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Abstract

Autonomous Vehicles navigating in urban areas interact with pedestrians and other shared
space users like bicycles throughout their journey either in open areas, like urban city cen-
ters, or closed areas, like parking lots. As more and more autonomous vehicles take to the
city streets, their ability to understand and predict pedestrian behaviour becomes paramount.
This is achieved by learning through continuous observation of the area to drive in. On the
other hand, human drivers can instinctively infer pedestrian motion on an urban street even
in previously unseen areas. This need for increasing a vehicle’s situational awareness to
reach parity with human drivers fuels the need for larger and deeper data on pedestrian
motion in myriad situations and varying environments.

This thesis focuses on the problem of reducing this dependency on large amounts of data
to predict pedestrian motion accurately over an extended horizon. Instead, this work relies
on Prior Knowledge, itself derived from the JJ Gibson’s sociological principles of “Natural
Vision” and “Natural Movement”. It assumes that pedestrian behaviour is a function of the
built environment and that all motion is directed towards reaching a goal. Knowing this
underlying principle, the cost for traversing a scene from a pedestrian’s perspective can be
divined. As a result, inference on their behaviour can be performed. This work presents
a contribution to the framework of understanding pedestrian behaviour as a confluence of
probabilistic graphical models and sociological principles in three ways: modelling the
environment, learning and predicting.

Concerning modelling, the work assumes that there are some parts of the observed scene
which are more attractive to pedestrians and some areas, repulsive. By quantifying these
“affordances” as a consequence of certain Points of Interest (POIs) and the different elements
in the scene, it is possible to model this scene under observation with different costs as a
basis of the features contained within.

Concerning learning, this work primarily extends the Growing Hidden Markov Model (GHMM)
method - a variant of the Hidden Markov Model (HMM) probabilistic model- with the ap-
plication of Prior Knowledge to initialise a topology able to infer accurately on “typical
motions” in the scene. Also, the model that is generated behaves as a Self-Organising map,
incrementally learning non-typical pedestrian behaviour and encoding this within the topol-
ogy while updating the parameters of the underlying HMM.

On prediction, this work carries out Bayesian inference on the generated model and can, as a
result of Prior Knowledge, manage to perform better than the existing implementation of the
GHMM method in predicting future pedestrian positions without the availability of training
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trajectories, thereby allowing for its utilisation in an urban scene with only environmental
data.

The contributions of this thesis are validated through experimental results on real data cap-
tured from an overhead camera overlooking a busy urban street, depicting a structured built
environment and from the car’s perspective in a parking lot, depicting a semi-structured
environment and tested on typical and non-typical trajectories in each case.
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Introduction 1
„ You can’t do better design with a computer, but

you can speed up your work enormously.

— Wim Crouwel
(Graphic designer and typographer)

In recent years, technology has improved by leaps and bounds bringing with it increased
processing power and powerful sensors packed into ever smaller packages. All of these
advances have made Autonomous Vehicles (AVs) feasible with some of them commencing
commercial operations soon. Yet, one of the main obstacles and, indeed, worries of the
general populace and the scientific community alike is guaranteeing safety with respect to
other road users, especially the most vulnerable ones like pedestrians and cyclists. This
poses a critical challenge since human behaviour is dependent on many factors (e.g., per-
ception, intention, social standing, cultural biases, etc.). Motion planning for autonomous
vehicles in a chaotic environment like an urban area remains an NP-Hard problem (Reif
et al., 1994) made more complicated with the large number of individualistic elements that
can be encountered. Estimating pedestrian intentions accurately becomes paramount to the
successful deployment of autonomous vehicles. In this thesis, we study the case of pedes-
trian behaviour in urban areas under the influence of a built, structured environment in
estimating their positions over time.

We begin by presenting, in this chapter, a general context and our motivation for the
presented work in the domain of AVs. Following this, we formalise the problem tackled in
this thesis, the proposed approach and the associated challenges. Then, in Section 1.4 we
discuss the contributions of this work, finally presenting the outline of this manuscript in
Section 1.5.

1.1 General Context
Traffic related fatalities are a global pandemic. By 2016, in absolute numbers, there were
around 1.35 million deaths on the world’s roads. Of this, vulnerable road users represent
over half of these deaths with a disproportionate number of pedestrians and cyclists being
affected while car occupants make up 29% of these deaths as presented in the World Health
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Organisation (2018) report on global traffic accidents. This report goes on to provide in-
sights and recommendations on the precautions and safety standards that could be employed
by member countries of the United Nations Organisation. One of these is the ensure safe
vehicles on the road.

Based on customer demand and strengthening regulations on this front, automakers have
begun innovating in vehicular safety. Currently, there are many technologies on the market
that provide Automotive night vision, Emergency driver assist, Lane departure warning
systems and others that aid in keeping both the driver and the vulnerable road user safe
while driving. These technologies, collectively called Advanced Driver Assistance Systems
(ADAS) have been successfully used for the past few years to reduce mishaps on the road
by sometimes taking control from the driver when collisions are imminent. It is under the
ambit of these technologies that self driving cars have made their debut.

Autonomous vehicles hold the promise of a safer, tension-free commute for everyone
involved. The Society of Automotive Engineers (SAE) has proposed a five level roadmap
for the automation of cars on our roads (SAE International, 2018). The current revision
of this proposed standard in autonomy can be summarised by Fig. 1.1. This infographic
describes the technologies that define each level. Levels 0 to 2 require constant human
attention and existing ADAS technologies suffice to meet the conditions prescribed to be
classified under these levels. Levels 3 and above, on the other hand, require more.

The current state of technology on research platforms with their massive array of sensors
- LiDAR, radars and cameras in different positions - has enabled us to reach an automation
level of 3 according to the infographic. An interesting point to note here is that the standard
prescribes that when the autonomous platform fails to perform, the human driver must take
action. The implication here is that in many existing conditions, humans perform better than
existing technologies. Given that these levels are sequential, we can assume that Level 4
should perform as well as humans in most conditions and Level 5 should necessarily surpass
this performance under all conditions everywhere.

Very recent demonstrations by Tesla, Inc (2019) have showcased a possible move from
the existing Level 3 capabilities to a commercially available Level 4 autonomous system.
Yet, one of the criticisms of this demonstration was that it did not deal with urban areas or
in chaotic environments.

A main reason for Level 4 and subsequently, Level 5 technologies being developed so
gradually is the existence, or lack thereof, of regulations. A secondary, and more important
to our discussion, reason is technical. The clear implication of Fig. 1.1 is the obvious influ-
ence of human drivers in the driving process. A move from Level 3 to 4 and ultimately to
5 must necessarily accommodate the interests and behaviours of vulnerable users on urban
roads just as much as a human driver.

Consider, for example, the unfortunate incident in 2018 involving Uber’s autonomous
car and the fatality of a pedestrian. Reports of this incident have underlined the factors
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Fig. 1.1.: Levels of Autonomy as defined by SAE [Image credit: (SAE International, 2018)]

that caused the very first autonomous vehicle related death (Wakabayashi, 2018). Amongst
other factors, the cause of this accident has been a cascading failure of Situational Awareness
(SA).

Situational Awareness as a concept was first presented in Endsley (1995) which described
the different mental steps required by any intelligent agent to perform a task. This model
describing Situational Awareness can be seen in Fig. 1.2. As we can see from this figure, SA
is a combination of three levels following which a decision is taken and an action is executed
leading to a new situational awareness, thus closing the loop for any task undertaken by an
intelligent agent.

Consider once again the Uber incident of 2018. A woman walked perpendicular to the di-
rection of motion of the autonomous car, crossing the street illegally while the environment
was dark. This incident is illustrative of scenarios in urban areas involving vulnerable users.
In this specific case, to attain the first level of SA, the car should have perceived the woman
even while dark. The context of the situation, that there could be a pedestrian in the area
should have been comprehended and, once an object had been detected, predictions should
have been made about the future states of this obstacle. Sadly, the person was misperceived
leading to the cascading failure of the entire system (National Transportation Safety Board,
2018). Had the system been operating at a higher level of Situational Awareness, this un-

1.1 General Context 3



Fig. 1.2.: A model of SA, based on work presented in Endsley (1995). [Image credit: (Lankton,
2007)]

fortunate incident might have been avoided. Focusing on Figures 1.1 and 1.2 together, it
becomes clear that a higher level of autonomy directly implies the capacity to infer at a
correspondingly higher level of SA. Thus it becomes imperative to pursue human cognitive
cues in designing systems requiring such Situational Awareness.

McKnight and Adams (1970a) and McKnight and Adams (1970b) devolve the task of
urban driving into more elementary cognitive tasks. Within this ambit, a driver sequen-
tially: looks at the scene that he is driving in, identifies the different features of this scene,
decides the areas of the scene that is possible to drive in, identifies pedestrian and non-
pedestrian lane markings and executes actions differently in residential and commercial
areas. In commercial areas, he/she identifies areas of possible pedestrian density (e.g., side-
walks, crosswalks, open areas where pushcarts can appear, building openings etc.) depend-
ing on the time of day (McKnight and Adams, 1970a). With a higher level of caution, the
driver anticipates pedestrian behaviour in other areas such as drinking areas; sections of the
street where the driver has the legal right of way but not the de-facto right; gives special
attention to obscured areas and possible points of origin on the street. He/she then drives
evenly through the area without disturbing other users of the street, vulnerable or non vul-
nerable (e.g., swerving) (McKnight and Hundt, 1971).This anticipation on the part of the
driver of pedestrian intentions is possible because of a human cognitive capacity of “putting
ourselves in their shoes.” The driver identifies areas of pedestrian distribution in an area,
notices a pedestrian and asks himself where the destination of that pedestrian could be given
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the knowledge he possess of the area around him, allowing him to predict and take evasive
actions or navigate around these dynamic obstacles if necessary.

The road to full automation is paved through increasing Situational Awareness of au-
tonomous vehicles. No commercial deployment of AVs can ignore the challenges posed in
operating in an urban area. As discussed earlier, AVs should perform as well as a human
at the very least for any viable success. This implies a capacity of, not only reacting to
vulnerable users, but also to anticipate them utilising their perspectives on planning and
execution of tasks and negotiating a safe and successful passage amongst them. In other
words, the vehicle must look to the human mentality of “putting ourselves in others shoes”
to raise their levels of Situational Awareness. To arrive there we can identify the following
main challenges:

1. Reliable Perception The first level of Situational Awareness (Fig. 1.2) depends heav-
ily on robust and reliable perception. Current state of the art on autonomous naviga-
tion and perception prescribes heavy usage of powerful technologies such as LiDARs,
cameras, Radar, etc. Some are complementary - where only one of these systems is in-
sufficient to perform at required capacities. For example, Zhang et al. (2014) depend
on the fusion of LiDAR data with that of a camera to detect vehicles in the scene. Such
an approach, while sufficient under good weather conditions cannot compete under
sub-optimal conditions such as cloudy skies, rain or snow. On the other hand, reliable
semantic identification is becoming possible in images under many conditions using
approaches such as He et al. (2017) and Redmon and Farhadi (2018). Drawbacks with
these approaches are that a choice must be made between accuracy and speed since
they are seldom real-time in identification. A second requirement for reliable percep-
tion is the need for accurate maps. Such maps play a pivotal role in localising the AV,
perhaps using technologies such as GPS signals or through other means. Likewise,
these maps also provide vital information on the area surrounding the AVs in creat-
ing a mental model which could be used as a fallback when the external perception
systems fail, such as providing positions of commercial establishments, geometrical
data on the scene, etc. Likely, future work in the field will focus on generating and
maintaining good maps of the areas the vehicle is deployed in.

2. Anticipating Pedestrians and assessing risk The final level of SA is the prediction
of future states of all the elements in the observed scene. These include dynamic
obstacles such as cars, pedestrians, bikers and motorcyclists whose behaviours differ
significantly within the same setting and certainly in different settings. For example,
cars on a highway behave differently than in an urban area. The same is applicable for
pedestrians and bikers in built and open environments. Thus, the autonomous vehicle
must be able to anticipate the behaviour of these shared space users and predict their
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positions in the future. In doing so, it must also estimate the level of risk to itself and
to others in its vicinity.

This thesis addresses the second challenge, i.e., that of anticipating and predicting pedes-
trian behaviour, specifically in built, urban areas.

1.2 Problem Description
Consider the motion of an AV in an urban area. The goal of this thesis is to develop a
framework, from the perspective of an AV, to:

1. Model an environment conforming to pedestrian behaviour, without the observation
of their trajectories

2. Capture their trajectories in new and previously unseen environments

3. Execute a learn-and-predict system where, when there are instances of non typical
trajectories, such behaviours are learnt

4. Predict future pedestrian positions following typical and non typical motion patterns.

The Look-Once Principle As a contrast, we consider once more the behaviour of human
drivers in urban areas. We have already discussed the cognitive aspects of driving in such
situations in the previous section, specifically the ability of a driver to look at an environ-
ment and, intuitively, mentally model it under different circumstances. Within this men-
tal model, drivers can infer pedestrian behaviour by “putting themselves in others’ shoes.”
This extraordinary capability of humans in predicting others’ position is a sociological phe-
nomenon based on Schema (Casson, 1983). Humans look only once at a scene and glean
information from it such as the different objects within and the interactions between them.
Secondly, the human processing system is quick and accurate, allowing for complex actions
to be executed within limited timeframes. These two ideas form the basis of the “Look-Once
Principle” wherein a system is only compliant to this principle if it :

1. Requires no more than one iteration of a process to glean a maximum amount of
information from the environment.

2. Optimises the execution of the process in such a way as to infer accurately the inter-
action of objects in the environment with little to no extra information other than the
one provided by the first iteration.

In our proposed approach, we endeavour to follow closely the “Look-Once Principle”
in modelling an predicting pedestrian behaviour in urban areas. Significantly, there ex-
ist differences in pedestrian behaviour in structured and unstructured urban environments.
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Within this, pedestrian motion can be broadly classified into “Legal” crossings (or “Typi-
cal” motion) and “Illegal” crossings (or “Atypical” motion). In a structured environment,
where each object within has a well defined function and convention, any one object behav-
ing unconventionally, for e.g., crossing on the street and not on a designated cross-walk, is
considered “Illegal” behaviour while the contrary is considered “Legal”.

Our approach to this problem is to build prior knowledge, for a system with regard to the
environment it is operating in based on the different features within which can impact pedes-
trian behaviour. Following this prior knowledge, the system can then update this knowledge
with new information as it comes along. In possessing this knowledge, either prior or pos-
terior, the system should be able to answer the question “With a pedestrian identified in the
observation space, knowing their current trajectory, is it possible to predict their position
with a long term horizon and their possible goal?”

1.2.1 Challenges

The objective of this thesis, expressed as three problems – that of modelling the environ-
ment, learning pedestrian behaviour to generate Prior Knowledge and leverage it to predict
motion in a human-like manner – comes with its own set of challenges in approaching these
problems.

Unreliable Observations: Prediction of pedestrians in any environment requires reliability
in the tracking of said pedestrians. Yet, sensors operating in noisy environments capture
unreliable observations. The huge problem in this domain is the data association problem,
whereby a tracker, on encountering an occlusion, can lose track of the object under obser-
vation. Once the pedestrian is re-observed, they may not be assigned the same tracking ID.
In most existing approaches dealing with prediction, the ground truth of the trajectory is
assumed to be known from start to destination (Vasquez et al., 2009; Ziebart, Ratliff, et al.,
2009; Kitani et al., 2012).

Learning Constraints: A learn-and-predict system where trajectories train a model all the
while its previous iteration is used to predict another trajectory’s future (Vasquez et al.,
2009) require a large number of training trajectory observations to reliably used for predic-
tion. Thus, such an implementation cannot be used, for example, on moving platforms like
AVs where, on deployment, the learn-and-predict system cannot observe sufficient trajec-
tories while moving to perform online learning and inference. Another drawback would be
the loss of information on the trained model once the AV moves from that specific area.

Transfer of Learning This is a challenge affecting the problem of modelling the environ-
ment as well as pedestrian prediction. Consequent to the previous challenge mentioned, the
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parameters and the model learnt are wasted when the platform localises itself in a novel
view. Under such scenarios, the model is required to retrain itself by observing new trajec-
tories over time which will once again be lost when the platform moves. Some approaches
in literature have attempted to evade this recurring issue by attempting to transfer the learnt
model to novel scenes (Kitani et al., 2012; Ballan et al., 2016). These approaches discre-
tise the observed environment into constituent, recurring features over different scenes (e.g.,
road, pavement, etc). These features are associated with a weight that is learnt on observing
behaviours which are then generalised and applied in other scenes. However, such knowl-
edge transfer only becomes straight forward when there are large datasets available (C. Liu
et al., 2009).

Dearth of Training Datasets The previous challenge leads directly to this one wherein the
transfer of learning is affected by the dearth of good training datasets in urban areas depict-
ing pedestrian prediction (Ridel et al., 2018). This challenge can be solved by two methods –
creating new datasets and attempting to utilise online learning mechanisms. In considering
the former, the learnt models are rooted to specific scenarios and behaviours leading to other
challenges for generalising this learnt model. The latter is almost always computationally
expensive.

1.3 Proposed Approach
Our proposal in solving the challenges presented in the previous section can be found in
Fig. 1.3. This approach consists of various cascaded modules described below.

Sensor data coming from the environment are parsed through a “Perception Layer” which
performs the task of identifying and segmenting the different features of the environment.
Parallelly, a tracking module identifies moving objects in the scene, tracking them over time
in both position and velocity. The outputs from these two modules then feed into the other
modules sequentially.

1. Environmental Modelling: The aim of this module is to accrue information about
the environment where the observer is present and to convert this semantic informa-
tion into quantifiable values. This is the first step in building Prior Knowledge.

2. Behaviour Learning: This module converts the quantifiable values into graphical
models that can be used to represent typical and atypical trajectories of pedestrians.
Internally, this module utilises the tracker information to update the representation of
the graphical model to more accurately model pedestrian behaviour. The resulting
graphical model contains embedded within it information on the environment as well
as the probabilistic distributions of pedestrian motions at each of the states defined
by the topology.

8 Chapter 1 Introduction



3. Pedestrian Trajectory Prediction: Within the context of our defined problem, pre-
diction of pedestrian motion happens over a specified horizon. Performing exact
Bayesian inference over the graphical model results in a probabilistic distribution over
the observed area for each pedestrian. In the broader context of Situational Aware-
ness, this probability distribution aids the decision making process, which is beyond
the scope of this work.

Fig. 1.3.: Proposed approach to solve the pedestrian prediction problem
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1.4 Contributions

The main contribution of this thesis is a human-like prediction framework, with the capac-
ity to learn, for predicting pedestrian behaviour which can be deployed in an autonomous
vehicle operating in built, urban areas.

This main contribution can be divided into three sub-contributions as follows:

1. An algorithm to model the environment of a built, urban area composed of dif-
ferent features as a cost function: The proposed algorithm leverages the sociologi-
cal principles of Natural Vision and Natural Movement (Gibson, 1979) to model the
different features present in the environment and assign costs from a pedestrian’s per-
spective to various areas of the scene. This approach differs from existing Inverse
Reinforcement Learning (IRL) approaches (Ziebart, Maas, et al., 2008) for solving
the same problem in the manner of defining the weights of the observed and identified
features. While IRL techniques depend on previously observed pedestrian trajecto-
ries to learn these weights, the proposed method utilises sociological cues in assign-
ing weights to perform at the same measure. Furthermore, this approach employs
the abstraction of the attractiveness and repulsion of different areas via the potential
fields to define the effects of the identified features on the behaviour of a pedestrian
in the built, urban area. It also introduces the idea of attractive Point of Interests in an
observed area as the destinations of pedestrians in the environment, thereby leading
to a cost function independent of prior observations of pedestrian behaviours in the
said environment.

2. Extensions to the Growing Hidden Markov Model (GHMM) approach utilising
prior knowledge aimed at its application in an autonomous vehicle. In this thesis,
we propose two extensions to the GHMM (Vasquez et al., 2009) method to apply
this method in new and previously unseen areas with none to few observations to
train the underlying graphical model. These extensions adapt the topological and
structural phases of the GHMM respectively. They are as follow:

a) An extension to the topological mapping of the environment. This thesis
proposes an algorithm to generate a topological map corresponding to the con-
tours of the observed environment. This topological map exploits a generated
cost map to a priori capture typical trajectories in this given environment, be-
fore the observation of any pedestrian trajectories. This topology can, however,
change during the course of the lifetime learning process of the GHMM. The
initialisation of this prior topological map aids in the explanation and predic-
tion of non-typical trajectories which would have been missed in the existing
implementations of this method.
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b) An extension to the structural learning of the underlying graphical model.
The proposed extension modifies the process in which the structure and param-
eters of the underlying graphical model are learnt. It manipulates the states and
their interactions bringing them in line with the topology of the environment
by using the previously developed Prior Knowledge from the aforementioned
two contributions. Furthermore, this extension drastically reduces the training
data required for accurate predictions of pedestrian trajectories by initialising
the graphical model with realistic priors, which is an advantage over the existing
implementation.

3. An Extension to the Growing Hidden Markov Model (GHMM) approach to in-
fer pedestrian positions in the presence of dynamic obstacles. Finally, within the
context of our problem, we propose a method to integrate a variety of moving objects
in the environment into the prediction process of the GHMM method. This method
utilises the generated environmental model to confine a pedestrian’s trajectory to pre-
dict their future positions based on the current state of the environment.

1.4.1 Papers Published

During the course of the development of this thesis, the following scientific papers were
produced.

1. Vasishta P., Vaufreydaz D., Spalanzani A., “Natural Vision Based Method for Predict-
ing Pedestrian Behaviour in Urban Environments,” In Proceedings of the IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC2017), Yoko-
hama, Japan, 2017.

2. Vasishta P., Vaufreydaz D., Spalanzani A., “Building Prior Knowledge: A Markov
Based Pedestrian Prediction Model Using Urban Environmental Data,” In Proceed-
ings of the IEEE 15th International Conference on Control, Automation, Robotics
and Vision (ICARCV2018), Singapore, 2018. (Won the Best Student Paper award)

3. Vasishta P., Vaufreydaz D., Spalanzani A., “Urban Pedestrian Behaviour Modelling
using Natural Vision and Potential Fields,” In Proceedings of the 9th Workshop on
Planning, Perception and Navigation for Intelligent Vehicles at the IEEE Interna-
tional Conference on Intelligent Robots and Systems(PPNIV-IROS2017), Vancouver,
Canada, 2017.
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1.5 Thesis Structure
Part One: Background and State of the Art

Chapter 2: Intentional Motion Prediction This chapter presents a review of the state of the
art in intentional motion prediction with an emphasis on modelling pedestrian behaviour
and predicting their trajectories under uncertain environments.

Chapter 3: Probabilistic Models This chapter deals with presenting the basic mathematical
theory, notations and concepts of probabilities, probabilistic states and graphical models and
a quick primer on Hidden Markov Models.

Chapter 4: Growing Hidden Markov Models In this chapter, an introduction to the Growing
Hidden Markov Model tool is presented, an extension of which, will be presented as one
of the proposed contributions of this thesis. This chapter discusses the basic methodology
used for lifelong learning and subsequently the drawbacks inherent to this method.

Part Two: Modelling and Prediction in Human Populated Urban Areas

Chapter 5: Modelling the Human Environment This chapter commences with a discus-
sion on the sociological influences on pedestrian behaviour. An algorithm that maps the
observed environment to potential costs for a pedestrian in an urban area is proposed. A
validation on a typical urban scene is also presented.

Chapter 6: Learning and Prediction of Motion Once a cost map for an observed environ-
ment is available, it can be used to explain typical trajectories in the environment. As soon
as there are new observations available, this approximation of typical trajectories can be
updated and new trajectories learnt to perform better inference. This chapter presents an
algorithm that utilises information about the environment to generate a dynamic graphical
model that is used to perform inference and predict future pedestrian positions, including
prediction under dynamic conditions.

Part Three: Implementation and Experiments

Chapter 7: Experimental Results - Exoperception This chapter first presents the architec-
ture of the proposed “Prior Knowledge Framework”, describing the pipeline that combines
the approaches of generating a cost map and the utilisation of the graphical model corre-
sponding to this cost map. It also presents a dataset, wherein the data is captured from an
external, static observer, which is then used to perform the different experiments. Qualita-
tive and quantitative results are presented for different scenarios of pedestrian behaviour as
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well as for those scenarios that include dynamic obstacles in the form of other shared space
users.

Chapter 8: Experimental Results - Egoperception In this chapter, we present results on the
efficacy of our proposed framework from sensors located on an autonomous vehicle placed
in a semi-structured area. First, the dataset and the platform used to capture this dataset is
presented. Qualitative and quantitative results obtained from the application of the Prior
Knowledge framework on this dataset are presented.

Part Four: Conclusion

Chapter 9: Conclusions and Perspectives Finally, this chapter presents some concluding
perspectives on the work, a summary of the contributions with potential ideas for future
studies on the topic.
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Part I

Background and State of the Art





Intentional Motion Prediction 2
„ If I have seen further it is by standing on the

shoulders of Giants.

— Isaac Newton

In this chapter, we review the state of the art in increasing the Situational Awareness
from the perspective of an autonomous vehicle plying on urban roads. In Chapter 1, we
introduced the problems and their contexts in view of this thesis. In increasing its own sit-
uational awareness, an IV should perform the tasks modelling the environment, learning
the behaviours of other shared-space users and then predict their intentions. This problem,
also called the motion prediction problem, involves inferring also the intentions and inter-
actions between these shared space users over future horizons. These shared space users
can broadly be classified as Vulnerable Road Users (VRU) and non-VRUs. By definition1,
VRUs are “non-motorised road users, such as pedestrians and cyclists as well as motor-
cyclists and persons with disabilities or reduced mobility and orientation.” Predicting the
behaviour of non-VRUs and their interactions have been surveyed by Lefèvre et al. (2014)
and are beyond the scope of this work and thesis. Instead, we limit ourselves to a discussion
on the prediction of VRUs, specifically the prediction of pedestrian motion and behaviours
in urban areas.

Classifications of existing methods vary from study to study (Ridel et al., 2018; Brouwer
et al., 2016; Rudenko et al., 2019) but they can be broadly categorised as: physics-based
methods, pattern-based methods, contextual-cue based and interaction-aware methods with
each of these categories being treated in the following sections.

A note on semantics

For the rest of this chapter and the thesis, we will use the semantics of pedestrian behaviour
as set out by Vasquez (2007). We follow the convention of scientific literature, as men-
tioned in there, where the terms “behaviour” and “motion pattern” refer to different ideas -
behaviour is intentional motion towards a destination while pattern is repeated observation
of the same behaviour. These destinations are states – either observable, as in the case of

1https://ec.europa.eu/transport/themes/its/road/action_plan/its_and_vulnerable_
road_users_en

17

https://ec.europa.eu/transport/themes/its/road/action_plan/its_and_vulnerable_road_users_en
https://ec.europa.eu/transport/themes/its/road/action_plan/its_and_vulnerable_road_users_en


a specific point in a spatial map or, inferable at a higher level, such as “idle walk”, “brisk
walk”, “stop”, “wandering” (Kanda et al., 2009).

We also make no distinction between the terms pedestrian motion and pedestrian be-
haviour. This seeming inconsistency can be explained away by sociological assumptions
that “all human motion is directed” which McFarland (1989) defines as “goal-directed” be-
haviour. Thus, if all motion is directed towards a goal, according to our chosen convention,
this becomes behaviour. Hence, these terms will be used interchangeably in this thesis.

2.1 Physics-Based Approaches
Physics-based approaches incorporate some of the simplest mechanisms for predicting mo-
tion in an environment. In most of these approaches, prediction is performed by the applica-
tion of explicit functions that model future positions, velocities and angles based on current
observations. While these approaches are used for prediction, their origins more often than
not come from applications developed for tracking objects. Typical models among in such
literature include kinematic models utilising Constant Velocity (CV) models, Constant Ac-
celeration (CA) or Constant Turning (CT) models for prediction purposes. P. Blom (1984)
developed a method for tracking moving objects, called the Interacting Multiple Model
(IMM) method, whose modes undergo abrupt changes between the above mentioned typi-
cal models. An early effort to extend this filter and capture the cross and along-acceleration
of objects being tracked was proposed by Best and Norton (1997) being applied to curvilin-
ear motion of these objects. Another approach (A. Elnagar, 2001) utilises a Kalman filter
with an assumption that the object moves with a constant velocity. Thus a pattern begins to
emerge. These approaches do not tackle the problem of learning, resorting to handcrafting
the values of the various parameters if required. Furthermore, they limit themselves to sim-
plistic prediction problems of short horizons with an expectation of complete knowledge of
the world.

