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Résumé

Ce manuscrit est le mémoire de mon dossier de candidature à l’habilitation à diriger des recher-
ches. À ce titre, il contient un exposé représentatif de mes travaux de recherche depuis la fin de ma
thèse. Son objectif est également de présenter sous une forme plus accessible les outils théoriques
principaux développés dans ces travaux, ainsi que leur application à divers modèles.

Mes recherches, depuis l’obtention de ma thèse en novembre 2011, portent principalement
sur l’étude du comportement quasi-stationnaire de processus avec absorption et de leurs appli-
cations. En particulier, je me suis attaché à développer des critères suffisants pour l’existence et
la convergence des lois conditionnelles d’un processus vers une distribution quasi-stationnaire.
Ces travaux sont exposés dans les première et seconde parties de ce manuscrit, qui contiennent
respectivement les critères abstraits et leurs application à des modèles classiques. Ils correspon-
dent aux publications et pré-publications suivantes1, écrites dans leur plus grande partie dans le
cadre d’une collaboration fructueuse avec Nicolas Champagnat à l’Institut Élie Cartan de Lorraine
à Nancy.

• S. Martínez, J. San Martín, and D. Villemonais. Existence and uniqueness of a quasi- sta-
tionary distribution for Markov processes with fast return from infinity. J. Appl. Probab.,
51(3):756–768, 2014.

• D. Villemonais. Minimal quasi-stationary distribution approximation for a birth and death
process. Electron. J. Probab., 20:no. 30, 18, 2015.

• N. Champagnat and D. Villemonais. Exponential convergence to quasi-stationary distribu-
tion and Q-process. Probab. Theory Related Fields, 164(1):243–283, 2016.

• N. Champagnat and D. Villemonais. Uniform convergence of conditional distributions for
absorbed one-dimensional diffusions. Adv. in Appl. Probab., 50(1):178–203, 2017.

• N. Champagnat and D. Villemonais. General criteria for the study of quasi-stationarity. ArXiv
e-prints, Dec. 2017.

• N. Champagnat and D. Villemonais. Lyapunov criteria for uniform convergence of condi-
tional distributions of absorbed Markov processes. ArXiv e-prints, Apr. 2017.

• N. Champagnat and D. Villemonais. Uniform convergence of penalized time-inhomogeneous
Markov processes. ESAIM Probab. Stat., 22:129–162, 2018.

1Toutes mes publications sont accessibles depuis ma page web https://www.normalesup.org/~villemonais/

vii

https://www.normalesup.org/~villemonais/


viii RÉSUMÉ

• N. Champagnat, K. A. Coulibaly-Pasquier, and D. Villemonais. Criteria for Exponential Con-
vergence to Quasi-Stationary Distributions and Applications to Multi-Dimensional Diffu-
sions. Séminaire de Probabilités, XLIX:165–182, 2018.

Ces résultats ont des conséquences qui vont au delà de la seule théorie des distributions quasi-
stationnaires et mènent naturellement à l’étude de leurs applications aux propriétés quasi-ergo-
diques, à la R-positivité de semi-groupes non-bornés, aux processus de Pólya à valeur mesure et
aux processus auto-renforcés. Ces applications sont développées dans la troisième partie de ce
manuscrit et correspondent aux publications et pré-publications suivantes.

• N. Champagnat and D. Villemonais. Uniform convergence to the Q-process. Electron. Com-
mun. Probab., 22:7 pp., 2017.

• N. Champagnat and D. Villemonais. Practical criteria for R-positive recurrence of unbounded
semigroups. ArXiv e-prints, Apr. 2019.

• C. Mailler and D. Villemonais. Stochastic approximation on non-compact measure spaces
and application to measure-valued Pólya processes. ArXiv e-prints, Sep. 2018.

• M. Benaïm, N. Champagnat, and D. Villemonais. Stochastic approximation of quasi- station-
ary distributions for diffusion processes in a bounded domain. ArXiv e-prints, Apr. 2019.

Enfin, d’autres problématiques seront exposées, dont certaines ont nourri des encadrements et
co-encadrements de stages de recherche long, d’une thèse et d’un post-doctorat. Ils correspondent
aux publications suivantes.

• D. Villemonais. Lower bound for the coarse ricci curvature of continuous-time pure-jump
processes. J. Theoret. Probab. Probability, May 2019.

• C. Coron, S. Méléard, and D. Villemonais. Impact of demography on extinction/fixation
events. J. Math. Biol., 78(3):549–577, Feb 2019.

• S. Toupance, D. Villemonais, D. Germain, A. Gegout-Petit, E. Albuisson, and A. Benetos. The
individual’s signature of telomere length distribution. Sci. Rep., 9(1):685, 2019.

Certains travaux post-thèse ne sont pas abordés dans ce manuscrit. En particulier, les travaux
sur les processus de type Fleming-Viot en tant qu’outils d’approximation des distributions quasi-
stationnaires ne sont pas présentés, car dans la continuité directe de mes travaux de thèse. D’autres
sujets portent sur des modèles dont la seule définition demanderait une introduction trop tech-
nique. Il s’agit d’une proportion conséquente des articles précédemments cités et de la totalité des
publications et pré-publications suivantes.

• W. Oçafrain and D. Villemonais. Convergence of a non-failable mean-field particle system.
Stoch. Anal. Appl., 35(4):587–603, 2017.

• N. Champagnat and D. Villemonais. Exponential convergence to quasi-stationary distribu-
tion for absorbed one-dimensional diffusions with killing. ALEA Lat. Am. J. Probab. Math.
Stat., 14(1):177–199, 2017.



ix

• N. Champagnat, R. Schott, and D. Villemonais. Probabilistic Non-asymptotic Analysis of Dis-
tributed Algorithms. ArXiv e-prints, Feb. 2018.

• N. Champagnat and D. Villemonais. Convergence of the Fleming-Viot process toward the
minimal quasi-stationary distribution. ArXiv e-prints, Oct. 2018.

• E. Horton, A. E. Kyprianou, and D. Villemonais. Stochastic Methods for the Neutron Trans-
port Equation I: Linear Semigroup asymptotics. ArXiv e-prints, Oct. 2018.

• A. M. G. Cox, E. L. Horton, A. E. Kyprianou, and D. Villemonais. Stochastic Methods for Neu-
tron Transport Equation III: Generational many-to-one and ke f f . ArXiv e-prints, Sept. 2019.

Enfin les travaux suivants ont été développés entièrement ou en grande partie durant ma thèse
et ne sont donc pas exposés en détail dans ce mémoire. Il s’agit des publications suivantes.

• D. Villemonais. Interacting particle systems and yaglom limit approximation of diffusions
with unbounded drift. Electron. J. Probab., 16:1663–1692, 2011.

• S. Méléard and D. Villemonais. Quasi-stationary distributions and population processes.
Probab. Surv., 9:340–410, 2012.

• D. Villemonais. Uniform tightness for time-inhomogeneous particle systems and for con-
ditional distributions of time-inhomogeneous diffusion processes. Markov Process. Related
Fields, 19(3):543–562, 2013.

• D. Villemonais. General approximation method for the distribution of Markov processes
conditioned not to be killed. ESAIM Probab. Stat., 18:441–467, 2014.

• P. Del Moral and D. Villemonais. Exponential mixing properties for time inhomogeneous
diffusion processes with killing. Bernoulli, 24(2):1010–1032, 2018.

Notons pour conlure que certains des résultats de ce mémoire sont présentés sous une forme
différente de leur première publication, voire sont originaux. Toutefois, il s’agit de développe-
ments incrémentaux et les preuves ne présentent pas d’intérêt particulier. Afin de ne pas alourdir
le manuscrit, les preuves de ces résultats, ainsi que celles déjà publiées, ne seront pas incluses.



x RÉSUMÉ



Abstract

This manuscript is the dissertation of my application to the habilitation à diriger des recherches
degree. As such, its content reflects my research activities since the end of my PhD thesis. Its
purpose is also to present under a more accessible form the main theoretical tools developed in
these works, as well as their applications to various models.

Since my PhD defence in November 2011, my researches focus mainly on the quasi-stationary
behaviour of absorbed Markov processes and their applications. In particular, I devoted myself
on developing sufficient criteria for the existence and convergence of the conditional laws of a
process towards a quasi-stationary distribution. These works are described in the first and second
parts of this manuscript, which respectively present the abstract criteria and their application to
different models. They correspond to the following publications and pre-publications2, most of
them written as part of a fruitful collaboration with Nicolas Champagnat at the Institut Élie Cartan
de Lorraine in Nancy.

• S. Martínez, J. San Martín, and D. Villemonais. Existence and uniqueness of a quasi- sta-
tionary distribution for Markov processes with fast return from infinity. J. Appl. Probab.,
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Notations

We will use the following notations for the sets

• Z= {. . . ,−2,−1,0,1,2, . . .} of integers,

• Z+ = {0,1,2,3, . . .} of non-negative integers,

• N= {1,2,3, . . .} of positive integers,

• R= (−∞,+∞) of real numbers,

• R+ = [0,+∞) of non-negative real numbers.

Given a measurable set (E ,E ), we denote by

• B(E) the set of measurable functions from E to R,

• Bb(E) the set of bounded measurable functions from E to R,

• B+(E) the set of non-negative measurable functions from E to R+,

• ‖ ·‖∞ the uniform norm on Bb(E),

• M (E) the set of non-negative measures on E ,

• M1(E) the set of probability measures on E ,

• µ( f ) the integral of f with respect to µ, defined for all µ ∈ E and all f ∈B+(E) or all f ∈B(E)
such that f is integrable with respect to µ (i.e. µ(| f |) <+∞),

• ‖ ·‖T V the total variation norm, defined for all µ1,µ2 ∈M1(E) by∥∥µ1 −µ2
∥∥

T V = 2 sup
A∈E

|µ1(A)−µ2(A)| = sup
{
|µ1( f )−µ2( f )| : f ∈Bb(E), ‖ f ‖∞ ≤ 1

}
.

Given a measurable set (E ,E ) and a positive measurable function ψ : E → (0,+∞), we define

• M (ψ) :=
{
µ ∈M1(E) : µ(ψ) <+∞

}
• ‖ ·‖M (ψ) the weighted total variation norm, defined for all µ1,µ2 ∈M (ψ) by∥∥µ1 −µ2

∥∥
M (ψ) := sup

{
|µ1( f )−µ2( f )| : | f | ≤ψ

}
.
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• L∞(ψ) :=
{

f ∈B(E) : | f /ψ| ∈Bb(E)
}

,

• ‖ f ‖L∞(ψ) := supx∈E
| f (x)|
ψ(x) for all f ∈ L∞(ψ).

The sets
(
M1(E),‖·‖T V

)
,
(
M (ψ),‖·‖M (ψ)

)
and

(
L∞(ψ),‖·‖L∞(ψ)

)
are complete spaces, and Bb(E) =

L∞(1E ) and ‖ ·‖∞ = ‖·‖L∞(1E ).

Given a Polish space (E ,d), we define

• M d (E) :=
{
µ ∈M (E),

∫
d(x, y)µ(d y) <∞

}
,

• the Wasserstein distance Wd between two probability measures µ and ν on E belonging to
M d (E), as

Wd (µ,ν) = inf
π

∫
E×E

d(x, y)π(d x,d y),

where the infimum is taken over all probability measures π on E ×E such that π(·,E) = µ(·)
and π(E , ·) = ν(·) (π is called a coupling measure for µ and ν),

• the Wasserstein distance Wd between two measures in M d (E) with the same mass: for all
α> 0 and any probability measures µ,ν on E belonging to M d (E), we set

Wd (αµ,αν) = inf
π

∫
E×E

d(x, y)π(d x,d y) =αWd (µ,ν),

where the infimum is taken over all measures π on E×E with massα and such that π(·,E N ) =
µ(·) and π(E N , ·) = ν(·). Note that if a coupling π realizes the minimum in the definition of
Wd (µ,ν), then απ realizes the minimum in the definition of Wd (αµ,αν).

We emphasize that the state space
(
Pd (E N ),Wd

)
is a complete state space (see for instance Lemma 5.2

and Theorem 5.4 in [69]).

Given a measurable set (E ,E ), a time homogeneous Markov process with state space E is a family
(Ω, (Ft )t≥0, (X t )t≥0, (Pt )t≥0, (Px )x∈E∪{∂}) satisfying the conditions of [234, Definition III.1.1], in the
discrete or continuous time settings (i.e. t ∈Z+ or t ∈ R+). We recall that Px (X0 = x) = 1, that Pt is
the transition function at time t ≥ 0 of the process, and that the family (Pt )t≥0 defines a semi-group
of operators on the set Bb(E). For all µ ∈M1(E) and all f ∈B+(E), we will use the notations

Pµ(·) :=
∫

E∪{∂}
Px (·)µ(d x) and µPt f :=

∫
E∪∂

Pt f (x)µ(d x), ∀t ≥ 0.

We shall denote by Ex (resp. Eµ) the expectation corresponding to Px (resp. Pµ). We will say that the
process is absorbed at a point ∂ if, for all all s ≥ 0, Xs = ∂ implies X t = ∂ for all t ≥ s. This implies in
particular that the absorption time, defined as

τ∂ := inf{t ≥ 0, X t = ∂},

is a stopping time. In this work, we will often assume (although not systematically) that, for all t ≥ 0
and ∀x 6= ∂, Px (t < τ∂) > 0.



Part I

Criteria for the exponential convergence
to a quasi-stationary distribution
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Chapter 1

A necessary and sufficient condition for
uniform exponential convergence to a
quasi-stationary distribution

This chapter is dedicated to the presentation of a necessary and sufficient condition for uniform
exponential convergence to a quasi-stationary distribution in the total variation norm. We first
recall the definition of a quasi-stationary distribution in Section 1.1, state the abstract results in
Section 1.2 and give a first application to irreducible Markov chains on finite state spaces in Sec-
tion 1.4.

1.1 Definition

Let (X t )t≥0 be a time-homogeneous Markov process with state space E ∪ {∂} which is absorbed
at ∂ ∉ E , in discrete or continuous time settings. A quasi-stationary distribution is a probability
measure νQSD on E such that

PνQSD (X t ∈ A | t < τ∂) = νQSD (A), ∀t ≥ 0, A ∈ E , (1.1)

where we recall that τ∂ = inf{t ≥ 0, X t = ∂} is the absorption time of X . We refer the reader to the
book [80] and the surveys [198, 203, 252] for several properties, analysis and historical notes on
the concept of quasi-stationary distributions. In particular, it is known that a probability measure
νQSD on E is a quasi-stationary distribution if and only if there exists a probability measure µ on E
such that

νQSD (A) = lim
t→+∞Pµ(X t ∈ A | t < τ∂), ∀A ∈ E . (1.2)

For a given quasi-stationary distribution νQSD , the set of probability measures µ such that (1.2)
holds is called the domain of attraction of νQSD . It is non-empty since it contains at least νQSD and
may contains an infinite number of elements. In particular, when the limit in (1.2) exists for any
µ= δx , x ∈ E , and doesn’t depend on the initial position x, then νQSD is called the Yaglom limit or
the minimal quasi-stationary distribution. Thus the minimal quasi-stationary distribution, when it
exists, is the unique quasi-stationary distribution whose domain of attraction contains {δx , x ∈ E }.

The study of quasi-stationary distributions can be traced back to the works of Yaglom [267] on
Galton-Watson processes. Later, birth and death processes have been studied in [164, 236], and fi-
nite state space processes in [86, 87]. A L2 spectral approach was developed in [224] for the study of
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multi-dimensional diffusion processes and in [79] for one-dimensional diffusion processes, whose
principles were later used in a long range of successful papers studying quasi-stationary distri-
butions for diffusion processes (see for instance [10, 239, 44, 46, 175, 184, 146]). New advances
based on the theory of R-positive recurrent processes have been developed in [8, 212, 213, 243],
with a nice practical criterion exhibited later in [119]. Other approaches have been developed,
such as the use of h-transforms in [130], an original renewal method in [120], the use of intrin-
sic ultra-contractivity properties in [172, 174]. Several other methods have been used to describe
the quasi-stationary behaviour of stochastic models with absorption, see in particular [135] where
quasi-stationary distributions with rescaling are considered and in [240] where small noise limits of
quasi-stationary distributions are studied. We also refer the reader to the large bibliography estab-
lished by Pollett [227] for more than 450 references on the theory of quasi-stationary distributions,
classified by topics. In the present manuscript, a different approach is exposed, inspired by the
classical theory of stationary processes [204]: we will use in particular modified Doblin conditions
see Section 1.2, and drift criteria based on Lyapunov type functions (see Chapter 2).

Although there are similarities with the classical notion of stationary distributions (which is,
in fact, a particular instance of quasi-stationary distribution), some important differences remain.
For instance, the linear combination of quasi-stationary distributions is not necessarily a quasi-
stationary distribution. Also, there may exist several (a continuous infinite number of) quasi-
stationary distributions even for simple irreducible regular processes (this is the case for instance
for linear birth and death processes [246]).

It is well known (see for instance [203]) that when νQSD is a quasi-stationary distribution, there
exists λ0 ≥ 0 such that, for all t ≥ 0,

PνQSD (t < τ∂) = e−λ0t and eλ0tνQSD Pt = νQSD . (1.3)

An other remarkable fact is that the absorption times and the absorption position are independent
under PνQSD [80]. Because of these properties and others, the concept of quasi-stationary distribu-
tion has found a wide range of applications, see for instance [98, 149, 134, 35, 262, 263].

1.2 Main result

Let us consider a time-homogeneous Markov process X with state space E ∪ {∂} which is absorbed
at ∂ ∉ E . We are interested in a necessary and sufficient condition for the existence of a unique
quasi-stationary distribution νQSD on E for the process (X t )t≥0, where, in addition, the conver-
gence in (1.2) is exponential and uniform with respect to µ and A.

Our base assumption is the following one.

Assumption A. There exists a probability measure ν on E such that

A1. there exist t0,c1 > 0 such that for all x ∈ E ,

Px (X t0 ∈ · | t0 < τ∂) ≥ c1ν(·);

A2. there exist c2 > 0 such that for all x ∈ E and t ≥ 0,

Pν(t < τ∂) ≥ c2Px (t < τ∂).
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In Section 1.4, we will consider the finite state space case as a simple illustrative example and
show that Assumption A is satisfied as soon as the process is irreducible. More advanced applica-
tions will be provided in following chapters, namely to birth and death processes, to one dimen-
sional diffusion processes, and to multi-dimensional diffusion processes, in Chapters 3, 4 and 5
respectively.

For conservative Markov processes (i.e. when Px (τ∂ = +∞) = 1), one recognises in Condi-
tion A1 a Doblin condition and in c1 a Dobrushin coefficient. In this case, the following theorem
is already well known (see for instance [102, Theorem 18.2.4.] and [102, Section 18.7]) and can
be proved using coupling methods. Natural extension of these methods are presented in a ped-
agogical way in [181]. Assumption A is thus an extension of these Doblin criteria to conditioned
processes. As thus, it suffers similar drawbacks. Namely, it only applies to processes that come
down from infinity [44, 201]. In the next chapter, we provide a criterion inspired by Meyn and
Tweedie’s works [205, 206, 207]), which is sufficient for the non-uniform exponential convergence
to a quasi-stationary distribution.

The following result is proved in [56] with additional refinements, including equivalent asser-
tions comparable to those provided in [204, Chapter 16]. Its proof, sketched in Section 1.3, imme-
diately extends to the time-inhomogeneous setting (which were natively handled in [92, 93, 94]),
as detailed in [63, 20]. Prior works implying the uniform exponential convergence of normalised
semigroups can be found in the bibliography of Del Moral (see [92, 93] and references therein), as
well as in my earlier works in [201] and[94] and in [37, 174].

Theorem 1.1. Assumption A implies the existence of a probability measure νQSD on E such that, for
any initial distribution µ ∈M1(E),∥∥Pµ(X t ∈ · | t < τ∂)−νQSD (·)∥∥T V ≤ 2(1− c1c2)bt/t0c, (1.4)

where b·c is the integer part function and ‖ ·‖T V is the total variation norm.
Conversely, if there exists a probability measure νQSD and positive constants γ,C such that, for

all probability measures µ on E,∥∥Pµ(X t ∈ · | t < τ∂)−νQSD (·)∥∥T V ≤C e−γt , ∀t ≥ 0, (1.5)

then Assumption A holds true.
In this case, for all probability measures µ1,µ2 on E, and for all t > 0,

∥∥Pµ1 (X t ∈ · | t < τ∂)−Pµ2 (X t ∈ · | t < τ∂)
∥∥

T V ≤ (1− c1c2)bt/t0c

c2(µ1)∨ c2(µ2)
‖µ1 −µ2‖T V ,

here c2(µ) is a positive constant which only depends on µ.1

The constants c1 and c2 may seem difficult to compute explicitly and it is not clear at first glance
if the above quantitative rates are of practical interest (besides the fact that they provide an expo-
nential speed of convergence). However, in [64], the authors succeed in proving appropriate time
scales for the convergence to quasi-stationary distribution by estimating the parameters c1 and

1This is proved in [56] with c2(µ1)∧ c2(µ2) instead of c2(µ1)∨ c2(µ2), however the proof of the result with the latter
stronger estimate is almost identical.
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c2. Similarly, the authors of [28] used a time inhomogeneous version of Assumption A and, esti-
mating c1 and c2 in this situation, were able to prove a sub-exponential convergence rate toward a
quasi-stationary distribution for a model with two communication classes.

Assumption A also has the following consequences.

Proposition 1.2. Assume that Assumption A holds true. Then there exists a non-negative function η
on E ∪ {∂}, positive on E and vanishing on ∂, defined by

η(x) = lim
t→∞

Px (t < τ∂)

PνQSD (t < τ∂)
= lim

t→+∞eλ0tPx (t < τ∂),

where the convergence holds for the uniform norm on E ∪ {∂} and νQSD (η) = 1. More precisely, there
exists a positive constant a1 such that∣∣∣eλ0tPx (t < τ∂)−η(x)

∣∣∣≤ a1 eλ0tPx (t < τ∂)(1− c1c2)t/t0 , (1.6)

Furthermore, the function η is bounded, belongs to the domain of the infinitesimal generator L of
the semi-group (Pt )t≥0 on (Bb(E ∪ {∂}),‖ ·‖∞) and

Lη=−λ0η.

In the irreducible case, exponential ergodicity is known to be related to a spectral gap property (see
for instance [180]). Our results imply a similar property under Assumption A for the infinitesimal
generator L of the semi-group on (Bb(E ∪ {∂}),‖ ·‖∞).

Proposition 1.3. Suppose that Assumption A holds true. If f ∈ Bb(E ∪ {∂}) is a right eigenfunction
for L for an eigenvalue λ, then either

1. λ= 0 and f is constant,

2. or λ=−λ0 and f = νQSD ( f )η,

3. or λ≤−λ0 −γ, νQSD ( f ) = 0 and f (∂) = 0.

We conclude this section with an original result concerning a refinement of the speed of con-
vergence of the conditional distribution of the process toward its quasi-stationary distribution. Its
proof is a simple adaptation of the proof of Theorem 1.1 and is omitted here. Note that ν(η)/‖η‖∞ ≥
c2 and thus the rate is an improvement over (1.4).

Proposition 1.4. Suppose that Assumption A holds. Then there exists a constant C > 0 such that

∥∥Pµ(X t ∈ · | t < τ∂)−νQSD (·)∥∥T V ≤C

(
1− c1

ν(η)

‖η‖∞

)t/t0

.

1.3 Sketch of the proof for the sufficient condition

In order to sketch the proof of the direct implication “Assumption A ⇒ exponential convergence”,
let us assume that X satisfies Assumption A with t0 = 1 (the extension to any t0 is immediate).
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Following an idea that goes back at least to [93] and already used in [201] in the context of quasi-
stationary distributions, we define, for all 0 ≤ s ≤ t ≤ T , the linear operator RT

s,t by

RT
s,t f (x) = Ex ( f (X t−s) | T − s < τ∂) = E( f (X t ) | Xs = x, T < τ∂), ∀ f ∈Bb(E),

by the Markov property. For any T > 0, the family (RT
s,t )0≤s≤t≤T is a Markov (time-inhomogeneous)

semi-group: we have, for all 0 ≤ u ≤ s ≤ t ≤ T and all f ∈Bb(E),

RT
u,s(RT

s,t f )(x) = RT
u,t f (x).

The main idea of the proof is to check that this conservative semi-group satisfies a Doblin condition
(see Step 1): for all T ≥ 1 and all 0 ≤ t ≤ T −1, there exists a probability measure νT−t on E such
that, for all measurable sets A ⊂ E and all x ∈ E ,

RT
t ,t+1(A) =Px (X1 ∈ A | T − t < τ∂) ≥ c1c2νT−t (A). (1.7)

Once this is proved, one deduces (as in the classical time-uniform conservative case) a uniform
mixing property for the conservative semi-groups RT and then for the conditional distributions:∥∥Pµ1 (XT ∈ · | T < τ∂)−Pµ2 (XT ∈ · | T < τ∂)

∥∥
T V ≤ 2(1− c1c2)bT c, ∀µ1,µ2 ∈M1(E). (1.8)

This immediately implies that there is at most one quasi-stationary distribution and implies in
particular that the sequence Pµ1 (XT ∈ · | T < τ∂)T≥0 is a Cauchy sequence and hence that it con-
verges to some probability νQSD (recall that the set of probability measures endowed with the total
variation norm is complete). By [203], νQSD is a quasi-stationary distribution.

Step 1: Doblin condition (1.7)
Let us show that, for all t ≥ 1, there exists a probability measure νt on E such that (1.7) holds true.
First, one can check that Assumption A1 and Markov property imply that

Px (X1 ∈ A and t < τ∂) ≥ c1ν (1A(·)P· (t −1 < τ∂))Px (1 < τ∂) .

