 𝑥 ∶ A1 ⇒ … ⇒ A𝑛 ⇒ A

Figure 3.14: Typing rules based on the source syntax for the new features of MLTS.

5. FORMALIZING THE DESIGN OF MLTS 67

Since this rule expression is intended to be closed (that is, the variable r is quantified
implicitly around this rule), the actual value of Γ will not impact this particular
typing judgment. The third typing judgment above is used to analyze the left-hand-
side of a match rule: in particular, Γ ⊢ M ∶ A ⊢ Δ holds if during the process of
analyzing the pattern M, pattern variables are produced (since these are implicitly
quantified) and placed into the typing context Δ. For example, the following should
be provable.

Γ ⊢ Abs(r) ∶ tm ⊢ {r ∶ tm => tm}

Some of the inference rules in Figure 3.14 contain premises of the form (open A)
where A is a primitive type. Types for which this judgment holds are called open types
and are the types of bindings in the new and backslash expressions: equivalently,
open types can contain nominals. For our purposes here, we can assume that every
type that is defined in a program (using the type command) is presumed to be open.
For example, the judgment (open tm) needs to be true so that the type tm => tm
can be formed in the various typing rules. On the other hand, the built-in type for
integers int should not be considered open in this sense. Clearly a keyword could
be added to datatype declarations to indicate if a type is intended as open in this
sense. Our current implementation does not use one.
In the inference rules in Figure 3.14, whenever we extend the typing context Γ

to, say, Γ,X ∶ A, we always assume that X is not declared with a type in Γ already.
Since α-conversion is always possible within terms, this assumption can always be
satisfied. Note that since pattern variables are restricted (as is usual) so that they
have at most one occurrence in a given pattern, the union of contexts, in the form
Δ1, … , Δ𝑛 never attributes more than one type to the same variable.

4.3 Typing for the explicit syntax
Complementarily, Fig. 3.15 show the typing rules for the explicit syntax that we
will be using in formal proofs later in the thesis. Notice the simplification of the
pattern-matching rules, the environment Δ not being needed anymore now that
pattern variables are declared at the beginning of patterns.

5 Formalizing the design of MLTS
As we have seen before, bindings are such an intimate part of the nature of syntax
that we should expect that our high-level programming languages account for them
directly in. For example, any built-in notion of equality or matching should respect
at least α-conversion. (The paper [Mil18a] contains an extended argument of this
point in the setting of logic programming and proof assistants.) Another reason to
include binders as a primitive within a functional programming language is that
their semantics have a well understood declarative and operational treatment. For
example, Church’s higher-order logic STT [Chu40] contains an elegant represen-
tation of bindings in both terms and formulas. His logic also identifies equality
for both terms and formulas with αβη-conversion. Church’s representation is also
a popular one in theorem proving—being the core logic of the Isabelle [Pau94],
HOL [Har09; Gor91], and Abella [Bae+14] theorem provers—as well as the logic
programming language λProlog [MN12]. Given the existence of these provers, a
good literature now exists that describes how to effectively implement STT and

68 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

Expression typing judgment Γ ⊢ C ∶ A

Γ, 𝑥 ∶ C ⊢ 𝑥 ∶ C Γ, X ∶ A ⊢ X ∶ A
Γ ⊢ M ∶ A → B Γ ⊢ N ∶ A

Γ ⊢ M N ∶ B

Γ, 𝑥 ∶ A ⊢ M ∶ B
Γ ⊢ (λ𝑥.M) ∶ A → B

C ∶ A1, … , A𝑛 → B Γ ⊢ M1 ∶ A1 … Γ ⊢ M𝑛 ∶ A𝑛
Γ ⊢ C(M1, … ,M𝑛) ∶ B

Γ, 𝑥 ∶ B ⊢ M ∶ B
Γ ⊢ rec 𝑥 in M ∶ B

Γ, X ∶ A ⊢ M ∶ B open A
Γ ⊢ X\M ∶ A ⇒ B

Γ ⊢ M ∶ A ⇒ B Γ ⊢ X ∶ A
Γ ⊢ M @ X ∶ B

Γ, X ∶ A ⊢ M ∶ B open A
Γ ⊢ new X in M ∶ B

Γ ⊢ M ∶ A Γ ⊢ A ∶ R1 ∶ B … Γ ⊢ A ∶ R𝑛 ∶ B
Γ ⊢ match M with R1 ∣ ⋯ ∣ R𝑛 ∶ B

Pattern-matching clauses typing judgment Γ ⊢ A ∶ R ∶ B

Γ, X ∶ C ⊢ A ∶ M ∶ B open C
Γ ⊢ A ∶ nab X in M ∶ B

Γ ⊢ L ∶ A Γ ⊢ R ∶ B
Γ ⊢ A ∶ L → R ∶ B

Γ, 𝑥 ∶ C ⊢ A ∶ R ∶ B
Γ ⊢ A ∶ all 𝑥. R ∶ B

Pattern typing judgment Γ ⊢ 𝑝 ∶ A

Γ, 𝑥 ∶ C ⊢ 𝑥 ∶ C Γ, X ∶ A ⊢ X ∶ A

C ∶ A1, … , A𝑛 → B Γ ⊢ 𝑝1 ∶ A1 … Γ ⊢ 𝑝𝑛 ∶ A𝑛
Γ ⊢ C(𝑝1, … , 𝑝𝑛) ∶ B

Γ, X ∶ A ⊢ 𝑝 ∶ B open A
Γ ⊢ X\𝑝 ∶ A ⇒ B

Γ ⊢ X1 ∶ A1 … Γ ⊢ X𝑛 ∶ A𝑛 open A1 … open A𝑛
Γ, 𝑥 ∶ A1 ⇒ … ⇒ A𝑛 ⇒ A ⊢ 𝑥 @ X1 …X𝑛 ∶ A

Figure 3.15: Typing rules based on the explicit syntax of MLTS.

5. FORMALIZING THE DESIGN OF MLTS 69

closely related logics. Below, we describe what that literature can tell us about the
meaning and implementation of the novel features of MLTS.

5.1 Equality modulo α, β, η conversion
The abstract syntax behind MLTS is essentially a simply typed λ-term that encodes
untyped λ-calculus, as described in Section 4.1. Furthermore, the equality theory
of such terms is given by the familiar α, β, η conversion rules. As a result, a pro-
gramming language that adopts this notion of equality cannot take an abstraction
and return, say, the name of its bound variable: since that name can be changed via
the α-conversion, such an operation would not be a proper function. Thus, it is not
possible to decompose the untyped λ-term λ𝑥.𝑡 into the two components 𝑥 and 𝑡. Not
being able to retrieve a bound variable’s name might appear as a serious deficiency
but, in fact, it can be a valuable feature of the language: for example, a compiler
does not need to maintain such names and can choose any number of different,
low-level representations of bindings to exploit during execution. Since the names of
bindings seldom have semantically meaningful value, dropping them entirely is an
interesting design choice. That choice is similar to one taken in ML-style languages
in which the location in memory of a reference cell is not maintained as a value in
the language.
The relation of λ-conversion is invoked when evaluating the expression (t @ s1

... sn). If we assume that expressions s1, … , sn have arities ρ1, … , ρ𝑛, respectively,
then tmust have arity ρ1 → ⋯ → ρ𝑛 → 0. Thus, t is η-equivalent to a term with
𝑛 abstractions, for example, X1\...Xn\ t' and the value of the expression (t @
s1 ... sn) is the result of performing λ-normalization of (X1\...Xn\ t') to the
arguments s1, … , sn.
As we illustrated in Section 3, it is possible to implement both substitution and

λ-conversion in MLTS. Thus, it is possible to limit the occurrences of @ to appear
only within the scope of match clauses and only then with a pattern variable as the
first argument of @. For the sake of the rest of this work, we will not enforce that
restriction.

5.2 Pattern unification and matching
Since we are not able to decompose bindings into their bound variable and body,
we need to find alternative means for analyzing the structure of terms containing
bindings. As our earlier examples illustrated, matching within patterns can be used
to probe terms and their bindings. If we do not place restrictions on the use of
pattern variables, then patterns can have complex behaviors.

No repeated pattern variable occurrences

We impose a familiar restriction on the match rules: a pattern variable cannot have
more than one occurrence within a match pattern. The main reason this is done
in ML-style languages is that it relieves pattern matching from the need to check
equality of terms. Since terms can be large, pattern matching could involve a costly
recursive descent of terms. It is far more common to forbid repeated occurrences of
pattern variables and force the programmer to insert equality checking outside the
pattern matching operation. Thus, instead of defining memb : tm -> tm list ->
bool with the following code using a repeated match variable

70 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

let rec memb x l = match (x,l) with
| (x,[]) -> false
| (x,(x::l)) -> true
| (y,(x::l)) -> memb x l;;

we can require the programmer to write an equality predicate for type tm and then
rewrite the program above as follows.

let rec eqtm t s = match (t,s) with
| (App(m1,m2),

App(n1,n2)) -> eqtm m1 n1 && eqtm m2 n2
| (Abs r, Abs s) -> new X in eqtm (r @ X) (s @ X)
| nab X in (X, X) -> true
| _ -> false ;;

let rec memb x l = match (x,l) with
| (x,[]) -> false
| (x,(y::l)) -> if (eqtm x y) then true

else (memb x l);;

Given the definition of the tm datatype, it is clear that a compiler for MLTS could
define its own equality predicate for this type. In that case, repeated variable oc-
currences in patterns could be allowed since resolving such patterns could be done
using these equality predicates.

Restricted use of higher-order pattern variables.

Since pattern variables within match rules can have higher-order arity (and higher-
order types), occurrences of those variables within patterns need to be restricted:
otherwise, undesirable features of higher-order matching could appear. Fortunately,
there is a natural restriction on occurrences of pattern variables that guarantees that
a match either fails or succeeds with at most one solution. That restriction is the
following: every occurrence of an expression of the form (r @ X1 ... Xn) in the
left-hand side of a match rule must be such that the pattern variable r is applied to
𝑛 ≥ 0 distinct nominals X1 ... Xn and those nominals are bound within the scope
of the binding for r. For example, the following expression is not well formed

Abs(X\ (match Abs(Y\ App(X,Y)) with
| Abs(Z\ r @ Z X) -> Abs(Z\ r @ X Z)))

since the scope of the nominal X contains the (implicit) scope of the pattern variable
r, which is around the rule (Abs(Z\ r @ Z X) -> Abs(Z\ r @ X Z)).
This restriction can be motivated within a purely logical setting as follows. Let 𝑗

be a primitive type and let 𝑓 ∶ 𝑗 → 𝑗 → 𝑗 be a simply typed constant. The formula
∃G ∶ 𝑗 → 𝑗 ∀𝑥 ∶ 𝑗 [G 𝑥 = (𝑓 𝑥 𝑥)] has a unique proof in which G is instantiated
by the term λ𝑤.(𝑓 𝑤 𝑤). Note that the binding scope of the variable 𝑥 is inside
the binding scope of the variable G. If, however, one switches the order of the
quantifiers, yielding ∀𝑥 ∶ 𝑗 ∃G ∶ 𝑗 → 𝑗 [G 𝑥 = (𝑓 𝑥 𝑥)], then there are four different
proofs of this equation: if one replaces the outermost universal quantifier with an
eigenvariable, say 𝑎, then there are four different solutions forG, namely, λ𝑤.(𝑓 𝑎 𝑎),
λ𝑤.(𝑓 𝑎 𝑤), λ𝑤.(𝑓 𝑤 𝑎), and λ𝑤.(𝑓 𝑤 𝑤).
The subset of higher-order unification in which unification variables (a.k.a., logic

variables, meta-variables, pattern variables) are applied to distinct bound variables

5. FORMALIZING THE DESIGN OF MLTS 71

restricted as described above, is called higher-order pattern unification or Lλ unifica-
tion [Mil91]. (Nipkow provides a functional programming implementation of such
unification in [Nip93].) This particular subset of higher-order unification is com-
monly implemented in theorem provers such as Abella [Bae+14], Minlog [Sch06],
and Twelf [PS99] as well as recent implementations of λProlog [Dun+15; Qi+15].
The following results about higher-order pattern unification are proved in [Mil91].

1. It is decidable and unitary, meaning that if there is a unifier then there exists
a most general unifier.

2. It does not depend on typing (or on arity). As a result, it is possible to add it to
the evaluator for MLTS based on untyped terms.

3. The only form of β-conversion that is needed to solve such unification prob-
lems is what is called β0-conversion which is a form of the β rule that equates
(λ𝑥.𝑡)𝑥 with 𝑡.

An equivalent way to write the β0-conversion rule (assuming the presence of α-
conversion) is that (λ𝑥.𝑡)𝑦 converts to 𝑡[𝑦/𝑥] provided that 𝑦 is not free in λ𝑥.𝑡. Notice
that applying β0 reduction actually makes a term smaller and does not introduce
new β redexes: as a result it is not a surprise that such unification (and, hence,
matching) has low computational complexity (the paper [Qia96] claims that such
unification is, in fact, solvable in linear time).

All nab-bound variables must have a rigid occurrence.

There is an additional restriction on match rules that is associated to the nab quan-
tifiers that appear in such rules. We say that an occurrence of a nab-quantified
nominal is flexible if it is in the scope of an @. For example, in the code

Abs(X\ (match Abs(Y\ App(X,Y)) with
| nab W in Abs(Z\ r @ Z W) ->

Abs(Z\ r @ W Z)));;

the nominal binding W has two occurrences that are flexible: one each within (r @
Z W) and (r @ W Z). All other occurrences of a nab quantified nominal is rigid. For
example, in the match rule | nab X in X -> 1, X has a binding occurrence and a
rigid occurrence. In the auxiliary function used by the index function in Figure 3.8,
namely,

let rec aux c x k = match (x, k) with
| nab X in (X, X::(l @ X)) -> c
| nab X Y in (X, Y::(l @ X Y)) ->

aux (c + 1) x (l @ X Y)

the nominals X and Y have both rigid and flexible occurrences within their scope.
The one additional restriction that we need is the following: every nab quantified

variable must have at least one rigid occurrence in the left part of the match rule (the
pattern) that falls within the scope of its binder. For example, the code listed above
(for an expression of type tm) does not satisfy this restriction since every occurrence
of W in the pattern is flexible (there is just one such occurrence). The necessity of
this restriction can be seen when we consider a pattern of the form

| nab X Y in (r @ X Y) -> term

72 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

In the event that a nominal, say U, is matched with the pattern in this rule, there
are two possible instantiations for r that could succeed, namely, the terms X\Y\X
and X\Y\Y: we wish to avoid multiple successful matches of the same rule. The
following clause is also ruled out by this restriction

| nab X in 1 -> X

since X has no rigid occurrence in the expression 1. Discarding this match rule
makes sense since the nominal that is returned as the result of this match is not
constrained by the input to the match.

