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Types union, intersection, et dépendants

dans le lambda-calcul explicitement typé

Résumé :
Le sujet de cette thèse est sur le lambda-calcul décoré avec des types, communément

appelé « lambda-calcul typé à la Church ». Nous étudions des versions de ce lambda-
calcul muni de types intersections, tels que ceux décrits dans le livre « Lambda-calculus
with types » de Barendregt, Dekkers et Statman ; les types unions, qui ont été introduits
par Plotkin, MacQueen et Sethi ; et les types dépendants, tels qu’ils ont été décrits par
Plotkin, Harper et Honsell lorsqu’ils ont introduit le Logical Framework d’Edinbourgh LF.
Les types intersections et unions sont un moyen d’exprimer du polymorphisme ad hoc et
sont une alternative au polymorphisme paramétrique de Girard. Les types dépendants ont
été introduits pour formaliser la logique intuitionniste avec la correspondance de Curry-
Howard. Le système de types obtenu peut être enrichi avec une relation de soutypage
décidable. La combinaison de ces trois disciplines de type donne lieu à une famille de
calculs qui peuvent être paramétrés et classifiés. Nous appelons le système générique le
Delta-calcul. Nous discutons ensuite des décisions de conception qui nous ont amené à
la formulation de ces calculs, nous étudions leur métathéorie, et nous présentons divers
exemples d’applications avant de présenter une implémentation logicielle du Delta-calcul,
avec une description des algorithmes de vérification de type, de raffinement, de soutypage,
d’évaluation, ainsi que de l’interface en ligne de commande. Ce travail de recherche peut
être vu comme un petit pas franchi dans la direction d’une théorie des types alternative
pour définir du polymorphisme dans les langages de programmation et dans les assistants
de preuve interactifs.

Mots clés : lambda-calcul, théorie des types, correspondance de Curry-Howard.





Combining union, intersection and dependent

types in an explicitely typed lambda-calculus

Abstract:
The subject of this thesis is about lambda-calculus decorated with types, usually

called “Church-style typed lambda-calculus”. We study this lambda-calculus enhanced
with Intersection types, as described by Barendregt, Dekkers and Statman in the book
“Lambda-calculus with Types”; Union types, as introduced by Plotkin, MacQueen and
Sethi; and Dependent types, as described by Plotkin, Harper and Honsell when they
introduced the Edinburgh Logical Framework LF. Intersection and union types are a way
to express ad hoc polymorphism and are an alternative to the parametric polymorphism of
Girard. Dependent types were introduced as a way to formalize intuitionistic logic using
the “proofs-as-lambda-terms / formulae-as-types” Curry-Howard principle. The resulting
type system can be enriched with a decidable subtyping relation. Combining these three
type disciplines gives rise to a family of calculi that can be parametrized and classified: we
call the resulting system the Delta-calculus. We then discuss the design decisions which
have led us to the formulation of these calculi, study their metatheory, and provide various
examples of applications; and we finally present a software implementation of the Delta-
calculus, with a description of the type checker, the refinement algorithm, the subtyping
algorithm, the evaluation algorithm and the command-line interface. This work can be
understood as a little step toward an alternative type theory to defining polymorphic
programming languages and interactive proof assistants.

Keywords: lambda-calculus, type theory, Curry-Howard correspondence.
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Chapter 1
Introduction

“That logic has advanced in this sure course, even from the earliest times, is
apparent from the fact that, since Aristotle, it has been unable to advance a single
step and, thus, to all appearance, has reached its completion.”

Immanuel Kant, Preface to the second edition of The Critique of Pure Reason, 1787

1.1 Prolegomenon
When George Boole wroteMathematical Analysis of Logic in 1847 [19], he modestly aimed
at an algebraic clarification of Aristotelian logic, and did not immediately realize his work
was the beginning of a deep change in the study of mathematics which would later trigger
the foundational crisis of mathematics.

In 1903, Bertrand Russell [85], in The Principles of Mathematics1, opened a Pandora’s
box when he considered “predicates which are not predicable of themselves”2. As it is
widely known nowadays, Russell’s contradiction – a modern version of the liar’s paradox
– consists of defining a predicate P (x)

def
= ¬x(x), and deducing both P (P ) and ¬P (P ).

In order to circumvent this contradiction, Russell introduced, in the Appendix B of the
same book, the Doctrine of Types :

“The doctrine of types is here put forward tentatively, as affording a possible
solution of the contradiction [. . . ]. Every propositional function φ(x) – so it
is contended – has, in addition to its range of truth, a range of significance,
i.e. a range in which x must lie if φ(x) is to be a proposition at all, whether
true or false. This is the first point in the theory of types; the second point
is that ranges of significance form types, i.e. if x belongs to the range of
significance of φ(x), then there is a class of objects, the type of x, all of
which must also belong to the range of significance of φ(x).”

This general idea set the foundation of the (many) theories of types, which were
widely developed during the course of the twentieth century. In 1934, Haskell Curry was
“concerned with statements [. . . ] of the form "f is a function on X to Y "” [31]. Haskell

1Not to be confused with Principia Mathematica, which he wrote with Alfred Whitehead from 1910
to 1913.

2In Section 78, simply called “The contradiction”.

1



2 CHAPTER 1. INTRODUCTION

Curry, and later William Howard, discovered that rules determining that a function has
some type where very similar to logical rules determining that a proof shows the validity of
some proposition. The proofs-as-functions/propositions-as-types principle is now known
as the Curry-Howard correspondence [58].

In short, types are a tool used to give a notion of a well-formed expression:

– we can use types to describe well-formed propositions and proofs;

– we can use types to describe well-formed computable functions.

Among the most impactful developments from the previous century of type theory as
a foundation for mathematics, we can cite Automath by N. G. de Bruijn [34], the first
theorem prover, whose development started in the sixties, the intuitionistic type theory
of Per Martin-Löf [69], and finally the Calculus of (Inductive) Constructions by Thierry
Coquand, Gérard Huet [30], Frank Pfenning, and Christine Paulin-Mohring [76], which is
the theoretical foundation of the Coq theorem prover [36].

The model of computation which is the most associated with type theory is the λ-
calculus, this language developed by Alonzo Church in the thirties. The pure λ-calculus
has two basic operations:

1. the first one is application, simply noted with a space: the expression MN denotes
the function M applied to its argument N ;

2. the second one is λ-abstraction, noted with the binder λ: the expression λx.M
denotes a function taking x as an argument and returning the expressionM (possibly
containing occurrences of x).

We can see λ-abstraction as a function constructor, and application as a function elimi-
nator. Combining λ-abstraction and application gives two computational rules:

(β) (λx.M)N reduces toM [N/x], i.e. all the free occurrences of x inM are substituted
by N . This is the elimination of the construction of a function, and it is called a
β-reduction;

(η) λx.M x reduces toM if x is not free inM . This is the construction of the elimination
of a function, and it is called an η-reduction.

We can also assign type to terms. Intuitively:

– in the λ-calculus à la Curry: we assign a type to a pure λ-term. For the simply-typed
λ-calculus, we get the following rules for λ-abstraction and application:

Γ, x:σ `M : τ

Γ ` λx.M : σ → τ
(→I) Γ `M : σ → τ Γ ` N : σ

Γ `M N : τ
(→E)

As you can see, stating that M has σ → τ intuitively means that M is a function
on σ to τ ;

– in the λ-calculus à la Church: we decorate a λ-term with types, typically the λ-
abstraction becomes λx:σ.M , where we explicitly state that x has type σ. For the
simply-typed λ-calculus, we get the following rules for λ-abstraction and application:

Γ, x:σ `M : τ

Γ ` λx:σ.M : σ → τ
(→I) Γ `M : σ → τ Γ ` N : σ

Γ `M N : τ
(→E)
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Among the many type systems for the λ-calculi, intersection is an interesting connec-
tive (see Henk Barendregt, Wil Dekkers, and Richard Statman [12] : intuitively, if some
term M has both type σ and type τ , then we say it is polymorphic and it has type σ ∩ τ ,
as the derivation rules show:

Γ `M : σ Γ `M : τ
Γ `M : σ ∩ τ (∩I) Γ `M : σ ∩ τ

Γ `M : σ
(∩E1) Γ `M : σ ∩ τ

Γ `M : τ
(∩E2)

The dual connective of intersection, namely union (see David MacQueen, Gordon
Plotkin, and Ravi Sethi [68]), states that if M has type σ or τ , then it has type σ ∪ τ , as
the derivation rules show:

Γ `M : σ
Γ `M : σ ∪ τ (∪I1) Γ `M : τ

Γ `M : σ ∪ τ (∪I2)

Γ, x:σ `M : ρ
Γ, x:τ `M : ρ Γ ` N : σ ∪ τ

Γ `M [N/x] : ρ
(∪E)

1.2 Contributions
The subject of this thesis is to study intersection and union types in λ-calculi à la Church,
with two goals:

1. finding a λ-calculus à la Church with intersection and union types which is faithful
to the corresponding pure λ-calculi à la Curry;

2. conceiving and implementing a logical framework based on intersection and union
types.

Building a λ-calculus à la Church with intersection and union types

Designing a λ-calculus à la Church with intersection and union types is challenging. The
usual approach of simply adding types to binders does not work, as shown here:

x:σ ` x:σ
(Var)

` λx:σ.x:σ → σ
(→I) x:τ ` x:τ

(Var)

` λx:τ .x:τ → τ
(→I)

` λx:???.x:(σ → σ) ∩ (τ → τ)
(∩I)

Same difficulties can be found with union types. In this thesis we propose a solution to
this challenge by designing a λ-calculus à la Church, called the ∆-calculus (see Chapters 2
and 3). In a nutshell: each term of the ∆-calculus has a corresponding pure λ-term, called
its essence. Intersection types are constructed with strong pairs, a cartesian pair which
ensures both its components share the same essence. Dually, union types are constructed
with strong sums, whose original feature is that it ensures both cases of its elimination
share the same essence.

Building a logical framework based on intersection and union types

We have designed a logical framework based on proof-functional logic (see Chapter 6),
and using dependent types as in the Edinburgh Logical Framework [52]. In a nutshell:

- Strong disjunction is a proof-functional connective that can be interpreted as the
union type ∪ [39, 88]: it contrasts with the intuitionistic connective ∨. As Pottinger [80]
did for intersection, we could say that asserting (A ∪ B) ⊃ C is to assert that one has a
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reason for (A ∪ B) ⊃ C, which is also a reason to assert A ⊃ C and B ⊃ C. A simple
example of a logical theorem involving intuitionistic disjunction which does not hold for
strong disjunction is ((A ⊃ B)∪B) ⊃ A ⊃ B. Otherwise there would exist a term which
behaves both as I and as K.

- Strong (relevant) implication is yet another proof-functional connective that was
interpreted in [8] as a relevant arrow type →r. As explained in [8], it can be viewed as
a special case of implication whose related function space is the simplest one, namely
the one containing only the identity function. Because the operators ⊃ and →r differ,
A→r B →r A is not derivable.

- Dependent types, as introduced in the Edinburgh Logical Framework [52] by Robert
Harper, Furio Honsell, and Gordon Plotkin, allows considering proofs as first-class citi-
zens, albeit differently, with respect to proof-functional logics. The interaction of both
dependent and proof-functional operators is intriguing. Their combination opens up new
possibilities of formal reasoning on proof-theoretic semantics.

We have also implemented a prototype of an interactive theorem prover based on
this logical framework, called Bull. For instance, the following code snippet shows the
implementation of a polymorphic identity on A and B, using a strong pair, which ensures
that id1 and id2 have the same essence.

Definition poly_id : (A −> A) & (B −> B) :=
let id1 x := x in
let id2 x := x in
< id1, id2 >.

Organization of this thesis

This thesis is organized as follows:

- Chapter 2 presents a generic ∆-calculus, i.e. a generic typed λ-calculus with inter-
section types. We study some of its instances and their properties, as well as their
relation with standard λ-calculus with intersection types;

- Chapter 3 extends the previous ∆-calculus with union types, and defines a typed λ-
calculus λ@BDdL, and recalls the original λ-calculus [7] these new systems are inspired
from;

- Chapter 4 sketches the logical interpretation of intersection and union types. More
precisely, we define an interpretation of typing judgments M : σ into a first-order
logical proposition rσ[M ] in the logic NJ(β);

- Chapter 5 defines a subtyping algorithm for intersection and union types. This
algorithm is then fully implemented and certified in Coq. We detail the Coq imple-
mentation;

- Chapter 6 extends the ∆-calculus by adding dependent types, in the style of the
Edinburgh Logical Framework (LF). We call the resulting system the ∆-framework
LF∆, and we prove its metatheoretical properties;

- Chapter 7 presents an OCaml implementation of the ∆-framework into an inter-
active theorem prover, called Bull. The technical details of the implementation
(syntax, semantics, typechecking, and Read-Eval-Print loop) are described;
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- Chapter 8 presents some examples of encodings in the ∆-framework, as well as their
implementation in Bull.

Publications

During the course of my thesis, I published the following conference papers:

– Luigi Liquori and Claude Stolze. The Delta-calculus: Syntax and Types. In 4th
International Conference on Formal Structures for Computation and Deduction,
FSCD 2019, pages 28:1–28:20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
June 2019. [66]

– Furio Honsell, Luigi Liquori, Ivan Scagnetto, and Claude Stolze. The Delta-framework.
In 38th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2018, pages 37:1–37:21. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, December 2018. [57]

– Luigi Liquori and Claude Stolze. A Decidable Subtyping Logic for Intersection and
Union Types. In 2nd International Conference on Topics in Theoretical Computer
Science, TTCS 2017, pages 74–90. Springer, September 2017. [65]

– Claude Stolze, Luigi Liquori, Furio Honsell, and Ivan Scagnetto. Towards a Logical
Framework with Intersection and Union Types. In 11th International Workshop on
Logical Frameworks and Meta-languages, LFMTP 2017, pages 1–9. ACM, Septem-
ber 2017. [88]

– Daniel J. Dougherty, Ugo de’Liguoro, Luigi Liquori, and Claude Stolze. A Realiz-
ability Interpretation for Intersection and Union Types. In Programming Languages
and Systems – 14th Asian Symposium, APLAS 2016, pages 187–205. Springer, Oc-
tober 2016. [39]

Software

During the course of my thesis, I developed a prototype of an interactive theorem prover
implementing the ∆-framework, called Bull [87].

1.3 Related works
In order to foster the imagination of the reader about the topic we will study in this
thesis, we shortly present works related to our field of interest.

λ-calculi with intersection types à la Curry

Intersection type theories T were first introduced as a form of ad hoc polymorphism in
(pure) λ-calculi à la Curry. The paper by Barendregt, Coppo, and Dezani [11] is a classic
reference, while [12] is a definitive reference.

Intersection type assignment systems λT∩ have been well-known in the literature for
almost 40 years for many reasons: among them, characterization of strongly normalizing
λ-terms [12], λ-models [4], automatic type inference [60], type inhabitation [92, 82], type
unification [43]. As intersection had its classical development for type assignment systems,
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many papers tried to find an explicitly typed λ-calculus à la Church corresponding to the
original intersection type assignment systems à la Curry. The programming language
Forsythe, by Reynolds [83], is probably the first reference, while Pierce’s Ph.D. thesis
[77] combines also unions, intersections and bounded polymorphism. Wells et al. [95]
use intersection types as a foundation for typed intermediate languages for optimizing
compilers for higher-order polymorphic programming languages; implementations of typed
programming language featuring intersection (and union) types can be found in CDuce
[49, 50], SML-CIDRE [33], and in StardustML [44, 45].

Intersection and union type disciplines started to be investigated in a explicitly typed
programming language settings à la Church, much later by Reynolds and Pierce [83, 77],
Wells et al. [95, 96], Liquori et al. [64, 40], Frisch et al. [50] and Dunfield [45].

λ-calculi with intersection types à la Church

Several calculi à la Church appeared in the literature: they capture the power of inter-
section types; we briefly review them.

The Forsythe programming language by Reynolds [83] annotates a λ-abstraction with
types as in λx:σ1|· · ·|σn.M . However, we cannot type a typed term, whose type erasure
is the combinator K ≡ λx.λy.x, with the type (σ → σ → σ) ∩ (τ → τ → τ).

Pierce [78] improves Forsythe by using a for construct to build ad hoc polymorphic
typing, as in forα ∈ {σ, τ}.λx:α, λy:α.x. However, we cannot type a typed term, whose
type erasure is λx.λy.λz.(x y, x z), with the type [96]:

((σ → ρ) ∩ (τ → ρ′)→ σ → τ → ρ× ρ′) ∩ ((σ → σ) ∩ (σ → σ)→ σ → σ → σ × σ)

Freeman and Pfenning [48] introduced refinement types, that is types that allow ad hoc
polymorphism for ML constructors. Intuitively, refinement types can be seen as sub-
types of a standard type: the user first defines a type and then the refinement types of
this type. The main motivation for these refinement types is to allow non-exhaustive
pattern matching, which becomes exhaustive for a given refinement of the type of the
argument. As an example, we can define a type boolexp for boolean expressions, with
constructors True, And, Not and Var, and a refinement type ground for boolean expres-
sions without variables, with the same constructors except Var: then, the constructor
True has type boolexp ∩ ground, the constructor And has type (boolexp ∗ boolexp →
boolexp) ∩ (ground ∗ ground → ground) and so on. However, intersection is meaningful
only when using constructors.

Wells et al. [95] introduced λCIL, a typed intermediate λ-calculus for optimizing com-
pilers for higher-order programming languages. The calculus features intersection, union
and flow types, the latter being useful to optimize data representation. λCIL can faithfully
encode an intersection type assignment derivation by introducing the concept of virtual
tuple, i.e. a special kind of pair whose type erasure leads to exactly the same untyped
λ-term. A parallel context and parallel substitution, similar to the notion of [63, 64],
is defined to reduce expressions in parallel inside a virtual tuple. Subtyping is defined
only on flow types and not on intersection types: this system can encode the λCD

∩ type
assignment system.

Wells and Haak [96] introduced λB, a more compact typed calculus encoding of λCIL:
in fact, by comparing Figure 1 and Figure 2 of [96] we can see that the set of typable
terms with intersection types of λCIL and λB are the same. In that paper, virtual tuples
are removed by introducing branching terms, typable with branching types, the latter
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representing intersection type schemes. Two operations on types and terms are defined,
namely expand, expanding the branching shape of type annotations when a term is sub-
stituted into a new context, and select, to choose the correct branch in terms and types.
As there are no virtual tuples, reductions do not need to be done in parallel. As in [95],
the λCD

∩ type assignment system can be encoded.
Frisch, Castagna, and Benzaken [50] designed a typed system with intersection, union,

negation and recursive types. The authors inherit the usual problem of having a domain
space D that contains all the terms and, at the same time, all the functions from D to
D. They prevent this by having an auxiliary domain space which is the disjoint union of
D2 and P(D2). The authors interpret types as sets in a well-suited model where the set-
inspired type constructs are interpreted as the corresponding to set-theoretical constructs.
Moreover, the model manages higher-order functions in an elegant way. The subtyping
relation is defined as a relation on the set-theoretical interpretation J−K of the types.
For instance, the problem σ ∩ τ 6 σ will be interpreted as JσK ∩ JτK ⊆ JσK, where ∩
becomes the set intersection operator, and the decision program actually decides whether
(JσK ∩ JτK) ∩ JσK is the empty set.

Bono et al. [18] introduced a relevant and strict parallel term constructor to build
inhabitants of intersections and a simple call-by-value parallel reduction strategy. An
infinite number of constants cσ⇒τ is applied to typed variables xσ such that cσ⇒τ xσ
is upcasted to type τ . It also uses a local renaming typing rule, which changes type
decoration in λ-abstractions, as well as coercions. Term synchronicity in the tuples is
guaranteed by the typing rules. The calculus uses van Bakel’s strict version [93] of the
TCD intersection type theory.

λ-calculi with intersection and union types

Union types were introduced as a dual of intersection by MacQueen, Plotkin, and Sethi
[68]: Barbanera, Dezani, and de’Liguoro [7] is a definitive reference (see Figure 3.1); Frisch,
Castagna, and Benzaken [50] designed a type system with intersection, union, negation,
and recursive types whose semantics fits the intuitive behaviour of the corresponding
set-theoretical constructs.

A classical example of the expressiveness of union types, due to Pierce [77], is shown
in Figure 1.1. Without union types, the best information we can get for (Is_0Test) in
this example is a boolean type.

Test def
= if b then 1 else−1 : Pos ∪Neg

Is_0 : (Neg → F ) ∩ (Zero→ T ) ∩ (Pos→ F )

(Is_0 Test) : F

Figure 1.1: Pierce’s code

Algorithm for subtyping intersection and union types

Intersection and union types have an intuitive notion of subtyping. For instance, a term
M of type σ ∩ τ has also type σ and type τ , therefore σ ∩ τ 6 σ and σ ∩ τ 6 τ . Hindley
was the first to give a subtyping algorithm for intersection types [54]. There is a rich
literature reducing the subtyping problem in presence of intersection and union to a set
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constraint problem: good references are [32, 1, 46, 50]. For instance, Aiken and Wimmers
[2] designed an algorithm whose input is a list of set constraints with unification variables,
usual arrow types, intersection, complementation, and constructor types. Their algorithm
first rewrites types in disjunctive normal form, then simplifies the constraints until it
shows the system has no solution, or until it can safely unify the variables. Rewriting in
disjunctive normal form makes this algorithm exponential in time and space in the worst
case.

Logical interpretation of intersection and union types

Mints [71] presented a logical interpretation of strong conjunction using realizers : the
logical predicate rA∩B[M ] is true if the pure λ-term M is a realizer (also read as “M is
a method to assess A ∩ B”) for both the formulæ rA[M ] and rB[M ]. Inspired by this,
Barbanera and Martini tried to answer the question of realizing other proof-functional
connectives, like strong implication, López-Escobar’s strong equivalence, or Bruce, Di
Cosmo, and Longo provable type isomorphism [20].

Pfenning work on refinement types [74] pioneered an extension of Edinburgh Logical
Framework with subtyping and intersection types. Dezani-Ciancaglini, Ghilezan, and
Venneri [37] investigated a Curry-Howard interpretation of intersection and union types
(for Combinatory Logic): using the well-understood relation between combinatory logic
and λ-calculus, they encode type-free λ-terms into suitable combinatory logic formulæ
and then type them using intersection and union types.

Strong connectives arise naturally in investigating the propositions-as-types analogy
for intersection and union type assignment systems. Proof-functional (or strong) logical
connectives, introduced by Pottinger [80], take into account the shape of logical proofs,
thus allowing for polymorphic features of proofs to be made explicit in formulæ. This dif-
fers from classical or intuitionistic connectives where the meaning of a compound formula
is only dependent on the truth value or the provability of its subformulæ.

Pottinger was the first to consider the intersection ∩ as a proof-functional connective.
He contrasted it to the intuitionistic connective ∧ as follows: “The intuitive meaning of
∩ can be explained by saying that to assert A ∩ B is to assert that one has a reason for
asserting A which is also a reason for asserting B, while to assert A∧B is to assert that
one has a pair of reasons, the first of which is a reason for asserting A and the second of
which is a reason for asserting B”.

A simple example of a logical theorem involving intuitionistic conjunction which does
not hold for proof-functional conjunction is (A ⊃ A) ∧ (A ⊃ B ⊃ A). Otherwise there
would exist a term which behaves both as I and as K.

It is not immediate to extend the judgments-as-types Curry-Howard paradigm to logics
supporting proof-functional connectives. These connectives need to compare the shapes
of derivations and do not just take into account their provability, i.e. the inhabitation
of the corresponding type. There are many other proposals to find a suitable logic to fit
intersection types; among them we cite [94, 84, 72, 22, 18, 79], and previous papers by
the author [39, 65, 88]. This is still an open question that I am currently investigating.



Chapter 2
A typed calculus with intersection types

In this chapter, we define and prove the main properties of the generic ∆-calculus, a
generic intersection typed system for an explicitly typed λ-calculus à la Church enriched
with strong pairs, projections, and type coercions.

This chapter is organized as follows: in Section 2.1, we present the system. We
also give then instances of the generic ∆-calculus in a diagram called the ∆-chair. In
Section 2.2, we show a number of typable examples in the systems presented in the
∆-chair: each example is provided with a corresponding type assignment derivation of
its essence. The aims of this section is both to make the reader comfortable with the
different intersection typed systems, and to give a first intuition of the correspondence
between Church-style and Curry-style calculi. In Section 2.3, we prove the metatheory
for all the systems in the ∆-chair: Church-Rosser, unicity of type, subject reduction,
strong normalization, decidability of type checking and type reconstruction. In Section
2.4, we study the relations between intersection type assignment systems à la Curry and
the corresponding intersection typed systems à la Church. We also show how to get rid
of type coercions ∆τ defining a translation function, denoted by ‖_‖, inspired by the one
of Tannen et al. [91].

The most original feature of the generic ∆-calculus is the concept of strong pair. A
strong pair 〈∆1,∆2〉 is a special kind of cartesian product such that the two parts of a pair
satisfies a given relation R on their essence, that is o∆1 o R o∆2 o. The essence o∆ o of a
∆-term is a pure λ-term obtained by erasing type decorations, projections and choosing
one of the two elements inside a strong pair. As examples,

o 〈λx:σ ∩ τ.pr2 x, λx:σ ∩ τ.pr1 x〉 o = λx.x

oλx:(σ → τ) ∩ σ.(pr1 x)(pr2 x) o = λx.x x

oλx:σ ∩ (τ ∩ ρ).〈〈pr1 x, pr2 pr1 x〉, pr2 pr2 x〉 o = λx.x

and so on. Therefore, the essence of a ∆-term is its untyped skeleton: a strong pair
〈∆1,∆2〉 can be typechecked if and only if o∆1 o R o∆2 o is verified, otherwise the strong
pair will be ill-typed. The essence also gives the exact mapping between a term and its
typing à la Church and its corresponding term and type assignment à la Curry.

The generic ∆-calculus is parametered with the essence relation R, along with a type
theory T (see Definition 2.1). Changing the parameters T and R results in defining a
totally different intersection typed system. For the purpose of this chapter, we study
the four well-known intersection type theories T , namely Coppo-Dezani TCD [27], Coppo-
Dezani-Sallé TCDS [28], Coppo-Dezani-Venneri TCDV [29] and Barendregt-Coppo-Dezani

9
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Minimal type theory 6min

(refl) σ 6 σ (incl) σ ∩ τ 6 σ, σ ∩ τ 6 τ

(glb) ρ 6 σ, ρ 6 τ ⇒ ρ 6 σ ∩ τ (trans) σ 6 τ, τ 6 ρ⇒ σ 6 ρ

Axiom schemes

(Utop) σ 6 U (U→) U 6 σ → U

(→∩) (σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)

Rule scheme

(→) σ2 6 σ1, τ1 6 τ2 ⇒ σ1 → τ1 6 σ2 → τ2

Figure 2.1: Minimal type theory 6min, axioms and rule schemes (from Figure 13.2 and
13.3 of [12])

x:σ ∈ Γ
Γ `T∩ x : σ

(ax)
Γ, x:σ `T∩ M : τ

Γ `T∩ λx.M : σ → τ
(→I)

Γ `T∩ M : σ Γ `T∩ M : τ

Γ `T∩ M : σ ∩ τ
(∩I)

Γ `T∩ M : σ → τ Γ `T∩ N : σ

Γ `T∩ M N : τ
(→E)

Γ `T∩ M : σ ∩ τ
Γ `T∩ M : σ

(∩E1)
Γ `T∩ M : σ ∩ τ

Γ `T∩ M : τ
(∩E2)

U ∈ A
Γ `T∩ M : U

(top)
Γ `T∩ M : σ σ 6T τ

Γ `T∩ M : τ
(6T )

Figure 2.2: Generic intersection type assignment system λT∩ (from Figure 13.8 of [12])

TBCD [11]. We will inspect the above type theories using three equivalence relations R on
pure λ-terms, namely syntactical equality ≡, β-equality =β and βη-equality =βη.

The combination of the above T and R allows to define ten meaningful instances of
the generic ∆-calculus that can be displayed in the ∆-chair (see Definition 2.9).

2.1 Syntax, Reduction and Types
Definition 2.1 (Type atoms, type syntax, type theories and type assignment systems).
We briefly review some basic definition from Subsection 13.1 of [12], in order to define
type assignment systems. The set of atoms, intersection types, intersection type theories
and intersection type assignment systems are defined as follows:

1. (Atoms). Let A denote a set of symbols which we will call type atoms, and let
U be a special type atom denoting the universal type. In particular, we will use
A∞ = {ai | i ∈ N} with ai being different from U and AU

∞ = A∞ ∪ {U};

2. (Syntax). The syntax of intersection types, parametrized by A, is: σ ::= A | σ →
σ | σ ∩ σ;
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λT∩ T A 6min plus ref.

λCD
∩ TCD A∞ − [27]
λCDS
∩ TCDS AU

∞ (Utop) [28]
λCDV
∩ TCDV A∞ (→), (→∩) [29]
λBCD
∩ TBCD AU

∞ (→), (→∩), (Utop), (U→) [11]

Figure 2.3: Type theories λCD
∩ , λCDS

∩ , λCDV
∩ , and λBCD

∩ . The “ref.” column refers to the
original articles these theories come from

3. (Intersection type theories T ). An intersection type theory T is a set of sen-
tences of the form σ 6 τ satisfying at least the axioms and rules of the minimal type
theory 6min defined in Figure 2.1. The type theories TCD, TCDV, TCDS, and TBCD are
the smallest type theories over A satisfying the axioms and rules given in Figure
2.3. We write T1 v T2 if, for all σ, τ such that σ 6T1 τ , we have that σ 6T2 τ . In
particular TCD v TCDV v TBCD and TCD v TCDS v TBCD. We will sometime note,
for instance, BCD instead of TBCD;

4. (Intersection type assignment systems λT∩). We define in Figure 2.2 an infinite
collection of type assignment systems1 parametrized by a set of atoms A and a type
theory T . We name four particular type assignment systems in the table below,
which is an excerpt from Figure 13.4 of [12]. Γ `T∩ M : σ denotes a derivable
type assignment judgment in the type assignment system λT∩. Type checking is not
decidable for λCD

∩ , λCDV
∩ , λCDS

∩ , and λBCD
∩ (see Theorem 2.24).

2.1.1 The ∆-calculi

Intersection type assignment systems and ∆-calculi have in common their type syntax
and intersection type theories. The syntax of the generic ∆-calculus is defined as follows:

Definition 2.2 (Generic ∆-calculus syntax).

∆ ::= uM | x | λx:σ.∆ | ∆ ∆ | 〈∆,∆〉 | pri ∆ | ∆σ i ∈ {1, 2}

Intuitively, uM denotes an infinite set of constants, indexed with a particular pure λ-term.
∆τ denotes an explicit coercion2 of a term ∆ to type τ , where the typing rules will ensure
that ∆ has a type σ such that σ 6T τ . The expression 〈∆,∆〉 denotes a pair that,
following the López-Escobar jargon [67], we call strong pair with respective projections
pr1 and pr2 . The essence function o_ o is an erasing function mapping typed ∆-terms
into pure λ-terms. It is defined as follows:

Definition 2.3 (Essence function).

ox o def
= x o∆σ o def

= o∆ o ouM o
def
= M

oλx:σ.∆ o def
= λx.o∆ o o∆1 ∆2 o

def
= o∆1 o o∆2 o

o 〈∆1,∆2〉 o
def
= o∆1 o o pri ∆ o

def
= o∆ o i ∈ {1, 2}

1Although rules (∩Ei) are derivable with 6min, we add them for clarity.
2If type coercions are implicit, then we lose the uniqueness of type property.
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One could argue that the choice of o 〈∆1,∆2〉 o
def
= o∆1 o is arbitrary and could have

been replaced with o 〈∆1,∆2〉 o
def
= o∆2 o. However, the typing rules will ensure that, if

〈∆1,∆2〉 is typable, then, for some suitable equivalence relation R, we have that o∆1 o R
o∆2 o. Thus, strong pairs can be viewed as constrained cartesian products. The reduction
semantics reduces terms of the generic ∆-calculus as follows:

Definition 2.4 (Generic reduction semantics). Let syntactical equality by denoted by ≡.

1. (Substitution) Substitution on ∆-terms is defined as usual, with the additional
rules:

uM [∆/x]
def
= u(M [o∆ o/x])

∆σ
1 [∆2/x]

def
= (∆1[∆2/x])σ

2. (One-step reduction). We define three notions of reduction:

(λx:σ.∆1) ∆2 7→ ∆1[∆2/x] (β)

pri 〈∆1,∆2〉 7→ ∆i i ∈ {1, 2} (pri )

λx:σ.∆x 7→ ∆ x 6∈ Fv(∆) (η)

Observe that (λx:σ.∆1)σ ∆2 is not a redex, because the λ-abstraction is coerced.
The contextual closure is defined as usual except for reductions inside the index
of uM that are forbidden (even though substitutions are propagated). We write
−→βpri for the contextual closure of the (β) and (pri ) notions of reduction, −→η

for the contextual closure of (η). We also define a synchronous contextual closure,
which is like the usual contextual closure except for the strong pairs, as defined in
point (3). Synchronous contextual closure of the notions of reduction generates the
reduction relations −→‖βpri and −→‖η.

3. (Synchronous closure of −→‖). Synchronous closure is defined on the strong
pairs with the following constraint:

∆1 −→‖ ∆′1 ∆2 −→‖ ∆′2 o∆′1 o ≡ o∆′2 o
〈∆1,∆2〉 −→‖ 〈∆′1,∆′2〉

(Clos‖)

Note that we reduce in the two components of the strong pair. A longer and more
detailed definition of synchronous reduction is given in Subsection 2.1.2;

4. (Multistep reduction). We write −→−→βpri (resp. −→−→‖βpri ) as the reflexive and
transitive closure of −→βpri (resp. −→‖βpri );

5. (Congruence). We write =βpri as the symmetric, reflexive, transitive closure of
−→−→βpri .

We mostly consider βpri -reductions, thus to ease the notation, we will often omit the
subscript in βpri -reductions.

The next definition introduces a notion of synchronization inside strong pairs.

Definition 2.5 (Synchronization). A ∆-term is synchronous if and only if, for all its
subterms of the shape 〈∆1,∆2〉, we have that o∆1 o ≡ o∆2 o.
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Γ `TR ∆ : σ σ 6T τ

Γ `TR ∆τ : τ
(6T )

Γ, x:σ `TR ∆ : τ

Γ `TR λx:σ.∆ : σ → τ
(→I)

Γ `TR ∆1 : σ → τ Γ `TR ∆2 : σ

Γ `TR ∆1 ∆2 : τ
(→E) x:σ ∈ Γ

Γ `TR x : σ
(ax)

Γ `TR ∆1 : σ Γ `TR ∆2 : τ o∆1 o R o∆2 o
Γ `TR 〈∆1,∆2〉 : σ ∩ τ

(∩I) U ∈ A
Γ `TR uM : U

(top)

Γ `TR ∆ : σ ∩ τ
Γ `TR pr2 ∆ : τ

(∩E2)
Γ `TR ∆ : σ ∩ τ
Γ `TR pr1 ∆ : σ

(∩E1)

Figure 2.4: Generic ∆-calculus ∆TR

It is easy to verify that −→‖ preserves synchronization, while it is not the case for −→.
The next definition introduces an intersection typed system for the generic ∆-calculus that
is parametrizable by R, a suitable equivalence relation on pure λ-terms, and T , a type
theory, as follows:

Definition 2.6 (Generic ∆-calculus ∆TR). The generic ∆-calculus is defined in Figure
2.4. We denote by ∆TR a particular typed system with the type theory T and under an
equivalence relation R and by Γ `TR ∆ : σ a corresponding typing judgment.

The typing rules are intuitive for a calculus à la Church except rules (∩I), (top) and
(6T ).

The typing rule for a strong pair (∩I) is similar to the typing rule for a cartesian
product, except for the side-condition o∆1 o R o∆2 o, forcing the two parts of the strong
pair to have essences equivalent under R, thus making a strong pair a special case of
a cartesian pair. For instance, 〈λx:σ.λy:τ.x, λx:σ.x〉 is not typable in ∆T≡; meanwhile
〈(λx:σ.x) y, y〉 is not typable in ∆T≡ but it is in ∆T=β ; and 〈x, λy:σ.(λz:τ.z)x y〉 is not
typable in ∆T≡ nor ∆T=β but it is in ∆T=βη . In the typing rule (top), the subscript M in uM
is an arbitrary pure λ-term. The typing rule (6T ) allows to change the type of a ∆-term
from σ to τ if σ 6T τ : the term in the conclusion must record this change with an explicit
type coercion _τ , producing the new term ∆τ : explicit type coercions are important to
keep the unicity of typing derivations.

The next definition introduces the generic intersection typed system.

Definition 2.7 (Generic intersection typed system λ@TR). For historical reasons (see
[63, 64, 40]), we used judgments where ∆-terms were decorated by their essence. We thus
get judgments of the form Γ `TR M@∆ : σ for a system called λ@TR. The derivation rules
are given in Figure 2.5. The properties of λ@TR are the same than those of ∆TR, because
the decorations do nothing but make the terms easier to understand for newcomers.

The next definition introduces a partial order over equivalence relations on pure λ-
terms and an inclusion over typed systems as follows:
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Γ `TR M@∆ : σ σ 6T τ

Γ `TR M@∆τ : τ
(6T )

Γ, x:σ `TR M@∆ : τ

Γ `TR λx.M@λx:σ.∆ : σ → τ
(→I)

Γ `TR M@∆1 : σ → τ Γ `TR N@∆2 : σ

Γ `TR M N@∆1 ∆2 : τ
(→E) x:σ ∈ Γ

Γ `TR x@x : σ
(ax)

Γ `TR M@∆1 : σ Γ `TR N@∆2 : τ M R N

Γ `TR M@〈∆1,∆2〉 : σ ∩ τ
(∩I) U ∈ A

Γ `TR M@uM : U
(top)

Γ `TR M@∆ : σ ∩ τ
Γ `TR M@pr2 ∆ : τ

(∩E2)
Γ `TR M@∆ : σ ∩ τ
Γ `TR M@pr1 ∆ : σ

(∩E1)

Figure 2.5: Generic intersection typed system λ@TR

Definition 2.8 (R and v).

1. Let R ∈ {≡,=β,=βη}. R1 v R2 if, for all pure λ-terms M,N such that M R1 N ,
we have that M R2 N ;

2. ∆T1R1
v ∆T2R2

if, for any Γ,∆, σ such that Γ `T1R1
∆ : σ, we have that Γ `T2R2

∆ : σ.

Note that v correspond to the standard inclusion between relation.

Proposition 2.1.

1. ∆CD
R v ∆CDS

R v ∆BCD
R and ∆CD

R v ∆CDV
R v ∆BCD

R ;

2. ∆T1R1
v ∆T2R2

if T1 v T2 and R1 v R2.

2.1.2 The ∆-chair

The next definition classifies ten instances of the generic ∆-calculus.

Definition 2.9 (∆-chair). Ten typed systems ∆TR can be draw in a diagram called ∆-
chair, as in Figure 2.6, where the arrows represent an inclusion relation. ∆CD

≡ corresponds
roughly to [63, 64] (in the expressionM@∆, M is the essence of ∆) and in its intersection
part to [88]; ∆CDS

≡ corresponds roughly in its intersection part to [40], ∆BCD
≡ corresponds

in its intersection part to [65], ∆CD
=βη

corresponds in its intersection part to [39]. The other
typed systems are basically new. The main properties of these systems are:

1. All the ∆T≡ systems enjoys the synchronous subject reduction property, the other
systems also enjoy ordinary subject reduction (Theorem 2.11);

2. All the systems strongly normalize (Theorem 2.21);

3. All the systems correspond to the to original type assignment systems except ∆CD
=β
,

∆CDV
=β

, ∆CDV
=βη

and ∆BCD
=βη

(Theorem 2.22);

4. Type checking and type reconstruction are decidable for all the systems, except
∆CDS

=β
, ∆BCD

=β
, and ∆BCD

=βη
(Theorem 2.24).



