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Abstract

The statistical analysis of heterogeneous and high-dimensional data is being a challenging prob-

lem, both from modeling, and inference point of views, especially with the today’s big data

phenomenon. This suggests new strategies, particularly in advanced analyses going from den-

sity estimation to prediction, as well as the unsupervised classification, of many kinds of such

data with complex distribution. Mixture models are known to be very successful in modeling het-

erogeneity in data, in many statistical data science problems, including density estimation and

clustering, and their elegant Mixtures-of-Experts (MoE) variety, which strengthen the link with

supervised learning and hence deals furthermore with prediction from heterogeneous regression-

type data, and for classification. In a high-dimensional scenario, particularly for data arising

from a heterogeneous population, using such MoE models requires addressing modeling and

estimation questions, since the state-of-the art estimation methodologies are limited.

This thesis deals with the problem of modeling and estimation of high-dimensional MoE mod-

els, towards effective density estimation, prediction and clustering of such heterogeneous and

high-dimensional data. We propose new strategies based on regularized maximum-likelihood es-

timation (MLE) of MoE models to overcome the limitations of standard methods, including MLE

estimation with Expectation-Maximization (EM) algorithms, and to simultaneously perform fea-

ture selection so that sparse models are encouraged in such a high-dimensional setting. We first

introduce a mixture-of-experts’ parameter estimation and variable selection methodology, based

on ℓ1 (lasso) regularizations and the EM framework, for regression and clustering suited to high-

dimensional contexts. Then, we extend the method to regularized mixture of experts models for

discrete data, including classification. We develop efficient algorithms to maximize the proposed

ℓ1-penalized observed-data log-likelihood function. Our proposed strategies enjoy the efficient

monotone maximization of the optimized criterion, and unlike previous approaches, they do

not rely on approximations on the penalty functions, avoid matrix inversion, and exploit the

efficiency of the coordinate ascent algorithm, particularly within the proximal Newton-based

approach.

Keywords: Mixture models; Mixture of Experts; Regularized Estimation; Feature Selec-

tion; Lasso; ℓ1-regularization; Sparsity; EM algorithm; MM Algorithm; Proximal-Newton; Co-

ordinate Ascent; Clustering; Classification; Regression; Prediction.
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Chapter 1

Introduction

Contents

1.1 Scientific context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Scientific context

Nowadays, big data are collected and mined in almost every area of science, entertainment,

business and industry. For example, medical scientists study the genomes of patients to decide

the best treatments and to learn the underlying causes of their disease. Often, big data is het-

erogeneous, high-dimensional, unlabeled, involve missing characteristics, etc. Such complexity

poses some issues on treating and analyzing this kind of data. Analyses include prediction on

future data, and data exploration to summarize the main information within the data, or reveal

hidden useful information, like groups of common characteristics, which can be achieved via op-

timized clustering techniques. Analyses also cover identifying redundant or usefulness features,

in representing the data, for which feature selection methodologies can be helpful.

Such challenges impose new analysis strategies including pushing forward the modeling

methodologies, along with optimized model inference algorithms. In such area of analysis, main

state-of-the art methods rely either on learning automatic data analysis systems like neural net-

works (Bishop, 1995), support vectors machines (Vapnik, 1998), kernel machines (Scholkopf and

Smola, 2001), and also provable statistical generative learning models (Friedman et al., 2001),

including statistical latent variable models. Statistical analysis of data is indeed an efficient

tool that takes into account the randomness part of the data, measures uncertainty, and hence

provides a nice framework for density estimation, prediction and unsupervised learning from

data, including clustering. Among statistical models, mixture models (Titterington et al., 1985;

McLachlan and Peel., 2000) are the standard way for the analysis of heterogeneous data across

a broad number of fields including bioinformatics, economics, machine learning, among many

others. Such kind of models have been used for example applications including complex systems

1



1.1. SCIENTIFIC CONTEXT

maintenance (Chamroukhi et al., 2008, 2009a; Onanena et al., 2009; Chamroukhi et al., 2011),

bioacoustics (Chamroukhi et al., 2014; Bartcus et al., 2015).

Thanks to their flexibility, mixture models can be used to estimate densities and cluster data

arising from complex heterogeneous populations. They are also being used to conduct prediction

analysis including regression, via their Mixtures of experts (MoE) extension Jacobs et al. (1991);

Jordan and Jacobs (1994). Basically, maximum likelihood estimation (MLE) (Fisher, 1912) with

EM algorithms (Dempster et al., 1977; McLachlan and Krishnan, 2008) is the common way to

conduct parameter estimation of mixture models and MoE models. However, applying these

methods directly on high-dimensional data set has some drawbacks. For example, estimating

the covariance matrix in Gaussian mixture models in a high-dimensional scenario is “a curse

of dimensionality” problem. Furthermore, a more serious problem occurs in the EM algorithm

when computing the posterior probabilities in the E-step which require the inversion of the

covariance matrices. The same problem can be found while applying the Newton-Raphson (Boyd

and Vandenberghe, 2004) procedure in the M-step of the EM algorithm namely for mixtures-of-

experts.

Actually, in a high-dimensional setting, the features can be correlated and the actual fea-

tures that explain the problem reside in a low-dimensional intrinsic space. Hence, there is a

need to conduct an adapted estimation and select a subset of the relevant features, that really

explain the data. The Lasso or ℓ1-regularized linear regression method introduced by Tibshirani

(1996) is a successful method that has been shown to be effective ant in classical statistical

analysis like regression on homogeneous data. Lasso provides two advantages: it yields sparse

solution vectors, having only some coordinates that are nonzero and the convexity of the related

optimization problem greatly simplifies the computation.

In this thesis, we focus on Mixtures of experts (MoE) and for generalized linear models.

They go beyong density estimation and clustering of vectorial data, and provide an efficient

framework to density estimation, clustering, and prediction of regression-type data, as well as

supervised classification of heterogeneous data (Jacobs et al., 1991; Yuksel et al., 2012; Jiang

and Tanner, 1999a,b; Grün and Leisch, 2007). MoE are used in several applications such as:

predicting the daily electricity demand of France (Weigend et al., 1995), generalizing the au-

toregressive models for time-series data (Zeevi et al., 1997; Wong and Li, 2001), recognizing

handwritten digits (Hinton et al., 1995), segmentation and clustering time series with changes

in regime (Chamroukhi et al., 2009b; Samé et al., 2011; Chamroukhi and Nguyen, 2018), human

activity recognition (Chamroukhi et al., 2013), etc. Unfortunately, modeling with mixtures of

experts models in the case of high-dimensional predictors is still limited. Our objectives here are

therefore to study the estimation and feature selection in high-dimensional mixtures-of-experts

models, and to:

i) propose new estimation, and feature selection strategies, to overcome such limitations. We

wish to achieve that by introducing new regularized estimation and feature selection in

the MoE framework for generalized linear models based on Lasso-like penalties. We study

2



CHAPTER 1. INTRODUCTION

them for different family of mixtures of experts models, including MoE with Gaussian,

Poisson and logistic expert distributions.

ii) develop efficient algorithms for estimate the parameters of these regularized models. The

developed algorithms perform simultaneous feature estimation and selection, and should

enjoy the capability of encouraging sparsity, and deal with some typical high-dimensional

issues like by avoiding matrix inversion, so that they perform quite well in high-dimensional

situations.

In the following section, we summarize the contributions of the thesis.

1.2 Contributions of the thesis

The manuscript is organized as follows. Chapter 2 is dedicated to state-of-the-art. Chapter

3 presents our first contribution to the estimation and feature selection of mixtures-of-experts

models, for continuous data. Then, Chapter 4, presents our second contribution. It is on the

estimation and feature selection of MoE models, for discrete data. Finally, in Chapter 5, we

discuss our research, draw conclusions, and highlight some potential future avenues to pursue.

Technical details related to the mathematical developments of our contributions are provided in

Appendices A, B and C.

More specifically, first, in Chapter 2, we provide a substantial review of state-of-the art

models and algorithms related to scientific subjects addressed in the thesis. We first focus on

the general mixture modeling framework, as an appropriate choice of modeling heterogeneity

in data. We describe its statistical modeling aspects and the related estimation strategies,

and model selection techniques, with a particular attention given to the MLE via the EM

algorithm. Then, we revisit this mixture modeling context, in the framework of regression

problems on heterogeneous data, and present its extension to the framework of Mixtures of

Experts models. At the next stage, we consider these models in a high-dimensional setting,

including the case with Gaussian components, and describe the three main strategies to address

the curse of dimensionality, i.e, the two-fold dimensionality reduction approach, the one of

spectral decomposition of the model covariance matrices, and the one of feature selection via

Lasso regularization techniques. We opt for this latter regularization strategy, and present it

for the case of mixture of regression and MoE models. We review the regularized maximum

likelihood estimation and feature selection for these models via adapted EM algorithms.

Then, in Chapter 3, we introduce a novel approach for the estimation and feature selection

of mixtures-of-experts for regression with potentially high-dimensional predictors, and a het-

erogeneous population. The approach simultaneously performs parameter estimation, feature

selection, clustering and regression on the heterogeneous regression data. It consists of regu-

larized maximum-likelihood approach with a dedicated regularization that, on the one hand,

encourages sparsity thanks to a Lasso-like regularization part, and on the other hand, efficient

3



1.2. CONTRIBUTIONS OF THE THESIS

to handle due to the convexity of the ℓ1 penalty. We propose an effective hybrid Expectation-

Maximization (EM) framework, to efficiently solve the resulting optimization problem which

monotonically maximizes the regularized log-likelihood. It results into three hybrid algorithms

for maximizing the proposed objective function, that is, a Majorization-Maximization (MM)

algorithm, a coordinate ascent, and a proximal Newton-type procedure. We show that the

proposed approach does not require an approximate of the regularization term, and the three

developed hybrid algorithms, allow to automatically select sparse solutions without any approx-

imation on the penalty functions. We rely on a modified BIC criterion to achieve the model

selection task, including the selection of the number of components, and the regularization tun-

ing hyper-parameters. An experimental is then considered to compare the proposed approach

to the main competitive state-of-art methods for the subject. Evaluation is made to assess the

performance of the approach in terms of clustering, density estimation, regression, and sparsity,

of heterogeneous data by MoE models. Extensive experiments on both simulations and real

data, show that the proposed approach outperforms its competitive and is very encouraging

to address the high-dimensional issue. This chapter has mainly led to the journal publication

(Chamroukhi and Huynh, 2019) and conferences papers.

Next, in Chapter 4, we consider another family of MoE models, the one of discrete data,

including MoE for counting data and MoE for classification, and introduce our main second

contribution. We present a new regularized MLE strategy to the estimation and feature selec-

tion of dedicated mixtures of generalized linear expert models in a high-dimensional setting.

We develop an efficient EM algorithm, which relies on a proximal Newton approximation, to

monotonically maximize the proposed penalized log-likelihood criterion. The presented strat-

egy simultaneously performs parameter estimation, feature selection, and classification on the

heterogeneous discrete data. An advantage of the introduced proximal Newton-type strategy

consists in the fact that one just need to solve weighted quadratic Lasso problems to update

the parameters. Efficient tools such as coordinate ascent algorithm can be used to deal with

these problems. Hence, the proposed approach does not require an approximate of the regu-

larization term, and allow to automatically select sparse solutions without thresholding. Our

approach is shown to perform well including in a high-dimensional setting and to outperform

competitive state of the art regularized MoE models on several experiments on simulated and

real data. The main publication related to this chapter is Huynh and Chamroukhi (2019) and

other communication.

Finally, in Chapter 5, we discuss our developed research, draw some conclusions and open

some future directions. The thesis research publications results, including R packages of open-

source codes, are given in the list of publications and communications.

A substantial summary in French is provided in Résumé long en français at the end of the

manuscript.

4



Chapter 2

State of the art
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2.2.1 Maximum likelihood estimation for FMMs via EM algorithm . . . . . . 8

2.2.2 Gaussian mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Determining the number of components . . . . . . . . . . . . . . . . . . 15

2.3 Mixture models for regression data . . . . . . . . . . . . . . . . . . . 17

2.3.1 Mixture of linear regression models . . . . . . . . . . . . . . . . . . . . . 17
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2.3.4 Mixture of generalized linear models . . . . . . . . . . . . . . . . . . . . 24

2.3.5 Clustering with FMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Clustering and classification in high-dimensional setting . . . . . . . 27

2.4.1 Classical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Subspace clustering methods . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.3 Variable selection for clustering . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.4 Lasso regularization towards the mixture approach . . . . . . . . . . . . 40

2.5 Regularized mixtures of regression models . . . . . . . . . . . . . . . 46

2.5.1 Regularized mixture of regression models . . . . . . . . . . . . . . . . . 46

2.5.2 Regularized mixture of experts models . . . . . . . . . . . . . . . . . . . 50

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.1 Introduction

In this chapter, we provide an overview of the finite mixture models (FMMs) (McLachlan and

Krishnan, 2008), which are widely used in statistical learning for analyzing heterogeneous data.
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2.2. FINITE MIXTURE MODELS

More specifically, we focus on FMMs for modeling, density estimation, clustering and regres-

sion. We also review the Expectation-Maximization (EM) algorithm (Dempster et al., 1977;

McLachlan and Krishnan, 2008) for maximum likelihood parameter estimation (MLE) of FMMs

(McLachlan and Peel., 2000). However, the problem lies in the fact that applying these EM al-

gorithms directly on high-dimensional data sets poses some drawbacks. In such situations, we

require new techniques to handle these difficulties.

For data clustering with FMMs, several propositions were introduced in literature to deal

with high-dimensional data sets such as: Parsimonious Gaussian mixture models (Banfield and

Raftery, 1993; Celeux and Govaert, 1995), Mixture of factor analyzers (Ghahramani and Hinton,

1996; McLachlan and Peel, 2000; McLachlan et al., 2003), etc. Recently, some authors suggested

to use the regularized approaches for data clustering in high-dimensional setting. We take a

survey on these approaches here.

Later, a review on regularized methods for variable selection in mixture of regression models,

which form the core of this thesis, is presented. These works are mainly inspired by the Lasso

regularization. We also give some discussions on the advantages and drawbacks of the approaches

not only in term of modeling but also in term of parameter estimation approaches.

Most of the methods and approaches in this chapter are well-known in literature and are

included to provide context for later chapters. This chapter is organized into four main parts.

The first and second parts are concerned with FMMs for density estimation, clustering and

regression tasks, and EM algorithms for parameter estimation. The third and last parts address

the same problems but in high-dimensional scenario. Finally, we draw some conclusions and

introduce our research directions in this thesis.

2.2 Finite mixture models

Let X ∈ X be a random variable where X ⊂ R
p for some p ∈ N. Denote the probability density

function of X by f(x) and let fk(x) (k = 1, 2, . . . ,K) be K probability density functions over X .

X is said to arise from a finite mixture model (FMM) if the density function of X is decomposed

into a weighted linear combination of K component densities,

f(x) =

K∑

k=1

πkfk(x), (2.1)

where πk > 0, for all k and
∑K

k=1 πk = 1. The parameters π1, . . . , πK are referred to as mixing

proportions and f1, . . . , fK are referred to as component densities.

We can characterize this model via a hierarchical construction by considering a latent variable

Z, where Z represents a categorical random variable which takes its values in the finite set

Z = {1, . . . ,K} and P(Z = k) = πk. If we assume that the conditional density of X given

6



CHAPTER 2. STATE OF THE ART

Z = k equals fk(x), then the join density of (X, Z) can be written as following

f(x, z) =

K∏

k=1

[πkfk(x)]I(z=k) (2.2)

where I(z = k) is the indicator function and equals 1 when z = k and 0 otherwise. Hence, the

marginal density of X is

f(x) =

K∑

z=1

f(x, z)

=

K∑

z=1

( K∏

k=1

[πkfk(x)]I(z=k)
)

=

K∑

k=1

πkfk(x). (2.3)

This model was first proposed by Pearson (1894). In his work, Pearson modeled the distribution

of the forehead breadth to body length ratios for 1000 Neapolitan crabs with a mixing of K = 2

univariate Gaussian distributions. However, as we have been seen through literature review,

there are mainly three types of FMM (McLachlan and Peel. (2000), Nguyen (2015)):

• Homogeneous-parametric FMMs: the component densities come from the same parametric

family, such as Gaussian Mixture Models, t-distribution Mixture Models;

• Heterogeneous FMMs: the component densities come from the different parametric family,

like zero inflated Poisson distribution (ZIP), uniform-Gaussian FMMs, etc;

• Nonparametric FMMs.

For the parametric FMMs, assuming that each of the K component densities typically consists

of a relatively simple parametric model fk(x;θk) (such as for a homogeneous Gaussian mixture

model θk = (µk,Σk)).

The FMMs are widely used in a variety of applications. For those of biology, economics,

genetics interested readers can refer to Titterington et al. (1985). Besides that, these models are

also used in many modern facets of scientific research, most notably in bioinformatics, pattern

recognition and machine learning.

In this thesis, we shall refer FMMs as homogeneous-parametric FMMs to distinguish them

from heterogeneous FMMs and nonparametric FMMs. It turns out that many parameter esti-

mation methods for FMMs have been proposed in literature, such as Pearson (1894) used the

method of moments to fit a mixture of two univariate Gaussian components, Rao (1948) used

Fisher′s method of scoring to estimate a mixture of two homoscedastic Gaussian components,

etc. However, the more common methods are the maximum likelihood (McLachlan and Peel.

(2000) and the Bayesian methods (Maximum A Posteriori (MAP)) where a prior distribution

7
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is assumed for the model parameters (see Stephens et al. (2000)). Here, we consider the max-

imum likelihood framework. For more details on the method of point estimation, viewers can

refer to Lehmann and Casella (2006). The optimization algorithm for performing the max-

imum likelihood parameter estimation is the Expectation-Maximization (EM) algorithm (see

Dempster et al. (1977) and also McLachlan and Krishnan (2008)). In the next section, the

use of the Expectation-Maximization algorithm for learning the parameters of FMMs will be

discussed. The object is to maximize the log-likelihood as a function of the model parameters

θ = (π1, . . . , πK−1,θ1, . . . ,θK), over the parameter space Ω.

Assume that x = (x1, . . . ,xn) is an sample generated fromK clusters and each cluster follows

a probability distribution fk(xi;θk) (a common choice of fk(xi;θk) can be Gaussian distribution

N (x;µk,Σk)). A hidden variable Zi (i = 1, . . . , n) represents a multinomial random variable

which takes its values in the finite set Z = {1, ...,K} and for each observation xi the probability

that xi belongs to the kth cluster is given by P(Zi = k) = πk. Hence, the data set x can be

interpreted as an i.i.d sample generated from a FMMs with the probability density function

f(x;θ), where

f(x;θ) =

K∑

k=1

πkfk(x;θk); πk > 0,

K∑

k=1

πk = 1. (2.4)

The observed-data log-likelihood function therefore is given by

L(θ;x) = log

n∏

i=1

f(xi;θ)

=

n∑

i=1

log

K∑

k=1

πkfk(xi;θk). (2.5)

In this case, the log-likelihood is a nonlinear function. Therefore, there is no way to maximize

it in a closed form. However, it can be locally maximized using iterative procedures such as

Newton-Raphson procedure or the EM algorithm. We mainly focus on the EM algorithm,

which is widely used for FMMs. The next section presents the EM algorithm for finding local

maximizers of the general parametric FMMs. We will then apply this algorithm to GMMs.

2.2.1 Maximum likelihood estimation for FMMs via EM algorithm

The Expectation-Maximization (EM) algorithms are a class of iterative algorithms that were

first considered in Dempster et al. (1977) and the book of McLachlan and Peel. (2000) provides a

complete review on the topic. It is a broadly used for the iterative computation of the maximum

likelihood estimates on the framework of latent models. In particular, an EM algorithm simplifies

considerably the problem of fitting FMMs by the maximum likelihood. This can be described

as follows.

8
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EM algorithm for FMMs

In the EM framework, the observed-data vector x = (x1, . . . ,xn) is viewed as being incomplete,

where each xi is associated with the K-dimensional component label vector zi (which is also

called the latent variable) and the kth element of zi, zik = 1 or 0, according to whether xi did

or did not arise from the kth component of the mixture (2.4) (i = 1, . . . , n; k = 1 . . . ,K).

The component-label vectors (z1, . . . ,zn) are taken to be the realized values of the random

vectors (Z1, . . . , Zn). Thus Zi is distributed according to a multinomial distribution consisting

of one draw on K categories with probabilities (π1, . . . , πK)

Z1, . . . , Zn
i.i.d∼ Mult(1;π1, π2, . . . , πK). (2.6)

The complete-data log-likelihood function over observed variable x and latent variable z =

(z1, . . . ,zn), governed by parameters θ can be written as

Lc(θ;x, z) = log f(x, z;θ)

= log

n∏

i=1

K∏

k=1

(
πkfk(xi;θk)

)zik

=

n∑

i=1

K∑

k=1

zik
{
log πk + log fk(xi;θk)

}
, (2.7)

where f(x, z;θ) is the complete-data probability density function.

The EM algorithm is an iterative algorithm where each iteration consists of two steps, the

E-step (Expectation step) and the M-step (Maximization step). Let θ[q] denote the value of

the parameter vector θ after the qth iteration, and let θ[0] be some initialization value. The

EM algorithm starts with θ[0] and iteratively alternates between the two following steps until

convergence:

E-step

This step (on the (q+1)th iteration) consists the computation of the conditional expectation of

Lc(θ;X, Z) given x, using θ[q] for θ. This expectation, denoted Q(θ;θ[q]), is given by

Q(θ;θ[q]) = E[Lc(θ;X, Z)|x;θ[q]]

=

n∑

i=1

K∑

k=1

E[Zik|x;θ[q]]
{
log πk + log fk(xi;θk)

}

=

n∑

i=1

K∑

k=1

τ
[q]
ik

{
log πk + log fk(xi;θk)

}
, (2.8)

9
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where

τ
[q]
ik = E[Zik|x;θ[q]] = P(Zik = 1|x;θ[q]) =

π
[q]
k fk(xi;θ

[q]
k )

∑K
l=1 π

[q]
l fl(xi;θ

[q]
l )

(2.9)

is the posterior probability that xi belongs to the kth component density. As shown in the

expression of Q(θ;θ[q]) above, the E-step simply requires computing of the conditional posterior

probabilities τ
[q]
ik (i = 1, . . . , n; k = 1, . . . ,K).

M-step

The M-step (on the (q + 1)th iteration) evaluates the estimate of θ by the value θ[q+1] that

maximizes the function Q(θ;θ[q]) with respect to θ over the parameter space Ω:

θ[q+1] = arg max
θ∈Ω

Q(θ;θ[q]). (2.10)

Rewrite Q in the separate form

Q(θ;θ[q]) =

n∑

i=1

K∑

k=1

τ
[q]
ik log πk +

n∑

i=1

τ
[q]
ik log fk(xi;θk). (2.11)

The updated estimate π[q+1] = (π
[q+1]
1 , . . . , π

[q+1]
K−1 )T of the mixing proportions πk (k = 1, . . . ,K−

1) is calculated independently of the updated estimate η[q+1] = (θ
[q+1]
1 , . . . ,θ

[q+1]
K ) of the param-

eter vector η = (θ1, . . . ,θK) containing the unknown parameters in the component densities of

the FMM (2.4).

Hence, maximizing the function Q(θ;θ[q]) in (2.11) with respect to the parameter π can

be performed using the method of Lagrange multiplier (by taking account of the constraint
∑K

k=1 πk = 1), we obtain the updated estimates of the mixing proportions πk

π
[q+1]
k =

n∑

i=1

τ
[q]
ik

/
n, (2.12)

for k = 1, . . . ,K.

Now, in forming the estimate of the parameter vector η on the M-step of the (q + 1)th

iteration, it can be seen from (2.11) that η[q+1] is obtained as an appropriate root of

K∑

k=1

n∑

i=1

τ
[q]
ik

∂ log fk(xi;θk)

∂η
= 0. (2.13)

One nice feature of the EM algorithm is that the solution of (2.13) often exists in closed form.

The E- and M-steps are alternated repeatedly until the difference between the (incomplete-

data) log-likelihood function L(θ[q+1];x) and the log-likelihood function L(θ[q];x) is small enough

such as

L(θ[q+1];x)− L(θ[q];x) < ε,

10
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for a small value of some threshold ε.

Generally, the E- and M-steps have simple forms when the complete-data probability density

function is from the exponential family (McLachlan and Krishnan, 2008; McLachlan and Peel.,

2000). In cases where the M-step cannot be performed directly, other methods can be used to

update θ
[q+1]
k such as Newton-Raphson algorithm and other adapted extensions.

We now show that, after each iteration the value of the log-likelihood function L(θ;x) (2.5)

is not decreased, in the sense that

L(θ[q+1];x) = log g(x;θ[q+1]) ≥ log g(x;θ[q]) = L(θ[q];x), (2.14)

for each q = 0, 1, . . . and g(x;θ) is the probability density function of the observed data vector

x. This property can be found via the results from Section 10.3 of Lange (1998) and is given in

Appendix A.1.

In case that one can not find θ[q+1] = arg max
θ

Q(θ;θ[q]), Dempster et al. (1977) suggested to

take θ[q+1] such that Q(θ[q+1];θ[q]) ≥ Q(θ[q];θ[q]). The result of this is an increasing array of the

log-likelihood values, i.e, log g(x;θ[q+1]) ≥ log g(x;θ[q]). These algorithms are called generalized

EM algorithms. The EM algorithm ensures that one will receive a monotonically increasing

sequence L(θ[q];x). A complete proof on the convergence properties of EM algorithm can be

found in Wu (1983).

2.2.2 Gaussian mixture models

The most popular homogeneous-parametric FMMs are the Gaussian mixture models (GMMs).

It is used for modeling the probability density function of random variables in R
p. In this case,

GMMs have density functions of the form

f(x;θ) =

K∑

k=1

πkN (x;µk,Σk), (2.15)

where N (x;µk,Σk) denotes the multivariate Gaussian density with mean vector µk, covariance

matrix Σk and θ is the vector containing all the parameters in π = {π1, . . . , πK−1}, µ =

{µ1, . . . ,µK}, Σ = {Σ1, . . . ,ΣK} that represents this model. Since many natural measurements

and processes tend to have Gaussian distributions, it is not hard to incorporate the use of GMMs.

In these cases, the populations containing subpopulations of such measurements tends to have

densities resembling GMMs. Furthermore, GMMs are among the simplest FMMs to estimate

and are thus straightforward to apply in practice. Another critical property of GMMs is that,

for a given continuous density function f(x), one can use a GMM with K components to

approximate f(x). This result can be done by using the following theorem (see Section 33.1 of

DasGupta (2008)).

Theorem 2.2.1 (Denseness of FMMs). Let 1 ≤ p < ∞ and f(x) be a continuous density on

11
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R
p. If g(x) is any continuous density on R

p, then given ε > 0 and a compact set C ⊂ R
p, there

exists an FMM of the form

f̂(x) =

K∑

k=1

πk
1

σpk
g
(x− µk

σk

)
,

such that sup
x∈C
|f(x)− f̂(x)| < ε, for some K ∈ N, where µk ∈ R

p and σk > 0 (k = 1 . . . ,K).

By taking g(x) = N (x;0,∆), where ∆ is a constant p × p matrix and is symmetric positive

definite, we see that GMMs with component densities from the location-scale family of g,

{ 1

σp
g
(x− µ

σ

)
: µ ∈ R

p, σ > 0
}

= {N (x;µ, σ2∆) : µ ∈ R
p, σ > 0}

are dense in the class of continuous densities on R
p.

Recent novel theoretical results about the approximation capabilities of mixture models are

given in Nguyen et al. (2019b). In the next section, we present the EM algorithm for GMMs.

EM algorithm for GMMs

Consider the GMM case. Here, we assume that xi
i.i.d∼ f(x;θ), with f(x;θ) is a mixture density

function of the form (2.15)

f(x;θ) =

K∑

k=1

πkN (x;µk,Σk); πk > 0,

K∑

k=1

πk = 1,

with normal components

N (x;µk,Σk) =
1

(2π)p/2|Σk|1/2
exp
(
−1

2
(x− µk)

TΣ−1
k (x− µk)

)
(k = 1, . . . ,K).

From (2.5) and (2.7), the observed-data log-likelihood function for the GMM is given by

L(θ;x) =

n∑

i=1

log

K∑

k=1

πkN (xi;µk,Σk), (2.16)

and the complete-data log-likelihood is

Lc(θ;x, z) =

n∑

i=1

K∑

k=1

zik
{
log πk + logN (xi;µk,Σk)

}
. (2.17)

With an initial parameter θ[0] = (π
[0]
1 , . . . , π

[0]
K−1,θ

[0]
1 , . . . ,θ

[0]
K ) (k = 1, . . . ,K) where θ

[0]
k =

(µ
[0]
k ,Σ

[0]
k ), the corresponding EM algorithm is defined as follows:

E-step This step (on the (q+1)th iteration) consists of computing the conditional expectation

of (2.17), given the observed data x, using the current value θ[q] for θ. In this case, we have

12
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from (2.8) that

Q(θ;θ[q]) = E[Lc(θ;X, Z)|x;θ[q]]

=

n∑

i=1

K∑

k=1

τ
[q]
ik log πk +

n∑

i=1

K∑

k=1

τ
[q]
ik logN (xi;µk,Σk), (2.18)

where the posterior probabilities are given by (2.9)

τ
[q]
ik =

π
[q]
k N (xi;µ

[q]
k ,Σ

[q]
k )

K∑
l=1

π
[q]
l N (xi;µ

[q]
l ,Σ

[q]
l )

(i = 1, . . . , n; k = 1, . . . ,K). (2.19)

This step therefore computes the posterior probabilities that xi belongs to the kth component

density using the current parameter value θ[q].

M-step The M-step updates θ by the value θ[q+1] that maximizes the function Q(θ;θ[q]) with

respect to θ. Here, for the GMMs, the updated estimates of the mixing proportions πk are as

given by (2.12) and the updates of the component means µk are given by

µ
[q+1]
k =

n∑

i=1

τ
[q]
ik xi

/ n∑

i=1

τ
[q]
ik , (2.20)

and for the problem, known as heteroscedastic, the component covariance matrices Σk are

unequal. To model this, the updated estimate Σ
[q+1]
k of Σk is defined by

Σ
[q+1]
k =

n∑

i=1

τ
[q]
ik (xi − µ

[q+1]
k )(xi − µ

[q+1]
k )T

/ n∑

i=1

τ
[q]
ik , (2.21)

for k = 1, . . . ,K.

For homoscedastic case, i.e, Σk = Σ (k = 1, . . . ,K), then Σ is updated by

Σ[q+1] =
1

n

K∑

k=1

n∑

i=1

τ
[q]
ik (xi − µ

[q+1]
k )(xi − µ

[q+1]
k )T . (2.22)

The above updated estimates of µk and Σk can be deduced in an analogous method to

deriving the maximum likelihood estimates of the mean vector and the covariance matrix (from

an multivariate Gaussian distribution), that have been discussed by Anderson (2003) and given

in Appendix A.2.

Example 2.2.1. In this example, we generate 200 data points of a mixture of two Gaussian

components with,

µ1 = (0, 0)T , µ2 = (4, 4)T , Σ1 = Σ2 = Σ = I2, π1 = π2 = 1/2.
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The results after using EM algoritm for homoscedastic case and heteroscedastic case are clarified

−2 0 2 4 6

−
2

0
2

4
6

x

y

−2 0 2 4 6

−
2

0
2

4
6

x

y

Homoscedastic case Heteroscedastic case

Figure 2.1: The results on testing data.

in figure 2.1. Here, for homoscedastic case we obtain

µ̂1 = (0.128806119, 0.005730867)T , µ̂2 = (3.638555, 3.978157)T ,

Σ̂ =

(
1.04168655 0.03520841

0.03520841 0.90212557

)
, π̂1 = 0.4992703, π̂2 = 0.5007297, L(θ̂;x) = −696.7831.

The parameter estimates for heteroscedastic case are

µ̂1 = (0.17277148, 0.03419084)T , µ̂2 = (3.658629, 4.022911)T ,

Σ̂1 =

(
1.2332897 0.1860267

0.1860267 1.0160972

)
, Σ̂2 =

(
0.93025045 −0.09940991

−0.09940991 0.72055415

)
,

π̂1 = 0.5084509, π̂2 = 0.4915491, L(θ̂;x) = −693.8807.

However, estimating the covariance matrix of GMMs in large case (p ≫ 1) is “a curse of

dimensionality”. For a p-variate GMM with K components, the maximum dimension of total

number of parameters to estimate is equal to

(K − 1) +Kp+Kp(p+ 1)/2,

where (K − 1), Kp and Kp(p + 1)/2 are respectively the numbers of free parameters for the

proportions, the means and the covariance matrices. Hence, the number of parameters to

estimate is a quadratic function of p in the case of GMM. A large number of observations will be
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necessary to correctly estimate those model parameters. Furthermore, a more serious problem

occurs in the EM algorithm when computing the posterior probabilities τik = P[Zi = k|xi;θ]

which require the inversion of the covariance matrices Σk, k = 1, . . . ,K. In addition, if the

number of observations n is smaller than p (n < p) then the estimates of the covariance matrix

Σ̂k are singular and the clustering methods cannot be used at all. We will mention some

recent results that related to parameter reducing and feature selection for data clustering and

classification in high dimension in Section 2.4. This also includes the GMMs for data clustering.

Alongside with GMMs, which is widely used for data clustering there has been an interest

in the formulations of FMMs for random variables, utilizing non-Gaussian component densities.

The multivariate t FMM was first considered in McLachlan and Peel (1998) and Peel and

McLachlan (2000), for the clustering of data that arise from non-Gaussian subpopulations.

To model data where the component densities have non-elliptical confidence sets some skewed

densities in FMMs have been proposed such as skew-normal FMMs and skew-t FMMs. For

those results related to these models one can refer to the work of (Lee and Mclachlan, 2013; Lee

and McLachlan, 2013, 2014), etc. A Bayesian inference approach for skew-normal and skew-t

FMMs can be found in Frühwirth-Schnatter and Pyne (2010).

2.2.3 Determining the number of components

Until now, we have considered the FMMs and an EM algorithm for estimation the parameters

in a context of a known number of components K. Therefore, in practice, a natural question

arises: “How to choose the number of components from the data?”. This problem can be seen as

a model selection problem. In FMM literature, it is one of the most interesting research topics

and pays a lot of attentions; see (McLachlan and Peel., 2000, Chapter 6), Celeux and Soromenho

(1996), Fraley and Raftery (1998), Fonseca and Cardoso (2007) for reviews on the topic.

In the mixture model, the log-likelihood of the sample (x1, . . . ,xn) takes the form

LK(θ;x) =

n∑

i=1

log
[ K∑

k=1

πkfk(xi;θk)
]
.

The function LK(θ;x) cannot be used as a selection criterion which balances model fit and

model complexity for choosing the number K of components in the mixture. The most pop-

ular methodology for the selection of K is to use a criterion (score function) that ensures the

compromise between flexibility and over-fitting. In general, a score function that is explicitly

composed of two components: a component that measures the goodness of fit of the model to

the data (such as the log-likelihood value, the complete-data log-likelihood value, etc), and a

penalty function that governs the model complexity. This yields an overall score function of the

form of

score(model) = error(model)+penalty(model)

which will be minimized.
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As in general, the complexity of a model is related to the number of its free parameters

ν. Thus, the penalty function then involves the number of model parameters. Popular score

functions for the selection of K are information criteria (IC) which take into account the log-

likelihood value. An information criterion (IC) based selection process can be described as

below.

Let fK =
∑K

k=1 πkfk(x;θ) be a FMM with component density function of form fk(x;θ) and

suppose that (x1, . . . ,xn) is a data sample arising from a population with density fK0(x;θ0) =
∑K0

k=1 πkfk(x;θ), where K0 ∈ K ⊂ N. For each K ∈ K we estimate the MLE θ̂K,n and compute

the IC for n observations and K components as

IC(n,K) = −2L(θ̂K,n) + η(n, θ̂K,n),

where L(θ̂K,n) is the log-likelihood value, η(n, θ̂K,n) is the penalty function that depends on n

and the number of free parameters ν. After that, an estimator for K0 is selected by

K̂0 = arg min
K∈K

IC(n,K).

In this section, we cite the most commonly used criteria for model selection in FMM. The widely

used IC are defined as follows:

• Akaike Information Criterion (AIC) (Akaike, 1974)

AIC(n,K) = −2L(θ̂K,n) + 2ν(θ̂K,n).

• Bayesian Information Criterion (BIC) (Schwarz, 1978)

BIC(n,K) = −2L(θ̂K,n) + ν(θ̂K,n) log(n).

• Approximate weight of evidence (AWE) (Banfield and Raftery, 1993)

AWE(n,K) = −2L(θ̂K,n) + 2ν(θ̂K,n)(
3

2
+ log(n)).

• Integrated Classification Likelihood (ICL) (Biernacki et al., 2000)

ICL(n,K) = −2Lc(θ̂K,n) + ν(θ̂K,n) log(n),

where Lc(θ̂K,n) is the complete-data log-likelihood for the model.

A general review and an empirical comparison of these criteria are presented in (McLachlan and

Peel., 2000, Chapter 6).
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2.3 Mixture models for regression data

In applied statistics, tremendous number of applications deal with relating a random response

variable Y to a set of explanatory variables or covariates X through a regression-type model.

One can model the relationship between Y and X via the conditional density function of Y

given X = x, say, f(y|x). Similar to the density estimation, regression analysis is commonly

conducted via parametric models of the form of f(y|x;θ), where θ is the parameter vector. The

homogeneous case assumes the regression coefficients are the same for every observation data

point (X1,Y 1), . . . , (Xn,Y n). However, this assumption is often inadequate since parameters

may change for difference subgroups of observations. Such heterogeneous data can be modeled

with a mixture model for regression, as studied namely in Chamroukhi (2010, 2016d,a).

As an alternative extension of FMMs for the regression data, we suppose there is a latent

random variable Z with probability mass function P(Z = k) = πk, k = 1 . . . ,K and
∑K

k=1 πk =

1. Moreover, assuming that Y |X = x, Z = k has the density pk(y|x;θk), where θk is the

parameter vector of the kth subgroup, then we have the mixture of regression model

f(y|x;θ) =

K∑

k=1

πkpk(y|x;θk) (2.23)

by the same argument as that of (2.2).

This model was first introduced in Quandt (1972), since he studied the market for housing starts

by modeling the conditional density function of Y given X = x by a mixture of univariate two

component Gaussian linear regression models, i.e,

f(y|x;θ) = πN (y;xTβ1, σ
2
1) + (1− π)N (y;xTβ2, σ

2
2), (2.24)

where N (.;µ, σ2) is the Gaussian density function with mean µ and variance σ2.

In this thesis, Y is assumed to be a univariate random variable. The next subsection presents

the univariate Gaussian linear mixtures of regression models and the EM algorithm for estimat-

ing parameters.

2.3.1 Mixture of linear regression models

Let ((X1, Y1), . . . , (Xn, Yn)) be a random sample of n independent pairs (Xi, Yi), (i = 1, . . . , n)

where Yi ∈ Y ⊂ R is the ith response given some vector of predictors Xi ∈ X ⊂ R
p. Let

D = ((x1, y1), . . . , (xn, yn)) be the observed data sample.

For mixture of linear regression models (MLR), we consider the conditional density of Y

given X = x defined by a mixture of K Gaussian densities

f(y|x;θ) =

K∑

k=1

πkN (y;βk0 + xTβk, σ
2
k), (2.25)
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where the vector βk = (βk1, . . . , βkp)
T ∈ R

p, and scalars βk0 and σ2
k are the regression coefficients,

intercepts and variances of the kth component density, respectively. π = (π1, . . . , πK)T is the

vector of mixing propositions.

2.3.2 MLE via the EM algorithm

The observed-data log-likelihood function for this model is given by

L(θ) =

n∑

i=1

log

K∑

k=1

πkN (yi;βk0 + xTi βk, σ
2
k). (2.26)

The EM algorithm can be used to obtain the updated estimates of the parameter θ as in case

of a FMM described in Subsection 2.2.1 (see also Subsection 2.2.2). We can therefore use a

set {z1, . . . ,zn} of latent variables where zik ∈ {0, 1} in which, for each data point, all of the

elements k = 1, . . . ,K are 0 except for a single value of 1 indicating which regression model of

the mixture was responsible for generating that data point.

The complete-data log-likelihood then takes the form

Lc(θ) =

n∑

i=1

K∑

k=1

zik(log πk + logN (yi;βk0 + xTi βk, σ
2
k)). (2.27)

The EM algorithm starts with an initial parameter θ[0] and repeat the following steps until

convergence:

E-step (on the (q + 1)th iteration) This step consists of computing the expectation of the

complete-data log-likelihood:

Q(θ;θ[q]) = E[Lc(θ)|x,y;θ[q]]

=

n∑

i=1

K∑

k=1

E[Zik|x,y;θ[q]](log πk + logN (yi;βk0 + xTi βk, σ
2
k))

=

n∑

i=1

K∑

k=1

τ
[q]
ik log πk +

n∑

i=1

K∑

k=1

τ
[q]
ik logN (yi;βk0 + xTi βk, σ

2
k), (2.28)

where

τ
[q]
ik = E[Zik|x,y;θ[q]] = P[Zik = 1|x,y;θ[q]]

=
π

[q]
k N (yi;β

[q]
k0 + xTi β

[q]
k , σ

[q]2
k )

K∑
l=1

π
[q]
l N (yi;β

[q]
l0 + xTi β

[q]
l , σ

[q]2
l )

(2.29)

is the posterior probability that (xi, yi) belongs to the kth component given the current param-

eter estimation θ[q], and x = (x1, . . . ,xn), y = (y1, . . . , yn).
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M-step (on the (q + 1)th iteration) In this step, the value of the parameter θ is updated

by computing the parameter θ[q+1] that maximizing the Q-function with respect to θ. The

Q-function in (2.28) is decomposed as

Q(θ;θ[q]) = Q(π;θ[q]) +

K∑

k=1

Qk(θk;θ
[q]), (2.30)

where

Q(π;θ[q]) =

n∑

i=1

K∑

k=1

τ
[q]
ik log πk,

Qk(θk;θ
[q]) =

n∑

i=1

τ
[q]
ik logN (yi;βk0 + xTi βk, σ

2
k), (2.31)

and θk = (βk0,β
T
k , σ

2
k)
T is the parameter vector of the kth component density function.

