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Introduction (fr)

L’informatique quantique est un modèle de calcul capable de supplanter un ordinateur
classique pour e�ectuer certaines tâches. L’exemple le plus probant est l’algorithme
de Shor qui permet de factoriser un nombre en ses facteurs premiers en un temps ex-
ponentiellement moins long que le meilleur algorithme classique connu. L’algorithme
de Grover permet également un gain quadratique pour la recherche d’un élément dans
une structure de données non-triée, et pléthore d’algorithmes dérivés de celui-ci per-
me�ent une même amélioration pour le problème qu’ils résolvent. Une des principales
a�entes de ce modèle, étant lui-même quantique, est de perme�re de simuler e�cace-
ment d’autres systèmes quantiques. On peut encore trouver des applications dans la
recherche d’un optimum, ou encore dans la cryptographie.

Pour pouvoir raisonner dans ce modèle de calcul, et e�ectuer des tâches complexes,
il est nécessaire d’avoir des langages de plus haut niveau que l’implémentation physique
du processus. Un parallèle est possible avec l’informatique classique: Les circuits boolé-
ens, qui utilisent des portes logiques telles que ET, OU, OUexclusif…, ont été une abstrac-
tion nécessaire à l’électronique sous-jacente. Une telle abstraction a plusieurs avantages.
Premièrement, elle permet à l’utilisateur de se débarasser d’une certaine surcharge de
travail inutile, tout en réduisant sa propension à faire des erreurs. �i plus est, plus un
langage est bas-niveau, et plus il voit ses paradigmes dictés par la nécessité de l’implé-
mentation physique. À ce titre, un langage de plus haut niveau utilisera des paradigmes
jugés plus utiles et compréhensibles par l’utilisateur (d’où la simplicité d’utilisation déjà
remarquée), mais en plus il sera plus portable, le langage ne changeant pas entre les
di�érents processeurs.

Les circuits quantiques sont un langage graphique qui permet une première abstrac-
tion. Les unités du calcul quantique, appelés bits quantiques ou qubits, sont représentés
comme parcourant un �l, et des portes quantiques qui perme�ent le calcul altèrent leur
valeur. Ces portes peuvent être combinées comme dans cet exemple (lu par convention
de gauche à droite):

⊕

⊕
⊕

H

H

S H

T H

X ⊕ ⊕

⊕

H T H
X ⊕

⊕
X

⊕
S S

S

XH

Le langage reste assez bas-niveau: son utilisation sur des projets d’envergure est lourde,
et les choix dans ses opérateurs restent fortement dictés par la physique. On voit toute-
fois apparaı̂tre des éléments intéressants pour un langage graphique. Notamment, que
deux processus indépendants, c’est-à-dire agissant sur des qubits di�érents, peuvent
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commuter, peu importe celui qui est appliqué en premier:

f
g

=
f
g

=
f

g

ou encore comment réagissent les processus lorsque l’on échange les qubits sur lesquels
ils sont appliqués:

g
f

=
g

f

Ces transformations sont évidentes dans le langage graphique, plus qu’elles ne le sont
dans le langage algébrique:

(f ⊗ id) ◦ (id⊗ g) = f ⊗ g = (g ⊗ id) ◦ (id⊗ f)

et
(g ⊗ f) ◦ σ = σ ◦ (f ⊗ g)

où σ représente l’échange de qubits.
Ce sont les equations qui sous-tendent les PROPs, un cas particulier des catégories

monoı̈dales, issue de la théorie des catégories et qui permet de formaliser la notion de
langage graphique. C’est justement de considérations catégoriques dont naquit le ZX-
Calculus, le langage graphique qui est au centre de ce�e thèse.

Il a été introduit en 2008 par Bob Coecke et Ross Duncan [CD11] avec pour fonde-
ment la complémentarité d’observables quantiques, un paradigme a priori indépendent
de l’implémentation physique des évolutions quantiques représentées. Là aussi, les qu-
bits sont représentés comme traversant des �ls qui relient les générateurs du langage
pour former ce que l’on appelle un diagramme. Dans toute la thèse, les diagrammes sont
lus du haut vers le bas.

Le langage contient trois générateurs dont deux sont duaux l’un-de-l’autre et peuvent
avoir un paramètre sous la forme d’un angle: …

…α et …
…α . Ceux-ci peuvent prendre

un nombre arbitraire de �ls en entrée et en sortie. Le troisième générateur est binaire,
et permet de transformer l’un des deux précédents opérateurs en l’autre.

Dans ce langage, un �l, lorsqu’il est droit représente l’identité , mais il peut aussi
être courbé: et . Ces diagrammes ont une signi�cation particulière. Le premier
représente l’état EPR |00〉 + |11〉, tandis que le second représente le projecteur associé
〈00|+〈11|, qui physiquement correspond à l’un des résultats possibles lors d’une mesure
de Bell sur deux qubits. L’un des atouts du ZX-Calculus est justement l’existence de ces
deux diagrammes, qui forment ce que l’on appelle une structure compacte:

= =

�i plus est, ces deux diagrammes réagissent bien avec les autres générateurs:
…

…
α = α

…

…

…

…
α = α

…

…
=

Grâce à cela en particulier, on peut considérer n’importe quel diagramme du ZX-Calculus
comme un graphe ouvert (les entrées et les sorties sont �xées), tel que n’importe quel
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isomorphisme de graphe (qui préserve entrées et sorties) préserve l’évolution quantique
qui est représentée. C’est un des très gros avantages du ZX-Calculus, et qui en fait un
langage plus haut-niveau que les circuits quantiques.

Les applications du langage graphique connues à ce jour sont très variées. Il peut être
utilisé pour raisonner sur un modèle d’informatique quantique appelé MBQC (Measu-
rement-Based �antum Computing) [DP10, Dun13, Hor11] ou sur la correction d’erreurs
quantiques [DL14, DG18, CKR+16]. Il se trouve notamment que les générateurs du lan-
gage sont très proches des primitives du “la�ice surgery”, un modèle pour la réalisation
d’ordinateurs quantiques universels avec correction d’erreur [dBH17, dBDHP19]. Le
ZX-Calculus a permis des améliorations dans la simpli�cation de circuits quantiques
[DKPvdW19, KvdW19] dans le projet PyZX [KvdW18], et peut être utilisé pour faire de
la véri�cation, par exemple de protocoles [Hil11, Zam12].

Comme on l’a vu, di�érents diagrammes peuvent représenter la même évolution
quantique, de la même façon que di�érentes compositions de matrices peuvent donner
le même résultat. Dans le calcul matriciel, on sait réduire n’importe quelle composition
de matrices obtenue avec ◦ et ⊗ à une unique matrice. Une telle réduction ne sera pas
possible dans le ZX-Calculus, car un générateur seul n’est pas su�samment expressif.
On peut néanmoins donner un ensemble de transformations autorisées entre un dia-
gramme du ZX-Calculus et un autre. Idéalement, ces règles devraient être intuitives et
su�samment peu nombreuses pour qu’un être humain puisse les retenir.

Les règles fondamentales du ZX-Calculus sont issues de la théorie des catégories, et
utilisent des structures bien connues du domaine, telles les algèbres de Frobenius ou les
algèbres de Hopf. Ce�e démarche est également utilisée pour décrire des structures tout
aussi fondamentales en algèbre linéaire, pour représenter par exemple des �ots de signal
[BE15], avec un langage nommé IH, un proche parent du ZX-Calculus [BSZ17, Zan15].
Pour être plus précis, le premier formalise une restriction du second.

Pour s’assurer de la véracité d’une dérivation (une suite d’applications des règles de
transformation), on peut utiliser un assistant de peuve appelé �antomatic [KDD+11,
KZ15] développé par la communauté et qui permet de manipuler des diagrammes de
cordes tels que ceux du ZX-Calculus ainsi que de spéci�er les règles de calcul autorisées.

Se pose alors la question de la complétude : Si deux diagrammes représentent la
même évolution quantique, est-il possible de transformer l’un en l’autre en utilisant
uniquement les transformations graphiques autorisées ? Un tel résultat est essentiel.
Il implique que la théorie quantique est entièrement capturée par le langage, le rendant
ainsi autosu�sant. Il n’est alors plus nécessaire de garder en tête la théorie mathé-
matique des espaces de Hilbert sous-jacente, et tout raisonnement sur le quantique peut
être mené au sein du langage uniquement.

C’est à ce�e question qu’essaie de répondre ce�e thèse. Le problème étant ardu, il
a été étudié pour des restrictions du langage, appelés fragments. On appelle “fragment
π
p
” la restriction du ZX-Calculus où les paramètres de …

…α et …
…α sont des multiples

de π
p
. Bien sûr, des axiomatisations di�érentes peuvent être donnés pour di�érentes

restrictions. On va donc distinguer les diagrammes du fragment π
p
, aussi noté ZX[π

p
],

et les axiomatisations R. En les combinant, on obtient ZX[π
p
]/R, le langage obtenu en

quotientant le fragment π
p

du ZX-Calculus par la théorie équationnelle R.
Le premier fragment pour lequel un résultat de complétude a été donné est ZX[π

2
]

[Bac14a], aussi appelé le stabiliseur du ZX-Calculus, ou encore Cli�ord. Un résultat ana-
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logue existe pour les circuits [Sel15]. S’est ensuivi un résultat similaire pour le fragment
π du langage ZX[π] [DP14], avec un ensemble d’axiomes légèrement di�érent. Mal-
heureusement, ces fragments ne sont pas universels, ni même approximativement (cer-
taines évolutions quantiques ne peuvent être représentées, même de façon approchée,
par des diagrammes de ces fragments). Ceux-ci sont même simulables e�cacement par
un ordinateur classique[AG04].

L’intérêt s’est donc ensuite porté vers le fragment ZX[π
4
], aussi appelé Cli�ord+T, qui

lui, est approximativement universel [Shi03]. Un premier résultat a été donné pour le cas
particulier de diagrammes sur un seul �l [Bac14b], lui-même dérivé du résultat sur les cir-
cuits [MA08]. Dans les circuits, on peut également citer la complétude des diagrammes
“CNot-dihedraux” [ACR18] qui sont une restriction de Cli�ord+T, et la complétude des
circuits Cli�ord+T sur deux qubits [SB15], redémontré dans le ZX-Calculus mais en sor-
tant du fragment [CW18].

Parallèlement au développement du ZX-Calculus, un autre langage graphique, proche
cousin du premier, a vu le jour : le ZW-Calculus [CK10]. Celui-ci jouit également d’une
structure compacte, et donc de ce résultat puissant sur la conservation de la sémantique
par isomorphisme de graphe. Ce langage se base lui sur l’interaction entre deux classes
d’états quantiques fondamentalement di�érents, à savoir les états GHZ et les états W.
Une autre di�érence �agrante avec le ZX-Calculus, est que le ZW-Calculus jouit d’une
forme normale relativement naturelle. Cela a notamment permis la recherche d’axio-
matisations complétes pour des fragments du langages [Had15, Had17, HNW18].

Dans ce�e thèse, nous faisons le lien entre les deux langages graphiques, ce qui
permet notamment de simpli�er la recherche d’axiomatisation complète pour le ZX-
Calculus. Le premier résultat présenté dans ce�e thèse concerne ZX[π

4
] [JPV18a], dont

la complétude est obtenue par un système de traduction de ZX[π
4
] vers une extension

du ZW-Calculus notée ZW1/
√
2, ce qui permet le transport de la propriété de complétude.

Pour ce faire, nous passons par un langage intermédiaire appelé ∆ZX, qui est une ex-
tension du ZX-Calculus avec un générateur supplémentaire [Vil19]. Celui-ci est
intéressant en lui-même car ∆ZX[π] capture le fragment “To�oli-Hadamard” de la mécanique
quantique.

Nous montrons ensuite que l’axiomatisation utilisée avec ZX[π
4
] est en réalité plus

forte que cela, car elle permet aussi la complétude pour une restriction plus large des dia-
grammes du ZX-Calculus, appelés diagrammes linéaires à constantes dans Cli�ord+T, et
dénotée ZX[~α, π

4
] [JPV18b]. Encore une fois, nous passons par le langage intermédiaire

∆ZX[~α, π], et la combinaison des deux permet d’obtenir une axiomatisation complète
pour ∆ZX[~α, π

4
]. Ce résultat puissant de complétude sur les diagrammes linéaires, bien

que non constructif, permet de déterminer pour un grand nombre d’égalités dans des
fragments plus grands que ZX[π

4
] qu’elles sont dérivables.

En utilisant ce résultat, un autre système de traduction entre le ZX-Calculus et un
fragment plus grand du ZW-Calculus, ainsi qu’une méthode de réduction de certains
diagrammes vers leur décomposition en valeurs singulières (SVD) [Vil18], nous prou-
vons ensuite la complétude du langage sans restriction ZX pour un ensemble d’axiomes
étonnament plus petit que celui de ZX[π

4
].

Il est bon de noter que les langages graphiques évoqués jusqu’à présent sont faits
pour la mécanique quantique pure, c’est à dire sans interaction avec l’extérieur. Pour
prendre en compte ce�e interaction, on représente les évolutions quantiques par des
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CPM (completely positive maps), et on peut rajouter au langage un générateur qui
représente la trace partielle. Nous montrons comment rendre un langage graphique
complet pour les CPM s’il l’est déjà pour la mécanique quantique pure. En particulier,
on peut trouver aisément des axiomatisations complètes pour ZX et sa restriction à
Cli�ord ZX [π

2
] [CJPV19].

En�n, en dernier lieu, nous donnons une construction pour une forme normale, val-
able dans n’importe quel fragment du ZX-Calculus qui contient π

4
[JPV18c]. Cela nous

permet de reprouver les deux précédents résultats de complétude sans utiliser le ZW-
Calculus, mais également de trouver des axiomatisations complètes pour d’autres frag-
ments, notamment ZX[ π

2n
] le fragment des dyadiques, et ZX[πQ] le fragment des ra-

tionnels.
Le diagramme suivant représente les di�érents langages (constitués d’un fragment

et d’une théorie équationnelle) considérés dans la thèse, les �èches représentant les
dépendances pour la preuve de complétude. Les résultats de complétude obtenus par
forme normale sont représentés avec une �èche qui boucle sur le langage. Les langages
dont la complétude est considérée comme acquise sont les quatre du haut, vers lesquels
ne pointe aucune �èche.

ZX[π
2
]/ZXπ/2 ZX[π]/ZXπ ZW/ZW ZW[C]/ZWC

ZW1/
√
2/ZW1/

√
2

∆ZX[π]/∆π

∆ZX[~α, π]/∆+
πZX[π

4
]/ZXπ/4

∆ZX[~α, π
4
]/∆π/4

ZX/ZX

ZX /ZXZX[π
2
] /ZXπ/2

ZX[~α, π
2n

]/ZXπ/4 ZX[~α, πQ]/ZXQ

ZX[~α, π
4
]/ZXπ/4

Durant ce�e thèse, j’ai participé à la conception du langage graphique appelé Y-
Calculus [JPV18d], une variante du ZX-Calculus con�née à la représentation d’évo-
lutions quantiques réelles. Nous avons donné un ensemble complet d’axiomes pour
le stabiliseur. Puisqu’il existe un système de traduction entre le ZX-Calculus et le Y-
Calculus, il est tout-à-fait possible de compléter ce dernier pour d’autres fragments,
maintenant que les résultats analogues existent dans le ZX-Calculus. Toutefois, nous
ne traiterons pas le cas du Y-Calculus dans ce�e thèse.

J’ai également participé à [JPVW17], qui introduit deux équations du ZX-Calculus
qui seront évoqués voire utilisés comme axiomes dans la thèse, mais là encore nous ne
nous a�arderons pas sur les aspects traités dans le papier.
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Introduction

�antum computing is a computational model capable of supplanting a conventional
computer to perform certain tasks. �e most convincing example is Shor’s algorithm,
which allows for number factoring into its prime factors in an exponentially shorter time
than the best known classical algorithm. Grover’s algorithm also allows a quadratic gain
for searching for an element in a unsorted data structure, and a plethora of algorithms
derived from it allow the same improvement for the problem they solve. One of the main
expectations of this model, being itself a quantum model, is to allow other quantum
systems to be e�ectively simulated. Applications can still be found in the search for an
optimum, or in cryptography.

To be able to reason in this calculation model, and perform complex tasks, it is neces-
sary to have languages of a higher level than the physical implementation of the process.
A parallel is possible with classical computing: Boolean circuits, which use logic gates
such as AND, OR, XOR…, have been a necessary abstraction to the underlying electron-
ics. Such an abstraction has several advantages. First, it allows the user to get rid of a
certain amount of unnecessary overload, while reducing the user’s propensity to make
mistakes. Moreover, the lower the level of a language, the more it sees its paradigms
dictated by the need for physical implementation. As such, a higher level language will
use paradigms considered more useful and understandable by the user (hence the sim-
plicity of use already noted), but in addition it will be more portable, the language not
changing between di�erent processors.

�antum circuits are a graphical language that allows for a �rst abstraction. �e
units of quantum computation, called quantum bits or qubits, are represented as running
through a wire, and quantum gates that allow computation alter their value. �ese gates
can be combined as in this example (read by convention from le� to right):

⊕

⊕
⊕

H

H

S H

T H

X ⊕ ⊕

⊕

H T H
X ⊕

⊕
X

⊕
S S

S

XH

�e language remains fairly low-level: its use on large-scale projects is heavy, and the
choices in its operators remain strongly dictated by physics. However, there are some
interesting elements for a graphical language. In particular, that two independent pro-
cesses, i.e. acting on di�erent qubits, can commute, no ma�er which one is applied �rst:

f
g

=
f
g

=
f

g
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Introduction

or how the processes react when exchanging the qubits on which they are applied:

g
f

=
g

f

�ese transformations are evident in the graphical language, more so than they are in
the algebraic language:

(f ⊗ id) ◦ (id⊗ g) = f ⊗ g = (g ⊗ id) ◦ (id⊗ f)

and
(g ⊗ f) ◦ σ = σ ◦ (f ⊗ g)

where σ represents the exchange of qubits.
�ese are the equations that underlie PROPs, a particular case of monoidal categories,

stemming from category theory and which formalises the notion of graphic language. It
was precisely from categorical considerations that ZX-Calculus, the graphical language
that is at the heart of this thesis, was born.

It was introduced in 2008 by Bob Coecke and Ross Duncan [CD11], based on the com-
plementarity of quantum observables, a priori a paradigm independent of the physical
implementation of the quantum evolutions represented. Again, qubits are represented
as passing through wires that connect the language generators to form what is called a
diagram. �roughout the thesis, the diagrams are read from top to bo�om.

�e language contains three generators, two of which are dual and can have a pa-
rameter in the form of an angle: …

…α and …
…α . �ese can take an arbitrary number of

input and output wires. �e third generator is binary, and allows to transform one of
the two previous operators into the other.

In this language, a wire, when straight, represents the identity , but it can also be
curved: and . �ese diagrams have a particular meaning. �e �rst represents
the EPR state |00〉 + |11〉, while the second represents the associated projector 〈00| +
〈11|, which physically corresponds to a possible result of a Bell measurement on two
qubits. One of the advantages of the ZX-Calculus is precisely the existence of these two
diagrams, which form what is called a compact structure:

= =

Moreover, these two diagrams react well with the other generators:
…

…
α = α

…

…

…

…
α = α

…

…
=

�anks to these equations in particular, we can consider any diagram of the ZX-Calculus
as an open graph (inputs and outputs are �xed), such that any graph isomorphism (which
preserves inputs and outputs) preserves the quantum evolution that is represented. �is
is one of the very big advantages of the ZX-Calculus, a feature that makes it a higher
level language than quantum circuits.

�e applications of the graphic language known to date are very varied. It can be
used to reason about a quantum computing model called MBQC (Measurement-Based
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�antum Computing) [DP10, Dun13, Hor11] or about quantum error correction [DL14,
DG18, CKR+16]. In particular, the language generators are very close to the primitives of
“la�ice surgery”, a model for the realization of universal quantum computers with error
correction [dBH17, dBDHP19]. �e ZX-Calculus has allowed improvements in quantum
circuit simpli�cation [DKPvdW19, KvdW19] in the PyZX project [KvdW18], and can be
used to perform veri�cation, for example of protocols [Hil11, Zam12].

As we have seen, di�erent diagrams can represent the same quantum evolution, in
the same way that di�erent matrix compositions can yield the same result. In matrix
calculation, we know how to reduce any matrix composition obtained with ◦ and ⊗
to a single matrix. Such a reduction will not be possible in the ZX-Calculus, as a single
generator is not su�ciently expressive. However, a set of allowed transformations can be
given between one diagram of the ZX-Calculus and another. Ideally, these rules should
be intuitive and su�ciently su�ciently limited in number to be remembered by the user.

�e fundamental rules of ZX-Calculus are derived from category theory, and use
structures well known in the �eld, such as Frobenius algebras or Hopf algebras. �is
approach is also used to describe equally fundamental structures in linear algebra, for
example to represent signal �ows [BE15], with a language named IH, a close relative of
the ZX-Calculus [BSZ17, Zan15]. To be more precise, the former formalises a restriction
of the la�er.

To ensure the soundness of a derivation (a sequence of application of transformation
rules), we can use a proof assistant called �antomatic [KDD+11, KZ15] developed by
the community and which allows to handle string diagrams such as those of the ZX-
Calculus as well as to specify the allowed calculation rules.

�e question of completeness then arises: If two diagrams represent the same quan-
tum evolution, is it possible to transform one into the other using only the authorised
graphical transformations? Such a result is essential. It implies that quantum theory is
entirely captured by the language, making it self-su�cient. It is then no longer neces-
sary to keep in mind the mathematical theory of the underlying Hilbert spaces, and any
reasoning about quantum can be conducted within the language alone.

�is thesis a�empts to answer this question. �e problem being di�cult, it has
been studied �rst for language restrictions, called fragments. �e restriction of the ZX-
Calculus where the parameters of …

…α and …
…α are multiples of π

p
is called a “π

p
-

fragment”. Of course, di�erent axiomatisations can be given for di�erent restrictions.
We will therefore distinguish the diagrams of the π

p
-fragment, also denoted ZX[π

p
], and

the axiomatisations R. By combining them, we obtain ZX[π
p
]/R, the language obtained

by quotienting the π
p
-fragment of the ZX-Calculus by the equational theory R.

�e �rst fragment for which a completeness result has been given is ZX[π
2
] [Bac14a],

also called the stabiliser ZX-Calculus, or Cli�ord ZX-Calculus. A result for the analogous
fragment exists for the circuits [Sel15]. A similar result followed for the π-fragment of
the ZX-Calculus [DP14], with a slightly di�erent set of axioms. Unfortunately, these
fragments are not universal, not even approximately (some quantum evolutions cannot
be represented, even approximately, by diagrams of these fragments). Moreover, these
fragments can even be e�ciently simulated by a classical computer.

Interest then turned to the fragment ZX[π
4
], also called Cli�ord+T, which is approx-

imately universal [Shi03]. A �rst result was given for the particular case of diagrams
on a single wire [Bac14b], itself derived from the result on quantum circuits [MA08].
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As for circuits, we can also mention the completeness of the “CNot-dihedral” diagrams
[ACR18] which are a restriction of Cli�ord+T, as well as the completeness of the Clif-
ford+T circuits on two qubits [SB15], restated in the ZX-Calculus but with axioms that
require the derivation to be carried outside the fragment [CW18].

In parallel with the development of the ZX-Calculus, another graphical language,
close cousin of the �rst, has emerged: ZW-Calculus [CK10]. It also has a compact struc-
ture, and therefore the same powerful result on the conservation of semantics by graph
isomorphism. �is language is based on the interaction between two fundamentally dif-
ferent classes of quantum states, namely GHZ states and W states. Another obvious
di�erence with ZX-Calculus is that ZW-Calculus has a relatively natural notion of nor-
mal form. �is made it possible to search for complete axiomatisations for fragments of
the language [Had15, Had17, HNW18].

In this thesis, we make the link between the two graphical languages, which sim-
pli�es the search for complete axiomatisations for the ZX-Calculus. �e �rst result pre-
sented in this thesis concerns ZX[π

4
] [JPV18a], whose completeness is obtained by a

translation system of ZX[π
4
] towards an extension of the ZW-Calculus ZW1/

√
2 and back,

which allows the transport of the completeness property. To do this, we go through
an intermediate language called ∆ZX, which is an extension of the ZX-Calculus with
an additional generator [Vil19]. �is one is interesting in itself because ∆ZX[π]
captures the ”To�oli-Hadamard”-fragment of quantum mechanics.

We then show that the axiomatisation used with ZX[π
4
] is actually stronger than

that, because it also allows completeness for a broader restriction of the ZX-Calculus
diagrams, called linear diagrams with constants in Cli�ord+T, and denoted ZX[~α, π

4
]

[JPV18b]. Once again, we go through the intermediate language ∆ZX[~α, π], and the
combination of the two allows us to obtain a complete axiomatisation for ∆ZX[~α, π

4
].

�is powerful result of completeness on linear diagrams, although not constructive, al-
lows to determine for a large number of equations in fragments broader than ZX[π

4
] that

they are derivable.
Using this result, another translation system between the ZX-Calculus and a larger

fragment of the ZW-Calculus, as well as a method for reducing some diagrams to their
singular value decomposition (SVD) [Vil18], we then prove the completeness of the un-
restricted language ZX, surprisingly with a smaller set of axioms than that of ZX[π

4
].

It is worth noting that the graphical languages mentioned so far are designed for
pure quantum mechanics, i.e. without interaction with the outside world. To take into
account this interaction, we can add to the language a generator which represents
the partial trace. We show how to make a graphical language for CPMs complete if it is
already complete for pure quantum mechanics. In particular, complete axiomatisations
for ZX and its restriction to Cli�ord ZX [π

2
] [CJPV19] can be easily found.

Finally, we give a construction for a normal form, valid in any fragment of the ZX-
Calculus that contains π

4
[JPV18c]. �is allows us to recover the two previous complete-

ness results without using the ZW-Calculus, but also to �nd complete axiomatisations
for other fragments, including ZX[ π

2n
], the dyadic fragment, and ZX[πQ], the rational

fragment.
�e following diagram represents the di�erent languages (consisting of a fragment

and an equational theory) considered in the thesis, the arrows representing the depen-
dencies for the proofs of completeness. �e completeness results obtained by normal
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form are represented with an arrow looping on the language. �e languages whose
completeness is taken for granted are the top four, to which no arrows point, for they
were proven in the literature [Bac14a, DP14, Had15, Had17].

ZX[π
2
]/ZXπ/2 ZX[π]/ZXπ ZW/ZW ZW[C]/ZWC

ZW1/
√
2/ZW1/

√
2

∆ZX[π]/∆π

∆ZX[~α, π]/∆+
πZX[π

4
]/ZXπ/4

∆ZX[~α, π
4
]/∆π/4

ZX/ZX

ZX /ZXZX[π
2
] /ZXπ/2

ZX[~α, π
2n

]/ZXπ/4 ZX[~α, πQ]/ZXQ

ZX[~α, π
4
]/ZXπ/4

During this thesis, I participated in the design of the graphical language called Y-
Calculus [JPV18d], a variant of ZX-Calculus con�ned to the representation of real quan-
tum evolutions. We have given a complete set of axioms for its stabiliser fragment. Since
there is a translation system between the ZX-Calculus and the Y-Calculus, it is absolutely
possible to complete the la�er for other fragments, now that similar results exist in the
ZX-Calculus. However, we will not deal with the case of the Y-Calculus in this thesis.

I also participated in [JPVW17], which introduces two equations of the ZX-Calculus
that will be mentioned or even used as axioms in the thesis, but here again we will not
dwell on the aspects treated in the paper.
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Chapter 1

Standard �antum Mechanics

�antum mechanics [FLSL66] is one of the two prominent physical models that arose
during the �rst decades of the XXth century, the other being relativity. It was created
to explain experiments where the now called classical physics fell short, such as black
body radiation, or the photoelectric e�ect [Pla01, Ein05]. �e core di�erence with the
classical model is that some quantities of a system – such as energy, momentum … – are
restricted to discrete values, as opposed to continuous ones in the classical model. So
far, this theory has proven to be extremely robust and precise [NC10].

It has already had applications in several domains of physics, and can also be used to
perform transistor and laser computations. Indeed, these can be used to store, process
and communicate information. We review in this chapter the fundamentals of quantum
mechanics, which we can �nd e.g. in [vN32] or [NC10].

1.1 Pure �antum States

p De�nition 1.1.1 (Hilbert Space): A Hilbert spaceH is a vector space over K (where
K is eitherC orR), equipped with an inner product, that is, a function 〈. .〉 : H×H → K
with the following properties:

• 〈x y〉 = 〈y x〉

• It is linear in its �rst argument:

〈x1 + λx2 y〉 = 〈x1 y〉+ λ 〈x2 y〉

• x 7→ 〈x x〉 is positive de�nite:

〈x x〉 > 0 if x 6= 0

〈x x〉 = 0 if x = 0

In this context, it is conventional to de�ne a norm by ‖.‖ := x 7→
√
〈x x〉, which is real-

valued. �e inner product makesH a metric space, in which we can de�ne the distance
between two elements a and b as d(a, b) := ‖a− b‖. A Hilbert space is further assumed
to be complete, i.e. any sequence (an)n∈N such that lim

n→∞
d(an, an+1) = 0 converges in

H. y
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1.1. Pure �antum States

Postulate 1.1.2. Each physical system is associated with a complex Hilbert space H with
inner product 〈. .〉, and topologically separable in the sense that it admits a countable
orthonormal basis. Rays (that is, subspaces of complex dimension 1) in H are associated
with quantum states of the system.

Hence, any quantum state ψ can be represented by a vector over the Hilbert space
H, of norm one i.e. 〈ψ ψ〉 = 1. Two such vectors are equivalent if they only di�er by a
phase factor: Indeed, if |ψ1〉 is equivalent to |ψ2〉 by de�nition of rays, there exists λ ∈ C
such that |ψ1〉 = λ |ψ2〉. However the constraint on the norm gives:

1 = 〈ψ1 ψ1〉 = |λ|2 〈ψ2 ψ2〉 = |λ|2

which implies λ = eiθ for some θ ∈ R.

Example 1.1.3. In C2, 1
2

(
1√
3

)
∼ eiφ

2

(
1√
3

)
where φ ∈ R is an arbitrary angle, and∼ is

the equivalence relation.
A useful notation, introduced by Dirac, and consistent with the inner product no-

tation is the so-called Dirac notation, or braket notation. In this notation, a vector is
denoted with |.〉, called ket, and its dagger (in �nite dimension, the conjugate transpose)
is 〈.| := |.〉†, called bra, and de�ned for every element ofH as:

〈ψ| : H → K
|φ〉 7→ 〈ψ φ〉

Hence, 〈ψ| ◦ |φ〉 = 〈ψ φ〉.
A building block of �nite-dimensional quantum mechanics is a quantum object of

dimension d, called a qudit. A qudit state will be represented as a vector of Cd. It is
fairly easy to see that the set of vectors (~ei)0≤i<d – where ~ei ∈ Cd is the vector with 0s
everywhere except for the ith component which is a 1 – forms a basis forCd. �e vectors
~ei will be denoted in the Dirac notation |i〉 := ~ei. �is forms the so-called canonical basis
or standard basis. �en, any qudit state can be expressed as a linear combination of the

vectors in this basis: |ψ〉 =
d∑
i=0

αi |i〉.
�e vectors of the canonical basis can be seen as classical states. Any state that is

not a basis vector is then said to be in a superposition of the (or some) classical states.
�e coe�cients in the linear combination are called amplitudes, and are linked to the
measurement outcomes of the system, as we will describe later.

Of primary interest for us will be the case where d = 2. �e base component is then
called qubit, and it is a linear combination of |0〉 and |1〉. Several very simple quantum
objects are qubits: the electron spin, the photon polarisation, the fermion position …
[NC10, BK02] Moreover, the two classical states |0〉 and |1〉 can be identi�ed with the
states of a classical bit. A bit is hence a qubit which is not allowed superposition.

When working with qubits, we may also consider two other bases: (|+〉 , |−〉) and
(|i〉 , |−i〉) where:

|+〉 :=
|0〉+ |1〉√

2

|i〉 :=
|0〉+ i |1〉√

2

|−〉 :=
|0〉 − |1〉√

2

|−i〉 :=
|0〉 − i |1〉√

2
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Chapter 1. Standard �antum Mechanics

It is to be noted that the three bases (|0〉 , |1〉), (|+〉 , |−〉) and (|i〉 , |−i〉) are all orthonor-
mal.

1.2 Composite Systems

Postulate 1.2.1. �e state space of a composite physical system is the tensor product (de-
noted .⊗ .) of the state spaces of the component physical systems. Moreover, if we have
systems numbered 1 through n, and system number i is prepared in the state |ψi〉, then the
joint state of the total system is |ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψn〉.

�e tensor product is a bilinear operator fromHA ×HB → HA ⊗HB :

(ϕ1 + λϕ2)⊗ψ = ϕ1 ⊗ψ + λϕ2 ⊗ψ

ψ ⊗(ϕ1 + λϕ2) = ψ ⊗ϕ1 + λψ ⊗ϕ2

If two systemsA andB have corresponding Hilbert spacesHA andHB , then the combi-
nation of the subsystems is a system of corresponding Hilbert spaceHA⊗B := HA ⊗HB .
�e elements of HA⊗B are linear combinations of tensor products |ψA〉 ⊗ |ψB〉 of ele-
ments |ψA〉 ofHA and |ψB〉 ofHB .

If {|iA〉} and {|iB〉} are bases of respectively HA and HB , then {|iA〉 ⊗ |iB〉} is a
basis ofHA⊗B . In particular, ifHA andHB are �nite dimensional, then dim(HA⊗B) =
dim(HA)× dim(HB).

In the Dirac notation, when there is no ambiguity, it is customary to write a tensor
product as the concatenation of the two kets: |ψφ〉 := |ψ〉 ⊗ |φ〉. For instance, in the
qubit case, |01〉 represents a state on two qubits, the �rst of which is in state 0 and the
second in state 1. In terms of vectors, if |j〉 ∈ HB , then |ij〉 := |i〉 ⊗ |j〉 = ~ei×dim(HB)+j ,
i.e. the vector with 0 entries everywhere except 1 for the (i × dim(HB) + j)th. By
bilinearity of ⊗, this completely de�nes the tensor product. For instance, in C2 ⊗C3:

(~e0 + 2~e1)⊗(~e0 + ~e2) = ~e0 ⊗~e0 + ~e0 ⊗~e2 + 2~e1 ⊗~e0 + 2~e1 ⊗~e2 = ~e0 + ~e2 + 2~e3 + 2~e5

i.e.

(
1
2

)
⊗

1
0
1

 =



1
0
1
2
0
2


A state on a composite system cannot always be decomposed as a tensor product of

the two subsystems. When this is the case, the composite state is called entangled. �e
easiest and most famous example is the state |00〉+|11〉√

2
. It can be shown that there is no

pair of one-qubit states |ψ1〉 and |ψ2〉 such that |00〉+|11〉√
2

= |ψ1〉 ⊗ |ψ2〉.
�is particular state has a special name: it is called the EPR state. It is due to Einstein,

Podolsky and Rosen, who thought they had found a paradox in the theory of quantum
mechanics [EPR35]. �e two particles in this state are dependant to one-another and any
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1.3. Operators

operation on one of them a�ects the state as a whole. Speci�cally, during a measurement
in the standard basis (see Section 1.4), if the measurement of the �rst qubit yields x ∈
{0, 1}, then the measurement of the second one automatically yields the same result x,
no ma�er how far the two particles are from one another. �is violates the principle of
locality.

�e EPR state is one of the four Bell states, which are the four maximally entangled
two qubit states: |00〉±|11〉√

2
and |01〉±|10〉√

2
[Bel64]. It is also a particular case of the GHZ

states, of the form |0n〉+|1n〉√
2

where |xn〉 represents a register of n qubits in the state |x〉
[GHZ89].

1.3 Operators

�e state of a quantum system can evolve through time. �is is modelled as applying
a linear map to the state: |fψ〉 := f (|ψ〉). �e neutral element for the composition of
maps ◦ is the identity. We denote by idH the identity on H. Notice that if dim(H) = 1,
then H = C, so idC =

(
1
)
. �e subscript of id can be neglected when it is clear from

the context.
p De�nition 1.3.1 (Linear Map): A linear map f : H1 → H2 is a map such that:

∀x, y ∈ H1,∀λ ∈ C, f(x+ λy) = f(x) + λf(y) y

One can de�ne a norm on linear maps [AB06].
p De�nition 1.3.2 (Norm): Let f be a linear map. We de�ne ‖f‖ as:

‖f‖ := sup
|ψ〉6=0

(‖f |ψ〉 ‖
‖ |ψ〉 ‖

)
y

Linear maps can be composed by the tensor product. If fA and fB act respectively on
Hilbert spacesHA andHB , then fA ⊗ fB acts on the composite spaceHA⊗B , such that,
if |ψA〉 and |ψB〉 are elements of respectively HA and HB , then (fA ⊗ fB) |ψA ψB〉 =
(fA |ψA〉)⊗(fB |ψB〉).

Similarly to quantum states, maps on �nite dimensional Hilbert spaces can be ex-
pressed using the Dirac notation: f =

∑ |ψi〉〈φj|, where |ψi〉〈φj| := |ψi〉 ◦ 〈φj| and ◦
is the matrix composition. If fA =

∑∣∣∣ψ(A)
i

〉〈
φ

(A)
j

∣∣∣ and fB =
∑∣∣∣ψ(B)

i

〉〈
φ

(B)
j

∣∣∣, then the

tensor product is expressed fA ⊗ fB =
∑∣∣∣ψ(A)

i ψ
(B)
k

〉〈
φ

(A)
j φ

(B)
`

∣∣∣.
Example 1.3.3. Given (xi) an orthonormal basis of the �nite dimensional Hilbert space
H, the identity id inH can be expressed as id =

∑ |xi〉〈xi|.
It is convenient to work with an orthonormal basis (xi) since:

〈xi xj〉 = δij =

{
0 if i 6= j
1 if i = j

Hence, if f : H1 → H2 =
∑
αij |xi〉〈yj| and g : H2 → H3 =

∑
βk` |zk〉〈x`| with (xi) an

orthonormal basis ofH2, then the composition g ◦ f has a simple expression:

g ◦ f =

(∑
k,`

βk` |zk〉〈x`|
)(∑

i,j

αij |xi〉〈yj|
)

=
∑
i,j,k,`

αijβk` |zk〉〈x` xi〉︸ ︷︷ ︸
δi,`

〈yj|
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Chapter 1. Standard �antum Mechanics

=
∑
i,j,k

αijβki |zk〉〈yj|

�e next postulate dictates how a closed quantum system evolves, and needs the
following notions:
p De�nition 1.3.4 (Adjoint and Unitary Operator): Let A : H1 → H2 be a linear
operator. �e adjoint map A† : H2 → H1 is uniquely de�ned as the linear map such
that for all x, y ∈ C, 〈Ax y〉 =

〈
x A†y

〉
.

A unitary operator U : H → H on a Hilbert space H is a linear map such that
UU † = U †U = id. y

Notice that for any |x〉, ‖U |x〉 ‖ = ‖ |x〉 ‖, which implies that ‖U‖ = 1 for any
unitary U .

Postulate 1.3.5. �e evolution of a closed quantum system is described by a unitary trans-
formation. �at is, the state |ψ〉 of the closed system at time t0 is related to the state |ψ′〉 of
the system at time t1 by a unitary operator U :

|ψ′〉 = U |ψ〉

During a computation, it could be interesting to initialise new qubits on the �y. �e
system cannot be seen as evolving unitarily in this case, since one would end up with
more qubits than at the start. Instead, this can be modelled as making the system undergo
an isometry.
p De�nition 1.3.6 (Isometry): An isometry f : H1 → H2 is a linear map such that
∀x, y, 〈fx fx〉 = 〈x x〉, or equivalently, such that f † ◦ f = id. y

Notice that if f is an isometry, then in general f † is not. For instance |0〉 is an isom-
etry: 〈0 0〉 = 1 = id0 but clearly not a unitary transformation: |0〉〈0| 6= id.

An interesting set of operators on qubits that is useful to point out is the set of con-
trolled operators (on qubits). Let U be an operator on n qubits. �e operator “controlled
U”, denoted ΛU , is an operator on n+ 1 qubits, uniquely de�ned as:

ΛU = |0〉〈0| ⊗ id+ |1〉〈1| ⊗U

�e �rst qubit in ΛU is called the control qubit. Indeed, if a classical bit is sent on this
qubit, U is applied on the n other qubits i� the control bit is 1. Conversely, if an operator
V is such that V ◦(|0〉 ⊗ id) = |0〉 ⊗ id and V ◦(|1〉 ⊗ id) = |1〉 ⊗ v, then V is a controlled
operator (V = Λv).

1.4 Observables and Measurements

Not all quantities in a quantum state can be measured. �ose that can be are called ob-
servables. For instance, the polarisation of a photon, the spin of an electron, the position
and the momentum of a particle are all observables [KDT95, Dir28, CHT05].

Postulate 1.4.1. �e observables of a quantum system are the self-adjoint (A = A†) oper-
ators onH.
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1.4. Observables and Measurements

A very important set of observables for the qubit case are the Pauli matrices:

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
Linear combinations of Pauli matrices with the identity and real coe�cients (x0id +
x1X+x2Y +x3Z with xi ∈ R) can represent any 2×2 self-adjoint matrix, i.e. they span
all the one-qubit observables. Also, the group generated by the Pauli matrices using the
composition ◦ is called the Pauli group. �is group is easily extended to n qubits:
p De�nition 1.4.2 (Pauli Group): �e Pauli group G1 is de�ned as G1 := 〈X, Y, Z〉,
the group generated by ({X, Y, Z}, ◦). For any n ∈ N∗ := {n ∈ N | n 6= 0}, the Pauli
group on n qubits Gn is de�ned as Gn := {O1 ⊗ · · · ⊗On | Oi ∈ G1}. y

Remark 1.4.3. �e Pauli matrices of G1 can be expressed using the Dirac notation:

X =
∑

k∈{0,1}

|k ⊕ 1〉〈k| Y = i
∑

k∈{0,1}

(−1)k |k ⊕ 1〉〈k| Z =
∑

k∈{0,1}

(−1)k |k〉〈k|

where ⊕ is the XOR operation.
�en, given an observable, one can perform the measurement of a quantum state, in

the following way [NC10]:

Postulate 1.4.4. �antum measurements are described by a collection {Mm} of measure-
ment operators. �ese operators act on the state space of the system being measured, and
satisfy ∑

m

M †
mMm = id

�e index m in Mm refers to the measurement outcome that may occur in the experiment.
If the state of the quantum system is |ψ〉 before the measurement then the probability that
result m occurs is given by

p(m) = 〈ψ|M †
mMm |ψ〉

and the state collapses to
Mm |ψ〉√
p(m)

Notice that the operators M †
mMm are observables, since (M †

mMm)† = M †
mMm.

Example 1.4.5. Consider the measurement of the state |ψ〉 = α |0〉+β |1〉 in the compu-
tational basis (|0〉 , |1〉), i.e. with the measurement operators M0 |0〉〈0| and M1 = |1〉〈1|.
�en p(0) = 〈ψ|M †

0M0 |ψ〉 = (α 〈0| + β 〈1|) |0〉〈0| (α |0〉 + β |1〉) = |α|2. Similarly,
p(1) = |β|2.

As explained in the postulate, the quantum state collapses a�er measurement in a
new state that depends on the outcome of the measurement.
Example 1.4.6. Consider a series of two measurements of the same qubit, the �rst in
the diagonal basis (|+〉 , |−〉) and the second in the computational basis (|0〉 , |1〉). A�er
the �rst measurement, the qubit will either be in the state |+〉 := |0〉+|1〉√

2
or |−〉 :=

|0〉−|1〉√
2

, with some probability. However, both |+〉 and |−〉 will have probabilities 1
2

to
collapse to state |0〉 and 1

2
to collapse to state |1〉 a�er the second measurement. Hence,

all information has been erased a�er the two measurements.
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Chapter 1. Standard �antum Mechanics

We have now presented all the postulates of quantum mechanics, that are valid in
�nite dimensions as well as in in�nite dimensions. In the rest of the thesis, we will only
consider �nite dimensional systems.

1.5 Non-Isolated Systems

Up to Section 1.3, we had described how a quantum system behaves in the ideal case,
when it is isolated. When parts of the system are measured, it is not isolated any more. In
particular, when measuring parts of an entangled pure state (as described in Section 1.1),
we end up with a state that is not pure any more, but is rather a probabilistic distribution
over pure quantum states, called a mixed state. Mixed states can be modelled by density
matrices. �is requires that the rest of the formalism adapts to this generalisation of
quantum states.
p De�nition 1.5.1 (Mixed States): A mixed state ρ is of the form ρ =

∑
pi |ψi〉〈ψi|.

�e coe�cient pi represents the probability that the system is in the pure state |ψi〉. In
order to represent a probability distribution, all the pi must be non-negative and add up
to 1. y

Of course, a pure state |ψ〉 in this formalism is a particular case of mixed state, and
will be represented by |ψ〉〈ψ|. Notice that ρ is a Hermitian matrix: ρ† = (

∑
pi |ψi〉〈ψi|)† =∑

pi |ψi〉〈ψi| = ρ.
A composite system of two mixed states, ρ1 =

∑
pi |ψi〉〈ψi| and ρ2 =

∑
qj |φj〉〈φj|,

is again the tensor product of the two: ρ1 ⊗ ρ2 :=
∑
piqj |ψiφj〉〈ψiφj|.

Pure operators (i.e. operators that map a pure state to another pure state) can still be
applied to a mixed state, in the form of a superoperator , i.e. a linear operator that maps
a linear map to another linear map.
p De�nition 1.5.2: �e pure operator U de�nes the superoperator ρ 7→ U ◦ ρ ◦U † for
mixed states. y

Notice that the operator preserves the Hermitian structure of the state.
�e measurement postulate can be logically extended as follows:

p De�nition 1.5.3: �e expectation value of an observable A for a system in a mixed
state ρ =

∑
pi |ψi〉〈ψi| is given by the weighted sum of inner products:

∑
pi 〈ψi|A |ψi〉.

y

�is value can be computed as being tr(Aρ), where tr is the trace operator. �e
trace operator is complex-valued and linear. It has the property that tr(AB) = tr(BA)
whenever AB and BA are square matrices, and if id is the identity in H, then tr(id) =
dim(H).∑

pi 〈ψi|A |ψi〉 = tr
(∑

pi 〈ψi|A |ψi〉
)

=
∑

pi tr (〈ψi Aψi〉)

=
∑

pi tr (|Aψi〉〈ψi|) = tr
(
A
(∑

pi |ψi〉〈ψi|
))

= tr(Aρ)

�is time, the trace can be expressed as a superoperator, using the Dirac notation.
Given (xi) an orthonormal basis of the considered �nite Hilbert space:

tr = ρ 7→
∑
〈xi| ρ |xi〉
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1.6. Pure �antum Circuits

It is possible to trace out only part of the system. IfH = HA⊗B⊗C , then trB is de�ned
on H as idA ⊗ tr⊗ idC where idA and idC are identities in respectively A and C . trB
traces out the subsystem B. It is called partial trace [NC10].

Given a mixed state, it is always possible to see it a pure state that underwent a
partial trace.

�eorem 1.5.4 (Puri�cation). Let ρ : HA → HA be a mixed state. �en, there exists a
Hilbert space HB and a pure state |ψ〉 ∈ HA⊗B such that ρ = trB(|ψ〉〈ψ|). We say that
|ψ〉 puri�es ρ.

1.6 Pure �antum Circuits

Similarly to boolean circuits, quantum circuits were introduced both as a model for the
potential physical implementations of quantum processes, as well as a means to reason
on said processes.

We give here a presentation of the circuits for pure qubit quantum mechanics. Hence,
the maps we are going to represent are unitaries fromH toH where dim(H) is a power
of 2.

�e qubits will be represented as wires, and quantum gates will be applied on them.
�e operations applied to a quantum state have to be unitary, so some gates usually
employed in quantum circuits are derived from reversible boolean circuits, such as the
Not gate, the CNot gate and the To�oli gate. To these are added phase-inducing gates
such as the Hadamard gate or the RZ gate. �e usual quantum gates used in quantum
circuits are summarised in Table 1.1.

�e map J.K associates to any quantum gate a linear map from and to Hilbert spaces.
�e gates can then be composed in parallel or in sequence. �e parallel composition
corresponds to the tensor product ⊗:

t
D1… …

D2… …

|

=
q
D1… …

y
⊗

q
D2… …

y

while the sequential composition corresponds to the usual composition of maps ◦:
q
D1… … D2 …

y
=

q
D2… …

y
◦

q
D1… …

y

Notice that all the gates whose names begin with “C” are controlled operators: CNot
represents a controlled Not, CZ a controlled RZ(π), CCNot a controlled controlled Not
(that is an operator that controls CNot), and CSwap a controlled Swap.

All these gates and the two compositions are used to represent unitaries. However,
one can extend the formalism with qubit initialisations. Here, some qubits can be given
the value |0〉 at the beginning of the computation. We represent it as |0〉 , with
interpretation J|0〉 K = |0〉. Notice that other states can be obtained by composition of
|0〉 and unitary gates. For instance, |+〉 can be obtained with |0〉 H , while the EPR
pair (seen in Section 1.2) can be constructed with the following circuit:

⊕
H|0〉

|0〉
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Chapter 1. Standard �antum Mechanics

Gate Representation Interpretation J.K
Identity

∑
x∈{0,1}

|x〉〈x|

X , Not
X
or
⊕

∑
x∈{0,1}

|x⊕1〉〈x|

Z-rotation, RZ RZ(α)
∑

x∈{0,1}
eixα |x〉〈x|

Hadamard, H H 1√
2

∑
x,y∈{0,1}

(−1)xy |x〉〈y|

Swap
∑

x,y∈{0,1}
|y x〉〈x y|

CNot, CX ⊕
∑

x,y∈{0,1}
|x x⊕y〉〈x y|

CZ
∑

x,y∈{0,1}
(−1)xy |x y〉〈x y|

To�oli, CCNot
⊕

∑
x,y,z∈{0,1}

|x y xy⊕z〉〈x y z|

Fredkin, CSwap
×
× ∑

x,y,z∈{0,1}
|x x(y⊕z)⊕y x(y⊕z)⊕z〉〈x y z|

Table 1.1: �e usual gates for quantum circuits.