5.3 β0 versus β
As we described in Section 5.2, in order to ensure that matching a rule either fails
or has a unique, most general solution, we will insist that in the left-hand side of
a match rule (that is in patterns), all subexpressions of the form (r @ X1 ... Xn)
are such that the scope of the binding for r contains the scopes of the bindings for
the distinct variables in X1, …, Xn. On the right-hand side of a match rule, however,
it seems that one has an interesting choice. If on the right, we have an expression
of the form (r @ t1 ... tn) then clearly, the terms t1, …, tn are intended to be
substituted into the abstraction that is instantiated for the pattern variable r: that
is, we need to use β-conversion on this redex. One design choice is that we restrict
the terms t1, …, tn to be distinct nominals just as on the left-hand-side: in this
case, β-reduction of the expression (r @ t1 ... tn) requires only β0 reductions.
A second choice is that we allow the terms t1, …, tn to be unrestricted: in this case,
β-reduction of the expression (r @ t1 ... tn) requires more general (and costly)
β-reductions.
A similar trade-off between allowing β-conversion or just β0 conversion has also

been studied within the theory and design of the π-calculus. In particular, the full
π-calculus allows the substitution of arbitrary names into input prefixes (modeled
by β-conversion) while the πI-calculus (π-calculus with internal mobility [San96])
is restricted in such a way that the only instances of β-conversions are, in fact,
β0-conversions (see Chapter 11 in [MN12]).
Another reason to identify the β0 fragment of β-conversion is that β0 reduction

provides support for binder mobility and it can be given effective implementations,
sometimes involving only constant time (see Section 8.3).

5.4 Match rule quantification
Match rules inMLTS contain twokinds of quantification. The familiar quantification
of pattern variables can be interpreted as being universal quantifiers. For example,
the first rule defining the size function in Section 3, namely,

| App(n, m) -> 1 + size n + size m

uses two pattern variables n and m and can be encoded as the logical statement

∀m∀n[(size (App(n, m))) = 1 + size n + size m].

On the other hand, the third match rule for size contains the binder nab

| nab X in X -> 1

5. FORMALIZING THE DESIGN OF MLTS 73

which corresponds approximately to the generic ∇-quantifier (pronounced nabla)
that is found in various efforts to formalize the metatheory of computational sys-
tems [MT05; Bae+14]. Particularly, this rule can be encoded as the quantified
equation ∇x.(size x = 1): that is, the size of a nominal constant is 1.
Although there are two kinds of quantifiers around such match rules, the ones

corresponding to the universal quantifiers are implicit while the ones corresponding
to the∇-quantifiers are explicit. Our design for MLTS places the implicit quantifiers
at outermost scope: that is, the quantification over a match rule is of the form ∀∇.
Another choice might be to allow some (all) universal quantifiers to be explicitly
written and placed among any nab bindings. While this is a sensible choice, the ∀∇-
prefixes is, in fact, a reduction class in the sense that if one has a ∀ quantifier inside
a ∇-quantifier, it is possible to rotate that ∇-quantifier inside using a technique
called raising [Mil91; MT05]. That is, the formula∇𝑥 ∶ γ, ∀𝑦 ∶ τ, (B 𝑥 𝑦) is logically
equivalent to the formula ∀ℎ ∶ (γ → τ), ∇𝑥 ∶ γ, (B 𝑥 (ℎ 𝑥)): note that as the
∇-quantifier of type γ is moved to the right over a universal quantifier, the type of
that quantifier is raised from τ to γ → τ. Thus, it is possible for an arbitrary mixing
of ∀ and ∇ quantifiers to be simplified to be of the form ∀∇.

5.5 Nominal abstraction
Before we can present the formal operational semantics of MLTS, we need to intro-
duce one final logical concept: nominal abstraction which allows implicit bindings
represented by nominals to be moved into explicit abstractions over terms [GMN11].
The following notation is useful for defining this relationship.
Let 𝑡 be a term, let 𝑐1, … , 𝑐𝑛 be distinct nominals that possibly occur in 𝑡, and let

𝑦1, … , 𝑦𝑛 be distinct variables not occurring in 𝑡 and such that, for 1 ≤ 𝑖 ≤ 𝑛, 𝑦𝑖
and 𝑐𝑖 have the same type. Then we write λ𝑐1 …λ𝑐𝑛.𝑡 to denote the term λ𝑦1 …λ𝑦𝑛.𝑡′
where 𝑡′ is the term obtained from 𝑡 by replacing 𝑐𝑖 by 𝑦𝑖 for 1 ≤ 𝑖 ≤ 𝑛. There is
an ambiguity in this notation in that the choice of variables 𝑦1, … , 𝑦𝑛 is not fixed.
However, this ambiguity is harmless: the terms that are produced by acceptable
choices are all equivalent under a renaming of bound variables.
Let 𝑛 ≥ 0 and let 𝑠 and 𝑡 be terms of type τ1 →⋯ → τ𝑛 → τ and τ, respectively;

notice, in particular, that 𝑠 takes 𝑛 arguments to yield a term of the same type as
𝑡. The formula 𝑠 D 𝑡 is a nominal abstraction of degree 𝑛 (or, simply, a nominal
abstraction). The symbol D is used here in an overloaded way in that the degree of
the nominal abstraction it participates in can vary. The nominal abstraction 𝑠D 𝑡 of
degree 𝑛 is said to hold just in the case that 𝑠 is λ-convertible to λ𝑐1 … 𝑐𝑛.𝑡 for some
distinct nominals 𝑐1, … , 𝑐𝑛.
Clearly, nominal abstraction of degree 0 is the same as equality between terms

based on λ-conversion, and we will use = to denote this relation in that case. In
the more general case, the term on the left of the operator serves as a pattern for
isolating occurrences of nominals. For example, if 𝑝 is a binary constructor and
𝑐1 and 𝑐2 are nominals, then the nominal abstractions of the first row below hold
while those in the second row do not.

λ𝑥.𝑥D 𝑐1 λ𝑥.𝑝 𝑥 𝑐2 D 𝑝 𝑐1 𝑐2 λ𝑥.λ𝑦.𝑝 𝑥 𝑦D 𝑝 𝑐1 𝑐2
λ𝑥.𝑥�D 𝑝 𝑐1 𝑐2 λ𝑥.𝑝 𝑥 𝑐2�D 𝑝 𝑐2 𝑐1 λ𝑥.λ𝑦.𝑝 𝑥 𝑦�D 𝑝 𝑐1 𝑐1

A logicwith equality generalized to nominal abstractionhas been studied in [Gac09;
GMN11] where a logic, named 𝒢, that contains fixed points, induction, coinduction,

74 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

∇-quantification, and nominal abstraction is given a sequent calculus presentation.
Cut-elimination for 𝒢 is proved in [GMN11] and algorithms and implementations
for nominal abstraction are presented in [Gac09; Wan+13]. An important feature of
the Abella prover—∇ in the head of a definition—can be explained and encoded
using nominal abstraction [GMN08].

6 Natural semantic specification
We can now define the operational semantics of MLTS by giving inference rules
in the style of natural semantic (a.k.a. big-step semantic) following Kahn [Kah87].
The semantic definition for the core of MLTS is defined in Figure 3.16. Since those
inference rules are written using the explicit syntax for MLTS, we need to describe
briefly how that syntax is derived from the concrete syntax we have used in our
examples.
Instead of detailing the translation from concrete to abstract syntax, we illustrate

this translation with an example. There is an implementation of MLTS that includes
a parser and a transpiler into λProlog code: this system is available for online use and
for download at https://trymlts.github.io. For example, the λProlog code in
Figure 3.17 is the abstract syntax for the MLTS program for size given in Section 3.
The backslash (as infix notation) is also used in λProlog to denote binders. It is

the only λProlog primitive in Figure 3.17. The other constructors were defined by
us to represent MLTS abstract syntax trees.
The constant rec represents anonymous fixpoints, to which recursive functions

are translated (we also have a n-ary fixpoint for mutually-recursive functions). Note
that rec 𝑥 in 𝑡will correspond to the λProlog code rec x\ twhich is idiomatic λPro-
log syntax for the application rec(x\ t), omitting parentheses to use rec in the style
of a binder. The expression (λ𝑥. …) (or lam x \ ... in the λProlog interpreter) rep-
resents the MLTS expression fun x -> Similarly, the expression (new X in …)
(or new X \ ...) encodes new X in The expression-former match represents
pattern-matching, it expects a scrutinee and a list of clauses. Clauses are built from
the infix operator⟹, taking a pattern on the left and a term on the right, and from
quantifiers all, to introduce universally-quantified variables (implicit in MLTS
programs), and nab to introduce nominals. all-bound variables and nab-bound
nominals have the type of expressions; in the interpreter they are injected in pat-
terns by pvar and pnom. pvariant (in patterns) and variant (in expressions)
denote datatype constructor applications, they expect a datatype constructor and a
list of arguments. special expects the name of a run-time primitive (arithmetic
operations, polymorphic equality...) and a list of arguments. int represents integer
literals. Finally, we use explicit AST expression-formers backslash and arobase
and pattern-formers pbackslash and parobase to represent the constructions \
and @ of MLTS. Only arobase is present in this example.
It is intended that the inference rules given in Figure 3.16 are, in fact, notations

for formulas in the logic 𝒢. For example, schema variables of the inference figure
are universally quantified around the intended formula; the horizontal line is an
implication; the list of premises is a conjunction; and ⇓ is a binary (infix) predicate,
etc. Some features of 𝒢 are exploited by some of those inference rules: those features
are enumerated below.
Existential quantification is written explicitly into the first rule for patterns. It

is possible (as is done in other rules) to drop the explicit existential quantifier and

https://trymlts.github.io

6. NATURAL SEMANTIC SPECIFICATION 75

Evaluation judgment ⊢ M ⇓ 𝑣

⊢ λ𝑥.M ⇓ λ𝑥.M
⊢ ∀𝑖 ∈ [1; 𝑛], M𝑖 ⇓ 𝑣𝑖

⊢ C(M1, … ,M𝑛) ⇓ C(𝑣1, … , 𝑣𝑛)
⊢ rec 𝑥 in M[M/𝑥] ⇓ 𝑣

⊢ rec 𝑥 in M ⇓ 𝑣

⊢ M ⇓ λ𝑥. R ⊢ N ⇓ U ⊢ R[U/𝑥] ⇓ 𝑣
⊢ M N ⇓ 𝑣

⊢ M ⇓ 𝑣 X ∉ 𝑣
⊢ new X in M ⇓ 𝑣

⊢ M ⇓ 𝑣′ ⊢ R[𝑣′/𝑥] ⇓ 𝑣
⊢ let 𝑥 = M in R ⇓ 𝑣

⊢ M ⇓ Y\N ⊢ N[X/Y] ⇓ 𝑣
⊢ M @ X ⇓ 𝑣

⊢ M ⇓ 𝑣
⊢ X\M ⇓ X\ 𝑣

⊢ M ⇓ 𝑣M clause 𝑣M R1 N N ⇓ 𝑣
⊢ match M with R1 ∣ … ∣ R𝑛 ⇓ 𝑣

⊢ M ⇓ 𝑣M ¬(∃N, clause 𝑣M R1 N) ⊢ match M with R2 ∣ … ∣ R𝑛 ⇓ 𝑣
⊢ match M with R1 ∣ … ∣ R𝑛 ⇓ 𝑣

Match clause judgment ⊢ clause 𝑣 R N

⊢ ∃𝑤, clause 𝑣 (R 𝑤) N
⊢ clause 𝑣 (all 𝑥. R 𝑥) N

⊢ matches 𝑣 P ⊢ (λ𝑧1 …𝑧𝑚. 𝑝⟹ 𝑢)D (P⟹ U)
⊢ clause 𝑣 (nab 𝑧1 in … nab 𝑧𝑚 in 𝑝⟹ 𝑢) U

Value / Pattern identity judgment ⊢ matches M P

⊢ matches 𝑣 𝑣 ⊢ matches X X
⊢ ∀𝑖 ∈ [1, 𝑛],matches 𝑣𝑖 𝑝𝑖

⊢ matches (C(𝑣1 …𝑣𝑛)) (C(𝑝1 …𝑝𝑛))

⊢ matches 𝑣 _
⊢ matches 𝑣 𝑝

⊢ matches (X\ 𝑣) (X\ 𝑝)
⊢ matches (X\ 𝑣) 𝑝
⊢ matches 𝑣 (𝑝 @ X)

Figure 3.16: A natural semantic specification of evaluation.

76 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

(rec size \ lam term \
match term
[(all m \ all n \

(pvariant c_App [(pvar n), (pvar m)]) ==>
(special add [(special add [(int 1),

(app size n)]), (app size m)])),
(all r \ (pvariant c_Abs [pvar r]) ==>

(special add [(int 1),
(new X \ app size (arobase r X))])),

(nab X \ (pnom X) ==> (int 1))])

Figure 3.17: The translation in λProlog of the size program.

instead have the quantification be implicitly universally quantified around the
entire rule. We write it explicitly here to highlight the fact that solving the problem
of finding instances of pattern variables in matching rules is lifted to the general
problem of finding substitution terms in 𝒢.
The proof rules for natural semantics are nondeterministic in principle. Consider

attempting to prove that 𝑡, a term of arity type 0, has a value: that is, ∃𝑣, 𝑡 ⇓ 𝑣. It can
be the case that no proof exists or that there might be several proofs with different
values for 𝑣. No proofs are possible if, for example, the condition in a conditional
phrase does not evaluate to a boolean or if there are insufficientmatch rules provided
to cover all the possible values given to a match expression. Ultimately, we will want
to provide a static check that could issue a warning if the rules listed in a match
expression are not exhaustive. Conversely, the variables introduced by all and nab
in patterns may have several satisfying values, if they are not used in the pattern
itself, or only in flexible occurrences (see Section 5.2).
The nominal abstraction of 𝒢 is directly invoked to solve pattern matching in

which nominals are explicitly abstracted using the nab binding construction. When
attempting to prove the judgment ⊢ clause T R𝑢𝑙𝑒 U, the inference rules in Fig-
ure 3.16 eventually lead to an attempt to prove in 𝒢 an existentially quantified
nominal abstraction of the form

∃𝑥1 …∃𝑥𝑛[(λ𝑧1 …λ𝑧𝑚.(𝑝⟹ 𝑢⏟⎵⏟⎵⏟
𝑡

))D (P⟹ U⏟⎵⏟⎵⏟
𝑠

)].

