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Abstract

This thesis presents the development of an automatic elastic registration method
based on matching of vascular graphs extracted from both pre-operative and intra-
operative images. The method can fuse accurate pre-operative information onto
an organ undergoing small to large deformations during surgery, to compensate for
the limited details provided by intra-operative imaging modalities and improve the
visualization of tumor(s), vasculature and other important internal structures. Al-
though methods dedicated to non-rigid graph matching exist, they are not efficient
when noise, topology changes, and large intra-operative deformations are present.
The first contribution presented is a biomechanical graph matching method (BGM)
that builds on the work of Serradell et al. (2015). BGM combines the Gaussian
Process Regression (GPR) matching with a biomechanical model of the organ, as a
mean to discard matching hypotheses which would lead to non-plausible deforma-
tions (Garcia Guevara et al., 2018). However, BGM is not robust to noise, only
matches limited size graphs and has a high computation time. The second contri-
bution is the Adaptive Compliance Graph Matching (ACGM) method (Garcia Gue-
vara et al., 2019), which allows to efficiently find the best graph matches with a
novel compliance-based search and an adaptive rigid to soft approach. This reduces
the computation time by predicting first the most plausible matching hypotheses.
It also reduces the sensitivity on the search space parameters and improves the
registration quality. The proposed registration methods are evaluated with real-
istic synthetic and real porcine datasets, showing that ACGM is compatible with
intra-operative constraints.

Keywords: Non-rigid registration, biomechanics, data fusion, augmented real-
ity, graph matching
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Le foie est un organe vital situé dans l’abdomen. Il s’agit d’un organe mou (sauf
en cas de cirrhose), doté d’une anatomie complexe avec un réseau vasculaire dense.
Le cancer du foie est la cause d’environ 780000 décès de par le monde en 2018,
rangeant cette pathologie au 4ieme rang des maladies mortelles (Bray et al., 2018).

Le traitement de ce cancer dépend de plusieurs facteurs dont le stade de la
maladie, l’état de santé général du patient et la taille de la tumeur. A un stade pré-
coce, les principales options cliniques proposées sont la chirurgie, l’ablation par radio
fréquence, les techniques ablatives percutanées et la radiothérapie. Pour toutes ces
options, disposer de la visualisation des vaisseaux sanguins et du foie est essen-
tiel pour permettre au praticien un geste clinique précis en toute sécurité. Ces
traitements intra-opératoires nécessitent en effet la définition d’une marge de sécu-
rité autour de la tumeur et la connaissance des vaisseaux pouvant être coupés en
préservant la fonction hépatique. Un des pré requis essentiel pour effectuer ces
procédures est de disposer de moyens d’imagerie fiables et précis permettant à la
fois de planifier le geste en préopératoire et de le réaliser en per-opératoire.

De manière générale, les petites lésions et les vaisseaux sont mieux identifiés dans
les imageries préopératoire de type angioscanner ou IRM en raison de la résolution
de ses images et de leur contraste bien supérieurs à la plupart des imageries per-
opératoires (Kingham et al., 2018). Dans ce travail, les imageries per-opératoire
considérées sont l’imagerie ultrasonore 3D et l’imagerie CBCT qui ne permettent
cependant de visualiser que les lésions les plus grandes et partiellement l’anatomie
du foie.

Chaque imagerie apportant des informations différentes et complémentaires, fu-
sionner les images ou les structures correspondant à ces différentes imageries ap-
porte un bénéfice important au clinicien. Depuis longtemps, le concept de réalité
augmentée permettant d’ajouter des éléments détectés en pré-opératoire sur des im-
ages per-opératoires a été identifié comme un moyen prometteur pour l’assistance
au geste clinique. Des applications concernant le suivi de vaisseaux, la navigation,
la détection de tumeurs ont en particulier été considérées, permettant une amélio-
ration des traitements associés (Mauri et al., 2015; Paul et al., 2015b).

En dehors des difficultés traditionnelles de recalage entre images issues de modal-
ités différentes, une autre difficulté est liée aux déformations que peut subir l’organe
pendant l’opération. Dans le cadre de chirurgies ouvertes par exemple, la procédure
requiert une mobilisation complète du foie qui mène à des déformations importantes
de l’organe par rapport à l’image préopératoire.

Aussi bien en chirurgie ouverte qu’en chirurgie laparoscopique, une approche
fréquemment suivie consiste à recaler les données pré-opératoires sur la surface
tridimensionnelle du foie, reconstruite par exemple par un dispositif stéréoscopique.
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La partie visible du foie en laparoscopie est cependant petite, ce qui induit un faible
nombre de d’indices images disponibles, et conduit fréquemment à des ambiguïtés
ou de fortes incertitudes sur le recalage. Pour pallier à ces problèmes, des travaux
ont proposé l’usage de modèles biomécaniques afin d’apporter des contraintes de
nature physique dans le recalage, ce qui nécessite d’introduire des conditions aux
limites sur la surface per-opératoire. Les travaux décrits dans Haouchine et al.
(2015); Suwelack et al. (2014); Plantefève et al. (2016) ont ainsi montré des résultats
prometteurs dans certains cas mais le problème reste mal posé en raison de la faible
information de surface de l’organe disponible.

Il semble donc préférable, quand cela est possible, de considérer davantage
d’informations que celles sur la surface de l’organe. Le développement d’imageries
per-opératoires 3D présente ainsi beaucoup d’avantages dans l’optique de pouvoir
recaler avec plus d’informations et donc plus de précision les images pré et per-
operatoires. Des systèmes récents pour l’aide au geste dans le foie ont ainsi montré
leur capacité à identifier des tumeurs. Ces systèmes sont cependant incapables à
l’heure actuelle de prendre en compte de grandes déformations de l’organe, ce qui
réduit leur usage.

Idéalement, on attend d’une procédure de recalage du foie qu’elle soit capable
de prendre en compte de grandes déformations et qu’elle soit robuste à la présence
d’inhomogénéités dans l’intensité et à la présence d’artefacts. Elle devrait pouvoir
être utilisée avec les imageries 3D couramment utilisées (ultrason 3D, CBCT, IRM,
angioscanner) et être entièrement automatisée, sans besoin d’une estimée initiale,
d’un capteur ou d’interaction avec l’utilisateur. Enfin, le recalage doit être assez
rapide pour être compatible avec le workflow clinique. De façon générale, ce temps
devrait être inférieur ou égal au temps d’acquisition de l’image per-opératoire Mauri
et al. (2015).

Le recalage d’images consiste à établir des correspondances spatiales entre dif-
férentes acquisitions et à trouver la transformation optimale permettant de passer
d’une image à l’autre. Le choix d’une méthode de recalage dépend la plupart du
temps des modalités d’images utilisées et de leurs conditions d’acquisition. Le re-
calage multi-modalité dans lequel les intensités des pixels ou voxels n’ont pas la
même signification physique est évidemment plus complexe. De plus, les images
per-opératoires ont la plupart du temps un champ de vue réduit, présentent da-
vantage d’artefacts et un rapport signal/bruit plus faible en raison des conditions
d’acquisition non optimales.

Le foie peut subir de grandes déformations par rapport à l’imagerie pré-
operatoire lors de gestes cliniques, par exemple lorsque le patient est positionné
sur le coté ou lors de l’insufflation de gaz en laparoscopie. La nature de la dé-
formation conditionne évidemment le type de méthodes à mettre en oeuvre pour
le recalage (Sotiras et al., 2013). Les modèles de diffusion, les modèles de type



Résumé de la these v

plaques minces, ou les modèles basées sur des B-splines ou des modèles biomé-
caniques sont couramment employés. Les modèles basés sur la diffusion sont des
modèles non paramétriques régularisés par l’application d’un filtre gaussien per-
mettant de générer un champ de déplacement lisse (Vercauteren et al., 2009). Ils
ont été utilisés en recalage multi-modalité par Heinrich et al. (2012) conjointement
avec un descripteur de voisinage MIND relativement indépendant de la modalité,
ainsi que dans Reaungamornrat et al. (2016) dans le cadre d’un recalage multi-
modalité pour la colonne vertébrale. Les modèles de type free-form deformation
sont courants en recalage et permettent de calculer un champ lisse de déformations
avec un nombre réduit de degrés de liberté. Ils ont par exemple été utilisés dans
(Rueckert et al., 1999) couplé avec des B-splines cubiques. Ils ont également été
utilisés avec des métriques de similarité diverses telles que l’information mutuelle
(Klein et al., 2008), ou des variantes du rapport de corrélation (Rivaz et al., 2015;
Fuerst et al., 2014). En pratique, ces méthodes ne sont cependant pas utilisées dans
le cadre de grandes déformations ni pour des imageries per-opératoires bruitées.

Les déformations que subit un organe pendant une intervention peuvent être
larges et de nature complexe. Les modèles intègrent donc un nombre élevé de degrés
de liberté pour prendre en compte cette complexité. Cependant le champ réduit en
laparoscopie ainsi que le rapport signal/bruit élevé ne permettent pas l’extraction
d’indices en nombre suffisant pour déterminer correctement les paramètres du mod-
èle. Les modèles de transformation cités précédemment ne prennent par ailleurs
pas en compte les propriétés physiques des organes et notamment l’hétérogénéité
ou l’anisotropie des tissus. Dans l’optique de générer des solutions plausibles, des
modèles de mouvements dédiés ou des atlas statistiques de forme ont été proposés
(Peters et Cleary, 2008) et permettent d’obtenir, pour certains types de déforma-
tion, des solutions précises et robustes. Cela nécessite néanmoins d’adapter les algo-
rithmes et leurs paramètres à chaque cas envisagé, ce qui rend ces modèles difficiles
à utiliser sur des populations variées de patients ou au cas de grandes déformations.
Une solution prometteuse, que nous étudions dans cette thèse, est d’effectuer le
recalage avec un modèle biomécanique issu des données patients (Peters et Cleary,
2008).

Les modèles biomécaniques ne garantissent pas forcément d’obtenir des solutions
correctes de recalage car il n’est pas forcement possible de modéliser mécaniquement
la complexité d’ un ensemble d’organes et de leurs interactions. Néanmoins, ces
modèles sont guidés par des paramètres élastiques qui peuvent être mesurés sur
patient ou ont des valeurs bien connues dans la littérature. Ils sont, pour cette
raison, plus génériques que les modèles précédents et plus facile à contrôler. Ils
nécessitent cependant l’intégration de conditions aux limites, qui sont déterminés
dans ce travail à partir des images.

Les modèles biomécaniques ont donc le potentiel de permettre un recalage précis
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tout en générant des transformations plausibles. Leurs limitations résident cepen-
dant dans le coût des calculs des transformations et dans la difficulté de de connaître
les propriétés physiques de l’objet. Des simulations en temps réel ont cependant pu
être réalisées avec un modèle corotationnel (Courtecuisse et al., 2010) pour recaler
des surfaces issues de données stéréoscopiques (Speidel et al., 2011; Bano et al.,
2013), pour du recalage basé intensité avec un modèle d’insufflation (Oktay et al.,
2013) et pour du recalage de surfaces via un algorithme de type ICP (Peterlík
et al., 2018). Ces méthodes sont cependant limitées par le fait qu’elles ne font
intervenir que la surface des objets, ne donnant ainsi aucune garantie sur le re-
calage à l’intérieur de l’organe, ou parce qu’elles utilisent des modèles spécifiques
d’insufflation soit enfin parce qu’elles nécessitent une interaction avec l’utilisateur
incompatible avec les gestes per-opératoires.

Dans de nombreuses modalités, le réseau vasculaire est visible ou peut être
rendu visible grâce à l’injection d’un produit de contraste alors que les structures
environnantes sont homogènes ou peu différenciantes. Le réseau vasculaire étant
dense dans le foie,les vaisseaux, et en particulier les bifurcations, constituent ainsi
des indices forts pour le recalage multi-modalité. La mise en correspondance des
arbres vasculaires est cependant rendue délicate par le fait que le critère de similarité
ne peut être basé que sur la longueur des vaisseaux et la géométrie ou la topologie
des bifurcations. Dans le cas de grandes déformation, la conservation des longueurs
n’est pas strictement vérifiée. Par ailleurs, il existe de nombreuses bifurcations avec
la même topologie, ce qui accroît la combinatoire des hypothèses possibles.

Les approches basées sur le réseau vasculaire pour le recalage d’images 3D
utilisent soit directement l’intensité soit l’extraction préalable du réseau. Les ap-
proches basées sur l’intensité utilisent toute l’information disponible dans l’image et
on peut espérer qu’elles soient plus précises que celles basées sur des indices extraits.
Cependant, les intensités des zones inter-vasculaires sont relativement homogènes
et contribuent peu au recalage, voire le dégradent. Les approches par intensité
de Suh et al. (2010) and Robben et al. (2012) modifient la métrique de similar-
ité de manière à prendre en compte les propriétés des vaisseaux. Cependant Suh
et al. (2010) ne peut prendre en compte les ambiguïtés de mise en correspondance
tandis que Robben et al. (2012) imposent des longueurs constantes aux vaisseaux
et ne peuvent prendre en compte des changement de topologie entre les images.
De manière générale, les approches par intensité peuvent difficilement prendre en
compte les différences d’apparence d’un organe entre deux images et requièrent le
plus souvent une initialisation.

A l’opposé, les méthodes basées sur l’extraction d’indices peuvent prendre en
compte ces différences d’apparence. Le caractère épars mais cependant bien réparti
des vaisseaux dans l’image rend le processus de recalage à la fois plus rapide, plus
générique que les méthodes basées sur l’intensité et beaucoup plus précis que les
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méthodes analysant seulement la surface des organes. L’extraction du réseau vas-
culaire peut cependant se révéler délicate selon l’imagerie utilisée et la qualité du
contraste comme c’est le cas pour l’imagerie ultrasonore ou CBCT. Dans ce cas,
le réseau est extrait de manière incomplète et de fausses détections peuvent être
présentes. Les réseaux extraits en pré ou per-opératoire peuvent alors être très
différents, les différences pouvant concerner le nombre, la longueur, la topologie ou
le rayon des vaisseaux. Les fortes déformations modifient par ailleurs la géométrie
des bifurcations, rendant l’identification de similarités difficile.

Parmi les méthodes utilisant les vaisseaux pour la segmentation, on distingue
les approches qui visent à recaler les ligne de centre et les approches par mise en
correspondance de graphes qui exploitent pleinement la topologie des vaisseaux.
Lange et al. (2003) et Reinertsen et al. (2007) sont des exemples significatifs des
approches de recalage par lignes de centre extraites dans les deux modalité. La
déformation considérée est faible dans les exemples considérés et basée sur une es-
timation initiale à partir de quatre points manuellement mis en correspondance.
Une approche de type ICP est ensuite utilisée pour recaler les lignes de centre. Le
déplacement faible considéré ici permet d’avoir peu d’ambiguïté dans les correspon-
dances. Dans Morin et al. (2017) et dans le cas du brain shift, des contraintes de
contact (avec la dure-mère) sont prises en compte dans le modèle biomécanique pour
mettre en correspondance des vaisseaux. Cette méthode est cependant limitée à de
petites déformations et requiert une initialisation. Les méthodes de graph matching
(GM) visent quant à elles à s’affranchir de la connaissance d’une estimée initiale et
utilisent pleinement l’information topologique des bifurcations. Leur performance
est cependant liée à la capacité à extraire de manière robuste les bifurcations. C’est
cette approche qui est étudiée dans cette thèse.
Segmentation des vaisseaux

Nous utilisons dans cette thèse une représentation des vaisseaux sous la forme
d’un graphe pour la mise en correspondance multi-modalité. Ces graphes sont issus
des segmentations des images CTA, CBCT et ultrason 3D. Dans une première étape,
nous utilisons la méthode de segmentation basée modèle proposée par (Smistad
et al., 2014). Un graphe est ensuite déduit de la segmentation en utilisant l’approche
proposée dans (Plantefève et al., 2017). La méthode ne nécessite aucune interaction
avec l’utilisateur. Il faut cependant préciser que le temps requis pour traiter des
images US est très élevé et incompatible actuellement avec les besoins du per-
opératoire. Il est probable que dans l’avenir des méthodes de segmentation, basées
en particulier sur des techniques de machine learning, puissent améliorer cet état
de l’art.

Les images per-opératoires sont beaucoup plus bruitées et contiennent ainsi
beaucoup plus d’erreurs de détection que les images pré-opératoires. Des fausses
détections, des segmentations non connexes et globalement des imprécisions sur
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la position des bifurcations sont ainsi présentes à l’issue de la segmentation. Ces
incorrections sont étudiées dans le chapitre III sur des données acquises sur un
cochon.

Les techniques usuelles de mise en correspondance de graphes reposent sur des
métriques de similarité pour élaguer l’arbre des correspondances possibles. Elles
sont souvent basées sur l’apparence locale, comme la géométrie des bifurcations, ou
sur des contraintes telles que le rayon des vaisseaux. Dans le cas des images per-
opératoires et en particulier pour les images US, le rayon ne peut être extrait de
manière fiable et cette contrainte n’est utilisée que pour écarter des mises en corre-
spondances manifestement erronées. La distance géodésique entre les bifurcations
est aussi communément utilisées comme métrique de similarité. Dans notre cas,
avec des mouvements de grandes ampleurs et des fortes imprécisions sur la position
des bifurcations, cette contrainte ne peut être pleinement utilisée.

Nous développons dans la suite des méthodes robustes permettant de recaler
les arbres vasculaires en dépit d’erreurs affectant ces segmentations per-opératoires.
Nous montrons aussi comment effectuer ce recalage en un temps compatible avec
la clinique malgré la combinatoire du problème.
Mise en correspondance de graphes

En raison de l’impossibilité d’extraire des structures pertinentes et communes
aux imageries pré et per-opératoires, nous avons adopté une technique basée sur les
graphes pour le recalage. Nous proposons dans le chapitre IV un état de l’art des
techniques et une description des limitation des méthodes génériques (Leordeanu
et Hebert, 2005; Zhou et De la Torre, 2015; Torresani et al., 2008). Les méthodes
dédiées aux vaisseaux sont classées en trois catégories. La première repose sur
une initialisation connue de la transformation (Nam et al., 2011; Charnoz et al.,
2005), la seconde utilise des propriétés géométriques et topologiques (Tschirren
et al., 2005; Deng et al., 2010; Smeets et al., 2010; Robben et al., 2013; Pinheiro et al.,
2017; Moriconi et al., 2018) et la troisième vise à obtenir le meilleur ensemble de
correspondances entre bifurcations via la mise à jour de la transformation (Serradell
et al., 2011, 2015; Pinheiro et Kybic, 2018).

La topologie et la forme des graphes pre et per-opératoire sont très différentes
en raison de la déformation subie et du bruit présent dans les images qui altère la
segmentation. Il n’y a que peu de méthodes considérant ce difficile problème. Parmi
elles, les travaux de Seradell sur le recalage non rigide à base de graphes Serradell
et al. (2015) sont le point de départ de nos travaux. Lors du parcours de l’arbre
des hypothèses de correspondances potentielles, le nombre de correspondances po-
tentielles est progressivement réduit grâce à l’évaluation de la qualité d’un ensem-
ble d’hypothèses par des processus gaussiens (GPR). Ceci permet d’écarter des
hypothèses de correspondances incohérentes avec l’ensemble courant et d’explorer
d’autres hypothèses de l’arbre. Cette méthode permet ainsi de générer itérative-
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ment des hypothèses tout en restreignant l’espace de recherche. La solution est raf-
finée progressivement au fur et à mesure de l’ajout d’hypothèses de correspondance.
Cette méthode a été testée sur des données réelles avec succès. Cette méthode ne
nécessite aucune initialisation et elle est capable de prendre en compte des graphes
ayant des différences topologiques.

La méthode GPR présente cependant deux inconvénients majeurs: le temps
de calcul nécessaire pour traiter de grands graphes est très élevé et il est donc
impossible d’envisager un usage clinique. Par ailleurs, les déformations possibles
modélisées par processus gaussiens ne permettent pas un contrôle fin des déforma-
tions autorisées. On peut ainsi parvenir à des déformations incompatibles avec la
physique d’un l’organe.

Pour résoudre la première limitation sur le temps de calcul de la méthode
GPR, nous avons conçu la méthode iGPR qui introduit des contraintes permettant
d’élaguer les hypothèses de correspondances. Des contraintes sur les rayons des
vaisseaux en correspondance ainsi sur des caractérisation topologiques des arbres
sont ainsi introduites pour réduire la combinatoire. De plus, l’espace de recherche
est réduit dès le début du processus de mise en correspondance par une réduction
de la covariance produit par les GPR, qui est, à ce moment très largement sures-
timée. Des expériences sur données synthétiques et données réelles sont effectuées,
qui montrent une réduction importante du temps de calcul. Nous avons cependant
observé l’incapacité du modèle à produire des résultats corrects avec de grandes
déformations et observé également l’obtention de résultats parfois incompatibles
avec les propriétés mécaniques de l’organe. Nous avons donc dans la suite de ce
travail utilisé une estimation des transformations via un modèle biomécanique afin
de remplacer les GPR qui ne caractérisent qu’implicitement les déformations.
Mise en correspondance biomécanique

Le modèle GPR est relativement générique et permet de simuler de nombreux
types de déformations. Il est cependant, de par sa structure, incapable de générer
des déformations anisotropiques ou présentant de fortes non linéarités. Les vais-
seaux, qui sont plus rigides que le parenchyme, créent en particulier de telles
hétérogénéités, qui ne peuvent être prises en compte correctement que via l’usage
d’une modèle biomécanique. Deux modèles biomécaniques ont été utilisés dans ce
travail. Le premier est un modèle co-rotationnel du parenchyme du foie. Le sec-
ond est un modèle composite de foie vascularisé, beaucoup plus réaliste. Il est en
particulier utilisé pour calculer la compliance en chaque point, qui est utilisée en
remplacement de la matrice de covariance utilisé dans l’algorithme initial. C’est
un des points originaux de ce travail qui vise à utiliser des contraintes mécaniques
directement pour apprécier la compatibilité des hypothèses de correspondance. Ces
modèles font l’objet du chapitre V.