2.2. EXAMPLES 15

∆CD
≡

∆CD
=β

∆CDV
≡

∆CDV
=β

∆CDS
≡

∆CDS
=β

∆BCD
≡

∆BCD
=β

∆CDV
=βη

∆BCD
=βη

Figure 2.6: The ∆-chair

2.2 Examples
This section shows examples of typed derivations ∆TR and highlights the corresponding
type assignment judgment in λT∩ they correspond to, in the sense that we have a derivation
Γ `TR ∆ : σ and another derivation Γ `T∩ o∆ o : σ. The correspondence between intersec-
tion typed systems ∆TR and intersection type assignment λT∩ will be defined in Subsection
2.4.1.

Example 2.1 (Polymorphic identity). In all of the intersection type assignment systems
λT∩ we can derive:

`T∩ λx.x : (σ → σ) ∩ (τ → τ)

A corresponding ∆-term is:
〈λx:σ.x, λx:τ.x〉

It can be typed in all of the typed systems of the ∆-chair as follows:
x:σ `TR x : σ

`TR λx:σ.x : σ → σ

x:τ `TR x : τ

`TR λx:τ.x : τ → τ λx.x R λx.x

`TR 〈λx:σ.x, λx:τ.x〉 : (σ → σ) ∩ (τ → τ)

Example 2.2 (Auto application). In all of the intersection type assignment systems we
can derive:

`T∩ λx.x x : ((σ → τ) ∩ σ)→ τ

A corresponding ∆-term is:

λx:(σ → τ) ∩ σ.(pr1 x)(pr2 x)

It can be typed in all of the typed systems of the ∆-chair as follows:
x:(σ → τ) ∩ σ `TR x : (σ → τ) ∩ σ
x:(σ → τ) ∩ σ `TR pr1 x : σ → τ

x:(σ → τ) ∩ σ `TR x : (σ → τ) ∩ σ
x:(σ → τ) ∩ σ `TR pr2 x : σ

x:(σ → τ) ∩ σ `TR (pr1 x)(pr2 x) : τ

`TR λx:(σ → τ) ∩ σ.(pr1 x)(pr2 x) : (σ → τ) ∩ σ → τ



16 CHAPTER 2. A TYPED CALCULUS WITH INTERSECTION TYPES

Example 2.3 (Some examples in ∆CDS
R ). In λCDS

∩ we can derive:

`TCDS
∩ (λx.λy.x) : σ → U→ σ

Using this type assignment, we can derive:

z:σ `TCDS
∩ (λx.λy.x) z z : σ

A corresponding ∆-term is:
(λx:σ.λy:U.x) z zU

It can be typed in ∆CDS
R as follows:

z:σ, x:σ, y:U `TCDS
R x : σ

z:σ, x:σ `TCDS
R λy:U.x : U→ σ

z:σ `TCDS
R λx:σ.λy:U.x : σ → U→ σ z:σ `TCDS

R z : σ

z:σ `TCDS
R (λx:σ.λy:U.x) z : U→ σ

z:σ `TCDS
R z : σ σ 6TCDS

U

z:σ `TCDS
R zU : U

z:σ `TCDS
R (λx:σ.λy:U.x) z zU : σ

As another example, we can also derive:

`TCDS
∩ λx.x : σ → σ ∩ U

A corresponding ∆-term is:
λx:σ.〈x, xU〉

It can be typed in ∆CDS
R as follows:

x:σ `TCDS
R x : σ

x:σ `TCDS
R x : σ σ 6TCDS

U

x:σ `TCDS
R xU : U x R x

x:σ `TCDS
R 〈x, xU〉 : σ ∩ U

`TCDS
R λx:σ.〈x, xU〉 : σ → σ ∩ U

Example 2.4 (An example in ∆CDV
R ). In λCDV

∩ we can prove the commutativity of inter-
section:

`TCDV
∩ λx.x : σ ∩ τ → τ ∩ σ

A corresponding ∆-term is:

〈λx:σ ∩ τ.pr2 x, λx:σ ∩ τ.pr1 x〉(σ∩τ)→(τ∩σ)

It can be typed in ∆CDV
R as follows:

x:σ ∩ τ `TCDS
R x : σ ∩ τ

x:σ ∩ τ `TCDS
R pr2 x : τ

`TCDS
R λx:σ ∩ τ.pr2 x : (σ ∩ τ)→ τ

x:σ ∩ τ `TCDS
R x : σ ∩ τ

x:σ ∩ τ `TCDS
R pr1 x : σ

`TCDS
R λx:σ ∩ τ.pr1 x : (σ ∩ τ)→ σ λx.x R λx.x

`TCDS
R 〈λx:σ ∩ τ.pr2 x, λx:σ ∩ τ.pr1 x〉 : ((σ ∩ τ)→ τ) ∩ ((σ ∩ τ)→ σ) ∗

`TCDS
R 〈λx:σ ∩ τ.pr2 x, λx:σ ∩ τ.pr1 x〉(σ∩τ)→(τ∩σ) : (σ ∩ τ)→ (τ ∩ σ)

where ∗ is ((σ ∩ τ)→ τ) ∩ ((σ ∩ τ)→ σ) 6TCDV
(σ ∩ τ)→ (τ ∩ σ).
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Example 2.5 (Another polymorphic identity in ∆T=β). In all the ∆T=β you can type this
∆-term:

〈λx:σ.x, (λx:τ→τ.x) (λx:τ.x)〉
The typing derivation is the following:

x:σ `T=β x : σ

`T=β λx:σ.x : σ → σ

x:τ → τ `T=β x : τ → τ

`T=β λx:τ→τ.x : (τ → τ)→ (τ → τ)

x:τ `T=β x : τ

`T=β λx:τ.x : τ → τ

`T=β (λx:τ→τ.x) (λx:τ.x) : τ → τ λx.x =β (λx.x) (λx.x)

`T=β 〈λx:σ.x, (λx:τ→τ.x) (λx:τ.x)〉 : (σ → σ) ∩ (τ → τ)

Example 2.6 (Two examples in ∆BCD
≡ and ∆BCD

=βη
). In λBCD

∩ we can can type any term,
including the following non-terminating term:

Ω
def
= (λx.x x) (λx.x x)

More precisely, we have:
`TBCD
∩ Ω : U

A corresponding ∆-term whose essence is Ω is:

(λx:U.xU→U x) (λx:U.xU→U x)U

It can be typed in ∆BCD
R as follows:

∗
`TBCD
R λx:U.xU→U x : U→ U

∗
`TBCD
R λx:U.xU→U x : U→ U U→ U 6TBCD

U

`TBCD
R (λx:U.xU→U x)U : U

`TBCD
R (λx:U.xU→U x) (λx:U.xU→U x)U : U

where ∗ is:
x:U `TBCD

R x : U U 6TBCD
U→ U

x:U `TBCD
R xU→U : U→ U x:U `TBCD

R x : U

x:U `TBCD
R xU→U x : U

In λBCD
∩ we can type the following:

x:U→ U `TBCD
∩ x : (U→ U) ∩ (σ → U)

A corresponding ∆-term (whose essence is x) is:

〈x, λy:σ.x yU〉

It can be typed in ∆BCD
=βη

as follows:

x:U→ U `TBCD
=βη

x : U→ U

x:U→ U, y:σ `TBCD
=βη

x : U→ U

x:U→ U, y:σ `TBCD
=βη

y : σ σ 6 U

x:U→ U, y:σ `TBCD
=βη

yU : U

x:U→ U, y:σ `TBCD
=βη

x yU : U

x:U→ U `TBCD
=βη

λy:σ.x yU : σ → U x =βη λy.x y

x:U→ U `TBCD
=βη

〈x, λy:σ.x yU〉 : (U→ U) ∩ (σ → U)

Note that the =βη condition has an interesting loophole, as it is well-known that λBCD
∩

does not enjoy =η-conversion property. Theorem 2.17(1) will show that we can construct
a ∆-term which does not correspond to any λBCD

∩ derivation.
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Example 2.7 (Pottinger [80]). The following examples can be typed in all the type
theories of the ∆-chair (we also display in square brackets the corresponding pure λ-terms
typable in λT∩). These are encodings from the examples à la Curry given by Pottinger in
[80].

[λx.λy.x y]

`TR λx:(σ → τ) ∩ (σ → ρ).λy:σ.〈(pr1 x) y), (pr2 x) y〉 : (σ → τ) ∩ (σ → ρ)→ σ → τ ∩ ρ

[λx.λy.x y]

`TR λx:σ → τ ∩ ρ.〈λy:σ.pr1 (x y), λy:σ.pr2 (x y)〉 : (σ → τ ∩ ρ)→ (σ → τ) ∩ (σ → ρ)

[λx.λy.x y]

`TR λx:σ → ρ.λy:σ ∩ τ.x (pr1 y) : (σ → ρ)→ σ ∩ τ → ρ

[λx.λy.x]

`TR λx:σ ∩ τ.λy:σ.pr2 x : σ ∩ τ → σ → τ

[λx.λy.x y y]

`TR λx:σ → τ → ρ.λy:σ ∩ τ.x (pr1 y) (pr2 y) : (σ → τ → ρ)→ σ ∩ τ → ρ

[λx.x]

`TR λx:σ ∩ τ.pr1 x : σ ∩ τ → σ

[λx.x]

`TR λx:σ.〈x, x〉 : σ → σ ∩ σ

[λx.x]

`TR λx:σ ∩ (τ ∩ ρ).〈〈pr1 x, pr1 pr2 x〉, pr2 pr2 x〉 : σ ∩ (τ ∩ ρ)→ (σ ∩ τ) ∩ ρ

In the same paper, Pottinger lists some types that cannot be inhabited by any inter-
section type assignment ( 6 `T∩ ) in an empty context, namely: σ → (σ ∩ τ) and (σ → τ)→
(σ → ρ) → σ → τ ∩ ρ and ((σ ∩ τ) → ρ) → σ → τ → ρ. It is not difficult to verify that
the above types cannot be inhabited by any of the type systems of the ∆-chair because
of the failure of the essence condition in the strong pair type rule.

Example 2.8 (Intersection is not the conjunction operator [55, 13]). This counter-
example is from the corresponding counter-example à la Curry given by Hindley [55] and
Ben-Yelles [13]. The intersection type (σ → σ) ∩ ((σ → τ → ρ) → (σ → τ) → σ → ρ)
where the left part of the intersection corresponds to the type for the combinator I and
the right part for the combinator S cannot be assigned to a pure λ-term. Analogously,
the same intersection type cannot be assigned to any ∆-term belonging to a type system
from the ∆-chair, because of the failure of the essence condition.

2.2.1 On synchronization and subject reduction

For the typed systems ∆T≡, strong pairs have an intrinsic notion of synchronization: some
redexes need to be reduced in a synchronous fashion unless we want to create meaningless
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∆-terms that cannot be typed. Consider the ∆-term 〈(λx:σ.x) y, (λx:σ.x) y〉. If we use
the −→ reduction relation, then the following reduction paths are legal:

〈(λx:σ.x) y, (λx:σ.x) y〉
1β 〈(λx:σ.x) y, y〉 %β

%β 〈y, (λx:σ.x) y〉 1β
〈y, y〉

More precisely, the first and second redexes are rewritten asynchronously, therefore they
cannot be typed in any typed system ∆T≡, because we fail to check that the left and
the right part of the strong pair are syntactically the same: the −→‖ reduction relation
prevents this loophole and allows to type all redexes. In summary, −→‖ can be thought
of as the natural reduction relation for the typed systems ∆T≡.

2.3 Metatheory of ∆TR

2.3.1 General properties

Unless specified, all properties applies to the intersection typed systems ∆TR.
The Church-Rosser property is proved using the technique of Takahashi [90]. The

parallel reduction semantics extends Definition 2.4 and it is inductively defined as follows:

Definition 2.10 (Parallel reduction semantics).

x =⇒ x

uM =⇒ uM

∆σ =⇒ (∆′)σ if ∆ =⇒ ∆′

∆1 ∆2 =⇒ ∆′1 ∆′2 if ∆1 =⇒ ∆′1 and ∆2 =⇒ ∆′2

λx:σ.∆ =⇒ λx:σ.∆′ if ∆ =⇒ ∆′

(λx:σ.∆1) ∆2 =⇒ ∆′1[∆′2/x] if ∆1 =⇒ ∆′1 and ∆2 =⇒ ∆′2

〈∆1,∆2〉 =⇒ 〈∆′1,∆′2〉 if ∆1 =⇒ ∆′1 and ∆2 =⇒ ∆′2

pri ∆ =⇒ pri ∆
′ if ∆ =⇒ ∆′ and i ∈ {1, 2}

pri 〈∆1,∆2〉 =⇒ ∆′i if ∆i =⇒ ∆′i and i ∈ {1, 2}

Intuitively, ∆ =⇒ ∆′ means that ∆′ is obtained from ∆ by simultaneous arbitrary con-
tractions of some βpri -redexes possibly overlapping each other. Church-Rosser can be
achieved by proving a stronger statement, namely:

∆ =⇒ ∆′ implies ∆′ =⇒ ∆∗

where ∆∗ is a ∆-term determined by ∆ and independent from ∆′. The statement (2.3.1)
is satisfied by the term ∆∗ which is obtained from ∆ by contracting all the redexes existing
in ∆ simultaneously, as is shown in the following definition.
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Definition 2.11 (The map _∗).

x∗
def
= x

u∗M
def
= uM

(∆σ)∗
def
= (∆∗)σ

〈∆1,∆2〉∗
def
= 〈∆∗1,∆∗2〉

(λx:σ.∆)∗
def
= λx:σ.∆∗

(∆1 ∆2)∗
def
= ∆∗1 ∆∗2 if ∆1 ∆2 is not a β-redex

((λx:σ.∆1) ∆2)∗
def
= ∆∗1[∆∗2/x]

(pri ∆)∗
def
= pri ∆

∗ if ∆ is not a strong pair

(pri 〈∆1,∆2〉)∗
def
= ∆∗i i ∈ {1, 2}

The next technical lemma will be useful in showing that Church-Rosser for −→−→ can be
inherited from Church-Rosser for =⇒.

Lemma 2.2.

1. If ∆1 −→ ∆′1, then ∆1 =⇒ ∆′1;

2. if ∆1 =⇒ ∆′1, then ∆1−→−→∆′1;

3. if ∆1 =⇒ ∆′1 and ∆2 =⇒ ∆′2, then ∆1[∆2/x] =⇒ ∆′1[∆′2/x];

4. ∆1 =⇒ ∆∗1.

Proof.

1. Let C[·] be an applicative context, ∆ either a β-redex or a pri -redex, and ∆′ its
contractum, such that ∆1 ≡ C[∆] and ∆′1 ≡ C[∆′]. We can check that ∆ =⇒ ∆′,
and, by induction on C[·], we conclude that ∆1 =⇒ ∆′1;

2. 3. 4. By induction on the structure of ∆1.

We can now prove the Church-Rosser property for the parallel reduction:

Lemma 2.3 (Confluence property for =⇒). If ∆ =⇒ ∆′, then ∆′ =⇒ ∆∗.

Proof. By induction on the shape of ∆.

– if ∆ ≡ x, then ∆′ ≡ x =⇒ x ≡ ∆∗;

– if ∆ ≡ uM , then ∆′ ≡ uM =⇒ uM ≡ ∆∗;

– if ∆ ≡ ∆σ
1 , then, for some ∆′1, we have that ∆1 =⇒ ∆′1 and ∆′ ≡ (∆′1)σ, therefore,

by induction hypothesis, ∆′ =⇒ (∆∗1)σ ≡ ∆∗;
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– if ∆ ≡ 〈∆1,∆2〉, then, for some ∆′1 and ∆′2, we have that ∆1 =⇒ ∆′1, ∆2 =⇒ ∆′2
and ∆′ ≡ 〈∆′1,∆′2〉. By induction hypothesis, ∆′ =⇒ 〈∆∗1,∆∗2〉 ≡ ∆∗;

– if ∆ ≡ λx:σ.∆1, then, for some ∆′1, we have that ∆1 =⇒ ∆′1 and ∆′ ≡ λx:σ.∆′1. By
induction hypothesis, λx:σ.∆′1 =⇒ λx:σ.∆∗1 ≡ ∆∗;

– if ∆ ≡ ∆1 ∆2 and ∆ is not a β-redex, then, for some ∆′1 and ∆′2, we have that
∆1 =⇒ ∆′1, ∆2 =⇒ ∆′2 and ∆′ ≡ ∆′1 ∆′2. By induction hypothesis, ∆′ =⇒ ∆∗1 ∆∗2 ≡
∆∗;

– if ∆ ≡ (λx:σ.∆1) ∆2, then, for some ∆′1 and ∆′2, we have that ∆1 =⇒ ∆′1, ∆2 =⇒ ∆′2
and we have 2 subcases:

– ∆′ ≡ (λx:σ.∆′1) ∆′2: by induction hypothesis, ∆′ =⇒ ∆∗1[∆∗2/x] ≡ ∆∗;

– ∆′ ≡ ∆′1[∆′2/x]: we also have ∆′ =⇒ ∆∗1[∆∗2/x], thanks to point (3) of Lemma
2.2;

– if ∆ ≡ pri ∆1 and ∆1 is not a strong pair, then, for some ∆′1, we have that ∆1 =⇒ ∆′1
and ∆′ ≡ pri ∆

′
1, therefore, by induction hypothesis, ∆′ =⇒ pri ∆

∗
1 ≡ ∆∗;

– if ∆ ≡ pri 〈∆1,∆2〉, then, for some ∆′1 and ∆′2, we have that ∆1 =⇒ ∆′1, ∆2 =⇒ ∆′2
and we have 2 subcases:

– ∆′ ≡ pri 〈∆′1,∆′2〉: by induction hypothesis, ∆′ =⇒ ∆∗i ≡ ∆∗;

– ∆′ ≡ ∆′i: we also have, by induction hypothesis, ∆′ =⇒ ∆∗i ≡ ∆∗.

The Church-Rosser property follows from Lemma 2.3.

Theorem 2.4 (Confluence).
If ∆1−→−→∆2 and ∆1−→−→∆3, then there exists ∆4 such that ∆2−→−→∆4 and ∆3−→−→∆4.

Proof. Thanks to the first two points of Lemma 2.2, we know that −→−→ is the transitive
closure of =⇒, therefore we can deduce the confluence property of −→−→ with the usual
diagram chase, as suggested below.

∆0,0

∆0,1

∆0,2

∆1,0

∆1,1

∆1,2

∆2,0

∆2,1

∆2,2

∆3,0

∆3,1

∆3,2

The next lemma says that all type derivations for ∆ have an unique type.

Lemma 2.5 (Unicity of typing).
If Γ `TR ∆ : σ, then σ is unique.

Proof. By induction on the shape of ∆.
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The next lemma proves inversion properties on typable ∆-terms.

Lemma 2.6 (Inversion).

1. If Γ `TR x : σ, then x:σ ∈ Γ;

2. if Γ `TR λx:σ.∆ : ρ, then ρ ≡ σ → τ for some τ and Γ, x:σ `TR ∆ : τ ;

3. if Γ `TR ∆1 ∆2 : τ , then there is σ such that Γ `TR ∆1 : σ → τ and Γ `TR ∆2 : σ;

4. if Γ `TR 〈∆1,∆2〉 : ρ, then there is σ, τ such that ρ ≡ σ ∩ τ and Γ `TR ∆1 : σ and
Γ `TR ∆2 : τ and o∆1 o R o∆2 o;

5. if Γ `TR pr1 ∆ : σ, then there is τ such that Γ `TR ∆ : σ ∩ τ ;

6. if Γ `TR pr2 ∆ : τ , then there is σ such that Γ `TR ∆ : σ ∩ τ ;

7. if Γ `TR uM : σ, then σ ≡ U;

8. if Γ `TR ∆τ : ρ, then ρ ≡ τ and there is σ such that σ 6T τ and Γ `TR ∆ : σ.

Proof. The typing rules are uniquely syntax-directed, therefore we can immediately con-
clude.

The next lemma says that all subterms of a typable ∆-term are typable too.

Lemma 2.7 (Subterms typability).
If Γ `TR ∆ : σ, and ∆′ is a subterm of ∆, then there exists Γ′ and τ such that Γ′ ⊇ Γ and
Γ′ `TR ∆′ : τ .

Proof. By induction on the derivation of Γ `TR ∆ : σ. For instance, let’s consider the case
where the applied rule is (→ I). The other cases are similar. If the last applied rule is
(→ I), then ∆ ≡ λx:σ1.∆1 and σ ≡ σ1 → σ2 for some σ1, σ2, and ∆1. Moreover, ∆′ is a
subterm of ∆1, and:

Γ, x:σ1 ` ∆1 : σ2

By induction hypothesis, we know that there is an extension Γ′ of Γ, x:σ1 such that
Γ′ `TR ∆′ : τ . As Γ′ is also an extension of Γ, we can conclude.

As expected, the weakening and strengthening properties on contexts are verified.

Lemma 2.8 (Free-variable properties).

1. If Γ `TR ∆ : σ, and Γ′ ⊇ Γ, then Γ′ `TR ∆ : σ;

2. if Γ `TR ∆ : σ, then Fv(∆) ⊆ Dom(Γ);

3. if Γ `TR ∆ : σ, Γ′ ⊆ Γ and Fv(∆) ⊆ Dom(Γ′), then Γ′ `TR ∆ : σ.

Proof. By induction on the derivation of Γ `TR ∆ : σ.

The next lemma also says that essence is closed under substitution.

Lemma 2.9 (Substitution).

1. o∆1[∆2/x] o ≡ o∆1 o[o∆2 o/x];
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2. If Γ, x:σ `TR ∆1 : τ and Γ `TR ∆2 : σ, then Γ `TR ∆1[∆2/x] : τ .

Proof.

1. by induction on the shape of ∆1;

2. by induction on the derivation. As an illustration, we show the case when the last
applied rule is (∩I). In this case, we know that:

Γ, x:σ `TR 〈∆1,∆
′
1〉 : τ ∩ τ ′ and Γ `TR ∆2 : σ

By induction hypothesis, we have:

Γ `TR ∆1[∆2/x] : τ and Γ `TR ∆′1[∆2/x] : τ ′

Moreover, thanks to point (1), we can show that:

o∆1[∆2/x] o R o∆′1[∆2/x] o

As a consequence:

Γ `TR ∆1[∆2/x] : τ Γ `TR ∆′1[∆2/x] : τ ′ o∆1[∆2/x] o R o∆′1[∆2/x] o
Γ `TR 〈∆1,∆

′
1〉[∆2/x] : τ ∩ τ ′

(∩I)

In order to prove subject reduction, we need to prove that reducing ∆-terms preserve
the side-condition o∆1 o R o∆2 o when typing the strong pair 〈∆1,∆2〉. We prove this in
the following lemma.

Lemma 2.10 (Essence reduction).

1. if Γ `T≡ ∆1 : σ and ∆1 −→ ∆2, then o∆1 o =β o∆2 o;

2. for R ∈ {=β,=βη}, if Γ `TR ∆1 : σ and ∆1 −→ ∆2, then o∆1 o R o∆2 o;

3. if Γ `T=βη ∆1 : σ and ∆1 −→η ∆2, then o∆1 o =η o∆2 o.

Proof. If ∆1 is a redex, then we have three cases:

– if ∆1 ≡ (λx:σ.∆′1) ∆′′1 and ∆2 is ∆′1[∆′′1/x], then, thanks to Lemma 2.9(1) we have
that o∆2 o ≡ o∆′1 o[o∆′′1 o/x], therefore o∆1 o =β o∆2 o;

– if ∆1 ≡ pri 〈∆′1,∆′2〉 and ∆2 is ∆′i, we know that ∆1 is typable in ∆TR, and thanks
to Lemma 2.6(4), we have that o∆′1 o R o∆′2 o. As a consequence, o∆1 o R o∆2 o;

– if ∆1 ≡ λx:σ.∆′ x with x 6∈ Fv(∆′), and ∆2 is ∆′, then o∆1 o =η o∆2 o.

For the contextual closure, we have that ∆1 ≡ ∆[∆′/x], where ∆ acts as an applicative
context and ∆′ is a redex, and ∆2 is ∆[∆′′/x] where ∆′′ is the contractum of ∆′.

Then, as ∆′ is a subterm of ∆1, by Lemma 2.7 we deduce that ∆′ is typable, therefore
∆′′ is also typable, and then we infer, using Lemma 2.9(1), that:

o∆1 o ≡ o∆ o[o∆′ o/x] and o∆2 o ≡ o∆ o[o∆′′ o/x]

Then we can conclude.
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The next theorem states that all the typed systems ∆T≡ preserve synchronous βpri -
reduction, and all the typed systems ∆T=β and ∆T=βη preserve βpri -reduction.

Theorem 2.11 (Subject reduction for βpri ).

1. If Γ `T≡ ∆1 : σ and ∆1 −→‖ ∆2, then Γ `T≡ ∆2 : σ;

2. for R ∈ {=β,=βη}, if Γ `TR ∆1 : σ and ∆1 −→ ∆2, then Γ `TR ∆2 : σ.

Proof. We proceed by looking at the cases where ∆1 is a redex and ∆2 its contractum,
then we consider the contextual closure:

– If ∆1 is a β-redex (λx:τ.∆) ∆′, and ∆2 ≡ ∆[∆′/x], then by Lemma 2.6, the derivation
tree of ∆1 ends with:

Γ, x:τ `TR ∆ : τ → σ

Γ `TR λx:τ.∆ : τ → σ Γ `TR ∆′ : τ

Γ `TR (λx:τ.∆) ∆′ : σ

We conclude that Γ `TR ∆2 : σ by using Lemma 2.9(2);

– If ∆1 is a pri -redex pri 〈∆,∆′〉, and ∆2 is ∆ (if i = 1) or ∆′ (if i = 2), then by
Lemma 2.6, the derivation tree of ∆1 ends with:

Γ `TR ∆ : σ1 Γ `TR ∆′ : σ2

Γ `TR 〈∆,∆′〉 : σ1 ∩ σ2

Γ `TR pri 〈∆,∆′〉 : σi

Then we see immediately that Γ `TR ∆2 : σi;

– For the contextual closure, we proceed by induction on the derivation: we illustrate
the most important case, namely (∩I) where we have to check that the essence
condition is preserved. According to R we distinguish two cases:

1. (Case where R is ≡). If Γ `T≡ 〈∆1,∆2〉 : σ ∩ τ and 〈∆1,∆2〉 −→‖ 〈∆′1,∆′2〉,
then o∆′1 o ≡ o∆′2 o and, by induction hypothesis, Γ `T≡ ∆′1 : σ and Γ `T≡ ∆′2 : τ ,
therefore Γ `T≡ 〈∆′1,∆′2〉 : σ ∩ τ ;

2. (Case where R ∈ {=β,=βη}). If Γ `TR 〈∆1,∆2〉 : σ ∩ τ and 〈∆1,∆2〉 −→
〈∆′1,∆′2〉, then:
– o∆1 o R o∆2 o;
– by Lemma 2.10 we have that o∆′1 o R o∆1 o and o∆2 o R o∆′2 o;
– by induction hypothesis we have that Γ `TR ∆′1 : σ and Γ `TR ∆′2 : τ ;

therefore o∆′1 o R o∆′2 o and Γ `TR 〈∆′1,∆′2〉 : σ ∩ τ .

The next theorem states that some of the typed systems on the back of the ∆-chair
preserve η-reduction.

Theorem 2.12 (Subject reduction for η for TCDV, TBCD).
Let T ∈ {TCDS, TBCD}. If Γ `T=βη ∆1 : σ and ∆1 −→η ∆2, then Γ `T=βη ∆2 : σ.
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Proof. If ∆1 is a η-redex, then we proceed as usual using Lemmas 2.6 and 2.8. For the
contextual closure the proof proceeds exactly as in Theorem 2.11.

Remark 2.1 (About subject expansion).
We know that some of the intersection type assignment systems à la Curry (viz. λBCD

∩
and λCDS

∩ ) satisfy the subject β-expansion property: one may ask whether this property
can also be meaningful in typed systems à la Church. It is not surprising to see that
the answer is negative because type-decorations of bound variables are hard-coded in
the λ-abstraction and cannot be forgotten. As a trivial example of the failure of the
subject-expansion in all the typed systems, consider the following reduction:

(λx:σ.x) (λx:σ.x) −→ (λx:σ.x)

Obviously we can type `TR (λx:σ.x) : σ → σ but 6 `TR (λx:σ.x) (λx:σ.x) : σ → σ.

2.3.2 Synchronous reduction

We want to define synchronous β-reduction −→‖β such that, whenever ∆1 −→‖β ∆2, we
have o∆1 o −→β o∆2 o. In order to do that, we extend the generic ∆-calculus and the
λ-calculus with an underlining that book-keeps all the reductions that have to be done
synchronously. This technique is adapted from the one used in Section 2.3 of [10].

We define the syntax of the λ-calculus and ∆-calculus as follows:

M ::= x | λx.M | (λx.M1)M2 |M1M2

∆ ::= x | λx:σ.∆ | (λx:σ.∆1) ∆2 | ∆1 ∆2 |

〈∆1,∆2〉 | pr1 ∆ | pr2 ∆ | inσ1 ∆ | inσ2 ∆ | uM | ∆σ

Note that there is no underlining in uM , because there is no reduction inside the index
of uM . The essence function for the ∆-calculus is the same as for the ∆-calculus, with
the following extra rule:

oλx:σ.∆ o def= λx.o∆ o

We define the notion of β-reduction for λ-calculus and ∆-calculus:

(λx.M)N 7→β M [N/x]

(λx:σ.∆1) ∆2 7→β ∆1[∆2/x]

Then the syntactical closure of 7→β is noted −→β, and the transitive reflexive closure of
−→β is noted −→−→β.

Definition 2.12. If M (resp. ∆) is a λ-term (resp. ∆-term), then |M | (resp. |∆|) is
obtained by leaving out all the underlinings.

We define a partial function Sync(∆,M) which, given a ∆-term ∆ (without underlin-
ings) and a λ-term M , either fails or return a ∆-term whose underlinings correspond to
the underlinings of M .

The most important rule is:

Sync((λx:σ.∆1) ∆2, (λx.M1)M2)
def
= (λx:σ.Sync(∆1,M1)) Sync(∆2,M2)
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The other rules are structural:

Sync(∆,M)
def
= ∆ if M has no underlining and o∆ o ≡M

Sync(∆1 ∆2,M1M2)
def
= Sync(∆1,M1) Sync(∆2,M2) if M1M2 is not a β-redex

Sync(λx:σ.∆, λx.M)
def
= λx:σ.Sync(∆,M)

Sync(〈∆1,∆2〉,M)
def
= 〈Sync(∆1,M), Sync(∆2,M)〉

Sync(pri ∆,M)
def
= pri Sync(∆,M)

Sync(inσi ∆,M)
def
= inσi Sync(∆,M)

Sync(∆σ,M)
def
= (Sync(∆,M))σ

Sync(∆,M)
def
= fail otherwise

We define the reduction mapping ϕ from ∆-terms to ∆-terms, which reduces all underlined
redexes. It is an extension of Definition 2.3.11 of [10].

Definition 2.13 (Reduction mapping).

ϕ(x)
def
= x

ϕ(λx:σ.∆)
def
= λx:σ.ϕ(∆)

ϕ((λx:σ.∆1) ∆2)
def
= ϕ(∆1)[ϕ(∆2)/x]

ϕ(∆1 ∆2)
def
= ϕ(∆1)ϕ(∆2) if ∆1 ∆2 is not a β-redex

ϕ(〈∆1,∆2〉)
def
= 〈ϕ(∆1), ϕ(∆2)〉

ϕ(pri ∆)
def
= pri ϕ(∆)

ϕ(inσi ∆)
def
= inσi ϕ(∆)

ϕ(uM)
def
= uM

ϕ(∆σ)
def
= ϕ(∆)σ

We now define synchronous β-reduction, which, as we will prove in Theorem 2.15, keeps
a synchronicity with the β-reduction in the essence.

Definition 2.14 (Synchronous β-reduction).
Let ∆ and M with exactly one underlining such that |M | ≡ o∆ o and Sync(∆,M) is
defined. We define synchronous β-reduction as:

∆ −→‖β ϕ(Sync(∆,M))

The reflexive and transitive closure of −→‖β is noted −→−→‖β.

The following two lemmas establish the basic properties of synchronizations and β-
reduction.
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Lemma 2.13.

1. o Sync(∆,M) o ≡M ;

2. |Sync(∆,M)| ≡ ∆.

Proof. By induction on ∆.

Lemma 2.14.

1. If M −→β N , then |M | −→β |N |;

2. If ∆1 −→β ∆2, then |∆1| −→β |∆2|;

3. ∆ −→−→β ϕ(∆);

4. If ∆1 −→β ∆2, then either o∆1 o −→β o∆2 o, or o∆1 o ≡ o∆2 o.

Proof.

1. 2. 3. Easy;

4. By induction on ∆1.

The next theorem shows that synchronous relation behave correctly in typed and untyped
reductions.

Theorem 2.15.
If ∆1 −→‖β ∆2, then:

1. ∆1−→−→β∆2;

2. o∆1 o −→β o∆2 o.

Proof. We know that there is some λ-term M with only one underlining such that |M | ≡
o∆1 o and ϕ(Sync(∆1,M)) ≡ ∆2.

1. We know, by Lemma 2.13 that ∆1 ≡ |Sync(∆1,M)|. Moreover, by Lemma 2.14, we
know that Sync(∆1,M) −→β ϕ(Sync(∆1,M)), therefore ∆1−→−→β|ϕ(Sync(∆1,M))|.
However, the function ϕ returns a ∆-term without underlining, therefore:

|ϕ(Sync(∆1,M))| ≡ ϕ(Sync(∆1,M))

As a conclusion, we have that ∆1−→−→β∆2;

2. We know that Sync(∆1,M)−→−→β∆2, therefore, as o Sync(∆1,M) o ≡M , we have that
M−→−→βo∆2 o. However, M has only one underlining, and o∆2 o has none, therefore
this is the single-step reduction M −→β o∆2 o. Moreover, |M | ≡ o∆1 o, so we
conclude, using Lemma 2.14, that o∆1 o −→β o∆2 o.

The following is a technical lemma used to prove confluence.
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Lemma 2.16.
For any ∆ and M , if Sync(∆,M) is defined, then ∆−→−→‖βϕ(Sync(∆,M)).

Proof. Reduce the redexes in ∆ in the same order as is done by the function ϕ in
Sync(∆,M).

The above lemma justifies the following definition:

Definition 2.15 (Labelled synchronous reductions).

1. We note ∆1
M−→ ∆2 if ∆−→−→‖βϕ(Sync(∆,M));

2. We note M v N if |M | ≡ |N | and the underlinings of M are also found in N ;

3. If |M | ≡ |N |, we note M t N for the λ-term whose underlinings are the union of
those from M and N . Thus M tN is the least upper-bound for the v relation.

We can prove that labeled synchronous reduction is confluent, more precisely, that if
∆1

M−→ ∆2, and ∆1
N−→ ∆3, then if we note ∆4 such that ∆1

MtN−→ ∆4, then ∆2 and ∆3

reduce to ∆4 under a labeled synchronous reduction. First, we need a technical lemma.

Lemma 2.17.
If ∆

M1−→ ∆1 and ∆
M2−→ ∆2, with M1 v M2, then there exists some N such that

∆1
N−→ ∆2. More precisely, we obtain N by applying in M2 the β-reductions that appear

in M1.

Proof. By induction on the shape of ∆, we can see that ∆1
N−→ ∆2. The most interesting

case is when ∆ is some redex (λx:σ.∆′) ∆′′, and M2 is an underlined redex (λx.M ′
2)M ′′

2.

We pose ∆′2 and ∆′′2 such that ∆′
M ′2−→ ∆′2 and ∆′′

M ′′2−→ ∆′′2. Moreover, ∆2
def
= ∆′2[∆′′2/x].

We have to subcases:

1. if M1 is also an underlined redex (λx.M ′
1)M ′′

1, then ∆1 ≡ ∆′1[∆′′1/x], where ∆′
M ′1−→

∆′1 and ∆′′
M ′′1−→ ∆′′1. By induction hypothesis, we have that there is some N ′ and

N ′′ such that ∆′1
N ′−→ ∆′2 and ∆′′1

N ′′−→ ∆′′2, and we pose N def
= N ′[N ′′/x];

2. if M1 is a redex (λx.M ′
1)M ′′

1, then ∆1 ≡ (λx:σ.∆′1) ∆′2, where ∆′
M ′1−→ ∆′1 and

∆′′
M ′′1−→ ∆′′1. By induction hypothesis, we have that there is some N ′ and N ′′ such

that ∆′1
N ′−→ ∆′2 and ∆′′1

N ′′−→ ∆′′2, and we pose N def
= (λx.N ′)N ′′.

We now prove the confluence property for label-led synchronous reductions.

Lemma 2.18 (Confluence for labelled synchronous reduction).
If ∆1

M1−→ ∆2 and ∆1
M2−→ ∆3, then we pose ∆4 such that ∆1

M1tM2−→ ∆4. There is some
M3 and M4 such that ∆2

M3−→ ∆4 and ∆3
M4−→ ∆4.
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∆3 ∆4

∆1 ∆2

M1

M2 M3

M4

Proof.
By Lemma 2.17.

We can finally prove confluence.

Theorem 2.19 (Confluence for −→‖β).
If ∆1−→−→‖β∆2 and ∆1−→−→‖β∆3, then there is some ∆4, such that ∆2−→−→‖β∆4 and ∆3−→−→‖β∆4.

Proof.
By Definition 2.14, one-step synchronous reduction corresponds to a labeled synchronous
reduction, and by Lemma 2.16, labeled synchronous reduction corresponds to multistep
synchronous reduction, therefore we can conclude with the usual diagram chase using
Lemma 2.18, as suggested below:

∆1

·

∆3

·

·

·

·

·

·

∆2

·

∆4

M1

M2

M3 M4 M5

M6 M8 M10

M12 M14 M16

M7

M13

M9

M15

M11

M17

2.3.3 Strong normalization of the generic ∆-calculus

The idea of the strong normalization proof of the generic ∆-calculus is to embed typable
terms of the generic ∆-calculus into Church-style terms of a target system, which is
the simply-typed λ-calculus with pairs, in a structure-preserving way (and forgetting all
the essence side-conditions). The translation is sufficiently faithful so as to preserve the
number of reductions, and so strong normalization for the generic ∆-calculus follows from
strong normalization for simply-typed λ-calculus with pairs. A similar technique has been
used in [52] to prove the strong normalization property of LF and in [21] to prove the
strong normalization property of a subset of λCD

∩ .
The target system has one atomic type called ◦, a special constant term u◦ of type ◦

and an infinite number of constants cσ of type σ for any type of the target system. We
denote by Γ `× M : σ a typing judgment in the target system.
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Definition 2.16 (Forgetful mapping).

– On intersection types.

|ai|
def
= ◦ ∀ai ∈ A

|σ ∩ τ | def
= |σ| × |τ |

|σ → τ | def
= |σ| → |τ |

– On ∆-terms.
|x|Γ

def
= x

|uM |Γ
def
= u◦

|λx:σ.∆|Γ
def
= λx.|∆|Γ,x:σ

|∆1 ∆2|Γ
def
= |∆1|Γ |∆2|Γ

|〈∆1,∆2〉|Γ
def
= (|∆1|Γ, |∆2|Γ)

|pri ∆|Γ
def
= pri |∆|Γ

|∆τ |Γ
def
= c|σ|→|τ | |∆|Γ if Γ `TR ∆ : σ

– The map can be easily extended to basis Γ.

