N

N

ZX-Calculi for Quantum Computing and their
Completeness
Renaud Vilmart

» To cite this version:

Renaud Vilmart. ZX-Calculi for Quantum Computing and their Completeness. Logic in Computer
Science [cs.LO]. Université de Lorraine, 2019. English. NNT: 2019LORR0130 . tel-02395443

HAL Id: tel-02395443
https://hal.science/tel-02395443
Submitted on 5 Dec 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/tel-02395443
https://hal.archives-ouvertes.fr

UNIVERSITE
DE LORRAINE

Ecole doctorale IAEM Lorraine

ZX-Calculi for Quantum
Computing and their
Completeness

THESE

présentée et soutenue publiquement le 19 septembre 2019

pour l'obtention du

Doctorat de ’Université de Lorraine

(mention informatique)

par

Renaud Vilmart

Composition du jury

Président : Stephan Merz Inria, Loria, Université de Lorraine
Rapporteurs : Bob Coecke University of Oxford, UK

Peter Selinger Dalhousie University, Halifax, Canada
Examinatrices : Elham Kashefi CNRS, LIP6, Sorbonne Universite

Christine Tasson IRIF, Université Paris-Diderot
Directeurs : Emmanuel Jeandel Loria, Université de Lorraine

Simon Perdrix CNRS, Loria, Université de Lorraine

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503






(o] 0

Remerciements

J’aimerais tout d’abord remercier mes directeurs de thése Emmanuel Jeandel et Simon
Perdrix pour tout le temps qu’ils m’ont accordé, et pour I’aide précieuse et indéfectible
qu’ils m’ont prodiguée. Il sont parvenus a m’intéresser dans ce sujet peu orthodoxe des
langages graphiques pour le quantique, et cette these n’aurait pu aboutir sans eux.

A ce sujet, je remercie Bob Coecke et Peter Selinger pour avoir accepté de rapporter
ma these, ainsi que le reste de mon jury : Elham Kashefi, Christine Tasson et Stephan
Merz.

Je remercie tous les cobureaux thésards que j’ai eu pendant ces trois années : Pierre,
Titouan, Sylvain et Hubert. Merci également a Henri, qui fut presque un cobureau pen-
dant son passage en stage dans ’équipe.

Travailler dans I’équipe Mocqua fut un plaisir. Je remercie tous ses membres pour
leur entrain et leur bienveillance : Romain, Emmanuel, Mathieu, Frédéric, Nazim et
Vladimir.

Jaimerais remercier également mes amis des Mines et ceux que je me suis fais pen-
dant la these, et dont 'intersection est non-nulle: Thomas, Florian, David, Baptiste,
Adrien, Jean-Charles, Pierre, Charles, Matthieu, Prisca, Margaux et Joséphine.

Je remercie bien évidemment mes parents, mon frere, ma soeur, et mes grands-
parents pour leur soutien. Enfin, je remercie particulierement chaleureusement Cynthia,
qui a été a mes cotes et a su me supporter pendant ces trois années.






Introduction (fr)

L’informatique quantique est un modele de calcul capable de supplanter un ordinateur
classique pour effectuer certaines taches. L’exemple le plus probant est I'algorithme
de Shor qui permet de factoriser un nombre en ses facteurs premiers en un temps ex-
ponentiellement moins long que le meilleur algorithme classique connu. L’algorithme
de Grover permet également un gain quadratique pour la recherche d’'un élément dans
une structure de données non-triée, et pléethore d’algorithmes dérivés de celui-ci per-
mettent une méme amélioration pour le probleme qu’ils résolvent. Une des principales
attentes de ce modele, étant lui-méme quantique, est de permettre de simuler efficace-
ment d’autres systemes quantiques. On peut encore trouver des applications dans la
recherche d’un optimum, ou encore dans la cryptographie.

Pour pouvoir raisonner dans ce modele de calcul, et effectuer des taches complexes,
il est nécessaire d’avoir des langages de plus haut niveau que 'implémentation physique
du processus. Un parallele est possible avec I'informatique classique: Les circuits boolé-
ens, qui utilisent des portes logiques telles que ET, OU, OUexclusif..., ont été une abstrac-
tion nécessaire a |’électronique sous-jacente. Une telle abstraction a plusieurs avantages.
Premierement, elle permet a l'utilisateur de se débarasser d’une certaine surcharge de
travail inutile, tout en réduisant sa propension a faire des erreurs. Qui plus est, plus un
langage est bas-niveau, et plus il voit ses paradigmes dictés par la nécessite de 'imple-
mentation physique. A ce titre, un langage de plus haut niveau utilisera des paradigmes
jugeés plus utiles et compréhensibles par I'utilisateur (d’ou la simplicité d’utilisation déja
remarquée), mais en plus il sera plus portable, le langage ne changeant pas entre les
différents processeurs.

Les circuits quantiques sont un langage graphique qui permet une premiere abstrac-
tion. Les unités du calcul quantique, appelés bits quantiques ou qubits, sont représenteés
comme parcourant un fil, et des portes quantiques qui permettent le calcul alterent leur
valeur. Ces portes peuvent étre combinées comme dans cet exemple (lu par convention
de gauche a droite):

N>

XH—&—¢{X]

Le langage reste assez bas-niveau: son utilisation sur des projets d’envergure est lourde,
et les choix dans ses opérateurs restent fortement dictés par la physique. On voit toute-
fois apparaitre des éléments intéressants pour un langage graphique. Notamment, que
deux processus indépendants, c’est-a-dire agissant sur des qubits différents, peuvent
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commuter, peu importe celui qui est appliqué en premier:

A= _ = - —/
—@- - —— T B—

ou encore comment réagissent les processus lorsque I’on échange les qubits sur lesquels
ils sont appliqués:

_ 7]

4]
Ces transformations sont évidentes dans le langage graphique, plus qu’elles ne le sont
dans le langage algébrique:

(foid)o(idog) = fog=(gwid)o (ido f)

et
(gof)oo=0co(fwg)

ou o représente I’échange de qubits.

Ce sont les equations qui sous-tendent les PROPs, un cas particulier des catégories
monoidales, issue de la théorie des catégories et qui permet de formaliser la notion de
langage graphique. C’est justement de considérations catégoriques dont naquit le ZX-
Calculus, le langage graphique qui est au centre de cette these.

Il a été introduit en 2008 par Bob Coecke et Ross Duncan [ ] avec pour fonde-
ment la complémentarité d’observables quantiques, un paradigme a priori indépendent
de 'implémentation physique des évolutions quantiques représentées. La aussi, les qu-
bits sont représentés comme traversant des fils qui relient les générateurs du langage
pour former ce que 'on appelle un diagramme. Dans toute la these, les diagrammes sont
lus du haut vers le bas.

Le langage contient trois générateurs dont deux sont duaux I'un-de-1’autre et peuvent
avoir un parametre sous la forme d’un angle: >O<a et >.<oz . Ceux-ci peuvent prendre
un nombre arbitraire de fils en entrée et en sortie. Le troisiéme générateur o est binaire,
et permet de transformer 'un des deux précédents opérateurs en l'autre.

Dans ce langage, un fil, lorsqu’il est droit représente I'identité ‘ , mais il peut aussi

étre courbe: /M et \_/. Ces diagrammes ont une signification particuliere. Le premier
représente I’état EPR |00) + |11), tandis que le second représente le projecteur associé
(00[+ (11|, qui physiquement correspond a I'un des résultats possibles lors d’une mesure
de Bell sur deux qubits. L'un des atouts du ZX-Calculus est justement I’existence de ces
deux diagrammes, qui forment ce que I'on appelle une structure compacte:

Qui plus est, ces deux diagrammes réagissent bien avec les autres générateurs:
g [EeE e

Grace a cela en particulier, on peut considérer n’importe quel diagramme du ZX-Calculus

comme un graphe ouvert (les entrées et les sorties sont fixées), tel que n’importe quel
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isomorphisme de graphe (qui préserve entrées et sorties) préserve I’évolution quantique
qui est représentée. C’est un des tres gros avantages du ZX-Calculus, et qui en fait un
langage plus haut-niveau que les circuits quantiques.

Les applications du langage graphique connues a ce jour sont tres variées. Il peut étre
utilisé pour raisonner sur un modele d’informatique quantique appelé MBQC (Measu-
rement-Based Quantum Computing) [ , , ] ou sur la correction d’erreurs
quantiques [ , , ]. II se trouve notamment que les générateurs du lan-
gage sont tres proches des primitives du “lattice surgery”, un modele pour la réalisation
d’ordinateurs quantiques universels avec correction d’erreur [ , ]. Le
ZX-Calculus a permis des améliorations dans la simplification de circuits quantiques
[ , ] dans le projet PyZX [ ], et peut étre utilisé pour faire de
la verification, par exemple de protocoles [ , ].

Comme on l'a vu, différents diagrammes peuvent représenter la méme évolution
quantique, de la méme fagon que difféerentes compositions de matrices peuvent donner
le méme résultat. Dans le calcul matriciel, on sait réduire n’importe quelle composition
de matrices obtenue avec o et ® a une unique matrice. Une telle réduction ne sera pas
possible dans le ZX-Calculus, car un générateur seul n’est pas suffisamment expressif.
On peut néanmoins donner un ensemble de transformations autorisées entre un dia-
gramme du ZX-Calculus et un autre. Idéalement, ces regles devraient étre intuitives et
suffisamment peu nombreuses pour qu’un étre humain puisse les retenir.

Les regles fondamentales du ZX-Calculus sont issues de la théorie des catégories, et
utilisent des structures bien connues du domaine, telles les algebres de Frobenius ou les
algebres de Hopf. Cette démarche est également utilisée pour décrire des structures tout
aussi fondamentales en algebre linéaire, pour représenter par exemple des flots de signal
[ ], avec un langage nommeé I'H, un proche parent du ZX-Calculus [ ) ].
Pour étre plus précis, le premier formalise une restriction du second.

Pour s’assurer de la véracité d’'une dérivation (une suite d’applications des regles de
transformation), on peut utiliser un assistant de peuve appelé Quantomatic [ ,

] développé par la communauté et qui permet de manipuler des diagrammes de
cordes tels que ceux du ZX-Calculus ainsi que de spécifier les regles de calcul autorisées.

Se pose alors la question de la complétude : Si deux diagrammes représentent la
méme évolution quantique, est-il possible de transformer 'un en lautre en utilisant
uniquement les transformations graphiques autorisées ? Un tel résultat est essentiel.
Il implique que la théorie quantique est entierement capturee par le langage, le rendant
ainsi autosuffisant. Il n’est alors plus nécessaire de garder en téte la théorie matheé-
matique des espaces de Hilbert sous-jacente, et tout raisonnement sur le quantique peut
étre mené au sein du langage uniquement.

C’est a cette question qu’essaie de répondre cette these. Le probleme étant ardu, il
a été etudié pour des restrictions du langage, appelés fragments. On appelle “fragment
;{” la restriction du ZX-Calculus ou les parametres de ﬂa et >.<a sont des multiples
de 7. Bien sur, des axiomatisations differentes peuvent étre donnés pour différentes
restrictions. On va donc distinguer les diagrammes du fragment %, aussi notée ZX[%],
et les axiomatisations R. En les combinant, on obtient ZX[7]/R, le langage obtenu en
quotientant le fragment > du ZX-Calculus par la théorie équationnelle R.

Le premier fragment pour lequel un résultat de complétude a été donné est ZX|7]
[ ], aussi appelé le stabiliseur du ZX-Calculus, ou encore Clifford. Un résultat ana-
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logue existe pour les circuits [ ]. S’est ensuivi un résultat similaire pour le fragment
7 du langage ZX[r] [ ], avec un ensemble d’axiomes légerement different. Mal-

heureusement, ces fragments ne sont pas universels, ni méme approximativement (cer-
taines évolutions quantiques ne peuvent étre représentées, méme de fagon approchée,
par des diagrammes de ces fragments). Ceux-ci sont méme simulables efficacement par
un ordinateur classique[ ].

L’intérét s’est donc ensuite porteé vers le fragment ZX |7, aussi appelé Clifford+T, qui

lui, est approximativement universel [ ]. Un premier résultat a été donneé pour le cas
particulier de diagrammes sur un seul fil | ], lui-méme dérive du résultat sur les cir-
cuits [ ]. Dans les circuits, on peut également citer la complétude des diagrammes
“CNot-dihedraux” [ ] qui sont une restriction de Clifford+T, et la complétude des
circuits Clifford+T sur deux qubits [ ], redémontré dans le ZX-Calculus mais en sor-
tant du fragment [ ].

Parallelement au développement du ZX-Calculus, un autre langage graphique, proche
cousin du premier, a vu le jour : le ZW-Calculus [ ]. Celui-ci jouit également d’une
structure compacte, et donc de ce résultat puissant sur la conservation de la sémantique
par isomorphisme de graphe. Ce langage se base lui sur 'interaction entre deux classes
d’états quantiques fondamentalement différents, a savoir les états GHZ et les états W.
Une autre difféerence flagrante avec le ZX-Calculus, est que le ZW-Calculus jouit d’une
forme normale relativement naturelle. Cela a notamment permis la recherche d’axio-
matisations complétes pour des fragments du langages [ , , ].

Dans cette these, nous faisons le lien entre les deux langages graphiques, ce qui
permet notamment de simplifier la recherche d’axiomatisation complete pour le ZX-
Calculus. Le premier résultat présenté dans cette theése concerne ZX[7] [ ], dont
la complétude est obtenue par un systeme de traduction de ZX[%] vers une extension
du ZW-Calculus notée ZW,/, 5, ce qui permet le transport de la propriéte de completude.
Pour ce faire, nous passons par un langage intermédiaire appelé AZX, qui est une ex-
tension du ZX-Calculus avec un générateur supplémentaire A [ ]. Celui-ci est

intéressant en lui-méme car AZX|[7] capture le fragment “Toffoli-Hadamard” de la mécanique

quantique.

Nous montrons ensuite que I'axiomatisation utilisée avec ZX|[7] est en reéalité plus
forte que cela, car elle permet aussi la complétude pour une restriction plus large des dia-
grammes du ZX-Calculus, appelés diagrammes linéaires a constantes dans Clifford+T, et
dénotée ZX [, T] [ ]. Encore une fois, nous passons par le langage intermeédiaire
AZX]d, |, et la combinaison des deux permet d’obtenir une axiomatisation complete
pour AZX[a, §]. Ce résultat puissant de complétude sur les diagrammes linéaires, bien
que non constructif, permet de déterminer pour un grand nombre d’égalités dans des
fragments plus grands que ZX[7] qu’elles sont dérivables.

En utilisant ce résultat, un autre systeme de traduction entre le ZX-Calculus et un
fragment plus grand du ZW-Calculus, ainsi qu'une méthode de réduction de certains
diagrammes vers leur décomposition en valeurs singulieres (SVD) [ ], nous prou-
vons ensuite la complétude du langage sans restriction ZX pour un ensemble d’axiomes
étonnament plus petit que celui de ZX[7].

Il est bon de noter que les langages graphiques évoqués jusqu’a présent sont faits
pour la mécanique quantique pure, c’est a dire sans interaction avec I'extérieur. Pour
prendre en compte cette interaction, on représente les évolutions quantiques par des
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CPM (completely positive maps), et on peut rajouter au langage un générateur —qui
représente la trace partielle. Nous montrons comment rendre un langage graphique
complet pour les CPM s’il I'est déja pour la mécanique quantique pure. En particulier,
on peut trouver aisément des axiomatisations completes pour ZX~ et sa restriction a

Clifford ZX~[7] [ ].
Enfin, en dernier lieu, nous donnons une construction pour une forme normale, val-
able dans n’importe quel fragment du ZX-Calculus qui contient 7 [ ]. Cela nous

permet de reprouver les deux précédents résultats de complétude sans utiliser le ZW-
Calculus, mais également de trouver des axiomatisations compleétes pour d’autres frag-
ments, notamment ZX|[7] le fragment des dyadiques, et ZX[7Q)] le fragment des ra-
tionnels.

Le diagramme suivant représente les difféerents langages (constitués d’un fragment
et d’une théorie équationnelle) considérés dans la these, les fleches représentant les
dépendances pour la preuve de complétude. Les résultats de complétude obtenus par
forme normale sont représentés avec une fleche qui boucle sur le langage. Les langages
dont la complétude est considérée comme acquise sont les quatre du haut, vers lesquels
ne pointe aucune fleche.

ZX[Z)) ZXnss ZX[r]/ ZX ZW/ ZW ZW|C]/ ZWe
ZW./ s/ ZWy) s
/
AZX[7]/ A,
T — e Y +
ZX[3]/ ZX., AZX (i, 7]/ A
@) l
AZX[E. 3]/ Ay,
-
ZX[d, T/ ZXa)s X)X

ZX[3]*/ 7X2, O ZX* ) 7ZX. — U
ZX[d, Z]/ 7+, ZX[d, 7Q]/ ZXq

) O

Durant cette these, j’ai participé a la conception du langage graphique appelé Y-
Calculus [ ], une variante du ZX-Calculus confinée a la représentation d’évo-
lutions quantiques réelles. Nous avons donné un ensemble complet d’axiomes pour
le stabiliseur. Puisqu’il existe un systeme de traduction entre le ZX-Calculus et le Y-
Calculus, il est tout-a-fait possible de compléter ce dernier pour d’autres fragments,
maintenant que les résultats analogues existent dans le ZX-Calculus. Toutefois, nous
ne traiterons pas le cas du Y-Calculus dans cette these.

J’ai également participé a [ ], qui introduit deux équations du ZX-Calculus
qui seront évoques voire utilisés comme axiomes dans la these, mais la encore nous ne
nous attarderons pas sur les aspects traités dans le papier.
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Introduction

Quantum computing is a computational model capable of supplanting a conventional
computer to perform certain tasks. The most convincing example is Shor’s algorithm,
which allows for number factoring into its prime factors in an exponentially shorter time
than the best known classical algorithm. Grover’s algorithm also allows a quadratic gain
for searching for an element in a unsorted data structure, and a plethora of algorithms
derived from it allow the same improvement for the problem they solve. One of the main
expectations of this model, being itself a quantum model, is to allow other quantum
systems to be effectively simulated. Applications can still be found in the search for an
optimum, or in cryptography.

To be able to reason in this calculation model, and perform complex tasks, it is neces-
sary to have languages of a higher level than the physical implementation of the process.
A parallel is possible with classical computing: Boolean circuits, which use logic gates
such as AND, OR, XOR..., have been a necessary abstraction to the underlying electron-
ics. Such an abstraction has several advantages. First, it allows the user to get rid of a
certain amount of unnecessary overload, while reducing the user’s propensity to make
mistakes. Moreover, the lower the level of a language, the more it sees its paradigms
dictated by the need for physical implementation. As such, a higher level language will
use paradigms considered more useful and understandable by the user (hence the sim-
plicity of use already noted), but in addition it will be more portable, the language not
changing between different processors.

Quantum circuits are a graphical language that allows for a first abstraction. The
units of quantum computation, called quantum bits or qubits, are represented as running
through a wire, and quantum gates that allow computation alter their value. These gates
can be combined as in this example (read by convention from left to right):

N>

X L X

The language remains fairly low-level: its use on large-scale projects is heavy, and the
choices in its operators remain strongly dictated by physics. However, there are some
interesting elements for a graphical language. In particular, that two independent pro-
cesses, i.e. acting on different qubits, can commute, no matter which one is applied first:
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or how the processes react when exchanging the qubits on which they are applied:

_ g

g
These transformations are evident in the graphical language, more so than they are in
the algebraic language:

(feid)o(ideg) = feog=(goid)o (ide f)

and
(gofloo=0c0o(fwg)

where o represents the exchange of qubits.

These are the equations that underlie PROPs, a particular case of monoidal categories,
stemming from category theory and which formalises the notion of graphic language. It
was precisely from categorical considerations that ZX-Calculus, the graphical language
that is at the heart of this thesis, was born.

It was introduced in 2008 by Bob Coecke and Ross Duncan [ ], based on the com-
plementarity of quantum observables, a priori a paradigm independent of the physical
implementation of the quantum evolutions represented. Again, qubits are represented
as passing through wires that connect the language generators to form what is called a
diagram. Throughout the thesis, the diagrams are read from top to bottom.

The language contains three generators, two of which are dual and can have a pa-
rameter in the form of an angle: >O<oc and >.<a . These can take an arbitrary number of

input and output wires. The third generator 1 is binary, and allows to transform one of
the two previous operators into the other.

In this language, a wire, when straight, represents the identity |, but it can also be

curved: /M and \_U/ . These diagrams have a particular meaning. The first represents
the EPR state |00) + |11), while the second represents the associated projector (00| +
(11], which physically corresponds to a possible result of a Bell measurement on two
qubits. One of the advantages of the ZX-Calculus is precisely the existence of these two
diagrams, which form what is called a compact structure:

NJ-1- WD

Moreover, these two diagrams react well with the other generators:

g [Ee g ed)
Thanks to these equations in particular, we can consider any diagram of the ZX-Calculus
as an open graph (inputs and outputs are fixed), such that any graph isomorphism (which
preserves inputs and outputs) preserves the quantum evolution that is represented. This
is one of the very big advantages of the ZX-Calculus, a feature that makes it a higher
level language than quantum circuits.

The applications of the graphic language known to date are very varied. It can be
used to reason about a quantum computing model called MBQC (Measurement-Based

16



Introduction

©

[
[
[
o

Quantum Computing) [ , , ] or about quantum error correction [ ,
, ]. In particular, the language generators are very close to the primitives of
“lattice surgery”, a model for the realization of universal quantum computers with error

correction [ , ]. The ZX-Calculus has allowed improvements in quantum
circuit simplification [ , ] in the PyZX project [ ], and can be
used to perform verification, for example of protocols [ , ].

As we have seen, different diagrams can represent the same quantum evolution, in
the same way that different matrix compositions can yield the same result. In matrix
calculation, we know how to reduce any matrix composition obtained with o and ®
to a single matrix. Such a reduction will not be possible in the ZX-Calculus, as a single
generator is not sufficiently expressive. However, a set of allowed transformations can be
given between one diagram of the ZX-Calculus and another. Ideally, these rules should
be intuitive and sufficiently sufficiently limited in number to be remembered by the user.

The fundamental rules of ZX-Calculus are derived from category theory, and use
structures well known in the field, such as Frobenius algebras or Hopf algebras. This
approach is also used to describe equally fundamental structures in linear algebra, for
example to represent signal flows [ ], with a language named IH, a close relative of
the ZX-Calculus [ , ]. To be more precise, the former formalises a restriction
of the latter.

To ensure the soundness of a derivation (a sequence of application of transformation
rules), we can use a proof assistant called Quantomatic [ , ] developed by
the community and which allows to handle string diagrams such as those of the ZX-
Calculus as well as to specify the allowed calculation rules.

The question of completeness then arises: If two diagrams represent the same quan-
tum evolution, is it possible to transform one into the other using only the authorised
graphical transformations? Such a result is essential. It implies that quantum theory is
entirely captured by the language, making it self-sufficient. It is then no longer neces-
sary to keep in mind the mathematical theory of the underlying Hilbert spaces, and any
reasoning about quantum can be conducted within the language alone.

This thesis attempts to answer this question. The problem being difficult, it has
been studied first for language restrictions, called fragments. The restriction of the ZX-
Calculus where the parameters of b(a and >.<a are multiples of is called a “%—
fragment”. Of course, different axiomatisations can be given for dlﬁerent restrictions.
We will therefore distinguish the diagrams of the 7-fragment, also denoted ZX[ |, and
the axiomatisations R. By combining them, we obtam ZX[ |/ R, the language obtamed
by quotienting the E-fragment of the ZX-Calculus by the equatlonal theory R.

The first fragment for which a completeness result has been given is ZX|[7] 1,
also called the stabiliser ZX-Calculus, or Clifford ZX-Calculus. A result for the analogous
fragment exists for the circuits [ ]. A similar result followed for the m-fragment of
the ZX-Calculus [ ], with a slightly different set of axioms. Unfortunately, these
fragments are not universal, not even approximately (some quantum evolutions cannot
be represented, even approximately, by diagrams of these fragments). Moreover, these
fragments can even be efficiently simulated by a classical computer.

Interest then turned to the fragment ZX[7], also called Clifford+T, which is approx-
imately universal [ ]. A first result was given for the particular case of diagrams
on a single wire [ ], itself derived from the result on quantum circuits [ ].
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As for circuits, we can also mention the completeness of the “CNot-dihedral” diagrams
[ ] which are a restriction of Clifford+T, as well as the completeness of the Clif-
ford+T circuits on two qubits [ ], restated in the ZX-Calculus but with axioms that
require the derivation to be carried outside the fragment [ ].

In parallel with the development of the ZX-Calculus, another graphical language,
close cousin of the first, has emerged: ZW-Calculus [ ]. It also has a compact struc-
ture, and therefore the same powerful result on the conservation of semantics by graph
isomorphism. This language is based on the interaction between two fundamentally dif-
ferent classes of quantum states, namely GHZ states and W states. Another obvious
difference with ZX-Calculus is that ZW-Calculus has a relatively natural notion of nor-
mal form. This made it possible to search for complete axiomatisations for fragments of
the language [ , , ].

In this thesis, we make the link between the two graphical languages, which sim-
plifies the search for complete axiomatisations for the ZX-Calculus. The first result pre-
sented in this thesis concerns ZX[7] [ ], whose completeness is obtained by a
translation system of ZX[7] towards an extension of the ZW-Calculus ZW,/, ; and back,
which allows the transport of the completeness property. To do this, we go through
an intermediate language called AZX, which is an extension of the ZX-Calculus with
an additional generator A [ ]. This one is interesting in itself because AZX]|r]
captures the "Toffoli-Hadamard”-fragment of quantum mechanics.

We then show that the axiomatisation used with ZX[7] is actually stronger than
that, because it also allows completeness for a broader restriction of the ZX-Calculus
diagrams, called linear diagrams with constants in Clifford+T, and denoted ZX]|d, %]
[ ]. Once again, we go through the intermediate language AZX|d, 7|, and the
combination of the two allows us to obtain a complete axiomatisation for AZX[d, 7].
This powerful result of completeness on linear diagrams, although not constructive, al-
lows to determine for a large number of equations in fragments broader than ZX[7] that
they are derivable.

Using this result, another translation system between the ZX-Calculus and a larger
fragment of the ZW-Calculus, as well as a method for reducing some diagrams to their
singular value decomposition (SVD) [ ], we then prove the completeness of the un-
restricted language ZX, surprisingly with a smaller set of axioms than that of ZX[7].

It is worth noting that the graphical languages mentioned so far are designed for
pure quantum mechanics, i.e. without interaction with the outside world. To take into
account this interaction, we can add to the language a generator L which represents
the partial trace. We show how to make a graphical language for CPMs complete if it is
already complete for pure quantum mechanics. In particular, complete axiomatisations
for ZX = and its restriction to Clifford ZX=[7] [ ] can be easily found.

Finally, we give a construction for a normal form, valid in any fragment of the ZX-
Calculus that contains 7 [ ]. This allows us to recover the two previous complete-
ness results without using the ZW-Calculus, but also to find complete axiomatisations
for other fragments, including ZX[7], the dyadic fragment, and ZX[rQ], the rational
fragment.

The following diagram represents the different languages (consisting of a fragment
and an equational theory) considered in the thesis, the arrows representing the depen-
dencies for the proofs of completeness. The completeness results obtained by normal
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form are represented with an arrow looping on the language. The languages whose
completeness is taken for granted are the top four, to which no arrows point, for they

were proven in the literature [ , , , ].
ZX[%]/ ZXx/ ZX|r|) X ZW | ZW ZW|C|/ ZW¢

ZW1/\/§/ ZWl/\/ﬁ

/

AZX|[7n]/ Ax

/ \)

ZX[%]/ ZX-, AZX[d, 7)) AF
@)

AZX[OZ %]/A"M

—

ZX[d, )/ ZXn)s X)X

ZX[z) ) 7X2, O I
ZX[d, &)/ 7X)4 ZX[d, 7Q]/ ZXg

) O

During this thesis, I participated in the design of the graphical language called Y-
Calculus [ ], a variant of ZX-Calculus confined to the representation of real quan-
tum evolutions. We have given a complete set of axioms for its stabiliser fragment. Since
there is a translation system between the ZX-Calculus and the Y-Calculus, it is absolutely
possible to complete the latter for other fragments, now that similar results exist in the
ZX-Calculus. However, we will not deal with the case of the Y-Calculus in this thesis.

I also participated in [ ], which introduces two equations of the ZX-Calculus
that will be mentioned or even used as axioms in the thesis, but here again we will not
dwell on the aspects treated in the paper.
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Chapter 1

Standard Quantum Mechanics

Quantum mechanics [ ] is one of the two prominent physical models that arose
during the first decades of the XX century, the other being relativity. It was created
to explain experiments where the now called classical physics fell short, such as black
body radiation, or the photoelectric effect [ , ]. The core difference with the
classical model is that some quantities of a system - such as energy, momentum ... — are
restricted to discrete values, as opposed to continuous ones in the classical model. So
far, this theory has proven to be extremely robust and precise [ ].

It has already had applications in several domains of physics, and can also be used to
perform transistor and laser computations. Indeed, these can be used to store, process
and communicate information. We review in this chapter the fundamentals of quantum
mechanics, which we can find e.g. in [ Jor [ ].

1.1 Pure Quantum States

" Definition 1.1.1 (Hilbert Space): A Hilbert space H is a vector space over K (where
K is either C or R), equipped with an inner product, that is, a function (. | .) : HxH — K
with the following properties:

- {zly) = {y|)
« It is linear in its first argument:

(T1+A22[Y) = (1Y) + A (22|Y)
« x — (x|x) is positive definite:

(x|z) >0 if #0
(x|x)=0if =0

In this context, it is conventional to define a norm by ||.|| := = — /(x| ), which is real-
valued. The inner product makes # a metric space, in which we can define the distance
between two elements a and b as d(a, b) := ||a — b||. A Hilbert space is further assumed

to be complete, i.e. any sequence (a,)nen such that lim d(ay,, a,1) = 0 converges in
n—oo

H. J
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Postulate 1.1.2. Each physical system is associated with a complex Hilbert space H with
inner product (.|.), and topologically separable in the sense that it admits a countable
orthonormal basis. Rays (that is, subspaces of complex dimension 1) in H are associated
with quantum states of the system.

Hence, any quantum state 1) can be represented by a vector over the Hilbert space
H, of norm one i.e. (¢ |%) = 1. Two such vectors are equivalent if they only differ by a
phase factor: Indeed, if |1)1) is equivalent to |¢)5) by definition of rays, there exists A € C
such that [¢);) = A [i2). However the constraint on the norm gives:

L= (g1 [v1) = [A]* (P [ ¢ha) = |A]®

which implies A\ = €% for some 0 € R.
Example 1.1.3. In C?, 5 (\%) ~ % (\}3> where ¢ € R is an arbitrary angle, and ~ is
the equivalence relation.

A useful notation, introduced by Dirac, and consistent with the inner product no-
tation is the so-called Dirac notation, or braket notation. In this notation, a vector is

denoted with |.), called ket, and its dagger (in finite dimension, the conjugate transpose)
is (.| := |.)T, called bra, and defined for every element of 7 as:
H — K
Wy o wle)

Hence, (11 0 [6) = (¥] ).

A building block of finite-dimensional quantum mechanics is a quantum object of
dimension d, called a qudit. A qudit state will be represented as a vector of C%. It is
fairly easy to see that the set of vectors (€;)o<;<q — where €; € C4 is the vector with Os
everywhere except for the ith component which is a 1 — forms a basis for C?. The vectors
¢; will be denoted in the Dirac notation |i) := é;. This forms the so-called canonical basis
or standard basis. Then, any qudit state can be expressed as a linear combination of the

d
vectors in this basis: 1)) = > «; |i).
i=0

The vectors of the canonical basis can be seen as classical states. Any state that is
not a basis vector is then said to be in a superposition of the (or some) classical states.
The coefficients in the linear combination are called amplitudes, and are linked to the
measurement outcomes of the system, as we will describe later.

Of primary interest for us will be the case where d = 2. The base component is then
called qubit, and it is a linear combination of |0) and |1). Several very simple quantum
objects are qubits: the electron spin, the photon polarisation, the fermion position ...
[ , ] Moreover, the two classical states |0) and |1) can be identified with the
states of a classical bit. A bit is hence a qubit which is not allowed superposition.

When working with qubits, we may also consider two other bases: (|+),|—)) and

(|i) ,|—17)) where:

_ 10+ 10—
+) = 7 =)= 7
0) +4[1) 0) —[1)

i) 1= = i) = S
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It is to be noted that the three bases (|0) , |1)), (|+), |—)) and (|¢) , |—i)) are all orthonor-
mal.

1.2 Composite Systems

Postulate 1.2.1. The state space of a composite physical system is the tensor product (de-
noted . ® .) of the state spaces of the component physical systems. Moreover, if we have
systems numbered 1 through n, and system number i is prepared in the state |1;), then the
joint state of the total system is |{1) @ [102) @ ... @ |Uy,).

The tensor product is a bilinear operator from H X Hp — Ha® Hp:

(p1+Ap2) @Y = Q109 + Ap2 @Y
Va1 + Ap2) =Y opr + M e,

If two systems A and B have corresponding Hilbert spaces H 4 and H g, then the combi-
nation of the subsystems is a system of corresponding Hilbert space H g 5 := Ha © Hp.
The elements of 7 4 p are linear combinations of tensor products [14) ® |¢5) of ele-
ments |1)4) of H4 and |1)p) of Hp.

If {|ia)} and {|ip)} are bases of respectively H 4 and Hp, then {|is) @ |ip)} is a
basis of H 4 ¢ p. In particular, if H 4 and H g are finite dimensional, then dim(H g ) =
dim(H ) x dim(Hp).

In the Dirac notation, when there is no ambiguity, it is customary to write a tensor
product as the concatenation of the two kets: [¢)¢) := |1)) @ |¢). For instance, in the
qubit case, |01) represents a state on two qubits, the first of which is in state 0 and the
second in state 1. In terms of vectors, if |j) € Hp, then |ij) := |i) ® |J) = €xdim(#p)+)>
i.e. the vector with 0 entries everywhere except 1 for the (i x dim(Hp) + j)th. By
bilinearity of ®, this completely defines the tensor product. For instance, in C* @ C:

(éb + 251) ®<€0 + gg) g 60 + 60 ®€2 + 261 ®€0 + 261 50 + 52 + 253 + 255
Le.
1
0
1 é e
2)°\]) |2
0
2

A state on a composite system cannot always be decomposed as a tensor product of
the two subsystems. When this is the case, the composite state is called entangled. The

00)

easiest and most famous example is the state % It can be shown that there is no

pair of one-qubit states |¢);) and |¢5) such that ‘OO}'H 1) ® [1ha).

This particular state has a special name: it is called the EPR state. It is due to Einstein,
Podolsky and Rosen, who thought they had found a paradox in the theory of quantum
mechanics [ ]. The two particles in this state are dependant to one-another and any
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operation on one of them affects the state as a whole. Specifically, during a measurement
in the standard basis (see Section 1.4), if the measurement of the first qubit yields x €
{0, 1}, then the measurement of the second one automatically yields the same result ,
no matter how far the two particles are from one another. This violates the principle of
locality.

The EPR state is one of the four Bell states, which are the four maximally entangled
two qubit states: X2ELL g 10LEI0) [

4 e V2

states, of the form % where |2") represents a register of n qubits in the state |z)

[ ].

]. It is also a particular case of the GHZ

1.3 Operators

The state of a quantum system can evolve through time. This is modelled as applying
a linear map to the state: |f1)) := f (|10)). The neutral element for the composition of
maps o is the identity. We denote by idy the identity on #. Notice that if dim(H) = 1,
then H = C, so idc = (1) The subscript of ¢d can be neglected when it is clear from
the context.

" Definition 1.3.1 (Linear Map): A linear map f : H; — H, is a map such that:
Ve,y € Hi,VA € C, f(xz+Ay) = f(z)+ Af(y) g
One can define a norm on linear maps [ ].

™ Definition 1.3.2 (Norm): Let f be a linear map. We define | f|| as:

16 |
I7l=g #0( )

Linear maps can be composed by the tensor product. If f4 and fp act respectively on
Hilbert spaces H 4 and H 5, then f4 ® fp acts on the composite space H 4 ¢ 5, such that,
if [1)4) and |¢p) are elements of respectively H 4 and Hp, then (fa® fg) |4 ¥p) =

(falva)) o(fp¥B)).

Similarly to quantum states, maps on finite dimensional Hilbert spaces can be ex-

pressed using the Dirac notation: f = > W),Xqﬁj where |1;)}¢;] := |¢;) o (¢;| and o
wi(A)><qu and fp = > ’@D ><¢§-B)’, then the
tensor product is expressed fa® fg = > ‘I/JZ(A B ><gbjA)gzﬁz ‘
Example 1.3.3. Given (x;) an orthonormal basis of the finite dimensional Hilbert space
‘H, the identity id in H can be expressed as id = > |x; }(x;].

It is convenient to work with an orthonormal basis (z;) since:

f
@la) =o;={ § 17

|

is the matrix composition. If f4 = >

Hence, if f : Hy1 — Ho = > cyj |;)y;| and g : Ho — Hs = > Bre |2)(@e| with (z;) an

orthonormal basis of H,, then the composition g o f has a simple expression:

(Zﬁu\zk 50@!) (Z% |z:) ya) > aiBrelz)me| i)yl

1,5,k 0 5,0
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The next postulate dictates how a closed quantum system evolves, and needs the
following notions:

™ Definition 1.3.4 (Adjoint and Unitary Operator): Let A : H; — H: be a linear
operator. The adjoint map A" : H, — H; is uniquely defined as the linear map such
that for all 2,y € C, (Az|y) = (x| ATy).

A unitary operator U : ‘H — H on a Hilbert space H is a linear map such that

UUT = U'U = id. J
Notice that for any |z), |U |z)| = || |=) ||, which implies that ||U|| = 1 for any
unitary U.