La première contribution proposée est d’abord de remplacer l’estimation de
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la transformation faite par GPR par un modèle biomécanique de l’organe, avec
l’idée qu’une estimation plus proche de la physique permet de mieux éliminer les
hypothèses erronées (Garcia Guevara et al., 2018). Cette méthode appelée BGM
permet de réduire l’erreur de recalage mais elle reste peu robuste au bruit et a
encore un coût de calcul trop élevé.

L’utilisation d’une mise en correspondance basée sur la compliance est la seconde
contribution de ce chapitre. Deux algorithmes ont ainsi été développés. VCGM est
basé sur le modèle vascularisé du foie pour le calcul de la transformation et le
calcul de la compliance. L’introduction de la mise en correspondance basée sur
la compliance s’est révélé beaucoup plus efficace que l’usage de la covariance. La
méthode développée ensuite, appelée ACGM, vise à réduire encore le temps de
calcul grâce à une stratégie adaptative consistant à développer en premier lieu les
hypothèses de mise en correspondances les plus plausibles. Cette stratégie réduit
par ailleurs la sensibilité de l’algorithme au choix des paramètres de la méthode et
améliore la qualité du recalage.

Les méthodes utilisées ont été testées avec des jeux de données synthétiques
ainsi que sur des données réelles avec comme données préopératoires des scanners
et pour données per-opératoires des images CBCT et ultrasons 3D.
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Image-guided liver surgery

With a length of about 20 cm for an average weight of 1.5 kg, the liver is one of the
largest organs of the human body. It is a vital organ, with a complex anatomy, and
is particularly exposed to diseases because of its detoxification role in the organism.
As a result, liver cancer caused 780,000 deaths in 2018 worldwide, making it the
4th most lethal cancer (Bray et al., 2018). The liver is situated in the right upper
quadrant of the abdominal cavity and has a soft consistency (if not cirrhotic). The
rib cage surrounds and protects it almost completely. The liver is located under the
diaphragm and is attached to it by the left and right triangular ligaments. It is also
attached to the ventral wall by the falciform ligament (Tortora et Derrickson, 2008).
The liver has also a dense and intricate vascular architecture, consisting mainly of
two large veins: the portal vein (PV) and the hepatic vein (HV). Other important
inner structures are the bile duct and the hepatic artery (HA) that usually run
parallel to the PV, as shown in Fig. I.1.

The blood flow enters to the liver through the HA and PV. At the smallest HA
and PV vessels (about 7 µm radius), the incoming blood mixes and reaches the
hepatic lobule (the liver’s smallest functional unit). The blood subsequently leaves
the hepatic lobules and the liver through the hepatic vein. Figure I.2 shows 3D
reconstructions of the liver vessels and highlights the complexity and density of the
vascular network (Debbaut et al., 2014). We can also see that it gives a general
idea of the shape of the organ, making it a structure of interest for registration
problems, as we will see in the following sections.

I.1 Treatment and imaging options

Cancer treatment options depend on several factors, such as the degree of progres-
sion of the disease, patient’s overall health, or tumor size among other factors. In
a relatively early disease stage, the options for tumor treatment are surgery, radio-

1
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Liver anatomy

Figure I.1: Liver anatomy showing its important vascular structures (veins and arteries)
and and bile ducts (in green) Atlanta Vascular and Vein Clinic (2019).

frequency ablation (RFA), percutaneous procedures, and radiation therapy. Surgery
(also called hepatectomy) consists in removing the tumor along with its surrounding
tissue. Among other treatments, surgery is one with the most favorable outcomes,
specially when tumors are confined in small portions of the liver and can be removed
without highly affecting the liver function. However, this is not always possible and
alternative options need to be sought. Heating and destroying tumors with RFA or
microwave therapy are other possible treatments, which are applied percutaneously,
through laparoscopic or surgical interventions. Other approach to destroy cancer
cells is to percutaneously inject ethanol into the tumor. This procedure is simple
and particularly effective for small tumors. Radiation therapy destroys tumors of
up to 5 cm with high-energy targeted X-rays. Other treatments are less effective
but may prolong the life of the patient, such as Trans-Arterial Chemo-Embolization
(TACE) a type of chemotherapy treatment where the feeding artery of the tumor
is obstructed by drugs injected within the artery.

In all options above, the visualization of the patient’s liver anatomy (including
its blood vessels), at the time of the procedure, is essential to correctly and accu-
rately deliver the therapy. To ensure accurate and complete destruction of tumors,
percutaneous procedures require defining safety margins for ablation using various
anatomical landmarks. For intra-arterial procedures, vascular selectivity is essential
to reach the correct tumor-feeding vessels and maximize the treatment effectiveness.
It also needs the exclusion of non-target vessels to preserve the rest of the hepatic
arterial tree and avoid overtreatment (Ronot et al., 2016). Tumor resection, either
laparoscopic or open, requires the definition of safety margins around the tumor
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Liver vasculature

Figure I.2: 3D reconstructions of HA (b), PV (c) and HV (d) trees. The vessels shown
have radii ranging from 13.2 mm to 0.6 mm. The lengths along the vessels in between
closest bifurcations range from 74.4 mm to 16 mm (Debbaut et al., 2014).

and the determination of which vessels to cut to preserve the hepatic function and
allow the liver to regenerate after surgery. Once correctly planned, liver surgery
remains hard to accomplish because it is difficult to detect and reach subsurface
anatomy.

The essential premise to achieve good results in all these procedures is there-
fore the availability of precise and reliable imaging techniques for accurate pre-
procedural planning and intra-procedural targeting. Before these intra-operative
procedures, the clinical workflow includes standard available preoperative data to
identify lesions within the liver parenchyma. The following is a relevant description
of commonly used liver preoperative imaging:

• Computed tomography (CT) is a robust and rapid imaging modality useful in
detecting liver tumors and extrahepatic metastases. Computed Tomography
Angiography (CTA) includes the injection of an intravenous contrast agent
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to make blood vessels visible and to better identify liver metastases, which
are hardly noticeable on non-contrast CT. The commonly used contrast in-
jection and acquisition protocol results in arterial and late portal (hepatic)
phase images. From the arterial phase image, the arterial structures and hy-
pervascular tumors are visible. In the hepatic phase image shown in Fig.
I.3.a, the parenchyma is enhanced through the blood supply of the PV. Some
enhancement of the HV can also be obtained (Smithuis, 2014).

• Magnetic resonance imaging (MRI) detects different types of normal and
pathological tissue depending on its physical properties and the pulse sequence
that generates the image. With respect to CT, MRI captures images with
better contrast on soft tissues but often with more artifacts. Different pulse
sequences are generally used to generate images of the liver, usually acquired
before (shown in Fig. I.3.b) and following the administration of an intravenous
contrast agent. In general, the spatial resolution of CT is superior to MRI,
so it is often preferred for planning and tumor identification. However, novel
higher resolution MRI combined with diffusion-weighted imaging (DWI) and
hepatocyte-specific contrast agents can detect sub-centimeter liver metastases
better than CT (Frankel et al., 2012).

Once preoperative image acquisition and procedure planning have been per-
formed, the actual treatment can begin. Depending on the type of intervention,
different imaging options can be used to control its progress. During surgery (open
or laparoscopic), the use of interventional imaging is often limited to ultrasound
(US) unless the operating room is equipped with an MR or CT scan. US imaging
allows to visualize the vascular anatomy and the largest lesions. For other types
of interventions, CT or CBCT remain the main imaging modality. MRI is less
often used because of the additional constraints it puts on the operative protocol,
in particular the use of non-ferromagnetic instruments. Generally, small lesions
(and vessels) are best identified in preoperative (CTA and MRI) images, due to
a higher resolution or contrast images compared to most intra-operative imaging
modalities (Kingham et al., 2018). In this thesis, CBCT and US are the common
intra-operative modalities considered, and their main properties and limitations are
presented below:

• Cone beam computed tomography (CBCT) is an accessible imaging technique
in which the X-ray tube and detector panel rotate around the patient. CBCT
is an imaging modality that is more available in the operating room than CTA
or MRI. However, the contrast to noise ratio in CBCT is about half than that
in CTA. CBCT also suffers motion artifacts, beam hardening, partial volume,
and ring effects. Thus, certain important lesions and soft tissue structures are



I.1. Treatment and imaging options 5

Liver imaging

Figure I.3: Pre-operative images of human liver in a) CTA and b) MRI, T1 weighted pre-
contrast (Frankel et al., 2012). Intra-operative liver images c) CBCT with injected contrast
agent (Paul et al., 2015a) and d) US with branch segments (P5-8, P6-7), right (RPV) and
left (LPV) portal vein and middle hepatic vein (MHV) (Torzilli et al., 2014).

not visible in the CBCT image (Tacher et al., 2015). CBCT acquisitions in
the liver are mostly obtained following intravascular contrast agent adminis-
tration, either through a catheter positioned in the vessel of interest (directly
connected to or inside the liver) or in peripheral veins. Various CBCT con-
trast injection protocols exist, and result in different types of images of the
liver anatomy, in particular if they are taken during arterial, portal venous
(shown in Fig. I.3.c), or even delayed phases (Bapst et al., 2016).

Intra-arterial procedures require an in-depth assessment of the hepatic arte-
rial network and the ability of the operator to properly identify, reach and
treat the tumor-feeding vessels and to preserve the rest of the hepatic arterial
tree. However, because of imaging artifacts and low resolution, feeder vessels
smaller than 1 mm diameter or where contrast agent accumulates close to
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the tumor are very hard to detect (Iwazawa et al., 2013). Moreover, CBCT
significantly reduces the detectability of small hepatic tumors (i.e. less than
5 mm in diameter) compared to preoperative images (Paul et al., 2015b).

• US is commonly used to guide percutaneous ablations and resections. Because
it is real time, simple to set up, has no ionizing radiation, is less expensive
and provides in-depth information of the organ structures. From the several
US modes available, 3D B-mode US based on mechanical scanning was used
in the experiments presented in this thesis. The 3DUS reconstructs a 3D
image from a series of 2D images (shown in Fig. I.3.d) acquired with a linear
transducer that is rotated with a motorized mechanism. In the liver, US has
sufficient soft tissue contrast to visualize some lesions and vessels. However,
some tumors are undetected intra-operatively because of their location, small
size, or echogenicity. A similar problem happens with small vessels (Mauri
et al., 2015). For example, Kim et al. (2012) reported that 25% of small (< 3
cm) tumors diagnosed on CTA/MRI reported were not visible on US. Thus,
it is common that surgeons experience important difficulties locating hepatic
tumors in the operating room.

I.2 Organ motion and deformation

Besides the choice of imaging modality, all the treatment options presented pre-
viously are also impacted by intra-operative organ motion or deformation. For
instance, during percutaneous procedures, a different patient pose, and the respi-
ratory motion, can lead to important differences in the location of the tumors and
vessels between the pre and intra-operative images. In 95% cases, the reported mag-
nitude of non-rigid deformation ranges from 2.5 mm to 9 mm. In the other cases,
the difference can go up to 44 mm (Luu et al., 2018). With laparoscopic procedures,
it is necessary to increase the working space by infusing carbon dioxide (CO2) gas
into the abdominal cavity (pneumoperitoneum), as seen in Fig. I.4. The insuffla-
tion causes distension and displacement of the diaphragm, ligaments are pulled into
tension as the abdominal cavity expands (Malbrain et al., 2016). Intra-operative de-
formation is further complicated by the organ mobilization and possible dissection
of some ligaments. For the partial liver surface visible during laparoscopy, non-rigid
deformations ranging from 4 to 26 mm were reported (Heiselman et al., 2017).

In the case of open surgery, the procedure requires complete mobilization and
exposure of the liver, which leads to significant organ deformation compared to
the preoperative image. In that context, deformations up to 60 mm have been
reported Heizmann et al. (2010). This obviously impacts intra-operative navigation
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Deformation induced by the pneumoperitoneum

Figure I.4: The liver (in red) is strongly deformed while the shape of the left kidney (in
green) is almost the same in both images (source Tsutsumi et al. (2013)).

during liver resection and calls for solutions to provide visual guidance during such
interventions, using combinations of registration and augmented reality.

I.3 Image fusion and augmented reality

I.3.1 Clinical benefits

Since each imaging modality provides different and often complementary informa-
tion on tissue structures as well as deformation changes, fussing in a common coor-
dinate system pre and intra-operative images provides added benefits. For example,
adding the subsurface anatomy visualization during laparoscopy improves the sur-
gical navigation and resection (Heiselman et al., 2017). Interventions augmented
with preoperative data are commonly easier and better guided, obtaining increased
target localization accuracy while reducing invasiveness (Peters et Cleary, 2008).
Augmented intra-operative images can allow accurate localization of small tumors
and guidance during ablations or resections. Here, the augmented or fused image
helps to follow the safety margins around the tumor.

When using CBCT, the fused information can be very useful to provide better
soft-tissue details than CBCT alone thus improving the identification of hepatic tu-
mors (Paul et al., 2015b). During surgery, multiple image acquisitions, and possibly
contrast agent injections, are needed to provide information about the tumor loca-
tion and surrounding vessels. An accurate image fusion method could reduce this
number of image acquisitions and consequently lower patient exposure to contrast
agent toxicity and radiations (Ronot et al., 2016). In addition, during intra-arterial
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procedures, such as Trans-arterial Chemo-embolisation, augmented CBCT can re-
duce navigation time and the dependence on interventional operator skills. The
complex nature of the hepatic vasculature makes it difficult to identify the arterial
branches, and multi-modality fusion has been identified as an effective solution for
vessel-tracking and navigation (Paul et al., 2015b).

Real-time US fused with CTA or MRI can also increase the detection of small
tumors and vessels, making targeting and monitoring of these structures more accu-
rate (Mauri et al., 2015). 3DUS can be used to understand the spatial relationship
between tumors and vascular structures. However, this imaging technique has a lim-
ited field of view. Also, speckle noise, low contrast-to-noise ratio and artifacts make
it difficult to get useful 3D information from its direct visualization. Augmented
3DUS can compensate for these limitations and improve the spatial visualization
and understanding of the anatomy. This can be obtained by generating a more
complete (fused or augmented) image that includes small vasculature and vessels
located outside of the US field of view. Such an augmentation can allow intra-
arterial procedures to be fully guided by US instead of CBCT. When acquiring
liver images with US, the interference from the patients’ ribs make it difficult to
image the posterior and lateral parts of the liver. An augmented US image can be
a solution for visualizing these structures during percutaneous interventions (Kim
et al., 2012).

I.3.2 Challenges

One important difficulty when performing image fusion or augmented reality for
hepatic surgery comes from the (large) deformations that often take place between
the two image acquisitions, as mentioned previously. Handling these deformations
requires nonrigid registration methods to align the preoperative models or images
onto the intra-operative images. The choice, complexity, and accuracy of the reg-
istration method highly depends on the type of data to register (3D to 3D image,
3D model to 3D image, 3D to 2D image, etc...). Here are some scenarios when
considering the liver.

In the context of open or laparoscopic surgery, the general approach is to register
the preoperative data into the 3D surface stereo reconstruction of the liver. In this
scenario, the portion of the liver visible during the laparoscopy is small; thus, surface
reconstruction techniques only provide limited information of the intra-operative
organ shape. Also, the lack of salient features, which would lift ambiguity in the
registration process, introduces additional uncertainty. The deformation of both
the invisible surface and inner critical structures thus remains relatively unknown,
which is an issue for guidance.

To compensate for these issues, previous works have used biomechanical models,
to bring physics-based regularization in the registration process. Therefore, the
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problem is solved by defining boundary conditions based on intra-operative data.
This has shown promising results but only to a certain extent. In a phantom study,
Haouchine et al. (2015) reported a TRE of 9.26 mm. The error increases when the
target is far from the reconstructed surface and when the deformation is larger.
The lack of inner information and the surface reconstruction uncertainty due to the
small stereo baseline affect the TRE. Suwelack et al. (2014) reported a similar result
in another phantom study. They registered a biomechanical model of the liver into
the intra-operative surface using an electrostatic potential field. Although results
are visually satisfactory in a silicone phantom dataset1, the TRE remains large (8.7
mm).

To improve the elastic registration, Haouchine et al. (2016) segmented the intra-
operative 3D point cloud and used it to automatically define the boundary condi-
tions of a biomechanical liver model. Using this method in one synthetic experiment,
the error obtained from 5 internal targets ranged from 4 to 12 mm. This method
requires additional validation, on real data, to assess its accuracy and robustness.
More generally, the question of validation, using patient ground truth data, remains
a limiting factor to compare results. Some remarkable efforts, presented by Collins
et al. (2017), have been made recently in this direction, such as the Sparse-Data
Image-to-Physical Liver Registration Challenge 2 which consists of 112 sparse point
clouds patterns taken from the operating room and transposed onto a quantitative
liver phantom with similar deformation patterns as the operating room. The phan-
tom has 159 subsurface 1mm diameter targets to assess the accuracy of registration
algorithms.

Yet, when relying only on partial surface information, registration errors are
higher in areas that are not covered by the surface, and computing an accurate
displacement field in the volume remains an ill-posed problem. Therefore, it seems
preferable, when possible, to consider more than the surface information. To this
end, intra-operative 3D imaging is attractive to get accurate registration in AR
guided procedures. Current liver 3D image guidance systems have showed the
ability to identify hepatic tumors in several procedures. However, these systems
are currently unable to handle large nonrigid deformation, therefore limiting their
accuracy in a number of clinical cases. For instance, in a percutaneous augmented
US intervention study, 13 out of 295 cases reported registration errors from 8 to 16
mm (11±3 mm). This resulted in unsuccessful targeting of lesions (Mauri et al.,
2015). In another augmented US tumor resection study, 50 cases reported a 5.5±5.6
mm registration error. Although this is not a direct measurement of accuracy, errors
above 5 mm are usually considered as clinically relevant (Kingham et al., 2018).

1https://opencas.webarchiv.kit.edu/?q=PhysicsBasedShapeMatching
2https://sparsedatachallenge.org
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I.3.3 Vessel-based registration

To increase registration accuracy when dealing with large deformations, and to
avoid the ill-posed nature of registration problems only based on partial surface
information, a natural direction is to rely on in-depth information provided by the
vascular network of the organ. The liver, which we consider as our main target,
seems well suited for this type of approach, as illustrated in Figure I.1. From the
considered pre and intra-operative imaging modalities, vascular structures need to
be identified. While this is often done at the preoperative stage to perform the
surgical planning (and define resection planes that will preserve as much as possible
of the vascularization of the organ), this is significantly more challenging to do
intra-operatively. This is mainly due to clinical and imaging constraints.

The registration method should therefore be able to handle image intensity
inhomogeneities or artifacts and should satisfy intra-operative clinical constraints.
It should ideally be compatible with common image modalities (such as 3DUS,
CBCT, MRI, and CTA, only 3D to 3D vessels registration is considered) and be
fully automatic without initialization, external sensor, nor user interaction. The
registration process should be sufficiently fast such that it does not compromise the
workflow during the procedure. The process time should be less than or equal to
the intra-operative acquisition time, i.e. a few minutes as reported by Mauri et al.
(2015).

I.3.4 Our proposal

In this thesis, we address the development of an automatic elastic registration
method suited for vascularized organs undergoing small to large deformations, us-
ing vascular graphs extracted from both the pre and intra-operative images. The
intra-operative vascular tree is in general deformed, noisy, and incomplete. These
characteristics, the lack of distinctive features and the large number of bifurcations
make the matching of the pre and intra-operative graphs a challenging task. Al-
though methods dedicated to non-rigid graph matching exist, they are not efficient
when large intra-operative deformations of tissues occur. Serradell et al. (2015)
proposed a matching method that uses a Gaussian Process Regression (GPR) and
the current set of matching hypotheses to determine the transformation and a new
compatible match. So it iteratively generates matching hypotheses while refines the
search space.

The first contribution is a biomechanical graph matching method (BGM) that
builds on the work of Serradell et al. (2015). BGM combines the GPR matching
with a biomechanical model of the organ, as a mean to discard matching hypotheses
which would lead to non-plausible deformations (Garcia Guevara et al., 2018).
However, just replacing the GPR by a biomechanical model was not robust to
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noise, only matched limited size graphs and the computation time was still above
intra-operative constraints.

The second contribution is the Adaptive Compliance Graph Matching (ACGM)
method, which allows to efficiently find the best graph matches with a novel
compliance-based adaptive search. The matching hypotheses are adaptively gener-
ated in a rigid to soft approach using a better and novel metric, which is based on
the notion of compliance, the inverse of the stiffness. ACGM further reduces the
computation time by predicting first the most plausible matching hypotheses and
reduces the sensitivity on the search space parameters. This contribution improves
the registration quality and meet intra-operative timing constraints.

The proposed registration methods are evaluated with realistic synthetic and
real porcine datasets. The porcine CTA, CBCT and US images were acquired dur-
ing two experimental sessions in the IHU Strasbourg under institutionally approved
animal ethics protocol. This thesis does not contain patient data. The evaluation,
using both real and synthetic datasets, shows that the elastic registration is com-
patible with intra-operative constraints.

I.4 Manuscript organization

The manuscript continues with a background on multi-modality image registra-
tion state-of-the art followed by a description of vessels features’ extraction and
its influence on the registration process. Then, details about the matching meth-
ods developed in this thesis are presented, along with validation experiments. The
fundamental elements of the complete registration pipeline, shown in Fig. I.5, are
described as indicated in the following chapters description:

• Chapter II summarizes the deformable multi-modality registration state-of-
the-art with special interest of vascularized deformed 3D images.

• Chapter III describes the segmentation pipelines used to segment vessels and
extract graphs from CTA, CBCT, and US images. It presents the segmenta-
tion and graph extraction results and shortcomings. It also shows the graph
characteristics that directly impact the matching methods.

• Chapter IV reviews the graph matching methods state-of-the art focusing
on their limitations regarding the application considered. The GPR graph
matching method (Serradell et al., 2015) is summarized because it is the
base of the contributions presented in Chapter V. Then, an improved graph
matching algorithm (iGPR Garcia Guevara et al. (2018)) is presented. This
method significantly reduces the matching time and is used for automatic
initialization.
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Registration pipeline

Figure I.5: Description of the complete registration pipeline: The graphs are extracted
from the vessels segmentation of pre and intra-operative images (CTA and CBCT in this
example). Then, the graphs bifurcations are matched (mostly rigid and incompletely) with
iGPR. This first matching is used to initialize ACGM, which finds a complete deformable
bifurcations match very efficiently. This compliance-based matching (ACGM) is the main
contribution described in this article. Finally, the fine FEM-based alignment (fineBGM) of
the graph edges is performed.