The following technical lemma states some properties of the forgetful function.

Lemma 2.20.

1. If Γ `TR ∆ : σ, then |∆|Γ is defined, and, for all Γ′ ⊇ Γ, |∆|Γ ≡ |∆|Γ′ ;

2. |∆1[∆2/x]|Γ ≡ |∆1|Γ[|∆2|Γ/x];

3. If ∆1 −→ ∆2, then |∆1|Γ −→ |∆2|Γ;

4. If Γ `TR ∆ : σ then |Γ| `× |∆|Γ : |σ|.

Proof.

1. by induction on the derivation;

2. by induction on ∆1. The only interesting part is ∆1 ≡ λy:σ.∆′1: by induction
hypothesis, we have:

|∆′1[∆2/x]|Γ,x:σ ≡ |∆′1|Γ,x:σ[|∆2|Γ,x:σ/x]

Therefore, we see that:

|(λy:σ.∆′1)[∆2/x]|Γ ≡ λy:σ.|∆′1[∆2/x]|Γ,x:σ ≡ λy:σ.|∆′1|Γ,x:σ[|∆2|Γ,x:σ/x]

However, from point (1), we know that:

|∆2|Γ,x:σ ≡ |∆2|Γ

and we conclude;
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3. by induction on the context of the redex;

4. by induction on the derivation.

s Strong normalization follows easily from the above lemmas.

Theorem 2.21 (Strong normalization).
If Γ `TR ∆ : σ, then ∆ is strongly normalizing.

Proof. Using Lemma 2.20 and the strong normalization of the simply typed λ-calculus
with cartesian pairs.

2.4 Church-style vs. Curry-style λ-calculus

In this section, we will study the intriguing relation between the λ-calculi λT∩ and their
corresponding ∆-calculi ∆TR.

2.4.1 Relation between type assignment systems λT
∩ and typed

systems ∆T
R

It is interesting to state some relations between type assignment systems à la Church and
typed systems à la Curry. An interesting property is the one of isomorphism, namely the
fact that whenever we assign a type σ to a pure λ-termM , the same type can be assigned
to a ∆-term such that the essence of ∆ is M . Conversely, for every assignment of σ to a
∆-term, a valid type assignment judgment of the same type for the essence of ∆ can be
derived.

Soundness, completeness and isomorphism between instances of the generic ∆-calculus
and the corresponding intersection type assignment systems for the λ-calculus are defined
as follows:

Definition 2.17 (Soundness, completeness and isomorphism). Let ∆TR and λT∩.

1. (Soundness, ∆TR / λ
T
∩). Γ `TR ∆ : σ implies Γ `T∩ o∆ o : σ;

2. (Completeness, ∆TR . λ
T
∩). Γ `T∩ M : σ implies there exists ∆ such that M ≡ o∆ o

and Γ `TR ∆ : σ;

3. (Isomorphism, ∆TR ∼ λT∩). ∆TR . λ
T
∩ and ∆TR / λ

T
∩.

The following properties and relations between typed and type assignment systems
can be verified.
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Theorem 2.22 (Soundness, completeness and isomorphism). The following properties
between ∆-calculi and type assignment systems λT∩ can be verified.

∆TR ∆TR / λ
T
∩ ∆TR . λ

T
∩

∆CD
≡

√ √

∆CDV
≡

√ √

∆CDS
≡

√ √

∆BCD
≡

√ √

∆CD
=β

×
√

∆CDV
=β

×
√

∆CDS
=β

√ √

∆BCD
=β

√ √

∆CDV
=βη

×
√

∆BCD
=βη

×
√

Proof.

(/) (a) Soundness for ∆T≡. Let ∆ be such that Γ `T≡ ∆ : σ. We proceed by induction
on the derivation. All cases proceed straightforwardly since all rules of the
type and subtype system `T≡ correspond exactly to the rules of the same name
in the corresponding type assignment system `T∩ and in the same type theory
T . Therefore M ≡ o∆ o can be easily be defined and derived with type σ.

(b) Soundness for ∆{CDS,BCD}
=β

. Let T ∈ {TCDS, TBCD}. We know, thanks to [12]
(Figure 14.2), that the following rule is admissible for λT∩:

Γ `T∩ M : σ Γ `T∩ N : τ M =β N

Γ `T∩ M : σ ∩ τ
(∩I)adm

Then the proof proceeds by induction on the derivation of Γ `T=β ∆ : σ. The
most important case is when the last used rule is (∩I): by induction we get
Γ `T∩ o∆1 o : σ, and Γ `T∩ o∆2 o : τ , and o∆1 o =β o∆2 o, and, by the essence
definition, o 〈∆1,∆2〉 o =β o∆1 o. Apply rule (∩I)adm and conclude with Γ `T∩
o∆1 o : σ ∩ τ .

(6/) Loss of soundness for ∆CD
=β

and ∆CDV
=β

.

Let T ∈ {TCD, TCDV}. Let S
def
= λx.λy.λz.x z (y z) and K

def
= λx.λy.x. Let ∆

def
=

(λx:(σ → τ → ρ) → ((σ → τ) → σ → ρ) → σ → τ → ρ.λy:(σ → τ → ρ) →
(σ → τ) → σ → ρ.λz:σ → τ → ρ.x z (y z))(λx:σ → τ → ρ.λy:(σ → τ) → σ →
ρ.x)(λx:σ → τ → ρ.λy:σ → τ.λz:σ.x z (y z)). ∆ is a simply-typed term of type
(σ → τ → ρ) → (σ → τ → ρ), and its essence is o∆ o ≡ SKS. Consider the
following counter-example:

...
`T=β ∆ : (σ → τ → ρ)→ (σ → τ → ρ)

x:σ `T=β x : σ

`T=β λx:σ.x : σ → σ SKS =β λx.x

`T=β 〈∆, λx:σ.x〉 : ((σ → τ → ρ)→ (σ → τ → ρ)) ∩ (σ → σ)

`T=β pr2 〈∆, λx:σ.x〉 : σ → σ
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The essence of the above term is SKS, but, if σ is an atomic type:

6 `T∩ SKS : σ → σ

Loss of soundness in ∆CDV
=βη

is proved via the following counterexample, where

Γ
def
= {x:(σ → τ) ∩ ρ}.

Γ, y:σ `TCDV
=βη

x : (σ → τ) ∩ ρ
Γ, y:σ `TCDV

=βη
pr1 x : σ → τ Γ, y:σ `TCDV

=βη
y : σ

Γ, y:σ `TCDV
=βη

(pr1 x) y : τ

Γ `TCDV
=βη

λy:σ.(pr1 x) y : σ → τ

Γ `TCDV
=βη

x : (σ → τ) ∩ ρ
Γ `TCDV

=βη
pr2 x : ρ λy.x y =βη x

Γ `TCDV
=βη

〈λy:σ.(pr1 x) y, pr2 x〉 : (σ → τ) ∩ ρ
Γ `TCDV

=βη
pr2 〈λy:σ.(pr1 x) y, pr2 x〉 : ρ

The essence of pr2 〈λy:σ.(pr1 x) y, pr2 x〉 is λy.x y, but, if ρ is an atomic type:

x:(σ → τ) ∩ ρ 6 `TCDV
∩ λy.x y : ρ

Loss of soundness in ∆BCD
=βη

is proved via the following counterexample:

x:σ, y:U `TBCD
=βη

x : σ σ 6T U→ U

x:σ, y:U `TBCD
=βη

xU→U : U→ U x:σ, y:U `TBCD
=βη

y : U

x:σ, y:U `TBCD
=βη

xU→U y : U

x:σ `TBCD
=βη

λy:U.xU→U y : U→ U x:σ `TBCD
=βη

x : σ λy.x y =βη x

x:σ `TBCD
=βη

〈λy:U.xU→U y, x〉 : (U→ U) ∩ σ
x:σ `TBCD

=βη
pr2 〈λy:U.xU→U y, x〉 : σ

The essence of pr2 〈λy:U.xU→U y, x〉 is λy.x y, but, if σ is an atomic type (different
than U):

x:σ 6 `TBCD
∩ λy.x y : σ

(.) Let M be such that Γ `T∩ M : σ for a given Γ. We proceed by induction on
the derivation. All cases proceed straightforwardly since all rules of the type and
subtype assignment system `T∩ correspond exactly to the rules of the same name in
the corresponding typed system `TR and in the same type theory T . Therefore a
∆-term can be easily be constructed and derived with type σ.

The last theorem characterizes the class of strongly normalizing ∆-terms.

Theorem 2.23 (Characterization). Every strongly normalizing λ-term can be type-
annotated so as to be the essence of a typable ∆-term.

Proof. We know that every strongly normalizing λ-termM is typable in λT∩. By Theorem
2.22 we have that ∆TR.λ

T
∩, therefore there exists some typable ∆, such thatM ≡ o∆ o.
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We can finally state decidability of type checking (TC) and type reconstruction (TR).

Theorem 2.24 (Decidability of type checking and type reconstruction).

∆TR TC/TR

∆CD
≡

√

∆CDV
≡

√

∆CDS
≡

√

∆BCD
≡

√

∆CD
=β

√

∆CDV
=β

√

∆CDS
=β

×
∆BCD

=β
×

∆CDV
=βη

√

∆BCD
=βη

×

Proof. Both type checking and type reconstruction can be proved by induction on the
structure of ∆, using the decidability of TBCD proved by Hindley [54] (see also [65]). By
Theorem 2.22, the essences of all the ∆-terms, which are typable in ∆CD

=β
, ∆CDV

=β
, or ∆CDV

=βη
,

are typable in λCD
∩ or λCDV

∩ , therefore they are strongly normalizing. As a consequence,
the side-condition o∆1 o R o∆2 o is decidable for ∆CD

=β
, ∆CDV

=β
, and ∆CDV

=βη
and so type recon-

struction and type checking are decidable too.
Type reconstruction and type checking are not decidable in ∆CDS

=β
, ∆BCD

=β
, and ∆BCD

=βη
,

because 〈uM , uN〉 is typable if and only if M =β N (resp. M =βη N). However, M and
N are arbitrary pure λ-terms, and both β-equality and βη-equality are undecidable.

2.4.2 Subtyping and explicit coercions

The typing rule (6T ) in the general typed system introduces type coercions: once a
type coercion is introduced, it cannot be eliminated, so de facto freezing a ∆-term inside
an explicit coercion. Tannen et al. [91] showed a translation of a judgment derivation
from a “Source” system with subtyping (Cardelli’s Fun [24]) into an equivalent judgment
derivation in a “Target” system without subtyping (Girard system F with records and
recursion). In the same spirit, we present a translation that removes all explicit coercions.
Intuitively, the translation proceeds as follows: every derivation ending with rule:

Γ `TR ∆ : σ σ 6T τ

Γ `TR ∆τ : τ
(6T )

is translated into the following (coercion-free) derivation

Γ `TR′ ‖σ 6T τ‖ : σ → τ Γ `TR′ ‖∆‖Γ : σ

Γ `TR′ ‖σ 6T τ‖ ‖∆‖Γ : τ
(→E)

where R′ is a suitable relation such that R v R′. Note that changing of the type theory
is necessary to guarantee well-typedness in the translation of strong pairs. Summarizing,
we provide a type preserving translation of a ∆-term into a coercion-free ∆-term such
that o∆ o =βη o∆′ o.

The following example illustrates some trivial compilations of axioms and rule schemes
of Figure 2.1.
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Example 2.9 (Translation of axioms and rule schemes of Figure 2.1).

(refl) the judgment x:σ `TR 〈x, xσ〉 : σ ∩ σ is translated to a coercion-free judgment

x:σ `T=β 〈x, (λy:σ.y)x〉 : σ ∩ σ

(incl) the judgment x:σ∩τ `TR 〈x, xτ 〉 : (σ∩τ)∩τ is translated to a coercion-free judgment

x:σ ∩ τ `T=β 〈x, (λy:σ ∩ τ.pr2 y)x〉 : (σ ∩ τ) ∩ τ

(glb) the judgment x:σ `TR 〈x, xσ∩σ〉 : σ∩ (σ∩σ) is translated to a coercion-free judgment

x:σ `T=β 〈x, (λy:σ.〈y, y〉)x〉 : σ ∩ (σ ∩ σ)

(Utop) the judgment x:σ `TR 〈x, xU〉 : σ ∩ U is translated to a coercion-free judgment

x:σ `T=β 〈x, (λy:σ.uy)x〉 : σ ∩ U

(U→) the judgment x:U `TR 〈x, xσ→U〉 : U∩(σ → U) is translated to a coercion-free judgment

x:U `T=βη 〈x, (λf :U.λy:σ.u(f y))x〉 : U ∩ (σ → U)

(→∩) the judgment x:(σ → τ) ∩ (σ → ρ) `TR xσ→τ∩ρ : σ → τ ∩ ρ is translated to a
coercion-free judgment

x:σ′ `T=βη (λf :σ′.λy:σ.〈(pr1 f) y, (pr2 f) y〉)x : σ → τ ∩ ρ

where σ′ = (σ → τ) ∩ (σ → ρ)

(→) the judgment x:σ → τ ∩ ρ `TR 〈x, xσ∩ρ→τ 〉 : (σ → τ ∩ ρ) ∩ (σ ∩ ρ→ τ) is translated
to a coercion-free judgment

x:σ → τ ∩ ρ `T=βη 〈x, (λf :σ → τ ∩ ρ.λy:σ ∩ ρ.pr1 (f (pr1 y)))x〉 : σ′′

where σ′′ = (σ → τ ∩ ρ) ∩ (σ ∩ ρ→ τ)

(trans) the judgment x:σ `TR 〈x, (xU)σ→U〉 : σ ∩ (σ → U) is translated to a coercion-free
judgment

x:σ `T=βη 〈x, (λf :U.λy:σ.u(f y)) ((λy:σ.uy)x)〉 : σ ∩ (σ → U)

The next definition introduces two maps translating subtype judgments into explicit
coercions functions and ∆-terms into coercion-free ∆-terms.

Definition 2.18 (Translations ‖−‖ and ‖−‖Γ).
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1. The minimal type theory 6min and the extra axioms and schemes are translated as
follows:

(refl) ‖σ 6T σ‖
def
= `T=β λx:σ.x : σ → σ

(incl1) ‖σ ∩ τ 6T σ‖
def
= `T=β λx:σ ∩ τ.pr1 x : σ ∩ τ → σ

(incl2) ‖σ ∩ τ 6T τ‖
def
= `T=β λx:σ ∩ τ.pr2 x : σ ∩ τ → τ

(glb)

∥∥∥∥ρ 6T σ ρ 6T τ
ρ 6T σ ∩ τ

∥∥∥∥ def
= `T=β λx:ρ.〈‖ρ 6T σ‖x, ‖ρ 6T τ‖x〉 : ρ→ σ ∩ τ

(trans)

∥∥∥∥σ 6T τ τ 6T ρ
σ 6T ρ

∥∥∥∥ def
= `T=β λx:σ. ‖τ 6T ρ‖ (‖σ 6T τ‖ x) : σ → ρ

(Utop) ‖σ 6T U‖ def
= `T=β λx:σ.ux : σ → U

(U→) ‖U 6T σ → U‖ def
= `T=βη λf :U.λx:σ.u(f x) : U→ (σ → U)

Let ξ1
def
= (σ → τ) ∩ (σ → ρ) and ξ2

def
= σ → τ ∩ ρ

(→∩) ‖ξ1 6T ξ2‖
def
= `T=βη λf :ξ1.λx:σ.〈(pr1 f)x, (pr2 f)x〉 : ξ1 → ξ2

Let ξ1
def
= σ1 → τ1 and ξ2

def
= σ2 → τ2

(→)

∥∥∥∥ σ2 6T σ1 τ1 6T τ2

σ1 → τ1 6T σ2 → τ2

∥∥∥∥ def
= `T=βη λf :ξ1.λx:σ2. ‖τ1 6T τ2‖ (f (‖σ2 6T σ1‖x)) : ξ1 → ξ2

2. The translation ‖−‖Γ is defined on ∆ as follows:

‖uM‖Γ

def
= uM

‖x‖Γ

def
= x

‖λx:σ.∆‖Γ

def
= λx:σ. ‖∆‖Γ,x:σ

‖∆1 ∆2‖Γ

def
= ‖∆1‖Γ ‖∆2‖Γ

‖〈∆1,∆2〉‖Γ

def
= 〈‖∆1‖Γ , ‖∆2‖Γ〉

‖pri ∆‖Γ

def
= pri ‖∆‖Γ i ∈ {1, 2}

‖∆τ‖Γ

def
= ‖σ 6T τ‖ ‖∆‖Γ if Γ `TR ∆ : σ.

By looking at the above translation functions we can see that if Γ `TR ∆ : σ, then
‖∆‖Γ is defined and it is coercion-free.

The following lemma states that a coercion function is always typable in ∆T=βη , that it
is essentially the identity and that, without using the rule schemes (→∩), (U→), and (→)
the translation can even be derivable in ∆T=β .

Lemma 2.25 (Essence of a coercion is an identity).

1. If σ 6T τ , then `T=βη ‖σ 6T τ‖ : σ → τ and o ‖σ 6T τ‖ o =βη λx.x;
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Source Target
∆CD
≡ ∆CD

=β

∆CDV
≡ ∆CDV

=βη

∆CDS
≡ ∆CDS

=β

∆BCD
≡ ∆BCD

=βη

∆CD
=β

∆CD
=β

∆CDV
=β

∆CDV
=βη

∆CDS
=β

∆CDS
=β

∆BCD
=β

∆BCD
=βη

∆CDV
=βη

∆CDV
=βη

∆BCD
=βη

∆BCD
=βη

Figure 2.7: On the left: source systems. On the right: target systems without the (6T )
rule

2. If σ 6T τ without using the rule schemes (→∩), (U→), and (→), then
`T=β ‖σ 6T τ‖ : σ → τ and o ‖σ 6T τ‖ o =β λx.x.

Proof. The proofs proceed in both parts by induction on the derivation of σ 6T τ . For
instance, in case of (glb), we can verify that `T=β λx:ρ.〈‖ρ 6T σ‖x, ‖ρ 6T τ‖x〉 : ρ→ σ∩τ
using the induction hypotheses that ‖ρ 6T σ‖ (resp. ‖ρ 6T τ‖) has type ρ → σ (resp.
ρ→ τ) and has an essence convertible to λx.x.

We can now prove the coherence of the translation as follows:

Theorem 2.26 (Coherence). If Γ `TR ∆ : σ, then Γ `TR′ ‖∆‖Γ : σ and o ‖∆‖Γ o R′ o∆ o,
where ∆TR and ∆TR′ are respectively the source and target intersection typed systems given
in Figure 2.7.

Proof. By induction on the derivation. We illustrate the most important case, namely
when the last type rule is (6T ). In this case ‖∆τ‖Γ is translated to ‖σ 6T τ‖ ‖∆‖Γ. By
induction hypothesis we have that Γ `TR ∆ : σ, and by Lemma 2.25 we have that Γ `TR′
‖σ 6T τ‖ : σ → τ ; therefore Γ `TR′ ‖∆τ‖Γ : τ . Moreover, we know that o ‖σ 6T τ‖ o R′
λx.x, and this gives o ‖∆τ‖Γ o R′ o ‖∆‖Γ o. Again by induction hypothesis we have that
o ‖∆‖Γ o R′ o∆ o, and this gives the thesis o ‖∆τ‖Γ o R′ o∆τ o.
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Chapter 3
Adding union types

This chapter is a contribution to the study of typed λ-calculi à la Church in presence of
intersection and union types. We inspect the relationship between pure λ-calculus and its
corresponding ∆-calculus. We present and explore the relationships between the following
three formal systems:

– λBDdL, the type assignment system with intersection and union types for pure λ-
calculus with subtyping with the type theory Ξ, as defined in [7]: type assignment
judgments have the shape Γ `M : σ;

– λ@BDdL, an extension of the typed λ-calculus with strong pairs and strong sums,
as defined in [40], with subtyping and explicit coercions: type judgments have the
shape Γ ` M@∆ : σ, where ∆ is a typed λ-term enriched with strong pairs and
strong sums;

– ∆BDdL, an extension of the ∆BCD
≡ of Chapter 2 with ad hoc formulæ and inference

rules for subtyping and explicit coercions: type judgments have the shape Γ ` ∆ : σ.

Intuitively, ∆ denotes a proof for a type assignment derivation forM ; from an operational
point of view, reductions in pure M and typed ∆ must be synchronized by suitable
synchronous reduction rules in order to preserve the reduction of subjects. From a typing
point of view, the type rules of λ@BDdL should encode the proof-functional nature of strong
intersection and strong union, i.e. the fact that in a strong pair (or strong sums) the two
∆ relate to the same M . Thanks to an erasing function o − o translating typed ∆ into
pure M , we could reason only on ∆BDdL assigning types to ∆.

In summary, this chapter extends Chapter 2 with union types. The important points
of this chapter are as follows:

– we define ∆BDdL obtained by extending the generic ∆-calculus with union types and
by fixing a single type theory T and equivalence relation R, while keeping decid-
ability of type checking, and showing the isomorphism with the type assignment
system λBDdL of [7]. As such, ∆-terms are typed λ-terms enriched with both strong
pairs and and strong sums;

– we define the typed λ-calculus λ@BDdL which is a decorated version of ∆BDdL. Terms
of λ@BDdL have the form M@∆ where M is a pure λ-term;

39
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Γ `M : U
(U)

Γ `M : σ σ 6 τ
Γ `M : τ

(6) x:σ ∈ Γ
Γ ` x : σ

(Var)

Γ, x:σ1 `M : σ2

Γ ` λx.M : σ1 → σ2
(→I)

Γ `M : σ1 → σ2 Γ ` N : σ1

Γ `M N : σ2
(→E)

Γ `M : σ1 Γ `M : σ2

Γ `M : σ1 ∩ σ2
(∩I)

Γ `M : σ1 ∩ σ2 i = 1, 2

Γ `M : σi
(∩Ei)

Γ `M : σi i = 1, 2

Γ `M : σ1 ∪ σ2
(∪Ii)

Γ, x:σ1 `M : σ3

Γ, x:σ2 `M : σ3 Γ ` N : σ1 ∪ σ2

Γ `M [N/x] : σ3
(∪E)

Figure 3.1: Intersection and union type assignment system λBDdL [7]

– we prove the isomorphism property between ∆BDdL and λ@BDdL (Theorem 3.1), as
well as the other usual properties, such as subject reduction, Church-Rosser, strong
normalization, unicity of typing, and decidability of type reconstruction and of type
checking (Theorem 3.2).

This chapter is organized as follows: in Section 3.1, we present the syntax and se-
mantics of ∆BDdL and λ@BDdL. In Section 3.2, we study the metatheory of ∆BDdL and
λ@BDdL.

3.1 Syntax and semantics of ∆BDdL and λ@BDdL

The syntax of σ, M , ∆, and the derived M@∆ are defined using a set of atomic types
A∞ and the following three syntactic categories:

σ ::= U | φ | σ → σ | σ ∩ σ | σ ∪ σ

M ::= x | λx.M |MM

∆ ::= uM | x | λx:σ.∆ | ∆ ∆ | 〈∆,∆〉 | [∆,∆] | pr1 ∆ | pr2 ∆ | inσ1 ∆ | inσ2 ∆ | ∆σ

where φ denotes atomic types belonging in A∞, and U denotes a special type that is
inhabited by all pure λ-terms and all constants uM . The ∆-expression 〈∆,∆〉 denotes
the strong pair, while [∆,∆] denotes the strong sum, with the respective projections and
injections, respectively. Finally, ∆σ denotes the explicit coercion of ∆ with the type σ.

The untyped reduction semantics for the calculus à la Curry λBDdL corresponds to
ordinary β-reduction, even if subject reduction holds only in presence of the “Gross-Knuth”
parallel reduction (see Definition 13.2.7 in [9]), where all redexes in M are contracted
simultaneously. Reduction for the calculus à la Church λ@BDdL is delicate because it
must keep synchronized the untyped reduction of M with the typed reduction of ∆: it is
defined in Section 5 of [40]. Reductions in ∆BDdL are defined from these three notions of
reductions:

(λx:σ.∆1) ∆2 7→β ∆1[∆2/x] (β)

pri 〈∆1,∆2〉 7→pri ∆i (pri )

[λx:σ1.∆1, λx:σ2.∆2] inτi ∆3 7→ini ∆i[∆3/x] i ∈ {1, 2} (ini )
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Γ `M@uM : U
(U) x:σ ∈ Γ

Γ ` x : σ
(Var)

Γ, x:σ1 `M@∆ : σ2

Γ ` λx.M@λx:σ1.∆ : σ1 → σ2
(→I)

Γ `M@∆1 : σ1 → σ2 Γ ` N@∆2 : σ1

Γ `M N@∆1 ∆2 : σ2
(→E)

Γ `M@∆1 : σ1 Γ `M@∆2 : σ2

Γ `M@〈∆1,∆2〉 : σ1 ∩ σ2
(∩I)

Γ `M@∆ : σ1 ∩ σ2 i ∈ {1, 2}
Γ `M@pri ∆ : σi

(∩Ei)

Γ `M@∆ : σi {i, j} = {1, 2}
Γ `M@in

σj
i ∆ : σ1 ∪ σ2

(∪Ii) Γ `M@∆ : σ σ 6 τ
Γ `M@∆τ : τ

(6)

Γ, x:σ1 `M@∆1 : σ3 Γ, x:σ2 `M@∆2 : σ3 Γ ` N@∆3 : σ1 ∪ σ2

Γ `M [N/x]@[λx:σ1.∆1, λx:σ2.∆2] ∆3 : σ3
(∪E)

Figure 3.2: Typed calculus λ@BDdL [40]

We write −→βpriini for the contextual closure of the (β), (pri ) and (ini ) notions of
reduction. We write −→−→βpriini as the reflexive and transitive closure of −→βpriini . We
mostly consider βpriini -reductions, thus to ease the notation, we will often omit the
subscript in βpriini -reductions. We note −→−→‖ for the synchronous reduction, i.e. the
reduction relation where the transitive closure for strong pairs and strong sums are the
following rules:

∆1 →∆ ∆′1 ∆2 →∆ ∆′2 o∆′1 o ≡ o∆′2 o
〈∆1,∆2〉 →∆ 〈∆′1,∆′2〉

(Congr∩)

∆1 →∆ ∆′1 ∆2 →∆ ∆′2 o∆′1 o ≡ o∆′2 o
[∆1,∆2]→∆ [∆′1,∆

′
2]

(Congr∪)

Figure 3.1 presents the main rules of the type assignment system of [7]: note that type
inference is not syntax-directed, and undecidable. Figure 3.2 presents the main rules of
the typed calculus λ@BDdL of [40]; note that this type system is completely syntax directed
and decidable.

The next definition clarifies what we intend with isomorphism between an untyped M
and a typed ∆: the essence function shows the syntactic relation between pure λ-terms
and ∆-terms. Essence maps typed ∆-terms into untyped λ-terms: intuitively, two typed
∆-terms proves the same formula if they have the same essence.
The essence function between pure and typed λ-terms is defined as follows:

Definition 3.1 (Proof Essence).

ouM o
def
= M

ox o def
= x oλx:σ.∆ o def

= λx.o∆ o

o∆1 ∆2 o
def
= o∆1 o o∆2 o o∆σ o def

= o∆ o

o pri ∆ o
def
= o∆ o o inσi ∆ o def

= o∆ o

o 〈∆1,∆2〉 o
def
= o∆1 o o [λx:σ1.∆1, λx:σ2.∆2)] ∆3 o

def
= o∆1 o[o∆3 o/x]
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Γ ` uM : U
(U)

Γ ` ∆ : σ σ 6 τ
Γ ` ∆τ : τ

(6) x:σ ∈ Γ
Γ ` x : σ

(Var)

Γ, x:σ1 ` ∆ : σ2

Γ ` λx:σ1.∆ : σ1 → σ2
(→I)

Γ ` ∆1 : σ1 → σ2 Γ ` ∆2 : σ1

Γ ` ∆1 ∆2 : σ2
(→E)

Γ ` ∆1 : σ1

Γ ` ∆2 : σ2 o∆1 o ≡ o∆2 o
Γ ` 〈∆1,∆2〉 : σ1 ∩ σ2

(∩I)
Γ ` ∆ : σ1 ∩ σ2 i ∈ {1, 2}

Γ ` pri ∆ : σi
(∩Ei)

Γ ` ∆ : σi {i, j} = {1, 2}
Γ ` in

σj
i ∆ : σ1 ∪ σ2

(∪Ii)

Γ, x:σ1 ` ∆1 : σ3 o∆1 o =β o∆2 o
Γ, x:σ2 ` ∆2 : σ3 Γ ` ∆3 : σ1 ∪ σ2

Γ ` [λx:σ1.∆1, λx:σ2.∆2] ∆3 : σ3
(∪E)

Figure 3.3: ∆-calculus ∆BDdL

The essence function is basically an erasing function that forgets all typing information
and the second component of strong pairs and strong sums.

Figure 3.3 presents the main rules of ∆BDdL of [39]: this system can be seen as a proof-
functional logic, in the sense of Pottinger [80] and López-Escobar [67]: formulæ encode,
using the Curry-Howard isomorphism, derivations D : Γ ` M : σ in the type assignment
system λBDdL which are, in turn, isomorphic to typed judgments Γ `M@∆ : σ of λ@BDdL.
It is worth noticing that if we drop the restriction concerning the essence in rules (∩I) and
(∪E) in the system ∆BDdL, replace σ∩τ by σ×τ , and σ∪τ by σ+τ , then we get a simply
typed λ-calculus with product and sums, namely the usual intuitionistic propositional NJ
logic with implication, conjunction, and disjunction in disguise: the resulting system loses
its proof-functionality.

All the introduced typed systems also use a subtyping relation, written σ 6 τ . Sub-
typing is defined from a type theory, which is a collection of inequalities between types
satisfying natural closure conditions.

Definition 3.2 (Type theory Ξ).
The type theory Ξ (see Definition 3.6 of [7]), is an extension of the type theory TBCD of
Figure 2.3, and is defined by the following subtyping axioms and inference rules:

(1) σ 6 σ ∩ σ (8) σ1 6 σ2, τ1 6 τ2 ⇒ σ1 ∪ τ1 6 σ2 ∪ τ2

(2) σ ∪ σ 6 σ (9) σ 6 τ, τ 6 ρ⇒ σ 6 ρ

(3) σ ∩ τ 6 σ, σ ∩ τ 6 τ (10) σ ∩ (τ ∪ ρ) 6 (σ ∩ τ) ∪ (σ ∩ ρ)

(4) σ 6 σ ∪ τ, τ 6 σ ∪ τ (11) (σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)

(5) σ 6 U (12) (σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ

(6) σ 6 σ (13) U 6 U→ U

(7) σ1 6 σ2, τ1 6 τ2 ⇒ σ1 ∩ τ1 6 σ2 ∩ τ2 (14) σ2 6 σ1, τ1 6 τ2 ⇒ σ1 → τ1 6 σ2 → τ2

The theory Ξ suggests the interpretation of U as the set universe, of ∩ as the set inter-
section, of ∪ as the set union, and of 6 as a subset relation, respectively, in the spirit of
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[50].

In the following, we write σ ∼ τ if, and only if, σ 6 τ and τ 6 σ. We note that
distributivity of union over intersection and intersection over union, i.e. σ ∪ (τ ∩ ρ) ∼
(σ ∪ τ) ∩ (σ ∪ ρ), and σ ∩ (τ ∪ ρ) ∼ (σ ∩ τ) ∪ (σ ∩ ρ) are derivable (see, e.g. derivation in
[7], page 9).

Once the subtyping preorder has been defined, a classical subsumption rule and two
explicit coercion rule can be defined as follows:

Γ `M : σ σ 6 τ
Γ `M : τ

(6)
Γ `M@∆ : σ σ 6 τ

Γ `M@∆τ : τ
(6)

Γ ` ∆ : σ σ 6 τ
Γ ` ∆τ : τ

(6)

In a nutshell, the first rule is a subsumption, while the two others are explicit coercions,
because of the type decoration.

3.2 Metatheory of ∆BDdL and λ@BDdL

The next theorem relates the three systems: the key concept is the essence function
o − o that allows to interpret union, intersection, and explicit coercions as proof-functional
connectives.

Theorem 3.1 (Isomorphism).
Let M , ∆, Γ, and σ. Then:

1. Γ `M : σ iff Γ ` ∆ : σ and o∆ o ≡M ;

2. Γ `M@∆ : σ iff Γ ` ∆ : σ;

3. Γ `M : σ iff Γ `M@∆ : σ.

Proof.

1. by adding union types to the proof of Theorem 2.22;

2. by induction on the structure of derivations;

3. by parts 1 and 2.

The next theorem states that adding union types does not break the properties of the
new typed systems.

Theorem 3.2 (Conservativity).
The typed systems λ@BDdL and ∆BDdL preserve subject reduction (for the synchronous
β-reduction), Church-Rosser, strong normalization, unicity of typing, and decidability of
type reconstruction and of type checking.

Proof. For proving properties of λ@BDdL we proceeds by upgrading results of Theorems
2.4, 2.11, 2.21, 2.19, and Lemma 2.5. Properties of λ@BDdL are mostly inherited by ∆BDdL

using Theorem 3.1 or, as for case of subject reduction for βpri ini -reductions, is proved by
induction on the structure of the derivation.
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Chapter 4
On Mints’ realizability

This chapter deals with finding a realizability interpretation of union and intersection
types usingMints’ realizers [71]. Intuitively, a Mints’ realizer rσ[M ] is a logical proposition
stating that M has type σ.

Similarly to the system of intersection types, the type assignment system λBDdL has no
trivial set-theoretic interpretation (see [7]). It is noteworthy that some similar systems
have a clear set-theoretic interpretation (see e.g. Frisch, Castagna, and Benzaken [50]).

This chapter provides both a intuitive semantics for union types and a logical foun-
dation for ∆BDdL. We do this by interpreting the union type assignment system into
the intuitionistic first order logic NJ(β) with Mints’ provable realizability of intersection
types extended with union. Then, we prove that the terms of ∆BDdL correspond to logical
derivations in NJ(β).

From Theorem 3.1, we know that if Γ `M@∆ : σ, then there is a tight relation among
∆ and M , namely o∆ o ≡ M . In ∆BDdL, ∆ can also be seen as a simply-typed term: if
we drop the restriction concerning the essence in rules (∩I) and (∪E) in ∆BDdL replacing
σ ∩ τ by σ × τ and σ ∪ τ by σ + τ , then we get a simply typed λ-calculus with product
and sums, namely the intuitionistic propositional logic with implication, conjunction, and
disjunction in disguise.

We could provide a logical foundation for ∆BDdL by interpreting it into an extension of
Mints’ provable realizability. However, when proving a formula rσ[M ], we have two kinds
of realizers: the former is the pure λ-term M , while the latter is the ∆-term that turn
out to be realizers in the ordinary sense of intuitionistic logic.

Therefore, we prove in Theorem 5.4 that, if Γ ` ∆ : σ is derivable in ∆BDdL, then ∆
realizes the NJ(β) judgment GΓ `NJ(β) rσ[o∆ o]. However, the converse is not true, as is
shown in Section 4.3.

For this aim, we use and extend Mints’ approach of provable realizability [71, 3, 8]. We
interpret the statement `M@∆ : σ as “∆ is a construction of M : σ”; on the other hand
M : σ is the meaning of the formula rσ[M ], provided that we extend the notion to cope
with union types; the latter formula reads as “M is a method to assess σ”, following the
terminology of [67, 8]; now, the meaning of ∆ is that it is a constructive proof of rσ[M ],
and hence it is a realizer of this formula. In short, we have two kinds of realizers on two
levels: the realizer M , which is a Mints’ realizer of σ, and the realizer ∆ which is an
ordinary realizer, in the sense of standard Brouwer-Heyting-Kolmogorov interpretation of
intuitionistic logic, of the statement rσ[M ]: in simpler words, ∆ represents an encoding
of the logical derivation of rσ[M ].

This chapter is organized as follows: in Section 4.1, we present the logic NJ(β) along

45
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A ∈ G
G `NJ(β) A

(Ax)
GΓ `NJ(β) Pφ(M) M =β N

GΓ `NJ(β) Pφ(N)
(β)

G `NJ(β) >
(>I)

G `NJ(β) ⊥
G `NJ(β) A

(⊥E)

G `NJ(β) A G `NJ(β) B

G `NJ(β) A ∧B
(∧I)

G `NJ(β) A1 ∧ A2 i = 1, 2

G `NJ(β) Ai
(∧Ei)

G `NJ(β) Ai i = 1, 2

G `NJ(β) A1 ∨ A2
(∨Ii)

G,A `NJ(β) C G,B `NJ(β) C G `NJ(β) A ∨B
G `NJ(β) C

(∨E)

G,A `NJ(β) B

G `NJ(β) A ⊃ B
(⊃ I)

G `NJ(β) A ⊃ B G `NJ(β) A

G `NJ(β) B
(⊃ E)

G `NJ(β) A x 6∈ Fv(G)

G `NJ(β) ∀x.A
(∀I)

G `NJ(β) ∀x.A
G `NJ(β) A[t/x]

(∀E)

G `NJ(β) A[t/x]

G `NJ(β) ∃x.A
(∃I)

G `NJ(β) ∃x.A G,A[c/x] `NJ(β) C c 6∈ Fv(G)

G `NJ(β) C
(∃E)

Figure 4.1: The logic NJ(β)

with Mints’ realizers, in Section 4.2, we prove that ∆BDdL is sound w.r.t. Mints’ realizers
in NJ(β). In Section 4.3, we discuss the completeness of ∆BDdL is sound w.r.t. Mints’
realizers in NJ(β).

4.1 Presentation of NJ(β)

The next definition introduces formally the NJ(β) logic1.

Definition 4.1. (Logic NJ(β)).

1. let Pφ(x) be a unary predicate for each atomic type φ: the natural deduction sys-
tem for first-order intuitionistic logic NJ(β) extends NJ with untyped λ-terms and
predicates Pφ(x), and the rule (β). The full description of NJ(β) can be found in
Figure 4.1. Note that ⊃ denotes logical implication, > and ⊥ denote truth and
falsehood, while ∧ and ∨ are the logical connectives for conjunction and disjunction
respectively, that must be kept distinct from ∩ and ∪;

2. for a given context Γ
def
= {x1:σ1, . . . , xn:σn} of ∆BDdL, we define a logical context

GΓ
def
= rσ1 [x1], . . . , rσn [xn] of NJ(β).

It is clear that GΓ,x:σ ≡ GΓ, rσ[x] and x 6∈ Fv(GΓ), since x 6∈ Dom(Γ), by context
definition. In the rest of this chapter, we will define Mints’ realizability for ∆BDdL.

We now give a precise definition of the notion of realizer, as first introduced for inter-
section types by Mints [71], and extended in [39].

1the logic NJ has been named by Gentzen [51] as an abbreviation for “Kalkül des natürlichen intu-
itionistischen Schließens”, i.e. “calculus of the natural intuitionistic deduction”. The letters I and J were
often considered the same by the Germans, way back when they used Fraktur letters.
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Definition 4.2 (Mints’ realizers in NJ(β) [39]).
Let Pφ(−) be a unary predicate for each atomic type φ. We define the predicates rσ[−]
for each type σ by induction over σ, as follows:

rφ[M ]
def
= Pφ(M) rσ1→σ2 [M ]

def
= ∀y.rσ1 [y] ⊃ rσ2 [M y]

rU[M ]
def
= > rσ1∪σ2 [M ]

def
= rσ1 [M ] ∨ rσ2 [M ]

rσ1∩σ2 [M ]
def
= rσ1 [M ] ∧ rσ2 [M ]

Formulæ have the shape rσ[M ], whose intended meaning is that M has type σ in the
intersection-union type discipline with subtyping.