Postulate 1.3.5. The evolution of a closed quantum system is described by a unitary trans-
formation. That is, the state |1)) of the closed system at time t, is related to the state |1)’) of
the system at time t; by a unitary operator U:

[¢) = Ul¢)

During a computation, it could be interesting to initialise new qubits on the fly. The
system cannot be seen as evolving unitarily in this case, since one would end up with
more qubits than at the start. Instead, this can be modelled as making the system undergo
an isometry.

" Definition 1.3.6 (Isometry): An isometry f : H; — Hs is a linear map such that
Va,y, (fz|fz) = (z|z), or equivalently, such that fT o f = id. g

Notice that if f is an isometry, then in general fT is not. For instance |0) is an isom-
etry: (0]0) = 1 = id, but clearly not a unitary transformation: |0)0] # id.

An interesting set of operators on qubits that is useful to point out is the set of con-
trolled operators (on qubits). Let U be an operator on n qubits. The operator “controlled
U”, denoted AU, is an operator on n + 1 qubits, uniquely defined as:

AU = 0)0| @ id + |[1)(1| 2 U

The first qubit in AU is called the control qubit. Indeed, if a classical bit is sent on this
qubit, U is applied on the n other qubits iff the control bit is 1. Conversely, if an operator
V is such that Vo (|0) ® id) = |0) @ idand V o (|1) ® id) = |1) @ v, then V is a controlled
operator (V = Av).

1.4 Observables and Measurements

Not all quantities in a quantum state can be measured. Those that can be are called ob-
servables. For instance, the polarisation of a photon, the spin of an electron, the position
and the momentum of a particle are all observables [ , , ].

Postulate 1.4.1. The observables of a quantum system are the self-adjoint (A = A') oper-
ators on ‘H.
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A very important set of observables for the qubit case are the Pauli matrices:

A UV I V) A )

Linear combinations of Pauli matrices with the identity and real coefficients (xqid +
11X +22Y 4237 with x; € R) can represent any 2x 2 self-adjoint matrix, i.e. they span
all the one-qubit observables. Also, the group generated by the Pauli matrices using the
composition o is called the Pauli group. This group is easily extended to n qubits:

™ Definition 1.4.2 (Pauli Group): The Pauli group G is defined as G; := (XY, 7),
the group generated by ({X,Y, Z},0). For any n € N* := {n € N | n # 0}, the Pauli
group on n qubits G, is defined as G,, := {O1®---® O, | O; € G4}. 3

Remark 1.4.3. The Pauli matrices of GG; can be expressed using the Dirac notation:

X= > |[kal}k Y=i) (~DFke 1)k Z= Y (=1)"|k)K|

ke{0,1} ke{0,1} ke{0,1}
where @ is the XOR operation.

Then, given an observable, one can perform the measurement of a quantum state, in
the following way [ JE

Postulate 1.4.4. Quantum measurements are described by a collection { M, } of measure-
ment operators. These operators act on the state space of the system being measured, and
satisfy
> Mi M, =id
m

The index m in M, refers to the measurement outcome that may occur in the experiment.
If the state of the quantum system is |1)) before the measurement then the probability that
result m occurs is given by
p(m) = (| M, M, |4)
and the state collapses to
My, [)
p(m)

Notice that the operators M M,, are observables, since (M M,,)T = M M,,.
Example 1.4.5. Consider the measurement of the state |¢)) = «|0) 4+ 3 |1) in the compu-
tational basis (|0) , |1)), i.e. with the measurement operators M |0)0| and M; = |1)(1].
Then p(0) = (| MiMo |¢) = (@ (0] + 5 {1])|0}0] (a|0) + B]1)) = |af>. Similarly,
p(1) = |B*

As explained in the postulate, the quantum state collapses after measurement in a
new state that depends on the outcome of the measurement.

Example 1.4.6. Consider a series of two measurements of the same qubit, the first in

the diagonal basis (|+) , |—)) and the second in the computational basis (|0) , |1)). After

the first measurement, the qubit will either be in the state |[+) := % or |—) =

|0>\—[|1), with some probability. However, both |+) and |—) will have probabilities 1 to

collapse to state |0) and 3 to collapse to state |1) after the second measurement. Hence,
all information has been erased after the two measurements.
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We have now presented all the postulates of quantum mechanics, that are valid in
finite dimensions as well as in infinite dimensions. In the rest of the thesis, we will only
consider finite dimensional systems.

1.5 Non-Isolated Systems

Up to Section 1.3, we had described how a quantum system behaves in the ideal case,
when it is isolated. When parts of the system are measured, it is not isolated any more. In
particular, when measuring parts of an entangled pure state (as described in Section 1.1),
we end up with a state that is not pure any more, but is rather a probabilistic distribution
over pure quantum states, called a mixed state. Mixed states can be modelled by density
matrices. This requires that the rest of the formalism adapts to this generalisation of
quantum states.

™ Definition 1.5.1 (Mixed States): A mixed state p is of the form p = > p; |¢; 1.
The coefficient p; represents the probability that the system is in the pure state |¢;). In
order to represent a probability distribution, all the p; must be non-negative and add up
to 1. J

Of course, a pure state |¢) in this formalism is a particular case of mixed state, and
will be represented by |1/)(1)|. Notice that p is a Hermitian matrix: p! = (3 p; [0 i) =
> pi|ifhi| = p.

A composite system of two mixed states, p; = > p; [ )}(¢s] and p2 = > q; |, )X0;l,
is again the tensor product of the two: p1 ® py 1= Y piq; |Vid; Wi¢;)-

Pure operators (i.e. operators that map a pure state to another pure state) can still be
applied to a mixed state, in the form of a superoperator, i.e. a linear operator that maps
a linear map to another linear map.

™ Definition 1.5.2: The pure operator U defines the superoperator p — U o po U for
mixed states. J

Notice that the operator preserves the Hermitian structure of the state.
The measurement postulate can be logically extended as follows:

" Definition 1.5.3: The expectation value of an observable A for a system in a mixed
state p = > p; |1 14| is given by the weighted sum of inner products: > p; (1;] A [1;).

_I

This value can be computed as being tr(Ap), where tr is the trace operator. The
trace operator is complex-valued and linear. It has the property that tr(AB) = tr(BA)
whenever AB and B A are square matrices, and if id is the identity in #, then tr(id) =
dim(H).

> il Al = tr (D pi (il Al ) = 3 pitr ((u] )
= > mtr (Al = tr (A (D pileiwil) ) = tr(4p)

This time, the trace can be expressed as a superoperator, using the Dirac notation.
Given (z;) an orthonormal basis of the considered finite Hilbert space:

tr=p— Z<%’P‘$z>
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It is possible to trace out only part of the system. If H = H 4 ¢, then trp is defined
on H as ids ® tr ® idc where ids and idc are identities in respectively A and C. trp
traces out the subsystem B. It is called partial trace [ ].

Given a mixed state, it is always possible to see it a pure state that underwent a
partial trace.

Theorem 1.5.4 (Purification). Let p : Ha — Ha be a mixed state. Then, there exists a
Hilbert space Hp and a pure state |t)) € Hag p such that p = trg(|)v]). We say that

|¥) purifies p.

1.6 Pure Quantum Circuits

Similarly to boolean circuits, quantum circuits were introduced both as a model for the
potential physical implementations of quantum processes, as well as a means to reason
on said processes.

We give here a presentation of the circuits for pure qubit quantum mechanics. Hence,
the maps we are going to represent are unitaries from # to H where dim(?#) is a power
of 2.

The qubits will be represented as wires, and quantum gates will be applied on them.
The operations applied to a quantum state have to be unitary, so some gates usually
employed in quantum circuits are derived from reversible boolean circuits, such as the
Not gate, the CNot gate and the Toffoli gate. To these are added phase-inducing gates
such as the Hadamard gate or the R, gate. The usual quantum gates used in quantum
circuits are summarised in Table 1.1.

The map [.] associates to any quantum gate a linear map from and to Hilbert spaces.
The gates can then be composed in parallel or in sequence. The parallel composition
corresponds to the tensor product ®:

= . . ® . .
| 5F | - b b
while the sequential composition corresponds to the usual composition of maps o:

[-D1DE] - [:0%] [0k

Notice that all the gates whose names begin with “C” are controlled operators: CNot
represents a controlled Not, CZ a controlled Rz (), CCNot a controlled controlled Not
(that is an operator that controls CNot), and CSwap a controlled Swap.

All these gates and the two compositions are used to represent unitaries. However,
one can extend the formalism with qubit initialisations. Here, some qubits can be given
the value |0) at the beginning of the computation. We represent it as |0)— , with
interpretation [|0)—] = |0). Notice that other states can be obtained by composition of
|0) and unitary gates. For instance, |+) can be obtained with |0)-{H|- , while the EPR
pair (seen in Section 1.2) can be constructed with the following circuit:

10)
|0) >
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| Gate Representation Interpretation [.]
Identity — ooz )z|
ze{0,1}
X, Not or S zdl)z|
P z€{0,1}
Z-rotation, Ry ST e |z )
z€{0,1}
Hadamard, H \/LE g{:o 1}(_1)3211 |z )y|
z7y )
Swap X > lyafzy
x,y€{0,1}
_._
CNot, CX > |z axdy)Xx y
x,y€{0,1}
Cz . >, (=)™ |z y)zyl
x,y€{0,1}
_._
Toffoli, CCNot o |ryaydz)azy 2|
x,y,2€{0,1}
+
Fredkin, CSwap X Yoo |xz(y®z)dy x(ydz)dz)Xx y 2|
— x,y,zE{O,l}

Table 1.1: The usual gates for quantum circuits.

As already noticed, using qubit initialisation allows one to represent not only unitary
transformations but actually isometries.

Now back to the unitary transformations. All the gates in Table 1.1 (with the two
compositions) are enough to represent any unitary f : H — H (where dim(#) is a
power of two).

" Definition 1.6.1 (Universality): A set of gates sufficient to represent any unitary is
called universal. A set of gates that can approximate any unitary with arbitrary precision
is called approximately universal.

In other words, a set of gates .S is universal if, for any unitary U, there exists a circuit
D composed only of gates of S such that U = [D]. S is approximately universal if, for
any unitary U and any € > 0 there exists a circuit D composed of gates of S and such
that |U — [D] || <e. 4

Actually, the set of gates in Table 1.1 is more than you need to get the universal-
ity. Indeed, the gate set (CNot, Rz, H) is universal [ ]. Notice that the gate R,
is parametrised by an angle o which can take values in R. Hence, there is actually an
infinite number of gates in the gate set.

One can restrict these angles. For instance, by only allowing rotations of angle Z,
one gets the gate set (CNot, RZ(%), H), also called Clifford, for it exactly represents the
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Clifford group, defined as:

" Definition 1.6.2 (Clifford group, Stabiliser group): The Clifford group, also called
stabiliser group, is the set of unitaries that stabilise the Pauli group:

Coi={f:H = H|Vz € Gy, foroft € G, ff = fIf =id}

where H := C?". J

However, the Clifford group is not universal, even approximately, and can be effi-
ciently simulated on a classical computer [ ].

There is an in-between, though. There exist finite sets of gates that are approximately
universal. For instance, the gate set (CNot, Rz(F), H) [ ]. The gate R(7) is often
referred to as the 7" gate. Since 7% := T' o T' = Ry(5), one can see this new gate set
as the Clifford gate set to which the 7" gate has been added. As such, it is commonly
referred to as Clifford+T.

There exist other interesting universal gate sets. For instance, the Toffoli gate (with
ancillae) is already universal for reversible boolean circuits, and it so happens that adding
any basis-changing single-qubit real gate (e.g. Hadamard) to Toffoli makes the resulting
gate set approximately universal for encoded quantum computing [ ]. This new
notion of encoded (approximate) universality is slightly different from the one defined
in Definition 1.6.1, in that there is an encoding of data in the usual framework (complex
numbers), in a less expressive setting (here the real numbers).

1.7 Encoding

In [ ], it is shown how to encode a complex quantum state with a real quantum
state. Any quantum state |¢)) can be decomposed as its real and imaginary parts |1)) =
|tg) +1 |1g) with respect to the computational basis. We can then embed this in a larger
real quantum state [(enc) 1= ) @ |0) + |g) @ |1).

This can also be done for operators, where U := Uy + iUs is encoded in Uy, 1=
Ug ®(]0X0] + |1X1]) + Ug @(|1)X0| — |0)(1]). It is then shown that (Toffoli, H) represent
exactly the encoded versions of a complex approximately universal gate set, namely
(ARz(%), H), and hence encodes it.

This idea of encoding data of a certain type (actually a ring) with data of a more
restrictive type (a smaller ring) can be generalised. In the following, we restrict to the
finite dimensional case.

" Definition 1.7.1 (Linear Maps over a Ring): Let R be a subring of C. We denote
M,,.m(R) the set of linear maps from R" to R™ for n,m € N. Any element of M,, ,,,(R)
can be represented as a matrix over the ring R. J

Now we can give a definition of an encoding:

™ Definition 1.7.2: Let Ry C R be two subrings of C. We say that R; encodes R,
if there exists a homomorphism ¢ : Ry — M, ,(R;) (called the encoding) with a left
inverse O, i.e. © o 1) = id (called the decoding). J
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The homomorphism 1), even though defined only on Rs, extends naturally to a family
of homomorphisms ©,,, : M, ,(R2) = M pn(R1). This amounts to replacing every
component ¢ in M € M,, ,(Ry) by the n x n matrix 9(c).

Even though the encoding is defined on rings, we will extensively use fields for in-
termediate results.

A common occurrence of an encoding is when the second ring is an algebraic ex-
tension of the first one. Let R be a subring of C, and o be an R-algebraic integer: We
denote P, € R[X] the smallest monic (its leading coefficient is 1) polynomial such that
P,(a) = 0. We denote d,, the degree of the polynomial P,. R, here is R|a/], that is, the
smallest ring containing both R and a.

Let K be the smallest field containing R. Then it is well known that K[a] is also
a field. K[a] can be seen as a vector space over K of dimension d,, where (a')g<;<a,
constitutes a basis, i.e. any element = of K'[«] can be expressed as a linear combination
of powers of «, with coefficients in K.

For all z € K|a], we define ¢y(z) = (y ~ zy)’. The map y + zy being linear, it
can be represented as a d, X d, matrix, and can be transposed. The transpose does not
change much, it merely makes the decoding part more natural (see the example below).
The map 1)y(1) is obviously the identity matrix. More interestingly,

0 1
AN
Yo(a) = M := ]
Qo a1 -0 Qdy-1
do—1
where P, (X) = X% — Y aq, X"
k=0

Lemma 1.7.3. ¢ is a homomorphism, i.e. foranyx,y € K|, ¥o(z+y) = vo(x)+10(y)
and 1o (xy) = Yo(x) o o(y).

One first consequence of this lemma is that 1)y(a*) = 1y(a)* = MF.

do—1
Lemma 1.7.4. Anyx € K|[a] can be uniquely writtenx = Y z,a* withx;, € K.
k=0
do—1
Together, the last two lemmas imply that any element 7 = > za* of K[a] maps
k=0
do—1
to vo(x) = > apMPF.
k=0

Let us now show that 1)y has a left inverse ©,. First, notice that, inductively, M k=

. I; .
(O(d“ k)xk  “da k) where 04, -x)x is the zero matrix of dimension (d,-k) x k, and A,

Ay, By,
and By, are not important. Hence, egM k— ef where ¢y, is the vector where the sole non
da—1
null component is component k, which is 1. Let us denote 6 the vector § := > a*e.
k=0
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do—1

Then, forallz = > x,a" € K|a]:
k=0

da—1 do—1 da—1 da—1
T T k T sk T k
ep Yo(z)0 = ey 1o E T’ | 0 = E xpeg M" 0 = E xRe, 0 = g 0" = x
k=0 k=0 k=0 k=0

Op := X — el X0 is then a left inverse of 1), in the sense that O o 1y = id.
These results can be generalised to M (K [«]) in the following way. Any X in M(K[a])

do—1
can be written X = Y Xa* where X}, € M(K). We define
k=0
da—1 do—1
) Z Xpak — Z X, @ MF
k=0 k=0

Again, 1 is a homomorphism, and it has a left inverse O, defined as
O: X = (Ieel)oXo(Ixb)

where [ are identity matrices of adequate dimension.
Actually, we have a slightly stronger result:

Lemma 1.7.5. For any element X € M(K|a]), we have )(X)o (I ®0) = X ®0.

It is pretty obvious that restricting ¢ to M(R][c]), and © accordingly, the results
hold, and 1) becomes an encoding, with decoding ©. Hence, M(R|a]) can be encoded
by M(R).

Example 1.7.6. C can be encoded by R, since C = R[i]. The encoding ) is:

. 10 0 1
zp.A+zBr—>A®(0 1)+B®(_1 O>

since 7 is a root of X? 4 1. We recover the transpose of the encoding defined in [ ]

and presented at the beginning of the section. 0 is given by § = \/LE (1) .

In terms of circuits, we have 1) () = E Usne E and Lemma 1.7.5 translates as:

Uenc : - | E

|0){HEHR2(3) — |0){HHE2(3)

Hence we can recover U from U,,. by applying the appropriate state on the additional
qubits, and then discarding them. This is the reason why we used the transpose in the
definition of /.

This shows how the gate set (Toffoli, H), which can only represent real quantum
evolutions, can have encoded approximate universality.
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Chapter 2

Categorical Quantum Mechanics

Categorical Quantum Mechanics was introduced in 2004 by Samson Abramsky and Bob
Coecke [ , ]. The purpose of Category Theory is to study “universal” prop-
erties and constructions, i.e. that only depend on the structure - the category — and
not on the particular elements (objects and arrows) inside the category. Hence, the aim
of Categorical Quantum Mechanics is to reveal the fundamental structures of quantum
mechanics and quantum computation, as well as to provide powerful tools for the study
and development of quantum information technologies.

In this chapter we describe some usual notions in category theory [ , ].
We then present results of categorical quantum mechanics, as well as the state of the art
of the ZX and ZW Calculi at the beginning of the thesis.

2.1 Categories

" Definition 2.1.1 (Category): A category consists of a collection of objects and arrows
between objects, with a binary operator o between some arrows. Let f be an arrow from

A to B. We may write f : A — Bor A i> B. A is called the domain of f, and B its
codomain. To qualify for being a category, the following axioms must be met:

« The operator . o . maps any pair of arrows (B 2% C, A EN B) (notice that the
domain of ¢ and the codomain of f coincide) to a third arrow go f : A — C' called
their composite.

« For any object A in the category, there exists an arrow id4 : A — A, called the
identity on A, such that:

VAL B, foidy=f
- VB4 A idyog=yg

« The composition is associative: in the configuration A LpLol D, we have
(hog)of=ho(gof). 4

Example 2.1.2. Taking sets as objects and functions between sets as arrows forms a cat-
egory, named Set.
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When reasoning about categories, it is customary to draw diagrams, that is, oriented
graphs where the vertices are objects and edges are arrows. A diagram is said to be
commutative if, for any pair of vertices a and b, any two directed paths from a to b are
equal. For instance, the associativity of o can be stated as saying that the following
diagram commutes:

<y
}"B hog

Arrows in a category will be referred to as morphisms. We can define the collection
of morphisms between two objects in a category: Homc (A, B) or C[A, B].

It may be useful to define the collection of objects of a category C: Ob(C). Also, the
collection of arrows of C is referred to as Ar(C).

Arrows that have a left and right inverse are of particular interest.

™ Definition 2.1.3 (Isomorphism): Let C be a category, and A, B € Ob(C). If f :
A — Bandg: B — Aaresuchthatgo f = idy and f o g = idp, then f and g are
isomorphisms, g is an inverse of f (and vice-versa). Both f and g can be called invertible,
and A and B are said to be isomorphic. g can be written f~!. J

Notice that for any object A of a category, id4 is an isomorphism.
To more easily define some concepts, it is customary to introduce the product cate-
gory and the dual of a category.

" Definition 2.1.4 (Product Category): Let C and D be two categories. The product
category C x D is the category where:

+ Objects are ordered pairs (A, B) with A an object of C and B an object of D.

« Morphisms are ordered pairs (f : A — A’,g : B — B’) where f is a morphism
of C and g of D.

« Composition is such that (f,g) o (f',¢") := (f o f',g o ¢') whenever it makes
sense. N

" Definition 2.1.5 (Dual of a Category): Let C be a category. The category C°P, called
dual or opposite category of C, is defined as:

« Ob(C°P) = Ob(C).
«If f: A— BisinC, then f? : B — Aisin C°P.
« The composition is such that g°P o f°P := (f o g)°P. J

The dual of a category is basically the category where all the arrows are reversed.
Then, some concepts can simply be defined as some other concepts in the dual category
(they are dual concepts). For instance, initial and terminal objects:

" Definition 2.1.6 (Initial and Terminal Objects): An object 7" of a category C is called
terminal if, for every object A in C, there is exactly one arrow A — 7.

An initial object of a category C is a terminal object in C°P. It is an object which has
exactly one arrow to each of the objects of C. J

36



Chapter 2. Categorical Quantum Mechanics

(o] @ %

(]
(]
o

Notice that the only arrow to a terminal object (resp. from an initial object) is the
identity.

If a category has no terminal object, it is possible to construct one (either add a
terminal object, or make an object that is already in the category terminal).

" Definition 2.1.7 (Affine Completion): Let C be a category with no terminal object.
The category C', called affine completion, is defined as:

« The objects of C' are the objects of C with an (additional) object 7.

« All arrows of C are arrows of C'.

« For all objects A in C',weaddanarrow !4 : A — T.

« Weimpose !y =idrand!go f= !, forall f: A— B. J

This construction makes the object 7" terminal. Indeed, let f : A — T be a morphism.
We can show that f is necessarily ! 4:

« If T ¢ Ob(C), then by construction, !4 is the only morphism from A to T, so
f =4

« IfT € Ob(C): f=idrof=lpof=l4
Hence, there is exactly one arrow from any object to 7.
" Definition 2.1.8 (Pushout): Let f, g be two arrows of a category C in the configu-
ration B<L A% C. A pushout of (f, g) is a commutative diagram

ALC’

/ J £ ng
B-—-D
such that for any other commutative diagram built on (£, g)

B—— D
there exists a unique arrow u : D — D’ such that u o go = g5 and u o fy = f} i.e. such
that the following diagram commutes:

LY
7|
B

_>C'

J 92 95
D

i3

/2

<
L

(

D/
The object D in the pushout is uniquely defined up to isomorphism. It may be re-

ferred to as the coproduct of B and C' over A, and written B LI4 C. Also, if a diagram is
a pushout, it is customary to signal it with the symbol " over the coproduct:
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If A, B and C are sets in the category Set, let us define the relation R’ as:
Vbe B,ce C, bRcif Jae€ A, (b= f(a))A (c=g(a))

and let R be the smallest equivalence relation containing R’ (i.e. its transitive closure).
Then, B L4 C' can be taken to be the disjoint union of B and C, where b € Band c €
are identified if DRc.

In particular, if A is the intersection of B and C, and if f and ¢ are the usual inclu-
sions, the pushout can be taken as the union of B and C'.

A pullback is the dual of a pushout, i.e. a pullback in a category C is a pushout in
C°P. We will not define the concept further, for we do not need it in the following.

2.2 Functors

So far, we have seen what constitutes a category, as well as some constructions on cat-
egories. We will now see how to link different categories together.
A morphism between categories that preserves the structure is called a functor:

" Definition 2.2.1 (Functor): A functor ' : C — D between the categories C and D
is a map that:

« Assigns to each object A of C an object F/(A) of D

« Assigns to each arrow A 4, B of C an arrow F(A) P F(B) of D
« Preserves identities: for each object A of C, F'(ida) = idp(a)
« Preserves composition: F'(go f) = F(g) o F(f) whenever go f is definedin C

We call a bifunctor a functor from a product category to a category. For instance,
Homc actually defines a bifunctor Homg (-, -) : C°? x C — Set, as follows:

« objects (A, B) of C°? x C ie. pairs of objects A and B of C are mapped to
Homc¢(A, B)

« morphisms (f?: A — A’ g: B — B') of C°? x C are mapped to the morphisms
Homg(A, B) — Homg(A',B') : ¢+~ goqo f

Since we are going in the following to consider several different categories, we will
end up using functors a lot to go from one to the other. Two properties of functors we
will largely be interested in are fullness and faithfulness:

" Definition 2.2.2 (Fullness): A functor ' : C — D is full if:
VA, B € Ob(C), Vg: F(A) —» F(B), 3f : A— B, g=F(f) 4
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This property can be seen as a kind of surjectivity: for any arrow of D whose domain
and codomain are attained by F', there exists at least one preimage by F'in C. Of course,
if B is not attained by F', none of the arrows in Hom(A, B) and Hom(B, C) can have a
preimage by F', for any objects B and C'in D.

™ Definition 2.2.3 (Faithfulness): A functor F' : C — D is faithful if:
VA, B € Ob(C), Vf,g: A— B, F(f)=F(9) = f=g J

Again, faithfulness is a bit more subtle than injectivity. Two arrows between the same
objects are equal in the image of F' if and only if they are equal in C. However, it can
happen that f : A — Band g : C'— D are mapped to the same arrow if either A # C
or B# D.

" Definition 2.2.4 (Subcategory): A subcategory S of the category C is a category
with the same composition (. o .), such that all the objects of S are objects of C (with
the same identities), and that all the arrows of S are arrows of C. 3

There is an obvious functor / from S to C which maps the objects and arrows of S to
the same objects and arrows in C, called the inclusion functor. Notice that this functor
is necessarily faithful.

Now, suppose we want to consider some categories as objects, and functors between
the categories as arrows. We would then end up with a “meta category” (functors can be
composed, the composition is associative, and the identity functor exists for any cate-
gory). Although, one has to be careful when doing so, for we want to avoid the category
version of Russell’s paradox: should the category of all categories be an object of itself?

To avoid this problem, we only define Cat as the category of all small categories, a
small category being a category where both the collections of objects and arrows con-
stitute sets.

Now, interestingly, the constructions of the previous section can be applied to cat-
egories of small categories. Indeed, it is sometimes possible to perform the pushout of
two functors, or to consider some categories as terminal objects in some larger cate-
gories. For instance the category, often denoted 1, with a single object 1 and single
arrow id; : 1 — 1, is a terminal object in the category of categories Cat.

2.3 PROPs

The categories we are going to consider in the next section and in Part Il are called PROPs
(for product and permutations). These are strict monoidal categories generated by a sin-
gle object. The reason monoidal categories are interesting for us is that they benefit from
a very natural graphical interpretation. In these categories, we have two compositions:
the usual composition of categories o, which performs the sequential composition, and a
new composition called tensor product and denoted ®, which performs a kind of parallel
composition. In general (for so-called relaxed monoidal categories), the tensor product
is not directly associative, but only up to isomorphism. We will not consider the relaxed
monoidal categories, but only the strict monoidal categories, where ® really is associa-
tive.
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™ Definition 2.3.1 (Monoidal Category): A (strict) monoidal category C is a category
with additional bifunctor (.®.) : C x C — C called tensor product (we may denote
A ® B the objects of C x C), and a particular object [ such that:

+ ®is associative: (A® B)o(C = A®(BoC)and (feg)oh = feo(geoh)
o [ is the neutral elementforg: Al =1gA=A

s (fo@ga)o(fi®gr) = (fao f1) ®(g2 0 g1) where the left hand side is defined if the
right hand side is

C is a strict braided monoidal category if moreover, for any objects A and B, there is an
isomorphism o4 g : A® B — B ® A, called braiding, such that:

e Vf:A—>B,g:C—D, (9af)ooac=0ppo(feg)
« oagBe = (0ac®idg)o (idyg®opc)
« oapwc = (idp®oac)o(cap®ide)
C is called strict symmetric monoidal category if moreover:
« VA, B € Ob(C), opacoap=idagn N

As announced, monoidal categories benefit from a nice graphical presentation, i.e.
with string diagrams [ ]. In string diagrams, objects are represented as wires (with
the object variable written as a label on the wires), and morphisms are represented as
a distinct symbol with input wires the domain and with output wires the codomain.
The generic symbol will simply be a box with the name of the morphism variable. For
instance, a morphism f : A — B can be written:

A
B

Notice, first, that we took the convention that the diagrams are read from top to
bottom. Secondly, notice that we label wires and boxes by respectively object variables
and morphism variables. This meta-notation allows us to treat for instance A® B as
either two objects side by side (which is the string-diagrammatic representation of the
tensor product), or as a single object. More generally, we have:

A |IC AsC A |C
fer = P and = =
B D BeD B |D

Since [ is a neutral element for ®, one can interpret it as “no wire”. I can be seen as
the empty space between and around wires. If a morphism h : I — A has domain 7, it

can be represented as:
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Of course, the composition o amounts to plugging two processes if the type matches:

The last axiom of the monoidal category is called the bifunctorial law or interchange

law and states that:
| | fiog
O = =
\f_zTﬁ \9_2'21

In a braided monoidal category, the braiding o4 p is usually represented by g /\\/ i

A B
/
o — B A . . 1.
and its inverse o ;'; by ) < 5 SO that <> = ‘A ‘B . The axioms of the braiding
N

are given by:

A®B/\\/C :Ai/ﬁc A/\\/B®C:A&C _

D 4 B

A B
Notice however that \Q # ‘A ‘B in general. When it does, we are precisely in
4

. . . . A B
the case of a symmetric monoidal category. In this case, 04 p is represented by 5 >< e

A B
so that = ‘A ‘B.

To use the graphical representation for computation, we have to make sure that it
does not allow to do less or more than the category itself. This is called coherence and
shown in [JS91, ].

Theorem 2.3.2 (Coherence for Monoidal, Braided and Symmetric Categories). A well-
formed equation between morphisms in the language of monoidal (resp. braided monoidal,
resp. symmetric monoidal) categories follows from the axioms of monoidal (resp. braided
monoidal, resp. symmetric monoidal) categories if and only if it holds, up to planar isotopy
(resp. up to isotopy in 3 dimensions, resp. up to isomorphism of diagrams), in the language
of string diagrams.

The graphical language is very interesting for making some axioms obvious. A first
example is the interchange law above. We give another example (which actually also
uses the interchange law):

Proposition 2.3.3. Let C be a monoidal category, and to morphisms f : A — I and
g: 1 — B. Then:

Jeg=gof=gof
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Proof » Using the axioms of monoidal categories, we have:

fog={(idiof)e(goids) = (idr®g)o (feid;)
=go f=(gwid) o (idre f) = (goidr)(idro f)
=gef

Pictorially, thanks to the coherence Theorem 2.3.2, we directly have:

%%

<

In an arbitrary strict monoidal category, the objects can be very different, so it is
important to keep track of the objects on all the wires, to make sure we are not mistyping.
This can quickly be cumbersome, although there is a case where this becomes useless:
if the strict monoidal category C is generated by a single object. This is the case for
instance in quantum circuits, where the wires can only represent a qubit.

These are, in a sense, the “smallest interesting (non-trivial) monoidal categories”. Let
us have a glimpse of what they look like. Let C be such a strict monoidal category.
First, as a monoidal category, it has an identity object /. For C to be non-trivial (since
I®1 = I), it should also have an additional object X. By the axioms of monoidal

n

——
category, X ® X should also be in C. Inductively, X @ ---® X for any n € N* should

Hﬁ <« . »
be in C. We may denote X¥%n .= X @---@X. Recall that I is “no wire”, whereas
X®n represents n parallel wires. Hence, it is customary to identify 7 with X®°. Such a
monoidal category, if it is strict symmetric, is called a PROP [ ].

" Definition 2.3.4 (PROP): A PROP is a strict symmetric monoidal category whose
objects are freely generated by a single object and ®.

Equivalently, a PROP can be defined as a strict symmetric monoidal category whose
objects are all natural integers N. a

Indeed, it suffices to identify X ©" with n. This is made even clearer with the conven-
n

——

tion that denotes the generating object by 1. Then n := 1®---® 1, and the morphisms
are of the form f : n — m with n, m € N. The identity on the object n is denoted id,,.
From now on we will not label the wires that represent 1. However, we may still use |”
to represent a bundle of n wires.

Example 2.3.5. The collection of quantum circuits can be seen as a PROP if the Swap
gate is allowed and taken to be o, ;. For instance, take the gate set (CNot, Swap, H,
Rz(«)). The quantum circuits built with it constitute a PROP where the morphisms are
CNot : 2 — 2,Swap : 2 —» 2, H : 1 — 1, Rz(a) : 1 — 1, and all the parallel and

sequential compositions of these gates. Notice that stating that it constitutes a PROP
gives an equational theory on the circuits. For instance, we have Swap o Swap = ido.
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We are getting closer to the focus of the thesis, since we can already define a category
whose graphical interpretation is a language for quantum mechanics. We can specify
even further though. Notice that even though the following definitions are refinements
over PROPs, many of the concepts are valid in some more general categories.

" Definition 2.3.6 ({-PROP): A category C is a {-PROP if it is a PROP such that for
any morphism f : n — m there exists a morphism f : m — n, and such that:

e idl, =idy
« (gof)f=flogl
(gef)f =g'e [l

- (=1

* O-IL,m - Um,n

Equivalently, C is a {-PROP if there is a functor { : C°® — C, compatible with ®,
which is the identity on the objects and which is an involution, i.e., T o T = id¢. J

There is now enough background to categorically define unitary morphisms, which
is in the core of quantum mechanics, as well as self-adjoint morphisms.

" Definition 2.3.7 (Unitary Morphism): A morphism f in a {-PROP is called unitary

if it is an isomorphism and if fT = f~!. J
" Definition 2.3.8 (Self-Adjoint Morphism): A morphism f in a {-PROP is called self-
adjoint if f = fT. a

The axioms of PROP (or symmetric monoidal category) allow us to move things
around, or loosing and straightening wires, but they do not allow us to bend them back-
wards for instance. If we want to have real freedom on how to move morphisms around,

we should be able to perform something like this: m = ‘ . This is allowed by
compact-closed PROPs.

" Definition 2.3.9 ({-Compact PROP): A compact-closed 7-PROP is a {-PROP with
two morphisms €, : 2n — 0 and 7,, : 0 — 2n for each object n, such that:

.« e =1

o (idy @ €2) 0 (N @idy) = idy = (6, ®idy) o (idy @ 1)

© Onp O =1

* a1 = (id@n, ®id) om 5

The last three equations are worth stating out using string diagrams. ¢, is usually
represented as \_/ " and 7,, as /" ,,. The ante-penultimate equation becomes



2.3. PROPs

o

o
o
o
o
[}

called the snake equations. The penultimate equation becomes

Q =N,
n+1m::1m

The presence of a compact structure, i.e. two morphisms ¢,, and 7),, that satisfy the
snake equations, allow for a very important result, called the map/state duality.

and the last one becomes

Proposition 2.3.10 (Map/State Duality). In any {-compact PROP, there exists an isomor-
phism fromn — m maps to) — n + m states.

Proof » Since we are in a f-compact PROP, there exist two morphisms 7,, and ¢, for
any n € N, which satisfy the snake equations. Then, for n, m € N, we define:

Hom(n,m) — Hom(0,m + n)

Yram f = (feid,)on,
, Hom(0,m+n) — Hom(n,m)
Yrm f oo (idpeen) o (foidy)

Pictorially: vy, ,, () = " and ¥, ( > !J n. We then check
m m

that v, ,, and ¢, ,, are inverse to each other (i.e. ¥y, ,, = ¥, m) making them isomor-
phisms:

w;,mown,m<> = o () - A"

for any f : n — m, thanks to snake equations. We similarly have ¢, ,, 0 ¢y, ,, = id. <

We now have all the overall structure we need. Before we dive into the different
interesting internal structure, we define functors between the different categories we

handle.

™ Definition 2.3.11 (PROP Functors): A PROP-functor /' : C — D is a functor be-
tween PROPs which is compatible with ®, that is:

« F(0)=0
« Vn,meN, F(n+m)=F(n)+ F(m)
s Vfin—=mg:p—q F(fog)=F(f)eF(g)
« F(onm) = 0r@m),rom)
A 7-PROP-functor F'is a PROP-functor which “commutes” with the -functor, i.e.:
CVf s m, F(fY) = F(f)!

A j-compact-PROP-functor further preserves the compact structure:
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« VneN, F(n,) = nrm)

|

Here, we did not describe how the functor transforms the object 1. In particular, it
is not necessary that F'(1) = 1, as one might want the functor F to act on objects as
F(n) = 2n for instance.

2.4 Monoids, Comonoids, and their Interactions

We are now interested in some particular structures that one can have in a PROP. All
the structures presented in this section are pretty common in monoidal category theory
[ ]. The simplest are the monoid and its dual, the comonoid.

" Definition 2.4.1 (Monoid): Let C be a PROP. A monoid is a pair of morphisms (u, v),
where p : 2n — n is called multiplication, and v : 0 — n is called unit, and such that:

« po(pwidy) = po (idy®p)
e po (veid,) = id,
« po(id,®v) =1id,
The monoid is called commutative if moreover:

* O Opn = -

With string diagrams, we usually represent the pair (i, v) by (\T/, T) The axioms

of a monoid are given by:

-1

and the monoid is commutative if:

weld -y

Example 2.4.2. Let B := {true, false} be the set of booleans. Let B be the full monoidal
subcategory of Set generated by B. This constitutes a PROP, where 1 := B, and with o
the usual swap of boolean variables: Vz,y : 0 — 1, 0y o (r®y) = y ® x. In this PROP,
we have in particular two arrows: @ : 2 — 1 which is the boolean XOR operation, and
false : 0 — 1 the boolean value false. Then, (@, false) forms a commutative monoid.

Remark 2.4.3. Notice that if {(\T{ 2n; — ni,Tz‘ 0 — nz)} is a list of monoids,

1<i<n

then <\T1)LT/” 22> ng =y oy, ?1 ?n 0= nz) is a commutative monoid.

