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Introduction

J’ai fait ma thèse de 2005 à 2009 avec Patrick Joly sur l’analyse de problèmes de diffraction
dans des milieux périodiques. Arrivée à l’Ensta juste après, je me suis intéressée aux sujets
de recherche de mes nouveaux collègues (théorie spectrale, guide d’ondes élastiques, problèmes
inverses) tout en essayant de leur apporter mon expertise sur les milieux périodiques et sur
les techniques et méthodes sous-jacentes. J’ai par exemple travaillé avec Laurent Bourgeois
(POEMS) sur les méthodes d’échantillonnage dans des guides d’ondes périodiques et j’ai com-
mencé ma collaboration avec Anne-Sophie Bonnet-Ben Dhia (POEMS) sur les problèmes de
diffraction des plaques élastiques anisotropes, en collaboration avec le CEA. Il me semble que
cette expertise acquise sur les milieux périodiques a intéressé aussi à l’exterieur. Si je ne devais
citer que les travaux qui ont abouti à une publication, je parlerais de ma collaboration avec K.
Ramdani (Inria Nancy), C. Besse (Univ. Toulouse) et I. Lacroix-Violet (Univ. Lille) et avec K.
Schmidt et D. Klindworth (TU Berlin). Parallèlement, je me suis beaucoup interessée aussi aux
travaux de l’équipe sur les métamatériaux, (sujet qui excite beaucoup les physiciens aujourd’hui
du fait de leurs applications multiples) et en particulier les difficultés théoriques et numériques
qui interviennent quand on utilise des modèles effectifs ou homogénéisés pour étudier la diffrac-
tion des ondes par ces milieux. Nous avons donc monté un projet ANR (le projet METAMATH
2011-2016), avec l’Univ. de Toulon, l’équipe DeFI de l’Inria et le LJLL, dont j’étais responsable
et où il était question entre autres de revisiter les techniques d’homogénéisation pour propo-
ser des modèles effectifs plus riches de ces métamatériaux, notamment au niveau des interfaces.
J’ai commencé à travailler sur ces questions avec Xavier Claeys (LJLL) et beaucoup reste à faire.

Après cette courte présentation de mon parcours, je vais commencer ce document par présenter
le contexte et certaines applications qui motivent l’étude de phénomènes de propagation d’ondes
dans des milieux périodiques. Je résume ensuite mes contributions et le contenu de ce manuscrit.

Un milieu est dit "périodique" quand sa géométrie et/ou ses caractéristiques physiques (typi-
quement les coefficients élastiques quand il s’agit d’ une structure mécanique ou la permittivité
diélectrique quand il s’agit d’une structure optique) sont des fonctions périodiques d’une ou
plusieurs variables d’espace. Les milieux périodiques apparaissent dans un grand nombre d’ap-
plications. Donnons deux exemples, un en mécanique et l’autre en optique.

Tout d’abord, le matériau à fibre ou composite est un assemblage souvent supposé périodique
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6 Introduction

d’au moins deux matériaux. (voir par exemple [Christensen, 1979, Aboudi, 1991, Kaw, 2005]
pour leur modélisation). Ces mélanges permettent d’améliorer la qualité de la matière pour des
utilisations spécifiques (légèreté, résistance particulières à certains efforts, ...), ce qui explique
l’utilisation croissante de ces matériaux dans différents secteurs, notamment l’industrie aéro-
nautique et aérospatiale. On trouve souvent des défauts de structure, des ruptures géométriques
ou des fissures, liés à une fabrication défectueuse de la pièce ou à la fatigue durant son utilisa-
tion. Pour détecter ces défauts et en déterminer certaines propriétés, les techniques de contrôle
non destructif (CND), parmi lesquelles les méthodes ultrasonores, sont très utilisées car elles
permettent de vérifier l’intégrité des structures sans les altérer. Mais il est souvent difficile d’in-
terpréter les signaux du fait de l’anisotropie des milieux, de la présence de raidisseurs. Des outils
de simulation peuvent aider à maitriser cette complexité et peuvent donc être utilisés pour aider
au positionnement des capteurs, à l’amélioration des techniques de contrôle et au diagnostic des
défauts.

Les milieux périodiques présentent également des propriétés très intéressantes en optique, en
particulier en micro-technologie et nano-technologie. En effet, un des récents sujets porteurs en
optique concerne les matériaux à bandes interdites de photons connus sous le nom de cristaux
photoniques. [Kuchment, 2001, Joannopoulos et al., 1995, Johnson and Joannopoulos, 2002,Sa-
koda, 2001]. Ces derniers sont des structures périodiques composées de matériaux diélectriques
qui présentent souvent un fort contraste d’indice. En particulier, de telles structures permettent
de sélectionner les bandes de fréquences pour lesquelles les ondes peuvent ou non se propager
dans le milieu en question. Plusieurs travaux mathématiques et numériques indiquent qu’un
choix adéquat de la structure du cristal et des matériaux diélectriques le composant permet-
traient de créer des bandes interdites particulières et donc d’un point de vue pratique, bannir
du cristal certaines ondes électromagnétiques [Kuchment, 2004, Kuchment, 2001]. De ce fait,
ces milieux pourraient être utilisés dans la réalisation de filtres, d’antennes et de différents
composants utilisés en télécommunications. En outre, des défauts peuvent être introduits volon-
tairement dans le milieu pour en changer les propriétés. Ainsi, en optique, dans le but de réaliser
des lasers, des filtres, des fibres ou des guides d’ondes, des défauts linéiques sont introduits pour
permettre la propagation de modes guidés. Là encore, des travaux mathématiques et numériques
indiquent comment optimiser la structure pour créer un mode guidé.

Positionnement et présentation de mes travaux de recherche

Mes travaux portent sur l’analyse mathématique et numérique des problèmes de diffraction
(principalement en régime harmonique ou régime periodique établi) dans des milieux pério-
diques présentant des perturbations ou non (voir les chapitres 1 et 2). Je me suis également
intéressée à des problèmes spectraux (voir le chapitre 3) dans ces milieux qui permettent de
caractériser et calculer les modes (généralisés, guidés ou localisés suivant le milieu). Dans cha-
cun de ces problèmes, ma démarche est toujours la même : après une analyse mathématique
des problèmes (étude théorique des modèles mathématiques relativement à l’existence, l’unicité
et aux propriétés qualitatives des modèles), je conçois, analyse et met en oeuvre une méthode
numérique pour résoudre ces problèmes.
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Ces problèmes font intervenir plusieurs échelles (la dimension du milieu, la longueur d’onde,
la période,...) et des questions de modélisation se posent également. Dans toutes les applications
que j’ai citées, la taille du milieu est beaucoup plus grande que la longueur d’onde et la période.
Il parait donc légitime de supposer que le milieu est infini. En outre, on sait que quand la lon-
gueur d’onde est de l’ordre de la période, il faut considérer le milieu périodique en tant que tel
(c’est souvent le cas dans les applications en photonique). Mais quand elle est grande devant
la période (comme souvent dans les techniques de CND par ondes ultrasonores des matériaux
composites), le milieu peut être homogénéisé c’est-à-dire remplacé par un milieu dit effectif ou
homogène (souvent anisotrope) équivalent. J’ai commencé à m’intéresser assez récemment à la
construction et la justification de modèles effectifs, obtenu à l’aide de méthodes asymptotiques
(voir le chapitre 4).

Chapitres 1 et 2 - Problèmes de diffraction des ondes acoustiques et élastiques
en régime harmonique dans des milieux périodiques ou anisotropes : depuis ma thèse,
je me suis intéressée à l’analyse mathématique et numérique d’équations d’ondes acoustiques,
électromagnétiques ou élastiques en régime harmonique dans des milieux périodiques infinis dans
une direction (dans ce cas c’est un guide d’onde) ou plusieurs directions. Ces équations sont ob-
tenues à partir de l’équation des ondes en régime temporel en supposant que le terme source est
harmonique en temps et en cherchant la solution elle aussi harmonique en temps. L’intérêt est
que la solution recherchée ne dépend plus que des variables d’espace puisque la dépendance en
temps peut être factorisée. Bien que d’apparence plus simple, les équations harmoniques, dont
l’exemple type est l’équation de Helmholtz, posées dans un domaine non borné, soulèvent de
nombreuses difficultés. La première difficulté est que ces équations posées dans un milieu infini
sont en général mal posées dans le cadre classique des solutions d’énergie finie : il est assez facile
de vérifier que les solutions physiques ne sont en général pas d’énergie finie. Si on cherche des
solutions ayant une régularité seulement locale, le problème est également mal posé : il est assez
facile dans ce cas de construire une infinité de solutions. Il faut en général imposer en plus, une
condition sur le comportement de la solution à l’infini, appelée condition de rayonnement ou
radiation à l’infini. La deuxième difficulté est d’ordre numérique : comment calculer la solution
alors que le milieu est infini ?

Dans le chapitre 1, je donne quelques éléments sur mes travaux qui traitent des problèmes
de diffraction dans des guides d’ondes. La spécificité des guides d’ondes est que le mi-
lieu est infini dans seulement une direction (ce qui peut paraitre plus simple !) mais la solution
physique se propage, en général, jusqu’à l’infini sans décroitre. Dans ce chapitre, je commence
par traiter le cas des guides d’ondes acoustiques homogènes pour expliquer les spécificités du
guide d’onde et pour rappeler les résultats classiques. En effet, dans ce cas, des techniques de
type séparation de variables permettent de résoudre les problèmes d’ordre théorique et numé-
rique évoqués plus haut. Cependant, ces techniques ne peuvent pas s’appliquer ou s’étendre à
des guides d’ondes plus généraux par exemple si le milieu est périodique ou si il s’agit d’ondes
élastiques. Depuis ma thèse, je travaille sur les guides d’ondes périodiques avec Patrick Joly.
Tout d’abord, en utilisant des outils adaptés aux milieux périodiques comme la transformée de
Floquet Bloch, nous avons proposé des conditions de radiation pour les guides d’ondes pério-
diques [13]. Ces conditions permettent de rendre le problème bien posé en général. Néanmoins,
elles ne peuvent pas être utilisées directement numériquement. Nous avons répondu aussi aux
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difficultés numériques en construisant des conditions transparentes imposées sur une frontière
artificielle, qui sont basées sur des opérateurs de type Dirichlet-to-Neumann (DtN). Même s’il
reste quelques questions ouvertes, l’utilisation des opérateurs DtN répond à la fois aux difficultés
théoriques et numériques [1] [24]. Toutes ces techniques ont été utilisées avec Laurent Bourgeois
(POEMS), pour résoudre un problème inverse dans un guide d’onde périodique (quand la cel-
lule de périodicité est connue) via une méthode d’échantillonnage de type Linear Sampling
Method [8]. Ces méthodes ont également été utilisées pour résoudre des problèmes de diffrac-
tion entre un demi-espace homogène et un demi-espace périodique [4]. Plus récemment, dans le
cadre de la thèse d’Antoine Tonnoir, avec Anne-Sophie Bonnet Ben Dhia (POEMS) et Vahan
Baronian (CEA-LIST), nous avons considéré la diffraction des ondes élastiques dans un guide
d’ondes isotrope ou anisotrope (correspondant à un matériau composite homogénéisé). Une des
applications visées est le contrôle non destructif de tubes ou de câbles. Les difficultés ici sont
induites par le caractère vectoriel des équations qui ne permet pas d’étendre les techniques du
cas scalaire. Nous avons proposé de nouvelles conditions transparentes dans [11] ce qui n’avait
jamais été fait pour des guides élastiques anisotropes. Ces conditions utilisent une décomposition
de la solution en fonction des modes du guide (appelés modes de Lamb) pour lesquels la pro-
pagation le long du guide est explicite. Ces conditions nécessitent l’introduction de 2 frontières
artificielles (comme dans certaines méthodes de couplage Eléments Finis-Equations intégrales
ou dans les méthodes de décomposition de domaines avec recouvrement). Nous nous sommes
ensuite rendus compte que cette technique de construction de conditions transparentes avaient
un portée plus générale. Par exemple, pour les guides périodiques, cela permet de construire
d’autres conditions transparentes basées sur une décomposition sur les modes de Floquet. De
manière peut être surprenante, la diffraction dans des guides d’ondes est un sujet ancien, bien
connu mais loin d’être clos. En effet, dès qu’il s’agit de traiter des guides d’ondes autres que sca-
laires et homogènes, des méthodes un peu ad-hoc voire bricolées sont développées. Nous pensons
que l’approche présentée dans la dernière section de ce chapitre est très générale et il est très
tentant de la tester sur toutes les situations (guides d’ondes électromagnétiques, de type plaque
(voir [20]), ou guides d’ondes ouverts par exemple) pour lesquelles il n’existe peu ou rien.

Dans le chapitre 2, j’évoque mes travaux sur les problèmes de diffraction dans des milieux
infinis dans au moins 2 directions. Les questions théoriques concernant les conditions de
radiation pour les milieux périodiques restent encore ouvertes. Pour ces problèmes, je me suis
concentrée pour l’instant sur les difficultés numériques en me plaçant dans un cadre coercif (en
rajoutant de la dissipation au modèle). Si le milieu est périodique ou si le milieu est homogé-
néisé mais qu’il s’agit d’ondes élastiques, les méthodes classiques pour restreindre les calculs
autour de zones d’intérêt (sources, obstacles, perturbations) ne fonctionnent pas (même avec
de la dissipation). Nous avons développé la méthode dite des demis- espaces raccordés ou la
Half-Space Matching Method. La méthode part d’une idée assez simple, que le milieu soit ho-
mogène ou périodique, on peut exprimer la solution dans un demi-plan, de manière explicite ou
semi-explicite, à partir de sa trace sur le bord en utilisant une transformation adaptée (Fourier
ou Floquet-Bloch). L’approche consiste ensuite à coupler les représentations de la solution dans
plusieurs demi-plans (au moins 3) avec une représentation de la solution autour du défaut. En
assurant la compatibilité des représentations dans les zones de recouvrement, on aboutit à une
formulation couplant, via des opérateurs intégraux, la solution dans un domaine borné conte-
nant le défaut et ses traces sur les bords des demi-plans. Pendant ma thèse avec Patrick Joly,
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nous avons introduit la méthode dans le cas d’un milieu périodique avec des directions de pé-
riodicité orthogonales [2,3,5], le cas d’un réseau hexagonal a été traité dans [6]. Cette méthode
a ensuite été utilisée dans le cadre d’une collaboration avec Vahan Baronian du CEA, de la
thèse d’Antoine Tonnoir (soutenue en 2015) et de celle de Yohanes Tjandrawidjaja (débutée en
2016), toutes deux co-encadrées avec Anne-Sophie Bonnet-Ben Dhia (POEMS), pour étudier la
propagation des ondes élastiques dans des plaques dites épaisses (bornées dans une direction
et infinies dans les 2 autres) de matériaux composites. Pendant la thèse d’Antoine, nous avons
traité des milieux 2D et le cas d’ondes acoustiques et élastiques. Le cas de la diffraction des
ondes acoustiques dans des milieux homogènes même anisotropes, que nous traitons dans [17] et
qui fait l’objet du début du chapitre 2, est évidemment un problème beaucoup plus simple que
tous ceux que je viens d’évoquer. Et il semble sans intérêt d’utiliser cette méthode d’une telle
complexité (avouons le !) pour un cas où toutes les méthodes classiques marchent très bien. Mais
sur ce cas simple, il est plus commode, je pense, de comprendre le principe de la méthode. Et
surtout, sur ce cas nous pouvons faire l’analyse théorique [17], l’analyse numérique [16], déduire
assez simplement les analyses dans le cas périodique et avoir des pistes pour traiter le cas des
ondes vectorielles. Comme je le mentionne à la fin du chapitre, il reste des questions ouvertes,
notamment pour analyser le cas sans dissipation. Nous avons posé une première brique avec un
résultat théorique qui généralise le théorème de Rellich [12]. Et la méthode marche très bien
même en l’absence de dissipation, il suffit d’imposer une condition de radiation dans chaque
demi-espace. Enfin avec cette méthode, nous pouvons envisager de traiter des situations en-
core plus délicates pour lesquelles il n’existe aucune analyse ou méthode numérique : citons par
exemple les plaques élastiques (qui fait l’objet de la thèse de Yohanes Tjandrawidjaja, débutée
en octobre 2016), les jonctions de fibres optiques périodiques et l’étude de toutes ces équations en
régime temporel (traitée en partie dans la thèse de Hajer Methenni, débutée en novembre 2017.).

Chapitre 3 - Ondes piégées et guidées dans les milieux périodiques : ce deuxième
sujet a été financé en partie par un projet DGA (via le financement de 18 mois de post-doc,
6 mois pour Bérangère Delourme (aujourd’hui au LAGA, Univ. Paris 13) et 12 mois pour
Khac-Long Nguyen (LAMCOS, INSA Lyon)). Il est question de l’existence et de la simulation
numérique d’ondes piégées ou guidées dans des cristaux photoniques. Comme je le mentionnais
dans le contexte général, un «défaut linéique» dans un cristal photonique peut jouer le même
rôle que le coeur d’une fibre optique et le cristal celui de la gaine. Des ondes guidées pourraient
se propager le long du défaut et rester confinées dans la section transverse. L’existence de ces
modes guidés est une question essentielle. J’ai tenté d’apporter des éléments de réponse en com-
binant les outils de la théorie spectrale, des techniques asymptotiques et des outils numériques.
Alors que dans les résultats théoriques existants, les conditions d’existence de gaps pour des
milieux périodiques et de modes guidés ont été obtenus pour des variations de coefficients, nous
avons proposé de telles conditions en gardant des coefficients constants mais en faisant varier
la géométrie [15] [19, 23] (dans le premier cas, l’opérateur perturbé a le même domaine que
l’opérateur sans perturbation, ce qui n’est plus vrai dans le second cas). Pour cela, nous avons
considéré une géométrie qui est asymptotiquement proche d’un graphe pour lequel des calculs
analytiques sont possibles. Des développements asymptotiques nous ont permis de conclure. J’ai
également proposé une méthode numérique exacte pour le calcul des modes guidés qui soit in-
dépendante du confinement. Le principe de la méthode consiste à restreindre les calculs autour
de la perturbation en imposant des conditions aux limites transparentes dont la construction
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est la même que pour les problèmes de diffraction. La méthode est exacte (comparée à des mé-
thodes dites de Supercell) mais le prix à payer est que le problème aux valeurs propres posé en
domaine borné devient non linéaire. L’étude mathématique et numérique de la méthode a fait
l’objet de plusieurs articles [7, 9, 10], en collaboration notamment avec Kirsten Schmidt et Dirk
Klindworth (TU Berlin) et un article sur des configurations 3D plus réalistes [25] est en cours de
rédaction avec Khac-Long Nguyen (LAMCOS, INSA Lyon). Mes perspectives aujourd’hui sur ce
sujet se situent autour de la prise en compte de la dispersion et l’étude des ondes guidées dans
des structures périodiques hexagonales (de type graphene) qui seraient, d’après la bibliographie
abondante sur le sujet, topologiquement protégées (c’est à dire stables pour des petites pertur-
bations localisées du milieu). C’est un travail réalisé en collaboration avec Bérangère Delourme.

Chapitre 4 - Homogénéisation en présence de bords ou d’interfaces : ce sujet a
été motivé par le projet ANR METAMATH (2012-2016) dont j’ai été le porteur qui traitait
de la modélisation mathématique et numérique pour la propagation des ondes en présence de
métamatériaux. Des découvertes récentes ont montré la possibilité de réaliser des matériaux
électromagnétiques faiblement dissipatifs, dont les constantes diélectriques et magnétiques ef-
fectives ont des parties réelles négatives. Ces « métamatériaux », de structure multi-échelle
complexe, conduisent à des phénomènes extraordinaires en ce qui concerne la propagation des
ondes électromagnétiques (réfraction négative, résonance de cavités « sous longueur d’onde»,...)
et suscitent donc un grand intérêt en vue de nombreuses applications potentielles (super lentilles,
revêtement furtif, miniaturisation des antennes,. . . ). Leur structure présentant plusieurs échelles
de taille très différente, il est très coûteux voire impossible de simuler la propagation des ondes
dans ces milieux en prenant en compte toute leur complexité. L’alternative séduisante consiste
à modéliser le métamatériau par un matériau homogène, à constantes physiques de partie réelle
négative. Ainsi, on trouve dans la littérature que pour certains milieux périodiques dont la struc-
ture présente des mécanismes de résonance (étant liés à la géométrie ou aux caractéristiques des
matériaux), les permittivité diélectrique et/ou perméabilité magnétique effectives pouvai(en)t
devenir négatives pour certaines gammes de fréquences. Cependant, le modèle homogénéisé est
souvent obtenu en négligeant les effets de bords et c’est d’ailleurs pour cette raison qu’il est
beaucoup moins précis aux bords ou aux interfaces des matériaux. Comme un certain nombre
de phénomènes intéressants apparaissent à la surface des métamatériaux (comme la propagation
des ondes plasmoniques par exemple), il semble que le modèle effectif classique peut s’avérer peu
précis voire complètement faux. En effet, lorsqu’on considère une interface entre un diélectrique
et un métamatériau et que le contraste de permittivité et/ou de perméabilité est égal à -1, il
apparaît à l’interface une accumulation d’énergie qui n’est pas compatible avec le cadre mathé-
matique/physique usuel. Il semble que ces difficultés soient dues à une description asymptotique
insuffisamment fine des phénomènes de propagation au voisinage des interfaces.

En collaboration avec Xavier Claeys (LJLL, Univ. Paris 6), nous avons donc revu le proces-
sus d’homogénéisation afin de proposer des modèles plus riches au niveau des interfaces. Ce
travail a été réalisé, dans un premier temps, dans le cadre de la thèse de Valentin Vinoles, pour
la propagation des ondes acoustiques en régime harmonique entre un demi-espace périodique
classique (non métamatériau : les coefficients effectifs sont positifs) et un demi-espace homo-
gène. En combinant les méthodes d’homogénéisation double échelle et celle des développements
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asymptotiques raccordés, nous avons proposé des conditions de transmission plus précises mais
moins standards puisqu’elles font intervenir des opérateurs différentiels le long de l’interface.
Une analyse d’erreur confirme cette précision et des résultats numériques illustrent l’efficacité
de ces nouvelles conditions. Deux articles [21,22] sont en cours de rédaction. Dans le cadre de la
thèse de Clément Benneteau (débutée en septembre 2017), nous voulons traiter le cas des équa-
tions de Maxwell et en présence de métamatériaux. Sur ce sujet, il y a d’autres perspectives qui
permettront de traiter des configurations plus générales (le cas d’interface courbe par exemple.)