Dividing both sides by Px (t < τ∂), we deduce that

Px (X1 ∈ A | t < τ∂) ≥ c1ν (1A(·)P· (t −1 < τ∂))
Px (1 < τ∂)

Px (t < τ∂)
.

But, using again the Markov property, we have

Px (t < τ∂) ≤Px (1 < τ∂)sup
y∈E

Py (t −1 < τ∂) ,

so that

Px (X1 ∈ A | t < τ∂) ≥ c1
ν (1A(·)P· (t −1 < τ∂))

supy∈E Py (t −1 < τ∂)
.

Now Assumption (A2) implies that the non-negative measure

B 7→ ν (1B (·)P· (t −1 < τ∂))

supy∈E Py (t −1 < τ∂)
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has a total mass greater than c2. Therefore (1.7) holds with the probability measure

νt : B 7→ ν (1B (·)P· (t −1 < τ∂))

Pν (t −1 < τ∂)

Step 2: exponential contraction for the conditional distributions
Using the semi-group property of (RT

s,t )s,t , we deduce that, for any x, y ∈ E and all 0 ≤ t ≤ T ,

‖δx RT
0,t −δy RT

0,t‖T V ≤ 2(1− c1c2)btc .

By definition of RT
0,T , this inequality immediately implies that∥∥Px (XT ∈ · | T < τ∂)−Py (XT ∈ · | T < τ∂)

∥∥
T V ≤ 2(1− c1c2)bT c.

Since, in general, Pµ (XT ∈ · | T < τ∂) is not linear in µ, it is not immediate that this inequality ex-
tends to any pair of initial probability measures µ1,µ2 on E . However, this is easily overcome by the
following computations. Let µ1 be a probability measure on E and x ∈ E . We have

‖Pµ1 (XT ∈ · | T < τ∂)−Px (XT ∈ · | T < τ∂)‖T V

= 1

Pµ1 (T < τ∂)
‖Pµ1 (XT ∈ ·)−Pµ1 (T < τ∂)Px (XT ∈ · | T < τ∂)‖T V

≤ 1

Pµ1 (T < τ∂)

∫
y∈E

‖Py (XT ∈ ·)−Py (T < τ∂)Px (XT ∈ · | T < τ∂)‖T V dµ1(y)

≤ 1

Pµ1 (T < τ∂)

∫
y∈E

Py (T < τ∂)‖Py (XT ∈ · | T < τ∂)−Px (XT ∈ · | T < τ∂)‖T V dµ1(y)

≤ 1

Pµ1 (T < τ∂)

∫
y∈E

Py (T < τ∂)2(1− c1c2)bT cdµ1(y)

≤ 2(1− c1c2)bT c.

The same computation, replacing δx by any probability measure, leads to (1.8).

Using the fact that M1(E) endowed with the total variation norm is a complete space, this easily
leads to (1.4).

1.4 The finite state space case

The problem of existence and uniqueness of a quasi-stationary distribution in the finite state space
setting has been studied by Darroch and Seneta [86, 87]. They completely solved this problem in
the irreducible state space case using Perron-Frobenius theorem, inspiring a long and rich lineage
of developments for the study of quasi-stationary distributions based on spectral theoretical tools.
The aim of this section is to give an application of Theorem 1.1 in a simple situation, recovering
this classical result with additional explicit bounds on the rate of convergence.

Let (X t )t∈Z+ be a discrete time Markov process on a finite state space E ∪ ∂, where ∂ ∉ E is
absorbing. We say that X is irreducible and aperiodic if there exists t0 ∈N such that, for all x, y ∈ E ,
Px (X t0 = y) > 0. Darroch and Seneta obtained in [86] (see [87] for its continuous time version) that
there exist two positive constants such that the exponential convergence (1.5) holds true, with γ

being the second spectral gap of the transition matrix.
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The following convergence result is not focused toward optimality, but rather aims at illustrat-
ing how to check Assumption A in a simple case. We observe that, associated with Proposition 1.3,
it provides an explicit lower bound for the second spectral gap of the matrix P .

Proposition 1.5. Let X be an irreducible and aperiodic Markov chain on a finite state space E with
transition matrix (Px,y )x,y∈E . Let t0 ∈N be such that P t0 has positive entries and set

c1 =
∑
y∈E

inf
x∈E

P t0
x,y∑

z∈E P t0
x,z

and c2 = inf
x,y∈E

P t0
x,y∑

z∈E P t0
x,z

.

Then X satisfies Assumption A with the constants c1,c2 and t0.

We refer the reader to [198, 252] for a survey on different properties of quasi-stationary distri-
butions in this finite state space/discrete time setting. Extension of this result to reducible discrete
time Markov chains on a finite state space is developed in [54, 251]. In [77, 99], the authors con-
sider the problem of the stochastic comparison between convergence toward a quasi-stationary
distribution and convergence toward a stationary distribution for an ad hoc conservative process.
Probabilistic representations of the Perron-Frobenius theorem are provided in [48, 49, 128] for fi-
nite state space Markov chains.

Since the aim of this section is to illustrate the application of Theorem 1.1, we detail the ele-
mentary proof of the above proposition.

Proof. We define the probability measure ν on E by

ν({y}) = inf
x∈E

P t0
x,y

c1
∑

z∈E P t0
x,z

, ∀y ∈ E .

We have for all x, y ∈ E ,

Px (X t0 = y | t0 < τ∂) = P t0
x,y∑

z∈E P t0
xz

≥ c1ν({y}),

which entails Assumption A1. Now, for all x ∈ E and all n ≥ 2,

Pν(n < τ∂) ≥ ν({x})Px (n < τ∂) ≥ c2Px (n < τ∂),

which implies Assumption A2.



10 CHAPTER 1. NECESSARY AND SUFFICIENT CONDITION FOR UNIFORM CONVERGENCE



Chapter 2

Non-uniform convergence toward a
quasi-stationary distribution

In this chapter, we present a sufficient criterion ensuring the exponential convergence of the con-
ditional distribution of Markov processes toward a quasi-stationary distribution. Contrarily to the
criteria of the previous part, we obtain non-uniform convergence with respect to the initial distri-
bution. This allows to derive new existence and convergence results for a far larger class of pro-
cesses, since it does not require the conditioned process to come back from infinity. In particular,
this result applies to birth and death chains and Galton-Watson processes, which do not enter
the general settings of Chapter 1. In general, our results also apply to processes admitting sev-
eral quasi-stationary distributions, which is known to happen in a variety of specific cases, even
for processes irreducible in E (including branching processes [236, 12, 177, 188], one-dimensional
birth and death processes [246, 121, 120, 259] and one-dimensional diffusion processes [185, 197]).

The results presented below, but in Section 2.2, first appeared in [58].

2.1 Main results

We present here our main assumption and main results, in the discrete time and continuous time
settings. In order to illustrate them, we develop in Section 2.2 a simple application to birth and
death chains. More involved applications, including comparison to the results of [119] based on
R-positive matrix theory, application to Galton-Watson processes, and application to perturbed
dynamical systems are presented in Sections 2.3, 2.4 and 2.5 respectively. Applications to continu-
ous time processes are presented in the next chapters.

2.1.1 Discrete time models

Let (Xn)n∈Z+ be a Markov process in E ∪{∂} where E is a measurable space and ∂ 6∈ E In this section,
we study the sub-Markovian transition semigroup of X denoted (Pn)n∈Z+ and defined as

Pn f (x) = Ex
(

f (Xn)1n<τ∂
)

, ∀n ∈Z+,

for all bounded or nonnegative measurable function f on E and all x ∈ E . We recall the notations

µPn f = Eµ
(

f (Xn)1n<τ∂
)= ∫

E
Pn f (x)µ(d x),

11
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for all probability measures µ on E and all bounded measurable f . We make the following assump-
tion1.

Assumption E. There exist a positive integer n1, positive real constants θ1,θ2,c1,c2,c3, two func-
tions ϕ1,ϕ2 : E →R+ and a probability measure ν on a measurable subset K ⊂ E such that

E1. (Local A1-A2). ∀x ∈ K ,

Px (Xn1 ∈ ·) ≥ c1ν(·∩K ) and sup
n∈Z+

supy∈K Py (n < τ∂)

infy∈K Py (n < τ∂)
≤ c2.

E2. (Global Lyapunov criterion). We have θ1 < θ2 ≤ 1 and

inf
x∈E

ϕ1(x) ≥ 1, sup
x∈K

ϕ1(x) <∞

inf
x∈K

ϕ2(x) > 0, sup
x∈E

ϕ2(x) ≤ 1,

P1ϕ1(x) ≤ θ1ϕ1(x)+ c31K (x), ∀x ∈ E

P1ϕ2(x) ≥ θ2ϕ2(x), ∀x ∈ E .

E3. (Aperiodicity). For all x ∈ K , there exists n4(x) such that, for all n ≥ n4(x),

Px (Xn ∈ K ) > 0.

Remark 2.1. The construction of Lyapunov functions such asϕ1 is rather classical. On the contrary,
finding functions such as ϕ2 may seem at first more challenging. In fact, they are many ways to
construct such a function, as illustrated by the numerous applications of the original paper. For
instance, if Assumption E1 holds true and if there exists θ2 ∈ (0,1) such that θ−n

2 Px (Xn ∈ K ) →+∞
when n →+∞, then, for any n0 large enough, the function ϕ2(x) := ∑n0

k=0θ
−k
2 Px (Xk ∈ K ) satisfies

(up to renormalisation) condition E2.

In the rest of this section, we state our main results. We start with the exponential contraction
in total variation of the conditional marginal distributions of the process given non-absorption
(refinements and extensions of the following results are detailed in the original article [58]).

In the following result,
(
M (ϕ1),‖ ·‖M (ϕ1)

)
is the complete space defined p. xv.

Theorem 2.1. Assume that Condition E holds true. Then there exist a constant C > 0, a constant
α ∈ (0,1), and a probability measure νQSD on E such that∥∥∥∥ µPn

µPn1E
−νQSD

∥∥∥∥
M (ϕ1)

≤C αn µ(ϕ1)

µ(ϕ2)
, (2.1)

for all probability measures µ on E such that µ(ϕ1) < ∞ and µ(ϕ2) > 0. Moreover, νQSD is the
unique quasi-stationary distribution of X such that νQSD (ϕ1) <∞ and νQSD (ϕ2) > 0. In addition
νQSD (K ) > 0.

1The presentation is slightly different, although equivalent, to the one in the original article [58]. Our aim here is to
make appear clearly the fact that Condition A from Chapter 1 is assumed to hold locally.
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We define

E ′ := {x ∈ E : ∃k ≥ 0 s.t. Pk 1K (x) > 0} = {
x ∈ E : ∃k ≥ 0 s.t. Pkϕ2(x) > 0

}
.

We refer the reader to the original article for the equality between the two sets above.

Corollary 2.2. Assume that Condition E holds true. Then the domain of attraction of νQSD contains

all the probability measures µ on E such that µ(E ′) > 0 and µ(ϕ1/p
1 ) <∞ for some p < logθ1/logθ2.

In particular, if ϕ1 is bounded and E ′ = E, there exists a unique quasi-stationary distribution
which attracts all the initial distributions.

We focus now on the asymptotic behaviour of the absorption probabilities and on the existence
of an eigenfunction for P1 associated to the eigenvalue θ0, where θ0 ∈ (0,1] is such that

PνQSD (n < τ∂) = θn
0 , ∀n ∈Z+.

We recall that the existence of θ0 is a classical general result for quasi-stationary distributions [80,
203, 252]. In the following result, (L∞(ψ),‖ ·‖L∞(ψ)) is the Banach space defined p. xvi.

Proposition 2.3. Assume that Condition E holds true. Then, there exists a function η : E → R+ such
that

η(x) = lim
n→+∞

Px (n < τ∂)

PνQSD (n < τ∂)
= lim

n→+∞θ
−n
0 Px (n < τ∂), ∀x ∈ E , (2.2)

where the convergence is geometric in L∞(ϕ1/p
1 ) for all p ∈ [1, logθ1/logθ0). In addition, infy∈K η(y) >

0, E ′ = {x ∈ E : η(x) > 0}, νQSD (η) = 1,

P1η= θ0η and θ0 ≥ θ2 > θ1.

Remark 2.2. The last result implies that, when η is bounded, one can actually take ϕ2 = η/‖η‖∞
in Condition (E2). This property can be adapted to the case where η is not bounded, using for
instance the approach of Chapter 7.

Remark 2.3. Similarly to Chapter 1, Assumption E also entails the existence of a spectral gap be-

tween θ0 and the next eigenvalue. It also implies that η ∈ L∞
(
ϕ

logθ0/logθ1

1

)
(see Corollary 2.6 in [58]).

2.1.2 Continuous time models

We consider in this section an absorbed Markov process (X t )t∈R+ in the continuous time setting.

Assumption F. There exist positive real constants γ1,γ2,c1,c2,c3, t1 and t2, a measurable function
ψ1 : E → [1,+∞), and a probability measure ν on a measurable subset L ⊂ E such that

F0. (A strong Markov property). Defining

τL := inf{t ∈R+ : X t ∈ L}, (2.3)

assume that for all x ∈ E , XτL ∈ L, Px -almost surely on the event {τL <∞}, and, for all t > 0
and all f ∈Bb(E ∪ {∂}),

Ex
[

f (X t )1τL≤t<τ∂
]= Ex

[
1τL≤t∧τ∂EXτL

[
f (X t−u)1t−u<τ∂

]
u=τL

]
.
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F1. (Local A1 and A2). ∀x ∈ L,

Px (X t1 ∈ ·) ≥ c1ν(·∩L) and sup
t∈R+

supy∈LPy (t < τ∂)

infy∈LPy (t < τ∂)
≤ c2.

F2. (Global Lyapunov criterion). We have γ1 < γ2 and

Ex (ψ1(X t2 )1t2<τL∧τ∂) ≤ γt2
1 ψ1(x), ∀x ∈ E

Ex (ψ1(X t )1t<τ∂) ≤ c3, ∀x ∈ L, ∀t ∈ [0, t2],

γ−t
2 Px (X t ∈ L) −−−−→

t→+∞ +∞, ∀x ∈ L.

Theorem 2.4. Under Assumption F, (X t )t∈I admits a quasi-stationary distribution νQSD , which is
the unique one satisfying νQSD (ψ1) <∞ and PνQSD (X t ∈ L) > 0 for some t ∈ I . Moreover, there exist
constantsα ∈ (0,1) and C > 0 such that, for all probability measures µ on E satisfying µ(ψ1) <∞ and
µ(ψ2) > 0, ∥∥Pµ(X t ∈ · | t < τ∂)−νQSD

∥∥
T V ≤C αt µ(ψ1)

µ(ψ2)
, ∀t ∈ I , (2.4)

where ψ2(x) =∑n0

k=0γ
−kt2
2 Px (Xkt2 ∈ L) for n0 ≥ 1 and t2 ∈R+ large enough. In addition, there exists a

constant λ0 ≥ 0 such that λ0 ≤ log(1/γ2) < log(1/γ1) and PνQSD (t < τ∂) = e−λ0t for all t ≥ 0, and there
exists a function η such that

η(x) = lim
t→+∞eλ0tPx (t < τ∂), ∀x ∈ E , (2.5)

where the convergence is exponential in L∞(ψ1/p
1 ) for all p ∈ [1, log(1/γ1)/λ0), and Ptη(x) = e−λ0tη(x)

for all x ∈ E and t ∈R+.

In particular, if η is bounded and setting η(∂) = 0, then the function η defined on E∪{∂} belongs
to the domain of the infinitesimal generator L of X and L η=−λ0η.

Remark 2.4. The main point of the proof is to check that Assumption F entails Assumption E for the
sub-Markovian semigroup (Pn)n≥0 of the absorbed Markov process (Xnt2 )n∈Z+ , with the functions

ϕ1 =ψ1 and ϕ2 = γ
−t2
2 −1

γ
−(n0+1)t2
2 −1

ψ2, any θ1 ∈ (γt2
1 ,γt2

2 ), θ2 = γt2
2 and the set

K = {
y ∈ E , Py (τL ≤ t2)/ψ1(y) ≥ (θ1 −γt2

1 )/c2
}⊃ L.

Remark 2.5. The first two lines of F2 can be deduced by classical Foster-Lyapunov inequalities
(cf. [207]). Indeed, denoting by L the infinitesimal generator of the process X , if

Lψ1(x) ≤−λ1ψ1(x)+C 1L(x), ∀x ∈ E , (2.6)

then (formally, assuming one can apply Dynkin’s formula) Ex [11≤τL∧τ∂ψ1(X1)] ≤ e−γ1ψ1(x) and
Ex [ψ1(X t )1t<τ∂ ] ≤ eC tψ1(x). However, a function ψ1 satisfying (2.6) does not necessarily belong
to the domain of the infinitesimal generator L , so one needs to extend the notion of infinitesimal
generator as in [207, 59].

An other approach has been considered in [194], with conditions involving Lyapunov functions
for the family of time-inhomogeneous processes, defined as the process X conditioned not to be
absorbed before time t , where t runs over R+. We also refer the reader to [253], where the authors
provide criteria based on hitting time controls. Such controls are of course related to the existence
of Lyapunov functions, as explained in [58, Lemma 3.6].
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2.2 Birth and death Markov chains

Let (λx )x∈N and (µx )x∈N be families of positive numbers such that µx +λx = 1 for all x ∈ N. We
consider the birth and death chain on E ∪ {∂}, E =N and ∂= 0, with the following transition proba-
bilities

Px (X1 = y) =


λx if y = x +1,

µx if y = x −1,

0 otherwise.

These models are known as birth and death chains, and we refer the reader to [120, 24, 81, 99, 9]
and references therein for earlier studies of their quasi-stationary behaviour.

We assume that the process X is aperiodic, that infx≥1µx > 0, and that λx → 0 when x →+∞.
We define

ϕ1(x) = 1x≥1eax with a > 0 such that e−a ≤ 1−µ1

4
and ϕ2(x) = 1x≥1, ∀x ≥ 0,

and show that Assumption E is satisfied in this case.
Since X is assumed to be aperiodic, there exists x0 ≥ 1 such that λx0 +µx0 < 1 (otherwise it

would be 2-periodic) and this entails Condition E3. Since the birth and death coefficients (λx )x∈N
and (µx )x∈N are positive, for any finite set K = {1, . . . , xK }, there exists nK such that infx,y∈K Px (XnK =
y) > 0. Similarly to the proof of (A1-A2) in Section 1.4 of Chapter 1, this entails Condition E1.

It only remains to check that E2 holds true, for some finite set K as above. Set θ2 = λ1 and
θ1 = θ2/2. For all x ≥ 1, we have

Ex (ϕ2(X1)) =λ1 = θ2ϕ2(x).

and

Ex (ϕ1(X1)) =λx ea(x+1) +µx ea(x−1) =ϕ1(x)
(
λx ea +µx e−a + (1−λx −µx )

)
≤ϕ1(x)

(
λx ea +θ1/2

)≤ θ1ϕ1(x)+C 1x≤n ,

where C and n are chosen large enough. This concludes the proof.

2.3 Theory of R-positive matrices

We consider a Markov chain (Xn)n∈Z+ in a countable state space E ∪ {∂} absorbed at ∂ 6∈ E and with
irreducible transition probabilities in E , i.e. such that for all x, y ∈ E , there exists n = n(x, y) ≥ 1 such
that Px (Xn = y) > 0. In this case, one of the most general criterion for existence and convergence to
a quasi-stationary distribution is provided in [119]. In this paper, the authors obtain a convergence
result similar to the one of Theorem 2.1 restricted to Dirac initial distributions, and the pointwise
convergence to η (as defined in Proposition 2.3), using the powerful theory of R-positive matrices
(see [7, 6, 118] for recent applications). In this section, we show how our criterion allows to recover
these results, providing in addition the characterisation of a non-trivial subset of the domain of
attraction and a stronger convergence to η.

We assume that the absorption time τ∂ is almost surely finite. Without loss of generality, we
will assume that the process is aperiodic, meaning that Px (Xn = y) > 0 for all x, y ∈ E provided n is
large enough; the extension to general periodic processes is routine, as observed in [119].
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Let us now recall the statement of [119, Theorem 1]. Here R is defined as

1/R = lim
n→∞

[
Px (Xn = y)

]1/n , (2.7)

for some and hence any value of x, y ∈ E (see e.g. [254]).

Theorem 2.5 (Theorem 1, [119]). Assume that the Markov chain satisfies the following conditions:

(a) there exist a nonempty set U1 ⊂ E and two positive constants ε0,C1 such that, for all x ∈ U1

and all n ≥ 0,
Px (τ∂ > n, but X` ∉U1 for all 1 ≤ `≤ n) ≤C1(R +ε0)−n ,

(b) there exist a state x0 ∈U1 and a positive constant C2 such that, for all x ∈U1 and n ≥ 0,

Px (n < τ∂) ≤C2Px0 (n < τ∂),

(c) there exist a finite set U2 ⊂ E and constants 0 ≤ n0 <∞, C3 > 0, such that for all x ∈U1,

Px (Xn ∈U2 for some n ≤ n0) ≥C3.

Then X is R-positive-recurrent and there exists a probability measure νQSD on E such that

lim
n→+∞Px (Xn = y | n < τ∂) = νQSD (y), ∀x, y ∈ E

and a positive function η on E such that

lim
n→+∞RnPx (n < τ∂) = η(x), ∀x ∈ E .

The main result of this section is the following

Proposition 2.6. The assumptions of [119, Theorem 1] imply Assumption E.

In the settings of this section, Assumption E is actually equivalent to the conditions of [119,
Theorem 1]. Besides the additional properties provided in Chapter 2, one of our main contribution
in this particular setting is to provide a different, sometimes more tractable criterion, through the
use of Lyapunov functions. This is illustrated in the next subsection, with an application to popula-
tion processes, extending to the multi-dimensional case some models studied in [132]. The appli-
cation of [119] is not “impractical for such models of biological population extinction” as claimed
in [132, p. 262], but it would be a little bit more involved.

2.4 Application to the extinction of biological populations dominated
by Galton-Watson processes

A Markov process (Zn)n∈Z+ evolving in Zd+ = E ∪ {∂} absorbed at ∂ = 0 is called a Galton-Watson
process with d types if, for all n ≥ 0 and all i ∈ {1, . . . ,d},

Z i
n+1 =

d∑
k=1

Z k
n∑

`=1
ζ(n,`)

k,i , (2.8)
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where the random variables (ζ(n,`)
k,1 , . . . ,ζ(n,`)

k,d )n,`,k in Z+ are assumed independent and such that,

for all k ∈ {1, . . . ,d}, (ζ(n,`)
k,1 , . . . ,ζ(n,`)

k,d )n,` is an i.i.d. family. We define the matrix M = (Mk,i )1≤k,i≤d of
mean offspring as

Mk,i = E(ζ(n,`)
k,i ), ∀k, i ∈ {1, . . . ,d},

and assume that Mk,i <+∞ and that there exists n ≥ 1 such that [M n]k,i > 0 for all k, i ∈ {1, . . . ,d}.
Using the classical formalism of [137], we consider a positive right eigenvector v of the ma-

trix M of mean offspring and we denote by ρ(M) its spectral radius. The sub-critical case corre-
sponds to ρ(M) < 1. It is well-known [159] (see also [144, 12]) that this implies the existence of a
quasi-stationary distribution whose domain of attraction contains all Dirac measures (a so-called
Yaglom limit or minimal quasi-stationary distribution). The authors also prove that νQSD (| · |) <∞
if and only if E[|Z1| log(|Z1|) | Z0 = (1, . . . ,1)] < ∞. While the following result makes the stronger
assumption that E[|Z1|q0 | Z0 = (1, . . . ,1)] < ∞ for some q0 > 1, we obtain a stronger form of con-
vergence (in total variation norm with exponential speed), a non-trivial subset of the domain of
attraction of the minimal quasi-stationary distribution and stronger moment properties for this
quasi-stationary distribution.

Proposition 2.7. If (Zn)n∈Z+ is a d-type irreducible, aperiodic sub-critical Galton-Watson process,
and if, for some q0 > 1,

E[|Z1|q0 | Z0 = (1, . . . ,1)] <∞,

then Condition (E) holds true with ϕ1(z) = |z|q for any q ∈ (1, q0]. In particular, the domain of
attraction of νQSD contains all the probability measures such that µ(| · |q ) <∞ for some q > 1.

We focus now on population processes dominated by population-dependent Galton-Watson
processes. More precisely, we consider an aperiodic and irreducible Markov population process
(Zn)n∈N on Zd+ = E ∪ {∂} absorbed at ∂= 0 such that, for all n ≥ 0,

‖Zn+1‖ ≤
|Zn |∑
i=1

ξ
(Zn )
i ,n , (2.9)

where ‖ · ‖ is a norm on Rd and |z| = z1 + . . .+ zd for all z ∈ Zd+ and, for all n ≥ 0, the nonnega-
tive random variables (ξ(Zn )

i ,n ,1 ≤ i ≤ |Zn |) are assumed independent (but not necessarily identically
distributed) given Zn .

We assume that

E

( |z|∑
i=1

ξ(z)
i ,n

)
≤ m‖z‖, ∀z ∈Zd

+ such that |z| ≥ n0, (2.10)

for some m < 1 and n0 ∈ N. This means that the population size has a tendency to decrease (in
mean) when it is large. This also implies that τ∂ <∞ a.s.

In the following theorem, R > 0 is the limiting value defined in (2.7).

Proposition 2.8. Assume that (Zn)n∈Z+ is aperiodic irreducible, that it satisfies the assumptions (2.9)

and (2.10) and that, for some q0 > logR
log(1/m) ∨1,

sup
n≥0, z∈Zd+, 1≤i≤|z|

E[(ξ(z)
i ,n)q0 ] <∞,

Then Condition E holds true with ϕ1(x) = |x|q , for all q ∈
(

logR
log(1/m) ∨1, q0

]
.