• Chapter V describes the biomechanical model used and then presents the
two main contributions of the thesis: 1) the biomechanical graph matching
registration method BGM which matches graphs even when large deformation
occur using the biomechanical model (Garcia Guevara et al., 2018). 2) An
adaptive compliance graph matching (ACGM) method that reduces the search
space by using the compliance, while finding most of the bifurcations matches
including those with large deformations. The fine alignment of graphs edges
using the biomechanical model (Garcia Guevara et al., 2018) is presented as
well.

• Chapter VI concludes this thesis and presents some directions for future work,
such as matching of disconnected, noisy, and large deformation graphs within
intra-operative timing constraints.
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Multi-modality deformable

registration

II.1 Introduction

Image registration consists in establishing spatial correspondences between different
acquisitions and finding the optimal transformation that brings together images into
a common coordinate system. Depending on the application, two or more images
can be registered. Among other applications, performing registration can be useful
to model the anatomical variability of the population, to study temporal anatomical
changes, and to assist medical diagnosis and therapies (Sotiras et al., 2013).

As described in Chapter I, augmented image-guided procedures integrate com-
plementary information (acquired from different modalities) by registering pre-
operative (source) into intra-operative (target) images. The alignment of different
image modalities is known as multi-modality registration. The choice of registra-
tion method is often directly related to the image modality used and its acquisition
conditions. The voxel or pixel intensities of common intra-operative modalities (US,
CBCT) do not have a simple relationship with the pre-operative ones. Moreover,
intra-operative images generally have smaller fields of view, more artifacts and lower
contrast to noise ratio, due to non-optimal acquisition conditions.

Besides the multi-modality problem, one important consideration in intra-
operative procedures is the deformation of the organ. Brain surgery has already
benefited from image-guided registration since the brain shift is relatively small
and the (rigid) skull offers a mean to define a common reference frame (Kingham
et al., 2018). However, depending on the procedure the liver undergoes large intra-
operative deformation and motion. Figure II.1 shows the rigidly aligned pre an
intra-operative vessels of the liver where the nonlinear deformation reaches up to
6 cm (Heizmann et al., 2010). This large deformation is an important challenge

13
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Intra-operative open surgery nonlinear deformation

Figure II.1: Illustration of the amplitude of the nonlinear deformation that can occur
during open surgery. Yellow: liver reconstructed from the preoperative image. Purple:
liver reconstructed from intra-operative imaging (Heizmann et al., 2010).

of intra-operative registration. Generally, the nature of the expected deformation
helps to select an appropriate transformation.

Considering the clinical environment and requirements, the registration needs
to be fully automatic, robust and accomplished in ∼ 5 minutes. As described by
Sotiras et al. (2013), deformable image registration usually has three main parts:

• Deformation model. A nonlinear dense transformation establishes the re-
lationship between the images to be registered. This transformation can be
specified by an explicit function, or a non-parametric deformation represented
by a dense displacement field. This transformation is a mapping function of
locations from the target to the source images. The transformation used con-
siderably defines and limits the registration solution (Sotiras et al., 2013). Dif-
fusion models, thin-plate splines, Free-form deformations with b-splines and
biomechanical models are common transformation models used in deformable
image registration and briefly are described in Section II.2.

• Objective function. In general, two terms compose the objective function.
The first term is commonly known as the matching criterion, (dis)similarity
metric or distance measure, it quantifies how well the source image is trans-
formed to match the target. The second term attempts to specify desired
properties of the solution by regularizing the transformation, with the goal of
reducing the complexity of this ill-posed problem. Based on their matching
criterion, the registration methods can be divided in three groups:
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1) Feature-based registration requires from both source and target images ac-
curate extraction of corresponding and distinctive features. These algorithms
measure the alignment of corresponding structures and usually minimize a
distance metric between corresponding features.
2) Intensity-based algorithms operate directly on voxel intensities and rarely
require any prior object identification. These algorithms are very often based
on an optimization process that assesses the fitness of trial deformations using
corresponding intensity distributions similarity as a metric. With multi-modal
images the criterion should take into account the dissimilarity of image inten-
sities.
3) Hybrid registration methods try to obtain the advantages of both the
intensity- and feature-based methods by using complementary information.
So specific features can directly contribute to the registration and the whole
deformation (even parts without features) relies at least on the images in-
tensity. The extra processing is a drawback of these methods that usually
increases their computation time.

• Optimization method. The transformation is optimized to produce the
best fitting between images maximizing or minimizing, depending on the sim-
ilarity metric used, the objective function (Sotiras et al., 2013).

The characteristics of the images to be registered determine the deformation
model and the objective function required. The optimization strategy is important
to efficiently find registration results and avoid local minima in the inherently ill-
posed problem. Creating and/or putting together the proper components that
satisfy registration needs is a challenging problem (Peters et Cleary, 2008). The
registration of the pre and intra-operative images can be handled in many different
manners depending on the application, the image modality, the parameter space,
or the optimization process.

In general, pre and intra-operative registration usually requires the identifica-
tion of feature correspondences in both images or an image similarity metric that is
robust to the intensity difference, noise and artifacts. Therefore, it is really impor-
tant to consider how the anatomical properties of the considered organ are imaged
in each modality. Feature-based algorithms are usually faster than intensity-based
registration, thus they are more appropriate for intra-operative applications. How-
ever, false or insufficient corresponding features can produce inaccurate registration
results. Specially, deformable registration with large degrees of freedom can not
robustly be determined without sufficient detected features. To tackle this diffi-
culty associated with the ill-posedness of the problem, the transformation can be
regularized incorporating task specific constraints (smoothing or statistical models,
for example) (Peters et Cleary, 2008).
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Sotiras et al. (2013) broadly surveyed and classified deformable registration
methods, which is an active and vast research area. This Chapter focuses only
on 3D/3D registration methods that attempt to handle non-linear deformation of
different image modalities and partially comply with the clinical constraints de-
scribed in Section I.3.3.

Section II.2 presents general multi-modality deformable registration methods
grouped by their transformation models and describing its similarity metrics. Then,
Section II.3 focuses on approaches that use vessels’ information into the registration.

II.2 Intra-operative registration

The following are relevant methods that try to address the intra-operative multi-
modal deformable registration. These methods are grouped by the type of trans-
formation used. Their similarity metric evaluated over the whole image domain is
described.

II.2.1 Registration with transformation derived from diffusion
models

The transformation of the algorithms described in this section impose a diffusion
model regularization. This transformation is inspired by the Demons framework,
where a nonparametric deformation model is regularized by applying a Gaussian
filtering to generate a smooth displacement field (Vercauteren et al., 2009). Aside
from relying on similarity metrics that are intrinsically more suitable to disparate
modalities, images can be transformed into a consistent representation in which
voxel values capture some characteristics of the original images. The ability to
encode such local structural information is increased by using a descriptor (vector)
representation.

Heinrich et al. (2012) presented a new modality-independent neighborhood de-
scriptors (MIND) for registration. The descriptor is based on non-local means
(NLM) to capture local structure from different imaging modalities. The similar-
ities among nearby patches form the novel descriptor and its vectorial difference
serves as matching metric. Then, the MIND descriptor within a diffusion-based
registration method has shown to provide nonlinear mappings between MR and CT
images of the lung.

For robust MR-CT registration, Reaungamornrat et al. (2016) assumed that vis-
coelastic mappings (i.e., a combination of elastic and fluid deformations) as approx-
imated by Demons, could improve the ability to resolve large deformation within
noisy data. They propose a symmetric diffeomorphic deformable registration al-
gorithm incorporating the modality-independent neighborhood descriptor (MIND)
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and a robust Huber metric. The method accurately registered realistically noisy
data achieving 1.4 mm TRE outperforming other state-of-the-art methods. The
method is not tested with large deformation (rigid TRE of the data is 4.3 mm) nor
with common noisy intra-operative modality.

II.2.2 Registration with transformations derived from
interpolation theory

Thin-Plate Splines (TPS) is the first transformation considered in this class. It
uses interpolation theory, so the deformation of the whole image is interpolated
from a set of image points. These control points can be irregularly placed and
their corresponding displacements are known. Lange et al. (2009) combined a TPS
registration using manually selected landmarks with a fast non-parametric diffusion
registration by formulating a constrained discrete joint optimization. It uses a nor-
malized gradient field to measure the power Doppler US and CT images similarity.

The other transformation considered in this class is the Free-form deformation
(FFD) coupled with cubic B-splines. This transformation model is simple, can
efficiently provide smooth local deformations using only few degrees of freedom. It is
a deformation model commonly used in medical image registration. The registration
proposed by Rueckert et al. (1999) searched for the set of control point displacements
that minimized the cost function, which includes a Normalized mutual information
intensity similarity measure and a TPS bending energy.

The rest of methods described in this section use the FFDs as a transformation.
The main difference in between these methods is the similarity metric used which is
highlighted in their description. While Mutual information (MI) and its normalized
variants are prevalent similarity metrics for multi-modality imaging (Andronache
et al., 2008), a disadvantage of this metrics is that they sample the entire image to
establish the statistical relationship. This significantly limits their application when
this relationship changes spatially, e.g., in the common intra-operative presence of
intensity inhomogeneity due to scatter or shading artifacts.

To reduce this spatial variation sensitivity, the metrics can be evaluated locally
in a large enough spatial neighborhood that contains enough samples for reliable
MI estimations (Klein et al., 2008). However, the spatial intensity inhomogeneity in
intra-operative images is very large and this inhomogeneity makes the application
of local MI (LMI) challenging due to its requirement for relatively large spatial
neighborhoods. Furthermore, the computation time of LMI linearly increases with
the number of local MI estimates, making it significantly slower than MI.

Another common statistical similarity metric is the correlation-ratio (CR), which
uses a functional relationship between the modalities (Roche et al., 1998). To ad-
dress the spatial intensity inhomogeneity in the US images, Rivaz et al. (2015)



18 Chapter II. Multi-modality deformable registration

estimated a highly local and reliable variant of the CR similarity metric on small
patches. The orientation of this metric gradient is used to suppress false correspon-
dences. Finally by using an efficient optimization method, the MR image is non
rigidly registered to 3D US of the brain in only 30 seconds.

Wein et al. (2008) introduced the Linear Correlation of Linear Combination
(LC2) similarity measure, which assesses the correlation of combining signals ex-
tracted from CT with ultrasound, without knowing the influence of each signal.
This metric was only used to rigidly register CT images based on the modalities
characteristics. Then, Fuerst et al. (2014) adapted the LC2 similarity measure to
non-rigidly register freehand 2D US with MRI of the brain, where the LC2 correlates
the US image with MRI intensity and spatial gradient magnitude.

In general, there is a large number of potential deformations that can generate
images that resemble to each other, however none of these nonrigid registration
algorithms can guarantee that their result is the correct one. Moreover, when intra-
operative conditions are constrained with a limited field of view, bizarre deforma-
tions usually occur outside of the support volume of the transformations derived
from diffusion models or interpolation. Because these deformation models are very
poor and unstable when extrapolating missing data, despite being fairly good at
interpolation (Peters et Cleary, 2008). Other issue of these registration methods
is their limited capture range. Due to their nonlinear and non-convex objective
functions, the optimization requires a good initialization to avoid local minima.

Deformable transformation requires a large number of degrees of freedom, this
implies that the registration is considerably under-determined. This problem is
worsened when registering low resolution and low signal-to-noise ratio images, like
the ones we consider. When using a rigid or affine transformation, this problem can
be directly solved with RANSAC, but accurate and robust registration is difficult
when more complex transformations are used and it requires other constraints.
Incorporation of plausible deformations via a motion model, statistical shape atlas
or biomechanical model are likely to provide robust and accurate solutions (Peters
et Cleary, 2008). Our approach uses the latter.

II.2.3 Registration with transformation derived from
biomechanical models

Some deformations that occur during interventions are large and complex. The pre-
vious transformation models do not consider physical consistency with organ prop-
erties, in particular heterogeneities and anisotropy of the tissues. Models without
tissue characteristics tend to diverge from the exact solution. They only guarantee
the correct solution if the parameters are adjusted to the specific case, which is
difficult to do for complex deformations and in a patient-specific manner.
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Moreover, intra-operative noisy and partial images require additional informa-
tion to constrain the large number of potential registration solutions and register
the images accordingly to physically valid deformations. A promising solution is to
link registration with a biomechanical model from available pre-operative data prior
knowledge (Peters et Cleary, 2008). Biomechanical models do not always guarantee
correct solution, but they facilitate parameter settings by relying on real (measured
or from literature to appropriate case) values.

The finite element method is appropriate to simulate continuum mechanics
throughout the body and incorporate prior knowledge into the registration. The
equilibrium conditions of the stress and strain within the body under the influence
of external loads can be described with a set of partial differential equations (PDEs)
using the elasticity theory. These equations can not be solved analytically for an
arbitrarily shaped body, thus a mesh of simple topology elements connected at node
points is generated from this body. Given this mesh, the finite element method can
solve approximately the continuum mechanics PDEs for the finite number of nodes
(Peters et Cleary, 2008).

Force and displacement are the boundary conditions that can be define on
the model nodes. Besides gravity, forces are usually unknown however the intra-
operative images have very useful information to determine the displacements. Typ-
ically, the completeness of the displacement boundary conditions determines the
accuracy of a biomechanically-based registration, rather than factors such as the
material properties (Peters et Cleary, 2008).

After the mesh generation and boundary conditions definition, it is necessary to
determine the stress and strain relationship for the specific tissue using an adequate
constitutive law. Hyperelastic models correctly describe the non-linear behavior of
biological soft tissues and are able to model properly large displacements, although
they usually require significant computation time. Some recent hyperelastic models
have near real time computation time, however its parameters characterization is
not trivial (Marchesseau et al., 2017b).

Applications that require real-time computations often assume a linear elastic
behavior (Cotin et al., 2000). As an alternative for linear elastic materials which
can not properly model large displacements, corotational elastic models have been
proposed Courtecuisse et al. (2010), in which linear elastic stiffness matrices are
rotated for each element, to allow for large displacements. However, the stress-
strain relationship remains linear.

Consequently, the following methods used biomechanical models to exploit prior
knowledge. Speidel et al. (2011) registered a pre-operative biomechanical models of
the liver into intra-operative stereo endoscopic images. A linear and a Neo-hookean
elastic model were considered, and the accuracy of registration was assessed on a
phantom. The results are slightly better with the second model, but the model is
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not suitable for real time simulation.
Oktay et al. (2013) coupled a linear co-rotational elasticity biomechanical insuf-

flation model with the local cross correlation intensity similarity measure to register
preoperative and simulated intra-operative (random noise and down-sampled) CT
images. However, the insufflation models only a specific deformation, and the sim-
ilarity metric does not handle common intra-operative modalities image intensity
variations and artifacts.

In an alternative approach to put aside the intensity variation of CT and CBCT
images, Bano et al. (2013) segmented the intra-operative anterior surface of the liver
and manually obtained some corresponding landmarks. The pre and intra-operative
surfaces were matched using the surface geodesic distance to the landmarks. Then,
this matching drove the registration with a biomechanical model of the liver.

Peterlík et al. (2018) presented a surface matching method that incorporates a
linear co-rotational biomechanical model into the iterative closest point registration.
This allowed to register a detailed 3D model into a largely deformed surface. Both
the preoperative model and the intra-operative surface were obtained using a semi-
automatic approach. For the two previous methods, the need for user interaction
restricts their intra-operative deployment, and in the presence of partial surface,
obtained from intra-operative modalities, the displacement constraints are uncertain
and inner deformations probably inaccurate.

Despite that anisotropy is important to accurately model brain or muscle tissue,
for hepatic healthy tissue the results about the relevance of anisotropy in the nonlin-
ear models diverge (Marchesseau et al., 2017b). The material properties of vessels
modeled by non-linear constitutive law does not allow for real-time performance.
To go around this limitation, a real-time co-rotational linear composite model of
vascularized (Peterlík et al., 2012a) can be used for intra-operative registration.

Biomechanical models have the potential to lead to accurate non-rigid registra-
tion while producing a coherent visual deformations. Their limitations reside in
their computing cost, although efficient and accurate methods have been proposed.
In addition, a prior knowledge of the object physical properties is necessary but
generally available from preoperative data.

II.3 Vessel-based registration

In many imaging modalities, vascular structures are or can be made visible but
the tissue intervascular space is usually homogeneous and poorly differentiated.
Given that vessels are natural landmarks well distributed throughout several organs,
their properties and characteristics are essential for accurate vascular registration.
However, the relative motion or deformation makes the vascular matching locally
ambiguous, because neighboring vessels usually have similar shape and intensity.
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The registration accuracy is also deteriorated in the presence of excessive noise or
when the multi-modality image intensity differs (which occurs with intra-operative
modalities) because detected features or similarity metrics become less reliable.

There are many vessel registration algorithms for different applications and
modalities that have been developed within the last decades using various cost
functions, vascular models and geometric transformations. There is no proof that
an algorithm performs well under completely different circumstances. Certain ap-
plications require additional properties of the transformation, such as a periodic
motion for the cardiac interventions.

Matl et al. (2017) has reviewed several vessel registration algorithms. The fol-
lowing sections focus on the approaches that non-rigidly register 3D images, directly
using vessels information. First, the algorithms that incorporate vessel information
into an intensity-based. Then, the algorithms that extract and use the vessels as in-
trinsic features for registration are presented, including graph matching approaches
and hybrid registration.

II.3.1 Intensity-based registration of vascular images

Intensity-based approaches use all the information in the images, therefore it is rea-
sonable to expect that they are more accurate than feature-based methods. How-
ever, intensity-based methods are limited when registering homogeneous and am-
biguous intensities of the predominant inter-vascular tissue, because these methods
work better when there are distinctive image intensities for several tissue types.
Moreover, intensity-based registration is computationally more expensive.

Suh et al. (2010) encoded a weighting factor to modify the MI similarity measure
to give preference to vascular structures. This weighting is defined with a vessel
detection algorithm that generates a vesselness image (probability of having a vessel
at any given voxel) from MRI. Even if the vessels are considered, they are only used
locally to evaluate the matching criteria. This local based criteria is not enough
to correctly handle the case of ambiguous matching of contiguous vessels. This
ambiguity is common when matching dense, noisy or large deformation vasculatures.

Robben et al. (2012) assumed that deformed vessels can bend but will hardly
change their length. Thus, they integrated the geodesic distance from every vessel
voxel to a manually selected landmark as an extra feature. Then, they used MI and
SSD similarity metrics for the intensity and distance features, respectively. This
avoids local optimum and speeds up the optimization. However, the algorithm re-
quires constant and accurate vessels length and it can not handle topology changes.
As commonly done, the previous two intensity-based registration methods use first
a rigid initialization and then a FFD B-splines deformable registration.
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II.3.2 Vessels as features for registration

Intensity-based registration cannot deal with very different image appearances and
needs initialization. Instead, feature-based methods can handle these limitations
but require the identification of landmarks and correspondences between the pre-
and intra-operative images. Landmark extraction is not much studied in medical
images, given that they are not as rich in details as natural images.

Still, being present in many anatomical structures, vessels can be used as fea-
tures for multi-modal image registration. The sparseness, multi-scale geometric
properties, and network configuration of the vessels may make vessel-based registra-
tion methods faster and more broadly applicable than intensity-based registration
methods. Vessels are often well distributed throughout an organ and thereby cap-
ture deformations within that organ unlike surfaces and external landmarks that
are poorly correlated with internal deformations. Thus, these intrinsic and natural
features are a solution compatible with clinical constraints.

Yet, vessels cannot all be segmented or visible in the images, and therefore
are less dense in certain areas. For this reason, it is still required an accurate
interpolation method that does not lose much accuracy when the distance from
landmarks increases.

When image modalities or acquisition parameters change, the number, portions,
lengths, and widths of vessels visible in the images differ and hence the vascular
network will appear to change. Even more significant, vessels undergo non-rigid
deformations. Moreover, feature-based approaches have to cope with segmentation
errors.

The following feature-based methods can be grouped in two classes: Centerline-
based methods which only use the centerline points for registration but not the
centerline connectivity and graph matching methods that exploit the vessel topol-
ogy during the registration. Finally, hybrid vessel-based registration methods are
presented.

Centerline-based methods

While global rigid registration is inaccurate to handle deformations during liver
interventions, Song et al. (2015) assumed that local rigid and global deformable
transformations produce a comparable local registration error. Thus, they seg-
mented intra-operative b-mode US and extracted centerline points from a localized
part of the liver. The intra-operative vessel points were locally registered with pre-
operative CT vessels using manually selected landmarks and ICP alignment. This
approach is not useful for procedures that require a global registration and proba-
bly there are situations with large local deformation where rigid registration is not
accurate enough.



Vessels graph matching overview 23

The following methods attempt to handle deformation. Lange et al. (2003) and
Reinertsen et al. (2007) segmented vessel centerlines in preoperative (MRA or CTA)
and intra-operative (Doppler 3DUS) images. They both required an initialization
and then they used two modified ICP matching algorithms one for rigid and another
for deformable registration. While Lange et al. (2003) used B-splines transformation
and user-defined distance threshold to reject outliers, Reinertsen et al. (2007) used
a thin-plate spline transformation and least trimmed squares robust estimation to
reject outlier points. In both cases, Doppler ultrasound suffers from low acquisition
rates and artifacts that can disrupt the centerlines extraction algorithm. More-
over, the deformation was small and the segmented vessels density did not cause
significant matching ambiguity, making it easier to discard outliers.

Morin et al. (2017) developed an approach to compensate for craniotomy-
induced brain-shift. First, a biomechanical model including boundary conditions
is constructed from pre-operative MRI. Then, the vessels and the probe’s footprint
are extracted from intra-operative US. Finally, relying on a linear constitutive law,
a constrained-based co-rotational simulation is used to register both pre and intra-
operative vessels and the US probe footprint with the model’s brain surface. Since
the vessels are spread out over the volume of interest, the mechanical model ac-
curately interpolates intra-vascular tissue deformation. However, this automatic
method is limited to deformations smaller than 8 mm and requires initialization.