Ce document n’est pas une présentation chronologique et exhaustive de mes travaux de re-
cherche mais un résumé des sujets que je viens de mentionner pour lesquels je positionne mon
travail en faisant référence à des résultats classiques de la littérature, je présente mes contribu-
tions et j’ai également inclus des résultats qui viennent d’être soumis ou le seront très bientôt.

J’aimerais enfin signaler que la bibliographie est séparée en 2 catégories. Mes papiers sont cités
avec des nombres [N] et le reste de la littérature est citée avec le premier auteur et la convention
et al. [First Author et al., YEAR].
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1 Scattering problem in waveguides

Collaborations : Vahan Baronian (CEA), Anne-Sophie Bonnet-Ben Dhia (POEMS), Patrick
Joly (POEMS), Vincent Lescarret (Centrale Supelec), Antoine Tonnoir (INSA Rouen)
Supervising : Antoine Tonnoir’s PhD (2011-2015), Jérémi Dardé’s internship (2007, 3 months),
Mathieu Guenel’s internship (2012, 3 months)

1.1 Introduction

In this chapter, I consider time harmonic scattering problems in unbounded closed waveguides.
Let me begin by a general introduction on waveguides. A waveguide is a structure that guides
waves in one direction with minimal loss of energy. A waveguide is called closed if it is bounded
in the directions which are orthogonal to the propagation direction by an impenetrable wall
(such as pipelines). A waveguide is called open if its cross section can be considered unbounded,
as for instance optical fibers or immersed pipes. In such devices, guided waves are time-harmonic
waves that propagate without attenuation in the longitudinal direction and remain confined in
the other transverse directions. For a closed waveguide, such a confinement is simply due to
the boundedness of the cross section. And for an open waveguide, this confinement results from
a particular layout of the various materials which compose the waveguide. In this chapter, I
detail my work on closed waveguides. More precisely, I have considered two types of waveguide
problems (periodic and elastic waveguides). Some specific applications are the study and the
computation of (1) the light propagation in optical fibers for the communication industry and
(2) the ultrasonic wave propagation in cables and pipelines for non destructive testing purposes.
Concerning open waveguides, I haven’t addressed yet scattering problems but I have some per-
spectives in this direction (see Section 1.5) and in Chapter 3, I detail my work devoted to the
existence, the properties and the computation of guided modes in particular open waveguides.

Time harmonic scattering problems in unbounded waveguides raise several difficulties of the-
oretical and numerical nature which are intricately linked. From a theoretical point of view,
the difficulty concerns the definition of the physical solution. It is often defined as the unique
solution of a well-posed problem. However, the time harmonic scattering problems in waveguides
are in general not well posed in the classical L2 framework. This is linked to the fact that the
physical solution is in general not of finite energy since a propagation without attenuation is
possible in the direction of the waveguide. In the L2

loc framework, an infinity of solutions can be
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found. Usually radiation conditions which characterize the behaviour at infinity of the physical
solution have to be determined and added to the problem in order to recover well-posedness.
From a numerical point of view, the domain being unbounded, the difficulty is to compute the
physical solution.

These difficulties are well known and solved for homogeneous acoustic waveguides. Indeed, from
a theoretical point of view, the classical approach is to remark that the equivalent problem with
a dissipation term is well posed in a classical setting and then define the physical solution as the
limit when the dissipation tends to 0 of the family of solutions of the problem with dissipation.
This is the limiting absorption principle. When the waveguide is homogeneous and the time
harmonic scalar wave equation is considered, an explicit expression of the solutions enables to
show that the family of solutions has a limit when the dissipation tends to 0 and it is a solution
of the problem without dissipation. This is by definition the physical solution. At infinity, the
physical solution can be decomposed as the sum of the so-called outgoing propagative modes.
Moreover, from the behaviour at infinity of the physical solution, one can derive some radia-
tion conditions. Adding these radiation conditions to the original problem makes it well-posed
(except for a countable set of frequencies which corresponds to the so-called resonances of the
problem). This approach cannot be extended directly to periodic or elastic waveguides since the
solution, even in the dissipative case, cannot be expressed as explicitly as for the homogeneous
acoustic case. I have worked on the limiting absorption principle and the derivation of radia-
tion conditions for periodic waveguides (see Section 1.3.2), for another approach, see [Nazarov
and Plamenevsky, 1990,Nazarov and Plamenevsky, 1991], which was already applied to periodic
and/or elastic waveguides [Nazarov, 2013,Nazarov, 2014b].

From a numerical point of view, there exist two classes of method to compute the solution
of the time harmonic scalar wave equation in a locally perturbed homogeneous waveguide. A
first class of methods consists in putting on each side of the computational domain an absorbing
layer in which the Perfectly Matched Layer (PML) technique [Berenger, 1994] is applied. Phys-
ically the method can be interpreted as letting a wave coming from the computational domain
enters the layer without reflexion and absorbs the wave inside the layer preventing it to come
back in the computational domain. This technique is easy to integrate in any Finite Element
codes (no specific implementation is needed, adding a PML layer corresponds to making a (com-
plex) change of variable) and leads to solve a classical sparse linear system. Unfortunately, it is
well-known that PMLs do not work in elastic and periodic waveguides (see for instance [Skelton
et al., 2007] for elastic waveguides). Indeed, PMLs absorb the waves having positive phase veloc-
ities. However, the physical or outgoing solution can be characterized through its positive group
velocity. Even if in scalar homogeneous waveguide, phase and group velocities are of same sign,
in general (as in elastic or periodic waveguides for instance) they are not. A remedy has been
proposed and analyzed for elastic waveguides in [Bonnet-Ben Dhia et al., 2014] where the phys-
ical solution is reconstructed a posteriori by combining several "wrong fields" computed with
PMLs. An alternative consists in using adiabatic viscoelastic absorbing layers [Drozdz et al.,
2006] which are not perfectly matched and need to be sufficiently large to avoid spurious re-
flections. The main drawback of this approach is then its computational cost. Moreover, let us
point out that absorbing layer techniques (perfectly matched or not) require a fine adjustment
of some parameters, which may limit their systematic use. Let us finally mention the Hardy
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space infinite elements method known also as the pole condition [Hohage et al., 2003a,Hohage
et al., 2003b] which was recently extended to elastic waveguides [Halla and Nannen, 2015,Halla
et al., 2016].

A second possibility consists in using the modal decomposition of the field outside the per-
turbed area to derive transparent boundary conditions which can be set on the artificial bound-
aries of the finite element domain. The advantage is that such conditions are exact (and with
an exponentially small error at the discrete level if enough modes are kept in the modal ex-
pansion). However, it requires specific properties of the modes of the isotropic homogeneous
acoustic waveguide (in particular the orthogonality of the modes in the transverse section of
the waveguide), which does not hold for instance in general waveguides (stratified, anisotropic
or periodic waveguides or in (even isotropic) elastic waveguides). Let me finally mention that
for isotropic elastic waveguides, an alternative has been proposed in [Baronian, 2009,Baronian
et al., 2010] based on bi-orthogonality relations but it cannot be extended to general anisotropic
elastic waveguides.

In the first section of this chapter, I will recall quickly the principal results that I have mentioned,
for the homogeneous acoustic waveguide. I present my contributions on periodic waveguide in
Section 1.3. As you will see, there are theoretical and numerical results. One of the most original
result is maybe the construction of the DtN operators. Let me add that this method can be ex-
tended directly to scalar or vectorial equations and of course isotropic/anisotropic homogeneous
or periodic media. Moreover, this construction is not based on a modal decomposition of the
solution far from the defect. Of course there exists a link but from a numerical point of view,
this does no require the computation of the modes.

For some applications (non destructive testing of pipes for instance), it could be important
to keep the decomposition in terms of the modes of the guides. However, the modes in general
do not have the magic properties (orthogonality for instance) of the modes of the isotropic homo-
geneous acoustic waveguide. The construction of transparent boundary conditions can then be
really intricate (for isotropic elastic waveguides) or impossible (anisotropic elastic waveguides).
By working on elastic waveguides, we have constructed new transparent boundary conditions
whose construction has, I think, a general range. For pedagogical purposes, I will describe these
new transparent boundary conditions in Section 1.4 in the simple case of the isotropic homoge-
neous acoustic waveguide and I will extend them for anisotropic elastic waveguides and periodic
waveguides. This transparent boundary conditions require a prior computation of the modes.
Finally, my ongoing works and perspective for this subject are described in Section 1.5.

1.2 Classical results for homogeneous acoustic waveguides

Let me here recall some well-known results for the acoustic isotropic homogeneous waveguides
that can be found for instance in [Harari et al., 1998,Hagstrom, 1999,Lenoir and Tounsi, 1988].

Let us consider a diffraction problem in an acoustic isotropic straight guide Ω = S ×R where
S ⊂ R2 (3D waveguides) or S ⊂ R (2D waveguides) denotes the bounded cross-section of the
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guide (see Figure 1.1(left)). We want to study in this section the physical solution u (also called

Figure 1.1: (Left) Straight waveguide, (right) general waveguide

outgoing solution) of
−∆u− ω2u = f in Ω,

∂νu = 0 on ∂Ω,
(1.1)

where ω is the frequency, ν is the exterior normal to ∂Ω and the source term f is supposed to
be compactly supported in, let us say, {|z| < a}.

We want to define the physical solution of (1.1) and derive an equivalent problem which is
suitable for numerical computations.

A general approach is to consider a similar problem adding some absorption (the presence of the
damping term ε > 0 guaranteeing the well-posedness of this problem in H1). More precisely, let
us consider the unique solution uε in H1(Ω) of

−∆uε − (ω2 + ıε)uε = f in Ω,

∂νuε = 0 on ∂Ω.
(1.2)

If uε has a limit in a certain sense (not necessarily in H1(Ω)), then the physical solution is de-
fined as this limit. This definition is not explicit so the difficulty now is to derive a more explicit
characterization of this physical solution.

Let us concentrate on the problem with dissipation. We know that uε is solution of (1.1) if
and only if (uaε = uε|Ωa , u+

ε = uε|Ω+ , u−ε = uε|Ω−) is solution of

−∆uaε − (ω2 + ıε)uaε = f in Ωa,

∂νu
a
ε = 0 on ∂Ωa ∩ ∂Ω,

−∆u±ε − (ω2 + ıε)u±ε = 0 in Ω±,

∂νu
±
ε = 0 on ∂Ω± ∩ ∂Ω,

uaε |Γa,± = u±ε |Γa,± ,

∂zu
a
ε |Γa,± = ∂zu

±
ε |Γa,± ,

where Ωa = S× (−a, a), Ω+ = S× (a,+∞), Ω− = S× (−∞,−a) and Γa,± = {(xs, z) ∈ Ω, z =

Figure 1.2: Geometry and notation

±a}(see Figure 1.2). Moreover, u±ε can be expressed explicitly by separating the variables

u±ε (xs, z) =
∑
k∈N

a±k,ε ϕk(xs)e
∓βk,ε(z−a),
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where the {ϕk, k ∈ N} are an orthonormal basis of eigenvectors (also called transverse modes)
of the transverse laplacian operator −4S defined on S with Neumann boundary conditions, that
are associated to the eigenvalues, denoted λk which are positive and tends to +∞. We order the
eigenvalues (and then the eigenvectors) increasingly. For instance for S = (0, 1), λk = (kπ)2 and
ϕk(xs) = ck cos(kxs). The coefficients βk,ε are given by

βk,ε =
√
λk − (ω2 + ıε),

where by convention Re√ ≥ 0.

From the properties of the transverse modes, we have

a±k,ε = (u±ε |Γa,± , ϕk)L2(Γa,±).

This explicit expression for u±ε with respect to their traces on Γa,± enables to introduce the
problem satisfied by uaε (by eliminating u±ε ):

−∆uaε − (ω2 + ıε)uaε = f in Ωa,

∂νu
a
ε = 0 on ∂Ωa ∩ ∂Ω,

±∂zuaε + Λ±ε u
a
ε = 0 on Γa,±,

(1.3)

where Λ±ε are the so-called Dirichlet-to-Neumann operators given here by

∀ϕ ∈ H1/2(Γa,±), Λ±ε ϕ =
∑
k∈N

βk,ε(ϕ,ϕk)L2(Γa,±) ϕk ∈ H−1/2(Γa,±).

The last relations in (1.3) satisfied by uaε are called transparent boundary conditions since they
represent exactly the behaviour of u±ε in Ω±. It is easy to show that Problem (1.3) is coercive
in H1(Ωa) and well-posed.

Moreover, Problem (1.3) is equivalent to Problem (1.2) since the restriction to Ωa of the so-
lution of (1.2) is solution of (1.3) and from a solution uaε of (1.3), we can construct the solution
uε of (1.2) by

uε|Ωa = uaε

uε|Ω± =
∑
k∈N

(uaε |Γa,± , ϕk)L2(Γa,±) ϕk(xs)e
∓βk,ε(z−a).

(1.4)

We have then derived an equivalent problem which is suitable for numerical computations (and
the numerical analysis of the associated numerical method can be done since the problem is
coercive).

Let us now study the case without dissipation by applying the limiting absorption principle.
We can show that the family {uε, ε > 0} has a limit in H1

loc(Ω) (except for a countable set of
frequencies). We define this limit as the physical solution of (1.1) and we can derive a well-posed
problem satisfied by the physical solution which is suitable for numerical computations.

1. First, let us remark that the Dirichlet-to-Neumann operator Λ±ε ∈ L(H1/2(Γa,±), H−1/2(Γa,±))

has a limit in norm towards the operator Λ± defined by

∀ϕ ∈ H1/2(Γa,±), Λ± ϕ =
∑
k∈N

βk(ϕ,ϕk)L2(Γa,±) ϕk ∈ H−1/2(Γa,±),
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where

βk =
−ı
√
ω2 − λk, if λk < ω2,√

λk − ω2, if λk ≥ ω2.
(1.5)

2. Let us introduce the following problem set in Ωa

−∆ua − ω2ua = f in Ωa,

∂νu
a = 0 on ∂Ωa ∩ ∂Ω,

±∂zua + Λ±ua = 0 on Γa,±.

(1.6)

Noticing that Re(Λϕ,ϕ) ≥ 0 for any ϕ, we can show that the bilinear form associated to
(1.6) in H1(Ωa) is the sum of a coercive bilinear form and a compact one. Then Fredholm
alternative holds : uniqueness implies well-posedness of the problem. To show uniqueness,
let us consider the solution of (1.6) with f = 0. Multiplying by ua, integrating by parts
and taking the imaginary part of the obtained expression, we find

(ua, ϕk)L2(Γa,±) = 0 if λk < ω2.

From this ua, the function u defined by

u|Ωa = ua

u|Ω± =
∑
λk>ω2

(ua|Γa,± , ϕk)L2(Γa,±) ϕk(xs) e
∓βk(z−a)

solves (1.1) with f = 0. If ω2 is not a cutoff frequency (i.e. ω2 is not an eigenvalue of
the transverse laplacian or equivalently ∀, βk 6= 0), u is in L2(Ω) and if ω2 is a cut-off
frequency, u tends to a constant when x tends to infinity. The question of uniqueness is
then linked to the discrete spectrum of the laplacian in the whole waveguide defined in
a (weighted) Sobolev spaces. Consequently, uniqueness can be established except for at
most a countable set of frequencies.

3. Finally, except for this countable set of frequencies, we conclude by showing that uaε tends
to ua in H1(Ωa) when ε tends to 0. And taking the limit in (1.4), we have that uε tends
to the function u in H1

loc defined by

u|Ωa = ua,

u|Ω± =
∑
k∈N

a±k ϕk(xs) e
∓βk(z−a), with a±k = (ua|Γa,± , ϕk)L2(Γa,±)

(1.7)

where βk is given in (1.5). This is by definition the physical or outgoing solution of Problem
(1.1). Let us remark that far from the perturbations (i.e. in Ω±), the physical solution
is the combination of the so-called modes of the guide, i.e. particular solutions in the
distributional sense of the homogeneous problem (f = 0) :

∀k ∈ N, wk(xs, z) = ϕk(xs) e
∓βk(z−a).

A finite number of the modes are propagating along the guide (if λk < ω2), they are called
guided modes, and the others are exponentially decaying at infinity.
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Except for a countable set of frequencies, we have then defined the physical solution and derived
the well-posed problem (1.6) which is suitable for numerical computations (and the numerical
analysis can be done since the problem is "coercive + compact"). Moreover, after computing u
in Ωa (using the FE Method for instance), by (1.7) u can be computed in the whole waveguide.

Remark 1.2.1
This can be easily extended to some more general problems : to domains which are local perturbations
of this straight domain Ω, to the presence of local penetrable or non penetrable obstacles, to junctions of
different waveguides (since the Dirichlet-to-Neumann operators are defined independently the one from
the other), to Dirichlet, Robin or periodic boundary conditions. See Figure 1.1(right).

Let us finally make some remarks about the countable set of frequencies for which the problem
in the general case is not well-posed. Indeed, there may exist frequencies for which there exists
L2 -solutions, the so-called trapped modes, of Problem (1.6) with f = 0. These frequencies
corresponds to the well-known resonances, i.e. eigenvalues of the laplacian and the trapped
modes are associated eigenvectors. We know that in the simple problem (1.6) set in a straight
waveguide, there is no resonances but in general, resonances exist. And at the cut-off frequencies,
if there exist a solution of Problem (1.6) with f = 0 which tends to a constant at infinity, Problem
(1.6) is not well-posed (this is the case for the straight waveguide). If such a solution does not
exist, the problem is well posed.

Remark 1.2.2
Let us emphasize that this approach allows to justify the use of PML techniques but since these techniques
cannot be extended, to our knowledge, for periodic media, we do not give more details.

The key property of the Helmholtz equation set in homogeneous waveguides that makes the
separation of variables possible and enables an explicit expression of the solution, is that the
transverse operator is self-adjoint. In the periodic case and/or the elastic equation, this is not
true anymore and alternatives have to be found.

1.3 Periodic waveguides

1.3.1 Model problem

The model problem that we consider in this section is that of a periodic waveguide Ω ⊂ S×R, and
a simple scalar model. The treatment of other equations (Maxwell’s equations or elastodynamic
equations) would be similar in principle. As in the previous section, we will consider a perfectly
periodic problem and a more general problem. In the first case, the geometry Ω as well as the
material properties, typically the refraction index n, are periodic in the z−direction

(z, xs) ∈ Ω ⇒ (z ± L, xs) ∈ Ω and n(z ± L, xs) = n(z, xs) (1.8)

and in the second case they are z-periodic except in a bounded region and the periodicity could
be different on each side of this bounded region

Ω ∩ {±z ≥ a} = Ω±p ∩ {±z ≥ a} ± z ≥ a, n(z, xs) = n±p (z, xs),
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Figure 1.3: (Left) Perfectly periodic waveguide, (right) Junction of two
periodic waveguides

where Ω±p and n±p are periodic in the z−direction with period L± (see Figure 1.3). We suppose
also that the boundary of Ω is smooth enough.

Let us consider then the propagation of a time harmonic scalar wave in Ω due to a given
compactly supported source f ∈ L2(Ω)

−4u− n2 ω2 u = f in Ω

∂νu = 0 on ∂Ω
(1.9)

ν being the exterior normal of Ω, n ∈ L∞(Ω) with n ≥ c > 0.

In general (more precisely if the frequency ω is such that ω2 is in the spectrum of the correspond-
ing periodic differential operator A = −n−24, D(A) = {u ∈ H1(Ω), 4u ∈ L2(Ω), ∂νu

∣∣
∂Ω

=

0}), waves can propagate in the waveguide without attenuation in the longitudinal direction. In
this case, as we have seen in the homogeneous case, the H1 classical framework is not appro-
priate anymore : solutions cannot exist in this space. On the other hand, in H1

loc = {u, ∀ϕ ∈
D(R) ϕ(x1)u(x1, xs) ∈ H1(Ω)}, one can define several solutions to the original problem. Addi-
tional conditions are required to define the "good" physical solution of (1.9). Let us remark that
for the homogeneous case, the spectrum of the differential operator is R+ and then the problem
is never well posed inH1. For the periodic case, the spectrum may contain gaps and when the fre-
quency lies is the gap, the problem is well posed inH1 (except for the resonances of the problem).

Again, we can characterize the physical solution by the limiting absorption principle. It is the
limit, when there exists, of the unique solution in H1(Ω) of the corresponding mathematical
model with absorption, when this absorption tends to 0.

The limiting absorption principle has been extensively developed in the literature in various
situations such as locally perturbed homogeneous media (see for instance [Èidus and Hill,
1963,Wilcox, 1967,Agmon, 1982]) or locally perturbed stratified media (see for instance [Wilcox,
1984, Eidus, 1986,Weder, 1990, Bonnet-Ben Dhia and Tillequin, 2001b]). There are mush less
results in periodic media. In [Gérard and Nier, 1998] , the authors use Mourre’s theory [Mourre,
1981, Jensen et al., 1984] to prove the limiting absorption principle for analytically fibered op-
erators (differential operators with periodic coefficients are a particular case). In [Iftimie, 2003],
the author uses the same theory to deal with the Laplace-Dirichlet operator in an (n +1)-
dimensional homogeneous layer with periodically shaped boundary. In [Levendorskĭı, 1998], a
limiting absorption principle for a two-dimensional periodic layer with perturbation is proven.
In all these works, the authors are interested mainly in the existence of the limit of the solution
with absorption which amounts to study the limit of the resolvent of the corresponding periodic
differential operator, and in which sense this limit holds. Their approach is not constructive and
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therefore cannot be used to characterize more explicitly the physical solution.

For the perfectly periodic problem, we consider a more constructive approach, using the Floquet-
Bloch theory, that leads to a semi-analytical expression of the limit, the physical solution, as
in [Hoang, 2011] for the periodic half-waveguide and [Radosz, 2009] for more general infinite
periodic media. Actually, it is easy to construct other solutions of (1.9). How can we distinguish
this physical solution to other solutions? This is from its behaviour at infinity that we can de-
duce a radiation condition that characterizes uniquely the physical solution. This is explained
in Section 1.3.2.

It is not obvious to derive a numerical method to compute the physical solution from this
approach. Similarly to what it is done for homogeneous acoustic waveguides (explained in Sec-
tion 1.2), we have constructed transparent boundary conditions involving DtN operators. This
answers both to the theoretical and the numerical difficulties. Of course, the construction of the
DtN operators, comparing to Section 1.2, is more involved since separation of variables can no
longer be used. As you will see in Section 1.3.3, the expressions of the solution and the Dirichlet-
to-Neumann operator even in the case with dissipation are indeed less explicit. The case without
absorption will be the subject of Section 1.3.4.