A very important notion for the following is the the monoid in the dual category.
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™ Definition 2.4.4 (Comonoid): Let C be a PROP. A pair of morphisms (v, 7) forms
a comonoid if it forms a monoid in C°P. If moreover the monoid is commutative, the
comonoid is called cocommutative. 2

In terms of string diagrams, a pair of morphisms ( /A\ , * > is a comonoid if they

respect the upside-down version of the axioms of a monoid:

I I
S

Example 2.4.5. In the PROP B defined in Example 2.4.2, we have two arrows: copy : 1 —
2 and discard : 1 — 0, such that

Vr:0— 1, copyor = z®x and discard ox = idy

The pair (copy, discard) forms a cocommutative comonoid.

We now have two very essential structures in a PROP. In the following we are inter-
ested in how such structures can interact. The first is when they form a bialgebra.

™ Definition 2.4.6 (Bialgebra): A bialgebra in a PROP is a quadruple (u, v, v, T) such
that:

« (p,v) forms a monoid

« (v, 7) forms a comonoid

cvopu=(peou) o(ideo,,id)o (rev)

« VOU=VRUV

cTOU=TQ®T

« TOoU =1d a
With string diagrams, when they form a bialgebra, it is common to distinguish the

monoid and the comonoid by using two different colours. The quadruple (\T/, T, A, C|>)

is a bialgebra if (\T/, T) forms a monoid, < /(g\, A)) forms a comonoid, and:

””K - % <B2>/R SR <B3>E/ = b4 myl =17

Example 2.4.7. In the PROP B described in Examples 2.4.2 and 2.4.5, the quadruple
(b, false, copy, discard) forms a bialgebra. Indeed, xoring two booleans then copying
the result is equivalent to copying the two booleans first and then xoring each pair
of copies, copying the boolean false results in having two copies of false, xoring two
booleans and discarding the result is equivalent to discarding both booleans, and finally,
discarding a boolean that was just initialised to false amounts in doing nothing.
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Refining further on the bialgebra structure, we get the concept of Hopf algebra.

™ Definition 2.4.8 (Hopf Algebra): A bialgebra (u, v, v, 7) is called a Hopf algebra if
there exists o : n — n, called antipode, such that:

e po(a®id,)ov=vor=po(id,@a)ov N

Using string diagrams, if we represent the antipode « by +, then the axiom translates

A

Example 2.4.9. The quadruple (&, false, copy, discard) forms a Hopf algebra with an-
tipode the identity. Indeed, we already know it forms a bialgebra, and if we xor two
copies of the same value, the result is always false.

as:

The other potential interaction of monoids and comonoids is the Frobenius algebra.

" Definition 2.4.10 (Frobenius Algebra): A (commutative) Frobenius algebra in a PROP
is a quadruple (i, v, v, 7) such that:

+ (u,v) forms a (commutative) monoid

« (v, 7) forms a (cocommutative) comonoid

e (peid,) o (id,ov) =vou= (id,ou) o (veid,)
A Frobenius algebra is called special if moreover:

e pov=rid,

In the case where the PROP is a {-PROP, one can define a (special) (commutative) f-
Frobenius monoid as a pair (u,v) such that (i, v, uf,v") is a (special) (commutative)
Frobenius algebra. J

The last two axiom are made clearer when using string diagrams, where the colour
is taken to be the same for the monoid and the comonoid (the reason for this is given by
Theorem 2.4.17 in the following):

XAy
" § -

Example 2.4.11. This time, let B be the full sub-PROP of Rel generated by B := {true, false}.
Its morphisms are binary relations between tensors of 1 := B. One morphism of B’
is copy : 1 — 2 which relates any boolean to two copies of itself, ie. Vo : 0 —
1, (z,z®x) € copy. Together with the morphism discard : 1 — 0, for which Vz :

and the specialness:
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0 — 1, (z,idy) € discard, they form a comonoid (similarly to their counterparts in
Set). However, there are two more morphisms in B’, which we will denote respectively
by copy®? and discard®?, defined by:

Vr:0— 1, (rex,z) € copy® and (idy, z) € discard®®
The couple (copy®?, discard®”) forms a monoid, and actually, the tuple:
(copy®P, discard®?, copy, discard)

forms a Frobenius algebra.

Remark 2.4.12. A commutative Frobenius algebra on object 1 induces a compact struc-
ture, that is some ¢, : 2n — 0 and 7, : 0 — 2n that satisfy the axioms (id, ®¢€,) o
(n, ®id,) = id, = (e, ®1d,) o (id, ®n,) and o, o 1, = n,. Define for instance ¢,
inductively as:

€L:=TOou ie. V and €, :=¢€ 0 (idoe, 1 ®id)

o

and similarly 7,, as:

M =Vou ie. /I\ and 7, := (idon,_1®id) on,

The axiom o,,, o 1, = 7, is obviously satisfied by cocommutativity of ». The axiom
id = (€1 ®id) o (id @) is satisfied:

A

Similarly, the axiom (id®¢€;) o (n; ®id) = id is satisfied. It is then routine to show
that the generalised axiom (id, @ €,) o (1, ®id,) = id, = (€, ®id,) o (id, ®15,) is also
satisfied.

Conversely, we can suppose we have a compact structure that reacts well with our
multiplication and comultiplication, and see what we can get from here:

Remark 2.4.13. Suppose we have a monoid (i : 2 — 1,v : 0 — 1), and there exists
v:1— 2andn:0 — 2 (represented by () such that:

(peid)o (idon) = v = (idou) o (poid)  ie. \ﬂ - /L\ - ﬁ/

Notice that so far, the only assumptions on v are that it isa 1 — 2 morphism, and that it
satisfies the two equations just above. Then the Frobenius axioms can be deduced from
associativity of (u, v

A S
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We can even show that n = v o v:

A=
However we do not have a Frobenius algebra, for there is no counit (and hence no
comonoid). This can be patched if there exists 7 : 1 — 0 such that:

(Teid)on=v=(ideT)on ie. &) = f = (e

Then:

Lo

And similarly for the left counit. Coassociativity can be obtained thanks to:

A== A

Also, thanks to the previous remark, we can build a morphism € : 2 — 0 such that it
forms a compact structure together with 7.

This shows how closely related associativity and the Frobenius axioms are.

Remark 2.4.14. A Frobenius algebra is special iff = 9 Indeed, if the algebra is

special, this equation is obvious, but we can also recover specialness from it:

When working with a special commutative Frobenius algebra in a PROP - which is
a strict monoidal category —, it is tempting to do some simplifications.

" Definition 2.4.15 (Spider): In a PROP, the family (5™ : n — m),, ncy is called a
spider if:

V21, (idy 5 $6499) o (507 6 i) = st
e VE> 1, (s"HRM g id,) o (id, @ sPEFD) = s(ntpmtd)

« Ogm © gPtn.g+m) o Onp = g(n+pm-+q)

o s = 4d )
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In string diagrams representation, if 5™ is represented by x , then, for k£ > 1:

It so happens that the spiders capture the special commutative Frobenius algebras,
as spelt out in [ ] and graphically in [ ].

Proposition 2.4.16 (Normal Form). Let (i, be inductively defined as:

—~

v
Ho =V, fin = 10 (-1 ®1id) Le. fin =
Similarly, v, is inductively defined as:
Vo =T, Vp = (V1 @id)ov ie. U, = mﬁ\
——"
If f : n — m is a morphism generated from the special commutative Frobenius algebra

(,v,v,T), and the symmetric monoidal structure maps o,, ,,,, and if the graphical repre-
sentation of f is connected, then we have:

f=vmo ie. f=

Theorem 2.4.17 (Spider <+ Special Commutative Frobenius Algebra).

The family (Vy, © iy )n.men forms a spider family. Conversely, given a spider family (s™™
n = M) p.men, the quadruple (s*V 5OV (1.2 s(L0)) forms a special commutative Frobe-
nius algebra.

The axioms of a Frobenius algebra can be more powerful than (B1). Under the right
assumption, the axioms of Frobenius algebras implies (B1):

Proposition 2.4.18. In a Frobenius algebra (\?),r /L\, ‘) :

X-h- ¢
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Notice that any special commutative Frobenius algebra meets the previous condi-
tions, but it was already known from Theorem 2.4.17.

(]
o
o

Proof » [=:

<

2.5 PROPs for Quantum Mechanics

It is now time to apply the introduced notions to quantum mechanics. In [ ], the
framework of choice was the f-compact PROPs. This follows from the observation that
the Hilbert spaces of dimension the powers of some d and linear maps form a -compact
PROP.

" Definition 2.5.1 (FdHilb): We define FdHilb as the monoidal category of finite

dimensional Hilbert spaces. Its objects are C™ and its arrows are linear maps. The object

C"®C™ canbe seen as C"™, and if f = > a; |z;y;| and g = > b; |2} y| then f o g :=

> aib |z Kyi| -
This monoidal category is symmetric: forany n,m € N, ocn cm := > icqo,...n—1} |79){(4]]

j€{0,...,m—1}
are such that ocn cm 0 ocm cn = idgnm.

This serves as the framework for the categories where the dimension of the Hilbert
spaces are the powers of a single integer d.

" Definition 2.5.2 (Qudit, Qubit): Forafixed d, Qudit is the subcategory of FdHilb
restricted to objects of the form C* with k € N. When d = 2, the category is denoted
Qubit. 4

These are of course subcategories of FdHilb.
Proposition 2.5.3. Qudit is a f-compact PROP.

Proof » The objects of the category are C* for k € N. We denote k := C%", so that
n +m can be seen as C%" @ C?". Hence, the objects can be seen as generated by C. Let
us also denote B := {0,--- ,d — 1} so that {|0),--- ,|d — 1)} is an orthonormal basis
of C%. The identity on n is given by:

idy = > |z)z]

reB"
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The axioms of strict monoidal category are obviously satisfied. For the category to be
symmetric, we need a braiding that is essentially self-inverse. We define o, ,, as:

= > lya)ayl

reB™
yeB™

Then, if f = foy lyXz|and g = 3 g (W2

simplicity):
(g floo= (meygzw wy) le) (Z\yw ﬂ:y|)
=3 frgbew 0y 2]
= (D ly e ol) (D Fongou by wia 21)

=oo(fwg)

The other axioms of braided and symmetric monoidal categories are more easily satisfied.
It is then routine to show that Qudit is a {-PROP if (3 fo, |yXz))T := 32 Foy |2 )yl

It remains to prove that Qudit is compact-closed. Take 7, := > |z z). €, is
xeBn"
imposed by €, =} = > (zz|. The equation ,,,, 01, = 1, is obviously satisfied. The
reBn

snake equation also is:

(id, @ €,) 0 (n, ®1d,) = ( Z |m>(xyy|> < Z |z z w) w[) Z \z)x| = id,

x,yeB" z,weB™ reBn"
and similarly for the second equation. In conclusion, Qudit is a {-compact PROP. <«

We can now discuss the different structures (monoid, Frobenius algebras and f-
Frobenius monoids, bialgebras, Hopf algebras) in the category Qudit. A first result
shows that any commutative f-Frobenius monoid exactly corresponds to an orthonor-
mal basis in Qudit [ ].

Theorem 2.5.4 (-Frobenius Monoid <> Basis). Let (|i))o<i<a be an orthonormal basis
of C%, and p := > |i)ii| and v := Y |i). Then (u,v) forms a special commutative
T-Frobenius monoid.

Conversely, if (i1, v) forms any special commutative T-Frobenius monoid on object 1,
then there exists an orthonormal basis (|i))o<i<q such that u = > |i){i i| and v =Y _ |3).

Hence, using the Spider Theorem 2.4.17, together with Theorem 2.5.4, one can deduce
that spider families exactly represent orthonormal bases. We now want to extend the
notion of spider family by integrating morphisms that react well with the underlying
Frobenius algebra. This will lead to the notion of phase group. It is introduced in [ 1,
but we take in the following approach a detour to what we call the diagonal morphisms
(also called pre-phase in [ D).

™ Definition 2.5.5 (Diagonal Morphisms): Let (4, v) be a monoid on object n. A mor-
phism f : n — n is called diagonal (with respect to (u, v)), if:

o(fwid,) = fop=po(id,®[) ie. = -
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If f is a diagonal morphism that is unitary (i.e. f o fT = id, = f'o f), then f is called a
phase shift. J

Proposition 2.5.6. The set of diagonal morphisms (with respect to (i, v) on object n)
forms a commutative monoid with o, i.e. for any diagonal morphisms f and g, f o g isa
diagonal morphism, we have f o g = g o f, id, is a diagonal morphism, and obviously
foid, = f=1id,o f and o is associative.

As a consequence, the set of invertible diagonal morphisms forms an abelian group (or
commutative group).

The set of phase shifts (with respect to (j1,v)) forms an abelian group, called phase

group.

Proof » First, notice that for any diagonal morphism f : n — n there is a morphism
f':0— nsuchthat f = po(f ®id,). Indeed:

A

so f' = fow. Conversely, it is easy to check that for any f’ : 0 — n, then po (' ®1id,) is
a diagonal morphism (by associativity). The identity is obviously a diagonal morphism,
which is the neutral element for o. The composition of two diagonal morphisms is a

diagonal morphism:

As aresult, the set of diagonal morphisms forms a monoid with o. The monoid is commu-
tative by commutativity of p. The results for invertible and unitary diagonal morphisms
directly follow. <

Through this proof, we actually get a characterisation of diagonal morphisms. These
are exactly the morphisms that can be expressed as o (f' @1id,,) for f': 0 — n.

Now, back to the Frobenius algebras, it is fairly easy to see that we can extend the
notion of normal form in a special commutative Frobenius algebra.

Corollary 2.5.7. Let (u, v, v, T) be a special commutative Frobenius algebra on object 1.
If f : n — m is a morphism generated from the special commutative Frobenius algebra
(1, v,v,7), the set of diagonal morphisms {h;}; and the symmetric monoidal structure
maps oy, ., and if the graphical representation of f is connected, then we have:

pea
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Proof » The only technical point is to prove that if f is a diagonal morphism w.r.t. p,
then it is a “codiagonal morphism” w.r.t. v:

the rest is obvious by application of Proposition 2.4.16 and the axiom of diagonal mor-
phisms and the result of “codiagonal” morphism. <

We therefore get a natural extension of the spider families that include diagonal
morphisms.

™ Definition 2.5.8 (Extended Spider): Let A be the set of diagonal morphisms w.r.t. a

monoid (4, v) on object 1. The family of morphisms (sgn’m) 1N — M)pmen is called an

dEA
extended spider if:

o Wk > 1, (idy @ sl PY) o (s5 Y @id,) = s§m

k21 (s M @idy) o (idy @ s ) = sl

(p+n,q+m) _ (n+pm+tq)
° Ova © 86 © 0-"717 - 86
1,1
. S((; b = ) -

In string diagram representation, for £ > 1:

Corollary 2.5.9 (Extended Spider).
The family (Vy, © 0 © fi,)n,men, where A is the set of diagonal morphisms w.r.t. (f,v) on

JSTAN
object 1, forms an extended spider family.

Conversely, given A a set of morphisms, and an extended spider family (sgn’m) n —

M)n,meN, the quadruple (sl(fl’l), sgg’l), 3561,’2), sz(-cll’o)) forms a special commutative Frobenius

ISTAN
: : : 2,1) (0,1
algebra with A the set of diagonal morphisms w.r.t. (Sl(d ), sgd )).

The notion of extended spider was led by a type of morphisms that interact well with
a monoid. We give another example of morphisms that interact in a particular way with
monoids.

™ Definition 2.5.10 (Morphism of Monoids): Let (u, v) and (¢/, v") be two monoids on
objects respectively n and m. A morphism f : n — m is called a morphism of monoids
if:

®
fou=po(fef) and fov=1 ie. : and = T

If moreover n = m and (u,v) = (u/,v'), we call f an endomorphism of monoids. 4
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Notice that if f isinvertible, one can express one monoid entirely as the other monoid
together with f and f~!. Moreover, in this case the second equality is provable:

Interestingly, we can recover the definition of bialgebra by means of morphism of

(\TVT/ 29) gives x w and /o\ ® ¢ while stating that \T/ is a
morphism of comonoids between ( /é\ é) and ( % &é) gives A %

= O 0O . We can recover the last axiom by stating that o is a morphism of

monoids between <\T/ T) and (r__}, [__J)

We know how to characterise an orthonormal basis as a special commutative f-
Frobenius monoid, we have defined a family of morphisms that react specifically well
with a given orthonormal basis, and we have a compact way to express them by means
of spiders. We will show in the next sections how to build two graphical languages
for quantum computing: the so-called ZX-Calculus and ZW-Calculus; but before this
we want to discuss a particular property that such a language can have, and which is
directly related to the algebras explored previously.

monoids. Indeed, stating that is a morphism of monoids between (\?/, 0> and

2.6 Universality and Completeness

In the following, we are going to define and study graphical languages for quantum
mechanics. A graphical language L is a PROP, where the morphisms are string diagrams,
and are called diagrams.

™ Definition 2.6.1 (Graphical Language): A graphical language L./ R is a PROP L pre-
sented by a set of generators and a set of equations R together with a function [.] : L — §
called the standard interpretation of L/R in S.

L/R is said to represent S. L/ R is said to be sound if [.] defines a functor [.] : L/R —
S. 4

Hence, a graphical language for quantum mechanics if there is a function [.] from
the language to Qudit, which gives to all the diagrams an interpretation as a quantum
operator. We always consider that the standard interpretation is the identity on the
objects (i.0.0.).

If the language can represent any quantum operator, it is called universal.

55



2.6. Universality and Completeness

O O 0

™ Definition 2.6.2 (Universality): For a fixed d, a graphical language L for qudits is
called universal if:

Vf e Qudit, 3D e L, [D]=f

Equivalently, L is universal if the functor L Ur Qudit is full. J

Notice that L is universal should be equivalent to [.] is surjective. However, since the
standard interpretation [.] is i.0.0., and since N = Ob(L) = Ob(Qudit) by definition
of PROPs, [.] is full <= [.] is surjective.

In general, two different morphisms can represent the same quantum operator. This
is dealt with by the set R of equalities between diagrams, that can be applied locally.
Such a set is called a monoidal theory or an axiomatisation, and it defines an equivalence
relation between morphisms. If D; is equivalent to D5 under this equivalence relation,
we may denote R = Dy = Dy, and we have:

RI_D1®D:D2®D

. RFD®D1:D®D2

Rl_DloD:DQOD

e REDoDy=DoD,

for any diagram D whenever it makes sense.

Obviously, for a given set of generators, different axiomatisations can yield different
languages. This is why we denote a graphical language as L/ R. This can also be seen as
the language obtained by taking the diagrams of L modulo the equivalence relation R.

The completeness is a crucial question for a graphical language.

™ Definition 2.6.3 (Completeness): Let L/ R be a graphical language for quantum me-
chanics, with standard interpretation [.] : L/R — Qudit. We say that L/ R is complete
if for any two diagrams D; and D,, we have:

[Di] = [Ds] = R+ Dy =Dy

Equivalently, the language L/ R is complete if the functor [.] is faithful. N

This is fundamental. If the language is complete, then whenever two diagrams rep-
resent the same quantum operator, they can be turned into one another solely using the
axiomatisation R. It means the language completely captures quantum mechanics, and
any computation can be conducted entirely inside the graphical language.

The notion of completeness can be extended to sub-PROPs of Qudit (i.e. subcate-
gories of Qudit that are also PROPs). However, one has to be careful that some of these
sub-PROPs do not allow approximate universality.

" Definition 2.6.4 (Approximately Universal Sub-PROP):
Let C be a sub-PROP of Qudit. C is approximately universal if:

Vf:n — m € Qudit, (g, : n — m)yen € CY,
Ve>0,INeN, (p=N) = ([[f —ug)ll <e)
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where ¢ : C — Qudit is the inclusion functor, and with ||.|| defined in Section 1.3. In
other word, C is approximately universal if its morphisms can approach any morphism
of Qudit with arbitrary precision. J

This is permitted because the arrows of Qudit form a topological space.
In the thesis, we will mainly be interested in the category Qubit and languages that
represent it. An important sub-PROP of Qubit is Stab.

" Definition 2.6.5 (Stab): Stab is defined as the sub-PROP of Qubit whose mor-
phisms are generated by:

o SO m= 00" i |1 )17
« H:1—1:=|+)0]+ |—-)X1| 4

This PROP is a {-compact PROP (one can recover the compact structure of FdHilb
for instance with 7 := (S(D @ S(hV) 0 §1:2) 0 SOV and € := nf) . It is very close to the
stabiliser or Clifford group in the following sense: It is equivalent to a scaled stabiliser
group with initialisation and post-selected measure.

Proposition 2.6.6.

Vf:n—meStab, 3g € Cp,x € C, [ = (idy(0P™|) 0 go (id, @ [0°™))

Proof » We are going to proceed by induction. We need to show the result on the two

generators S(™™) and H, and then on the two compositions o and ®. Since the result

will be proven to be preserved by compositions, we can break S™™ into smaller parts.
Let us first define the following morphisms:

= (SEV) o 5 vi= (S1D)? o 5O
y = S0 o (S 7= 500 6 (50:0)?

One can notice that (u, v, v, 7) forms a Frobenius algebra. We can define y,, and v, for
arbitrary n by:

Ho =1 fn1 = o (pn ®1id)

Vo =T Vi1 = (Vp@id)ov

, so that (™) =
1,1)

One can check that p,, = |0)(0"| + [1)(1"| and v,, = [0™)0] 4 |1™)1
U 0 S0 o . Now instead of showing the result for .S (nm) e can show it for S¢
i, vV, v and T.

Remember that the gate set (CNot, Rz(7), H) exactly synthesises the Clifford group.
H and S are already in C}. One can check that:

p = (id® (0]) o CNot
v = CNot o (id @ |0))
v =2H |0)
T=v2(0|H
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which means that H, S, i, v, v and 7 are of the form  (id,,, © (0P~™"|)ogo(id,  |0P™™))
with ¢ Clifford. It remains to show that the two compositions preserve this structure.

g

Suppose f; = z; |:

m;

| Op1+p2—(n1+n2) >

[91
[92

<0P1 +p2—(mi1+m2)

where | <€ Cpyiprom, if gi € Cp,.

0P1+p2—(n1+n2)
]| ) %< >
I I
=z 9 | | 92 | = T2 | 92 |

g1 | |
|<OIL1—m1 || |<0112—m2 ‘|
<OP1+p2—(m1+m2)‘

where[ 91 || 92 | € Cpyp if gi € Cp,. Hence, by composition, S™™ can be

put in the wanted form, and by induction, any morphism of Stab can be put in this
form. <

Stab is not approximately universal. If it were, then so would be the Clifford group.
In this thesis we will also be interested in another sub-PROP of Qubit.

" Definition 2.6.7 (Clifford+T): Clifford+T is defined as the sub-PROP of Qubit
whose morphisms are generated by:

o T 2 — m = |0MY07] 4 €73 [1m )17
« H:1—1:=|+X0|+|—X1| 4

Again, this PROP is f-compact, and it is equivalent to a scaled Clifford+T group
with initialisation and post-selected measure. As we will show in Section 3.10 (Theo-
rem 3.10.2), this sub-PROP is approximately universal, though it can be inferred from a
analogous result on quantum circuits [ ].

We can also define a whole family of sub-PROPs of Qudit, indexed by a ring R.
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" Definition 2.6.8 (Qudity): Let R be a subring of C. Qudity is the sub-PROP of
Qudit, such that its morphisms are linear maps of the form ) f,, |y)(z| where f,, €
R. J

Remark 2.6.9. If R is closed under conjugation, then Qudit is T-compact. Of course, if
R is dense in C, then Qudit is approximately universal.

Proposition 2.6.10. Clifford+T = Qubitz[%yeig]

Notice that it makes Clifford+T approximately universal. Again, this proposition
will be proven in Section 3.10.

In the two following sections, we are going to define two graphical languages for
quantum computing, which will use the previous structures ((co)monoids, bialgebras,
Hopf algebras, Frobenius algebras ...). Although these were defined in the general case
on any object, in the following graphical languages, they are defined on object 1.

2.7 The ZX-Calculus

The premise of the ZX-calculus follows logically from the previous work on orthonormal
basis. This language depicts how two such bases interact. To do so, we need to carefully
select the them. Since we want to capture the most of quantum mechanics, it makes
sense to take them as “far apart” from each other as possible.

" Definition 2.7.1([ ] Unbiasedness, Complementarity): Let {|¢) }; be an orthonor-
mal basis of C?. A quantum state |)) on C? is called unbiased w.r.t. {|i)}, if:

VIi), 1), 1) =1 [9) ]

Two orthonormal bases are complementary or mutually unbiased if each vector of one
basis is unbiased w.r.t. the other. J

More informally, a state is unbiased w.r.t. a basis if measuring the state in this basis
yields all the states in said basis with equal probabilities. The two mutually unbiased
bases each form a f-Frobenius monoid, and their interaction yields an interesting struc-
ture [ , ], which is a variant of structures seen in Section 2.4.

" Definition 2.7.2 (Scalar, Scaled Algebra): In a PROP, we call any morphism x : 0 —
0 a scalar. It is called invertible if there exists a scalar ™! such that k ® k™ = id,.

We say that some tuple ( fo®kq, - , fn®K,) of morphisms f; with invertible scalars
ki 0 — 0 forms a scaled algebra if (fy, - - , f,) forms an algebra. Such an algebra can
be a monoid, a bialgebra, a Hopf algebra, a Frobenius algebra, ... a

Proposition 2.7.3 (Complementarity <> Bialgebra/Hopf). Let (jie, Vo) and (iie, ve) be
two special commutative T-Frobenius monoids representing complementary bases in Qudit.

Then, both (jie, Ve, 11, U3) and (jie, ve, 11, v3) form scaled bialgebras.
Furthermore, vo = (Ué@id) o pb o ve and vl = vl o pe o (ve ®id) if and only

if (pto, Vo, p1b, US) forms a scaled Hopf algebra with antipode o = ((UCT, o Llo) ®z’d) o
(Zd ®(,Ui e} UQ)) .
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Let us first see what the resulting equations are, and we will try to fix the scalars in
the morphisms afterwards.

If we represent (e, Vo, me Ug) as (%)/, ﬁ), /A)\, 6) and similarly for (e, Ve, b, Ui)
the first scaled bialgebra we get is given by:

T-080 A-ee 2o e

The second result of Proposition 2.7.3 states, with the right scalars, that:

33@-@;) : — ¢E’and?/’b
where @ :% represents the antipode.

Notice that the compact structures induced by (110, Vo) and (fie, Ve) are mixed in the
condition for the Hopf algebra, as well as in the antipode. When the two coincide, that is

when g\ = /I\’ then we directly get that (e, ve, e Ui) forms a scaled Hopf algebra

with antipode the identity. However, the two do not coincide in general [ ], but if
d = 2 (i.e. we are in Qubit), then they do.

Notice also that we ignored temporarily the scalar equation of the bialgebra. This is
merely because it uses a non-trivial scalar. Let us define ye, and ,uin as in Proposition
2.4.16. Then define the scalar ¢, := UI, O lley © uin o ve. Using the spider notation, this

scalar is represented as .
O

Then, in Qudit, we have:

d—1
—~
d—1 - . —
This equation basically gives an inverse of ¢; for @. Let us write ¢;' 1= ¢/ %@z 1.

Then, all of the scalars in the previous scaled bialgebras come from the fact that
(o1, VoS, b, US)

forms an actual bialgebra.

The ZX-Calculus is then a calculus of two interacting mutually unbiased bases, Z
and X, with phases for both. The reason for taking phase shifts and not more generally
diagonal morphisms is two-fold: first, it is driven by quantum mechanics, where the
operators are unitary; second, the phases form a group, which is easier to manipulate
than a monoid. Particularly, every phase shift has a dagger that is also a phase shift.

In the following, we restrict the language to the qubit case, that is, when d :=
dim(#H) = 2. In this case, the two compact structures coincide, and the phase shifts
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w.r.t. the basis {]|0),|1)} are of the form ¢ (|0)0] + €™ [1)(1]). The global phase ¢ is
sometimes ignored, and it turns out, it can be represented otherwise:

e = ((+*] + (=2) (10%) + [1%)) ({+] + € {~[) (10| + €™ [1)1]) (10} + [1))

so we only give a generator for |0)(0] + €' |1)(1], and we identify it with «, the value of
the phase shift. Of course, we do this for both bases.

Proposition 2.7.4. Two mutually unbiased bases, {|0),|1)} and {|+),|—)}, together
with their respective phase shifts, are sufficient to create a language that can represent any
linear map in Qubit.

Proof » First, notice that we can represent any complex number pe® € C: there exists
n € Nand v € R such that pe? = 2"*! cos () e, which can be represented by:

[(CO]+ (L0} + [I))]F™ ((H] + e (=)(|0) + e [1))((+] + €™ (=1)(|0) + € [1))
Also, any unitary can be represented. (CNot, R, H) is a universal set of gates for uni-
taries, and each of these gates can be implemented:

CNot = (([0X00] + [1X11]) @ id ©((0] + (1])) (id @ (|++)X+| + |==X=D e(+) +|-)))
Ryz(er) = [0X0] + ™ [1)1]

H = e7"5 (J0)O0] + 2 [N (+X+] + 2| =)= (0)XO0] + 7 [1)1])

Now, let [¢/) : 0 — n be an n qubit state, i.e. [1)) € C*". Then, there exists a uni-
tary U : n — n such that |¢)) = ( L ]W}\) U+/2" |0™). Tt can be represented since

7
(ﬁ ||@ZJ>|> € C, U is unitary, and v/2" [0") = (|+) 4 |—=))®".

Finally, given an arbitrary map D : n — m, wehave D = (id,, @ €,) ([(D ® id,,)n,] ® id,),
where €,, and 7),, are the morphisms obtained from the two bases thanks to Remark 2.4.12
and the fact that in the qubit case, these compact structures coincide. Since (D ® id,, )7,
is a state 0 — n + m, it is representable, so D is representable. |

However, we add to the language one last generator: the Hadamard gate H. This
generator comes in handy for it allows to transform one basis into the other. As seen in
the proof of Proposition 2.7.4, it can be written as a composition of phase shifts [ ]:

H = e (J0Y0] + i [L)(L]) o (|4 )(+] + i [=X~]) o (10)0] + 14 |1)1])

Notice that H qualifies as an involutive morphism of monoids: it allows to change the
basis {|0),[1)} to {|+),|—)} and vice-versa, so H* = id.

We finally have all the generators of the ZX-Calculus, and we can now give a formal
definition [ , ].

" Definition 2.7.5 (ZX-Calculus): The qubit ZX-Calculus, or ZX, is a {-compact graph-
ical language that represents Qubit, with the following set of generators and their
string-diagram representation:

« RV () in—m ><oe
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« RV () in—m Xa

-H:1—>1::+

Where o € R. The PROP structure is provided by o : 2 — 2 :: »<; and the compact
structurebye:2 -0\ andn:0— 2 M\
The functor 7 is such that:

- (B (@) = B (-a)

n,m f m,n
- (Be™(@) = AP (o)
«H =H

The language comes with a PROP-functor [.] : ZX — Qubit, called the standard
interpretation, and given by:

- [RE™ @] =10+ e iy

[ )] = i) + e =

[H] = [+)0] + [=)X1]
el = > 17wl

i,j€{0,1}

[7] = 100) + |11)

[e] = (00] + (11

Whatever the axiomatisation chosen for the ZX-Calculus, we always consider that when-
ever two diagrams are isomorphic, then they are equal. J

By convention, when the parameter of R, or Ry is 0, we may omit it.

Remark 2.7.6. We did not give a specific monoidal theory to the language yet. This
omission is conscious. The axiomatisation varies from one restriction of the language
to the other, hence several will be given throughout the thesis. Of course, the study of
the algebras in what precedes was not done in vain. Most of the axioms for Frobenius
algebras and Hopf algebras will be found in every axiomatisation.

What always appears in a ZX-axiomatisation is that two isomorphic diagrams are
equal. Take it as a feature of the language so important that it is part of the “freest”
version of the ZX-Calculus considered. This captures essential equations of {-compact
PROPs, but also things like:

A (e
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Remark 2.7.7. The ZX-Calculus does not only have a morphism of monoid, H, but also

two non-trivial endomorphisms of monoid. Indeed +7r is an endomorphism of monoid

for (%)/,ﬁ)) and similarly ¢w for (\’/, ?) This trait appeared in early axiomatisa-

tions, but was proven to be derivable from other axioms [ ].

This language is universal for Qubit [ ], although it is interesting to study some
of its restrictions, called fragments.

" Definition 2.7.8 (Fragment of the ZX-Calculus): Let F' be an additive subgroup of
R. The fragment F' of the ZX-Calculus is the restriction of the language where the mor-
phisms are generated by {R(Zn’m) (), Rg?’m) (o), H | @« € F'}. We may write the resulting
language ZX[F']. Also, if F is generated by a finite set of numbers {ay, - - - , a,, }, we may
denoted ZX[ay, - - - , a,] the resulting language. By contrast, ZX is the unrestricted ZX-

Calculus, i.e. where the angles are in R. J

Of course, axiomatisations can be applied to fragments of the language, provided
all the phase shifts in the set of rules are part of the fragment. We hence denote by
ZX|F|/R the language resulting of the equivalence relation R applied to the fragment
F of the ZX-Calculus. In this case, when an axiom of R displays unconstrained phase
shifts (see e.g. (S) in Figure 2.1), it is assumed for all the phase shifts in the fragment F..

A first example of an axiomatisation of the ZX-Calculus is the set of rules ZX/,, given
in Figure 2.1. This axiomatisation, partially introduced in [ ], completed in [ ,

], and simplified in [ ], was proven to be complete for ZX[7] [ ].

0 ﬂ ® >C<ﬁ * o @ ¢
YR 3% & X & I
(H:D)g H (H) >O< Xl

Figure 2.1: Set of rules ZX/, for the Clifford fragment of the ZX-Calculus. The right-

hand side of (IV) is an empty diagram. (...) denotes zero or more wires, while (.-")
denotes one or more wires.

[SIE]

Theorem 2.7.9 (Clifford ZX). The language ZX|[7]/ ZX.), is complete, i.e. the functor
[.] : ZX[5]/ ZX+/, — Qubit is faithful.

The proof uses a particular notion of states, known as graph states [ ].

" Definition 2.7.10 (Graph States): The set of graph states is a set of particular sta-
biliser states generated by
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» Swap : 3 [ji)ij]

» CZ: 3 (=1)7 |ij)ij]
Any graph state can be represented by a graph G := (V, E') where V is the set of vertices
and E the set of edges of GG. Each vertex represents a qubit initialised in |+), and each

edge between vertices v; and v, represents a CZ applied on the two qubits represented
by v; and v,. We denote the resulting state |G). 4

Sketch of Proof 1> First, thank to the map/state duality, one can consider only the states
in ZX[7]. The graph states have a nice interpretation in ZX. If G := (V, E) is a graph,
we can build a ZX-diagram D¢ as follows:

« Each vertex in G is a green node with scalar § in Dg connected to an output.

+ Each edge between v; and v, in G is a wire with + 3 between the corresponding

nodes.

For instance, if G = : ; \_, then Dgs = ;ﬁ ; 5. Of course, the

diagram is built so that [D¢] = |G).

Through a strategy known as pivoting [ ] that uses the rules of ZX/,, one can
reduce a diagram of ZX[7] to a graph state with additional 1-qubit morphisms on the
outputs. These morphisms are identified as being elements of ('}, i.e. the stabiliser of the
one-qubit Pauli group G;.

This reduced form is not unique, but it is up to local complementations, which are
derivable using the rules in ZX/,. In ZX, a local complementation is the following trans-
formation:

where N (v) denotes the neighbourhood of node v and N (v) the complementary of the
subgraph N (v), that is u; and uy share an edge in N (v) iff they do not in N (v). N

X|[3]/ ZX4), is complete, however the diagrams of ZX[7] exactly represent mor-
phisms of Stab [ , ].

Proposition 2.7.11. The functor .| : ZX[7]/ ZX.), — Stab is full and faithful.

Hence, this language is not (approximately) universal for quantum mechanics. Ac-
tually, it has been proven that this axiomatisation does not make the unrestricted ZX-
Calculus complete [ ].

Theorem 2.7.12. The functor ZX/ ZX.;, — Qubit is not faithful.

Because of this, one might want to find a middle ground: a complete axiomatisation
for an approximately universal fragment of the ZX-Calculus. Such a fragment would
allow for computational speed-ups, while at the same time simplifying the search for a
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complete axiomatisation. A natural candidate for such a fragment would ZX[7], for the
functor ZX[7] — Clifford+T is full, and Clifford+T is approximately universal.
A first partial answer was found, for one-qubit Clifford+T unitaries [ ].

Proposition 2.7.13. Consider two morphisms f : 1 — 1 and g : 1 — 1 generated by
binary operators of ZX[7] i.e. by (R(Zl’l) (m/4), Rg’l)(ﬂ'/ll), H), and consider the equation:

£$: (K) i; ;:

[f1=19] = ZX)t®F f=g
where ZX/+(K) denotes the set of rules ZX~/, enriched with the equation (K).

Then:

One of the main results of the thesis is to provide a complete axiomatisation for
the many-qubit Clifford+T diagrams. We will also explore some other languages and
axiomatisations. Every time, a first step towards completeness will be to recover one
known axiomatisation from which some useful lemmas can be derived. The simplest ax-
iomatisation of the ZX-Calculus is not for the Clifford fragment, but for the real stabiliser
[ ]. In this axiomatisation, denoted ZX,, the only novelty is that (HD) is replaced

by:
P (P?L)@g

ie ZX; :=7ZX.;, \{(HD)} U {(HL)}.

Most axiomatisations for the ZX-Calculus (all of those that are presented in this the-
sis) have the axiom (H), and are powerful enough to prove that o is involutive, i.e. $ = ‘

. In this case, colour-swapping preserves the equality.