Here, the arrow⟹ is simply a formal (syntactic) pairing operator, expecting a
pattern on the left and a term on the right. The schema variables 𝑥1, … , 𝑥𝑛 can
appear free only in 𝑝 and 𝑢: furthermore, if any of these variables are free in 𝑠 they
must be free in 𝑡. Also, if any of the variables 𝑧1, … , 𝑧𝑚 are free in 𝑠 they are also free
in 𝑡. While the variables 𝑥1, … , 𝑥𝑛 cannot appear more than once in 𝑡, the variables
𝑧1, … , 𝑧𝑚 are not restricted in this fashion. In order to prove the formula ∃ ̄𝑥(λ ̄𝑧.𝑡)D𝑠,
one must find a collection of distinct nominals ̄𝑐 and witness terms ̄𝑡 that do not
contain any of the elements of ̄𝑐 such that [̄𝑡/ ̄𝑥, ̄𝑐/ ̄𝑧]𝑡 = 𝑠 [Wan+13].
The last ingredient of our pattern-matching rule is the judgment (⊢ matches T P)

that checks that a term or value T is indeed matched by a pattern P. Patterns and
terms form two distinct syntactic categories, the judgment relates pattern-formers
to the corresponding term-formers. Nominals are embedded in patterns by the
pnom(𝑐) pattern-former, which matches a corresponding nominal—the condition

7. FORMAL PROPERTIES OF MLTS 77

π ∶∶= � paths
∣ C(𝑖.π)
∣ X\ π
∣ π @ X

Rigid occurrence in a value 𝑣′ ∈π 𝑣 Rigid occurrence in a pattern 𝑝′ ∈π 𝑝

𝑣′ ∈� 𝑣′
𝑣′ ∈π 𝑣𝑘

𝑣′ ∈C(𝑘.π) C(𝑣1, … , 𝑣𝑛)
𝑣′ ∈π 𝑣

𝑣′ ∈(Y\π) (Y\ 𝑣)
𝑣′ ∈π Y\ 𝑣

𝑣′ ∈(π @ Y) (𝑣)

𝑝′ ∈� 𝑝′
𝑝′ ∈π 𝑝𝑘

𝑝′ ∈C(𝑘.π) C(𝑝1, … , 𝑝𝑛)
𝑝′ ∈π 𝑝

𝑝′ ∈(Y\π) (Y\ 𝑝)
𝑝′ ∈π 𝑝

𝑝′ ∈(π @ Y) (𝑝 @ Y)

Rigid occurrence in a clause 𝑝′ ∈π R

𝑝′ ∈π R
𝑝′ ∈π nab Y in R

𝑝′ ∈π R
𝑝′ ∈π all 𝑥. R

𝑝′ ∈π 𝑝
𝑝′ ∈π 𝑝 → M

Figure 3.18: Paths in values and patterns

nominal(𝑐) can be expressed in terms of nominal abstraction (λ𝑥. 𝑥) D 𝑐. Term
variables introduced by all are embedded in patterns by the pvar pattern-former,
and they can match any term 𝑥—note that in this rule, 𝑥 denotes an arbitrary term,
substituted for a term variable by the all-handling rule.

7 Formal properties of MLTS

We list here some formal properties about MLTS. Some of the proofs refer to sub-
stitutions lemmas and we do not provide detailed proofs of these. However, when
type checking is specified using λ-tree syntax and implemented in λProlog, then it is
typical for substitution lemmas to be provable using simple arguments as it is done
in Section 6.4 of Miller’s JAR paper “Mechanized metatheory revisited” [Mil18b].
The properties we are going to prove are Type preservation, Determinacy of evalu-

ation and the fact that Nominals never escape their scopes.

Lemma 7.1 (Same path same type). Consider the definition of paths given in
Fig. 3.18. For any given Γ, π, A, all possibles values, clauses and patterns of type
A that are well-typed under Γ agree on the type of the values at path π. In other
words, there exists a type C such that all of the following hold:

∀𝑣, 𝑣′, Γ ⊢ 𝑣 ∶ A ∧ 𝑣′ ∈π 𝑣 ⟹ Γ ⊢ 𝑣′ ∶ C
∀𝑝′, R, B, Γ ⊢ A ∶ R ∶ B ∧ 𝑝′ ∈π R ⟹ Γ ⊢ 𝑝′ ∶ C
∀𝑝, 𝑝′, Γ ⊢ 𝑝 ∶ A ∧ 𝑝′ ∈π 𝑝 ⟹ Γ ⊢ 𝑝′ ∶ C

78 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

Proof Let A be a type, π a path and Γ a typing environment. We will proceed by
induction over π. We only show the first subcase of each case, the others being
similar.

• Case π = �

– Let 𝑣 and 𝑣′ be two values such that Γ ⊢ 𝑣 ∶ A and 𝑣′ ∈� 𝑣. Thus 𝑣 = 𝑣′
and Γ ⊢ 𝑣′ ∶ A.

• Case π = C(𝑖.π′) where C is a type constructor of type A1 → … → A𝑛 → A
and π′ another path.

– For any values 𝑣 and 𝑣′ such that Γ ⊢ 𝑣 ∶ A and 𝑣′ ∈C(𝑖.π′) 𝑣, we
can deduce from this last fact that there exist values 𝑣1, … , 𝑣𝑛 of types
A1, … , A𝑛 such that 𝑣 = C(𝑣1, … , 𝑣𝑛). Having Γ ⊢ 𝑣𝑖 ∶ A𝑖 and 𝑣′ ∈π′ 𝑣𝑖
we can use the induction hypothesis with the path π′ and obtain Γ ⊢
𝑣′ ∶ A𝑖.

• Case π = Y\ π′

– Let 𝑣 and 𝑣′ be two values such that Γ ⊢ 𝑣 ∶ A and 𝑣′ ∈X\π′ 𝑣. Following
rules in Fig. 3.18, there exists some value 𝑣″ such that 𝑣 is of the form
Y\ 𝑣″ and 𝑣′ ∈π′ 𝑣″. Moreover, by inversion of typing we have that there
exists types B and B′ such that A = B ⇒ B′ and Γ, Y ∶ A ⊢ 𝑣″ ∶ B.

• Case π = π′ @ Y

– For any values 𝑣 and 𝑣′ such that Γ ⊢ 𝑣 ∶ A and 𝑣′ ∈(π′ @ Y) 𝑣, we know
from this last fact that 𝑣′ ∈π′ Y\ 𝑣 and by induction hypothesis there
exists a type C such that Γ ⊢ 𝑣′ ∶ C.

Lemma 7.2 (Matches matches). For any values 𝑣, 𝑣′ and a pattern 𝑝 such that
all variables of 𝑝 have been replaced by values (it is always the case in matches’
definition), if 𝑣′ ∈π 𝑝 and matches 𝑣 𝑝 holds, then 𝑣′ ∈π 𝑣.

Proof Let 𝑣 and 𝑣′ be values and 𝑝 a pattern such that 𝑣′ ∈π 𝑝. If π = � then
the result is immediate, otherwise we proceed by induction on the definition of
matches.

• Cases
⊢ matches 𝑣 𝑣 and ⊢ matches X X

Then 𝑝 = 𝑣 and the result is immediate.
• Case

⊢ matches 𝑣 _
It is possible to have _ ∈� _ but never 𝑣 ∈� _ for a value 𝑣.

• Case
⊢ ∀𝑖 ∈ [1, 𝑛],matches 𝑣𝑖 𝑝𝑖

⊢ matches (C(𝑣1 …𝑣𝑛)) (C(𝑝1 …𝑝𝑛))

We have π = C(𝑖.π𝑖) and 𝑣′ ∈π𝑖 𝑝𝑖 and by induction hypothesis, 𝑣
′ ∈π𝑖 𝑣𝑖 and

thus 𝑣′ ∈π=C(𝑖.π𝑖) 𝑣.

7. FORMAL PROPERTIES OF MLTS 79

• Case
⊢ matches 𝑣″ 𝑝

⊢ matches (X\ 𝑣″) (X\ 𝑝)
In that case 𝑣 = X\ 𝑣″ and 𝑣′ ∈π X\𝑝. By inversion of the path judgment, we
have that π = X\π′ and 𝑣′ ∈π′ 𝑝. By induction hypothesis we have 𝑣′ ∈π′ 𝑣″
and going back: 𝑣′ ∈π X\ 𝑣″ = 𝑣

• Case
⊢ matches (Y\ 𝑣) 𝑝
⊢ matches 𝑣 (𝑝 @ Y)

We have π = π′ @ Y and 𝑣′ ∈(π′ @ Y) 𝑝 @ Y implies 𝑣′ ∈π′ 𝑝. By induction
hypothesis we have that 𝑣′ ∈π′ Y\ 𝑣, that is 𝑣′ ∈π 𝑣.

Lemma 7.3 (Clause matches). For any values 𝑣 and 𝑣′, rule R and term U, if
𝑣′ ∈π R and clause 𝑣 R U holds, then 𝑣′ ∈π 𝑣

Proof Le 𝑣 and 𝑣′ be values, R a rule and U a term such that 𝑣′ ∈π R. We proceed
by induction on the definition of clause.

• Case
⊢ ∃W, clause 𝑣 (R′ W) U
⊢ clause 𝑣 (all 𝑥. R′ 𝑥) U

Here 𝑣′ ∈π all 𝑥. R′ 𝑥. By definition of paths, 𝑣′ ∈π R′ and we can use the
induction hypothesis, obtaining that 𝑣′ ∈π 𝑣.

• Case
⊢ matches 𝑣 P ⊢ (λ𝑧1 …𝑧𝑚. 𝑝⟹ 𝑢)D (P⟹ U)

⊢ clause 𝑣 (nab 𝑧1 in … nab 𝑧𝑚 in 𝑝⟹ 𝑢) U

Here 𝑣′ ∈π (nab 𝑧1 in … nab 𝑧𝑚 in 𝑝 ⟹ 𝑢). By the definition of paths,
we have that 𝑣′ ∈π 𝑝. By nominal abstraction definition, we have that for
each 𝑖 ∈ [1..𝑚] there exists 𝑐𝑖 such that P = 𝑝[𝑐𝑖/𝑧𝑖] for all the 𝑖. Thus, by
substitution, we have that 𝑣′ ∈π P and because matches 𝑣 P, Lemma 7.2 gives
us that 𝑣′ ∈π 𝑣.

Theorem 7.1 (Nominals do not escape). Let E be the explicit syntax of an MLTS
program that does not contain any free nominal. If ⊢ E ⇓ V is provable then V
does not contain any free nominals.

Proof Weproceed by induction over the structure of proofs in our natural semantic.
Only three cases are “dangerous” with regard to nominal escaping: new, \ and nab:

• The case
⊢ M ⇓ 𝑣 X ∉ 𝑣
⊢ new X inM ⇓ 𝑣

is immediate as an explicit check is specified that the nominal X should not
appear free in the value 𝑣.

• Case
⊢ M ⇓ 𝑣

⊢ X\M ⇓ X\ 𝑣

is also quite easy: the binder is still present in the value so X is not free in it.

80 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

• The case

⊢ matches 𝑣 P ⊢ (λ𝑧1 …𝑧𝑚. 𝑝⟹ 𝑢)D (P⟹ U)
⊢ clause 𝑣 (nab 𝑧1 in … nab 𝑧𝑚 in 𝑝⟹ 𝑢) U

is more subtle. We need to make sure that all the nominals that will be
introduced by the nominal abstraction process are already nominals of 𝑣. But
we can indeed show that this is the case: because each pattern nominal 𝑧𝑖must
have a rigid occurrence (see Section 5.2), in 𝑝, there exists π𝑖 such that 𝑧𝑖 ∈π𝑖 𝑝.
In addition, we know by the definition of nominal abstraction that there exist
𝑐1, … , 𝑐𝑛 such that P = 𝑝[𝑐1, … , 𝑐𝑛/𝑧1, … , 𝑧𝑛]. By substitution, 𝑧𝑖 ∈π𝑖 𝑝 implies
𝑐𝑖 ∈π𝑖 P. And with matches 𝑣 P we can use Lemma 7.2 and we obtain 𝑐𝑖 ∈π𝑖 𝑣.
Thus all nominals used in nominal abstractions are already in 𝑣 and no new
free nominal will be created.

Theorem 7.2 (Type preservation). If the typing judgment Γ ⊢ E ∶ A and the
evaluation judgment ⊢ E ⇓ V holds, then so does Γ ⊢ V ∶ A.

Proof This proof is referring to the natural semantic of Fig. 3.16 and the corre-
sponding typing system of Fig. 3.15. We proceed by induction over the evaluation
derivation ⊢ E ⇓ V.

• Case
⊢ M ⇓ λ𝑥. R ⊢ N ⇓ U ⊢ U[R/𝑥] ⇓ 𝑣

⊢ M N ⇓ 𝑣

By hypothesis, ⊢ (MN) ∶ B and given the corresponding typing rule we know
(by inversion) that there exists a type A such that ⊢ M ∶ A → B and ⊢ N ∶ B.
Thus we know by induction hypothesis that ⊢ (λ𝑥. R) ∶ A → B and ⊢ U ∶ B.
An appropriate substitution lemma allows to conclude that ⊢ U[R/𝑥] ∶ B.
Another use of the induction hypothesis gives us ⊢ 𝑣 ∶ B.

• Case
⊢ M ⇓ 𝑣 X ∉ 𝑣
⊢ new X inM ⇓ 𝑣

By hypothesis, Γ ⊢ (new X inM) ∶ A and ⊢ new X inM ⇓ 𝑣. By inversion of
typing: Γ, X ∶ A ⊢ M ∶ A and thus by induction hypothesis Γ, X ∶ A ⊢ 𝑣 ∶ A.
Eventually, because X ∉ 𝑣, we obtain by strengthening that Γ ⊢ 𝑣 ∶ A.

• Like the two previous cases, most others follows the standard outline of a proof
of type preservation. We jump to the most complex case: pattern matching.

• Case
⊢ M ⇓ 𝑣M clause 𝑣M R1 N N ⇓ 𝑣
⊢ matchM with R1 ∣ … ∣ R𝑛 ⇓ 𝑣

By hypothesis, ⊢ matchM with R1 ∣ … ∣ R𝑛 ∶ B and given the corresponding
typing rulewe know (by inversion) that there exists a typeA such that⊢ M ∶ A
and (⊢ A ∶ R𝑖 ∶ B)𝑖∈[1..𝑛] and by induction hypothesis we have ⊢ 𝑣M ∶ A. We
now need to prove the following lemma:

Lemma 7.4. If clause 𝑣 R U and Γ ⊢ 𝑣 ∶ A and Γ ⊢ A ∶ R ∶ B then
Γ ⊢ U ∶ B

7. FORMAL PROPERTIES OF MLTS 81

Proof: We proceed by induction on the definition of clause

– Case all 𝑥. R 𝑥, we have:

⊢ ∃𝑤, clause 𝑣 (R 𝑤) N
⊢ clause 𝑣 (all 𝑥. R 𝑥) N

Γ, 𝑥 ∶ C ⊢ A ∶ R ∶ B
Γ ⊢ A ∶ all 𝑥. R ∶ B

Because all pattern variables must occur once in a pattern (in concrete
syntax pattern variable are implicitly quantified, thus a non-appearing
pattern variable will not appear at all), we have 𝑥 ∈π (R 𝑥) and thus
𝑤 ∈π (R 𝑤). Then Lemma 7.3 gives us that 𝑤 ∈π 𝑣 and the Lemma 7.1
allows us to conclude that Γ ⊢ 𝑥 ∶ C

– Case

⊢ matches 𝑣 P ⊢ (λ𝑧1 …𝑧𝑚. 𝑝⟹ 𝑢)D (P⟹ U)
⊢ clause 𝑣 (nab 𝑧1 in … nab 𝑧𝑚 in 𝑝⟹ 𝑢) U

By hypothesis, Γ ⊢ 𝑣 ∶ A and Γ ⊢ A ∶ R ∶ B. Because matches
preserves the type we have Γ ⊢ P ∶ A, and by using the typing rule for
nab 𝑧1 … in (𝑝⟹ 𝑢) we also know that: Γ, 𝑧1 ∶ C1 …𝑧𝑚 ∶ C𝑚 ⊢ 𝑝 ∶ A
and Γ, 𝑧1 ∶ C1 …𝑧𝑚 ∶ C𝑚 ⊢ 𝑢 ∶ B.
In addition, the definition of nominal abstraction gives us that there exist
𝑐1 … 𝑐𝑚 such that

(P⟹ U) = (𝑝⟹ 𝑢)[𝑐1 … 𝑐𝑚/𝑧1 …𝑧𝑚] (⋆)

To conclude (our goal is to show thatΓ ⊢ U ∶ B) we need to prove that the
𝑐1 … 𝑐𝑚 have the same types in Γ than the 𝑧1 …𝑧𝑚 in Γ, 𝑧1 ∶ C1 …𝑧𝑚 ∶ C𝑚.
Because all ∇-bound variables have a rigid occurrence (again, see Sec-
tion 5.2), for each 𝑖 there must exist a path π𝑖 such that 𝑧𝑖 ∈π𝑖 𝑝 and
𝑐𝑖 ∈π𝑖 P. Applying the Lemma 7.1 we have that (Γ, 𝑧1 …𝑧𝑚)(𝑧𝑖) =
(Γ, 𝑧1 …𝑧𝑚)(𝑐𝑖) thus Γ ⊢ 𝑐𝑖 ∶ C𝑖.
Finally, another substitution lemma and equality (⋆) gives us Γ ⊢ U ∶ B,
proving the lemma.