Remark 1.3.1 (Extensions)
Most of the results can be extended to

• more general symmetric, second order elliptic differential operators with real periodic coefficients
(with the same period);

• other boundary conditions as soon as they satisfy the same periodicity properties than the geometry
and the coefficients.

1.3.2 Limiting absorption principle and radiation condition for perfectly pe-
riodic waveguides

This is a summary of the results that you can find in [13]. We want to characterize the physical
solution of (1.9) in the perfectly periodic case. Let us define the periodicity cell of the medium
by

C = {(z, xs) ∈ Ω, −L/2 < z < L/2}

and let us study the unique solution in H1(Ω) of

−4uε − n2 (ω2 + ıε)uε = f in Ω

∂νuε = 0 on ∂Ω,
(1.10)

where n and Ω are perfectly periodic, i.e. they satisfy (1.8).

Using the Floquet Bloch Transform in the z-direction and the well posedness in L2(Ω) of Problem
(1.10), it is easy to show that the solution uε of (1.10) is given by

∀(z, xs) ∈ C, ∀p ∈ Z, uε(z + pL, xs) =
∑
n∈N

L√
2π

π/L∫
−π/L

Pn(f)(z, xs; k)

λn(k)− (ω2 + ıε)
eıpk dk in H1(Ω)
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where
Pn(f)(· ; k) =

(
f̂(· ; k), ϕn(· ; k)

)
C ϕn(· ; k). (1.11)

where, f̂ is the Floquet-Bloch transformation of f (see [18] and [13] for the definition and the
properties), for all k ∈ (−π/L, π/L), (·, ·)C is the scalar product in L2(C), λn(k) is an eigenvalue
and ϕn(·; k) an associated eigenvector of the self-adjoint and positive operator

A(k) = − 1

n2
4

D(A(k)) = {u ∈ H1(C), 4u ∈ L2(C), ∂νu
∣∣
∂C∩∂Ω

= 0,
u
∣∣
z=L/2

= eıkLu
∣∣
z=−L/2

∂zu
∣∣
z=L/2

= eıkL∂zu
∣∣
z=−L/2

}.

(1.12)
such that (using [Kato, 1995]), each dispersive curve k 7→ λn(k) is analytic. Let me emphasize
that the eigenvalues λn(k) are not the eigenvalues of A(k) which are ordered increasingly (these
ones are only piecewise analytic). The λn(k)’s are a rearrangement of the sequence of the eigen-
values which are ordered increasingly such that they are analytic with respect to k. See [13]
where we show that we can apply the perturbation theory of operators of [Kato, 1995].

To pass to the limit when ε goes to 0, let us define the finite sets

I(ω) = {n ∈ N, ∃ ξ ∈ (−π/L, π/L), λn(ξ) = ω2} (1.13)

and for n ∈ I(ω)

Ξn(ω) = {ξ ∈ (−π/L, π/L), λn(ξ) = ω2}. (1.14)

We can show, using the properties of the dispersion curves, that

ξ ∈ {Ξn(ω), n ∈ I(ω)} ⇔ −ξ ∈ {Ξn(ω), n ∈ I(ω)}

Let A = −n−24, D(A) = {u ∈ H1(Ω), 4u ∈ L2(Ω), ∂νu
∣∣
∂Ω

= 0}. Using the Floquet-
Bloch Theory [Kuchment, 2004], one can show that σ(A) = ∪{σ(A(k)), k ∈ (−π/L, π/L]}. If
ω2 /∈ σ(A) we have I(ω) = ∅. If ω2 ∈ σ(A), for all n ∈ I(ω) and all ξ ∈ Ξn(ω), we can introduce
the corresponding propagating Floquet modes namely the functions in H1

loc(Ω) which are the
ξ−quasiperiodic extensions of the eigenvectors ϕn(· ; ξ), that we still denote ϕn for simplicity.
Introducing for all n ∈ I(ω) and for all ξ ∈ Ξn(ω), ωn(ξ) =

√
λn(ξ), one can reinterpret the

propagative Floquet mode as the time harmonic wave obeying the dispersion relation

ω = ωn(ξ).

We can then define the group velocity by

Vn(ξ) :=
dωn
dξ

(ξ) =
1

2
λn(ξ)−1/2 λ′n(ξ).

The sign of the group velocity indicates how the energy propagates in the waveguide.

Using the abstract result of [Levendorskĭı, 1998], or the more explicit result of [Hoang, 2011]
or [13], the limiting absorption principle can be shown except for the countable set of frequencies

σ0 =
{
ω ∈ R+, ∃n ∈ I(ω), ∃ k ∈ Ξn(ω), λ′n(k) = 0

}
.
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Theorem 1.3.1 (Limiting absorption principle [13])
For all ω /∈ σ0 then

∀ p ∈ Z, lim
ε→0
‖uε − u‖H1(C+pL) = 0,

where u is solution of the Helmholtz equation (1.9) and is given by

∀(z, xs) ∈ C, ∀p ∈ Z, u(z + pL, xs) =
∑

n/∈I(ω)

√
L

2π

π/L∫
−π/L

Pn(f)(z, xs; k)

λn(k)− ω2
eıpkL dk

+
∑

n∈I(ω)

√
L

2π

p.v. π/L∫
−π/L

Pn(f)(z, xs; k)

λn(k)− ω2
eıpkL dk + ıπ

∑
ξ∈Ξn(ω)

Pn(f)(z, xs; ξ)

|λ′n(ξ)|
eıpξL

 (1.15)

where Pn(f) is defined in (1.11).

Remark 1.3.2
When ω2 /∈ σ(A) (i.e. when I(ω) = ∅), we can show that u ∈ H1(Ω).

The set σ0 corresponds to the frequencies for which there exists a Floquet mode whose group velocity
can vanish. This corresponds for instance to the cut-off frequencies for the homogeneous waveguide for
which we know that the limiting absorption principle does not hold in the perfectly straight waveguide.

We know now that for ω2 /∈ σ0, the physical solution exists. It can be shown easily that it is
a solution of (1.9) in H1

loc. When ω2 ∈ σ(A), another solution can be constructed taking the
limit, when ε goes to 0, of the solution of the dissipative Helmholtz equation (1.10) replacing ε
by −ε. The limit has the same expression than (1.15) replacing in (1.15), ıπ by −ıπ. And we
could even take an linear combination of these two solutions to obtain other solution of (1.9)
in H1

loc. A condition has to be added to Problem (1.9) to recover the uniqueness and then the
well-posedness. This is the asymptotic behaviour at infinity of the physical solution which allows
to distinguish it from the other solutions of (1.9).

To find the asymptotic behaviour of the physical solution at infinity, we use the analyticity
of the eigenvalues k 7→ λn(k) and the corresponding eigenvectors k 7→ ϕn(·; k) with respect to k
for n ∈ I(ω) (see [Kato, 1995]). We can show that

Theorem 1.3.2 (Asymptotic behaviour of the physical solution [13])

u ∼
z→+∞

ı
√

2πL
∑

n∈I(ω)

∑
ξ∈Ξn(ω)
λ′n(ξ)>0

(
f̂(· ; ξ), ϕn(· ; ξ)

)
L2(C)

λ′n(ξ)
ϕn(·; ξ)

u ∼
z→−∞

ı
√

2πL
∑

n∈I(ω)

∑
ξ∈Ξn(ω)
λ′n(ξ)<0

(
f̂(· ; ξ), ϕn(· ; ξ)

)
L2(C)

|λ′n(ξ)|
ϕn(·; ξ)

where the notation u ∼
z→±∞

v± means that u − v± tends exponentially to 0 when z tends to
±∞.

Remark 1.3.3
For the homogeneous case, a similar radiation condition can be obtained thanks to the decomposition
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(1.7) of the solution as a infinite sum of evanescent modes and a finite sum of the outgoing propagative
modes. The situation for a periodic closed waveguide is similar in nature to the case of the homogeneous
waveguide. However, as you have noticed, the notion of outgoing modes is much more delicate and
the analysis relies on quite different mathematical tools (Floquet-Bloch transform, spectral theory of
operators depending analytically on a parameter, complex contour integral techniques,...).

Finally, we show that this behaviour characterizes the physical solution. In other words, there
exists a unique solution of (1.9) having this behaviour at infinity. In order to simplify the
expression of the result, let us introduce a relabelling of the set⋃

n∈I(ω)

{ξ ∈ Ξn(ω), λ′n(ξ) > 0} = {ξ+
1 ≤ . . . ≤ ξ

+
` ≤ . . . ≤ ξ

+
N(ω)}

where N(ω) is the number of Floquet modes propagating to the right. Using the properties of
the dispersion curves, we have⋃

n∈I(ω)

{ξ ∈ Ξn(ω), λ′n(ξ) < 0} = {−ξ+
1 ≥ . . . ≥ −ξ

+
` ≥ . . . ≥ −ξ

+
N(ω)}

We relabel accordingly the set {ϕn(·; ξ), ξ ∈ Ξn(ω), n ∈ I(ω) } and renormalize them for
convenience of notation. More precisely we introduce ϕ1, . . . , ϕN(ω) respectively ϕ−1, . . . , ϕ−N(ω)

defined as

∀n ∈ I(ω), ∀ξ ∈ Ξn(ω), ξ = ±ξ+
m ⇒ ϕ±m =

ϕn(· ; ξ)√
|λ′n(ξ)|

Then the result of Theorem 1.3.2 becomes

u ∼
z→±∞

ı
√

2πL

N(ω)∑
m=1

(
f̂(· ;±ξ+

m), ϕ±m

)
C
ϕ±m.

The propagative Floquet modes {ϕm, 1 ≤ m ≤ N(ω)} are outgoing regarding the propagation
towards +∞ and ingoing regarding the propagation towards −∞. Conversely, the propagative
Floquet modes {ϕ−m, 1 ≤ m ≤ N(ω)} are ingoing regarding the propagation towards +∞ and
outgoing regarding the propagation towards −∞.

We can now define a radiation condition and establish the well-posedness of Problem (1.9)
set in the perfectly periodic waveguide.

Definition 1.3.3 (The outgoing radiation condition)
We say that u satisfies the outgoing radiation condition if and only if there exist 2N(ω) complex
numbers (u±n )n∈J1,N(ω)K such that

u ∼
z→±∞

N(ω)∑
m=1

u±m ϕ±m. (1.16)

Theorem 1.3.4 (Well-posedness of the problem [13])
Suppose ω2 /∈ σ0. There exists a unique solution of problem (1.9) which satisfies the outgoing
radiation condition.
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The proof is done in two steps. Firstly, we show that the outgoing Floquet modes have a positive
energy flux. By energy conservation, we can deduce that the outgoing solution of the problem
with f = 0, has no contribution on the propagative modes and is then necessarily exponentially
decaying at infinity. Secondly, it suffices to use the spectral property of the operator A to con-
clude that except for the cut-off frequencies, the physical solution necessarily vanishes.

By using truncature functions as in [Nazarov, 2014b], this result can be extended to more
general periodic waveguides (See Figure 1.3 (right)). Let me mention the work of [Nazarov,
2014b,Kirsch and Lechleiter, 2018] where another form of these radiation conditions were pro-
posed. We have then a problem which characterizes uniquely the physical solution. However it
is not obvious to derive a numerical method from this non local radiation condition to compute
the physical solution (in the radiation conditions, the values (u±n )n are not known and the de-
pendence with respect to u is not straighforward). The Dirichlet-to-Neumann operators or more
generally transparent boundary conditions, are a natural alternative.

1.3.3 Construction of transparent boundary conditions in presence of dissi-
pation

In [1], we propose a method for constructing DtN operators by solving local problems on a single
periodicity cell. This is closely connected to operator-valued Riccati equations (here, of station-
ary nature), a topic which is already present in many problems concerning artificial boundary
conditions (see, for instance, [Lu and McLaughlin, 1996,Henry and Ramos, 2004, Champagne
and Henry, 2003]). It appears also that our method is similar to the matrix transfer approach de-
veloped for ordinary equations with periodic coefficients [Magnus and Winkler, 1966]. However,
except in the 1D case ( [Potel et al., 2001,Figotin and Gorentsveig, 1998]), this theory cannot
be applied directly to our problem due to the fact that the Cauchy problem for the Helmholtz
equation is ill-posed in higher dimensions.

To treat the general periodic waveguide problem (1.9), let us consider first the problem with
dissipation

−4uε − n2 (ω2 + ıε)uε = f in Ω

∂νuε = 0 on ∂Ω
(1.17)

The support of the source term f is supposed to be compactly supported in Ωa = Ω ∩ {−a <
z < a} (see Figure 1.4). The two infinite periodic sub-domains Ω± = Ω ∩ {±z > a} are of the

Figure 1.4: Notation for the locally perturbed waveguide problem.
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form:

Ω± =
∞⋃
j=0

{
C± ± (j L±, 0)

}
,

where the unit periodicity cells are

C± = Ω ∩ { ± a ≤ ±z ≤ a+ L±}.

The function n(x) is “z-periodic” as well:

n(z, xs) = n(z ± L±, xs), (z, xs) ∈ Ω±.

As you have noticed, the periodic media at each side of Ωa are not necessarily the same.

Remark 1.3.4
The boundary condition on ∂Ω can be Dirichlet, Neumann, or any combination, but they need to be
compatible with the periodicity of Ω− and Ω+.

We want to find transparent boundary conditions on the two “vertical” boundaries Γ± = Ω∩{z =

a±} of the form

±∂uε
∂z

+ Λ±ε uε = 0. (1.18)

They are transparent in the sense that they are satisfied by the solution uε of (1.17). Thus,
the restriction of uε to Ωa is solution of (1.17) in Ωa and satisfies the transparent boundary
conditions on Γ±.

It is easy to show that the Dirichlet-to-Neumann operators involved in (1.18) are defined by

∀ϕ ∈ H1/2(Γ±), Λ±ε ϕ = ∓ ∂

∂z
u±ε (ϕ)

∣∣∣
Γ±

where u±ε (ϕ) is the unique solution in H1(Ω±) of

−4u±ε − n2
p (ω2 + ıε)u±ε = 0 in Ω±

∂νu
±
ε = 0 on ∂Ω± ∩ ∂Ω

u±ε = ϕ on Γ±

(1.19)

The constructions of Λ+
ε and Λ−ε are done independently but similarly.

Note that, by periodicity, all the “vertical” interfaces Γ±j = Γ± ± (jL±, 0) can be identified
to Γ±(= Γ±0 ) and all the cells C±j = C± ± (jL±, 0) to C±(= C±0 ).

First let us give a basic result on the structure of u±ε (ϕ) for all ϕ which use the periodic
structure of the problem in Ω±. Let P±ε be the operator defined by

∀ϕ ∈ H
1
2 (Γ±), P±ε ϕ := u±ε (ϕ)|Γ±1

By identifying Γ±1 with Γ±, we can consider P±ε ∈ L(H
1
2 (Γ±)). The operator P±ε is compact,

injective, and its spectral radius ρ(P±ε ) < 1. Moreover, we have, by well-posedness of the half-
guide problem with periodic coefficients (and with dissipation) (1.19) in Ω± that

∀ϕ ∈ H
1
2 (Γ±), ∀j ∈ N, u±ε (ϕ)

∣∣
C±j

= u±ε
(

(P±ε )jϕ
) ∣∣
C±
. (1.20)



1.3 Periodic waveguides 27

This property explains the name that we often give to this operator : the propagation operator.

As a consequence, once we know the operator P±ε , we can reconstruct the solution u±ε (ϕ) in
the whole domain Ω±. More precisely, let us define for all ϕ ∈ H

1
2 (Γ±), the solutions e0,±

ε (ϕ)

and e1,±
ε (ϕ) of the unit cell problems

` ∈ {0, 1},
−4e`,±ε − n2

p (ω2 + ıε) e`,±ε = 0 in C±

∂νe
`,±
ε = 0 on ∂C± ∩ ∂Ω

(1.21)

with the boundary conditions on Γ±0 and Γ±1

e0,±
ε (ϕ)

∣∣
Γ±0

= ϕ and e0,±
ε (ϕ)

∣∣
Γ±1

= 0

e1,±
ε (ϕ)

∣∣
Γ±0

= 0 and e1,±
ε (ϕ)

∣∣
Γ±1

= ϕ.
(1.22)

By identifying all the cells C±j to C±, using (1.20), we have that

u±ε (ϕ)
∣∣
C±j

= e0,±
ε ((P±ε )j−1ϕ) + e1,±

ε ((P±ε )jϕ). (1.23)

In order to determine P±ε , it suffices to note that the function defined on each cell C±j by (1.23) is
solution of (1.19) in Ω± only if its normal derivative across each Γ±j is continuous. By injectivity
of P±ε , this will be satisfied if and only if it is continuous across Γ±1 . This corresponds to

∂ze
0,±
ε (ϕ)

∣∣
Γ+
1

+ ∂ze
1,±
ε (P+

ε ϕ)
∣∣
Γ+
1

= ∂ze
0,±
ε (P+

ε ϕ)
∣∣
Γ+
0

+ ∂ze
1,±
ε ((P+

ε )2 ϕ)
∣∣
Γ+
0
.

By defining the local DtN operators for `, k ∈ {0, 1}, T `k,±ε ∈ L(H
1
2 (Γ±), H−

1
2 (Γ±))

Figure 1.5: Solutions of the cell problems and associate local DtN operators

T `k,±ε ϕ = ∓(−1)k ∂ze
`,±
ε (ϕ)

∣∣
Γ±k

(1.24)

we obtain that P±ε satisfies the stationary Riccati equation

T 10,±
ε (P±ε )2 +

(
T 00,±
ε + T 11,±

ε

)
P±ε + T 01,±

ε = 0 (1.25)

This equation has an infinity of solutions but there is only one solution whose spectral radius
is strictly less than 1. This can be shown by well-posedness of the half-guide problem (1.19).
This characterizes uniquely the propagation operator P±ε . The solution u±ε (ϕ) of the half-guide
problem (1.19) can then be constructed cell by cell and in particular we have

Λ±ε = T 00,±
ε + T 10,±

ε P±ε . (1.26)

We can solve (1.17) by using the following algorithm.
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• Compute the DtN operators Λ±:

– solve the two cell problems (1.21)-(1.22);

– compute the local DtN operators T `k,±ε , `, k ∈ {0, 1} defined in (1.24);

– compute the unique solution P±ε of spectral radius strictly less than 1 of the stationary
Riccati equation (1.25);

– compute the DtN operators by (1.26).

• Solve the coercive problem

−4uaε − n2 (ω2 + ıε)uε = f in Ωa

∂νu
a
ε = 0 on ∂Ωa ∩ ∂Ω

±∂u
a
ε

∂z
+ Λ±ε u

a
ε = 0 on Γ±.

• The solution of (1.17) is given by

uε
∣∣
Ωa

= uaε

uε
∣∣
Ω±

= u±ε (ϕ±), where ϕ± = uaε
∣∣
Γ±

where u±ε (ϕ±) is computed cell by cell as in (1.23) by using the associated solutions of cell
problems and the propagation operators P±ε .

From a numerical point of view, all the steps can be handled classically except the solution of
the Riccati equation. To solve it, we use a modified Newton algorithm (modified in order to
take into account the condition on the spectral radius) or a spectral method. This last method
is based on the following result

ϕ 6= 0, P±ε ϕ = pϕ ⇔ ϕ ∈ Ker(p2T 10,±
ε + p

(
T 00,±
ε + T 11,±

ε

)
+ T 01,±

ε ) and |p| < 1

This characterizes the eigenvalues and the eigenvectors of P±ε and the Jordan blocks can be
determined in a similar way (in [Hohage and Soussi, 2013], the authors have shown that P±ε has
a Jordan form.). Moreover, we can show that if p is solution of the quadratic eigenvalue problem
then 1/p too. It suffices then to solve the quadratic eigenvalue problem, couple the solutions
by pair (p, 1/p) and select the eigenvalue of modulus strictly less than one (see Figure 1.6). We
represent a solution which was computed using this algorithm in Figure 1.7.

1.3.4 Transparent boundary conditions in absence of dissipation

We are interested now in defining and computing the physical solution of

−4u− n2 ω2 u = f in Ω

∂νu = 0 on ∂Ω.
(1.27)

A natural extension of the homogeneous acoustic waveguide (described in Section 1.2) which is
based on the limiting absorption principle would be
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Figure 1.6: The solution of the quadratic eigenvalue problem for differ-
ent values of ε = 0.5, 0.1, 0.01, in red the eigenvalues of the propagation
operator.

Figure 1.7: The solution (bottom figure) of the Helmholtz equation with
dissipation in a locally perturbed periodic waveguide (whose coefficient is
represented in the top figure) for a compactly supported source (repre-
sented in the middle figure).

1. Limiting absorption principle for the periodic half guide problems : prove that for any ϕ,
u±ε (ϕ) has a limit in H1

loc(Ω
±) that we denote u±(ϕ) and deduce that the DtN operators

Λ±ε has a limit in operator norm when ε tends to 0 that we denote in the following Λ±;

2. Characterize for any ϕ, u±(ϕ) and Λ±ϕ in order to compute them;

3. Show that the problem

−4ua − n2 ω2 ua = f in Ωa,

∂νu
a = 0 on ∂Ωa ∩ ∂Ω,

±∂u
a

∂z
+ Λ±ua = 0 on Γ±,

enters in the framework of the Fredholm alternative;

4. Show that the problem (1.27) has at most one solution ;

5. Show that uaε tends to ua in H1(Ωa) when ε tends to 0;
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6. The outgoing solution is then given by

u
∣∣
Ωa

= ua

u
∣∣
Ω±

= u±(ϕ±), where ϕ± = ua
∣∣
Γ±
.

Of course, as in the homogeneous case, this would be valid except for at most a countable set
of frequencies.

However, each step raises several difficulties that we describe in the sequel. We mention also
how to overcome these difficulties from a theoretical and a numerical point of view. This is the
subject of a paper that I am finishing with Vincent Lescarret (Supelec).