The maximization of Q(θ;θ[q]) with respect to θ is the performed by separately maximizing

Q(π;θ[q]) and Qk(θk;θ
[q]) (k = 1 . . . ,K). Maximizing Q(π;θ[q]) with respect to π subject

to
∑K

k=1 πk = 1 consists of constrained optimization problem, which is solved using Lagrange

multipliers and leading to the updated estimate for πk given by (2.12).

The maximization of Qk(θk;θ
[q]) with respect to (βk0,β

T
k ) has the same form as weighted linear

regression and the estimated regression coefficients in this case are given by

(β
[q+1]
k0 ,β

[q+1]T
k )T = (XTR

[q]
k X)−1XTR

[q]
k y, (2.32)

where R
[q]
k = diag(τ

[q]
1k , . . . , τ

[q]
nk), X is the design matrix and y is the response vector.

Finally, the estimation of the variance σ2
k is given by maximizing

n∑

i=1

τ
[q]
ik

[
log

1√
2πσk

− (yi − βk0 − xTi βk)
2

2σ2
k

]

with respect to σ2
k and takes the form

σ
[q+1]2
k =

n∑

i=1

τ
[q]
ik (yi − β[q+1]

k0 − xTi β
[q+1]
k )2

/ n∑

i=1

τ
[q]
ik , (for heteroscedastic case) (2.33)

and

σ[q+1]2 =
1

n

K∑

k=1

n∑

i=1

τ
[q]
ik (yi − β[q+1]

k0 − xTi β
[q+1]
k )2. (for homoscedastic case) (2.34)

Example 2.3.1. In this example, a simulation study was performed whereupon the data was
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generated from a two component Gaussian MLR with one covariate, with the form

f(y|x;θ) = π1N (y;β10 + β11x, σ
2) + π2N (y;β20 + β21x, σ

2), (2.35)

where θ = (π1, β10, β11, β20, β21, σ
2)T , and x is generated from a uniform distribution over [0, 1].

Here, 300 data points were generated with π1 = 2/3, β10 = −1, β11 = 1.5, β20 = 0.5, β21 = −1

and σ = 0.1. Using the EM algorithm, the estimated parameters are π̂1 = 0.6664539, β̂10 =

−1.008368, β̂11 = 1.523120, β̂20 = 0.4912459, β̂21 = −1.0036146 and σ̂ = 0.09725428. The log-

likelihood is L(θ̂) = 107.87553. Visualizations of the simulation scenario is provided in Figure

2.2.

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

x

y

Figure 2.2: Illustration of the MLR on two-component MLR model. The black and red lines are
the fitted conditional expectations of the density components 1 and 2, respectively.

2.3.3 Mixtures of experts

In a more general context, it is useful to consider that the latent variable Z also has a conditional

relationship with some covariate vector R ∈ R
p. Commonly, R is also the explanatory variables

vector, i.e, R = X. Jacobs et al. (1991) modeled the conditional probability of Z = k|X = x

via the logistic function (also called softmax function) and named these models as mixtures of

experts.

The mixture of experts (MoE) model assumes that the observed pairs (x, y) are generated

from K ∈ N (possibly unknown) tailored probability density components (the experts), governed

by a hidden categorical random variable Z ∈ [K] = {1, . . . ,K} that indicates the component

from which a particular observed pair is drawn. The latter represents the gating network.

Formally, the MoE decomposes the probability density of the observed data as a convex sum of

a finite experts weighted by the gating network (typically a softmax function), and defined by
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the following semi-parametric probability density (or mass) function:

p(y|x;θ) =

K∑

k=1

πk(x;w)pk(y|x;θk) (2.36)

that is parameterized by the parameter vector defined by θ = (wT ,θT1 , . . . ,θ
T
K)T , where wT =

(wT
1 , . . . ,w

T
K−1), and θk (k = 1, . . . ,K) is the parameter vector of the kth expert.

The gating network is defined by the distribution of the hidden variable Z given the predictor

x, i.e., πk(x;w) = P(Z = k|X = x;w), which is in general given by gating softmax function of

the form:

πk(x;w) = P(Z = k|X = x;w) =
exp(wk0 + xTwk)

1 +
K−1∑
l=1

exp(wl0 + xTwl)

(2.37)

for k = 1, . . . ,K − 1 with wT
k = (wk0,w

T
k ) ∈ R

p+1 and wT
K = (wK0,w

T
K) = 0 for identifiability

(Jiang and Tanner, 1999a). The experts network is defined by the conditional distribution

pk(yi|xi;θk) which is the short notation of p(yi|X = x, Zi = k;θ). The experts are chosen to

sufficiently represent the data for each group k. Tailored regressors explaining the response y by

the predictor x for continuous data, or multinomial experts for discrete data. For example, non-

Normal MoE models (Chamroukhi, 2015), including MoE for non-symmetric data (Chamroukhi,

2016c) and robust MoE (Chamroukhi, 2017, 2016b; Nguyen and McLachlan, 2016), with public

software (e.g see Chamroukhi et al. (2019a)), have been introduced. To avoid singularities and

degeneracies of the MLE as highlighted namely in Stephens and Phil (1997); Fraley and Raftery

(2007) one can regularize the likelihood through a prior distribution over the model parameter

space. For a complete account of MoE, the types of gating networks and experts networks,

reader can refere to Nguyen and Chamroukhi (2018). A comprehensive survey of the MoEs can

be found in Yuksel et al. (2012).

Let Y1, . . . , Yn be an independent random sample, with corresponding covariates xi (i =

1, . . . , n), arising from a distribution with density of form (2.36), and let yi be the observed

data of Yi (i = 1, . . . , n). The generative process of the data assumes the following hierarchical

representation. Given the predictor xi, the categorical variable Zi follows the multinomial

distribution:

Zi|xi ∼ Mult(1;π1(xi;w), . . . , πK(xi;w)) (2.38)

where each of the probabilities πzi
(xi;w) is given by the multinomial logistic function (2.37).

Then, conditioning on the hidden variable Zi = zi, given the covariate xi, a random variable Yi

is assumed to be generated according to the following representation

Yi|Zi = zi,Xi = xi ∼ pzi
(yi|xi;θzi

) (2.39)

where pzi
(yi|xi;θzi

) = p(yi|Zi = zi,Xi = xi;θzi
) is the probability density or the probability
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mass function of the expert zi depending on the nature of the data (xi, yi) within the group zi.

A common choice to model the relationship between the input x and the output Y is by

considering regression functions. Within each homogeneous group Zi = zi, the response Yi,

given the expert k, is modeled by the noisy linear model: Yi = βzi0 + βTzi
xi +σzi

εi, where the εi

are standard i.i.d zero-mean unit variance Gaussian noise variables, the bias coefficient βk0 ∈ R

and βk ∈ R
p are the usual unknown regression coefficients describing the expert Zi = k, and

σk > 0 corresponds to the standard deviation of the noise. In such a case, the generative model

(2.39) of Y becomes

Yi|Zi = zi,xi ∼ N (.;βzi0 + βTzi
xi, σ

2
zi

)· (2.40)

Assuming that, conditionally to the xis, the Yis are independent distributed with densities

f(yi|xi;θ), respectively, in which each of these densities is a MoE of K Gaussian densities,

f(yi|xi;θ) =

K∑

k=1

πk(xi;w)N (yi;βk0 + xTi βk, σ
2
k),

where the parameter vector of the kth expert is θk = (βk0,β
T
k , σ

2
k)
T (k = 1, . . . ,K).

In the considered model for Gaussian regression, the incomplete-data log-likelihood function is

given by

L(θ) =

n∑

i=1

log
[ K∑

k=1

πk(xi;w)N (yi;βk0 + βTk xi, σ
2
k)
]
, (2.41)

and the complete-data log-likelihood has the form of

Lc(θ) =

n∑

i=1

K∑

k=1

zik log
[
πk(xi;w)N (yi;βk0 + βTk xi, σ

2
k)
]
. (2.42)

The EM algorithm for maximizing the log-likelihood function (2.41) can be described as follows

(see Jacobs et al. (1991); Yuksel et al. (2012); Nguyen and Chamroukhi (2018)):

E-step This step requires computing the expectation of the complete-data log-likelihood under

the parameter vector θ[q]. This is simply equivalence to computing the posterior probability that

(xi, yi) belongs to the kth expert given the current parameter θ[q]. The Q(θ;θ[q]) function has

the form of

Q(θ;θ[q]) = Q(w;θ[q]) +

K∑

k=1

Qk(θk;θ
[q]), (2.43)

where

Q(w;θ[q]) =

n∑

i=1

K∑

k=1

τ
[q]
ik log πk(xi;w), (2.44)

Qk(θk;θ
[q]) =

n∑

i=1

τ
[q]
ik logN (yi;βk0 + xTi βk, σ

2
k), (2.45)
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with

τ
[q]
ik = E[Zik|x,y;θ[q]]

=
πk(xi;w

[q])N (yi;β
[q]
k0 + xTi β

[q]
k , σ

[q]2
k )

K∑
l=1

πl(xi;w[q])N (yi;β
[q]
l0 + xTi β

[q]
l , σ

[q]2
l )

, (2.46)

and πk(xi;w
[q]) is defined by (2.37).

M-step This step updates θ with θ[q+1] by maximizing the Q-function can be done separately

by maximizing Q(w;θ[q]) and Qk(θk;θ
[q]). For the experts, the formula (2.32) can be used to

update (βk0,βk) and the formulas (2.33), (2.34) are used to update σ2
k, σ

2, respectively.

Updating the parameters for the gating network requires to maximize Q(w;θ[q]). This

function is concave and cannot be maximized in a closed form. The Newton-Raphson algorithm is

generally used to perform the maximization as well as other gradient-based techniques (see Minka

(2001)). Here, we consider the use of the Newton-Raphson algorithm to maximize Q(w;θ[q])

with respect to w. The Newton-Raphson algorithm is an iterative procedure, which consists of

starting with an initial arbitrary solution w(0) = w[q], and updating the estimation of w until

the convergence criterion is reached. A single update is given by

w(s+1) = w(s) − [▽2Q(w(s);θ[q])]−1▽Q(w(s);θ[q]), (2.47)

where ▽2Q(w(s);θ[q]) is the Hessian matrix of Q(w;θ[q]) with respect to w(s) and ▽Q(w(s);θ[q])

is the gradient vector of Q(w;θ[q]) at w(s). For the closed form formulas of the Hessian matrix

and the gradient vector one can refer to Chamroukhi (2010). The main advantage of the Newton-

Raphson lies in the fact that it is quadratic convergence (Boyd and Vandenberghe (2004)).

Zeevi et al. (1998) showed that under some regularity conditions, then for any target function

f(x) belongs to the Sobolev class, f ∈W r
p (L)

W r
p (L) ,

{
g(x) : ‖g‖W r

p
=
∑

|α|≤r

‖g(α)(x)‖p ≤ L,x ∈ Id
}

where

g(α) ≡ ∂‖α‖1g

∂xα1
1 xα2

2 . . . xαd

d

,

α ∈ N
d and Id = [−1, 1]d, then

sup
f∈W r

p

inf
qK∈QK

‖f(x)− qK(x)‖Lp(Id,λ) ≤
c

Kr/d
, 1 ≤ p ≤ ∞ (2.48)

with c is an absolute constant, the Lp(I
d, λ) norm is defined as ‖f‖Lp(Id,λ) ≡

(∫
Id |f |pdλ

)1/p
and
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the manifold QK is given by

QK ,

{
q(x) : q(x) =

∑K
k=1 ckσ(βk0 + xTβk)∑K
k=1 σ(βk0 + xTβk)

, ck, βk0 ∈ R,βk ∈ R
d
}
.

The ridge function σ(.) is chosen to satisfy Assumption 2 of Zeevi et al. (1998). By choosing

the exponent ridge function σ(t) = et, then the manifold QK is of the form

QK ,

{
q(x) : q(x) =

K∑

k=1

exp(βk0 + xTβk)∑K
k=1 exp(βk0 + xTβk)

ck, ck, βk0 ∈ R, βk ∈ R
d
}
.

This shows that as K →∞ and under regularity conditions, for a given function f , there exists

a mean function q(x) of a MoE model that can approximate f , arbitrarily closely. Here,

q(x) = E[Y = y|X = x;θ] =

K∑

k=1

πk(x;w)(βk0 + xTβk). (2.49)

2.3.4 Mixture of generalized linear models

Until now, we have consider the cases where the component density functions of both MLR and

MoE are the Gaussian densities. It is worth to consider the cases that these component density

functions are described as generalized linear models (GLMs). GLMs were first introduced in

Nelder and Wedderburn (1972) as a method for unifying various disparate regression methods,

such as Gaussian, Poisson, logistic, binomial and gamma regressions. They consider various

univariate cases, where the expectation of the response variable Y given the covariate x can be

expressed as a function of a linear combination of x

E(Y |X = x) = h−1(β0 + xTβ), (2.50)

h(.) is the univariate invertible link function. In Table 2.1, we present characteristics of some

common univariate GLMs which were considered in Nelder and Wedderburn (1972). For more

details regarding to GLMs, see McCullagh (2018).

Model dom(Y ) h−1(β0 + xTβ) f(y) E(Y |X = x)

Gaussian R β0 + xTβ N (y;µ, σ2) µ

Binomial {0, . . . , N} N exp(β0+xT β)
1+exp(β0+xT β)

(
N
y

)
py(1− p)N−y Np

Gamma (0,∞) −1/(β0 + xTβ) Γ(y; a, b) a/b

Poisson N exp(β0 + xTβ) exp(−λ)λy

y! λ

Table 2.1: Characteristics of some common univariate GLMs.
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Consider the mixtures of GLMs. These models can be expressed as follows

f(y|x;θ) =

K∑

k=1

πkfk(y; g(βk0 + xTβk,ϕk),ϕk) (2.51)

where fk(.) belongs to the class of GLMs, and θk = (βk0,β
T
k ,ϕ

T
k )T is the parameter vector of

the kth component density. The characterizations of fk(.), g(.) and ϕk for common GLMs are

presented in Table 2.2.

Model dom(Y ) ϕk g(βk0 + xTβk,ϕk) fk(y; g(βk0 + xTβk,ϕk),ϕk)

Gaussian R σ2
k βk0 + xTβk N (y;βk0 + xTβk, σ

2
k)

Binomial {0, . . . , N} None exp(β0+xT β)
1+exp(β0+xT β)

(
N
y

)[ exp(β0+xT β)
1+exp(β0+xT β)

]y[ 1
1+exp(β0+xT β

)
]N−y

Gamma (0,∞) bk − bk
βk0+xT βk

Γ(y;− bk
βk0+xT βk

, bk)

Poisson N None exp(β0 + xTβ) exp(− exp(β0+xT β)) exp((β0+xT β)y)
y!

Table 2.2: Parameter vectors of some common univariate GLMs.

The fitting of mixtures of GLMs has been considered by Jansen (1993), Wedel and DeSarbo

(1995) via EM algorithms. Along with the original GLMs, Wedel and DeSarbo (1995) also

reported the inverse Gaussian regression models as an alternative extension to the gamma model.

Other interesting works are (Aitkin, 1996, 1999). For the multivariate version of mixture of

GLMs, it is interesting to consider the work of Oskrochi and Davies (1997).

Asides from the mixtures of GLMs, the MoEs based on GLMs have also been widely men-

tioned in literature. For example, (Jiang and Tanner, 1999a,b,c, 2000) considered the use of

GLM based MoEs from various perspectives. An R package flexmix for estimating the param-

eters of the MoEs based on GLMs is also introduced in (Grün and Leisch, 2007, 2008). Jiang

and Tanner (1999a) established the approximation error when using the MoEs based on GLMs.

Actually, their theorem can be interpreted as below:

Let Ω = [0, 1]p, the space of the predict x. Let Y ⊆ R be the space of the response y. Let

(Y,FY , λ) be a general measurable space, (Ω,FΩ, κ) be a probability space such that κ has a

positive continuous density with respect to the Lebesgue measure on Ω and (Ω×Y,FΩ⊗FY , κ⊗λ)

be the product measure space. Consider a random predictor-response pair (X, Y ). Suppose that

X has a probability measure κ, and (X, Y ) has a probability density function (pdf) ϕ(., .) with

respect to κ⊗ λ, where ϕ is of the form

ϕ(x, y) = π(h(x), y).

Here,

π(., .) : R× Y → R
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has the one-parameter exponential form

π(h, y) = exp
{
a(h)y + b(h) + c(y)

}
, for y ∈ Y, (2.52)

such that
∫
Y π(h, y)dλ(y) = 1 for each h ∈ R. a(.) and b(.) are analytic and have nonzero

derivatives on R and c(.) is FY -measurable. Assume that h ∈W 2
∞(K0), where W 2

∞(K0) is a ball

with radius K0 in a Sobolev space with sup-norm and second-order continuous differentiability.

Denote the set of all probability density functions ϕ(., .) = π(h(.), .) as Φ.

Consider an approximator f in the MoE family is assumed to have the following form

f = fK(x, y;θ) =

K∑

k=1

πk(x;w)π(hk(x), y), (2.53)

where hk(x) = βk0 +xTβk and π(., .) has the form of (2.52). Then, under some conditions Jiang

and Tanner (1999a) proved the following result:

Theorem 2.3.1. (Approximation rate in KL divergence)

sup
ϕ∈Φ

inf
fK∈ΠK,S

KL(fK , ϕ) ≤ c

K4/p
,

where c is a constant independent of p, ΠK,S is a restriction on the set of the parameters of fK ,

imposed by Jiang and Tanner (1999a) and KL(fK , ϕ) is the Kullback-Leibler divergence between

fK and ϕ defined by

KL(fK , ϕ) =

∫ ∫

Ω×Y
fK(x, y) log

{fK(x, y)

ϕ(x, y)

}
dκ(x)dλ(y).

2.3.5 Clustering with FMMs

One of the most common applications of FMMs is to cluster heterogeneous data, i.e the so-called

model-based clustering approach. Suppose that we have an observation X from a FMM of form

(2.4). One can consider each of the component densities fk(x;θk) as a subpopulation density

of the overall population defined by density (2.4). Hence, it is reasonable to think about the

probability that X belongs to one of the K densities as clustering criterion.

Using the characterization of a FMM, we can consider the label Z = k as the true cluster that

the observation X belongs to (i.e. X is generated from the kth component density fk(x;θk)).

In addition, we also can use the Bayes’ rule to compute the posterior probability that Z = k

given the observation of Y (see also (2.9))

P(Z = k|X = x) =
πkfk(x;θk)∑K
l=1 πlfl(x;θl)

, (k = 1, . . . ,K).

= τk(x) (2.54)
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A hard-clustering of X is given using the posterior probability (2.54) via the Bayes’ assignment

rule

ẑ = arg max
k

τk(x). (2.55)

ẑ is considered as the cluster that X is generated from. For more details on the properties of

the Bayes’ rule see Wasserman (2013).

Now, assume that x = (x1, . . . ,xn) is a sample generated form a parametric K component

FMM of form (2.4) with the parameter vector θ = (π1, . . . , πK−1,θ1, . . . ,θK). Let θ̂ denotes the

estimated parameter vector for θ (θ̂ can be estimated via EM algorithm). Hence, the clustering

task via FMMs can be described as follows:

i) For each observation xi, compute the posterior probabilities τik ≡ τk(xi; θ̂) via (2.9).

ii) Use the Bayes’ rule (2.55) to determine the cluster label of xi.

In GMMs framework, the equivalent form of (2.9) is given by (2.19). Similar strategies can

be used to cluster the data for MLR models and MoE models. In these settings, one just

need to replace the formula (2.9) with (2.29) and (2.46), respectively, to compute the posterior

probabilities.

2.4 Clustering and classification in high-dimensional setting

In this part, we focus on some recent methods for model-based clustering in high-dimensional

setting. The classical methods basically can be split into three families: dimensionality reduc-

tion, regularization and constrained and parsimonious models see for example Bouveyron and

Brunet-Saumard (2014) for a review. Aside with these methods, recent research also provides

some interesting approaches to deal with high-dimensional data such as subspace clustering

methods and feature selection methods. A helpful text for these methods is Bouveyron and

Brunet-Saumard (2014).

2.4.1 Classical methods

Dimensionality reduction approaches

For dimensionality reduction methods, one assumes that his data set with the number p of

measured variables is too large and, implicitly, there is a small subspace of order d≪ p contains

most of his data. In a Gaussian mixture scenario, once the data is projected in this subspace,

it is possible to apply the EM algorithm on the projected observations to obtain a partition of

the original data (if d is small enough).

One of the most popular linear methods used for dimensionality reduction is the principal

component analysis (PCA), which was introduction by Pearson (1901). Pearson described it as a

linear projection that minimizes the average projection cost. Tipping and Bishop (1999) provided

a probabilistic view of PCA by assuming the observed variables X ∈ R
p, are conditionally
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independent given the values of the latent (or unobserved) variables T ∈ R
d. The relationship

between X and T is of the linear form

X = ΛT + µ + ε. (2.56)

The p × d matrix Λ relates the two sets of variable, while the parameter µ permits the model

to have non-zero mean, ε ∼ N (0, σ2Ip). Hence, the T conditional probability distribution over

X-space is given by

X|T ∼ N (µ + ΛT , σ2Ip). (2.57)

Furthermore, if the marginal distribution over the latent variables T is Gaussian T ∼ N (0, Id),

then the marginal distribution of X is also Gaussian X ∼ N (µ,ΛΛT + σ2Ip). Estimates for Λ

and µ can also be obtained by iterating maximization of the log-likelihood function, such as by

using EM algorithm.

One will then cluster the observations using T as the input data rather than X. Ghosh

and Chinnaiyan (2002) used this strategy to cluster microarray datasets. An EM algorithm for

clustering the latent variable T can also be found in this work. A Bayesian version for this

approach was investigated by Liu et al. (2003).

Factor analysis (FA) is another way to deal with dimensionality reduction. The only differ-

ence between PCA and FA lies in the fact that, with FA models, the distribution of ε in (2.56)

with a Gaussian distribution given by

ε ∼ N (0,Ψ),

where Ψ is a diagonal matrix, Ψ = diag(σ2
1, . . . , σ

2
p). Hence, it is to reduce the dimensionality

of the space and to keep the observed covariance structure of the data. In the same context,

Tamayo et al. (2007) suggested decomposing the data matrix X using the nonnegative matrix

factorization (Lee and Seung (1999)) to reduce the dimension before clustering the data.

However, all these approaches have a number of drawbacks. The resulting clustering is not

sparse in the features, since each latent variable Th, h = 1, . . . , d is a linear combination of the

full set of p features. Moreover, there is no guarantee that the new feature Th will contains the

information that one is interested in detecting via clustering. In fact, Chang (1983) studied the

effective of performing PCA to reduce the data dimension before clustering. He generated a

data set from a mixture of two Gaussian distributions and found that using this procedure is

not justified since the first component does not necessarily provide the best separation between

subgroups.

Mixtures with regularization of the covariance matrix

As we have mentioned at the end of Section 2.2.1, it is possible to see the problem in clustering of

high-dimensional data as a numerical problem in computing the matrix inversion of Σk, which is
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used to compute the posterior probabilities τik and the log-likelihood function. From this point

of view, a simple way to tackle this problem is to regularize the estimation of Σk before their

inversion. This can be done by using the ridge regression, which adds a small positive quantity

δk to the diagonal of Σ̂k

Σ̃k = Σ̂k + δkIp.

A general version was introduced by Hastie et al. (1995) while these authors studied the penalized

discriminant analysis

Σ̃k = Σ̂k + δΩ,

where Ω is a p× p symmetric and nonnegative definite matrix. This approach is different from

the previous one since it also penalizes the correlations between the predictors. Friedman (1989)

proposed a compromise between linear discriminant analysis (LDA) and quadratic discriminant

analysis (QDA), which allows one to shrink the separate covariances of QDA to a common

covariance as in LDA. The regularized covariance matrices have the form

Σ̂k(λ) =
λ(nk − 1)Σ̂k + (1− λ)(n−K)Σ̂

λ(nk − 1) + (1− λ)(n−K)
, (2.58)

where Σ̂ is the pooled covariance matrix as used in LDA and Σ̂k is the covariance matrix of

group kth used in QDA. λ ∈ [0, 1] allows a continuum of models between LDA and QDA.

A similar strategy allows Σ̂k(λ) to be reduced to the scalar covariance. Combining these

models leads to a more general family of covariances Σ̂k(γ, λ), indexed by a pair of parameters

Σ̂k(γ, λ) = γΣ̂k(λ) + (1− γ)tr[Σ̂k(λ)]

p
Ip,

for λ ∈ [0, 1] and tr[Σ̂k(λ)]/p is the average eigenvalue of Σ̂k(λ).

It is also possible to use the Moore-Penrose pseudo-inverse of Σ̂ instead of the usual inverse

Σ̂
−1

. For the generalized inverse of matrices and its applications, the reader can refer to Rao

(1971). A comprehensive overview of regularization techniques in classification can be found in

Mkhadri et al. (1997).

Constrained and parsimonious mixture models

In this section, we consider another way to tackle the curse of dimensionality by consider it as

a problem of over-parameterized modeling. As we have discussed in Section 2.2.1, the GMM

requires lots of parameters to infer the model in high-dimension setting. The use of constrained

and parsimonious models is another approach to reduce the number of parameters in model-

based clustering.

Constrained Gaussian mixture models. A classical method to reduce the number of free parame-

ters of GMMs is to add some constrains on the model through their parameters. Mainly, we will
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Model Number of parameters K = 3, p = 50

Full GMM (K − 1) +Kp+Kp(p+ 1)/2 3977

Homoscedastic GMM (K − 1) +Kp+ p(p+ 1)/2 1427

Diag-GMM (K − 1) +Kp+Kp 302
Homoscedastic Diag-GMM (K − 1) +Kp+ p 202

Table 2.3: Number of free parameters to estimate for constrained GMMs.

add some restrictions on the covariance matrices Σk, which commonly requires p(p+1)/2 param-

eters to construct one of them. A full GMM with K components needs Kp(p+ 1)/2 real values

for the covariance matrices. A simple way to reduce the parameter space is to constraint the K

covariance matrices to be the same across all mixture components, i.e., using the homoscedastic

case. It is also possible to assume that the variables are conditionally independent. This as-

sumption implies that all the covariance matrices are diagonal, i.e., Σk = diag(σ2
k1, . . . , σ

2
kp) for

all k = 1, . . . ,K, and the associated model (Diag-GMM) has a low number of free parameters.

In addition, one can reduce the free parameters by assuming that σ2
kj = σ2

k, ∀j = 1, . . . , p.

He can also consider the homoscedastic case for those models. Table 2.3 provides the number

of parameters which are used for those constrained models. However, it is hard to find a real

data set, in which the features are conditionally independent. Therefore, it restricts the range

of applications of these models. Banfield and Raftery (1993) and Celeux and Govaert (1995)

developed a different criteria that are more general than the constrained models. The key to

their approach is a reparameterization of the covariance matrix Σk in term of its eigenvalue

decomposition. Celeux and Govaert (1995) called them parsimonious Gaussian models.

Parsimonious Gaussian models. These models parametrize the covariance matrices from their

eigenvalue decomposition (see (Bellman, 1960, Section 3.5))

Σk = λkDkAkD
T
k , (2.59)

where Dk is the matrix of eigenvectors determines the orientation of the group kth, Ak is

a diagonal matrix with the eigenvalues of Σk on the diagonal that explains its shape, and the

parameter λk determines the volume. By constraining the parameters λk, Dk and Ak, Celeux and

Govaert (1995) enumerated 14 different models which are listed in Table A.1. The second column

of Table A.1 corresponds to the name used by Raftery and Dean (2006). The parsimonious

models propose a trade-off between the perfect modeling and what one can correctly estimate

in practice. The reader can refer to Celeux and Govaert (1995) for more details on these models

including parameter estimation methods. Model selection can be achieved using the Bayesian

information criterion (BIC) Schwarz (1978).

The drawback of all the classical approaches lies in the fact that all the features are kept while

clustering the data. Hence, subspace clustering methods are good alternatives to dimensionality

reduction approaches. Recent works have focus on reduce data dimensionality by selecting
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relevant variables for the clustering task. We take a survey on these works in next sections.

2.4.2 Subspace clustering methods

In this part, we focus on some subspace clustering methods in the point of view of model-

based approach. These methods are mostly related to the factor analysis model assuming the

observation variable is linked to a latent variable through a linear relationship. EM algorithms

for maximum likelihood factor analysis can be given through the work of Rubin and Thayer

(1982).

Mixture of factor analyzers

The idea of Mixture of factor analyzers (MFA) was introduced by Ghahramani and Hinton (1996)

in which an EM algorithm was proposed for parameter estimation, and was first presented from

the perspective of a method for model-based density estimation from high-dimensional data in

McLachlan and Peel (2000). In PFA, for each cluster, the observed variable, X ∈ R
p is linked

with a latent variable Y ∈ R
d (d < p) through a linear relationship which are different from

each cluster. The model can be described as follows:

Let {x1, . . . ,xn} be n independent observations of a random vector X ∈ R
p. Assume that

X can be expressed from an unobserved random vector Y ∈ R
d (d < p), named the factor.

Moreover, assume that there are n unobserved partition {z1, . . . , zn}, which are assumed to be

independent unobserved realizations of a random latent variable Z ∈ {1, . . . ,K} where zi = k

indicates that xi belongs to the kth factor analyzer.

Z ∼ Mult(1;π1, . . . , πK),

where πk > 0, for all k and
∑K

k=1 πk = 1. The relationship between X and Y conditionally to

Z is given by

X|Z=k = µk + ΛkY + ε, (2.60)

where µk is the mean vector of the kth factor analyzer, Λk is a p× d matrix. ε ∈ R
p is assumed

to be a center Gaussian distribution with a diagonal covariance matrix Ψ and is independent

with Y ,

ε ∼ N (0,Ψ).

Besides, as in regular factor analysis, the factors are all assumed to be N (0, Id) distributed,

therefore,

Y |Z=k = Y ∼ N (0, Id).

This implies that the conditional distribution of X given Y , Z is also Gaussian

X|Y , Z = k ∼ N (µk + ΛkY ,Ψ),
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and

X|Z = k ∼ N (µk,ΛkΛ
T
k + Ψ).

The marginal distribution of X is thus a GMM

f(x) =

K∑

k=1

p(Z = k)fk(x|Z = k) =

K∑

k=1

πkN (x;µk,ΛkΛ
T
k + Ψ). (2.61)

For this model, we need (K − 1) parameters for the mixing proportions, Kp for the means

{µk}Kk=1. If d is chosen sufficiently smaller than p, then there are some constrains on the

covariance matrices ΛkΛ
T
k + Ψ and thus reduces the number of free parameters to be estimated.

In the case d > 1, there is an infinity of choices for Λk since one can replace Λk by ΛkC, where

C is an orthogonal matrix, i.e., CCT = Id. Hence, a way to specify Λk is to choose it in such

that the d× d matrix

ΛTkΨΛk

is diagonal. Using this approach, Lawley and Maxwell (1962) showed that the number of free

parameters for a regular factor analysis model (without the mean vector) is p + pd − d(d −
1)/2. Therefore, Kd(p− (d− 1)/2) + p free parameters are required to estimate the component

covariance matrices in equation (2.61). The model complexity is (K − 1) +Kp +Kd(p − (d −
1)/2) + p. For example with K = 3, p = 50 and d = 5, then 1672 parameters have to be

estimated. An EM algorithm for parameter estimation is also given in Ghahramani and Hinton

(1996).

This model was generalized later by McLachlan et al. (2003) who removed the constraint of

the noise ε in (2.60). Hence,

X|Z=k = µk + ΛkY + εk, (2.62)

where εk ∼ N (0,Ψk), and Ψk = diag(σ2
k1, . . . , σ

2
kp). In this case, the model complexity increases

and takes the following value: (K− 1)+Kp+Kd(p− (d− 1)/2)+Kp. Regarding the model in-

ference, McLachlan et al. (2003) proposed to make use of an alternating expectation-conditional

maximization (AECM) algorithm (Meng and Van Dyk (1997)) to fit the mixture of factor an-

alyzers by maximum likelihood. An interesting application of this model can be found in the

work of McLachlan et al. (2002), where the authors used it to cluster gene expression microarray

data.

To reduce the complexity of the MFA models, Baek et al. (2009) reparameterized the mixture

model with restrictions on the means and covariance matrices, such that, for k = 1, . . . ,K

µk = Aρk (2.63)

and

Σk = AΩkA
T +D, (2.64)

where µk and Σk are respectively the mean vector and covariance matrix of kth cluster, ρk
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is a d-dimensional vector, A is a p × d orthonormal matrix of loading on d unobserved factors

(ATA = Id), Ωk is a d× d positive definite symmetric matrix and D is a diagonal p× p matrix.

The orthonormal condition on the matrix A is to make sure the solution Â for A is unique

up to postmultiplication by an orthogonal matrix (see (Baek et al., 2009, Appendix) for more

details). This model is named as mixtures of common factor analyzers (MCFA) by its authors,

who proof that in fact MCFA is a special case of the MFA approach. According to the MCFA

assumptions, there are Kd means parameters to estimate instead of Kp in the MFA model.

For the loading matrix A which is constrained to have orthonormal columns and to be common

in all classes, then only pd − d(d + 1)/2 parameters are required to estimate it. Moreover, p

positive values are also required to estimate D. Finally, for the positive definite symmetric

matrices Ωk, one need to use Kd(d + 1)/2 parameters. Hence, the complexity of the MCFA is

(K − 1) +Kd+ p+ (pd− d(d+ 1)/2) +Kd(d+ 1)/2. Typically, for a model with K = 3 classes,

p = 50 and d = 5 then the complexity is equal to 302. The main advantage of the MCFA model

is that the (estimated) posterior means of the factors corresponding to the observed data can

be used to display the latter in low-dimensional spaces. The MCFA models can be fitted via the

EM algorithm given by their authors (see (Baek et al., 2009, Appendix)).

Expanded parsimonious Gaussian mixture models

Inspired from MFA, McNicholas and Murphy (2010) proposed a family of models known as the

expanded parsimonious Gaussian mixture models (EPGMM) family. Each component factor

the covariance matrix Σk in (2.61) is given by

Σk = ΛkΛ
T
k + Ψk,

where Λk is the loading matrix and Ψk is the diagonal variance matrix for the noise term of the

kth factor. The matrix Ψk can be further parameterized by writing

Ψk = ωk∆k,

where ωk ∈ R and ∆k = diag(δk1, . . . , δkp) such that |∆k| = 1. Therefore, the covariance matrix

Σk can be rewritten as

Σk = ΛkΛ
T
k + ωk∆k.

By adding some constraints on the loading matrices Λk, the constant ωk and the diagonal

matrix Ψk, McNicholas and Murphy (2010) obtained twelve Gaussian mixture models named

EPGMM family. Nomenclature and the corresponding covariance structure of the members of

the EPGMM are given in Table A.2. Parameter estimation is also carried out using AECM

algorithm. Model selection can be achieved using the BIC. It is worth to mention that their

AECM algorithm could be used for inferring most of the MFA models.
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Mixture of high-dimensional GMMs

Following the classical parsimonious GMMs, (Bouveyron et al., 2007a,b) constrained the GMM

using the eigen-decomposition of the covariance matrix Σk of the kth group (see equation 2.59)

Σk = QkΛkQ
T
k , (2.65)

where Qk is a p × p orthogonal matrix contains the eigenvectors of Σk and Λk is a diagonal

matrix of the associated eigenvalue sorted in a decreasing order. The key idea of these works

lies in fact that the authors reparametrize the matrix Λk, such that Λk has only dk + 1 different

eigenvalues

Λk = diag(ak1, . . . , akdk
, bk, . . . , bk︸ ︷︷ ︸

p−dk

),

where dk first eigenvalues ak1, . . . , akdk
parametrize the variance in the group-specific subspace

and the p− dk last terms, the bk’s model the variance of the noise (dk < p). The noise variance

of each cluster k is isotropic and is contained in a subspace which is orthogonal to the subspace

of the kth group. Bouveyron et al. (2007a) named this family the [akjbkQkdk].

If the symmetric positive definite matrix Σk have p distinct eigenvalues then one can obtain

the eigen-decomposition form (2.65). However, we now proof that if this symmetric positive

definite matrix has only d + 1 different eigenvalues (d < p) with p − d multiple characteristic

roots then we still have the decomposition form (2.65).

Lemma 2.4.1. Let Σ be a p×p symmetric positive definite matrix with d+1 different eigenvalues

{λ1, . . . , λd, γ} where γ has p−d multiple characteristic roots. Then, there exits a p×p orthogonal

matrix Q which contains the eigenvectors of Σ such that

Σ = QΛQT , (2.66)

where Λ = diag(λ1, . . . , λd, γ, . . . , γ︸ ︷︷ ︸
p−d

).

The proof of this Lemma is given in Appendix A.3.3.

The number of parameters required for the estimation of Σ (with the assumption that λi > γ

for all i ∈ {1, . . . , d}) is d(p − (d + 1)/2) + d + 1, where d(p − (d + 1)/2) and (d + 1) are the

number of parameters required for the estimation of Q and (λ1, . . . , λd, γ). This can be computed

using the trick provided in Appendix A.3.4. Given some constraints on akj , bk, Qk and dk, the

authors proposed 28 GMMs. Among them, 16 models have the closed-form estimators. The

covariance structure, number of covariance parameters for these models are given in Table A.3.

The inference for 16 GMMs listed in Table A.3 can be done using the EM algorithm since update

formula for each parameter is closed-form.

The subspace clustering methods posed in this section belong to a huge family of GMMs.

Besides that, there exists several links between these models, which were listed in (Bouveyron and
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Brunet-Saumard, 2014, Figure 4). These models in some sense can be described as a combination

of the dimensionality reduction and parametric reduction methods. Some drawbacks can be

found since all features still be used to construct the subspace through the loading matrices or

through the component densities. In addition, the estimation procedures in some models can not

be directly done using the EM algorithm because of the specific features of the latent subspace.

Among the related works, we may cite the discriminative latent mixture models, which were

proposed by Bouveyron and Brunet (2012). The robust versions of the MFA models rely on

t-distributions can be referred to Andrews and Mcnicholas (2011) and McLachlan et al. (2007).

2.4.3 Variable selection for clustering

In this section, we focus on some recent works which simultaneously cluster the data and select

relevant variables for the clustering task. This task can be handle in two different ways. The

first one tackles the problem of variable selection for model-based clustering as a model selection

problem, while the other aims at introducing a penalty term in the log-likelihood function in

order to obtain sparsity in the features.

Variable selection as a model selection problem

Law et al. (2004) considered the GMMs and assumed that the features are conditionally inde-

pendent given the (hidden) component label, that is,

p(x|θ) =

K∑

k=1

πkp(x|θk) =

K∑

k=1

πk

p∏

j=1

pj(xj |θkj), (2.67)

where pj(xj |θkj) is the pdf of the jth feature in the kth component. In case of GMMs, this

condition is equivalent to adopting diagonal covariance matrices. In addition, for the role of

each feature, they suggest that the jth feature is irrelevant if its distribution is independent

of the class label, i.e., if it follows a common density, denoted by q(xj |λj). So if we denote

Ψ = (ψ1, . . . , ψp) be the set of binary variables, such that ψj = 1 if feature jth is relevant and

ψj = 0 otherwise, then the mixture density in (2.67) can be rewritten as

p(x|Ψ,θ) =

K∑

k=1

πk

p∏

j=1

[pj(xj |θkj)]ψj [q(xj |λj)]1−ψj . (2.68)
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Hence, the joint density of (x,Ψ) is

p(x,Ψ;θ) = p(x|Ψ;θ)p(Ψ; {ρj})

=
( K∑

k=1

πk

p∏

j=1

[pj(xj |θkj)]ψj [q(xj |λj)]1−ψj

) p∏

j=1

ρ
ψj

j (1− ρj)1−ψj

=

K∑

k=1

πk

p∏

j=1

[ρjpj(xj |θkj)]ψj [(1− ρj)q(xj |λj)]1−ψj ,

where ρj = P(ψj = 1). Therefore, the marginal density of x is given by

p(x|θ) =
∑

Ψ

p(x,Ψ;θ) =

K∑

k=1

πk
∑

Ψ

p∏

j=1

[ρjpj(xj |θkj)]ψj [(1− ρj)q(xj |λj)]1−ψj

=

K∑

k=1

πk

p∏

j=1

[ρjpj(xj |θkj) + (1− ρj)q(xj |λj)], (2.69)

with θ = {{πk}, {θkj}, {λj}, {ρj}} is the set of all parameters of the model. The parameter

estimation is done via the EM algorithm by treating Z (the hidden class labels) and Ψ are

hidden variables.