Proposition 2.7.14. Let F be a fragment, and [.]°7° : ZX[F] — ZX[F] the interpreta-
tion inductively defined as:

‘H‘ M =M A =< = X<

D2 o Dl — [[DQ]].HO o [[Dll].Ho Dl & D2 — [[Dl]].Ho ® [[DQ]].HO

If an axiomatisation R is such that R - (H), <$ =

) , then:

Rb Dy =D, < RF [D]*7° = [D]°"°

Proof » We can show inductively that for any ZX[F]-diagram D, R + [D]*° = [D|:
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%
n e~0 n n
e RF e = a = a

« RF[Dso D1H.<—>. _ [[DQ]].H. ° [[Dl]].H. _

« RE[D1oD]*° = [Di]*° e [D]*7° =

Then, if R = Dy = D,, we obviously have:

R}_HDI]]M—)O _ @ _ @ _ HD2]]O<—>O

This is the case when (H), (I,) and (I,) are given in the axiomatisation:

Lemma 2.7.15. If R F (H), (I,), (I,), then colour-swapping preserves the equality, since:

$<Ir>$(ﬂ>+ag>‘

and thanks to Proposition 2.7.14.
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In all the axiomatisations that we are going to give in this these, colour-swapping
of diagrams generated by R, Rx and H can always be proven. Hence, when referring
to an axiom or a lemma, we will either signify the equation itself, or its colour-swapped
version.

Then, we provide in Figure 2.2 some useful equations between ZX-diagrams as well
as their dependencies. If there is an arrow eq; — eq,, it means that eq; is used to derive
eq,. The spider rules (S) and (I), the colour-change rule (H), which together with (I)
allows for colour-swapping, and the biagebra rule (B), are always supposed to be in the
axiomatisations.

Proposition 2.7.16. In an oriented graph, let us denote '~ (v) the incoming neighbourhood
of vertexv. In Figure 2.2, for any eq in the set of vertices, either ' (eq) = () and the equation
is considered as an axiom for its neighbours, or eq is derivable using I'~(eq) (assumed as
axioms), and rules (S), (B), (I) and (H), i.e.: (S), (B), (I), (H), '~ (eq) F eq.

Remark 2.7.17. Notice that having a cycle in the graph (between (CP) and (Hopf)) is not
a problem. This simply means that in a setting where one has (S), (I), (B) and (H), then
(CP) and (Hopf) are equivalent.

° (388 (CP) g g é(Hopf) Q

(IV)

1] =7
w-J

(1)

T-% = ﬁ)c’;% 22 2; (:r)2 3Z+ﬁ

/

(HD) (HL)\,Kr B Fg&)ﬂ (K)\>2a @3
R ey

Figure 2.2: Lemmas and their dependencies. | 1 |represents any non-empty diagram such

that Hﬂ = 1. (S), (B), (I) and (H) are assumed.

Proof of Proposition 2.7.16 »
* (8), (D), (B), (CP) - (Hopf):

FEER--FE - FH R
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* (5), (@), (B), (Hopf) - (CP):

IA@Ii @I%I@)I@Lmﬂﬁﬁ? 511

e For the proof that (S), (I), (CP), (Hopf), (Ig) F (IV), notice that in (Ig), if | 1|is non-

empty, there exists a diagram 1’ such that = . Indeed, there is necessarily
at least one wire in , because the only non-empty, wireless scalars are Rg)’o) (o) and
Rg((),o) (a), both of which have interpretation 1 + ¢’ # 1. Hence, one can use (I,) and (S)
to create the node ? : ‘ = +/. . Then:

I@I@ﬁ(@)g(Hopf) izlﬂ‘

¢ (S),(CP) I (s2):

38 -3 > 005 e

e (HD), (S), IV), (Hopf), (H) - (HL):

First: .
oo’ g
@: (HD) 2 - (@) é ::@ (Hon) 7r (2.1)
Then:
:E <§) Y@: (cp) ::§ (21) ?: c») ﬁ ) : 22)
Hence:
QEP o660
(@) @: @: (P) : : : @@ (;2) @@ ) : (2.3)
Finally:

8¢ 82
Q: (21) or (23) o @)’
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* (B), (H), (S), (Hopf), (HL) I- (wdist):

imI%@I%@):@I (2.4
@%II AR

ia e st A

e (HL), (CP), (H) F- (s):

—~—

o »»
=z

AT AR

¢ (S), (CP), (H), (mdist) F (s+):

o _es s 38
o @B (5 T @ (rdist) ) at+B
o

(CP)
(H)

=)

® (S), (K), (CP), (s+), (IV), (sm) = (scv):

L : § < §§ T

o (H), (HD), (S), V), (CP) - (|#))

—@
vl
ZI
)
vl
E I
(V)
o0 .
@8 I
—0
NE] .
oS Ris

<

Moreover, the two axiomatisations ZX/, and ZX; allow multiplication of all the

phase shifts by —1:

Lemma 2.7.18. For an arbitrary fragment F, let [.] | : ZX[F| — ZX[F] be the inter-
pretation that multiplies all the angles by —1. Then:

YDy, Dy € ZX[Z], ZX.p b Dy =Dy <= ZX.pk [Di] , = [Ds]

VDl,DQ € ZX[T(], Z)(7r F Dy =Dy <+— ZXﬂ— F HDl]]—l = [[DQ]]_I
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Proof » We can show that all the axioms hold under interpretation [.] ;. All cases
except (HD) in ZX/, are trivial. Thanks to Proposition 2.7.16, ZX/, I (wdist), hence:

(VB
VB
|
SR
13
|
vl

SIE|
|
(V]

<

Remark 2.7.19. In the ZX-Calculus, we consider the angles to be in R /27Z, although it is
actually provable provided we have the adequate axioms or lemmas (in particular (HL)

and (Hopf)):

SR I REIE @22 o 3T

2.8 The GHZ/W-Calculus

Contrarily to the ZX-Calculus, the two interacting monoids in the GHZ/W-Calculus are
very different. The generators of the language are initially motivated by equivalence
classes of entanglement on three qubits. It was later shown that it formed a fitting lan-
guage for fermionic quantum computing [ ].

™ Definition 2.8.1 (LOCC, SLOCC): Let |¢) and |¢) be two states on 1 qubits. We say
that |¢)) and |¢) are LOCC-equivalent if one can be turned into the other by application
of local unitaries, that is, the tensor product of one-qubit unitaries: U = Uy ... U,
with UU; = id for all i.

If we drop the unitarity requirement (but keep invertibility), we get the SLOCC-equi-
valence: The two n-qubit states |1)) and |¢) are SLOCC-equivalent if they can be turned
into one-another by invertible local operators: O = O; ®...® O,, such that all the O;
are invertible. 4

Notice that SLOCC is more permissive, and hence results in a smaller number of
equivalence classes. Yet, this number is infinite for states on 4 qubits and more. A state
on two qubits can either be entangled or not. There is only one equivalence class for
each case. For a three-partite entangled state, however, there are two classes of states
that are entangled on three qubits [ ]. Representatives of these two classes are the
so-called GHZ state |000) + [111), and W state |001) + |010) + |100).

The GHZ/W-Calculus was hence introduced as a graphical language making these
two classes interact [ ]. In[ ], the language was made complete for a non-
universal sub-PROP of Qubit, and later was made complete for Qubit (and actually
also a lot of its sub-PROPs) [ ]. Although an embryo of the language exists for
qudits [ ], here, we only give its description for qubits.

First of all we need multiplications and co-multiplications, given by the states GHZ
and W. It suffices to use the map/ state duality to get them, e.g.:

/Y\J Where represents the W state, and \_/ represents the projector
00\ + (11].

70



Chapter 2. Categorical Quantum Mechanics

(o] © © @

[
[
o

Concerning the GHZ state, notice that it yields an already known multiplication,
represented \?/: p = 1000

|0) + |1), represented ? , it forms a {-Frobenius monoid. It also has diagonal morphisms
of the form s(|0)}0| + r|1)(1|). We ignore the global scalar s, and only give a generator
for |0)X0| + r |1)(1] that we identify with r. This leads to an extended spider of the form:

+ |1)11| after map/state duality. Together with v :=

A

%
Notice here that the choice was made to take an arbitrary complex number r as argu-
ment (actually an arbitrary ring element), instead of a phase. As a result, the diagonal
morphisms are not necessarily phase shifts, however this choice simplifies some calcu-
lations, such as the normal form of a ZW-diagram.

The second monoid is formed from the W state. Notice that the W state is the sum
of the three 3-qubit states of Hamming weight 1:

001) 4 ]010) + [100) = > |x)

re{0,1}3
|lz|=1

where the Hamming weight |s| of a string s is the number of non-zero symbols in s. It
is then fairly natural to define 1- and 2-qubit W states as |1) and |01) + |10). These will
help define a monoid. Indeed, if we take the following string diagram representations:

o: 1) $: 0)(1]+ [1X0) ' 0)(01] + 10)(10] + [1X00)

then the pair (}/, ;) forms a monoid. We also define the upside-down version of these

three generators as representing the transpose of the associated linear map. It is actually
possible to define a degenerate version of a spider family that fits the W states.

Notice that + is an involutive endomorphism for the monoid ( \?/ ) ? ) , and more

i3

The W-monoid does not define a {-Frobenius monoid. This is a first hint to the fact
that the interactions of the two structures are not usual. For instance, the two pairs

(#{;) and ( A, *) satisfy the axioms of Hopf algebras with identity as the an-
tipode:

? ¢ ¢
ETII SETI &
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Notice however that it is not a proper Hopf algebra, for ( A, i ) is not a comonoid.
Now, because (\;j, ?) is not a {-Frobenius monoid, we have not specified how it

reacts with < /i , i ), although two equations have already been found above. These
A\

seem to indicate that there is some sort of bialgebra between the two. However it does
not function with the usual swap o. Interestingly, there exists a “degenerate” swap o’ :

2 — 2 such that (\;/,* /*\ , *) satisfies the axioms of Hopf algebra with antipode
[ ]
b
® ®
([ ]
®
¢ ¢ ¢ ¢

Again, this is not a proper Hopf algebra, for ¢’ cannot be considered as a proper swap.
For the biagebra to function, ¢’ must represent the map [00)00| + |01} 10| 4 [10)01| —
|11)(11] = >°(=1)¥ |ji)ij|, and it does not satisfy all the axioms of PROP. For instance,
o' on # nandin general (id® f) oo’ # o' o (f ®id). It does satisfy, however, equalities
that are known as the (modified) Reidemeister moves:

In the following, the morphism ¢’ will be denoted XX .

™ Definition 2.8.2 (ZW-Calculus): The qubit ZW-Calculus, or ZW, is a f-compact
graphical language, with the following set of generators:

. Z("’m)(r) n—=m:: >:<"

. W(”’m):n%m::x

-0’:2—>2::X,<

where » € C. The PROP structure is provided by o : 2 — 2 :: ><; and the compact
structurebye:2 -0\ andn:0— 2 M\
The functor 7 is such that:

o (Z2mm ()t = Zmn) ()
o (WEm)F = pyimm)
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The language comes with a PROP-functor [.] : ZW — Qubit, called the standard
interpretation, and given by:

- [Z20m ()] = 10mX0"] + 1K1

s ] =X eyl

ze{0,1}™
ye{0,1}"
|z-y|=1
s fo'l= X (=175
i,5€{0,1}
« ol = > |jiXisl
i,j€{0,1}

[7] = 100) + |11)
* [ef = {00] + (11]

where = - y is the concatenation of x and y, and |.| is the Hamming weight, i.e. the
number of non-zero symbols in a word. Hence, = 1 means that there is only one
symbol 1 in both x and y.

We can consider fragments of the PROP where the parameters of Z(™") are restricted
to a ring R C C that is closed under conjugation. Such a fragment will be denoted
ZW |R). To each is associated an axiomatisation ZWg, given in Figure 2.3. J

Here, we cannot use the result that every graph isomorphism between diagrams pre-
serves the semantics if we consider the nodes as non-oriented, precisely because ¢’ in

some sense has to be considered as a swap. Particularly, >O< # Q However, what re-

mains true is that any graph isomorphism between two o’-free ZW-diagrams preserves
the semantics. Alternatively, if ¢’ is understood to be an oriented node, any graph iso-
morphism that respects the symmetries of o’ preserves the semantics.

The axiomatisation presented here has been sightly simplified from the one found in
[ ]. Particularly, the rule 4a allows us to derive:

T (P S r s
p— T+S =
(4a) (1b)
(3a

The axiomatisation has the powerful property:

Theorem 2.8.3 (Completeness of the ZW-Calculus [ 1)
For any subring R of C, ZW[R|/ ZWg, is complete, i.e. [.] : ZW[R]/ ZWr — Qubit is

faithful.

Historically, the ZW-Calculus was not given with parameters in a ring, but merely
in{—1,1} [ ]. We denote this particular restriction ZW. Of course the rule 4 has
no meaning in this setting, and is replaced by the rule 4’ give in Figure 2.4.
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E I PR S R P

Yafd Aapr o midx
“ el e

Figure 2.3: Set of rules ZW y, for the ZW-Calculus over the ring R. 7, s € R.

J

(if/o»l da T b ?

Figure 2.4: Rule 4. The resulting axiomatisation is denoted ZW.

Theorem 2.8.4 ([ 1). The restriction ZW | ZW is complete, i.e. [.] : ZW /ZW —
Qubit is faithful.

Sketch of Proof > The proof for both theorems rely on normal forms. First of all, if the
parameters are only in {—1, 1} let us inductively give syntactic sugar such as to recover
a ring, the smallest containing —1 and 1, that is Z:

+ —1 and 1 are already defined

— —
s} lr}
S 3
INA vV
I o
[\
by o
—20 S
3 F
| —
B ]
Il
o 4(2
&(2 3
S
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Now that we have an arbitrary ring R in any case, let us give the normal form. Again,
we use the map/state duality, so that the normal form can be given only for states. A

b(li) x ~b£f)>. The normal form

state [¢)) on n quits can always be written as [¢)) = > r;

of the state |1)) is then:

where the node with parameter 7; is connected to the j® output iff by) = 1. The proof
then amounts to showing that all the generators can be put in normal form, and that the
two compositions of diagrams in normal form can be put in normal form. Some of the
axioms, such as rule X, have purposely been chosen so that this can be done. <

The ZW-Calculi are hence complete, but they are not universal, unless R = C. How-
ever, ZW|R| exactly represents a sub-PROP of Qubit.

Proposition 2.8.5. The functor [[.] : ZW|R]/ ZWgr — Qubit , is full and faithful.

Hence, if R is dense in C, then ZW/R)| represents an approximately universal frag-
ment of Qubit.
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ZX-Calculus
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Chapter 3

Clifford+T

We have seen that the set of axioms ZX/, is not complete for the unrestricted ZX-
Calculus ZX, but that a simple patch can be done to achieve completeness for one-qubit
unitaries of, arguably, the simplest approximately universal fragment of quantum me-
chanics: Clifford+T. In this chapter, we provide a complete axiomatisation for the many-
qubit ZX-diagrams of Clifford+T ZX[%], and we prove the completeness thanks to the
language ZW / ZW which is complete. To do so, we first need to alter the latter language
to fit our needs while preserving the completeness. We define an intermediary language,
AZX, for which we provide an axiomatisation. We then prove it to be complete for a
fragment (the m-fragment), thanks to a back and forth system of interpretations between
AZX and ZW, that appears to have the same expressive power. Finally, by showing
that all the generators of AZX can be expressed in ZX[7], we derive a new set of ax-
ioms, that we prove to be complete for Clifford+T, again using a back-and-forth system
of interpretations between AZX|[r] and ZX[7]. This time, since the latter is more ex-
pressive than the former, one of the interpretations will need an encoding of what ZX 7]
can express into what AZX]|r] can express.

3.1 The Triangle

A key point in the proof of completeness for ZX[7] is the link (the two interpretations)
between the two languages. The ZX-diagrams can easily represent the GHZ state, as
well as any 3-qubit state that is SLOCC-equivalent to the GHZ state. The difficulty is
to represent the W state with a ZX-diagram. Diagrammatically, the white spider of the
ZW-Calculus is easily represented in the ZX-Calculus (recall that in ZW the parameters
are only —1 and 1). The black spider is the troublesome one.

From a Morphism of Monoids in ZW

Recall that ( /*\ , ) forms a comonoid in the ZW-Calculus. A first approach could be

to try and build the (co)diagonal morphisms for this comonoid. By the proof of Propo-

sition 2.5.6, these diagonal morphisms are exactly of the form F*- LIff:1 — 0is
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generic, i.e. [f] = x (0] + y (1], then

-0 %)

~\0 z)
When either z or y is null, then the map is colinear to either the identity or |0)(1],
both of which are easily expressible in the ZX-Calculus, up to a global scalar. In the

general case, however, things get trickier, and the map cannot be expressed as a Clifford
map times a scalar. For instance, let us consider the case x = y = 1. Let ¢ denote the

o [10] -} 1)

Interestingly, it has been noted that *O is not only a diagonal morphism w.r.t. \;J ,

but also a morphism of monoids [ ]. Consider the following diagram in ZW / ZW:

v

One can check that its interpretation is [1)(11]+|0) ((00|4(01|+(10]). In other words, it
acts as an And gate for the canonical basis. By completeness, the pair (?, ?) forms

a monoid. Then:

Proposition 3.1.1. In ZW / ZW, the morphism *O is a morphism of monoids between

(h)ee(-)
Proof » One can check that all the equations of morphism of monoids are sound. By

completeness of ZW / ZW, they are provable in the language:

ZW .{z&tﬁ}o Lj:?

Definition of the Triangle

Let us see how to build in ZX a diagram D; that represents ¢, i.e. [D,;]] = ¢. Notice that
£]0) = |0) and that ¢ |1) = |0) + |1) = v/2|+). Let us ignore the factor /2 for now. ¢
acts as if it applied the Hadamard gate on a |0) state depending on the value of the input.
Diagrammatically, ¢ operates as:

g o

} controlled H
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The controlled /1 gate AH can simply be expressed in ZX[7]:

e

INERNIE]

AH|:=

NEENE

Then, using the fact that H?_Tﬂ =T HQ%H , one can show:

k@ - i 1

— — e 4 —

= |l = ° 0
3

Finally, we need to “control” the scalar v/2, which we can do since |l<%—{ ! ]] =T ( 0 3

so ||5 :(3 }).

Using a diagram of ZX[7], we can now represent a non-trivial non-unitary matrix
whose entries are in {0, 1}. As we will see in the following, this gives us access to the
expressive power of the W SLOCC-equivalence class. In the following, this diagram will
be so useful that we gave it a syntactic sugar:

Eircly
~—

MENSE]

IS

MENSE]

e

i
INE
(MESE]
e

Of course, being in a f-compact PROP, we can define the upside-down triangle as:

0

Notice that this node is oriented, i.e. the upside-down triangle is not equal to the triangle.
This is due to the fact that its interpretation is not a symmetric matrix. Another diagram
of ZX[}] with the same interpretation was found in [ I:

=&
4

INE)

™ =&
— s 4

MESE]
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A Building Block

The triangle can then be used as a building block for different larger diagrams. For
instance, consider the following diagram:

e«#
One can easily check that Hg o—ﬂ«ﬂl - and Il@ oﬁ&’«ﬂ] |l ]]

Hence, this diagram can be seen as a representation of A(|0)(0|). We may denote it:

4

Another very interesting construction that uses the triangle is the following:

Rt

his e, @ oo’ 8| = [|] ma |G o= 28| - ﬁ# @m' Simlary, e

denote the diagram:

We may call this diagram transistor, for it acts as a switch, controlled by an additional
wire. The last two diagrams can prove very useful to perform high order controlled
operations. For instance, a CCNot can be represented by:

Toe
3.2 'The ZW,,; Extension

We would also want to build a functor ' : ZX[]] — ZW which preserves all the
information. However we cannot have [F(.)] = [.], because [.] : ZW — Qubit,,
while [.] : ZX[7] — Qubitz[L ) We will need to use an encoding.

750¢

Recall that for any subring R of C, if o is an R-algebraic integer, there exists an
encoding ¢ : M(R[a]) — M(R). However, 1/vz cannot be an algebraic integer. Instead,
we will define a simple extension of ZW that can represent morphisms of ﬁQubitZ,

i.e. of the form ﬁ f with f € Qubit,, while preserving the completeness property.

Since [.] : ZW — Qubit, is full, all we have to do to allow the ZW-Calculus to
represent any morphism of ﬁQubitZ is to add a scalar generator worth 1/v/2. n copies

of this generator provide a representation of 1/v2".
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" Definition 3.2.1 (ZW,/; and ZW,,5): We define the graphical language ZW,,,; as
the language with the same generators as ZW, with the additional generator:

ed:0—=0:xe
The functor [.] is extended to ZW,/,; with:
. [d] = \/%

The associated axiomatisation ZW,,; is defined as:

z

-ZWU{QQQ =1 1,00 = o}

|

Proposition 3.2.2. The functor [.] : ZW./ 5/ ZW/.5 — ﬁQubitZ is full and faithful.

Proof » Let Dy and D, be two diagrams of ZW,,,; such that [D;] = [D,]. We can
rewrite D and Dy as D; = d; ®(a)®"i for some integers n; and diagrams d; of the ZW
that do not use the & symbol.

We first assume [D;] # 0. Notice then that ny = ny mod 2. Indeed [D;] =
[D;] = 14l = 1%l Since [d;] are matrices over Z, n, and n, are either both

V2™ V2"
odd or both even.

® 3
First, assume n; = 0 mod 2. From (iv), we get that ZWy/ s - d; = D; ® (Q) :

ng—nj
® 2

W.lo.g. assume n; < ns. Then Hdl ® (Q)
na—mnj

Since d; ® (Q) *  and dy are ZW-diagrams and have the same interpretation,

ﬂ = 25" [4)] = 2% [D1] = [da].

na2—nj
2

®
thanks to the completeness of the ZW-Calculus, ZWy/5s - dy ® (Q) = do,

ng2—nj
2

which implies ZWy, 5 = d; ® <Q>®

Ds.
Now, we can easily show ZWy 5 = Dy oa = Dyow < 7ZWy 5 = Dy = D,
proving the result when n; = 1 mod 2:

®(Q)®n2 = dg ®(Q)®n2 ie. ZWl/ﬁ H D, =

ZW1/\/§|_D1®QZD2®Q — ZW1/\/§|—D1®QQQ:D2®QQQ
- ZW1/\/§ H D1 = D2 —— ZW1/\/§ F D1 R = D2 1208+ 4

v

Finally, if [D1] = [D2] = 0, then [d;] = 0. By completeness, ZW + d; = dy and
ZW I d; » @ = d;. Hence, using (iv) n; times, ZW,, s - d; = dio® = d;o ® (1)@ =
d; ®(ﬁ)®ni =D, so ZW1/\/§ F Dy =d; =dy = Ds. |
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3.3 The AZX-Calculus

Interpreting the W-state using the Triangle

To make a link between the two languages, we first need a functor from ZW,,; to
ZX[Z]. This should be pretty straightforward, since ﬁ/\/l (Z) c M(Z]4,€'1]). The
main difficulty is the representation in ZX[7] of the W spider. First of all, using the
spider rule, we can always decompose the W spider as a composition of W nodes of
arity 1, 2 and 3.

The interpretation of the three-legged W node is yet again an example of the use of
the triangle. Indeed:

[Pl=Gan )= lo o= o)ls

} A(loxo])

These can be represented as 8 } CNot . This diagram can be simplified

™} 2 (+| & Not

3%’% R

An extension of the ZX-Calculus

o O O
o O = O
_ o O O
O = O O
S O O
o O = O
o = O O
o O O O

using ZXx/,:

Hence, the functor from ZW,,; to ZX[]] would translate any white node to a 0 or 7-
green node, while the black nodes would be mapped to either 7-red nodes or the above
diagram. It turns out, the only occurrences of 7 and 7 would be hidden in the triangle,
in the translation of the three-legged black dot. This means that using solely the triangle
and ZX-generators of the m-fragment, one can express any matrix over D := Z [%]
Interestingly, this is exactly what post-selected quantum circuits generated by Toffoli
and H can express. Hence, it becomes interesting to define a new intermediate language,

called AZX, where the triangle node is a generator and not mere syntactic sugar.

™ Definition 3.3.1 (AZX-Calculus): The qubit AZX-Calculus, is a t-compact graph-
ical language, with the following set of generators and their string-diagram representa-
tion:

n

. R(Zn’m)(a) n—m: ><a

« RU™ () in—m Xa
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o ® o ® o ® °
-H:l%l::l%
oA:1—>1::+

The PROP structure is provided by o : 2 — 2 = ><; and the compact structure by
€:2—0x\Uandn:0— 2 M\
The functor 7 is such that:

(RS™(@))' = By (~a)

n,m f m,n
(RE™ (@) = RY(=a)
« H'=H
o AT = (ewid)o (ide Awid)o (iden)

The language comes with a PROP-functor [.] : AZX — Qubit, called the standard
interpretation, and given by:

[RG ™ @) = lomyor] + et imyn]

[RE™(@)] = ) + e =)=

[H] = -0 + [=X1]

[A] = [0X0] + [0X1] + [1)1]

s ol = > L]

i,j€{0,1}

[7] = 100) + |11)

[e] = (00] + (11

Whatever the axiomatisation chosen for the AZX-Calculus, we always consider that
whenever two A-free diagrams are isomorphic as graphs, then they are equal. Alter-
natively, when keeping in mind that A is an oriented node, any graph isomorphism
preserves the semantics. -

As for the ZX-Calculus, we denote by AZX[F] the fragment F' of AZX. AZX can
be seen as an extension of ZX, so axiomatisations of the ZX-Calculus can be applied to
it.
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3.4 From AZX|r|to ZW,,;5 and Back

ZW,). s — AZX|r]

Our goal now is to provide a complete axiomatisation for AZX]|r|. To do so, we need
functors from AZX|[r] to ZW,,; and back. The one going back was roughly depicted
in the previous section. We denote this functor by [.|x. We can now give it a proper
inductive definition:

[1x

R ‘H‘ ~ A U

N Mg e 8
S LT /,\Hé,;a

m

D1 ) DQ —> [DI]X o [DQ}X D1 ®D2 —> [Dl]X ®[D2]X

Oifx £y

where ¢ is the Kronecker symbol: 4, , = { Lifz =y

Notice that we did not give an interpretation of arbitrary black nodes W (™). By
Rules (1b) and (4'b), one can decompose W™ using only WD, W (12 and WY, in
a spider-like style:

Lemma 3.4.1.

This interpretation preserves the semantics:

Proposition 3.4.2. The following diagram commutes:

AZXh}~\\lﬂ
(HX Qubit

ZW) 5 /”'

Proof » This is routine. <
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AZX[r] = ZWi)

The other functor, from AZX ] to ZW /5, will be denoted [.]y. It can be easily defined
as:

[Jw

R ‘H‘ ~ A U

SRR CHE. ) TR X *

Dy o Dy — [Dy]w o [Da]w D1 ® Dy — [D1]w ®[Do]w
we [(077] | <[

W
This interpretation also preserves the semantics:

W

Proposition 3.4.3. The following diagram commutes:

AZXh}~\\lﬂ
(Hw Qubit

AN /”'

Proof » This is routine. |
By introducing this intermediary language, our goal has shifted from:

» transporting the completeness of ZW./,5/ ZWy/5 to ZW 7]/ ZX),
to

« transporting the completeness of ZW., 5/ ZWy/ 5 to AZX[r]/R for a set of ax-
ioms R

» then transporting the completeness of AZX[r]/R to ZW []

This method hence requires we provide a complete axiomatisation for the 7-fragment of
the new language AZX|[r]/ A,.

3.5 Axiomatisation for AZX|r]

From interpretation [.| x we can get a set of equations that a complete axiomatisation of
AZX|[r] would need to verify: the interpretation of the axioms of ZW./, 5. We can try
and reduce them using the usual axioms of the ZX-Calculus. We eventually get to the
axiomatisation A, given in Figure 3.1. In this section and the next two, we are going to
show that it is complete:

Theorem 3.5.1 (Completeness of AZX|[n]/ Ay). [.] : AZX|[rn]/ Ar — ﬁQubitZ is
full and faithful. In particular, the language AZX[r]/ A is complete.
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On the rules of A,

Before diving into the proof, let us comment on the set of rules A,. Notice that it uses
most of the axioms of ZX, together with new rules using A . We can try and give
an interpretation for these last equations. First, we have the fact that A is a diagonal

morphism for the comultiplication 2 &] . This directly gives (TW). (HT) can be seen as

the decomposition of Hadamard using triangles. Also, remember that A is a morphism

, V2 |4)). Noticing that wL{é 8
represents the AND gate, this gives us:

ﬂl—{%g - {Q} (3.1

ér = 0 (3.2)

We can then recover an equation that is very close to (TCX) if we assume we can
operate the 7-distribution (7dist). First:

of monoids between (AND,

1)) and (0)00] + [1)(11

and

@0
2
(2@
—
el
>
3
=l
N
%H
>0
3
=
—
w
w
=~

»
<
=
=5
—
@)
=

ﬂt:;g @ o 3| & Wg _(33 ﬁ?ﬂ
:and 2 ?NN ik

s pr— ‘/ng)x = T 8 pr— T pr— T = *
©®) . (CP) B
- (3.1) S é

™

We can also recover (BA), if we assume I’;] = |h) i
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©
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(H)
"(BA)

2 HT)" g (TCX) %(TW)

Figure 3.1: Set of rules A, for the ZX-Calculus with triangles. The right-hand side of
(IV) is an empty diagram. (...) denotes zero or more wires, while (.- ) denotes one or
more wires. «, 3 € R.

AZX|r]/ A, is Complete for the Real Stabiliser

As announced, we want to prove that this axiomatisation is complete. First of all let us
show that we can recover ZX:

Proposition 3.5.2. A, F ZX,

This means that any A-free equality between AZX|r|-diagrams is derivable.

To prove this, we have to “bootstrap” the language AZX|r|/ A,. Notice that since
we have most of the rules of ZX, in A, thanks to Proposition 2.7.16, we already have
access to some usual lemmas, such as:

Ak 22—, gg$=$ a- $-&

These will be useful in the derivation of other AZX-specific lemmas:

Lemma 3.5.3. Lemma 3.5.4. Lemma 3.5.5.
St -
= - ™
Lemma 3.5.6. Lemma 3.5.7.

£ -3 o



3.6. ZWy 5 derives from A

Proof »

PRTEIE I S RS AL
ﬁ;gggé@m 3

—~—
n= ||
2

Qe @ r
71'
(TCX (Hopf) 31% )3 3(Ig/)()’

(S)

)
<
Proof of Prop. 3.5.2» The only axiom of ZX, thatis not in A, is (HL), which is derivable
according to Lemma 3.5.7. <

3.6 ZW, 5 derives from A,

We can now state the most important proposition for the completeness.
Proposition 3.6.1. For any two diagrams Dy and Dy of ZWy, /5:
ZWl/ﬁ H D1 = Dg — AW H [DI]X = [DQ]X

Proof of Prop. 3.6.1» If ZW,/ 5 = D; = D,, then there exists a series of ZW/ ;-
diagrams dy, - - - , d,, such that there is exactly one axiom application between d; and
d; 11, between D; and d; and between d,, and D,. Hence, since [.] x is a PROP-functor,
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it suffices to prove that every axiom of ZWy/,; can be derived from A after application
of H X

The rest of this proof'is technical: every axiom of ZW,,, 5 is translated in AZX|[r] and
proved using A. It will alternate between lemmas in AZX|[r]/ A, and axiom deriva-
tions. For the reader’s convenience, this proof ends at page 99. <

Proof of Prop. 3.6.1 (ctd.) » 0b comes directly from the semantics-preserving graph
isomorphisms.
1, 2a and 2b come directly from the spider rules (S) and (I).

 boepmgaotabe

<
Lemma 3.6.2. Lemma 3.6.3.
Proof »
I a 3?3 TW) é IV) (i E
) (CP 3.5.3
(S)
)
®) 3.6.2
)
A |

Proof of Prop. 3.6.1 (ctd.) » la: Thanks to Lemma 3.4.1 and rule (4b'), the rule can be

reduced to showing that )fw and ’)W = :
X X

%o I' o

I
&)
B
_
27

—_
G2
P
&2
ZZ
>
=2 I
=

—

=

=
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3.6. ZWy 5 derives from A

= = <
(IV) 3.5.3 S
(I) (Cp) @
) )

Oa: Thanks to Lemma 3.4.1 and the previous equations, it suffices to prove the result for
2 and 3-legged W nodes. The first is obvious. For the 3-legged W nodes:

T
w% ‘gff‘gi??: <

The last case in then derivable from the other two.
3a is the expression of (7dist).

—~
—
L2

3b:
Q)\Q /é)\l
<_|
- (7rdlst S)
(1) @
5c:

@ © I@ avy ---
(2)

7: Again, thanks to Lemma 3.4.1, it suffices to prove the result when W has arity 2 or 3:

S L B

=
ﬁﬁz
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EeBeptallol
EE R
BECRVIICE I JR-Y T Y T R

. ge8 889 298
@@@ ) .ﬂI® (Z) 077:@ (S) or O@ énzjg

H
/I\ (©) w) i_? (o ;_? w) (S)
D (CP) (CP)
©)

5b:

? = ; = = @ i
: (IV IV) TO) ,W ?
(Hopf) (cp) “ )
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3.6. ZWy 5 derives from A

>0 —0

L |
Lemma 3.6.4. Lemma 3.6.5.
v - ey -°
™
Proof »
i
™
= = e —
; ) @7 (10 ; ©) ?
3.5.5
™
I T
= T g pry
; ©) (BA) ; (10) ?
3.5.6
<
Proof of Prop. 3.6.1 (ctd.) » 4'a:
Vi
1 ™
— = — s Y
| : cp) iw () Q? !
7 (S) 3.6.5
@
R |
Lemma 3.6.6. Lemma 3.6.7. Lemma 3.6.8.

LARRE S S ot

Lemma 3.6.9.

-4

Proof »

2|

g
(SO

|
-0

—
w
=

3.5.3
(S
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(CP) é % (stt)
x  (mdist) (CP)

—~—
wni=
L=

o o I o 97 I Y L I -
/@\ ~ ) H 3.6.0 i
fs% 0 (HL)

Lemma 3.6.10. Lemma 3.6.11. Lemma 3.6.12.
Vo
:ﬁw fy ‘
Lemma 3.6.13. Lemma 3.6.14.

B1ohen
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3.6. ZWy 5 derives from A

Proof »

s
s
: - (?) (ﬂist) I (ﬂist) :
3.5.5 3.5.5
s

For Lemma 3.6.12, first:

™
" b
SEER Y LY.
) T H OT 368 @ (rdist)
(S) 3.5.5
(BA)
™

Then

(CP)
)

e
L

Finally

RN
AR SRS

For Lemma 3.6.14, first:

™
= = and I =
T (1) (H) @
(S) (mdist) (S)
3.6.8 O 3.5.5 3.5.5
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™ 4
. :
= @ T =
T I (H) (mdist)
(TW) @ -
3.6.3
()
N ® N %
g “ 8

Proof of Prop. 3.6.1 (ctd.) » 5a: We will need a few steps to prove this equality.

$ o $ .
o m ?
T ng i ((S)) T (Trdlst)
(3.4)
: 7
T
3. 6 3 3-( .)10 (mdist) - (?r(?ls?;)
3.5.5
(3.5)

s
s s
s = = s
T 3.55 T S) (ﬂ'dlst)
(TW)

(3.6)

s s
™ T
us us
— T [ — (3.7)
T (wdist) 3.6 T T (wdist)
()] ™ )
s
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Finally:
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3.6. ZW/5 derives from A

s s
= : 3.8
(mdist) ( )
©

s
T
L)
(mdist)
(3.9)

: @
— — o= ™ (3.10)
3.4 T 3.6.14 3.6
3.6.3 P Y]
(Hopf) ™ ™
: (mdist)
@)
TT
© ¢ O ®) (©) ®) (3.11)
(mdist)
3.5.5 : ®
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Finally,
(@)
— - — =
% 812 (galislt)
AN 9 °o
oo o $
oe®
W :I:
™
— frd — T <
3.10 ©) ;g &)
(®) ° 3.11
: B.g
©0
This was the last equality of ZW.,5 to derive. We hence have proven the result. <

3.7 Completeness of AZX|[rn]/ A,

To finish the proof of completeness, we still need the property that after the application
of the composite interpretation [[.];] x we can always recover the initial diagrams, i.e.
we need to show: that [[.|w]|x = id.

Proposition 3.7.1. For any AZX|[r|-diagram D, we have:
A ([Dlwlg = D
Proof » This is done by induction on the diagram D:
* [[DyeDowlx = [[Dl]W]X ®[[D2]W]X
* [[D1o Do]w]x [Dalwlx

il §§§:@ 5 7

)
v)

n n

e Qo — >3<(-1)5°'" = Xﬁ‘s((-l)éav“)-l = Xa fora € {0, 7}

m
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3.8. From AZX[r] to ZX[%]

@ © 0

JU AR,

Proof of Theorem 3.5.1 » There are two results here: fullness and faithfulness. Consider
the following diagram:

<

L+ Qubit,

RN
ux< >HW

+ [Jw is faithful: let Dy, Dy : n = m € AZX|[x] such that ZW,/5 & [Di]w =
Ds)w. By Proposition 3.6.1, A - [[D1]w]x = [[D2]w]x, so by Proposition 3.7.1,

Ayt Dy = Ds.

——

* [Jw is full: Let D € ZW,;,5. We define Dx := [D]x. By Propositions 3.4.3
and 3.4.2, [[[.]x]w] = [.], hence, by completeness of ZW,/ 5/ ZW/5, ZW,/5 I

By composition, [[.]w] is full and faithful, so AZX][rn]/ A, L ﬁQubitZ is full and
faithful. <

3.8 From AZX|r] to ZX[7]

We now want to do essentially the same job to find a complete axiomatisation of ZX|[7],
and using the newfound completeness of AZX|[r]. First of all, we need to translate
AZX[r] into ZX[%]. The two languages are very close, the only generator of the former
that is not in the latter is A. However, we already know how to represent it (Section 3.1):

[]r

1 1 —> 1 1 ‘ — ‘ M — M J — J
SEE - B
3

poh g reg e

Dl [¢) D2 —> [Dl]T o [D2]T D1 ® DQ —> [Dl]T ®[D2]T

MERSE]
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(o] @

o
[
[
[e
o

Again, we can translate all the axioms of A, in ZX[7]. It gives a set of equations
that the language is supposed to be able to derive, and reducing it leads an a potential
axiomatisation for Clifford+T ZX-Calculus. We propose the set of rules given in Figure
3.2. It consists of the rules ZX./, with the additional (K) that we have already seen in
Proposition 2.7.13, (E)- introduced in [ ] -, (SUP)- proven necessary in [ ]
-, (C) and (BW), replacing (IV) and (Z).