Intuitively, we write rσ[M ] to denote a formula in NJ(β), realized by the pure λ-term
M of type σ in λBDdL.

4.2 Soundness of NJ(β)

This section states that ∆BDdL is sound w.r.t. Mints’ realizers in NJ(β). We first start
with a few technical lemmas.

Lemma 4.1 (Admissibility of (Eqβ) in NJ(β)).
The following rule is admissible in NJ(β):

GΓ `NJ(β) rσ[N ] M =β N

GΓ `NJ(β) rσ[M ]
(Eqβ)

Proof. By induction over σ.

Lemma 4.2 (Admissibility in NJ(β)).
The following rules are admissible in NJ(β):

GΓ, rσ1 [x] `NJ(β) rσ2 [M ]

GΓ `NJ(β) rσ1→σ2 [λx.M ]
(→ I)

GΓ `NJ(β) rσ1→σ2 [M ] GΓ `NJ(β) rσ1 [N ]

GΓ `NJ(β) rσ2 [M N ]
(→ E)

GΓ `NJ(β) rσ1 [M ] GΓ `NJ(β) rσ2 [M ]

GΓ `NJ(β) rσ1∩σ2 [M ]
(∩I)

GΓ `NJ(β) rσ1∩σ2 [M ] i ∈ {1, 2}
GΓ `NJ(β) rσi [M ]

(∩E)

GΓ `NJ(β) rσi [M ] i ∈ {1, 2}
GΓ `NJ(β) rσ1∪σ2 [M ]

(∪I)
GΓ `NJ(β) rσ[M ] σ 6 τ

GΓ `NJ(β) rτ [M ]
(6)

GΓ, rσ1 [x] `NJ(β) rσ3 [M ] GΓ, rσ2 [x] `NJ(β) rσ3 [M ] GΓ `NJ(β) rσ1∪σ2 [N ]

GΓ `NJ(β) rσ3 [M [N/x]]
(∪E)

Proof. We can see that:

– rules (∩I), (∩E), and (∪I) correspond respectively to rules (∧I), (∧E), and (∨I);

– rule (∪E) is derivable from rule (∨E) and a classical substitution lemma;
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– rule (→ I) and (→ E) are derivable:

GΓ, rσ1 [x] `NJ(β) rσ2 [M ]

GΓ, rσ1 [x] `NJ(β) rσ2 [(λx.M)x]
(Eqβ)

GΓ `NJ(β) rσ1 [x] ⊃ rσ2 [(λx.M)x]
(⊃ I)

GΓ `NJ(β) ∀x.rσ1 [x] ⊃ rσ2 [(λx.M)x]
(∀I)

and:
GΓ `NJ(β) rσ→τ [M ]

GΓ `NJ(β) rσ[N ] ⊃ rτ [MN ]
(∀E)

GΓ `NJ(β) rσ[N ]

GΓ `NJ(β) rτ [MN ]
(⊃ E)

– it can be showed that all the subtyping rules are derivable in NJ(β), therefore (6)
is derivable.

We can now prove relations between λBDdL (and λ@BDdL, and ∆BDdL) and NJ(β).

Lemma 4.3 (λBDdL vs. NJ(β)).
If Γ `M : σ then GΓ `NJ(β) rσ[M ].

Proof. By structural induction on the derivation tree of Γ ` M : σ: all the rules can
be replaced with rules of the same name (using Lemma 4.2), except rule (Var) which is
replaced by rule (Ax).

Lemma 4.4. If Γ `M@∆ : σ in λ@BDdL then GΓ `NJ(β) rσ[M ].

Proof. Because of Lemma 4.3 and because λ@BDdL and λBDdL are equivalent by Theorem
3.1.

Theorem 4.5 (Soundness).
If Γ ` ∆ : σ is derivable in ∆BDdL, then GΓ `NJ(β) rσ[o∆ o].

Proof. By Theorem 3.1 if Γ ` ∆ : σ is derivable then Γ ` o∆ o@∆ : σ. The thesis follows
by Lemma 4.4.

Remark 4.1.
The type assignment system λBDdL of [7] was based on the type theory Ξ (see Definition
3.6 of [7]): the paper also introduced a stronger type theory, called Π, by adding the extra
axiom:

(15) P(σ)⇒ σ → τ ∪ ρ 6 (σ → τ) ∪ (σ → ρ),

whereP(σ) is true if σ syntactically corresponds to an Harrop formula. However, in NJ(β),
the judgment rσ→(τ∪ρ)[x] `NJ(β) r(σ→τ)∪(σ→ρ)[x] is not derivable because the judgment
A ⊃ (B ∨ C) `NJ(β) (A ⊃ B) ∨ (A ⊃ C) is not derivable in NJ. As such, the type theory
Π cannot be overlapped with an interpretation of types as sets, as the following example
show. The identity function λx.x inhabits the function set {a, b} → {a} ∪ {b} but, by
axiom (15), it should also inhabit {a, b} → {a} or {a, b} → {b}, which is clearly not the
case.
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4.3 Completeness of NJ(β)

One may wonder why there is no theorem stating ∆BDdL can realize every derivation of
NJ(β). The conjecture that we would like to prove is the following:

Conjecture 4.1 (Completeness).
If GΓ `NJ(β) rσ[M ] then there exists N =β M and ∆ such that Γ ` N@∆ : σ in λ@BDdL

and therefore Γ ` ∆ : σ in ∆BDdL.

Note that the condition N =β M is necessary because λBDdL does not enjoy subject
conversion, while Lemma 4.1 enforces subject conversion. However, this conjecture has
still not been proven (or disproven) yet.

4.3.1 Failure of completeness of NJ(β) without subtyping

It seems that subtyping is an essential component of the conjectured completeness result.
Intuitively, if we naively interpret types as sets, it is clear that the set (σ ∪ τ) ∩ (σ ∪ ρ)
is a subset of σ ∪ (τ ∩ ρ), and it appears that we can prove in NJ(β) that the identity
function has type (σ∪τ)∩ (σ∪ρ)→ σ∪ (τ ∩ρ), as is shown in Subsection 4.3.2. However,
in λBDdL, the λ-term λx.x cannot have type (σ ∪ τ) ∩ (σ ∪ ρ) → σ ∪ (τ ∩ ρ) if we don’t
consider subtyping.
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Chapter 5
Subtyping algorithm

This chapter presents a subtyping algorithm for a type system with intersection, union
and the universal type U. In the literature, there is already a subtyping algorithm for
intersection types with U [54], but without union types. The correction and completeness
of such an algorithm is not trivial, even though it is a crucial part of the proof of the
decidability of type reconstruction and type checking. Modern theorem provers such as
Coq allow us to design and certify such algorithms1. We have designed and certified on
paper an algorithm that I have thereafter certified in Coq, in the spirit of Bessai’s Coq
implementation of the subtyping algorithm without unions [16]. The full source code of the
Coq implementation can be found at https://github.com/cstolze/Bull-Subtyping.
The certification of the algorithm occurs in two steps:

1. first, we define the subtyping relation and prove some basic properties;

2. then we implement the subtyping algorithm and show it is sound and complete w.r.t.
the subtyping relation.

This chapter is organized as follows: in Section 5.1, we shortly present the subtyping
algorithm. In Section 5.2, we explain the details of the Coq implementation of the theory.
In Section 5.3, we show the implementation of the subtyping algorithm in Coq and show
the intricacies of certified programming. In Section 5.4, we show how to extract the
Coq code into valid OCaml code. In Section 5.5, we detail the preorder tactic we have
developed in order to ease the certification of the subtyping algorithm.

5.1 The algorithm, shortly explained

The types have the following BNF syntax:

σ, τ, ρ ::= α | σ ∩ σ | σ ∪ σ | σ → σ | U

Subtyping is defined as the theory Ξ from [7], as recalled in Figure 5.1. The subtyp-
ing algorithm rewrites the types in some normal form, then proceeds on the syntactical
structure of these normal forms.

We thus define the Arrow Normal Form (ANF) as follows :

1As long as we trust the metatheory and the implementation of the theorem prover.
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σ 6 σ ∩ σ (1)
σ1 6 σ2 τ1 6 τ2

σ1 ∪ τ1 6 σ2 ∪ τ2
(8)

σ ∪ σ 6 σ
(2)

σ 6 τ τ 6 ρ
σ 6 ρ

(9)

i ∈ {1, 2}
σ1 ∩ σ2 6 σi

(3)
σ ∩ (τ ∪ ρ) 6 (σ ∩ τ) ∪ (σ ∩ ρ)

(10)

i ∈ {1, 2}
σi 6 σ1 ∪ σ2

(4)
(σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)

(11)

σ 6 U
(5)

(σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ
(12)

σ 6 σ
(6)

U 6 U→ U
(13)

σ1 6 σ2 τ1 6 τ2

σ1 ∩ τ1 6 σ2 ∩ τ2
(7)

σ2 6 σ1 τ1 6 τ2

σ1 → τ1 6 σ2 → τ2
(14)

Figure 5.1: The type theory Ξ of [7]

Definition 5.1 (ANF).
A type is in Arrow Normal Form (ANF) if:

– it is a type variable;

– it is a type σ → τ , where σ is an intersection of ANFs (or U) and τ is an union of
ANFs.

Note that U is not an ANF.

Definition 5.2 (CANF and DANF).
These normal forms are similar to the usual Conjunctive and Disjunctive Normal Forms
(CNF and DNF) found in boolean algebras.

– An intersection of unions of ANFs is called a Conjunctive Arrow Normal Form
(CANF);

– An union of intersections of ANFs is called a Disjunctive Arrow Normal Form
(DANF).

The type U is considered to be a CANF and a DANF.

We use four rewriting subroutines, R1, R2, R3, and R4, in order to rewrite types in
normal form.
The first routine R1 removes all useless occurrences of U.

Definition 5.3. (Subroutine R1)
The term rewriting system R1 (called deleteOmega in the Coq code) is defined as follows:

– U ∩ σ and σ ∩ U rewrite to σ;

– U ∪ σ and σ ∪ U rewrite to U;

– σ → U rewrites to U.
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It is easy to verify that R1 terminates and his complexity is linear.
The subroutinesR2 andR3 rewrite a term in conjunctive and disjunctive normal form,

respectively.

Definition 5.4. (Subroutines R2 and R3)

– The term rewriting system R2 rewrites a type in its CNF; it is defined as follows:

– σ ∪ (τ ∩ ρ) rewrites to (σ ∪ τ) ∩ (σ ∪ ρ);
– (σ ∩ τ) ∪ ρ rewrites to (σ ∪ ρ) ∩ (τ ∪ ρ);

– The term rewriting system R3 rewrites a type in its DNF; it is defined as follows:

– σ ∩ (τ ∪ ρ) rewrites to (σ ∩ τ) ∪ (σ ∩ ρ);
– (σ ∪ τ) ∩ ρ rewrites to (σ ∩ ρ) ∪ (τ ∪ ρ).

It is well-known that R2 and R3 terminate and that the complexity of those algorithms
is exponential.

Subroutine R4 rewrites a type as an intersection of ANFs.

Definition 5.5. (Subroutine R4)
The term rewriting system R4 rewrites an arrow type into an intersection of ANFs, it is
defined as follows:

– σ → τ rewrites to R3(σ)→ R2(τ);

– ∪iσi → ∩hτh rewrites to ∩i(∩h(σi → τh)).

Since R2 and R3 terminate, it follows that R4 terminates and its complexity is exponen-
tial. Note that in the Coq implementation, we found it easier to directly write functions
that rewrite terms in CANF and DANF (these are respectively called _CANF and _DANF).
We could finally introduce the main algorithm A as follows:

Definition 5.6. (Algorithm A)
The main algorithm A takes as inputs two types σ in DANF and τ in CANF, and decides
whether σ 6 τ by structural induction as follows:

– if σ and τ are two type variables α and β, then σ 6 τ if, and only if, α ≡ β;

– if τ ≡ U, then σ 6 τ ;

– if σ ≡ U and τ 6≡ U, then σ 66 τ ;

– if σ ≡ σ1 ∪ σ2, then σ 6 τ if, and only if, σ1 6 τ and σ2 6 τ ;

– if τ ≡ τ1 ∩ τ2, then σ 6 τ if, and only if, σ 6 τ1 and σ 6 τ2;

– if σ ≡ σ1 ∩ σ2, then σ 6 τ if, and only if, σ1 6 τ or σ2 6 τ ;

– if τ ≡ τ1 ∪ τ2, then σ 6 τ if, and only if, σ 6 τ1 or σ 6 τ2;

– if σ ≡ σ1 → σ2 and τ ≡ τ1 → τ2, then σ 6 τ if, and only if, τ1 6 σ1 and σ2 6 τ2;

– for all other cases, σ 66 τ .

The next section gives a short explanation of the proof of soundness and correctness of
the algorithm, which has been formally implemented in Coq.
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5.1.1 Soundness and correctness of the algorithm

Lemma 5.1. For all the term rewriting systems R1,2,3,4 we have that R(σ) ∼ σ.

Proof. Each rewriting rule rewrites a term into an equivalent (∼) term.

The previous lemma has been also proved in Coq using a strong specification. A strong
specification is a type that fully specify the desired behavior of a function. For instance,
the function deleteOmega will have type ∀ σ : term, {τ | τ ∼ σ ∧ (Omega_free τ ∨ τ = U)},
which means that deleteOmega (i.e. R1) takes as input an expression σ, and return an
expression τ such that τ ∼ σ and τ has the property Omega_free τ ∨ τ = U, which means
there are no useless occurrences of U inside τ .

Lemma 5.2.

1. σ ∪ τ 6 ρ iff σ 6 ρ and τ 6 ρ;

2. σ 6 τ ∩ ρ iff σ 6 τ and σ 6 ρ.

Proof. The two parts can be proved by examining the subtyping rules of the type theory
Ξ.

Lemma 5.3.
If all the σi and τj are ANFs, then:

1. If ∃j,∩iσi 6 τj, then ∩iσi 6 ∪jτj;

2. If ∃i, σi 6 ∪τj, then ∩iσi 6 ∪jτj.

Proof. The two parts can be proved by induction on the subtyping rules of the type theory
Ξ using the ANF definition.

Lemma 5.3 is quite complicated to encode in Coq: we have chosen to define filters (i.e. a
set of all the types bigger than a given type) for intersection of ANFs, and ideals (i.e. a
set of all the types smaller than a given type) for union of ANFs, then we prove that the
definition of filters and ideals are sound and complete w.r.t. subtyping. You can see the
previous lemma as the interesting part of the completeness proof of ideals and filters.
The soundness and completeness proofs are then straightforward.

Theorem 5.4 (Soundness of A).
Let σ (resp. τ) be in DANF (resp. CANF). If A(σ, τ), then σ 6 τ .

Proof. The proof follows the algorithm, therefore it proceeds by structural induction,
using Lemmas 5.2 and 5.3.

Theorem 5.5 (Completeness of A).
Let σ (resp. τ) be in DANF (resp. CANF), such that σ 6 τ . We have that A(σ, τ).

Proof. The proof proceeds by mutual induction, using Lemmas 5.2 and 5.3.

Soundness and completess of A (called main_algo in the Coq source) is mechanically
proven through strong specification. The function main_algo takes as input two types σ
and τ , a proof that σ is in DANF and τ in CANF, and returns either a proof that σ 6 τ ,
or a proof that σ 66 τ .
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5.2 Coq implementation of the theory Ξ

This section documents the Coq implementation of the theory Ξ, as well as the the
important lemmas used to certify the subtyping algorithm. We start with the parameter
module, which contains the alphabet of variables, is called V, and has two important
fields:

– V.t, which is the type of variables;

– eq_dec, which is a proof that equality is decidable.

The types for which we define a subtyping algorithm only have atoms, arrows, intersec-
tions, union, and the universal type U. The syntax of types is defined using a simple
inductive type:

Inductive term : Set :=
| Var : V.t −> term
| Arrow : term −> term −> term
| Inter : term −> term −> term
| Union : term −> term −> term
| Omega : term.
Infix "→ " := (Arrow) (at level 60, right associativity).
Notation "(→ )" := Arrow (only parsing).
Infix "∩ " := (Inter) (at level 35, right associativity).
Notation "(∩ )" := (Inter) (only parsing).
Infix "∪ " := (Union) (at level 30, right associativity).
Notation "(∪ )" := (Union) (only parsing).
Notation "’U’" := (Omega).

The subtyping relation is the theory Ξ defined in [7], and is defined inductively in Coq as
follows:

Inductive Subtype : term −> term −> Prop :=
| R_InterMeetLeft : ∀ σ τ , σ ∩ τ 6 σ
| R_InterMeetRight : ∀ σ τ , σ ∩ τ 6 τ
| R_InterIdem : ∀ τ , τ 6 τ ∩ τ
| R_UnionMeetLeft : ∀ σ τ , σ 6 σ ∪ τ
| R_UnionMeetRight : ∀ σ τ , τ 6 σ ∪ τ
| R_UnionIdem : ∀ τ , τ ∪ τ 6 τ
| R_InterDistrib : ∀ σ τ ρ, (σ → ρ) ∩ (σ → τ) 6 σ → ρ ∩ τ
| R_UnionDistrib : ∀ σ τ ρ, (σ → ρ) ∩ (τ → ρ) 6 σ ∪ τ → ρ
| R_InterSubtyDistrib: ∀ σ σ’ τ τ ’, σ 6 σ’ −> τ 6 τ ’ −> σ ∩ τ 6 σ’ ∩ τ ’
| R_UnionSubtyDistrib: ∀ σ σ’ τ τ ’, σ 6 σ’ −> τ 6 τ ’ −> σ ∪ τ 6 σ’ ∪ τ ’
| R_InterUnionDistrib: ∀ σ τ ρ, σ ∩ (τ ∪ ρ) 6 (σ ∩ τ) ∪ (σ ∩ ρ)
| R_CoContra : ∀ σ σ’ τ τ ’, σ 6 σ’ −> τ 6 τ ’ −> σ’ → τ 6 σ → τ ’
| R_OmegaTop : ∀ σ, σ 6 U

| R_OmegaArrow : U 6 U → U

| R_Reflexive : ∀ σ, σ 6 σ
| R_Transitive : ∀ σ τ ρ, σ 6 τ −> τ 6 ρ −> σ 6 ρ
where "σ 6 τ" := (Subtype σ τ).
Notation "(6 )" := (Subtype) (only parsing).

We say that two types σ and τ are equivalent if they are subtype of one another:
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Definition equiv (σ τ : term) : Prop := (σ 6 τ) ∧ (τ 6 σ).
Notation "σ ∼ τ" := (equiv σ τ).

The subtyping relation is obviously a preorder relation, thanks to the R_Reflexive and
R_Transitive rules. There are special Coq tactics, such as the reflexivity tactic, for
reflexive relations, or transitivity for transitive relations, and we have defined a tactic
for dealing with preorders (see Section 5.5). In order to use these tactics, Coq has to
know our subtyping relation has the corresponding properties, and to do so we use Coq
typeclasses:

Instance Subtypes_Reflexive : Reflexive (6 ) := R_Reflexive.
Instance Subtypes_Transitive : Transitive (6 ) := R_Transitive.
Instance Subtypes_Preorder : PreOrder (6 ) :=

{| PreOrder_Reflexive := Subtypes_Reflexive;
PreOrder_Transitive := Subtypes_Transitive |}.

Coq has an automatic proof search engine. We can declare which theorems, or constructors
the search engine can use on its own, the art is to guide it so the proofs are concise, and the
engine does not take too much time. These declarations are called hints, and are stored
in a hint database. For instance, the following code creates a hint database SubtypeHints,
which contains all the subtyping rules, and also allows the unfolding of the definition of
the equivalence relation:

Create HintDb SubtypeHints.
Hint Constructors Subtype : SubtypeHints.
Hint Unfold equiv : SubtypeHints.

The proof that the equivalence relation is reflexive is then trivial, and can be added to
the hint database:

Instance equiv_Reflexive: Reflexive (∼ ).
Proof.
auto with SubtypeHints.

Qed.
Hint Immediate equiv_Reflexive : SubtypeHints.

Then we can prove simple facts on the subtyping relation, then add these facts to the
hint database when it is clear they make any proof progress:

Fact Inter_inf : ∀ σ τ ρ, σ 6 τ −> σ 6 ρ −> σ 6 τ ∩ ρ.
Proof with auto with SubtypeHints.
intros.
transitivity (σ ∩ σ)...

Qed.
Hint Resolve Inter_inf : SubtypeHints.

However, the converse of Inter_inf, called Inter_inf’, should not be added to the hint
database, or else the search engine would uselessly loop by applying Inter_inf and then
Inter_inf’:

Fact Inter_inf’ : ∀ σ τ ρ, σ 6 τ ∩ ρ −> (σ 6 τ) ∧ (σ 6 ρ).
Proof with auto with SubtypeHints.
intros; split;
etransitivity;
try eassumption...

Qed.
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The search engine can automatically simplify hypotheses if we told it so. For instance, if
we know that σ 6 τ ∩ ρ, then we know automatically that σ 6 τ and σ 6 ρ. We can tell
that to the search engine like this:
Hint Extern 1 (_ 6 _) ⇒
lazymatch goal with
| H : ?σ 6 ?τ ∩ ?ρ |− _ ⇒ apply Inter_inf’ in H; destruct H
end : SubtypeHints.

The search engine gives a weight to each action in its search, so Hint Extern 1 (_ 6 _)
states that this hint weighs 1 and should be used when we have to prove a subtyping
relation.

5.2.1 Definition of normal forms

In order to talk about arbitrary intersection (or unions) of ANFs in Coq, we define the
type Generalize:
Inductive Generalize (c : term −> term −> term) (P : term −> Prop) : term −> Prop :=
| G_nil : ∀ σ, P σ −> Generalize c P σ
| G_cons : ∀ σ τ , Generalize c P σ −> Generalize c P τ −> Generalize c P (c σ τ).
Hint Constructors Generalize : SubtypeHints.
Notation "[

⋂
P ]" := (Generalize (∩ ) P).

Notation "[
⋃

P ]" := (Generalize (∪ ) P).

Hence, the concept of ANF can easily be declared in Coq:
Inductive ANF : term −> Prop :=
| VarisANF : ∀ α, ANF (Var α)
| ArrowisANF : ∀ σ τ , [

⋂
ANF] σ −> [

⋃
ANF] τ −> ANF (σ → τ)

| ArrowisANF’ : ∀ τ , [
⋃

ANF] τ −> ANF (U → τ).
Hint Constructors ANF : SubtypeHints.

We define Conjunctive Arrow Normal Forms (CANF) and Disjunctive Arrow Normal
Forms (DANF):
Definition CANF (σ : term) : Prop := [

⋂
[
⋃

ANF]] σ ∨ σ = U.
Definition DANF (σ : term) : Prop := [

⋃
[
⋂

ANF]] σ ∨ σ = U.
Hint Unfold CANF : SubtypeHints.
Hint Unfold DANF : SubtypeHints.

It is clear from the Coq definition that a term is in CANF if it is the intersection of unions
of ANFs (or the type U), and that a term is in DANF if it is the union of intersection
of ANFs (or the type U). We also define quasi-U-free types (or Omega_free is the Coq
source), which are types where there is no useless occurrence of U, i.e. the only accepted
occurrences are lone occurrences of U on the left-hand side of an arrow.
Inductive Omega_free : term −> Prop :=
| Of_Var : ∀ α, Omega_free (Var α)
| Of_Union : ∀ σ τ , Omega_free σ −> Omega_free τ −> Omega_free (σ ∪ τ)
| Of_Inter : ∀ σ τ , Omega_free σ −> Omega_free τ −> Omega_free (σ ∩ τ)
| Of_Arrow1 : ∀ σ, Omega_free σ −> Omega_free (U → σ)
| Of_Arrow2 : ∀ σ τ , Omega_free σ −> Omega_free τ −> Omega_free (σ → τ).
Hint Constructors Omega_free : SubtypeHints.

Of course, we can automatically decompose hypotheses stating that some non-atomic type
is quasi-U-free, and the hypothesis that U is quasi-U-free is automatically absurd:
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Hint Extern 1 ⇒
match goal with
| H : Omega_free U |− _ ⇒ inversion H
| H : Omega_free (_ _ _) |− _ ⇒ inv H
end : SubtypeHints.

It is quite tedious to prove that a term is in ANF (or CANF, or DANF), because we usually
have to decompose the hypotheses and the goal as much as possible before applying trivial
tactics. That is why we have defined a ad hoc tactic that tries as much as possible to
prove that a term is in normal form:

Ltac decide_nf :=
try (lazymatch goal with

| H : ANF _ |− _ ⇒ idtac
| H : Generalize _ _ _ |− _ ⇒ idtac
| H : CANF _ |− _ ⇒ idtac
| H : DANF _ |− _ ⇒ idtac
| _ ⇒ fail
end;
repeat lazymatch goal with

| H : DANF (_ _ _) |− _ ⇒
inversion H as [?|H’]; [| inversion H’]; subst; clear H

| H : CANF (_ _ _) |− _ ⇒
inversion H as [?|H’]; [| inversion H’]; subst; clear H

| H : [
⋃

ANF] (_ ∪ _) |− _ ⇒
inversion H as [? H’|]; [ inversion H’|]; subst; clear H

| H : [
⋃

[
⋂

ANF]] (_ ∪ _) |− _ ⇒
inversion H as [? H’|];
[ inversion H’ as [? H’’|]; inversion H’’|];
subst; clear H

| H : [
⋃

_] (_ ∩ _) |− _ ⇒ inv H
| H : [

⋃
_] (_ → _) |− _ ⇒ inv H

| H : [
⋃

_] (Var _) |− _ ⇒ inv H
| H : [

⋃
_] U |− _ ⇒ inv H

| H : [
⋂

ANF] (_ ∩ _) |− _ ⇒
inversion H as [? H’|]; [ inversion H’|]; subst; clear H

| H : [
⋂

[
⋃

ANF]] (_ ∩ _) |− _ ⇒
inversion H as [? H’|];
[ inversion H’ as [? H’’|]; inversion H’’|];
subst; clear H

| H : [
⋂

_] (_ ∪ _) |− _ ⇒ inv H
| H : [

⋂
_] (_ → _) |− _ ⇒ inv H

| H : [
⋂

_] (Var _) |− _ ⇒ inv H
| H : [

⋂
_] U |− _ ⇒ inv H

| H : ANF (U → _) |− _ ⇒
inversion H as [|? ? H’|];
[ inversion H’ as [? H’’|]; inversion H’’|];
subst; clear H

| H : ANF (_ → _) |− _ ⇒ inv H
| H : ANF (_ ∩ _) |− _ ⇒ inversion H
| H : ANF (_ ∪ _) |− _ ⇒ inversion H
| H : ANF U |− _ ⇒ inversion H
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| H : Omega_free (_ _ _) |− _ ⇒ inv H
end);

repeat lazymatch goal with
| H : ?x |− ?x ⇒ assumption
| |− [

⋃
_] (_ ∪ _) ⇒ apply G_cons

| |− [
⋃

_] _ ⇒ apply G_cons
| |− [

⋂
_] (_ ∩ _) ⇒ apply G_cons

| |− [
⋂

_] _ ⇒ apply G_nil
| |− ANF (Var _) ⇒ constructor
| |− ANF (U → _) ⇒ apply ArrowisANF’
| |− ANF (_ → _) ⇒ constructor
| |− CANF U ⇒ right; reflexivity
| |− DANF U ⇒ right; reflexivity
| |− CANF (Var _) ⇒ left; repeat constructor
| |− DANF (Var _) ⇒ left; repeat constructor
| |− CANF (_ _ _) ⇒ left
| |− DANF (_ _ _) ⇒ left
end.

Hint Extern 1 (CANF _) ⇒ decide_nf : SubtypeHints.
Hint Extern 1 (DANF _) ⇒ decide_nf : SubtypeHints.
Hint Extern 1 (ANF _) ⇒ decide_nf : SubtypeHints.
Hint Extern 1 (Generalize _ _ _) ⇒ decide_nf : SubtypeHints.

This tactic operates in three steps:

– for performance reasons, we first check that there is some hypothesis we can work
with;

– we then simplify such hypotheses as much as possible;

– finally, we simplify the goal as much as possible, and we try to conclude.

5.2.2 Filters and ideals

The filter generated by a type σ is the set of all types greater than σ. The ideal generated
by a type σ is the set of all types greater than σ. We define filters and ideals syntactically,
in order to get a decision procedure. However, we cannot give a syntactical definition of
filters or ideals for every type. Therefore we only define ideals for unions of ANFs, and
we define filters for terms which have the syntax defined by the following predicate:

Unset Elimination Schemes.
Inductive isFilter : term −> Prop :=
| OmegaisFilter : isFilter U

| VarisFilter : ∀ α, isFilter (Var α)
| ArrowisFilter : ∀ σ τ , isFilter (σ → τ)
| InterisFilter : ∀ σ τ , isFilter σ −> isFilter τ −> isFilter (σ ∩ τ).
Set Elimination Schemes.
Hint Constructors isFilter : SubtypeHints.

We can now define filters and ideals:

Reserved Notation "↑[ σ ] τ" (at level 65).
Reserved Notation "↓[ σ ] τ" (at level 65).
Inductive Filter : term −> term −> Prop :=
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| F_Refl : ∀ σ : term, isFilter σ −> ↑[σ] σ
| F_Inter : ∀ σ τ ρ : term, ↑[σ] τ −> ↑[σ] ρ −> ↑[σ] τ ∩ ρ
| F_Union1 : ∀ σ τ ρ : term, ↑[σ] τ −> ↑[σ] τ ∪ ρ
| F_Union2 : ∀ σ τ ρ : term, ↑[σ] ρ −> ↑[σ] τ ∪ ρ
| F_Arrow1 : ∀ σ1 σ2 τ1 τ2 : term, σ2 6 σ1 −> τ1 6 τ2 −> ↑[σ1 → τ1] σ2 → τ2
| F_Arrow2 : ∀ σ1 σ2 τ1 τ2 ρ1 ρ2 : term, ↑[σ1 ∩ σ2] τ1 → ρ1 −> τ2 6 τ1 −>

ρ1 6 ρ2 −> ↑[σ1 ∩ σ2] τ2 → ρ2
| F_OmegaTopV : ∀ (α : V.t) (τ : term), ↑[U] τ −> ↑[Var α] τ
| F_OmegaTopA : ∀ σ1 σ2 τ : term, ↑[U] τ −> ↑[σ1 → σ2] τ
| F_OmegaTopI : ∀ σ1 σ2 τ : term, isFilter (σ1 ∩ σ2) −> ↑[U] τ −> ↑[σ1 ∩ σ2] τ
| F_Omega : ∀ σ τ : term, ↑[U] τ −> ↑[U] σ → τ
| F_Inter1 : ∀ σ1 σ2 τ : term, isFilter σ2 −> ↑[σ1] τ −> ↑[σ1 ∩ σ2] τ
| F_Inter2 : ∀ σ1 σ2 τ : term, isFilter σ1 −> ↑[σ2] τ −> ↑[σ1 ∩ σ2] τ
| F_ArrowInter : ∀ σ1 σ2 τ ρ1 ρ2 : term, ↑[σ1 ∩ σ2] (τ → ρ1) ∩ (τ → ρ2) −>

↑[σ1 ∩ σ2] τ → ρ1 ∩ ρ2
| F_ArrowUnion : ∀ σ1 σ2 τ1 τ2 ρ : term, ↑[σ1 ∩ σ2] (τ1 → ρ) ∩ (τ2 → ρ) −>

↑[σ1 ∩ σ2] τ1 ∪ τ2 → ρ
where "↑[σ ] τ" := (Filter σ τ).
Hint Constructors Filter : SubtypeHints.

Inductive Ideal : term −> term −> Prop :=
| I_Refl : ∀ σ : term, [

⋃
ANF] σ −> ↓[σ] σ

| I_Inter1 : ∀ σ τ ρ : term, ↓[σ] τ −> ↓[σ] τ ∩ ρ
| I_Inter2 : ∀ σ τ ρ : term, ↓[σ] ρ −> ↓[σ] τ ∩ ρ
| I_Union : ∀ σ τ ρ : term, ↓[σ] τ −> ↓[σ] ρ −> ↓[σ] τ ∪ ρ
| I_Arrow1 : ∀ σ1 σ2 τ1 τ2 : term, [

⋂
ANF] σ1 −> ↑[σ1] σ2 −> ↓[τ1] τ2 −>

↓[σ1 → τ1] σ2 → τ2
| I_Arrow2 : ∀ σ τ1 τ2 : term, ↑[U] σ −> ↓[τ1] τ2 −> ↓[U → τ1] σ → τ2
| I_Union1 : ∀ σ1 σ2 τ : term, [

⋃
ANF] σ2 −> ↓[σ1] τ −> ↓[σ1 ∪ σ2] τ

| I_Union2 : ∀ σ1 σ2 τ : term, [
⋃

ANF] σ1 −> ↓[σ2] τ −> ↓[σ1 ∪ σ2] τ
where "↓[σ ] τ" := (Ideal σ τ).
Hint Constructors Ideal : SubtypeHints.

5.2.3 Induction scheme for filters and ideals

When we reason about a filter ↑[σ], we usually do an induction on the predicate isFilter σ,
so that we only consider the case where σ is syntactically a type for which we have defined
filters. Coq usually automatically generates an induction scheme for declared inductive
types. For isFilter, the induction scheme would be:

isFilter_ind : ∀ P : term −> Prop,
P U −>
(∀ α : V.t, P (Var α)) −>
(∀ σ τ : term, P (σ → τ)) −>
(∀ σ τ : term, isFilter σ −> P σ −> isFilter τ −> P τ −> P (σ ∩ τ)) −>
∀ σ : term, isFilter σ −> P σ.

However, this induction scheme has a small problem. If we want to prove P σ with the
hypothesis H1 : ↑[σ] τ , we can deduce that σ verify the property isFilter σ, therefore we
do an induction on this predicate, as there are four constructors, we get four subcases.
The problem arises in the second subcase:
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– the first case is OmegaisFilter: we have to prove P U under the hypothesis H1 : ↑[U] τ ;

– the second case is VarisFilter: we have to prove P (Var α under the hypothesis
H1 : ↑[Var α] τ . Here we can apply the tactic inversion H1, which generate as many
subcases as there are possible constructors for H1. Among these constructors, there is
F_OmegaTopV : ∀ (α : V.t) (τ : term), ↑[U] τ −> ↑[Var α] τ , in which case the hypothesis
H1 becomes H1 : ↑[U] τ . From the case OmegaisFilter, we know that P U, but Coq
has not remembered it. In order not to rewrite the proof of P U, It would be natural
to consider that P U is a kind of induction hypothesis.

Coq allows us to define our own induction scheme for isFilter, by preventing it from
automatically generate the induction scheme2, and by proving a lemma having the name
isFilter_ind.

Lemma isFilter_ind : ∀ P : term −> Prop,
P U −>
(∀ α : V.t, P U −> P (Var α)) −>
(∀ σ τ : term, P U −> P (σ → τ)) −>
(∀ σ τ : term, isFilter σ −> P σ −> isFilter τ −> P τ −> P U −> P (σ ∩ τ)) −>
∀ σ : term, isFilter σ −> P σ.

Ideals are defined for unions of ANFs, which is, per se, not an inductive type, but we may
want nonetheless to have an induction scheme for it:

Lemma Uanf_ind : ∀ P : term −> Prop,
(∀ α, P (Var α)) −>
(∀ σ τ , P σ −> P τ −> P (σ ∪ τ)) −>
(∀ σ τ , P τ −> P (σ → τ)) −>
(∀ σ, [

⋃
ANF] σ −> P σ).

However, the induction tactic will not call the Uanf_ind lemma, because the type Uanf
does not exist. We bypass this issue with a handmade tactic which has approximately
the same behavior:

Ltac uanf_ind σ :=
let foo HH :=

repeat match goal with
| H : context[σ] |− _ ⇒ lazymatch H with

| HH ⇒ fail
| _ ⇒ revert H
end

end;
revert HH; revert σ;
refine (Uanf_ind _ _ _ _); intros

in
lazymatch goal with
| HH : [

⋃
ANF] σ |− _ ⇒ foo HH

| _ ⇒
assert (HH : [

⋃
ANF] σ) by (auto with SubtypeHints);

foo HH
end.

2Thanks to the command Unset Elimination Schemes.
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The tactic uanf_ind σ either finds the hypothesis HH : [
⋃

ANF] σ or creates it, and then
reverts all the hypotheses containing σ back into the goal (including HH), in such a way
that we get a goal of the form ∀ σ : term, [

⋃
ANF] σ −> A (where A is some Coq expression).

By then applying refine (Uanf_ind _ _ _ _), Coq applies Lemma Uanf_ind and tries to
fill the four wildcards. The first wildcard is a term P : term −> Prop such that P σ is
convertible with A.

Of course, the Coq refiner does not create the constant function fun x : term ⇒ A, but
captures all the free occurrences of σ in A and creates the most general function possible
fun σ : term ⇒ A (where the free σ in A are captured by the abstraction). The three
remaining wildcards are a term of type ∀ α, P (Var α), another term of type ∀ σ τ , P σ −>
P τ −> P (σ ∪ τ), and a third term of type ∀ σ τ , P τ −> P (σ → τ), and the Coq refiner
usually cannot create them automatically. These missing terms become new goals for the
user. We then introduce as much hypotheses as possible, using the intros tactic. This
refinement process is what Coq does normally whenever the user applies the induction
tactic.

5.2.4 Properties of filters and ideals

We first prove that filters and ideals correspond to subtyping.

Theorem Filter_correct : ∀ σ τ , ↑[σ] τ −> σ 6 τ .
Theorem Ideal_correct : ∀ σ τ , ↓[σ] τ −> τ 6 σ.

The proofs are done either by induction on the rules of filters, or by induction on the rules
of ideals. We then prove that filters are only defined for types verifying the predicate
isFilter, and ideals are only defined for unions of ANFs. The proofs are also done either
by induction on the rules of filters, or by induction on the rules of ideals:

Lemma Filter_isFilter: ∀ σ τ , ↑[σ] τ −> isFilter σ.
Lemma Ideal_isDANF: ∀ σ τ , ↓[σ] τ −> [

⋃
ANF] σ.

Then we can prove that intersection and unions can be nicely decomposed inside filters
and ideals:

Lemma FilterInter : ∀ σ τ ρ, ↑[σ] τ ∩ ρ −> ↑[σ] τ ∧ ↑[σ] ρ.
Lemma IdealInter : ∀ σ τ ρ, ↓[σ] τ ∩ ρ −> ↓[σ] τ ∨ ↓[σ] ρ.
Lemma FilterUnion : ∀ σ τ ρ, ↑[σ] τ ∪ ρ −> ↑[σ] τ ∨ ↑[σ] ρ.
Lemma IdealUnion : ∀ σ τ ρ, ↓[σ] τ ∪ ρ −> ↓[σ] τ ∧ ↓[σ] ρ.

The proofs are done either by induction on the predicate isFilter (for filters), or by
induction on the predicate [

⋃
ANF] (for ideals).

The following lemma is a trivial simplification of the construction rules of Filter for
the case of arrows:

Lemma FilterArrow : ∀ σ σ’ τ τ ’, ↑[σ → σ’] τ → τ ’ −> (↑[U] τ → τ ’ ∨ (τ 6 σ ∧ σ’ 6 τ ’)).