18CHAPTER 2. NON-UNIFORM CONVERGENCE TOWARD A QUASI-STATIONARY DISTRIBUTION

Remark 2.6. This result easily applies if supn≥0, z∈Zd+, 1≤i≤|z|E[(ξ(z)
i ,n)q ] < ∞ for all q > 0. In other

cases, one needs a upper bound for R > 0 in order to check the validity of the assumptions of
Proposition 2.8. For instance, one may use the fact that R ≤ 1/supz∈Zd+

Pz (Z1 = z).

The above theorem applies for instance when Z is obtained from a Galton-Watson multi-type
process with an additional population-dependent death rate. Typically, one can assume that ad-
ditional death events may affect a fraction of the population, modelling global death events. Note
that, in this case and contrary to the Galton-Watson case, the independence between the progeny
of individuals breaks down and the classical approach based on generating functions is rendered
helpless.

Another situation covered by the above result is the case where the domain of absorption of Z
is a larger set than 0, for example the process may be absorbed when it reaches one edge of Zd+ (i.e.
when one type disappears).

Another typical application of Proposition 2.8 is the case of population-dependent Galton-
Watson processes, i.e. of processes such that, given Zn , Zn+1 is the sum of |Zn | independent ran-
dom variables whose law may depend on Zn . In this situation, Proposition 2.8 and its conse-
quences stated in Chapter 2 generalise the results of [132] to the multi-type models and provides
finer results on the domain of attraction of the minimal quasi-stationary distribution. The re-
ducible cases considered in [132] can also be recovered using the approach of Section 2.6. Of
course, the above specifications may be combined.

2.5 Perturbed dynamical systems

We consider the following perturbed dynamical system

Xn+1 = f (Xn)+ξn ,

where f : Rd → Rd is a measurable function and (ξn)n∈N is an i.i.d. sequence in Rd . The quasi-
stationary behaviour of such processes has been studied under different constraints in [117, 31, 23,
147]. We assume that the process evolves in a measurable set D of Rd with positive Lebesgue mea-
sure, and that it is immediately sent to ∂ 6∈ Rd as soon as Xn 6∈ D . We consider here the case where
the law of the random variables ξn have support Rd and, more precisely, admit a positive bounded
density with respect to the Lebesgue measure2. This includes the particular case of dynamical sys-
tems perturbed by a Gaussian noise, which is considered in Example 2.1 below. In this setting,
the perturbed dynamical system Xn+1 = f (Xn)+ξn with (ξi )i∈Z+ i.i.d. Gaussian, absorbed when it
leaves a given measurable set D of Rd with positive Lebesgue measure, admits a quasi-stationary
distribution as soon as |x|− | f (x)|→+∞ when |x|→+∞.

Proposition 2.9. Assume that f is locally bounded, that the law of ξn has a bounded density g (x)
with respect to Lebesgue’s measure, that

inf
|x|≤R

g (x) > 0, ∀R > 0,

2In the original article [58], we also consider situations where the random variables ξn does not admits a bounded
density with respect to Lebesgue’s measure. The same arguments would also work, at the expense of additional technical
difficulties, if Xn+1 = f (Xn )+ξn (Xn ), where the sequence of random maps (x 7→ ξn (x))n≥0 are i.i.d.
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and that there exists a locally bounded functionϕ :Rd → [1,+∞) such that x 7→ E(ϕ(x+ξ1)) is locally
bounded on Rd and

limsup
|x|→+∞, x∈D

E(ϕ( f (x)+ξ1))

ϕ(x)
= 0. (2.11)

Then Condition E is satisfied with ϕ1 =ϕ and ϕ2 positive on D.

Let us illustrate this proposition with three examples.

Example 2.1. If there exists α > 0 such that Eeα|ξ1| < +∞ and if |x|− | f (x)| → +∞ when |x| → +∞,
then Proposition 2.9 applies. Indeed, choosing ϕ(x) = exp(α|x|), we have

Eϕ(| f (x)+ξ1|)
ϕ(x)

≤ eα(| f (x)|−|x|)Eeα|ξ1| −−−−−−→
|x|→+∞

0.

For instance, this covers the case of Gaussian perturbations.

Example 2.2. If there exists p > 0 such that E(ξp
1 ) <+∞ and if | f (x)| = o(|x|) when |x| → +∞, then

Proposition 2.9 applies. Indeed, choosing ϕ(x) = (1+|x|)p , we have

Eϕ(| f (x)+ξ1|)
ϕ(x)

≤ (1+| f (x)|)p

(1+|x|)p E[(1+|ξ1|)p ] −−−−−−→
|x|→+∞

0.

Example 2.3. If E log(1+ |ξ1|) < ∞ and | f (x)| ≤ C |x|ε(x) for some C > 0 and some ε(x) → 0 when
|x|→+∞, then Proposition 2.9 applies. Indeed, choosing ϕ(x) = log(e +|x|), we have

Eϕ(| f (x)+ξ1|)
ϕ(x)

≤ log(e +C )+ε(x) log(e +|x|)
log(1+|x|) + E log(1+|ξ1|)

log(e +|x|) .

The condition on f is true for example if | f (x)| ≤C exp
√

log(1+|x|) for some constant C .

2.6 Reducible models

The study of quasi-stationary behaviour of models with multiple communication classes has been
conducted in [216, 132, 55, 54, 252, 28]. Our criteria provide new practical tools to tackle this prob-
lem.

In Subsection 2.6.1, we consider a general setting with three successive sets. In Subsection 2.6.2,
we consider a birth and death process with a countable infinity of communication classes.

2.6.1 Three successive sets

Consider a discrete time Markov process (Xn)n∈Z+ evolving in a measurable set E ∪ {∂} with ab-
sorption at ∂ ∉ E . We assume that the transition probabilities of X satisfy the structure displayed
in Figure 2.1 : one can find a partition {D1,D2,D3} of E such that the process starting from D1 can
access D1∪D2∪D3∪{∂}, the process starting from D2 can only access D2∪D3∪{∂}, and the process
starting from D3 can only access D3∪ {∂}. More formally, we assume that Px (TD3 ∧τ∂ < TD1 ) = 1 for
all x ∈ D2 and that Px (τ∂ < TD1∪D2 ) = 1 for all x ∈ D3, where we recall that, for any measurable set
A ⊂ E , TA = inf{n ∈Z+, Xn ∈ A}.

Our aim is to provide sufficient conditions ensuring that X satisfies Assumption E. In order to
do so, we assume that Assumption E is satisfied by the process X before exiting D2. This corre-
sponds to the following assumption.
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Figure 2.1: Transition graph displaying the relation between the sets D1, D2, D3 and ∂.

Assumption H1. The absorbed Markov process Y evolving in D2 ∪ {∂}, defined by

Yn =
{

Xn if n < TD1∪D3∪{d},

∂ if n ≥ TD1∪D3∪{d},

satisfies Assumption E. In what follows, we denote the objects related to Y with a superscript Y , for
instance, the constants of Assumption E for Y are denoted by θY

1 > 0, θY
2 > 0.

We also assume that the exit times from D1 and D3 for the process X admit exponential mo-
ments of sufficiently high order, as stated by the following assumption.

Assumption H2. There exists a positive constant γ< θY
0 such that, for all x ∈ D1,

Ex

(
γ−TD2ϕY

1

(
XTD2

)
1TD2<TD3∧τ∂

)
<+∞, Ex

(
γ−TD3∧τ∂1TD3∧τ∂<TD2

)
<+∞,

and such that
sup
x∈D3

Ex
(
γ−τ∂

)<+∞.

We are now able to state the main result of this section.

Proposition 2.10. Under Assumptions H1 and H2, the process X satisfies Assumption E with K =
K Y ,

ϕ1(x) = Ex
(
γ−TK ∧τ∂) and ϕ2(x) ≥ c1x∈K , ∀x ∈ E .

In particular, it admits a unique quasi-stationary distribution νQSD such that νQSD (ϕ1) < ∞ and
νQSD (ϕ2) > 0. Moreover, there exist two constants C > 0 and α ∈ (0,1) such that, for all probability
measures µ on E such that µ(ϕ1) <∞ and µ(ϕ2) > 0,

∥∥Pµ(Xn ∈ · | n < τ∂)−νQSD
∥∥

T V ≤Cαn µ(ϕ1)

µ(ϕ2)
.

Finally, θ0 = θY
0 , νQSD (D1) = 0 and the function η of Proposition 2.3 vanishes on D3.

In particular, one deduces from the last property that E ′ ⊂ D1 ∪D2, where we recall that E ′ =
{x ∈ E : ∃n ∈N, Pn1K (x) > 0}.
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Remark 2.7. 1. The fact that there are three different sets D1, D2 and D3 in the decomposition
of E is not restrictive on the number of communication classes. Indeed, the three sets can
contain several communication classes.

2. A similar result can be obtained for continuous time processes, based on Assumption F in-
stead of E, with the additional technical assumption that the exit times of D1 and D2 are
stopping times.

3. Beside the exponential moment assumption, there is no additional requirement on the be-
haviour of the Markov process in D1 and D3. In these sets, the process might be periodic or
deterministic for instance.

4. The quasi-stationary distribution of this process may not be unique, for instance if the pro-
cess restricted to D3 also admits a quasi-stationary distribution.

2.6.2 Countably many communication classes

We consider now a particular case of a continuous time càdlàg Markov process (X t )t∈R+ with a
countable infinity of communication classes and we show that the process admits a quasi-stationary
distribution.

More precisely, we assume that X evolves in the state space N×Z+ (the first component is the
index of the communication class and the second is the position of the process in this communi-
cation class) and, denoting Nt ∈N and Yt ∈ Z+ the two components of X t for all t ∈ R+, that there
exist three positive functions b,d , f :N→ (0,+∞) such that

• N is a Poisson process with intensity 1,

• Y is a process such that, at time t ,

Y jumps from Yt to y ∈Z+ with rate


f (Nt )b(Yt ) if y = Yt +1 and Yt ≥ 1,

f (Nt )d(Yt ) if y = Yt −1 and Yt ≥ 1,

0 otherwise.

The set N× {0} is absorbing for X and we are interested in the quasi-stationary behaviour of X
conditioned to not hit this set. Note that, in this case, each set {n}×N is a communication class.

This process can be used to model the evolution of the vitality of an individual (for example a
bacterium) whose metabolic efficiency (for example its ability to consume resources) changes with
time, due to ageing [238]. Here Y is the vitality of the individual, who dies when its vitality hits 0,
and f (N ) is the metabolic rate of the individual.

This process can also be used to model the accumulation of deleterious mutations in a pop-
ulation under the assumption that mutations do not overlap, i.e. that when a mutant succeeds to
invade the population (either because they are advantaged or due to genetic drift for deleterious
mutations), other types of mutants disappear rapidly. Here Y represents the size of the population
and N the number of mutations (see e.g. [84, 82]).

In both cases, it is relevant to assume that f is decreasing on {1,2, . . . ,n0} and increasing to +∞
on {n0,n0 + 1, . . .}, which we do from now on. We also assume that (d(y)− b(y))/y → +∞ when
y →+∞ or that there exists δ> 1 such that d(y)−δb(y) →+∞.
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Proposition 2.11. Under the above assumptions, the process X satisfies Assumption F and admits
a quasi-stationary distribution νQSD whose domain of attraction contains all Dirac measures δn,y ,
with n ≤ n0 and y ∈N.



Part II

Application of the criteria of Part I to
classical models
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Chapter 3

Birth and death processes

In this chapter, we focus on the application of the results of Chapters 1 and 2 to birth and death
processes. In Section 3.1, we recall the classical result on quasi-stationary distributions for birth
and death processes. In Section 3.2, we consider the case of one-dimensional birth and death
processes with entrance boundary at infinity, and, in Section 3.3, the case of one-dimensional birth
and death processes which are λ0-positive recurrent. In Section 3.4, we consider the case of multi-
dimensional birth and death processes.

The results of this chapter first appeared in the articles [201, 259, 56, 58]

3.1 Quasi-stationary distributions for one-dimensional birth and death
processes

Let (X t )t∈R+ be a birth and death process on Z+ with birth rates (bx )x∈Z+ and death rates (dx )x∈Z+ .
We assume that bx > 0 and dx > 0 for any x ∈ N and b0 = d0 = 0. The stochastic process X is a
Z+-valued pure jump process whose only absorption point is 0 and whose transition rates from
any point x ≥ 1 are given by

x → x +1 with rate bx ,

x → x −1 with rate dx ,

x → y with rate 0, if y ∉ {x −1, x +1}.

It is well known (see e.g. [203, Theorem 10 and Proposition 12]) that X is stable, conservative and
hits 0 in finite time almost surely (for any initial distribution) if and only if

∞∑
n=1

d1d2 · · ·dn

b1b2 · · ·bn
=+∞, (3.1)

which we shall assume from now on.
Such processes are extensively studied because of their conceptual simplicity and pertinence

as demographic models. Concerning the study of their quasi-stationary behaviour, see for in-
stance [164, 165, 131, 47, 246, 121, 122, 171, 170, 248, 247, 249].

From a demographic point of view, the study of the minimal quasi-stationary distribution of a
birth and death process aims at answering the following question: knowing that a population isn’t
extinct after a long time t , what is the probability that its size is equal to n at time t?

25
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For these processes, van Doorn [246] gave the following picture of the situation: a birth and
death process can have no quasi-stationary distribution, one unique quasi-stationary distribution
or an infinity (in fact a continuum) of quasi-stationary distributions. In order to determine whether
a birth and death process has 0, one or an infinity of quasi-stationary distributions, one define
inductively the sequence of polynomials (Qn(x))n≥0 for all x ∈R by

Q1(x) = 1,
b1 Q2(x) = b1 +d1 −x and
bn Qn+1(x) = (bn +dn −x)Qn(x)−dn−1 Qn−1(x), ∀n ≥ 2.

(3.2)

As recalled in [246, eq. (2.13)], one can uniquely define the non-negative number λ0 satisfying

x ≤λ0 ⇐⇒ Qn(x) > 0, ∀n ≥ 1. (3.3)

Also, the useful quantity

S := sup
x≥1

Ex (T0),

can be easily computed (see [5, Section 8.1]), since, for any z ≥ 1,

sup
x≥z

Ex (Tz ) = ∑
k≥z+1

1

dkπk

∑
l≥k

πl ,

withπk = (∏k−1
i=1 bi

)
/
(∏k

i=2 di
)

. The following theorem answers the question of existence and unique-
ness of a quasi-stationary distribution for birth and death processes.

Theorem 3.1 (van Doorn, 1991 [246]). Let X be a birth and death process satisfying (3.1).

1. If λ0 = 0, there is no quasi-stationary distribution.

2. If S <+∞, then λ0 > 0 and the Yaglom limit is the unique quasi-stationary distribution.

3. If S =+∞ and λ0 > 0, then there is a continuum of quasi-stationary distributions, given by the
one parameter family (ρa)0<a≤λ0 :

ρa(x) = πx

d1
a Qx (a), ∀x ≥ 1,

and the minimal quasi-stationary distribution is given by ρλ0 .

Theorem 3.1 is quite remarkable since it describes completely the possible outcomes of the
existence and uniqueness problem for quasi-stationary distributions. However, it only partially
answers the crucial problem of finding the domain of attraction of the existing quasi-stationary
distributions. The aim of this chapter is to show how the theory exposed in the two previous chap-
ters entail new result for this class of processes. We first look at birth and death processes with
entrance boundary at infinity (i.e. S < +∞) in Section 3.2 and then to λ0-positive birth and death
processes in Section 3.3.
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3.2 Birth and death processes with entrance boundary at infinity

Theorem 3.1 tells us that a birth and death process admits a unique quasi-stationary distribution if
and only if S <+∞. Building on the methods and results of [246], Zhang and Zhu [268] proved that,
in this setting, the limit (1.2) holds true for all probability measures µ on N. However, the spectral
theory tools used in these publications are not well suited to study total variation convergence to
the quasi-stationary distribution. The following result, first proved in [201], completes the picture
offered in [246] on the quasi-limiting behaviour of birth and death processes with an entrance
boundary at infinity. It shows that S <+∞ if and only if Assumption A of Chapter 1 holds true.

Proposition 3.2. A birth and death process X admits a unique quasi-stationary distribution if and
only if there exist two constants C ,γ > 0 and a probability measure νQSD on N such that, for any
initial distribution µ onN,

‖Pµ(X t ∈ ·|t < T0)−νQSD‖T V ≤C e−γt , ∀t ≥ 0. (3.4)

In this case, νQSD is the unique quasi-stationary distribution associated to X .

In [56, Section 4.1.1], we extended this result to birth and death processes with catastrophes.
The existence of quasi-stationary distributions for similar processes was already studied in [250].
The settings are the following. Let X c be a birth and death process on Z+ with birth rates (bx )x≥0

and death rates (dx )x≥0 with b0 = d0 = 0 and bx ,dx > 0 for all x ≥ 1, and allow the process to jump to
0 from any state x ≥ 1 at rate ax ≥ 0. In particular, the jump rate from 1 to 0 is a1 +d1. This process
is absorbed in ∂= 0 at time T c

0 := inf{t ≥ 0, X c
t = 0}.

Proposition 3.3. Assume that supn≥1 an <∞. Then S <+∞ if and only if Assumption A is satisfied.

We conclude this section with an original extension of the above proposition to birth and death
processes with (possibly large) negative jumps. These processes are called skip-free to the right
in [169], where the quasi-stationary behaviour of skip-free to the left processes are studied. Let
X s f be a process on Z+ with transition rate matrix (Q(x, y))x,y∈Z+ of X given by

Q(x, y) =



0, if x = 0 or y ≥ x +2,
bx , if x ≥ 1 and y = x +1,
dx = d (1)

x , if x ≥ 2 and y = x −1,
d (2)

x , if x ≥ 3 and y = x −2,
...

d (k)
x , if x ≥ k and y = x −k,

...
d (x)

x , if y = 0.

Here we assume that the families (bx )x≥1 and (d (k)
x )x≥1,k≥1 are positive and b = 0, so that the pro-

cess is irreducible on N and with only absorbing state 0, whose hitting time is denoted by T s f
0 :=

inf{t ≥ 0, X s f
t = 0}. The proof of this result can be obtained as a straightforward adaptation of the

arguments of [56, Section 4.1.1] and is omitted here.

Proposition 3.4. Assume that S <∞ and that supx d (x)
x <∞. Then Assumption A is satisfied.
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3.3 The case of λ0-positive recurrent birth and death processes

We consider now the more involved situation where ∞ is not an entrance boundary. This case,
where there may exist an infinity of quasi-stationary distributions, is trickier and can be partially
solved, as we will show, when the birth and death process isλ0-positive recurrent, as defined below.
We refer the reader to [138, 248, 247, 249] for several properties and examples of λ0-positive birth
and death processes.

The quantity λ0 in Theorem 3.1 is equal to the decay parameter (see Theorem 3.3 in [245]),
usual to the theory of λ0-positive semigroups (see for instance [8] and references therein) and de-
fined as follows: for all x ∈N,

λ0 = inf
{
λ> 0, s.t. liminf

t→+∞ eλt Px (X t = x) > 0
}

. (3.5)

Definition 3.1. The birth and death process X is said to be λ0-positive recurrent if the decay pa-
rameter λ0 is positive and if, for some x ∈N and hence for all x ∈N, we have

lim
t→∞eλ0t Px (X t = x) > 0.

In the following theorem (proved in [259], we assume that the process is λ0-positive recurrent
and we exhibit a subset of the domain of attraction for the minimal quasi-stationary distribution.

Theorem 3.5. Let X be a λ0-positive recurrent birth and death process as in Section 3.1. Then the
domain of attraction of the minimal quasi-stationary distribution of X contains the set D defined by

D =
{
µ ∈M1(N),

∞∑
i=1

µi Qi (λ0) <+∞
}

.

Assume moreover that there exist C > 0, λ1 > λ0 and ϕ :Z+ → [1,+∞) such that ϕ(i ) goes to infinity
when i →∞ and

bi (ϕ(i +1)−ϕ(i ))+di (ϕ(i −1)−ϕ(i )) ≤−λ1ϕ(i )+C , ∀i ≥ 1. (3.6)

Then the domain of attraction of the minimal quasi-stationary distribution of X contains the set Dϕ

defined by

Dϕ =
{
µ ∈M1(N),

∞∑
i=1

µiϕ(i ) <+∞
}

.

As shown in [259], we have Dϕ ⊂D for all functionϕ satisfying the assumptions of Theorem 3.5.
However, Q·(λ0) cannot be computed explicitly but in few situations. On the contrary, in many sit-
uations, it is possible to guess a function ϕ satisfying the Lyapunov criterion of the above theorem.
In fact, in this situation, the results of Chapter 2 apply, as stated in the next proposition, and hence
improve the description of the convergence.

Importantly, we do not assume that the process is λ0-positive recurrent in the next statement.
This is a key step for the generalisation developed afterwards, since in these cases the classical
theory is lacking practical criteria for ofλ0-positive recurrence (for general considerations on these
properties, we refer the reader to [166, 167]).
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Proposition 3.6. Assume that X is a birth and death process as in Section 3.1 and that there exist
C > 0, λ1 >λ0 and ϕ :Z+ → [1,+∞) such that

bi (ϕ(i +1)−ϕ(i ))+di (ϕ(i −1)−ϕ(i )) ≤−λ1ϕ(i )+C , ∀i ≥ 1. (3.7)

Then there exist positive constants C ′,γ and a probability measure νQSD on E such that

∥∥Pµ(X t ∈ · | t < τ∂)−νQSD
∥∥

T V ≤C ′µ(ϕ)

µ(η)
e−γt , (3.8)

where 1 ≤ η≤ϕ is the right-eigenfunction of the infinitesimal generator of X with eigenvalue −λ0.

The above proposition appeared in [58] in a more general but weaker form, since µ(ϕ)/µ(η)
was replaced by µ(ϕ)/µ(ϕ′), where ϕ′ : E → R+ is a positive bounded function (while η is lower
bounded away from 0 and may be unbounded). However the extension can be obtained in several
ways: either as a consequence of the non-uniform exponential ergodic of the Q-process1 (using the
fact that η is lower bounded) or extending [21]. Both methods use the existence of an eigenfunction
(already established in [246]), but the results may also be obtained directly by using the arguments
of Chapter 7 and hence extended to more general processes, as those described in the next sections
and chapters.

Finally, note that the subset of the domain of attraction provided by Proposition 3.6 is included
(often strictly) in D of Theorem 3.5.

3.4 Multi-dimensional birth and death processes

We focus now on the extension of the above results to the case of multi-dimensional birth and
death processes, as studied in [59, 58]. We focus first on the general case (see Subsection 3.4.1) and
show that, in the case of Lotka-Volterra type parameters, we obtain uniform convergence to the
quasi-stationary distribution with respect to the initial distribution (see Subsection 3.4.2).

3.4.1 General processes in discrete state space and continuous time

Let X be a non-explosive2 Markov process in a countable state space E ∪{∂} absorbed in ∂, with in-
finitesimal generator L acting on nonnegative real functions f on E∪{∂} such that

∑
y∈E∪{∂} qx,y f (y) <

∞ for all x ∈ E as

L f (x) = ∑
y 6=x∈E∪{∂}

qx,y ( f (y)− f (x)), ∀x ∈ E , L f (∂) = 0, (3.9)

where qx,y is the jump rate of X from x to y 6= x and
∑

y∈E∪{∂}\{x} qx,y <∞ for all x ∈ E .

Theorem 3.7. Assume that there exists a finite subset D0 of E such that Px (X1 = y) > 0 for all x, y ∈
D0, so that the constant

λ0 := inf
{
λ> 0, s.t. liminf

t→+∞ eλt Px (X t = x) > 0
}

1See Chapter 6 for the definition and properties of Q-processes
2One could actually consider the case of explosive Markov processes, but then τ∂ shall be defined as the infimum

between the first hitting time of ∂ and the explosion time.
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is finite and independent of x ∈ D0. If in addition there exist constants C > 0, λ1 > λ0, a function
ϕ : E ∪ {∂} →R+ such that ϕ E ≥ 1, ϕ(∂) = 0,

∑
y∈E\{x} qx,yϕ(y) <∞ for all x ∈ E and such that

Lϕ(x) ≤−λ1ϕ(x)+C 1x∈D0 , ∀x ∈ E , (3.10)

then Assumption F is satisfied with L = D0, γ1 = e−λ1 , any γ2 ∈ (e−λ1 ,e−λ0 ) andψ1 =ϕ E . In addition,
PνQSD (t < τ∂) = e−λ0t for all t ≥ 0, the function η of Proposition 2.3 satisfies Ptη= e−λ0tη for all t ≥ 0
and

∑
y∈E\{x} qx,yη(y) <∞ and L η(x) =−λ0η(x) for all x ∈ E.

Among earlier studies of the quasi-stationary behaviour of general continuous time Markov
chains, we refer the reader to [211, 228, 229, 112] and the survey [252] and references therein.

Example 3.1. We consider general multitype birth and death processes in continuous time, taking
values in a connected (in the sense of the nearest neighbours structure of Zd ) subset E of Zd+ for
some d ≥ 1, with transition rates

qx,y =


bi (x) if y = x +ei ,

di (x) if y = x −ei ,

0 otherwise,

with ei = (0, . . . ,0,1,0, . . . ,0) is the i th element of the canonical basis and with the convention that
the process is sent instantaneously to ∂ when it jumps to a point y 6∈ E according to the previous
rates. To ensure irreducibility, it is sufficient (although not optimal) to assume that bi (x) > 0 and
di (x) > 0 for all 1 ≤ i ≤ d and x ∈ E .