Q

3

o+

El
2 ..
INIE]
X
=l
B-d
D Z
g3
2 o

a1
INE)

- v T % ™
o B _ B a ! x _ joer0;
a —@5 (C) g o - © . (BW) &
4 @
2

NG

Figure 3.2: Set of rules ZX/, for the Clifford+T fragment of the ZX-Calculus.

Since this axiomatisation is pretty close to containing ZXx/,, a first useful result is
that we can recover it.

Proposition 3.8.1. ZX./, - ZX~/,
Proof » The only axioms that need to be proven are (IV) and (Z). From Figure 2.2, we

directly get the Hopf law (Hopf), as well as (IV). Still from Proposition 2.7.16 we also get
(sa). Now only (Z) remains to be proven. First:

23; © prgg (sUP) $22 (Hop) ;W G139

(CP)

Then:

(Oks Or
or @ 3 — — g @ or = Or (3.14)
Oa (s ga (4.3) @ ga (sc) 1A%)

Iv)
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3.8. From AZX[r] to ZX[%]

0 00— 0

Then:
Oor
or
(ks or
. p— I p— = p— o f— : 3‘15
" ® I;‘ (4.3) :Ez (cp)) Q7 (44) (3.15)
4 ™ sa
)
Finally:
.7T : .7T .71'

This set of rules proves any equality of AZX[r|/ A,.
Proposition 3.8.2. For any AZX|[r|-diagrams Dy and D,
A+-Dy =Dy — ZXw/4 F [Dl]T = [DZ]T

Proof » We already know that ZX./, - ZX./,. The remaining axioms of A, to prove
are (T0), (HT), (TW), (TCX) and (BA).
(BA):

INE)
ISE}

e

us
Z
us s s
: ‘0 078
T = s = = —g
3.8.1 ©) m
3 & ® @ : &
™ ©® (K) 2
4 ™ 3.8.1
us s 4 fus
4 4 4
-
4
" @5
us
_ 4 ™ T L
— = 2 =
(BA) i
4
s
2

which will be used extensively in the following. The result is akin to Lemma 3.5.5, but this
time expressed with syntactic sugar. Again, the rest of the proof will alternate between
lemmas and proofs of the remaining rules. The proof ends at page 108. <
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Lemma 3.8.3.

™ us
4
Proof »
Iﬂ' . I_T7r Iﬂ' . E_‘l Ifr . Iﬂ' E —
T ® o 9 @ [, OF @ Of z
P ® or @ gz OF (D OF g
T @ 03
s us

= - 71'._7'” = @ T @ = 03

(X) 2 L (Sup) — = (s+)

©) s () 2 O2 ()

(CP) (Hopf)

(sm)

<«
Proof of Prop. 3.8.2 (ctd.) »
I 0-3 @
Iﬂ'
; ; = 3 5 ;‘ T
d (I A = 581 ®
2 ©) 2 -
<

Lemma 3.8.4. Lemma 3.8.5.

Moo

k7
2
@
2
TS
2

Lemma 3.8.6.

@ B B
T =
@ B B

Proof »
s %50
H) 3.8.3 i
) 3.8.1
ips
T ;@ 03 H H Iw
_ 2 — iy — jus — ™ -
— — 2 - 2 — 2 4
(HD) L (H) x 3.8.4 L H) L
2 3.8.1 0732 @ 2 ™ 5 Oz

Q

3

Q



3.8. From AZX[r] to ZX[%]

B

3?5
g ©

™

_Tﬂ-

= f
(CP)

B

Proof of Prop. 3.8.2 (ctd.) » (TCX):

:

Q 3 QO mn1 v
w
03 ||
t
= ™
Q 8/ ©°

INH
NE
NE

NS

Lemma 3.8.7. Lemma 3.8.8.
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Proof of Prop. 3.8.2 (ctd.) » (HT): First:

,4 £4 £4 £4
12 H H\. Wm 2
E Kl kI I Bl
-
CEEE L i
—00 E &

[| 8d oo -0
[aplan]
—n & E k&
E2
Kl Kl BSOS g kg
Il
E &l kI k¥ kv
leg E E E m "
(e
i
les
—
__K\% E B
0@ O &0
& S &
~
|| &g
[~p]
k &I
@O @0 &
kN k|l k|
1 1 1
—0 00—
9
[| o
[2p]
|D|

Hence:



3.8. From AZX[r] to ZX[%]

Lemma 3.8.9.

™

3.5.5

S

Lemma 3.8.10.

a
o
o
s
T 381
(S)
™

w
o
[
e O
1
[NIE]

E]

B I E S
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w

Lemma 3.8.11.
(67 o
T
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First:

then:

(B)
v)

Proof of Prop. 3.8.2 (ctd.) » (TW):

szl
3

3.5.5

107

s

ol

ISE

MEINE]




3.9. From ZX[7] to AZX 7]
O 0]
%
%
T 385
We have now proved that all the axioms of A are derivable with ZX-/,. <

3.9 From ZX[7| to AZX]|r]

We now want to define an interpretation from ZX|[7], which represents morphisms of
QubitZ[ %761%], to AZX[r], which represents morphisms of ﬁQubitZ. To do so, we
will need this interpretation to perform an encoding.

The monic and irreducible polynomial of Z[X] of which ¢'7 is a root is X* 4 1. Any
matrix over Z[%, ¢'7] can be written as A 4 €'i B + eI C + T Dwith 4, B,C,D €
M(Z[£]). ¢ is hence defined as:

ViA+eiB+eTC+e T D A+ BaM+CeoM?+ De M

0 1 .00
0 010
where M := 0 00 1
-1 0 0 0
1
The left inverse of 1 is: © : X — (I wel) o X o (I ®0) where 0 := :Z-%
;3m
e'r

We want to give an interpretation [.|a : ZX[]] — AZX][n] such that [[.]a] = ¥([.]),
i.e., the interpretation [.]» should map a diagram of ZX[7] to a AZX[r]-diagram, while
at the same time performing the encoding 1) for their standard interpretation.
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(o] @ © © @

o
o

First of all, we want to represent the encoding of the scalar V2

0 1 0 —1
Cargam w1010

w<\/§)_w(e4 64)_M M_ 0 1 O 1
101 0

It can be decomposed with usual gates
cz V2H ot cz

100 0\ /01 0 1 100 0\

010 0 101 0 010 0

v(vV2)=1o01 0 | lo1 o —1]loo1 0

000—1/ \10—1 0 000 —1

All these gates are easily represented in AZX:

gﬁwgo

Then, H can simply be decomposed as H = 1 x v/2 x (v/2H).
Then, we need to find a way to express the matrix M, using usual quantum operators.
Notice that the matrix is CZ up to permutations.

CAZ Not @ Not Sv&l/\ap Cy\ot Svjv\ap

0 100 100 0 0001\ /1000\ /1000\ 71000\
v—|0010)_fo0100 0010} {o010) ({0100} {0010
=loo0o1]=10010 0100 lo1oo0f{ooo01]lo100
~1000 000-1/ \1000/ \ooo1/ \oo10/ \ooo1

We propose to first represent the matrices with ZX-diagrams, which hopefully will have
a direct preimage by [.|7. Using the usual rules of the ZX-Calculus, one can build:

e ot et

which represents M. Then, we want to represent 1) ( |H)Zﬂ ) = (]4 M) It can be

seen as AM i.e., to represent it, we need to control the previous diagram. This can be
performed using the transistor:

8%%

109




3.9. From ZX[7] to AZX 7]

Eventually, we get to a formal and inductive definition of [.]a:

[]a

e e ] oo U ~ o oA
s
><»—>><H +»—> ™ @ +Z{n—>

VD :n—n', VDy :m —m':

D1 @) D2 — [DI]A o [DQ]A (lf m' = n)

e ()], [

This interpretation performs the encoding .

Proposition 3.9.1. The following diagram commutes:

zx[z]— L Qubit
‘[-]A ‘¢
Az —L Qubit
Proof » Again, this is routine. |
Remark 3.9.2. This interpretation, contrarily to [.]7, is not a PROP-functor, but merely

a functor. Indeed, . ® .|]ao # [.]a ®[.]a. The two compositions are defined so that all the
diagrams share the last two wires, which we will call “control-wire”. We actually have:

SRl
| [Dia |
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3.10 Completeness of ZX[7|/7ZX,),

Recall that our goal is to prove that ZX./, make ZX|[7]| complete. It remains to show
that one can recover any ZX|[7]-diagram D from [[D]a]7 thanks to the decoding ©.

Proposition 3.10.1. For any ZX[%]-diagram D:

ZXnp b D = :[:[:D]:]T
g8

Proof » We are going to prove inductively that:

2 (0l (91 95) =D (95 93)

« D o Dy: obvious because [[D; o Ds|al; = [[D1]al © [[Da]aly

NS

. D1®D2:

(s2)

o 2 1 1 -

m = fud
(mdist) = ™ 2 ™ : : ™
(H) %) 1

— b oo ®F e — T .
1) P ongd: w | 9FOF
(Hopf) -

. +I{ : First, we have:

vl
ISE

1
s

1
A ]

\
IS
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3.10. Completeness of ZX[7]/ ZX),

— — -z 3.16
386 4 wm Ly (3.16)
(CP) 4
(S)
O
X)

INE}
INE]
e

|
s

= Of .
()] 6 (Cp) 2
? 2 ©)

« The proof of the remaining cases follow from the previous ones.

|
INE
INE

|

INE

Finally, we have:
]
o Y - B 5 0
g8

Theorem 3.10.2 (Completeness of ZX[F]/ ZXx/,). The language ZX[T]/ ZXx, is com-
plete, and [.] : ZX[7]/ ZX+;, — Qubit,, 2[4 <] is full and faithful.

<

Proof » We have to show fullness and faithfulness:

« Faithfulness: Let D, and D, be two ZX[7]-diagrams such that [D,] = [D:].
By Proposition 3.9.1 [[D1]a] = ©([D1]) = ¥([D2]) = [[D2]a], so by Theorem
3.5.1 Ay F [Di]a = [Ds]a. By Proposition 3.8.2, ZX./, = [[D1]aly = [[D2]al s so
finally by Proposition 3.10.1, ZX./, = Dy = D».

+ Fullness: Let f € Qubit p[e%] The morphism ¢ f is in Qubity. By fullness

of AZX|[m l Qubity (Theorem 3.5.1), there exists DA € AZX|r] such that

[[Df]]z@bf.Finally,leth:: (“$$§§)° f (‘ H ?)

It is easy to see that [Df] = f

<
This allows us to prove Proposition 2.6.10, that is, that Clifford+T = QubitD[ei%].
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(o] @
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o
o
o

Proof of Proposition 2.6.10 » Clifford+T has the same objects as QubitD[ei%], and by
construction, is a sub-PROP. It remains to show that any morphism of the latter can be
expressed as a morphism of the former. Let f € QubitD[en]. By fullness of ZX[7] Ly
QubitD[ei%] there exists Dy € ZX[7] such that [D;] = f. <
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Chapter 4

General ZX-Calculus

The aim of the present chapter is to obtain a complete axiomatisation, this time for the
unrestricted ZX-Calculus, i.e. the ZX-Calculus with no restriction on the parameters,
denoted ZX. A first useful result will be to extend the completeness of Clifford+T to the
so-called linear diagrams with constants in Clifford+T.

4.1 Linear Diagrams

Variables and Constants

It is customary to view some angles in the ZX-diagrams as variables, in order to prove
families of equalities. For instance, the rule (S) displays two variables o and /3, and po-
tentially gives an infinite number of equalities. Notice that in the axioms for Clifford+T
ZX-calculus ZXx/,, the variables are used in a linear way, that is, we only perform sums
of angles, hence reflecting the phase group structure.

We are going to formally define what a linear diagram is. We are going to define
them for the larger AZX. Since ZX can be seen as a sub-PROP of AZX, the definition
of linear ZX-diagrams will be a special case of that of linear AZX-diagrams.

™ Definition 4.1.1 (Linear Diagrams): Let @ := «y, ..., ay be a collection of variables,
and F a fragment (an additive subgroup of R). We define AZX|[@, F'] as the {-compact
PROP with the following set of generators and their string-diagram representation:

. R(Zn’m)(E) tn—m ><E

. Rg?’m)(E):n%m::XE
. H:1—>1::+

cA:1—>1::+

where FE is an affine combination of «; with coefficients in Z and constants in £/, i.e. of
the form ), n;a; + ¢, withn;, € Zand c € F.
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4.1. Linear Diagrams

———— 00— O @ © © 0

The PROP structure is provided by o : 2 — 2 :: ><; and the compact structure by
€:2—0=xUandn:0—2: M\
The functor 7 is such that:

(Ry™(2)) = RG™ (~E)

n,m f m,n
(RE™(E)) = RS ()
s Hi=H
« AT = (ewid) o (ide Awid) o (idon)

For any i € {1,...,k} and © € R, there exists a PROP-functor (.)[a; + z] :

AZX[a, F] — AZX[a \ {ai},Fm}] (where F'U {z} is the additive closure of
F U {x}) called the valuation of «; in x, and given by:

(RE™(B)) o 2] = R ()

o (RE™U(E) ) o 2] = B (B)

where E' = ) njo; + (njz +¢) if E =) njoj +c g
J#i J
Again, by convention, if F' is generated by {z;};, we can replace AZX][d, F] by
AZX][d,{x;}:]. Hence we can directly write F' U {x} instead of F/U-a}
With this definition, we may notice that for any fragment F' and any variables @,
AZX]F] is a sub-PROP of AZX|[d, F'|. The valuations are functors: they can be com-
posed. Also, they commute, in the sense that the following diagram commutes when

AZX[d, F] Ol nl | Az [\ fan}, FU{a:)]
(e =] (e < z;]
AZX[\ o}, FUL;H - AZX\ {0, a5, FUei, 23]

Hence, the order of the valuations is not important. The composite ((.)[a; + z;]) [a;
;| can be abbreviated as (.)[(«;, ;) <= (2;, x;)], and similarly for more than two valu-
ations.
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If all the variables are evaluated, we end up in a fragment of AZX. So, if D €
AZX]d, F], we write D(Z) the diagram of AZX[F U 7] defined as D(Z) := D|a < Z].
This allows us to define the standard interpretation of the PROP of linear diagrams:

VD € AZX[d, F), [D]:= 7 — [D(7)]

The standard interpretation maps any linear diagram to a multivariate function whose
codomain is Qubit. It may be interesting to fine-grain the target of the standard inter-
pretation, for we want to take into account the fragment of the source PROP.

" Definition 4.1.2: Let I’ be a fragment of the language. We define the PROP Qubitg 1 gir]
2 2
as:

QUbitEEﬂl o) — { a P(eioq7 o eiak> ‘ P:n—me QUbitZ[%76iF][X1, R ,Xk] }
27

where P : n — m is a multivariate polynomial with coefficients in Qubity1 .ir [n, m].
|

Hence, if @ = oy, . .., oy, then [.] is a functor from AZX]|&, F| to QubitHZ{El GiF]
27

From variables to inputs

We now show that, given an equation involving diagrams linear in some variable «, the
variables can be extracted, splitting the diagrams into two parts: a collection of points
(nodes with parameter «) and a constant diagram independent of the variables.

First we define the multiplicity of a variable in an equation:

" Definition 4.1.3 (Multiplicity): For any two diagrams Dy, Dy : n — m of AZX|d, F,
the multiplicity of o4 in the equation Dy = D, is defined as:

o = max (s, (D) + max (ug, (D)

where pf (D) (resp. p, (D)) is the number of occurrences of o (resp. —a;) in D, in-
ductively defined as

o o ¢ ifl>0

ut (R (lar + E(as -~ o)) = pf, (RY™ (bon + Bag - - ay,))) = .
0 otherwise

—/ ifl <0

pa (R (Con+E(an -+ a))) = pig, (RE™ (bar+Blaz - ay,))) = {

pE (Do D') = pz (Do D) = uZ (D)+ pz, (D)
pE (H) = pt (e) = p (1) = p (o) = pE () = p () = 0 J

Example 4.1.4. Consider the following equation:

0 otherwise

& 6: Quip ﬂ@
A 8 Oa-p OB

The multiplicity of «v is yio = 2 and 3’s is ug = 3.
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Proposition 4.1.5. For any two diagrams Dy, Dy : n — m of AZX[a, F], there exist
D}, D} : v — n+m two AZX[F|-diagrams such that the equivalence

Di=Dy, <= Djob.=D,o0,

is provable using the axioms of ZX . +(K), where r is the multiplicity of o in Dy = Do, and
r
0, = (Rg)’l)(oz)> .

Pictorially:
T T
| |D| | | |D| | Qa Qa Qa ?a
_ — _
= » o] [h ]
m m i !

Proof » The proof consists in transforming the equation D; = D, into the equivalent
equation D] o 0, = D o 6, using axioms of ZX, 4+(K). This transformation involves 6
steps:

— Turn inputs into outputs. First, each input can be bent to an output using 7:

5 - 051 - )] - )

— Make the red spiders green. All red spiders Rgf’l) (na 4 ¢) are transformed into green
spiders using the axioms (S) and (H):

— Expanding spiders. All spiders Rz (na + c) are expanded using (S) so that all the oc-
currences of « are either ?O‘ or (P'a :

— Changing the sign. Using (K) all occurrences of Q‘O‘ are replaced as follows: Q'O‘ —>

« m
27r @ g-a. Notice that this rule is not applied recursively, which would not termi-
nate. After this step all the original —a have been replaced by an a and as many scalars

é 87; have been created. So far, we have shown:

® (,u; (Dl)) ® (M; (D2))
[~ [ (@ E-OL) (@ g“)
| IDII | - | |D2| | A Qo .Qa = Qo .Qa
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— (Re)moving scalars. The scalar é gz has an inverse for ®, which is é gﬂa (by
(s+) and (IV)). This has as consequence:

. ZXﬁ/4 H é 8; D =Dy <— ZXw/4 H D; = é 82 D,

. ZXW/4 F é 82 D, = @ 82 Dy «— ZXW/4 D, =D,

The scalars é 87; are eliminated by adding x5 := max (u, (D1), u, (D9)) times

the scalar é gz on both sides, then simplifying when we have a scalar and its inverse.

(@ g”>® (ﬁfz“"—u;(Dl)) (@ g”>® (ﬁ“;“—u;(Dz))
— Qo .Q« = O .Q

— Balancing the variables. At this step the number of occurrences of o might be different
on both sides of the equation. Indeed, one can check that the side of D; has 17 (D; )+ %™

occurrences of . One can then use the simple equation 8 2a = [__] (by (sa) and
(IV)) fmex — pt (D;) times on the side of D;, where fmax .= max (uF (Dy), ut(Dy)). We
hence end up with p, = ﬁfgax + P occurrences of « on both sides. Formally, D! is
defined as:
J.;;'J.WJ.‘“J.
~— ~—
W= e (D)= pd (D)

<
Proposition 4.1.5 implies in particular that if the equation D] o §, = D} o 0, is

provable using the axioms of the ZX-calculus, then so is D; = Ds. Proposition 4.1.5 also
implies that if [D;] = [Ds], then [D} o 6,.] = [D} o 6,], thanks to the soundness of the
ZX-calculus.

4.2 AZX Beyond Toffoli-Hadamard

We give a new axiomatisation At for AZX in Figure 4.1 (augmented from the one in
Figure 3.1 and want to show that it makes the fragment of linear diagrams with constants
in 7Z complete, i.e., we want to show that AZX|[a, 7]/ A is complete. We can actually
show something more powerful:

Theorem 4.2.1. Let F' be a fragment, and R and axiomatisation such that AZX[F|/R is
complete and such that R+ AY. Then AZX[d, F|/R is complete.
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S

$
;QMA %W

Figure 4.1: Set of rules A" The right-hand side of (IV) is an empty diagram. (...) denote
zero or more wires, while (.-* ) denote one or more wires.

10
o
o

(BA)

¥
o
5 ¥

The rest of this section is committed to proving this theorem. Notice however that
from it we can directly obtain:

Corollary 4.2.2. The language AZX[d, 71|/ Al is complete, i.e. the functor:
AZX[d, 7]/ A Y NQ ubit®"

is faithful.

Proof » AZX|r]/ A, is complete, and since AT F A_, so is AZX[r]/ Al. Of course,
A F A, so by Theorem 4.2.1, AZX][d@, 7]/ A} is complete. <

We can actually also show that it is full, but this will require particular constructions
that will be found in Chapter 5.

One Variable

The idea of the proof of Theorem 4.2.1 is, given a pair of linear diagrams of which we
want to check the equality, to separate the variables from the rest of the diagrams, that
are in AZX]F, and show that the initial diagrams are equal iff some pair of variable-
free diagrams are equal. It will then be easy to conclude, using the completeness of
AZX][F]/R.

Let us begin with a single occurrence of a single variable. Given two diagrams D,
and Dy of AZX |« F], if @ has multiplicity 1 in D; = D,, then according to Proposition
4.1.5, the equation can be transformed into the following equivalent equation involving
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a single occurrence of a:
Qa Qa
(2] = (23] @)

where D] and D) are in the fragment F'. Notice that equation (4.1) holds if and only
if [D}] = [D}], since (P,9™) forms a basis of the input space. Thus, a variable of
multiplicity 1 can easily be removed, leading to an equivalent equation in the fragment
F of the ZX-calculus. If moreover this fragment is complete and proves ZX,+(K), the
equation D] = D, is derivable, which makes the equation (4.1) derivable with the same
axiomatisation.

When a variable has a multiplicity » > 1 in an equation, the variable cannot be

removed similarly as (Qa)®r does not generate a basis of the 2" dimensional space
when r > 1. However these dots can be replaced by an appropriate projector on the
subspace generated by these dots, as described in the following.

Consider the following family of diagrams (P, ),>1:

P = :oi>_<$ w2k

For the reader convenience, here are the interpretations of P, and Ps:

1000000

0001000

1000 0001000
0010 00000T10
[2l=1y ¢ 1 0 Zl=10 00100 0
000 1 00000T10
0000O0T10

00000O0 1

We can characterise the interpretation of P, for any 7.

Proposition 4.2.3. For any word i € {0,1}", [P,]" |Z) = | 11Fh0m =171y where ||, is the
Hamming weight of x i.e. the number of symbol 1 in the word .

Informally, [P,]" sends all the words of the same Hamming weight to the word of
the same weight where all the 1s are on the left.
Proof » First of all, notice that the result is true for P:

[R]°100) = 00),  [R]'[01) = [R]*[10) = [10),  [R]'[11) =]11)
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Let us denote Op[+ ! the application of the k-qubit operator Op on the wires i1,. . .,ij.
With this notation, [P,]" = [P]'™? o [P]"* o - o [R]T " o [P )™ Y. We
then prove the result by induction on r. Let # € {0, 1}" be a word. Then:

[Pl 170) = [P]" o [B] ™™ 0 o [R] " o [B ] |20)
_ IIPQ]]t[l,Q] 6---0 IIPQ]]t[r,H—l] |1|:E’|10r—\5|10>

—_ | 1|.'E'|107‘+17|f‘1>
and

[[PT+1]:| ‘fl) _ [[PQ]]t[LQ] o [[PQ]]t[2,3] 0.0 [[PQ]]t[r,r+1] o [[Pr]]t[l,...,r] ‘fl>
= [R]M o .o [R]TY 117071
= [P]™ o o |11Fho =170 10)

= [B]T P oo [P It o |12l g gr-fais)
— |1lf|1+1()r—lf\1>

Corollary 4.2.4. The rank of [ P] is exactly r + 1.

Lemma 4.2.5. Foranyr > 1, A:{ FP.of.=86,ie,

s CF = o on

Proof » The case for P; is obvious. Also, if the result is shown for P, then by an easy
induction, it is true for P,. P, is essentially an occurrence of rule (P):

Lemma 4.2.6. For anyr > 2 and any Dy, Dy : v — n two AZX|F|-diagrams,
([D106,] =[Dy00,]) < [D1oP]] =[D20o P] ie,

Qo Qo Qo Qo
Va € R, = &
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Proof » The proof consists in showing that [ P.] is a projector onto
Sy = span{[0,.(a)] |« € R}

According to Lemma 4.2.5, [ P,] is the identity on S,, and [P,] is of rank at most r + 1
according to Corollary 4.2.4, thus to finish the proof, it is sufficient to prove that the r 41
vectors (6,(al))) . are linearly independent, where a9 = jr/r.

Let Ao, ..., A, be scalars such that } A0, (o)) = 0. Notice that the 2P-th row (when

rows are labeled from 1 to 27) of 6,(a(?)) is exactly P Therefore, if we look at all
2P-th rows of the equations, we obtain

1 1 - 1 o
eia<0) eia<1> . eioz(T) )\1
=0
eira(o) eira(l) . eiroc(T> /\r
However, the first matrix is a Vandermonde matrix, with gie? — gial i 7 = [, which
is enough to state that this matrix is invertible. Therefore all \; are equal to 0 and the
vectors 6, (7)) are linearly independent. <

We are now ready to prove the main theorem in the particular case of a single vari-

able:

Proposition 4.2.7. For any complete language AZX[F|/R such that R = A} and any
two AZX|[«, Fl-diagrams Dy, Ds,

[[Dl]] — [[DQ]] < A;’r— l_ D1 - D2

Proof » [<] is a direct consequence of the soundness of the AZX-calculus.

[=] Assume [D;] = [Ds], i.e. Vo € R, [D1(«)] = [D2(a)]. According to Proposition
4.1.5, [D] 0 0,] = [D} 0 6,] where D, are in AZX[F]. It implies, according to Lemma
4.2.6, that [D} o P,] = [D} o P,]. Thanks to the completeness of AZX[F|/R, R +
DioP, = DyoP,soRF DjoP.o6, = D)o P.o#6, Thus, by Lemma 4.2.5,
RF Djof, = D)o, which is equivalent to R - D; = D5 according to Proposition
4.1.5. <

Several Variables

Proposition 4.1.5 can be straightforwardly extended to multiple variables:

Proposition 4.2.8. For any Dy, Dy : n — m two AZX|[d, F|-diagrams, there exist
Dy, Dy - (35 73) — n+m two AZX[F)-diagrams such that,

Di=Dy & Djobr=D)o0-

is provable using ZX . +(K), where r; is the multiplicity of o;; in Dy = Do, 7 :=11,..., T},
and 0z := (q)al)(}m1 ®...® (Qak)@)rk.
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Pictorially:
T ... Tk Tt o... Tk
| D | | D| | <:,> a1 (65] (097 A o a1 (097 (6973
1 _ y | — Ll -T--. — Te--T---T...
| ] |

Similarly Lemma 4.2.6 can also be extended to multiple variables:

Lemma 4.2.9. Foranyk > 0, any7 =ry,...,r, € N*and any D1, Dy : (3., 1:) = n
two AZX|[F]-diagrams,

[[Dloef]] = HDQOHF]]<:> [[DloPFﬂ = [[DZOP,:]]
where P =P, ®...® F,,.

Using Proposition 4.2.8 and Lemma 4.2.9 (whose proofs are similar to those of 4.1.5
and 4.2.6), the proof of Theorem 4.2.1 is similar to the single variable case (Proposition
4.2.7) by induction.

Notice that Theorem 4.2.1 implies that if V&' € R* [D; ()] = [D2(@)] then Dy (@) =
D, (&) has a uniform proof in the ZX-calculus in the sense that the structure of the proof
is the same for all the values of @ € R*. Indeed, following the proof of Theorem 4.2.1,
the sequence of axioms which leads to a proof of D (@) = Dy(d) is independent of the
particular values of @. This gives us some equalities for free, that will be used in the
following.

Corollary 4.2.10. Corollary 4.2.11.
a o+ 200+ 5 -
+ — « «
AT F O\(O(SUP) Q AfF ? = ?@-a
«
Corollary 4.2.12. Corollary 4.2.13.

gl 2l
«@ B8 B8 «@
+ . AT+ @ B — 5] @
Aﬂ"_ﬂ' - e s a Trﬂ(c)ﬂ @
@ B B «@

4.3 A, for AZX][d, 7]

The aim of linear diagrams is to get a completeness result for ZX [, 7]/ ZXx/,. Theorem
4.2.1 was given for fragments of AZX. Hence, the next step is logically to apply the
theorem to such a fragment that is as expressive as ZX[7]. We already know that A}
is a complete axiomatisation for AZX|&, 7|. Through very few changes, we can give a
complete axiomatisation A/, for AZX[d, T]. This set of rules is given in Figure 4.2.
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Figure 4.2: Set of rules A~/,. The right-hand side of (E) is an empty diagram. (...) denote
zero or more wires, while () denote one or more wires.
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Theorem 4.3.1. The language AZX|d, §]/ A/, is complete, i.e. the functor:

k

1 T
[3.1]

- T [ .
AZX]a, Z]/A,r/4 L Qub1t§

is faithful.

Proof » We are going to use the completeness of ZX[%]|/ZXx, to first prove that
AZX[%]/ A/, is complete. We will then be able to use Theorem 4.2.1 to extend the
completeness to linear diagrams since A/, = AT (only (IV) is missing, but it it is deriv-
able thanks to Proposition 2.7.16).

Remember that we have a functor AZX]|r] iA ZX[7]. It can easily be extended to
AZX[%] it ZX[Z], it is the identity on every generator except A for which

i
ISE

—
1
~
I
INE
MENSE]
ISE}

We can now use the inclusion functor ZX[Z] = AZX][Z].

Both these functors are PROP-functors, and one can check that [[.]7],x = [-]Azx-
We are now going to prove that for any ZX[%|-diagrams D, and Ds, ZX.;, = D; =
Dy = Axu b o(Dy) = (D). We do so by deriving all the axioms of ZX/, with A/,
A lot of them are found in A/, so they don’t need to be proven. Also, (C) is provable
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thanks to Corollary 4.2.13. We can prove (HD):

Also, we can prove A/, - + = 1
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The rule (BW) of ZX./, is now easily derivable from the decomposition of the triangle
and the rule (BA) of Ax/,.

Now, let D1, Dy € AZX[%] such that [D;] = [D,]. Since [[.]7]zx = [Jazx> bY
completeness of ZX 7]/ ZXxy, ZXoy, = [Di]7 = [D2]7, 50 Aryy =0 ([Di]7) = ¢ ([D2]7).
We have Ar/, ¢ ([D |7) = D;, because ¢ ([.]7) is the identity for all generators except
* and in this case we just proved ¢ ([4 ) + As a consequence A/, = Dy = Dy,
so AZX[%]/ Axy, is complete. By Theorem 4.2.1, AZX|d, 7]/ Axy, is complete. <

4.4 ZX Beyond Clifford+T

Now that we have proven the completeness result for AZX beyond Toffoli-Hadamard,
we can derive a similar one for the ZX-Calculus.

Theorem 4.4.1. The language ZX|d, 7|/ ZX~/, is complete, i.e. the functor
LT [ . RE
ZX [a, ﬂ | ZXx/4 L Qublti[%@i%]
is faithful.

Again, this functor is also full, but the proof needs constructions introduced in Chap-
ter 5.

Proof » To prove this result, we are going to use the previously proven result for linear
diagrams of AZX[7| (Theorem 4.3.1). As usual, we need a pair of functors that translate
one one language into the other. We can easily extend the functor [.]7 but this time

for linear diagrams AZX[d, §] g ZX|d, 7] Again, it is the 1dent1ty on all generators
except A . And again, we have the inclusion functor ZX|@, I] = AZX|a, %].

We first prove that A, - Dy = Dy = ZX./, F [Di]r = [Da]r. We do so by
proving all the axioms of A/, with ZX/,, most of which have already been done. It
remains to prove (P). First:
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Now, suppose we have Dy, Dy € ZX[d, 7] such that [D,] = [D;]. By completeness of
AZX[a, ]/ Anjay Dryy = 1(Dy) = L(Dg) 50 ZXx/y = [t(D1)]r = [t(Ds)]7. Finally, it is
obvious that [¢(D)]r = D, so ZXx, = Dy = D,. Hence ZX[d, 7|/ ZXx/, is complete. <«

We just showed that ZX./, = Ar/,. In the previous section, we showed the converse,
that Ax/, - ZXx/,. The result is that:

Proposition 4.4.2. ZX|a, 7]/ ZXs/, ~ AZX[d, 7]/ Ay,

4.5 Applications of Linear Diagrams

In order to prove that ZX./, = D; = D, using Theorem 4.4.1, one has to double check
the semantic condition [D;(@)] = [D2(d)] for all @ € R*, which might not be easy in
practice. We show in the following alternative ways to prove ZX./, = D; = Dy, the
two first based on a finite case-based reasoning in the ZX-calculus, and the last one by
diagram substitution. The following techniques will be proven for ZX|d, 7]/ ZXx/, but
can be easily stated out for AZX|[a, 7]/ Al

Considering a basis

Theorem 4.5.1. For any ZX|d, 7|-diagrams D1, D, : 1 — m, if

Vs jm
Vi€ {0,1}, ZX., =

ZXos b Dy = Dy

then
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Proof » The argument was already mentioned at page 121, up to a change of basis. We
give it again here for the sake of consistency.
Assume ZX./, = Dy o Rx(jm) = Dy o Rx(jm) for any j € {0,1}. It implies that for

r € {( (1) > : ( 2 )}, [D1] z = [D2] x, so [D1] = [Ds], which implies according to
Theorem 4.4.1 ZX/, = Dy = Ds. |

Notice that Theorem 4.5.1 can be applied recursively: in order to prove the equality
between two diagrams with n inputs, m outputs, and constants in 57, one can consider
the 2™ ways to fix these inputs/outputs in a standard basis states. It reduces the exis-
tence of a proof between two diagrams with constants in 77 to the existence of proofs
on scalar diagrams (diagrams with no input and no output).

Corollary 4.5.2.

ZXo b o Yo b4
8 E

Proof » We can prove that this equality is derivable by plugging our basis (?, ?”) on
the input.

Q?:
ages M%‘a ggg e
— Oa

Qo 1y To O«
W w P e
(sx) (CP)

(s:a) O\$ &0 CP) -
(CP) (T0)

) ) B
. ?” :
56 Oc Qo @ @ @2 tr @@ 0T o
IV) I_g 8 5 (gsgpﬁ) /.\ 85 (P(If{%f 7T gﬂ
7rdlst

(CP (IV)

a a+m
%ng” _ M
o 8
) 22

(mdist) (Cp)
(mdist)
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Considering a finite set of angles
Theorem 4.5.3. For any ZX|d, 7|-diagrams D1, Dy : n — m, if
Va € Ty X ... X Tk, ZX.TI’/4 H Dl(dj) = DQ(&)

then
LXq = Dy = Dy

with T} a set of j1;+1 distinct angles in R /277 where yu; is the multiplicity of a; in D1 = Ds.

Proof » In the proof of Lemma 4.2.6, we actually only used i, + 1 values of « that
constitute a basis of S,,,. This extends naturally to several variables: the dimension of
Spey X 7+ X Spg, 18 (fay +1) X -+ X (figy, + 1), and taking @ € Ty x ... x T}, gives as
many linearly independent vectors in (hence a basis of) 5, X -+ X 5, . <

Corollary 4.5.4.

& B
. _ Oatp @r @

‘ 5 Oa—p OF
Proof » Notice that ji, = 2 and pg = 3 in this equation. Hence we need to evaluate it
for 12 values of (v, 3), for instance for o, 5 € {0, 7, §} x {0, 7, §, =5 }. We can actually
simplify the proof, by showing that whatever the value of 5 € R, the equation is deriv-
able for o € {0, 7, 7 }. This means the equation is derivable for all o, 3 € {0, 7, 5} x R,
and a fortiori forall o, § € {0, 7, 5} x {0, 7, 5, — 5} which would be a direct application
of the theorem.

e =0
8o
s O-8 08
B © ©f 5133 s ((II‘(?
(sm)
ca=m:
ﬂ- ’ @@@ @f+m On+s @m
s = (@) 2# = o gﬁ @
@ B ((113) Op+TQL+T@T EIS\%; OpB+m (K)
(CP)
(mdist)
. Oé :%

e KB e B v
o3 B ((II\(/)) (SUP (Hopf @ g I-(II(:gf) g

B 2+'Bg7r B og+ﬂgw@
(sup) 0% av) 03808
B-3 (CP)

(K)

(sm)
(s+)
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[ © . e  —C

The results are the same for three different values of «. This is enough to get the equation
in Corollary 4.5.4, according to Theorem 4.5.3. |

Remark 4.5.5. The number of occurrences of a variable is not to be mistaken for its mul-
tiplicity. For instance consider the following equation:

p= - o=

This equation is obviously wrong in general, but not for 0 and 7. If we tried to apply
Theorem 4.5.3 with the number of occurrences (which seems to be 1), then we might end
up with the wrong conclusion. The multiplicity (here 1, = 2) prevents this.

Diagram substitution

" Definition 4.5.6 (Symmetric Diagram): A diagram D : 0 — n is symmetric if for
any permutation 7 on {1,...n},

Q-([D]) = [D]
where @, : C*" — C?% is the unique morphism such that:
Vo1, ..., 00 €ECLQ010...9¢0) = Pr(1) @ ... ® Pr(r)- 4

In particular for any diagram Dy : 0 = 1, Dy ®...® Dy is a symmetric diagram.

Theorem 4.5.7. For any ZX|d, 7|-diagrams Dy, D, : v — n and symmetric ZX|5, 7l
diagram D : 0 — r, if ZX./, = Dy 0 0,, = Dy 0 0, then ZX,, = Dy oD = Dy 0 D ie,
pictorially:

@0 @0 @20 @ao | D | | D |
ZX..F[ Dy ] =[D 7% P i i
by =L = e 1507 ]

Proof » If ZX./, = Dy 0 6,, = Dj 0 0, then [D; 08,,] = [D; 0 60,,], so according to
Lemma 4.2.6, [D; o P,,] = [D; o P,,]. It implies that ZX,/, = D, 0o P,; = Dy 0 P,, so
ZXsyF Dyo P oD = Dyo P, oD.Tocomplete the proof, it is enough to show that
72X+ = PyyoD = D.

