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Abstract
Development of new computational methods for a synthetic gene set annotation

by Aarón AYLLÓN BENÍTEZ

The revolution in new sequencing technologies, by strongly improving the production of omics data,
is greatly leading to new understandings of the relations between genotype and phenotype. To in-
terpret and analyze data grouped according to a phenotype of interest, methods based on statistical
enrichment became a standard in biology. However, these methods synthesize the biological infor-
mation by a priori selecting the over-represented terms and focus on the most studied genes that may
represent a limited coverage of annotated genes within a gene set. During this thesis, we explored
di�erent methods for annotating gene sets. In this frame, we developed three studies allowing the
annotation of gene sets and thus improving the understanding of their biological context.

First, visualization approaches were applied to represent annotation results provided by enrichment
analysis for a gene set or a repertoire of gene sets. In this work, a visualization prototype called MOTVIS
(MOdular Term VISualization) has been developed to provide an interactive representation of a reper-
toire of gene sets combining two visualmetaphors: a treemap view that provides an overview and also
displays detailed information about gene sets, and an indented tree view that can be used to focus on
the annotation terms of interest. MOTVIS has the advantage to solve the limitations of each visual
metaphor when used individually. This illustrates the interest of using di�erent visual metaphors to
facilitate the comprehension of biological results by representing complex data.

Secondly, to address the issues of enrichment analysis, a new method for analyzing the impact of
using di�erent semantic similarity measures on gene set annotation was proposed. To evaluate the
impact of each measure, two relevant criteria were considered for characterizing a “good” synthetic
gene set annotation: (i) the number of annotation terms has to be drastically reduced while maintain-
ing a su�cient level of details, and (ii) the number of genes described by the selected terms should
be as large as possible. Thus, nine semantic similarity measures were analyzed to identify the best
possible compromise between both criteria while maintaining a su�cient level of details. Using Gene
Ontology (GO) to annotate the gene sets, we observed better results with node-basedmeasures that use
the terms’ characteristics than with edge-basedmeasures that use the relations terms. The annotation
of the gene sets achieved with the node-based measures did not exhibit major di�erences regardless
of the characteristics of the terms used. Then, we developed GSAn (Gene Set Annotation), a novel gene
set annotation web server that uses semantic similarity measures to synthesize a priori GO annotation
terms. GSAn contains the interactive visualization MOTVIS, dedicated to visualize the representative
terms of gene set annotations. Compared to enrichment analysis tools, GSAn has shown excellent re-
sults in terms of maximizing the gene coverage while minimizing the number of terms.

At last, the thirdwork consisted in enriching the annotation results provided by GSAn. Since the knowl-
edge described in GO may not be su�cient for interpreting gene sets, other biological information,
such as pathways and diseases, may be useful to provide a wider biological context. Thus, two addi-
tional knowledge resources, being Reactome and Disease Ontology (DO), were integrated within GSAn.
In practice, GO terms were mapped to terms of Reactome and DO, before and a�er applying the GSAn
method. The integration of these resources improved the results in terms of gene coverage without
a�ecting signi�cantly the number of involved terms. Two strategies were applied to �nd mappings
(generated or extracted from theweb) between each new resource andGO.Wehave shown that amap-
ping process before computing the GSAnmethod allowed to obtain a larger number of inter-relations
between the two knowledge resources.
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Résumé
Développement de nouvelles méthodes informatiques pour une annotation synthétique

d’un ensemble de gènes

by Aarón AYLLÓN BENÍTEZ

Les avancées dans l’analyse de l’expression di�érentielle de gènes ont suscité un vif intérêt pour l’étude
d’ensembles de gènes présentant une similarité d’expression au cours d’une même condition expéri-
mentale. Les approches classiques pour interpréter l’information biologique reposent sur l’utilisation
deméthodes statistiques. Cependant, ces méthodes se focalisent sur les gènes les plus connus tout en
générant des informations redondantes qui peuvent être éliminées en prenant en compte la structure
des ressources de connaissances qui fournissent l’annotation. Au cours de cette thèse, nous avons ex-
ploré di�érentes méthodes permettant l’annotation d’ensembles de gènes. Dans ce cadre, nous avons
élaboré trois travaux permettant l’annotation d’ensembles de gènes pour améliorer la compréhension
de leur contexte biologique.

Premièrement, nous présentons les solutions visuelles développées pour faciliter l’interprétation des
résultats d’annota-tion d’un ou plusieurs ensembles de gènes. Dans ce travail, nous avons développé
un prototype de visualisation, appelé MOTVIS, qui explore l’annotation d’une collection d’ensembles
des gènes. MOTVIS utilise ainsi une combinaison de deux vues inter-connectées : une arborescence
qui fournit un aperçu global des données mais aussi des informations détaillées sur les ensembles de
gènes, et une visualisation qui permet de se concentrer sur les termes d’annotation d’intérêt. La com-
binaison de ces deux visualisations a l’avantage de faciliter la compréhension des résultats biologiques
lorsque des données complexes sont représentées.

Deuxièmement, nous abordons les limitations des approches d’enrichissement statistique en pro-
posant uneméthode originale qui analyse l’impact d’utiliser di�érentes mesures de similarité séman-
tique pour annoter les ensembles de gènes. Pour évaluer l’impact de chaquemesure, nous avons con-
sidéré deux critères comme étant pertinents pour évaluer une annotation synthétique de qualité d’un
ensemble de gènes : (i) le nombre de termes d’annotation doit être réduit considérablement tout en
gardant un niveau su�sant de détail, et (ii) le nombre de gènes décrits par les termes sélectionnés
doit être maximisé. Ainsi, neuf mesures de similarité sémantique ont été analysées pour trouver le
meilleur compromis possible entre réduire le nombre de termes et maintenir un niveau su�sant de
détails fournis par les termes choisis. Tout en utilisant la Gene Ontology (GO) pour annoter les en-
sembles de gènes, nous avons obtenu de meilleurs résultats pour les mesures de similarité séman-
tique basées sur les nœuds qui utilisent les attributs des termes, par rapport aux mesures basées sur
les arêtes qui utilisent les relations qui connectent les termes. En�n, nous avons développé GSAn,
un serveur web basé sur les développements précédents et dédié à l’annotation d’un ensemble de
gènes a priori. GSAn intègre MOTVIS comme outil de visualisation pour présenter conjointement les
termes représentatifs et les gènes de l’ensemble étudié. Nous avons comparé GSAn avec des outils
d’enrichissement et avons montré que les résultats de GSAn constituent un bon compromis pour max-
imiser la couverture de gènes tout en minimisant le nombre de termes.

Le dernier point exploré est une étape visant à étudier la faisabilité d’intégrer d’autres ressources dans
GSAn pour améliorer les résultats. Nous avons ainsi intégré deux ressources, l’une décrivant les mal-
adies humaines avec Disease Ontology (DO) et l’autre les voies métaboliques avec Reactome. Le but
était de fournir de l’information supplémentaire aux utilisateurs �naux de GSAn. Nous avons évalué
l’impact de l’ajout de ces ressources de connaissances dans GSAn lors de l’analyse d’ensembles de gènes.
L’intégration de ces ressources a amélioré les résultats en couvrant d’avantage de gènes sans pour au-
tant a�ecter de manière signi�cative le nombre de termes impliqués. Ensuite, les termes GO ont été
mis en correspondance avec les termes DO et Reactome, a priori et a posteriori des calculs e�ectués par
GSAn. Nous avons montré qu’un processus de mise en correspondance appliqué a priori permettait
d’obtenir un plus grand nombre d’inter-relations entre les deux ressources.
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Résumé substantiel

1 Introduction

L’émergence de nouvelles technologies de séquençage a fortement in�uencé notre compré-
hension des relations entre génotype (collection de gènes) et phénotype (caractéristiques ob-
servables codées par ces gènes). Les avancées dans l’analyse de l’expression di�érentielle de
gènes ont suscité un vif intérêt pour l’étude des ensembles de gènes présentant une similarité
d’expression dans une même condition expérimentale. Les approches classiques pour inter-
préter l’information biologique reposent sur l’utilisation de méthodes statistiques. Cepen-
dant, ces méthodes se focalisent sur les gènes les plus connus tout en générant de la redon-
dance d’information qui peut être éliminée en prenant en compte la structure des ressources
de connaissances qui fournissent l’annotation. Au cours de cette thèse, nous avons exploré
di�érentesméthodespermettant l’annotationd’ensembles de gènes avec l’objectif d’améliorer
la compréhension de leur contexte biologique.

2 Resources de connaissances et annotation fonctionnelle

Les informations relatives à un gène ou produit de gène se présentent sous la forme d’annota-
tions (associations entre les gènes et ses phénotypes, obtenues par desméthodes expérimen-
tales ou computationnelles). Un gène peut être associé à di�érentes informations biologiques
(désignées par le terme d’annotation fonctionnelle) telles que sa localisation dans un génome
donné, la description de l’activité de ses produits (tels que les protéines) ou ses fonctions spé-
ci�ques dans une cellule.

Tous ces informations sont stockées dans di�érents types de ressources de connaissances
telles que les bases de connaissances, thésauri ou ontologies. Parmi le grand nombre de
ressources de connaissances disponibles en bioinformatique, la Gene Ontology (GO) est celle
qui est la plus largement utilisée [Con04a; Con18]. GO est une ressource décrivant en partic-
ulier les processus et fonctions des gènes et produits de gènes. Les concepts de GO (dénom-
més “termes” dansGO) sont organisés sous la formed’un graphe orienté acyclique qui compte
plus de 44000 termes connectés par di�érents types de relations (e.g., is_a, part_of, regulates).
Un des intérêts de GO est l’existence de bases de données d’annotation (la GO Annotation ou
GOA), qui contiennent les associations entre les gènes de plusieurs organismes et les termes
GO qui les annotent. Ces associations, ou annotations, sont générées de diverses manières
(e.g., par des méthodes expérimentales, automatiques). À chaque annotation est associée un
code d’évidence qui décrit la manière précise dont elle a été obtenue.

De nombreuses ressources de connaissances existent, notamment sur le portail biomédi-
cal du National Center for Biotechnology Information (NCBI) [OLe+15] qui fournit des informa-
tions et des services facilement accessibles. En se concentrant sur l’annotation fonctionnelle,
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un gène peut être impliqué dans d’autres situations que des processus ou des fonctions bi-
ologiques. Par exemple, les gènes peuvent également être la cible de médicaments, être ex-
primés dans diverses voies métaboliques, ou même être des précurseurs de maladies. Dans
le cadre de cette thèse, en plus d’utiliser GO et GOA pour l’annotation d’ensembles de gènes,
nous nous sommes intéressés aux rôles joués par les gènes dans les voies métaboliques et les
maladies.

Malgré l’utilité de ces ressourcespourdéterminer les rôles biologiquesd’ungène, les informa-
tions ne su�sent pas à comprendre une condition expérimentale donnée après avoir com-
paré deux populations (e.g., une population saine et une autre atteinte d’une maladie). La
compréhension d’unemaladie donnée, ainsi que l’étude de l’impact d’unmédicament ou d’un
vaccin impliquent l’interaction de plusieurs gènes à unmoment précis. Il est plus intéressant
de savoir quels processus biologiques sont produits par un ensemble de gènes que de com-
prendre les fonctions d’un seul gène. À l’heure actuelle, les études portent sur des ensem-
bles de gènes qui sont souvent sur-exprimés au même moment puisqu’ils coexistent dans la
même voie métabolique [Sub+05]. L’utilisation d’approches par ensembles de gènes est donc
devenue de plus en plus populaire. De nombreux travaux ont été consacrés à la création, à la
gestion et à la conservation d’ensembles de gènes [Ant11; Bak+11; Cul+11; Li+13; CB14; Lib14].

Ce nouveau champ de recherche est devenu incontournable au cours des deux dernières dé-
cennies et repose sur la créationd’ensembles de gènes à partir d’une comparaisonde résultats
expérimentaux dans diverses conditions. Par exemple, Chaussabel et Baldwin [CB14] ontmis
en œuvre des conditions expérimentales liées à diverses maladies pour déchi�rer les gènes
pouvant être impliqués dans la réponse immunitaire innée ou acquise (spéci�que). Cepen-
dant, l’interprétation d’un ensemble de gènes n’est pas une tâche aisée. Étant donné que
chaque gène dispose de ses propres annotations, la grande quantité d’information à traiter
pour un ensemble de gènes rend sa compréhension di�cile. À titre d’exemple, si on con-
sidère que les gènes humains sont annotés en moyenne par 10 termes GO, un ensemble
de 100 gènes peut produire plusieurs centaines de termes dont le sens peut se recouper,
générant dans ce cas de la redondance. De plus, lorsque l’on étudie plusieurs ensembles
hétérogènes de gènes, le nombre de termes peut même atteindre plusieurs milliers. Ainsi,
l’expertise manuelle pour décrypter clairement les principales fonctions qui peuvent être
liées au(x) ensemble(s) de gènes étudié(s) est chronophage et devient ingérable lorsque le
nombre d’ensembles de gènes augmente. Pour ces raisons, des méthodes automatiques ont
été proposées pour faciliter l’analyse d’ensembles de gènes. Nous nous sommes intéressés à
quatre domaines d’étude qui ont pour objectif d’annoter un ensemble de gènes ou d’améliorer
son interprétation.

1. Annotation par des techniques d’enrichissement classiques. Diminuer le nombre de
termes d’annotation tout en conservant les plus informatifs est un dé� majeur pour
comprendre les implications biologiques d’un ensemble de gènes [BPG16]. L’une des
approches classiques pour interpréter l’information biologique liée à un ensemble de
gènes est l’enrichissement. Le principe de ces méthodes statistiques est de comparer,
sur la base de ses annotations, un ensemble de gènes à une référence (e.g., le génome
complet ou un ensemble de gènes généré demanière aléatoire dont la taille est compa-
rable à l’ensemble de gènes étudié) pour trouver les termesd’annotation sur-représentés
au sein de l’ensemble en question (i.e., utilisés plus que la “normale” par les gènes de
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l’ensemble). Un grand nombre d’outils implémentant des approches d’enrichissement
ont été développés. Cela permet de fournir une annotation à un ensemble de gènes (voir
détails et classi�cation dans les revues de Huang et al. [HSL09] et Khatri et al. [KSB12]).
Cependant, ces méthodes d’enrichissement fournissent une liste de termes sur-repré-
sentés sans considérer la pertinence de cette information ni la spéci�cité des termes
d’annotation obtenus. De plus, les annotations proposées par ces méthodes présentent
une certaine redondance par la présence de termes reliés hiérarchiquement dans une
ressource de connaissances. En�n, ces méthodes tendent à se concentrer sur les gènes
les plus étudiés et fournissent des résultats d’annotation couvrant un nombre limité des
gènes de l’ensemble [BLG15; HTK18; Tom+18].

2. Avantages de l’annotation ontologique. Le fait que les annotations associées aux gènes
soient issues d’une ontologie est un avantage. En particulier, chaque concept d’une
ontologie possède des caractéristiques qui peuvent être exploitées pour déterminer sa
similarité avec d’autres concepts. De cette manière, les caractéristiques partagées par
deux termes GO peuvent être prises en compte pour quanti�er leur similarité, et donc
leur redondance ou leur complémentarité. Il existe de nombreusesmesures de similar-
ité sémantique1 [Pes+09; Guz+12; MCM17], rendant le choix d’une mesure par rapport à
une autre délicat.

3. Exploration des résultats d’annotation avec la visualisation. La visualisation est très
utile pour explorer des connaissances. Le nombre de techniques de visualisation util-
isées dans le domaine biologique a considérablement augmenté au cours des 15 der-
nières années [Ker+17]. Cependant, la visualisation est encore à un stade précoce où il
reste des dé�s importants à relever liés en particulier au volume des données, à leur
type et à leur représentation [ODo+10; Mou+18]. Une combinaison de di�érentes visu-
alisations est une solution indiquée pour représenter des résultats divers avec plusieurs
niveaux d’information. Cependant, cet usage reste rare en biologie. De plus, les méth-
odes actuelles utilisées pour la visualisation de termes d’annotation d’un ensemble (ré-
duit) de gènesne sont pas adaptéespour traiter plusieurs dizainesd’ensembles de gènes.

4. Exploiter plusieurs ressources de connaissances pour améliorer la compréhension
biologique. L’ensemble des connaissances du domaine biologique ne se trouvent pas
dans une unique ressource. De plus, certaines ressources de connaissances peuvent
décrire des notions similaires (voire identiques), générant de la redondance et poten-
tiellement des contradictions [KPL03]. Il est donc essentiel d’intégrer des ressources
dont les connaissances représentées se recoupent, mais qui sont aussi complémen-
taires, a�n d’uni�er l’information et d’être enmesure de fournir une vue d’ensemble des
connaissances biologiques. Selon Keet [Kee04], le concept d’intégration signi�e tout ce
qui concerne la fusion, l’utilisation, le mapping2, l’extension, l’approximation, les vues
uni�ées entre deux éléments (e.g., deux ensembles de données, deux ressources de
connaissances, deux visualisations). Notons que Manzoni et al. [Man+16] mentionnent
d’importants dé�s liés à l’intégration, notamment l’existence de multiples ressources

1La similarité sémantique consiste à trouver en quoi deux concepts sont proches du point de vue de leur sens
en utilisant des caractéristiques propres aux ressources de connaissances dans lesquels ils sont décrits.

2Le termemapping correspond à une correspondance entre deux éléments. Si une correspondance existe, on
dit que ces deux éléments sontmappés.
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de connaissances pour décrire la même chose dans di�érentes bases de données bi-
ologiques, l’origine des données ou la capacité de stockage due à l’intégration.

Dans cette thèse, nous proposons des solutions informatiques visant à résoudre la plupart
des dé�s présentés ci-dessus.

3 Visualisation de l’annotation des ensembles de gènes

En raisonde la taille et de la complexité des donnéesd’annotation, il est nécessaire de recourir
à des techniques de visualisation adaptées à l’interprétation de ces informations. Cependant,
le choix de la métaphore visuelle adéquate est une tâche di�cile.

Le premier chapitre présente les solutions visuelles que nous avons proposées pour faciliter
l’interprétation des résultats d’annotation d’un ou plusieurs ensembles de gènes. Pour cela,
nous avons proposé des solutions pour visualiser des résultats d’annotation d’un ensemble
de gènes comparativement à plusieurs ensembles. De plus, nous avons également étudié
l’impact d’utiliser ounon la structuredes ressources de connaissances fournissant l’annotation
pour améliorer l’interprétation des résultats. Nous avons ainsi développé trois prototypes de
visualisation.

• Les deux premiers prototypes visaient à représenter l’annotation fonctionnelle d’un
seul ensemble de gènes sans tenir compte de la structure de la ressource de connais-
sances d’où sont issus les termes d’annotation. Ces métaphores visuelles sont le ré-
sultat de développements réalisés par des étudiants (de master 1 et première année
d’ingénieur) que j’ai encadrés. Ce travail exploratoire a eu le double avantage deme per-
mettre d’étudier des métaphores visuelles pour explorer l’annotation (obtenue par des
méthodes d’enrichissement) d’un ensemble de gènes et d’expérimenter l’encadrement
d’étudiants.

• Le troisième outil de visualisation est le résultat d’une collaboration internationale avec
l’Université de Murcie (Espagne). Il visait à réconcilier les annotations issues de dif-
férentes ressources de connaissances utilisées pour annnoter plusieurs ensembles de
gènes en utilisant des similitudes lexicales entre les termes d’annotation. Cette visuali-
sation est une combinaison de deux métaphores visuelles prenant en considération la
structure hiérarchique de GO pour l’a�chage et l’exploration des résultats.

3.1 Visualisation de l’annotation d’un ensemble de gènes

Pour cette première exploration, un processus d’analyse a été conçu. Celui-ci combine des
méthodes statistiques d’enrichissement, des mesures de similarité sémantique, de cluster-
ing3 et la sélection du terme parent le plus informatif (connu en anglais commeMICA pour
Most Informative Common Ancestor) pour chaque cluster de termes. Les résultats ont pu être
a�chés grâce à deux prototypes de visualisation : (i) un prototype de visualisation montrant
les di�érents clusters et les termes GO s’y trouvant, et (ii) un prototype qui représente les re-
lations entre les gènes, les termes GO et les termesMICA. Pour pouvoir explorer les résultats

3Le terme clustering est utilisé pour décrire uneméthode qui regroupe des éléments ayant des caractéristiques
similaires. En appliquant cette méthode sur les termes GO, les groupes de termes seront dé�nis comme des
clusters de termes GO
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selon plusieurs niveaux de profondeur, nous avons ajouté des fonctionnalités d’interaction
aux prototypes. Pour illustrer l’intérêt de la visualisation que nous avons proposée, nous
avons e�ectué une analyse sur un ensemble de 27 gènes annotés avec le terme “interféron”
par Chaussabel et Baldwin [CB14].

Nous avons ainsi observé que la visualisation des termesMICA permet de résumer l’informa-
tion.. De plus, la vue d’ensemble du deuxième prototype de visualisation donne une synthèse
claire des résultats à l’aide des termesMICA, tandis que la première exige que les utilisateurs
explorent en détails les clusters de termes GO similaires pour extraire l’information perti-
nente. Nous avons constaté par ailleurs que les méthodes d’enrichissement d’un ensemble
de gènes génèrent une annotation avec un degré élevé de redondance parmi les termes GO,
comme décrit précédemment.

3.2 Visualisation de l’annotation de plusieurs ensembles de gènes

Un deuxième processus a été conçu pour annoter plusieurs ensembles de gènes. Celui-ci se
base sur les résultats de méthodes d’enrichissement et exploite plusieurs ressources
de connaissances pour obtenir des termes d’annotation. Nous avons utilisé l’outil OntoEn-
rich [Que+15a] pour aligner des termes issus d’autres ressources de connaissances aux ter-
mes GO grâce à des mesures de similarité lexicale4. Ensuite, la structure de GO a été simpli-
�ée pour faciliter l’exploration des résultats d’annotation. Ces résultats peuvent être explorés
via un prototype de visualisation que nous avons développé, MOTVIS, qui combine deux vues
inter-connectées : une arborescence qui fournit une vue d’ensemble mais aussi des informa-
tions détaillées sur les ensembles de gènes, et une visualisation qui permet de se concentrer
sur les termes d’intérêt de l’annotation. MOTVIS o�re aussi des fonctionnalités d’interaction
permettant une exploration des résultats en profondeur.

Pour illustrer l’utilité de notre processus, nous avons réalisé une analyse en utilisant les don-
nées fournies par Chaussabel et Baldwin [CB14] sous la forme d’un répertoire de 260 ensem-
bles de gènes concernant la réponse immunitaire au sein de la population humaine. Les
conclusions majeures de ces analyses sont que : (i) l’analyse lexicale réalisée par OntoEnrich
a été utile pour éliminer les redondances entre les termes décrivant lamême notion dans des
ressources de connaissances di�érentes, et (ii) l’utilisation de la structure de GO au sein de
la visualisation permet de réduire la complexité visuelle et facilite ainsi l’interprétation des
résultats.

4 Annotation d’un ensemble de gènes à l’aide de mesures de simi-
larité sémantique

La plupart des outils classiques pour annoter des ensembles de gènes reposent sur desméth-
odes d’enrichissement statistique qui comportent généralement deux étapes : une étape a
priori qui vise à synthétiser l’annotation en sélectionnant les termes sur-représentés, et une
étape a posteriori qui élimine les informations potentiellement redondantes en utilisant la
structure des ressources de connaissances décrivant les termes d’annotation. Cependant,

4La similarité lexicale consiste à estimer la similarité entre deux concepts dont les noms se ressemblent lexi-
calement.
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même en proposant une étape a posteriori, les méthodes statistiques d’enrichissement met-
tent inévitablement en évidence les gènes les plus étudiés au détriment des gènes mal an-
notés lors de l’analyse [BLG15; HTK18; Tom+18], ce qui entraîne une perte d’information.

Dans ce travail, nous avons abordé ces limites en proposant une méthode originale qui an-
note les ensembles de gènes en utilisant des mesures de similarité sémantique. À notre con-
naissance, aucun travail n’a été proposé pour évaluer l’impact de l’utilisation d’une mesure
de similarité sémantique donnée par rapport à une autre mesure quand elles sont utilisées
pour annoter un ensemble de gènes. Une annotation pertinente d’un ensemble de gènes doit
répondre à des caractéristiques spéci�ques pour fournir des informations utiles aux experts
du domaine.

4.1 Impact de la similarité sémantique dans l’annotation d’un ensemble de gènes

Nous avons évalué l’impact de chaquemesure enconsidérant les critères suivants pourdé�nir
une "bonne" annotation d’un ensemble de gènes [BPG16]:

• Le nombre de termes d’annotation doit être considérablement réduit tout en garantis-
sant qu’ils représentent correctement l’ensemble de gènes (critère désigné sous le nom
de synthèse).

• Le nombre de gènes décrits par les termes sélectionnés (critère désigné sous le terme
de couverture) doit être maximisé.

Le dé� consiste alors à trouver lemeilleur compromis possible entre les deux critères tout en
s’e�orçant de maintenir un niveau de détails su�sant apporté par les termes choisis. Nous
avons mis en place une méthode visant à étudier l’impact d’utiliser di�érentes mesures de
similarité sémantique sur l’interprétation d’un ensemble de gènes.

À partir de la totalité des termes GO extraits pour chaque gène de l’ensemble étudié, un pre-
mier �ltre a été appliqué pour supprimer les annotations n’apportant pas d’information per-
tinente pour le gène (i.e., les annotations redondantes ou incomplètes).

A�n d’étudier l’impact d’utiliser di�érentesmesures de similarité sémantique, nous avons sé-
lectionné neufmesures parmi les trois classes suivantes, dé�nies par Pesquita et al. [Pes+09] :
mesures basées sur les nœuds, mesures basées sur les arêtes et mesures hybrides. Les mesures
basées sur les nœuds calculent la similarité entre deux termes à partir des propriétés spéci-
�ques aux termes, comme leur profondeur ou leur contenu d’information (CI). Les mesures
basées sur les arêtes exploitent la distance qui sépare deux termes GO au sein du graphe GO.
Les mesures hybrides utilisent, quant à elles, une combinaison des deux types précédents.

Ensuite, nous avons examiné la capacité de chaquemesure de similarité sémantique à obtenir
les meilleures partitions des termes d’annotation en évaluant la pertinence des partitions du
clustering et l’impact des di�érentes méthodes de clustering.

Pour identi�er les termes les plus synthétiques de l’ensemble de gènes tout en évaluant la
combinatoire des solutions, nous avons développé un algorithme de parcours de la structure
de GO a�n de récupérer tout d’abord un ou plusieurs termes (ce nombre étant dépendant de
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la taille du cluster) représentatifs pour chaque cluster de termes obtenu. Nous avons ensuite
examiné la capacité de chaque mesure de similarité sémantique à : (i) réduire le nombre de
termes d’annotation tout en sélectionnant les termes les plus représentatifs de l’ensemble de
gènes, et (ii) fournir une annotation synthétique incluant le plus grand nombre de gènes pos-
sible. La combinaison de ces deux critères, essentiellement quantitatifs, a permis d’estimer
la capacité de chaquemesure de similarité sémantique à produire une annotation plus perti-
nente et synthétique pour un ensemble de gènes donné.

Nous avons utilisé deux jeux de données de l’organisme “homo sapiens” qui contiennent
respectivement 260 et 346 ensembles de gènes liés à la réponse immunitaire pour évaluer
notre méthode. Les di�érentes évaluations sur les partitions de clustering ont montré de
bons résultats avec les mesures basées sur les nœuds par rapport à celles basées sur les arêtes
et de mauvais résultats pour les mesures hybrides. Pour étudier l’impact de chaque mesure
de similarité sémantique sur l’obtention d’une annotation synthétique, nous avons analysé
la quantité de termes retenus et le nombre de gènes couverts en observant la pertinence en
terme d’information biologique (mesure basée sur le CI). En comparant ces résultats avec
l’outil d’enrichissement DAVID [Den+03], nous avons montré que notre approche donnait de
meilleurs résultats pour la majorité des mesures de similarité sémantique, les mesures de
similarité sémantique basées sur les nœuds étant les meilleures. Les mesures de similarité
sémantique permettent ainsi de trouver un bon équilibre pour garantir une meilleure cou-
verture du nombre de gènes avec un nombreminimum de termes (tout en gardant une infor-
mation pertinente et synthétique).

4.2 Extension du cadre d’analyse

À ce stade, nous avons développé uneméthode fournissant une annotation synthétique pour
un ensemble de gènes donné. Dans cette section, nous décrivons des étapes supplémentaires
enrichissant la méthode précédente a�n d’améliorer la qualité de cette annotation. Parmi
ces étapes, une algorithme basé sur le problème de couverture par ensembles [VLZ16] a été
conçu pour sélectionner les termes les plus synthétiques sans a�ecter la couverture de gènes
fournie par les termes représentatifs.

Àpartir de ces améliorationsde laméthode, nous avonsproposéun serveurweb, GSAn (https:
//gsan.labri.fr), qui o�re un approche alternative aux méthodes d’enrichissement pour
l’annotation d’un ensemble de gènes. GSAn exploite donc des mesures de similarité séman-
tique a�nde réduire l’annotation a priori. Par ailleurs, GSAno�reune visualisation originale et
interactive facilitant l’interprétation des résultats par les experts qui peuvent choisir le niveau
d’information biologique qui leur semble pertinent. GSAn permet aux utilisateurs d’annoter
une liste de symboles de gènes ou de protéines et fournit un ensemble de composantes vi-
suelles favorisant la compréhension des résultats d’annotation : (i) trois diagrammes circu-
laires présentant des informations générales sur l’ensemble de gènes (couverture par GOA et
GSAn et similarité des termesGOau sein de l’ensemble), (ii) un diagrammeenbarresmontrant
les informations concernant les termes synthétiques, (iii) un tableau représentant les infor-
mations des termes représentatifs, et (iv) la combinaison de visualisations arborescentes im-
plémentée dans MOTVIS pour présenter conjointement les termes représentatifs et les gènes

https://gsan.labri.fr
https://gsan.labri.fr


10 Résumé substantiel

de l’ensemble étudié.

Pour illustrer l’intérêt de GSAn, nous avons aussi étudié les jeux de données de 260 et 346 en-
sembles de gènes issus d’une approche de transcriptomique étudiant la réponse immunitaire.
Deux analyses ont été réalisées avec GSAn : (i) une comparaison des résultats d’annotation de
GSAn par rapport à des outils d’enrichissement, et (ii) l’étude d’un ensemble de gènes qui a
été annoté par des experts comme régulation de la présentation d’antigènes et réponse immuni-
taire. GSAn a montré d’excellents résultats en termes de maximisation de la couverture des
gènes tout en minimisant le nombre de termes. GSAn a fourni une annotation plus spéci-
�que que les résultats donnés par les experts pour l’ensemble de gènes étudié. De plus, GSAn
présente l’avantage de fournir des capacités de visualisation interactive pour analyser les an-
notations de l’ensemble de gènes. La visualisation MOTVIS o�re, quant à elle, une diversité
d’interactions permettant de parcourir les termes et les gènes qu’ils annotent en fonction du
niveau d’information biologique qui peut intéresser les utilisateurs.

5 Intégration de ressources de connaissances supplémentaires au
sein de GSAn

Ladernière étapede cette thèse s’est intéressée à la questionde la faisabilité d’intégrer d’autres
ressources de connaissances dans GSAn. Nous avons ainsi intégré deux ressources, l’une
décrivant les maladies humaines et l’autre les voies métaboliques, a�n de fournir des infor-
mations supplémentaires aux utilisateurs. Notre objectif était d’améliorer la couverture des
gènes annotés sans pour autant augmenter signi�cativement le nombre de termes synthé-
tiques fournis par GSAn.

Concernant les maladies, nous avons considéré que Disease Ontology (DO) était un candidat
idéal pour les raisons suivantes : (i) elle couvre un large éventail de maladies, (ii) il est possi-
ble de récupérer des associations entre les termes DO et les gènes, et (iii) cette ressource de
connaissances contient des références croisées vers d’autres ressources telles que SNOMED-
CT,MeSH,HPOetORDO.DOcontient 9384 termes uniques décrivant desmaladies humaines.

Concernant les voies métaboliques, nous nous sommes concentrés sur Reactome car cette
ressource de connaissances a l’avantage de fournir : (i) un accès facile via une interface web,
(ii) de nombreux formats de données, et (iii) un alignement avec GO. Reactome contient plus
de 2300 voies uniques impliquant 16 espèces. Parmi les données de Reactome, nous nous
sommes focalisés sur les voies métaboliques pour analyser l’apport de ce type d’information
au sein de GSAn.