A shift from the sense-predict cycle to sense-learn-predict cycle can be noticed in the
work of Ashraf Elnagar and Gupta (1998) where it is expected that knowledge of the current
and previous positions of all the objects in a 3D dynamic environment are available. This
knowledge is then utilised to optimise parameters of a third order Auto Regressive Model
(ARM) describing moving object trajectories for short term prediction of the objects in the
scene. A similar method approach is followed by Cai et al. (2006) for tracking and predicting
multiple objects in a scene, A second order ARM is used to estimate trajectory parameters
which are then fed to a particle filter to arrive at short term prediction of objects being
tracked. While the former initiates a study into prediction under dynamic environments
and the latter extends it to prediction in the multi-object domain, both suffer from a similar
limitation. Neither of these approaches accounts for changes in object trajectories in the
scene. An exploration in this direction, albeit for vehicles, was proposed by Kaempchen
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et al. (2004) to predict stop and go situations for the objects being tracked. These situations
arise frequently while driving on roads as a response to external stimuli – braking of the
vehicle in front, crossing pedestrians, stop signs, traffic lights, etc. – which are modelled via
the aforementioned IMMs between constant velocities and constant accelerations. Similar
motions are observed amongst pedestrians, if perhaps, not for the same factors thus driving
research in the direction of including environmental factors. Subsequently, Pellegrini et al.
(2009) proposes a Linear Trajectory Avoidance (LTA) model for short term prediction of
pedestrian trajectories in which the intentions of pedestrians are explicitly included. Also
inherent in the model are interactions with other moving objects in the environment and
their effects on the trajectory being predicted. Pedestrian trajectories are modelled as energy
functions directed at an intention (here, a destination which could exist outside the field of
view) on which their movements are dependent. The modelled function’s parameters are
then learnt based on observed trajectories whereby these parameters are optimised using
Gradient Descent. Prediction is performed using this trained model. This work is in close
association with the Social Force model expounded by Helbing and Molnar (1995) in which
every pedestrian has reactive social space that affects their motion. While Pellegrini et
al. (2009) worked on prediction of targets individually, Yamaguchi et al. (2011) extended
this concept to include the behaviours of groups. More importantly, it also included the
effects of the social force model as an inherent part of the energy function describing the
motion of these groups. The energy function developed in this work emphasises on the
knowledge of hidden states of a personal nature such as a preferred speeds, destinations
within the scene and social groupings. The parameters associated with these states are
learnt from observed trajectories in a scene using Support Vector Machines (SVMs). This
model, however, does not ascribe to the tracked pedestrians more than one behavioural
state. For example, irregular motions such as start and stop behaviours, which are common
pedestrian behaviours, are not captured. In Keller and D. M. Gavrila (2014), a model
is proposed to tackle this limitation. It proposes a Gaussian Process Hierarchical Model
(GPDM) trained separately for walking and stopping motions on a variety of trajectories. A
hierarchical framework is presented which utilises the identification of the behaviours via
the GPDM to statistically match trajectories, thereby predicting pedestrian positions. In the
same spirit of this work, Kooij et al. (2014) proposed a Switching Linear Dynamic System
(SLDS) to predict pedestrian trajectories from the perspective of an autonomous vehicle.
The utilisation of this model was able to capture more accurately unusual behaviours of
pedestrians. An SLDS allows for the dynamics of the trajectory to change at every time
step. Learning is performed via Bayesian inference of the posterior distribution. Other
approaches (Batkovic et al., 2018) introduce environmental constraints derived from a local
map to estimate pedestrian positions using simple dynamics.

From the works discussed in this section, an evolution of models can be seen from sim-
ple applications of physics based formulations to higher levels of inference of behaviours
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such as stop and go to the introduction of maps to the prediction process. These physics
based approaches are utilised because of the relative ease and simplicity of their implemen-
tation. Better accuracy in prediction requires introducing more complex models leading to
a requirement of learning the parameters that establish this complexity.

2.2 Pattern-Based Approaches

Pattern based approaches follow the sense-learn-predict pipeline to discover statistical be-
haviours among trajectories. These approaches, in contrast to physics based approaches,
are heavily data dependent, requiring many instances of trajectories to learn the intricacies
of human motion.

Early approaches into this domain involved clustering algorithms such as the one pro-
posed in Kaufman and Rousseeuw (2009). Observed trajectories would be clustered and
trajectory prototypes would be availed. Applications of these simple clustering algorithms
had limitations of being unable to anticipate anomalous trajectories if such an exemplar did
not already exist. A similar approach was proposed by Hu et al. (2006) where a K-means
algorithm is used to cluster trajectories. While this work was applied to the behavioural pre-
diction of cars in urban areas, the algorithm developed can be used for pedestrians. Here,
training trajectories were clustered in a manner to provide hierarchical piecewise trajecto-
ries over the observed area. A moving object follows these piecewise trajectories and can
easily switch from one behaviour to another at the end of every piecewise trajectory. Such
an approach captures common behaviours such as turning or continuing along the same
path at an intersection. Prediction is performed by estimating the probability of choosing
the piecewise trajectories by the moving object. Then, the position of this moving object
over a time horizon is a dynamics based extrapolation of object on this partial trajectory.
Consequently, anomalous behaviour in the scene can be detected when the tracked object
performs motion that does not correspond to motion along the learnt piecewise trajectories.
While this approach operated directly on trajectories to find abnormal behaviour, Varadara-
jan and Odobez (2009) proposed a model towards the same goal but operated not on the
trajectories but on the semantics of the observed area. Here, they propose a probabilistic
Latent Semantic Analysis model that learns from observed trajectories in an area, the se-
mantics of this area. The vocabulary of these semantics represent segments of the area
where pedestrians and cars move or perform stop & go motions. This model also learns
segments where velocities of the moving objects are slow or fast. With these segments
learnt, they utilise as a measure the Bhattacharya distance to estimate how far the tracked
behaviour from what is considered normal for the segmented area in which this object is
operating. While these approaches can be used to determine whether or not a moving ob-
ject executes an anomalous behaviour, they fall short in performing long term prediction.
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These approaches also do not take into account the intentions of the moving objects in the
observed scene.

The path between two points in any environment can be established by more than one
trajectory. Common clustering algorithms cannot perform this discrimination and instead
result in a “mean” trajectory from amongst all the training trajectory data even if cases of
trajectories exist in the training set that follow multiple paths to get to the same destination.
One approach that works towards rectifying this oversight is presented in Ellis et al. (2009)
which uses Gaussian Process Regression to learn pedestrian tracks for long term prediction
of trajectories in static environments. In this approach, a motion model is generated for
pixel-wise instantaneous velocity across the entire observation space which allows for prob-
abilistic inference over a medium to long time horizon. A similar approach was taken in
Joseph et al. (2011) where a Dirichlet Process was used to generate the priors for a Gaus-
sian Process (DPGP) to generate motion patterns for a target object. Solving problems with
DPGPs, however, become intractable quickly due to their high complexity thus limiting
their usage when the area under observation is large. In response, Chen et al. (2016) pre-
sented their method, called the the augmented semi-nonnegative sparse coding (ASNSC)
method to reduce the computational time of prediction while not sacrificing accuracy. In
this method, the observed environment is discretised and trajectories are treated piecewise
to arrive at its vectorised representation for each cell of the environment. On training this
method with many trajectories, local motion patterns are discovered. The transitions be-
tween these local motion patterns are learned via a GP. In a step reminiscent of Markov
chains, on the reception of an observation, the trajectory is back back propagated to as-
sess which motion pattern generated it. This is then propagated forward in time to achieve
prediction goals. Habibi et al. (2018) extend this method by introducing environmental con-
texts into the ASNSC process. The introduction of this semantic context allows the method
to learn other parameters such as distance to crosswalk to generate a more accurate motion
primitive for the discretised environment leading to a significant improvement in prediction
accuracy.

Another method, proposed by Deo and Trivedi (2017) utilises a Variational Gaussian
Mixture model (VGMM) for trajectory prediction from the perspective of a vehicle. This
fully unsupervised method is able to discover goals in the observed scene as well as predict
future positions of pedestrians. The starting and ending positions of all the training tra-
jectories are clustered to find destinations in the scene resulting in subclasses. A separate
VGMM for each destination is trained on the trajectories to ascertain common behaviours
of each of these subclasses and is able to generate typical trajectories between each source
and destination.

From the works presented in this section, is can be clearly seen that the introduction
of context leads to an increase in the accuracy of modelling and prediction of pedestrian
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trajectories. A point to be noted more is the need for many data points without which these
statistical motion representation methods fail to accommodate atypical trajectories.

2.3 Context-Based Approaches
Context based approaches can be classified as those approaches that utilise social cues to
perform long and short term prediction. These cues may also be corporeal cues such as
head orientation, body pose etc., that could point an observer to predict certain behaviours
in pedestrians. Generally, these cues aid in detection of intentions, mostly in determining
whether a pedestrian would preform a specific action or not.

One of the first approaches based on these cues was Köhler et al. (2012), which utilises
human gait mechanics to predict pedestrian intention to step on to the street. The ultimate
goal of this work is to identify early as to when a pedestrian standing at the kerb will initiate
a movement on to the street. A sound sociological basis exists for this problem. Identify-
ing biomechanical traits such as movement of the legs and forward bending of the torso
can point to an initiation of motion. To identify these from a monocular video stream, this
method proposed an HOG based identifier called the MCHOG long with an SVM to first
identify the different parts of the body that move when initiating walk and the SVM to
classify them as important or not. Another work in the same domain was presented by
Goldhammer et al. (2013) to rectify some of the drawbacks of the previous method, Not
only does it perform early identification of pedestrian intention, it also performs short-term
prediction. To identify when a pedestrian initiated motion, the change in the velocity of
his center of gravity is observed. On initiation of motion, the trajectories they will take
is predicted based on a piecewise linear model. The presented methods utilised only the
corporeal cues and did not consider any other factor that would affect this behaviour. Most
importantly, these approaches do not consider the effect of the environment. For example,
there is a higher chance of a pedestrian executing a crossing if he/she is moving in the direc-
tion of a crosswalk. Bonnin et al. (2014) provides a model to tackle this specific problem.
This work proposes a hierarchical context tree to warn drivers of pedestrian intentions in
inner-city areas and specifically at crosswalks. A list of 12 features relative to the car being
driven is established and a single layer perceptron is trained. On testing for intent, the con-
text tree decides on whether to or not to activate the crosswalk model on the detection of a
crosswalk. If no crosswalk is detected, then the general inner-ciry model remains active to
predict a crossing.

While these approaches work well for pedestrians already close to the kerb or near a
crosswalk, consider someone walking along the sidewalk, some distance away from the
crosswalk. This person could initiate a crossing either legally or illegally based on differ-
ent cues exhibited before approaching the kerb. The discussed methods do not consider
the history of motion of the pedestrian or previous cues. To fix this oversight, Andreas Th
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Schulz and Stiefelhagen (2015) proposed a method involving Latent Dynamic Conditional
Random Fields (LDCRF) which can work with trajectories of arbitrary time lengths. The
model is trained in two parts – the first part trains on the dynamics of the trajectories such
as the velocities and the second part specifically trains on the head pose of the pedestrian
over the lifetime of the trajectory. It also trains to capture the time to event, where the event
is the crossing action at the crosswalk. A correlation is made between the dynamics, the
head pose and the time to cross by the proposed model which is able to discriminate a va-
riety of behaviours based on this correlation. The authors envision the integration of this
intention recognition model with one specifically designed to predict pedestrian motion as
proposed in Andreas T Schulz and Stiefelhagen (2015). This integrated model, utilising
IMMs for trajectory prediction and LDRCFs for intention recognition, performs better at
predicting behaviours such as “stopping” and “crossing” leading to better position predic-
tions. Quintero et al. (2017) performs a similar function, but utilises other corporeal cues
such as shoulders and other skeletal joints. These joints are then trained via an HMM to
recognise motions that initiate a crossing, while the same class of joints are passed through
a Convolutional Neural Network architecture in Ghori et al. (2018) to achieve the same goal
of predicting crossing intention.

2.4 Interaction-Aware Approaches
Interaction Aware approaches can be classified as a part of the sense-understand-learn-
predict paradigm, whereby the model is not only cognisant of the environment it is operating
in, it is also aware of the interactions the pedestrians and other moving objects have with
each other and with the environment.

In literature, it can be observed that these approaches are broadly divided into two classes
– those that use Markov Decision Processes (MDPs) and their derivatives and those that
utilise Dynamic Bayesian Networks (DBNs).

MDP based approaches

Most MDP based approaches into pedestrian prediction are coupled with a planning phase
where the motion of the observed agent, in this case the pedestrian, affects the decision
that needs to be taken by the observer. One of the first approaches into this domain can be
found in Bandyopadhyay et al. (2013). This work proposed an MOMDP (Mixed Observ-
ability Markov Decision Process), which a class of Partially Observable Markov Decision
Processes (POMDPs), that learns to model pedestrian intention. It is assumed that this
pedestrian has a finite number of intentions and that there are attractive goals in the scene
that drive the pedestrian towards it. These intentions of the pedestrian are modelled as an
MOMDP, trained offline and a policy for the observed environment arrived at. The action
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space of the observer, in this case an autonomous golf cart, is limited to a few behaviours. In
the online phase, when inference occurs, the golf cart reacts to the pedestrian’s motion and
takes a decision based on the inferred intention. However, the posterior projection of the
intention is not connected to the semantics of the scene. It is assumed that the pedestrians
move in an open world, in the direction of their goals.

Vasquez (2016) presents a method that utilises MDPs and combines it with semantic
notions of the environment. Existing MDP based prediction and planning algorithms, des-
ignated MDP-Motion Prediction (MDPMP), are used to generate a costmap in an environ-
ment whose features are known. Their corresponding weights are also learnt via Inverse
Reinforcement Learning (IRL). On this costmap, inference is performed via the proposed
method. This method aims to predict accurately the goal as well as future positions over long
horizons. The graphical model is devolved into velocity prediction and goal prediction. On
superimposition, this leads to a more robust, long term trajectory planning. Another method
proposed by Karasev et al. (2016) proceeds to integrate semantic maps into the inference
process where an MDP’s policy for the given environment is learnt corresponding to its
semantics. The model has two parts – the planning part that works offline and a posterior
estimation process that uses a Rao Blackwellized filter to perform the actual prediction part.
Environmental cues are used to limit the prediction distribution spread. Similarly, better ac-
curacy in prediction was achieved by also including the body orientation into the prediction
process.

DBN Based approaches

Dynamic Bayesian Network approaches are frequently used in literature to model latent
states in a time varying environment. Latent states, especially in the context of pedestrian
trajectory prediction, take the form of intentions that cannot be directly observed. DBNs are
also popular since they can also be used to model interactions between different dynamic
objects in the scene. DBNs are also versatile since they can be thought of as generalised
Bayesian Filters with HMMs and Kalman filters being its specific implementations. More
importantly, many of the tools developed for learning and inference of these specific imple-
mentations can be reused for DBNs.

One approach, applied to predicting diver behaviour is found in Agamennoni et al. (2012).
The agent’s dynamics is conditioned on the context of the other drivers in the scene. This
context is a hand crafted function used to capture the the interplay between the dynamics
of the different actors in the scene. Such a function can try to fit distance from other actors,
speed and direction of motion, intention etc. These weighted functions learn their weights
based on observations using the Expectation Maximisation (EM) and inference is performed
over this trained graphical model. While this model was used to perform long term predic-
tion on cars under reduced or stressed sensory data, the same principle can be applied to
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human actors in urban areas. Another approach, by Rehder and Kloeden (2015), subsumes
this context in the form of a map and models a latent variable as the intended destination of
the pedestrian. An occupancy map is used as a prior to represent the environment and the
goals of the pedestrian are not known and are learnt online. Prediction is executed between
the current position and the estimated goal for each position using the observed dynamics of
the actors. A limitation of this method rests with the poor definition of the environment for
performing inference. Occupancy grids offer no more information other than representing
regions of the environment as free or occupied. Richer information could be used to model
more complex DBNs. One such approach that takes into account a more detailed represen-
tation of the local environment can be seen in Hashimoto et al. (2015). This information
pertains to the interaction between an intersection and a pedestrian waiting to cross. It also
includes information on the traffic signals at this intersection. Specifically, this work pro-
poses to model pedestrian intentions of slowing down and speeding up when close to the
signalised intersection. The intended behaviour of the actor is inferred via particle filters.

Finally, there are other works that account for the interactions between the different actors
in the environment based on Neural Network approaches. A seminal work in this regard is
seen in Alahi et al. (2016). This work proposes an architecture based on a special case of
Recurrent Neural Network (RNN) called the Long Short-Term Memory (LSTM) network.
This class of architecture is able to retain memory of previous timesteps, rendering it appro-
priate for use in areas of sequence prediction such as that of pedestrians. There are hidden
states present in this architecture that account for the “social” behaviour of people such as
being influenced by other people or objects in the scene. This network is trained on posi-
tion of tracked objects over time, learning “social behaviours” along with the semantics of
its current position based on an occupancy map. This model is then used to infer future
positions of trajectories. This work was extended by Su et al. (2017) to include crowds in
the process. They achieve this by integrating Gaussian Processes to learn the correlation
between social trajectories as learnt and inferred by the LSTM network.
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Probabilistic Models 3
„ Users do not care about what is inside the box, as

long as the box does what they need done.

— Jef Raskin
about Human Computer Interfaces

In a chaotic world, there are very few times when one can take a decision with absolute
certainty. In the field of robotics, especially in the domain of autonomous vehicles, there
is always a hesitancy in proffering the absolute. Decisions are taken with varying levels
of confidence in the observations as much as in one’s own predictions about the state of
the world. In the material to follow, probabilities - especially the Bayes’ filter and its ap-
plications - will play a prominent role. Thus, in the interest of a self contained work, we
begin with an introduction to the probabilities used in this work and a familiarisation with
the notations used within. This chapter is influenced by the work of Vasquez (2007), upon
which we improve. We also follow, in terms of notations, the work of Thrun et al. (2005)
which the inquisitive reader can refer to for an in-depth treatment of the concepts discussed
here.

3.1 Variables and States
A probability represents the belief in an event and can be posed as a proposition - “ How
likely is an event v to occur?”, represented by P (v). If P (v) = 0, the proposition v occur-
ring is false. On the other hand, if P (v) = 1, then the proposition definitely occurs. Given
these two extremes, the function P (·) maps this proposition such that P (·) 7→ [0, 1].

The event v, called the variable, in a probabilistic environment, represents all the features
of that environment. Imagining that all probabilities are answers to questions, one can think
of variables as being the construction blocks of those questions. A discrete variable V can
take on only the values present in the set {v1, v2, . . . , vn}.

Any given environment can be defined by its state. The state X is defined by a set of
values it can take - X = {x1, . . . , xn} where x1, x2, . . . , xn are called the state variables.
Some of these state variables can remain unchanged while others can vary with time. A
dynamic state is one where the state is changing while a static state is an unchanging one.
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We use the notation xt to represent the value of the state X at time t. While referring to
probabilities, by abuse of notation, we will omit the full definition of probability of stateX
at time t i.e., Pr([X = xt]) and denote it as Pr(xt) or P (xt)

Another way of distinguishing states is by defining the property of completeness. Con-
sider a state xt. This state is considered complete if the information encapsulated within
it can describe perfectly the entire environment. That is to say, by knowing only xt, and
disregarding all the information and the states that led to it, one can reasonably predict the
future states xt+1, xt+2, . . . , xN . A complete state is only theoretically possible. The real
world is inherently stochastic and any attempt to capture the precise state of the environ-
ment is impossible due to the noisiness of any sensor used. Thus, in the definition of any
state variable, there is a need to compensate for the noisiness of the sensors used. One can,
however, approximate a complete state under specific conditions. With this approximation,
a Markov Chain can be described - where the evolution of future states depend only on the
current state and past states do not influence future states.

The basic laws regarding probability from which evolutionary laws are derived are pre-
sented here.

Independence Two random variables X and Y are considered independent (X ⊥ Y ) if
and only if

P (X,Y ) = P (X)P (Y ) (3.1)

Conditional Probability The Conditional Probability P (X | Y ) i.e., the belief inX occur-
ring knowing that Y occurs is defined by:

P (X | Y ) =
P (X,Y )

P (Y )
(3.2)

Equation (3.2) holds true only when P (Y ) ̸= 0.

Bayes' Rule The probability of one event happening, given that we have knowledge of the
occurrence of another event, involving the same variables, is given by the Bayes’ rule and
is defined as:

P (Y | X) =
P (X | Y )P (Y )

P (X)
(3.3)

Chain Rule The chain rule, also called the Product rule, is used to find the joint distribution
of random variables based on their conditional probabilities, deriving from Eqn. 3.3:

P (X,Y ) = P (X | Y )P (X) = P (Y | X)P (X) (3.4)
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(a) A Directed Graphical Model showing the
interaction between four random variables
A,B,C,D. The direction of interaction is
statistically important.

(b) An Undirected Graphical Model showing
the interaction between four random variables
A,B,C,D. The direction of interaction is
unimportant.

Fig. 3.1.: A graphical model showing the interaction between four random variables classified on
the basis of the importance of the directionality.

Joint Probability Decomposition An application of Eqn. 3.4 is the ability to “decompose”
a joint probability to simplify its evaluation. Consider a joint probability of three random
variables, X,Y and Z, i.e., P (X,Y, Z). This joint probability can be expressed in 13
different, equivalent ways based on the chain rule (Vasquez et al., 2009). The number of
factorizations is directly proportional to the number of random variables involved in the
Joint Probability. The choice of an appropriate decomposition is dependent on the our
knowledge of the probabilistic model. In general, the decomposition chosen is one in which
the constituent factors are easily parametrizable or those that reduce the dimensionality of
the problem to be solved.

3.2 Graphical Models
In Section 3.1, we gave the example of a three variable system with many different ways
of decomposition, with some decompositions being better choices than others. Consider
a probabilistic product with another random variable K. Assuming that some of the fac-
torizations in this decomposition involve dependencies on one or more variables jointly or
individually for the event to occur, we can safely denote them graphically. Such probabilis-
tic systems are called Graphical Models, placed at a conjunction of probability theory and
graph theory making them easy to visualise. Complex probabilistic systems and their in-
teractions can be captured and represented by such models as modules and sub-modules.
Nodes in the graph represent the different variables of the system and the edges represent
the interactions between them.

Depending on the nature of the edges of the graph, these models can be classified into
two - directed graphical models and undirected graphical models as shown in Fig. 3.1. If the
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directionality of interaction is important in the representation of the model, such a model is
called a directed graphical model or an acyclic directed model. The edges attain statistical
significance. The joint probability of such a system depends on the conditional probability
of the parents of each of its nodes Xv, v ∈ V while the descendants of v have no effect on
it. Mathematically, this can be generalised as (Madigan et al., 1995):

P (V ) =
∏

v∈V

P (v | pa(v)) (3.5)

where pa(v) denotes the parents of v in the graph.
An undirected graph, as the name suggests, requires no directionality in defining its edges.

These models can be decoupled based on the intra-nodal interactions of the model. Consider
the undirected graph of Fig. 3.1b. The joint probability of its variables is the product of its
conditional probabilities and divided by the probabilities of its independent probabilities.
Choosing a directed graphical model to represent a complex interaction becomes evident
when the system modelled has a sequential conditional dependence, like representing a time
series, for example.

3.3 Inference and Learning

Inference is the main application of probabilistic models. Inference is the process of find-
ing the values of unknown variables based on known ones, generally using Bayes’ rule
(Eqn. 3.3).

Consider also a sequence of observations captured by a sensor over time. This temporal
sequence of data can be represented as

Ot1:t2 = {ot1 , ot1+1, ot1+2, . . . , ot2}

where the data was captured between times t1 and t2, t1 ≤ t2. A probabilistic model simply
maps the observed values ( the evidence) to the most probable cause of this evidence given
the parameters of the model. Formally, given the evidenceO, the hypothesisX consisting of
state variables and parameters θ, inference is the questionP (X | O) which can be expressed
in simpler terms using the Bayes’ rule and the product rule. This expression turns out to be:

P (X | O) =

∑

Xk
P (O,Xk, X)

∑

Xk,O
P (O,Xk, X)

(3.6)

whereXk is the vector of states uninvolved in the generation of the observation and can be
marginalised out. The solution to Eqn. 3.6 is exponential to the number of variables. Thus,
for complex probabilistic models, the solution becomes intractable rapidly. One method of
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handling this scenario is to apply approximate inference instead. This can be performed in
many ways.

One method is to utilise graphical models to model the interplay between the various vari-
ables. By exploiting this graphical model for conditional independence and, consequently,
theJPD, we can arrive at a simpler expression thus rendering the solution tractable. The
effect of such a conversion is to sacrifice accuracy for reduced complexity.

A second method for reducing complexity of a probabilistic model and perform approx-
imate inference is to substitute some of the factorizations of a JPD with elementary distri-
butions such as the Gaussian Distribution. The Gaussian, a multivariate normal, can be
parametrized by its mean and covariance. In its parametric form, it is expressed as:

P (X = xi) = G(xi;µ,Σ) (3.7)

= det(2πΣ)− 1
2 exp{−

1

2
(X− µ)⊤Σ−1(X− µ)} (3.8)

where µ is the mean vector and Σ the covariance matrix and X the entire domain of
the random variable. Generally speaking, graphical models and elementary distribution
substitutions are used in tandem to find tractable solutions to probabilistic problems.

In performing such approximate inference, we are led to another problem - that of choos-
ing the right values for the myriad parameters of the constituent distributions for our model.
These can either be handcrafted or learnt from available data.

A way of learning these parameters, and the simplest, is to count the number of instances
the event takes place. This is the Maximum Likelihood (ML) estimation of the parameter.

For discrete variables, the application of the ML method to learn the parameters is straight-
forward. Yet, consider a set of data where there is no instance of an event occurring. A zero
occurrence event would lead to undefined values for associated parameters, thereby affect-
ing the accuracy of inference.

Sometimes, data regarding some of the variables in our model is hard to directly observe
i.e., they are hidden. A common method to estimate this hidden variable is to assign a
rational value to it and observe if the effects of this data matches actual observations and
to re-estimate it from that point. This is the basis of the Expectation Maximisation (EM)
Algorithm (Dempster et al., 1977).

3.4 The Bayes Filter
An easy method of performing inference based on hidden variables and observations is the
Bayes filter. In essence, a Bayes filter is called so because it uses repeated observations from
many sequences to “filter” out outliers and modify the uncertainty states. A direct applica-
tion of the Bayes filter, in our context, could be to reduce the uncertainty of a pedestrian’s
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spatial position over the course of an observation sequence. The Bayes filter takes into ac-
count model incompleteness and noisy observations. This makes it a prime candidate to
answer the prediction question - knowing with a finite valued certainty the spatio-temporal
position of an object, what will be the state of this object H timesteps in the future, given
that it has been observed in a sequence O1:t until the current time t.

The Bayes filter is composed of two variables -

• St, the state of the environment at time t and

• Ot, the observation captured by sensors at time t.

The Bayes Filter is, at its base, a JPD of the two variables defined above. The Bayes filter
also defines the following constraints:

• Every observation at a specific time is dependent only on the state that is generating it.
This implies that the observationOt is independent of all other previous observations
and all other generative states.

P (Ot | O1:t1S1:t) = P (Ot | St) (3.9)

• State evolution follows the Markov Property.

P (St | S1:t−1) =







P (S1) if t = 1

P (St | St−1) otherwise
(3.10)

Eqn 3.9 describes the Observation Probability or the Sensor Model. This is the prob-
ability that accounts for sensor noise and models the probability of obtaining a specific
measurement at a specific state.

Eqn 3.10 is called the Transition Probability. This probability assigns a value on how
probable it is to achieve another state from the current state.

The Bayes filter has many specializations based on the characteristics of the environment
it is to be applied in. A Kalman filter is a specialization that describes an environment
wherein the evolution of states and observations are continuous. A graphical variant of the
Bayes filter is the Hidden Markov Model (HMM) which will be presented next.

3.5 Hidden Markov Models
A Hidden Markov Model (HMM) is a graphical representation of the Bayes filter with the
states being discrete. No such restrictions apply for the observations, however, which can
be either continuous or discrete. Here, we provide a short recap on the theory of HMMs
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to familiarise the reader on topics of parameter learning and predicting patterns based on
observed data.

3.5.1 Probabilistic Model

An HMM is a Markov Chain that emits observations consisting of a finite number of com-
plete, hidden states. Given that the states of the HMM are theoretically complete, every
state in the chain is independent of the emitted observations and of all other states except
the preceding one. The probabilistic model of the HMM is the same as that of a Bayes filter
Section 3.4 which allows us to define the JPD as:

P (S0:T , O1:T ) = P (S0)
T∏

t=1

P (St | St−1)P (Ot | St) (3.11)

where,

• The states St, St−1 are the current and previous states; St, St−1 ∈ {1, 2, . . . , N}, a
discrete set of possible states of the system.

• Ot is the current observation. This observation can either be discrete or continuous.
Generally, Ot ∈ R

k, where k is the dimension of the state space.