Let S = {[D] | D : 0 — n symmetric}. First we show that S is of dimension at most
r + 1. Indeed, notice that if ¢ € S, then Vi, € {0,...,2" — 1} s.t. |i]1 = [j|1, i = ©js
where |z|; is the Hamming weight of the binary representation of x. As a consequence,
forany ¢ € S, 3ag,...,a, € Cst. o => ), ane™ where ™ € C?" is defined as
w  J1 iflili=nh
Yi =

. Thus § is of dimension at most r + 1. Moreover, for any a € R,
0 otherwise

[0.,(a)] € S,s0S C S,, :=span{[0,,(«)] | @« € R}. Since S, is of dimension 7+ 1 (see
proof of Lemma 4.2.6), S = S,.. As a consequence V3, [[D(E)]] € S50 [P]o[D] =

, since, according to Lemma 4.2.5 |F. o 0, || = |0,,||. Thus, /4 ro © 1) thanks
D, si ding to L P.od,, 0,,]. Th ZX/I—P0 D thank
to Theorem 4.4.1. «
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Corollary 4.5.8.

B o B &

s
ZX. b ’ e .

Proof » Indeed, simply by decomposing the colour-swapped version of (SUP) using (S),

we can derive:
@ a @u_ @«
™
ZXops 1?}” = ?

B o
Now we just need to apply Theorem 4.5.7 with @:: aO—? ;—Oﬂ which is clearly

symmetric:
B a B «
w D(Oé, ﬂ) s
« P2 T g = - .

4.6 Axiomatisation for ZX

We are now well equipped to give an axiomatisation for the unrestricted ZX-Calculus
(ZX[R] = ZX), and prove that it is complete. The axiomatisation is given in Figure 4.3.

Theorem 4.6.1. The language ZX / ZX is complete: the functor ZX / ZX i Qubit is full
and faithful.

But first, let us consider the set of rules ZX. Notice that this axiomatisation basically
consists of ZX./, with two additional rules (that replace the scalar axioms): (E), which is
already in ZXx/,, and (EU).

The rule (EU) is really all about 1-qubit unitaries. Indeed, we have the following
result:

Proposition 4.6.2. Any one-qubit unitary can be decomposed as:
Ginz(Oé;g)Rx(Ozg)Rz(&l)

which can be represented in ZX as:

If the unitary is not diagonal or anti-diagonal (i.e. if o # 0 mod ), then this decomposi-
tion can be made unique if we impose oy € [0, 7)
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©

E |

9 NE]
VB

]

B8

Figure 4.3: Set of rules ZX for the ZX-Calculus with scalars. The right-hand side
of (E) is an empty diagram. (...) denote zero or more wires, while (-) denote one or
more wires. In rule (EU), 31, 52, 33 and ~y can be determined as follows: z* := %,
x7 =1 —ag, z = cos (%) cos (zF)+isin (%) cos (z7) and 2’ := cos (%) sin (z7) —
isin (%) sin(z7), then 81 = argz + arg?, 5y, = 2arg (i—l— }f ) B3 = argz —

arg 2,7 = a* — arg(2) + 225

Proof »
e Existence:
Any element of U(2) can be decomposed as:

(75 o) (SRl @) (5 )

Hence, the existence is given by:

ZIQ _ i(+%2) 1 0 coS (% —18in (%) 1 0
’ gﬂ — ¢ 0 e ) \ —isin 0‘—) coS (%) 0 e
(0%

v

_ ity ertepten) (eGHD 0 cos (%) sin (%)) e H 0
- o et s (3) cos(i) | 0 et

e Uniqueness:

Suppose ||@az2 = asg |- The first diagram yields:

ire) (- cos() - —ie™sin ()
¢ * U\ Zietos gin (%) eilontas) oog (%)
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e———0o— —0 — e e @ ——————— @6 ——0
and similarly for the second one. If @y # 0 mod 7, then neither cos (‘*22) nor sin (%)
is null. Hence, dividing element (1,1) by element (0,0) on both sides gives gilontas) —
e!®1+9%) and dividing element (0,1) by element (1,0) on both sides gives e/(®1—3) =
e'(®179%) 1In other words, a; + a3 = o) + oy mod 27 and a; — a3 = o) — af mod 2,
so 2a; = 204 mod 27 ie. a; = o) mod 7. Since we required oy, € [0,7), we get
ap = o). It then follows easily that a3 = o}, ay = o and 7y = 7. <

In 1775, Euler proved what is now called Euler’s rotation theorem [ ], stating
that there are several ways to decompose a rotation into several rotations around ele-
mentary axes. In quantum mechanics, a consequence is that any unitary operator on
one qubit can be seen as either a composition of rotations around Z, X, Z; or around
X, Z, X. On the one hand, the rule (HD) says - in a distorted, ZX-style way - that the
Hadamard gate can be decomposed as a series of rotations, while on the other hand, the
rule (EU) gives the equality between two different decompositions of the same unitary:

(o=t =17 — a3
z —cos( 2) cos (zF —l—zsm(%) (x~
o bi gr = cos (%) sin (z") — isin (%) (x~
s (E:U) B2 gﬁy @ where 61 = arg z —1— argzz
%5 Bngarg(z+ Z,)
b3 = arg z — arg 2’
\ ’7:x+_arg(z)+a27_62

This rule is meant to be read from left to right, this is why the angles 3; and v are
expressed in terms of the angles «;. However, up to the scalar, which only represents a
global phase, and hence is invertible, applying the rule from right to left can be performed
by using the colour-swapped version of the rule from left to right.

There are several sets of angles for 3; and -y that make the rule sound. However, we
only gave one, but the others can be found from it and the other rules of ZX. We will not
need to prove this claim directly, it is an implication of the upcoming theorem.

The angles 3; and v seem to not always be defined. Indeed, arg is not defined at 0,
and [, is not defined when 2’ = 0. By convention, we set arg(0) = 0 and /5 = 0 when
2 =0.

The first proof of incompleteness of the unrestricted ZX-Calculus [ ] relied
on an Euler decomposition, but adding it to the set of ZX axioms has been avoided for a
while because of its non-linearity. However, a non-linear axiom is necessary to get the
completeness for the general ZX-Calculus [ ]. And so, it has been used in [ ]
to prove the completeness of the 2-qubit 7-fragment of the ZX-Calculus. The rule (EU)
is actually much more powerful than this, for, as we already announced, it makes the
language complete.

On Minimality

We call an axiomatisation minimal when there is no redundancy in the axioms. Par-
ticularly, we want a proof that none of the axioms are derivable from the others. We
conjecture that all the axioms in Figure 4.3 are necessary. Indeed, in [ ], nearly
all the rules for Clifford - i.e. all of the axioms in Figure 4.3 except (E) and (EU)- are
proven to be necessary. We reproduce the arguments here:
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(o] © e — 00— 0

« (S): It is the only axiom that can transform a node of degree four or higher into a
diagram containing lower-degree nodes.

+ (I;) or (I,): These are the only two axioms that can transform a diagram with nodes
connected to a boundary to a node-free diagram.

+ (CP): It is the only axiom that can transform a diagram with two connected outputs
into one with two disconnected outputs.

+ (HD) and (H): To prove their necessity, we define two non-standard interpretation.

Proof of Necessity of Rules (HD) and (H) » First, to prove the necessity of (HD), we
define the non-standard interpretation [[]]h as follows:

R
e Siadr TS
Dyo 92: [D]* o [Ds]f ; @ Dy s [Di]* & [Ds]f

It is then easy to see that all the rules but (HD) hold under this interpretation, hence
proving that (HD) could not be derived from the other rules.
Then, to prove the necessity of (H), we define the non-standard interpretation [[]]h as
follows:
o] AeA Ue U

e NadPas

X - X

n
m m

"8

i

Dio Dy +— HD1]]h °© HDQ]]h Dy ® Dy [[Dl]]h ® HD2]]u

and consider equality in the codomain up to a scalar, i.e. we consider colinearity. One
can check that all the rules preserve colinearity except (H). <

In this new axiomatisation, (E) and (EU) can also be proven to be necessary:

+ (E): It is the only axiom that can transform a non-empty diagram into an empty
one.

« (EU): It is the only non-linear axiom.

In summary, all the axioms are proven to be necessary, except (B) and one of the (I).
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ZX proves 7ZX,

A first and easy step towards overall completeness is to show that we can recover the
axiomatisation ZX/, that we know complete for Clifford. We already have most of these
rules, we only lack two: (Z) and (IV). However, we can see from Figure 2.2 that (IV) is
derivable.

To prove the rule (Z), we will first derive (K).

Lemma 4.6.3. The m-commutation (K) is derivable:

ZXI—E “zga T
Vi T @ -«

Proof »

oo
oo
3 2 3 3
=
cl
o
oo
Q
2
oo
3 R
g =

Remark 4.6.4. This is one of the few applications of (EU) that still preserves linearity.

Lemma 4.6.5. The zero rule is derivable:

or or

ZXI—? :T

Proof »
™ ™
o "99 3 "0 o o o
a = a = o = @ a = g“ @ (4.3)
(Hopf) ®) 2 X) 2 2 (S) 2
1v)
(Hopf)

T or @r
a = gﬂ @ = T (4.4)
271_ (4.3) 271_ % (sm) g%

)

Now, if @ € Dn (where D := 7Z [%]), then there exists n such that 2"« = 0 mod 2.
Hence, in this case the scalar on the right hand side of (4.3) can be removed by applying

(4.4) from right to left n + 1 times then using 2” = 2 and (IV) to remove it. Hence:
(s7)

us Qor
Va € D, ﬁ)a = ? (4.5)
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So:
owg = gf = @n (4.6)
(4.5) T ®
(H)
And finally:
ks Q7 ks @r or o
— =4 — & O—1® e O @ — g e
? (4.5) ?2 (I ?2 ’ (45)? <s2>? <46>?
(H) V)
<
As a result:

Proposition 4.6.6. For any diagrams D, D, of ZX[7]:

[[Dl]] = [[DQ]] <— ZXF D; = D,

4.7 Singular-Value Decomposition

The next step is logically to get the completeness for Clifford+T quantum mechanics, i.e.
for ZX[7]. Now that we are seeking to prove equations that are out of Clifford, we will
begin to use (EU) to its full potential. However, we would like, as much as possible, to
avoid computing the angles, because, since we work on the problem of completeness, we
need to formally prove the equality between two diagrams, and hence to formally write
what the angles resulting from (EU) are, which becomes tedious after a few applications
of the rule.

To simplify this task, instead of showing directly that two diagrams can be turned
into one another, we will define a normal form for them, show that it is unique, and
show that there is an algorithm to turn them into this normal form.

To do so, we prove a few useful lemmas:

Lemma 4.7.1. Corollary 4.7.2.

s
3] o f 11

where (31, B2, B3,y can be determined as in

rule (EU). where [31, B2, B3,y can be determined as in
rule (EU) with ap < 7.
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Lemma 4.7.3. Lemma 4.7 4.

s
._E
ﬂ _21 aq (0%} K
272 . 062 @3
2 :ﬂ- .\(. - B1+5s3
: -
where b1, B2, B3,7 can be determined asin  \ypere b1, Ba, B3,y can be determined as in
rule (EU) applied with the angles: rule (EU) with o < T.

Qy < ag + 5 and az <+ 7.
Proof »

0 x3
a1 . a3 . a3§ - 61 -
a (5) O3 ©) 3 471 @Ps I
s vy z @I s t

2 iy P2 2 2 @I

o1 o —R2 ﬁ Iﬂ 0@ B3 +5
~ 2 = i = 007 JB
az  (B) Q1 (HD) ot I (EU) o= B2

. 2 @ g (L
2 ® B1 ©Y

o 835

0520
472 @Ps (CP) B1 +63
2 (D 2

Now, by specialising the angles to a and o + 7, we shall recover (SUP):

Proposition 4.7.5. The supplementarity is derivable:

« a+m 20+
7X .\(.(szsz) Q
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Proof » We first use Lemma 4.7.4, where a3 = oy + 7. In this case, it can be computed
that 5, + B3 = 0, so we end up with:

e 3383

From this, we can easily specify the scalar on the right part:

P T
g @ g g gw (0} a+m
y _ — — 20+ 4.8
a) 0520-3 ) ©) — (48)
) "

Q8205 62 O

So finally:

RV 38gs _ 88

§2a+7r
17 18 20+ op
(4.7) ? b ©-Z (4.8) ? O2a+m (Ié\g)f)

Remark 4.7.6. The supplementarity allows us to prove:

s
%o
4

which implies that @-3 g: é can be replaced by B:E in Corollary 4.7.2 and Lemmas
4
4.7.3 and 4.7 4.

VB

So far, we have proven all the rules of ZX/, except (C) and (BW). For the rest, we
present the singular-value decomposition of a matrix, and introduce it to ZX-diagrams.

" Definition 4.7.7 (Singular Value Decomposition): A singular value decomposition
(SVD) of a matrix is a decomposition of the form

M=UxVT

where U and V' are unitary, and X is diagonal. The diagonal entries of > are referred to
as the singular values. Notice that M needs not be square (in this case ¥ has the same
dimensions as M). J

To justify the use of SVDs, we give some of their interesting properties [ ]:
Proposition 4.7.8. The SVD M = UXV'' of a matrix M has the following properties:
e It exists for all M

e 3. can be made unique if we impose that its diagonal entries are decreasing non-
negative real numbers

e U andV are not unique in general, though:
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e —— > — @—90

e If M is square with distinct and non-zero singular values, then U and V are essen-
tially unique:

USVI = U'SVT <= (3d, (U =Ud) A (V' = Vd))
where d is diagonal with diagonal entries some roots of unity.

Even though the singular-value decomposition is relevant for any diagram, we are
only going to give its derivation for a particular family of diagrams:

" Definition 4.7.9 (Cycle-Free Diagram): A cycle-free diagram is a diagram composed

onlyof‘,%],ga,va wheren € Nand a € R. J

Remark 4.7.10. Some diagrams that do not strictly follow the conditions of the previous
definition will still be considered cycle-free if they are equal to a cycle-free diagram by
mere application of the “only connectivity matters” paradigm, i.e. if they are isomorphic
to a cycle-free diagram. E.g.:

(#\.a = (#T' “ s considered cycle-free

One-Qubit States

We can now easily give a normal form for one-qubit states, using the SVD of the under-
lying matrix.

Proposition 4.7.11 (SVD of a One-Qubit State). Any cycle-free state D : 0 — 1 can be
put in the following forms using 7ZX:

a o
P-Fw-fe

where 3, ' € [0, 7), and where s and s’ are 0 — 0 diagrams, i.e. scalars. We call these two
forms respectively SVD, and SVD,..

To understand where it comes from, notice that if M € C? x C, with UX VT its SVD,
then U is a 2 x 2 unitary, and VT is a 1 x 1 unitary. A 2 X 2 unitary can be expressed as in
Proposition 4.6.2, while a 1 X 1 unitary is merely a global phase i.e. a root of unity. X is

of the form (8) =g (\/5> (where s = 0 if M = 0). Hence one of its representations

a1 | g as | g
a2 = Qas
Qs

thanks to some rules of ZX, and where s” is the aggregation of the scalars produced by

U,Y and V1.

is:
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Proof » First, notice that a state in the previous form of SVD,, but with the bas con-
straints on angles, can easily be transformed into an SVD. Indeed, if § € [, 27):

8 [ = ; “

and similarly for the SVD,. We can show that we can transform an SVD, into an SVD,
and vice-versa: :

— a-Z a%1 §
— 5 = Y2 § Iﬂ' = Y2 Iﬂ'
. (IEISI))) 5'% I ﬁ E]SS_E) 73 T (g) ;’73 T

(s)

Then :
o
8 [s] s 5] - [
- =S L <
H

Notice that the generator R(Zo’l)(a) can be obtained as a combination of the last two.
Then :

a
@ _ o8 [5] _ ;Zﬂ
s g ©)

/ (@)1

D D aq (6%) B @@
D ) .\T/[:% e
(S) 474 @QPBi+be le
ofup e 2L, e
. B+z 5 s )
55, @fthts btbts g

(I >
(HD)

Finally, the generator R(Zn’l) (a) can be obtained by composition of Rz(«) and R(Z2’1) (a);
and Rg?’l)(a) can be obtained by composition of R(Zn’l)(oz) and H. <
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oU——— O ©

g

Proposition 4.7.12 (SVDs of states are essentially unique). If D; = % B1 and Dy =
Q2
$52 are in SVD, and if [ D1] = [D3] # 0, then either:

e a1 = ap mod 27 and o; = 0 mod 7

e a1 = ag mod 27 and B = [

67;51(1 _ eioq) 6i62(1 _ eiozz)
2m, then it is easy to see that &y = 7 mod 27 and 51 = 552 If a; # 7™ mod 2m,
then the upper coeflicient is non-null, hence we can divide the lower coefficient by the
upper one, which yields:

1 0] 1 (1D
Proof » The equality reads s; ( te ) = 59 ( te ) If oy = ™ mod

etB1 1- 62,a1 = P2 Lo e(L'CQ <~ " tan <ﬂ> = e tan <%>
1 + ein 1 + efoz 2 2

If &y = 0 mod 27 then ap; = 0 mod 27. Otherwise, since /31, f2 € [0,7), 51 = 52 and
a1 = oy mod 2. R |

1 — 1 Operators

Applying the singular-value decomposition on 1 — 1 operators gives them a particular
form, again with properties of essential uniqueness:

Proposition 4.7.13 (SVD of a 1 — 1 diagram). Any cycle-free diagram D : 1 — 1 can
be written in the forms:

a2 (%)
I:l:):‘ = a3 ol = o 0l
(o7

wherey € [0, 3], and ay, as, o, o € [0, ), using ZX. We denote the two forms respec-
tively SVD, and SVD,.

The intuition is that (%E. " has interpretation (up to a scalar) (é tano( 5 )) , and
2
hence can be used to represent Y. in the SVD of [D]. U and V1 here are 2 x 2 unitaries,
and so can be represented as in Proposition 4.6.2. Using (S) to merge the green nodes
gives the above form.
Proof w First, if D is in the form SVD,, but where the constraints on the angles are not
met, we can transform it into an actual SVD:
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- -0—- -0 - @— 0

If ay € [m,27) (and similarly for a):

a2 N

©) 4
® O IQZ

« Ify € [—%,O):
s 9 = § :ﬂ- ——
S) v e
X)
o Ify € [-m, %)
.
a3+—.'y = -Q3 Y+
)
(K) ™ Qa3
.
« Ify € [g,ﬂ'):

as 7 = -as3 Yt+mw = T7-a3 Ty
) ()
(K) g Ias (K) & I“
s az+y+m

Then, we show that the two decompositions are equivalent:

(03]
/
(6% (6]
Qa3 Y = Qa3 ag v
H)
Q4 oy /
;

as (673

We are going then to prove the result by induction on the structure of cycle-free

diagrams given in Definition 4.7.9. The two 1 — 1 generators R(Zl’l)(a) and H can be
put in SVD:

+
Q
Z|
Q
I
vl
wls
=
jo)
T
(VIE)
(O ]
INIE] ’h;: 3
_D_
gl
VB
S8
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The composition of two SVDs can be put in SVD (here, ignoring the scalars):

Y14
Y15

Notice that, by composition, the 1 — 1 generator Rg;’l) (cv) can be put in SVD.
If the 1 — 1 diagram has no cycle, there can still be branching. Hence, there can be

a state D : 0 — 1 in tree-like form attached to the “main wire” by a node, say green, as
follows:

I
@
Q

—
— W
=L

A branching made by a red node Rg?’l) can be deduced by composing the green one and
Hadamard nodes. <

Remark 4.7.14. We gave two conventions for the SVDs of 0 — 1 and 1 — 1 diagrams.
These two depend on the basis in which we consider the decomposition. SVD,, corre-
sponds to the computational basis, while SVG, corresponds to the diagonal basis. If
M = UXVT with ¥ diagonal in the computational basis, M = (UH) - HXH - (V H)T.

Proposition 4.7.15 (1 — 1 SVDs are essentially unique).
(%) Bl

a2 52

Suppose D = a3 v and Dy = B3 v are in SVD, and that [ D] = [D2] # 0.

oy ﬁ4
(0%

Bs
Then, either:
cy=7"=0
o f)/ = ")/, = %

e o; = ; mod 27w andy = v/
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Proof » First we decompose Dy and D, as:

(65] VT E

Q2 :__

Dy = a3 ¥ =X E%
Q4 [

Qs U :

B1 v E
B2 S

Dy, = 53 Yy =Y E%

Ba E

Bs |

U

where u, v, v’ and v" have been chosen so that [X] and [X'] are real matrices, and where
z and 7’ are arbitrary angles. Notice that [U], [V'], [U’], [V'T] are unitaries. We have
two SVDs that represent the same matrix:

[Ule (=] e [VT] =[D1] = [D2] = [U"] o [Z] o [V"]

First off, let us show that 3 and > are essentially the same. One could compute [X] =

, 1 0 1 0
’ iy m — e i , : ’
[s'] (1 + ) (0 tam (%)) and [X'] = [s5] (1 4+ €7) <O tam <%>> Since 7,7 €
[0, g], tan (%) and tan (%) are smaller than 1, and since the diagrams are non-null, we
get [X] = [¥'] by Proposition 4.7.8, which implies 7 = ~'.
If v = 4" # 0, then [X] and [¥'] have full rank. Moreover, if v = 4" # 7, then [X]
and [X'] are not colinear to the identity. Hence, if v = 7' € (0, 7), then we can apply

Proposition 4.7.8.
ei‘p()

By Proposition 4.7.8, there exists d = such that [U'] = [U] o d and

0 e

[V] = df o [V']. Notice that H@ gzo+¢1-¢oﬂ = d and HQ g:ﬁo%m-%ﬂ _ a4

Hence:
z' g T+p1—po

[U'] = Ba - =[U]od= a4§ gw+
s u+po

Since (5 and «; are in [0, 7), the representation of the unitary is unique by Proposition
4.6.2, s0 B5 = as, B4 = ay, and ¥’ = x 4+ 1 — @p. Similarly, the second equation yields
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L A © e  — O

a; = P1, a0 = fBrand B3 — 2’ — 5 = a3 —x — 5+ o — 1. Together, the equations on

x and ' imply that a3 = (. <

Completeness for some Scalars

Propositions 4.7.12 and 4.7.15 state that the SVD decomposition is essentially unique in
their structure, but left out the scalars. To remedy this, we give the following result:

) D1 Oa1 A Oanl ? P2 OOél . OCK{,12
Proposition 4.7.16. Let D, := @ Bi  @Ba and Dy := @ @8, . Then:
71 Va1 7 7{12

[Di] = [Ds] < ZXF+ Dy = D,

Proof » For both diagrams, we are going to build a larger one. We define A inductively

by connected components:
2 @35 8 - I
Qa 2 é 2 = @ — @
B . - -@7 i

and such that A(.®.) = A(.)oA(.). Then, we define AD; := & oA(D;) (the choice of no-

NERNE
sy

[Sljey

tation A will be made clearer in Chapter 5). One can check that [A(D;)] = ((1) [ lg]]) ,

so [AD;] = (1 [D;]). Hence, since [D;] = [D-], we have [AD;] = [AD;]. By Propo-
sitions 4.7.11 and 4.7.12, both reduce to the same SVD form, with potentially different
scalars, i.e.:

« «

ZXF Rp =fﬁ and  ZXF =fﬁ

It is fairly easy to prove that ZX - A(.) o ® = @, 50 ZX - AD; 0 <? é) = T . It helps
us prove that the two scalars and E are equal under ZX:

ll&g flﬁal

Hence, we have:
ZX l_ AD1 - ADQ

Itis also fairly easy to show that ZX = A(.)o®™ = .o @7 s0ZX I AD;o (?“ é) =D,.

Finally:
ZX Dy = AD;o (97 §) = AD,0 (97 §) = D,

<

Remark 4.7.17. This gives a result of completeness only on a particular class of scalars.
However, one can check that all the scalars produced by the two SVD algorithms (Propo-
sitions 4.7.11 and 4.7.13) are of this form.
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From this we can directly get some equalities on scalars that will prove useful in the
following.

Corollary 4.7.18. Corollary 4.7.19.
7X %ﬁ _ arccos % _
2'5 @ ZX F E-arccos (% @@
Corollary 4.7.20. If o # 7 mod 27: Corollary 4.7.21.
o"eor @ _ - ™ @CER - 7

ZX + @a O_agﬁé_ T IXF3r  ou ﬁ@
with: with a := 2 arctan (\%)
n :=max (0, [—logy(1+ cos ()] —2)

| and vy := arccos (%)
7y = arccos m .

4.8 Completeness of ZX/7ZX

Recovering 7ZX-/,

The point now is to exploit the SVD of ZX-diagrams and their uniqueness, first to recover
7X/,, and then to prove the completeness for unrestricted ZX-Calculus. A rule that can
directly use these results is (BW), because the diagrams on both sides of the equation
are cycle-free:

Corollary 4.8.1.

B

L E ]
13
INE] INE)

ZX = -

VB

(BW)

ISE}
INE)
SEIFSERE|

NG

Proof of Cor. 4.8.1 » Using Proposition 4.7.13, we can put both sides of the equation
in SVD form, and thanks to Proposition 4.7.15, the two forms have the same structural
angles. We can even compute:

INE
e

] - 2
: ; b co o o b
= o z and : . =0 B
@ jus 4
e s 3
2 2
i
with v = Z — 2arctan (\/5> and ; = arctan (2).
Also, comblmng Remark 4.7.17 and Proposition 4.7.16, we directly get that the two
scalars are provably equal, which concludes this proof. <
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The results on SVDs cannot be dire

ctly used to prove the equation (C) though, for

its diagrams have 4 inputs/outputs, and have cycles. However, the SVDs can be used to

prove a first intermediary result:

Lemma 4.8.2.

«@ B8 B8 «@
T = T
(o 153 153 o

Proof » We prove the equality by simplifying both sides of the equation. The left hand

side yields, when ignoring the scalars:

B at3 B3
i , (%)) (®)
(Ii)) - 8
at3 QB+3
o - 8 5
©) & (H)
Y1 - B+Z
e Y2 ﬁ3 =
(EV) (K)
©) 5 O

where n and m are chosen in {0, 1} so
symmetry, the right hand side yields:

B @
T
B @

a+Z .
2 5+§ B B"‘E
ph Ps ®@D) P13 B3
(| >
B2 Ba
Y1+nm B+5+mm
(-1)"2 (-1)™Bs
Ys+(n+m)m
B2

that 7, + n7 and 3 + § + mm are in [0, 7). By

Y1+nm
’ys—i- n—l—m

B+5+mm
(-1)™Bs

Notice that, due to the symmetry of the two diagrams, the resulting scalars (that we
ignored) are equal (and non null). If 3, = 0 mod 7, then we can compute that both «
and [ are multiples of 7, and in this case the equation is trivially derivable. Else, notice

. . L . 1 e
that II+\. 52]] is invertible, (1ts inverse is 1_6%52 (_er 1 )) Hence, we get:
B+5+mm Ttnm Ttnm B+5+mm
(-1)™Bs (-1)"2 (-1)"2 (-1)"Bs
Y3+ (n+m)m Y3+ (n+m)m
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We can then plug any red dot with angle € (0, §), say 7, on the lower branch. We can
now use Proposition 4.7.15, match the angles v, +nm = § + 5 + mm and (—1)"y, =
(—1)™ps, so the two initial diagrams are equal. <

Proposition 4.8.3.

- v

XrF 8 - @ o
o B(C),B e

™

Proof of Prop. 4.8.3 »

Y

a B
T

o ﬂ<(cBI;> 2

N2
(I3

N2
(ST

v

_ 3 _ B “
((I]?I)) i 3 ((CBIE) .

2 2 @ B «

<

Remark 4.8.4. The proof of Proposition 4.8.3 shows that (C) can be derived using only
Lemma 4.8.2 and the Clifford rules ZX-/,. However, the provided proof requires using
half angles (for 7). Hence, whenever the considered fragment contains all its half angles,
the equation in Lemma 4.8.2 should be preferred to (C).

We have derived all the rules necessary for the completeness of the Clifford+T frag-
ment of the ZX-Calculus (Lemma 4.6.3, Propositions 4.7.5 and 4.8.3, and Corollary 4.8.1),
which means:

Proposition 4.8.5. For any diagrams D, D, of ZX[%]:

IIDl]] = IIDQ]] <— ZX+F Dy =D,
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o 00— 0

|

In other words, ZX + ZX/,. Hence, by Theorem 4.4.1, we can also derive any sound
linear equation with constants in 5 Z.

Corollary 4.8.6. For any ZX([d, §]-diagrams D, and Ds:
[[Dl]] = [[DQ]] <— ZX+F Dy =D,

Completeness from ZW¢

We are now going to prove Theorem 4.6.1 using the completeness of ZW|[C|/ ZW¢,
again through a system of back and forth translation between the two languages. The
interpretation [.]y from ZX to ZW/|C] is pretty obvious:

[Jw

I = Noe X

r\LHm AR AN
ER S 3

e 4[] 1

m m

Dl ) DQ —> [DI]W e} [DQ]W D1 ®D2 — [DI]W ®[D2]W

It preserves the semantics:

Lemma 4.8.7. The following diagram commutes:

ZX I-]
,\

[Iw Qubit
2wie— 1)
The other way round is slightly less straightforward, because of the ring structure

of the ZW-Calculus: how to represent >?<" in ZX? First of all, notice that if we find a

m

1-qubit state D such that H@H = (i) , then ﬂ}%@ﬂ = ﬁ%m . However, we can use

the SVD form of a 1-qubit state to determine D. We get the following interpretation:
[1x

R ‘H‘ ~ A U

Mmoo e S

150




Chapter 4. General ZX-Calculus
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TH@?W +>—>

on
>Z<peig — 0+g><.a 8_a 277 with

Dy o Dy — [D]x o [Do]x Dy @ Dy — [D1]x @[ Do x

. (gﬁé °
(p)

a = 2arctan
{ n = max (0, [ — log, (14 cos (a))] —2)

1

7Y ‘= arccos m

As you can see, some side calculation is buried in the scalars. Particularly, the scalars
in the interpretation of the GHZ node basically amount to the inverse of @« , as evi-
denced by Corollary 4.7.20. Here again, the interpretation preserves the semantics:

Lemma 4.8.8. The following diagram commutes:

ZX I-]
,\

[x Qubit

ZW(C] /H

A first part of the proof of completeness is to show that any diagram can be recovered
from its back and forth interpretation:

Proposition 4.8.9. For any ZX-diagram:
ZX+ [[Dlwly =D

Proof » We prove the result by induction. Since both interpretations are PROP-functors,
we only need to prove the result for the generators. The result for wire generators is
obvious.

Finally, Rx is a composition of Rz and H. <
Then, we can show that ZX proves any equality of ZW|C]/ ZW¢ through [.] x.

Proposition 4.8.10. Let D, and D be two ZW [C|-diagrams.
ZW(C H D =Dy — 7ZX F [DI]X = [DQ]X
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Proof » As before, we are going to show that all the axioms in ZW are derivable using
ZX. Most of them are already proven by ZX/,, so a fortiori by ZX, thanks to Proposition

4.8.5. Only 5 remain:
® _r
r(’h; 3
r s _ r+s 00 _ e
4a T 4e¢ f SR

o 1b: On the one hand:

Using SVD decomposition and its uniqueness (Props. 4.7.13 and 4.7.15) on the dan-
gling branch, together with Proposition 4.7.16 and Remark 4.7.17 for the scalar

equality.
. 3b:
g g S L
AN : S %o 0.3.8
28 S.3
" o @01 (*\;

0+% 0+

Wl

« 4a: The right hand side can be directly put in SVD form. However, the left hand
side yields:

a; @ a2

r 1vr 2 B1 QP
o
®
and it contains a cycle. This can be remedied since by Proposition 4.7.13:

aq Q2 Y1

B1 O B2 Y2

= 1O-@Y
Y4
-
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Hence
(5] a2
B OB 2
S & . ; O r1+79
Y1 + s ’Yl + 5

o

by uniqueness of the SVD-decomposition (Prop. 4.7.12), and using Proposition
4.7.16 and Remark 4.7.17 to deal with the scalars.

e 4c:

0 ® arccos (% ¢
T o $oss Gl - 9888 - 98 - 3

riwei%a 8%2277=@?® 2 @?H§
Proof of Theorem 4.6.1 » We have the following diagram:

ZX/ ZX—\[[.]]A
[-]K< >H

. 6b':

Iw Qubit
WIC]/ ZW¢ /[H;

Let’s prove that [.]yy is full and faithful.

« [Jw is faithful: Let D, D, be two ZX-diagrams such that ZW¢ F [D]y =
[Ds]w . By Proposition 4.8.10, we have ZX + [[D]w]x = [[D2]w]x, and by Propo-
sition 4.8.9, ZX + D1 = [[DI]W]X = [[DQ]W]X = DQ.

« []x is full: Let D be a ZW|[C]-diagram. We define Dy := [D]x. By Lemmas
4.8.7 and 4.8.8, [[[.]x]w] = [.], hence, by completeness of ZW|[C]/ ZW¢, ZW¢ +
HD]X]W = D, ie. ZW(C H [Dx]w =D.

Then, by composition, since ZW|[C]/ZW¢ u Qubit is full and faithful, the functor
72X/ 7ZX I Qubit = [[]i] is full and faithful. <

4.9 Another Axiomatisation for Universal
ZX-Calculus

In the axiomatisation ZX, there are two rules that deal with one-qubit unitaries: the
Euler angles (EU), and the Hadamard decomposition (HD). We explore the possibility of
merging the two rules, and give an axiomatisation ZX' in Figure 4.4.

This axiomatisation is as powerful as ZX.
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|

ot PLai
8A(C_P) *e 8% (ﬁ)x
:”{% (H) >O<°‘ WD) 3 ¢

Figure 4.4: Set of rules ZX' for the ZX-Calculus with scalars. The right-hand side of
(IV’) is an empty diagram. (...) denote zero or more wires, while (-) denote one or

more wires. In rule (EU), 31, (2, 83 and 7 can be determined as follows: 2 := %,
7 = at — g, z ;= —sin(z") +icos(x7) and 2/ := cos(z") — isin(z7), then

B2
2

B1 = argz +argz, s = 2arg ( 5 ) ,Ps =argz —argz', v =t —arg(z) +
where by convention arg(0) :==0and 2’ =0 = f, = 0.

Theorem 4.9.1. The language ZX/ ZX' is complete. The functor ZX/ ZX' by Qubit is
full and faithful.

Proof » The functor is obviously full, since the diagrams are the same in ZX/ ZX' as in
ZX /7ZX. To prove the faithfulness, we are going to show 7X' - 7ZX. First, let us recover
the Hadamard decomposition (HD):

8 _
S

SNSESE

é 4.9
8 (4.9)

_D_
a1l
=)
cll
<=
INIERNERSIE]

1 1
o5 _ %’ _ é _ g & o: &8 (4.10)
i) 49) OF 872 V) @3 g’igw )
©) 1) 103
= @: — - s — 2 411
(4.9) §8” ©) 8” 410) A= @) = (411)
2 _g (H) - 2 2

The next step is to prove that the equation (E) is derivable. To do so, we will first derive
(K) and (SUP).

™

2
g T = = gﬂ_ Eﬂ- = 7L — “ ;ﬂ— (412)
@ (H) * EV) @2 Qa-F (S% @ g o @ QT O«
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[ © . © 5 e O ]

(9) :3:-2 (4.13)

av’)

3
INEIRE |

o
B
I
@
VB
INENVIERNIE
(@3 Jos

INE

-

@ Q03

.,Bza z .Bga g
- - T — s
S z CP

© ;2 :7 vy @ :7

Wl

a+3

*(f
Q
_l’_
3

a2

—
(%2
=

=
c
o0
23
ol

Hence:

so finally:

a a+m O2astw QQCH-TF
= = (4.14)
' *88

3
(4.12) Eﬂz :% a (4.14)

AR R
2 14 2

It now remains to prove the rule (EU) can be derived. We decompose the left hand side
diagram as such:

oo
N
(@S]

@0
»biﬂ";‘:‘
—_
Z
o0=0
aly A
—~
[
=l
=
¥
ISE} ;
1
ME

E]
NI

E

SEYSER]
EIFSERE

o1 & 61(1:)
o - Ba ()
= du = = dawruw
. s (@) Baz)
as ¥s(z) +va(x)

where x is considered as a variable, and hence, all the computed angles depend on it,
while the angles «; are fixed. We want to find z such that 85(z¢) + 71(29) = 0 mod .
Let the functions f and ¢ be defined as:

f : @~ arctan ( tan (a) cos () + tan () cos (ax—x) )

1 — tan (o) cos (z) tan (ag) cos (e —1x)
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{

o — 0 ——— 0
g : 2+ tan (aq) cos (x) + tan (asz) cos (o — )

Notice that

g (—g) = tan (a) cos <oz2 + g)

and
T T

g (5) = tan (a3) cos <a2 — 5)

Hence, ¢ (—E) g (g) < 0. Since g is continuous, by the intermediate value theorem,
there exists 2o € [5", 7] such that g(z) = 0. Notice now that
0
2 2) =0
1 + tan (ay)” cos (ay — xo)

f(xg) = arctan (

Also, it can be computed that f = 33 + 7, mod 7. Hence, f5(z¢) + 71(z9) = 0 mod 7
ie. B3(xg) + v1(x9) = nw. Hence, denoting f3; < [;(xo) and 7; + 7;(o):

o751 o é Br+mm
— (-1)™ Ba+ é gﬁﬁ-mﬁz
Zz B 412 e g gﬂ””‘* sz TEDM +yat
2ﬁ4+v4 ’YSJFM Tz O @uat(ntm)r  (n+(-1)"m)y

Since, thank to Proposition 4.6.2, the unitary representation is unique if 3; + mm € [0, 7)
(m has been chosen for this purpose), then the previous diagram is provably equivalent
to the one resulting directly from (EU). <

On the one hand, this new axiomatisation is one axiom shorter, and (EU’) and (IV’)
can be considered simpler than (EU) and (E). On the other hand, the axiomatisation in
Figure 4.3 has the nice property that it suffices to remove (EU) and (E) to get a complete
axiomatisation for the scalar-free Clifford fragment. Moreover, (EU) is arguably more
natural, and has already been given for instance in [ ].