As already noticed, using qubit initialisation allows one to represent not only unitary
transformations but actually isometries.

Now back to the unitary transformations. All the gates in Table 1.1 (with the two
compositions) are enough to represent any unitary f : H → H (where dim(H) is a
power of two).

p De�nition 1.6.1 (Universality): A set of gates su�cient to represent any unitary is
called universal. A set of gates that can approximate any unitary with arbitrary precision
is called approximately universal.

In other words, a set of gates S is universal if, for any unitary U , there exists a circuit
D composed only of gates of S such that U = JDK. S is approximately universal if, for
any unitary U and any ε > 0 there exists a circuit D composed of gates of S and such
that ‖U − JDK ‖ ≤ ε. y

Actually, the set of gates in Table 1.1 is more than you need to get the universal-
ity. Indeed, the gate set (CNot, RZ , H) is universal [NC10]. Notice that the gate RZ

is parametrised by an angle α which can take values in R. Hence, there is actually an
in�nite number of gates in the gate set.

One can restrict these angles. For instance, by only allowing rotations of angle π
2
,

one gets the gate set (CNot, RZ(π
2
), H), also called Cli�ord, for it exactly represents the
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1.7. Encoding

Cli�ord group, de�ned as:

p De�nition 1.6.2 (Cli�ord group, Stabiliser group): �e Cli�ord group, also called
stabiliser group, is the set of unitaries that stabilise the Pauli group:

Cn := {f : H → H | ∀x ∈ Gn, f◦x◦f † ∈ Gn, ff
† = f †f = id}

whereH := C2n . y

However, the Cli�ord group is not universal, even approximately, and can be e�-
ciently simulated on a classical computer [AG04].

�ere is an in-between, though. �ere exist �nite sets of gates that are approximately
universal. For instance, the gate set (CNot, RZ(π

4
), H) [Shi03]. �e gate RZ(π

4
) is o�en

referred to as the T gate. Since T 2 := T ◦ T = RZ(π
2
), one can see this new gate set

as the Cli�ord gate set to which the T gate has been added. As such, it is commonly
referred to as Cli�ord+T.

�ere exist other interesting universal gate sets. For instance, the To�oli gate (with
ancillae) is already universal for reversible boolean circuits, and it so happens that adding
any basis-changing single-qubit real gate (e.g. Hadamard) to To�oli makes the resulting
gate set approximately universal for encoded quantum computing [Shi03]. �is new
notion of encoded (approximate) universality is slightly di�erent from the one de�ned
in De�nition 1.6.1, in that there is an encoding of data in the usual framework (complex
numbers), in a less expressive se�ing (here the real numbers).

1.7 Encoding

In [Aha03], it is shown how to encode a complex quantum state with a real quantum
state. Any quantum state |ψ〉 can be decomposed as its real and imaginary parts |ψ〉 =
|ψ<〉+i |ψ=〉with respect to the computational basis. We can then embed this in a larger
real quantum state |ψenc〉 := |ψ<〉 ⊗ |0〉+ |ψ=〉 ⊗ |1〉.

�is can also be done for operators, where U := U< + iU= is encoded in Uenc :=
U< ⊗(|0〉〈0|+ |1〉〈1|) + U= ⊗(|1〉〈0| − |0〉〈1|). It is then shown that (To�oli, H) represent
exactly the encoded versions of a complex approximately universal gate set, namely
(ΛRZ(π

2
), H), and hence encodes it.

�is idea of encoding data of a certain type (actually a ring) with data of a more
restrictive type (a smaller ring) can be generalised. In the following, we restrict to the
�nite dimensional case.

p De�nition 1.7.1 (Linear Maps over a Ring): Let R be a subring of C. We denote
Mn,m(R) the set of linear maps fromRn toRm for n,m ∈ N. Any element ofMn,m(R)
can be represented as a matrix over the ring R. y

Now we can give a de�nition of an encoding:

p De�nition 1.7.2: Let R1 ⊆ R2 be two subrings of C. We say that R1 encodes R2

if there exists a homomorphism ψ : R2 → Mn,n(R1) (called the encoding) with a le�
inverse Θ, i.e. Θ ◦ ψ = id (called the decoding). y
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Chapter 1. Standard �antum Mechanics

�e homomorphismψ, even though de�ned only onR2, extends naturally to a family
of homomorphisms ψmp :Mm,p(R2)→Mmn,pn(R1). �is amounts to replacing every
component c in M ∈Mm,p(R2) by the n× n matrix ψ(c).

Even though the encoding is de�ned on rings, we will extensively use �elds for in-
termediate results.

A common occurrence of an encoding is when the second ring is an algebraic ex-
tension of the �rst one. Let R be a subring of C, and α be an R-algebraic integer: We
denote Pα ∈ R[X] the smallest monic (its leading coe�cient is 1) polynomial such that
Pα(α) = 0. We denote dα the degree of the polynomial Pα. R2 here is R[α], that is, the
smallest ring containing both R and α.

Let K be the smallest �eld containing R. �en it is well known that K[α] is also
a �eld. K[α] can be seen as a vector space over K of dimension dα, where (αi)0≤i<dα
constitutes a basis, i.e. any element x of K[α] can be expressed as a linear combination
of powers of α, with coe�cients in K .

For all x ∈ K[α], we de�ne ψ0(x) = (y 7→ xy)T . �e map y 7→ xy being linear, it
can be represented as a dα × dα matrix, and can be transposed. �e transpose does not
change much, it merely makes the decoding part more natural (see the example below).
�e map ψ0(1) is obviously the identity matrix. More interestingly,

ψ0(α) = M :=


0 1

�
1

a0 a1 · · · adα-1



where Pα(X) = Xdα −
dα−1∑
k=0

akX
k.

Lemma 1.7.3. ψ0 is a homomorphism, i.e. for any x, y ∈ K[α], ψ0(x+y) = ψ0(x)+ψ0(y)
and ψ0(xy) = ψ0(x) ◦ ψ0(y).

One �rst consequence of this lemma is that ψ0(αk) = ψ0(α)k = Mk.

Lemma 1.7.4. Any x ∈ K[α] can be uniquely wri�en x =
dα−1∑
k=0

xkα
k with xk ∈ K .

Together, the last two lemmas imply that any element x =
dα−1∑
k=0

xkα
k of K[α] maps

to ψ0(x) =
dα−1∑
k=0

xkM
k.

Let us now show that ψ0 has a le� inverse Θ0. First, notice that, inductively, Mk =(
0(dα-k)×k Idα-k
Ak Bk

)
, where 0(dα-k)×k is the zero matrix of dimension (dα-k) × k, and Ak

andBk are not important. Hence, eT0Mk = eTk where ek is the vector where the sole non

null component is component k, which is 1. Let us denote θ the vector θ :=
dα−1∑
k=0

αkek.
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1.7. Encoding

�en, for all x =
dα−1∑
k=0

xkα
k ∈ K[α]:

eT0 ψ0(x)θ = eT0 ψ0

(
dα−1∑
k=0

xkα
k

)
θ =

dα−1∑
k=0

xke
T
0M

kθ =
dα−1∑
k=0

xke
T
k θ =

dα−1∑
k=0

xkα
k = x

Θ0 := X 7→ eT0Xθ is then a le� inverse of ψ0, in the sense that Θ0 ◦ ψ0 = id.
�ese results can be generalised toM(K[α]) in the following way. AnyX inM(K[α])

can be wri�en X =
dα−1∑
k=0

Xkα
k where Xk ∈M(K). We de�ne

ψ :
dα−1∑
k=0

Xkα
k 7→

dα−1∑
k=0

Xk ⊗Mk

Again, ψ is a homomorphism, and it has a le� inverse Θ, de�ned as

Θ : X 7→ (I ⊗ eT0 ) ◦X ◦ (I ⊗ θ)

where I are identity matrices of adequate dimension.
Actually, we have a slightly stronger result:

Lemma 1.7.5. For any element X ∈M(K[α]), we have ψ(X) ◦ (I ⊗ θ) = X ⊗ θ.

It is pre�y obvious that restricting ψ to M(R[α]), and Θ accordingly, the results
hold, and ψ becomes an encoding, with decoding Θ. Hence,M(R[α]) can be encoded
byM(R).
Example 1.7.6. C can be encoded by R, since C = R[i]. �e encoding ψ is:

ψ : A+ iB 7→ A⊗
(

1 0
0 1

)
+B ⊗

(
0 1
−1 0

)
since i is a root of X2 + 1. We recover the transpose of the encoding de�ned in [Aha03]

and presented at the beginning of the section. θ is given by θ = 1√
2

(
1
i

)
.

In terms of circuits, we have ψ
(

U… …

)
= Uenc

… … and Lemma 1.7.5 translates as:

Uenc

… …

H RZ(π2 )|0〉 H RZ(π2 )|0〉
= U… …

Hence we can recover U from Uenc by applying the appropriate state on the additional
qubits, and then discarding them. �is is the reason why we used the transpose in the
de�nition of ψ0.

�is shows how the gate set (To�oli, H), which can only represent real quantum
evolutions, can have encoded approximate universality.
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Chapter 2

Categorical �antum Mechanics

Categorical �antum Mechanics was introduced in 2004 by Samson Abramsky and Bob
Coecke [AC04, AC09]. �e purpose of Category �eory is to study “universal” prop-
erties and constructions, i.e. that only depend on the structure – the category – and
not on the particular elements (objects and arrows) inside the category. Hence, the aim
of Categorical �antum Mechanics is to reveal the fundamental structures of quantum
mechanics and quantum computation, as well as to provide powerful tools for the study
and development of quantum information technologies.

In this chapter we describe some usual notions in category theory [ML13, BW95].
We then present results of categorical quantum mechanics, as well as the state of the art
of the ZX and ZW Calculi at the beginning of the thesis.

2.1 Categories

p De�nition 2.1.1 (Category): A category consists of a collection of objects and arrows
between objects, with a binary operator ◦ between some arrows. Let f be an arrow from
A to B. We may write f : A → B or A f→ B. A is called the domain of f , and B its
codomain. To qualify for being a category, the following axioms must be met:

• �e operator . ◦ . maps any pair of arrows (B
g→ C,A

f→ B) (notice that the
domain of g and the codomain of f coincide) to a third arrow g ◦f : A→ C called
their composite.

• For any object A in the category, there exists an arrow idA : A → A, called the
identity on A, such that:

– ∀A f→ B, f ◦ idA = f

– ∀B g→ A, idA ◦ g = g

• �e composition is associative: in the con�guration A f→ B
g→ C

h→ D, we have
(h ◦ g) ◦ f = h ◦ (g ◦ f). y

Example 2.1.2. Taking sets as objects and functions between sets as arrows forms a cat-
egory, named Set.
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2.1. Categories

When reasoning about categories, it is customary to draw diagrams, that is, oriented
graphs where the vertices are objects and edges are arrows. A diagram is said to be
commutative if, for any pair of vertices a and b, any two directed paths from a to b are
equal. For instance, the associativity of ◦ can be stated as saying that the following
diagram commutes:

A

B

C

D

f

g

hg ◦ f

h ◦ g
Arrows in a category will be referred to as morphisms. We can de�ne the collection

of morphisms between two objects in a category: HomC(A,B) or C[A,B].
It may be useful to de�ne the collection of objects of a category C: Ob(C). Also, the

collection of arrows of C is referred to as Ar(C).
Arrows that have a le� and right inverse are of particular interest.

p De�nition 2.1.3 (Isomorphism): Let C be a category, and A,B ∈ Ob(C). If f :
A → B and g : B → A are such that g ◦ f = idA and f ◦ g = idB , then f and g are
isomorphisms, g is an inverse of f (and vice-versa). Both f and g can be called invertible,
and A and B are said to be isomorphic. g can be wri�en f−1. y

Notice that for any object A of a category, idA is an isomorphism.
To more easily de�ne some concepts, it is customary to introduce the product cate-

gory and the dual of a category.
p De�nition 2.1.4 (Product Category): Let C and D be two categories. �e product
category C×D is the category where:

• Objects are ordered pairs (A,B) with A an object of C and B an object of D.

• Morphisms are ordered pairs (f : A → A′, g : B → B′) where f is a morphism
of C and g of D.

• Composition is such that (f, g) ◦ (f ′, g′) := (f ◦ f ′, g ◦ g′) whenever it makes
sense. y

p De�nition 2.1.5 (Dual of a Category): Let C be a category. �e category Cop, called
dual or opposite category of C, is de�ned as:

• Ob(Cop) = Ob(C).

• If f : A→ B is in C, then f op : B → A is in Cop.

• �e composition is such that gop ◦ f op := (f ◦ g)op. y

�e dual of a category is basically the category where all the arrows are reversed.
�en, some concepts can simply be de�ned as some other concepts in the dual category
(they are dual concepts). For instance, initial and terminal objects:
p De�nition 2.1.6 (Initial and Terminal Objects): An object T of a category C is called
terminal if, for every object A in C, there is exactly one arrow A→ T .

An initial object of a category C is a terminal object in Cop. It is an object which has
exactly one arrow to each of the objects of C. y
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Notice that the only arrow to a terminal object (resp. from an initial object) is the
identity.

If a category has no terminal object, it is possible to construct one (either add a
terminal object, or make an object that is already in the category terminal).
p De�nition 2.1.7 (A�ne Completion): Let C be a category with no terminal object.
�e category C!, called a�ne completion, is de�ned as:

• �e objects of C! are the objects of C with an (additional) object T .

• All arrows of C are arrows of C!.

• For all objects A in C!, we add an arrow !A : A→ T .

• We impose !T = idT and !B ◦ f = !A for all f : A→ B. y

�is construction makes the object T terminal. Indeed, let f : A→ T be a morphism.
We can show that f is necessarily !A:

• If T /∈ Ob(C), then by construction, !A is the only morphism from A to T , so
f =!A.

• If T ∈ Ob(C): f = idT ◦ f = !T ◦ f = !A.

Hence, there is exactly one arrow from any object to T .
p De�nition 2.1.8 (Pushout): Let f, g be two arrows of a category C in the con�gu-
ration B f← A

g→ C . A pushout of (f, g) is a commutative diagram

A

B

C

D

f g2

g

f2

such that for any other commutative diagram built on (f, g)

A

B

C

D′

f g′2

g

f ′2

there exists a unique arrow u : D → D′ such that u ◦ g2 = g′2 and u ◦ f2 = f ′2 i.e. such
that the following diagram commutes:

A

B

C

D

D′

f g2

g

f2

u
f ′2

g′2

y

�e object D in the pushout is uniquely de�ned up to isomorphism. It may be re-
ferred to as the coproduct of B and C over A, and wri�en B tA C . Also, if a diagram is
a pushout, it is customary to signal it with the symbol p over the coproduct:
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A

B

C

D

f g2

g

f2

p

If A, B and C are sets in the category Set, let us de�ne the relation R′ as:

∀b ∈ B, c ∈ C, bR′c if ∃a ∈ A, (b = f(a)) ∧ (c = g(a))

and let R be the smallest equivalence relation containing R′ (i.e. its transitive closure).
�en, B tA C can be taken to be the disjoint union of B and C , where b ∈ B and c ∈ C
are identi�ed if bRc.

In particular, if A is the intersection of B and C , and if f and g are the usual inclu-
sions, the pushout can be taken as the union of B and C .

A pullback is the dual of a pushout, i.e. a pullback in a category C is a pushout in
Cop. We will not de�ne the concept further, for we do not need it in the following.

2.2 Functors

So far, we have seen what constitutes a category, as well as some constructions on cat-
egories. We will now see how to link di�erent categories together.

A morphism between categories that preserves the structure is called a functor:
p De�nition 2.2.1 (Functor): A functor F : C→ D between the categories C and D
is a map that:

• Assigns to each object A of C an object F (A) of D

• Assigns to each arrow A
f→ B of C an arrow F (A)

F (f)→ F (B) of D

• Preserves identities: for each object A of C, F (idA) = idF (A)

• Preserves composition: F (g◦f) = F (g)◦F (f) whenever g◦f is de�ned in C y

We call a bifunctor a functor from a product category to a category. For instance,
HomC actually de�nes a bifunctor HomC(·, ·) : Cop ×C→ Set, as follows:

• objects (A,B) of Cop × C i.e. pairs of objects A and B of C are mapped to
HomC(A,B)

• morphisms (f op : A→ A′, g : B → B′) of Cop×C are mapped to the morphisms
HomC(A,B)→ HomC(A′, B′) : q 7→ g ◦ q ◦ f

Since we are going in the following to consider several di�erent categories, we will
end up using functors a lot to go from one to the other. Two properties of functors we
will largely be interested in are fullness and faithfulness:
p De�nition 2.2.2 (Fullness): A functor F : C→ D is full if:

∀A,B ∈ Ob(C), ∀g : F (A)→ F (B), ∃f : A→ B, g = F (f) y
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�is property can be seen as a kind of surjectivity: for any arrow of D whose domain
and codomain are a�ained by F , there exists at least one preimage by F in C. Of course,
if B is not a�ained by F , none of the arrows in Hom(A,B) and Hom(B,C) can have a
preimage by F , for any objects B and C in D.

p De�nition 2.2.3 (Faithfulness): A functor F : C→ D is faithful if:

∀A,B ∈ Ob(C), ∀f, g : A→ B, F (f) = F (g) =⇒ f = g y

Again, faithfulness is a bit more subtle than injectivity. Two arrows between the same
objects are equal in the image of F if and only if they are equal in C. However, it can
happen that f : A→ B and g : C → D are mapped to the same arrow if either A 6= C
or B 6= D.

p De�nition 2.2.4 (Subcategory): A subcategory S of the category C is a category
with the same composition (. ◦ .), such that all the objects of S are objects of C (with
the same identities), and that all the arrows of S are arrows of C. y

�ere is an obvious functor I from S to C which maps the objects and arrows of S to
the same objects and arrows in C, called the inclusion functor. Notice that this functor
is necessarily faithful.

Now, suppose we want to consider some categories as objects, and functors between
the categories as arrows. We would then end up with a “meta category” (functors can be
composed, the composition is associative, and the identity functor exists for any cate-
gory). Although, one has to be careful when doing so, for we want to avoid the category
version of Russell’s paradox: should the category of all categories be an object of itself?

To avoid this problem, we only de�ne Cat as the category of all small categories, a
small category being a category where both the collections of objects and arrows con-
stitute sets.

Now, interestingly, the constructions of the previous section can be applied to cat-
egories of small categories. Indeed, it is sometimes possible to perform the pushout of
two functors, or to consider some categories as terminal objects in some larger cate-
gories. For instance the category, o�en denoted 1, with a single object 1 and single
arrow id1 : 1→ 1, is a terminal object in the category of categories Cat.

2.3 PROPs

�e categories we are going to consider in the next section and in Part II are called PROPs
(for product and permutations). �ese are strict monoidal categories generated by a sin-
gle object. �e reason monoidal categories are interesting for us is that they bene�t from
a very natural graphical interpretation. In these categories, we have two compositions:
the usual composition of categories ◦, which performs the sequential composition, and a
new composition called tensor product and denoted ⊗, which performs a kind of parallel
composition. In general (for so-called relaxed monoidal categories), the tensor product
is not directly associative, but only up to isomorphism. We will not consider the relaxed
monoidal categories, but only the strict monoidal categories, where ⊗ really is associa-
tive.
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p De�nition 2.3.1 (Monoidal Category): A (strict) monoidal category C is a category
with additional bifunctor (.⊗ .) : C × C → C called tensor product (we may denote
A⊗B the objects of C×C), and a particular object I such that:

• ⊗ is associative: (A⊗B)⊗C = A⊗(B ⊗C) and (f ⊗ g)⊗h = f ⊗(g ⊗h)

• I is the neutral element for ⊗: A⊗ I = I ⊗A = A

• (f2 ⊗ g2) ◦ (f1 ⊗ g1) = (f2 ◦ f1)⊗(g2 ◦ g1) where the le� hand side is de�ned if the
right hand side is

C is a strict braided monoidal category if moreover, for any objects A and B, there is an
isomorphism σA,B : A⊗B → B ⊗A, called braiding, such that:

• ∀f : A→ B, g : C → D, (g ⊗ f) ◦ σA,C = σB,D ◦ (f ⊗ g)

• σA⊗B,C = (σA,C ⊗ idB) ◦ (idA ⊗σB,C)

• σA,B⊗C = (idB ⊗σA,C) ◦ (σA,B ⊗ idC)

C is called strict symmetric monoidal category if moreover:

• ∀A,B ∈ Ob(C), σB,A ◦ σA,B = idA⊗B y

As announced, monoidal categories bene�t from a nice graphical presentation, i.e.
with string diagrams [Sel10]. In string diagrams, objects are represented as wires (with
the object variable wri�en as a label on the wires), and morphisms are represented as
a distinct symbol with input wires the domain and with output wires the codomain.
�e generic symbol will simply be a box with the name of the morphism variable. For
instance, a morphism f : A→ B can be wri�en:

f
A

B

Notice, �rst, that we took the convention that the diagrams are read from top to
bo�om. Secondly, notice that we label wires and boxes by respectively object variables
and morphism variables. �is meta-notation allows us to treat for instance A⊗B as
either two objects side by side (which is the string-diagrammatic representation of the
tensor product), or as a single object. More generally, we have:

A⊗B = A B and f
A

B

g
C

D

= f⊗g
A⊗C

B⊗D

= f⊗g
C

D

A

B

Since I is a neutral element for ⊗, one can interpret it as “no wire”. I can be seen as
the empty space between and around wires. If a morphism h : I → A has domain I , it

can be represented as: h
A
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Of course, the composition ◦ amounts to plugging two processes if the type matches:

f
A

g
B

C

= g ◦ f
A

C

�e last axiom of the monoidal category is called the bifunctorial law or interchange
law and states that:

f2◦f1 g2◦g1 =
f2⊗g2

f1⊗g1 f1

f2
=:

g1

g2

In a braided monoidal category, the braiding σA,B is usually represented by A

A

B

B

and its inverse σ−1
A,B by A

A

B

B
, so that

A B

= A B . �e axioms of the braiding

are given by:

A⊗B C
=

B CA
A B ⊗C

=
A B C

fg
=

f g
A C

BD

A C

BD

Notice however that
A B

6= A B in general. When it does, we are precisely in

the case of a symmetric monoidal category. In this case, σA,B is represented by A

A

B

B
,

so that
A B

= A B .

To use the graphical representation for computation, we have to make sure that it
does not allow to do less or more than the category itself. �is is called coherence and
shown in [JS91, Sel10].

�eorem 2.3.2 (Coherence for Monoidal, Braided and Symmetric Categories). A well-
formed equation between morphisms in the language of monoidal (resp. braided monoidal,
resp. symmetric monoidal) categories follows from the axioms of monoidal (resp. braided
monoidal, resp. symmetric monoidal) categories if and only if it holds, up to planar isotopy
(resp. up to isotopy in 3 dimensions, resp. up to isomorphism of diagrams), in the language
of string diagrams.

�e graphical language is very interesting for making some axioms obvious. A �rst
example is the interchange law above. We give another example (which actually also
uses the interchange law):

Proposition 2.3.3. Let C be a monoidal category, and to morphisms f : A → I and
g : I → B. �en:

f ⊗ g = g ◦ f = g ⊗ f
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Proof I Using the axioms of monoidal categories, we have:

f ⊗ g = (idI ◦ f)⊗(g ◦ idI) = (idI ⊗ g) ◦ (f ⊗ idI)

= g ◦ f = (g ⊗ idI) ◦ (idI ⊗ f) = (g ◦ idI)⊗(idI ◦ f)

= g ⊗ f

Pictorially, thanks to the coherence �eorem 2.3.2, we directly have:

g
f
A

B
=

g

f
A

B

= g
f
A

B

J

In an arbitrary strict monoidal category, the objects can be very di�erent, so it is
important to keep track of the objects on all the wires, to make sure we are not mistyping.
�is can quickly be cumbersome, although there is a case where this becomes useless:
if the strict monoidal category C is generated by a single object. �is is the case for
instance in quantum circuits, where the wires can only represent a qubit.

�ese are, in a sense, the “smallest interesting (non-trivial) monoidal categories”. Let
us have a glimpse of what they look like. Let C be such a strict monoidal category.
First, as a monoidal category, it has an identity object I . For C to be non-trivial (since
I ⊗ I = I), it should also have an additional object X . By the axioms of monoidal

category, X ⊗X should also be in C. Inductively,
n︷ ︸︸ ︷

X ⊗ · · · ⊗X for any n ∈ N∗ should

be in C. We may denote X⊗n :=

n︷ ︸︸ ︷
X ⊗ · · · ⊗X . Recall that I is “no wire”, whereas

X⊗n represents n parallel wires. Hence, it is customary to identify I with X⊗ 0. Such a
monoidal category, if it is strict symmetric, is called a PROP [Lac04].
p De�nition 2.3.4 (PROP): A PROP is a strict symmetric monoidal category whose
objects are freely generated by a single object and ⊗.

Equivalently, a PROP can be de�ned as a strict symmetric monoidal category whose
objects are all natural integers N. y

Indeed, it su�ces to identifyX⊗n with n. �is is made even clearer with the conven-

tion that denotes the generating object by 1. �en n :=

n︷ ︸︸ ︷
1⊗ · · · ⊗ 1, and the morphisms

are of the form f : n → m with n,m ∈ N. �e identity on the object n is denoted idn.
From now on we will not label the wires that represent 1. However, we may still use n

to represent a bundle of n wires.
Example 2.3.5. �e collection of quantum circuits can be seen as a PROP if the Swap
gate is allowed and taken to be σ1,1. For instance, take the gate set (CNot, Swap, H ,
RZ(α)). �e quantum circuits built with it constitute a PROP where the morphisms are
CNot : 2 → 2, Swap : 2 → 2, H : 1 → 1, RZ(α) : 1 → 1, and all the parallel and
sequential compositions of these gates. Notice that stating that it constitutes a PROP
gives an equational theory on the circuits. For instance, we have Swap ◦ Swap = id2.
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We are ge�ing closer to the focus of the thesis, since we can already de�ne a category
whose graphical interpretation is a language for quantum mechanics. We can specify
even further though. Notice that even though the following de�nitions are re�nements
over PROPs, many of the concepts are valid in some more general categories.

p De�nition 2.3.6 (†-PROP): A category C is a †-PROP if it is a PROP such that for
any morphism f : n→ m there exists a morphism f † : m→ n, and such that:

• id†A = idA

• (g ◦ f)† = f † ◦ g†

• (g ⊗ f)† = g† ⊗ f †

• (f †)† = f

• σ†n,m = σm,n

Equivalently, C is a †-PROP if there is a functor † : Cop → C, compatible with ⊗,
which is the identity on the objects and which is an involution, i.e., † ◦ † = idC. y

�ere is now enough background to categorically de�ne unitary morphisms, which
is in the core of quantum mechanics, as well as self-adjoint morphisms.

p De�nition 2.3.7 (Unitary Morphism): A morphism f in a †-PROP is called unitary
if it is an isomorphism and if f † = f−1. y

p De�nition 2.3.8 (Self-Adjoint Morphism): A morphism f in a †-PROP is called self-
adjoint if f = f †. y

�e axioms of PROP (or symmetric monoidal category) allow us to move things
around, or loosing and straightening wires, but they do not allow us to bend them back-
wards for instance. If we want to have real freedom on how to move morphisms around,
we should be able to perform something like this: = . �is is allowed by
compact-closed PROPs.

p De�nition 2.3.9 (†-Compact PROP): A compact-closed †-PROP is a †-PROP with
two morphisms εn : 2n→ 0 and ηn : 0→ 2n for each object n, such that:

• εn = η†n

• (idn ⊗ εn) ◦ (ηn ⊗ idn) = idn = (εn ⊗ idn) ◦ (idn ⊗ ηn)

• σn,n ◦ ηn = ηn

• ηn+1 = (id⊗ ηn ⊗ id) ◦ η1 y

�e last three equations are worth stating out using string diagrams. εn is usually
represented as n and ηn as n. �e ante-penultimate equation becomes

n

n

= = n

n
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called the snake equations. �e penultimate equation becomes

n
=

n

and the last one becomes
n+1 := 1 n

�e presence of a compact structure, i.e. two morphisms εn and ηn that satisfy the
snake equations, allow for a very important result, called the map/state duality.

Proposition 2.3.10 (Map/State Duality). In any †-compact PROP, there exists an isomor-
phism from n→ m maps to 0→ n+m states.

Proof I Since we are in a †-compact PROP, there exist two morphisms ηn and εn for
any n ∈ N, which satisfy the snake equations. �en, for n,m ∈ N, we de�ne:

ψn,m :
Hom(n,m) → Hom(0,m+ n)

f 7→ (f ⊗ idn) ◦ ηn

ψ′n,m :
Hom(0,m+ n) → Hom(n,m)

f 7→ (idm ⊗ εn) ◦ (f ⊗ idn)

Pictorially: ψn,m

(
f

n

m

)
= f n

m
and ψ′n,m

(
f

nm

)
= f n

m

. We then check

that ψn,m and ψ′n,m are inverse to each other (i.e. ψ′n,m = ψ−1
n,m), making them isomor-

phisms:

ψ′n,m ◦ ψn,m
(

f

n

m

)
= ψ′n,m

(
f n

m

)
= f

n

m

= f

n

m

for any f : n→ m, thanks to snake equations. We similarly have ψn,m ◦ ψ′n,m = id. J

We now have all the overall structure we need. Before we dive into the di�erent
interesting internal structure, we de�ne functors between the di�erent categories we
handle.
p De�nition 2.3.11 (PROP Functors): A PROP-functor F : C → D is a functor be-
tween PROPs which is compatible with ⊗, that is:

• F (0) = 0

• ∀n,m ∈ N, F (n+m) = F (n) + F (m)

• ∀f : n→ m, g : p→ q, F (f ⊗ g) = F (f)⊗F (g)

• F (σn,m) = σF (n),F (m)

A †-PROP-functor F is a PROP-functor which “commutes” with the †-functor, i.e.:

• ∀f : n→ m, F (f †) = F (f)†

A †-compact-PROP-functor further preserves the compact structure:
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• ∀n ∈ N, F (ηn) = ηF (n)

y

Here, we did not describe how the functor transforms the object 1. In particular, it
is not necessary that F (1) = 1, as one might want the functor F to act on objects as
F (n) = 2n for instance.

2.4 Monoids, Comonoids, and their Interactions

We are now interested in some particular structures that one can have in a PROP. All
the structures presented in this section are pre�y common in monoidal category theory
[ML13]. �e simplest are the monoid and its dual, the comonoid.
pDe�nition 2.4.1 (Monoid): Let C be a PROP. A monoid is a pair of morphisms (µ, υ),
where µ : 2n→ n is called multiplication, and υ : 0→ n is called unit, and such that:

• µ ◦ (µ⊗ idn) = µ ◦ (idn ⊗µ)

• µ ◦ (υ ⊗ idn) = idn

• µ ◦ (idn ⊗ υ) = idn

�e monoid is called commutative if moreover:

• µ ◦ σn,n = µ y

With string diagrams, we usually represent the pair (µ, υ) by
(

,

)
. �e axioms

of a monoid are given by:

(M1) = = (M2) =

and the monoid is commutative if:

(MC) =

Example 2.4.2. Let B := {true, false} be the set of booleans. Let B be the full monoidal
subcategory of Set generated by B. �is constitutes a PROP, where 1 := B, and with σ
the usual swap of boolean variables: ∀x, y : 0 → 1, σ1 ◦ (x⊗ y) = y ⊗x. In this PROP,
we have in particular two arrows: ⊕ : 2 → 1 which is the boolean XOR operation, and
false : 0→ 1 the boolean value false. �en, (⊕, false) forms a commutative monoid.

Remark 2.4.3. Notice that if
[(

i : 2ni → ni, i : 0→ ni

)]
1≤i≤n

is a list of monoids,

then
(

1 n

…
…

…
: 2
∑
ni →

∑
ni, 1 n… : 0→∑

ni

)
is a commutative monoid.

A very important notion for the following is the the monoid in the dual category.
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p De�nition 2.4.4 (Comonoid): Let C be a PROP. A pair of morphisms (ν, τ) forms
a comonoid if it forms a monoid in Cop. If moreover the monoid is commutative, the
comonoid is called cocommutative. y

In terms of string diagrams, a pair of morphisms
(

,

)
is a comonoid if they

respect the upside-down version of the axioms of a monoid:

(CoM1) == (CoM2) =

Example 2.4.5. In the PROP B de�ned in Example 2.4.2, we have two arrows: copy : 1→
2 and discard : 1→ 0, such that

∀x : 0→ 1, copy ◦x = x⊗x and discard ◦x = id0

�e pair (copy, discard) forms a cocommutative comonoid.
We now have two very essential structures in a PROP. In the following we are inter-

ested in how such structures can interact. �e �rst is when they form a bialgebra.
p De�nition 2.4.6 (Bialgebra): A bialgebra in a PROP is a quadruple (µ, υ, ν, τ) such
that:

• (µ, υ) forms a monoid

• (ν, τ) forms a comonoid

• ν ◦ µ = (µ⊗µ) ◦ (id⊗σn,n ⊗ id) ◦ (ν ⊗ ν)

• ν ◦ υ = υ ⊗ υ

• τ ◦ µ = τ ⊗ τ

• τ ◦ υ = id0 y

With string diagrams, when they form a bialgebra, it is common to distinguish the

monoid and the comonoid by using two di�erent colours. �e quadruple
(

, , ,

)
is a bialgebra if

(
,

)
forms a monoid,

(
,

)
forms a comonoid, and:

(B1) = (B2) = (B3) = (B4) =

Example 2.4.7. In the PROP B described in Examples 2.4.2 and 2.4.5, the quadruple
(⊕, false, copy, discard) forms a bialgebra. Indeed, xoring two booleans then copying
the result is equivalent to copying the two booleans �rst and then xoring each pair
of copies, copying the boolean false results in having two copies of false, xoring two
booleans and discarding the result is equivalent to discarding both booleans, and �nally,
discarding a boolean that was just initialised to false amounts in doing nothing.
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Re�ning further on the bialgebra structure, we get the concept of Hopf algebra.
p De�nition 2.4.8 (Hopf Algebra): A bialgebra (µ, υ, ν, τ) is called a Hopf algebra if
there exists α : n→ n, called antipode, such that:

• µ ◦ (α⊗ idn) ◦ ν = υ ◦ τ = µ ◦ (idn ⊗α) ◦ ν y

Using string diagrams, if we represent the antipode α by , then the axiom translates
as:

(H) = =

Example 2.4.9. �e quadruple (⊕, false, copy, discard) forms a Hopf algebra with an-
tipode the identity. Indeed, we already know it forms a bialgebra, and if we xor two
copies of the same value, the result is always false.

�e other potential interaction of monoids and comonoids is the Frobenius algebra.
pDe�nition 2.4.10 (Frobenius Algebra): A (commutative) Frobenius algebra in a PROP
is a quadruple (µ, υ, ν, τ) such that:

• (µ, υ) forms a (commutative) monoid

• (ν, τ) forms a (cocommutative) comonoid

• (µ⊗ idn) ◦ (idn ⊗ ν) = ν ◦ µ = (idn ⊗µ) ◦ (ν ⊗ idn)

A Frobenius algebra is called special if moreover:

• µ ◦ ν = idn

In the case where the PROP is a †-PROP, one can de�ne a (special) (commutative) †-
Frobenius monoid as a pair (µ, υ) such that (µ, υ, µ†, υ†) is a (special) (commutative)
Frobenius algebra. y

�e last two axiom are made clearer when using string diagrams, where the colour
is taken to be the same for the monoid and the comonoid (the reason for this is given by
�eorem 2.4.17 in the following):

(F ) = =

and the specialness:

(Fs) =

Example 2.4.11. �is time, let B′ be the full sub-PROP of Rel generated byB := {true, false}.
Its morphisms are binary relations between tensors of 1 := B. One morphism of B′

is copy : 1 → 2 which relates any boolean to two copies of itself, i.e. ∀x : 0 →
1, (x, x⊗x) ∈ copy. Together with the morphism discard : 1 → 0, for which ∀x :
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0 → 1, (x, id0) ∈ discard, they form a comonoid (similarly to their counterparts in
Set). However, there are two more morphisms in B′, which we will denote respectively
by copyop and discardop, de�ned by:

∀x : 0→ 1, (x⊗x, x) ∈ copyop and (id0, x) ∈ discardop

�e couple (copyop, discardop) forms a monoid, and actually, the tuple:

(copyop, discardop, copy, discard)

forms a Frobenius algebra.
Remark 2.4.12. A commutative Frobenius algebra on object 1 induces a compact struc-
ture, that is some εn : 2n → 0 and ηn : 0 → 2n that satisfy the axioms (idn ⊗ εn) ◦
(ηn ⊗ idn) = idn = (εn ⊗ idn) ◦ (idn ⊗ ηn) and σn,n ◦ ηn = ηn. De�ne for instance εn
inductively as:

ε1 := τ ◦ µ i.e. and εn := ε1 ◦ (id⊗ εn−1 ⊗ id)

and similarly ηn as:

η1 := ν ◦ υ i.e. and ηn := (id⊗ ηn−1 ⊗ id) ◦ ηn

�e axiom σn,n ◦ ηn = ηn is obviously satis�ed by cocommutativity of ν. �e axiom
id = (ε1 ⊗ id) ◦ (id⊗ η1) is satis�ed:

= =

Similarly, the axiom (id⊗ ε1) ◦ (η1 ⊗ id) = id is satis�ed. It is then routine to show
that the generalised axiom (idn ⊗ εn) ◦ (ηn ⊗ idn) = idn = (εn ⊗ idn) ◦ (idn ⊗ ηn) is also
satis�ed.

Conversely, we can suppose we have a compact structure that reacts well with our
multiplication and comultiplication, and see what we can get from here:
Remark 2.4.13. Suppose we have a monoid (µ : 2 → 1, υ : 0 → 1), and there exists
ν : 1→ 2 and η : 0→ 2 (represented by ) such that:

(µ⊗ id) ◦ (id⊗ η) = ν = (id⊗µ) ◦ (η ⊗ id) i.e. = =

Notice that so far, the only assumptions on ν are that it is a 1→ 2 morphism, and that it
satis�es the two equations just above. �en the Frobenius axioms can be deduced from
associativity of (µ, υ):

= = = = = =
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We can even show that η = ν ◦ υ:

= =

However we do not have a Frobenius algebra, for there is no counit (and hence no
comonoid). �is can be patched if there exists τ : 1→ 0 such that:

(τ ⊗ id) ◦ η = υ = (id⊗ τ) ◦ η i.e. = =

�en:

= = =

And similarly for the le� counit. Coassociativity can be obtained thanks to:

= = =

Also, thanks to the previous remark, we can build a morphism ε : 2 → 0 such that it
forms a compact structure together with η.

�is shows how closely related associativity and the Frobenius axioms are.

Remark 2.4.14. A Frobenius algebra is special i� = . Indeed, if the algebra is

special, this equation is obvious, but we can also recover specialness from it:

= = = = =

When working with a special commutative Frobenius algebra in a PROP – which is
a strict monoidal category –, it is tempting to do some simpli�cations.

p De�nition 2.4.15 (Spider): In a PROP, the family (s(n,m) : n → m)n,m∈N is called a
spider if:

• ∀k ≥ 1, (idm ⊗ s(k+p,q)) ◦ (s(n,m+k) ⊗ idp) = s(n+p,m+q)

• ∀k ≥ 1, (s(n+k,m) ⊗ idq) ◦ (idn ⊗ s(p,k+q)) = s(n+p,m+q)

• σq,m ◦ s(p+n,q+m) ◦ σn,p = s(n+p,m+q)

• s(1,1) = id y
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In string diagrams representation, if s(n,m) is represented by
n...

...
m

, then, for k ≥ 1:

n... p...

...
m

...
q

…k =

n... p...

...
m

...
q

…k

n+p...

...
m+q

= =

p...

...
q

n...

...
m

n... p...

...
m

...
q

…
…

…
…

=

It so happens that the spiders capture the special commutative Frobenius algebras,
as spelt out in [Lac04] and graphically in [CP08].

Proposition 2.4.16 (Normal Form). Let µn be inductively de�ned as:

µ0 = υ, µn = µ ◦ (µn−1 ⊗ id) i.e. µn =

…

n︷ ︸︸ ︷

Similarly, νn is inductively de�ned as:

ν0 = τ, νn = (νn−1 ⊗ id) ◦ ν i.e. νn =
…︸ ︷︷ ︸
n

If f : n → m is a morphism generated from the special commutative Frobenius algebra
(µ, υ, ν, τ), and the symmetric monoidal structure maps σn,m, and if the graphical repre-
sentation of f is connected, then we have:

f = νm ◦ µn i.e. f =

…

…

�eorem 2.4.17 (Spider↔ Special Commutative Frobenius Algebra).
�e family (νm◦µn)n,m∈N forms a spider family. Conversely, given a spider family (s(n,m) :
n→ m)n,m∈N, the quadruple (s(2,1), s(0,1), s(1,2), s(1,0)) forms a special commutative Frobe-
nius algebra.

�e axioms of a Frobenius algebra can be more powerful than (B1). Under the right
assumption, the axioms of Frobenius algebras implies (B1):

Proposition 2.4.18. In a Frobenius algebra
(

, , ,

)
:

= ⇐⇒ =
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Proof I [⇒]:

= = = =

[⇐]:

= = = = =

J

Notice that any special commutative Frobenius algebra meets the previous condi-
tions, but it was already known from �eorem 2.4.17.

2.5 PROPs for �antum Mechanics

It is now time to apply the introduced notions to quantum mechanics. In [AC09], the
framework of choice was the †-compact PROPs. �is follows from the observation that
the Hilbert spaces of dimension the powers of some d and linear maps form a †-compact
PROP.
p De�nition 2.5.1 (FdHilb): We de�ne FdHilb as the monoidal category of �nite
dimensional Hilbert spaces. Its objects are Cn and its arrows are linear maps. �e object
Cn ⊗Cm can be seen asCnm, and if f =

∑
ai |xi〉〈yi| and g =

∑
bi |x′i〉〈y′i| then f ⊗ g :=∑

aibj
∣∣xix′j〉〈yiy′j∣∣. y

�is monoidal category is symmetric: for anyn,m ∈ N, σCn,Cm :=
∑

i∈{0,...,n−1}
j∈{0,...,m−1}

|ji〉〈ij|
are such that σCn,Cm ◦ σCm,Cn = idCnm .

�is serves as the framework for the categories where the dimension of the Hilbert
spaces are the powers of a single integer d.
pDe�nition 2.5.2 (Qudit, Qubit): For a �xed d, Qudit is the subcategory of FdHilb
restricted to objects of the form Cdk with k ∈ N. When d = 2, the category is denoted
Qubit. y

�ese are of course subcategories of FdHilb.

Proposition 2.5.3. Qudit is a †-compact PROP.

Proof I �e objects of the category are Cdk for k ∈ N. We denote k := Cdk , so that
n+m can be seen as Cdn ⊗Cdm . Hence, the objects can be seen as generated by Cd. Let
us also denote B := {0, · · · , d − 1} so that {|0〉 , · · · , |d− 1〉} is an orthonormal basis
of Cd. �e identity on n is given by:

idn :=
∑
x∈Bn

|x〉〈x|
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�e axioms of strict monoidal category are obviously satis�ed. For the category to be
symmetric, we need a braiding that is essentially self-inverse. We de�ne σn,m as:

σn,m :=
∑
x∈Bn
y∈Bm

|y x〉〈x y|

�en, if f =
∑
fxy |y〉〈x| and g =

∑
gzw |w〉〈z|, we get (ignoring some subscripts for

simplicity):

(g ⊗ f) ◦ σ =
(∑

fxygzw |w y〉〈z x|
)(∑

|y x〉〈x y|
)

=
∑

fxygzw |w y〉〈x z|

=
(∑

|y x〉〈x y|
)(∑

fxygzw |y w〉〈x z|
)

= σ ◦ (f ⊗ g)

�e other axioms of braided and symmetric monoidal categories are more easily satis�ed.
It is then routine to show that Qudit is a †-PROP if (

∑
fxy |y〉〈x|)† :=

∑
fxy |x〉〈y|.

It remains to prove that Qudit is compact-closed. Take ηn :=
∑
x∈Bn

|x x〉. εn is

imposed by εn = η†n =
∑
x∈Bn

〈xx|. �e equation σn,n ◦ ηn = ηn is obviously satis�ed. �e

snake equation also is:

(idn ⊗ εn) ◦ (ηn ⊗ idn) =

( ∑
x,y∈Bn

|x〉〈x y y|
)( ∑

z,w∈Bn
|z z w〉〈w|

)
=
∑
x∈Bn

|x〉〈x| = idn

and similarly for the second equation. In conclusion, Qudit is a †-compact PROP. J

We can now discuss the di�erent structures (monoid, Frobenius algebras and †-
Frobenius monoids, bialgebras, Hopf algebras) in the category Qudit. A �rst result
shows that any commutative †-Frobenius monoid exactly corresponds to an orthonor-
mal basis in Qudit [CPV12].

�eorem 2.5.4 (†-Frobenius Monoid ↔ Basis). Let (|i〉)0≤i<d be an orthonormal basis
of Cd, and µ :=

∑ |i〉〈i i| and υ :=
∑ |i〉. �en (µ, υ) forms a special commutative

†-Frobenius monoid.
Conversely, if (µ, υ) forms any special commutative †-Frobenius monoid on object 1,

then there exists an orthonormal basis (|i〉)0≤i<d such that µ =
∑ |i〉〈i i| and υ =

∑ |i〉.
Hence, using the Spider �eorem 2.4.17, together with �eorem 2.5.4, one can deduce

that spider families exactly represent orthonormal bases. We now want to extend the
notion of spider family by integrating morphisms that react well with the underlying
Frobenius algebra. �is will lead to the notion of phase group. It is introduced in [CD11],
but we take in the following approach a detour to what we call the diagonal morphisms
(also called pre-phase in [DD16]).
p De�nition 2.5.5 (Diagonal Morphisms): Let (µ, υ) be a monoid on object n. A mor-
phism f : n→ n is called diagonal (with respect to (µ, υ)), if:

µ ◦ (f ⊗ idn) = f ◦ µ = µ ◦ (idn ⊗ f) i.e. f

f

f
= =
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If f is a diagonal morphism that is unitary (i.e. f ◦ f † = idn = f † ◦ f ), then f is called a
phase shi�. y

Proposition 2.5.6. �e set of diagonal morphisms (with respect to (µ, υ) on object n)
forms a commutative monoid with ◦, i.e. for any diagonal morphisms f and g, f ◦ g is a
diagonal morphism, we have f ◦ g = g ◦ f , idn is a diagonal morphism, and obviously
f ◦ idn = f = idn ◦ f and ◦ is associative.

As a consequence, the set of invertible diagonal morphisms forms an abelian group (or
commutative group).

�e set of phase shi�s (with respect to (µ, υ)) forms an abelian group, called phase
group.

Proof I First, notice that for any diagonal morphism f : n → n there is a morphism
f ′ : 0→ n such that f = µ ◦ (f ′ ⊗ idn). Indeed:

f
f =

f
=

so f ′ = f ◦υ. Conversely, it is easy to check that for any f ′ : 0→ n, then µ◦(f ′ ⊗ idn) is
a diagonal morphism (by associativity). �e identity is obviously a diagonal morphism,
which is the neutral element for ◦. �e composition of two diagonal morphisms is a
diagonal morphism:

f ′

f
=

g
g′

f ′

=

g′

As a result, the set of diagonal morphisms forms a monoid with ◦. �e monoid is commu-
tative by commutativity of µ. �e results for invertible and unitary diagonal morphisms
directly follow. J

�rough this proof, we actually get a characterisation of diagonal morphisms. �ese
are exactly the morphisms that can be expressed as µ ◦ (f ′ ⊗ idn) for f ′ : 0→ n.

Now, back to the Frobenius algebras, it is fairly easy to see that we can extend the
notion of normal form in a special commutative Frobenius algebra.

Corollary 2.5.7. Let (µ, υ, ν, τ) be a special commutative Frobenius algebra on object 1.
If f : n → m is a morphism generated from the special commutative Frobenius algebra
(µ, υ, ν, τ), the set of diagonal morphisms {hi}i and the symmetric monoidal structure
maps σn,m, and if the graphical representation of f is connected, then we have:

f = νm ◦
(
©
i
hi

)
◦ µn i.e. f =

…

…

h0◦h1◦ · · ·
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Proof I �e only technical point is to prove that if f is a diagonal morphism w.r.t. µ,
then it is a “codiagonal morphism” w.r.t. ν:

f
=

f

= f

f
=

the rest is obvious by application of Proposition 2.4.16 and the axiom of diagonal mor-
phisms and the result of “codiagonal” morphism. J

We therefore get a natural extension of the spider families that include diagonal
morphisms.
p De�nition 2.5.8 (Extended Spider): Let ∆ be the set of diagonal morphisms w.r.t. a
monoid (µ, υ) on object 1. �e family of morphisms (s

(n,m)
δ : n→ m)n,m∈N

δ∈∆
is called an

extended spider if:

• ∀k ≥ 1, (idm ⊗ s
(k+p,q)
δ2

) ◦ (s
(n,m+k)
δ1

⊗ idp) = s
(n+p,m+q)
δ1◦δ2

• ∀k ≥ 1, (s
(n+k,m)
δ1

⊗ idq) ◦ (idn ⊗ s
(p,k+q)
δ2

) = s
(n+p,m+q)
δ1◦δ2

• σq,m ◦ s(p+n,q+m)
δ ◦ σn,p = s

(n+p,m+q)
δ

• s(1,1)
δ = δ y

In string diagram representation, for k ≥ 1:
n... p...

...
m

...
q

…k =

n... p...

...
m

...
q

…k

n+p...

...
m+q

=
δ1

δ2
δ1◦δ2

δ1

δ2
=

p...

...
q

n...

...
m

n... p...

