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Acronyms

Acronyms:

EMI Electromagnetic Interference

EMC Electromagnetic Compatibility

LISN Line Impedance Stabilization Network

DM Di�erential Mode

CM Common Mode

MTL Multiconductor Transmission Lines
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Notation

Physical and mathematical constants:

Name Symbol Value Units

Speed of light in the vacuum c 3× 108 m/s

Vacuum dielectric permittivity ε0 8.85× 10−12 F/m

Vacuum magnetic permeability µ0 4π × 10−7 H/m

Complex identity j
√
−1

Euler's number e 2.72

Variables :

Name Symbol Units

Spatial axis x m

Frequency f Hz

Angular frequency ω rad/s

Voltage V V

Current I A

Voltage along a transmission line, frequency domain V (x) ≡ V (x, f) V

Current along a transmission line, frequency domain I(x) ≡ I(x, f) A

Voltage along a transmission line, time domain V (x, t) V

Current along a transmission line, time domain I(x, t) A

Impedance Z Ω

Cable length `c m

Number of conductors n+ 1

Characteristic impedance Zc Ω

Modal characteristic impedance Zd Ω



xiv Notation

Propagation constant γ = α+ jβ 1/m

Attenuation constant α Np/m

Phase constant β rad/m

Propagation speed v m/s

Propagation delay TD s

Re�ection coe�cient Γ

Wave length λ m

Per-unit-length impedance z = r + jωl Ω/m

Per-unit-length admittance y = g + jωc S/m

Per-unit-length resistance r Ω/m

Per-unit-length conductance g S/m

Per-unit-length inductance l H/m

Per-unit-length capacitance c F/m

Amplitude of a signal A V,A

Duty cycle d

DC bias b V,A

Period T s

Rise time tr s

Fall time tf s

Fourier series coe�cient: amplitude C

Fourier series coe�cient: phase θ rad

Matrix variables:

All matrices are notated in bold.

Name Symbol

Cable chain matrix Φ

Changing matrix to modal base T

Changing matrix to the common/di�erential modes base M

Characteristic impedance matrix Zc

Characteristic admittance matrix Yc



Circuit Symbols

There are some di�erences between the European and American symbols in circuit schematics.

For that reason, this section de�nes the conventions used in the circuit schematics along this

document.

There are two di�erent voltage representation in the two conventions, both are drawn in

Fig. 1. Europeans traditionally use an arrow pointing to o the higher potential (Fig. 1a), while

Americans uses the signals + and −, the plus signal indicating the higher potential (Fig. 1b).

The European representation of the voltage, shown in Fig. 1a, was chosen as default along

this document.

A second point with great di�erences is the representation of voltages and current sources,

which seem to di�er considerably even among European countries. The symbols chosen to be

used in this document are represented in Fig. 2

The following table resumes all the source symbols used in the document, along with other

less known circuit symbols.

i

V

(a) European, chosen representation

−

+

V

i

(b) American

Figure 1 � The two most used voltage-current representation in circuit schematics

−
+

(a) Voltage source (b) Current source

Figure 2 � Source symbols used in this document
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Voltage Source

−
+

Current Source

Sinusoidal Voltage Source

−
+

Sinusoidal Current Source

Trapezoidal Voltage Source

−
+

Trapezoidal Current Source

Voltmeter

V

Ammeter

A

Transistor MOSFET

Transistor IGBT



Introduction

Any electrical or electronic device commercialized nowadays has to comply with electromagnetic

compatibility (EMC) standards. Among other characteristics, these standards de�ne the maxi-

mum amplitude of conducted emissions the device is allowed. However, despite the requirements

of the multiple standards, there are still EMI problems on a system level in large electric networks,

such as cabling of buildings and industrial plant networks. These problems include conducted

and inductively or capacitive coupled interferences.

Three main causes for the system level electromagnetic interference (EMI) problems can

be identi�ed. First, the conducted emissions of the device under test conditions are probably

di�erent from the ones that will take place when the device is connected to a large cabling

network. Indeed, the conducted emissions test setup de�ned in these standards invariably have

the device connected to a Line Impedance Stabilization Network (LISN), usually through a cable

no longer than 1.5m. A LISN has stable input impedance values, which are either constant or

varying of one order of magnitude in frequency band, while in a real network the impedance seen

by the device varies within a much wider range of values, and ensemble of cabling connected to

the device can be much longer.

Second, the stray signal injected in a complex cabling network by these devices might be

ampli�ed by the resonance phenomenon. For example, a power cabling network on industrial

plants may have unshielded cables tens of meters long, inserted in a complex environment. These

cables will behave as transmission lines at the frequencies of the stray signals emitted by devices

such as power converters. It is not likely that the characteristic impedance of the cables are

matched with the input impedances of the devices, what establishes stationary waves in the

cabling leading to resonance-due ampli�cation of the stray signals. Moreover, it is likely that

stray currents will be induced in metallic cable paths and reinforced concrete walls. They are

known as common-mode currents, and they are particularly dangerous parasitic signals.

Least of all, in a large cabling system, the electric potential reference is not the same along the

cabling. Indeed, the copper conductor losses in medium frequencies (tens of kHz up to hundreds

of MHz) make it impossible for them to be considered as an equipotential surface. A second

option to build an equipotential would be the potential reference given by grounding rods, but

the electric potential of one rod may be di�erent from the one of a second rod grounded tens

of meters away because the ground is not perfectly conductive. This instability of the reference

potential might cause dysfunctions in the electric devices connected to the cabling network.

From these reasons arises the need of a model able to represent the behavior of a complex

cabling system for EMI simulations. Such model would allow the development of protective EMC



2 Introduction

strategies in the design phase of a large cabling system, or even be the base on the design of

�lters to be included in an existing cabling network, to reduce the level of conducted emissions

circulating on it.

The model should to be valid for a wide frequency band, computationally e�cient, and

take into account the propagation phenomenon to accurately predict the amplitude of the stray

signals in any part of the cabling network. The cables to which the model will be applied to

are unshielded power cables designed for 50/60Hz industrial applications. Ideally, the complex

environment in which the cables are inserted should also be represented.

This thesis is structured as follows:

Chapter 1 introduces the EMI phenomenon that may occur in a large electric system, and

its potential to cause dysfunctions and damage to the devices connected to it. The di�culties

in the EMI modeling of the cabling are discussed, and the objectives of the model developed in

this work are detailed.

Chapter 2 de�nes a frequency domain simulator for two-conductor cables. It is based on the

frequency domain solution of the telegrapher equations, and includes an experimental technique

to identify the parameters of a given cable. The simulator is experimentally validated with

measurements of the resonance-due voltage ampli�cation in a two-conductor cable. Also, the

behavior of the resonance phenomena is studied in detail.

Chapter 3 extends the simulator derived in chapter 2 to a multiconductor cable, using the

multiconductor transmission line (MTL) theory. The experimental cable parameter identi�cation

technique is adapted to multiconductor cables, and the new version of the simulator is validated

experimentally with a three-conductor cable. The tools developed in chapter 2 to characterize

the resonance phenomenon in a cable are extended to the multiconductor cables.

Chapter 4 discusses the time domain modeling of long cables, and describes a method to

obtain the time domain results using the frequency domain simulator developed in the two

previous chapters. The proposed method is validated experimentally, with experiments including

long cables in which resonance occurs.

In chapter 5, the simulation method proposed in this work is applied to practical examples

of large systems, following a procedure built to completely predict the resonant behavior of each

system. First, the case of an induction motor connected through a long cable to its drive is

studied. Second, two DC-link structures are simulated and analyzed. Least of all, a new EMI

�lter design technique taking into account the resonance phenomena in long cables is proposed.



Chapter 1

Context and preliminary concepts

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Medium frequency phenomena in a large system . . . . . . . . . . . . . . . 4

1.3 Objectives of the cabling model . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Abstract

In this chapter, the problematic motivating the characterization and modeling of large cabling

network are discussed in detail. The EMI phenomena to be modeled are introduced, along with

the di�culties to model them. The objectives of the EMI modeling are stated and justi�ed.



4 1. Context and preliminary concepts

1.1 Introduction

The goal of this study is to accurately characterize a large cabling network, aiming an e�cient

EMI simulation. To that end, the behavior of low to medium frequency stray signals introduced

in a large electric system by the devices connected to it have to be studied. This �rst chapter

introduces and contextualizes the desired EMI model, presenting the problematic motivating this

study and introducing the concepts that will be used along this document. Also, the objectives

of the present work are detailed.

Among the power devices source of high levels of conducted emissions, power converters are

the most common. Their applications have spread in the last decades in industrial and residential

electric systems. Power converters invariably introduce switching harmonics in the network to

which they are connected. The circulation of these harmonics in a large electric system might

induce electromagnetic interference (EMI) problems, principally if communications and control

circuits can be a�ected by the power circuit.

The EMI phenomena that may take place in a large electric system are discussed in section

1.2. In section 1.3 the objectives of the cabling model that is the goal of this work are listed and

justi�ed.

1.2 Medium frequency phenomena in a large system

As aforementioned, the power converters are the polluting devices more commonly found in

industrial electric networks. For this reason, this EMI study will be focused on the conducted

emissions generated by these devices.

Power converters are electronic devices able to change the characteristics of an electric signal

using switches, which are built with semiconductors devices such as power diodes and power

transistors (MOSFET, IGBT, etc..). The switches are controlled to convey a desired behavior

to the output electric power. However, the switches in these structures impose high voltage and

current variation (dV/dt and dI/dt) at each switching event, i.e., at each change of the state of

conduction of the semiconductor devices. The high variation of voltage and current introduces

medium frequency (order of MHz) harmonics to the system that usually need to be strongly

�ltered to guarantee the expected input and output signals, as well as its compatibility with the

network to which it is connected.

Previous work studied the EMI behavior of power converters [10, 40, 44]. In these works,

di�erent EMI models for power converters were developed, with structural [40, 44] and black

box [10] approaches. Particularly, in [44] is presented an interesting study of the envelope of a

switched voltage spectrum in function of parameters of the switched voltage: duty cycle d, rise

time tr and fall time tf . In this work, it is demonstrated that the harmonic spectrum of the

switched voltage and current has an attenuation of −40, dB/dec for frequencies higher than
1

πtm
,

where tm = min(tr, tf ).

Based on this work, a frequency band for the cabling characterization and modeling aimed

by this work can be de�ned. To ensure that the upper limit of the frequency band does not cut

out relevant harmonics, it is safer to choose a cuto� frequency for the switching harmonics as

fcut =
10

πtr
. This way, for frequency higher than fcut, it is certain that the harmonics have been

attenuated of at least −40 dB.
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With semiconductors based on Silicon technology, typical rise and fall times are of the order

of hundreds of ns, and the truncation frequency fcut would be of the order of tens of MHz. For

that reason, the model studied in this work is designed to �t for a frequency band going from

DC up to tens of MHz.

Two other di�culties contribute to the establishment of this frequency upper limit:

• above tens of MHz, the models of the power transistors more commonly used (MOSFET,

IGBT) are di�cultto obtain;

• for frequencies much higher than tens of MHz, the characterization of the devices under

study becomes complicated

For example, an induction motor of power of the order of 10 kW can have dimensions around

70x50x50 cm, and it is di�cult to experimentally characterize such a large device over hundreds

of MHz.

In large electric systems, such as the ones in buildings, industrial and generation plants, the

cables connecting the multiple devices are often tens of meters long. The smallest wavelength

λ in the frequency band chosen for this study (up to tens of MHz) is of the order of tens of

meters. In the literature, it is often considered that the propagation phenomenon in the voltage

and current waves in a transmission line can be neglected if the length of the line is smaller than

λ/10. Therefore, the cables of the concerned systems are long enough for the medium frequency

harmonics to be subjected to the propagation phenomenon. In other words, the cables under

study are electrically long, and propagation must be taken into account.

For that reason, the EMI model for the cabling in large system will take the propagation

phenomena into account, by modeling the cables using the transmission line theory.

With the propagation, arises the risk of resonance phenomenon in the long cables. The

resonance is a superposition of stationary waves in the line. There are speci�c frequencies in

which these stationary waves interfere constructively, considerably amplifying the signal originally

injected in the cable.

The stationary waves are present because of the re�ection of the voltage and current waves at

the cable terminals. The only case where the waves are not re�ected at the line terminals is when

the characteristic impedance of the line is identical to the input/output impedance of the device

connected to the terminal. In this case, the line is matched, and the resonance phenomenon does

not take place, independent of the cable length.

On the other hand, if the line is ended by an open end or short circuit, there is a full re�ection

of the voltage and current waves in the line terminal. In this case, the only factor limiting the

resonance ampli�cation are the losses on the cable. If the cable is lossless, the stationary waves

are not attenuated along the cable, and their superposition creates an ampli�cation that tends

to in�nity.

The large complex systems designed for the low frequency applications that are the concern

of this study (buildings and industrial electric networks) are designed for 50/60Hz or DC. For

that reason, cable impedance matching is not a concern in these systems, and even if it is, it

would be considerably di�cult to obtain. Indeed, the input impedances of the devices connected

to these networks, which may be electric motors, power converters, etc..., vary with frequency

and are not likely to be matched with the cable characteristic impedance. Therefore, it is likely

that resonance phenomena will take place in the cabling of large electric systems, if the medium

frequency harmonics generated by the power converters circulate in long cables.



6 1. Context and preliminary concepts

Resonance phenomena has the potential to cause serious damage to a system. It can generate

dangerous overvoltages and overcurrents that may cause insulation faults, thermal dysfunctions,

and/or reduce the useful live of the devices composing the system. In consequence, it is vital

that the resonance phenomenon is accurately represented by the model.

One well-known case where the resonance phenomenon may cause serious damage is the

induction motor connected through a long cable to its drive. In such system, overvoltage may take

place at the motor terminals, due to resonance phenomenon. This problem is well documented

in the literature [20, 45, 52], the resonance-due overvoltages may cause insulation faults in the

motor, and reduce the useful life of its bearings.

Other references to resonance problems in the literature are the resonance in the feeding

network of electric trains [7], and at the cable connecting o�shore wind turbines to the onshore

substation [25,43]. In [43], the authors proposed a narrow band notch �lter to dump resonance-

due ampli�cations at the resonance frequencies, and were challenged by the fact that resonance

frequency is very sensitive to parameters that vary with temperature and with the cable aging.

Indeed, the resonance frequency is highly sensitive to variations of the cable parameters,

particularly on the per-unit-length (p.u.l.) inductance l and capacitance c of the cable. Moreover,

the amplitude of the resonance-due ampli�cation of voltage and current waves is highly sensitive

to the cable losses.

The cable losses are not negligible for the cables used in low frequency applications, such as

the large industrial electric networks. These losses have a considerable impact of the voltage and

current behavior in a cable, and vary with frequency due to phenomena such as the skin e�ect,

the proximity e�ect and the dielectric loss dependence on the frequency.

To exemplify the impact of the cable losses in the resonance-due ampli�cation of a voltage

signal in a cable, the amplitude of the sinusoidal voltage in a two-conductor cable is plotted for

three di�erent loss characteristics, using the schematic in Fig. 1.1. In this schematic, the cable

is open-ended. The plot is done for the voltage at x = `c, in function of the frequency. The three

loss characteristics attributed to this line are:

1. A realistic behavior of the losses, variable with frequency due to skin-e�ect, etc...

2. Losses constant with frequency, but non-zero

3. Lossless cable

VS V (`c)

`c0 x

Figure 1.1 � Schematic to show the loss impact on resonance-due voltage ampli�cation

The voltages V (`c) obtained from each of these loss cable characteristics are plotted in Fig.

1.2.

In this �gure, the �rst two resonances in the open-ended cable are visible. In the lossless case,

the resonance-due voltage ampli�cation tends to in�nity. For the constant but non-zero losses, the
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Figure 1.2 � Voltage ampli�cation at x = `c for three di�erent loss characteristics

ampli�cation is limited, and has the exact same amplitude for both of the resonance frequencies

visible in the �gure. Finally, in the voltage ampli�cation for the realistic loss characteristics, the

voltage amplitude is limited, and also di�erent for each of the resonance visible in the �gure.

The ampli�cation at the �rst resonance frequency is higher because at this frequency the cable

losses are smaller.

Fig. 1.2 shows the importance of an accurate model of the losses in a cable designed for

low frequencies applications. The variability of the losses with frequency has to be taken into

account, or the resonant behavior of the cable cannot be accurately represented by the model.

The same way, the reactive elements of the cable model: p.u.l. inductance l and capacitance

c, have to be accurately identi�ed to guarantee the correct prediction of the resonance frequency

in a long cable. Indeed, the skin e�ect has a second impact on the cable parameters: the p.u.l.

inductance l also varies with frequency, and this behavior also has to be taken into account.

In conclusion, the cabling model aimed by this work has to be built from cable parameters

accurately identi�ed, and support the variation of these parameters with frequency.

1.3 Objectives of the cabling model

Based on the considerations made in the previous section, it is possible to de�ne the requirements

that the EMI cabling model must ful�ll:

• The model must be valid for a frequency band from DC up to a few tens of MHz;

• The model must be length-scalable: the cable length is a parameter of the model;

• The model must be able to represent the voltage and current wave propagation;

• The model must support the cable parameter variation with the frequency;

• The cable parameters must be accurately de�ned;

• The model must be computationally e�cient, so it can be used for design ends;

The frequency band is chosen so the harmonics generated by power converters with rise/fall

time as low as 100ns can be represented, a typical time for silicon-based power semiconductors.
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It is speci�ed that the model has to be length-scalable so a cabling network can be easily

represented, and the length of the cable can also be a parameter in the design process of a system.

The propagation phenomenon in the cabling has to be taken into account, because the systems

aimed by this work are large, and have electrically long cables for the chosen frequency band,

i.e., the cable length is of the same order of magnitude or greater than the smallest wavelength

circulating in the cable.

With the propagation phenomenon, resonance in the cable becomes possible, and even likely

to happen, as in low frequency systems the impedances of the devices connected to a long cable

terminals are not likely to be matched with the characteristic impedance of the cable.

The resonance phenomenon is very sensitive to the cable parameters, and an accurate pre-

diction of the resonance frequency and resonance-due wave ampli�cation requires an accurate

identi�cation of the parameters of a given cable. Moreover, to obtain the desired accuracy the

parameter variation with the frequency has to be modeled, as has been shown in Fig. 1.2.

The model has to be computationally e�cient because its goal is to aid the design phase of

a large electric system, what requires multiple simulations. If the simulation time is too long, or

if the memory cost simulation is too high, the model would not be useful to conception ends.

The development of the cabling model will be described in chapters 2 to 4, and is based on

the transmission line theory. This theory is recalled from its basis because the industrial cabling

networks are not usually represented by the existing transmission line models. Indeed, the fact

that the cables are unmatched and susceptible to induce an alternative stray path requires a

review on the hypothesis taken in these models, so an adapted simulator can be de�ned for this

application.

This work will be limited to the study of radial networks, which is the structure of most

buildings and industrial electrical networks. The case of networks with closed loops will not be

considered.

1.4 Conclusion

In this chapter, the guidelines of the model aimed by this work are given. The frequency band

of the study is de�ned based on the harmonic spectrum generated by power converters. The

possibility of propagation and resonance phenomena in the long cabling for this frequency band

is explained. The problems arising from the resonance phenomenon are exempli�ed. From these

problems arises the need to correctly predict the resonance behavior in large cabling systems.

Therefore, the cabling model has to satisfactorily represent the voltage and current wave

propagation in long cables and their resonant behavior. It has been demonstrated that the

resonance behavior is highly sensitive to the cable parameters, including the cable losses. That

demands the development of an accurate parameter identi�cation technique for the cables under

study.

Other requirements that the model has to meet are: it will be length-scalable and computa-

tionally e�cient.

Cabling networks with closed loop are not studied here. However, the simulator developed

in this work could be applied to closed-loop applications.
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Two-conductor cable frequency domain model
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Abstract

In this chapter a frequency domain simulation tool for lossy two-conductor cables, with the

conductors equally spaced from each other is developed. The cable parameters are obtained

experimentally. The frequency band of the model goes from DC up to 30MHz, limited by the

equipment available for the experimental parameter identi�cation. The parameter assessment,

as well as the frequency domain simulation tool, are validated experimentally. The resonance

phenomenon in the two-conductor transmission line is studied in detail, and its dependence

on the cable losses is highlighted.
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2.1 Introduction

In this chapter, two-conductor cables commonly used on industrial and buildings cabling networks

are studied. These cables will be characterized and modeled.

As mentioned in the previous chapter, the model of the building network must predict accu-

rately the stray voltages and currents ampli�cations due to the resonance phenomenon. Indeed,

the resonance on the cables in a building network can be dangerous to the devices connected to

it. This phenomenon is not taken into account on the building networks design, which usually

regards only 50/60Hz behavior of the system. The harmonics generated by the switching devices

(battery chargers, network stabilizers, LED lights, etc...) based on silicon technology can go up

to tens of MHz, frequency band in which the cables under study, which are frequently tens of

meters long, will resonate. This is a problem trending to become critical with the advent of the

new wide-band gap semiconductor technologies, which have much faster switching time and, as

a consequence, introduce higher frequency harmonics into the network.

In a �rst approach, a hypothetical radial network will be modeled, representing a large cabling

network (industrial plat, building, etc...). The �rst hypothesis taken is that this network has

cables with the space between its conductors constant along the line. Of course, this is strong

supposition, and certainly not true for all the portions of an industrial cabling system. However,

a model based on this hypothesis still gives a good approximation, because the space between

the wires in the cabling network does not change drastically. The losses in the cable must be

accurately represented, because the resonance phenomenon is highly dependent on them, as was

shown in section 1.2. In this chapter, the study is limited to two-conductors cables.

Section 2.2 introduces the theory of two-conductor transmission lines and the proposed mod-

eling tool. Section 2.3 talks about experimental parameter identi�cation of power cables, and

proposes an impedance analyzer based parameter identi�cation method. Section 2.4 validates

with frequency domain experiments the simulation tool developed in section 2.2, with the pa-

rameters obtained in section 2.3. Section 2.5 studies the resonance phenomena in two-conductor

transmission lines.

2.2 Two-conductor transmission lines

Consider the two-conductor transmission line represented in Fig. 2.1. The voltage and current

along the line vary in function of x. Their behavior can be described by the telegrapher equations,

obtained by representing the line as a series association of the basic cell presented in Fig. 2.2.

Source Load

I(x)

V (x)

`c0 x

Figure 2.1 � Two-conductor transmission line, variable de�nition

The telegrapher equations in the frequency domain are written in (2.1), with the parameters
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I(x) r l

V (x) c g

∆x

Figure 2.2 � Elementary cell of two-conductor transmission lines, with its per-unit-length param-
eters

z and y given by (2.2), where j is the imaginary unit, ω = 2πf is the angular frequency, and

r (Ω/m), l (H/m), c (F/m) and g (S/m) are the per-unit-length (p.u.l.) parameters of the line,

represented in Fig. 2.2

∂V (x)

∂x
= −zI(x)

∂I(x)

∂x
= −yV (x)

(2.1a)

(2.1b)

z =r + jωl

y =g + jωc

(2.2a)

(2.2b)

The telegrapher equations can be decoupled if written in the second order partial derivative

form, as in (2.3), where γ =
√
zy

∂2V (x)

∂x2
= γ2I(x)

∂2I(x)

∂x2
= γ2V (x)

(2.3a)

(2.3b)

Equations 2.3 admit the solution (2.4):

V (x) = V +e−xγ + V −exγ

I(x) = I+e−xγ − I−exγ
(2.4a)

(2.4b)

Where constants V +, V −, I+, and I− must be de�ned using the boundary conditions of the

di�erential equation problem. In this case, the boundary conditions are the voltage and current

relations at the load (x = `c) and the source (x = 0) ends. We can reduce the number of

undetermined constants by de�ning the characteristic impedance in (2.7) as follows:

∂I(x)

∂x
= −γ

(
e−xγI+ + exγI−

)
= −yV (x)

V (x) = y−1γ︸ ︷︷ ︸
Zc

(
e−xγI+ + exγI−

)
Zc =

√
z

y

(2.5)

(2.6)

(2.7)
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With this de�nition, the solution in (2.4) can be simpli�ed to (2.8):

V (x) = Zc
(
I+e−xγ + I−exγ

)
I(x) = I+e−xγ − I−exγ

(2.8a)

(2.8b)

From (2.8), the use representation of the two-conductor line can be written as in (2.9). This

representation is useful because it removes the dependence on the constants I+ and I− (by

introducing a dependence on V (0) and I(0)), and concatenation can be easily performed, what

will be useful to build the model of the radial network aimed by this study.[
V (x)

I(x)

]
=

 cosh(xγ) −Zc sinh(xγ)

− 1

Zc
sinh(xγ) cosh(xγ)

[V (0)

I(0)

]
(2.9)

2.2.a The frequency domain model

For a hypothetical radial network, where cables with two-conductors equally spaced along the

network connect multiple devices, equation (2.9) is valid for any continuous section of two-

conductor cable. Moreover, assuming the hypothesis that all devices connected to the network

are linear, any continuous portion of two-conductor cable can be modeled by the equivalent

circuit in Fig. 2.3, from the Thévénin's theorem.

ZS ZL

−+SL−+SS V (0)

I(0)

V (`c)

I(`c)

x

Figure 2.3 � Schematic of the generalized frequency domain model for two-conductor cables

So far, the voltages and currents have been represented as a function only of x. But, as the

parameters Zc and γ vary with frequency (cf. section 2.2.b), the voltages and currents along

the line are also dependent on the frequency. In some sections of this document, the frequency

dependence of these variables will be omitted, for simplicity, but, in any case, the de�nitions in

(2.10) hold.

V (x) ≡ V (x, f)

I(x) ≡ I(x, f)

(2.10a)

(2.10b)

To determine the voltages and currents of the equivalent circuit of Fig.2.3, it is su�cient to

solve the system of equations (2.11).

[
V (`c, f)

I(`c, f)

]
= Φ(`c, f)

[
V (0, f)

I(0, f)

]
V (0, f) = SS − ZSI(0, f)

V (`c, f) = SL + ZLI(`c, f)

(2.11a)

(2.11b)

(2.11c)
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Where matrix Φ is de�ned as in (2.12)

Φ(x, f) =

 cosh(xγ(f)) −Zc(f) sinh(xγ(f))

− 1

Zc(f)
sinh(xγ(f)) cosh(xγ(f))

 (2.12)

If the voltages and/or currents in a position of the line di�erent from x = 0 or x = `c are

needed, they can be determined with (2.13).[
V (x, f)

I(x, f)

]
= Φ(x, f)

[
V (0, f)

I(0, f)

]
(2.13)

The obtainment of parameters Zc and γ is discussed in section 2.3. Once these parameters

are determined, the cables on the hypothetical radial network aforementioned can be modeled by

(2.11), by representing any devices, or cabling, connected to their terminals as a Thévénin/Norton

equivalent circuit.

Equations (2.11) and (2.13) allow the conception of a frequency domain simulation tool able

to model the generic system in 2.3, which calculates the voltages and currents along the two-

conductor line under study.

Figure 2.4 shows the �owchart of the frequency domain simulation tool. The inputs of the

simulator are described below.

Zc(f [n]), γ(f [n])

Frequency do-
main simulatator

`c

x[m]

SS(f [n]), ZS(f [n]),
SL(f [n]), ZL(f [n])

V(x[m], f [n])
I(x[m], f [n])

Figure 2.4 � Frequency domain simulation tool inputs and outputs � two-conductor cables

• f [n] is the discretization of the variable frequency f , a vector containing the frequency

points in which calculations will be performed.

• Zc(f [n]) and γ(f [n]) are the cable parameters in function of frequency, and their identi�-

cation will be discussed in the next section;

• `c is the cable length;

• x[m] is the discretization of the variable position along the line x. It contains the positions

of the line where the voltage and currents are to be calculated;

• SS(f [n]), ZS(f [n]), SL(f [n]), and ZL(f [n]) are the elements of the Thévénin equivalent

circuit representing the devices connected to the cable extremities (cf. Fig. 2.3).
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The outputs are the voltages V (x[m], f [n]) and currents I(x[m], f [n]) calculated at the posi-

tions x[m] of the line for the frequency points in f [n].

As the case where SL = 0 was often studied during the development of this model, an

analytical solution to this speci�c case was implemented, it is described in appendix B.

Section 2.3 discuss di�erent methods to obtain the cable parameters, but before entering this

subject, it is interesting to analyze their behavior in the frequency domain.

2.2.b Zc and γ dependance on frequency

The real and imaginary parts of γ are classically denominated as:

γ =
√

(r + jωl)(g + jωc) = α+ jβ (2.14)

Where α is the attenuation constant, and β the phase constant.

For a lossless line, α = 0 and the cable parameters are reduced to Zc =
√
l/c and γ = jω

√
lc,

both constant with frequency. In this case, the propagation velocity v, de�ned by (2.15) [19], is

constant with frequency and equal to v = 1√
lc
1.

v =
ω

β
(2.15)

However, for the cables used in buildings networks losses cannot be neglected. For lossy lines,

the parameters Zc and γ are not constant, as will be shown below.

For a preliminary analysis, the cable p.u.l. parameters are supposed constant, with values

r = 10mΩ/m, l = 1µH/m, g = 10nS/m, and c = 100 pF/m, all typical values for power

cables. Using these values, the parameters Zc, α, and v are plotted in function of frequency in

�gures 2.5 and 2.6.

(a) α in function of frequency (b) v in function of frequency

Figure 2.5 � γ = α+ j ωv in function of frequency

It can be seen that neither of the parameters plotted in Figs. 2.5 and 2.6 is constant, but

they tend to a constant value for high frequencies.

The high frequency asymptote to Zc can be obtained considering that, for high frequencies,

1These conclusions are also true for a line respecting the Heaviside condition, a case detailed in section 4.2.a
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Figure 2.6 � Zc in function of frequency

the approximations r � ωl and g � ωc are valid, which gives (2.16).

lim
ω−>∞

Zc = lim
ω−>∞

√
r + jωl

g + jωc
=

√
l

c
(2.16)

The asymptotes to γ (real and imaginary parts) can be obtained using the binomial theorem

truncated to the second term: (a+b)
1
2 ≈ a

1
2 + b

2a
− 1

2 for a� b. With this identity, the asymptotes

for high frequencies, where r � ωl and g � ωc, are determined with:

lim
ω−>∞

γ = lim
ω−>∞

(r + jωl)
1
2 (g + jωc)

1
2 ≈≈

[
(jωl)

1
2 +

r

2
(jωl)−

1
2

] [
(jωc)

1
2 +

g

2
(jωc)−

1
2

]
lim

ω−>∞
γ =

r

2

√
c

l
+
g

2

√
l

c
+ jω

√
lc (2.17)

This analysis shows that, in general, the propagation speed varies with frequency for a lossy

cable, a conclusion that will be used further in this document.

For real cables these parameters will behave di�erently in high frequency, because the loss-

related parameters r and g vary with frequency, due to skin and proximity e�ect, and the

frequency-dependent behavior of the dielectric materials.

2.3 Two-conductor cable parameter identi�cation

The model developed in section 2.2.a needs the cable parameters Zc and γ to be determined.

These parameters can be obtained with analytical, numericalal, and experimental methods.

It was shown in 1.2 that the cable losses limit the resonance due ampli�cations. Therefore,

they are essential to the complete prediction of the resonance behavior of a transmission line. For

that reason, the ability of determining the cable losses is an important feature to be discussed in

each parameter identi�cation method.

Analytical solutions derived directly from Maxwell equations [33] are possible if the line

geometry can be easily described in some coordinate system, which is not the case of the building

cabling.

As for numericalal methods, a variety of line parameters calculation methods is available in the

literature, using formulations such as �nite-element method (FEM) [8, 12, 14], �nite-di�erence

time-domain method (FDTD) [16], and boundary element method (BEM) [4]. The inconve-

niences of numericalal methods are widely known: high computational e�ort, and the need of an
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accurate description of the geometry and/or the physical constants linked to the problem

In fact, for both analytical and numericalal methods, measurements are necessary to an accu-

rate determination of the insulation parameters. For the low-frequency cables used in a building

network, the experimental transmission-line parameter identi�cation is not more complicated

than measuring the relative permittivity of the cable insulation, for example.

For these reasons, and to avoid high computational e�ort, experimental parameter identi�-

cation is the chosen approach to model the cables used in this work.

In this section, experimental methods to obtain these parameters are discussed. Section 2.3.a

brings a review of the experimental parameter identi�cation methods existing in the literature,

and in section 2.3.b the parameter identi�cation method chosen by the authors is described.

2.3.a Review of existing parameter identi�cation techniques

The line parameters can be extracted directly from measurements either on time domain using

a Time Domain Re�ectometer (TDR) [1,3], or on frequency domain using Impedance Analyzers

[6,24] or Vector-Network Analyzers (VNA) [23,54,55]. The parameter identi�cation method for

each of these devices will be shortly described in this section.

A TDR is a device that sends a square wave into the device under test (usually a cable)

and measures the wave re�ected back to the device output (Fig. 2.7b). The output impedance

of the TDR device is normalized to 50 Ω. The connector between the cable under test and

the TDR output is a coaxial cable of characteristic impedance Z0 = 50 Ω, usually about 20 cm

long. Fig. 2.7a shows a schematic explaining the re�ections that take place in this measurement

con�guration.