GSAnmanipule des formats spéci�ques pourGOet GOA. Par conséquent, il a été nécessaire de
convertir Reactome et DO a�n qu’elles puissent être incluses dans GSAn. Les associations en-
tre les gènes et les termes demaladie ne sont pas o�ciellement fournies par DO. Cependant,
elles peuvent être extraites de bases de données externes [Piñ+15; Ple+15] en utilisant no-
tamment un algorithme implémenté dans INTEGRO [CGV18]. Cet outil exploite les références
croisées des ressources de connaissances externes fournies par DOpour récupérer les gènes.
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Ensuite, nous avons évalué l’impact de l’ajout de ces deux ressources de connaissances dans
GSAn lors de l’analyse d’ensembles de gènes. Dans cette première analyse, aucune intégration
n’a été e�ectuée. Ainsi, nous avons appliqué GSAn en nous basant sur chaque ressource de
connaissances indépendamment et nous avons ensuite fusionné les résultats générés. Nous
avons démontré que l’intégration d’autres ressources de connaissances dans GSAn a amélioré
la couverture des gènes annotés. Néanmoins, l’utilisation séparée des di�érentes ressources
de connaissances a généré une augmentation dunombre de termes d’annotation, ce qui pour-
rait rendre les résultats plus di�ciles à interpréter.

Pour résoudre ce problème, deux stratégies d’intégration ont été étudiées dans un deuxième
temps : (i) un mapping a priori, et (ii) un mapping a posteriori du calcul de l’annotation par
GSAn. À notre connaissance, il n’existe pas de mapping entre GO et DO. Pour résoudre ce
problème, trois méthodes ont été mises au point, puis comparées. Deux méthodes utilisent
le même principe qui consiste à considérer les gènes associés à un terme DO comme un en-
semble de gènes. Ensuite, ces ensembles ont été analysés par uneméthode d’enrichissement
(méthode 1) ou par GSAn (méthode 2) a�n de récupérer l’annotation GO pour ces ensembles.
Ainsi, le mapping implique qu’un terme DO soit mappé avec un ou plusieurs termes GO. La
dernière méthode combine l’annotation de gènes fournie par GO et DO. Pour ce faire, nous
avons implémenté une étape préliminaire pour déduire des règles d’association, basée sur
l’algorithme des ensembles d’éléments fréquents (ou frequent item set en anglais) [Nau+13].
Cela correspond à un ensemble d’éléments qui apparaissent fréquemment lorsqu’un modèle
de données est considéré. Ces mappings ont ainsi été établis en exploitant les instances, à
savoir les gènes associés aux termes des ressources de connaissances.

Nous avons �nalement étudié les jeux de données de 260 et 346 ensembles de gènes men-
tionnés précédemment. Comme attendu, l’intégration a priori s’est révélée plus pertinente
car elle a permis de trouver davantage de mappings entre une ressource de connaissances et
GO pour un ensemble de gènes donné. De plus, pour établir lesmappings entre les termes de
DO et GO, la méthode exploitant GSAn a fourni une meilleure couverture de mappings entre
ressources que les autres méthodes.

6 Conclusions et perspectives de recherche

Nous avons décrit une synthèse des quatre objectifs de cette thèse pour annoter ou améliorer
l’annotation d’un ensemble de gènes donné. Ces objectifs étaient les suivants :

1. Annoter des ensembles de gènes par une analyse d’enrichissement présentant la sur-
représentation des termes d’annotation.

2. Améliorer l’annotation sur-représentée avecdes solutions exploitant les caractéristiques
de termes d’annotation issue d’une ontologie pour les grouper dans des clusters en fonc-
tion de leur similarité sémantique.

3. Représenter les résultats d’annotation d’un ou plusieurs ensembles de gènes au sein
de plusieurs métaphores visuelles a�n de mieux comprendre un contexte biologique
donné.
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4. Mettre en œuvre des techniques d’intégration pour proposer des annotations issues de
di�érentes ressources de connaissances a�n d’enrichir l’information biologique carac-
térisée par un ensemble de gènes.

Au cours de nos travaux, GSAn a été développé comme alternative aux outils basés sur l’enri-
chissement a�n d’annoter un ensemble de gènes et proposant une visualisation interactive
permettant d’explorer en détail les résultats d’annotation d’un ensemble de gènes.

Même si GSAn est disponible sur Internet et produit de bons résultats d’annotation, il reste des
améliorations à apporter pour fournir des annotations encore plus riches et précises. Parmi
les perspectives possibles, on peut citer l’intérêt : (i) d’inclure d’autres ressources de connais-
sances, décrivant par exemple les relations entre gènes dans un réseau génique de régulation,
et (ii) d’améliorer l’étape d’intégration de nouvelles ressources dans GSAn.
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Chapter 1

Introduction

1.1 Theroleofbioinformatics intobiological andclinical researches

Bioinformatics arose from the need to use computational methods for solving problems in
biology. Originally based on interactions between chemists, physicists, statisticians, mathe-
maticians, and biologists to create applications for biology, bioinformatics is nowadays a vast
domain following its own lines of research. Even if the bioinformatics domain is relatively re-
cent, its origins date back tomore than 50 years ago (see a quick resumealong thebrief history
in Gauthier et al. [Gau+18]). Key events where bioinformatics had an important role include
the Human Genome Project [Lan+01; Con04b], the HumanMicrobiome Project [Tur+07] and,
recently, the 1,000 Genomes Project [Con+15]. The emergence of the Internet in the nineties
allowed developing many bioinformatics resources accessible to everyone throughout the
world. These resources allow to explore, manipulate and generate biological information for
understanding diverse biological questions.

Bioinformatics covers a large spectrum of research �elds such as genomics, proteomics,
metabolomics, phylogenetics, transcriptomics, high-throughput image analysis, anddrugde-
sign. Today, with the development of high-throughput technologies and the massive gener-
ation of data to be treated, bioinformatics faces new challenges, including the management
of big data, the reproducibility of results and the integration of di�erent types of biological
data [Gau+18].

Advances in the bioinformatics �eld, particularly within the omics �eld, paved the way for
personalized medicine. Recently, terms like clinical bioinformatics, translational bioinformat-
ics or genomic medicine have emerged expressing the need for combining bioinformatics and
clinical sciences [But08; Sar+11; WL11; Bel+12]. These clinical �elds may expect that bioin-
formatics methodologies originally focused on biological discoveries can now be applied to
improve human health. Because performances of high-throughput sequencingmachines in-
crease over the years, the cost per megabase of DNA (DeoxyRibonucleic Acid) sequences (�g-
ure 1.1A) and per genome (�gure 1.1B) has drastically decreased. This decrease makes infor-
mation related to gene expression pro�ling (measurement of the activity of genes in a given
condition) more accessible for being used in clinical studies. The gene expression pro�ling
may help to better understand how genes are involved in particular biological or biomedical
conditions (i.e., a given biological process in a particular disease).
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FIGURE 1.1: Decreasing tendency in (A) megabase DNA sequences’ cost and (B) genome cost from
September 2001 to February 2019. The data are available on the National HumanGenomeResearch In-
stitute’sweb site (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data).

1.2 Motivation to improve the information ciphered by gene sets

The discovery of new medical drugs or vaccines implies to carry out large scale testing of
new therapies. The evaluation of their impacts requires to compare experimental data from
at least two populations (or one population over the time): one for the control cases (e.g.,
healthy population, population before receiving the vaccine) and one for a population hav-
ing a chronic disease (or the same population a�er receiving the vaccine). Over the past
decade, the revolution in new sequencing technologies has strongly supported the produc-
tion of omics data to improve our understanding of the relations between genotype (collec-
tion of genes) and phenotype (the observable features that are encoded by those genes) while
comparing two populations. Making use of these datasets is crucial to identify the genes in-
volved in a experimental condition by comparing the expression levels of genes in both pop-
ulations. Nowadays, a commonmethod consists in comparing the expression levels of genes
in both populations acquired using next-generation sequencing techniques. The key idea of
such studies is then to identify groups of impacted genes having common biological func-
tions to better understand their roles in the phenotype.

Such studies consider groups of genes that are o�en related as they co-occur in the same
pathway [Sub+05]. Several genes that are di�erentially expressed in a given pathway are
more relevant than only one genewith a strongly di�erent expression pattern. These groups,

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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hereina�er referred as gene sets, are formed based on experimental data by using clustering
algorithms or statistical approaches [JTZ04]. Then, to decipher the biological functions or
processes of these gene sets, it is necessary to access the information associated with genes
stored in knowledge resources. At last, researchers are interested in understanding the dif-
ferent cell functions that may be impacted by a vaccine, a drug or a disease. Considering
human data, users can obtain much information describing the gene functions according to
di�erent databases.

Consequently, the amount of information describing the biological function of genes in a
particular set might be too large for being treated manually. For example, focusing on Gene
Ontology Annotation (GOA) [Cam+04] (one of the most popular annotation database), on aver-
age, each human gene is described by the use of 10 biological terms, giving information with
varying degrees of details. At the gene level, the attribution of terms to a genemostly requires
computational methods that make use of experimental and proved information for speci�c
genes to transfer to genes they can be related to, from an evolutionary point of view. At the
gene set level, automatic enrichment methods [HSL09] make use of statistical approaches
from lists of terms (coming from each gene) to reduce the number of terms, by keeping those
that are relevant for the investigated gene set. These methods, combined with visualizations
for exploring results, arewidely accepted and used by biologists and clinicians. Nevertheless,
enrichment methods have drawbacks recently reported by several authors [BLG15; HTK18;
Tom+18]. Among these limitations, it should be noted that thesemethods do not consider the
inter-relations between terms of a given knowledge resource or across multiple resources.
This may generate redundancies within results and loss of precise or synthetic information
that may describe relevant information for a particular gene set.

During this thesis, we explored di�erent study �elds to improve the understanding of the bi-
ological context of gene sets. Our objective was to solve some drawbacks of current methods
performing gene set annotation and to provide a synthetic annotation whose precision and
relevance allow biologists or clinicians to better understand their gene sets. Hence, we used
knowledge resources called ontologies, which organize their entities according to their se-
mantic meanings, and in particular the Gene Ontology (GO) [Ash+00] that is one of the most
famous and exhaustive biological ontologies.

1.3 Project outline

This thesis is structured according to six chapters. A�er this introductory chapter, the rest
of this manuscript is organized as follows:

> In chapter 2, existingworks associatedwith annotation at the gene level and at the gene
set level are presented. At the gene level, we will introduce knowledge resources that
describe information about genes, by emphasizing on the GO and GOA. At the gene set
level, since the amount of information considerably increases, we will describe di�er-
ent solutions that provide relevant annotations as well as their drawbacks that we tried
to address in the works presented in the following chapters.
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> Chapter 3 is dedicated to the visualization of gene set annotation results. In particu-
lar, we will study the impact of visualizing annotations provided by enrichment analy-
sis for a single gene set and multiple gene sets. For a single gene set, we developed a
pipeline based on enrichment analysis for exploring results using two di�erent visual
metaphors. For the analysis of multiple gene sets, we collaborated with a Spanish re-
search group to annotate all gene sets using di�erent knowledge resources. Then, we
merged results for displaying them according to the structure of a unique knowledge
resource thanks to a visualization prototype that we called MOTVIS (MOdular Term VISu-
alization).

> Chapter 4 is focused on the annotation of a gene set by using an alternative method to
classical approaches based on enrichment analysis. First, we propose a newmethod to
annotate a gene set based on semantic similarity between annotation terms, clustering
methods and a new combinatorial method to provide a list of relevant terms to gene
sets. Following this strategy, we evaluated the impact of using di�erent semantic simi-
laritymeasures by taking into consideration the two following features that correspond
to relevant criteria for characterizing a good synthetic gene set annotation: (i) the num-
ber of annotation terms has to be drastically reducedwhile (ii) the representative terms
maintain a su�cient level of details and (iii) the number of genes described by the se-
lected terms should be as large as possible. Second, according to the results obtained in
the �rst study, we developed GSAn (Gene Set Annotation), a novel gene set annotationweb
server that uses semantic similarity measures to synthesize a priori GO terms. More-
over, GSAn o�ers interactive visualization facilities dedicated to themulti-scale analysis
of gene set annotations.

> Togo further andextend GSAn to other knowledge resources, chapter5presents anearly
stage of the integration of additional knowledge resources. To do that, we included two
new resources to be combined with Gene Ontology describing pathways and diseases.
In particular, we include these new knowledge resources to GSAn and search for map-
pings to �nd equivalences between these resources and GO.

> Finally, in chapter 6, we will conclude this manuscript and present some perspectives
for future researches.

1.4 Datasets used in this thesis

To evaluate the e�ciency of methods developed along this thesis, we used at least one the
following two datasets:

[C-260] The Chaussabel and Baldwindataset comprises 260 genes sets, thatwere computed ac-
cording to their expression pro�le achieved from one to ��een experimental protocols
using a co-expressed network approach [CB14]. Each of these protocols corresponds to
a study of a disease to identify genes that trigger an immune response. More precisely,
the modules that gather genes with a similar behavior within the ��een experimental
protocols may be related to the immune response in general. In contrast, modules of
genes that show similar behavior in a limited number of protocols may be expressed
speci�cally in some diseases.
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[B-346] The BTM (blood transcriptional modules) dataset comprises 346 gene sets and aims to
characterize innate and adaptive immune responses in vaccination studies [Li+13]. The
gene sets were built through large-scale data integration of publicly available transcrip-
tomes of human blood using “interactome”, “bibliome”, pathway databases and speci�c
biological contexts to deduce a set of transcriptional modules.

The [C-260] dataset has been used in works described in chapter 3 while [C-260] and [B-346]
were used in chapter 4 and chapter 5. These datasets are focused on human genes. Never-
theless, the work presented along this thesis was conceived in order to deal with gene sets of
any organism.
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Chapter 2

Knowledge resources and functional
annotation

In themiddle of the 19th century, GregorMendel suggested the existence of discrete inherita-
ble units that were later de�ned as genes in 1909 byWilhelm Johannsen [HL15]. The genes are
sequences of nucleotides that encode the synthesis of essential products of a particular organ-
ism. They became an important piece to understand the biological processes of a particular
organism. For years, the improvements of techniques and tools to extract the information of
a gene have allowed current machines to extract information of up to thousands of genes at
the same time.

In this chapter, wepresent information that is available about genes andhow it is represented.
Then, we introduce themain strategies to extract information about gene sets, which involve
genes that co-exist in similar experimental conditions, for improving their interpretations.
This chapter is structured in the following four sections: section 2.1 relates a brief history of
the origins of genes. In section 2.2, we describe the knowledge resources that store gene in-
formation andwe present the limitations of studies with a single gene to understand complex
biological contexts. section 2.3 shows the interest of studying a gene set in spite of a single
gene and describes fourmain strategies to extract their information based on the annotation.
At last, in section 2.4, we present the limitations and challenges of existing strategies.

2.1 Information supplied by a gene

In living organisms, the DNA (DeoxyriboNucleic Acid) is the genetic material that constitutes
the genome. The DNA is formed of large chains made from four main nucleic acids: Ade-
nine, Thymine, Cytosine and Guanine. The discovery of nucleic acids structure began in the
19th century a�er having isolated from the nucleus cells a component initially called nu-
clein [Dah05]. Throughout the 20th century, key studies have dealt with the identi�cation of
DNA as the genetic material [AMM44; HC52]. However, the real beginning of the modern
molecular biology started with the works of Franklin and Gosling[FG53] with the extraction
of X-ray di�raction image for the DNA and the double helix DNA structure proposition for-
mulated by Watson and Crick[WC53]. A�er these contributions, the e�orts were focused on
the genome DNA study from a functional and structural point of view.
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FIGURE 2.1: Simpli�ed vision of the central dogma of molecular biology. A fragment of DNA is tran-
scripted intomessenger RNA (mRNA) where the di�erence with the DNA is the presence of the nucleic
acid Uracil, instead of Thymine. Then, the mRNA is translated into proteins where each triplet of
nucleic acids (codon) are translated into an amino acid (from a start codon to an end codon).

The genome DNA contains information about the organism. Thousands of DNA fragments
(genes) must be processed to represent a phenomenon in the organism. Following the cen-
tral dogma of molecular biology, the gene is transcribed into a RiboNucleic Acid (RNA) frag-
ment, which is in turn translated into a protein (�gure 2.1). Progress in understanding the
procedures of genetic information transmission forced this initial fundamental scheme to
be expanded in order to accommodate additional procedures that also happen, at least in
some speci�c organisms. The information encoded in a DNA gene can be classi�ed into two
regions: coding and non-coding. The coding regions are the DNA portions of a gene that fol-
low the commented dogma for producing a protein. They have an impact on an organism
from a molecular or macromolecular point of view (known as phenotype). In contrast, the
non-coding regions do not encode proteins. Some non-coding regions are transcripted into
non-coding RNA such as transfer RNA, ribosomal RNA or regulatory RNA which are essential
to the translation process for the coding regions [MEG06; Con+12; PD14].

The recent revolution in new sequencing technologies, as a part of the continuous process
of adopting new innovative protocols [PK16] has strongly impacted our understanding of re-
lations between phenotype and genotype. These experimental analyses are crucial to under-
stand the gene features and these of their products as proteins. The extracted information
related to a gene (structural or functional information) is stored under the form of annota-
tions. The gene annotation is the connection between genes and the involved phenotype of the
gene products. A gene or its corresponding products can be associated to di�erent biologi-
cal information including their localization in the genome, description about the variants
or the products such as their expression in speci�c conditions. When the related informa-
tion implies roles in which a gene or gene product is involved, this association is de�ned as
a functional annotation. For a given gene, using annotation databases, one can expect to
get information such as the biological functions, processes, pathways, diseases in which this
gene is involved.

2.2 Knowledge resources providing biological annotation

To facilitate the access to this amount of information, the latter has to be stored and struc-
tured in systems that cover the di�erent facets of biology. In the bioinformatics domain, such
storage hasmainly beenmade into relational databases during the last few decades [MBV12].
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Nowadays, a particular attention is given to ontology for representing the knowledge neces-
sary to describe biological information before storing it. The notion of ontology has initially
been de�ned by Greek philosophers whose aim was to relate concepts to existence or real-
ity [GOS09]. According to Uschold et al. [Usc+98], an ontology can take a wide range of forms,
but necessarily includes a vocabulary of terms and some speci�cations of their meanings.
In practice, an ontology can be simply represented as a set of classes and properties for
describing objects in a given �eld of the real world [SGB00; HSG15]. These classes are then
organized according to a graph structure thanks to hierarchical (taxonomic or meronymic)
and associative (or transversal) relations. For example, in a biological ontology aiming to de-
scribe the di�erent cells, their parts and their functions, Eukaryotic_cell, Animal_cell,Mitosis
andMeiosis are classes. The is_a relation existing between Animal_cell and Eukaryotic_cell is
a taxonomic relation and the involved_in relation between Animal_cell and Meiosis is an as-
sociative relation. For describing concepts and relations more comprehensively, formal on-
tologies are providing rules or constraints (called axioms) in a logical form through a formal
language that allows to make deductions and potentially infer new knowledge. Such axioms
enable to describe for example necessary conditions, like each cell that is a eukaryotic cell must
be involved in meiosis and mitosis1.

Ontologies have been used in a large number of disciplines for di�erent purposes including
legal information systems [BV97], geography science [FE99], semantic web [Din+07], biol-
ogy or biomedicine [Don06; RSN08; RB11; HSG15]. The notion of biological ontologies or
bio-ontologies has been introduced later. Their main application is the annotation and the
integration of data [RB11]. Among the large number of bio-ontologies, the Gene Ontology (GO)
is the most widely used [Con18] and is the central focus of the next subsection.

2.2.1 Gene Ontology

GO has been designed for describing the roles of gene products of any biological organ-
ism [Ash+00]. Unlike what is suggested by its name, GO originally corresponded to a con-
trolled vocabulary rather than an ontology [SWS03; RSN08]. A controlled vocabulary provides
a list of concepts, which regroup synonymous terms and are generally organized into a tree
structure. More recently, e�orts have beenmade for enriching GO by adding axioms to some
of its concepts, converting it �nally into a real ontology [Mun+11; The15].

GO structure

GO is organized according to three distinct categories, also known as ontologies, beingMolec-
ular Function (MF), Cellular Component (CC), and Biological Process (BP). MF describes the ac-
tivities of gene products at amolecular level, CC presents the localization or cellular structure
in which gene products perform their functions and BP includes the larger processes accom-
plished by multiple molecular activities. GO is composed of classes, relations and axioms.

Classes. The class, called “GO term” in GO parlance, represents a type of entity in a given
domain. In GO, this entity thus corresponds to a function, localization or process of a gene

1Note that this is an example and there are more conditions to consider a cell as an eukaryotic cell
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or gene product (e.g., protein transport, host cell membrane or cytokine-mediated signaling path-
way). Each term is associated with a unique identi�er, such as GO:0015031, GO:0033644 or
GO:0019221 respectively for theprevious examples. AmongGO terms, nearly 11,000 aremolec-
ular functions, little more than 4,000 are cellular components and almost 30,000 are biologi-
cal processes.

GO terms are usually associatedwith additional information, including their de�nition, asso-
ciated secondary or alternative identi�ers, or a �ag indicating if a given term is obsolete (�g-
ure 2.2). In addition, each GO term has one ormore synonyms, such as cytolysis (GO:0019835)
that has as synonyms autolysin activity, necrosis and lysis. The synonyms can be exact, broader
than,more precise or related to the term in an imprecise way. Another interesting information
is the database cross-references that connect the GO term to an identical or very similar class
described in another knowledge resource. For example, the GO term cytolysis is linked to a
class in UniprotKB-KW (KW-0204) and Wikipedia (Cytolysis).

FIGURE 2.2: Screenshot from Protégé [Noy+03] showing information related to the GO term cytolysis

Relations. GO contains more than 45,000 terms connected through di�erent kinds of re-
lations: hierarchical (e.g., is_a, part_of ) and transversal (e.g., regulates and more recently
starts_with). These relations (corresponding to edges) in addition to the set of terms (corre-
sponding to nodes) make the graph structure of GO be aDirected Acyclic Graph (DAG). A DAG is
a graph that �ows in one direction and does not generate cycles in their paths [Chr75; TS11].
The hierarchical relations in the DAG provide properties such as reachability or transitivity.
These relations in GO are directed from the children to the parents. Moreover, in a DAG, a

https://www.uniprot.org/keywords/KW-0204
https://en.wikipedia.org/wiki/Cytolysis
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FIGURE 2.3: GO excerpt from the QuickGOwebsite [Bin+09b]. This �gure focuses on the ancestor terms
of regulation of blood coagulation (GO:0030193). This sub-graph displays the three most important
relations provided by GO.

node can be relatedwith one ormore parent nodes. Reachability is the ability to access a term
fromanother term connected by a path. For example, a term t1 is reachable fromanother term
t2 when there exists a path that starts at t2 and ends at t1. The transitivity in aDAG iswhenever
a term t1 is related with a term t2 and t2 is related with a term t3 then t1 is related with t3. Thus,
if the relation between these terms is is_a, t2 and t3 correspond to the ancestor terms of t1 while
t1 is a descendant term of t2 and t3. If the relation is direct (i.e., only one edge separates terms),
like between t2 and t1, the ancestor canbe considered as a parent and the descendant as a child.

GO includes a considerable number of relations between terms, but the three main relations
in GO are the following:

• The is_a relation constitutes the hierarchical taxonomy structure of GO. The transitiv-
ity feature of is_a allows to infer information between terms that are connected through
these relations. Thus, the terms at the bottom of the hierarchy provide more speci�c
information while the terms placed at the top of the hierarchy are more general. For
example, theGO term blood coagulation (GO:0007596) ismore speci�c than any of its two
parents hemostasis (GO:0007599) and coagulation (GO:0050817), being themselves more
speci�c than their parents, etc. (�gure 2.3).
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• The part_of relation is a hierarchical relation used to represent the part-whole rela-
tionship. Thanks to the transitivity feature, if a term A is part of a term B, the presence
of the term A also implies the presence of the term B, while the inverse is not true.
For example, in �gure 2.3, blood coagulation has a part_of relation with wound healing
(GO:0042060), meaning that if an event involves blood coagulation, we can a�rm that a
wound healing event is also involved. However, whenwe observe awound healing event,
the occurrence of blood coagulation cannot be a�rmed.

• The regulates relation (and its sub-types negatively_regulates and positively_regulates) is
a non-transitive transveral relation that is also important in the GO structure. This rela-
tion describes a speci�c casewhere one term is a�ected by themanifestation of another
term, with an action of activation or suppression. Normally, the terms that are related
to other terms according to a regulates relation are presented in the speci�c branch of
biological regulation (�gure 2.3).

GO format and tools. Many biological ontologies, such as GO, have been represented in the
Open Biomedical Ontologies (OBO) format, because it has been speci�cally designed to imple-
ment biomedical ontologies. Simultaneously, GO has also been described according to se-
mantic Web languages, and more speci�cally theWeb Ontology Language2 (OWL) [Has17].

There are numerous web tools that provide user-friendly front-end interfaces to explore and
to investigate the GO structure [MC17] (e.g., AmiGO [Car+09] or QuickGO [Bin+09b]).

GO is updated daily, but users can also edit it by using ontology editors like Protégé [Noy+03],
OBO-EDIT [Day+07] or process it with libraries as OWL-API [BVL03]. These tools are inter-
faces allowing to explore, visualize and edit ontologies. They include a particular type of
programs, called reasoners, that are run on the ontology to detect potential inconsistencies
and to make deductions. Thus, a reasoner allows to classify new knowledge considering the
structure of the ontology and the logical rules de�ned in the ontology [Abb12].

Gene Ontology Annotation

The roles of ontologies are multiple. Among them, the annotation, for which most bio-on-
tologies , including GO, were developed in the early 2000s [HSG15], is crucial. The principle
of annotation is to attach data to some other piece of data, as de�ned by Oren et al. [Ore+06].
These authors have also reported that when knowledge from an ontology is used to annotate
data, it corresponds to ontological annotation. The GO Annotation (GOA) database has been
developed for this purpose, with the speci�c aim to associate GO terms to a gene product of a
given organism in order to describe its biological roles [Cam+04]. The GOA is a consortium of
di�erent groups including UniProt [Apw+04; The16],Mouse Genome Database (MGD) [Bla+97;
Bul+18],Wormbase [Gro+18], Saccharomyces Genome Database (SGD) [Che15], Flybase [MCG16],
dictyBase [Kre+04; Chi+06] and The Arabidopsis Information Resource (TAIR) [Rhe+03; Lam+11].
Other groups out of the consortium such as EcoCyc [Kar+02] and the Functional Gene An-
notation group at the University College London also contribute by providing annotations to
enrich GOA. This assignation has been realized manually (when such an annotation was ob-
served during laboratory experiments or according to bibliography) or automatically (e.g.,

2https://www.w3.org/TR/owl-features/

https://www.w3.org/TR/owl-features/
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via the identi�cation of sequence similarities). An evidence code is thus associated with
each annotation for indicating its origin (e.g., fromwhich process and/or according to which
source it was created) [RB09]. There are 22 di�erent curated evidence codes involving experi-
mental, phylogenetic, computational evidences as well as author and curatorial statements. The
experimental evidence codes denote that the association between a gene and a GO term was
provided by experimental methods. Phylogenetically-inferred annotations are derived from
phylogenetic models where the loss or gain of a gene function is presented through a phy-
logenetic tree. The inference of this kind of annotation is supported by assertions produced
by experimental analyses. The computational analysis evidence code corresponds to associa-
tions provided by in silicomethodswhich use structural similarities like sequence similarities
between two genes and inferring the information from the known gene to the unknown. Au-
thor statement provides associations by the interpretation of authors in the cited reference.
The curator statement corresponds to any evidence that does not belong to any of the previous
evidence codes. One such statement is the ND evidence code (No biological Data available)
which means that the function, process or localization of a gene exists but the curator is not
able to knowwhat it is exactly. GOA also includes an electronic annotation evidence called In-
ferred from Electronic Annotation (IEA). IEA evidence corresponds to annotations that have not
been manually reviewed even if the used method suggests quality assessments. Annotations
with the IEA evidence are derived from two main pipelines: 1) manual mappings between
external resources and GO terms, or 2) automatic transfer from orthologous gene products.
Including annotations having the IEA evidence code within gene analysis has been discussed
by several authors [Cam+05; Pes+09; Sch+09; PŠD11; Guz+12]. In GOA, 90% of gene-GO term
associations have this IEA evidence code. Thus, considering this evidence code in the anal-
ysis might compromise results by the presence of false positives, whereas discarding them
implies to ignore a large amount of potentially relevant information. For more details about
this controversy, the readermaybe interested in thework ofGuzzi et al. [Guz+12] that summa-
rizes the di�erent assessments using IEA for analyzing di�erent datasets and the conclusions
drawn in each work.

In addition to evidence codes, quali�ersmay be added to provide a precision about an anno-
tation. A quali�er is a �ag that modi�es the interpretation of an annotation. In GO, there are
three types of quali�ers: NOT, contributes_to and colocalizes_with. The most notable quali�er
is NOT, which is used for stating explicitly that a gene product is not assigned to a given GO
term.

The transitivity property of is_a and part_of relations in GO has a repercussion on annota-
tions described in GOA, resulting from the true-path-rule. This means that if GOA contains an
annotation between a given gene and a GO term, annotations can be deducted between this
gene and the whole set of ancestors of the GO term [Hun+14]. Thus, the three root terms in
the GO structure (BP, MF and CC) are related to any gene having at least one annotation in
GOA with one of their descendant terms.

GOA format. The GOA is available in two plain text document formats: Gene Product Associ-
ation Data (GPAD) and Gene Association File (GAF). GPAD provides information related to the
annotation between the gene products and GO terms and it needs to be combined with its
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companion �le Gene Products Information (GPI) to extract the information of the gene prod-
ucts (i.e., the gene id or the organism taxon). Instead, GAF includes all information provided
by GPI and GPAD. It involves 17 columns describing both the association (GO term - gene
product) and information regarding the gene product itself. A summary description of each
GAF column is presented in �gure 2.4 and detailed in Gaudet et al. [Gau+17] and on the GO
website3.

2. P0519 (1)

3. PHO3

4. NOT (*)

5. GO:0003993 (1)

6. PMID:2676709 (+)

7. IMP (1)

8. GO:0000346 (*)

9. F (1)

10. acid phosphatase (?)

11. YBR092C (*)

12. gene (1)

13. taxon:4932 (1,2)

14. 20010118 (1)

15. SGD (1)

16. part_of (CL:0000084) (*) 

17. UniProtKB P00519-2 (?)

1. UniProt (1) Database from which the identifier in column 2 is derived

Identifier in the database denoted in column A

Database object symbol; whenever possible, this entry is
assigned such that it is interpretable by a biologist

Flags that modify the interpretation of an annotation

The GO identifier

One or more identifiers for the authority behind the anno-
tation e.g., PMID, GO Ref Code, or a database reference

Evidence code

The content depends on the evidence code used and
contains more information on the annotation

The ontology to which the GO term in column 5 belongs to

Name of the gene or the gene product

Synonym for the identifier denoted in column 2 for the
database in column 1

The type of object denoted in column 2, e.g., gene,
transcript, protein, or protein_structure

The NCBI ID of the respective organism(s)

Date on which the annotation was made; note that IEA
annotations are re-calculated with every database release

The database asserting the annotation

Annotation extension

Gene Product Form ID

Zero, one, or more of: NOT negates the
the annotation), contributes_to (when
the gene product is part of a complex), and
colocalizes_with (only used for the CC
ontology).

Different content is possible:
-  GO ID is used in conjunction with evidence
   code Inferred by Curator (IC) to denote the
   GO term from which the inference is made
- Gene product ID is used in conjunction with
  evidence codes IEA, IGI, IPI, and ISS. For
  example, in conjunction with the evidence 
  code Inferred from Sequence Similarity (ISS)
  it identifies the gene product, similarity to
  which was the basis for the annotation

C is Cellular Component, P is Biological
Process, and F is Molecular Function

For single-organism terms, the NCBI taxonomy
ID of the respective organism. For multi-orga-
nism terms, this column is used either in con-
junction with a BP term that is_a multi-orga-
nism process or CC term that is_a host_cell,
in wich case there are two pipe-separated NCBI
taxonomy IDs: the first denotes the organism
encoding the gene or the gene product while
the second denotes the organism in the interac-
tion.

Any database in the GO consortium can make
inferences about any organism, so it is not
obligatory that the field 13 corresponds to the
field 15

Cross references to GO or other ontologies
that can enhance the annotation.

This field allows the annotation of specific
variants of that gene or gene product

FIGURE 2.4: Gene Association File (GAF) 2.1 column description. Figure adapted from Gaudet et
al. [Gau+17]. The light blue color indicates optional columns and the green color rectangles provide
a more detailed description of certain columns.

2.2.2 Other knowledge resources

GO is not the unique knowledge resource that describes information about genes. Other data-
bases and ontologies exist for describing other facets of the biological domain. As an illus-
tration, the National Center for Biotechnology Information (NCBI) biomedical portal [OLe+15]
provides easily accessible information and services related to biomolecules. Focusing on the
functional annotation, a gene product can be involved in other situations than biological pro-
cesses or functions or it can be placed in an organelle. Genes can also be the target of drugs,
be expressed in a particular cell, be involved in important reactions or participate in path-
ways, be produced in speci�c conditions or phenotypes, or even be precursors of diseases.
To illustrate that, we present in the following sections two examples of relevant knowledge
resources to interpret biological data. The use we made of them is described in chapter 5,
devoted to the integration of other knowledge resources within the GSAn framework.