...
m

...
q

…
…

…
…

δδ =δ δ

Corollary 2.5.9 (Extended Spider).
�e family (νm ◦ δ ◦ µn)n,m∈N

δ∈∆
, where ∆ is the set of diagonal morphisms w.r.t. (µ, υ) on

object 1, forms an extended spider family.
Conversely, given ∆ a set of morphisms, and an extended spider family (s

(n,m)
δ : n →

m)n,m∈N
δ∈∆

, the quadruple (s
(2,1)
id , s

(0,1)
id , s

(1,2)
id , s

(1,0)
id ) forms a special commutative Frobenius

algebra with ∆ the set of diagonal morphisms w.r.t. (s
(2,1)
id , s

(0,1)
id ).

�e notion of extended spider was led by a type of morphisms that interact well with
a monoid. We give another example of morphisms that interact in a particular way with
monoids.
p De�nition 2.5.10 (Morphism of Monoids): Let (µ, υ) and (µ′, υ′) be two monoids on
objects respectively n and m. A morphism f : n→ m is called a morphism of monoids
if:

f ◦ µ = µ′ ◦ (f ⊗ f) and f ◦ υ = υ′ i.e.
f

=
f f and f =

If moreover n = m and (µ, υ) = (µ′, υ′), we call f an endomorphism of monoids. y
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Notice that if f is invertible, one can express one monoid entirely as the other monoid
together with f and f−1. Moreover, in this case the second equality is provable:

f =
f

= f f

f -1

=
f

f -1

=
f

f -1

=

Interestingly, we can recover the de�nition of bialgebra by means of morphism of

monoids. Indeed, stating that is a morphism of monoids between
(

,

)
and(

,

)
gives = and = ; while stating that is a

morphism of comonoids between
(

,

)
and

(
,

)
gives = and

= . We can recover the last axiom by stating that is a morphism of

monoids between
(

,

)
and

(
,

)
.

We know how to characterise an orthonormal basis as a special commutative †-
Frobenius monoid, we have de�ned a family of morphisms that react speci�cally well
with a given orthonormal basis, and we have a compact way to express them by means
of spiders. We will show in the next sections how to build two graphical languages
for quantum computing: the so-called ZX-Calculus and ZW-Calculus; but before this
we want to discuss a particular property that such a language can have, and which is
directly related to the algebras explored previously.

2.6 Universality and Completeness

In the following, we are going to de�ne and study graphical languages for quantum
mechanics. A graphical language L is a PROP, where the morphisms are string diagrams,
and are called diagrams.

p De�nition 2.6.1 (Graphical Language): A graphical language L/R is a PROP L pre-
sented by a set of generators and a set of equationsR together with a function J.K : L→ S
called the standard interpretation of L/R in S.
L/R is said to represent S. L/R is said to be sound if J.K de�nes a functor J.K : L/R→
S. y

Hence, a graphical language for quantum mechanics if there is a function J.K from
the language to Qudit, which gives to all the diagrams an interpretation as a quantum
operator. We always consider that the standard interpretation is the identity on the
objects (i.o.o.).

If the language can represent any quantum operator, it is called universal.
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p De�nition 2.6.2 (Universality): For a �xed d, a graphical language L for qudits is
called universal if:

∀f ∈ Qudit, ∃D ∈ L, JDK = f

Equivalently, L is universal if the functor L
J.K→ Qudit is full. y

Notice that L is universal should be equivalent to J.K is surjective. However, since the
standard interpretation J.K is i.o.o., and since N = Ob(L) = Ob(Qudit) by de�nition
of PROPs, J.K is full ⇐⇒ J.K is surjective.

In general, two di�erent morphisms can represent the same quantum operator. �is
is dealt with by the set R of equalities between diagrams, that can be applied locally.
Such a set is called a monoidal theory or an axiomatisation, and it de�nes an equivalence
relation between morphisms. If D1 is equivalent to D2 under this equivalence relation,
we may denote R ` D1 = D2, and we have:

• R ` D1 ⊗D = D2 ⊗D

• R ` D ⊗D1 = D ⊗D2

• R ` D1 ◦D = D2 ◦D

• R ` D ◦D1 = D ◦D2

for any diagram D whenever it makes sense.
Obviously, for a given set of generators, di�erent axiomatisations can yield di�erent

languages. �is is why we denote a graphical language as L/R. �is can also be seen as
the language obtained by taking the diagrams of L modulo the equivalence relation R.

�e completeness is a crucial question for a graphical language.

p De�nition 2.6.3 (Completeness): Let L/R be a graphical language for quantum me-
chanics, with standard interpretation J.K : L/R→ Qudit. We say that L/R is complete
if for any two diagrams D1 and D2, we have:

JD1K = JD2K =⇒ R ` D1 = D2

Equivalently, the language L/R is complete if the functor J.K is faithful. y

�is is fundamental. If the language is complete, then whenever two diagrams rep-
resent the same quantum operator, they can be turned into one another solely using the
axiomatisation R. It means the language completely captures quantum mechanics, and
any computation can be conducted entirely inside the graphical language.

�e notion of completeness can be extended to sub-PROPs of Qudit (i.e. subcate-
gories of Qudit that are also PROPs). However, one has to be careful that some of these
sub-PROPs do not allow approximate universality.

p De�nition 2.6.4 (Approximately Universal Sub-PROP):
Let C be a sub-PROP of Qudit. C is approximately universal if:

∀f : n→ m ∈ Qudit, ∃(gp : n→ m)p∈N ∈ CN,

∀ε > 0, ∃N ∈ N, (p ≥ N) =⇒ (‖f − ι(gp)‖ < ε)

56



Chapter 2. Categorical �antum Mechanics

where ι : C → Qudit is the inclusion functor, and with ‖.‖ de�ned in Section 1.3. In
other word, C is approximately universal if its morphisms can approach any morphism
of Qudit with arbitrary precision. y

�is is permi�ed because the arrows of Qudit form a topological space.
In the thesis, we will mainly be interested in the category Qubit and languages that

represent it. An important sub-PROP of Qubit is Stab.
p De�nition 2.6.5 (Stab): Stab is de�ned as the sub-PROP of Qubit whose mor-
phisms are generated by:

• S(n,m) : n→ m := |0m〉〈0n|+ i |1m〉〈1n|

• H : 1→ 1 := |+〉〈0|+ |−〉〈1| y

�is PROP is a †-compact PROP (one can recover the compact structure of FdHilb
for instance with η := (S(1,1) ⊗S(1,1)) ◦S(1,2) ◦S(0,1) and ε := η†) . It is very close to the
stabiliser or Cli�ord group in the following sense: It is equivalent to a scaled stabiliser
group with initialisation and post-selected measure.

Proposition 2.6.6.

∀f : n→ m ∈ Stab, ∃g ∈ Cp, x ∈ C, f = x
(
idm ⊗

〈
0p−m

∣∣) ◦ g ◦ (idn ⊗ ∣∣0p−n〉)
Proof I We are going to proceed by induction. We need to show the result on the two
generators S(n,m) and H , and then on the two compositions ◦ and ⊗. Since the result
will be proven to be preserved by compositions, we can break S(n,m) into smaller parts.

Let us �rst de�ne the following morphisms:

µ :=
(
S(1,1)

)3 ◦ S(2,1) υ :=
(
S(1,1)

)3 ◦ S(0,1)

ν := S(1,2) ◦
(
S(1,1)

)3
τ := S(1,0) ◦

(
S(1,1)

)3

One can notice that (µ, υ, ν, τ) forms a Frobenius algebra. We can de�ne µn and νn for
arbitrary n by:

µ0 := υ µn+1 := µ ◦ (µn ⊗ id)

ν0 := τ νn+1 := (νn ⊗ id) ◦ ν

One can check that µn = |0〉〈0n| + |1〉〈1n| and νn = |0n〉〈0| + |1n〉〈1|, so that S(n,m) =
νm ◦ S(1,1) ◦ µn. Now instead of showing the result for S(n,m), we can show it for S(1,1),
µ, ν, υ and τ .

Remember that the gate set (CNot,RZ(π
2
),H) exactly synthesises the Cli�ord group.

H and S(1,1) are already in C1. One can check that:

µ = (id⊗ 〈0|) ◦ CNot
ν = CNot ◦ (id⊗ |0〉)

υ =
√

2H |0〉
τ =
√

2 〈0|H
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which means thatH , S(1,1), µ, ν, υ and τ are of the formx (idm ⊗ 〈0p−m|)◦g◦(idn ⊗ |0p−n〉)
with g Cli�ord. It remains to show that the two compositions preserve this structure.

Suppose fi = xi gi

|0pi−ni〉

〈0pi−mi |

ni

mi

. �en:

f1

f2

= x1x2

g2

|0p2−n2〉

〈0p2−m2|

g1

|0p1−n1〉

〈0p1−m1|
= x1x2

g2〈
0p1+p2−(m1+m2)

∣∣
g1

∣∣0p1+p2−(n1+n2)
〉

where
g2

g1

∈ Cp2+p1−m1 if gi ∈ Cpi .

f2f1 = x1x2 g2

|0p2−n2〉

〈0p2−m2|
g1

|0p1−n1〉

〈0p1−m1|
= x1x2 g2g1

∣∣0p1+p2−(n1+n2)
〉

〈
0p1+p2−(m1+m2)

∣∣
where g2g1 ∈ Cp2+p1 if gi ∈ Cpi . Hence, by composition, S(n,m) can be

put in the wanted form, and by induction, any morphism of Stab can be put in this
form. J

Stab is not approximately universal. If it were, then so would be the Cli�ord group.
In this thesis we will also be interested in another sub-PROP of Qubit.

p De�nition 2.6.7 (Clifford+T): Clifford+T is de�ned as the sub-PROP of Qubit
whose morphisms are generated by:

• T (n,m) : n→ m := |0m〉〈0n|+ ei
π
4 |1m〉〈1n|

• H : 1→ 1 := |+〉〈0|+ |−〉〈1| y

Again, this PROP is †-compact, and it is equivalent to a scaled Cli�ord+T group
with initialisation and post-selected measure. As we will show in Section 3.10 (�eo-
rem 3.10.2), this sub-PROP is approximately universal, though it can be inferred from a
analogous result on quantum circuits [NC10].

We can also de�ne a whole family of sub-PROPs of Qudit, indexed by a ring R.
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p De�nition 2.6.8 (QuditR): Let R be a subring of C. QuditR is the sub-PROP of
Qudit, such that its morphisms are linear maps of the form

∑
fxy |y〉〈x| where fxy ∈

R. y

Remark 2.6.9. If R is closed under conjugation, then QuditR is †-compact. Of course, if
R is dense in C, then QuditR is approximately universal.

Proposition 2.6.10. Clifford+T = QubitZ[ 12 ,e
i π4 ]

Notice that it makes Clifford+T approximately universal. Again, this proposition
will be proven in Section 3.10.

In the two following sections, we are going to de�ne two graphical languages for
quantum computing, which will use the previous structures ((co)monoids, bialgebras,
Hopf algebras, Frobenius algebras …). Although these were de�ned in the general case
on any object, in the following graphical languages, they are de�ned on object 1.

2.7 �e ZX-Calculus

�e premise of the ZX-calculus follows logically from the previous work on orthonormal
basis. �is language depicts how two such bases interact. To do so, we need to carefully
select the them. Since we want to capture the most of quantum mechanics, it makes
sense to take them as “far apart” from each other as possible.

pDe�nition 2.7.1 ([CD11] Unbiasedness, Complementarity): Let {|i〉}i be an orthonor-
mal basis of Cd. A quantum state |ψ〉 on Cd is called unbiased w.r.t. {|i〉}i if:

∀ |i〉 , |j〉 , | 〈i ψ〉 | = | 〈j ψ〉 |

Two orthonormal bases are complementary or mutually unbiased if each vector of one
basis is unbiased w.r.t. the other. y

More informally, a state is unbiased w.r.t. a basis if measuring the state in this basis
yields all the states in said basis with equal probabilities. �e two mutually unbiased
bases each form a †-Frobenius monoid, and their interaction yields an interesting struc-
ture [CD11, DD16], which is a variant of structures seen in Section 2.4.

p De�nition 2.7.2 (Scalar, Scaled Algebra): In a PROP, we call any morphism κ : 0→
0 a scalar. It is called invertible if there exists a scalar κ−1 such that κ⊗κ−1 = id0.

We say that some tuple (f0⊗κ0, · · · , fn⊗κn) of morphisms fi with invertible scalars
κi : 0 → 0 forms a scaled algebra if (f0, · · · , fn) forms an algebra. Such an algebra can
be a monoid, a bialgebra, a Hopf algebra, a Frobenius algebra, … y

Proposition 2.7.3 (Complementarity ↔ Bialgebra/Hopf). Let (µ , υ ) and (µ , υ ) be
two special commutative †-Frobenius monoids representing complementary bases in Qudit.
�en, both (µ , υ , µ† , υ†) and (µ , υ , µ† , υ†) form scaled bialgebras.

Furthermore, υ = (υ† ⊗ id) ◦ µ† ◦ υ and υ† = υ† ◦ µ ◦ (υ ⊗ id) if and only
if (µ , υ , µ† , υ†) forms a scaled Hopf algebra with antipode α =

(
(υ† ◦ µ )⊗ id

)
◦(

id⊗(µ† ◦ υ )
)

.
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Let us �rst see what the resulting equations are, and we will try to �x the scalars in
the morphisms a�erwards.

If we represent (µ , υ , µ† , υ†) as
(

, , ,

)
and similarly for (µ , υ , µ† , υ†),

the �rst scaled bialgebra we get is given by:

= = =

�e second result of Proposition 2.7.3 states, with the right scalars, that:

= ⇐⇒ = and =

where := represents the antipode.

Notice that the compact structures induced by (µ , υ ) and (µ , υ ) are mixed in the
condition for the Hopf algebra, as well as in the antipode. When the two coincide, that is

when = , then we directly get that (µ , υ , µ† , υ†) forms a scaled Hopf algebra
with antipode the identity. However, the two do not coincide in general [CPP08], but if
d = 2 (i.e. we are in Qubit), then they do.

Notice also that we ignored temporarily the scalar equation of the bialgebra. �is is
merely because it uses a non-trivial scalar. Let us de�ne µ n and µ†n as in Proposition
2.4.16. �en de�ne the scalar ςn := υ† ◦ µ n ◦ µ†n ◦ υ . Using the spider notation, this

scalar is represented as n... .

�en, in Qudit, we have:

ς⊗d−1
1 ⊗ ςd+1 = id0 i.e. d+1......

d−1︷ ︸︸ ︷
=

�is equation basically gives an inverse of ς1 for ⊗. Let us write ς -1
1 := ς⊗d−2

1 ⊗ ςd+1.
�en, all of the scalars in the previous scaled bialgebras come from the fact that

(µ ⊗ς1, υ ⊗ς -1
1 , µ

† , υ†)

forms an actual bialgebra.
�e ZX-Calculus is then a calculus of two interacting mutually unbiased bases, Z

and X, with phases for both. �e reason for taking phase shi�s and not more generally
diagonal morphisms is two-fold: �rst, it is driven by quantum mechanics, where the
operators are unitary; second, the phases form a group, which is easier to manipulate
than a monoid. Particularly, every phase shi� has a dagger that is also a phase shi�.

In the following, we restrict the language to the qubit case, that is, when d :=
dim(H) = 2. In this case, the two compact structures coincide, and the phase shi�s

60



Chapter 2. Categorical �antum Mechanics

w.r.t. the basis {|0〉 , |1〉} are of the form eiγ(|0〉〈0| + eiα |1〉〈1|). �e global phase eiγ is
sometimes ignored, and it turns out, it can be represented otherwise:

eiγ =
(〈

+3
∣∣+
〈
−3
∣∣) (∣∣03

〉
+
∣∣13
〉) (
〈+|+ eiπ 〈−|

) (
|0〉〈0|+ eiγ |1〉〈1|

)
(|0〉+ |1〉)

so we only give a generator for |0〉〈0|+ eiα |1〉〈1|, and we identify it with α, the value of
the phase shi�. Of course, we do this for both bases.

Proposition 2.7.4. Two mutually unbiased bases, {|0〉 , |1〉} and {|+〉 , |−〉}, together
with their respective phase shi�s, are su�cient to create a language that can represent any
linear map in Qubit.

Proof I First, notice that we can represent any complex number ρeiθ ∈ C: there exists
n ∈ N and γ ∈ R such that ρeiθ = 2n+1 cos (γ) eiθ, which can be represented by:

[(〈0|+ 〈1|)(|0〉+ |1〉)]⊗n (〈+|+ e−iγ 〈−|)(|0〉+ eiγ |1〉)(〈+|+ eiπ 〈−|)(|0〉+ eiθ |1〉)

Also, any unitary can be represented. (CNot, RZ , H) is a universal set of gates for uni-
taries, and each of these gates can be implemented:

CNot = ((|0〉〈00|+ |1〉〈11|)⊗ id⊗(〈0|+ 〈1|)) (id⊗(|++〉〈+|+ |−−〉〈−|)⊗(|+〉+ |−〉))
RZ(α) = |0〉〈0|+ eiα |1〉〈1|
H = e−i

π
4 (|0〉〈0|+ i |1〉〈1|)(|+〉〈+|+ i |−〉〈−|)(|0〉〈0|+ i |1〉〈1|)

Now, let |ψ〉 : 0 → n be an n qubit state, i.e. |ψ〉 ∈ C2n . �en, there exists a uni-
tary U : n → n such that |ψ〉 =

(
1√
2
n ||ψ〉|

)
U
√

2
n |0n〉. It can be represented since(

1√
2
n ||ψ〉|

)
∈ C, U is unitary, and

√
2
n |0n〉 = (|+〉+ |−〉)⊗n.

Finally, given an arbitrary mapD : n→ m, we haveD = (idn ⊗ εn) ([(D ⊗ idn)ηn]⊗ idn),
where εn and ηn are the morphisms obtained from the two bases thanks to Remark 2.4.12
and the fact that in the qubit case, these compact structures coincide. Since (D ⊗ idn)ηn
is a state 0→ n+m, it is representable, so D is representable. J

However, we add to the language one last generator: the Hadamard gate H . �is
generator comes in handy for it allows to transform one basis into the other. As seen in
the proof of Proposition 2.7.4, it can be wri�en as a composition of phase shi�s [DP09]:

H := e−i
π
4 (|0〉〈0|+ i |1〉〈1|) ◦ (|+〉〈+|+ i |−〉〈−|) ◦ (|0〉〈0|+ i |1〉〈1|)

Notice that H quali�es as an involutive morphism of monoids: it allows to change the
basis {|0〉 , |1〉} to {|+〉 , |−〉} and vice-versa, so H2 = id.

We �nally have all the generators of the ZX-Calculus, and we can now give a formal
de�nition [CD11, CK17].
pDe�nition 2.7.5 (ZX-Calculus): �e qubit ZX-Calculus, or ZX, is a †-compact graph-
ical language that represents Qubit, with the following set of generators and their
string-diagram representation:

• R(n,m)
Z (α) : n→ m ::

n...

...
m

α

61



2.7. �e ZX-Calculus

• R(n,m)
X (α) : n→ m ::

n...

...
m

α

• H : 1→ 1 ::

Where α ∈ R. �e PROP structure is provided by σ : 2 → 2 :: ; and the compact
structure by ε : 2→ 0 :: and η : 0→ 2 :: .

�e functor † is such that:

•
(
R

(n,m)
Z (α)

)†
= R

(m,n)
Z (−α)

•
(
R

(n,m)
X (α)

)†
= R

(m,n)
X (−α)

• H† = H

�e language comes with a PROP-functor J.K : ZX → Qubit, called the standard
interpretation, and given by:

•
r
R

(n,m)
Z (α)

z
= |0m〉〈0n|+ eiα |1m〉〈1n|

•
r
R

(n,m)
X (α)

z
= |+m〉〈+n|+ eiα |−m〉〈−n|

• JHK = |+〉〈0|+ |−〉〈1|

• JσK =
∑

i,j∈{0,1}
|ji〉〈ij|

• JηK = |00〉+ |11〉

• JεK = 〈00|+ 〈11|

Whatever the axiomatisation chosen for the ZX-Calculus, we always consider that when-
ever two diagrams are isomorphic, then they are equal. y

By convention, when the parameter of RZ or RX is 0, we may omit it.
Remark 2.7.6. We did not give a speci�c monoidal theory to the language yet. �is
omission is conscious. �e axiomatisation varies from one restriction of the language
to the other, hence several will be given throughout the thesis. Of course, the study of
the algebras in what precedes was not done in vain. Most of the axioms for Frobenius
algebras and Hopf algebras will be found in every axiomatisation.

What always appears in a ZX-axiomatisation is that two isomorphic diagrams are
equal. Take it as a feature of the language so important that it is part of the “freest”
version of the ZX-Calculus considered. �is captures essential equations of †-compact
PROPs, but also things like:

= =α α
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Remark 2.7.7. �e ZX-Calculus does not only have a morphism of monoid, H , but also
two non-trivial endomorphisms of monoid. Indeed π is an endomorphism of monoid

for
(

,

)
and similarly π for

(
,

)
. �is trait appeared in early axiomatisa-

tions, but was proven to be derivable from other axioms [BPW17a].
�is language is universal for Qubit [CD11], although it is interesting to study some

of its restrictions, called fragments.
p De�nition 2.7.8 (Fragment of the ZX-Calculus): Let F be an additive subgroup of
R. �e fragment F of the ZX-Calculus is the restriction of the language where the mor-
phisms are generated by {R(n,m)

Z (α), R
(n,m)
X (α), H | α ∈ F}. We may write the resulting

language ZX[F ]. Also, if F is generated by a �nite set of numbers {a0, · · · , an}, we may
denoted ZX[a0, · · · , an] the resulting language. By contrast, ZX is the unrestricted ZX-
Calculus, i.e. where the angles are in R. y

Of course, axiomatisations can be applied to fragments of the language, provided
all the phase shi�s in the set of rules are part of the fragment. We hence denote by
ZX[F ]/R the language resulting of the equivalence relation R applied to the fragment
F of the ZX-Calculus. In this case, when an axiom of R displays unconstrained phase
shi�s (see e.g. (S) in Figure 2.1), it is assumed for all the phase shi�s in the fragment F .

A �rst example of an axiomatisation of the ZX-Calculus is the set of rules ZXπ/2, given
in Figure 2.1. �is axiomatisation, partially introduced in [CD11], completed in [DP09,
Bac15], and simpli�ed in [BPW17a], was proven to be complete for ZX[π

2
] [Bac14a].

… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir)

=(CP) =(B) =(IV)

π
2

π
2 -π

2=(HD) α

…
= α

…

…

…(H)
π

=
π

(Z)

Figure 2.1: Set of rules ZXπ/2 for the Cli�ord fragment of the ZX-Calculus. �e right-
hand side of (IV) is an empty diagram. (…) denotes zero or more wires, while ( · · · )
denotes one or more wires.

�eorem 2.7.9 (Cli�ord ZX). �e language ZX[π
2
]/ZXπ/2 is complete, i.e. the functor

J.K : ZX[π
2
]/ZXπ/2 → Qubit is faithful.

�e proof uses a particular notion of states, known as graph states [EEC08].
p De�nition 2.7.10 (Graph States): �e set of graph states is a set of particular sta-
biliser states generated by
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• |+〉

• Swap :
∑ |ji〉〈ij|

• CZ :
∑

(−1)ij |ij〉〈ij|

Any graph state can be represented by a graphG := (V,E) where V is the set of vertices
and E the set of edges of G. Each vertex represents a qubit initialised in |+〉, and each
edge between vertices v1 and v2 represents a CZ applied on the two qubits represented
by v1 and v2. We denote the resulting state |G〉. y

Sketch of Proof . First, thank to the map/state duality, one can consider only the states
in ZX[π

2
]. �e graph states have a nice interpretation in ZX. If G := (V,E) is a graph,

we can build a ZX-diagram DG as follows:

• Each vertex in G is a green node with scalar in DG connected to an output.

• Each edge between v1 and v2 in G is a wire with between the corresponding
nodes.

For instance, if G = , then DG = . Of course, the

diagram is built so that JDGK = |G〉.
�rough a strategy known as pivoting [DP14] that uses the rules of ZXπ/2, one can

reduce a diagram of ZX[π
2
] to a graph state with additional 1-qubit morphisms on the

outputs. �ese morphisms are identi�ed as being elements ofC1, i.e. the stabiliser of the
one-qubit Pauli group G1.

�is reduced form is not unique, but it is up to local complementations, which are
derivable using the rules in ZXπ/2. In ZX, a local complementation is the following trans-
formation:

N(v)…

…

…

…-π
2

=
v

π
2

N(v)…

…

…

…

v

π
2

where N(v) denotes the neighbourhood of node v and N(v) the complementary of the
subgraph N(v), that is u1 and u2 share an edge in N(v) i� they do not in N(v). /

ZX[π
2
]/ZXπ/2 is complete, however the diagrams of ZX[π

2
] exactly represent mor-

phisms of Stab [Bac14a, Bac15].

Proposition 2.7.11. �e functor J.K : ZX[π
2
]/ZXπ/2 → Stab is full and faithful.

Hence, this language is not (approximately) universal for quantum mechanics. Ac-
tually, it has been proven that this axiomatisation does not make the unrestricted ZX-
Calculus complete [SdWZ14].

�eorem 2.7.12. �e functor ZX/ZXπ/2 → Qubit is not faithful.

Because of this, one might want to �nd a middle ground: a complete axiomatisation
for an approximately universal fragment of the ZX-Calculus. Such a fragment would
allow for computational speed-ups, while at the same time simplifying the search for a
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complete axiomatisation. A natural candidate for such a fragment would ZX[π
4
], for the

functor ZX[π
2
]→ Clifford+T is full, and Clifford+T is approximately universal.

A �rst partial answer was found, for one-qubit Cli�ord+T unitaries [Bac14b].

Proposition 2.7.13. Consider two morphisms f : 1 → 1 and g : 1 → 1 generated by
binary operators of ZX[π

4
] i.e. by (R

(1,1)
Z (π/4), R

(1,1)
X (π/4), H), and consider the equation:

=(K)π

α

π

απ

-α

�en:
JfK = JgK =⇒ ZXπ/2+(K) ` f = g

where ZXπ/2+(K) denotes the set of rules ZXπ/2 enriched with the equation (K).

One of the main results of the thesis is to provide a complete axiomatisation for
the many-qubit Cli�ord+T diagrams. We will also explore some other languages and
axiomatisations. Every time, a �rst step towards completeness will be to recover one
known axiomatisation from which some useful lemmas can be derived. �e simplest ax-
iomatisation of the ZX-Calculus is not for the Cli�ord fragment, but for the real stabiliser
[DP14]. In this axiomatisation, denoted ZXπ, the only novelty is that (HD) is replaced
by:

π =(HL)
i.e. ZXπ := ZXπ/2 \{(HD)} ∪ {(HL)}.

Most axiomatisations for the ZX-Calculus (all of those that are presented in this the-
sis) have the axiom (H), and are powerful enough to prove that is involutive, i.e. =

. In this case, colour-swapping preserves the equality.

Proposition 2.7.14. Let F be a fragment, and J.K ↔ : ZX[F ]→ ZX[F ] the interpreta-
tion inductively de�ned as:

n...

...
m

α 7→
n...

...
m

α

n...

...
m

α 7→
n...

...
m

α 7→

7→ 7→ 7→ 7→

D2 ◦D1 7→ JD2K
↔ ◦ JD1K

↔ D1 ⊗D2 7→ JD1K
↔ ⊗ JD2K

↔

If an axiomatisation R is such that R ` (H),
(

=
)

, then:

R ` D1 = D2 ⇐⇒ R ` JD1K
↔ = JD2K

↔

Proof I We can show inductively that for any ZX[F ]-diagram D, R ` JDK ↔ = D
…

… :
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• R `
t n...

...
m

α

| ↔

=

n...

...
m

α =

n...

...
m

α =

n...

...
m

α

• R `
t n...

...
m

α

| ↔

=

n...

...
m

α =

n...

...
m

α

• R `
r z ↔

= =

• R `
r z ↔

= =

• R ` J K ↔ = = =

• R ` J K ↔ = = =

• R `
q y ↔

= = =

• R ` JD2 ◦D1K
↔ = JD2K

↔ ◦ JD1K
↔ =

D2…

D1

…

… =
D2…

D1

…

… = D2◦D1…

…

• R ` JD1 ⊗D2K
↔ = JD1K

↔ ⊗ JD2K
↔ = D1

…

… D2

…

…
= D1⊗D2…

…

�en, if R ` D1 = D2, we obviously have:

R ` JD1K
↔ = D1

…

… = D2

…

… = JD2K
↔

J

�is is the case when (H), (Ir) and (Ig) are given in the axiomatisation:

Lemma 2.7.15. If R ` (H), (Ir), (Ig), then colour-swapping preserves the equality, since:

=
(Ir)

=
(H)

=
(Ig )

and thanks to Proposition 2.7.14.
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In all the axiomatisations that we are going to give in this these, colour-swapping
of diagrams generated by RZ , RX and H can always be proven. Hence, when referring
to an axiom or a lemma, we will either signify the equation itself, or its colour-swapped
version.

�en, we provide in Figure 2.2 some useful equations between ZX-diagrams as well
as their dependencies. If there is an arrow eq1 → eq2, it means that eq1 is used to derive
eq2. �e spider rules (S) and (I), the colour-change rule (H), which together with (I)
allows for colour-swapping, and the biagebra rule (B), are always supposed to be in the
axiomatisations.

Proposition 2.7.16. In an oriented graph, let us denote Γ−(v) the incoming neighbourhood
of vertex v. In Figure 2.2, for any eq in the set of vertices, either Γ−(eq) = ∅ and the equation
is considered as an axiom for its neighbours, or eq is derivable using Γ−(eq) (assumed as
axioms), and rules (S), (B), (I) and (H), i.e.: (S), (B), (I), (H),Γ−(eq) ` eq.

Remark 2.7.17. Notice that having a cycle in the graph (between (CP) and (Hopf)) is not
a problem. �is simply means that in a se�ing where one has (S), (I), (B) and (H), then
(CP) and (Hopf) are equivalent.

(CP)
=

(Hopf)
=
(s2)

π π

π

… …=
(πdist)

(HL)(HD)

(IV)

α

π

β

π

α+β

π
=
(s+)

α =
(sα)

(K)

π
=
(sπ) =

(I⊗)
1

-π
2 =

(|i〉)
π
2

-π
2

Figure 2.2: Lemmas and their dependencies. 1 represents any non-empty diagram such
that

r
1

z
= 1. (S), (B), (I) and (H) are assumed.

Proof of Proposition 2.7.16 I
• (S), (I), (B), (CP) ` (Hopf):

=
(I)

=
(S)

=
(B)

=
(CP)

=
(S)
(I)
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• (S), (I), (B), (Hopf) ` (CP):

=
(S)

=
(B)

=
(S)

=
(Hopf)

=
(I)

=
(S)

• For the proof that (S), (I), (CP), (Hopf), (I⊗) ` (IV), notice that in (I⊗), if 1 is non-

empty, there exists a diagram 1′ such that 1′=1 . Indeed, there is necessarily
at least one wire in 1 , because the only non-empty, wireless scalars are R(0,0)

Z (α) and
R

(0,0)
X (α), both of which have interpretation 1 + eiα 6= 1. Hence, one can use (Ir) and (S)

to create the node : = . �en:

= 1′ =
(CP) 1′

=
(Hopf)

1′
=
(I)
(S)

1′ =

• (S), (CP) ` (s2):

=
(S)

=
(CP)

=
(S)

• (HD), (S), (IV), (Hopf), (H) ` (HL):
First:

=
(HD)

-π
2

π
2

π
2 =

(S)
(IV)

-π
2

π
=

(Hopf)

-π
2

π
(2.1)

�en:

π
2 =

(S)
(IV)

-π
2π

=
(CP)

-π
2π

=
(2.1)

=
(CP)

=
(H)

(2.2)

Hence:

-π
2 =

(S)
(IV)

π
2

π
2

π
2

=
(CP)

π
2

π
2

π
2

=
(2.2)

=
(IV)

(2.3)

Finally:

=
(2.1)

-π
2

π
=

(2.3) π
=
(IV)

π
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• (B), (H), (S), (Hopf), (HL) ` (πdist):
First:

=
(B)

=
(H)

=
(B)

(2.4)

=
(H)
(S)

=
(H)

(Hopf)

�en:

π
=
(S)
(B)

π

=
(HL)

=
(2.4)

=
(HL)
(S)

ππ

• (HL), (CP), (H) ` (sπ):

π
=

(HL)
=

(CP)
=
(H)

• (S), (CP), (H), (πdist) ` (s+):

α

π

β

π
=
(S)

(CP)
(H) α

π

β

π
=

(πdist)
α β

π

=
(S) α+β

π

• (S), (K), (CP), (s+), (IV), (sπ) ` (sα):

α
=
(S) α

π

π
=
(K)
(IV)

-α
π

π α

π
=
(S)

(CP)

-α
π

α

π

π
=

(s+)
(IV)

π
=
(sπ)

• (H), (HD), (S), (IV), (CP) ` (|i〉):

-π
2 =

(H)

-π
2

=
(HD)
(S)
(IV)

π
2

-π
2

=
(CP)
(S)

π
2

-π
2

J

Moreover, the two axiomatisations ZXπ/2 and ZXπ allow multiplication of all the
phase shi�s by −1:

Lemma 2.7.18. For an arbitrary fragment F , let J.K−1 : ZX[F ] → ZX[F ] be the inter-
pretation that multiplies all the angles by −1. �en:

∀D1, D2 ∈ ZX[π
2
], ZXπ/2 ` D1 = D2 ⇐⇒ ZXπ/2 ` JD1K−1 = JD2K−1

∀D1, D2 ∈ ZX[π], ZXπ ` D1 = D2 ⇐⇒ ZXπ ` JD1K−1 = JD2K−1
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2.8. �e GHZ/W-Calculus

Proof I We can show that all the axioms hold under interpretation J.K−1. All cases
except (HD) in ZXπ/2 are trivial. �anks to Proposition 2.7.16, ZXπ/2 ` (πdist), hence:

-π
2

π
2

-π
2

=
(S)

-π
2

π
2

π
2

π
=

(πdist)
-π
2

π
2

π
2

π

π
=
(S) π

2

π
2 -π

2 =
(HD)

J

Remark 2.7.19. In the ZX-Calculus, we consider the angles to be inR/2πZ, although it is
actually provable provided we have the adequate axioms or lemmas (in particular (HL)
and (Hopf)):

2π
=
(S)

π

π =
(HL)

=
(S)

=
(H)

=
(Hopf)

=
(H)
(S)

2.8 �e GHZ/W-Calculus

Contrarily to the ZX-Calculus, the two interacting monoids in the GHZ/W-Calculus are
very di�erent. �e generators of the language are initially motivated by equivalence
classes of entanglement on three qubits. It was later shown that it formed a ��ing lan-
guage for fermionic quantum computing [HdFN18].
p De�nition 2.8.1 (LOCC, SLOCC): Let |ψ〉 and |φ〉 be two states on n qubits. We say
that |ψ〉 and |φ〉 are LOCC-equivalent if one can be turned into the other by application
of local unitaries, that is, the tensor product of one-qubit unitaries: U = U1 ⊗ . . .⊗Un
with U †i Ui = id for all i.

If we drop the unitarity requirement (but keep invertibility), we get the SLOCC-equi-
valence: �e two n-qubit states |ψ〉 and |φ〉 are SLOCC-equivalent if they can be turned
into one-another by invertible local operators: O = O1 ⊗ . . .⊗On such that all the Oi

are invertible. y

Notice that SLOCC is more permissive, and hence results in a smaller number of
equivalence classes. Yet, this number is in�nite for states on 4 qubits and more. A state
on two qubits can either be entangled or not. �ere is only one equivalence class for
each case. For a three-partite entangled state, however, there are two classes of states
that are entangled on three qubits [DVC00]. Representatives of these two classes are the
so-called GHZ state |000〉+ |111〉, and W state |001〉+ |010〉+ |100〉.

�e GHZ/W-Calculus was hence introduced as a graphical language making these
two classes interact [CK10]. In [Had15], the language was made complete for a non-
universal sub-PROP of Qubit, and later was made complete for Qubit (and actually
also a lot of its sub-PROPs) [HNW18]. Although an embryo of the language exists for
qudits [Had17], here, we only give its description for qubits.

First of all we need multiplications and co-multiplications, given by the states GHZ
and W. It su�ces to use the map/state duality to get them, e.g.:

:= where represents the W state, and represents the projector
〈00|+ 〈11|.
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Chapter 2. Categorical �antum Mechanics

Concerning the GHZ state, notice that it yields an already known multiplication,
represented : µ := |0〉〈00| + |1〉〈11| a�er map/state duality. Together with υ :=

|0〉+ |1〉, represented , it forms a †-Frobenius monoid. It also has diagonal morphisms
of the form s(|0〉〈0| + r |1〉〈1|). We ignore the global scalar s, and only give a generator
for |0〉〈0|+ r |1〉〈1| that we identify with r. �is leads to an extended spider of the form:

n...

...
m

r

Notice here that the choice was made to take an arbitrary complex number r as argu-
ment (actually an arbitrary ring element), instead of a phase. As a result, the diagonal
morphisms are not necessarily phase shi�s, however this choice simpli�es some calcu-
lations, such as the normal form of a ZW-diagram.

�e second monoid is formed from the W state. Notice that the W state is the sum
of the three 3-qubit states of Hamming weight 1:

|001〉+ |010〉+ |100〉 =
∑

x∈{0,1}3
|x|=1

|x〉

where the Hamming weight |s| of a string s is the number of non-zero symbols in s. It
is then fairly natural to de�ne 1- and 2-qubit W states as |1〉 and |01〉+ |10〉. �ese will
help de�ne a monoid. Indeed, if we take the following string diagram representations:

: |1〉 : |0〉〈1|+ |1〉〈0| : |0〉〈01|+ |0〉〈10|+ |1〉〈00|

then the pair
(

,

)
forms a monoid. We also de�ne the upside-down version of these

three generators as representing the transpose of the associated linear map. It is actually
possible to de�ne a degenerate version of a spider family that �ts the W states.

Notice that is an involutive endomorphism for the monoid
(

,

)
, and more

interestingly, for any complex number r, r is an endomorphism for
(

,

)
.

�e W-monoid does not de�ne a †-Frobenius monoid. �is is a �rst hint to the fact
that the interactions of the two structures are not usual. For instance, the two pairs(

,

)
and

(
,

)
satisfy the axioms of Hopf algebras with identity as the an-

tipode:

= =

= = =
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2.8. �e GHZ/W-Calculus

Notice however that it is not a proper Hopf algebra, for
(

,

)
is not a comonoid.

Now, because
(

,

)
is not a †-Frobenius monoid, we have not speci�ed how it

reacts with
(

,

)
, although two equations have already been found above. �ese

seem to indicate that there is some sort of bialgebra between the two. However it does
not function with the usual swap σ. Interestingly, there exists a “degenerate” swap σ′ :

2 → 2 such that
(

, , ,

)
satis�es the axioms of Hopf algebra with antipode

-1 :

= σ′ =-1

Again, this is not a proper Hopf algebra, for σ′ cannot be considered as a proper swap.
For the biagebra to function, σ′ must represent the map |00〉〈00|+ |01〉〈10|+ |10〉〈01| −
|11〉〈11| = ∑(−1)ij |ji〉〈ij|, and it does not satisfy all the axioms of PROP. For instance,
σ′ ◦ η 6= η and in general (id⊗ f) ◦ σ′ 6= σ′ ◦ (f ⊗ id). It does satisfy, however, equalities
that are known as the (modi�ed) Reidemeister moves:

σ′

=
σ′

σ′

σ′
= =

σ′

σ′

σ′ σ′

σ′

σ′

In the following, the morphism σ′ will be denoted .
p De�nition 2.8.2 (ZW-Calculus): �e qubit ZW-Calculus, or ZW, is a †-compact
graphical language, with the following set of generators:

• Z(n,m)(r) : n→ m ::

n...

...
m

r

• W (n,m) : n→ m ::

n...

...
m

• σ′ : 2→ 2 ::

where r ∈ C. �e PROP structure is provided by σ : 2 → 2 :: ; and the compact
structure by ε : 2→ 0 :: and η : 0→ 2 :: .

�e functor † is such that:

•
(
Z(n,m)(r)

)†
= Z(m,n)(r)

•
(
W (n,m)

)†
= W (m,n)
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• σ′† = σ′

�e language comes with a PROP-functor J.K : ZW → Qubit, called the standard
interpretation, and given by:

•
q
Z(n,m)(r)

y
= |0m〉〈0n|+ r |1m〉〈1n|

•
q
W (n,m)

y
=

∑
x∈{0,1}m
y∈{0,1}n
|x·y|=1

|x〉〈y|

• Jσ′K =
∑

i,j∈{0,1}
(−1)ij |ji〉〈ij|

• JσK =
∑

i,j∈{0,1}
|ji〉〈ij|

• JηK = |00〉+ |11〉

• JεK = 〈00|+ 〈11|

where x · y is the concatenation of x and y, and |.| is the Hamming weight, i.e. the
number of non-zero symbols in a word. Hence, |x · y| = 1 means that there is only one
symbol 1 in both x and y.

We can consider fragments of the PROP where the parameters ofZ(n,m) are restricted
to a ring R ⊆ C that is closed under conjugation. Such a fragment will be denoted
ZW[R]. To each is associated an axiomatisation ZWR, given in Figure 2.3. y

Here, we cannot use the result that every graph isomorphism between diagrams pre-
serves the semantics if we consider the nodes as non-oriented, precisely because σ′ in
some sense has to be considered as a swap. Particularly, 6= . However, what re-
mains true is that any graph isomorphism between two σ′-free ZW-diagrams preserves
the semantics. Alternatively, if σ′ is understood to be an oriented node, any graph iso-
morphism that respects the symmetries of σ′ preserves the semantics.

�e axiomatisation presented here has been sightly simpli�ed from the one found in
[HNW18]. Particularly, the rule 4a allows us to derive:

sr =
(1b)

sr

=
(6a)
(3a)

sr

=
(4a)

r+s =
(1b)

r+s

�e axiomatisation has the powerful property:

�eorem 2.8.3 (Completeness of the ZW-Calculus [HNW18]).
For any subring R of C, ZW[R]/ZWR is complete, i.e. J.K : ZW[R]/ZWR → Qubit is
faithful.

Historically, the ZW-Calculus was not given with parameters in a ring, but merely
in {−1, 1} [Had15]. We denote this particular restriction ZW. Of course the rule 4 has
no meaning in this se�ing, and is replaced by the rule 4′ give in Figure 2.4.
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2.8. �e GHZ/W-Calculus

=
0b

r

· · · · · · · · ·
r

· · ·

=
0a

· · · · · · · · · · · ·
=
1b

r
s

· · · · · ·

· · ·· · ·
...

· · ·
rs
· · ·

=
1a

· · · · · ·

· · ·· · ·

· · ·

· · ·

= =
2a 2b 2c

=-1
= =
3a 3br r

r

=
4a

r s r+s

4b
=0

4c
= = =

6a 6br

= = =
5a 5b 5c

=
X

=
7…

… …

…

-1 =R3
R2
=

Figure 2.3: Set of rules ZWR for the ZW-Calculus over the ring R. r, s ∈ R.

=
4′a

-1

4′b
=

Figure 2.4: Rule 4′. �e resulting axiomatisation is denoted ZW.

�eorem 2.8.4 ([Had15]). �e restriction ZW/ZW is complete, i.e. J.K : ZW/ZW →
Qubit is faithful.

Sketch of Proof . �e proof for both theorems rely on normal forms. First of all, if the
parameters are only in {−1, 1} let us inductively give syntactic sugar such as to recover
a ring, the smallest containing −1 and 1, that is Z:

• −1 and 1 are already de�ned

• :=
-1

0

• If n ≥ 2: :=
n

n+1

• If n ≤ −2: :=
n

n−1
-1
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Now that we have an arbitrary ring R in any case, let us give the normal form. Again,
we use the map/state duality, so that the normal form can be given only for states. A
state |ψ〉 on n quits can always be wri�en as |ψ〉 =

∑
ri

∣∣∣b(i)
1 · · · b(i)

n

〉
. �e normal form

of the state |ψ〉 is then:

r1 rqr2

…

…

where the node with parameter ri is connected to the jth output i� b
(i)
j = 1. �e proof

then amounts to showing that all the generators can be put in normal form, and that the
two compositions of diagrams in normal form can be put in normal form. Some of the
axioms, such as rule X, have purposely been chosen so that this can be done. /

�e ZW-Calculi are hence complete, but they are not universal, unlessR = C. How-
ever, ZW[R] exactly represents a sub-PROP of Qubit.

Proposition 2.8.5. �e functor J.K : ZW[R]/ZWR → QubitR is full and faithful.

Hence, if R is dense in C, then ZW[R] represents an approximately universal frag-
ment of Qubit.
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ZX-Calculus
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Chapter 3

Cli�ord+T

We have seen that the set of axioms ZXπ/2 is not complete for the unrestricted ZX-
Calculus ZX, but that a simple patch can be done to achieve completeness for one-qubit
unitaries of, arguably, the simplest approximately universal fragment of quantum me-
chanics: Cli�ord+T. In this chapter, we provide a complete axiomatisation for the many-
qubit ZX-diagrams of Cli�ord+T ZX[π

4
], and we prove the completeness thanks to the

language ZW/ZW which is complete. To do so, we �rst need to alter the la�er language
to �t our needs while preserving the completeness. We de�ne an intermediary language,
∆ZX, for which we provide an axiomatisation. We then prove it to be complete for a
fragment (the π-fragment), thanks to a back and forth system of interpretations between
∆ZX and ZW, that appears to have the same expressive power. Finally, by showing
that all the generators of ∆ZX can be expressed in ZX[π

4
], we derive a new set of ax-

ioms, that we prove to be complete for Cli�ord+T, again using a back-and-forth system
of interpretations between ∆ZX[π] and ZX[π

4
]. �is time, since the la�er is more ex-

pressive than the former, one of the interpretations will need an encoding of what ZX[π
4
]

can express into what ∆ZX[π] can express.

3.1 �e Triangle

A key point in the proof of completeness for ZX[π
4
] is the link (the two interpretations)

between the two languages. �e ZX-diagrams can easily represent the GHZ state, as
well as any 3-qubit state that is SLOCC-equivalent to the GHZ state. �e di�culty is
to represent the W state with a ZX-diagram. Diagrammatically, the white spider of the
ZW-Calculus is easily represented in the ZX-Calculus (recall that in ZW the parameters
are only −1 and 1). �e black spider is the troublesome one.

From a Morphism of Monoids in ZW

Recall that
(

,

)
forms a comonoid in the ZW-Calculus. A �rst approach could be

to try and build the (co)diagonal morphisms for this comonoid. By the proof of Propo-

sition 2.5.6, these diagonal morphisms are exactly of the form
f

. If f : 1 → 0 is
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3.1. �e Triangle

generic, i.e. JfK = x 〈0|+ y 〈1|, then

u

v
f

}

~ =

(
x y
0 x

)
.

When either x or y is null, then the map is colinear to either the identity or |0〉〈1|,
both of which are easily expressible in the ZX-Calculus, up to a global scalar. In the
general case, however, things get trickier, and the map cannot be expressed as a Cli�ord
map times a scalar. For instance, let us consider the case x = y = 1. Let t denote the

map
r z

=

(
1 1
0 1

)
.

Interestingly, it has been noted that is not only a diagonal morphism w.r.t. ,
but also a morphism of monoids [vdW]. Consider the following diagram in ZW/ZW:

One can check that its interpretation is |1〉〈11|+|0〉 (〈00|+〈01|+〈10|). In other words, it

acts as an And gate for the canonical basis. By completeness, the pair
(

,

)
forms

a monoid. �en:

Proposition 3.1.1. In ZW/ZW, the morphism is a morphism of monoids between(
,

)
and

(
,

)
.

Proof I One can check that all the equations of morphism of monoids are sound. By
completeness of ZW/ZW, they are provable in the language:

ZW ` = , =

J

De�nition of the Triangle

Let us see how to build in ZX a diagram Dt that represents t, i.e. JDtK = t. Notice that
t |0〉 = |0〉 and that t |1〉 = |0〉 + |1〉 =

√
2 |+〉. Let us ignore the factor

√
2 for now. t

acts as if it applied the Hadamard gate on a |0〉 state depending on the value of the input.
Diagrammatically, t operates as:

ΛH

}
|0〉}
controlled H
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�e controlled H gate ΛH can simply be expressed in ZX[π
4
]:

ΛH :=
-π
4

-π
2

π
4
π
2

�en, using the fact that
r

−π
2

z
= ei

−π
4

r
π
2

z
, one can show:

u

w
v

ΛH

}

�
~ =

u

wwww
v

-π
4

-π
2

π
4
π
2

}

����
~

= ei
−π
4

u

w
v

π
4

π
4
π
2

}

�
~ =

(
1 1√

2

0 1√
2

)

Finally, we need to “control” the scalar
√

2, which we can do since
t

-π
4

-π
4

|

= ei
−π
4

(
1 0

0
√

2

)
,

so

u

www
v

π
4

π
4
π
2

-π
4

-π
4

}

���
~

=

(
1 1
0 1

)
.

Using a diagram of ZX[π
4
], we can now represent a non-trivial non-unitary matrix

whose entries are in {0, 1}. As we will see in the following, this gives us access to the
expressive power of the W SLOCC-equivalence class. In the following, this diagram will
be so useful that we gave it a syntactic sugar:

:=
π
4

π
4
π
2

-π
4

-π
4

Of course, being in a †-compact PROP, we can de�ne the upside-down triangle as:

:=

Notice that this node is oriented, i.e. the upside-down triangle is not equal to the triangle.
�is is due to the fact that its interpretation is not a symmetric matrix. Another diagram
of ZX[π

4
] with the same interpretation was found in [CK17]:

u

www
v -π

4

π
4

π
4

-π
4

π
}

���
~

=

u

www
v

π
4

π
4
π
2

-π
4

-π
4

}

���
~

81



3.2. �e ZW1/
√
2 Extension

A Building Block

�e triangle can then be used as a building block for di�erent larger diagrams. For
instance, consider the following diagram:

π

One can easily check that
s

π
{

=
r z

and
s

π π
{

=

t |

.