Limiting absorption principle for the periodic half guide problems .
First, let me mention that it may exist frequencies ω for which Problem

−4u± − n2 ω2 u± = 0 in Ω±,

∂νu
± = 0 on ∂Ω± ∩ ∂Ω,

u± = 0 on Γ±,

admits a non trivial solution in H1(Ω). They correspond to edge resonances (with the associated
edge mode). The existence and the value of these edge resonances depend on the periodic medium
and the position of the boundary. Moreover it is possible to show that there exists only at most
a countable set of such frequencies. When the periodicity cell is symmetric with respect to the
axis z = L±/2, there is no edge resonances. But if such resonance exist, we cannot hope defining
the corresponding DtN operators at these frequencies so we have to exclude them or at these
fixed frequencies, we could move the boundary Γ± whose position is artificial. Finally, another
alternative to avoid these artificial forbidden frequencies is to construct Robin-to-Robin (instead
of Dirichlet-to-Neumann) transparent boundary conditions that have the form

(±∂u
∂z

+ ıαu) + Λ±(∓∂u
∂z

+ ıαu) = 0.

with typically α = ω. The corresponding half-guide problem is of the same type than before
with the Dirichlet boundary condition on Γ± replaced by a Robin boundary conditions. In that
case, of course, edge resonances associated to real frequencies cannot exist. Let us just empha-
size that the construction of these operators is a little bit more technical (see [3, 10]) than the
construction of the DtN operators explained in the previous section.
When the periodicity cell is symmetric with respect to the axis z = L±/2, the limiting absorp-
tion principle for the halfguide problem can be deduced from the one of a guide problem (the
symmetrized one) which is perfectly periodic. In the case on a non symmetric periodicity cell,
one can use the result of [Hoang, 2011]. In both cases, one has to exclude a countable set of
frequencies. For any ϕ ∈ H1/2(Γ±), the limit function is solution in H1

loc(Ω
±,4) of

−4u± − n2 ω2 u± = 0 in Ω±

∂νu
± = 0 on ∂Ω± ∩ ∂Ω

u± = ϕ on Γ±.

(1.28)
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It is by definition the outgoing solution of this half-guide problem. The associated DtN operator
Λ± is the limit in operator norm of the DtN operators Λ±ε when ε tends to 0.

Characterization of the limit solution of the half-guide
Let us suppose now that the limiting absorption principle holds. The matter now is to charac-
terize the outgoing solution of the half-guide problem and the associated DtN operator in order
to compute them. Of course, the propagation operators P±ε has a limit in operator norm which
is defined by

∀ϕ ∈ H1/2(Γ±), P± ϕ = u±(ϕ)
∣∣
Γ±1
.

It is then easy to show that the spectral radius of the propagation operator P± is less or equal
to 1. How to characterize uniquely this operator?

For any data ϕ in H1/2(Γ±), the cell solution e`,±ε (ϕ) has a limit in H1(C±) if and only if
ω2 is not an eigenvalue of the Dirichlet cell problem. More precisely, except for these resonances,
e`,±ε (ϕ) are differentiable in the neighborhood of ε:

e`,±ε (ϕ) = e`,±(ϕ) + ε e`,±(1) (ϕ) +OH1(ε2)

where e`,±(ϕ) is solution of the Dirichlet cell problem (1.21-1.22) with ε = 0 and e`,±(1) (ϕ) is
solution of a similar problem with homogeneous Dirichlet boundary conditions on Γ±0 and Γ±1
and with a term source which is ın2

pe
`,±(ϕ).

Except for the resonances of the Dirichlet cell problem, the local DtN operators T `k,±ε are
differentiable in operator norm in the neighborhood of ε:

T `k,±ε = T `k,± + ε T `k,±(1) +O(ε2)

where
T `k,± ϕ = ∓(−1)k ∂ze

`,±(ϕ)
∣∣
Γ±k

and T `k,±(1) ϕ = ∓(−1)k ∂ze
`,±
(1) (ϕ)

∣∣
Γ±k
.

Let us remark that we have to exclude the countable set of resonances of the Dirichlet cell
problem to define these limits. This is as artificial as in the first step and this can be avoided
by changing the periodicity cell –which corresponds to move the artificial boundaries on which
the DtN conditions is imposed– or by introducing cell problem with Robin boundary condition
instead of Dirichlet boundary conditions. It is a little bit more technical so we have privileged
the simplicity for the presentation of the method. In the sequel, we suppose that the Dirichlet
cell problem is well posed.

In consequence, the limit propagation operator P± is solution of the stationary Riccati equation

T 10,± (P±)2 +
(
T 00,± + T 11,±)P± + T 01,± = 0 (1.29)

The difficulty now is that there does not exist necessarily only one operator solution of (1.29)
whose spectral radius is less or equal to 1. On one hand, if ω2 is not in the spectrum of the
operator with periodic coefficients associated to the half periodic waveguide Ω±, there exists a
unique solution of spectral radius less or equal to 1 and its spectral radius is strictly less than
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one. Moreover, the solution of the half-guide problem u±(ϕ) is in H1. On the other hand, if ω2

is in the spectrum, there is no uniqueness. This is linked to the non uniqueness of the solutions
in H1

loc(Ω) of (1.27). This is illustrated in Figure 1.6 : some solutions (which can be also coupled
by pairs (p, 1/p)) of the corresponding quadratic eigenvalue problem tend to the unit circle when
ε tends to 0. At the limit ε = 0, it becomes impossible to select the eigenvalue of the outgoing
propagation operator without knowing the behaviour of these eigenvalues in the neighborhood
of ε. We have then to add some conditions to uniquely characterize the "outgoing" propagation
operator. Let me give here the principle. Let p be an eigenvalue of the outgoing propagation
operator P± of modulus 1 then it is the limit of pε, where pε is an eigenvalue of P±ε . As ε 7→ |pε|
is a decaying function at ε = 0, we obtain that

Re
(
dpε
dε

∣∣
ε=0

p

)
< 0 (1.30)

where the derivative of pε at ε = 0 can be computed thanks to p, the local DtN operators T `k,±

and T `k,±(1) (it suffices to differentiate the quadratic eigenvalue problem with respect to ε). This
condition is equivalent to the fact that the derivative of pε at ε = 0, which is a complex, points
inside the unit circle. The property (1.30) is not satisfied by 1/p (see Figure 1.8). Moreover,

Figure 1.8: The solution of the quadratic eigenvalue problem for different
values of ε = 0, in red the eigenvalues of the propagation operator which
satisfy the condition (1.30).

it can be shown that the associated eigenvector is linked to the Floquet mode of the periodic
waveguide with positive group velocity for Ω+ and negative group velocity for Ω−. When these
conditions for the eigenvalues of modulus 1 are added to the Ricatti equation, we can show that
this uniquely defines the outgoing propagation operator.

When the outgoing propagation operator is computed, then the outgoing solution of the half-
guide problem and the associated DtN operator can be constructed.

The problem in the bounded domain Ωa

For Problem (1.28), does the Fredholm alternative hold? It is less obvious than for the homo-
geneous case for which it suffices to use the explicit expression of the DtN operators and show
that it is a positive operator. In the case of a periodic media that is homogeneous in a small
neighborhood of Γ±, we are able to show that the operators can be decomposed as the sum
of a positive operator (the DtN operators of an homogeneous half-waveguide) and a compact
operator. This is enough to show that Fredholm alternative holds.
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Remark 1.3.5
There is another way to propose a problem in a bounded domain for which stability can be proven. It
suffices to introduce DtN operators with overlap, i.e. defined thanks to two boundaries. For instance,

∀ϕ ∈ H1/2(Γ±), Λ̃±ϕ = ∓ ∂

∂z
u±(ϕ)

∣∣∣
Γ±
1

= Λ±P±

This overlap makes the associated operator always compact. The associated problem defined in Ωa+1 =

Ω ∩ {|z| < a+ 1} given by 
−4ua+1 − n2 ω2 ua+1 = f in Ωa+1,

∂νu
a+1 = 0 on ∂Ωa+1 ∩ ∂Ω,

±∂u
a+1

∂z
+ Λ±ua+1

∣∣
Γ± = 0 on Γ±

1

is naturally of Fredholm type.

For the uniqueness, it is possible to show that the DtN conditions are equivalent to the radiation
conditions (1.16), for which uniqueness can be proven, except for a countable set of frequencies
corresponding to the resonances of the problem. Finally, using classical arguments, we can show
that uaε tends to ua in H1(Ωa).

Except for a countable set of frequencies containing the set of the cut-off frequencies σ0 and the
resonances of the problem, we were able to characterize uniquely the outgoing solution of the
Problem. This characterization leads naturally to a numerical method to compute this solution.

This algorithm can be also used to solve scattering problems which are defined as follows.
Let u be the total field satisfying the problem

−4u− n2 ω2 u = 0 in Ω

∂νu = 0 on ∂Ω

u− ui is outgoing,

where Ω is as described at the beginning of Section 1.3.1 (see for an example Figure 1.3 (right))
and ui is the incident field, i.e. an ingoing floquet mode of one of the half guide (see the end
of Section 1.3.2 for a precise definition). For the incident field represented in Figure 1.9 (middle
figure), we have computed and represented the total field (bottom figure).

1.3.5 Application to the transmission problem between periodic half-spaces

Here we consider, the transmission problem between two periodic halfspaces of commensurate
period. This is an extension of the more classical diffraction problem by a periodic grating or
layer which has been the subject of a huge amount of papers since the beginning of the 80’s (see
for instance [Petit, 1980]). In that case, the complete mathematical analysis of this problem was
done using variational techniques (see for instance [Chandler-Wilde and Monk, 2005,Chandler-
Wilde and Elschner, 2010]) or boundary integral formulations (see for instance [Chandler-Wilde
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Figure 1.9: The total field (bottom figure) of the diffraction problem be-
tween two different periodic half-guides (whose coefficient is represented
in the top figure) for the incident field (represented in the middle figure).

et al., 1999,Chandler-Wilde et al., 2006]) in absence of guided waves by the grating or the sur-
face. From a numerical point of view, for incident plane waves, the problem can be restricted
to a band problem with quasi periodicity conditions and can then be solved using transparent
boundary conditions in homogeneous waveguides [Abboud, 1993,Bao, 1997] or integral equation
techniques [Meier et al., 2000,Arens et al., 2006]. The case of more general sources and the pres-
ence of perturbations have been handled more recently by using the Floquet-Bloch Transform
in [Lechleiter, 2017]. In presence of guided waves, the study is much more intricate since appro-
priate radiation conditions (which are naturally not the same in the longitudinal and transverse
directions) have to be added in order to make the problem well-posed. See [Bonnet-Ben Dhia and
Tillequin, 2001a,Bonnet-Ben Dhia and Tillequin, 2001b,Bonnet-Ben Dhia et al., 2000,Bonnet-
Ben Dhia and Ramdani, 2002] for stratified media and more recently [Kirsch and Lechleiter,
2017] for periodic layer.

This work is an extension in the sense that the media in each side of the interface can be
periodic in the two directions. The restriction is that the periodicity in the direction of the in-
terface has to be the same (or commensurable of course), see Figure 1.10. We consider the case

Figure 1.10: Transmission problem between two periodic media (same pe-
riod in the direction of the interface).
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of absence of guided waves by the interface. We can then apply the Floquet Bloch Transform in
the direction of the interface in a classical framework. The problem is then equivalent to a family
of independent waveguide problems with quasi-periodic boundary conditions, the quasi-period
being the dual Floquet variable. It suffices then to use the method to solve waveguide prob-
lem described in the previous sections. The Floquet-Bloch inverse allows to recover the solution
in the whole domain. The discretization of the dual Floquet variable is studied in [Coatléven,
2012,Lechleiter, 2017].

In collaboration with physicists from l’Institut d’Electronique Fondamental of Orsay University,
we have made some computations in realistic periodic media to illustrate negative refraction
and superlens phenomena of some photonic crystals. The description of the numerical method
and the numerical results were the topic of the paper [4].

Figure 1.11: Negative refraction phenomena. The solution (right figure) of
the transmission problem between an homogeneous media and a periodic
one (whose coefficient is represented in the left figure) for the incident
field (a gaussian beam represented in the middle figure).

1.4 A modal transparent boundary conditions for general waveg-
uide problems

The method of construction of transparent boundary conditions which I have explained in the
previous sections can be extended easily to vectorial equations (Maxwell’s or elasticity for in-
stance) for locally perturbed, homogeneous or stratified, isotropic or anisotropic media. This
construction is not based on a modal decomposition and in some applications, it is important
to keep the decomposition in terms of the modes of the guides, as it is done in Section 1.2.
The extension of the results of Section 1.2 for isotropic acoustic waveguide is really intrincate
for isotropic elastic waveguide (see for instance [Baronian, 2009,Baronian et al., 2010]) and im-
possible for anisotropic elastic waveguide. The difficulty comes from the fact that the modal
amplitudes (corresponding to the coefficients involving in the decomposition of the outgoing so-
lution in terms of the modes) can be directly linked to the solution in the isotropic acoustic case
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Figure 1.12: Superlens phenomena. The solution (right figure) of the
transmission problem between an homogeneous media and a periodic one
(whose coefficient is represented in the left figure) for the incident field (a
gaussian beam represented in the middle figure).

(see (1.7)) because the modes are orthogonal in any transverse sections. This magical property
is not true for general waveguide problem. In other words, constructing Dirichlet-to-Neumann
operators fail in general.

By working on elastic waveguides, we have constructed new transparent boundary conditions
linked to what we have called the Poynting-to-Neumann operator because it is linked to the
energy flux and the Poynting vector. For pedagogical purposes, I begin by explaining the con-
ditions on the simple case of the isotropic acoustic waveguide. Then I explain how they can be
extended to elastic waveguides and also to periodic waveguides, in order to show the general
nature of these conditions.

1.4.1 The Poynting-to-Neumann map for isotropic homogeneous acoustic
waveguides

Let me here consider a diffraction problem in an acoustic isotropic half-guide Ω = S×]−a,+∞[

where S ⊂ R2 denotes the bounded cross-section of the guide. We look for the outgoing solution
u of

−∆u− ω2u = f in Ω,

∂νu = 0 on ∂Ω,

where ω is the frequency, ν is the exterior normal to ∂Ω and the source term f is supposed
to be compactly supported in {z < 0}. We denote by ua (resp. u+) the restriction of u to the
subdomain Ωa = Ω ∩ {z < a} (resp. Ω+ = Ω ∩ {z > 0}) and we want to derive transparent
boundary conditions for ua on Γa = {(xs, z) ∈ Ω, z = a}. In Section 1.3.1, we have considered
the case where Ωa and Ω+ do not overlap. Here we consider the general case in the sense that
a ≥ 0 and for a > 0, the two domains overlap. Looking for the outgoing solution, u+ admits the
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following expression
u+(xs, z) =

∑
k≥0

a+
k wk(xs, z) (1.31)

involving the right-going modes wk(xs, z) = ϕk(xs)e
ıβkz. We recall the reader (see Section 1.3.1)

that a finite number (N) of them are propagative (Im(βk) = 0 and Re(βk) > 0) and the rest are
evanescent (Im(βk) > 0 and Re(βk) = 0). Here, the sequence {ϕk, k ∈ N} forms an orthonormal
basis of L2(S). The a+

k are the unknown modal amplitudes.

Imposing the following matching conditions on the boundaries Γ0 and Γa:

ua
∣∣
Γ0

= u+|Γ0 and ∂zu
a|Γa = ∂zu

+|Γa ;

using the formula (1.31) and the orthogonality of the ϕk, one can derive another transparent
condition for ua –except for a countable set of frequencies– involving a Dirichlet-to-Neumann
operator with overlap ΛDtN,a:

ΛDtN,a u
a = ∂zu

a
∣∣
Γa

=
∑
k≥0

iβk(u
a, ϕk)Γ0ϕke

ıβka.

This last operator is compact thanks to the exponentially decaying factors eıβka. And it is easy
to show that the problem satisfied by ua is of Fredholm type. The countable set of frequencies
that we have to exclude are linked to the resonances of the overlap box Ωa∩Ω+. To avoid them,
it suffices to replace the matching conditions on Γa by a Robin type matching condition.

This cannot be extended to stratified, anisotropic or periodic waveguides or in (even isotropic)
elastic or electromagnetic waveguides principally for two reasons :

• the modal decomposition (1.31) is obtained by using a separation of variables technique
which is possible because the transverse operator is self-adjoint. In general, the transverse
operator has no meaning (in the periodic case) or is not self-adjoint (in the elastic case).

• the way to obtain the modal amplitudes thanks to the trace of u+ requires the orthogonality
of the modes in L2(S), which does not hold for instance in stratified, anisotropic or periodic
waveguides or in (even isotropic) elastic or electromagnetic waveguides.

Let us explain now how to derive the modal amplitudes using a more general framework.

Using the expression of wk, it is easy to see that

q(wj , wk) = 0 if j 6= k

q(wj , wj) =
0 for evanescent waves
2ıβj for propagative waves

(1.32)

where q is a (energy flux) sesquilinear form defined by

∀u, v ∈ H2
loc, q(u, v) =

∫
Γ`

∂zu v − u ∂zv.

An important property of q is that if u and v are two different modes then, by Green’s formulas,
q(u, v) = 0. This gives a bi-orthogonality property for the modes which is extendable to more
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general waveguide since it can be proven using only Green’s formula.

We deduce that, except for the cut-off frequencies (the frequencies for which one βk vanishes),
u+ is given by

u+ =
∑
k≤N

q(u+, wk)

2ıβk
wk + uevan.

where uevan is exponentially decaying at +∞.

Imposing that only the propagative modal amplitudes of u+ and ua match as well as their
normal derivative on Γa leads to introduce the so-called Poynting-to-Neumann (PtN) operator
TPtN defined by

TPtN u
a =

∑
k≤N

q(ua, wk)

2ıβk
∂zwk

∣∣
Γa
.

Using the properties of q, we can show that

Theorem 1.4.1
The operator TPtN is of finite rank from V to H−1/2(Σ`) where

V = {u ∈ H2(Ωa \ Ω0), ∆u+ ω2u = 0}.

and
∀u ∈ V,

∫
Σ`

uTPtN u− uTPtN u ∈ ıR+.

The first property gives that the problem

∆ũa + ω2ũa = f in Ωa,

∂ν ũ
a = 0 on ∂Ωa ∩ Ω,

∂zũ
a = TPtN ũ

a on Γa

(1.33)

is coercive + compact. From the second property, we can prove that this problem has at most
one solution except for a countable set of frequencies corresponding to the problem in Ωa with
Neumann boundary conditions (to avoid them it suffices to construct a Poynting-to-Robin op-
erator instead of the Poynting-to-Neumann one). This problem is however not equivalent to the
initial one since we have neglected the evanescent part in ua but by stability of (1.33) (except
for a countable set of frequencies), we can show that

∀ã < a, ∃C > 0, ‖ua − ũa‖ ≤ C e−Im(βN+1)ã. (1.34)

In Figure 1.13, I compare a reference solution computed using DtN operator with the solution
computed using PtN transparent boundary conditions at a frequency for which there are 5
propagative modes. The difference between the two solutions is linked to the first evanescent
modes which is neglected in the construction of the PtN operator. Of course, as indicated in
(1.34) if ω is close to a cut-off frequency (i.e. ω < βN+1) or if the straight part of the waveguide
is small (i.e. a is small), then the approximation is poor. A natural idea is to consider in the
construction of the PtN operator the first evanescent modes. The difficulty is that as indicated
in (1.32) the energy flux of the evanescent modes vanishes q(wk, wk) = 0 for k ≥ N + 1. But if
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Figure 1.13: A reference solution computed using DtN operator (left fig-
ure) with the solution computed using PtN transparent boundary condi-
tions (middle figure) and their difference (right figure).

we consider the associated left going modes w−k (xs, z) = ϕk(xs)e
−ıβkz which exponentially grows

at +∞, we find
q(wk, w

−
k ) = 2ıβk ∈ R

which vanishes at the associated cut-off frequency. So one can consider as many evanescent
modes as for the DtN operator and define the complete PtN operator T̃PtN defined by

T̃PtN u
a =

∑
k≤N

q(ua, wk)

2ıβk
∂zwk

∣∣
Γa

+
∑
k>N

q(ua, w−k )

2ıβk
∂zwk

∣∣
Γa
.

The function ua is then solution of

∆ua + ω2ua = f in Ωa,

∂νu
a = 0 on ∂Ωa ∩ Ω,

∂zu
a = T̃PtN u

a on Γa,

this problem being of Fredholm type and well-posed except for a countable set of frequencies
corresponding to the resonances of the problem.
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As we are going to illustrate now, this PtN operator can be constructed for more general waveg-
uide problems, as it is based on general properties of the modes (linked to their energy flux).
Indeed, by definition the rightgoing modes wk’s are solutions of the homogeneous equations far
from the perturbations whose group velocity is strictly positive. It can be proven that they verify

q(wj , wk) = 0 if j 6= k,

q(wj , wj) = ıλj with λj ≥ 0

where q is a (energy flux) sesquilinear form derived from the Green’s formula associated to the
problem and λj corresponds to the group velocity of the mode wj . The most delicate work is
to show that the outgoing solution can be decomposed as a linear combination of a finite set
of propagative rightgoing modes up to an exponentially decaying function at +∞, as in (1.31).
This has to be investigated case by case. Let us however mention that the tools introduced
in [Nazarov and Plamenevsky, 1994,Nazarov, 2013,Nazarov, 2014b] and based on the use of an
appropriate transformation in the direction of the guide (Fourier for homogeneous or stratified
and Floquet for periodic) in weighted Sobolev spaces seem really relevant and general.

As soon as one can show that the associated u+ (which can be vectorial) can be decomposed as

u+ =
∑
k≤N

a+
k wk + uevan.

the PtN operator can be derived in the same way than for the isotropic acoustic problem and
the properties of the operator remain the same.

Remark 1.4.1
Let us emphasize that this method requires the a priori knowledge or computation of the modes.

Let us explain more precisely the extension to periodic waveguides and anisotropic elastic waveg-
uides.

1.4.2 Construction of the PtN operator for periodic waveguides

We have already introduced all the tools in Section 1.3.2. Let us consider to simplify Ω ⊂ S×]−
A,+∞[ where S ⊂ R2 is bounded, Ω being periodic for z > 0, i.e. Ω ∩ {z > 0} = Ωp ∩ {z > 0}
where Ωp is a L−periodic domain. We look for the outgoing solution u of

−∆u− ω2n2u = f in Ω,

∂νu = 0 on ∂Ω,
(1.35)

where n(z, xs) = np(z, xs) is a L-periodic function for z > 0.