By applying Lemma 7.3 to clause 𝑣M R1 N, we obtain that Γ ⊢ N ∶ B. Thus,
using the induction hypothesis, Γ ⊢ 𝑣 ∶ B

Theorem 7.3 (Determinacy of evaluation). If ⊢ E ⇓ V and ⊢ E ⇓ U then V = U.

Proof The proof of this theorem follows the usual outline. The main complicat-
ing difference from the standard approach is the more complex nature of pattern
matching. The restrictions on patterns have been designed, however, to ensure
determinacy: this is particularly true for the restriction on pattern variable (i.e., they
have exactly one occurrence in the scope of the pattern variable’s scope) and the
restriction that every nab bound variable has at least one rigid occurrence in the
left-hand-side of the pattern. We proceed by induction on the evaluation derivation.
Most cases are simple so we focus only on the pattern matching here.

• Case
⊢ M ⇓ 𝑣M clause 𝑣M R1 N N ⇓ 𝑣
⊢ matchM with R1 ∣ … ∣ R𝑛 ⇓ 𝑣

82 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

By hypothesis, ⊢ matchM with R1 ∣ … ∣ R𝑛 ⇓ 𝑣 and ⊢ matchM with R1 ∣ … ∣
R𝑛 ⇓ 𝑢. In both cases ⊢ M ⇓ 𝑣M by induction hypothesis. But to go on we
need to prove that given 𝑣 and R, N is uniquely determined by clause 𝑣M R N.

Lemma 7.5. For any given value 𝑣 and rule R, if there exist two terms M
and N such that clause 𝑣 R N and clause 𝑣 R M then N = M.

Proof We proceed by induction on the definition of clause .

– Case
⊢ ∃W, clause 𝑣 (R W) N
⊢ clause 𝑣 (all 𝑥. R 𝑥) N

By hypothesis there exist M and N such that clause 𝑣 (all 𝑥. R 𝑥) M
and clause 𝑣 (all 𝑥. R 𝑥) N. And thus there existW andW′ such that
clause 𝑣 R WM and clause 𝑣 R W′ N.
There exists a path 𝑝i such that 𝑥 has path �in R (that is, 𝑥 ∈π R). Thus,
by substitution, we have thatW ∈π RW andW′ ∈π RW′. Lemma 7.3
gives us thatW ∈π 𝑣 andW′ ∈π 𝑣. Thus we must haveW = W′ and
we can use the induction hypothesis on (clause 𝑣 (R W) ?) and obtain
M = N.

– Case
⊢ matches 𝑣 P ⊢ (λ𝑧1 …𝑧𝑚. 𝑝⟹ 𝑢)D (P⟹ U)

⊢ clause 𝑣 (nab 𝑧1 in … nab 𝑧𝑚 in 𝑝⟹ 𝑢) U

By nominal abstraction definition, we have that for each 𝑖 ∈ [1..𝑚] there
exists 𝑐𝑖 such that P = 𝑝[𝑐𝑖/𝑧𝑖] andU = 𝑢[𝑐𝑖/𝑧𝑖] for all the 𝑖. And because
every nominal has a rigid occurrence in a pattern, for each 𝑖 there exists
a path π𝑖 such that 𝑧𝑖 ∈π𝑖 𝑝 and thus 𝑐𝑖 ∈π𝑖 P. By using Lemma 7.2, we
have that 𝑐𝑖 ∈π𝑖 𝑣, meaning that all 𝑐𝑖 are uniquely determined and thus
U(= 𝑢[𝑐𝑖/𝑧𝑖]) is too.

The lemma we just proved allows us to apply our induction hypothesis on
⊢ N ⇓ 𝑣 and finish the proof of determinacy.

8 Interpreters for MLTS
We have a prototype implementation of MLTS. A parser from our extended OCaml
syntax and a transpiler that generates λProlog code are implemented in OCaml. A
simple evaluator and type checker written in λProlog can then be used to execute and
type check MLTS code. The implementation of the evaluator in λProlog is rather
compact but not completely trivial since neither ∇-quantification nor nominal
abstraction are native to λProlog: they needed to be implemented. Commented
fragments of this interpreter can be found in Appendix B. Both the Teyjus [Qi+15]
and the Elpi [Dun+15] implementations of λProlog can be used to execute theMLTS
interpreter.
There is little about our prototype implementation that is focused on providing

an efficient implementation of MLTS. Instead, the prototype is a useful device
for exploring the exact meaning and possible uses of the new program features.
Nevertheless, we can comment here briefly on some costs of the underlying system
that will likely appear in any implementation of MLTS.

8. INTERPRETERS FOR MLTS 83

8.1 Nominal-escape checking
As we have mentioned in Section 6, nominals are not allowed to escape their scope
during evaluation and quantifier alternation can be used to enforce this restriction
at the logic level. When one implements the logic, one needs to implement (parts
of) the unification of simply typed λ-terms [Hue75] and such unification is con-
stantly checking that bound variable scopes are properly restricted. There are times,
however, when the expensive check for escaping nominals are not, in fact, needed.
In particular, it is possible to rewrite the inference rule in Figure 3.16 for the new
binding operator as the following rule.

⊢ ∇𝑥.(E 𝑥) ⇓ (U 𝑥) U = λ𝑥.V
⊢ new E ⇓ V

Here, bothU andV are quantified universally around the inference rule. Attempting
a proof of the first premise can result in the construction of some (possibly large)
value, say 𝑡 such that ⊢ (E 𝑥) ⇓ 𝑡 holds. We can immediately form the binding
of U ↦ λ𝑥.𝑡 without checking the structure of 𝑡. The second premise is where
the examination of 𝑡 may need to take place: if 𝑥 is free in 𝑡, then there is no
substitution for V that makes λ𝑥.𝑡 equal to λ𝑥.V. This check can be expensive, of
course, since one might in principle need to examine the entire structure of 𝑡 to
solve this second premise. There are many situations, however, where such an
examination is not needed and they can be revealed by the typing system. For
example, if the type of U is, say, tm => int, there should not be any possible way for
an untyped λ-term to have an occurrence inside an integer. Furthermore, there are
static methods for examining type declarations in order to describe if a type τ1 → τ2
(for primitive types τ1 and τ2) can be inhabited by only vacuous λ-terms (see, for
example, [Mil92]). Of course, if the types of τ1 and τ2 are the same (say, tm), then
type information is not useful here and a check of the entire structure 𝑡might be
necessary. Other static checks and program analyses might be possible as a way to
reduce the costs of checking for escaping nominals: the paper [Pot07] includes such
static checks albeit for a technically different functional programming language,
namely FreshML [SPG03]. The actual implementation does not try to check for
escaping nominals but will trigger a runtime error when it happens.

8.2 Binder mobility
We started this programming language project with the desire to treat binders in
syntax as directly and naturally as possible. We approached this project by design-
ing the MLTS language with more binders than, say, OCaml: it has not only the
usual binders for building functions and for refactoring computation (via the let
construction) but also new binders that are directly linked to binders in data (via
the new X in, nab X in, and X\ operators). Finally, the natural semantic of MLTS
in 𝒢 and its implementation in λProlog are all based on using logics that contain
rich binding operators that go beyond the usual universal and existential quantifiers.
It is worth noting that if one were to write MLTS programs that do not need to
manipulate data structures containing bindings, then the new binding features of
MLTS would not be needed and neither would the novel features of both 𝒢 and
λProlog. Thus, in a sense, binders have not been formally implemented in this story:
instead, binders of one kind have been implemented and specified using binders in
another system. We were able to complete a prototype implementation of MLTS

84 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

since we know how to implement the high-level logics, and those techniques can be
applied directly to the natural semantic specification.
One way to view the processing of a binder is that one needs to first open the ab-

straction, process the result (by “freshening” the newly freed names), and then close
the abstraction [Pot06]. In the setting of MLTS, it is better to view such processing
as the movement of a binder: that is, the binder in a data structure actually gets
re-identified with an actual binder in the programming language. As we illustrated
in Section 3 with the following step-by-step evaluation

size (Abs (X\ (Abs (Y\ (App(X,Y))))));;
new X in 1 + (size (Abs (Y\ (App(X,Y)))));;
new X in 1 + new Y in 1 + (size (App(X,Y)));;
new X in 1 + new Y in 1 + 1 + (size X) + (size Y);;
new X in 1 + new Y in 1 + 1 + 1 + 1;;

the bound variable occurrences for X and Y simply move. It is never the case that
a bound variable actually becomes free: instead, it just becomes bound elsewhere.
Thus, our strategy for strengthening the expressiveness of MLTS over other ML-style
languages has been to add to the language more binding sites to which bindings can
move.

8.3 Costs of moving binders
As we have mentioned before, binders are able to move from, say, a term-level
binding to a program-level binding by the use of β0. In particular, if 𝑦 is a binder
that does not appear free in the abstraction λ𝑥.B then the β0 reduction of (λ𝑥.B)𝑦
causes the 𝑥 binding in B to move and to be identified with the 𝑦 binder in B[𝑦/𝑥].
If one must actually do the substitution of 𝑦 for 𝑥 in B, a possibly large term (at least
its spine) must be copied. However, there are some situations where this movement
of a binding can be inexpensive. For example, consider again the following match
rule for size.

| Abs(r) -> 1 + (new X in size (r @ X))

If we assume that the underlying implementation of terms use De Bruijn’s name-
less dummies, it is possible to understand the rewriting needed in applying this
match clause to be a constant time operation. In particular, if r is instantiated
with an abstraction then it’s top-level constructor would indicate where a binder of
value 0 points. If we were to compile the syntax (r @ X) as simply meaning that
that top-level constant is stripped away, then a binder of value 0 in the resulting
term would automatically point (move) to being bound by the new X in binder.
While such a treatment of binder mobility without doing substitution is possible
in many of our examples, it does not cover all cases. In general, a more involved
scheme for implementing binder mobility must be considered. This kind of analy-
sis and implementation of binder mobility is used in the Elpi implementation of
λProlog [Dun+15].

8.4 A web frontend for the interpreter
When prototyping MLTS, our goal was to allow people interested in it to experiment
with the language in the easiest way possible. As of today’s date, the most obvious
way to do that is to provide a website where one could write MLTS code and have

9. RELATED WORK 85

the results of evaluation appear directly in the browser. This kind of easy in-browser
playground is more and more common. For example OCaml (try.ocamlpro.com),
Rust (play.rust-lang.org), Scala (scastie.scala-lang.org) and the Abella prover (abella-
prover.org) all provide such playgrounds.
Themain difficulty in the design of such interface is the execution of the compiler,

and two strategies exist to solve that issue. One possible way (used by Scala and Rust)
is to send the source code entered in the client to a server which then compiles and
executes the program and sends the answer back to the client. This method canwork
for any language or tool because any native compiler can be used on the server-side,
but it has several drawbacks: it can be slow to send the code via the network and
wait for the answer, the client needs to always be online and the server needs to
be solid (or throttled) enough to not be overwhelmed by computational intensive
code started by several clients. Another option (used by OCaml and Abella) is to
compile and execute the code directly in the browser. Of course, to do so, one need
to have a compiler written in javascript and thus this solution won’t work with any
arbitrary language. This option has the advantage that the server only serves static
files and thus does not care about the potentially expensive computations. However
computation power will be limited by the user’s own machine power and the fact
that everything will run in the browser’s javascript sandbox.
We chose the second path for MLTS because it seemed the most user-friendly

one and the existence of two other projects allowed us to do so: Elpi [Dun+15], a
λProlog interpreter written in OCaml and js_of_ocaml [js-of-ocaml], an OCaml
to javascript compiler. This allows one to interpret λProlog programs (such as our
interpreter for MLTS) directly in the browser via javascript. This led to the design
of the TryMLT website (https://trymlts.github.io/). Here is a list of its main
components.

• A graphical interface (see Fig. 3.19) written in HTML and CSS using Bootstrap
(getbootstrap.com) and jQuery (jquery.com) and relying on Ace (ace.c9.io) for
the editor part.

• A transpiler from MLTS’ concrete syntax to the explicit syntax syntax in λPro-
log. This transpiler is written in OCaml and compiled to javascript with
js_of_ocaml.

• The Elpi λProlog interpreter, compiled to javascript with js_of_ocaml and
bundled with our type-checking algorithm and interpreter for MLTS written
in λProlog.

When the user clicks the “Run” button his code is translated to the abstract syn-
tax using the transpiler in javascript and then it is type-checked and interpreted
using the interpreter written in λProlog, itself interpreted by Elpi in javascript. All
these computationally intensive tasks run in a separate “Web worker”, that is an
independent javascript thread, thus preventing the graphical interface from freezing
while the code is executed. The codebase is hosted on GitHub and the static files are
served from GitHub Pages.

9 Related work
The term higher-order abstract syntax (HOAS) was introduced in [PE88] to describe
an encoding technique available in λProlog. A subsequent paper identified HOAS
as a technique “whereby variables of an object language are mapped to variables
in the metalanguage” [PS99]. When applied to functional programming, this latter

https://try.ocamlpro.com
https://play.rust-lang.org/
https://scastie.scala-lang.org
http://abella-prover.org/tutorial/try
http://abella-prover.org/tutorial/try
https://trymlts.github.io/
https://getbootstrap.com
https://jquery.com
https://ace.c9.io

86 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

Figure 3.19: The graphical interface of TryMLTS

description implies the mapping of bindings in syntax to the bindings that create
functions. Unfortunately, such encoding technique often lacks adequacy (since
“exotic terms” can appear [DFH95]), and structural recursion can slip away [GP99].
The terms λ-tree syntax [MP99] and binder mobility [Mil04] were later introduced to
describe the different and more syntactic approach that we have used here.