We show below that Theorem 3.7 applies under the assumption that

1

|x|
d∑

i=1
(di (x)−bi (x)) −−−−−−−−−→

x∈E , |x|→+∞
+∞. (3.11)

or that there exists δ> 1 such that
d∑

i=1
(di (x)−δbi (x)) −−−−−−−−−→

x∈E , |x|→+∞
+∞. (3.12)

Let us first show that (3.11) implies that the assumptions of Theorem 3.7 are satisfied. In order
to do so, we define ϕ(x) = |x| = x1 + . . .+xd and ϕ(∂) = 0 and obtain

Lϕ(x) =
d∑

i=1
(bi (x)−di (x)) =−ϕ(x)

∑d
i=1(di (x)−bi (x))

|x|

The proof is concluded by setting D0 =
{

x ∈ E , s.t.
∑d

i=1(di (x)−bi (x))
|x| ≥λ0 +1

}
.

Let us now show that (3.12) implies that the assumptions of Theorem 3.7 are satisfied. Setting
ϕ(x) = exp〈a, x〉 for a given a ∈ (0,∞)d and ϕ(∂) = 0, we obtain

Lϕ(x) ≤−ϕ(x)

(
d∑

i=1
(1−e−ai )di (x)+ (1−eai )bi (x)

)
.

Choosing a = (ε, . . . ,ε) with ε small enough, we have

liminf
x∈E , |x|→+∞

d∑
i=1

(1−e−ai )di (x)+ (1−eai )bi (x) =+∞.

Taking D0 =
{

x ∈ E , s.t.
∑d

i=1(1−e−ai )di (x)+ (1−eai )bi (x) ≥λ0 +1
}

allows us to conclude the proof.
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3.4.2 Birth and death processes with Lotka-Volterra type parameters

The following result was obtained in [59] as part of a more general result based on Lyapunov type
criterion. Since this general criterion is rather technical, we focus here on its application to Lotka-
Volterra birth and death processes.

A Lotka-Volterra birth and death process in dimension d ≥ 2 is a Markov process (X t )t∈R+ on
Zd+ with transition rates qn,m from n = (n1, . . . ,nd ) ∈Zd+ to m 6= n in Zd+ given by

qn,m =


ni (λi +∑d

j=1γi j n j ) if m = n +ei , for some i ∈ {1, . . . ,d}

ni (µi +∑d
j=1 ci j n j ) if m = n −ei , for some i ∈ {1, . . . ,d}

0 otherwise.

We have qn,n−ei = 0 if ni = 0, so that the process remains in the state space Zd+. Since in addition
qn,m = 0 for all n such that ni = 0 and m such that mi ≥ 1, the set ∂ = Zd+ \Nd is absorbing for the
process. We make the usual convention that

qn,n :=−qn :=− ∑
m 6=n

qn,m .

From the biological point of view, the constant λi > 0 is the birth rate per individual of type i ∈
{1, . . . ,d}, the constant µi > 0 is the death rate per individual of type i , ci j ≥ 0 is the rate of death of
an individual of type i from competition with an individual of type j , and γi j ≥ 0 is the rate of birth
of an individual of type i from cooperation with (or predation of) an individual of type j . In general,
a Lotka-Volterra process could be explosive if some of the γi j are positive, but the assumptions of
the next theorem ensure that it is not the case and that the process is almost surely absorbed in
finite time.

Proposition 3.8. Consider a competitive Lotka-Volterra birth and death process (X t )t∈R+ in Zd+ as
above. Assume that the matrix (ci j −γi j )1≤i , j≤d defines a positive operator on Rd+ in the sense that,
for all (x1, . . . , xd ) ∈ Rd+ \ {0},

∑
i j xi (ci j −γi j )x j > 0. Then the process has a unique quasi-stationary

distribution νQSD and there exist constants C ,γ> 0 such that, for all probability measures µ onNd ,∥∥Pµ(X t ∈ · | t < τ∂)−νQSD
∥∥

T V ≤Ce−λt , ∀t ≥ 0.

Note that the existence of a quasi-stationary distribution for this kind of multi-dimensional
birth and death processes can also be obtained using the theory of positive matrices, as exposed
in [119], or using the result of the preceding section. However, neither approach provides the uni-
form convergence with respect to the initial distribution.
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Chapter 4

One-dimensional diffusion processes

In this chapter, we consider general one-dimensional diffusion processes and expose necessary
and sufficient conditions for the exponential convergence to a quasi-stationary distribution. After
reminders on general one-dimensional diffusion processes in Section 4.1, we study their quasi-
stationary distributions when there is no natural boundaries in Section 4.2. We consider the case
of stochastic differential equations (SDEs) with possibly natural boundaries in Section 4.3.

Convergence of conditioned one-dimensional diffusion processes has received a lot of atten-
tion in the past decades and general results have been obtained, using in general spectral theoretic
arguments (self-adjoint operators, Sturm-Liouville theory, intrinsic ultra-contractivity), which proved
to be extremely powerful (see for instance [239, 44, 184, 175, 146, 210]). Our main contribution
to the theory of quasi-stationary distributions for one-dimensional diffusion processes, concerns
the question of speed of convergence with respect to the initial distribution and the relaxation of
the regularity of the coefficients. Moreover, our original approach can be easily adapted to other
models, such as diffusion processes with jumps and time inhomogeneous diffusion processes (see
Section 4.4 where several examples are provided).

4.1 Some reminders on general diffusion processes

In this section, we recall the definition and first properties of a general one-dimensional diffusion
process (Yt , t ≥ 0) on (a,b), −∞ ≤ a < b ≤ +∞, up to its exit time of (a,b) defined by τ∂ = inf{t ≥
0, limsups→t Ys = b or liminfs→t Ys = a}. The process Y is sent to a cemetery point ∂ ∉ (a,b) for all
t ≥ τ∂. Its distribution given Y0 = x ∈ (a,b) will be denoted Px . We refer the reader to [107, 154, 163,
127, 50] for additional developments and proofs of the following properties.

A stochastic process (Yt , t ≥ 0) on (a,b) is called a diffusion process if it has a.s. continuous paths
in (a,b) up to time τ∂, satisfies the strong Markov property and is regular. By regular, we mean that
for all x, y ∈ (a,b), Px (Ty < ∞) > 0, where Ty is the first hitting time of y by the process Y . This
notion is closely related to the concept of irreducibility of the set (a,b), since this open interval
cannot be decomposed into strict subsets from which the process Y cannot evade.

To such a process, one can associate a continuous and strictly increasing function s on (a,b)
such that, for all l < x < r ∈ (a,b),

Px (Tl < Tr ) = s(x)− s(l )

s(r )− s(l )
.

33
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The function s is called a scale function of Y and is unique up to affine transformation. If s(x) = x
is a scale function for Y , then we say that Y is on natural scale.

It can also be proved that, to any one dimensional diffusion process Y , one can associate a
unique locally finite positive measure mY (d x) on (0,+∞), called the speed measure of Y , which
gives positive mass to any open subset of (0,+∞) and such that, for all l < x < r ∈ (a,b) and for all
measurable functions f : (a,b) →R+

Ex

(∫ Tl∧Tr

0
f (Ys)d s

)
=

∫
(l ,r )

Gl ,r (x, y) f (y)mY (d y), (4.1)

where G denotes the green function

Gl ,r (x, y) = 2
(s(x)∧ s(y)− s(l ))(s(r )− s(x)∨ s(y))

s(r )− s(l )
.

This formula can be extended to l = a or r = b by letting l and r tend to a and b respectively in the
above expressions. For instance, if s(a) = 0 and s(b) =+∞, equation (4.1) remains valid with l = a,
r = b, and Ga,b(x, y) = 2 s(x)∧ s(y).

The meaning of the speed measure mY is somewhat counter-intuitive given its name: the pro-
cess slows down in subsets with higher speed measure. For instance, the sticky Brownian motion
with parameter θ > 0, which is the general diffusion on natural scale on (−∞,+∞) and speed mea-
sure Λ+θδ0 stays longer in 0 if θ is larger (where Λ is the Lebesgue measure on R). It is possible
to give a precise meaning of this fact by looking as the construction of diffusion processes on nat-
ural scale as time changed Brownian motion (since this considerations are further away from the
presentation at hand, we refer the reader to the original paper [60] and references therein).

It is also well known that one can classify the boundaries a and b of the state space as exit,
regular, natural or entrance. Informally, they respectively mean (exit) that the process can reach
the boundary and cannot come back to (a,b); (regular) that the process can reach the boundary
and may be constructed so that it comes back to (a,b), depending on the boundary conditions;
(natural) that the process cannot reach the boundary and that, when it starts near the boundary,
it stays a long time near the boundary; (entrance) that the process cannot reach the boundary and
that, when it starts near the boundary, it can reach any compact subsets of (a,b) in finite time. A
boundary is said to be reachable if it is exit or regular, and non-reachable otherwise.

These definitions correspond to the following parameters (see for instance Section 5.11 of Itô’s
book [153]). Set, for some fixed c > 0,

Ia =
∫ ∫

a<y<x<c
mY (d x) s(d y), I Ia =

∫ ∫
a<y<x<c

mY (d y) s(d x),

Ib =
∫ ∫

c<x<y<b
mY (d x) s(d y), I Ib =

∫ ∫
c<x<y<b

mY (d y) s(d x).

Then, for γ= a or b, we have

• γ is an exit boundary if Iγ <∞ and I Iγ =∞,

• γ is a regular boundary if Iγ <∞ and I Iγ <∞,

• γ is a natural boundary if Iγ =∞ and I Iγ =∞,

• γ is an entrance boundary if Iγ =∞ and I Iγ <∞.
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Also one checks that, if γ ∈ {a,b} is a reachable boundary, then s(γ) ∈ (−∞,+∞) and that, if γ ∈ {a,b}
is an entrance boundary, then s(γ) ∈ {−∞,+∞}.

Remark 4.1. The process X t = s(Yt ) is a diffusion on natural scale on (s(a), s(b)), whose speed mea-
sure is given by

m(d x) = mY ◦ s−1(d x), (4.2)

where mY ◦s−1 is the push-forward measure of mY through the function s (this follows for instance
from [232, Thm. VII.3.6]). Moreover, the boundaries s(a) and s(b) for X have respectively the same
nature as a and b for Y . Since it is straightforward that the diffusion processes X and Y have the
same quasi-stationary behaviour, we restricted most of the original article to diffusion processes
X on natural scale.In the present manuscript, we present theses results in the general situation of
diffusion processes that may not be on natural scale.

The case of solutions to stochastic differential equations.
One of the most widespread case of diffusion processes in the literature concerns the solutions

to stochastic differential equations. Let Y be the solution to the general SDE on (a,b) with −∞<
a < b ≤+∞

dYt =σ(Yt )dBt +β(Yt )d t , Y0 = x ∈ (a,b), (4.3)

where (1+|β|)/σ2 ∈ L1
loc((a,b)) (which ensures the existence of a weak solution [163, Ch. 23] up to

the exit time of (a,b)). In this case, one obtains the following semi-explicit expressions for the scale
function and the speed measure (see for instance [232, Chapter VII, Section 3])

s(x) =
∫

(c,x)
exp

(
−

∫
(c,y)

2β(z)σ−2(z)d z

)
d y and m(d x) = 2d x

s′(x)σ2(x)
(4.4)

for any arbitrarily fixed point c ∈ (a,b).

4.2 General one-dimensional diffusion processes without natural bound-
aries

We first consider the situation where none of the boundary is natural. This case is already well
understood in the literature for solution to SDEs with regular coefficients. For instance, combin-
ing the works of [239, 44, 184, 175, 146], one deduces that there exists a unique quasi-stationary
distribution for solutions to SDE’s on (0,+∞) with smooth coefficients, 0 reachable and ∞ en-
trance. These results also imply that the convergence toward a quasi-stationary distribution hold
true pointwisely, for any initial distribution on (0,+∞) (some of the above cited works require the
initial measures to be compactly supported, but the extension to non-compactly supported mea-
sures is not difficult). Of course, they can be extended without to much difficulty to the situation
where (0,+∞) is replaced by an arbitrary non-empty open set (a,b). For general one-dimensional
diffusion processes, Miura [210] used the abstract and powerful analytical results on the density
of diffusion processes proved by Mastumoto in [202] in order to prove that there exists a unique
quasi-stationary distribution attracting all initial distribution. The conditions of Matsumoto are
satisfied in most practical situations.

Our two main aims are thus 1/ to extend the existing results by covering all the edge cases not
covered by [202] and 2/ to precise the convergence results, using the results of Chapters 1 and 2.
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We begin with the following result, which answers to the first aim above. It can be obtained
using the approach of Section 4 in [58].

Proposition 4.1. Assume that a is reachable or entrance, and that b is reachable or entrance. Then
Condition F of Chapter 2 is satisfied with ψ1 = 1.

The main drawback of this result is that it does not imply uniform convergence with respect to
the original distribution, while this is a very common situation as we explain now.

The following result was obtained in [60] for diffusion processes on natural scale evolving in (0,+∞)
and absorbed at 0. Here, we translate this result to the general case of diffusion process that may
not be on natural scale. The extension of this result to one-dimensional diffusions with killing is
absorbed in [57]. In the following result, tc > 0 is an arbitrarily fixed time.

Theorem 4.2. We have equivalence between

(i) The boundary a is reachable and

P(tc < τ∂ | Y0 = y) ≤ As(y), ∀y ∈ (a,b),

or the boundary a is an entrance boundary. The boundary b is reachable and

P(tc < τ∂ | Y0 = y) ≤ A(s(b)− s(y)), ∀y ∈ (a,b),

or the boundary b is an entrance boundary.

(ii) Assumption A of Chapter 1 is satisfied.

In this case, if either a or b is reachable, then there exists λ0 > 0 such that PνQSD (t < τ∂) = e−λ0t

and the unique quasi-stationary distribution νQSD of the process is absolutely continuous with re-
spect to mY with Radon-Nikodym density

dνQSD

dmY
(x) = 2

∫ b

a
Ga,b(x, y)νQSD (d y),

where Ga,b is the Green function defined in the previous section. In addition,∫ b

a
s(y)νQSD (d y) <∞,

where s(y) = s(y)− s(a) if a is reachable and b entrance, s(y) = s(b)− s(y) if a is entrance and b is
reachable and s(y) = (s(y)− s(a))(s(b)− s(y)) if both a and b are entrance.

Remark 4.2. The Green function Ga,b is well defined only if s(a) or s(b) is finite, which is the case
when a or b is reachable. When both a and b are entrance boundaries, the classical theory of
conservative Markov processes applies and one checks that αY = mY /mY (a,b) and λ0 = 0.

Of course, in order to apply this result in practical situations, one needs to be able to check
whether a given general diffusion process satisfies condition (i) above. This is the subject of Propo-
sitions 4.3. Its proof, detailed in [60] only uses elementary tools. In the next result, c is an arbitrary
fixed point in (a,b).
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Proposition 4.3. Assume that b is reachable or entrance, and that, for all x ∈ (a,c),

I (x) :=
∫

(a,x)
(s(y)− s(a))mY (d y) ≤C (s(x)− s(a))ρ (4.5)

for some constants C > 0 and ρ > 0. Then, for all t > 0, there exists At <∞ such that

Px (t < τ∂) ≤ At (s(x)− s(a)), ∀x > 0.

We immediately deduce the next corollary.

Corollary 4.4. Assume that a is regular or entrance, and that b is regular or entrance. Then the
conditions of Theorem 4.2 are satisfied.

Proposition 4.3 also covers many situations where the boundary is exit, although it does not
cover all cases. To understand the generality of this criterion, let us consider the case of stochastic
diffusion processes without drift terms. One easily checks that a diffusion process X evolving in
(0,+∞) and solution to the SDE

d X t =σ(X t )dBt

satisfies (4.5) as soon as σ(x) ≥ C ′x1−ε in the neighbourhood of 0 for some constants ε > 0 and
C ′ > 0. We recall that, if σ(x) ≤ C ′x in a neighbourhood of 0, the boundary 0 is not reachable. As
a consequence, this simple criterion covers most practical situations. However, it does not cover
all cases: for instance, if σ(x) = x log x1/2−ε, then 0 is a reachable (exit) boundary, but (4.5) is not
satisfied. This case is covered by a more involved criterion described in the original article [60]
(which, however, does not cover all reachable boundary cases either). This leads to the following
natural open question (which admits a positive answer for birth and death processes).

Open Question. Is it true that any diffusion process on (a,b) with a and b either entrance or reach-
able satisfies Condition A of Chapter 1?

This open question can also be translated into an open problem from strict martingale theory,
as we detail in the original article [60].

Construction of a diffusion process with prescribed quasi-stationary distribution
Our goal here is to give a sufficient condition on a given positive measure αY ensuring that

it is the unique quasi-stationary distribution of a diffusion process on (a,b) with identified speed
measure and scale function. The problem of finding diffusion processes with prescribed quasi-
stationary distributions have been independently studied by other authors since the publication
of the original article. New advances with original applications to Monte Carlo methods can be
found for instance in [230, 262].

Proposition 4.5. Fix −∞≤ a < b ≤+∞, λ0 > 0, a continuous strictly increasing function s on (a,b)
and a probability measure α on (a,b). Assume that s and 1

t(x)∧1α(d x) are respectively the scale func-
tion and the speed measure of a regular diffusion process X on (0,+∞) satisfying the conditions of
Theorem 4.2 with a or b reachable, where

t(x) =


s(x)− s(a) if a is reachable and b is entrance for X ,

s(b)− s(x) if a is entrance and b is reachable for X ,

(s(x)− s(a))(s(b)− s(x)) if both a and b are reachable for X .



38 CHAPTER 4. ONE-DIMENSIONAL DIFFUSION PROCESSES

Then the diffusion process Y with scale function s and speed measure

mY (d x) = α(d x)

λ0
∫ ∞

0 Ga,b(x, y)α(d y)
, ∀x ∈ (0,∞)

satisfies the conditions of Theorem 4.2, its unique quasi-stationary distribution is α and it satisfies

Pα(t < τ∂) = e−λ0t , ∀t ≥ 0.

4.3 One dimensional SDEs with possibly natural boundaries

In this section, we consider the case of one-dimensional diffusion processes solution to a SDE and
admitting a natural boundary. The case of general one-dimensional diffusion processes can be
handled using a similar approach, but the construction of Lyapunov functions compatible with
their infinitesimal generator is more tricky [154]. The question of existence and convergence to
a quasi-stationary distribution for such diffusion processes is largely solved when the coefficients
are regular (see in particular [79, 196, 197, 239, 44, 175, 146]). However, the question of finding a
non-trivial subset of the domain of attraction of the quasi-stationary distribution is less understood
(although some partial answers can be found in [79]). Our main goal is thus to extend those result
to less regular coefficients and to give a criterion ensuring that Assumption F of Chapter 2 holds
true, providing precisions on the domain of attraction and the rate of convergence. Note that we
cannot recover the sub-exponential rate of convergence of [79].

Let X be the solution in (a,b), where −∞≤ a < b ≤+∞, to the SDE

d X t =σ(X t )dBt +β(X t )d t , X0 ∈ (a,b),

where σ : (a,b) → (0,+∞) and β : (a,b) → R are measurable functions such that (1 + |β|)/σ2 is
locally integrable on (a,b). We assume that the process is sent to a cemetery point ∂ when it exits
the set (a,b) and that it is subject to an additional killing rate κ : (a,b) → R+ which is measurable
and locally integrable w.r.t. Lebesgue’s measure. This assumption implies that the killed process is
regular.

We define λ0 as

λ0 := inf
{
λ> 0, s.t. liminf

t→+∞ eλt Px (X t ∈ [c,d ]) > 0
}

(4.6)

for some x ∈ [c,d ] ⊂ (a,b). The fact that λ0 does not depend on x nor [c,d ] is a consequence of the
regularity of the process. This defines the decay parameter, analogously to (3.5) for birth and death
processes.

Let δ : (a,b) →R+ and s : (a,b) →R be defined by

δ(x) = exp

(
−2

∫ x

c

b(u)

σ(u)2 du

)
and s(x) =

∫ x

c
δ(u)du,

for some arbitrary c ∈ (a,b). We recall that s is the scale function of X (unique up to an affine
transformation).

Theorem 4.6. Assume that one among the following conditions (i), (ii) or (iii) holds true:

(i) a and b are reachable boundaries and ϕ= 1;
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(ii) a is reachable and there exist λ1 > λ0, a C 2((a,b)) function ϕ : (a,b) → [1,+∞) and x1 ∈ (a,b)
such that, for all x ∈ [x1,b),

σ(x)2

2
ϕ′′(x)+β(x)ϕ′(x)−κ(x)ϕ(x) ≤−λ1ϕ(x); (4.7)

(iii) there exist λ1 > λ0, a C 2((a,b)) function ϕ : (a,b) → [1,+∞) and x0 < x1 ∈ (a,b) such that (4.7)
holds true for all x ∈ (a, x0)∪ (x1,b).

Then X admits a quasi-stationary distribution νQSD which satisfies νQSD (ϕ1/p ) <+∞ for all p > 1.
Moreover, for all p ∈ (1,λ1/λ0), there exist a constantαp ∈ (0,1), a constant Cp and a positive function
ϕ2,p : (a,b) → (0,+∞) uniformly bounded away from 0 on compact subsets of (a,b) such that, for all

µ ∈M (ϕ
1/p

1 ),

∥∥Pµ(X t ∈ · | t < τ∂)−νQSD
∥∥

T V ≤Cpα
t
p
µ(ϕ1/p )

µ(ϕ2,p )
, ∀t ∈ [0,+∞).

In particular, νQSD is the only quasi-stationary distribution of X which satisfies νQSD (ϕ1/p ) < +∞
for at least one value of p ∈ (1,λ1/λ0).

In order to apply this result in practice, one needs to find computable estimates for λ0 and can-
didates for ϕ. One may for instance use the sharp bounds for the first eigenvalue of the (Dirichlet)
infinitesimal generator of (X t )t∈R+ obtained in a L2 (symmetric) setting in [226, 265, 266], as ob-
served in [175]. We propose also in [58] two different upper bounds for λ0 which follow from the
characterisation (4.6) of the eigenvalue λ0 and Dynkin’s formula.

4.4 Examples

Example 4.1. In the settings of the last section, assume that (a,b) = (0,+∞), κ is locally bounded
and that X is solution to the SDE in (a,b)

d X t =
√

X t dBt −X t d t .

Then 0 is reachable for X and since

σ(x)2δ(x)2

8s(x)2 −−−−−→
x→+∞ +∞,

we deduce from [58, Proposition 4.7] and Theorem 4.6 that X admits a quasi-stationary distribu-
tion νQSD and, for all p ≥ 1, there exist positive constants Cp ,γp and a positive function ϕ2,p on
(0,+∞) such that

∥∥Pµ(X t ∈ · | t < τ∂)−νQSD
∥∥

T V ≤Cp

∫
(0,+∞) exp(x/p)µ(d x)

µ(ϕ2,p )
e−γp t ,

for all probability measures µ on (0,+∞). In particular, one deduces that the domain of attraction
νQSD contains any initial distribution µ admitting a finite exponential moment. Note that, in the
case whereκ≡ 0, the process X is a continuous state branching process (Feller diffusion), for which
quasi-stationarity was already studied (see [177] and the references therein).
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Example 4.2. Assume that (a,b) = R, that β ≡ 0 and σ is bounded measurable on R. Assume also

that the absorption of X is due to the killing rate κ(x) = κ0

(
1− 1

1+|x|
)

for some constant κ0 > 0. We

deduce from [58, Proposition 4.7] that

λ0 ≤
π2‖σ‖2∞

8b2 +κ0

(
1− 1

1+b

)
≤ κ0

(
1− 1

1+2b

)
for b large enough. Moreover, choosing ϕ = 1 and x0 = −3b, x1 = 3b, one deduces that, for all
x 6∈ [−x1, x1],

σ(x)2

2
ϕ′′(x)−κ(x)ϕ(x) ≤−κ0

(
1− 1

1+3b

)
ϕ(x).

Hence Theorem 4.6 implies that there exists a unique quasi-stationary distribution νQSD for X and
that it attracts all probability measures µ on R.

Example 4.3. We consider the case (a,b) = (0,+∞), σ(x) = 1, β(x) = x sin x, and κ(x) = κ0
(
1− 1

1+x

)
for some constant κ0 >π2 +3. This corresponds to a SDE d X t = dBt +∇U (X t )d t where the poten-
tial U (x) = sin x − x cos x has infinitely many wells with arbitrarily large depths, meaning that the
process X without killing has a tendency to be “trapped” away from zero for large initial conditions.
Nevertheless, thanks to the killing, we are able to prove convergence to a unique quasi-stationary
distribution. Indeed, using [58, Proposition 4.7], we obtain

λ0 ≤ sup
x∈(0,1)

π2

2
+ sin x +x cos x +x2 sin2 x

2
+κ0

(
1− 1

1+x

)
≤ π2

2
+ 3

2
+κ0/2.

Moreover, 0 is a reachable boundary for X and, taking ϕ= 1, one has, for all x1 > 0 and all x > x1,

σ(x)2

2
ϕ′′(x)+b(x)ϕ′(x)−κ(x)ϕ(x) ≤−κ0

(
1− 1

1+x1

)
ϕ(x)

Hence, since we assumed that κ0 >π2 +3, one deduces that there exists a unique quasi-stationary
distribution νQSD for X and that it attracts all probability measures µ on (0,+∞).

Example 4.4 (Sticky Brownian motion absorbed at −1 and +1). We recall that a diffusion process
onRwith speed measureΛ+δ0 is called a sticky Brownian motion [154, 4], whereΛ is the Lebesgue
measure on R. It is called “sticky” because it slows down at 0, giving the impression that the tra-
jectory of the process is glued to 0. We consider here a diffusion process X evolving as a sticky
Brownian motion in (−1,1) and absorbed at −1 and 1. This means that X is a diffusion on natural
scale with speed measure m(d x) =Λ(d x)+δ0(d x) on (−1,1), absorbed at −1 and 1.