From the �rst re�ected wave that arrives at the TDR output (instant �2� in Fig. 2.7), it can

determine the absolute value of the re�ection coe�cient Γ1, de�ned in (2.18). From the second

re�ected wave that arrives at the TDR output (instant �3� in Fig. 2.7), the propagation time

delay in the cable TD can be determined. TD is linked to the propagation velocity v by (2.19),

where `c is the cable length.

Γ1 =
Zc − Z0

Zc + Z0
(2.18)

TD =
`c
v

(2.19)

Therefore, TDR parameter identi�cation allows an easy determination of the absolute value

of the characteristic impedance |Zc| and the propagation velocity v. However, for the general

case, parameters Zc and γ are also frequency dependent (see section 2.2), and, in addition, cable

losses also vary with frequency. The dependence of the propagation speed on the frequency (Fig.

2.5b) results in a di�erent propagation time TD for each harmonic that composes the square

signal sent into the cable. As a result, the rise time of the re�ected wave is degraded, as shown

in Fig. 2.7b (zone 3). The loss-related parameters can be extracted from the deformation of

the re�ected wave using data-�tting algorithms as detailed in [49]. However, this makes the

post-processing of the TDR data more cumbersome than for the other experimental methods.

A Vector Network Analyzer (VNA) can also be used to identify the parameters of low-

frequency cables [55]. It is extensively used for connections on printed circuit boards. A VNA

along with additional TDR measurements allows a more accurate determination of low-frequency

parameters [23].
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(a) Principle (b) Measurement output

Figure 2.7 � Time-domain re�ectometer (TDR)

A VNA device measures the S-parameters of the device under test, which are coe�cients

determined by the ratios of the wave re�ected by the signal and the input wave (2.20), the waves

are de�ned in Fig. 2.8a. (
b1

b2

)
=

(
S11 S12

S21 S22

)(
a1

a2

)
(2.20)

(a) Input waves ai, re�ected waves bi, i = 1, 2.
Source: [31]

(b) S-parameters

Figure 2.8 � VNA measurement

The S-parameters matrix can be converted to the use model introduced in section 2.2.a with

(2.21) [11].
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[
V (`c)

I(`c)

]
=

[
Φ11 Φ12

Φ21 Φ22

][
V (0)

I(0)

]

Φ11 =
1

2S12
(1− S11)(1 + S22) + S12S21

Φ12 = − Z0

2S12
(1 + S11)(1 + S22)− S12S21

Φ21 = − 1

2S12Z0
(1− S11)(1− S22)− S12S21

Φ22 =
1

2S12
(1 + S11)(1− S22) + S12S21

(2.21a)

(2.21b)

(2.21c)

(2.21d)

(2.21e)

From the de�nition of matrix Φ(`c, f) =

[
Φ11 Φ12

Φ21 Φ22

]
in (2.12), the cable parameters Zc and

γ can be deduced with (2.22).

Zc =

√
Φ12

Φ21

γ =
1

`c
ln (Φ11 − ZcΦ21)

(2.22a)

(2.22b)

However, some considerations must be made about parameter identi�cation from the VNA

results. First, as the results are inaccurate around cable resonance (S-parameters tend to zero),

the cable parameters are not precise for frequencies multiple of λ/2. Post-processing options to

avoid this limitation are available in [23,47,55].

Second, VNA classical 2-port measurement is not adapted to our application. That is because

the ground is connected to both ends of the cable, through the outer conductor of the probe

coaxial cables. This identi�cation setup gives parameters useful for applications such as printed-

circuit strips [23], where the ground is an equipotential surface. However, for the building

network application such con�guration is unrealistic, because there is no equipotential along a

large cabling network.

For the application under study, only a 4-point VNA measurement would be viable. It consists

in measuring the cable S-parameters as if it was a 4-port device, connecting each extremity of

the cable to the live point of each probe, leaving the outer conductors of the probe disconnected.

However promising, this option to experimental parameter assessment was not pursued, because

four-ports VNA were not available in any of the laboratories associated to our institution.

Impedance analyzer is the chosen method for the identi�cation of the cable parameters in

this work. It consists in extracting the cable parameters from two impedance measurements,

usually the short-circuited and open-ended cable impedances. This method is detailed in the

next subsection. Impedance analyzers are a good option for parameter identi�cation from low

to medium frequencies, which is the frequency band of interest.

The next subsection 2.3.b describes the input impedance based parameter identi�cation, com-

menting on the choice of the cable length for an e�cient identi�cation in 2.3.b-i, and discussing

the impact of the common mode on the measurements in 2.3.b-ii.
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2.3.b Experimental parameter identi�cation using an Impedance Analyzer

The theory of the cable parameter identi�cation with impedance analyzer is resumed below.

Consider the schematic shown in Fig. 2.9. The two-conductor line input impedance can be

obtained from (2.9), and is given in (2.23).

Source ZLV (0)

I(0)

Figure 2.9 � The input impedance of the cable

Z(0) =
V (0)

I(0)
= Zc

ZL + Zc tanh(`cγ)

Zc + ZL tanh(`cγ)
(2.23)

The input impedance for the short-circuited line ZSC and the open-ended line ZOC are the

following:

ZSC = Zc tanh(`cγ)

ZOC = Zc coth(`cγ)

(2.24a)

(2.24b)

From (2.24), the characteristic parameters of the line can be found form the input impedances

with:

Zc =
√
ZSCZOC

γ =
1

`c
tanh−1

(√
ZSC
ZOC

) (2.25a)

(2.25b)

The cable input impedances can be measured with an impedance analyzer.

Some precautions need to be taken on the impedance measurement of unshielded cables.

They cannot be characterized in a bundle, or superpose themselves, as the stray capacitance and

magnetic couplings between di�erent portions of the cable would compromise the determination

of the p.u.l. capacitance and inductance. Therefore, it is recommended to set up the cable over a

non-conductive surface. However, a long extended cable may increase the common-mode currents

circulating in the measurement circuit and even behave like an antenna, if it is open-ended and

longer than λ/4 (alternatively: f > v/4`c), point from which it behaves as a poor half-wave

dipole.

These problems are exclusive to unshielded cables, as the geometry of shielded cables prevent

them from inducing currents in nearby conductors, or behave as antennas.

The following subsections bring some considerations on how to determine a good length for

the sample cable used in parameter identi�cation and how to mitigate the common mode in the

impedance measurements.

2.3.b-i Choice of the sample cable length

The length of the sample cable used for the identi�cation input impedance measurements has to

be carefully chosen for unshielded cables. Indeed, long unshielded cables can behave as bipolar
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antennas when open-ended, capturing electromagnetic signals even if its conductors are not

spaced from each other. This phenomenon would not be signi�cant for shielded cables, because

their geometry does not favor radiation.

Therefore, if long sample cables are to be used in the parameter assessment, the input

impedance measurements must be e�ectuated in an electromagnetically clean environment, e.g.,

a Faraday cage or an anechoic chamber. A second problem arises with the need of performing the

measurements inside a metallic cage: the cable cannot be placed too close to any metallic surface

during the measurements, otherwise the Foucault current induced in the metallic surface and

the stray capacitance between the cable and the surface will interfere with the input impedance

measurements, introducing a systematic error in the parameter assessment. Therefore, when the

cable is placed in a metallic cage, it must be suspended by insulating supports.

To verify the possibility of identifying the cable parameters with a long sample cable, the

input impedance measurements were performed inside an anechoic chamber for four sample cables

of di�erent lengths: 6m, 12m, 24m, and 3 6m. All the sample cables were kept apart from the

metallic ground and walls, supported by insulating materials. The results are presented in Fig.

2.10.

(a) 6m long cable (b) 12m long cable

(c) 24m long cable (d) 36m long cable

Figure 2.10 � Two-conductor cable characteristic impedance identi�cation for di�erent lengths

The �gures 2.10 show distortions on the characteristic impedance absolute value, around the

sample cables resonance and antiresonance frequencies. The largest distortion can be observed

in Fig. 2.10a, it corresponds to the smallest of the chosen sample cables. Table 2.1 resumes the

relative distortion of the characteristic impedance absolute value, relative to the experimental

medium value for each cable. It shows that distortion is reduced for longer cables.

The characteristic impedance is calculated with Zc =
√
ZOCZSC , from (2.25). The distortion

in its absolute value occurs around the cable resonance, because the resonances in ZOC do not

take place at the exact same frequency as the antiresonances in ZSC , and vice-versa. The slight

di�erence on the cables natural frequencies is due to the way the cable extremity was short



2.3. Two-conductor cable parameter identi�cation 21

Table 2.1 � Characteristic Impedance Distortions Due to Resonance

Cable length Average |Zc|
Min|Zc|
Av|Zc|

Max|Zc|
Av|Zc|

6m 114.12Ω 6.53% 7.62%

12m 114.23Ω 4.02% 3.98%

24m 114.64Ω 3.04% 2.43%

36m 114.01Ω 2.75% 2.12%

circuited. To short-circuit the cable, the extremities of the conductors are striped and twisted

together, while for the open-ended cable these striped extremities are kept apart. That makes

the e�ective cable length di�erent for short-circuited and open-ended impedance measurements,

what changes the cable natural frequencies.

Even though these natural frequencies di�erence is not big, it may cause important distor-

tions on Zc. Indeed, the characteristic impedance is the geometric mean value between the two

impedances (SC and OC), and, around the cable natural frequencies, the impedance absolute

values are either very high or very low. It may be easier to visualize this e�ect by taking the

logarithm of the characteristic impedance expression:

log(Zc) =
1

2
(log(ZSC) + log(ZOC)) (2.26)

Because log(Zc) can be considered constant along the frequency, when the value of either

log(ZSC) or log(ZOC) is very high for a given frequency, while the other is very low for a slight

di�erent frequency, the distortion be observed in Zc can be important even for a really small

di�erence in frequencies of maxima and minima of ZOC and ZSC .

The simplest way to avoid this distortion is to choose a cable sample considerably shorter than

a quarter of the smallest wavelength in the measurement band (`c � λ/4), so that resonance

will not occur [19] during the identi�cation measurements. However, if such length is small

when compared to the measurement circuit, it may compromise the accuracy of the parameter

identi�cation, and the cable sample should be longer.

If the use of a long sample cable is unavoidable, long enough to resonate in the identi�cation

frequency band, some precautions must be taken for unshielded cables:

• Any cable longer than λ/4, for the smallest wave length λ in the frequency band, may

capture the electromagnetic noise of the media: the input impedance measurements must

be e�ectuated inside a Faraday cage;

• The cable must be placed away from the metallic surfaces, suspended by insulating sup-

ports;

• The cable cannot superpose itself;

• The short circuit at the cable extremity must be carefully done to not substantially change

the total cable length. For example, it can be done with massive copper plates.

Naturally, the longer the sample cable, less the quality of the short circuit will interfere in

the results, as shown in table 2.1.
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In this work, the frequency band is limited at 30MHz, and the parameter assessment mea-

surements were e�ectuated with sample cables about 1m long, so resonance does not occur. The

short circuit was made with the conductors extremities striped and twisted together, and pressed

between two cooper plates.

2.3.b-ii Common-mode mitigation

In any impedance analyzer measurement, common-mode currents may �ow outside of the mea-

surement circuit, through its stray capacitance [21]. In such cases the impedance measurement

is subjected to a systematic error. The fact that the cable under test has to be minimally long

enhances the circulation of common-mode currents. The e�ects of the circulation of common

mode during the parameter identi�cation measurements will be shown in section 2.4.

The present section discusses common-mode mitigation methods, demonstrating the impre-

cision observed on the measured impedance value due to common-mode circulation, at the same

time it introduces the proposed solution: use a balun transformer as interface between the

impedance analyzer and the device under test (DUT), while the analyzer itself is powered through

a LISN (Line Impedance Stabilization Network).

Common-mode mitigation with ground plane: In any impedance analyzer measurement,

common-mode currents may �ow outside of the measurement circuit, if there is a conductor

nearby. The common-mode current circulates through the stray capacitances between the mea-

surement circuit and the external conductor, as illustrated in Fig. 2.11.

Source: [21] page 3-15

Figure 2.11 � Example of common-mode measurement corruption due to common-mode current
[21]

The solution proposed by the Impedance Analyzer Handbook [21] is to insert a metallic plate

connected to the outer conductors of the impedance analyzer output, as shown in Fig. 2.12. This

way, the common-mode currents will be trapped by the metallic plate, and close a loop through

the analyzer mass, having no in�uence in the impedance measurement.

However, such a solution is troublesome for the cable parameter identi�cation. As aforemen-

tioned, the cable cannot be placed too close to a conducting surface, because in that case it would

induce Foucault currents in the surface, interfering with the determination of the actual p.u.l.
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Source: [21] page 3-15

Figure 2.12 � Solution to avoid common-mode-due error [21]

inductance of the cable. Moreover, the stray capacitance between the cable conductors and the

plate would interfere with the determination of the actual p.u.l. capacitance.

Therefore, another common-mode mitigation method is needed.

Common-mode mitigation with balun: The balance-to-unbalanced transformer, or balun,

as it is known, is a high frequency transformer able to balance voltage signals by connecting the

secondary winding middle point to the mass (cf. Fig. 2.13).

V1

−V1
2

V1
2

ZL

V1
2

imc
−V1

2

imc

Figure 2.13 � Common-mode analysis of balun-isolated measurement

Having balanced voltages in a cable input generates identical common-mode currents in oppo-

site directions, thus mitigating common mode during impedance measurement. This is shown in

Fig. 2.13. The need to balance voltage on unshielded cables in order to guarantee the validity of

the transmission line model has been mentioned since 1950 [19]. It is important to note that the

common-mode currents from each conductor only cancel each other if the cable is also balanced,

i.e., the stray capacitances between the conductors and mass are identical.

To demonstrate these assertions, an experiment was designed to evaluate the common mode,

consisting in cable input impedance measurements performed with and without balun in the two

setups listed below. In both con�gurations, cable and impedance analyzer were on a wooden

table.
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1. Con�guration �A�: a recommended set for measurement, no other device, cable or metallic

surface is closer than 50cm to the cable under test (Fig. 2.14.);

2. Con�guration �B�: a common-mode enhancing con�guration, the cable was disposed so that

it is parallel to the feeding cable of the impedance analyzer, with its extremity close to the

analyzer electrical plug (Fig. 2.15).

E4990A

Figure 2.14 � Con�guration �A�: avoids common-mode circulation

E4990A

Figure 2.15 � Con�guration �B�: common-mode enhancing con�guration

This experiment was performed on a two-conductor cable composed of stranded copper wires

of section 0.75mm2 surrounded by PVC sheaths, refer to Fig. 2.16 for its cross-section.

Source: http://www.caledonian-cables.co.uk

Figure 2.16 � Cross-section of the two-conductor 0.75mm2 cable

The connections between the impedance analyzer, balun transformer and the cable under test

were made with printed circuit boards made in the laboratory, pictures of them are presented

in Fig. 2.17. These connectors were compensated with the impedance analyzer internal three-

measurements compensation (OPEN, SHORT, and LOAD) [21]. A study of the reliability of

the impedance analyzer compensation of the balun is presented on appendix E. As the lab-made

connectors are not certi�ed measurement adapters, the accuracy of the measurement is di�cultto

predict. Therefore, the results on this section allow conclusions on the measurement precision,

or repeatability, but not on its accuracy. The accuracy of the proposed experimental parameter

identi�cation protocol will be demonstrated in section 2.4.
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(a) Without balun (b) With balun

Figure 2.17 � E4990A adapter designed by the authors

The balun chosen for these measurements is the Minicircuits T6-4T. This experiment was

performed for the frequency band from 200 kHz, which is the lower limit balun in the printed

circuit (cf. appendix E), up to 30MHz, which is the upper limit of the LISN frequency band

(the LISN will be used in the next experiment).

The cable input impedance was measured for both con�gurations �A� and �B� with a balun

in the interface between the impedance analyzer and the cable using the connector presented in

Fig. 2.17b, and without a balun using the connector shown in Fig. 2.17a.

The di�erences between the impedance measured on the con�gurations A and B, relative to

the impedance measured in con�guration A, were calculated for every frequency point in which

the impedance measurement was carried out (1000 points). Table 2.2 resumes the maximal

relative di�erence values, for a short-circuited and an open-ended cable, and the frequency to

which each maximum occurs.

Table 2.2 � Maximum di�erence between the impedance measured using con�gurations �A� and
�B�, relative to the measurement in con�g. �A�

Short circuit Open end

Maximal
relative
di�erence

Frequency of
the maximal
di�erence

Maximal
relative
di�erence

Frequency of
the maximal
di�erence

With balun 0.79% 10.7MHz 1.2% 29.6MHz

Without balun 5.8% 30MHz 2.7% 2.4MHz

The di�erences between the measurements in con�gurations �A� and �B� without balun shows

that common-mode current is e�ectively circulating in the measurement circuit.

Moreover, the di�erence between the two measurements is smaller when performed with a
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balun. It proves that the balun mitigates the common mode.

Part of the disparities observed in table 2.2 may be due to external interference, conducted

by the impedance analyzer feeding cable. To verify this possibly, this experiment was repeated

with the impedance analyzer fed through a LISN.

Impact of LISN �ltering: The experiment described above was repeated, but using a LISN

as a �lter in the impedance analyzer input. The cable input impedance was measured with and

without balun in con�gurations �A� and �B�, and the di�erences between the measured impedance

are resumed in table 2.3.

Table 2.3 � Maximum di�erence between the impedance measured in con�gurations A and B,
relative to the impedance measured in con�g. �A�; impedance analyzer powered through a LISN

Short circuit Open end

Maximal
relative
di�erence

Frequency of
the maximal
di�erence

Maximal
relative
di�erence

Frequency of
the maximal
di�erence

With balun 0.42% 28.8MHz 0.39% 30MHz

Without balun 4.8% 29.5MHz 1.18% 28.7MHz

The previous conclusion can be con�rmed: the balun mitigates the common-mode signals.

Furthermore, the introduction of a LISN reduces the di�erences between the impedance measured

in con�gurations �A� and �B� in all cases, with and without balun. It proves that interference

conducted by the analyzer feeding cable was also present in the former experiment.

2.3.b-iii Conclusion on the cable parameter identi�cation with impedance analyzer

In conclusion, it is recommended to perform the impedance measurements for the cable parameter

identi�cation taking into account the following rules:

• A balun should be used in the interface between the sample cable and the impedance

analyzer, to mitigate common mode;

• The analyzer energy input should be �ltered, with a LISN for example, to avoid perturba-

tions from the building network;

• The short circuit should be carefully performed, preferably with massive copper terminals;

• It is better to avoid the sample cable resonances during the input impedance measurements,

by choosing a small cable. If the sample cable resonates, additional recommendations apply:

� The measurement should be performed inside a metallic cage;

� The cable should be placed away from the metallic surfaces, suspended by dielectric

materials.

The impedance analyzer parameter identi�cation gives a couple Zc, γ for each frequency

point in which the impedance measurement is e�ectuated. An interpolation of the results is

enough to estimate these parameters for the other values in the frequency band.



2.4. Frequency-domain model experimental validation 27

The measurements for the cable parameter identi�cation along this document were systemat-

ically performed with the maximum number of frequency points allowed by the Keysight E4990A

Impedance Analyzer: 1600 frequency points.

2.4 Frequency-domain model experimental validation

The impedance analyzer-based parameter identi�cation method presented in the former section

provides the cable parameters γ and Zc, which can then be inserted on the two-conductor cable

frequency domain simulator described in section 2.2.a.

The proposed parameter identi�cation will be validated with two experimental validation

setups: the �rst based on the measurement of the resonance-due voltage ampli�cations along the

line, and the second based on the input impedance measurement. Both setups use cables longer

than the identi�cation cable sample.

The cable length for the validation setups was chosen so resonance will occur in the frequency

band from 1MHz up to 10MHz. As resonance is a phenomenon quite sensitive to the cable

parameters, a resonant cable con�gures a worst-case scenario for validation purposes: it is at the

resonance that the inaccuracy of the parameters will be the most visible.

The cable chosen for these validation experiments is a two-conductor cable composed of

stranded copper wires of section 0.75mm2 with outer PVC sheaths, refer to Fig. 2.18 for its

cross-section.

Figure 2.18 � Cross-section of two-conductor 0.75mm2 cable

A 1m long sample of this cable was used for the parameter identi�cation measurements. Two

sets of identi�cation measurements were performed:

1. With balun, with the connector built in the laboratory (cf. Fig. 2.17b), and with the

impedance analyzer powered through a LISN, as described in section 2.3.b;

2. Without balun, with the standard connector Keysight 16047E in a common-mode en-

hancing con�guration: sample cable next to the impedance analyzer feeding cable, its

extremity close to the analyzer electric outlet (Fig. 2.15).

The parameters of the two-conductor cable of section 0.75mm2 are given in section 2.4.c.

The resonance-based validation experiment and the input impedance based validation exper-

iment are described in the two following sections.

2.4.a Resonance-based experiment validation

The resonance-based experiment consists in the voltage measurement, for di�erent excitation

frequencies, at the position of the line x = xM where the maximum voltage occurs once resonance

is established. Fig. 2.19 shows the schematic of the experiment.
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Function
generator

Push-pull
ampli�er −

+Vs

V ZL

xM x`c

Figure 2.19 � Schematic of the validation resonance-based experiment

The voltage measurement was performed with a battery-powered scope, to avoid alternative

current paths through the scope's feeding cable. It can be argued that the scope is not su�ciently

precise for these measurements, but its use remains interesting because a conversion of the

frequency domain results to time domain will be discussed and re-validated in chapter 4, and

then the measurements of the voltage along the cable with a scope will be indispensable.

In an open-ended line, at any frequency, the maximum voltage is located at the line end-

point xM = `c. For the short-circuited line, the position of the maximum voltage changes with

frequency, but for the �rst resonance, it occurs at the line midpoint xM = `c/2. As the measure-

ment position x = xM remained �xed for a given load, the maximum voltage was not necessarily

measured for frequencies di�erent from the cable natural frequencies.

In order to maximize voltage ampli�cation, source and load re�ection coe�cient absolute

value must be maximal, i.e. |Γ| = 1. To ful�ll these conditions, �rstly, in the load extremity, the

experiments were performed either with a short-circuited or an open-ended line, and secondly,

in the source extremity, an AB-class push-pull ampli�er with closed loop was used to emulate a

voltage source with very low output impedance.

The probe input impedance Zscope was taken into account in the theoretical model because

it slightly interferes on the measured voltage. Zscope was measured with the impedance analyzer,

and it is plotted in Fig. 2.21. The probe mass was connected with the spring connector adapted

to it, shown in Fig. 2.20, to reduce the area of the loop of the mass connection. The cable and

the scope were suspended with insulating supports to minimize common-mode currents during

this experiment.

Figure 2.20 � Connection of the voltage probe along the line

The resonance experiment was performed with a two-conductor cable of length `c = 11.87m,

with conductors of section 0.75mm2. The cable and the scope were suspended with insulating

supports, to mitigate common-mode currents.

Fig. 2.22 resumes the theoretical calculations performed for this validation, detailing the in-

puts needed for the theoretical calculation of V (xM , f). As aforementioned, two cable parameter

sets are used: with and without balun.

To recall, `c is the cable length, xM is the voltage measurement point, Zscope is the input
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Figure 2.21 � Voltage probe input impedance

Zc(f [n]), γ(f [n])
With balun,

Without balun

Calculation of
V (xM , f [n])

`c

xM

Zscope

ZL, VS

V (xM , f [n])
With balun,

Without balun

Figure 2.22 � Frequency domain voltage simulation

impedance of the scope probe, ZL is the load connected at x = `c (open and short circuit

in this study), VS is the input voltage, purely sinusoidal, of variable frequency, and f [n] is the

discretization of the variable f frequency, a vector containing the points to which the calculations

are performed.

The results of the validation experiment are presented in Fig. 2.23. Both theoretical and

experimental data are plotted in terms of voltage ampli�cation, i.e. V (xM )/V (0).
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(a) Short-circuit (b) Open circuit

Figure 2.23 � Input impedance comparison

It is clear that the predicted resonance frequency and amplitude are closer to the experimental

results for the balun isolated identi�cation measurements; table 2.4 presents the relative errors

between the theoretical and experimental results for both cases.

Table 2.4 � Frequency-Domain Model Resonance Frequency and Amplitude Relative Errors

With balun Without balun

Amplitude Frequency Amplitude Frequency

Open-ended 5.5% 0.03% 20% 5.2%

Short-
circuited

1.1% 1.2% 1.8% 2.9%

The experimental parameter identi�cation with impedance analyzer described in section 2.3.b,

following the experimental protocol recommended by 2.3.b-ii, is validated by this experiment.

2.4.b Input Impedance Validation

The second validation experiment consists in the input impedance measurement of a long cable,

longer than the sample cable used for the parameter identi�cation. The same cable from the

former section was used, two-conductor of section 0.75mm2 and 11.87m long, cf. Fig 2.18 for

its cross-section.

The input impedance was measured with the long cable open-ended and short-circuited. The

measurement was preformed inside a Faraday cage, to avoid radiated electromagnetic interfer-

ence, with the cable suspended over cardboard boxes. The balun Minicircuits T4-6T (Fig. 2.17b)

was used in the interface between impedance analyzer and cable, to �lter the common-mode cur-

rents that may circulate through the metallic walls of the cage.

The theoretical impedance was predicted from equation (2.23), using two sets of parameters

obtained with and without balun. Fig. 2.24 shows a practical schematic with the inputs and

output of the theoretical cable input impedance calculation.

The theoretical results are plotted over the measured input impedance in Fig. 2.25

This validation experiment conducts to the same conclusion as the former: for the parameter

identi�cation without balun, the common mode on input impedance measurement compromises
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Zc(f [n]), γ(f [n])
With balun,

Without balun

Z(0) =

Zc
ZL + Zc tanh(`cγ)

Zc + ZL tanh(`cγ)

`c

ZL

Z(0, f [n])
With balun,

Without balun

Figure 2.24 � Theoretical input impedande caculation

(a) Short-circuit (b) Open circuit

Figure 2.25 � Input impedance comparison, theoretical calculations using parameters obtained
from identi�cation with and without balun

the accuracy of the model. This error is reduced when the parameters issued from the identi�-

cation with balun are used.

However, the use of a balun also introduces a measurement error, as its compensation by the

analyzer is not perfect. It is possible that part of this error comes from �aws in the impedance

analyzer connectors built in the laboratory. The compensation of these connectors using the

OPEN, SHORT and LOAD compensation measurements proposed by the impedance analyzer is

not ideal for a large frequency band, this is addressed in annex E. In any case, making the con-

nectors in the laboratory was the only option, because the production of commercial impedance
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analyzer terminals with balun (e.g. 16314A, 16315A) was discontinued in 2006 ( [22]).

The error introduced by the balun can be veri�ed by comparing its results to those using

a parameter identi�cation without balun in a con�guration where no common mode circulates.

Such a con�guration was achieved by carrying out the input impedance measurements without

balun as follows:

• The sample cable was put away from any device or metallic surface, placed over a wooden

table;

• The impedance analyzer was fed through a LISN;

• The laboratory-made connector in Fig. 2.17a was used;

The identi�cation input impedance measurements with balun were repeated, in the same

con�guration. The comparison between the long cable input impedance using the parameters

from both of these identi�cation measurement setups is presented in Fig. 2.25.

(a) Short-circuit (b) Open circuit

Figure 2.26 � Input impedance comparison, theoretical calculations using parameters obtained
from identi�cation with or without balun, identi�cation without balun on ideal con�guration

It can be seen that in this case the results using the parameter identi�cation without balun are

closer to the experimental data. It is proven that, for our speci�c con�guration, no common-mode

currents were circulating in the measurement circuit despite the absence of the balun, making

the identi�cation without balun more accurate because of the absence of the measurement errors

introduced by the balun itself. The results in section 2.3.b-ii prove that a balun is necessary to

guarantee the precision of the measurement, as it is usually di�cultto predict the common-mode

levels in any experimental setup. The balun guaranteed the repeatability of the results even

under unfavorable con�gurations regarding the common-mode conducted emissions.

The results in Fig. 2.25 imply that the accuracy of the model could yet be improved if

the balun was dispensable in the identi�cation input impedance measurements. However, the
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balun is only not necessary when one can be sure that no common mode will circulate in the

identi�cation measurement setup, on the desired frequency band.

2.4.c Examples of cable parameters identi�cation

The experimental parameter identi�cation techniques presented in section 2.3 recommends the

use of a balun transformer. The problem of the balun is that its frequency band is limited. For

example, the balun Minicircuits T4-6T used in the previous results has a useful frequency band

from around 100 kHz up to 50MHz according to its data-sheet (refer to annex E for details on

the practical frequency band of the balun).

To characterize a cable for frequencies lower than 100 kHz, the identi�cation input impedance

measurements had to be performed without balun. But, in this case, the balun is e�ectively

dispensable, because in this setup the common mode is negligible at these frequencies.

Also, it is recommended to perform the low frequency parameter identi�cation measurements

with a considerably long cable, so the small values of r and g in low frequency are more accurately

measured.

In the general case, to obtain the parameters of the cables of interest in a wide frequency band,

including on direct current (DC), the three following setups for the identi�cation measurements

were combined:

1. For frequencies from flim up to 30MHz: measurements using an 1m long cable sample

following the protocol in section 2.3, i.e., with a balun in the interface between the cable and

the impedance analyzer, with LISN as line �lter for the analyzer, without the protection

of a Faraday cage because the length of the cable sample is a order of magnitude smaller

than λ/4, i.e. there is no radiation phenomenon;

2. For frequencies lower than flim, DC excluded: measurements using a 12m long cable

sample, extended on the �oor, without balun and without LISN, on a non-protected en-

vironment because, again, the cable is too short to act as an antenna in this frequency

band.

3. In DC: The p.u.l. resistance was obtained from a series of associated DC measurements of

current and voltage in a 12m long conductor. The p.u.l. conductance was approximated

by its value at 20 Hz, measured with the impedance analyzer.

The frequency flim corresponds to the frequency of changing between the high and low

frequency identi�cation measurements. The parameter identi�cation frequency band is limited

on 30MHz because it is the upper limit of the LISN available for these measurements.

The p.u.l. parameters can be obtained from the characteristic impedance Zc and the propa-
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gation coe�cient γ with the following equations:

r =R{γZc}

l =
1

jω
I{γZc}

g =R{ γ
Zc
}

c =
1

jω
I{ γ
Zc
}

(2.27a)

(2.27b)

(2.27c)

(2.27d)

(2.27e)

A convenient frequency limit flim, where the change between each of the characterization

measurements occurs, has to be determined for each cable under study.

For example, considering the case of the two-conductor cable of section 0.75mm2, its cross-

section described by Fig. 2.27.

Source: http://www.caledonian-cables.co.uk

Figure 2.27 � Cross-section of the two-conductor 0.75mm2 cable

From the results presented in section 2.4.b, it is demonstrated that a self input impedance

measurement of the 1m long sample cable without balun yielded theoretical results closer to

the validation experimental data than the parameter identi�cation with balun. For this reason,

in this speci�c case, the input impedance measurements without balun will be used to model

this cable, as it has been proven that they are more precise. It is important to recall that

the parameter identi�cation input impedance measurements may contain signi�cant errors if

common mode circulates in the measurement circuit, and it has been proven in section 2.3.b-ii

that the balun mitigates the common mode. Therefore, in the general case, the use of a balun is

recommended.

In Fig. 2.28, the p.u.l. parameters of this cable obtained with the high frequency measure-

ments of an 1m long sample cable, without balun, are superposed with the parameters obtained

with the low frequency measurements in a 12m long sample cable. In this �gure, it can be seen

that the parameters from the two identi�cation measurements do not coincide exactly, what will

cause discontinuities in the wide band parameters of the cable. Also, for this cable, the frequency

flim = 300 kHz is the change frequency that will generate the smallest discontinuities between

the low and high frequency parameter identi�cation.

The parameters of the cable of section 0.75mm2 are presented in Figs. 2.30 and 2.31 for a

wide frequency band, using the frequency limit just de�ned.

The cable parameters obtained for a two-conductor cable of section 2.5mm2, its cross-section

is presented by Fig. 2.29, are plotted in Fig. 2.32 and Fig. 2.33. The limit frequency chosen for

the parameter identi�cation of this cable is flim = 600 kHz.

For both cables it can be seen that the propagation speed v increases with frequency, according
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(a) p.u.l. resistance (b) p.u.l. inductance

(c) p.u.l. conductance (d) p.u.l. capacitance

Figure 2.28 � Per-unit-length parameters of the 0.75mm2 cable

Stranded copper wire
Elastometer insulation
Elastometer sheath

Figure 2.29 � Cross-section of the two-conductor 2.5mm2 cable

to the theoretical behavior described in Section 2.2.b, but it does not seem to converge to a

constant value.