Vessels graph matching overview

The previous vessel-based algorithms directly match the centerline points and avoid
dealing with scarce and erroneous topological information. A popular way to intro-
duce structural constraints in feature registration is graph matching (GM). Graph-
based methods rely on the topological relationship determined by branching (bi-
furcation) points in the anatomical tree structure. Therefore, robust detection of
branching points is critical for the registration performance.

For mono-modal registration of high quality images, GM algorithms based on
vascular or airway structures have been developed, for example Tschirren et al.
(2005) and Charnoz et al. (2005). However, the topology and shape of pre and
intra-operative vascular graphs are very different due to deformation, image qual-
ity and feature extraction. This makes GM challenging and only few methods (for
example Moriconi et al. (2018) and Serradell et al. (2015)) are able to match de-
formed and topologically diverse graphs. Section IV.1 presents brief descriptions
and limitations of relevant GM approaches (Leordeanu et Hebert, 2005; Zhou et
De la Torre, 2015; Torresani et al., 2008; Pinheiro et al., 2017) and the mentioned
vascular GM methods.
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Hybrid vessel-based registration methods

The following hybrid methods try to exploit the multi-scale geometric properties
and network configuration of the vessels with a model-image registration approach.
First, Aylward et al. (2003) extracted, from the source image only, a tubular model
of the vasculature using a ridge traversal technique. Then, assuming that blood
vessels have high intensity, the similarity metric is the sum of the target image in-
tensities that are inside the transformed tubular model. Thus, this can be applied
across several imaging modalities. Finally, the parameters of the rigid transforma-
tion are optimized to maximize this metric.

Using the previous tubular model, similarity metric and rigid alignment as an
initialization, Jomier et Aylward (2004) combined linear transformations in a hi-
erarchical approach obtaining a piece-wise rigid transformation for each branch in
the vessel. The alignment was then further refined with a deformable registra-
tion method. However, it seems unlikely that this method handles intra-operative
alignment ambiguities produced by large network changes or large deformations.

II.4 Conclusion

The multi-modality registration techniques presented have shown interesting results
however they are not applicable in our context as they can not deal with very
noisy and incomplete images, can not recover large deformations or require reliable
initialization.

Deformable image registration for multi-modality intra-operative large defor-
mation is challenging. In the case of images with vessels, a promising deformable
registration approach is to use these vascular features together with a pre-operative
biomechanical model. Given the specific requirements of our intra-operative regis-
tration we decided to use GM methods. Thus, Chapter III highlights the properties
and characteristics of the extracted graphs and Section IV.1 presents a review GM
methods.
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Vessels segmentation and

representation
Graph structures accurately represent vessels in multiple image modalities. There-
fore, the matching methods developed in Chapter V use graphs as features to achieve
multi-modal registration.

Graphs are automatically extracted from CTA, CBCT and 3DUS image modal-
ities. The extraction is described in two sections. First, the Section III.1 describes
the model-based vessel segmentation (MBVS) (Smistad et al., 2014) and the specific
processing pipelines used for each image modality. Then, the Section III.2 describes
how the centerline and graphs are generated from the vessel segmented images
(Plantefève et al., 2017). The description of these methods helps to understand the
characteristics of the graphs obtained. These characteristics are important because
they directly affect the computation time and accuracy of matching algorithms.

The Section III.3 shows the generated graphs from real data. It presents the
possible false detection, incompleteness, disconnectedness, and inaccurate charac-
teristics of intra-operative graphs. The extraction methods presented do not require
any user interaction for processing the intra-operative data. However, the Section
III.3 assesses how well the pipelines comply with intra-operative timing constraints,
especially the shortcomings of US segmentation. Finally, the Section III.4 sum-
marizes the obtained graph characteristics that the matching algorithms have to
handle.

III.1 Vessels segmentation

Segmentation of vessels from noisy intra-operative images belongs to an active area
of research. State of art machine learning segmentation methods usually need large
training datasets (Moccia et al., 2018). This is out of this thesis scope, thus other
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competitive and recent segmentation approaches were used. These fully automatic
methods allow us to test our matching algorithms in realistic situations.

The Section III.1.1 describes the model-based vessels segmentation (MBVS)
used (Smistad et al., 2014). This method is the main component of the modality
specific pipelines implemented for the segmentation of vessels. The Section III.1.2
describes the specific pipeline used for segmenting the CTA and the CBCT images.
The Section III.1.3 describes the 3DUS vessels segmentation pipeline, which includes
the necessary speckle filter.

III.1.1 Model-based vessels segmentation (MBVS)

All the intra-operative and pre-operative segmentation pipelines use the real-time
model-based segmentation (Smistad et al., 2014). This method efficiently computes
the Gradient Vector Flow (GVF), finds an estimate cross-sectional plane of the
vessel, fits a circle on the vessel contour and finds the centerline with a ridge traversal
method. The following description of the method’s parts highlights its modality
dependent parameters.

• Preprocessing. First a lower and upper thresholds (Imin , Imax) remove un-
necessary gradient information. This is especially useful for CTA and CBCT,
which have a large range of intensity values. Then image noise is blurred with
Gaussian smoothing with the standard deviation (σ).

Afterwards, the gradient vector field is created and normalized using a thresh-
old (Vmax) for contrast invariance. The level of contrast and noise in the image
determines the required value of Vmax . For example, CTA image has higher
contrast to noise ratio, so a higher Vmax is used, while the lower CBCT con-
trast to noise ratio requires a lower Vmax.

• Gradient vector flow. This tube detection method, as many others, uses the
Hessian matrix. This matrix needs gradient information present in the center
of the tube to detect it. However, thick tubes don’t have gradient information
in the center. The Gradient Vector Flow (GVF) propagates the gradient
information to the center while preserving features. The GVF creates scale-
invariance of tube detection filters and make the segmentation less sensitive
to noise and vessels contrast and size (Bauer et Bischof, 2008).

• Tube detection filter (TDF)

This part detects tubular structures and calculates a probability that a specific
voxel is inside a tubular structure. First, the eigenvectors of the Hessian define
the cross-sectional plane of the tubular structure. Then, the TDF fits a circle
and defines how well it fits the gradient information (Krissian et al., 2000).
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The circle fitting starts with the minimum radius (rmin) and is increased by
a step (rstep) until it reaches the maximum (rmax).

The GVF eliminates the gradient information of some small tubes with low
contrast. Thus, the TDF runs twice, once on the initial vector field to identify
the small low-contrast vessels (using a small radius rmin) and once with the
GVF vector field to identify the vessels smaller than the maximum radius
(rmax). The tube detection of large and small structures uses two amounts of
Gaussian blur (σsmall and σlarge).

• Centerline extraction The method does a ridge traversal in the TDF results
to extract the centerline (Bauer et Bischof, 2008). Then, from graph compo-
nent labeling, unconnected centerlines that are shorter than the threshold
(Lmin) are filtered.

• Segmentation Smistad et al. (2014) proposed two segmentation approaches.
The first one uses the centerlines as seeds for a parallel region growing proce-
dure. The second segmentation targets noisy Doppler 3DUS. This approach
defines a sphere in each point of the centerline using the radii found by the
circle fitting. Then, all voxels inside the spheres are segmented as vessels.

This method already results in vessel segmentation. However, the intra-
operative data segmentation is often noisy and incomplete. To improve these results,
the following sections present implemented modality specific processing pipelines.
The centerlines detected by the MBVS method are noisy. Thus, the graphs to
be matched are generated (as detailed in Section III.2) from the segmentations
obtained with modality specific pipelines.

III.1.2 CTA and CBCT segmentation

The pipeline, shown in Fig III.1, segments the vascular tree in both the pre-operative
CTA and the intra-operative CBCT images. The following description of each
pipeline’s component summarizes the modality dependent processing.

• MBVS high and MBVS low. Using different vessel detection parameters, the
MBVS method (Smistad et al., 2014) segments twice the input image. The
segmentation using the MBVS high parameters results in a more complete but
noisy segmented vessels image Imhigh. While, using the MBVS low results in
a less noisy but more incomplete segmented image Imlow. The first and second
part of Table III.1 list the CTA and CBCT parameters used, respectively.

• Liver labels. The Fig. III.2 shows the vessels (in red) and tissue (in green) la-
bels that form the liver labels image. The low vessel sensitivity segmentation
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Table III.1: MBVS segmentation parameters for each image modality

Parameter Imin Imax Vmax σsmall σlarge rmin rmax Lmin

CTAlow 150 180 0.01 0.3 1.0 2.0 15 20
CTAhigh 120 200 0.01 0.4 1.0 1.0 15 10

CBCTlow 100 300 0.01 0.4 1.0 1.5 15 10
CBCThigh 70 340 0.01 0.5 1.0 1.0 15 20

CBCTMBV S 90 200 0.4 0.2 1.0 1.0 15 20

USL 900 1450 0.06 2.0 5.0 5.0 20 5.0
USM 900 1450 0.03 4.0 6.0 5.0 15 1.0
USS 900 1450 0.08 0.5 2.0 1.0 7.5 5.0

CTA and CBCT segmentation pipeline

Figure III.1: CTA and CBCT segmentation pipeline

image Imlow is directly assigned as the vessel label. While, the tissue label
is defined as Imtissue = ¬(Imlow ‖ Imhigh ⊕ k3) 	 k6 where, kn is a spher-
ical structuring element of n voxels used in the erosion and dilation binary
morphological operations.

• Random forest and Active contours. ItkSnap uses the liver labels image to
train, automatically, a random forest classifier. It uses the coordinates for
training and 500 trees with a maximum depth of 100. Then, the posterior
probability classification result is used to compute the speed image that drives
the vessel segmentation based on the active contours (Yushkevich et al., 2016).

• Connected components. The contrast injection acquisition allows the visual-
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Labels image for random forest and active contours segmentation

Figure III.2: Liver labels image has the vessels in red and the tissue in green. It is the
input of the Random forest and Active contours component.

ization of the vessels in both the CTA and CBCT images. In the CBCT,
due to its low contrast to noise ratio, only the PV is clearly visible. Thus,
the biggest connected component is the PV. With CTA, the PV and HV are
usually both visible. Sometimes, both veins are connected at the end of some
thinner vessels. When this happens the PV and HV are manually discon-
nected. Finally, the two biggest connected components are the hepatic and
portal veins.

III.1.3 US segmentation

There are several US modes that provide visualization of vessels. Power Doppler
US mode is straightforward to segment, but it usually misses several vessels due
to its lower spatial resolution, low sensitivity to small flow velocities and high sus-
ceptibility to motion artifacts (Lindseth et al., 2013; Schneider et al., 2011). More
complete vessels are visible in B-mode 3DUS, thus this mode is used. However, it is
more complicated to segment because it has low contrast to noise ratio and speckle
noise.
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Either with B-mode or Doppler, the segmentation methods proposed by Smistad
et al. (2014) did not result in enough detected vessels for automatic graph matching.
The pipeline shown in Fig. III.3 segments B-mode 3DUS filters some of the specular
noise and allows to obtain better vessels segmentation. The following description
of each pipeline’s component summarizes the US segmentation.

• Mask Generation. The background of the image is segmented using region
growing, and the inverse is considered as the US mask. Also, the US image
intensity is scaled 100 times to fit better the GPU numerical type (int16)
range and avoid rounding errors in the GPU processing.

• Speckle anisotropic filter. The 3D US data is processed using the anisotropic
diffusion filter with memory based on speckle statistics (ADMSS) (Ramos-
Llorden et al., 2015). This filters the speckle and motion artifacts inside the
vessels but preserves it in the liver parenchyma.

• MBVS L, M and S. The speckled filtered US image is segmented three times
using the MBVS method (Smistad et al., 2014) with different vessel detection
parameters. The Table III.1 lists all these parameters. The MBVS L com-
ponent segments thick (radii from 5 to 20 mm) and long (larger than 5 mm)
vessels with high contrast, this results mostly in an incomplete, unconnected
but correct segmentation image ImL. The MBVS M component segments
medium thickness vessels (radii from 5 to 15 mm ) with less contrast, however
it uses higher smoothing to avoid some noise. This component results in the
image ImM . Some of these medium vessels are correct while few others are
due to noise. Finally, MBVS S component segments thin (radii from 1 to
7.5 mm) and long (larger than 5 mm) vessels with high contrast. The re-
sults is the image ImS with few disconnected small vessels correctly detected
and several false detection due to the low smoothing (σ) of noise. The fol-
lowing processing joins these images, avoiding the noisy segmentations while
maintaining the correct ones.

• Largest CCs. The connected components (CCs) of ImL are computed. For
each CC its length (the longest edge of its oriented bounding box) and volume
are computed. The CCs that are longer than 2 cm and that have a volume
larger than 8.0 cm3 are kept in the image ImLcc. These are frequently dis-
connected parts of the HV and PV. However, some of these components are
segmented due to noise.

• Hole filling. The ImLcc and ImM are joined (ImLcc ‖ ImM ). This joined
segmentation has several holes, due to the large image intensity variation
within the vessels. Thus, a hole filling process (Lehmann, 2007) is applied
and results in ImHF .
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Pipeline for 3DUS vessels segmentation

Figure III.3: Pipeline for 3DUS vessels segmentation

• HV & PV. Again, the CCs of ImHF are computed. The noisy connected parts
are usually flat and round so these parts are filtered out (Lehmann, 2007).
The second longest CC is the PV and is joined with the ImS and results in
the final PV image (ImPV ). The other (all except the second longest) CCs
are usually disconnected parts of the HV and are also joined with the ImS

resulting in the ImHV

III.2 Graph generation

From the vessels segmentation, each vein (maintaining the portal and hepatic dif-
ferentiation) is converted to a graph G = ( ~X, ~E). Where ~X is the set of nodes
(tree bifurcations) and ~E is the set of edges. The disconnected parts of the seg-
mentations, especially in the 3DUS, can improve the registration. However, the
generation and matching of disconnected graphs require several modifications in
the complete pipeline. Currently, the graph is extracted only from the biggest
connected component of each vessel.

The graph is obtained from a centerline extraction method (Plantefève et al.,
2017), which is an extension to the method presented by Verscheure et al. (2013).
The method uses the shortest distance from the boundary to each segmented voxel
(DFB) and the Dijkstra minimum cost spanning tree to generate the graph. At
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the generated graph points (p), the DFB(p) is kept as an attribute and used as the
vessel radius.

The graph obtained is actually a rooted tree. Thus, in both the pre-operative
and intra-operative image the root is determined automatically. First, the root is
the segmented voxel that is closest to the image origin and it is used to generate
a first tree. From this tree, the thickest centerline point is considered as the new
root, and the final tree is generated from here.

An important parameter of the method is the branch minimum length factor
(LTH). This parameter rejects from the graph the branches starting at p that
have a length smaller than LTH ×DFB(p). This allows extracting short branches
from thin vessels, while rejecting false short branches that are due to noise in thick
vessels. The branch minimum length factors used are LTH = 1.5 for the CTA and
CBCT and LTH = 2.0 for the US . Finally, each branch of the trees is smoothed
and sampled using a Bezier function.

III.3 Segmentation and graph extraction results

Porcine pre and intra-operative images were acquired during two experimental ses-
sions, in the first session (PA) one CTA and one CBCT images were acquired, while
in the second session (PB) there were one CTA, two 3DUS and one CBCT. The
CTA and CBCT images were acquired using contrast agent injection. The charac-
teristics of each of these images are summarized in Table III.2 The vessels of these
porcine images (CT, CBCT and 3DUS) were segmented using the modality specific
pipelines previously presented and the parameters listed in Table III.1. Then, from
these segmentations graphs were extracted. These results are presented for two
images of each modality. Then, a summary of important properties of the pre and
intra-operative graphs to be matched are compared.

III.3.1 CTA

Most of the portal and hepatic veins are visible in each pre-operative CTA im-
age. The obtained segmentations and graphs are complete, accurate, and almost
noiseless. The Fig. III.4 and Fig. III.5 show the results of sessions PA and PB,
respectively.

III.3.2 CBCT

In each intra-operative CBCT image, most of the PV is visible. From the CBCT
image of session PA, two segmentations were done using only the MBVS method
(Smistad et al., 2014). The first segmentation(MBV S0.4) used the CBCTMBV S

parameters from Table. III.1, while the second (MBV S0.3) used almost the same
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Session PA porcine CTA segmentation

Figure III.4: The automatic vessels segmentation and graph extraction from CTA of
session PA. Only the HV segmentation is shown and not the graph, given that the corre-
sponding intra-operative graph is not visible in the CBCT image. The PV graph (in blue)
has 60 bifurcations (green cubes).

parameters except for Vmax = 0.3. A third segmentation (CBCTpipe) was done
using the complete pipeline presented in Section III.1.2. The Fig. III.6 shows these
segmentations and their respective graphs.

The cross-sectional planes of Fig. III.7 show that the CBCTpipe segmentation
is more complete and has less noise. While, the MBVS method alone results in less
complete and noisier graphs. Even with the same image and using similar segmen-
tation parameters, the corresponding centerlines and bifurcations are not detected
in the same position. This affects the path length along the edges between two
bifurcations (geodesic distance), specially where there are thick vessels, as shown in
the blue ellipse of Fig. III.7.a.

A second CBCT image, obtained in session PB, is much noisier and has less
contrast than the previous one. As shown in Fig. III.8, the segmentation has
mostly thick principal vessels and some medium branches are missing. From the
smaller branches segmented, it is likely that some of them are due to noise, as shown
in Fig. III.9.

The CBCT graphs and its obtained features are not highly discriminant for
matching. Moreover, due to the noisy and missing branches, accurate graph match-
ing is challenging.
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Session PB porcine CTA segmentation

Figure III.5: Automatic vessels segmentation and graph extraction from CTA of session
PB. The HV (in magenta) and the PV (in blue) graphs have 118 (red cubes) and 66 (green
cubes) bifurcations, respectively.

III.3.3 3DUS

The 3DUS images were acquired digitally using standard imaging preset for the
abdomen. The PV and HV are partially visible in both of the acquired 3DUS. As
often done, voxel scale is assumed isotropic (Chen et al., 2015). It was obtained by
manually selecting 5 pairs of landmarks in the US and the corresponding ones in
pre-operative CT. The selected landmarks are reliable and unambiguous features
from thick parts of the PV. Moreover, the distance between the landmarks pair
is smaller than 1.8 cm and is considered constant between both image modalities.
From the average ratio of the Euclidean distances between landmarks, the resulting
US scale is 0.28 mm/voxel.

In a real scenario, the scaling should be obtained with ultrasound calibration.
The anisotropic calibration (Chen et al., 2015) is a good option. It considers the
physical separation of transducer elements and the speed of sound in the medium.
However, even with this anisotropic calibration, the US scale distortion remains due
to the variable speed of sound in the scanned medium. Specially, further from the
transducer where the distortion accumulates.

Besides the US scale distortion, image noise and artifacts are an important issue
considered. Without speckle filtering, the segmentation is very noisy and incom-
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Comparison of CBCT segmentations and graphs extraction

(a) MBV S0.4

(b) MBV S0.3

(c) CBCTpipe

Figure III.6: From the CBCT acquired in session PA, the obtained segmentations
MBV S0.4, MBV S0.3 and CBCTpipe have 36, 38 and 47 bifurcations plotted with cubes,
respectively.

plete. The ADMSS filter (Ramos-Llorden et al., 2015) improves vessels segmenta-
tion and allows extracting graphs for matching; however, its processing time was
15.4 hours. As an alternative the detail preserving anisotropic diffusion (DPAD)
filtering (Aja-Fernandez et Alberola-Lopez, 2006) was tested, however the segmen-
tation and graph obtained is worse than with ADMSS. This is a critical part of
the segmentation US pipeline. The ADMSS filtering is far from complying with
intra-operative timing constraints. This area is out of the thesis scope, and it is
left as an open and important issue. It is likely that novel state-of-the-art methods,
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Extracted graphs difference from the CBCT acquired in session PA

Figure III.7: Inside the blue ellipse, the green cube bifurcation is detected far from the
corresponding bifurcation in the other segmentations. This is an important variation of
the centerlines position and the geodesic distances with respect to this bifurcation. The
cross-sectional plane in the left shows that the MBV S0.3 graph (in green) detects some
small vessel branches (inside the red rectangle) that are probably due to noise, while the
CBCTpipe graph (in magenta) does not. The cross-sectional plane in the right shows that
the CBCTpipe graph correctly detects the vessels inside the blue rectangle, while the other
MBVS segmentations do not (better seen in the digital document).

similar to the segmentation presented by Smistad et Løvstakken (2016), allow to
segment B-mode US images faster. Thus, it is assumed that it is possible to get
similar US graphs within intra-operative timing constraints.

The Fig. III.10 shows the PV and HV obtained with the US segmentation
pipeline presented in Section III.1.3. The HV and the PV graphs have 73 and 38
bifurcations, respectively. However, several of these bifurcations are due to noise.
The Fig. III.10.a shows the segmentation obtained with the MBVS S component in
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Partial CBCT extracted graph

Figure III.8: The CBCT image, from session PB, has low contrast and is noisy. The
segmented PV has mostly thick principal vessels. On the ellipse, a large disconnected
branch is missing from the segmentation.

a brighter color. This part of the segmentation has mostly thin branches, and it is
likely that several of them are due to noise. The cross-sectional plane in Fig.III.10.a
and the red rectangle in Fig. III.10.b show an example of likely noisy segmentation.
There are still enough correct branches detected that allow matching; however, the
noise makes it very challenging.

The Fig. III.10.c shows a segmentation error, where a branch is disconnected
from the principal HV (green circle) and it is connected by some noisy segmentation
(red circle). This creates a large change in graph topology and a large variation in
the geodesic distances between bifurcations in this branch and the rest.

A second US image was obtained in experiment session PB; it has less contrast
than the previous. The segmentation detects less correct small branches and more
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Noise in CBCT extracted graph

Figure III.9: The CBCT from session PB where some small branches are probably due
to noise. This is the case of the cross-sectional plane with three bifurcations (pink squares)
really close to each other.

noise, as shown in Fig. III.11. It also results in a disconnected segmentation of the
HV. The disconnected branches imply a big challenge during matching because the
geodesic distances to the other disconnected parts are unknown. This issue can be
attenuated by the matching method proposed in Chapter V. However, the current
graph extraction and matching implementations only handle connected graphs.