The modes are particular solution of

−∆u− ω2n2
pu = 0 in Ωp,

∂νu = 0 on ∂Ωp,

of the form
w(z, xs) = ϕ(z, xs) e

ıβz.
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where ϕ is L-periodic in the z−direction. This leads to solve a quadratic eigenvalue problem for
(β, ϕ):

−(∇− ıβez)2ϕ− ω2 n2
pϕ = 0 in C

∂νϕ = 0 on ∂C ∩ ∂Ωp,

where C is the periodicity cell of Ωp. From the Steinberg’a analytic Fredholm theorem [Steinberg,
1968] (see also [Reed and Simon, 1978]), we conclude that there exists a countable set of modes
which can be classified as follows: (a finite number) of the propagative modes (Im (β)=0), the
evanescent ones (Im (β)>0) and the exponentially growing ones. Moreover, one can show easily
that if (β, ϕ) defines a propagative modes, (−β, ϕ) as well. The propagative modes are given
by β ∈ {Ξn(ω), n ∈ I(ω)} where Ξn(ω) and I(ω) are defined in (1.13)-(1.14) and ϕ is the
eigenvector of Ap(β) associated to the eigenvalue λn(β) (see (1.12) for the definition). Finally,
let us introduce q the (energy flux) sesquilinear form defined by

∀u, v ∈ H2
loc, q(u, v) =

∫
Γ`

∂zuv − u∂zv.

We can show using Green’s formula that if w1 = eıβ1zϕ1(xs, z) and w2 = eıβ2zϕ2(xs, z) are two
modes such that β1 − β2 6= 0, they satisfy the bi-orthogonality condition

q(w1, w2) = 0,

(the proof is straightforward) and if w = eıβzϕ(z, xs) is a propagative mode then

q(w,w) = ıλ′n(β)

(here this is not straightforward). We have then a simple relation between the energy flux and
the group velocity of the modes. The rightgoing propagative modes w+

k are the ones for which
the imaginary part of the energy flux (equivalently the group velocity) is positive. The set of
cut-off frequencies (the frequencies for which the energy flux of one propagative mode vanishes)
which has to be excluded, corresponds to the set σ0.

Finally, in [Nazarov, 2014b, Hoang, 2011] and by adapting Section 1.3.4, it is shown that
there exists a unique solution u of (1.35), called outgoing solution, such that u+ = u|Ω+

(Ω+ = Ω ∩ {z > 0}) is a linear combination of the finite set of the rightgoing modes up to
an exponentially decaying function at +∞

u+ =
∑
k≤N

a+
k w

+
k + uevan.

From all these results, we can construct the associated PtN operator

TPtN u
a =

∑
k≤N

q(ua, w+
k )

q(w+
k , w

+
k )
∂zw

+
k

∣∣
Γa
.

It is possible, as in the homogeneous case, to add the first evanescent modes.

The properties of the PtN operator are the same than the one given in Theorem 1.4.1 and
the corresponding problem with PtN transparent boundary conditions are of the same type
than the one of the homogeneous case (1.33).
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1.4.3 The PtN operator for anisotropic elastic waveguide

These results are part of the paper [11]. Let us now consider a diffraction problem in an elastic
half-guide Ω = S×]−a,+∞[ where S ⊂ R2 denotes the bounded cross-section of the guide. The
density of the material denoted by ρ is supposed to be independent of z for z > 0, but it can
depend on the transverse variable xs. We suppose that the waveguide has a stress-free boundary
∂S × R. In time harmonic regime (of pulsation ω > 0), the propagation in the waveguide is
modeled by the following equations

−div σ(u)− ω2ρu = 0 in Ω,

σ(u) · ν = 0 on ∂Ω,
(1.36)

where u represents the displacement field (u = (ux, uz) in the 2D case and u = (ux, uy, uz) in
the 3D case) and σ(u) the stress tensor which is related to the strain tensor ε(u) = 1/2 (∇u +

∇Tu)(in the small deformation assumption) through the stiffness tensor C by the Hooke’s law

σ(u)ij = Cijklεkl(u) with i, j, k, l ∈

{
{x, y, z} in 3D

{x, z} in 2D.
(1.37)

The stiffness tensor is supposed to be independent of z for z > 0, but it can depend on xs. The
notion of outgoing solution is defined below.

The modes are particular solutions of

−div σ(w)− ω2ρw = 0 in S ×R,

σ(w) · ν = 0 on ∂S ×R,

of the form
w(z, xs) = ϕ(xs) e

ıβz.

This leads to solve a quadratic eigenvalue problem for (β, ϕ):

−divβ σβ(ϕ)− ω2ρϕ = 0 in S,

σβ(ϕ) · ν = 0 on ∂S,

where divβ and σβ correspond to the operators div and σ replacing ∂z by ıβ. From the Steinberg’a
analytic Fredholm theorem [Steinberg, 1968] (see also [Reed and Simon, 1978]), we conclude that
there exists a countable set of modes which can be classified as follows: (a finite number) of the
propagative modes (Im(β)=0), the evanescent ones (Im(β)>0) and the exponentially growing
ones.

For orthotropic media, the modes satisfy a bi-orthogonality relation, known as Fraser biorthog-
onality relation (see [Fraser, 1976, Gregory, 1983]), which was used in [Pagneux and Maurel,
2002,Pagneux and Maurel, 2004,Pagneux and Maurel, 2006] for 2D waveguides and extended
in [Baronian, 2009,Baronian et al., 2010] for 3D waveguides to construct transparent boundary
conditions. In the case of a general anisotropy, Fraser’s relation does not hold anymore. However,
the general bi-orthogonality relations, which rely on simple Green’s formulas, hold (see [Auld,
1973]). Let us introduce the sesquilinear form q defined by

∀ u,v, q(u,v) =

∫
Γ`

uSv − Su v
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where Su denotes the normal stress associated to u:

Su = σ (u) · ez.

And we have that if w1(z, xs) = eıβ1zϕ1(z) and w2(z, xs) = eıβ2zϕ2(z) are two modes such that
β1 − β2 6= 0, they satisfy the biorthogonality condition

q(w1,w2) = 0;

and if w(z, xs) = eıβzϕ(z) is a propagative mode then

q(w,w) = ı Jβ.

It is easy to show that if Jβ ≥ 0 then J−β ≤ 0. The cut-off frequencies correspond to the
frequencies for which one Jβ vanishes. The rightgoing (resp. leftgoing) modes w+

k are the ones
for which the energy flux is strictly positive (resp. negative). Finally, in [Nazarov, 2013], it
is shown that there exists a unique solution of (1.36), called the outgoing solution, such that
u+ = u|Ω+ (Ω+ = S ×R+) is a linear combination of the finite set of the rightgoing modes up
to an exponentially decaying function at +∞

u+ =
∑
k≤N

a+
k w+

k + uevan

From all these results, we can construct the associated PtN operator

TPtN ua =
∑
k≤N

q(ua,w+
k )

q(w+
k ,w

+
k )
∂zw

+
k

∣∣
Γa
.

To illustrate these new conditions, let me present numerical simulations done by Antoine Ton-
noir (2D) and Vahan Baronian (3D). We have solved problem (1.36) for artificial 2D and 3D
unperturbed anisotropic waveguides.

1. 2D example : S = (0, 1) and Ω = S × R, the frequency is such that there exists 4
propagative modes, we have computed the solution for two sizes of the computational area
Ωa. Figure 1.14 represents the modulus of the displacement field obtained in these two
cases. We also represent the whole solution reconstructed in the half-guides Ω± thanks to
the modal expansion.

2. 3D example : S is a rectangle and Ω = S × R, the frequency is such that there exists
24 propagative modes. Figure 1.15 represents the modulus of the displacement field three
different sizes of the computational domain.

As we can see in the 2D and 3D configurations, the restrictions of the solutions to the smallest
domain match very well. It is the first time that a transparent boundary condition for anisotropic
waveguides is proposed.

Let me finally emphasize that these new conditions have also some numerical advantages for
isotropic elastic waveguide for which other methods can be used. Let me first recall that the
use of transparent boundary conditions leads to a partially dense linear system since the con-
ditions are non local. Such system can be difficult to invert directly, in particular for vectorial
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Figure 1.14: Modulus of the computed solution in the 2D anisotropic
waveguide for different Ωa. Solution reconstructed in the half-guides Ω±

a

(bottom).

Figure 1.15: Modulus of the computed solution in the 3D anisotropic
waveguide for 3 different size of the computational domain.
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equations and 3D domains. A natural alternative for the inversion of such system is the use
of iterative algorithms such as preconditioned Krylov methods like GMRES [Saad and Schultz,
1986]. Roughly speaking, the preconditioner is chosen as a sparse part of the complete system
and the dense part of the matrix coming from the non local transparent boundary condition
is involved only in the matrix vector product step. The choice of the transparent boundary
conditions has an influence on the convergence of the associated iterative algorithm. Comparing
to other transparent boundary conditions constructed even with an overlap, this transparent
boundary conditions based on the Poynting-to-Neumann operator is much more efficient.

1.5 Ongoing works and perspectives

Many theoretical questions remain open today. But it is worth continuing working on the trans-
parent boundary conditions (based on DtN or PtN operators) that I have described in this
chapter since they seem to work, at least from a numerical point of view where all existing
methods fail in environments of such complexity. Moreover, they allow us to approach from
another angle the theoretical questions related to the definition of the physical solution.

For the periodic waveguides, apart of finishing the paper whose content is summarized in Section
1.3.4, the precise analysis of the problem at the cutoff frequencies, will allow us to justify theo-
retically the numerical method described in Section 1.3.5 for the transmission problem between
two periodic media which have the same period in the direction of the interface. Moreover, I
want to study such transmission problem in presence of local perturbations and with possible
presence of guided waves by the interface. The difficulties are theoretical (derive a radiation
condition which will be different in the direction of the interface and the other directions and
show well-posedness of the problem) and numerical (compute the solution by restricting the
problem around the perturbation). One (long-term) application of this work is the computation
of topologically protected edge states (See Chapter 3, Section 3.4). Finally, even in presence of
dissipation, we do not know how to study the transmission problem when the periods in both
side of the interface are not commensurate. A particular case is the transmission between an
homogeneous medium and a periodic medium in the case where the interface cuts the periodic
medium in a direction for which the medium is not periodic. I want to extend the tools which
were developed for the homogenization of this kind of problem [Gérard-Varet and Masmoudi,
2011,Gérard-Varet and Masmoudi, 2012] and derive an associated numerical method.

The method explained in Section 1.4 can be applied, I think, to construct transparent boundary
conditions for general waveguides for which classical methods fail. I want to apply this method
to (1) Maxwell’s equations for anisotropic or periodic waveguides (with M. Kachanovska and E.
Becache (POEMS)), (2) to Kirchoff Love equations for isotropic or anisotropic waveguides (with
L. Chesnel (Inria Saclay, CMAP) and L. Bourgeois (POEMS), see [20] for the derivation of the
radiation condition and the well-posedness of the Kirchoff Love equations in the time harmonic
regime in 2d waveguides), (3) to dispersive waveguides. The most intrincate part is to show that
the physical solution can be decomposed in terms of the outgoing propagative modes. This can
be done, we think, by extending the framework of [Nazarov and Plamenevsky, 1994].
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Figure 1.16: The periodic media is not periodic in the direction of the
interface.

Finally in this section, we have considered only closed waveguides. In numerous applications, the
waveguides are open in the sense that their cross section is unbounded, as for instance optical
fibers, immersed pipes or other guiding structures embedded into a propagative matrix. The
propagating and the confining effects of the open waveguides results from a particular layout
of the various materials which compose the waveguide. In the applications, it is a question of
junctions of open waveguides (the optical tapers for instance). From a theoretical point of view,
one of the main difficulties of the open waveguides or the junction of open waveguides concerns
the determination of the radiation conditions which characterize the behaviour of the physical
solution (which is naturally not the same in the longitudinal and the transverse directions). I will
describe in the next chapter future considerations regarding this aspect. From a numerical point
of view, a lot of works remains to be done for designing efficient methods. Again, I intend to
explore the extension of the Halfspace Matching Method which is described in the next chapter,
for some open waveguides or junctions of open waveguides. When the embedding medium or
the cladding is homogenous (see Figure 1.17 for some examples), one can use Perfectly Matched
Layers (see the Introduction of this chapter for a concise description of the method) to truncate
the domain in the transverse direction of the waveguide – this can work only if the PML layers
are convex, which restricts the possible configurations. However the construction of transpar-
ent boundary conditions in the other direction becomes non standard (see [Goursaud, 2010] for
instance) but again the method described in Section 1.4 is promising.
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Figure 1.17: Examples of junction of open waveguides for which the em-
bedding medium is homogeneous. PML can be used in the transverse
directions.





CHAPTER

2 Scattering problem in infinite
complex media

Collaborations : Vahan Baronian (CEA-LIST), Anne-Sophie Bonnet-Ben Dhia (POEMS),
Alexandre Imperiale (CEA-LIST) Sébastien Imperiale (M3DISIM, Inria) Patrick Joly (POEMS),
Christophe Hazard (POEMS), Antoine Tonnoir (INSA Rouen)
Supervising : Antoine Tonnoir’s PhD (2011-2015), Yohanes Tjandrawidjaja’s PhD (2016-..),
Hajer Methenni’s PhD (2017-...)

2.1 Introduction

In this chapter, we are interested in the diffraction of time-harmonic waves in a homogeneous
2D or 3D infinite anisotropic elastic or periodic medium. The difficulties are similar to the ones
describes in the previous chapter about the waveguide problems : since the medium is infinite,
there are theoretical difficulties – how to define the so called outgoing solution of such prob-
lem? – and numerical difficulties – can we introduce an equivalent formulation which is suitable
for numerical purposes ? In contrast with waveguide configurations, the solution can propagate
in all the directions of the medium and have in consequence a certain decay at infinity. In this
chapter, we will focus on the numerical difficulties and we will avoid the theoretical ones by
adding a small dissipation term to our model. The problem is then well-posed in the classical L2

setting. I will explain in a dedicated section (see Section 2.3) the theoretical difficulties raised
by the case without dissipation.

Solving time harmonic scalar waves equations in infinite homogeneous media is an old topic
[Givoli, 1992] and there exist several methods. They are all based on the natural idea of re-
ducing the pure numerical computations to a bounded domain containing the perturbations
(achieved using for instance Finite Element methods). A first class of methods consists in ap-
plying an artificial boundary condition, around the bounded domain, which is transparent or
approximately transparent as in: (1) integral equation techniques, (2) Dirichlet-to-Neumann ap-
proaches providing that the boundary is properly chosen to allow separation of variables and (3)
local radiation conditions at finite distance constructed as local approximations at various order
of the exact non local condition. These methods were first introduced for the time harmonic
scalar wave equation – the Helmholtz equation – and then extended to 2D isotropic elasticity
problems by simply using the Helmholtz decomposition of the displacement field in terms of
potentials (see for instance [Givoli and Keller, 1990]). However it seems that all these methods

49
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either do not extend to anisotropic elastic or periodic media – the separation of variables is not
possible anymore to determine the Dirichlet-to-Neumann (DtN) operator and the Green’s func-
tion is not known for periodic media – or do extend but with a tremendous computational cost
– for the integral equation techniques, the Green tensor for anisotropic elastic media depends
not only on the distance between two points but also on the orientation [Wang and Achen-
bach, 1995]. A second class of methods consists in surrounding the computational domain by a
Perfectly Matched absorbing Layer (PML). PML techniques are very popular because they are
efficient and easy to implement in a large class of problems. But they may be inoperant. Roughly
speaking, the PML absorbs the wave with an outgoing phase velocity, preventing them to come
back in the computational domain, while in order to catch the physical solution, it should ab-
sorb the waves with outgoing group velocities. That is why to our knowledge the standard PML
technique works for isotropic elastic media (in which the waves with outgoing phase velocities
have outgoing group velocities and vice versa) but may fail for general anisotropic elastic or
periodic media where the two velocities differ [Bécache et al., 2003].

By contrast, our method is based on a simple and quite general idea: the solution of homo-
geneous – isotropic or anisotropic, acoustic or elastic – halfspace problems can be expressed
thanks to its trace on the halfspace boundary. As several halfspaces surrounding the perturba-
tions are needed to recover the whole domain, they will necessarily overlap. The second step
is then to find conditions to ensure the compatibility of the representations in the overlap-
ping zones. This method has links with domain decomposition methods with overlap [Lions,
1988,Dryja and Widlund, 1994,Toselli and Widlund, 2005], with the specific difficulty that the
overlapping zones are unbounded. More precisely, the idea in 2D is to split the whole domain
into five parts (see Figure 2.1):

• a square that includes the defect (and all the inhomogeneities) in which we will use a
Finite Elements representation of the solution,

• and 4 half-planes, parallel to the four edges of the square in which the medium is homo-
geneous.

Taking advantage of the medium properties in a half-plane, we can give a semi-explicit (integral)
expression of the solution given (for instance) its trace on the edge of the half-plane, via the
Fourier transform in the transverse direction in the homogeneous case or via the Floquet-Bloch
Transform in the periodic case. With these integral representations and the Finite Element rep-
resentation of the solution in the square, we can formulate a coupled problem. To ensure the
compatibility of the different representations, as in domain decomposition methods, we impose
transmission conditions on the edges of the subdomains. This leads us to a system of coupled
equations where the unknowns are the solution in the bounded square and the traces of the
solution on the edges of the half-planes.

When compared to absorbing layers methods, this approach is obviously more costly due to
the additional unknowns (the traces) linked by non-local integral equations. However, one ben-
efit is that this additional computation of the traces enables to reconstruct a posteriori the
solution in the half-planes (and therefore in the whole domain), which is impossible for instance
when using non exact absorbing boundary conditions or PML.
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I first present in Section 2.2 the principles of the method and the main results for a simple
model problem : a dissipative anisotropic Helmholtz equation. Let me underline that thought
the mathematical analysis holds only for dissipative media, the method gives good numerical
results also in the non dissipative case, as I will show in Section 2.3. I will explain in this section
the theoretical difficulties raised by the case without dissipation. This method applies also to
anisotropic elastic media and periodic media as I will show respectively in Sections 2.4 and 2.5.
I will finally describe my ongoing work and my perspectives for this subject.

2.2 The Halfspace Matching Method (The HsMM) on a toy
problem

2.2.1 The model problem

The model problem that I consider in this section is

−div(A∇u)− ω2
ε ρ u = f in Ω, (2.1)

in the time harmonic regime at the frequency Re(ωε) = ω with a small absorption Im(ωε) = ε >

0, where A is a symmetric positive definite matrix of (L∞(Ω))2×2 modeling the anisotropy and
ρ is a strictly positive function of L∞(Ω).

The propagation domain Ω is typically R2, or R2 minus a set of obstacles which are included
in a bounded region

∃a > 0, ∂Ω ⊂ Ωa ≡ (−a, a)2.

In presence of obstacles, some boundary conditions have to be added to the model.

Remark 2.2.1
The principle of the method extends easily to 3D propagation domain that is infinite in the 3 directions.

The source term f is supposed to be a function of L2(Ω) with a compact support included in
Ωa. Finally, the matrix A is a local perturbation of a constant matrix A0

supp(A−A0) ⊂ Ωa, where A0 =

(
c1 c3

c3 c2

)
with

{
c1, c2 > 0,

c1c2 − (c3)2 > 0,

and the function ρ is a local perturbation of a constant function, which is taken, without loss of
generalities, equal to 1

supp(ρ− 1) ⊂ Ωa.

For variational boundary conditions on ∂Ω -for instance Neumann or Dirichlet conditions- it is
well known that thanks to the dissipation, this problem admits a unique solution in H1(Ω).

To clarify the presentation of the method, I will consider three situations of increasing diffi-
culty.
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(Case 1) The HsMM formulation. The propagation medium is Ω = R
2 \ Ωa and non homo-

geneneous Dirichlet boundary conditions are imposed on its boundary. The source term
f = 0, A = A0 = Id and ρ = 1 in Ω. Coupling analytical representations of the solution
in the 4 halfspaces surrounding the obstacle O = Ωa and ensuring that all representations
match, we end up with a system of integral equations whose unknowns are the 4 traces of
the solution on the edges of the halfspaces. We show stability and well-posedness of this
formulation in a framework which is suitable for numerical simulations.

(Case 2) Coupling the HsMM with FE method. We consider here the general isotropic case
A0 = Id, in presence of source terms and possible perturbations of the geometry, the
matrix A and the coefficient ρ. The idea here is that any perturbation can be taken into
account using a Finite Element (FE) method, as soon as it is contained in a bounded
region. Here, we examine the coupling between the FE representation of the solution and
the system of integral equations obtained in the previous case. We point out the impor-
tance of the presence of an overlap between the FE box and each halfspace. Thanks to
this overlap, we show again stability properties and well-posedness for this problem.

(Case 3) Case of a general anisotropic case. We consider then the general anisotropic case.

I explain formally how to derive the new formulations for the 3 cases in the next subsections
and I give without proof the associated stability results. For the proof, see [17].

2.2.2 Case 1: the HsMM for an exterior isotropic problem

We consider the following problem: let Ω = R2 \Ωa, g ∈ H1/2(∂Ω) and find the unique solution
u ∈ H1(Ω) of

−∆u− ω2
ε u = 0 in Ω,

u = g on ∂Ω.
(2.2)

The domain Ω is the union of 4 half-planes Ωj
a that lie on the 4 edges of the square Ωa. Using

the following local coordinates for all j ∈ J0, 3K[
xj

yj

]
=

[
cos(θj) −sin(θj)

sin(θj) cos(θj)

][
x

y

]
, where θj =

jπ

2
. (2.3)

the half-planes are defined as follows for all j ∈ J0, 3K

Ωj
a = {xj ≥ a} × {yj ∈ R} Σj

a ≡ ∂Ωj
a := {xj = a} × {yj ∈ R}. (2.4)

Finally, we denote
Σaa = ∂Ωa and Σj

aa = Σaa ∩ Σj
a. (2.5)

These notations are summarized on Figure 2.1.

As explained previously, the formulation uses the representation of the solution in each halfspace
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Figure 2.1: The notation defined in (2.3)-(2.4)-(2.5).

Ωj
a surrounding the obstacle. Let us then introduce the halfspace problem : for any ψ ∈ H1/2(Σj

a),
find the unique solution U j(ψ) ∈ H1(Ωj

a)

−∆U j − ω2
ε U

j = 0 in Ωj
a,

U j = ψ on Σj
a

(2.6)

Using the Fourier transform in the yj−direction, it is easy to see that, the solution of (2.6) is
given by

∀(xj , yj) ∈ [a,+∞[×R, U j(ψ)(xj , yj) =
1√
2π

∫
R

ψ̂(ξ)eı
√
ω2
ε−ξ2(xj−a)eıξy

j
dξ, (2.7)

where the square root is defined with the convention Im√ ≥ 0 and ψ̂ is the Fourier transformation
of ψ using the convention,

∀ ξ ∈ R, ψ̂(ξ) =
1√
2π

∫
R

ψ(yj) e−ıξy
j
dyj .