The attenuation constant α has a drastically di�erent behavior. This is due to the fact

that α depends heavily on the loss-related parameters r and g, which change considerably with

frequency. Indeed, this behavior is expected: the attenuation is a direct consequence of the cable

losses. On the other hand, the propagation speed v depends principally on l and c, which have

smaller variations with frequency.

The characteristic impedance in both cases has a small phase in the analyzed frequency-band,

and its absolute value doesn't change drastically; both of these characteristics are in agreement

with the theoretical prediction in 2.2.b
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(a) Characteristic impedance (b) Propagation constant

Figure 2.30 � Parameters of the cable of section 0.75mm2

(a) Resistance (b) Inductance

(c) Conductance (d) Capacitance

Figure 2.31 � Per-unit-length parameters of the cable of section 0.75mm2
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(a) Characteristic impedance (b) Propagation constant

Figure 2.32 � Parameters of the cable of section 2.5mm2

(a) Resistance (b) Inductance

(c) Conductance (d) Capacitance

Figure 2.33 � Per-unit-length parameters of the cable of section 2.5mm2
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2.5 Numeric Analysis of Resonance Phenomena

As has been discussed in chapter 1, resonances on the building cables can be dangerous for the

devices connected to its network. These resonances are trending to grow more dangerous with

the advent of the wide band gap semiconductors technology, allowing lower switching delays and,

as a consequence, harmonics of higher frequencies circulating in the building cabling.

The resonant behavior of a two-conductor cable was exempli�ed in section 2.4. To study this

subject thoroughly, it is necessary to understand the resonance mechanism, and its conditions to

occurrence. It is di�cult to determine analytically the conditions under which resonances take

place in lossy lines, as a consequence, qualitative and numerical analysis of the phenomena are

developed in the next sections.

The next section, 2.5.a, describes the resonance of lossy lines short-circuited or open-ended,

after that the resonance with a generic load ZL connected to its extremity is studied in section

2.5.b. In section 2.5.c studies the di�erence between the transmission line resonance and the LC

resonance of a model without propagation.

2.5.a Open-ended and short-circuited resonances

Consider the simpli�ed schematics in Fig 2.34. In this �rst approach, we will study the resonant

behavior of this cable for the cases where the load ZL is either a short circuit (SC) or an open

end (OC).

ZL−
+VS V (x)

I(x)

`c0 x

Figure 2.34 � Schematics for the resonance analysis

The resonance occurs because of the superposition of the traveling waves on the line, re�ected

on the line extremities. The propagating waves interfere constructively, thus amplifying the

injected signal, if their frequency corresponds to one of the cable natural frequencies. With these

frequencies, the line input impedance Z(0) assumes its minimum values.

The input impedances of the two-conductor transmission line for these cases is de�ned on

(2.24), and repeated here for convenience:

ZSC = Zc tanh(`cγ)

ZOC = Zc coth(`cγ)

(2.28)

(2.29)

First, the short-circuited input impedance ZSC is analyzed. The complex function �tanh(c)�

has the roots c = jnπ ∀ n ∈ Z. Therefore, the input impedance of a short-circuited line can only

be zero for the lossless line case (α = 0, where γ = α + jβ), with β`c = nπ. This is true if the

line is excited at the frequencies fSC in (2.30a), in other words, when the line length is multiple
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of half of a wavelength (2.30b).

fSC =v
n

2`c
∀ n ∈ Z

`c =n
λSC

2
∀ n ∈ Z

(2.30a)

(2.30b)

For a lossy line, α 6= 0 and �tanh(c)� cannot be zero. However, its minima remain on the

points of the complex plane where I{c} = jnπ ∀ i ∈ Z. Therefore, the resonance frequency of a

lossy short-circuited line is the same as for the lossless line (2.30a).

The position of the voltage and current maxima on a short-circuited line varies with n. In Fig.

2.35 we plotted the voltage and current envelopes along an 11m long line for if n = 1, 2, 3, using

the parameters of the two-conductor cable of section 2.5mm2 (cf. Fig. 2.33 for its parameters)

and injecting a sinusoidal voltage of amplitude 1V at the line input.

(a) Voltage enveloppe (b) Current enveloppe

Figure 2.35 � Voltage and current envelopes of a short-circuited resonant line

Table 2.5 � Two-conductor 2.5mm2 cable parameters, at the resonance frequencies of the short-
circuited line (cf. Fig. 2.33)

n f (MHz) Zc (Ω) γ (1/m)

1 6.5 71.8 + j0.64 0.012 + j0.28

2 13.0 72.2 + j1.06 0.020 + j0.56

3 19.6 72.6 + j1.28 0.028 + j0.83

The current maxima take place in the line positions where the voltage is minimum, and vice-

versa. That is easily explained with the energy conservation law: the instant power remains the

same for any position x, except for the dissipation of Joule losses, and therefore the current must

reach a minimum when the voltage ampli�cation is maximum.

As the line is short-circuited, a current maximum will always take place at x = `c. Also,

the voltage at this extremity will always be V (`c) = 0, a minimum. The voltage and current

envelopes behave as sinusoidal functions, therefore their maxima take place
λ

4
away from their

minima, as illustrated by Fig. 2.35. For the �rst harmonic n = 1, `c =
λ

2
and the maximum

voltage ampli�cation occurs
λ

4
away from the short-circuited extremity, at x =

`c
2
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Now, the open-ended input impedance ZOC is analyzed. The complex function �coth(c)� has

the real roots c = j(
π

2
+ nπ) ∀ n ∈ Z. Therefore, the input impedance of an open-ended line is

null if α = 0 and β`c =
π

2
+ nπ, what is true for lines excited at the frequencies fOC in (2.31a),

corresponding to the wavelength relation (2.31b).

fOC =v

(
1

4`c
+

n

2`c

)
∀ n ∈ Z

`c =
λ

4
+ n

λ

2
∀ n ∈ Z

(2.31a)

(2.31b)

Again, for the lossy line (α 6= 0), the null impedance is not possible, but the minima of the

function �coth(c)� remain on the points of the complex plane where β`c =
π

2
+ nπ. Therefore,

the natural frequency of a lossy open-ended line are the same as for the lossless case (2.31a).

The envelopes of the voltage and current along an 11m long line are drawn for n = 1, 2, 3 in

Fig. 2.36, with the parameters of the two-conductor cable of section 2.5mm2. The maxima of

the voltage envelope depend on the rang of the harmonic, but a voltage maxima it will surely

occur at x = `c, because I(`c) = 0.

(a) Voltage (b) Current

Figure 2.36 � Voltage and current envelopes of an open-ended resonant line

Table 2.6 � Two-conductor 2.5mm2 cable parameters, at the resonance frequencies of the open-
ended line (cf. Fig. 2.33)

n f (MHz) Zc (Ω) γ (1/m)

1 3.2 71.54 + j0.059 0.0065 + j0.14

2 9.3 72.04 + j0.89 0.016 + j0.41

3 16 72.42 + j1.17 0.024 + j0.68

By de�nition, the maxima of function �tanh(c)� occur at the same points of the minima of the

function �coth(c)�, and vice-versa. The same behavior is observed between the short-circuited

and open-ended line input impedances: for the frequencies where the open-ended line resonates,

the short-circuited line will be at its maximum, i.e., an anti-resonance; and vice-versa.

The input impedance of a resonant line can be derived from (2.28) and (2.29). For example,
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the short-circuited input impedance ZSC at the cable natural frequencies is:

ZSC = Zc tanh(α`c + jnπ) = Zc tanh(α`c)

If α`c is small, the input impedance of the short-circuited resonant line can be approximated

by:

Zres = Zcα`c (2.32)

With a similar approach it can be deduced that the input impedance of the open-ended

resonant line is also Zres (2.32).

The maximum voltage ampli�cation can be calculated for both cases:

V (`c,
v

4`c
)|ZL−>∞ = Vs cosh(α`c + j

π

2
) +

Vs
Zcα`c

Zc sinh(α`c + j
π

2
) =

= Vsj

(
sinh(α`c) +

1

α`c
cosh(α`c)

)
V (`c,

v

2`c
)|ZL=0 = Vs cosh(α`c + jπ) +

Vs
Zcα`c

Zc sinh(α`c + jπ) =

= −Vs
(

cosh(α`c) +
1

α`c
sinh(α`c)

)

(2.33a)

(2.33b)

The dependence of the resonance ampli�cation on the cable losses introduced in section 1.2

can now be con�rmed. By applying α = 0 in these expressions, it can be shown that the voltage

amplitude tends to in�nity for lossless lines. Moreover, Fig. 2.37 shows that by computationally

reducing the attenuation constant α of the two-conductor cable of section 2.5mm2 to α/2 and

α/5, with the cable short circuited, the resonance amplitude is higher.

Figure 2.37 � Voltage envelope in function of frequency for the short-circuited two-conductor
cable of section 2.5mm2, with variations on the attenuation constant α

The fact that the losses reduce the resonance ampli�cation explain the di�erent amplitudes

observed in Figs. 2.35 and 2.36. As aforementioned, the losses of the cable increase with fre-

quency, due to skin e�ect and the non-ideal behavior of the conductor insulation. Therefore,

the amplitude of the �rst harmonic resonances (n = 1) are higher because the losses at the �rst

resonance frequency are lower.

For the same reason, the ampli�cation of the �rst resonance for the open-ended cable is higher
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than the ampli�cation for the �rst resonance in a short-circuited cable. Indeed, for the two-

conductor cable of section 2.5mm2, the �rst open-ended resonance occurs at fOC = 3, 2MHz,

while the �rst short-circuited resonance occurs at fSC = 6, 5MHz; these values will be recalled

in the next section

2.5.b Resonance in function of the load

To analyze the cable resonance in function of the load impedance, the same system described in

the previous section, repeated in Fig. 2.38 for convenience, was studied. The cable is 11m long,

having the parameters of the two-conductor cable of section 2.5mm2 plotted in Fig. 2.33. The

source is considered ideal, i.e., with null output impedance, because it represents the worst case

for the resonance phenomena: the traveling waves in the cable are completely re�ected at x = 0.

ZL−
+VS V (x)

I(x)

`c0 x

Figure 2.38 � Schematics for the resonance analysis

The resonance behavior of the system in Fig. 2.38 is analyzed with a numerical approach. To

that end, multiple simulations of this system were performed, each for a di�erent load impedance

ZL. The load is de�ned as ZL = A+ jB, and has logarithmic scaled values in the ranges listed

in table 2.7. In this table are also listed the range of values in which the frequency of the source

VS was varied, also logarithmic scaled, as well as the positions x to which the variables were

calculated.

Table 2.7 � Range of values used in the numerical analysis of the resonance

Variable Range Number of points Scaling

A [0, 100] kΩ 402 log

B [−100, 100] kΩ 402 log

f [0.1, 10]MHz 5000 log

x [0, 11]m 23 linear

The maximum voltage Vmax for each pair (A,B) among the di�erent combinations of f and

x was stored, along with the resonance frequency fmax that originated it, and the position xmax
where it occurred.

The results are presented in Figs. 2.39 to 2.41. In the �rst �gure (2.39), the maximum voltage

Vmax is plotted over the AxB plane. In Fig. 2.40, the frequency to which the maximum voltage

occurred fmax is plotted. In Fig. 2.41, the position xmax in which the maximum voltage Vmax
takes place, for a line excited at frequency fmax, is plotted.

The �gures were plotted in logarithmic scale. To make the negative part of the imaginary

part B visible, the �gures were split in two: One with the positive values of B, and other with
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its negative values.

(a) Positive B

(b) Negative B

Figure 2.39 � Maximum voltage in function of ZL = A+ jB, positive and negative parts of B

The surface in Fig. 2.39 is smooth, tending to 1 where A = |Zc| and the absolute value of B

is low. Indeed, if ZL = Zc, the termination of the line is matched, and as a consequence there

are no wave re�ections nor resonance ampli�cations.

Furthermore, the voltage ampli�cation increase for high values of A and B, i.e., when ZL
tends to an open circuit. It is interesting to note that the maximum ampli�cation occurs for a

speci�c value: B = −130 Ω and small values of A, i.e., a purely capacitive load.

In Fig. 2.40, the frequencies for which the maxima in Fig. 2.39 occurs are plotted. It

shows that for low values of A and B the resonance frequency is around 6.5MHz, the resonance
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(a) Positive B

(b) Negative B

Figure 2.40 � Resonance frequency in function of ZL = A+ jB, positive and negative parts of B

frequency of the short-circuited line. For high values of A and B, the resonance frequency drops

to 3.2MHz, the open circuit resonance frequency. This explains the higher voltage ampli�cation

for higher A and B; as the losses are smaller for 3.2Mhz than for 6.5Mhz.

For low values of B a discontinuity on the frequency surface is visible at A = |Zc|. For this
region the line is matched, and the resonance frequency is not de�ned.

The fall seen in the negative portion of B, while |B| increases, is a natural behavior of the

line. It will be further addressed below.

In Fig. 2.41, the position xmax along the line where the maximum voltage occurs is plotted

over the AxB plane. The same tendency of the previous surfaces is seen here: for low values

of A and B the resonance takes place at the middle of the line, the same position as for the

short-circuited line resonance. Meanwhile, for high values of A and B the maximum voltage is

at the end of the line, as for the open-ended line case.

The same discontinuity observed in Fig. 2.40 at ZL = Zc is present in this surface, because

without resonance ampli�cation, the position of maximum voltage is not de�ned.

The fall on the negative B plane for small A is also present here, as it was on the frequency

surface, and can be better explained now. The rupture happens in the point where the ampli-
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(a) Positive B

(b) Negative B

Figure 2.41 � Position of the maximum voltage in function of ZL = A+jB, positive and negative
parts of B

�cations at the end of the cable, which occur for lower frequencies, become less important than

the ampli�cations taking place around the middle of the cable, at 6MHz. The low frequencies

appearing just before the discontinuity correspond to wavelengths smaller than λ < 4`c, and the

voltage envelope doesn't assume its maximum value within the cable length. That is the reason

why the maximal ampli�cation doesn't take place for the lowest frequency: the wavelengths are

too long in this frequency band.

The ensemble of the �gures 2.39, 2.40 and 2.41 will be henceforth denominated �resonance

surface response�.

In the two following sections are provided examples on how to extract the desired information

from these surfaces. In 2.5.b-i the characterization of the resonant behavior of a cable for a given

load is described. In section 2.5.b-ii a load is chosen to give the desired resonant behavior in

a long cable. Other interesting analysis using the resonance surface response are performed in

appendix C, where the surfaces are calculated for di�erent types of cables, and for di�erent cable

lengths.
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2.5.b-i Characterizing the resonance behavior for a given load

Using these surfaces the resonance frequency for a given load ZL can be easily characterized, i.e.,

the frequency(s), the voltage ampli�cation, and its position can be determined. For example,

consider that the load in Fig 2.42 is connected at the extremity of the 2.5mm2 two-conductor

cable.

ZL =

54 µH

5,6 Ω10 nF

Figure 2.42 � The given RLC load

To characterize the cable resonance, �rst the evolution of the load with the frequency ZL(f)

must be plotted over the resonance frequency surface, as is done in Fig. 2.43.

Figure 2.43 � The intersection of the load impedance and the resonance frequency surface

There are two intersections between ZL(f) and the resonance frequency surface, what means

that resonance will occur at two di�erent frequencies, one at 714 kHz and the other at 6.56Mhz.

To determine the voltage ampli�cation and its position for each of the resonances, the (A,B)

pairs of the two intersections must be located in the voltage ampli�cation surface and the position

surface. This is done in Fig. 2.44

(a) Ampli�cation surface, B negative (b) Position surface, B negative

Figure 2.44 � Voltage ampli�cations and positions corresponding to the two intersections
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The characteristics of the two detected resonances are resumed in table 2.8.

Table 2.8 � Characteristics of the predicted resonances

Resonance frequency 714 kHz 6.56MHz

Ampli�cation of the input voltage (single harmonic) 8.4 7.6

Maximal ampli�cation position `c `c/2

2.5.b-ii Choose a load in function of the resonance behavior

On this second example of use of the resonance surfaces, a load will be chosen in function of a

desired resonance behavior. We want to determine a practical load that would allow the biggest

voltage ampli�cation due to resonance. The point of maximum ampli�cation is tagged in Fig

2.45.

Figure 2.45 � The maximum voltage ampli�cation possible due to resonance phenomena

The impedance value to which the desired voltage ampli�cation takes place is ZL = (0.0133−
j130.5)Ω. This choice was done for the biggest real part A possible, without considerably reducing

the maximal ampli�cation.

Such a load can be represented by the series association of a resistor and a capacitor, as

shown in Fig. 2.46. This con�guration was chosen so the capacitor losses are represented by the

resistance RL.

ZL =

RL

CL

Figure 2.46 � A possible load for the desired voltage ampli�cation

To determine the values of load components, the frequency in which the load must assume

the desired impedance value must be known. This information is extracted from Fig. 2.47a.

The RC series association must assume the value ZL = (0.0133 − j130.5) Ω at 2.154MHz.



48 2. Two-conductor cable frequency domain model

(a) Frequency surface, B negative (b) Position surface, B negative

Figure 2.47 � The resonance frequency and maximum ampli�cation position for the maximum
ampli�cation possible

That gives the following values for the load elements:

RL < 13, 3mΩ

CL = 566, 2pF

In a practical case, it would be di�cult to have a series resistance RL as small as required,

principally considering the scope of this work, where the load represents a device plugged some-

where in the building. Therefore, it is quite unlikely that the maximal voltage ampli�cation will

take place in a cable on an industrial cabling network.

2.5.c LC resonance versus transmission-line resonance

It is interesting to distinguish the transmission-line resonances due to propagation of waves in

the line from the simpler LC-circuit resonance, which may also take place between a long cable

and a reactive load.

To that end, consider the simpli�ed transmission line model in �gure 2.48, where the line is

represented with only one cell. This representation is valid while the cable length is small when

compared to the wavelength, i.e., the line is electrically short, whereas the transmission-line

model is valid for any frequency.

`cr `cl

`cc `cg ZL

Figure 2.48 � Representation of an electrically short line, with load ZL

The case of a 5m long cable is studied, with the load represented in Fig. 2.49 connected

to the line extremity. Suppose that the cable parameters are �xed with the frequency, with the
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following values:

r =0, 8Ω/m

l =0.57µH/m

g =213µS/m

c =73pF/m

ZL =

0,5mH

5Ω10nF

Figure 2.49 � The chosen load ZL

The input impedance of this line can be calculated, using the short line model, with:

Zshort = r`c + jωl`c +
ZL

ZL(g`c + jωc`c) + 1
(2.34)

On the other hand, the input impedance of the line can be calculated for a large frequency

band using the transmission line input impedance expression (2.23), repeated here for conve-

nience.

Z(0) = Zc
ZL + Zc tanh(`cγ)

Zc + ZL tanh(`cγ)
(2.35)

The impedances calculated with both expressions (2.35) and (2.34) are plotted in Fig. 2.50.

We can see that the two input impedance agree up to roughly 2.5MHz. At 3MHz the wave-

length satis�es λ/10 ≈ `c. Before this limiting frequency, one resonance and one anti-resonance

were correctly predicted by the short line model. This can be considered a simple LC circuit

resonance, as a model that does not take the wave propagation into account can predict it. On

the other hand, the resonances present on Z(0) for frequencies higher than 3MHz can only be

predicted by the complete model, being caused by the wave propagation on the transmission-line.

Figure 2.50 � Input impedance of the line under study

From Fig. 2.50 it can be concluded that even if the �rst resonance of a transmission line
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connected to an LC load is predicted simply by circuit theory, the long transmission line model,

with distributed parameters, is necessary to predict the complete resonance behavior of a cable.

In the case of open-ended and short-circuited cable the �rst resonance is not well repre-

sented by the short cable model. The input impedance of the open-ended cable calculated with

expressions (2.35) and (2.34) is plotted in Fig. 2.51 as an example.

Figure 2.51 � Input impedance of the open-ended line

In conclusion, For a transmission line connected to an LC load the short line model, repre-

sented by the schematic in Fig. 2.48, can predict only the �rst resonance frequency of a system.

If the line ins open-ended or short-circuited, the short line model does not predict any of the

resonances.

2.6 Conclusion

In this chapter the frequency domain model of transmission lines has been used for two-conductor

applications, and frequency-domain simulation tool was built attending the demands described in

chapter 1. The simulation tool is able to model a cable network where the conductors are equally

spaced from each other. The cable parameters are experimentally identi�ed with an impedance

analyzer. The frequency band is only limited by the experimental parameter identi�cation, and

goes from DC up to 30MHz with the equipment available during this work. The frequency

domain simulation tool has been validated with experimental setups.

The simulated model meets the requirements listed in section 1.3. The transmission line

model is length-scalable and models wave propagation and resonance. The cable parameter

experimental identi�cation with the impedance analyzer provides accurate parameters on the

desired frequency-band. The frequency domain solution allows a computationally e�cient simu-

lation and an accurate representation of the cable losses.

The model predicts accurately the resonance frequencies, the voltage and current ampli�ca-

tions they may cause, and the position where the ampli�cation take place in function of the load

connected to the cable extremity. It was used to perform a numerical analysis of the resonance

behavior in a given cable, what can be useful for design purposes.

The single cable model de�ned in section 2.2.a can be concatenated to model the hypothetical

radial network de�ned in the introduction of this chapter.
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Abstract

This chapter generalizes the simulation tool for two-conductor cables in the frequency do-

main developed in chapter 2 to multiconductor cables. The multiconductor cable parameters

are identi�ed experimentally, with an impedance analyzer-based identi�cation method. The

frequency band of the simulator goes from DC up to 30 MHz, limited by the equipment avail-

able for the experimental parameter assessment. The parameter identi�cation, as well as

the frequency domain simulation tool, are validated experimentally. The common and dif-

ferential mode decomposition is studied, the conditions to the decoupling of the modes are

demonstrated. The resonance of multiconductor transmission lines is studied, its dependence

on cables losses is highlighted.
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3.1 Introduction

This chapter studies the multiconductor transmission-lines (MTL) model, aiming to generalize

the frequency domain simulation tool developed for two-conductor cables in the previous chapter

to multiconductor cables. The goal of this tool is to model of the propagation of stray current

and voltages in buildings, up to the medium frequency band (tens of MHz).

The simulation tool will model a hypothetical radial network, supposed to have n+1 conduc-

tors with the distance between each other constant along the line. As mentioned in the previous

chapter, it cannot be guaranteed that the distance between the conductors is constant along line

in an industrial cabling network. However, the model based on this hypothesis is still a good

approximation of the cabling in a building, because the distance between the wires does not vary

drastically.

Again, the frequency domain simulation tool must be able to correctly predict the resonance-

due voltage and current ampli�cations on the cables, as well as the resonance frequency and

position of the maximal ampli�cation along the cable on the hypothetical radial network. To

that end, the multiconductor cable parameters will be experimentally identi�ed, as done in the

previous chapter. The experimental parameter identi�cation allows an accurate determination of

the cable losses, a determinant factor of the amplitude of voltage and current resonances (2.5.a).

Section 3.2 introduces the multiconductor transmission line theory, and de�nes the struc-

ture of the frequency domain simulation tool under construction. Section 3.3 discusses the

experimental identi�cation of multiconductor transmission line parameters. Section 3.4 validates

experimentally the frequency domain simulation tool developed in section 3.2, using the cable pa-

rameters obtained with the identi�cation method proposed in section 3.3. Section 3.5 computes

the resonance on multiconductor transmission lines.

3.2 Multiconductor transmission line model

The transmission line theory presented in the previous chapter for the two-conductor line case can

be extended to the n+ 1 conductors case. This theory is known as multiconductor transmission

line (MTL) model.

The MTL equations must take into account the voltages and currents in each of the conductors

(Fig. 3.1), and are usually represented in matrix form. This form was �rst described by Louis

Pipes in 1937 [37]. The telegrapher equations in matrix form are presented in (3.1). In this

document, the matrices and vectors will be highlighted in bold.

∂V(x)

∂x
= −zI(x)

∂I(x)

∂x
= −yV(x)

(3.1a)

(3.1b)

In (3.1), V(x) and I(x) are the vectors of voltages and currents (3.2) along the line, respec-

tively. The terms z and y are the per-unit-length (p.u.l) impedance and admittance matrices,

respectively. They are de�ned in (3.3) [33], according to the p.u.l. parameters in Fig. 3.2. Again,

j is the complex unit and ω is the angular frequency, x is the axis parallel to the line.
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Figure 3.1 � Multiconductor transmission line, variables de�nition
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Figure 3.2 � Elementary cell of multiconductor transmission lines, with its p.u.l. parameters

V(x) =



V1(x)
...

Vi(x)
...

Vn(x)


I(x) =



I1(x)
...

Ii(x)
...

In(x)


(3.2)

z = r + jωl

y = g + jωc

(3.3a)

(3.3b)
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r =


r1 + r0 r0 · · · r0

r0 r2 + r0 · · · r0

...
...

. . .
...

r0 r0 · · · rn + r0



l =


l1 m12 · · · m1n

m12 l2 · · · m2n

...
...

. . .
...

m1n m2n · · · ln



g =


∑n

k=1 g1k −g12 · · · −g1n

−g12
∑n

k=1 g2k · · · −g2n

...
...

. . .
...

−g1n −g2n · · ·
∑n

k=1 gnk



c =


∑n

k=1 c1k −c12 · · · −c1n

−c12
∑n

k=1 c2k · · · −c2n

...
...

. . .
...

−c1n −c2n · · ·
∑n

k=1 cnk



(3.4a)

(3.4b)

(3.4c)

(3.4d)

Matrices r, l, g and c are symmetric by de�nition, consequently so are z and y.

The inductive elements in Fig. 3.2 are relative to the loop between the concerned active

conductor (1 to n) and the reference conductor (0). Each self inductance lii represents the total

inductance of the loop formed by the active conductor i and the reference conductor, while each

mutual inductance mij represents the mutual inductance between the loops formed by the ith

conductor and the reference and the jth conductor and the reference. Indeed, the drawback of

this model is that it is not able to completely represent the magnetic e�ect of a parasitic current

�owing only in the reference conductor, if the current is generated outside of the system to which

the cable is connected.

Equations (3.1) must be decoupled to be solved, and their decoupling can be performed in

di�erent forms. Two decoupling methods are described in the two following subsections: The

general solution resumed in [33] in section 3.2.a, and the modal decomposition of the line in

section 3.2.b. Both of these methods will be used further down in this document.

3.2.a General solution of the MTL telegrapher equations

The telegrapher equation can be rewritten on second order di�erential equations as follows:

∂2V(x)

∂x2
= zyV(x)

∂2I(x)

∂x2
= yzI(x)

(3.5a)

(3.5b)

To decouple these equations, the matrices zy and yz must be diagonalized. Let TI be the

matrix composed by the eigenvectors of yz and TV be the matrix composed of the eigenvectors
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of zy. Because z and y are symmetric, we have (zy)T = yT zT = yz, therefore the eigenvalues

of yz and zy are the same and can be obtained with (3.6)

Λ = T−1
V zyTV = T−1

I yzTI (3.6)

By using the change of variables as de�ned in (3.7), and by de�ning γ2 = Λ the equations

(3.5) can be rewritten as in (3.8).

V(x) = TVVm(x)

I(x) = TIIm(x)

(3.7a)

(3.7b)

∂2Vm(x)

∂x2
= γ2Vm(x)

∂2Im(x)

∂x2
= γ2Im(x)

(3.8a)

(3.8b)

Vm and Im are the vectors of modal voltages and currents, respectively, and γ is the diagonal

matrix containing the propagation constants of each mode of the line, and will be henceforth

denominated modal propagation matrix.

The de�nition of the matrix exponential is needed to continue with this reasoning. The

expression eA, where A is a square matrix is de�ned as follows:

eA =

∞∑
k=0

Ak

k!
(3.9)

From (3.9) the functions cosh and sinh can be de�ned for matrices, as follows:

cosh(A) =
1

2

(
eA + e−A

)
=
∞∑
k=0

A2k

(2k)!

sinh(A) =
1

2

(
eA − e−A

)
=
∞∑
k=0

A2k+1

(2k + 1)!

(3.10a)

(3.10b)

Equation (3.8) admits the solution (3.11), already transformed back to the original base.

V(x) = TV

(
e−γxV+

m + eγxV−m
)

I(x) = TI

(
e−γxI+

m − eγxI−m
) (3.11a)

(3.11b)

Coe�cients V+
m,V

−
m, I

+
m and I−m are vectors of size n, each element is to be determined with

the boundary conditions of the problem: voltages and currents relations at the line terminals. As

for the two-conductor case, the number of unknown coe�cients can be reduced with the de�nition

of the characteristic impedance, establishing a relationship between voltages and currents along

the line (3.13).

∂I(x)

∂x
= −TIγ

(
e−γxI+

m + eγxI−m
)

= −yV(x)

V(x) = y−1TIγT−1
I︸ ︷︷ ︸

Zc

TI

(
e−γxI+

m + eγxI−m
) (3.12)

(3.13)

By de�ning the characteristic impedance matrix as (3.14), the simpli�ed form of the solution
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can be written as in (3.15)

Zc = y−1TIγT−1
I (3.14)

V(x) = ZcTI

(
e−γxI+

m + eγxI−m
)

I(x) = TI

(
e−γxI+

m − eγxI−m
) (3.15a)

(3.15b)

In the previous chapter a use representation of the two-conductor transmission line was

introduced, because it is practical to represent the voltages and currents along the line in function

of the voltages and currents at its input. A similar representation can be developed for the

multiconductor transmission line, using a 2nx2n matrix to represent the connection between the

vector of voltages and currents along the line

[
V(x)

I(x)

]
in function of the vector of voltages and

currents at its input

[
V(0)

I(0)

]
.

This representation is given in (3.16), and can be called 2(n + 1)-pole representation. The

matrix Φ =

[
Φ11(x) Φ12(x)

Φ21(x) Φ22(x)

]
is denominated �chain matrix� in [33].

[
V(x)

I(x)

]
=

[
Φ11(x) Φ12(x)

Φ21(x) Φ22(x)

][
V(0)

I(0)

]
Φ11(x) = ZcTI cosh(xγ)T−1

I Yc

Φ12(x) = −ZcTI sinh(xγ)T−1
I

Φ21(x) = −TI sinh(xγ)T−1
I Yc

Φ22(x) = TI cosh(xγ)T−1
I

(3.16a)

(3.16b)

(3.16c)

(3.16d)

(3.16e)

In (3.16), Yc = Z−1
c .

The 2(n+ 1)-pole representation in (3.16) can still be simpli�ed if rewritten in function the

of p.u.l. matrices y and z. To that end, we establish the following relations:

γ2 =T−1
I yzTI

yz =TIγ
2T−1

I

yz =TIγT−1
I TIγT−1

I√
yz =TIγT−1

I

(3.17)

(3.18)

(3.19)

(3.20)

With a similar manipulation, we can �nd
√

zy = TVγT−1
V . Matrices

√
yz and

√
zy are the

equivalent to the propagation constant γ in the MTL case, and will be henceforth denominated

propagation matrix
√

yz and propagation matrix
√

zy.

The characteristic impedance matrix can also be rede�ned, as in (3.21)

Zc = y−1√yz =
√

zyz−1 (3.21)
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With these de�nitions, we can write (3.22) [33]:(
V(x)

I(x)

)
=

(
Φ11(x) Φ12(x)

Φ21(x) Φ22(x)

)(
V(0)

I(0)

)
Φ11(x) = Zc cosh(x

√
yz)Yc

Φ12(x) = −Zc sinh(x
√

yz)

Φ21(x) = − sinh(x
√

yz)Yc

Φ22(x) = cosh(x
√

yz)

(3.22a)

(3.22b)

(3.22c)

(3.22d)

(3.22e)

The 2(n+ 1)-pole representation in (3.22) provides a direct description of the MTL avoiding

the calculation of the matrix yz eigenvectors. Because of its simplicity, this formulation was

chosen for the frequency domain simulation tool for multiconductor transmission lines. For the

same reason, it is used in the generalization of the experimental parameter identi�cation for the

MTL proposed in 2.3.b.

3.2.b Solution with modal decomposition

In the previous section a general solution was presented. It uses matrix decomposition in modal

quantities only as a step of the mathematical manipulation, leading to a general model written

in function of full parameter matrices (Zc and
√

yz). However, it is possible, and useful, to

completely decompose the n+ 1 conductor line problem in n propagation modes where each one

behave as a two-conductor line, independent of the other conductors, as long as the eigenvalues

of yz, or zy, are distinct [34].

To that end, the modal decomposition of the propagation matrices presented in the previous

section is necessary along with a modal decomposition of the characteristic impedance matrix

Zc, so that each mode will be associated to a modal propagation constant γi, from which the

modal propagation velocity can be extracted, as well as to a modal characteristic impedance Zci.

The de�nition of the modal characteristic impedance is not unique, as well explicated in [13],

depending on the eigenvectors matrices TI and TV normalization, as well as on the physical

relation used as de�nition of the characteristic impedance. In this document, the de�nition

denominated as Voltage-Current by the authors in [13] is chosen.

The equations (3.1) can be rewritten in a modal base with the variable change de�ned in

(3.23), what gives (3.24).