In this case, the conditions of Theorem 4.2 are satisfied since both boundaries −1 and 1 are
regular for X (see Corollary 4.4). Moreover, since the unique quasi-stationary distribution νQSD of
X satisfies

dνQSD

dm
(x) =λ0

∫ 1

−1
(x ∧ y +1)(1−x ∨ y)νQSD (d y), ∀x ∈ (−1,1),

careful computations show that

νQSD (d x) = γ∗

2
sin

(
γ∗(1+x)∧ (1−x)

)
m(d x),

where γ∗ is the unique solution in (0,π] of cotan γ= γ/2.
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Example 4.5 (Diffusion process with multiple sticking points). We consider here a diffusion process
X on (0,∞) on natural scale and with absorption at 0, where ∞ is an entrance boundary and which
“sticks” at the points a1, a2, . . ., where (ai )i≥1 is decreasing, converges to 0 and a1 < 1. Denoting by
m the speed measure of this diffusion, this means that

∫ ∞
1 y m(d y) <∞ and

m (0,1) =Λ (0,1) +
∑
i≥1

δai ,

whereΛ is the Lebesgue measure on R.
Assuming that there exist constants C ,ρ > 0 such that for all j ≥ 1,∑

i≥ j
ai ≤C aρj , (4.8)

then for all x ∈ (0,1), defining i0 := inf{ j ≥ 1 : a j < x},∫
(0,x)

y m(d y) = x2

2
+ ∑

i≥i0

ai ≤ x2

2
+C aρi0

≤ x2

2
+C xρ ,

and we can apply Proposition 4.3. For example, the choice ai = i−
1

1−ρ , for all i ≥ 1, satisfies (4.8).

Example 4.6 (A simple model with jumps). The following example uses a simple extension of the
results presented above.

We consider a diffusion process (X t )t∈R+ on (0,∞) with speed measure m, on natural scale, and
satisfying the conditions of Theorem 4.2. Let us denote by L the infinitesimal generator of X . We
consider the Markov process (X̃ t )t∈R+ with infinitesimal generator

L̃ f (x) =L f (x)+ ( f (x +1)− f (x))1x≥1,

for all f in the domain of L . In other words, we consider a càdlàg process following a diffusion
process on natural scale with speed measure m between jump times, which occur at the jump
times of an independent Poisson process (Nt )t∈R+ of rate 1, with jump size +1 if the process is
above 1, and 0 otherwise. We denote by τ̃∂ its first hitting time of 0.

In this situation, we show in [60] that X̃ admits a unique quasi-stationary distribution νQSD on
(0,∞) and that there exist two constants C ,γ> 0 such that, for all initial distribution µ on (0,∞),∥∥Pµ(X̃ t ∈ · | t < τ̃∂)−νQSD (·)∥∥T V ≤Ce−γt , ∀t ≥ 0. (4.9)

Example 4.7 (One-dimensional diffusion processes with time-inhomogeneous coefficients). We
consider a time inhomogeneous diffusion process X on (0,+∞) stopped when it exits (0,+∞) at
time T X

0 = inf{t ≥ 0, X t− = 0}, which is assumed finite almost surely, and solution, for all s ≥ 0, on
[s,T X

0 ) to

d X t =σ(t , X t )dBt , Xs ∈ (0,+∞), (4.10)

where B is a standard one-dimensional Brownian motion andσ is a measurable function on (0,+∞)×
(0,+∞) to (0,+∞). We assume that

σ∗(x) ≤σ(t , x) ≤σ∗(x), (4.11)
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for some measurable functions σ∗ and σ∗ from (0,+∞) to (0,+∞) satisfying∫
(0,+∞)

x d x

σ∗(x)2 <∞ and
∫

(a,b)

d x

σ∗(x)2 > 0, ∀0 < a < b <∞.

We also assume that σ∗(x) ≥C x log
1+ε

2 1
x for some constants C > 0 and ε> 0 in a neighbourhood of

the boundary 0.
Under the above assumptions, for all probability measures µ1 and µ2 on E , and for all t ≥ 0, we

show in [63] using coupling with the diffusion studied in the previous sections, that∥∥Pµ1 (X t ∈ · | t < τ∂)−Pµ2 (X t ∈ · | t < τ∂)
∥∥≤C e−γt

for some positive constants C ,γ> 0.
A more complete result is provided in [63], where we also state a general criterion for time-

inhomogeneous semi-groups and provide applications to birth and death processes in random
environments. Note that the classical (without absorption) version of these results (e.g. when
both 0 and ∞ are an entrance boundary for σ∗ and σ∗), can be obtained using existing time-
inhomogeneous Doblin type criteria, known to apply since decades [76].



Chapter 5

Multi-dimensional diffusion processes

In this chapter, we consider the application of the results of Chapters 1 and 2 to diffusion pro-
cesses absorbed at the boundary of a domain. We give a general criterion in Section 5.1 and apply
it to uniformly elliptic diffusions in Section 5.2 and to an example with vanishing diffusion coef-
ficient at the boundary of the domain in Section 5.3. Of course the study of the quasi-stationary
behaviour of multi-dimensional diffusion processes is not new and has been largely understood
in many situation, see for instance [224, 89, 130, 174, 94, 53]. Our main contribution is to strongly
reduce regularity requirements of these works (both on the boundary of the domain and on the
coefficients), to prove exponential convergence in total variation norm and to provide a non-trivial
subset of the domain of attraction.

5.1 A general criterion

The results of this section and of the following one first appeared in [58].
We consider a diffusion process X on a connected, open domain D ⊂ Rd for some d ≥ 1, solu-

tion to the SDE

d X t = b(X t )d t +σ(X t )dBt , (5.1)

where B is a standard, r -dimensional Brownian motion and b : D →Rd andσ : D →Rd×r are locally
Hölder functions, such that σ is locally uniformly elliptic in D , i.e.

∀K ⊂ D compact, inf
x∈K

inf
s∈Rd \{0}

s∗σ(x)σ∗(x)s

|s|2 > 0,

where | · | is the standard Euclidean norm on Rd . We assume that the process is immediately ab-
sorbed 1 at some cemetery point ∂ 6∈ D at its first exit time of D , denoted τ∂. The existence and
basic properties of this process are detailed in Subsection 12.1 of the original article [58]. We can
observe that, for all k ≥ 1, defining the compact set

Kk = {
x ∈ D : |x| ≤ k and d(x,Dc ) ≥ 1/k

}
,

1The study of diffusion processes with additional soft killing can also be derived from the same lines, see for instance
[58, Section 4.4].
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a weak solution to (5.1) can be constructed up to the first exit time τK c
k

of Kk . The proper definition
of the absorption time τ∂ is then

τ∂ = sup
k≥1

τK c
k

. (5.2)

We introduce the differential operator associated to the SDE (5.1), related to the infinitesimal
generator of the process X : for all f ∈C 2(D), we define for all x ∈ D

L f (x) :=
d∑

i=1
bi (x)

∂ f

∂xi
(x)+ 1

2

d∑
i , j=1

r∑
k=1

σi k (x)σ j k (x)
∂2 f

∂xi∂x j
(x). (5.3)

We also define the constant

λ0 := inf
{
λ> 0, s.t. liminf

t→+∞ eλt Px (X t ∈ B) > 0
}

(5.4)

for some x ∈ D and some open ball B such that B ⊂ D . It is standard to prove using Harnack
inequalities that, under the previous assumptions, λ0 < +∞ and its value is independent of the
choice of x ∈ D and of the non-empty, open ball B such that B ⊂ D .

We obtain the following result.

Theorem 5.1. Assume that there exist some constants C > 0, λ1 > λ0, a C 2(D) function ϕ : D →
[1,+∞) and a subset D0 ⊂ D closed for the relative topology on D such that supx∈D0

ϕ(x) <+∞ and

Lϕ(x) ≤−λ1ϕ(x)+C 1x∈D0 , ∀x ∈ D. (5.5)

Assume also that there exists a time s1 > 0 such that

sup
x∈D0

Px (s1 < τKk ∧τ∂) −−−−→
k→∞

0. (5.6)

Then X admits a quasi-stationary distribution νQSD which satisfies νQSD (ϕ1/p ) < +∞ for all p >
1. Moreover, for all p ∈ (1,λ1/λ0), there exist a constant αp ∈ (0,1), a constant Cp and a positive
function ϕ2,p : D → (0,+∞) uniformly bounded away from 0 on compact subsets of D such that, for
all probability measures µ on E satisfying µ(ϕ1/p ) <∞,

∥∥Pµ(X t ∈ · | t < τ∂)−νQSD
∥∥

T V ≤Cpα
t
p
µ(ϕ1/p )

µ(ϕ2,p )
, ∀t ∈ [0,+∞).

In particular, νQSD is the only quasi-stationary distribution of X which satisfies νQSD (ϕ1/p ) < +∞
for at least one value of p ∈ (1,λ1/λ0).

Remark 5.1. The assumptions of Theorem 5.1 do not ensure the non-explosion of the Markov pro-
cess X . In the event of an explosion, the absorption time τ∂ is equal to the explosion time.

The last result has other consequences of interest, gathered in the next corollary.

Corollary 5.2. Under the assumptions of Theorem 5.1, the infimum defining the constant λ0 in (5.4)
is actually a minimum and it satisfies PνQSD (t < τ∂) = e−λ0t for all t ≥ 0. In addition, the function

η of Theorem 2.4 satisfies Ptη = e−λ0tη for all t ≥ 0. In particular, η belongs to the domain of the
infinitesimal generator of the semigroup of the process X defined as acting on the Banach space
L∞(ϕ1), and it is an eigenfunction for the eigenvalue −λ0. In addition, η ∈ C 2(D) and L η(x) =
−λ0η(x) for all x ∈ D.
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It is natural to ask if ϕ2,p may be replaced by η in the conclusion of Theorem 5.1. It is not too
difficult to see that this is the case if η is bounded (this comes down to the fact that one can take
ϕ2 = η in Assumption E when η is bounded). Actually, it is also the case if η is not bounded, in
which case one needs to apply the above criteria to the ϕ1,p -transform of the diffusion process X ,
following the same approach as in Chapter 7.

5.2 Application to uniformly elliptic diffusion processes

We consider the case where σ can be extended as a locally uniformly elliptic matrix to Rd . We
emphasise that, contrary to previous results on the existence of quasi-stationary distributions for
diffusions in a domain (see [224, 89, 130, 174, 94, 53]), no regularity on the boundary of D is re-
quired.

Corollary 5.3. Let D be an open connected subset of Rd , d ≥ 1. Let X be solution to the SDE

d X t = b(X t )d t +σ(X t )dBt , t < τ∂,

where b :Rd →Rd and σ :Rd →Rd×r are locally Hölder continuous in Rd and σ is locally uniformly
elliptic on Rd . Recall the definition (5.4) of λ0 and assume that there exist constants C > 0, λ1 >λ0, a
C 2(D) function ϕ : D → [1,+∞) and a bounded subset D0 ⊂ D closed in D such that

Lϕ(x) ≤−λ1ϕ(x)+C 1x∈D0 , ∀x ∈ D. (5.7)

Then the process X absorbed at the boundary of D satisfies the assumptions of Theorem 5.1.

Again, we do not assume that ϕ is a norm-like function, hence the process X may be explosive
(see Remark 5.1). We give now three examples of application.

Example 5.1. Assume that D is bounded. Then, one can choose D0 = D andϕ1 = 1 in Corollary 5.3.
Hence the process X has a unique quasi-stationary distribution νQSD whose domain of attraction
is the whole set of probability measures on D . Since η is bounded in this case, one can actually
prove that ∥∥Pµ(X t ∈ · | t < τ∂)−νQSD

∥∥
T V ≤ C

µ(η)
αt , ∀t ∈ [0,+∞),

This completely solve the question of existence, uniqueness and convergence to a quasi-stationary
distribution for such diffusion processes. However, finding the correct speed of convergence re-
mains an open problem, since the factor 1/µ(η) is not optimal. Indeed, as we will see in Section 5.4
under regularity assumptions on the boundary of D , the convergence can be proved uniform in µ.

Example 5.2. Assume that D ⊂Rd+ is open connected and that

d X t = b(X t )d t +σ(X t )dBt

in D , where b : Rd → Rd and σ : Rd → Rd×r are locally Hölder continuous in Rd , σ is locally uni-
formly elliptic on Rd and

〈b(x),1〉
〈x,1〉 −−−−−−→

|x|→+∞
−∞,

where 〈·, ·〉 is the standard Euclidean product in Rd and | · | is the associated norm. Then (5.7) is
satisfied forϕ(x) = 1+x1+ . . .+xd and hence the process X absorbed at the boundary of D satisfies
the assumptions of Theorem 5.1.
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Example 5.3. Assume that D ⊂Rd is open connected and that

d X t = b(X t )d t +dBt

in D , where b :Rd →Rd is locally Hölder continuous in Rd and

limsup
|x|→+∞

〈b(x), x〉
|x| < −3

2

√
λ0, (5.8)

where 〈·, ·〉 is the standard Euclidean product in Rd and λ0 is defined in (5.4). Then the process X
absorbed at the boundary of D satisfies the assumptions of Theorem 5.1.

To apply this criterion, one can use a priori bounds on λ0. If the best available bound is λ0 <
+∞, one may still apply the above criterion using that (5.8) is implied by

lim
|x|→+∞

〈b(x), x〉
|x| = −∞.

5.3 Feller diffusion with competition

We study now the case of a diffusion matrix σ that cannot be extended out of D as a locally uni-
formly elliptic matrix. This example deals with Feller diffusions with competition and is motivated
by models of population dynamics with d species in interaction, where absorption corresponds to
the extinction of one of the populations [46].

Assume that D = (0,∞)d and

d X i
t =

√
γi X i

t dB i
t +X i

t bi (X t )d t ,

where γi > 0 for all 1 ≤ i ≤ d , B 1, . . . ,B d are independent standard Brownian motions and bi are
locally Hölder in (0,∞)d and locally bounded in Rd+.

Proposition 5.4. Assume that there exist constants c0,c1 > 0 such that

d∑
i=1

xi bi (x)

γi
≤ c0 − c1|x|, ∀x ∈ (0,∞)d .

Then the process X absorbed at the boundary of D satisfies the assumptions of Theorem 5.1.

In order to prove Proposition 5.4, one shows that the assumptions of Theorem 5.1 hold true
with ϕ(x) = exp(c(x1/γ1 + . . .+xn/γn)), where c = c1 mini γi /

p
d . See Section 4.3 in [58] for details.

Compared to the existing literature on multi-dimensional Feller diffusions (see [46]), this result
covers cases where the process does not come down from infinity, e.g. bi (x) = ri −∑d

j=1 ci j
x j

1+x j
, for

some positive constants ri and ci j such that ri < ci i for all 1 ≤ i ≤ d . Also, the case considered in [46]
is restricted to (transformations of) Kolmogorov diffusions where the drift derives from a potential
(b =∇V ), which allows the authors to use a spectral theoretic approach as in the one-dimensional
case [44]. In the case of logistic Feller diffusions, where bi (x) = ri −∑d

j=1 ci j x j , this requires the
additional assumption that the matrix (ci jγ j )1≤i , j≤d is symmetric. While our results on existence
and convergence to quasi-stationary distributions are more general than those of [46], we do not
recover the fine results they obtain on the spectrum of the process, such as its discreteness.



5.4. UNIFORM CONVERGENCE USING GRADIENT ESTIMATES 47

Multidimensional Feller diffusions absorbed when one of the coordinates hits 0. A competitive
Lotka-Volterra Feller diffusion process in dimension d ≥ 2 is a Markov process (X t )t∈R+ on Rd+,
where X t = (X 1

t , . . . , X d
t ), is solution to the stochastic differential equation

d X i
t =

√
γi X i

t dB i
t +X i

t

(
ri −

d∑
j=1

ci j X j
t

)
d t , ∀i ∈ {1, . . . ,d}, (5.9)

where B 1, . . . ,B d are independent standard Brownian motions. The Brownian terms and the linear
drift terms correspond to classical Feller diffusions, and the quadratic drift terms correspond to
Lotka-Volterra interactions between coordinates of the process. The variances per individual γi is
a positive number, and the growth rates per individual ri can be any real number, for all 1 ≤ i ≤ d .
The competition parameters ci j are assumed nonnegative for all 1 ≤ i , j ≤ d , which corresponds
to competitive Lotka-Volterra interaction. While this model enters the settings of Proposition 5.4,
Theorem 5.1 cannot provide uniform convergence toward a quasi-stationary distribution. How-
ever, this can be done for competitive Lotka-Volterra diffusion processes using the criterion of
Chapter 1, through the specialised drift condition of [59], where we obtain the following

Proposition 5.5. Consider a competitive Lotka-Volterra Feller diffusion (X t )t∈R+ in Rd+ as above.
Assume that ci i > 0 for all i ∈ {1, . . . ,d}. Then the process has a unique quasi-stationary distribution
νQSD and there exist constants C ,γ> 0 such that, for all probability measures µ on (0,∞)d ,∥∥Pµ(X t ∈ · | t < τ∂)−νQSD

∥∥
T V ≤Ce−λt , ∀t ≥ 0. (5.10)

5.4 Uniform convergence using gradient estimates

The results of this section first appeared in [53].
We state here that gradient estimates on the semi-group of the an absorbed Markov process

(X t )t∈R+ can imply the exponential convergence in the situation described in Example 5.1.
Let X be a diffusion process2 in a compact manifold with boundary M absorbed at the bound-

ary ∂M . We assume that one of the two following assumptions S1 or S2 is satisfied:

S1. M is a bounded, connected and closed C 2 Riemannian manifold with C 2 boundary ∂M and
the infinitesimal generator of the diffusion process X is given by L = 1

2∆+ Z , where ∆ is the
Laplace-Beltrami operator and Z is a C 1 vector field.

S2. M is a compact subset of Rd with non-empty, connected interior and C 2 boundary ∂M and
X is solution to the SDE d X t = σ(X t )dBt +b(X t )d t , where B is a r -dimensional Brownian
motion, b : M → Rd is bounded and continuous and σ : M → Rd×r is continuous, σσ∗ is
uniformly elliptic and for all r > 0,

sup
x,y∈M , |x−y |=r

|σ(x)−σ(y)|2
r

≤ g (r ) (5.11)

for some function g such that
∫ 1

0 g (r )dr <∞. For instance, (5.11) is satisfied as soon as σ is
uniformly α-Hölder on M for some α> 0.

2General processes with gradient estimates are studied in the original article [53].
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In both situations, one can use the gradient estimates obtained by Wang in [264] and Priola and
Wang in [231]: there exists t1 > 0 such that the process satisfies a gradient estimate of the form

‖∇Pt1 f ‖∞ ≤C‖ f ‖∞, ∀ f ∈Bb(M), (5.12)

where Pt f (x) = Ex ( f (X t )1t<τ∂) denotes the Dirichlet semi-group of X and the notation ‖∇Pt1 f ‖∞
has to be understood as

‖∇Pt1 f ‖∞ := sup
x,y∈E∪{∂}

|Pt1 f (x)−Pt1 f (y)|
ρ(x, y)

.

Theorem 5.6. Assume that the diffusion process (X t )t∈R+ satisfies Assumption S1 or Assumption S2.
Then Condition A of Chapter 1 and hence (1.5) are satisfied. Moreover, there exist two constants
B ,γ> 0 such that, for any initial distributions µ1 and µ2 on E,

∥∥Pµ1 (X t ∈ · | t < τ∂)−Pµ2 (X t ∈ · | t < τ∂)
∥∥

T V ≤ Be−γt

µ1(ρ∂)∨µ2(ρ∂)
‖µ1 −µ2‖T V , (5.13)

where ρ∂ is the Euclidean distance to the boundary.

Remark 5.2. The gradient estimates of [231] are proved for diffusion processes with space-dependent
killing rate V : M → [0,∞). More precisely, they consider infinitesimal generators of the form

L = 1

2

d∑
i , j=1

[σσ∗]i j∂i∂ j +
d∑

i=1
bi∂i −V

with V bounded measurable. The proof proposed in [53] can be adapted to this setting.

5.5 Time inhomogeneous diffusion processes

Let D be a bounded open subset of Rd (d ≥ 1) whose boundary ∂D is of class C 2 and consider the
stochastic differential equation

d Zt =σ(t , Zt )dBt +b(t , Zt )d t , Z0 ∈ D, (5.14)

where B is a standard d dimensional Brownian motion. We assume that the functions

σ :
[0,+∞[×Rd →Rd ×Rd

(t , x) 7→σ(t , x)
and b :

[0,+∞[×Rd →Rd

(t , x) 7→ b(t , x)

are continuous on [0,+∞[×Rd . Moreover, we assume that they are time-periodic and Lipschitz in
x ∈ D uniformly in t ∈ [0,+∞[. This means that there exist two constants Π > 0 and C0 > 0 such
that, for all x, y ∈ D and t ≥ 0,

σ(t +Π, x) =σ(t , x) and b(t +Π, x) = b(t , x),

‖σ(t , x)−σ(t , y)‖+|b(t , x)−b(t , y)| ≤ k0|x − y |. (5.15)

We also assume that the coefficients are elliptic, meaning here that there exists a constant c0 > 0
such that

c0|y | ≤ |σ(t , x)y |, ∀(t , x, y) ∈ [0,+∞[×D ×Rd .
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For all s > 0 and any probability distribution µ on D , we denote by (Z µ
s,t )t≥s the unique solution

to this stochastic differential equation starting at time s > 0 with distribution µ, killed when it hits
the boundary and killed with a rateκ(t ,Z µ

s,t ) ≥ 0, whereκ : [0,+∞[×D →R+ is a uniformly bounded
non-negative measurable function which is also time-periodic (with periodΠ).

This model was studied in [94], where mixing properties for the conditioned process were
proved, using, as in the preceding section, the gradient estimates proved in [231] and adapted to
the time inhomogeneous setting, but where we assumed an additional involved differentiability
assumption in order to make use of an involved tightness result elaborated in [258]. This last as-
sumption proved to be useless in [53] by controlling the distance to the boundary with a coupling
argument involving one-dimensional drifted Brownian motions and the fact that the distance to
the boundary is C 2 in a vicinity of the boundary (see e.g. [95, Chapter 7, Section 8]). This coupling
argument can be repeated here (the details are left to the reader), allowing us to state the following
result, which is thus a direct improvement over [94].

Theorem 5.7. Under the assumptions of this section, there exist two constants C > 0 and γ> 0 such
that, for all 0 ≤ s ≤ t , and all probability measures µ1 and µ2 on D,

sup
µ1,µ2∈M1(D)

∥∥P(Z µ1
s,t ∈ ·| t < τ∂)−P(Z µ2

s,t ∈ ·| t < τ∂)
∥∥

T V
≤Ce−γ(t−s).

Additional general results on time-inhomogeneous processes conditioned not to be absorbed
are also presented in [63]. They make use of the simple fact that the coupling methods used in the
proof of Theorem 1.1 in Chapter 1 can be effortlessly adapted to the time inhomogeneous setting.
We also refer the reader to [214, 215] for processes in time inhomogeneous environments.
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Part III

Application of the criteria of Part I to the
study of other problems
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Chapter 6

The Q-process and quasi-ergodic
properties

6.1 Definition and existence

The Q-process is obtained as a Markov process conditioned to never be absorbed. The event “the
process is never absorbed” has probability 0 in most practical cases, where we have Px (τ∂ <+∞) =
1. Hence conditioning on this event is ill defined and the Q-process is instead obtained here as
the limit, when T → +∞, of the process conditioned not be absorbed before time T . We show
in [56, 58] that it is well defined under Assumption A of Chapter 1 and under Assumption E of
Chapter 2. It is also well defined under Assumption F. Earlier studies of Q-processes go back at
least to [86, 87], see also [224, 42, 44] and [155], where unusual behaviour of processes conditioned
to survive are exhibited. These processes belong to the more general class of penalized Markov
processes, as studied in [235], used in order to derive the following result (stated here both for
discrete and continuous time models).

Proposition 6.1. Assume that either Assumption A, or Assumption E or Assumption F is satisfied.
Then there exists a family (Qx )x∈E of probability measures onΩ defined by

Qx (A) = lim
t→+∞Px (A | t < τ∂) (6.1)

for all Fs-measurable set A. It defines an E ′-valued homogeneous Markov process1. Moreover, if X
is a strong Markov process under P, then so is X underQ.

Remark 6.1. There are other ways of conditioning a Markov process to never be absorbed. For
instance, for a non-explosive one dimensional diffusion process evolving in (0,+∞) and absorbed
when it reaches 0, one may define a process as the limit, when A →+∞, of the process conditioned
to reach A before reaching 0 (see [221] for a detailed investigation of this situation); the resulting
conservative process is then different from the Q-process. Other interesting limiting processes may
be studied when the quasi-stationary behaviour of the process is known, such as the two-side taboo
limit introduced and studied in [129].

1E ′ is the set defined in 2 under Assumption E (and similarly under Assumption F). We define it as equal to the state
space E under Assumption A.
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In fact, the convergence (6.1) holds in total variation norm, uniformly over the initial distribu-
tion under Assumption A. (A weak converse result is also provided in the original paper.) We even
obtain an exponential speed of convergence, which is useful to deduce quasi-ergodic properties
of the process. In the following result, η is the right-eigenfunction whose existence has been es-
tablished under Assumption A, E or F in Chapters 1 and 2. The result was proved in [61] under
Assumption A and can be generalised as follows (the proof of the generalisation is omitted here,
but it follows the same lines as the original one).

Proposition 6.2. Assume that Assumption A or Assumption E or Assumption F holds true. Then
there exist two constants C ,γ> 0 such that, for all 0 ≤ t ≤ T and for all Γ ∈Ft ,

‖Qx (Γ)−Px (Γ | T < τ∂)‖T V ≤C µ

(
f

η

)
e−γ(T−t ), (6.2)

where f = η under Assumption A, f =ϕ1 under Assumption E and f =ψ1 under Assumption F.