Let us now derive the halfspace matching formulation which involves only the traces of the
solution u on the edges Σj

a of Ωj
a that we denote

ϕj = u
∣∣
Σja
. (2.8)

We have thanks to the boundary conditions satisfied by u in (2.2)

ϕj
∣∣
Σjaa

= g
∣∣
Σjaa

. (2.9)

Moreover, because u is solution of (2.2), its restriction to Ωj
a is solution of (2.6) with ψ = ϕj so

u
∣∣
Ωja

= U j(ϕj). (2.10)

The trace of u on Ω0
a∩Σ1

a is given by ϕ1 by (2.8) and by U0(ϕ0) by (2.10) so we have necessarily

ϕ1
∣∣
Σ1
a∩Ω0

a
= U0(ϕ0)

∣∣
Σ1
a∩Ω0

a
.



54 Chapter 2. Scattering problem in infinite complex media

Applying this reasoning to the other half lines Σj±1
a ∩ Ωj

a, we get

ϕj±1
∣∣
Σj±1
a ∩Ωja

= U j(ϕj)
∣∣
Σj±1
a ∩Ωja

, ∀j ∈ Z/4Z. (2.11)

The system of coupled equations (2.11) and (2.9) constitutes the halfspace matching formulation
for the problem (2.2). To understand the nature of this system of equations and to analyze it,
let us introduce the operators

∀ψ ∈ H1/2(Σj
a), Dj

j±1ψ := U j(ψ)
∣∣
Σj±1
a ∩Ωja

. (2.12)

By classical trace theorems, the operators Dj
j±1 are continuous operators from H1/2(Σj

a) to
H1/2(Σj±1

a ∩ Ωj
a). In the isotropic case, the expressions of the operators Dj

j±1 derive directly
from the expressions of two operators D± ∈ L(H1/2(R), H1/2(a,+∞)) as follows

∀ψ ∈ H1/2(Σj
a), Dj

j±1ψ
j (xj , yj = a) = D± ψ(xj) for xj > a

(identifying H1/2(Σj
a) to H1/2(R)) where D± are defined by

D±ψ(x) =
1√
2π

∫
R

ψ̂(ξ)eı
√
ω2
ε−ξ2(x−a)e±ıξadξ, for x ≥ a.

Gathering (2.9), (2.11) and (2.12), we have shown that the set of traces

(ϕj)j∈J0,3K ∈
3∏
j=0

H1/2(Σj
a)

is solution of

∀j ∈ Z/4Z,

ϕj = Dj−1
j ϕj−1 on Σj

a ∩ Ωj−1
a ,

ϕj = Dj+1
j ϕj+1 on Σj

a ∩ Ωj+1
a ,

ϕj
∣∣
Σjaa

= g
∣∣
Σjaa

.

(2.13)

We have then derived a system of coupled integral equations satisfied by the traces ϕj of the
solution u of (2.2). Moreover, there is an equivalence result between problem (2.2) and system
(2.13). Indeed, from a solution (ϕj)j∈J0,3K in

∏
H1/2(Σj

a) of (2.13), we can use (2.7) to construct
a solution of the Helmholtz equation in each halfspace. To deduce a solution u of (2.2) unequiv-
ocally (imposing that its restriction in each halfspace is equal to the halfspace representation),
it suffices to show that the halfspace representations match in their intersections – which are
quarter planes. The system of coupled integral equations implies that for each quarter planes,
the corresponding two halfspace representations match on the boundary. By the well-posedness
of the Helmholtz equation with dissipation in the quarter plane, they match also in the quarter
plane.

We can state then the following proposition whose proof is detailed in [17].

Proposition 2.2.1 ( [17])
Let g ∈ H1/2(Σaa). If u ∈ H1(Ω) is solution of (2.2) then (ϕj = u

∣∣
Σja

)j∈J0,3K is solution in∏
H1/2(Σj

a) of (2.13).



2.2 The Halfspace Matching Method (The HsMM) on a toy problem 55

Conversely, if (ϕj)j∈J0,3K in
∏
H1/2(Σj

a) is solution of (2.13) then u defined by

∀j ∈ J0, 3K, u
∣∣
Ωja

= U j(ϕj),

where U j(·) is solution of the halfspace problem (2.6) (see also the expression (2.7)), is a function
defined "unequivocally", is in H1(Ω) and is solution of (2.2).

This system (2.13) is the one that we want to discretize. If we want to use a FE method, a
variational formulation has to be derived and using the functional framework

∏
H1/2(Σj

a) could
be intrincate1. That is why we consider (2.13) when looking to the traces in

∏
L2(Σj

a). The
operators Dj

j±1 that intervene in the formulation are well-defined and even continuous from
L2(Σj

a) to L2(Σj±1
a ∩ Ωj

a) (see [17] for more details). Writing for all j ∈ J0, 3K, ϕj = ϕj0 + g
∣∣
Σjaa

,
we can easily show that Problem (2.13) in the L2−framework is equivalent to

Φ0 = (ϕj0)j∈J0,3K ∈ V0 = {Ψ0 = (ψj0) ∈
3∏
j=0

L2(Σj
a), ∀j, ψj0

∣∣
Σjaa

= 0} (2.14)

is solution of
A Φ0 = B g,

where A ∈ L(V0), B ∈ L(L2(Σaa), V0) and

∀j ∈ Z/4Z,
(AΦ0)j = ϕj0 −D

j−1
j ϕj−1

0 −Dj+1
j ϕj+1

0

(Bg)j = Dj−1
j g

∣∣
Σj−1
aa

+Dj+1
j g

∣∣
Σj+1
aa

(2.15)

where for all j, we define the functions Dj±1
j ϕj±1

0 , Dj±1
j g

∣∣
Σj±1
aa
∈ L2(Σj

a ∩Ωj±1
a ) as functions of

L2(Σj
a) by extending them by 0. We are able to show stability property and well posedness of

problem (2.15) in V0.

Theorem 2.2.2 (Stability result for the HsMM formulation [17])
(1) The operator A ∈ L(V0) is the sum of a coercive operator and a compact one. Thus, for
Problem (2.15), Fredholm alternative holds.

(2) Problem (2.15) is well posed in V0.

The operator can be rewritten in the form I− D where the operator D is defined thanks to the
operator Dj±1

j . The difficulty comes from the fact that the operators Dj±1
j are not compact. This

is due to the intersection points between Σj
a and Σj±1

a ∩ Ωj
a as it can be shown that χxj≥bD

j±1
j

with b > a is a compact operator. Inspired by the singularity theory [Kozlov et al., 1997,Dauge,
2006], the idea of the proof is to introduce the static equivalent of Dj±1

j for ωε = 0, denoted
Lj±1
j . The difference of the two operators is compact so it suffices to study the property of Lj±1

j ,
which is done by using the Mellin transform.

To show the second point of Theorem 2.2.2, we cannot use the equivalence result since the
1It is intricate but not impossible. Indeed in that case, the test functions have to be in H−1/2 so (1) the

equations are written piece by piece so a particular attention must be paid at the junctions and (2) inf-sup
conditions have to be satisfied (and the discrete version of them).
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functional framework has changed (L2 instead of H1/2). However, uniqueness (and then well-
posedness) can be proven in this framework.

Remark 2.2.2 1. Let us point out that what is done here with Ωa being a square can be extended
naturally to the case of any convex polygon Ωa. The unknowns, which are involved in the cor-
responding system of equations, correspond to the traces of the solution on the boundary of the
halfspaces supported by each edge of the polygon. See [16,17] for more details.

2. The method can be extended to any other boundary conditions on ∂Ωa by taking the unknowns
on the lines Σja of the same nature than the boundary conditions. Stability results can be shown
as well. See [16] for more details.

3. If g ∈ H1/2(Σaa), the last theorem gives that the problems (2.2) and (2.15) are equivalent. If
the data g is only in L2(Σaa), we cannot expect that the solution u is in H1(Ω). The functional
framework of such problem and its discretization is not standard. By using the transposition
method, in [Lions and Magenes, 1968], the authors analyze how to understand the solution of
such boundary value problem in bounded convex domain. They introduce a very weak formulation
(the unknown is only in L2 but the test functions is much more regular). In [Apel et al., 2016],
an extension to non convex polygonal bounded domain which requires an involved analysis is
proposed. For the particular case of Problem (2.15) (and more generally an elliptic PDE set
outside a convex polygon), we have introduced a simple formulation which is stable and whose
unique solution is such that its trace on each line Σja is L2 (or equivalently its restriction to each
halfspace Ωja is H1/2).

2.2.3 Case 2 : coupling the HsMM with the FE method in the isotropic case

We consider now Problem (2.2), still in the isotropic case : A0 = Id. Without loss of generality,
for conciseness of the statement, we suppose A = A0 and Ω = R2 (we only need to adapt the
variational formulation and/or the functional framework to take into account the presence of
perturbations, obstacles and the associated boundary conditions). Thus the problem simplifies
into

−4u− ω2
ε ρ u = f in R

2 (2.16)

where Supp(ρ− 1) and Supp(f) are included in Ωa.

Let us first introduce some new notations. For b ≥ a, we denote (see Figure 2.2)

Ωb = (−b, b)2, Σbb = ∂Ωb and Σj
bb = {(x, y), xj = b and yj ∈ (−b, b)} (2.17)

where the (xj , yj) are defined in (2.3). In Figure 2.2, five domains appear: a bounded one Ωb

and the four halfspaces Ωj
a. If b = a, there is no overlap between the bounded domain and the

halfspaces whereas if b > a, there exists an overlap. This overlap has an important role from a
theoretical point of view.

Let us now derive the new formulation. Thanks to the previous section, it is easy to see that
the traces ϕj of u on the lines Σj

a have to satisfy (2.11). On the other hand, if ub denotes the
restriction of u to Ωb, then it is solution of

−4ub − ω2
ε ρ ub = f in Ωb. (2.18)
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Figure 2.2: Second set of notation (2.17) (where the dashed lines are the
Σja’s defined in (2.4)).

For all j, in Ωb ∩ Ωj
a, we have introduced two representations of the same function: ub solution

of (2.18) and U j(ϕj) solution of (2.6). We have then in particular that

ub
∣∣
Σjaa

= ϕj
∣∣
Σjaa

(2.19)

and
∇ub · nj

∣∣
Σjbb

= ∇U j(ϕj) · nj
∣∣
Σjbb
, (2.20)

where nj = (xj = 1, yj = 0) is the normal to Σj
bb. Let us introduce the operators

∀j ∈ J0, 3K, ∀ψ ∈ H1/2(Σj
a), Λj ψ = ∇U j(ψ) · nj

∣∣
Σjbb

(2.21)

By classical trace theorem, the operators Λj are continuous operators fromH1/2(Σj
a) toH−1/2(Σj

bb)

where H−1/2(Σj
bb) is defined as the dual of H̃1/2(Σj

bb) which contains the functions of H1/2(Σj
bb)

which, when extending by 0, are H1/2(Σbb). In the isotropic case, we have that for all j ∈ J0, 3K,
Λj can be expressed directly from the operator Λ ∈ L(H1/2(R), H−1/2(−b, b)) by

∀ψ ∈ H1/2(Σj
a), Λjψ (xj = b, yj) = Λψ (yj) for yj ∈ (−b, b)

(identifying H1/2(Σj
a) and H1/2(R)) where Λ is defined by

Λψ(y) =
1√
2π

∫
R

ı
√
ω2
ε − ξ2 ψ̂(ξ) eı

√
ω2
ε−ξ2(b−a)eıξydξ. for y ∈ (−b, b).

Gathering (2.11), (2.12), (2.18), (2.19), (2.20) and (2.21) we have shown that

ub ∈ H1(Ωb) and (ϕj)j∈J0,3K ∈
3∏
j=0

H1/2(Σj
a)

is solution of
−4ub − ω2

ε ρ ub = f in Ωb

∇ub · nj
∣∣
Σjbb

= Λj ϕj , ∀j ∈ J0, 3K

ϕj
∣∣
Σjaa

= ub
∣∣
Σjaa

, ∀j ∈ J0, 3K

ϕj = Dj−1
j ϕj−1

a on Σj
a ∩ Ωj−1

a , ∀j ∈ Z/4Z

ϕj = Dj+1
j ϕj+1

a on Σj
a ∩ Ωj+1

a , ∀j ∈ Z/4Z

(2.22)
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There is here also an equivalence result between problem (2.2) in the isotropic case and the
system (2.22). Indeed, from the trace unknowns, we can construct a solution uext of the homo-
geneous isotropic Helmholtz equation outside Ωa, as in Case (1). Now the difficulty is to show
that this function uext coincides with ub in the overlapping zone Ωb \Ωa. The well-posedness of
the Helmholtz equation with dissipation in the ring Ωb \ Ωa is used.

Proposition 2.2.3
If u ∈ H1(Ω) is solution of (2.16) then

(
ub, (ϕj)j∈J0,3K

)
where ub = u

∣∣
Ωb

and for all j, ϕj = u
∣∣
Σja

is solution in H1(Ωb)×
∏
H1/2(Σj

a) of (2.22).

Conversely, if
(
ub, (ϕj)j∈J0,3K

)
in H1(Ωb) ×

∏
H1/2(Σj

a) is solution of (2.22) then u defined
by

u
∣∣
Ωb

= ub, and ∀j ∈ J0, 3K, u
∣∣
Ωja

= U j(ϕj), (2.23)

where U j(·) is solution of the halfspace problem (2.6) (see also the expression (2.7)), is a function
defined "unequivocally", is in H1(Ω) and is solution of (2.16).

We can derive a variational formulation only for b > a, the problem, being as in Domain
Decomposition methods [Gander and Santugini, 2016], the cross points. Moreover, as for the
case (1), we want to consider the trace unknowns in L2 for numerical purposes. For b > a, the
operators Λj which intervene in the formulation are well-defined and continuous from L2(Σj

a) to
L2(Σj

bb). Thus, for b > a, and by using, as for Case (1), for all j, ϕj0 = ϕj −ub
∣∣
Σjaa

, we introduce
a variational formulation associated to (2.22) :

Find
(
ub, Φ = (ϕj0)j∈J0,3K

)
∈ H1(Ωb)× V0 such that ∀

(
vb, Ψ

)
∈ H1(Ωb)× V0∫

Ωb

∇ub · ∇vb − ω2ub vb + (AΦ,Ψ)V0 − (B γ ub,Ψ)V0

−
3∑
j=0

[
(Λj γjub, vb)Σjbb

− (Λjϕj0, vb)Σjbb

]
=

∫
Ωb

fvb (2.24)

where V0 is defined in (2.14), the operators A and B are defined in (2.15), the operator γ (resp.
γj) is the trace operator from H1(Ωb) to L2(Σaa) (resp. from H1(Ωb) to L2(Σj

aa)), (·, ·)
Σjbb

is the

scalar product in L2(Σj
bb), (·, ·)V0 is the scalar product in

∏
L2(Σj

a) and where we consider the
functions of L2(Σj

aa) and L2(Σj
a ∩ Ωj±1

a ) as functions of L2(Σj
a) (by extending them by 0).

Extending the proof of Theorem 2.2.2, we can show a stability result as well.

Theorem 2.2.4 (Stability result for the coupling HsMM-FE - Isotropic
case [17])
(1) The bilinear form associated to (2.24) in (H1(Ωb) × V0)2 is the sum of a coercive bilinear
form and a compact one. Thus, for Problem (2.24), Fredholm alternative holds.

(2) Problem (2.24) is well posed and if
(
ub, Φ0 = (ϕj0)j∈J0,3K

)
in H1(Ωb) × V0 is solution of

(2.24) then u defined as in (2.23) with for all j, ϕj = ϕj0 +ub
∣∣
Σjaa

is a function defined "unequiv-
ocally", is in H1(Ω) and is solution of (2.16).
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2.2.4 Case 3 : coupling the HsMM and the FE method in the anisotropic
case

Now, we consider Problem (2.1) in the general anisotropic case. Again without loss of generality,
we suppose Ω = R2. The method to derive the system of coupled equations is exactly the same
than in Case (2), the only difference being the expression of the solution of the corresponding
halfspace problems and then the expression of the integral operators defined in (2.12) and (2.21).

The solution U j(ψ) ∈ H1(Ωj
a), for any ψ ∈ H1/2(Σj

a) of the halfspace problems

−∇ · (A0∇U j)− ω2
ε U

j = 0 in Ωj
a,

U j = ψ on Σj
a

is now given by

U j(ψ)(xj , yj) =
1√
2π

∫
R

ψ̂(ξ)er
j(ξ)(xj−a)eiξy

j
dξ, ∀(xj , yj) ∈ [a,+∞[×R.

where the coefficients rj(ξ) are defined by :

r0(ξ) = r2(ξ) =
−iξc3

c1
+ i
√
d1(ξ) with d1(ξ) =

ω2
εc1 − d ξ2

(c1)2
,

r1(ξ) = r3(ξ) =
iξc3

c2
+ i
√
d2(ξ) with d2(ξ) =

ω2
εc2 − d ξ2

(c2)2
.

where d := c1c2 − (c3)2. We deduce then the expressions of the operators Dj
j±1 and Λj for all

j ∈ Z/4Z defined respectively in (2.12) and (2.21). Contrary to the isotropic case, the operators
are a priori different from each other. Using the same ideas than in Case (2), we can show that
for b > a

ub = u
∣∣
Ωb
∈ H1(Ωb) and (ϕj = u

∣∣
Σja

)j∈J0,3K ∈
3∏
j=0

L2(Σj
a)

is solution of (2.24) with for all j, ϕj0 = ϕj − ub
∣∣
Σjaa

where, here, the operators are given by for
all ψ ∈ H1/2(Σj

a)

Dj
j±1ψ(xj , yj = ±a) =

1√
2π

∫
R

ψ̂(ξ)eı
√
rj(ξ)(xj−a)e±ıξadξ, for xj ≥ a

and
Λjψ(xj = b, yj) =

1√
2π

∫
R

rj(ξ) ψ̂(ξ)er
j(ξ)(b−a)eıξydξ, for yj ∈ (−b, b).

Proposition 2.2.3 extends easily to the anisotropic case. Indeed, for the proof, we do not use the
expression of the solution of the halfspace problems or the expression of the operators but only
that the halfspace representations, two by two, are solution of the same equations in the quar-
ter planes where they coexist and that their traces coincide on the boundary of the quarter plane.

We can also introduce a variational formulation that is similar to (2.24). The main original-
ity in the anisotropic case concerns the stability results of the variational formulation which are
linked to the properties of the operators Dj

j±1 and Λj .
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Theorem 2.2.5 (Stability result for the anisotropic case [17])
Let b > a and θ defined by tan(θ) =

√
c1c2 − c2

3/c3 if c3 6= 0 and θ = π/2 if c3 = 0.

(i) If
max(sin(θ/2), cos(θ/2)) max(

√
c1,
√
c2) < (c1c2 − c2

3)1/4, (2.25)

the bilinear form associated to the problem is the sum of a coercive bilinear form and a
compact one in (H1(Ωb)× V0)2;

(ii) For any values of ci, Fredholm alternative holds for the problem and it is well-posed.

As you can notice, the first result was proved only for a certain class of moderate anisotropy.
In particular if the x0 and y0 directions are chosen regarding the directions of anisotropy of A0

then c3 = 0 and the condition (2.25) reduces to

max
(c1

c2
,
c2

c1

)
< 4.

Remark 2.2.3
Let us emphasize than in the general anisotropic case, the operator associated to the bilinear form of
the problem cannot be decomposed as the sum of a coercive operator and a compact one but only as
the sum of an invertible one and a compact one. The well posedness is then ensured by the uniqueness.
The consequence of this weaker result is that a priori, the numerical analysis cannot be done in the
general case. However, the problem can be adapted to recover the stability property. Indeed, we can
show that a solution of (2.24) is also solution of a similar problem where the A is replaced by an operator
Ã = I− (I− A)2 and the operator B by B̃ = (2I− A)B. In the general anisotropic case, the operator Ã is
always the sum of a coercive operator and a compact one.

2.2.5 Numerical results

To end this section, let us briefly describe how to discretize this new formulation and show some
numerical results to illustrate and validate the method.

For the approximation of the formulation (2.15) (resp. (2.24)), we use 1D Lagrange FE method
for the trace unknowns (resp. 2D Lagrange FE method for the volume unknown). More precisely,
the finite dimensional space Vh,T ⊂ V0 contains piecewise polynomial functions of L2(−T, T )4.

The difficulty in practice is to handle the integral operator terms. For instance, to compute(
D+ϕ,ψ

)
(a,+∞)

=
1√
2π

∫ +∞

a
ψ(x)

∫ ∞
−∞

ϕ̂(ξ)eı
√
ω2
ε−ξ2(x−a)eıξadξ dx

where ϕ and ψ are functions of L2(a,+∞),

• we reduce the inner integral in ξ to the interval [−T̂ , T̂ ] where T̂ > 0,

• we use a quadrature formula to discretize the integral in ξ.

Doing so, the previous integral is approximated by

Nξ∑
n=0

1√
2π
ϕ̂(ξn)eıξna

∫ +∞

0
eı
√
ωε−ξ2n(x−a)ψ(x)dx
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where the {ξn}n∈J1,NξK correspond to the quadrature nodes. Since ϕ and ψ are piecewise poly-
nomial (and compactly supported), we can compute exactly ϕ̂(ξn) and the integral term in x.
We can treat similarly the integral terms related to the operators Dj

j±1 and Λj .

The numerical analysis of the method, before using the quadrature formulas in ξ, was done
in [16]. The difficulties are (1) to prove the problem is coercive+compact and the bilinear form
is approximated because of the truncature of the Fourier variable and (2) to show the stability
properties of the approximated bilinear form, the equivalent of Theorem 2.2.2 has to be shown
and the properties of the operators Lj±1

j,T̂
(with the truncature of the fourier variable) cannot be

deduced from the properties of Lj±1
j . The error estimates is given by the following result.

Theorem 2.2.6 (Error estimates)
Let the ϕj ’s (resp. the ϕj

h,T,T̂
) be the solution of the continuous HsMM formulation (resp. the

discrete approximated formulation after quadrature in the Fourier variable). We suppose that
the ϕ′s are in Hs(Σj) then

∀j, ‖ϕj − ϕj
h,T,T̂

‖L2(Σj) ≤
C

T̂ s
+ Ce−εT + C hmin(s,l+1)

You can find the error plots with respect to each discretization parameters in [16].

To validate the method, we have considered in Case (1) the particular data of the Hankel
function on the boundary of the square:

u(x, y)
∣∣
Σaa

=
1

4ı
H(ωε

√
x2 + y2)

∣∣
Σaa

.