V(x) = TVVm(x)

I(x) = TIIm(x)

(3.23a)

(3.23b)

∂Vm(x)

∂x
= −T−1

V zTIIm(x)

∂Im(x)

∂x
= −T−1

I yTVVm(x)

(3.24a)

(3.24b)

It is shown in [13,34] that matrices zm and ym in (3.25) are diagonal if the eigenvalues of yz

and zy are distinct. Therefore, the system (3.26) is decoupled if this condition is valid.

zm = T−1
V zTI

ym = T−1
I yTV

(3.25a)

(3.25b)
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∂2Vm(x)

∂x2
= zmymVm(x)

∂2Im(x)

∂x2
= ymzmIm(x)

(3.26a)

(3.26b)

The modal propagation matrix γ is de�ned similarly to the previous section

γ2 = zmym = T−1
V zyTV =

= ymzm = T−1
I yzTI (3.27)

Equations (3.26) admit the solution:

Vm(x) = e−γxV+
m + eγxV−m

Im(x) = e−γxI+
m − eγxI−m

(3.28a)

(3.28b)

The modal characteristic impedance Zd will be de�ned as a relation between the voltages

and currents of the line, as shown by (3.29) and (3.30). Its de�nition is explicit in (3.31).

∂I(x)

∂x
= −γ

(
e−γxI+

m + eγxI−m
)

= −ymVm(x)

Vm(x) = y−1
m γ︸ ︷︷ ︸
Zd

(
e−γxI+

m + eγxI−m
)

Zd = y−1
m γ = ym

− 1
2 zm

1
2 =

=
(
T−1

V y−1TIT
−1
V zTI

) 1
2

(3.29)

(3.30)

(3.31)

The solution to the modal voltages and currents along the line can then be simpli�ed as

(3.32).

Vm(x) = Zd

(
e−γxI+

m + eγxI−m
)

Im(x) = e−γxI+
m − eγxI−m

(3.32a)

(3.32b)

This is a system of matrix equations where all the matrices are diagonal (if a diagonal Zd can

be obtained), therefore completely decoupled. That allows the solution (3.32) to be rewritten

in n systems of scalar equations, one for each propagation mode. Also, each of these systems

of equations can be written in the quadrupole form, as done to a two-conductor transmission

line. The use modal representation for an n+ 1 conductors line with independent n propagation

modes is expressed in (3.33).(
Vmi(x)

Imi(x)

)
=

 cosh(γix) −Zdi sinh(γix)

− 1

Zdi
sinh(γix) cosh(γix)

[Vmi(0)

Imi(0)

]
∀ i = 1, 2, . . . , n (3.33)

The superposition of each mode describes the complete behavior of the multiconductor trans-

mission lines.

3.2.c The frequency domain simulation tool

This section describes the general frequency domain simulation tool, able to model a hypothetical

radial network where multiconductor cables with conductors equally spaced along the network

connect multiple devices. It is obtained with the generalization of frequency domain simulation
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tool presented in section 2.2.a to the multiconductor case.

First, the simulation tool must be as generic as possible. To that end, the devices (or systems)

connected to the cable terminals have to be represented with the most generic model possible. In

other words, the models of the source and the load connected to the cable must be a generalization

of the Thévénin's or Norton's theorem for (n+ 1)-port devices.

Such generalizations can be found in [17], where it is proven that any linear (n + 1)-port

system can be reduced to an equivalent circuit. The equivalent circuit is built with a graph

containing sources or impedances in its branches, respecting the rules below:

1. Impedances: A branch containing an impedance must connect each two-ports of the

device terminal, forming what is called a complete graph,

2. Sources: The branches containing sources cannot form loops, and every terminal node

must be connected to a source branch, forming what is called a complete tree.

That gives an equivalent graph with n(n+1)
2 impedances and n sources. The equivalent graph

is not unique, but the rules just described guarantee it will be minimal. Fig. 3.3 shows a possible

equivalent circuit for a device with (n+ 1) terminals.

S1

S2

Sn Ynn

Y22

Y11

Y12

Y2n

Y1n

0

n

2

1

...

Figure 3.3 � (n+ 1)-port equivalent circuit

Such an equivalent graph can be put in equation form as in (3.34a) [17]. In this equation,

the voltages and currents at the device output are organized in vectors V and I and the current
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sources are organized in vector S, as in (3.34b). The admittance matrix Y is de�ned in (3.34c).

I =YV + S

V =


V1

V2

...

Vn

 , I =


I1

I2

...

In

 , S =


S1

S2

...

Sn



Y =



n∑
k=1

Y1k −Y12 · · · −Y1n

−Y12

n∑
k=1

Y2k · · · −Y2n

...
...

. . .
...

−Y1n −Y2n · · ·
n∑
k=1

Ynk



(3.34a)

(3.34b)

(3.34c)

With the generalized multi-port equivalent circuit just described, we can de�ne the generalized

frequency domain model for multiconductor transmission lines. Consider the MTL presented in

Fig. 3.4, supposing both source and load are represented by the equivalent circuit of Fig. 3.3.

Source
SS, YS

Load
SL, YL

0

n

i

1

...

...

Vn(x)

Vi(x)

V1(x)

In(x)

Ii(x)

I1(x)

x
`c0

Figure 3.4 � Multiconductor transmission line, variables de�nition

The de�nition of the matrix used in the 2(n + 1)-pole model of an MTL is recalled here, it

has been derived in section 3.2.a. It is more interesting to write it in the general solution in the
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full matrix form:

Φ(x, f) =

(
Φ11(x, f) Φ12(x, f)

Φ21(x, f) Φ22(x, f)

)
Φ11(x, f) = Zc(f) cosh(x

√
yz(f))Yc(f)

Φ12(x, f) = −Zc(f) sinh(x
√

yz(f))

Φ21(x, f) = − sinh(x
√

yz(f))Yc(f)

Φ22(x, f) = cosh(x
√

yz(f))

(3.35a)

(3.35b)

(3.35c)

(3.35d)

(3.35e)

Using the MTL model matrix Φ in (3.35), the voltages and currents at the extremities of

the line V(0, f), V(`c, f), I(0, f) and I(`c, f) can be obtained by solving the system of equations

(3.36): 

[
V(`c, f)

I(`c, f)

]
= Φ(`c, f)

[
V(0, f)

I(0, f)

]
I(0, f) = SS(f)−YS(f)V(0, f)

I(`c, f) = SL(f)−YL(f)V(`c, f)

(3.36a)

(3.36b)

(3.36c)

Once this system of equations solved, the voltages and currents can be calculated anywhere

along the line with (3.37) [
V(x, f)

I(x, f)

]
= Φ(x, f)

[
V(0, f)

I(0, f)

]
(3.37)

Equations (3.36) and (3.37) allow the conception of a frequency domain simulation tool able

to model the generic system in 3.1, i.e, a generic multiconductor transmission-line simulator.

Figure 3.5 shows the input/output schematic of the frequency domain simulation tool. The

inputs of the simulator are described below.

Zc(f [k]),
√

yz(f [k])

MTL Frequency
Domain Simulator

`c

x[m]

SS(f [k]), YS(f [k]),
SL(f [k]), YL(f [k])

V(x[m], f [k])
I(x[m], f [k])

Figure 3.5 � Frequency domain simulation tool inputs and outputs � multiconductor cables

• f [k] is the discretization of the variable frequency f , a vector containing the frequency

points in which calculations will be performed.

• Zc(f) and
√

yz(f) are the cable parameters obtained from the impedance analyzer-based

parameter identi�cation;
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• `c is the cable length;

• x[m] is discretization of the variable x position along the line, a vector containing the

positions where the voltage and currents are calculated;

• SS(f), YS(f), SL(f), and YL(f) are the elements of the equivalent circuit representing

the devices connected to the cable terminals.

The outputs are the voltages V(x, f) and currents I(x, f) calculated at the positions x[m] of

the line in function of frequency f .

Figure 3.6 shows the programmable �owchart of the simulator developed for this work. It

details the work-�ow of the box �Frequency domain simulation tool MTL� in Fig. 3.5.

To resume, the frequency domain simulation tool algorithm consists in repeating the following

steps for every frequency point of vector f :

1. Solve the system of equations in (3.36) to obtain the voltages and currents at the line

extremities V(0, f), V(`c, f), I(0, f), I(`c, f).

2. Voltages and currents at positions di�erent from x = 0 and x = `c can be calculated with

eq. (3.37), using the stored input voltages V(0, f) and currents I(0, f).

The next section will discuss the experimental identi�cation of the parameters of multicon-

ductor cables, to obtain the cable parameters required by the simulator just described.
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Start

Read inputs

De�nitions

M = length(Zc(f [k])

Q = length(x[m])

x′[o] = x(x[i] 6= 0, `c ∀ i = 1 . . . Q)

P = length(x′[o])

k = 1

Solve[
V(`c, f [k])

I(`c, f [k])

]
= Φ(`c, f [k])

[
V(0, f [k])

I(0, f [k])

]
I(0, f [k]) = SS(f [k])−YS(f [k])V(0, f [k])

I(`c, f [k]) = SL(f [k])−YL(f [k])V(`c, f [k])

Store[
V(0, f [k])

I(0, f [k])

] [
V(`c, f [k])

I(`c, f [k])

]

P = 0?

o = 1

Calculate[
V(x′[o], f [k])

I(x′[o], f [k])

]
=

Φ(x′[o], f [k])

[
V(0, f [k])

I(0, f [k])

]

Store

[
V(x′[o], f [k])

I(x′[o], f [k])

]

o = o+ 1

o ≤ P

k = k + 1

k ≤M

Output Stop

yes

no
no

yes

no

yes

Figure 3.6 � Program �owchart of the frequency domain simulation tool � multiconductor cables
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3.3 Multiconductor cable parameter identi�cation

The MTL simulation tool described in the previous section, takes as input the cable parameters

matrices: the characteristic impedance Zc and the propagation matrix
√

yz. These parameter

matrices can be obtained with an impedance analyzer-based parameter identi�cation method

analog to the one presented in section 2.3, but now adapted to multiconductor cables.

This section describes an experimental technique adapted to identify the parameters of a

multiconductor transmission line using measurements of its input impedance. To begin, the

input impedance of a multiconductor transmission line must be de�ned.

Consider that a load with n + 1 ports described by its input impedance matrix ZL, de�ned

as in (3.38), is connected to the multiconductor transmission line at x = `c.

V(`c) = ZLI(`c) (3.38)

Consider also that the MTL input impedance Z(0) is de�ned as:

V(0) = Z(0)I(0) (3.39)

By evaluating the 2(n + 1)-pole representation of the MTL in (3.22) at x = `c, the input

impedance matrix Z(0) can be expressed by (3.40)

Z(0) = Zc [ZL sinh(`c
√

yz) + Zc cosh(`c
√

yz)]−1 [Zc sinh(`c
√

yz) + ZL cosh(`c
√

yz)] (3.40)

Note that for a two-conductor case (n = 1), this equation reduces to the input impedance of

a two-conductor transmission-line (2.23), repeated here for convenience (note: γ ≡ √zy).

Z(0) = Zc
ZL + Zc tanh(`cγ)

Zc + ZL tanh(`cγ)

For a short-circuited (SC) and an open-ended (OC) multiconductor line, the input impedance

in (3.40) reduces to (3.41) (3.42) [2, 24]:

ZSC(0) = Zc [cosh(`c
√

yz)]−1 sinh(`c
√

yz)

ZOC(0) = Zc [sinh(`c
√

yz)]−1 cosh(`c
√

yz)

(3.41)

(3.42)

Finally, the characteristic impedance matrix Zc and the propagation matrix
√

yz can be

deduced from open and short circuit input impedance with:

Zc =
{

ZSC(0)
[
ZOC(0)

]−1
}−1/2

ZSC(0)

[cosh(`c
√

yz)]−1 sinh(`c
√

yz) = Z−1
c ZSC(0)

(3.43)

(3.44)

(3.44) can be solved numericalally to obtain
√

yz.

The input impedance matrix Z(0) of a n+ 1 conductor cable can be measured as described

in [24]. The measurement technique proposed by them is resumed below.

The input impedance Z(0) can be measured for any load connected to its terminal: open

circuit, short circuit or arbitrary known load ZL
1. By choosing an open and short-circuited

terminal the line parameters can be obtained from (3.43) and (3.44).

1If the arbitrary load is precisely characterized in the whole frequency band, eq. (3.40) can be used.
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The diagonal terms of Z(0) (self impedance) can be determined with:

Zii(0) =
Vi(0)

Ii(0)

∣∣∣∣
Ik 6=i(0)=0

(3.45)

With the setup shown in Fig. 3.7, the measured impedance corresponds to Zii if all conductor

currents are zero at x = 0, except for the conductor under test. Electrically insulating the open

extremities of the conductors is a good practice to guarantee this condition.

Load

E4990A

0

n

i

1

...

...

Vi(x)

Ii(x)

Figure 3.7 � Self impedance measurement setup

Because impedance analyzers do not measure mutual impedance, i.e. measuring voltage and

injecting current on di�erent ports, a mathematical approach is used to obtain the non-diagonal

elements of Z(0). Using the measurement setup shown in Fig. 3.8, the measured impedance

ZMij is:

ZMij =
Vi(0)− Vj(0)

Ii(0)

∣∣∣∣
Ik 6=i,j(0)=0

=

=
Zii(0)Ii(0) + Zij(0)Ij(0)− Zji(0)Ii(0)− Zjj(0)Ij(0)

Ii(0)
(3.46)

Load

E4990A

0

n

j

i

1

...

...

Vj(x)

Vi(x)

Ij(x)

Ii(x)

Figure 3.8 � Mutual-impedance measurement setup

As Ij(0) = −Ii(0) and using the fact that Z(0) is symmetric, the mutual impedance Zij = Zji
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can be calculated with:

Zij(0) =
1

2
(Zii(0) + Zjj(0)− ZMij) (3.47)

Once every possible combination of two distinct active conductors (conductors 1 to n in

Fig. 3.8) has been measured, the input impedance matrix can be �lled. In the general case,

n self-impedance and n(n− 1)/2 mutual-impedance measurements are required to complete it.

If special conditions such as circular symmetry � case in which the elements of Z(0) repeat

cyclically [33] � are veri�ed, the number of measurements required can be reduced.

An equivalent methodology to obtain the input admittance matrix is described in [24]. Ad-

mittance measurement requires the input extremities of the conductors to be short-circuited

except for the conductor under test, instead of open-ended as just described. Directly measuring

the input admittance matrix avoids a matrix inversion when solving (3.43). However, consid-

ering the good stability and accuracy of linear equation solvers when determining the product

ZSC(0)[ZOC(0)]−1 in (3.43), the measurement of input admittance matrix instead of impedance

is not mandatory, and not recommended for cases where it is di�cult to guarantee neat short

circuits on the cable input.

The precautions needed to perform the input impedance measurements described in section

2.3.b also apply for multiconductor power cables. Refer to the aforementioned section for a

detailed description of the recommended measurement protocol.

3.4 Frequency-domain model experimental validation

The frequency domain model described in section 3.2.c was built for a three-conductor cable with

conductors of section 2.5mm2, its cross-section is represented in Fig. 3.9. The cable parameters

were obtained with the impedance analyzer identi�cation described in the previous section, with

a sample cable 0.9m long, with balun in the interface between the impedance analyzer and the

cable, and with the analyzer fed through a LISN.

Figure 3.9 � Three-conductor cable cross-section

To show the e�ect of the common mode during the input impedance measurements, a second

set of measurements was performed, with the same sample cable, using the Keysight impedance

analyzer connector E16047A, and without the LISN, in a common-mode enhancing con�guration:

with the sample cable next to the feeding cable of the analyzer, its extremity close to the plug of

the analyzer. The parameter resultant from these identi�cation measurements will be identi�ed

as �without balun� in the next two subsections.

As was done for the two-conductor validation on Section 2.4, two validation experiments are

performed. The �rst consists in the voltage measurement on a resonant cable and is described

in section 3.4.a. The second, consisting in the measurement of the input impedance of a long

cable, is described in section 3.4.b.



3.4. Frequency-domain model experimental validation 67

3.4.a Resonance-based experiment validation

The three-conductor resonance-based experiment is equivalent to the one performed for the two-

conductor cable in section 2.4: a long three-conductor cable was fed with a sinusoidal source with

variable frequency, and the voltage was measured in the position x = xM where the maximum

voltage resonance ampli�cation occurs when the excitation source is at the natural frequency of

the cable. A schematic of the resonance experiment is drawn in Fig. 3.10, the voltage V1(x)

was chosen to be measured. The voltage measurement position xM remained �x for each load

termination, and for the frequency points where no resonance occurs, the maximal voltage may

occur elsewhere.

Function
generator

Push-pull
ampli�er −+

Vs

V k1

k2

`c0 xM
x

Figure 3.10 � Schematic: resonance-based validation experiment

The voltage measurements were performed with a battery-powered scope, to avoid an alter-

native current path via the mass of the scope. The use of a scope for this measurement, which is

not the most accurate option, is justi�ed because time domain measurements will be necessary in

chapter 4. The probe equivalent impedance was taken into account in the theoretical modeling.

The loop of the mass connection of the voltage probe was minimized, using the �spring� mass

connector in Fig. 3.11.

Figure 3.11 � Connection of the voltage probe along the line

The resonance experiment was e�ectuated for two di�erent load con�gurations (cf. Fig. 3.10):

• Con�guration 1 : k1 and k2 closed

• Con�guration 2 : k1 opened, k2 closed.

The complete open-circuit extremity was not used because our experiments showed that the

behavior of the line in this case is really similar to a two-conductor open-ended line.

Both con�gurations 1 and 2 maximize the re�ection coe�cient in the load end ΓL. The total

re�ection on the source end was ensured by feeding the long cable via the AB class push-pull
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ampli�er with closed loop, and near-zero output impedance, the same used for the two-conductor

resonance-based validation.

For both load con�gurations, the position xM of the maximum ampli�cation of V1 was de-

termined numericalally. For con�guration 1, complete short-circuit, the maximum occurs at

xM = `c/2, and for con�guration 2 at xM = `c.

The experiment was performed with a 11.98m long cable. The cable and the scope were

suspended with insulating supports, to mitigate common-mode currents.

Two cable parameter sets are used: the �rst obtained with balun, following the protocol 2.3.b-

iii, and the second without balun in a common-mode enhancing con�guration. The schematic in

Fig. 3.12 resumes the theoretical calculations performed for this validation, detailing the inputs

needed for the theoretical calculation of V1(xM , f).

Zc(f [k]),
√

yz(f [k])
With balun,

Without balun

Calculation of
V1(xM , f [k])

`c

xM

Zscope

ZL, VS

V1(xM , f [k])
With balun,

Without balun

Figure 3.12 � Frequency domain voltage simulation

To recall, `c is the cable length, xM is the voltage measurement point, Zscope is the input

impedance of the scope probe, ZL is the load connected at x = `c (open and short circuit in this

study), VS is the input voltage, purely sinusoidal, of variable frequency. f [k] is the discretization

of the frequency f .

The results are presented in Fig. 3.13, where both theoretical and experimental data are

plotted in terms of voltage ampli�cation V1(xM )/V (0).

Table 3.1 � Frequency-Domain Model Resonance Frequency and Amplitude Relative Errors

With balun Without balun

Amplitude Frequency Amplitude Frequency

Con�g. 1 5.9% 0.1% 21% 1.8%

Con�g 2. 10.6% 1.7% 43.4% 3.7%

The results of the theoretical model using the parameters issued from the identi�cation with
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(a) Load con�guration 1, Short (b) Load con�guration 2, Open-Short

Figure 3.13 � Experimental validation : resonance-due voltage ampli�cation

balun present a good agreement with the experimental data. It is shown in table 3.1 that

the errors are more important for the parameter identi�cation without balun in a common-

mode enhancing con�guration, as expected. Indeed, in this case the error goes up to 43% on

con�guration 2, due to the common-mode currents in the identi�cation measurements.

3.4.b Input Impedance Validation

The same cable used in the previous section, of length 11.98m, was used for an input impedance

validation. This validation consists in the measurement of the input impedance of a long cable,

to be compared to the theoretical impedance predicted by (3.40), using the two sets of cable

parameters obtained from the identi�cation measurements with and without balun, as aforemen-

tioned. A schematic of the input impedance measurement setup is drawn in Fig. 3.14. The input

impedance is measured between the conductors �1� and �0�.

Impedance
analyzer

k1

k2

0

1

2

`c0 x

Figure 3.14 � Schematic: input impedance validation experiment

The input impedance matrix of a three-conductor transmission line is a 2x2 matrix. The

impedance measured with the schematic in Fig. 3.14 corresponds to the element in position

(1, 1) of Z(0), denominated hereafter Z11.

A schematic illustrating the steps to calculate the theoretical input impedance is presented in
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Fig. 3.15. The cable parameters Zc(f [k]),
√

yz(f [k]) are issued from a parameter identi�cation

with balun for the �rst calculation, and without balun for the second.

Zc(f [k]),
√

yz(f [k])
With balun,

Without balun

Z(0) =

Zc
[
ZL sinh(`c

√
yz) + Zc cosh(`c

√
yz)
]−1[

Zc sinh(`c
√

yz) + ZL cosh(`c
√

yz)
]`c

ZL

Extract Z11

Z11(0, f [k])
With balun,

Without balun

Figure 3.15 � Theoretical input impedance calculation

Two measurements were performed, one for each of the following load con�gurations:

• Con�guration 1 : k1 and k2 closed

• Con�guration 2 : k1 opened, k2 closed.

The long cable input impedance, in both cases, was measured with the cable suspended by

insulating supports, and with a balun on the interface between the cable and the impedance

analyzer, to avoid the circulation of common-mode currents. The results are presented in Fig.

3.16.

As expected, the input impedance predicted using the parameters obtained from the ade-

quate parameter identi�cation, i.e., with balun and using a LISN as line �lter, present a good

agreement with the experimental data. The results obtained from the parameter calculated from

measurements without balun in a common-mode enhancing con�guration present considerable

errors.
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(a) Load con�guration 1: Short (b) Load con�guration 2: Open-Short

Figure 3.16 � Experimental validation : input impedance

3.4.c Examples of cable parameter identi�cation

In this section, the parameters of the 2.5mm2 section three-conductor cable are presented. The

wide band parameters were obtained with the methods described in section 2.4.c, where the low

frequency parameters are obtained from the input impedance measurements of a longer sample

cable, in this case a 12m long sample, and the high frequency parameters are obtained from a

short sample cable identi�cation, in this case 1m long. Refer to section 2.4.c for the justi�cation

of this proceeding.

Source: http://www.caledonian-cables.co.uk

Figure 3.17 � Cross-section of the three-conductor 2.5mm2 cable

The matrix parameters Zc and
√

yz of three-conductor cables are matrices of dimension 2x2.

The parameters of the cable in Fig. 3.17 are plotted in Fig. 3.18. As the cable is symmetric

circular, the diagonal elements of the matrices Zc and
√

yz are the same.

The p.u.l. parameter matrices r, l, g, and c can be obtained from the characteristic impedance
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matrix Zc and the propagation matrix
√

yz with the following equations:

r =R {Zc
√

yz}

l =
1

jω
I {Zc

√
yz}

g =R
{√

yz (Zc)−1
}

c =
1

jω
I
{√

yz (Zc)−1
}

(3.48a)

(3.48b)

(3.48c)

(3.48d)

The p.u.l. parameters of the three-conductor cable in Fig. 3.17 are represented in Fig. 3.19.

These parameters correspond to the p.u.l. elements of the MTL cell de�ned in Fig. 3.2.

These parameters will be used in other applications along this document.
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(a) Characteristic impedance Zc (b) Propagation matrix
√
yz

Figure 3.18 � Three-conductor cable complex parameters

(a) Resistance (b) Inductance

(c) Conductance (d) Capacitance

Figure 3.19 � Three-conductor p.u.l. parameters
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3.5 Extension of Resonance surfaces for multiconductor cables

In section 2.5 the resonance phenomenon has been numericalally analyzed, a study that led to the

plotting of the three 3-dimensional surfaces describing the resonance behavior of a two-conductor

transmission line in function of the load (cf. Figs. 2.39 to 2.41). In the �rst surface, the maximal

ampli�cation due to resonance is plotted in function of the load impedance (cf. Fig. 2.39). The

two other surfaces contain the correspondent resonance frequency (cf. Fig. 2.40) and position of

the maximal voltage along the line (cf. Fig. 2.41) for each maximal ampli�cation point in Fig.

2.39.

This approach allows a visualization of the resonance behavior of a cable of a given length,

and the easy prediction of the resonance behavior of the cable in a system (cf. section 2.5.b-i).

It would be interesting to extend the same analysis to multiconductor cables. Principally

considering that, in a real single phase system, common-mode currents will circulate through

alternative paths, and a two-conductor model cannot take them into account.

However, the generalization of the resonance surfaces to multiconductor transmission lines is

troublesome. For example, consider the system with a three-conductor cable in Fig. 3.20.

−
+S1

−
+S2

Z12

Z2

Z1

x

Figure 3.20 � Schematic for numerical resonance analysis

The load connected to cable at x = `c can represent any generic passive load (cf. section

3.2.c, [17]). If the same approach used in section 2.5 was to used here, we would need to plot a

7-dimensional surface: 6 dimensions are needed to represent the real and imaginary parts of the

three load impedances, and a 7th dimension is needed for the variable of interest (voltage am-

pli�cation, resonance frequency or maximal ampli�cation position). This 7-dimensional surface

can be de�ned mathematically, but its visual representation is not possible.

Some simpli�cations can be used to reduce the number of dimensions of the surface to three,

but they limit the group of multiport impedances that can be represented by the surface. In

other words, for some speci�c cases, these surfaces can be plotted in three dimensions.

A �rst possibility of simpli�cation is to set two of the three load impedances to constant

values, for example Z1 and Z2, and vary real and imaginary parts of the third, for example

Z12. This would be equivalent to vary the di�erential-mode load impedance, while its parasitic

common-mode impedance remain unchanged. Note that this restriction applies to their frequency

behavior as well: the �xed impedances cannot vary on frequency either, what is not realistic

because stray capacitances will always interfere in any physical system, and their reactances are

frequency dependent. Therefore, this option is not useful.

A second possibility is to diagonalize the load impedance matrix, using its own eigenvectors,
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representing the system in an algebraic basis where the load impedance matrix is a diagonal

matrix. That way, a 3-dimensional resonance surface can be plotted for each of the load matrix

eigenvalues, since they are decoupled in the new basis.

However, some di�culties arise from this approach. They will be discussed in detail in section

3.5.c, and they come mainly from the fact that the there is no matrix that can diagonalize any

load impedance matrix, and di�erent diagonalization matrices would be needed for each frequency

point.

An alternative to that problem is to restrict the analysis to balanced systems. As will be

explained in detail in sections 3.5.a and 3.5.b, a balanced system is a system with symmetric

common-mode impedances, what causes the common and di�erential mode to be decoupled.

If these two modes are decoupled, they can be modeled separately by two independent two-

conductor systems, and the resonance surfaces for each mode can be visualized.

Section 3.5.a demonstrate the condition that three-conductor lines have to meet to be bal-

anced. In section 3.5.b, the surfaces resultant from the numerical analysis of a balanced system

are presented. After that, in section 3.5.c, the di�culties of generalizing this representation to

all possible load impedance matrices are discussed.

3.5.a Conditions for a three-conductor line to be balanced

The decomposition of the voltages and currents of a single phase system in di�erential and

common modes is widely used in the EMC �eld. This decomposition is useful because usually it

allows to separate the stray voltage/current (on common mode) from the voltage and currents

that are intended to circulate in the system (on di�erential mode).

For most cases, this decomposition is only useful if the modes are decoupled, i.e., di�erential

voltages depend exclusively on di�erential-mode currents, and the same for the common mode.

When the modes are decoupled, the complete system can be represented by two subsystems, one

in di�erential mode and another in common mode. This representation simpli�es the designing of

�lters, the measurements of the perturbation generated by the systems, among other applications.

In this section, we will determine the characteristics that a three-conductor cable has to meet

to be balanced, so that the decoupling between common and di�erential mode is possible.

The common/di�erential mode decomposition consists in a changing of variables, mathemat-

ically similar to what was done in section 3.2, although restricted to three-conductor lines.

An example of de�nition of di�erential and common-mode currents and voltages is in (3.49),

corresponding to the currents in Fig. 3.21.

VDM = V1 − V2 IDM =
I1 − I2

2

VCM =
V1 + V2

2
ICM = I1 + I2

(3.49a)

(3.49b)

However, as the de�nition of common and di�erential mode vary considerably in the literature,

a more generic decomposition will be studied here, using (3.50) as de�nition to common and

di�erential mode:

VDM =
V1 − V2

k1
IDM =

I1 − I2

k3

VCM =
V1 + V2

k2
ICM =

I1 + I2

k4

(3.50a)

(3.50b)
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ICM

I2
ICM/2 IDM

I1
ICM/2 IDM

V2

V1

Figure 3.21 � Di�erential and common-mode currents

The constants k1, k2, k3, and k4 are real , usually equal to 1 or 2, depending on the chosen

de�nition.

The change of variables de�ned in the (3.50) can be expressed in matrix form, as shown in

eqs. (3.51) to (3.53).

V(x) = MVVM(x) I(x) = MIIM(x) (3.51)

VM(x) =

(
VDM (x)

VCM (x)

)
IM(x) =

(
IDM (x)

ICM (x)

)
(3.52)

MV =
1

2

(
k1 k2

−k1 k2

)
MI =

1

2

(
k3 k4

−k3 k4

)
(3.53)

This formulation has the same structure as the modal decomposition de�ned by equation

(3.23), rewritten hereafter:

∂VM(x)

∂x
= −MV

−1zMIIM(x)

∂IM(x)

∂x
= −MI

−1yMVVM(x)

(3.54a)

(3.54b)

From these equations, the modal impedance and admittance p.u.l. matrices can be de�ned,

as follows:

zM = MV
−1zMI

yM = MI
−1yMV

(3.55a)

(3.55b)

From equations (3.54) and (3.55), it can be seen that common and di�erential mode will be

decoupled if the modal matrices zM and yM are diagonal.

Suppose that the p.u.l. matrices z and y have the following generic structure:

z =

[
za zc

zc zb

]
y =

[
ya yc

yc yb

]

Where za, zb, zc, ya, yb, yc are complex numbers. Recall that these matrices are symmetric
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by de�nition. Then, matrices zM and yM will have the following structure:

zM =

[
k3
2k1

(za + zb − 2zc)
k4
2k1

(za − zb)
k3
2k2

(za − zb) k4
2k2

(za + zb + 2zc)

]

yM =

[
k1
2k3

(ya + yb − 2yc)
k2
2k3

(ya − yb)
k1
2k4

(ya − yb) k2
2k4

(ya + yb + 2yc)

]
(3.56a)

(3.56b)

From equations (3.56), it is demonstrated that the matrices zM and yM are diagonal if za = zb
and ya = yb, i.e., if the diagonal elements of matrices z and y are equal. In a cable where this

condition is satis�ed, common and di�erential mode will be decoupled, and the cable is balanced.

From (3.4), we can rewrite the balancing condition for three-conductor cables as follows:

• The p.u.l. resistance and self inductance of the active conductors (conductors 1 to n,

reference conductor 0 excluded) must be the same;

• The sum of the p.u.l. conductance and capacitance between all the conductors must be

same.

In conclusion, for a cable to be balanced, the diagonal elements of its p.u.l. parameter

matrices z and y must be equal. It is equivalent to say that matrices z and y must be circular

symmetric. For example, it is the case for three-conductor power cables with identical conductors

equally spaced from each other, e.g. the three-conductor 2.5mm2 cable used in the validation

experiments (cf. section 3.4).

These conclusions are used to de�ne a numericalal analysis of the resonance in three-conductor

cables, in the following section.

3.5.b Numerical analysis of the resonance in a three-conductor balanced sys-

tem

A balanced system is a system in which the source, the cable and the load have decoupled

common and di�erential mode, and each mode can be simulated individually [48].

Balanced systems are an interesting case of study because conceiving balanced common-mode

�lters is one of the most commonly used techniques to mitigate electromagnetic interference

(EMI) problems, as it is a way to mitigate the common mode.

For this reason, and because their symmetry allows a visual representation of their resonant

behavior, such systems are studied in this section. Recalling, the resonant surfaces of mul-

ticonductor cables can be determined mathematically for any system, but cannot be visually

represented because they occupy more than three dimensions.

In the speci�c case of balanced systems, the resonant behavior of each mode (common and

di�erential) will be computed and represented separately, as the modes are decoupled.

The system represented in Fig. 3.22, is balanced if the three-conductor transmission line is

balanced (cf. section 3.5.a), and if the load connected at x = `c is also balanced.

A balanced three-conductor cable has circulant impedance and admittance p.u.l. matrices z

and y, as follows:

z =

[
z1 z2

z2 z1

]
y =

[
y1 y2

y2 y1

]
(3.57)
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−
+S1

−
+S2

Z12

Z2

Z1

x
`c0 x

Figure 3.22 � Schematic for numerical resonance analysis, `c = 12m

The 2.5mm2 three-conductor cable used in section 3.4, which has the parameters plotted in

Fig. 3.19, is balanced. Its resonant behavior is analyzed in this section.