Hence, this diagram can be seen as a representation of Λ(|0〉〈0|). We may denote it:

:=
π

Another very interesting construction that uses the triangle is the following:

�is time,

u

v

}

~ =
r z

and

u

v π

}

~ =

t |

. Similarly, we

denote the diagram:

:=

We may call this diagram transistor, for it acts as a switch, controlled by an additional
wire. �e last two diagrams can prove very useful to perform high order controlled
operations. For instance, a CCNot can be represented by:

π

3.2 �e ZW1/
√

2 Extension

We would also want to build a functor F : ZX[π
4
] → ZW which preserves all the

information. However we cannot have JF (.)K = J.K, because J.K : ZW → QubitZ,
while J.K : ZX[π

4
]→ QubitZ

[
1√
2
,ei

π
4

]. We will need to use an encoding.
Recall that for any subring R of C, if α is an R-algebraic integer, there exists an

encodingψ :M(R[α])→M(R). However, 1/
√

2 cannot be an algebraic integer. Instead,
we will de�ne a simple extension of ZW that can represent morphisms of 1√

2
N QubitZ,

i.e. of the form 1√
2
pf with f ∈ QubitZ, while preserving the completeness property.

Since J.K : ZW → QubitZ is full, all we have to do to allow the ZW-Calculus to
represent any morphism of 1√

2
N QubitZ is to add a scalar generator worth 1/

√
2. n copies

of this generator provide a representation of 1/
√

2
n.
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p De�nition 3.2.1 (ZW1/
√
2 and ZW1/

√
2): We de�ne the graphical language ZW1/

√
2 as

the language with the same generators as ZW, with the additional generator:

• d : 0→ 0 ::

�e functor J.K is extended to ZW1/
√
2 with:

• JdK = 1√
2

�e associated axiomatisation ZW1/
√
2 is de�ned as:

• ZW∪
{

=
iv

, =
z

}
y

Proposition 3.2.2. �e functor J.K : ZW1/
√

2/ZW1/
√
2 → 1√

2
N QubitZ is full and faithful.

Proof I Let D1 and D2 be two diagrams of ZW1/
√
2 such that JD1K = JD2K. We can

rewrite D1 and D2 as Di = di ⊗( )⊗ni for some integers ni and diagrams di of the ZW
that do not use the symbol.

We �rst assume JDiK 6= 0. Notice then that n1 = n2 mod 2. Indeed JD1K =

JD2K =⇒ Jd1K√
2
n1 = Jd2K√

2
n2 . Since JdiK are matrices over Z, n1 and n2 are either both

odd or both even.
First, assume ni = 0 mod 2. From (iv), we get that ZW1/

√
2 ` di = Di ⊗

( )⊗ ni
2 .

W.l.o.g. assume n1 ≤ n2. �en
s
d1 ⊗

( )⊗ n2−n1
2

{
= 2

n2−n1
2 Jd1K = 2

n2
2 JD1K = Jd2K.

Since d1 ⊗
( )⊗ n2−n1

2 and d2 are ZW-diagrams and have the same interpretation,

thanks to the completeness of the ZW-Calculus, ZW1/
√
2 ` d1 ⊗

( )⊗ n2−n1
2

= d2,

which implies ZW1/
√
2 ` d1 ⊗

( )⊗ n2−n1
2
⊗( )⊗n2 = d2 ⊗( )⊗n2 i.e. ZW1/

√
2 ` D1 =

D2.
Now, we can easily show ZW1/

√
2 ` D1 ⊗ = D2 ⊗ ⇐⇒ ZW1/

√
2 ` D1 = D2,

proving the result when ni = 1 mod 2:

ZW1/
√
2 ` D1 ⊗ = D2 ⊗ =⇒ ZW1/

√
2 ` D1 ⊗ = D2 ⊗

=⇒
iv

ZW1/
√
2 ` D1 = D2 =⇒ ZW1/

√
2 ` D1 ⊗ = D2 ⊗

Finally, if JD1K = JD2K = 0, then JdiK = 0. By completeness, ZW ` d1 = d2 and
ZW ` di ⊗ = di. Hence, using (iv) ni times, ZW1/

√
2 ` di = di ⊗ = di ⊗ ( )⊗ni =

di ⊗( )⊗ni = Di, so ZW1/
√
2 ` D1 = d1 = d2 = D2. J

83



3.3. �e ∆ZX-Calculus

3.3 �e ∆ZX-Calculus

Interpreting the W-state using the Triangle

To make a link between the two languages, we �rst need a functor from ZW1/
√
2 to

ZX[π
4
]. �is should be pre�y straightforward, since 1√

2
NM (Z) ⊂ M

(
Z
[

1
2
, ei

π
4

])
. �e

main di�culty is the representation in ZX[π
4
] of the W spider. First of all, using the

spider rule, we can always decompose the W spider as a composition of W nodes of
arity 1, 2 and 3.

�e interpretation of the three-legged W node is yet again an example of the use of
the triangle. Indeed:

s {
=

(
0 1 1 0
1 0 0 0

)
=

[(
1 1

)
⊗
(

0 1
1 0

)]
◦


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ◦


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0



�ese can be represented as
π

} CNot
}
√

2 〈+| ⊗ Not

}
Λ(|0〉〈0|)

. �is diagram can be simpli�ed

using ZXπ/2:

π

π

=
π

An extension of the ZX-Calculus

Hence, the functor from ZW1/
√

2 to ZX[π
4
] would translate any white node to a 0 or π-

green node, while the black nodes would be mapped to either π-red nodes or the above
diagram. It turns out, the only occurrences of π

2
and π

4
would be hidden in the triangle,

in the translation of the three-legged black dot. �is means that using solely the triangle
and ZX-generators of the π-fragment, one can express any matrix over D := Z

[
1
2

]
.

Interestingly, this is exactly what post-selected quantum circuits generated by To�oli
andH can express. Hence, it becomes interesting to de�ne a new intermediate language,
called ∆ZX, where the triangle node is a generator and not mere syntactic sugar.
p De�nition 3.3.1 (∆ZX-Calculus): �e qubit ∆ZX-Calculus, is a †-compact graph-
ical language, with the following set of generators and their string-diagram representa-
tion:

• R(n,m)
Z (α) : n→ m ::

n...

...
m

α

• R(n,m)
X (α) : n→ m ::

n...

...
m

α
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• H : 1→ 1 ::

• ∆ : 1→ 1 ::

�e PROP structure is provided by σ : 2 → 2 :: ; and the compact structure by
ε : 2→ 0 :: and η : 0→ 2 :: .

�e functor † is such that:

•
(
R

(n,m)
Z (α)

)†
= R

(m,n)
Z (−α)

•
(
R

(n,m)
X (α)

)†
= R

(m,n)
X (−α)

• H† = H

• ∆† = (ε⊗ id) ◦ (id⊗∆⊗ id) ◦ (id⊗ η)

�e language comes with a PROP-functor J.K : ∆ZX→ Qubit, called the standard
interpretation, and given by:

•
r
R

(n,m)
Z (α)

z
= |0m〉〈0n|+ eiα |1m〉〈1n|

•
r
R

(n,m)
X (α)

z
= |+m〉〈+n|+ eiα |−m〉〈−n|

• JHK = |+〉〈0|+ |−〉〈1|

• J∆K = |0〉〈0|+ |0〉〈1|+ |1〉〈1|

• JσK =
∑

i,j∈{0,1}
|ji〉〈ij|

• JηK = |00〉+ |11〉

• JεK = 〈00|+ 〈11|

Whatever the axiomatisation chosen for the ∆ZX-Calculus, we always consider that
whenever two ∆-free diagrams are isomorphic as graphs, then they are equal. Alter-
natively, when keeping in mind that ∆ is an oriented node, any graph isomorphism
preserves the semantics. y

As for the ZX-Calculus, we denote by ∆ZX[F ] the fragment F of ∆ZX. ∆ZX can
be seen as an extension of ZX, so axiomatisations of the ZX-Calculus can be applied to
it.
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3.4 From ∆ZX[π] to ZW1/
√

2 and Back

ZW1/
√
2 → ∆ZX[π]

Our goal now is to provide a complete axiomatisation for ∆ZX[π]. To do so, we need
functors from ∆ZX[π] to ZW1/

√
2 and back. �e one going back was roughly depicted

in the previous section. We denote this functor by [.]X . We can now give it a proper
inductive de�nition:

[.]X

7→ 7→ 7→ 7→

7→ 7→ 7→

n...

...
m

r 7→
n...

...
m

δr,-1π
π7→ π7→ 7→

π

D1 ◦D2 7→ [D1]X ◦ [D2]X D1 ⊗D2 7→ [D1]X ⊗[D2]X

where δ is the Kronecker symbol: δx,y =

{
0 if x 6= y
1 if x = y

Notice that we did not give an interpretation of arbitrary black nodes W (n,m). By
Rules (1b) and (4′b), one can decompose W (n,m) using only W (1,1), W (1,2) and W (2,1), in
a spider-like style:

Lemma 3.4.1.

(1a), (4′b) ` =
…

…

…

…

�is interpretation preserves the semantics:

Proposition 3.4.2. �e following diagram commutes:

∆ZX[π]

ZW1/
√
2

Qubit[.]X

J.K

J.K

Proof I �is is routine. J
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∆ZX[π]→ ZW1/
√
2

�e other functor, from ∆ZX[π] to ZW1/
√
2, will be denoted [.]W . It can be easily de�ned

as:
[.]W

7→ 7→ 7→ 7→

7→ 7→
n...

...
m

α 7→
n...

...
m

(-1)δα,π 7→

D1 ◦D2 7→ [D1]W ◦ [D2]W D1 ⊗D2 7→ [D1]W ⊗[D2]W
n...

...
m

α 7→
[( )⊗m]

W

◦
[ n...

...
m

α

]
W

◦
[( )⊗n]

W

�is interpretation also preserves the semantics:

Proposition 3.4.3. �e following diagram commutes:

∆ZX[π]

ZW1/
√
2

Qubit[.]W

J.K

J.K

Proof I �is is routine. J

By introducing this intermediary language, our goal has shi�ed from:

• transporting the completeness of ZW1/
√
2/ZW1/

√
2 to ZW[π

4
]/ZXπ/4

to

• transporting the completeness of ZW1/
√
2/ZW1/

√
2 to ∆ZX[π]/R for a set of ax-

ioms R

• then transporting the completeness of ∆ZX[π]/R to ZW[π
4
]

�is method hence requires we provide a complete axiomatisation for the π-fragment of
the new language ∆ZX[π]/∆π.

3.5 Axiomatisation for ∆ZX[π]

From interpretation [.]X we can get a set of equations that a complete axiomatisation of
∆ZX[π] would need to verify: the interpretation of the axioms of ZW1/

√
2. We can try

and reduce them using the usual axioms of the ZX-Calculus. We eventually get to the
axiomatisation ∆π given in Figure 3.1. In this section and the next two, we are going to
show that it is complete:

�eorem 3.5.1 (Completeness of ∆ZX[π]/∆π). J.K : ∆ZX[π]/∆π → 1√
2
N QubitZ is

full and faithful. In particular, the language ∆ZX[π]/∆π is complete.
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On the rules of ∆π

Before diving into the proof, let us comment on the set of rules ∆π. Notice that it uses
most of the axioms of ZXπ, together with new rules using . We can try and give
an interpretation for these last equations. First, we have the fact that is a diagonal

morphism for the comultiplication . �is directly gives (TW). (HT) can be seen as

the decomposition of Hadamard using triangles. Also, remember that is a morphism

of monoids between (AND, |1〉) and (|0〉〈00|+ |1〉〈11|,
√

2 |+〉). Noticing that π

represents the AND gate, this gives us:

π = (3.1)

and
π = (3.2)

We can then recover an equation that is very close to (TCX) if we assume we can
operate the π-distribution (πdist). First:

u

v

}

~ =
(I)
(S)

u

w
v

}

�
~ =

(3.2)
(IV)

u

www
v

π
}

���
~

=
(TW)

u

www
v

π
}

���
~

=
(πdist)
(CP)
(3.2)

(S)
(I)

s
π
{

(3.3)

�en:
u

v
π

}

~ =
(3.1)

(S)

u

w
v

}

�
~ =

(3.3)

u

w
vπ

}

�
~ =

(3.1)

t |

We can also recover (B∆), if we assume
t |

=

s {
and

t
π
|

=
r z

:

u

v π

}

~ =
(S)

u

v
π

}

~ =
(3.1)

u

ww
v

π

π

}

��
~ =

u

ww
v

π

}

��
~ =

(CP)
(S)

u

w
v
π

}

�
~ =

u

v
π

}

~
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… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir)
=(IV)

=(CP) =(B) α

…
= α

…

…

…(H)

π
=

π

(Z) =(T0)
π

=(B∆)π

=(HT)π =(TCX) =(TW)

Figure 3.1: Set of rules ∆π for the ZX-Calculus with triangles. �e right-hand side of
(IV) is an empty diagram. (…) denotes zero or more wires, while ( · · · ) denotes one or
more wires. α, β ∈ R.

∆ZX[π]/∆π is Complete for the Real Stabiliser

As announced, we want to prove that this axiomatisation is complete. First of all let us
show that we can recover ZXπ:

Proposition 3.5.2. ∆π ` ZXπ

�is means that any ∆-free equality between ∆ZX[π]-diagrams is derivable.
To prove this, we have to “bootstrap” the language ∆ZX[π]/∆π. Notice that since

we have most of the rules of ZXπ in ∆π, thanks to Proposition 2.7.16, we already have
access to some usual lemmas, such as:

∆π ` = , = , = , =
π

�ese will be useful in the derivation of other ∆ZX-speci�c lemmas:

Lemma 3.5.3.

=

Lemma 3.5.4.

=

Lemma 3.5.5.

π
=

π

Lemma 3.5.6.

π

=

Lemma 3.5.7.

=
π
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Proof I

=
(IV)

=
(T0)

=
(sπ)
(CP)

π

=
(T0)

π
=

(HT)
=
(H)

=
(I)
(S)

=
(IV)

(TCX)

=
3.5.3

=
(I)
(S)

π
=

(B∆)
π = π =

(B∆) π

π

=
(S)

3.5.5
π

=
3.5.3

π =
(CP)
(sπ)

=
(HT)

π
=

(TCX)
(S)

π
=

(Hopf)

π
=

3.5.3
(IV)
(S)
(I)

π

=
(IV)

3.5.6

π

π

=
(HT)

π

=
(H)

π

J

Proof of Prop. 3.5.2 I �e only axiom of ZXπ that is not in ∆π is (HL), which is derivable
according to Lemma 3.5.7. J

3.6 ZW1/
√

2 derives from ∆π

We can now state the most important proposition for the completeness.

Proposition 3.6.1. For any two diagrams D1 and D2 of ZW1/
√
2:

ZW1/
√
2 ` D1 = D2 =⇒ ∆π ` [D1]X = [D2]X

Proof of Prop. 3.6.1 I If ZW1/
√
2 ` D1 = D2, then there exists a series of ZW1/

√
2-

diagrams d1, · · · , dn such that there is exactly one axiom application between di and
di+1, between D1 and d1 and between dn and D2. Hence, since [.]X is a PROP-functor,
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it su�ces to prove that every axiom of ZW1/
√
2 can be derived from ∆π a�er application

of [.]X .
�e rest of this proof is technical: every axiom of ZW1/

√
2 is translated in ∆ZX[π] and

proved using ∆π. It will alternate between lemmas in ∆ZX[π]/∆π and axiom deriva-
tions. For the reader’s convenience, this proof ends at page 99. J

Proof of Prop. 3.6.1 (ctd.) I 0b comes directly from the semantics-preserving graph
isomorphisms.
1b, 2a and 2b come directly from the spider rules (S) and (I).
2c:

7→ =
(S)

=
(HL)

π ←[ -1

J

Lemma 3.6.2.

=

Lemma 3.6.3.

=

Proof I

=
(I)
(S)

=
3.5.3

=
(TW)

=
(IV)
(CP)
(S)

=
(I)

3.5.3
(S)
(IV)

=
(B)
(S)

=
3.6.2

J

Proof of Prop. 3.6.1 (ctd.) I 1a: �anks to Lemma 3.4.1 and rule (4b′), the rule can be

reduced to showing that

u

v

}

~

X

=

u

v

}

~

X

and

u

v

}

~

X

=

u

v

}

~

X

:

7→
(S)
(I)

=
(B)
(S)

=
(S)

(TW)

=
(B)

←[
(S)
(I)
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7→
(S)
(I)

=
3.6.3

=
(IV)
(CP)
(S)

=
3.5.3

(I)
(IV)

=
(S)
(I)

←[

0a: �anks to Lemma 3.4.1 and the previous equations, it su�ces to prove the result for
2 and 3-legged W nodes. �e �rst is obvious. For the 3-legged W nodes:

7→
π

=

π

=
3.6.3

π

←[

7→ π
=

π

=
(πdist)
3.5.5

(S)

π

←[

�e last case in then derivable from the other two.
3a is the expression of (πdist).
3b:

-1 -1
7→
(S)
(I) π π

=
(πdist)

(S)

π

←[
(S)
(I)

-1

5c:

7→
π

π

=
(S)
(s2)

=
(IV)

← [

7: Again, thanks to Lemma 3.4.1, it su�ces to prove the result when W has arity 2 or 3:

-1
7→

π
π

=
(S)
(H)

π

π

=
(B)

π

π

=
(H)

π

π =
(πdist)

(H)
(S)

π ←[

and:

7→
π

=
(πdist)

(H)
(S)

π

π
←[

-1
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R2:

7→ =
(S)

=
(H)

(Hopf)

←[

R3:

7→ =
(S)

=
(S)

← [

iv:

7→ =
(I)

=
(S)

=
(s2)
(IV)

← [

z:

7→ π =
(IV) π

=
(Z) π

=
(S) π

=
(s2)
(IV)

π ←[

5b:

7→
(S)
(I)

=
(IV)
(CP)
(S)

=
(T0)

=
(IV)
(CP)

←[
(S)
(I)

6a:

7→
X

π π

=
(B)

π π

=
(S)

π π

=
3.5.4

(S)
(πdist)

π

←[
(S)
(I)

6b:

7→

π

=
(S)
(IV)

(Hopf)

π

=
(IV)
(CP)
(I)

π

=
(T0)

π

←[
(S)
(I)

4′b:

7→
π

=
(IV)

(Hopf)
π

=
(IV)
(CP)
(S)

π

=
(T0)
(IV)

π ← [
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J

Lemma 3.6.4.

π

=
π

Lemma 3.6.5.

π

=

Proof I

π

=
(S)

3.5.5
π

=
(T0)

π =
(S)

π

π

=
(S)

3.5.6

π

π

=
(B∆)

=
(T0)

J

Proof of Prop. 3.6.1 (ctd.) I 4′a:

-1
7→

π

π

=
(CP)
(S)
(I)

π

π

=
(IV)

3.6.5

π ←[

J

Lemma 3.6.6.

=

Lemma 3.6.7.

π

π
=

π

π
=

Lemma 3.6.8.

=
π

Lemma 3.6.9.

=
π

Proof I

=
(I)
(S)

=
3.6.2

=
3.5.3

(S)
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π

π
=

(CP)
(πdist) π

=
(TW) π

=
(πdist)
(CP)

π

π
=

(TW)

π

=
3.6.5

(S)

=
(I)
(S)

=
3.6.6

=
(I)
(S)

3.5.5
(πdist)

(H)

π

π

=
3.6.7

π

π

π

π

=
(HT)

π

π

π =
(I)
(H)
(S)

π

=
(I)
(S)

(πdist)
(H)

π

π

π
=

3.6.8

π

π

=
(H)

π

π

=
(IV)

3.6.2 π

π

=
(H)

π

π

=
3.6.8
(IV)
(S)
(I)

π

J

Proof of Prop. 3.6.1 (ctd.) I X:

7→

π

=
(S)
(B)

π

=
(H)

π

=
3.6.9
(HL)

π

←[

J

Lemma 3.6.10.

π

=

Lemma 3.6.11.

=

Lemma 3.6.12.

=

Lemma 3.6.13.

π

=

Lemma 3.6.14.

=

π

π

and

=
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Proof I

π

=
(S)

3.5.5

π

=
(πdist)
3.5.5 π

π

=
(πdist)

π

π π

=
(TCX)

π

π π

=
(πdist)
3.5.5

(S)

=
(H)

=
3.6.8 π

=
3.5.3
(CP)
(sπ)
(s2)

For Lemma 3.6.12, �rst:

=
(I)
(S)

(B∆)

π

π

=
(H)

π

π
=

3.6.8

π

π

=
(πdist)
3.5.5

=
(I)

(CP)
(IV)

=
(TW)

�en

=
(B)

3.6.11

=

Finally

=
3.6.11

= =
3.6.11

π

=
(S)

π

=
3.6.10

=
(T0)
(IV)
(CP)
3.5.3

For Lemma 3.6.14, �rst:

π
=
(I)
(S)

3.6.8

π

π

=
(H)

(πdist)
3.5.5

and =
(I)
(S)

3.5.5

π

π

=
3.6.8

π

=
(H)

π
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Finally:

π

π
=
(H)

π

π

= π

π

=
(πdist)
(TW)
3.6.3

(S)
π

= =
(B)
(IV)

=

J

Proof of Prop. 3.6.1 (ctd.) I 5a: We will need a few steps to prove this equality.

π
=
(S)
(B)

π
=
(H)
(S)

π
=

3.6.9 π π
=
(S)

(πdist)

π

(3.4)

=
3.6.3

(S)

=
(B)

=
(S)

3.6.10

π
=

(πdist)
π

π

=
3.6.3

(πdist)
3.5.5

(3.5)

π

π

π =
3.5.5

π
π

π
=
(S)

(TW)
π

π

π

=
(πdist)

(S)

π

π

(3.6)

π

π

π
=

(πdist)
(S)

π

π π

π

π

π

=
3.6

π

ππ

π
π

=
(πdist)

(S)

(3.7)
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π

=
3.6.3

(S) π

=
(B)

π

=
(πdist)

(S)

π
π

π

π

(3.8)

=
3.6.10

π

π

π

=
(πdist)

π

π

π
π

=
(S)

(πdist)

π
π

π

π

=
3.8

π

ππ

π

=
(πdist)

(S)

π
π

π

(3.9)

=
3.4

3.6.3
π

π

=
3.6.14

π

π

=
3.6
(H)

(Hopf)
(πdist)

π

ππ

π

(3.10)

=
3.9 π

π π

π
=
3.7

=
3.5

π

π

=
(S)

(πdist)
3.5.5

=
(B)

=
(S)

=
(B)

(3.11)

=
3.6.2
3.6.3

=
3.6.10

π

=
(B)

π
=

3.6.2
3.6.3

π
=

π
π

=
π π

=
π

(3.12)
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Finally,

7→ = =
3.12 π

π

=
3.11

(πdist) π

π

=
3.10

π

π

=
(S)
(B)

π

π
=
(S)

3.11

π

π

←[

�is was the last equality of ZW1/
√
2 to derive. We hence have proven the result. J

3.7 Completeness of ∆ZX[π]/∆π

To �nish the proof of completeness, we still need the property that a�er the application
of the composite interpretation [[.]W ]X we can always recover the initial diagrams, i.e.
we need to show: that [[.]W ]X = id.

Proposition 3.7.1. For any ∆ZX[π]-diagram D, we have:

∆π ` [[D]W ]X = D

Proof I �is is done by induction on the diagram D:

• [[D1 ⊗D2]W ]X = [[D1]W ]X ⊗[[D2]W ]X

• [[D1 ◦D2]W ]X = [[D1]W ]X ◦ [[D2]W ]X

• 7→ 7→ =
(S)
(I)

(IV)

•
n...

...
m

α 7→
n...

...
m

(-1)δα,π 7→
n...

...
m

πδ((-1)δα,π ),-1 =

n...

...
m

α for α ∈ {0, π}

• 7→ 7→
(S)
(I)

=
3.6.3

=
(CP)
(S)
(I)
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•
[[ n...

...
m

α

]
W

]
X

gives

n...

...
m

α =
(H)

n...

...
m

α .

J

Proof of �eorem 3.5.1 I �ere are two results here: fullness and faithfulness. Consider
the following diagram:

∆ZX[π]/∆π

ZW1/
√
2/ZW1/

√
2

1√
2
N QubitZ[.]X [.]W

J.K

J.K

• [.]W is faithful: let D1, D2 : n → m ∈ ∆ZX[π] such that ZW1/
√
2 ` [D1]W =

[D2]W . By Proposition 3.6.1, ∆π ` [[D1]W ]X = [[D2]W ]X , so by Proposition 3.7.1,
∆π ` D1 = D2.

• [.]W is full: Let D ∈ ZW1/
√
2. We de�ne DX := [D]X . By Propositions 3.4.3

and 3.4.2, J[[.]X ]W K = J.K, hence, by completeness of ZW1/
√
2/ZW1/

√
2, ZW1/

√
2 `

[[D]X ]W = D, i.e. ZW1/
√
2 ` [DX ]W = D.

By composition, J[.]W K is full and faithful, so ∆ZX[π]/∆π
J.K→ 1√

2
N QubitZ is full and

faithful. J

3.8 From ∆ZX[π] to ZX[π4 ]

We now want to do essentially the same job to �nd a complete axiomatisation of ZX[π
4
],

and using the newfound completeness of ∆ZX[π]. First of all, we need to translate
∆ZX[π] into ZX[π

4
]. �e two languages are very close, the only generator of the former

that is not in the la�er is ∆. However, we already know how to represent it (Section 3.1):

[.]T

7→ 7→ 7→ 7→

7→
n...

...
m

α 7→
n...

...
m

α

n...

...
m

α 7→
n...

...
m

α

7→ 7→
π
4

π
4
π
2

-π
4

-π
4

D1 ◦D2 7→ [D1]T ◦ [D2]T D1 ⊗D2 7→ [D1]T ⊗[D2]T
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Chapter 3. Cli�ord+T

Again, we can translate all the axioms of ∆π in ZX[π
4
]. It gives a set of equations

that the language is supposed to be able to derive, and reducing it leads an a potential
axiomatisation for Cli�ord+T ZX-Calculus. We propose the set of rules given in Figure
3.2. It consists of the rules ZXπ/2 with the additional (K) that we have already seen in
Proposition 2.7.13, (E)– introduced in [JPVW17] –, (SUP)– proven necessary in [PW16]
–, (C) and (BW), replacing (IV) and (Z).

… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir) -π
4

π
4 =(E)

=(CP) =(B) =(K)π

α

π

απ

-α

π
2

π
2 -π

2=(HD) α

…
= α

…

…

…(H)

α α+π

=
2α+π

(SUP)

βα π

βγ

-γ
α = α

απ

β -γ

γ

β(C)

π
4

π
4

π
4

-π
2

π
4

π
4

π
4

=
π
4π

π
2

π
4

π
4

π

π
4(BW)

Figure 3.2: Set of rules ZXπ/4 for the Cli�ord+T fragment of the ZX-Calculus.

Since this axiomatisation is pre�y close to containing ZXπ/2, a �rst useful result is
that we can recover it.

Proposition 3.8.1. ZXπ/4 ` ZXπ/2

Proof I �e only axioms that need to be proven are (IV) and (Z). From Figure 2.2, we
directly get the Hopf law (Hopf), as well as (IV). Still from Proposition 2.7.16 we also get
(sα). Now only (Z) remains to be proven. First:

π

=
(S)

(CP)

π

=
(SUP)

π

=
(Hopf)

π

(3.13)

�en:

π

α
=
(S)
(IV)

π

α

=
(4.3)

α

π

=
(sα)

π =
(IV)

π (3.14)
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3.8. From ∆ZX[π] to ZX[π
4
]

�en:

π =
(E) π

4

-π
4

π

=
(4.3)

π
4

-π
4

π

=
(CP)
(sα)
(S)

π
4

π
=

(4.4)

π (3.15)

Finally:
π

=
(4.3)

π

=
(3.15)

π

J

�is set of rules proves any equality of ∆ZX[π]/∆π.

Proposition 3.8.2. For any ∆ZX[π]-diagrams D1 and D2,

∆π ` D1 = D2 =⇒ ZXπ/4 ` [D1]T = [D2]T

Proof I We already know that ZXπ/4 ` ZXπ/2. �e remaining axioms of ∆π to prove
are (T0), (HT), (TW), (TCX) and (B∆).
(B∆):

π =

-π
4

-π
4

π
2

π
4

π
4

π

-π
4

π
4

-π
4

π
4

π
2

=
3.8.1
(K)
(S)

-π
4

-π
4

π
4

-π
2

π
4

-π
4

-π
4

π
2
π
4

-3π
4

π
π
2

=
(S)
(I)
(K)

3.8.1

π
4

π
4

-π
2 π

π
4

π
4

π
4

π
4

-π
2

=
(B∆)

π

π
4

π
4

π
π
4 π

-π
2

π
2

π
4

=
3.8.1
(K)

π
2

π
4

-π
4

-π
4

π
4

π

=
π

From this rule (B∆) we instantaneously get that:

π
=

π

which will be used extensively in the following. �e result is akin to Lemma 3.5.5, but this
time expressed with syntactic sugar. Again, the rest of the proof will alternate between
lemmas and proofs of the remaining rules. �e proof ends at page 108. J
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Lemma 3.8.3.

π
4

π
= π

2

Proof I

π
4

π
=
(E)

π
π
4π

4

−π
4

=
(H)

π
−π
4

π
4

π
4

=
(HD)
(S)

3π
4

π
4

π
4

π −π
2

=
(K)
(S)

(CP)
(sπ)

π

3π
4

−π
4

π −π
2π

2

=
(SUP)
(IV)

(Hopf)

−π
2

π

π
2

π
2

π
=

(s+)
(IV)

π
2

J

Proof of Prop. 3.8.2 (ctd.) I

= π
4

π
4

-π
4

-π
4

π
2

=
3.8.1
(CP)
(S)

-π
2

π
2
π
2

=
3.8.3

π
2

π
2

-π
4

π

=
3.8.4
3.8.1

π
2

-π
2

=
(S)

J

Lemma 3.8.4.

π
2

= π
4

π−π
2

Lemma 3.8.5.

=

π
2

π
2

π
2

π
−π
4

Lemma 3.8.6.

βα

π

βα

=

β

β

π

α

α

Proof I

π
2

=
(H)

π
2

=
(HD)
(S)

−π
2

π
2 =

(IV)
(CP)
(S)

π
2

−π
2

=
3.8.3
3.8.1

π
4

π−π
2

=
(HD)

π
2

π
2

−π
2 =

(H)
3.8.1

π
4

π
π
2

π
2

−π
2

−π
4

π

=
3.8.4 π

2 π

π
2

−π
4

π
2 =

(H)
(S)

π
2

π
2

π
2

π
−π
4
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βα

π

βα

=
3.8.5

(S)

β

π

α

βα
π

π
2

−π
2

−π
2 π

2

=
(CP)

−π
2

β

α β

π

π

−π
2

α

π
2

π
2

=
(C)

π
2

α

π
−π
2

β

π

π
2

β

α

−π
2

=
(CP)

αβ

π
2

β

π

π
2

−π
2

α

−π
2

=
(S)

3.8.5 β

β

π

α

α

J

Proof of Prop. 3.8.2 (ctd.) I (TCX):

π
4

π
4

π
4

π
4

π
2

π
2

=
(S)

3.8.1
3.8.5

π
4

π
4

π

π
4

π
4

-π
4

-π
2

π
2

=
(B)
(S)

-π
2

π
4

π
4

π

-π
4

π
4

π
4

π
2

=
(H)
(S)

π
2

π
4

π
4

π

-π
4

π
4

-π
2

π
4

=
3.8.6

-π
2

π
2

π
4

π
4

π

π
4

π
4

-π
4 =

(H)
(S)

3.8.1
3.8.5

π
4

π

-π
2

π
4

-π
4

π
2

π
4

=
3.8.1

π
4
π
4

π
2

π
4

π
4

π
4

π
2

J

Lemma 3.8.7.

βα

π

βα

=
α

π

α β

β

Lemma 3.8.8.

-π
4

-π
4

-π
4

-π
4

π = -π
2

π

Proof I By completeness of the π
2
-fragment:

=
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�en:

βα

π

βα

=

βα

βα

π

=
3.8.6

π

α

αβ

β =
3.8.1

βα

π

α β

=
3.8.1

α

π

α β

β

-π
4

-π
4

-π
4

-π
4

π =
3.8.1
(K) π

4

-π
4

π

-π
4

π
4

π

-π
2

=
3.8.7
3.8.1

π
4

π
π
4

-π
2

-π
2

π
4

π
4

-π
2

π =
3.8.4
3.8.1

π
2

π
π

π
π
4

π
4

π
2

π
4

π
4

=
3.8.5

(S)
(I)

3.8.1

π
4

π

- 3π
4

π
π
4

-π
2π

4
π
4

=
(S)
(I)

3.8.1

π
π
4

π
4

π

- 3π
4 =

(K)
(S)

3.8.1

-π
2

π

=
3.8.1

-π
2

π

J

Proof of Prop. 3.8.2 (ctd.) I (HT): First:

=
3.8.5 -π

2

-π
2

-π
2

π
π
4 =

3.8.1
3.8.3

(S)
(I)

(SUP)

π
-3π
2

π
2

-π
2

-π
2

π
4

π
4

-3π
2

=
(I)
(K)

3.8.1 π

π
4

π
2

π

π
4

π

π

π
2

π
4

π
4

-π
2

=
3.8.1
3.8.8

π
4

π

π
2

π

π
4
π
2

π
4

π

π
4

-π
4

π -π
4

-π
4

-π
4

-π
4

-π
4

π

-π
4

-π
4

π
π
2

=
(K)

3.8.1

π

-π
4

π
4

π
4

-π
4

π

π

π
=

π

π

π

π

=
π

π

π

Hence:

π
=
(K)

3.8.1

π

π

π

π

π

=
(I)
(S)

π

π

π

π

π

π

π

π

π

=

π

π

π

π

π

π

=
3.8.1

J
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Lemma 3.8.9.

π

π

=

Lemma 3.8.10.

=
π

Lemma 3.8.11.

π

π

α α

=
α α

Lemma 3.8.12.

π

-γ

β
γ

α

β

α

=
-γ

α

α

β

β

π

γ

Proof I

π

π

=
(I)
(S)

3.5.5

π

π

π

π

=
3.8.1

(S)
-π
4

π

π
4

-π
4

π
2

π
4

-π
4

-π
4

π

π
π
4

π
4

-π
2

π

=
3.8.8
3.8.1
(K) π

4
+π

π
4

π
4

-π
2

π
π
4

-π
2

=
(SUP)
3.8.1

π
4

π
4

-π
2

-π
2

π
-π
2 =

3.8.3
(K)
(S)

-π
2
π
4

π

-π
4

π
2

-π
4

π
π
4 =

(S)
(I)

3.8.1

=
3.8.1

π

π

=
3.8.9

π

π

π

π

=
(HT)

π

π

π
=

3.8.1
(S)
(I)

π

π

π

α α

=
(H)

3.8.5
(S)

α

π
4

π
-π
4

-π
2

α
-π
4

-π
4

π
π
4

=
(B) -π

4

α
π

π
-π
4

α

-π
4

π
4

π
4

-π
2
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=
(H)

π

α

π
4

-π
4

-π
4

π

-π
2

-π
4

α

π
4 =

3.8.6

α

-π
2

π

π
4

π

-π
4

-π
4

π
4

α

-π
4

=
(H)
(S)

π
4

-π
2

α

-π
4

π

-π
4

π
4

α

π -π
4

=
(H)

(Hopf)

π
4

-π
4

-π
2

-π
4

α

-π
4

α

π

π
π
4

=
3.8.4

(S)
(K)
(|i〉)

α

-π
4

-π
4

π
α

-π
4

-π
4

π
π
2

=
3.8.8
(s+)
(sπ)

α

α

=
(I)

(Hopf)

α α

First:

α
α

=
(S)
(H)

α

α

=
3.8.10
3.5.5

α

α

π
=

3.8.11
(IV)

α α

=
(H)

α α

then:

π

-γ
β

γ

α

β

α

=
(S)

3.8.1

α

α

-γ
γ

π

β

β

=
(S)

3.8.1
(I)

β

α

π

γ

α

-γ

π
2

β

π
4

π
4

-π
4

-π
4

=
(B)
(IV) α

π
4

π
4 β

β

α

π

γ

-γ
π
2

-π
4

-π
4

=
(C)

π
4-γ

π
2

β
π
4

α

γ

α

β

π

-π
4

-π
4

=
-γ

α

α

β

β

π

γ

J

Proof of Prop. 3.8.2 (ctd.) I (TW):

=
(I)
(S)

3.5.5

π

π
=

3.8.1
(S)

π
2

π -π
4

π
4

π
4

-π
4

-π
4

-π
4

π
π
4

π
4

-π
2

=
3.8.8
(K)

3.8.1

π
2

π
4

-π
4

π
4 π

4

π
2

π

-π
4

=
(B)

3.8.5

π
2

π
4

π
4

-3π
4

π
4

-π
2
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=
(H)
(S)

π
4

-3π
4

3π
4

π
4

π
2

-π
2

-π
2

=
3.8.12

(H)

π
4

-3π
4

3π
4

-π
2

π
4

π
2

-π
2

=
3.8.5

π
4π

4

-π
2
π
2

π

-π
4

π
2

-π
4

3π
4 =

(S)
3.8.1

π
4

-π
4 -π

4

π
2

π
2

-π
4

π
2

π

π
4

=
3.8.5

-π
4

-π
4

π
2

π
4

-π
2

π
4

=
(H)
(K)

3.8.1

π π
4

π
4

-π
2

π
4

-π
4

-π
2

-π
4

π

=
3.8.5
3.8.1

π
4

π -π
2

π
-π
2

π
4

π
4

π
4
π
2

=
3.8.8
3.5.5

We have now proved that all the axioms of ∆π are derivable with ZXπ/4. J

3.9 From ZX[π4 ] to ∆ZX[π]

We now want to de�ne an interpretation from ZX[π
4
], which represents morphisms of

QubitZ[ 12 ,e
i π4 ], to ∆ZX[π], which represents morphisms of 1√

2
N QubitZ. To do so, we

will need this interpretation to perform an encoding.
�e monic and irreducible polynomial of Z[X] of which eiπ4 is a root is X4 + 1. Any

matrix over Z[1
2
, ei

π
4 ] can be wri�en as A + ei

π
4B + ei

2π
4 C + ei

3π
4 D with A,B,C,D ∈

M(Z[12 ]). ψ is hence de�ned as:

ψ : A+ ei
π
4B + ei

2π
4 C + ei

3π
4 D 7→ A+B ⊗M + C ⊗M2 +D ⊗M3

where M :=


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

.

�e le� inverse of ψ is: Θ : X 7→ (I ⊗ eT0 ) ◦X ◦ (I ⊗ θ) where θ :=


1
ei
π
4

ei
2π
4

ei
3π
4

.

We want to give an interpretation [.]∆ : ZX[π
4
]→ ∆ZX[π] such that J[.]∆K = ψ(J.K),

i.e., the interpretation [.]∆ should map a diagram of ZX[π
4
] to a ∆ZX[π]-diagram, while

at the same time performing the encoding ψ for their standard interpretation.
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First of all, we want to represent the encoding of the scalar
√

2:

ψ(
√

2) = ψ(ei
π
4 − ei 3π4 ) = M −M3 =


0 1 0 −1
1 0 1 0
0 1 0 1
−1 0 1 0


It can be decomposed with usual gates:

ψ(
√

2) =

CZ︷ ︸︸ ︷1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


√

2H⊗Not︷ ︸︸ ︷0 1 0 1
1 0 1 0
0 1 0 −1
1 0 −1 0


CZ︷ ︸︸ ︷1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 −1


All these gates are easily represented in ∆ZX:

[ ]
∆

= π

�en, H can simply be decomposed as H = 1
2
×
√

2× (
√

2H).
�en, we need to �nd a way to express the matrixM , using usual quantum operators.

Notice that the matrix is CZ up to permutations.

M =

 0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

 =

CZ︷ ︸︸ ︷1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


Not ⊗ Not︷ ︸︸ ︷0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


Swap︷ ︸︸ ︷1 0 0 0

0 0 1 0
0 1 0 0
0 0 0 1


CNot︷ ︸︸ ︷1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0


Swap︷ ︸︸ ︷1 0 0 0

0 0 1 0
0 1 0 0
0 0 0 1


We propose to �rst represent the matrices with ZX-diagrams, which hopefully will have
a direct preimage by [.]T . Using the usual rules of the ZX-Calculus, one can build:

ππ
=

π
=

π

which represents M . �en, we want to represent ψ
(s

π
4

{)
=

(
I4

M

)
. It can be

seen as ΛM i.e., to represent it, we need to control the previous diagram. �is can be
performed using the transistor:

π
=

π

109



3.9. From ZX[π
4
] to ∆ZX[π]

Eventually, we get to a formal and inductive de�nition of [.]∆:

[.]∆

7→ 7→ 7→ 7→

7→ 7→ π π
4 7→

π

∀D1 : n→ n′, ∀D2 : m→ m′ :

D1 ◦D2 7→ [D1]∆ ◦ [D2]∆ (if m′ = n) D1 ⊗D2 7→

· · ·
[D2]∆

[D1]∆

· · ·

· · ·

k π
4

n...

...
m

7→
(
...
m

)
◦
([

π
4

]
∆

)k
◦
(

n...
)

k π
4

n...

...
m

7→
[( )⊗m]

∆

◦
[

k π
4

n...

...
m

]
∆

◦
[( )⊗n]

∆

�is interpretation performs the encoding ψ.

Proposition 3.9.1. �e following diagram commutes:

ZX[π
4
]

∆ZX[π]

Qubit

[.]∆

J.K

J.K
Qubit

ψ

Proof I Again, this is routine. J

Remark 3.9.2. �is interpretation, contrarily to [.]T , is not a PROP-functor, but merely
a functor. Indeed, [.⊗ .]∆ 6= [.]∆ ⊗[.]∆. �e two compositions are de�ned so that all the
diagrams share the last two wires, which we will call “control-wire”. We actually have:

D1 ⊗D2 7→
[D1]∆

[D2]∆

· · ·

· · ·
· · ·

· · ·

· · ·· · ·
[D2]∆

[D1]∆

· · ·
=

· · ·
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Chapter 3. Cli�ord+T

3.10 Completeness of ZX[π4 ]/ZXπ/4

Recall that our goal is to prove that ZXπ/4 make ZX[π
4
] complete. It remains to show

that one can recover any ZX[π
4
]-diagram D from [[D]∆]T thanks to the decoding Θ.

Proposition 3.10.1. For any ZX[π
4
]-diagram D:

ZXπ/4 ` D = …
[[D]∆]T

… π
4

π
2

Proof I We are going to prove inductively that:

ZXπ/4 ` [[D]∆]T ◦
(
· · ·

π
2

π
4

)
= D ⊗

(
π
2

π
4

)
• D1 ◦D2: obvious because [[D1 ◦D2]∆]T = [[D1]∆]T ◦ [[D2]∆]T

• D1 ⊗D2:

· · ·

[[D1]∆]T

· · ·

· · ·
π
2

π
4

[[D2]∆]T

=

· · ·

D1

· · ·
· · ·

π
2

π
4

[[D2]∆]T

=

· · ·
D1

· · ·

· · ·
π
2

π
4

D2

• :

π

π
2

π
4

=
(πdist)

(H)
(S)

π

π
2

π
4

π =
(s2)
(IV)
(S)

(|i〉)
(HD)

π
π
4

π

-π
4

π
2

=
(H)

(Hopf)

π
π
4

π

-π
4π

2
=
(K)

π
4

π
2

• π
4 : First, we have:

π
2

π
=

π
2

π
4

π
4

π -π
4

ππ
4

-π
4

π
2

-π
4

π
4

-π
4

π
2

=
3.8.8
3.8.5

π
4

π
4

π
4

π
4

π

-π
4

π

=
(H)
(S)

π
4

π

π
4

π
4

π
4

-π
4

π
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3.10. Completeness of ZX[π
4
]/ZXπ/4

=
3.8.6 π

-π
4

π
4

π
4

π
4

π

π
4

=
(H)
(CP)
(S)
(I)
(K)

π
4

π
4

-π
4 (3.16)

�en:
π
2

π

π
4

=
(S)

(HD)

π

π
4

π
2

π
2

=
(s2)
(H)

(Hopf)
3.5.5

π
2

π

π
2

π
4

=
(3.16)

π
4

π
4

π
2

π
4

-π
4

=
(s2)
(S)
(B)

-π
4

π
4

π
4

π
2

π
4 =

(S)
π
4

π
4

π
2

=
(CP)
(S)

π
2

π
4 π

4

• �e proof of the remaining cases follow from the previous ones.

Finally, we have:

ZXπ/4 ` …
[[D]∆]T

… π
4

π
2

=
…
D

…
π
4

π
2

=
(sα)
(IV)

…
D

…

J

�eorem 3.10.2 (Completeness of ZX[π
4
]/ZXπ/4). �e language ZX[π

4
]/ZXπ/4 is com-

plete, and J.K : ZX[π
4
]/ZXπ/4 → QubitZ[ 12 ,e

i π4 ] is full and faithful.

Proof I We have to show fullness and faithfulness:

• Faithfulness: Let D1 and D2 be two ZX[π
4
]-diagrams such that JD1K = JD2K.

By Proposition 3.9.1 J[D1]∆K = ψ(JD1K) = ψ(JD2K) = J[D2]∆K, so by �eorem
3.5.1 ∆π ` [D1]∆ = [D2]∆. By Proposition 3.8.2, ZXπ/4 ` [[D1]∆]T = [[D2]∆]T , so
�nally by Proposition 3.10.1, ZXπ/4 ` D1 = D2.

• Fullness: Let f ∈ QubitD[ei
π
4 ]. �e morphism ψf is in QubitD. By fullness

of ∆ZX[π]
J.K→ QubitD (�eorem 3.5.1), there exists D∆

f ∈ ∆ZX[π] such that
q
D∆
f

y
= ψf . Finally, let Df :=

(
· · ·

)
◦
[
D∆
f

]
T
◦
(
· · ·

π
2

π
4

)
.

It is easy to see that JDfK = f .

J

�is allows us to prove Proposition 2.6.10, that is, that Clifford+T = QubitD[ei
π
4 ].
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Chapter 3. Cli�ord+T

Proof of Proposition 2.6.10 I Clifford+T has the same objects as QubitD[ei
π
4 ], and by

construction, is a sub-PROP. It remains to show that any morphism of the la�er can be
expressed as a morphism of the former. Let f ∈ QubitD[ei

π
4 ]. By fullness of ZX[π

4
]

J.K→
QubitD[ei

π
4 ] there exists Df ∈ ZX[π

4
] such that JDfK = f . J
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Chapter 4

General ZX-Calculus

�e aim of the present chapter is to obtain a complete axiomatisation, this time for the
unrestricted ZX-Calculus, i.e. the ZX-Calculus with no restriction on the parameters,
denoted ZX. A �rst useful result will be to extend the completeness of Cli�ord+T to the
so-called linear diagrams with constants in Cli�ord+T.

4.1 Linear Diagrams

Variables and Constants

It is customary to view some angles in the ZX-diagrams as variables, in order to prove
families of equalities. For instance, the rule (S) displays two variables α and β, and po-
tentially gives an in�nite number of equalities. Notice that in the axioms for Cli�ord+T
ZX-calculus ZXπ/4, the variables are used in a linear way, that is, we only perform sums
of angles, hence re�ecting the phase group structure.

We are going to formally de�ne what a linear diagram is. We are going to de�ne
them for the larger ∆ZX. Since ZX can be seen as a sub-PROP of ∆ZX, the de�nition
of linear ZX-diagrams will be a special case of that of linear ∆ZX-diagrams.
p De�nition 4.1.1 (Linear Diagrams): Let ~α := α1, . . . , αk be a collection of variables,
and F a fragment (an additive subgroup of R). We de�ne ∆ZX[~α, F ] as the †-compact
PROP with the following set of generators and their string-diagram representation:

• R(n,m)
Z (E) : n→ m ::

n...

...
m

E

• R(n,m)
X (E) : n→ m ::

n...

...
m

E

• H : 1→ 1 ::

• ∆ : 1→ 1 ::

where E is an a�ne combination of αi with coe�cients in Z and constants in F , i.e. of
the form

∑
i niαi + c, with ni ∈ Z and c ∈ F .
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4.1. Linear Diagrams

�e PROP structure is provided by σ : 2 → 2 :: ; and the compact structure by
ε : 2→ 0 :: and η : 0→ 2 :: .

�e functor † is such that:

•
(
R

(n,m)
Z (E)

)†
= R

(m,n)
Z (−E)

•
(
R

(n,m)
X (E)

)†
= R

(m,n)
X (−E)

• H† = H

• ∆† = (ε⊗ id) ◦ (id⊗∆⊗ id) ◦ (id⊗ η)

For any i ∈ {1, . . . , k} and x ∈ R, there exists a PROP-functor (.)[αi ← x] :

∆ZX[~α, F ] → ∆ZX[~α \ {αi}, ̂F ∪ {x}] (where ̂F ∪ {x} is the additive closure of
F ∪ {x}) called the valuation of αi in x, and given by:

•
(
R

(n,m)
Z (E)

)
[αi ← x] = R

(n,m)
Z (E ′)

•
(
R

(n,m)
X (E)

)
[αi ← x] = R

(n,m)
X (E ′)

• (H) [αi ← x] = H

• (∆) [αi ← x] = ∆

• (σ) [αi ← x] = σ

• (η) [αi ← x] = η

• (ε) [αi ← x] = ε

where E ′ =
∑
j 6=i

njαj + (nix+ c) if E =
∑
j

njαj + c. y

Again, by convention, if F is generated by {xi}i, we can replace ∆ZX[~α, F ] by
∆ZX[~α, {xi}i]. Hence we can directly write F ∪ {x} instead of ̂F ∪ {x}.