9.1 Systems with two arrow type constructors
TheMLλ [Mil90a] extension to ML is similar to MLTS in that it also contains two
different arrow type constructors (-> and =>) and pattern matching was extended
to allow for pattern variables to be applied to a list of distinct bound variables. The
new operator of MLTS could be emulated by using the backslash operator and a
“discharge” function. Critically missing from that language was anything similar
to the nab binding of MLTS. Also, no formal specification and no implementation
were ever offered. Licata & Harper [LH09] have used the universe feature of Agda 2
to provide an implementation of bindings in data structures that also relies on
supporting two different implications-as-types that is found in MLTS and inMLλ.
Nominals and nominal abstraction, in the sense used in this paper, were first

conceived, studied, and implemented as part of the Abella theorem prover [Bae+14].
Although the design of Abella does not use the D relation directly, the notion of “∇
in the head” of definitions is essentially equivalent to having the D relation in the
logic. While Abella only has one arrow type constructor, that arrow type essentially
maps to the => of MLTS: this is possible in Abella since computation is performed
at the level of relations and not functions. As a result, the function type arrow -> of
MLTS and OCaml is not needed. Thus the distinction mentioned in [LH09] between

9. RELATED WORK 87

an arrow for computation and an arrow for binding is, in fact, also present in Abella,
although computations are not represented functionally.

9.2 Systems with one arrow type constructor
The Delphin design is probably the closest toMLTS, in particular [SPS05] introduced
a programming-language version of the ∇ quantifier from [MT05], whose usage is
related to the ∇ of MLTS. In Delphin, ∇ introduces normal term variables (there is
no separate class of nominal constants), whileMLTS presents nominals as closer to
datatype constructors, with a natural usage in pattern-matching.
Delphin makes nominal-escape errors impossible at runtime by imposing a static

discipline to prevent them, whileMLTS allows runtime failure in order to allow for
more experimentation. The original proposal in [SPS05] uses a type modality that
imposes a strict FIFO discipline on free variables. This discipline was found too
constraining; [PS08a] completely eschews a new construct (its ν𝑥. 𝑒 binder actually
corresponds to nominal abstraction X\e in MLTS), and [PS08b] uses a type-based
restriction (type subordination), only allowing to introduce a fresh nominal in ex-
pressions whose return types only contains values that cannot contain this nominal.
This discipline accepts some examples from our paper, for example size in Fig-
ure 3.17 and id in Figure 3.7, but rejects other (safe) programs, such as the second
and third one-liner examples of Section 3.2. Richer static disciplines have been
proposed by the FreshML community [PG00; Pot07], but they add complexity, and
for example interact poorly with the introduction of mutable state; MLTS is an
experimental design aiming for expressivity, so we decided to allow dynamic escape
failures instead.
Beluga allows the programmer to use both dependent types and recursive defini-

tions as well as an integrated notion of context (along with a method to describe
certain invariants using context schema). Static checks of Beluga programs can be
used to prove that formal correctness of Beluga programs (commonly by proving
that a given piece of program code is, in fact, a total function). As a result, a checked
Beluga program is often a formal proof. Since a wide range of formal systems can
be encoded naturally using LF terms, Beluga programs can be used for both pro-
gramming with and reasoning about the meta-theory of those formal systems. Since
bindings and contexts are part of the vocabulary of Beluga, these formal proofs
can capture the metatheory of logical and computational systems (such as natu-
ral deduction proof systems and the operational semantics of rich programming
languages). The goal of MLTS is intended only to support programming and not
directly reasoning: just as with, say, OCaml, the intent of new features of MLTS is
only to support the manipulation of syntax containing bindings. A possibly interest-
ing comparison between MLTS and Beluga might be explored by using typing and
contexts in the latter in a mostly trivial way. It is likely that Beluga could code most
MLTS programs although using different primitives.

9.3 Systems using nominal logic
The FreshML [SPG03] and CαML [Pot06] functional programming languages pro-
vide an approach to names based on nominal logic [Pit03]. In a sense, these two
programming languages provide for an abstract treatment of names and naming.
Once naming is available, binding structures can also be implemented. In a sense,
the design of these two ML-variants are also more ambitious than the design goal
intended for MLTS: in the latter, we were not focused on naming but just bindings.

88 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

The recent paper [FP17] introduces a syntactic framework that treats bindings
as primitives. That framework is then integrated with various tools and with the
framework of contextual types (similar to that found in Beluga) in order to provide a
programmer of, say, OCaml with sophisticated tools for the manipulation of syntax
and binders. A possible future target for MLTS could be to provide such tools more
directly in the language itself.

9.4 Challenge problems and benchmarks
Genuine comparisons between different programming languages are generally hard
to achieve. For example, in the area of logical frameworks and related theorem
provers, there are also a number of formal systems and computer implementations.
In order to understand the relative merits of these different systems, challenge
problems and benchmarks [Ayd+05; FMP15] have been proposed to help people
sort out specific merits and challenges of one system relative to another. In depth
comparisons of the programming languages described above will probably require
similar in-depth comparisons on representative programming tasks.

10 Perspectives for MLTS
The λ-tree syntax approach to computing with syntax containing bindings has
been successfully developed within the logic programming setting (in particular, in
λProlog and Twelf). In this chapter we provided another example of how binding
can be captured in a functional programming language. Most of the expressiveness
of MLTS arises from its increased use of program-level binding. The sophistication
needed to correctly exploit binders and quantifiers in MLTS is a skill most people
have learned from using quantification in, for example, predicate logic.
We have presented a number of MLTS programs and we note that they are both

natural and unencumbered by concerns about managing bound variable names.
The few extensions to the standard ML syntax that are needed to provide such
treatment of binders are simple and local by nature: we only added scoped sites
where bindings canmove. We also presented a typing discipline forMLTS aswell as a
formal specification of its natural semantic: this latter task was aided by being able to
directly exploit a rich logic, called 𝒢, that incorporates λ-tree syntax principles within
quantificational logic. Finally, this natural semantic specification was (almost)
directly implementable in a few hundred lines of λProlog. As a consequence, a
prototype implementation is available for helping to judge the expressiveness of
MLTS programs.
Of course, these are only the first steps of the development of a new language.

We aim next to refine the description of the semantics and are actively working on a
small-step version. We also hope to provide an abstract machine for MLTS following
the method given in [HM90]. A more future-sighted project is the creation of a
better reference implementation as a native compiler.

Conclusion

The logic 𝒢 is a recent extension to Heyting arithmetic. In this thesis we gave two
different examples of applying that logic and its proof theory to computations in logic,
according to the declarative programming tradition: one in the logic programming
settings and one in the functional programming setting.
In the first part we showed how recent developments in proof theory and es-

pecially proof search, namely the focusing technique and the 𝒢-logic, can allow
for a natural treatment of how functional computations can be performed using
relational specification when those relational specifications are known to compute
functions. This led us to propose a number of possible automatization for the Abella
theorem prover.
The second part of this thesis leveraged 𝒢-logic in a different way: inspiring

the design of a new functional programming language which provides a natural
treatment of bindings in datastructures. Adding new binding sites in datastructures
and patterns, it allows for bindings to move across the program in a flexible manner,
and the possibility of having “higher arity values” compensate for the obligation of
having all variables bound at all times.
There is a more direct connection between these two parts than the use of 𝒢-

logic. In Chapter 2 we used focusing to describe how functional computations can
be performed using relational specification when those relational specifications
are known to compute functions. A different question to consider in this setting,
however, is: can we transform the syntax of a relational specification of a function
and produce a functional program in MLTS of that encoded function? A possible
additional ingredient to such a transformation might also be a formal proof that
the relational specification actually determines a function when we view the first
two arguments as inputs and the third argument as output. Then, if the Abella
specification contains nabla-in-the-head, the corresponding clause in the MLTS
program would contains a nab binder. If the Abella specification contains a nabla
in the body of a clause, then the corresponding clause in the MLTS program would
contains either a new binder or an explicit λ-binder (the backslash). An interesting
project would be to formalize such a transformation, generalizing to nominal-aware
relations the work that have been done for Coq and Focalize [Tol13].
Finally, both of these designs followed the same process: they illustrate how

staying close to logic and proof search make it possible to design useful computation
strategies and imagine new frameworks for syntax and computation that feel natural
and sound. Because the logic they are based on is clean, no hacks were involved
in this process and correctness has been easier to establish because we could use
higher level arguments.

89

90 CHAPTER 3. A LANGUAGE USING LAMBDA-TREE SYNTAX

Bibliography

[12] The Abella Prover. Available at http://abella-prover.org/. 2012.
[And09] Peter Andrews. “Church’s Type Theory”. In: The Stanford Encyclopedia

of Philosophy. Ed. by Edward N. Zalta. Spring 2009. Stanford University,
2009.

[And92] Jean-Marc Andreoli. “Logic Programming with Focusing Proofs in
Linear Logic”. In: J. of Logic and Computation 2.3 (1992), pp. 297–347.
doi: 10.1093/logcom/2.3.297.

[Ass+16] Ali Assaf, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles
Dowek, Catherine Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier
Hermant, and Ronan Saillard. “Dedukti: a Logical Framework based on
the λΠ-Calculus Modulo Theory”. http://www.lsv.ens-cachan.fr/
~dowek/Publi/expressing.pdf. 2016. url: http://www.lsv.ens-
cachan.fr/~dowek/Publi/expressing.pdf.

[Ayd+05] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey
Washburn, Stephanie Weirich, and Steve Zdancewic. “Mechanized
Metatheory for the Masses: The POPLmark Challenge”. In: Theorem
Proving in Higher Order Logics: 18th International Conference. LNCS
3603. Springer, 2005, pp. 50–65.

[Bae+14] David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan
Nadathur, Alwen Tiu, and Yuting Wang. “Abella: A System for Reason-
ing about Relational Specifications”. In: Journal of Formalized Reasoning
7.2 (2014), pp. 1–89. doi: 10.6092/issn.1972-5787/4650. url:
http://jfr.unibo.it/article/download/4650/4137.

[Bae08] David Baelde. “A linear approach to the proof-theory of least and
greatest fixed points”. PhD thesis. Ecole Polytechnique, Dec. 2008.

[Bae12] David Baelde. “Least and greatest fixed points in linear logic”. In:
ACM Trans. on Computational Logic 13.1 (Apr. 2012), 2:1–2:44. doi:
10.1145/2071368.2071370. url: http://tocl.acm.org/accepted/
427baelde.pdf.

[Bar84] Henk P. Barendregt. The Lambda Calculus. North Holland, 1984.
[Bar92] Henk Barendregt. “Lambda calculus with types”. In: Handbook of Logic

in Computer Science. Ed. by S. Abramsky, Dov M. Gabbay, and T. S. E.
Maibaum. Vol. 2. Oxford, England: Oxford University Press, 1992,
pp. 117–309.

91

http://abella-prover.org/
https://doi.org/10.1093/logcom/2.3.297
http://www.lsv.ens-cachan.fr/~dowek/Publi/expressing.pdf
http://www.lsv.ens-cachan.fr/~dowek/Publi/expressing.pdf
http://www.lsv.ens-cachan.fr/~dowek/Publi/expressing.pdf
http://www.lsv.ens-cachan.fr/~dowek/Publi/expressing.pdf
https://doi.org/10.6092/issn.1972-5787/4650
http://jfr.unibo.it/article/download/4650/4137
https://doi.org/10.1145/2071368.2071370
http://tocl.acm.org/accepted/427baelde.pdf
http://tocl.acm.org/accepted/427baelde.pdf

92 BIBLIOGRAPHY

[Bru72] Nicolaas Govert de Bruijn. “Lambda Calculus Notation with Nameless
Dummies, a Tool for Automatic Formula Manipulation, with an Appli-
cation to the Church-Rosser Theorem”. In: Indagationes Mathematicae
34.5 (1972), pp. 381–392.

[Bru79] N. G. de Bruijn. “Lambda Calculus Notation with Namefree Formulas
Involving Symbols that Represent Reference Transforming Mappings”.
In: Indag. Math. 40.3 (1979), pp. 348–356.

[CD07] Denis Cousineau and Gilles Dowek. “Embedding Pure Type Systems
in the Lambda-Pi-Calculus Modulo”. In: Typed Lambda Calculi and
Applications, 8th International Conference, TLCA 2007, Paris, France,
June 26-28, 2007, Proceedings. Ed. by Simona Ronchi Della Rocca.
Vol. 4583. LNCS. Springer, 2007, pp. 102–117.

[Cha11] Arthur Charguéraud. “The Locally Nameless Representation”. In: Journal
of Automated Reasoning (May 2011), pp. 1–46. doi: 10.1007/s10817-
011-9225-2.

[Chu40] Alonzo Church. “A Formulation of the Simple Theory of Types”. In: J.
of Symbolic Logic 5 (1940), pp. 56–68. doi: 10.2307/2266170.

[CLR16] Kaustuv Chaudhuri, Leonardo Lima, and Giselle Reis. “Formalized Meta-
Theory of Sequent Calculi for Substructural Logics”. In: Workshop on
Logical and Semantic Frameworks, with Applications (LSFA). Post
proceedings version to appear; Formalization https://github.com/
meta-logic/abella-reasoning. 2016.

[CMS08] Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. “Canonical Sequent
Proofs via Multi-Focusing”. In: Fifth International Conference on Theo-
retical Computer Science. Ed. by G. Ausiello, J. Karhumäki, G. Mauri,
and L. Ong. Vol. 273. IFIP. Springer, Sept. 2008, pp. 383–396.

[CRS91] Anthony S. K. Cheng, Peter J. Robinson, and John Staples. “Higher
Level Meta Programming in Qu-Prolog 3: 0”. In: Logic Programming,
Proceedings of the Eigth International Conference, Paris, France, June
24-28, 1991. Ed. by Koichi Furukawa. MIT Press, 1991, pp. 285–298.

[CU04] James Cheney and Christian Urban. “Alpha-Prolog: A Logic Program-
ming Language with Names, Binding, and Alpha-Equivalence”. In: Logic
Programming, 20th International Conference. Ed. by Bart Demoen and
Vladimir Lifschitz. Vol. 3132. LNCS. Springer, 2004, pp. 269–283.

[DFH95] Joëlle Despeyroux, Amy Felty, and Andre Hirschowitz. “Higher-order
abstract syntax in Coq”. In: Second International Conference on Typed
Lambda Calculi and Applications. Apr. 1995, pp. 124–138.

[DL06] R. Dyckhoff and S. Lengrand. “LJQ: a strongly focused calculus for intu-
itionistic logic”. In: Computability in Europe 2006. Ed. by A. Beckmann
and et al. Vol. 3988. LNCS. Springer, 2006, pp. 173–185.

[Dun+15] Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico
Tassi. “ELPI: Fast, Embeddable, λProlog Interpreter”. In: Logic for
Programming, Artificial Intelligence, and Reasoning - 20th International
Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Pro-
ceedings. Ed. by Martin Davis, Ansgar Fehnker, Annabelle McIver, and
Andrei Voronkov. Vol. 9450. LNCS. Springer, 2015, pp. 460–468. doi:

https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.2307/2266170
https://github.com/meta-logic/abella-reasoning
https://github.com/meta-logic/abella-reasoning

BIBLIOGRAPHY 93

10.1007/978-3-662-48899-7_32. url: http://dx.doi.org/10.
1007/978-3-662-48899-7%5C_32.

[FMP15] Amy P. Felty, Alberto Momigliano, and Brigitte Pientka. “The Next 700
Challenge Problems for Reasoning with Higher-Order Abstract Syntax
Representations: Part 2–A Survey”. In: J. of Automated Reasoning 55.4
(2015), pp. 307–372.