The mathematical change from the physical basis to the common/di�erential modes base is

de�ned as follows:

V(x) = MVVM(x)

I(x) = MIIM(x)

(3.58)

(3.59)

MV =
1

2

[
1 2

−1 2

]
MI =

1

2

[
2 1

−2 1

]
(3.60)

The modal voltages VM(x) and currents IM(x) are de�ned in (3.61), where VDM and IDM
are respectively the di�erential-mode voltage and current, and VCM and ICM the common-mode

voltage and current along the line.

VM(x) =

[
VDM (x)

VCM (x)

]
IM(x) =

[
IDM (x)

ICM (x)

]
(3.61)

The impedance matrix of the load in Fig. 3.20 is written below; it was obtained considering

V(`c) = ZLI(`c):

ZL =
1

Z1 + Z2 + Z12

[
Z1(Z2 + Z12) Z1Z2

Z1Z2 Z2(Z1 + Z12)

]
(3.62)

The modal load impedance matrix that meets VM(x) = ZLmIM(x), can be determined as

follows:

ZLM
= MV

−1ZLMI

ZLM
=

1

Z1 + Z2 + Z12

[
Z12(Z1 + Z2) 1

2Z12(Z1 − Z2)
1
2Z12(Z1 − Z2) 1

4Z12(Z1 + Z2) + 4Z1Z2

] (3.63a)

(3.63b)

The common and di�erential mode are decoupled in the load if the matrix ZLm is diagonal.

That is true if Z1 = Z2, i.e. if the load is balanced.
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For a balanced load ZLM
has only two diagonal elements ZLDM

and ZLCM
:

ZLM
=

[
ZLDM

0

0 ZLCM

]
=

 2Z1Z12

Z12 + 2Z1
0

0
Z1

2

 (3.64)

With the load modal decomposition, we can separate the common and di�erential mode of

the system in Fig. 3.22 into two independent systems, having each an equivalent two-conductors

cable, using formulation presented in section 3.2.b. It results in the two subsystems: (3.65) for

the di�erential mode and (3.66) for the common mode. The de�nitions (3.67) and (3.68) are also

used. 

(
VDM (`c)

IDM (`c)

)
=

 cosh(γDM`c) −ZcDM sinh(γDM`c)

− 1

ZcDM

sinh(γDM`c) cosh(γDM`c)

[VDM (0)

IDM (0)

]

VDM (0) = SDM

VDM (`c) = ZLDM
IDM (`c)

(3.65a)

(3.65b)

(3.65c)



(
VCM (`c)

ICM (`c)

)
=

 cosh(γCM`c) −ZcCM sinh(γCM`c)

− 1

ZcCM

sinh(γCM`c) cosh(γCM`c)

[VCM (0)

ICM (0)

]

VCM (0) = SCM

VCM (`c) = ZLCM
ICM (`c)

(3.66a)

(3.66b)

(3.66c)

ZcDM = 2

√
z1 − z2

y1 − y2
γDM =

√
(z1 − z2)(y1 − y2)

ZcCM =
1

2

√
z1 + z2

y1 + y2
γCM =

√
(z1 + z2)(y1 + y2)

(3.67)

(3.68)

The resonance surface response can be plotted for each of the systems with eqs. (3.65)

and (3.66). Multiple simulations were performed to calculate the maximal ampli�cations of the

modal voltages VDM and VCM due to resonance in function of the modal impedances ZLDM
=

ADM + jBDM and ZLCM
= ACM + jBCM , respectively, in the range values presented in table

3.2. The maximum voltage ampli�cation for each load among the di�erent values of f and x was

stored, along with the frequency fmax and the position xmax to which it took place.

Table 3.2 � Range of values used in the numerical analysis of the resonance

Variable Range Number of points Scaling

ADM , ACM [0, 100] kΩ 401 log

BDM , BCM [−100, 100] kΩ 401 log

f [0.01, 10]MHz 5000 log

x [0, 12]m 25 linear

The surfaces maximal voltage ampli�cation of each mode are plotted in Fig. 3.23, the fre-

quency to which each of the maximal ampli�cation take place are represented plotted in Fig.

3.24 and the position where they occur is plotted in the surfaces in Fig. 3.25.
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(a) Di�erential mode, B positive (b) Di�erential mode, B negative

(c) Common mode, B positive (d) Common mode, B negative

Figure 3.23 � Voltage ampli�cation due to resonance on the three-conductor cable, in di�erential
and common mode, in function of the modal load

(a) Di�erential mode, B positive (b) Di�erential mode, B negative

(c) Common mode, B positive (d) Common mode, B negative

Figure 3.24 � Resonance frequencies of the three-conductor cable, in di�erential and common
mode, in function of the modal load
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There are few di�erences between the di�erential and common-mode surface, the main one

being the position of the minimal ampli�cation. The di�erential-mode characteristic impedance is

around ZcDM = 80 Ω, while the common-mode characteristic impedance is around ZcDM = 60 Ω.

The voltage ampli�cation tends to 1 for the regions where ZLDM
≈ ZcDM , or ZLCM

≈ ZcCM .

The maximal ampli�cation, in both modes, seems to happen for a speci�c negative value of

B, with very low values for A, i.e., the maximal resonance occurs for a capacitive load.

As expected, in most cases the higher ampli�cations areas in Figs. 3.23 correspond to the

lower resonance frequencies in Figs. 3.24. The voltage ampli�cation dependence on the cable

losses is yet again demonstrated.

(a) Di�erential mode, B positive (b) Di�erential mode, B negative

(c) Common mode, B positive (d) Common mode, B negative

Figure 3.25 � Position of the maximal voltage ampli�cation on the three-conductor cable, in
di�erential and common mode, in function of the modal load

The maximal ampli�cation tends to occur at x = `c for the resonance frequencies around

3.1MHz, and at x = `2/2 for the resonance frequencies around 6.3MHz.

In general, �gures 3.23 to 3.25 present the same behavior as the two-conductor cables studied

in section 2.5.b and in appendix C. It corresponds to our expectations, as the decoupled di�er-

ential and common mode e�ectively behave as two separated two-conductor transmission-lines.

However, because the surface of voltage ampli�cation is plotted on the common/di�erential

modes mathematical base, the predicted ampli�cations do not correspond to the ampli�cations

in voltages V1(x) and V2(x).

This characteristic will be exempli�ed below, in a study of the resonant behavior of the cable

for a given load.
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Identifying the resonance behavior of the cable for a given load: As an example of

application of the resonance surfaces plotted in this section, the resonant behavior of the three-

conductor cable will be studied for the load presented in Fig. 3.26. The complete system under

study is represented by the schematic in Fig. 3.20, where the cable length is `c = 12m

Z12

Z2

Z1 =

1Ω

50µH

47nF

100µS 255pF

255 pF 100µS

Figure 3.26 � Load used for this example

Note that the chosen load is balanced.

The impedance matrix of this load is calculated and converted to the modal base with (3.63a),

and its modal impedances are plotted over the resonance frequency surfaces in Fig. 3.27

There is one intersection point per mode between the load impedance in function of frequency

and the resonance surface. The frequencies to which these intersections occur are the resonance

frequencies of the system.

To determine the voltage ampli�cation each of these resonance frequencies will generate, in

the modal base, we identi�ed the correspondent points on the voltage ampli�cation surfaces, in

Fig. 3.28. The same way, to identify where along the line these voltage ampli�cations will take

place, we identi�ed the intersection points on the position surfaces, in Fig. 3.29.

With this analysis, the resonance behavior of each mode is identi�ed. The characteristics of

each resonance are resumed in table 3.3.

Table 3.3 � Resonance characteristics - modal base

Frequency Voltage Ampli�cation Position

Di�erential mode 2.92MHz 15.2 12m

Common mode 2.29MHz 14.3 12m

For both modes, the maximal ampli�cation occurs at x = `c. The ampli�cation of the

di�erential and common-mode voltage at x = `c are plotted in function of the frequency in Fig.

3.30

The voltages can be represented in the regular, or physical, basis using (3.58), from which

the voltage conversion can be more simply written (3.69).

V1 =
VMD

2
+ VMC

V2 = −VMD

2
+ VMC

(3.69a)

(3.69b)
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(a) Di�erential mode

(b) Common mode

Figure 3.27 � Intersection of the modal impedances with the resonance frequency surfaces.

(a) Di�erential mode (b) Common mode

Figure 3.28 � Points of intersection on the voltage ampli�cation resonance surfaces

(a) Di�erential mode (b) Common mode

Figure 3.29 � Points of intersection on the position of maximal ampli�cation due to resonance
surfaces
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Figure 3.30 � Voltage at x = `c, common/di�erential modes

For example, from (3.69) it can be seen that the resonance-due voltage ampli�cation from the

di�erential-mode resonance will be divided by two. Also, because the voltages V1(x) and V2(x)

are a linear combination of both common and di�erential modes, they will be ampli�ed at the

resonance frequencies of both modes.

This behavior is con�rmed in Fig. 3.31, where the voltages V1(`c) and V2(`c) are plotted in

function of the frequency.

Figure 3.31 � Voltage at x = `c, physical base

In conclusion, the surfaces characterizing the resonance behavior of a three-conductor bal-

anced cable, connected to balanced source and load, can be used the same way as the resonance

surfaces of the two-conductor cable presented in section 2.5.b. However, because the maximal

voltage ampli�cation is plotted on the modal base, its values do not correspond to the physical

voltage ampli�cation that will take place in the cable. Indeed, the physical voltages V1(x) and

V2(x) are a linear combination of the modal voltages VDM (x) and VCM (x).

3.5.c Di�culties to generalize the resonance surfaces to any load matrix

The results in the previous sections are only valid for balanced systems.

It would be interesting to extend the proposed analysis to any system. However, a strong

di�culty arises in this attempt: there is no generic transformation that can diagonalize any

matrix.
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As a consequence, in the general case, an unbalanced device is represented by an impedance/admittance

matrices that have di�erent orthonormal eigenvectors for di�erent frequencies.

The surfaces plotted in the previous section only make sense if the transformation matrix M

is kept constant. Therefore, if we choose a �xed diagonalization matrix M, only a portion of all

the possible load matrices will be diagonalized by it: the group of symmetric matrices having the

eigenvectors in M. This is a group of matrices as limited as the group of circulant symmetric

matrices (balanced systems).

It is important to highlight that numerical resonance analysis with a generic multi-port load

can be mathematically performed, despite these di�culties. After all, n-dimensional spaces exist

mathematically, the di�culties only arise on the attempts to graphically represent them. In other

words, the di�culties brought here only restrain the handy 3D representation of the resonant

behavior of multiconductor cables.

In conclusion, even if 3-dimensional plots cannot thoroughly represent the resonance behavior

of an unbalanced system, a purely mathematical approach can give the same results. It can be

an interesting tool to be developed, but it is not treated in the scope of this work.

3.6 Conclusion

In this chapter the multiconductor transmission lines (MTL) were studied, and a frequency

domain simulation tool for MTL has been developed. The simulation tool is valid for a radial

network of multiconductor cables in which the distance between the conductors does not change

along the cables. Multiconductor cables parameters were identi�ed experimentally, from DC

up to 30MHz. The upper limit of the frequency is imposed by the frequency limits of the

devices available for experimental parameter identi�cation. The cable parameters were injected

on simulator, and the simulation results were validated with two di�erent validation experiments.

As for the two-conductor case, the model proposed here respects the requirements listed

in section 1.3. The MTL model in the frequency domain is length-scalable and models wave

propagation and resonance, and allows and accurate representation of the cable parameters,

which are frequency dependent. These parameters are determined using an impedance analyzer

in the desired frequency-band. The frequency domain simulation is computationally e�cient,

and can represent the hypothetical radial network by concatenating the MTL model.

The losses of the cables were correctly predicted, what allows the developed tool to predict

with accuracy the resonance-due ampli�cations anywhere in the network. Also, the frequency to

which resonance occurs and the position along the cabling where the maximum voltage/current

will take place can be predicted.

Also, the resonance behavior of a balanced system, using a three-conductor long cable, was

computed, and represented in a 3-dimensional surface. However, this approach cannot be easily

generalized to a generic system. Despite that, the approach described to obtain the resonance

surfaces can be used to develop a numerical optimization tool to characterize the resonance

behavior of a given system, but without the visual aid proportioned by the plotting of the

resonance surfaces.
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Abstract

This chapter aims to build a time domain simulation tool for multiconductor transmission

lines. Many options for the transmission line simulations in time domain are available in

the literature. These option will be discussed, and a time domain simulation based on the

frequency domain model developed in the previous chapters will be proposed, and experimen-

tally validated. The cable parameters are obtained experimentally, as done in the previous

chapters.
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4.1 Introduction

The telegrapher equations do not yet have a general solution for lossy cables on time domain.

Despite that, many modeling techniques are available in the literature, the most accurate of

them represent the frequency dependence of the losses on time domain. They may consist in

equivalent circuits that emulate the behavior of the cable losses, or in numericalal solutions of

the telegrapher equations, with approximated functions representing the losses. These techniques

can predict the line behavior with a good accuracy if the equivalent models/approximations are

valid. They will be more extensively discussed along this chapter.

The goal of this chapter is to choose a time domain modeling technique, from which will be

built a simulation tool, as done in the previous chapters. The tool will model a hypothetical

radial network composed of multiconductor cables, in which the characteristics of the conductors

and the distance between them remains the same along the line. Indeed, industrial and building

networks are radial, and the hypothesis that the distance between the conductors does not vary

along the line is strong, but reasonable, because it does not vary drastically for wires inside

electrical conduits, and the results of the model based on this hypothesis will represent a good

approximation of the behavior of the line.

The line model must correctly predict the resonance phenomena anywhere in the network, as

for the frequency domain model developed in the previous chapters. Accordingly, the cable pa-

rameters will be obtained experimentally, and the modeling of the cable losses must be accurate.

We recall, the resonance ampli�cations are limited mainly by the losses in the cable.

Section 4.2 discusses several techniques found in the literature to model transmission lines on

time domain. Section 4.3 introduces the chosen time domain modeling technique, and describes

the structure of the time domain simulation tool. Section 4.4 shows the experimental validation

of the simulation tool built in section 4.3. Section 4.5.c highlights the advantages of the proposed

time domain modeling technique related to usual modeling techniques found in the literature.

4.2 Time-domain transmission lines models

An analytical time domain model of a generic transmission line is not yet found in the literature.

Indeed, transforming the frequency domain solutions described in the precedent chapters to time

domain presents complicated mathematical challenges. The analytical transform of the frequency

domain solution to the telegrapher equations of time domain has two main obstacles:

1. The analytical inverse Laplace transform of e
√
s is not known;

2. The per-unit-length loss-related parameters r and g are highly frequency dependent, and

cannot be approximated by constants without compromising the generality of the model.

They need causal analytical equivalent models r(s) and g(s) for the inverse Laplace trans-

form to be possible.

An example of Causal analytical models approximating the per-unit-length (p.u.l.) param-

eters r(s), l(s), g(s), and c(s) are de�ned in [57]. They could be a �rst step in the analytical

inverse Laplace transform, if the �rst problem in the list above could be solved.

The telegrapher equations themselves can be written on time domain, but they assume a

complicated form of second order di�erential equations to which no analytical solution is known.
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For these reasons, at present, there is no time domain analytical solution for the transmission

line problem in the general case.

A well-known analytical solution for lossless lines is described in [33], and an analytical time

domain solution for lines respecting the Heaviside condition is derived in section 4.2.a, as an

example of the analytical solution of the telegrapher equations.

To work around this issue, there are multiple time domain transmission line models available

in the literature, using di�erent approximations to represent the time domain behavior of the

transmission line.

One of them is a numerical solution using a �nite-di�erences time domain solution described

in [33]. It is an e�cient method, but it requires an expression of r(s) and g(s) that can be trans-

formed by the inverse Laplace transform, what is usually done with asymptotic approximations;

leading to a loss in the accuracy of the results [33].

Another well-known representation of lossy lines on time domain are the series association

of elementary transmission-line cells associated with T-ladder networks, to emulate the high-

frequency behavior of the line losses. This modeling method is discussed in section 4.2.b.

The method chosen for this work consists in representing the system under analysis on fre-

quency domain, via Fourier Series or Fourier Transform, solving the problem on frequency domain

and transform only the results back to time domain. This method is formally described in section

4.3.

4.2.a Analytical solution: the Heaviside condition

The analysis of a possible analytical solution of the telegrapher equations in the time domain is

discussed in this section. It is useful only for lossless and/or analogical communication cables,

and serves as example of an analytical solution to time domain.

The two-conductor line frequency domain solution in (2.4) can be analytically transformed

to time domain via the Laplace inverse transform if the Heaviside condition (4.1) is respected.

r

g
=
l

c
(4.1)

Note that the lossless line (r = 0 and g = 0) is a special case that respects the Heaviside

condition. Power cables do not respect this condition in the medium frequencies band, mainly

because of the dependence of the parameters r and g with the frequency (cf. sections 2.4.c and

3.4.c).

As will be seen below (cf. eq. (4.4)), the Heaviside condition guarantees that the propagation

speed will be constant with frequency, thus avoiding distortions in the signal f time domain. This

condition was postulated by Oliver Heaviside in the XIXth century.

If the Heaviside condition is respected, the propagation coe�cient γ and the characteristic
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impedance Zc of a two-conductor transmission line can be rewritten as follows:

γ =
√

(r + jωl)(g + jωc) =

=
√
lc

√(r
l

+ jω
)(g

c
+ jω

)
=
√
lc
(r
l

+ jω
)

Zc =

√
r + jωl

g + jωc
=

=

√
l

c

√√√√√
(r
l

+ jω
)

(g
c

+ jω
) =

√
l

c

(4.2)

(4.3)

Therefore, for a line respecting this condition, the propagation speed is independent of fre-

quency (β = I {γ}):

v =
ω

β
=

1√
lc

(4.4)

The solution of the telegrapher equations in the frequency domain in eq. (2.4) can be written

using coe�cients V + and V − in function of the frequency, which are, we recall, coe�cients issued

from the di�erential equation solution, to be determined from the boundary conditions. Eq. (2.4)

can be rewritten as:

V (x, ω) = V +(ω)e−xγ + V −(ω)exγ

I(x, ω) =
V +(ω)

Zc
e−xγ − V −(ω)

Zc
exγ

(4.5a)

(4.5b)

Using the transformation jω → s equations (4.5) can be written in the Laplace space, and

the line propagation constant can be simpli�ed to γ =

√
c

l
r + s

√
lc = α+

s

v
.

V (x, s) = V +(s)e−x(α+ s
v

) + V −(s)ex(α+ s
v

)

I(x, s) =
V +(s)

Zc
e−x(α+ s

v
) − V −(s)

Zc
ex(α+ s

v
)

(4.6a)

(4.6b)

The term e−x(α+ s
v

) in equations (4.6) has an analytical Inverse Laplace Transform using the

delay theorem.

To obtain the complete Inverse Transform, the expressions of V +(s) and V −(s) must be

determined.

Take the schematic of the general model in 2.3, where a Thévénin equivalent is connected to

both ends of the line. By evaluating V (x, s) and I(x, s) at x = 0 and x = l, we have:

V (0, s) = VS − ZSI(0, s)

I(`c, s) = VL + ZLI(`c, s)

V +(s) + V −(s) = VS −
ZS
Zc

(V +(s)− V −(s))

V +(s)e−`c(α+ s
v

) + V −(s)e`c(α+ s
v

) = VL −
ZL
Zc

(V +(s)e−`c(α+ s
v

) − V −(s)e`c(α+ s
v

))

(4.7)

(4.8)

(4.9)

(4.10)

By manipulating equations (4.7) to (4.10) and including the re�ection coe�cients, rede�ned
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below (4.11), an expression to V +(s) and V −(s) can be written as in (4.12)

ΓS =
ZS − Zc
ZS + Zc

ΓL =
ZL − Zc
ZL + Zc

(4.11)

V +(s) =
e`cαe`c

s
v

e2`cαe2`c
s
v + 1

(
Zc

ZS + Zc
e`cαe`c

s
vVS(s) +

Zc
ZL + Zc

ΓSVL(s)

)
V −(s) =

1

e2`cαe2`c
s
v + 1

(
Zc

ZS + Zc
ΓLVS(s) +

Zc
ZL + Zc

e`cαe`c
s
vVL(s)

) (4.12a)

(4.12b)

Recalling the delay theorem: the Laplace transform of a function with a time delay a is:

L[f(t+ a)u(t+ a)] = F (s)eas

Using this theorem, the inverse Laplace transform of V (x, s) and I(x, s) can now be obtained:

V (x, t) =

=
Zc

ZS + Zc
e−xα

∞∑
n=1

(ΓSΓL)n−1e−`cα(2n−2)VS

[
t− x

v
− (2n− 2)TD

]
+

+
Zc

ZL + Zc
e−xαΓS

∞∑
n=1

(ΓSΓL)n−1e−`cα(2n−1)VL

[
t− x

v
− (2n− 1)TD

]
+

+
Zc

ZS + Zc
exαΓL

∞∑
n=1

(ΓSΓL)n−1e−`cα2nVS

[
t+

x

v
− 2nTD

]
+

+
Zc

ZL + Zc
exα

∞∑
n=1

(ΓSΓL)n−1e−`cα(2n−1)VL

[
t+

x

v
− (2n− 1)TD

]
I(x, t) =

=
1

ZS + Zc
e−xα

∞∑
n=1

(ΓSΓL)n−1e−`cα(2n−2)VS

[
t− x

v
− (2n− 2)TD

]
+

+
1

ZL + Zc
e−xαΓS

∞∑
n=1

(ΓSΓL)n−1e−`cα(2n−1)VL

[
t− x

v
− (2n− 1)TD

]
+

− 1

ZS + Zc
exαΓL

∞∑
n=1

(ΓSΓL)n−1e−`cα2nVS

[
t+

x

v
− 2nTD

]
+
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(4.13a)

(4.13b)

These equations model the propagation of the re�ected waves in the line, representing in

written form what is usually described with the lattice diagram for transmission lines. The �rst

sum term in each equation corresponds to the input voltage waveform VS(t) propagating in the

+x direction in the line, while the third sum term corresponds to the same waveform VS(t)

propagating in the −x direction. The second and fourth terms correspond to the waveform of

VL(t) propagating in the +x and −x directions, respectively.

There are no known time domain solution of the telegrapher equations more generic than the

one derived here. Still, it cannot be used for the building cabling, because the concerned cables

do not respect the Heaviside condition in the general case. Therefore, other options must be

investigated to model these cables in the time domain.
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4.2.b Time-domain equivalent circuits

There are transmission line models in the literature that can be simulated on time domain, with

any 0D circuit simulator. The most common of these models are based on the fact that the

Multiconductor Transmission Line (MTL) model is built with the series association of the basic

cell represented in Fig. 3.2. The modeling equations assembled in section 3.2.c, to describe the

MTL simulation tool, is equivalent to a series association of an in�nite number of these cells, each

of in�nitesimal length dx. Of course, the series association of the �nite number of these cells can

also represent the behavior of the transmission line within an acceptable accuracy, if the length

of each cell is considerably small when compared to the smallest wavelength that propagates in

the line. A commonly used empiric rule is to guarantee that each cell represents a portion of the

line smaller than λ/10.

Therefore, a transmission line can be simulated in the time domain with a series association

of a number of cells su�ciently high to properly represent the transmission line in question.

However, the simple association of the cells in Fig. 3.2 does not allow the representation

of phenomena such as the skin e�ect and the proximity e�ect, and the frequency behavior of

the dielectric material insulating the MTL conductors. As mentioned before, in the frequency

domain, these phenomena are represented by the evolution in function of the frequency of the

p.u.l. parameters r, l, and g. If the basic cell in Fig. 3.2 is used for a time domain simulation,

the values of these parameters have to be �x.

It is possible to walk around this problem by representing the aforementioned parameters in

form of equivalent circuits that emulate their dependence with the frequency [18,27,33,53].

The dependence of the p.u.l. resistance with the frequency can be modeled with a RL T-

ladder network, as the one represented in Fig. 4.1a [56]. The impedance of the inductance on

each step will increase with frequency, and with ω →∞ the equivalent impedance of the network

is the resistance r0. On the other hand, when ω = 0 the equivalent impedance will be the parallel

association of all the resistances in the ladder. Therefore, r0 should represent the high frequency

value of the p.u.l. resistance, and the association r0 // r1 // ... // rn the DC p.u.l. resistance.

r0
l1

r1

ln

rn

(a) Rl ladder network

g0
c1

g1

cn

gn

(b) RC ladder network

Figure 4.1 � T-ladder network to represent the cable losses

Similarly, the evolution of the p.u.l. conductance with frequency can be represented by the

RC ladder association in Fig. 4.1b [18,53]. With a similar analysis, it can be shown that the low

level conductance g0 corresponds to the DC p.u.l. conductance value, and the parallel association

g0 // g1 // ... // gn corresponds to the high frequency P.u.l. conductance.
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Similarly, the frequency dependence of the p.u.l. self inductance can be represented by the

equivalent circuit in Fig. 4.2. The p.u.l. inductances vary with frequency due to skin and

proximity e�ect. The mutual p.u.l. are also frequency dependent, but their variation cannot be

represented with this model.

L0

R1

L1

Rn

Ln

Figure 4.2 � Equivalent network to represent the cable inductance

The ladder networks described in Fig. 4.1 can be placed in the position of the variable

resistances and conductances in the new basic cell of the MTL represented in Fig. 4.3.

r0(f)

rn(f) ln
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r1(f) l1
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c1i g1i(f)

cii gii(f)

c11 g11(f)

0

n

i

1

...

...

∆x

min

m1i

m1n

Figure 4.3 � Basic cell for time domain simulation of a MTL, parameter variable on frequency

The parameters that compose each ladder network can be calculated with vector �tting

methods [30]. There are speci�c softwares, such as � APLAC RF Design Tool� that have built-in

methods calculate them [18].

Many commercial circuit simulation software have built-in models of transmission lines that

represent the line on time domain using the methods described in this section. The modeling

methods of the most frequent software are discussed below.

PSpice The open-source PSpice software is widely used. It has many models of transmission

lines for di�erent applications, which should be chosen taking into account the cable characteris-

tics, as well as the smallest rise/fall time in the system [38]. For the modeling of building cables,

the model must be valid for long and lossy transmission lines. The PSpice model corresponding

to these exigences is called �TLOSSY�, a distributed parameter model. Its entries are the cable

length `c, and p.u.l. parameters r, l, c, g, all constants. The model does not represent the

evolution of r and g with frequency. The model builds automatically a series association of the

basic transmission cell. The number of cells is determined with the smallest fall/rise time in the
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system. As the number of cells can easily grow big, the simulation time may become considerably

long.

Simplorer Ansoft's Simplorer circuit simulator has embedded models for coaxial cables, and

single-phase and three-phase transmission lines for power systems. These models take as entry

the characteristic impedance Zc, the propagation speed v, the cable length `c and the p.u.l.

resistance r, all real constants. The model builds a lossless transmission line with distributed

parameters from entries Zc, v and `c. The resistance is associated in series with the distributed

model [5]. The accuracy of such approximation decreases when the line length increases, and

the software documentation recommends representing a �long� line with a series association of

smaller transmission lines. Moreover, as the cable parameters are constant, this model is also not

able to represent the frequency-dependent behavior of the cable losses, and propagation speed.

APLAC National Instruments' APLAC software is dedicated to RF simulations. It has two

built-in models for transmission-lines. The �rst model, denominated �Tline�, models the line

with distributed parameters, all with a �xed value. The second model, denominated �TlineDisp�,

models a lossy transmission line, using the ladder networks presented in Fig. 4.1 to represent

the frequency dependence of the loss related parameters of the cable. The number of cells in

both models is chosen by the software, in function of its length and a maximum frequency of the

simulation, both de�ned by the user.

EMTP Powersys' software EMTP is widely used for power systems simulations, and has many

transmission line models, speci�c for the power cables used in energy transmission. The most

complete of these models is denominated �FD m-phase�, and is able to take into account the

frequency dependence of the cable parameters [9]. The modeling technique used by EMTP is

detailed in [28], and, brie�y, consists in the approximation of the cable parameters Zc and γ by

rational expressions in function of the frequency. These expressions can then be decomposed

in partial fractions, for which the inverse Fourier/Laplace transform is de�ned, what allows the

de�nition of an approximate model on time domain.

These are a few examples of time domain transmission line models available in commercial

software, surely many others can be found. The disadvantage of simulating transmission lines on

time domain using the series association of their basic cells is that the simulation time can be too

high if the cable is electrically long (longer then the minimum wavelength to be accounted for),

factor that would engender the need of a great number of cells for an accurate representation of

the line.

Considering that this work aims to deal with harmonics of frequency up to 30MHz, and

that the propagation velocity on the power cables characterized so far is around v = c/2, where

c is the speed of light in vacuum, the minimal wavelength to be taken into account is around

5m. The length of the cables on industrial or building cabling network can be easily 10 times

bigger than this value. Therefore, the approach described here is too cumbersome to model the

industrial cabling network, because the simulations can easily take too long to complete. Indeed,

this problem is even more critical considering the need of concatenation of the cable model, if a

system with multiple cable portions need to be simulated.
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The cable modeling technique on time domain considered �t for the industrial cabling mod-

eling is described in the next section.

4.3 Frequency-domain model results converted to time domain

Chapters 2 and 3 introduced a frequency domain model for power cables, capable of modeling

any piece of the radial network studied here. In this model, big portions of the network can

be modeled as Thévénin/Norton equivalent circuits, and the piece of cable under study can be

modeled by the generic frequency domain simulation tool described in section 3.2.c.

The attempt to transform of the model itself to time domain presents important di�culties,

as has been discussed in section 4.2. However, if the system under study can be represented in

the frequency domain, it can be simulated in the frequency domain with the aforementioned tool,

and the results can be easily transformed to time domain using the Fourier Series in association

with the phasor transform, or the Fourier Transform itself.

Indeed, in a time domain application where the devices connected to the cables terminals

can be represented by Thévénin/Norton equivalent, it is su�cient to represent the equivalent

voltage/current source(s) on frequency domain via one of the transforms mentioned above. Once

this step is performed, the system can be solved for each frequency individually. Then, the time

domain waveform can be computed with the inverse transform of the solution in the frequency

domain.

In the next two subsections, the theory of time to frequency domain transform is discussed,

and in the last subsection 4.3.c the algorithm built for time domain applications using this

modeling technique is presented.

4.3.a Periodic signals transform

If the sources in a given system are periodic, a Fourier Series in association with the phasor

transform can be used to represent if in the frequency domain, and an analysis in the sinusoidal

steady state can be performed. This is the case for systems in which the sources are switching

structures, such as power converters.

In such cases, the Thévénin/Norton equivalent sources are periodic and can be represented

by a Fourier series, as in (4.14).

s(t) = C0 +

N∑
n=1

Cn cos[(2πf0n)t+ θn] (4.14)

By applying the phasor transform to equation (4.14), the frequency domain representation

of a periodical source is obtained, and is written in phasor notation below:

S(fn) = Cne
jθn

S(0) = C0

(4.15a)

(4.15b)

This representation of a periodic signal in the frequency domain is possible if the Fourier

Series of s(t) exists, what is true for any practical signal [26].

The frequency domain representation of periodic signal is discrete on frequency, having a null

value for frequencies non-multiples of the fundamental frequency f1.
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Once the system is represented on frequency domain, the voltages and currents along the line

can be simulated for each harmonic. The frequency domain results can be converted back to

time domain using equation (4.14).

4.3.b Generalized transform

If the source is not periodic, the Fourier series cannot be de�ned. For example, the case of the

parasitic voltage pulse induced by lightening in the cabling network.

In such cases, the Fourier transform can be used to obtain a frequency domain representation

of the Thévénin/Norton equivalent sources (4.16).

s(t)⇔ S(ω) (4.16)

The Fourier transform is de�ned for continuous functions on time domain, and continuous

spectra on frequency domain. As the model will be implemented on computers, the Discrete

Fourier Transform (DTF) should be used, via the Fast Fourier Transform (FFT) algorithm for

example. This transform is possible for any practical signal.

Once the DTF S(2πf [k]) of the time domain signal is obtained, it can be inserted in the

frequency domain model, for a steady state analysis of the system. As the spectrum resultant

of the DFT represents a continuous spectrum, it must be interpolated if its value is needed for

frequency values di�erent from the frequency samples given by the FFT algorithm.

The results of the frequency domain-model calculated from a Fourier Transform can be trans-

formed back to time domain via the inverse FFT.

Even tough interesting, the representation of a system in the frequency domain via the Fourier

transform will not be studied in this work. The algorithm described in the following section is

exclusive to systems with periodic sources.

4.3.c Time domain transform of the frequency domain solution

The chosen technique to model transmission lines on time domain consists of the frequency

domain simulation of the system, using the Fourier series along with the phasor transform as

the bridge between time and frequency domains. In this work, time domain analysis of the

transmission line is limited to systems where the line is excited with periodic sources.

Consider the generalized frequency domain model described in section 3.2.c. It models equiva-

lent system in Fig. 4.4, repeated here for convenience, where generic multiport equivalent circuits

are used to represent the devices connected to the line terminals.