3http://geneontology.org/docs/go-annotation-�le-gaf-format-2.1/

http://geneontology.org/docs/go-annotation-file-gaf-format-2.1/
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Pathway sources

Abiological pathway is a series of actions occurring in a cell to produce or catabolizemetabo-
lites. These actions can make interactions between molecules producing e�ects such as
the regulation of gene expression, signal translation and metabolism. Structuring biological
knowledge into pathways reduces the complexity of the numerous combinations of molec-
ular entity interactions [Dom+18]. For example, Pathguide is a web server listing hundreds
of biological pathway-related resources [BCS06]. Among the 702 knowledge resources listed
in May 2019, 166 and 133 resources describe metabolic and signaling pathways, respectively.
Moreover, some of these resources (e.g., Kyoto Encyclopedia of Genes and Genomes or
KEGG [KG00], Reactome [Jos+05], Panther [Tho+03], Biocarta [Nis01], and WikiPath-
ways [Pic+08]) provide structured informationdescribing pathways and their associationwith
molecular entities as gene products.

Disease sources

A disease is de�ned as “a veri�able, self-conscious sensation of dysfunction and/or distress that is
felt to be limitless, menacing and aid-requiring” [Kot80] and may refer to a set of genes as being
the key actors. In genomics, two types of diseases are speci�cally studied: monogenic and
polygenic. A monogenic disorder is produced by a defective single gene in the chromosome.
This type of disorder is inherited according to Mendeley’s rules, where depending on the
dominance of a given gene, a gene could be expressed in a generation or another. TheWorld
Health Organisation estimates that over 10,000 human diseases are monogenic, provoking a
heavy loss of life. Examples of monogenic disorders are Thalassaemia,Haemophilia, Fragile X
syndrome and Huntington’s disease. Polygenic disorders, or non-communicable diseases, are
usually involving multiple genes with complex interactions. This kind of diseases is not al-
ways acquired by parent heritage but is rather due to environmental factors (e.g., chemical
exposition, lifestyle). Some of the top 10 global causes of death in 2016 like Diabetes mellitus,
Stroke, Alzheimer disease or some Cancers like Trachea, Bronchus or Lung cancers are polygenic
disorders.

There are many resources describing human diseases and the extraction of complete infor-
mation related to a speci�c disorder must be done by combining di�erent disease resources.
The most broadly used resource in the biomedical domain is the Uni�ed Medical Language
System (UMLS). UMLS is a compendium ofmany controlled vocabularies whose aim is to link
health information or medical terms across di�erent computer systems for enabling search
engine retrieval, data mining, statistics or terminology research. The UMLS collects nearly
200 biomedical vocabularies. Some knowledge resources included in the UMLS are focused
on diseases involving genes, such as the Medical Subject Headings (MeSH) [Lip00], the Sys-
tematized Nomenclature Of Medicine–Clinical Terms (SNOMED–CT) [Don06], the Orphanet Rare
Disease Ontology (ORDO) [Vas+14], the Disease Ontology (DO) [Sch+11] or the Human Phenotype
Ontology (HPO) [Rob+08].

2.2.3 Limitation in studying single genes

Knowledge resources, such as GO, are useful to determine the functions of an annotated gene
(or a gene product) in a given organism to understand its roles and implications in biological
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contexts. Nevertheless, the information provided by a single gene is not enough to under-
stand complex biological contexts. Considering awhole gene set to study a biological process,
a pathway or a complex disease is more useful than considering genes individually [Sch+12].
For example, in clinical applications, until recently, single genes were used in genetic tests
to con�rm a clinical diagnostic such as cancer, neurological disease or heart disease. Even
if they provided good results for speci�c monogenic diseases, most of the diseases are not
induced by themutation of a particular gene but rather involvemultiple genes [Nev+13]. Cur-
rently, studies consider groups of genes that are o�en related as they co-occur in the same
pathway [Sub+05]. As mentioned in section 1.2, several genes that are slightly di�erentially
expressed aremore relevant than only one gene with a strongly di�erent expression pattern.
Thus, the next section describes the challenges raised by the interpretation of gene sets to
better understand a biological context.

2.3 Interpreting gene sets

Studying a single gene by exploiting its annotation corresponds to traditional approaches in
biological research [HSL09]. Today, with the new sequencing technologies, the use of gene
set approaches has become increasingly popular. Over the years, manyworks have been ded-
icated to create, manage and curate gene sets [Ant11; Bak+11; Cul+11; Li+13; CB14; Lib14]. Ge-
neWeaver is a vast gene set repository for storing, curating and analyzing gene sets from het-
erogeneous data sources [Bak+15]. Currently, GeneWeaver includes more than 199,650 gene
sets largely derived fromhigh-throughput expression techniques, mutation and perturbation
screens, and curated biological relationships. TheMolecular Signatures DataBase (MSigDB) is
another gene set repositorywidely used for the functional annotation of gene sets [Lib+11]. In
the 6.8 version, MSigDB includes 17,810 gene sets divided into eight major collections, and
several sub-collections derived from specialized resources such as GO, KEGG, TRANScrip-
tion FACtor database (TRANSFAC) [Win+96] and L2L [NW05]. A recent functional annotation
method, called EGSEA, provided a gene set database of 25,000 gene sets involved in 16 collec-
tions, where the gene sets of MSigDB are included into a single collection [Alh+16].

This new �eld of research has become unavoidable over the last two decades and it is based
on the inference of gene sets according to a comparisonof experimental results under diverse
conditions. In such a context, sets of genes that are contributing to speci�c phenotypes are
inferred based on various experimental conditions [Cha+08; Bin+13; Li+13; CB14]. For exam-
ple, Chaussabel and Baldwin [CB14] used experimental conditions related to various diseases
to decipher the genes that may be involved in the innate or speci�c immune response. An
additional issue is the interpretation of these gene sets using the information available for
each gene, which is based on annotation terms derived from a wide range of resources. The
functional interpretation of genes is decisive for the understanding of life and it involves to
make use of the whole subset of terms that can be related to these genes. With this goal, pub-
lic knowledge resources such as KEGGorGO are generally used to recover informationwhich
is already available about the genes involved in these sets. However, the number of terms in
such subsets can be relatively large. For example, considering that human genes are anno-
tated on average with 10 terms, a subset of 100 genes may lead to several hundreds of terms
including an important and useless overlap of similar terms. Moreover, when studying sev-
eral heterogeneous gene sets, the number of terms increases, thereby involving thousands of
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them. Thus, the manual expertise to clearly decipher the main functions that may be related
to the studied gene set(s) is time-consuming and becomes impracticable when the number
of gene sets increases, as it is the case in vaccine/drug trials. This way, even for analyzing a
tiny number of genes, scientists may be overwhelmed with the large amount of information
accessible to the community. Thus, automatic methods have been proposed to facilitate the
analysis of gene sets.

In this section, we de�ne four areas of studies that help understand the biological function
of a gene set. First, we present existing enrichment methods for annotating a given gene set.
We then de�ne some alternatives based on gene annotation and ontological characteristics.
Thirdly, we describe the use of visualizations to facilitate the exploration and interpretation
of gene set annotation. Finally, we present some attempts to integrate biological knowledge
resources for providing a wider biological context.

2.3.1 Gene set annotation by classical enrichment techniques

Attributing a biological function to a given gene set �rst requires to analyze the information
given by annotation terms associated with each gene of this set. A key issue of gene set an-
notation is the too high and too heterogeneous amount of annotation terms that makes their
global analysis di�cult. Decreasing the number of terms while keeping the most informa-
tive ones is amajor challenge to understand the biological implications of a gene set [BPG16].
Indeed, these informative terms should be representative of the initial big amount of anno-
tation without redundancy between them, while providing the essential information. One
popular approach used to interpret biological information related to gene sets is based on
enrichment statistical methods. The underlying idea of these methods is to compare, on the
basis of their annotations: (i) genes sets (which are co-expressed or co-regulated in a given
phenotypical condition, for example), and (ii) a reference (e.g., the complete genome or a
gene set generated randomly whose size is comparable). During the last decade, many sta-
tistical enrichment methods aiming to decipher gene sets and to understand their biological
meaning have been developed (for a review, see [HSL09]).

Enrichment methods have been divided into three categories or classes [HSL09]: Singular
Enrichment Analysis (SEA), Gene Set Enrichment Analysis (GSEA), andModular Enrichment Anal-
ysis (MEA). Later, Khatri et al. [KSB12] proposed the following alternative classi�cation of
enrichment methods by focusing more on pathways’ application: Over-Representation Analy-
sis (ORA), Functional Class Scoring (FCS), and Pathway Topology (PT)-based approaches. These
classi�cations are widely accepted and have been popularized by many authors as [TH10;
Nun+14; Yan+17; Fab+19]. By looking at the de�nition of each di�erent category, equivalences
can be established. The SEA and GSEA classes are respectively equivalent to ORA and FCS,
while MEA and PT are slightly di�erent in their descriptions.

The di�erent categories are described below with an illustration of each of these categories
in �gure 2.5.
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FIGURE 2.5: Enrichment analysis schemas for the three classes: (A) SEA or ORA, (B) GSEA or FCS,
and (C) MEA and its sub-category PT. Each schema represents the procedure, using a gene expression
matrix as input and generating a list of enriched terms as output.
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Class I: SEA or ORA

These methods evaluate the statistical signi�cance (a result statistically signi�cant means
that it is highly unlikely that this result was produced by chance) of a fraction of genes for a
particular annotation term. Using exclusively a gene list, each associated annotation term is
compared to a reference gene list using a statistical test to compute the enrichment p-value
(�gure 2.5A).One term is enrichedwhen it exceeds a thresholdprede�nedbyusers. Statistical
tests that canbeused todetermine the enrichment p-value include theChi-square, theFisher’s
exact test, the binomial probability, and the hypergeometric distribution (see a description of
them in [Riv+06]). Thus, a list of enrichment terms is proposed to summarize the biological
function of the preselected gene set. Examples of tools from this class are GO-stat [BS04],
MappFinder [Don+03], KENeV [Pil+15], ClueGO [Bin+09a], g:Profiler [Rei+07; Rau+19], and
DAVID [Den+03; Hua+07].

Class II: GSEA or FCS

Thesemethods are suitable to compare two biological studies (e.g., tumor cells versus normal
cells) [HSL09; TH10]. Anadvantage of theGSEAmethod is that it doesnot require aprede�ned
threshold to get interesting genes. Instead, GSEA uses all genes for the analysis. Generally,
the enrichment process performed by these methods can be divided into three steps [AS09;
KSB12] (�gure 2.5B). First, a gene-level statistical approach (as t-test, Q-statistic or z-score)
computes the di�erential expression of each gene and the genes are then ranked by their
degree of di�erential expressionor fold change [TH10; Fab+19]. Secondly, an enrichment score
distribution is calculated by using the ranked gene list for a particular annotation category
whose prior knowledge is available (e.g., a given GO term). A p-value is determined by using
statistical tests, such as the Kolmogorov–Smirnov test [Sub+05]. Tools falling into the GSEA
class include the GSEA tool [Sub+05], EGSEA [Alh+16], sigPathway [LTP13], and PCOT2 [SB10].

Class III: MEA or PT

The description of this last class is slightly di�erent due to the fact that MEA and PT are
not equivalent. MEA was de�ned by inheriting the basis of SEA methods including an ex-
tra term-to-term network discovery algorithm [HSL09], while the PT method is essentially
similar to the GSEA method except that it uses the pathway topology to compute the gene-
level statistical value (�gure 2.5C). The additional network algorithm uses the hierarchical
structure of a knowledge resource (generally GO) or the correlation between genes. Tools
like DAVID [Hua+07], Ontologizer [Bau+08], topGO [AR09], GeneCodis [TNP12] and Enrich-
Net [Gla+12] perform a network algorithm, such as a parent–childmethod or the kappa statis-
tic a�er the enrichment analysis computed as in the SEA class (�gure 2.5C). Focusing on
pathways, ScorePAGE [Rah+04] and Pathway-Express [Dra+07] are examples of enrichment
analysis tools that apply topological similarities to obtain the gene-level statistical value (�g-
ure 2.5C).

2.3.2 Opportunities of ontological annotation

As commented in section 2.1, information regarding genes or gene products can be stored
in knowledge resources, as bio-ontologies, for describing di�erent phenotypes. The advan-
tage of using an ontology is that all the knowledge it describes as well as its structure can be
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used to have additional information regarding annotation terms [LJM05]. In particular, each
term in GO hasmany features which can be used to determine its similarity with other terms.

Another solution, also based on GO and currently used along with enrichment analysis, is
called the GO subset annotation [Con04a; Rhe+08; Con18]. These techniques reduce the com-
plexity of the ontology by selecting only some terms speci�c to a given domain [Rhe+08;
DSR10; HDA11; Pri+13; ZYL17].

We �rst introduce the features that may characterize each term in GO. Then, we present se-
mantic similaritymeasures that can be used to compare two terms by using these features. At
last, we describe the approach consisting in the creation of a subset of GO terms for realizing
analyses.

Features of a term

TheGO structure is de�ned as aDAG, inwhich terms are connected through direct links. This
type of structure provides characteristics to GO terms, such as the depth (i.e, the longest path
from the root of the ontology to the term), the set of its descendants (i.e, its child terms and re-
cursively until the leaves), the set of its ancestors (i.e, its parent terms and recursively until the
root), and its Information Content (also referred as IC). The IC is a quantitative value that de-
termines the information carried by a given term. Mazandu andMulder [MM13] classi�ed the
di�erent types of IC into two families: annotation-based and topology-based. The annotation-
based family computes the IC by using information from external resources [Res95] while
the topological-based family uses information from the structure of the ontology in which
the term is de�ned [SVH04; Wan+07; ZWG08a; SA10; SBI11; MM12a].

Semantic similarity and relatedness

The identi�cation of similarity between two terms may be crucial for facilitating the inter-
pretation of gene set annotation. Considering terms associated with the genes of a given set,
their similarity can be used to group these terms into categories with the aim tominimize the
number of terms describing the biological context of this gene set. The semantic relatedness
and semantic similarity are measures assessing the resemblance in meaning of two terms
within an ontology.

According to Pedersen et al. [PPM04] and Pesquita [Pes07], semantic relatedness and seman-
tic similarity are two related, but distinct notions. Thus, semantic relatedness is a broader
notion making use of several relations between two concepts (e.g., is_a, part_of, regulates)
while semantic similarity is a special case of relatedness that makes only use of taxonomic
relations. Nowadays, the number of proposed measures of semantic relatedness and sim-
ilarity is extensive [PPM04; Pes+09; Guz+12; MCM17]. Pedersen et al. [PPM04] proposed a
classi�cation of semantic relatedness and similarity in biomedical knowledge according to
three types: path �nding, IC or context vector. Pesquita et al. [Pes+09] proposed a survey of
semantic similarity measures used for comparing terms in the context of GO. The authors
categorized these measures according to the three following classes:

• node-basedmeasures which make use of features of GO terms,
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• edge-basedmeasures which leverage relations that exist between GO terms,

• hybridmeasures which mix methods from the two previous classes.

[Guz+12] also did a review of existing semantic similarity measures. Authors displayed the
latter within a Venn diagram, which facilitates the identi�cation of features that are used by
many measures but also strategies that exploit only a few of them. In addition, measures
whichmake use of multiple features can also be easily identi�ed, being at the intersection of
multiple ovals. Mazandu et al. [MCM17] recently presented an additional review of semantic
similarity measures (referred to in their paper as “term semantic similarity”). These authors
provided an exhaustive list of the di�erent ICs that have been proposed in the literature and
re�ned the classi�cation proposed by Pesquita et al. [Pes+09] by adding the following sub-
category to the node-basedmeasures: graph-basedmeasures. This subcategory has been pre-
viously introduced in Mazandu and Mulder [MM12a] for specifying measures based on the
ancestors and/or descendants of the terms to be compared.

Semantic similarity measures are used in a wide range of applications and domains. Harispe
et al. [Har+15] described three main domains of application: Natural Language Processing,
Knowledge engineering, semantic web and linked data and Biomedical informatics and bioinfor-
matics. Focusing on Biomedical informatics and bioinformatics, some works have presented
the interest to use semantic similaritymeasures to evaluate the functional similarity between
genes [Frö+07; Wan+07; Du+09; Yu+10], to study protein-protein interactions [XDZ08], to pre-
dict gene annotation [Ye+05; MM12b] or cellular location [LD06], to assess gene set coher-
ence [RRN09; DA11], to compare gene sets [BDD14], and to improve the gene set annota-
tion [Xu+09; Sup+11; Yu18].

Many tools making use of semantic similarity measures have been proposed for performing
a gene set annotation based on GO. Supek et al. [Sup+11] included in the REVIGO tool an a pos-
teriori analysis of the terms computed by enrichment methods by using semantic similarity
to reduce redundant information. Other tools such as FunSimMat [SA07], G-SESAME [Du+09],
GFSAT [Xu+13], DAGO-Fun [Maz+15], GOGO [ZW18], GOSim [Frö+07] and GOSemSim [Yu+10] com-
pute semantic similarity and/or relatedness between two or more GO terms as well as func-
tional similarity between genes. FunSimMat o�ers pre-computed functional similarity val-
ues of proteins and protein families. Also, this tool allows to compute semantic similarities
from a list of GO terms compared all-against-all [SA07]. G-SESAME is a set of tools providing
semantic and functional similarities by using classical approaches and their proposed mea-
sures [Wan+07; Son+14]. These tools compute similarity between two genes or proteins as
well as two sets of GO terms. Moreover, G-SESAME provides a function called “knowledge
discovery” that groups genes by using a clustering method according to their functional sim-
ilarity. GFSAT, DAGO-Fun, and GOGO provide similar functionalities like G-SESAME. Additionally,
DAGO-Fun includes a gene set enrichment tool (part of the SEA class) with an a posteriori anal-
ysis that applies a semantic similarity measure. At last, the R packages GOSim and GOSemSim
allow to compute semantic and functional similarity into a script. An advantage of these
tools compared to stand-alone or web tools is the possibility to choose the annotation and
the ontology version in an R program for computing similarity. Moreover, a Java library (not
being GO-speci�c), called Semantic Measures Library (SML), has been developed and involves
di�erent semantic similarity and relatedness measures [Har+13]. SML includes more than 50
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semantic and functional similaritymeasures and canbeusedwithdi�erent ontology formats.

Other tools use semantic similaritymeasures combinedwith graph theoretical approaches to
annotate gene sets. Lee et al. [LHK04] described an approach to annotate gene sets by using
the structure of GO (transformed into a tree structure4) by using semantic similarity mea-
sures. Authors did not mention semantic similarity measures but their distance approaches
(i.e., maxPd and avgPd) are actually based on the lowest depth of the common ancestor be-
tween two GO terms (called Lowest Common Ancestor or LCA), which is a feature used to com-
pute some semantic similarity measures.

GO subsets

GO subsets (or GO slims) provide a overview of biological processes or functions for a sin-
gle organism, clade of organisms or a broader biological area [HDA11; Pri+13]. Thus, very
speci�c GO terms can be discarded to provide a �ner granularity of information. Moreover,
some complete branches may be irrelevant for a particular organism or domain. GO subsets
aim at selecting only relevant GO terms for a given purpose. For example, the GO terms mi-
totic cell cycle (GO:0000278) andmeiotic cell cycle (GO:0051321) have to be removed if one tries
to create a GO slim dedicated to the description of bacterial organisms.

Eleven customized GO slim annotations currently maintained by the GO consortiummainly
focused on various subgroups of organisms (e.g., plant, yeast). Also, tools like AmiGO GO
Slimmer [Car+09], SGD GO Slim mapper [SH11], Map2SLIM5 or QuickGO [Bin+09b] allow users
to create their ownGO slim. Whilemany uses of GO slim annotations have been proposed for
speci�c projects [Arn+09; GMR10; Pri+13;Woo+19], only a fewattempts have beenmade to au-
tomatically compute them [DSR10; JL10]. Davis et al. [DSR10] calculated the optimal reduced
GO graph by using graph and information theories. Jin and Lu [JL10] identi�ed informative
subsets of GO terms keeping the maximal semantic information by using the frequency of
annotation terms. In contrast, the number of methods related to their exploitation is more
sizable as they mainly depend on the use of various similarity measures to compute prox-
imity between annotated GO terms and slim customized annotations. Put simply, genes are
assigned to a speci�c category given by the slim annotations [NSG14]. These methods may
also be combined with enrichment analyses where the set of annotations is, from the begin-
ning of the analysis, reduced to a subset of terms [PGC09; DSR10; GMR10; Cou+16; SVW16].

2.3.3 Summarizing results with visualization

Visualization is very useful to explore scienti�c knowledge. The adage a picture is worth a
thousand words refers to the notion of representing complex ideas into a single picture. In
the same way, a visual metaphor is worth a thousand data. Thus, the increased amount of
data generated in the �eld of genomics quickly suggested the need to provide visualization
methods [Hel+98].

4A tree is a DAG where each child node has one and only one parent node
5ttp://search.cpan.org/ cmungall/go-perl/scripts/map2slim

ttp://search.cpan.org/~cmungall/go-perl/scripts/map2slim
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The number of visualization techniques in the biological domain considerably increased in
the last 15 years [Ker+17]. This increase is also associated with a high diversity of visualiza-
tions for the same dataset. Over the recent years, many surveys have been realized to re-
port di�erent techniques such as text visualization [KK15], graph or tree visualization [Sch11;
Bec+14; VBW15], multifaceted visualization [KH12]. Lately, an online tool, called BioVis Ex-
plorer, was introduced with the aim to collect a large number of visualization papers dedi-
cated to biological data [Ker+17]. With this tool, authors aimed to reduce the complexity of
the large variety of visualizations to deal with biological data. To do so, they computed dis-
similarity measures according to several attributes such as the type of data or the task to be
solved. Then, using a technique ofMultiDimensional Scaling (MDS), authors depicted an in-
teractive visualization involving all the works related to the biological domain that they have
reviewed.

Mougin et al. [Mou+18] reported existing approaches implemented to visualize clinical and
omics data by considering di�erent attributes and visual metaphors. Authors categorized
the di�erent visual metaphors according to the data dimensionality and related to various
analysis tasks:

1. Data dimensionality

• 1D data. The main techniques used for visualizing this type of data are bar charts
and circular or pie charts.

• 2Ddata. Twopopular techniques for this category are 2D scatter plots and heatmaps.

• nD data. Very few techniques allow to represent multidimensional data. Tech-
niques such as heatmaps including di�erent attributes (e.g., position, color) and
parallel coordinates plots are examples of these techniques. Normally, these visual-
izations display their attributes using 1D or 2D representations. It is also frequent
to use statistical methods to reduce the dimensionality (to 2D or 3D) and then to
represent data with metaphors such as scatter plots.

2. Related analysis task

• Relational data. The main data falling under this category are graphs or networks.
The following two techniques are mainly used for visualizing this category: node-
link andmatrix-based diagrams.

• Stamped-data. The visualization techniques focused on temporal-stamped are rep-
resented with line charts or timelines.

Focusing on gene set annotation, specially on GO annotation, some tools propose enhanced
visualizations which can be mainly classi�ed into �ve categories [SŠ17]: node-link diagrams,
treemaps, semantic similarity spaces, heatmaps, and word clouds. In node-link diagrams, some
methods �rst extract the computed annotation terms and their relations within the GO struc-
ture and then draw a DAG using a layered/hierarchical drawing algorithm [ZKS05; Car+09;
Ede+09]. Other methods (e.g., Supek et al. [Sup+11]) connect together annotation terms ac-
cording to their semantic meaning (computed using the ontology) and then use a force di-
rected algorithm to take into account the similarity score for drawing the graph. Methods
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FIGURE 2.6: Examples of visualization results proposed by di�erent enrichment tools. By using a
gene set involved in the interferon signaling pathway [CB14], the visualization results are presented
in several forms. The node-link diagram is shown in (A) using an extract of GO in which the over-
represented terms are colored in green (obtained from Ontologizer [Bau+08]) or (B) creating new
links according to the similarity of terms based on gene correlation (from ClueGO [Bin+09a]). (C) A
heatmap represents the adjacency matrix of genes and GO terms (from DAVID [Hua+07]). Using the a
posteriori analysis of REVIGO [Sup+11], (D) a treemap groups terms that are semantically similar, (E) a
semantic similarity space is represented by a scatter plot, and (F) a wordcloud representation dis-
plays GO terms or associated keywords. The font size and colors are related to the p-value provided by
the enrichment analysis.
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from the treemaps category use space-�lling visualization techniques to render theDAG (com-
puted using similar strategies). For instance, Supek et al. [Sup+11] use treemaps that repre-
sent only two levels of the hierarchy and avoid the duplication of annotation terms bymaking
use of the computed p-values. The semantic similarity space category uses principal compo-
nent analysis (PCA) or MDS to represent annotation distances in spaces of 2 or 3 dimensions
by using scatter plots [Sup+11]. The heatmaps category proposes a binary association between
genes and annotation terms [Den+03] or groups similar annotation terms [Zee+11] in amatrix-
based diagram where a row represents a gene and a column represents an annotation term
or a group of terms. Finally, wordclouds can display the name of GO terms whose font size is
related to the importance of the term (established according to p-values computed by enrich-
ment analysis or to the IC value) [Sup+11; Nin+18]. �gure 2.6 shows examples of metaphors
from each of the �ve categories applied to a gene set that has been manually annotated
as interferon [CB14]. This gene set was analyzed by using enrichment analysis computed
by Ontologizer [Bau+08] (�gure 2.6A), ClueGO [Bin+09a] (�gure 2.6B), DAVID [Hua+07] (�g-
ure 2.6C) and the a posteriori analysis of REVIGO [Sup+11] (�gures 2.6D to 2.6F)

These tools are only some examples of the existing tools dedicated to the visualization in
the biology domain. Pavlopoulos et al. [Pav+15] proposed a catalog of web and stand-alone
visualization tools developed in the biology �eld. This catalog represent the programming
language libraries and visualization tools proposeduntil 2015 for biology networks, pathways,
genome alignments, genome browsers, comparative genomics, phylogeny tree viewers and
microarray and RNAseq analysis viewers.

2.3.4 Usingmultiple knowledge resources to improve the biological understand-
ing

Despite the e�ectiveness of data generation from the massive outburst in technological ad-
vances for generating and processing large biological data, genomics, transcriptomics and
proteomics are still separate �elds of research [Man+16]. Most knowledge resources can only
answer speci�c biological questions. For example, GO describes processes, functions or lo-
calizations of geneproductswhileReactomehasbeen created tomodel the interactionof these
products within pathways. Moreover, some knowledge resources may describe similar (or
same) notions, thus generating duplication and potentially resulting in redundancy [KPL03].
For example, the knowledge resources KEGG [KG00], Reactome [Jos+05] and WikiPath-
ways [Pic+08] all contain pathway information from di�erent semantic spaces. It is then crit-
ical to integrate overlapping, but also complementary, knowledge resources in order to unify
information and to be able to provide a global view on omics data.

According to Keet [Kee04], the notion of integration means anything ranging from integra-
tion, merge, use, mapping, extending, approximation, uni�ed views and more. Integrating two or
more knowledge resources is thus a challenging task. In this frame, Hernandez and Kamb-
hampati [HK04] described challenging characteristics, such as the variety of data or represen-
tational heterogeneity. Recently, Mısırlı et al. [Mıs+16] claimed that the lack of acceptance of a
standard format was one of the major problems in data integration. The W3C6 o�ers

6https://www.w3.org/

https://www.w3.org/


38 Chapter 2. Knowledge resources and functional annotation

an extensible base, the Resource Description Framework (RDF), for describing knowledge re-
sources [LSW98]. This language represents knowledge according to triplets (i.e., subject,
predicate, object). An extension of RDF is OWL, which enables to describe ontologies such as
GO [Bec+04]. Other standard formats have been widely used in the biological domain such as
Biological PAthway eXchange (BioPAX) [BCS04], System Biology Markup Language
(SMBL) [Huc+03], OBO [Day+07] and Biological Expression Language (BEL) [HDH18]. BioPAX
was conceptualized for representing pathway knowledge [BCS04]. The aim of BioPAX is to
be able to integrate, exchange, visualize and analyze biological pathway data. Pathway-based
knowledge resources like Reactome andWikiPathways are available in this format. SMBL rep-
resents and exchanges models between simulation tools. It represents chemical reactions
and is frequently used in system biology [Huc+03]. The OBO Foundry is a consortium whose
aim is to integrate interoperable and well formed ontologies. The ontologies in OBO Foundry
such as GO, Sequence Ontology (SO) or HPO, are described both in OWL and OBO formats.
The OBO format is an alternative to OWL for describing biological ontologies and it is de-
signed to be human readable and editable. At last, the BEL has been proposed as a robust
format integrating information from multiple biological domains [Kha+15; NKH15; Emo+17;
Iya+17; Hoy+19]. BEL is a language for representing scienti�c observations in the life sciences.
BEL relates terms that denote biological entities (e.g., genes, messenger RNAs, diseases and
drug compounds) and biological processes (e.g., tissue damage, cell cycle and kinase activity)
based on subject–predicate–object triples [Sla14]. The triples in BEL are presented according to
statements where each triple describes a scienti�c �nding. Thus, BEL allows to build bio-
logical models (provided by ontologies, databases or thesauri) with experimental results in a
semantic way [Sla14].

All these standard formats have been developed to facilitate the integration of di�erent re-
sources by reconciling the same or equivalent information. However, the existence of di�er-
ent formats makes arduous the integration of di�erent resources. An evenmore challenging
issue is the heterogeneity in the way similar entities are described. For that, many e�orts
have been lead on ontology-based integration, also known as ontology mapping or ontol-
ogy alignment, that uses methods or techniques to establish semantic links (or mappings)
between entities (i.e., classes, relations, instances) of di�erent ontologies or sub-parts of a
single ontology. For years, many matching approaches have been proposed and classi�ed
into several categories, such as string-based, language-based, graph-based, instance-based (for
details of each category and di�erent tools, see Otero-Cerdeira et al. [ORG15] and Shvaiko and
Euzenat [SE13]). Other strategies based on data mining aimed to infer mappings between re-
sources. For example, The HPO2GOmappings that relate HPO and GO terms make easier the
understanding of the origin of a phenotype produced by the loss or alteration of one or more
gene functions [Doğ18]. INTEGRO centralizes disease annotations from di�erent knowledge
resources into DO [CGV18]. By applying methods based on association rules, pertinent rela-
tions may be inferred between two di�erent ontologies or two sub-parts of a single ontology
(for a review of such methods, see [Nau+13] and [GMC14]). Faria et al. [Far+12] applied asso-
ciation rules mining focused on the consistency of annotations. Benites et al. [BSS14] used
a data mining approach based on rare associations to discover new relations between di�er-
ent knowledge resources or di�erent parts from a single ontology (i.e., among di�erent sub-
ontologies). Manda et al. [MMB13] presented a data mining approach called Multi-ontology
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data mining at All Levels (MOAL). MOALmine the di�erent sub-ontologies of GO in order to en-
rich them generating GO annotation candidates and generating new relationships between
terms.

Initiative projects, like Bio2RDF or syBioOnt, provide to the bioinformatics community a
knowledge resource integrating di�erent information from genes like their functions, inter-
actions with other genes, drugs or their disease phenotype [Bel+08]. Bio2RDF designed some
rules in a semantic model by converting every involved knowledge resources into the RDF
format, which thus facilitates their integration. Recently, syBioOntwas designed to integrate
and to formalize the representation of di�erent knowledge resources into an ontology de-
�ned in OWL [Mıs+16].

2.4 Challenges related to the annotation of gene sets

Throughout the previous section, we presented techniques focused on the annotation of gene
sets. Nevertheless, each solution exhibits remaining challenges.

Enrichment analysis. These methods aim to retain the over-represented terms (i.e., over-
used by the genes in the gene set) without considering the relevance of the information and
the speci�city of these terms. Thus, the results supplied by enrichment tools consist of lists
of numerous over-represented terms, and an a posteriori stage remains necessary to remove
the potentially redundant information. In this frame, MEA tools like DAVID [Jia+12] use an a
posteriori analysis of the annotation terms co-utilized by the genes to cluster the genes into
potential groups of similar information. However, manual expertise still remains crucial and
becomes unachievable if the number of gene sets to be analyzed is too high. Moreover, these
methods provide redundant information by selecting terms that are hierarchically related,
leading to di�culty and occasional bias in correctly interpreting the results. Moreover, these
methods tend to focus on themost studied genes and provide gene set annotation results that
cover a limited number of annotated genes [BLG15; HTK18; Tom+18].