However, assuming that the irrelevant variables are independent on both the clustering

variables and the relevant variable seem to be unrealistic. To tackle these limitations, Maugis

et al. (2009a) based on Raftery and Dean (2006) to split the variables into two different sets: S
and Sc, where S denotes the set of relevant variables and Sc is the set of irrelevant variables. In

the proposed model, they assumed that the subset Sc of irrelevant variables can be explained by

a linear regression from a subset R of the clustering variables S. The model selection problem

can be achieved by maximizing the quantity

crit(K̂, m̂, Ŝ, R̂) = arg max
(K,m,S,R)

{
BICclust(x

S |K,m) + BICreg(x
Sc |xR)

}
, (2.70)

where

BICclust(x
S |K,m) = 2 log{pclust(x

S |K,m, θ̂)} − λS(K,m) log n, (2.71)

with

pclust(x
S |K,m,θ) =

K∑

k=1

πkN (xS ;µk,Σk(m)),

θ = (π1, . . . , πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK) is the parameter vector, λS(K,m) is the number of free

parameters of the (K,m) mixture model with card(S) variables. The BICreg is given by

BICreg(x
Sc |xR) = 2 log{freg(x

Sc |xR, B̂, Ω̂)} − ν(S,R) log n, (2.72)
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(B̂, Ω̂) are the maximum likelihood estimate of the regression parameters and

ν(S,R) = (card(R) + 1)card(Sc) +
card(Sc)(card(Sc) + 1)

2

is the number of parameters for the regression model (in general case).

Later, Maugis et al. (2009b) proposed a general variable role modeling. They split the fea-

tures into three separated subsets of variable: the relevant variables (S), the irrelevant variables

(U) which depend on a subset R of the relevant ones through a linear relationship and an other

part (W) are independent of other variables. The data density can be decomposed into three

parts as follows

p(x|K,m, r, l, V,θ) =
{ K∑

k=1

πkN (xS ;µk,Σk(m)

}
×N (xU ;a + xRB,Ω(r))×N (xW ;γ,Γ(l)),

where θ is the full parameter vector and V = (S,R,U ,W). The form of the regression covariance

matrix Ω is denoted by r, which can be either spherical, diagonal or general. The form of the

covariance matrix Γ of the independent variables W is denoted by l and can be spherical or

diagonal. Thus, the model selection problem is solved by maximizing the following criterion (see

also (Maugis et al., 2009b, Section 3))

crit(K,m, r, l, V ) = BICclust(x
S |K,m) + BICreg(x

U |xR, r) + BICindep(x
W |l), (2.73)

where BICclust, BICreg are given in (2.71) and (2.72). BICindep represents the BIC criterion of

the Gaussian model with the variables W.

For the identifiability of the SRUW model and the consistency of the variable selection, reader

can refer to (Maugis et al., 2009b, Section 4). A procedure using embedded stepwise variable

selection algorithms is used to identify the SRUW sets. Unfortunately, these procedures are

limited as the number of variables is of the order of a few tens. Thus, it is not appropriate for

high-dimensional data.

Recently, Celeux et al. (2019) proposed an alternative regularization approach of variable

selection to overcome the drawback of the SRUW model. First, the variables are ranked with a

Lasso-like procedure in order to avoid painfully slow stepwise algorithms. The variable roles are

then determined using the stepwise procedures as in the SRUW model. In the next section, we

will consider another way to combine variable selection and clustering by likelihood penalization

which including the Lasso method used by Celeux et al. (2019).

Variable selection by likelihood penalization

We take a survey on the penalized likelihood methods. These approaches aim at penalizing the

clustering criteria in order to yield sparsity in the features. A general form for the penalized
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log-likelihood function is as follows

PLp(θ) = L(θ)− pλ(θ), (2.74)

where L(θ) is the log-likelihood function and pλ(θ) is the penalty function. Lasso (Tibshirani,

1996), which will be described in the following Section 2.4.4, is one of the most widely used

regularization method in literature. In GMM context, Pan and Shen (2007) proposed the Lasso-

type penalized log-likelihood to yield the sparsity of the mean vectors

PL(θ) =

n∑

i=1

log
{ K∑

k=1

πkN (xi;µk,Σk)
}
−λ

K∑

k=1

‖µk‖1, (2.75)

where Σk = Σ = diag(σ2
1, . . . , σ

2
p) for all k ∈ {1, . . . ,K} and λ is tuning parameter which decides

the level of sparsity. Note that, the observations are standardized to have zero mean and unit

variance for each variable j. If µ1j = · · · = µKj = 0, then the variable jth cannot differentiate

the components, hence deemed as noninformative and automatically excluded from clustering.

In a similar approach, Xie et al. (2008a) proposed a method dealing with the case of clustering

specific diagonal covariance matrices leading to the following penalty function

pλ(θ) = λ1

K∑

k=1

‖µk‖1 + λ2

K∑

k=1

p∑

j=1

|σ2
kj − 1|, (2.76)

with Σk = diag(σ2
k1, . . . , σ

2
kp) be the covariance matrix of the kth group. In this case, a second

penalty term is used to force an estimate of σ2
kj that is close to 1 to be exactly 1.

Finally, Zhou et al. (2009) considered a general covariance matrix Σ by relaxing the diagonal

covariance matrix assumption. To facilitate estimating large and sparse covariance matrices,

they employed the following penalty function

pλ(θ) = λ1

K∑

k=1

‖µk‖1 + λ2

p∑

j=1

p∑

h=1

|Σ−1
jh |. (2.77)

This penalty function is then modified to permit varying cluster volumes and orientations

pλ(θ) = λ1

K∑

k=1

‖µk‖1 + λ2

K∑

k=1

∑

j,h

|Σ−1
k;jh|, (2.78)

where Σk is the covariance matrix of the kth cluster. Note that, the penalty on the mean

parameter is mainly for variable selection, while that for the covariance matrices is necessary for

high-dimensional data. However, this leads to a difficult problem in estimating the covariance

matrices, which are said to be positive-definite.

In the same spirit, Xie et al. (2010) proposed a penalized MFA approach from the model
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introduced by Ghahramani and Hinton (1996), where the noise covariance matrix is diagonal

and common to all factor. By standardizing each variable to have variance at 1, one can treat

these variables in a similar scale and thus penalize their mean parameters together by an ℓ1

penalty. In addition, a variable j is irrelevant to all clusters if all µjk, k = 1, . . . ,K are 0 and all

bkj. = (bk;j1, . . . , bk;jq), k = 1, . . . ,K are required to be 0, where bk;jl is the value of the loading

matrix Λk at row jth and column lth. Hence, to realize more effective variable selection, it is

natural to treat bk;j1, . . . , bk;jq as a group of parameters, constructing a penalty that encourages

all of them to be exactly 0. Therefore, the authors regularized the log-likelihood function of

(2.61) with the following penalty function

p(λ, γ)(θ) = λp1(µ) + γp2(Λ)

= λ

K∑

k=1

‖µk‖1 + γ

K∑

k=1

p∑

j=1

‖bkj.‖2, (2.79)

where ‖bkj.‖2 =
√∑q

l=1 b
2
k;jl. The ℓ1 norm p1(µ), as in Pan and Shen (2007), is use to shrink a

small estimate µkj to be exactly 0, while p2(Λ), serving as a grouped variable penalty as in Xie

et al. (2008b) is used to shrink an estimate of factor loading vector bkj. that is close to 0 to be

exactly 0.

As general, the tuning parameters of all these regularization methods are selected through

a modified BIC criterion, which takes into account the level of sparsity in the model complexity

term. However, the selection of the sparsity parameters is still an open issue. Among the related

works, we refer the works of Witten and Tibshirani (2010) and Wang and Zhu (2008). For the

first approach, Witten and Tibshirani proposed a framework for sparse clustering based on a

Lasso-type penalty to select the features. The method is then used to develop sparse K-means

and sparse hierarchical clustering methods. For the remaining, Wang and Zhu suggested two

regularization methods. The first one replaces the ℓ1-norm in Pan and Shen (2007) with the

ℓ∞-norm to shrink the mean vectors and obtain a sparsity model

pλ(θ) = λ

p∑

j=1

‖(µ1j , . . . , µKj)‖∞, (2.80)

where ‖(µ1j , . . . , µKj)‖∞ = max
k

(|µ1j |, . . . , |µKj |). Different from the ℓ1-norm, the ℓ∞-norm

penalizes the maximum absolute value of µkj , k = 1, . . . ,K, for the jth variable. If the maximum

of |µkj | is reduced to 0, all µkj are automatically reduced to 0. The jth variable is therefore

irrelevant. However, this ℓ∞-norm penalty tends to reduce the µkj , k = 1, . . . ,K into the

same magnitude. This motivates them to propose the second penalty function. First, µkj is

reparameterized in a more general form

µkj = γjηkj , k = 1, . . . ,K; j = 1, . . . , p, (2.81)
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where γj ≥ 0. Secondly, they considered the following hierarchically penalized GMM

PL(θ) = L(θ)− λγ
p∑

j=1

γj − λη
K∑

k=1

p∑

j=1

|ηkj |, (2.82)

subject to γj ≥ 0. If γj is reduced to zero then all µkj for the jth variable will be equal to zero.

Otherwise, some of θkj hence some of the µkj , k = 1, . . . ,K, still have the possibility of being

zero; in this sense, the hierarchical penalty keeps the flexibility of the ℓ1-norm penalty.

2.4.4 Lasso regularization towards the mixture approach

In this section, we introduce the Lasso estimator for the linear regression problem, before con-

sidering it for the mixture of regression models. This method plays a key role in our research.

A method for solving the Lasso is also mentioned at the end of this section.

The Lasso regularization

Lasso is the ℓ1 regularization of linear regression model, in which we assume that we are given

n observations (x1, y1), . . . , (xn, yn), where the response variable yi ∈ R is related to the p-

dimensional vector of predictors xi ∈ R
p via the linear combination of the predictors xi =

(xi1, . . . , xip)
T as:

f(xi) = β0 +

p∑

j=1

βjxij . (2.83)

Here, β0 is the intercept term β0 ∈ R and β ∈ R
p is the vector of regression weights. Without

loss of generality, assume that β0 = 0.

The least-squares estimator for β is based on minimizing the square-error loss:

arg min
β
‖y −Xβ‖22, (2.84)

where y = (y1, . . . , yn)
T and

X =





x11 x12 . . . x1p

x21 x22 . . . x2p

...
... . . .

...

xn1 xn2 . . . xnp




.

It is not hard to check that the solution of (2.84), which is called the least-squares estimator, is

given by

β̂
LS

= (XTX)−1XTy. (2.85)

However, it is well known in literature that if the square matrix XTX has one or more small

eigenvalues, then the distance from the estimator β̂
LS

and the true parameter vector β will tend

to be large. Especially, since n < p the least-squares estimator poses a problem: the solution is
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not unique because the rank of XTX is smaller than p.

To tackle the ill-conditional condition of XTX, Hoerl and Kennard (1970) proposed an ℓ2

regularization method which is named ridge regression. Basically, the ridge regression solves the

follows problem

β̂
ridge

= arg min
β
‖y −Xβ‖22, subject to ‖β‖2 ≤ t. (2.86)

Unfortunately, although ridge regression shrinks the regression coefficients but this method still

poses a drawback since none of the ridge regression equals to zero. Therefore, all the features

xjs still be used to construct the regression function. For more details on the ridge regression,

readers can refer to Hoerl (1985), Friedman et al. (2001).

Tibshirani (1996) introduced a minutely method to overcome the drawback of least square

estimation and also the ridge regression. The idea lies in the fact that replacing the Euclidean

norm in constraint of the ridge regression ‖β‖2 ≤ t with the ℓ1 constraint ‖β‖1 ≤ t. This model

is called Least Absolute Shrinkage and Selection Operator (Lasso). It was directly inspired

by the nonnegative garrote estimator of Breiman (1995). As its name, this method provides

two advantages: first it shrinks some coefficients and secondly, it sets other coefficients to 0.

Therefore it retains the good features of both subset selection and ridge regression. Figure 2.3

depicts the Lasso and ridge regression for the vector x is of the size 2. Both methods find the

first point, where the elliptical contours hit the constraint region. Since the Lasso constraint

region has corners; if the hit point is one of these corners then one of the two parameters is

equal to zero.

It is interesting to look back to the classical feature selection method based on the ℓ0 norm

as a natural approach for features selection, which is described as follows:

arg min
β
‖y −Xβ‖22, subject to ‖β‖0 ≤ t, (2.87)

where the ℓ0 norm is defined by

‖β‖0 , card{j ∈ {1, . . . , p} : βj 6= 0}.

This model has paid a lot of attentions in literature (see Foster et al. (1994)). Unfortunately,

the constraint is non-convex and the ℓ0 regularization method is proofed to be an NP -hard

problem (see Natarajan (1995)). Hence, it is ineffective to use this method in application and

solving (2.87) is still a challenge. Recently, Frommlet and Nuel (2016) introduce an adaptive

ridge procedure (AR), where iteratively weighted ridge problems are solved whose weights are

updated in such a way that the procedure converges towards selection with ℓ0 penalties.

Going back to the ℓ1 regularized method, the Lasso estimate requires solving an optimization

problem, which can be described as

arg min
β
‖y − β0 −Xβ‖22, subject to ‖β‖1 ≤ t. (2.88)
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For convenience, assuming that all features are standardized to have mean zero and unit variance.

We also assume that the outcome values yi have been centered. By doing this, we can omit the

intercept β0. Hence, without loss of generally, the Lasso can be rewritten as

arg min
β
‖y −Xβ‖22, subject to ‖β‖1 ≤ t. (2.89)

It is often convenient to rewrite the Lasso problem in the Lagrange form,

arg min
β

{1

2
‖y −Xβ‖22 + λ‖β‖1

}
. (2.90)

The value of λ will decide the sparsity of the model. As proved in Section A.4.1, the smallest

Figure 2.3: Estimation picture for the Lasso (left) and ridge regression (right) with constraint
regions and the contours of the least squares error function. Picture from Friedman et al. (2001)

value of λ such that the regression coefficients estimated by Lasso (2.90) are all equal to zero is

λmax = max
j
|〈y,xj〉|,

where y = (y1, . . . , yn)
T , xj = (x1j , x2j , . . . , xnj)

T . 〈y,xj〉 is the inner product between y and

xj , 〈y,xj〉 = yTxj .

The bound of t in (2.88) controls the complexity of the model: the larger values of t allow

the model to adapt more closely to the training data. Conversely, the smaller values of t will

restrict the parameters more and leading to sparser but the interpretable model fit the data

less closely. Therefore, a natural question arises for the Lasso regression: “how to choose t

or λ?”. A procedure known as cross-validation is a common tool to decide the value of the

tuning parameter λ. For more details, (Hastie et al., 2015, Sec. 2.3) is a helpful text for the

cross-validation procedure.

Lemma 2.4.2 (Properties of the Lasso solutions (Tibshirani (2013))). For some λ ≥ 0, suppose

the β̂, η̂ two solutions of (2.90) with common optimal value c∗ then:

• Xβ̂ = Xη̂, i.e, the two solutions must yield the same predicted values.

• If λ > 0 then ‖β̂‖1 = ‖η̂‖1.
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The proof of this lemma can be found in Appendix A.4.2. As shown in Lemma 2.4.2, the

fitted values Xβ̂ are unique. However, the solution β̂ may not be unique. Consider an example

with two predictors x1, x2 and response y. Assume that the Lasso solution coefficients β̂ at

λ are (β̂1, β̂2). If we include the third predictor x3 which is an identical copy of the second

predictor, i.e, x3 = x2 and consider the Lasso problem

arg min
(β1,β2,β3)

1

2

n∑

i=1

(yi − β1xi1 − β2xi2 − β3xi3)
2 + λ

3∑

j=1

|βj |. (2.91)

This optimization problem can be rewritten as

arg min
{β}

{1

2

n∑

i=1

(yi − β1xi1 − (β2 + β3)xi2)
2 + λ(|βj |+ |β2 + β3|) + λ(|β2|+ |β3| − |β2 + β3|)

}
.

(2.92)

It turns out that, for any α ∈ [0, 1] the triplet (β̂1, αβ̂2, (1 − α)β̂2) is a solution of (2.91). For

this model, there is an infinite family of solutions.

In general, when λ > 0, Tibshirani (2013) showed that if the matrix X ∈ R
n×p has columns

in general position, then the Lasso solutions are unique. To be precise, the columns {xj}pj=1

of X are in general position if no k-dimensional subspace L ⊆ R
n, for k < min{n, p}, contains

more than k + 1 elements of the set {±x1, . . . ,±xp}, excluding antipodal pairs. This means

the affine span of any k+ 1 points σ1xj1 , . . . , σk+1xjk+1
(j1, . . . , jk+1 ∈ {1, . . . , p}), for arbitrary

signs σ1, . . . , σk+1 ∈ {−1,+1} does not contain any element of {±xj : j 6= j1, . . . , jk+1}. For

the complete proof of this property see (Tibshirani, 2013, Lemma 2, 3). Hence, if the data

matrix X are drawn from a continuous probability distribution, then with probability one the

data are in general position and the Lasso solutions will be unique. The non-uniqueness of the

Lasso solutions can occur only with discrete-valued data. In the previous example, the affine is

generated from {±x1,±x2} also contains ±x3. Therefore, the data are not in general position.

There has been an enormous amount theoretical works analyzing the performance of the

Lasso. For the related works, some references are Bickel et al. (2009); Meinshausen et al. (2006);

Donoho et al. (2006); Zhao and Yu (2006); Wainwright (2009); Massart and Meynet (2011); a

helpful book for these kind of results is Bühlmann and Van De Geer (2011).

Solving the Lasso optimization problem

The Lasso problem is a convex program, specifically a quadratic program with a convex con-

straint. As such, there are many sophisticated quadratic program methods for solving the Lasso.

In this thesis, we use one of the simple but effective methods for solving the Lasso: coordinate

descent algorithm. For more details on this method, viewers can the reader can be referred to

Boyd and Vandenberghe (2004); Hastie et al. (2015).
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Consider the convex program

arg min
β
f(β),

with the objective function f(β) is presented as follows

f(β) = g(β) + h(β)

where g(.) is a differentiable convex function, h(.) is convex but not necessarily differentiable.

Coordinate descent is an iterative algorithm that updates from β(t) to β(t+1) by choosing a

single coordinate to update, and then performing a univariate minimization over this coordinate.

If coordinate k is chosen at iteration t, then

β
(t+1)
k = arg min

βk

f(β
(t)
1 , . . . , β

(t)
k−1, βk, β

(t)
k+1, . . . , β

(t)
p ), (2.93)

and β
(t+1)
j = β

(t+1)
j for j 6= k.

The coordinate descent can get “stuck”, and fail to reach the global minimum of f . A counter

example is shown in (Hastie et al., 2015, Section 5.4). However, if the cost function f has the

additive decomposition

f(β1, . . . , βp) = g(β1, . . . , βp) +

p∑

j=1

hj(βj) (2.94)

where hj : R→ R are convex, then with some conditions including the separate structure of h(β)

Tseng (2001) and Wu and Lange (2008) show that the coordinate descent algorithm converges

to the minimum point. For the Lasso problem, we have

f(β) = g(β) +

p∑

j=1

h(βj),

with g(β) = 1
2

∑n
i=1(yi−xTi β)2 and h(βj) = λ|βj |. Updating β

(t+1)
j using the coordinate descent

procedure is done by solving this problem

β
(t+1)
j = arg min

βj

1

2

n∑

i=1

[
βjxij + (

∑

k 6=j

β
(t)
k xik − yi)

]2
+λ|βj |. (2.95)

Then the solution for (2.95) satisfies

β
(t+1)
j = Sλ

( n∑

i=1

rjixij
)/ n∑

i=1

x2
ij , (2.96)

with rji = yi−
∑
k 6=j

β
(t)
k xik and Sλ(.) is a soft-thresholding operator defined by Sλ(x) = sign(x)(|x|−

λ)+ and (x)+ a shorthand for max{x, 0}. Other parameters are kept while updating βj .
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The coordinate descent procedure simply solves (2.95) in a cyclical way, iterating over j =

1, 2, . . . , p, 1, 2, . . . . In general, the coordinate descent algorithm for solving the Lasso can be

interpreted as below:

Algorithm 1 Coordinate descent method for solving the Lasso

1: β(0).
2: repeat
3: for j = 1 to p do

4: Update β
(t+1)
j using the soft-thresholding operator in (2.96).

5: For k 6= j then β
(t+1)
k = β

(t)
k .

6: end for
7: Evaluate the objective function.
8: until the stopping criterion is satisfied.

For the standard Lasso regression model

arg min
(β0,β)

1

2

n∑

i=1

(yi − β0 − xTi β)2 + λ‖β‖1, (2.97)

one just need to modify the updating of β0 at each step using the value

β
(t+1)
0 =

∑n
i=1(yi − xTi β(t+1))

n
·

Example 2.4.1. In this example, n = 150 data points were generated with p = 6 features,

Xj
i.i.d∼ U [0, 1]. The respond variable Y is of the form

Y = 1 + 2X1 −X4 + 0.5X6 + ε,

where ε ∼ N (0, 0.52) and λ = 2.8. Starting from (β0,β
T )T = 0 with the objective function value

273.88630, after 187 loops the coordinate descent algorithm stops at

(β̂0(λ), β̂
T
(λ))T = (0.9877018, 1.7612036, 0, 0,−0.5732187, 0, 0.3337205)T ,

with the minimum value 26.51752. It is clear that, in this case the Lasso estimator provides

the zero coefficients coincident with the true zero parameters of the model. For the non-zero

coefficients (excepts the intercept), there are biases between these parameters with the true ones

cause by penalty function. The changing of the objective function after each iteration can be

observed from Figure 2.4.

Least angle regression (LARS) is another efficient algorithm for solving the Lasso, which is

proposed by Efron et al. (2004). It still requires to compute the inverse matrix in each loop,

hence does not scale up to large problems as well as the coordinate descent method. An MM

version for solving the regularized regression problems has been investigated in Hunter and

Li (2005). Chapter 5 of Hastie et al. (2015) provides a general review for other optimization

45



2.5. REGULARIZED MIXTURES OF REGRESSION MODELS

0 50 100 150

50
10

0
15

0
20

0
25

0

Step

O
bj

ec
tiv

e 
fu

nc
tio

n

Figure 2.4: The changing of the objective function after each iteration.

methods which can be used to solve the Lasso.

2.5 Regularized mixtures of regression models

In the applications of the mixture of regression models, many features are often used, and

the contribution of each feature to the response variable Y is different from one component

to another of the model. As the number of features and components in the mixture models

increases the cost of computing the Akiake information criterion (Akaike, 1974) and the BIC

also become more expensive. Hence, these methods may not be not idea in certain cases. In

this section, we take some recent works that use penalized likelihood approaches for variable

selection in mixture of regression models. Some authors such as (Khalili and Chen, 2007; Städler

et al., 2010a; Khalili and Lin, 2013; Hui et al., 2015) tackle the problem of variable section for

mixture of regressions models using Lasso-type regularization methods. In the similar context,

(Devijver, 2015) considered the Lasso-penalized methods for mixture of multivariate Gaussian

regression models. For the MoEs models, several works, such as (Khalili, 2010; Peralta and Soto,

2014; Jiang et al., 2018) in particular, introduced a penalty term in the log-likelihood function in

order to yield the sparsity in the features both for the experts and for the gating network. The

reader can also refer to Khalili (2011), which provides a comprehensive overview of the feature

selection methods in mixture of regression models.

2.5.1 Regularized mixture of regression models

Khalili and Chen (2007) is considered as the earliest variable selection method in mixture of

linear regression models (MLR) using penalized likelihood approach. Let (x1, y1), . . . , (xn, yn)
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be a sample of observations from the MLR model in (2.25). The (conditional) log-likelihood

function of θ is given by

L(θ) =

n∑

i=1

log
{ K∑

k=1

πkN (yi;βk0 + xTi βk, σ
2
k)
}
. (2.98)

When the effect of a jth feature is not significant, the corresponding ordinary maximum like-

lihood estimate is often close to, but not equal to 0. To exclude the role of this feature, these

author consider the penalized log-likelihood function as

PL(θ) = L(θ)−
K∑

k=1

πk

p∑

j=1

pn(βkj ;λnk), (2.99)

where pn(βkj ;λnk) could be one of the following penalty functions:

• ℓ1-norm penalty (The Lasso):

pn(βkj ;λnk) = λnk
√
n|βkj |. (2.100)

• SCAD penalty (Smooth clipped absolute deviation penalty Fan and Li (2001)):

pnk(βkj ;λnk)√
n

=






λnk|βkj |, |βkj | ≤ λnk
−(β2

kj − 2aλnk|βkj |+ λ2
nk)/[2(a− 1)], λnk < |βkj | ≤ aλnk

λ2
nk(a+ 1)/2, |βkj | > aλnk

, (2.101)

for some constant a > 2.

• HARD penalty (hard thresholding penalty Antoniadis (1997)):

pnk(βkj) = λ2
nk − (

√
n|βkj | − λnk)2I(

√
n|βkj | < λnk).

The hope is that with a proper choice of the penalty functions, if some of the regression coeffi-

cients βkj are zero, then their corresponding estimator β̂kj are also zero. Although the Lasso has

many attractive properties, the shrinkage introduced by it results in significant bias toward 0 for

large regression coefficients. The remains are nonconvex penalty functions. The SCAD has the

so-called oracle property, i.e., in asymptotic sense, it performs as well as the oracle procedure in

variable selection; namely, it works as well as if the correct submodel was known.

Note that the amount of penalty on each regression parameters βkj is proportional to the

mixing probability πk, which is a common practice in relating the amount of penalty to the

sample size. Under standard regularity conditions as well as the certain conditions on the penalty

function, Khalili and Chen (2007) showed the estimator θ̂n of (2.99) satisfies (see (Khalili and
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Chen, 2007, Theorem 1))

‖θ̂n − θ0‖ = Op(n
−1/2(1 + bn)),

where ‖.‖ represents the Euclidean norm, θ0 is the true vector of parameters in the true MLR

model underlying the data and

bn = max
k,j
{|p′nk(β0

kj)|/
√
n : β0

kj 6= 0}.

In addition, if the penalty function guarantees that, for Nn = {β : 0 < β ≤ n−1/2 log n},

lim
n→∞

inf
β∈Nn

p′nk(β)/
√
n =∞,

then θ̂n also provides the following properties (see also (Khalili and Chen, 2007, Theorem 2)):

• Sparsity: P(β̂k2 = 0) → 1, for k = 1, . . . ,K, where β̂k2 is the vector of zero regression

coefficients in the kth component of the model.

• Asymptotic normality:

√
n

{[
I(θ01)−

p′′(θ01)

n

]
(θ̂n1 − θ01) +

p′(θ01)

n

}
d→ N (0, I(θ01)),

where p′(.) and p′′(.) are the first and second derivatives of the penalty function with

respect to βkj ’s, and I(θ01) is the Fisher information matrix computed under the reduced

model when all zero effects are removed.

To obtain these properties, the number of mixture component K of the model is known. In

applications, one can use the BIC or other criteria to selectK. Another strategy of regularization

to perform simulatenous parameter estimation and selection of K is presented in Chamroukhi

(2013, 2016d).

Parameter estimation is done via the EM algorithm. To maximize the well-known Q-function

in the M-step, the authors approximated the penalty function by a local quadratic approximation

using Hunter and Li (2005) suggestion

pnk(β) ≈ pnk(β0) +
p′nk(β0)

2(β0 + ǫ)
(β2 − β2

0), (2.102)

in a neighborhood of β0. A Newton-Raphson algorithm can then be used to maximize the

penalized Q-function, where each iteration updates the local quadratic approximation. The

drawback lies in the fact that using Newton-Raphson algorithm for high-dimensional data (p is

large) may not be an appropriate choice. In addition, one must choose a threshold δ and declares

a coefficient is zero if it values smaller than δ. Therefore, the selection of ǫ in (2.102) and δ affects

the sparsity of the model and should be consider carefully. One important thing to mention is

that maximizing the Q-function with respect to the mixing proportions πk, k = 1, . . . ,K is still
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a challenge. In their work, the authors keep the same update of πk as a non penalized case and

it still works quite well.

Later, Khalili and Lin (2013) proposed elastic-net type penalties for finite mixture regression

models with a diverging number of covariates in each component. Their penalized log-likelihood

function is as follows

PLn(θ) = Ln(θ)− pn(θ) (2.103)

with the penalty function

pn(θ) =

K∑

k=1

πk

p∑

j=1

rn(βkj ;λnk) +
τn
2

K∑

k=1

πk

p∑

j=1

β2
kj , (2.104)

for some tuning parameter τn ≥ 0, and rn(βkj ;λnk) is a nonnegative penalty function indexed by

some tuning parameter λnk ≥ 0. In fact, the authors considered three well-known regularization

functions for rn(βkj ;λnk): the Lasso and SCAD as in (2.100), (2.101) and MCP (Zhang (2010))

which is given by

rn(βkj ;λnk)

n
=





λnk
(
|βkj | −

β2
kj

2γλnk

)
, |βkj | < γλnk

γλ2
nk/2, |βkj | ≥ γλnk

. (2.105)

The parameter γ in MCP controls the concavity of the penalty. Moreover, if γ →∞ the penalty

becomes Lasso, if γ → 0+ then it becomes the ℓ0 penalty.

Using the similar approach in Khalili and Chen (2007), the authors draw some asymptotic

properties for their models. EM algorithms for parameter estimation are also given using the

same strategy in Khalili and Chen (2007). The methods are then applied to study the Gaussian

and Poisson finite mixture of regression models.

Similarly, Städler et al. (2010a) applied the adaptive Lasso (Zou (2006)) with one tuning

parameter for the mixture of linear regression models. In addition, some asymptotic theory and

oracle inequalities are also presented. Conversely to this approach, Meynet (2013) presented a

complementary result to Städler et al. (2010a) by studying the Lasso for its ℓ1-regularization

properties rather than considering it as a variable selection procedure. Meynet established oracle

inequality for the Lasso in finite mixture Gaussian regression models, which can be seen as an

extension of Massart and Meynet (2011). Devijver (2015) extended Meynet’s ℓ1-oracle inequality

for the mixture of multivariate Gaussian regression models. To exploit the grouped structure of

covariates in the MLR models, Hui et al. (2015) introduced two regularization models MIXGL1

and MIXGL2 based on a modification of the group Lasso (Yuan and Lin (2006a)). With some

regularity conditions, the oracle properties for their proposed models are also studied. Finally, it

is interesting to present the work of Lloyd-Jones et al. (2018), who introduced an MM algorithm

for maximizing the Lasso-penalized likelihood function of the MLR model.
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2.5.2 Regularized mixture of experts models

A general framework for the regularized MLR model was also proposed by Khalili (2010) which

focuses on MoE model. Since each mixing proportion is replaced by a softmax function of the

variates, the effect of each feature appears both in the experts network and in the mixing pro-

portion functions (the gating network). Hence, for feature selection, two extra penalty functions

are applied to the ℓ2-penalized log likelihood function. His proposal penalized log-likelihood is

then given by

PL(θ) =

n∑

i=1

log
[ K∑

k=1

πk(w;xi)N (yi;βk0 + xTi βk, σ
2
k)
]
−pn(θ), (2.106)

with πk(w;xi) is a softmax function in (2.37),and

pn(θ) =

K∑

k=1

p∑

j=1

rn(βkj ;λk) +

K−1∑

k=1

p∑

j=1

rn(wkj ; γk) +
τn
2

K−1∑

k=1

‖wk‖22, (2.107)

where rn(.; .) is the Lasso or SCAD functions. Adding an ℓ2-norm of the mixing probabilities to

the log-likelihood function controls the large positive and negative estimates of the regression

coefficients corresponding to the correlated features. This behavior can be observed in logis-

tic/multinomial regression when the number of potential features is large and highly correlated;

see Park and Hastie (2007b) and Bunea (2008). However, this also affects the sparsity of the

regularization model.

By extending the theoretical developments for MLR models in Khalili and Chen (2007), a

standard asymptotic theory for MoE models is established (see Theorem 2, Theorem 3 of Khalili

(2010)). The asymptotic properties of the estimator θ̂n depend on the choice of the penalty

rn(.; .) and the tuning parameter τn accompanying the ℓ2-norm. By taking an appropriate

choice of these tuning parameters in SCAD, the estimator θ̂n of the penalized log-likelihood

is both consistent in feature selection and maintains root-n consistency. In contradiction with

SCAD, for Lasso, the estimator θ̂n cannot achieve both properties simultaneously. It is worth

to point out that the proposed methodology of Khalili (2010) can be used for feature selection

in the high-dimensional situations (p ≫ n). However, the statistical properties of the method

in high-dimensional context such as consistency and oracle inequality still be open questions.

For maximizing the regularized log-likelihood, an appropriate EM algorithm combines with

the Newton-Raphson method was introduced. Using the suggestion of Hunter and Li (2005), the

penalty functions for both the gating network and the experts network are approximated with

their local quadratic functions. After that, the Newton-Raphson can be used to update these

coefficients in the M-step. However, some drawbacks from the EM algorithm for regularized

MLR in Khalili and Chen (2007) still appear here. One must choose a threshold δ to declare

zero coefficient and an addition parameter ǫ to avoid numerical instability of the algorithm due

to the small values of some of the coefficient in the demominator of the approximation (2.102).
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In a similar context, Peralta and Soto (2014) studied the ℓ1-regularized MoE for multinomial

logit models. Hence, they assume that each expert component follows a multinomial distribution

with R levels (R ≥ 2), i.e.,

Yi|Zi = zi,xi ∼ Mult(1;ϕzi1(xi;βzi
), . . . , ϕziR(xi;βzi

))

where

ϕkr(xi;βk) = P(yi = r|xi; zi = k;βk) =
exp(βkr0 + xTi βkr)
R∑
l=1

exp(βkl0 + xTi βkl)

, r ∈ {1, . . . , R}·

The ℓ1 regularized observed data log-likelihood is given by

PL(θ) =

n∑

i=1

log
[ K∑

k=1

πk(w;xi)Mult(yi;ϕk1(xi;βk), . . . , ϕkR(xi;βk))
]

− λ
K−1∑

k=1

p∑

j=1

|wkj | − γ
K∑

k=1

R−1∑

r=1

p∑

j=1

|βkrj |. (2.108)

For parameter estimation, these authors proposed an EM-based algorithm. Especially, for max-

imizing the penalized Q-function with respect to the gating network parameters in the M-step

Q(w;θ[q]) =

n∑

i=1

K∑

k=1

τ
[q]
ik log πk(xi;w)−

K−1∑

k=1

γk‖wk‖1, (2.109)

where τ
[q]
ik is the conditional probability that the data pair (xi, yi) is generated by the kth

expert with respect to the current parameter vector θ[q], they approximate (2.109) by using

a transformation that implies inverting the softmax function. Hence, updating w
[q+1]
k can be

obtained by solving an approximated Lasso problem

w
[q+1]
k = arg min

wk

n∑

i=1

(log τ
[q]
ik − wk0 − xTi wk)

2, subject to ‖wk‖1 ≤ λ. (2.110)

Unfortunately, this approximation does not guarantee that the penalized log-likelihood will

increase after each update step. In is worth to noting that, the authors do not provide any

evidence to prove this critical property of their EM algorithm.

Recently, to overcome the difficulty of updating the gating network, Jiang et al. (2018) based

on the work of Xu et al. (1995) proposed a regularization method for the localized MoE models.

Localized MoE assumes the latent discrete variable Z follows a multinomial distribution with

P(Z = k) = πk, k = 1, . . . ,K and

K∑

k=1

πk = 1.
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Moreover, given the label variable Z = k, the random variate X follows a multivariate Gaussian

distribution, i.e.,

X|Z = k ∼ N (µk,Σk).

Then the estimation of localized MoE is based on joint distribution p(X, Y ), instead of the

conditional distribution p(Y |X) in a standard MoE. The joint distribution p(X, Y ) is as follows

p(X, Y ) =

K∑

k=1

p(X, Y, Z = k)

=

K∑

k=1

p(Z = k)p(X|Z = k)p(Y |X, Z = k)

=

K∑

k=1

πkN (X;µk,Σk)N (y;βk0 + xTβk, σ
2
k). (2.111)

Hence, the mixing proportion P(Z = k|X = x) has a different form as

P(Z = k|X = x) =
P(Z = k)P(X = x|Z = k)
K∑
l=1

P(Z = l)P(X = x|Z = l)

=
πkN (X;µk,Σk)
K∑
l=1

πlN (X;µl,Σl)

· (2.112)

Maximum likelihood estimator is done on the joint distribution

L(θ) =

n∑

i=1

log
{ K∑

k=1

πkN (xi;µk,Σk)N (yi;βk0 + xTi βk, σ
2
k)
}
, (2.113)

where θ = (π1, . . . , πK−1,µ1, . . . ,µK ,Σ1, . . . ,ΣK , (β10,β1), . . . , (βK0,βK), σ1, . . . , σK) is the

parameter vector of the model. An EM algorithm for maximizing L(θ) in (2.113) can be referred

to Xu et al. (1995), and a very recent algorithm for the regularized estimation is presented in

Chamroukhi et al. (2019b).

In order to simultaneously select the number of experts and influential variables of these

experts, Jiang et al. (2018) consider the following penalized log-likelihood function

PL(θ) = L(θ)− P1(π)− P2(β),

where the first penalty P1(.) is served to select the number of component. Following Huang

et al. (2017), they consider

P1(π) = nλ

K∑

k=1

[
log(ǫ+ pλ,a1(πk))− log(ǫ)

]
,
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and pλ,a1(πk)) is the SCAD penalty with the pair (λ, a1). P2(β) is also a SCAD penalty for

variable selection

P2(β) =

K∑

k=1

p∑

j=1

pγ,a2(|βkj |),

with pγ,a2(.) is the SCAD penalty with the pair (γ, a2).

It is important to mention that, in this regularization method, each expert’s covariance

matrix Σk still updates as in normal. However, for a large value of the dimension p this task

becomes a challenge. An efficient method for estimating covariance matrices Σk should be

considered. In a similar way, Morvan et al. (2019) considered a penalized likelihood method for

localized MoE models with logistic expert. Here, they assume that Y being a binary response

in {0, 1} and satisfies

Y |X = x, Z = k ∼ B
(

1,
exp(βk0 + xTβk)

1 + exp(βk0 + xTβk)

)
·

In their proposed model, an ℓ1-regularized estimation strategy is adopted to obtain sparse esti-

mates of both the precision matrices Θ1, . . . ,ΘK of the predictors and the regression coefficients

β1, . . . ,βK , where Θk = Σ−1
k . Therefore, the penalized log-likelihood function is given by

PL(θ) = L(θ)−
K∑

k=1

λk‖βk‖1 −
K∑

k=1

ρk‖Θk‖1,

where ‖βk‖1 =
∑p

j=1 |βkj | and ‖Θk‖1 denotes the sum of the absolute values of Θk. Note

that, the penalty on the regression coefficients is mainly for variable selection, while that for

the covariance matrices is necessary to have a sparse presentation of the inverse covariance

matrices. However, this leads to a difficult problem in estimating these matrices, which are said

to be positive-definite.

Note that, besides the regularization methods, it is also interesting to present the works of

Deleforge et al. (2015); Perthame et al. (2018), who proposed the hybrid Gaussian locally-linear

mapping (hybrid-GLLiM) model which relates to the localized MoE model and can be applied

in high dimension with multivariate output.

2.6 Conclusion

In this chapter, we reviewed FMMs used for modeling, clustering and regression for heteroge-

neous data. We also consider the EM algorithms with are widely use to estimate the parameters

of these models.

In high-dimensional scenario, several approaches have been proposed for model-based clus-

tering with FMMs. Classical methods such as parsimonious Gaussian models lay a lot of as-

sumptions on the data and with many submodels it becomes a difficult problem to decide which
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model for a given data set. Also, they do not take into account that the structure of associa-

tion among the variables can vary from one cluster to the other. Mixture of factor analyzers is

another ways to deal with high-dimensional data. Unfortunately, this method does not focus

on the feature selection task which is one of the main missions in high-dimensional setting. In

such a problem, variable selection methods such as SRUW model, penalized models seem to

be potential approaches. However, there are some aspects should be study more such as an

efficient method to have a sparse representation of the covariance matrices. Recently, Fop et al.

(2019) proposed an interesting method to follow in order to directly obtain sparse component

covariance matrices.

For the regression problems, we can see that regularization methods for feature selection seem

to be very promising in a MoE context. However, there are some open questions that should

be answer. In the theoretical point of view, the statistical properties of the methods in high-

dimensional situations require more advanced theoretical developments, which is an interesting

subject. From the application point of view, estimating the parameters using the EM algorithm

requires a lot of advanced results from mathematical optimization, especially for solving the

M-step with non-convex penalty functions. Some common methods aim at approximating the

penalty function and combine with the Newton-Raphson procedure to update the parameters.

Unfortunately, Newton-Raphson procedure is not an appropriate choice in high-dimensional

setting. Regularization methods for localized MoE are interesting approaches to avoid updating

the gating network parameters in MoE. However, estimating the component covariance matrices

Σk in high-dimensional situation should be studied more. In this context, a regularization

approach likes Morvan et al. (2019) is an interesting suggestion. Another way to tackle this

difficult is by considering the parsimonious Gaussian models (Banfield and Raftery, 1993; Celeux

and Govaert, 1995) to parametrize the covariance matrices Σk or to represent sparse covariance

matrices via graph models (Fop et al., 2019). Besides that, updating the experts network

parameters with nonconvex penalty functions is not an easy task. One important thing should

be reminded is that, to the best of our knowledge, until now there is no theoretical to support

the regularization methods for localized MoE. Hence, establishing the statistical properties of

the methods is the subject of future research.
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3.1. INTRODUCTION

3.1 Introduction

In the previous chapter, we studied the Mixture of experts (MoE) introduced by Jacobs et al.