[FP17] Francisco Ferreira and Brigitte Pientka. “Programs Using Syntax with
First-Class Binders”. In: Programming Languages and Systems - 26th
European Symposium on Programming, ESOP 2017, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. Ed.
by Hongseok Yang. Vol. 10201. Lecture Notes in Computer Science.
Springer, 2017, pp. 504–529. isbn: 978-3-662-54433-4; 978-3-662-
54434-1.

[Gac08] Andrew Gacek. “The Abella Interactive Theorem Prover (System De-
scription)”. In: Fourth International Joint Conference on Automated Rea-
soning. Ed. by A. Armando, P. Baumgartner, and G. Dowek. Vol. 5195.
LNCS. Springer, 2008, pp. 154–161. url: http://arxiv.org/abs/
0803.2305.

[Gac09] Andrew Gacek. “A Framework for Specifying, Prototyping, and Reason-
ing about Computational Systems”. PhD thesis. University of Minnesota,
2009.

[Gen35] Gerhard Gentzen. “Investigations into Logical Deduction”. In: The
Collected Papers of Gerhard Gentzen. Ed. by M. E. Szabo. Amsterdam:
North-Holland, 1935, pp. 68–131. doi: 10.1007/BF01201353.

[Gir91] Jean-Yves Girard. “A new constructive logic: classical logic”. In: Math.
Structures in Comp. Science 1 (1991), pp. 255–296. doi: 10.1017/
S0960129500001328.

[Gir92] Jean-Yves Girard. “A Fixpoint Theorem in Linear Logic”. An email
posting to the mailing list linear@cs.stanford.edu. Feb. 1992.

[GMN08] Andrew Gacek, Dale Miller, and Gopalan Nadathur. “Combining generic
judgments with recursive definitions”. In: 23th Symp. on Logic in Com-
puter Science. Ed. by F. Pfenning. IEEE Computer Society Press, 2008,
pp. 33–44. url: http://www.lix.polytechnique.fr/Labo/Dale.
Miller/papers/lics08a.pdf.

[GMN11] Andrew Gacek, Dale Miller, and Gopalan Nadathur. “Nominal abstrac-
tion”. In: Information and Computation 209.1 (2011), pp. 48–73. doi:
10.1016/j.ic.2010.09.004.

[GMN12] Andrew Gacek, Dale Miller, and Gopalan Nadathur. “A two-level logic
approach to reasoning about computations”. In: J. of Automated Rea-
soning 49.2 (2012), pp. 241–273. doi: 10.1007/s10817-011-9218-1.
url: http://arxiv.org/abs/0911.2993.

[GMW79] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth.
Edinburgh LCF: A Mechanised Logic of Computation. Vol. 78. LNCS.
Springer, 1979.

https://doi.org/10.1007/978-3-662-48899-7_32
http://dx.doi.org/10.1007/978-3-662-48899-7%5C_32
http://dx.doi.org/10.1007/978-3-662-48899-7%5C_32
http://arxiv.org/abs/0803.2305
http://arxiv.org/abs/0803.2305
https://doi.org/10.1007/BF01201353
https://doi.org/10.1017/S0960129500001328
https://doi.org/10.1017/S0960129500001328
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf
https://doi.org/10.1016/j.ic.2010.09.004
https://doi.org/10.1007/s10817-011-9218-1
http://arxiv.org/abs/0911.2993

94 BIBLIOGRAPHY

[Gor91] Michael J. C. Gordon. “Introduction to the HOL System”. In: Pro-
ceedings of the International Workshop on the HOL Theorem Proving
System and its Applications. Ed. by Myla Archer, Jeffrey J. Joyce,
Karl N. Levitt, and Phillip J. Windley. IEEE Computer Society, 1991,
pp. 2–3.

[Gor94] A. Gordon. “A Mechanisation of Name-Carrying Syntax up to Alpha-
Conversion”. In: International Workshop on Higher Order Logic Theorem
Proving and its Applications. Vol. 780. Lecture Notes in Computer
Science. 1994, pp. 414–426.

[GP99] M. J. Gabbay and A. M. Pitts. “A new approach to abstract syntax
involving binders”. In: 14th Symp. on Logic in Computer Science. IEEE
Computer Society Press, 1999, pp. 214–224.

[Har09] John Harrison. “HOL Light: an overview”. In: International Conference
on Theorem Proving in Higher Order Logics. Springer. 2009, pp. 60–66.

[HB39] D. Hilbert and P. Bernays. Grundlagen der Mathematik II. Springer
Verlag, 1939.

[Her95] Hugo Herbelin. “Séquents qu’on calcule: de l’interprétation du calcul des
séquents comme calcul de lambda-termes et comme calcul de stratégies
gagnantes”. PhD thesis. Université Paris 7, 1995.

[HM17] Quentin Heath and Dale Miller. “A Proof Theory for Model Checking:
An Extended Abstract”. In: Proceedings Fourth International Workshop
on Linearity (LINEARITY 2016). Ed. by Iliano Cervesato and Maribel
Fernández. Vol. 238. EPTCS. Jan. 2017. doi: 10.4204/EPTCS.238.1.

[HM90] John Hannan and Dale Miller. “From Operational Semantics to Abstract
Machines: Preliminary Results”. In: Proceedings of the 1990 ACM
Conference on Lisp and Functional Programming. Ed. by M. Wand.
ACM. ACM Press, 1990, pp. 323–332.

[Hue75] Gérard Huet. “A Unification Algorithm for Typed λ-Calculus”. In: Theo-
retical Computer Science 1 (1975), pp. 27–57.

[Kah87] Gilles Kahn. “Natural Semantics”. In: Proceedings of the Symposium on
Theoretical Aspects of Computer Science. Ed. by Franz-Josef Branden-
burg, Guy Vidal-Naquet, and Martin Wirsing. Vol. 247. LNCS. Springer,
Mar. 1987, pp. 22–39.

[LH09] Daniel R. Licata and Robert Harper. “A Universe of Binding and
Computation”. In: Proceedings of the 14th ACM SIGPLAN International
Conference on Functional Programming. ICFP ’09. Edinburgh, Scotland:
ACM, 2009, pp. 123–134. isbn: 978-1-60558-332-7. doi: 10.1145/
1596550.1596571. url: http://doi.acm.org/10.1145/1596550.
1596571.

[LM07] Chuck Liang and Dale Miller. “Focusing and Polarization in Intuitionistic
Logic”. In: CSL 2007: Computer Science Logic. Ed. by J. Duparc and
T. A. Henzinger. Vol. 4646. LNCS. Springer, 2007, pp. 451–465. url:
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/
csl07liang.pdf.

[LM09] Chuck Liang and Dale Miller. “Focusing and Polarization in Linear,
Intuitionistic, and Classical Logics”. In: Theoretical Computer Science
410.46 (2009), pp. 4747–4768. doi: 10.1016/j.tcs.2009.07.041.

https://doi.org/10.4204/EPTCS.238.1
https://doi.org/10.1145/1596550.1596571
https://doi.org/10.1145/1596550.1596571
http://doi.acm.org/10.1145/1596550.1596571
http://doi.acm.org/10.1145/1596550.1596571
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/csl07liang.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/csl07liang.pdf
https://doi.org/10.1016/j.tcs.2009.07.041

BIBLIOGRAPHY 95

[LR18] Rodolphe Lepigre and Christophe Raffalli. “Abstract Representation
of Binders in OCaml using the Bindlib Library”. In: Proceedings of
the 13th International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice, Oxford, UK, 7th July 2018. Ed. by
Frédéric Blanqui and Giselle Reis. Vol. 274. Electronic Proceedings
in Theoretical Computer Science. Open Publishing Association, 2018,
pp. 42–56. doi: 10.4204/EPTCS.274.4.

[Mil+91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
“Uniform Proofs as a Foundation for Logic Programming”. In: Annals
of Pure and Applied Logic 51.1–2 (1991), pp. 125–157.

[Mil04] Dale Miller. “Bindings, mobility of bindings, and the ∇-quantifier”. In:
18th International Conference on Computer Science Logic (CSL) 2004.
Ed. by Jerzy Marcinkowski and Andrzej Tarlecki. Vol. 3210. LNCS.
2004, p. 24. doi: 10.1007/978-3-540-30124-0_4.

[Mil18a] Dale Miller. “Mechanized Metatheory Revisited”. In: Journal of Auto-
mated Reasoning (Oct. 2018). issn: 1573-0670. doi: 10.1007/s10817-
018-9483-3.

[Mil18b] Dale Miller. “Mechanized metatheory revisited”. In: Journal of Au-
tomated Reasoning (2018). url: https : / / hal . inria . fr / hal -
01884210.

[Mil90a] Dale Miller. “An Extension to ML to Handle Bound Variables in
Data Structures: Preliminary Report”. In: Proceedings of the Logi-
cal Frameworks BRA Workshop. Available as UPenn CIS technical
report MS-CIS-90-59. Antibes, France, June 1990, pp. 323–335. url:
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/
mll.pdf.

[Mil90b] Robin Milner. “Functions as processes”. In: Automata, Languages and
Programming 17th Int. Coll. Vol. 443. LNCS. Warwick University, UK:
Springer, July 1990, pp. 167–180.

[Mil91] Dale Miller. “A Logic Programming Language with Lambda-Abstraction,
Function Variables, and Simple Unification”. In: J. of Logic and Com-
putation 1.4 (1991), pp. 497–536.

[Mil92] Dale Miller. “Unification under a mixed prefix”. In: Journal of Symbolic
Computation 14.4 (1992), pp. 321–358.

[MM00] Raymond McDowell and Dale Miller. “Cut-elimination for a logic with
definitions and induction”. In: Theoretical Computer Science 232 (2000),
pp. 91–119. doi: 10.1016/S0304-3975(99)00171-1.

[MM04] Conor McBride and James McKinna. “Functional pearl: I am not a
number - I am a free variable”. In: Proceedings of the ACM SIGPLAN
Workshop on Haskell, Haskell 2004, Snowbird, UT, USA, September
22-22, 2004. Ed. by Henrik Nilsson. ACM, 2004, pp. 1–9. url: http:
//doi.acm.org/10.1145/1017472.1017477.

[MN12] Dale Miller and Gopalan Nadathur. Programming with Higher-Order
Logic. Cambridge University Press, June 2012. doi: 10.1017/CBO9781139021326.

[MP99] Dale Miller and Catuscia Palamidessi. “Foundational Aspects of Syntax”.
In: ACM Computing Surveys 31 (Sept. 1999). Ed. by Pierpaolo Degano,
Roberto Gorrieri, Alberto Marchetti-Spaccamela, and Peter Wegner.

https://doi.org/10.4204/EPTCS.274.4
https://doi.org/10.1007/978-3-540-30124-0_4
https://doi.org/10.1007/s10817-018-9483-3
https://doi.org/10.1007/s10817-018-9483-3
https://hal.inria.fr/hal-01884210
https://hal.inria.fr/hal-01884210
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mll.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mll.pdf
https://doi.org/10.1016/S0304-3975(99)00171-1
http://doi.acm.org/10.1145/1017472.1017477
http://doi.acm.org/10.1145/1017472.1017477
https://doi.org/10.1017/CBO9781139021326

96 BIBLIOGRAPHY

[MPW92] Robin Milner, Joachim Parrow, and David Walker. “A Calculus of Mobile
Processes, Part I”. In: Information and Computation 100.1 (Sept. 1992),
pp. 1–40.

[MT05] Dale Miller and Alwen Tiu. “A proof theory for generic judgments”. In:
ACM Trans. on Computational Logic 6.4 (Oct. 2005). Ed. by Phokion
Kolaitis, pp. 749–783. doi: 10.1145/1094622.1094628. url: http:
//www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tocl-
nabla.pdf.

[Nip93] Tobias Nipkow. “Functional Unification of Higher-Order Patterns”. In:
8th Symp. on Logic in Computer Science. Ed. by M. Vardi. IEEE, June
1993, pp. 64–74.

[NM88] Gopalan Nadathur and Dale Miller. “An Overview of λProlog”. In: Fifth
International Logic Programming Conference. Seattle: MIT Press, Aug.
1988, pp. 810–827. url: http://www.lix.polytechnique.fr/Labo/
Dale.Miller/papers/iclp88.pdf.

[NPS90] Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming
in Martin-Löf’s type theory : an introduction. International Series of
Monographs on Computer Science. Oxford: Clarendon, 1990.

[OCa18] OCaml. http://ocaml.org/. 2018.
[Pau89] Lawrence C. Paulson. “The Foundation of a Generic Theorem Prover”.

In: Journal of Automated Reasoning 5 (Sept. 1989), pp. 363–397.
[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. LNCS 828.

Springer Verlag, 1994.
[PD10] Brigitte Pientka and Joshua Dunfield. “Beluga: A Framework for Pro-

gramming and Reasoning with Deductive Systems (System Description)”.
In: Fifth International Joint Conference on Automated Reasoning. Ed.
by J. Giesl and R. Hähnle. LNCS 6173. 2010, pp. 15–21.

[PE88] Frank Pfenning and Conal Elliott. “Higher-Order Abstract Syntax”.
In: Proceedings of the ACM-SIGPLAN Conference on Programming
Language Design and Implementation. ACM Press, June 1988, pp. 199–
208.

[PG00] A. M. Pitts and M. J. Gabbay. “A Metalanguage for Programming
with Bound Names Modulo Renaming”. In: Mathematics of Program
Construction. 5th International Conference, MPC2000, Ponte de Lima,
Portugal, July 2000. Proceedings. Ed. by R. Backhouse and J. N.
Oliveira. Vol. 1837. LNCS. Springer, Heidelberg, 2000, pp. 230–255.

[Pit03] Andrew M. Pitts. “Nominal Logic, A First Order Theory of Names and
Binding”. In: Information and Computation 186.2 (2003), pp. 165–193.

[Pot06] François Pottier. “An Overview of Cαml”. In: Proceedings of the ACM-
SIGPLAN Workshop on ML (ML 2005). Vol. 148. Electr. Notes Theor.
Comput. Sci. 2006, pp. 27–52. doi: 10.1016/j.entcs.2005.11.039.

[Pot07] François Pottier. “Static name control for FreshML”. In: 22nd Annual
IEEE Symposium on Logic in Computer Science (LICS 2007). IEEE.
2007, pp. 356–365.

https://doi.org/10.1145/1094622.1094628
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tocl-nabla.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tocl-nabla.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tocl-nabla.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf
http://ocaml.org/
https://doi.org/10.1016/j.entcs.2005.11.039

BIBLIOGRAPHY 97

[PS08a] Adam Poswolsky and Carsten Schürmann. “Practical programming with
higher-order encodings and dependent types”. In: Proceedings of the
European Symposium on Programming (ESOP ’08). 2008.

[PS08b] Adam Poswolsky and Carsten Schürmann. “System Description: Delphin
- A Functional Programming Language for Deductive Systems”. In:
International Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice (LFMTP 2008). Ed. by A. Abel and C. Urban.
Vol. 228. 2008, pp. 113–120.