Knowledge-based solutions. Ontological features provides a solution for dealing with the
complementary or redundant information related to highlighted genes in a gene set of inter-
est. The a priori use of GO subsets allows to highlight the terms in a speci�c functional cate-
gory by reducing unnecessary information fromenrichment analysis. Nevertheless, de�ning
the functional categories of interest at the beginning of the analysis is not an easy task and
requires prior knowledge of the scope of interest. Moreover, these categories o�en provide
GO terms exhibiting a low level of details (i.e., being too generic). Other strategies involve
semantic similarities that facilitate the biological interpretation of a gene set that may con-
tain hundreds of genes. Given the signi�cant number of published semantic similarity mea-
sures [Pes+09; Guz+12; MCM17], the selection of a metric can be tricky. A recent publication
discussed this issue and proposed a classi�cation of these measures according to the type of
driven analysis [MM14]. To address these issues, other initiatives using the similarity among
the over-represented terms have been proposed. For example, REVIGO [Sup+11] is an a posteri-
ori tool that selects only some terms from the output results of enrichment methods. REVIGO
reduces the annotation redundancy while it sweeps along the bias of enrichment analysis.
Semantic tools presented in section 2.3.2 have the advantage to compute a comparison score
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between terms. The extension of such computation to deal with a gene set (that may contain
a large number of genes) may be of great interest to synthesize the gene set functional infor-
mation. However, existing tools are focused on gene-to-gene analysis for grouping the genes
sharing similar annotations. Therefore, they do not consider the genes as a gene set in order
to provide a global annotation. Thus, they do not take into account the semantic similarity
between the annotations of the di�erent genes of a given set. Only the GOSim [Frö+07] and
GOSemSim [Yu+10] tools compute semantic similarity between two GO terms in an automatic
way in order to group them according to their similarity using a clustering method. Never-
theless, they only group similar termswithout synthesizing the information. Thework of Lee
et al. presents a new approach for annotating gene sets by using semantic similarity [LHK04].
However, this approach only provides a GO term with a low level of details for each gene set.

Visualization. Despite the diversity and large number of visual metaphors existing to inter-
pret and explore biological questions, this �eld is still at an early stage [Ker+17]. General
challenges related to visualization such as data volume, data type, data representation and
interaction still have to be addressed [ODo+10; Mou+18]. Existing visualizations of functional
annotation aremainly focused on: (i) adjacencymatrices showing the presence/absence of a
particular annotation term for a given gene, and (ii) gene-term or term-term networks con-
sidering the analysis results or using an external corpus. The �rst is useful for a direct rep-
resentation but not for exploring results. The second could be a right approach for exploring
data results but node-links can be hard to understand using large hierarchical data due to the
crossing edges and the available space that is not optimized [JS91]. Moreover, for large hier-
archical data such as trees, planar graphs or DAGs, it is hard to �nd a visualization algorithm
that gives good results in termsof computation time, aesthetic criteria, and emphasized infor-
mation [GB15]. For that reasons, the use of consolidated systems integrating multiple visual
metaphors that show di�erent characteristics of data may be a good alternative. However,
the application of this integration is still rare [Ker+17]. In addition, biological visualization
generally focuses on a speci�c task on biological analyses. Moreover, focusing on functional
annotation, the current methods supported by visualization of annotation terms of a (nar-
rowed) list of genes are not designed to handle a list of dozens or more gene sets. They are
therefore not suitable for a context where the response of the organism to a vaccine or a drug
has to be understood as a global mechanism.

Integration of di�erent knowledge resources.Manzoni et al. [Man+16] mentioned key chal-
lenges related to data integration. First, the numerous nomenclatures that describe the same
thing in di�erent biological databases or resources may result in inconsistencies during the
integration. For example, the BRCA1 DNA repair associated gene can be associated with mul-
tiple identi�ers in di�erent databases. Examples of them are:

• HGNC: 1100

• Entrez Gene: 672

• Ensembl: ENSG00000012048
• OMIM: 113705

In phenotype knowledge, such inconsistencies are also present. For example, the disease
termmultiple personality disorder is di�erently described in knowledge resources such as DO,
ICD-10, National Cancer Institute Thesaurus (NCIt) [Gol+03], Online Mendelian Inheritance in
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Man (OMIM) [Ham+05], andMeSH.Benites et al. [BSS14] emphasized this challenge causedby
the variety of knowledge resources describing the same notion in di�erent ways. For the au-
thor, a single resource provides only a certain facet of complex knowledge while integrating
several resources may give a more complete information. The second challenge is impacted
by the di�erent origins of data. The di�erent sequencing machines and their di�erent pro-
cessing pipelines provide their results in di�erent formats. This requires additional e�orts to
make datamerging easier. The third challenge relies on the computational performance and
the storage capacity due to integration. Because of the large amount of information to be in-
tegrated as well as themulti-scale nature and heterogeneity of biological data, ordinary com-
puters are very limited. In consequence, it is necessary to use high-throughput machines,
clouds or distributional computational techniques [MPP18]. The fourth challenge expresses
the lack of theoretical knowledge in the biological domain and predictor models. For this
challenge, Manzoni et al. [Man+16] noticed that there is a lack of models to predict metabo-
lite changes when a pathway is perturbed. Finally, authors mention the absence of e�cient
pipelines to integrate additional datatypes or metadata to correct biological di�erences. A
last challenge to integrate biological knowledge resources is the lack of relations existing be-
tween omics and clinical resources. In particular, for a given gene or gene set, there is no
resource that provides the inter-relations between biological processes or pathways with dis-
eases or clinical phenotypes.

Throughout this manuscript, we propose alternatives or solutions in order to address some
of the challenges presented in this chapter.
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Chapter 3

Gene sets visualization

As presented in section 2.3.3, managing the large number of annotation terms associated
with a gene set is usually di�cult. To address this issue, statistical methods, called enrich-
ment methods, have been proposed [HSL09; KSB12; Thé+15]. These tools show an important
pitfall related to the redundancy among the results [Sup+11], resulting from the non-use or
the under-utilization of semantic relations between annotation terms. Structures of knowl-
edge resources such as GO may be used to increase the biological information while reduc-
ing the redundancy by taking into account the relations between terms. Whereas the hier-
archical structure has been exploited by methods such as GOSim [Frö+07], G-SESAME [Du+09],
GOSemSim [Yu+10], GFSAT [Xu+13] and GOGO [ZW18] that aim to compare two genes or two terms,
only few others address the gene set annotation problem [Bau+08; Sup+11; Thé+15].

Although potentially useful, the use of the hierarchical structure between annotation terms
increases the amount of information to be dealt with. The size and complexity of these data
urge the need of dedicated visualization techniques in order to interpret such information.
However, the choice of the adequate visual metaphor is an arduous task. Consequently, the
addition of interactive solutions may help to understand di�erent layers of analysis (e.g., a
global view that represents the main biological processes in which many genes are involved
versus a speci�c view that shows up few genes with detailed information). But, applying an
inappropriate visualization may confuse users and may result in wrong interpretations. For
example, a visualization of a set of data with similar values within a pie chart could be hard
to interpret. Conversely, using other kinds of visualizations, such as a barplot, could bemore
adequate than a pie chart. As commented in section 2.3.3, focusing on the functional annota-
tion of a gene set, two visualmetaphors have beenwidely used [Mou+18]: node-link diagrams
and heatmaps. However, these metaphors may not be the most pertinent. Heatmaps can be
very useful when large data are explored, but because it is a visualization in the form of a
matrix, it only allows the visualization of two facets of data: the one placed in rows and the
other in columns. Node-links diagrams are adapted to represent hierarchical data but, due to
their low space utilization, they can be ine�cient if the data to be explored are large [JS91].
Moreover, if the visualization of a gene set can be hard, the complexity is increased when
dozens of gene sets are studied.

Most bioinformatics enrichment tools mainly annotate a given gene set and the visualiza-
tions proposed by these tools are very limited for dealing with multiple gene sets. Some au-
thors developed techniques in order to create gene set repertoires to describe their impact
on diseases [CB14], their interactions with vaccine trials [Li+13] or simply the main genes
that over-express into immunological cells [Bin+13]. For annotating multiple gene sets, each
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gene set must be annotated one-by-one, thus generating a higher amount of information to
be processed. To the best of our knowledge, there is no visual metaphor that represents the
functional annotation results of multiple gene sets.

This chapter is addressing themainquestion: “what di�ers in terms of visualizationwhen explor-
ing the annotations from one to multiple gene sets?” by taking into account an other important
issue: “how the knowledge resources’ structure may help for the visual interpretation?” In order to
investigate these questions, three visualization prototypes have been developed.

• The two �rst prototypes aim to represent the functional annotation of a single gene set
without considering the DAG structure. These visual metaphors are the results of the
developmentsmade bymaster students whom I supervised. This exploratory work had
the double bene�t of investigating visual metaphors within the classical framework of
gene set annotation (using enrichmentmethods) and of experimenting the supervision
of students.

• The third visualization tool is the result of an international collaborationwith colleagues
of the University of Murcia in order to reconcile di�erent knowledge resources used
for annotating multiple gene sets by using lexical similarity and has been presented
during an international conference in Information Visualisation (IV). This visualization
prototype presents a combination of a space-�lling visualization and an indented tree
involving the GO structure for displaying and exploring the results.

Before visualizing the annotation results, annotation from one or multiple gene sets has ob-
viously to be computed. In section 3.1, we present a simple framework that has been devel-
oped based on enrichment analysis to carry out the two visualization prototypes. Section 3.2
involves the third visualization tool in which the use of enrichment analysis methods is still
central in the framework but capitalize on lexical approaches to address the scale-up result-
ing from the visualization of the annotation of multiple gene sets. The latter approach is in
consequence more detailed. We conclude the chapter in section 3.3.

3.1 Visualizing the annotation of a single gene set

With the objective to visualize the annotation of a single gene set, a pipeline has been devel-
oped. The main objective in this preliminary work for the development of GSAn (see chap-
ter 4) was to investigate the di�erent visual metaphors that may be relevant in the context of
gene set annotation. For this reason,most of the following developments have been based on
enrichment analysismethods to provide gene set annotations. The proposed pipeline is com-
posed of four steps (�gure 3.1). The �rst step uses GO terms to annotate a gene set of interest
using the enrichment analysis carried out by g:Profiler [Rei+07] without post-treatment.
Then, the comparison of the GO terms are computed and stored in a semantic similarity ma-
trix. Thirdly, a clustering stage is applied in order to generate a partition of “similar” GO
terms. Finally, for each group of GO terms, a simple process selects theMost Informative Com-
mon Ancestor (MICA) [Res95] term of the group bymaking use of the GO structure. At last, two
visual metaphors have been proposed in order to facilitate the interpretation of results.
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FIGURE 3.1: Implemented pipeline to annotate and visualize a single gene set. The pipeline is com-
posed of four steps (colored in yellow) generating a new transformed data (colored in pink). From the
last two steps, two visual metaphors have been proposed (red edges): a loom layout based on theMost
Informative Common Ancestor (MICA) terms and a treemap displaying clusters of GO terms.

3.1.1 Computation of the gene set annotation

Annotating a gene set by using enrichment analysismethods. The �rst step involves the an-
notation of gene sets by using the enrichment analysis. Thanks to these methods (described
in section 2.3.1), lists of over-represented annotation termswere recovered according to their
statistical use trough the genes within the sets. As this research work focuses on the visual-
ization method, we arbitrarily chose g:Profiler [Rei+07; Rei+16] (categorized in the Single
Enrichment Analysis or SEA class in section 2.3.1) for recovering annotations. We only se-
lected annotations corresponding to the sub-ontology Biological Process (BP).

Relating GO terms by using a semantic similarity measure. As mentioned in section 2.3.2,
semantic similarity measures are relevant to group annotation terms into categories accord-
ing to their signi�cance and then to guide the reduction of their number. Thus, some tools
were developed for this purpose [Frö+07; Wan+07; Yu+10]. Then, to compute a posteriori the
semantic similarity between pairs of each of the over-represented terms, we used
GOSemSim [Yu+10] with default settings. Five types of semantic similarity measures are im-
plemented in GOSemSim, among which four of them use an IC score based on the annotation
corpus [Res95; JC97; Lin98; SA07] and one measure involves the semantic value introduced
by Wang et al. [Wan+07]. Again, studying the impact of using a similarity measure rather
than another was not the objective of the present work and will be deeply investigated in the
chapter 4.

Hierarchical clustering of similar GO terms. In order to group terms according to their se-
mantic similarity, hierarchical clustering was applied. The choice of an unsupervised hier-
archical clustering was motivated by the presence of hierarchical relations within GO whose
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structure is a DAG [SSZ04]. The optimal number of clusters was determined based on the
computation of the Average Silhouette Width (ASW ) score [BGL11], which is described in sec-
tion 4.2.3.

Retrieving the MICA of a group of GO terms. At last, a step was performed to reduce the
number of terms and to calculate the best candidate to represent each cluster of terms. To
do so, a MICA term was assigned to each cluster by using GOSim [Frö+07].

3.1.2 Visual metaphors to represent the annotation of a single gene set

Two visualization developments have been achieved by students under my supervision to
explore the output of the previous pipeline.

• The�rst visualizationwas implementedby fourmaster students inbioinformatics. They
developed a space-�lling layout in the form of a treemap in order to represent the re-
sults of the clusters of terms.

• The second visualization was implemented by a �rst year student of the ENSEIRB-MAT-
MECA engineering school. She developed a node-link diagram by applying a loom lay-
out1.

Drawing a treemap

This visualizationwas developed to represent a cluster of similar GO terms. Inspired by John-
son and Shneiderman [JS91], this visual metaphor (developed with the FaTuM library [PA15])
is a treemap drawn according to the slice-and-dice algorithm. The treemap visual metaphor
allows to distribute the di�erent entities that are hierarchically related to each other into a
limited space. The complete hierarchy of GO was not considered in this work. Instead, a hi-
erarchy of two levels was used considering the clusters as the roots and the terms involved in
the clusters as their descendants. By using a given space, rectangles with a variable size and a
variable color represent the attributes of each element (i.e., cluster or terms). More precisely,
the color corresponds to the cluster while the size is related to the number of genes that are
associated with a GO term.

The slice-and-dice algorithm draws a �rst rectangle that is split into smaller rectangles ac-
cording to the cluster of similar terms obtained from the pipeline framework. Then, each
sub-rectangle corresponding to a cluster is in turn sub-divided according to the number of
GO terms within the cluster. Figure 3.2A illustrates the partitioning of a treemap that rep-
resents annotation clusters. Thus, the initial rectangle represents the totality of the data, a
�rst vertical division of this rectangle highlights the clusters, and then, horizontal divisions
display the terms of each cluster. As can be observed in this �gure, we can see that Cluster
1 has an area that corresponds to �ve over ��een genes in total and that Term_c1 1 from this
cluster annotates three out of �ve genes.

To support the exploration within the treemap, our prototype integrates an expanding in-
teraction tool that provides a focus-plus-context functionality to deal with the following two

1The concept loom layout has been de�ned by Nadia Bremer in her blog VisualCinamon (https://www.visual-
cinnamon.com/2017/08/d3-loom)

https://www.visualcinnamon.com/2017/08/d3-loom
https://www.visualcinnamon.com/2017/08/d3-loom
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FIGURE 3.2: (A) A schema representing the creation process of the treemap according to Johnson and
Shneiderman [JS91], byusing the geneoccurrence to compute the size of the rectangles in the treemap.
(B) The interactions proposed in the visualization in order to display a cluster or a GO term.

levels (�gure 3.2B): clusters and terms. By clicking on a cluster, the rectangle corresponding
to the cluster is expanded, thus showing the terms involved within the cluster. The color of
the expanded cluster and its terms is maintained while the rest of the cluster and terms are
shrinked and turned into gray in order to highlight the focused cluster. Additionally, a table
describing the information of the involved terms is provided below the treemap. This table
represents the characteristics of terms, i.e., their depth, their IC, but also the gene occurrence
within the gene set. When clicking on a GO term, the same actions (i.e., expansion and color)
are produced. In contrast to the cluster expansion, the generated table below the treemap
contains only the list of genes in the gene set associated with this GO term.

Drawing a loom layout

The last step of the pipeline assigns aMICA term to each cluster of terms. Unlike the previous
visualization, three sets of elements can be visualized within the proposed visual metaphor:
(i) the genes from the gene set that are annotated by at least one GO term, (ii) GO terms that
annotate these genes, and (iii) the MICA term of each cluster of similar GO terms. They are
represented together using a loom layout. The advantage of the prototype visualization is
that it allows both to show an overview summarizing the pipeline results and to explore the
pipeline results in details thanks to interactions. The overview displays the gene set annota-
tion by representing the MICA terms as rectangles in the center (called internal entities) and
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FIGURE 3.3: Visual description of the loom layout according to two levels of representation: (A) A gen-
eral representation shows the overview of results where the MICA terms are the internal entities and
their related genes are the external entities. Hovering over aMICA term, the corresponding rectangle
is colored in salmon, the associated genes are colored in blue and the edges that are not connected
with the chosenMICA termare colored in light gray. Three possible detailed views are available for the
three types of elements: (B) a MICA term, (C) a gene, and (D) a GO term. A detailed representation of
any of these types has a single internal entity and shows its connections. Additionally, clicking on the
black circle associated with an external entity allows to see the list of GO terms associated with both
this external entity and the internal entity. The orange arrows show an example of click interactions
that enable to navigate within the di�erent types of views.

their links to the genes of the gene set, called external entities (�gure 3.3A). When the mouse
pointer is on a MICA term (hover action), the rectangle is colored in salmon, the associated
genes are colored in blue and the edges that are not connected to theMICA term are dimmed
in light gray. A detailed view can be obtained by interaction facilities for any type of element:
a MICA term, a GO term or a gene. For the detailed views, the loom layout metaphors of
the overview have been declined by adapting the internal and external entities. All detailed
views present a single internal entity corresponding to the element under investigation, as
well as clickable elements (black circles) that are associatedwith external entities for showing
the list of GO terms associatedwith both the external and the internal entities. Moreover, one
can navigate between these detailed views through interaction actions. The di�erent detailed
views illustrated on �gure 3.3 are described hereina�er.

• Panel B: the �rst interaction tool consists in clicking on a MICA term (MICA term 4
in �gure 3.3A) from the overview to get a detailed level of information. The resulting
view shows the MICA term as the internal entity placed at the center with its related
genes and the involved GO terms (included into the entity labeled GO Terms) placed
around. By clicking on a black circle, one can get the list of GO annotation terms from
the cluster annotating the gene of interest (Gene 4 in �gure 3.3B).

• Panel C: this view is obtained by clicking on a gene. A new loom layout is represented
where the internal entity is the gene and external entities are the MICA terms and the
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involved GO terms that annotate this gene (�gure 3.3C).

• Panel D: this view is obtained by clicking on a GO term. A new loom layout is repre-
sented where the internal entity is the GO term and external entities are the genes that
are annotated by this GO term and its associated MICA term (�gure 3.3D). In this view,
the black circle of an external entity represents all its associated GO terms.

The three types of detailed view (MICA term, gene, and GO term) can be accessed from any
other view. Moreover, from any view, a click on any internal entity opens the corresponding
Web page of theNational Center for Biotechnology Information (NCBI2)if the entity is a gene, or
of QuickGO3 if the entity is a MICA or GO term.
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FIGURE 3.4: Results of the annotation for the gene set annotated as Interferon by Chaussabel and Bald-
win [CB14]. (A) The clustering step results in thirteen clusters represented in the dendrogram. (B) The
last step of the pipeline provides the MICA term of each cluster.

3.1.3 Case study

To illustrate the e�ectiveness of visualization prototypes in exploring the annotation of a sin-
gle gene set, we performed an analysis making use of a gene set from the dataset [C-260] that

2https://www.ncbi.nlm.nih.gov/gene
3https://www.ebi.ac.uk/QuickGO/

https://www.ncbi.nlm.nih.gov/gene
https://www.ebi.ac.uk/QuickGO/


50 Chapter 3. Gene sets visualization

involves 27 genes annotated as interferon by Chaussabel and Baldwin [CB14] (that we already
used for providing visual examples in �gure 2.6). Overall, 115 GO terms involved in BP are
associated with at least one of the genes in the set according to GOA. By applying the analysis
pipeline, the enrichment step produced 44 over-represented GO terms while the clustering
resulted in thirteen MICA terms (one GO term for each cluster).

Figure 3.4A shows a dendrogram created a�er the hierarchical clustering of the similarity
matrix and �gure 3.4B displays theMICA term of each cluster. These thirteenMICA terms ac-
tually present redundancy. Indeed, innate immune response is a descendant term of immune
system process and response to stimulus, the latter being the ancestor of every GO term contain-
ing the word response.

Figure 3.5A shows the GO terms part of Cluster_10 that corresponds to viral processes. Thus,
viral life cycle (GO:0019058) and viral genome replication (GO:0019079) are the terms having the
highest IC and number of associated genes.

The treemap visualization only uses color asmain attribute. Moreover, due to the fact that the
space to draw the treemap is limited, some labels are hidden in the overview. This presents
visual limitations, in particular for large clusters for which many information have to be dis-
played. In contrast, the loom layout provides a put-on-context by means of the MICA terms
(�gure 3.5B). Thus, in themiddle of the global visualization, thirteenGO terms (MICAs) repre-
sent the clusters which involve processes like viral process, cell surface receptor signaling path-
way, and innate immune response. When hovering over a MICA term or a gene, the related
genes or MICA terms are shown, respectively. When clicking on one of these entities, the
visualization displays the details of the clicked entity. For example, �gure 3.5C shows the de-
tails of the IFITM3 gene. This gene is involved in twelve out of the thirteen MICA terms. The
small black circles show the number of GO terms associated with a MICA term and that an-
notate the chosen gene. By clicking on one of these circles, the corresponding GO terms are
displayed (viral process in �gure 3.5C).

Despite the global view o�ered by this visualization that resumes the gene set and enables
to explore the results, it presents two main limitations. First, there is a loss of context when
clicking and focusing on a given entity and when repeating again and again this process if
users want to explore all the entities. The second limitation concerns missing information.
First, the visualization shows the relations between GO terms and genes but does not provide
information about attributes, such as the IC or the depth of a GO term. On the other hand,
when exploring the MICA terms, it appears necessary to show their position within the GO
structure so that users may know how a GO term is related with a given MICA term.

3.2 Visualizing the annotation of multiple gene sets

To the best of our knowledge, there is no available bioinformatics tool enabling the visualiza-
tion of the functional annotation of multiple gene sets (section 2.4). It is noteworthy that the
database gene set repository GeneWeaver provides analysis tools that visualize multiple gene
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FIGURE 3.5: Proposed visualizations of the annotation of a gene set. (A) The presented treemap is
focused on Cluster_10 and the table below shows the details of the involved GO terms. (B) The loom
layout provides an overview ofMICA terms and the genes they annotate. (C) The loom layout presents
the details of the IFITM3 gene (the numbered black circle corresponding to the external entity viral
process has been developed).

sets [Bak+11]. However, even if these tools aim to provide a visualization that shows the close-
ness of gene sets sharing similar genes, the functional annotation is not taken into account.

In section 3.1, a single gene set was considered while the information from the GO structure
was discarded. The present section aims to propose a pipeline to explore multiple gene sets
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according to the GO structure. The visualization of the DAG structure of GO can be realized
by an indented tree (by duplicating the nodes) or by a node-link diagram. Both visualiza-
tions have been compared in usability studies of ontologies [FNS13; FNS17]. By comparing
several factors (e�ectiveness, e�ciency, workload, usability, and qualitative feedback), it has
been reported that indented trees are more readable for novice users while node-links dia-
grams are more intuitive and avoid visual redundancy. Also, indented trees are more e�-
cient in searching information and node-link diagrams in processing information. Graham
and Kennedy [GK07] consider node-link diagrams and space-�lling as basic layout styles to
visualize a DAG or a tree structure. However, as mentioned at the beginning of this chapter,
node-link diagrams can be hard to understand when using large hierarchical because edges
may cross each other and the space is not used in an optimal way [JS91]. Moreover, the hier-
archy shown in treemaps is arduous to detect. For these reasons, �nding an algorithm that
provides a good representation of the hierarchical data is a di�cult task.

This research work has been led in collaboration with Jesualdo Tomás Fernández-Breis and
Manuel Quesada-Martínez from the University of Murcia and Romain Bourqui from the Uni-
versity of Bordeaux. The aim of this work was to make use of multiple knowledge resources
in order to improve our understanding of life. The manual expertise to clearly decipher the
main functions that may be related to gene sets is time-consuming and becomes impractica-
ble when the number of sets increases, as it is the case in vaccine/drug trials. In this frame, a
pipeline has been developed in order to annotate gene sets according to di�erent knowledge
resources and to map these resources to GO, thus homogenizing the annotation.

Multiple
gene sets

Annotating gene sets
with enrichment analysis

Annotation associated
to gene sets

Relating annotation
terms to GO terms
using OntoEnrich

GO terms associated
to gene sets

GO structure
simplification

Reduced hierarchy tree of
GO terms associated

to gene setsMOTVIS

FIGURE 3.6: Pipeline to annotate and visualize multiple gene sets. The pipeline combines enrichment
and annotation simpli�cation for connecting gene sets and selected GO terms. The pink rectangles
represent input or output data for a given method in a given step (represented by the yellow rounded
rectangles). For the last step, the visualizationprototype MOTVIS (MOdular TermVisualization) has been
proposed (red edge).
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The proposed work�ow consists in three main steps (�gure 3.6). The �rst step aims at anno-
tating multiple gene sets using a limited number of annotation terms. Then, these terms are
lexically processed in order to identify close terms within the GO. Next, as the GO is large, a
simpli�cation step is performed to select only termswhich are relevant for the interpretation
of the input gene sets. Finally, the last visualization prototype was used in order to represent
the results by using the simpli�ed GO structure.

3.2.1 Annotating gene sets

In this work, we also used g:Profiler [Rei+16; Rau+19] as it makes use of several annotation
databases. Using di�erent knowledge resources allows to obtain the functional roles of the
gene sets from di�erent points of view (as gene annotations may have been done at di�er-
ent cell organization levels). However, such a tool provides a given gene set with annotations
coming from various resources (e.g., GO, KEGG, REACTOME,WikiPathways, TRANSFAC, and
HPO) even if these annotations describe the same (or similar) biological functions. This draw-
back is handledby thenext step of our pipeline, which reconciles the output annotation terms
with terms from GO, used as a reference ontology. Note that this step also makes it possible
to use any enrichment tool that provides an annotation frommultiple resources.

3.2.2 Relating annotation terms to GO terms

For reconciling the annotation terms provided by the g:Pro�ler with the GO terms, a lex-
ical approach implemented within the OntoEnrich framework was applied [Que+15a]. An-
notations were processed and OntoEnrich was con�gured for: 1) decomposing annotations
in tokens based on the tokenization and lemmatization strategies proposed by the Stanford
Natural Language Processing (NLP) toolkit [Man+14], 2) searching groups of consecutive an-
notation tokens that correspond to the whole label of a class in the ontology or any of its
synonyms (considering related, narrow and exact synonyms in GO), and 3) de�ning and ap-
plying two �ltering strategies. The �rst �lter removes the most general terms if any of its
descendants are also associated to the matched annotation. The second �lter is based on the
lexical relations between terms. In practice, we removed the mappings involving terms that
are contained in others. In summary, the inputs of this step are textual descriptions of anno-
tations that are automatically converted into semantic annotations, being GO terms. As an
illustration, if a given gene set is annotated by the annotation term cell cycle, ATP bindings,
OntoEnrich identi�es four partial matches in the GO: cell, cell cycle, ATP binding and binding
but only cell cycle and ATP binding are kept.

3.2.3 GO structure simpli�cation

Once the list of GO terms was obtained using OntoEnrich, a �ltering stage was performed to
generate a subgraph with only the most pertinent GO terms. To do that, for each GO term
obtained by OntoEnrich, their most informative parent term was recovered and this process
was recursively applied until the root term was reached (�gure 3.7). For determining the
most informative parent, the following IC measure was computed for each selected GO term
t [ZWG08a]:

ICzhou(t) = k · (1− log( f req(t))
log( f req(root))

)+(1− k) · log(d(t))
log(MDO)

(3.1)
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GO terms selected by OntoEnrich

[...] [...] [...]

Removed GO term ancestors

FIGURE 3.7: Illustration of the process of GO simpli�cation. This example shows at the le� an extract
of the GO DAG showing three terms provided by OntoEnrich and some of their ancestors. During the
�rst step (from the le� to themiddle), if a GO termhasmore than one parent, the relationwith the less
informative parent is discarded (represented as a red cross on the edge connecting the GO term and its
parent term). Therefore, if this parent is not associated with any GO term provided by OntoEnrich, it
is removed and so are all its ancestors. Then, from the middle to the right, a second step is processed
to remove the ancestors that are connected to only one GO term provided by OntoEnrich as well as
general ancestors that cover the sameGO terms as anothermore speci�c ancestor. A new link (colored
in blue) represents the connection between two related GO terms if their intermediate GO terms were
removed.

where f req(t) is the number of descendant terms of t and d(t) is the depth of t within the
ontology. MDO is the maximal depth in the ontology and k is an adjustable factor providing a
weight for each itemof the equation. This factor can be adjusted so that the equation provides
more priority to descendants (when k is near 1) or to depth (k near 0). In our experiments,
we chose 0.5 as proposed in Zhou et al. [ZWG08a]. A�er having generated this subgraph, to
avoid visual issues that complicate the exploration of results (i.e., many rings may cover a
single GO term), as shown in �gure 3.7, only the GO terms being ancestors of at least two GO
terms obtained by OntoEnrich were kept. Moreover, if two hierarchically related ancestors
cover the same GO terms, the most general was removed. This way, the DAG is transformed
into a tree, making it to be represented in the visualization prototype described in the next
section.

3.2.4 Visualizing with MOTVIS

The output of the analysis pipeline described in the previous section is a hierarchical tree of
GO terms whose leaves are associated with the input gene sets. Considering that each gene
set is linked to its GO terms in that tree (therefore forming a new DAG), we decided to dupli-
cate each gene set to unfold that DAG into a tree whose leaves are gene sets. Such an idea
has already been used by Koenig et al. [Koe+07] and Tsiaras et al. [TTT09] to support the visu-
alization of DAGs. If two GO terms which are hierarchically-related in the tree annotate the
same gene set, the association with themost general GO term is removed. This technique of-
fers the advantage of simplifying the representation while the duplication of leaves (i.e., gene
sets in our case)may lead tomisinterpretations. In the following section, we present how the
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produced tree is visually represented, how we support the identi�cation of duplicated gene
sets and the interaction tools supported by our prototype called MOTVIS (MOdular Term Visu-
alization).

FIGURE 3.8: Indented tree and treemap view representing the immune response within the [C-260]
dataset. The four highest level nodes correspond to the 3 ontologies of GO: Biological Process or BP
(colored in orange), Cellular Component or CC (in blue),Molecular Function or MF (in purple), together
with all gene sets which are not annotated by any GO term (in green).

Drawing the association between gene sets and GO terms

Inspired from [Koe+07], MOTVIS uses two interactive and interconnected views (developed
with the D3 library [BOH11]): a circular treemap and an indented tree. Unlike Koenig et
al. [Koe+07] and Tsiaras et al. [TTT09], a circular treemap was preferred over rectangular
or Voronoi treemaps. Indeed, circular treemaps present the following advantages in com-
parison with other kinds of treemaps [Wan+06; ZL15]: (i) there is a clear separation between
nodes, and (ii) the di�erent levels of hierarchical data are easily interpretable. Nevertheless,
this is made at the expense of a larger space usage. Thanks to our annotation strategy, the
generated tree contains few hundred nodes which counterbalances that drawback.

For the annotation of gene sets, the number of genes in each set is an important information
as a large gene set (i.e., containing a large number of genes) may have amore generic biolog-
ical role in the cell overall functioning. Therefore, larger gene sets are emphasized by setting
their size proportionally to the number of genes they contain. A collapsible intended tree
view has also been developed to display additional information to what is displayed within
the circular treemap. In that view, each node (GO term and gene set) is represented as a rect-
angle and clicking on one of these rectangles expands it and displays its child nodes. This
helps users when seeking for a GO term of interest and thus for a particular functional role
that could have been impacted during the experiment (see �gure 3.8 to observe an overview
of the three sub-ontologies BP, MF and or CC). Such a visualization technique was preferred
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over other techniques like node-link diagrams (as in [Koe+07]) because it has been shown
that it improves users’ experience in usability studies of ontologies [FNS13; FNS17].

Overcoming the duplication issue

Asmentioned above, the gene sets were duplicated and linked to each of their annotating GO
terms. Such duplicationmay hinder a good understanding of the biological roles of gene sets.
For facilitating the identi�cation of duplicated gene sets, we combined a speci�c tree node
coloring algorithm and bar charts within gene set nodes.

First, tree nodes were colored using the TreeColors algorithm [TJ14] that assigns similar col-
ors to close nodes. The basics of this algorithm are to use the HCL (Hue-Chroma-Luminance)
color space and to recursively divide a hue interval associating a node with its children (the
hue interval of the tree root is set to [0,359]). Then, increasing the chroma and reducing the
luminance according to the depth of a node improve the perception of depth within the tree.
This algorithmwas applied to the entire tree, except for the leaves that represent the gene set
nodes. Setting their color to an unused color facilitates the identi�cation of gene set nodes in
the tree. Moreover, within each gene set node, a bar chart is displayed representing its anno-
tation terms (using their assigned colors) and the level of con�dence according to the p-value
computed by the enrichment analysis. It allows to identify gene sets annotated by several GO
terms, as well as to provide the number of times a gene set is duplicated and the level of its
annotation terms in the hierarchy using colors.