Again, we conjecture that all the rules in 7ZX' are necessary, i.e. none of the rules are
derivable from the others. Indeed, the arguments given for the minimality of ZX can
easily be adapted here, and we are left with the same observation: only (B) and (I,) are
not proven to be necessary.

4.10 ZX-Calculus for Completely Positive Maps

Aspointed out in Section 1.5, there exists a formalism for expressing quantum evolutions
in a non-isolated system. They are represented as density matrices, and the trace opera-
tor is used to represent the interaction of the system to its environment. In [ ], itis
pointed out that any f-compact monoidal category for pure quantum mechanics could
be turned into a category for CPMs thanks to the so-called CPM-construction. For the
simplified case of PROPs, it becomes:
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™ Definition 4.10.1 (CPM-construction): ~Given a T-compact PROP C, let CPM(C) be

the t-compact PROP such that its arrows are nmeN, f:n—-m

>

] NN
. ™
where = . N
: -

Notice that if we have a PROP L quotiented by R, R can also quotient CPM(L).
However, this is ill defined, for a term of CPM(L) after application of an equality of R
may not be in CPM(L) but in the larger PROP L. For instance, consider the following

derivation in ZX / ZX:

The first and the third diagram are both in CPM(ZX), but the second one is not. In
other words, in order to prove that two diagrams of CPM(L) are equal, one would need
to derive the equality in L.

Notice also that the representation of a CPM in the CPM-construction requires a
“doubling” of the diagram: one needs f and its adjoint f*.

Another approach to relate pure quantum mechanics to the general one is the notion
of environment structure [ , , ]. The notion of purification is central in
the definition of environment structure. Intuitively, it means that (1) there is a discard
morphism; (2) any morphism can be purified, i.e. decomposed into a pure morphism fol-
lowed by a discarding map, and (3) this purification is essentially unique. More formally:

" Definition 4.10.2 (Environment Structure):  An environment structure for a -compact
PROP C is an compact closed PROP C with an i.0.0o. PROP-functor . : C — C and a
morphism L : 1 — 0 such that:

Notice that ~,, is technically not a relation on morphisms but on tuples (n,m, k, f)
with f:n —>m+k e C: (n,m,k, f) ~p (W',m' K, g)ifn =n', m =m' and f and
g satisfy the graphical condition represented above. As an abuse of notation, we write
f ~ep g, as the other components of the tuple will be usually obvious from context. We
will do the same for our relation ~;., below.

CPM(FdHilb) is actually an environment structure for the category FdHilb, and
more generally for any {-compact PROP C, CPM(C) is an environment structure for C
and conversely any environment structure for C is equivalent to CPM(C) [ ].
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The Discard Construction

First we need to define for any {-PROP its subcategory of isometries.

" Definition 4.10.3: Let C be a {-PROP. We define Ci, as the subcategory of C such
thatitsarrowsare{f:n%m‘fTOf:idn } a

Notice that Cig, is usually not a -PROP. Any {-PROP-functor ' : C — D between
two t-PROPs can be restricted to their subcategories of isometries leading to a PROP-
functor Fi, : Ciso — Diso. Thus there is a restriction functor iso : 1-PROP — PROP.
Remark that this functor preserves fullness and faithfulness. One always has a faithful
inclusion PROP-functor: ¢y, : C — Cieo.

In quantum mechanics, isometries are causal evolutions, i.e. applying an isometry
and then discarding all outputs is equivalent to discarding the inputs straight away. As
pointed out in [ ], adding discard maps to the category of isometries would make 0
a terminal object. We define this category, called affine completion:

T Definition 4.10.4: Given an PROP C, we define C' as C with an additional mor-
phism ! : 1 — 0, such that, forall f : n — m € C,!9™ o f =!©" By convention, we
have 9% = id,. This makes 0 a terminal object in C', and hence makes C' the affine
completion of C. J

Remark 4.10.5. Formally, a morphism !,, should be defined for every object n of the PROP,
such that for any f : n — m, !, o f =!,,, and such that !y = idy. However, we have that
Ly @l = ido 0 (1 ®'m) =!0 0 (! @) =!nsm. This means that !, =!9".

Again given a PROP-functor F' : C — D, one can define a functor F* : C' —
D' by F'(!) =! and F'(f) = «'(F(f)) for the other morphisms. In [ ], Huot and
Staton show that CPTP, the category of completely positive trace preserving maps, is
equivalent to FdHilbiSO, thus giving a characterisation of it via a universal property. We
extend this idea to non-trace preserving maps by proceeding to a local affine completion
of the subcategory of isometries.

We define the category C= as the pushout of C and C

[
iso*

™ Definition 4.10.6 (Discard Construction): Given a {-PROP C, C= is defined as the
pushout:

The pushout of two PROPs always exist [ ]. We can also describe it simply com-
binatorially. The morphisms of C= are equivalence classes generated by formal compo-
sition and tensoring of morphisms in C}_, and C. The equivalence relation is generated
by the equations of both categories augmented with equations ¢'(f) = v, (f) for all f
in Cis.. The functors = and ¢i are the natural ways to embed C and Ci_.

Since the only morphisms in Cjs, which are not identified with the morphisms of C
are those that contain !, we can see C* as C augmented with discard maps which delete
isometries.
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™ Definition 4.10.7 (Discard): The discard map for the object 1 is defined in C= by

= =, (!)

Since ¢}, is a PROP-functor, we have that the discard map for the object n is

3

tiso(177) = Lo (NP7 = £° .

Notice, that for any isometry f :n — min C%, = }L thus any isometry is

causal.
When seeing the initial category as quotiented by a set of rules C/R, we end up
technically with (C/R)= which can be expressed as:

c/m) = (©+ () (U

where C + {-L} is the smallest PROP that contains C and the generator - : 1 — 0.

It is natural to compare this new construction to the CPM one and the environment
structure defined above. To do so, we need to study in details the purification process in
C-=. First notice that any morphism of C+ admits a purification:

Lemma 4.10.8. Let C be a {-PROP. For all f : n — m € C=, there exist k € N and

. There are no discards among the components of the part f” of this diagram. So it
represents a morphism in the range of ¢* and then there isan f’' : n - m+ k € C such

The purification needs not be unique, however it satisfies an essential uniqueness
condition. To state it we define the relation ~jg.

" Definition 4.10.9 (~;): Let C be a {-PROP, and two morphisms f : n — m + ki,
g:n —m+ ko, [ ~is g if there are two isometries u : ky — k3 and v : ky — ks, such

Notice that the relation ~;, is not transitive, thus we consider ~:" its transitive

180

closure to make it an equivalence relation. It is easy to show that if f ~;" ¢ then f and
g purify the same morphism of C=. The converse is also true:
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Lemma 4.10.10. Forall f :n —m + ki and g : n — m + ko:

Proof »

(=

(<

0] _ [FO)

) It is enough to show f ~i, g = l 4 T L l 4 1 since equality is transitive.

Since [ ~js ¢, there are two isometries u : k; — ks and v : ko — k3 such that

[-e .
[ 7] g | S f)
BT T
| L(jJ) | | L(l) [--] [--]
_ LY =] = [« ]
e = e =
[---] [---]
=] _ = (9].

) We have | LT OTJEL in C=. To do the proof, we will have to go back to the

definition of the Category C~= as a pushout. Recall that two terms are equal if one
can rewrite one into the other using the equations defining C~.

We can assume that, among those steps, the only one involving discards are isom-
etry deletion/creation. Diagramatically this amounts to say that the discards are
never moved, in fact one can always moves the other morphisms to make them
interact with the discards.

Doing this, we ensure that all intermediary diagrams in the chain of equations

are of the form - for some h. Therefore, to prove the result for a chain of

equations of arbltrary size, it is enough to do it just for one step of rewriting.

Consider then this step of rewriting. There are two cases. Either we have used an
equation which, by identification, can be seen as an equation of C, that is which
involves no discards. Then by functoriality of .= we recover that f = g and there-
fore f ~is g. Or the equation involves a discard which has deleted an isometry u.

Then one of the upper part, let’s say t=(f), can be written
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[
o

u being an isometry, there exists v’ in C such that .*(u’) = u. Hence, we have

in C. It follows that f ~i, g.

<

So the purification is unique up to ~;. . Lemma 4.10.10 also gives an alternative

definition of C= which relates more easily to the CPM construction. It is the same
construction as CPM with ~, replaced by ~" .

As we have introduced a new discard construction, a natural question is whether
C= is an environment structure for C. To be an environment structure, three conditions
are required. The first two are satisfied: C= has a discard morphism for every object,
and every morphism can be purified. The third one is the uniqueness of the purifica-
tion: according to the definition of the environment structures, f and g purify the same
morphism if and only if f ~, g whereas according to Lemma 4.10.10, f and g purify
the same morphism if and only if f ~! ¢. As a consequence C* is an environment
structure for C if and only if ~.,=~i. . It turns out that one of the inclusions is always

1SO
true:

Lemma 4.10.11. For any {-PROP C, we have ~;\ Cr~,.

1SO —

Proof » Since ~, is transitive it is enough to show that ~i,, C ~,. Let f : n —
m-+kyand g : n — m + ko s.t. f ~js ¢. Then there are two isometries u : k; — k3 and

v : kg — ks such that

So f ~ep g <

As a consequence, if Ncp#w;;o, it means that there are some morphisms f, g that are
+

equal in ~, but cannot be proved equal in ~;_ . Intuitively it means the category has not

enough isometries to prove those terms equal, which leads to the following definition:

™ Definition 4.10.12 (Enough Isometries): A {-PROP C has enough isometries if the
equivalences relations ~, and ~; of C are equal. 4

Lemma 4.10.13. Given a t-PROP C, the following properties are equivalent:
1. C has enough isometries
2. C= is an environment structure for C

3. C* ~ CPM(C)
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Proof » [(i) < (ii)] First ¢ : C — C is an i.0.0. PROP-functor. We need to check the
three conditions hold:

. ! . . .
e Since i, is strict monoidal one has:

So the first condition is satisfied.
e The second condition is Lemma 4.10.8.

e According to Lemma 4.10.11, Ngogwcp, thus the third condition is satisfied if and
only if ~, C~if .

[(i1) < (éi7)] Direct consequence of the fact that D is an environment structure for
C iff D is equivalent to CPM(C) [ ]. <

We want eventually to apply these results to the ZX-Calculus. A first step is to show
that Qubit has enough isometries. We can actually be stronger than this and show it
for Qudit.

Proposition 4.10.14.
Qudit~ is an environment structure for Qudit. Furthermore ~{ =~i,.

Proof » Let f : n — m + kyand g : n — m + ky be two linear maps such that

. It follows that the two superopera-

tors p = it mrn](f1pf) and p = trpi1mik(9'pg) are equal and then by the
Stinespring dilation theorem (see for example [ ]), there are isometries © and v such

. In other words f ~jis, ¢. This shows that ~.,C~is, Which is even

stronger than the necessary condition. From Lemma 4.10.11 it follows that Nisogvgo. <

Corollary 4.10.15. Qubit= ~ CPM(Qubit).

Application to ZX

We now focus on the behaviour of interpretation functors with respect to the discard
construction. The discard construction defines a functor (_)= : 1-PROP — PROP.
Indeed, given a 1-PROP functor F, F},, and F}, uniquely define a functor F'* by pushout.
DiSO — D
137 )%
CiSO — C
l r
. DD
?1\‘5/07, iso e
. r .

N

C!

iso
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The following lemma and theorem are the main tools to apply the discard construc-
tion to the ZX-Calculus:

Lemma 4.10.16. If F is faithful and if Fis, : Ciso — Dy, is surjective, then F(f) ~i-
Flg) = [~ 9

Proof w» First, remark that if F'(¢) iso k, then there exists h s.t. F'(h) = k. Indeed, under

The first implication uses the fact that F'(b) is an isometry. So k is in the image of F'.
By the first remark, it is therefore sufficient to prove the result if F'(f) ~iso= F(g).
Since Fi, is surjective, there are two isometries a and b such that F'(a) = uwand f(b) = v.
Therefore:
F (/) 9|

The second implication holds because F'is faithful. The last equation is the definition
of f ~iso J- <

Theorem 4.10.17. Let C and D be two T-PROPs and F' : C — D a {-PROP-functor. If
F' is faithful and if Fi, : Ciso — Diso is surjective, then F'= : C= — D= is faithful If
furthermore F' is surjective then F'= is surjective and faithful.

Proof » Let f and g be two morphisms such that F'=(f) = F'=(g). By Lemma 4.10.8, f
and g can be purified, respectively by f’ and ¢’. Then:

The implication follows from the right hand face of the commutative cube. By Lemma
4.10.10 we have F(f’) ~ F(¢'). By Lemma 4.10.16, f' ~ ¢'. Then Lemma 4.10.10

iso

that is f = g, so F' is faithful. |

A direct application of this theorem is:

Corollary 4.10.18. (ZX/ ZX)* is a universal complete language for CPM(Qubit). Par-
ticularly, the functor (ZX/ ZX)* =N CPM(Qubit) is full and faithful.
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This is because ZX/ZX u Qubit is surjective and faithful by Theorem 4.6.1 (the
theorem actually says that [.] is full and not surjective. However, the standard interpre-
tation is i.0.0., which makes the two properties equivalent).

(ZX/ZX)= is naively presented as ZX augmented with -, and ZX augmented
with L™ o f = L®" for any isometry f : n — m. This implies adding an infinite
number of rules to ZX. However, we can drastically reduce them if we are provided with
a spanning set of isometries.

Theorem 4.10.19 ([ 1). The set (e,

0), H, Rz(«), CNot) spans Qubit,,.

Using this result, we provide an axiomatisation ZX~= for CPMs. It is given in Figure

—~
[l

<3

~—"

e 9o

ai B
o) g " i) 9 [

o+ 30 a0t

Figure 4.5: Set of rules ZX= for the ZX-Calculus for CPMs. The right-hand side of
(.IV) is an empty diagram. (...) denote zero or more wires, while (-) denote one or

vl
1
vl

more wires. In rule (EU), 31, f, 33 and 7y can be determined as follows: z+ := @1ra,
x =1 —as, 2 = cos (%) cos (z1)+isin (%) cos (z7) and 2’ := cos (%) sin (z7) —

i sin (%) sin (x7), then 8 = arg z + arg 2/, 5y = 2arg (z +

5{) , 03 = argz —arg 2

This axiomatisation is designed to be complete.
Theorem 4.10.20. ZX~/ ZX~ is complete. The functor ZX~/ ZX~ N CPM(Qubit) is
full and faithful.

Proof » We will prove that ZX~/ZX~ ~ (ZX/ZX)=*. First, notice that all the mor-
phisms are the same in both categories.

We can see that our axiomatisation ZX~ is very close to capture ZX, which is com-
plete for pure quantum mechanics. The only two differences are that (EU) dropped the
scalars, and that (E) was replaced by (.IV). First of all, thanks to Figure 2.2, we have:
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We use this then to prove:

p— p— 4.15
ia ® 5 Cm L (4.15)

1
(ME]
|
1
NE]
|
NIE]
I
?
(IJE]
|
-0
VB
—
b
—
o
~

T
>
VB

w) @3 417
©) (CP) o= ((IV))

We can recover (K):

™
-2
_ _ 2 _ 97 (4.19)
T 0 @a o @«
© A e O

We can recover (SUP). First:

o o+ «
— o+
O 20@3

©)
(4.18)
So:
O2a+m
Wrapping things up:

.Ya+w ) @;62 ) @@;mﬂ o)
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We finally recover (E), and hence ZX:

37 3m ] éoz .
2- - E—O E_gz (420) 522 417) Lo

(4.16)
)
It remains to prove that for any isometry fin—=mZX*F L®mo f = LOn
Since (¢'*, |0), H, Rz(«), CNot) spans the isometries of Qubit, and since ZX/ZX is
complete, any isometry of ZX can be turned into a diagram that solely uses:

(88 ®8 9. on. Zoe)

Hence, it is sufficient to prove the result for these diagrams. The last four are directly
given as axioms. The last one is given by equation (4.16). <

NS

INE)
=
\:1

Remark 4.10.21. Variations on this axiomatisation can easily be made to reduce the num-
ber of rules. For instance, {(-H), (xa), (:CX)} can be replaced by:

11
O‘ug(fx)? -

Furthermore, the Hadamard decomposition (HD) can be replace by a single-line scalar-
free version:

[SERSIERSIE]

(HD")

We now have a complete axiomatisation for of ZX~= for CPM(Qubit). We can
naturally ask the question for fragments of the language. This is not the case in general.
Some fragments may not have enough isometries. For instance:

Proposition 4.10.22. (Clifford+T)= is not an environment structure for Clifford+T.
More precisely, there exists a scalar ¢ s.t. ¢ ~, ¢* but ¢ =L ¢*. One can take for example
=1+ 21.

180

Proof » First remark that, in any {-PROP, if f ~

g then there is a morphism (usually

ISO

The result then follows by a straightforward induction.

Now take ¢ = 1 + 27 and ¢* = 1 — 2i. The scalars are in Clifford+T since their
entries are in Z[i, \/5] and are clearly ~, equivalent. Now let’s suppose 1+2i ~; 1—2i.
Then by the previous remark, there exists a morphism u such that (1 — 2i)u = 1 + 2i.

But the only possibility for u is 41 3 which is not in Z]i, \f] a contradiction. |
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This means that the discard construction is not sufficient to provide an environment
structure to Clifford+T. A fortiori, (ZX[%]/ ZX/.) “ will not be a graphical language
for an environment structure for Clifford+T. However:

Proposition 4.10.23. Stab~= is an environment structure for Stab.

Proof » First of all, since Stab is compact closed, using the map/state duality, proving
the result for states in sufficient. Since all the non-zero scalar are invertible in Stab we
can furthermore w.l.o.g focus on normalized states.

Consider two states d; : n + k; and d : n + ko in Stab such that d; ~, ds. The
point of focusing on normalised states is that we can decompose them using [ ] so
that

we have that d; ~is, A since we just have deleted isometries. So, by transitivity, to
prove d; ~;. dy we just have to show A} ~j,, A). But since d; ~, dy in Stab we also
have d; ~, d in Qubit and so by Lemma 4.10.14, d; Nfgo dy in Qubit. By transitivity
A}~ Al in Qubit and so by Lemma 4.10.14 A} ~i,, A} in Qubit. So there are two

unitaries v and v such that

In Qubit any isometry can be written as a unitary with ancillae. In other words there
is a unitary «’ such that:

It only remains to show that the isometry w is in Stab since the isometry on the left
hand side is clearly in it. It is since:
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Hence, A} ~iso A} in Stab, so d; ~; ds. <

Since Stab* is an environment structure for Stab and that ZX[7]/ ZX,/, is com-

plete pour Stab, we can build thanks to the discard construction (ZX[%]/ ZX/,) " that
is complete for CPM(Stab). Again, we can simplify the resulting axiomatisation, and
provide a finite presentation denoted ZXf/2 given in Figure 4.6. Notice that the axioma-

tisation is basically ZX= where (EU) is replaced by (Z). Notice also that the potential
simplifications given in Remark 4.10.21 still stand here.

a%z% ® %M + @ | @ + -7 .
ggx(c:p) ¢ 8% ®) }.(:a @) %a

1
(ME]

i(_)i— “ (e L 8 C J:—JT—

L.

Figure 4.6: Set of rules ZXf/2 for the Clifford fragment of the ZX-Calculus for CPMs.
The right-hand side of (.IV) is an empty diagram. (...) denote zero or more wires, while
(+') denote one or more wires.

Theorem 4.10.24. ZX~[7]/ ZXf/2 is complete for CPM(Stab). The functor:

zx%[g] /ZX5, s CPM(Stab)

is full and faithful.
Proof » We can prove that ZX~[3]/ ZX_ ), ~ (ZX[]]/ ZXx;,)=. First, we can recover
ZXx/,: the only missing axiom is (IV) which is derivable (Figure 2.2). Stab is spanned
by (\/5, i, 10), (0|, H, Rz(g), CNot). Notice in particular that ¢’ is in Stab: ¢'1 =
V2 (0| HRz(%)H |0). One can actually show that all the scalars s : 0 — 0 € Stab are
in {v/2"e""% | n,m e Z} ].

By Proposition 4.10.23, Stab has enough isometries, they are spanned by (¢'%,
H, Rz(%), CNot). These can be represented in ZX[7] by:

(§oz. 28 1. 5. 309)

By completeness of ZX 7]/ ZX/,, any diagram of ZX[7];s, can be turned into an equiv-
alent diagram that only uses the above subdiagrams. They are all consumed by -L: the

0),
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last four thanks to the axioms (.IV), (:H), (), (.CX), and the first one because, first
®: = 2 (the proof is similar to that in Theorem 4.10.20). Then:

B -gas 8y - 33 3P0

Hence all the isometries of ZX[7] are consumed by L. <

Example: Quantum Pseudo-Telepathy

We propose in this section to study a quantum pseudo-telepathy protocol described in
[ ]. The problem takes the form of a game between two parties, Alice and Bob, and
uses a third-party, called referee. The game is played on a 3 x 3 board, where each cell
can be filled with either 0 or 1. The game is inspired by the magic square, in which the
cells of each row sum to an even number, and the cells of each column sum to an odd
number. Of course, this configuration is impossible, for summing all rows would give
an even number, while summing all columns would give an odd number.

In the magic square game, the referee chooses a row and a column of the board. Alice
is then asked to fill the chosen row, and Bob the chosen column, while respecting the
constraints of the magic square: the entries of the row sum to an even number, the ones
of the column sum to an odd number, and of course, Alice and Bob have to agree on
their common entry. These are the winning conditions. The trick is that the two parties
cannot communicate, they cannot see what the other has played.

Obviously, classical players cannot define a strategy that wins 100% of the time.
However, if they are quantum, and share entangled states at the beginning, then there
exists a winning strategy. The protocol is the following, as explained in [ ]:

+ Alice and Bob share the state 5 (|0011) — [0110) — [1001) + [1100)) (the two left-
hand qubits are owned by Alice, and the two right-hand ones by Bob).

« Alice and Bob both apply a particular quantum circuit to their pair, depending
on the row/column they are given: if row 7 is chosen, Alice applied circuit A;, if
column j is chosen, Bob applies circuit 5;.

« Both Alice and Bob measure their qubits in the computational basis. Each hence
gets two classical bits, the third one is then determined so that it satisfies the parity
conditions: Alice XORs her two bits, while Bob flips the XOR of his two bits.

We are given the interpretation of each circuit:

i 001 il 1 -1 -1 -1 1

0 —i10 i1 -1 i 1 1 -1 1

[A:] = 0 i10 [4-] = il —1 —i [4s] = 1 -1 1 1
1 00 i i1 1 — 1 -1 -1 -1

i —i 1 1 1 i1 i 10 01

i =i 1 -1 1 41 —i 10 01

[B:] = 1 1 —i i [B] = 1 —i1 [B] = 01 10
i i1 1 1 =i 1 —i 01 —-10

169



4.10. ZX-Calculus for Completely Positive Maps

@ © @ 0

|

First, we translate the protocol to the ZX-Calculus, and show that it can be used for
simplification. First, the shared entangled state can be represented as:

TTawt

Then, since the measurement in the computational basis can be represented as |||—¢,
the protocol is carried as follows, for a right choice of circuits A;, and B; when row ¢
and column j are selected:

™ ™ ™ T

Ai Bj
AT
™
1l 2 3 1l 2[ 3

The parity conditions are necessarily satisfied since 8 \f) represents the XOR operation

on classical bits.
We can give a representation of each of the previous operators:

s
O
I
o-e
INERME]
NT:\MH
i
w
I
oo
3
3 3

=
|
(o5 )
w\lﬁwm
win B
&
i
Ox ")
3

These are not ideal, particularly because A; and B; are in ZX[%]. Also, it may feel more

natural to have @ é /7 as a shared entangled state instead of the one suggested by

the protocol. This can be easily done by pushing the 7-green and red nodes down to the
circuits A for instance. Hence, we are going to search for A and B; such that:

| $:$: L L
A;

Al B B

i and J

R !

To do so, we are going to use the following lemmas.

Lemma 4.10.25. Lemma 4.10.26. Lemma 4.10.27.

|||—
|||—
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Proof »

= = = = = = (éH
(=CX)
A’ can be found as
™
T @7
™ ™ i o . e by .
p— © | .
. s g - = I| L = 2
o 1 2 (zq) 2 (zq)
- 1 4.10.26 (mdist) (mdist) 1 |
Il 1 || Il || || ||
@)
Lo
= 2 =
4.10.26 ® |

So we define A := :

3
Similarly:
s ™
s ™ I
58853 & S e o
ey = =
- X% (ndisy) o !
| W (wdist)

©®)

So A} := I =% =% Finally, it is easy to see that A% can be defined as: A} := :+—n—+
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Bj can be found as:

® 20 o
®) (HD) =) : ® o ® @
1| 1 1 I ! !

" o-@

_ % - % _ us
(H) : (HD) | [ I
(=H) I (%)
(=CX) S
@
(=)

ar,

So we define B} := : z

Again, it is easy to see that B := : #% 2 and B} = : $ suffice.

We can now give an alternative protocol for the game: Alice and Bob initially share
the state 3 (|0000) +[1010) + |0101) 4 [1111)), and apply A} (resp. Bj) to their pair
according to the row number ¢ (resp. column number j) given by the referee; where:

M

100 4 1 i i 1 1 1 1-1
0:10 i1 -1 —i 1 1-1 1
(4] = 010 [42] = i -1 1 —i [45] = 1-1 1 1
i001 -1 i i-1 -1 1 1 1
1—1 —i —i 1 —i—1—i 1 00 1
| =i 11 —i 1 —i-1 |1 001
Bl =1 i1 [B:1 = —i—1—i 1 [Bs] = 0110
—1 1 —i—i —1 —i 1 —i 0-11 0

A summary of the choices of maps for Alice and Bob is given in Figure 4.7.
We can then verify the protocol using the ZX-Calculus. With diagrams A} and B,
defined above (whose interpretation correspond to the requirement of the protocol), we

can show that:
m @
}-T\ #I“I}—T\ g
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Alice Bob
%

Figure 4.7: Choice of ZX-diagram in the Quantum Pseudo-Telepathy winning strategy.

for each pair (i, j) € {1,2,3}? and where o; exchanges the first and ith wire:

s I P I e

For instance, for the pair (1,1):

Since the parity conditions are necessarily met by construction (: representmg

exactly the XOR of two qubits) all we have to do is check whether Alice and Bob agree
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on the bits j and i. To do so, we can XOR them, and check that it results in |0). To do so,
we can apply:

where the o; are here to allow the selection of qubits 7 and j. Of course, since the these
permutations are merely inversions, 02 = [¥3, Hence:

i || = 1 @ |Tr|| l
|'o'z- ] o'a-'| L e
Qo1 |

where the leftmost qubit represents |0).
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Normal Forms

One of the fundamental differences between ZX and ZW-Calculi is the fact that the latter
enjoys a pleasant notion of normal form. This is why historically, completeness was first
proven for ZW (using normal forms), and later on for ZX (using the completeness of
the ZW-Calculus). Even though completeness has been proven for several version of the
ZX-Calculus, it would be interesting to have a normal form for them. We have already
seen how graph states could be used to define a normal form for diagrams of ZX[7].
In this Chapter, we are going to see how to define a normal form for any diagram of
AZX[F] where I is a fragment that contains 7, or equivalently for any diagram of
ZX[F| that contains §. This will particularly allow us to define a nice sufficient condition
for completeness with these fragments. We will then apply the results for several new

fragments of the ZX-Calculus.

5.1 The Algebra of the Transistor

The normal forms will use some particular diagrams as building blocks. Particularly, we
are going to use the transistor, that was introduced in Section 3.1. Recall that:

g

We can now diagrammatically prove the two sound equations: é .—[#:l = ‘ and

1
e

@)

é QW—@ = $ @ The second one comes from Lemma 3.6.13, while the first one comes

from:

Lemma 5.1.1.
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Proof »

@)
m T : ™ :
™
é 3.6.2 : 3.6.14 (mdist) 3.6.2 3.6.7 (S)
I o HD
(@) m g

<

The transistor with the Not gate on the control wire reacts interestingly with the
generators of the ZX-Calculus:

Proposition 5.1.2. (ﬂ‘@ , % ?”) forms a commutative monoid:

oo (o) (30 ) (00
Proposition 5.1.3. (wf@ , Qin) and (\?/ : ?) form a bialgebra:
Aﬁ(@&r),(gi =Qen @h), ﬂ@ =00 |,

g

The first Proposition requires the following lemmas:

Lemma 5.1.4. Lemma 5.1.5. Lemma 5.1.6.
T ™
SRR IS Rt e
Lemma 5.1.7. Lemma 5.1.8. Lemma 5.1.9.
Proof »

ﬁﬁ%g@m%w%ﬂ
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I
oeo
=
o
2l
;ﬁ.}
2
o0

Proof of Prop. 5.1.2 » The three equations can be obtained by:

+ (S) and Lemma 5.1.6
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« by (S) and Lemma 5.1.1
« by Lemmas 5.1.6 and 5.1.9

<
The proof of the bialgebra furthermore requires:
Lemma 5.1.10. Lemma 5.1.11.
&5 F- e - o
= ? and = ?
Proof »
® I .
s =
(B) ®
: Eg LW K Y
5.1.6 3.6.10 O
5.1.1
%ﬁ : o
@ @y o 1
@
& R -
5(.1%[.)7 ; (H) ?
A |
Proof of Prop. 5.1.3 » The four equations can be obtained by:
o (sm) +(IV)
o (wdist) +(IV) +(CP)
o Lemma 5.1.11 and (CP) +(s7)
o (mdist) and Lemma 5.1.10
L |

Remark 5.1.12. The diagram wx@ can be seen as an AND gate (notice that when

plugging @ @ @47 the result is @ ®ilr, when k,¢ € {0,1}). As such, it has
been used previously to create the Toffoli gate. The previous two propositions where
observed as tensor network transformations with AND gates in [BCJ11].
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5.2 Controlled States and Normal Forms
In this section, we build our way up to the definition of a normal form. We do it in such
a way that its structure is the same for all fragments of AZX that contain 7.

" Definition 5.2.1: We denote by F the set of all fragments that contain 7:

]—"::{F|F§R/27rZ,§€F} |

Controlled States

The cornerstone of the normal form is the controlled state. Controlled states form a par-
ticular family of AZX-diagrams with a single input and n outputs. Their interpretation
should map |0) to the uniform superposition > _, (13- [2). Intuitively, a controlled state
D : 1 — nis just an encoding for the state [D] |1).

™ Definition 5.2.2 (Controlled states): A AZX-diagram D : 1 — n s a controlled state

if [D]10) = > seqoyn [)- .
A controlled state with no output is called a controlled scalar:

™ Definition 5.2.3 (Controlled scalars): A AZX-diagram D : 1 — 0 is a controlled

scalar if [D] |0) = 1. N

For instanceagg is a controlled scalar encoding %:

jsag] -} 2

We introduce other examples of controlled scalars, parameterised by integer poly-
nomials:

™ Definition 5.2.4: Forany I' € F andany a € F,let ', : Z[X] — AZX[F] be the
map which associates to any polynomial P a AZX-diagram I, (P) : 1 — 0, inductively

defined as
0— é P

and Va € N\ {0},Vb € {0,1},Vk € N, and VP € Z[X] such that deg(P) < k,

|

For any integer polynomial P, the corresponding diagram I',(P) is a controlled
scalar encoding the scalar P(e™):

1 ifr=0

Lemma 5.2.5. VF € F,Va € F, andVP € Z[X], [I'o(P)] |z) = , .
P(e) ifzx=1
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Proof » By induction. First, notice that [[',(0)] = (1 0). Then:

This definition can easily be extended to represent any multivariate polynomial in
P(e'%) = P(e', ... i) with coefficients in Z. Indeed, P(e'®) can be written as

S (=1)bireinay, j etlrot-Fiven) where aj, ;€ N. We hence define inductively

where bj. stands for b;, ., a; fora;, . ;.,and 5'0_2 for jiay + . . . + Jrag. Notice that after
building this diagram, some of the variables may be evaluated to particular values. This
way, given a fragment F' € F, any multivariate polynomial with constants in Z[e'| can
be controlled.

While it is not obvious in the ZX-Calculus to add two given diagrams (i.e. build a
third diagram whose interpretation is the sum of the two firsts’), a fundamental property
of controlled states is that they can be freely added and multiplied (according to the
entrywise product a.k.a. the Hadamard product or Schur product) as follows:

Lemma 5.2.6 (Sum and Product). For any controlled states Dy, D1 : 1 — n,

are controlled states such that:
[Dsum] 11) = [Do] [1) + [D:] 1) and  [Dproa] [1) = ([Do] 1)) @ ([D1] [1))
where . o . is the entrywise product.

Proof » This is routine to show. <

Normal Form

Amongst the family of controlled state diagrams, we define those that are in normal
form. Our definition of normal form is generic in the sense that it is defined with respect
to a given set of controlled scalars. Intuitively the choice of these controlled scalars
depends on the considered fragment of the language, as detailed in the next sections.
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™ Definition 5.2.7 (Controlled Normal Form): Given a set .S of controlled scalars, the
diagrams in controlled normal form with respect to S (S-CNF) are inductively defined as
follows:

« VD € 5, D isin S-CNF;

e VDy, Dy in S-CNF, is in S-CNF.

A diagram D in S-CNF is depicted @ a

One can double check that diagrams in controlled normal form are actually con-
trolled states: if D : 1 — n is in S-CNF, [D] [0) = >_ (o 1y» [#) (this is a consequence
of Lemma 5.3.4, proven in the following).

We are now ready to give a definition of diagrams in normal form, based on the
diagrams in controlled normal forms:

" Definition 5.2.8 (Normal Form): Given a set S of controlled scalars, for any n, m €

N, and any D : 1 — n 4+ m in S-CNF, @ @ is in normal form with respect

to S (S-NF). g

Universality

While the main application of the notion of normal form is to prove completeness results
(in the next sections), our first application is to prove the universality of AZX][F| for
any F' € F. First notice that the universality of AZX[F] can be reduced to the existence
of an appropriate set of controlled scalars:

Lemma 5.2.9 (Sufficient condition for universality). Given F' € F, if 35 C AZX[F] a
set of controlled scalars such that the mapn : S — Z[\%, e’ = D w [D] |1) is surjective,

then AZX|[F] is universal, i.e. the functor AZX|F L Qubitz[%vem} is full.

Proof » It is easier to see this if we look at the interpretation of ZX-diagrams as matrices.
n being surjective, for any = € Z[\%, e't’], there exists D, € S such that [D,] = (1 z).

As pointed out, any diagram in S-CNF represents a quantum evolution of the form
(]l 1[)), where 1 is a column vector whose entries are all 1, and 1) is another column

181



5.3. A sufficient condition for completeness

o ® o o ® 7o)
—m— O O \ 4 O O \ 4

vector. Moreover, one can show that if [Dy] = (1 %) and [D;] = (1 1), then

GY
L 4

Hence, by induction, for any column vector 1/ over Z[\/Li, e

'], one can perform the

matrix (]l 1/1) as an S-CNF. Plus, [[é ?Wﬂ — ((1)) so we can recover a diagram rep-

resenting the vector 1. Finally, using the map/state duality, any matrix over Z[\%, et
can be represented as a ZX-state over Z[%, e't'], where some outputs wire are bent so

as to become inputs (this procedure gives the S-NF form). <

Theorem 5.2.10. For any F' € F, AZX|[F is universal for Qubitz[% ¢iF):
27

VM € Qubity .y, 3D € AZX[F], [D] = M
27

In other words, the functor AZX|[F L Qubitz[% ciry is full
27

Proof » Let S C AZX]F| be the set of all controlled scalars. According to Lemma 5.2.9

it suffices to show that7 : S — Z[\%, '] is onto. Let x € Z[LQ, ¢'t’], there exist p € N,

®p,...,a € F,and Py... P, € Z[X] such that z = o; E?:o Pj(e). Since T, (P;)

encodes P;(e™), gag encodes % and they can be added and multiplied according to
Lemma 5.2.6, there exists a diagram D € S such that [D] |1) = z. <

5.3 A sufficient condition for completeness

The controlled states give a generic internal structure for a diagram in normal form, by
separating the coefficients of the process - i.e. controlled scalars intuitively accounting
for the entries of the represented matrix — from the way they are combined. While
the representation of the controlled scalars depends on the considered fragment, their
combination is done in AZX[x].

Hence, all the sound operations on the structure of the normal forms should be doable
using the AT rules. The completeness for broader fragments is then reduced to the
capacity to apply elementary operations on coefficients:

Theorem 5.3.1 (Sufficient condition for completeness). Given a fragment F' € F and
an axiomatisation R, AZX[F|/R is complete if R & A/, and if 35 C ZX[F] a set of
controlled scalars such thatn : S — Z[\%,e"F] = D — [D]|1) is bijective, and the
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following equations hold: Vo € F,Vz,y € Z[\/Lﬁ, e't,

:éa (Cond)

Before proving Theorem 5.3.1, notice that all the above equations are involving dia-
grams with a single input and no output, thus for any fragment the completeness reduces
to the completeness for diagrams with 1 input and no output, or equivalently — by bend-
ing the wires — to diagrams representing 1-qubit state preparations which have no input
and a single output:

Corollary 5.3.2. Forany fragment F' € F and axiomatisation R, AZX[F|/R is complete
if and only if it is complete for 1-qubit state preparations, i.e. for all diagrams with no input
and a single output.