With this de�nition, we may notice that for any fragment F and any variables ~α,
∆ZX[F ] is a sub-PROP of ∆ZX[~α, F ]. �e valuations are functors: they can be com-
posed. Also, they commute, in the sense that the following diagram commutes when
i 6= j:

∆ZX[~α, F ]

∆ZX[~α\{αj}, F∪{xj}]

∆ZX[~α\{αi}, F∪{xi}]

∆ZX[~α\{αi, αj}, F∪{xi, xj}]

(.)[αi ← xi]

(.)[αj ← xj ](.)[αj ← xj ]

(.)[αi ← xi]

Hence, the order of the valuations is not important. �e composite ((.)[αi ← xi]) [αj ←
xj] can be abbreviated as (.)[(αi, αj)← (xi, xj)], and similarly for more than two valu-
ations.
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Chapter 4. General ZX-Calculus

If all the variables are evaluated, we end up in a fragment of ∆ZX. So, if D ∈
∆ZX[~α, F ], we write D(~x) the diagram of ∆ZX[F ∪ ~x] de�ned as D(~x) := D[~α← ~x].
�is allows us to de�ne the standard interpretation of the PROP of linear diagrams:

∀D ∈ ∆ZX[~α, F ], JDK := ~x 7→ JD(~x)K

�e standard interpretation maps any linear diagram to a multivariate function whose
codomain is Qubit. It may be interesting to �ne-grain the target of the standard inter-
pretation, for we want to take into account the fragment of the source PROP.

pDe�nition 4.1.2: LetF be a fragment of the language. We de�ne the PROP QubitR
k

Z[ 1
2
,eiF ]

as:

QubitR
k

Z[ 1
2
,eiF ] :=

{
~α 7→ P (eiα1 , . . . , eiαk) P : n→ m ∈ QubitZ[ 1

2
,eiF ][X1, . . . , Xk]

}
where P : n→ m is a multivariate polynomial with coe�cients in QubitZ[ 1

2
,eiF ][n,m].

y

Hence, if ~α = α1, . . . , αk, then J.K is a functor from ∆ZX[~α, F ] to QubitR
k

Z[ 1
2
,eiF ].

From variables to inputs

We now show that, given an equation involving diagrams linear in some variable α, the
variables can be extracted, spli�ing the diagrams into two parts: a collection of points
(nodes with parameter α) and a constant diagram independent of the variables.

First we de�ne the multiplicity of a variable in an equation:

pDe�nition 4.1.3 (Multiplicity): For any two diagramsD1, D2 : n→ m of ∆ZX[~α, F ],
the multiplicity of α1 in the equation D1 = D2 is de�ned as:

µα1 = max
i∈{1,2}

(
µ+
α1

(Di)
)

+ max
i∈{1,2}

(
µ−α1

(Di)
)

where µ+
α1

(D) (resp. µ−α1
(D)) is the number of occurrences of α1 (resp. −α1) in D, in-

ductively de�ned as

µ+
α1

(R
(n,m)
Z (`α1 +E(α2 · · ·αn))) = µ+

α1
(R

(n,m)
X (`α1 +E(α2 · · ·αn))) =

{
` if ` > 0

0 otherwise

µ−α1
(R

(n,m)
Z (`α1+E(α2 · · ·αn))) = µ−α1

(R
(n,m)
X (`α1+E(α2 · · ·αn))) =

{
−` if ` < 0

0 otherwise
µ±α1

(D ⊗D′) = µ±α1
(D ◦D′) = µ±α1

(D) + µ±α1
(D′)

µ±α1
(H) = µ±α1

(e) = µ±α1
(I) = µ±α1

(σ) = µ±α1
(ε) = µ±α1

(η) = 0 y

Example 4.1.4. Consider the following equation:

π

α β

α β

=
α+β π

βα−β

�e multiplicity of α is µα = 2 and β’s is µβ = 3.
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4.1. Linear Diagrams

Proposition 4.1.5. For any two diagrams D1, D2 : n → m of ∆ZX[α, F ], there exist
D′1, D

′
2 : r → n+m two ∆ZX[F ]-diagrams such that the equivalence

D1 = D2 ⇐⇒ D′1 ◦ θr = D′2 ◦ θr

is provable using the axioms of ZXπ +(K), where r is the multiplicity of α inD1 = D2, and

θr :=
(
R

(0,1)
Z (α)

)⊗ r
.

Pictorially:

...
m

n...

D1 = D2

n...

...
m

⇐⇒
α α…
D′1

r

...
n+m

=
αα

D′2
...
n+m

r

…

Proof I �e proof consists in transforming the equation D1 = D2 into the equivalent
equation D′1 ◦ θr = D′1 ◦ θr using axioms of ZXπ +(K). �is transformation involves 6
steps:
– Turn inputs into outputs. First, each input can be bent to an output using η:

D1

· · ·

· · ·
=

· · ·
D2

· · ·
⇐⇒

· · ·

· · ·
D1 · · · = D2 · · ·· · ·

· · ·

– Make the red spiders green. All red spiders R(k,l)
X (nα + c) are transformed into green

spiders using the axioms (S) and (H):

nα+c

· · ·

· · ·
= nα+c

· · ·

· · ·

– Expanding spiders. All spiders RZ(nα + c) are expanded using (S) so that all the oc-
currences of α are either α or -α :

nα+c

· · ·

· · ·
= c

· · ·

· · · ±α

±α

... |n|

– Changing the sign. Using (K) all occurrences of -α are replaced as follows: -α 7→
α

π -α
π

. Notice that this rule is not applied recursively, which would not termi-
nate. A�er this step all the original −α have been replaced by an α and as many scalars

π

-α have been created. So far, we have shown:

D1

· · ·

· · ·
=

· · ·
D2

· · ·
⇐⇒ · · ·

D′′1

α α

(
-α

π

)⊗ (µ−α (D1)
)

=

⊗
(
µ−α (D2)

)
-α

(
π

)
α α· · ·
D′′2
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Chapter 4. General ZX-Calculus

– (Re)moving scalars. �e scalar π

α
has an inverse for ⊗, which is π

-α (by
(s+) and (IV)). �is has as consequence:

• ZXπ/4 ` π

-α D1 = D2 ⇐⇒ ZXπ/4 ` D1 = π

α
D2

• ZXπ/4 ` π

α
D1 = π

α
D2 ⇐⇒ ZXπ/4 ` D1 = D2

�e scalars π

-α are eliminated by adding −µmax
α := max (µ−α (D1), µ−α (D2)) times

the scalar π

α
on both sides, then simplifying when we have a scalar and its inverse.

⇐⇒

⊗
(
−
µmax
α − µ−α (D1)

)
π

α

( )
· · · αα

D′′1

=

)
α

(
π
⊗
(
−
µmax
α − µ−α (D2)

)

αα· · ·
D′′2

– Balancing the variables. At this step the number of occurrences of α might be di�erent
on both sides of the equation. Indeed, one can check that the side ofDi hasµ+

α (Di)+
−
µmax
α

occurrences of α. One can then use the simple equation α
= (by (sα) and

(IV)) +
µmax
α −µ+

α (Di) times on the side of Di, where +
µmax
α := max (µ+

α (D1), µ+
α (D2)). We

hence end up with µα =
+
µmax
α +

−
µmax
α occurrences of α on both sides. Formally, D′i is

de�ned as:

· · ·
D′i

· · ·
:=

· · ·
D′′i
· · ·

π π

−
µmax
α − µ−α (Di)

+
µmax
α − µ+

α (Di)

· · · · · ·

· · · · · ·

J

Proposition 4.1.5 implies in particular that if the equation D′1 ◦ θr = D′2 ◦ θr is
provable using the axioms of the ZX-calculus, then so isD1 = D2. Proposition 4.1.5 also
implies that if JD1K = JD2K, then JD′1 ◦ θrK = JD′2 ◦ θrK, thanks to the soundness of the
ZX-calculus.

4.2 ∆ZX Beyond To�oli-Hadamard

We give a new axiomatisation ∆+
π for ∆ZX in Figure 4.1 (augmented from the one in

Figure 3.1 and want to show that it makes the fragment of linear diagrams with constants
in πZ complete, i.e., we want to show that ∆ZX[~α, π]/∆+

π is complete. We can actually
show something more powerful:

�eorem 4.2.1. Let F be a fragment, and R and axiomatisation such that ∆ZX[F ]/R is
complete and such that R ` ∆+

π . �en ∆ZX[~α, F ]/R is complete.
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… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir)
=(IV)

=(CP) =(B) α

…
= α

…

…

…(H)

=(K)π

α

π

απ

-α
π

=(B∆)π =(HT)π

=(TCX) =(TW)
α

α
=

α α (P)

Figure 4.1: Set of rules ∆+
π . �e right-hand side of (IV) is an empty diagram. (…) denote

zero or more wires, while ( · · · ) denote one or more wires.

�e rest of this section is commi�ed to proving this theorem. Notice however that
from it we can directly obtain:

Corollary 4.2.2. �e language ∆ZX[~α, π]/∆+
π is complete, i.e. the functor:

∆ZX[~α, π]/∆+
π

J.K→ 1
√

2
NQubitR

k

Z

is faithful.

Proof I ∆ZX[π]/∆π is complete, and since ∆+
π ` ∆π, so is ∆ZX[π]/∆+

π . Of course,
∆+
π ` ∆+

π , so by �eorem 4.2.1, ∆ZX[~α, π]/∆+
π is complete. J

We can actually also show that it is full, but this will require particular constructions
that will be found in Chapter 5.

One Variable

�e idea of the proof of �eorem 4.2.1 is, given a pair of linear diagrams of which we
want to check the equality, to separate the variables from the rest of the diagrams, that
are in ∆ZX[F ], and show that the initial diagrams are equal i� some pair of variable-
free diagrams are equal. It will then be easy to conclude, using the completeness of
∆ZX[F ]/R.

Let us begin with a single occurrence of a single variable. Given two diagrams D1

andD2 of ∆ZX[α, F ], if α has multiplicity 1 inD1 = D2, then according to Proposition
4.1.5, the equation can be transformed into the following equivalent equation involving
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Chapter 4. General ZX-Calculus

a single occurrence of α:

D′1
· · ·

α

D′2

α

=
· · ·

(4.1)

where D′1 and D′2 are in the fragment F . Notice that equation (4.1) holds if and only
if JD′1K = JD′2K, since

(
, π

)
forms a basis of the input space. �us, a variable of

multiplicity 1 can easily be removed, leading to an equivalent equation in the fragment
F of the ZX-calculus. If moreover this fragment is complete and proves ZXπ+(K), the
equation D′1 = D′2 is derivable, which makes the equation (4.1) derivable with the same
axiomatisation.

When a variable has a multiplicity r > 1 in an equation, the variable cannot be
removed similarly as

(
α
)⊗ r does not generate a basis of the 2r dimensional space

when r > 1. However these dots can be replaced by an appropriate projector on the
subspace generated by these dots, as described in the following.

Consider the following family of diagrams (Pr)r≥1:

P1 := P2 := Pr :=
· · ·

· · · · · ·

· · ·
Pr−1

P2

P2 · · ·

· · ·

=

· · ·

P2 · · ·

· · ·

· · ·

··
·

P2

P2 P2

P2

P2

P2

P2 P2

For the reader convenience, here are the interpretations of P2 and P3:

JP2K =


1 0 0 0
0 0 1 0
0 0 1 0
0 0 0 1

 JP3K =



1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


We can characterise the interpretation of Pr for any r.

Proposition 4.2.3. For any word ~x ∈ {0, 1}r, JPrK
t |~x〉 =

∣∣1|~x|10r−|~x|1〉 where |~x|1 is the
Hamming weight of x i.e. the number of symbol 1 in the word ~x.

Informally, JPrK
t sends all the words of the same Hamming weight to the word of

the same weight where all the 1s are on the le�.
Proof I First of all, notice that the result is true for P2:

JP2K
t |00〉 = |00〉 , JP2K

t |01〉 = JP2K
t |10〉 = |10〉 , JP2K

t |11〉 = |11〉
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4.2. ∆ZX Beyond To�oli-Hadamard

Let us denote Op[i1,··· ,ik] the application of the k-qubit operator Op on the wires i1,. . .,ik.
With this notation, JPrKt = JP2K

t[1,2] ◦ JP2K
t[2,3] ◦ · · · ◦ JP2K

t[r−1,r] ◦ JPr−1K
t[1,··· ,r−1]. We

then prove the result by induction on r. Let ~x ∈ {0, 1}r be a word. �en:

JPr+1K |~x0〉 = JP2K
t[1,2] ◦ JP2K

t[2,3] ◦ · · · ◦ JP2K
t[r,r+1] ◦ JPrK

t[1,··· ,r] |~x0〉
= JP2K

t[1,2] ◦ · · · ◦ JP2K
t[r,r+1]

∣∣1|~x|10r−|~x|10〉
= · · ·
=
∣∣1|~x|10r+1−|~x|1

〉
and

JPr+1K |~x1〉 = JP2K
t[1,2] ◦ JP2K

t[2,3] ◦ · · · ◦ JP2K
t[r,r+1] ◦ JPrK

t[1,··· ,r] |~x1〉
= JP2K

t[1,2] ◦ · · · ◦ JP2K
t[r,r+1]

∣∣1|~x|10r−|~x|11〉
= JP2K

t[1,2] ◦ · · · ◦
∣∣1|~x|10r−1−|~x|110

〉
= · · ·
= JP2K

t[1,2] ◦ · · · ◦ JP2K
t[|~x|1,|~x|1+1] ◦

∣∣1|~x|110r−|~x|1
〉

= · · ·
=
∣∣1|~x|1+10r−|~x|1

〉
J

Corollary 4.2.4. �e rank of JPrK is exactly r + 1.

Lemma 4.2.5. For any r ≥ 1, ∆+
π ` Pr ◦ θr = θr i.e.,

∆+
π ` Pr = α α

α α

· · ·

· · ·
· · ·

Proof I �e case for P1 is obvious. Also, if the result is shown for P2, then by an easy
induction, it is true for Pr. P2 is essentially an occurrence of rule (P):

αα

=
(S)

α α
=
(P)
(S)

α

α

=
(s2)

(Hopf)
(I)

α α

J

Lemma 4.2.6. For any r ≥ 2 and any D1, D2 : r → n two ∆ZX[F ]-diagrams,
(JD1 ◦ θrK = JD2 ◦ θrK)⇔ JD1 ◦ PrK = JD2 ◦ PrK i.e.,

∀α ∈ R,
u

v
α α· · ·

· · ·
D1

}

~ =

u

v
α α· · ·

· · ·
D2

}

~

⇔
u

ww
v

· · ·

· · ·

· · ·
Pr

D1

}

��
~ =

u

ww
v

· · ·

· · ·

· · ·
Pr

D2

}

��
~
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Proof I �e proof consists in showing that JPrK is a projector onto

Sr = span{Jθr(α)K | α ∈ R}

According to Lemma 4.2.5, JPrK is the identity on Sr, and JPrK is of rank at most r + 1
according to Corollary 4.2.4, thus to �nish the proof, it is su�cient to prove that the r+1
vectors (θr(α

(j)))j=0...r are linearly independent, where α(j) = jπ/r.
Let λ0, ..., λr be scalars such that

∑
j λjθr(α

(j)) = 0. Notice that the 2p-th row (when
rows are labeled from 1 to 2r) of θr(α(j)) is exactly eipα(j) . �erefore, if we look at all
2p-th rows of the equations, we obtain

1 1 · · · 1

eiα
(0)

eiα
(1) · · · eiα

(r)

... ... . . . ...
eirα

(0)
eirα

(1) · · · eirα
(r)



λ0

λ1
...
λr

 = 0

However, the �rst matrix is a Vandermonde matrix, with eiα(j)
= eiα

(l) i� j = l, which
is enough to state that this matrix is invertible. �erefore all λj are equal to 0 and the
vectors θr(α(j)) are linearly independent. J

We are now ready to prove the main theorem in the particular case of a single vari-
able:

Proposition 4.2.7. For any complete language ∆ZX[F ]/R such that R ` ∆+
π and any

two ∆ZX[α, F ]-diagrams D1, D2,

JD1K = JD2K ⇐⇒ ∆+
π ` D1 = D2

Proof I [⇐] is a direct consequence of the soundness of the ∆ZX-calculus.
[⇒] Assume JD1K = JD2K, i.e. ∀α ∈ R, JD1(α)K = JD2(α)K. According to Proposition
4.1.5, JD′1 ◦ θrK = JD′2 ◦ θrK where D′i are in ∆ZX[F ]. It implies, according to Lemma
4.2.6, that JD′1 ◦ PrK = JD′2 ◦ PrK. �anks to the completeness of ∆ZX[F ]/R, R `
D′1 ◦ Pr = D′2 ◦ Pr, so R ` D′1 ◦ Pr ◦ θr = D′2 ◦ Pr ◦ θr. �us, by Lemma 4.2.5,
R ` D′1 ◦ θr = D′2 ◦ θr, which is equivalent to R ` D1 = D2 according to Proposition
4.1.5. J

Several Variables

Proposition 4.1.5 can be straightforwardly extended to multiple variables:

Proposition 4.2.8. For any D1, D2 : n → m two ∆ZX[~α, F ]-diagrams, there exist
D′1, D

′
2 : (

∑k
i=1 ri)→ n+m two ∆ZX[F ]-diagrams such that,

D1 = D2 ⇔ D′1 ◦ θ~r = D′2 ◦ θ~r

is provable using ZXπ +(K), where ri is the multiplicity of αi in D1 = D2, ~r := r1, . . . , rk,
and θ~r :=

(
α1
)⊗ r1 ⊗ . . .⊗ ( αk

)⊗ rk .
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4.3. ∆π/4 for ∆ZX[~α, π
4
]

Pictorially:

· · ·

· · ·
D1 =

· · ·
D2

· · ·
⇐⇒

α1 α1· · ·
D′1
· · ·

r1

αk· · · αk

rk

· · ·
· · ·

=

· · ·

· · · · · ·αk αk· · ·α1

D′2

rkr1

α1

· · ·

Similarly Lemma 4.2.6 can also be extended to multiple variables:

Lemma 4.2.9. For any k ≥ 0, any ~r = r1, . . . , rk ∈ Nk and any D1, D2 : (
∑

i ri) → n
two ∆ZX[F ]-diagrams,

JD1 ◦ θ~rK = JD2 ◦ θ~rK⇔ JD1 ◦ P~rK = JD2 ◦ P~rK

where P~r = Pr1 ⊗ . . .⊗Prk .

Using Proposition 4.2.8 and Lemma 4.2.9 (whose proofs are similar to those of 4.1.5
and 4.2.6), the proof of �eorem 4.2.1 is similar to the single variable case (Proposition
4.2.7) by induction.

Notice that �eorem 4.2.1 implies that if ∀~α ∈ Rk, JD1(~α)K = JD2(~α)K thenD1(~α) =
D2(~α) has a uniform proof in the ZX-calculus in the sense that the structure of the proof
is the same for all the values of ~α ∈ Rk. Indeed, following the proof of �eorem 4.2.1,
the sequence of axioms which leads to a proof of D1(~α) = D2(~α) is independent of the
particular values of ~α. �is gives us some equalities for free, that will be used in the
following.

Corollary 4.2.10.

∆+
π `

α α+π

=
2α+π

(SUP)

Corollary 4.2.11.

∆+
π `

α

α

-α=
2α π

Corollary 4.2.12.

∆+
π `

βα

π

βα

=
β α

π

β α

Corollary 4.2.13.

∆+
π `

βα π

βγ

-γ

α = α

απ

β -γ

γ

β(C)

4.3 ∆π/4 for ∆ZX[~α, π4 ]

�e aim of linear diagrams is to get a completeness result for ZX[~α, π
4
]/ZXπ/4. �eorem

4.2.1 was given for fragments of ∆ZX. Hence, the next step is logically to apply the
theorem to such a fragment that is as expressive as ZX[π

4
]. We already know that ∆+

π

is a complete axiomatisation for ∆ZX[~α, π]. �rough very few changes, we can give a
complete axiomatisation ∆π/4 for ∆ZX[~α, π

4
]. �is set of rules is given in Figure 4.2.
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… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir) -π
4

π
4 =(E)

=(CP) =(B) α

…
= α

…

…

…(H)

=(K)π

α

π

απ

-α
π

=(B∆)π =(HT)π

=(TCX) =(TW)
α

α
=

α α (P)

Figure 4.2: Set of rules ∆π/4. �e right-hand side of (E) is an empty diagram. (…) denote
zero or more wires, while (…) denote one or more wires.

�eorem 4.3.1. �e language ∆ZX[~α, π
4
]/∆π/4 is complete, i.e. the functor:

∆ZX[~α,
π

4
]/∆π/4

J.K→ QubitR
k

Z[ 12 ,e
i π4 ]

is faithful.

Proof I We are going to use the completeness of ZX[π
4
]/ZXπ/4 to �rst prove that

∆ZX[π
4
]/∆π/4 is complete. We will then be able to use �eorem 4.2.1 to extend the

completeness to linear diagrams since ∆π/4 ` ∆+
π (only (IV) is missing, but it it is deriv-

able thanks to Proposition 2.7.16).
Remember that we have a functor ∆ZX[π]

[.]T→ ZX[π
4
]. It can easily be extended to

∆ZX[π
4
]

[.]T→ ZX[π
4
], it is the identity on every generator except for which

[ ]
T

=
π
4

π
4
π
2

-π
4

-π
4

We can now use the inclusion functor ZX[π
4
]
ι→ ∆ZX[π

4
].

Both these functors are PROP-functors, and one can check that J[.]T KZX = J.K∆ZX.
We are now going to prove that for any ZX[π

4
]-diagrams D1 and D2, ZXπ/4 ` D1 =

D2 =⇒ ∆π/4 ` ι(D1) = ι(D2). We do so by deriving all the axioms of ZXπ/4 with ∆π/4.
A lot of them are found in ∆π/4, so they don’t need to be proven. Also, (C) is provable
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4.3. ∆π/4 for ∆ZX[~α, π
4
]

thanks to Corollary 4.2.13. We can prove (HD):

∆π/4 `
π
2

π
2

−π
2 =

4.2.11

π π

=
3.6.9

π

=
(B)

π

π

=
(H)
(S)

π

π

=
3.6.9

π
=

4.2.11

π
=

(CP)
(S)
(I)

Also, we can prove ∆π/4 ` =
π
4

π
4
π
2

-π
4

-π
4

:

∆π/4 ` =
(I)
(S)

3.5.5

π

π

=

π

π

-π
2

=
3.6.13

π

π -π
2

π
=

3.6.8

π

π
-π
2

=
(EU)

π

π

-π
2

π
2

=
(B)

π

π

π
2

-π
2

=
(TCX)

π

ππ
2

-π
2

=
(S)

π
2

-π
2

π

π

=
3.6.10

π
2

-π
2

π

=
4.2.11

π
4

π
4

-π
4

-π
4

π

=
(S)
(K) ππ

π
4

π
4

π
4

-π
2

π
4

=
(H)

π
4

π

π
4

π
4

π
4

-π
2

π

=

π
4

π
4

π
2
π
2

π

π
2

π
4

π
4

- 3π
4

π

=

π
4

π
4

π
2

π
2

π
4

- 3π
4

π
2

π
2

π

π
4

=
(H)

π
4

π
4

π
4

π
2 π

-π
4

-π
2

π
2

=
4.2.12

-π
4

π
4

-π
2

π
2

π
4

π
2

π

π
4
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=
(S)
(H)

π
4

π
4

-π
2

π
4

π
4
π
2

π =
(K)

π
2

π
4

π
4

-π
4

-π
4

�e rule (BW) of ZXπ/4 is now easily derivable from the decomposition of the triangle
and the rule (B∆) of ∆π/4.

Now, let D1, D2 ∈ ∆ZX[π
4
] such that JD1K = JD2K. Since J[.]T KZX = J.K∆ZX, by

completeness of ZX[π
4
]/ZXπ/4, ZXπ/4 ` [D1]T = [D2]T , so ∆π/4 ` ι ([D1]T ) = ι ([D2]T ).

We have ∆π/4 ` ι ([Di]T ) = Di, because ι ([.]T ) is the identity for all generators except
, and in this case we just proved ι

(
[ ]T

)
= . As a consequence ∆π/4 ` D1 = D2,

so ∆ZX[π
4
]/∆π/4 is complete. By �eorem 4.2.1, ∆ZX[~α, π

4
]/∆π/4 is complete. J

4.4 ZX Beyond Cli�ord+T

Now that we have proven the completeness result for ∆ZX beyond To�oli-Hadamard,
we can derive a similar one for the ZX-Calculus.

�eorem 4.4.1. �e language ZX[~α, π
4
]/ZXπ/4 is complete, i.e. the functor

ZX
[
~α,
π

4

]
/ZXπ/4

J.K→ QubitR
k

Z[ 12 ,e
i π4 ]

is faithful.

Again, this functor is also full, but the proof needs constructions introduced in Chap-
ter 5.
Proof I To prove this result, we are going to use the previously proven result for linear
diagrams of ∆ZX[π

4
] (�eorem 4.3.1). As usual, we need a pair of functors that translate

one one language into the other. We can easily extend the functor [.]T but this time
for linear diagrams ∆ZX[~α, π

4
]

[.]T→ ZX[~α, π
4
]. Again, it is the identity on all generators

except . And again, we have the inclusion functor ZX[~α, π
4
]
ι→ ∆ZX[~α, π

4
].

We �rst prove that ∆π/4 ` D1 = D2 =⇒ ZXπ/4 ` [D1]T = [D2]T . We do so by
proving all the axioms of ∆π/4 with ZXπ/4, most of which have already been done. It
remains to prove (P). First:

π

=
3.5.5

(I)
(S)

ππ

π

=
3.8.10
3.5.5
3.8.1

π
=

3.6.11
(H) π

=
3.6.10

=
(T0)
(CP)
(IV)
(H)

3.5.3

(4.2)
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4.5. Applications of Linear Diagrams

�en:

α α
=
(I)
(S)

3.5.5
3.8.1

α α

π

ππ
=

3.6.2
3.5.5 α α

π

π
=
(B)
(S)

α α

π

π
=

(TW)
α α

π

π =
3.6.3

(S)
α α

π

π

=
(S)
(B)

α

α

π

ππ

=
3.8.11
3.8.1

α

α

π

ππ

=
3.8.1
3.5.5

α

α

π

π =
3.8.10
3.8.1

(S)

α

α

π

=
(B)
(S)

α

α

π
=

(TCX)

α

α

π

=
(4.2)

(S)
(I) α

α =
3.8.10

α

α

π

=
3.8.1
3.8.11

α

α

Now, suppose we have D1, D2 ∈ ZX[~α, π
4
] such that JD1K = JD2K. By completeness of

∆ZX[~α, π
4
]/∆π/4, ∆π/4 ` ι(D1) = ι(D2), so ZXπ/4 ` [ι(D1)]T = [ι(D2)]T . Finally, it is

obvious that [ι(D)]T = D, so ZXπ/4 ` D1 = D2. Hence ZX[~α, π
4
]/ZXπ/4 is complete. J

We just showed that ZXπ/4 ` ∆π/4. In the previous section, we showed the converse,
that ∆π/4 ` ZXπ/4. �e result is that:

Proposition 4.4.2. ZX[~α, π
4
]/ZXπ/4 ' ∆ZX[~α, π

4
]/∆π/4.

4.5 Applications of Linear Diagrams

In order to prove that ZXπ/4 ` D1 = D2 using �eorem 4.4.1, one has to double check
the semantic condition JD1(~α)K = JD2(~α)K for all ~α ∈ Rk, which might not be easy in
practice. We show in the following alternative ways to prove ZXπ/4 ` D1 = D2, the
two �rst based on a �nite case-based reasoning in the ZX-calculus, and the last one by
diagram substitution. �e following techniques will be proven for ZX[~α, π

4
]/ZXπ/4 but

can be easily stated out for ∆ZX[~α, π]/∆+
π .

Considering a basis

�eorem 4.5.1. For any ZX[~α, π
4
]-diagrams D1, D2 : 1→ m, if

∀j ∈ {0, 1}, ZXπ/4 ` =
jπ

D1

jπ

D2… …

then
ZXπ/4 ` D1 = D2
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Proof I �e argument was already mentioned at page 121, up to a change of basis. We
give it again here for the sake of consistency.
Assume ZXπ/4 ` D1 ◦RX(jπ) = D2 ◦RX(jπ) for any j ∈ {0, 1}. It implies that for

x ∈
{(

1
0

)
,

(
0
1

)}
, JD1Kx = JD2Kx, so JD1K = JD2K, which implies according to

�eorem 4.4.1 ZXπ/4 ` D1 = D2. J

Notice that �eorem 4.5.1 can be applied recursively: in order to prove the equality
between two diagrams with n inputs, m outputs, and constants in π

4
Z, one can consider

the 2n+m ways to �x these inputs/outputs in a standard basis states. It reduces the exis-
tence of a proof between two diagrams with constants in π

4
Z to the existence of proofs

on scalar diagrams (diagrams with no input and no output).

Corollary 4.5.2.

ZXπ/4 `
β α

α
=

β

α

β

α

Proof I We can prove that this equality is derivable by plugging our basis
(
, π

)
on

the input.

• :

β α

α =
(IV)
(CP)
(sα)

α

α =
(T0)
(IV)
(CP)

α

α

=
(sα)
(CP)
(IV)

β

α

β

α
=

(CP)
(T0)
(IV) β

α

β

α

• π :

β α

α

π

=
(IV)
(K)

(πdist)
(CP)
(S)

α

π

α+π

β

π
π

=
(SUP)
3.5.6

(S)
(IV)

π

2α+π

β

π =
(Hopf)

(IV)

π
β

π
2α+π

=
(SUP)

π
β

π
α+πα

=
(S)
(K)

(πdist)

π
α α

ββ =
(S)

3.5.6
(CP)

(πdist)
β

α

β

α

π

J
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Considering a �nite set of angles

�eorem 4.5.3. For any ZX[~α, π
4
]-diagrams D1, D2 : n→ m, if

∀~α ∈ T1 × . . .× Tk,ZXπ/4 ` D1(~α) = D2(~α)

then
ZXπ/4 ` D1 = D2

with Ti a set ofµi+1 distinct angles inR/2πZwhereµi is the multiplicity ofαi inD1 = D2.

Proof I In the proof of Lemma 4.2.6, we actually only used µα + 1 values of α that
constitute a basis of Sµα . �is extends naturally to several variables: the dimension of
Sµα1 × · · · × Sµαk is (µα1 + 1)× · · · × (µαk + 1), and taking ~α ∈ T1 × . . .× Tk gives as
many linearly independent vectors in (hence a basis of) Sµα1 × · · · × Sµαk . J

Corollary 4.5.4.

π

α β

α β

=
α+β π

βα−β

Proof I Notice that µα = 2 and µβ = 3 in this equation. Hence we need to evaluate it
for 12 values of (α, β), for instance for α, β ∈ {0, π, π

2
}×{0, π, π

2
,−π

2
}. We can actually

simplify the proof, by showing that whatever the value of β ∈ R, the equation is deriv-
able for α ∈ {0, π, π

2
}. �is means the equation is derivable for all α, β ∈ {0, π, π

2
}×R,

and a fortiori for all α, β ∈ {0, π, π
2
}×{0, π, π

2
,−π

2
}which would be a direct application

of the theorem.

• α = 0:

π

β

β

=
(IV)
(CP)
(sπ)

β

β

=
(s2)
(IV) β

β

=
(IV)
(K)

β π

β-β

• α = π:

π

π β

π β

=
(K)
(IV)
(CP)

(πdist)

β+πβ+π π

π =
(s2)
(IV)

π
β+π

πβ+π

=
(K)

π+β π

βπ-β

• α = π
2
:

π

π
2 β

π
2 β

=
(IV)
(K)

π
2

π

π
2

β

β

-π
2

=
(SUP)

π
2

β

β
π

=
(IV)

(Hopf)
(I)
(S)

π
π
2

2β

=
(IV)

(Hopf)

π

2β

π
2

=
(SUP)

π
2

π
π
2

+β

β-π
2

=
(IV)
(CP)
(K)
(sπ)
(s+)

π
2

+β π

βπ
2

-β
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�e results are the same for three di�erent values of α. �is is enough to get the equation
in Corollary 4.5.4, according to �eorem 4.5.3. J

Remark 4.5.5. �e number of occurrences of a variable is not to be mistaken for its mul-
tiplicity. For instance consider the following equation:

α = -α

�is equation is obviously wrong in general, but not for 0 and π. If we tried to apply
�eorem 4.5.3 with the number of occurrences (which seems to be 1), then we might end
up with the wrong conclusion. �e multiplicity (here µα = 2) prevents this.

Diagram substitution

p De�nition 4.5.6 (Symmetric Diagram): A diagram D : 0 → n is symmetric if for
any permutation τ on {1, . . . n},

Qτ (JDK) = JDK

where Qτ : C2r → C2r is the unique morphism such that:
∀ϕ1, . . . , ϕr ∈ C2, Qτ (ϕ1 ⊗ . . .⊗ϕr) = ϕτ(1) ⊗ . . .⊗ϕτ(r). y

In particular for any diagram D0 : 0→ 1, D0 ⊗ . . .⊗D0 is a symmetric diagram.

�eorem 4.5.7. For any ZX[~α, π
4
]-diagrams D1, D2 : r → n and symmetric ZX[~β, π

4
]-

diagram D : 0 → r, if ZXπ/4 ` D1 ◦ θr0 = D2 ◦ θr0 then ZXπ/4 ` D1 ◦D = D2 ◦D i.e.,
pictorially:

ZXπ/4 `
α0 α0· · ·

· · ·
D1 =

α0 α0· · ·

· · ·
D2 =⇒ ZXπ/4 ` D1

· · ·
· · ·

D
=

D2

· · ·
· · ·

D

Proof I If ZXπ/4 ` D1 ◦ θr0 = D2 ◦ θr0 then JD1 ◦ θr0K = JD2 ◦ θr0K, so according to
Lemma 4.2.6, JD1 ◦ Pr0K = JD2 ◦ Pr0K. It implies that ZXπ/4 ` D1 ◦ Pr0 = D2 ◦ Pr0 , so
ZXπ/4 ` D1 ◦ Pr0 ◦D = D2 ◦ Pr0 ◦D. To complete the proof, it is enough to show that
ZXπ/4 ` Pr0 ◦D = D.
Let S = {JDK | D : 0 → n symmetric}. First we show that S is of dimension at most
r + 1. Indeed, notice that if ϕ ∈ S , then ∀i, j ∈ {0, . . . , 2r − 1} s.t. |i|1 = |j|1, ϕi = ϕj ,
where |x|1 is the Hamming weight of the binary representation of x. As a consequence,
for any ϕ ∈ S , ∃a0, . . . , ar ∈ C s.t. ϕ =

∑n
h=0 ahϕ

(h) where ϕ(h) ∈ C2r is de�ned as

ϕ
(h)
i =

{
1 if |i|1 = h

0 otherwise
. �us S is of dimension at most r+ 1. Moreover, for any α ∈ R,

Jθr0(α)K ∈ S , so S ⊆ Sr0 := span{Jθr0(α)K | α ∈ R}. Since Sr is of dimension r+1 (see
proof of Lemma 4.2.6), S = Sr. As a consequence ∀~β,

r
D(~β)

z
∈ Sr, so JPr0K ◦ JDK =

JDK, since, according to Lemma 4.2.5 JPr ◦ θr0K = Jθr0K. �us, ZXπ/4 ` Pr0 ◦D thanks
to �eorem 4.4.1. J
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4.6. Axiomatisation for ZX

Corollary 4.5.8.

ZXπ/4 `
β α

βα
π

=

πα β

β α

Proof I Indeed, simply by decomposing the colour-swapped version of (SUP) using (S),
we can derive:

ZXπ/4 ` =

α α

π

α α
π

Now we just need to apply �eorem 4.5.7 with
β α

α β:=D which is clearly
symmetric:

β α

βα
π

= π

D(α, β)

= π

D(α, β)

=
πα β

β α

J

4.6 Axiomatisation for ZX

We are now well equipped to give an axiomatisation for the unrestricted ZX-Calculus
(ZX[R] = ZX), and prove that it is complete. �e axiomatisation is given in Figure 4.3.

�eorem 4.6.1. �e language ZX/ZX is complete: the functor ZX/ZX
J.K→ Qubit is full

and faithful.

But �rst, let us consider the set of rules ZX. Notice that this axiomatisation basically
consists of ZXπ/2 with two additional rules (that replace the scalar axioms): (E), which is
already in ZXπ/4, and (EU).

�e rule (EU) is really all about 1-qubit unitaries. Indeed, we have the following
result:

Proposition 4.6.2. Any one-qubit unitary can be decomposed as:

eiγRZ(α3)RX(α2)RZ(α1)

which can be represented in ZX as:

α2

α1

α3

π

γ

If the unitary is not diagonal or anti-diagonal (i.e. if α2 6= 0 mod π), then this decomposi-
tion can be made unique if we impose α1 ∈ [0, π)
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Chapter 4. General ZX-Calculus

… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir) -π
4

π
4 =(E)

=(CP) =(B)
= β2

β1

β3

α2

α1

α3

π

γ(EU)

π
2

π
2 -π

2=(HD) α

…
= α

…

…

…(H)

Figure 4.3: Set of rules ZX for the ZX-Calculus with scalars. �e right-hand side
of (E) is an empty diagram. (…) denote zero or more wires, while (…) denote one or
more wires. In rule (EU), β1, β2, β3 and γ can be determined as follows: x+ := α1+α3

2
,

x− := x+−α3, z := cos
(
α2

2

)
cos (x+)+i sin

(
α2

2

)
cos (x−) and z′ := cos

(
α2

2

)
sin (x+)−

i sin
(
α2

2

)
sin (x−), then β1 = arg z + arg z′, β2 = 2 arg

(
i+
∣∣ z
z′

∣∣) , β3 = arg z −
arg z′, γ = x+ − arg(z) + α2−β2

2

Proof I
• Existence:
Any element of U(2) can be decomposed as:

eiϕ/2
(
eiψ0 0
0 e−iψ0

)(
cos (θ) sin (θ)
− sin (θ) cos (θ)

)(
eiψ1 0
0 e−iψ1

)
Hence, the existence is given by:
u

ww
v α2

α1

α3

π

γ

}

��
~= ei(γ+

α2
2

)

(
1 0
0 eiα3

)(
cos
(
α2

2

)
−i sin

(
α2

2

)
−i sin

(
α2

2

)
cos
(
α2

2

) )(1 0
0 eiα1

)

= ei(γ+
α2
2

)

(
1 0
0 ei(α3+π

2
)

)(
cos
(
α2

2

)
sin
(
α2

2

)
− sin

(
α2

2

)
cos
(
α2

2

))(1 0
0 ei(α1−π2 )

)
= ei(γ+

α1+α2+α3
2

)

(
e-i(α3

2
+π

4
) 0

0 ei(
α3
2

+π
4

)

)(
cos
(
α2

2

)
sin
(
α2

2

)
- sin

(
α2

2

)
cos
(
α2

2

))(e-i(α1
2

-π
4

) 0

0 ei(
α1
2

-π
4

)

)
• Uniqueness:

Suppose

u

ww
v α2

α1

α3

π

γ

}

��
~ =

u

ww
v α′2

α′1

α′3
π

γ′

}

��
~. �e �rst diagram yields:

ei(γ+
α2
2

)

(
cos
(
α2

2

)
−ieiα1 sin

(
α2

2

)
−ieiα3 sin

(
α2

2

)
ei(α1+α3) cos

(
α2

2

))
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and similarly for the second one. If α2 6= 0 mod π, then neither cos
(
α2

2

)
nor sin

(
α2

2

)
is null. Hence, dividing element (1,1) by element (0,0) on both sides gives ei(α1+α3) =
ei(α

′
1+α′3) and dividing element (0,1) by element (1,0) on both sides gives ei(α1−α3) =

ei(α
′
1−α′3). In other words, α1 + α3 = α′1 + α′3 mod 2π and α1 − α3 = α′1 − α′3 mod 2π,

so 2α1 = 2α′1 mod 2π i.e. α1 = α′1 mod π. Since we required α1, α
′
1 ∈ [0, π), we get

α1 = α′1. It then follows easily that α3 = α′3, α2 = α′2 and γ = γ′. J

In 1775, Euler proved what is now called Euler’s rotation theorem [Eul76], stating
that there are several ways to decompose a rotation into several rotations around ele-
mentary axes. In quantum mechanics, a consequence is that any unitary operator on
one qubit can be seen as either a composition of rotations around Z, X, Z; or around
X, Z, X. On the one hand, the rule (HD) says – in a distorted, ZX-style way – that the
Hadamard gate can be decomposed as a series of rotations, while on the other hand, the
rule (EU) gives the equality between two di�erent decompositions of the same unitary:

= β2

β1

β3

α2

α1

α3

π

γ(EU) where



x+ := α1+α3

2
x− := x+ − α3

z := cos
(
α2

2

)
cos (x+) + i sin

(
α2

2

)
cos (x−)

z′ := cos
(
α2

2

)
sin (x+)− i sin

(
α2

2

)
sin (x−)

β1 = arg z + arg z
β2 = 2 arg

(
i+
∣∣ z
z′

∣∣)
β3 = arg z − arg z′

γ = x+ − arg(z) + α2−β2
2

�is rule is meant to be read from le� to right, this is why the angles βi and γ are
expressed in terms of the angles αi. However, up to the scalar, which only represents a
global phase, and hence is invertible, applying the rule from right to le� can be performed
by using the colour-swapped version of the rule from le� to right.

�ere are several sets of angles for βi and γ that make the rule sound. However, we
only gave one, but the others can be found from it and the other rules of ZX. We will not
need to prove this claim directly, it is an implication of the upcoming theorem.

�e angles βi and γ seem to not always be de�ned. Indeed, arg is not de�ned at 0,
and β2 is not de�ned when z′ = 0. By convention, we set arg(0) = 0 and β2 = 0 when
z′ = 0.

�e �rst proof of incompleteness of the unrestricted ZX-Calculus [SdWZ14] relied
on an Euler decomposition, but adding it to the set of ZX axioms has been avoided for a
while because of its non-linearity. However, a non-linear axiom is necessary to get the
completeness for the general ZX-Calculus [JPV18b]. And so, it has been used in [CW18]
to prove the completeness of the 2-qubit π

4
-fragment of the ZX-Calculus. �e rule (EU)

is actually much more powerful than this, for, as we already announced, it makes the
language complete.

On Minimality

We call an axiomatisation minimal when there is no redundancy in the axioms. Par-
ticularly, we want a proof that none of the axioms are derivable from the others. We
conjecture that all the axioms in Figure 4.3 are necessary. Indeed, in [BPW17b], nearly
all the rules for Cli�ord – i.e. all of the axioms in Figure 4.3 except (E) and (EU)– are
proven to be necessary. We reproduce the arguments here:
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Chapter 4. General ZX-Calculus

• (S): It is the only axiom that can transform a node of degree four or higher into a
diagram containing lower-degree nodes.

• (Ig) or (Ir): �ese are the only two axioms that can transform a diagram with nodes
connected to a boundary to a node-free diagram.

• (CP): It is the only axiom that can transform a diagram with two connected outputs
into one with two disconnected outputs.

• (HD) and (H): To prove their necessity, we de�ne two non-standard interpretation.

Proof of Necessity of Rules (HD) and (H) I First, to prove the necessity of (HD), we
de�ne the non-standard interpretation J.K\ as follows:

7→ 7→ 7→

7→ 7→
n...

...
m

α 7→ α α
…

… n...

...
m

α 7→ αα
…

…

D1 ◦D2 7→ JD1K
\ ◦ JD2K

\ D1 ⊗D2 7→ JD1K
\ ⊗ JD2K

\

It is then easy to see that all the rules but (HD) hold under this interpretation, hence
proving that (HD) could not be derived from the other rules.

�en, to prove the necessity of (H), we de�ne the non-standard interpretation J.K\ as
follows:

7→ 7→ 7→

7→ 7→

n...

...
m

α 7→
n...

...
m

n...

...
m

α 7→
n...

...
m

D1 ◦D2 7→ JD1K
\ ◦ JD2K

\ D1 ⊗D2 7→ JD1K
\ ⊗ JD2K

\

and consider equality in the codomain up to a scalar, i.e. we consider colinearity. One
can check that all the rules preserve colinearity except (H). J

In this new axiomatisation, (E) and (EU) can also be proven to be necessary:

• (E): It is the only axiom that can transform a non-empty diagram into an empty
one.

• (EU): It is the only non-linear axiom.

In summary, all the axioms are proven to be necessary, except (B) and one of the (I).
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4.6. Axiomatisation for ZX

ZX proves ZXπ/2

A �rst and easy step towards overall completeness is to show that we can recover the
axiomatisation ZXπ/2 that we know complete for Cli�ord. We already have most of these
rules, we only lack two: (Z) and (IV). However, we can see from Figure 2.2 that (IV) is
derivable.

To prove the rule (Z), we will �rst derive (K).

Lemma 4.6.3. �e π-commutation (K) is derivable:

ZX `
π

α
=

-α

πα

π

Proof I

π

α
=
(I)
(S)

α

π

π

π

=
(EU)

π

π

α

π-α
2

π-α
2

=
(I)
(S)
(IV)

-α
πα

π

J

Remark 4.6.4. �is is one of the few applications of (EU) that still preserves linearity.

Lemma 4.6.5. �e zero rule is derivable:

ZX `
π

=

π

Proof I

α

π

=
(Hopf)

α

π

=
(S)

α
2

π
α
2

=
(K)

α
2

-α
2

α
2

π
π

=
(S)
(IV)

(Hopf)

π
π
α
2

(4.3)

α

π

π

=
(4.3)

π
π
α
2π

=
(sπ)
(IV)

α
2

π

π

(4.4)

Now, if α ∈ Dπ (where D := Z
[

1
2

]
), then there exists n such that 2nα = 0 mod 2π.

Hence, in this case the scalar on the right hand side of (4.3) can be removed by applying
(4.4) from right to le� n+ 1 times then using π

=
(sπ)

and (IV) to remove it. Hence:

∀α ∈ Dπ,
π

=α

π

(4.5)
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So:

π =
(4.5)
(H)

π
π
4

-π
4 =

(E)
π (4.6)

And �nally:

π

=
(4.5)

π

-π
2 =

(|i〉)

π
π
2

-π
2 =

(4.5)
(H)

π

=
(s2)
(IV)

π

=
(4.6)

π

J

As a result:

Proposition 4.6.6. For any diagrams D1, D2 of ZX[π
2
]:

JD1K = JD2K ⇐⇒ ZX ` D1 = D2

4.7 Singular-Value Decomposition

�e next step is logically to get the completeness for Cli�ord+T quantum mechanics, i.e.
for ZX[π

4
]. Now that we are seeking to prove equations that are out of Cli�ord, we will

begin to use (EU) to its full potential. However, we would like, as much as possible, to
avoid computing the angles, because, since we work on the problem of completeness, we
need to formally prove the equality between two diagrams, and hence to formally write
what the angles resulting from (EU) are, which becomes tedious a�er a few applications
of the rule.

To simplify this task, instead of showing directly that two diagrams can be turned
into one another, we will de�ne a normal form for them, show that it is unique, and
show that there is an algorithm to turn them into this normal form.

To do so, we prove a few useful lemmas:

Lemma 4.7.1.

α2

α1

α3 =

γ

β2

π
β3

β1

where β1, β2, β3, γ can be determined as in
rule (EU).

Corollary 4.7.2.

α1

α3
=

γ

β2

π
β3

β1

π
2 -π

2

where β1, β2, β3, γ can be determined as in
rule (EU) with α2 ← π

2
.
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4.7. Singular-Value Decomposition

Lemma 4.7.3.

α2

α1

=

β3

β1

π
2

β2-π
2

π

γ

-π
2

where β1, β2, β3, γ can be determined as in
rule (EU) applied with the angles:
α2 ← α2 + π

2
and α3 ← π

2
.

Lemma 4.7.4.

α1 α3

=

π
2

β1+β3

β2

π

γ

-π
2

where β1, β2, β3, γ can be determined as in
rule (EU) with α2 ← π

2
.

Proof I

α2

α1

α3 =
(B)
(S)

α3

α2
α1

=
(S)

(EU)
β2

β3

β1
π

γ

=
(S)
(B) γ

β2

π
β3

β1

α1

α3
=
(S)

α1

α3

-π
2
π
2

=
(S)
(IV)
(|i〉)

α3

α1

π
2

π
2

-π
2

=
4.7.1

γ

β2

π
β3

β1

π
2 -π

2

α2

α1

=
(B)
(S)

α2

α1
=

(HD)
(I)

(|i〉)
α2+π

2

α1

-π
2

π
2
π
2 =

(EU)
(S)

β1

π

γ
β3+π

2

β2-π
2

=
(H)
(S)

β3+π
2

β1
β2

π

γ

-π
2

=
(HD)

β3

β1
β2-π

2

π
2

π

γ

-π
2

=
(S)
(B)

β3

β1

π
2

β2-π
2

π

γ

-π
2

α1 α3

=
(S)

α1

α3
=

4.7.2

β2

β3

β1

π
2

π

γ

-π
2

=
(CP)
(S)
(I)

π
2

β1+β3

β2

π

γ

-π
2

J

Now, by specialising the angles to α and α + π, we shall recover (SUP):

Proposition 4.7.5. �e supplementarity is derivable:

ZX `
α α+π

=
2α+π

(SUP)
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Proof I We �rst use Lemma 4.7.4, where α3 = α1 + π. In this case, it can be computed
that β1 + β3 = 0, so we end up with:

α+πα

=
β2

π

γ

-π
2

(4.7)

From this, we can easily specify the scalar on the right part:

β2

π

γ

-π
2

=
(IV)
(s2)

β2

π

γ

-π
2

=
(S)

(4.7)

α+πα

=
(S)
(I)

2α+π (4.8)

So �nally:

α α+π

=
(4.7)

β2

π

γ

-π
2

=
(4.8) 2α+π

=
(Hopf)

(IV)

2α+π

J

Remark 4.7.6. �e supplementarity allows us to prove:

π
4

π
= π

2

which implies that π

γ
-π
2 can be replaced by π

γ-π
4

in Corollary 4.7.2 and Lemmas
4.7.3 and 4.7.4.

So far, we have proven all the rules of ZXπ/4 except (C) and (BW). For the rest, we
present the singular-value decomposition of a matrix, and introduce it to ZX-diagrams.
p De�nition 4.7.7 (Singular Value Decomposition): A singular value decomposition
(SVD) of a matrix is a decomposition of the form

M = UΣV †

where U and V are unitary, and Σ is diagonal. �e diagonal entries of Σ are referred to
as the singular values. Notice that M needs not be square (in this case Σ has the same
dimensions as M ). y

To justify the use of SVDs, we give some of their interesting properties [HJ85]:

Proposition 4.7.8. �e SVD M = UΣV † of a matrix M has the following properties:

• It exists for all M

• Σ can be made unique if we impose that its diagonal entries are decreasing non-
negative real numbers

• U and V are not unique in general, though:
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4.7. Singular-Value Decomposition

• If M is square with distinct and non-zero singular values, then U and V are essen-
tially unique:

UΣV † = U ′ΣV ′† ⇐⇒ (∃d, (U ′ = Ud) ∧ (V ′ = V d))

where d is diagonal with diagonal entries some roots of unity.