The �source� and �load� boxes represent the devices connected to the cable terminals, and can

be represented by a (n+ 1)-port equivalent circuit, as described in section 3.2.c. This equivalent

circuit allows the representation of any linear (n+1)-port device with a n×n admittance matrix

Y and n current sources S that can be arranged in a column vector S. Then, the voltages and

currents at the device output are related by equation (4.17) (cf. section 3.2.c):

I(f) = S(f)−Y(f)V(f) (4.17)

Both of the devices, �source� and �load�, can generate high frequency harmonics, therefore

the �load� device may have current sources on its equivalent circuit, representing the stray signal

injected by the �load� in the cable. Their names refer to the main function of the devices.
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Figure 4.4 � Schematic of the multiconductor transmission line

The �rst step to simulate the system on frequency domain is to represent the equivalent

circuit described by (4.17) on frequency domain. The �rst hypothesis taken is that the sources in

the equivalent circuits corresponding to the boxes �source� and �load�are periodical. The current

sources representing the �source� device are denominated SS(t), and their period is TS . The

current sources representing the �load� device are denominated SL(t), and are periodical with

the period TL. Because we took the hypothesis the sources are periodic, these sources can be

represented in the frequency domain with the Fourier Series followed by the phasor transform (cf.

section 4.3.a). The frequency domain representation of these vectors of sources are denominated

SS(f) for the source and SL(f) for the load. The equation (4.17) can be rewritten for each one

of the devices at the cable terminals as follows:

I(0, fS) = SS(fS)−YS(fS)V(0, fS)

I(`c, fL) = SL(fL)−YL(fL)V(`c, fL)

(4.18a)

(4.18b)

In the general case, the periods TS and TL are not necessarily the same. The vector fS is

de�ned as the group of frequencies multiple of 1/TS , the fundamental frequency of the stray

signals injected in the line at x = 0, and fL is the vector containing the multiples of 1/TL, the

fundamental frequency of the stray signals injected at x = `c.

Because of this possible discrepancy between the fundamental frequencies at each extremity

of the cable, the frequency vectors fS and fL have to be merged into a single vector f , for the

system to be completely simulated at once. In this process, the vectors SS(f) and SL(f) must

be created: as mentioned in section 4.3.a, they must be zero in the frequency points that are not

multiple of their fundamental frequency. i.e., SS(fL) = 0 and SL(fS) = 0.

Then, the merged voltage/current relations can be written as follows:

I(0, f) = SS(f)−YS(f)V(0, f)

I(`c, f) = SL(f)−YL(f)V(`c, f)

(4.19a)

(4.19b)

Once the vector f is known, the cable parameters must be determined for each of the frequency
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points in f . That is done by interpolating directly the input impedance measurements used for

the cable parameter identi�cation. The real and imaginary parts of the input impedances of

the sample cable are interpolated to f , after what the cable parameters are calculated for these

frequencies.

After these steps, the frequency domain simulation tool described in section 3.2.c can be used

to determine the voltage and currents along the line, and its results can be converted back to

time domain using equation (4.14).

The process just described is represented by the �owchart in Fig. 4.5. The blue box represents

the �time domain computing tool� developed for the modeling of the building cabling, based in

the frequency-domain simulation tool described in section 3.2.c.

ZSC(0), ZOC(0), fi

Interpolation f

Param. Identi�cation

Frequency-
domain model

f → t

V(x, t), I(x, t)
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IL(t)

x

`c

`i

Figure 4.5 � Flowchart of the complete model

The tool takes as inputs the cable length `c, the points x where the variables are to be

calculated, the parameters of the equivalent circuits of the devices connected to each terminal

YS, YL, IS(t), and IL(t), and the cable parameter identi�cation data: the cable input impedance

in short circuit ZSC(0) an open-ended ZOC(0), the frequency to which these measurements were
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performed fi, and the sample cable length `i.

At the left of the �owchart, the representation of the equivalent circuits of the devices con-

nected to cable terminals is treated, aiming to obtain the parameters in the equation (4.19).

First, the time domain current sources of the equivalent circuits IS(t) and IL(t) must be con-

verted to frequency domain, using the Fourier series followed by the phasor transform. Then,

as the frequency domain representation of these sources is obtained for the frequency points of

their harmonics: fS and fL, respectively, the parameters IS(fS), IL(fL), YS, and YL, must be

merged into a common frequency vector f , containing all the values in both fS and fL. Then,

the parameters in function of f are inserted in the frequency domain model, and the vector f is

used to the interpolation of the cable parameters.

On the top of the �owchart, the cable parameters computation for the frequency points in f

is described. The frequency-vector f is used to interpolate ZSC(0) and ZOC(0). The interpolated

cable input impedances, as well as the length of the sample cable `s, are used to obtain the cable

parameters Zc(f) and
√

yz(f).

The frequency domain model take as inputs the vector of positions x where the values of

voltages and currents are demanded, the cable length `c, the cable parameters Zc(f) and
√

yz(f),

and the frequency domain relations between the voltages and currents on the cable terminals

described by eqs. (4.19). The outputs are the voltages and currents of the line in function of

frequency f , at the positions on vector x, can then be converted to time domain using the Fourier

series (4.14), as described on section 4.3.a.

The �owchart of the frequency domain model is shown in Fig. 3.6, refer to section 3.2.c for

details.

The accuracy of the results of this time domain computing tool will be shown with the

validation experiments in the next section.

4.4 Time-domain validation

The results of the time domain computing tool in section 4.3.c were validated experimentally

with three di�erent setups, two of them using two-conductor cables and the third using a three-

conductor cable.

For all the experiments, a trapezoidal source with near zero output impedance was used. The

trapezoidal source is periodic, and therefore can be decomposed in a Fourier Series, to be injected

on the frequency-domain model after the phasor transform (cf. section 4.3.a). The Fourier Series

decomposition of a periodic trapezoidal signal can be expressed as in (4.20), in function of the

parameters de�ned in Fig. 4.6, and with βr =
tr
T0

, βf =
tf
T0

, and sinc(a) =
sin(a)

a
.

C0 = Ad+ b

Cn =
A

nπ

√
sinc2(nπβr) + sinc2(nπβf ) + 2sinc(nπβr)sinc(nπβf ) cos(nπ2d)

θn = −atan

(
βf sin(2nπβr) + βr (sin(p)− sin(q))

−βf (1− cos(2nπβr)) + βr (cos(p)− cos(q))

)
p = nπ(2d− βf + βr)

q = nπ(2d+ βf + βr)

(4.20a)

(4.20b)

(4.20c)
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Figure 4.6 � Parameters of periodical trapezoidal source

As mentioned in section 1.2 , the spectrum of the series given by (4.20) is attenuated with

−40
dB

dec
from the frequency f =

1

πmin(tr, tf )
, and is truncated at fend =

10

min(πtr, tf )
in the

time domain computation tool.

Some precautions have been taken to avoid alternative paths to the high frequency currents

during the experiment. All the experiments were performed with the cables suspended by insu-

lating materials, as is well shown in Fig. 4.7. The scope used to measure the voltage along the

cable was fed through a battery, to avoid an alternative path to the current via the mass of the

scope. The scope itself was placed over a cardboard box, as well as the load connected to the

cable extremity.

Figure 4.7 � Photo of the experimental setup

The following subsections describe the validation experimental setup for each of the experi-

ments, and present the validation results.
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4.4.a Two-conductor cable validation

The time domain computing tool is validated for two-conductor cables with the setup described

in Fig. 4.8.

−
+VD ZLZc, γ

A

VV

`c xxM0

Figure 4.8 � Schematic for the time domain validation experiment

A long two-conductor cable is fed with a low output impedance trapezoidal source, and a

known load is connected to the other extremity of the cable. Resonances will take place, according

to the chosen load, and the voltage and current will be measured on the points of interest, i.e.,

the position xM along the line where resonance-due ampli�cations are maximal.

The voltage is measured with scopes. One scope is constantly connected to the cable input,

to verify the voltage imposed by the source behaves as expected, and another is connected to

the point along the line where resonance-due voltage ampli�cation is maximal. The scope that

measures the voltage along the line is fed by battery. The scope connected to the cable input is

directly connected to an electric plug, and, consequently, the input of the cable is connected to

its mass.

A split-core current probe measures the resonance-due current ampli�cation at the cable

input. As discussed in section 2.5.a, the resonance-due current ampli�cation arrives at the

positions along the line where the voltage ampli�cation is minimum, because the power is constant

along the line, except for the Joule losses. As the voltage in the cable input is �xed by the voltage

source on this case-study, the input is a point of minimum voltage ampli�cation (V (0) = VS for

any frequency) and, therefore, of a maximum current ampli�cation.

The voltage probe input impedance was taken into account on the system modeling. The

voltage probe mass was connected to the cable using the adapted spring connector shown in Fig.

4.9.

Figure 4.9 � Connection of the voltage probe along the line

4.4.a-i Two-conductor 2.5mm2 cable, RL series load

The �rst validation experiment was performed for the two-conductor cable of section 2.5mm2,

cf. Fig. 2.29 for its cross-section, connected to the load in Fig. 4.10. The cable length is

`c = 11.09m.
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ZL =

3,9µH

5,6Ω

Figure 4.10 � The RL series load chosen for the experimental validation

The load in Fig. 4.10 was built with a power resistor mounted on a heat sink, in series with

a coreless solenoid in Litz wire (Fig. 4.11).

Figure 4.11 � The RL series load connected to the two-conductor 2.5mm2 cable

The behavior of the resonance phenomena in the line with the load just described was studied

with the method described in section2.5.b-i. One resonance point is predicted, at the frequency

fn = 2.4MHz, its characteristics are resumed in table 4.1.

Table 4.1 � Characteristics of the predicted resonance

Resonance frequency 4.4MHz

Ampli�cation of the input voltage (single harmonic) 6.8

Maximal ampli�cation position 8m

The trapezoidal source parameters that best describe the voltage imposed on the line input

are listed in table 4.2.

Table 4.2 � Trapezoidal source parameters

A 50.5V d 25.3% tr 25ns

b −0.9V T0 5µs tf 25ns

The voltage was measured at xM = 8m with the battery powered scope, and current was

measured at the cable input with a split-core probe.

The data obtained with these measurements is plotted over the correspondent theoretical

prediction in Figs. 4.12a and 4.12b. The limits of the accuracy of the measurements are also

plotted, given by the scope manual [50], so that the validity of the model can be veri�ed.

The theoretical voltage and current present a good agreement with the experimental data,

the theoretical results are within the accuracy gap of the measurements. Thus, the accuracy of

the time domain computing tool is validated.
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(a) Voltage at x = 8m (b) Voltage at x = 8m

Figure 4.12 � Results of the validation experiment with series RL load

4.4.a-ii Two-conductor 0, 75mm2 cable, RL series C parallel load

The second setup for the two-conductor time domain validation uses the two-conductor 0.75mm2

section cable, the cross-section described by Fig. 2.16, with length `c = 11.98m. The load in

Fig. 4.13. is connected to the cable extremity.

ZL =

54µH

5,6Ω10nF

Figure 4.13 � RL series C parallel load connected to the 0.75mm2 cable

To build this load, a power resistor was chosen, and mounted on a heat sink. The inductor

was built with Litz wire, on a close loop ferrite core with an air gap, the capacitor is ceramic. A

photo of this load is shown in Fig. 4.14.

Figure 4.14 � Load used in the three-conductor cable time domain validation experiment
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The trapezoidal source parameters were determined to best represent the voltage imposed by

the source at the line input, they are listed in table 4.3.

Table 4.3 � Trapezoidal source parameters

A 98.16V d 0.2475 tr 106.2ns

b −0.5V T0 25.004µs tf 151.56ns

The resonance behavior of the cable connected to this load was evaluated as described in

section 2.5.b-i. Two resonance frequencies were identi�ed, and the characteristics of each one of

them are resumed in table 4.4.

Table 4.4 � Characteristics of the predicted resonances

Resonance frequency 660 kHz 6.4MHz

Ampli�cation of the input voltage (single harmonic) 7.4 5.8

Maximal ampli�cation position `c `c/2

The �rst resonance, at 660 kHz, can be modeled with short line model, as described in

section 2.5.c: for this frequency cable and load behave as an LCL resonant circuit. This can be

shown by representing the line with a single cell, which gives the circuit in Fig. 4.15; the p.u.l.

parameters correspond to f = 660 kHz. The resonance frequency of the LCL circuit in Fig. 4.15

is
1

2π

√
`c0.6µ+54µ

(`c70p+10n)`c0.6µ54µ = 609 kHz, close to the predicted resonance frequency

`c0.2
Ω
m `c0.6

µH
m 54 µH

5.6 Ω`c30 µS
m `c70 pF

m + 10nF

Figure 4.15 � Short line model of the system, valid for low frequencies

The resonance taking place at 6.4MHz is a propagation-due resonance. For that reason,

we choose to measure the voltage where this resonance is maximum, i.e., xM = `c/2. At this

position, the 660 kHz voltage ampli�cation is also present, but its amplitude is not as high as at

x = `c. This is shown in Fig.4.16, where the frequency domain result for the voltage along the

line is plotted in function of the frequency for three di�erent positions of the line.

The voltage at x = `c/2 and the current at x = 0 were obtained with the time domain

computation tool, and compared to the experimental data in Fig. 4.17. The error limits of the

scope measurement, obtained from the limits of accuracy given by the scope manual [50], are

also plotted over the experimental data.

The resonance at 6.4MHz is attenuated much before the LCL resonance at 660 kHz, and it

is di�cultly visible on the �gures containing the whole period T0. The high frequency resonance

e�ect is more visible in Fig. 4.18, zoomed around the switching point dT0.

The time domain computing tool predicts correctly the voltages and currents in this experi-

ment, its values remaining within the accuracy gap of the scope.



4.4. Time-domain validation 105

Figure 4.16 � The voltage along the line on the frequency domain

(a) Voltage at x = `c/2 (b) Current at x = 0

Figure 4.17 � Vatidation results for the RL series C parallel load

(a) Voltage at x = `c/2 (b) Current at x = 0

Figure 4.18 � Validation results for the RL series C parallel load, zoom on the 6, 4MHz resonance

4.4.b Three-conductor cable validation

A similar experiment has been designed to validate the proposed transmission line modeling

technique for multiconductor cables.
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A three-conductor cable, with 2.5mm2 stranded copper conductors insulated with polymer

sheaths is used, its cross-section is repeated in Fig. 4.19 for convenience.

Source: http://www.caledonian-cables.co.uk

Figure 4.19 � Cross-section of the three-conductor 2.5mm2 cable

The experiment was designed to represent a single-phase system, with common-mode currents

circulating through the third conductor. Its schematic is drawn in Fig. 4.20

−
+VD

430µH

5,6Ω

4,7nF1kΩ1kΩ4,7nF

V1(x)

V2(x)

I1(x)

I2(x)

`c x

Figure 4.20 � Schematic for the three-conductor cable time domain validation experiment

A trapezoidal source feeds the system in di�erential mode. The di�erential mode load is a

RL series association, and the third conductor is connected through a RC parallel association,

representing the common-mode stray capacitance and conductance. The RC parallel association

is oversized, so the current circulating through the third conductor, considered common mode in

this analysis, is higher than the actual common-mode currents in the experimental set.

The RL series association was built with a power resistor mounted over a heat sink, in series

with a solenoid on Litz wire around a closed loop ferrite core with an air gap. The RC parallel

association were built with ceramic components. A photo of this load is presented in Fig. 4.21.

The di�erential source connected to the cable input imposes a trapezoidal voltage with the

parameters listed in table 4.5.

Table 4.5 � Trapezoidal source parameters

A 98.17V d 0.1867 tr 108.0ns

b −0.5V T0 20µs tf 117.2ns

In this system, the voltage maximal ampli�cations due to resonance take place at x = `c. As

aforementioned, current maximal ampli�cation due to resonance take place at x = 0 because the

voltage is imposed at the line input.
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Figure 4.21 � Load used in the three-conductor cable time domain validation experiment

The resonant voltage and current were measured on time domain each at turn, i.e., the voltage

or current probes were only connected to perform the measurement. This way no other probe was

connected to the system during any of the measurements. The impact of the current probe was

negligible, but the voltage probe input impedance had to be included in the theoretical model to

guarantee the equivalency between the model results and the measurements.

The measured voltages and currents are compared to the model results in Figs. from 4.22 to

4.25.

(a) Switching period (b) Zoom in

Figure 4.22 � Voltage V1(`c)

The model agrees acceptably with the experimental data, thus validating the proposed cable

modeling on time domain also for multiconductor cables.
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(a) Switching period (b) Zoom in

Figure 4.23 � Voltage V2(`c)

(a) Switching period (b) Zoom in

Figure 4.24 � Current I1(0)

(a) Switching period (b) Zoom in

Figure 4.25 � Current I2(0)

4.5 Qualitative analysis of the frequency domain model

The advantages of the simulation tool proposed in this work are analyzed in this section. In

section 4.5.a the impact of the frequency dependent loss-related parameters is analyzed, and in



4.5. Qualitative analysis of the frequency domain model 109

section 4.5.b the modeling of the time delay of a traveling wave in a long cable is studied. The

conclusions on the performance of the simulator are made in section 4.5.c.

4.5.a Impact of the frequency dependence of the parameters

In this section, the frequency domain simulation with conversion to time domain will be used to

determine the importance of representing the frequency dependence of the parameters, regarding

the accuracy of the time domain results.

This analysis is based on the system used for the three-conductor cable time domain validation

in section 4.4.b, its setup is represented in Fig. 4.20. The cable is the unshielded three-conductor

cable with conductors of section 2.5mm2, its cross-section is represented in Fig. 4.19.

To determine the importance of frequency dependent parameters, two sets of cable parameters

constant along the frequency were de�ned, they are denominated �LF� (low frequency) and �HF�

(high frequency), the self elements of the p.u.l. parameter matrices are detailed in Table 4.6.

The �LF� has the DC values of the loss-related parameters r and g and the reactive parameters l

and c are evaluated at 50 kHz, while the �HF� set has all the parameters evaluated at 20MHz.

Table 4.6 � Fixed cable parameters for resonance analysis

ri lii gii cii

LF (DC, 50 kHz) 13.4 mΩ/m 547 nH/m 1 nS/m 58 pF/m

HF (20MHz) 487 mΩ/m 512 nH/m 238 µS/m 54 pF/m

The simulation of the systems in Fig. 4.20 was performed for each of these sets, and for the

complete model with variable cable parameters. The results for the output voltage are plotted

in Fig. 4.26.

Figure 4.26 � Simulation of V1(`c) for three di�erent cable parameter sets

The simulated results for the low frequency parameters have an attenuation coe�cient much

inferior then the one predicted by the complete model, because the losses at the resonance

frequencies of the cable are much superior to its DC losses. For the same reason, the attenuation

coe�cient with the high frequency set of parameters is superior than the one of the complete

model, because the losses at 20MHz are bigger than the losses at the resonance frequency.

Moreover, for �HF� results, the �nal value of the voltage at the end of �rst phase of the

switching period is considerably lower than expected. This value depends mainly on the DC

losses of the cable, and therefore the high losses in the �HF� set of parameters causes this error.
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The importance of representing the frequency dependence of the loss-related parameters is

clear in this example. Only the parameter set variable on frequency is capable of correctly predict

the behavior of a lossy cable in which resonances take pace.

4.5.b The wave traveling delay

A second advantage of the model proposed in this work is the correct modeling of the time delay

of a traveling wave in a long cable.

To demonstrate it, a simulation of a 100m long cable excited by a step voltage (simulated

with a trapezoidal signal of long period: T0 = 10ms) was performed. The cable parameters

used in the simulation are those of the 2.5mm2 two-conductor cable, plotted in Fig. 2.33. The

simulated input and output voltages in the cable are plotted in Fig. 4.27. A time delay of around

700ns can be measured.

Figure 4.27 � Voltage pulse sent into a `c = 100m long cable

To verify that this delay is coherent, the propagation speed for the 2.5mm2 two-conductor

cable is plotted in Fig. 4.28. In high frequencies, the mean propagation speed is around 1.4 ×
108m/s. That gives an approximated time delay of TD = `c/v = 715ns, what corresponds to

the simulation results.

Figure 4.28 � Propagation speed in the 2.5mm2 two-conductor cable

It is important to note that the dependence of the propagation speed with the frequency is

inherent of lossy lines. For example, it is responsible for the deformation of the input signal on

time domain.
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4.5.c Advantages of the frequency domain model

The principal advantage of solving the transmission line equations in the frequency domain is

the fact that no extra approximations are needed to represent the frequency dependency of

cable p.u.l. parameters, in opposition to time domain models. The later are always based on

approximations to represent phenomena such as proximity and skin e�ect.

The high accuracy of the simulation on the frequency domain, using the Fourier and the

phasor representation series to perform the transform to time domain, is demonstrated in section

4.4.

Moreover, the method has a good computational performance, having a computation time

that does not increase with the cable length, but instead depends mainly on the number of points

x along the line where the voltage is to be calculated, and the number of frequency harmonics

to be taken into account and the sampling rate on time domain. Therefore, the method is

particularly interesting in the applications where the input and output voltages and currents are

the only variables of interest, what is the case for most of the applications in the literature.

In terms of computational e�ort, when modeling a multiconductor cable of n+ 1 conductors,

the simulation tool requires the calculation of its modeling matrix Φ, and the solution of a linear

system of order 2n, for each harmonic. Once the frequency domain simulation is performed, a

summation of harmonics of the results is needed. These operations demand low computational

e�ort, principally when compared to the time domain simulation of the series association of basic

cells, with T-ladder networks emulating the frequency-dependent behavior of the cable losses (cf.

4.2.b)

Also, another advantage in comparison to the equivalent T-ladder networks model is that

the frequency domain solution guarantees that the magnetic couplings parameters (p.u.l. mutual

inductance) can vary with frequency, a representation that is not possible with the T-ladder

networks (cf. 4.2.b).

In conclusion, the frequency domain simulation followed by a Fourier series based time domain

transform is an e�cient modeling technique, well adapted to represent the building cabling.

Indeed, this assertion is reinforced by the fact that the devices connected to a building network

can be represented by periodical sources, as they are either alternative (50/60Hz) or have a power

converter with a periodic switching on their inputs. One limitation brought by the model based

on the signal periodicity is that the lightening phenomena cannot be represented by it, and would

need a separate simulation to be taken into account.

4.6 Conclusion

In this chapter a time domain simulation tool has been built, using the frequency domain tools

developed in the previous chapter and the Fourier series to represent the system on the frequency

domain. The results of this simulation tool have been experimentally validated.

The choice to perform time domain simulation passing through the frequency domain guaran-

tees the accurate description of the cable losses, crucial to the resonance phenomenon modeling,

at the same time it simpli�es the cable losses representation.

Moreover, the accuracy of the results is remarkable. The oscillations observed on the time

domain due to resonance are reproduced in the theoretical results within the accuracy of the

measurement instruments, and the shape of these oscillations is more realistic than what is more
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commonly obtained with time domain simulations.

The proposed frequency domain algorithm is e�cient, and as the transform to time domain

does not cost much in computing time, the whole simulation tool is not time-consuming compu-

tationally.

The proposed time domain simulation tool is well adapted for the simulation of a real indus-

trial or building cabling network, and can be the key to correcting the EMI problems in these

networks in the future work.
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Abstract

In this chapter, the MTL simulation is applied to speci�c systems susceptible to resonance

in long cables. A methodology to analyze the resonance potential damage is proposed, and

applied in practical examples. Three system are studied with the simulator proposed in this

work: an electric machine activated with a variable frequency drive through a long cable,

a DC link with voltage elevation for transmission of power in a long distance, and a long

connection between a battery and switched device. In the last section, the resonance surface

response introduced in chapters 2 and 3 are applied to the design of minimal EMI �lter in

an embedded system.
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5.1 Introduction

In this section the time domain simulation tool developed in the previous chapter will be used

to analyze di�erent applications. These examples will show the e�ciency and adaptability of the

proposed tool.

In addition, the simulation tool allows an analysis in the frequency domain able to predict the

resonance behavior of a cable in a given system, what is useful to design systems robust against

this phenomenon.

In section 5.2, a straight-forward methodology to analyze the resonance behavior in a given

system is described. The e�ciency of this methodology is demonstrated in each of the applications

studied in this chapter, where the resonance behavior of the given system is characterized. In

section 5.3 the well-known case where an induction motor is fed through an electrically long cable

is studied. In section 5.4, two DC systems with long cables are studied, the �rst exclusively in

di�erential mode, in section 5.4.a, and the second in di�erential and common mode, in section

5.4.b. In section 5.5 the resonance behavior of a cable is taken into account on the designing of

a minimal EMI �lter taking the resonance phenomenon into account.

5.2 Methodology to detect resonance problems in a given system

Resonance problems may arise in any system in which the harmonics injected in a transmission

line are of frequency higher than f > v/4`c � or, equivalently, are of a wavelength smaller than

λ < 4`c � where v is the propagation speed in the line and `c the line length.

An accurate frequency domain model, de�ned as described in chapters 2 and 3, is very handy

to predict the resonant behavior of any system containing an electrically long cable, i.e., a cable

longer than λ/4, for the harmonic of the smallest wavelength circulating in the system.

In this section, a methodology of analysis able to characterize the resonant behavior of a

transmission line in a given system is de�ned. This methodology will be applied in the practical

examples described in sections 5.3 and 5.4.

The methodology consists in the determination of the transfer function of a system relative

to the perturbation sources.

To that end, �rst consider that the Frequency domain simulation tool is based on the solution

of the system of equations (3.22), repeated here for convenience.

[
V(`c, f)

I(`c, f)

]
= Φ(`c, f)

[
V(0, f)

I(0, f)

]
I(0, f) = SS(f)−YS(f)V(0, f)

I(`c, f) = SL(f)−YL(f)V(`c, f)

The transfer function relative to a given scalar source S can be obtained by setting the value

of this source to 1V or 1A, and canceling all the other sources in the system.

Using the transfer functions, the resonance frequencies of the cable can be determined by

comparing the voltages or currents along the cable to the ones at the cable input. The resonance

potential to cause damage can also be estimated.

In addition, the resonance behavior of a system can be used as an additional information

in the design of the input/output �lters connected to the cable. Indeed, the resonance surface
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response introduced in sections 2.5.b and 3.5.b can be adapted to map the resonant behavior of a

system, in function of any two variables. These variables can be the real and imaginary part of an

impedance, as done previously, or the value of an inductance and a capacitance, what is useful

for �lter design. An example of an EMI �lter design which takes into account the resonance

behavior of the cable is described in section 5.5.

5.3 Induction motor fed with electrically long cable

The most common EMI problem due to voltage resonance in the literature is the case when long

cables are used to connect an induction machines to its drive [52], [20], [35], [41], [45], [15], as

mentioned in chapter 1. This well-known application will be studied in this section, as one of

the examples for which the time domain simulation tool described in 4.3.c can be useful.

Induction motors are usually driven and controlled with variable frequency drives. The

structure of these drives commonly has an inverter on its output. The output �lter of drive is

often not present, due to the facts that its cost is high and the highly inductive impedance of

the motor in low frequencies make it redundant. However, in the absence of the output �lter

the square pulse-width modulated voltage imposed by the inverter propagates in the line, with

its rich harmonic content. It is very likely that the switching harmonics will excite the natural

frequencies of a few meters long cable, and the resonance-due harmonic ampli�cation may cause

dangerous over-voltages in the system.

These over-voltages due to cable resonance can also be explained on time domain: the inverter

imposes a voltage with high dV/dt in the cable input, and the voltage front is nearly fully re�ected

at the cable terminals. Indeed, at the cable terminal connected to the electric machine, the wave

is re�ected because the input impedance of the electric machine is at least an order of magnitude

higher than the characteristic impedance of the cable Zc for most of the low to medium frequency

band. In the inverter terminal, the equivalent impedance of the switching cell is low, as the

switching devices have low internal resistance, and the inverter output impedance is at least one

order of magnitude lower than Zc for most of the frequency band. The re�ection at both ends

of the cable lead to stationary waves that when superposed cause a signi�cant resonance-due

over-voltages at the cable end that may damage the induction machine.

With the advent of wide-band gap semiconductors, the resonance problems will appear for

smaller cables [45]. Many practical solutions to this problem are synthesized in [15].

The time domain simulation tool will be used to analyze the system in Fig. 5.1. It consists

in an induction motor driven by a variable frequency drive, and connected to it through a long

four-conductor cable. The cable has a tinned cooper wire shield that is taken into account by

the conductor �4� in Fig. 5.1.

The electrical machine in this example is a Leroy Somer three-phase induction motor, of power

1.5 kW . The input impedance of the motor was measured following the procedure described by

Revol [41], [40]. Assuming that the motor has three identical wingdings, what is true for most

three-phase motors in good shape, the motor can be identi�ed with the two measurements shown

in Fig. 5.2, performed between points a and b.

The details of the experimental setup to perform the measurements in Fig. 5.2 are resumed

in appendix H. Also, this identi�cation method was validated with a di�erent experimental

approach, this validation is detailed in appendix I.

The input impedances ZPP and ZPG measured in the chosen motor are presented in Fig. 5.3.
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Figure 5.1 � Induction motor fed with long cable
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(a) ZPP measurement
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(b) ZPG measurement

Figure 5.2 � Measurement schematics to characterize the three-phase motor: input impedance
measured between points a and b

To obtain an input admittance matrix for the three-phase motor, it is supposed that input

impedance of each phase can be presented by the equivalent circuit in Fig. 5.4. In this circuit, Zb
represents the impedance of one winding, and Zg the stray elements between the wingdings and

the motor carcass. It is supposed that the motor is symmetric to common mode, i.e., the stray

elements between points P and G are the same as the elements between points P ′ and G, and

can be represented by the same impedance Zg. Indeed, the rotor of an induction motor behaves

as a Faraday cage in high frequency, what allows the impedance Zg to be constant independent

of the rotor position, and symmetric to points P and P'.

Impedances Zb and Zg are obtained from the two measurements in Fig. 5.3 by solving the

equations (5.2).

Zb = 3ZPP
(4ZGP − ZPP )

(4ZGP − 2ZPP )

Zg = 3(2ZGP − ZPP

2
)

(5.2a)

(5.2b)

The machine is represented in the simulation model by its admittance input impedance Ymotor,
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Figure 5.3 � Motor Leroy Somer 1.5 kW measured impedances

Zg Zg

Zb
P'P

G

Figure 5.4 � Equivalent circuit of one phase of the motor

a matrix that satisfy the relation (5.3)


I1(`c)

I2(`c)

I3(`c)

 = Ymotor


V1(`c)

V2(`c)

V3(`c)

 (5.3)

By representing the three phases of the motor in parallel, each phase given by the equivalent

circuit in the schematic in Fig. 5.4, the matrix Ymotor can be deduced. It is given in (5.4).

Yb = Zb
−1

Yg = Zg
−1

Ydiag = 2Yb
2 + 6YbYg + 3Yg

2

Ymotor =
1

3(Yg + Yb)


Ydiag −Yb2 −Yb2

−Yb2 Ydiag −Yb2

−Yb2 −Yb2 Ydiag



(5.4a)

(5.4b)

(5.4c)

(5.4d)

The couplings between the wingdings of the motor are taken into account in this model.

Indeed, this is shown by the fact that the motor is represented by a full admittance matrix, and

that Ymotor remains a full matrix even if the stray common-mode admittance Yg is considered an
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open circuit.

The cable is composed of four stranded wire conductors of section 1.5mm2 with a tinned

cooper wire outer shield, its cross-section is represented in Fig. 5.5 and its p.u.l. parameters

are available in appendix G. The cable is 70m long, three of its conductors are used for each

of the three phases, and the fourth is used as the protective earth (PE) conductor. The PE is

connected to the variable-frequency drive carcass at x = 0 and to the motor carcass at x = `c.

Stranded copper wire, 1.5mm2
Insulation: PVC, 2, 8mm

Jacket: braided tinned copper, 0, 12mm

Polyester Foil

Outer sheath: PVC, 0, 90mm

Figure 5.5 � Cross-section of the 4x1, 5mm2 cables

The cable parameters have been identi�ed experimentally, following the protocol described

in section 3.3. The protection conductor PE is taken as the reference conductor 0, as labeled in

Fig. 5.1. Naturally, any other conductor could have been chosen as the reference, the PE was

the one preferred by the author.

The representation of the voltage inverter on the frequency domain requires a linearization.

This necessity arises in the frequency representation of any power converter. However, it is

possible to obtain an equivalent frequency domain behavior by representing the switching cell

with a trapezoidal pulse source, corresponding either to a voltage or a current in one of the

semiconductors, depending on the structure of the power converter under study. This modeling

technique has been introduced in the literature in [44], [41], [40].

The inverter chosen for this study is a two-level structure with sinusoidal intersection Pulse

Width Modulation (PWM). The inverter is represented in the schematic in Fig. 5.6a, and its

parameters are listed in table 5.1. For a power inverter, as introduced in [41], the frequency

domain equivalent model is obtained by substituting each switching cell by a voltage source that

corresponds to the voltage imposed at the midpoint of the cell, as drawn in Fig. 5.6. Each voltage

source Va, Vb, Vc is de�ned as a trapezoidal signal representing the voltage at the terminals of

the switch in the low side of each inverter leg. The capacitances Cp0 to Cp4 represent the stray

capacitances in the inverter structure. The LISN on the inverter input is simpli�ed to its 50 Ω

equivalent impedances in the inverter model.