Given all the details on the observations O1:t, the distribution of the state St can be
found by Bayesian reasoning. By recursively defining P (St−1) = P (St−1 | O1:t−1), i.e.,
the posteriors of the previous step becoming the priors of the next time step, eqn. (3.11)
can be simplified and re-written as :

P (St−1StOt) = P (St−1)P (St | St−1)P (Ot | St) (3.12)

This decomposition (Eqn. 3.12) contains three distinct models that can be variably de-
fined:

• Prior State Distribution P (S0 = k) = πk. This is the state prior vector, the starting
point from which the model evolves. S0 is a vector of size H, where H is the total
number of states in the model. πk ∈ {π1, . . . , πH}

• Transition Model P ([St = i] | [St−1 = j]) = aij . This model describes the probabil-
ity of entering a certain state by knowing the previous state. For a stationary HMM,
i.e. a time invariant HMM, the transition distribution is defined by an H ×H matrix
and represented by A.

• Emission Model For a stationary HMM, the emission distribution, also called the ob-
servation model, P (Ot | St) is defined by a matrix B of size V × H , where V is
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the number of observations in the sequence. The parametric form of this distribu-
tion is dependent on the nature of the observations. Given a continuous observation,
the observation model generally takes the form of a multivariate normal (Gaussian
Distribution) defined by its mean µ and its covariance σ.

The final model of the HMM is represented as

λ = {π,A,B} (3.13)

3.5.2 Inference

Inference is one of the main applications of an HMM, having been used for speech recogni-
tion (Rabiner and Biing-Hwang Juang, 1993) or action recognition (Lv and Nevatia, 2006).
The main inference problems that the HMMs are used to solve are:

1. State Estimation Estimation is the process of inferring the belief over the current
hidden state of the HMM given the observation sequence O1:t. More formally, the
application of state estimation can be described as P (St | O1:t). This probability can
be calculated recursively as:

P (St | O1:t) =
1

Z

∑

St−1

[P (St | St−1)P (St−1 | O1:t)] (3.14)

where Z is a normalising factor.

2. Smoothing Smoothing of a signal is one the more common applications of HMMs
in the field of signal processing and speech recognition. Smoothing is the process
in which the current sequence undergoes a “backtracking” and a “forwarding” from
that point to “smooth” the hidden state sequence. Thus, smoothing can lead to better
State Estimation. Formally, smoothing is defined as:

P ([St = i] | O1:T ) =
1

Z
αt(i)βt(i) (3.15)

The terms αt and βt are the forward and backward probabilities respectively, whose
calculation is described in Algorithms (1) and (2) while Z is a normalising factor as
in State Estimation

3. Most Probable State Sequence The Most Probable State Sequence is a consequence
of the Viterbi algorithm (Viterbi, 1967) as an answer to the question “Given this
observation, what is the sequence of hidden states that led to this observation?”. The
Viterbi algorithm is similar to the Forward algorithm (Algorithm (1)).
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4. State Prediction This is the more important of the applications of HMM inference
within the confines of our context. Given an HMM, state prediction is the answer to
the question P (St+H | O1:t), H > 0 with a sequence of observations O1:t, which
can be explained as the propagation of the belief of the State a la State Estimation,
for H timesteps in the future. This distribution over states can be computed as:

P (St+H | O1:t) =
∑

St+H−1

[P (St+H | St+H−1)P (St+H−1 | O1:t)] (3.16)

This recursive computation over all states and over all timesteps from t until H is of
a complexity O(HN2), given N possible transitions on each state. It is evident that
prediction becomes complex at long time horizons.

3.5.3 Learning

Learning in an HMM is equivalent to searching for its most appropriate parameters to ap-
proximately explain the recorded observations. More formally, knowing the observation set
V = {v1, . . . ,vN} where v

n = On1:Tk
, observations of length k, independently generated,

the problem of learning an HMM is to find the model λ. This investigation involves the
searching for an appropriate transition matrix A, an emission matrix B and the vector π.

A straightforward method of learning all parameters in graphical models was introduced
in §3.3 called the Maximum Likelihood method. This, as previously mentioned, involves
counting events at each state for each of the observation sequences in the observation set.
This method of estimating parameters cannot be used, however, since the states in an HMM
are hidden and only the emitted observations are exposed. Such a case lends itself to the
utilisation of the Expectation Maximization algorithm (Dempster et al., 1977) and its deriva-
tives, especially the Baum-Welch Algorithm (Baum et al., 1970). This algorithm depends on
the the use of the forward and backward probabilities αt and βt calculated with algorithm
1 and algorithm 2 respectively. The Baum Welch Algorithm has been presented in algo-
rithm 3. For the K observation sequences, the state prior counts, the mean and covariance
for the emission probabilities and the transitions between states is estimated based on the
calculated forward and backward probabilities as observed. The algorithm presented here
is a batch learning algorithm, requiring all K trajectories to be processed together.

For every observation sequence, the parameters in the model λ are recalculated. The
Baum Welch Method converges at a local maximum. An issue with the Baum Welch al-
gorithm is that it does not guarantee convergence at the global maximum, instead reaching
one of the local maxima depending on the parameters used to initialise the model.
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Algorithm 1 Forward Algorithm
Input:

Observation sequence O1:T

Model λ = {π,A,B}
Returns:

Forward Probabilities αt(i)

1: procedure Forward(O1:T )
2: for all i do
3: α1(i)← P ([S1 = i])P (O1 | [S1 = i])
4: end for
5: for t← 2 : T do
6: for j ← 1 : N do
7: αt(j)←

[
∑N
i=1 αt(i)P ([St = j] | [St−1 = i])

]

P (Ot | [St = j])

8: end for
9: end for

10: end procedure

3.6 Discussion

In this chapter, we introduced the reader to the basics of probabilistic models. We also
introduced to the reader the Bayes filter and its specialisation, the Hidden Markov Model.
We presented the basis of the HMM, its probabilistic model and perspectives on training
the HMM and inferring future states based on treated observation sequences. We spent
some time in developing the learning algorithm for an HMM which will be used in other
parts of this thesis to explain the proposed approach. We also mentioned a certain drawback
of the most well known learning process employed in finding the model parameters of the
HMM. This is a problem with any EM algorithm used to estimate parameters, the issue of
initialising the learning with the right values of the parameters. The Baum Welch method
converges quickly, but this convergence can be at one of the myriad local maxima found
due to the choices of initial parameters. For this reason, it becomes important to choose
logical priors i.e., initial parameters could be chosen via the output of an expert system that
understands the task upon which the model is trained.

In general, while HMMs were first used for signal processing and speech recognition (Ra-
biner and Biing-Hwang Juang, 1993), they have been utilised for diverse applications such
as pollution control (Xu and Y. Wang, 2016), to biomedical applications such as prosthesis
control (Chan and Englehart, 2005) and gene sequencing (Soruri et al., 2013). Yet, there
are drawbacks to this convenient tool. A major drawback is one of topology - an appropri-
ate topology for the task needs to be known beforehand. Methods found in literature focus
on a trial-and-error method using the available data to fit a topology (Robles et al., 2012;
Vasko et al., 1996). These approaches bring us to another problem - that of data scarcity.
The larger the size of the HMM, the more the parameters to be trained and data starvation
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Algorithm 2 Backward Algorithm
Input:

Observation sequence O1:T

Model λ = {π,A,B}
Returns:

Backward Probabilities βt(i)

1: procedure Backward(O1:T )
2: for all i do
3: βT (i)← 1
4: end for
5: for t← T − 1 : 1 do
6: for i← 1 : N do
7: βt(i)←

∑N
j=1 P ([St+1 = j] | [St = i])P (Ot+1 | [St+1 = j])βt+1(j)

8: end for
9: end for

10: end procedure

results in a badly trained model. While a smaller model would reduce the complexity, it
cannot efficiently capture all observations. On the other hand, having a large model also
leads to problems of complexity of time and memory (Khreich et al., 2010).

In the coming chapters, we will discuss solutions to some of the problems presented in this
section, specifically the problem of topologies and issues of learning the right parameters.
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Algorithm 3 Baum Welch Algorithm
Input

Observation Sequences O1:K

Initial values of HMM parameters π0, a0

Output
HMM model λ = {π,A,B}

1: procedure BaumWelch(Ok1:T )
2: converged← False
3: while not converged do
4: αk

t ← Forward(Ok) ▷ Using algorithm 1
5: βkt ← Backward(Ok) ▷ Using algorithm 2
6: pOk ← probability(Ok)
7: for i ∈ {1, · · · , N} do

8: π̄i ←

∑K

k=1

1
p

Ok
α1

k(i)β1
k(i)

K
▷ Expected state prior count

9: µ̄i ←

∑K

k=1

1
p

Ok

∑Tk
t=1

αt
k(i)βt

k(i)Ok
t

∑K

k=1

1
p

Ok

∑Tk
t=1

αt
k(i)βt

k(i)
▷ Observation probability mean

10: σ̄2
i ←

∑K

k=1

1
p

Ok

∑Tk
t=1

αt
k(i)βt

k(i)(Ok
t −µi)

2

∑K

k=1

1
p

Ok

∑Tk
t=1

αt
k(i)βt

k(i)
▷ Observation probability

covariance
11: for i ∈ {1, · · · , N} do

12: āi,j ←

∑K

k=1

1
p

Ok

∑Tk
t=2

αt−1
k(i)P ([St=j]|[St−1=i]λ)P (Ok

t |[St=j]λ)βt−1
k(i)

∑K

k=1

1
p

Ok

∑Tk
t=2

αt−1
k(i)βt−1

k(i)

▷ Calculating the transition counts between all nodes
13: end for
14: end for
15: if λ = {π̄, Ā, B̄} then
16: converged← True
17: else
18: λ = {π̄, Ā, B̄}
19: end if
20: end while
21: return λ
22: end procedure
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Growing Hidden Markov
Models

4
„ It’s all to do with the training: you can do a lot if

you’re properly trained.

— Queen Elizabeth II

In Section 3.5, we discussed the Bayes filter and its specialization, the Hidden Markov
Model. This chapter introduces an extension to the HMM, the Growing Hidden Markov
Model (GHMM) method designed to be applied for predicting pedestrian motion. Our con-
tribution in this thesis is an extension on the GHMM method, addressing the shortcomings
of the original method to be able to use it in a built urban environment. Here, we present an
overview of the GHMM approach and begin with a discussion on GHMM and their working.
Consecutive sections of the chapter are devoted to the topics of learning the topologies and
parameters of the GHMMs. In section 4.3, we discuss the use of the GHMMs in pedestrian
motion prediction. Finally, we conclude in Section 4.4 with a discussion on the shortcom-
ings of the current implementation of the GHMMs.

4.1 The Growing Hidden Markov Model
In Section 3.6, we discussed some of the shortcomings of the HMMs in being used for
inference applications. The Growing Hidden Markov Model (GHMM) was created as a
specialization of HMMs to make the model structure more relevant to the application. This
approach was first proposed in Vasquez et al. (2009) to solve the problems of structural
limitations of classical HMMs. It was also meant to address their relative rigidity in reacting
to new data points as they appear over the course of a time series like that of a pedestrian
trajectory.

Consider the case of two pedestrian trajectories in a corridor with three doors and an
obstacle. One passes the other in the opposite direction with both having destinations as one
of the three doors as seen in fig. 4.1. A classical approach to representing these trajectories
as a model via HMMs would be to discretize these trajectories at certain intervals as nodes
(States) connected by links (transitions). Such an approach suffers from a few glaring issues.
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Model Redundancy Within the corridor, the two trajectories are represented as distinct
models with separate transitions and emission probabilities as depicted in Fig. 4.1b. Natural
instinct, however, forces us to see that this assumption is not entirely true. Instead, they share
a portion of the trajectories with each other which could be unified for representation. Such
a unification reduces the overall graphical complexity of the model while increasing the
parametric complexity of the model.

Patterning of Trajectories In the classical representation of the trajectories as presented
in this case, there is no possibility of transitioning between the two distinct models of the
trajectories. Now, consider a new trajectory found in the same set of data of a pedestrian
walking from door A to C (shown in green in Fig. 4.1a). This would require another distinct
representation while common sense dictates that this new trajectory can be entirely repre-
sented piecewise by existing patterns from previous observations. Introducing a separate
graphical representation for each new trajectory becomes a cumbersome task and wholly un-
necessary and unintuitive. The solution to this problem becomes almost trivial if, at certain
junctions, transitions between such close-lying representations are allowed.

(a) Two trajectories starting from Door A to Door
B and from Door C and Door A, avoiding
the obstacle. A third trajectory starting from
Door A and terminating in Door C, in an oppo-
site direction compared to the previously ob-
served trajectory.

(b) Discretisation of the two observed trajecto-
ries into states and transitions between them
based on the directionality of motion as mod-
elled for a typical application of an HMM. In
this scenario, the green trajectory in the adja-
cent image cannot be captured by this discreti-
sation and requires a separate one to account
for the change in direction.

Fig. 4.1.: Two trajectories close to each other representing typical trajectories within an enclosed
space and a possible discretisation of said trajectories.

Anticipation of Trajectories A truly generative model must be able to anticipate a trajec-
tory before such an event occurs. Consider now the case of the same corridor representing

40 Chapter 4 Growing Hidden Markov Models



the tracks1 from door A to B and C. Given that there are sufficient trajectory prototypes
contained in the dataset, there is a statistical non-zero probability in imagining a pedestrian
path between the doors B and C. Such an exercise in imagining an unobserved specimen of
trajectories is a simple exercise to the human brain but is non-trivial to an artificial agent
which needs to generate a distinct track for this obvious pattern, a problem mentioned pre-
viously. Instead, what is needed is to anticipate this track by extrapolating it from existing
observations (the red line depicted in fig. 4.2 b.)

(a) With the three trajectories depicted in
Fig. 4.1a discretised based on their direction-
ality, the representation still fails to account
for a trajectory between doors B and C since
a trajectory in this direction between the
starting and terminating points have not been
previously observed.

(b) A unified graphical representation of the ob-
served trajectories with bidirectional transi-
tions between the nodes of the representation,
being able to represent the red trajectory intu-
itively taken from the adjacent image.

Fig. 4.2.: Given the environment, it should be possible to infer that other, previously unseen tra-
jectories can also be represented with existing models.

Thus the GHMM was developed by Vasquez et al. (2009) to assuage these problems. In
essence, the reasoning behind this approach is that any graphical representation of a gener-
ative motion model must correspond to the spatial structure of the environment where the
events are being observed with the scenario presented in Fig. 4.2b. A meaningful graphical
representation must also take into account the vagaries of human motion and the semantic
modelling of such trajectories with answers to questions such as “what is he moving to-
wards?” and a rough approximation of the myriad of human intentions possible within an
environment.

The GHMM method operates on certain assumptions - a) continuous space is discreti-
sable into a meaningful, finite number of states, b) The state observations are continuous

1We use the following convention in distinguishing tracks and trajectories - a trajectory is a directed pedestrian
action wherein the path taken by the pedestrian terminates in a destination. On the other hand, we use the
term “track” to refer to those parts of graphical representation of pedestrian trajectories which are either
non-directed or, more often, bi-directional.
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and c) states that are in proximity to one another spatially produce observations that are also
close to one another (Vasquez et al., 2009; Thrun et al., 2005).

The GHMM can be thought of as operating in three parallel, multi-dimensional spaces
stacked on top of each other, namely the Observation Space, Topological Space and the
Model State Space. Interaction between these spaces is unidirectional, as seen in fig. 4.3.

Observation Space The Observation Space Ω of the GHMM is the space in which obser-
vations on pedestrian movement is captured. The Observation Space is constituted by two
overlapping sub-spaces – the positional subspace and the velocity subspace whose compo-
nents in the observation are vectors continuous in R

2. Observations also point to the in-
tentionality of the pedestrian under observation and an assumption is made that all human
motion is goal directed (Hoogendoorn and Bovy, 2004). This allows for the augmentation
of the observation space with a goal component containing a positional vector in R

2. Thus,
every observation2 ω ∈ Ω is constituted as:

ω
.
= (x,v,ϕ) (4.1)

where xt,vt correspond to the instantaneous position and velocity vectors of the pedes-
trian’s trajectory and ϕ the intended goal vector of the trajectory. The intended goal is
identified post the completion of the trajectory where the last associated observation is des-
ignated the goal.

Topological Space The Topological SpaceE of the GHMM is a two dimensional Euclidean
Space encompassing its nodes and edges as a representation of the graphical model. It is
defined by the tupleE = ⟨U,L⟩whereN is the number of nodes of the graphical representa-
tion andE defines the number of its edges. The Topological Space contains the topological
mapG of the GHMM – the graphical representation of the environment in which inference
is performed. Let f : Ω→ E, then, the function f operates on the topological space, mod-
ifying it. More formally, the relation between the topological map G and observations ω is
given by eqn.(4.2).

G = {(ω, f(ω)) : ω ∈ Ω} (4.2)

Every observation in a pedestrian trajectory affects the topological map in three ways
– a) modification in the number of nodes, b) modification of the number of edges and c)
modification of the position of existing nodes.

2In this work, Ot is used interchangably with ω. They differ only in the notation that Ot represents an obser-
vation at time t while ω corresponds to a general observation with no specific regard to the time at which
the observation is captured.
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Fig. 4.3.: Spaces of the GHMM

Model State Space The Model State Space S of the GHMM is defined by the tuple S =

⟨S,A,S0,Φ⟩; S describing the number of states, A for the number of possible transitions
between the states of the the graphical model, S0 ∈ S, the starting states and Φ ∈ S, the
set of goal states of the graphical model.

In essence, the Model State Space of the GHMM encloses the HMM whose model param-
eters are defined asλ = {A,B, π}. The states of this HMM are derived from the topological
map in the topological space E. Given {∀n ∈ U|U ⊆ E} and {∀ϕ ∈ Φ|Φ ⊆ E}, each state
S ∈ S is composed as:

S = ⟨n, ϕ⟩ (4.3)

The dimensionality of each S is therefore R4 since n and ϕ translate to two dimensional
real positions on the topological map. Every observation in the observation space is thus
incorporated into a state via the topological space E.

Fig. 4.4.: Original Growing Hidden Markov Model architecture [Image credit: (Vasquez et al.,
2009)]

The architecture of the original implementation of the GHMM is presented in Fig. 4.4.
This implementation requires a full trajectory for its working. On the completion of a full
trajectory, its final positional observation is designated the goal and appended to every ob-

4.1 The Growing Hidden Markov Model 43



servation in this trajectory to constitute the extended observations. These observations are
then passed through the pipeline of Fig. 4.4. Each extended observation modifies the topol-
ogy, thereby learning pedestrian patterns to represent their motion. On modification, this
topology is translated into a structural change of the graphical model i.e., the underlying
HMM. The same trajectory is utilised to learn the different parameters associated with this
HMM. In the following sections, we present the method used to learn the topology, structure
and parameters of the GHMM.

4.2 Learning a Topology
Any meaningful discretization of the Topological Space E must imply a logical choice in
placing the nodes and the corresponding edges of the resulting topological map G. Follow-
ing Eqn. 4.2, this becomes a task of defining the function f(ω). To do so, some assumptions
are made:

• Environmental Conformity - The topological map G must closely represent the con-
tours of the environment where the observations are recorded.

• Regional Plasticity - Nodes discretize the available space and each node defines the
center of a plastic region3 of the topological space.

• Reachable Topology - Edges of the graph G, emanating and terminating at nodes
can be translated as transitions between the regions whose centers are defined by the
nodes. Thus, these edge/transitions should be spatially possible. No edge can exist
between two nodes that are not neighbours of each other.

Not only must the function f be able to place nodes and edges on the mapG, it must also
be able to modify G in order to accommodate new information based on an observation
sequence. Such a task requires f to modify positions of existing nodes or even removing
them in case of redundancy. Not only does this act on nodes, it should also affect the
corresponding edges connecting the nodes.

These criteria can be met by using Topology Representing Networks (TRNs) (Martinetz
and Schulten, 1991) which discretize space incrementally and find relations between the
regions to connect them. These TRNs are based on the idea of discretizing the space using
Voronoi Regions and connecting the centers of those regions with a common border with
links using the method of Delaunay Triangulation rendering the centers as nodes and the
links as edges of a topological map. The problem now becomes one of setting criteria for
the creation of these Voronoi regions. An advantage of using TRNs is that they are easily
susceptible to incremental methods of updating the regions.

3 We define the plasticity of a region as the adaptability of this region, as defined by the center of the corre-
sponding node, to shrink, expand or morph on new observations in the environment.
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4.2.1 Instantaneous Topological Map

The Instantaneous Topological Map (ITM) (Jockusch and Ritter, 1999) is a specialisation
of the previously mentioned TRNs. The ITM of the GHMM is the function f that incre-
mentally updates the sets of nodes U and edges L based on time dependent observationsOt
as defined in Eqn. 4.1.

The ITM takes as input the observation and outputs the sets U and L. It requires the
internal parameters τ (the insertion threshold), Σ (the covariance matrix) and ϵ ∈ [0, 1)

(the smoothing factor).
Every node in the topological map G is associated with a gaussian weight centered on

it. The map itself is undirected. Given two nodes i and j, the edges (i, j) ≡ (j, i). As
mentioned earlier, a node can only be connected to other nodes if their regions share a
common boundary. This leads to the definition of the Neighbourhood of a node i (Vasquez,
2007) -

N(i) = {j ∈ U | (i, j) ∈ L} (4.4)

The update of the topological map on receiving an observationOt happens in the follow-
ing steps -

1. Node Matching This is the first step in the ITM process. The two closest nodes based
on the the Mahalanobis distance from the observationOt are found. Since the search
complexity is directly dependent on the number of nodes present in the set U, this
step can become unwieldy very quickly for large populations of nodes.

2. Gaussian Adaptation This step sets the learning rate of the ITM based on the smooth-
ing factor. Every node in the set U is associated with a bivariate Gaussian. This step
determines the rate at which the observation influences the positions (µ) of all the
Gaussians.

3. Node Adaptation If the observation cannot be associated with any existing node, a
new node centered on the observation is created. Since addition of nodes discretise
the environment, another node discretising the same space is considered redundant if
it is too close to the newly created one, leading to the removal of the older node. A
node is also deleted if it is an orphan i.e, there are no edges emanating or terminating
in it.

4. Edge Adaptation The edge is adapted in two cases - a) if a completely new node is
created and b) existing links become redundant in explaining the same motion. If a
new node is created in the previous step, then this node is connected to its two closest
nodes, maintaining the Delaunay criteria. If the node lies within a multiple of the
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insertion threshold, there is a new edge added to this node connecting it to the closest
neighbours.

The algorithm itself is as given in algorithm 4 (Vasquez, 2007). The ITM algorithm
suffers from a few drawbacks. One of them has already been mentioned - the larger the
population size of the nodes, the more complex the computation for finding the closest
nodes to an observation. A second drawback is that this implementation of the ITM does
not guarantee global convergence. This is due to the fact that the modification of nodes and
edges occur locally i.e., on any observation, only the two closest nodes are affected, if any.

4.2.2 Structure Learning
Learning the structure of the underlying HMM in the GHMM is a direct application of
the ITM in the state space S. The generation and update of probabilistic graphical model
representation of the GHMM is a direct consequence of the observation Ot which updates
the ITM. At the end of every observation and the running of the ITM, there is a modification
in the setsU,L. The observationOt is composed as in Eqn. 4.1. Thus, for every observation,
the position and the goal ϕ of the pedestrian being observed is known.

To learn the structure, the following steps are followed:

1. For every node in the topological map, create a state such that it is composed of the
node and the goal of the trajectory.

2. If there are edges connecting the nodes in the topology, there are corresponding tran-
sitions between these states

3. Each state is associated with certain parameters - the prior value π0 and a transition
probability aij .

4. On the removal of a node, the corresponding state is removed.

5. On the removal of an edge, the corresponding transitions are set to zero

6. On the addition of a new node, this mode will be assigned a default prior value π0

and a transition probability aij .

7. On the addition of every new node, a self transition is added to the corresponding
states.

4.3 Learning and Inference with GHMM
The HMM created in the State Space S as a consequence of the observation sequence O0:T

has been described in the previous section. The structure learning of the HMM goes hand
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Algorithm 4 Instantaneous Topological Map Update
Input:

Observation Ot
Covariance matrix Σ
Insertion Threshold τ
Smoothing factor ϵ

Output
Modified topological map E = ⟨U,L⟩

1: procedure UpdateTopologicalMap(Ot,Σ, τ, ϵ)
2: b← arg mini∈U d

2
Σ(wi, Ot) ▷ Get the closest node to the observation

3: s← arg mini∈U∖b d
2
Σ(wi, Ot) ▷ Get second closest node to observation

4: wb ← wb + ϵ(Ot − wb)
5: if s /∈ N(b) and d2

Σ(Wb, ws) < 4τ then
6: L← L ∪ {(b, s)} ▷ Edge creation
7: end if
8: for all i ∈ N(b) do
9:

¯
wb,i ←

(wi+wb)
2

10: if d2
Σ(w̄b,i, ws) < d2

Σ(w̄b, wi) and d2
Σ(wb, wi) > 1 then

11: L← L∖ {b, s} ▷ Remove this link
12: if N(i) = ∅ then
13: U← U∖ i ▷ Remove orphaned node
14: end if
15: end if
16: end for
17: w̄b,s ←

(ws+wb)
2

18: if d2
Σ(w̄b,s, ws) < d2

Σ(w̄b,s, Ot) or d2
Σ(ws, Ot) > 4τ and d2

Σ(wb, Ot) > τ then
19: U← U ∪ {r} ▷ Generate a new node
20: wr ← Ot
21: if d2

Σ(wr, ws) > 4τ then
22: L← L ∪ {(b, r)} ▷ Add new link to topology
23: end if
24: if d2

Σ(wb, ws) < τ then
25: U← U∖ s ▷ Remove redundant node
26: end if
27: end if
28: end procedure
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in hand with learning the parameters that define the HMM. In Section 3.5, we discussed
the Baum Welch method of learning the different HMM parameters. With the insight that
pedestrians tend to follow paths of previous trajectories, there is a need for incremental
learning of transitions between states i.e., after every trajectory instead of batch learning
many trajectories at once. The GHMM method indulges this incremental parameter learn-
ing using the Incremental Baum-Welch Method (IBW) (Neal and Hinton, 1998). The HMM
model λ remains the same as previously described and will be restated here for convenience
in Eqn. 4.5, where π is the initial value of the states of the HMM, A is the transition matrix
of the HMM and B the emission matrix. The task of learning is to find the appropriate
values for these model parameters.

λ = {π,A,B} (4.5)

4.3.1 Probabilistic Model

Since the GHMM a specialization of an HMM, the probabilistic model remains the same
as the latter (as in §3.5.1). Repeating it in Eqn. 4.6:

P (St−1StOt) = P (St−1)P (St | St−1)P (Ot | St) (4.6)

The JPD can be decomposed as above and each decomposition can be parametrised to
solve the inference problem.

• State Prior Count: The state prior count π is the initiator of the IBW. This term
is updated after every observation sequence and the resulting value is used as the
expectation for the states on the next observation sequence. It can be thought of as
the parametrisation of the term P (St−1) in Eqn. 4.6. Whenever a new state is added,
this state is initialised with the value π0.

• Transition Probability: The transition probability P (St | St−1) is described by the
model parameter A. This matrix is initialised by a value a0 for every viable transition
in the model. Analogous to the State prior, this value is updated on every observation
sequence. Whenever a new transition is added to the model, it is initialised with a0.
Another thing to node is that on the creation of every state, a self-transition with the
aforementioned value is added.

• Observation Probability: Every node i in the topological map is initialised with a
GaussianG(µi,Σ). This Gaussian then is also associated with the state derived from
this node, which becomes the observation probability P (Ot | St). Then, the learn-
ing problem becomes finding the parameter mean (µi), since the covariance (Σ) is
considered to be the same for all nodes.

48 Chapter 4 Growing Hidden Markov Models



4.3.2 Parameter Learning

As mentioned previously, the parameters are learnt using the IBW. The parameters π and
aij , the constituents of the model parameter A are calculated via the forward-backward
algorithm as the basis of the expectation values of the IBW. The parameter B is learnt
when the observation sequences modify the Gaussians associated with the nodes in the
topological map. The rate at which this parameter is learnt is modified by changing the
Smoothing factor (ε).

4.3.3 Inference

We have already spoken about inference in HMMs in subsection 3.5.2. While is some merit
to using the underlying HMM of the GHMM to general inference problems like smoothing,
we are only interested in its two applications - State Estimation and State Prediction.

Since we deal primarily with pedestrian trajectories, state estimation i.e., the answer to
the question “Where is the pedestrian now?” becomes important. The state estimation step
in inference can be expressed as below :

P (St | O1:t) =
1

Z
P (Ot | St)

∑

St−1

[P (St | St−1)P (St−1 | O1:t−1)] (4.7)

The second application of inference i.e., state prediction answers the question “Where
will the pedestrian be in the future?”. The expression describing the evolution of the pedes-
trian motion is an extension of the state estimation. By propagating the belief held around
the states for H timesteps in the future, given that this pedestrian has been observed for t
timesteps already can be expressed as in Eqn. 4.8.