One of the main feature of the Q-process as described above is that it is a η-transform of the
original absorbed process. Note that the η transform includes a source term eλ0t , so that it is con-
servative. Without this term, it would be a sub-Markov process with killing rate λ0. In the case of
diffusion processes, this is a general long time feature of h-transforms, as proved in [90, 225].

Proposition 6.3. Under the assumptions of the above proposition, for all measurable set A ⊂ E and
t ≥ 0,

Qx (X t ∈ ·) = eλ0t

η(x)
Ex

(
η(X t )1A(X t )

)
, (6.3)

where λ0 ≥ 0 is such that PνQSD (t < τ∂) = e−λ0t for all t ≥ 0.

This feature is particularly interesting and has been used on several occasions. For instance, the
notion of Q-process can be used to derive results on stochastic representations of the eigenvectors
of sub-Markovian semi-groups. This is the subject of Proposition 2.4 in [198] (although the cited
study is restricted to the finite dimensional case for simplicity, most of the results and proofs of the
authors extend directly to models with infinite state space). Interestingly, the Q-process approach
of this paper can also be used to derive very simply the main result of [48], where the authors obtain
a “Markov chain representation of the normalised Perron-Frobenius eigenvector”.

The above representation of the Q-process naturally suggests the following use of h-transforms
to deduce quasi-stationary properties. Assume that there exists a positive eigenfunction h for the
semi-group (Pt )t≥0 of an absorbed2 process X , associated to some eigenvalue e−λ0t ∈ (0,1]. Then
one can define the h-transform of P as follows:

Qt f (x) = eλ0t

h(x)
Pt ( f (x)h(x)).

This defines the semi-group of a Markov process (without absorption) to which classical results for
convergence to a stationary distribution can be used. Then one recovers the asymptotic behaviour
of (Pt )t≥0 through the formula

eλ0t Pt f (x) =Qt ( f /h)(x).

2actually, this development can also be used to derive the asymptotic stability of unbounded semi-groups, in which
case λ0 may be negative.
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The difficulties are two-fold: first the existence of h must be pre-established, second the limiting
behaviour of Qt ( f /h)(x) must be obtained, although 1/h is typically unbounded. This general
method has been used successfully for instance in [130, 210, 241, 123] and may be used in several
other cases, in particular when explicit formulas or at least good estimates are available for the
eigenfunction h.

6.2 Exponential ergodicity

We are interested now in the ergodic behaviour of the Q-process. These results were proved under
Assumption A and under Assumption E in [56] and [58] respectively, and the extension to Assump-
tion F is straightforward.

Proposition 6.4. Assumption A, E or F implies that the probability measure β on E ′ defined by
β(d x) = η(x)νQSD (d x) is the unique invariant distribution of the Markov process X under (Qx )x∈E ′ .
Moreover, there exist constants C > 0 and α ∈ (0,1) such that, for all initial distributions µ on E ′ such
that µ( f /η) <∞, ∥∥Qµ(X t ∈ ·)−β(·)∥∥

M ( f /η) ≤Cαt µ
(

f /η
)

, ∀t ≥ 0, (6.4)

where f = η under Assumption A, f =ϕ1 under Assumption E and f =ψ1 under Assumption F.

Note that one can reformulate the last result as follows: for all g ∈ L∞( f ),∥∥∥e−λ0t Pt g (·)−η(·)νQSD (g )
∥∥∥

L∞( f )
≤Cαt f (x)‖g‖L∞( f ), ∀x ∈ E , ∀t ≥ 0.

6.3 Quasi-ergodic properties

Quasi-ergodic theorems go back at least to [42]. We refer the interested reader to [65, 269, 142, 66,
67, 141] for further developments. The proof of the following result is developed in [61] under As-
sumption A. The proof of its extension to Assumptions E or F follows the same lines and is omitted
here.

Corollary 6.5. Assume that Assumption A or Assumption E or Assumption F holds true. Then there
exists a positive constant C such that, for all T > 0 and all bounded measurable functions g : E ′ →R,∣∣∣∣Ex

(
1

T

∫ T

0
g (X t )d t | T < τ∂

)
−

∫
E

g dβ

∣∣∣∣≤ C ‖g‖∞ f (x)

Tη(x)
, ∀x ∈ E ′, (6.5)

where f = η under Assumption A, f =ϕ1 under Assumption E and f =ψ1 under Assumption F.

One month before the release of the first preprint version of [61], where the above result has
been announced, the quasi-ergodic result (6.5) has been obtained by He, Zhang and Zu [143,
Thm. 2.1] under Assumption A, without the convergence estimate in 1/T .

Recently, double quasi-ergodic properties have been developed by Zhang, Li and Song in [269,
Theorem 3.2]. They can also be obtained under Assumption A, E or F, following very similar proofs,
and are stated as follows.



56 CHAPTER 6. THE Q-PROCESS AND QUASI-ERGODIC PROPERTIES

Proposition 6.6. Assume that Assumption A or Assumption E or Assumption F holds true. Then
there exists a constant C > 0 such that, for all bounded measurable functions g1, g2 : E ′ → R and
constants 0 < p < q < 1, we have∣∣∣∣Ex

(
1

T

∫ T

0
g1(Xpt )g2(Xqt )d t | T < τ∂

)
−β(g1)β(g2)

∣∣∣∣≤ C‖g1‖∞‖g2‖∞ f (x)

η(x)T
, ∀x ∈ E ′,

where f = η under Assumption A, f =ϕ1 under Assumption E and f =ψ1 under Assumption F.

In [269, Theorem 3.6], the authors prove a nice consequence to the above double quasi-ergodic
result, whose proof holds true here without modification. We thus obtain, using their approach
combined with the above results, the following

Corollary 6.7. Assume that Assumption A or Assumption E or Assumption F holds true. Then, for
all ε> 0 and all bounded measurable functions g : E ′ →R,

Px

(∣∣∣∣ 1

T

∫ T

0
g (X t )d t −β(g )

∣∣∣∣≥ ε | T < τ∂
)
−−−−−→
T→+∞

0, ∀x ∈ E ′.



Chapter 7

R-positive recurrence of unbounded
semi-groups

The aim of this chapter is to show how the results of Chapter 2 can be used to deduce effortlessly
general criteria for the geometric convergence of normalised unbounded semigroups. This natural
extension provides practical criteria for the R-positive recurrence of unbounded semigroups as
developed in [213, Section 6.2] and [212]. It has applications to penalized Markov processes [92,
93], to the study of the long time behaviour of Markov branching processes (see for instance [150,
151, 152, 36, 156, 74, 34, 32, 33]), of non-conservative PDEs (see e.g. [20, 21] and references therein).

Let E be a measurable space and (Pn)n∈Z+ be a positive semigroup on the set of bounded mea-
surable functions on E . We shall consider cases where there exists a measurable (possibly un-
bounded) function ψ1 : E → (0,+∞) such that P1ψ1 ≤ cψ1 for some constant c, so that Pn f is
naturally defined for all measurable f ∈ L∞(ψ1) and all positive measure µ such that µ(ψ1) < +∞
(this corresponds to the settings described in [213, Section 6.2]). In this settings, the recent arti-
cle [21] makes use of the methods developed in [56, 61] (which correspond to Chapters 1 and 2) to
give a necessary and sufficient condition for the existence of a positive eigenfunction η of P1 with
eigenvalue θ0 and the geometric convergence of θ−n

0 µPn f . We show below that this result can be
strengthened as an immediate corollary of the results of Chapter 2 applied to the sub-Markov semi-
group Pn (·ψ1)

cnψ1
for the sufficient condition, and standard results on ergodicity of Markov processes

applied to a well-chosen h-transform of Pn for the necessary condition.

Section 7.1 is devoted to the general statement of this result. We then explain in Section 7.2 how
large classes of semigroups satisfying our hypotheses can be deduced from those studied in [61].
We focus on two applications: penalized semigroups associated to perturbed (discrete-time) dy-
namical systems in Subsection 7.2.1 and diffusion processes in Subsection 7.2.2.

7.1 Main result

We first introduce the assumptions on which our results are based. We state them following the
same structure as Assumption E in Chapter 2 to emphasise their similarity.

Condition G. There exist positive real constants θ1,θ2,c1,c2,c3, an integer n1 ≥ 1, two functions
ψ1 : E → (0,+∞), ψ2 : E →R+ and a probability measure ν on a measurable subset K of E such that
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G1 (Local A1-A2). ∀x ∈ K and all measurable A ⊂ K ,

Pn1 (ψ11A)(x) ≥ c1ν(A)ψ1(x) and sup
n∈Z+

supy∈K Pnψ1(y)/ψ1(y)

infy∈K Pnψ1(y)/ψ1(y)
≤ c2.

G2 (Global Lyapunov criterion). We have θ1 < θ2 and

inf
x∈K

ψ2(x)/ψ1(x) > 0, sup
x∈E

ψ2(x)/ψ1(x) ≤ 1,

P1ψ1(x) ≤ θ1ψ1(x)+ c31K (x)ψ1(x), ∀x ∈ E

P1ψ2(x) ≥ θ2ψ2(x), ∀x ∈ E .

G3 (Aperiodicity). For all x ∈ K , there exists n4(x) such that for all n ≥ n4(x),

Pn(1Kψ1) > 0.

Theorem 7.1. Assume that Condition G holds true. Then there exists a positive measure νP on E
such that νP (ψ1) = 1 and νP (ψ2) > 0, and two constants C < +∞ and α ∈ (0,1) such that, for all
f ∈ L∞(ψ1) and all positive measure µ on E such that µ(ψ1) <+∞ and µ(ψ2) > 0,∣∣∣∣ µPn f

µPnψ1
−νP ( f )

∣∣∣∣≤Cαn µ(ψ1)

µ(ψ2)
, ∀n ∈Z+. (7.1)

In addition, there exists θ0 > 0 such that νP Pn = θn
0 νP and a function η : E →R+ such that θ−n

0 Pnψ1

converges uniformly and geometrically toward η in L∞(ψ1) and such that P1η = θ0η and νP (η) =
νP (ψ1) = 1. Moreover, there exist two constants C ′ > 0 and β ∈ (0,1) such that, for all f ∈ L∞(ψ1) and
all positive measures µ on E such that µ(ψ1) <+∞,∣∣θ−n

0 µPn f −µ(η)νP ( f )
∣∣≤C ′βnµ(ψ1). (7.2)

Remark 7.1. One can check that replacing ψ1 by ψ2 in G1 and/or G3 give equivalent versions of
Condition G. In [21], a similar result is obtained, but with the additional assumptions that ψ2 > 0
on E and n1 = 1. In this restricted case, one can easily check that their assumptions on the discrete-
time semigroup are equivalent to ours. The fact that ψ2 can vanish in Assumption G allows to deal
with reducible processes (as in Section 2.6).

The proof of the above theorem is straightforward, since the semi-group (Qn)n∈N defined by

Qn( f ) = Pn( f ψ1)

(θ1 + c2)nψ1
, ∀n ≥ 0, ‖ f ‖∞ ≤ 1

satisfies Condition E in Chapter 2 with ϕ1 = 1 and ϕ2 = ψ2/ψ1, using θ1/(θ1 + c2) in place of θ1,
θ2/(θ1+c2) in place of θ2 and c1/(θ1+c2)n1 in place of c1. See the original paper [62] for the details.

Remark 7.2. The elementary method consisting in studying the sub-Markov semi-group (Qn) in-
stead of (Pn) is neither new nor specific to our approach. It can also be used to derive immedi-
ately sufficient criteria for the convergence of unbounded semi-groups from the abundant the-
ory of sub-Markovian semi-groups, as developed for instance in [80, 78, 253, 123, 175, 146]. Note
that a similar approach has been used in [34] to describe the asymptotic behaviour of the growth-
fragmentation equation using Krein-Rutman theorem and other criteria for R-positivity.
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Whether Assumption G is necessary for (7.1) is still an open problem up to our knowledge.
However, if one assumes that there exists a positive eigenfunction η such that (7.2) holds true,
then one recovers easily Assumption G by applying the classical counterpart of Forster-Lyapunov
criteria for conservative semigroups. Here, the conservative semigroup is the one associated to the

η-transform of Pn defined by Rn f := θ−n
0
η Pn(η f ) (which corresponds to the Q-process in the sub-

Markovian case, cf. Chapter 6). The only difficulty in the proof of the following theorem is that η
may vanish on some subset of E .

Proposition 7.2. Assume that there exist a positive function ψ : E → (0,+∞) and a non-negative
eigenfunction η ∈ L∞(ψ) of P1 for the eigenvalue θ0 > 0, such that∣∣θ−n

0 Pn f (x)−η(x)νP ( f )
∣∣≤ ζnψ(x), ∀x ∈ E , f ∈ L∞(ψ1), (7.3)

where (ζn)n≥0 is some positive sequence converging to 0. Then Assumption G is satisfied with ψ2 = η
and with some function ψ1 ∈ L∞(ψ) such that ψ ∈ L∞(ψ1).

Remark 7.3. A similar partial counterpart to Proposition 7.2 was proven in [21], where the authors
assume that ζn is geometrically decreasing, that η is positive and use the approach of [56] to con-
clude.

For continuous time semigroups (Pt )t∈[0,+∞), the conclusions of Theorem 7.1 can be easily
deduced from properties on the discrete skeleton (Pnt0 )n∈N (similar properties where already ob-
served in Theorem 5 of [243] and in [61]). In the following result, the function η and the positive
measure νP are the one of Theorem 2.1 applied to the discrete skeleton (Pnt0 )n∈N.

Corollary 7.3. Let (Pt )t∈[0,+∞) be a continuous time semigroup. Assume that there exists t0 > 0

such that (Pnt0 )n∈N satisfies Assumption G,
(

Ptψ1

ψ1

)
t∈[0,t0]

is upper bounded by a constant c̄ > 0 and(
Ptψ2

ψ2

)
t∈[0,t0]

is lower bounded by a constant c > 0. Then there exist some constants C ′′ > 0 and γ> 0

such that, for all f ∈ L∞(ψ1) and all positive measure µ on E such that µ(ψ1) <+∞ and µ(ψ2) > 0,∣∣∣∣ µPt f

µPtψ1
−νP ( f )

∣∣∣∣≤C ′′e−γt µ(ψ1)

µ(ψ2)
, ∀t ∈ [0,+∞), (7.4)

In addition, there exists λ0 ∈ R such that νP Pt = eλ0tνP for all t ≥ 0, and e−λ0t Ptψ1 converges
uniformly and exponentially toward η in L∞(ψ1) when t → +∞. Moreover, there exist some con-
stants C ′′′ > 0 and γ′ > 0 such that, for all f ∈ L∞(ψ1) and all positive measures µ on E such that
µ(ψ1) <+∞, ∣∣∣e−λ0tµPt f −µ(η)νP ( f )

∣∣∣≤C ′′′e−γ
′tµ(ψ1), ∀t ∈ [0,+∞). (7.5)

Remark 7.4. These results can be seen as an extension to bounded non-conservative semigroups
of criteria of convergence for semigroups associated to Markov processes (in particular, Harris
theorem and all its extensions based on Doblin’s conditions and Foster-Lyapunov criteria, see
e.g. [204, 102]) and as a practical alternative to R-recurrent Markov chains theory [243, 213, 212].
In particular, it provides an alternative to spectral theoretic results dealing with existence of eigen-
functions and convergence to them (e.g. Krein-Rutman theorem, spectral theory of symmetric op-
erators, or the theorem of convergence of normalised semigroups of Birkhoff [37] and its exten-
sions).
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7.2 Some applications

Given a positive semigroup P acting on measurable functions on E , one can try to directly check
Assumption (G) by finding appropriate functionsψ1 andψ2. Another natural and equivalent strat-

egy is to find a function ψ such that the semigroup defined by Qn f = Pn (ψ f )
cnψ is sub-Markovian and

check that it satisfies Assumption E of Chapter 2. The main advantage of this last approach is that
Q has a probabilistic interpretation as the semigroup of a sub-Markov process. As such, one can
apply all the criteria developed in the first part of this manuscript and, more generally, use the in-
tuitions and toolboxes of the theory of stochastic processes. Since both approaches are equivalent,
this is rather a question of taste.

7.2.1 Perturbed dynamical systems

Let f : Rd → Rd be a locally bounded measurable function and consider the perturbed dynamical
system Xn+1 = f (Xn)+ ξn with (ξi )i∈Z+ i.i.d. non-degenerate Gaussian random variables. We are
interested in the asymptotic behaviour of the associated Feynman-Kac semigroup

Pn f (x) = Ex

(
n∏

k=1
G(Xk )1Xk∈E f (Xn)

)
,

where E is a measurable subset of Rd with positive Lebesgue measure and G : E → (0,+∞) is a
measurable function.

Proposition 7.4. Assume that 1/G is locally bounded, that G(x) ≤C exp(|x|) for all x ∈ E and some
constant C > 0, and there exists p > 1 such that |x|−p| f (x)| → +∞ when |x| → +∞, then the semi-
group (Pn)n∈N satisfies Assumption G.

7.2.2 Diffusion processes

Let (X t )t∈R+ be solution to the SDE

d X t = dBt +b(X t )d t , X0 ∈ (0,+∞)d , (7.6)

where B is a standard d-dimensional Brownian motion and b : Rd → Rd is locally Hölder. Let
r : (0,+∞)d →R be locally bounded and consider the semigroup (Pt )t∈R+ defined by

Pt f (x) = Ex

(
e

∫ t
0 r (Xu )du f (X t )1Xs∈(0,+∞)d , ∀s∈[0,t ]

)
. (7.7)

The term 1Xs∈(0,+∞)d , ∀s∈[0,t ] above corresponds to a killing at the boundary of the domain (0,+∞)d .
Note that the solution to (7.6) may explode in finite time if b does not satisfy the linear growth con-
dition. However, we assume by convention that X t 6∈ (0,+∞)d after the explosion time, so that (7.7)
makes sense. We refer to [61, Sections 4.1 and 12.1] for the precise construction of the process.

One motivation for the study of this semigroup comes from the Feynman-Kac formula. Indeed,
when the coefficients are smooth enough (see for instance [222, Section 1.3.3]), this semigroup is
solution to the Cauchy linear parabolic partial differential equation

r v − ∂v

∂t
+L v = 0, on [0,+∞)× (0,+∞)d

v(0, ·) = f , on (0,+∞)d ,
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where L is the differential operator of second order

Lϕ(x) = 1

2
∆ϕ(x)+b(x) ·∇ϕ(x), ∀ϕ ∈C 2(Rd ),

with Dirichlet boundary conditions.

Proposition 7.5. Assume that

r (x)+
d∑

i=1
bi (x) −−−−−−−−−−−−→

|x|→∞, x∈(0,∞)d
−∞. (7.8)

Then the semigroup (Pt )t∈[0,+∞) satisfies the assumptions of Corollary 7.3.
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Chapter 8

Measure-valued Pólya urn processes

Measure-valued Pólya processes (MVPPs) are a generalisation of Pólya urns to the infinitely-many-
colour case. Pólya urns date back to Pólya & Eggenberger [110], and have been thoroughly studied
since then; highlights include, e.g., the seminal works of Athreya & Karlin [11] and Janson [157].
Although the question of generalising Pólya urns to infinitely-many colours was posed in 2004
in [157], MVPPs were only introduced recently by Bandyopadhyay & Thacker [19] and Mailler &
Marckert [190].

In this chapter, we focus on almost-sure convergence of a large class of MVPPs using stochastic-
approximation methods (in the spirit of Duflo [104] and Benaïm [25]). The main difficulty comes
from the fact that the stochastic-approximation algorithm that we consider is defined on the space
of measures on a non-compact space. All the results below originate from a collaboration with
Cécile Mailler [191].

The stochastic-approximation approach is a classical method for the study of Pólya urn pro-
cesses when the colour-set is finite, see for instance [25], [179], [178], Zhang [270] and the survey
paper [220]. Our main contribution from the stochastic-approximation point of view is to prove
convergence of a stochastic-approximation algorithm defined on a non-compact space, namely
the set of probability measures on the colour-space (being an arbitrary Polish space). To our knowl-
edge, very little is known for measure valued stochastic-approximation algorithm on non-compact
spaces, with some exceptions such as [158] and [189].

Our main contribution to the theory of MVPPs is to prove almost-sure convergence for a large
class of MVPPs (instead of the convergence in probability shown in [19, 190]). Furthermore, we
generalise the definition of measure-valued Pólya processes to allow different colours to have dif-
ferent “weights”, and to allow the so-called “replacement rule” to be random (two features that are
classical in the context of Pólya urns). We are also able to treat the “non-balanced” case, which was
not treated at all by Bandyopadhyay & Thacker [19] or Mailler & Marckert [190].

The link between Pólya urns and quasi-stationary distributions already exists in the literature;
for example, Aldous, Flannery and Palacios [2] apply the convergence results of Athreya and Kar-
lin [11] to approximating quasi-stationary distributions on a finite state space. Our main result
generalises this work to the case of measure-valued Pólya processes.
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8.1 Definition of the model and main result

Let E be a Polish space endowed with its Borel sigma-field. A measure-valued Pólya process (MVPP)
is a Markov chain (mn)n≥0 taking values in M (E). It depends on three parameters: its initial com-
position m0 a non-zero non-negative measure on E , a sequence of i.i.d. replacement kernels1 (R (n))n≥1

on E , and a non-negative weight kernel P on E . We assume that

T>0. almost surely, for all x ∈ E , R (n)
x is a non-negative measure.

Given mn , we define mn+1 as follows: pick a random element Yn+1 of E according to the prob-
ability distribution proportional to mnP , i.e., for all Borel set A of E ,

P(Yn+1 ∈ A |mn) =
∫

E Px (A)dmn(x)∫
E Px (E)dmn(x)

, (8.1)

and then set
mn+1 = mn +R (n+1)

Yn+1
.

Measure-valued Pólya processes were originally introduced by [19] and [190], as a generalisa-
tion of d-colour Pólya urns, although they did not consider “weighted” MVPPs (they always had
Px = δx for all x ∈ E). Several examples are developed in Section 8.2. For now, let us recall the defi-
nition of a Pólya urn and show why MVPPs generalise this model. A d-colour Pólya urn is a Markov
process (U (n))n≥0 on Nd that depends on three parameters: the initial composition vector U (0),
the replacement matrix M , and weights w1, . . . , wd ∈ (0,∞). The vector U (n) represents the con-
tent of an urn that contains balls of d different colours; balls of colour i all have weight wi . Given
U (n), one defines U (n +1) by picking a ball at random in the urn with probability proportional to
its weight, denoting the colour of this random ball ξn+1, and setting U (n +1) =U (n)+Mξn , where
M1, . . . , Md are the lines of M .

If we let E = {1, . . . ,d} and mn = ∑d
i=1 Ui (n)δi for all n ≥ 0, then mn is a measure-valued Pólya

process with replacement kernel

R (n)
x =

d∑
i=1

Mx,iδi ( almost surely for all n ≥ 0,1 ≤ x ≤ d),

and weight kernel Px = wxδx for all 1 ≤ x ≤ d .
Therefore, the MVPP process (mn)n≥0 can be thought of as a composition measure on a set E of

colours, and the random variable Yn+1 can be seen as the colour of the “ball” drawn at time n +1.
The main advantage of this wider model is that one can consider Pólya urns defined on an infinite,
and even uncountable, set.

Our main result is to prove almost-sure convergence of the sequence (mn/mn (E))n≥0 to a deter-
ministic measure under the following assumptions. We denote by R the common expectation of
the R (n)’s and set Q (n) = R (n)P for all n ≥ 1, and Q = RP , meaning that, for all x ∈ E and all Borel set
A ⊆ E ,

Q (n)
x (A) =

∫
E

Py (A)dR (n)
x (y) and Qx (A) =

∫
E

Py (A)dRx (y).

We assume that
1A kernel (resp. a non-negative kernel) on E is, by definition, a function from E into the set of measures (resp. non-

negative measures) on E . In particular, for all x ∈ E , R (n)
x is a measure on E almost surely.
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C1. for all x ∈ E , we have Qx (E) ≤ 1, and there exists a probability measure µ on R with positive
mean such that, for all x ∈ E , the law of Q (i )

x (E) stochastically dominates µ. In particular,
setting c1 =

∫ ∞
0 x dµ(x),

0 <c1 ≤ inf
x∈E

Qx (E) ≤ sup
x∈E

Qx (E) ≤ 1;

C2. there exists a locally bounded function V : E → [1,+∞) such that,

(i) for all N ≥ 0, the set {x ∈ E : V (x) ≤ N } is relatively compact;

(ii) there exist two constants θ ∈ (0,c1) and K ≥ 0 such that

Qx ·V ≤ θV (x)+K , ∀x ∈ E ,

(iii) and that there exist three constants r > 1, p > lnθ
ln(θ/c1) ∨2, A > 0 such that

E
[
R (1)

x (E)r ]∨E[
Q (1)

x (E)p]≤ AV (x), ∀x ∈ E .

Under Assumption C1, Q is a non-negative kernel such that supx Qx (E) ≤ 1, so that Q − I is the
jump kernel (or infinitesimal generator) of a unique sub-Markovian transition kernel (Pt )t≥0 on E .
We consider the continuous-time pure-jump Markov process (X t )t≥0 on E ∪ {∂}, where ∂ ∉ E is an
absorbing state, with Markovian transition kernel Pt + (1−Pt (E))δ∂.

C3. the continuous-time pure jump Markov process X with sub-Markovian jump kernel Q−I ad-
mits a quasi-stationary distribution νQSD ∈M1(E). We further assume that the convergence
of Pα(X t ∈ ·|X t 6= ∂) holds uniformly with respect to the total variation norm on {α ∈M1(E) |
α ·V 1/q ≤C }, for each C > 0, where q = p/(p −1).

Finally, we need the following technical assumption:

C4. for all bounded continuous functions f : E → R, x ∈ E 7→ Rx f and x ∈ E 7→ Qx f are continu-
ous.