Even though the singular-value decomposition is relevant for any diagram, we are
only going to give its derivation for a particular family of diagrams:

p De�nition 4.7.9 (Cycle-Free Diagram): A cycle-free diagram is a diagram composed

only of , , α

n...
, α

n...
where n ∈ N and α ∈ R. y

Remark 4.7.10. Some diagrams that do not strictly follow the conditions of the previous
de�nition will still be considered cycle-free if they are equal to a cycle-free diagram by
mere application of the “only connectivity ma�ers” paradigm, i.e. if they are isomorphic
to a cycle-free diagram. E.g.:

α
=

α is considered cycle-free

One-�bit States

We can now easily give a normal form for one-qubit states, using the SVD of the under-
lying matrix.

Proposition 4.7.11 (SVD of a One-�bit State). Any cycle-free state D : 0 → 1 can be
put in the following forms using ZX:

D = sβ

α

= s′β′
α′

where β, β′ ∈ [0, π), and where s and s′ are 0→ 0 diagrams, i.e. scalars. We call these two
forms respectively SVDg and SVDr.

To understand where it comes from, notice that if M ∈ C2×C, with UΣV † its SVD,
then U is a 2×2 unitary, and V † is a 1×1 unitary. A 2×2 unitary can be expressed as in
Proposition 4.6.2, while a 1× 1 unitary is merely a global phase i.e. a root of unity. Σ is

of the form
(
s

0

)
= s′

(√
2

0

)
(where s = 0 if M = 0). Hence one of its representations

is:

s′′

α3

α2

α1

=
s′′

α3

α2

thanks to some rules of ZX, and where s′′ is the aggregation of the scalars produced by
U , Σ and V †.
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Proof I First, notice that a state in the previous form of SVDg, but with the bas con-
straints on angles, can easily be transformed into an SVD. Indeed, if β ∈ [π, 2π):

sβ

α

=
(K) s

β-π
-α π

α

and similarly for the SVDr. We can show that we can transform an SVDr into an SVDg

and vice-versa: :

α
s

β =
(H)

α

s
β

=
(HD)
(S)

(|i〉)
4.7.6

sα-π
2

β-π
2

-π
2

π
4

π
=

(EU)
(s+)

π
4

+γ

π

s

γ3

γ1

γ2 =
(S)

(CP)
(sα)

γ3 π
4

+γ

γ2

s

π

�en, we prove the result by induction.

α
=
(I)

α

�en :

D
=

α

sβ
=
(H)

α
s

β = γ3

γ2
s′

Notice that the generator R(0,1)
Z (α) can be obtained as a combination of the last two.

�en :

D
γ =

α

sβ

γ
=
(S)

α
s

β+γ

D1 D2

=
(S)

α2

s2

α1
s1

β1+β2 =
4.7.4 β1+β2

-π
2

π

γ′

β2β′

s1

s2

=
(S)

(s+)
3.8.3
(|i〉)
(HD)

γ′-π
4

β2
β1+β2+π

2

π

β′+π
2

s1

s2
=
(H)

π

γ′-π
4

s2

β2
β1+β2+π

2

s1

β′+π
2

Finally, the generator R(n,1)
Z (α) can be obtained by composition of RZ(α) and R(2,1)

Z (α);
and R(n,1)

X (α) can be obtained by composition of R(n,1)
Z (α) and H . J
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4.7. Singular-Value Decomposition

Proposition 4.7.12 (SVDs of states are essentially unique). If D1 =

α1

β1 s1 and D2 =

α2

β2 s2 are in SVD, and if JD1K = JD2K 6= 0, then either:

• α1 = α2 mod 2π and αi = 0 mod π

• α1 = α2 mod 2π and β1 = β2

Proof I �e equality reads s1

(
1 + eiα1

eiβ1(1− eiα1)

)
= s2

(
1 + eiα2

eiβ2(1− eiα2)

)
. If α1 = π mod

2π, then it is easy to see that α2 = π mod 2π and s1e
iβ1 = s2e

iβ2 . If αi 6= π mod 2π,
then the upper coe�cient is non-null, hence we can divide the lower coe�cient by the
upper one, which yields:

eiβ1
1− eiα1

1 + eiα1
= eiβ2

1− eiα2

1 + eiα2
⇐⇒ eiβ1 tan

(α1

2

)
= eiβ2 tan

(α2

2

)
If α1 = 0 mod 2π then α2 = 0 mod 2π. Otherwise, since β1, β2 ∈ [0, π), β1 = β2 and
α1 = α2 mod 2π. J

1→ 1 Operators

Applying the singular-value decomposition on 1→ 1 operators gives them a particular
form, again with properties of essential uniqueness:

Proposition 4.7.13 (SVD of a 1 → 1 diagram). Any cycle-free diagram D : 1 → 1 can
be wri�en in the forms:

D = α3 γ

α2

α4

α1

α5
s

= γα′3

s′

α′2

α′4

α′1

α′5

where γ ∈ [0, π
2
], and α1, α5, α

′
1, α

′
5 ∈ [0, π), using ZX. We denote the two forms respec-

tively SVDg and SVDr.

�e intuition is that π
2

γ
has interpretation (up to a scalar)

(
1 0
0 tan

(
γ
2

)), and

hence can be used to represent Σ in the SVD of JDK. U and V † here are 2× 2 unitaries,
and so can be represented as in Proposition 4.6.2. Using (S) to merge the green nodes
gives the above form.
Proof I First, if D is in the form SVDg, but where the constraints on the angles are not
met, we can transform it into an actual SVDg:
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• If α1 ∈ [π, 2π) (and similarly for α5):

α2

α1

...

=
(S)
(K)

-α2

α1-π

...
π

π

α2

• If γ ∈ [−π
2
, 0):

α3 γ =
(S)
(K)

π+α3

-γ
π

γ

• If γ ∈ [−π,−π
2
):

α3 γ =
(S)
(K)

-α3 γ+π

π

π

π

α3

• If γ ∈ [π
2
, π):

α3 γ =
(S)
(K)

-α3 γ+π

π

π

π

α3

=
(S)
(K)

π-α3 π-γ
π

π π

α3+γ+π

�en, we show that the two decompositions are equivalent:

α3 γ

α2

α4

α1

α5
s

=
(H)

γα3

α2

α4

α1

α5

s

=
(HD)
(S)

(|i〉)
3.8.3
(s+)

γα3

α2+π
2

α4-π
2

α1

α5

s

π
2

-π
2

=
(EU)
(S)

γα′3

s′

α′2

α′4

α′1

α′5

We are going then to prove the result by induction on the structure of cycle-free
diagrams given in De�nition 4.7.9. �e two 1 → 1 generators R(1,1)

Z (α) and H can be
put in SVD:

α =
(S)

α+π
2

-π
2 =

(|i〉)
(I)

4.7.6

α+π
2

π
2

π

-π
4

=
(HD)

(I)
π
2

π
2

-π
2
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4.7. Singular-Value Decomposition

�e composition of two SVDs can be put in SVD (here, ignoring the scalars):

D1

D2

=

α3 α

α2

α4

α1

α5

β3 β

β2

β4

β1

β5

=
(S)

(EU)

γ1 α

α2

α1

γ3 β

γ2

β4
β5

=
(S)

4.7.1

α

α2

α1

γ3 β

π
2

β4
β5

γ1

γ4
γ5

=
4.7.4

γ7

α2

α1

γ6

π
2

β4
β5

γ1

γ4
γ5

=
4.7.3

γ8

γ10

π
2

γ9

α2

α1

γ6

π
2

β4
β5

γ1

=
(EU)

γ12

γ15

γ14

γ13 γ9

γ11

Notice that, by composition, the 1→ 1 generator R(1,1)
X (α) can be put in SVD.

If the 1→ 1 diagram has no cycle, there can still be branching. Hence, there can be
a state D : 0→ 1 in tree-like form a�ached to the “main wire” by a node, say green, as
follows:

D
= β

α

s

=
(S)
(I)

β α

s

A branching made by a red node R(2,1)
X can be deduced by composing the green one and

Hadamard nodes. J

Remark 4.7.14. We gave two conventions for the SVDs of 0 → 1 and 1 → 1 diagrams.
�ese two depend on the basis in which we consider the decomposition. SVDg corre-
sponds to the computational basis, while SVGr corresponds to the diagonal basis. If
M = UΣV † with Σ diagonal in the computational basis, M = (UH) ·HΣH · (V H)†.

Proposition 4.7.15 (1→ 1 SVDs are essentially unique).

Suppose D1 = α3 γ

α2

α4

α1

α5
s

and D2 =

s2

β3 γ′

β2

β4

β1

β5

are in SVD, and that JD1K = JD2K 6= 0.

�en, either:

• γ = γ′ = 0

• γ = γ′ = π
2

• αi = βi mod 2π and γ = γ′
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Proof I First we decompose D1 and D2 as:

D1 = α3 γ

α2

α4

α1

α5
s

= π
2

γ

α2

α4

α1

α5

s′

x

α3-x-π
2

u

π

Σ

U

V † v

π

D2 =

s2

β3 γ′

β2

β4

β1

β5

= π
2 γ′

β2

β4

β1

β5

s′2

x′

β3-x′-π
2

u′

π

Σ′

U ′

V ′† v′

π

where u, v, u′ and v′ have been chosen so that JΣK and JΣ′K are real matrices, and where
x and x′ are arbitrary angles. Notice that JUK,

q
V †

y
, JU ′K,

q
V ′†

y
are unitaries. We have

two SVDs that represent the same matrix:

JUK ◦ JΣK ◦
q
V †

y
= JD1K = JD2K = JU ′K ◦ JΣ′K ◦

q
V ′†

y

First o�, let us show that Σ and Σ′ are essentially the same. One could compute JΣK =

Js′K (1 + eiγ)

(
1 0
0 tan

(
γ
2

)) and JΣ′K = Js′2K (1 + eiγ
′
)

(
1 0

0 tan
(
γ′

2

)). Since γ, γ′ ∈

[0, π
2
], tan

(
γ
2

)
and tan

(
γ′

2

)
are smaller than 1, and since the diagrams are non-null, we

get JΣK = JΣ′K by Proposition 4.7.8, which implies γ = γ′.
If γ = γ′ 6= 0, then JΣK and JΣ′K have full rank. Moreover, if γ = γ′ 6= π

2
, then JΣK

and JΣ′K are not colinear to the identity. Hence, if γ = γ′ ∈ (0, π
2
), then we can apply

Proposition 4.7.8.

By Proposition 4.7.8, there exists d =

(
eiϕ0 0
0 eiϕ1

)
such that JU ′K = JUK ◦ d and

q
V ′†

y
= d† ◦

q
V †

y
. Notice that

s
ϕ1-ϕ0

ϕ0

π
{

= d and
s

ϕ0-ϕ1-ϕ0

π
{

= d†.
Hence:

JU ′K =

u

ww
v β4

β5

x′

u′

π

}

��
~ = JUK ◦ d =

u

ww
v α4

α5 u+ϕ0

π

x+ϕ1−ϕ0

}

��
~

Since β5 and α5 are in [0, π), the representation of the unitary is unique by Proposition
4.6.2, so β5 = α5, β4 = α4, and x′ = x + ϕ1 − ϕ0. Similarly, the second equation yields
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4.7. Singular-Value Decomposition

α1 = β1, α2 = β2 and β3 − x′ − π
2

= α3 − x− π
2

+ ϕ0 − ϕ1. Together, the equations on
x and x′ imply that α3 = β3. J

Completeness for some Scalars

Propositions 4.7.12 and 4.7.15 state that the SVD decomposition is essentially unique in
their structure, but le� out the scalars. To remedy this, we give the following result:

Proposition 4.7.16. Let D1 :=

α1 … αn1

β1
γ1

βq1
γq1

…
⊗ p1

and D2 :=
α′1 … α′n2

β′1
γ′1

β′q2
γ′q2

…
⊗ p2

. �en:

JD1K = JD2K ⇐⇒ ZX ` D1 = D2

Proof I For both diagrams, we are going to build a larger one. We de�ne λ inductively
by connected components:

α 7→
α
2

α
2

-α
2 7→

β
2

β
2

-β
2β

γ γ

π
4

-π
4

π 7→
π
4

-π
4

and such that λ(.⊗ .) = λ(.)◦λ(.). �en, we de�ne ΛDi := ◦λ(Di) (the choice of no-

tation Λ will be made clearer in Chapter 5). One can check that Jλ(Di)K =

(
1 0
0 JDiK

)
,

so JΛDiK =
(
1 JDiK

)
. Hence, since JD1K = JD2K, we have JΛD1K = JΛD1K. By Propo-

sitions 4.7.11 and 4.7.12, both reduce to the same SVD form, with potentially di�erent
scalars, i.e.:

ZX `
ΛD1

= s1β

α

and ZX `
ΛD2

= s2β

α

It is fairly easy to prove that ZX ` λ(.) ◦ = , so ZX ` ΛDi ◦
( )

= . It helps
us prove that the two scalars s1 and s2 are equal under ZX:

s1 =
ΛD2

s1 = s2β

α

s1 =
ΛD1

s2 = s2

Hence, we have:
ZX ` ΛD1 = ΛD2

It is also fairly easy to show that ZX ` λ(.)◦ π = .⊗ π , so ZX ` ΛDi◦
(

π
)

= Di.
Finally:

ZX ` D1 = ΛD1 ◦
(

π
)

= ΛD2 ◦
(

π
)

= D2

J

Remark 4.7.17. �is gives a result of completeness only on a particular class of scalars.
However, one can check that all the scalars produced by the two SVD algorithms (Propo-
sitions 4.7.11 and 4.7.13) are of this form.
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From this we can directly get some equalities on scalars that will prove useful in the
following.

Corollary 4.7.18.

ZX `
π
3

-π
3

=

Corollary 4.7.19.

ZX ` arccos
(
1
4

)
-arccos

(
1
4

)=
Corollary 4.7.20. If α 6= π mod 2π:

ZX `
-α

⊗n

-γ
γ

α =

with:
n := max (0, d− log2(1+ cos (α))e−2)

γ := arccos
(

1
2n+1(1+cos(α))

)
.

Corollary 4.7.21.

ZX `
-α -γ

γα+π
=π

2

π

with α := 2 arctan
(

1√
2

)
and γ := arccos

(
3
8

)
.

4.8 Completeness of ZX/ZX

Recovering ZXπ/4

�e point now is to exploit the SVD of ZX-diagrams and their uniqueness, �rst to recover
ZXπ/4, and then to prove the completeness for unrestricted ZX-Calculus. A rule that can
directly use these results is (BW), because the diagrams on both sides of the equation
are cycle-free:

Corollary 4.8.1.

ZX `

π
4

π
4

π
4

-π
2

π
4

π
4

π
4

=
π
4π

π
2

π
4

π
4

π

π
4(BW)

Proof of Cor. 4.8.1 I Using Proposition 4.7.13, we can put both sides of the equation
in SVD form, and thanks to Proposition 4.7.15, the two forms have the same structural
angles. We can even compute:

π
4

π
4

π
4

−π
2

π
4

π
4

π
4

= π
2

β1
π
2

γ

π
2

β1

s1

and
π
4π

π
2

π
4

π
4

π

π
4

= π
2

β1
π
2

γ

π
2

β1

s2

with γ = π
2
− 2 arctan

(
1√
5

)
and β1 = arctan (2).

Also, combining Remark 4.7.17 and Proposition 4.7.16, we directly get that the two
scalars are provably equal, which concludes this proof. J
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4.8. Completeness of ZX/ZX

�e results on SVDs cannot be directly used to prove the equation (C) though, for
its diagrams have 4 inputs/outputs, and have cycles. However, the SVDs can be used to
prove a �rst intermediary result:

Lemma 4.8.2.

βα

π

βα

=
β α

π

β α

Proof I We prove the equality by simplifying both sides of the equation. �e le� hand
side yields, when ignoring the scalars:

βα

π

βα

=
(HD)
(S)

(|i〉)

α+π
2

β

β+π
2

-α

π
2 =

(B) -α β

β+π
2π

2
α+π

2

=
(Hopf)

β+π
2

-α βπ
2

α+π
2

=
(EU)
(S)

β+π
2

β1

α+π
2

β3
β2

=
(B)
(H)

β1

β2

β+π
2

β3

α+π
2

=
(HD)
(|i〉)
(S) β2

β+π
2

β1-π
2 β3

α

-π
2

=
(EU)
(S)

β3

β+π
2

β2

γ3
γ2

γ1

=
(K)
(S)

(-1)mβ3

β+π
2

+mπ

β2

γ3+(n+m)π

(-1)nγ2

γ1+nπ

where n and m are chosen in {0, 1} so that γ1 + nπ and β + π
2

+ mπ are in [0, π). By
symmetry, the right hand side yields:

β α

π

β α

= (-1)mβ3

β+π
2

+mπ

β2

γ3+(n+m)π

(-1)nγ2

γ1+nπ

Notice that, due to the symmetry of the two diagrams, the resulting scalars (that we
ignored) are equal (and non null). If β2 = 0 mod π, then we can compute that both α
and β are multiples of π, and in this case the equation is trivially derivable. Else, notice

that
s

β2

{
is invertible,

(
its inverse is 1

1−e2iβ2

(
1 −eiβ2
−eiβ2 1

))
. Hence, we get:

u

v
(-1)mβ3

β+π
2

+mπ

γ3+(n+m)π

(-1)nγ2

γ1+nπ

}

~ =

u

v
(-1)mβ3

β+π
2

+mπ

γ3+(n+m)π

(-1)nγ2

γ1+nπ

}

~
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We can then plug any red dot with angle ∈ (0, π
2
), say π

4
, on the lower branch. We can

now use Proposition 4.7.15, match the angles γ1 + nπ = β + π
2

+ mπ and (−1)nγ2 =
(−1)mβ3, so the two initial diagrams are equal. J

Proposition 4.8.3.

ZX `
βα π

βγ

-γ

α = α

απ

β -γ

γ

β(C)

Proof of Prop. 4.8.3 I

γ
β

β

-γ

α

α

π
=
(H)
(CP)
(B)

β

α

α

π

β
γ

-γ

- γ
2

γ
2

=
(S)

4.8.2

- γ
2

α
γ
2

π

β

- γ
2

βγ
2

α

=
4.8.2

γ
2

β

β

- γ
2

α

π
- γ
2

α

γ
2 =

(H)
(B)

γ
2

α
β

π
- γ
2

α
β

- γ
2

γ
2 =

(H)
4.8.2

β

α

π

α
γ
2

- γ
2

γ
2- γ

2

β

=
(B)
(H)

β

α

γ
2

- γ
2

β

π

γ
2

α

- γ
2 =

4.8.2
γ

β

β

-γ

α

- γ
2

α

π

γ
2

=
(B)

(CP)
(H)

π

β

α
-γ

γ

β

α

J

Remark 4.8.4. �e proof of Proposition 4.8.3 shows that (C) can be derived using only
Lemma 4.8.2 and the Cli�ord rules ZXπ/2. However, the provided proof requires using
half angles (for γ). Hence, whenever the considered fragment contains all its half angles,
the equation in Lemma 4.8.2 should be preferred to (C).

We have derived all the rules necessary for the completeness of the Cli�ord+T frag-
ment of the ZX-Calculus (Lemma 4.6.3, Propositions 4.7.5 and 4.8.3, and Corollary 4.8.1),
which means:

Proposition 4.8.5. For any diagrams D1, D2 of ZX[π
4
]:

JD1K = JD2K ⇐⇒ ZX ` D1 = D2
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In other words, ZX ` ZXπ/4. Hence, by �eorem 4.4.1, we can also derive any sound
linear equation with constants in π

4
Z.

Corollary 4.8.6. For any ZX[~α, π
4
]-diagrams D1 and D2:

JD1K = JD2K ⇐⇒ ZX ` D1 = D2

Completeness from ZWC

We are now going to prove �eorem 4.6.1 using the completeness of ZW[C]/ZWC,
again through a system of back and forth translation between the two languages. �e
interpretation [.]W from ZX to ZW[C] is pre�y obvious:

[.]W

7→ 7→ 7→
7→ 7→

7→α eiα

… …

… …
7→ 1√

2

n...

...
m

α 7→
[ ]⊗m

W
◦
[ n...

...
m

α

]
W

◦
[ ]⊗n

W

D1 ◦D2 7→ [D1]W ◦ [D2]W D1 ⊗D2 7→ [D1]W ⊗[D2]W

It preserves the semantics:

Lemma 4.8.7. �e following diagram commutes:

ZX

ZW[C]

Qubit[.]W

J.K

J.K

�e other way round is slightly less straightforward, because of the ring structure

of the ZW-Calculus: how to represent
n...

...
m

r in ZX? First of all, notice that if we �nd a

1-qubit stateD such that
r
D

z
=

(
1
r

)
, then

s …

… D

{
=

t n...

...
m

r

|

. However, we can use

the SVD form of a 1-qubit state to determine D. We get the following interpretation:

[.]X

7→ 7→ 7→ 7→

7→ 7→
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π7→ π7→ 7→
π

7→ θ+π
2ρeiθ

……

……
α

-α

⊗n

-γ
γ with


α := 2 arctan (ρ)
n := max (0, d− log2(1+ cos (α))e−2)

γ := arccos
(

1
2n+1(1+cos(α))

)
D1 ◦D2 7→ [D1]X ◦ [D2]X D1 ⊗D2 7→ [D1]X ⊗[D2]X

As you can see, some side calculation is buried in the scalars. Particularly, the scalars
in the interpretation of the GHZ node basically amount to the inverse of α , as evi-
denced by Corollary 4.7.20. Here again, the interpretation preserves the semantics:

Lemma 4.8.8. �e following diagram commutes:

ZX

ZW[C]

Qubit[.]X

J.K

J.K

A �rst part of the proof of completeness is to show that any diagram can be recovered
from its back and forth interpretation:

Proposition 4.8.9. For any ZX-diagram:

ZX ` [[D]W ]X = D

Proof IWe prove the result by induction. Since both interpretations are PROP-functors,
we only need to prove the result for the generators. �e result for wire generators is
obvious.

•
…

…θ 7→ eiθ

…

… 7→ θ+π
2

…

…
π
2

-π
2

-π
3

π
3 =

4.7.18
θ

…

… =
(IV)

θ

…

…

• 7→ 1√
2

7→
π
π
2

α α

-γ
γ

=
(K)

(CP)

α+π

α

-γ
γ

π
π
2

=
4.7.21

Finally, RX is a composition of RZ and H . J

�en, we can show that ZX proves any equality of ZW[C]/ZWC through [.]X .

Proposition 4.8.10. Let D1 and D2 be two ZW[C]-diagrams.

ZWC ` D1 = D2 =⇒ ZX ` [D1]X = [D2]X
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Proof I As before, we are going to show that all the axioms in ZWC are derivable using
ZX. Most of them are already proven by ZXπ/4, so a fortiori by ZX, thanks to Proposition
4.8.5. Only 5 remain:

=
1b

r
s

· · · · · ·

· · ·· · ·
...

· · ·
rs
· · ·

=
3br r

r

=
4a

r s r+s
0

4c
= =

6b′r

• 1b: On the one hand:
· · ·
ρ1ρ2e

i(θ1+θ2)

· · ·
7→ θ1+θ2-π

2

…

…
α

s

and on the other:

ρ1e
iθ1

ρ2e
iθ2

· · · · · ·

· · ·· · ·
... 7→

· · · · · ·

· · ·· · ·
... α2α1

θ2-π
2

θ1-π
2

s2

s1

=
· · ·

· · · α1

s2

s1

α2

θ1+θ2-π = θ1+θ2-π
2

…

…
α

s

Using SVD decomposition and its uniqueness (Props. 4.7.13 and 4.7.15) on the dan-
gling branch, together with Proposition 4.7.16 and Remark 4.7.17 for the scalar
equality.

• 3b:

r
7→

θ+π
2 α

-α

⊗n

-γ
γ

=

θ+π
2 α

-α

⊗n

-γ
γ

-α

⊗n

-γ
γ

α

=

θ+π
2

α

-α

⊗n

-γ
γ

-α

⊗n

-γ
γ

θ+π
2

α
←[

r r

• 4a: �e right hand side can be directly put in SVD form. However, the le� hand
side yields:

r1 r2

7→

α1

β1

α2

β2

s1

s2

and it contains a cycle. �is can be remedied since by Proposition 4.7.13:

α1

β1

α2

β2

s1

s2

=

γ1

γ2

γ′γ3

γ5

γ4
s
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Hence:
α1

β1

α2

β2

s1

s2

= γ2

γ′

γ1 + γ5

γ4

s

=

γ2

γ′

γ1 + γ5

γ4

s =
δ1
δ2

s′ ←[ r1+r2

by uniqueness of the SVD-decomposition (Prop. 4.7.12), and using Proposition
4.7.16 and Remark 4.7.17 to deal with the scalars.

• 4c:
0
7→ arccos

(
1
4

)
-arccos

(
1
4

)θ+π
2 = = ←[

• 6b′:

r 7→ θ+π
2 α

-α

⊗n

-γ
γ =

α
-α

⊗n

-γ
γ

= ←[

J

Proof of �eorem 4.6.1 I We have the following diagram:

ZX/ZX

ZW[C]/ZWC

Qubit[.]X [.]W

J.K

J.K

Let’s prove that [.]W is full and faithful.

• [.]W is faithful: Let D1, D2 be two ZX-diagrams such that ZWC ` [D1]W =
[D2]W . By Proposition 4.8.10, we have ZX ` [[D1]W ]X = [[D2]W ]X , and by Propo-
sition 4.8.9, ZX ` D1 = [[D1]W ]X = [[D2]W ]X = D2.

• [.]X is full: Let D be a ZW[C]-diagram. We de�ne DX := [D]X . By Lemmas
4.8.7 and 4.8.8, J[[.]X ]W K = J.K, hence, by completeness of ZW[C]/ZWC, ZWC `
[[D]X ]W = D, i.e. ZWC ` [DX ]W = D.

�en, by composition, since ZW[C]/ZWC
J.K→ Qubit is full and faithful, the functor

ZX/ZX
J.K→ Qubit = J[.]W K is full and faithful. J

4.9 Another Axiomatisation for Universal

ZX-Calculus

In the axiomatisation ZX, there are two rules that deal with one-qubit unitaries: the
Euler angles (EU), and the Hadamard decomposition (HD). We explore the possibility of
merging the two rules, and give an axiomatisation ZX′ in Figure 4.4.

�is axiomatisation is as powerful as ZX.
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… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir)
=(IV’)α

=(CP) =(B)

α

…
= α

…

…

…(H) = β2

β1

β3

α1

α2

π

γ(EU’)

Figure 4.4: Set of rules ZX′ for the ZX-Calculus with scalars. �e right-hand side of
(IV’) is an empty diagram. (…) denote zero or more wires, while (…) denote one or
more wires. In rule (EU’), β1, β2, β3 and γ can be determined as follows: x+ := α1+α2

2
,

x− := x+ − α2, z := − sin (x+) + i cos (x−) and z′ := cos (x+) − i sin (x−), then
β1 = arg z + arg z′, β2 = 2 arg

(
i+
∣∣ z
z′

∣∣) , β3 = arg z − arg z′, γ = x+ − arg(z) + π−β2
2

where by convention arg(0) := 0 and z′ = 0 =⇒ β2 = 0.

�eorem 4.9.1. �e language ZX/ZX′ is complete. �e functor ZX/ZX′
J.K→ Qubit is

full and faithful.

Proof I �e functor is obviously full, since the diagrams are the same in ZX/ZX′ as in
ZX/ZX. To prove the faithfulness, we are going to show ZX′ ` ZX. First, let us recover
the Hadamard decomposition (HD):

=
(I)

=
(EU’)

π
2

π
2

π
2

π
-π
4

=
(H)

π
2
π
2 π

-π
4

π
2

(4.9)

-π
2 =

(H)

-π
2

=
(4.9)

(S)
π
2

π
2 π

-π
4

=
(IV’)
(CP)

π
2

π
-π
4

π
2

=
(IV’)

π
2

π
-π
4

(4.10)

=
(4.9)

π
2
π
2 π

-π
4

π
2

=
(S)
(H)

π
2

π
-π
4

π
2

π
2 =

(4.10)

π
2

π
2

-π
2 =

(H)

π
2

π
2

-π
2 (4.11)

�e next step is to prove that the equation (E) is derivable. To do so, we will �rst derive
(K) and (SUP).

π

α
=
(H)

π

α
=

(EU’)

π
2

π
2

-α

-π
2

π

α-π
4

=
(S)

(4.9)

-α

π
π

α

=
(H)

-α
π

π

α
(4.12)
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π
2 =

(H)
π
2 =

(CP)
(IV’)

π
2
π
2 π

-π
4

π
2

π
π
4

=
(4.9)

π
π
4

=
(H)

(IV’)

π
π
4

(4.13)

First, for proving (SUP):

α α+π
=
(I)
(S)

α α+π

-π
2
π
2

=
(B)

α α+π

-π
2

π
2

=
(4.11)

α-π
2 α+π

2

π
2

=
(EU’) π

2

β2

β1 β3

π
γ

=
(S) π

2

β2

π
γ

=
(CP)
(IV’)

β2

π
γ

Hence:

β2
π
γ =

β2 π
γ

=
α α+π

= 2α+π

so �nally:

α α+π
=

2α+π

=
2α+π

(4.14)

-π
4

π
4 =

(H)

π
4

-π
4

=
(4.11)

3π
4

π
4

-π
2 =

(4.12)

π
π
4

3π
4

-π
4

π
-π
2 =

(4.14)

π
π
4

π
2 π

-π
2

=

π
π
4
π
2 π

-π
2

=
(4.13)

π
π
4

π
-π
2

π
π
4

=
(IV’)

It now remains to prove the rule (EU) can be derived. We decompose the le� hand side
diagram as such:

α1

α3

α2 =

α1

α3

α2 =

α1

α3

x

α2-x =
β2(x)

β1(x)

β3(x)+γ1(x)
π
β4(x)

+γ4(x)

γ2(x)

γ3(x)

where x is considered as a variable, and hence, all the computed angles depend on it,
while the angles αi are �xed. We want to �nd x0 such that β3(x0) + γ1(x0) = 0 mod π.
Let the functions f and g be de�ned as:

f : x 7→ arctan

(
tan (α1) cos (x) + tan (α3) cos (α2−x)

1− tan (α1) cos (x) tan (α3) cos (α2−x)

)
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g : x 7→ tan (α1) cos (x) + tan (α3) cos (α2 − x)

Notice that
g
(
−π

2

)
= tan (α3) cos

(
α2 +

π

2

)
and

g
(π

2

)
= tan (α3) cos

(
α2 −

π

2

)
Hence, g

(
−π

2

)
g
(
π
2

)
≤ 0. Since g is continuous, by the intermediate value theorem,

there exists x0 ∈ [−π
2
, π

2
] such that g(x0) = 0. Notice now that

f(x0) = arctan

(
0

1 + tan (α1)2 cos (α2 − x0)2

)
= 0

Also, it can be computed that f = β3 + γ1 mod π. Hence, β3(x0) + γ1(x0) = 0 mod π
i.e. β3(x0) + γ1(x0) = nπ. Hence, denoting βi ← βi(x0) and γi ← γi(x0):

α1

α3

α2 =
β2

β1

nπ
π

β4+γ4
γ2

γ3

=
4.12
(S)

β2+
(-1)nγ2

β1
π
β4+γ4
+nγ2γ3+nπ

=
4.12
(S)

(-1)mβ2+
(-1)n+mγ2

β1+mπ π
β4+mβ2
+γ4+

(n+(-1)nm)γ2γ3+(n+m)π

Since, thank to Proposition 4.6.2, the unitary representation is unique if β1 +mπ ∈ [0, π)
(m has been chosen for this purpose), then the previous diagram is provably equivalent
to the one resulting directly from (EU). J

On the one hand, this new axiomatisation is one axiom shorter, and (EU’) and (IV’)
can be considered simpler than (EU) and (E). On the other hand, the axiomatisation in
Figure 4.3 has the nice property that it su�ces to remove (EU) and (E) to get a complete
axiomatisation for the scalar-free Cli�ord fragment. Moreover, (EU) is arguably more
natural, and has already been given for instance in [CW18].

Again, we conjecture that all the rules in ZX′ are necessary, i.e. none of the rules are
derivable from the others. Indeed, the arguments given for the minimality of ZX can
easily be adapted here, and we are le� with the same observation: only (B) and (Ir) are
not proven to be necessary.

4.10 ZX-Calculus for Completely Positive Maps

As pointed out in Section 1.5, there exists a formalism for expressing quantum evolutions
in a non-isolated system. �ey are represented as density matrices, and the trace opera-
tor is used to represent the interaction of the system to its environment. In [Sel07], it is
pointed out that any †-compact monoidal category for pure quantum mechanics could
be turned into a category for CPMs thanks to the so-called CPM-construction. For the
simpli�ed case of PROPs, it becomes:
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p De�nition 4.10.1 (CPM-construction): Given a †-compact PROP C, let CPM(C) be

the †-compact PROP such that its arrows are

 f f ∗
… …

… ……
n,m ∈ N, f : n→ m

,

where f ∗
…

… f †… …:= . y

Notice that if we have a PROP L quotiented by R, R can also quotient CPM(L).
However, this is ill de�ned, for a term of CPM(L) a�er application of an equality of R
may not be in CPM(L) but in the larger PROP L. For instance, consider the following
derivation in ZX/ZX:

-αα
=
(S)

-α
α =

(S)
-αα

�e �rst and the third diagram are both in CPM(ZX), but the second one is not. In
other words, in order to prove that two diagrams of CPM(L) are equal, one would need
to derive the equality in L.

Notice also that the representation of a CPM in the CPM-construction requires a
“doubling” of the diagram: one needs f and its adjoint f ∗.

Another approach to relate pure quantum mechanics to the general one is the notion
of environment structure [Coe08, CH16, CP12]. �e notion of puri�cation is central in
the de�nition of environment structure. Intuitively, it means that (1) there is a discard
morphism; (2) any morphism can be puri�ed, i.e. decomposed into a pure morphism fol-
lowed by a discarding map, and (3) this puri�cation is essentially unique. More formally:
pDe�nition 4.10.2 (Environment Structure): An environment structure for a †-compact
PROP C is an compact closed PROP C with an i.o.o. PROP-functor ι : C → C and a
morphism : 1→ 0 such that:

(1) For all f : n→ m ∈ C, there exists f ′ : n→ m+ k ∈ C such that: ι (f ′)

…

… …f
…

…
=

(2) For any f : n→ m+k1 and g : n→ m+k2 in C: f ∼cp g ⇐⇒
ι(g)

…

… …=
ι(f)

…

… …

where the relation ∼cp is de�ned as: f ∼cp g ⇐⇒
f

…

…

…

f†…

… =
g
…

…

…

g†…

… y

Notice that ∼cp is technically not a relation on morphisms but on tuples (n,m, k, f)
with f : n → m + k ∈ C: (n,m, k, f) ∼cp (n′,m′, k′, g) if n = n′, m = m′ and f and
g satisfy the graphical condition represented above. As an abuse of notation, we write
f ∼cp g, as the other components of the tuple will be usually obvious from context. We
will do the same for our relation ∼iso below.

CPM(FdHilb) is actually an environment structure for the category FdHilb, and
more generally for any †-compact PROP C, CPM(C) is an environment structure for C
and conversely any environment structure for C is equivalent to CPM(C) [CH16].
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�e Discard Construction

First we need to de�ne for any †-PROP its subcategory of isometries.
p De�nition 4.10.3: Let C be a †-PROP. We de�ne Ciso as the subcategory of C such
that its arrows are

{
f : n→ m f † ◦ f = idn

}
. y

Notice that Ciso is usually not a †-PROP. Any †-PROP-functor F : C→ D between
two †-PROPs can be restricted to their subcategories of isometries leading to a PROP-
functor Fiso : Ciso → Diso. �us there is a restriction functor iso : †-PROP → PROP.
Remark that this functor preserves fullness and faithfulness. One always has a faithful
inclusion PROP-functor: ιiso : C→ Ciso.

In quantum mechanics, isometries are causal evolutions, i.e. applying an isometry
and then discarding all outputs is equivalent to discarding the inputs straight away. As
pointed out in [HS19], adding discard maps to the category of isometries would make 0
a terminal object. We de�ne this category, called a�ne completion:
p De�nition 4.10.4: Given an PROP C, we de�ne C! as C with an additional mor-
phism ! : 1 → 0, such that, for all f : n → m ∈ C, !⊗m ◦ f =!⊗n. By convention, we
have !⊗ 0 = id0. �is makes 0 a terminal object in C!, and hence makes C! the a�ne
completion of C. y

Remark 4.10.5. Formally, a morphism !n should be de�ned for every object n of the PROP,
such that for any f : n→ m, !m ◦ f =!n, and such that !0 = id0. However, we have that
!n ⊗!m = id0 ◦ (!n ⊗!m) =!0 ◦ (!n ⊗!m) =!n+m. �is means that !n =!⊗n1 .

Again given a PROP-functor F : C → D, one can de�ne a functor F ! : C! →
D! by F !(!) =! and F !(f) = ι!(F (f)) for the other morphisms. In [HS19], Huot and
Staton show that CPTP, the category of completely positive trace preserving maps, is
equivalent to FdHilb!

iso, thus giving a characterisation of it via a universal property. We
extend this idea to non-trace preserving maps by proceeding to a local a�ne completion
of the subcategory of isometries.

We de�ne the category C as the pushout of C and C!
iso:

p De�nition 4.10.6 (Discard Construction): Given a †-PROP C, C is de�ned as the
pushout:

Ciso

C!
iso

C

C

ιiso

ι!

ι!iso

ι
p

y

�e pushout of two PROPs always exist [Zan15]. We can also describe it simply com-
binatorially. �e morphisms of C are equivalence classes generated by formal compo-
sition and tensoring of morphisms in C!

iso and C. �e equivalence relation is generated
by the equations of both categories augmented with equations ι!(f) = ιiso(f) for all f
in Ciso. �e functors ι and ι!iso are the natural ways to embed C and C!

iso.
Since the only morphisms in Ciso which are not identi�ed with the morphisms of C

are those that contain !, we can see C as C augmented with discard maps which delete
isometries.
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p De�nition 4.10.7 (Discard): �e discard map for the object 1 is de�ned in C by

:= ι!iso(!)

Since ι!iso is a PROP-functor, we have that the discard map for the object n is

ι!iso(!⊗n) = ι!iso(!)⊗n = ⊗n y

Notice, that for any isometry f : n → m in C , f
…

…
= … , thus any isometry is

causal.
When seeing the initial category as quotiented by a set of rules C/R, we end up

technically with (C/R) which can be expressed as:

(C/R) = (C + { })/
(
R ∪

{
ι!iso(ι!(f))

…

…
= …

f : n→ m ∈ Ciso

})
where C + { } is the smallest PROP that contains C and the generator : 1→ 0.

It is natural to compare this new construction to the CPM one and the environment
structure de�ned above. To do so, we need to study in details the puri�cation process in
C . First notice that any morphism of C admits a puri�cation:

Lemma 4.10.8. Let C be a †-PROP. For all f : n → m ∈ C , there exist k ∈ N and

f ′ : n→ m+ k ∈ C such that
ι (f ′)

…

… …f
…

…
= .

Proof I Let us reason diagrammatically. Using the axioms of PROP f is equivalent to

a diagram of C where all the discards have been pushed to the bo�om right: f ′′
…

… …

. �ere are no discards among the components of the part f ′′ of this diagram. So it
represents a morphism in the range of ι and then there is an f ′ : n→ m+ k ∈ C such

that ι (f ′)

…

… …f
…

…
= . In other words, f ′ is a puri�cation of f . J

�e puri�cation needs not be unique, however it satis�es an essential uniqueness
condition. To state it we de�ne the relation ∼iso.

p De�nition 4.10.9 (∼iso): Let C be a †-PROP, and two morphisms f : n → m + k1,
g : n→ m + k2, f ∼iso g if there are two isometries u : k1 → k3 and v : k2 → k3, such

that
f

…

… …
u…

g
…

… …
v…

= . y

Notice that the relation ∼iso is not transitive, thus we consider ∼+
iso its transitive

closure to make it an equivalence relation. It is easy to show that if f ∼+
iso g then f and

g purify the same morphism of C . �e converse is also true:
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Lemma 4.10.10. For all f : n→ m+ k1 and g : n→ m+ k2:

f ∼+
iso g ⇐⇒

ι (g)

…

… …=
ι (f)

…

… …

Proof I

(⇒) It is enough to show f ∼iso g =⇒ ι (g)

…

… …=
ι (f)

…

… … since equality is transitive.

Since f ∼iso g, there are two isometries u : k1 → k3 and v : k2 → k3 such that
f

…

… …
u…

g
…

… …
v…

= and then:

f

…

… …
u…

=
g
…

… …
v…

=⇒
ι (f)

…

… …
ι (u)…

=
ι (g)

…

… …
ι (v)…

=⇒
ι (f)

…

… …
ι (u)…

=
ι (g)

…

… …
ι (v)…

=⇒ ι (f)

…

… … = ι (g)

…

… …

(⇐) We have ι (g)

…

… …=
ι (f)

…

… … in C . To do the proof, we will have to go back to the

de�nition of the category C as a pushout. Recall that two terms are equal if one
can rewrite one into the other using the equations de�ning C .

We can assume that, among those steps, the only one involving discards are isom-
etry deletion/creation. Diagramatically this amounts to say that the discards are
never moved, in fact one can always moves the other morphisms to make them
interact with the discards.

Doing this, we ensure that all intermediary diagrams in the chain of equations

are of the form ι (h)

…

… … for some h. �erefore, to prove the result for a chain of

equations of arbitrary size, it is enough to do it just for one step of rewriting.

Consider then this step of rewriting. �ere are two cases. Either we have used an
equation which, by identi�cation, can be seen as an equation of C, that is which
involves no discards. �en by functoriality of ι we recover that f = g and there-
fore f ∼iso g. Or the equation involves a discard which has deleted an isometry u.

�en one of the upper part, let’s say ι (f), can be wri�en ι (f)

…

…
=

ι (g)

…

… …
u…

. But

160



Chapter 4. General ZX-Calculus

u being an isometry, there exists u′ in C such that ι (u′) = u. Hence, we have

f

…

…
=

g
…

… …
u′…

in C. It follows that f ∼iso g.

J

So the puri�cation is unique up to ∼+
iso. Lemma 4.10.10 also gives an alternative

de�nition of C which relates more easily to the CPM construction. It is the same
construction as CPM with ∼cp replaced by ∼+

iso.
As we have introduced a new discard construction, a natural question is whether

C is an environment structure for C. To be an environment structure, three conditions
are required. �e �rst two are satis�ed: C has a discard morphism for every object,
and every morphism can be puri�ed. �e third one is the uniqueness of the puri�ca-
tion: according to the de�nition of the environment structures, f and g purify the same
morphism if and only if f ∼cp g whereas according to Lemma 4.10.10, f and g purify
the same morphism if and only if f ∼+

iso g. As a consequence C is an environment
structure for C if and only if ∼cp=∼+

iso. It turns out that one of the inclusions is always
true:

Lemma 4.10.11. For any †-PROP C, we have ∼+
iso⊆∼cp.

Proof I Since ∼cp is transitive it is enough to show that ∼iso ⊆ ∼cp. Let f : n →
m+ k1 and g : n→ m+ k2 s.t. f ∼iso g. �en there are two isometries u : k1 → k3 and

v : k2 → k3 such that
f

…

… …
u…

g
…

… …
v…

= and then:

f

…

…

…

f†…

… =

f

…

…

…

f†…

…
u

u†…
… =

g
…

…

…

g†…

…
v

v†…
… =

g
…

…

…

g†…

…

So f ∼cp g. J

As a consequence, if∼cp 6=∼+
iso, it means that there are some morphisms f, g that are

equal in∼cp but cannot be proved equal in∼+
iso. Intuitively it means the category has not

enough isometries to prove those terms equal, which leads to the following de�nition:
p De�nition 4.10.12 (Enough Isometries): A †-PROP C has enough isometries if the
equivalences relations ∼cp and ∼+

iso of C are equal. y

Lemma 4.10.13. Given a †-PROP C, the following properties are equivalent:

1. C has enough isometries

2. C is an environment structure for C

3. C ' CPM(C)
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Proof I [(i) ⇔ (ii)] First ι : C → C is an i.o.o. PROP-functor. We need to check the
three conditions hold:

• Since ι!iso is strict monoidal one has:
⊗ 0 = ι!iso(!⊗ 0) = ι!iso(id0) = id0

⊗n ⊗ ⊗m = ⊗n+m

So the �rst condition is satis�ed.

• �e second condition is Lemma 4.10.8.

• According to Lemma 4.10.11, ∼+
iso⊆∼cp, thus the third condition is satis�ed if and

only if ∼cp⊆∼+
iso.

[(ii)⇔ (iii)] Direct consequence of the fact that D is an environment structure for
C i� D is equivalent to CPM(C) [CH16]. J

We want eventually to apply these results to the ZX-Calculus. A �rst step is to show
that Qubit has enough isometries. We can actually be stronger than this and show it
for Qudit.

Proposition 4.10.14.

Qudit is an environment structure for Qudit. Furthermore ∼+
iso=∼iso.

Proof I Let f : n → m + k1 and g : n → m + k2 be two linear maps such that

f ∼cp g. By de�nition:
f

…

…

…

f†…

… =
g
…

…

…

g†…

… . It follows that the two superopera-

tors ρ 7→ tr[m+1,m+k1](f
†ρf) and ρ 7→ tr[m+1,m+k2](g

†ρg) are equal and then by the
Stinespring dilation theorem (see for example [HS19]), there are isometries u and v such

that
f

…

… …
u…

g
…

… …
v…

= . In other words f ∼iso g. �is shows that ∼cp⊆∼iso which is even

stronger than the necessary condition. From Lemma 4.10.11 it follows that∼iso⊆∼+
iso. J

Corollary 4.10.15. Qubit ' CPM(Qubit).

Application to ZX

We now focus on the behaviour of interpretation functors with respect to the discard
construction. �e discard construction de�nes a functor ( ) : †-PROP → PROP.
Indeed, given a †-PROP functorF , Fiso andF !

iso uniquely de�ne a functorF by pushout.

Diso

D!
iso

D

D
p

Ciso

C!
iso

C

C
p

F iso

F
!
iso

F

F
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�e following lemma and theorem are the main tools to apply the discard construc-
tion to the ZX-Calculus:

Lemma 4.10.16. If F is faithful and if Fiso : Ciso → Diso is surjective, then F (f) ∼+
iso

F (g) =⇒ f ∼+
iso g.

Proof I First, remark that if F (`) iso k, then there exists h s.t. F (h) = k. Indeed, under

the hypothesis, there are two isometries u and v such that:
F (`)

…

… …
u…

=
k

…

… …
v…

. Since

Fiso is surjective, there are two isometries a and b such that F (a) = u and F (b) = v.

F (`)

…

… …
F (a)…

=
k

…

… …
F (b)…

=⇒
F (`)

…

…
…
F (a)…
F (b†)…

=
k

…

… … =⇒ F

 `

…

…
…
a…
b†…

 = k

…

… …

�e �rst implication uses the fact that F (b) is an isometry. So k is in the image of F .
By the �rst remark, it is therefore su�cient to prove the result if F (f) ∼iso= F (g).

SinceFiso is surjective, there are two isometries a and b such thatF (a) = u and f(b) = v.
�erefore:

F (f)

…

… …
F (a)…

=
F (g)

…

… …
F (b)…

=⇒ F

 f

…

… …
a…

 = F

 g
…

… …
b…

 =⇒
f

…

… …
a…

=
g
…

… …
b…

�e second implication holds because F is faithful. �e last equation is the de�nition
of f ∼iso g. J

�eorem 4.10.17. Let C and D be two †-PROPs and F : C → D a †-PROP-functor. If
F is faithful and if Fiso : Ciso → Diso is surjective, then F : C → D is faithful. If
furthermore F is surjective then F is surjective and faithful.

Proof I Let f and g be two morphisms such that F (f) = F (g). By Lemma 4.10.8, f
and g can be puri�ed, respectively by f ′ and g′. �en:

F

(
ιC(f ′)

…

… …

)
= F

(
ιC(g′)

…

… …

)
=⇒ ιD(F (f ′))

…

… … = ιD(F (g′))

…

… …

�e implication follows from the right hand face of the commutative cube. By Lemma
4.10.10 we have F (f ′) ∼+

iso F (g′). By Lemma 4.10.16, f ′ ∼+
iso g

′. �en Lemma 4.10.10

gives ιC(f ′)

…

… … = ιC(g′)

…

… … that is f = g, so F is faithful. J

A direct application of this theorem is:

Corollary 4.10.18. (ZX/ZX) is a universal complete language for CPM(Qubit). Par-

ticularly, the functor (ZX/ZX)
J.K→ CPM(Qubit) is full and faithful.
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�is is because ZX/ZX
J.K→ Qubit is surjective and faithful by �eorem 4.6.1 (the

theorem actually says that J.K is full and not surjective. However, the standard interpre-
tation is i.o.o., which makes the two properties equivalent).

(ZX/ZX) is naively presented as ZX augmented with , and ZX augmented
with ⊗m ◦ f = ⊗n for any isometry f : n → m. �is implies adding an in�nite
number of rules to ZX. However, we can drastically reduce them if we are provided with
a spanning set of isometries.

�eorem 4.10.19 ([NC10]). �e set (eiα, |0〉, H, RZ(α), CNot) spans Qubitiso.

Using this result, we provide an axiomatisation ZX for CPMs. It is given in Figure
4.5.

… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir)
=( IV)

=(CP) =(B) α

…
= α

…

…

…(H)

π
2

π
2 -π

2=(HD) = β2

β1

β3

α2

α1

α3
(EU) =( H)

=( α)α =( CX)

Figure 4.5: Set of rules ZX for the ZX-Calculus for CPMs. �e right-hand side of
( IV) is an empty diagram. (…) denote zero or more wires, while (…) denote one or
more wires. In rule (EU), β1, β2, β3 and γ can be determined as follows: x+ := α1+α3

2
,

x− := x+−α3, z := cos
(
α2

2

)
cos (x+)+i sin

(
α2

2

)
cos (x−) and z′ := cos

(
α2

2

)
sin (x+)−

i sin
(
α2

2

)
sin (x−), then β1 = arg z + arg z′, β2 = 2 arg

(
i+
∣∣ z
z′

∣∣) , β3 = arg z − arg z′

�is axiomatisation is designed to be complete.

�eorem 4.10.20. ZX /ZX is complete. �e functor ZX /ZX
J.K→ CPM(Qubit) is

full and faithful.

Proof I We will prove that ZX /ZX ' (ZX/ZX) . First, notice that all the mor-
phisms are the same in both categories.

We can see that our axiomatisation ZX is very close to capture ZX, which is com-
plete for pure quantum mechanics. �e only two di�erences are that (EU) dropped the
scalars, and that (E) was replaced by ( IV). First of all, thanks to Figure 2.2, we have:

ZX ` =(IV)
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We use this then to prove:

α =
(H)

α =
( H)
( α)

(4.15)

π

α
=

( IV)
π

α
=
(S)

(CP) α

π

π

=
(S)

(4.15)

α

π

=
( α)

(4.15)

=
( IV)

(4.16)

-π
2 =

( IV)
( H)
(H)

-π
2 =

(CP)
(IV)

-π
2

=
(S)

( α)

-π
2

-π
2
π
2

π
2

=
(HD)

-π
2

=
( H)
(S)

( α)

=
(IV)

( IV)
( H)
(H)

(4.17)

-π
2 =

(H)

-π
2

=
(HD)
(S)

-π
2

π
2

=
(IV)
(CP)

-π
2

π
2

=
(4.17)

(IV)

π
2 (4.18)

We can recover (K):

π

α
=
(I)
(S)

α

π

π

π

=
(EU)

π

π-α
2

π-α
2

=
(I)
(S)

-α
π (4.19)

We can recover (SUP). First:

α+πα

=
(I)
(S)

(4.18)

α+π

α

-π
2

-π
2

=
(B)

α

-π
2

α+π

-π
2

=
(EU)
(S)

-π
2

β2

β1+β3 = 0 =

β2

So:

2α+π =
(S)
(I)

α+πα

=
β2

Wrapping things up:

α+πα

=

β2

=
2α+π

(4.20)
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We �nally recover (E), and hence ZX:

-π
4

π
4 =

(H)

π
4

-π
4

=
(HD)
(S)

-π
2

π
4

3π
4

=
(4.19)

-π
2

-π
4

3π
4

π =
(4.20)

-π
2

π
2

π

=
(4.17)
(4.16)

(IV)

It remains to prove that for any isometry f : n → m, ZX ` ⊗m ◦ f = ⊗n.
Since (eiα, |0〉, H, RZ(α), CNot) spans the isometries of Qubit, and since ZX/ZX is
complete, any isometry of ZX can be turned into a diagram that solely uses:(

π

α
, , , α ,

)
Hence, it is su�cient to prove the result for these diagrams. �e last four are directly
given as axioms. �e last one is given by equation (4.16). J

Remark 4.10.21. Variations on this axiomatisation can easily be made to reduce the num-
ber of rules. For instance, {( H), ( α), ( CX)} can be replaced by:

=( CX’)α

Furthermore, the Hadamard decomposition (HD) can be replace by a single-line scalar-
free version:

=

π
2
π
2
π
2

(HD’)

We now have a complete axiomatisation for of ZX for CPM(Qubit). We can
naturally ask the question for fragments of the language. �is is not the case in general.
Some fragments may not have enough isometries. For instance:

Proposition 4.10.22. (Clifford+T) is not an environment structure for Clifford+T.
More precisely, there exists a scalar φ s.t. φ ∼cp φ

∗ but φ �+
iso φ

∗. One can take for example
φ = 1 + 2i.

Proof I First remark that, in any †-PROP, if f ∼+
iso g then there is a morphism (usually

not an isometry) w such that f

…

… …

g
…

… …
w…

= .

�is is true if f ∼iso g: From
f

…

… …
u…

g
…

… …
v…

= we immediately get f

…

… …

g
…

… …
v…=

u†…

.

�e result then follows by a straightforward induction.
Now take φ = 1 + 2i and φ∗ = 1 − 2i. �e scalars are in Clifford+T since their

entries are inZ[i, 1√
2
], and are clearly∼cp equivalent. Now let’s suppose 1+2i ∼+

iso 1−2i.
�en by the previous remark, there exists a morphism u such that (1 − 2i)u = 1 + 2i.
But the only possibility for u is 4i−3

5
, which is not in Z[i, 1√

2
], a contradiction. J
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�is means that the discard construction is not su�cient to provide an environment
structure to Clifford+T. A fortiori,

(
ZX[π

4
]/ZXπ/4

)
will not be a graphical language

for an environment structure for Clifford+T. However:

Proposition 4.10.23. Stab is an environment structure for Stab.

Proof I First of all, since Stab is compact closed, using the map/state duality, proving
the result for states in su�cient. Since all the non-zero scalar are invertible in Stab we
can furthermore w.l.o.g focus on normalized states.

Consider two states d1 : n + k1 and d2 : n + k2 in Stab such that d1 ∼cp d2. �e
point of focusing on normalised states is that we can decompose them using [AP05] so
that

di
… … …

=
Ai

… …
…
Bi

…
|0ni〉 |0mi〉

…

where Ai and Bi are unitaries in Stab. De�ning:

A′i :=

…
Ai

… …
|0ni〉

…

we have that di ∼iso A′i since we just have deleted isometries. So, by transitivity, to
prove d1 ∼+

iso d2 we just have to show A′1 ∼iso A
′
2. But since d1 ∼cp d2 in Stab we also

have d1 ∼cp d2 in Qubit and so by Lemma 4.10.14, d1 ∼+
iso d2 in Qubit. By transitivity

A′1 ∼+
iso A

′
2 in Qubit and so by Lemma 4.10.14 A′1 ∼iso A

′
1 in Qubit. So there are two

unitaries u and v such that

…
A1

… …
|0n1〉

u
…

=

…
A2

… …
|0n2〉

v
…

In Qubit any isometry can be wri�en as a unitary with ancillae. In other words there
is a unitary u′ such that:

…u
′

……
∣∣0k〉

u
…

…
=

Composing by u′† on both side and denoting w = u′† ◦ v one has:

…
A1

… …
|0n1〉

… …

∣∣0k〉
=

…
A2

… …
|0n2〉

w

…

… …
It only remains to show that the isometry w is in Stab since the isometry on the le�
hand side is clearly in it. It is since:

…
A1

… …
|0n1〉

… …

∣∣0k〉

=
w

… …
A†2

…
〈0n2 |

…
……
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Hence, A′1 ∼iso A
′
1 in Stab, so d1 ∼+

iso d2. J

Since Stab is an environment structure for Stab and that ZX[π
2
]/ZXπ/2 is com-

plete pour Stab, we can build thanks to the discard construction
(
ZX[π

2
]/ZXπ/2

)
that

is complete for CPM(Stab). Again, we can simplify the resulting axiomatisation, and
provide a �nite presentation denoted ZXπ/2 given in Figure 4.6. Notice that the axioma-
tisation is basically ZX where (EU) is replaced by (Z). Notice also that the potential
simpli�cations given in Remark 4.10.21 still stand here.

… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir)
=( IV)

=(CP) =(B) α

…
= α

…

…

…(H)

π
2

π
2 -π

2=(HD)
π

=
π

(Z)

=( H) =( α)α =( CX)

Figure 4.6: Set of rules ZXπ/2 for the Cli�ord fragment of the ZX-Calculus for CPMs.
�e right-hand side of ( IV) is an empty diagram. (…) denote zero or more wires, while
(…) denote one or more wires.

�eorem 4.10.24. ZX [π
2
]/ZXπ/2 is complete for CPM(Stab). �e functor:

ZX [
π

2
]/ZXπ/2

J.K→ CPM(Stab)

is full and faithful.

Proof I We can prove that ZX [π
2
]/ZXπ/2 ' (ZX[π

2
]/ZXπ/2) . First, we can recover

ZXπ/2: the only missing axiom is (IV) which is derivable (Figure 2.2). Stab is spanned
by (
√

2, i, |0〉, 〈0|, H, RZ(π
2
), CNot). Notice in particular that eiπ4 is in Stab: eiπ4 =√

2 〈0|HRZ(π
2
)H |0〉. One can actually show that all the scalars s : 0 → 0 ∈ Stab are

in {
√

2
n
ei
mπ
4 | n,m ∈ Z} [Bac15].

By Proposition 4.10.23, Stab has enough isometries, they are spanned by (eiπ4 , |0〉,
H, RZ(π

2
), CNot). �ese can be represented in ZX[π

2
] by:(

π
2 , , , π

2 ,
)

By completeness of ZX[π
2
]/ZXπ/2, any diagram of ZX[π

2
]iso can be turned into an equiv-

alent diagram that only uses the above subdiagrams. �ey are all consumed by : the
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last four thanks to the axioms ( IV), ( H), ( α), ( CX), and the �rst one because, �rst
-π
2 = (the proof is similar to that in �eorem 4.10.20). �en:

π
2 =

π
2

=

π
2

-π
2

=

π
2

-π
2

=
-π
2

=

Hence all the isometries of ZX[π
2
] are consumed by . J

Example: �antum Pseudo-Telepathy

We propose in this section to study a quantum pseudo-telepathy protocol described in
[BBT05]. �e problem takes the form of a game between two parties, Alice and Bob, and
uses a third-party, called referee. �e game is played on a 3 × 3 board, where each cell
can be �lled with either 0 or 1. �e game is inspired by the magic square, in which the
cells of each row sum to an even number, and the cells of each column sum to an odd
number. Of course, this con�guration is impossible, for summing all rows would give
an even number, while summing all columns would give an odd number.

In the magic square game, the referee chooses a row and a column of the board. Alice
is then asked to �ll the chosen row, and Bob the chosen column, while respecting the
constraints of the magic square: the entries of the row sum to an even number, the ones
of the column sum to an odd number, and of course, Alice and Bob have to agree on
their common entry. �ese are the winning conditions. �e trick is that the two parties
cannot communicate, they cannot see what the other has played.

Obviously, classical players cannot de�ne a strategy that wins 100% of the time.
However, if they are quantum, and share entangled states at the beginning, then there
exists a winning strategy. �e protocol is the following, as explained in [BBT05]:

• Alice and Bob share the state 1
2

(|0011〉 − |0110〉 − |1001〉+ |1100〉) (the two le�-
hand qubits are owned by Alice, and the two right-hand ones by Bob).

• Alice and Bob both apply a particular quantum circuit to their pair, depending
on the row/column they are given: if row i is chosen, Alice applied circuit Ai, if
column j is chosen, Bob applies circuit Bj .

• Both Alice and Bob measure their qubits in the computational basis. Each hence
gets two classical bits, the third one is then determined so that it satis�es the parity
conditions: Alice XORs her two bits, while Bob �ips the XOR of his two bits.

We are given the interpretation of each circuit:

JA1K =


i 0 0 1
0 −i 1 0
0 i 1 0
1 0 0 i

 JA2K =


i 1 1 i

−i 1 −1 i
i 1 −1 −i
−i 1 1 −i

 JA3K =


−1 −1 −1 1

1 1 −1 1
1 −1 1 1
1 −1 −1 −1



JB1K =


i −i 1 1
−i −i 1 −1

1 1 −i i
−i i 1 1

 JB2K =


−1 i 1 i

1 i 1 −i
1 −i 1 i
−1 −i 1 −i

 JB3K =


1 0 0 1
−1 0 0 1

0 1 1 0
0 1 −1 0


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First, we translate the protocol to the ZX-Calculus, and show that it can be used for
simpli�cation. First, the shared entangled state can be represented as:

π ππ π

�en, since the measurement in the computational basis can be represented as ,
the protocol is carried as follows, for a right choice of circuits Ai, and Bj when row i
and column j are selected:

π ππ π

Ai Bj

π
1 2 3 1 2 3

�e parity conditions are necessarily satis�ed since represents the XOR operation
on classical bits.

We can give a representation of each of the previous operators:

A1 :=
π
2

-π
4

π
4

-π
4

A2 :=
π
2

π
2

-π
2

π
2 A3 := π

π

π

π

B1 :=
π
4

- 3π
4

3π
4

π
-π
2

B2 := -π
2-π

2

π
2

π
2 B3 :=

π

�ese are not ideal, particularly because A1 and B1 are in ZX[π
4
]. Also, it may feel more

natural to have as a shared entangled state instead of the one suggested by
the protocol. �is can be easily done by pushing the π-green and red nodes down to the
circuits A for instance. Hence, we are going to search for A′i and B′j such that:

π

π

π

π

Ai
=A′i and =B′j Bj

To do so, we are going to use the following lemmas.

Lemma 4.10.25.

=

Lemma 4.10.26.

kπ
= kπ

Lemma 4.10.27.

±π
2

=
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Proof I

=
(I)
(S)
(IV)

=
( CX)

=
( IV)

kπ
=

4.10.25 kπ
=
(S)
(B)

kπ

kπ

=
( CX)

(I)

kπ

±π
2

=
( α)

±π
2
±π

2
±π

2 = =
(H)

( H)
( CX)

J

A′1 can be found as:

π
2

-π
4

π
4

-π
4

π

π

π

π

=
( α)

4.10.26

π
2

-π
4

π

π

π

π

=
( α)

(πdist)

π
2

π

π

π

=
( α)

(πdist)

-π
2

=
4.10.26

-π
2 =

(B)
-π
2

So we de�ne A′1 :=

-π
2

Similarly:

π

π

π

π

π
2

π
2

-π
2

π
2

=
( α)

π

π

π

π

π
2

π
2

=
(K)

(πdist)
(H)
(S)

ππ

π
2

-π
2

=
(S)
(H)

(πdist)

-π
2

-π
2

So A′2 := -π
2

-π
2

. Finally, it is easy to see that A′3 can be de�ned as: A′3 :=
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B′1 can be found as:

π
4

- 3π
4

3π
4

π
-π
2

=
( α)

4.10.26

π
4

π
-π
2

=
( α)

π
-π
2

=
4.10.26

π
-π
2

=

-π
2

=
(B)

-π
2

=
(HD)

-π
2

-π
2 =

(H)

-π
2

-π
2

=
(B)

-π
2

-π
2

=
(H)

-π
2

-π
2

=
(H)

( H)
( CX)

-π
2

-π
2 =

(HD)
(|i〉)
(S)
(I)

( α)

π
2

π
2

So we de�ne B′1 :=

π
2

π
2

Again, it is easy to see that B′2 :=
π
2

π
2

and B′3 := su�ce.

We can now give an alternative protocol for the game: Alice and Bob initially share
the state 1

2
(|0000〉+ |1010〉+ |0101〉+ |1111〉), and apply A′i (resp. B′j) to their pair

according to the row number i (resp. column number j) given by the referee; where:

JA′1K =


1 0 0 i
0 i 1 0
0 1 i 0
i 0 0 1

 JA′2K =


1 i i 1
i 1 −1 −i
i −1 1 −i
−1 i i −1

 JA′3K =


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1



JB′1K =


1 −1 −i −i
−i −i 1 −1
−i −i −1 1
−1 1 −i −i

 JB′2K =


1 −i −1 −i
−i 1 −i −1
−i −1 −i 1
−1 −i 1 −i

 JB′3K =


1 0 0 1
1 0 0 −1
0 1 1 0
0 −1 1 0


A summary of the choices of maps for Alice and Bob is given in Figure 4.7.
We can then verify the protocol using the ZX-Calculus. With diagrams A′i and B′j

de�ned above (whose interpretation correspond to the requirement of the protocol), we
can show that:

A′i B′j

π
1 2 3 1 2 3

=
π

σj σi
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-π
2

-π
2

-π
2

π
2

π
2

π
2

π
2

Alice Bob

1 1

2

3

2

3

Figure 4.7: Choice of ZX-diagram in the �antum Pseudo-Telepathy winning strategy.

for each pair (i, j) ∈ {1, 2, 3}2, and where σi exchanges the �rst and ith wire:

σ1 = and σ2 = and σ3 =

For instance, for the pair (1, 1):

π

π
2

π
2

-π
2

=
(B)

π

π
2

π
2

-π
2

=
(S)

(Hopf) π

π
2

π
2

-π
2

=
(S)

4.10.26 π

π
2 =

4.10.27
(I) π

=
(S)

( CX)
π

=
4.10.26

(S)

π

Since the parity conditions are necessarily met by construction ( representing
exactly the XOR of two qubits) all we have to do is check whether Alice and Bob agree
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on the bits j and i. To do so, we can XOR them, and check that it results in |0〉. To do so,
we can apply:

σj σi

where the σi are here to allow the selection of qubits i and j. Of course, since the these
permutations are merely inversions, σ2

i = I⊗ 3. Hence:

σi σj

π

σi σj =
π

=
(IV)

(Hopf)

π

where the le�most qubit represents |0〉.
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Normal Forms

One of the fundamental di�erences between ZX and ZW-Calculi is the fact that the la�er
enjoys a pleasant notion of normal form. �is is why historically, completeness was �rst
proven for ZW (using normal forms), and later on for ZX (using the completeness of
the ZW-Calculus). Even though completeness has been proven for several version of the
ZX-Calculus, it would be interesting to have a normal form for them. We have already
seen how graph states could be used to de�ne a normal form for diagrams of ZX[π

2
].

In this Chapter, we are going to see how to de�ne a normal form for any diagram of
∆ZX[F ] where F is a fragment that contains π

4
, or equivalently for any diagram of

ZX[F ] that contains π
4
. �is will particularly allow us to de�ne a nice su�cient condition

for completeness with these fragments. We will then apply the results for several new
fragments of the ZX-Calculus.

5.1 �e Algebra of the Transistor

�e normal forms will use some particular diagrams as building blocks. Particularly, we
are going to use the transistor, that was introduced in Section 3.1. Recall that:

:= =

-π
2

π
2

π
4

π
4

-π
4

-π
4

We can now diagrammatically prove the two sound equations: = and

π
= �e second one comes from Lemma 3.6.13, while the �rst one comes

from:

Lemma 5.1.1.

=
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5.1. �e Algebra of the Transistor

Proof I

=
3.6.2

=
3.6.14

π

π =
(πdist)

π

π

π

=
3.6.2

π

π

π

=
3.6.7

π

=
(S)

(HL)

J

�e transistor with the Not gate on the control wire reacts interestingly with the
generators of the ZX-Calculus:

Proposition 5.1.2.

(
π , π

)
forms a commutative monoid:

∆π `
(

π = π

)
,

 π

π

=

 ,


π

π
=

π

π


Proposition 5.1.3.

(
π , π

)
and

(
,

)
form a bialgebra:

∆π `
(

π

)
,

(
π

= π π

)
,

 π =

 ,

 π
=

π

π


�e �rst Proposition requires the following lemmas:

Lemma 5.1.4.

=

Lemma 5.1.5.

=
π

Lemma 5.1.6.

=
π

π

Lemma 5.1.7.

=

Lemma 5.1.8.

=

Lemma 5.1.9.

=

Proof I

= =
(B)
(S)

=
(TW)

=
(Hopf)

=
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= =
3.6.2
3.5.5

π

=
π

= =
5.1.4

=
5.1.5

π =
(πdist)

(S)
π

π =
5.1.4 π

π

=
5.1.6

π

π
=

π

π
=

3.5.5
(H)

π

π

=
3.6.8

π

=
(H)

π
=

3.6.8
π

π

=
3.5.5

π
π

=
5.1.6

=
5.1.6

π

π

=
π

π

π

=
3.6.10

π

π
=

5.1.6

= =
5.1.8

=
5.1.7

=
5.1.8

=
5.1.7

=
5.1.8

J

Proof of Prop. 5.1.2 I �e three equations can be obtained by:

• (S) and Lemma 5.1.6
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5.1. �e Algebra of the Transistor

• by (S) and Lemma 5.1.1

• by Lemmas 5.1.6 and 5.1.9

J

�e proof of the bialgebra furthermore requires:

Lemma 5.1.10.

=

Lemma 5.1.11.

= and =

Proof I

= =
3.6.10

π =
(B)

π

=
5.1.6

π =
3.6.10

=
(I)

5.1.1

=

= =
(CP)

=
(T0)
3.5.3

=
(CP)
(S)
(I)

=
5.1.7
(H)

= =
(H)

J

Proof of Prop. 5.1.3 I �e four equations can be obtained by:

• (sπ) +(IV)

• (πdist) +(IV) +(CP)

• Lemma 5.1.11 and (CP) +(sπ)

• (πdist) and Lemma 5.1.10

J

Remark 5.1.12. �e diagram π can be seen as an AND gate (notice that when

plugging kπ `π , the result is k`π , when k, ` ∈ {0, 1}). As such, it has
been used previously to create the To�oli gate. �e previous two propositions where
observed as tensor network transformations with AND gates in [BCJ11].
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Chapter 5. Normal Forms

5.2 Controlled States and Normal Forms

In this section, we build our way up to the de�nition of a normal form. We do it in such
a way that its structure is the same for all fragments of ∆ZX that contain π.
p De�nition 5.2.1: We denote by F the set of all fragments that contain π

4
:

F := {F | F ⊆ R/2πZ, π
4
∈ F} y

Controlled States

�e cornerstone of the normal form is the controlled state. Controlled states form a par-
ticular family of ∆ZX-diagrams with a single input and n outputs. �eir interpretation
should map |0〉 to the uniform superposition

∑
x∈{0,1}n |x〉. Intuitively, a controlled state

D : 1→ n is just an encoding for the state JDK |1〉.
p De�nition 5.2.2 (Controlled states): A ∆ZX-diagramD : 1→ n is a controlled state
if JDK |0〉 =

∑
x∈{0,1}n |x〉. y

A controlled state with no output is called a controlled scalar:
p De�nition 5.2.3 (Controlled scalars): A ∆ZX-diagram D : 1 → 0 is a controlled
scalar if JDK |0〉 = 1. y

For instance is a controlled scalar encoding 1
2
:

s {
|x〉 =

{
1 if x = 0
1
2

if x = 1

We introduce other examples of controlled scalars, parameterised by integer poly-
nomials:
p De�nition 5.2.4: For any F ∈ F and any α ∈ F , let Γα : Z[X] → ∆ZX[F ] be the
map which associates to any polynomial P a ∆ZX-diagram Γα(P ) : 1→ 0, inductively
de�ned as

0 7→
and ∀a ∈ N \ {0},∀b ∈ {0, 1},∀k ∈ N, and ∀P ∈ Z[X] such that deg(P ) < k,

(−1)baXk + P 7→
)abπ+kα(
bπ−kα

Γα(P )

where
( )a

:=
... a


y

For any integer polynomial P , the corresponding diagram Γα(P ) is a controlled
scalar encoding the scalar P (eiα):

Lemma 5.2.5. ∀F ∈ F , ∀α ∈ F , and ∀P ∈ Z[X], JΓα(P )K |x〉 =

{
1 if x = 0

P (eiα) if x = 1
.
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5.2. Controlled States and Normal Forms

Proof I By induction. First, notice that JΓα(0)K =
(
1 0

)
. �en:

u

wwww
v

)abπ+kα(
bπ−kα

Γα(P )

}

����
~

=
(
1 P (eiα)

)(1 (−1)baeikα

0 1

)
=
(
1 (−1)baeikα + P (eiα)

)

J

�is de�nition can easily be extended to represent any multivariate polynomial in
P (ei~α) := P (eiα1 , . . . , eiαk) with coe�cients in Z. Indeed, P (ei~α) can be wri�en as∑

(−1)bj1,...,jkaj1,...,jke
i(j1α1+...+jkαk), where aj1,...,jk ∈ N. We hence de�ne inductively

Γ~α thanks to:

(−1)b~ja~jX
j1
1 . . . Xjk

k + P 7→
)a~jb~jπ+~j~α(
b~jπ−~j~α

Γ~α(P )

where b~j stands for bj1,...,jk , a~j for aj1,...,jk , and~j~α for j1α1 + . . .+ jkαk. Notice that a�er
building this diagram, some of the variables may be evaluated to particular values. �is
way, given a fragment F ∈ F , any multivariate polynomial with constants in Z[eiF ] can
be controlled.

While it is not obvious in the ZX-Calculus to add two given diagrams (i.e. build a
third diagram whose interpretation is the sum of the two �rsts’), a fundamental property
of controlled states is that they can be freely added and multiplied (according to the
entrywise product a.k.a. the Hadamard product or Schur product) as follows:

Lemma 5.2.6 (Sum and Product). For any controlled states D0, D1 : 1→ n,

Dsum := D1D0

…
……

Dprod := D1D0

…
……

are controlled states such that:

JDsumK |1〉 = JD0K |1〉+ JD1K |1〉 and
q
Dprod

y
|1〉 = (JD0K |1〉) • (JD1K |1〉)

where . • . is the entrywise product.

Proof I �is is routine to show. J

Normal Form

Amongst the family of controlled state diagrams, we de�ne those that are in normal
form. Our de�nition of normal form is generic in the sense that it is de�ned with respect
to a given set of controlled scalars. Intuitively the choice of these controlled scalars
depends on the considered fragment of the language, as detailed in the next sections.
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Chapter 5. Normal Forms

p De�nition 5.2.7 (Controlled Normal Form): Given a set S of controlled scalars, the
diagrams in controlled normal form with respect to S (S-CNF) are inductively de�ned as
follows:

• ∀D ∈ S, D is in S-CNF;

• ∀D0, D1 in S-CNF,
D0…

…
…D1

is in S-CNF.

A diagram D in S-CNF is depicted D
···

. y

One can double check that diagrams in controlled normal form are actually con-
trolled states: if D : 1 → n is in S-CNF, JDK |0〉 =

∑
x∈{0,1}n |x〉 (this is a consequence

of Lemma 5.3.4, proven in the following).
We are now ready to give a de�nition of diagrams in normal form, based on the

diagrams in controlled normal forms:

p De�nition 5.2.8 (Normal Form): Given a set S of controlled scalars, for any n,m ∈

N, and any D : 1 → n + m in S-CNF,
π

Dn...
...
m

is in normal form with respect

to S (S-NF). y

Universality

While the main application of the notion of normal form is to prove completeness results
(in the next sections), our �rst application is to prove the universality of ∆ZX[F ] for
any F ∈ F . First notice that the universality of ∆ZX[F ] can be reduced to the existence
of an appropriate set of controlled scalars:

Lemma 5.2.9 (Su�cient condition for universality). Given F ∈ F , if ∃S ⊆ ∆ZX[F ] a
set of controlled scalars such that the map η : S → Z[ 1√

2
, eiF ] = D 7→ JDK |1〉 is surjective,

then ∆ZX[F ] is universal, i.e. the functor ∆ZX[F ]
J.K→ QubitZ[ 1√

2
,eiF ] is full.

Proof I It is easier to see this if we look at the interpretation of ZX-diagrams as matrices.
η being surjective, for any x ∈ Z[ 1√

2
, eiF ], there existsDx ∈ S such that JDxK =

(
1 x

)
.

As pointed out, any diagram in S-CNF represents a quantum evolution of the form(
1 ψ

)
, where 1 is a column vector whose entries are all 1, and ψ is another column
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5.3. A su�cient condition for completeness

vector. Moreover, one can show that if JD0K =
(
1 ψ0

)
and JD1K =

(
1 ψ1

)
, then

u

wwwwww
v D0…

…
…D1

}

������
~

=

(
1 ψ0

1 ψ1

)

Hence, by induction, for any column vector ψ over Z[ 1√
2
, eiF ], one can perform the

matrix
(
1 ψ

)
as an S-CNF. Plus,

r
π
z

=

(
0
1

)
so we can recover a diagram rep-

resenting the vector ψ. Finally, using the map/state duality, any matrix over Z[ 1√
2
, eiF ]

can be represented as a ZX-state over Z[ 1√
2
, eiF ], where some outputs wire are bent so

as to become inputs (this procedure gives the S-NF form). J

�eorem 5.2.10. For any F ∈ F , ∆ZX[F ] is universal for QubitZ[ 1√
2
,eiF ]:

∀M ∈ QubitZ[ 1√
2
,eiF ], ∃D ∈ ∆ZX[F ], JDK = M

In other words, the functor ∆ZX[F ]
J.K→ QubitZ[ 1√

2
,eiF ] is full.

Proof I Let S ⊆ ∆ZX[F ] be the set of all controlled scalars. According to Lemma 5.2.9
it su�ces to show that η : S → Z[ 1√

2
, eiF ] is onto. Let x ∈ Z[ 1√

2
, eiF ], there exist p ∈ N,

α0, . . . , αk ∈ F , and P0 . . . Pk ∈ Z[X] such that x = 1
2p

∑k
j=0 Pj(e

iαj). Since Γαj(Pj)

encodes Pj(eiαj), encodes 1
2

and they can be added and multiplied according to
Lemma 5.2.6, there exists a diagram D ∈ S such that JDK |1〉 = x. J

5.3 A su�cient condition for completeness

�e controlled states give a generic internal structure for a diagram in normal form, by
separating the coe�cients of the process – i.e. controlled scalars intuitively accounting
for the entries of the represented matrix – from the way they are combined. While
the representation of the controlled scalars depends on the considered fragment, their
combination is done in ∆ZX[π].

Hence, all the sound operations on the structure of the normal forms should be doable
using the ∆+

π rules. �e completeness for broader fragments is then reduced to the
capacity to apply elementary operations on coe�cients:

�eorem 5.3.1 (Su�cient condition for completeness). Given a fragment F ∈ F and
an axiomatisation R, ∆ZX[F ]/R is complete if R ` ∆π/4 and if ∃S ⊆ ZX[F ] a set of
controlled scalars such that η : S → Z[ 1√

2
, eiF ] = D 7→ JDK |1〉 is bijective, and the
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following equations hold: ∀α ∈ F, ∀x, y ∈ Z[ 1√
2
, eiF ],

αη-1(eiα)
=

=

η-1(x) η-1(y)
η-1(xy) =

η-1(x) η-1(y)

η-1(x+y)
(Cond)

Before proving �eorem 5.3.1, notice that all the above equations are involving dia-
grams with a single input and no output, thus for any fragment the completeness reduces
to the completeness for diagrams with 1 input and no output, or equivalently – by bend-
ing the wires – to diagrams representing 1-qubit state preparations which have no input
and a single output:

Corollary 5.3.2. For any fragment F ∈ F and axiomatisationR, ∆ZX[F ]/R is complete
if and only if it is complete for 1-qubit state preparations, i.e. for all diagrams with no input
and a single output.

Notice that thanks to the hypothesis of �eorem 5.3.1, one can associate to any state
|ϕ〉 : 0→ n ∈ QubitZ[ 1√

2
,eiF ] a diagram Λ(|ϕ〉) in S-CNF, and to any evolution f : n→

m ∈ QubitZ[ 1√
2
,eiF ], a diagram λ(f) in S-NF:

p De�nition 5.3.3: With the hypothesis of �eorem 5.3.1, let

Λ :
⋃
n∈N

QubitZ[ 1√
2
,eiF ][0, n]→ S-CNF and λ :

⋃
n,m∈N

QubitZ[ 1√
2
,eiF ][n,m]→ S-NF

be de�ned as follows:

• Λ(x) := η−1(x) if x ∈ Z[ 1√
2
, eiF ],

• Λ(|0〉 ⊗ |ψ0〉+ |1〉 ⊗ |ψ1〉) :=

Λ |ψ0〉
· · ·· · ·· · ·

Λ |ψ1〉

• λ

 ∑
x∈{0,1}n
y∈{0,1}m

αx,y |y〉 〈x|

 :=

π

Dn...
...
m

, whereD = Λ

 ∑
x∈{0,1}n
y∈{0,1}m

αx,y |x〉 |y〉


y

Notice that if the conditions (Cond) are met, the language proves that for any |ψ〉 :
0→ n in S-CNF, JΛ |ψ〉K |0〉 =

∑
x∈{0,1}n |x〉:

Lemma 5.3.4.

∆π/4 +(Cond) ` Λ |ψ〉
· · ·

= · · ·
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5.3. A su�cient condition for completeness

Proof I First, let |ψ0〉 and |ψ1〉 : 0 → n ∈ QubitZ[ 1√
2
,eiF ] such that |ψ〉 = |0〉 |ψ0〉 +

|1〉 |ψ1〉. �en:

Λ |ψ〉
· · ·

=
Λ |ψ1〉

· · ·
· · ·

Λ |ψ0〉
· · ·

=
(CP)
(S)
(I) · · ·

Λ |ψ1〉Λ |ψ0〉

· · ·
· · ·

=
5.1.11

Λ |ψ0〉
· · ·· · ·
Λ |ψ1〉

· · ·

=
(CP) · · ·

Λ |ψ1〉
· · ·

Λ |ψ0〉

· · ·
=
Ind
(S)

· · ·

It then remains to prove the result for the base cases Λx. Any x can be decomposed as
a sum of eiα where αs are in the fragment. �en:

Λeiα
=

α
=

(sα)
=
(IV)

and:

Λ(x+y)
=

Λx Λy

=
(CP)
(T0)

ΛyΛx

=
(IV)
(CP) Λx Λy

=

J

Also, if the conditions (Cond) are met, then some control scalars can obviously be
derived, thanks to the following lemma:

Lemma 5.3.5.

α-α

=
α-α

Proof I

α-α

=
(K)

αα -α
π π

=
3.8.11

αα

-απ

π
=
(S)

3.6.8
3.5.5

α
α -α
π

π

π

=
(P)

3.6.11 α
α -α
π

π

π
=
(S)

(CP)
(sπ)
(K)
(S)

α-α
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J

Lemma 5.3.6. With R a set of axioms such that R ` ∆π/4 +(Cond):

R `
(

=
Λ0

)
,

(
=

Λ2

)
,

 =
Λ 1

2

 ,


−π
4

π
4

=
Λ 1√

2

 ,


−π
4

Λ−1√
2

π
4

=
π

 ,

(
Λ2

π

=

)
,

(
Λ 1√

2

π

=

)
Proof I Since R ` ZXπ/4:

R `
Λ0

=
Λ(1−1)

=

π

=
(πdist)
(CP)
(S) π

π
=

3.6.5

R `
Λ2

=
Λ(1+1)

= =
(CP)
(S)
(I)

R ` =

Λ 1
2 Λ2

=

Λ 1
2

=
3.6.11 Λ 1

2

R `
−π
4

π
4

=
5.3.5

−π
4

π
4

=

Λ 1
2

Λei
π
4 Λe−i

π
4

=
Λ ei

π
4 +e−i

π
4

2

=
Λ 1√

2

R `
Λ2

π

=

π

=
3.5.6

=
(IV)
(S)

R `
Λ 1√

2

π

=
−π
4

π
4

π

=
(S)
(K)

π
−π
4

π
2

=
3.8.3

π
−π
4

π
4

π

=
(s+)

=
(IV)

185



5.4. Preliminary Derivations

J

�e proof of �eorem 5.3.1 consists in showing that any diagram can be transformed
into a diagram in S-normal form. �e proof is inductive: every generator of the language
can be set in S-normal form, moreover both the parallel and sequential compositions of
S-normal forms can be transformed into diagrams in S-normal form.

5.4 Preliminary Derivations

Proving that the compositions of two normal forms can be put in normal form will rely
extensively on di�erent lemmas that we will lay out in this section. We will explore here
how the transistor interacts with the other generators of the language, with the triangle,
and with other transistors. �is section only produces diagrammatic derivations. For
the reader convenience, it ends at page 193.

Derivations of ∆ZX

First, we derive some supporting lemmas that do not use the transistor. Two of them
(Lemmas 5.4.2 and 5.4.3) were proven to be derivable thanks to Corollary 4.2.2, but were
not given an explicit derivation.

Lemma 5.4.1.

π

=

Lemma 5.4.2.

α α

=
α

Lemma 5.4.3.

2α π

=
α

α

-α

Lemma 5.4.4.

)a(

α

-α

)b

-β
(

β

=

( )a

)b(

β

α

-α

-β

Proof I • 5.4.1:

π

=
(S)
(H)

(πdist)
3.5.5

π

π

=
3.6.8
(H)

π

=
(TCX)

π

=
3.6.8

π

π
=

3.5.5
(S)
(I)
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• 5.4.2:

α
=
(S)

(CP)
(B)

α α

-α
=
(P) -α

α α
=

3.6.10
-α

α α

π

=
(B)

3.5.5 -α

α

α

π
=

3.6.13
-α

α

α

=
(S)

(CP)
(I)

-α
α

α α

=
α

α

-α
=
(B)

α

α

-α =
(S) α

• 5.4.3:

2α π

=
5.4.2

α π

α-α
=
(S)

3.8.11

π

α

α-α

=
(S)
(B)

(πdist) α

α

-α

π

π

=
(S)
(H) α

α

-α

π

π =
5.4.1

α

α

-α

π
=
(P)

(CP) α

α

-α

=
3.8.11

α

α

-α

• 5.4.4: First, if a = 1 = b:

α

-α

-β

β

=
(S)

(CP)

-α

β

-β
α

=
5.4.2

α−β

β

-β

=
(S)

(TW)

α−β

β

-β

=
5.4.2

β−α

α

-β

=
(CP)
(S)

α

-β

-α
β

�en:

)a(

α

-α

)b

-β
(

β

=
(I)
(S)

 a

b β

-β

α

-α

=


b

a

 β

α

-α

-β

=
(S)
(I)

( )a

)b(

β

α

-α

-β

J
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Derivations using the Transistor

We derive here some equations on the transistor that will come in handy when we try
to have transistors and triangles interact in the following.

Lemma 5.4.5.

=
π

Lemma 5.4.6.

=
π

= π π

Lemma 5.4.7.

π
=

π

Lemma 5.4.8.

π
=

π

Lemma 5.4.9.

= and π =

Lemma 5.4.10.

π

=

Lemma 5.4.11.

=
π

Lemma 5.4.12.

=

Proof I • 5.4.5:

= =
3.6.3

(S)

=
3.6.2
3.5.5

π
=

π

• 5.4.6:

=
5.1.10

=
5.4.5 π

=
5.1.6

π π

• 5.4.7:

π
=

π

=
(B)

π

=
(πdist)

(S)
3.5.5 π

=
π
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• 5.4.8:

π
=

5.1.6

π

=

π

π =
(P)

π

=
(CP)
(S) π

=
3.6.11

π

π =
(S)

(CP) π

π
=

π

=
5.1.6 π

• 5.4.9:

=
5.1.4

=
(S)

(Hopf)

=
5.1.11

π =
5.1.5

=
(Hopf)

=
5.1.1

• 5.4.10:

π

=
5.4.6 π

π

=
(πdist) π

=
5.4.6

• 5.4.11:

=
(S)
(I)

= =
3.6.6
3.6.2
3.5.5

π

• 5.4.12:

=
5.4.10

π

=
5.4.11

J
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Interactions of Transistors and ∆

Finally, we show how the transistor interact with other diagrams of the language.

Lemma 5.4.13.

=

Lemma 5.4.14.

=

Lemma 5.4.15.

π
= π

Lemma 5.4.16.

α α

π
= π

α

Lemma 5.4.17.

Γ~α ~P

Γ~α ~P

=

Γ~α ~P

Lemma 5.4.18.

π

Γα(P ) Γα(P )

=
π

Γα(P )

Proof I • 5.4.13:

=
5.4.6

ππ

π π

=
5.1.10
5.1.9

ππ

π π

=
5.4.7

π

π ππ =
5.1.10

π

π
π =

5.4.8

π

π
π

=
5.1.10
5.4.7

π

π

π π

=
5.1.6

π
π

π

π

π

=
5.1.9
5.1.10

π

π π

π
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=
(I)
(S)

5.4.6

• 5.4.14:

=
3.6.11

= =
3.6.12

= =
5.4.13

=
3.6.11

• 5.4.15:

π
=
(S)

(CP)
π

=
5.4.14

π π

=
5.1.11
(CP)
(S)

π

• 5.4.16:

α α

π
=

5.4.6

αα

=

αα

=
5.4.2 α

= π

α

• 5.4.17: First notice that:

π

π

)a
-α

α

(

)a
-α

α

(

=
(S)

5.4.2

π

π

)a
-α

α

(

)a
-α

α

(
-α

=
5.4.16
(TW)
5.4.2

(S)
π

π

-α
)a

α

(
-α

)a(
=

5.4.15
5.4.16

π

π

-α

α

)a(

=
(K)

3.5.5 π

π

-α

α

)a(
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5.4. Preliminary Derivations

�en, using the previous derivation repeatedly:

Γ~αP

Γ~αP

=
(I)
(S)

(πdist)
3.5.5

Γ~αP

Γ~αP
π

π

π π

=
5.4.7
5.1.11

π π

π
Γ~αP

Γ~αP

π

=
(S)

(CP)
(πdist)

π

π
Γ~αP

Γ~αP

π

=
5.4.4

π

π

π

Γ~αP

=
(S)
(I)

5.1.1
5.4.12

π

Γ~αP

π

π

=
3.5.5

(πdist)

Γ~αP

=
(TCX)

Γ~αP

=
5.1.1

Γ~αP

• 5.4.18:

π

Γα(P ) Γα(P )

=
(I)
(S)

3.5.6
(CP)

(πdist)
π

Γα(P )

Γα(P )
=

5.4.17

π

Γα(P )

=
(πdist)
(CP)
3.5.6

π

Γα(P )

J

Interestingly, we can derive the whole following family of equations:

Lemma 5.4.19.

π

…

=

…

=

…

and

· · ·

· · ·

=

···

Let n be the number of triangles in the �rst two diagrams.
• n = 0: �e �rst equality is (HL), the second is equivalent to the third, and already
proven 3.6.6.
• n = 1: �e �rst equality is 3.6.9, the second is 3.5.4 and the third is 5.1.1.
• n = 2: �e �rst equality is given by Lemma 5.4.1. �en:

=
(TCX)

=
3.6.3

=
3.6.14

π

π

=
3.6.9
3.6.10

π

π
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=
3.5.5

π

π

=
(B∆)

Finally:

= = =

• n: Suppose we have the result for n− 1 and n = 2. �en:

π

…

=

…

π

=

…

=

…

�e same trick is used for the two other equalities.

5.5 Compositions of Normal Forms

We now use the results of Section 5.4 to prove that the compositions (spatial and sequen-
tial) of two diagrams in S-CNF can be put in S-CNF.

Proposition 5.5.1 (Permutation). For any |ψ〉 : 0 → n ∈ QubitZ[ 1√
2
,eiF ], and any

permutation σ on n wires:

∆π `
Λ |ψ〉

σ
· · ·
· · ·

=
· · ·

Λ JσK |ψ〉

Proof I Any permutation can be decomposed in a sequence of adjacent transpositions,
which in ZX translates as swaps σ. If |ψ〉 is a state on 0 or 1 qubit, the only permutation
allowed is the identity. Otherwise, let |ψ〉 = |0〉 |ψ0〉+|1〉 |ψ1〉 = |00〉 |ψ00〉+|01〉 |ψ01〉+
|10〉 |ψ10〉+ |11〉 |ψ11〉. If the �rst wire is not a�ected by the swap:

Λ |ψ〉
· · · · · ·

=
Λ |ψ0〉

· · ·

Λ |ψ1〉

· · ·

=
· · ·· · ·

Λ |ψ0〉
· · · · · ·

Λ |ψ1〉

· · ·· · ·
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5.5. Compositions of Normal Forms

which can be set in normal form by induction. If a swap occurs on the two �rst outputs:

· · ·
Λ |ψ〉 =

5.4.6

Λ |ψ00〉 Λ |ψ10〉 Λ |ψ11〉

π

Λ |ψ01〉

π

π π

=
5.1.10
5.1.9

Λ |ψ00〉

π

Λ |ψ10〉 Λ |ψ11〉

π

Λ |ψ01〉

π
π π

=
5.1.6

Λ |ψ00〉

π

Λ |ψ10〉 Λ |ψ11〉

π

Λ |ψ01〉

π

π

π

=

Λ |ψ00〉

π

Λ |ψ10〉 Λ |ψ11〉

π

Λ |ψ01〉

π
π π

=
5.1.10

Λ |ψ00〉 Λ |ψ10〉 Λ |ψ11〉

π

Λ |ψ01〉

π

π π

J

Lemma 5.5.2.

R `

· · ·

Λ |ψ〉Λ |ψ〉
=

Λ |ψ〉
· · ·

Proof I By induction on the number n of outputs of |ψ〉:
• n = 0 : Let x ∈ Z[ 1√

2
, eiF ]. �ere exist p, ~α = (αk)k and ~P = (Pk)k such that
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x = 1
2p

∑
k

P (eiαk). �e conditions for �eorem 5.3.1 imply that:

R `
Λx

=

Γ~α ~P

...

⊗ 2p

p

�en:

R ` ΓαkPk ΓαkPk

⊗ 4p

......

=
3.6.12

ΓαkPk ΓαkPk

⊗ 2p

...
=
(B)

ΓαkPk

ΓαkPk

...

⊗ 2p

=
5.4.17

ΓαkPk

...
⊗ 2p

Hence:

R ` =

Λx Λx

Λx

�en:

ΛxΛx

=

ΛxΛx

=
Λx

=
Λx

• n ≥ 1: In this case, let |ψ〉 = |0〉 |ψ0〉+ |1〉 |ψ1〉, and

· · ·

Λ |ψ〉Λ |ψ〉
=

5.4.6

Λ |ψ0〉 Λ |ψ1〉

· · ·

Λ |ψ1〉 Λ |ψ0〉

π

π π
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=
5.1.10
5.1.9

· · ·

π

Λ |ψ1〉Λ |ψ0〉Λ |ψ1〉

π

Λ |ψ0〉

π π

π
=

5.4.6
5.1.10

Λ |ψ1〉Λ |ψ0〉 Λ |ψ0〉

· · ·

π

Λ |ψ1〉

π

π

=
5.4.6

· · ·

Λ |ψ0〉 Λ |ψ1〉Λ |ψ0〉 Λ |ψ1〉

=
Ind

Λ |ψ0〉

· · ·

Λ |ψ1〉

=
(CP)
(S)

Λ |ψ0〉

· · ·

Λ |ψ1〉

=
5.1.11

(S) Λ |ψ0〉

· · ·

Λ |ψ1〉
=
(S)
(I) Λ |ψ〉

· · ·

J

Proposition 5.5.3 (Tensor Product). For any |ψ0〉 : 0→ n, |ψ1〉 : 0→ m ∈ QubitZ[ 1√
2
,eiF ],

and any R such that R ` ∆+
π +(Cond):

R `
· · ·

Λ |ψ0〉 Λ |ψ1〉 =

· · · · · ·
Λ(|ψ0〉 ⊗ |ψ1〉)

Proof I By induction on the number of outputs of |ψ0〉 and |ψ1〉:
• If both states are scalars, this case is handled by the condition in �eorem 5.3.1.
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• If one of the two states has at least one output – say |ψ0〉 = |0〉 |ψ00〉+ |1〉 |ψ01〉:

· · ·
Λ |ψ0〉 Λ |ψ1〉

· · ·

=

· · ·
Λ |ψ00〉 Λ |ψ01〉 Λ |ψ1〉

· · ·

=
5.5.2

Λ |ψ00〉

· · ·
Λ |ψ01〉

· · ·
Λ |ψ1〉 Λ |ψ1〉

=

· · · · · ·

Λ |ψ1〉Λ |ψ01〉Λ |ψ1〉Λ |ψ00〉
=
Ind

Λ |ψ00〉 |ψ1〉

· · ·
Λ |ψ01〉 |ψ1〉

= Λ |ψ0〉 |ψ1〉
· · ·

J

Lemma 5.5.4.

=

Lemma 5.5.5.

π

=

Proof I

=
5.1.8

=
(S)

=
(Hopf)

(I)

=
5.1.1

π

=
5.1.8

π

=
(Hopf)

(I)

π

=
3.6.13

=
5.1.11

J

Proposition 5.5.6 (R(2,1)
Z ). For anyD : 0→ n+2, and anyR such thatR ` ∆π +(Cond):

R ` Λ JDK

· · · · · · · · ·
=

Λ
t

D

· · ·· · · · · ·

|

· · ·
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Proof I By induction on the number n of outputs of |ψ〉.
• n = 2: First notice:

=
5.4.6

π π

π
=

5.1.10
π π

π π

=
5.5.4
5.5.5 π

=
(S)

5.4.6

�en, if |ψ〉 = a |00〉+ b |01〉+ c |10〉+ |11〉:

Λa Λb Λc Λd

=

Λa Λb Λc Λd

=
5.3.4

Λa Λd

which is in normal form.
• n ≥ 3: Using Proposition 5.5.1, we can impose to be applied on the two last wires.
�en:

Λ |ψ〉
· · ·

= Λ |ψ0〉

· · ·

Λ |ψ1〉 =
(S)

Λ |ψ0〉 Λ |ψ1〉

· · ·

J

Proposition 5.5.7 (R(1,0)
Z ). For any diagram D : 0 → n + 1, and any R such that R `

∆π +(Cond):

R ` · · · · · · =
· · ·

Λ 1
2

t

· · · · · ·
Λ JDK

|

Λ JDK
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Proof I By induction of the number n of wires of |ψ〉:
• n = 1: Let |ψ〉 = a |0〉+ b |1〉. �en:

Λ |ψ〉 =

ΛbΛa

=

Λa Λb

=
(CP)

Λa Λb

=
Λ 1

2 Λa+b

=
Λa+b

2

• n ≥ 2: First, using Proposition 5.5.1 if needs be,

Λ |ψ〉
· · · · · ·

= Λ |ψ〉
· · ·

· · ·

= Λ |ψ′〉
· · ·

then,

Λ |ψ〉
· · ·

=

Λ |ψ00〉 Λ |ψ11〉Λ |ψ01〉 Λ |ψ10〉

· · ·

=
5.4.13

· · ·

Λ |ψ01〉Λ |ψ10〉 Λ |ψ11〉Λ |ψ00〉

J

Proposition 5.5.8 (Trace). For any diagram D : 0 → n + 1, and any R such that
R ` ∆π +(Cond):

R ` Λ JDK

· · · · · · · · ·
=

· · ·
Λ

t
D

· · · · · · · · ·

|

π
π

Proof I

Λ JDK

· · · · · · · · ·

π

=
(I)
(S) · · ·

Λ JDK

· · ·

π

· · ·
=

5.5.6

· · ·
Λ

t
D

· · ·· · · · · ·

|

π

· · ·
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=
5.5.7

· · ·
Λ 1

2

t
D

· · · · · · · · ·

|

π

=
5.3.6

(πdist)
(CP)

π

· · ·
Λ 1

2

t
D

· · · · · · · · ·

|

Λ2

=
5.5.3

· · ·
Λ

t
D

· · · · · · · · ·

|

π

J

Proposition 5.5.9. With the hypothesis of �eorem 5.3.1, for anyD0, D1 inS-NF,D0 ⊗D1

can be transformed into a diagram in S-NF.