P (St+H | Ot) =
∑

St+H−1

[P (St+H | St+H−1)P (St+H−1 | Ot)] (4.8)

Since the state itself is composed of the tuple ⟨n, ϕ⟩ Eqn. 4.3, it becomes possible to also
estimate the goal of the pedestrian over a time horizon by marginalising over the states in
favour of the goals. This approach becomes especially useful when the estimating of the
pedestrian goals over time becomes important, for example, in the case of a mobile robot
wanting to anticipate his actions and reach him.

4.4 Discussion
In this chapter, we have presented a quick primer on HMMs being used to predict human
behaviour. We have also given a bird’s eye view of the GHMM method and its constituent
modules. Specifically, we took an example pedestrian trajectory to explain the building

4.4 Discussion 49



of the topological map, the changes to the structure and learning the parameters of the
GHMM. We outlined the Incremental Baum Welch method for learning the parameters
of the underlying HMM. We also explain here the original implementation of GHMMs
(Vasquez et al., 2009).

We would, however, like to conclude this chapter with some reflections on the usage
of GHMMs for onboard perception and inference for autonomous vehicles. In chapter 2
and in section 4.3, we have discussed existing methods of predicting pedestrian behaviours.
As we have seen, methods that discretise their environment - like MDPs and their variants
and HMMs - are very popular. A discrete representation of the environment is easier to
understand and manipulate. They have also been extensively studied so their use in most
prediction applications becomes straightforward. HMMs, especially, have the advantage of
being used not only for prediction but also for applications like signal processing (Rabiner,
Juang, et al., 1985) and speech-recognition (Rabiner and Biing-Hwang Juang, 1993). GH-
MMs allow for lifelong, online learning at comparatively low complexity. GHMMs benefit
from the depth of knowledge that the domain of HMMs can provide, but also inherit some
of the issues that arise with it. In particular, the current implementations of the GHMM
suffers from a few drawbacks as can be seen.

These drawbacks can be algorithmic or structural. As an example of an algorithmic
drawback, the creation and generation of the topological map becomes expensive based on
the number of nodes that already exist in U. Similar analysis for learning the structure of
the HMM can be made and an equivalent insight reached, in terms of complexity.

Environment Agnostic

When talking about prediction of pedestrians, studies (Gibson, 1979; Hine and Russell,
1993; Montel et al., 2013) have shown that the environment is extremely important in un-
derstanding pedestrian movement. Other discrete state space models like MDPs found in
Ziebart, Maas, et al. (2008) create environmental maps for inference. GHMMs, on the other
hand, do not take into account the environment in which the topological map is being built.
This oversight can lead to a topological edge connection between two close lying nodes
where there should be none. Consider, for example, two separate trajectories in a real en-
vironment. Given that these two trajectories don’t overlap but move close to each other,
two distinct observations could create two separate nodes close enough to be connected
by an edge in the topological map. In the real environment, these two observations could
be separated by an impermeable wall. This, then, leads to a wrong representation of the
environment and thus bad inferences.
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Initial Model

The GHMM method utilises the Incremental BaumWelch method (Neal and Hinton, 1998)
for learning the parameters of the underlying HMM based on observation sequences. As
mentioned in earlier sections, this HMM, described by λ (Eqn. 4.5) of which π is the initial
distribution vector. This parameter, also called the state prior, describes the probability of
a sequence starting in this state. In training an HMM with the Baum Welch method, we
set up the initial model and incrementally update the parameters based on model. Thus, a
proper choice of these states are important since the resulting model is heavily dependent on
the initial conditions. The Baum Welch method optimises for local maxima and not global
maxima. Therefore, the closer the initial conditions are to the actual counts of π, fewer the
observation sequences required to reach the optimal values of the parameters. It was found,
in N. Liu et al. (2004), that the more complex the HMM structure, the greater the effect of
initial parameters. It also showed that initialising the model with parameters derived from
real, physical conditions led to better performance. On the contrary, the current GHMM
method uses a “State prior counter default value” (π0), a random value, for initialising
any new node that is created. Such an initialisation, with no consideration of the underlying
physical condition of the state, results in needing many more observation sequences to attain
the global maximum of the environment.

Transition Model

Analogous to the initial model described in the previous subsection, every new node (state)
created leads to the addition of transition links between them and existing nodes. These
transition links are associated with a transition probability, the “Transition counter default
value” (a0). This value is assigned randomly as with π0. Considering the example presented
in sec. 4.4, assigning a random transition value to two nodes that cannot connect physically
in the real world leads to errors in inference. A corresponding case can be made for the
issue of the observation probability. In the classical implementation of the GHMM, it is
assumed that there is no difference in the covariance of the different Gaussians associated
with the nodes of the topological map. This does not ring true in the real world since some
nodes can be traversed in only one direction or fewer times than other nodes in the model,
thus reducing the probability of observation in certain directions around this node. This
distinction cannot be captured within the confines of the current GHMM implementation.

Rich Datasets

The ITM, discussed in section 4.2.1, is the method used to discretise the observed envi-
ronment. This discretisation is dependent on the observation sequences used for learning
the topology and the parameters. A rich and varied dataset is extremely important for the
current implementation of the GHMM method. Without diverse trajectories in the dataset,
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certain regions of the observed environment could remain undiscretised, resulting in areas
where pedestrian motion cannot be predicted. This poses a challenge for the autonomous
vehicle relying on this prediction for decision making.

A second reason for requiring a rich dataset has already been mentioned in Section 4.4.
More and more full trajectories need to be observed to update the initial model to account
for real behaviour in the environment. These reasons also expose a flaw of the current
implementation of the GHMM method. It cannot be used in a previously unobserved, novel
environment and be used for inferring pedestrian positions. Finally, another need for a rich
dataset is the requirement of the Augmented Observation as previously mentioned in §4.1.
Each observation in the sequence is added with a goal component with a definition that the
goal of the trajectory is the final observation of the sequence. Thus, in the absence of a
terminating observation in the sequence, the GHMM method fails.

Thus, as we have discussed, there is an opening for improving the GHMM method. Such
an improvement must:

• model the environment in such a way as to account for the physical conditions of the
discretised environment,

• capture natural human motion around nodes to fit data,

• provide a realistic initialisation and transition model for the learning method to ex-
ploit,

• rely on fewer observations without conceding the accuracy of predictions, and,

• be possible to use in a previously unobserved, novel environment to account for AVs
motion

In the following chapters, we propose changes to the existing GHMM implementation,
specific to the application of pedestrian motion prediction, to solve the drawbacks discussed
in this section.
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Part II

Modelling And Prediction In Human Populated
Urban Areas





Modelling the Human
Environment

5
„ We have no idea about the ’real’ nature of things

… The function of modeling is to arrive at
descriptions which are useful.

— Richard Bandler and John Grinder
Authors

The epigraph of this chapter captures a fascinating idea - that the subtlety and range of
human motions cannot be completely understood and that true intentions of actions are fre-
quently not visible. This “hidden” intention, in the context of pedestrian prediction, is the
destination of the pedestrian under our consideration. While the estimation of the internal
intention of every person is beyond the scope of current technology, falling into the realm
of science fiction of needing to read minds, an approximate estimation of these intents can
surely be constructed. Such a thought has driven research for years, with literature on pedes-
trian motion considering his internal intention as a “ hidden variable” to be marginalised
in the solution (Kautz and Allen, 1986; Bandyopadhyay et al., 2013; Schneider and Dariu
M. Gavrila, 2013). On the other hand, another school of thought exists that prefers to ex-
plain human behaviour as a function of their spatial constraints (Barker and Wright, 1954;
Cannon, 2013). By applying the wisdom present in the epigraph, a useful approximation
of intentions can also be built also by externalising the influences on them. Subsequently,
in this chapter, we present an approach to model a structured, built environment from the
perspective of a pedestrian.

We begin this chapter by discussing some of the different approaches found in literature
on the topic of environmental modelling and cost map generation. In Section 5.2, we discuss
the aforementioned effect of the built environment on influencing pedestrian behaviour and
introduce the concept of Point of Interest (POI). Here, we will further discuss the effects of
these POI on pedestrians in urban areas with a firm sociological foundation.

Section 5.3 will deal with the theoretical basis on modelling the various features, identi-
fied by common semantic labels, that can be observed in a built urban environment. Next,
Section 5.4 details the comparative validation of the proposed approach with a publicly
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available dataset and a discussion on the results in conformity with the “Look-Once” prin-
ciple (Section 1.2). Finally, we present concluding remarks in Section 5.5.

5.1 Advances in Environmental Modelling

A naive method of modelling the observed environment is an occupancy grid map (Moravec
and Elfes, 1985). Every cell in such a grid map is defined by it either being occupied or
non occupied, creating a static, binary representation of the observed environment. Such a
representation is not always sufficient. In fact, it does not take into account the dynamicity of
the environment. Many obstacles, that are stationary at point in time, move. This semantic
change of occupancy from occupied to unoccupied needs to be captured. One solution is to
model this change probabilistically. Such a mapping of these occupied areas was first treated
in Thrun et al. (2005). An improved version of these Occupancy Grid Maps was proposed
in Weiss et al. (2007), wherein a binary Bayes filter is used to divide the cells on the map
into moving and stationary obstacles and estimating the velocities of each of these cells.
Other approaches exist, like Rummelhard et al. (2015) which utilise Bayesian approaches
to model dense occupancy of the observed area. The simple modelling of occupancy is a
reactive measure, insufficient to explain many of the interactions within the environment.
Some approaches like Wolf and Burdick (2008) model the interactions in the environment,
specifically for highway scenarios while Svenstrup et al. (2010) approaches the problem
from a similar direction, modelling the environment as a sum of its interactions. These
models are then used to plan agent trajectories in indoor or outdoor scenarios.

Consider a typical urban scene (Fig. 5.1). A pedestrian stands on a side-walk, close to a
cross-walk, intending to cross to the other side of the street. A car is moving in a direction
perpendicular to his crossing. Another car is moving in the opposite direction, closer to
the cross-walk. Consider also, an observer M witnessing this scene and wanting to predict
this pedestrian’s behaviour in this situation. Following the approach of Weiss et al. (2007)
applied to the problem, M will not consider the presence of the cross-walk. Comparably,
the approach of Rummelhard et al. (2015), fails to include pedestrian intent in that he can
stop and wait for the car to pass him by before taking action.

Thus, as an indicative measure, the above mentioned approaches suffer from the misex-
planantion of the following problems:

1. Configuration: In building an occupancy map, the underlying configuration1 of the
environment is ignored.

1Configuration, in this context, is the collection of the different elements of the environment such as grass,
pavement, road etc.
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2. Kinematics: These approaches do not take into account the dynamic and kinematic
constraints of the obstacles that it is trying to model. For example, humans - who are
dynamic obstacles - can change their speed and direction on a whim.

3. Context: The richness of information present in the interactions between the different
elements of the scene is lost.

Fig. 5.1.: A typical urban scene with a cross-walk, side-walks and cars sharing space with pedes-
trians. A pedestrian wishes to cross the road to reach his destination, denoted by the star
in gold.

The problem of Configuration has been studied with some success. Data driven ap-
proaches have been used to identify configurations of the observed space which are more
conducive to human interaction. In Ziebart, Ratliff, et al. (2009), a static, closed area is
considered for modelling. The area is discretised and pedestrian trajectories through it are
observed. A global model of the environment is built such that the cost-to-go to each cell
from any other cell of the discretised map, can best explain the set of observed trajectories.
This is performed using maximum entropy inverse reinforcement learning (Ziebart, Maas,
et al., 2008). As an intuition, this map then denotes the areas which are easily traversable
for a pedestrian and which areas are too “costly” to walk in.

An approach to the second problem, i.e. that of Kinematics, is seen in Kanda et al.
(2009), which utilises the velocities of observed pedestrians in an environment to identify
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areas of global behaviour. Sensors pick up pedestrian movements. The environment is
discretised into Voronoi regions and the velocities of each observed pedestrians within each
of these regions are recorded. An SVM classifier is used to classify behaviour - idle walk,
brisk walk, stop, wandering - in each region of the environment, resulting in a global map of
pedestrian behaviour there. In a related approach, Z. Wang, Jensfelt, et al. (2016) utilize a
probabilistic model to capture pedestrian behaviour in the environment using a non-ergodic
HMM. Each cell in the grid is 8 - connected and pedestrians can move in one of the eight
directions. This movement corresponds to a transition from one state to another in the
corresponding HMM. After every observation, these transitions are updated and a typical
“behaviour” is learnt. These behaviours are clustered and classes for each cell is obtained,
leading to a grid map with identifiable behaviour probabilities.

A hybrid approach, expounded by Kitani et al. (2012), builds on the work done in Ziebart,
Ratliff, et al. (2009) and also manages to take into account the semantics of the observed
scene. The environment plays a large role in deciding the trajectory of a pedestrian. For
example, going back to the scenario described in Fig. 5.1, the pedestrian is far more likely
to cross on the cross-walk to get to his destination rather than cross on the street. He is
also likely to avoid the car in his crossing. This interplay between the agent’s trajectory and
the physical properties of the scene are considered. This approach is unique in comparison
with the other approaches discussed here since the learning is transferable. Weights learnt in
one scene for features with many pedestrian trajectories are associated with the underlying
physical, i.e., semantic, information and not the location. This implies that parameters learnt
on one scene can be transferred to a novel scene and begin to infer pedestrian positions
even with no observations. Another approach that utilises similar principles can be found
in Vasquez (2016), which uses the configuration aware map presented by Ziebart, Ratliff,
et al. (2009) with a focus on the kinematics of the pedestrian. A comparison between the
different approaches can be seen in Table 5.1. While certainly not an exhaustive list by any
means, it can be indicative and a clear picture emerges from Table 5.1. Of the different
approaches presented, very few take into account the problem of Context while modelling
the environment.

Configuration Kinematics Context
(Ziebart, Ratliff, et al., 2009) ✓ ✓ ×

(Kitani et al., 2012) ✓ × ✓

(Vasquez, 2016) ✓ ✓ ✓

(Z. Wang, Jensfelt, et al., 2016) ✓ ✓ ×
(Kanda et al., 2009) × ✓ ×

Tab. 5.1.: Comparison between the works found in literature on the basis of the problems of Con-
figuration, Kinematics and Context in modelling. Some problems are solved during the
planning phase and not during the modelling phase.
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It also soon becomes evident that there are some drawbacks inherent with the works
reviewed here.

1. There is a need for many trajectories to accurately model the environment. Fewer
trajectories lead to an incomplete model of the environment.

2. Strange behaviours and previously unseen behaviours cannot be accurately accounted
for.

3. Weights learnt at one scene cannot be generalised without modifications and do not
consider dynamicity of obstacles.

4. Cues from Context are unaccounted for.

In general, due to the above mentioned drawbacks, these approaches cannot be utilised
by the observer M on a moving platform like an autonomous vehicle to model a rapidly
changing environment.

Human drivers, on the contrary, follow the “Look-Once” principle where they, metaphor-
ically, put themselves in the pedestrian’s shoes and predict what they might do in this sit-
uation. Thus, any approach that proffers to replace a human observer in the self-driving
pipeline must be able, as soon as the area is observed, to : (a) create a mental cost map of
the environment; (b) identify areas of high pedestrian distribution; (c) distinguish between
possible destinations.

In the following sections, we present an approach that considers the above ideas to for-
malise a numerically exploitable model using the different features of the observed environ-
ment. Our aim is to constitute a function J(·) for the observer M taking into account the
configuration, context and dynamics of the different elements of the observed environment.
In the next section, we present the influences on pedestrian behaviour in a built, urban area.

5.2 Modelling What You see: A Sociological Perspective
Humans, as is said, are social creatures. What we see and feel influences our behaviour,
especially as pedestrians.

A first approximation of pedestrian motion was proposed by Helbing (1993), called the
Gaskinetic model. Humans are considered to be gaseous particles and their motion was
thought of as being described by Boltzmann-like equations. Pedestrians are considered self-
driven particles, moving to unfilled areas within the environment, their motion decided by
parameters like velocity and direction plugged into the equation to account for “freedom of
choice”. An improvement over the Gaskinetic equations was the Social force model. This
widely regarded model was meant to address some of the issues that had arisen with the
previous model. Pedestrians are no longer thought of as being gaseous particles. Instead,
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they are assumed to have a social field around them and all interactions with other elements
in the scene happen as a function of this social field (Helbing and Molnar, 1995).

Any model that approximates pedestrian behaviour must also be able to answer the fol-
lowing questions about their trajectories:

Q1 When does a pedestrian decide to move?

Q2 How is the trajectory composed?

Q3 Why does the pedestrian move?

These questions define the idea of Pedestrian Route Choice which plays a major role
in understanding their behaviour. Statistically, some behaviours in urban areas can be fre-
quently observed as seen in Hoogendoorn and Bovy (2004). These can become the basis of
pedestrian route choice as follows.

1. Route Directness: Long term observations of pedestrian behaviour in urban areas
show that they are averse to taking long detours. They are also opposed to moving
in a direction opposite their desired walking destination. This behaviour has been
observed to be true even when their trajectory takes them through crowded areas
(Hughes, 2002).

Contrary to the previous point, there is also sufficient evidence which shows that
while pedestrians try to take a direct route, they also prefer taking the fastest route
which may not be the shortest one between the origin and the destination (Ganem,
1998). Thus, an inference can be made that all routes are within an area bound by a
subjective “fastest” path and a “shortest” path. This polygonal area encompasses all
possible trajectories between the current position of the pedestrian and his intended
goal.

2. Proximity: Pedestrians tend to keep a varying distance between themselves and other
elements of the environment, especially with other pedestrians, as explained by the
social force model. Pedestrian behaviour is affected by elements like edges of the
street, walls etc. (Hoogendoorn and Bovy, 2004; Helbing and Molnar, 1995). Thus
pedestrian trajectories suffer a change around walls, side-walks and street edges.

3. Knowledge: The knowledge of the environment by the pedestrian plays a huge part
in his/her route choice behaviour. Knowing the layout of the street, for example, can
influence a pedestrian to choose a shorter crossing, cross where they shouldn’t or even
force them to avoid a certain part of the road altogether.

Takeaway 1: There are costs manifest in pedestrian routes: both psychological and
physical, that are conjoined to the built environment.
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5.2.1 Influences on Pedestrian Behaviour : Points of Interest

Continuing with the influences, some areas of the environment are more attractive to a
pedestrian than others. To understand this phenomenon and a priori identify these areas
in a novel environment, we look to the field of cognitive psychology. There are certain
affordances in the environment that the pedestrian perceives which leads him/her to move
in socially significant areas while avoiding others (Gibson, 1979). Intuitively, the affordance
associated with an area is the inverse of the cost to traverse that area. This perception of
the environment leads to an attractive model of human behaviour - pedestrians move in
a direction in free space that allows them to continue moving. This becomes an explicit
constraint from the environment. Such directed motion derived from the configuration of
environmental elements is defined as Natural Vision by Gibson (1979). According to him,

“When no constraints are put on the visual system, we look around, walk up to
something interesting and move around it so as to see it from all sides, and go
from one vista to another. That is natural vision ...” (1979, Page 1)

Thus, in a typical urban scene, we infer on reasoning, that a combination of various
factors affect trajectories. Typical pedestrian behaviour, at a high level of reasoning, is a
sequence of actions such as “look around”, “find most desirable route” and “move in that
direction.” This natural behaviour is explored in Hillier et al. (1993) leading to the theory
of Natural Movement. In Hillier et al. (1993) it is exhibited that most pedestrian interactions
and movements occur along lines of sight. These lines of sight facilitate human movement
along them. Hillier et al., contrary to previous definitions, consider these converging lines
to be the “configuration” of the environment. The termination points of these lines of sight
are designated attractors - positive or negative.

Positive Attractors Some areas in the field of view act as a positive influence on the tra-
jectory of a pedestrian. Take, for example, a monument of national interest like the Eiffel
tower. Most trajectories around the area of the Eiffel tend to converge and terminate at the
tower itself. Another common example would be the increased attractiveness of a restaurant
near an industrial area during work hours. A large number of people would have their des-
tination as the restaurant around this time. Thus, these areas become statistically a positive
attractor in the environment.

Negative Attractors Conversely, there also exist negative attractive elements in the scene.
These are those elements that a pedestrian would wish to avoid or walk away from during
the course of their trajectory. People, for example, generally walk as far away from a trash
bin as possible. If there exists another path in the visual field of the pedestrian, then he/she
would prefer to take that path instead (Gibson, 1979).
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Thus, these statistically significant positions along the line of sight that can change a
pedestrian’s behaviour towards themselves become attractors, which we refer to as Point
of Interest (POI) in the remainder of our work. Some attractors have been described in
Gibson (1979), like places of public interest, restaurants etc. while others ((Borgers and
Timmermans, 1986), (Pacione, 1980), (Bennison and Davies, 1977)) have performed em-
pirical analyses on pedestrian flow around city centres which have shown that pedestrian
route choice is influenced by many commonly observed urban elements like the spatial
placements of transportation areas (bus and tram terminals, car parking spaces, etc.), shop-
ping centres, large stores and the environmental linkages between these disparate elements.

Takeaway 2: Sociological attraction points in the environment are recognisable and
quantifiable, acting as termination points for pedestrian trajectories.

5.2.2 Pedestrian Crossing Behaviour
While we saw in the previous sections on how environmental configurations and POIs affect
pedestrians (regarding Q1 and Q3), we should discuss how these trajectories are composed
(Q2). Within the context of a built urban environment, this implies searching for explana-
tions on pedestrian crossing behaviour.

We commence by defining this behaviour which can be predominantly divided into Legal
Crossings and Illegal Crossings. Consider once more, Fig. 5.1. In this scene, if the pedes-
trian decides to traverse the street completely on the designated area, i.e., the cross-walk,
this trajectory is considered a Legal Crossing. On the other hand, if he decides to cross the
street at any other position, that trajectory can be classified as an Illegal Crossing.

Peponis et al. (1990) essayed to find “patterns” in the negotiated paths in constricted
spaces and to formalise them based on empirical observations. The rules can be stated as:

1. Pedestrians avoid unnecessary backtracking.

2. With no distractions, pedestrians continue along the same line of sight.

3. Pedestrians diverge from their current line of sight when a new view allows them
more space for activity or a different line of sight.

At a macroscopic level, for a person trying to cross the road, physical and psychological
barriers exist. These physical barriers may be actual barriers blocking their way, such as a
parked car or a gate. They may also be psychological - an oncoming car that is speeding
strongly dissuades a person from attempting a crossing, even if the approaching car is distant.
This relationship was studied in Hine and Russell (1993), based on observed data and self
reporting of the involved pedestrians. It was concluded that given sufficient barriers, both
psychological and physical, the pedestrian might not cross and in some cases, not take that

62 Chapter 5 Modelling the Human Environment



route at all, preferring an “easier” choice. Similar studies conducted in different parts of
the world culminated in equivalent results. In Das et al. (2005), an additional finding of
the study was the presence of extrinsic and intrinsic “gaps”. The extrinsic gap was the true
gap between vehicles that could provide an affordance to pass in between. This extrinsic
gap was countermanded by a personal “intrinsic” gap perceived by the pedestrian based
on his/her own previous experiences. It was also found that larger the vehicle as a barrier,
the greater the hesitation in crossing. In similar vein, Montel et al. (2013) conducted an
experiment to determine the effects of different urban configurations on illegal pedestrian
crossing decisions. It was found that a major factor in the decision process was the presence
and function of the built environment i.e., the presence of shops and pedestrian density.
Another key factor was the presence of side walks. A third factor in the decision to cross
illegally was the width of the street.

Takeaway 3: The geometric dimensions of the environment play a significant role in the
composition of a pedestrian’s behaviour.

5.3 Modelling of the Environment as Potential Costs
The aim of this section is to establish the function J(·) that was introduced in an earlier
section. Specifically, this function will consider the Takeaways presented previously, delv-
ing into geometry and the configuration of the environment. We see from the discussion
in the previous section that there exist multiple influences on pedestrian behaviour in an
urban environment. With the discussion, an overall view begins to emerge - one where
pedestrian movement is a function of the built environment with each of the features of the
scene affecting it differently.

In terms of crossings, for the occurrence of a legal crossing in a built environment, the
following assumptions are made:

• Road: The road acts as a barrier for crossing, repelling pedestrians towards the side-
walks.

• Edges: The edges of the road repel pedestrians such that their paths are restricted to
the side-walk.

• Obstacles: Static and Dynamic obstacles on the road are repulsive in nature, increas-
ing the resistance of the road and pushing back pedestrians towards side-walks.

• POI: Points of Interest are a reason for pedestrians to cross from one side of the street
to another.

• Crosswalk: A cross-walk acts as a conduit between the two sides of the street and
offers no resistance to crossing
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• Sidewalk: Side-walks offer no resistance to pedestrian movement.

As a consequence, an illegal crossing occurs when at least one of these assumptions is
violated.

For each of these assumptions, we can find an analogue in the field of Artificial Potential
Field (APF)s (Khatib, 1985) that have been used extensively for modelling the environment
for navigation of wheeled robots. APFs can provide a directed cost value at a point in the
environment like in Svenstrup et al. (2010) and Wolf and Burdick (2008). What follows is
a discussion on translating the geometry and semantic information of the identified features
of the scene into costs, thereby modelling the environment as a “Potential Cost Map”.

Consider the ObserverM observing a typical urban scene as in Fig. 5.2. This scene can be
thought of as existing in two subspaces - the real observation space Ω ∈ R

2 and a semantic
feature space ΨU containing semantic information about the observed scene. Then, there
exists a function h(·) that maps the semantic feature space to the real space Ω.

Fig. 5.2.: A typical urban scene containing a pedestrian, points of interest (entrance to a building,
edges of the scene), road, sidewalk, crosswalk and dynamic obstacles.

Within this urban scene, we have a feature set Ψ ⊆ ΨU such that,
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Fig. 5.3.: Semantic grid describing the mapping of Ψ to R
2

Ψ = {Road,Edge, Crosswalk, Sidewalk,OStatic,

ODynamic, Building, Point_of_Interest} (5.1)

Allowing the observer M to have the ability to identify these labels, we take advantage of
the fact that every point in Ω ∈ R

2 is classified into one or more of the labels present in Ψ,
as function h(·). Following this, and taking into account the Takeaways from the previous
section, we can claim that each of these semantic features have a specific influence on a
pedestrian, which when taken together, forms his/her trajectory. Thus, J(·) transforms into
J(Ω; Ψ) enabling us to transform the observed features into a cost map.

We begin by discretizing the observed scene into a semantic grid map as shown in fig.5.3.
Each cell in the grid, mi, is defined by its center (xi, yi) where xi, yi ∈ R

2
≥0 and mi ⊆ Ψ

and i = 0, 1, 2, 3, . . . ∈ Z
+. With this background, we begin to define specific costs for

each of the semantic features as below.

5.3.1 Modelling the Road

As mentioned in section 5.3, the road acts as a barrier for crossing, repelling pedestrians
towards the side-walks. Following Wolf and Burdick (2008), the road potential i.e., the cost
to cross the road, should be high along the width of the road while tapering off close to its
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edges. Thus, it is expected that this feature results in a value URoad ∈ R. By defining X
as the coordinate values of the observed environment, we have:

J(X; [Ψ = Road]) = URoad (5.2)

Returning to Montel et al. (2013), it can be inferred that the geometry of the road present
before the pedestrian, especially the width, is a dominant parameter in forcing legal cross-
ings. Intuitively, a small road is more likely to entice illegal crossings rather than a wider
road. By this assumption,

Let X = [x, y] defining the x and y the discretisation of the semantic grid.

Then, we can define a Gaussian-like function for cost, ci, such that,

∀i : i ∈ Z
+,mi = Road,

ci,Road(X) = βRoad exp

(

−

[(
xi
σk

)2

+

(
yi
σl

)2
])

(5.3)

The total Road Potential Cost, URoad, is:

URoad =
M∑

mi

ci,Road (5.4)

The Road potential cost for the typical scene depicted in Fig. 5.2 is presented in Fig. 5.4.
As can be seen in the figure, the cost of the road is prohibitive enough to cause the pedestrian
to move away from the road area. For obtaining this potential cost, the geometry of the road
needs to be known a priori or estimated to be able to set the values of βRoad, σk and σl. At
the end of this step, URoad is normalised.

5.3.2 Modelling the Edges

Continuing, we consider the assumption that the edges of the road repel pedestrians towards
the side-walk. An illegal crossing occurs when the pedestrian can exert enough force to
overcome this potential cost. Similar to Eqn. 5.2, we define the function J for edges as,

J(X; [Ψ = Edge]) = UEdge (5.5)

Once again, let X and Y contain the x, y coordinates of all cells of the semantic grid.

∀i : i ∈ Z
+,mi = Edge:

ci,Edge = 0.5ηκ(xi, yi)
−1 (5.6a)
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(a) Highlighted “Road” semantic feature of the typical urban scene.

(b) Potential “Road” Cost for the typical scene depicted. The cost for this feature is dependent on
the geometric width of the road.