III.3.4 Extracted graphs properties for matching

Four different porcine liver graph datasets are used to evaluate the matching meth-
ods. Each of the first two datasets, PA and PB which were respectively acquired
from the corresponding sessions, has one CTA image acquired pre-operatively in
supine position and one CBCT image acquired after pneumoperitoneum on flank
position. In both modalities the portal vein is visible, however, the CBCT image
has fewer portal vessel branches visible than the CTA (as shown in Fig. III.12)
and several false branches were segmented due to noise (see figures III.7 and III.9).
Each of the third (PBUP ) and fourth (PBUH) datasets has one graph extracted from
the preoperative CT and other from the intra-operative open surgery 3DUS. The
intra-operative graphs are extracted from the first good quality and complete 3DUS
acquisition shown in Fig. III.10. Where PBUP has the portal vein and PBUH has
the hepatic vein graphs. The intra-operative conditions of all these datasets gen-
erated a large deformation. Table III.2 summarizes some of the graph properties
relevant for matching.
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Table III.2: The vessels characteristics of the porcine images.

Porcine Number veins radii [mm] Vessels intensity [HU] Liver intensity [HU] Voxel Image
dataset of nodes [min, max] µ± σ µ± σ size [mm] size

PA CTPV 60 [1.6, 10.3] 194.2±19.9 135.7±20.9 0.559 344x236x280
CBCTPV 47 [1.2, 8.8] 176.7±39.2 103.8±39.8 0.653 344x236x224

PB CTPV 39 [1.8, 7.5] 189.1±23.4 117.0±25.2 0.770 344x184x256
CBCTPV 36 [1.1, 6.5] 144.9±46.2 113.8±53.8 0.653 344x224x264

PBUP
CTPV 39 [1.8, 7.5] 189.1±23.4 117.0±25.2 0.770 344x184x256
USPV 38 [1.3, 6.4] 1209.9±76.2 1284.8±379.8 h 0.28 560x452x604

PBUH
CTHV 118 [1.8, 7.5] 189.1±23.4 117.0±25.2 0.770 344x184x256
USHV 73 [1.2, 8.8] 1179.7±79.2 1284.8±379.8 h 0.28 560x452x604

Variation in pre and intra-operative graph features and properties

The Fig. III.12 shows the CTA and CBCT segmentations of the PV obtained in
session PA; it also shows their vessels’ radii color-mapped in the graphs. Similarly
for session PB, the Fig. III.13 shows the PV segmentations and graphs obtained
from CTA and US. The corresponding vessels have different radii in each modality.
This is mainly because of the CBCT artifacts and lower signal-to-noise ratio, and
because of US artifacts, distortion, and noise. In session PA, the radii range in the
CTA is [1.6, 10.3] mm and in the CBCT is [1.2,8.8] mm. While in session PB, the
radii range in the CTA is [1.8,7.5] mm and in the US is [1.3, 6.4] mm. Even if the
corresponding vessels radii vary among modalities, it still is a "soft" discriminant
appearance feature for matching.

Compared to pre-operative data, intra-operative extracted graphs commonly
lack correct branches and add noisy ones. For example, the CBCT graph is missing
a few branches on the right side of Fig. III.12. In addition, some small CBCT leaf
branches on the left side are probably due to noise. This issue is even worse in US
data as shows the Fig. III.13. On its left side, the US graph does not have several
branches, which are outside the limited field of view. Moreover, several small US
leaf branches are probably due to noise.

Another important issue is the position variation of corresponding bifurcations,
especially in the principal thick branches. The Fig. III.12 shows an example. Here,
the red arrows point to corresponding bifurcations. In the CTA case, this bifurcation
coincides with the neighbor bifurcation pointed with the green arrow, while in
the CBCT those corresponding bifurcations are 5.8 mm apart. The bifurcations
position variation produces different geodesic distances in between corresponding
bifurcations. For example in Fig. III.12, the geodesic distance in between the
bifurcations pointed by the green arrows is 27.2 mm in the CTA and 21.1 mm in
CBCT. Similarly, in Fig. III.13 the geodesic distance is 18.2 mm in the CTA and
26.1 mm in US. This important graph property has a large variation, and it becomes
less discriminant when matching.
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III.4 Conclusion

The vessels segmentation methods used are perfectible and for the 3DUS it is as-
sumed that novel state-of-the-art methods can obtain similar graphs within intra-
operative time constraints.

The characteristics of the extracted graphs directly affect the matching prob-
lem complexity. The intra-operative graphs, especially the US ones, have several
false vessel branches and thus have false bifurcations. This increases the matching
computation time, due to the combinatory nature of matching. Moreover, the false
vessels can be wrongly matched and decrease the quality of the registration.

At the same time, the matching methods rely on graph similarities to prune
the combinatory search space. The pruning can be done using local appearance
features like the vessels radii. However, the intra-operative graphs radii is only a
"soft" discriminative feature. The geodesic distance between nodes is usually the
main pair-wise similarity extracted from the vessels to reduce the search space.
However, the generated graphs have inaccurate geodesic distances. Thus, these
graphs’ similarities are not enough to reduce the search space.

Despite these undesirable characteristics, enough information is available to reg-
ister the pre and intra-operative graphs. The Chapter V shows how the matching
method overcomes these limitations and correctly registers these graphs within the
timing constraints. The generation and matching of disconnected graphs is a clear
implementation improvement left for future work.
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Porcine 3DUS segmentation from session PB

(a) (b)

(c)

Figure III.10: Automatic segmentation and graph extraction from US. a) The HV and
PV segmentations are shown in magenta and blue, respectively. In brighter color are the
MBVS S segmentations which are prone to errors, as shown by the cross-sectional US plane.
b) The likely noisy segmentation is inside the red rectangle in the complete cross-sectional
plane. c) The extracted HV graph shows again high concentration of bifurcations and likely
noise inside the blue ellipse. It also shows a topological segmentation error, where a branch
is disconnected from the principal HV (inside the green circle) and it is connected by some
noisy segmentation (inside the red circle).
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Disconnected porcine 3DUS segmentation

Figure III.11: The second US acquisition from session PB has less contrast than the
first one. a) shows the 3D reconstruction of segmented vessels, where the HV (in pink) is
disconnected into 3 parts. b) the cross-sectional plane shows where one branch of the HV
is not segmented and disconnected from the principal vessel.
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Porcine CTA and CBCT graphs radii and topology comparison

Figure III.12: CTA and CBCT segmentations of the PV, obtained from the session PA.
Their respective graphs have color-mapped the radii. In each modality, the green arrows
point at corresponding bifurcations, whose geodesic distances differ by 6 mm. The red
arrows also point at corresponding bifurcations but their positions, with respect to the
neighbor bifurcation (pointed by the green arrow), do not coincide.
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Porcine CTA and 3DUS graphs radii and topology comparison

Figure III.13: CTA and 3DUS segmentations of the PV obtained from the session PB.
Their respective graphs have color-mapped the radii. In each modality the green arrows
point at corresponding bifurcations, whose geodesic distances distances differ by 7.9 mm.
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IV
Graph matching

Graph structures are common in medical images and can be obtained from blood
vessels, airway trees, or neuronal fibers. Robustly registering such graphs is thus
a key enabling technology for pre-operative planning, intra-operative navigation,
follow-up or group-wise analysis (Matl et al., 2017). These tubular thin structures
lack distinguishing local appearance features in bifurcations or edges. Thus, feature-
based correspondence techniques are impractical. A more effective approach is to
detect vascular graphs and use the geometrical and topological properties shared
across modalities to match them.

The Section IV.1 is a brief survey of recent graph matching (GM) methods
used in computer vision which rely on distinctive local appearance features. The
Section IV.2 reviews relevant GMmethods that deal with the lack of distinctive local
appearance in vascular images. Still as shown in Section III.3, the intra-operative
acquisition leads to very noisy, deformed, partial and topologically altered vascular
graph and this makes the matching challenging.

From the reviewed methods, the GPR matching presented by Serradell et al.
(2015) is the more appropriate according to the intra-operative conditions consid-
ered and so it is described in Section IV.3. However, this method has two critical
limitations: high matching time and low accuracy with the considered data. To deal
with the first limitation, the Section IV.4 presents an improvement of the method
that reduces its computation time. Finally, experiments with synthetic and real
data compare, evaluate and show the limitations of these GPR matching methods.

IV.1 Graph matching state-of-the-art

In computer vision tasks, GM is crucial to establish correspondences between two
sets of visual features, which are usually detected by descriptors (Lowe, 2004; Bay
et al., 2006). Due to the lack of rich details in vascular images, these descriptors can
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not detect useful features. Instead, the vessels radii or shape at bifurcations are the
local appearance features commonly used. Matching using only similarity between
these local features might lead to undesirable results because they are usually not
discriminative enough.

GM formulates the correspondence problem as solving the matching between
two graphs. A graph G = ( ~X, ~E) is composed by the nodes ( ~X) and edges ( ~E) sets,
where each node (xi ∈ ~X) is a detected feature point in RD and each edge (ej ∈ ~E)
connects two nodes. Besides local appearance of nodes, GM incorporates pairwise
node similarities (e.g., edges length or orientation) which are important features
when matching structural objects. This added pairwise information constraints the
matching problem and allows to find better correspondences. Given that vascular
images lack distinctive nodes local appearance, the euclidean or geodesic distances
between nodes become a crucial pairwise similarity, which are commonly used in
the methods described in Section IV.2.

This section is inspired from Zhou et De la Torre (2015) and similarly formu-
lates the GM problem incorporating pairwise constraints as a quadratic assignment
problem (QAP). Given a source GS = ( ~XS , ~ES) and target GT = ( ~XT , ~ET ) graphs
with NS and NT nodes, respectively, the problem of GM consists in finding the
optimal correspondence (π) between source and target nodes, such that the sum of
the node and edge compatibility is maximized.

π∗ = arg max
π

πTWπ, π ∈ {0, 1}NS×NT

Π = {π | π ∈ {0, 1}NS×NT , π1NT
≤ 1NS

, πT1NS
= 1NT

}
(IV.1)

where π ∈ Π is constrained to be a one-to-one mapping, and the symmetrical
matrix W ∈ RNSNT×NSNT encodes the similarity between nodes along its diagonal
elements, whereas the edges similarity is encoded in the off-diagonal ones. Due
to the combinatorial nature, globally optimizing GM is NP-hard. Approaches to
this large scale problem focus on finding an inexact matching between graphs with
weighted attributes on nodes and edges. Therefore, the main body of research in
GM has focused on devising more accurate algorithms to solve it approximately.
A relaxation of the permutation constraints (Eq. IV.1) is necessary to find an
approximation to the problem. However, this is challenging because the objective
function is in general non-convex and thus existing methods are prone to local
optima.

Leordeanu et Hebert (2005) approximated Eq. IV.1 by relaxing π to be of unit
length. The optimal π can then be efficiently computed as the leading eigen-vector
of W. This spectral matching (SM) method has low complexity due to the re-
laxation during optimization step and is robust to noise and outliers. Cour et al.
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(2007) extended SM and modified the original quadratic score, while incorporat-
ing an affine constraint during optimization, hence finding better approximations.
However, these spectral techniques can only match few tens of nodes.

Another approach useful for interpreting and solving GM problems are proba-
bilistic frameworks. Cho et al. (2010) casted graph matching into a node ranking
and selection problem on an association graph whose nodes represent candidate cor-
respondences between the graphs to match. For this ranking, they introduced an
affinity-preserving and reweighted random walks. The former derives in a ranking
based on its quasi-stationary distribution, while the later obtains the solution by
simulating random walks with re-weighting jumps enforcing matching constraints.
This method is more robust to noise than SM but also slower.

The performance of GM methods in real applications is often limited by the
initial quality of the graphs to match. To resolve this issue, Cho et Lee (2012)
proposed a progressive framework which combines graph matching and probabilistic
graph progression. First, the best matching between current active graphs is found.
Based on this the graph progression reestimates in a Bayesian manner the most
plausible target graphs and their similarity matrix to boost the score in the next
matching. The method handles realistic large graphs, and is robust to appearance
variation as well as outliers.

A novel interpretation of the large pairwise affinity matrix (W) was proposed by
Zhou et De la Torre (2015). Here, the topology of each graph and the edges pairwise
affinity are locally encoded with smaller matrices that are factorized from W. This
avoids the costly computation of W, allowing better optimization strategies and
improving the matching results. In addition, factorization makes it possible to
incorporate geometric transformations constraints (rigid and non-rigid) during the
matching.

The methods reviewed in this section do not need any initial estimates. How-
ever, all these methods use the nodes’ descriptors (Lowe, 2004; Bay et al., 2006)
to define the graphs’ similarity. Given that the considered vascular images lack
distinctive local appearance information, these methods can not be directly used
for our targeted application.

IV.2 Graph matching for vessels registration

To overcome the lack of discriminative local appearance features in the considered
vessel images, the GM methods presented in this section use other vascular im-
age properties or approaches to register vessels. In this thesis, the GM methods
are classified in three categories accordingly to the approach used to reduce the
matching complexity. The first class uses initialization, the second uses the topo-
logical and geometrical graph properties and the last one simultaneously searches
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for correspondences and updates the transformation. The following GM methods
are described and their compatibility with the targeted application is reviewed.

In the first class, the problem complexity is reduced through initialization of
the matching. Motivated by liver applications, Charnoz et al. (2005) iteratively
matched edges and nodes starting from an initial alignment of the tree root. The
set of matching hypotheses generated is updated to keep matches that minimizes
a cost function between pairs of nodes/edges. It requires explicit tree topology
to accurately capture the underlying vasculature and was tested on mono-modal
registration of high quality images. Moreover, the manual initialization is a burden
during intra-operative procedures.

Nam et al. (2011) rigidly initialized the matching using the Viterbi algorithm to
determine the vessels correspondences based on the similarity of edges directions.
Then, an affine ICP-based registration refined the alignment of the vessels and the
liver surface. This pre- and intra-operative (CT and 3D B-mode US) registration
assumed small deformation. Obviously this affine transformation can not guarantee
a correct recovery of non linear deformation, specially if this is large.

The second class of techniques relies on the geometrical and topological structure
of the graphs, which are crucial properties shared across modalities. Graph match-
ing have been formulated by considering compatibilities between edges or nodes,
for example by comparing their Euclidean or geodesic distances (Deng et al., 2010;
Smeets et al., 2010). These methods allow for a non-parametric formulation of the
problem and are valid for slight pulmonary or retinal vessels deformation. However,
they are very sensitive to the small length changes of the inter-nodal distances and
require local appearance information.

Robben et al. (2013) also used pairwise distances and bifurcations descriptors
for labeling Circle of Willis (CoW) vessels from different subjects. They matched
the graph with a probabilistic attributed graph atlas which was generated from an
annotated training set of graphs. The matching is done in a Maximum A Posteriori
way and is formulated as a quadratic binary programming problem. This approach
can handle non treelike vasculature and large topological differences. However, the
liver vasculature considered in our work has much more bifurcations and matching
ambiguity than the CoW. Thus, it is not guaranteed that a relatively small training
set would be enough to handle it.

To overcome the lack of local appearance, Pinheiro et al. (2017) incorporated
a path descriptor of connected nodes to efficiently match large graphs. They pro-
posed a Monte Carlo tree search which balances the exploration of new possible
matches and extends existing matches. Its efficiency relies in the path descriptor
and an implicit transformation model that assume a rigid transformation with small
nonlinear deformation. Thus, this method is not suitable for large deformations.

Also incorporating non local features, Moriconi et al. (2018) used the over-
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connected distances between the edges points which are around nodes within a
neighborhood of a given radius. These over-connected distances and related node-
attributes were used as extra graph features and matched with several of the GM
methods described in Section IV.1. These added features compensate for topological
inaccuracies or deformation of branches. However, robustness to large deformation
is not guaranteed since nothing can ensure that the established correspondences are
physically coherent with the elasticity of the organ.

All the methods that use geodesic distance constraints, including the methods
presented by Moriconi et al. (2018); Pinheiro et al. (2017) rely on connectivity, thus
they are unable to match disconnected graphs.

In the third class, the methods alternate between the correspondences search
and the transformation update. Assuming a known initialization, Serradell et al.
(2011) used an a priori parametric model of the transformation in a Kalman filter-
like approach to progressively add matches and fit the deformation. This rapidly
reduced the set of matched hypotheses, making the search complexity manageable.
However, the required model is difficult to generalize to arbitrary deformations.

Following a similar approach that progressively reduces the number of potential
correspondences but does not require an a priori parametric deformation model.
Serradell et al. (2015) used a Gaussian Process Regression (GPR) deformation
model to determine whether a new pair of correspondences is compatible with the
current set of matching hypotheses. This method iteratively generates hypotheses
while the search space is refined. The search space defines the most likely corre-
spondences to explore at every step, without relying on local similarity. On several
examples and without initialization, this method handled topological differences
and deformation. Nonetheless, the GPR mapping can not handle large non-linear
deformations and thus it may lead to incomplete solutions. Moreover, the matching
time with large graphs does not satisfy intra-operative constraints.

To have a more discriminative deformation model without a prohibitive compu-
tational cost at each iteration, Pinheiro et Kybic (2018) recently proposed to use a
B-spline deformation model which is updated incrementally using a Kalman filter.
While this process saves time, B-splines are not able to properly describe elastic
properties of the organs.

From the GM state-of-the-art presented, the method developed by Serradell
et al. (2015) is not far to comply with intra-operative registration constraints. Thus,
this method is described in Section IV.3 and experiments with hepatic data are
presented in Section IV.5.

IV.3 Gaussian process graph matching (GPR)
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Serradell et al. (2015) presented a robust graph matching algorithm (GPR) that
relies on Gaussian process regression (GPR) which is a nonparametric kernel-based
probabilistic model used to compute a smooth geometric mapping. GPR priors
embody beliefs about typical properties of the shape and the kernel k(x, x′) spec-
ifies the correlation of two function values corresponding to two different inputs x
and x′ (Rasmussen et Williams (2006)). The method does not require a manual
initialization and handles partial matching and topological differences.

The GPR graph matching algorithm is presented in Alg. 1. It matches a source
graph GS = ( ~XS , ~ES) to a target graph GT = ( ~XT , ~ET ). Where ~XS = {sn ∈ RD,
n = 1...NS} and ~XT = {tn ∈ RD, n = 1...NT } are the sets of source and target
nodes (tree bifurcations that are points in RD, assuming D ∈ {2, 3}). Similarly,
~ES = {sem, m = 1...MS} and ~ET = {tem, m = 1...MT } are the sets of source and
target edges.

The algorithm 1 recursively constructs a set of hypotheses, where each hypoth-
esis πt is a set of nc source and target bifurcation matching pairs (si ↔ tj), starting
with a random hypothesis (line 1). Using these correspondences, the GPR esti-
mates the mean mπt location with a covariance σ2

πt
of si that corresponds to tj ;

this operation is performed by procedure ComputeMapping (line 3) of Alg. 1; where

mπt(si) = ktC−1
πt

~XT
πt

σ2
πt

(si) = k(si, si) + β−1 + ktC−1
πt

k
(IV.2)

with k as kernel function, β−1 the measurement of noise variance, Cπt the nc ×
nc symmetric matrix with elements Cm,n = k(sm, sn) + β−1δm,n, k is the vector
[k(sl, s), ..., k(snc , s)], and ~XT

πt
is the nc ×D matrix [t1, ..., tnc ]t.

The summation of a squared exponential, a constant and linear term

k(sm, sn) = θ0 + θ1〈sm, sn〉+ θ2 exp{−θ3
2 ||sm − sn||2} (IV.3)

is used as kernel with the Θ = {θ0, θ1, θ2, θ3} GPR hyperparameters (Rasmussen
et Williams, 2006).

To find the next matching candidates (line 4) the Mahalanobis distance

M2 = (mπt(si)− tj)′(σ2
πt

(si))−1(mπt(si)− tj) (IV.4)

is used. Specifically in line 17, the bounded region candidates (Bi) are defined
by the Mahalanobis (MTH) and euclidean (ETH) distance thresholds, where the
current hypothesis (πt) defines the free source and target bifurcations sets as
~XSF = {sn : ~XS /∈ πt} and ~XTF = {tn : ~XT /∈ πt}, respectively. Followed by the
potential candidates (Pi) which are the bifurcations for whose target and source
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geodesic distances are proportionally (GTH) similar, where Gtj = [g1, ..., gnc ] are
the target geodesic distances from the already established correspondences (πt) to
a new match tj and similarly Gsi for the source geodesic distances. Then, the
matching candidates P found are the free bifurcations ~XSF with the lowest number
of potential candidates.

The algorithm continues (line 5) with the computation of the current hypoth-
esis’s number of inliers. Given the assignment distance cost matrix C ∈ RMS×MT

built from the euclidean distance between the source and target edge points as

C(i, j) =

|mπ(sej)− tej |, if |mπ(sej)− tej | < β−1/2

∞, otherwise.
(IV.5)

The quality score is the number of matches of C found with the Hungarian
algorithm assignment (H) (Burkard et al., 2009)

Sπ = |H(C)|. (IV.6)

In the nested loops the hypotheses are generated. First, every free bifurcation
in the random permutation of the matching candidates (P) is explored. Then,
every target candidate (tj∗) with its associated free source bifurcation from the
random permutation of Pi∗ creates a new hypothesis (πt+1). Here, the number of
target candidates used to create new hypotheses is limited by the number of outliers
threshold (OTH). The new hypothesis is used to recursively call the matching
method until no more matches are found. Finally, when the recursion is completed,
the best quality score hypothesis is selected from all the explored ones.

IV.3.1 Fine Gaussian process graph matching (fineGPR)

Once the coarse bifurcation matching is completed, the best hypothesis (π∗) is used
to initialize an iterative fine-matching step which matches the target ( ~ET ) and
source ( ~ES) edge points using the Hungarian algorithm assignment. The matched
edges are filtered with geodesic and euclidean distance constraints. These filtered
points are part of the paths that connect bifurcations and are used to recompute
the GPR priors. Then, the inliers quality metric is computed and the procedure
iterates until the metric does not improves.