We can prove that ↑[σ] τ → ρ’ by contravariance of the domain and covariance of the
codomain:

Lemma FilterArrow’ : ∀ σ τ ’ ρ, ↑[σ] τ ’ → ρ −> ∀ τ ρ’, τ 6 τ ’ −> ρ 6 ρ’ −> ↑[σ] τ → ρ’.

The proof is done by induction on the predicate isFilter.
Now we prove that every filter contains at least the filter ↑[U], and ideals never contain

U, nor U → U.
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Lemma FilterOmega : ∀ σ τ , isFilter σ −> ↑[U] τ −> ↑[σ] τ .
Lemma IdealnoOmega : ∀ σ, ¬ ↓[σ] U.
Lemma IdealnoOmegaArrow : ∀ σ, ¬ ↓[σ] U → U.

Lemma FilterOmega is proved by induction on the predicate isFilter, while Lemma
IdealnoOmega is simply proved by induction on σ. Lemma IdealnoOmegaArrow is also
proved by induction on σ, with one non-trivial case: if σ is some type σ1 → σ2 (corre-
sponding to the rules I_Arrow1 or I_Arrow2), then, by induction hypothesis, we have that
↓[σ2] U, which is absurd because of the IdealnoOmegaArrow lemma.
We prove that filters are upward-closed:
Lemma Filter_closed : ∀ σ τ1 τ2, ↑[σ] τ1 −> τ1 6 τ2 −> ↑[σ] τ2.

The proof is done by induction on the subtyping rules. The interesting cases are the
following:

– Rule R_CoContra : ∀ σ σ’ τ τ ’, σ 6 σ’ −> τ 6 τ ’ −> σ’ → τ 6 σ → τ ’: we know, by hy-
pothesis, that ↑[σ] σ2 → τ1, σ1 6 σ2 and τ1 6 τ2 and we need to show that ↑[σ] σ1 → τ2.
Moreover, by induction hypothesis, we know that ↑[σ] σ1 −> ↑[σ] σ2 and that
↑[σ] τ1 −> ↑[σ] τ2. We conclude by contravariance of the domain and covariance of
the codomain, which is given by Lemma FilterArrow’;

– Rules R_OmegaTop : ∀ σ, σ 6 U and R_OmegaArrow : U 6 U → U: we need to show that
↑[σ] U and ↑[σ] U→ U. Using Lemma FilterOmega, we only have to show that ↑[U] U
and ↑[U] U→ U.

For the other cases, we reason by induction on isFilter σ.
We can then deduce the completeness of filters, i.e. for any type σ verifying isFilter σ,

we have that ↑[σ] τ if σ 6 τ :
Theorem Filter_complete : ∀ σ, isFilter σ −> ∀ τ , σ 6 τ −> ↑[σ] τ .

The proof follows trivially by applying Lemma Filter_closed. Similarly, we prove that
ideals are downward-closed:
Lemma Ideal_closed : ∀ σ, [

⋃
ANF] σ −> ∀ τ1, ↓[σ] τ1 −> ∀ τ2, τ2 6 τ1 −> ↓[σ] τ2.

The proof is done by induction on the fact that σ is an union of ANFs (using the uanf_ind
tactic). We can then deduce that ideals are complete:
Theorem Ideal_complete : ∀ σ, [

⋃
ANF] σ −> ∀ τ , τ 6 σ −> ↓[σ] τ .

The proof follows trivially by applying Lemma Ideal_closed.

5.3 Coq implementation of the subtyping algorithm
We implement the subtyping algorithm by mixing executable code and proofs: each func-
tion takes as input some data and possibly some proof on the data, then returns some
data along with the proof the data verify some specification. The code alone is then
extracted in OCaml. This technique is called strong specification in [15].

For instance, the function deleteOmega takes a type σ and returns a type τ along with
a proof that τ is equivalent to σ while being either quasi-U-free or syntactically equal to
U. The implementation of the function is done in two parts:

– first, the computational part of the algorithm is given inside the refine tactic. Most
of the proofs are not given, instead we put a wildcard (_);
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– finally, the Coq refiner tries to either fill the wildcards or to generate the corre-
sponding goal, therefore all the proofs are postponed to the second part of the
implementation. The proofs are then written the usual way.

Fixpoint deleteOmega (σ : term) : {τ | τ ∼ σ ∧ (Omega_free τ ∨ τ = U)}.
(* algorithmic part *)
refine(match σ with
| σ → τ ⇒ let (σ,pfσ) := deleteOmega σ in
let (τ ,pfτ) := deleteOmega τ in
match τ as x return τ = x −> _ with
| U ⇒ λ _, exist _ U _
| _ ⇒ λ _, exist _ (σ → τ) _
end eq_refl
| σ ∩ τ ⇒ let (σ,pfσ) := deleteOmega σ in
let (τ ,pfτ) := deleteOmega τ in
match σ as x return σ = x −> _ with
| U ⇒ λ _, exist _ τ _
| _ ⇒ λ _, match τ as x return τ = x −> _ with
| U ⇒ λ _, exist _ σ _
| _ ⇒ λ _, exist _ (σ ∩ τ) _
end eq_refl
end eq_refl
| σ ∪ τ ⇒ let (σ,pfσ) := deleteOmega σ in
let (τ ,pfτ) := deleteOmega τ in
match σ as x return σ = x −> _ with
| U ⇒ λ _, exist _ U _
| _ ⇒ λ _, match τ as x return τ = x −> _ with
| U ⇒ λ _, exist _ U _
| _ ⇒ λ _, exist _ (σ ∪ τ) _
end eq_refl
end eq_refl
| Var α ⇒ exist _ (Var α) _
| U ⇒ exist _ U _
end);
(* logical part *)
clear deleteOmega; subst; simpl in ∗;
first[destruct pfσ as [? [|]];
destruct pfτ as [? [|]]; subst|
auto with SubtypeHints];

first[match goal with | H : Omega_free U |− _ ⇒ inversion H end|
discriminate|
split; auto with SubtypeHints].

Defined.

The algorithms that rewrite types in CANF and DANF are quite heavy, so we define
helper functions for the arrow, union, and intersection cases.

Fixpoint distrArrow (σ τ : term) (pfσ : [
⋃

[
⋂

ANF]] σ ∨ σ = U) (pfτ : [
⋂

[
⋃

ANF]] τ) :
{σ’ | σ’ ∼ σ → τ ∧ [

⋂
ANF] σ’}.

refine(match σ as x return σ = x −> _ with
| σ1 ∪ σ2 ⇒
λ _, let (σ1,pfσ1) := distrArrow σ1 τ _ _ in
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let (σ2,pfσ2) := distrArrow σ2 τ _ _ in
exist _ (σ1 ∩ σ2) _

| _ ⇒
λ _,
(fix distrArrow’ σ τ (pfσ:[

⋂
ANF] σ ∨ σ = U) (pfτ :[

⋂
[
⋃

ANF]] τ) :
{σ’ | σ’ ∼ σ → τ ∧ [

⋂
ANF] σ’} :=

match τ as x return τ = x −> _ with
| τ1 ∩ τ2 ⇒
λ _, let (τ1,pfτ1) := distrArrow’ σ τ1 _ _ in

let (τ2,pfτ2) := distrArrow’ σ τ2 _ _ in
exist _ (τ1 ∩ τ2) _

| _ ⇒ λ _, exist _ (σ → τ) _
end eq_refl) σ τ _ pfτ

end eq_refl); subst; (destruct pfσ; [|try discriminate]); simpl in ∗;
auto with SubtypeHints.

Defined.

Fixpoint distrUnion (σ τ : term) (pfσ : [
⋂

[
⋃

ANF]] σ) (pfτ : [
⋂

[
⋃

ANF]] τ) :
{σ’ | σ’ ∼ σ ∪ τ ∧ [

⋂
[
⋃

ANF]] σ’}.
refine(match σ as x return σ = x −> _ with

| σ1 ∩ σ2 ⇒
λ _, let (σ1,pfσ1) := distrUnion σ1 τ _ _ in

let (σ2,pfσ2) := distrUnion σ2 τ _ _ in
exist _ (σ1 ∩ σ2) _

| _ ⇒
λ _,
(fix distrUnion’ σ τ (pfσ:[

⋃
ANF] σ) (pfτ :[

⋂
[
⋃

ANF]] τ) :
{σ’ | σ’ ∼ σ ∪ τ ∧ [

⋂
[
⋃

ANF]] σ’} :=
match τ as x return τ = x −> _ with
| τ1 ∩ τ2 ⇒
λ _, let (τ1,pfτ1) := distrUnion’ σ τ1 _ _ in

let (τ2,pfτ2) := distrUnion’ σ τ2 _ _ in
exist _ (τ1 ∩ τ2) _

| _ ⇒ λ _, exist _ (σ ∪ τ) _
end eq_refl) σ τ _ pfτ

end eq_refl); subst; simpl in ∗;
auto with SubtypeHints.

Defined.

Fixpoint distrInter (σ τ : term) (pfσ : [
⋃

[
⋂

ANF]] σ) (pfτ : [
⋃

[
⋂

ANF]] τ) :
{σ’ | σ’ ∼ σ ∩ τ ∧ [

⋃
[
⋂

ANF]] σ’}.
refine(match σ as x return σ = x −> _ with

| σ1 ∪ σ2 ⇒
λ _, let (σ1,pfσ1) := distrInter σ1 τ _ _ in

let (σ2,pfσ2) := distrInter σ2 τ _ _ in
exist _ (σ1 ∪ σ2) _

| _ ⇒
λ _,
(fix distrInter’ σ τ (pfσ:[

⋂
ANF] σ) (pfτ :[

⋃
[
⋂

ANF]] τ) :
{σ’ | σ’ ∼ σ ∩ τ ∧ [

⋃
[
⋂

ANF]] σ’} :=
match τ as x return τ = x −> _ with
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| τ1 ∪ τ2 ⇒
λ _, let (τ1,pfτ1) := distrInter’ σ τ1 _ _ in

let (τ2,pfτ2) := distrInter’ σ τ2 _ _ in
exist _ (τ1 ∪ τ2) _

| _ ⇒
λ _, exist _ (σ ∩ τ) _

end eq_refl) σ τ _ pfτ
end eq_refl); subst; simpl in ∗;

auto with SubtypeHints.
Defined.

Now, we can implement the functions that rewrite a term in CANF or DANF. These
functions are mutually recursive:
Fixpoint _CANF (σ : term) : (Omega_free σ ∨ σ = U) −> {τ | τ ∼ σ ∧ CANF τ}
with _DANF (σ : term) : (Omega_free σ ∨ σ = U) −> {τ | τ ∼ σ ∧ DANF τ}.
Proof.
− refine(match σ with

| Var α ⇒ λ _, exist _ (Var α) _
| σ → τ ⇒ λ pf,

let (σ,pfσ) := _DANF σ _ in
let (τ ,pfτ) := _CANF τ _ in
let (σ’,pfσ’) := distrArrow σ τ _ _ in
exist _ σ’ _

| σ ∩ τ ⇒ λ pf,
let (σ,pfσ) := _CANF σ _ in
let (τ ,pfτ) := _CANF τ _ in
exist _ (σ ∩ τ) _

| σ ∪ τ ⇒ λ pf, let (σ,pfσ) := _CANF σ _ in
let (τ ,pfτ) := _CANF τ _ in
let (σ’,pfσ’) := distrUnion σ τ _ _ in
exist _ σ’ _

| U ⇒ λ _, exist _ U _
end); try (destruct pf; [|discriminate]); simpl in ∗;

match goal with
| |− _ ∨ _ ⇒ auto with SubtypeHints
| |− _ ∧ _ ⇒ split; [trivial|]
| _ ⇒ idtac
end;
try (destruct pfσ as [Hσ [?|?]];

[| subst; exfalso; match type of Hσ with
| U ∼ ?σ’ ⇒ apply (Omega_free_Omega σ’)
end; auto 2 with SubtypeHints; fail]);

try (destruct pfτ as [Hτ [?|?]];
[| subst; exfalso; match type of Hτ with

| U ∼ ?τ ’ ⇒ apply (Omega_free_Omega τ ’)
end; auto 2 with SubtypeHints; fail]);

auto with SubtypeHints.
− refine(match σ with

| Var α ⇒ λ _, exist _ (Var α) _
| σ → τ ⇒ λ pf,

let (σ,pfσ) := _DANF σ _ in
let (τ ,pfτ) := _CANF τ _ in
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let (σ’,pfσ’) := distrArrow σ τ _ _ in
exist _ σ’ _

| σ ∪ τ ⇒ λ pf,
let (σ,pfσ) := _DANF σ _ in
let (τ ,pfτ) := _DANF τ _ in
exist _ (σ ∪ τ) _

| σ ∩ τ ⇒ λ pf,
let (σ,pfσ) := _DANF σ _ in
let (τ ,pfτ) := _DANF τ _ in
let (σ’,pfσ’) := distrInter σ τ _ _ in
exist _ σ’ _

| U ⇒ λ _, exist _ U _
end); try (destruct pf; [|discriminate]); simpl in ∗;

match goal with
| |− _ ∨ _ ⇒ auto with SubtypeHints
| |− _ ∧ _ ⇒ split; [trivial|]
| _ ⇒ idtac
end;
try (destruct pfσ as [Hσ [?|?]];

[| subst; exfalso; match type of Hσ with
| U ∼ ?σ’ ⇒ apply (Omega_free_Omega σ’)
end; auto 2 with SubtypeHints; fail]);

try (destruct pfτ as [Hτ [?|?]];
[| subst; exfalso; match type of Hτ with

| U ∼ ?τ ’ ⇒ apply (Omega_free_Omega τ ’)
end; auto 2 with SubtypeHints; fail]);

auto with SubtypeHints.
Defined.

The algorithm A (called main_algo in the Coq source) is difficult to implement: recursive
functions in Coq may call themselves recursively only if some argument is structurally
decreasing, but this has to be the same argument for every recursive call. However, in
this algorithm either the first or the second argument decreases during a recursive call.

The usual workaround is to add an extra argument to the function that will structurally
decrease. Hopefully, the Coq standard library has some functions already implemented
to help us. We define a measure on the types, and prove this measure cannot infinitely
decrease:

(* measure on the types *)
Fixpoint size (σ : term) : nat :=
match σ with
| Var α ⇒ 0
| σ → τ ⇒ S((size σ) + (size τ))
| σ ∩ τ ⇒ S((size σ) + (size τ))
| σ ∪ τ ⇒ S((size σ) + (size τ))
| U ⇒ 0
end.

Definition pair_size (x : term ∗ term) : nat :=
let (s,t) := x in size s + size t.

(* Well-founded principle for the main algorithm *)
Definition main_algo_order : relation (term ∗ term) :=
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λ x y, pair_size x < pair_size y.
Definition wf_main_algo : well_founded main_algo_order := well_founded_ltof _ _.

Now we can implement the algorithm, thanks to the Fix function. Among the generated
goals, we have to prove that the measure on the argument indeed decreases (it is the
|− main_algo_order _ _ case).
Definition main_algo : ∀ pair : term ∗ term,

DANF (fst pair) −> CANF (snd pair) −>
{fst pair 6 snd pair} + {¬ fst pair 6 snd pair}.

refine (Fix wf_main_algo _ _). intros [σ τ ] rec.
refine (match (σ,τ) as x return x = (σ,τ) −> _ with

| (_, U) ⇒ λ eq _ _, left _
| (U, _) ⇒ λ eq _ Cτ , right _
| (σ1 ∪ σ2, _) ⇒ λ eq _ _, match rec (σ1,τ) _ _ _ with

| left _ ⇒ match rec (σ2,τ) _ _ _ with
| left _ ⇒ left _
| right _ ⇒ right _
end

| right _ ⇒ right _
end

| (_, τ1 ∩ τ2) ⇒ λ eq _ _, match rec (σ,τ1) _ _ _ with
| left _ ⇒ match rec (σ,τ2) _ _ _ with

| left _ ⇒ left _
| right _ ⇒ right _
end

| right _ ⇒ right _
end

| (σ1 → σ2, τ1 → τ2) ⇒ λ eq Dσ Cτ , match rec (τ1,σ1) _ _ _ with
| left _ ⇒ match rec (σ2,τ2) _ _ _ with

| left _ ⇒ left _
| right HAA ⇒ right _
end

| right HAA ⇒ right _
end

| (σ1 ∩ σ2, _) ⇒ λ eq Dσ Cτ , match rec (σ1,τ) _ _ _ with
| left _ ⇒ left _
| right _ ⇒ match rec (σ2,τ) _ _ _ with

| left _ ⇒ left _
| right _ ⇒ right _
end

end
| (_, τ1 ∪ τ2) ⇒ λ eq Dσ Cτ , match rec (σ,τ1) _ _ _ with

| left _ ⇒ left _
| right _ ⇒ match rec (σ,τ2) _ _ _ with

| left _ ⇒ left _
| right _ ⇒ right _
end

end
| (Var α, Var β) ⇒ λ eq _ _, if V.eq_dec α β then left _ else right _
| _ ⇒ λ eq _ _, right _
end eq_refl); inv eq; simpl in ∗;

match goal with
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| |− main_algo_order _ _ ⇒ red; simpl; omega
| |− ?σ 6 ?σ ⇒ reflexivity
| H : ?x |− ?x ⇒ assumption
| |− CANF _ ⇒ auto with SubtypeHints
| |− DANF _ ⇒ auto with SubtypeHints
(* Correctness *)
| |− _ 6 U ⇒ auto with SubtypeHints
| |− _ 6 _ ∩ _ ⇒ auto with SubtypeHints
| |− _ ∪ _ 6 _ ⇒ auto with SubtypeHints
| |− _ ∩ _ 6 _ ⇒ apply Inter_inf_dual; auto
| |− _ 6 _ ∪ _ ⇒ apply Union_sup_dual; auto
| |− _ → _ 6 _ → _ ⇒ apply R_CoContra; trivial
(* Completeness *)
| |− ¬ U 6 _ ⇒ apply Omega_IUANF; auto with SubtypeHints
| |− ¬ _ ∪ _ 6 _ ⇒ intro; apply Union_sup’ in H; auto
| |− ¬ _ 6 _ ∩ _ ⇒ intro; apply Inter_inf’ in H; auto
| |− ¬ ?σ 6 _ ⇒ intro H; apply Ideal_complete in H; [|auto with SubtypeHints];

match σ with
| _ ∩ _ ⇒
apply IdealInter in H; inversion H as [H’|H’];
apply Ideal_correct in H’; auto

| _ → _ ⇒
inv H; [ apply HAA; reflexivity| |]; auto with SubtypeHints

| _ ⇒ inv H; auto with SubtypeHints
end

end.
Defined.

The final part is straightforward: we compose the previous algorithms without any diffi-
culty:

Definition decide_subtype : ∀ σ τ , {σ 6 τ} + {¬ σ 6 τ}.
Proof.
intros.
refine (let (σ1,pfσ) := deleteOmega σ in let (Hσ1,pfσ) := pfσ in

let (τ1,pfτ) := deleteOmega τ in let (Hτ1,pfτ) := pfτ in
let (σ2,pfσ) := _DANF σ1 pfσ in let (Hσ2,pfσ) := pfσ in
let (τ2,pfτ) := _CANF τ1 pfτ in let (Hτ2,pfτ) := pfτ in
match main_algo (σ2,τ2) pfσ pfτ with
| left H ⇒ left _
| right H ⇒ right _
end);

rewrite ← Hτ1, ← Hσ1, ← Hτ2, ← Hσ2; assumption.
Defined.

5.4 Extracting the subtyping algorithm in OCaml

The extraction system of Coq is rather straightforward. We can replace the default
extraction of inductive types with the Extract Inductive command. For instance, the Coq
cartesian product prod can be replaced with the OCaml product. Non-inductive terms can
be instantiated with Extract Constant. For instance, eq_dec, which is an uninstantiated
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parameter in the source code, can be instantiated with the OCaml equality function.
Moreover, there is no need to explicitly create a function eq_dec in OCaml, so we can tell
Coq to inline it, with Extraction Inline BDdL.eq_dec. Here is the full ExtractOcaml.v
source file:

Require Import Filter.
Require Extraction.

Module BDdL := VariableAlphabet <+ Types.

Extract Inductive prod ⇒ "(*)" [ "(,)" ].
Extract Constant fst ⇒ "fst".
Extract Constant snd ⇒ "snd".
Extract Inductive sumbool ⇒ "bool" [ "true" "false" ].
Extract Inductive sig ⇒ "" [ "" ].
Extract Constant BDdL.t ⇒ "int".
Extract Constant BDdL.eq_dec ⇒ "(fun x y −> x = y)".
Extraction Inline BDdL.eq_dec.

Extraction Language Ocaml.
Extraction "BDdL.ml" BDdL.SubtypeRelation.

5.5 The preorder tactic
We explain how we have implemented a heuristic tactic solving automatically goals in-
volving preorders. The tactic proceeds by reflection, mainly using techniques given in
[26]. Reflection has two components:

– Reification: the goal is converted into a data structure. This component is done
with the Ltac language of Coq;

– Denotation: the data structure is converted back into a goal. This component is
done with the Gallina language of Coq.

The denotation of the reification of a goal should be the original goal itself. In our case,
we have a tactic quote_formula which change the goal into a term denote_formula R c f,
where R is the preorder relation, f is the reification of the goal, and c is a vector which
helps reconstruct the original goal. A function preorder_heuristic processes recursively
the argument f and returns either a proof of denote_formula R c f or nothing. Then the
preorder tactic:

Ltac preorder :=
intros;
match goal with
| |− ?R _ _ ⇒ quote_formula R;

match goal with
| |− denote_formula R ?c ?f ⇒
exact (partialOut (preorder_heuristic _ c f))

end
| _ ⇒ fail "preorder tactic unsuccessful"
end.
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5.5.1 Denotation

Let’s assume we have a preorder relation <, some terms t1, . . . , tn, u1, . . . , un and a goal
of the form:

Γ;H1 : t1 < u1;H2 : t2 < u2 ` tn < un

The goal may have extra hypotheses that are irrelevant. The goal is then transformed
into:

Γ ` t1 < u1 → t2 < u2 → . . .→ tn < un

We then store all the ti and ui in a vector (i.e. a sized list) v of size n, and reify the
following formula as a list of pairs of indices:

t1 < u1 → t2 < u2 → . . .→ tn < un

The indices are the position of the terms in v. With the vector v and the list of pairs of
indices, we can reconstruct the original formula.

We need to easily get a term in the vector from an index, but we don’t want any
undefined behavior in case the index is out-of-bound. Therefore, we implement vectors
the following way:
Inductive vector (A : Type) : nat −> Type :=
| vnil : vector A 0
| vcons : forall n : nat, A −> vector A n −> vector A (S n).

An index is a natural number m along with a proof that m is smaller than the size of the
vector.
Definition index (n : nat) := {m : nat | m < n}.

We consider that two indices are equivalent if they correspond to the same natural number:
Definition index_to_nat {n : nat} (i : index n) : nat :=
match i with
| exist _ i _ ⇒ i
end.

(* Decidable proof-irrelevant equality for indexes *)
Definition index_eq {n : nat} (i j : index n) := index_to_nat i = index_to_nat j.
Local Notation "i == j" := (index_eq i j) (at level 70).
Definition index_eq_dec {n : nat} : forall i j : index n, {i == j} + {~ i == j}.
Proof.
intros; unfold index_eq.
decide equality.

Defined.

The function _get takes as input a vector v of size n, an natural number i and a proof
that i < n, and returns the element of the vector at position n.
Fixpoint _get {A : Type} {n : nat} (v : vector A n) {i : nat} {struct v} : i < n −> A.
refine (match v in vector _ n’ return i < n’ −> A with

| vnil _ ⇒ fun p : i < 0 ⇒ _
| vcons x v’ ⇒ match i as x return x < _ −> A with

| 0 ⇒ fun _ ⇒ x
| S j ⇒ fun p : _ ⇒ _get A _ v’ j _
end

end).
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The refiner manages to fill all the wildcards, except two of them, which become goals we
have to solve on our own:

– case vnil _, where the vector is empty: since we have a proof p : i < 0, we can
conclude by contradiction;

– case S j, where the vector is not empty and we do not want the element at position
0: this is the recursive case, but we need an arithmetical proof that the updated
index is still valid.

These two logical steps are done interactively using Ltac:

− exfalso; inversion p.
− apply Lt.lt_S_n; assumption.
Defined.

Now we can write a simple and safe function get, such that get v i returns the term at
index i in the vector v:

Definition get {A : Type} {n : nat} (v : vector A n) (i : index n) : A :=
match i with
| exist _ _ p ⇒ _get v p
end.

Of course, if two indices i and j are equivalent, then for any vector v, get v i = get v j:

Lemma get_irrelevant : forall A n (v : vector A n) (i j : index n),
i == j −> get v i = get v j.

A formula is reified as a list of pairs of indices for the hypotheses, along with a pair of
indices for the conclusion:

Definition formula (n : nat) : Set := (list (index n ∗ index n)) ∗ (index n ∗ index n).

The denotation of a formula is straightforward: we get back every term and reconstruct
the original formula.

Definition denote_formula {n : nat} (v : vector A n) (f : formula n) : Prop :=
match f with
| (l, (i,j)) ⇒

(fix loop l :=
match l with
| nil ⇒ get v i < get v j
| cons (i,j) l’ ⇒ get v i < get v j −> loop l’
end) l

end.

5.5.2 Implementation of the heuristic function

As the heuristic function returns either a proof or nothing, we need a type [ A] which
intuitively means “either a proof of A or nothing” and a function partialOut to extract the
proof. The function partialOut cannot have type ∀ A : Prop, [ A] −> A, because a proof of
A may not exist, so partialOut returns a proof of True if we don’t have any proof of A.

Inductive partial {A : Prop} : Set :=
| Yes : A −> partial



5.5. THE PREORDER TACTIC 73

| No : partial.
Local Notation "[ A ]" := (@partial A).

Definition partialOut {A : Prop} (p : [A]) : match p with | Yes _ ⇒ A | No ⇒ True end :=
match p with
| Yes p ⇒ p
| No ⇒ I
end.

Lemma denote_hyp : forall n (v : vector _ n) l a b,
get v a < get v b −> denote_formula v (l,(a,b)).

The following helper lemma allows us to partially denote a formula, which is very useful
before using an induction hypothesis:

Lemma denote_cons : forall n (v: vector _ n) i j l a b,
denote_formula v (cons (i,j) l, (a,b)) =
(get v i < get v j −> denote_formula v (l,(a,b))).

Before giving the implementation of preorder_heuristic, we present its behaviour: if we
want to prove that a < b under the list of hypotheses l, we examine three cases:

1. there is no hypothesis: a < b if, and only if, a and b are the same indices, and we
conclude by reflexivity of the preorder;

2. the first hypothesis is useless: we can try to conclude by induction on the list of
hypotheses, by simply discarding the first hypothesis;

3. the first two cases do not apply: the first hypothesis is i < j, so we can try to prove
by induction on the list of hypotheses that a < i and j < b, then we conclude by
transitivity. The transitivity property is given by the following lemma:

Lemma denote_trans : forall {n} {v : vector _ n} {l x} y {z},
denote_formula v (l,(x,y)) −> denote_formula v (l,(y,z)) −>
denote_formula v (l,(x,z)).

We also need to prove that i < j by hypothesis:

Lemma denote_hyp : forall n (v : vector _ n) l a b, get v a < get v b −>
denote_formula v (l,(a,b)).

The function preorder_heuristic computes a result (Yes or No), which contains a proof.
As usual, the computational part is given by the refine tactic:

Definition preorder_heuristic : forall (n : nat) (v : vector A n) (f : formula n),
[ denote_formula v f ].

intros ? ? [l (a,b)]; generalize a b; clear a b.
(* Induction on the number of hypotheses *)
induction l as [|(i,j) l is_less]; intros a b.
− (* 1. Case with no hypothesis: a < b if a == b (same index) *)
refine (if (index_eq_dec a b)

then Yes _
else No); simpl.

erewrite get_irrelevant; [reflexivity | assumption].
− (* 2. Inductive case: either induction or
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transitivity through the new hypothesis *)
rewrite denote_cons.
refine (match (is_less a b) with

| Yes _ ⇒ Yes _
(* 3. Transitive case *)
| No ⇒ match (is_less a i) with

| Yes _ ⇒ match (is_less j b) with
| Yes _ ⇒ Yes _
| No ⇒ No
end

| No ⇒ No
end

end); trivial; intros.
apply (denote_trans i); trivial.
apply (denote_trans j); trivial.
apply denote_hyp; trivial.

Defined.

5.5.3 Reification

Now that we know how to solve reified goals, we only need to write tactics that automat-
ically reify them. We need tactics to create the vector. We want to avoid duplicates, so
we have a tactic that check if a term x is already in the vector v:

Ltac is_in_vector x v :=
lazymatch v with
| vnil _ ⇒ false
| vcons x _ ⇒ true
| vcons _ ?v’ ⇒ is_in_vector x v’
end.

We can see that Ltac’s pattern-matching acts in a different way than Gallina’s pattern-
matching. There are three kinds of terms in Coq: Gallina’s pattern-matching only
matches linear patterns on inductive structures, and it silently performs computations on
terms. Ltac’s pattern-matching matches arbitrary Gallina terms. Moreover, the pattern-
matching is first-order3, which means that it does not apply any conversion rule: for
instance, one can match 1 + _ with 1 + 1, but one cannot match 1 + 1 with 2 or 2 with
1 + 1. There is also a difference between variables and meta-variables. For instance, in
the code of is_in_vector:

– in the pattern vcons x _, the variable x is the substitution of the first argument of
the tactic, it only matches something which is syntactically the same term;

– in the pattern vcons _ ?v’, the meta-variable ?v’ can match anything, and then Ltac
instantiate a new variable v’ on the right-hand-side of the match clause.

In short, the tactic is_in_vector x v checks if the term x is syntactically a subterm of v.
It does not care whether there is a term which is computationally convertible to x. We
now can implement a function that add a term in a vector without doing any duplication:

3Actually, in Coq, there is a special notation for second-order pattern-matching, but it is not useful
here.
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Ltac add_in_vector x v :=
lazymatch is_in_vector x v with
| true ⇒ v
| false ⇒ constr:(vcons x v)
end.

In the code above, the badly documented “constr:” keyword is needed because Ltac is
implemented in such a way that a tactic vcons can coexist with a Gallina term vcons
(these two terms would be stored in two different namespaces in the Coq internals4).
When we apply vcons, we have to explicitly state it lies in the constr namespace.
For getting the position of a term in a vector, we also need a tactic:

Ltac lookup_vector x v :=
lazymatch v with
| vcons x _ ⇒ O
| vcons _ ?v’ ⇒ let n := lookup_vector x v’ in

constr:(S n)
end.

However, this tactic does return a natural number, we need a proof that this natural
number is not out-of-bound. We use the function lt_dec to do so, and we have to explicitly
tell Ltac to evaluate the function, using the eval tactic:

Ltac nat_to_index i n :=
(* lt_dec: forall n m : nat, {n < m} + {~ n < m} *)
lazymatch eval lazy in (lt_dec i n) with
| left _ ?p ⇒ constr:(exist (fun x ⇒ x < n) i p)
end.

We can create the vector and the formula corresponding to the reification of the goal:

Ltac create_vector R e :=
lazymatch e with
| R ?x ?y −> ?e’ ⇒ let v’ := create_vector R e’ in

add_in_vector x ltac:(add_in_vector y v’)
| R ?x ?y ⇒ add_in_vector x constr:(vcons y (vnil _))
end.

Ltac create_formula R e v :=
let n := lazymatch type of v with

| vector _ ?n ⇒ n
end in

lazymatch e with
| R ?x ?y −> ?e’ ⇒ let x := nat_to_index ltac:(lookup_vector x v) n in

let y := nat_to_index ltac:(lookup_vector y v) n in
let f := create_formula R e’ v in
match f with
| pair ?l ?h ⇒ constr:((cons (x,y) l, h))
end

| R ?x ?y ⇒ let x := nat_to_index ltac:(lookup_vector x v) n in
let y := nat_to_index ltac:(lookup_vector y v) n in
constr:((@nil (index n ∗ index n),(x,y)))

end.

4We can see an analogy with lisp-2 dialects such as Emacs Lisp which allows you to have the same
name for both a function and a variable.
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The tactic quote_formula reify the goal, and does the appropriate change:

Ltac quote_formula R :=
repeat lazymatch goal with

| H : R _ _ |− _ ⇒ revert H
end;

lazymatch goal with
| |− ?e ⇒ let v := create_vector R e in

let f := create_formula R e v in
change (denote_formula R v f)

end.



Chapter 6
Dependent types

This chapter provides a unifying framework for two hitherto unreconciled understandings
of types: i.e. types-as-predicates à la Curry and types-as-propositions à la Church. The
key to our unification consists in introducing strong proof-functional connectives [80, 7, 8]
in a dependent type theory such as the Edinburgh Logical Framework (LF) [52]. Both
Logical Frameworks and Proof-Functional Logic consider proofs as first-class citizens,
albeit differently.

Strong proof-functional connectives take seriously into account the shape of logical
proofs, thus allowing for polymorphic features of proofs to be made explicit in formulæ.
Hence they provide a finer semantics than classical/intuitionistic connectives, where the
meaning of a compound formula depends only on the truth value or the provability of
its subformulæ. However, existing approaches to strong proof-functional connectives are
all quite idiosyncratic in mentioning proofs. Existing Logical Frameworks, on the other
hand, provide a uniform approach to proof terms in object logics, but they do not fully
capitalize on subtyping.

This situation calls for a natural combination of the two understandings of types, which
should benefit both worlds. On the side of Logical Frameworks, the expressive power of
the metalanguage would be enhanced thus allowing for shallower encodings of logics, a
more principled use of subtypes [74], and new possibilities for formal reasoning in existing
interactive theorem provers. On the side of type disciplines for programming languages, a
principled framework for proofs would be provided, thus supporting a uniform approach
to “proof reuse” practices based on type theory [38, 77, 23, 47, 17].

Therefore, in this chapter, we extend LF with the connectives of strong intersection
(corresponding to the intersection type), strong union (corresponding to the union type),
and minimal relevant implication of Proof-Functional Logic [80, 8]. We call this extension
the ∆-framework (LF∆), since it builds on the ∆-calculus [66]. Moreover, we illustrate by
way of examples, that LF∆ subsumes many expressive type disciplines in the literature
[74, 7, 8, 77, 23].

It is not immediate to extend the Curry-Howard isomorphism to logics supporting
strong proof-functional connectives, since these connectives need to compare the shapes
of derivations and do not just take into account the provability of propositions, i.e. the
inhabitation of the corresponding type. In order to capture successfully strong logical
connectives such as ∩ or ∪, we need to be able to express the rules:

D1 : A D2 : B D1 ≡ D2

A ∩B (∩I)
D1 : A ⊃ C D2 : B ⊃ C A ∪B D1 ≡ D2

C
(∪E)

77
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where ≡ is a suitable equivalence between logical proofs. Notice that the above rules
suggest immediately intriguing applications in polymorphic constructions, i.e. the same
evidence can be used as a proof for different statements.

Pottinger [80] was the first to study the strong connective ∩. He contrasted it to the
intuitionistic connective ∧ as follows: “The intuitive meaning of ∩ can be explained by
saying that to assert A ∩ B is to assert that one has a reason for asserting A which is
also a reason for asserting B [while] to assert A ∧ B is to assert that one has a pair of
reasons, the first of which is a reason for asserting A and the second of which is a reason
for asserting B”.

A logical theorem involving intuitionistic conjunction which does not hold for strong
conjunction is (A ⊃ A) ∧ (A ⊃ B ⊃ A), otherwise there should exist a closed λ-term
having simultaneously both one and two abstractions. López-Escobar [67] and Mints
[71] investigated extensively logics featuring both strong and intuitionistic connectives
especially in the context of realizability interpretations.

Dually, it is in the ∪-elimination rule that proof equality needs to be checked. Following
Pottinger, we could say that asserting (A∪B) ⊃ C is to assert that one has a reason for
(A ∪ B) ⊃ C, which is also a reason to assert A ⊃ C and B ⊃ C. The two connectives
differ since the intuitionistic theorem ((A ⊃ B) ∨ B) ⊃ A ⊃ B is not derivable for ∪,
otherwise there would exist a term which behaves both as I and as K.

Following Barbanera and Martini [8], minimal relevant implication, denoted by ⊃r,
can be viewed as a special case of implication whose related function space is the simplest
possible one, namely the one containing only the identity function. The operators ⊃ and
⊃r differ, since A ⊃r B ⊃r A is not derivable. Relevant implication allows for a natural
introduction of subtyping, in that A ⊃r B morally means A 6 B. Relevant implication
amounts to a notion of “proof-reuse”. Combining the remarks in [8, 7], minimal relevant
implication, strong intersection and strong union correspond respectively to the impli-
cation, conjunction and disjunction operators of Meyer and Routley’s Minimal Relevant
Logic B+ [70]. A terminological comment is in order. We refer to (⊃r) as relevant im-
plication in order to be faithful to the original logical literature, since this constructor
satisfies the logical properties of implication in the minimal relevant logical system intro-
duced in [70]. And precisely in this sense it was used later in [8]. This use of the word
“relevant” is therefore more constrained than, but not totally unrelated to, the one arising
in the context of λI−calculus and linear logic, where it expresses the requirement that
the variable “is used at least once” in the function, in contrast to affine “at most one use”
and linear “exactly one use”.

Strong connectives arise naturally in investigating the propositions-as-types analogy
for intersection and union type assignment systems. From a logical point of view, there
are many proposals to find a suitable logic to fit intersection: among them we cite [71,
74, 94, 84, 72, 22, 18, 79].

The LF∆ logical framework introduced in this chapter extends [66] with union types,
dependent types and minimal relevant implication. The novelty of LF∆ in the context
of Logical Frameworks, lies in the full-fledged use of strong proof-functional connectives,
which to our knowledge has never been explored before. Clearly, all ∆-terms have a
computational counterpart.

Pfenning’s work on Refinement Types [74] pioneered an extension of the Edinburgh
Logical Framework with subtyping and intersection types. His approach capitalizes on an
interesting and essentially ad hoc notion of subtyping. However, subtyping in LF∆ arises
naturally as a derived notion from the more fundamental concept of minimal relevant
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Γ `M : σ Γ `M : τ
Γ `M : σ ∩ τ (∩I) Γ `M : σ ∩ τ

Γ `M : σ
(∩Ei) Γ `M : σ ∩ τ

Γ `M : τ
(∩Er)

Γ `M : σ
Γ `M : σ ∪ τ (∪Il) Γ `M : τ

Γ `M : σ ∪ τ (∪Ir)

Γ, x:σ `M : ρ Γ, x:τ `M : ρ Γ ` N : σ ∪ τ
Γ `M [N/x] : ρ

(∪E)
Γ `M : σ σ 6 τ

Γ `M : τ
(Sub)

x:σ ∈ Γ
Γ ` x : σ

(V ar) Γ `M : σ → τ Γ ` N : σ
Γ `M N : τ

(App)
Γ, x:σ `M : τ

Γ ` λx.M : σ → τ
(Abs)

(1) σ 6 σ ∩ σ (8) σ1 6 σ2, τ1 6 τ2 ⇒ σ1 ∪ τ1 6 σ2 ∪ τ2

(2) σ ∪ σ 6 σ (9) σ 6 τ, τ 6 ρ⇒ σ 6 ρ

(3) σ ∩ τ 6 σ, σ ∩ τ 6 τ (10) σ ∩ (τ ∪ ρ) 6 (σ ∩ τ) ∪ (σ ∩ ρ)

(4) σ 6 σ ∪ τ, τ 6 σ ∪ τ (11) (σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)

(5) σ 6 U (12) (σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ

(6) σ 6 σ (13) U 6 U→ U

(7) σ1 6 σ2, τ1 6 τ2 ⇒ σ1 ∩ τ1 6 σ2 ∩ τ2 (14) σ2 6 σ1, τ1 6 τ2 ⇒ σ1 → τ1 6 σ2 → τ2

Figure 6.1: The type assignment system λBDdL of [7] and the type theory Ξ

implication, as illustrated in Section 6.1.
Miquel [72] discusses an extension of the Calculus of Constructions with implicit typ-

ing, which subsumes a kind of proof-functional intersection. His approach has opposite
motivations to ours. While LF∆ provides a Church-style version of Curry-style type as-
signment systems, Miquel’s Implicit Calculus of Constructions encompasses some features
of Curry-style systems in an otherwise Church-style Calculus of Constructions. In LF∆

we can discuss also ad hoc polymorphism, while in the Implicit Calculus only structural
polymorphism is encoded. Indeed, he cannot assign the type ((σ ∩ τ) → σ) ∩ (ρ → ρ)
to the identity λx.x [62]. Kopylov [61] adds a dependent intersection type constructor
x:A∩B[x] to NuPRL, allowing the resulting system to support dependent records (which
are a very useful data structure to encode mathematics). The implicit product-type of
Miquel, together with the dependent intersection type of Kopylov, and a suitable equality-
type is used by Stump [89] to enrich the impredicative second-order system λP2, in order
to derive induction.