This is an important feature of our visualization because it emphasizes gene sets annotated
with several similar terms that could improve the level of con�dence of users. Nevertheless,
an important drawback is presented when considering large trees because some of the node
colors may be perceptually similar (as mentioned in [TJ14]).

Interaction facilities

To support the exploration in the proposed visualizations, MOTVIS integrates several interac-
tion tools. Besides a classical zoom interaction tool that supports basic exploration, it also
integrates an interaction that allows to focus on a GO term or a gene set of interest. Click-
ing on a node (either a GO term or a gene set), in the treemap view, automatically zooms on
that particular node of the tree. As mentioned in section 3.2.4, the two views being inter-
connected, it also expands the indented tree to display the entire path between the root node
and the focused one (and the remaining expanded paths of the tree are collapsed). If the
clicked node represents a gene set, all paths between the root node and all duplicates are
expanded. Clicking on a node in the indented tree view also allows to zoom on the corre-
sponding duplicate gene set in the treemap view. A last interaction tool thus tries to alleviate
this drawback and highlights all duplicates in the treemap view when hovering over a gene
set annotated by several GO terms.

3.2.5 Case study

To illustrate the usefulness of our pipeline and MOTVIS, we carried and experimented two
analysesmaking use of the [C-260] dataset related to the immune responsewithin the human
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population. The objective of such analysis is to identify the key regulators that manage the
immune defense system.

FIGURE 3.9: Zoom on the gene sets whose annotation provided by the enrichment analysis has been
completely or partially mapped to the GO term signaling when OntoEnrich was applied. All the mod-
ules (Mx.x) or gene sets that are annotated by this GO term are presented as white circles within the
pink circle that corresponds to the signaling annotation term. Moreover, the histogram within each
white circle gives additional information for each gene set (Mx.x).

Applying our analysis pipeline, the enrichment steps produced 1,296 annotation terms while
the alignment with the GO and simpli�cation steps allowed to reduce drastically their num-
ber to 157. �gure 3.8 shows the treemap view representing these gene sets together with the
simpli�ed GO structure which corresponds to a tree of 782 nodes (including all duplicates of
gene sets). In immunology, one of themost important biological activities comes from the in-
teraction and communication between cells. Both processes can be investigated by studying
the signaling pathway from a global point of view (which corresponds to the signal transduc-
tion by which a signal is transmitted from cell to cell). The �rst step of our exploration was
therefore to search and select the signaling annotation term from the indented tree view. The
resulting view displays seven gene sets (�gure 3.9). The indented tree shows the annotation
terms computed by the enrichment tool and our reconciliation step has related them to the
signaling GO term, which seems relevant here. Looking at the bar charts within the gene set
(in the treemap view), one can identify some gene sets where the level of con�dence of the
signaling annotation term is high (e.g., M1.2 andM3.4) because the corresponding bar is large,
while others are low (e.g., M5.1 and M5.9). This is con�rmed by the study of Chaussabel and
Baldwin [CB14] who manually annotated M1.2 and M3.4 as interferon (which is closely related
to signaling) while M5.1 and M5.9 were annotated by in�ammation and protein synthesis, re-
spectively.
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FIGURE 3.10: MOTVIS view focused on the M1.2 gene set. The histogram displays bars corresponding
to the other terms (in their appropriate color) annotating this gene set, the width of each bar depend-
ing on the p-value obtained from the enrichment analysis. Hovering the mouse over each bar, we can
get information regarding the GO term: name, p-value and number of gene sets it annotates (labeled
“size”). While some BP annotations seem to be relevant (in orange/red), others in purple/dark blue
from MF (2’-5’-oligoadenylate synthetase activity and double-stranded RNA binding) present low con�-
dence levels (i.e., high p-values).

As theM1.2 gene set is known to be involved at an early stage of the immune response [CB14],
we further focused our study on that gene set. Clicking on it in the treemap view allowed
to obtain more details on that particular gene set. From the indented tree view presented
in �gure 3.10, one can easily identify the �ve annotation terms computed by our pipeline.
Among these annotation terms, three of them are from the BP ontology (with high levels of
con�dence) and two are from the MF ontology (with low levels of con�dence). This provides
a good cue on the biological role of the M1.2 gene set thanks to the three annotation terms:
signaling, response to virus and negative regulation of viral genome replication.

With very few user interactions, we were able to retrieve the correct biological role of some
gene sets and, in particular, those involved at the early stage of the immune response.

3.3 Conclusion

This chapter presented the importance of visualization facilities to help the interpretation of
the functional annotation of gene sets. Three visualization prototypes were proposed in this
chapter to explore results of the annotation of gene sets.

1. The two �rst visualizations were developed to graphically represent the results of an
enrichment analysis pipeline used for annotating a single gene set.
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2. The third visualization was developed to graphically represent the results of a pipeline
combining enrichment and lexical similarity to annotate multiple gene sets.

The�rst analysis pipeline combines enrichment analysis, similaritymeasures, clustering and
MICA terms. The results were displayed according to two visualization prototypes: a treemap
showing the di�erent clusters and the involved GO terms and a loom layout that represents
the links existing between genes, GO terms and MICA terms. An important �nding of this
�rst study is that the visualization of MICA terms enables to summarize information. Thus,
the overview visualization of the loom layout shows a clear synthesis of results through the
MICA terms while the treemap requires that users explore one cluster a�er the other to get
the involved GO terms. We also noticed that the enrichment analysis results in annotation
terms having a high degree of redundancy and involves GO terms whose speci�city may vary
notably. For example, in section 3.1.3, g:Profiler provided very speci�c GO terms such as
response to type I interferon as well as too generic GO terms, such as response to stimulus that
corresponds to redundant information because it is an ancestor term of response to type I in-
terferon. This issue is addressed in the next chapter.

The second pipeline combines enrichment, GO term alignment and simpli�cation stages.
The results were displayed within a visualization prototype called MOTVIS. It uses two inter-
connected views: a treemap view that provides an overview but also displays detailed in-
formation about gene sets, and an indented tree view that enables to focus on annotation
terms of interest. Important �ndings from this work are the following: (i) the lexical analysis
is useful to remove redundancy between terms describing the same notion across multiple
knowledge resources, and (ii) the use of the GO structure within the visualization (even if the
DAG was simpli�ed into a tree) enables to reduce the visual complexity and thus facilitates
the interpretation of results. Additionally, including the gene sets as leaves in the tree allows
to remove potential redundancies between related GO terms associated to the same gene set.
For that, we kept only the association with the most informative GO term. We �nally illus-
trated the e�ciency of this pipeline with a case study on immune response data.

The lexical analysis performed by OntoEnrich was useful to map (completely and partially)
termscoming fromother knowledge resources thanGO.However, someknowledge resources
describe very di�erent information from GO, making it impossible to map the terms. For ex-
ample, the resources used by g:Profiler likeHPOor TRANSFAC that do not contain any term
which can bemapped lexically to GO terms (except for some occasional partialmatches). For
this reason, the lexical analysismaynot bewell adapted to establishmappings between terms
from knowledge resources describing distinct but complementary notions. We tried to deal
with this issue and present our preliminary results in chapter 5.
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Chapter 4

Annotating gene sets by using
semantic similarity measures

Over the past decade, the revolution in new sequencing technologies has strongly supported
the production of omics data with the aim to improve our understanding of the relations be-
tween genotype and phenotype. These produced data involved the need to analyze the gene
sets in order to identify their biological function, and then to synthesize their key annotation
information to help biologists with their interpretation.

In this frame, many tools have been developed to support gene set analysis and the visual-
ization of their annotations. Most of these tools are based on statistical enrichment methods
that usually involve two stages:

• an a priori stage that aims to synthesize the annotationby selecting the over-represented
terms.

• an a posteriori stage which removes the potentially redundant information by using the
structure of the knowledge resource from which the annotation terms come.

Moreover, as commented in section 2.4, the statistical-based methods tend to highlight the
most studied genes at the detriment of the poorly annotated genes during the analysis [BLG15;
HTK18; Tom+18]. As a consequence, some genes do not appear in results, thus resulting in a
loss of information.

In this chapter, we address such issues by proposing an original method that annotates gene
sets by using semantic similaritymeasures. The structure of this chapter is as follows: in sec-
tion 4.1, we introduce some work realized to provide an improvement of the gene set annota-
tion by using semantic similarity and present themotivation of this chapter. In section 4.2, we
evaluate the impact of nine semantic similaritymeasures on a newmethodproposed to anno-
tate gene sets with Gene Ontology (GO) terms. In section 4.3, we describe an improved version
of this method by adding a last step that provides a synthetic annotation and we present the
web server GSAn as well as its implementation as an R package (RGSAn). We conclude this
chapter in section 4.4.
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4.1 Gene set annotation with semantic similarity measures

4.1.1 State of the art of alternatives to enrichment analysis

As described in section 2.4 and in chapter 3, the challenges that are faced by enrichment anal-
ysis are: (i) a large number of redundancies among annotation terms, and (ii) many missing
genes deemed to be poorly annotated. The semantic similarity has been considered as a so-
lution to reduce the over-represented GO terms by making use of external and/or internal
information from the ontology for comparing GO terms and identifying similarities between
them. Xu et al. [Xu+09] proposed an a priori step that clusters similar GO terms based on their
semantic similarity and then used them for an enrichment analysis. Supek et al. [Sup+11] de-
veloped the REVIGOweb servicewith the aim to remove redundancies obtainedby enrichment
analysis tools. ClusterProfiler recently included an a posteriori step for reducing redundan-
cies by using semantic similarity measures [Yu18]. However, even if these tools succeeded in
reducing the redundancy a�er the enrichment analysis, they did not solve the problem of
missing genes.

Another solution is to directly use alternative approaches of enrichment analysis that can
take advantage of the ontology organization where terms are hierarchically structured ac-
cording to the granularity of information. These approaches, designated as gene functional
similarity, are based on semantic similarity measures and aim to compare two genes accord-
ing to their annotation terms [Zha+06]. The literature has given a variety of tools dedicated to
the gene-to-gene analysis in order to group the genes sharing similar annotations, including
GOSim [Frö+07], GOSemSim [Yu+10], G-SESAME [Du+09], GFSAT [Xu+13] and GOGO [ZW18], which
di�er from each other, among other things, by the strategy they adopt for calculating the sim-
ilarity. These approaches have the advantage to compute a comparison score between terms
and the extension of such computation to deal with a gene set (that may contain a large num-
ber of genes) is certainly of great interest to synthesize the gene set functional information.
Nevertheless, these methods can group similar annotation terms but they do not propose a
strategy to synthesize such information.

4.1.2 Motivation to develop amethod based on semantic similarity measures for
annotating gene sets

This chapter aims to describe an alternative approach to enrichment analysis in order to com-
pute a synthetic annotation for a given gene set by using semantic similarity measures that
reduce a priori the large number of annotation terms. This strategy would facilitate the bi-
ological interpretation of a gene set that may contain hundreds of genes. To the best of our
knowledge, despite the high number of semantic similarity measures that exist to compare
two terms, no work has been proposed to evaluate the impact of using a given semantic sim-
ilarity measure rather than another measure. In this frame, we consider that a relevant gene
set annotation needs to meet speci�c features for providing relevant information to domain
experts. We propose to evaluate the impact of using di�erent measures while considering
the following features that de�ne the relevant criteria for a “good” synthetic gene set annota-
tion [BPG16]:

• The number of annotation terms has to be drastically reduced, while the relevant terms
that representatively annotate the gene set must be retained (designated as synthesis).
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• The number of genes described by the selected terms (designated as coverage) has to
be maximized.

Finding the best possible compromise between these two features is not an easy task while
attempting to maintain a su�cient level of details supplied by the selected terms. In this
context, we proposed a new method to evaluate the impact of semantic similarity measures
in annotating gene sets.

Gene set

Gene Ontology 
Annotation

Term_1
Term_2

Term_1
Term_4
Term_5

Term_3

[...]

Term_1
Term_2

Term_1
Term_4
Removed

Removed

[...]

1. Removing redundancy (is_a)

2. Removing incomplete annotation

4. Computing a semantic similarity matrix for the GO terms

5. Computing hierarchical clustering

6. Selecting the best number of clusters with ASW

7. Computing representative terms using MSRT and 

    FCT functions

8. Filtering terms according to their gene coverage

List of representative

GO terms
E.3 Evaluating the annotation for each

      semantic similarity measure

[...]

Clusters of similar

 GO terms

E1. Analyzing the cluster quality with

      Correlation Cophenetic Coeficient (CCC)

      and Average Silhouette Width (ASW)

E2. Analyzing the variation induced by 

      clustering methods by using Z-index

Gene Ontology

FIGURE 4.1: Proposedwork�ow to annotate gene sets and to study the impact of using di�erent seman-
tic similaritymeasures. The green dotted rectangles correspond to the steps implemented to annotate
gene sets while the rounded rectangles correspond to the evaluation steps.

4.2 Impact of semantic similarity in the gene set annotation

We implemented a work�ow in order to study the impact of using di�erent semantic simi-
larity measures while interpreting the gene sets (�gure 4.1). First, we eliminated redundancy
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and incompleteness among the GO annotation terms before computing semantic similarity
matrices of pairs of terms. Secondly, we assessed the ability of each semantic similarity mea-
sure to compute the best partitions of the annotation terms by evaluating the clustering parti-
tion �tness and estimating the impact of varying hierarchical clusteringmethods. Finally, we
examined the e�ectiveness of each semantic similarity measure in: (i) reducing the number
of annotation terms while selecting the most representative terms of the investigated gene
set, and (ii) providing annotation for the maximum number of genes included in this gene
set.

4.2.1 Semantic similarity measures

Features of GO terms

Asmentioned in section 2.3.2, eachGO termhasmany features that can be used to quantify its
similarity with other GO terms. Focusing on the Information Content (IC) feature, two families
of methods were presented: annotation (or extrinsicmethods) and topology-based (or intrinsic
methods). Most of existing approaches are computing the IC in a similar way [MCM17], as
follows:

IC(T ) =−log(p(T )) (4.1)

where p(T ) corresponds to the probability of encountering a term T within the taxonomy
structure or external annotations. The probability p is monotonic, which means that for two
related terms in a taxonomy, i.e., T1 is_a T2, the probability of encountering T1 is equal or in-
ferior to the probability of encountering T2. Thus, if the studied taxonomy has a unique top
node, then its probability is 1 and its corresponding IC is 0 [Res95; JC97].

The extrinsic category corresponds to metrics that are using external knowledge. The �rst
introduced and themost famousmetric in this category is the one proposed by [Res95], which
is based on the frequency of a concept (term) within a corpus. In the context of GO, this
IC is related to the occurrence of a GO term within the Gene Ontology Annotation (GOA), as
follows: the more frequently a term is used to annotate genes, the lower is its IC value. This
assumption is based on the true-path-rule presented in section 2.2.1, stating that when a gene
is associated with a given term, then it is also associated with any of its ancestors. Thus, the
probability of encountering a term T based on the annotation resource is de�ned as follows:

p(T ) =
f (T )+∑t∈children(T ) f (t)

f (Root)
(4.2)

where f(T) is the number of genes in a given organism annotated by the term T (the Root be-
ing Biological Process or BP, Cellular Component or CC orMolecular Function or MF). Thus, the
IC proposed by Resnik [Res95] (or ICR) is computed as the equation (4.1).

Subsequently, Seco et al. [SVH04] argued that the IC should be computed independently from
external knowledge. More precisely, these authors claimed that the IC should be intrinsic to
the ontology, meaning that only the knowledge containedwithin the ontology should be used
to compute such a measure. In their metric, the probability of encountering a given term T
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is de�ned as follows:
p(T ) =

|descendants(T )|
|descendants(Root)|

(4.3)

where descendants(T) is the set of descendants of the term T within GO. The IC of Seco et
al. [SVH04] (or ICS) is computed as follows:

ICS(T ) = 1− log(|descendants(T )|+1)
log(|descendants(Root)|)

(4.4)

Thus, the IC is between 0 and 1, with the IC of 1 corresponding to the top term within the
taxonomy, and the IC of 0 to the leaf terms.

However, as emphasized by Mazandu and Mulder [MM12a], this type of IC considers all de-
scendants similarly regardless of their depth. Thus, it does not distinguish terms with dif-
ferent speci�cities. To address this issue, other intrinsic ICs have been proposed [MM13]. In
particular,Mazandu andMulder [MM12a] introduced an alternative intrinsic IC that considers
the depth of the term T and its descendants, de�ned as follows:

p(T ) =


1 if T is a root.

∏
t∈ancestors(T )

p(t)
|descendants(t)|

otherwise. (4.5)

where ancestors(T ) is the set of ancestors of the term T within GO. Thus, the IC of Mazandu
(or ICGOu) is also computed following the equation (4.1).

Apart from the IC, the following features of the two GO terms to be compared may also be
considered to quantify their similarity: their distance (i.e., the shortest path from one GO
term to the other GO term) and their common ancestors. Concerning the latter, the follow-
ing twomain features have been introduced for distinguishing ancestors that might be more
relevant than others: (i) the Lowest Common Ancestor (LCA) which is the common ancestor of
the two GO terms that is the most speci�c, i.e., having the maximal depth within the taxon-
omy, and (ii) the Most Informative Common Ancestor (MICA) which is the common ancestor
having the highest IC value.

Investigated semantic similarity measures

Di�erent classi�cations of semantic similaritymeasures were presented in section 2.3.2. The
purpose of this section was not to propose a new categorization of existing semantic similar-
ity measures for comparing GO terms but rather to evaluate their varying impact while an-
alyzing gene sets. Thus, we selected nine pairwise semantic similarity measures according
to the classi�cations provided by Pesquita et al. [Pes+09], Guzzi et al. [Guz+12] and Mazandu
et al. [MCM17] by choosing at least one measure belonging to each category. The measures
are listed below with a description of the feature(s) that they use.

• Ganesan [GGW03] adapted to the comparison of terms by San�lippo et al. [San+07]: the
longest path from the root to both terms and their LCA;

• Leacock & Chodorow [LC98] normalized (LC): the shortest path between the two terms
and the maximal depth within the ontology;
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FIGURE 4.2: Classi�cation of the nine semantic similarity measures (represented in dark blue rect-
angles) investigated in this study according to the features that they use (adaptation from Guzzi et
al. [Guz+12]).

• Pekar & Staab (PS) [PS02]: the shortest path between the two terms and the shortest
path between their LCA and the root term;

• Zhou [ZWG08b]: the ICS of each term and of their MICA as well as the shortest path
between the two terms and the maximal depth within the ontology;

• Resnik [Res95] normalized according to Jain and Bader’s approach [JB10]: the ICR of the
MICA of the two terms and the maximal value of the ICR within GO;

• Lin [Lin98]: the ICR of each term and of their MICA;

• Nunivers [MM12a]: the ICGOu of each term as well as the ICGOu of their MICA;

• Distance Function (DF) [Que+15b]: the ancestors of the two terms;

• Aggregate IC (AIC) [Son+14]: the ICR of ancestors of the two terms.

As shown in table 4.1, we chose three edge-based measures, �ve node-based measures (in-
cluding a graph-based measure) and one hybrid measure. We selected more node-based mea-
sures than edge-based measures because the latter were deemed less e�cient in comparing
GO terms [Pes+09]. Figure 4.2 was adapted from the categorization proposed by Guzzi et
al. [Guz+12] to illustrate that the measures investigated in this study use all the usual fea-
tures of GO terms. To consider the two previously introduced categories of IC, we replaced
the “Term IC” feature used by Guzzi et al. [Guz+12] with the following two distinct features:
“Extrinsic IC” (i.e., the ICR) and “Intrinsic IC” (i.e., the ICS and ICGOu). Notably, we did not
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choose any vector space model-based measure as these measures compare terms not only
according to features speci�c to the terms within the ontology but also according to external
knowledge (i.e., the genes they annotate).

TABLE 4.1: The nine semantic similarity measures investigated in this study.

Name Category Measure

Ganesan [San+07] Edge-based SimGanesan(Ta,Tb) =
2 ·δ (Tlca)

δ (Ta)+δ (Tb)

[LC98] normalized Edge-based SimLC(Ta,Tb) = 1−
log(Dsp(Ta,Tb))

log(2 ·δmax)

[PS02] Edge-based
Dsp(Tlca,root)

Dsp(Tlca,root)+Dsp(Ta,Tb)

[ZWG08b] Hybrid SimZhou(Ta,Tb) = 1− k ·
log(Dsp(Ta,Tb)+1)

log(2 ·δmax−1)
− (1− k) · ICS(Ta)+ ICS(Tb)−2 · ICS(Tmica)

2

Resnik normalized [JB10] Node-based SimResnik(Ta,Tb) =
ICR(Tmica)

ICRmax

[Lin98] Node-based SimLin(Ta,Tb) =
2 · ICR(Tmica)

ICR(Ta)+ ICR(Tb)

Nunivers [MM12a] Node-based SimNunivers(Ta,Tb) =
ICGOu(Tmica)

max{ICGOu(Ta), ICGOu(Tb)}

Distance Function [Que+15b] Edge-based SimDF(Ta,Tb) =
|ancestors(Ta)∩ancestors(Tb)|
|ancestors(Ta)∪ancestors(Tb)|

Aggregate IC [Son+14] Node-based/Graph-based SimAIC(Ta,Tb) =

∑
t∈ancestors(Ta)∩ancestors(Tb)

2 ·SW (t)

∑
ta∈ancestors(Ta)

SW (ta)+ ∑
tb∈ancestors(Tb)

SW (tb)
; SW (x) =

1

1+ e
−

1
ICR(x)

δmax: maximal depth of the ontology; δ (Tx): longest path between Tx and the root of the ontology; Tlca: lowest common ancestor term; Tmica: most informative common ancestor term;
Dsp(Tx,Ty): the shortest; path distance between Tx and Ty; ICS: information content of Seco et al. [SVH04]; ICR: information content of Resnik [Res95]; ICGOu: information content
of Mazandu and Mulder [MM12a]; SW: semantic weight by Song et al. [Son+14]; k: contributor factor, which can be adapted manually.

4.2.2 Selection of Gene Ontology terms

Recovering the annotation

We used GO due to the existence of a hierarchical structure of terms and a rich annotation
of genes for multiple organisms from GOA (these resources have been described in detail
in section 2.2.1). To deal with GO, we also use the OWL format. For GOA, the used format was
the Gene Association File (GAF) 2.1.

To illustrate and discuss the results of this work, we applied our methods on [B-346] and
[C-260] datasets (presented in section 1.4), whose gene sets are related to immune response.

Eliminating the inappropriate annotations

First, we removed the inappropriate annotations. An inappropriate annotation is de�ned
by any association where the GO term does not provide relevant information. An annotation
can be inappropriate for two reasons: redundancy and incompleteness.

The �rst stage of reductionwas easily applied by eliminating redundancy [Jan+11] among the
GO terms that annotate each gene in a given set. This stage consists in eliminating annota-
tions that involve a GO term if at least one of its descendant terms annotate the same gene. To
do so, when GO terms annotating a given gene are hierarchically-related (i.e., one GO term is
a parent or, more generally, an ancestor of another GO term), we only kept the most speci�c
GO term because it provides more precise information.
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The second stage aimed to eliminate incomplete annotations. According to the de�nition
given by Faria et al. [Far+12], incompleteness corresponds to cases where the function of a
gene is not fully described. Among the existing GO annotations, authors have emphasized
that GO terms that are too generic constitute an incomplete annotation. Thus, we decided to
remove such GO terms. To identify these incomplete terms, we used an alternative measure
to the one proposed by Faria et al. [Far+12], who considered GO terms with more than 10
descendants as incomplete annotations. In practice, we computed the ICGOu distribution of
the GO terms used in GOA human. For that, for a particular GO term, its ICGOu is included in
the distribution asmany times as there are genes associated with this term. For example, the
GO term T cell receptor signaling pathway (GO:0050852) is associated with 478 genes and has
an ICGOu of 220.73. This way, the ICGOu is considered 478 times for the distribution. Then, we
removed the GO terms whose ICGOu was in the �rst quartile of such distribution, which we
considered to be incomplete annotations.

4.2.3 Clustering annotation terms using computed semantic similarity matrices

According to Thomas [Tho17], biological processes represent the objectives that an organism
is “programmed” to realize. In addition, most speci�c annotation terms (i.e., with a depth
over 5) belong to the BP ontology (�gure 4.3). Based on these considerations, we reduced the
scope of our analysis by strictly focusing on the GO terms in this ontology since they provide
a clear interpretation of the roles of genes.
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FIGURE 4.3: Depth of GO terms in the annotations provided by GOA human.

For each of the nine measures displayed in table 4.1, we computed matrices containing the
semantic similarity value of each pair of GO terms, corresponding to biological processes
that are part of the investigated gene set. Then, we applied a clustering method in order to
groupGO terms from the semantic similaritymatrix into subgroups in such away that similar
GO terms are grouped together [MR05]. Multiple types of clustering methods might be able
to provide groups of similar terms. These clustering methods were separated into two main
groups [JMF99]:
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1. Hierarchical clustering: Clusters are formed by iteratively dividing the elements of the
matrix using a top-down (divisive) or a bottom up (agglomerative) approach. This type
of approach generates a hierarchy tree of similar elements into a structure called den-
drogram.

2. Partitional clustering: Clusters are assigned without producing any hierarchical cluster-
ing. Instead, this type of clustering optimizes a given criterion function [LW14].

In this work, we decided to use agglomerative hierarchical clustering methods to compute
clusters of terms [BGL11]. The choice of using such unsupervised hierarchical clustering
methods was motivated by the existence of hierarchical relations that connect the GO anno-
tation terms represented within a DAG [SSZ04]. Using the list of pertinent features provided
by Hennig [Hen15], the following three characteristics were required to de�ne “good” clus-
ters: (i) the within-cluster dissimilarity had to be small, (ii) the between-cluster dissimilarity
had to be large, and (iii) the terms in a cluster had to be well-represented by the centroid or
a very small group of terms (to help the identi�cation of synthetic and relevant terms).

The most classical hierarchical clustering methods di�er in how they de�ne the perimeter
of the resulting clusters when adding a new term. In the Single Linkage Hierarchical Method
(SLHM), the distance between two clusters is given by the shortest distance that can be calcu-
lated between two terms from these two clusters. In the Complete Linkage Hierarchical Method
(CLHM), this distance corresponds to the longest distance between two terms. Finally, theAv-
erage Linkage Hierarchical Method (ALHM) uses the average distance between each term from
each cluster.

Even if no relation exist among the data, hierarchical clustering techniques always create par-
titions [HKK05]. Consequently, assessing the relevance of the resulting partitions is essential.
There are di�erent validation measures that have been categorized according to three crite-
ria [HBV01]:

• External criteria evaluate the clustering results with an a priori knowledge about what
is expected.

• Internal criteria evaluate the inner structures of the data of the clustering results them-
selves in order to assess the quality of the clustering (i.e., Cophenetic Correlation Coe�-
cient orCCC metric).

• Relative criteria evaluate the relation between compactness and separation of a given clus-
tering result. In that case, these criteria evaluate the partitions obtained from the clus-
tering rather than the clustering algorithm itself (i.e., Average Silhouette Width ou ASW ).

Due to the fact that we do not have an a priori knowledge to compare the clustering results,
only internal and relative criteria were used.

Additionally, based on the assumption that the best semantic similarity measure should be
able to reproduce the same term partition while varying the hierarchical clustering meth-
ods, we were interested in providing additional criteria to compare partitions. In the litera-
ture, there are many measures providing a comparison between two partitions for the same
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dataset [FM83; RWR05; Mei07; YS10]. Nevertheless, measures comparing two partitions in-
cluding the dendrogram structure are less frequent [MZ12]. Using dendrogram structures
allows to observe di�erences in the organization of data a�er applying two clustering meth-
ods. Therefore, a good semantic similarity measure should be able to represent close den-
drograms while varying the hierarchical clustering methods.

Analyzing the cluster quality withCCC and ASW

To test the ability of the clustering approaches to �t well the data, we computed the internal
criterionCCC [SR62] of the resulting dendrograms. This internal metric aims tomeasure how
the original pairwise distance between terms (given by semantic similarity measures) is re-
tained within the computed dendrogram. TheCCC score between the original term pairwise
distance matrix Y and the dendrogram Z is calculated as follows:

CCC(Y,Z) =
∑

i< j
(Yi j− y)(Zi j− z)√

∑
i< j

(Yi j− y)2 ∑
i< j

(Zi j− z)2
(4.6)

where Yi j is the distance between terms i and j given by the original pairwise matrix Y , and
Zi j is the distance between i and j computed within the dendrogram Z. The y and z values
refer to the average distances within Y and Z, respectively.

Thus,weused the three clusteringmethodsmentionedabovewhile varying the semantic sim-
ilarity measures. This score aims to compare the distances between the data: (i) within the
dendrogram, and (ii) within the original semantic similaritymatrix. The resulting coe�cient
corresponds to the square of the coe�cient of determination and indicates the proportion of
variance explained by the clustering results. Thus, a value close to 1 re�ects a perfect corre-
spondence.

As shown in �gure 4.4, we observe that theCCC scores given by the SLHM, CLHM and ALHM
methods follow the same trend, as they tend to increase or decrease according to the seman-
tic similaritymeasures. However, there is a signi�cant di�erence in theCCC score dispersion
among the clusteringmethods. We observe that theCCC scores are noticeably lower with the
SLHM method (e.g., the CCC median scores of the LC and Zhou measures are below 0.50).
The observation of such low varying degrees of quality could be expected for SLHM because
this clusteringmethod is known to o�en perform consecutive additions of terms and is more
o�en used to reveal gradients in a dataset. The dispersion of scores according to the gene
sets and semantic similarity was less important for the other two clustering methods, and
in both cases, the CCC median scores are the highest considering similar measures, i.e., DF
and Nunivers. Notably, the Nunivers measure has the greatest CCC score with a very small
dispersion according to the gene sets. In contrast, the measures that provide the most sig-
ni�cantCCC score dispersion are not systematically the same according to CLHMandALHM.

By using an unsupervised clustering method, which is a classical approach, we determined
the optimal number of clusters based on the computation of a relative criterion: the ASW
score [BGL11]. It consists in using the geometrical measures of cluster compactness and sep-
aration [VCH10], which are calculated while varying the number of clusters, i.e., cutting the
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FIGURE 4.4: Cophenetic correlation coe�cients (CCC) according to nine semantic similaritymeasures
of the investigated gene sets: (A) for dataset [C-260] and (B) for dataset [B-346]. The following three
Linkage Hierarchical Methods are presented: Single (SLHM), Complete (CLHM) and Average (ALHM).

dendrogram at di�erent levels. For a given numberK of clusters, we computed the average of
the silhouette width. For each resulting cluster, the silhouette width is calculated as follows:

si =
bi−ai

max{ai,bi}
(4.7)

where i is a given term within a cluster, ai is the average distance from i to all other terms
within the cluster, and bi is the minimum average distance from i to all other terms in any
other cluster. Thus, the ASW score of the clusters for a given K is given by:

ASWK =

∑
i∈T

si

|T |
(4.8)

where T refers to the whole set of terms.

Then, considering the results obtained for each set of K clusters, the optimal partition (i.e.,
the K value) can be deduced from the highest ASW score. The ASW score was then computed
from the two datasets of gene sets to analyze its distribution. To guide the interpretation of
the ASW score distributions, a score below 0.25 or above 0.50 might respectively correspond
to an arti�cial or real structure within the data respectively [KR90]).
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FIGURE 4.5: Average Silhouette Width (ASW ) according to nine semantic similarity measures of the
investigated gene sets: (A) for dataset [C-260] and (B) for dataset [B-346]. The following three Linkage
Hierarchical Methods are presented: single (SLHM), complete (CLHM) and average (ALHM).

In order to evaluate the quality of the clusters of terms, we analyzed the ASW score for the
three hierarchical clustering methods. This score was computed for each gene set in both
datasets. As shown in �gure 4.5, we observe that the ASW scores given by the CLHM and
ALHM methods follow the same trend, while SLHM follows the same trend only for the se-
mantic similarity measures NUnivers, DF and AIC (being part of the node-based category).
That is an interesting point since these three semantic similarity measures have a close clus-
ter quality for each hierarchical method, even if theCCC results for SLHM are the worst com-
pared to the other hierarchical methods. Focusing on CLHM and ALHM (corresponding to
better results with the CCC score), we can observe that the ASW score is below 0.25 for the
PS and Resnik measures and between 0.26− 0.50 for the other measures. Thus, no seman-
tic similarity measure managed to compute a global partition with a structuring score above
0.50, which is the threshold used to separate unstructured from structured clusters. This ob-
servation must be moderated by the speci�city of the data in which an important number of
genes are still unknown in some gene sets (as represented in the two �gures in appendix A
in which the coverage of the annotated genes can vary signi�cantly depending on the gene
sets) and, consequently, badly annotated [HTK18; Tom+18].
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While the best clustering quality score with CCC was obtained by using the ALHM method
and similar ASW scores with ALHMand CLHMmethods, the following question emerges: for
a given semantic similarity measure and a given gene set, do we retrieve the same partitions of
terms regardless of the clustering method used? Thus, how similar are the partitions given by two
clustering methods for a given gene set and a given semantic similarity measure? If the partitions
are highly similars, this information could be considered as a reliability and robustness crite-
rion for the semantic similaritymeasure due to the small in�uence of the clusteringmethods.