The GPR matching does not requires an initial pose estimation and it does not
rely on local appearance nor on global distance matrices. This method is robust to
graphs topological changes and even to variations in the distances between nodes.
However, the method can not properly match the considered vessel graphs. The first
issue is that the matching time is very high, due to the large number of noisy nodes
and its correspondence ambiguity. The Section IV.4 presents a faster version of the
GPR matching to comply with intra-operative timing constraints. The second
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Algorithm 1 Recursive GPR graph matching GS ,GT

1: π0 ← {si1 ↔ tj1 ,..., siD ↔ tjD} . Random initialization of the first hypothesis
2: function recursiveGraphMatchingGPR(πt)
3: {mπt , σ

2
πt
} = ComputeMapping(GS ,GT ,Θ, πt)

4: P = FindCandidates(mπt , σ
2
πt
)

5: Sπt = QualityScore(mπt , β)
6: if |P| 6= 0 then
7: for Pi∗ in RandomPermutation(P) do
8: n = 0
9: for tj∗ in RandomPermutation(Pi∗) do

10: if n > OTH then
11: break
12: πt+1 ← πt ∪ {si∗ ↔ tj∗}; n = n+ 1
13: RecursiveGraphMatchingGPR(πt+1)
14: π∗ = arg max {Sπ0 , ..., SπT }

15: function FindCandidates(mπt , σ
2
πt
)

16: for si in ~XSF do
17: Bi = {∀ tj ∈ ~XTF : |M2(mπt(si), tj) < MTH ∨ |mπt(si)− tj | < ETH}
18: Pi = {∀ tj ∈ Bi : abs(Gtj −Gsi) < (GTH ·Gsi)}
19: P = arg mini{|Pi|} for |Pi| 6= 0

issue is that the matching result is incomplete, specially the method is not able to
retrieve corresponding branches that are largely deformed. A brute force approach
to overcome large deformations would be to increase the Mahalanobis threshold
(MTH) and thus the search region. However, this highly increase the matching
time and does not guarantee that the obtained solution is physically plausible.
A biomechanical based solution to match largely deformed branches within intra-
operative timing constraints is described in Chapter V.

IV.4 Improved Gaussian process graph matching
(iGPR)

Aiming to reduce the matching time, three improvements over the original GPR
(Serradell et al., 2015) method compose the improved Gaussian process graph
matching (iGPR). The first two improvements consist in using the bifurcations
radii and tree topology as soft features to avoid the exploration of noisy or in-
correct ambiguous bifurcations correspondences. The original GPR matching was
designed for very generic applications where these features might not be available.
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Covariance search space in GPR and iGPR

Figure IV.1: The target (in blue) and model (in red) graphs matched with 3 bifurcations
(in cyan diamonds) at the beginning of the exploration. a) The original GPR (Serradell
et al., 2015) uses the covariance Mahalanobis threshold (MTH) to compute the bounded
region (green transparent spheres). b) The iGPR halves theMTH to reduce the unnecessary
large search space.

However, these features are present in the considered data as shown in Section III.3.
The third improvement reduces the search space at the beginning of the matching
when the GPR covariance is highly unreliable.

Half first covariance constraint. Looking at the behavior of GPR based match-
ing, the covariance evaluated with a small number of matched bifurcations largely
exceeds the motion that the organ can undergo during deformation, as shown in
Figure IV.1.a. This leads to the exploration of many false hypotheses at the be-
ginning of the matching process. To handle this issue, the threshold MTH used to
define the bounded region (Eq. IV.4), is halved when the hypothesis to explore has
less than 4 bifurcations matched, as shown in Figure IV.1.b.

Radius constraint. At every bifurcation the radius of each vessel is averaged over
the section between the bifurcation and 20% of the length of the vessel. To assign
the branch correspondences, the target (rT ) and source (rS) averaged radii of each
bifurcation are sorted. Theoretically, the radii should be similar. However, due to
the image properties or preprocessing the radii obtained is inaccurate, especially
with US modality. To take into account these inaccuracies, the bifurcations are
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considered for matching if they are below a relaxed threshold (RTH):

∣∣∣∣min(rT , rS)
max(rT , rS) − 1.0

∣∣∣∣ < RTH . (IV.7)

Topological constraint. In the case where the target and model graphs have
similar structures, topological properties of tree branching patterns of the trees can
be used to discard erroneous matching hypotheses. Two topological characteristics
are used: the Horton-Strahler number (HS) of a node and the centrifugal order of
a segment. The centrifugal order (CO) of a segment denotes its geodesic distance
to the root segment van Pelt et al. (1989), whereas the HS of a node or a tree is a
numerical measure of its branching complexity Devroye et Kruszewski (1995). This
number is defined for leaf nodes as HSleaf = 0 and for any parent node (k) with
children nodes (i and j) as HS(k) = max(HS(i), HS(j)) + δHS(i),HS(j). The HS of
each graph is here normalized with respect to its maximum. Two thresholds COTH
and HSTH are specified to discard from the matching hypotheses trees which have
highly different topological properties. Bifurcations are considered for matching if:

∣∣COT − COS∣∣ < COTH and
∣∣HST −HSS∣∣ < HSTH (IV.8)

These constraints were only used in a first initialization matching of the large
noisy graphs from real data experiments in Sections IV.5.2, V.2.1 and V.4.2.
This is crucial to reduce the space of possible combinations when the number of
bifurcations is large. In this initialization matching, only 30 bifurcations with the
highest HS and big vessels mean radii are used. Even in the presence of noise,
as long as the trees have a few similar main branches these constraints allow to
drastically decrease the matching time in the considered data. The typical values
used for the constraints thresholds are: RTH = 0.4, COTH = 4 and HSTH = 0.6.
Once initialized, the complete set of bifurcations is used to find a second coarse
match (iGPRFull).

IV.5 Evaluating the GPR and iGPR algorithms.

This section presents the case of registering intra-operative Cone Beam Computed
Tomography (CBCT) images with preoperative computed tomography angiography
(CTA) data. The fusion approach proposed is based on the matching of pre- and
intra-operative vascular trees according to the GPR and iGPR methods and evalu-
ated on both synthetic and real data. All the results and computation times were
obtained with a regular desktop computer (4GHz eight-core, 16 GB RAM).
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Synthetic hyperelastic simulation for evaluation

(a) (b)

Figure IV.2: a) Hyperelastic FE simulation setup used to obtain the medium deformation
for evaluation. b) The original graph (in green) and the synthetic deformation distance color
mapped graph.

IV.5.1 Experiments on synthetic data

First, simulated realistic deformations and vessels removal was done on the CT
graphs to resemble CBCT. This ground truth data is used to evaluate and compare
the matching methods described.

The liver FEM and portal vein tree used for validation are extracted from the IR-
CAD human dataset1. A StVenant Kirchhoff hyperelastic constitutive model is used
to simulate realistic deformations of the liver model. Constant pressure is applied
to the model to simulate a pneumoperitoneum. Dirichlet boundary conditions are
set near the portal vein. Fig. IV.2.a illustrates the simulation setup. Three different
levels of deformations were simulated, using the same pressure value (1.6 kPa) and
varying Young modulii (15.0 kPa, 7.0 kPa and 3.5 kPa) leading to small, medium
and large displacement fields. The medium deformation is shown in Fig. IV.2.b.
Here, the original graph is in green and the deformed graph is color mapped with
the deformation displacement. From this deformed CTA graph, leaf vessels were
iteratively removed until only 60% remained, as a way to mimic the partial graph
usually segmented from CBCT images.

The Fig. IV.3 shows coarse matching results of the model and target medium
synthetic deformation level graphs which have 28 and 16 bifurcations, respectively.
Here, the original GPR algorithm (in cyan) is compared against the iGPR (in blue)
and the Half first covariance improvement shown (in purple). The GPR algorithm
depends mainly on the Mahalanobis (MTH), geodesic (GTH), and the outlier tol-

1https://www.ircad.fr/research/3dircadb/
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GPR and iGPR evaluation

Figure IV.3: Comparison of original GPR (cyan), Half first covariance (purple) and iGPR
(blue) matching methods on the medium synthetic deformation. The TRE are in solid lines
whereas the times are in dashed lines. The proposed improvements (Half first covariance and
iGPR) have similar TRE while being much faster than the original GPR matching(Serradell
et al., 2015).

erance (OTH) thresholds. Thus, the algorithms are evaluated with representative
commonly used parameters (Serradell et al., 2015). The target registration error
(TRE) is computed using every edge point in the original graph, including the 40%
removed vessel branches. The green thick horizontal line marks the ground truth
coarse matching TRE, it is computed using the ground truth bifurcation matches
in the target and model graphs. Given that 40% target bifurcations were removed,
coarse ground truth TRE using only bifurcations does not reach zero. The TRE of
each method is plotted in solid lines whereas the matching time is indicated with
dashed lines. The three methods have similar TRE results about 6 mm higher than
the ground truth. However, the improved versions are up to 1000 times faster than
the original one.

IV.5.2 Experiments on real data

From the two porcine liver datasets (PA and PB), each real dataset has one CTA
image acquired preoperatively in supine position and one CBCT image acquired
after pneumoperitoneum on flank position (see Section III.3.4 for more details).
These intra-operative conditions generated a large deformation. From each modality
the portal vein is segmented and a graph is extracted as described in Chapter III.
The portal veins graphs are matched to register the CTA data onto the CBCT.
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CT and CBCT porcine registration with iGPR

Figure IV.4: For the PA porcine dataset, the target CBCT (in pink) and source CTA (in
cyan) portal vein graphs are rendered with tubular structures. The graph nodes (bifurca-
tions) are shown as cubic markers (in yellow for the target, cyan for the source and green
for the matched). The augmented hepatic vein, which was only visible in the CTA image,
is in transparent blue behind the portal veins graphs. The 37 target evaluation landmarks
(red spheres) and their corresponding connected source landmarks (green spheres) and the
liver structures are rigidly aligned in a). These depict the large intra-operative non-linear
deformation. The result of iGPRFull after fine matching (fineGPR) and the 27 registered
landmarks with an error larger than 4 mm are shown in b). The middle target portal vessels,
which are uncovered by the registered liver surface, show the GPR inability to extrapolate
deformations.

Although the number of bifurcations (in Table III.2) is similar in both modalities,
several false bifurcations are detected due to noise in the CBCT.

The matching is evaluated with reliable and unambiguous manually selected
landmarks that are clearly visible in both modalities. These landmarks include
inserted tumors, distinctive vessel points and bifurcations (3, 15 and 19 for PA,
while 6, 5 and 11 for PB, respectively). The registration error (RE) is computed
using all these evaluation landmarks, while the matching only uses the bifurcations.
Therefore, the RE cannot reach zero in these experiments. Given that in some
cases these landmarks can not be accurately selected we make a difference with
respect to TRE where the simulation gives accurate and abundant ground truth
correspondences for evaluation.

The Table IV.1 presents the registration results for each dataset. Given the
large number of bifurcations in the real data, the first iGPR initialization matching
uses only the 30 bifurcations with higher radii and HS, as described in Section IV.4.
Using the matches obtained with this iGPR initialization, a rigid transformation is
computed to quantify the RE and to depict the nonlinear deformation magnitude,
as shown in Fig. IV.4.a. This iGPR initialization only required 2.1 minutes for
matching, while the original GPR matching ran 24 hours and did not finish the
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exploration due to the large number of bifurcations and matching ambiguity.
Then, a second iGPRFull coarse matching was done starting with the iGPR

initialization and using all the bifurcations. For PA, the RE with the iGPRFull
matching is slightly worst than the rigid alignment because there are several missing
matches which do not allow the regression to correctly recover the deformation.
Even after the fineGPR matching the RE does not improve producing unrealistic
deformation specially far from the matched vessels, as shown in the Fig. IV.4.b
where the liver surface does not cover the target portal vein. For PB, the iGPRFull
has a slight 2.70 mm TRE improvement compared to the rigid alignment, still the
error is not ideal for intra-operative accurate applications.

Table IV.1: Matching results for the rigid iGPR initialization as deformation reference
and iGPRFull that matches the complete set of bifurcations.

Porcine Matching Number RE [mm] time
dataset Method of matches µ± σ(max) [min]

PA iGPRRigid 6 9.46±11.93 (65.3) 2.1
37 landmarks iGPRFull 15 12.51 ± 12.44 (42.2) 11.6

PB iGPRRigid 4 13.71±8.10 (33.6) 0.42
22 landmarks iGPRFull 9 11.01 ± 9.85 (33.7) 1.2

IV.6 Conclusion

The GPR matching algorithm (Serradell et al. (2015)) has two principal limitations:
first, the data considered (specially the real vasculature) requires large matching
time, which is inadequate for intra-operative conditions. As shown by the experi-
ments, the iGPR initialization (proposed in the Section IV.4) reduces the matching
time, however a high TRE remains.

The second limitation is that the GPR smooth geometrical mapping is not capa-
ble of finding correct matches when large nonlinear deformations occur. Moreover,
the regression using few matches produces a large registration error and unrealistic
deformation especially far from the matched structures. This limitation is undesir-
able for intra-operative applications and is addressed using a biomechanical model
in Chapter V.
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V
Biomechanical graph matching

The original GPR matching (Serradell et al., 2015) is relatively generic and depend-
ing on the values of the hyperparameters it may theoretically adapt to large range
of deformations. Nevertheless, the deformations which occur in soft tissues during
surgical manipulations display a high level of non-linearity due to their complex
characteristics. Typically, internal structures such as vessels introduce heterogene-
ity and anisotropy, these cannot properly be taken into account without a biome-
chanical model. The Section V.1 describes the parenchyma and the vascularized
biomechanical liver models used by the biomechanics-based graph matching (BGM)
and compliance matching methods, respectively.

The Section V.2 presents BGM which extends the GPR matching with the fast
biomechanical model of soft tissue which increases the robustness and performance
of matching since it is capable of handling large nonlinear deformations while pre-
serving their physical nature. Experiments of synthetic and real data that compare
the iGPR and the BGM are also presented.

To overcome the BGM large computation time and lack of robusteness on noisy
datasets, the Section V.3 presents the VCGM and ACGM methods which use the
efficient biomechanical vascularized liver model to compute the organ’s transforma-
tion and the vessels bifurcations compliance. This allows to efficiently find the best
graph matches with a novel compliance-based search. It also presents the adaptive
rigid-to-soft approach used by the ACGM.

Finally, the Section V.4.2 compares all the biomechanical graph matching meth-
ods presented, which register synthetic datasets and CT preoperative data into
intra-operative CT-CBCT and 3DUS. This shows that having a physically correct
model allows to find large deformations and using an accurate hypotheses search
space reduces the matching time.

59
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V.1 Fast biomechanical liver model

Two fast biomechanical liver model methods were used in the matching methods.
The first one is a co-rotational linear model of the liver paranchyma used by BGM
to compute the transformation of the pre-operative data given the actual hypothe-
sis. The second is a composite efficient biomechanical vascularized model used by
the VCGM and ACGM compliance graph matching methods. The purpose of this
vascularized model, besides the pre-operative data deformation, is to compute the
compliance which replaces the covariance from the original GPR matching algo-
rithm.

V.1.1 Parenchyma model

The biomechanical model used by BGM is based on the co-rotational formulation
of linear elasticity (Nesme et al., 2005). Although this approach relies on a linear
stress-strain relationship, it provides a good approximation of large deformations
including rotations.

The parenchyma is modeled with linear P1 tetrahedral elements where for each
element p, the local 12×12 stiffness matrix Kp is computed as

Kp = Rp(up)>
{∫

Vp

B>p DpBpdV

}
Rp(up) (V.1)

where Bp and Dp are, respectively, the strain-displacement and stress-strain ma-
trices which remain constant during the simulation, and Rp is a matrix composed
of the element rotation matrix which depends on the actual displacement up of
the parenchyma mesh nodes thus introducing a non-linearity into the formula-
tion (Nesme et al., 2005). The FE mesh of liver composed of linear tetrahedra
has been generated (Boltcheva et al., 2009) from a 3D mask segmented from the
preoperative image. Moreover, it allows to specify a set of points located inside the
mask which become nodes of the mesh.

A matching hypothesis π is given by pairs of bifurcations si ↔ tj . As the
positions in set ~XS defined in section IV.3 are known preoperatively, the mesh is
generated so that each point from this set coincides with a node ni of the FE mesh.
In this case, the deformation of the model is driven by the set of non-homogeneous
Dirichlet conditions where for each matching pair, the displacement of node ni is
prescribed as uni = pi = tj − si.

The Dirichlet conditions are imposed via penalty method: physically, this
method can be interpreted as adding a set of elastic linear springs which pull each
node ni from its initial position si to the target position tj . Similarly, the deforma-
tion is computed as a dynamic process given by the system Mü + Bu̇ + K(u) = p
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where M is a mass matrix, K is the nonlinear co-rotational stiffness with contri-
butions from elastic springs, B is a damping matrix approximated using Rayleigh
stiffness rK and Rayleigh mass rM as B = rMM+ rKK and p is a vector gathering
the prescribed displacements given by the actual matching pairs (Plantefève et al.,
2016). The system is integrated by implicit Euler method with single linearization
per integration step with rK = rM = 0.1. The simulation is completed as soon as
the simulation achieves the static equilibrium.

The model reconstructed from patient-specific anatomy is reliable for physics-
based augmented reality (Plantefève et al., 2016). The proposed matching method
is not limited to the chosen FE model which can be replaced by another elastic
model, including non-linear ones (Marchesseau et al., 2017a).

The FE model is used in a displacement-zero traction scenario. In this case,
no forces are applied to the model, however, the deformation is induced by non-
homogeneous Dirichlet boundary conditions. In case of homogeneous isotropic
model, the resulting deformation does not depend on the mechanical parameters
which are usually not known accurately due to the patient-specific modeling (Wit-
tek et al., 2009).

V.1.2 Vascularized model

The biomechanical model is a composite FE approach which accounts for the me-
chanics of both of parenchyma and vessels (Peterlík et al., 2012b; Plantefève et al.,
2016) is used to model vascularized tissue. Besides adding anisotropy to the trans-
formation of the pre-operative data given the actual hypothesis, this vascularized
model computes the compliance which is used in the VCGM and ACGM algorithms
to define the matching search space.

The parenchyma is modeled with linear tetrahedral elements as done in Section
V.1.1, where the stiffness matrix of each element is also defined by Eq. V.1. The
vascular structures are modeled as trees composed of serially-linked Timoshenko
beam elements, mimicking the biomechanics of hollow tubes parametrized with
Young’s modulus, diameter and wall thickness. The beam mechanics includes both
positional and rotational degrees of freedom (DoF). Hence, each beam element v
is modeled with a 12×12 local stiffness matrix Kv which depends on the actual
displacements and orientations of the beam nodes (Przemieniecki, 1985; Duriez
et al., 2006).

Despite the identical size, the element matrices Kp and Kv have a completely
different structure: the former describes mechanics of an element given by 4 nodes
each determined by 3 positional DoFs, while the latter determines the behavior of
element having two nodes, each equipped with 3 positional and 3 rotational DoFs.
The coupling mechanism (Peterlík et al., 2012b) uses a mapping that defines a
Jacobian matrix Jv→p which is used to compute a composite stiffness matrix Ke as
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Ke = Kp + J>v→pKvJv→p. (V.2)

The generation of tetrahedral mesh of the parenchyma is the same as the one
described in Section V.1.1, while the beam tree representing the vascular structure
is extracted as described in Section III.2.

Given the biomechanical FE model represented by a global stiffness matrix K
assembled from composite local matrices Ke, the matching hypothesis π determines
non-homogeneous Dirichlet condition that drives the deformation model as done in
Section V.1.1. Since the local stiffness matrices of parenchyma and vascular ele-
ments depend on the actual displacement vector u, the problem is non-linear, and
the final equilibrium must be computed iteratively. A damped Newton-Raphson
method is used: in each iteration k, the update ∆u(k+1) of nodal positions is com-
puted by solving a system of linear equations[

τI + K̂π(u(k))
]

∆u(k+1) = −gπ(u(k)) (V.3)

where K̂π is the global system matrix after imposition of non-homogeneous Dirichlet
boundary conditions corresponding to the hypothesis π, τ is a damping parame-
ter, I identity matrix having the identical size as K̂ and the vector g of the right
side gathers the internal elastic forces and prescribed displacements given by the
hypothesis π. The displacement vector is updated in each step of the method as
u(k+1) = u(k) + ∆u(k+1), until the equilibrium displacement is obtained for hypoth-
esis π (Peterlík et al., 2018). Since the aim is to minimize the time needed for the
computation of the transformation, preconditioning is used: In the first iteration of
the Newton-Raphson method, the Eq. V.3 is solved with an algorithm based on the
sparse Cholesky decomposition1. In the following iterations, preconditioned conju-
gate gradients are used to compute the update ∆u employing the decomposition
constructed in the first iteration.

Besides the elastic transformation, the FE model is employed to obtain the
compliance in the free source bifurcations ( ~XSF ) which is used in both the VCGM
and ACGM algorithms. According to the mathematical definition, compliance is
defined as the inverse of the stiffness matrix. It is evaluated in an arbitrary node n
of the FE mesh where it is given by a 3×3 symmetric tensor Cn extracted from the
global compliance matrix. Eigenvectors of the compliance tensor define the principal
axes of an ellipsoid and the eigenvalues determine its scale along each axis. From
the mechanical point of view, this ellipsoid characterizes the flexibility of n, i. e., it
is proportional to the volume to which the node can be displaced under constant
unit force applied to the node n in an arbitrary direction. The source bifurcations
coincide with a mesh node i hence its compliance Ci

π corresponds to the block
1https://www.pardiso-project.org/

https://www.pardiso-project.org/
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extracted from K̂−1
π at the position indexed by i. Since the proposed method is

adapted to large deformations, it is necessary that the compliance Ci
π is computed

using the stiffness matrix K̂π computed using the equilibrium displacement vector
uπ. Therefore, the elastic transformation corresponding to hypothesis π is computed
before the Ci

π is obtained for each free source bifurcation.
The compliance has been used in other applications to produce structures hav-

ing desirable physical properties Martínez et al. (2015). Whereas, in Section V.3
the matching algorithms use the compliance to define an improved metric for the
generation hypotheses.

V.2 Biomechanics-based graph matching (BGM) and
fine alignment

The bifurcations coarse matching using the parenchyma co-rotational model is de-
scribed in Alg. 2. This BGM method is similar to the GPR matching described in
Section IV.3, however it has two important differences:

• BGM replaces the mean from the original GPR matching with the parenchyma
biomechanical model transformation (line 4). While the physically plausible
FE transformation avoids the exploration of false hypotheses and finds more
correct hypotheses, it is too computationally expensive to be employed from
the beginning of the matching. On average, the time required to compute the
FE transformation is 1000 times larger than the time required by the GPR.