Under these assumptions, we are able to prove almost-sure convergence of the normalised
MVPP m̃n := mn/mn(E). This result is applied to concrete models in Section 8.2

Theorem 8.1. Under Assumptions T>0 and C1– 4, if m0 ·V <∞ and m0P ·V <∞, then the sequence
of random measures (mn/n)n≥0 converges almost surely to νR with respect to the topology of weak
convergence. Moreover, supn{mnP ·V 1/q /n} <+∞ almost surely, where q = p/(p −1).

Furthermore, if νR(E) > 0, then (m̃n)n∈N converges almost surely to νR/νR(E) with respect to the
topology of weak convergence.

Remark 8.1. Several refinements and precisions are provided on this result in the original arti-
cle [191]. In particular, our more general result includes the possibility to remove ball from the
urns, which is useful in several applications. This leads to several additional technicalities, both in
the proof of our results and in the exposition of our assumptions.

Remark 8.2. If R = Q, then the quasi-stationary distribution ν is a left eigenfunction for R, with
associated eigenvalue θ0 ∈ (0,1]. In particular, Theorem 8.1 implies that the average mass of mn ,
i.e. mn(E)/n, converges almost surely to θ0.
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8.2 Examples

8.2.1 The finite state space case

To illustrate how this theorem applies, let us first consider the simple case of a classical d-colour
Pólya urn of random replacement matrix M (n) with no weights, where (M (n))n is a sequence of i.i.d.
random matrices with non-negative entries and mean M . We assume that

∑d
i=1 Mx,i > 0 for all

1 ≤ x ≤ d and that M is irreducible. Let S = maxd
x=1

∑d
i=1 Mx,i , and let mn = 1

S

∑d
i=1 Ui (n)δi , where

Ui (n) is the number of balls of colour i in the urn at time n. One can check that (mn)n≥0 is an MVPP
with replacement kernel R (n)

x = 1
S

∑d
i=1 M (n)

x,iδi on E = {1, . . . ,d}, for all n ≥ 0 and 1 ≤ x ≤ d , such that
R = M/S.

Note that, since we have no weights, R = Q. Let µ be the distribution of minx∈{1,...,d} Yx , where
Y1, . . . ,Yd are independent random variables respectively distributed as Q (1)

1 (E), . . . ,Q (1)

d (E). Assump-
tion C1 is satisfied since µ has positive mean c1 ≤ Qx (E) ≤ 1 for all 1 ≤ x ≤ d . Assumption C2 is
automatically satisfied since the colour space E is compact. Consider the process X on E ∪ {∂}
absorbed at ∂ and whose jump matrix restricted to E is given by M/S − I . Then, since M/S is ir-
reducible, the process X conditioned on not hitting ∂ has a unique quasi-stationary distribution
νQSD = ∑n

i=1 viδi , which is given by the unique non-negative left eigenvector v of M/S − I and
hence of M . It is also known (see e.g. Darroch & Seneta[87]) that there exists C ,δ > 0 such that
‖Pα(X t ∈ ·|X t 6= ∂)−νQSD‖T V ≤Ce−δt for allα ∈M1(E), which thus implies C3. Finally, Assumption
C4 is trivially satisfied since E is discrete.

Thus, Theorem 8.1 applies, and we get that, almost surely when n tends to infinity, m̃n →
νQSD R/νQSD R(E) = νQSD (with respect to the topology of weak convergence), and thus, U (n)/n →
v , a result that dates back to Athreya & Karlin’s work on generalised Pólya urns [11].

8.2.2 Ergodic Markov chains

In [190], the following example is treated: take E =Z+, fix 0 <λ<µ, and set

Rx = λ

xµ+λδx+1 + xµ

xµ+λδx−1,

for all x 6= 0, and R0 = δ1. This example is not weighted, meaning that Px = δx for all x ∈ E , and
balanced since Rx (E) = 1 for all x ∈ E . Note that the Markov chain of transition kernel R is the
M/M/∞ queue. The authors proved that that this MVPP satisfies

n−1mn → γ in probability,

where γ is the stationary measure of the M/M/∞ queue, i.e.

γ(x) =
(
λ

µ

)x e−λ/µ

x!
∀x ∈Z+.

Our result also applies to this situation and thus implies the stronger almost-sure convergence of
this MVPP.

Since this example is simple, let us detail how one show that our result applies. First note that,
in this example, the R (i ) are deterministic and equal to R, Px = δx ; therefore, Q (i ) = Q = R (∀i ≥ 1).
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Since Rx (E) = 1 for all x ∈N, then C1 is satisfied (we can take µ= δ1, and thus, c1 = 1). Assumption
C2 also holds: one can take V (x) = ex , implying that

Rx ·V = λex+1 +µxex−1

λ+µx
= λe2 +µx

λ+µx
ex−1 = λe2 +µx

e(λ+µx)
V (x).

Note that
λe2 +µx

e(λ+µx)
< 2

e
⇔ x > λ(e2 −2)

µ
,

therefore,
Rx ·V ≤ θV (x)+K , ∀x ∈Z+

where θ = 2
e ∈ (0,c1) and K = supx≤λ(e2−2)/µRx ·V . Also note that, for all r, p > 1, we have

ER (1)
x (E)r ∨EQ (1)

x (E)p = Rx (E)r ∨Rx (E)p = 1,

implying that C2-(iii) holds, while the rest of C2 is clear. Since the queue M/M/∞ is ergodic with
stationary distribution νSD , we can infer that the continuous-time Markov process of generator R−
I is also ergodic. Moreover, one can show that, for any q > 1, Qx ·V 1/q ≤ θ1/qV (x)+K 1/q , where θ1/q <
1. This and the Foster-Lyapunov type criteria of [207] provide the uniform convergence to νSD

required in Assumption C3. Finally, since Z+ is discrete, C4 is trivially satisfied. Thus, Theorem 8.1
applies and we can conclude that if

∑
k≥0 ek m0(k) is finite, then

n−1mn → νSD almost surely when n →∞.

8.2.3 Quasi-ergodic Markov chains

Let us now consider the more general case where E =Z+ and, for all x ∈ E ,

Rx =λxδx+1 +µxδx−1,

where (λx )x and (µx )x are families of positive numbers such that µ0 = 0, λ0 > 0, infx≥1µx > 0,
supx µx < ∞ and λx = o(µx ) when x → +∞. In this situation, the MVPP is not weighted, so that
Px = δx and Qx = Rx for all x ∈ E , and it is not balanced (hence the results of [19] and [190] do not
apply).

We assume, without loss of generality, that supx (λx +µx ) = 1, so that Qx (E) ≤ 1 for all x ∈ E .
The situation is reminiscent of the simple example of Section 2.2 and the calculus are similar. In
particular, we deduce that, for the irreducible process X with infinitesimal generator Q − I , there
exist a quasi-stationary distribution νQSD for X and two positive constants Cst,δ> 0 such that, for
all probability measuresα ∈ E , satisfyingα ·V 1/q <+∞, where V = exp(ax) with a > 0 large enough,

‖Pα(X t ∈ · | t < τ∂)−νQSD‖T V ≤ Cstα ·V 1/q e−δt ,

which entails Assumption C3 and provides a candidate for the long time behaviour of the MVPP
mn/mn(E). One can then easily check that the other assumptions of Theorem 8.1 hold true and
hence that

mn

mn(E)
a.s.−−−−−→

n→+∞
νQSD R

νQSD R(E)
= νQSD .

with respect to the topology of weak convergence, as soon as m0(V ) <+∞.
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8.2.4 Random trees

As discussed in Janson [157, Examples 7.5 and 7.6], infinitely-many-colour urns are particularly
useful for the study of some functionals of random trees. We give below two examples where our
main result applies, and gives stronger convergence results.

Definition 8.1 (Outdegree profiles). We define the out-degree profile of a rooted tree τ as

Out(τ) = ∑
ν∈τ

δoutdeg(ν),

where for all nodes ν in τ, outdeg(ν) is the out-degree of ν (i.e. its number of children).

Out-degree profile in the random recursive tree. The random recursive tree (RRTn)n≥1 is a se-
quence of random rooted trees defined recursively as follows:

• RRT1 has one node (the root);

• we build RRTn+1 from RRTn by choosing a node of RRTn uniformly at random, and adding a
child to this node.

It is straightforward to see that the sequence (Out(RRTn))n≥1 of the out-degree profile of the ran-
dom recursive tree is a MVPP on Z+ of initial composition m1 = δ0, and replacement kernel

Rx =−δx +δ0 +δx+1, ∀x ∈Z+.

Note that the replacement measures Rx are not positive, but the process satisfies the additional
assumptions detailed in Section 1.4 of [191] for unbalanced MVPPs. In this case, Px = δx , and R (i ) =
R =Q almost surely for all i ≥ 1. Note that Qx (Z+) = 1 for all x ∈Z+, and, therefore, Assumption C1
holds with µ= δ1 and c1 = 1.

Choosing ε ∈ (0, 1/2) and setting V (x) = (2−ε)x for all x ≥ 0, we show in [191] that Theorem 8.1
applies and that

n−1Out(RRTn) → ν weakly, almost surely when n →∞, (8.2)

where νx = 2−x−1, for all x ∈Z+.
Different versions of this result can be found in the literature: Bergeron, Flajolet & Salvy [30,

Corollary 4] prove it using generating functions, Mahmoud & Smythe [186] prove a joint central
limit theorem for the number of nodes of out-degree 0, 1 and 2, Janson [157, Example 7.5] extends
this result by considering out-degrees 0,1, . . . , M for all M ≥ 0, which implies (8.2). The approach
of [186] and [157] relies on the remarkable fact that, in that particular example, one can reduce the
problem to finitely many types.

Our main contribution for this example is to prove the convergence in a stronger sense, and
thus answer a question of Janson (see Remark 1.2 [158]). Indeed, Theorem 8.1 also gives that, for
all q ∈ (1,2),

sup
n

Out(RRTn)

n
·V 1/q <+∞,

since Px = δx for all x, in this example. This leads to the following proposition.
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Proposition 8.2. For all ε ∈ (0, 1/2), for all q ∈ (1,2), for all functions f : Z+ → R such that f (x) =
o
(
(2−ε)x/q

)
when x →∞, we have

1

n

∫
f dOut(RRTn) →

∞∑
x=0

2−x−1 f (x), almost surely when n →∞.

Our approach also has the advantage of providing a framework that can be easily generalised,
as, for example, in the next application to which Janson’s finitely-many-types approach wouldn’t
apply.

Out-degree profile in a random recursive forest with multiple children. Let us now consider the
following generalisation of the random recursive tree studied above. The random recursive forest
(RRFn)n≥1 with multiple children is defined as a sequence of random rooted forests defined re-
cursively as follows: consider a probability measure α on {−1}∪ {1,2, . . .} (with 0 < α−1 < 1) and a
probability measure β on {1,2, . . .};

• RRF1 has one node (the root);

• we build RRFn+1 from RRFn by choosing a node of RRFn uniformly at random, and, if this
node has at least one child,

– with probabilityα−1, remove the edge between the node and one of his children (hence
forming an other tree in the forest),

– with probability αk (k ≥ 1), add k children to this node,

while, if this node has 0 child, with probability βk (k ≥ 1), add k children to this node.

We define Out(RRFn) as the sum of the out-degree profiles (see Definition 8.1) of the trees compos-
ing the forest RRFn and obtain the following result.

Proposition 8.3. Assume thatα and β both admit an exponential moment of order λ, for some fixed
λ > 0. Then there exists a probability distribution νQSD such that, for all q ∈ (1,2), for all a > 0
satisfying

+∞∑
k=1

αk eak < 2
∞∑

k=1
αk ,

and for all function f : Z+ →R such that f (x) = o(eax/q ) when x →∞, we have∫
f

dOut(RRFn)

Out(RRFn)(E)
→

∫
f dνQSD , almost surely when n →∞. (8.3)

Protected nodes in the random recursive tree. A node ν of a tree τ is 2-protected if the closest
leaf is at distance at least 2 from ν; in a social network, 2-protected nodes can be users who used
to invite new users to the network but have not done so recently. The proportion of such nodes
in different models of random trees have been studied in the literature: Motzkin trees in Cheon
& Shapiro [72], random binary search tree in Bóna [40], and more recently in the m-ary search
tree in Holmgren, Janson & Šileikis [148]. Devroye & Janson [96] show how results of Aldous [1]
about fringe trees can be used to study this question with a unified approach for different models
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of random trees, including simply generating trees and the random recursive tree. We show here
how our main result allows to get information about protected nodes in random trees.

For all n ≥ 1 and x ≥ 0, let us denote by Xn,x the number of internal nodes in RRTn having
exactly x leaf-children. The random measure

mn = ∑
x∈N

Xn,xδx

is a MVPP E =Z+ of initial composition m0 = δ1. The replacement kernel of (mn)n≥0 is (for all i ≥ 1
and x ≥ 1)

R (i )

0 =−δ0 +δ1 and R (i )
x = B (i )

1/x+1
δx+1 +

(
1−B (i )

1/x+1

)
(δx−1 +δ1)−δx ,

where
(
B (i )

1/x+1

)
is a sequence of i.i.d. random Bernoulli-distributed variables of parameters 1/x+1 for

all x ≥ 1. The weight kernel of (mn)n≥0 is Px = (x +1)δx , for all x ∈Z+. We therefore have

R0 =−δ0 +δ1 and Rx = 1

x +1
δx+1 + x

x +1
(δx−1 +δ1)−δx ,

and

Qx = x +2

x +1
δx+1 + x

x +1
(xδx−1 +2δ1)− (x +1)δx ,

for all x ≥ 0. Note that Qx (Z+) = 1 for all x ∈Z+.
We prove in [191] that the assumptions of Theorem 8.1 holds true and obtain the following

Proposition 8.4. For all x ≥ 1, the proportion pn,x of internal nodes having exactly x leaf-children
in the n-node random recursive tree converges almost surely to

2

e

∑
i≥x+1

1

i !
.

The proportion pn,0 of protected internal nodes converges almost surely to 1− 2/e. Moreover, for all
q ∈ (1,2) and all function f :Z+ → R such that f (x) = o

(∏x
i=2(i −ε)1/q

)
for some ε> 0 when x →∞,

we have ∑
i≥0

pn,i f (i ) → (1− 2/e) f (0)+ 2

e

∑
i≥1

f (i )
∑

j≥i+1

1

j !

almost surely when n →∞.

Using this result, one can show for instance that the proportion of protected internal nodes
converges almost surely to 1/2−1/e, improving on the convergence in probability already established
by Ward & Mahmoud [187].



Chapter 9

Reinforced processes

In this chapter, we study a random process with reinforcement, which evolves following the dy-
namics of a given absorbed Markov process and is resampled according to its occupation measure
when it reaches the absorption point. We show in different situations that its occupation measure
converges to the minimal quasi-stationary distribution of the absorbed Markov process.

Let X be a time homogeneous Markov process with state space E ∪ {∂}, where ∂ 6∈ E is an ab-
sorbing state for the process. We assume that Px (τ∂ <∞) = 1 and Px (t < τ∂) > 0 for all t ≥ 0 and
∀x ∈ E .

We consider a random process (Yt )t≥0 with reinforcement, which evolves following the dy-
namic of X when it lies in E and which is resampled according to its occupation measure when
it reaches ∂. More precisely, given a probability measure µ on E , we set

Yt =
∞∑

k=1
1t∈[θk−1,θk )X (k)

t−θk−1
, ∀t ≥ 0,

where θ0 = 0,

• (X (1)
t )t∈R+ is a realisation of the process (X t )t∈R+ with X (1)

0 ∼µ (i.e. underPµ) and the stopping

time θ1 is defined as θ1 = τ(1)
∂

the first hitting time of ∂ by X (1),

• given X (1), (X (2)
t )t∈R+ is a realisation of the process (X t , t ≥ 0) with X (2)

0 ∼µθ1 , where

µθ1 =
1

θ1

∫ θ1

0
δYs d s

and θ2 −θ1 = τ(2)
∂

the first hitting time of ∂ by X (2),

• for all k ≥ 1, given X (1), X (2), . . . , X (k) ,(X (k+1)
t )t∈R+ is a realisation of the process (X t )t∈R+ with

X (k+1)
0 ∼µθk , where

µθk =
1

θk

∫ θk

0
δYs d s

and θk+1 −θk = τ(k+1)
∂

the first hitting time of ∂ by X (k+1).

We also define, for all t ∈R+,

µt = 1

t

∫ t

0
δYs d s, i.e. µt ( f ) = 1

t

∫ t

0
f (Ys)d s, ∀ f ∈Bb(E).

71



72 CHAPTER 9. REINFORCED PROCESSES

This process has been studied in several situations, with the main goal of proving an almost
sure convergence result for the occupation measure µt when t → +∞. In the finite state space
case and in a discrete time setting, Aldous, Flannery and Palacios [2] solved this problem by show-
ing that the proportion of colours in a Pólya urn type process converges almost surely to the left
eigenfunction of the replacement matrix, which was also identified as the quasi-stationary distri-
bution of a corresponding Markov chain. Under a similar setting but using stochastic approxima-
tion techniques, Benaïm and Cloez [27] and Blanchet, Glynn and Zheng[39] independently proved
the almost sure convergence of the occupation measure µt toward the quasi-stationary distribu-
tion of X . These works have since been generalised to the compact state space case by Benaïm,
Cloez and Panloup [28] under general criteria for the existence of a quasi-stationary distribution
for X . The case of continuous time diffusion processes with smooth bounded killing rate on com-
pact Riemannian manifolds has been recently solved by Wang, Roberts and Steinsaltz [263], who
show that a similar algorithm with weights also converges toward the quasi-stationary distribution
of the underlying diffusion process.

In Section 9.1, we solve the question of convergence of the occupation measure toward the
quasi-stationary distribution of X when this process is a uniformly elliptic diffusion process evolv-
ing in an open bounded connected open set D with C 2 boundary ∂D , with hard killing when the
process hits the boundary. This answers positively the open problem stated in Section 8 of [28].

In section 9.2, we state such a convergence result for processes with smooth and bounded
killing rate evolving in unbounded spaces using a measure-valued Pólya process representation of
this reinforced algorithm. This result strongly relies on the convergence of Measure-valued Pólya
processes as stated in Chapter 8.

9.1 Stochastic approximation of a quasi-stationary distributions for dif-
fusion processes in a bounded domain

Let (X t )t∈R+ be a diffusion process in a connected bounded open set D of Rd , d ≥ 2 with C 2 bound-
ary ∂D and absorbed at ∂D . We assume that X is solution to the SDE

d X t =σ(X t )dBt +b(X t )d t , (9.1)

where B is a r -dimensional Brownian motion, b : D →Rd is bounded and continuous and σ : D →
Rd×r is continuous, σσ∗ is uniformly elliptic and for all ρ > 0,

sup
x,y∈D, |x−y |=ρ

|σ(x)−σ(y)|2
ρ

≤ g (ρ) (9.2)

for some function g such that
∫ 1

0 g (r )dr < ∞. Note that, in this case, the process (Yt ,µt )t≥0 de-
scribed in the introduction is well-defined since one can prove that θk →+∞ a.s. [28, Lemma 8.1].

Recall that, the results of Chapter 5 entail that, under the above regularity assumptions, the
killed diffusion process X satisfies Assumption A of Chapter 1 and hence that it admits a unique
quasi-stationary distribution α. We denote by λ0 the positive constant such that Pα(t < τ∂) =
exp(−λ0t ) for all t ≥ 0.

Remark 9.1. All the results of this chapter, and in particular the next one, can be extended to the
one-dimensional diffusion processes studied in Chapter 4 and to the diffusion processes on com-
pact manifolds studied in Chapter 5.
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We obtain the following

Theorem 9.1. For all bounded measurable function f : D →R, one has

µt f −−−−→
t→+∞ α f a.s.

Moreover, θn/n → 1/λ0 almost surely when n →+∞.

The proof of this result, detailed in [26], relies, among other methods, on the properties of the
Green operator A on Bb(E) for X , defined as

A f (x) = Ex

[∫ τ∂

0
f (Xs)d s

]
=

∫ ∞

0
Ps f (x)d s. (9.3)

Assuming that X satisfies Conditions A of Chapter 1 (and hence in the present situation), one eas-
ily checks that this operator is bounded on (Bb(E),‖ · ‖∞). For all µ ∈ M1(E), we also define the
notation µA f = ∫

E A f (x)µ(d x). We obtain the following

Proposition 9.2. Assume that Condition A of Chapter 1 is satisfied. Then, for all µ ∈ M1(E), all
f ∈Bb(E) and all n ≥ 1, we have∣∣∣∣µAn f − α( f )µ(η)

λn
0

∣∣∣∣≤ ‖ f ‖∞ C

(λ0 +γ)n , (9.4)

for some positive constant C ,γ> 0. We also have for some constant B > 0∥∥∥∥ µAn

µAn1
−α

∥∥∥∥
T V

≤ B

µ(η)

(
λ0

λ0 +γ
)n

(9.5)

and, for all t ≥ 0, ∥∥∥∥ µe t A

µe t A1
−α

∥∥∥∥
T V

≤ B

µ(η)
e−t γ

λ0(λ0+γ) . (9.6)

9.2 Stochastic approximation of a quasi-stationary distributions for dif-
fusion processes with soft killing

Let (X t )t∈R+ be the solution in E =Rd to the stochastic differential equation

dX t = dBt +b(X t )dt ,

where B is a standard d-dimensional Brownian motion and b : Rd 7→ Rd is locally Hölder contin-
uous in Rd . We assume that X is subject to an additional soft killing κ : x 7→ [0,+∞), which is
continuous, uniformly bounded and such that κ≥ 1. Note that the quasi-stationary distribution of
X with killing rate κ is the same as the quasi-stationary distribution of X with a killing rate κ−1.

We also assume that

limsup
|x|→+∞

〈b(x), x〉
|x| < −3

2
‖κ‖1/2

∞ ,

so that the process X admits a unique quasi-stationary distribution νQSD such that νQSD ·V <+∞,
where V : x ∈Rd 7→ exp(‖κ‖1/2∞ |x|) (this is an application of the results of Chapter 5).

We consider the self-interacting process (Yt )t≥0 evolving with the same dynamic of X but, at
rate κ, instead of being killed, it jumps to a new position chosen accordingly to its empirical occu-
pation measure, as described in the beginning of this chapter.
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Proposition 9.3. The empirical occupation measure 1
t

∫ t
0 δYs ds converges almost-surely when t →

+∞, with respect to the topology of weak convergence, to the unique quasi-stationary distribution
νQSD of X such that νQSD (V ) <∞.

The proof of this result uses the theory of Measure-Valued Pólya processes exposed in Chap-
ter 8. More precisely, it derives from a larger class of models, called sample paths Pólya-Urns, whose
study is developed in [191] for continuous and discrete-time models.



Part IV

Some other works
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Chapter 10

Coarse Ricci curvature

Let (E ,d) be a Polish space. Fix N ≥ 1 and consider a continuous time pure jump particle system of
N particles (X̄ t )t≥0 = (X 1

t , . . . , X N
t )t≥0 evolving in E N . We assume that the process is non-explosive

and that its infinitesimal generator L is given, for all x̄ = (x1, . . . , xN ) ∈ E N and any bounded mea-
surable function f : E N →R, by

L f (x̄) =
N∑

i=1

∫
E

(
f (x1, . . . , xi−1, y, xi+1, . . . , xN )− f (x1, . . . , xn)

)
Fi

(
xi , x̄,d y

)
,

where the terms Fi (xi , x̄, ·) are finite non-negative measures on E , measurable with respect to xi

and x̄ and such that, for some (and hence for all) x̄ ∈ E N ,
∫

d(xi , y)Fi (xi , x̄,d y) <∞. Our aim is to
provide, using coupling methods, a lower bound for the coarse Ricci curvature of X̄ evolving in E N

endowed with the metric

d(x̄, ȳ) = 1

N

N∑
i=1

d(xi , yi ), ∀x̄ = (x1, . . . , xN ), ȳ = (y1, . . . , yN ) ∈ E N .

We recall that the coarse Ricci curvature of the continuous-time Markov process X̄ is the largest
constant σ satisfying, for all t ≥ 0,

Wd
(
P(X̄ t ∈ · | X̄0 = x̄),P(X̄ t ∈ · | X̄0 = ȳ)

)≤ e−σt d(x̄, ȳ), ∀x̄, ȳ ∈ E N ,

where Wd denotes the Wasserstein distance. All the results of this chapter originally appeared
in [260].

A lower bound on σ provides a measure of the instantaneous convergence rate to a unique sta-
tionary distribution (see for instance [68]). This concept is closely related to the optimal coupling
theory developed by Chen (see for instance [68, 70]). It also entails spectral gap inequalities and
concentration inequalities (see [217, 162, 160, 161, 256, 257, 100]). We refer the reader to [3] for a
different approach, based on Kantorovich potentials. We also refer the reader to [51, Section 3.2]
for a link between coarse Ricci curvature and functional inequalities. For general state space pro-
cesses and for diffusion processes, we refer the reader to the works of Veysseire, where a systematic
study of the coarse Ricci curvature has been conducted (see [256, 257]) with nice implications on
concentration inequalities and spectral gap estimates. Let us also mention that estimates on the
coarse Ricci curvature of a continuous time process immediately provide estimates for the curva-
ture of its discrete time included Markov chain, which also implies several interesting properties
(see the works of Ollivier [217, 218] and references therein).
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Reconstituting transport distance bounds on Markov chains on product spaces from the be-
haviour of marginals via suitable couplings was already used by Talagrand and Marton, see for
instance [199, 200] and references therein. These methods also apply to Markov processes that
are not of pure jump types and to cost functions d that are not distance functions. For diffusion
processes, we refer the reader to [71] and to [261, Corollary 1.4] for necessary and sufficient condi-
tions in the case where the drift derives from a potential. We also refer the reader to [108, 109] with
an introduction to parallel coupling and the construction of ad hoc distances on the state space.
Computation of the coarse Ricci curvature for diffusion processes on manifold has also been stud-
ied by Veysseire [257]. For piecewise deterministic processes, we refer the reader to [75, Lemma 5.2]
and [52, Theorem 2.3]. Original coupling approaches are also provided in [193, 192, 45].