In that situation, we can validate the results since we know the exact solution is given by
u(x, y) = 1

4ıH(ωε
√
x2 + y2). On Figure 2.3 (left), we have represented on (−T, T ) the real part

of ϕ0 and its approximation taking ωε = 10+0.01ı and using 1D P2 finite elements with h = 0.05,
T = 12, T̂ = 20 and a Gauss quadrature formula of order 4 in a regular mesh of size 0.025. We
get a relative error in the L2(−T, T ) of 0.06%. Surprisingly, as we can see, even though the trace
ϕj are not close to zero at yj = ±T , the results are quite good.

Let us emphasize that with this method, we can reconstruct the solution in the exterior do-
main. Indeed, we can compute a posteriori the solution in each halfspace Ωj

a using the formulae
(2.6) as represented on Figure 2.4. In the left figure, we have represented the reconstructed
halfspace solution in the right halfspace, in the right figure, we have added the halfspace rep-
resentation in the top halfspace. As you can notice, the solutions coincide in the quarter plane
where they coexist. We have finally represented the solution in the whole exterior domain. This
representation is an a posteriori validation of the discretization since when the discretization is
not fine enough, the halfspace solutions do not coincide (see Figure 2.4 Bottom right)

Let us now show a numerical simulation in the anisotropic case. We have solved (2.1) in
Ω = R

2 \ O (O is the set of 2 obstacles, Neumann boundary conditions are imposed on it)
with the following parameters

ωε = 10 + 0.001ı, A =

[
1 −0.8

−0.8 1

]
, and ρ = 1. (2.26)
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Figure 2.3: On the left: Real part of the computed trace ϕ0 on Σ0
a (the

black line) and real part of the exact solution (the dashed red line). On
the right: the computed solution in Ωb.

Figure 2.4: Top left: Reconstruction of the solution in the right halfspace
using ϕ0 and Formulae (2.6). Top right: Reconstruction in two halfspaces :
the representations coincide. Bottom left: Reconstruction of the solution
outside Ωa. Bottom right: the discretization is not fine enough so that the
halfspace representations do not coincide in the quarter planes.
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It is a case of strong anisotropy for which the condition (2.25) is not satisfied. We can see on
Figure 2.5 that the method gives good numerical results. One simple way to validate these results
is to see if the reconstructed solution in the halfspaces match in the quarters of plane.

Figure 2.5: Real part of the solution of (2.1)-(2.26) in Ωb and reconstruction
of the solution in the halfspace Ωja.

2.3 The case without dissipation

Up to now, we have considered the dissipative problem (4) (with Im(ωε) > 0). But we claim
that in practice, our method also works in the non dissipative case Im(ω) = 0 (See Figure 2.6).
It is quite easy to extend the discrete formulation to this case, selecting carefully the outgoing
solution of the halfspace problem. The price to pay in order to get accurate results is then to use
a refined discretization in the Fourier variable ξ. Indeed, the solution decaying much more slowly
than in the dissipative case (the solution in the non-dissipative isotropic case behaves like eiωr√

r

at infinity, while the solution in the dissipative case decays exponentially), its Fourier transform
is less regular. The main difficulty lies at the theoretical level: the extension of the theoretical
results to the non-dissipative case still raises many open questions, that we briefly discuss below.

Let us consider to fix ideas the simplest case of the (isotropic non-dissipative) Helmholtz equa-
tion. It is well-known that the well-posedness of the associated boundary value problem is
ensured if one imposes to the solution to be "outgoing", which means for instance that the
solution satisfies the Sommerfeld radiation condition at infinity. Our objective is to reformulate
this problem using our halfspace matching formulation. The first difficulty is that the traces
ϕj of the solution are no longer in L2 (again, they behave like eiωr√

r
). An appropriate functional

framework has been introduced in [Bonnet-Ben Dhia and Tillequin, 2001a,Bonnet-Ben Dhia and
Tillequin, 2001b], where the space H1/2(R), convenient for the dissipative case, is replaced by
the space V (ω;R) of the functions ϕ such that |ξ2−ω2|1/4ϕ̂ ∈ L2(R). The functions of V (ω;R)

are locally in H1/2, but they may not belong to L2(R), due to their behavior at infinity. Using
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Figure 2.6: The solution in an anisotropic non dissipative case with ω = 10

this framework we can state the following result:

Let g ∈ H1/2(Σaa). If u is the outgoing solution of

−∆u− ω2u = 0 in Ω = R2\Ωa

u = g on Σaa

then {ϕja, j ∈ {0, 1, 2, 3}} is solution of (2.13) in the space
∏3
j=0 V (ω; Σj

a) . But we are not able
to prove the converse statement corresponding to the second part of Proposition 2.1 (even if we
conjecture that it is true). Indeed, we did not succeed in proving that the different halfspace
representations of the solution match in the quarters of planes. For instance, we are not able to
prove like in paragraph 3.1 that V = U0(ϕ0)− U1(ϕ1) vanishes in Ω0

a ∩ Ω1
a. The reason is that

we cannot prove that V is outgoing (in the sense of Sommerfeld radiation condition at infinity),
since we just know that U0(ϕ0) is propagating in the direction of positive x, while U1(ϕ1) is
propagating in the direction of positive y.

Another difficulty arises when we try to extend stability results like Theorem 2.2 to the non-
dissipative case. All the theory has been done with traces in L2, which is no longer the ap-
propriate space. An idea could be to introduce the space L(ω;R) of the functions ϕ such that
|ξ2−ω2|1/4
|ξ2+ω2|1/4 ϕ̂ ∈ L

2(R), because the functions of L(ω;R) are locally in L2. But it is far from ob-
vious to prove the different properties of the integral operators in this space. Finally, proving
uniqueness will be of course much more intricate in the non-dissipative case than in the dissipa-
tive case, where we mainly used the coerciveness in H1. A first step has been done by proving
a related uniqueness result: in [12], overlapping halfspaces representations are used to prove the
absence of trapped modes (i.e. L2 solutions of the homogeneous non-dissipative equation) under
very weak hypotheses.

Les us emphasize that our approach seems to be well-suited to formulate a large class of prob-
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lems, for which no equivalent of the Sommerfeld radiation condition is available. This is typically
the case of anisotropic elastic media or periodic media. For these problems, we aim at using our
halfspace formulation, not only to solve numerically the problem, but also to define the notion
of outgoing solution and to prove existence and uniqueness of this outgoing solution. A simi-
lar idea has been used for instance in [Bonnet-Ben Dhia et al., 2011] using a formulation with
non-overlapping halfspace representations for the junction of open waveguides.

2.4 The case of an anisotropic elastic media

The interest of the HsMM is that it exploits only the properties of the medium in each halfs-
pace. This method extends then naturally to the time-harmonic elasto-dynamic equations even
for anisotropic media. We begin this section by explaining the extension of the HsMM to that
case. Numerical results will be shown at the end of this section to validate and illustrate the
efficiency of the method. Moreover, let us recall that the PMLs fail for general anisotropic media
and this will be also shown.

Let us consider the elastic diffraction problem in 2D

−∇ · σ(u)− ω2
ερu = 0 in Ω = R \ O,

σ(u) · ν = 0 on ∂O
(2.27)

where u represents the displacement field (u = (ux, uy), σ(u) the stress tensor which is related
to the strain tensor ε(u) = 1/2 (∇u + ∇Tu) (in the small deformation assumption) through
the stiffness tensor C by the Hooke’s law (as in (1.37)), C is supposed to be constant outside
Ωa :=] − a, a[2, ρ is the density of the material which si supposed to be constant outside Ωa,
O is a set of bounded obstacles contained in Ωa, the source term f is of compact support and
finally we consider the case with dissipation Imωε > 0.

Using the same approach and the same notations than previously, we can derive a system
of coupled equations whose unknowns are vectorial and are the restriction of the displacement
field in Ωb :=] − b, b[2 (b > a), the traces of the displacement field on each lines Σj

a. The only
difference is the expression of the solution of the halfspace problems and then the expression of
the integral operators defined in (2.12) and (2.21).

We then explain in the rest of this section how the solution of the halfspace problems can
be expressed thanks to its trace on the boundary. To simplify the notations and the expla-
nations, we focus on the halfspace Ω0 and we omit the subscript 0 for the halfspace solution
U := U0 ∈ H1(Ω0

a)×H1(Ω0
a) of

divσ(U) + ω2
εU = 0 in Ω0

a,

U = Ψ on Σ0
a,

where Ψ = (Ψx,Ψy) ∈ H
1
2 (Σ0

a) × H
1
2 (Σ0

a). This can be rewritten using the Voigt-Mandel
notations

C1
∂2

∂x2
U + C2

∂2

∂x∂y
U + C3

∂2

∂y2
U + ω2

εU = 0, in Ω0
a,

U = Ψ on Σ0
a,

(2.28)
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where the Ci are symmetric 2x2 matrices whose coefficients are related to the coefficients of C
(see for instance [Royer and Dieulesaint, 1999]).

By applying the Fourier Transform in the y-direction to the previous equations, we obtain
for almost every ξ ∈ R,

C1
∂2

∂x2
Û− ıξC2

∂

∂x
Û− ξ2C3Û + ω2

εÛ = 0, for x ≥ a,

Û(a; ξ) = Ψ̂(ξ)

(2.29)

which is a system of two coupled ODEs of order 2 with constant coefficients and where the
Fourier variable ξ plays the role of a parameter. The solution of (2.29) can be written for a.e. ξ,
as

Û(x; ξ) = α1(ξ)U1(ξ)eıq
1(ξ)(x−a) + α2(ξ)U2(ξ)eıq

2(ξ)(x−a)

where

1. the qj(ξ)’s are the two only solutions having a positive imaginary part, of the quadratic

eigenvalue problem that is obtained by replacing in (2.29),
∂

∂x
by ıq – the quadratic eigen-

value problem has 4 solutions : two of them have a positive imaginary part (corresponding
to exponentially decaying functions) and the other two have a negative imaginary part
(corresponding to exponentially growing functions);

2. Uj(ξ)’s are the associated eigenvectors;

3. the αj(ξ)’s are such that Û(x; ξ) satisfies the boundary condition at x = a.

The solution of (2.28) is finally obtained by applying the inverse Fourier transform and the ex-
pressions (2.12) and (2.21) of the operators appearing in the HsMM formulation (the equivalent
of (2.24)).

Using the same arguments than for the scalar case, the HsMM formulation is equivalent to
the original problem. The theoretical analysis of the formulation and its numerical analysis are
in progress.

Even if the case without dissipation still raises open questions, the method works well. One
has only to construct the "outgoing" solution of each halfspace problem. However, here this is
less obvious than in the scalar case since this is linked to the choice of the "physical" solutions
of the quadratic eigenvalue problem. In the non dissipative case, it can be shown that, for small
values of ξ, the solutions of the quadratic eigenvalue problem may be real (and the associated
eigenvector propagative) so it is not possible to select the good solutions directly. An additional
criterion has to be considered. As explained in Chapter 1, the physical criterion is the energy
flux so it suffices to select the solutions q’s such that

Im(σ(Uq(ξ, ·))ex · Uq(ξ, ·)) > 0.

where Uq is the associated eigenvector. It can be shown that at most two solutions q satisfy this
criterion.
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We validate the method by applying it for an isotropic media and by choosing the source term
with a null rotational (resp. a null divergence) so that the solution of (2.27) is a P-wave (resp.
a S-wave), see Figure 2.7.

Figure 2.7: Isotropic case : we represent Reux (left), Reuy (center) and |u|
(right) for a source term with a null rotational (first line, P wave) and
with a null divergence (second line, S wave).

We can then apply the method for a general anisotropic media still by choosing the source
term with a null rotational (resp. a null divergence): the solution is called Quasi-P (Quasi-S)
wave even if in general the waves cannot be decoupled as for the isotropic case, see Figure 2.8.
Finally, as we have explained in the introduction of this chapter, the PML does not work for
general anisotropic media (see Figure 2.10) even if they do for isotropic ones (see Figure 2.9).
As you have understood the HsMM works for any general anisotropic elastic media.

2.5 The case of a periodic media

We consider a 2D anisotropic scalar acoustic model

−div(A∇u)− ω2
ε ρ u = f in Ω (2.30)

in time-harmonic regime with a small absorption, Im(ω2
ε) = ε > 0, where

• the domain of propagation Ω is R2 (geometrical defects included in Ωa can also be con-
sidered, boundary conditions have to be added to the model);

• the support of the source term is supposed to be compact and strictly included in Ωa;

• A is a symmetric, positive definite matrix of (L∞(Ω))2×2 and ρ is a strictly positive function
of L∞(Ω) and outside Ωa, the matrix A and the coefficient ρ are (Lx, Ly)-periodic in the
two directions. Without loss of generality, we will suppose that Lx = Ly = 1.
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Figure 2.8: Anisotropic case : we represent Reux (left), Reuy (center) and
|u| (right) for a source term with a null rotational (first line, Quasi-P wave)
and with a null divergence (second line, Quasi-S wave).

Figure 2.9: Isotropic case : we represent |u| computed with the HsMM
(left) and the PML (right).
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Figure 2.10: Anisotropic case : we represent |u| computed with the HsMM
(left) and the PML (right).

Figure 2.11: Sketch of the locally perturbed periodic media.

Our objective is to propose a numerical solution for the computation of this solution, the specific
difficulty being the periodic nature of the infinite media far from the perturbation.

Remark 2.5.1
Here the periodic media have a square structure (the directions of periodicity are orthogonal) but a
hexagonal structure can also be considered (see [6] for more details)

It seems that there are very few works for the simulation of wave propagation in infinite periodic
media. A first class of methods covers problems where the periodicity can be treated by homog-
enization techniques [Bensoussan et al., 1978, Allaire, 1992], typically when the wavelength is
much larger than the period. The unboundedness of the homogenized and often anisotropic me-
dia can then be handled using classical methods mentioned in the Introduction of this chapter.
A second class of methods considers the periodicity as such but only for finite media [Yuan
and Lu, 2006, Ehrhardt et al., 2008, Ehrhardt and Zheng, 2008] or periodic media which can
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be reduced to finite domain when the frequency is in a band gap of the underlying operator
(by using the supercell method [Soussi, 2005]). In our work, we consider infinite periodic media
where the periodicity has to be considered as such.

The Halfspace Matching Method was first conceived and introduced for periodic media dur-
ing my phD with Patrick Joly. Now I often present the periodic case after the homogeneous case
because the notations and the computations are much more involved. The idea of the method
is the same : exploit the – namely here periodic – properties of the media in some halfspaces
surrounding the perturbation.

To simplify the presentation, we assume that a = 1/2 and b = 3/2 but any a, b ∈ 1/2Z∗ can be
considered. Using the same approach and the same notations than previously, we can derive a
system of coupled equations whose unknowns are the restriction of the solution in Ωb :=]−b, b[2,
the traces of the solution on each lines Σj

a. The only difference is the expression of the solution
of the halfspace problems and then the expression of the integral operators defined in (2.12) and
(2.21).

We explain then in the rest of this section how the solution of the halfspace problems can
be expressed thanks to its trace on the boundary. To simplify the notations and the expla-
nations, we focus on the halfspace Ω0 and we omit the subscript 0 for the halfspace solution
U := U0 ∈ H1(Ω0

a) of

−div(A∇U)− ω2
ε ρU = 0 in Ω0

a,

U = ψ on Σ0
a.

(2.31)

where A and ρ are 1−periodic in the two directions x and y.

To solve this halfspace problem, we replace the Fourier Transform used for homogeneous media
with the privileged tool for the study of PDEs with periodic coefficients: The Floquet Bloch
Transform (FBT) (see also Section 1.3). The FBT of period 1 is defined by (see [Kuchment,
1993]):

F : ϕ ∈ L2(R) 7→ Fϕ ∈ L2(K)

where for a.e. (y, ξ) ∈ K = (−1/2, 1/2)× (−π, π)

Fϕ(y, ξ) =
1√
2π

∑
n∈Z

ϕ(y + n)e−ınξ.

Moreover we have the inversion formula: for a.e.y ∈ [0, 1] ∀n ∈ Z,

ϕ(y + n) =
1

2π

∫ π

−π
Fϕ(y, ξ)eınξdξ

We denote Fyu the FBT of a function u of R2 applied in the y-direction.

By using the properties of the FBT (see [Kuchment, 1993] and [18]), we apply the FBT in
the y−direction to the halfspace problem (2.31) and find that the FBT in the y−direction
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Û (ξ) = FyU (·; ξ) of U is solution, for any dual variable ξ ∈ (−π, π), of the strip problem

−div(Ap∇Û(ξ)− ω2
ε ρp Û(ξ) = 0, in B0

Û(ξ)|x=a = Fyψ(ξ)|x=a,

Û(ξ)|y=1/2 = eıξ Û(ξ)|y=−1/2

Ap∇Û(ξ) · ey|y=1/2 = eıξAp∇Û (ξ) · ey|y=−1/2

where B0 = Ω0
a ∩ {−1/2 ≤ y ≤ 1/2}.

This is a semi-infinite periodic waveguide problem with quasi-periodic boundary conditions
parametrized by the Floquet dual variable ξ. As explained in Chapter 1 and Section 1.3.3, we
can characterize and compute periodicity cell by periodicity cell the solution of this semi-infinite
periodic waveguide thanks to the solutions e0

ξ and e1
ξ of two cell problems and the propagation

operator P (ξ). This operator is the unique operator of spectral radius strictly less than 1 to the
stationary Riccati equation

T10(ξ)P (ξ)2 + (T00(ξ) + T11(ξ))P (ξ) + T01(ξ) = 0,

where the operators Tij(ξ) are the local DtN operators. Applying the FBT inverse, U and the
operators Λ0 (we recall the reader that ∀ψ, Λ0 ψ = Ap∇U ·ex

∣∣
Σ0
bb
where here Σ0

bb = {(3/2, y), y ∈
(−3/2, 3/2)), D0

1 and D0
2 (we recall the reader that ∀ψ, D0

1 ψ = U
∣∣
y=1/2

and D0
2 ψ = U

∣∣
y=−1/2

)
can then be expressed semi-analytically. In particular, we have for all n ∈ {−1, 0, 1}, for a.e.
1/2 + n < y < 1/2 + n+ 1,

(Λ0ψ) (y) = − 1√
2π

∫ π

−π
(T00(ξ) + T10(ξ)P (ξ))P (ξ)Fyψ(·; ξ) eınξ dξ,

and for all n ∈ N and for a.e. 1/2 + n < x < 1/2 + n+ 1

(D0
1ψ) (x) =

1√
2π

∫ π

−π
D(ξ)P (ξ)nF2ψ(·; ξ) dξ,

where D(ξ) = D0(ξ)+D1(ξ)P (ξ) and the operators D0(ξ)ψ̂ and D1ψ̂ are respectively the traces
on y = 1/2 of the cell solutions e0

ξ(ψ̂) and e1
ξ(ψ̂).

This gives an idea of the expressions of all the operators appearing in the HsMM formulation
(2.24) applied to the periodic case. It is easy to show that this formulation is equivalent to the
original problem (using the same arguments than for the homogeneous case). Using Theorems
2.2.4 and 2.2.5, we are able to show equivalent results.

Theorem 2.5.1 (Stability result for the periodic case)
If A = I outside Ωa, the bilinear form associated to (2.24) written for the periodic case in
(H1(Ωb)× V0)2 is the sum of a coercive bilinear form and a compact one.

In general, Problem (2.24) written for the periodic case, Fredholm alternative holds.

From the numerical point of view (see [5] for more details),
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Figure 2.12: Right figure : Solution of (2.30) for A = I and ρ represented in
the left figure.

• we use 1D Lagrange FE method for the trace unknowns and a 2D Lagrange FE method
for the volume unknown and for the periodicity cell;

• to handle the integral operators we use a quadrature formula to discretize the dual variable
ξ ∈ (−π, π);

• to compute the integral operators, for each ξ, we have to (1) solve the cell problems,
(2) compute the local DtN operators Tij(ξ) and the local DtD Dj(ξ) and (3) solve the
stationary Riccati equation to compute P (ξ).

Let me mention that the integral equations can be considered in the space variable (the unknowns
are the traces) or in the Floquet variable (the unknowns are the Floquet Bloch Transform of the
traces) – same remarks apply for the homogeneous case. I have implemented the second case
but the first case could be done. For instance Figure 2.12 represents the solution (right figure)
for a particular periodic media, whose ρ is represented in the left figure. In this computation,
Ωa is a small region containing the perturbation and using the traces, I have then reconstructed
the solution everywhere by using the solution of the halfspace problems.

2.6 Ongoing works and perspectives

Although the method works very well in practice in the non-dissipative case, we were not able
to extend the theoretical analysis to that case. Making progress in that direction is a challenging
objective.
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In collaboration with CEA LIST, we want to propose numerical methods in the context of
Non Destructive Testing or Structural Health Monitoring of elastic plates made of composite
materials (in aeronautics or in civil engineering structures for instance). In these applications,
the medium is infinite in two directions and bounded in the other direction. The extension to
3D elastic plates –elasticity equations in such 3D structures are considered and not asymptotic
plate equations in a limit 2D structure– of the Half-Space Matching method requires some gen-
eralizations of the formulation which are not obvious. In 3D, the representation of the solution
in a half-plate combines a Fourier transform in the parallel direction to the boundary of the
half-plate, and representations in series expansion of Lamb modes in the thickness of the plate.
In order to exploit bi-orthogonality relations of Lamb modes, one has to use both Dirichlet and
Neumann traces of the solution (displacement and normal stresses) (see Section 1.4.3), which
raises difficult theoretical questions, even in the dissipative case. This is done in the framework
of Yohanes Tjandrawidjaja PhD thesis. From the computational point of view, the efficiency of
the method will probably be compromised by the presence of large full matrices, associated with
the integral operators. One of the objectives is to adapt to the discretized Half-Space Matching
method some compressing techniques.

The HsMM has been already used by Julian Ott (KIT, Karlsruhe) to deal with the junction of
optical fibers (the algorithm was then integrated in an optimization process in order to optimize
the efficiency of the junction), see Section 3.4 and for instance the configuration of Figure 1.17
top left. I would like to consider more general configurations of junctions of fibers, for instance
with the presence of periodic structures (see Figure 1.17 top right). For this last configuration,
the determination of the halfspace solution has to be done.

One limitation of the Half-Space Matching method is precisely that the use of a partial Fourier
transform imposes the geometry of Half-Spaces for the exterior sub-domains. We plan to in-
vestigate the possibility of using more general unbounded overlapping sub-domains, replacing
the Fourier representations by classical integral representations. The method would be therefore
applicable in configurations where a Green function is available for each subdomain albeit not
globally for the total exterior domain. This is the case for instance in 2D if each subdomain
has its own stratification, which does not correspond to a global stratification. This should also
allow to treat the junction of several embedded pipes or optical fibers (see Section 1.5 for a
presentation of the problem and for an alternative method).