(1991) for regression, clustering and classification. MoE belong to the family of mixture models

(Titterington et al., 1985; McLachlan and Peel., 2000; Frühwirth-Schnatter, 2006) and is a fully

conditional mixture model where both the mixing proportions, i.e, the gating network, and the

components densities, i.e, the experts network, depend on the inputs. A general review of the

MoE models and their applications can be found in Nguyen and Chamroukhi (2018). While the

MoE modeling with maximum likelihood estimation (MLE) is widely used, its application in

high-dimensional problems is still challenging due to the well-known problem of the ML estimator

in such a setting. Indeed, in high-dimensional setting, the features can be correlated and thus

the actual features that explain the problem reside in a low-dimensional space. Hence, there is a

need to select a subset of the potentially large number of features, that really explain the data.

To avoid singularities and degeneracies of the MLE as highlighted namely in Stephens and Phil

(1997); Snoussi and Mohammad-Djafari (2005); Fraley and Raftery (2007), one can regularize

the likelihood through a prior distribution over the model parameter space. A better fitting

can therefore be achieved by regularizing the objective function so that to encourage sparse

solutions. However, feature selection by regularized inference encourages sparse solutions, while

having a reasonable computational cost. Several approaches have been proposed to deal with

the feature selection task, both in regression and in clustering.

For regression, the well-known Lasso method (Tibshirani, 1996) is one of the most popular

and successful regularization technique which utilizes the ℓ1 penalty to regularize the squared

error function, or by equivalence the log-likelihood in Gaussian regression, and to achieve pa-

rameter estimation and feature selection. This allows to shrink coefficients toward zero, and can

also set many coefficients to be exactly zero.

In related mixture models for simultaneous regression and clustering, including mixture of

linear regressions (MLR), where the mixing proportions are constant, Khalili and Chen (2007)

proposed regularized ML inference, including MIXLASSO, MIXHARD and MIXSCAD and

provided asymptotic properties corresponding to these penalty functions. Later Khalili (2010)

extended his MLR regularization to the MoE setting, and provided a root-n consistent and oracle

properties for Lasso and SCAD penalties, and developed an EM algorithm for fitting the models.

However, as we will discuss it in Section 3.3, this is based on approximated penalty function,

and uses a Newton-Raphson procedure in the updates of the gating network parameters, and

thus requires matrix inversion.

In this chapter, we consider and improve the previous regularized MoE models from Khalili

(2010). We propose a new regularized maximum likelihood estimation approach with three

hybrid algorithms for maximizing the proposed objective function. The proposed algorithms for

fitting the model consist of an Expectation-Majorization-Maximization (EMM) algorithm, an

EM algorithm with a coordinate ascent algorithm and an EM algorithm with proximal Newton-

type method. The proposed approach does not require an approximate of the regularization
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term, and the three developed hybrid algorithms, allow to automatically select sparse solutions

without thresholding. In addition, an evaluation of the effectiveness of an ℓ2 penalty for the

gating network in Khalili (2010) is also considered.

The remainder of this chapter is organized as follows. In Section 3.2 we present the modeling

with MoE for heterogeneous data. Then, in Section 3.3, we present the regularized maximum

likelihood strategy of the MoE model, and the three proposed EM-based algorithms. An ex-

perimental study, carried out on simulated and two real data sets, are given in Section 3.4. In

Section 3.4.6, we discuss the effectiveness of our method in dealing with moderate dimensional

problems, and consider an experiment which promotes its use in high-dimensional scenarios.

Finally, in Section 3.5, we draw concluding remarks and mention future direction.

3.2 Mixture of experts model for continuous data

Let ((X1, Y1), . . . , (Xn, Yn)) be a random sample of n independently distributed pairs (Xi, Yi),

(i = 1, . . . , n) where Yi ∈ Y ⊂ R is the ith response given some vector of predictors Xi ∈ X ⊂ R
p.

Let D = ((x1, y1), . . . , (xn, yn)) be an observed data sample. These data may be discrete or

continuous. In this chapter, we emphasize on the continuous case and consider the MoE modeling

in Section 2.3.3 for the analysis of a heterogeneous set of such data.

3.2.1 The model

The mixture of experts model assumes that the observed pairs (x, y) are generated from K ∈ N

probability density components (the experts) governed by a hidden categorical random variable

Z ∈ [K] = {1, . . . ,K} that indicates the component from which a particular observed pair is

drawn. The latter represents the gating network. Formally, the gating network is defined by the

distribution of the hidden variable Z given the predictor x, i.e., πk(x;w) = P(Z = k|X = x;w),

which is in general given by gating softmax functions of the form:

πk(x;w) = P(Z = k|X = x;w) =
exp(wk0 + xTwk)

1 +
K−1∑
l=1

exp(wl0 + xTwl)

(3.1)

for k = 1, . . . ,K − 1 with wT
k = (wk0,w

T
k ) ∈ R

p+1 and wT
K = (wK0,w

T
K) = (0,0) for identifi-

ability (Jiang and Tanner, 1999a). The experts network is defined by the conditional densities

f(y|x;θk) which is the short notation of f(y|X = x, Z = k;θ). Specially, for the regression

problem in this chapter, the expert network is modeled by the noisy linear model:

f(y|x;θk) = N (y;βk0 + xTβk, σ
2
k),

where the bias coefficient βk0 ∈ R and βk ∈ R
p are the regression coefficients describing the kth

expert, and σk > 0 corresponds to the standard deviation of the noise. Thus, in a MoE model

for Gaussian regression with K components, the conditional density function of Y given x can
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be defined by the following semi-parametric probability density function:

f(y|x;θ) =

K∑

k=1

πk(x;w)f(y|x;θk)

=

K∑

k=1

πk(x;w)N (y;βk0 + xTβk, σ
2
k) (3.2)

that is parameterized by the parameter vector defined by θ = (wT
1 , . . . ,w

T
K−1,θ

T
1 , . . . ,θ

T
K)T

where θk = (βk0,β
T
k , σ

2
k)
T (k = 1, . . . ,K) is the parameter vector of the kth expert.

3.2.2 Maximum likelihood parameter estimation

Assume that, D = ((x1, y1), . . . , (xn, yn)) is an observed data sample generated from the MoE

(3.2) with unknown parameter θ. The parameter vector θ is commonly estimated by maximizing

the observed data log-likelihood L(θ) =
∑n

i=1 log
∑K

k=1 πk(xi;w)f(yi|xi;θk) by using the EM

algorithm which allows to iteratively find an appropriate local maximizer of the log-likelihood

function (see Section 2.3.3 and Dempster et al. (1977); Jacobs et al. (1991) for more details). In

the considered model for Gaussian regression, the log-likelihood function is given by

L(θ) =

n∑

i=1

log
[ K∑

k=1

πk(xi;w)N (yi;βk0 + βTk xi, σ
2
k)
]
. (3.3)

However, it is well-known that the MLE may be unstable of even infeasible in high-dimension

namely due to possibly redundant and correlated features. In such a context, a regularization

of the MLE is needed.

3.3 Regularized maximum likelihood parameter estimation of

the MoE

Regularized maximum likelihood estimation allows the selection of a relevant subset of features

for prediction and thus encourages sparse solutions. In mixture of experts modeling, one may

consider both sparsity in the feature space of the gates, and of the experts. We propose to infer

the MoE model by maximizing a regularized log-likelihood criterion, which encourages sparsity

for both the gating network parameters and the experts network parameters, and does not

require any approximation, along with performing the maximization, so that to avoid matrix

inversion. The proposed regularization combines a Lasso penalty for the experts parameters,

and an elastic net like penalty for the gating network, defined by:

PL(θ) = L(θ)−
K∑

k=1

λk‖βk‖1 −
K−1∑

k=1

γk‖wk‖1 −
ρ

2

K−1∑

k=1

‖wk‖22. (3.4)
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A similar strategy has been proposed in Khalili (2010) where the author proposed a regular-

ized ML function like (3.4) but which is then approximated in the EM algorithm of the model

inference. The EM algorithm for fitting the model follows indeed the suggestion of Fan and

Li (2001) to approximate the penalty function in a some neighborhood by a local quadratic

function. Therefore, a Newton-Raphson can be used to update parameters in the M-step. The

weakness of this scheme is that once a feature is set to zero, it may never reenter the model at

a later stage of the algorithm. To avoid this numerical instability of the algorithm due to the

small values of some of the features in the denominator of this approximation, Khalili (2010)

replaced that approximation by an ǫ-local quadratic function. Unfortunately, these strategies

have some drawbacks. First, by approximating the penalty functions with (ǫ-)quadratic func-

tions, none of the components will be exactly zero. Hence, a threshold should be considered to

declare a coefficient is zero, and this threshold affects the degree of sparsity. Secondly, using

Newton-Raphson procedure for maximizing a concave function with large dimension p is not

an appropriate choice related to the required Hessian matrix inversion. In addition, one has

also to choose ǫ as an additional tuning parameter in practice. Our proposal overcomes these

limitations.

The ℓ2 term penalty is added in our model to take into account possible strong correlation

between the features xj which could be translated especially on the coefficients of the gating

network w because they are related between the different experts, contrary to the regression

coefficients β. The resulting combination of ℓ1 and ℓ2 for w leads to an elastic net-like reg-

ularization, which enjoys similar sparsity of representation as the ℓ1 penalty. The ℓ2 term is

not however essential especially when the main goal is to retrieve the sparsity, rather than to

perform prediction.

3.3.1 Parameter estimation and feature selection with a dedicated block-wise

EM

We propose three block-wise EM algorithms to monotonically find at least local maximizers of

(3.4). The E-step is common to these algorithms, while in the M-step, three different algorithms

are proposed to update the model parameters. More specifically, the first one relies on a MM

algorithm, and the second one uses a coordinate ascent to update the gating network w param-

eters. Meanwhile, the last one uses proximal Newton-type procedure to update w. All these

algorithm use the same coordinate ascent method to update the experts network β’ parameters.

The EM algorithm for the maximization of (3.4) firstly requires the construction of the penalized

complete-data log-likelihood

PLc(θ) = Lc(θ)−
K∑

k=1

λk‖βk‖1 −
K−1∑

k=1

γk‖wk‖1 −
ρ

2

K−1∑

k=1

‖wk‖22 (3.5)

where Lc(θ) =
∑n

i=1

∑K
k=1 zik log [πk(xi;w)f(yi|xi;θk)] is the standard complete-data log-likelihood,

zik is an indicator binary-valued variable such that zik = 1 if Zi = k (i.e., if the ith pair (xi,yi)
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is generated from the kth expert component) and zik = 0 otherwise. Thus, the EM algorithm

for the RMoE in its general form runs as follows. After starting with an initial solution θ[0],

it alternates between the two following steps until convergence (e.g., when there is no longer a

significant change in the relative variation of the regularized log-likelihood).

3.3.2 E-step

The E-Step computes the conditional expectation of the penalized complete-data log-likelihood

(3.5), given the observed data D under the current parameter vector θ[q], q being the current

iteration number of the block-wise EM algorithm:

Q(θ;θ[q]) = E

[
PLc(θ)|D;θ[q]

]

=

n∑

i=1

K∑

k=1

τ
[q]
ik log [πk(xi;w)fk(yi|xi;θk)]−

K∑

k=1

λk‖βk‖1 −
K−1∑

k=1

γk‖wk‖1 −
ρ

2

K−1∑

k=1

‖wk‖22

(3.6)

where

τ
[q]
ik = P(Zi = k|yi,xi;θ[q]) =

πk(xi;w
[q])N (yi;β

[q]
k0 + xTi β

[q]
k , σ

[q]2
k )

K∑
l=1

πl(xi;w[q])N (yi;β
[q]
l0 + xTi β

[q]
l , σ

[q]2
l )

(3.7)

is the conditional probability that the data pair (xi, yi) is generated by the kth expert. This

step therefore only requires the computation of the conditional component probabilities τ
[q]
ik

(i = 1, . . . , n) for each of the K experts.

3.3.3 M-step

The M-Step updates the parameters by maximizing the Q function (3.6), which can be written

as

Q(θ;θ[q]) = Q(w;θ[q]) +Q(β, σ;θ[q]) (3.8)

with

Q(w;θ[q]) =

n∑

i=1

K∑

k=1

τ
[q]
ik log πk(xi;w)−

K−1∑

k=1

γk‖wk‖1 −
ρ

2

K−1∑

k=1

‖wk‖22, (3.9)

and

Q(β, σ;θ[q]) =

n∑

i=1

K∑

k=1

τ
[q]
ik logN (yi;βk0 + xTi βk, σ

2
k)−

K∑

k=1

λk‖βk‖1. (3.10)

The parameters w are therefore separately updated by maximizing the function

Q(w;θ[q]) =

n∑

i=1

K−1∑

k=1

τ
[q]
ik (wk0+xTi wk)−

n∑

i=1

log
[
1+

K−1∑

k=1

ewk0+xT
i wk

]
−
K−1∑

k=1

γk‖wk‖1−
ρ

2

K−1∑

k=1

‖wk‖22.

(3.11)
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We propose and compare three approaches for maximizing (3.9) based on a MM algorithm, a

coordinate ascent algorithm and proximal Newton-type method. These approaches have some

advantages since they do not use any approximate for the penalty function, and have a separate

structure which avoid matrix inversion.

MM algorithm for updating the gating network

In this part, we construct a MM algorithm to iteratively update the gating network parameters

(wk0,wk). At each iteration step s of the MM algorithm, we maximize a minorizing function of

the initial function (3.9). We begin this task by giving the definition of a minorizing function.

Definition 3.3.1. (see Lange (2013)) Let F (x) be a function of x. A function G(x|xm) is called

a minorizing function of F (x) at xm if and only if

F (x) ≥ G(x|xm) and F (xm) = G(xm|xm), ∀x.

In the maximization step of the MM algorithm, we maximize the surrogate function G(x|xm),

rather than the function F (x) itself. If xm+1 is the maximum of G(x|xm), then we can show

that the MM algorithm forces F (x) uphill, because

F (xm) = G(xm|xm) ≤ G(xm+1|xm) ≤ F (xm+1).

By doing so, we can find a local maximizer of F (x). If G(xm|xm) is well constructed, then

we can avoid matrix inversion when maximizing it. Next, we derive the surrogate function for

Q(w;θ[q]). We start by the following lemma.

Lemma 3.3.1. If x > 0, then the function f(x) = − ln(1 + x) can be minorized by

g(x|xm) = − ln(1 + xm)− x− xm
1 + xm

, at xm > 0.

By applying this lemma and following (Lange, 2013, page 211) we have

Theorem 3.3.1. The function I1(w) = −
n∑
i=1

log
[
1 +

K−1∑
k=1

ewk0+xT
i wk

]
is a majorizer of

G1(w|w[s]) =

n∑

i=1

[
−
K−1∑

k=1

πk(xi;w
[s])

p+ 1

p∑

j=0

e(p+1)xij(wkj−w
[s]
kj

) − logCmi + 1− 1

Cmi

]
,

where Cmi = 1 +
K−1∑
k=1

ew
[s]
k0+xT

i w
[s]
k and xi0 = 1.
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Proof. Using Lemma 3.3.1, I1i(w) = − log
[
1 +

K−1∑
k=1

ewk0+xT
i wk

]
can be minorized by

Gi(w|w[s]) = − log
[
1 +

K−1∑

k=1

ew
[s]
k0+xT

i w
[s]
k

]
−

K−1∑
k=1

(ewk0+xT
i wk − ew[s]

k0+xT
i w

[s]
k )

1 +
K−1∑
k=1

ew
[s]
k0+xT

i w
[s]
k

= − logCmi + 1− 1

Cmi
−
K−1∑

k=1

ew
[s]
k0+xT

i w
[s]
k

Cmi
e(wk0+xT

i wk)−(w
[s]
k0+xT

i w
[s]
k

)·

Now, by using arithmetic-geometric mean inequality then

e(wk0+xT
i wk)−(w

[s]
k0+xT

i w
[s]
k

) =

p∏

j=0

exij(wkj−w
[s]
kj

) ≤

p∑
j=0

e(p+1)xij(wkj−w
[s]
kj

)

p+ 1
· (3.12)

When (wk0,wk) = (w
[s]
k0,w

[s]
k ) the equality holds.

Thus, I1i(w) can be minorized by

G1i(w|w[s]) = −
K−1∑

k=1

ew
[s]
k0+xT

i w
[s]
k

(p+ 1)Cmi

p∑

j=0

e(p+1)xij(wkj−w
[s]
kj

) − logCmi + 1− 1

Cmi

= −
K−1∑

k=1

πk(xi;w
[s])

p+ 1

p∑

j=0

e(p+1)xij(wkj−w
[s]
kj

) − logCmi + 1− 1

Cmi
·

This leads us to the minorizing function G1(w|w[s]) for I1(w)

G1(w|w[s]) =

n∑

i=1

[
−
K−1∑

k=1

πk(xi;w
[s])

p+ 1

p∑

j=0

e(p+1)xij(wkj−w
[s]
kj

) − logCmi + 1− 1

Cmi

]
·

Therefore, the minorizing function G[q](w|w[s]) for Q(w;θ[q]) is given by

G[q](w|w[s]) =

n∑

i=1

K−1∑

k=1

τ
[q]
ik (wk0 + xTi wk) +G1(w|w[s])−

K−1∑

k=1

γk

p∑

j=1

|wkj | −
ρ

2

K−1∑

k=1

p∑

j=1

w2
kj .

Now, let us separate G[q](w|w[s]) into each parameter for all k ∈ {1, . . . ,K − 1}, j ∈ {1, . . . , p},
we have:

G[q](wk0|w[s]) =

n∑

i=1

τ
[q]
ik wk0 −

n∑

i=1

πk(xi;w
[s])

p+ 1
e(p+1)(wk0−w

[s]
k0) +Ak(w

[s]), (3.13)

62



CHAPTER 3. REGULARIZED ESTIMATION AND FEATURE SELECTION IN
MIXTURE OF EXPERTS FOR REGRESSION AND CLUSTERING

and

G[q](wkj |w[s]) =

n∑

i=1

τ
[q]
ik xijwkj −

n∑

i=1

πk(xi;w
[s])

p+ 1
e(p+1)xij(wkj−w

[s]
kj

) − γk|wkj | −
ρ

2
w2
kj +Bkj(w

[s]),

(3.14)

where Ak(w
[s]) and Bkj(w

[s]) are only functions of w[s].

The update of w
[s]
k0 is straightforward by maximizing (3.13) and given by

w
[s+1]
k0 = w

[s]
k0 +

1

p+ 1
ln





n∑
i=1

τ
[q]
ik

n∑
i=1

πk(xi;w[s])



 . (3.15)

The function G[q](wkj |w[s]) is a concave function. Moreover, it is a univariate function with

respect to wkj . We can therefore maximize it globally and with respect to each coeffcient wkj

separately and thus avoid matrix inversion. Indeed, let us denote by

F
[q]
kjm(wkj) =

n∑

i=1

τ
[q]
ik xijwkj −

n∑

i=1

πk(xi;w
[s])

p+ 1
e(p+1)xij(wkj−w

[s]
kj

) − ρ

2
w2
kj +Bkj(w

[s]),

hence, G[q](wkj |w[s]) can be rewritten as

G[q](wkj |w[s]) =






F
[q]
kjm(wkj)− γkwkj , if wkj > 0

F
[q]
kjm(0) , if wkj = 0

F
[q]
kjm(wkj) + γkwkj , if wkj < 0

.

We therefore have both F
[q]
kjm(wkj)−γkwkj and F

[q]
kjm(wkj)+γkwkj are smooth concave functions.

Thus, one can use one-dimensional Newton-Raphson algorithm to find the global maximizers of

these functions and compare with F
[q]
kjm(0) in order to update w

[s]
kj by

w
[s+1]
kj = arg max

wkj

G[q](wkj |w[s]).

The update of wkj can then be computed by a one-dimensional generalized Newton-Raphson

(NR) algorithm, which updates, after starting from and initial value w
[0]
kj = w

[s]
kj , at each iteration

t of the NR, according to the following updating rule:

w
[t+1]
kj = w

[t]
kj −

(∂2G[q](wkj |w[s])

∂2wkj

)−1∣∣∣
w

[t]
kj

∂G[q](wkj |w[s])

∂wkj

∣∣∣
w

[t]
kj

,

where the first and the scalar gradient and hessian are respectively given by:

∂G[q](wkj |w[s])

∂wkj
=





U(wkj)− γk , G[q](wkj |w[s]) = F

[q]
kjm(wkj)− γkwkj

U(wkj) + γk , G[q](wkj |w[s]) = F
[q]
kjm(wkj) + γkwkj

,
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and
∂2G[q](wkj |w[s])

∂2wkj
= −(p+ 1)

n∑

i=1

x2
ijπk(xi;w

[s])e(p+1)xij(wkj−w
[s]
kj

) − ρ,

with

U(wkj) =

n∑

i=1

τ
[q]
ik xij −

n∑

i=1

xijπk(xi;w
[s])e(p+1)xij(wkj−w

[s]
kj

) − ρwkj .

Unluckily, while this method allows to compute separate univariate updates by globally maxi-

mizing concave functions, it has some drawbacks. First, we found the same behavior of the MM

algorithm for this non-smooth function setting as in Hunter and Li (2005): once a coefficient

is set to be zero, it may never reenter the model at a later stage of the algorithm. Second, the

MM algorithm can stuck on non-optimal points of the objective function. Schifano et al. (2010)

made an interesting study on the convergence of the MM algorithms for nonsmoothly penalized

objective functions, in which they proof that with some conditions on the minorizing function

(see Theorem 2.1 of Schifano et al. (2010)), then the MM algorithm will converge to the optimal

value. One of these conditions requires the minorizing function must be strickly positive, which

is not guaranteed in our method, since we use the arithmetic-geometric mean inequality in (3.12)

to construct our surrogate function. Hence, we just ensure that the value of Q(w;θ[q]) will not

decrease in our algorithm. In the next section, we propose updating wk = (wk0,wk) by using

coordinate ascent algorithm. This approach overcomes this weakness of the MM algorithm.

Coordinate ascent algorithm for updating the gating network

We now consider another approach for updating (wk0,wk) by using coordinate ascent algorithm.

Indeed, based on Tseng (1988, 2001), with regularity conditions, then the coordinate ascent

algorithm is successful in updating w. Thus, the w parameters are updated in a cyclic way,

where a coefficient wkj (j 6= 0) is updated at each time, while fixing the other parameters to

their previous values. Hence, at each iteration one just needs to update only one parameter.

With this setting, the update of wkj is performed by maximizing the component (k, j) of (3.9)

given by

Q(wkj ;θ
[q]) = F (wkj ;θ

[q])− γk|wkj |, (3.16)

where

F (wkj ;θ
[q]) =

n∑

i=1

τ
[q]
ik (wk0 + wT

k xi)−
n∑

i=1

log
[
1 +

K−1∑

l=1

ewl0+wT
l

xi

]
−ρ

2
w2
kj . (3.17)

Hence, Q(wkj ;θ
[q]) can be rewritten as

Q(wkj ;θ
[q]) =






F (wkj ;θ
[q])− γkwkj , if wkj > 0

F (0;θ[q]) , if wkj = 0

F (wkj ;θ
[q]) + γkwkj , if wkj < 0

.
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Again, both F (wkj ;θ
[q])− γkwkj and F (wkj ;θ

[q]) + γkwkj are smooth concave functions. Thus,

one can use one-dimensional generalized Newton-Raphson algorithm with initial value w
[0]
kj = w

[q]
kj

to find the maximizers of these functions and compare with F (0;θ[q]) in order to update w
[s]
kj by

w
[s+1]
kj = arg max

wkj

Q(wkj ;θ
[q]),

where s denotes the sth loop of the coordinate ascent algorithm. The update of wkj is there-

fore computed iteratively after starting from and initial value w
[0]
kj = w

[s]
kj following the update

equation

w
[t+1]
kj = w

[t]
kj −

(∂2Q(wkj ;θ
[q])

∂2wkj

)−1∣∣∣
w

[t]
kj

∂Q(wkj ;θ
[q])

∂wkj

∣∣∣
w

[t]
kj

, (3.18)

where t in the inner NR iteration number, and the one-dimensional gradient and hessian func-

tions are respectively given by

∂Q(wkj ;θ
[q])

∂wkj
=





U(wkj)− γk , if Q(wkj ;θ

[q]) = F (wkj ;θ
[q])− γkwkj

U(wkj) + γk , if Q(wkj ;θ
[q]) = F (wkj ;θ

[q]) + γkwkj
, (3.19)

and
∂2Q(wkj ;θ

[q])

∂2wkj
= −

n∑

i=1

x2
ije

wk0+xT
i wk(Ci(wkj)− ewk0+xT

i wk)

C2
i (wkj)

− ρ.

with

U(wkj) =

n∑

i=1

xijτ
[q]
ik −

n∑

i=1

xije
wk0+xT

i wk

Ci(wkj)
− ρwkj ,

and

Ci(wkj) = 1 +
∑

l 6=k

ewl0+xT
i wl + ewk0+xT

i wk ,

is a univariate function of wkj when fixing other parameters. For other parameter we set

w
[s+1]
lh = w

[s]
lh .

Similarly, for the update of wk0, a univariate Newton-Raphson algorithm with initial value

w
[0]
k0 = w

[q]
k0 can be used to provide the update w

[s]
k0 given by

w
[s+1]
k0 = arg max

wk0

Q(wk0;θ
[q]),

where Q(wk0;θ
[q]) is a univariate concave function given by

Q(wk0;θ
[q]) =

n∑

i=1

τ
[q]
ik (wk0 + xTi wk)−

n∑

i=1

log
[
1 +

K−1∑

l=1

ewl0+xT
i wl

]
, (3.20)

with
∂Q(wk0;θ

[q])

∂wk0
=

n∑

i=1

τ
[q]
ik −

n∑

i=1

ewk0+xT
i wk

Ci(wk0)
(3.21)
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and
∂2Q(wk0;θ

[q])

∂2wk0
= −

n∑

i=1

ewk0+xT
i wk(Ci(wk0)− ewk0+xT

i wk)

C2
i (wk0)

. (3.22)

The other parameters are fixed while updating wk0. By using the coordinate ascent algorithm,

we have univariate updates, and make sure that the parameters wkj may change during the

algorithm even after they shrink to zero at an earlier stage of the algorithm.

In the next section, we propose a new procedure for updating the gating network parameters.

Proximal Newton-type procedure for updating the gating network

Indeed, the developed MM and coordinate ascent algorithms for the estimation of the parameters

of our model could be slow in a high-dimensional setting since we do not have the closed-form

updates of the parameters of the gating network w at each step of the EM algorithm; while a

univariate Newton-Raphson is derived to avoid matrix inversion operations, it is still slow in high-

dimension. However, this difficulty can be overcome by proximal Newton-type method. In this

part, we propose two approaches for updating the gating network parameters w = {(wk0,wk)}
by maximizing Q(w;θ[q]) based on the proximal Newton and the proximal Newton-type method.

The proximal Newton method approximates only the smooth part of (3.9) given by

I(w) =

n∑

i=1

K−1∑

k=1

τ
[q]
ik (wk0 + xTi wk)−

n∑

i=1

log
[
1 +

K−1∑

k=1

ewk0+xT
i wk

]
(3.23)

with its Taylor expansion at current estimates

Ĩt(w) = I(w(t)) + ▽I(w(t))T (w −w(t)) +
1

2
(w −w(t))T▽2I(w(t))(w −w(t)), (3.24)

where ▽I(w(t)), ▽2I(w(t)) are corresponding the gradient vector and the Hessian matrix of I(w)

at w(t). After that, the problem can be solved by an iterative algorithm with initial value w(0)

where, at step (t+ 1), it minimizes the proximal function

Q̃t(w) = Ĩt(w)−
K−1∑

k=1

γk‖wk‖1 −
ρ

2

K−1∑

k=1

‖wk‖22 (3.25)

instead of Q(w;θ[q]) and then searches for the updating value w(t+1) based on the solution

of (3.25) that improves the Q-function, i.e., Q(w(t);θ[q]) < Q(w(t+1);θ[q]) until the algorithm

converges. This strategy has some advantages especially since I(.) does not have a quadratic

form. First, by approximating I with its local quadratic form, several good methods can be

used to solve (3.25) such as coordinate ascent, where updating one parameter in each step will

avoid computing the inverse of a matrix. Second, one can obtain the closed-form update for

each parameter at each iteration of the algorithm, hence, reduce the computational time of

the algorithm. Finally, for searching w(t+1), one can use the efficient backtracking line search
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strategy (see Boyd and Vandenberghe (2004)) which is easy to setup.

However, the K − 1 vectors for the gating network will not approximate I(w) with its

Taylor expansion. Here, partial Newton steps are performed by forming a partial quadratic

approximation to Q(w;θ[q]) (Taylor expansion at the current estimates), allowing only (wk0,wk)

to vary for a single class at a time. This algorithm is similar to the one in Friedman et al. (2010)

except the fact that here after each outer loop that cycles over k, a backtracking line search is

performed over the step size parameter t ∈ [0, 1]. The partial quadratic approximation to I(w)

with respect to (wk0,wk) at w̃ is given by (see Appendix C.2 for more details)

lIk(wk0,wk) = −1

2

n∑

i=1

dik(cik − wk0 − xTi wk)
2 + C(w̃), (3.26)

where

cik = w̃k0 + xTi w̃k +
τ

[q]
ik − πk(w̃;xi)

πk(w̃;xi)(1− πk(w̃;xi))
, (3.27)

dik = πk(w̃;xi)(1− πk(w̃;xi)), (3.28)

and C(w̃) is a function of w̃. After calculating the partial quadratic approximation lIk(wk0,wk)

about the current parameters w̃, a coordinate ascent algorithm is used to solve the penalized

weighted least-square problem

max
(wk0,wk)

lIk(wk0,wk)− γk‖wk‖1 −
ρ

2
‖wk‖22. (3.29)

Using the soft-thresholding operator (see (Hastie et al., 2015, sec. 5.4)), one can obtain the

closed-form update for wkj as follows

wm+1
kj =

Sγk
(
n∑
i=1

diku
m
ikjxij)

n∑
i=1

dikx
2
ij + ρ

, (3.30)

with umikj = cik − wmk0 − xTi wm
k + wmkjxij and Sγk

(.) is a soft-thresholding operator defined by

[Sγ(u)]j = sign(uj)(|uj | − γ)+ and (x)+ a shorthand for max{x, 0}. Here, m is defined as the

mth step of the coordinate ascent algorithm. Note that, for each iteration of the coordinate

ascent algorithm one parameter is updated while other are kept fixed, that means for h 6= j,

wm+1
kh = wmkh. For wk0, the closed-form update is given by

wm+1
k0 =

n∑
i=1

dik(cik − xTi wm
k )

n∑
i=1

dik

. (3.31)
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Once the coordinate ascent algorithm converges, the new values of (wk0,wk) are taken into ac-

count for the next loop of the proximal Newton algorithm. Overall, the algorithm is summarized

by pseudo-code 2.

Algorithm 2 Proximal Newton method for updating the gating network

1: w(0) = w[q].
2: repeat
3: for k = 1 to K − 1 do
4: Update the quadratic approximation lIk(wk0,wk) in (3.26) by using the current param-

eters.
5: Solve the penalized weighted least-square problem in (3.29) by using coordinate ascent

algorithm and compute the solution w̃
(s)
k according to (3.30), (3.31).

6: Update (wk0,wk) by the new values.
7: end for
8: Set w(s+1) = (1− t)w(s) + tw̃(s), where t is found using a backtracking line-search.
9: Evaluate the objective function Q(.;θ[q]) at w(s+1).

10: until the stopping criterion is satisfied.

The initial values for (wk0,wk) in this EM algorithm are set to 0 and the backtracking line-search

is needed for algorithm to converge to the optimal solution. The proximal Newton method pre-

sented here can overcome the drawback of the coordinate ascent algorithm since at each step

has a closed-form update update for each parameter. Hence, it improves the running time of

the algorithm.

Even though in some cases the values of the probabilities πk(xi; w̃) can become too small

(or too close to 1), and the algorithm can get stuck while solving (3.29). To address this

issue, we consider proximal Newton-type method as a proper choice for this situation. Proximal

Newton-type methods use a symmetric negative definite matrix B ≈ ▽2I(w̃k) to model the

curvature of I(w) at (wk0,wk). In this case, one can follow the suggestions of (Lange, 2013,

sec. 8.7) and Gormley et al. (2008) by choosing a constant negative definite matrix B such as

▽2I(w̃k) > B. The proximal Newton-type algorithm here can be interpreted as a special case of

the MM algorithm (Hunter and Lange, 2004). Specifically it is a minorize-maximize algorithm

for updating the gating network and also the expert network in multinomial outputs case.

Since,

∂2I(w)

∂wkj∂wkh
= −

n∑

i=1

xijxihπk(xi;w)(1− πk(xi;w)), ∀j, h,

then, using the fact that π(1 − π) ≤ 1/4, we can take B = −1/4
∑n

i=1 xix
T
i . Thus, instead of

solving (3.29), one can solve the local quadratic model

max
(wk0,wk)

l̂Ik(wk0,wk)− γk‖wk‖1. (3.32)
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where

l̂Ik(wk0,wk) = −1

8

n∑

i=1

(ĉik − wk0 − xTi wk)
2 + Ĉ(w̃), (3.33)

and

ĉik = w̃k0 + xTi w̃k + 4(τ
[q]
ik − πk(w̃;xi)), (3.34)

Ĉ(w̃) is a function of w̃. Here, it is clear that this approach has some advantages. Firstly,

we can avoid computing the Hessian matrix and can also avoid numerical instability caused

by πk(w̃;xi). Secondly, the backtracking line search step is not necessary in this case. The

increase of the Q(w;θ[q]) after each loop is also guaranteed, since this algorithm is a proximal

Newton-type algorithm and is a specific case of the MM algorithm.

Updating the experts network

Now once we have these three methods to update the gating network parameters, we move on

updating the experts network parameters ({β, σ2}). To do that, we first perform the update for

(βk0, βk), while fixing σk. This corresponds to solving K separated weighted Lasso problems.

Hence, we choose to use a coordinate ascent algorithm to deal with this. Actually, in this

situation the coordinate ascent algorithm can be seen as a special case of the MM algorithm;

hence, this updating step is common to both of the proposed algorithms. More specifically, the

update of βkj is performed by maximizing

Q(β, σ;θ[q]) =

n∑

i=1

K∑

k=1

τ
[q]
ik logN (yi;βk0 + βTk xi, σ

2
k)−

K∑

k=1

λk‖βk‖1; (3.35)

using a coordinate ascent algorithm, with initial values (β
[0]
k0 ,β

[0]
k ) = (β

[q]
k0 ,β

[q]
k ). We obtain

closed-form coordinate updates that can be computed for each component following the results

in (Hastie et al., 2015, sec. 5.4), and are given by

β
[s+1]
kj =

S
λkσ

(s)2
k

(∑n
i=1 τ

[q]
ik r

[s]
ikjxij

)

∑n
i=1 τ

[q]
ik x

2
ij

, (3.36)

with r
[s]
ikj = yi − β[s]

k0 − β
[s]T
k xi + β

[s]
kjxij and S

λkσ
(s)2
k

(.) is a soft-thresholding operator defined

by [Sγ(u)]j = sign(uj)(|uj | − γ)+ and (x)+ a shorthand for max{x, 0}. For h 6= j, we set

β
[s+1]
kh = β

[s]
kh. At each iteration m, βk0 is updated by

β
[s+1]
k0 =

∑n
i=1 τ

[q]
ik (yi − β

[s+1]T
k xi)

∑n
i=1 τ

[q]
ik

· (3.37)

In the next step, we take (w
[q+2]
k0 ,w

[q+2]
k ) = (w

[q+1]
k0 ,w

[q+1]
k ), (β

[q+2]
k0 ,β

[q+2]
k ) = (β

[q+1]
k0 ,β

[q+1]
k ),

rerun the E-step, and update σ2
k according to the standard update of a weighted Gaussian
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regression

σ
2[q+2]
k =

∑n
i=1 τ

[q+1]
ik (yi − β[q+2]

k0 − β
[q+2]
k

T
xi)

2

∑n
i=1 τ

[q+1]
ik

· (3.38)

Each of these proposed algorithms is iterated until the change in PL(θ) is small enough. More-

over, we can directly get zero coefficients without any thresholding unlike in Khalili (2010);

Hunter and Li (2005). These algorithms increase the penalised log-likelihood function (3.4) as

shown in Appendix B.

3.3.4 Algorithm tuning and model selection

In practice, appropriate values of the tuning parameters (λ, γ, ρ) should be chosen. To select

the tuning parameters, we propose a modified BIC with a grid search scheme, as an extension of

the criterion used in Städler et al. (2010b) for regularized mixture of regressions. First, assume

that K0 ∈ {K1, . . . ,KM} whereupon K0 is the true number of expert components. For each

value of K, we choose a grid of the tuning parameters. Consider grids of values {λ1, . . . , λM1},
{γ1, . . . , γM2} in the size of

√
n and a small enough value of ρ ≈ O(logn) for the ridge turning

parameter. ρ = 0.1 log n can be used in practice. For a given triplet (K,λi, γj), we select

the maximal penalized log-likelihood estimators θ̂K,λ,γ using each of our hybrid EM algorithms

presented above. Then, the following modified BIC criterion,

BIC(K,λ, γ) = L(θ̂K,λ,γ)−DF (λ, γ)
log n

2
, (3.39)

where DF (λ, γ) is the estimated number of non-zero coefficients in the model, is computed.

Finally, the model with parameters (K,λ, γ) = (K̃, λ̃, γ̃) which maximizes the modified BIC

value, is selected. While the problem of choosing optimal values of the tuning parameters for

penalized MoE models is still an open research, the modified BIC performs reasonably well in

our experiments.

3.4 Experimental study

We study the performance of our methods on both simulated data and real data. The results

are compared among the regularized MoE using three proposed hybrid EM algorithms with

Minorization-Maximization (MoE-Lasso+ℓ2 (MM)), coordinate ascent (MoE-Lasso+ℓ2 (CA))

and proximal Newton method (MoE-Lasso+ℓ2(PN)) with the following four methods: i) the

standard non-penalized MoE (MoE), ii) the MoE with ℓ2 regularization (MoE+ℓ2), iii) the

mixture of linear regressions with Lasso penalty (MIXLASSO), and iv) the MoE with BIC

penalty for feature selection (MoE-BIC). We consider several evaluation criteria to assess the

performance of the models, including sparsity, parameters estimation and clustering criteria.

In addition, to evaluate the affect of the ℓ2 norm to the sparsity of the model, we also

compare our results with the Lasso-regularized model. We use proximal Newton method (MoE-
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Lasso (PN)) to estimate parameters in this case.

3.4.1 Evaluation criteria

We compare the results of all the models for three different criteria: sensitivity/specificity, pa-

rameters estimation, and clustering performance for simulation data. The sensitivity/specificity

is defined by

• Sensitivity: proportion of correctly estimated zero coefficients;

• Specificity: proportion of correctly estimated nonzero coefficients.

In this way, we compute the ratio of the estimated zero/nonzero coefficients to the true number

of zero/nonzero coefficients of the true parameter for each component. In our simulation, the

proportion of correctly estimated zero coefficients and nonzero coefficients have been calculated

for each data set for the experts parameters and the gating parameters, and we present the

average proportion of these criteria computed over 100 different data sets. Also, to deal with

the label switching before calculating these criteria, we permuted the estimated coefficients

based on an ordered between the expert parameters. If the label switching happens, one can

permute the expert parameters and the gating parameters then replace the kth gating network

vector with wper
k = wk −wK . By doing so, we ensure that the log-likelihood will not change,

that means L(θ̂) = L(θ̂
per

) and these parameters satisfy the initialized condition wper
K = 0.

However, the penalized log-likelihood value can be different from the one before permutation.

So this may result in misleading values of the sparsity criterion of the model when we permute

the parameters. The regularized method tends to choose the model with small absolute values

of the gating network. However, for K = 2, the log-likelihood function and the penalized log-

likelihood function will not change since we have wper
1 = −w1.

For the second criterion of parameter estimation, we compute the mean and standard deviation

of both penalized parameters and non penalized parameters in comparison with the true value θ.

We also consider the mean squared error (MSE) between each component of the true parameter

vector and the estimated one, which is given by ‖θj − θ̂j‖2.
For the clustering criterion, once the parameters are estimated and permuted, the provided

conditional component probabilities τ̂ik defined in (3.7) represent a soft partition of the data. A

hard partition of the data is given by applying the Bayes’s allocation rule

ẑi = arg
K

max
k=1

τik(θ̂), (3.40)

where ẑi represents the estimated cluster label for the ith observation. Given the estimated and

true cluster labels, we therefore compute the correct classification rate and the Adjusted Rand

Index (ARI).

Also, we note that for the standard MoE with BIC penalty, we consider a pool of 5×4×5 = 100

submodels. Our EM algorithm with coordinate ascent has been used with zero penalty coeffi-

cients and without updating the given zero parameters in the experts and the gating network

71



3.4. EXPERIMENTAL STUDY

Y value

D
en

si
ty

−5 0 5

0.
00

0.
05

0.
10

0.
15

0.
20

Histogram of Y

Figure 3.1: Histogram of the response variable Y for a MoE simulation data. The red line
represents the estimated density using non-parametric kernel density estimation and the black
line shows the estimated density using a GMM.

to obtain the (local) MLE of each submodel. After that, the BIC criterion in (3.39) was used

to choose the best submodel among 100 model candidates.

3.4.2 Simulation study

For each data set, we consider n = 300 predictors x generated from a multivariate Gaussian

distribution with zero mean and correlation defined by corr(xij , xij′) = 0.5|j−j′|. The response

Y |x is generated from a normal MoE model of K = 2 expert components as defined by (2.38)

and (2.40), with the following regression coefficients:

(β10,β1)
T = (0, 0, 1.5, 0, 0, 0, 1)T ;

(β20,β2)
T = (0, 1,−1.5, 0, 0, 2, 0)T ;

(w10,w1)
T = (1, 2, 0, 0,−1, 0, 0)T ;

and σ1 = σ2 = σ = 1. Histogram of a typical simulation data set can be seen from Figure 3.1.