[PS99] Frank Pfenning and Carsten Schürmann. “System Description: Twelf —
A Meta-Logical Framework for Deductive Systems”. In: 16th Conf. on
Automated Deduction (CADE). Ed. by H. Ganzinger. LNAI 1632. Trento:
Springer, 1999, pp. 202–206. doi: 10.1007/3-540-48660-7_14.

[Qi+15] Xiaochu Qi, Andrew Gacek, Steven Holte, Gopalan Nadathur, and Zach
Snow. The Teyjus System – Version 2. http://teyjus.cs.umn.edu/.
2015. url: http://teyjus.cs.umn.edu/.

[Qia96] Zhenyu Qian. “Unification of higher-Order patterns in linear time and
space”. In: J. of Logic and Computation 6.3 (1996), pp. 315–341.

[San96] Davide Sangiorgi. “π-calculus, internal mobility and agent-passing cal-
culi”. In: Theoretical Computer Science 167.2 (1996), pp. 235–274.

[SC14] Mary Southern and Kaustuv Chaudhuri. “A Two-Level Logic Approach
to Reasoning about Typed Specification Languages”. In: 34th Interna-
tional Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS). Ed. by Venkatesh Raman and
S. P. Suresh. Vol. 29. Leibniz International Proceedings in Informatics
(LIPIcs). New Delhi, India: Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, Dec. 2014, pp. 557–569. doi: 10.4230/LIPIcs.FSTTCS.2014.
557. url: http://abella-prover.org/papers/fsttcs14lf.pdf.

[Sch06] Helmut Schwichtenberg. “Minlog”. In: The Seventeen Provers of the
World. Ed. by Freek Wiedijk. Vol. 3600. LNCS. Springer, 2006, pp. 151–
157. doi: 10.1007/11542384_19.

[Sch93] Peter Schroeder-Heister. “Rules of Definitional Reflection”. In: 8th
Symp. on Logic in Computer Science. Ed. by M. Vardi. IEEE Computer
Society Press. IEEE, June 1993, pp. 222–232. doi: 10.1109/LICS.
1993.287585.

[Sco70] Dana Scott. “Outline of a Mathematical Theory of Computation”.
In: Proceedings, Fourth Annual Princeton Conference on Information
Sciences and Systems. Also, Programming Research Group Techni-
cal Monograph PRG–2, Oxford University. Princeton University, 1970,
pp. 169–176.

[SP11] Robert J. Simmons and Frank Pfenning. Weak Focusing for Ordered
Linear Logic. Tech. rep. CMU-CS-10-147. Carnegie Mellon University,
Apr. 2011.

[SPG03] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. “FreshML: Programming
with Binders Made Simple”. In: Eighth ACM SIGPLAN International
Conference on Functional Programming (ICFP 2003), Uppsala, Sweden.
ACM Press, Aug. 2003, pp. 263–274.

https://doi.org/10.1007/3-540-48660-7_14
http://teyjus.cs.umn.edu/
http://teyjus.cs.umn.edu/
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.557
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.557
http://abella-prover.org/papers/fsttcs14lf.pdf
https://doi.org/10.1007/11542384_19
https://doi.org/10.1109/LICS.1993.287585
https://doi.org/10.1109/LICS.1993.287585

98 BIBLIOGRAPHY

[SPS05] Carsten Schürmann, Adam Poswolsky, and Jeffrey Sarnat. “The nabla-
calculus. Functional Programming with Higher-order Encodings”. In:
Proceedings of the 7th International Conference on Typed Lambda
Calculi and Applications. TLCA’05. 2005. doi: 10.1007/11417170\
_25.

[TM12] Alwen Tiu and Alberto Momigliano. “Cut elimination for a logic with
induction and co-induction”. In: Journal of Applied Logic 10.4 (2012),
pp. 330–367. doi: 10.1016/j.jal.2012.07.007.

[TNM05] Alwen Tiu, Gopalan Nadathur, and Dale Miller. “Mixing Finite Success
and Finite Failure in an Automated Prover”. In: Empirically Successful
Automated Reasoning in Higher-Order Logics (ESHOL’05). Dec. 2005,
pp. 79–98.

[Tol13] Pierre-Nicolas Tollitte. “Extraction of Certified Functional Code from
Inductive Specifications”. Theses. Conservatoire national des arts et
metiers - CNAM, Dec. 2013. url: https://tel.archives-ouvertes.
fr/tel-00968607.

[Tro73] Anne Sjerp Troelstra, ed. Metamathematical Investigation of Intuition-
istic Arithmetic and Analysis. Vol. 344. Lecture Notes in Mathematics.
Springer, 1973.

[Urb08] Christian Urban. “Nominal Reasoning Techniques in Isabelle/HOL”. In:
Journal of Automated Reasoning 40.4 (2008), pp. 327–356.

[VM10] Alexandre Viel and Dale Miller. “Proof search when equality is a logical
connective”. Presented to the International Workshop on Proof-Search
in Type Theories. July 2010. url: http://www.lix.polytechnique.
fr/Labo/Dale.Miller/papers/unif-equality.pdf.

[Wan+13] Yuting Wang, Kaustuv Chaudhuri, Andrew Gacek, and Gopalan Na-
dathur. “Reasoning about Higher-Order Relational Specifications”. In:
Proceedings of the 15th International Symposium on Princples and
Practice of Declarative Programming (PPDP). Ed. by Tom Schrijvers.
Madrid, Spain, Sept. 2013, pp. 157–168. doi: 10.1145/2505879.
2505889. url: http://chaudhuri.info/papers/draft13hhw.pdf.

[ZS15] Beta Ziliani and Matthieu Sozeau. “A unification algorithm for Coq
featuring universe polymorphism and overloading”. In: Proceedings
of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3,
2015. Ed. by Kathleen Fisher and John H. Reppy. ACM, 2015, pp. 179–
191. doi: 10.1145/2784731.2784751.

https://doi.org/10.1007/11417170_25
https://doi.org/10.1007/11417170_25
https://doi.org/10.1016/j.jal.2012.07.007
https://tel.archives-ouvertes.fr/tel-00968607
https://tel.archives-ouvertes.fr/tel-00968607
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/unif-equality.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/unif-equality.pdf
https://doi.org/10.1145/2505879.2505889
https://doi.org/10.1145/2505879.2505889
http://chaudhuri.info/papers/draft13hhw.pdf
https://doi.org/10.1145/2784731.2784751

Appendix A

A unification algorithm in
MLTS

The following commented example presents a direct implementation of the Robin-
son unification algorithm in MLTS. Due to its exponential nature and to the relative
inefficiency of the current toy implementation of MLTS, even the small examples
present on the website can take a long time to execute.

(* List concatenation *)
let rec concat l k =

match l with
| [] -> k
| h::tl -> h::(concat tl k);;

(* Checks if a given predicate is true for
at least one element of a list.
('a -> bool) * ('a list) -> bool *)

let rec forsome args = match args with
| (pred ,[]) -> false
| (pred ,(x::l)) -> if (pred x) then true else (forsome(pred ,l));;

(* First -order terms to unify *)
type folterm =

| A
| B
| H of folterm
| G of folterm * folterm ;;

(* subst x t s replaces x by t in s *)
let rec subst x t s = match (x, s) with

| nab X in (X,X) -> t
| nab X Y in (X,Y) -> Y
| (x,A) -> A
| (x,B) -> B
| (x, H u) -> H (subst x t u)
| (x, G(u,v)) -> G (subst x t u, subst x t v);;

(* Unification problems
are lists of "disagreement pairs"

unif =
Coerce(disagreementPairs , substitutions)

| Some(X\ unif @ X)
*)
type unif =

99

100 APPENDIX A. A UNIFICATION ALGORITHM IN MLTS

| Coerce of ((folterm * folterm) list) * ((folterm * folterm)
list)

| Some of (folterm => unif) ;;

(* Results are lists of substitutions *)
type subst =

| Subs of (folterm * folterm) list
| Var of (folterm => subst) ;;

let rec getSubs uni =
match uni with
| Some(X\ u @ X) -> Var(X\ getSubs (u @ X))
| Coerce(dpl , subl) -> Subs(subl)

;;

type result =
| Fail
| Success of subst

;;

(* The simpl function simplifies a list
of disagreement pairs by removing not
disagreeing pairs or not disagreeing heads *)

let rec simpl dpairs = match dpairs with
| [] -> []
| nab X in (X, X)::(l @ X) -> simpl (l @ X)
| nab X in (t, X)::(l @ X) -> (X, t)::simpl (l @ X)
| (A, A)::l -> simpl l
| (B, B)::l -> simpl l
| (H x, H u)::l -> simpl ((x,u)::l)
| (G(x, y), G(u, v))::l -> simpl ((x, u)::(y, v)::l)
| dpair::l -> dpair ::(simpl l);;

let rec simplify unif = match unif with
| (Some r) -> (Some (X\ (simplify (r @ X))))
| (Coerce (dpairs , subs)) -> (Coerce (simpl dpairs , subs));;

(* A term is rigid if it 's not a nominal *)
let rigidp term = match term with

| nab X in X -> false
| y -> true;;

(* occursp (nominal , term) checks if the
nominal appears in the term.
it 's needed by the "variable elimination" phase *)

let rec occursp p = match p with
| nab X in (X,X) -> true
| nab X in (X,A) -> false
| nab X in (X,B) -> false
| nab X in (X,H(t @ X)) -> occursp (X,(t @ X))
| nab X in (X,G((t @ X),(s @ X))) -> occursp (X,t @ X) || occursp

(X,s @ X)
| x -> false ;;

(* a SIMPLIFIED list of disagreement pairs is failing
if one of the pairs contains two rigid terms
or if t appears in s or vice versa. *)

let rec failuredp dpairs = match dpairs with
| [] -> false
| (t,s)::l ->

if (rigidp t) && (rigidp s) then true
else if (occursp (t,s)) || (occursp (s,t)) then true

else (failuredp l);;

101

let rec failurep unif = match unif with
| (Some r) -> (new X in (failurep (r @ X)))
| (Coerce (dps ,subs)) -> (failuredp dps);;

let rec endp unif = match unif with
| (Some r) -> (new X in (endp (r @ X)))
| (Coerce (dps ,subs)) ->

match dps with
| [] -> true
| d -> false ;;

let rec varElimFirst uni =
(* This auxillary replace a var by a term

in all disagreement pairs *)
let rec aux_subst x t dpairs =

match dpairs with
| [] -> []
| (lf, rf)::tl ->

(subst x t lf, subst x t rf)::(aux_subst x t tl)
in

let rec doFirst dpairs subs =
(* Because simpl and failure check are
called before VarElim we can assume that:

The dpair list is non -empty
We only have f / f or f / r dpairs

and in the later case f is not in r *)
match dpairs with
| nab X in (X, t)::(tl @ X) ->

Coerce(
aux_subst X t (tl @ X),
((X, t)::(aux_subst X t subs))

)
in
match uni with
| Some r -> Some(X\ (varElimFirst (r @ X)))
| Coerce(dpl , subl) -> doFirst dpl subl

;;

(* We successively :
simplify
eliminate variables (todo)
check failure

until success or stale state *)
let rec unify uni =

let simpleUni = simplify uni in
if (failurep simpleUni)
then Fail
else if (endp simpleUni)

then Success(getSubs simpleUni)
else unify (varElimFirst simpleUni)

;;

102 APPENDIX A. A UNIFICATION ALGORITHM IN MLTS

Appendix B

A prototype implementation for MLTS

This appendix presents commented fragments of MLTS’ prototype interpreter in λProlog. For example, mutually recursive
definitions and builtins have been stripped from the code to increase readability. The full interpreter’s code is available at
https://github.com/voodoos/mlts/tree/master/lib/data/core.

1 Terms and types
% Units
kind unit type.
type unit unit.

% Booleans
kind bool type.
type btrue bool.
type bfalse bool.

% Literals
kind literal type.
type unit literal.
type i int -> literal.
type b bool -> literal.
type s string -> literal.

% Constructors
kind constructor type.

% Terms
kind tm type.

% Function (abstraction)
type lam (tm -> tm) -> tm.
% Fixpoints
type fix (tm -> tm) -> tm.
% Application
type app tm -> tm -> tm.
% Definition
type let tm -> (tm -> tm) -> tm.
% Nominal abstraction
type backslash (tm -> tm) -> tm.
% Nominal application
type arobase tm -> tm -> tm.

% Fresh nominal
type new (tm -> tm) -> tm.
% Literal terms
type lit literal -> tm.
% Variants
type variant constructor -> list tm -> tm.
type match tm -> list clause -> tm.

% patterns
kind pat type.

% Wildcard "_"
type pany pat.
% Pattern literal
type plit literal -> pat.
% Pattern variable
type pvar tm -> pat.
% Pattern nominal
type pnom tm -> pat.
% Pattern nominal abstraction
type pbackslash (tm -> pat) -> pat.
% Pattern nominal application
type parobase pat -> tm -> pat.
% Pattern variant
type pvariant constructor -> list pat -> pat.

% Matching clauses
kind clause type.

% Simple match rule
type arr pat -> tm -> clause.
% Pattern variable quantification
type all (tm -> clause) -> clause.
% Nominal quantification (nab .. in)
type nab (tm -> clause) -> clause.

103

https://github.com/voodoos/mlts/tree/master/lib/data/core

104 APPENDIX B. A PROTOTYPE IMPLEMENTATION FOR MLTS

2 Typing
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Kind and types definitions %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
kind ty type.

% Raw types for integers ,
% strings , boolean and unit
type int , bool , string , tunit ty.
% Lists of some type
type lst ty -> ty.
% Functional arrow type
type arr ty -> ty -> ty.
% Higher-arity arrow type (=>)
type bigarr ty -> ty -> ty.

% Top-level typing predicate
type typeof tm -> ty -> prop.

%%%%%%%%%%%%%%%%%%%%
%%% Typing rules %%%
%%%%%%%%%%%%%%%%%%%%
% Literals
typeof (lit unit) tunit.
typeof (lit (i _I)) int.
typeof (lit (b _B)) bool.
typeof (lit (s _S)) string.

% Recursive definitions
typeof (fix M) A :-

pi x\ typeof x A => typeof (M x) A.

% Let-expressions
typeof (let M R) A :-

typeof M B, pi x\ typeof x B => typeof (R x) A.

% New nominal
typeof (new R) B :-

pi x\ typeof x A_ => typeof (R x) B.

% Function abstraction
typeof (lam R) (arr A B) :-

pi x\ typeof x A => typeof (R x) B.

% Nominal abstraction
typeof (backslash R) (bigarr A B) :-

pi x\ typeof x A => typeof (R x) B.

% Application
typeof (app M N) B :-

typeof M (arr A B),
typeof N A.

% Nominal application
typeof (arobase M N) A :-

typeof M (bigarr B A),
typeof N B.

% Constructors (variants)
% built-in pairs

type t_pair ty -> ty -> ty.
type pair constructor.
type_constr pair [A, B] (t_pair A B).

% built-in lists
type t_list ty -> ty.
type list_cons constructor.
type list_empty constructor.
type_constr list_empty [] (t_list A_).
type_constr list_cons [A, (t_list A)] (t_list A).

typeof (variant Constr Args) A :-
type_constr Constr Typs A,
type_check Args Typs.