Variations induced by clusteringmethods

Based on the results obtained by the SLHM method in terms of CCC and ASW score, we did
not use it to evaluate the variation between clustering methods because of its ine�ectiveness
in clustering data showing hierarchical relations (as shown in �gure 4.4 and �gure 4.5). Thus,
we compared the partitions given by CLHM and ALHM using the Z-index [MZ12]. This value
gives a criterion for evaluating the di�erences between two clustering methods for a �xed
semantic similarity measure. This Z-index is computed as follows:

Z = ∑
k

Zk = ∑
k

∑
i

|x1ik− x2ik|
|x1ik|+ |x2ik|

(4.9)

where x1ik and x2ik indicate whether a pair ik of terms are within the same cluster in dendro-
grams X1 and X2. All potential partitions are simultaneously considered by varying k. The Z
value provides the distance between two clustering methods by computing the di�erence in
the status (i.e., whether both terms are in the same cluster) of each pair at each stage of the
procedure (by varying the k value).
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FIGURE 4.6: Z-index scores for comparing the whole structure of the dendrograms using CLHM and
ALHM for the investigated gene sets: (A) for dataset [C-260] and (B) for dataset [B-346].

Thus, the smaller the di�erences between the results provided by both clustering methods,
themore robust the semantic similaritymeasure is regardless of the clusteringmethods. This
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measure assesses the possible combinations of all pairs of terms, which could be interpreted
as a comparison of the intermediate structures given by both dendrograms before obtaining
the di�erent partitions (without considering a priori a given K number of optimal partitions).
Then, this criterion can be considered to be a generalization of the classical metrics used to
compare two partitions [MZ12] and it provides a score ranging from 0 to 1 that corresponds
to a perfect resemblance and dissemblance, respectively, between the two dendrograms gen-
erated by each clustering method.

We used the Z-index to compare and decipher the similarities and di�erences between both
partitions given by the CLHM and ALHMmethods (�gure 4.6). Based on the assumption that
a pertinent semantic similarity measure should provide the same clusters regardless of the
adopted clustering approach, we assume that the smaller the Z-index score is, the greater the
similarity between two distinct clusteringmethod partitions is. Thus, most semantic similar-
itymeasures gave similar resultswithZ-index scores smaller than 0.25, except for theGanesan
and PS measures on both datasets (LC and Zhou were also below 0.25when computed on the
[C-260] dataset).

As an intermediate conclusion, based on this analysis, wehighlighted�ve semantic similarity
measures (LC, Zhou, Resnik, Lin, Nunivers, DF and AIC) for which the choice of CLHM or
ALHM did not show a signi�cant impact regardless of the dataset. However, clustering using
ALHM provided better CCC (�gure 4.4) and ASW (�gure 4.5) scores and was thus used for
further analysis.

4.2.4 Identifying themost relevant representative terms

To provide a meaningful analysis, we assessed the e�ciency of the semantic similarity mea-
sures in inferring synthetic and relevant terms by using the resulting partitions. Identifying
the best trade-o� between summarizing the information and preserving a good level of pre-
cision (given by the depth of terms) was challenging. Thus, �rst, only some terms were se-
lected for each cluster, and secondly, the resulting clusters that annotated only a few genes
were not included. Then, we compared the semantic similarity measures based on their ca-
pacity to provide: (i) a synthetic annotation with relevant terms, and (ii) a good coverage of
the gene set while �nally guaranteeing a �ne-grained annotation.

The clustering method generates clusters of annotation terms that exhibit a certain level of
similarity. The purpose of this stepwas to identify themost synthetic andpertinent GO terms,
which are subsequently designated as representative terms, of each cluster to summarize
their annotation information. The algorithm proposed for identifying such representative
terms is provided in the next sub-section.

Description of the algorithm for identifying representative terms.

To identify the representative terms of a cluster, we developed a new algorithm based on two
functions: MSRT (Most Speci�cRepresentative Terms) andFCT (FindCombinedTerms). All terms
are represented by a bitset that is set at the size of the cluster and initialized with all zeros.
Bitsets are used to compare terms while traversing the ontology (�gure 4.7A). Each position
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FIGURE 4.7: Steps for identifying the representative terms given a cluster of GO terms. (A) The GODAG
where the nodes stand for bitset to represent the use of terms within a cluster (colored in red). (B) The
bitsets of ancestor terms of the GO terms within the cluster are �lled following the true-path-rule. For
example, the bitset [5,6,7] stands for an ancestor term that has as descendants the terms 5, 6, and 7 of
the given cluster. (C) From the top of the ontology, MSRT (Most Speci�c Representative Terms) searches
amore speci�c GO term that involves all GO terms of the cluster. (D) From the representative GO term
identi�ed by MSRT , FCT (Find Combined Terms) identi�es the potential combination of more speci�c
terms whose bitset union satis�es the complete bitset.

of a bitset is associated with a term present in the original cluster, and, thanks to the true-
path-rule, the position of each bitset associated with the ancestor terms of this term is set to 1
(�gure 4.7B). Then, the bitset associated with a term summarizes if this term is hierarchically
related to some terms of the cluster. In practice, this algorithm is as follows (see details in
algorithm 1 and algorithm 2):

• The MSRT algorithm tries to identify for a given top term (initially set up to BP) a set of
termsmore speci�c in their biologicalmeaning. Thus, the related bitsets are compared.
If the bitsets are equal, the top term can be ignored and the corresponding descendant
terms are retained as candidate representative terms (�gure 4.7C).

• Then, the FCT algorithm is called for each candidate representative term returned by
MSRT . AsMSRT , theFCT algorithmcompares bitsets to identify a combination ofmore
speci�c terms related to the same terms of the cluster (�gure 4.7D). This combination
can vary from two tomore combined terms by depending on the number of GO terms in
the cluster. Thus, a number of combinations k for a given cluster is de�ned as follows:

f (c) = f loor(

√
|Nt
10
−1|)+2 (4.10)

where Nt is the number of terms in a given cluster c. To compute that, the minimal
number of GO terms in the cluster must be over 5. Thus, for a cluster containing from
2 to 19 GO terms, the number of maximal combination is 2, from 20 to 49 GO terms, the
number of maximal combination is 3, etc.

• At the end, we retain the combination(s) of representative terms having the best IC
value. The IC of a combination is given by themean IC of all terms in the combination.
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Algorithm 1:MSRT(top_term, GO)
Input : top_term is a term,

GO is an object with two attributes: (i) bitset(x) is the bitset associated to term x
and (ii) children(x) is the list of terms that are children of x.

Ouput: representative_terms is the set of speci�c representative terms.
1 terms_to_visit :=∅; representative_terms :=∅; visited_terms :=∅
2 push(terms_to_visit, top_term)
3 while terms_to_visit 6=∅ do
4 candidate_term := pop(terms_to_visit)
5 if candidate_term 6∈ visited_terms then
6 is_child_representative := f alse
7 push(visited_terms, candidate_term)
8 for child_term ∈ GO.children(candidate_term) do
9 if GO.bitset(child_term) == GO.bitset(top_term) then
10 is_child_representative := true
11 push(terms_to_visit, child_term)
12 end
13 end
14 if is_child_representative == f alse then
15 push(representative_terms, candidate_term)
16 end
17 end
18 end
19 return representative_terms

Algorithm 2: FCT(representative_term, k, sct, GO)
Input : representative_term is a term representing the cluster,

k is the maximum number of combinations,
sct is the minimum number of bits shared by terms,
GO is an object with two attributes: (i) bitset(x) is the bitset associated to term x
and (ii) children(x) is the list of terms that are children of x.

Ouput: representative_terms_set is a set of sets of most speci�c representative terms.
1 if k > size(GO.children(representative_term)) then
2 k := size(GO.children(representative_term))
3 end
4 combinations_set← all combinations of k terms from GO.children(representative_term)
5 representative_combination_ f ound := f alse
6 for combination ∈ combinations_set do
7 GO.bitset(combination)← union of the bitsets of terms part of combination
8 number_o f_shared_bits← number of bits shared by terms part of combination
9 if GO.bitset(combination) == GO.bitset(representative_term) and
10 number_o f_shared_bits < sct then
11 combined_representative_terms =∅
12 for term_in_combination ∈ combination do
13 push(combined_representative_terms, MSRT(term_in_combination, GO))
14 end
15 push(representative_terms_set, combined_representative_terms)
16 representative_combination_ f ound := true
17 end
18 end
19 if representative_combination_ f ound == f alse then
20 push(representative_terms_set, {representative_term})
21 end
22 return representative_terms_set

Filtering representative terms according to gene coverage

As the representative terms are conditioned by the size of the clusters, one can obtain a very
interesting representative term while the number of genes described by this term may not
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be su�cient. For that, only representative terms that annotate a minimum of three genes
in the investigated gene sets were retained, designated as synthetic terms throughout the
remainder of this chapter. We applied this �lter because our aim was to obtain a synthetic
annotation at the end of the proposed method.

Considering the criteria used to de�ne a “good” synthetic gene set annotation, we addressed
the following key questions: what is the level of details given by the remaining representative
terms? and what is the number of genes that can be related with these representative terms?
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FIGURE 4.8: ICGOu distribution of GO terms used in GOA human.

Evaluating the annotation for each semantic similarity measure

We compared the impacts of the semantic similarity measures by examining the represen-
tative terms obtained by each measure. As previously stated in the introduction, a suitable
synthetic gene set annotation reduces the number of terms while maintaining a su�cient
level of details within the synthetic terms. Based on the distribution given by the computed
ICGOu values of the whole set of terms used in GOA human, we divided the value range into
four contiguous intervals with an equal density of terms (�gure 4.8). This categorization of
the results was used to assess the semantic similaritymeasures’ impacts on: (i) the number of
synthetic terms selected to annotate the genes, and (ii) their level of details. Furthermore, the
distinction between two measures that equally decrease the number of terms or are scored
with the same number of related genes had to be analyzed in depth according to the level
of details given by each group of terms. In practice, the cumulative percentage of synthetic
terms was computed for each quartile of the ICGOu values by simultaneously considering the
term and gene coverage sides.

Then, to assess the impact induced by each semantic similarity measure, we �rst evaluated
the reduction in the number of terms between the original set of annotation terms and the
�ltered representative terms. As shown in �gure 4.9, we observed a subsequent drastic de-
crease in the number of terms using all semantic similaritymeasures. In particular, themost
striking decrease is observed with the LC and Zhou measures, where the remaining number
of terms is very small.
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FIGURE 4.9: Number of representative terms obtained a�er applying each semantic similarity mea-
sure for the investigated gene sets: (A) for dataset [C-260] and (B) for dataset [B-346]. The “Original
annotation” box-plot corresponds to the initial number of annotation terms.
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FIGURE 4.10: Percentage of synthetic terms using each semantic similarity measure and comparison
with the DAVID enrichment tool for (A) [C-260] and (B) [B-346].

The box-plots shown in �gure 4.10 display the ratio between the number of synthetic terms
and the number of representative termswhile �gure 4.11 highlights the related gene coverage
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FIGURE 4.11: Percentage of covered genes using each semantic similarity measure and comparison
with the DAVID enrichment tool for (A) [C-260] and (B) [B-346].

before and a�er applying the algorithm. For each measure, four box-plots were generated to
qualitatively represent the percentage of synthetic terms and the percentage of gene cover-
age according to the four categories based on the continuous interval of the ICGOu scores. The
percentages of terms were aggregated from right to le� since the cumulative e�ect allows for
the representation of the �rst quartile Q0, i.e., the �nal percentage of the synthetic terms. As
a reading guide, one may di�erentially consider the Q0 box-plot in which the global annota-
tion view was represented and the three other box-plots in which the �ne-tuned analysis was
presented. Based on the terms, the relative analysis aims to qualify the best measures when
their median line is low and, in contrast, based on the genes, when their median line is high.

Focusing on �gure 4.10, the downward trend observed in the �rst quartileQ0 was lessmarked
for the LC and Zhou measures. For these measures, the �ltering stage had a less noticeable
e�ect as a larger number of synthetic termswas retained. Of particular interest, their respec-
tive box-plots given for the three other quartiles showed that only a few terms with pertinent
levels of information were retained. In contrast, Resnik, Nunivers, DF and AIC provided the
best results with a larger number of synthetic terms having ICGOu scores between the �rst
and third quartiles regardless of the dataset. The other measures were more sensitive to the
type of experimental data (e.g., Ganesan showed interesting results for [C-260], whereas it
performed poorly with [B-346]). Finally, the same analysis was performed using the results
given by the DAVID tool [Jia+12]. Thus, we applied the enrichment analysis and only retained
the resulting terms that annotate at least three genes. The decrease in terms from Q0 to Q3
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is less pronounced than all investigated semantic similarity measures, corresponding to a
higher number of more important terms with a high ICGOu score.

Focusing on�gure 4.11, the �rst observation concerned theQ0 box-plots inwhich all semantic
similarity measures nearly achieved a 100% coverage. However, in the other box-plots, the
LC and Zhou measures showed singular box-plot pro�les compared to the other measures.
Indeed,most genes were related to synthetic termswith theweakest ICGOu scores (i.e., within
the �rst quartile of values). Thus, these two measures positively retained a small number of
terms (from Q1 to Q3) with the disadvantage of a low level of details. In contrast, Resnik,
Lin, Nunivers, DF and AIC had better ICGOu scores considering the percentages of the Q1

to Q3 categories of terms, regardless of the dataset. Among these measures, we focused on
Nunivers and DF becausemost speci�c terms (within the last quartile of the ICGOu score) still
annotatedmore than 25%of the genes. From this perspective, theothermeasures appeared to
be sensitive to the type of dataset. Finally, considering DAVID, we observed that its coverage of
genes was lower than that of most semantic similarity measures. However, DAVID performed
better with the [B-346], while simultaneously, it did not provide a gene coverage above 60%
for half of the gene sets.

4.2.5 Discussion

An important �nding of our study is that among the investigated semantic similarity mea-
sures, as shown in section 4.2.4, the node-based measures performed clearly better than the
edge-basedmeasures. This �nding is consistentwith Pesquita et al. [Pes+09]whoobserved that
edge-basedmeasures are not well adapted to compute the similarity among terms within GO.
Indeed, GO terms situated at the same depth are not necessarily similarly speci�c and a given
distance based on the count of edges between two terms does not attest the same semantic
distance for another pair of GO terms. It can also be noted that LC is the edge-basedmeasure
that provides theworst results. Thus, the use of LCA by both Ganesan and PS appears to be ef-
fective in improving edge-basedmeasures. The selected hybridmeasure was not successful as
shown in section 4.2.4, suggesting that the impact of the features in the node-basedmeasures
(i.e., the ICS and MICA for Zhou’s measure) is negligible compared to the edge-based features
(i.e., the shortest distance between the two terms to be compared for Zhou’s measure). In-
terestingly, we illustrated that node-basedmeasures yield good results being similar although
they make use of di�erent features. Indeed, DF is singular as it only relies on the number
of ancestors of the two terms to be compared while the other four measures are based on
the IC. Finally, measures using intrinsic (Nunivers and AIC) versus extrinsic (Lin and Resnik)
ICs did not reveal major di�erences between them. To con�rm that intrinsic and extrinsic ICs
could be used equally, it would be interesting to compute the Nunivers measure with the ICR
(because it is closer to Lin and Resnik than AIC) and determinewhether similar results would
be found or not.
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4.3 The extension of the analysis framework

The framework de�ned in the previous section (section 4.2) was extended to develop the gene
set annotation tool. As a guide, Figure 4.12 shows the di�erences between the method pre-
sented in section 4.2 and the one in this section. This original method, called Gene Set Anno-
tation (GSAn), has been developed as an accessible web service tool (https://gsan.labri.fr) and
implemented as an R package called RGSAn. This tool has been compared with some enrich-
ment analysis tools in order to highlight its strengths in terms of annotation. Additionally, we
evaluated GSAn within a case study related to the immune response.
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FIGURE 4.12: Comparison between the method proposed to annotate gene sets in section 4.2 and the
method implemented in GSAn. The blue dotted rectangles correspond to the steps that are common to
both methods, the pink dotted rectangles are the additional steps developed in GSAn and the dimmed
green rectangles represent the steps used for the evaluation in section 4.2.

https://gsan.labri.fr
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4.3.1 The GSAnmethod

GSAn is dedicated to the gene set annotation and is based on a method that makes use of the
annotations from GOA [Cam+04] and the hierarchical structure of GO. The method is com-
posed of �ve main steps which are described in the following paragraphs.

Elimination of the inappropriate annotations

The�rst step consists in removing inappropriate annotations andwas computed as presented
in section 4.2. The two di�erences are: (i) the way the distribution of the IC was calculated,
and (ii) the conversion of GO terms related to biological regulation.

To obtain the same IC distribution for any organism, the distribution is thus calculated from
all GO terms, instead of using the GO terms coming from the GOA of a particular organism.
The main motivation to do that was the missing information provided by the annotation.
Many organisms, especially the animal models, were strongly studied in their speci�c �eld,
providing thus a high degree of GO annotation focused on their �eld [GD17]. For example,
Danio rerio (usually known as zebra�sh) is an animal model widely used for developmental
biology and embryogenesis while the rat (Rattus norvegicus) used in toxicology. This miss-
ing information has an important impact on the distribution of IC since there are annota-
tions with very speci�c GO terms while other annotations less studied havemore general GO
terms. Therefore, using the IC distribution from the GOA of a speci�c organism could then:
(i) discard interesting GO terms, or (ii) include general GO terms. Finally, we decided to use
all GO terms despite the substantial di�erences in GO annotation among the organisms.

Wealso considered an additional case of inappropriate annotationbasedon the regulatory re-
lationships described within the GO ontology. Thus, we assumed that a gene associated with
a term that regulates another term can also be associated with the corresponding regulated
term. Thus, all regulation terms have been replaced by their regulated terms. For example,
the term regulation of ion transport (GO:0043269) was replaced by ion transport (GO:0006811).

Clustering of terms according to semantic similarity measures

To compute the semantic similarity matrix of GO terms associated with a particular gene set,
the following node-based semantic similarity measures were included within GSAn:
Resnik [Res95] normalized according to the Jain and Bader’s approach [JB10], Lin [Lin98],
Nunivers [MM12a], DF [Que+15b] and AIC [Son+14]. Once the semantic similarity matrix was
computed, it was used as input of the clustering method. For that, we applied the ALHM that
exhibited the highestCCC compared with other clusteringmethods. At last, the best number
of clusters was determined by using the ASW score [BGL11].

Identifying themost relevant representative terms

Considering that the number of representative terms may vary according to the size of the
cluster, two distinct strategies were used to determine the best number of terms to be re-
tained. First, if a single term inside a cluster annotated more than 70% of the genes, it was
directly considered as representative. Secondly, if such a term did not exist, the MSRT and
FCT algorithms described in section 4.2.4 were applied to identify an appropriate number of
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representative terms for the cluster.

At the end of this stage that has been applied to each cluster, a new set of terms was obtained
from the addition of representative terms of each cluster. Then, to retain the most relevant
representative terms, we used two quality criteria: term redundancy and gene coverage.

1. Removing inappropriate representative terms. Some clusters of termsmay have been gen-
erated from terms having a low similarity between them, resulting in very general rep-
resentative terms. We thus removed the terms whose IC was lower than the �rst quar-
tile of the IC distribution. Moreover, a new selection stage was then applied to elimi-
nate potential redundancies. According to the type of hierarchical relationship (is_a or
part_of ), the removal of the ancestor termsmay have a di�erent impact on the number
of annotated genes. To deal with this issue, a di�erent strategy was applied according
to the type of hierarchical relationship. For the is_a relationship, the representative
terms being ancestors of other representative terms were removed. For the part_of re-
lationship, only the parent or child terms annotating the largest number of genes were
retained.

2. Filtering representative terms according to the gene coverage. To �lter out the representative
terms associated with a limited number of genes, we used a formula that depends on
the size of the gene set provided as input. This �ltering value computes the minimal
number of genes for a given gene set and it gradually increases according to the number
of genes. For a given gene set, the number of genes of this set is used to determine the
minimal number of genes that must be annotated by each representative term. This
threshold increases by steps based on the size of the gene set according to the following
formula inspired by the equation (4.10):

f (gs) = f loor(

√
|Ngs

10
−1|)+2 (4.11)

where gs is the gene set and Ngs is the number of genes in gs. Therefore, for a gene set
containing from 2 to 19 genes, each representative termhas to annotate at least 2 genes,
from 20 to 49 genes, at least 3 genes, etc.
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FIGURE 4.13: Example of Synthetic Algorithm (SA) with six representative terms. The weighed score
is computed for each representative term according to equation (4.12). Then, the algorithm gets in
multiple steps a subset of representative terms set (called synthetic terms set) that maximizes the
weighted scores and covers all the genes annotated by the representative terms.
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Identifying synthetic terms

At last, a �nal stage has been applied to the representative terms to get amore limited number
of terms. In section 4.1.2, we carried out the reduction of annotation terms of a gene set while
keeping the most relevant terms as synthesis. In section 4.2.4, we considered the set of rep-
resentative terms associated with more than three genes as synthetic terms. However, the
compromise between the speci�city of a term and the gene coverage has to be taken into ac-
count. For that, we selected the terms that best summarize the biological information within
the gene set by applying a heuristic algorithm based on the Set Cover Problem (SCP) [VLZ16]
to the representative terms. The SCP is a NP-hard combinatorial optimization problem aim-
ing, from a set of sets of elements, at deciphering the minimal set of sets covering all of the
elements. Considering a term as a set of elements and an element as a gene, a set of repre-
sentative terms is then a set of sets of genes. In this frame, we de�ned a solution of the SCP
to identify the minimal set of terms covering the maximum number of genes.

For a set R of representative terms and a gene set G whose genes are annotated by at least
a representative term, the synthetic terms were identi�ed according to an iterative process.
At each iteration, a score was computed for each representative term and the representative
termwith the biggest score was then added to a set S that gathers synthetic terms. This score
is based on the number of genes annotated by a given representative term that are not yet
covered by terms within S and on a weighted score associated with each representative term.
This weighted score takes into account the IC of a term and the number of genes it annotates
and was computed as follows:

w(t) =
−log(annotated_genes_in_genome(t)

nb_genes_in_genome )

−log(annotated_genes_in_set(t)
nb_genes_in_set )

(4.12)

where annotated_genes_in_set(t) (respectively annotated_genes_in_genome(t)) corresponds to
the number of genes annotated by the term t in the gene set under investigation (respectively
within the whole genome) and nb_genes_in_set (respectively nb_genes_in_genome) is the total
number of annotated genes within the gene set (respectively within the whole genome). In
this formula, a relative measure (expressed as a ratio) has been used to evaluate the quanti-
tative relation between two amounts of terms. The numerator actually corresponds to the IC
proposed by Resnik [Res95].

At the end, the solution of our implementation of the SCP gives as results the minimal set
of terms maximizing the sum of their weight and covering the gene retrieved by the repre-
sentative gene sets. The pseudo-code of the Synthetic Algorithm (SA) with the customized SCP
is presented in algorithm 3 whose �nal output is a list of synthetic terms (see an example
in �gure 4.13).

4.3.2 The GSAnweb server

Based on the enriched methodology described in section 4.3.1, we developed a novel gene
set annotation tool, called GSAn. In addition to be available on the web (https://gsan.labri.fr),
GSAn provides interactive visualization facilities dedicated to the multi-scale analysis of gene

https://gsan.labri.fr
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Algorithm 3: SA(R,G)

Input : R is a set of representative terms,
G is a set of genes covered by at least one term from R.

Used functions: genes(t) is the list of genes in G annotated by the term t,
w(t) is the weight score of the term t, as de�ned in equation (4.12)

1 1) Let S represent the set of synthetic terms andC
2 represent the set of genes covered by all terms in S.
3 Initialize S :=∅
4 Initialize C :=∅
5 2)WhileC is not the same as G :
6 a) Find the term r ∈ R whose score is the biggest, in which score is de�ned by:
7 score(r) := |genes(r)−C| ·w(r)
8 b) Add the term with the biggest score to S and remove it from R
9 S := S∪{r}
10 R := R−{r}
11 C :=

⋃
∀s∈S

genes(s)

12 return S

set annotations.

GSAn has been implemented in JAVA EE using the SpringBoot framework. From the client
side, the web page exhibiting results has been implemented with the D3 [BOH11] and Tree-
Colors1 JavaScript libraries. The releases of GO and GOA are weekly updated and the JSON
�les created by GSAn are stored during 12 hours.

TABLE 4.2: List of organisms available in GSAn

Organism File

Sus scrofa goa_pig.gaf

Saccharomyces cerevisiae goa_yeast.gaf

Rattus norvegicus goa_rat.gaf

Mus musculus goa_mouse.gaf

Homo sapiens goa_human.gaf

Gallus gallus goa_chicken.gaf

Escherichia coli gene_association.ecocyc

Drosophila melanogaster goa_�y.gaf

Danio rerio goa_zebra�sh.gaf

Canis lupus goa_dog.gaf

Candida albicans gene_association.cgd

Caenorhabditis elegans goa_worm.gaf

Bos taurus goa_cow.gaf

Arabidopsis thaliana goa_arabidopsis.gaf

1https://github.com/e-/TreeColors.js/

https://github.com/e-/TreeColors.js/
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GSAn server input

At�rst, users have to upload a geneor geneproduct list and to select the appropriate organism
within the form. Fourteen organisms are currently stored in GSAn, downloaded from the GO
web site2 and from the European Bioinformatics InstituteWeb site3, and listed in table 4.2. To
be more �exible, users can also upload the annotation of any organism of interest using the
GAF 2.1 format4. Users may choose any of the three GO sub-ontologies or any combination
of them. If more than one sub-ontology is chosen, the analyses are computed separately and
results are then merged. By default, GO annotations inferred automatically (evidence code:
Inferred from Electronic Annotation or IEA) are included in the analysis but users may decide
to exclude such annotations.

To customize the analysis, two advanced parameters are proposed to users: the gene support
and the incomplete information �lter. The gene support is the minimum number of genes
that have to be associated to each representative term. The default value of this parameter is
determined according to equation (4.11) (based on the size of the gene set) and can be modi-
�ed. The incomplete information �lter is used to discard terms presenting a low speci�city
in the ontology. Four levels of tolerance (none, low, medium and hard) can be applied, corre-
sponding to the percentile values given by the IC distribution (1, 10, 25 and 50, respectively)
of GO terms. As a result, terms below the chosen percentile value are discarded. Optionally,
users can provide their email address to be noti�ed when the analysis is �nished.

The input parameters to be used in GSAn for the analysis are listed in table 4.3.

TABLE 4.3: Input parameters to be used in GSAn for the analysis

Parameter Description Default value

Gene list A list of gene identi�ers -

Genome annotation

Organism name that will be used to recover the
gene annotations. Fourteen organisms are pro-
posed and any other organism can be uploaded us-
ing the GAF 2.1 format.

homo_sapiens

IEA
Boolean that indicates whether the IEA annota-
tions should be used true

Ontology
Sub-ontology of GO (BP, MF, CC) to be used for the
analysis

BP

Semantic similarity measure
Measure to be used for computing the term simi-
larity matrix AIC

Advanced parameter

Gene support
Minimal number of genes that have to be covered
by any representative term see equation (4.11)

Incomplete information �lter
Tolerance degree to discard terms with a low
speci�city medium

Email
Providedbyusers for beingnoti�edwhen the anal-
ysis is �nished. -

2http://www.geneontology.org/page/downloads
3https://www.ebi.ac.uk/GOA/downloads
4http://www.geneontology.org/page/go-annotation-�le-gaf-format-21

http://www.geneontology.org/page/downloads
https://www.ebi.ac.uk/GOA/downloads
http://www.geneontology.org/page/go-annotation-file-gaf-format-21
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(A) (B)

FIGURE 4.14: GSAn output results (1). (A) Three gauge plots show information about the annotated
genes and the genes covered by GSAn as well as the groupwise similarity of genes in the set de�ned in
Ruths et al. [RRN09]. (B) A diverging bar plot displays the IC and the gene coverage of each synthetic
term.

FIGURE 4.15: GSAn output results (2). A table displays information about representative terms.

GSAn server output

GSAn results are presented according tomultiple visualmetaphors. At the top le�, three gauge
plots display the global gene set information (�gure 4.14A). The�rst one indicates thepercent-
age of genes which are annotated by GO terms while the second one provides the percentage
of genes considered by GSAn. Finally, the gene set similarity consists in a groupwisemeasure,
proposed by Ruths et al. [RRN09], that takes into account the gene annotation. A gene set
similarity score of 1 means that all genes in the set have the same annotation and 0 means
that terms have no common annotation. At the top right, a diverging bar plot displays the
gene coverage and the IC score of each synthetic term (�gure 4.14B). Information about the
representative terms is provided in di�erent formats within two separate pages: a table (�g-
ure 4.15) and the combined tree visualization MOTVIS, presented in section 3.2.4 (�gure 4.16).
The table summarizes the information of each representative term, being synthetic or not.
MOTVIS aims to describe the hierarchical context of each representative term within GO. To
obtain such a visualization, the GO structure (represented as a DAG) was converted into a
tree according to themost informative parent term of each representative term (as described
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FIGURE 4.16: GSAn output results (3). An example of the combined visualization provided by MOTVIS
illustrating the click and zoom interactions.
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in section 3.2). Two types of tree visualizations are then combined: a collapsible indented
tree and a circular treemap. White color forms represent the genes (instead of the gene set
in chapter 3) inside their annotation terms. Thus, a given gene can appear inside several
terms of di�erent branches. Moreover, within each gene circle, a bar chart is displayed to
represent its annotation terms (using their assigned colors). This visualization being inter-
active, it allows to explore annotation results thanks to interactions such as zooming within
the circular treemap, or expanding the branch in the indented tree (�gure 4.16). Additionally,
users can download a JSON �le and explore these results later on by uploading the �le within
the “Visualization” web page. Results can be downloaded as a CSV format.

4.3.3 Comparison of GSAnwith enrichment analysis tools

We compared GSAn to the following enrichment analysis tools: DAVID [Den+03], g:Profil-
er [Rei+07], clusterProfiler [Yu+12] and WebGestalt [ZKS05] (table 4.4). As mentioned in
the introduction, these tools include a reduction stage with the aim to reduce the number of
terms by eliminating the redundancy, except for DAVID. This comparison investigates, among
others, the impact of the reduction step to decreasing the number of annotation terms while
maintaining the number of annotated genes.

TABLE 4.4: Comparison of gene set functional analysis tools.

GSAn DAVID g:Profiler clusterProfiler WebGestalt

Statistical method - Fisher’s Exact Hypergeometric Hypergeometric Hypergeometric

Genes id Symbol Many Many Many Many

Accessibility web wite, Rest Api web site, Rest Api, R web site, Rest Api, R R web site, R

Organism number 14* hundreds hundreds 2 12*

Updates daily - - - -

Other resources No Yes Yes Yes Yes

Reduction step

Synthetic algorithm,

-

Hierarchical �ltering of Score �ltering of the Hierarchical �ltering of the

see section 4.3.2 the terms based on terms based on semantic terms in the annotation �le

for more details the p-value similarity measures before computing the analysis

* The addition of any organism annotation �le is possible.

To carry out this comparative analysis, we focused on the GO BP terms and retained only the
gene sets involved in datasets [C-260] and [B-346] for which a gene set annotation was pro-
vided by all tools. Table 4.5 displays the number of gene sets annotated by each tool, as well
as the number of gene sets that have been annotated by all of the tools. Thus, 62 and 226 gene
sets were considered for [C-260] and [B-346], respectively. To analyze the gene coverage and
the number of terms provided by each tool, we used the computed IC distribution to remove
the incomplete annotations. We used four thresholds (from Q0 to Q3) corresponding to the
quartiles of the IC distribution in order to �lter out the results of each tool. As previously, for
each threshold value (given by the limit of each quartile), the termswith a IC value below that
threshold value are �ltered out. Thus, Q0 refers to the whole resulting GO terms and Q1, Q2

and Q3 correspond to GO terms having an IC value over 18.4, 44.4 and 155.3, respectively.

Figure 4.17 and �gure 4.18 display, for each tool, the number of terms and the gene coverage
according to the IC distribution for datasets [C-260] and [B-346], respectively. Regarding the
number of terms (�gure 4.17), two classes of tools can be identi�ed according to Q0. First,
DAVID, clusterProfiler and WebGestalt give a median number of terms ranging from 10 to
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FIGURE 4.17: Box-plots providing the impact on the number of terms for each tool using (A) dataset
[C-260] and (B) dataset [B-346] according to the quartile computed by the IC distribution in GO. Each
quartile Qx corresponds to the IC value according to which the terms are �ltered out. Thus, Q0 corre-
sponds to the whole set of terms provided by the tools and Q3 to terms with an IC value higher than
the third quartile of the IC distribution in GO.

TABLE 4.5: Number of gene sets for which each tool provides an annotation.