100 data sets were generated for this simulation. The results will be presented in the following

sections.

Sensitivity/specificity criteria

Table 4.1 presents the sensitivity (S1) and specificity (S2) values for the experts 1 and 2 and the

gates for each of the considered models. As it can be seen in the obtained results that the ℓ2

and MoE models cannot be considered as model selection methods since their sensitivity almost
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surely equals zero. However, it is obvious that the MoE-Lasso+ℓ2, with the MM, the coordinate

ascent and proximal Newton algorithms, performs quite well for experts 1 and 2. The difference

between the methods are not significant. The feature selection becomes more difficult for the

gate πk(x;w) since there is correlation between features. While mixed Lasso+ℓ2 regularized

model using MM (MoE-Lasso+ℓ2 (MM)) may get trouble in detecting non-zero coefficients in

the gating network, the model using coordinate ascent (MoE-Lasso+ℓ2 (CA)), proximal Newton

(MoE-Lasso+ℓ2 (PN)), and the Lasso regularized model (MoE-Lasso (PN)) perform quite well.

There is a slightly difference between MoE-Lasso+ℓ2 (PN) and MoE-Lasso (PN) in detecting

the zero coefficients in the gating network. In this case, the model without the quadratic penalty

performs better in retrieving the zero parameters in the gating network. The MIXLASSO, can

detect the zero coefficients in the experts but it will be shown in the later clustering results that

this model has a poor result when clustering the data. Note that for the MIXLASSO we do not

have gates, so variable “N/A” is mentioned in the results. Finally, while the BIC provides the

best results in general, it is hard to apply BIC in reality since the number of submodels may be

huge.

Method Expert 1 Expert 2 Gate
S1 S2 S1 S2 S1 S2

MoE-BIC 0.920 1.000 0.930 1.000 0.850 1.000
MoE-Lasso+ℓ2 (MM) 0.720 1.000 0.777 1.000 0.815 0.615
MoE-Lasso+ℓ2 (CA) 0.700 1.000 0.803 1.000 0.853 0.945
MoE-Lasso+ℓ2 (PN) 0.698 1.000 0.797 1.000 0.728 0.995

MoE-Lasso (PN) 0.700 1.000 0.790 1.000 0.748 0.995
MIXLASSO 0.775 1.000 0.693 1.000 N/A N/A

Table 3.1: Sensitivity (S1) and specificity (S2) results for our proposed methods compared with
the MoE model using BIC criterion for feature selection and the mixture of linear regression
model (MLR).

Parameter estimation

The boxplots of all estimated parameters are shown in Figures 3.2, 3.3 and 3.4. It turns out that

the MoE and MoE+ℓ2 models could not be considered as model selection methods. Besides that,

by adding the ℓ2 penalty functions, we can reduce the variance of the parameters in the gate. The

BIC, MoE-Lasso+ℓ2 (MM), MoE-Lasso+ℓ2 (CA), MoE-Lasso+ℓ2 (PN) and MoE-Lasso (PN)

provide sparse results for the model, not only in the experts, but also in the gates. However,

the method using MM algorithm in this situation forces the nonzero parameter w14 toward zero,

and this effects the clustering result. The MIXLASSO can also detect zero coefficients in the

experts, but since this model does not have a mixture proportions that depend on the inputs,

it is least competitive than others.

For the mean and standard derivation results shown in Table 3.2 and Table 3.3, we can

see that the model using BIC for selection, the non penalized MoE, and the MoE with ℓ2
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Figure 3.2: Boxplots of the expert 1’s parameter estimates obtained by, respectively, Mixture-
of-Experts (MoE) with standard MLE, MoE with ℓ2 regularization, MoE with BIC procedure
for model selection, and then our proposed methods: MoE with mixed ℓ1 (Lasso) and ℓ2 regu-
larization using the EM algorithm with Minorization-Maximization (MM) updates, Coordinate
Ascent (CA) updates, and Proximal Newton (PN) updates; MoE with Lasso regularization
with hybrid EM/Proximal Newton method for parameter estimation. Finally, the standard
MIXLASSO (Mixture of regressions with Lasso regularization) is also considered.

penalty have better results, while regularized MoE models and MIXLASSO can cause bias to

the estimated parameters, since the penalty functions are added to the log-likelihood function.
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Figure 3.3: Boxplots of the expert 2’s parameter estimates obtained by, respectively, Mixture-of-
Experts (MoE) with standard MLE, MoE with ℓ2 regularization, MoE with BIC procedure for
model selection, and the proposed methods: MoE with mixed ℓ1 (Lasso) and ℓ2 regularization
using EM algorithm with Minorization-Maximization (MM) updates, Coordinate Ascent (CA)
updates, and Proximal Newton (PN) updates; MoE with Lasso regularization. In addition, the
standard MIXLASSO (Mixture of regressions with Lasso regularization) is also considered.

In contrast, from Table 3.4 and Table 3.5, in terms of average mean squared error, the penalized

MoE model and MIXLASSO provide a better result than MoE and the MoE with ℓ2 penalty for

estimating the zero coefficients. The BIC still provides the best result, but as we commented
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Figure 3.4: Boxplots of the gate’s parameter estimates obtained by Mixture-of-Experts (MoE)
with standard MLE, MoE with ℓ2 regularization, and with BIC procedure for model selection
compare with boxplots of the proposed methods: MoE with mixed ℓ1 (Lasso) and ℓ2 regular-
ization with Minorization-Maximization (MM) updates, Coordinate Ascent (CA) updates, and
Proximal Newton (PN) updates; MoE with Lasso regularization bases on Proximal Newton
updates.

before, it is hard to apply BIC in reality especially for high-dimensional data, since this involves

a huge collection of model candidates.
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Comp. True value MoE MoE+ℓ2 MoE-BIC MIXLASSO

0 0.010(.096) 0.009(.097) 0.014(.083) 0.043(.093)

0 −0.002(.106) −0.002(.107) −0.003(.026) 0.011(.036)

1.5 1.501(.099) 1.502(.099) 1.495(.075) 1.404(.086)

Exp.1 0 0.000(.099) 0.001(.099) 0.000(.037) 0.013(.036)

0 −0.022(.102) −0.022(.102) 0.002(.020) 0.003(.027)

0 −0.001(.097) −0.003(.097) 0.000(.045) 0.013(.040)

1 1.003(.090) 1.004(.090) 0.998(.077) 0.903(.088)

0 0.006(.185) 0.005(.184) 0.002(.178) −0.063(.188)

1 1.007(.188) 1.006(.188) 1.002(.187) 0.755(.220)

−1.5 −1.492(.149) −1.494(.149) −1.491(.129) −1.285(.146)

Exp.2 0 −0.011(.159) −0.012(.158) −0.005(.047) −0.023(.071)

0 −0.010(.172) −0.008(.171) −0.006(.079) 0.016(.075)

2 2.004(.169) 2.005(.169) 2.003(.128) 1.891(.159)

0 0.008(.139) 0.007(.140) 0.008(.053) 0.031(.086)

1 1.095(.359) 1.008(.306) 1.055(.328)

2 2.186(.480) 1.935(.344) 2.107(.438)

0 0.007(.287) 0.038(.250) −0.006(.086)

Gate 0 −0.001(.383) −0.031(.222) 0.004(.1.55) N/A

−1 −1.131(.413) −0.991(.336) −1.078(.336)

0 −0.022(.331) −0.033(.281) −0.017(.172)

0 0.025(.283) 0.016(.246) 0.005(.055)

σ 1 0.965(.045) 0.961(.045) 0.978(.046) 1.000(.053)

Table 3.2: The true value, mean and standard derivation for each coefficient of the estimated
parameter vector via MoE, MoE+ℓ2, MoE-BIC and the MIXLASSO.

Clustering of heterogeneous regression data

We calculate the accuracy of clustering of all these mentioned models for each data set. The

results in terms of ARI and correct classification rate values are provided in Table 4.5. We

can see that the MoE-Lasso+ℓ2 (PN) model provides a good result for clustering data. The

obtain results from this method is as good as the non penalized model. However, as we can

see, the model without ℓ2 penalty (MoE-Lasso (PN)) provides better result than MoE-Lasso+ℓ2

(PN). The MoE-BIC model gives the best result but always with a very significant computa-

tional load. The difference between MoE-Lasso+ℓ2 (CA) and MoE-BIC is smaller than 1%,

while the MIXLASSO provides a poor result in terms of clustering. Here, we also see that the

MoE-Lasso+ℓ2 (MM) estimates the parameters in the experts quite well. However, the MM

algorithm for updating the gate’s parameter causes bad effect, since this approach forces the

non-zero coefficient w14 toward zero. Hence, this may decrease the clustering performance.

Overall, we can clearly see the MoE-Lasso+ℓ2 (CA), MoE-Lasso+ℓ2 (PN) algorithm perform

quite well to retrieve the actual sparse support; the sensitivity and specificity results are quite

reasonable for the proposed Lasso+ℓ2 regularization. If the data is not highly correlated, one can

remove the ℓ2 penalty to improve the sparsity of the gating network and also improve the accu-

racy of clustering of the regularization models. While the penalty function will cause bias to the
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Comp. True value MoE-Lasso+ℓ2 MoE-Lasso+ℓ2 MoE-Lasso+ℓ2 MoE-Lasso
(MM) (CA) (PN) (PN)

0 0.031(.091) 0.026(.089) 0.026(.089) 0.026(.089)

0 0.009(.041) 0.011(.046) 0.010(.045) 0.010(.045)

1.5 1.435(.080) 1.435(.080) 1.435(.080) 1.434(.080)

Exp.1 0 0.012(.042) 0.013(.044) 0.013(.045) 0.013(.044)

0 0.001(.031) 0.000(.032) 0.000(.031) 0.000(.032)

0 0.013(.044) 0.012(.043) 0.012(.043) 0.012(.043)

1 0.930(.082) 0.930(.082) 0.931(.082) 0.931(.082)

0 −0.158(.183) −0.162(.177) −0.163(.175) −0.165(.175)

1 0.661(.209) 0.675(.202) 0.675(.200) 0.675(.200)

−1.5 −1.216(.152) −1.242(.139) −1.243(.138) −1.243(.137)

Exp.2 0 −0.018(.055) −0.018(.055) −0.018(.055) −0.018(.055)

0 0.013(.061) 0.011(.059) 0.011(.060) 0.012(.060)

2 1.856(.150) 1.876(.149) 1.876(.148) 1.876(.148)

0 0.022(.062) 0.020(.060) 0.020(.060) 0.019(.059)

1 0.651(.331) 0.759(.221) 0.759(.218) 0.778(.224)

2 1.194(.403) 1.332(.208) 1.333(.206) 1.400(.225)

0 0.058(.193) 0.024(.068) 0.033(.069) 0.028(.067)

Gate 0 −0.025(.214) −0.011(.039) −0.014(.068) −0.014(.072)

−1 −0.223(.408) −0.526(.253) −0.555(.211) −0.584(.223)

0 −0.082(.243) −0.032(.104) −0.040(.106) −0.039(.111)

0 −0.002(.132) −0.007(.036) −0.012(.060) −0.012(.062)

σ 1 1.000(.052) 0.989(.050) 0.989(.050) 0.989(.050)

Table 3.3: The true value, mean and standard derivation for each coefficient of the estimated
parameter vector via the regularized models: MoE-Lasso+ℓ2 (MM), MoE-Lasso+ℓ2 (CA), MoE-
Lasso+ℓ2 (PN) and MoE-Lasso (PN).

parameters, as shown in the results of the MSE, the algorithm can perform parameter density

estimation with an acceptable loss of information due to the bias induced by the regulariza-

tion. In terms of clustering, the methods using coordinate ascent and proximal Newton method

work as well as two other MoE models and MoE-BIC, better than the MoE-Lasso+ℓ2 (MM),

MIXLASSO models. One important thing should be mention is that, with the same tuning

parameters λ = 10, γ = 5 and ρ = 0.1 log n the regularized model using proximal Newton-type

algorithm MoE-Lasso+ℓ2 (PN) converges to better values of the penalized log-likelihood than

those of the method using coordinate ascent MoE-Lasso+ℓ2 (CA), −585.140(12.990) compares

with −585.410(13.029).

3.4.3 Lasso paths for the regularized MoE parameters

In this section, Lasso paths for the experts network are given based on one typical simulation

data set. To do this two fix values of the tuning parameters γ are chosen γ ∈ {0, 5}, ρ = 0.1 log n

as usual and a grid of values for λ is also provided λ ∈ {0, 1, . . . , 23}. For λ ≥ 24, a local solution

of the regularized MoE model that closes to the true parameters cannot detected. EM/Proximal
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Mean squared error
Comp. True value MoE MoE+ℓ2 MoE-BIC MIXLASSO

0 0.0093(.015) 0.0094(.015) 0.0070(.011) 0.0106(.016)

0 0.0112(.016) 0.0114(.017) 0.0007(.007) 0.0014(.005)

1.5 0.0098(.014) 0.0098(.015) 0.0057(.007) 0.0166(.019)

Exp.1 0 0.0099(.016) 0.0099(.016) 0.0013(.009) 0.0015(.005)

0 0.0108(.015) 0.0109(.016) 0.0004(.004) 0.0007(.003)

0 0.0094(.014) 0.0094(.014) 0.0020(.010) 0.0017(.008)

1 0.0081(.012) 0.0082(.012) 0.0059(.009) 0.0172(.021)

0 0.0342(.042) 0.0338(.042) 0.0315(.049) 0.0392(.059)

1 0.0355(.044) 0.0354(.044) 0.0350(.044) 0.1084(.130)

−1.5 0.0222(.028) 0.0221(.028) 0.0166(.240) 0.0672(.070)

Exp.2 0 0.0253(.032) 0.0252(.031) 0.0022(.022) 0.0056(.022)

0 0.0296(.049) 0.0294(.049) 0.0063(.032) 0.0059(.023)

2 0.0286(.040) 0.0287(.040) 0.0163(.023) 0.0371(.051)

0 0.0195(.029) 0.0195(.029) 0.0028(.020) 0.0083(.028)

1 0.1379(.213) 0.0936(.126) 0.1104(.178)

2 0.2650(.471) 0.1225(.157) 0.2035(.371)

0 0.0825(.116) 0.0641(.086) 0.0075(.040)

Gate 0 0.1466(.302) 0.1052(.196) 0.0239(.147) N/A

−1 0.1875(.263) 0.1129(.148) 0.1189(.191)

0 0.1101(.217) 0.0803(.164) 0.0299(.195)

0 0.0806(.121) 0.0610(.095) 0.0030(.030)

σ 1 0.0033(.004) 0.0035(.004) 0.0026(.003) 0.0028(.003)

Table 3.4: The true value and mean squared error for each coefficient of the estimated parameter
vector via MoE, MoE+ℓ2, MoE-BIC and the MIXLASSO.

Newton method (MoE-Lasso+ℓ2 (PN)) is used to obtain the coefficients. The Figure 3.5 gives

the Lasso paths for the experts network and also the changing of the gating network coefficients

with different values of λ.

From Figure 3.5, one can see that the Lasso paths for each expert component perform quite

consistent between different values of γ. Similar with the classical Lasso path for linear regres-

sion these entire Lasso paths are also piecewise-linear, excepts the trajectory of the intercept.

However, the performance of the gating network coefficients with difference values of λ is hard

to predict. Especially, the changing of λ also effect to the sparsity of the gating network in

this case. This behavior can be found in the case γ = 5. At γ = 5 and λ ≥ 10 the third

coefficient of the gating network is difference from it true value 0. Hence, it is interesting to

provide theoretical results to explain this behavior of the regularized MoE.

3.4.4 Evaluation of the model selection via BIC

A small evaluation of the BIC criterion is given in this section. Here, we consider the effect

of the BIC criterion to the sparsity of the model, the accuracy of clustering and the adjust

rank index criteria. Also the effect of the ℓ2 norm is also mention. For this reason, two grid of
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Figure 3.5: Lasso paths for the experts network and the changing of the gating network.
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Mean squared error
Comp. True value MoE-Lasso+ℓ2 MoE-Lasso+ℓ2 MoE-Lasso+ℓ2 MoE-Lasso

(MM) (CA) (PN) (PN)

0 0.0092(.015) 0.0087(.014) 0.0085(.014) 0.0085(.014)

0 0.0018(.005) 0.0022(.008) 0.0021(.007) 0.0021(.007)

1.5 0.0106(.012) 0.0107(.012) 0.0106(.012) 0.0107(.012)

Exp.1 0 0.0019(.005) 0.0021(.006) 0.0022(.006) 0.0022(.006)

0 0.0010(.004) 0.0010(.004) 0.0010(.004) 0.0010(.004)

0 0.0021(.007) 0.0020(.006) 0.0020(.006) 0.0020(.006)

1 0.0117(.015) 0.0116(.015) 0.0115(.015) 0.0114(.015)

0 0.0585(.072) 0.0575(.079) 0.0575(.077) 0.0580(.077)

1 0.1583(.157) 0.1465(.148) 0.1456(.146) 0.1455(.146)

−1.5 0.1034(.098) 0.0860(.087) 0.0851(.086) 0.0851(.086)

Exp.2 0 0.0033(.013) 0.0034(.017) 0.0034(.017) 0.0034(.017)

0 0.0039(.019) 0.0037(.020) 0.0037(.020) 0.0037(.020)

2 0.0432(.056) 0.0375(.050) 0.0374(.050) 0.0374(.050)

0 0.0043(.017) 0.0040(.015) 0.0039(.015) 0.0039(.015)

1 0.2315(.240) 0.1067(.125) 0.1055(.124) 0.0994(.122)

2 0.8123(.792) 0.4890(.277) 0.4881(.275) 0.4111(.269)

0 0.0404(.032) 0.0052(.015) 0.0059(.014) 0.0053(.013)

Gate 0 0.0501(.050) 0.0017(.007) 0.0049(.028) 0.0054(.031)

−1 0.7703(.760) 0.2885(.295) 0.2428(.212) 0.2226(.213)

0 0.0656(.066) 0.0120(.062) 0.0128(.061) 0.0137(.068)

0 0.0175(.018) 0.0013(.008) 0.0038(.016) 0.0039(.017)

σ 1 0.0027(.003) 0.0027(.003) 0.0027(.003) 0.0027(.003)

Table 3.5: The true value and mean squared error for each coefficient of the estimated parameter
vector of the regularized models: MoE-Lasso+ℓ2 (MM), MoE-Lasso+ℓ2 (CA), MoE-Lasso+ℓ2
(PN) and MoE-Lasso (PN).

Model C.rate ARI
MoE 89.57%(1.65%) 0.6226(.053)

MoE+ℓ2 89.62%(1.63%) 0.6241(.052)

MoE-BIC 90.05%(1.65%) 0.6380(.053)

MoE-Lasso+ℓ2 (MM) 87.76%(2.19%) 0.5667(.067)

MoE-Lasso+ℓ2 (CA) 89.46%(1.76%) 0.6190(.056)

MoE-Lasso+ℓ2 (PN) 89.53%(1.65%) 0.6210(.052)

MoE-Lasso (PN) 89.56%(1.66%) 0.6222(.053)

MIXLASSO 82.89%(1.92%) 0.4218(.050)

Table 3.6: Average of the accuracy of clustering (correct classification rate and Adjusted Rand
Index) comparison among the non-penalized MoE model, MoE with ℓ2 regularization, MoE with
the BIC criterion for model selection and the proposed regularized models. Finally, the results
for the standard MIXLASSO (Mixture of regressions with Lasso regularization) is also given.

three difference values of λ and γ are used λ ∈ {9, 10, 11}, γ ∈ {4, 5, 6}. The tuning parameter

ρ = 0.1 log n as in our simulation. These criteria are given on 100 simulation data sets.

From Table 3.7 it shows that the model with highest BIC value with respect to (λ, γ, ρ) =

81



3.4. EXPERIMENTAL STUDY

Model Sparsity criteria Clustering criteria
(λ, γ, ρ) BIC Exp.1 Exp.2 Gate C.rate ARI

S1 S2 S1 S2 S1 S2

(9, 4, ρ) −512.75(13.67) 0.6475 1.000 0.7500 1.000 0.6425 0.995 89.61%(1.65%) 0.6236(.052)

(9, 5, ρ) −512.78(13.88) 0.6450 1.000 0.7533 1.000 0.7250 0.995 89.50%(1.68%) 0.6202(.053)

(9, 6, ρ) −513.28(13.70) 0.6475 1.000 0.7533 1.000 0.7825 0.990 89.38%(1.63%) 0.6160(.052)

(10, 4, ρ) −512.94(13.67) 0.6925 1.000 0.7900 1.000 0.6425 0.995 89.59%(1.68%) 0.6231(.053)

(10, 5, ρ) −512.81(13.86) 0.6975 1.000 0.7967 1.000 0.7275 0.995 89.53%(1.65%) 0.6210(.052)

(10, 6, ρ) −513.17(13.71) 0.6950 1.000 0.8000 1.000 0.7800 0.990 89.42%(1.65%) 0.6174(.053)

(11, 4, ρ) −513.25(13.88) 0.7425 1.000 0.8333 1.000 0.6300 0.990 89.56%(1.69%) 0.6221(.053)

(11, 5, ρ) −513.19(13.95) 0.7400 1.000 0.8300 1.000 0.7250 0.995 89.49%(1.71%) 0.6198(.054)

(11, 6, ρ) −513.54(13.70) 0.7350 1.000 0.8300 1.000 0.7850 0.990 89.44%(1.68%) 0.6183(.054)

(10, 5, 0) −512.11(13.75) 0.7000 1.000 0.7900 1.000 0.7475 0.995 89.56%(1.66%) 0.6222(.053)

(10, 6, 0) −512.53(13.73) 0.7025 1.000 0.7967 1.000 0.7875 0.990 89.49%(1.70%) 0.6199(.054)

Table 3.7: Sparsity and average of the accuracy of clustering criteria on different tuning param-
eters.

(9, 4, 0.1 log n) provides the best result in term of clustering even better that the non penalized

model. However, the Sensitive/Specificity criteria of this model is not as good as the others.

The model which is used in our simulation (λ, γ, ρ) = (10, 5, 0.1 log n) provides balance results

between sparsity criteria and accuracy of clustering criteria. In general, BIC is a good criterion

for selecting model but base on the BIC criterion cannot ensure that one would obtain a best

model.

Another thing can be observed form Table 3.7 is that adding an ℓ2 norm in this case can

reduce the sparsity and accuracy of clustering criteria. It seems that adding the ℓ2 penalty will

work quite well for the non-penalized model due to the fact that maximizing the log-likelihood

function leads to using large positive and negative estimates for the regression coefficients,

especially the gating network parameters (see Park and Hastie (2007b); Bunea (2008) for the

discussion on logistic regression). However, when the correlations of some features are not strong,

and γ not deceases to zero the effect of the quadratic penalty with a small ρ is negligible.

3.4.5 Applications to real data sets

We analyze two real data sets as a further test of the methodology. Here, we investigate the

housing data described on the website UC Irvine Machine Learning Repository and baseball

salaries from the Journal of Statistics Education (www.amstat.org/publications/jse). This was

done to provide a comparison with the work of Khalili (2010), Khalili and Chen (2007). While

in Khalili and Chen (2007) the authors used Lasso-penalized mixture of linear regression (MLR)

models, we still apply penalized mixture of experts (to better represent the data than when

using MRL models). We compare the results of each model-based upon two different criteria:

the average mean squared error (MSE) between observation values of the response variable and

the predicted values of this variable; we also consider the correlation of these values. After the

parameters are estimated, we use two following values as predicted values for Y :
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• Method 1: This method uses the following expected value under the estimated model

Ŷ = E
θ̂
(Y |x) =

K∑

k=1

πk(x; ŵ)E
θ̂
(Y |Z = k,x)

=

K∑

k=1

πk(x; ŵ)(β̂k0 + xT β̂k).

• Method 2: We use the Bayes’s rule in (3.40) to cluster the data and the following value

to predict Y

Ŷ = E
θ̂
(Y |x, ẑ = k) = β̂k0 + xT β̂k.

Note that, for the real data sets we do not consider the MoE model with BIC selection since it

is computationally expensive.

Housing data
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Figure 3.6: Histograms of Y = MEDV/sd(MEDV) and its predicted value for housing data.
The red lines represent the estimated densities using kernel density estimation and the black
lines show the estimated densities using a GMM.

This data set concerns houses’ value in the suburbs of Boston. It contains 506 observations

and 13 features that may affect the house value. These features are: Per capita crime rate by

town (x1); proportion of residential land zoned for lots over 25, 000 sq.ft. (x2); proportion of non-

retail business acres per town (x3); Charles River dummy variable (= 1 if tract bounds river; 0

otherwise) (x4); nitric oxides concentration (parts per 10 million) (x5); average number of rooms

per dwelling (x6); proportion of owner-occupied units built prior to 1940 (x7); weighted distances

to five Boston employment centers (x8); index of accessibility to radial highways (x9); full-value

property-tax rate per $10, 000 (x10); pupil-teacher ratio by town (x11); 1000(Bk− 0.63)2 where

Bk is the proportion of blacks by town (x12); % lower status of the population (x13). The

columns of X were standardized to have mean 0 and variance 1. The response homes in variable

of interest is the median value of owner occupied homes in $1000′s, MEDV. Based on the
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Features MLE MoE-Lasso+ℓ2 (Khalili, 2010)
σ̂ = 0.320 σ̂ = 0.352

Exp.1 Exp.2 Gate Exp.1 Exp.2 Gate

x0 2.23 3.39 19.17 2.16 2.84 1.04
x1 -0.12 3.80 -4.85 -0.09 - -
x2 0.07 0.04 -5.09 - 0.07 -
x3 0.05 -0.03 7.74 - - 0.67
x4 0.03 -0.01 -1.46 - 0.05 -
x5 -0.18 -0.16 9.39 - - -
x6 -0.01 0.63 1.36 - 0.60 -0.27
x7 -0.06 -0.07 -8.34 - - -
x8 -0.20 -0.21 8.81 - -0.20 -
x9 0.02 0.31 0.96 - 0.55 -
x10 -0.19 -0.33 -0.45 - - -
x11 -0.14 -0.18 7.06 - - 0.54
x12 0.06 0.01 -6.17 0.05 - -
x13 -0.32 -0.73 36.27 -0.29 -0.49 1.56

Table 3.8: Fitted models for housing data with MLE and MoE-Lasso+ℓ2 (Khalili, 2010).

histogram of Y = MEDV/sd(MEDV) in Figure 3.6, where sd(MEDV) is the standard deviation

of MEDV, Khalili (2010) separated Y into two groups of houses with “low” and “high” values.

Hence, a MoE model is used to fit the response

Y ∼ π1(x;w)N (y;β10 + xTβ1, σ
2) + (1− π1(x;w))N (y;β20 + xTβ2, σ

2),

where π1(x;w) =
ew10+xT w1

1 + ew10+xT w1
·

The parameter estimates of the MoE models obtained by MoE-Lasso+ℓ2 (CA), MoE-Lasso+ℓ2

(PN), MoE-Lasso (PN) and standard MLE are given in Table 3.8, Table 3.9. We compare our

results with those of Khalili (2010) and the non-penalized MoE. In Table 3.10, we provide

the result in terms of average MSE and the correlation between the true observation value Y

and its predictions Ŷ . Our result provides a least sparse model than the one in Khalili (2010).

Some parameters in these methods have the same value. However, the MSE and the correlation

from our methods are better than those Khalili (2010) Hence, in application one would consider

the sparsity and the prediction of each estimated parameters. The Lasso +ℓ2 (PN) and Lasso

(PN) are successful in detecting the non-zero coefficient with respect to x6 in the gating network

similar with the result from the method in Khalili (2010) and there is a slightly difference in the

gating network between MoE-Lasso +ℓ2 (PN) and MoE-Lasso (PN) due to the addition of the

ℓ2 norm. With the same tuning parameters λ = 42, γ = 10 and ρ = 0.1 log n, the MoE-Lasso

+ℓ2 (PN) provides a better value of the penalized log-likelihood that the MoE-Lasso +ℓ2 (CA),

−372.377 compares with −374.489. All the regularization methods give comparative results

with the MLE.
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MoE-Lasso+ℓ2 (CA) MoE-Lasso+ℓ2 (PN) MoE-Lasso (PN)
Features σ̂ = 0.346 σ̂ = 0.352 σ̂ = 0.353

Exp.1 Exp.2 Gate Exp.1 Exp.2 Gate Exp.1 Exp.2 Gate

x0 2.20 2.82 0.79 2.19 2.83 0.99 2.19 2.83 1.00
x1 -0.09 - - -0.09 - - -0.09 - -
x2 - 0.07 - - 0.06 - - 0.06 -
x3 - - 0.41 - - 0.58 - - 0.59
x4 0.05 0.06 - 0.04 0.06 - 0.04 0.06 -
x5 -0.08 - - -0.07 - - -0.07 - -
x6 - 0.56 - - 0.59 -0.25 - 0.59 -0.21
x7 -0.05 - - -0.04 - - -0.04 - -
x8 -0.03 -0.19 - - -0.20 - - -0.19 -
x9 - 0.60 - - 0.54 - - 0.55 -
x10 -0.01 - - - 0.003 - - - 0.003 - -
x11 -0.10 -0.08 0.28 -0.09 -0.06 0.39 -0.09 -0.06 0.39
x12 0.05 - - 0.05 - - 0.05 - -
x13 -0.29 -0.57 1.05 -0.29 -0.51 1.26 -0.29 -0.51 1.36

Table 3.9: Fitted models for housing data with our proposed algorithms: MoE-Lasso+ℓ2 (CA),
MoE-Lasso+ℓ2 (PN) and MoE-Lasso (PN).

Predicted criteria
Model Method 1 Method 2

R2 MSE R2 MSE

MoE 0.8457 0.1544(.577) 0.8981 0.1019(.236)

MoE-Lasso+ℓ2 (Khalili, 2010) 0.8094 0.2044(.709) 0.8698 0.1371(.286)

MoE-Lasso+ℓ2 (CA) 0.8221 0.1989(.619) 0.8905 0.1104(.254)

MoE-Lasso+ℓ2 (PN) 0.8180 0.1903(.717) 0.8839 0.1172(.281)

MoE-Lasso (PN) 0.8204 0.1878(.702) 0.8832 0.1178(.282)

Table 3.10: Results for Housing data set with a two-component MoE model.

Considering the case K = 3 and ρ = 0 as an extension. The estimated parameters, the

average MSE, and the correlation between the true observation value Y and its prediction Ŷ

(based on Method 2) for this case can be found in Table 3.11 and Table 3.12. It turns out that

this model provides better results than those with K = 2 (with ρ = 0) in term of prediction.

The BIC criterion with K = 3 is also better than the case with K = 2, −246.844 compares with

−292.822.

The histograms of Ŷ (using Method 2) for K = 2 and K = 3 are also compared with the

histogram of Y (see Figure 3.6). It turns out that with K = 3 the histogram of Ŷ provides

better result in approximating the histogram of the true value.
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Features Expert, σ = 0.261 Gating network
Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

x0 2.14331 5.01278 2.50307 -0.27941 -2.96191
x1 -0.09202 - - 0.01695 -
x2 - 0.03392 0.01033 - -
x3 - - -0.03802 - -
x4 0.05261 0.01517 0.00950 - 0.12079
x5 -0.12082 - - - -
x6 -0.08837 0.12770 0.67982 - 0.97405
x7 - - -0.17057 0.27293 -
x8 -0.08727 - -0.12630 - -0.27807
x9 0.04286 - 0.11111 - -
x10 -0.06967 0.21112 -0.13565 0.42344 -
x11 -0.08817 - -0.11758 0.01711 -0.02419
x12 0.03348 - - -0.22068 -
x13 -0.34326 - - 1.01512 -

Table 3.11: Fitted models for housing data with MoE-Lasso (PN) method (K = 3).

Method Criteria (Method 2) Number of observations
R2 MSE Class 1 Class 2 Class 3

MoE-Lasso (PN) 0.9372 0.0629(.106) 195 28 283

Table 3.12: Results for Housing data set obtained by our MoE-Lasso (PN) (K = 3).
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Figure 3.7: Histograms of the log of salary and its predicted value for baseball data. The red
lines represent the estimated densities using non-parametric kernel density estimation, and the
black lines represents the estimated densities using a GMM.
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Baseball salaries data

We now consider baseball salaries data set from the Journal of Statistics Education (see also

Khalili and Chen (2007)) as a further test of the methodology. This data set contains 337

observations and 33 features. We compare our results with the non-penalized MoE models and

the MIXLASSO models (see Khalili and Chen (2007)). Khalili and Chen (2007) used this data

set in the analysis, which included an addition of 16 interaction features, making in total 32

predictors. The columns of X were standardized to have mean 0 and variance 1. Histogram

of the log of salary (see Figure 3.7) shows multimodality making it a good candidate for the

response variable under the MoE model with two components:

Y = log(salary) ∼ π1(x;w)N (y;β10 + xTβ1, σ
2) + (1− π1(x;w))N (y;β20 + xTβ2, σ

2).

By taking all the tuning parameters to zero, we obtain the maximum likelihood estimator of

the model. We also compare our result with MIXLASSO from Khalili and Chen (2007). Table

3.13 and Table 3.14 present the estimated parameters for baseball salary data and Table 3.15

shows the results in terms of MSE, and R2 between the true value of Y and its predicted

values. These results suggest that the proposed algorithms with the Lasso+ℓ2 penalty also

shrink some parameters to zero and have acceptable results compared to MoE. It also shows

that the proposed models provide better results than that of the MIXLASSO model. The two

algorithms MoE-Lasso+ℓ2 (CA) and MoE-Lasso+ℓ2 (PN) converge to similar sets of parameters

and the same penalized log-likelihood values, −292.9301 and −292.9294. Hence, they all provide

similar results based on MSE and R2 criteria. However, the method using proximal Newton-

type procedure takes few seconds to obtain the estimate parameters, while for method using

coordinate ascent few minutes are required to estimate these coefficients. We compare the CPU

times of these methods in the next section.

3.4.6 CPU times and discussion for the high-dimensional setting

CPU times

For the CPU times, we compare two methods: the coordinate ascent algorithm (MoE-Lasso+ℓ2

(CA)) and the proximal Newton algorithm (MoE-Lasso+ℓ2 (PN)). We test these algorithms on

different data sets. The first data set is one of 100 data sets used for the simulation study. With

this data set, we run these algorithms 10 times with different number of clusters K = 2 and

K = 3. The second data set is the baseball salaries. Finally, we also consider the residential

building data set (UCI Machine Learning Repository) as a further comparison. The results

for this data set is given in the next section. The computer used for this work has CPU Intel

i5-6500T 2.5GHz with 16GB RAM.

The obtained results are given in Table 3.16. We can see that the algorithm for the residential

data which has a quite high number of features, requires only few minutes and is thus has a very

reasonable speed, and for moderate dimensional problems, is very fast.
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Features MLE, σ̂ = 0.277 MIXLASSO, σ̂ = 0.25
Exp.1 Exp.2 Gate Exp.1 Exp.2

x0 6.0472 6.7101 -0.3958 6.41 7.00
x1 -0.0073 -0.0197 0.1238 - -0.32
x2 -0.0283 0.1377 0.1315 - 0.29
x3 0.0566 -0.4746 1.5379 - -0.70
x4 0.3859 0.5761 -1.9359 0.20 0.96
x5 -0.2190 -0.0170 -0.9687 - -
x6 -0.0586 0.0178 0.4477 - -
x7 -0.0430 0.0242 -0.3682 -0.19 -
x8 0.3991 0.0085 1.7570 0.26 -
x9 -0.0238 -0.0345 -1.3150 - -
x10 -0.1944 0.0412 0.6550 - -
x11 0.0726 0.1152 0.0279 - -
x12 0.0250 -0.0823 0.1383 - -
x13 -2.7529 1.1153 -7.0559 0.79 0.70
x14 2.3905 -1.4185 5.6419 0.72 -
x15 -0.0386 1.1150 -2.8818 0.15 0.50
x16 0.2380 0.0917 -7.9505 - -0.36

x1 ∗ x13 3.3338 -0.8335 8.7834 -0.21 -
x1 ∗ x14 -2.4869 2.5106 -7.1692 0.63 -
x1 ∗ x15 0.4946 -0.9399 2.6319 0.34 -
x1 ∗ x16 -0.4272 -0.4151 7.9715 - -
x3 ∗ x13 0.7445 0.3201 0.5622 - -
x3 ∗ x14 -0.0900 -1.4934 0.1417 0.14 -0.38
x3 ∗ x15 -0.2876 0.4381 -0.9124 - -
x3 ∗ x16 -0.2451 -0.2242 -5.6630 -0.18 0.74
x7 ∗ x13 0.7738 0.1335 4.3174 - -
x7 ∗ x14 -0.1566 1.2809 -3.5625 - -
x7 ∗ x15 -0.0104 0.2296 -0.4348 - 0.34
x7 ∗ x16 0.5733 -0.2905 3.2613 - -
x8 ∗ x13 -1.6898 -0.0091 -8.7320 0.29 -0.46
x8 ∗ x14 0.7843 -1.3341 6.2614 -0.14 -
x8 ∗ x15 0.3711 -0.4310 0.8033 - -
x8 ∗ x16 -0.2158 0.7790 2.6731 - -

Table 3.13: Fitted models for baseball salary data with the standard MoE using MLE and
MIXLASSO (Khalili and Chen, 2007).

Discussion for the high-dimensional setting

To evaluate the algorithm in a situation in which we have a high number of features, we consider

the Residential Building Data Set (UCI Machine Learning Repository). This data set contains

372 and 108 features with the two response variables (V-9 and V-10), which represent the

sale prices and construction costs. All the features are standardized to have zero-mean and

unit-variance. We choose the V-9 variable (sale prices) as the response variable to be predicted.
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Features MoE-Lasso+ℓ2 (CA), σ̂ = 0.345 MoE-Lasso+ℓ2 (PN), σ̂ = 0.345
Exp.1 Exp.2 Gate Exp.1 Exp.2 Gate

x0 5.9580 6.9297 0.0046 5.9570 6.9295 0.0037
x1 -0.0122 - - -0.0117 - -
x2 -0.0064 - - -0.0068 - -
x3 - - - - - -
x4 0.4521 0.0749 - 0.4512 0.0751 -
x5 - - - - - -
x6 -0.0051 - - -0.0050 - -
x7 - - - - - -
x8 - 0.0088 - - 0.0066 -
x9 0.0135 0.0192 - 0.0140 0.0204 -
x10 -0.1146 - - -0.1143 - -
x11 -0.0108 0.0762 - -0.0107 0.0769 -
x12 - - - - - -
x13 - 0.3855 -0.3946 - 0.3837 -0.3926
x14 0.0927 -0.0550 - 0.0932 -0.0540 -
x15 0.3268 0.3179 - 0.3273 0.3179 -
x16 - - - - - -

x1 ∗ x13 0.3218 - - 0.3203 - -
x1 ∗ x14 - - - - - -
x1 ∗ x15 - - - - - -
x1 ∗ x16 -0.0319 - - -0.0321 - -
x3 ∗ x13 - 0.0284 -0.5828 - 0.0254 -0.5876
x3 ∗ x14 -0.0883 - - -0.0878 - -
x3 ∗ x15 - - - - - -
x3 ∗ x16 - - - - - -
x7 ∗ x13 - 0.004 - - 0.014 -
x7 ∗ x14 -0.1362 0.0245 - -0.1365 0.0260 -
x7 ∗ x15 - - - - - -
x7 ∗ x16 - - - - - -
x8 ∗ x13 - 0.2727 -0.3628 - 0.2801 -0.3621
x8 ∗ x14 - 0.0133 - - 0.0109 -
x8 ∗ x15 0.3154 - - 0.3151 - -
x8 ∗ x16 0.0157 - - 0.0160 - -

Table 3.14: Fitted models for baseball salary data with our proposed algorithms: MoE-Lasso +
ℓ2 (CA) and MoE-Lasso + ℓ2 (PN).

Histogram of this variable is given in Figure 3.8. A MoE model with K = 3 expert components is

chosen to fix this data set. The MoE-Lasso +ℓ2 (PN) method is used to estimate the parameters.

We provide the results of our algorithm with K = 3 and λ = 15, γ = 5. The estimated

parameters are given in Table 3.17, Table 3.18 and Table 3.19.

The correlation and the mean squared error between the true value V-9 with its prediction

can be found in Table 3.20. These results show that the proximal Newton method performs well
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Predicted criteria
Model Method 1 Method 2

R2 MSE R2 MSE

MoE 0.8099 0.2625(.758) 0.9474 0.0726(.113)

MoE-Lasso+ℓ2 (CA) 0.8020 0.2821(.633) 0.9249 0.1044(.169)

MoE-Lasso+ℓ2 (PN) 0.8020 0.2822(.634) 0.9249 0.1044(.169)

MIXLASSO 0.4252 1.1858(2.792) 0.6268 0.6549(1.532)

Table 3.15: Results for Baseball salaries data set.

Data No. features No. observations No. experts CA PN
Simulation 7 300 2 45.34(14.28) (s) 5.03(1.09) (s)
Simulation 7 300 3 7.94(13.22) (m) 20.52(9.23) (s)

Baseball salaries 33 337 2 17.9(15.87) (m) 46.76(21.02) (s)
Residential Data 108 372 3 N/A 3.63(0.58) (m)

Table 3.16: Results for CPU times.

in this setting, in which it provides a sparse model and competitive criteria in prediction and

clustering. We also provide the correlation and the mean squared error between those values

after clustering the data in Table 3.21.