Fig. 5.4.: Road Potential for the typical urban scene depicted above. The potential is generated for
those cells in the Semantic Grid Map classified as Road.

where η is a scaling factor dependent on LRoad and,

κ =







ρ(xi, yi) ifρ > 0

κmax ifρ = 0
(5.6b)
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ρ is the distance function given by,

ρ =
√

(X − xi)2 + (Y − yi)2 (5.6c)

The total Edge Potential Cost, UEdge, is:

UEdge =
∑

i∈Z+

ci,Edge (5.7)

Fig. 5.5 illustrates the effect of the “Edge” feature on a pedestrian in a typical urban scene.
Considering that the pedestrian wishes to cross to the other side of the street in our scenario,
Fig. 5.5b depicts the costs applied by the environment on him. The edges, as can be seen,
have the effect of pushing him away from the edges. An illegal crossing can occur in this
scenario when a sufficiently determined pedestrian tries to cross over the edge where the
cost is high. As before, the potential cost value for the Edge feature is normalised after
calculation.

5.3.3 Modelling Obstacles

Obstacles in the scene can be distinguished as static and dynamic obstacles. Pedestrians
cannot cross across the obstacle but traverse around them. Pedestrians also respond differ-
ently around static and dynamic obstacles, with more care taken to avoid crossings when
there are dynamic obstacles in the scene (Montel et al., 2013). Pedestrians approach the
obstacle slowly and are pushed away by its edges.

These constraints need to be taken into account to define

J(X; [Ψ = Obs]) = UObs (5.8)

A Yukawa potential (Volpe and Khosla, 1993) is considered a fit for the expected be-
haviour. Further, there is difference between the representation of the static and dynamic
obstacles for calculating costs. Thus,

J(X; [Ψ = Obs]) =







J([Ψ = OStatic]) if Obs = OStatic

J([Ψ = ODynamic]) if Obs = ODynamic
(5.9)

and J(Ψ) is applied recursively on every instance of Obs regardless of it being a static
or a dynamic obstacle.

Static Obstacle A static obstacle occupies the semantic grid in the shape that it is perceived
to be and is thus impermeable. Thus, J([Ψ = OStatic]) = UStat is defined as,
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(a) Highlighted “Edge” semantic feature (in black) of the typical urban scene.

(b) Potential “Edge” Cost for the typical scene depicted above. The lines emanating from the edges
show the effect this feature has on a pedestrian, in this case, pushing him away towards the safer
sidewalk.

Fig. 5.5.: Edge Potential for the typical urban scene.

UStat =







umax if mi = OStatic

0 Elsewhere
(5.10)
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Where umax is the maximum possible value of the potential cost. On normalisation of
the total cost (Eqn. 5.18) becomes 1.

Dynamic Obstacle For a dynamic obstacle defined by position and velocity (xi, yi, ẋi, ẏi),
we follow the principle presented in Wolf and Burdick (2008), where a triangular appendage
on the back of the car generates a cost based on its velocity. On the contrary, we add a
triangle to the front of the obstacle in the direction of motion to represent the dynamics and
future positions of these obstacles. The vertex of the added triangle is placed based on the
velocity of the object itself i.e., the position where the center of the obstacle will be for a
certain horizon given that the car is travelling at an observed velocity.

The Obstacle Potential cost J([Ψ = ODynamic]) = UDyn for the nth dynamic obstacle
is given by:

U
n
Dyn = Λ

exp (−αK)

K
(5.11)

Where Λ and α decide the behaviour of UnDyn. Larger the values, sharper the drop off of
the potential near the obstacle.

K is the distance of the obstacle from every point on the workspace, i.e.,

K = ∥Cij − CObs∥ (5.12)

A representative image of a dynamic obstacle can be seen in Fig. 5.6 (Wolf and Burdick,
2008).
The total effect of all the obstacles in the workspace is given as

UObs = UStat +
N∑

n=0

U
n
Dyn (5.13)

Where N is the total number of obstacles observed. The extremely large values that are
generated are truncated to a maximum viable value.

5.3.4 Modelling the Points of Interest
A Point of Interest (an inexhaustive list of what may be considered as a POI can be found
in Helbing and Molnar (1995)) generates an attractive pull in the scene. With sufficient
motivation, the self-driven particle can escape the influence of a POI. A POI is also a ter-
minal point in the scene - the implication being that all exits in the scene are POIs. The
potential of a POI situated at a cell defined by (xpoi, ypoi) is a Gaussian function centered at
(xpoi, ypoi). βpoi, σx, σy depend on the global importance of the specific Point of Interest.

U
n
POI = βpoi exp



−





(
X − xpoi

σx

)2

+

(

Y − ypoi
σy

)2






 (5.14)
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Fig. 5.6.: Potential cost of a dynamic obstacle. A triangular wedge is added in the direction of
motion to compensate for future costs that can be incurred [Image credit: (Wolf and
Burdick, 2008)].

Let P be a set of length N containing the positions ⟨xn, yn⟩ for each of the N POIs
observed in the scene.

Subsequently,

UPOI =
N∑

n=0

U
n
poi (5.15)

J([Ψ = POI]) = UPOI (5.16)

Fig. 5.7 illustrates the effect of the different POI on the pedestrian. A pedestrian wanting
to cross the street is affected by the attractive nature of the POIs causing him to move towards
them, thereby causing him to cross. As is observed, the existence of these POIs reduce the
cost of the area where they are present.

5.3.5 Building Potential

When we consider a built, urban environment, we identify the effects the features present
within the environment. Such a scenario demands the exclusion of buildings in so far as

5.3 Modelling of the Environment as Potential Costs 71



(a) Highlighted “POI” semantic feature of the typical urban scene, depicted using golden stars.

(b) Potential “POI” Cost for the typical scene depicted above. The point POIs have an attractive
area surrounding them illustrated by the lines directed into the troughs in the figure.

Fig. 5.7.: POI Potential for the typical urban scene depicted above.

nothing but obstacles, thus being impassable. On the other hand, entrances to buildings
may be Points of Interest, explaining pedestrian motion towards them.

Theoretically, for modelling, a building can be considered a static obstacle such that
J([Ψ = Building]) = UB becomes:
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UB =







umax if mi = Building

0 Elsewhere
(5.17)

Once this cost is calculated, it is normalised. The effects of buildings in the potential
cost can be seen in Fig. 5.8 for the typical urban scene as before. In the figure, the building
semantic feature can be seen to be at the highest possible cost (1.0) making these areas
impassable.

5.3.6 Total Potential Cost of the Environment

The total potential cost due to the different observed elements in the observed scene is the
summation of the constituent potential costs.

Let Θ = [θRoad, θEdge, θObs, θPOI , θB] be the contributing weights of the different po-
tential costs. Similarly, let U = [URoad,UEdge,UObs,UPOI ,UB] be the vector of the
constituting potential costs.

Then, the total potential cost of the entire observed scene can be defined in terms of Ψ

can be defined as:

J(Ψ) = UTotal = Θ ·U⊤ (5.18)

Since the different weights depend on factors like the width of the road LRoad, etc, which
have already been included in the individual cost calculations, Θ can be replaced by a vector
of 1’s.

Thus, the total potential cost becomes:

Utotal = URoad + UEdge + UObs + UPOI (5.19)

The illustrative resultant of the different potential costs for the typical scene referred to
previously is seen in Fig. 5.8. This cost map representation can be intuitively understood as
follows -

• The red areas within the generated map are considered impassable areas - as in the
case of the cars and the buildings. Thus, for the pedestrian, those areas cannot be
traversable while considering a crossing.

• The orange lines close to the cars are areas which still pose a danger to the pedestrian.
These are dependent on the speed and heading of the dynamic obstacle. Any mental
plan the pedestrian always takes into account these repulsions.

• The green areas on the map are those around which a pedestrian can easily plan to
traverse.

5.3 Modelling of the Environment as Potential Costs 73



Fig. 5.8.: The resultant potential cost map of the illustrative typical scene of Fig. 5.2 depicting the
summation of all the costs due to the identified features and the cost due to the dynamic
obstacles. The Points of Interest’s influences can be seen as depressions in the regions
where they exist in Fig. 5.2.

• Blue areas are those which are still possible to travel by the pedestrian but with a
higher awareness of caution.

Thus, from Fig. 5.8, while recognizing that it is a snapshot of the environment at a specific
instant and that the real environment is dynamic, it is surmised that one of the safest ways
for the pedestrian trying to cross from his current location towards a destination is through
the crosswalk where the effects of the slow-moving obstacles is non-negligible yet not fatal.
On the other hand, taking the quickest path requires him to negotiate between dangerous
areas wherever allowed to arrive at his goal. Given this knowledge of pedestrian mental cost
map, it becomes evident that knowing the complete state of the environment, it is highly
probable that he is unwilling to undertake an illegal crossing. While the possibility of the
action exists, such a trajectory can only occur in the “safe” areas of the scene that are not
the crosswalk.

The algorithm for calculating the potential cost of an observed environment is given in
Algorithm 5
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5.4 Experimental Validation of the Proposed Model
To validate our proposed approach in modelling the environment, we compare it qualita-
tively against Inverse Optimal Control (IOC) modelling presented in Kitani et al. (2012).
The referred work proposes a generative model for determining the cost function of a static
environment skewed towards pedestrian preferences. They achieve this by preprocessing
the observed environment through a classifier to identify various features present within
and subsequently use tracked pedestrian trajectories to learn optimal weights for each of
these features. This work leverages the IOC technique to learn the environmental cost map
while using Optimal Control (OC) techniques over it to forecast a pedestrian’s trajectory
within this environment in a human-like mobility distribution between a starting and ter-
minating point. Our work differs from that of Activity Forecasting (AF) model (Kitani et
al., 2012) in the cost map generation, while utilising the same features in the environment.
We qualitatively compare our proposed approach with that of AF in being able to forecast
similar pedestrian distributions over time.

5.4.1 Dataset and Configuration
We use an extract of the VIRAT dataset (Oh et al., 2011) used in Kitani et al. (2012), to
maintain fidelity in the qualitative comparison. This extract consists of different scenes in
a parking lot comprising a building, stationary cars, grass, pavement and sidewalk. The
pedestrians in each of the scenes are tracked using the Super-Pixel-Tracker (SPT) (S. Wang
et al., 2011). The feature maps of the environment and pedestrian ground truths with track-
ing data along with its rectified images have been provided by Kitani et al.2

As our proposed approach requires as input a labelled image, we manually label the recti-
fied (top-down) images provided in the dataset extract using the LabelMe tool (Wada, 2018)
under the classes Pavement, Sidewalk, Grass, Building, POI and Obstacles. The labelled
image with the underlying configuration of the environment is shown in Fig. 5.10. A com-
parative feature map for the environment can be seen in Fig. 5.9.

5.4.2 Qualitative Analysis
The first step in our comparison is the generation of cost maps via both approaches for the
same environment. To generate the cost function depicted in Fig. 5.11a, we use the labelled
image from Fig. 5.10 and parse it through the usage of Algorithm 5.

The cost map depicted in Fig. 5.11b is generated via Kitani et al. (2012) using the optimal
weights of the features learnt on observing many pedestrian trajectories. Thus, a forecasted
pedestrian distribution is expected to follow a “human-like” pattern, avoiding obvious ob-
stacles such as cars, which can be seen in Fig. 5.12b. This figure depicts the result of the

2Activity Forecasting dataset/code: http://www.cs.cmu.edu/~kkitani/datasets/index.html
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Fig. 5.9.: Feature Map of the VIRAT environment as an output of a classifier [Image Courtesy:
Kitani et al. (2012)].

Fig. 5.10.: Rectified, Labelled Image from the VIRAT Dataset. The POI are presented with the
small black dots.

AF approach of a higher reasoning of a pedestrian in the environment in traversing the area.
It is seen that the forecasted distribution presents a scenario where the sidewalk is clearly
preferred in reaching the goal while it is possible to take other trajectories traversing the
pavement around the obstacles. Similarly, in replacing the cost map generated using the
feature maps with one generated with our proposed method shown in Fig. 5.11a, the OC
method arrives at a forecasted distribution depicted in Fig. 5.12a. We observe that qual-
itatively, the forecasted distribution imitates the original distribution as that of AF. The
pedestrian prefers moving in the “safe” area of the sidewalk, avoiding higher cost areas.
The acquired result resembles the AF method for human-like movement even for passing
between the cars on the pavement.

Nevertheless, the generated cost function in AF (Fig. 5.11b) is dependent on witness-
ing multiple pedestrian trajectory demonstrations to find the optimal weights, which goes
against the “Look-Once” principle for this modelling to be utilised on an autonomous car.

Consider the scene in Fig. 5.13 in the same environment as before but with a configuration
in which the obstacles are placed differently. In this example, a pedestrian wants to move
between the starting position in the environment and the terminating point.
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(a) Cost Map generated using the labelled image
presented in Fig. 5.10. The deep blue areas
depict areas of high cost, i.e., that of unknown
areas and obstacles while areas with hues of
red to green depict areas of low to medium
costs respectively. (Proposed)

(b) Cost Map generated with the feature map pre-
sented in Fig. 5.9. Blue areas in the fig-
ure depict unknown areas and thus areas of
high costs. In contrast to the image on the
left, Green depicts impassable areas with high
cost, including obstacles. Areas with reddish
hues are those that are conducive for pedes-
trian movement. (AF)

Fig. 5.11.: Comparison of Cost Maps on the basis of the methods of their generation.

(a) Forecasted Pedestrian trajectory based on the
cost map shown in Fig. 5.11a. (Proposed)

(b) Forecasted Pedestrian trajectory based on the
cost map shown in Fig. 5.11b.(AF)

Fig. 5.12.: Forecasting of “human-like” pedestrian trajectories using Optimal Control based on
generated cost maps.

The second qualitative test we perform is to evaluate whether our proposed method and
the AF methods conform to the “Look-Once” principle. We generate the cost function using
algorithm 5 for the configuration of the scene presented in Fig. 5.13. For the same scene,
we generate the cost function using the feature map as described in the AF method with
a single demonstration. We forecast the pedestrian distributions using both the cost maps
and the results can be seen in Fig. 5.13a and Fig. 5.13b. The forecast in Fig. 5.13b devolves
into a simple planner between the pedestrian’s starting and termination points since the
IOC cannot accrue enough information about the weights of the different features in the
scene on a single demonstration. This leads to a distribution passing through an obstacle,
where it clearly should not. On the other hand, Fig. 5.13a utilises inherent knowledge of
the environment based on sociological cues providing a distribution that cleanly avoids the
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(a) Forecasted Pedestrian trajectory with cost
map generated using the proposed method,
conforming to the “Look-Once” principle.

(b) Forecasted Pedestrian trajectory where the
cost map for the environment is generated
with only one demonstration with IOC which
fails in forecasting a humanlike distribution.

Fig. 5.13.: “Look-Once” comparison of pedestrian forecasting between the proposed method and
the IOC method.

obstacles while maintaining a “human-like” profile on the generated distribution thereby
demonstrating conformity of our proposed method to the “Look-Once” principle.

5.5 Conclusion

In this chapter we proposed a novel method to model the environment utilising the different
features in an observed scene wherein the sociological effects of each of these features fac-
tored into finding a quantifiable function affecting pedestrian motion in that self same scene.
We introduced these sociological concepts, especially the principles of Natural Vision and
Natural Movement which we used as a basis in understanding human behaviour. Further,
we expounded on the idea of a Point of Interest modifying pedestrian behaviour in built, ur-
ban environments. We validated our approach by qualitatively comparing the “human-like”
motion generation using the AF approach from Kitani et al. (2012) which exploits a cost
function learnt on human demonstrations. We perform this by replacing the demonstration
based cost map with our sociological based cost map and generating pedestrian distribu-
tions between two points in a static environment. Second, we validated that our approach
was able to conform to the “Look-Once” principle in Section 5.4 by showing the generation
of human-like pedestrian distributions where the AF approach failed.

In contrast to existing approaches that model the environment (Ziebart, Ratliff, et al.,
2009; Kitani et al., 2012) on demonstrated trajectories in time invariant environments, our
approach can encompass time varying environments which are frequently observed in ur-
ban environments. Another advantage of our approach over existing ones is the reduction of
complexity. Inverse Optimal Control methods have a complexity non-linear in the demon-
strations provided for learning (Ziebart, 2010) while the proposed approach has no such
dependencies but is linear in the number of observed features. The proposed model also
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differs from existing literature in the choice of destinations, where some such as Deo and
Trivedi (2017) cluster sources and destinations of demonstrated trajectories to designate
goals or consider all positions in the observed environment as possible goals (Kitani et al.,
2012), we assume, with sociological backing, that there are only a few viable destinations
in any observed scene.

Over the course of this chapter, we have spoken about structured environments and the
influences they have on pedestrian behaviour. Unstructured environments, it must be noted,
do not affect behaviour similarly. Thus, the proposed method fails to perform well within
bounds of such an environment. Another shortcoming of this approach is its reliance on
strong perception systems. One such is the requirement of needing a well identified feature
set for the scene. An unintended consequence of this is the need to identify Points of Inter-
est in this scene as well. Both of these related shortcomings can be resolved by using, for
example, a detailed map of the region the observer is present in. This map could contain ge-
ometric and semantic information in the vicinity of the autonomous vehicle. Consequently,
the problem reduces to one of localising itself using proprioceptive and exteroceptive sen-
sors, the solution to which is out of the scope of this thesis.

In the following chapter, we propose an extension to a graphical model that leverages this
cost map to predict pedestrian positions, even before any observations are made. Moreover,
the proposed framework utilises the presented cost map generation approach as the first
part of a pipeline that is meant increase the effectiveness of pedestrian prediction from an
autonomous car.
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Algorithm 5 Total potential
Input

Road Geometry LRoad
Feature List Ψ
POI Information List P
Environment Image X
Obstacle List O
Tracker output

Output
UTotal

1: procedure PotentialCostMap(Ψ, P, LRoad, X)
2: X← discretize(X)
3: for ψ ∈ Ψ do
4: if ψ ≡ Road or Edge then
5: Uψ ← Uψ + J(X, [Ψ = ψ]) ▷ Using Eqn. 5.4 and Eqn. 5.7
6: else if ψ ≡ Building then
7: Uψ ← Uψ + umax
8: end if
9: end for

10: Uψ ← normalise(Uψ)
11: for all p ∈ P do
12: UPOI ← UPOI + J(X, p) ▷ Using Eqn. 5.14
13: end for
14: UPOI ← normalise(UPOI)
15: for o ∈ O do
16: if type(o) = Static then
17: UStat ← UStat + umax ▷ umax = 1
18: else if type(o) = Dynamic then
19: v ← getVelocity(o)
20: obj ← extendObstacle(o, v)
21: UDyn ← UDyn + J(obj) ▷ Using Eqn. 5.11
22: end if
23: end for
24: UObs ← UStat + UDyn

25: UObs ← normalise(UObs)
26: UTotal ← Uψ + UPOI + UObs

27: UTotal ← normalise(UTotal)
28: end procedure
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Learning and Prediction of
Motion

6
„ The best way to predict the future is to create it.

— Dr. Forrest C.Shaklee

In chapter 5, we presented a method of modelling the observed environment using Gib-
son’s theory of Natural Vision (Gibson, 1979) and potential fields (Vasishta et al., 2017). In
sections 6.2 and 6.3, we present our proposal called the Semantically-Aware ITM (S-ITM)
that utilises the real environment to build and update a Prior Topology, following which
we discuss our modifications to the conventional GHMM model for learning the structure
and parameters based on pedestrian observations and Prior Knowledge. In section 6.4, we
discuss inference and prediction for pedestrians in static and dynamic environments. We
conclude the chapter with discussions on the presented model.

6.1 Partial Trajectory Utilisation
In Section 4.4, we discussed some of the shortcomings of the GHMM method. One of the
drawbacks mentioned in this discussion was the need for full trajectories so as to generate
the augmented observation ω (Eqn. 4.1). In scenarios where the full trajectories are un-
available, or is infeasible, such as the online observation and tracking of pedestrians from
a moving platform, this method is rendered potentially unusable. This unsuitability stems
from the fact that most real world tracking systems lose track of their objects, for example,
due to occlusions. Therefore, the terminating observation of such sequences are not the true
destinations. In fact, it could be possible that the tracked object is lost momentarily and re-
tracked but as a separate object whose trajectory could then terminate at the true destination.
Another shortcoming as put forth in the same section is the way in which the topological
map is learnt. To reiterate, the nodes n ∈ U are all associated with Gaussians whose mean
µ is changing but the co-variance matrix Σ remains the same. Such an assumption implies
that the directionality of pedestrian motion is irrelevant in the process of estimating a pedes-
trian’s future position. This has been proven to be untrue as in the cases of Turner and Penn
(2002).
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A simple solution is to utilise partial trajectories instead of full trajectories for the learning
of the topologies and the parameters of the GHMM. In this case, the problem then devolves
to one of identifying pedestrian goals, i.e., to populate the set Φ. Once this set has been
populated, these goals1 can then be used to generate augmented observation (restated here
for convenience):

ω = (Okt , ϕ), {∀ϕ|ϕ ∈ Φ} (6.1)

In Eqn. 6.1, Okt denotes the tth observation in the kth sequence. In turn, they are used to
initiate the state S (Eqn. 4.3) where n is a node on the topological map.

This is achieved by quantifying the intuition that over a sustained period of time in a given
environment, pedestrians tend to appear or disappear in specific regions. Another cue in
recognising transitory destinations is to observe the time spent by people in different regions
of this environment (Luber et al., 2011). Ostensibly, certain areas of the environment are
more conducive as destinations for pedestrians. For example, reconsider the environment
described in Fig. 4.2. Transforming this environment into a corridor and imagining a desk
in place of an obstacle, it is not inconceivable that some pedestrians stop for a while at this
desk before continuing to their destinations which could be any of the three visible exits.
Continuing this example, if we were to imagine a vending machine in any corner of the
corridor, it is once again possible to think that some pedestrians stop there momentarily
longer than in other areas. Such behaviour can also be seen in other closed environment
studies such as Z. Wang, Ambrus, et al. (2014). The lessons learnt from these studies can
be generalised to apply to an outdoor pedestrian environment. Instead of, say, a vending
machine, a pedestrian in an outdoor environment could just wait longer at a traffic light to
cross the street. Areas from where they might appear or disappear, for a tracker, could then
be entrances and exits of commercial establishments or houses.

One such method to automatically discover pedestrian goals based on their waiting times
was proposed by Pérez-Hurtado et al. (2015). Their work extends the GHMM method
presented in Chapter 4 in the following ways:

• Automatic discovery of goals based on observed pedestrian trajectories

• Modification of the GHMM method to utilise partial trajectories

• Extension of the learning phase to also learn a better sensor model P (Ot | St)

As a note on the nomenclature, we define partial trajectories here as those trajectories
whose origin and destinations are not known a priori. Instead, such trajectories are con-
sidered a part of a longer full trajectory with a well defined start and end points. For all

1As previously, we use the term goals and destinations interchangably. Goals and by extension, destinations,
are those regions in the observable environment where pedestrians can either begin or terminate their tra-
jectory.
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partial trajectories, the point at which they are identified by a local tracker i.e., assigned
a tracking number k is considered their origin, regardless of the fact that the associated
pedestrian could have been assigned another tracking number before being occluded or lost
to the tracker. Their destinations, as a part of the termination of the partial trajectory, is
considered irrelevant. As previously, these partial trajectories are mathematically treated
the same as a full trajectory with their sequence denoted byOk1:T - the kth partial trajectory.

Automatic Discovery of Goals The discovery of goals is a result of a modification in the
ITM method used in the original GHMM method. When an observation ω, ω ∈ Ok1:T , it
modifies the topological space E differently. Each node n is associated with a Gaussian
G(n;µ,Σ) as previously but also with tuple of counters ⟨nn, nin, nout, ns⟩ each of them
keeping count on the number of people traversing the node, people entering, exiting and the
mean time people spend at this node n. With this information, an estimation can be made
on whether a node is an entry/exit point with the simple assumption that given a threshold
value, if over time, there are many pedestrians appearing or disappearing there, it is possible
to designate those nodes as destination points, thereby populating Ψ. A second category
of goals which we previously discussed is found in areas where pedestrians wait longer
than usual. This information can be obtained using the counter ns wherein if the counter,
over time, is longer than a threshold value, the corresponding node can be designated a
destination too.

Partial Trajectory Utilisation An important contribution of Pérez-Hurtado et al. (2015) is
the modification of the GHMM method to utilise partial trajectories for learning the param-
eters of the underlying HMM model λ. This is achieved by altering the partial trajectory so
as to be equivalent to a full trajectory, thereby freeing up the space for the utilisation of in-
cremental algorithms to estimate the parameters like the Incremental Baum Welch method.
This alteration involves, first, the discovery of possible goals in the environment. Secondly,
it does away with the need for an augmented observation ω, instead relying on the instan-
taneous observation Ot. The intentionality of pedestrian movement is dissociated from
the observation and instead, becomes a function of the topology and the graphical model.
Once the goals are discovered, consequent steps follow the updating of the structure as set
out in subsection 4.2.2. This procedure is run on every observation of every partial tra-
jectory since, on every run of the ITM, there can be new nodes generated or removed and
subsequently, a modification of the edges too - either by addition, subtraction or reorder-
ing. Regardless, this modification allows the partial trajectory to update the structure of the
GHMM.

Sensor Model Update The final contribution of Pérez-Hurtado et al. (2015) is the Sensor
Model Update. As mentioned in the previous paragraph, the intentionality of pedestrian
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motion relies now not on the observation itself but on the different spaces defining the
GHMM, specifically the topological space E and the Model State Space S. In dissociat-
ing the intentionality, a simple assumption is made - pedestrian motion generally points
in the direction of a destination. Such an information, which can be inferred from the ob-
servation Ot = (xt,vt), can be encoded within the topological map itself. All nodes in
the topological map are associated with their own Gaussian G(n), defined by its mean µn
and its covariance Σn, a change from the classical implementation wherein the covariance
matrix Σ remained unchanging for all nodes of the topology. On every new observation
Ot = (x, y, vx, vy), if it is associated with the node n, then the parameters of the Gaussian
distribution associated with this node is updated with both the mean and covariance chang-
ing as the average and the standard deviation, respectively, of the incoming observation and
the existing parameters.

The Sensor Model, or the Observation Probability, for any state St is defined as P (Ot |

St). Our observation at time t is composed of the positional and velocity component (x,v)

while the state is composed as a tuple of the corresponding node n and a goal ϕ. Thus, the
observational probability can be written as:

P (Ot | St)
.
= P ((x, y, vx, vy) | (n, ϕ)) (6.2)

Using the probabilistic laws defined in Chapter 3, Eqn. 6.2 can be decomposed as follows.

P ((x, y, vx, vy) | (n, ϕ)) = P (vx, vy | x, y, n, ϕ)P (x, y | n, ϕ) (6.3)

The second component is the Gaussian distribution associated with the node n as de-
scribed previously. Thus, each treated observation aids in learning a better Observation
Probability model.

While there are many advantages to the described method, there are also some non-trivial
shortcomings.

Drawbacks

1. Automatic Goal Discovery is a lifetime learning process wherein goals are discovered
based on observations updating the parameters of nodes n ∈ U, (nn, nin, nout, ns).
Longer the number of observation sequences, greater the chances of representation
along all nodes and thus, the “discovery” of more goals and the removal of previously
discovered goals. As a consequence, states S = (n, ϕ) are frequently created and
destroyed, leading to a ballooning of complexity of the model.

2. The Improved Instantaneous Topological Update manages to delegate the intention-
ality of the pedestrian trajectory to the topological map and the state space. Yet, this
approach does not increase the semantic information available for better inference.
Directionality and lingering are considered as cues for points of interest in the envi-
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ronment. Such a straightforward correlation between the two becomes meaningless
with no contextual information. For example, pedestrians might linger at a bottleneck
in their path or a temporary obstacle might cause an occlusion leading to people “en-
tering” from an associated node. Such areas have no semantic bearing grounded in
the real environment and cannot be identified as a door or other points of interest.

3. Following the original implementation of the GHMM, this extension cannot infer
pedestrian positions where there have been no previous partial trajectories observed.

4. The improved ITM algorithm proposed in Pérez-Hurtado et al. (2015) cannot guar-
antee the convergence of the topological map.

While the extension proposed in Pérez-Hurtado et al. (2015) solves some of the issues
highlighted in the original GHMM implementation, as described above, it inherits much of
the problems discussed in Section 4.4.

Any method proposed to tackle these problems needs to meet the following Require-
ments:

1. Goals in an observed environment need to be fixed and unchanging.

2. A generative model of the topological map needs to a priori account for all the areas
of the observed environment

3. A generated topology needs to be contextually aware of the semantics of the environ-
ment that it is generated in, such as awareness of obstacles and their impermeability.

4. The underlying graphical model must be able to anticipate pedestrian behaviour and,
if inaccurate, converge to such a model as to minimise these errors.