In order to achieve our goals, we could have carried out simply the encoding of LF∆

in LF. But, due to the side-conditions characterizing proof-functional connectives, this
would have be achieved only through a deep encoding. As an example of this, in Section
8.2, we give an encoding of a subsystem of [7], where subtyping has been simulated using
relevant arrows. This encoding illustrates the expressive power of LF in treating proofs
as first-class citizens, and it was also a source of inspiration for LF∆.

We will discuss examples showing some encoding in the LF∆ in Chapter 8: all examples
have been checked by an experimental proof development environment for LF∆ [88] (see



80 CHAPTER 6. DEPENDENT TYPES

Kinds

K ::= Type | Πx:σ.K as in LF

Families

σ, τ ::= a | Πx:σ.τ | σ∆ | as in LF

σ →r τ | relevant family

σ ∩ τ | intersection family

σ ∪ τ union family

Objects

∆ ::= c | x | λx:σ.∆ | ∆ ∆ | as in LF

λrx:σ.∆ | relevant abstraction

∆·r∆ | relevant application

〈∆,∆〉 | intersection objects

[∆,∆] | union objects

pr1 ∆ | pr2 ∆ | projections objects

inσ1 ∆ | inσ2 ∆ injections objects

Figure 6.2: The syntax of the ∆-framework

Chapter 7 and Bull and Bull-Subtyping in [87]).
This chapter is organized as follows: in Section 6.1, we introduce LF∆. In Section

6.2 we outline its metatheory, together with a discussion of the main design decisions. In
Section 6.3, we discuss the relation between subtyping and the relevant arrow operator. In
Section 6.4, we give a Pure Type System presentation of LF∆. In Section 6.5, we outline
the future work.

6.1 The ∆-framework: LF with proof-functional oper-
ators

The syntax of LF∆ pseudo-terms is given in Figure 6.2. For the sake of simplicity, we
suppose that α-convertible terms are equal. Signatures and contexts are defined as finite
sequence of declarations, like in LF. Observe that we could formulate LF∆ in the style
of [53], using only canonical forms and without reductions, but we prefer to use the
standard LF format to support better intuition. There are three proof-functional objects,
namely strong conjunction (typed with σ∩ τ) with two corresponding projections, strong
disjunction (typed with σ∪ τ) with two corresponding injections, and strong (or relevant)
λ-abstraction (typed with →r). Indeed, a relevant implication is not a dependent one
because the essence of the inhabitants of type σ →r τ is essentially the identity function
as enforced in the typing rules. Note that injections ini need to be decorated with the

https://github.com/cstolze/Bull
https://github.com/cstolze/Bull-Subtyping
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o 〈∆1,∆2〉 o
def
= o∆1 o

oλrx:σ.∆ o def
= λx.o∆ o

oλx:σ.∆ o def
= λx.o∆ o

o [∆1,∆2] o def
= o∆1 o

o∆1 ∆2 o
def
= o∆1 o o∆2 o

o∆1·r ∆2 o
def
= o∆2 o

o pri ∆ o
def
= o∆ o

o inσi ∆ o def
= o∆ o

o c o def
= c

ox o def
= x

Figure 6.3: The extended essence function

(λx:σ.∆1) ∆2 −→β ∆1[∆2/x]

pr1 〈∆1,∆2〉 −→pr1 ∆1

pr2 〈∆1,∆2〉 −→pr2 ∆2

[∆1,∆2] inσ1 ∆3 −→in1 ∆1 ∆3

[∆1,∆2] inσ2 ∆3 −→in2 ∆2 ∆3

(λrx:σ.∆1)·r∆2 −→βr ∆1[∆2/x]

∆1 →∆ ∆′1 ∆2 →∆ ∆′2 o∆′1 o =η o∆′2 o
〈∆1,∆2〉 →∆ 〈∆′1,∆′2〉

(Congr∩)

∆1 →∆ ∆′1 ∆2 →∆ ∆′2 o∆′1 o =η o∆′2 o
[∆1,∆2]→∆ [∆′1,∆

′
2]

(Congr∪)

Figure 6.4: The reduction semantics

injected type σ in order to ensure the unicity of typing.
We extend the notion of essence of Definition 2.3 to syntactically connect pure λ-terms

(denoted by M) and type annotated LF∆ terms (denoted by ∆). The essence function
compositionally erases all type annotations, see Figure 6.3.

One could argue that the choice of ∆1 in the definition of strong pairs/sums is arbitrary
and could have been replaced with ∆2: however, the typing rules will ensure that, if
〈∆1,∆2〉 (resp. [∆1,∆2]) is typable, then we have that o∆1 o =η o∆2 o. Thus, strong
pairs/sums are constrained. The rule for the essence of a relevant application is justified
by the fact that the operator amounts to just a type decoration.

The six basic reductions for LF∆ objects appear in Figure 6.4. Congruence rules are
as usual, except for the two cases dealing with strong pairs and sums. Here redexes need
to be reduced “in parallel” in order to preserve identity of essences in the components. We
denote by =∆ the symmetric, reflexive, and transitive closure of →∆, i.e. the compatible
closure of the reduction induced by the first six rules, with the addition of the last two
congruence rules in the same figure. In order to make this definition truly functional
as well as to be able to prove a simple subject reduction result, we need to constrain
strong pairs and sums, i.e. objects of the form 〈∆i,∆j〉 and [∆i,∆j] to have congruent
components up-to erasure of type annotations. This is achieved by imposing o∆i o =η o∆j o
in both constructs. We do not consider the relations o∆i o =β o∆j o or o∆i o =βη o∆j o
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Valid Signatures

· sig (εΣ)
Σ sig `Σ K a 6∈ Dom(Σ)

Σ, a:K sig (KΣ)

Σ sig `Σ σ : Type c 6∈ Dom(Σ)

Σ, c:σ sig (σΣ)

Valid Contexts

Σ sig
`Σ ·

(εΓ)
`Σ Γ Γ `Σ σ : Type x 6∈ Dom(Γ)

`Σ Γ, x:σ
(σΓ)

Figure 6.5: Valid signatures and contexts

because they are undecidable. We will therefore assume that such strong pairs and sums
are simply not well defined terms, if the components have a different “infrastructure”. The
effects of this choice are reflected in the congruence rules in the reduction relation, in order
to ensure that reductions can only be carried out in parallel along the two components.

The restriction on reductions in strong pairs/sums and the new constructs do not
cause any problems in showing that →∆ is confluent:

Theorem 6.1 (Confluence). LF∆ is confluent, i.e.:

1. If K1 −→∗∆ K2 and K1 −→∗∆ K3, then ∃K4 such that K2 −→∗∆ K4 and K3 −→∗∆ K4;

2. If σ1 −→∗∆ σ2 and σ1 −→∗∆ σ3, then ∃σ4 such that σ2 −→∗∆ σ4 and σ3 −→∗∆ σ4;

3. If ∆1 −→∗∆ ∆2 and ∆1 −→∗∆ ∆3, then ∃∆4 such that ∆2 −→∗∆ ∆4 and ∆3 −→∗∆ ∆4.

Proof. Using the same technique as in Theorem 2.19.

The extended type theory LF∆ is a formal system for deriving judgments of the forms:

` Σ Σ is a valid signature

`Σ Γ Γ is a valid context in Σ

Γ `Σ K K is a kind in Γ and Σ

Γ `Σ σ : K σ has kind K in Γ and Σ

Γ `Σ ∆ : σ ∆ has type σ in Γ and Σ

Let Figure 6.5 denote Valid Signatures and Contexts and Figure 6.6 denote Valid Kinds
and Families.The set of rules for object formation is defined in Figure 6.7, while the sets of
rules for signatures, contexts, kinds and families are defined as in [52], and all typing rules
(except the (Conv) rules) are syntax-directed. Note that proof-functionality is enforced
by the essence side-conditions in rules (→rI), (∩I), and (∪E).

In the rule (Conv) we rely on the external notion of equality =∆. An option could
have be to add an internal notion of equality directly in the type system (Γ `Σ σ =∆ τ),
and prove that the external and the internal definitions of equality are equivalent, as
was proved for semi-full Pure Type Systems [86]. Yet another possibility could be to
compare type essences oσ o =∆ o τ o, for a suitable extension of essence to types and
kinds. Unfortunately, this would lead to undecidability of type checking, in connection
with relevant implication, as the following example shows. Consider two constants c1 of
type σ →r (Πy:σ.σ) and c2 of type (Πy:σ.σ) →r σ: the ∆-term in Figure 6.8 is typable
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Valid Kinds

`Σ Γ
Γ `Σ Type

(Type)
Γ, x:σ `Σ K

Γ `Σ Πx:σ.K
(ΠK)

Valid Families

`Σ Γ a:K ∈ Σ
Γ `Σ a : K

(Const)
Γ `Σ σ : K1 Γ `Σ K2 K1 =∆ K2

Γ `Σ σ : K2
(Conv)

Γ, x:σ `Σ τ : Type
Γ `Σ Πx:σ.τ : Type

(ΠI)
Γ `Σ σ : Πx:τ.K Γ `Σ ∆ : τ

Γ `Σ σ∆ : K[∆/x]
(ΠE)

Γ `Σ σ : Type Γ `Σ τ : Type
Γ `Σ σ →r τ : Type

(→r I)

Γ `Σ σ : Type Γ `Σ τ : Type
Γ `Σ σ ∩ τ : Type

(∩I)
Γ `Σ σ : Type Γ `Σ τ : Type

Γ `Σ σ ∪ τ : Type
(∪I)

Figure 6.6: Valid kinds and families

Valid Objects

`Σ Γ c:σ ∈ Σ
Γ `Σ c : σ

(Const)
`Σ Γ x:σ ∈ Γ

Γ `Σ x : σ
(Var)

Γ, x:σ `Σ ∆ : τ

Γ `Σ λx:σ.∆ : Πx:σ.τ
(ΠI)

Γ `Σ ∆1 : Πx:σ.τ Γ `Σ ∆2 : σ

Γ `Σ ∆1 ∆2 : τ [∆2/x]
(ΠE)

Γ, x:σ `Σ ∆ : τ o∆ o =η x

Γ `Σ λ
rx:σ.∆ : σ →r τ

(→rI)
Γ `Σ ∆ : σ ∩ τ
Γ `Σ pr1 ∆ : σ

(∩El)

Γ `Σ ∆1 : σ →r τ Γ `Σ ∆2 : σ
Γ `Σ ∆1·r∆2 : τ

(→rE)
Γ `Σ ∆ : σ ∩ τ
Γ `Σ pr2 ∆ : τ

(∩Er)

Γ `Σ ∆1 : σ Γ `Σ ∆2 : τ o∆1 o =η o∆2 o
Γ `Σ 〈∆1,∆2〉 : σ ∩ τ (∩I)

Γ `Σ ∆ : σ

Γ `Σ τ : Type σ =∆ τ

Γ `Σ ∆ : τ
(Conv)

Γ `Σ ∆ : σ Γ `Σ σ ∪ τ : Type

Γ `Σ inτ1 ∆ : σ ∪ τ (∪Il)
Γ `Σ ∆ : τ Γ `Σ σ ∪ τ : Type

Γ `Σ inσ2 ∆ : σ ∪ τ (∪Ir)

Γ `Σ ∆1 : Πy:σ.ρ[inτ1 y/x] o∆1 o =η o∆2 o
Γ `Σ ∆2 : Πy:τ.ρ[inσ2 y/x] Γ, x:σ ∪ τ `Σ ρ : Type

Γ `Σ [∆1,∆2] : Πx:σ ∪ τ.ρ (∪E)

Figure 6.7: The type rules for valid objects

with σ and its essence is Ω
def
= (λx.x x) (λx.x x). Since the intended meaning of relevant

implication is “essentially” the identity, introducing variables or constants whose type is a
relevant implication, amounts to assuming axioms corresponding to type inclusions such
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∆Ω
def
= (λx:σ.c1·rx x) (c2·r(λx:σ.c1·rx x)) o∆Ω o ≡ Ω

Figure 6.8: Encoding of Ω

x ((I y) z) ((I y) z)
1β x (y z) ((I y) z) %β

%β x ((I y) z) (y z) 1β
x (y z) (y z),

Figure 6.9: Pierce’s one-step reduction counter-example

as those that equate σ and σ → σ. As a consequence, β-equality of essences becomes
undecidable. Thus, we rule out such options in relating relevant implications in LF∆ to
subtypes in the type assignment system λBDdL of [7].

6.2 Relating LF∆ to λBDdL

We compare and contrast certain design decisions of LF∆ to the type assignment system
λBDdL of [7]. The proof of strong normalization for LF∆ will rely, in fact, on a forgetful
mapping from LF∆ to λBDdL. As pointed out in [7], the elimination rule for union types in
λBDdL breaks subject reduction for one-step β-reduction, but this can be recovered using
a suitable parallel β-reduction. The well-known counter-example for one-step reduction,
due to Pierce, is in Figure 6.9 (where I is the identity).

In the typing context B def
= x:(σ1 → σ1 → τ) ∩ (σ2 → σ2 → τ), y:ρ → (σ1 ∪ σ2), z:ρ,

the first and the last terms can be typed with τ , while the terms in the fork cannot. The
reason is that the subject in the conclusion of the (∪E) rule uses a context which can
have more than one hole, as in the present case. It is interesting to note that the problem
would not arise if (∪E) is replaced by the following rule schema:

Γ, x1:σ, . . . , xn:σ `M : ρ

Γ, x1:τ, . . . , xn:τ `M : ρ Γ ` Ni : σ ∪ τ Ni =β Nj i, j = 1 . . . n

Γ `M [N1/x1, . . . , Nn/xn] : ρ
(∪E ′)

However, removing the non-static clause on the Ni’s would yield a more permissive
type system than λBDdL.

In LF∆, the formulation of the (∪E) rule takes a different route which does not trigger
the counterexample. Indeed, we have introduction and elimination constructs in1 , in2 and
[−,−] which allow to reduce the term only if we know that the argument, stripped of the
introduction construct, has one of the types of the disjunction. Pierce’s counter-example
can be expressed and typed in LF∆ with the following judgment (the full derivation is in
Subsection 6.2.1):

Γ `Σ [(λx1:σ1.(pr1 x)x1 x1)︸ ︷︷ ︸
∆1

, (λx2:σ2.(pr2 x)x2 x2)︸ ︷︷ ︸
∆2

] ( (λx3:ρ→ σ1 ∪ σ2.x3)︸ ︷︷ ︸
∆3

y z) : τ

where Γ
def
= x:(Πx1:σ1.Πx2:σ1.τ)∩ (Πx1:σ2.Πx2:σ2.τ), y:ρ→ σ1∪σ2, z:ρ, and Σ

def
= τ :Type.

Notice that there is only one redex, namely ∆3 y, and the reduction of this redex leads to
[∆1,∆2] (y z), and no other intermediate (untypable) ∆-terms are possible.

We recall the following result, proved in [7], will be useful in the following section.
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Theorem 6.2 (Theorem 4.8 of [7]). The system λBDdL without U gives types only to
strongly normalizing terms.

6.2.2 LF∆ metatheory

LF∆ can play the role of a Logical Framework only if decidable. The road map which
we follow to establish decidability is the standard one, see e.g. [52]. In particular, we
prove in order: uniqueness of types and kinds, structural properties, and normalization
for well-formed terms. Then we prove the inversion property, the subderivation property,
subject reduction, and finally decidability. But first, we prove the fundamental lemmas:

Lemma 6.3. Let α be either σ : K or ∆ : σ. Then:

1. Weakening: If Γ `Σ α and `Σ Γ,Γ′, then Γ,Γ′ `Σ α;

2. Strengthening: If Γ, x:σ,Γ′ `Σ α, then Γ,Γ′ `Σ α, provided that x 6∈ Fv(Γ′)∪ Fv(α);

3. Substitution: If Γ `Σ ∆ : σ and Γ, x:σ,Γ′ `Σ α, then Γ,Γ′[∆/x] `Σ α[∆/x];

4. Permutation: If Γ, x1:σ,Γ′, x2:τ,Γ′′ `Σ α, then Γ, x2:τ,Γ′, x1:σ,Γ′′ `Σ α, provided
that x1 does not occur free in Γ′ or in τ , and that τ is valid in Γ.

Proof. All the proofs are done by induction on the structure of the derivation.

The first important step states that if a ∆-term is typable, then its type is unique up
to =∆.

Theorem 6.4 (Unicity of types and kinds).

1. If Γ `Σ ∆ : σ and Γ `Σ ∆ : τ , then σ =∆ τ ;

2. If Γ `Σ σ : K and Γ `Σ σ : K ′, then K =∆ K ′.

Proof. All the proofs are done by induction on the structure of the derivation.

Strong normalization is proved as in LF. First we encode terms of LF∆ into terms of
the type assignment system λBDdL such that redexes in the source language correspond to
redexes in the target language and we use Theorem 6.2. Then, we introduce two forgetful
mappings, namely || − || and | − |, defined in Figure 6.10, to erase dependencies in types
and to drop proof-functional constructors in ∆-terms and we conclude. Special care is
needed in dealing with redexes occurring in type-dependencies, because these need to be
flattened at the level of terms.

Definition 6.1. Let the forgetful mappings ||−|| and |−| be defined as in Figure 6.10.

The forgetful mappings are extended to contexts and signatures in the obvious way. The
clauses for strong pairs/sums are justified by the following lemma:

Lemma 6.5. If Γ `Σ 〈∆1,∆2〉 : σ or Γ `Σ [∆1,∆2] : σ, then |∆1 |=β|∆2 |.

Proof. By induction on ∆1. Note that β-conversion is needed in the case where ∆1 ≡
λx:σ.∆′1 for some ∆′1. In that case, it is necessary that ∆2 ≡ λx:τ.∆′2, for some ∆′2, and
we have that |∆1 |=β λx. |∆′1 | and |∆2 |=β λx. |∆′2 |, where by induction hypothesis
|∆′1 |=β|∆′2 |.
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||Type || = > (a special constant) ||σ →r τ || = ||σ ||→||τ ||

||Πx:σ.K || = ||σ ||→||K || ||σ∆ || = ||σ ||

||a || = a ||σ ∩ τ || = ||σ || ∩ ||τ ||

||Πx:σ.τ || = ||σ ||→||τ || ||σ ∪ τ || = ||σ || ∪ ||τ ||

|a | = a |σ →r τ | = c× |σ | |τ |

|c | = c |σ ∩ τ | = c× |σ | |τ |

|x | = x |σ ∪ τ | = c× |σ | |τ |

|σ∆ | = |σ | |∆ | | 〈∆1,∆2〉 | = |∆1 |

|∆1 ∆2 | = |∆1 | |∆2 | | [∆1,∆2] | = |∆1 |

|∆1·r∆2 | = |∆1 | |∆2 | |λx:σ.∆ | = (λy.λx. |∆ |) |σ | y 6∈ Fv(∆)

|pr1 ∆ | = |∆ | |λrx:σ.∆ | = (λy.λx. |∆ |) |σ | y 6∈ Fv(∆)

|pr2 ∆ | = |∆ | | inσ1 ∆ | = (λx. |∆ |) |σ | x 6∈ Fv(∆)

|Πx:σ.τ | = c||σ|| |σ | (λx. |τ |) | inσ2 ∆ | = (λx. |∆ |) |σ | x 6∈ Fv(∆)

Figure 6.10: The forgetful mappings ||−|| and |−|

The following lemmas are proved by straightforward structural induction, and using
Lemma 6.5.

Lemma 6.6.

1. If σ =∆ τ , then ||σ ||=β||τ ||;

2. If K1 =∆ K2, then ||K1 ||=β||K2 ||.

Lemma 6.7.

1. |∆1[∆2/x] |=β|∆1 | [|∆2 | /x];

2. |σ[∆/x] |=β|σ | [|∆ | /x].

Lemma 6.8.

1. If Γ `Σ σ : K, then ||Γ ||`λBDdL+|σ | : ||K ||;

2. If Γ `Σ ∆ : σ, then ||Γ ||`λBDdL+ |∆ | : ||σ ||.

where `λBDdL+ denotes the type system λBDdL, augmented by c× : > → > → > and the
infinite set of axioms c||σ|| : > → (||σ ||→ >)→ >, for each type σ.

Proof. By induction on the derivation, using Lemmas 6.6 and 6.7

Notice that the function o − o and |−| treat relevant implication differently.

Lemma 6.9.
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1. If σ −→β τ , then |σ |−→+
β |τ |;

2. if ∆1 −→β ∆2, then |∆1 |−→+
β |∆2 |.

Proof. By induction on the term.

Parallel reduction enjoys the strong normalization property, i.e.

Theorem 6.10 (Strong normalization).

1. LF∆ is strongly normalizing, i.e.,

(a) If Γ `Σ K, then K is strongly normalizing;

(b) If Γ `Σ σ : K, then σ is strongly normalizing;

(c) If Γ `Σ ∆ : σ, then ∆ is strongly normalizing;

2. Every strongly normalizing pure λ-term is the essence of some ∆-term.

Proof.

1. Strong normalization derives directly from Lemmas 6.8, 6.9 and Theorem 6.2;

2. Every strongly normalizing pure λ-term can be typed with intersection types, and
the derivation tree can be encoded as a ∆-term.

Then, we have subject reduction, whose proof relies on technical lemmas about inversion
and subderivation properties.

The following lemmas (Lemma 6.11 and Lemma 6.12) can be easily proved by struc-
tural induction.

Lemma 6.11 (Inversion properties).

1. If Πx:σ.τ =∆ τ ′′, then τ ′′ ≡ Πx:σ′.τ ′, for some σ′, τ ′, such that σ′ =∆ σ, and τ ′ =∆ τ ;

2. If σ →r τ =∆ τ ′′, then τ ′′ ≡ σ′ →r τ ′, for some σ′, τ ′, such that σ′ =∆ σ, and
τ ′ =∆ τ ;

3. If σ ∩ τ =∆ ρ, then ρ ≡ σ′ ∩ τ ′, for some σ′, τ ′, such that σ′ =∆ σ, and τ ′ =∆ τ ;

4. If σ ∪ τ =∆ ρ, then ρ ≡ σ′ ∪ τ ′, for some σ′, τ ′, such that σ′ =∆ σ, and τ ′ =∆ τ ;

5. If Γ `Σ λx:σ.∆ : Πx:σ.τ , then Γ, x:σ `Σ ∆ : τ ;

6. If Γ `Σ λ
rx:σ.∆ : Πx:σ.τ , then Γ, x:σ `Σ ∆ : τ and o∆ o =η x;

7. If Γ `Σ 〈∆1,∆2〉 : σ ∩ τ , then Γ `Σ ∆1 : σ, Γ `Σ ∆2 : τ , and o∆1 o =β o∆2 o;

8. If Γ `Σ [∆1,∆2] : Πx:σ∪τ.ρ, then Γ `Σ ∆1 : Πy:σ.ρ (inτ1 y), Γ `Σ ∆2 : Πy:τ.ρ (inσ2 y),
and o∆1 o =β o∆2 o;

9. If Γ `Σ pr1 ∆ : σ, then Γ `Σ ∆:σ ∩ τ , for some τ ;

10. If Γ `Σ pr2 ∆ : τ , then Γ `Σ ∆:σ ∩ τ , for some σ;

11. If Γ `Σ inτ1 ∆ : σ ∪ τ , then Γ `Σ ∆ : σ and Γ `Σ σ ∪ τ : Type;
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12. If Γ `Σ inσ2 ∆ : σ ∪ τ , then Γ `Σ ∆ : τ and Γ `Σ σ ∪ τ : Type.

The following technical lemma will be useful to prove subject reduction.

Lemma 6.12 (Subderivation).

1. A derivation of `Σ · has a subderivation of Σ sig;

2. A derivation of Σ, a:K sig has subderivations of Σ sig and `Σ K;

3. A derivation of Σ, f :σ sig has subderivations of Σ sig and `Σ σ:Type;

4. A derivation of `Σ Γ, x:σ has subderivations of Σ sig, `Σ Γ, and Γ `Σ σ:Type;

5. A derivation of Γ `Σ α has subderivations of Σ sig and `Σ Γ;

6. Given a derivation of the judgment Γ `Σ α, and a subterm occurring in the subject
of this judgment, there exists a derivation of a judgment having this subterm as a
subject.

Subject reduction can be proved by easy induction on the structure of the derivations.

Theorem 6.13 (Subject reduction of LF∆).

1. If Γ `Σ K, and K →∆ K ′, then Γ `Σ K
′;

2. If Γ `Σ σ : K, and σ →∆ σ′, then Γ `Σ σ
′ : K;

3. If Γ `Σ ∆ : σ, and ∆→∆ ∆′, then Γ `Σ ∆′ : σ.

Finally, we can prove decidability of all the judgments of LF∆.

Theorem 6.14 (Decidability). All the type judgments of LF∆ are recursively decidable.

Proof. We can easily check judgments in LF∆: because of Theorem 6.10 and because all
the rules (except (Conv)) are syntax directed, we can compute a type or a kind for a
term, and then test for definitional equality, i.e. =∆, against the given type or kind; this
is achieved by reducing both to their unique normal forms, and, thanks to the confluence
property (Theorem 6.1), we only have to check if the normal forms are syntactically
equal.

6.3 Minimal relevant implications and type inclusion
Type inclusion and the rules of subtyping are related to the notion of minimal relevant
implication, see [8, 39]. The insight is quite subtle, but ultimately very simple. This is
what makes it appealing. The apparently intricate rules of subtyping and type inclusion,
which occur in many systems, and might even appear ad hoc at times, can all be explained
away in our principled approach, by proving that the relevant implication type is inhabited
by a term whose essence is essentially a variable.

In the following theorem we show how relevant implication subsumes the type-inclusion
rules of the theory Ξ of [7], without rules (5) and (13) (dealing with U) and rule (10)
(distributing ∩ over ∪) in Figure 6.1: we call Ξ′ such restricted type theory. Note that
the reason to drop subtype rule (10) is due to the fact that we cannot inhabit the type
σ ∩ (τ ∪ ρ)→r (σ ∩ τ) ∪ (σ ∩ ρ).



90 CHAPTER 6. DEPENDENT TYPES

(1) ‖σ 6 σ ∩ σ‖∆

def
= 〈∆,∆〉

(2) ‖σ ∪ σ 6 σ‖∆

def
= [λx:σ.x, λx:σ.x] ∆

(3) ‖σ1 ∩ σ2 6 σi‖∆

def
= pri ∆

(4) ‖σi 6 σ1 ∪ σ2‖∆

def
= ini ∆

(6) ‖σ 6 σ‖∆

def
= ∆

(7)
∥∥∥σ1 6 σ2 τ1 6 τ2

σ1 ∩ τ1 6 σ2 ∩ τ2

∥∥∥
∆

def
= 〈‖σ1 6 σ2‖(pr1 ∆) , ‖τ1 6 τ2‖(pr2 ∆)〉

(8)
∥∥∥σ1 6 σ2 τ1 6 τ2

σ1 ∪ τ1 6 σ2 ∪ τ2

∥∥∥
∆

def
= [λx:σ1.in

τ2
1 ‖σ1 6 σ2‖x , λx:τ1.in

σ2
2 ‖τ1 6 τ2‖x] ∆

(9)

∥∥∥∥σ 6 τ τ 6 ρ
σ 6 ρ

∥∥∥∥
∆

def
= ‖τ 6 ρ‖(‖σ6τ‖∆)

(11) ‖(σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)‖∆

def
= λx:σ.〈(pr1 ∆)x, (pr2 ∆)x〉

(12) ‖(σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ‖∆

def
= λx:σ ∪ τ.[λy:σ.(pr1 ∆) y, λy:τ.(pr2 ∆) y]x

(14)
∥∥∥ σ2 6 σ1 τ1 6 τ2

σ1 → τ1 6 σ2 → τ2

∥∥∥
∆

def
= λx:σ2. ‖τ1 6 τ2‖(∆ ‖σ26σ1‖x)

Figure 6.11: The coercion function

Theorem 6.15 (Type Inclusion). The judgment `Σ ∆ : σ →r τ (where both σ and τ do
not contain dependencies or relevant families) holds iff σ 6 τ holds in the type theory Ξ′

of λBDdL enriched with new axioms of the form σ1 6 σ2 for each constant c : σ1 →r σ2 ∈ Σ.

Proof.

(if). Follows directly from Lemma 6.11;

(only if). It is possible to write a ∆-term whose essence is an η−expansion of the
identity (λx.x) corresponding to each of the axioms and rules in Ξ′. The ∆-term is
obtained by defining a function ‖σ 6 τ‖∆, where σ 6 τ is a subtyping derivation
tree in the type theory Ξ′, which coerce a ∆-term from type σ to type τ , as defined
in Figure 6.11.

As far as the λΠ& system of refinement types introduced by Pfenning in [74], we get
the following example:

Example 6.1 (Pfenning’s refinement types [74]). The judgment `Σ σ 6 τ in λΠ& can
be encoded in LF∆ by adding a constant of type σ →r τ to Σ′, where the latter is the
signature obtained from Σ by replacing each clause of the form a1 :: a2 or a1 6 a2 in Σ
by a constant of type a1 →r a2.

Moreover, while Pfenning needs to add explicitly the rules of subtyping (i.e. the theory
of 6) in λΠ&, we inherit them naturally in LF∆ from the rules for minimal relevant
implication.
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Let Γ
def
= {x1:σ1, . . . , xn:σn} (i 6= j implies xi 6≡ xj), and Γ, x:σ

def
= Γ ∪ {x:σ}

Let Σ
def
= {c1:σ1, . . . , cn:σn}, and Σ, c:σ

def
= Σ ∪ {c:σ}

Valid Signatures

· sig (εΣ)

Σ sig `Σ σ : s

a 6∈ Dom(Σ) s ∈ {Type,Kind}
Σ, c:σ sig (∆Σ)

Valid Contexts

Σ sig
`Σ ·

(εΓ)
`Σ Γ Γ `Σ σ : Type x 6∈ Dom(Γ)

`Σ Γ, x:σ
(σΓ)

Figure 6.12: Pure Type System presentation of the ∆-framework (signature and context)

6.4 Pure Type System presentation of LF∆

Pure Type Systems (PTS) were introduced by Barendregt in [10]. The gist of PTSs is
that we only have one syntactical set containing the terms, families and kinds. Some
constants (here, Type and Kind) are called sorts. We call LFPTS

∆ the PTS version of LF∆.
For LFPTS

∆ , we have the following syntax:

∆ ::= Type | Kind | c | x | λx:σ.∆ | ∆ ∆ | λrx:∆.∆ | ∆·r∆ | 〈∆,∆〉 |

[∆,∆] | pr1 ∆ | pr2 ∆ | in∆
1 ∆ | in∆

2 ∆ | Πx:∆.∆ | ∆→r ∆ |

∆ ∪∆ | ∆ ∩∆

We define R def
= {(Type,Type), (Type,Kind)}. The typing rules are given in Figures 6.12

and 6.13.
We now define objects, families and kinds in LFPTS

∆ .

Definition 6.2 (Objects, families, and kinds). In a signature Σ, for any ∆:

1. if there is some Γ, σ, such that Γ `Σ ∆ : σ and Γ `Σ σ : Type, then we say that ∆
is an object in the signature Σ;

2. if there is some Γ, σ, such that Γ `Σ ∆ : σ and Γ `Σ σ : Kind, then we say that ∆
is a family in the signature Σ;

3. if there is some Γ, such that Γ `Σ ∆ : Kind, then we say that ∆ is a kind in the
signature Σ.

The next theorem states that all objects, families and kinds in LF∆ remain respectively
well-typed objects, families and kinds in LFPTS

∆ .

Theorem 6.16 (Preservation).

1. for any signature Σ, if Σ sig in LF∆, then Σ sig in LFPTS
∆ (assuming the alphabet

for atom types and the alphabet for constants are the same);
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Valid Terms

`Σ Γ
Γ `Σ Type : Kind

(Type)
Γ `Σ σ : s1 Γ, x:σ `Σ τ : s2 (s1, s2) ∈ R

Γ `Σ Πx:σ.τ : τ
(sI)

`Σ Γ c:σ ∈ Σ
Γ `Σ c : σ

(Const)
`Σ Γ x:σ ∈ Γ

Γ `Σ x : σ
(Var)

Γ `Σ σ : Type Γ `Σ τ : Type
Γ `Σ σ →r τ : Type

(rI)

Γ `Σ ∆ : σ

Γ `Σ τ : s σ =∆ τ

Γ `Σ ∆ : τ
(Conv)

Γ `Σ σ : Type Γ `Σ τ : Type
Γ `Σ σ ∩ τ : Type

(∩I)
Γ `Σ σ : Type Γ `Σ τ : Type

Γ `Σ σ ∪ τ : Type
(∪I)

Γ, x:σ `Σ ∆ : τ Γ `Σ Πx:σ.τ : s

Γ `Σ λx:σ.∆ : Πx:σ.τ
(ΠI)

Γ `Σ ∆1 : Πx:σ.τ Γ `Σ ∆2 : σ

Γ `Σ ∆1 ∆2 : τ [∆2/x]
(ΠE)

o∆ o =η x
Γ, x:σ `Σ ∆ : τ Γ `Σ σ →r τ : Type

Γ `Σ λ
rx:σ.∆ : σ →r τ

(→rI)
Γ `Σ ∆1 : σ →r τ Γ `Σ ∆2 : σ

Γ `Σ ∆1·r∆2 : τ
(→rE)

Γ `Σ ∆ : σ ∩ τ
Γ `Σ pr1 ∆ : σ

(∩El)
Γ `Σ ∆ : σ ∩ τ
Γ `Σ pr2 ∆ : τ

(∩Er)

Γ `Σ ∆ : σ Γ `Σ σ ∪ τ : Type

Γ `Σ inτ1 ∆ : σ ∪ τ (∪Il)
Γ `Σ ∆ : τ Γ `Σ σ ∪ τ : Type

Γ `Σ inσ2 ∆ : σ ∪ τ (∪Ir)

o∆1 o =η o∆2 o
Γ `Σ ∆1 : σ Γ `Σ ∆2 : τ

Γ `Σ 〈∆1,∆2〉 : σ ∩ τ (∩I)

Γ `Σ ∆1 : Πy:σ.ρ[inτ1 y/x] o∆1 o =η o∆2 o
Γ `Σ ∆2 : Πy:τ.ρ[inσ2 y/x] Γ, x:σ ∪ τ `Σ ρ : Type

Γ `Σ [∆1,∆2] : Πx:σ ∪ τ.ρ (∪E)

Figure 6.13: Pure Type System presentation of the ∆-framework (terms)

2. for any context Γ, if `Σ Γ in LF∆, then `Σ Γ in LFPTS
∆ ;

3. for any kind K, if Γ `Σ K in LF∆, then Γ `Σ K : Kind in LFPTS
∆ , and K is also a

kind in LFPTS
∆ ;

4. for any family σ, if Γ `Σ σ : K in LF∆, then Γ `Σ σ : K in LFPTS
∆ , and σ is a family

in LFPTS
∆ ;

5. for any object ∆, if Γ `Σ ∆ : σ in LF∆, then Γ `Σ ∆ : σ in LFPTS
∆ , and ∆ is an

object in LFPTS
∆ .

Proof. All the parts are easily proved by mutual induction on the derivation tree.

6.5 Future Work
There is still a lot of research to do in the domain of Church-style λ-calculus with in-
tersection, union, and dependent types. Among some interesting questions, we could
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mention:

1. LF∆ in Canonical Form: we presented LF∆ in the standard LF format in order to
support intuition, and in the PTS format for conciseness. It would be worthwhile
however, to attempt to formulate LF∆ in the style of Harper and Licata [53], using
only canonical forms without reductions, especially in view of proving adequacy re-
sults. The terms peculiar to LF∆ would then introduce new clauses in the definition
of canonical and atomic terms. The principle to follow in this task is that atomic
terms synthesize their type, while canonical terms are checked against their type.
We are currently exploring the following extension:

M ::= . . . | λrx.M | 〈M,M〉 | [M,M ] | in1M | in2M

R ::= . . . | pr1R | pr2R | R ·rM

Notice the somewhat surprising treatment of the [ , ] constructor, which is not
really an elimination construct but rather behaves as another form of abstraction.
Accordingly hereditary substitution needs to be extended.

An intriguing issue1 is to explore the connections between strong implication and
the singleton type of the identity function. This could lead also to an internalization
of the essence function;

2. Adequacy, Canonical Forms, Exotic terms : in the presence of union types, we have
to pay special attention to the exact formulation of adequacy results, as in the
Harrop’s formulæ example of Chapter 8. Otherwise exotic terms arise, such as
[λx:σ.C[x], λx:τ.D[x]] y, where C[−] and D[−] are distinct contexts (i.e. terms with
holes), which cannot be naturally simplified even if oC[−] o ≡ oD[−] o. More work
needs to be done to streamline how to exclude, or even capitalize, on exotic terms.

1Raised by one of the referees of [57].
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Chapter 7
Implementation of the theorem prover Bull

This chapter presents the implementation of a prototype of an Interactive Theorem Prover
(ITP) based on the ∆-framework. I have personally been writing this theorem prover from
scratch for three years, and it is called Bull1 [88, 87]. We have a command-line interface
program where the user can declare axioms, terms, and perform computations. These
terms can be incomplete, therefore the typechecking algorithm uses unification to try to
construct the missing subterms.

In Chapter 5, we have implemented the subtyping algorithm which extends the well-
known algorithm for intersection types, designed by Hindley [54], with union types. The
subtyping algorithm has been mechanically proved correct in Coq, extending the mecha-
nized proof of a subtyping algorithm for intersection types of Bessai [16].

We have implemented several features. A Read-Eval-Print-Loop allows to define ax-
ioms and definitions, and performs some basic terminal-style features like error pretty-
printing, subexpressions highlighting, and file loading. Moreover, it can typecheck a proof
or normalize it. We use the syntax of Pure Type Systems [14] to improve the compactness
and the modularity of the kernel. Abstract and concrete syntax are mostly aligned: the
concrete syntax is similar to the concrete syntax of Coq.