Predictive criteria Number of zero coefficients
Method R2 MSE Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

Proximal Newton 0.991 0.0093(.059) 71 38 75 97 101

Table 3.20: Results for residential building data set by using the clustering method 1.

Predictive criteria Number of observations
Method R2 MSE Class 1 Class 2 Class 3

Proximal Newton 0.9994 0.00064(.0018) 59 292 21

Table 3.21: Results for the residential building data set by using the clustering method 2.

An experiment for p > n: To consider the high-dimensional setting, we take the first n = 90

observations of the residential building data with all the p = 108 features. Histogram of the

variable V-9 in this case is provided in Figure 3.9. We use a mixture of three experts and obtain

the results by applying the MoE-Lasso+ℓ2 (PN) algorithm. The parameter estimation results

are provided in Table 3.24, Table 3.25 and Table 3.26. The results in terms of correlation and the

mean squared error between the true value V-9 and its predictions are given in Table 3.22 and

Table 3.23. From these Tables we can see that, in this high-dimensional setting, one still obtains

acceptable results for the regularized MoE models and the EM algorithm using the proximal

Newton method (MoE-Lasso+ℓ2 (PN)) is an efficient tool for the parameter estimation. The

running time in this experiment is about only few (∼ 8) minutes and the algorithm is quite

effective in this setting.
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Figure 3.8: Histograms of the variable Y (V-9) and its predicted value for residential build-
ing data. The red lines represent the estimated densities using non-parametric kernel density
estimation, and the black lines show the densities estimated using a GMM.
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Figure 3.9: Histograms of the variable Y (V-9) and its predicted value for the subset of residential
building data. The red lines are the estimated densities using non-parametric kernel density
estimation, and the black lines show the estimated densities using a GMM.
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Features Expert, σ = 0.0255 Gating network
Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

x0 -0.00631 -0.01394 -0.07825 0.43542 2.40874
x1 - - 0.00599 - -
x2 0.02946 -0.00442 - - -
x3 - - 0.00849 - -
x4 -0.00776 0.00406 0.01485 - -
x5 -0.00619 -0.00759 -0.04185 -0.23943 -
x6 0.00125 0.02581 - - -
x7 - -0.01823 0.00233 - -
x8 0.02271 -0.01962 0.01964 -0.04267 -
x9 0.06822 0.00274 0.02101 - -
x10 -0.03166 -0.00008 - - -
x11 0.12789 0.05117 0.03515 - -0.91114
x12 1.10946 1.00213 0.78915 0.22049 -0.71761
x13 0.00878 -0.00647 - 0.41648 -
x14 - - - - -
x15 - - - - -
x16 -0.01495 -0.00103 0.03774 - -
x17 - - - - -
x18 - -0.03344 - - -
x19 - 0.06296 - - -
x20 0.04560 0.02466 - - -
x21 0.02368 0.03210 - - -
x22 - -0.00546 -0.00398 - -
x23 - -0.03934 - - -
x24 - -0.04612 - - -
x25 0.01205 -0.00352 - - -
x26 - - - - -
x27 - 0.00409 - - -
x28 - - - - -
x29 - - 0.00047 - -
x30 - - - - -
x31 - 0.03494 0.04131 - -
x32 - -0.00003 0.02288 - -
x33 - - - - -
x34 - - - - -
x35 - 0.01468 -0.01095 - -

Table 3.17: Fitted model parameters for residential building data obtained by our MoE-Lasso
+ℓ2 (PN) algorithm (part 1).

Predictive criteria Number of zero coefficients
Method R2 MSE Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

Proximal Newton 0.9895 0.0204(.056) 31 60 55 106 104

Table 3.22: Results for the subset of the residential building data set by using the clustering
method 1.
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Features Expert, σ = 0.0255 Gating network
Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

x36 - - - - -
x37 - 0.00899 - - -
x38 - 0.00061 - - -
x39 -0.01694 -0.00559 - - -
x40 0.10214 0.02533 - 0.07086 -
x41 0.03770 - - - -
x42 - -0.04162 - - -
x43 - - - - -
x44 - 0.00561 0.01148 - -
x45 - 0.00770 - - -
x46 - - - - -
x47 - - - - -
x48 -0.07316 0.03138 - - -
x49 - 0.00493 -0.00183 - -
x50 - 0.01320 - - -
x51 -0.00076 -0.00041 - - 0.03819
x52 - - - - -
x53 - - - - -
x54 -0.00854 0.00077 - - -
x55 - 0.00039 - - -
x56 - - -0.11177 - -
x57 - 0.00334 - - -
x58 0.04779 0.00405 0.00733 0.35226 -
x59 0.06726 0.03743 0.02988 0.08489 -0.20694
x60 0.02520 0.00128 0.01473 - -
x61 - 0.00843 - - -
x62 - 0.00034 - - -
x63 - -0.00920 0.01184 - -
x64 - 0.00002 - - -
x65 - - - - -
x66 - - - - -
x67 -0.03840 - 0.02505 - -
x68 - 0.00234 0.00238 - -
x69 - - - - -
x70 0.06026 0.01750 0.05879 - -
x71 - - - - -

Table 3.18: Fitted model parameters for residential building data obtained by our MoE-Lasso
+ℓ2 (PN) algorithm (part 2).

Predictive criteria Number of observations
Method R2 MSE Class 1 Class 2 Class 3

Proximal Newton 0.9999 0.00025(.0014) 63 11 16

Table 3.23: Results for the subset of the residential building data set by using the clustering
method 2.
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Features Expert, σ = 0.0255 Gating network
Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

x72 - -0.03636 - - -
x73 - - -0.02932 - -
x74 - - - - -
x75 -0.02725 -0.02474 - - -
x76 -0.01399 -0.16005 -0.08654 - -
x77 - 0.00526 - - -
x78 -0.05816 0.02821 - 0.01303 -0.35566
x79 - -0.00358 - 1.12522 -
x80 -0.05416 - - - -
x81 - - - - -
x82 - - 0.04329 - -
x83 - - - - -
x84 - - - - -
x85 - - - - -
x86 - 0.00783 - - -
x87 - - 0.01463 - -
x88 0.02337 0.03903 - - -
x89 -0.04720 0.00909 - - -
x90 - - - - -
x91 - - - - -
x92 -0.00070 -0.00626 -0.00458 - -
x93 - - - - -
x94 -0.00067 0.00309 - - -
x95 - -0.00925 - - -
x96 -0.00705 -0.00656 - - 0.03610
x97 - -0.00406 - - -
x98 - 0.00714 0.01911 0.06610 -
x99 - 0.00364 - - -
x100 - 0.00327 - - -
x101 - 0.02858 0.03974 - -
x102 0.01623 -0.01236 - - -
x103 - - - - -
x104 - - - - -
x105 - 0.00215 - - -
x106 -0.00006 -0.00129 - - -
x107 - 0.00851 - - -

Table 3.19: Fitted model parameters for residential building data obtained by our MoE-Lasso
+ℓ2 (PN) algorithm (part 3).

3.5 Conclusion and future work

In this chapter, we proposed a regularized MLE for the MoE model which encourages sparsity,

and developed three versions of a blockwise EM algorithm to monotonically maximize this
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Features Expert, σ = 0.0159 Gating network
Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

x0 0.09048 0.21992 0.05460 0.73646 -0.54048
x1 - - - - -
x2 0.00837 - 0.00112 - -
x3 - - - - -
x4 0.04498 0.07325 0.00001 - -
x5 0.08075 0.00807 0.00010 - -
x6 -0.00836 - -0.02235 0.02205 -
x7 0.01337 -0.00009 -0.00922 - -
x8 0.02375 0.00443 0.00668 - -
x9 0.02194 0.00379 -0.03344 - -
x10 -0.01305 -0.00079 0.00560 - -
x11 0.12763 0.01256 0.08537 - 0.16264
x12 1.08977 0.72843 1.04263 - -
x13 0.00171 0.09792 - - -
x14 -0.03158 - - - -
x15 - - -0.00001 - -
x16 -0.02218 0.00987 -0.00527 - -
x17 - - - - -
x18 - - -0.10258 - -
x19 -0.06036 - - - -
x20 0.03513 - -0.00602 - -
x21 0.01947 0.12495 0.07810 - -
x22 -0.00347 0.01317 - - -
x23 -0.03255 -0.00125 - - -
x24 -0.06659 -0.00007 - - -
x25 0.03478 - 0.01314 - -
x26 0.01209 0.03787 -0.00287 - -
x27 - - - - -
x28 - - - - -
x29 0.06476 0.02369 -0.00461 - -
x30 -0.01017 -0.00813 0.01805 - -
x31 0.03331 - - - -
x32 -0.03870 0.01708 - - -
x33 - - - - -
x34 - - - - -
x35 0.02278 -0.02794 0.01933 - -

Table 3.24: Fitted model parameters for the subset of residential building data obtained by our
MoE-Lasso +ℓ2 (PN) algorithm (part 1).

regularized objective towards at least a local maximum. The proposed regularization does not

require using approximations as in standard MoE regularization. The proposed algorithms are

based on univariate updates of the model parameters via an MM, coordinate ascent, proximal

Newton method, which allow to tackle matrix inversion problems and obtain sparse solutions.
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Features Expert, σ = 0.0159 Gating network
Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

x36 - - - - -
x37 -0.09359 - -0.06125 - -
x38 - - -0.00356 - -
x39 -0.11611 - -0.01973 - -
x40 0.21178 0.06134 0.13879 - -
x41 0.09095 - - - -
x42 -0.03243 - - - -
x43 -0.00032 - -0.01455 - -
x44 -0.01643 - - - -
x45 -0.03152 0.01812 -0.02303 - -
x46 - - - - -
x47 - - - - -
x48 0.13661 0.00862 - - -
x49 0.04914 0.06704 - - -
x50 0.00424 - -0.02954 - -
x51 0.04225 0.05518 -0.01411 - -
x52 - - - - -
x53 -0.01697 - - - -
x54 0.02922 0.00057 -0.00501 - -
x55 - - - - -
x56 - -0.02272 0.00131 - -
x57 - - - - -
x58 0.11223 - 0.05349 - -
x59 0.23868 -0.00711 0.07830 - -
x60 -0.07807 -0.05727 - - -0.02819
x61 -0.06729 - - - -
x62 -0.02121 - - - -
x63 -0.01886 0.04294 0.00548 - -
x64 -0.01265 0.02236 - - -
x65 - - - - -
x66 - - - - -
x67 -0.03609 - - - -
x68 -0.07929 0.01190 -0.00001 - -
x69 - - - - -
x70 0.09774 -0.01388 0.01683 - -
x71 - - - - -

Table 3.25: Fitted model parameters for the subset of residential building data obtained by our
MoE-Lasso +ℓ2 (PN) algorithm (part 2).

The results in terms of parameter estimation, the estimation of the actual support of the sparsity,

and clustering accuracy, obtained on simulated and three real data sets, confirm the effectiveness

of our proposal at least for problems of moderate dimension. Namely, the model sparsity does

not include significant bias in terms of parameter estimation nor in terms of recovering the actual
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Features Expert, σ = 0.0159 Gating network
Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

x72 -0.08791 - - - -
x73 -0.06590 -0.13467 0.03526 - -
x74 0.05718 - - - -
x75 -0.14786 -0.03133 - - -
x76 -0.12865 -0.07620 -0.09485 - -
x77 0.04578 0.04694 - - -
x78 0.01510 0.01860 0.08887 - -
x79 -0.00755 0.00441 0.01526 - -0.56947
x80 -0.06835 - - - -
x81 - - -0.00166 - -
x82 -0.07267 - - - -
x83 -0.00061 0.02782 - - -
x84 - - - - -
x85 - - - - -
x86 -0.02223 0.02194 0.03417 - -
x87 0.00029 - - - -
x88 - - - - -
x89 -0.06311 0.03682 -0.00977 - -
x90 - - - - -
x91 - - - - -
x92 0.06938 -0.03040 -0.00542 - -
x93 - - - - -
x94 0.05246 - -0.00793 - -
x95 -0.01214 - -0.00345 - -
x96 - -0.06544 -0.00007 - -
x97 0.03763 - - - -
x98 0.04560 0.04346 0.00717 - -
x99 0.03892 - -0.01578 - -
x100 0.01633 - -0.01509 - -
x101 0.04869 0.01218 0.00076 - -
x102 -0.01996 - - - -
x103 - - - - -
x104 - - - - -
x105 -0.00248 - - - -
x106 -0.00344 -0.03221 0.01461 - -
x107 -0.00779 -0.01415 0.00106 - -

Table 3.26: Fitted model parameters for the subset of the residential building data obtained by
our MoE-Lasso +ℓ2 (PN) algorithm (part 3).

clusters of the heterogeneous data. The obtained models with the proposed approach are sparse

which promote its scalability to high-dimensional problems. The hybrid EM/MM algorithm is

a potential approach. However, this model should be considered carefully, especially for non-

smooth penalty functions. The coordinate ascent approach for maximizing the M-step, however,
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works quite well although, while we do not have the closed form update in this situation. A

proximal Newton extension is possible to obtain closed form solutions for an approximate of

the M-step as an efficient method that is promoted to deal with high-dimensional data sets.

First experiments on an example of a quite high-dimensional scenario with a subset of real data

containing 90 observations and 108 features provide encouraging results. The next chapter will

consist of investigating more the high-dimensional setting as well as considering MoE for discrete

data.

For further research directions, recently, Jiang et al. (2018) proposed a regularized approach

for localized MoE models (Xu et al., 1995), in which the covariate variable X is assumed to have

a mixture of Gaussian distributions and corresponds to each component the respond variable

Y is described by a Gaussian regression function. The penalized part emphasizes on feature

selection in the regression parts. Thus, it restricts their model since the covariance matrix of

each mixture component cannot be estimated efficient in high-dimensional scenario. We can

consider a sparse representations of these covariance matrices via the work of Fop et al. (2019).

The method introduce in this chapter can directly applied for the hierarchical MoE models

(Jordan and Jacobs, 1994). However, theoritical results to support the penalized method in

hierarchical MoE framework should be studied more.

This chapter has lead to the following publications Huynh and Chamroukhi (2018); Cham-

roukhi and Huynh (2018, 2019).
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Regularized mixtures of experts

models for discrete data
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4.1 Introduction

The work presented in this chapter involves regularized MoE models for discrete data, including

classification. Specifically, we consider the MoE models for counting data and classification

data. While the MoE fitting by maximum likelihood (MLE) is widely used, the study of MoE

in high-dimensional problems is still challenging due to the well-known problems of the ML
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estimator in such a setting. Indeed, when the number of features in the data becomes being

large, the features can be correlated and therefore the number of actual predictors/features

that explain the problem are smaller. Additionally, numerical instability can also arise in the

MLE of a MoE model in high-dimensional setting. For example in regression, maximizing the

log-likelihood function leads to using large positive and negative estimates for the regression

coefficients, corresponding to the correlated features when the number of features is moderate

or large and highly correlated. This behavior can be observed in logistic regression; see Park and

Hastie (2007b) and Bunea (2008) for more details. In a MoE scenario, estimating the parameters

with moderate numbers of features and mixture components using MLE is challenging. A

better fitting can indeed be achieved by regularizing the objective function so that to encourage

sparse solutions. Feature selection by regularized inference encourages sparse solutions, with a

reasonable computational cost.

Several approaches have been proposed to deal with the feature selection task. The well-

known Lasso method Tibshirani (1996) is one of the most popular and successful regularization

technique that encourages sparsity, which utilizes the ℓ1 penalty to regularize the squared error

function and achieve parameter estimation and feature selection. Extensions of the Lasso, based

on penalized log-likelihood criteria with convex and nonconvex penalty functions has been pro-

posed, including elastic net (Zou and Hastie, 2005), group Lasso (Yuan and Lin, 2006b), adaptive

Lasso (Zou, 2006), smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), minimax

concave penalty (MCP) (Zhang, 2010). Each method has its own advantages. The convex

penalty functions are easy to handle due to the existence of efficient techniques from convex op-

timization to fit the models, while the nonconvex penalty functions involve practical challenges

in fitting these models.

In a related model, Peralta and Soto (2014) considered MoE with logistic regression model

for the experts and proposed an EM algorithm based on inverting the soft-max function to

estimate their Lasso regularized logistic MoE model. Unfortunately, the authors did not give

any evidence that their EM algorithm improves the objective function after each iteration loop.

To tackle the difficulty of updating the coefficients of the gating network, Jiang et al. (2018)

introduced a penalized likelihood method for the localized MoE models (Xu et al., 1995). One

limitation of their method lies in the fact that the local covariance matrix is updated normally

in the M-step. Thus, it poses some disadvantages if one would like to apply their method in

high-dimensional scenario.

In this chapter, we propose an efficient regularized estimation and feature selection of

Mixtures-of-Experts that encourages sparse solutions and consider MoE models for two com-

mon generalized linear models. We develop a proximal Newton-EM algorithm to maximize

the proposed ℓ1-penalized log-likelihood function, in which a proximal Newton-type method for

maximizing the M-step is used. An advantage of using proximal Newton-type method lies in the

fact that one just need to solve weighted quadratic Lasso problems to update the parameters.

Efficient tools such as coordinate ascent algorithm can be used to deal with these problems.
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Hence, the proposed approach does not require an approximate of the regularization term, and

allow to automatically select sparse solutions without thresholding. Our approach is shown to

perform well including in a high-dimensional setting and to outperform competitive state of the

art regularized MoE models on several experiments on simulated and real data.

This chapter is organized as follows. Section 4.2 describes the modeling with MoE for hetero-

geneous data and maximum-likelihood parameter estimation. Then, in Section 4.3, the proposed

regularized maximum likelihood strategy of the MoE models and the EM-based algorithm are

developed. Our method is applied on simulated and real data sets in Section 4.4. Finally, we

also discuss the effectiveness of our method in dealing with moderate dimensional problems and

provide an experiment study to promotes our method in high-dimensional setting in Section 4.5.

4.2 Mixture of experts and maximum likelihood estimation for

discrete data

Let ((X1, Y1), . . . , (Xn, Yn)) be a random sample of n independently distributed pairs (Xi, Yi),

(i = 1, . . . , n) where Yi ∈ Y ⊂ N is the ith discrete response variable given some vector of p ∈ N

predictors Xi ∈ X ⊂ R
p, and let D = ((x1, y1), . . . , (xn, yn)) be an observed data sample. We

consider the MoE modeling for the analysis of a heteregeneous set of such data (see Section

2.3.3). The model can be summarized as follows:

4.2.1 The mixture of experts model for discrete data

Assume that the observed pairs (x, y) are generated from K ∈ N parametric probability mass

components (the experts) pz(y|x;θ), z ∈ [K] = {1, . . . ,K}, governed by a gating network

πz(x;w) represented by a hidden categorical random variable Z ∈ [K] that indicates the expert

to which a particular observed pair belongs. In MoE framework, these gating network functions

πz(x;w) are modeled by logistic functions. Hence, given the predictor or the input xi, the

categorical variable Zi is generated according to the multinomial distribution:

Zi|xi ∼ Mult(1;π1(xi;w), . . . , πK(xi;w)) (4.1)

where

πk(xi;w) = P(Zi = k|Xi = xi) =
exp(wk0 + xTi wk)

1 +
K−1∑
l=1

exp(wl0 + xTi wl)

,

such that wk = (wk0,w
T
k )T and wK = 0 is set to the null vector for identifiability (Jiang and

Tanner, 1999a). Then, conditional on the hidden variable Zi = zi and xi, the observed random

variable Yi is assumed to be generated from the expert zi distribution pzi
(yi|xi;θzi

), that is:

Yi|Zi = zi,Xi = xi ∼ pzi
(yi|xi;θzi

) (4.2)
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where pzi
(yi|xi;θzi

) = p(yi|Zi = zi,Xi = xi;θzi
) is the probability mass function of the expert

zi depending on the nature of the data (x, y) within the group zi. Hence, formally, the MoE is

defined by the following semi-parametric probability mass function:

p(yi|xi;θ) =

K∑

k=1

πk(xi;w)pk(yi|xi;θk) (4.3)

with the parameter vector defined by θ = (wT
1 , . . . ,w

T
K−1,θ

T
1 , . . . ,θ

T
K)T where θk (k = 1, . . . ,K)

is the parameter vector of the kth expert.

For a complete account of MoE, types of gating networks and expert networks, the reader is

referred to Nguyen and Chamroukhi (2018).

4.2.2 Maximum likelihood parameter estimation

For an observed data sample D = ((x1, y1), . . . , (xn, yn)) generated from the MoE model (4.3),

the unknown parameter vector θ is commonly estimated by maximizing the observed data log-

likelihood

L(θ) =

n∑

i=1

log

K∑

k=1

πk(xi;w)pk(yi|xi;θk), (4.4)

by using the EM algorithm. Unfortunately, the MLE can be unstable or even infeasible in

high-dimension due to possibly redundant and correlated features. In some cases, such as multi-

logistic model, this task becomes a challenge since the log-likelihood function becomes singular.

Indeed, Rosset et al. (2004) showed that in logistic regression if the data are separable by the

predictors the maximum likelihood solutions are undefined. In such cases, a regularization of

the MLE is needed. For example, Park and Hastie (2007a) considered adding a small amount

of quadratic penalization, and let the coefficients converge to the ℓ2 penalized logistic regression

solutions instead of infinity. Here, we consider the regularized models with take into account

the well-known Lasso penalty.

4.3 Regularized maximum likelihood estimation

Regularized MLE allows the selection of a relevant subset of features for prediction and thus

encourages sparse solutions. This approach also bounds the norm of the estimated parameters.

Hence, it avoids the singularity of the penalized log-likelihood. In mixture-of-experts context,

one may consider both sparsity in the feature space of the gates, and of the experts. We utilize

Lasso penalty for the experts, and for detecting zero and nonzero coefficients in the mixing

functions another Lasso penalty is added for the gating parameters. This approach has some

advantages since the Lasso penalty functions are convex and convenient to handle. Moreover,

by adding these penalty functions, we also force some parameters, not only in the experts but

also in the gating networks, toward zero, to obtain a sparse model. The proposed regularization

that combines two Lasso penalties for the experts parameters, and for the gating network is
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defined by:

PL(θ) = L(θ)−
K∑

k=1

λk‖βk‖1 −
K−1∑

k=1

γk‖wk‖1. (4.5)

where ‖v‖1 =
∑p

j=1 |vj | is the ℓ1 norm of a vector v ∈ R
p, λk ≥ 0 for all k = 1, . . . ,K and

γk ≥ 0 for all k = 1, . . . , (K−1). The regularization parameters λk and γk control the amount of

shrinkage on the parameters βk and wk. A similar strategy has been proposed in Khalili (2010)

for Gaussian regression based on two well-known penalized techniques: Lasso (Tibshirani, 1996)

and SCAD (Fan and Li, 2001) which are then approximated in the EM algorithm of the model

inference. An ℓ2 penalty function for the gating network is added to avoid wildly large positive

and negative estimates of the regression coefficients corresponding to the mixing proportions.

This behavior can be observed in logistic/multinomial regression when the number of potential

features is large and they are highly correlated (Park and Hastie, 2007b; Bunea, 2008). However,

the ℓ2 norm also affect the sparsity of the models (see Section 3.4). We therefore remove this

ℓ2 penalty in our proposal model. For parameter estimation, Khalili (2010) introduced an EM

algorithm follows the suggestion of Hunter and Li (2005). Unfortunately, this approach draws

some inadequacies (see discussion in Section 3.3) which can be tackled by our proposals in

Chapter 3.

In a similar scenario, Peralta and Soto (2014) suggested an EM algorithm for the regularized

MoE of logistic regression, in which using a transformation that implies inverting the soft-max

function. However, there is no evidence to ensure the increasing of their penalized log-likelihood

values and this leads to the poor results from their approach. In our approach presented here,

we propose and EM algorithm which relies on proximal Newton-type procedures in the M-step

to overcome these limitations. We consider that in mixture of experts with two different models

for the experts, that is Poisson, and logistic regressors.

4.3.1 Parameter estimation and feature selection via a proximal Newton-EM

For each of the two considered GLM for the MoE models, we propose an EM algorithm to

monotonically find at least local maximizers of (4.5). The E-step is common to these models. For

the M-step, two different algorithms are proposed to update the model parameters. Specifically,

the first one relies on proximal Newton method, while the second one uses a proximal Newton-

type method to update the gating network and expert’s parameters. The difference between

these algorithms is that the proximal Newton-type method we construct here to update the

gating network can avoid the numerical instability of the proximal Newton method due to

the small value of the mixing proportions. We discuss this difference in Section 4.3.2. The EM

algorithm for the maximization of (4.5) requires the construction of the penalized complete-data

log-likelihood, which is, in our context, given by

PLc(θ) = Lc(θ)−
K∑

k=1

λk‖βk‖1 −
K−1∑

k=1

γk‖wk‖1 (4.6)
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where

Lc(θ) =

n∑

i=1

K∑

k=1

zik log [πk(xi;w)pk(yi|xi;θk)] (4.7)

is the standard complete-data log-likelihood for the MoE model where zik an indicator binary-

valued variable such that zik = 1 if Zi = k (i.e., if the ith pair (xi, yi) is generated from the kth

expert component) and zik = 0 otherwise. Thus, the proposed EM algorithm for the regularized

MoE model in its general form runs as follows. After starting with an initial solution θ[0], it

alternates between the two following steps until convergence (e.g., when there is no longer a

significant change in the relative variation of (4.5)).

E-step: The E-Step computes the conditional expectation of the penalized complete-data log-

likelihood (4.6), given the observed data D and a current parameter vector θ[q], q being the

current iteration number of the block-wise EM algorithm:

Q(θ;θ[q]) = E

[
PLc(θ)|D;θ[q]

]

=

n∑

i=1

K∑

k=1

τ
[q]
ik log [πk(xi;w)pk(yi|xi;θk)]−

K∑

k=1

λk‖βk‖1 −
K−1∑

k=1

γk‖wk‖1 (4.8)

where

τ
[q]
ik = P(Zi = k|yi,xi;θ[q]) = πk(xi;w

[q])pk(yi|xi;θ[q]
k )/p(yi|xi;θ[q]) (4.9)

is the conditional probability that the data pair (xi, yi) is generated by the kth expert. This

step only requires the computation of the conditional component probabilities τ
[q]
ik (i = 1, . . . , n)

for each of the K experts.

M-step: The M-Step updates the parameters by maximizing the Q function (4.8) with respect

to θ. The Q-function can be written as:

Q(θ;θ[q]) = Q(w;θ[q]) +

K∑

k=1

Qk(θk;θ
[q]) (4.10)

with

Q(w;θ[q]) =

n∑

i=1

K∑

k=1

τ
[q]
ik log πk(xi;w)−

K−1∑

k=1

γk‖wk‖1,

=

n∑

i=1

K−1∑

k=1

τ
[q]
ik (wk0 + xTi wk)−

n∑

i=1

log
[
1 +

K−1∑

k=1

ewk0+xT
i wk

]
−
K−1∑

k=1

γk‖wk‖1. (4.11)

and

Qk(θk;θ
[q]) =

n∑

i=1

τ
[q]
ik log pk(yi|xi;θk)− λk‖βk‖1. (4.12)
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The parameters w are therefore updated by maximizing the function (4.11). Here, the composite

function Q(w;θ[q]) is concave and does not have the weighted Lasso form. One can use coordi-

nate ascent algorithm to update w since the penalty part has a separate structure (see Tseng

(2001) for more details). However, this approach requires a lot of computing and is not suitable

for high-dimensional data (see Chamroukhi and Huynh (2019)). In this case, proximal Newton

algorithm and proximal Newton-type algorithm are good choices to overcome these drawbacks.

The principle of these methods are described in Appendix C.1. The idea of these approaches lies

in the fact that they approximate the smooth part of Q(w;θ[q]) with a local quadratic function.

After that, one will solve a weighted Lasso regression problem, which has a closed-form update.

The solution of this weighted Lasso regression a direction that one can choose to improve the

value of Q(w;θ[q]) using backtracking line search.

The methods for updating the gating network’s parameters using proximal Newton, and

proximal Newton-type method are described in the next section.

4.3.2 Proximal Newton-type procedure for updating the gating network

For updating the gating network, the similar approaches which were used to update these param-

eters for Gaussian outputs in Chapter 3 can be applied once again. Hence, the same proximal

Newton and proximal Newton-type algorithms in Section 3.3.3 are the key methods to update w

in this chapter. A little adjustment is provided by setting ρ = 0 in this case to have a closed-form

update for wkj after each loop of the coordinate ascent algorithm. This is done since we remove

the ℓ2 the penalty in our model.

4.3.3 Proximal Newton-type procedure for updating the experts network

Expert network with Poisson outputs

In this case we consider the situation in which the response Yi is a count variable and the

conditional probability distribution of Yi, given Xi and Zi is described as a Poisson distribution.

Therefore, the generative model (4.2) of Y is the one of Poisson expert regressor and is given by

Yi|Zi = zi,xi ∼ P0(.; e
βzi0

+βT
zi

xi).

Hence, the expert’s distribution pk(yi|xi;θk) becomes

pk(yi|xi;θk) = P(yi|xi;βk0,βk) =
exp[− exp(βk0 + xTi βk)] exp[(βk0 + xTi βk)yi]

yi!
. (4.13)

If the count data Y is such that the probability of zero is large then the zero-inflated Poisson

(ZIP) regression model should be considered. For the regularized zero-inflated regression models,

we refer the reader to (Buu et al., 2011; Wang et al., 2014; Tang et al., 2014).

Updating the parameter vector for the kth Poisson regressor expert requires the maximization
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of the function Qk({βk0,βk};θ[q]) in (4.12), with

Qk({βk0,βk};θ[q]) =

n∑

i=1

τ
[q]
ik

[
− exp(βk0 + xTi βk) + yi(βk0 + xTi βk)− log(yi!)

]

︸ ︷︷ ︸
Pk({βk0,βk};θ

[q])

−λk‖βk‖1.

(4.14)

This composite function is concave, nonsmooth and has a non quadratic form. Therefore, the

proximal Newton method can be used to update βk. Following the strategy that was used to

update the gating network, one needs to compute the quadratic approximation P̃k({βk0,βk};θ[q])

of Pk({βk0,βk};θ[q]) at (β̃k0, β̃k). This function is given by (see Appendix C.3.1 for more details)

P̃k({βk0,βk};θ[q]) = −1

2

n∑

i=1

aik(bik − βk0 − xTi βk)
2 +D(β̃k0, β̃k), (4.15)

with

aik = τ
[q]
ik exp(β̃k0 + xTi β̃k);

bik =
yi

exp(β̃k0 + xTi β̃k)
− 1 + β̃k0 + xTi β̃k;

and D(β̃k0, β̃k) is a function of (β̃k0, β̃k).

After that, the coordinate ascent algorithm with soft-thresholding operator is used to maximizing

the penalized weighted least-square

max
(βk0,βk)

P̃k({βk0,βk};θ[q])− λk‖βk‖1. (4.16)

Then the solution is taken in account for the next update of the proximal Newton algorithm.

This can be interpreted as in Algorithm 3.

Algorithm 3 Proximal Newton method for Poisson model

1: (β
(0)
k0 ,β

(0)
k ) = (β

[q]
k0 ,β

[q]
k ).

2: repeat
3: Update the quadratic approximation P̃k({βk0,βk};θ[q]) in (4.15) using the current param-

eters.
4: Solve the penalized weighted least-square problem in (4.16) by using coordinate ascent

algorithm and let (β̃
(s)
k0 , β̃

(s)
k ) be the solution.

5: Set (β
(s+1)
k0 ,β

(s+1)
k ) = (1−t)(β(s)

k0 ,β
(s)
k )+t(β̃

(s)
k0 , β̃

(s)
k ), where t is found using a backtracking

line-search.
6: Evaluate the objective function Qk({βk0,βk};θ[q]) at (β

(s+1)
k0 ,β

(s+1)
k ).

7: until the stopping criterion is satisfied.
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Expert network with Multinomial outputs

Finally, for MoE for classification, assuming that each expert part is governed by a multinomial

distribution with R (≥ 2) levels and the probability distribution of Yi given xi and zi becomes

a multinomial-logistic distribution, i.e, (4.2) is defined by

Yi|Zi = zi,xi ∼ Mult(1;αzi1(xi;βzi
), . . . , αziR(xi;βzi

))

where

αkr(xi;βk) = P(yi = r|xi; zi = k) =
exp(βkr0 + xTi βkr)

1 +
R−1∑
l=1

exp(βkl0 + xTi βkl)

, r ∈ {1, . . . , R}

with (βkR0,βkR) = 0. Denote by U the n × R indicator response matrix with elements uir =

I(yi = r). Then Qk(βk;θ
[q]) in (4.12) is written in the more explicit form

Qk(βk;θ
[q]) =

n∑

i=1

τ
[q]
ik

[R−1∑

r=1

uir(βkr0 + xTi βkr)− log
(
1 +

R−1∑

r=1

exp(βkr0 + xTi βkr)
)]

︸ ︷︷ ︸
I(βk)

−
R−1∑

r=1

λkr‖βkr‖1.

(4.17)

The same strategy for updating the gating network by using proximal Newton method can be

applied in this case. It is not hard to show that the local quadratic approximation Ĩr(βk) of

I(βk) with respect to (βkr0,βkr) at β̃k is given by (see Appendix C.3.2)

Ĩr(βk) = −1

2

n∑

i=1

τ
[q]
ik dikr(cikr − βkr0 − xTi βkr)

2 + E(β̃k), (4.18)

where

cikr = β̃kr0 + xTi β̃kr +
uir − αkr(β̃k;xi)

αkr(β̃k;xi)(1− αkr(β̃k;xi))
, (4.19)

dikr = αkr(β̃k;xi)(1− αkr(β̃k;xi)), (4.20)

and E(β̃k) is a function of β̃k.

The corresponding Lasso form is described as following

Ĩr(βk)− λkr‖βkr‖1. (4.21)

Using a similar algorithm with Algorithm 2 by replacing the weighted Lasso in (3.29) with (4.21),

one can obtain the kth expert’s parameter vector.

The proximal Newton-type method can be suggested by replacing the Hessian matrix with

the constant matrix B = −1/4
∑n

i=1 τ
[q]
ik xix

T
i to avoid possible numerical instability. In such a

case, instead of maximizing the weighted Lasso in (4.21) one will maximize a simple weighted
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Lasso form

−1

8

n∑

i=1

τ
[q]
ik (ĉikr − βkr0 − xTi βkr)

2 + Ê(β̃k)− λkr‖βkr‖1, (4.22)

where

ĉikr = β̃kr0 + xTi β̃kr + 4(uir − αkr(β̃k;xi)),

and Ê(β̃k) is a function of β̃k.

4.3.4 Algorithm tuning and model selection

The appropriate values of the tuning parameters (λ, γ) and the number of clusters K should be

chosen carefully in practice. Here, we suggest to use a modified BIC with a grid search scheme

introduced by Städler et al. (2010b) for this difficult task. This strategy was mentioned in Section

3.3.4. However, it is worth to note that choosing optimal values of the tuning parameters and

the number of components for penalized MoE models is still an open research. Though, the BIC

performs quite well for our simulation study.

4.4 Experimental study

The performance of these methods is studied on both simulated data and real data. The results

of these algorithms are compared to the standard non-penalized MoE for the Poisson model

(denoted by PMoE) and MoE with ℓ2 regularization (LMoE+ℓ2) for the logistic model since

local maximum parameters that closed to the true value for the MoE of logistic model cannot

found in some cases. Several evaluation criteria are used to assess the performance of the

models, including sparsity, parameters estimation and clustering criteria. Our penalized models

are denoted by PMoE-Lasso and LMoE-Lasso for the Poisson and logistic cases, respectively.

The R packages of codes of the developed algorithms and the documentation are publicly

available on this link1.

4.4.1 Evaluation criteria

To evaluate our methods, the results of all the models are compared based on three different

criteria which were mentioned in Section 3.4.1. These criteria are: sensitivity/specificity, param-

eters estimation, and clustering performance. To deal with the label switching before calculating

these criteria, we permuted the estimated coefficients based on an ordered between the expert

parameters then replace the kth gating network vector with wper
k = wk − wK . Specially, for

K = 2, the log-likelihood function and the penalized log-likelihood function will not change since

we have wper
1 = −w1.

1https://github.com/fchamroukhi/prEMME
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Figure 4.1: Histogram of the response variable Y of the Poisson model.

4.4.2 Simulation study

For this simulation, we generate n = 300 predictors x from a multivariate Gaussian distribution

with zero mean and correlation structure given by corr(xij , xij′) = 0.5|j−j′|. Meanwhile, the

response Y |x is generated from a logistic model with two classes and a Poisson model of K = 2

expert components with the following regression coefficients:

• Simulation parameters for the Poisson model:

(β10,β1)
T = (0, 1, 0,−2, 0, 1.5, 0)T ;

(β20,β2)
T = (0, 0, 2, 0,−1, 0, 0)T ;

(w10,w1)
T = (1, 0, 0, 1, 0,−1.5, 0)T .

• Simulation parameters for the multinomial-logistic model (R = 2):

(β110,β11)
T = (0,−1, 2, 0, 0, 1.5, 0)T ;

(β210,β21)
T = (0, 1, 0, 0,−2, 0, 0)T ;

(w10,w1)
T = (1, 0, 0, 1, 0, 0,−1.5)T .

100 data sets were generated for each simulation. The results will be presented in the following

sections. Histogram of the response variable for a typical simulated data in Poisson MoE model

is presented in Figure 4.1.

109



4.4. EXPERIMENTAL STUDY

Sensitivity/specificity criteria

Table 4.1 presents the sensitivity (S1), specificity (S2) values for the experts 1 and 2, and the

gates for each of the considered models. The non-penalized MoE models cannot be considered

as model selection methods since their sensitivity almost surely equals zero, hence the results for

these models are not provided. Especially, the estimated parameters for the logistic model with

the standard MoE becomes challenging and unstable. For a typical data set, local maximum

parameters that closed to the true value for the MoE of logistic model cannot found (see Table

4.2). Actually, in case of logistic regression Rosset et al. (2004) showed that if the data are

separable by the predictors the maximum likelihood solutions are undefined. In such cases, by

adding a small amount of quadratic penalization, Park and Hastie (2007a) let the coefficients

converge to the ℓ2 penalized logistic regression solutions instead of infinity as the Lasso tuning

parameter λ approaches zero. Based on these ideas, we add two small quadratic penalizations

for the MoE model with logistic outputs

ρ

2

K∑

k=1

R−1∑

r=1

‖βkr‖22 and
ρ

2

K−1∑

k=1

‖wk‖22

where ρ = 0.1 log(n) as in Chapter 3. Hence, the MoE with Lasso regularization model in the

logistic case is compared with the ℓ2 regularized MoE model. Here, the Lasso performs quite well

for detecting non-zero coefficients both in the experts and in the gating network. By adding the

penalty term, one can avoid the instability of the estimators. In the case with high correlation

between features, one can consider adding ℓ2 penalties for the experts and the gating network.

Model Expert 1 Expert 2 Gate
S1 S2 S1 S2 S1 S2

PMoE-Lasso 0.717 1.000 0.818 1.000 0.835 1.000
LMoE-Lasso 0.693 0.960 0.835 0.805 0.780 0.980

Table 4.1: Sensitivity (S1) and specificity (S2) results of the Lasso regularized MoE models for
Poisson outputs (PMoE-Lasso) and logistic ouputs (LMoE-Lasso).

True value LMoE-Lasso MoE method

Exp. 1 Exp. 2 Gate Exp. 1 Exp. 2 Gate Exp. 1 Exp. 2 Gate

0 0 1 -0.1184 -0.1470 0.5604 -2.5467 49.4886 0.4417
-1 1 0 -0.6242 0 0 -1.8442 31.0822 -0.0505
2 0 0 1.3393 0 0.0411 3.7090 -30.1612 -0.0523
0 0 1 0 0 0.7802 -0.3482 48.1645 0.3263
0 -2 0 0 -1.5576 0 0.9839 -66.4277 0.6738

1.5 0 0 1.2773 0 -0.1194 2.7540 -9.4606 -0.7398
0 0 -1.5 0.2138 0 -0.9343 -0.5401 -6.1314 -0.7966

Table 4.2: Estimated parameters for a typical data set obtained with Lasso regularized MoE
(LMoE-Lasso) and MLE for MoE with logistic observations.
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Parameter estimation

The boxplots of all estimated parameters are shown in Figures 4.2 and 4.3. The boxplots are not

provided for standard logistic model since the estimating parameter for this model is unstable in

this case. It turns out that the PMoE and LMoE+ℓ2 could not be considered as model selection

methods. The Lasso provides sparse results for the model, both in the experts and in the gates.

These Lasso models work quite well in detecting non-zero coefficients. However, in the logistic

case, this becomes more challenging in the experts and in the gating network.

For the mean and standard derivation shown in Table 4.3 and Table 4.4. Notice that, in case

of Poisson outputs the model using standard MoE give better results than PMoE-Lasso. This

is because the regularized model can cause bias to the estimated parameters since the penalty

functions are added to the log-likelihood function. On the other hand, the PMoE-Lasso provides

better results than PMoE for estimating the zero coefficients in term of average mean squared

error.

For the logistic model, it turns out that by adding two small quadratic penalty functions one

can avoid the instability of estimation the MLE parameters. The LMoE+ℓ2 has better results

than the LMoE-Lasso for estimating the non-zero coefficients. Conversely, as in the Poisson

model the Lasso is good at detecting zero coefficients and provides small MSE than LMoE+ℓ2

at the zero parameters.

Clustering

The accuracy of clustering for all these mentioned models are calculated for each data set. The

results in terms of ARI and correct classification rate values are provided in Table 4.5. For the

Poisson case, the PMoE-Lasso model provides a better result than the PMoE model in accuracy

of clustering term. However, the difference between these model is smaller than 1%. For the

logistic case, it can be seen that, with LMoE-Lasso model we can obtain better results than

LMoE+ℓ2 model in this simulation.