6.2 Semantically Aware Topological Mapping
Topology Representing Networks were previously discussed in Section 4.2, where a form of
vector quantisation was used to map an incoming input to create creases in a manifold i.e.,
the observed environment, and thus “discover” the underlying topology of this environment.
A Topological Map G, discretizing the Space E, should not only map observations to this
Space but must also take into account the constraint set out in Requirement 3. Thus, the
function f(ω), mapping the Observation Space Ω toE needs to be redefined. This redefined
function h(ω) can then be thought of as a composition of f(·) and another function g(·),
representing the constraints.

This section describes one of the main contributions of the thesis - the Semantically-
Aware ITM (S-ITM) algorithm. Consider an encumbered environment with obstacles. In
such an environment, pedestrians, obviously, cannot pass through the obstacles and should
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find their way around them. Any algorithm proffering to solve the problem of representing
trajectories should be cognisant of the semantics of the observed environment and its affor-
dances2. One approach to ensure that these requirements are met is to generate a priori a
topology representing all possible pedestrian paths in the affordable area.

Since it is impossible to represent all possible pedestrian paths in any given environment,
we relax the requirements such that this a priori topology, which we call the Prior Topo-
logical Map (PTM), should:

1. Represent: typical trajectory prototypes,

2. Associate: trajectory prototypes with the semantics of the observed environment so
as to capture all possible entrances, exits and points of interest contained within,

3. Learn: new trajectory representations based on new observation sequences.

At this juncture, it becomes evident that the function h(ω) is a multivariate function
composition in f(·) defined as:

f |ω0=g
.
= f(g(∅), ω1, ω2, . . . , ωn) (6.4)

where ω0, ω1, ω2, . . . , ωn ∈ Ω and ω0 = ∅ is a special case of the observation space.
Eqn. 6.4 defines the function f as composed of the function g(∅) which generated a

Prior Topological Map that does not require any observation. The topology generated by
this function is acted upon sequentially by f(·) on the various observations ω ∈ Ω.

The proposed Semantically-Aware ITM (S-ITM) algorithm builds on this discussion and
can be divided into two phases, reflected in the organisation of this section. The first phase
is the “Constitution” phase, where the Prior Topological Map (PTM) is instantiated within
the observed environment with the corresponding parameters and associated attributes of
the nodes of the topology. The second phase, called the “Update” phase, corresponds to the
learning of the atypical behaviours in the environment which, as a consequence, updates
the topology.

6.2.1 The Prior Topological Map

Consequent to the “Constitution” phase of the S-ITM, a Prior Topological Map must be gen-
erated corresponding to the semantics of the environment. The sub-problem in the “Consti-
tution” phase becomes that of selecting valid nodes and connecting them via edges.

2In a pedestrian environment, the degree to which a pedestrian can walk in an area is the affordance (Gibson,
1977) of this area.
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Configuring the Prior Topological Map

In the search of a solution to the subproblem described previously, the following assump-
tions are made:

1. There exists a function J that maps the affordances of the different areas of the ob-
servable space (Ω) to quantifiable costs for the different features Ψ.

2. There are only a finite number of destinations in the observable space and that all
destinations are known.

3. Nodes cannot exist within regions encompassing semantic feature labels denoting
obstacles.

4. Nodes must be instantiated such that all affordable regions of the observable space
are reachable.

In the quest for g(∅), conforming to Requirement 1, all viable, identified destinations ϕ
are included in the set V such that:

V = {∀ϕ : ϕ ∈ Φ} (6.5)

with ϕ, in turn, being a vector in R
2.

In satisfying Requirement 2, a population of p observations are generated from the posi-
tional subspace in Ω. To decide which of these observations are valid to populate the set
W – containing nodes representing the affordable areas – we propose a two step process of
passing a trial and sampling this reduced set.

The first trial is used to determine whether the observation p is contained within an area
which is designated as an obstacle.

Given the cost function J such that UT = J(·), then the observation p can be a part of
the valid points set K such that,

K = {p | UT[p] < 1} (6.6)

Eqn. 6.6 results in a set containing valid observations from which the nodes of the topolog-
ical map are chosen. The population ofK is sampled using the Poisson sampling technique.
Each element in the population has a distinct probability in getting chosen depending on the
probabilities q1, q2, q3, . . . , qn for the n valid semantic labels of Ψ3. A second sampling is
performed within this reduced set to check for the insertion criterion based on τ , the inser-
tion distance. The nodes that pass this test compose W. Thus we can define the set of valid
prior nodes U as:

3This is a subset of Ψ since semantic labels like “car”, “obstacle”, “building” etc. are disregarded. For
simplicity, we continue referring to this subset as Ψ.
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U = V ∪W (6.7)

The Prior Topological Map itself is generated by the utilisation of the Delaunay Trian-
gulation. In Vector Quantisation, of the p observations that are valid, these observations
leading to nodes act as the centroids of the Voronoi Tessellation of the observed space. The
Delaunay edges, which are the dual of these Voronoi regions, connect pairs of adjacent re-
gions to each other (Fig. 6.1). If the edge passes through an obstacle, then such an edge is
discarded.

These pairwise connections between two nodes form the links L = {li,j : ∀i, j ∈ U, j ∈

ℵ(i)}4 of the Prior Topological Map. One condition to note is that the edges cannot pass
through obviously impossible areas, for example, through an obstacle i.e., where UT[p] = 1

The Prior Topological Map is the solution of the function g(∅) and is defined by a tuple
of the nodes and links, E = ⟨U,L⟩.

Fig. 6.1.: Voronoi regions of the observed space. The centroids of these regions are candidates for
nodes of the PTM. Centroids of the observed area that exist within forbidden areas in the
real world are automatically discarded.

A test on all elements of L are performed to ascertain that they do not pass through
impassable areas. The links that fail this test are removed.

Constituting the Gaussian Probabilities

Each node thus chosen to form the PTM are associated with a Gaussian distribution to
act as one of the constituents of the observation probabilities. Thus, around each node
of the PTM, a uniform Gaussian distribution is maintained. This Gaussian is centered on
the position of the node with the covariance uniformly placed over all dimensions with a

4
ℵ(n) is the Adjacency function of node n, returning a set of all centroids of the Voronoi regions adjacent to
to the Voronoi region defined by n
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value corresponding to the insertion distance τ . For the nth node located in 2D space, this
distribution is composed as in Eqn. 6.8:

G(n;µn,Σn) = G

(

n; (xn, yn),

[

σ2
xn = τ2 σxnσyn = 0

σxnσyn = 0 σ2
yn = τ2

])

(6.8)

In contrast to the original implementation of the GHMM method (Vasquez et al., 2009)
and following Pérez-Hurtado et al. (2015), the covariance of each of these Gaussians are
deformable with Σn itself being one of the parameters to be updated in the update phase.

6.2.2 Updating the Topology

The Prior Topological Map is, primarily, a Self Organising Map (also called a Kohonen
Network)(Kohonen, 1982). With regard to the relaxed requirements, only the representation
and association of typical trajectories is insufficient. The model must also learn to represent
trajectories that have not been captured with the prior topological map. Therefore, the model
needs to be updated on new observations as they arrive.

It may be observed that the number of nodes of the PTM depend on the size of the obser-
vation space. Larger this space, higher the number of nodes selected fromK, thus rendering
an update process according to the original process unwieldy. Instead, we update the topol-
ogy using Semantically-Aware ITM (S-ITM) where the update process is not only aware of
the size of the topological map but also the underlying physical context of the environment.

Consider a part of the topological map, itself derived from the Voronoi tessellation of
before, as shown in Fig. 6.2a. A part of an obstacle (hatched area) juts out into the environ-
ment where the PTM should exist. Also consider that there are observations sensed around
this obstacle in a manner as to satisfy the insertion criteria. Within the confines of the exist-
ing implementation of the ITM (Vasquez et al., 2009; Pérez-Hurtado et al., 2015), an edge
is created in the topological map signifying a transition between these two regions of the
environment (denoted by the red dashed line in the figure) . On the contrary, the proposed
S-ITM is aware of the existence of this obstacle and its inherent properties i.e, that these
regions are impassable from each other. Thus, the creation of this pseudo-transition on the
topological map does not occur.

Fig. 6.2b and Fig. 6.2c illustrate the updating of the topological map via the S-ITM. An
observation ω is perceived in the vicinity of, yet non-associable with, existing nodes i.e, it
satisfies the insertion criteria. At this juncture, the S-ITM adds a node at this observation
and associates it with this new node and the corresponding edges are added. This new node
can then be associated with incoming observations that are perceived in its vicinity.

This topology can subsequently, under appropriate observations, can create an edge as
depicted in Fig. 6.2c between this newly created node and the node on the other side of
the obstacle. Such a path between the two regions separated by the obstacle is superior to
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(a) The hatched part of the image signifies the ex-
istence of an obstacle. The centroid of the
Voronoi region depicted in red is discarded
since in the real environment, there cannot ex-
ist a node within an obstacle. Other centroids
that conform to the insertion criterion are cho-
sen as nodes and connected via Delaunay tri-
angulations to create a topological map. Sim-
ilarly, the edge that would’ve passed through
the obstacle is removed since there cannot be
a link between the two regions through the ob-
stacle.

(b) An observation is senses which lies outside
the areas associated with existing nodes, de-
picted by the dashed green circle depicting
the insertion criteria. A node can now be cre-
ated at this position.

(c) A new node is created and links join the areas
on either side of the obstacle via the newly cre-
ated node leading to a more human-like mo-
tion pattern.

Fig. 6.2.: Topological Map update using the Semantically-Aware ITM algorithm

the edge originally discarded in Fig. 6.2a since it conforms to a more natural, human-like
trajectory.

A significant implementation bottleneck in this process is related to the size of the topo-
logical map itself. As the size of U increases, the complexity of node matching (algo. 4)
between the incoming observation and the topological map to find the two closest nodes
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to it increases linearly with the number of nodes. In large spaces, this becomes unviable
rapidly. Instead, by initialising the nodes of the PTM in a K-d tree, the observation can
be compared against this tree thereby reducing the matching complexity to an average of
O(logN).

Updating the Gaussian

This step of the S-ITM process corresponds to the Gaussian Adaptation phase of algorithm
4. Simultaneously, during the update of the topology, there is also an adaptation phase
of the Gaussian around the node. This could take one of two forms - in the first form,
if the node has been newly created, then a Gaussian is initiated around this node. The
second form corresponds to that action where there is an already existing node which can
accommodate the incoming observation. If this condition evaluates to true, the Gaussian
around this node is adapted to better explain this new information. This adaptation, in
essence, is the averaging of the means of the Gaussians with incoming observations and
subsequently updating the standard deviation of the pre-existing Gaussians (Pérez-Hurtado
et al., 2015).

6.3 Learning with Prior Knowledge
With the Prior Topological Map defining typical trajectories in an environment and the
consequent topological update allowing for the deformation of this topology to represent
new trajectories, it becomes imperative to initialise the underlying structure of the HMM as
well as to learn pedestrian behaviour at its different states. In conforming to Requirement
4, not only must the underlying graphical model be able to anticipate pedestrian behaviour a
priori, it must also learn diverging behaviour based on new observations. In this section, we
describe the use of Prior Knowledge, i.e., using data about the environment to initialise and
update the graphical model. As a result, this prior knowledge is dependent on the function
J and the resulting UT = J(·).

6.3.1 Moving from Topologies to Graphical Models

The topologies generated in Section 6.2 need to be converted into graphical models to per-
form Bayesian Inference. Once more, in the previous section, we had assumed that all the
destinations in the observed scene are known. Contrary to the process presented in Vasquez
et al. (2009), which designates destinations based on the final observation in the trajectory
or as in Pérez-Hurtado et al. (2015) where the destinations in the scene are learnt, these ar-
eas in the proposed approach are unchanging. Such an assumption allows for some leeway
in reducing the complexity of the graphical model which is to be created.
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Similar to the S-ITM method, the structure learning can be divided once more into two
phases. At the end of the “Constitution” phase of the S-ITM, the following steps are exe-
cuted to learn the structure of the underlying graphical model corresponding to the topolog-
ical map E:

1. Gather all possible goals ϕ ∈ Φ

2. for all nodes n ∈ U, create all possible states (n, ϕ)

3. For each such created state, assign an appropriate prior value derived from UT

4. For every link in L with nodes ni and nj , create a transition between all the corre-
sponding states for each goal.

5. Initialise each transition with appropriate transition values.

On every update of the S-ITM, with the arrival of a new E:

1. For every removed node in the new E, remove all the corresponding states from the
graphical model and remove transitions to and from these states.

2. For every added node, create new states as previously with the same procedure for
assigning priors and transitions

The assigning of the appropriate values for priors and transitions are described next. The
values of the priors and transitions will be normalised at the end of this step.

6.3.2 Initial Probabilistic Model
The JPD of the underlying HMM created with the Prior Topological Map follows that of
the GHMM as presented in subsection 4.3.1. For convenience, we restate it here.

P (St−1 St Ot) = P (St−1)
︸ ︷︷ ︸

state prior

P (St | St−1)
︸ ︷︷ ︸

transition

probability

P (Ot | St)
︸ ︷︷ ︸

observation

probability

(6.9)

These three different components of the JPD are initialised differently as follows.

• State Prior Count: The state prior count π initiates the model λ. In a traditional
model applied to our problem, this parameter is instantiated with a normalised count
of pedestrians passing through the state. Since, in the GHMM, such a state is hidden,
this count cannot be performed. On the other hand, given that the function J maps
the affordances to real values, an analogue to this count can be obtained. Noting that
the state St is composed of a node n ∈ U (exp. 6.7) whose position in Ω is two
dimensional and with the definition that the affordance of an area says how likely it
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is for a pedestrian to pass through it, we can define the state prior count for the ith

state, which is then normalised, as follows.

πi
0 = 1−UT[n] (6.10)

• Transition Probability: The transition probability between two states i and j, repre-
sented as aij = P ([St = i] | [St−1 = j]) in terms of our problem, is the probability
of a pedestrian transitioning from one state to another over time. Transitions based
on affordances5 can happen in three forms -

1. Transitions from a higher affordance to a lower affordance - For example, a
pedestrian moving from an easily traversable area like a sidewalk to a more
complicated area like the road.

2. Transitions from a lower affordance to a higher affordance. Continuing with the
same example, the pedestrian moving towards the sidewalk from the road.

3. Transitions towards the same affordances as a pedestrian continuing to walk
along the sidewalk.

Studies (Brosseau et al., 2013; Thompson et al., 2013) have shown that pedestrians
tend to move from areas of lower affordances to higher affordances or prefer to remain
in areas of high affordances as compared to the contrary, so as to remain safe. We
model the transition probability on this behaviour and make certain assumptions -

– Transitions between areas of lower affordances to higher ones are to be re-
warded.

– Transitions between similar areas of affordances are neither rewarded nor dis-
couraged.

– Transitions from areas of higher affordance to lower ones are discouraged.

– Self transitions are discouraged.

Given two states i and j, and corresponding nodes on the topological map ni, nj , the
transition P ([St = i] | [St − 1 = j]) = aij is expressed as:

aij =







a1 if UT[nj ]−UT[ni] > 0 ∧ |UT[nj ]−UT[ni]| > ϵ

a2 if |UT[nj ]−UT[ni]| ≤ ϵ

a3 if UT[nj ]−UT[ni] < 0 ∧ |UT[nj ]−UT[ni]| > ϵ

a4 if UT[nj ]−UT[ni] = 0

(6.11)

5A high affordance implies easier access and thus lower cost while a low affordance implies more difficult
access and a higher cost.
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where a1, a2, a3, a4 ∈ (0, 1] and ϵ is a small value. Due to the Delaunay Triangula-
tion, in the Prior Topological Map, each node has at most three emanating edges. As
a result, since the probabilities of all emanating edges from a state should sum to 1,
Eqn. 6.11 needs to be normalised in the next step.

• Observation Probability: We follow the observational probability of a state as in
(Pérez-Hurtado et al., 2015) and explained in Eqn. 6.3. Each state is associated with
a separate Observation Probability represented as a Gaussian around it, centered on
the position of its node. There is also a goal component associated with each state
that contributes towards the observation probability. We follow here the representa-
tion proposed in Pérez-Hurtado et al. (2015) where it is assumed that pedestrians are
moving in the direction of their intended goal, thus their velocity vector must point
in the direction of the goal associated with the state. This probability is captured as a
bivariate Gaussian G(ϕ;µϕ,Σϕ). The values of µϕ and Σϕ can be estimated based
on the distance from the observation to the goal associated with the state.

6.3.3 Learning the Parameters

Learning the parameters, contrary to learning the topology and the structure of the graphical
model which occurs at every observation, only happens at the end of the observation of the
partial trajectory. Since the underlying graphical model of the GHMM is an HMM, an EM
algorithm, in this case the Incremental Baum-Welch Method (IBW) method is used. The
sensor model for the learning process is derived from Pérez-Hurtado et al. (2015).

6.4 Inference using Prior Knowledge

The aim of using Prior Knowledge in the form of a Prior Topological Map and associating
the disparate links with transitions and priors derived from an observed environment, is to
be able to infer pedestrian behaviour without the need for demonstrative trajectories. The
generative model for the topology and, consequently, the underlying HMM of the GHMM
should be able to describe an exemplar motion trajectory. With this in mind, given the inputs
to this model are independent observations, taken with a camera or a LiDAR or any other
observer, we expect an output to be probabilistic values over the states which can then be
mapped into the subspace of the observation space Ω 7→ R

2.

We predict motion the same way as described in the subsection 4.3.3. In essence, we
perform prediction in three ways for an input sequence O1:t describing a partial trajectory.
They are:
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1. State Estimation A belief is maintained around every state of the GHMM. On ob-
serving a partial trajectory, this belief of the state is used to estimate the position of
the pedestrian as in Eqn. 6.12

P (St | O1:t) =
1

η
P (Ot|St)

∑

St−1

P (St | St−1)P (St−1 | O1:t−1) (6.12)

where η is a normalising constant, with the observation probability used being de-
scribed in subsection 6.3.2.

2. Goal Prediction Over the course of a partial trajectory, it could be important to es-
timate the goal of the pedestrian under observation. Given the assumption made
earlier (subsection 6.2.1) all the goals in the environment are known at observation
time and thus, a belief over the goals for each timestep of the partial trajectory can
be maintained. Since the state is composed of the node position and an associated
goal, Eqn. 6.12 can be marginalised over all the nodes at each timestep to arrive at a
probabilistic prediction as expressed in Eqn. 6.13.

P (pt | O1:t) =
1

η

∑

n

P (St = (n, ϕ) | O1:t) (6.13)

Similarly, the node can also be found by marginalising over the available goals as in
Eqn. 6.14

P (nt | O1:t) =
1

η

∑

ϕ

P (St = (n, ϕ) | O1:t) (6.14)

with η remaining the normalising value for both expressions.

3. State Prediction At every time instant of the partial trajectory, the purpose of state
prediction is to find the reachable state at which the pedestrian can be found in, H
timesteps in the future. This can be considered a propagation of Eqn. 6.12 over the
states for a given horizon and can be expressed as in Eqn. 6.15.

P (St+H |O1:t) =
∑

St+H−1

P (St+H | St+H−1)P (St+H−1 | O1:t) (6.15)

Consequently, predicting the most probable node afterH timesteps can be performed
by following Eqn. 6.14, for the state St+H .

To note, Eqn. 6.15 results in a probability distribution over discrete states. Instead, to
compute the most probable observation in the observation space Ω at t+H timesteps,
the state prediction can be used as:
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P (Ot+H |O1:t) =
∑

St+H

P (St+H | O1:t)P (Ot+H | St+H) (6.16)

6.4.1 Inference in Dynamic Environments

In this subsection, we present a further contribution of this thesis, of extending the GHMM
method for prediction in dynamic environments. The motion of the pedestrian under consid-
eration is modified based on the motion of other moving objects in the scene. This implies
that at specific time instances some states in the graphical model are rendered unreachable
due to the presence of obstacles at that state’s position in the real environment. As a con-
sequence, a concept of occupancy of the states can be introduced. This translates into the
introduction of another variable Occ in the JPD as follows:

P (StSt−1OtOcc) = P (St−1Occ)P (St | St−1Occ)P (Ot | StOcc) (6.17)

The occupancy variable, Occ ∈ [0, 1], defines the behaviour of the graphical model,
where Occ = 1 implies an occupied state and vice versa.

P (St−1Occ) =







0 if Occ = 1

P (St−1) otherwise
(6.18)

Similarly for transitions,

P (StSt−1Occ) =







0 if Occ = 1

P (St | St−1) otherwise
(6.19)

Finally for the observation probability,

P (OtStOcc) =







0 if Occ = 1

P (Ot | St) otherwise
(6.20)

From equations 6.18, 6.19 and 6.20, it can be inferred that when the state is occupied, it
is equivalent to removing the state itself from the graphical model for that specific timestep.
Since in a GHMM, these states have no free existence and are associated with corresponding
nodes, the removal of states therefore implies the removal of these nodes on the topological
map. In other words, inference is performed on a graphical model whose topology is limited
by the existence of obstacles. This is exactly the function of the S-ITM whereby a topologi-
cal map is generated disregarding those areas occupied by obstacles in the real environment.
In essence, inference in a dynamic environment can be performed by the regeneration of
the PTM at every timestep over the lifetime of the trajectory being predicted.
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6.5 Discussion
In this chapter, we presented our extensions to the GHMM method to utilise Prior Knowl-
edge for learning and inferring pedestrian motion. The first of these extensions was the
Semantically-Aware ITM (S-ITM) algorithm which is aware of the properties of the seman-
tics present in the environment while generating and updating the topology. This Prior
Knowledge, once more, was used in the generation of the underlying graphical model and
to provide accurate priors for this model. Finally, we presented the last of our contributions
- the utilisation of the GHMM model for applications in dynamic environments.

The proposed method can be thought of as a mixture of the models proposed by Vasquez
et al. (2009) and Pérez-Hurtado et al. (2015). Like the original implementation of Vasquez
et al. (2009), each node in the topological map is associated with a uniform bivariate Gaus-
sian distribution that provides for the observation model of the HMM. Also like the model
of Pérez-Hurtado et al. (2015), in the proposed model, the Gaussian distributions are de-
formable under observations so as to be able to model pedestrian motion at a node more
accurately via the observation model. Significantly, it differs from both in the sense that
the proposed model, with its Prior Topological Map (PTM) acts in the same manner as a
fully developed model of Vasquez et al. (2009) in structure while utilising partial trajecto-
ries to learn the parameters of the model with a sensor model equal to the one proposed
in Pérez-Hurtado et al. (2015). This implies that the proposed method’s PTM can be used
to initialise a graphical model that can be used to infer pedestrian motion with no training
trajectories.

Some limitations of this method are foreseen. For one, this method relies heavily on the
accuracy of the generated cost map. A second limitation is the loss of learning during infer-
ence in dynamic environments. In this case of the proposed method, inference is performed
at each timestep with the regeneration the PTM with no allowance for updating the topol-
ogy. This could lead to the loss of valuable data or the missing of crucial trajectories in the
topology.

In the coming chapters, we present a unified framework using the contributions of this
and the previous chapter and testing the learning and prediction of pedestrian motion via
the proposed method under different conditions.
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Part III

Implementation and Experiments





Experimental Results -
Exoperception

7
In this chapter, we present the results of experiments on our framework from the perspec-
tive of a static camera placed in an area overlooking the observation space containing a
busy pedestrian crossing. Testing the framework in this configuration is important since it
allows for complete observation of the environment. This implies that the motion of objects
do not completely occlude one another, thereby presenting an opportunity to capture full
trajectories throughout the environment of pedestrians, cars, and other shares space users
and their interactions.

Here, we describe two classes of results - one in which we assume that there are no
dynamic obstacles that affect the motion of the target pedestrian and the second, where
dynamic obstacles are included in the inference and prediction process. For each of these
cases, we provide qualitative and quantitative results under different cases of study with the
purpose of establishing the accuracy and efficacy of the proposed framework under different
conditions.

We commence by detailing the proposed framework and the constituent modules within.
Next, we describe the dataset used for arriving at the results presented in this chapter. Using
this chapter, we conduct the two classes of experiments i.e., without and then with, moving
objects. We finish this chapter with a discussion on the results.

7.1 Prior Knowledge Framework

In Chapter 5 we discussed a method to generate a potential cost map based on the different
semantics observed in a scene within an urban area. Equally, in Chapter 6, we introduced
an extension to the Growing Hidden Markov Model (GHMM) method designed to use a
Prior Knowledge based cost map to predict pedestrian behaviour in an urban area. In this
chapter, we construct a framework comprising the two separate approaches presented in
the previous chapters to solve the problem of increasing the situational awareness of an
autonomous vehicle in an urban area.

Consider an urban area where the observing agentM observes the real space Ω. Consider
also the different semantics associated with regions within Ω such that Ψ ⊆ ΨU and ΨU =

{road, edge, crosswalk, sidewalk,OStatic, ODynamic, building, POI}.
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Given such a configuration of real space, pedestrians are observed moving within it by
the observer M, possessing its own characteristics. This observer can either be a sensor
mounted on an autonomous vehicle or placed on a building. We assume certain character-
istics for this observer M such that:

• it is completely known - i.e., the different parameters of the sensors are known in
advance.

• it is discreet - it does not affect the behaviour of the subjects being observed1.

• it can localise and identify the semantics of the region around itself.

• it can identify and track pedestrians and other dynamic obstacles.

• it can estimate the geometric dimensions of the regions associated with the different
semantic labels - for example, knowing the width of an urban road.

The knowledge by the observer as listed above is considered Prior Knowledge on which
the rest of the framework is based.

On the acquiring this Prior Knowledge, the framework should be able to answer the fol-
lowing questions:

• (I1) Knowing the semantic morphology of the observed space Ω, is it possible to
predict future positions of observed pedestrians along with their possible goals?

• (I2) On knowing the semantic morphology and previous observations, can typical and
atypical trajectories be explained and thus, future states of the observed pedestrians
predicted?

(I1) represents the problem of representation and prediction in an novel, previously un-
observed area while (I2) represents the traditional learn-and-predict problem for pedestrian
trajectories.

In Section 1.3, a general architecture of a framework that models the environment, learns
behaviour and predicts pedestrian motion was described. Here, we present an expanded
version of the same architecture within the specific context of predicting pedestrian motion
in built, urban areas.

Fig. 7.1 depicts the proposed framework and the interaction between the various compo-
nents within. The global input to the framework is predominantly the sensor data and data
received from a tracker, tracking all the objects within the observed scene. The red blocks
in the diagram represent the main contributions of this thesis. In the coming subsections,
we will describe each of these modules in detail.

1This becomes especially important on an autonomous vehicle since studies (Rothenbücher et al., 2016;
Ferrier-Barbut et al., 2018) have shown that the behaviour of pedestrians around self-driving cars is heavily
impacted.
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Fig. 7.1.: Architecture of the proposed framework with its constituent modules marked out in red,
dashed lines. The blocks in red depict the innovations presented in this thesis.
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7.1.1 Environmental Modelling
Building the cost map is the responsibility of the Environmental Modelling module
in the proposed architecture. First, various proprioceptive sensors pick up data about the
world. This data is then parsed through the “Perception Layer” seen in Fig. 7.1. Here, in
this layer, the raw sensory input is converted into information that can be utilised for the
successive modules of the framework. Within the “Perception Layer”, incoming data is
parsed through a system to identify the different features of the observed environment. Sec-
ondly, geometric information about the environment (e.g., width of the road, edge thickness,
etc.) is estimated for the identified features. Next, in localising the observer and passing
this information through a map, relevant POIs are identified in the environment. Finally,
information regarding the dynamic obstacles in the environment are received through an
external component in the form of a tracker using the raw data input from the world.

This information, once acquired, can then be parsed through the “Potential Cost Gen-
eration” module to generate a cost map of the environment via algorithm 5 presented in
Chapter 5.

Thus, as a summary, the Environmental Modelling module performs the following
functions -

• Identification and localisation of the different POIs in the environment and their rel-
ative importances.

• Classification of the observed scene into the different semantic features Ψ,

• Use of the geometric data of the scene to get a measure of the width of the street,
length of the sidewalk, etc.

• Tracking pedestrians within this scene.

• Generating the Potential Cost Map.

From a practical perspective, the different Ψ changes depending on the context. For
example, the Ψ for an urban street is different from that of a parking lot as is the relative
importance of the POIs in the scene (refer Eqn. 5.14).

In the following section describing the use of different datasets to validate our framework,
we detail the methods used to estimate and identify the contexts itemised above. One remark
to be noted here is the absence of a direct connection between observed trajectories and the
generated cost map. It can be observed that observed trajectories of dynamic obstacles
(pedestrians, cars) are only utilised for information about their motion and not directly as
input to the module to learn weights as in some of the previously presented literature.

Another note to be made at this junction is the importance of the “Perception Layer”
in the presented module. Good identification and tracking algorithms play a crucial role
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generating accurate cost maps in our framework, the absence of which will lead to bad
predictions from the associated modules.