Table 5.1 � Parameters of two-level voltage inverter

VDC 800V Rp 20mΩ Cp2 50 pF

C 1mF Cp0 200 pF Cp3 50 pF

Lp 50nH Cp1 50 pF Cp4 200 pF

With this modeling technique, the upper point of the inverter legs is not fully represented.

This is an intrinsic limitation of the model.

The complete equivalent model of the system adapted to frequency-domain simulation is

shown in Fig. 5.7.
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Figure 5.6 � Two-level inverter model, with LISN

The model in Fig. 5.7 allows the analysis of the frequency response of the system. To obtain

the transfer functions relative to each one of the sources Va, Vb and Vc, three distinct analysis

have been performed. In each of them, the voltage of one of the sources was de�ned as 1V for

the whole frequency band, while the other sources were short-circuited. The results are plotted

in Figs. 5.8 to 5.10.

The resonance frequencies of the cable can be observed in Figs. 5.8 to 5.10. The �rst, with

the biggest ampli�cation, takes place around 500 kHz. It ampli�es up to 4.8 times the amplitude

of the harmonic on the cable input.

The symmetry of the problem is visible by comparing the transfer functions relative to Va
and Vc, which are equivalent with the voltages V1(`c) and V3(`c) interchanged.

The likelihood of this resonance to amplify the input signal will be studied by de�ning the

�ampli�cation frequency band� as the bandwidth where the resonance ampli�cation is higher

than a half of its peak value. Figs. 5.8 to 5.10 show that the ampli�cation frequency band is a

few hundreds of kHz large. Considering that most variable frequency drives work with switching

frequencies around 10 kHz, it is likely that there will be switching harmonics in the ampli�cation

frequency band, and that resonance-due oscillations will occur.

The time domain simulation of this system is performed with the time domain simulation
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Figure 5.7 � Simulation model - Induction motor fed with long cable

Figure 5.8 � Frequency response relative to Va,
`c = 70m

Figure 5.9 � Frequency response relative to Vb,
`c = 70m

tool described in section 4.3. The voltage sources Va, Vb, and Vc are de�ned as ideal trapezoidal

sources, with rise time tr and fall timetf . They are represented in Fig. 5.11. They are calculated

supposing that the inverter uses the sinusoidal intersection technique to build the PWM modu-

lation. The switching frequency of the inverter fswitch was set to 10 kHz, the output alternative

current has a frequency of 50Hz, and the duty cycle of the voltages Va, Vb, and Vc are calculated

for the time instant tsin = 4ms of the sinusoidal references of the three-phase system. The

frequency domain representation of the sources uses the Fourier series decomposition in (4.20)

(cf. Fig. 4.6). The parameters chosen for the time domain simulations are listed in table 5.2.

The time domain simulations were performed for three di�erent cable lengths: 1m, 12m,
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Figure 5.10 � Frequency response relative to Vc, `c = 70m

Figure 5.11 � Voltage sources Va, Vb, Vc

Table 5.2 � Time domain simulation parameters

fswitch 10 kHz tr 200ns

tsin 4ms tf 150ns

and 70m. The simulation results are plotted in Figs. 5.12 to 5.14.

The phase-to-phase voltages at the motor input for `c = 70m, in Fig. 5.12a, present the

oscillations at the resonance frequency predicted by frequency analysis: 500 kHz (cf. Figs. 5.8

to 5.10). Also, the oscillation peak is up to nearly two times the value of step voltage imposed at

x = 0, corresponding to the behavior described in the literature [20]: the maximum over-voltage

at the cable extremity is not greater than 2 times the input voltage imposed by the inverter if

the oscillations are attenuated before the subsequent PWM pulse.

These oscillations do not take place for an 1m long cable, as shows Fig. 5.13, and are of

smaller amplitude and higher frequency for the 12m long cable, as shows Fig. 5.14. This behavior
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(a) Phase-to-phase voltages at x = `c (b) Common-mode current at x = `c

Figure 5.12 � Results of the time domain simulation for `c = 70m

Figure 5.13 � Phase-to-phase voltages at x = `c for `c = 1m

Figure 5.14 � Phase-to-phase voltages at x = `c for `c = 12m

corresponds to the one described in the literature [20, 52], and shows that the over-voltages are

indeed a resonance-due ampli�cation that occur in electrically long cables.

An interesting result on this solution is that the common-mode current circulating in the

motor can be easily predicted, and is plotted for the system with `c = 70m in Fig. 5.12b. If

this current is too high the machine can su�er insulation faults, and a drastic reduction on the

useful life of the machine bearings [29, 36, 46]. Therefore, the prediction of these currents can

avoid material damage.

The oscillations induced in one phase by the switching voltage in the other two phases can also

be predicted, and can be seen in the zoom in Fig. 5.12a. These oscillations were not mentioned
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in the reviewed literature, and they are predictable by the proposed model because it includes

coupling elements between the three phases in the cable and in the motor models.

In conclusion, the simulation tool proposed in this work can e�ciently model this case study.

The coupling between the phases is represented, and the common-mode current in the induction

motor carcass can be directly obtained from the simulation results. The resonance in the long

cable was predicted with the proposed methodology based on a frequency domain analysis, and

the time domain simulation results corresponds to the predicted behavior. The e�ciency of the

di�erent solutions to avoid resonance-due overvoltages [15] could also be easily determined with

this model.

5.4 DC link with electrically long cable

In this section, two di�erent systems consisting of a DC link between a battery, or a battery

pack, and its load are simulated with the simulation tool described in section 4.3.c.

In system in section 5.4.a we suppose that the stray currents on common mode are neglected.

In section 5.4.b the common-mode currents are taken into account, but are supposed to circulate

exclusively through a third conductor, used as PE.

5.4.a DC link - di�erential mode

The �rst DC link to be analyzed is represented on the schematic in Fig. 5.15. In this system, the

voltage of a battery is elevated with a boost converter, to reduce the losses in the transmission

of its energy through a 200m long cable. At the cable output, a buck converter is connected to

reduce the voltage to the nominal voltage of the load, represented by the impedance ZL.

E

L1 D1

K1

CS

LpS

RpS

CL

LpL

RpL

K2

D2

L2

ZLC1

`c0 x

Figure 5.15 � Schematic of the DC link with voltage elevation: boost converter at the cable input
and buck converter at the cable output

The boost converter switching cell is the association of the MOSFET K1 and the diode D1,

and its switching frequency is fS = 40 kHz. The capacitor CS is its output �lter. The capacitor

is not ideal, and its imperfections are taken into account with the series parasitic resistance and

inductance.

The buck converter switching cell is formed by the diode D2 and the MOSFET K2, switching

with at frequency of fL = 100 kHz. The capacitor CL guarantees the stability of its input
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voltage, and the same way as the former, it is not ideal, and the series parasitic resistance and

inductance represent its imperfections.

The cable in this simulation is a two-conductor 2.5mm2 cable, its cross-section is represented

in Fig. 5.16, and its per-unit-length (p.u.l.) parameters are plotted in function of the frequency

in Fig. 2.33.

Stranded copper wire
Elastometer insulation
Elastometer sheath

Figure 5.16 � Cross-section of the two-conductor 2.5mm2 cable

As done for the inverter in the previous section, the power converters at each of the cable

extremities will be represented in the frequency domain with an equivalent model, where the

switching cell is replaced by periodic trapezoidal source [40, 41, 44]. The development of the

equivalent model of the buck and boost converters is detailed in the �rst chapter of [10].

In di�erential mode, the switching cell of the DC-DC converters is substituted by a current

source, as show by the schematic presented in Fig. 5.17. Each source corresponds to the current

at the switching cell input. Source IS corresponds to the forward current at the diode D1, and

source IL corresponds to the source-drain current in the MOSFET K2.

IS

CS

LpS

RpS

CL

LpL

RpL

IL

`c0 x

Figure 5.17 � Schematic of the simulated model of the DC link with voltage elevation

Table 5.3 resumes the parameters of the system shown in Fig. 5.17.

Table 5.3 � Parameters of the di�erential mode DC link model (cf. Fig. 5.17)

fS 40 kHz fL 100 kHz

CS 10µF CL 10µF

RpS 10mΩ RpL 10mΩ

LpS 10nH LpL 10nH

With the frequency domain simulation model de�ned (Fig. 5.17), it is possible to perform

the frequency response analysis of this system. For this purpose, we calculate the currents on the

line at x = 0 and x = `c for an excitation IS = 1A in the whole frequency band, with the source
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IL canceled. The results are presented in Fig. 5.18. The system is symmetric, so the transfer

function relative to IL has the same behavior.

Figure 5.18 � Transfer function of the currents at the line extremities, relative to IS

From Fig. 5.18 it can be seen that, for the whole frequency band, the responses I(0)/IS and

I(`c)/IS are not greater than 1. On the resonance frequencies, its amplitudes are the same at

both terminals of the cable. For that reason, there is no over-currents or over-voltages due to

resonance in the cable.

This can be easily explained by comparing the impedances of the �lter and the input impedance

of the cable. In other words, the comparison between the impedance of the capacitor CS , taking

into account its imperfections, and the input impedance Z(0), calculated with the capacitor CL
as load to the cable. Both of these impedances are plotted in Fig. 5.19.

Figure 5.19 � Input impedances of the cable and the capacitor

The impedance of the capacitor is one order of magnitude lower than the input impedance

of the cable, Z(0). Therefore, the perturbations injected by IS circulate preferably through the
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capacitor, reducing the amplitude of the harmonics circulating in the cable.

To visualize this conclusion on time domain, a simulation was done following the procedure

detailed in section 4.3.

In this simulation, the DC value of the variables could not be simulated. It corresponds to

the steady-state value of each variable, and it is an indirect input of the model, dependent on

the mean value of the sources IS and IL. In this case, as both of the converters are represented

by a current source, it is not possible to obtain the correct DC components. To explain this fact,

consider the current source IL: it represents the switched current absorbed by the buck converter,

and its DC component should represent the power absorbed by the load ZL. Indeed, if the power

injected by source IS is not completely absorbed by the source IL, the power unbalance in the

model induces a big error on the DC simulation. Moreover, as the currents represented by IS and

IL are approximated by an ideal trapezoidal signal, it is certain that the power balance in the

simulated system (Fig. 5.17) is not the same as the one in the real system (represented in Fig.

5.15). This is a limitation of the proposed model, and it is the reason why the DC components

will not be simulated in this case study.

The time domain signals representing the sources IS and IL are plotted in Fig. 5.20. Recalling

that the DC component of the signals is not included in the simulation, and for that reason is

not included on the plot. The frequency domain representation of sources IS and IL uses the

Fourier series decomposition in (4.20) (cf. Fig. 4.6).

Figure 5.20 � Current sources modeling the DC-DC converters, without DC component

The two power converters have di�erent switching frequencies. As aforementioned, the boost

converter has a switching frequency of 40 kHz, and the buck converter, of 100 kH. In systems

with two di�erent fundamental frequencies, there is an intrinsic oscillation on the frequency

correspondent to the greatest common divisor (gcd) of the two switching frequencies. In our

example, the gcd frequency is 20 kHz.

The 20 kHz frequency corresponds to a period of 50µs, the period represented in Fig. 5.20.

It corresponds to �ve repetitions of the 100 kHz period, and 2 repetitions of the 40 kHz period.

At t0 +50µs, the relative delay between the pulses of each signal is the same as it was at t0. From

this comes the intrinsic oscillation on 20 kHz of the system: it is derived of the superposition of

the two exciting signals.

It is important to reinforce the fact that the 20 kHz oscillation comes from the superposition

of the harmonics of the two sources, and that there is no harmonic at 20 kHz circulating in the
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system. Equivalently, the frequency domain simulation does not have the gcd 20 kHz included

on the frequencies to which the simulation is e�ectuated.

The results of the frequency domain simulation converted to time domain are presented in

Fig. 5.21.

(a) Voltage at x = 0 (b) Voltage at x = `c

(c) Current at x = 0 (d) Current at x = `c

Figure 5.21 � Results of the simulation converted to time domain, without DC component

The oscillations observed on the voltages at the line extremities, plotted in Fig.5.21, are

small. It corresponds to the voltage oscillations at the switching frequency, typical of a DC-DC

converter. However, fast oscillations right after each switching event are also visible, and are due

to the high dI/dt imposed by the switching cell, after being �ltered by the capacitor.

The voltage waveform seem to be periodic with the switching frequencies, with the voltage

at x = 0 having an apparent period of 25µs, in Fig. 5.21a, and an apparent period of 10µs at

x = `c, in Fig. 5.21b. However, the periodicity of the system with the gdc frequency 20 kHz is

visible in the currents, which have a waveform that does not repeat itself the 50µs period. The

current oscillations are also small, as predicted by the frequency response analysis of the system.

In the DC link studied in this section, there are no resonance related problems. The main

reason for the stability of the system is the good �ltering at the converters output.

In the next subsection a slight di�erent system will be studied, and the analysis will take into

account the common mode circulating in the system.
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5.4.b DC link - common and di�erential mode

In this section, a di�erent DC link is studied, taking into account the circulation of common

mode. The system under study is presented in Fig. 5.22.

In this system, a three-conductor cable of 100m long connects a battery to its load. The

cable has three conductors because, besides the neutral and phase conductors, the protection

conductor PE is connected to the carcasses of the devices. The common mode is supposed to

circulate exclusively through the PE conductor.

The study is carried with the cable de�ned as three-conductors cable with conductors of

section 2.5mm2, its cross-section is represented in Fig. 5.23 and its parameters are plotted in

Fig. 3.19.

The load is a switching device with common-mode �lter at its input. The �lter has a common-

mode choke: the phase and neutral inputs are winded around magnetic core, using the same

winding direction, so that the choke impedance is high in common mode, and almost zero in dif-

ferential mode. Other than the choke, common-mode and di�erential-mode �ltering capacitors

are present, with its series parasitic resistances and inductances. The two common-mode capac-

itors, C2 and C3, must be identical for the �lter to be balanced, thus reducing common-mode

circulation.

The switching device is a simpli�ed buck converter. The current source IL represents the

DC current required by the load. The parasitic capacitance between the switching cell midpoint

and the carcass is taken into account with the capacitor Cp3. The �oating potential of this point

makes this capacitance the most dangerous in terms of common-mode interference.

The battery has an internal resistance Rbat, and the parasitic capacitances to its carcass are

as well represented.

As done previously, the switching cell will be represented by equivalent sources [40, 41, 44].

The schematic of the model for this system is drawn in Fig. 5.24. In this �gure, the switching

cell input current is represented by the current source IS , and the voltage of the �oating-point

is represented by the voltage source Vk. The justi�cation for this model is detailed in the �rst

chapter of [10].

The parameters used in the model are listed in table 5.4.

Table 5.4 � Parameters of the model (Fig. 5.24)

Battery Filter Converter

E 120V Rp 10mΩ C1 10µF C2 = C3 22nF Cp3 100 pF

Rbat 0.25 L 1µH Rp1 20mΩ Rp2 = Rp3 10mΩ fswitch 20 kHz

Cp1 = Cp2 100pF M 0.5µH Lp1 50nH Lp2 = Lp3 20nH

The representation chosen for the switching cell (with sources Is and Vk) is not completely

accurate, notably because the connection of the �oating-point to the upper part of the switching

cell is not represented. Indeed, the voltage source could be connected either to the upper part

or the lower part of the cell, but either way a current path would be missing.

Despite this inaccuracy, the model represents well enough the behavior of the power converter

for frequencies equal or higher than its switching frequency [10].

The model represented in Fig. 5.24 allows the determination of the frequency response of the

system.
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Source: http://www.caledonian-cables.co.uk

Figure 5.23 � Cross-section of the three-conductor 2.5mm2 cable
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Figure 5.24 � Simulation model of the DC link with common mode

The equivalent model of the switching cell is not balanced. A di�erent equivalent model

with decoupled modes could be obtained if desired, and is what is done in section 5.5. For this

analysis, the coupled model in Fig. 5.24 was chosen, and as it is not balanced it is simulated in

the frequency domain in the physical basis, i.e., in function of V1, V2, I1 and I2, following the

steps described in 3.2.c.

However, once the system is solved, it is useful to express the results in the common and

di�erential mode basis, in order to highlight the behavior of the common-mode stray voltage and

current in the line. In this analysis, the common and di�erential modes are de�ned as follows:

VDM = V1 − V2 IDM =
I1 − I2

2

VCM =
V1 + V2

2
ICM = I1 + I2

(5.5a)

(5.5b)

The transfer functions relative to each of the sources are represented in Fig. 5.25, in terms

of the di�erential-mode and common-mode voltages and currents.

The highest ampli�cation of the voltages and currents occurs around 5MHz, for both of the

transfer functions relative to Vk and IS . This peak in caused by the interaction between the

parasitic capacitance Cp3 and the �lter elements.

The di�erential-mode response to the source IS in Fig. 5.25a is considerably higher than the
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(a) Relative to IS (b) Relative to Vk

Figure 5.25 � Transfer functions relative to the sources in the system

common mode for whole frequency band. This behavior is expected, as the source IS is close to

represent the di�erential-mode excitation in the system.

On the other hand, the common-mode response to the source Vk in Fig. 5.25b is considerably

higher than the di�erential mode up to a fewMHz. This happens because this source represents

the switching voltage imposed at the switching cell middle point, the principal source of common

mode in any switching device.

The comparison between the di�erential-mode voltage magnitudes at both extremities of the

line in Fig. 5.25 shows that the di�erential mode is not ampli�ed at its natural frequencies. This

can be explained by comparing the input impedance of the system in di�erential mode to the

impedance of the capacitor �ltering the mode, C1. The di�erential mode input impedance ZDM
is calculated from the schematic in Fig. 5.26, between points a and b:

The input impedance ZDM is plotted over the impedance of the non-ideal capacitor C1 in

Fig. 5.27a. It can be seen that, except for a dump around 1.4MHz, the input impedance

of the system is larger than the impedance of the �ltering capacitor C1. For that reason, the

harmonics in di�erential mode generated by the switching cell tend to circulate through the

capacitor instead of the line.

A similar analysis can be performed for the common mode. The comparison of the input and

output voltages of the line in Fig. 5.25b shows that the common-mode voltage injected at x = `c
is ampli�ed at x = 0, at the resonance frequencies of the cable, unlike the behavior in di�erential

mode. The �rst resonance, and thus the one responsible for the highest ampli�cation, is around

380 kHz.

This results can be explained, again, by the comparison between the input impedance of the

system in common mode compared to its �ltering capacitance in common mode: the parallel
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Figure 5.26 � Schematic for the DM input impedance ZDM , calculated between points a and b

(a) Di�erential mode (b) Common mode

Figure 5.27 � Comparison between the input impedances of the system and the capacitive part
of the �lter

association of capacitors C2 and C3. The input impedance of the system in common mode ZCM
is calculated with the schematic in Fig. 5.28, between points a and c:

The input impedance ZCM is plotted against the parallel association of the non-ideal capaci-

tors C2 and C3 in Fig. 5.27b. The input impedance ZCM and the �ltering capacitors impedance

have the same order of magnitude around the �rst resonance of the cable. For this reason,

the common-mode high frequency harmonics generated by the switching cell are not completely

�ltered, and excite the cable around this resonance frequency.

Now the resonant behavior of the system has been studied, the time domain response will be

treated. The time domain simulation is performed as detailed in 4.3. The sources IS and Vk are

de�ned as ideal trapezoidal sources, and are represented in Fig. 5.29. Their frequency domain

representation is obtained via the Fourier series de�ned in (4.20) (see Fig. 4.6).

As done in the previous section, the DC components are not included in this simulation
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Figure 5.28 � Schematic for the CM input impedance ZCM , calculated between points a and c

Figure 5.29 � Sources IS and Vk � approximated as ideal trapezoidal sources

because with two active sources representing the switching cell the power distribution in DC is

susceptible to considerable mistakes. This is due to the fact that the switching cell is composed

of elements that do not generate power, and because the approximation of the sources by ideal

trapezoidal signals changes slightly power that should be generated, or consumed, by this source

in order to fully represent the DC functioning point of the system.

The dynamic behavior of the time domain voltages and currents at both extremities of the

line are represented in di�erential and common mode in Fig. 5.30.

As predicted by the frequency analysis in Fig. 5.25, there are oscillations around 5MHz in

all the variables, and the biggest one is present in the di�erential-mode voltage at x = `c. The

common-mode voltage presents an oscillation around 380 kHz that is ampli�ed at x = 0 due to

resonance phenomena, as shows Fig. 5.30b.

The common-mode currents in Fig. 5.30d are small when compared to the di�erential mode,

but they might still cause dysfunctions. Indeed, the common-mode current is more likely to

cause EMI problems than the di�erential mode, mainly because the electric �eld emitted by it is
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(a) DM Voltage (b) CM Voltage

(c) DM Current (d) CM Current

Figure 5.30 � Voltages and currents at the line extremities, without DC component

considerably stronger, as the currents generating it in the cable �ow in the same direction [32].

Moreover, the common mode can cause insulation failures.

In the studied case, the common-mode currents are small because most of the common-

mode perturbation is �ltered bey the capacitances C2 and C3 and the common-mode choke. To

demonstrate the need to �lter the common mode, the common-mode capacitances of the �lter

C2 and C3 were both reduced to 22 pF , and the time domain results were recalculated for this

new �lter. The results are plotted in Fig. 5.31.

It is clear that the common-mode harmonics are higher, and again these harmonics are

ampli�ed at x = 0. The frequency of the common-mode oscillations changed because of the

change of the �lter capacitances. Indeed, the resonance frequency of the cable depends on the

impedance connected to its terminals, and a change in the common-mode capacitances caused a

considerable change in the resonance frequency.

Also, because of the change in the values of C2 and C3, there is a change in high frequency

oscillation in the system, which originated by the interaction between the stray capacitance on

the switching cell Cp3 and the �lter elements. In Fig. 5.31, this high frequency oscillation occurs

at 14MHz, and is better attenuated by the �lter than the 5MHz oscillation visible in Fig. 5.30.
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(a) DM Voltage (b) CM Voltage

(c) DM Current (d) CM Current

Figure 5.31 � Voltages and currents at the line extremities with C2 = C3 = 22 pF , without DC
component

5.5 Filter design taking resonance phenomena into account

In this section, the surfaces representing the frequency response of the resonance in a transmission

line in function of the load connected to its terminals, introduced in sections 2.5.b and 3.5, will

be applied to the design of the EMI output �lter of a switching device. Indeed, these surfaces,

hereafter denominated � resonance surface response�, are most useful in the design phase of a

system, when they can predict the resonance behavior of a long cable in function of any two real

variables. Resonance in an electrically long cable has the potential to interfere or damage other

devices of the system, and designing techniques proposed here guarantees the robustness of the

system regarding this phenomenon.

Output �lters of EMI polluting devices are usually designed to meet the conducted emissions

limits stipulated by international standards. In these standards, the conducted emission are

measured with a LISN (Line Impedance Stabilizer Network), a device usually de�ned to have a

normalized 50 Ω input impedance between each phase and the ground (chassis). Of course, the

behavior of a passive �lter when connected to the LISN is not the same as when it is connected to

a reactive impedance, as is the input impedance of a long cable. New resonance frequencies may

be established due to the interaction between the reactive elements of the �lter and the cable,

and the device emissions may even be ampli�ed instead of attenuated by the �lter presence.

Moreover, the resonance in a long cable may considerably amplify the input voltage elsewhere

in the cable, and it is possible that even if the high frequency harmonics respect a stipulated limit
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on the cable input, this limit is not respected at the other extremity of the cable. To design �lter

using the resonance surface response, as described by this section, guarantees that a maximum

limit for the harmonics will be respected anywhere along the line.

For example, this design technique can be applied to embedded systems because in such

applications the whole system is known to the developers, and the cabling network can be properly

characterized.

For this example, the system shown in Fig. 5.32 was de�ned. It consists in a switching device

(buck converter) powered by a battery through a long three-conductor cable. The conductors

work as phase, neutral and protection PE, and the PE is connected to the device carcasses. The

cable is a three-conductor of 2.5mm2 stranded cooper wire, its cross-section is represented in

Fig. 5.33 and its parameters are plotted in Fig. 3.19. In the system in Fig. 5.32, the cable is

`c = 30m long.
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Figure 5.32 � System under study

Figure 5.33 � Three-conductor cable cross-section

The battery is modeled with stray capacitances representing the electrical connection to its

carcass. The parasitic capacitance of the middle point of the switching cell in the buck converter

is also represented, as the high potential variation in this point are the main source of common

mode in a switching structure. The numerical values applied to the parameters in the model in

Fig. 5.32 are listed in table 5.5.

Table 5.5 � Parameters of the system model

Cp 100 pF Cpbat 200 pF E 400V

CS 10µF Rbat 50mΩ IL 10A

Lp 20nH Rp 10mΩ

The output �lter has the structure shown in the schematic in Fig. 5.34. It consists in a

common-mode �lter close to the switching cell, followed by a di�erential-mode �lter closer to the

device output. This is a common �lter structure in power converters [51].
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Figure 5.34 � Filter structure

Classic �lter design: In a classic approach, this �lter would be designed to meet the EMI

limits stipulated by the concerned standard, with the switching device connected to a LISN.

In [39] are de�ned the guidelines for the most commonly used method for �lter design.

For the sake of an example, the guidelines de�ned in [39] were applied to design the �lter

given in Fig. 5.34 to meet the standard RTCA DO-160G [42] for airborne devices. The limit for

the conducted emissions of a device in the power circuit of an aircraft (Fig. 21-1 in [42]) was

applied. The resultant �lter parameters are resumed in table 5.6.

Table 5.6 � Filter designed with the classic approach given in [39], to meet the RTCA DO-160G
standard

CM Cy = 68nF LCM = 107µH

DM Cx = 22nF LDM = 23.5µH

Resonance surface response �lter design: To introduce the proposed design method, the

de�nition of a �lter attenuation is recalled:

AttV =
Voutput
Vsource

AttI =
Ioutput
Isource

(5.6)

With (5.6), it can be seen that the attenuation of the common-mode �lter can be given by

the resonance surface response by setting the model sources to 1V or 1A, and calculating the

voltages or currents along the system in function of the �lter variables: Cy, LCM , Cx andLDM .

By storing the highest voltage, or current, after multiple simulations, the resonance surface

response maps the highest value of AttV or AttI provided by the �lter anywhere along the cable,

for the whole frequency band.

It is important to recall that the resonance surfaces can only be plotted in three-dimensions

if the system can be decomposed in the common and di�erential modes, i.e., two equivalent

two-conductor systems (cf. section 3.5). This decomposition will be used in this analysis, and

two three-dimensional surfaces will be plotted:

• A common-mode surface, in function of Cy and LCM ;

• A di�erential-mode surface, in function of Cx and LDM ;

The frequency band of this study will be [150 kHz, 35MHz], the lower limit corresponding to

the lowest frequency regarded by the conducted emissions international standards, and the higher
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limit corresponding to 3.5/tr, where tr was considered 100ns, a typical rise time for Silicon-based

semiconductors.

In the calculation leading to the resonance surface response there will be 3000 frequency

points logarithmic scaled in the aforementioned frequency band. The voltage or current will

be calculated every 1m along the 30m long cable. The numerical values of the variables

Cy, LCM , Cx andLDM were also logarithmic scaled. The details of the value range and number

of calculation points for each variable are resumed in table 5.7.

Table 5.7 � Parameters of the resonance surface response calculation

Value range Number of points Scale

Frequency f [150 kHz, 35MHz] 3000 log

Position x [0, 30m] 31 linear

Cy [0.1nF, 100nF ] 400 log

LCM [1µH, 10mH] 401 log

Cx [0.1nF, 100nF ] 400 log

LDM [1µH, 10mH] 401 log

The conducted emission limits for the design using the resonance frequency response will be

constant with the frequency, and are given in table 5.8.

Table 5.8 � Conducted emissions limit for the design of �lter using the resonance surface response

CM emission limit −80 dBV

DM emission limit −130 dBA

With these considerations, the �lter design can be performed.

First, the system must be decomposed in the common and di�erential modes. As aforemen-

tioned, the switching cell model introduced in section 5.4 is not balanced. However, this model

was derived from the association of two distinct models proposed in [44]: one for di�erential

mode and another for common mode. These separated models will be used in this application.

The equivalent models of the system in Fig. 5.32 are represented in Fig. 5.35, in common

mode, and in Fig. 5.36, in di�erential mode.

−+ VS

Cp

0.2Ω1
2(LCM +MCM )

2Cy

5mΩ

50nH

1
2(LDM −MDM )

2Cpbat

Figure 5.35 � System equivalent circuit in common mode

The parasitic elements of the �lter, and the imperfections of the connections between its

components, are taken into account in the simulation, because the attenuation of high frequency

harmonics is highly dependent on them.
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Figure 5.36 � Switching device equivalent circuit in di�erential mode

The equivalent system in common mode is less in�uenced by the di�erential-mode �lter

elements, and for that reason the common-mode �lter will be designed �rst, using the value

predesigned with the classic approach: LDM = 23.5µH, given in table 5.6.

The attenuation needed can be calculated with a simulation of the common-mode voltage

generated by the buck converter without an output �lter. This simulation was done with the

common-mode equivalent circuit in the schematic in Fig. 5.35 without the �lter elements. The

trapezoidal voltage waveform de�ning the voltage source VS is represented in Fig. 5.37a. The

common-mode voltage is plotted in Fig. 5.37b.

(a) VS waveform (b) CM voltage at the buck output

Figure 5.37 � Simulation of the CM voltage generated by the buck converter

In table 5.8 the limit of the common-mode conducted emissions is −80 dBV . Therefore, from

Fig. 5.37b, the �lter attenuation has to be at least of −60 dB, to successfully attenuate the signal

in Fig. 5.37b.

The minimal attenuation of the �lter is plotted in function of the �lter elements in Fig.

5.38. The frequency to which the minimal attenuation occurred plotted in Fig. 5.39, and the

position in Fig. 5.40. In these �gures, the pairs (LCM , Cy) to which the cut-o� frequency of the

common-mode �lter 1/
√

(1 + k)LCMCy was higher than 150 kHz were not taken into account.

There is a zone where the attenuation surface is greater than 0 dBV , i.e., greater than 1; it

is highlighted in black in Fig. 5.38. In this zone, the harmonics injected by the source, at the

correspondent frequencies in Fig. 5.39, would be ampli�ed instead of attenuated. According to

the maximum position surface in Fig. 5.40, this maximum would take place at x = 26m. The

pairs (Cy, LCM ) that generate this ampli�cation should be avoided.
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Figure 5.38 � Maximum common-mode voltage along the line in function of Cy and LCM ; V >
0dBV in black, V = −60 dBV in red

Figure 5.39 � Frequencies of the maximum in common mode

Figure 5.40 � Position of the maximum in common mode

The minimal attenuation required (−60 dBV ) is highlighted with a red line in the surface in

Fig. 5.38. By choosing Cy = 68nF (the biggest value in the CMS 1206 packaging), an inductance

of LMC = 691µH would guarantee the required attenuation, for the whole frequency band and

in any position along the cable.

These values (Cy = 68nF, LCM = 691µH) are used in the evaluation of the di�erential-

mode behavior of the system. Before the DM resonance surface response is built, the attenuation

required by the DM �lter must be de�ned.

To that end, the common-mode current at the output of the buck converter must be simulated,

with the common-mode �lter connected to it. Indeed, the common-mode �lter contributes to the
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�ltering of DM signals, as shown in the schematic in Fig. 5.36. The trapezoidal wave attributed

to the current source IS is plotted in Fig. 5.41a. The CM current at the output of the CM �lter

is plotted in function of the frequency in Fig. 5.41b.

(a) VS waveform (b) DM voltage at the buck output

Figure 5.41 � Simulation of the DM current generated by the buck converter with common mode

From Fig. 5.41b that the minimal attenuation the DM �lter must introduce can be de�ned.

The �lter requirements in table 5.8 demand CM conducted emissions lower than −130 dBA,

therefore an attenuation of −60 dBA for the DM �lter is su�cient.

The minimal attenuation in the system for each pair (Cx, LDM ) is plotted in Fig. 5.42. The

frequencies to which each minimum occurred are plotted in Fig. 5.43, and the position along the

line where it takes place is potted in Fig. 5.44. In these �gures, the pairs (LDM , Cx) to which

the cut-o� frequency of the �lter 1/
√

2(1 + k)LDMCx was higher than 150 kHz were not taken

into account.

Figure 5.42 � Maximum di�erential-mode current along the line in function of Cx and LDM ;
I = −60 dBA in red

The attenuation in di�erential mode is considerably greater than in common mode, mainly

because of the �ltering e�ect of the switching cell associated capacitance, represented by the

impedance ZCS
.