Below, we state our main result in Section 10.1, provide applications to the case N = 1 in Sec-
tion 10.2, and conclude with an application to a simple model of agents in interaction in Sec-
tion 10.3. We refer the reader to the original paper [260] for the proofs, additional details and
references. Therein, we also compute a lower bound for the coarse Ricci curvature of other in-
teracting particle systems, including zero range dynamics, Fleming-Viot type systems and some
of their natural extensions, birth and death processes in mean-field type interaction, and finally
systems of particles whose jump measures admit a density with respect to the Lebesgue measure
or the counting measure.

10.1 Main result

One of the difficulties of the continuous time setting, compared to the discrete time setting [217],
is that the jump measures do not, in general, share the same mass. In order to overcome this dif-
ficulty, we introduce the family of functions (J x,y

d )x,y∈E from M d (E)2 to R, defined for all m1,m2 ∈
M d (E) by

J x,y
d (m1,m2) =Wd (m1 +m2(E)δx ,m2 +m1(E)δy )− (m1(E)+m2(E))d(x, y),

where δx denotes the Dirac measure at point x and m2(E)δx is the product of the scalar m2(E) by
δx . Note that the finite measures m1 and m2 can have different masses. Proper generalisations
of the Wasserstein distance between measures with different masses already exist in the literature
(such as the flat metric [103] and the generalised W 1,1

1 Wasserstein distance [223], see also the re-
cent developments in [73, 176, 182] with applications to convergence of measure valued dynamical
systems), but are not directly relevant in our context.

Theorem 10.1. Consider the Markov process X̄ with generator L . Then there exists a coupling op-
erator L c of L such that, for all x̄, ȳ ∈ E N ,

L c d(x̄, ȳ) = 1

N

N∑
i=1

J xi ,yi

d (Fi (xi , x̄, ·),Fi (yi , ȳ , ·)).

In particular, the coarse Ricci curvature σ of the process (X̄ t )t≥0 satisfies

σ≥− sup
x̄,ȳ∈E N

1
N

∑N
i=1 J xi ,yi

d (Fi (xi , x̄, ·),Fi (yi , ȳ , ·))

d(x̄, ȳ)
.
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One main feature of this result is that one does not need to build an explicit coupling between
processes to conclude. This is particularly useful for involved jump matrices.

Fix x, y ∈ E . We now provide some interesting properties of the functional J x,y
d , which are also

useful to derive upper bounds and hence to apply Theorem 10.1.

Proposition 10.2. For all m1,n1,m2,n2 ∈M d (E) and all α> 0, we have

J x,y
d (αm1,αm2) =αJ x,y

d (m1,m2) (10.1)

and

J x,y
d (m1 +n1,m2 +n2) ≤ J x,y

d (m1,m2)+ J x,y
d (n1,n2). (10.2)

The following inequality is in general a crude estimate, but it is in some cases useful and sharp
(such as for one dimensional birth and death processes, see Example 10.2).

Proposition 10.3. We have, for all m1,m2 ∈M d (E),

J x,y
d (m1,m2) ≤

∫
E

[d(u, y)−d(x, y)]m1(du)+
∫

E
[d(x, v)−d(x, y)]m2(d v).

The following property implies in particular that, if m1 and m2 are two probability measures,
then J x,y

d (m1,m2) is smaller than Wd (m1,m2)−d(x, y). It also implies that, for measures m1 and m2

on E such that m1(E) ≥ m2(E), then J x,y
d (m1,m2) ≤Wd (m1,m2+(m1(E)−m2(E))δy )−m1(E)d(x, y).

Proposition 10.4. We have, for all m1,m2 ∈M d (E),

J x,y
d (m1,m2) = min

a,b
Wd (m1 +aδx ,m2 +bδy )− (m1(E)+a)d(x, y),

where a,b are taken in the set of real numbers such that m1 + aδx and m2 +bδy are non-negative
measures on E with equal mass, i.e. such that m1(E)+a ≥ 0, m2(E)+b ≥ 0 and m1(E)+a = m2(E)+b.
In addition, the minimum is attained for all a ≥ m2(E) (or equivalently b ≥ m1(E)).

10.2 First applications in the particular case N = 1

In this section, we state our result in the simpler case N = 1. The following corollary is an immedi-
ate consequence of Theorem 10.1.

Corollary 10.5. Let L be the infinitesimal generator of a pure jump non-explosive Markov process
on E defined, for any bounded measurable function f : E →R, by

L f (x) =
∫

E
( f (u)− f (x)) q(x,du), ∀x ∈ E ,

where (q(x,du))x∈E is a jump kernel of finite non-negative measures. Then the coarse Ricci curvature
σ of the Markov process generated by L satisfies

σ≥− sup
x,y∈E

J x,y
d

(
q(x, ·), q(y, ·))
d(x, y)

.
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For continuous time birth and death processes, Mielke [208] recently computed a lower bound
for an other notion of discrete Ricci curvature, related to the fact that the evolution of the law of
a continuous time birth and death process can be described through a gradient flow system. To
relate both definitions is still an open problem, but the lower bound obtained in Mielke’s work has
a similar expression (see Section 5 in [208] and Example 10.2 below) and may be a good starting
point to compare both approaches. This example has also been considered by Fathi and Maas
in [116, Theorem 4.1] in the setting of Entropic Ricci curvature.

Example 10.1. In this example, d is the trivial distance on E (so that Wd is the total variation
distance). Assume that there exist a non-negative measure ζ on E and a measurable function
α : E ×E →R+ such that

q(x,d z) =α(x, z)ζ(d z), ∀x ∈ E .

Then one carefully checks that

J x,y
d (q(x, ·), q(y, ·)) =−

∫
E
α(x, z)∧α(y, z)ζ(d z)−α(y, x)ζ({x})−α(x, y)ζ({y}).

In particular, the coarse Ricci curvature σ of the process satisfies

σ≥ inf
x 6=y

[∫
E
α(x, z)∧α(y, z)ζ(d z)+α(y, x)ζ({x})+α(x, y)ζ({y})

]
.

Example 10.2. Consider the particular case where E =Z+ and L is the infinitesimal generator of a
birth and death process with birth rates (bx )x∈Z+ and death rates (dx )x∈Z+ , all positive but d0 = 0.
In this case, for all x, y ∈Z+,

q(x, y) =


bx if y = x +1

dx if x ≥ 1 and y = x −1

0 otherwise

We also assume that the distance d is given by d(x, y) =
∣∣∣∑x−1

k=0 uk −
∑y−1

k=0 uk

∣∣∣, where (uk )k≥0 is a

sequence of positive numbers. After careful computations, we deduce from Proposition 10.3 and
Corollary 10.5 that the coarse Ricci curvature σ of the process satisfies

σ≥ inf
x∈Z+

bx +dx+1 −dx
ux−1

ux
−bx+1

ux+1

ux
.

In [68], [161] and [51], it is shown that there is equality in the above equation. This implies that,
at least in some cases, Corollary 10.5 and hence Theorem 10.1 are sharp. Note that, in this case,
Proposition 10.3 provides an explicit expression for the quantity J x,y

d (q(x, ·), q(y, ·)).

Example 10.3. The choice of the classical coupling (i.e. the use of Proposition 10.3) in the previous
example was judicious because the measures involved for a birth and death process are stochasti-
cally ordered. This is not the case in the present example, where we assume that

q(x, y) =


bx if y = x +2

dx if y = x −1,

0 otherwise.
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In this case, using a slight extension of [244], one obtain that the coarse Ricci curvature of the
process satisfies

σ≥ inf
x∈Z+

bx +dx+1 −dx
ux−1

ux
−|bx+1 −bx |ux+1

ux
−bx+1

ux+2

ux
.

10.3 A model of interacting agents

We study now a simple model of interacting agents whose individual behaviour is influenced in a
non-linear way by the behaviour of the other agents: each agent wanders randomly in a complete
graph and also changes its position to a new one, depending on a function of the number of agents
in this position. This dynamic is modelled by a system of N particles evolving in the complete finite
graph E of size #E ≥ 2: we assume that there exist T > 0 and a function f : [0,1] →R+ such that any
agent jumps from state x to y ∈ E with the following rate

x → y with rate
T

#E
+ f

(
Number of agents in y

N

)
. (10.3)

In this model, T is the temperature of the system and f is a preference function. For instance, with
an increasing function f with high convexity, the agents will give higher preferences to positions
that are already favoured by many other agents; with a larger temperature T , the agents act more
independently. Our aim is to determine characteristics of f and values of T for which a herd be-
haviour occurs or not in this model. By a herd behaviour, we mean a meta-stable state of the whole
particle system where a majority of the agents share the same position for a long time. Note that
this model can be written in the settings of the present paper, by setting, for all x, y ∈ E and x̄ ∈ E N ,

Fi (x, x̄, {y}) = T

#E
+ f

(∑N
i=1 1xi=y

N

)
, ∀y ∈ E .

This process is exponentially ergodic and the marginal of its empirical stationary distribution
is the uniform probability measure on E (this is an immediate consequence of the symmetry of the
state space and of the dynamic of the particles). The existence of the phase without herd behaviour
is obtained using the results of Section ??, while the existence of the phase with herd behaviour is
proved using large deviation results obtained in [105, 106]. Since the publication of the original
article, Erbar, Fathi and Schlichting [115] have studied this model (among others) in the settings of
Entropic Ricci curvature.

In this first proposition, we assume that f is Lipschitz and provide a coarse Ricci curvature’s
lower bound independent of N .

Proposition 10.6. Assume that f is a Lipschitz function and define the Lipschitz constant of f as
‖ f ‖Li p = supu 6=v∈[0,1] | f (u)− f (v)|/|u − v |. Then the coarse Ricci curvature σ of the particle system
described above satisfies

σ≥ T −2‖ f ‖Li p + inf
µ

∑
x∈E

f (µ(x)),

where the infimum is taken over the probability measures µ on E. Moreover, if f is monotone, then

σ≥ T −‖ f ‖Li p + inf
µ

∑
x∈E

f (µ(x)).
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In the next proposition, we assume that f is a non-decreasing strictly convex function and
show that, for small values of T , the process exhibits a meta-stable state, so that the agents have
a herd behaviour for large values of N : if all the agents start with the same choice x ∈ E , then,
during a time of order exp(cN ), where c > 0, x is favoured by the majority of the agents. This
happens despite the fact that, during this interval of time, most agents have changed their choices
at multiple times.

Proposition 10.7. Assume that f is a strictly convex function such that f (0) = 0, let z∗ ∈ (1/2,1) such
that

z∗ = argmaxz∈[1/2,1] f (z)− z( f (z)+ f (1− z))

and set

m∗ = f (z∗)− z∗( f (z∗)+ f (1− z∗)) > 0.

If the temperature is sufficiently small, namely if 0 ≤ T < m∗#E
z∗#E−1 , then there exists a positive constant

δ> 0 such that, for all x ∈ E,

1

N
logP

(∃s ∈ [0, t ], µN
s (x) ≤ z∗)=N→+∞ O

(
min

(
δ(µN

0 (x)− z∗)2
+,δε̄2 − log t

N

))
,

uniformly in t ≥ 0 and where µN
s = 1

N

∑N
i=1δX i

s
.

In order to check that m∗ > 0 in the above result, one simply uses the fact that f is strictly
convex with f (0) = 0, so that, for all z ∈ (1/2,1), f (1− z)/(1− z) < f (z)/z.

Example 10.4. Assume that f is an affine function : f (x) = ax +b for some a ∈ R and b ≥ 0 such
that a +b ≥ 0. Then f is Lipschitz with ‖ f ‖Li p = |a| and

∑
x∈E f (µ(x)) = a +b #E for any probability

measure µ on E . Hence Proposition 10.6 implies that the Wasserstein curvature of the process is
bounded from below by T +b #E +a −|a|. In particular, it is positive since

T +b #E +a −|a|=
{

T +b#E > 0 if a ≥ 0,

T +b(#E −2)+2(b +a) > 0 if a < 0,

and hence the system of agents does not exhibit a herd behaviour.

Example 10.5. Assume that f (x) = x2. Then ‖ f ‖Li p = 2 and

inf
µ

∑
x∈E

f (µ(x)) = 1

#E
,

Moreover,

z∗ = argmaxz∈[1/2,1]z
2 − z(z2 + (1− z)2) = 1

2
+ 1p

12

and

m∗ = z2
∗− z∗(z2

∗+ (1− z∗)2) = 1

6
p

3
.

Hence we deduce from Proposition 10.6 and Proposition 10.7 that

• if T > 2 − 1/#E , then the Wasserstein curvature of the particle system is positive (bounded
from below by T −2 +1/#E) and the system of agents does not exhibits a herd behaviour;

• if 0 ≤ T < #E/((3+3
p

3)#E −6
p

3), then the system of agents exhibits a herd behaviour.



Chapter 11

Maintenance of biodiversity and
perpetual integrals

Often, demogenetics model are obtained from a specific scaling of the parameters in the individual-
based model, leading to a stochastic differential equation with a diffusion term proportional to the
square root of the size of the population (Feller type diffusion processes). Other scaling will lead
to different coefficients and we refer the reader to [82, 22, 83] for an in-depth discussion of such
models.

Our aim here is to emphasise the importance of this diffusion term in fixation problems. Our
main question is whether, in a given demogenetic model, one allele gets fixed almost surely before
the population goes extinct. In a collaboration with Camille Coron and Sylvie Méléard [85], we
prove that this is the case almost surely for Feller type diffusion coefficients. We also show that, in
fact, it depends on the behaviour of the diffusion coefficient near extinction in the equation satis-
fied by the population size, as detailed below. The next theorem notably highlights the major effect
of the demography on the maintenance of genetic diversity by giving a necessary and sufficient
criterion ensuring almost sure fixation before extinction. The main tool of the proof has its own
interest, since it derives from finiteness criteria for perpetual integrals, which we detail at the end
of this chapter.

11.1 Demography and maintenance of biodiversity

Let us consider the process (Nt , X t )t∈R+ solution to the system of stochastic differential equations{
d Nt =σ(Nt )dBt +Nt (ρ−αNt )d t , N0 > 0,α> 0

d X t =
√

X t (1−X t )
f (Nt ) dWt

, t < T N
0+, (11.1)

where B ,W are independent one-dimensional Brownian motions, σ : (0,+∞) → (0,+∞) is locally
Lipschitz and f : (0,+∞) → (0,+∞) is locally bounded away from 0 and where

T N
0+ := lim

n→+∞T N
1/n

denotes the extinction time of the population. The system admits a pathwise unique strong solu-
tion up to the extinction time and we denote by

T f := inf{t ≥ 0, X t ∈ {0,1}}

83
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the fixation time of the process.

Theorem 11.1. Fixation occurs before extinction with probability one if and only if∫
0+

y

σ2(y) f (y)
d y =+∞. (11.2)

Consider the particular case where f is the identity function. Whereas for the usual demo-
graphic term σ(N ) = p

N , fixation occurs almost surely before extinction, a small perturbation of
this diffusion term, taking for example σ(N ) = N (1−ε)/2, ε > 0, leads to extinction before fixation
with positive probability. An example of trajectory for which fixation does not occur before extinc-
tion is given in Figure 11.1, and the effect of ε on the probability of extinction before fixation is
numerically studied in Figure 11.2.

Figure 11.1: We plot a trajectory of the 2-dimensional diffusion process (N , X ) such that d Nt =√
N (1−ε)

t dBt + Nt (ρ−αNt )d t and d X t =
√

X t (1−X t )
Nt

dWt , with ε = 0.4, ρ = −1 and α = 0.1. For this trajec-

tory, fixation does not occur before extinction.

11.2 Integrability properties for diffusion processes

We state a result implying that, depending on the behaviour of the diffusion and drift coefficients
near absorption, the integral of the paths of diffusion processes are either almost surely finite or
almost surely infinite. This 0-1 law criterion has already been proved by various methods, using
a combination of the local time formula and Ray-Knight theorem [114, 209, 168] (see also [113,
126] for proofs in particular settings). In [85], we give a simpler proof of this criterion, which also
provides explicit bounds for the moments of perpetual integrals and can be easily extended to more
general one dimensional Markov processes.

11.2.1 General diffusion processes on [0,+∞)

Let us consider a general one-dimensional diffusion process (Zt )t∈R+ (see Chapter 4) with values
in (0,+∞). Let us denote by Pz the law of Z starting from z. We assume that Z is regular (∀z ∈
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Figure 11.2: For different values of ε, we simulate 10000 trajectories of the 2-dimensional diffusion process

(N , X ) such that d Nt =
√

N (1−ε)
t dB 1

t +Nt (r − cNt )d t and d X t =
√

X t (1−X t )
Nt

, with r =−1 and c = 0.1. We plot

the number of simulations for which fixation does not occur before extinction.

(0,+∞),∀y ∈ (0,+∞), Pz (Ty < +∞) > 0). This implies that for any a < b ∈ (0,+∞) and a ≤ z ≤ b,
Ez (Ta ∧Tb) <+∞ and we can associate with Z a scale function s and a locally finite speed measure
m on [0,+∞) (see Chapter 4). We moreover assume that for all z ∈ (0,+∞),

Pz (T0 = T0 ∧Te <+∞) = 1, (11.3)

where Te is the explosion time (this is equivalent to s(+∞) =+∞, s(0) >−∞ and
∫

0+(s(y)−s(0))m(d y) <
+∞). Since the function s is defined up to a constant, we choose by convention s(0) = 0 as soon as
s(0) >−∞.

Theorem 11.2. Let (Zt )t∈R+ be a regular diffusion process on [0,+∞) with scale function s and speed
measure m on (0,+∞) satisfying (11.3). Let also f be a non-negative locally integrable function on
(0,+∞). Then, for all z > 0 and all n ≥ 1,

Ez

[(∫ T0

0
f (Zs)d s

)n ]
≤ n!

(∫ ∞

0
s(y) f (y)m(d y)

)n

and ∫
0+

s(y) f (y)m(d y) <+∞ ⇐⇒
∫ T0

0
f (Zs)d s <+∞ Pz −almost surely∫

0+
s(y) f (y)m(d y) =+∞ ⇐⇒

∫ T0

0
f (Zs)d s =+∞ Pz −almost surely.

Let us give two examples for population size processes.

Example 11.1 (Branching process with immigration). Let us consider the solution of the stochastic
differential equation d Nt = σ

p
Nt dBt +βd t , β > 0. Computing s and m as in (4.4) of Chapter 4,

we easily obtain that (11.3) ⇐⇒ β/σ2 < 1/2. Hence∫ T0

0

1

(Ns)α
d s =+∞ a.s. ⇐⇒α≥ 1 ;

∫ T0

0

1

(Ns)α
d s <+∞ a.s. ⇐⇒α< 1. (11.4)
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In the particular case α = 1, the authors of [126] propose an other approach based on self-
similarity properties.

Example 11.2. Logistic diffusion process. Let us consider the process

d Nt =
√

Nt dBt +Nt (b − c Nt )d t ; N0 > 0,

where c > 0. Then s(y) = ∫ y
0 ecz2−2bz d z and m(d y) = 2e−c y2+2by

y
d y and

∫
0+ s(y)m(d y) <+∞, since

s(y)
s′(y) y →y→0 1. (Note that if c = 0, the condition s(+∞) = +∞ is not satisfied). It is immediate to
check that (11.4) also holds.



Chapter 12

The individual’s signature of telomere
length distribution.

In a recent collaboration with Éliane Albuisson (CHRU of Nancy and IECL), Athanase Benetos
(CHRU of Nancy), Anne Gégout-Petit (IECL), Daphné Germain (former student at École des Mines
de Nancy) and Simon Toupance (CHRU of Nancy), we studied the evolution of telomere length
distribution over time in adults. This statistical study was published in [242].

12.1 A short introduction to telomere lengths

Telomeres are specialised non-coding double-stranded repetitive DNA-protein complexes that form
protective caps on the ends of chromosomes. They safeguard their extremity and maintain ge-
nomic integrity by allowing cells to distinguish telomeres from sites of DNA damage[133, 88]. Telom-
ere length displays progressive shortening in replicating somatic cells with age[183, 136]. Eventu-
ally cells will acquire critically short and dysfunctional telomeres that, consequently, activate a
DNA damage response and growth arrest known as replicative senescence[237, 97]. Therefore, all
somatic cells have limited cell proliferation capacity called the Hayflick limit[140, 219].

Figure 12.1: Human chromosomes (grey) capped by telomeres (black). Wikipedia.

Short leukocyte telomere length is associated with many degenerative diseases linked to age-
ing and with higher mortality risk. Epidemiological studies use leukocyte telomere length to ex-
amine the potential role of telomere length in health and disease. It is known that leukocyte
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telomere length decreases with age and thus is considered as a biomarker of chronological age-
ing [233, 38, 16]. In humans, a long leukocyte telomere length is associated with better survival in
the elderly [17, 173, 124, 91] and a recent meta-analysis has indicated a strong relation between
short telomeres and mortality risk, particularly at younger ages [41]. A shorter leukocyte telom-
ere length is associated with many degenerative diseases linked to ageing such as cardiovascular
disease [139, 101], neurodegenerative disease [43, 125] and metabolic diseases [101, 18].

Several methods have been developed to measure the length of telomere repeats from cells or
extracted DNA [13]. The most used are: Southern blot analysis of the terminal restriction fragments
length (TRF); quantitative PCR (qPCR) amplification of telomeric DNA, expressed as the ratio of
telomere repeats relative to a single copy gene; single telomere length analysis (STELA), a PCR and
Southern blot combining method that measures telomere lengths from individual chromosomes;
and fluorescent in situ hybridisation (FISH) techniques, quantitative FISH (qFISH) based on mi-
croscopy and flow FISH using flow cytometry. There are ongoing debates as to which method is
the most suitable to measure telomere’s length in clinical studies, particularly between TRF and
qPCR [111, 195, 255]. The advantages of the qPCR method are the high throughput and low cost
but TRF is considered the “gold standard” since it displays less variability [14], gives absolute val-
ues of telomere length and gives access to telomere length distribution [15]. However, the vast
majority of studies using TRF measurements only use mean telomere length and not distribution
as a result. Assessing telomere length distribution with TRF measurement can give access to new
information concerning telomere length dynamics since a cell’s shortest telomeres and the “load”
(amount) of short telomeres appear to play a role independently of mean telomere length [29, 145].
Mean telomere attrition rates do not capture changes in telomere distribution that may play a role
in pathology development (see Figure 12.2).

Figure 12.2: Telomere length distribution of two patients. The mean of the two distributions is the
same, although the distributions differs.

The aim of the study described in this chapter was to analyse the distribution of telomere
lengths and its evolution in time, using data generated by TRF in a longitudinal study in which
two sequential measurements of telomeres were performed at the beginning and the end of the
study corresponding to a mean time distance of 8 years.
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12.2 Telomere length signature

A quick look at the datas at the beginning and at the end of the study, suggests that the telomere
length distribution conserves the same shape at base line and at follow up. To study the conserva-
tion of the shape, the leukocyte telomere length distribution have then been translated in order to
have the same median, and then drowned (see Figure 12.3).

Figure 12.3: Telomere length distribution of two patients and their translation.

For most patients (although not systematically), the translated distributions at time 1 and at
time 2 coincide very well.

In order to measure numerically the distance between distributions, we used the Kolmogorov
distance between distributions, defined as the infinite norm distance between their cumulative
functions.

To show how the shape of the distributions of one Subject is well conserved between the two
times, we have computed the Kolmogorov distances between successive distributions for each of
the 72 Subjects. The distribution of these 72 distances is given in the normalised histogram in red
of the Figure 12.4. We have also computed the 72×71 Kolmogorov distances between the translated
telomere length distribution at time 1 for one Subject and time 2 for another one. The normalised
histogram is given in blue at Figure 12.4. We see clearly that intra-subject distances seem to be
lower than the inter-subjects distances.

We have performed a T -test to confirm the tendency: it strongly rejects the equality between
the observed mean of the intra-Subject distances (mean1 = 0.0258) and the mean of the inter-
Subject distances that we consider like a theoretical expectancy (mean2 = 0.0639). We can say that
the shapes of the leukocyte telomere length distributions of one Subject are significantly closer
than two shapes of two different Subjects.

Our conclusion is that leukocyte telomere length distribution characterises an individual and
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Figure 12.4: Histogram of Kolmogorov distances

we introduce the concept that telomere length distribution represents an individual signature in
humans that remains stable over the adult life.

12.3 Discussion

The contribution of this study is to show a strong stability over time not only of ranking but also
of the telomere length distribution. The telomere length signature could become a new criterion
to describe patients since we have seen that two individuals can have the same mean leukocyte
telomere length but different distributions. We also acknowledge limitations of this study. First,
the sample size is modest with less than hundred Subjects. Second, our cohort comprised par-
ticipants who were all above 60 years of age at the beginning of the study. Third, the follow-up
duration was only 8 years and we can’t conclude on variation on longer period. However, the clear
results obtained on only 72 patients are strong enough to overcome difficulties and sources of er-
rors linked to this type of studies: blood samples have been taken 8 years apart by different nurses
and DNA extracted 8 years apart by different researchers. In the future, in clinical studies, maybe
that telomere length signature could capture new associations of telomere dynamics with clinical
parameters or disease markers or help to better clusterise patients.

In an ongoing collaboration, we are currently working on a larger cohort (around 500 individ-
uals of all ages), which allowed us to confirm the finding of this study and to provide new insights
on the evolution of telomere length distributions over time. Our next step will be to relate, when
possible, the telomere length signature of the patients to their medical records.
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