GSAn DAVID g:Profiler clusterProfiler WebGestalt Common

# annotated gene sets of dataset [C-260] (260) 246 227 88 68 69 62

# annotated gene sets of dataset [B-346] (346) 337 336 284 233 270 226

25. The second group, involving GSAn and g:Profiler, has a smaller dispersion in the num-
ber of terms according to the high coverage of gene sets with a median value ranging from 0
to 5. This smaller number of terms combined with a high gene coverage is relevant because
very few terms annotate almost the whole genes. Considering Q1, all tools except for GSAn
have a decrease in terms of gene coverage and number of terms. GSAn keeps the same values
as forQ0 due to the IC �lter applied to remove the incomplete information (corresponding to
the �rst quartile in the distribution).
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FIGURE 4.18: Box-plots providing the impact on the gene coverage for each tool using (A) dataset
[C-260] and (B) dataset [B-346] according to the quartile computed by the IC distribution in GO.

On the other hand, regarding the distribution of the gene coverage in Q0 (�gure 4.18), GSAn
recovers more genes than the rest of the tools for dataset [C-260], while no signi�cant dif-
ference appear between tools for dataset [B-346]. For dataset [C-260], the median value is
under 40% for all enrichment tools while GSAn covers over 60%. This might be due to two
reasons; the presence of :(i) a high number of genes with missing annotations, and (ii) sub-
stantial di�erences between the genes of a given set in terms of annotation. This illustrates a
main limitation of the enrichment tools, that tend to highlight the very well annotated genes
at the detriment of other less studied genes. Regarding the number of terms, DAVID provides
the highest number of terms with a median value over 30, while g:Profiler provides the
lowest number of terms with a median value over 5. However, GSAn, clusterProfiler and
WebGestalt have a median value under 10 term, which is an acceptable number of terms to
be presented as result. For dataset [B-346], all tools present a median value higher than 80%
of the complete gene set.
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FIGURE 4.19: Box-plots showing the classi�cationof termsby 2, 3, 4, 5 andmore than 5 annotated genes
for (A) dataset [C-260] and (B) dataset [B-346]. When terms are annotated mainly by 2 or 3 terms, it
means that the result presents more speci�c terms. When terms are annotated mainly by more than
5 terms, it means that the terms are more general but that they are describing more genes.

At last, Q2 and Q3 present the results for the most speci�c terms in �gure 4.17. In �gure 4.18,
the gene coverage is higher for DAVID and clusterProfiler with a gene coverage median
over 40% for dataset [B-346]. They both lead to a better compromise regarding the number
of terms and the gene coverage while maintaining relevant knowledge. For dataset [C-260],
only DAVID presents the best compromise even if it has a gene coverage median over 20%.
However, the high number of termsmay suggest that each resulting term is likely to annotate
few genes.

To further investigate this hypothesis, we analyzed the percentage of terms according to the
number of genes that are annotated by these terms. Thus, �gure 4.19A and �gure 4.19B show
the percentage of terms annotating 2, 3, 4, 5, and more than 5 genes for datasets [C-260] and
[B-346], respectively. We observe that a median value of 40% of terms for dataset [C-260] and
50% of terms for dataset [B-346] are provided by DAVID, which thus annotate only two genes
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and the rest of itsmedian boxes do not exceed 20% for both datasets. On the contrary, thema-
jority of terms provided by GSAn and g:Profiler annotate more than �ve genes. This implies
that GSAn and g:Profiler provide terms with a lower speci�city than DAVID but covering a
larger number of genes for each term. Lastly, clusterProfiler and WebGestalt follow a sim-
ilar behavior, with a predominance of terms annotating more than 5 genes in dataset [C-260]
and a median value under 25% for each box for dataset [B-346].

4.3.4 Case study

In this case study, we used GSAn to analyze a gene set of dataset [B-346] annotated by experts
as regulation of antigen presentation and immune response [Li+13]. The antigen presentation is
an important process to carry out an e�ective adaptive immune response. Cell types spe-
cialized to realize this process such as macrophages, B cells and dendritic cells, are processing
the antigen into peptide fragments, then are boundering them into a class II MHC molecule
and �nally are displaying on their membrane [HAZ14; KL14]. Then, the antigen-class II MHC
molecule complex is recognized and interacted by T cells (speci�cally T cell helpers). When these
T cells are activated, they play important roles such as B cell antibody class switching or acti-
vation and growth of cytotoxic T cells [ALP14].

The used gene set contains 81 genes involved in the signal transduction in the immunolog-
ical process against pathogens. The default parameters of GSAn were used and the chosen
semantic similarity measure was Nunivers. GSAn retained 37 representative terms covering
80 out of 81 genes and 8 of themhave been selected as synthetic terms (�gure 4.15). The gauge
plots (�gure 4.14A) show a high gene coverage with all genes being annotated within the GOA
�le (�rst gauge) and 99% of genes annotated by GSAn (second gauge). At last, the third gauge
displays a gene set similarity of 0.59, which means that genes share a quite high number of
terms.

By focusing on the synthetic annotation displayedwithin the diverging bar plot (�gure 4.14B),
we can observe terms related to the proliferation and costimulation of T cells and the acti-
vation of signaling transduction by the innate immune response. These terms and the term
antigen processing and presentation of exogenous peptide antigen via MHC class II (GO:0019886)
are consistent with the manual annotation performed by experts and show that the anno-
tation provided by GSAn is even more speci�c. Indeed, GSAn illustrates that the gene set is
also involved in the proliferation of T cells. Moreover, more complete information can be
observed from the representative terms through the information table (�gure 4.15) or MOTVIS
(�gure 4.16). By exploring MOTVIS, we obtained additional information, such as terms sharing
the same informative ancestor and the genes annotated by more than one term. For exam-
ple, by focusing on the term antigen processing and presentation of exogenous peptide antigen
via MHC class II, we can notice that eleven genes are annotated by this term (second screen-
shot). When clicking and developing in details each gene, we can see that six out of the eleven
genes are annotated by T cell receptor signaling pathway (GO:0050852) and three of them by T
cell proliferation (GO:0042098). Thus, with very few user interactions, we retrieve additional
information about the biological role of some genes in the gene set.



94 Chapter 4. Annotating gene sets by using semantic similarity measures
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France                                 61                 293

United States                      22                   38

Spain                                  19                   65

Qatar                                   15                   81

Brazil                                     8                   10

Germany                                4                   44

United Kingdom                    4                     6

Italy                                      4                     6

Switzerland                           3                    3

Estonia                                  3                     4
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Users and Sessions by Conuntry

FIGURE 4.20: Report on the number of GSAn’s users in the world from November 18th 2018 (start date
of the server) to September 29th 2019. (A) A geomap with the location of users of GSAn (a high blue
density means a high number of users). (B) The top ten countries with the larger number of users and
GSAn’s sessions.

Application relevancy

GSAn is accessible since November 2018. To date, the number of users in GSAn is increasing,
illustrating an interest to use this new approach solving some issues of enrichment analysis
tools (presented in section 2.4). On September 29th 2019, GSAn has been used by 577 users,
of which 420 reused it at least once. Figure 4.20A shows a geomap whose color represent the
density of GSAn’s users. Figure 4.20B shows the top ten of countries with the larger number
of users and the total number of associated sessions.

4.3.5 GSAn in the R language or RGSAn

Additionally, an R package has been developed using the GSAnmethod. By combining natives
functions of R andC++ (with the library rcpp), RGSAn allows to compute threemain functions:
(i) to import an ontology, (ii) to include the gene annotation of a speci�c organism, and (iii) to
run the GSAnmethod for a given gene set. The ontology format used is the Open Biomedical
Ontology (OBO) format. The choice of this format was the human readability of this format
and an easier adaption in R. The annotation can be included in RGSAn in two ways:

• From the Go3AnnDbBimapRClass (this class canbe found in libraries such as org.XX.eg5).

• From a gene association �le (in the GAF 2.1 format).

Finally, the GSAn method can be executed a�er that the ontology and annotation have been
loaded. The output can be obtained by exporting a tabulated table in CSV. Moreover, it is
possible to represent the combined tree visualization described in section 4.3.2 by using the
library htmltools.

5XX corresponds to the organism. For example,Homo sapiens annotation can be recovered from the org.Hs.eg.
library
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4.4 Conclusions

The main problems in �nding gene signatures are related to the investigation of the biolog-
ical function of gene sets. These problems can be solved using classical enrichment tools,
such as DAVID or g:Profiler. However, these tools focus on the most studied genes which
thusmay provide annotations covering a limited number of annotated genes [BLG15; HTK18;
Tom+18]. An additional problem inherent to this issue is the redundant annotation informa-
tion because of which integration remains a largely manual process. To address these prob-
lems, bioinformatics o�ers various strategies ranging from enrichment analyses to semantic
similarity measures. The latter approach has been intensively studied by the scienti�c com-
munity to provide a large range of measures. While these measures are o�en combined with
enrichment methods, their a priori use may widely impact the interpretation of biological
datasets. To investigate these challenges, we �rst developed a large-scale approach that uses
semantic similarity measures within a robust interpretive analytic framework. We chose to
use a straightforward set of nine measures covering various features and explored their pit-
falls by examining criteria that may be good markers of information relevancy to domain
experts. Thus, we analyzed the semantic similarity measures in terms of their capacity to
synthesize information and provide the best trade-o� for retaining detailed information.

Our main �nding was that by using GO to annotate gene sets, better results were obtained
with the node-based measures that use the terms’ characteristics than with measures based
on edges that link these terms. Moreover, by investigating more deeply the annotation of
the gene sets provided by the node-basedmeasures, the experiments did not detect anymajor
di�erences, although these measures used di�erent features. Notably, we did not consider
some recent measures that use other relations than is_a. In particular, Wang et al. [Wan+07]
proposed a semantic similarity measure that considers part_of relations. We believe that us-
ing all types of relations (i.e., hierarchical and transversal) is an interesting approach and
that axioms should also be considered, as described by Ferreira et al. [FHC13]. Axioms can
be used to express the meaning of concepts and relations between concepts within ontolo-
gies [HSG15]. Thus, if the meaning of the GO terms was fully described (with a logical def-
inition based on axioms), the GO terms could be better distinguished from their siblings
(or other related terms). Some e�orts have recently been made to enrich GO with such ax-
ioms [Mun+11; The15], opening up perspectives for proposing semantic similarity measures
relying on their richness.

Then,we improved this approach andproposed anewweb server as an alternative to classical
enrichment analysis, called GSAn. Compared to enrichment analysis tools, GSAn has shown
excellent results in terms of maximizing the gene coverage while minimizing the number of
terms. GSAn has provided a gene set annotation that is more speci�c than the results given by
experts (for a human gene set). Also, an originality of GSAn is to provide visualizations with
interactive abilities to analyze the resulting gene set annotations. This visualization is based
on the combined tree MOTVIS that provides zoom operations to browse terms and the genes
they annotate according to the level of biological information that may interest users.

Finally, another interesting �nding that emerged from the analysis of the human gene sets
is that enrichment methods indeed mainly focus on the well-known subpart of genes. As
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previously mentioned, the annotation of biological data is still an open question in scien-
ti�c �elds [HTK18; Tom+18]. Thus, we analyzed two large gene sets and speci�cally focused
on human data, but the interpretation of biological experiments can change with the evolu-
tion of GO according to various organisms. Thus, the observations reported by Tomczak et
al. [Tom+18] andHaynes et al. [HTK18] regarding the strong annotation bias in theGO annota-
tions in whichmore than half of the annotations are related to approximately one ��h of the
human genes have strongly guided the choice of the datasets. Consequently, methods that
use a priori semantic similarity measures like GSAn improve gene set analyses by integrating
evolving knowledge (including less-studied genes).

In this chapter, wemade use of GO because it is widely used for understanding the biological
roles of genes. However, other knowledge resources describing di�erent types of informa-
tion, such as diseases and pathways, could be included in order to enrich the annotation of a
given gene set. Thus, the possibility of including knowledge resources within GSAn has been
studied and evaluated, as is presented in chapter 5.
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Chapter 5

Integration of additional knowledge
resources within GSAn

The �rst collection of sequence data was realized in spring 1982 by the the European Molec-
ular Biology Laboratory (EMBL), and later in the same year, GeneBank databases were es-
tablished [Bur+85]. Nowadays, in the era of massive data, thousands of data sources, the-
sauri, ontologies and other knowledge resources are regularly created with the aim to make
high amounts of biological knowledge available to the scienti�c community. For example,
in 2018, the European Bioinformatic Institute (EBI)-EMBL reports that they store over 160
petabytes of biological information, including sequences, genes, variants, proteins, processes,
diseases [Coo+18]. However, each of these knowledge resources partially covers the biolog-
ical �eld. In section 2.3.4, we described the motivation for integrating di�erent knowledge
resources, the di�erent standards developed and illustrated with projects that support such
integration. Projects such as Bio2RDF or SyBioOnt aim to gather knowledge in order to give
access to all the pertinent biological information trough complex queries. The INTEGRO initia-
tive of Cinaglia et al. [CGV18] focuses on the disease-gene associations coming from various
disease resources. Focused on phenotype information, Doğan [Doğ18] developed HPO2GO to
propose amapping betweenHPO and GO. Other existing solutions are based onmethods im-
plementing association rules to infer relevant relations between two di�erent ontologies or
two sub-parts of a single ontology [Far+12; BSS14; Aga+15].

This chapter presents an early stage of integration of two knowledge resources in order to
provide additional information within the GSAn framework. One resource describes human
diseases and the other one contains pathways. This knowledge resources have to be mapped
to GO for enabling their integration within GSAn. At the same time, this integration should
improve the coverage of annotated genes without signi�cantly increasing the number of syn-
thetic terms. This work has been evaluated by using the [C-260] and [B-346] human datasets
presented in section 1.4. This chapter is structured as follows: section 5.1 presents existing
solutions in enrichment analysis tools which make use of information from di�erent knowl-
edge resources for the annotation. Section 5.2 describes the resources we have chosen to
include within GSAn and section 5.3 exposes the process implemented to integrate a new re-
source within GSAn. Section 5.5 presents the proposed approaches to map a new knowledge
resource to GO. Section 5.6 shows an evaluation of the integration of resulting mappings in
the GSAn analysis. At last, section 5.7 discusses the conclusions of this chapter.
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5.1 Existing computational solutions that integrate knowledge re-
sources

As previously presented in section 2.4, several challenges such as the di�erent ways to de-
scribe the same information, the various origins of data and the lack of theoretical knowledge
in the biological domainmake the integration an arduous task. Considering the problems re-
lated to the volume of data, one has to also consider challenges given by computationalmeth-
ods. In particular, we noticed the lack of existing pipelines that enables to integrate even a
few number of knowledge resources for enriching information associated with a given gene
set.

GSAn (presented in details in section 4.3.2) aims to provide biological context for any gene set
through GO annotation terms. However, the use of a unique knowledge resource may lead to
incomplete information [HRM06; LG10] if one considers the richness of information given by
the full set of biological and medical data. Therefore, the integration of other knowledge re-
sources within the GSAn framework may surely improve the biological interpretation of gene
sets. These challenges have also been raised by enrichment tools as some of them propose
annotation terms recovered from several resources [Hua+07; Rei+07; Che+13; Ben+16]. How-
ever, the analyses performed by these tools apply statisticalmethods to �nd over-represented
terms coming from various resources that are considered independently [Ben+16]. Then, in
order to reduce the potential redundancies produced by equivalent terms coming frommul-
tiple knowledge resources, some tools have proposed solutions. For example, DAVID uses
Kappa statistics in order to cluster annotation terms (from any resource) by using the gene oc-
currence [Hua+07]. Nevertheless, the clustering results (i.e., groups of terms that are related
according to the genes they co-annotate) are given to users as a list of clustered terms, with-
out proposing a consensus term or considering the semantic relations between these terms
to select the most pertinent. Then, users have to analyze a huge list of terms for each gene
set they are interested in. GeneAnalyticsTM annotates gene sets by using integrated knowl-
edge resources within the GeneCards Suite [Ben+16]. For example, pathway information is
stored and integrated in the knowledge resource PathCard that involves 3,215 human path-
ways from 12 resources into a set of 1,073 SuperPaths [Bel+15]. However, GeneAnalyticsTM

does not combine knowledge resources that describe very di�erent biological information
for a given gene set. For example, it is di�cult to identify which pathway or biological pro-
cess is involvedwithin a disease of interest as no existingmapping provides this information.

A �rst attempt to integrate additional knowledge resources has been presented in section 3.2
with a pipeline that a posteriori integrates the enrichment results computed by using di�er-
ent knowledge resources. To do so, we adapted the lexical approach performed by Onto-
Enrich [Que+15a] tomapnew terms toGO terms anddeveloped anewvisualizationmetaphor,
called MOTVIS, to explore the gene set annotations. Nevertheless, knowledge resources re-
lated tophenotypesprovide information that cannot bemapped toGOusing lexical approach-
es. For example, the DO term platelet-type bleeding disorder 3 (DOID:0111056) is an inher-
ited blood coagulation disease in which the GO term platelet activation is involved. By using
OntoEnrich, no GO term (or only few GO terms that partially match ) can be mapped to DO
term because these resources describe di�erent knowledge.
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5.2 Description of knowledge resources to be included within GSAn

Two additional resources have been chosenwith the objective to get new information regard-
ing pathways and diseases within GSAn. Multiple knowledge resources have been developed
in order to describe such information.

Fordescribingdiseases, knowledge resources suchasMedical SubjectHeadings (MeSH) [Lip00],
National Cancer Institute thesaurus (NCIt) [Gol+03], Systematized Nomenclature Of Medicine–
Clinical Terms (SNOMED–CT) [Don06],OnlineMendelian Inheritance inMan (OMIM) [Ham+05],
Orphanet Rare Disease Ontology (ORDO) [Vas+14], Human Phenotype Ontology (HPO) [Rob+08]
orDO [Sch+11]were good candidates to be includedwithin GSAnbecause they arewidely used.
MeSH, SNOMED–CT and HPOwere discarded since they do not speci�cally deal with genetic
diseases while ORDO was not considered as it involves only rare diseases. Thus, we consid-
ered DO as the best candidate for the following reasons: (i) it covers a wide range of diseases,
(ii) it provides annotations for genes and gene products, and (iii) it contains cross-references
to other resources (thanks to the XREFmetadata) such as SNOMED–CT,MeSH, HPO or ORDO.
DO contains 9,384 unique terms describing diseases associated to the human organism (us-
ing the v2019-07015 release).

For the pathways, Kyoto Encyclopedia of Genes and Genomes (KEGG) [KG00] is the broadest
knowledge resource involving pathways with over 620,000 pathways that are hierarchically
related for more than 6,150 genomes. However, KEGG has not been chosen as it is not freely
available. Other knowledge resources representing pathways were thus considered, includ-
ing Reactome [Jos+05], WikiPathways [Pic+08] and Panther [Tho+03]. We chose Reactome as
this knowledge resource has the advantages to provide: (i) an easy web interface access, (ii) a
large number of available data formats, and (iii) an alignment with GO1. Reactome contains
more than 2,300 unique pathways involving 16 species (see �gure 5.1 for the statistical details
of the organisms included in Reactome). Among the data provided by Reactome, we focused
on the pathway sub-parts to analyze the interest of adding such information within GSAn.

5.3 Pre-processof resourcesbefore their integrationwithin theGSAn
framework

The addition of new knowledge resources within the GSAn framework requires to respect
three constraints: (i) to provide complementary biological information to GO knowledge,
(ii) to be organized as a graph structure, and (iii) to provide annotations relating terms with
genes or gene products. Including Reactome and DO thus provide a complementary infor-
mation to GO. However, new steps have to be implemented to adapt the graph structure or
to integrate the annotation provided by these knowledge resources within GSAn. In order to
facilitate the integration of these knowledge resources, the use of standard formats was con-
sidered.

1http://geneontology.org/docs/download-mappings/

http://geneontology.org/docs/download-mappings/


100 Chapter 5. Integration of additional knowledge resources within GSAn

*H. sapiens
B. taurus

C. elegans
C. familiaris

D. discoideum
D. melanogaster

D. rerio
G. gallus

M. musculus
M. tuberculosis

P. falciparum
R. norvegicus
S. cerevisiae

S. pombe
S. scrofa

X. tropicalis

0 4000 8000 12000
Number of entities

O
rg

a
n

is
m Entities

PROTEINS
COMPLEXES
REACTIONS
PATHWAYS

FIGURE 5.1: Data storage details of each organism within the Reactome release version 69. This
barplot displays the number of involved proteins, complexes, reactions and pathways (Source:
https://reactome.org/about/statistics).

5.3.1 Adapting the structure of Disease Ontology and Reactome

GSAn reads and manipulates the OWL format of GO (section 4.2). Since DO is also available
in this format, its integration within GSAn was simpli�ed. Reactome is described in di�erent
formats and one of them is BioPAX, de�ned in an OWL-based language. However, its integra-
tion within GSAnwas not simple. The OWL format of GO describes GO terms as classes (OWL
classes). In contrast, the BioPAX standard represents instance-based vocabularies whose en-
tities are described as OWL individuals while other general entities are represented as OWL
classes. In GO, the instances associated with the OWL classes would rather correspond to
gene products. In order to overcome this issue, instead of creating an OWL �le for Reactome
to be included within GSAn, a simple plain-text format that included the pathway information
and their hierarchical relation was used.

GSAn takes into account the di�erent types of relations existing between GO terms.
The is_a relation has been used at all GSAn stages (from the computation of semantic simi-
larity between GO terms to the identi�cation of representative GO terms for a given cluster).
In contrast, the part_of and regulates (including positively_regulates and negatively_regulates)
relations were only considered at speci�c stages in order to help �ltering out redundancies.
DO and Reactome use exclusively a single type of relationship to organize their terms. In DO,
this relation is is_a and it de�nes, like GO, a taxonomy within the DO ontology. In Reactome
that represents the graph structure in sub- and super-pathways, the structure is closer to a
partonomy than to a taxonomy. Partonomies and taxonomies represent a hierarchy of their
terms but they are di�ering with regard to the kind of relationship used to connect terms: re-
spectively part_of and is_a [Lor+03; Zha+18]. While a taxonomy presents a hierarchy between

https://reactome.org/about/statistics
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terms (describing the notion of specialization between terms), a partonomy is a decomposi-
tion of a term in di�erent parts (describing the notion of terms being part of others) [Lor+03;
Zha+18]

To facilitate the integration of Reactome within GSAn, we considered its partonomy structure
as a taxonomy. This choice simpli�es the adaptation of Reactome, and therefore avoids the
need for developing additional steps within GSAn to explore a partonomy. This is a delicate
choice since they do no represent the same information. However, the part_of relationship
like the is_a relationship is transitive (i.e., if a term A is part of a term B being itself part of a
term C, the term A is part of the term C). Thus, it remains coherent to consider that a gene
being associated with a Reactome term is also associated with all its ancestors following the
part_of relations (according to the true-path-rule).

The characteristics of the graph structure of GO, DO and Reactome, i.e. the number of nodes
and edges, the density (#edges/#nodes), the maximal depth and the IC distribution, are pre-
sented in table 5.1. To equally compare the three knowledge resources, we exclusively focused
on the is_a relationship in GO. Moreover, due to the fact that Reactome presents organism-
speci�c terms, only the homo sapiens sub-part of Reactome was considered. Considering that
the number of terms in GO (and speci�cally of the Biological Process or BP sub-part) is larger
than in DO andReactome, which impacts in turns the depth and the IC, the IC distribution has
been computed independently for each knowledge resource. This way, some terms coming
from Reactome and DO, which would have potentially been removed (because of a small IC if
computed according to GO), have been retained.

Knowledge resource Nodes Edges Density Maximal depth IC distribution
1Q 2Q 3Q

GO 45,006 77,094 1.73 16 18.42 44.13 155.35
GO - BP 29,701 57,404 1.93 16 18.42 44.13 155.35
DO 9,079 11,702 1.29 11 13.01 20.17 29.77
Reactome 23,442 24,082 1.03 11 9.34 10.90 12.56
Reactome - human 2,222 2,271 1.02 11 9.34 10.90 12.56

TABLE 5.1: Description of the structure of the three knowledge resources included in GSAn.

5.3.2 Recovering annotations from DO and Reactome

Disease ontology

The associations between genes and disease terms are not o�cially provided by DO. How-
ever, they can be retrieved from external databases [Piñ+15; Ple+15] by using an algorithm
implemented in INTEGRO [CGV18]. This algorithm exploits the cross-references to external
knowledge resources provided by DO to recover the annotations. Using the INTEGRO algo-
rithm, we thus generated gene-disease associations by merging information coming from
the following knowledge resources: NCIt [Gol+03], OMIM [Ham+05], ORDO [Vas+14], DIS-
EASES [Ple+15], and DisGeNET [Piñ+15]. In this way, we recovered the annotations within the
basic (gene, DOID) pairs format.
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Additionally, gene-disease associations were also generated by text-mining methods of DIS-
EASES and DisGeNET databases. To avoid redundancies when text-mining approach is used,
only associations that were not presented in the curated associations were kept.

• DISEASES generates associations between genes and diseases by mining MEDLINE ab-
stracts using a homemademethod [Paf+13; Ple+15]. For that, two dictionaries were �rst
created: one including all disease names and synonyms of DO terms and another in-
cluding the gene symbols from STRING v9.1 [Szk+14]. Then, a tagging algorithm pre-
sented in [Paf+13] was used to extract terms from the dictionary within MEDLINE ab-
stracts.

• DisGeNET generated associations between genes and diseases byminingMEDLINE ab-
stracts using the BeFree system [Bra+14; Bra+15]. BeFree is a text-mining tool com-
posed of two modules that decipher the information contained in biomedical docu-
ments. The �rst module is a Biomedical Named Entity Recognition (BioNER) module
that detects occurrences of diseases and genes. This module is based on two dictio-
naries: a dictionary including the diseases available in Uni�ed Medical Language System
(UMLS) [McC89] and another one including the genes from National Center for Biotech-
nology Information (NCBI)-Gene [Mag+05], Human genome organisation Gene Nomencla-
ture Commite (HGNC) [Pov+01] and UniProt [Apw+04]. Then, these dictionaries were
used to establish associations between diseases and genes present in the dictionaries
according to a set of MEDLINE articles. The second module is a relation extraction
module based on morpho-syntactic information to identify relationships between the
entities according to their co-occurrence in sentences to predict correct associations.

Reactome

The associations between genes and Reactome terms were acquired from two distinct re-
sources: GO2 and Reactome3 websites. For the associations available on the Reactomewebsite,
the gene identi�ers used by the association �le (i.e., Entrez gene identi�ers) were converted
to official gene symbols. Both sources of annotations were merged, thus resulting in a
new gene association �le in the GAF 2.1 format.

5.4 Evaluating theadditionofaknowledgeresource inGSAnwithout
any integration

Once the new knowledge resources have been included within GSAn, we evaluated the im-
pact of this addition for the annotation of gene sets. In this part, no integration has been
carried out, meaning that mappings between GO and the two additional resources have not
been used. In that case, we thus analyzed each knowledge resource independently and we
merged the results a�er running the GSAn analysis.

Figure 5.2 shows the number of (gene-term) associations according to the depth of terms for
each knowledge resource. Regarding (gene,disease) associations (�gure 5.2A), we can ob-
serve that DISEASE and DisGeNET provide the highest number of gene-disease associations.

2http://current.geneontology.org/annotations/
3https://reactome.org/download-data

http://current.geneontology.org/annotations/
https://reactome.org/download-data
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This �gure shows that some disease resources do not provide many associations because of
missing annotations (NCIt, OMIM and ORDO), or missing cross-references between DO and
the other disease resources. As commented by Köhler et al. [KPL03], two di�erent knowl-
edge resources canpresent the same concepts even if no relationhas beendescribed between
knowledge resources. For example, the Alexander disease term (a rare leukodystrophy) ex-
ists both in DO and ORDO but no XREF link has been proposed for this term between the two
resources.
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FIGURE 5.2: Number of (A) gene-DO term associations and (B) gene-Reactome term associations.

The terms showing the highest number of associationswith genes have a relatively lowdepth,
indicating that the corresponding genes are related to general terms. In DO (�gure 5.2A) and
Reactome (�gure 5.2B), the largest number of associations involves terms with a depth of 4,
corresponding to information that may be less detailed than other more speci�c terms (for
more details, see appendix B):
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• The DO term annotating the largest number of genes is kidney cancer (DOID:263, depth
5) with 1,285 genes. This term is the ancestor of 30DO terms and a tiny number of them
are related to 42 out of 1,285 genes, suggesting that most of the genes related to kidney
cancer are not well known.

• In Reactome, one can �nd more heterogeneity as many terms with a depth of 3 or 4
have no descendant. For example, the Reactome term annotating the highest number of
genes is neutrophil degranulation (R-HSA-6798695, depth 3) with 450 related genes and
no descendant pathway.

To assess the impact induced by the addition of each knowledge resource, we evaluated:
(i) the number of retained synthetic annotation terms, and (ii) the percentage of annotated
genes (gene coverage) within GSAn. For that, we applied the same analysis based on IC dis-
tribution as used in section 4.3.2. Only the Q1, Q2 and Q3 quartiles were considered (as Q0

and Q1 showed the same results using GSAn during the comparison analysis in section 4.3.3).
Figures 5.3 and 5.4 illustrate the results for each knowledge resource and their combination
(called DO+Reactome +GO) using the [C-260] and [B-346] datasets.

For both datasets, �gure 5.3 presents the number of terms according to three cumulative cat-
egories of IC. These categories correspond to the Q1, Q2 to Q3 quartiles of the cumulative
results of IC, with an increasing level of information. Regarding the comparison between
GO and DO+Reactome +GO, the addition of new knowledge resources increases the number of
terms, generatingmore information to dealwith. For example, inQ2, the advantage of adding
new knowledge resources within GSAn is signi�cant with a p-value inferior to 2.2 ·10−16 for the
[C-260] and [B-346] datasets (using aWilcoxon test4). This observationmotivates the need for
integrating these resources in order to eliminate potential redundancies.

A second analysis deals with the percentage of covered genes (�gure 5.4) where the objective
is to have the highest number of them. One can observe that the percentage of gene coverage
is more important for DO than for Reactome within the Q1 and Q2 classes of results. The low
percentage of gene coverage in DO and Reactomemay be impacted by the speci�city of terms
in the annotation (as observed in �gure 5.2 in which one can see that most of terms annotat-
ing genes are situated in a high position in the taxonomy).

Then, GO and DO+Reactome +GO have to be compared in order to investigate the bene�t from
adding other knowledge resources than GO. In both datasets, the percentage of annotated
genes increases signi�cantly inQ2 with a p-value inferior to 2.2 ·10−16 for [C-260] and [B-346].
Moreover, for the most speci�c category (corresponding to Q3), the gene coverage is signi�-
cantly impacted in [C-260] and [B-346] with a p-value of 2.586 ·10−7 and 1.691 ·10−13, respec-
tively. These observations are motivating the need to include new terms coming from other
knowledge resources because this allows to provide a richer and more various biological in-
formation from di�erent contexts for a given gene set.

4Wilcoxon test: Non-parametrical statistic test that compares two distributions
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FIGURE 5.3: Number of representative terms computed by GSAn using DO, Reactome and GO indepen-
dently as well as DO+Reactome+GO: (A) for the [C-260] dataset and (B) for the [B-346] dataset. The
results are displayed according to the �rst three cumulative quartiles of the IC distribution (Q1, Q2
and Q3).

5.5 Mappingmethods to align new knowledge resources to GO

To reduce the number of terms to be included within GSAn, an integration of new knowl-
edge resources through a mapping stage to GO may be useful. An alignment between two
knowledge resources is de�ned by the collection of relations that connect terms considered
as equivalent or hierarchically-related from the two resources (i.e., mappings). An equiva-
lence can be established: (i) between two terms, one of each knowledge resource, represent-
ing the same or very similar information, and (ii) between a term from a knowledge resource
and a list of terms from another one.

Two strategies were considered to align a given knowledge resource to the BP sub-ontology of
GO. The origin of the mappings is di�erent according to the knowledge resource: the align-
ment betweenDO andGOneeded to be computedwhile the alignment betweenReactome and
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FIGURE 5.4: Gene coverage retrieved by GSAn using DO, Reactome, GO or DO+Reactome+GO: (A) for
dataset [C-260] and (B) for dataset [B-346]. The results are displayed according to the �rst three cu-
mulative quartiles of the term’s IC distibution (Q1, Q2 and Q3).

GO was already available from the GO web site.

5.5.1 Mapping Disease Ontology terms to Gene Ontology terms

To the best of our knowledge, no mappings exist between GO and DO terms. To address this
issue, three methods have been developed and then compared. These mappings have been
computed at the instance level, whichmeans that theymake use of genes annotated by terms
from both knowledge resources. In other words, the mappings are related to the use of the
terms by the genes, and may di�er according to the organism.

1. A �rst method, calledMAP_DO_GO_1, has been applied to each set of genes annotated
by each DO term. It exploits the (gene,disease) associations created in section 5.3.2
and applies an enrichment analysis considering the genes of a particular DO term as
a set. To do so, we used g:Profiler that performs the hypergeometric distribution to
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calculate the GO terms that are statistically over-represented within the gene set. The
g:Profiler hierarchical �lter STRONGwas then applied as post-treatment to reduce the
redundancy and number of terms [Rei+07; Rei+16].