Proof I

…
D2

……

…
D1 =

π

Λ JD1K
…

…

…

…

π

Λ JD2K =
(CP)

(πdist)
(IV)

…
Λ JD2K

…

…
…

Λ JD1K

π

=
5.5.3

Λ |ψ〉

…

π

…

…

…
=

5.5.1 …

π

…
Λ |ψ′〉

J

Proposition 5.5.10. With the hypothesis of �eorem 5.3.1, for any D0 : n → m and
D1 : m→ k in S-NF, D1 ◦D0 : n→ k can be transformed into a diagram in S-NF.

Proof I

…
D2

…

…
D1

=

π

Λ JD1K
…

…
…

π

Λ JD2K
=

(CP)
(πdist)

(IV)

…
Λ JD2K

… …
Λ JD1K

π

=
5.5.3

…
π

Λ |ψ〉
…

=
5.5.8

…
π

…
Λ |ψ′〉

J

Proposition 5.5.11. With the hypothesis of �eorem 5.3.1, each generator can be trans-
formed into a diagram in S-NF.
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Proof I We will prove the result for states, for the three-legged green dot, the Hada-
mard node and the empty diagram. All the other generators can be built from them and
the Propositions 5.5.1, 5.5.3, 5.5.6, 5.5.8 and 5.5.7: First, notice that:

R ` Λ |0〉 = =
5.4.11

(S)
(I)

π
, Λ |1〉 = =

5.4.12
(S)
(I)

�en:

R ` α
=

5.1.1

α

=
(I)
(S)

(πdist)

π π

π

α
=

(πdist)
5.4.7
5.1.11
(CP)

Λ |0〉 Λ |0〉

π

Λ |1〉Λ |1〉

Λeiα

=
5.5.3 Λ |00〉

π

Λeiα |11〉
=

π

Λ
s

α
{

and:

R ` =
(HD)

−π
2

π
2

π
2

=
5.4.3

π

π

=
3.5.5

(I)
(S)

π

π

π
π

=
5.1.11
5.4.9
(CP)

ππ

π

=
(πdist)
5.4.7
5.1.11
(CP)

π

π

= Λ
√

2
r z

π

=
5.3.6

(πdist)
(CP)

Λ
√

2
r z

π

Λ 1√
2

=
5.5.3

π

Λ
r z

and:

R ` =
(IV)
(sπ)

π
=

Λ
r z

π
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�en:

R ` =
(S)
(I)

=

π

Λ
s {

=
5.5.8

Λ
r z

π

R ` =
(I)
(S)

=

π

Λ
s {

=
5.5.7

Λ 1
2

q y

π

=
5.3.6

(πdist)
(CP)

π

Λ 1
2

q y

Λ2

=
5.5.3

Λ
q y

π

R ` = =

π

Λ
q y

π

Λ
q y =

(πdist)
(CP)

π

Λ
q y

Λ
q y

=
5.5.3

π

Λ
q y

=
5.5.1

Λ
r z

π

Any green dot with arity larger than 3 can be decomposed as a 3-legged dots thanks to
(S), and any red dot is a green dot with Hadamard gates on its adjacent wires. �en, any
diagram can be built from the states by simple topological transformations. E.g:

R ` = = Λ
q y

π

, = =
Λ

q y

π

J

In the next sections, we will consider several fragments of the ZX-calculus for which
we will exhibit a diagrammatic representation of controlled states. For some fragments,
the above equations are provable, implying the completeness of the ZX-calculus for these
fragments. For other fragments, we will need the help of some additional axioms to prove
the above equations, implying the completeness of a ZX-calculus augmented with these
additional axioms.

5.6 Normal Forms with Arbitrary Angles

In the case of the general ZX-calculus, we know (�eorem 4.6.1) that the language is
complete with the set of rules ZX (Figure 4.3).
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p De�nition 5.6.1: Let ΛR : C→ ZX[1, 0] be the map de�ned as:

• ΛR(0) =

• ∀ρ > 0,∀θ ∈ [0, 2π), ΛR(ρeiθ) :=

θ+π
2

α-α

⊗n

-γ
γ with


α := 2 arctan (ρ)
n := max (0, d− log2(1+ cos (α))e−2)

γ := arccos
(

1
2n+1(1+cos(α))

)
and SR := {ΛR(x) | x ∈ C}. y

Lemma 5.6.2. For any x ∈ C, ΛR(x) is a controlled scalar, and JΛR(x)K |1〉 = x.

Proof I �is is routine (and can use Corollary 4.7.20). J

Lemma 5.6.3. �e map ηR : SR → C = D → JDK |1〉 is bijective, and ΛR = η-1
R.

Moreover:

ZX `
(

αΛR(eiα)
=

)
,

(
=

ΛR(x) ΛR(y)
ΛR(xy)

)
,

 =

ΛR(x) ΛR(y)

ΛR(x+y)


Proof I �e proof for the the �rst equation was done in Proposition 4.8.9 and the ones
for the two other equations are similar to the proofs of rules 1b and 4a of Proposition
4.8.10. J

We can now reprove the completeness of ZX/ZX. By Proposition 4.8.5, ZX ` ZXπ/4

and by Proposition 4.4.2 ZXπ/4 ` ∆π/4. By Lemma 5.6.3, the conditions (Cond) are met,
so by �eorem 5.3.1, the language is complete.

5.7 Completeness and Normal Forms with Rational

Angles

In this section, we consider the case where the angles are rational multiples of π, i.e. frag-
ments F ∈ FQ := {F ∈ F | F ⊆ Qπ}. Among the rational angles, dyadic angles, i.e.
FD := {F ∈ F |F ⊆ Dπ}, whereD := { p

2q
| p, q ∈ N} enjoy some particular properties,

and are considered in details in the next section.

Incompleteness and a new Rule for Cancelling Scalars

An interesting set of equations comes from the controlled scalars parametrised by in-
teger polynomials, more precisely from those parametrised by cyclotomic polynomials.
Indeed for any n > 0,

r
Γ 2π

n
(φn)

z
|1〉 = φn(e

i2π
n ) = 0 (where φn is the nth cyclotomic

polynomial), thus
r

Γ 2π
n

(Φn)
z

=
r z

. However, the corresponding equations are
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not provable with ZXπ/4 when n = 8p with p an odd prime number, implying the in-
completeness of any fragment of rational angles which contains at least one angle of the
form π

4p
:

Lemma 5.7.1 (Incompleteness). For any F ∈ FQ \FD, there exists an odd prime number
p such that Γ π

4p
(Φ8p) ∈ ZX[F ] and

ZXπ/4 0 Γ π
4p

(Φ8p) =

Proof I Let p be an odd prime number and ` an integer ≥ 1. �e formula of the
cyclotomic polynomial for a number with at most one odd prime factor gives: φ8p`(x) =
p−1∑
k=0

(−1)kx4kp`−1 . Moreover, (−1)ke
i π
4p`
×4kp`−1

= ei
p+1
p
kπ. A�er telescoping:

Γ π

4p`
φ8p`

=
p−1
p
π
)p(

Since p and 4 are coprime, there exists k such that kpπ
4

= π
4
. Let us then consider the

interpretation [.]kp which multiplies all the angles by kp: D1 ⊗D2 7→ [D1]kp ⊗[D2]kp,
D1 ◦ D2 7→ [D1]kp ◦ [D2]kp, R(n,m)

Z (α) 7→ R
(n,m)
Z (kpα), R(n,m)

X (α) 7→ R
(n,m)
X (kpα), Id

otherwise. It is routine to show that the rules of ZXπ/4 hold under this interpretation,
but:

p−1
p
π
)p(
7→ )p( 6= ←[

J

Notice that a similar proof of incompleteness can be derived using cyclotomic sup-
plementarity instead: For any F ∈ FQ \ FD, there exists an odd prime number p such
that (SUPp) is not provable in ZXπ/4:

ZXπ/4 0 =

α+ 2π
p α+ p−1

p
2πα

· · ·
pα+(p−1)π

…
(SUPp)

Hence the ZX-calculus needs to be completed to deal with rational angles. One pos-
sible way of doing this is to add the previous set of equations as axioms: Γ π

4p
(Φ8p) =

. �is would translate as:

( )p
π
4p = with p prime

and – as we will see in the following – would be enough for completeness. However,
instead of adding one or several new equations, we propose to add a simple and very
natural rule to ZXπ/4, the cancellation rule which allows one to simplify non zero scalars:
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p De�nition 5.7.2 (Cancellation rule): �e cancellation rule (Cancel) is de�ned as fol-
lows. For any diagrams of the ZX-calculus D1 and D2:

∀α 6= π mod 2π, ZXπ/4 ` D1 ⊗ α = D2 ⊗ α =⇒
(Cancel)

ZX ` D1 = D2

y

When paired with the cancellation rule, ZXπ/4 becomes ZXQ.
To prove the equation Γ π

4n
(Φ8n) = on cyclotomic polynomials, we need to

be able to perform the sum and the product of polynomials:

Lemma 5.7.3. For any polynomials P and Q in Z[X]:

ZXπ/4 `

 =

Γ π
4n
P Γ π

4n
Q

Γ π
4n
P+Q

 ,

(
Γ π

4n
P Γ π

4n
Q

=
Γ π

4n
PQ

)

Proof I First, if x, y ∈ N:

)y

sπ−kω
(

rπ−kω

rπ+kω sπ+kω
()x

=
5.4.2
(TW)

(s−r)π
)y

sπ−kω

rπ−kω
(

)x(
rπ+kω

=
5.4.2
(TW)

)x(
rπ+kω

sπ−kω sπ−kω

(s−r)π
)y(

=
5.4.2

)x

(s−r)π

rπ+kω
(

( )y

sπ−kω

If r = s:

)x
rπ+kω

(

( )y

rπ−kω

=
(I)

)x+y

rπ−kω
(

rπ+kω

Otherwise, if r 6= s and x ≥ y:

)x

π

rπ+kω
(

( )y

sπ−kω

=
(I)
(S)

)x

π
)y(

rπ−kω

(
rπ+kω

π

=
3.6.7

( )x−y
rπ+kω

rπ−kω

�e case r 6= s and x ≤ y is similar. In the end:

)y

sπ−kω
(

rπ−kω

rπ+kω sπ+kω
()x

=

( )z
tπ+kω

tπ−kω
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with (−1)tz = (−1)rx+ (−1)sy. �e result for the sum immediately follows by induc-
tion (if 0 is involved, the result is obvious). For the product, �rst, if P (X) = P ′(X) +
(−1)baXk:

Γα(P )

cπ+`α
= )a(

Γα(P ′)

bπ+kα

bπ−kα

cπ+`α

=
(S)

( )a
(b+c)π+(k+`)α

Γα(P ′)

(b+c)π−(k+`)α

cπ+`α

=
(

Γα((-1)cX`P ′)

)a
(b+c)π+(k+`)α

(b+c)π−(k+`)α
=

Γα((-1)cX`P )

and

Γα0

cπ+`α
= cπ+`α = =

Γα((-1)cX`×0)

�en, if Q is non-null:

Γ π
4n
P Γ π

4n
Q

=

Γ π
4n
Q′

(
bπ−k π

4n

)aΓ π
4n
P

bπ+k π
4n

=
(5.4.17)

bπ−k π
4n

Γ π
4n
P

Γ π
4n
Q′

bπ+k π
4n

Γ π
4n
P

...

Γ π
4n
P

=
5.4.2

Γ π
4n
P

bπ+k π
4n

...
Γ π

4n
P

Γ π
4n
PQ′

bπ+k π
4n

=
Γπ
4n

(-1)bXkP

Γ π
4n
PQ′

...

Γπ
4n

(-1)bXkP

=

Γπ
4n
PQ′+(-1)bXkP

...

Γπ
4n

(-1)bXkP

=
Γπ
4n
PQ′+(-1)baXkP

=
Γ π

4n
PQ

and if Q = 0, the result is obvious. J

Now, thanks to the new rule (Cancel) together with the previous lemma, we get:

Proposition 5.7.4. For any n > 0,

ZXQ ` Γ π
4n

(Φ8n) =
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Proof I First of all, we can easily derive for any N :

ZXπ/4 `

π

=
Γα(X

N -1)
π+Nα

=

-Nα

π+Nα
π

=⇒ ZX π
4n
` =

π

π+α

Γαφ1

Now, assume p is prime. �en, φ1(X)φd(X) =
∏
d|p
φd(X) = Xp − 1. Since sums and

products of control polynomials are derivable in ZX (Lemma 5.7.3), it means:

ZXπ/4 `
Γαφp Γαφ1

=
π

π+pα

⇐⇒
Γαφp Γαφ1

π

Γαφ1

=
π

π+pα

Γαφ1

π

⇐⇒
5.4.18

π

Γαφp Γαφ1
=

π

π+pα

Γαφ1

π
=⇒ Γ2rπ

p
φp

π+ 2rπ
p

π

π

=
π

π
π

π+ 2rπ
p

π

⇐⇒
3.6.5

π+ 2rπ
p

π

Γ2rπ
p
φp

π
= π

π

π+ 2rπ
p

π

⇐⇒
(K)

(CP)
3.5.6

π

π+ 2rπ
p

Γ2rπ
p
φp

π

=

π+ 2rπ
p

π

π

⇐⇒
(s+)
(sπ)
(IV)

π+ 2rπ
p

Γ2rπ
p
φp

=

π+ 2rπ
p

⇐⇒
(Cancel)

ZXQ ` Γ2rπ
p
φp

=

Now, if p is still prime, the case of pk is handled with the equation φpk(X) = φp(X
pk−1

)
which translates as:

ZXπ/4 ` Γαφpk
=

Γα(pk-1)φp
=⇒ ZXQ ` Γ2rπ

pk
φpk

= Γ2rπ
p
φp

=

Finally, in the general case, let 8n =
∏
i

pkii with all pi primes. �en, the polynomial φ8n

is φ8n(X) = gcd
i

(
φ
p
ki
i

(Xp
ki−1
i )

)
. By Bézout’s identity, φ8n(X) =

∑
i

Qi(X)φ
p
ki
i

(Xp
ki−1
i )

where the Qi are some unitary polynomials. �is translates as:

ZXπ/4 ` Γαφ8n
=

ΓαQ1
Γαφpk11

ΓαQi Γαφpkii

· · · · · ·

· · · ···
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=⇒ ZXQ ` Γπ
4n
φ8n

=

Γπ
4n
Qi Γπ

4n
φ
p
ki
i

Γπ
4n
φ
p
k1
1

· · ·

···

Γπ
4n
Q1

· · ·

· · ·

= · · ·

· · ·
Γπ
4n
QiΓπ

4n
Q1

···

· · ·

= · · ·

Γπ
4n
Q1

· · ·
Γπ
4n
Qi

· · ·

···

= · · · = =

J

We show in the next subsection that the ZX-calculus augmented with the new can-
cellation rule makes the ZX-calculus complete for rational angles.

Normal forms

First, let F ∈ FQ \ FD be �nite. �en, there exists n such that F is generated by π
4n

(i.e.
F = {kπ

4n
| k ∈ N}), and for any x in Z[ 1√

2
, eiF ], there exists a polynomial P ∈ D[X]

such that x = P (ei
π
4n ).

�is representation is not ideal. First of all, we can factor the powers of 1
2

and write
P as 1

2p
Q where Q ∈ Z[X]. �e power p can be uniquely chosen if we ensure that Q is

not a multiple of 2 if p > 0 i.e. ∀Q′ ∈ Z[X], p > 0 =⇒ Q 6= 2Q′.
�is expression is still not unique, because the evaluation of two di�erent polynomi-

als in ei π4n can yield the same value (e.g. (ei
π
4n )8n = 1). To palliate this problem, we need

to work in Z[X]/φ8n(X) where φ8n is the 8nth cyclotomic polynomial. Indeed, φ8n is the
unique irreducible polynomial with e 2iπ

8n as root. �en, applying the Euclidean division
of Q by φ8n:

Q = Q′φ8n +R (DIV)

where R and Q′ are uniquely chosen so that deg(R) < deg(φ8n) = ϕ(8n). �en,
Q(ei

π
4n ) = R(ei

π
4n ).
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p De�nition 5.7.5: Let Λ π
4n

: N× Z[X]→ ZX[1→ 0] be the map such that

Λ π
4n

(p, P ) :=

Γ π
4n
P

…

⊗ 2p
p

We then de�ne S π
4n

:=

 Λ π
4n

(p, P )
P ∈ Z[X], p ∈ N,
deg(P ) < ϕ(8n),
∀Q ∈ Z[X], p > 0 =⇒ P 6= 2Q

 y

Remark 5.7.6. Notice that if P = 0, only Λ π
4n

(0, 0) is part of S π
4n

. Indeed, if P = 0, then
P = 2× 0 = 2P , so the last constraint imposes that p = 0.

Lemma 5.7.7.

q
Λ π

4n
(p, P )

y
|1〉 = 1

2p
P (ei

π
4n )

Proof I By construction. J

Moreover:

Lemma 5.7.8. �e map η π
4n

: S π
4n
→ Z[ 1√

2
, eiF ] = D → JDK |1〉 is bijective.

Proof I Every element ofZ[ 1√
2
, eiF ] is uniquely de�ned as the quantity 1

2p
P (ei

π
4n ) where

deg(P ) < ϕ(8n), and ∀Q ∈ Z[X], p > 0 =⇒ P 6= 2Q. J

We now need to meet the conditions of �eorem 5.3.1. First we notice that we can
operate the sum and the product on controlled polynomials thanks to Lemma 5.7.3.

Two problems arise when trying to do the same with diagrams of S π
4n

. First of all,
the sum of two diagrams in normal form can have a parity issue. For instance 1

2
(2 +

X) + 1
2
(X + 2X2) = 1

2
(2 + 2X + 2X2) which shall be reduced to 1 +X +X2. �is is

dealt with thanks to the following lemmas:

Lemma 5.7.9.

=

Lemma 5.7.10.

ZXπ/4 `
Γ π

4n
2P

=
Γ π

4n
P

Proof I First:

=
(S)

(πdist)
3.5.5
(H)

π

π
=

3.6.8
3.6.11

π
=

3.6.8

π

π
=

(B∆)
(S)

�e second lemma is then proven by induction, using Lemma 5.7.9. J

Secondly, the product of two polynomials may well end up with a degree larger than
ϕ(8n). However, since we can operate the sum and product of controlled polynomials
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thanks to Lemma 5.7.3, we can derive the controlled version of the Euclidean division
(DIV). Combined with Lemma 5.7.4, we get, assuming P = Qφ8n +R:

ZXQ ` Γ π
4n
P

=
5.7.3
(DIV)

Γ π
4n
Q Γ π

4n
φ8n Γ π

4n
R

=
5.7.4

Γ π
4n
RΓ π

4n
Q

=
(IV)
(CP)

Γ π
4n
RΓ π

4n
Q

=
(S)
(I)

3.5.3
5.3.4
(IV)

Γ π
4n
R

All in all, any controlled scalar in the form Λ π
4n
P can be reduced to a diagram in S π

4n
.

Lemma 5.7.11.

ZXQ `
(

αη-1
π
4n

(eiα) =

)
,

(
=

η-1
π
4n

(x) η-1
π
4n

(y)
η-1
π
4n

(xy)

)
,

 =

η-1
π
4n

(x) η-1
π
4n

(y)

η-1
π
4n

(x+y)


Proof I �e product is obvious when we have Lemmas 5.7.3 and 5.7.4. For the sum, let
x = 1

2p
P (ei

π
4n ), y = 1

2q
Q(ei

π
4n ). W.l.o.g., assume p ≤ q. �en:

ZXQ `

Λx Λy

=
Λ 1

2p Λ 1
2q

Γπ
4n
P Γπ

4n
Q

=
3.6.11

Λ 1
2q Λ 1

2qΛ2q-p

Γπ
4n
QΓπ

4n
P

=
5.7.3
3.6.12

Λ 1
2q

Γπ
4n
QΓπ

4n
2q-pP

=
5.7.3

Λ 1
2q

Γπ
4n

2q-pP+Q

=
5.7.9

Λ(2q-pP+Q)(e
iπ
4n )

Λ 1
2q

=
Λ(x+ y)

�e ante-penultimate diagram may not directly be in normal form, for there may be S
such that 2q−pP +Q = 2S, but this is dealt with with Lemma 5.7.9. J

�eorem 5.7.12. �e language ZX[ π
4n

]/ZXQ is complete, the functor ZX[ π
4n

]/ZXQ
J.K→

QubitZ[ 1√
2
,ei

π
4n ]

is full and faithful.

Moreover, any ZX[ π
4n

]-diagram can be put into a normal form with respect to S π
4n

.
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Proof I By application of �eorem 5.3.1. J

Corollary 5.7.13. For any F ∈ FQ (�nite or not), the language ZX[F ]/ZXQ is complete,

the functor ZX[F ]/ZXQ
J.K→ QubitZ[ 1√

2
,eiF ] is faithful.

Moreover, any ZX[F ]-diagram can be put into a normal form with respect to SF :=⋃
π
4n
∈F
S π

4n
.

Proof I Let F be a subgroup ofQπ, andD1 andD2 be two diagrams of the fragment F ,
such that JD1K = JD2K. If F is �nite, �eorem 5.7.12 directly gives the result. Otherwise,
there exists n ∈ N such that π

4n
∈ F and both diagrams are in the π

4n
-fragment of the

ZX-calculus. By completeness (�eorem 5.7.12): ZXQ ` D1 = D2. J

�e completeness for Qπ is obtained thanks to the meta-rule (Cancel). It can be
bene�cial to avoid second-order axioms like this one. �ankfully, it has been proven
later on that the axiomatisation ZXπ/4 together with the family of axioms (SUPp) made
ZX[Qπ] complete [Jea18].

�eorem 5.7.14 ([Jea18]). �e functor ZX[Qπ]/ZXπ/4 +(SUPp)
J.K→ QubitZ[ 1√

2
,eiQπ ] is

full and faithful.

5.8 Normal Forms with Dyadic Angles

In this section we focus on a particular case of dyadic angles, a subgroup of Dπ which
contains π

4
(i.e. F ∈ FD). In the previous section, we introduced the cancellation rule

which makes the ZXπ/4 complete for rational angles.
Notice that, given a fragment F ∈ F , the cancellation rule can be derived from

the other rules if for every α ∈ F , α 6= 0 mod π, there exists an inverse of α , i.e. a
diagramD : 0→ 0 ∈ ZX[F ] s.t. JD ⊗ αK = 1, and moreover this equation is provable:
ZXπ/4 ` D ⊗ α = . �is is the case in any fragment of dyadic angles:

Lemma 5.8.1. For any n ≥ 1, and any k ∈ {−2n + 1, · · · , 2n+1 − 1}, kπ
2n has an

inverse. �ere exist 0 ≤ m < n and p ∈ Z such that:

kπ
2n

2p-1
2n-m π+π

(2p-1)π
2n-m-1

(2p-1)π
2n-m-2

2p-1
2
π…

=

Proof I If k ∈ {−2n + 1, · · · , 2n+1 − 1}, then there exist 0 ≤ m < n and p ∈ Z such
that k = 2m(2p− 1)i.e. kπ

2n
= 2p−1

2n−m
π where 2n−m ≥ 2. �en:

kπ
2n

2p-1
2n-m π+π

(2p-1)π
2n-m-1

(2p-1)π
2n-m-2

2p-1
2
π…

=
(SUP)

2p−1
2
π

...

2p−1
2n−m−1 π
2p−1

2n−m−2 π

2p−1
2n−m−1 π+π

=
(SUP)

· · · =
(SUP)

2p−1
2
π

2p−1
2
π+π

=
(SUP)

=
(s2)
(IV)
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J

�eorem 5.8.2. For any n ≥ 2, the language ZX[ π
2n

]/ZXπ/4 is complete, the functor

ZX[ π
2n

]/ZXπ/4
J.K→ QubitZ[ 1√

2
,e
i π
2n ]

is full and faithful.

Any ZX[ π
2n

]-diagram can be put into a normal form with respect to S π
2n

= S π
4×2n-2

.

Corollary 5.8.3. For any F ∈ FD (�nite or not), the language ZX[F ]/ZXπ/4 is complete,

the functor ZX[F ]/ZXπ/4
J.K→ QubitZ[ 1√

2
,eiF ] is faithful.

Any ZX[F ]-diagram can be put into a normal form with respect to SF :=
⋃
π
2n
∈F
S π

2n
.

Proof I�e proof is the same as that of Corollary 5.7.13, except we use the completeness
of ZX[ π

2n
]/ZXπ/4 (�eorem 5.8.2). J

5.9 Normal Forms for Linear Diagrams

We show in this section that we can extend the results of universality and completeness
to linear diagrams, and at no cost. We take F ∈ F an arbitrary fragment that contains
π
4
. �e standard interpretation is a functor J.K : ZX[F ] → QubitZ[ 1

2
,eiF ], which is full

by �eorem 5.2.10. Recall that when extending ZX-diagrams to linear diagrams, the
interpretation became J.K : ZX[~α, F ]→ QubitR

k

Z[ 1
2
,eiF ] where:

QubitR
k

Z[ 1
2
,eiF ] =

{
~α 7→ P (eiα1 , . . . , eiαk) P ∈ QubitZ[ 1

2
,eiF ][X1, . . . , Xk]

}
We can now easily show that this functor is full.

�eorem 5.9.1. For any F ∈ F , ZX[~α, F ] is universal for QubitR
k

Z[ 1
2
,eiF ]:

∀f ∈ QubitR
k

Z[ 1
2
,eiF ], ∃D ∈ ZX[~α, F ], JDK = f

In other words, the functor ZX[~α, F ]
J.K→ QubitR

k

Z[ 1
2
,eiF ] is full.

Proof I By map/state duality, we can w.l.o.g. restrict ourselves to states. Let f : 0 →
n ∈ QubitR

k

Z[ 1
2
,eiF ]. �en, there exists P a multivariate polynomial on k variables with

coe�cients in QubitZ[ 1
2
,eiF ] such that f = ~α 7→ P (eiα1 , . . . , eiαk). Every element of

Z[1
2
, eiF ] can be controlled, so using construction Λ of De�nition 5.3.3, we can build

Λg for every g ∈ QubitZ[ 1
2
,eiF ], hence every coe�cient of P can be associated with a

diagram that controls it.
We can then extend Λ to linear diagrams inductively as:

(
~α 7→ fj1,...,jke

i
∑
j`α` +Q(eiα1 , . . . , eiαk)

)
7→

Λfj1,...,jk

…
… …

ΛQ(ei~α)

∑
j`α`
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It is then routine to show that:

JΛfK |1〉 =
q
Λ
(
~α 7→ P (eiα1 , . . . , eiαk)

)y
|1〉 = ~α 7→ P (eiα1 , . . . , eiαk) = f

J

Fullness is not the only property that is preserved when extending to linear diagrams.
We also have:

�eorem 5.9.2. Let F ∈ F . If there exists S ⊆ ZX[F ] a set of controlled scalars such
that the map η : S → Z[1

2
, eiF ] = D 7→ JDK |1〉 is bijective, if R ` ZXπ/4 +(Cond), then

ZX[~α, F ]/R is complete i.e. the functor ZX[~α, F ]/R
J.K→ QubitR

k

Z[ 1
2
,eiF ] is faithful.

Proof I Let x ∈ QubitR
k

Z[ 1
2
,eiF ][0, 0]. �ere exists P ∈ Z[1

2
, eiF ][X1, . . . , Xk] such that

x = ~α 7→ P (eiα1 , . . . , eiαk). Since η is surjective, we can de�ne inductively Λx:

(
~α 7→ xj1,...,jke

i
∑
j`α` +Q(eiα1 , . . . , eiαk)

)
7→

η-1xj1,...,jkΛQ(ei~α)

∑
j`α`

Notice that any ambiguity can be li�ed by imposing an ordering on the powers in Q, or

diagrammatically thanks to = . We can then de�ne S~α := {Λx | x ∈

QubitR
k

Z[ 1
2
,eiF ][0, 0]}. We can then notice that the map η~α : S~α → QubitR

k

Z[ 1
2
,eiF ][0, 0] =

D 7→ JDK |1〉 is bijective by uniqueness of P in x = ~α 7→ P (eiα1 , . . . , eiαk).
One can then check that the compositions of normal forms are still valid with vari-

ables. Any diagram of ZX[~α, F ] can hence be put in normal form.
J

Notice that this result is a re�nement of �eorem 4.2.1, for here the “constant” di-
agrams of ZX[F ] need a normal form. However we see that in this case the notion of
normal naturally extends to linear diagrams of the same fragment.

Factoring

Let F ∈ F , and let f ∈ QubitRZ[ 1
2
,eiF ], i.e. f has only one variable. Every entry of f is of

the form of P (eiα) where P is a polynomial with coe�cients in Z[1
2
, eiF ]. f can actually

be seen as f =
∑
fke

ikα with fk ∈ QubitZ[ 1
2
,eiF ]. We can naturally de�ne a notion of

degree of α in f , dα(f), as the largest value of k for which fk 6= 0. �en, we can build a
ZX[α, F ]-diagram that represents f using only dα occurrences of α.

Proposition 5.9.3. LetF ∈ F , and f ∈ QubitRZ[ 1
2
,eiF ]. Let dα be the degree of the variable

α in f . �ere exists a ZX[α, F ]-diagram D1 with dα occurrences of α and no occurrence of
kα for k > 1, such that JD1K = f . �ere also exists a ZX[α, F ]-diagram D2 with at most
one occurrence of kα for each k ∈ {1, . . . , dα} such that JD2K = f .
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Proof I Let f : 0 → n ∈ QubitRZ[ 1
2
,eiF ]. �ere exist fk ∈ QubitZ[ 1

2
,eiF ] such that

f =
∑
fke

ikα. We can build a diagram that represents their controlled version Λfk.
�ese diagrams are in in ZX[F ]. We de�ne D1 and D2 as:

D1 :=

Λfdα

…
……

α

Λfdα-1

α

α

α

Λf0
…

…

π

D2 :=

Λfdα

…
……

Λfdα-1 Λf0
…

…
(dα-1)αdαα

π

Both diagrams use the sum of controlled scalars. D2 directly represents
∑
fke

ikα, while
D1 represents the Horner expansion f = f0 + eiα (f1 + eiα (. . .)). Notice that we can
easily transform one into the other using Lemma 5.4.2. J

Example 5.9.4. �e quantum Fourier transform on n wires is in the π
2n

-fragment. �e
usual quantum circuit implementing it with the gate set (H , RZ(α), CNot) uses 3(n−2)
occurrences of π

8
, 3(n−3) occurrences of π

16
, …, and 3 occurrences of π

2n
. In ZX-Calculus,

the QFT can be represented with n−2 occurrences of π
2n

and zero occurrence of π
2j

with
3 ≤ j < n; or with exactly one occurrence of each π

2j
for 3 ≤ j ≤ n.

One way to reduce the count of phases outside Cli�ord+T, is to use the seemingly

innocent Lemma 5.4.3:
α

α

-α=
2α π

. �is is actually pre�y powerful. Indeed,

notice that
u

v α
2

α
2

-α
2

}

~ =

u

v
α

π

}

~ =


1

1
1

eiα


Hence it represents the control of the phase α. While this is usually obtained thanks to
the half phase α

2
(�rst diagram), it can be done with one occurrence of α and a diagram

of ZX[π
4
] (actually of ∆ZX[π]). �anks to this, we can create a diagram that given an

angle α copies α while only using angles in π
4
Z ∪ {2α}:

αα
=
(B)

αα

α

-α

=
5.4.3

2α

π

α

Doing this transformation inductively (together with (S) and (H)), we can get rid of all
occurrences ofα except one. We can then use the same process to remove all occurrences
of 2α but one, etc…
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Conclusion

In this thesis, we have provided axiomatisations for di�erent fragments and extensions
of the graphical language ZX-Calculus, used for quantum computing. For each axioma-
tisation, we proved its completeness, thanks to mainly two proof methods. �e �rst one
is a transport of completeness from one language to another, using adequate systems of
translations. �e starting point for this method is the completeness of two fragments
of the ZW-Calculus, another graphical language for quantum computing in which there
exists a nice notion of normal form. �e second method is precisely to de�ne normal
forms directly in the ZX-Calculus.

A problem related to that of completeness, and addressed for one of the axiomati-
sations is minimality. For most of the provided axiomatisation, it is as of now unclear
whether all the rules are necessary, or if they can be simpli�ed, although a great deal of
work was made in order to provide the simplest axiomatisations possible. �is question
is all the more relevant for the two rules (BW) and (C) of ZXπ/4.

Now thanks to the completeness of the language, any reasoning can theoretically
be performed inside the ZX-Calculus itself. However, some questions can still be hard
to answer. We can now check whether two diagrams are equivalent by turning them
into their normal forms. �is is however not e�cient, so it could be bene�cial to �nd
invariants of the calculus. An obvious one is the number of input and output wires. Also,
in any fragment that does not contain π

4
, there exists an invariant [JPVW17]. Can we

�nd other invariants, ideally that work in any fragment?
So far the strategies for simpli�cation used for instance in [DG18] or [KvdW19] do

not use axioms outside ZXπ/2. A research direction would hence be to �nd such strate-
gies, that for instance require (BW) or (C). More generally, it would be interesting now to
�nd applications of the ZX-Calculus that use the larger axiomatisations. I am currently
working on an adaptation of sum-over-paths [Amy19] for ZX-diagrams, with in mind
the idea of seeing how a variable reduction in the sum-over-path formalism shows in
the associated ZX-diagram.

In the proof of completeness of ZX/ZX, we introduced the SVD form of cycle-free
0 → 1 and 1 → 1 ZX-diagrams. Although this was enough for the proof, since this
form derives from the SVD decomposition of the underlying matrix, one could de�nitely
de�ne the SVD form for any ZX-diagram. �is could be an interesting alternative normal
form, with practical applications.

Still concerning the axiomatisation ZX, we have shown in the ZX-Calculus that
adding a rule characterising one-qubit unitaries (EU) to a complete set of rules for the
many-qubit Cli�ord fragment (ZXπ/2) was enough to get the completeness in the unre-
stricted language. A natural question is now whether this is true for quantum circuits as
well (we know a complete axiomatisation for Cli�ord and (EU) can easily be expressed
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in this formalism), or are the speci�c features of the ZX-Calculus (such as the compact-
closed structure) necessary?

Finally, one last research direction for the ZX axiomatisations, would be to provide
adequate and ideally complete languages for qudit quantum computing.
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Cheat Sheet

Axiomatisations

ZXπ

… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir)

=(CP) =(B) =(IV)

π =(HL) α

…
= α

…

…

…(H)
π

=
π

(Z)

ZXπ/2

… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir)

=(CP) =(B) =(IV)

π
2

π
2 -π

2=(HD) α

…
= α

…

…

…(H)
π

=
π

(Z)
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Axiomatisations

ZXπ/4
… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir) -π
4

π
4 =(E)

=(CP) =(B) =(K)π

α

π

απ

-α

π
2

π
2 -π

2=(HD) α

…
= α

…

…

…(H)

α α+π

=
2α+π

(SUP)

βα π

βγ

-γ
α = α

απ

β -γ

γ

β(C)

π
4

π
4

π
4

-π
2

π
4

π
4

π
4

=
π
4π

π
2

π
4

π
4

π

π
4(BW)

ZX

… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir) -π
4

π
4 =(E)

=(CP) =(B) = β2

β1

β3

α2

α1

α3

π

γ(EU)

π
2

π
2 -π

2=(HD) α

…
= α

…

…

…(H)

x+ := α1+α3

2
; x− := x+ − α3; z := cos

(
α2

2

)
cos (x+) + i sin

(
α2

2

)
cos (x−); z′ :=

cos
(
α2

2

)
sin (x+) − i sin

(
α2

2

)
sin (x−); β1 = arg z + arg z; β2 = 2 arg

(
i+
∣∣ z
z′

∣∣);
β3 = arg z − arg z′; γ = x+ − arg(z) + α2−β2

2
;
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ZX′
… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir)
=(IV’)α

=(CP) =(B)

α

…
= α

…

…

…(H) = β2

β1

β3

α1

α2

π

γ(EU’)

x+ := α1+α2

2
; x− := x+ − α2; z := − sin (x+) + i cos (x−); z′ := cos (x+) − i sin (x−);

β1 = arg z + arg z′; β2 = 2 arg
(
i+
∣∣ z
z′

∣∣); β3 = arg z − arg z′; γ = x+ − arg(z) + π−β2
2

ZXQ

… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir) -π
4

π
4 =(E)

=(CP) =(B) =(K)π

α

π

απ

-α

π
2

π
2 -π

2=(HD) α

…
= α

…

…

…(H)

α α+π

=
2α+π

(SUP)

βα π

βγ

-γ
α = α

απ

β -γ

γ

β(C)

π
4

π
4

π
4

-π
2

π
4

π
4

π
4

=
π
4π

π
2

π
4

π
4

π

π
4(BW)

∀α 6= π mod 2π, ZXπ/4 ` D1 ⊗ α = D2 ⊗ α =⇒
(Cancel)

ZX ` D1 = D2
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Axiomatisations

∆π

… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir)
=(IV)

=(CP) =(B) α

…
= α

…

…

…(H)

π
=

π

(Z) =(T0)
π

=(B∆)π

=(HT)π =(TCX) =(TW)

∆+
π

… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir)
=(IV)

=(CP) =(B) α

…
= α

…

…

…(H)

=(K)π

α

π

απ

-α
π

=(B∆)π =(HT)π

=(TCX) =(TW)
α

α
=

α α (P)
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Cheat Sheet

∆π/4

… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir) -π
4

π
4 =(E)

=(CP) =(B) α

…
= α

…

…

…(H)

=(K)π

α

π

απ

-α
π

=(B∆)π =(HT)π

=(TCX) =(TW)
α

α
=

α α (P)

ZXπ/2

… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir)
=( IV)

=(CP) =(B) α

…
= α

…

…

…(H)

π
2

π
2 -π

2=(HD)
π

=
π

(Z)

=( H) =( α)α =( CX)

ZX

… = α+ββ

…
α

…

(S)……

…

…
=(Ig)

=(Ir)
=( IV)

=(CP) =(B) α

…
= α

…

…

…(H)

π
2

π
2 -π

2=(HD) = β2

β1

β3

α2

α1

α3
(EU) =( H)

=( α)α =( CX)
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Lemmas

Lemmas

Lemma 3.5.3.

=

Lemma 3.5.4.

=

Lemma 3.5.5.

π
=

π

Lemma 3.5.6.

π

=

Lemma 3.5.7.

=
π

Lemma 3.6.2.

=

Lemma 3.6.3.

=

Lemma 3.6.4.

π

=
π

Lemma 3.6.5.

π

=

Lemma 3.6.6.

=

Lemma 3.6.7.

π

π
=

π

π
=

Lemma 3.6.8.

=
π

Lemma 3.6.9.

=
π

Lemma 3.6.10.

π

=

Lemma 3.6.11.

=

Lemma 3.6.12.

=

Lemma 3.6.13.

π

=
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Cheat Sheet

Lemma 3.6.14.

=

π

π

Lemma 3.8.3.

π
4

π
= π

2

Lemma 3.8.4.

π
2

= π
4

π−π
2

Lemma 3.8.5.

=

π
2

π
2

π
2

π
−π
4

Lemma 3.8.6.

βα

π

βα

=

β

β

π

α

α

Lemma 3.8.7.

βα

π

βα

=
α

π

α β

β

Lemma 3.8.8.

-π
4

-π
4

-π
4

-π
4

π = -π
2

π

Lemma 3.8.9.

π

π

=

Lemma 3.8.10.

=
π

Lemma 3.8.11.

π

π

α α

=
α α

Lemma 3.8.12.

π

-γ

β
γ

α

β

α

=
-γ

α

α

β

β

π

γ

Lemma 4.10.25.

=

Lemma 4.10.26.

kπ
= kπ

Lemma 4.10.27.

±π
2

=

Lemma 5.1.1.

=

Lemma 5.1.4.

=

Lemma 5.1.5.

=
π
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Lemma 5.1.6.

=
π

π

Lemma 5.1.7.

=

Lemma 5.1.8.

=

Lemma 5.1.9.

=

Lemma 5.1.10.

=

Lemma 5.1.11.

= and =

Lemma 5.3.5.

α-α

=
α-α

Lemma 5.4.1.

π

=

Lemma 5.4.2.

α α

=
α

Lemma 5.4.3.

2α π

=
α

α

-α

Lemma 5.4.4.

)a(

α

-α

)b

-β
(

β

=

( )a

)b(

β

α

-α

-β

Lemma 5.4.5.

=
π

Lemma 5.4.6.

=
π

= π π

Lemma 5.4.7.

π
=

π

Lemma 5.4.8.

π
=

π

Lemma 5.4.9.

= and π =

Lemma 5.4.10.

π

=
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Cheat Sheet

Lemma 5.4.11.

=
π

Lemma 5.4.12.

=

Lemma 5.4.13.

=

Lemma 5.4.14.

=

Lemma 5.4.15.

π
= π

Lemma 5.4.16.

α α

π
= π

α

Lemma 5.4.17.

Γ~α ~P

Γ~α ~P

=

Γ~α ~P

Lemma 5.4.18.

π

Γα(P ) Γα(P )

=
π

Γα(P )

Lemma 5.5.4.

=

Lemma 5.5.5.

π

=

Lemma 5.7.9.

=

Lemma 5.7.10.

ZXπ/4 `
Γ π

4n
2P

=
Γ π

4n
P
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[.]T , 100, 125, 127
[.]W , 87, 150
[.]X , 86, 150
[.]∆, 110
Λ, λ, 183
Γα, 179
∼iso, ∼+

iso, 159
∼cp, 157

Adjoint, 27
A�ne Completion, 37, 158
Amplitude, 24
Antipode, 47
Arrow, 35
Axiomatisation, 56

Bialgebra, 46
Bifunctor, 38
Bifunctorial Law, 41
Braided Monoidal Category, 40

(Cond), 182
Cancellation Rule, (Cancel), 205
Cat, 39
Category, 35
Circuits, 30
Cli�ord, 32
Cli�ord+T, 32
Clifford+T, 58
Coherence, 41
Commutative Diagram, 36
Commutativity, 45
Comonoid, 46
Complementarity, 59
Completeness, 56
Controlled Hadamard, 81
Controlled Normal Form, 181
Controlled Operator, 27

Controlled State, Scalar, 179
CPM-construction, 156
Cycle-Free Diagram, 140
Cyclotomic Polynomial, 203

Diagonal Morphism, 52
Diagram, 55
Dirac Notation, 24
Discard, , 159
Domain, Codomain, 35
Dual Category, 36

Encoding, 32
Enough Isometries, 161
Entanglement, 25
Environment Structure, 157
EPR State, 25
Extended Spider, 54

F , 179
FQ, FD, 203
Faithfulness, 39
FdHilb, 51
Fragment, 63
Frobenius Algebra, 47
Fullness, 38
Functor, 38
†-PROP-Functor, 44
†-compact-PROP-Functor, 44
PROP-Functor, 44

Graph States, 63
Graphical Language, 55

Hadamard Product, Schur Product, 180
Hamming Weight, 71
Hilbert Space, 23
Homset, Hom, 36
Hopf Algebra, 47
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Identity On Objects (i.o.o.), 55
Inclusion Functor, 39
Initial Object, 36
Inner Product, 23
Interchange Law, 41
Isometry, 27
Isomorphism, 36

Linear Diagrams, 115
Linear Map, 26
LOCC, SLOCC, 70

Magic Square, 169
Map/State Duality, 44
Minimality, 134
Mixed State, 29
Monoid, 45
†-Frobenius Monoid, 47

Monoidal Category, 40
Monoidal �eory, 56
Morphism, 36
Morphism of Monoids, 54
Multiplication, 45
Multiplicity, 117

N∗ := {n ∈ N / n 6= 0}, 28
Norm, 23
Normal Form, 181

Object, 35
Opposite Category, 36

Pauli Group, 28
Phase Group, 53
Phase Shi�, 53
Pivoting, 64
Product Category, 36
PROP, 42
†-Compact PROP, 43
†-PROP, 43
Approx. Universal Sub-PROP, 56

Pullback, 38
Puri�cation, 30, 157
Pushout, 37

�antum Gates, 30
�bit, 24
Qubit, 51

QubitR
k

Z[ 1
2
,eiF ], 117

�dit, 24
Qudit, 51
QuditR, 59

Real Stabiliser, 65
Reidemeister Moves, 72

(SUPp), 204
S-CNF, 181
S-NF, 181
Scalar, 59
Scaled Algebra, 59
Self-Adjoint, 43
Set, 35
Singular Value Decomposition, SVD, 139
Small Category, 39
Snake Equations, 44
Soundness, 55
Spider, 49
Stab, 57
Stabiliser group, 32
Standard Interpretation, 55, 62, 73, 85
String Diagrams, 40
Subcategory, 39
Superoperator, 29
Superposition, 24
Symmetric Diagram, 131
Symmetric Monoidal Category, 40

Tensor Product, 30, 39
Terminal Object, 36
Transistor, 82

Unbiased, 59
Unit, 45
Unitary, 27, 43
Universality, 31, 55

Valuation, 116

W-State, 84

ZW-Calculus, 72
ZW, 72
ZW1/

√
2, 83

ZWR, ZWC, 73
ZW1/

√
2, 83

ZX-Calculus, 61
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∆ZX-Calculus, 84
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Résumé

Le ZX-Calculus est un langage graphique puissant et intuitif, issu de la théorie des catégories, et qui
permet de raisonner et calculer en quantique. Les évolutions quantiques sont vues dans ce formalisme
comme des graphes ouverts, ou diagrammes, qui peuvent être transformés localement selon un ensem-
ble d’axiomes qui preservent le résultat du calcul. Un aspect des plus importants du langage est sa
complétude : Étant donnés deux diagrammes qui représentent la même évolution quantique, puis-je
transformer l’un en l’autre en utilisant seulement les règles graphiques permises par le langage ? Si c’est
le cas, cela veut dire que le langage graphique capture entièrement la mécanique quantique.

Le langage est connu comme étant complet pour une sous-classe (ou fragment) particulière d’évo-
lutions quantiques, appelée Cli�ord. Malheureusement, celle-ci n’est pas universelle : on ne peut pas
représenter, ni même approcher, certaines évolutions. Dans ce�e thèse, nous proposons d’élargir l’ens-
emble d’axiomes pour obtenir la complétude pour des fragments plus grands du langage, qui en partic-
ulier sont approximativement universels, voire universels.

Pour ce faire, dans un premier temps nous utilisons la complétude d’un autre langage graphique et
transportons ce résultat au ZX-Calculus. A�n de simpli�er ce�e fastidieuse étape, nous introduisons un
langage intermédiaire, intéressant en lui-même car il capture un fragment particulier mais universel de la
mécanique quantique : To�oli-Hadamard. Nous dé�nissons ensuite la notion de diagramme linéaire, qui
permet d’obtenir une preuve uniforme pour certains ensembles d’équations. Nous dé�nissons également
la notion de décomposition d’un diagramme en valeurs singuliaires, ce qui nous permet de nous épargner
un grand nombre de calculs.

Dans un second temps, nous dé�nissons une forme normale qui a le mérite d’exister pour une in-
�nité de fragments du langage, ainsi que pour le langage lui-même, sans restriction. Grâce à cela, nous
reprouvons les résultats de complétude précédents, mais ce�e fois sans utiliser de langage tiers, et nous
en dérivons de nouveaux, pour d’autres fragments. Les états contrôlés, utilisés pour la dé�nition de
forme normale, s’avèrent en outre utiles pour réaliser des opérations non-triviales telles que la somme,
le produit terme-à-terme, ou la concaténation.

Mots-clés: Mécanique �antique Catégorique, ZX-Calculus, Complétude, Universalité, Formes
Normales, CPM.

Abstract

�e ZX-Calculus is a powerful and intuitive graphical language, based on category theory, that allows
for quantum reasoning and computing. �antum evolutions are seen in this formalism as open graphs,
or diagrams, that can be transformed locally according to a set of axioms that preserve the result of the
computation. One of the most important aspects of language is its completeness: Given two diagrams
that represent the same quantum evolution, can I transform one into the other using only the graphical
rules allowed by the language? If this is the case, it means that the graphical language captures quantum
mechanics entirely.

�e language is known to be complete for a particular subclass (or fragment) of quantum evolutions,
called Cli�ord. Unfortunately, this one is not universal: we cannot represent, or even approach, certain
quantum evolutions. In this thesis, we propose to extend the set of axioms to obtain completeness for
larger fragments of the language, which in particular are approximately universal, or even universal.

To do this, we �rst use the completeness of another graphical language and transport this result to the
ZX-Calculus. In order to simplify this tedious step, we introduce an intermediate language, interesting
in itself as it captures a particular but universal fragment of quantum mechanics: To�oli-Hadamard. We
then de�ne the notion of a linear diagram, which provides a uniform proof for some sets of equations.
We also de�ne the notion of singular value decomposition of a diagram, which allows us to avoid a large
number of calculations.

In a second step, we de�ne a normal form that exists for an in�nite number of fragments of the
language, as well as for the language itself, without restriction. �anks to this, we reprove the previous
completeness results, but this time without using any third party language, and we derive new ones for
other fragments. �e controlled states, used for the de�nition of the normal form, are also useful for
performing non-trivial operations such as sum, term-to-term product, or concatenation.

Keywords: Categorical �antum Mechanics, ZX-Calculus, Completeness, Universality,
Normal Forms, CPM.
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