The behavior of the resonance surface for the lowest values of Cx is an example of what
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Figure 5.43 � Frequencies of the maximum in di�erential mode

Figure 5.44 � Position of the maximum in di�erential mode

could not be predicted without applying the transmission line modeling to the long cable. The

worst resonance-due ampli�cation takes place near to middle of the cable for a frequency of

4.13MHz ≈ λ/`c, i.e., the second short circuit resonance frequency is more ampli�ed than

the others by the association of the �lter and the cable. It is shown in section 2.5.c that a

non-propagative model could not predict this behavior.

To meet the desired harmonic attenuation of −60 dBA the �lter passive values should be

chosen from the red line in Fig. 5.42. With a capacitance Cx = 22nF , an inductance of

LDM = 34µH is su�cient to guarantee it, for the whole frequency band, in any position of the

line. The �lter designed values using the resonance surface response is resumed in table 5.9.

Table 5.9 � Filter designed with resonance surface response

CM Cy = 68nF LCM = 691µH

DM Cx = 22nF LDM = 34µH

The proposed design technique using the resonance surface response can be applied to more

complex networks, by concatenating the cabling model proposed in this work (cf. section 3.2.c).

This numerical analysis could also be obtained for cables with more conductors, or with coupled

common and di�erential modes, but it would not be able to be visualized.

This design technique o�ers an alternative to guarantee the EMC robustness in any given

system. It is more likely to be useful for embedded applications, such as electric vehicles and

aircraft, because the method requires the knowledge of the network to which a switching device
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is connected. With the resonance response surface design, it is guaranteed that stray harmonics

will not exceed the chosen perturbation limit anywhere along the connection cables.

5.6 Conclusion

In this chapter the simulation tool proposed in this work has been used to analyze di�erent

systems containing long cables, and determine whether if the resonance phenomenon could cause

damage to each of the systems. Also, the resonance surface response obtained with the frequency

domain simulation tool was applied to a �lter design study.

The frequency domain analysis proposed in section 5.2 has been applied several examples

in this chapter, and it has been shown that the proposed model is useful for the prediction of

resonance phenomena, and in the design of protection methods against it.

The simulations of the studied systems were performed within a reasonable computation time

despite the length of the cables in each system, which were considerably long when compared to

the harmonic of the smallest wavelength circulating in the cable. The computational performance

of the model is one of its most interesting features, principally it does not depend on of the cable

length, but only in the number of positions along the line where the calculations of voltage and

current are needed.

To sum up, the cable modeling and simulation method proposed in this work is an interesting

contribution to the current literature because it has the potential to accurately predict resonance

issues in any system, and be of use in the design phase of such systems to avoid serious damage

to its components.





Conclusion

In this thesis was developed an e�cient and accurate characterization and modeling method for

the EMI parasitic harmonics that may circulate in the cabling network of a large electric system.

It is focused on electric systems containing long cables connected to polluting devices, such as

power converters.

The simulation method proposed here is based on the frequency domain solution of the

telegrapher equations, and consists in a frequency domain simulation using the phasor transform,

along with the Fourier Series, as transform between the frequency and time domains. This work

was focused on periodic excitation, but the simulator can be extended to the general case via

the Fourier transform.

The advantages of the proposed modeling method are numerous. Its numerical e�ciency is

considerable, what make it useful in the design phase of a system, to predict the EMI problems

that may occur in large cabling networks. Moreover, the computational e�ort does not increase

with the cable length. Indeed, the simulation time of the proposed tool depends only on the

number of points in which voltage and current must be calculated, and in the number of harmonics

to be taken into account. This is convenient to model large cabling systems, in which usually

only the connections points need to be taken into account in the simulation.

A second advantage of the proposed method is its accuracy, principally concerning the reso-

nance phenomenon in long cables. Indeed, because the simulations are performed in the frequency

domain, the model can represent the exact behavior of the cable parameters, that are frequency

dependent. The only source of inaccuracy is the cable parameters identi�cation process. This is

an improvement in comparison with the time domain modeling techniques found in the literature:

they all need an equivalent representation of the line that intrinsically engender an accuracy loss.

The inconvenient brought by the frequency domain representation is that some structures,

such as the power converters themselves, from which the EMI conducted emissions are the main

concern of this work, have a non-linear behavior di�cult to represent with accuracy in the

frequency domain. In this document, equivalent models were used to represent these structures

in the frequency domain, but these models have two main inconveniences: they do not represent

all the possible current paths in the converter structure, and the steady state behavior of the

converter is often an input variable in the model, and thus requiring additional time domain

simulations.

Another inconvenient of this simulation method is that its implementation take some e�ort,

and it is not available in the commonly used commercial software. For this study, it had to be

completely implemented on Matlab. However, it could be implemented in a simulation adapted



146 Conclusion

language, such as VHDL-AMS, so it could be spread more easily.

From the work described in this document, there still some interesting perspectives to be

explored.

Modeling the common mode path in a given system is one of them. This could be done

by considering the common mode stray path as an extra conductor. For instance, from the

experiments in chapter 2 to 4 it was deduced that good part of the common mode current in

the validation experimental setup circulated through the concrete �oor, and for that reason the

cable was suspended from the �oor with insulating materials. If the path through the concrete

�oor could be modeled by an extra conductor, the voltage and current circulating in that system

could be predicted independently of the position of the cable.

Also, a second interesting perspective would be to further exploit the resonance surface re-

sponse. For example, the surfaces could also be plotted in function of the cable length, giving

information of what length would be more dangerous in terms of voltage ampli�cation. With

this analysis, the geometric arrangement of a large system could be designed to minimize EMI

problems. Also, the resonance surface with more response than three dimensions capable of

representing any system is still to be exploited.

Least of all, the resonance surface response could also be used in optimization process. It

would require an interpolation of the surface, or other equivalent representation method, but it

can be a useful tool in the optimization of EMI �lters in embedded systems.
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In table A.1 are resumed the hyperbolic identities used along the main document.

Table A.1 � Hyperbolic function de�nitions and identities

Hyperbolic identities

cosh(a) =
ea + e−a

2

sinh(a) =
ea − e−a

2

tanh(a) =
ea − e−a

ea + e−a

cosh(a) + sinh(a) = 1

cosh(a± jb) = cosh(a) cos(b)± j sinh(a) sin(b)

cosh(a+ jnπ) = (−1)n cosh(a)

sinh(a+ jnπ) = (−1)n sinh(a)

cosh(a+ j(2n− 1)π2 ) = j(−1)n sinh(a)

sinh(a+ j(2n− 1)π2 ) = j(−1)n cosh(a)
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In this appendix, the theoretical development of analytical solutions for speci�c systems with

two-conductor cables are detailed. They are based on the de�nition of a frequency domain

model given in section 2.2.a. The �rst is the case where one of the devices connected to the

two-conductor cable is a simple load. The second includes the presence of a scope connected

along the cable.

Equations modeling a two-conductor cable fed through one single

terminal (SL = 0)

In section 2.2.a is de�ned the frequency domain simulator for a two-conductor cable connected

to two generic devices at its terminals, as shown in Fig B.1, repeated here for convenience. The

simulator is given as the solution of the system of equations (B.1).

ZS ZL

−+SL−+SS V (0)

I(0)

V (`c)

I(`c)

x`c0

Figure B.1 � Schematic of the generalized frequency domain model for two-conductor cables



[
V (`c, f)

I(`c, f)

]
= Φ(`c, f)

[
V (0, f)

I(0, f)

]
V (0, f) = SS − ZSI(0, f)

V (`c, f) = SL + ZLI(`c, f)

(B.1a)

(B.1b)

(B.1c)

Along this work, it is more usual than the one where the devices connected to the cable are

a simple load that do not inject power in the cable, i.e. systems with SL = 0. This simpli�ed

system is represented in Fig. B.2.

This simpli�cation allows an easy analytical solution of the system of equations (B.1). This

solution has been directly implemented on Matlab during this work, and the theoretical devel-

opment of this implementation is detailed here.

Equations (B.1) with SL = 0 can be solved as follows.
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ZS

ZL−+SS V (0)

I(0)

V (`c)

I(`c)

x`c0

Figure B.2 � Schematic of two-conductor system with passive load

The input impedance of the cable is Z(0) as in (B.2).

Z(0) = Zc
ZL + Zc tanh(γ`c)

Zc + ZL tanh(γ`c)
(B.2)

Therefore, the current at the cable input I(0) can be calculated with (B.3)

I(0) =
VS

ZS + Z(0)
(B.3)

What gives an input voltage V (0) as in (B.4)

V (0) = VS − ZSI(0) = VS
Z(0)

ZS + Z(0)
(B.4)

The voltage and current along a two conductor line can be obtained with equation (B.5), as

shown in section 2.2. [
V (x)

I(x)

]
=

 cosh(xγ) −Zc sinh(xγ)

− 1

Zc
sinh(xγ) cosh(xγ)

[V (0)

I(0)

]
(B.5)

With equations (B.3) (B.4), and (B.5), the analytical solution for the voltage and currents in

the system in Fig. B.2 is given by (B.6):

V (x) = VS
Z(0)

ZS + Z(0)

[
cosh(γx)− Zc

Z(0)
sinh(γx)

]
I(x) = VS

1

ZS + Z(0)

[
cosh(γx)− Z(0)

Zc
sinh(γx)

] (B.6a)

(B.6b)

These are the equations implemented on the frequency domain simulator for this speci�c

case, on Matlab. In the following section, the implementation of this same system with a scope

connected to the cable is discussed.

Taking the connection of a scope into account

A second recurrent system in this work is a two-conductor cable with scope connected to it at

position x = xM , as shown in Fig. B.3.

In the cases where the impact of the presence of the scope is not negligible, the scope has

to be included in the model, represented by its input impedance. The input impedance Zscope
of a voltage probe connected to a scope, while the scope is turned o�, was measured using an
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−
+SS

ZS

V ZL

xM x`c0

Figure B.3 � Schematic of the two-conductor cable with scope in the middle

impedance analyzer and is represented in Fig. B.4.

Figure B.4 � Input impedance of scope voltage probe Tektronix P3010 � Zscope

To model the connection of the impedance Zscope to the cable, the cable has to be divided in

two parts: the portion between the source and the scope, and the portion after the scope. Each

of these parts is modeled by as a distinct transmission line.

The portion between x = 0 and x = xM is modeled as a cable of length `1 = xM . The second

part of the cable, between x = xM and x = `c is modeled as a cable of length `2 = `c − xM .

The current and voltage in the �rst portion of the cable, of length `1, can be obtained as

follows:

Let Z`2(0) be the input impedance of the portion of the cable between x = xM and x = `c:

Z`2(0) = Zc
ZL + Zc tanh(γ`2)

Zc + ZL tanh(γ`2)
(B.7)

Let Zeq1 be the parallel association of the impedances Zscope and Z`2(0):

Zeq1 = Z`2(0) // Zscope (B.8)
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The input impedance of the system Z`1(0) can be calculated with:

Z`1(0) = Zc
Zeq1 + Zc tanh(γ`1)

Zc + Zeq1 tanh(γ`1)
(B.9)

With that, the voltage and current between x = 0 and x = xM can be obtained with (B.10)

V`1(x) = VS
Z`1(0)

ZS + Z`1(0)

[
cosh(γx)− Zc

Z`1(0)
sinh(γx)

]
∀x ∈ [0, xM ]

I`1(x) = VS
1

ZS + Z`1(0)

[
cosh(γx)− Z`1(0)

Zc
sinh(γx)

]
∀x ∈ [0, xM ]

(B.10a)

(B.10b)

With these equations, the voltage at x = xM can be calculated:

V (xM ) = VS
Z`1(0)

ZS + Z`1(0)

[
cosh(γxM )− Zc

Z`1(0)
sinh(γxM )

]
(B.11)

This voltage can be compared to the experimental data measured by the scope.

If the voltage in the second portion of the cable is needed, the portion of length `2, it is

more easily calculated using the voltage V (xM ). Indeed, it correspondents to the input voltage

of the second portion of the cable. The input current of this part of the cable is
V (xM )

Z`2(0)
, and the

voltage and current along the cable can be calculated with (B.12).

V`2(x) = V (xM )

[
cosh(γ(x− xM ))− Zc

Z`2(0)
sinh(γ(x− xM ))

]
∀x ∈ [xM , `c]

I`2(x) =
V (xM )

Z`2(0)

[
cosh(γ(x− xM ))− Z`2(0)

Zc
sinh(γ(x− xM ))

]
∀x ∈ [xM , `c]

(B.12a)

(B.12b)

Another option to calculate the voltage and current in the portion of length `2 would be to

represent the system seen from x = xM towards x = 0 by its Thévénin equivalent. However,

because V (xM ) is usually calculated, to use equation (B.12) is a more simple and numerical

e�cient option.
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In this appendix, the resonance surface response introduced in section 2.5.b are exploited. These

surfaces are three-dimensional plots characterizing the resonant behavior of a transmission line.

In the following section, the resonance phenomena is studied in function of the conductors

cross section. Afterwards, it is studied in function of the cable length.

C.1 Comparison between the resonance behavior of two-conductor

cables of di�erent cross-section

The resonance surface response introduced in section 2.5.b (Figs. 2.39 to 2.41) completely char-

acterize the resonance behavior of the two-conductor cable of section 2.5mm2 for a cable 11m

long. It is interesting to compare the resonance behavior of this cable with other cables with

di�erent proprieties, and principally, di�erent losses. As explained in section 2.5.a, the cable

losses are the limiting factor of the resonance-due voltage and current ampli�cations.

To that end, the same analysis described in section 2.5.b has been performed for other two

cables, one of section 0.75mm2, and other of section 1.5mm2, for portions of cable with the

same length, i.e. `c = 11m. The resonance surface response characterizing the cable of section

0.75mm2 are plotted in �gures C.1 to C.3, and the ones characterizing the cable of section

1.5mm2 are plotted in �gures C.4 to C.6.

From these �gures, the maximal voltage ampli�cations estimated for each cable are listed in

table C.1.

Table C.1 � Maximal voltage ampli�cation for di�erent two-conductor cables

Cable Max Voltage Ampli�cation

0.75mm2 13.47

1.5mm2 18

2.5mm2 15.83
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(a) Positive B (b) Negative B

Figure C.1 � Maximum voltage in function of ZL = A+ jB, cable of section 0.75mm2

(a) Positive B (b) Negative B

Figure C.2 � Resonance frequency in function of ZL = A+ jB, cable of section 0.75mm2

(a) Positive B (b) Negative B

Figure C.3 � Position of the maximum voltage in function of ZL = A + jB, cable of section
0.75mm2



C.1. Comparison between the resonance behavior of two-conductor cables of di�erent
cross-section 9

(a) Positive B (b) Negative B

Figure C.4 � Maximum voltage in function of ZL = A+ jB, cable of section 1.5mm2

(a) Positive B (b) Negative B

Figure C.5 � Resonance frequency in function of ZL = A+ jB, cable of section 1.5mm2

(a) Positive B (b) Negative B

Figure C.6 � Position of the maximum voltage in function of ZL = A + jB, cable of section
1.5mm2
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Normally, one would expect that the cable with section of 2.5mm2 would present the highest

voltage ampli�cation, because its p.u.l. resistance should be the smallest among the three cables.

To understand the causes of behavior presented in table C.1, we must take a look at the loss

related parameters of each one of the studied cables.

The p.u.l. resistance r and conductance g of each one of the cables are plotted in Fig. C.7.

Figure C.7 � Two-conductor cables loss related parameters

It is shown in Fig. C.7 that the p.u.l. conductance of the 1.5mm2 is much smaller than

the one of the other two cables. Therefore, as both of the loss related parameters r and g are

determinant on the resonance-due voltage ampli�cation, the ampli�cation for the 1.5mm2 is

higher than for the other two cables because the combined e�ect of the losses due to r and g in

this cable are smaller.

C.2 Comparison of the resonance behavior of the same cable with

di�erent lengths

In the previous sections, the length of the cables under study was kept constant. This section

gives an idea of the behavior of the resonance in a cable when its length changes.

When the length of a given cable increases, there are two concurrent phenomena that interfere

in the new resonance behavior:

1. A longer cable may increase the total losses of the cable, simply because it is longer.

2. The resonance frequencies of a longer cable are smaller, and as a consequence, the p.u.l.

losses of the cable are smaller.
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If the p.u.l. loss-related parameters r and g were constant with frequency, the total losses of

the cable would increase linearly, thus reducing the maximal resonance-due voltage and current

ampli�cations in the cable. But because these losses are frequency dependent, a di�erent behavior

is predicted.

The resonance surfaces characterizing the resonance behavior of the two-conductor cable of

section 2.5mm2, its cross-section represented in Fig. 2.29, has been predicted for cables with

lengths 50m and 200m. The maximal voltage ampli�cations and resonance frequency surfaces

are plotted in Figs. C.8 to C.11. The surfaces describing the position where the maximal voltage

ampli�cation takes place have been omitted in this section because they are very similar to the

ones that have been presented before, for the 11m long cable, but are available in appendix

C. As expected, the longer the cable, the smaller the resonance frequency, as well demonstrated

(a) Positive part of B (b) Negative part of B

Figure C.8 � Maximal voltage ampli�cation of the two-conductor 2.5mm2 cable of length 50m,
in function of the load

(a) Positive part of B (b) Negative part of B

Figure C.9 � First resonance frequencies of the two-conductor 2.5mm2 cable of length 50m, in
function of the load

in Figs. C.9 and C.11.

Curiously, the maximal voltage ampli�cation didn't change much for the di�erent cable

lengths. In both Figs. C.8 and C.10 the maximal voltage ampli�cation for high impedance

is around 10 times the input voltage, against 14 for the 11m long cable, as shown in Fig. 2.39.
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(a) Positive part of B (b) Negative part of B

Figure C.10 � Maximal voltage ampli�cation of the two-conductor 2.5mm2 cable of length 200m,
in function of the load

(a) Positive part of B (b) Negative part of B

Figure C.11 � First resonance frequencies of the two-conductor 2.5mm2 cable of length 200m,
in function of the load

It seems that, for the cable lengths chosen in this study, the two phenomena that impact the

ampli�cations due to resonance, listed above, compensate each other.
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A two-port device, as the one presented in Fig. D.1, can be modeled in matrix form using di�erent

de�nitions. The most common are de�ned in this appendix, and the conversion identities between

these models are resumed in table D.1.

The two-port device most common matrix models are the following:

1. Impedance matrix: [
V1

V2

]
= Z

[
I1

−I2

]
(D.1)

2. Admittance matrix: [
I1

−I2

]
= Y

[
V1

V2

]
(D.2)

3. Transmission matrix [
V1

I1

]
= T

[
V2

I2

]
(D.3)

4. Chain matrix [
V2

I2

]
= Φ

[
V1

I1

]
(D.4)

Figure D.1
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Table D.1 � Conversion between the two-port devices models

Z Y T Φ

Z

[
Z11 Z12

Z21 Z22

]
1

|Y|

[
Y22 −Y12

−Y21 Y11

]
1

C

[
A |T|
1 D

]
1

|Φ21|

[
Φ22 1|
|Φ| Φ11

]

Y
1

|Z|

[
Z22 −Z12

−Z21 Z11

]
v

[
Y11 Y12

Y21 Y22

]
1

B

[
D −|T|
−1 A

]
1

|Φ12|

[
−Φ11 1|
|Φ| −Φ22

]

T
1

Z21

[
Z11 |Z|
1 Z22

]
1

Y21

[
Y22 −1

−|Y| −Y11

] [
A B

C D

]
1

|Φ|

[
Φ22 −Φ12|
−Φ21 Φ11

]

Φ
1

Z12

[
Z22 −|Z|
−1 Z11

]
1

Y12

[
Y11 1

|Y| −Y22

]
1

|T|

[
D −B|
−C A

] [
Φ11 Φ12

Φ21 Φ22

]
*|A| is the determinant of matrix A
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In this appendix is described a study of the balun used in the measurements of the input

impedance of cables. The balun balances the output voltage, and mitigate common mode in

the impedance measurement if the devices under test is also balanced.

The cables studied along this work are balanced devices, either if they are short-circuited or

open-ended. For this reason, the balun was used to mitigate the common mode in the cable input

impedance measurements, used for the cable parameter identi�cation. Refer to section 2.3.b-ii

for more details.

The cable parameters presented in the examples along this document were all obtained using

the balun Minicircuits T6-4T. In section E.1, the balun itself is experimentally characterized,

and in section E.2 a practical analysis of the results gives the frequency band in which the

measurements performed with the balun are valid.

E.1 The balun experimental identi�cation

The practical schematic of the balun under study is drawn in Fig. E.1.

1:2

V1 V2

I1 I2

Figure E.1 � Schematic balun

The balun has been experimentally identi�ed as four-port device, in form given in (E.1). This

model allows the frequency domain analysis of the balun behavior.[
V1

I1

]
=

[
A B

C D

][
V2

I2

]
(E.1)

To obtain the ABCD parameters in the equation above, �rst the impedance matrix in (E.2)

was obtained from impedance measurements.[
V1

V2

]
=

[
Z11 Z12

Z21 Z22

][
I1

I2

]
(E.2)

The impedance matrix can be obtained with three impedance measurements of the balun:

with the balun open-ended ZOC , short-circuited ZSC , and connected to a 50 Ω load Z50. The
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elements of the impedance matrix are obtained with (E.3)

Z11 = ZOC

Z22 = −50
Z50 − ZOC
Z50 − ZSC

Z12 = Z21 =

√
50(ZSC − ZOC)

Z50 − ZOC
Z50 − ZSC

(E.3a)

(E.3b)

(E.3c)

The ABCD parameters can be found form the impedance matrix with (E.4) (cf. appendix

D).

A =
Z11

Z21

B = −Z12 + Z11
Z22

Z21

C =
1

Z21

D =
Z22

Z21

(E.4a)

(E.4b)

(E.4c)

(E.4d)

The ABCD parameters obtained for the Minicircuits T6-4T balun are plotted in Fig. E.2.

Figure E.2 � ABCD parameters of the Minicircuits T6-4T balun

If the balun behaved ideally, these parameters would have the following values:[
A B

C D

]
=

[
1
2 0

0 2

]
(E.5)

In Fig. E.2 it can be seen that the absolute values of the parameters approach these ideal

values for a speci�c frequency band. Indeed, balun are devices designed to be e�ective in narrow

band. Its main applications are RF systems which are not wide band, such as antennas.

It is necessary to determine the frequency band in which the impedance measurements done
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with the balun are reliable. The following section discusses this problem.

E.2 Determination of useful frequency band

As mentioned in the former section, baluns are designed to be performant in narrow frequency

bands. In this section, the frequency band where the impedance measurements performed with

balun are reliable will be determined.

The impedance measurements are performed after the balun is compensated with three mea-

surements (Open, Short, Load), with the compensation method of the impedance analyzer. The

e�ciency of this compensation depends on the behavior of the balun, and on the impedance of

the device under test (DUT).

If the contribution of the balun on the current measured by the analyzer is higher than the

contribution of the DUT, the impedance measurement would have a poor accuracy. For this rea-

son, a simpli�ed method is proposed to determine the frequency band of reliable measurements,

using the DUT input impedance.

The analyze proposed here is based in the following facts:

• The absolute value of the input impedance of an open-ended cable decreases logarithmic

with frequency, for frequencies lower than its resonance frequency.

• The absolute value of the input impedance of a short-circuited cable increases logarithmic

with frequency for frequencies lower than its resonance frequency, but high enough so the

inductive behavior of the cable is preponderant before its DC behavior.

The behavior described above can be seen in the input impedance measurement results plotted

in Fig. E.3.

Figure E.3
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For the frequencies around a few tens of kHz, it can be seen that the open-ended cable input

impedance does not correspond to the theoretical behavior. This may come from the combination

of two di�culties: the impedance is too high to be measured, and the impedance introduced by

the balun in this frequency band is much smaller than the DUT impedance. In Fig. E.2, it can

be seen that the balun is not ideal in this frequency band, what makes the measurement more

di�cult.

To determine the lower limit of the frequency band in which these impedance measurements

are valid, the logarithmic di�erentiation of the input impedances in Fig. E.3 will be used.

Theoretically, the logarithmic derivation of |ZOC | and |ZSC | with frequency should be con-

stant for frequencies lower than the resonance frequency.

In the logarithmic derivative with frequency of the absolute values of both impedances are

plotted in Fig. E.4. Over thee derivative plot, a 10% error bar is plotted, and the lowest

frequencies to which the derivative is not inside the error bar are marked with black dotted line.

(a) Open circuit (b) Short circuit

Figure E.4 � Logarithmic derivative of the measured input impedance of the cable, the lowest
frequency to which they can be considered constant is marked with dotted line

From Fig.E.4, it can be determined that the impedance measurements with balun should be

used for frequencies higher than 200 kHz.

This analysis is not su�cient to determine the high limit of the frequency band, because of

the resonance in the sample cable.
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The general solution for a Multiconductor Transmission Line is resumed in section 3.2. This

solution allows the representation of the MTL as a 2(n+ 1)-pole device given in (3.22) on page

57.

This representation can be rewritten by de�ning
√

ZY as propagation matrix, as follows:

[
V(z)

I(z)

]
=

[
Φ11(z) Φ21(z)

Φ21(z) Φ22(z)

][
V(0)

I(0)

]
(F.1)

Φ11(z) = cosh(z
√

ZY)

Φ21(z) = −Yc sinh(z
√

ZY)

Φ12(z) = − sinh(z
√

ZY)Zc

Φ22(z) = Yc cosh(z
√

ZY)Zc

(F.2)

(F.3)

(F.4)

(F.5)
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This appendix presents the cable parameters of the cable of four conductors of section 1.5mm2

with an outer shield of tinned cooper wire, its cross-section is represented in Fig. 5.5.

Stranded copper wire, 1.5mm2
Insulation: PVC, 2.8mm

Jacket: braided tinned copper, 0.12mm

Polyester Foil

Outer sheath: PVC, 0.90mm

1

0

2

3

4

Figure G.1 � Cross-section of the 4x1.5mm2 cables, with labeled conductors

The cable has been characterized with the impedance measurements of two sample cables:

• Up to 300 kHz: a 8.8m long sample cable;

• From 300 kHz to 10MHz: a 1.35m long sample cable, and the measurements were per-

formed with a balun.

Its p.u.l. parameters are plotted in Fig. G.2. The discrepancies at the change between the

two sample cables are bigger than for the former conductors. The authors believe they are due

to common-mode circulation in the low frequency sample, of length 8.8m. The default Keysight

adapter 16047E was used in this measurement, and it is possible that the distance between the

extremities of the conductors that were not being measured and the connector contributed to

the common-mode circulation.

There are two p.u.l. conductance and capacitance that are considerably smaller than the

others: G20, G13, C20 and G13. They correspond to the p.u.l. capacitance and conductance of

two wires placed diagonally from each other. Because they are smaller, the accuracy in their

determination was prejudiced, and for that reason they assume negative values in parts of the

frequency band. This inaccuracy did not prejudice the results presented in section 5.3, because

the behavior of the cable is mainly determined by the cable p.u.l. parameters of higher value,

between two conductors side-by-side or one conductor and the shield.
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(a) p.u.l. Resistance

(b) p.u.l. Inductance

(c) p.u.l. Conductance

(d) p.u.l. Capacitance

Figure G.2 � Parameters of the shielded cable with 4 conductors of section 1.5mm2
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The input impedance of the three-phase motor Leroy Somer 1.5 kW used in section 5.3 was

measured with the impedance analyzer Keysight E4990A, and this appendix shows the setup

that allowed the measurement. The measurements to be performed are based on the work of

Revol [40], and are resumed in the schematics in Fig. H.1.

P P'

G

a

b

(a) PP' measurement

P P'

G

a

b

(b) PG measurement

Figure H.1 � Measurement schematics to characterize the three-phase motor: input impedance
measured between points a and b

To reduce measurement errors, the connection between the motor and the analyzer was made

with the smallest portion of wire possible. To that end, the analyzer was placed over a platform,

as shown in Fig. H.2, to approximate its terminals to the motor terminals. Stranded cooper wire

of 2.5mm2 was used in the connection.

Figure H.2 � Motor input impedance measurement setup

The compensation of the measurement circuit was performed using the insulating support of
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the motor terminals. The SHORT compensation is shown in Fig. H.3: the winding connectors

were removed, and a copper plate was used to perform the short circuit between the measuring

terminals. The OPEN compensation was performed with the measuring terminals at the same

position, but without the cooper plate.

Figure H.3 � Motor input impedance measurement setup: compensation SHORT

Once the compensation is performed, the P-P' measurement is performed as shown in Fig.

H.4a, and the P-G measurement as shown in Fig. H.4b.

(a) P-P' measurement, ZPP (b) P-G measurement, ZPG

Figure H.4 � Motor input impedance measurement setup: connections for measurements

The measurement results are presented in Fig. 5.3.
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Figure H.5 � Impedances ZPP and ZPG, measured with impedance analyzer
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The electric motor characterization using the impedance analyzer that was presented in the

previous appendix was validated with a second impedance measurement set. This second set,

hereafter denominated six-measurement identi�cation, does not use the symmetry hypothesis

that were taken previously.

The validation set of measurements consists on characterizing the three-phase motor as a

four port generic device, with the three windings connected in star. A schematic of the motor

connection is given in Fig. I.1.

P2

P1

P3

G

P'

Figure I.1 � Schematic of the three-phase motor as a 4 input device

The input impedance was measured between all the possible combinations between the motor

terminals. That gives six input impedances, as listed in table I.1

Table I.1 � Input impedance measured for motor characterization

Terminals Impedance Terminals Impedance

P1 −G ZP1G P1 − P2 ZP1P2

P2 −G ZP2G P1 − P3 ZP1P3

P3 −G ZP3G P2 − P3 ZP2P3

The input impedance matrix Z can be built for the three-phase motor following the steps

described in section 3.3, what results in the following equations:
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Z =


Z11 Z12 Z13

Z12 Z22 Z23

Z13 Z23 Z33


Z11 = ZP1G Z12 =

1

2
(ZP1G + ZP2G − ZP1P2)

Z22 = ZP2G Z13 =
1

2
(ZP1G + ZP3G − ZP1P3)

Z33 = ZP3G Z23 =
1

2
(ZP2G + ZP3G − ZP2P3)

(I.1)

(I.2)

(I.3)

(I.4)

(I.5)

To verify that this identi�cation technique is equivalent to the 2-measurement identi�cation

described in H, two di�erent impedances were compared using the matrices issued from each of

the identi�cation techniques: the common-mode impedance ZCM , measured between the short-

circuited terminals P1, P2 and P3 and the carcass G; and the mutual impedance ZP1P2 . They

can be calculated as follows:

ZCM = Y


1

1

1

 (I.6)


V1

V2

V3

 = Z


1

−1

0


ZP1P2 = V1 − V2

(I.7a)

(I.7b)

The impedances calculated with each identi�cation are plotted over the experimental data in

Fig. I.2.

(a) ZCM (b) ZP1P2

Figure I.2 � Comparison of the two motor experimental characterizations

The results in Fig. I.2 show that the two motor identi�cation methods are equivalent, the
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discrepancies between the input impedances being negligible. In Fig. I.2a the two-measurement

model �t perfectly the experimental data because it is based on this measurement, the same goes

for Fig. I.2b where it is the impedance calculated from the six-measurement identi�cation that

�ts perfectly the experimental data.
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Characterization of the Cabling on Industrial Power

Networks for EMI Simulation

Abstract This work analyses the EMI problems that may arise in the large electric networks

on industrial plants, taking into account the switching harmonics injected in these systems by

power converters. The harmonics were studied in the frequency band from DC up to a few tens of

MHz. To model the propagation of the switching harmonics in long electric cables, an accurate

and computationally e�cient simulation method is proposed. It is �t to simulate the behavior

of medium frequency parasitic signals in large cabling networks, e.g. on industrial plants, build-

ings, and others. This method can be useful in the designing of such systems, contributing to

the development of protection measures against dysfunction or damage that may be caused by

EMI phenomena in the network.

Keywords Cabling, EMI in industrial power systems, Power converters EMI, EMI long cable

model, Frequency-domain simulation

Caractérisation du Câblage des Réseaux Industriels de

Puissance en Vue de la Simulation CEM

Resumé Dans cette thèse sont analysés les problèmes liés à la CEM qui peuvent se produire

dans un réseau électrique industriel de grandes dimensions, prenant en compte les harmoniques

introduits dans le système par le découpage des convertisseurs de puissance. Les harmoniques ont

été étudiés dans la bande de fréquence entre DC et quelques dizaines de MHz. Pour modéliser

la propagation des harmoniques de découpage dans les longs câbles électriques, une méthode de

simulation précise et de bas coût computationnel a été proposée. Cette méthode est adaptée pour

simuler le comportement des signaux parasite dans les câblages longs présents dans les réseaux

industriels, des bâtiments ou autre, et peut être utile pour le dimensionnement de ces réseaux, en

vue du développement de méthodes de protection contre des dysfonctionnements et dommages

qui peuvent être causés par des phénomènes d'interférence électromagnétique.

Mots clés Câblage, CEM en réseaux industriels de puissance, Interférence électromagnétique

générée par des convertisseurs de puissance, Modèle CEM pour câbles longs, Simulation dans le

domaine de la fréquence
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