% Two by two check of a list of
% expressions and a list of types.
type_check [] [].
type_check [E|TL] [Ty|TyL] :-

typeof E Ty,
type_check TL TyL.

% Patterns
type_pat pany A_.
type_pat (plit I) A :- typeof (lit I) A.
type_pat (pvar T) A :- typeof T A.
type_pat (pnom N) A :- typeof N A.
type_pat (pbackslash R) (bigarr A B) :-

pi x\ typeof x A => type_pat (R x) B.

type_pat (parobase P T) B :-
type_pat P (bigarr A B),
typeof T A.

type_pat (pvariant Constr Pats) A :-
type_constr Constr Typs A,
type_checkp Pats Typs.

% Two by two check of a list of
% patterns and a list of types.
type_checkp [] [].
type_checkp [P|TL] [Ty|TyL] :-

type_pat P Ty,
type_checkp TL TyL.

% Matching
typeof (match Exp Rules) A :-

typeof Exp B, type_match B Rules A.

type_match _ [] _.
type_match A (R::Rs) B :-

type_match_rule A R B, type_match A Rs B.

type_match_rule A (arr Pat Result) B :-
type_pat Pat A, typeof Result B.

type_match_rule A (nab R) B :-
pi x\ typeof x C_ => type_match_rule A (R x) B.

type_match_rule A (all R) B :-
pi x\ typeof x C_ => type_match_rule A (R x) B.

3. INTERPRETER 105

3 Interpreter
% Value and evaluation props
type val tm -> prop.
type eval tm -> tm -> prop.

% Tools to introduce nominals and variables
pin G :- pi x \ nom x => G x.
piv G :- pi x \ abstract_value x => G x.

%%%%%%%%%%%%%%
%%% Values %%%
%%%%%%%%%%%%%%
val (lam _).
val (lit L) :- val_lit L.

val N :- nom N.
val A :- abstract_value A.

val_lit unit.
val_lit (i _).
val_lit (s _).
val_lit (b btrue).
val_lit (b bfalse).

val (backslash R) :- pin x \ val (R x).
val (variant _C Vs) :- foreach val Vs.

%%%%%%%%%%%%%%%%%%
%%% EVALUATION %%%
%%%%%%%%%%%%%%%%%%
eval (lam R) (lam R).
eval (lit L) (lit L) :- val_lit L.

eval N N :- nom N.
eval A A :- abstract_value A.

eval (app T U) V :-
eval T (lam R),
eval U VU,
eval (R VU) V.

eval (let Def Body) V :-
eval Def VDef ,
eval (Body VDef) V.

eval (new R) V :-
sigma W \ pin x \ eval (R x) V.

eval (backslash R) (backslash VR):-
pin x \ eval (R x) (VR x).

eval (arobase T N) V :-
nom N,
eval T (backslash R),
eval (R N) V.

eval (variant C Ts) (variant C Vs) :-
foreach2 eval Ts Vs.

eval (fix F) V :- eval (F (fix F)) V.

% Evaluation of pattern matching
eval (match T Cls) V :-

eval T VT,
eval_clauses VT Cls V.

% Evaluation of a list of clauses
type eval_clauses

tm -> list clause -> tm -> prop.

eval_clauses _VL [] _VR :- false.
eval_clauses VL (Cl::Cls) VR :-

if (eval_clause VL Cl [] R)
(eval R VR)
(!, eval_clauses VL Cls VR).

% Evaluation of a single clause
% We need to carry a list of bindings
% appearing in the pattern of the clause
type eval_clause

tm -> clause -> list binding -> tm -> prop.

eval_clause L (all RCl) Sigma (R Vx) :-
pi x \ pattern_variable x =>
eval_clause L (RCl x) (Sigma_in x) (R x),
extract (Sigma_in x) x Vx Sigma.

eval_clause L (nab RCl) Sigma (R Y) :-
pin x \
locate_rigid_clause x Y L (RCl x), !,
subst copy [bind Y x] L (Lx x),
eval_clause (Lx x) (RCl x) Sigma (R x).

eval_clause L (arr P R) Sigma R :-
matches L P Sigma.

% Matches (used by eval_clause)
type matches

tm -> pat -> list binding -> prop.

matches _ pany [].

matches (lit L) (plit L) [].

matches X (pvar Y) [bind Y X] :-
pattern_variable Y.

matches X (pnom X) [].

matches (variant C Vs) (pvariant C Ps) TmSubst :-
matches_all Vs Ps TmSubst.

matches_all [] [] [].
matches_all (V :: Vs) (P :: Ps) TmSubst_all :-

matches V P TmSubst ,
matches_all Vs Ps TmSubst_rest ,
concat_bindings TmSubst TmSubst_rest TmSubst_all.

matches (backslash V) (pbackslash P) TmSubst :-

106 APPENDIX B. A PROTOTYPE IMPLEMENTATION FOR MLTS

pin x \ matches (V x) (P x) TmSubst.

matches V (parobase P X) TmSubst :-
nom X,
sigma Vx \
pin x \
subst copy [bind X x] V (Vx x),
matches (backslash (x \ Vx x)) P TmSubst.

% Utilities on binding lists
type extract

list binding -> tm -> tm -> list binding -> prop.

extract (bind X Y :: Sigma) X Y Sigma :- !.
extract (bind X1 Y1 :: Sigma1)

X2 Y2 (bind X1 Y1 :: Sigma2) :-
not (X1 = X2), !,
extract Sigma1 X2 Y2 Sigma2.

type concat_bindings list binding ->
list binding -> list binding -> prop.

concat_bindings [] Subst2 Subst2.
concat_bindings (bind X Y :: Subst1) Subst2 (bind X

Y :: Subst3) :-
concat_bindings Subst1 Subst2 Subst3.

type subst (A -> A -> prop) ->
list binding -> A -> A -> prop.

subst Copy Subst Tin Tout :-
if (current_subst _)

(print "assert failure in subst", !, false)
(current_subst Subst => Copy Tin Tout).

binds [] X1 Y1 :- X1 = Y1.
binds (bind X1 Y1 :: Subst) X2 Y2 :-

if (X1 = X2)
(Y1 = Y2)
(binds Subst X2 Y2).

% Paths
kind list_path type.
type now list_path.
type next list_path -> list_path.

type in_list A -> list_path -> list A -> prop.
in_list X now (Y :: _Ys) :- X = Y.
in_list X (next P) (_Y :: Ys) :- in_list X P Ys.

kind value_path type.
type here value_path.
type under_cons constructor ->

list_path -> value_path -> value_path.
type under_backslash

(tm -> value_path) -> value_path.
type under_arobase

value_path -> tm -> value_path.

% Finding rigid occurences (used by eval_clause)
type rigid_in_clause

tm -> value_path -> clause -> prop.
rigid_in_clause X Path (all Cl) :-

piv x \ rigid_in_clause X Path (Cl x).
rigid_in_clause X Path (nab Cl) :-

pin x \ rigid_in_clause X Path (Cl x).
rigid_in_clause X Path (arr P _) :-

rigid_in_pat X Path P.

type rigid_in_pat
tm -> value_path -> pat -> prop.

rigid_in_pat X here (pnom X).
rigid_in_pat X here (pvar X).
rigid_in_pat X (under_cons C N Path) (pvariant C Ps)

:-
in_list P N Ps,
rigid_in_pat X Path P.

rigid_in_pat X (under_backslash Pathx) (pbackslash
Px)
:- pin x \ (rigid_in_pat X) (Pathx x) (Px x).

rigid_in_pat X (under_arobase Path Y) (parobase P Y)
:- not (X = Y),
rigid_in_pat X Path P.

type rigid_in_val
tm -> value_path -> tm -> prop.

rigid_in_val X here X.
rigid_in_val X (under_cons C N Path) (variant C Vs)

:- in_list V N Vs,
rigid_in_val X Path V.

rigid_in_val X (under_backslash Pathx) (backslash R)
:- pin x \ rigid_in_val X (Pathx x) (R x).

rigid_in_val X (under_arobase Path Y) (Vx Y) :-
rigid_in_val X Path (backslash (x \ Vx x)).

type locate_rigid_clause
tm -> tm -> tm -> clause -> prop.

type locate_rigid tm -> tm -> tm -> pat -> prop.

type silence-rigid-occurrence-constraint prop.
locate_rigid_clause Xin Xout V Cl :-

(rigid_in_clause Xin Path Cl, !;
not silence-rigid-occurrence-constraint , !,
term_to_string Xin XinStr ,
term_to_string Cl PStr ,
ErrMsg is "Nominal " ^ XinStr ^
" has no rigid occurrence in " ^ PStr ,
eval_error ErrMsg ,
false),

rigid_in_val Xout Path V.

%%% Copy clauses %%%
% Substitution is realized using
% "copy clauses" as described in
% Programming with Higher Order Logic
% By D. Miller and G. Nadathur.
% The full definition of these
% copy clauses can be found on the git.
copy (lit L1) (lit L2) :- L1 = L2.
copy (lam R1) (lam R2) :- underv copy R1 R2.
copy (app M1 N1) (app M2 N2) :-

copy M1 M2, copy N1 N2.
% etc.

Titre: Calculer avec des relations, des fonctions et des lieurs

Mots clés: Calcul, logique, lieurs, languages de programmation

Résumé: Cette thèse s’inscrit dans la longue tradition de
l’étude des relations entre logiquemathématique et calcul
et plus spécifiquement de la programmation déclarative.
Le document est divisé en deux contributions principales.
Chacune d’entre-elles utilise des résultats récents de la
théorie de la démonstration pour développer de tech-
niques novatrices utilisant déduction logique et fonctions
pour effectuer des calculs.
La première contribution de ce travail consiste en la de-
scription et la formalisation d’une nouvelle technique
utilisant le mécanisme de la focalisaton (un moyen de
guider la recherche de preuve) pour distinguer les calculs
fonctionnels qui se dissimulent dans les preuves déduc-
tives. À cet effet nous formulons un calcul des séquents
focalisé pour l’arithmétique de Heyting où points-fixes
et égalité sont définis comme des connecteurs logiques
et nous décrivons une méthode pour toujours placer
les prédicats singletons dans des phases négatives de la
preuve, les identifiant ainsi avec un calcul fonctionnel.
Cette technique n’étend en aucune façon la logique sous-
jacente: ni opérateur de choix, ni règles de réécritures

ne sont nécéssaires. Notre logique reste donc purement
relationnelle même lorsqu’elle calcule des fonctions.
La seconde contribution de cette thèse est la conception
d’un nouveau langage de programmation fonctionnelle:
MLTS. De nouveau, nous utilisons des travaux théoriques
récents en logique: la sémantique de MLTS est ainsi une
théorie au sein de la logique𝒢, la logique de raisonnement
de l’assistant de preuve Abella. La logique 𝒢 utilise un
opérateur spécifique: ∇, qui est un quantificateur sur des
noms “frais” et autorise un traitement naturel des preuves
manipulant des objets pouvant contenir des lieurs. Ce
traitement s’appuie sur la gestion naturelle des lieurs
fournie par le calcul des séquents. La syntaxe deMLTS est
basée sur celle du langage de programmationOCamlmais
fournit des constructions additionnelles permettant aux
lieurs présents dans les termes de se déplacer au niveau du
programme. De plus, toutes les opérations sur la syntaxe
respectent l’alpha et la béta conversion. Ces deux aspects
forment l’approche syntaxique des lieurs appelée λ-tree
syntax. Un prototype d’implémentation du langage est
fourni, permettant à chacun d’expérimenter facilement
en ligne (https://trymlts.github.io).

Title: Computing with relations, functions, and bindings

Keywords: Computation, logic, binders, programming languages

Abstract: The present document pursues the decades-
long study of the interactions betweenmathematical logic
and functional computation, and more specifically of
declarative programming. This thesis is divided into two
main contributions. Each one of those make use of mod-
ern proof theory results to design new ways to compute
with relations and with functions.
The first contribution of this work is the description and
formalization of a new technique that leverages the fo-
cusing mechanism (a way to guide proof-search) to reveal
functional computation concealed in deductive proofs.
To that extent we formulate a focused sequent calculus
proof system for Heyting arithmetic where fixed points
and term equality are logical connectives and describe a
means to always drive singleton predicates into negative
phases of the proof, thus identifying themwith functional
computation. This method does not extend the under-
lying logic in any way: no choice principle nor equality
theory nor rewriting rules are needed. As a result, our

logic remains purely relational even when it is computing
functions.
The second contribution of this thesis is the design of a
new functional programming language: MLTS. Again,
we make use of recent work in logic: the semantics of
MLTS is a theory inside 𝒢-logic, the reasoning logic of the
Abella interactive theorem prover. 𝒢-logic uses a specific
operator: ∇, a fresh-name quantifier which allows for a
natural treatment of proofs over structures with bindings
based on the natural handling of bindings of the sequent
calculus. The syntax of MLTS is based on the program-
ming language OCaml but provides additional sites so
that term-level bindings can move to programming level
bindings. Moreover, all operations on syntax respect αβ-
conversion. Together these two tenets form the λ-tree
syntax approach to bindings. The resulting language was
given a prototype implementation that anyone can con-
veniently try online (https://trymlts.github.io).

Institut Polytechnique de Paris
91120 Palaiseau, France

https://trymlts.github.io
https://trymlts.github.io

	Introduction
	The Hproof system for Heyting arithmetic
	The typed lambda-calculus
	Syntax of terms
	Typing using sequent calculus
	Computing with the lambda-calculus

	Terms and formulas for H
	The Hsequent calculus
	The logical core of H
	The arithmetic part of H

	Separating functional computation from relations
	An introduction to focusing
	The fimp calculus
	Polarity and proof search

	The f1 calculus for Heyting arithmetic
	Polarities of connectives
	Suspensions
	The complete F calculus

	Juggling with phases
	Phases as abstractions
	The polarity ambiguity of singleton sets
	An extension to equivalence classes

	A practical use: automation in Abella
	The G Logic and the Abella Implementation
	Proposal: Computation and Suspension
	Proposal: Deterministic Computation using Singleton Predicates
	Possible extensions

	Conclusion and perspectives

	A functional programming language using lambda-tree syntax
	Introduction
	A common example: substitution
	A new language, MLTS

	The new features of MLTS
	MLTS examples
	The untyped lambda-calculus
	Higher-order programming examples
	Normalization by Evaluation (NBE)
	The pi-calculus

	Types and syntax
	Abstract syntax as untyped lambda calculus
	Typing for the concrete syntax
	Typing for the explicit syntax

	Formalizing the design of MLTS
	Equality modulo alpha, beta, eta conversion
	Pattern unification and matching
	No repeated pattern variable occurrences
	Restricted use of higher-order pattern variables.
	All nab-bound variables must have a rigid occurrence.

	beta-0 versus beta
	Match rule quantification
	Nominal abstraction

	Natural semantic specification
	Formal properties of MLTS
	Interpreters for MLTS
	Nominal-escape checking
	Binder mobility
	Costs of moving binders
	A web frontend for the interpreter

	Related work
	Systems with two arrow type constructors
	Systems with one arrow type constructor
	Systems using nominal logic
	Challenge problems and benchmarks

	Perspectives for MLTS

	Conclusion
	A unification algorithm in MLTS
	A prototype implementation for MLTS
	Terms and types
	Typing
	Interpreter