2. A second method, MAP_DO_GO_2, has also been applied to each set of genes anno-
tated by each DO term. It follows the same principle, but uses GSAn with the semantic
similarity measure NUnivers instead of running g:Profiler.

3. The last method, MAP_DO_GO_3, creates a mapping between the occurrences of GO
and DO terms in the genome by making use of the (gene,disease) associations of each
knowledge resource. To do so, we implemented a preliminary stage to infer association
rules, based on the frequent item set (FIS) algorithm [Nau+13]. A FIS is a set of items
that frequently appears when a data model is considered. FISmining is o�en applied
inmarket-basket datamodels considering a transaction of clients that purchase di�erent
market items [Nau+13]. Thus, the framework of FISwas applied to our gene set annota-
tion problem where the genes are transactions and each associated term is an an item.
Then, the itemset is a list of terms that are considered frequent if the support ( i.e. the
number of related genes) is higher than a given threshold. To compute the frequent
itemsets, the FIS algorithm chosen was FPGrowth [Nau+13].

For each method, a �ltering stage has been applied to the DO terms to discard the ones that
annotate less than �ve genes. In this way, to analyze sets of genes, the �lter helps to avoid the
mappings that may be created because of missing information in the used annotation �les.
Table 5.2 displays the number of DO terms that have been mapped to a GO term (as a mini-
mum) according to the three mapping methods.

A �rst observation relies on the advantage of usingmethods including the hierarchical struc-
ture of knowledge resources (such as GSAn and g:Profiler) to compute the DO to GO map-
pings. Also, even if similar results were obtained by GSAn and g:Profiler, the highest num-
ber of mappings was recovered by GSAn, which may suggest that using the hierarchy in an a
priori stage is more useful than in an a posteriori stage.

Mappingmethod Number of mapped DO terms
Mapping with MAP_DO_GO_1: g:Profiler 1,522
Mapping with MAP_DO_GO_2: GSAn 1,618
Mapping with MAP_DO_GO_3: FIS 175

TABLE 5.2: Mapping of DO and GO terms

5.5.2 Mapping Reactome terms to GO terms

Themapping betweenGOandReactome can be recovered from theGOwebsite5. It is also pos-
sible to extract additional mappings directly from the GOA �les. Indeed, some annotations
involve a gene and a GO term, as well as a Reactome term. In such cases, a mapping between
the corresponding GO and Reactome terms can thus be extracted. Then, bothmappings were
merged to bene�t from all information.

5http://current.geneontology.org/ontology/external2go/

http://current.geneontology.org/ontology/external2go/
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Table 5.3 shows the number of Reactome terms that have been mapped to GO terms. Consid-
ering the number of Reactome terms in the homo sapiens organism (2,222 terms presented in
table 5.1), 38% of them have been mapped with GO a�er merging both mappings.

Mapping extracted from Number of mapped Reactome terms
GO mapping file 420
GOA file 734
Total number of mappings after merging 845

TABLE 5.3: Mapping of Reactome and GO terms

5.6 Comparison between an a priori and a posteriori integration

Once mappings have been obtained between knowledge resources, an integration stage has
been carried out. Two strategies have been applied: (i) an a priori integration, and (ii) an a
posteriori integration.

• The a priori strategy makes use of the mapping between GO terms and Reactome or DO
terms before applying the GSAnmethod.

• The a posteriori strategymakes use of themapping a�er running the GSAnmethod. Dur-
ing this process, GSAn separately exploits di�erent terms from the resources and the
mapping is used at the end of the analysis.

In this preliminary study, we realized this comparison by examining the number of map-
pings between GO terms and Reactome or DO terms that have actually been used in the di�er-
ent strategies. This comparison allows us to see why the integration is crucial in GSAn when
additional knowledge resources are included to then provide richer and non redundant in-
formation by making use of correspondences existing between the di�erent resources.

5.6.1 Integrating DOwithin GSAn

Themappings between DO terms and GO terms were obtained from threemethods based on
the gene sets associated with DO terms (section 5.5.1). As very fewmappings were recovered
by FIS algorithm, only the mappings provided by MAP_DO_GO_1 and MAP_DO_GO_2 map-
pingswere �nally considered. Thus, a single DO term is associatedwith a list of GO terms and
some GO terms are also associated with several DO terms. The existence of these many-to-
many associations can render the integration stagemore di�cult as amatch between a single
GO term and a single DO term is not enough to consider two terms as equivalent. An illustra-
tion of this issue is presented in �gure 5.5. In this example, a set of �ve genes are annotated
by the following three disease terms and four biological processes:

• Diseases:

– pulmonary embolism (DOID:9477),

– cholestasis (DOID:13580),

– adult respiratory distress syndrome (DOID:11394).
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  - bp_1: Blood coagulation

  - bp_2: Positive regulation of cytosolic calcium concentration

  - bp_3: Response to hypoxia
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FIGURE 5.5: Example of annotation performed by GSAn when using DO and GO. The DO term d_1
(pulmonary embolism) is considered to be the most interesting disease since all its mapped biological
processes annotate the studied gene set.

• Biological processes:

– blood coagulation (GO:0007596),

– positive regulation of cytosolic calcium concentration (GO:0099588),

– response to hypoxia (GO:0001666),

– cell development (GO:0048468).

We can observe in �gure 5.5 that the GO term blood coagulation has beenmapped to the three
DO terms. As we did not evaluate the quality of the mappings created to link DO and GO, we
decided to consider only DO terms mapped to a high number of GO terms associated with
the gene set. To do so, we computed a mapping percentage score for each DO term, de�ned
as follows:

percentage(DOx) =
|GO terms associated to DOx in the gene set|

|GO terms associated to DOx|
·100 (5.1)

For a given DO term (DOx), the numerator involves the number of GO terms mapped to this
DO term that annotate the gene set and the denominator is the number of GO termsmapped
to the DO term. Thus, the DO terms can be ranked by the percentage of mapped GO terms
annotating the gene set. In the example of �gure 5.5, the DO term pulmonary embolism is the
most relevant since 100% of the GO terms to which it is mapped are part of the annotation of
the gene set.

To analyze the impact of an a priori versus a posteriori strategy, the results are analyzed ac-
cording to �ve categories corresponding to the �ve ranges of the previous percentage: ]0,30[,
[30,45[, [45,60[, [60,75[ and [75,100]. Thus, in �gure 5.5, the DO term pulmonary embolism is
included in the [75,100] category and the DO terms cholestasis and adult respiratory distress syn-
drome are included in [30,45[ and [45,60[, respectively.
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Figure 5.6 shows the number of DO to GO mappings obtained by the MAP_DO_GO_1 and
MAP_DO_GO_2methods using the a priori and a posteriori strategies. As expected, the a priori
strategy includes a higher number of mappings since, at this stage, there is a larger number
of terms associatedwith genes in the set. It could be interesting to also apply amappingweight
to each DO term before the analysis, in order to rank the DO term(s) according to their rele-
vance. Thus, for aDO term, thismappingweight could be determined considering thenumber
of its GO mapped terms and the number of genes it annotates in the used gene set. Compar-
ing theMAP_DO_GO_1 (based on g:Profiler) andMAP_DO_GO_2 (based on GSAn) methods
to generate a mapping between a DO term and several GO terms, the mapping provided by
the MAP_DO_GO_2 method performs better than the MAP_DO_GO_1 method (as shown in
�gure 5.6). The upward trend observed in the �rst range ]0,30[ indicates a large number of
non relevant potential mappings between GO and DO terms. This abundance tends to de-
crease as the range is bigger. Focusing on the last two ranges, the range [75,100] is slightly
higher and involves less outliers, suggesting a good compromise between a low tolerance in
themapping coverage and an acceptable relevance given byDO terms. It seems that a disease
term with a high mapping percentage has a strong association with the gene set, which may
also mean that if this mapping has a low percentage, it is possible that the disease is present
only by chance.

5.6.2 Integrating Reactomewithin GSAn

To focus on the pathway sub-part of Reactome, we extracted the mappings of GO terms with
Reactome terms as explained in section 5.5.2. The mappings are one-to-one associations,
meaning that a GO term is associated with a Reactome term and vice-versa. To evaluate the
number of mappings found between GO and Reactome terms that annotate a gene set with
GSAn, we searched for these mappings in two di�erent ways:

1. Direct mapping: it corresponds to cases where a direct mapping exists between a GO
term and a Reactome term that both annotate at least one gene of the studied gene set,

2. Indirect mapping : if the GO term mapped to a Reactome term is not in the pool of
annotation terms, an indirectmappinghas been establishedbetween theReactome term
and an ancestor of themapped GO term that is part of the annotation terms and has the
highest IC value.

Due to the fact that themapping between Reactome and GO is one-to-one, when a direct map-
ping exists between a Reactome term and a GO term, it is not necessary to search for an indi-
rect mapping for this Reactome term. As shown in �gure 5.7, the indirect mappings provide
minimal mapping coverage compared to direct mappings. This �nding suggests that the di-
rect mapping is su�cient to map Reactome and GO terms.

Another �nding of this analysis, similarly as observed about the mapping between DO and
GO (section 5.6.1), is that the a priori strategy �nds the greatest number of mappings between
GO and Reactome. Nevertheless, the strategy to integrate this resource in GSAn is di�erent to
the one proposed forDO andGO. The reasons for this di�erence are twofold: (i) themappings
being provided by GO, their quality is established, and (ii) the mappings used one-to-one.
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FIGURE 5.6: Box-plots of DO toGOmappings thatwere acquired by theMAP_DO_GO_1 andMAP_DO_-
GO_2 methods using an a priori strategy and an a posteriori strategy within the GSAnmethod: (A) for
dataset [C-260], and (B) for dataset [B-346]. As a DO termmay be mapped to more than one GO term,
the analysis was performed according to �ve categories depending on the percentage of GO terms that
annotate the gene set and are associated with the mapped DO term.

5.7 Conclusion

We presented in this chapter a preliminary work that has been carried out to integrate new
knowledge resources within GSAn. In a �rst time, we evaluated the impact of such integration
to improve the biological information that can be extracted from a gene set. In a second time,
we evaluated the impact of mappings between knowledge resources to get richer annotation
results. Two knowledge resources have been studied, DO and Reactome, in order to provide
additional biological context regarding disease and metabolic information, respectively. For
DO, we had to establish an alignment to GO while for Reactome, mappings were available
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FIGURE 5.7: Box-plots ofmappings betweenReactome andGO terms used before and a�er applying the
GSAnmethod: (A) for dataset [C-260], and (B) for dataset [B-346]. Two types of mappings were used:
direct and indirect.

on online databases. In both cases, we showed that their integration within the GSAn frame-
work increased the gene coverage. Nevertheless, using separately the knowledge resources
increases the number of annotation terms and this could make the results more di�cult to
interpret.

To solve this issue, two integration strategies have been studied: an a priori and a posteriori
use of mappings besides the GSAn computation. This comparison may help to decide which
strategy ismore relevant for future works. Thus, the a priorimappingwould require to add or
to adapt steps into the GSAnmethod for taking into account the fact that annotations described
by multiple resources (or related by di�erent resources) may be more relevant. In contrast,
the a posteriorimapping would require a simple step to merge the annotations described by
multiple resources. Regarding the results, the a priori integration is more relevant as more
mappings are computed between a knowledge resource and GO for a given gene set. Thus,
the a priori integration has the advantage to provide a greatermapping coverage between two
knowledge resources.
Towards an integrative analysis, themapping stage is crucial tomerge twoormore knowledge
resources. Many other knowledge resources that have a direct relationship with genes may
increase the biological relevance of any gene set like drugs, reactions, cell types or speci�c
phenotypes [BRA05; Wis+07; Dav+08; Rob+08; SE09; Mat+10; Die+16].
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Chapter 6

Conclusions and research perspectives

The use of gene sets in biological conditions has been very popular in the last two decades.
This interest is due to the emergence of high-throughput technologies (i.e., microarray or
RNAseq) that generate a large amount of data to beprocessed in a single analysis. However, the
quantity of information associated with a gene in the form of annotation is amajor challenge
whenworkingwith a gene set. The goal of this thesiswas to investigate, by exploring di�erent
�elds of study, how to improve the annotation, and then, the interpretation of gene sets. In
this �nal chapter, we recall the initial research questions motivating our work and recollect
the �ndings which allowed us to address them. We then conclude by outlining some existing
opportunities and research perspectives.

6.1 Review and �ndings

In section 2.3, we described a synthesis of four �elds of study to help to better understand the
implication of a gene set in a biological context. These �elds are the following:

1. Annotating gene sets with an enrichment analysis that presents over-represented an-
notation terms.

2. Proposing an alternative to enrichment with ontological solutions to group genes ac-
cording to the semantic similarity of their annotations.

3. Representing the annotation of a gene set into visualmetaphors to facilitate the explo-
ration of results for better understanding its interpretation according to a given biolog-
ical context.

4. Implementing techniques for integratingmultiple knowledge resources in order to en-
rich the information available with the aim to interpret the biological function of gene
sets.

Then, in section2.4,wepresented thedi�erent challenges of theseobjectives that have guided
our work and motivated choices made during this thesis. The remainder of the manuscript
describes how we dealt with these challenges through three main works.

The �rst work addressed two main questions associated with a visualization problem, that
is, how to observe the impact on the results of gene set annotation when: (i) visualizing one
or multiple gene sets, and (ii) including structured resources such as ontologies in the visu-
alization. In the �rst case, by using multiple gene sets, the visualization makes it possible to
observe which are the gene sets are involved in the same phenotype. Including the structure
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between annotation terms was useful to better understand the results and to organize the an-
notation terms while reducing redundancies between related terms. Additionally, as stated
by Kerren et al. [Ker+17], the integration of di�erent visual metaphors being still occasion-
ally, we developed an integrative visualization, called MOTVIS, that combines two di�erent
visual metaphors: a circular treemap and an indented tree. MOTVIS, which has been used
to represent the results of annotation from multiple gene sets, has the advantage to solve
the limitations presented in each visual metaphor when used individually. This advantage
illustrates the interest of using di�erent visual metaphors to facilitate the comprehension of
biological results when complex data are represented.

The second work focused on the challenges posed by two distinct approaches when annotat-
ing genes: the enrichment analysis and the ontological solutions, based on semantic similar-
ity. Although enrichment analysis has the advantage to facilitate the functional understand-
ing of gene sets, it may be criticized for two important reasons: (i) the lost of poorly anno-
tated genes, and (ii) a high level of redundancy in the results. Ontological solutions based on
semantic similarity have been intensively studied by the scienti�c community to provide a
large range of measures. While these measures are o�en combined with enrichment meth-
ods, their a priori use may widely impact the interpretation of biological datasets. Thus, we
chose to develop a multi-step method that computes a synthetic annotation for a gene set
combining semantic similarity approacheswith techniques of datamining andheuristic algo-
rithms. First, due to the diversity of semantic similarity measures, we evaluated the di�erent
approaches grouped in three categories: node-based, edge-based and hybrid. The evaluation
of each type exhibited that node-based measures provided better results with no signi�cant
distinctions between them. Besides, comparing these methods with the DAVID enrichment
tool showed that our work�ow with node-based semantic similarity measures gave better an-
notation results. Then, this method was adapted to create a new online tool, GSAn, dedicated
to compute a synthetic annotation for a given gene set. In comparison with classical enrich-
ment tools, GSAn o�ers three main advantages: (i) to recover a maximal number of genes,
(ii) to minimize the number of annotation terms, and (iii) to provide a good compromise in
terms of relevant informationwithin annotation and the involved genes. GSAn also o�ers visu-
alization facilities, including MOTVIS adapted to visualize a single gene set, enabling a simple
interpretation of results and the opportunity of using interactive tools for exploring these re-
sults.

The last work presented in this manuscript is an extension of the second work and addressed
the last challenge involving the integration of other knowledge resources within GSAn. The
main motivation of this work was that only GO was used to recover annotation terms in the
GSAn framework. As described in section 2.2.1, GO represents the biological processes, func-
tions and localizations of a gene or gene product. However, many knowledge resources de-
scribe other facets related to genes. Consequently, it was important to analyze the possibility
to include information provided by other resources than GO that may improve the under-
standing of gene set annotation. Nevertheless, the knowledge resources cannot be included
per se. As the integration of di�erent resources may increase the amount of information as-
sociated with a gene set, it may also imply a harder interpretation of results. Therefore, in
an early stage, we studied integration strategies to include two knowledge resources within
GSAn, namely Reactome and Disease Ontology (DO), and to �nd mappings between terms of
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these resources and GO terms. We applied two strategies to �nd an alignement (either ex-
tracted from existing databases, or computed in this work) between each new resource and
GO. We stated that a mapping process used before applying the GSAn method gave a higher
number of inter-relations between knowledge resources.

In the course of this work, GSAn was developed as an alternative tool to annotate gene sets.
This tool uses a di�erent approach to statistical analysis and may be very useful in geno-
mics analysis. Even though GSAn is already used by the community1 and produces pertinent
annotation outcomes, some limitations and perspectives have nonetheless to be taken into
consideration.

6.2 Research perspectives

Despite the promising results obtained in these works, they also raise issues needing im-
provements. Before concluding this thesis, we present the perspectives that could solve some
limitations or improve the currentmethods or visualizations developed during the past three
years.

Rendering amore informative visualization of the gene set annotation

In chapter 3, in order to facilitate the interpretation of gene set annotation, we developed
MOTVIS to visualize the annotation of multiple gene sets. This integrative visualization was
then used in chapter 4 for a single gene set as output of the GSAn online tool. This visualiza-
tion used a simpli�cation of the GO structure to represent the annotation terms, which allows
to reduce the complexity of the GO structure for an easier exploration of the results. Keeping
the most informative parent for a particular term was a solution to convert the DAG of GO
into a tree. Nevertheless, simplifying the GO structure could be problematic given the loss
of context it implies for terms. Indeed, sibling terms may be represented in di�erent places
in the visualization (when another parent term is more informative) whereas their meanings
are probably close.

Therefore, it might be interesting to explore alternative metaphors adapted to the visualiza-
tion of a DAG to be implemented in MOTVIS. Moreover, it could be interesting to include in
the visualization additional information such as the genes involved in a gene set or di�erent
types of relations existing between terms (e.g., part_of and regulates relations in GO). Finally,
MOTVIS may bene�t from additional functionalities, such as interactive thresholds to �lter
terms by their properties (e.g., the IC value) or a search engine enabling to search for a par-
ticular term, gene or gene set. Even so, these implementations wouldmake it possible to �nd
a compromise between data completeness and user understanding.

Developing semantic similarities considering di�erent properties of terms

In section 4.2, we restricted our evaluation to nine semantic similarity measures while the
number of semantic similaritymeasures is extensive (see [Har+15] or the supplementary data

1As of 29 September 2019, GSAn has been used by 577 users, 420 of them returnmore than once on the web site.
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of [MCM17]). A future perspective is to investigate the impact of a wider spectrum of seman-
tic similarity measures and to �nd the best way to combine them for obtaining the highest
similarity between terms. In this sense, Shin et al. [Shi+15] developed an hybrid semantic sim-
ilarity measure, called consensus similarity, for short text clustering. This similarity measure
combines four pairwise similarities: distance between terms, cosine similarity, pair relat-
edness and surface similarity. Martinez-Gil [Mar16] developed CoTo (Consensus Trade-o�),
a tool that computes a fuzzy membership to detect di�erences between semantic similarity
measures and then aggregate some of them having di�erent features. The tool stated better
results comparing to classical semantic similarity measures by using di�erent human rating
datasets.

Moreover, in section 2.3.2, we showed the di�erence between semantic similarity and se-
mantic relatedness. While semantic similarity only considers the taxonomy to compute the
closeness between two terms, the semantic relatedness can involve a broader range of re-
lations (i.e., involving hierarchical and associative relations) [PPM04; Pes+09]. In chapter 4,
we made use of the three most important relations in GSAn. Nevertheless, only the is_a re-
lationship was taken into account in the semantic similarity measures. Lord et al. [Lor+03]
developed an IC measure inspired by the one of Resnik [Res95] but adapted to GO. This IC
combines, indistinctly, the is_a and part_of relationships. This assumption is delicate since
combining di�erent structures in this way may generate inconsistencies in the computation
of the similarity. Later on, Wang et al. [Wan+07] presented a new measure combining both
is_a and part_of relationships and applied a weighted score to provide a greater importance
to a relation over the other one. Following this research could be interesting to observe dif-
ferent features to be used to compute the similarity between two terms.

Additionally, to better estimate the similarity between two terms, it could also be interesting
to observe the di�erences between them. This notion of di�erence has been de�ned as the
semantic particularity by Bettembourg et al. [BDD14]. By comparing two sets of entities, the
semantic particularity corresponds to “the value that re�ects the importance of the features that
belong to the �rst set but not the second”. The authors made use of this notion to compute the
di�erences between two genes. For that, the sets of terms associated with each gene (and
their ancestors) are compared. This type of comparison could also be carried out for two
terms in an ontology and help to estimate their similarity. Thus, if two terms share a very
informative ancestor and a high value of semantic particularity at the same time, these terms
would be considered as less similar than if only the semantic relatedness had been computed.

To the best of our knowledge, only two semantic similaritymeasures considering the graph to
compute the similarity between two termshave taken into account their di�erences [Wan+07;
Son+14]. Following this research line, which considers both similarity and particularity, may
improve the comparisonbetween two termsbefore the clustering stagewithin the GSAn frame-
work.

Considering generic or speci�c properties of ontological concepts

GSAn is mainly based on GO and the underlying method takes advantage of speci�c prop-
erties coming from the ontology structure of GO. Then, the integration of other knowledge
resources that do not have the same speci�c properties could result in a more limited use of
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them. As an illustration, to compute the incomplete annotation in GSAn, we used the IC pro-
posed by Mazandu and Mulder [MM12a]. This IC, de�ned as ICGOuniversal by the authors makes
use of speci�c features of GO. As the structure of other knowledge resources may be di�er-
ent (as observed in section 5.3), the choice of an IC measure could be various. Then, it could
be interesting to study the impact of using di�erent ICs (or other properties that quantify
the information from an ontological concept) in GSAn. As the semantic similarity, the num-
ber of IC measures is large and it is tricky to choose among them. In the supplementary data
of [MCM17], nine ICmeasures, including the semantic valueproposedbyWanget al. [Wan+07],
have been described. Then, a future perspective could be to propose an analytical pipeline
to evaluate the impact of using di�erent IC measures within GSAn, when annotating a gene
set according to various knowledge resources.

In particular, the GSAnmethod has been designed according to the taxonomy structure of GO.
As observed in section 5.3, Reactome is structured as a partonomy, which has not been taken
into consideration when this knowledge resource has been integrated within GSAn. There-
fore, a future perspective would be to explore alternatives to properly include partonomies
within GSAn.

Adding steps dedicated to the integration of new resources

As presented in chapter 5,mapping strategies are relevant to �nd inter-relations between two
knowledge resources. Then, a perspective could investigate how to take advantage of these
mapped terms within GSAn. For example, the computation of amapping scoremay give addi-
tional information concerning the number of relations a term has with other terms. In DO,
when a DO term is mapped to multiple GO terms, this mapping score could be based on the
percentage of mapped GO terms and annotated genes in the set.

Moreover, for years, many e�orts have focused on ontology-based integration. Therefore,
tools like Hertuda [Her12], HMatch [Cas+08], SAMBO [LT06] or ServOMap [BD12] propose to align
ontologies. Hertuda is a simple string-basedmatcher connecting classes and properties over a
determined threshold [Her12]. HMatchuses name and context similarity to proposemappings
between classes [Cas+08]. SAMBO is a system that aligns andmerges biomedical ontologies by
usingmatchers of di�erent types (e.g., instance-based, string-based) and �ltering thresholds in
order to suggest an ontology alignment and check its consistency [LT06]. At last, ServOMap
is a large scale ontology mapping tool supporting terminologies and ontologies de�ned in
multiple languages and computing similarity between classes thanks to information retrieval
techniques [BD12; Dia14]. Therefore, these worksmay be relevant and should be investigated
for improving the integration step in GSAn.

At last, the GO web site provides a more complex structure of GO, called GO-PLUS. This cor-
responds to an enriched version of GO that includes in particular other knowledge resources
as ChEBI [Mat+10], Cell Ontology [Die+16] and Uberon [Mun+12]. Their exploitation and use
within GSAn could also be relevant to improve the annotation information.
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Includingadditional informationprovidedby thegenesorgeneproducts intoGSAn

Using information related to other biological networks might be useful to enrich the biolog-
ical information associated with a gene set. In this context, we can refer to the interactome
or “the whole set of molecular interactions that occur within a particular cell” [Tre12]. The three
most studied interactomes are the gene regulatory network, the protein-protein interaction net-
work and the metabolic network (details of interactome network and of these three types can
be found in [VCB11]). By considering the inter-relations between genes, proteins or metabo-
lites, it could be easier to extract relevant information associated with the gene set. With
this idea, some enrichment analysis tools from theModular Enrichment Analysis (MEA) class
introduced by Huang et al. [HSL09] make use of the gene product network. For example,
EnrichNet [Gla+12] uses the gene networks, provided by resources such as STRING [Szk+10],
to rank the computed over-represented terms.

Considering formal concept analysis for gene set analysis

The formal concept analysis (FCA) is a mathematical theory, presented by Ganter and
Wille [GW89], that links a set of objects having a set of attributes. The input of FCA is amatrix
(or formal context or simply context) whose rows represent the objects, columns represent the
attributes and in which relations are boolean values. A formal concept (or simply, a concept)
in a given context is the combination of two sets: a set of objects (O) and a set of attributes (A).
The particularity of this combination is that all the objects in O contains all the attributes in
A and vice-versa. In a given context, the concepts are connected by the is_a relationship and
the set of concepts constitute a concept lattice. The lattice is a graph structurewhere the nodes
correspond to formal concepts and the edges represent the is_a relations. This lattice is rooted
by a node representing the whole set of objects, has a unique leaf node that represents the
whole set of attributes, and contains between these two nodes the formal concepts organized
according to the formal context matrix (Figure 6.1).
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FIGURE 6.1: Illustration of formal concept analysis representation with: (A) the formal context describ-
ing relations between a set of objects and a set of attributes, and (B) the concept lattice represented in
the graph structure.
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In ontology engineering, FCA has o�en been used to design and create ontologies [Jia+03;
Obi+04; Haa06; PZ07; TT12] or to merge two ontologies together [SM01; GS03; GSZ10; CBY11].
But,FCA is not solely focused on the creation of ontologies. FCAhas awide spectrumof appli-
cations (see details in [Poe+13]). In bioinformatics, most of the e�orts using FCA are focused
on gene expression or the identi�cation of co-expressed genes [Bes+05; Bes+06; Cho+08;
MVS08; Kay+09; Wer+19]. In similarity analysis, Keller et al. [KEK12] developed a semantic
similarity measure based on FCA to compute disease similarities in a given gene set. Never-
theless, some important drawbacks must be considered [Dam16]:

• there are no relations between the elements into the set of objects,

• this analysis produces a high number of formal concepts, irrespective of whether they
are non-informative or biologically irrelevant,

• FCA is sensible to missing or incomplete data.

As future work, I want to study the combination between FCA lattice structure and ontology
structure in the framework of gene set annotation. For that, using the genes as objects and
the ontology terms as attributes, I plan to create a lattice structure of formal concepts. Then,
this structure could be used to reduce the redundancy between attributes and to associate
concepts with related attributes. This re-organization of concepts would allow to be more
coherent with the ontological structure or to create new concepts involving the redundant
terms. Moreover, FCA and the lattice structure could be combined with the MSRT and FCT
algorithms, presented in section 4.2.4, to improve the identi�cation of representative terms.
For that, a cluster of terms and the annotated genes for this cluster could be �rst used as the
formal context and then used to generate the lattice structure.

6.3 Final conclusion

Nowadays, with the revolution of high-throughput technologies, such as the next genera-
tion of sequencing, the decreasing cost of sequencing makes more accessible their analy-
sis. This accessibility allows these technologies to be routinely carried out. In this way, re-
search �elds using omics data (e.g., genomic, transcriptomic, proteomics, metabolomics)
have critical needs for tools dedicated to the interpretation of biological results. This thesis
has contributed to the development of solutions for the functional annotation of gene sets.
We focused on methods to improve the interpretation of gene sets, to propose new visual-
ization facilities, and to integrate additional heterogeneous resources. We opened up new
roads of possibilities with a novel method that combines semantic similarity measures and
data mining strategies. Moreover, we investigated the visualization �eld, as this research do-
main has an important impact on biology representation and interpretation. Then, this work
has demonstrated the relevance of using visual metaphors dedicated to the functional anno-
tation analysis. Furthermore, the combination of various visual metaphors has allowed to
solve limitations existing when each visual metaphor is used alone. At last, the integration
of heterogeneous resources has been studied in a preliminary work but this aspect needs to
be further investigated to implement a complete integration process within GSAn. This line
of research is very interesting as the central idea is to conciliate di�erent resources in order
to extract the maximal amount of biological information.
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Appendix A

Additional information for chapter 4
For the used datasets [C-260] and [B-340], we represent the percentage of covered genes pro-
vided by DAVID and the di�erent semantic similarity measures used in the work�ow devel-
oped in section 4.2. �gures A.1 and A.2 show several genes sets with low gene coverage due
to the fact that, for each gene set, an important number of genes are still unknown.

FIGURE A.1: Percentage of covered genes for each gene set in the [C-260] dataset.
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FIGURE A.2: Percentage of covered genes for each gene set in the [B-346] dataset.
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Appendix B

Additional information for chapter 5
For each knowledge resource added in GSAn (DO and Reactome), we present the top ten terms
that annotate the highest number of genes.

Disease Ontology

Table B.1 shows the top ten DO terms that annotate the highest number of genes. We can ob-
serve that most of the DO terms have a depth of 5. This low depth means a low level in detail
in the gene annotation. Focusing on the DO term annotating the highest number of genes,
kidney cancer (DOID:263, with 2,557 annotated genes), we observe that this term has 46 de-
scendant terms. By looking at the direct children (table B.2), we can notice that only three of
themannotate genes and the number of annotated genes is insigni�cant (e.g., nephroblastoma
annotates 38 out of 2,557 genes). This shows a lack of details in the DO annotation.

DO name DO id IC Mazandu Depth Number of genes Number of descendants
kidney cancer DOID:263 25.86 5.0 2,557 46
liver cancer DOID:3571 51.41 5.0 758 17
endometrial cancer DOID:1380 51.11 7.0 742 18
prostate cancer DOID:10283 36.41 6.0 652 20
epilepsy DOID:1826 14.66 5.0 586 63
breast cancer DOID:1612 21.31 5.0 536 80
rheumatoid arthritis DOID:7148 16.60 7.0 506 1
skin cancer DOID:4159 23.37 5.0 449 83
lung cancer DOID:1324 27.04 5.0 411 53
stomach cancer DOID:10534 26.94 5.0 350 30

TABLE B.1: Top ten DO terms annotating the highest number of genes.

DO name DO id IC Mazandu Depth Number of genes Number of descendants
nephroblastoma DOID:2154 28.06 6.0 38 7
renal carcinoma DOID:4451 28.06 6.0 2 15
kidney sarcoma DOID:4242 28.06 6.0 1 4
mesoblastic nephroma DOID:4772 28.06 6.0 0 3
renal pelvis carcinoma DOID:4919 28.06 6.0 0 6
childhood kidney cancer DOID:3675 28.06 6.0 0 5
kidney liposarcoma DOID:5699 57.44 8.0 0 0
kidney hemangiopericytoma DOID:262 28.06 6.0 0 0
malignant cystic nephroma DOID:7571 28.06 6.0 0 0

TABLE B.2: Information of the child terms of the kidney cancer DO term.
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Reactome

Table B.3 shows the top ten Reactome terms that annotate the highest number of genes. We can
observe that most of the Reactome terms have a depth of 4. Contrary to DO, most of Reactome
terms have no descendant term. Although the depth seems to be low, these terms are speci�c
with a high level of detail.

Reactome name Reactome id IC Mazandu Depth Number of genes Number of descendants
Neutrophil degranulation R-HSA-6798695 9.71 3.0 765 0
Olfactory Signaling Pathway R-HSA-381753 11.30 5.0 394 0
Antigen processing: Ubiquitination &

R-HSA-983168 10.32 4.0 392 0Proteasome degradation
Generic Transcription Pathway R-HSA-212436 9.92 3.0 343 65
mRNA Splicing - Major Pathway R-HSA-72163 10.24 4.0 269 0
Neddylation R-HSA-8951664 10.93 3.0 235 0
Ub-speci�c processing proteases R-HSA-5689880 12.54 4.0 221 0
Rho GTPase cycle R-HSA-194840 9.51 3.0 221 0
GPCR downstream signalling R-HSA-388396 9.51 3.0 220 36
G alpha (i) signalling events R-HSA-418594 11.30 4.0 218 23

TABLE B.3: Top ten Reactome terms annotating the highest number of genes.
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