Notice that thanks to the hypothesis of Theorem 5.3.1, one can associate to any state
lp) :0—ne Qubitz[% «ir] a diagram A(|p)) in S-CNF, and to any evolution f : n —
2 7

m € Qubitz[% «ir), @ diagram A(f) in S-NF:
27

" Definition 5.3.3: With the hypothesis of Theorem 5.3.1, let

A Qubity 1 ir)[0,n] = S-CNF - and X U Qubsity 1 iry[n, m] — S-NF
2’ 27

neN n,meN
be defined as follows:
e ANz):=n"Ya)ifr € Z[%, e't),

« A(10) @ |tho) + 1) @ [1hy)) :=

us
A Xy ly) (el ::G@ @,whereDzA 2. agylr)ly)
ze{0,1}" i zef0,1}"
|

ye{0,1}™ ye{0,1}™

Notice that if the conditions (Cond) are met, the language proves that for any |) :
0 — nin S-CNF, [A )] |0) = >_ cqo1yn [7):

Ar/y +(Cond) = @@ = ? e ?
183
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Proof » First, let [1)o) and |¢1) : 0 = n € Qubitz[% «ir) Such that [¢) = |0) [¢o) +
27
|1) [¢)1). Then:

e

It then remains to prove the result for the base cases Az. Any x can be decomposed as
a sum of ¢’ where as are in the fragment. Then:

R DA

and:

@‘ A%ﬁi@@@@

Also, if the conditions (Cond) are met, then some control scalars can obviously be
derived, thanks to the following lemma:

<

Lemma 5.3.5.

AR R

Proof »

g (?) Wg. T 3.8:.11
-a Qo « « :—a ™
Iii -};a
: (CP
(sm)

(K)
©®

:bffiw

Q =\
o
0@ ||
oo
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Lemma 5.3.6. With R a set of axioms such that R - A/, +(Cond):

v (8- ) (- o) (gg3 - )

th,, o) [af )
i

Proof » Since R = 7ZX./,:

ae g% wl ::* 3
) M@ AR W8
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The proof of Theorem 5.3.1 consists in showing that any diagram can be transformed
into a diagram in S-normal form. The proof is inductive: every generator of the language
can be set in S-normal form, moreover both the parallel and sequential compositions of
S-normal forms can be transformed into diagrams in S-normal form.

5.4 Preliminary Derivations

Proving that the compositions of two normal forms can be put in normal form will rely
extensively on different lemmas that we will lay out in this section. We will explore here
how the transistor interacts with the other generators of the language, with the triangle,
and with other transistors. This section only produces diagrammatic derivations. For
the reader convenience, it ends at page 193.

Derivations of AZX

First, we derive some supporting lemmas that do not use the transistor. Two of them
(Lemmas 5.4.2 and 5.4.3) were proven to be derivable thanks to Corollary 4.2.2, but were
not given an explicit derivation.

Lemma 5.4.1. Lemma 5.4.2. Lemma 5.4.3.

2 iy | « « 200 e le%
= — = -
(0% «

Lemma 5.4.4.

B «
(4) (4
-8 _ =

—
~—
Q
~—~
~—
S

Proof » e 5.4.1:

®o0
:E
2ED ||
, 00
<5t
3
g5 |
O§
3
2
=
eo0
g ﬁ
> |
3
{44
3
ol

w3
S g=rie
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e 5472:

S &y m o 2O
H o = -« o (CP) -« a
e 5.4.4: First,ifa =1 =b:
B B 5 5 o a
-B — I -B = I a—ﬂ = I a—IB — —a = “
a (S) o 542 S) 5.4.2 (CP) B
(CP) (TW) I ©)
- - -8 -8 -6 5
Then
b a
8 B = a
b a
(&) (&)
-8 B -B B e B -
o g o a B b Q /Bb
(&) (&)
& o 5 -B
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Derivations using the Transistor

We derive here some equations on the transistor that will come in handy when we try
to have transistors and triangles interact in the following.

Lemma 5.4.5. Lemma 5.4.6.

3 - & 3%y _ _ [a

i

Lemma 5.4.7. Lemma 5.4.8.

™ (@] ]/_ :\[ i i

: B ™ T - T
Lemma 5.4.9. Lemma 5.4.10.
:d;l = ‘ and g = ‘ : _ :
? .

Lemma 5.4.11. Lemma 5.4.12.

gy gy

:([g} e :@;@ 59 gﬁﬂ 7o %

@) m m
: :
: B ®) (wdist) B 71'
©) -
3.5.5

188

® 54.6:



Chapter 5. Normal Forms

©5409:
: 514 © 5111
di:l (Hopf) ?
@)
ﬂ'él = gl = Q}I? g
5.1.5 (Hopf) 5.1.1
e 5.4.10:
{%} 546 @W (ﬂist) ;3 546
™
71-
®54.11:
pr— p— pr— 71-
s) @ : B 3.6.6 l *
0 553
e 54.12:
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Interactions of Transistors and A

Finally, we show how the transistor interact with other diagrams of the language.

Lemma 5.4.13. Lemma 5.4.14.
% (@] % % %
Lemma 5.4.15. Lemma 5.4.16.
(e} o
o
Lemma 5.4.17. Lemma 5.4.18.
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94288 4ges 23
3.6.11 - 3.6.12 @
28 2
TR e

« (o :
aQuo aQuo
5.4.6 5.4.2 A gé‘]l
@) o

® 5.4.17: First notice that:

(y)"
( (V)9 -
. (y)" o
@ . (4
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Then, using the previous derivation repeatedly:

o(P) ™
(P - l@

0 @ T.(P)
(CP)
™ 3.5.6

()
3.5.6
(CP)

(mdist)

Interestingly, we can derive the whole following family of equations:

(3 (3¢

Let n be the number of triangles in the first two diagrams.
e n = (: The first equality is (HL), the second is equivalent to the third, and already
proven 3.6.6.
e n = 1: The first equality is 3.6.9, the second is 3.5.4 and the third is 5.1.1.
e n. = 2: The first equality is given by Lemma 5.4.1. Then:

™ ™
pu pum pu— pum T
(TCX) 3.6.3 3.6.14 3.6.9
3.6.10
. ™

192

Lemma 5.4.19.
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Finally:

e n: Suppose we have the result forn — 1 and n = 2.

ALy

The same trick is used for the two other equalities.

5.5 Compositions of Normal Forms

We now use the results of Section 5.4 to prove that the compositions (spatial and sequen-
tial) of two diagrams in S-CNF can be put in S-CNF.

Proposition 5.5.1 (Permutation). For any [¢)) : 0 — n € Qubitz[% «ir), and any
27

A+ @ = [Alo] )

Proof » Any permutation can be decomposed in a sequence of adjacent transpositions,
which in ZX translates as swaps o. If |1)) is a state on 0 or 1 qubit, the only permutation
allowed is the identity. Otherwise, let |¢)) = |0) [¢o) +|1) |¢01) = |00) |tboo) +[01) |tho1) +
|10) |1b10) + |11) |111). If the first wire is not affected by the swap:

permutation o onn wires:

= A [¢bo) Afyy)
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which can be set in normal form by induction. If a swap occurs on the two first outputs:

Lemma 5.5.2.

Proof » By induction on the number n of outputs of [)):

en =0 :Letz € Z[\/ii,eiF]. There exist p, @ = (c)r and P = (P;); such that
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x = 55 »_ P(e'*). The conditions for Theorem 5.3.1 imply that:

k

Then:

AT g

e n > 1: In this case, let |¢)) = |0) |[¢) + |1) |¢1), and
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s ™

Proposition 5.5.3 (Tensor Product). Forany|ig) : 0 — n, |11) : 0 — m € Qubitz[\%’ew],
and any R such that R = A} +(Cond):

A(l¢o) ® |¢1))

Proof » By induction on the number of outputs of |¢) and |t)1):
o If both states are scalars, this case is handled by the condition in Theorem 5.3.1.
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o If one of the two states has at least one output — say |¢)g) = |0) [b0o) + |1) |¥01):

W A o) 1) ] [A [wbor) [eon)

: oy 8o
i#l ?
Proof »
SR RE N
. &Z% o @& *
518 H(cBJf) 4@5111 ?

Proposition 5.5.6 (R(ZZ’U). Forany D : 0 — n+2, and any R such that R - A, +(Cond):

ﬁm
BT
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Proof » By induction on the number n of outputs of [)).
e 1 = 2: First notice:

Y

which is in normal form.

e n > 3: Using Proposition 5.5.1, we can impose w to be applied on the two last wires.
Then:

- Alo) | [AlYy) | =

<

Proposition 5.5.7 (R(ZI’O)). For any diagram D : 0 — n + 1, and any R such that R |-
A +(Cond):
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Proof » By induction of the number n of wires of [¢):
en = 1:Let |¢) = a|0) + b|1). Then:

Ty

e n > 2: First, using Proposition 5.5.1 if needs be,

then,

Proposition 5.5.8 (Trace). For any diagram D : 0 — n + 1, and any R such that
R F A, +(Cond):




5.5. Compositions of Normal Forms

Proposition 5.5.9. With the hypothesis of Theorem 5.3.1, for any Dy, Dy in S-NF, Dy ® D,
can be transformed into a diagram in S-NF.

Proof »

Proposition 5.5.10. With the hypothesis of Theorem 5.3.1, for any Dy : n — m and
Dy :m — kin S-NF, Dy o Dy : n — k can be transformed into a diagram in S-NF.

Proof »

Proposition 5.5.11. With the hypothesis of Theorem 5.3.1, each generator can be trans-
formed into a diagram in S-NF.
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Proof » We will prove the result for states, for the three-legged green dot, the Hada-
mard node and the empty diagram. All the other generators can be built from them and
the Propositions 5.5.1, 5.5.3, 5.5.6, 5.5.8 and 5.5.7: First, notice that:

Then:
(6]
o
R 5 o |
(w((?i)st)
@ T
_ Aﬂff“\ﬂ
and:

(wdist) 5.3.6 5.5.3
5.4.7 (mdist)
5.1.11 (CP)
P)
™
and:



5.6. Normal Forms with Arbitrary Angles

|

Then:

RF M =

—
=)
=

gor Qe g T
= AT A Gasy [ AL AL

=T @ T ==

Any green dot with arity larger than 3 can be decomposed as a 3-legged dots thanks to
(S), and any red dot is a green dot with Hadamard gates on its adjacent wires. Then, any
diagram can be built from the states by simple topological transformations. E.g:

m‘m@,uw@

In the next sections, we will consider several fragments of the ZX-calculus for which
we will exhibit a diagrammatic representation of controlled states. For some fragments,
the above equations are provable, implying the completeness of the ZX-calculus for these
fragments. For other fragments, we will need the help of some additional axioms to prove
the above equations, implying the completeness of a ZX-calculus augmented with these
additional axioms.

5.6 Normal Forms with Arbitrary Angles

In the case of the general ZX-calculus, we know (Theorem 4.6.1) that the language is
complete with the set of rules ZX (Figure 4.3).
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™ Definition 5.6.1: Let Ag : C — ZX[1, 0] be the map defined as:

cA:00=8 &
« Vp>0,V0 € [0, 271'), AR(peie) =

a := 2arctan (p)

omgv ?Hg with ¢ 7= max (0, [—log,(1+ cos (a))] —2)
O-2@"7 @u 1

7Y ‘= arccos m
and Sk := {Ag(7) | z € C}. -

Lemma 5.6.2. For any x € C, Ag(x) is a controlled scalar, and [Ag(x)] |1) = .

Proof » This is routine (and can use Corollary 4.7.20). <

Lemma 5.6.3. The mapng : Sg — C = D — [D]|1) is bijective, and Ag = 7.
Moreover:

Proof » The proof for the the first equation was done in Proposition 4.8.9 and the ones
for the two other equations are similar to the proofs of rules 16 and 4a of Proposition
4.8.10. <

We can now reprove the completeness of ZX/ ZX. By Proposition 4.8.5, ZX - ZX./,
and by Proposition 4.4.2 ZX./, = A/,. By Lemma 5.6.3, the conditions (Cond) are met,
so by Theorem 5.3.1, the language is complete.

5.7 Completeness and Normal Forms with Rational
Angles

In this section, we consider the case where the angles are rational multiples of 7, i.e. frag-
ments F' € Fp := {F € F| F C Qr}. Among the rational angles, dyadic angles, i.e.
Jp :={F € F|F C Dr},whereD := {£ | p, ¢ € N} enjoy some particular properties,
and are considered in details in the next section.

Incompleteness and a new Rule for Cancelling Scalars

An interesting set of equations comes from the controlled scalars parametrised by in-
teger polynomials, more precisely from those parametrised by cyclotomic polynomials.

127

Indeed for any n > 0, [{le(qﬁn)]] 1) = ¢p(e™n ) = 0 (where ¢, is the n™ cyclotomic

polynomial), thus HFQJ(Q)n)H = [{é * ]] However, the corresponding equations are
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> — O0— 0

not provable with ZX/, when n = 8p with p an odd prime number, implying the in-
completeness of any fragment of rational angles which contains at least one angle of the

form X R

Lemma 5.7.1 (Incompleteness). Forany F' € Fg \ Fp, there exists an odd prime number
p such that I' = (®s,) € ZX[F] and

ZX. ¥ T e (@) =8 &

Proof » Let p be an odd prime number and ¢ an integer > 1. The formula of the

cyclotomic polynomial for a number with at most one odd prime factor gives: ¢g,¢(x) =

p,1 .o —1 .
—1 i1 x4k ptly .
>~ (—1)*z% P Moreover, (—1)Fe'a? "™ = ¢'"% "7 After telescoping:

k=0
p=1.\
- 327)

Since p and 4 are coprime, there exists £ such that kp7 = 7. Let us then consider the
interpretation [.|;, which multiplies all the angles by kp: Dy ® Dy — [D1]ip ®[Dalkp,
Di 0 Dy + [Dy]ip © [Dalips RS () + R (kpa), RY™ (@) — RY™ (kpa), Id
otherwise. It is routine to show that the rules of ZXx/, hold under this interpretation,

: @(T“j’w@(i)p#@‘H@‘

Notice that a similar proof of incompleteness can be derived using cyclotomic sup-
plementarity instead: For any F' € Fg \ Fp, there exists an odd prime number p such
that (SUP,,) is not provable in ZX/,:

a at2r a+2= Lomw poH— p—1)m
LX), ¥ '”
SUP

Hence the ZX-calculus needs to be completed to deal with rational angles. One pos-
sible way of doing this is to add the previous set of equations as axioms: Fﬁ (Dgp) =

é ‘ . This would translate as:

P
( i;) = l with p prime

and — as we will see in the following — would be enough for completeness. However,
instead of adding one or several new equations, we propose to add a simple and very
natural rule to ZX/,, the cancellation rule which allows one to simplify non zero scalars:

<
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™ Definition 5.7.2 (Cancellation rule): The cancellation rule (Cancel) is defined as fol-
lows. For any diagrams of the ZX-calculus D; and D5:
Va # mmod 27, ZX,,F Dio@a = Dy@a = ZXF Dy = D,

(Cancel)

When paired with the cancellation rule, ZX/, becomes ZXg.
To prove the equation I' = (®g,) = § ‘ on cyclotomic polynomials, we need to

be able to perform the sum and the product of polynomials:
- [[=Pe] )

ro+kw
£

( —7)
&y

5.4.2 sT—kw

Lemma 5.7.3. For any polynomials P and Q) in Z[X]:

sT—kw

Ifr=s:
rmfr—l—kw
rao+kw
(&)
( )y @ ro—kw
ro—kw
Otherwise, if r # sand z > y:
r+kw )r;r—i—kw
(4)" A\ Y rot ko
. = — &)
(A)Y 0 3.6.7 o
(S) ™
sm—kw
ro—kw
The case r # s and x < y is similar. In the end:
tr+kw
(4)°
tr—kw

rlzrﬁ-kw sy7r—|—kw
(A) (A)

ro—kw sT—kw
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with (=1)"z = (=1)"x + (—1)%y. The result for the sum immediately follows by induc-
tion (if 0 is involved, the result is obvious). For the product, first, if P(X) = P'(X) +
(—1)ba X"

(I;—l—c)w—i—(k—i—()a (b+c)m+(k+0)
crn+la ( ) - ( )a .
bt+c)r—(k+0)a — -
I (P) fmiz)a o (bram=(ktha [0, (1)°X7P)
and

Then, if () is non-null:

and if () = 0, the result is obvious. <

Now, thanks to the new rule (Cancel) together with the previous lemma, we get:
Proposition 5.7.4. For anyn > 0,

ZXo Tz (®5,) =8 &
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Proof » First of all, we can easily derive for any V:

s
Na i
ZXops b vy = 4 =§ —  ZXx F _or
r+Na dn L -
-Na

@ T+

Now, assume p is prime. Then, ¢1(X)pq(X) = [[ pa(X) = XP — 1. Since sums and
dlp
products of control polynomials are derivable in ZX (Lemma 5.7.3), it means:

= —
T+po
T
i
T
T+pa ﬂ_+2r77r
u
0 5 pell, - eS8
= ™ < ™ =
e :
() b P o
] om+* Qm+2=
42 .5.
P
= = i@ — ZXgF = l
(s+) = (Cance) L= 0y @
g TS S i

v)

Now, if p is still prime, the case of p* is handled with the equation ¢, (X) = ¢, (X P
which translates as:

| ] |- 1 l
2oy Lt |~ Lar1) sl = ZXef Loedp] — [azdd @

p

Finally, in the general case, let 8n = [] p¥* with all p; primes. Then, the polynomial ¢s,,

1

is Gun(X) = ged (0,0 (X7 ) ). By Bézout's identity, s, (X) = 3 Q(X)g (X7

where the (); are some unitary polynomials. This translates as:

:

ZX. b
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@ © 0

<

We show in the next subsection that the ZX-calculus augmented with the new can-
cellation rule makes the ZX-calculus complete for rational angles.

Normal forms

First, let F' € Fg \ Fp be finite. Then, there exists n such that F' is generated by i (i.e.
F = {% | k € N}), and for any z in Z[\/Li, ¢'t’], there exists a polynomial P € D[X]
such that z = P(e'n ).

This representation is not ideal. First of all, we can factor the powers of % and write
P as 2%@ where () € Z[X]. The power p can be uniquely chosen if we ensure that () is
not a multiple of 2if p > 0ie. VQ' € Z[X],p >0 —= Q # 2Q'.

This expression is still not unique, because the evaluation of two different polynomi-
als in e'7n can yield the same value (e.g. (¢’in )" = 1). To palliate this problem, we need
to work in Z[ X/ ¢s, (X ) where ¢g,, is the 8n'" cyclotomic polynomial. Indeed, ¢s,, is the
unique irreducible polynomial with ¢sn as root. Then, applying the Euclidean division

of Q) by ¢sg,:
Q=Qd¢sn + R (DIV)

where R and @)’ are uniquely chosen so that deg(R) < deg(¢s,) = ¢(8n). Then,
Q(e'in) = R(e'w).
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" Definition 5.7.5: Let A= : N X Z[X] — ZX[1 — 0] be the map such that

PeZ[X], peN,
We then define Sx := ¢ A= (p,P)| deg(P) < ¢(8n), 4
VQ € ZIX], p>0 = P #2Q

Remark 5.7.6. Notice that if P = 0, only Aﬁ(O, 0) is part of Sﬁ. Indeed, if P = 0, then
P =2 x 0 = 2P, so the last constraint imposes that p = 0.

Lemma 5.7.7. [[A%(p, P)] 1) = L P(e'tn)

Proof » By construction. <
Moreover:

Lemma 5.7.8. The mapnz : Sz — L[ 5,e'"] = D — [D] |1) is bijective.

Proof » Every element of Z[\%, e'"'] is uniquely defined as the quantity o~ P(e'4x ) where

deg(P) < ¢(8n),and VQ € Z[X], p >0 = P # 2Q. <

We now need to meet the conditions of Theorem 5.3.1. First we notice that we can
operate the sum and the product on controlled polynomials thanks to Lemma 5.7.3.
Two problems arise when trying to do the same with diagrams of Sz . First of all,

the sum of two diagrams in normal form can have a parity issue. For instance %(2 +
X) + (X +2X?) = (2 4+ 2X + 2X?) which shall be reduced to 1 + X + X?. This is
dealt with thanks to the following lemmas:

Lemma 5.7.9. Lemma 5.7.10.

?{] - $<—O ZXmFé = i

Proof » First:

The second lemma is then proven by induction, using Lemma 5.7.9. <

Secondly, the product of two polynomials may well end up with a degree larger than
©(8n). However, since we can operate the sum and product of controlled polynomials
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thanks to Lemma 5.7.3, we can derive the controlled version of the Euclidean division
(DIV). Combined with Lemma 5.7.4, we get, assuming P = Q¢s,, + R:

Allin all, any controlled scalar in the form A = P can be reduced to a diagramin S = .

Lemma 5.7.11.

e (- N~ ) -

Proof » The product is obvious when we have Lemmas 5.7.3 and 5.7.4. For the sum, let
x = 5P(e'tn), y = Q(e'%n). Wlo.g., assume p < g. Then:

ZXq b : -

o4\

Lz 277P| Tz Q)|

5.7.3
36.12

The ante-penultimate diagram may not directly be in normal form, for there may be S
such that 297PP + () = 25, but this is dealt with with Lemma 5.7.9. <

Theorem 5.7.12. The language ZX[-]/ ZXq is complete, the functor ZX[{-]/ 7ZXq L
Qubltz[i ] is full and faithful.
\/57

Moreover, any ZX[-|-diagram can be put into a normal form with respect to S x .
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Proof » By application of Theorem 5.3.1. <

Corollary 5.7.13. Forany I’ € Fy (finite or not), the language ZX[F|/ ZXq is complete,
the functor ZX[F]/ ZXq L Qubitz[%ﬁm] is faithful.

Moreover, any ZX[F|-diagram can be put into a normal form with respect to Sp :=

Proof » Let F' be a subgroup of Qm, and D; and D, be two diagrams of the fragment F,
such that [ D] = [Ds]. If F'is finite, Theorem 5.7.12 directly gives the result. Otherwise,
there exists n € N such that /- € I and both diagrams are in the --fragment of the
ZX-calculus. By completeness (Theorem 5.7.12): ZXg = Dy = Ds. <

The completeness for Qr is obtained thanks to the meta-rule (Cancel). It can be
beneficial to avoid second-order axioms like this one. Thankfully, it has been proven
later on that the axiomatisation ZX/, together with the family of axioms (SUP,) made
ZX|Qm| complete [ ].

Theorem 5.7.14 ([Jea18]). The functor ZX|Qr]/ ZX./, +(SUP,) =} Qubitys e is
27
full and faithful.

5.8 Normal Forms with Dyadic Angles

In this section we focus on a particular case of dyadic angles, a subgroup of D7 which
contains 7 (i.e. ' € Fp). In the previous section, we introduced the cancellation rule
which makes the ZX/, complete for rational angles.

Notice that, given a fragment F' € F, the cancellation rule can be derived from
the other rules if for every a € F, o # 0 mod 7, there exists an inverse of @« , i.e. a
diagram D : 0 — 0 € ZX[F]s.t. [D ® @a] = 1, and moreover this equation is provable:
Xz E Do@a = E_] This is the case in any fragment of dyadic angles:

Lemma 5.8.1. For anyn > 1, and anyk € {-2" +1,--- 2" — 1}, @4 has an
inverse. There exist 0 < m < n and p € 7 such that:

2p-1
@@ O 25-M7T+7T Lo
= 1 I
[—

ot o o%ln
Proof » If k€ {—2"+1,--- ,2"Jrl 1}, then there exist 0 < m < n and p € Z such
that k = 2™(2p — 1)ie. 22 = 22=L7 where 2"~™ > 2. Then:

2p—
@) n—m— 17T+7T

@i 2p-L o Oﬁ%ﬂ' QP o
= 2 2p—1 = . e OZP 1
(SUP)

n—m-— 71-
O (2p71)‘11r O (2p71);r .. 2p 1 (SUP) 2 2n=m=2 (SUP)
2'"/m‘ 27L-7n- O 2p 1

(S?P) @@ (S:2) Lo
v)
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Theorem 5.8.2. For any n > 2, the language ZX|7:|/ ZX~, is complete, the functor

ZX[ ]/ ZXops 1 Qubsit, i is full and faithful

7|1 elam
\/57
Any ZX[3;|-diagram can be put into a normal form with respect to Sz = Sm%.

Corollary 5.8.3. For any F' € Fy (finite or not), the language ZX[F')/ ZXx/, is complete,

the functor ZX|F|/ 72X, 13 Qubity s e is faithful.

Any ZX[F|-diagram can be put into a normal form with respect to Sp == J Sx.
m€F

Proof » The proofis the same as that of Corollary 5.7.13, except we use the completeness
of ZX 3|/ ZX+/, (Theorem 5.8.2). <

5.9 Normal Forms for Linear Diagrams

We show in this section that we can extend the results of universality and completeness
to linear diagrams, and at no cost. We take F' € F an arbitrary fragment that contains
7. The standard interpretation is a functor [.] : ZX[F] — Qubity 1 7>, which is full
by Theorem 5.2.10. Recall that when extending ZX-diagrams to linear diagrams, the
interpretation became [.] : ZX[a, F|] — Qubit%éjem] where:

Qubit??%7eip] _ { a P(eial, o 7€iak) ‘ P e Qubitz[%7e¢F][X1, e ,Xk] }
We can now easily show that this functor is full.

Theorem 5.9.1. For any F' € F, ZX|[d, F] is universal for Qubitgl oiF)’
¥f € Qubity ..\, 3D € ZX[d, F|, [D] = f
27

In other words, the functor ZX[d, F] Gl QubitﬂZ{El i 18 full
27

Proof » By map/state duality, we can w.l.o.g. restrict ourselves to states. Let f : 0 —
n € Qubitgé cir)- Then, there exists P a multivariate polynomial on £ variables with
coefficients in Qubity1 i such that f = & = P(e'™,... e®). Every element of
Z[%, ¢'t'] can be controlled, so using construction A of Definition 5.3.3, we can build
Ag for every g € Qubitz[%ﬂp], hence every coefficient of P can be associated with a
diagram that controls it.

We can then extend A to linear diagrams inductively as:

(@ fi eIt L Qe ,€%))

-----

AQ(eia) Afjl ,,,,, Jk
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It is then routine to show that:
IAfT 1) = [[A (62 — P(eml, . ,em’“))]] 1) =d— P(eml, . ,eia’“) =f
L |

Fullness is not the only property that is preserved when extending to linear diagrams.
We also have:

Theorem 5.9.2. Let F' € F. If there exists S C ZX[F] a set of controlled scalars such
that the mapn : S — Z[3,¢e*'] = D — [D] |1) is bijective, if R \ ZX., +(Cond), then

ZX[a, F]/R is complete i.e. the functor ZX[a, F]/R L Qubitﬂéﬁ cir i faithful.
3

Proof » Let x € Qubit%l «ir1[0, 0]. There exists P € Z[5,e"[Xq, . .., X, such that
2’

r=ar— P(e" ... e“*). Since 7 is surjective, we can define inductively Az:

(62 = T, jkeizjw‘f + Qe ..., eio"“)) —

.....

Notice that any ambiguity can be lifted by imposing an ordering on the powers in (), or

diagrammatically thanks to = . We can then define Sz := {Az |z €

Qubit%é «#)[0,0]}. We can then notice that the map 7z : S¢ — Qubitﬂzgé «ir[0,0] =
D — [D] |1) is bijective by uniqueness of P inz = @ + P(e', ..., "),
One can then check that the compositions of normal forms are still valid with vari-
ables. Any diagram of ZX|[d@, F'] can hence be put in normal form.
<
Notice that this result is a refinement of Theorem 4.2.1, for here the “constant” di-

agrams of ZX[F| need a normal form. However we see that in this case the notion of
normal naturally extends to linear diagrams of the same fragment.

Factoring

Let ' € F,andlet f € Qubitﬂé[ 1 i i.e. f has only one variable. Every entry of f is of
the form of P(e¢*) where P is a polynomial with coefficients in Z[%, e't’]. f can actually
be seen as f = >_ fre*® with f;, € Qubitz[%7e¢p]. We can naturally define a notion of
degree of v in f, d,(f), as the largest value of k for which f; # 0. Then, we can build a
ZX|a, F|-diagram that represents f using only d,, occurrences of a.

Proposition 5.9.3. Let F' € F,and f € Qubit%l ¢iF]- Letd,, bethe degree of the variable
27

acin f. There exists a ZX |« F|-diagram Dy with d,, occurrences of a and no occurrence of
ko for k > 1, such that [D,] = f. There also exists a ZX[«, F'|-diagram Dy with at most
one occurrence of ko foreach k € {1,...,d,} such that [D;] = f.
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Proof » Let f : 0 = n € Qubitﬂg[l ¢iF]" There exist f, € Qubitz[% ¢ir) such that
2 )

= > fre™™. We can build a diagram that represents their controlled version A fy.
These diagrams are in in ZX[F']. We define D; and D; as:

Both diagrams use the sum of controlled scalars. D, directly represents > fre*®, while
D, represents the Horner expansion f = fy + € (f; + ¢ (...)). Notice that we can
easily transform one into the other using Lemma 5.4.2. <

Example 5.9.4. The quantum Fourier transform on n wires is in the 5 -fragment. The
usual quantum circuit implementing it with the gate set (H, Rz(«), CNot) uses 3(n — 2)
occurrences of T, 3(n—3) occurrences of - 6 .»and 3 occurrences of ;. In ZX-Calculus,
the QFT can be represented with n — 2 occurrences of o and zero occurrence of 77 with
3 < j < n; or with exactly one occurrence of each J; for 3<j<n.

One way to reduce the count of phases out51de Cl1fford+T, is to use the seemingly

2c T «@
innocent Lemma 5.4.3: g} = ?O-a . This is actually pretty powerful. Indeed,
«

notice that

[S]fe)
1
i ng
n[R
I
3 Q
I
—_
—_

Hence it represents the control of the phase a. While this is usually obtained thanks to
the half phase 7 (first diagram), it can be done with one occurrence of o and a diagram
of ZX[7] (actually of AZX|r]). Thanks to this, we can create a diagram that given an
angle o copies @ while only using angles in 7Z U {2a}:

??%%

Doing this transformation inductively (together with (S) and (H)), we can get rid of all
occurrences of o except one. We can then use the same process to remove all occurrences
of 2« but one, etc...
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Conclusion

In this thesis, we have provided axiomatisations for different fragments and extensions
of the graphical language ZX-Calculus, used for quantum computing. For each axioma-
tisation, we proved its completeness, thanks to mainly two proof methods. The first one
is a transport of completeness from one language to another, using adequate systems of
translations. The starting point for this method is the completeness of two fragments
of the ZW-Calculus, another graphical language for quantum computing in which there
exists a nice notion of normal form. The second method is precisely to define normal
forms directly in the ZX-Calculus.

A problem related to that of completeness, and addressed for one of the axiomati-
sations is minimality. For most of the provided axiomatisation, it is as of now unclear
whether all the rules are necessary, or if they can be simplified, although a great deal of
work was made in order to provide the simplest axiomatisations possible. This question
is all the more relevant for the two rules (BW) and (C) of ZX/,.

Now thanks to the completeness of the language, any reasoning can theoretically
be performed inside the ZX-Calculus itself. However, some questions can still be hard
to answer. We can now check whether two diagrams are equivalent by turning them
into their normal forms. This is however not efficient, so it could be beneficial to find
invariants of the calculus. An obvious one is the number of input and output wires. Also,
in any fragment that does not contain 7, there exists an invariant [ ]. Can we
find other invariants, ideally that work in any fragment?

So far the strategies for simplification used for instance in [ Jor[ ] do
not use axioms outside ZX/,. A research direction would hence be to find such strate-
gies, that for instance require (BW) or (C). More generally, it would be interesting now to
find applications of the ZX-Calculus that use the larger axiomatisations. I am currently
working on an adaptation of sum-over-paths [ ] for ZX-diagrams, with in mind
the idea of seeing how a variable reduction in the sum-over-path formalism shows in
the associated ZX-diagram.

In the proof of completeness of ZX/ ZX, we introduced the SVD form of cycle-free
0 - land 1 — 1 ZX-diagrams. Although this was enough for the proof, since this
form derives from the SVD decomposition of the underlying matrix, one could definitely
define the SVD form for any ZX-diagram. This could be an interesting alternative normal
form, with practical applications.

Still concerning the axiomatisation ZX, we have shown in the ZX-Calculus that
adding a rule characterising one-qubit unitaries (EU) to a complete set of rules for the
many-qubit Clifford fragment (ZX/,) was enough to get the completeness in the unre-
stricted language. A natural question is now whether this is true for quantum circuits as
well (we know a complete axiomatisation for Clifford and (EU) can easily be expressed
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in this formalism), or are the specific features of the ZX-Calculus (such as the compact-
closed structure) necessary?

Finally, one last research direction for the ZX axiomatisations, would be to provide
adequate and ideally complete languages for qudit quantum computing.
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Axiomatisations

)
S
oY
Q
g

INE

(BW)

Q
™
—~
@ll
N
™
o
INE]
SEIESERE

INEINE

ZX

QW" ® >'<+ﬂ ALK e
:’:\(C:P) T :x: ;: ial (E0) §§ &3
i e

: = 2" — ag; z = cos (%) cos(z7) + isin (%) cos(z7); 2 =
cos (%2) sin (z7) — isin (2)sin(z7); B = argz+argz By = 2arg (i +]|Z|);
fs =argz —arg ;v = xt — arg(z )—i—”T_BQ;

SC+ = O¢1+a3’ T
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zX!

>'§z§.<ﬂ G %M + @) | @ + 3 8oy
:/:\(CP ve :m (ﬁ)x

=" —ag; z:= —sin(z7) + icos (z7); 2’ := cos (zT) — isin (z7);
T2
2

gt = ade, g

p1 = arg z + arg 2’; 62—2arg(z+| ‘) fs =argz —argz;y =t —arg(z) +

a3
a3

ISP
MEESERE ]

INERNE

Va # mmod 27, ZX,,F Dio@a =Dy@@a = ZXF D)= D,

(Cancel)
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Résumé

Le ZX-Calculus est un langage graphique puissant et intuitif, issu de la théorie des catégories, et qui
permet de raisonner et calculer en quantique. Les évolutions quantiques sont vues dans ce formalisme
comme des graphes ouverts, ou diagrammes, qui peuvent étre transformés localement selon un ensem-
ble d’axiomes qui preservent le résultat du calcul. Un aspect des plus importants du langage est sa

complétude : Etant donnés deux diagrammes qui représentent la méme évolution quantique, puis-je
transformer I'un en 'autre en utilisant seulement les regles graphiques permises par le langage ? Si c’est
le cas, cela veut dire que le langage graphique capture entierement la mécanique quantique.

Le langage est connu comme étant complet pour une sous-classe (ou fragment) particuliere d’évo-
lutions quantiques, appelée Clifford. Malheureusement, celle-ci n’est pas universelle : on ne peut pas
représenter, ni méme approcher, certaines évolutions. Dans cette these, nous proposons d’élargir I'ens-
emble d’axiomes pour obtenir la complétude pour des fragments plus grands du langage, qui en partic-
ulier sont approximativement universels, voire universels.

Pour ce faire, dans un premier temps nous utilisons la complétude d’un autre langage graphique et
transportons ce résultat au ZX-Calculus. Afin de simplifier cette fastidieuse étape, nous introduisons un
langage intermédiaire, intéressant en lui-méme car il capture un fragment particulier mais universel de la
mécanique quantique : Toffoli-Hadamard. Nous définissons ensuite la notion de diagramme linéaire, qui
permet d’obtenir une preuve uniforme pour certains ensembles d’équations. Nous définissons également
la notion de décomposition d’un diagramme en valeurs singuliaires, ce qui nous permet de nous épargner
un grand nombre de calculs.

Dans un second temps, nous définissons une forme normale qui a le mérite d’exister pour une in-
finité de fragments du langage, ainsi que pour le langage lui-méme, sans restriction. Grace a cela, nous
reprouvons les résultats de complétude précédents, mais cette fois sans utiliser de langage tiers, et nous
en dérivons de nouveaux, pour d’autres fragments. Les états contrélés, utilises pour la définition de
forme normale, s’averent en outre utiles pour réaliser des opérations non-triviales telles que la somme,
le produit terme-a-terme, ou la concaténation.

Mots-clés: Mécanique Quantique Catégorique, ZX-Calculus, Complétude, Universalitée, Formes
Normales, CPM.

Abstract

The ZX-Calculus is a powerful and intuitive graphical language, based on category theory, that allows
for quantum reasoning and computing. Quantum evolutions are seen in this formalism as open graphs,
or diagrams, that can be transformed locally according to a set of axioms that preserve the result of the
computation. One of the most important aspects of language is its completeness: Given two diagrams
that represent the same quantum evolution, can I transform one into the other using only the graphical
rules allowed by the language? If this is the case, it means that the graphical language captures quantum
mechanics entirely.

The language is known to be complete for a particular subclass (or fragment) of quantum evolutions,
called Clifford. Unfortunately, this one is not universal: we cannot represent, or even approach, certain
quantum evolutions. In this thesis, we propose to extend the set of axioms to obtain completeness for
larger fragments of the language, which in particular are approximately universal, or even universal.

To do this, we first use the completeness of another graphical language and transport this result to the
ZX-Calculus. In order to simplify this tedious step, we introduce an intermediate language, interesting
in itself as it captures a particular but universal fragment of quantum mechanics: Toffoli-Hadamard. We
then define the notion of a linear diagram, which provides a uniform proof for some sets of equations.
We also define the notion of singular value decomposition of a diagram, which allows us to avoid a large
number of calculations.

In a second step, we define a normal form that exists for an infinite number of fragments of the
language, as well as for the language itself, without restriction. Thanks to this, we reprove the previous
completeness results, but this time without using any third party language, and we derive new ones for
other fragments. The controlled states, used for the definition of the normal form, are also useful for
performing non-trivial operations such as sum, term-to-term product, or concatenation.

Keywords: Categorical Quantum Mechanics, ZX-Calculus, Completeness, Universality,
Normal Forms, CPM.
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