In summary, it is clear that the regularized methods perform quite well in retrieving the

actual sparse support; the sensitivity and specificity results are quite reasonable for the proposed

models. Although the penalty function will cause bias to the parameters, as shown in the results

of the MSE, the algorithm can perform parameter density estimation with an acceptable loss of

information due to the bias induced by the regularization. In terms of clustering, the PMoE-

Lasso works as well as PMoE models for the Poisson model. For logistic model, the LMoE-Lasso

is successful in retrieving the actual parameters used for the model, while the non regularized

method failed in this task. Hence, adding quadratic penalty functions in this case is necessary.

A comparison between the LMoE-Lasso and the LMoE+ℓ2 model shows that Lasso provides

better results not only in terms of sparsity but also in terms of clustering.
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Figure 4.2: Boxplots of non-penalized MoE model (PMoE) and the proposed Lasso penalized
MoE model (PMoE-Lasso) for Poisson case.
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Figure 4.3: Boxplots of ℓ2 regularized MoE model (LMoE+ℓ2) and the proposed Lasso penalized
MoE model (LMoE-Lasso) for logistic case.
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Comp. True Mean Mean squared error
value PMoE PMoE-Lasso PMoE PMoE-Lasso

0 −0.008(.094) 0.190(.092) 0.0089(.011) 0.0445(.036)

1 1.006(.076) 0.905(.077) 0.0059(.009) 0.0150(.021)

0 −0.009(.067) −0.006(.024) 0.0046(.007) 0.0006(.002)

Exp.1 −2 −1.989(.088) −1.825(.100) 0.0079(.011) 0.0407(.043)

0 −0.004(.067) 0.003(.017) 0.0045(.008) 0.0003(.001)

1.5 1.492(.089) 1.325(.089) 0.0080(.015) 0.0386(.037)

0 0.004(.077) 0.012(.027) 0.0059(.011) 0.0009(.003)

0 −0.014(.178) 0.218(.138) 0.0317(.051) 0.0669(.062)

0 0.004(.091) 0.015(.059) 0.0082(.012) 0.0037(.028)

2 2.002(.130) 1.796(.149) 0.0169(.030) 0.0638(.093)

Exp.2 0 −0.013(.107) −0.005(.028) 0.0117(.017) 0.0008(.004)

−1 −0.984(.118) −0.808(.157) 0.0142(.035) 0.0614(.120)

0 −0.008(.111) −0.007(.029) 0.0123(.020) 0.0009(.003)

0 0.013(.093) −0.004(.036) 0.0089(.014) 0.0013(.006)

1 1.092(.301) 0.673(.174) 0.0992(.154) 0.1371(.121)

0 0.011(.252) 0.000(.008) 0.0636(.078) 0.0001(.000)

0 −0.025(.282) 0.071(.106) 0.0804(.132) 0.0163(.040)

Gate 1 1.136(.336) 0.528(.165) 0.1312(.201) 0.2496(.156)

0 −0.001(.314) −0.002(.019) 0.0986(.147) 0.0004(.004)

−1.5 −1.699(.415) −0.885(.173) 0.2121(.355) 0.4079(.217)

0 −0.002(.265) −0.015(.049) 0.0703(.135) 0.0027(.011)

Table 4.3: Estimated parameter vector obtained by PMoE and our PMoE-Lasso for Poisson
outputs.

4.4.3 Lasso paths for the regularized MoE parameters

In this part, we provide the Lasso paths for the experts network with Poisson and logistic outputs

based on typical simulation data sets. To do this two fix values for the tuning parameters γ are

chosen, and a grid of values for λ is also provided.

Lasso paths for the case of Poisson outputs

For the regularized MoE with Poisson regression, two fix values for γ are chosen 0 and 10;

λ ∈ {0, 5, 10, . . . , 100}. The Figure 4.4 gives the Lasso paths for the experts network and also

the changing of the gating network coefficients with different values of λ.

It turns out that the Lasso paths for each expert component perform quite consistent between

different values of γ. The performance of the gating network coefficients with difference values

of λ is quite similar between γ = 0 and γ = 10. The difference lies in the fact that with γ = 10

some parameters which are close to 0 are set to be 0. However, the changing of λ also effect to

the sparsity of the gating network similar with the Gaussian model in Chapter 3. This behavior

can be found in the case γ = 10, since λ ≥ 65 the third coefficient of the gating network is

difference from it true value 0.
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Figure 4.4: Lasso paths for the experts network and the changing of the gating network for
regularized MoE model (PMoE-Lasso) with Poisson outputs.
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Comp. True Mean Mean squared error
value LMoE+ℓ2 LMoE-Lasso LMoE+ℓ2 LMoE-Lasso

0 0.037(.627) 0.008(.250) 0.3956(.758) 0.0623(.079)

−1 −0.897(.317) −0.370(.229) 0.1110(.172) 0.4494(.287)

2 1.855(.374) 1.315(.266) 0.1611(.215) 0.5403(.376)

Exp.1 0 0.032(.411) 0.020(.116) 0.1702(.267) 0.0138(.041)

0 −0.004(.340) −0.031(.092) 0.1156(.188) 0.0094(.027)

1.5 1.496(.392) 1.057(.249) 0.1539(.230) 0.2587(.250)

0 0.042(.449) 0.041(.124) 0.2031(.423) 0.0171(.066)

0 0.098(1.151) 0.029(.402) 1.3347(2.054) 0.1624(.242)

1 0.824(.532) 0.228(.271) 0.3138(.612) 0.6687(.347)

0 0.186(.484) 0.068(.129) 0.2687(.336) 0.0213(.053)

Exp.2 0 −0.147(.542) −0.010(.078) 0.3152(.421) 0.0062(.025)

−2 −1.657(.469) −1.126(.324) 0.3376(.457) 0.8690(.575)

0 −0.143(.501) −0.023(.086) 0.2717(.498) 0.0079(.046)

0 −0.037(.643) −0.019(.084) 0.4148(.541) 0.0075(.041)

1 0.979(.467) 0.934(.289) 0.2189(.337) 0.0881(.128)

0 −0.001(.388) 0.025(.122) 0.1503(.376) 0.0154(.098)

0 −0.055(.467) 0.046(.131) 0.2212(.305) 0.0193(.068)

Gate 1 1.121(.422) 0.628(.293) 0.1924(.293) 0.2236(.255)

0 0.100(.538) 0.046(.131) 0.2993(.423) 0.0193(.068)

0 −0.114(.474) −0.008(.092) 0.2376(.308) 0.0085(.043)

−1.5 −1.654(.462) −1.230(.358) 0.2372(.335) 0.2014(.272)

Table 4.4: Estimated parameter vector obtained by LMoE+ℓ2 and the proposed LMoE-Lasso
models for logistic outputs.

Model C.rate ARI
PMoE 88.85%(2.04%) 0.5965(.063)

PMoE-Lasso 88.96%(2.03%) 0.6004(.063)

LMoE+ℓ2 81.02%(4.00%) 0.3813(.092)

LMoE-Lasso 82.06%(2.93%) 0.3985(.078)

Table 4.5: Average of the accuracy of clustering (correct classification rate and Adjusted Rand
Index) results for the Poisson outputs with the non-penalized model (PMoE) and the proposed
Lasso regularized model (PMoE-Lasso). The results are also considered for the logistic case with
ℓ2 penalization (LMoE+ℓ2) and Lasso regularization (LMoE-Lasso).

Lasso paths for the case of logistic outputs

Finally, for the regularized MoE with logistic regression, we choose two non-zero values for γ,

γ ∈ {1, 3} and a grid of 20 different values for λ, λ ∈ {0.5, 1.0, 1.5, . . . , 10}. Figure 4.5 gives

the Lasso paths for the experts network and also the changing of the gating network coefficients

with different values of λ.

Here, the Lasso paths for each expert part performs are almost identical with different

values of γ. However, as λ decreases to zero, some coefficients of the experts network can grow

to infinity. We therefore add two small quadratic penalizations for the regularized model with
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Figure 4.5: Lasso paths for the experts network and the changing of the gating network for
regularized MoE model (LMoE-Lasso) with logistic outputs.
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logistic outputs

ρ

2

K∑

k=1

R−1∑

r=1

‖βkr‖22 and
ρ

2

K−1∑

k=1

‖wk‖22

where ρ = 0.1 log(n) and consider addition elastic net paths in this case. This regularized model

is denoted by LMoE-ElasticNet. Hence, the update of the gating network is done by using a

similar proximal Newton-type procedure in Chapter 3. For the experts network, the equation

(4.21) is replaced by

Ĩr(βk)− λkr‖βkr‖1 −
ρ

2
‖βkr‖22. (4.23)

to update the coefficients. The elastic net paths are given in Figure 4.6 for γ ∈ {0, 3}, λ ∈
{0, 0.5, . . . , 10} and ρ = 0.1 log(n).

It is interesting to see that the elastic net paths in this situation have similar shapes with

the Lasso, except the ℓ2 penalized solution is obtained instead of infinity as λ approaches zero.

Thus, the instability of the solution can avoid. For λ > 1, the effect of the quadratic penalty

with a small ρ is not appreciable. In application, depend on the data such as the correlations

between features and the value of tuning parameters λ, γ, one can consider adding two small

amount of quadratic penalizations or not. Otherwise, the model works quite well with just ℓ1

penalizations.

Overall, the performance of Lasso paths for the experts network in both models seem to be

consistence with different values of γ. Some open questions should be study more such as the

effect of λ to the sparsity of the gating network.

4.4.4 Applications to real data sets

In this part, three real data sets are analyzed as a further test of the proposal methodology. Two

data sets are for the logistic model and one for Poisson model. The obtain results are compared

with other methods, which provided by Peralta and Soto (2014). The comparison are based

upon three different criteria: the average mean squared error (MSE) between observation values

and the predicted values of the response variable, the sparsity of each result, and the correlation

of these values. After the parameters are estimated and the data are clustered, the following

value under the estimated model

Ŷ = mode pk(y|x; ẑ = k) = mode pk(y|x; θ̂k),

is used as a predicted value for Y .

Regularized MoE model with Poisson outputs

A data set is used here to illustrate for the proposed regularized MoE of Poisson regression

experts. The study used Cleveland Clinic Foundation heart disease data set that available at

the website UC Irvine Machine Learning Repository. This data set includes 13 features and 297
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Figure 4.6: Elastic net paths for the experts network and the changing of the gating network
for regularized MoE model (LMoE-ElasticNet) with logistic outputs.
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Feature Exp.1 Exp.2 Gate

x0 0.51211 -1.38996 -0.71073
x1 - - -
x2 - - 0.54763
x3 0.06753 - 0.54110
x4 0.00959 0.09146 -
x5 - - -
x6 - - -
x7 0.07229 - 0.10834
x8 - - -0.62335
x9 - 0.50573 -
x10 0.05960 0.33149 0.03440
x11 0.11976 0.01285 -
x12 0.05649 - 1.54824
x13 0.04244 0.46287 0.64450

Table 4.6: Fitted regularized MoE model (PMoE-Lasso) to the heart disease data.

observations. 160 observations among them have zero response value. Generally, an appropriate

approach for this type of data is to use the zero inflated Poisson regression model (ZIP model).

However, the regularized MoE of the Poisson regression is tested and observed on its behavior

with this type of data. TakingK = 2 and focusing on the regularized MoE for Poisson regression,

the model’s estimated parameters are provided in Table 4.6. There are two components, the

first one has 108 objects and the second one has 189 objects. The second class contains 156 over

160 observations that have zero response value. In this case, it looks like the data is splitted into

two parts, with one part contains mainly zero response value similar with the approach of ZIP.

In term of prediction, 65% of observations have the same values between their predictions and

their response values. It is worth to consider the regularized MoE for ZIP model as an extended

approach for this type of data. The changing of the penalized log-likelihood after each iteration

is given in Figure 4.7.

Histogram of the variable Y and its predicted value for this data set is given in Figure 4.8.

Regularized MoE model with Multinomial outputs

For the logistic case, we consider the two data sets that were used by Peralta and Soto (2014)

in their work and compare the results between our approach with their method. We investigate

the Ionosphere data and Musk-1 data which are described on the website UC Irvine Machine

Learning Repository. The Ionosphere data contains 351 observations and 33 features. The Musk-

1 data has 486 observations and 168 features. The variables with zero variance are removed.

Hence, the Musk-1 data set remains with 167 features. Both data sets have two classes. All

features are standardized to have mean zero and unit variance. K = 2 is taken as in Peralta

and Soto (2014).
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Figure 4.7: The penalized log-likelihood during the EM iterations when fitting the PMoE-Lasso
model to the Cleveland Clinic Foundation heart disease data.
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dation heart disease data.
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Figure 4.9: The penalized log-likelihood during the EM iterations when fitting the LMoE-Lasso
model to the Ionosphere data.

The parameter estimates of the MoE models obtained by Lasso are given in Table 4.7 and

Table 4.8, 4.9. The classification accuracy and percentage of features reduction results between

the proposal with Peralta’s work are found in Table 4.10. These results suggest that the proposed

algorithm with Lasso provide better results than the remain method in term of data classification

and features reduction. For Ionosphere dataset, Peralta used on average 78.1% of all dimensions

while our approach just need 26.3%. For the Musk-1 dataset, the proposed Lasso method also

increases the ratio of dimensionality reduction up to 10%. Consider the classification rate, on

both data sets the proposal method increases this ratio up to 12% since comparing with Peralta’s.

One of the reasons for this improvement is that the approach of Peralta does not guarantee the

increase of the penalized log-likelihood values after each loop of their EM algorithm. The

changing of the penalized log-likelihood functions on these data set can be referred from Figure

4.9 and Figure 4.10.

Dataset name Classification accuracy Dimensionality reduction
Lasso (Peralta) LMoE-Lasso Lasso (Peralta) LMoE-Lasso

Ionosphere 84.1% 96.6% 21.9% 73.7%
Musk-1 80.0% 93.3% 79.6% 90.0%

Table 4.10: Classification accuracy and percentage of features reduction results compared be-
tween Peralta’s method (Peralta and Soto, 2014) and our proposed method (LMoE-Lasso).
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Feature Exp.1 Exp.2 Gate

x0 -1.64671 -1.25999 0.34349
x1 -1.04171 -0.79945 -
x2 -0.94925 -0.64691 -
x3 - - -
x4 - -1.81555 0.94631
x5 -0.05046 -0.20732 -
x6 -0.45212 -0.27119 -
x7 -0.85935 -0.18387 -
x8 -0.04429 - -
x9 -0.75204 - -0.28020
x10 - - -
x11 - - -
x12 - - -
x13 - - -
x14 - - -
x15 - -0.15926 -
x16 - - -
x17 - -0.29576 -
x18 - - -
x19 - - -
x20 - - -
x21 0.41903 - -
x22 - - -
x23 -1.36138 1.48880 -1.83610
x24 -0.41763 - -
x25 - - -
x26 - 0.20319 -
x27 - - -
x28 - - -
x29 - -0.02892 -
x30 - - -
x31 - - -
x32 - - -
x33 0.99009 -0.21365 -

Table 4.7: Fitted regularized MoE model (LMoE-Lasso) to Ionosphere data.
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Feature Exp.1 Exp.2 Gate Feature Exp.1 Exp.2 Gate

x0 0.06922 0.17778 0.12277 x42 - - -
x1 - - - x43 - -0.32513 -
x2 - - - x44 - - -
x3 - - - x45 - - -
x4 - - - x46 - - -
x5 - - - x47 0.10696 0.13833 -
x6 - - -1.15153 x48 -0.70925 - -
x7 - - - x49 - 0.05006 -
x8 - - -0.73044 x50 -0.10448 -0.20221 -
x9 - - - x51 - - -
x10 - - - x52 - - -
x11 - - - x53 - - -
x12 - - - x54 - - -
x13 - - - x55 -0.10431 - -
x14 - 0.35940 - x56 -0.53456 - -
x15 - - - x57 - - -
x16 - - - x58 - - -
x17 - - - x59 -0.07893 - -
x18 - - - x60 - - -
x19 - - - x61 0.00010 - -
x20 - - - x62 - - -
x21 - - - x63 - - -
x22 - - - x64 - - -
x23 - - - x65 - - -
x24 -0.31879 - - x66 - - -
x25 - - - x67 - - -
x26 - - - x68 - - -
x27 - - - x69 - - -
x28 - - - x70 0.18476 - -
x29 - - - x71 - - -
x30 - - - x72 - - -
x31 - 0.56436 - x73 - - -
x32 - - - x74 - - -
x33 - - - x75 - - -
x34 - - - x76 0.08573 0.45813 -
x35 - - - x77 - - -
x36 0.22055 0.31051 - x78 - - -
x37 - 0.41421 - x79 - - -
x38 - - - x80 - - -
x39 - - - x81 - - -
x40 - - - x82 - - -
x41 - - - x83 -0.88481 - -

Table 4.8: Fitted regularized MoE model (LMoE-Lasso) to Musk-1 data (part 1).

124



CHAPTER 4. REGULARIZED MIXTURES OF EXPERTS MODELS FOR DISCRETE
DATA

Feature Exp.1 Exp.2 Gate Feature Exp.1 Exp.2 Gate

x84 -0.03139 0.55857 -1.21692 x126 0.36082 - -
x85 - - - x127 - - -
x86 - - - x128 - - -
x87 - - - x129 -0.57213 - -
x88 - 0.20919 - x130 - - -
x89 - - - x131 - - -
x90 - - - x132 0.02409 - -
x91 - - - x133 - - -
x92 0.25523 0.03731 - x134 - - -
x93 - - - x135 - - -
x94 - - - x136 0.34955 - -
x95 - - - x137 - - -
x96 - - - x138 - - -
x97 - 0.36352 - x139 - - -
x98 - - - x140 - - -
x99 - - - x141 -0.18019 - -
x100 - - - x142 - - -
x101 - - - x143 - - -
x102 0.20188 - - x144 - - -
x103 - - - x145 - - -
x104 - - - x146 - - -
x105 - - - x147 0.20336 0.51844 -
x106 - - -0.88963 x148 - - -
x107 - - - x149 - - -
x108 - - - x150 - - -
x109 0.13949 - - x151 0.56270 - -
x110 - - - x152 - - -
x111 - - - x153 - - -
x112 - - - x154 - - -
x113 - - - x155 - - -
x114 - - - x156 - - -
x115 - - - x157 - 0.23666 -
x116 -0.21509 -0.39766 - x158 - - -
x117 - - - x159 - - -
x118 - - - x160 - - -
x119 - - - x161 - - -
x120 - - - x162 0.33300 0.62605 -
x121 - - - x163 - 0.14212 -
x122 -0.28134 - - x164 0.28869 - -
x123 - - - x165 - -0.66940 -
x124 - - - x166 - - -
x125 - - -

Table 4.9: Fitted regularized MoE model (LMoE-Lasso) to Musk-1 data (part 2).
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Figure 4.10: The penalized log-likelihood during the EM iterations when fitting the LMoE-Lasso
model to the Musk-1 data.

4.5 Discussion for the high-dimensional setting

To evaluate our methods in high-dimensional setting p > n, we take 100 random observations

of the Musk-1 data set with all 166 features. A MoE model with logistic outputs is used to

modeling this data. Parameter estimation results are provided in Table 4.11 and Table 4.12.

A computer with CPU Intel i7-5500U 2.40GHz and 8GB RAM needs few (∼ 17) minutes to

estimate all the parameters for the model with λ = 1.5 and γ = 1.5. The classification accuracy

and percentage of features reduction results are given in Table 4.13.

From these tables, it turns out that the proposed algorithms perform quite well in this

setting. We still obtain acceptable results for the regularized MoE models and the EM algorithm

using the proximal Newton and proximal Newton-type methods are good tool for the parameter

estimation. However, comparing with the parameters of the full data set there are big differences.

For the full data set, 255 observations are clustered into the Class 1 and 221 observations belong

to the Class 2. Meanwhile, in the subset data 89 observations belongs to Class 1 and the

remaining is from Class 2. For the affect of each feature to the experts network and gating

network, one can easily find that some features such as x47, x50, x76, x83, x92, and x147 still keep

their roles in the first expert part for both data set. While just only the feature x84 appears in

the gating network on two parameters estimation sets. Hence, to interpret the model in high-

dimensional setting is an interesting question and should need more improvement in theoretical

results.

126



CHAPTER 4. REGULARIZED MIXTURES OF EXPERTS MODELS FOR DISCRETE
DATA

Dataset name Classification Nb. of zero coefficients Nb. of observations
accuracy Exp.1 Exp.2 Gate Class 1 Class 2

Musk-1 (Subset) 100% 145 165 161 89 11

Table 4.13: Classification accuracy and percentage of features reduction results for the subset
of Musk-1 data using the proposed method LMoE-Lasso.

4.6 Conclusion and future work

In this chapter, we proposed a regularized MLE for the MoE model which encourages sparsity,

and developed EM-based algorithms to monotonically maximize this regularized objective to-

wards at least a local maximum, while they do not require using approximations as in standard

MoE regularization. The proposed algorithms are based on proximal Newton-type methods and

univariate updates of the model parameters via coordinate ascent, which allows to tackle ma-

trix inversion problems and obtain sparse solutions. The results on the simulated and the real

data sets in terms of parameter estimation, the estimation of the actual support of the sparsity,

and clustering accuracy, confirm the effectiveness of this proposal, at least for problems with

moderate dimension. The model sparsity does not include significant bias in terms of parameter

estimation nor in terms of recovering the actual clusters of the heterogeneous data. A proximal

Newton-type approach is possible to obtain closed form solutions for an approximate of the

M-step as an efficient method that is promoted to deal with high-dimensional data sets.

A future work may consist of investigating more model selection experiments and considering

hierarchical MoE of generalized linear models. Our proposed in this chapter can extend for the

hierarchical MoE models with Lasso-like regularizations. As it can be seen through out this

chapter, the Lasso regularized MoE models perform quite efficient in high-dimensional setting

when p > n. However, theoretical results should be studied more to explain the behavior of

the penalized methods in this context. In a different aspect, directly applying the regularized

models for huge-scale data is not a reasonable approach. One should need more dimension

reduction first, and our proposals should be consider as the terminal method to modeling these

heterogeneous data. Recently work of Celeux et al. (2019) is an open suggestion for dimension

reduction. A hybrid method can be an efficient way to deal with these kinds of data.

In a similar spirit, Morvan et al. (2019) proposed a penalized mixture of logistic regression

models. Actually, this is a regularized version of the localized MoE models (Xu et al., 1995)

with logistic regression components. They suggested to penalize the experts network with the

Lasso penalizations for feature selection task and another Lasso penalty function for sparse

representation of the inverse component covariance matrices. The difficulty lies in the fact that

they must guarantee that the estimate matrices are symmetric positive definite. In addition, the

explanatory variable X can lied in a subspace for each mixture component. Hence, a method

to interpret the distribution of X should be taken in account.

This chapter has led to the following publication Huynh and Chamroukhi (2019).
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Feature Exp.1 Exp.2 Gate Feature Exp.1 Exp.2 Gate

x0 -0.33669 4.34170 3.17863 x42 - - -
x1 - - - x43 - - -
x2 - - - x44 - - -
x3 - - - x45 - - -
x4 - - - x46 - - -
x5 - - - x47 0.08585 - -
x6 - - - x48 - - -
x7 - - - x49 - - -
x8 - - - x50 -0.69865 - -
x9 - - - x51 -0.46418 - -
x10 - - - x52 - - -
x11 - - - x53 - - -
x12 - - - x54 - - -
x13 - - - x55 - - -
x14 - - - x56 - - -
x15 - - - x57 - - -
x16 - - - x58 0.00085 - -
x17 - - 0.42661 x59 - - -
x18 - - - x60 - - -
x19 - - - x61 - - -
x20 - - - x62 - - -
x21 -0.63760 - - x63 - - -
x22 - - - x64 - - -
x23 - - - x65 - - -
x24 - - - x66 - - -
x25 - - - x67 0.22870 - -
x26 - - - x68 - - -
x27 - - - x69 - - -
x28 - - - x70 - - -
x29 - - - x71 - - -
x30 - - - x72 - - -
x31 - - - x73 - - -
x32 - - - x74 - - -
x33 - - - x75 - - -
x34 -0.70692 - - x76 0.49465 - -
x35 - - - x77 - - -
x36 - - - x78 - - -
x37 - - -1.49579 x79 - - -
x38 - - - x80 0.28250 - -
x39 - - - x81 - - -
x40 - - - x82 - - -
x41 - - - x83 -0.87708 - -

Table 4.11: Fitted regularized MoE model (LMoE-Lasso) to the subset of Musk-1 data (part 1).
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Feature Exp.1 Exp.2 Gate Feature Exp.1 Exp.2 Gate

x84 - - -0.27199 x126 - - -
x85 - - - x127 - - -
x86 - - - x128 - - -
x87 - - - x129 - - -
x88 0.07382 - - x130 - - -
x89 -0.11238 - - x131 - - -
x90 - - - x132 - - -
x91 0.25618 - - x133 - - -
x92 0.32106 - - x134 - - -
x93 - - - x135 - - -
x94 -0.46848 - - x136 - - -
x95 - - - x137 - - -
x96 0.40657 - - x138 - - -
x97 - - - x139 - - -
x98 - - - x140 - - -
x99 - - - x141 - - -
x100 - - - x142 - - -
x101 - - - x143 - - -
x102 - - - x144 - - -
x103 - - - x145 - -0.45413 -0.45352
x104 - - - x146 0.44840 - -
x105 - - - x147 0.53837 - -
x106 - - - x148 - - -
x107 - - - x149 - - -
x108 - - - x150 - - -
x109 - - - x151 - - -
x110 - - - x152 - - -
x111 - - - x153 - - -
x112 - - - x154 - - -
x113 - - - x155 - - -
x114 - - - x156 - - -
x115 - - - x157 0.38850 - -
x116 - - - x158 - - -
x117 - - - x159 - - -
x118 - - - x160 - - -
x119 - - - x161 1.00947 - -
x120 - - - x162 - - -
x121 - - - x163 - - -0.16575
x122 - - - x164 - - -
x123 - - - x165 - - -
x124 - - - x166 - - -
x125 1.03320 - -

Table 4.12: Fitted regularized MoE model (LMoE-Lasso) to the subset of Musk-1 data (part 2).
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Chapter 5

Conclusions and future directions

5.1 Conclusions

This thesis has been written regarding the regularized MoE models for regression data with vari-

ous types of outputs. The developed approaches are particularly based on the Lasso-like penalty

which simultaneously performs parameter estimation and feature selection on the heterogeneous

regression data.

In Chapter 3, we first presented the MoE based for modeling heterogeneous regression data

with continuous outputs. More specifically, we used MoE with Gaussian regressor experts for

these data. Then, a regularized model, which contains two Lasso-like penalty functions, was

proposed. These penalty parts concomitantly select the feature from the gating network as well

as the experts network. For parameter estimation, three hybrid EM algorithms were introduced.

Different from the state-of-art, our proposed methods avoid matrix inversion and also do not

require any approximation on the penalty functions. Experiments on simulated data and real

data showed the effectiveness of our approach. Furthermore, we believe that the proposed

algorithm based on EM and proximal Newton-type procedure is a potential approach to deal

with a high-dimensional data set. This method also can handle with the situation in which

p > n, as discussed in Section 3.4.6.

In Chapter 4, we extended this regularized MoE modeling approach to model regression

data with discrete outputs including counting data and classification data. The regularized

models are obtained by adding two Lasso penalty functions: one the logistic mixing functions

and the other for the regression components. By doing so, one can attain a sparse MoE model

which can represent the data better than a classical model. Regularized MLE is done via

hybrid EM algorithms with proximal Newton-type method. The algorithms inherit all the best

characteristics of the previous one in Chapter 3, i.e, guarantee the monotonicity of the penalized

log-likelihood after each iteration and also avoid computing the inverse matrices, and encourage

sparsity. Experiments conducted on simulated data and real data demonstrated the relevance

of the proposed approaches in terms of feature selection, clustering and prediction as compared

to other alternatives.
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5.2. FUTURE DIRECTIONS

Finally, the R packages for the proposed algorithms are constructed and can be downloaded

via the link in List of Publications and Communications.

5.2 Future directions

Future work may consist of developing an extension of the regularized model for hierarchical

MoE of generalized linear models (Jordan and Jacobs, 1994; Jiang and Tanner, 1999a). Here,

the architecture is a tree in which the gating networks sit at the nonterminals of the tree and

the expert networks sit at the leaves of the tree. Each expert produces an output vector for each

input vector. These output vectors proceed up the tree, being blended by the gating network

outputs. Hence, a regularized approach should be studied for this framework in preventing

overfitting and to have a sparse representation model due to the large size of the input vector.

Our proposals in this thesis can be seen as a potential approach for this problem.

In addition, penalized MoE models with multivariate response variables are also an interest-

ing topic and has good theoretical properties (Nguyen et al., 2019a). To the best of our known,

there is no research focus on these cases from the regularized estimation perspective.

For the localized MoE models (Xu et al., 1995), it is interesting to study more these models

namely with multiple outputs. On the one hand, we should provide a sparse interpret in the

experts networks and on the other hand, it also needed to have a sparse structure of the covari-

ance matrices. A suggestion can be given by combining our methods with the work of Fop et al.

(2019).

Finally, as it has shown in experimental study, our methods work quite well with high-

dimensional data, even for the case p > n. However, theoretical results to support our methods

need to study more. Moreover, directly applying our methods for huge-scale data seems to be

not a correct way. In such cases, the data should be reduce its dimension using other methods

such as: SRUW, rough sets, etc, and then our approaches can be considered as a terminal step

of the process.
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Appendix A

Mathematics materials for State of

the art

A.1 Monotonicity of the EM algorithm

In this section, we provide a proof for the monotonicity of the EM algorithm based on Information

inequality theorem (Lange, 1998, Section 10.3).

Theorem A.1.1 (Information Inequality). Let f and g be probability densities with respect to a

measure µ. Suppose f > 0 and g > 0 almost everywhere relative to µ. If Ef denotes expectation

with respect to the probability measure fdµ, then Ef (log f) ≥ Ef (log g), with equality only if

f = g almost everywhere relative to µ.

Proof. Because − log(.) is a strictly convex function on (0,∞), we can use Jensen′s inequality

for the random variable g/f and get

Ef (log f)− Ef (log g) = Ef (− log
g

f
)

≥ − log Ef (
g

f
) = − log

∫
g

f
fdµ = − log

∫
gdµ = 0.

Equality hold only if g/f = Ef (g/f) almost every where relative to µ. But Ef (g/f) =

∫
gdµ =

1, i.e., g = f µ-almost everywhere.

Now, let

h(z|x;θ) =
f(x, z;θ)

g(x;θ)
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A.2. UPDATED FORMULAS FOR THE CONVARIANCE MATRICES OF GMMS

be the conditional density of Z given X = x. Using Theorem A.1.1 we have

Q(θ[q];θ[q])− L(θ[q];x) = E
θ[q] [Lc(θ

[q];X, Z)]− log g(x;θ[q])

= E
θ[q]

[
log

f(X, Z;θ[q])

g(X;θ[q])

∣∣∣X = x
]

= E
θ[q] [log h(Z|X;θ[q])|X = x]

≥ E
θ[q] [log h(Z|X;θ[q+1])|X = x]

= E
θ[q]

[
log

f(X, Z;θ[q+1])

g(X;θ[q+1])

∣∣∣X = x
]

= Q(θ[q+1];θ[q])− L(θ[q+1];x).

Therefore,

L(θ[q+1];x)− L(θ[q];x) ≥ Q(θ[q+1];θ[q])−Q(θ[q];θ[q]) ≥ 0,

because θ[q+1] = arg max
θ∈Ω

Q(θ;θ[q]).

A.2 Updated formulas for the convariance matrices of GMMs

To see these updated formulas, we can rewrite the second term on the right-hand side of (2.18)

above as

n∑

i=1

K∑

k=1

τ
[q]
ik logN (xi;µk,Σk) =− np

2
log(2π)− 1

2

K∑

k=1

(

n∑

i=1

τ
[q]
ik ) log |Σk|

− 1

2

K∑

k=1

n∑

i=1

τ
[q]
ik (xi − µk)

TΣ−1
k (xi − µk), (A.1)

and for heteroscedastic case, note that by taking µ
[q+1]
k as in (2.20) we have

n∑

i=1

τ
[q]
ik (xi − µk)

TΣ−1
k (xi − µk) = tr

[
Σ−1
k

( n∑

i=1

τ
[q]
ik (xi − µk)(xi − µk)

T
)]

= tr
[
Σ−1
k

( n∑

i=1

τ
[q]
ik (xi − µ

[q+1]
k )(xi − µ

[q+1]
k )T + (

n∑

i=1

τ
[q]
ik )(µ

[q+1]
k − µk)(µ

[q+1]
k − µk)

T
)]

= tr(Σ−1
k Ak) + (

n∑

i=1

τ
[q]
ik )(µ

[q+1]
k − µk)

TΣ−1
k (µ

[q+1]
k − µk), (A.2)

where tr(A) represents for the trace of a square matrix A, and the sum
n∑
i=1

τ
[q]
ik (xi−µ

[q+1]
k )(xi−

µ
[q+1]
k )T is denoted as Ak (for k = 1, . . . ,K).
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We now substitute (A.2) into (A.1) to give

n∑

i=1

K∑

k=1

τ
[q]
ik logN (xi;µk,Σk) =− np

2
log(2π) +

1

2

K∑

k=1

{
(−

n∑

i=1

τ
[q]
ik ) log |Σk| − tr(Σ−1

k Ak)
}

− 1

2

K∑

k=1

(

n∑

i=1

τ
[q]
ik )(µ

[q+1]
k − µk)

TΣ−1
k (µ

[q+1]
k − µk). (A.3)

Next, we use the following lemma (with a slightly change) (see Lemma 3.2.2 in Anderson (2003)).

Lemma A.2.1. Let D be a symmetric positive definite matrix of order p, and α a positive real

number. Then the maximum of

f(G) = −α log |G| − tr(G−1D) (A.4)

with respect to symmetric positive definite matrices G exists, occurs at G = (1/α)D, and has

the value f [(1/α)D] = pα logα− α log |D| − pα.
To get the updated estimates of µk and Σk (k = 1, . . . ,K), we apply Lemma A.2.1 with

α =
n∑
i=1

τ
[q]
ik , G = Σk and D = Ak (for each k = 1, . . . ,K), and using the fact that (µ

[q+1]
k −

µk)
TΣ−1

k (µ
[q+1]
k −µk) ≥ 0 and is 0 if and only if µk = µ

[q+1]
k (k = 1, . . . ,K). Then the maximum

of the function (A.3) (with respect to µk and Σk (k = 1, . . . ,K)) occurs at µk = µ
[q+1]
k and

Σk = Σ
[q+1]
k , where Σ

[q+1]
k is determined by (2.21).

A.3 Covariance structure of GMMs in high-dimensional setting

A.3.1 Covariance structure of the expanded parsimonious Gaussian models

Model Name Number of parameters K = 3, p = 50

λkDkAkD
T
k VVV (K − 1) +Kp+Kp(p+ 1)/2 3977

λDkAkD
T
k EVV (K − 1) +Kp+Kp(p+ 1)/2− (K − 1) 3975

λkDkAD
T
k VEV (K − 1) +Kp+Kp(p+ 1)/2− (K − 1)(p− 1) 3879

λDkAD
T
k EEV (K − 1) +Kp+Kp(p+ 1)/2− (K − 1)p 3877

λkDAkD
T VVE (K − 1) +Kp+ p(p+ 1)/2 + (K − 1)p 1527

λDAkD
T EVE (K − 1) +Kp+ p(p+ 1)/2 + (K − 1)(p− 1) 1525

λkDAD
T VEE (K − 1) +Kp+ p(p+ 1)/2 + (K − 1) 1429

λDADT EEE (K − 1) +Kp+ p(p+ 1)/2 1427

λkBk VVI (K − 1) +Kp+Kp 302
λBk EVI (K − 1) +Kp+Kp− (K − 1) 300
λkB VEI (K − 1) +Kp+ p+ (K − 1) 204
λB EEI (K − 1) +Kp+ p 202
λkIp VII (K − 1) +Kp+K 155
λIp EII (K − 1) +Kp+ 1 153

Table A.1: Number of free parameters for parsimonious GMMs with K components and p
variable.
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A.3.2 Covariance structure of the parsimonious Gaussian mixture models

Number of
Λk = Λ ∆k = ∆ ωk = ω ∆k = Ip Covariance structure Covariance Parameters

C C C C Σk = ΛΛT + ωIp [pd− d(d− 1)/2)] + 1
C C U C Σk = ΛΛT + ωkIp [pd− d(d− 1)/2)] +K
U C C C Σk = ΛkΛT

k + ωIp K[pd− d(d− 1)/2)] + 1
U C U C Σk = ΛkΛT

k + ωkIp K[pd− d(d− 1)/2)] +K
C C C U Σk = ΛΛT + ω∆ [pd− d(d− 1)/2)] + p
C C U U Σk = ΛΛT + ωk∆ [pd− d(d− 1)/2)] + [K + (p− 1)]
U C C U Σk = ΛkΛT

k + ω∆ K[pd− d(d− 1)/2)] + p
U C U U Σk = ΛkΛT

k + ω∆k K[pd− d(d− 1)/2)] + [1 +K(p− 1)]
C U C U Σk = ΛΛT + ω∆k [pd− d(d− 1)/2)] + [1 +K(p− 1)]
C U U U Σk = ΛΛT + ωk∆k [pd− d(d− 1)/2)] +Kp
U U C U Σk = ΛkΛT

k + ω∆k K[pd− d(d− 1)/2)] + [1 +K(p− 1)]
U U U U Σk = ΛkΛT

k + ωk∆k K[pd− d(d− 1)/2)] +Kp

Table A.2: The covariance structure, number of covariance parameters for each member of the
EPGMM family McNicholas and Murphy (2010) (C = constrained, U = unconstrained).

A.3.3 Proof of Lemma 2.4.1

Denote x1, . . . ,xd are d eigenvectors associated with λ1, . . . , λd such that xTi xi = 1 for all

i ∈ {1, . . . , d}. Let {y1, . . . ,yp−d} be p − d linearly independent eigenvectors corresponding to

the eigenvalue γ. Note that, for i 6= j then xTi xj = 0, and xTi yj = 0 for all i ∈ {1, . . . , d},
j ∈ {1, . . . , p− d}.

We now construct p − d eigenvectors {ỹ1, . . . , ỹp−d} associated with γ from the system

{y1, . . . ,yp−d} which satisfy ỹTi ỹj = 0 (i 6= j). This can be done by using the Gram-Schmidt

orthonormalization procedure.

ỹ1 = y1; (A.5)

ỹj = yj −
j−1∑

i=1

〈yj , ỹi〉
〈ỹi, ỹi〉

ỹi, for 2 ≤ j ≤ p− d. (A.6)

Hence,

〈ỹ2, ỹ1〉 = 〈y2, ỹ1〉 −
〈y2, ỹ1〉
〈ỹ1, ỹ1〉

〈ỹ1, ỹ1〉

= 〈y2, ỹ1〉 − 〈y2, ỹ1〉 = 0.
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In addition,

Σỹ2 = Σy2 −
〈y2, ỹ1〉
〈ỹ1, ỹ1〉

Σỹ1 = γy2 −
〈y2, ỹ1〉
〈ỹ1, ỹ1〉

γỹ1

= γ(y2 −
〈y2, ỹ1〉
〈ỹ1, ỹ1〉

ỹ1) = γỹ2.

Thus, ỹ2 is an eigenvector associated with γ and 〈ỹ2, ỹ1〉 = 0.

For all l < j, we have

〈ỹj , ỹl〉 =
〈
yj −

j−1∑

i=1

〈yj , ỹi〉
〈ỹi, ỹi〉

ỹi, ỹl

〉

= 〈yj , ỹl〉 −
j−1∑

i=1

〈yj , ỹi〉
〈ỹi, ỹi〉

〈ỹi, ỹl〉.

Since 〈ỹi, ỹl〉 = 0, ∀ i, l < j (i 6= l), then

〈ỹj , ỹl〉 = 〈yj , ỹl〉 −
〈yj , ỹl〉
〈ỹl, ỹl〉

〈ỹl, ỹl〉 = 0.

Moreover,

Σỹj = Σyj −
j−1∑

i=1

〈yj , ỹi〉
〈ỹi, ỹi〉

Σỹi = γyj −
j−1∑

i=1

〈yj , ỹi〉
〈ỹi, ỹi〉

γỹi

= γ(yj −
j−1∑

i=1

〈yj , ỹi〉
〈ỹi, ỹi〉

ỹi) = γỹi.

Therefore, ỹj is an eigenvector associated with γ and 〈ỹi, ỹj〉 = 0, ∀ i < j. Normalized the

system {ỹ1, . . . , ỹp−d}, we obtain p − d eigenvectors {ŷ1, . . . , ŷp−d} corresponded with γ such

that

〈ŷj , ŷj〉 = 1, and 〈ŷj , ŷi〉 = 0,

for all i, j ∈ {1, . . . , p− d} and i 6= j. Now, consider the p× p matrix Q, where

Q = [x1 . . . xd ŷ1 . . . ŷp−d].

It is not hard to prove that Q is an orthogonal matrix and

Σ = QΛQT with Λ = diag(λ1, . . . , λd, γ, . . . , γ︸ ︷︷ ︸
p−d

).
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A.3.4 Covariance complexity of the [akjbkQkdk] family

First, we rewrite Σ as

Σ = QΛQT

= Q[Λ− γIp]QT + γQIpQ
T

= Q[Λ− γIp]QT + γIp

= [QΓ][QΓ]T + γIp, (A.7)

where the p× d matrix Γ is given by

Γ =





√
λ1 − γ 0

. . .