• To overcome the computation time increase, instead of the random initializa-
tion, the FE-based matching is initialized with the result of iGPR (line 1),
thus providing, within a feasible time, a correct but often incomplete set of
matched bifurcations considering small or medium-sized deformations. Start-
ing from this solution, the BGM generates a set of hypotheses recursively and
is able to find the matches that were not discovered with the iGPR.

The FE model-based fine-alignment (fineBGM) is similar to fineGPR described
in IV.3.1 but replaces the mean mapping by a nonrigid transformation using the
liver biomechanical model. It also removes the matched graph points that are closer
than the mean tetrahedral size of the FEM mesh.

V.2.1 Comparing the iGPR and the BGM methods

This section registers intra-operative CBCT images with preoperative CTA data.
The expected benefit is an improved visualization of the patient’s tumor(s), vascu-
lar system and other internal structures of interest. CBCT is an imaging modality
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Algorithm 2 Recursive FEM matching (BGM) GS ,GT

1: πiGPR ← {s1 ↔ t1 ,..., sk ↔ tk} . iGPR matching initialization
2: function recursiveGraphMatchingBGM(πt)
3: σ2

πt
= ComputeMapping(πt,GS ,GT ,Θ)

4: Tπt = simulationFEM(πt,GS ,GT )
5: P = FindCandidates(Tπt , σ

2
πt
)

6: Sπt = QualityScore(Tπt)
7: if |P| 6= 0 then
8: for Pi∗ in RandomPermutation(P) do
9: n = 0

10: for tj∗ in RandomPermutation(Pi∗) do
11: if n > OTH then
12: break
13: πt+1 ← πt ∪ {si∗ ↔ tj∗}; n = n+ 1
14: RecursiveGraphMatchingBGM(πt+1)
15: π∗ = arg max {Sπ0 , ..., SπT }

16: function FindCandidates(Tπt , σ
2
πt
)

17: for si in ~XSF do
18: Bi = {∀ tj ∈ ~XTF : |M2(Tπt(si), tj) < MTH ∨ |Tπt(si)− tj | < ETH}
19: Pi = {∀ tj ∈ Bi : abs(Gtj −Gsi) < (GTH ·Gsi)}
20: P = arg mini{|Pi|} for |Pi| 6= 0

that is more available in the operating room than CTA or MRI. However, CBCT
cannot image certain lesions nor complete anatomy. These deficiencies are compen-
sated if preoperative data augment the intra-operative image. The fusion approach
proposed is based on the registration of pre- and intra-operative vascular trees us-
ing the iGPR and the BGM matching methods and evaluated on both synthetic
and real data. All the results and computation times were obtained with a regular
desktop computer (4GHz eight-core, 16 GB RAM).

Experiments on synthetic data

Using the three synthetic deformations with 40% random branches removed (de-
scribed in Section IV.5.1) the efficiency of the BGM method for medium and large
deformations is proved in these experiments. It is important to note that the FEM
model used for matching is linear which makes the computation faster and uses a
1.5 kPa Young Modulus which is different from the ground truth simulations. The
TRE computed using every edge point in the original graph is used to measure
the coarse matching accuracy. A second metric used is the convex hull volume
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Comparison of iGPR with BGM

(a) (b)

Figure V.1: Accuracy and search space using different Mahalanobis (M), Geodesic (G)
and Outliers (O) thresholds. In a) The TRE is plotted in solid lines. The iGPR (in blue)
although is fast it is far from the ground truth (green thick horizontal line) and has high
variability on the parameters used. The BGM TRE (in red) converges to the coarse TRE
ground truth. In b) Similarly, the BGM convex hull volume and its number of bifurcations
matches mostly converge to the ground truth values.

of the matched bifurcations. The convex hull volume gives a better idea of the
global matching; a bigger volume ensures that the computed deformation is valid
on a larger domain. Fig.V.1.a shows the TRE of the iGPR and the BGM on the
commonly used parameters for the medium deformation transformation. As can
be seen on the figure, the results of the iGPR step is dependent on the parameters
whereas the results of the BGM are more accurate (4.2mm against 12.2mm) and
limitedly dependent on the parameters used in the first iGPR step. Times required
by the two processes are shown in the graph (time scale is on the right of the fig-
ure). In addition, much more bifurcations are matched with BGM and the convex
hull volume of the set of matched bifurcations (Fig.V.1.b) is larger for the BGM
whereas the iGPR method tends to provide only incomplete solution sets which are
in fact only a partial graphs match. This is an important strength of the BGM
algorithm. Note that large deformation matchings give similar results, summarized
in Fig. V.3.

The Fig.V.2 compares TRE and timing of the fineGPR and the fineBGMmatch-
ing methods on the medium deformation. Here again, the TRE is noticeably smaller
with the fineBGM matching and the results are largely independent of the param-
eters. Note that fineGPR has small computation times because it uses the iGPR
matching.

The Fig.V.3 summarizes the results on the three synthetic deformations. It
shows a significant TRE improvement and less sensitiveness to parameters of the
fineBGM compared to the fineGPR method. These results are specially important
in the medium and large deformations. Still the fineBGM keeps computation times
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Comparison of fineGPR with fineBGM graph matching methods

Figure V.2: The TRE is plotted in solid lines. The fineGPR (in blue) is faster but has
bigger TRE (8mm) and has high variance depending on the parameters used. The fineBGM
TRE (in red) only has 3mm error with small dependence on the parameters.

Comparison of fineGPR with fineBGM with three levels of deformation

Figure V.3: The fineGPR is faster but has bigger TRE and high variance specially in
the medium and large deformations. The TRE and dependence on the parameters in the
fineBGM is small and it has an acceptable computation time increase.

within an acceptable intraoperative tolerance.

Experiments on real data

For the first porcine dataset (PA), the Fig.V.4 shows the registration of the two ves-
sel trees after a rigid registration (a) and the fineBGM registration (b). In the CT
image 60 bifurcations (green cubes) are extracted while 47 (pink cubes) in CBCT.
In total there are 20 correct matched bifurcations (purple cubes). The two trees
are globally well registered except a vessel (indicated with an arrow in Fig. V.4.b)
which is not transformed well because some bifurcations are missing in the target
segmentation. Despite the differences between the trees, the superposition of the
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BGM registration of CBCT and CTA from PA dataset

(a) (b)

Figure V.4: The target CBCT and model CT graphs plotted, respectively, in red and
green. Similarly the bifurcations are shown with cubes and three inserted landmarks cen-
troids with spheres. The augmented hepatic vein shown in transparent blue. The model
is rigidly aligned (a) to get an idea of the deformation. The fineBGM matching (b) shows
matched bifurcations with purple cubes.

inserted landmarks is very good. The TRE is computed using reliable and unam-
biguous manually selected landmarks, as described in IV.5.2. The BGM method
has a TRE of 5.38mm. While only using iGPR matching has a TRE of 12.51mm.

The computation time was 2.1, 39.3 and 0.5 minutes for the iGPR, the BGM
and fineBGM, respectively. The matching is implemented in single thread and could
be parallelized if the explored hypotheses are tracked in shared memory.

The result of the second porcine dataset (PB) is shown in Fig. V.5. The acqui-
sition and deformation conditions were similar to the previous experiment. But this
CBCT image is much noisier and only few vessels are visible and segmented. The
target CBCT graph has 36 bifurcations but several false bifurcations (non matched
pink cubes in Fig. V.5.b) are due to noise. Given that the vein is partially visible
in CBCT, only the corresponding partial model CT graph with 39 bifurcations was
used for matching. The matching is evaluated using 22 reliable landmarks, result-
ing in 7.61±7.34mm TRE. The time needed for the iGPR is 0.42 minutes plus 55.6
minutes for the BGM. Finally, the CBCT view augmented with the CT vessel tree
is showed in Fig. V.5.c.

The proposed biomechanics-based graph matching (BGM) outperforms existing
state-of-the-art method (GPR) both in terms of accuracy and by its ability to han-
dle large deformations. Since the matching time is directly linked to the number
of vascular trees bifurcations, the surgeon could adjust automatic segmentation pa-
rameters that result in fewer bifurcations so the matching can be completed within
intra-operative timing constraints. The method relies on the definition of several
parameters. Some of them related to the biomechanichal model, while others have
geometrical nature. At this stage the method is more sensitive to the geometri-
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BGM augmented CBCT from PB dataset

(a) (b) (c)

Figure V.5: The target and model graphs plotted, respectively, in red and green. Similarly
the bifurcations are shown with cubes and six inserted landmarks centroids with spheres.
The model is rigidly aligned (a). The fineBGM matching (b) shows matched bifurcations
with purple cubes. An augmented view with the target and model portal vein in purple
and blue respectively (c).

cal parameters, than the biomechanical ones. So some tunning when using real
data still remains necessary for optimal results. Chapter V.3 presents a method
that matches noiser graphs with more bifurcations within intra-operative timing
constraints reducing the parameters and data quality dependence.

V.3 Compliance Graph Matching

The biomechanical graph matching method (BGM) allowed to recover additional
matches compatible with the elasticity of the organ even when large elastic defor-
mations were considered. However, it was not robust to noise, only matched limited
size graphs and the computation time was still above intra-operative constraints.

Several contributions with respect to BGM are presented in this section: i)
the use of a more advanced biomechanical model to handle heterogeneities and
anisotropy due to the vascularization, which was described in Section V.1.2; ii) the
definition of a better metric for generating improved graph-matching hypotheses,
based on the notion of compliance, the inverse of the stiffness, which is presented in
Section V.3.1. iii) the generation of matching hypotheses using an adaptive search
region, with the objective to further reduce computation time by predicting first
the most plausible matching hypotheses, which is presented in Section V.3.2. These
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Covariance and compliance bounded region comparison

Figure V.6: Using the initially matched bifurcations (triangles), the bounded regions
(spheres) are computed in the free bifurcations (green dots) of the source graph (in red).
The free bifurcations (black dots) of the target graph (in blue) inside the bounded regions
define the next matching candidates. The bounded regions are defined (a) in BGM with
the GPR covariance and (b) in VCGM with the compliance of the varying radii vessels. In
the later case, the stiff thick vessels have smaller compliance. This, along with the tensors
shape and orientation reduce the matching search space.

contributions improve both the quality and computation time of the matching as
shown in Section V.4, which presents a series of results on both synthetic and real
data, including a sensitivity analysis highlighting its robustness and genericity.

V.3.1 Vessels Compliance Graph Matching (VCGM)

BGM uses the GPR covariance to define the hypotheses search space and is able
to find correct bifurcation matches even when large nonlinear deformations occur.
However, the covariance produces large bounded regions for new correspondence
search, shown in Fig. V.6.a, and large computation time. This makes the algorithm
incompatible with intra-operative deployment. To overcome this crucial limitation,
the first improvement proposed is VCGM which is described in Algorithm 3. Sim-
ilarly to BGM, the matching is initialized with an incomplete hypothesis (πiGPR)
and then generates a set of hypotheses recursively.

VCGM’s contribution starts by using πt with the vascularized FE simulation
to compute the transformation (Tπt) and the compliance (Cπt) at ~XSF (line 3).
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Algorithm 3 Recursive vessels compliance graph matching (VCGM) GS ,GT

1: πiGPR ← {s1 ↔ t1, ..., sK ↔ tK} . iGPR matching initialization
2: function recursiveGraphMatchingVCGM(πt)
3: Tπt ,Cπt = simulationVascularizedFEM(πt,GS ,GT )
4: P = FindCandidatesCompliance(Tπt ,Cπt)
5: Sπt = QualityScore(Tπt )
6: if |P| 6= 0 then
7: for Pi∗ in RandomPermutation(P) do
8: for tj∗ in RandomPermutation(Pi∗) do
9: πt+1 ← πt ∪ {si∗ ↔ tj∗}

10: RecursiveGraphMatchingVCGM(πt+1)
11: π∗ = arg max {SπiGP R , ..., SπT }

12: function FindCandidatesCompliance(Tπt ,Cπt)
13: for si in ~XSF do
14: Bi = {∀ tj ∈ ~XTF : |M2

comp(Tπt(si), tj) < MCTH∨|Tπt(si)−tj | < ETH}
15: Pi = {tj : tj ∈ |Gtj −Gsi | < (GTH)(Gsi) ∧ tj ∈ Bi}
16: P = arg mini{|Pi|} for |Pi| 6= 0

Here, the Tπt and Cπt replace, respectively, the GPR mean and covariance from
Algorithm 1, removing completely this dependency.

To find the next matching candidates P (line 4) the Mahalanobis distance

M2
comp = (Tπt(si)− tj)T (Ci

πt
)−1(Tπt(si)− tj) (V.4)

computed with the compliance Cπt is used. Here,M2
comp is equivalent to the virtual

work needed to add a candidate match. The biomechanical simulation is important
because Tπt transforms the source bifurcations close to the target ones and the beam
model correctly simulates the deformation along the graph edges. In addition, the
compliance tensor filters candidates that require high energy to match. Especially,
the beam model introduces additional stiffness and anisotropy that leads to smaller
compliance in thicker vessels. This reduces the bounded region of these rigid vessels
while keeping higher compliance and bounded regions on thin flexible vessels. These
compliance-based bounded regions are shown in Fig. V.6.b.

For each free bifurcation in ~XSF , the bounded region candidates (Bi) are the
target free bifurcations ( ~XTF ) within Mahalanobis (MCTH) or strict euclidean
(ETH) distance thresholds (line 14). From here, the algorithm is again similar to
BGM.
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Incremental graph matching hypotheses generation

Figure V.7: The source and target graphs are color-coded with the registration error
magnitude and in gray, respectively. In the first recursive step, the πiGPR initialization
(cyan triangles matches) and the FE simulation determine the most flexible bifurcation
(inside the gray bounded region). This bifurcation’s compliance Cmax and the maximum
incremental displacement uTH define theMCTH threshold. Then, every recursive step adds
a new match (connected diamonds in pink with its displacement magnitude |Tπt(si∗)−tj∗ |)
to the current hypothesis. This incremental hypotheses generation progressively reduces the
source graph’s registration error, including the bifurcations match (smaxDef ↔ tmaxDef )
initial maximum deformation (|TπiGP R

(smaxDef ) − tmaxDef |) of the connected diamonds
match in red.

Setting the Mahalanobis compliance threshold

In BGM, the covariance Mahalanobis threshold (MTH) specifies a level of confidence
given by the GPR covariance. In VCGM, theMCTH threshold represents an upper
bound of the work needed to match bifurcations. The optimal MCTH depends on
the FE model, deformation magnitude, initialization and incremental hypotheses
generation (depicted in Fig. V.7).

We propose to define MCTH as a function of the maximum incremental dis-
placement’s magnitude (UTH = |uTH |):

MCTH = f(UTH) = (uTTH(Cmax)−1uTH)1/2, (V.5)

where Cmax is obtained using the FE simulation at the initialized stage (πiGPR)
by selecting the bifurcation whose compliance ellipsoid volume is the maximum,
i.e. the most "flexible" bifurcation. Since the free bifurcations can move in any
direction, the maximum incremental displacement uTH = (UTH/

√
3)(ê1 + ê2 + ê3)

is assumed isotropic with respect to the eigenvectors (ê1, ê2, ê3) of Cmax.
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The UTH threshold remains dependent on the incremental hypotheses generation
and the deformation magnitude. Still, it is assumed that UTH is smaller than the
initial maximum match’s deformation (|TπiGP R(smaxDef ) − tmaxDef |) and bigger
than the new matches’ displacements (|Tπt(si∗) − tj∗ |). Where the bifurcations
matches with maximal initial deformation (smaxDef ↔ tmaxDef ) and the ones added
each matching step (si∗ ↔ tj∗) are depicted in Fig. V.7. In practice, setting
UTH = 14 mm (about 40% of the largest bifurcation’s deformation) allowed to
match successfully several experiments, which have a wide range of initial maximum
displacements.

Since MCTH is larger than required in some recursive steps of the algorithm,
using a constant UTH unnecessarily increases the search space. ACGM alleviates
this issue.

V.3.2 Matching based on adaptive Mahalanobis distance
(ACGM)

In VCGM, only the bifurcations that require less than a given amount of work,
bounded by the constant compliance Mahalanobis threshold (MCTH), are matched.
Although the compliance tensor filters some incorrect matches, this constant upper
bound unnecessarily increases the search space. This is because the incremental
matching (in Fig. V.7) does not always need the constant upper bound at every
recursive step.

Instead of setting a constant threshold, ACGM uses the range
[MCLow,MCHigh]. As presented in the Algorithm 4, the rigid-to-soft ap-
proach starts by adding the bifurcation matches that require the least amount
of work (MCLow) and when no more matches are found, instead of exploring
other alternative hypotheses, the work bound is gradually increased. Hence, the
matches that require more work are gradually added until a maximum allowed
work (MCHigh) is reached (lines 6 to 9).

In most cases, the rigid-to-soft strategy finds an appropriate set of correspon-
dences before exploring an alternative matching path. Thus, when the exploration
of the first matching path is finished, MCHigh is reduced to save time (line 14).

MCHigh can be set higher than the optimal value (overestimated) to guarantee
that it covers a wide range of deformation, scale, or incremental exploration depen-
dencies. Thanks to the rigid-to-soft approach, an overestimated MCHigh produces
only a small increase in computation time.

When there are outlier matches that require less work to be matched than the
correct matches,MCLow is a critical parameter. In this specific case,MCLow should
be large enough to include the correct matches.
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Algorithm 4 Recursive Adaptive compliance graph matching (ACGM) GS ,GT

1: πiGPR ← {s1 ↔ t1, ..., sK ↔ tK} . iGPR matching initialization
2: function recursiveGraphMatchingACGM(πt)
3: Tπt ,Cπt = simulationVascularizedFEM(πt,GS ,GT )
4: Sπt = QualityScore(Tπt )
5: MCπt = MCLow
6: while MCπt < MCHigh ∧ |P| = 0 do
7: P = FindCandidatesCompliance(Tπt ,Cπt)
8: MCπt = MCπt + (MCHigh −MCLow)/6
9: if |P| 6= 0 then

10: for Pi∗ in RandomPermutation(P) do
11: for tj∗ in RandomPermutation(Pi∗) do
12: πt+1 ← πt ∪ {si∗ ↔ tj∗}
13: RecursiveGraphMatchingACGM(πt+1)
14: MCHigh = (MCHigh +MCπt)/2

15: π∗ = arg max {SπiGP R , ..., SπT }

Setting Mahalanobis compliance threshold range for ACGM method

ACGM also uses Eq. V.5 to define the range [MCLow,MCHigh] as a function of
[ULow, UHigh]. The initialization, FE model and ULow help to define a correct
MCLow. Therefore, even in the specific case of outliers that are not geodesic-
filtered, ULow is a less critical parameter. UHigh is similar to UTH , they indirectly
depend on deformation and scale because of the incremental hypotheses generation.
The advantage of UHigh is that it is overestimated to cover a wide range of cases
without a high increase in computation time.

V.4 Comparing BGM, VCGM and ACGM methods

Besides registering CBCT and CTA, this section also presents an experiment that
augments intra-operative 3DUS with preoperative CTA vascular trees. All the
biomechanical graph matching methods presented (BGM, VCGM and ACGM) are
evaluated on both synthetic and real data.

V.4.1 Experiments on synthetic data

To evaluate the methods, synthetic (target) graphs that resemble CBCT were gen-
erated from a real vascular graph which was segmented from a CTA image. First
as done in Section IV.5.1, the original CTA graph was deformed using a realistic
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Synthetic CBCT deformation, branch removal and noise added

Figure V.8: The initial vascular graph (in gray) and the synthetic target graph (color-
coded on deformation amplitude) are used for evaluation of the method. On the left, the
magenta crosses represent the removed branches (40% of the initial graph). On the right,
noisy branches (in magenta) are added to the deformed and reduced target graphs.

hyperelastic FE simulation that simulates the effect of the pneumoperitoneum on
the liver. Again it is important to note that the FEM model used for matching is
linear which makes the computation faster and uses a 1.5 kPa Young Modulus which
is different from the ground truth simulations. Similarly, to resemble segmentation
problems due to poor image quality, 40% random bifurcations were removed. Then,
noisy bifurcations were added (50% or 80% of the bifurcations remaining from the
previous step). An example of the synthetic data generated is shown in Fig. V.8.
The original CTA graph and the deformed, reduced, and noisy target graphs were
used to evaluate and compare the matching methods presented in this article. The
target registration error (TRE) is computed in the complete original graph, includ-
ing the 40% of vessels that were removed (therefore the TRE cannot reach zero in
these experiments).

Accuracy and search space size with increasing Mahalanobis thresholds

The first experiment evaluates the search space size and accuracy as a function of
the bound region used. Matching was repeated 10 times per method with increasing
Mahalanobis thresholds. MCTH , MCLow and MCHigh were set without using Eq.
V.5. These different matchings were only used to study the methods’ Mahalanobis
threshold sensitivity. Increasing thresholds were tested in one synthetic dataset
(28 source and 16 target bifurcations) with 4 different initializations (named En
with n ∈ [1, 4]). Initialization E3 has 6 matches while the other initializations
have 5 matches, that is why E3 explores fewer hypotheses. The three evaluated
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Matching accuracy with varying search space

Figure V.9: Matching accuracy and search space size with increasing Mahalanobis thresh-
olds in one synthetic dataset without noise. MCTH and MCLow-MCHigh were set without
using Eq. V.5 and are specified in the horizontal axis. The top row shows the TRE for each
method with four different matching initializations (En) and the initial number of matches
(Ik). Similarly, the bottom row shows the respective required number of hypotheses ex-
plored. The search space is better pruned with the VCGM and ACGM methods while the
exploration highly increases with higher Mahalanobis thresholds in BGM.

methods use the same realistic Euclidean (ETH = 4 mm) and geodesic thresholds
(GTH = 20%).

For every method, as shown in Fig. V.9, the TRE remains high when a small
Mahalanobis threshold is used, but decreases as the threshold increases. However, if
a high threshold is used the number of explored hypotheses and search time increases
without a significant improvement of the TRE. Nevertheless, BGM’s search space
increase is steeper than for VCGM or ACGM. ACGM does the best pruning of the
search space and has the best TRE results with less dependency on the Mahalanobis
threshold used.