7.1.2 Behaviour Learning

The second module in the pipeline of the proposed framework is the Behaviour Learning
module. This module performs two tasks -

1. Capture pedestrian trajectories in novel and previously unseen areas

2. Learn new trajectory prototypes based on witnessed trajectories.

We perform these tasks by utilising the generated cost map from the Environment Mod-
elling module and observational data from the tracker. Primarily, we generate the “Prior
Topological Map” in the module of the same name by following the procedure set out in
subsection 6.2.1 on the potential cost map from the previous stage. This topology is then
fed to the “GHMM layer” to instantiate the graphical model with appropriate values derived
from the cost map and the nodes and edges of the prior topological map. Consecutively, this
graphical model becomes sufficient to perform task 1.

Task 2 necessitates the inclusion of pedestrian observations provided by the tracker in the
form of Augmented Observations. These observations modify the Prior Topological map
represented by E in accordance with the S-ITM algorithm. Consecutive observations in
the form of partial trajectories from the tracker further update the topology, structure and
the parameters of the underlying HMM following the material presented in Section 6.3. In
learning the topology and parameters derived from new trajectories, the graphical model is
adaptable to capturing non-typical trajectories better.

The output of this module is time dependent which is a tuple Xt = ⟨E, λ⟩ of the topo-
logical map E and the Hidden Markov Model λ, each with their constituent parameters that
have been learnt using the partial trajectories.

7.1.3 Prediction

The Prediction module, as evident, deals with task of pedestrian prediction utilising the
GHMM model generated from the previous component. This prediction is a naive Bayesian
inference for a time horizonH with the beliefs maintained over the GHMM graphical model.
Prediction, in our chosen context, can be performed under two scenarios - by including or
excluding the dynamic objects in the observed scene. In the former, these dynamic objects
play an integral part in the prediction process.

In the first scenario, a graphical model from the previous component, built with only
static objects, performs inference at time t on receiving a trajectory (partial or full) from
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the tracker utilising the tuple Xt for predicting pedestrian behaviour. Since the framework
is a lifetime learning-predict system, prediction is performed on the latest iteration of X.

The second scenario is dependent on information about the different dynamic objects
in the scene. This information first needs to be captured by the perception layer and then
tracked by the tracker. Information on, for example, the velocities of these objects need
to be passed to the potential cost map module to generate the corresponding cost map at
that instant of the environment. A prior topological map on this cost map is generated next
and it is this topology that instantiates the underlying HMM in the GHMM layer within the
architecture. On this iteration of X, inference for the trajectory being tracked is performed.
On the arrival of a new cost map due to the changing nature of the environment, a new
time-dependent X is generated and utilised for prediction with the old one being discarded.

7.2 Dataset Description
The results presented later in this chapter have been conducted on the dataset presented
below. A large problem facing current research, one that we experienced during the course
of this work, is the dearth of comprehensive pedestrian datasets in urban areas (Ridel et
al., 2018). A main criticism in using a dataset such as the Daimler Pedestrian Dataset
(Schneider and Dariu M. Gavrila, 2013) is that the pedestrian behaviour is not natural i.e.,
actors perform certain predefined pedestrian tasks. For this reason, we annotated existing
videos of pedestrians ( subsection 7.2.1) and collected data on pedestrian behaviour using
the experimental platform in specific environments such as a parking lot.

In the previous section, we discussed the importance of the “Perception Layer” within
the framework. Thus, for each of the datasets detailed below, we present the methods used
to:

• Identify the configuration of the observed environment

• Estimate the geometry of the environment

• Identify the obstacles – static and dynamic

• Extract pedestrian and other shared space user trajectories.

7.2.1 Traffic Anomaly Dataset
The Traffic Anomaly Dataset is a video which we annotated with the original video taken
from Varadarajan and Odobez (2009). This video is captured from a camera featuring
(Fig. 7.2) a busy urban street containing a crosswalk, a sidewalk, the street, a Point of In-
terest in the form of a restaurant and an unseen Point of Interest directly below the camera
in the form of a commercial center. Specifically, from a semantic viewpoint, the scene
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has a clear demarcation between the sidewalk and the road with visible edges to the street.
Secondly, it has a traffic light regulating the pedestrian crossing as well as driving cars and
other shared space users, making it a well structured environment.

This configuration of the environment is extremely interesting since this is a typical
shared space urban environment. In the video pedestrians are observed to behave naturally
in such an environment, with many waiting at the red light to cross while others decide
to cross illegally. Many more decide to traverse the length of the scene. Others enter the
restaurant present in the scene.

Four points of interest can be identified in the scene using the GPS coordinates of the
observing camera. Three of them are the edges of the scene where pedestrians appear and
disappear from and the last being the restaurant in the view. These POIs are depicted in
Fig. 7.2 as red, numbered dots.

Fig. 7.2.: Still from the Traffic Anomaly Video (Varadarajan and Odobez, 2009). The environment
contains a crosswalk, a visible sidewalk, edges and road. It also contains four Points of
Interest that have been numbered in the image.

From this environment, we have extracted real data trajectories as explained in the rest
of this section.

Extraction of trajectories

To extract trajectories from this video, we first attempted automatic tracking of dynamic ob-
jects in the scene using the YOLOv2 (Redmon and Farhadi, 2016) and DeepSORT (Wojke
et al., 2017) pipeline on the video. The YOLOv2 architecture processes raw frames as input
and produces bounding boxes for “pedestrian”, “cycle”, “car” and “truck” classes. These
identified objects are then passed to the DeepSORT architecture to track them over time.
The issues we faced here were twofold - a) there was a proliferation of dynamic obstacles
within the video and b) the resolution of the video was small - leading to the problem of
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Data Association. The tracker was unable to reliably maintain a tracking ID on many pedes-
trians over the course of their trajectories, especially when there were multiple objects in
the scene. To solve this association issue, we used the VATIC tool (Vondrick et al., 2012)
to manually annotate and correct trajectories so as to arrive at reliable full trajectories for
every “pedestrian” class in the video.

Post processing involved the extraction of the position of the feet from the tracked pedes-
trians. Velocities over the course of the trajectory were obtained by running them through
a Kalman filter.

All pedestrian trajectories extracted from the video are presented in Fig. 7.3. In compari-
son to the physical topology presented in Fig. 7.2, the behaviour of pedestrians in this scene
can be clearly witnessed. Fig. 7.3 clearly shows the preference of pedestrians to complete
their trajectory in safe ( also: typical, “legal”) paths. Conversely, there are other non-typical
(“illegal”) trajectories present in the dataset wherein the pedestrian wishes to cross to the
other side over the unmarked part of the road, which is inherently unsafe.

Fig. 7.3.: Tracks of all pedestrian trajectories captured from an overhead, stationary camera at in
an urban area for the Traffic Anomaly Dataset. The tracked pedestrians exhibit typical
and non-typical behaviour at this traffic junction.

Semantics and Geometry

While the dynamic objects in the scene are easily identified using YOLOv2, the other ele-
ments of the scene needed labelling. On one hand, automatic labelling of these features can
also be performed using methods proposed in (Munoz et al., 2010), or use neural network
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based methods like (Badrinarayanan et al., 2015). On the other hand, these networks rarely
perform well when the image to be inferred are not similar to the data they are trained on.
Thus, off-the-shelf solutions may not be reliable. To avoid this problem of mislabelling,
we manually labelled the different features of the scene (i.e., the road, sidewalk, crosswalk,
edge and building). To find the geometric parameters of the scene, we estimated the camera
parameters and utilising this, we found the homography of the image. The width of the
road was estimated using the GPS coordinates of the observing camera and the Swiss road
dimension standards.

7.3 Experimental Results - Exclusion of Moving Objects
This section deals with the first of the classes of experiments, wherein the moving obstacles
within the scene are disregarded in favour of a static scene to gauge the accuracy of the
proposed framework in comparison to the state of the art method found in literature in the
field of GHMMs. This state of the art method, proposed in Pérez-Hurtado et al. (2015)2,
has already been treated in Chapter 6. Since that method disregards dynamic objects in
the inference process, the experiments conducted here also follow the same principle, for
fair comparison. This comparison is performed along two separate dimensions - the first
dimension of comparison is across different epochs of training for the competing models.
The second dimension of comparison is across pedestrian behaviour in a structured envi-
ronment, namely that of legal and illegal crossings. Thus, all the results presented within
this chapter will be compared against these two dimensions with analyses on the obtained
results.

The method used for the experiments follows the pipeline presented in the Prior Knowl-
edge Framework (Section 7.1) and is as below:

1. The potential cost map for the static scene will be generated as proposed in Chapter 5
and 5 for the scene depicted in Fig. 7.2

2. For this scene, utilising the potential cost map, the prior topological map is generated.

3. This topological map is then converted into the underlying graphical model via the
GHMM method, resulting in the nodes and edges of the topological map generating
their corresponding states and transitions.

4. Partial trajectories, derived from the training set of the dataset presented in subsec-
tion 7.2.1 are used to update the topological map so as to learn atypical trajectories
and pedestrian behaviours in this environment. These updates to the topological map
also correspondingly update the underlying graphical model’s structure.

2From hereon in called “competing method”
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5. The partial trajectories that update the topology are used to learn the parameters of
the GHMM.

6. At different epochs, testing trajectories - divided into “legal” and “illegal” trajectory
sets are used to predict pedestrian positions at a specified horizon.

7. These predictions are then compared against the ground truth of the testing trajecto-
ries availed from the dataset.

On the contrary, the model compared against does not privilege the use of the prior topo-
logical map and its corresponding changes. Thus, instead, for comparison, the training of
this model including the topological map updates are performed sequentially as presented
in steps 4 – 7. Significantly, the input of the partial trajectories to both models happen si-
multaneously such that they are both trained on the same observations. We then present the
qualitative and quantitative results for this class of experiments.

Implementation details

For the dataset in this specific scene, different parameters were obtained via various means.
These can be separately classified as the Potential Cost Map parameters and the GHMM
parameters. The first set of parameters that were necessary but not directly utilised in the
implementation of the framework, were the camera parameters. Since we only annotated
the original video and not capture it, we were unable to find the camera parameters of
the capturing device. To do this, we chose different points at regular patterns (such as
the edges of crosswalk hatches whose lengths and widths are standardised) and assumed
average heights for pedestrians. Using these points, we were able to approximately estimate
the intrinsic and extrinsic parameters of the camera. These values were used to generate a
topological grid that conformed to the contours of the observed environment instead of a
flat, 2D structure of the image.

The width of the road, LRoad was found to be 9m, the edge parameter η is arbitrarily set
to a value higher than the road parameter. All the destinations in the scene are assumed to
have equal attractiveness for pedestrians. The insertion distance τ for the topological map
is set to a value of 1.5 meters. On the other hand, for training the competing model, while
τ remained the same, the default prior value π0 and the default transition value a0 on the
creation of states and transitions are arbitrarily chosen to be 0.5 and 0.5 respectively.

Using these parameters, the potential cost map and the prior topological map are gener-
ated and can be observed in Fig. 7.4. These values and the graphical model obtained via
these two depicted images will be used to obtain the rest of the results presented over the
rest of this chapter.
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(a) Figure showing the generated potential cost
map based on a labelled image of the dataset.
This potential cost map only depicts the
static environment and does not take into ac-
count any motion. As a gradient from green
to red, greener areas are those with lower af-
fordances while red regions signify high af-
fordances. Dark red regions in the scene cor-
respond to obstacles, in this case the building
seen in Fig. 7.2.

(b) The Prior Topological Map generated based
on the potential cost map depicted adja-
cently. The nodes and the edges depict reach-
able areas in the observed environment.

Fig. 7.4.: Potential Cost Map and Prior Topological Map for the observed environment in the Traf-
fic Anomaly annotations dataset.

7.3.1 Qualitative Results

The ultimate purpose of the proposed Prior Knowledge Framework is for the observing
agent, be it a static observer with a bird’s eye view of the environment or a moving platform,
to be able to predict pedestrian trajectories under different conditions of observation or
behaviours in novel environments. Consequently, the quality of this prediction becomes
tantamount to the model’s ability to accommodate all behaviours in different conditions.

The criterion for this qualitative evaluation, in our context, is to “cover” more of the
observed area. Considering that the nodes and edges of the topological map can be directly
translated as paths that a pedestrian can take to move from one region of the environment
to another3, and that for the model to predict an atypical trajectory with each observation
of this trajectory considered accommodated if it can be associated with an already existing
node, it is logical to accept that having more areas of the observed space discretised by these
nodes (and connected via edges) can accommodate these trajectories better. More formally,
for every observation of the trajectory under inference, if there exists a node n within the
insertion criteria defined by the insertion distance τ , then the observation can be considered
“accommodated” within the existing topology.

3refer Chapter 4
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Following the experimental procedure described earlier, we attain the qualitative results
seen in Fig. 7.5. Fig. 7.5a demonstrates the evolution of the topological map over different
training epochs via the proposed method with the epochs being 50, 100 and 250 partial
training trajectories drawn from the dataset described in subsection 7.2.1. It is noticed that
this topological evolution is initiated from the prior topological map. On the other hand,
Fig. 7.5b provides the evolution of the topological map for the same training epochs with
the same trajectories, for the competing method.

(a) Evolution of the topological map under the proposed method for 50, 100 and 200 training partial
trajectories. This evolution takes into account the environmental context during the update
phase.

(b) Evolution of the topological map under method proposed in Pérez-Hurtado et al. (2015) for 50,
100 and 200 training partial trajectories. The evolution of the map does not take into account
the environment.

Fig. 7.5.: Qualitative comparison in the evolution of the topological map between the proposed
approach and the competing approach.

Consider the three trajectories depicted in Fig. 7.6. Each trajectory exhibits a character-
istic behaviour witnessed in an urban environment. The blue trajectory depicts a fully legal
trajectory by transiting from one POI to another within areas designated as legal. Likewise,
the red trajectory, over its lifetime, exhibits fully atypical behaviour by transiting across the
road area of the observed environment. On the other hand, the green trajectory exhibits a
mixed behaviour with a substantial part of its lifetime remaining in the legal areas of the
environment, thus performing typical actions while its behaviour in some parts, near the
end of its lifetime, coincides with that of an illegal action. These specimen trajectories can
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be utilised to explain the inference process of the proposed framework, thereby presenting
a qualitative and quantitative evaluation of this framework under the specified conditions.

Fig. 7.6.: Specimen test trajectories chosen from the Traffic Anomaly Annotation Dataset. The
three specimen trajectories exhibit three different behaviours in the environment. The
blue trajectory is a fully legal trajectory. The red trajectory is a fully illegal trajectory
and the green one exhibits mixed behaviours with a significant portion of the trajectory
behaving typically while the remaining part exhibits atypical behaviour.

For the fully legal trajectory, with the proposed model at different training epochs, there
always exists atleast one node within the insertion criteria. Thus, all observations ema-
nating from this trajectory can be accommodated within the existing topologies. Similar
conclusions can be deduced for the illegal and mixed behaviour trajectories depicted above.
Conversely, with regard to the competing model, it can be observed that there exist no or
few nodes across the different training epochs to accommodate the illegal trajectory. Mean-
while, for the mixed behaviour trajectory, the accommodation gets progressively better over
training epochs just as for the legal trajectory.

7.3.2 Quantitative Results

For quantitative results, as an evaluation criterion, we measure the accuracy of prediction
over the lifetime of the testing trajectory under the same training conditions as above. The
error between the predicted position and the ground truth is used as a measure to discrimi-
nate between the performance of the proposed and the compared methods.

The procedure for obtaining these errors remains the same as earlier. The underlying
models for the proposed method and the competing method are trained for the very same

7.3 Experimental Results - Exclusion of Moving Objects 113



training epochs as in subsection 7.3.1. The purpose of this experiment is to illustrate that
the proposed method requires fewer training data than the competing method without sac-
rificing accuracy.

A second experiment is conducted characterised by prediction performed on an untrained
model of the proposed method (i.e, the underlying graphical model initialised with the Prior
Topological Map) and compared against the competing model that has been trained with all
available partial trajectories. This experiment simulates a scenario where the autonomous
vehicle enters an area wherein it cannot wait in the area to gather many partial trajectories
before performing inference.

Under these conditions, the prediction errors are obtained and plotted as seen in Fig. 7.7.
Figures 7.7a and 7.7b represent the prediction errors for the legal and illegal testing trajec-
tories for different training epochs. Figures 7.7c and 7.7d represent the second experiment
pertaining to a fully trained model vs. an untrained proposed model.

The results portrayed by figures 7.7a and 7.7b are in line with the discussion on the
qualitative analysis of these trajectories. It is observed that for the proposed method, the
errors quickly converge to very small values, proving that there are accommodating nodes
along the entire trajectory with the implication being that there exist corresponding states
and transitions that provide for accurate inferences over short and medium horizons. On
the contrary, for the competing method, with the same logic, the prediction error remains
high throughout the lifetime of the testing trajectories over the different training epochs.

The results obtained in figures 7.7c and 7.7d where it is observed that the proposed model
with no training performs better than a fully trained competing model for both typical and
atypical trajectories can be explained on the basis of availability of training partial trajecto-
ries. Returning to Fig. 7.3, we can observe that most trajectories are heavily concentrated
around the legal areas. The test trajectories were so chosen as to be outliers, even amongst
the legal class of the dataset. Secondly, the training partial trajectories fed to the models
are not sequential. Thus, the model does not receive, say two partial trajectories compris-
ing the same full trajectory in sequence. Instead, it may receive two completely unrelated
trajectories in sequence. This might lead to overfitting of the data in some regions while
starving other regions of the environment. Since the proposed model with no training is
associated with a uniform Gaussian around each state of the model at initialisation, the
above-mentioned problem does not arise thereby leading to better performance than the
competing method.

This is not to say that the proposed method always performs better. Let us consider the
performance of the mixed behaviour trajectory under the second experiment. This result
is depicted in Fig. 7.8. Here, the proposed method performs worse than the competing
method in the former half of the trajectory’s lifetime and in the latter, performs better. The
prediction error of the competing method rises slightly in the latter part of the trajectory.
With this result, we can comment on the utilisation of the two methods.
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(a) Prediction accuracy for the legal trajectory at different training
epochs over its lifetime.

(b) Prediction accuracy for the illegal trajectory at different training
epochs over its lifetime.

(c) Prediction accuracy for the same legal trajectory as above tested
under full training for the competing method and no training for
the proposed method.

(d) Prediction accuracy for the same illegal trajectory as above tested
under full training for the competing method and no training for
the proposed method.

Fig. 7.7.: Quantitative results for the legal and illegal trajectories. The upper row depicts the pre-
diction errors for the tested trajectories over different training epochs for the proposed
and the competing method. Solid lines (annotated with P in the legend) pertain to the
proposed method. Dashed lines (annotated with an H in the legend) pertain to the com-
peting method. Colours for a training epoch remain the same over the two methods. The
bottom row depicts prediction error for the same trajectories with a fully trained compet-
ing method plotted against the proposed method. As previously, solid lines refer to the
proposed method while the dotted ones to the competing method. The error is in pixel
distance.
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1. The competing method performs better inference during the typical (legal) part of
the trajectory. Specifically, this dataset and the method in which the training was
performed explains this result. Data is overfitted along the sidewalk region of the
environment, where most of the training data is concentrated leading to better pre-
diction of positions at this part of the trajectory. The proposed method, at 0-training
epoch, has no such bias which is both a boon, an in this case, a curse.

2. The proposed method performs better than the competing method during the atypical
part of the trajectory. Conversely, the competing method can be generalised to say that
for this dataset where typical behaviours far outnumber atypical ones, the competing
model suffers to perform accurate inference.

Fig. 7.8.: Quantitative comparison for the mixed behaviour trajectory depicted in Fig. 7.6 at no
training of the proposed model (in a solid line) vs. full training of the competing model
(in a dashed line). It is observed that for a part of the trajectory the competing method
performs better than the proposed approach.

To check whether our model performs significantly better compared to the competing
model, we performed a t-test on comparing prediction errors from all the trajectories in the
“Legal” and “Illegal” subsets of the dataset. The p-values for this test is given in Table 7.1.

All values are above our significance threshold of 0.05. As a consequence, we can sur-
mise that the proposed model does perform better with significant accuracy against the
competing approach over a variety of trajectory classes.
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Number of learning (partial) trajectories

Trajectory type 50 100 250 0 - Full
p-value p-value p-value p-value

Legal 7.023×10−16 1.314×10−18 2.373 ×10−39 2.172×10−61

Illegal 5.602×10−33 3.006×10−33 1.178×10−29 4.907×10−21

Tab. 7.1.: Comparison of prediction accuracy at horizon=75 (corresponding to 3s) at varying train-
ing levels between the proposed work and Pérez-Hurtado et al. (2015). Lower values
are better.

7.4 Experimental Results - Inclusion of Moving Objects

This section deals with the second class of experiments with the Prior Knowledge frame-
work characterised by the inclusion of moving objects into the inference pipeline. In com-
parison with the experiments conducted excluding the moving objects in the scene, there are
some similarities and differences in the procedure. The differences stem in view of the fact
that there is no training phase of the GHMM. Instead, the framework acts only under the in-
fluence of the generated Prior Topological Map and consequently the underlying graphical
model for this topology. Ideally, given a continuously changing environment, there should
a dynamic potential cost map with topological maps being drawn on them at every timestep
over the lifetime of the trajectory under observation and inference. Practically, however, we
perform these experiments by freezing the state of the environment at a specific timestep
and feed the feature details derived from this environment state into the framework. From
that point on, the rest of the procedure remains the same for testing the prediction accuracy
as presented in the previous section.

To present the results of this experimental class, we utilise the fully legal and fully illegal
trajectories presented in Fig. 7.6. First, we generate the potential cost map for both the
specimen trajectories. This is accomplished by freezing the state of the environment at
timestep t1, the first timestep after the commencing of the trajectories. The decision to
freeze the environment is deliberate. This allows us to identify the objects present at the
beginning of the trajectory i.e., at t0 and consequently, estimate their velocities at t1 as
required for their modelling. The other features of the scene are identified, along with
the POIs and the potential cost map is generated. On this potential cost map, the Prior
Topological Map is drawn using the S-ITM. These topologies are as depicted in Fig. 7.9.

Qualitatively, we use the same criterion used for the experimental class excluding moving
objects. For a legal trajectory starting from the bottom left of the environment and reaching
the POI such as the specimen trajectory, the moving objects with the costs inherent to their
motion have no adverse effect on the tracked trajectory based on the topology generated
and depicted in Fig. 7.9a. On the contrary, consider the state of the environment and the
topological map depicted in Fig. 7.9b. This figure presents an interesting scenario for a
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(a) State of the world at t1 for the legal trajectory under
consideration.

(b) State of the world at t1 for the illegal trajectory under
consideration.

Fig. 7.9.: Prior Topological Maps drawn for the state of the environment at timestep t1 for the spec-
imen trajectories. The potential cost map introduces costs derived from the velocities of
the moving objects in each of the scenes.

trajectory originating at the bottom right of the image. The topological map and the motion
of other objects in the scene forces this trajectory to veer off the typical areas with the
implication being that no legal crossing is possible from that origin. Indeed, performing a
crossing demands motion in areas of higher potential cost.

The quantitative evaluation for the testing trajectories corresponding to the topological
maps presented for the legal and illegal trajectories above can be seen in Fig. 7.10a and
Fig. 7.10b respectively. We observe, for both specimen trajectories, that the introduction of
moving objects increases the accuracy of prediction. This effect occurs because the moving
objects reduce the number of reachable nodes for the target trajectory during the inference
process and constrict the probabilities of these states, increasing the prediction accuracy.

While in the demonstrated examples the introduction of moving objects increases the
accuracy of prediction, there are examples to the contrary. Such an example for this be-
haviour can be seen in Fig. 7.11. This figure depicts the prediction error evolution of a legal
trajectory for including and excluding moving objects. As can be noticed, the inclusion of
dynamic objects in the inference process leads to a sudden increase in the prediction error
only to decrease towards the end of the trajectory. This behaviour of the model can be
explained by the procedure followed in performing the prediction. Here, the state of the
environment is frozen at t1 of the trajectory and prediction performed under this constraint.
Significantly, this assumption is unable to include into the inference process, the interaction
between the pedestrian being tracked and the other moving object. This interaction could
lead to sudden, short-term divergences from typical behaviours. Once this disruptive ob-

118 Chapter 7 Experimental Results - Exoperception



(a) Prediction accuracy for the legal specimen trajectory on untrained
models with and without dynamic objects.

(b) Prediction accuracy for the illegal specimen trajectory on un-
trained models with and without dynamic objects.

Fig. 7.10.: Quantitative comparison of prediction accuracy of the proposed model excluding and
including dynamic objects for the specimen trajectories. The accuracy over the lifetime
of the trajectory when the framework excludes and includes dynamic obstacles have
been depicted in solid blue and red lines respectively. Since the competing approach is
not intended to be utilised in dynamic environments, we compare prediction accuracy
against our own method excluding dynamic objects on untrained models.

Fig. 7.11.: Prediction accuracy comparison for a legal test trajectory predicting in an environment
with dynamic obstacles performing poorly against a model inferring in their absence.

ject has been passed, the pedestrian might choose to reconverge to his original behaviour
or choose to take an entirely different path.
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7.5 Discussion
In this chapter, we presented the results obtained on the proposed framework via experi-
ments conducted on a real dataset under different conditions, from a static observer over-
looking the observed area. These conditions were the inclusion and exclusion of moving
objects in the inference process; the efficacy of the framework when compared to a com-
peting model at different training epochs and significantly, proving that our framework
performs better than the competing model without the need to train.

The latter two conditions specifically are in line with the expectations of a desired model
espoused in Chapter 1, where the problem required the creation of a model that could be
used with an autonomous vehicle in new and previously unseen areas. In this chapter, we
showed that the proposed framework corresponds to the latter requirement. Consider the
results presented for the experimental case on inferring with no training trajectories. This
case corresponds to an autonomous vehicle equipped with a sensor array arriving at an
entirely new urban environment. The car must then begin to perform predictions on the
pedestrians present in the scene without having the luxury of waiting to gather many partial
trajectories to train itself in this environment and then perform inference. In demonstrating
that the proposed method preforms better than the trained competing model, we showcase
the benefit of utilising the proposed method in such a way as to give credence to the “Look-
Once Principle”. The issue of utilising the framework on an autonomous vehicle with the
corresponding sensor systems and the problems inherent to this perception will be dealt in
the next chapter.
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Experimental Results -
Egoperception

8
In the previous chapter, we presented the results of our experiments with the Prior Knowl-
edge Framework in a built urban area with pedestrians and other shared space users being
observed from an observer placed externally from an overhang. While this allowed us to test
our framework’s different capabilities, the ultimate utilisation of this framework is expected
to be deployed on an autonomous vehicle. Given such an application, the framework must
be able to work with a myriad of sensors, perhaps without visual cues in some instances.
Another point to note is that the utilisation of the framework is predicated on an ego cen-
tric perception i.e., from the perspective of the autonomous vehicle. Secondly, pedestrian
behaviour depends entirely on the built environment they move in. For example, behaviour
inside a parking lot differs from that of an open, well defined street in an urban center. Given
these constraints, it becomes imperative to test our proposed framework in different urban
areas. The results in the previous chapter expounded on the results of our experiments in
a well defined, built area. On the contrary, in this chapter, we concentrate on the testing
the Prior Knowledge Framework in a private, semi-built area (in this context, a parking lot)
with limited and ambiguous (no camera images) perception.

We start by describing the observation platform and the data captured over time followed
by the implementation details of the framework for this application. This is then followed
by experimental results, both qualitative and quantitative, leading to a discussion on the
obtained results.

8.1 Dataset Description

This dataset was created by capturing data from a Renault Zoe that is used as an experimental
platform, described in Section 8.1. The data is captured within the parking lot of the Inria-
Grenoble premises. The car is parked facing the main entry points of the building containing
two entry/exit points. Not only are cars parked here, there is also a significant point of
interest in the form of a bicycle stand which sees many footfalls throughout the day. In real
terms, the observed environment covers an area of 60 x 50 sq. meters within the private
parking area of the premises.

Pedestrians arrive on the scene from the main entry gate of the parking lot (out of view
in the dataset) either by foot or vehicles (car or bicycle), park and enter the building via
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the entry points in front of the car. During the time of exit, this procedure is reversed.
The parking lot also contains some amount of foliage between car parking areas, which are
visually marked out.

The instrumented platform (Fig. 8.2) was placed early in the morning in this area to
capture pedestrian behaviour. All actions contained within this dataset were captured ex-
clusively with the available LiDAR on the platform. The LiDAR image as captured by the
platform is seen in Fig. 8.1.

The scenario presented by this parking lot dataset is interesting for two reasons -

1. A parking lot is a partially structured environment with specific areas marked out
providing their own functions. There are natural POIs in the environment in terms of
entrances and exits to buildings and shelters. Thus, pedestrians behave comparably
but differently to that of a street (e.g., walking towards a destination in their view but
with no mandated walking areas to guide their paths).

2. The parking lot allows for observation of long term evolution of pedestrian trajecto-
ries. The wide open areas in the observation environment imply that pedestrians have
to walk through for some tens of meters from their vehicles to the entrance/exit to the
building. Using only LiDAR data aids in capturing this full trajectory.