0
√
λd − γ

0





.

Then, the Equation (A.7) has the same formula which is used to construct the covariance

matrices of the MFA in (2.61). Hence, based on the work of Lawley and Maxwell (1962), the

complexity of Σ is d(p− (d+ 1)/2) + d+ 1, where d(p− (d+ 1)/2) and (d+ 1) are the number

of parameters required for the estimation of Q and (λ1, . . . , λd, γ).

A.3.5 Covariance structure of the mixture of high-dimensional GMMs

Model name Number of covariance parameters

[akjbkQkdk]
∑K

k=1 dk[p− (dk + 1)/2] +
∑K

k=1 dk + 2K

[akjbQkdk]
∑K

k=1 dk[p− (dk + 1)/2] +
∑K

k=1 dk + 1 +K

[akbkQkdk]
∑K

k=1 dk[p− (dk + 1)/2] + 3K

[abkQkdk]
∑K

k=1 dk[p− (dk + 1)/2] + 1 + 2K

[akbQkdk]
∑K

k=1 dk[p− (dk + 1)/2] + 1 + 2K

[abQkdk]
∑K

k=1 dk[p− (dk + 1)/2] + 2 +K
[akjbkQkd] Kd[p− (d+ 1)/2] +Kd+K + 1
[ajbkQkd] Kd[p− (d+ 1)/2] + d+K + 1
[akjbQkd] Kd[p− (d+ 1)/2] +Kd+ 2
[ajbQkd] Kd[p− (d+ 1)/2] + d+ 2
[akbkQkd] Kd[p− (d+ 1)/2] + 2K + 1
[abkQkd] Kd[p− (d+ 1)/2] +K + 2
[akbQkd] Kd[p− (d+ 1)/2] +K + 2
[abQkd] Kd[p− (d+ 1)/2] + 3

[ajbQd] d[p− (d+ 1)/2] + d+ 2
[abQd] d[p− (d+ 1)/2] + 3

Table A.3: Nomenclature and number of covariance parameters for the members of the
[akjbkQkdk] family (Bouveyron et al., 2007a).
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A.4 Mathematics materials for Lasso regression

A.4.1 Smallest value of λ to obtain all zero coefficients in Lasso regression

Consider the Lasso problem

arg min
β

{1

2
‖y −Xβ‖22 + λ‖β‖1

}
. (A.8)

We have

1

2
‖y −Xβ‖22 + λ‖β‖1 =

1

2

n∑

i=1

(yi − xTi β)2 + λ‖β‖1

=
1

2

n∑

i=1

y2
i +

1

2

n∑

i=1

(xTi β)2 −
p∑

j=1

〈y,xj〉βj + λ

p∑

j=1

|βj |,

Hence, if λ ≥ max
j
|〈y,xj〉|, then

λ

p∑

j=1

|βj | −
p∑

j=1

〈y,xj〉βj ≥ λ
p∑

j=1

|βj | −
p∑

j=1

|〈y,xj〉||βj |

≥
p∑

j=1

|βj |(λ−max
j
|〈y,xj〉|)

≥ 0.

Therefore, with λ ≥ max
j
|〈y,xj〉|

1

2
‖y −Xβ‖22 + λ‖β‖1 ≥

1

2

n∑

i=1

y2
i .

The equality holds for β = 0.

A.4.2 Proof of the properties of the Lasso solutions

The proof of Lemma 2.4.2 is given in this section.

Assume that Xβ̂ > Xη̂. Consider γ̂ = (β̂ + η̂)/2. Using the fact that the function f(a) =

(y − a)2 is strictly convex, i.e., if a 6= b then f(ta+ (1− t)b) < tf(a) + (1− t)f(b), ∀ t ∈ (0, 1),

we have

1

2
‖y −Xγ̂‖22 =

1

2

∥∥∥y − X(β̂ + η̂)

2

∥∥∥
2

2

<
1
2‖y −Xβ̂‖22 + 1

2‖y −Xη̂‖22
2

· (A.9)
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Asides from this, the function g(a) = λ|a| (λ ≥ 0) is also convex. Thus,

λ‖γ̂‖1 = λ
∥∥∥
β̂ + η̂

2

∥∥∥
1

≤ λ‖β̂‖1 + λ‖η̂‖1
2

· (A.10)

From (A.9) and (A.10), we obtain this inequality

1

2
‖y −Xγ̂‖22 + λ‖γ̂‖1 <

1
2‖y −Xβ̂‖22 + 1

2‖y −Xη̂‖22
2

+
λ‖β̂‖1 + λ‖η̂‖1

2

<
1
2‖y −Xβ̂‖22 + λ‖β̂‖1

2
+

1
2‖y −Xη̂‖22 + λ‖η̂‖1

2

< c∗. (A.11)

This contradicts with the assumption that β̂, η̂ are two solutions with optimal value c∗. Hence,

Xβ̂ = Xη̂.

The last property is apparent.
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Appendix B

Monotonicity of the penalized

log-likelihood for Gaussian MoE

The proposed EMM algorithm maximizes the penalised log-likelihood function (4.5). To show

that the penalized log-likelihood is monotonically improved, that is

PL(θ[q+1]) ≥ PL(θ[q]), (B.1)

we need to show that

Q(θ[q+1],θ[q]) ≥ Q(θ[q],θ[q]). (B.2)

Indeed, as in the standard EM algorithm algorithm for the non-penalised maximum likelihood

estimation, by applying Bayes theorem we have

PL(θ) = PLc(θ)− log p(z|D;θ), (B.3)

and by taking the conditional expectation with respect to the latent variables z, given the

observed data D and the current parameter estimation θ[q], the conditional expectation of the

penalised completed-data log-likelhood is given by:

E

[
PL(θ)|D,θ[q]

]
= E

[
PLc(θ)|D,θ[q]

]
− E

[
log p(z|D;θ)|D,θ[q]

]
. (B.4)

Since the penalised log-likelihood function PL(θ) does not depend on the variables z, its expec-

tation with respect to z therefore still unchanged and we get the following relation:

PL(θ) = E

[
PLc(θ)|D,θ[q]

]

︸ ︷︷ ︸
Q(θ,θ[q])

−E

[
log p

(
z|D;θ

)
|D,θ[q]

]

︸ ︷︷ ︸
H(θ,θ[q])

. (B.5)

Thus, the value of change of the penalised log-likelihood function between two successive itera-
tions is given by:

PL(θ[q+1])− PL(θ[q]) =
“

Q(θ[q+1]
, θ

[q])−Q(θ[q]
, θ

[q])
”

−

“

H(θ[q+1]
, θ

[q])−H(θ[q]
, θ

[q])
”

. (B.6)
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As in the standard EM algorithm, it can be easily shown, by using Jensen’ inequality, that the

second term H(θ[q+1],θ[q]) −H(θ[q],θ[q]) in the r.h.s of (B.6) is negative and we therefore just

need to show that the first term Q(θ[q+1],θ[q])−Q(θ[q],θ[q]) is positive.

In the following, we show that Q(θ[q+1],θ[q]) ≥ Q(θ[q],θ[q]). First, the Q-function is decom-

posed as

Q(θ;θ[q]) = Q(w;θ[q]) +Q({βk, σ2
k};θ[q]) (B.7)

and is accordingly maximized separately with respect to w, {βk} and {σ2
k}.

To update w, first we use a univariate MM algirthm to iteratively maximize the minorizing

function which satisfies

Q(w;θ[q]) ≥ G(w|w[q]),∀w (B.8)

and

Q(w[q];θ[q]) = G(w[q]|w[q]). (B.9)

In our situation, the minorizing function is concave and has a separate structure. We thus

use a one-dimensional Newton Raphson algorithm to maximize it. Thus, the solution w[q+1]

guarantees

G(w[q+1]|w[q]) ≥ G(w[q]|w[q]) (B.10)

and hence we have

Q(w[q+1];θ[q]) ≥ G(w[q+1]|w[q]) ≥ G(w[q]|w[q]) = Q(w[q];θ[q]). (B.11)

Hence, the MM algorithm leads to the improvement of the value of the Q(w;θ[q]) function.

For the second version of the EM algorithm which uses the coordinate ascent algorithm to

update w, we rely on the work of Tseng (1988) and Tseng (2001), where it is proved that, if

the nonsmooth part of Q(w;θ[q]) has a separate structure, the coordinate ascent algorithm is

successful in finding the w[q+1] = arg max
w

Q(w;θ[q]). At each step of the coordinate ascent

algorithm, within the M-step of the EM algorithm, we iteratively update the jth component,

while fixing the other parameters to their previous values:

w
[q,s+1]
kj = arg max

wkj

Q(wkj ;θ
[q,s]), (B.12)

s being the current iteration of the coordinate ascent algorithm. The function Q(wkj ;θ
[q]) is

concave, and the used iterative procedure to find w
[q+1]
kj is the Newton Raphson algorithm.

Hence, the coordinate ascent leads to the improvement of the function Q(w;θ[q]), that is

Q(w[q+1];θ[q]) ≥ Q(w[q];θ[q]). (B.13)

For the proximal Newton-type method, we based on the works of Lee et al. (2014) and Lee

et al. (2006) to show that the value of Q(w;θ[q]) is always increase after each loop. Specially,

the proximal Newton-type method which uses a constant matrix B to approximate the Hessian

matrix is proofed to be a special case of the MM algorithm (see (Lange, 2013, Sec. 8.7) and

Gormley et al. (2008)). Hence, it always improve the values of Q(w;θ[q]). For more details see

Appendix C.1.
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APPENDIX B. MONOTONICITY OF THE PENALIZED LOG-LIKELIHOOD FOR
GAUSSIAN MOE

Finally, the updates of the experts’ parameters {β} and {σ2} are performed by separate

maximizations of Q(β, σ2;θ[q]). This function is concave and has the quadratic form. Hence,

the coordinate ascent algorithm with soft-thresholding operator is successful to provide the

updates

β[q+1] = arg max
β

Q(β, σ[q];θ[q]), (B.14)

and

σ[q+1] = arg max
σ

Q(β[q+1], σ;θ[q]) (B.15)

and thus we have

Q(β[q+1];θ[q]) ≥ Q(β;θ[q]) ≥ Q(β[q];θ[q]), (B.16)

and

Q(σ[q+1];θ[q]) ≥ Q(σ;θ[q]) ≥ Q(σ[q];θ[q]). (B.17)

Equations (B.11), (B.13), (B.16), and (B.17) and the increasing property of the proximal

Newton-type methods show that (B.2) holds; hence, the penalised log-likelihood in monotoni-

cally increased by the proposed algorithms.

143





Appendix C

Proximal Newton-type methods

C.1 Proximal Newton-type methods

Assume that we want to solve an optimization problem given by

min
x∈Rn

f(x) = g(x) + h(x), (C.1)

with a composite function f(x) where g is a convex, continuously differentiable loss function,

and h is a convex but non differentiable penalty function. Such problems include the Lasso,

elastic net, etc. Proximal Newton-type methods approximate only the smooth part g with a

local quadratic function of the form:

f̂k(x) = g(xk) + ▽g(xk)
T (x− xk) +

1

2
(x− xk)THk(x− xk) + h(x), (C.2)

where ▽g(xk) is the gradient vector of g at xk and Hk is an approximation to the Hessian

matrix ▽2g(xk). If we choose Hk = ▽2g(xk), we obtain the proximal Newton method. In this

method, one uses an iterative algorithm with initial value x0 and in which at step k minimizes

the proximal function f̂k(x) instead of f and then searches for the next value xk+1 based on

the solution of (C.2) that will improve the value of f , i.e., f(xk+1) < f(xk) by using a back

tracking line search until the algorithm converges. Lee et al. (2014) and Lee et al. (2006) studied

convergence properties of proximal Newton methods. A generic proximal Newton-type method

can be listed as in Algorithm 4 (see Lee et al. (2014)).

C.2 Partial quadratic approximation for the gating network

The Q(w;θ[q]) function in (3.9) is given as following

Q(w;θ[q]) = I(w)−
K−1∑

k=1

γk‖wk‖1,

where the concave, continuously differentiable function I(w) is

I(w) =

n∑

i=1

K−1∑

k=1

τ
[q]
ik (wk0 + xTi wk)−

n∑

i=1

log
[
1 +

K−1∑

k=1

ewk0+xT
i wk

]
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C.3. QUADRATIC APPROXIMATION FOR THE EXPERTS NETWORK

Algorithm 4 A generic proximal Newton-type procedure

1: Starting point x0 ∈ domf .
2: repeat
3: Choose Hk, a positive definite approximation to the Hessian.
4: Solve the subproblem for a search direction:

△xk ← arg min
d

▽g(xk)
Td+

1

2
dTHkd+ h(xk + d).

5: Select tk with a backtracking line search.
6: Update: xk+1 ← xk + tk△xk.
7: until a stopping condition is satisfied.

By taking the first and second derivatives of I(w) with respect to (wk0,wk)

∂I(w)

∂wkj
=

n∑

i=1

(τ
[q]
ik − πk(xi;w))xij , (C.3)

∂2I(w)

∂wkj∂wkh
= −

n∑

i=1

xijxihπk(xi;w)(1− πk(xi;w)), (C.4)

for j, h ∈ {0, 1, . . . , p} with xi0 = 1, then the partial quadratic approximation to I(w) with

respect to (wk0,wk) at (w̃k0, w̃k) is given by

lIk(wk0,wk) = −1

2

n∑

i=1

dik(cik − wk0 − xTi wk)
2 + C(w̃), (C.5)

and

cik = w̃k0 + xTi w̃k +
τ

[q]
ik − πk(w̃;xi)

πk(w̃;xi)(1− πk(w̃;xi))
, (C.6)

dik = πk(w̃;xi)(1− πk(w̃;xi)), (C.7)

C(w̃) is a function of w̃.

C.3 Quadratic approximation for the experts network

C.3.1 Quadratic approximation for the Poisson outputs

In this part, the quadratic approximation for the function Qk({βk0,βk};θ[q]) of the Poisson

model in (4.12) is constructed using Taylor expansion. This function is given by

Qk({βk0,βk};θ[q]) = Pk({βk0,βk};θ[q])− λk‖βk‖1, (C.8)
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APPENDIX C. PROXIMAL NEWTON-TYPE METHODS

where Pk({βk0,βk};θ[q]) is a concave, continuously differentiable function and

Pk({βk0,βk};θ[q]) =

n∑

i=1

τ
[q]
ik

[
− exp(βk0 + xTi βk) + yi(βk0 + xTi βk)− log(yi!)

]
. (C.9)

The first and second derivatives of Pk({βk0,βk};θ[q]) with respect to (βk0,βk) can easily ob-

tained. It is not hard to show that

∂Pk
∂βkj

=

n∑

i=1

τ
[q]
ik

[
yixij − xij exp(βk0 + xTi βk)

]
;

∂2Pk
∂βkj∂βkh

= −
n∑

i=1

τ
[q]
ik xijxih exp(βk0 + xTi βk);

for j, h ∈ {0, . . . , p} and xi0 = 1.

Thus the quadratic approximation of Pk({βk0,βk};θ[q]) at (β̃k0, β̃k) is given as following

P̃k({βk0,βk};θ[q]) = −1

2

n∑

i=1

aik(bik − βk0 − xTi βk)
2 +D(β̃k0, β̃k), (C.10)

with

aik = τ
[q]
ik exp(β̃k0 + xTi β̃k);

bik =
yi

exp(β̃k0 + xTi β̃k)
− 1 + β̃k0 + xTi β̃k;

and D(β̃k0, β̃k) is a function of (β̃k0, β̃k).

C.3.2 Partial quadratic approximation for the Multinomial outputs

Finally, we construct the quadratic approximation for the function Qk(βk;θ
[q]) in (4.12), where

as before

Qk(βk;θ
[q]) = I(βk)−

R−1∑

r=1

λkr‖βkr‖1, (C.11)

I(βk) is a concave, continuously differentiable function and

I(βk) =

n∑

i=1

τ
[q]
ik

[R−1∑

r=1

uir(βkr0 + xTi βkr)− log
(
1 +

R−1∑

r=1

exp(βkr0 + xTi βkr)
)]
. (C.12)

The first and second derivatives of I(βk) with respect to (βkr0,βkr) are

∂I(βk)

∂βkrj
=

n∑

i=1

τ
[q]
ik xij(uir − αkr(βk;xi)), (C.13)

∂2I(βk)

∂βkrj∂βkrh
= −

n∑

i=1

τ
[q]
ik xijxihαkr(βk;xi)(1− αkr(βk;xi)), (C.14)
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for j, h ∈ {0, 1, . . . , p} and xi0 = 1. Hence, the partial quadratic approximation Ĩr(βk) of I(βk)

with respect to (βkr0,βkr) at β̃k can be described as following

Ĩr(βk) = −1

2

n∑

i=1

τ
[q]
ik dikr(cikr − βkr0 − xTi βkr)

2 + E(β̃k), (C.15)

with

cikr = β̃kr0 + xTi β̃kr +
uir − αkr(β̃k;xi)

αkr(β̃k;xi)(1− αkr(β̃k;xi))
, (C.16)

dikr = αkr(β̃k;xi)(1− αkr(β̃k;xi)), (C.17)

E(β̃k) is a function of β̃k.
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List of Publications and

Communications

Journal papers

• Chamroukhi, F. and Huynh, B.-T. (2019). Regularized maximum likelihood estimation

and feature selection in mixtures-of-experts models. Journal de la SFdS, 160(1) : 57− 85.

• Huynh, B. T. and Chamroukhi, F. (2019). Estimation and feature selection in mixtures

of generalized linear experts models. arXiv preprint arXiv:1907.06994, (Submitted).

Conference papers and presentations

• Huynh, B. T. and Chamroukhi, F. (2018). Regularised maximum-likelihood inference of

mixture of experts for regression and clustering. In 26th European Symposium on Artificial

Neural Networks Bruges, Belgium, April 25-26-27 (ESANN), pages 473− 478.

• Chamroukhi, F. and Huynh, B. T. (2018). Regularized maximum-likelihood estimation

and feature selection in mixtures-of-experts models. In 50e Journées de Statistique de la

SFdS, Paris-Saclay, 28 mai - 1er juin, 2018.

• Chamroukhi, F. and Huynh, B. T. (2018). Regularized maximum-likelihood estimation of

mixture-of-experts for regression and clustering. In 2018 International Joint Conference

on Neural Networks (IJCNN), pages 1− 8. IEEE.

• Huynh, B. T. and Chamroukhi, F. (2018). Regularized maximum-likelihood estimation

and feature selection in mixtures-of-experts models. In The 9th Vietnam Mathematical

Congress, Nha Trang, 14 - 18 August, 2018.

Scientific talks

• Huynh, B.T. (Febuary, 2017). Statistical learning in large-scale scenarios: A state of the

art. Talk at LMNO Lab.

• Huynh, B. T. (June, 2018). Regularised Maximum Likelihood Estimation of Mixtures-of-

Experts. Talk at S4D 2018 Research Summer School.
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• Huynh, B.T. (May, 2019). Estimation and feature selection in mixtures of generalized

linear experts models. Talk at LMNO Lab.

Software

• R package of open-source codes available at https://github.com/fchamroukhi/prEMME:

- RMoE: regularized MoE with Gaussian outputs;

- PoissonRMoE: regularized MoE with Poisson outputs;

- LogisticRMoE: regularized MoE with multinomial outputs.
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Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models (Springer Series

in Statistics). Springer Verlag, New York.
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Résumé long en français

Résumé court

L’analyse statistique de données hétérogènes de grande dimension pose cer-

taines difficultés, tant du point de vue de la modélisation que du point de

vue de l’estimation, en particulier dans le contexte actuel lié au phénomène

des données massives. Cela suggère de nouvelles stratégies, en partic-

ulier pour les analyses avancées allant de l’estimation de densité à la

prédiction, en passant par la classification non supervisée, de telles sit-

uations de données à distributions complexes. Les modèles de mélange se

sont affirmés comme l’approche de choix dans la modélisation de données

hétérogènes, dans de nombreux problèmes de l’approche statistique de la

science des données, y compris en estimation de densité et en classification,

et leur élégante extension des mélanges d’experts (MoE), renforce le lien

avec l’apprentissage supervisé et traitent donc en outre de la prédiction à

partir de données hétérogènes de type régression, ainsi que de la classifica-

tion, supervisée ou non. Dans un scénario à grande dimension, en partic-

ulier pour les données provenant d’une population hétérogène, l’utilisation

de tels modèles de mélanges d’experts suggère de répondre à des questions

de modélisation et d’estimation, car les méthodes d’estimation de l’état de

l’art sont limitées.

Cette thèse traite de la modélisation et de l’estimation de modèles

de mélanges d’experts de grande dimension, en vue d’efficaces estima-
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tion de densité, prédiction et classification de telles données complexes

car hétérogènes et de grande dimension. Nous proposons de nouvelles

stratégies basées sur l’estimation par maximum de vraisemblance régularisé

des modèles pour pallier aux limites des méthodes standards, y compris

l’EMV avec les algorithmes d’espérance-maximisation (EM), et pour ef-

fectuer simultanément la sélection des variables pertinentes afin d’encourager

des solutions parcimonieuses dans un contexte à grande dimension. Nous

introduisons d’abord une méthode d’estimation régularisée des paramètres

et de sélection de variables d’un mélange d’experts, basée sur des régularisations

ℓ1 (lasso) et le cadre de l’algorithme EM, pour la régression et la clas-

sification adaptés aux contextes de la grande dimension. Ensuite, nous

étendons la stratégie à un mélange régularisé de modèles d’experts pour

les données discrètes, y compris pour la classification. Nous développons

des algorithmes efficaces pour maximiser la fonction de log-vraisemblance

ℓ1-pénalisée des données observées. Nos stratégies proposées jouissent de la

maximisation monotone efficace du critère optimisé, et contrairement aux

approches précédentes, ne s’appuient pas sur des approximations des fonc-

tions de pénalité, évitent l’inversion de matrices et exploitent l’efficacité de

l’algorithme de montée de coordonnées, particulièrement dans l’approche

proximale par montée de coordonnées.

Mots-clés Modèles de mélange; Mélange d’experts; Estimation régularisée;

Sélection de variables; Lasso; Régularisation; Parcimonie; Algorithme EM;

Algorithme MM; Proximal-Newton; Montée de coordonnées; Clustering;

Classification; Régression; Prédiction.
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Contexte scientifique

De nos jours, des données massives sont recueillies et exploitées dans

presque tous les domaines de la science, de la technologie, et de l’industrie.

Cela concerne de très nombreux objectifs allant de l’optimisation de la per-

formance en entreprise à partir d’indicateurs métier et de données client,

jusqu’à la médecine personnalisée, en passant par l’exploration et la visu-

alisation optimisée de données hétérogènes de grande dimension, ou encore

le développement de systèmes d’intelligence artificielle comme en recherche

d’information ou en robotique.

Très souvent, ces masses de données sont hétérogènes, de grande dimen-

sion, non étiquetées, incomplètes, etc. Une telle complexité des données

pose de nouveaux défis quant à leur traitement et leur analyse. Les analy-

ses peuvent concerner la prédiction de données futures à partir de connais-

sances antérieures de celles-ci, via des méthodes d’apprentissage supervisé.

Elles peuvent également être dans un but exploratoire afin de résumer les

principales informations contenues dans un échantillon, révéler des infor-

mations utiles cachées, comme des groupes ou une hiérarchie de groupes

de caractéristiques communes, à travers des méthodes d’apprentissage non-

supervisé, comme des techniques optimisées de classification. Les analy-

ses couvrent également l’identification de variables redondantes et/ou les

plus pertinentes à la représentation des données, par des méthodologies de

sélection de variables.

De tels défis imposent de nouvelles stratégies de modélisation, d’estimation

et de sélection, et l’optimisation des algorithmes d’inférence et de sélection

associés. Les principales méthodes réputées reposent soit sur des ystèmes

d’apprentissage automatique de données tels que les réseaux neuronaux

(Bishop, 1995), les machines à vecteurs de support (Vapnik, 1998), les
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machines à noyaux (Scholkopf and Smola, 2001), et aussi les méthode

d’apprentissage statistique de modèles génératifs (Friedman et al., 2001),

en particulier les modèles à variables latentes.

L’analyse statistique des données qui suppose que celles-ci sont des

réalisations de variables aléatoires dont il s’agira de déterminer les dis-

tributions les plus adaptées aux données observées, est tient ainsi compte

de la partie aléatoire des données et mesure l’incertitude, fournit un cadre

agréable pour l’estimation de densité, la prédiction et l’apprentissage non

supervisé, y compris en clustering. Parmi les modèles statistiques on

distingue les modèles de mélange de densités (Titterington et al., 1985;

McLachlan and Peel., 2000) qui représentent le moyen commode pour

l’analyse de données hétérogènes en statistique et en apprentissage ma-

chine, dans différents domaines d’application allant de la bioinformatique,

à l’économie. Grâce à leur flexibilité, les modèles de mélange peuvent

être utilisés pour l’estimation de densités et la classification de données

provenant de populations hétérogènes complexes. Ils sont également utilisés

pour effectuer des analyses de prédiction, y compris des analyses de régression,

par le biais des mélanges d’experts Jacobs et al. (1991); Jordan and Ja-

cobs (1994), l’une de leur extensions les plus flexibles. La question fi-

nale d’analyse sur la base de tels modèles, passe d’abord par l’ajustement

de ces modèles aux données observées, c’est la question de l’estimation.

L’estimation par maximum de vraisemblance (EMV) (Fisher, 1912) avec

les algorithmes EM (Dempster et al., 1977; McLachlan and Krishnan, 2008)

est le moyen courant d’estimer les paramètres des modèles de mélange et

des modèles de mélange d’experts. Toutefois, l’application directe de ces

méthodes à des ensembles de données de grande dimension présente cer-

tains inconvénients. Par exemple, il devient difficile d’estimer la matrice

de covariance dans les modèles de mélange gaussiens avec un grand nom-
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bre de variables, et c’est encore plus difficile dans un scénario à grande

dimension. Cela devient en effet plus limitant avec l’algorithme EM dont

le calcul de l’étape E nécessite l’inversion des matrices de covariance. Le

même problème se pose lors de l’application de l’algorithme de Newton-

Raphson (Boyd and Vandenberghe, 2004) dans l’étape M de l’algorithme

EM, pour notamment les mélanges d’experts.

Dans un contexte de grande dimension, les variables peuvent être corrélées,

et celles réellement nécessaires à l’analyse car intrinsèques au problème

étudié, résident très souvent dans un espace de dimension réduite. Il est

donc nécessaire de procéder à une estimation adaptée et de sélectionner

le sous-ensemble des variables pertinentes qui représentent aux mieux les

données. Le Lasso, ou régression linéaire ℓ1-régularisée, introduite par

Tibshirani (1996), est une méthode efficace en analyse statistique classique

comme la régression sur données homogènes. Le Lasso présente l’avantage

d’encourager des solutions parcimonieuses, n’ayant que quelques variables

non nulles et la convexité du problème d’optimisation qui lui est associé

simplifie le calcul algorithmique. Les méthodes dérivées dans cette thèse,

s’appuie sur ce type de régularisation.

Méthodologie et objectifs

Dans cette thèse, nous nous concentrons sur les mélanges d’experts (MoE) y

compris pour les modèles linéaires généralisés. Les mélanges d’experts vont

au delà de l’estimation de densité et de la classification de données vecto-

rielles, et fournissent un cadre adapté à l’estimation de densité, la classifica-

tion automatique et la prédiction de données liées de type régression, ainsi

que pour la classification supervisée de données hétérogènes (Jacobs et al.,

1991; Yuksel et al., 2012; Jiang and Tanner, 1999a,b; Grün and Leisch,

2007). Les mélanges d’experts sont utilisés dans plusieurs applications
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telles que: prédiction de la demande quotidienne d’électricité (Weigend

et al., 1995), généralisation des modèles autorégressifs pour les séries tem-

porelles (Zeevi et al., 1997; Wong and Li, 2001), reconnaissance de chiffres

manuscrits (Hinton et al., 1995), segmentation et classification de séries

temporelles avec changements de régime (Chamroukhi et al., 2009b; Samé

et al., 2011; Chamroukhi and Nguyen, 2018), reconnaissance d’activités hu-

maines (Chamroukhi et al., 2013), etc. Malheureusement, la modélisation

à l’aide des modèles de mélanges d’experts dans le cas des prédicteurs de

grande dimension reste encore limitée. Nos objectifs ici sont donc d’étudier

l’estimation et la sélection des variables dans des modèles de mélanges

d’experts de grande dimension, et de:

i) proposer de nouvelles stratégies d’estimation et de sélection de vari-

ables pour surmonter ces limites. Pour y parvenir, nous souhaitons

introduire une nouvelle estimation régularisée et une sélection de vari-

ables dans le cadre de mélanges d’experts pour les modèles linéaires

généralisés, basées sur des pénalités de type Lasso. Nous les étudions

pour différentes familles d’experts, y compris le mélanges d’experts

avec des distributions d’experts gaussiennes, de Poisson et logistiques.

ii) ] développer des algorithmes efficaces pour estimer les paramètres de

ces modèles régularisés. Les algorithmes développés effectuent simul-

tanément l’estimation et la sélection de variables et devraient avoir

la capacité d’encourager la parcimonie, et traiter certaines questions

typiques du problème de grande dimension, en évitant l’inversion de

matrice, de sorte qu’ils fonctionnent assez bien dans des situations de

grande dimension.

Dans la section suivante, nous résumons les contributions de la thèse.
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Contributions de la thèse

Le manuscrit est organisé comme suit.

Contribution du Chapitre 1

Le chapitre 2 est consacré à l’état de l’art. Le chapitre 3 présente notre

première contribution à l’estimation et à la sélection de variables des modèles

de mélanges d’experts, pour des données continues. Ensuite, le chapitre

4, présente notre deuxième contribution. Il porte sur l’estimation et la

sélection des variables des modèles de mélanges d’experts, pour les données

discrètes. Enfin, dans le chapitre 5, nous discutons de notre recherche,

tirons des conclusions et soulignons quelques potentielles pistes pour l’avenir.

Les détails techniques relatifs aux développements mathématiques de nos

contributions sont fournis dans les annexes A, B et C.

Contribution du Chapitre 2

Plus précisément, tout d’abord, dans le chapitre 2, nous présentons une

revue substantielle des modèles et algorithmes liés aux sujets scientifiques

traités dans la thèse. Nous nous concentrons d’abord sur le cadre général

des modèles de mélanges, en tant que choix approprié pour la modélisation

de l’hétérogénéité des données. Nous décrivons les aspects de modélisation

statistique et les stratégies d’estimation associées, ainsi que les techniques

de sélection de modèles, en accordant une attention particulière à l’EMV

via l’algorithme EM. Ensuite, nous revisitons ce contexte de modélisation

par mélange de densités, dans le cadre de problèmes de régression sur des

données hétérogènes, et présentons son extension au cadre des modèles

de mélanges d’experts. Dans l’étape suivante, nous examinons ces modèles

dans un contexte de grande dimension, y compris le cas d’experts gaussiens,
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et décrivons les trois stratégies principales pour pallier au problème de la

malédiction de la dimension, c’est-à-dire l’approche de réduction de di-

mension, celle de décomposition spectrale des matrices de covariance du

modèle, et celle de sélection des variables par régularisation Lasso. Nous

optons pour cette dernière stratégie de régularisation et la présentons dans

le cas du mélange de modèles de régressions et du mélange d’experts. Nous

passons en revue l’estimation et la sélection de variables par maximum de

vraisemblance régularisé pour ces modèles au moyen d’algorithmes EM

adaptés.

Contribution du Chapitre 3

Puis, dans le chapitre 3, nous introduisons une nouvelle approche pour

l’estimation et la sélection de variables de mélanges d’experts pour la

régression avec des prédicteurs potentiellement de grande dimension, et une

population hétérogène. L’approche effectue simultanément l’estimation des

paramètres, la sélection des variables, le clustering et la régression sur des

données de régression hétérogènes. Il s’agit d’une approche de maximum de

vraisemblance régularisé avec une régularisation dédiée qui, d’une part, en-

courage la parcimonie grâce à une partie de régularisation de type Lasso,

et d’autre part, un calcul facilité grâce à la convexité de la pénalité ℓ1.

Nous proposons un cadre hybride efficace d’espérance-maximisation (EM)

pour résoudre efficacement le problème d’optimisation qui en résulte, et qui

maximise de façon monotone la log-vraisemblance régularisée. Il en résulte

trois algorithmes hybrides pour maximiser la fonction objective proposée,

i.e un algorithme de Majorisation-Maximisation (MM), une montée de co-

ordonnées, et une procédure de type Newton proximal. Nous montrons

que l’approche proposée ne nécessite pas d’approximation du terme de

régularisation, et les trois algorithmes hybrides développés permettent de
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sélectionner automatiquement des solutions parcimonieuses sans approxi-

mation sur les fonctions de pénalisation. Nous nous appuyons sur un critère

de type BIC pour réaliser la tâche de sélection du modèle, y compris la

sélection du nombre de composantes du mélange et les hyper-paramètres

de régularisation. Une expérimentation est alors menée pour comparer

l’approche proposée aux principales méthodes concurrentes en la matière.

L’évaluation vise à évaluer la performance de l’approche en termes de clas-

sification, d’estimation de densité, de régression des données hétérogènes

et de parcimonie des modèles de mélanges d’experts. Des expériences ap-

profondies, tant sur des simulations que sur des données réelles, montrent

que l’approche proposée surpasse ses concurrents et qu’elle est très encour-

ageante pour s’attaquer au problème de la grande dimension. Ce chapitre

a principalement mené à la publication de l’article de journal (Chamroukhi

and Huynh, 2019) et à des articles de conférences.

Contribution du Chapitre 4

Ensuite, au chapitre 4, nous examinons une autre famille de modèles de

mélanges d’experts, celle pour des données discrètes, y compris le mélange

d’experts pour des données de comptage et le le mélange d’experts pour la

classification, et présentons notre deuxième contribution principale. Nous

présentons une nouvelle stratégie régularisée d’EMV pour l’estimation et la

sélection de variables de mélanges spécifiques de modèles linéaires d’experts

généralisés dans un environnement de grande dimension. Nous développons

un algorithme EM efficace, qui s’appuie sur une approximation proxi-

male de Newton, pour maximiser de façon monotone le critère de log-

vraisemblance pénalisée proposé. La stratégie présentée effectue simul-

tanément l’estimation des paramètres, la sélection des variables et la clas-

sification des données discrètes hétérogènes. Un avantage de la stratégie
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de type Newton proximal introduite consiste dans le fait qu’il suffit de

résoudre des problèmes de Lasso quadratique pondéré pour mettre à jour

les paramètres. Des outils efficaces tels que l’algorithme de montée des

coordonnées peuvent être utilisés pour résoudre ces problèmes. L’approche

proposée ne nécessite pas non plus d’approximation du terme de régularisation

et permet de sélectionner automatiquement des solutions parcimonieuses

sans seuillage. Notre approche s’est avérée performante, y compris dans

un environnement à grande dimension, et surpasse les modèles récents

régularisés du mélange d’experts sur plusieurs expériences portant sur des

données simulées et réelles. La principale publication liée à ce chapitre est

Huynh and Chamroukhi (2019) ainsi que d’autres communications.

Contribution du Chapitre 5

Enfin, dans le chapitre 5, nous discutons de notre recherche développée,

tirons quelques conclusions et ouvrons quelques orientations futures. Les

résultats sous formes de publications de recherche de la thèse, y compris

les codes sources libres R, sont présentés dans la liste des publications et

communications à la fin du manuscrit.
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Estimation et sélection de variables dans les modèles de mélange d’experts

de grande dimension

Résumé: Cette thèse traite de la modélisation et de l’estimation de modèles de mélanges d’experts de

grande dimension, en vue d’efficaces estimation de densité, prédiction et classification de telles données

complexes car hétérogènes et de grande dimension. Nous proposons de nouvelles stratégies basées sur

l’estimation par maximum de vraisemblance régularisé des modèles pour pallier aux limites des méthodes

standards, y compris l’EMV avec les algorithmes d’espérance-maximisation (EM), et pour effectuer si-

multanément la sélection des variables pertinentes afin d’encourager des solutions parcimonieuses dans

un contexte haute dimension. Nous introduisons d’abord une méthode d’estimation régularisée des

paramètres et de sélection de variables d’un mélange d’experts, basée sur des régularisations ℓ1 (lasso) et

le cadre de l’algorithme EM, pour la régression et la classification adaptés aux contextes de la grande di-

mension. Ensuite, nous étendons la stratégie un mélange régularisé de modèles d’experts pour les données

discrètes, y compris pour la classification. Nous développons des algorithmes efficaces pour maximiser

la fonction de log-vraisemblance ℓ1-pénalisée des données observées. Nos stratégies proposées jouissent

de la maximisation monotone efficace du critère optimisé, et contrairement aux approches précédentes,

ne s’appuient pas sur des approximations des fonctions de pénalité, évitent l’inversion de matrices et ex-

ploitent l’efficacité de l’algorithme de montée de coordonnées, particulièrement dans l’approche proximale

par montée de coordonnées.

Mots-clés: Modèles de mélange; Mélange d’experts; Estimation régularisée; Sélection de variables;

Lasso; Régularisation; Parcimonie; Algorithme EM; Algorithme MM; Proximal-Newton; Montée de co-

ordonnées; Clustering; Classification; Régression; Prédiction.

***

Estimation and Feature Selection in High-Dimensional Mixtures-of-Experts Models

Abstract: This thesis deals with the problem of modeling and estimation of high-dimensional MoE

models, towards effective density estimation, prediction and clustering of such heterogeneous and high-

dimensional data. We propose new strategies based on regularized maximum-likelihood estimation

(MLE) of MoE models to overcome the limitations of standard methods, including MLE estimation

with Expectation-Maximization (EM) algorithms, and to simultaneously perform feature selection so

that sparse models are encouraged in such a high-dimensional setting. We first introduce a mixture-

of-experts’ parameter estimation and variable selection methodology, based on ℓ1 (lasso) regularizations

and the EM framework, for regression and clustering suited to high-dimensional contexts. Then, we

extend the method to regularized mixture of experts models for discrete data, including classification.

We develop efficient algorithms to maximize the proposed ℓ1-penalized observed-data log-likelihood func-

tion. Our proposed strategies enjoy the efficient monotone maximization of the optimized criterion, and

unlike previous approaches, they do not rely on approximations on the penalty functions, avoid matrix

inversion, and exploit the efficiency of the coordinate ascent algorithm, particularly within the proximal

Newton-based approach.

Keywords: Mixture models; Mixture of Experts; Regularized Estimation; Feature Selection; Lasso;

ℓ1-regularization; Sparsity; EM algorithm; MM Algorithm; Proximal-Newton; Coordinate Ascent; Clus-

tering; Classification; Regression; Prediction.


	Introduction
	Scientific context
	Contributions of the thesis

	State of the art
	Introduction
	Finite mixture models
	Maximum likelihood estimation for FMMs via EM algorithm
	Gaussian mixture models
	Determining the number of components

	Mixture models for regression data
	Mixture of linear regression models
	MLE via the EM algorithm
	Mixtures of experts
	Mixture of generalized linear models
	Clustering with FMMs

	Clustering and classification in high-dimensional setting
	Classical methods
	Subspace clustering methods
	Variable selection for clustering
	Lasso regularization towards the mixture approach

	Regularized mixtures of regression models
	Regularized mixture of regression models
	Regularized mixture of experts models

	Conclusion

	Regularized estimation and feature selection in mixture of experts for regression and clustering
	Introduction
	Mixture of experts model for continuous data
	The model
	Maximum likelihood parameter estimation

	Regularized maximum likelihood parameter estimation of the MoE
	Parameter estimation and feature selection with a dedicated block-wise EM
	E-step
	M-step
	Algorithm tuning and model selection

	Experimental study
	Evaluation criteria
	Simulation study
	Lasso paths for the regularized MoE parameters
	Evaluation of the model selection via BIC
	Applications to real data sets
	CPU times and discussion for the high-dimensional setting

	Conclusion and future work

	Regularized mixtures of experts models for discrete data
	Introduction
	Mixture of experts and maximum likelihood estimation for discrete data
	The mixture of experts model for discrete data
	Maximum likelihood parameter estimation

	Regularized maximum likelihood estimation
	Parameter estimation and feature selection via a proximal Newton-EM
	Proximal Newton-type procedure for updating the gating network
	Proximal Newton-type procedure for updating the experts network
	Algorithm tuning and model selection

	Experimental study
	Evaluation criteria
	Simulation study
	Lasso paths for the regularized MoE parameters
	Applications to real data sets

	Discussion for the high-dimensional setting
	Conclusion and future work

	Conclusions and future directions
	Conclusions
	Future directions

	Appendix Mathematics materials for State of the art
	Monotonicity of the EM algorithm 
	Updated formulas for the convariance matrices of GMMs
	Covariance structure of GMMs in high-dimensional setting
	Covariance structure of the expanded parsimonious Gaussian models
	Covariance structure of the parsimonious Gaussian mixture models
	Proof of Lemma 2.4.1
	Covariance complexity of the [akjbkQkdk] family
	Covariance structure of the mixture of high-dimensional GMMs

	Mathematics materials for Lasso regression
	Smallest value of  to obtain all zero coefficients in Lasso regression
	Proof of the properties of the Lasso solutions


	Appendix Monotonicity of the penalized log-likelihood for Gaussian MoE
	Appendix Proximal Newton-type methods
	Proximal Newton-type methods
	Partial quadratic approximation for the gating network
	Quadratic approximation for the experts network
	Quadratic approximation for the Poisson outputs
	Partial quadratic approximation for the Multinomial outputs


	List of Publications and Communications
	List of Figures
	List of Tables
	Résumé long en français