We have designed a higher-order unification algorithm for terms, while typechecking
and partial type inference are done by our bidirectional refinement algorithm, similar to
the one found in [6]. The refinement can be split into two parts: the essence refinement
and the typing refinement. The bidirectional refinement algorithm aims to have partial
type inference, and to give as much information as possible to the unifier. For instance,
if we want to find a ?y such that `Σ 〈λx:σ.x, λx:τ.?y〉 : (σ → σ) ∩ (τ → τ), we can infer
that x:τ `?y : τ and that o ?y o =β x.

This chapter is organized as follows: in Section 7.1, we explain the commonly-used
de Bruijn indices. In Section 7.2, we introduce the language we have implemented. In
Section 7.3, we define the reduction rules and explain the evaluation process. In Section
7.4, we present the subtyping algorithm. In Section 7.5, we present the unifier. In Section
7.6, we present the refiner which does partial typechecking and type reconstruction. In
Section 7.7, we present the Read-Eval-Print-Loop. In Section 7.8, we present possible
enhancements of the software.

1In reference to the Turin fountains.

95
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7.1 de Bruijn indices in Bull
In this section, we review the de Bruijn indices technique [35] as it is implemented in Bull,
using the pure λ-calculus for simplicity.

The principle is to replace every variable x is by its de Bruijn index i, which is the
number of binders we encounter when traversing the term until we meet the binder of x.
Constants c are still allowed, and are not replaced by an integer. We get the following
grammar:

M ::= c | i | λx.M |MM

The name x on the binder λx could seem superfluous, but it is convenient if we want to
get back the names of the variables. N.G. de Bruijn counts from 1 in his historical paper,
but we decided to count from 0 in the Bull implementation.

We will use λx.((λy.λz.x y z (λt.y))(λu.x u)) as a running example which is translated
as λx.((λy.λz.2 1 0 (λt.2))(λu.1 0)). There is one β-redex, which consist of the function
λy.λz.x y z(λt.y) applied to the argument λu.x u. This term reduces to:

λx.(λz.x (λu.x u) z (λt.λu.x u))

It is translated using de Bruijn indices as:

λx.(λz.1 (λu.2 0) 0 (λt.λu.3 0))

It is easier to read these terms by looking at their syntax tree, where variables are dec-
orated with their de Bruijn index. Intuitively, we can see the de Bruijn indices as the
distance between variables and their binders:

λx

λy

λz

x2 y1 z0 λt

y2

λu

x1 u0 −→β

λx

λz

x1 λu

x2 u0

z0 λt

λu

x3 u0

As you can see, β-reduction with de Bruijn indices requires a subtle update of the in-
dices. Simply speaking, the β-reduction algorithm consists of a tree traversal where every
de Bruijn index is compared to the depth of the consumed binder (λy in the example):

– if the de Bruijn index is strictly greater than the depth of the consumed binder, it
corresponds to a variable bound to a binder above the consumed binder (λx in the
example). Therefore this de Bruijn index is decremented;

– if the de Bruijn index is strictly smaller than the depth of the consumed binder, it
corresponds to a variable bound to a binder below the consumed binder (λz in the
example). Therefore this de Bruijn index is unchanged;

– if the reference binder is the depth of the consumed binder, it corresponds to the
variable to be substituted. We replace the node with an updated version of the
argument. It has to be computed anew for each replacement (it is done twice in the
example), and it is a tree traversal where the de Bruijn indices are modified:
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– for de Bruijn indices corresponding to variables bound outside the argument
(x in the example), we update it by adding the number of extra binders (in
the example, the extra binders are λz in the first case, and λz, λt in the second
case);

– for de Bruijn indices corresponding to variables bound inside the argument (u
in the example), we do not change anything.

This auxiliary function is called lift in the literature (see e.g. [5]), where lift k n t
updates the tree t, which is a subtree of the argument of the redex, where we are
under k local binders, and there are n extra binders. The argument k is used to
determine whether a de Bruijn index correspond to a variable inside or outside the
argument, and n is the value to add, where appropriate.

7.2 Syntax of terms
We present a syntax for the language we have implemented. We use a Pure Type System
approach, therefore all the terms are read through the same parser. The main differences
with the ∆-framework presented in Chapter 6 are the additions of a placeholder and
meta-variables, used by the refiner. We also added a let operator and changed the syntax
of the strong sum so it looks more like the concrete syntax used in the implementation. A
meta-variable ?x[∆1; ...; ∆n] has the, so called, suspended substitutions ∆1; ...; ∆n, which
will be explained clearly in Subsection 7.2.4. Finally, following the Cervesato-Pfenning
jargon [25], applications are in spine form, i.e. the arguments of a function are stored
together in a list, exposing the head of the term separately.

∆, σ ::= s Sort
| c Constant
| x Variable
| _ Placeholder
| ?x[∆; ...; ∆] Meta-variable
| let x:σ := ∆ in ∆ Local definition
| Πx:σ.∆ Dependent product
| λx:σ.∆ λ-abstraction
| ∆S Application
| σ ∩ σ Intersection
| σ ∪ σ Union
| 〈∆,∆〉 Strong pair
| pr1 ∆ Left projection
| pr2 ∆ Right projection
| smatch ∆ return σ with [x:σ ⇒ ∆ | x:σ ⇒ ∆] Strong sum
| in1 σ∆ Left injection
| in2 σ∆ Right injection
| coeσ∆ Coercion

Spines for ∆-terms have the following syntax:

S ::= () | (S; ∆)
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We also have a similar syntax for the essence:

M, ς ::= s Sort
| c Constant
| x Variable
| _ Placeholder
| ?x[M ; ...;M ] Meta-variable
| let x := M in M Local definition
| Πx:ς.ς Dependent product
| λx.M λ-abstraction
| M R Application
| ς ∩ ς Intersection
| ς ∪ ς Union

Spines for essences have the following syntax:

R ::= () | (R;M)

Note that essences of types (noted ς) belongs to the same syntactical set as essences of
terms.

7.2.1 Concrete syntax

The concrete syntax of the terms has been implemented with OCamllex and OCamlyacc.
Its simplified syntax is as follows:

term ::=
| Type
| let ID [args] [: term] := term in term
| ID # variables and constants
| forall args, term # dependent product
| term -> term # non-dependent product
| fun args => term # lambda-abstraction
| term term # application
| term & term # intersection of types
| term | term # union of types
| <term,term> # strong pair
| proj_l term # left projection of a strong pair
| proj_r term # right projection of a strong pair
| smatch term [as ID] [return term] with ID [: term] => term,

ID [: term] => term end
# strong sum

| inj_l term term # left injection of a strong sum
| inj_r term term # right injection of a strong sum
| coe term term # coercion
| _ # wildcard

Identifiers ID refers to any alphanumeric string (possibly with underscores and apostro-
phes). The non-terminal symbol args correspond to a non-empty sequence of arguments,
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where an argument is an identifier, and can be given with its type. In the latter case,
you should parenthesize it, for instance (x : A), and if you want to assign the same type
to several consecutive arguments, you can e.g. write (x y z : A). Strong sums have a
complicated syntax. For instance, consider this term:

smatch foo as x return T with y : T1 ⇒ bar, z : T2 ⇒ baz end

The above term in the concrete syntax corresponds to

smatch foo return λx:_.T with [y:T1⇒ bar | x:T2⇒ baz]

in the abstract syntax. The concrete syntax thus guarantees that the returned type is a
λ-abstraction, and it allows a simplified behaviour of the type reconstruction algorithm
(see rule (Ssum) in Figure 7.3). The behaviour of the concrete syntax is intended to
mimic Coq2.

7.2.2 Implementation of the syntax

In the OCaml implementation, ∆-terms and their types along with essences and type
essences are represented with a single type called term. It allows some functions (such as
the normalization function) to be applied both on ∆-terms and on essences.

type term =
| Sort of location ∗ sort
| Let of location ∗ string ∗ term ∗ term ∗ term (* let s : t1 := t2 in t3 *)
| Prod of location ∗ string ∗ term ∗ term (* forall s : t1, t2 *)
| Abs of location ∗ string ∗ term ∗ term (* fun s : t1 => t2 *)
| App of location ∗ term ∗ term list (* t t1 t2 ... tn *)
| Inter of location ∗ term ∗ term (* t1 & t2 *)
| Union of location ∗ term ∗ term (* t1 | t2 *)
| SPair of location ∗ term ∗ term (* < t1, t2 > *)
| SPrLeft of location ∗ term (* proj_l t1 *)
| SPrRight of location ∗ term (* proj_r t1 *)
| SMatch of location ∗ term ∗ term ∗ string ∗ term ∗ term ∗ string ∗ term ∗ term

(* match t1 return t2 with s1 : t3 => t4 , s2 : t5 => t6 end *)
| SInLeft of location ∗ term ∗ term (* inj_l t1 t2 *)
| SInRight of location ∗ term ∗ term (* inj_r t1 t2 *)
| Coercion of location ∗ term ∗ term (* coe t1 t2 *)
| Var of location ∗ int (* de Bruijn index *)
| Const of location ∗ string (* variable name *)
| Underscore of location (* meta-variables before analysis *)
| Meta of location ∗ int ∗ (term list) (* index and substitution *)

The constructors of term contain the location information retrieved by the parser that
allows the typechecker to give the precise location of a subterm to the user, in case of
error.

The App constructor takes as parameters the applied function and the list of all the
arguments. The list of parameters is used as a stack, hence the rightmost argument is
the head of the list, and can easily be removed in the OCaml recursive functions. The
variables are referred to as strings in the Const constructor, and as de Bruijn indices in
Var constructors.

2Even though I could not decipher the Coq parser.
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The parser does not compute de Bruijn indices, it gives the variables as strings. The
function fix_index replaces bound variables by de Bruijn indices. We still keep track of
the string names of the variables, in case we have to print them back. Its converse function,
fix_id, replaces the de Bruijn indices with the previous strings, possibly updating the
string names in case of name clashes. For instance, the string printed to the user, showing
the normalized form of (fun (x y : nat) ⇒ x) y, is fun y0 : nat ⇒ y : the bound variable
y has been renamed y0. The meta-variables are generated by the typecheckers, and their
identifier is an integer.

We have defined several helper functions to ease the process of terms: there is the
most generic function visit_term f g h t, which looks at the children of the term t, and:

1. every child t1 outside of a binder is replaced with f t1;

2. every child t1 inside the binding of a variable whose name (a string) is s is replaced
with g s t1, while s is replaced with h s t1. The functions g and h takes a string as
an argument, for helping the implementation of the fix_index and fix_id functions.

The function map_term is a kind of mapping function: map_term k f t finds every variable
Var(l, n) inside the term, and replaces it by f (k+offset) l n, where offset is the number
of extra bindings.
let lift k n =
map_term k

(fun k l m→ if m < k then Var (l, m) else Var (l, m+n))

The lift and map_term functions allow us to define a substitution in a clean way:
(* Transform (lambda x. t1) t2 into t1[t2/x] *)
let beta_redex t1 t2 =
let subst k l m =
if m < k then Var (l, m) (* bound variable *)
else if m = k then (* x *)
lift 0 k t2

else (* the enclosing lambda goes away *)
Var (l, m−1)

in map_term 0 subst t1

7.2.3 Environments

There are four kinds of environments, namely

1. the global environment (noted Σ). The global environment holds constants which
are fully typechecked:

Σ ::= · | Σ, c:ς@σ | Σ, c := M@∆ : ς@σ

Intuitively, c:ς@σ is a declaration of a constant (or axiom), and c := M@∆ : ς@σ
corresponds to a global definition.

2. the local environment (noted Γ). It is used for the first step of typechecking, and
looks like a standard environment:

Γ ::= · | Γ, x:σ | Γ, x := ∆ : σ

Intuitively, x:σ is a variable introduced by a λ-abstraction, and x := ∆ : σ is a local
definition introduced by a let.
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3. the essence environment (noted Ψ). It is used for the second step of typechecking,
and holds the essence of the local variables:

Ψ ::= · | Ψ, x | Ψ, x := M

Intuitively, x is a variable introduced by a λ-abstraction, and x := M is a local
definition introduced by a let. Notice that the variable x in the BNF expression Ψ, x
carries almost no information. However, since local variables are referred to by their
de Bruijn indices, and these indices are actually their position in the environment, it
follows that they have to appear in the environment, even when there is no additional
information.

4. the meta-environment (noted Φ). It is used for unification, and records meta-
variables and their instantiation whenever the unification algorithm has found a
solution:

Φ ::= · | Φ, sort(?x) | Φ, ?x := s | Φ, (Γ `?x : σ) | Φ, (Γ `?x := ∆ : σ) |

Φ,Ψ `?x | Φ,Ψ `?x := M

Intuitively, since there are some meta-variables for which we know they have to be
sorts, it follows that sort(?x) declares a meta-variable ?x which correspond either
to Type or Kind, and ?x := s is the instantiation of a sort ?x. Also, Γ `?x : σ is the
declaration of a meta-variable ?x of type σ which appeared in a local environment
Γ, and Γ `?x := ∆ : σ is the instantiation of the meta-variable ?x. Concerning
meta-variables inside essences, Ψ `?x is the declaration of a meta-variable ?x in an
essence environment Ψ, and Ψ `?x := M is the instantiation of ?x.

7.2.4 Suspended substitution

We shortly introduce suspended substitution, as presented in [6]. Let’s consider the
following example: if we want to unify (λx:σ.?y) c1 with c1, we could unify ?y with c1 or
with x, the latter being the preferred solution. However, if we normalize (λx:σ.?y) c1, we
should record the fact that c1 can be substituted by any occurrence of x appearing the
term to be replaced by ?y. That is the purpose of suspended substitution: the term is
actually noted (λx:σ.?y[x]) c1 and reduces to ?y[c1], noting that c1 has replaced x.

Definition 7.1 (Type-erase function and suspended substitution).

1. the vector x1; . . . ;xn is created using the type-erase function ·̂, defined as

̂x1 : σ1; . . . xn : σn
def
= x1; . . . ;xn

2. when we want to create a new meta-variable in a local context Γ = x1 : σ1; . . . xn : σn,
we create a meta-variable ?y[Γ̂] ≡ ?y[x1; . . . ;xn]. The vector ∆1; . . . ; ∆n inside
?y[∆1; . . . ; ∆n] is the suspended substitution of ?y. Substitutions for meta-variable
and their suspended substitution are propagated as follows:

?y[∆1; . . . ; ∆n][∆/x]
def
= ?y[∆1[∆/x]; . . . ; ∆n[∆/x]]

?y[M1; . . . ;Mn][N/x]
def
= ?y[M1[N/x]; . . . ;Mn[N/x]]
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7.3 The evaluator of Bull
The evaluator follows the applicative order strategy, which recursively normalizes all sub-
terms from left to right (with the help of the visit_term function), then:

– if the resulting term is a redex, reduces it, then use the same strategy again;

– or else, the resulting term is in normal form.

7.3.1 Reduction rules

The reduction notions, from which we can defined one-step reduction, multistep reduction,
and equivalence relation, are defined below.

1. for ∆-terms:

(λx:σ.∆1) ∆2 7→β ∆1[∆2/x]

λx:σ.∆x 7→η ∆ if x 6∈ Fv(∆)

pri 〈∆1,∆2〉 7→pri ∆i

smatch ini ∆3 return σ with [x:τ ⇒ ∆1 | x:ρ⇒ ∆2]

7→ini ∆i[∆3/x]

let x:σ := ∆1 in ∆2 7→ζ ∆2[∆1/x]

c 7→δΣ ∆ if (c := M@∆ : ς@σ) ∈ Σ

x 7→δΓ ∆ if (x := ∆ : σ) ∈ Γ

?x[∆1; . . . ; ∆n] 7→δΦ ∆
−−−−→
[Γ̂/∆i] if (Γ `?x := ∆ : σ) ∈ Φ

?x[∆1; . . . ; ∆n] 7→δΦ s if (Γ `?x := s) ∈ Φ

2. for pure λ-terms:

(λx:σ.M)N 7→β M [N/x]

λx:σ.M x 7→η M if x 6∈ Fv(M)

let x := M in N 7→ζ N [M/x]

c 7→δΣ M if (c := M@∆ : ς@σ) ∈ Σ

x 7→δΨ M if (x := M) ∈ Ψ

?x[M1; . . . ;Mn] 7→δΦ N
−−−−→
[Ψ̂/Mi] if (Ψ `?x := M) ∈ Φ

7.3.2 Implementation

When the user inputs a term, the refiner creates meta-variables and tries to instantiate
them, but this should remain as much as possible invisible to the user. Therefore the
term returned by the refiner should be meta-variable free, even though not in normal
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form. Thus terms in the global signature Σ are meta-variable free, and the δΦ reductions
are only used by the unifier and the refiner.

If we want to normalize a term, The function strongly_normalize works on both ∆-
terms and pure λ-terms, and supposes that the given term is meta-variable free. Note that
reductions can create odd spines, for instance if you consider the term (λx:σ.x S1) (∆S2),
a simple β-redex would give ∆S2 S1, therefore we merge S2 and S1 in a single spine.

let rec strongly_normalize is_essence env ctx t =
let sn_children = visit_term (strongly_normalize is_essence env ctx)

(fun _→ strongly_normalize is_essence
env (Env.add_var ctx (DefAxiom ("",nothing))))

(fun id _→ id)
in let sn = strongly_normalize is_essence env ctx in
(* Normalize the children *)
let t = sn_children t in
match t with
(* Spine fix *)
| App(l, App(l’,t1,t2), t3)→

sn (App(l, t1, List.append t2 t3))
(* Beta-redex *)
| App (l, Abs (l’, _,_, t1), t2 :: [ ]) →

sn (beta_redex t1 t2)
| App (l, Abs (l’, x,y, t1), t2 :: t3)
→ sn @@ app l (sn (App(l,Abs (l’,x,y, t1), t3))) t2

| Let (l, _, t1, t2, t3)→ sn (beta_redex t2 t1)
(* Delta-redex *)
| Var (l, n)→ let (t1, _) = Env.find_var ctx n in

(match t1 with
| Var _→ t1
| _→ sn t1)

| Const (l, id)→ let o = Env.find_const is_essence env id in
(match o with
| None→ Const(l, id)
| Some (Const (_,id’) as t1,_) when id = id’→ t1
| Some (t1,_)→ sn t1)

(* Eta-redex *)
| Abs (l,_, _, App (l’, t1, Var (_,0) :: l2))
→ if is_eta (App (l’, t1, l2)) then

let t1 = lift 0 (−1) t1 in
match l2 with
| [ ]→ t1
| _→ App (l’, t1, List.map (lift 0 (−1)) l2)

else t
(* Pair-redex *)
| SPrLeft (l, SPair (l’, x,_)) → x
| SPrRight (l, SPair (l’, _, x)) → x
(* inj-reduction *)
| SMatch (l, SInLeft(l’,_,t1), _, id1, _, t2, id2, _, _)→

sn (beta_redex t2 t1)
| SMatch (l, SInRight(l’,_,t1), _, id1, _, _, id2, _, t2)→

sn (beta_redex t2 t1)
| _→ t
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7.4 The subtyping algorithm of Bull

The subtyping algorithm is basically the same as the one described in Chapter 5. The
only difference is that the types are normalized before applying the algorithm.

The functions rewriting the terms in normal forms are the following:

let rec anf a =
let rec distr f a b =
match (a,b) with
| (Union(l,a1,a2),_)→ Inter(l, distr f a1 b, distr f a2 b)
| (_, Inter(l,b1,b2))→ Inter(l, distr f a b1, distr f a b2)
| _→ f a b

in
match a with
| Prod(l,id,a,b)→ distr (fun a b→ Prod(l,id,a,b)) (danf a) (canf b)
| _→ a

and canf a =
let rec distr a b =
match (a,b) with
| (Inter(l,a1,a2),_)→ Inter(l, distr a1 b, distr a2 b)
| (_,Inter(l,b1,b2))→ Inter(l, distr a b1, distr a b2)
| _→ Union(dummy_loc,a,b)

in
match a with
| Inter(l,a,b)→ Inter(l, canf a, canf b)
| Union(l,a,b)→ distr (canf a) (canf b)
| _→ anf a

and danf a =
let rec distr a b =
match (a,b) with
| (Union(l,a1,a2),_)→ Union(l, distr a1 b, distr a2 b)
| (_,Union(l,b1,b2))→ Union(l, distr a b1, distr a b2)
| _→ Inter(dummy_loc, a,b)

in
match a with
| Inter(l,a,b)→ distr (danf a) (danf b)
| Union(l,a,b)→ Union(l, danf a, danf b)
| _→ anf a

The subtyping function is quite simple:

let is_subtype env ctx a b =
let a = danf @@ strongly_normalize false env ctx a in
let b = canf @@ strongly_normalize false env ctx b in
let rec foo env ctx a b =
match (a, b) with
| (Union(_,a1,a2),_)→ foo env ctx a1 b && foo env ctx a2 b
| (_,Inter(_,b1,b2))→ foo env ctx a b1 && foo env ctx a b2
| (Inter(_,a1,a2),_)→ foo env ctx a1 b || foo env ctx a2 b
| (_,Union(_,b1,b2))→ foo env ctx a b1 || foo env ctx a b2
| (Prod(_,_,a1,a2),Prod(_,_,b1,b2))
→ foo env ctx b1 a1 && foo env (Env.add_var ctx (DefAxiom("",nothing))) a2 b2

| _→ same_term a b
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in foo env ctx a b

7.5 The unification algorithm of Bull
Higher-order unification of two terms ∆1 and ∆2 aims at finding a most general substi-
tution for meta-variables such that ∆1 and ∆2 becomes convertible. Classical references
are the work of Huet [59], and Dowek, Kirchner, and Hardin [41].

Our higher-order unification algorithm was inspired by the Reed [81] and Ziliani-
Sozeau [97] papers. In [97], conversion of terms is quite involved because of the complexity
of Coq. For simplicity, our algorithm supposes the terms to be in normal form.

The unification algorithm takes as input a meta-environment Φ, a global environment
Σ, a local environment Γ, the two terms to unify ∆1 and ∆2, and either fails or returns
the updated meta-environment Φ. The structural rules are given in Figure 7.1. The rest
of the unification algorithm implements Higher-Order Pattern Unification (HOPU) [81].
In a nutshell, HOPU takes as an argument a unification problem ?f S

?
= N , where all

the terms in S are free variables and each variable occurs once. For instance, for the
unification problem ?f y x z

?
= x c y, it creates the solution ?f := λy:σ2.λx:σ1.λz:σ3.x c y.

The expected type of x, y, and z can be found in the local environment, but capturing
correctly the free variables x, y, and z is quite tricky because we have to permute their
de Bruijn indices. If HOPU does not work, we try to recursively unify every subterm.

7.6 The refinement algorithm of Bull
The Bull typechecker was inspired by the work on the Matita ITP [6]. It is defined using
bi-directionality, in the style of Harper-Licata [53]. The bi-directional technique is a mix of
typechecking and type reconstruction, in order to trigger the unification algorithm as soon
as possible. Moreover, it gives more precise error messages than standard type reconstruc-
tion. For instance, if f : (bool −> nat −> bool) −> bool, then f (fun x y ⇒ y) is ill-typed.
With a simple type inference algorithm, we would type f, then fun x y ⇒ y which would be
given some type ?x −> ?y −> ?y, and finally we would try to unify bool −> nat −> bool with
?x −> ?y −> ?y, which fails. However, the failure is localized on the application, whereas
it would better be localized inside the argument. More precisely, we would have the
following error message:
f (fun x y ⇒ y)

^
Error: the term "y" has type "nat" while it is expected to have type "bool".

Our typechecker is also a refiner : intuitively, a refiner takes as input an incomplete term,
and possibly an incomplete type, and tries to infer as much information as possible in
order to reconstruct a well-typed term. For example, let’s assume we have in the global
environment the following constants:
(eq : nat −> nat −> Type), (eq_refl : forall x : nat, eq x x)

Then refining the term eq_refl _ : eq _ 0 would create the following term:
eq_refl 0 : eq 0 0

Refinement also enable untyped abstractions: the refiner may recover the type of bound
variables, because untyped abstractions are incomplete terms. The typechecking is done
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s1 ≡ s2

Φ; Σ; Γ ` s1
?
= s2

U
 Φ

(Sort)
c1 ≡ c2

Φ; Σ; Γ ` c1
?
= c2

U
 Φ

(Const)
x1 ≡ x2

Φ; Σ; Γ ` x1
?
= x2

U
 Φ

(Var)

Φ1; Σ; Γ ` σ1
?
= σ2

U
 Φ2 Φ2; Σ; Γ, x:σ1 ` ∆1

?
= ∆2

U
 Φ3

Φ1; Σ; Γ ` λx:σ1.∆1
?
= λx:σ2.∆2

U
 Φ3

(Abs)

Φ1; Σ; Γ ` σ1
?
= σ2

U
 Φ2 Φ2; Σ; Γ ` τ1

?
= τ2

U
 Φ3

Φ1; Σ; Γ ` σ1 ∩ τ1
?
= σ2 ∩ τ2

U
 Φ3

(∩)

Φ1; Σ; Γ ` σ1
?
= σ2

U
 Φ2 Φ2; Σ; Γ ` τ1

?
= τ2

U
 Φ3

Φ1; Σ; Γ ` σ1 ∪ τ1
?
= σ2 ∪ τ2

U
 Φ3

(∪)

Φ1; Σ; Γ ` ∆1
?
= ∆2

U
 Φ2 Φ2; Σ; Γ ` ∆3

?
= ∆4

U
 Φ3

Φ1; Σ; Γ ` 〈∆1,∆3〉
?
= 〈∆2,∆4〉

U
 Φ3

(Spair)

Φ1; Σ; Γ ` σ1
?
= σ2

U
 Φ2

Φ1; Σ; Γ ` pri ∆1
?
= pri ∆2

U
 Φ2

(Proj )

Φ1; Σ; Γ ` σ1
?
= σ2

U
 Φ2 Φ2; Σ; Γ ` ∆1

?
= ∆2

U
 Φ3

Φ1; Σ; Γ ` ini σ1∆1
?
= ini σ2∆2

U
 Φ3

(Inj )

Φ1; Σ; Γ ` σ1
?
= σ2

U
 Φ2 Φ2; Σ; Γ ` ∆1

?
= ∆2

U
 Φ3

Φ1; Σ; Γ ` coe σ1 ∆1
?
= coe σ2 ∆2

U
 Φ3

(Coe)

Φ1; Σ; Γ ` ∆
?
= ∆′

U
 Φ2 Φ1; Σ; Γ ` τ ?

= τ ′
U
 Φ3

Φ1; Σ; Γ ` σ1
?
= σ′1

U
 Φ4 Φ1; Σ; Γ, x:σ1 ` ∆1

?
= ∆′1

U
 Φ5

Φ1; Σ; Γ ` σ2
?
= σ′2

U
 Φ6 Φ1; Σ; Γ, x:σ2 ` ∆2

?
= ∆′2

U
 Φ7

Φ1; Σ; Γ ` smatch ∆ return τ with [x:σ1 ⇒ ∆1 | x:σ2 ⇒ ∆2]
?
= smatch ∆′ return τ ′ with [x:σ′1 ⇒ ∆1 | x:σ′2 ⇒ ∆′2]

U
 Φ7

(Ssum)

Φ1; Σ; Γ, x:σ ` ∆1
?
= ∆2 x

U
 Φ2 ∆2 is not a λ-abstraction

Φ1; Σ; Γ ` λx:σ.∆1
?
= ∆2

U
 Φ2

(ηl)

Φ1; Σ; Γ, x:σ ` ∆1 x
?
= ∆2

U
 Φ2 ∆1 is not a λ-abstraction

Φ1; Σ; Γ ` ∆1
?
= λx:σ.∆2

U
 Φ2

(ηr)

Figure 7.1: Structural rules of the unification algorithm

in two steps: firstly the term is typechecked without caring about the essence, then we
check the essence. The five typing judgment are defined as follows:

Definition 7.2 (Typing judgments). We have five typing judgments, corresponding to
five OCaml functions:
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1. The function reconstruct takes as inputs a meta-environment Φ1, a global envi-
ronment Σ, a local environment Γ, and a term ∆1. It either fails or fills the holes
in ∆1, which becomes ∆2, and returns ∆2 along with its type σ and the updated
meta-environment Φ2. The corresponding judgment is the following:

Φ1; Σ; Γ ` ∆1
⇑
 ∆2 : σ; Φ2

The rules are described in Figures 7.2 and 7.3;

2. The function force_type takes as inputs a meta-environment Φ1, a global environ-
ment Σ, a local environment Γ, and a term σ1. It either fails or fills the holes in σ1,
which becomes σ2 while ensuring it is a type, i.e. its type is a sort s, and returns σ2

along with s, and the updated meta-environment Φ2. The corresponding judgment
is the following:

Φ1; Σ; Γ ` σ1
F
 σ2 : τ ; Φ2

The rules are described in Figure 7.4. Intuitively, the function reconstruct the type
τ of σ1, then tries to unify τ with Type and Kind. If it can only do one unification,
it keeps the successful one, if both unifications work, we choose unification with a
sort meta-variable, so τ is convertible to a sort;

3. The function reconstruct_with_type takes as inputs a meta-environment Φ1, a
global environment Σ, a local environment Γ, a term ∆1, and its expected type
σ. It either fails or fills the holes in ∆1, which becomes ∆2 while ensuring its type
is σ, and returns ∆2 along the updated meta-environment Φ2. The corresponding
judgment is the following:

Φ1; Σ; Γ ` ∆1 : σ
⇓
 ∆2; Φ2

The rules are described in Figure 7.5. There is a rule (Default) which applies only
if none of the other rules work. The acute reader could remark two subtle things:

(a) we chose not to add any inference rule for coercions, because we believe it
would make error messages clearer: more precisely, if we want to check that
coeσ∆ has type τ , there could be two errors happening concurrently: it is
possible that the type of ∆ is not a subtype of σ, and at the same time σ is
not unifiable with τ . We think that the error to be reported should be the first
one, and in this case the (Default) rule is sufficient;

(b) the management of de Bruijn indices for the (Let) is tricky: if we want to check
that let x:σ := ∆1 in ∆2 has type τ in some local context Γ, we recursively
check that ∆2 has type τ in the local context Γ, x := ∆′1 : σ′ for some ∆′1, but
the de Bruijn indices for τ correspond to the position of the local variables in
the local context, which has been updated. We therefore have to increment all
the de Bruijn indices in τ , in order to report the fact that there is one extra
element in the local context;

4. The function essence takes as inputs a meta-environment Φ1, a global environment
Σ, an essence environment Ψ, and a term ∆. It either fails or construct its essence
M , and returnsM along with the updated meta-environment Φ2. The corresponding
judgment is the following:

Φ1; Σ; Ψ ` ∆
E⇑
 M ; Φ2



108 CHAPTER 7. IMPLEMENTATION OF THE THEOREM PROVER BULL

Φ; Σ; Γ ` Type
⇑
 Type : Kind; Φ

(T )

Φ1; Σ; Γ ` σ F
 σ′; Φ2

Φ2; Σ; Γ ` ∆ : σ′
⇓
 ∆′; Φ3 Φ3; Σ; Γ, x := ∆′:σ′ ` ∆2

⇑
 ∆′2 : τ ; Φ4

Φ1; Σ; Γ ` let x:σ := ∆1 in ∆2
⇑
 let x:σ′ := ∆′1 in ∆′2 : τ [σ′/x]; Φ4

(Let)

Φ1; Σ; Γ ` σ1
F
 σ′1 : s1; Φ2 Φ2; Σ; Γ ` σ2

F
 σ′2 : s2; Φ3 Φ3 ` (s1, s2) ∈ LF; Φ4

Φ1; Σ; Γ ` Πx:σ1.σ2
⇑
 Πx:σ′1.σ

′
2 : s2; Φ4

(Prod)

Φ1; Σ; Γ ` σ F
 σ′; Φ2

Φ2; Σ; Γ, x:σ′ ` ∆
⇑
 ∆′ : τ ; Φ3 Φ3; Σ; Γ ` Πx:σ′.τ

F
 ρ : s; Φ4

Φ1; Σ; Γ ` λx:σ.∆
⇑
 λx:σ′.∆′ : Πx:σ′.τ ; Φ4

(Abs)

Φ1; Σ; Γ ` ∆
⇑
 ∆′ : σ; Φ2

Φ1; Σ; Γ ` ∆ ()
⇑
 ∆′ : σ; Φ2

(App1)

Φ1; Σ; Γ ` ∆1 S
⇑
 ∆′ : σ; Φ2

Φ2; Σ; Γ ` σ =β Πx:σ1.σ2 Φ2; Σ; Γ ` ∆2 : σ1
⇓
 ∆′2; Φ3

Φ1; Σ; Γ ` ∆1 (S; ∆2)
⇑
 ∆′1 ∆′2 : σ2[∆′2/x]; Φ3

(App2)

Φ1; Σ; Γ ` ∆2 S
⇑
 ∆′ : σ; Φ2 Φ2; Σ; Γ ` ∆2

⇑
 ∆′2 : σ1; Φ3

Φ3, ?y, (Γ, x:σ1 `?x :?y[ ]); Σ; Γ ` σ ?
= Πx:σ1.?x[Γ̂;x]

U
 Φ4

Φ1; Σ; Γ ` ∆1 (S; ∆2)
⇑
 ∆′∆′2 :?x[Γ̂;x][∆′2/x]; Φ4

(App3)

Figure 7.2: Rules for ⇑ (1st part)

The rules are described in Figure 7.6;

5. The function essence_with_hint takes as inputs a meta-environment Φ1, a global
environment Σ, an essence environment Ψ, a term ∆, and its expected essence M .
It either fails or succeeds by returning the updated meta-environment Φ2. The
corresponding judgment is the following:

Φ1; Σ; Ψ `M@∆
E⇓
 Φ2

The rules are described in Figure 7.7. There is a rule (Default) which applies only
if none of the other rules work.

7.7 The Read-Eval-Print-Loop of Bull
The Read-Eval-Print-Loop (REPL) reads a command which is given by the parser as a
list of atomic commands. For instance, if the user writes:
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Axiom (a b : Type) (f : a −> b).

The parser creates the following list of three atomic commands:

1. the command asking a to be an axiom of type Type;

2. the command asking b to be an axiom of type Type;

3. the command asking f to be an axiom of type a -> b.

The REPL tries to process the whole list. If there is a single failure while processing the
list of atomic commands, it backtracks so the whole commands fails without changing the
environment.

These commands are similar to the vernacular Coq commands and are quite intuitive.
Here is the list of the REPL commands, along with their description:
Help. show this list of commands
Load "file". for loading a script file
Axiom term : type. define a constant or an axiom
Definition name [: type] := term. define a term
Print name. print the definition of name
Printall. print all the signature

(axioms and definitions)
Compute name. normalize name and print the result
Quit. quit

7.8 Future work
The current version of Bull [87] (ver. 0.9, October 2019) is still a work-in-progress. We
plan to implement the following features:

1. Inductive types are the most important feature to add, in order to have a really
usable theorem prover. We plan to take inspiration from the works of Paulin-
Mohring [73]. This should be reasonably feasible;

2. Mixing subtyping and unification is a difficult problem, especially with intersection
and union types. The most extensive research which has been done in this domain
is the work of Dudenhefner, Martens, and Rehof [42], where the authors study
unification modulo subtyping with intersection types (but no union). It would be
challenging to find a unification algorithm modulo subtyping for intersection and
union types, but ideally it would allow us to do some implicit coercions. Take from
example the code in Subsection 8.1.1, it would be interesting for the user to use
implicit coercions in this way:
Axiom (Neg Zero Pos T F : Type) (Test : Pos | Neg).
Axiom Is_0 : (Neg −> F) & (Zero −> T) & (Pos −> F).
Definition Is_0_Test : F := smatch Test with

x ⇒ coe _ Is_0 x
, x ⇒ coe _ Is_0 x
end.

The unification algorithm would then guess that the first wildcard should be replaced
with Pos -> F and the second one should be replaced with Neg -> F, which does
not seem feasible if the unification algorithm does not take subtyping into account;
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3. Relevant arrow, as defined in Chapter 6, could be useful to add more expressivity
to our system. Relevant implication allows for a natural introduction of subtyping,
in that A ⊃r B morally means A 6 B. Relevant implication amounts to a notion of
“proof-reuse”. Combining the remarks in [8, 7], minimal relevant implication, strong
intersection and strong union correspond respectively to the implication, conjunction
and disjunction operators of Meyer and Routley’s Minimal Relevant Logic B+ [70].
This could lead to some implementation problem, because deciding β-equality for
the essences in this extended system would be undecidable (see Figure 6.8);

4. A Tactic language, such as the one of Coq, should be useful. Currently, there is no
such tactic language for Bull, conceiving such a language should be feasible even if
it would be quite heavy.
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Φ1; Σ; Γ ` σ1 : Type
⇓
 σ′1; Φ2 Φ2; Σ; Γ ` σ2 : Type

⇓
 σ′2; Φ3

Φ1; Σ; Γ ` σ1 ∩ σ2
⇑
 σ′1 ∩ σ′2 : Type; Φ3

(∩)

Φ1; Σ; Γ ` σ1 : Type
⇓
 σ′1; Φ2 Φ2; Σ; Γ ` σ2 : Type

⇓
 σ′2; Φ3

Φ1; Σ; Γ ` σ1 ∪ σ2
⇑
 σ′1 ∪ σ′2 : Type; Φ3

(∪)

Φ1; Σ; Γ ` ∆1
⇑
 ∆′1 : σ1; Φ2

Φ2; Σ; Γ ` ∆2
⇑
 ∆′2 : σ2; Φ3 Φ3; Σ; Γ ` σ1 ∩ σ2 : Type

⇓
 Φ4

Φ1; Σ; Γ ` 〈∆1,∆2〉
⇑
 〈∆′1,∆′2〉 : σ1 ∩ σ2; Φ4

(Spair)

Φ1; Σ; Γ ` ∆
⇑
 ∆′ : σ; Φ2 Φ1; Σ; Γ ` σ =β σ1 ∩ σ2

Φ1; Σ; Γ ` pri ∆
⇑
 pri ∆

′ : σi; Φ2

(proj1)

Φ1; Σ; Γ ` ∆
⇑
 ∆′ : σ; Φ2

Φ2, (Γ `?x1 : Type), (Γ `?x2 : Type); Σ; Γ ` σ ?
=?x1[Γ̂]∩?x2[Γ̂]

U
 Φ3

Φ1; Σ; Γ ` pri ∆
⇑
 pri ∆

′ :?xi[Γ̂]; Φ3

(proj2)

Φ1; Σ; Γ ` ∆
⇑
 ∆′ : σ′; Φ2 Φ2; Σ; Γ ` λx:τ1.τ2 : Πx:σ → Type

⇓
 λx:τ ′1.τ

′
2; Φ3

Φ3; Σ; Γ ` σ1 : Type
⇓
 σ′1; Φ4 Φ4; Σ; Γ ` σ2 : Type

⇓
 σ′2; Φ5

Φ5; Σ; Γ ` σ′ ?
= σ′1 ∪ σ′2

U
 Φ6 Φ6; Σ; Γ, x:σ′1 ` ∆1 : τ ′2[in1 σ

′
2 x/x]

⇓
 ∆′1; Φ7

Φ7; Σ; Γ, x:σ′2 ` ∆2 : τ ′2[in2 σ
′
1 x/x]

⇓
 ∆′2; Φ8

Φ1; Σ; Γ ` smatch ∆ return λx:τ1.τ2 with [x:σ1 ⇒ ∆1 | x:σ2 ⇒ ∆2]
⇑
 

smatch ∆′ return τ ′ with [x:σ′1 ⇒ ∆′1 | x:σ′2 ⇒ ∆′2] : τ ′2[∆′/x]; Φ8

(Ssum)

Φ1; Σ; Γ ` σ F
 σ′ : s; Φ2 Φ2; Σ; Γ ` ∆

⇑
 ∆′ : τ ; Φ3 Σ; Γ ` τ 6 σ′

Φ1; Σ; Γ ` coeσ∆
⇑
 coeσ′∆′ : σ′; Φ3

(Coe)

(x:σ) ∈ Γ or (x := ∆ : σ) ∈ Γ

Φ; Σ; Γ ` x ⇑
 x : σ; Φ

(Var)

(c:σ) ∈ Σ or (c := ∆ : σ) ∈ Σ

Φ; Σ; Γ ` c ⇑ c : σ; Φ
(Const)

Φ; Σ; Γ ` _ ⇑
 ?x[Γ̂] :?y[Γ̂]; Φ, ?z, (Γ `?y :?z[ ]), (Γ `?x :?y[Γ̂])

(Wildcard)

i = 1 . . . n
(Γ′ `?x : σ) ∈ Φ or (Γ′ `?x := ∆ : σ) ∈ Φ Γ′ = σ1, . . . , σn Φ; Σ; Γ ` ∆i : σi

Φ; Σ; Γ `?x[∆1; . . . ; ∆n]
⇑
 ?x[∆1; . . . ; ∆n] : σ

−−−−→
[∆i/Γ̂′]; Φ

(Meta−Var)

Figure 7.3: Rules for ⇑ (2nd part)
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Φ1; Σ; Γ ` σ ⇑
 σ′ : τ ; Φ2 Φ2; Σ; Γ ` τ ?