Accuracy and search space size at the optimal Mahalanobis threshold

Using the previous experiment, every method is also compared at its optimal per-
formance, i.e. the smallest Mahalanobis threshold at which the TRE reaches a
minimum value. The mean and standard deviation for 4 different initializations at
the optimal threshold are plotted in Fig. V.10. Similar experiments with added
noisy bifurcations (50% and 80%) are also plotted. Without noise, the VCGM
and ACGM methods are faster than BGM. When noise is added, the exploration
space is highly increased with BGM. This case requires up to 40 minutes to do the
matching and sometimes fails to find the correct match, increasing the mean TRE
up to 5.8 mm. Differently, the compliance methods require, on average, less than
12 minutes. ACGM is the fastest with less than 8 minutes on average, and has 4.8
mm mean TRE.
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Noise effect on matching

Figure V.10: TRE (left) and matching time (right) statistics obtained on 4 different ini-
tializations using the optimal Mahalanobis threshold (where MCTH and MCLow-MCHigh
were set without using Eq. V.5). Non-noisy graphs as well as graphs with bifurcations
noise (50% and 80%) are considered in the study. The VCGM and ACGM methods have
better TRE than BGM . When noise is added, these methods require less matching time
than BGM. ACGM is the fastest method overall.

Table V.1: The graph bifurcations displacements statistics of the ten synthetic deforma-
tions.

Deformation dataset D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Bifurcations
displacements
[mm]

µ 10.2 12.1 13.9 13.5 8.6 11.6 14.8 12.2 9.0 11.0
σ 5.9 6.8 8.5 8.1 6.9 7.3 9.4 6.9 5.0 6.8

max 21.2 24.7 31.3 29.2 26.7 25.1 35.6 25.8 17.7 23.9

For the 50% noise case in Fig. V.10, ACGM is more sensitive to noise than
VCGM because MCmin was set without using Eq. V.5. Setting a correct MCmin
is hard in the presence of noise that cannot be filtered with the geodesic constraint.
This specific situation is an ACGM’s limitation that was overcome when Eq. V.5
was used to define MCmin in the following experiments.

Synthetic deformations using the same matching parameters

Ten different deformations were generated using different pressure, Young’s modulus
and gravity orientation (to simulate subject in supine or flank position). Also, a
craniocaudal force simulated different respiratory phases. These deformations are
summarized in Table V.1 with statistics of the bifurcations’ displacements. As in
the previous experiments, the graphs have 40% branch removal and two levels of
noisy bifurcations added.

Each method uses constant parameters to match all different synthetic datasets
deformations. With BGM, the optimal MTH depends on the deformation magni-
tude and the noise, therefore being potentially difficult to set in clinical scenarios
where no information of the deformation is a priori known. For this reason, op-
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Matching evaluation on different synthetic datasets

Figure V.11: The TRE and the matching time (in logarithmic scale) are evaluated for
the three matching methods on ten different deformations using constant covariance Maha-
lanobis (MTH) and maximum exploration displacement thresholds (UTH , ULow and UHigh).
Each plot has the results of graphs with bifurcations noise (50% and 80%) and without it.
The reference TRE (2.76±0.73 (4.42) mm) is computed with the ground truth bifurcations
matches and shown in cyan.

timal threshold (MTH = 2.6) found from the previous experiments is used. This
threshold, using a cumulative chi-squared distribution, represents a 97% confidence
region.

For the VCGM and ACGM methods, the parameters selection is simplified since
the MCTH takes into account the FE model and the initialization. Thus, the only
parameters to set are the maximum incremental displacement magnitudes. Given
that the compliance methods are not too sensitive to these parameters, approximate
values are sufficient. VCGM uses UTH = 14 mm, whereas ACGM uses ULow =
9 mm and UHigh = 15 mm to define [MCLow,MCHigh].

The Fig. V.11 presents the matching time and the TRE measured with synthetic
ground truth data of each experiment. ACGM has the same or better (in some cases
of deformations D2, D7 and D8) TRE and is faster than the other methods.

Table V.2 summarizes the results of the ten deformations at each level of noise.
Without noise, the average matching time of ACGM is 1.4 minutes, while it is more
than 7 minutes with the other methods. Given that BGM fails to find all the correct
matchings, the average TRE is 0.8 mm worse than the other methods. Adding 50%
noise, the average matching time of ACGM only increases to two minutes, while it
reaches 16 minutes with the other methods. With 80% noise added, the trend is
clear. The average matching time of ACGM only increases to 2.7 minutes, while it
reaches 23 minutes with BGM. The noise highly affects BGM, with a TRE increasing
to 4.5 mm because it did not complete all the experiments as some exhausted the
computer RAM memory available. ACGM maintains the best TRE result even
with noise.



78 Chapter V. Biomechanical graph matching

Table V.2: Matching statistics for ten synthetic deformations using constant covariance
Mahalanobis (MTH) and maximum incremental displacement (UTH , ULow and UHigh)
thresholds.

Noise Without 50% 80%
Method TRE (max) [mm] Time (max) [min] TRE (max) [mm] Time (max) [min] TRE (max) [mm] Time (max) [min]

BGM 3.9± 2.8 (11.9) 7.1± 7.4 (20.4) 4.0± 2.8 (11.9) 16.3± 19.1 (55.5) 4.5± 2.9 (11.9) 23.7± 32.4 (102.4)
VCGM 3.1± 1.0 (5.4) 7.9± 8.1 (24.9) 3.5± 2.2 (9.6) 16.1± 21.0 (73.1) 3.6± 1.5 (7.0) 16.3± 18.3 (49.7)
ACGM 3.1± 1.0 (5.4) 1.4± 1.6 (5.5) 3.2± 1.1 (5.4) 2.0± 1.9 (6.1) 3.2± 1.1 (5.4) 2.7± 3.5 (12.1)

The maximum incremental displacement range [ULow, UHigh] simplifies the cor-
rect setting of the compliance Mahalanobis thresholds. This allowed to use constant
parameters (ULow and UHigh) to match correctly a diverse set of synthetic defor-
mations, making ACGM very robust and efficient.

V.4.2 Experiments on real data

From the two porcine liver datasets (PA and PB), each dataset has one preoperative
CTA image and one intra-operative CBCT image which was acquired under large
deformation. In both modalities the portal vein is visible and from each modality
a graph is extracted as indicated in Chapter III. It is important to notice that the
CBCT image has fewer portal vessel branches visible than the CTA and several
false branches were segmented due to noise (as shown in Fig. I.5 and Section III.3).

The portal veins graphs are matched to register the CTA data onto the CBCT
to augment it. For instance, the hepatic vein is not visible in the CBCT and
fusing it from the CTA is clinically useful. The number of CT/CBCT portal vein
bifurcations is for PA=60/47 and PB=39/36 as shown in Table III.2. The number
of bifurcations is similar in both modalities because of CBCT noise, there are several
false bifurcations (most of the non-matched yellow cubes in the second row of Fig.
V.12). The TRE is computed using reliable and unambiguous manually selected
landmarks (37 for PA, while 22 for PB), as described in IV.5.2.

The Table V.3 presents the registration results for each dataset. First, using
the matches obtained with the iGPR initialization, the rigid RE quantifies the
nonlinear deformation magnitude. Similarly, the first row of Fig. V.12 depicts
this deformation. From this iGPR initialization, matching was repeated 10 times
per method with increasing Mahalanobis thresholds to find the optimal. All these
matchings are not needed during a normal registration and are only used to provide
a meaningful comparison. On average for the real datasets, ACGM has 2.34 mm
and 0.58 mm better RE than BGM and VCGM, respectively. Moreover, ACGM
is 43.4 and 18.05 minutes faster than BGM and VCGM, respectively. ACGM is
about 12 times faster than BGM and significantly improves the RE. While the RE
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Porcine CBCT and CTA registration

Figure V.12: The target CBCT (in pink) and source CTA (in cyan) portal vein graphs
are rendered with tubular structures. The graph nodes (bifurcations) are shown as cubic
markers (in yellow for the target, cyan for the source and green for the matched). The aug-
mented hepatic vein, which was only visible in the CTA image, is in transparent blue behind
the portal veins graphs. In the left and right columns are the PA and PB porcine datasets,
respectively. The first row shows the 37 (for PA) and 22 (for PB) target evaluation land-
marks (red spheres). It also shows the corresponding connected source landmarks (green
spheres) and the liver structures rigidly aligned. These depict the large intra-operative
non-linear deformation. The second and third row show the result of ACGM after the fine
biomechanical matching fineBGM. They also show the 16 (for PA) and 11 (for PB) eval-
uation landmarks with an error larger than 3 mm. The third row shows the transformed
source portal vein used for matching (in cyan), instead of the augmented liver.
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Table V.3: Matching results for the BGM, VCGM and ACGM with a rigid initialization
as deformation reference.

Porcine Matching Number RE [mm] time
dataset Method of matches µ± σ(max) [min]

PA iGPRRigid 6 9.46±11.93 (65.3) 2.1
BGM 20 5.38±9.76 (58.4) 39.3

37 landmarks VCGM 22 4.63±4.76 (20.8) 8.5
ACGM 22 4.67±4.76 (21.1) 1.1

PB iGPRRigid 4 13.71±8.10 (33.6) 0.42
BGM 11 7.61±7.34 (25.1) 55.6

22 landmarks VCGM 15 4.84±3.56 (15.3) 35.7
ACGM 15 3.71±2.23 (7.6) 7.0

difference in between the compliance methods is small, ACGM is much faster than
VCGM.

Globally, ACGM correctly registers the two trees, except for few leaf vessels in-
side the red ellipse in Fig.V.12c. These few vessels are not well transformed because
the corresponding bifurcations are missing in the target segmentation. These errors
can be solved after the coarse bifurcation matching presented here, by using the
end points of vessels together with the fine matching to improve the registration of
high deformation edges.

Influence of the segmentation of the vessels

Different pre-processing parameters are used to obtain four sets of graphs from a
partial side of the PA dataset. Since only a partial side was used, the RE was
evaluated only in 28 landmarks (two inserted tumors, 13 distinctive points and 13
bifurcations). Using these graphs sets, the influence of the pre-processing steps on
the matching methods is studied.

As before, the optimal Mahalanobis threshold per method was searched from
ten different increasing thresholds matchings. The second part of Table V.4 shows
the optimal result of each method. For a majority of experiments, ACGM was
faster, maintaining or even improving the RE. Only in experiment C (4th column
of Table V.4), the ACGM matching time was about the same as for BGM. However,
here the ACGM maximum RE is 3.4 mm better than for BGM.

The third part of Table V.4 shows the results obtained with the highest Ma-
halanobis thresholds used. From the optimal threshold to the highest used, BGM
increases the 4 segmentations matching time an average of 28.3 minutes. While,
the ACGM average matching time only increases 6.6 minutes.
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The fourth part of Table V.4 shows the results using the UTH parameters to set
the Mahalanobis thresholds. VCGM needs higher matching time than ACGM, up
to the point that VCGM did not complete experiments C and D (marked with ’-’)
as they exhausted the available RAM memory. ACGM using the UTH threshold
selection is faster than the optimal MCTH , the average for the 4 segmentations is
14.6 minutes faster. While, the UTH selection average RE is only 0.2mm larger
than the optimal MC threshold.

Table V.4: Matching results evaluated on 28 landmarks of four different preprocessed
graphs (obtained from real porcine data PA).

A | ~XS |=28, | ~XT |=27 B | ~XS |=40, | ~XT |=27 C | ~XS |=40, | ~XT |=33 D | ~XS |=40, | ~XT |=34
match Mah RE [mm] time Mah RE [mm] time Mah RE [mm] time Mah RE [mm] time
Func Th µ± σ (max) [min] Th µ± σ (max) [min] Th µ± σ (max) [min] Th µ± σ (max) [min]

optimal Mahalanobis threshold

BGM 1.6 2.9± 1.7 (8.2) 7.6 1.6 3.3± 2.2 (7.9) 10.1 1.4 5.5± 4.1 (15.2) 31.3 1.8 3.1± 2.3 (8.4) 98.2
VCGM 4.4 2.9± 1.7 (8.3) 6.3 4.5 3.3± 2.3 (8.4) 5.0 3.4 5.4± 4.0 (14.9) 6.2 4.2 3.0± 2.4 (8.1) 32.4
ACGM 3.9-6.6 2.9± 1.7 (8.3) 3.6 4.2-6.2 3.3± 2.2 (7.3) 4.7 3.9-4.8 5.1± 3.4 (12.6) 32.7 4.2-6.2 2.9± 2.2 (7.4) 42.4

Highest Mahalanobis threshold

BGM 2.8 2.9± 1.7 (8.2) 27.9 2.4 3.3± 2.2 (7.9) 50.4 1.7 5.5± 3.9 (15.2) 84.0 1.8 3.1± 2.3 (8.4) 98.2
VCGM 7.0 2.9± 1.7 (8.3) 21.9 6.4 3.3± 2.3 (8.4) 18.9 4.1 5.5± 3.9 (14.8) 27.6 4.5 3.0± 2.4 (8.1) 45.6
ACGM 5.0-7.2 2.9± 1.7 (8.3) 8.6 5.0-7.2 3.3± 2.2 (7.3) 12.6 3.9-4.8 5.1± 3.4 (12.6) 32.7 4.5-6.6 2.9± 2.2 (7.4) 55.8

Set MC threshold UTH=16 mm, UHigh=17 mm, and ULow 9mm

VCGM 4.8 2.9± 1.7 (8.3) 6.3 4.9 3.3± 2.4 (8.5) 10.0 5.8 -± - (-) - 4.9 -± - (-) -
ACGM 2.7-5.1 2.9± 1.7 (8.3) 0.6 2.8-5.2 3.4± 2.4 (8.6) 1.24 3.3-6.2 5.5±3.9 (14.8) 17.3 2.8-5.2 3.3± 2.1 (8.5) 5.8

Influence of geodesic distance accuracy

Using the graphs from previous experiments A and B, ten matchings are done to
evaluate the geodesic influence. Fig. V.13 shows the results using increasing geodesic
(GTH) and constant Mahalanobis thresholds. When GTH is increased, the VCGM
and ACGM methods do not increase the search time as much as BGM.

Due to image noise and pre-processing, the geodesic distance is inaccurate in
real data. These inaccuracies represent a problem for BGM, because a small GTH
does not allow to match inaccurate geodesic bifurcations (e.g. when GTH<25%
in Fig. V.13.b). An important advantage of the compliance methods is that the
dependence on the geodesic constraint is reduced. This allows to use GTH = 40%
with ACGM, which in experiment B finds an extra correct match and reduces the
RE to 2.9 mm.

Porcine 3DUS and CTA registration

A pre-operative CTA is registered into one intra-operative 3DUS porcine image us-
ing the iGPR, BGM, VCGM and ACGM algorithms. These matching methods are
evaluated with the RE measured from reliable manually selected landmarks which
are visible in both modalities. These landmarks include distinctive vessel points
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Geodesic influence on porcine CBCT and CTA matching

Figure V.13: Geodesic dependence of the RE and matching time on two different prepro-
cessed graphs. BGM increases drastically the matching time with higher geodesic threshold
(GTH). While, the compliance methods depend less on the geodesic constraint.

and bifurcations (11 and 24 from the portal and hepatic portal veins, respectively).
Two graphs datasets (PBUP and PBUH described in Section III.3.4) are used for
the registration of these images, first matching the portal graphs dataset (PBUP )
and then the hepatic one (PBUH).

The first part of the Table V.5 shows the registration results for the PBUP
dataset. The CTA and 3DUS portal vein graphs of this dataset have 66 and 41
bifurcations, respectively. The pipeline starts with the iGPR matching, from this
initialization the rigid RE and the alignment in the first column of Fig. V.14
depict the nonlinear deformation. Then from this iGPR initialization, matching
was repeated 10 times per method with increasing Mahalanobis thresholds to find
the optimal and only used to provide a meaningful comparison. ACGM is about 3
times faster than BGM and significantly improves the RE. While the ACGM has
slightly better RE and 3 more bifurcations matched than VCGM, moreover is 2
minutes faster.

The second part of Table V.5 shows the registration results for PBUH . The pre
and intra-operative hepatic vein graphs of this dataset have 118 and 75 bifurcations,
respectively. These graphs are matched using the previous portal vein ACGM
results as initialization. The hepatic graphs matched with ACGM in only 3.17
minutes and reduce the RE to 4.71 mm. This combined portal and hepatic graphs
matching result after the fineACGM alignment is shown in right column of Fig.
V.14. Despite the large difference in field of view size, both pre and intra-operative
graphs have similar number of bifurcation. This is because the 3DUS data graph is
very noisy, as shown with the non matched hepatic noisy bifurcation (yellow cubes)
in Fig. V.14.b. Besides the much smaller 3DUS field of view, the Fig. V.14.c shows
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Porcine 3DUS and CTA registration

Figure V.14: The pre-operative CTA data is registered into the intra-operative 3DUS.
Specifically, in the left and right columns are the rigid and the fine biomechanical matching
fineACGM results, respectively. For both registrations, the 35 source (green spheres) and
their corresponding connected target (red spheres) evaluation landmarks are shown. In
the first row, the target US (in pink) and source CTA (in cyan) hepatic vein graphs (from
PBHU dataset) are rendered with tubular structures. Also, the graph nodes (bifurcations)
are shown as cubic markers (in yellow for the target, cyan for the source and green for
the matched). In the second row, the US field of view (toroidal section in transparent
green) and the target portal vein (in pink) are rendered. In the left column, the rigid
registration depicts the large intra-operative non-linear deformation. Especially the area
inside the red ellipses, in a) the large distance in between the evaluation landmarks and in
c) the misaligned source portal vein. In the right column, the fineACGM matching depicts
the reduction of landmarks intra-operative error. In b) the hepatic main vessels have good
aliment despite the noisy bifurcations (mostly the non matched cubes in yellow). In d)
deformation is accurately recovered as shown by realistic bending of the liver surface inside
the US FoV (inside the green ellipse) and the good alignment of the pre and intra-operative
portal main vessel.
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Table V.5: Matching results for the BGM, VCGM and ACGM with a rigid initalialization
as deformation reference.

Porcine Matching Number RE [mm] time
dataset Method of matches µ± σ(max) [min]

PBUP
iGPRRigid 4 9.97 ± 4.53 (22.3) 2.4

BGM 8 7.22 ± 5.59 (28.4) 39.2
35 landmarks VCGM 9 6.84±5.52 (26.7) 14.1

ACGM 12 6.74±5.19 (24.3) 12.7

PBUH & PBUP ACGM 12 & 10 4.71 ± 4.03 (20.33) 3.17

intra-operative large deformation due to open surgery 3DUS acquisition. Finally,
the Fig. V.14.c shows how the ACGMmatching overcomes this large intra-operative
deformation.

It is hard to directly set the optimal Mahalanobis compliance thresholds. In
VCGM, UTH removes the initialization and FE model dependency. However, it
still depends on the deformation magnitude, incremental hypotheses generation
and scale. A large UTH finds a correct match but increases the matching time.
ACGM allows to overestimate UHigh to guarantee the correct solution and thanks
to the rigid-to-soft approach it increases minimally the matching time. This allowed
to set an approximate range that matched efficiently a wide variety of experiments.
That’s why ACGM is considered better than VCGM.
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VI
General conclusion

VI.1 Conclusion

Multi-modality deformable registration has the potential to augment non-visible
anatomical structures in the intra-operative imaging which is a very important
clinical need. For example, accurate registration could allow surgeons to reach
small vessels and tumors during image guided procedures, like TACE.

Among the wide variety of registration methods, graph matching is a promising
approach to properly fuse pre-operative data into a intra-operative highly deformed
vascular images. As starting point, several real and synthetic experiments with the
state-of-the-art GPR graph matching (Serradell et al., 2015) showed high compu-
tation time and low registration accuracy.

The two novel biomechanical graph matching methods proposed in this thesis
progressively dealt with these limitations. First, BGM reduced the registration
error (RE) by using an efficient FE simulation, however the matching time is still
high specially in the common intra-operative presence of noise.

ACGM, the second contribution proposed, reduced the matching time while
maintaining or even improving the RE, being up to one order of magnitude faster
than BGM. ACGM was successful even under very large deformations while using
an automatic segmentation method on two porcine liver CT/CBCT dataset. All
the parameters of the algorithm are easy to set and can work correctly in a wide
range of scenarios. This robustness was also demonstrated by adding several levels
of noise and deformations in the synthetic datasets. The efficient ACGM method
handles a large number of noise bifurcations, still maintaining the matching time
within acceptable intra-operative constraints. This alleviates the need of low noise
intra-operative automatic image segmentation.

These results are promising but further evaluation is required to validate the
in-vivo applicability. First, the impact of different image acquisition conditions (res-
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olution, contrast injection or artifacts) should be studied. Second, experiments on
larger human datasets are required to prove the clinical importance. Although the
clinical set-up is relatively common, collecting a large dataset with sufficient expert
manual ground truth (to quantify registration error) requires significant amount of
work.

This work paves the way towards augmented reality applications on highly de-
formable vascularized organs. Besides CBCT, ACGM can match other imaging
modalities as long as enough vessels are correctly segmented. For example, ACGM
was able to correctly register CTA into a good 3DUS acquisition, as the one pre-
sented in the experiments. The compliance filtering reduces the dependence on
geodesic constraints, and this allowed to match noisier graphs with large topology
variations.

VI.2 Perspectives

There still remains non trivial registration error in some parts that lack bifurcations
to guide the matching. This can be improved by matching end points into graph
edges before or during the fine matching. According to the clinical gesture, other
constraints (visible anatomical landmarks such as the liver surface) can be added
as extra features to improve the registration.

It is not common to have complete good 3DUS acquisitions as the one matched
in the experiments. The quality and the number of vessels visible in 3DUS is vari-
able and its segmentation usually have disconnected branches. These issues highly
increase the combinatory of the matching problem. Even if the hypotheses explo-
ration is reduced with the efficient compliance-based search and ACGM perform
better than other methods, the matching time of disconnected noisy graphs would
still be incompatible with intra-operative constraints. The need of good 3DUS ac-
quisitions for registration can be removed using a faster implementation of ACGM
with parallel implementations and/or faster mechanical models (Brunet et al.). Be-
sides been also very efficient, more complex elastic models (Brunet et al., 2019)
could also be used to improve the registration quality.
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