Fig. 8.1.: LiDAR image of the environment under observation, captured by a velodyne, at the Inria
parking lot.
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Fig. 8.2.: Renault Zoe instrumented platform used for capturing data used for evaluating the pro-
posed algorithms. On the roof of this car is the velodyne used to record the dataset.

Experimental Platform

In order to capture and validate our models on pedestrian behaviour, an in-house experimen-
tal platform was used. The base of this platform is a Renault Zoe on which are equipped
a 64 layer Velodyne LiDAR, 4 IBEO LUX laser range finders mounted with one mounted
in each cardinal direction on the car, 1 Point Grey Bumblebee stereo camera pointing front
mounted inside the car platform, 1 mono back camera and an XSENSE IMU GPS receiver
to localise the platform on a map. The platform can be seen in Fig. 8.2.

Extraction of trajectories

The extraction of trajectories involved transforming the LiDAR data into 2-D images by
first cropping them to a region of interest. These 2-D images were then manually anno-
tated for “pedestrian” and “car” classes using the VATIC tool (Vondrick et al., 2012) for
labelling moving objects in a video. While there are methods available to automatically
extract semantic information from 3-D point clouds (Zhou and Tuzel, 2017; Qi et al., 2017;
Garcia-Garcia et al., 2016), they require much more information than what is available from
the instrumented platform.

The feet of the pedestrians were tracked over the course of their movement and their
velocities were estimated using a Kalman filter as part of post-processing these observed
trajectories. Annotations were made manually on their destinations when they entered one
of the possible POIs which was when their trajectories terminated.
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Semantics and Geometry

The identification of the different semantics in the scene is relatively straight forward. There
are buildings and shelters that can be identified, then there are the parked cars. There are also
dynamic obstacles in the form of entering and exiting cars. These can be easily identified
and tracked via the utilisation of methodologies like the ones presented in Rummelhard et al.
(2015) which provides us with both a bounding box identifying the moving object as well
as estimations of its velocity over time. As can be seen in Fig. 8.1, there are some areas that
are occluded to the LiDAR. These areas can be semantically considered “unknown” since
they cannot be directly observed. Finally, everything else that remains in the observed
environment is considered traversable for pedestrians.

On the topic of geometry and the attainment of geometric data, since we are using a
LiDAR, it becomes trivial to measure the dimensions of any object, if it is directly observed.
Spatial maps depicting the marked parking spots in the parking lot can be obtained though
a map service like Open Street Maps1.

All pedestrian trajectories extracted from this dataset are presented in Fig. 8.3. In contrast
to the trajectories presented in Fig. 7.3, this scenario presents a semi-structured environment.
Thus, the trajectories are dispersed over the entire observed area with the entrances of the
building structure standing out as the termination points to a plurality of the observed tra-
jectories. An interesting fact to note on analysing the trajectories is that some trajectories
follow specific, if unmarked, tracks. This example stands as a specimen of “Natural Move-
ment” (Gibson, 1979) where pedestrians move in the direction that interests them the most
– in this case, the entrance to the building structure – which is directly in their line of sight.

8.2 Experimental Results
The experiments conducted on this dataset differ slightly from the ones presented in the
Chapter 7. Within the semi-structured environment of the parking lot, there are no legal and
illegal trajectories. Instead, trajectories wind between obstacles in the direction of Point of
Interests. Thus, the experiment described here ultimately is concerned with the accuracy
of prediction of pedestrian motion in a scene devoid of interference to their trajectory from
other moving objects.

8.2.1 Implementation Details

The architecture of the framework remains the same as the one presented in Section 7.1. The
methods used to identify the features in the observed environment and to estimate pedes-
trian tracks have been mentioned in the preceding sections. Here, we concentrate on the

1www.openstreetmap.org
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Fig. 8.3.: Tracks of pedestrians extracted from the Inria parking lot dataset observed from an on-
board sensing system on the experimental platform.

implementation details of the framework. The velodyne on top of the car returns distance
measures in meters. The POIs which are the entrances to the building are considered to be
more attractive than the others. Since there is no identifiable “Road” feature in the scene,
this feature is discarded. Instead, short barriers are considered edges in the environment.
The insertion distance τ is assigned a value of 2.5m. This value was so chosen to balance
between an explosion of nodes in the large environment and a meaningful value to predict
a pedestrian’s next position.

Similar to the previous chapter, for the competing approach, the value of τ remains equal
to the proposed method while π0 and a0 are, once again, arbitrarily chosen to be 0.5 and
0.5 respectively.

The utilisation of these parameters results in the generation of the potential cost map and
the prior topological map as shown in Fig. 8.5.

8.2.2 Qualitative Results
The qualitative metric for measuring the results remains the same as the one proposed in
Chapter 7. Similarly, we compare the results against the model proposed in Pérez-Hurtado
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Fig. 8.4.: Labelled image of the Inria parking lot used for the generation of the potential cost map.

et al. (2015). To reiterate, the quality of the achieved result depends on the “coverage” of
the graphical model of the observed area. Hence, higher the coverage, better the quality of
prediction.

To portray the premise of the qualitative results, consider the testing trajectories depicted
in Fig. 8.6. Of the 14 trajectories chosen for testing the performance of the framework from
the dataset, three trajectories are displayed. Here, all three trajectories start in the vicinity
of the same POI (bicycle parking shed) while two terminate at one of the entrances to the
building while the remaining trajectory terminates at the other entrance of the building. In
our qualitative evaluation, the predictive framework must be able to accommodate these
trajectories within the graphical model i.e., be able to capture this behaviour.

Consider the specimen trajectories terminating at the left entrance of the building in
Fig. 8.6. Fig. 8.7b depicts the the evolution of the topological map over 50, 100 and 200
training partial trajectories. On applying the qualitative evaluation criterion i.e., that the
topology being able to accommodate the trajectories over the lifetime of the trajectory, it
is noticed that this criterion does not hold true. In the cases of 50 and 100 training partial
trajectories, a large area corresponding to the left side of the grid of Fig. 8.6 is not covered
by the topological maps’ evolution. The implication here is that there is no possibility for
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(a) Cost Map generated using the labelled im-
age presented in Fig. 8.4. The degree of af-
fordance in the observed scene varies from
green to red with red depicting areas that
are harder to reach (including obstacles) and
green, the contrary.

(b) The Prior Topological Map generated based
on the potential cost map depicted adjacently.
The nodes and the edges depict reachable ar-
eas in the observed environment.

Fig. 8.5.: Potential Cost Map and Prior Topological Map for the observed environment in the Inria
Parking Lot.

Fig. 8.6.: Specimen testing trajectories chosen from the Inria Parking Lot Dataset to describe the
qualitative and quantitative results. The red trajectory passing through the obstacle is
an error of the VATIC tracking system that linearly extrapolates trajectories between
two observed positions, serving, once again, as a warning as to the importance of the
perception layer for the framework.
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(a) Evolution of the topological map under the proposed method for 50, 100 and 200 training partial
trajectories. This evolution takes into account the environmental context during the update
phase.

(b) Evolution of the topological map under method proposed in Pérez-Hurtado et al. (2015) for 50,
100 and 200 training partial trajectories. The evolution of the map does not take into account
the environment.

Fig. 8.7.: Qualitative comparison in the evolution of the topological map between the proposed
approach and the competing approach in the Inria Parking Lot.

these topological maps to assign an observation from the trajectory to a node in the map
thereby failing to capture their motion. On the other hand, with the topological map updates
after 200 partial trajectories, it is observed that an edge exists close to the POI, providing a
tenuous link from the origin of the trajectories to the termination points over their lifetimes.

On the contrary, consider the states of the topological map derived from the proposed
method in Fig. 8.5b with only prior knowledge derived from the environment and in Fig. 8.7a
over the course of 50, 100 and 200 training partial trajectories. It can be observed that at
each of these topological maps, there always exists nodes and edges to accommodate obser-
vations of the specimen trajectories over their entire lifetime thus meeting the qualitative
evaluation criteria.
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8.2.3 Quantitative Results

The quantitative results deal with the accuracy of predicting the specimen trajectories over
a specific time horizon. We continue using the same metric to measure accuracy as in
Chapter 7.

The GHMM models via the proposed approach and the competing approach are trained
on the same partial trajectories that resulted in the topological maps described in Fig. 8.7.
At the end of the training epochs of 50, 100 and 200 partial trajectories, the trained GHMM
models are tested on each trajectory of the testing trajectory set. For every timestep of each
trajectory, pedestrian positions at a horizon of 2.5 seconds are predicted. These positions
are then compared to the ground truth to establish the Euclidean distance error between the
prediction and the ground truth.

A second test is conducted in a similar fashion in testing the accuracy of our proposed
model with no training trajectories as compared to a fully trained2 GHMM model as pro-
posed in Pérez-Hurtado et al. (2015). Prediction is performed for all the available testing
trajectories as above.

To explain the quantitative results, we use, once again, the same specimen trajectories as
before. The qualitative results for the first experiment with prediction errors tested at differ-
ent training epochs are as shown in Fig. 8.8 with the figures 8.8a, 8.8b and 8.8c representing
the errors for the three specimen trajectories.

In the previous section, the problem with the accommodation of the observations of the
testing trajectories by the underlying graphical model was touched upon. The quantitative
results presented here support the qualitative evaluation criteria presented previously. Con-
sider the error prediction graph for the first specimen trajectory starting at the bottom of
the observed environment and terminating in the left entrance of the building premises (de-
picted by the blue line in Fig. 8.6). This trajectory will be tested for the topologies and
hence the underlying GHMM graphical models for all the cases shown in Fig. 8.7. For the
topologies presented in Fig. 8.7a at each training epoch, there exists path in terms of nodes
and edges in the topology and thus as states and transitions in the corresponding GHMM to
be able to predict with sufficient accuracy the future positions of this trajectory given the
observations and beliefs around each state of the model over the lifetime of the trajectory.
On the other hand, in the model that is compared against, presented in Fig. 8.7b, we observe
a marked difference. For the 50th partial training trajectory epoch, the closest state in the
model with respect to the tested trajectory is quite far. This leads to a large prediction error
in the beginning of the trajectory since there are states close by that can realistically infer
the presence of a pedestrian in the specified time horizon. Over the passage of time, with
the same epoch, we see that the error decreases since now, the trajectory is at a point where
the graphical model can accommodate the rest of the trajectory. Similarly, for the other two

2a fully trained model in our context is a GHMM trained with all available partial trajectories
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(a) Error comparison graph for the first specimen trajectory terminat-
ing in the left entrance to the premises under different epochs of
training.

(b) Error comparison graph for the specimen trajectory terminating
in the right entrance to the premises under different epochs of
training.

(c) Error comparison graph for the second specimen trajectory terminating in the left entrance to
the premises under different epochs of training.

Fig. 8.8.: Graphs depicting the prediction errors between the proposed method and that of compet-
ing approach. Each graph shows the evolution of errors over the lifetime of the trajectory
under different epochs of training. These epochs are 50, 100 and 200 partial training tra-
jectories. Solid and dashed lines of the same colour depict the proposed method and the
compared method, respectively for the specimen testing trajectories. The graphs depict
error in meters on the y-axis and the x-axis is composed of the length of the trajectories
in timesteps.
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Number of Partial Training Trajectories
50 100 200 0 - Full

Testing Trajectories 7.07 ×10−4 2.6 ×10−3 4.1 ×10−4 2.4 ×10−4

Tab. 8.1.: Comparison of prediction accuracy at horizon=3 secs at varying training levels between
the proposed work and the competing approach. Lower is better for the values.

epochs i.e., for 100 and 200th training epochs, there are more nodes and edges covering the
observed area, correspondingly reducing the prediction error for the compared model. On
the other hand, for the proposed model, there is no such abrupt, significant change with the
change only making the system more accurate in its prediction.

Similar inferences can be made for the two other testing trajectories. At low training
epochs, the model compared against performs worse than the proposed model while the
proposed model continues to increase the prediction accuracy over training epochs. An
exception to this is the prediction error for the third trajectory presented in Fig. 8.8c. Here, at
higher training epochs, near the end of the lifetime of the trajectory, the prediction accuracy
decreases. This can be explained by the fact that there are numerous states and the belief
in pedestrian position is distributed over many states leading to a slight increase in the
inaccuracy.

The results of the second experiment i.e., that of testing the proposed model with no
training against the fully trained compared model can be seen in Fig. 8.9. The results follow
in a similar fashion as before, with the proposed model performing as well as or better than
the compared model. The reason remains the same as before, since there are an insufficient
number of training trajectories as to cover all possible pedestrian paths in the environment
and to train the underlying HMM as to represent trajectories accurately. The untrained
proposed model performs well since each state is instantiated with a gaussian probability,
albeit circular, associated with it when created. This property makes it such that there is a
belief over the states even with no training trajectories, contrary to the method used in the
compared approach, tying in, once again, to the qualitative evaluation criterion of having
good coverage of the observed environment.

As in the previous chapter dealing with exo perception, a t-test is conducted to ascertain
whether the prediction results are a significant improvement over the compared method. The
result can be seen in Table 8.1. As can be seen in the table, all the p-values are lower than
our significance level of 0.05. Thus, for ego perception, as for exo perception, the proposed
framework performs at a significantly better accuracy.
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(a) Error comparison graph for the first specimen trajectory terminat-
ing in the left entrance to the premises under no training to full
training.

(b) Error comparison graph for the specimen trajectory terminating in
the right entrance to the premises under no training to full training.

(c) Error comparison graph for the second specimen trajectory terminating in the left entrance to
the premises under no training to full training.

Fig. 8.9.: Graphs depicting the prediction errors between the proposed method with no training
data vs. the competing method after full training. Each graph follows the procedure of
the previously described environment with the proposed model with no training data and
the model compared against trained with all available training partial trajectories. Solid
and dashed lines represent the proposed method and the compared method, respectively
for the specimen testing trajectories. The graphs depict error in meters on the y-axis and
the x-axis is composed of the length of the trajectories in timesteps.
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8.3 Discussion
In this chapter, we presented the experimental results of the proposed approach using ego-
perception from an autonomous vehicle on real data captured in a semi-structured, closed
parking lot. To perform this, we utilised three specimen trajectories, starting at one POI
and terminating at two other POIs, to illustrate the qualitative and quantitative results of our
model with the results presented in Section 8.2. We demonstrated that our proposed method
performs better than the compared approach at different epochs of training, thereby proving
that it is possible to utilise this method from the perspective of an autonomous vehicle. Yet,
some limitations of the proposed approach can be noticed in the results.

The first limitation, is once again the problem of good perception, especially for tracking
trajectories reliably. For the experiments conducted in this chapter, as has already been
mentioned, only LiDAR data was used to identify and track pedestrians. In such a setup,
there are chances of pedestrian trajectories, while tracking, are extrapolated through areas
where they may not have passed through originally leading to strange topological updates.

A second limitation can be noticed in the quantitative results. Here, the accuracy of
prediction is based on the errors defined by the Euclidean distance between the predicted
position and the ground truth. This prediction is centered on the position of the nodes in
the topological map since these nodes act in discretising the observed space with the Inser-
tion Distance parameter τ limiting the distance between the insertion of two nodes. In the
implementation of the experiment conducted in this chapter, τ was found to be ≈ 2.5 mts
when translated to real world co-ordinates. Accounting for this and the point mentioned
above, accuracies can only be measured in terms of τ differences. This implies that if the
prediction error is 4.5 meters, then the prediction is only off by one node on the topologi-
cal map which, while from the perspective of the model is not bad, could have real world
consequences. One method of solving this limitation could be to reduce τ thereby increas-
ing the discretisation but this brings us to another limitation. Here, with increasing nodes
with higher discretisation, there is a need for more training data to predict trajectories more
accurately. Increasing the number of nodes proportionally increases the number of states
and thereby, with the belief maintained over each state, can lead to wrong predictions when
faced with few or no training trajectories. Finding the optimal value of τ to balance accuracy
and complexity of the model remains an open question.
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Conclusion





Conclusions and Perspectives 9
9.1 Summary

This thesis was carried out under the ambit of the ANR VALET project that envisages the
operation of a platoon of autonomous vehicles whose leader is a manually driven vehicle.
Thus, much of the work was aimed at rapidly modelling new environments, setting the stage
for predicting pedestrian trajectories from the perspective of an autonomous vehicle. Chap-
ter 1 introduced the ideas that drove the development of the Prior Knowledge framework,
with an emphasis on the “Look-Once” principle requiring the autonomous vehicle to be able
to model and begin predicting pedestrian trajectories as soon as it entered a new area.

Chapter 2 began with a short review of the state of the art of pedestrian prediction meth-
ods that exist in literature. In this chapter, we presented and discussed the various ap-
proaches from those using simple physics-based models for prediction with no learning
to those heavily dependent on data. We also presented object centric approaches that de-
pended on the observation of corporeal cues of the pedestrians and environment-centric
approaches that emphasised on the effects of the surrounding environment on the pedes-
trian. We concluded with a discussion on interaction aware approaches where other shared
space users have a tangible effect on the pedestrian whose intention is to be predicted.

Chapter 3 and Chapter 4 presented a short introduction on the probabilistic models used
in this thesis. The former emphasised heavily on the usage and shortcomings of Hidden
Markov Models in their utilisation for prediction tasks while the latter began with an intro-
duction into an extension of HMMs called the Growing Hidden Markov Model (GHMM). In
that chapter, we then presented a detailed look at the inner workings of the GHMMs and the
algorithms used, specifically those utilised to learn the parameters and the topologies in the
observed space. We concluded by detailing the limitations of the original implementation
of the GHMM method with a direction on how to solve them.

Chapter 5 presented our first contribution in the thesis. This contribution was an al-
gorithm that converted the various features in the observed environment and from them,
generated a potential cost map. We also introduced in this chapter, the idea of Point of In-
terest (POI)s derived from sociological ideas of Natural Vision and Natural Movement that
could be used to translate pedestrian movement within a built, structured urban area into
quantifiable costs that aid in understanding, predicting and generating natural pedestrian
behaviour.
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Chapter 6 described our second contribution, the extension to the GHMM method. We
presented in this chapter how a generated cost map can aid in creating a better topological
map that can accommodate atypical trajectories and initialise a better underlying graphical
model that requires fewer training epochs to preform prediction tasks under different con-
ditions. We began by juxtaposing the existing state of the art in GHMMs for pedestrian
prediction with its limitations. Subsequently, we proposed our algorithm targeting these
identified limitations. Finally, we presented the third contribution of the thesis - the utilisa-
tion of the GHMM method to predict pedestrian positions within a dynamic scene where
the various moving objects affect the trajectories a pedestrian can take in the environment
under observation.

Chapter 7 presented, first and foremost, the proposed framework called the Prior Knowl-
edge Framework that conforms to the “Look-Once” principle outlined in Chapter 1. This
framework is also the culmination of the other contributions described in earlier chapters
and contains a detailing of the modules it is comprised of. Next, this chapter contains a de-
scription of the dataset used to arrive at the results. The results contained within the chapter
are based on the annotations on video where the images captured are from a camera placed at
an angle, overlooking a busy cross-walk in an urban center. Here, we compared our results,
obtained by parsing all the required information through the proposed framework, qualita-
tively and quantitatively against the GHMM model proposed in Pérez-Hurtado et al. (2015)
at different training epochs, trained on partial trajectories and tested against “legal” and
“illegal” behaviour of pedestrians in this built area. Here, we succeeded in demonstrating
that our proposed method performs better under different training epochs against the com-
pared model. A significant demonstration was that when tested under the condition of no
training of our proposed model vs. a fully trained competing model resulting in equivalent
or better performance in comparison. This makes the proposed approach a good candidate
for use in new and previously unobserved areas where there is need for rapidly adapting
to the environment to predict pedestrian trajectories before any training observations are
possible. In continuation, we also tested our framework by including dynamic objects in
the scene so as predict trajectories under natural conditions and compared against results on
the same trajectory obtained via our framework with no training. A significant constraint
under this class of experimentation was that the inference was performed with the state of
the environment frozen at one point over the lifetime of the trajectory whose positions were
being predicted. Within these constraints, the framework performed prediction admirably,
under certain conditions while failing under others. These limitations were discussed at the
conclusion of the chapter.

Chapter 8 produced results from a scene that could be juxtaposed against the previous
chapter. While the previous chapter dealt with testing the framework on data derived from
a static camera with a bird’s eye view of the observed area, this chapter dealt with data
obtained from a LiDAR placed on the top of a moving, testing platform which is more in
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line with the perception associated with the real-world operation of an autonomous vehicle.
These observations are recorded within a parking lot of a building. Contrary to the percep-
tion from the previous chapter, this perspective of observation leads to occlusions in many
parts of the environment. Another factor in utilising this data is the fact that a parking lot is
a semi-structured environment, changing the motion patterns of pedestrians within it. Test-
ing our proposed framework with these factors becomes paramount, especially if it is to be
deployed in the real world. We presented the details of this dataset and obtained results in
line with the previous chapter. We concluded with a discussion on some of the limitations
of the framework based on the results.

9.2 Concluding Remarks and Perspectives
During the course of this work, the following conclusions were reached:

• Sociological principles of attraction and repulsion from different features present
within an urban scene such as crosswalks, sidewalks, road, edges, POIs etc., can
be captured and quantified using principles potential fields to generate what we call
“Potential Cost Maps”. This confluence of sociological ideas, such as POIs acting as
destinations for pedestrians, and the quantification of these attractions and repulsions
in the scene leads to a quicker approach in modelling the environment to be able to
generate more natural pedestrian trajectories, as was demonstrated in Section 5.4.

• Based on the results obtained in chapters 7 and 8, it was demonstrated that the pro-
posed framework can be utilised in a variety of situations - using visual input; with
non-visual, partially occluded input; in structured and unstructured environments; in
static scenes and in dynamic scenes in the context of typical and atypical trajectories
performed by pedestrians.

While these advantages depict the proposed framework to be apt for utilisation on au-
tonomous vehicles, there are also some limitations to its utilisation.

• To begin, studies like Feng et al. (2013) and Cœugnet et al. (2019) show that that
while the forward velocity of every moving object is repulsive in nature, there exists
an attractive area preceding them. The same is applicable to crowds of pedestrians
trying to cross the road on crosswalks as well as performing illegal crossings. This
modelisation, while not captured in the current work, could lead to a better under-
standing of pedestrian behaviours and thereby aid in performing better predictions.

• In chapters 7 and 8, it was noticed that the quality of prediction suffered at very high
training data or at the point where there were too many states and not enough training
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data. As was mentioned previously, the balancing between these two cases remains
an open problem.

• The framework, in its current iteration, has been observed to have been useful for
short to medium term prediction in terms of accuracy. Such a design has been cho-
sen so as to be used on an autonomous vehicle to perform risk analyses and take
decisions in novel environments while driving. With such requirements, there is lit-
tle purpose in designing accurate prediction systems for longer horizons, especially
if such designs are offset by an increase in the number of observations or training
data required. Nevertheless, the extension of the framework for prediction at longer
horizons remains an open problem with some directions provided in the following
section.

• During the conduction of experiments, especially those in chapter 7 concerning the
experiments with the inclusion of moving objects, the procedure followed was to
freeze the environment at a specific timestep over the lifetime of the testing trajectory
and continue the prediction process by feeding the framework with this state of the
environment and continuing from that timestep onwards for a time horizon. During
the implementation of this framework on a real autonomous platform, it is envisaged
that the potential cost map generation as well as the generation of the topological
map and the underlying GHMM is regenerated for ever time step. This, albeit costly,
process for short horizons can perform at a better accuracy over the lifetime of the
tracked pedestrian.

• A second limitation noticed with the inclusion of moving objects in chapter 7 con-
cerns the lack of interaction between the different shared space users in the environ-
ment. Consequently, the current state of the framework does not take into consid-
eration that this interaction could lead to atypical behaviours during inference. The
inclusion of this interaction remains a problem that could be questioned in a future
work. A solution to this problem could be reached by the introduction of the social
force model at inference time as can be found in the work of Elfring et al. (2014).

• Lastly, the framework has been tested on single pedestrians in all environments and
cases. Using it for prediction with crowds or multiple people remains a challenge,
since such a scenario is faced by vehicles, both human and autonomous, everyday.
While the inference for multiple people over the same topological map seems a trivial
extension, that with the incorporation of crowds appears to be a more challenging task.
One avenue for finding a solution could be to explore the domain of sociology once
more, to find cues on crowd dynamics in urban areas.
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9.3 Future Work and Possible Extensions

While the current work was aimed at increasing the Situational Awareness of a single au-
tonomous vehicle, the premise of the VALET project creates opportunities for multiple
extensions. These extensions can broadly be grouped as high level extensions i.e., dealing
with increasing the SA at an organised group of AVs, for instance, at the platoon level or
low level extensions, dealing with the modification of the proposed framework itself.

High Level Extensions:

• Creating Better Maps A platoon of autonomous vehicles can be disparate with each
of the constituent vehicles having asymmetrical perception capabilities, compromis-
ing the quality of behaviour prediction of those vehicles which are not as well instru-
mented as others in the same platoon. In such scenarios, a shared map generated using
the perception capabilities of the more instrumented vehicles can solve problems that
could lead to a loss of SA. For example, the lead vehicle could generate the cost map
for the area under observation, identify and track pedestrians while the other vehicles
in the platoon could learn their behaviour and infer their positions better in relation
to the current state of the platoon. Such a mental map reduces the re-learning and
prediction overhead for each of the vehicles while moving in the same environment.
Similarly, these maps could be shared with V2X (Vehicle-to-infrastructure) kiosks
placed around these urban areas which can, subsequently, share this information with
other AVs on demand.

• Avoiding the handcrafting of POI weights The current modelling approach requires
the description of the relative importance of the different POIs in the observed scene,
i.e., providing the weights of each of the POIs present. Within the ambit of the
VALET project, the platoon is expected to traverse pre-determined corridors in the ur-
ban area which can be exploited to avoid the handcrafting of these weights. Pedestrian
trajectories observed for inference can, post facto, be run through Inverse Reinforce-
ment Learning algorithms with regard to their destinations and to different POIs to
learn their relative weights over time leading to the creation of better maps.

Low Level Extensions:

• Integration of motion models During the prediction phase of the framework, motion
models pertaining to pedestrian motion can be included to get more accurate predic-
tions during inference. Motion models such as Switching Linear Dynamic Systems
(SLDS) combined with the underlying graphical model should pave the way for better
predictions, especially when predicting pedestrian intentions with other shared space
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users where people are observed to change their velocities and directions abruptly to
avoid collisions etc.

• Addition of other shared space users The prediction framework presented in this
thesis deals exclusively with pedestrians in urban areas. However, this work can be
extended to encompass the behaviours of other shared space users like cars and bi-
cyclists in urban spaces. This extension could be a straight forward application of
Dynamic Bayesian Networks placed over the existing pedestrian prediction graphical
model presented in this work to model their interactions.

• Introduction of Corporal Cues The presented framework takes only the velocity
and heading of pedestrians into account during the inference phase to predict their
positions. Prediction of pedestrian behaviour can be greatly improved on taking into
consideration some of the other cues used by human drivers to decide whether a pedes-
trian will cross or not. This extension could incorporate the cues such as shoulder and
body poses (Ghori et al., 2018), distance from the edge of the side-walk (Völz et al.,
2016) or attention being paid to the driver of the car (Rasouli et al., 2017).

• Utilisation of Neural Network Architectures Current state of the art techniques
are moving away from traditional learning methodologies and adapting data-hungry
neural networks to learn behaviours and perform inference. A special implementa-
tion of the Recurrent Neural Network called the Long-Short Term Memory (LSTM)
networks have been used successfully as replacements in domains such as Speech
recognition (Graves and Jaitly, 2014) and handwriting sequence recognition (Graves,
2013) which have, traditionally, been applications of HMMs. A recent work by Alahi
et al. (2016) has proposed an LSTM neural network architecture to perform short term
inference of pedestrian behaviour in social conditions. While the cited literature per-
forms well under specific conditions of social interactions with other pedestrians in an
open area, it does not specifically aim to solve the problem presented in the proposed
framework. While the performance of our framework has not been tested against this
LSTM network, future work could focus on the utilisation of such networks for urban
scenes requiring interactions with other shared space users to supplement or supplant
the underlying graphical model to ensure accuracy of pedestrian predictions in the
observed environment.

Over the course of this thesis we set out to solve the challenge of making Autonomous
Vehicles perceive the environment like human drivers and to ensure the capture anomalous
pedestrian behaviour. In proposing our algorithms and framework that could be used with
little to no training data, and a simple inference procedure, we have managed to reduce our
dependency on massive amounts of data and all the inherent issues that follow it. While the
aspiration of this work is to make Autonomous Vehicles perform better in urban areas, the
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spirit in which it was conducted amounts to a hope that this will lead to safer streets where
sudden, anomalous behaviour is captured early and appropriate decisions are taken rapidly
so as to avoid needless, and tragic, accidents. As a parting thought, such behaviours by
autonomous vehicles could certainly lead to their quicker acceptance, opening up avenues
for the betterment of human society.
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