= Type
U
 Φ3

Φ2; Σ; Γ ` τ ?
= Kind

U
 Φ′3 Φ2, sort(?x); Σ ` τ ?

= s
U
 Φ4

Φ1; Σ; Γ ` σ F
 σ′ : τ ; Φ4

(Force1 )

Φ1; Σ; Γ ` σ ⇑
 σ′ : τ ; Φ2 Φ2; Σ; Γ ` τ ?

= Type
U
 Φ3 Φ2; Σ; Γ 6 ` τ ?

= Kind
U
 Φ′3

Φ1; Σ; Γ ` σ F
 σ′ : τ ; Φ3

(Force2 )

Φ1; Σ; Γ ` σ ⇑
 σ′ : τ ; Φ2 Φ2; Σ; Γ 6 ` τ ?

= Type
U
 Φ3 Φ2; Σ; Γ ` τ ?

= Kind
U
 Φ′3

Φ1; Σ; Γ ` σ F
 σ′ : τ ; Φ′3

(Force3 )

Figure 7.4: Rules for F 

Φ1; Σ; Γ ` ∆
⇑
 ∆′ : σ; Φ2 Φ2; Σ; Γ ` σ ?

= τ
U
 Φ3

Φ1; Σ; Γ ` ∆ : τ
⇓
 ∆′; Φ3

(Default)

Φ1; Σ; Γ ` σ F
 σ′ : s; Φ2

Φ2; Σ; Γ ` ∆1 : σ′
⇓
 ∆′1; Φ3 Φ3; Σ; Γ, x := ∆′1 : σ′ ` ∆2 : τ

⇓
 ∆′2; Φ4

Φ1; Σ; Γ ` let x:σ := ∆1 in ∆2 : τ
⇓
 let x:σ := ∆1 in ∆2; Φ4

(Let)

Φ1; Σ; Γ ` τ =β Πx : τ1.τ2 Φ1; Σ; Γ ` σ F
 σ′; Φ2

Φ2; Σ; Γ ` σ′ ?
= τ1

U
 Φ3 Φ3; Σ; Γ, x:σ′ ` ∆ : τ2

⇓
 ∆′; Φ4

Φ1; Σ; Γ ` λx : σ.∆ : τ
⇓
 λx : σ′.∆′; Φ4

(Abs)

Φ1; Σ; Γ ` σ =β σ1 ∩ σ2 Φ1; Σ; Γ ` ∆1 : σ1
⇓
 ∆′1; Φ2 Φ2; Σ; Γ ` ∆2 : σ2

⇓
 ∆′2; Φ3

Φ1; Σ; Γ ` 〈∆1,∆2〉 : σ
⇓
 〈∆′1,∆′2〉; Φ3

(Spair)

Φ1, (Γ `?x : Type); Σ; Γ ` σ∩?x : Type
⇓
 τ ; Φ2 Φ2; Σ; Γ ` ∆ : σ∩?x

⇓
 ∆′; Φ3

Φ1; Σ; Γ ` pr1 ∆ : σ
⇓
 pr1 ∆′; Φ3

(Proj1)

Φ1, (Γ `?x : Type); Σ; Γ `?x ∩ σ : Type
⇓
 τ ; Φ2 Φ2; Σ; Γ ` ∆ :?x ∩ σ ⇓

 ∆′; Φ3

Φ1; Σ; Γ ` pr2 ∆ : σ
⇓
 pr2 ∆′; Φ3

(Proj2)

Φ1; Σ; Γ ` τ =β τ1 ∪ τ2 Φ1; Σ; Γ ` σ : Type
⇓
 σ′; Φ2 Φ2; Σ; Γ ` σ′ ?

= τi
U
 Φ3

Φ1; Σ; Γ ` ini σ∆ : τ
⇓
 ini σ

′∆′; Φ3

(Inj )

Φ; Σ; Γ ` _ : σ
⇓
 ?x[Γ̂]; Φ, (Γ `?x : σ)

(Wildcard)

Figure 7.5: Rules for ⇓ 
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Φ1; Σ; Ψ ` ∆1
E⇑
 M ; Φ2 Φ2; Σ; Ψ `M@∆2

E⇓
 Φ3

Φ1; Σ; Ψ ` 〈∆1,∆2〉
E⇑
 M ; Φ3

(Spair)

Φ1; Σ; Ψ ` ∆
E⇑
 M ; Φ2

Φ1; Σ; Ψ ` pri ∆
E⇑
 M ; Φ2

(Proj )

Φ1; Σ; Ψ ` ∆
E⇑
 N ; Φ2 Φ2; Σ; Ψ ` σ E

⇑
 ς; Φ3

Φ3; Σ; Ψ ` σ1
E⇑
 ς1; Φ4 Φ4; Σ; Ψ, x ` ∆1

E⇑
 MΦ5

Φ5; Σ; Ψ ` σ2
E⇑
 ς2; Φ6 Φ6; Σ; Ψ, x `M@∆2

E⇓
 Φ7

Φ1; Σ; Ψ ` smatch ∆ return σ with [x:σ1 ⇒ ∆1 | x:σ2 ⇒ ∆2]
E⇑
 (λx.M)N ; Φ7

(Ssum)

Φ1; Σ; Ψ ` ∆
E⇑
 M ; Φ2

Φ1; Σ; Ψ ` ini σ ∆
E⇑
 M ; Φ2

(Inj )

Φ1; Σ; Ψ ` ∆
E⇑
 M ; Φ2

Φ1; Σ; Ψ ` coeσ∆
E⇑
 M ; Φ2

(Coe)

Φ1; Σ; Ψ ` σ1
E⇑
 ς1; Φ2 Φ2; Σ; Ψ, x ` σ2

E⇑
 ς2; Φ3

Φ1; Σ; Ψ ` Πx:σ1.σ2
E⇑
 Πx:ς1.ς2; Φ3

(Prod)

Φ1; Σ; Ψ ` σ E
⇑
 ς; Φ2 Φ2; Σ; Ψ, x ` ∆

E⇑
 M ; Φ3

Φ1; Σ; Ψ ` λx:σ.∆
E⇑
 λx.M ; Φ3

(Abs)

Φ1; Σ; Ψ ` ∆
E⇑
 M ; Φ2

Φ1; Σ; Ψ ` ∆ ()
E⇑
 M ; Φ2

(App1)

Φ1; Σ; Ψ ` ∆1 S
E⇑
 M ; Φ2 Φ1; Σ; Ψ ` ∆2

E⇑
 N ; Φ3

Φ1; Σ; Ψ ` ∆1 (S; ∆2)
E⇑
 M N ; Φ3

(App2)

Φ1; Σ; Ψ ` σ1
E⇑
 ς1; Φ2 Φ2; Σ; Ψ ` σ2

E⇑
 ς2; Φ3

Φ1; Σ; Ψ ` σ1 ∩ σ2
E⇑
 ς1 ∩ ς2; Φ3

(∩)

Φ1; Σ; Ψ ` σ1
E⇑
 ς1; Φ2 Φ2; Σ; Ψ ` σ2

E⇑
 ς2; Φ3

Φ1; Σ; Ψ ` σ1 ∪ σ2
E⇑
 ς1 ∪ ς2; Φ3

(∪)

Figure 7.6: Rules for E
⇑
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Φ1; Σ; Ψ ` ∆
E⇑
 M2; Φ2 Φ2; Σ; Ψ `M1

?
= M2

U
 Φ3

Φ1; Σ; Ψ `M1@∆
E⇓
 Φ3

(Default)

Φ1; Σ; Ψ `M@∆1
E⇓
 Φ2 Φ2; Σ; Ψ `M@∆1

E⇓
 Φ3

Φ1; Σ; Ψ `M@〈∆1,∆2〉
E⇓
 Φ3

(Spair)

Φ1; Σ; Ψ `M@∆
E⇓
 Φ2

Φ1; Σ; Ψ `M@pri ∆
E⇓
 Φ2

(Proj )

Φ1; Σ; Ψ ` σ E
⇑
 ς; Φ2 Φ2; Σ; Ψ `M@∆

E⇓
 ; Φ3

Φ1; Σ; Ψ `M@ini σ∆
E⇓
 Φ3

(Inj )

Φ1; Σ; Ψ ` σ E
⇑
 ς; Φ2 Φ2; Σ; Ψ ` ∆1

E⇑
 M1; Φ3 Φ3; Σ; Ψ, x := M1 `M@∆2

E⇓
 Φ4

Φ1; Σ; Ψ `M@let x:σ := ∆1 in ∆2
E⇓
 Φ4

(Let)

Φ1; Σ; Ψ `M =β Πx:ς1.ς2 Φ1; Σ; Ψ ` ς1@σ1
E⇓
 Φ2 Φ2; Σ; Ψ, x ` ς2@σ2

E⇓
 Φ3

Φ1; Σ; Ψ `M@Πx:σ1.σ2
E⇓
 Φ3

(Prod)

Φ1; Σ; Ψ `M1 =β λx.M2 Φ1; Σ; Ψ, x `M2@∆
E⇓
 Φ2

Φ1; Σ; Ψ `M1@λx:σ.∆
E⇓
 Φ2

(Abs)

Φ1; Σ; Ψ `M =β ς1 ∩ ς2 Φ1; Σ; Ψ ` ς1@σ1
E⇓
 Φ2 Φ2; Σ; Ψ ` ς2@σ2

E⇓
 Φ3

Φ1; Σ; Ψ `M@σ1 ∩ σ2
E⇓
 Φ3

(∩)

Φ1; Σ; Ψ `M =β ς1 ∪ ς2 Φ1; Σ; Ψ ` ς1@σ1
E⇓
 Φ2 Φ2; Σ; Ψ ` ς2@σ2

E⇓
 Φ3

Φ1; Σ; Ψ `M@σ1 ∪ σ2
E⇓
 Φ3

(∪)

Figure 7.7: Rules for E
⇓
 



Chapter 8
Examples in Bull

The point of this chapter is to give examples which show a uniform and approach to
the encoding of a plethora of type disciplines and systems which ultimately stem or can
capitalize from strong proof-functional connectives and subtyping. The framework LF∆,
presented in Chapter 6, is the first to accommodate all the examples and counterexamples
that have appeared in the literature.

This chapter is organized as follows: in Section 8.1 we present some examples in LF∆

along with their code in Bull, and in Section 8.2, we show some similar encodings done
done in LF1, in order to emphasize the benefits of LF∆.

8.1 Encodings in LF∆

We start by showing the expressive power of LF∆ in encoding classical features of typ-
ing disciplines with strong intersection and union. For these examples, we set Σ

def
=

σ:Type, τ :Type.

Auto application. The judgment `λBDdL λx.x x : σ ∩ (σ → τ)→ τ in λBDdL, is rendered
in LF∆ by the LF∆ judgment `Σ λx:σ ∩ (σ → τ).(pr2 x) (pr1 x) : σ ∩ (σ → τ)→ τ .

Polymorphic identity. The judgment `λBDdL λx.x : (σ → σ) ∩ (τ → τ) in λBDdL, is
rendered in LF∆ by the judgment `Σ 〈λx:σ.x, λx:τ.x〉 : (σ → σ) ∩ (τ → τ).

Commutativity of union. The judgment `Σ λx.x : (σ ∪ τ) → (τ ∪ σ) in λBDdL, is
rendered in LF∆ by the judgment `Σ λx:σ∪τ.[λy:σ.inτ2 y, λy:τ.inσ1 y]x : (σ ∪ τ)→ (τ ∪ σ).

The Bull code corresponding to these examples is the following:

Axiom (s t : Type).
Definition auto_application (x : s & (s −> t)) := (proj_r x) (proj_l x).
Definition poly_id : (s −> s) & (t −> t) := let id1 x := x in

let id2 x := x in < id1, id2 >.
Definition commut_union (x : s | t) := smatch x with

x : s ⇒ inj_r t x
, x : t ⇒ inj_l s x
end.

1For convenience, we wrote and typechecked these examples in Coq, as LF is a sublanguage of the
Calculus of Constructions.
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8.1.1 Pierce’s code

We recall the Pierce code from Figure 1.1:

Test def
= if b then 1 else−1 : Pos ∪Neg

Is_0 : (Neg → F ) ∩ (Zero→ T ) ∩ (Pos→ F )

(Is_0 Test) : F

The expressive power of union types highlighted by Pierce is rendered in LF∆ by:

Neg : Type Zero : Type Pos : Type T : Type F : Type Test : Pos ∪Neg

Is_0 : (Neg → F ) ∩ ((Zero→ T ) ∩ (Pos→ F ))

Is_0_Test def
= [λx:Pos.(pr2 pr2 Is_0)x, λx:Neg.(pr1 Is_0)x]Test

The Bull code corresponding to this example is the following:

Axiom (Neg Zero Pos T F : Type) (Test : Pos | Neg).
Axiom Is_0 : (Neg −> F) & (Zero −> T) & (Pos −> F).
Definition Is_0_Test := smatch Test with

x ⇒ coe (Pos −> F) Is_0 x
, x ⇒ coe (Neg −> F) Is_0 x
end.

As you can see, the code is quite short and readable, in contrast to the LF encoding of
the same example found in Figure 8.2.

8.1.2 Hereditary Harrop formulæ

The encoding of Hereditary Harrop’s Formulæ is one of the motivating examples given by
Pfenning for introducing refinement types in [74]. In LF∆ it can be expressed as in Figure
8.1 and type checked in Bull, without any reference to intersection types, by a subtle
use of union types. We add also rules for solving and backchaining. Hereditary Harrop
formulæ can be recursively defined using two mutually recursive syntactical objects called
programs (π) and goals (γ):

γ := α | γ ∧ γ | π ⇒ γ | γ ∨ γ π := α | π ∧ π | γ ⇒ π

Using Example 6.1, we can provide an alternative encoding of atoms, goals and programs
which is more faithful to the one by Pfenning. Namely, we can introduce in the signature
the constants c1 : α →r γ and c2 : α →r π in order to represent the axioms atom 6 goal
and atom 6 prog in Pfenning’s encoding. Our approach based on union types, while
retaining the same expressivity permits to shortcut certain inclusions and to rule out
also certain exotic goals and exotic programs. Indeed, for the purpose of establishing the
adequacy of the encoding, it is sufficient to avoid variables involving union types in the
derivation contexts.
The Bull code is the following:

(* three base types: atomic propositions, non-atomic goals and non-atomic programs *)
Axiom atom : Type.
Axiom non_atomic_goal : Type.
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Atomic propositions, non-atomic goals and non-atomic programs: α, γ0, π0 : Type
Goals and programs: γ = α ∪ γ0 π = α ∪ π0

Constructors (implication, conjunction, disjunction).

impl : (π → γ → γ0) ∩ (γ → π → π0)
impl1 = λx:π.λy:γ.inα2 (pr1 impl x y) impl2 = λx:γ.λy:π.inα2 (pr2 impl x y)
and : (γ → γ → γ0) ∩ (π → π → π0)
and1 = λx:γ.λy:γ.inα2 (pr1 and x y) and2 = λx:π.λy:π.inα2 (pr2 and x y)
or : (γ → γ → γ0) or1 = λx:γ.λy:γ.inα2 (or x y)
solve p g indicates that the judgment p ` g is valid.
bchain p a g indicates that, if p ` g is valid, then p ` a is valid.
solve : π → γ → Type bchain : π → α→ γ → Type
Rules for solve:
− : Π(p:π)(g1, g2:γ).solve p g1 → solve p g2 → solve p (and1 g1 g2)
− : Π(p:π)(g1, g2:γ).solve p g1 → solve p (or1 g1 g2)
− : Π(p:π)(g1, g2:γ).solve p g2 → solve p (or1 g1 g2)
− : Π(p1, p2:π)(g:γ).solve (and2 p1 p2) g → solve p1 (impl1 p2 g)
− : Π(p:π)(a:α)(g:γ).bchain p a g → solve p g → solve p (inγ0

1 a)
Rules for bchain:
− : Π(a:α)(g:γ).bchain (impl2 g (inπ0

1 a)) a g
− : Π(p1, p2:π)(a:α)(g:γ).bchain p1 a g → bchain (and2 p1 p2) a g
− : Π(p1, p2:π)(a:α)(g:γ).bchain p2 a g → bchain (and2 p1 p2) a g
− : Π(p:π)(a:α)(g, g1, g2:γ).bchain

(impl2 (and1 g1 g2) p) a g → bchain (impl2 g1 (impl2 g2 p)) a g
− : Π(p1, p2:π)(a:α)(g, g1:γ).bchain (impl2 g1 p1) a g → bchain

(impl2 g1 (and2 p1 p2)) a g
− : Π(p1, p2:π)(a:α)(g, g1:γ).bchain

(impl2 g1 p2) a g → bchain (impl2 g1 (and2 p1 p2)) a g

Figure 8.1: The LF∆ encoding of Hereditary Harrop Formulæ

Axiom non_atomic_prog : Type.

(* goals and programs are defined from the base types *)
Definition goal := atom | non_atomic_goal.
Definition prog := atom | non_atomic_prog.

(* constructors (implication, conjunction, disjunction) *)
Axiom impl : (prog −> goal −> non_atomic_goal) & (goal −> prog −> non_atomic_prog).
Definition impl_1 p g := inj_r atom (proj_l impl p g).
Definition impl_2 g p := inj_r atom (proj_r impl g p).
Axiom and : (goal −> goal −> non_atomic_goal) & (prog −> prog −> non_atomic_prog).
Definition and_1 g1 g2 := inj_r atom (proj_l and g1 g2).
Definition and_2 p1 p2 := inj_r atom (proj_r and p1 p2).
Axiom or : (goal −> goal −> non_atomic_goal).
Definition or_1 g1 g2 := inj_r atom (or g1 g2).

(* solve p g means: the judgment p |- g is valid *)
Axiom solve : prog −> goal −> Type.

(* backchain p a g means: if p |- g is valid, then p |- a is valid *)
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Axiom backchain : prog −> atom −> goal −> Type.

(* rules for solve *)
Axiom solve_and : forall p g1 g2, solve p g1 −> solve p g2 −> solve p (and_1 g1 g2).
Axiom solve_or1 : forall p g1 g2, solve p g1 −> solve p (or_1 g1 g2).
Axiom solve_or2 : forall p g1 g2, solve p g2 −> solve p (or_1 g1 g2).
Axiom solve_impl : forall p1 p2 g, solve (and_2 p1 p2) g −> solve p1 (impl_1 p2 g).
Axiom solve_atom : forall p a g, backchain p a g −> solve p g −> solve p (inj_l non_atomic_goal a).

(* rules for backchain *)
Axiom backchain_and1 :
forall p1 p2 a g, backchain p1 a g −> backchain (and_2 p1 p2) a g.
Axiom backchain_and2 :
forall p1 p2 a g, backchain p1 a g −> backchain (and_2 p1 p2) a g.
Axiom backchain_impl_atom :
forall a g, backchain (impl_2 g (inj_l non_atomic_prog a)) a g.
Axiom backchain_impl_impl :
forall p a g g1 g2, backchain (impl_2 (and_1 g1 g2) p) a g −> backchain (impl_2 g1 (impl_2 g2 p)) a g.
Axiom backchain_impl_and1 :
forall p1 p2 a g g1, backchain (impl_2 g1 p1) a g −> backchain (impl_2 g1 (and_2 p1 p2)) a g.
Axiom backchain_impl_and2 :
forall p1 p2 a g g1, backchain (impl_2 g1 p2) a g −> backchain (impl_2 g1 (and_2 p1 p2)) a g.

8.1.3 Natural deductions in normal form

The second motivating example for intersection types given in [74] is natural deductions in
normal form. We recall that a natural deduction is in normal form if there are no applica-
tions of elimination rules of a logical connective immediately following their corresponding
introduction, in the main branch of a subderivation.

o : Type ⊃: o→ o→ o Elim,Nf0 : o→ Type

Nf ≡ λA:o.Nf0(A) ∪ Elim(A)

⊃I : ΠA,B:o.(Elim(A)→ Nf(B))→ Nf0(A ⊃ B)

⊃E : ΠA,B:o.Elim(A ⊃ B)→ Nf0(A)→ Elim(B).

The corresponding Bull code is the following:

Axiom (o : Type) (impl : o −> o −> o) (Elim Nf0 : o −> Type).
Definition Nf A := Nf0 A | Elim A.
Axiom impl_I : forall A B, (Elim A −> Nf B) −> (Nf0 (impl A B)).
Axiom impl_E : forall A B, Elim (impl A B) −> Nf0 A −> Elim B.

The encoding we give in LF∆ is a slightly improved version of the one in [74]: as Pfenning,
we restrict to the purely implicational fragment. As in the previous example, we use
union types to define normal forms Nf(A) either as pure elimination-deductions from
hypotheses Elim(A) or normal form-deductions Nf0(A). As above we could have used
also intersection types. This example is interesting in itself, being the prototype of the
encoding of type systems using canonical and atomic syntactic categories [53] and also of
Fitch Set Theory [56].
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Metacircular Encodings. This example uses an experimental implementation of rele-
vant arrows in Bull. The following diagram summarizes the network of adequate encod-
ings/inclusions between LF∆, LF, and λBDdL that can be defined:

LF sh +3 LF∆
dp +3 LF

λBDdL

sh
7?

dp +3 LF
?�

OO

We denote by S1 =⇒ S2 the encoding of system S1 in system S2, where the label sh (resp.
dp), denotes a shallow (resp. deep) embedding. The notation S1 ↪→ S2 denotes that S2

is an extension of S1.
With the intention of providing a better formal understanding of the semantics of

strong intersection and union types in a logical framework, we provide in Section 8.2 a
deep LF encoding of a presentation of λBDdL à la Church [39]. An encoding of λBDdL in
LF∆ can be mechanically type checked in the environment [88]. We even can add the
relevant arrow. The corresponding Bull code is the following:

(* Object type *)
Axiom o : Type.

(* Type connectives *)
Axiom carrow : o −> o −> o.
Axiom cinter : o −> o −> o.
Axiom cunion : o −> o −> o.
Axiom crelev : o −> o −> o.

(* Transform the object types into real types *)
Axiom aOk : o −> Type.

(* Semantics *)
Axiom cabst : forall s t, (aOk s −> aOk t) >> aOk (carrow s t).
Axiom capp : forall s t, aOk (carrow s t) >> aOk s −> aOk t.
Axiom csabst : forall s t, (aOk s >> aOk t) >> aOk (crelev s t).
Axiom csapp : forall s t, aOk (crelev s t) >> aOk s >> aOk t.
Axiom cpair : forall s t, (aOk s & aOk t) >> aOk (cinter s t).
Axiom cpri : forall s t, aOk (cinter s t) >> (aOk s & aOk t).
Axiom cini : forall s t, (aOk s | aOk t) >> aOk (cunion s t).
Axiom ccopair : forall s t, aOk (cunion s t) >> (aOk s | aOk t).

Using this encoding, we can deeply encode self-application

λx.x x : (σ ∩ (σ → τ))→ τ

and commutativity of union

λx.x : (σ ∪ τ)→ (τ ∪ σ)

Axiom s : o.
Axiom t : o.
Definition halfomega :=
cabst (cinter s (carrow s t)) t (fun x ⇒ capp s t (proj_r (cpri s (carrow s t) x))



120 CHAPTER 8. EXAMPLES IN BULL

(proj_l (cpri s (carrow s t) x))).
Definition idpair :=
cpair (carrow s s) (carrow t t) <cabst s s (fun x ⇒ x), cabst t t (fun x ⇒ x)>.
Definition communion := cabst (cunion s t) (cunion t s)
(fun x ⇒ smatch ccopair s t x with

y ⇒ cini t s (inj_r (aOk t) y)
, y ⇒ cini t s (inj_l (aOk s) y)
end).

We also can show that the commutativity of union with a relevant arrow λx.x : (σ∪τ)→r

(τ ∪ σ):
Definition communion’ := csabst (cunion s t) (cunion t s)
(sfun x ⇒ smatch ccopair s t x with

y ⇒ cini t s (inj_r (aOk t) y)
, y ⇒ cini t s (inj_l (aOk s) y)
end).

A shallow encoding of LF in LF∆ making essential use of intersection types can be also
type checked. The corresponding Bull code is the following:
Axiom obj’ : Type.
Axiom fam’ : Type.
Axiom knd’ : Type.
Axiom sup’ : Type.

Axiom same : obj’ & fam’ & knd’ & sup’.
Axiom term : (obj’ | fam’ | knd’ | sup’) −> Type.
(* The obj, fam, knd, and sup types have the same essence (term same) *)
Definition obj := term (coe (obj’ | fam’ | knd’ | sup’) (coe obj’ same)).
Definition fam := term (coe (obj’ | fam’ | knd’ | sup’) (coe fam’ same)).
Definition knd := term (coe (obj’ | fam’ | knd’ | sup’) (coe knd’ same)).
Definition sup := term (coe (obj’ | fam’ | knd’ | sup’) (coe sup’ same)).

Axiom tp : knd & sup.
(* star and sqre have the same essence (tp) *)
Definition star := coe knd tp.
Definition sqre := coe sup tp.

Axiom lam : (fam −> (obj −> obj) −> obj) & (fam −> (obj −> fam) −> fam).
Definition lam_1 := coe (fam −> (obj −> obj) −> obj) lam.
Definition lam_2 := coe (fam −> (obj −> fam) −> fam) lam.

Axiom pi : (fam −> (obj −> fam) −> fam) & (fam −> (obj −> knd) −> knd).
Definition pi_1 := coe (fam −> (obj −> fam) −> fam) pi.
Definition pi_2 := coe (fam −> (obj −> knd) −> knd) pi.

Axiom app : (obj −> obj −> obj) & (fam −> obj −> fam).
Definition app_1 := coe (obj −> obj −> obj) app.
Definition app_2 := coe (fam −> obj −> fam) app.

Axiom of_1 : obj −> fam −> Type.
Axiom of_2 : fam −> knd −> Type.
Axiom of_3 : knd −> sup −> Type.



8.2. ENCODINGS IN LF 121

Axiom of_ax : of_3 star sqre.
(* Rules for lambda-abstraction are "essentially" the same *)
Definition of_lam1 := forall t1 t2 t3, of_2 t1 star −>

(forall x, of_1 x t1 −> of_1 (t2 x) (t3 x)) −> of_1 (lam_1 t1 t2) (pi_1 t1 t3).
Definition of_lam2 := forall t1 t2 t3, of_2 t1 star −>

(forall x, of_1 x t1 −> of_2 (t2 x) (t3 x)) −> of_2 (lam_2 t1 t2) (pi_2 t1 t3).
Axiom of_lam : of_lam1 & of_lam2.
(* Rules for product are ’’essentially’’ the same *)
Definition of_pi1 := forall t1 t2, of_2 t1 star −>
(forall x, of_1 x t1 −> of_2 (t2 x) star) −> of_2 (pi_1 t1 t2) star.
Definition of_pi2 := forall t1 t2, of_2 t1 star −>
(forall x, of_1 x t1 −> of_3 (t2 x) sqre) −> of_3 (pi_2 t1 t2) sqre.
Axiom of_pi : of_pi1 & of_pi2.
(* Rules for application are ’’essentially’’ the same *)
Definition of_app1 := forall t1 t2 t3 t4, of_1 t1 (pi_1 t3 t4) −>
of_1 t2 t3 −> of_1 (app_1 t1 t2) (t4 t2).
Definition of_app2 := forall t1 t2 t3 t4, of_2 t1 (pi_2 t3 t4) −>
of_1 t2 t3 −> of_2 (app_2 t1 t2) (t4 t2).
Axiom of_app : of_app1 & of_app2.

We finish this chapter by providing examples of encoding in LF.

8.2 Encodings in LF
We present a pure LF encoding of a presentation of λBDdL à la Church, using the Coq
syntax, and the Higher-Order Abstract Syntax (HOAS) [75]. We use HOAS in order
to take advantage of the higher-order features of the frameworks: other abstract syntax
representation techniques would not be much different, but more verbose:
(* Define our types *)
Axiom o : Set.
(* Axiom omegatype : o. *)
Axioms (arrow inter union : o −> o −> o).

(* Transform our types into LF types *)
Axiom OK : o −> Set.

(* Define the essence equality as an equivalence relation *)
Axiom Eq : forall (s t : o), OK s −> OK t −> Prop.
Axiom Eqrefl : forall (s : o) (M : OK s), Eq s s M M.
Axiom Eqsymm : forall (s t : o) (M : OK s) (N : OK t), Eq s t M N −> Eq t s N M.
Axiom Eqtrans : forall (s t u : o) (M : OK s) (N : OK t) (O : OK u),
Eq s t M N −> Eq t u N O −> Eq s u M O.

(* constructors for arrow (−> I and −> E) *)
Axiom Abst : forall (s t : o), ((OK s) −> (OK t)) −> OK (arrow s t).
Axiom App : forall (s t : o), OK (arrow s t) −> OK s −> OK t.

(* constructors for intersection *)
Axiom Proj_l : forall (s t : o), OK (inter s t) −> OK s.
Axiom Proj_r : forall (s t : o), OK (inter s t) −> OK t.
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Axiom Pair : forall (s t : o) (M : OK s) (N : OK t), Eq s t M N −> OK (inter s t).

(* constructors for union *)
Axiom Inj_l : forall (s t : o), OK s −> OK (union s t).
Axiom Inj_r : forall (s t : o), OK t −> OK (union s t).
Axiom Sum : forall (s t u : o) (X : OK (arrow s u)) (Y : OK (arrow t u)),
OK (union s t) −> Eq (arrow s u) (arrow t u) X Y −> OK u.

(* define equality wrt arrow constructors *)
Axiom Eqabst : forall (s t s’ t’ : o) (M : OK s −> OK t) (N : OK s’ −> OK t’),
(forall (x : OK s) (y : OK s’), Eq s s’ x y −> Eq t t’ (M x) (N y)) −>
Eq (arrow s t) (arrow s’ t’) (Abst s t M) (Abst s’ t’ N).
Axiom Eqapp : forall (s t s’ t’ : o) (M : OK (arrow s t)) (N : OK s)
(M’ : OK (arrow s’ t’)) (N’ : OK s’), Eq (arrow s t) (arrow s’ t’) M M’ −>
Eq s s’ N N’ −> Eq t t’ (App s t M N) (App s’ t’ M’ N’).

(* define equality wrt intersection constructors *)
Axiom Eqpair : forall (s t : o) (M : OK s) (N : OK t) (pf : Eq s t M N),
Eq (inter s t) s (Pair s t M N pf) M.
Axiom Eqproj_l : forall (s t : o) (M : OK (inter s t)),
Eq (inter s t) s M (Proj_l s t M).
Axiom Eqproj_r : forall (s t : o) (M : OK (inter s t)),
Eq (inter s t) t M (Proj_r s t M).

(* define equality wrt union *)
Axiom Eqinj_l : forall (s t : o) (M : OK s), Eq (union s t) s (Inj_l s t M) M.
Axiom Eqinj_r : forall (s t : o) (M : OK t), Eq (union s t) t (Inj_r s t M) M.
Axiom Eqsum : forall (s t u : o) (M : OK (arrow s u)) (N : OK (arrow t u))
(O : OK (union s t)) (pf: Eq (arrow s u) (arrow t u) M N) (x : OK s),
Eq s (union s t) x O −> Eq u u (App s u M x) (Sum s t u M N O pf).

The Eq predicate plays the same role of the essence function in LF∆, namely, it encodes the
judgment that two proofs (i.e. two terms of type (OK _)) have the same structure. This is
crucial in the Pair axiom (i.e. the introduction rule of the intersection type constructor)
where we can inhabit the type (inter s t) only when the proofs of its component types
s and t share the same structure (i.e. we have a witness of type (Eq s t M N), where M
has type (OK s) and N has type (OK t)). A similar role is played by the Eq premise in
the Sum axiom (i.e. the elimination rule of the union type constructor). We have an Eq
axiom for each proof rule.

Using this encoding, we can encode auto-application, polymorphic identity, and com-
mutativity of union:

Section Examples.
Hypotheses s t : o.

(* lambda x. x x : (sigma inter (sigma −> tau)) −> tau *)
Definition autoapp : OK (arrow (inter s (arrow s t)) t) :=
Abst (inter s (arrow s t)) t (fun x : OK (inter s (arrow s t)) ⇒
App s t (Proj_r s (arrow s t) x) (Proj_l s (arrow s t) x)).

(* lambda x. x : (sigma −> sigma) inter (tau −> tau) *)
Definition polyid : OK (inter (arrow s s) (arrow t t)) :=
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Pair (arrow s s) (arrow t t) (Abst s s (fun x : OK s ⇒ x))
(Abst t t (fun x : OK t ⇒ x))
(Eqabst s s t t (fun x : OK s ⇒ x) (fun x : OK t ⇒ x)
(fun (x : OK s) (y : OK t) (Z : Eq s t x y) ⇒ Z)).

(* lambda x. x : (sigma union tau) −> (tau union sigma) *)
Definition commutunion : OK (arrow (union s t) (union t s)) :=
Abst (union s t) (union t s)

(fun x : OK (union s t) ⇒
Copair s t (union t s) (Abst s (union t s) (fun y : OK s ⇒ Inj_r t s y))

(Abst t (union t s) (fun y : OK t ⇒ Inj_l t s y)) x
(Eqabst s (union t s) t (union t s) (fun y : OK s ⇒ Inj_r t s y)

(fun y : OK t ⇒ Inj_l t s y)
(fun (x0 : OK s) (y : OK t) (pf : Eq s t x0 y) ⇒

Eqtrans (union t s) s (union t s) (Inj_r t s x0) x0
(Inj_l t s y)
(Eqinj_r t s x0)
(Eqtrans s t (union t s) x0 y (Inj_l t s y) pf

(Eqsymm (union t s) t (Inj_l t s y) y
(Eqinj_l t s y)))))).

The definition of commutunion is quite unreadable, and has been created from the following
Ltac script:
Definition commutunion’ : OK (arrow (union s t) (union t s)).
Proof.
apply (Abst (union s t) (union t s)).
intro x.
apply (Copair _ _ _ (Abst _ _ (fun y : _ ⇒ Inj_r _ _ y))

(Abst _ _ (fun y : _ ⇒ Inj_l _ _ y)) x).
apply Eqabst.
intros x0 y pf.
assert (Eq _ _ (Inj_r t _ x0) x0) by apply Eqinj_r.
assert (Eq _ _ y (Inj_l _ s y)). {
apply Eqsymm.
apply Eqinj_l.

}
eapply Eqtrans.
now apply H.
eapply Eqtrans.
now apply pf.
trivial.

Defined.
End Examples.

Using the same encoding of LF∆ in Coq, the Pierce’s code from Figure 1.1 would be
encoded as:
Section Test.
Hypotheses (Pos Zero Neg T F : o).
Hypotheses (Test : OK (union Pos Neg))

(is_0 : OK (inter (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)))).

(* is_0 Test *)
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Definition is0test : OK F.
apply (Copair _ _ _ (Abst _ _ (fun x : _ ⇒ App _ _ (Proj_r _ _ (Proj_r _ _ is_0)) x))

(Abst _ _ (fun x : _ ⇒ App _ _ (Proj_l _ _ is_0) x))).
now apply Test.
apply Eqabst.
intros x y pf.
apply Eqapp.
− assert (H : Eq _ _ is_0 (Proj_r (arrow Neg F) (inter (arrow Zero T)

(arrow Pos F)) is_0))
by apply Eqproj_r.

assert (H0 : Eq _ _ (Proj_r (arrow Neg F) (inter (arrow Zero T)
(arrow Pos F)) is_0)

(Proj_r (arrow Zero T) (arrow Pos F)
(Proj_r (arrow Neg F) (inter (arrow Zero T)

(arrow Pos F)) is_0)))
by apply Eqproj_r.

assert (H1 : Eq _ _ is_0 (Proj_l (arrow Neg F) (inter (arrow Zero T)
(arrow Pos F)) is_0))

by apply Eqproj_l.
apply Eqsymm in H.
apply Eqsymm in H0.
eapply Eqtrans.
apply H0.
eapply Eqtrans.
apply H.
apply H1.
− trivial.

Defined.

End Test.

The code of is0test has been generated by an Ltac script, the generated code is too huge
to be humanly readable, as you can see in Figure 8.2.
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Copair Pos Neg F
(Abst Pos F

(fun x : OK Pos ⇒
App Pos F

(Proj_r (arrow Zero T) (arrow Pos F)
(Proj_r (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0)) x))

(Abst Neg F
(fun x : OK Neg ⇒ App Neg F (Proj_l (arrow Neg F)
(inter (arrow Zero T) (arrow Pos F)) is_0) x)) Test

(Eqabst Pos F Neg F
(fun x : OK Pos ⇒
App Pos F

(Proj_r (arrow Zero T) (arrow Pos F)
(Proj_r (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0)) x)

(fun x : OK Neg ⇒ App Neg F (Proj_l (arrow Neg F)
(inter (arrow Zero T) (arrow Pos F)) is_0) x)

(fun (x : OK Pos) (y : OK Neg) (pf : Eq Pos Neg x y) ⇒
Eqapp Pos F Neg F

(Proj_r (arrow Zero T) (arrow Pos F)
(Proj_r (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0)) x

(Proj_l (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0) y
(Eqtrans (arrow Pos F) (inter (arrow Zero T) (arrow Pos F)) (arrow Neg F)

(Proj_r (arrow Zero T) (arrow Pos F)
(Proj_r (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0))

(Proj_r (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0)
(Proj_l (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0)
(Eqsymm (inter (arrow Zero T) (arrow Pos F)) (arrow Pos F)

(Proj_r (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0)
(Proj_r (arrow Zero T) (arrow Pos F)

(Proj_r (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0))
(Eqproj_r (arrow Zero T) (arrow Pos F)

(Proj_r (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0)))
(Eqtrans (inter (arrow Zero T) (arrow Pos F))

(inter (arrow Neg F) (inter (arrow Zero T) (arrow Pos F))) (arrow Neg F)
(Proj_r (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0) is_0
(Proj_l (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0)
(Eqsymm (inter (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)))

(inter (arrow Zero T) (arrow Pos F)) is_0
(Proj_r (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0)
(Eqproj_r (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0))

(Eqproj_l (arrow Neg F) (inter (arrow Zero T) (arrow Pos F)) is_0))) pf))

Figure 8.2: LF encoding of the Pierce’s code (from Figure 1.1)
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