Another perspective consists in extending the Half-Space Matching method to the time do-
main. As for convolution quadrature methods, the idea is to use an implicit scheme. Then, the
problem at each time step is solved by using the Half-Space Matching method. The difficulty is
the presence of a source term which depends on the previous time steps and which is no longer
compactly supported. This is in progress in the framework of Hajer Methenni’s PhD thesis.

In time domain or in frequency domain, the extension of the method to multiple defects and/or
lineic defects seems to be important for the applications in ultrasonic Non Destructive Testing.

Let us finally mention that most of the subjects described above for ultrasonic waves could
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be also relevant for electromagnetic waves. For instance, the Half-Space Matching method could
be a way to solve Maxwell equations in an unbounded anisotropic medium, where PMLs can be
unstable.
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3 Trapped and guided modes in
periodic structures

Collaborations : Bérangère Delourme (LAGA, Paris 13), Patrick Joly (POEMS), Elizaveta
Vasilevskaya (LAGA, Paris 13)
Supervising : Berangere Delourme’s Post-doc (2012), Khac-Long Nguyen’Post-doc (2014-2015)

3.1 Introduction

As I said in the introduction, periodic media play a major role in applications, in particular
in optics for micro and nano-technology [Joannopoulos et al., 1995,Johnson and Joannopoulos,
2002,Kuchment, 2001, Sakoda, 2001]. From the point of view of applications, one of the main
interesting features is that it can exist intervals of frequencies, called band gaps, for which the
propagative waves cannot exist in the media. This phenomenon is due to the fact that a wave
on the media is multiply scattered by the periodic structure, which can lead, depending on the
characteristics of the media and the frequency, to possibly destructive interferences. It seems
then that an appropriate choice of the structure and the dielectric materials of the photonic
crystal can create particular band gap and then, from a practical point of view, banish some
monochromatic electromagnetic waves. Thus, the periodic media could be used to several poten-
tial applications such as in the realization of filters, antennas and more generally, components
used in telecommunications.

Mathematically, this property is linked to the gap structure of the spectrum of the underlying
differential operator appearing in the model. For a complete, mathematically oriented presenta-
tion, we refer the reader to [Kuchment, 2001,Kuchment, 2004]. Without being exhaustive, let us
review a few important results on the topic. In the one dimensional case, it is well known [Borg,
1946] that a periodic material can have (often infinitely) many gaps unless it is constant. By
contrast, in 2D or 3D, a periodic medium might or might not have gaps and necessary condi-
tions for the existence of band gaps are not known. Nevertheless, sufficient conditions where at
least one gap exists can be found. For instance, Figotin and Kuchment have given examples of
high contrast medium for which as many band gaps as one wants can be created [Figotin and
Kuchment, 1996a, Figotin and Kuchment, 1996b]. Using asymptotic arguments, Nazarov and
co-workers have established that a small perturbation of an homogeneous waveguide can open a
gap in the continuous spectrum of the operator [Nazarov, 2010,Cardone et al., 2010]. Moreover,
other band gap structures have been characterized through numerical approaches in [Figotin

75
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and Godin, 1997]. In any case, except in dimension one, the number of gaps is expected to
be finite. This statement, known as the Bethe-Sommerfeld conjecture, is fully demonstrated
for periodic Schrödinger operators in 2D [Skriganov, 1979,Popov and Skriganov, 1981] and in
3D [Skriganov, 1983,Skriganov, 1985,Karpeshina, 1997] and for particular 2D periodic Maxwell
operators [Vorobets, 2011].

Besides, a local perturbation of the crystal can produce defect mid-gaps modes, that is to say
solutions to the homogeneous time-harmonic wave equation, at a fixed frequency located inside
one gap, that remains localized in the vicinity of the perturbation. This localization phenomenon
is of particular interest for a variety of promising applications in optics to design lasers, fibers or
efficient waveguides in general. This localization effect is directly linked, from a mathematical
point of view, to the possible presence of isolated eigenvalues of finite multiplicity inside the gaps
appearing when perturbing the underlying periodic operator. Several papers exhibit situations
where a compact (resp. lineic) perturbation of a periodic medium give rise to localized (resp.
guided) modes. It seems that the first results concern strong material perturbations : for local
perturbations [Figotin and Klein, 1997,Figotin and Klein, 1998a,Figotin and Klein, 1998b] and
for lineic perturbation [Kuchment and Ong, 2003]. There exist fewer results about weak material
perturbations: [Brown et al., 2014,Brown et al., 2015] deal with 2D lineic perturbations. Finally
geometric perturbations are considered in [Nazarov, 2012b,Nazarov, 2014a].

A first part of our contributions to this subject, is to complement the references mentioned
above by proving the existence of guided modes created by a lineic geometrical perturbation of
a particular periodic medium. A summary of the results and the method of study is presented
in Section 3.3.

From a numerical point of view, there exist only few methods to compute trapped or guided
modes. The most well known is the Supercell method. It consists in making computations in a
bounded domain of large size with periodic boundary conditions, the resulting solution converg-
ing to the true solution when the size tends to infinity. The convergence for the computation of
defect modes has been shown for 2D problems and compact perturbations in [Soussi, 2005] and
generalized to 3D problems and to exponentially decaying perturbations in [Cancés et al., 2014].
In this case, as the localized modes are exponentially decaying, this convergence is exponentially
fast with respect to the size of the truncated domain. In practice, this approach replaces the
eigenvalue problem set in an unbounded domain to an approximated one set in a bounded do-
main. See [Schmidt and Kappeler, 2010], for example, for numerical results. The main drawback
of this strategy relies on the increase of the computational cost, especially when a mode is not
well confined.

By adapting to eigenvalue problems the construction of Dirichlet-to-Neumann operators orig-
inally developed for scattering problems and presented in Section 1.3.4, we want to offer a
rigorously justified alternative to existing methods. Compared to the Supercell method, the
DtN method allows us to reduce the numerical computation to a small neighborhood of the
defect independently from the confinement of the computed guided modes. Moreover, as the
method is exact, we improve the accuracy for non well-confined guided modes. Obviously, there
is a price to be paid : the reduction of the problem leads to a non linear eigenvalue problem, of
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a fixed point nature. However, this difficulty has been already overcome for homogeneous open
waveguides for which the DtN approach is well known [Joly and Poirier, 1999,Pedreira and Joly,
2001,Pedreira and Joly, 2002]. This is presented in Section 3.2.

3.2 A Dirichlet-to-Neumann approach for the exact computation
of guided modes in photonic crystal waveguides

The propagation model we consider is a simple 2D space-(x = (x, y)) time domain scalar problem
and we look for w satisfying the wave equation

ρ(x)
∂2w

∂t2
−4w = 0, x ∈ Ω, t ≥ 0 (P)

The domain of propagation Ω is infinite in the two directions, its geometry is periodic in the
y−direction with the period Ly and periodic in the x−direction with the period Lx outside a
straight band

Ω0 = ]− a, a[× R

The function ρ is periodic as well in Ω+ ∪ Ω− = Ω \ Ω0 (Ω± = Ω ∩ ((±a,±∞)×R)), with the
same periodicity than the geometry (see figure 3.1)

ρ(x, y) = ρp(x, y) in Ω+ ∪ Ω−

ρ0(x, y) in Ω0
with

ρp(x± Lx, y ± Ly) = ρp(x, y) ∀ (x, y) ∈ Ω

ρ0(x, y ± Ly) = ρ0(x, y) ∀ (x, y) ∈ Ω0

Let us denote B one period of the domain in the y-direction (see figure 3.2):

Figure 3.1: Domain of propagation : typically ρ = 1 in the white region,
ρ = 2 in the dark grey regions and ρ = 3 in the light grey regions.

B = R×]− Ly
2
,
Ly
2

[.

A guided mode of this problem is by definition a solution w to (P) which can be written in the
form

w(x, y) = v(x, y) eı(βy−ωt)
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Figure 3.2: The band B.

where the frequency ω ∈ R+, v is periodic in the y−direction with period Ly and v
∣∣
B
∈ L2(B),

the quasi period β can then be considered in ]−π/Ly, π/Ly[. This corresponds to finding couples
(ω2, β) such that there exists u ∈ H1(B), u 6= 0 solution of

−1

ρ
4u = ω2u, in B

u
∣∣
Σ+ = eıβLy u

∣∣
Σ−
, ∂y u

∣∣
Σ+ = eıβLy ∂y u

∣∣∣
Σ−

where (see Figure 3.2) Σ± = R×
{
± Ly

2

}
.

The classical approach for solving this eigenvalue problem set in an unbounded domain is the
Supercell Method [Soussi, 2005] which is based on the exponentially decaying property of the
mode in the x−direction and consists in truncating the band B far enough. Let us mention that
the exponential decay rate depends on the distance between the corresponding eigenvalue to the
essential spectrum of the operator. We could then enlighten some drawbacks of the method:

1. the essential spectrum of the operator has to be computed initially.

2. for a fixed β, it seems important to have an estimation of the distance between the not
yet computed eigenvalue and the essential spectrum of the operator to choose a relevant
truncated domain.

3. The size of the truncated domain depends on β and on the distance between the eigenvalue
and the essential spectrum. If the eigenvalue approaches the essential spectrum of the
operator when β varies, the corresponding eigenvector becomes less and less confined (less
and less exponentially de- creasing) and then the truncated domain has to be bigger and
bigger.

Here we propose a novel method based on a DtN approach which offers a rigorously justified
alternative to the super-cell method.

3.2.1 Spectral theory results

We have reduced the problem of finding the guided modes to the following problem :

Findβ ∈ ]− π

Ly
,
π

Ly
[, ω2 ∈ R+, s.t. ∃u ∈ H1(B), u 6= 0, A(β)u = ω2u (E)

where
A(β) = −1

ρ
4

D(A(β)) =
{
u ∈ H1(4, B),

u|Σ+ = eıβLyu|Σ−
∂yu|Σ+ = eıβLy∂yu|Σ−

}
.
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with H1(4, B) = {u ∈ H1(B), 4u ∈ L2(B)}.

To solve (E), there are two different approaches: the ω−formulation (which consists in fixing β
and looking for ω) and the β−formulation (which consists in fixing ω and looking for β). To
simplify the presentation, we choose here the first one but the method extends to the other
formulation - which could be more adapted for dispersive media for example: ρ(ω).

Using [Kuchment, 1993] and proving that A(β) is the compact perturbation of an operator
with the perfectly periodic coefficient ρp, we can show that the operator A(β) is selfadjoint in
L2(B, ρdxdy), positive and its essential spectrum satisfies

σess(β) = R \
⋃

n∈J1,N(β)K

]an(β), bn(β)[

where 0 ≤ an(β) < bn(β) and N(β) ≤ +∞. The intervals ]an(β), bn(β)[ are the gaps of the
essential spectrum.

Remark 3.2.1
The classical characterization of the essential spectrum involves the eigenvalues of a cell problem with
quasi periodic conditions. In Proposition 3.2.4, we will give another characterization of the essential
spectrum with a by-product of the method.

Let us suppose now that at least one gap exists (see the introduction and Section 3.3 for suffi-
cient conditions on the periodic medium which ensure the existence of gaps). We are interested
in characterizing and then computing the eigenvalues (λm(β))m which are in the gaps of the es-
sential spectrum (see the introduction and Section 3.3 for sufficient conditions which ensure the
existence of eigenvalues). We can choose, using classical arguments that the dispersion curves
β 7→ λm(β) are continuous, 2π/Ly-periodic and even. We deduce in particular that it is sufficient
to study the dispersive curves for β ∈ [0, π/Ly].

3.2.2 The non linear eigenvalue problem

From this point, we will focus on the eigenvalues ω2 /∈ σess(β).

We recall the reader the definition of the DtN operators associated to each half-band prob-
lems (see 1.3.4): for any β ∈ [0, π/Ly], any α ∈ R+, a given ϕ in H1/2

β (Γ±), let u± ∈ H1(B±)

be the solution of

−4u± − ρpα2u± = 0 in B±

u
∣∣
Γ±

= ϕ

u
∣∣
y=Ly/2

= eıβLy u
∣∣
y=−Ly/2, ∂yu

∣∣
y=Ly/2

= eıβLy ∂yu
∣∣
y=−Ly/2.

(P±)

where B± = B ∩ Ω±, Γ± = {±a} × (−Ly/2, Ly/2) and the space H1/2
β (Γ±) is the set of

traces of functions in H1(B±) satisfying the β-quasi-periodic boundary conditions u|y=Ly/2 =

eıβLy u|y=−Ly/2.



80 Chapter 3. Trapped and guided modes in periodic structures

Theorem 3.2.1 (Well-posedness of the problems (P±) [7])

If α2 /∈ σess(β), the problem (P±) is well-posed in H1 except for a countable set of frequencies
which depends on β (called the edge resonances).
If the periodicity cell is symmetric with respect to the axis x = 0 and if ω2 /∈ σess(β), the
problem (P±) is always well-posed in H1.

Remark 3.2.2
In Remark 1.3.4, we explain how to avoid the edge resonances.

Suppose that the problems (P±) are well posed. Then, the DtN operators

Λ±(β, α) ∈ L(H
1/2
β (Γ±), H

−1/2
β (Γ±)),

H
−1/2
β (Γ±) being the dual space of H1/2

β (Γ±), are given by

∀ϕ ∈ H1/2
β (Γ±), Λ±(β, α)ϕ = ∓∂x u±(β, α;ϕ),

where u±(β, α;ϕ) is the unique H1 solution to (P±). The next theorem is therefore straightfor-
ward.

Theorem 3.2.2 (Problem with DtN conditions [7])

The problem (E) is equivalent to the problem set on B0 = B ∩ Ω0

Find ω2 /∈ σess(β), s.t. ∃u0 ∈ H1(B0), u0 6= 0, − 1

ρ0
4u0 = ω2u0, in B0 (E0)

u0 satisfying the boundary conditions

+∂x u0 + Λ+(β, ω)u0 = 0, on Γ+

−∂x u0 + Λ−(β, ω)u0 = 0, on Γ−,

u0|y=Ly/2 = eıβLyu0|y=−Ly/2 and ∂yu0|y=Ly/2 = eıβLy∂yu0|y=Ly/2.

(BC0)

These problems are equivalent in the sense that if (ω, u) is solution of (E) then (ω, u|B0) is
solution of (E0). Conversely, if (u0, ω) is solution of (E0) then u defined by

u
∣∣
B0

= u0

u
∣∣
B±

= u±(β, ω, ϕ), where ϕ = u0

∣∣
Γ±a

(3.1)

associated to the same value ω is solution of (E). Moreover, the multiplicity of ω is the same for
the two problems.

Whereas the problem (E) was linear with respect to the eigenvalue ω2 but defined on an un-
bounded domain, the problem (E0) is set on a bounded domain but non linear. Note that the
problem (E0) is also non linear with respect to β (whereas the problem (E) can be rewritten
as a quadratic eigenvalue problem). In other words, this difficulty would be present if we have
decided to fix ω and look for β.

We now introduce the solution algorithm of the non linear eigenvalue problem and explain
how to compute the DtN operators in the case where ω2 /∈ σess(β).



3.2 A Dirichlet-to-Neumann approach for the exact computation of guided modes in photonic
crystal waveguides 81

3.2.3 Solution algorithm

For α2 /∈ σess(β), we denote by A0(β, α) the operator

A0(β, α) = − 1

ρ0
4

D(A0(β, α)) =
{
u ∈ H1(4, B0), u satisfying (BC0)

}
.

where we have replaced in (BC0) ω by α. By showing a Gärding inequality for Λ(β, α), we can
show that

Theorem 3.2.3 ( [7])
The operator A0(β, ω) is selfadjoint and with compact resolvant.

Its spectrum is then a pure point one and consists of a sequence of eigenvalues (µn(β, ω))n of
finite multiplicity tending to +∞. The explicit expression of these eigenvalues using the Min-
Max principle and the norm-continuity of the DtN operator Λ±(β, α) with respect to α yield
some regularity properties of each eigenvalue with respect of ω.

Consequently, the solutions of the non-linear problem (E0) are the roots of the equations :

ω2 /∈ σess(β) and µm(β, ω) = ω2, for m ≥ 1.

We then infer the iterative algorithm for the computation of the guided modes and associated
eigenvalues with two nested loops:

• the outer loop consists in a fixed point algorithm to solve the non linear equation:

µm(β, ω) = ω2, ω2 /∈ σess(β);

• each iteration of this fixed point algorithm requires the computation of the m−th eigen-
value µm(β, α) of the operator A0(β, α) (and possibly the derivative of µm(β, α) with
respect to α if a Newton method is used to solve the fixed point problem).

This algorithm is quite classical for the computation of guided modes in open waveguides
(see [Bonnet-Ben Dhia and Starling, 1994]). Here the novelty comes from the fact that the eigen-
values ω2 could belong to any gap of the spectrum and moreover that the operators Λ±(β, α)

have no analytical expression, but they only can be computed numerically.

For the construction of the DtN operators Λ±(β, α) for any β and α, we refer to Section 1.3.4
which has to be adapted to take into account the β−quasi periodic boundary conditions. Let
me remind the algorithm, written for α2 /∈ σess(β). Actually, for α2 /∈ σess(β), Problem (P±)
being well-posed in H1, the algorithm is the same as the one for the case with dissipation:

• solve the two cell problems associated to (P±);

• compute the local DtN operators;

• compute the unique solution of spectral radius strictly less than 1 of the associated Riccati
equation;
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• compute the DtN operators.

We have, indeed, explained in Section 1.3.4 that when α2 does not lie in the essential spectrum
of the periodic operator, the stationary Riccati equation has only one solution of spectral radius
less than one and its spectral radius is strictly less than one. More precisely, we have the following
result.

Proposition 3.2.4
The stationary Riccati equation associated to (P±) has a unique solution whose spectral radius
is strictly less than one if and only if α2 /∈ σess(β).

The solution of the stationary Riccati equation enables then a characterization of the essential
spectrum. If the spectral method described in Section 1.3.3 is used to solve this Riccati equation,
it suffices to look at the solutions. More precisely, if the eigenvalues are all either inside or outside
the unit circle then a solution of the Ricatti equation having a spectral radius strictly less than
one can be constructed and then α2 /∈ σess(β). If one eigenvalue is on the unit circle, it is not
possible to construct such solution and then α2 ∈ σess(β). This characterization of the essential
spectrum (whose computation is necessary) is then a by-product of the method. One does not
have to compute it, as it is done classically, through the solution of a family of eigenvalue
problems set on the periodicity cell.

3.2.4 Numerical results

We consider the periodic medium represented Figure 3.3. We plot on Figure 3.4 the isovalue lines

Figure 3.3: Isovalues of the photonic crystal waveguide

of the function log |µ1(β, α)− α2| for β ∈ [0, π/Ly] and α2 ∈ [0, 20] \ σess(β). For a fixed β, the
white regions corresponds to the essential spectrum σess(β). Note that the function µ1(β, α)−α2

vanishes several times in this interval but once per gap. The dispersion curves are given by the
blue lines. We can also solve the Newton algorithm for fixed β’s in order to compute the ω’s such
that ∃n, µn(β, ω) = ω2. For such solution, from the associated eigenvector u0 to µn(β, ω), we can
construct the guided mode by using (3.1). For two values of β, We have represent in Figure 3.5
the guided modes in eight periods from each side of the line defect. Figure 3.5(a) corresponds
to the eigenvalue in the first gap of A(0.5) with a well confined mode whereas in Figure 3.5(b)
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the eigenvalue belongs to the fourth gap of A(1.9)) and the associated guided mode is not well
confined. For the position of the eigenvalues, see the dark point in Figure 3.4.

Figure 3.4: Contours of log(µ1(β, α) − α2); β ∈ [0, π/L], α2 ∈ [0, 20]. The two
dark points represent the values ω with µ1(β, ω) = ω2 for which the guided
modes are represented in Figure 3.5

(a) β = 0.5, ω2 = 3.465 (b) β = 1.9, ω2 = 10.565

Figure 3.5: Modes: well confined (left); not well confined (right).

3.2.5 Other related works

In [9], we have performed the numerical analysis of the DtN method and make precise compar-
isons with the supercell method. In [10], we have performed the mathematical and numerical
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analysis by using Robin-to-Robin operators, the motivation was to compute the edge resonances
(or the Dirichlet surface modes). Finally in [25], we apply the method to 3D applications.

3.3 Trapped and guided modes in topographic periodic domains

In this section, we propose a family of periodic media for which the existence of gaps is ensured
and we give also lineic perturbation for which guided modes exist. Compared to other similar
results, the conditions on the periodic media and the lineic perturbation are quite simple.

More precisely, we consider a ladder-like periodic structure, namely a thin periodic structure
(the thickness being characterized by a small parameter ε > 0) whose limit (as ε tends to 0)
is a periodic graph. In other words, the periodic structure is R2 minus a periodic (in the two
directions) set of rectangles, the distance between two consecutive rectangles being ε. We intro-
duce a perturbation consisting in changing the geometry of the reference medium by modifying
the distance between two consecutive lines of rectangles (see Figure 3.6). The question we in-
vestigate is whether such a geometrical perturbation is able to produce guided modes. We have
investigated this question when the propagation model is the scalar Helmholtz equation with
Neumann boundary conditions. This amounts to solving an eigenvalue problem for the Laplace
operator in a band with quasi-periodic boundary conditions.

To address this question, we used a standard approach of analysis (used for instance in [Fig-
otin and Kuchment, 1996a,Nazarov, 2012a]) that consists of three main steps. We first find the
formal limit of the eigenvalue problem as ε tends to 0. In the present case, it corresponds to
an eigenvalue problem for a self-adjoint operator defined along the limit periodic graph ( [Ru-
binstein and Schatzman, 2001, Kuchment and Zeng, 2001, Saito, 2000, Post, 2006, Panasenko
and Perez, 2007]). This limit operator consists of the second order derivative operator on each
edge of the graph together with transmission conditions (called Kirchhoff conditions) at its ver-
tices [Exner, 1996,Carlson, 1998,Kuchment and Zeng, 2001]. Then, we proceed to an explicit
calculation of the spectrum of the limit operator using a finite difference scheme [Avishai and
Luck, 1992, Exner, 1995]. Finally, we prove that the spectrum of the initial operator is close
to the spectrum of the limit operator. In particular, we prove the existence of localized modes
provided that the geometrical perturbation consists in diminishing the width of one rung of the
periodic thin structure. Moreover, in that case, it is possible to create as many eigenvalues as
one wants, provided that ε is small enough. We obtain an asymptotic expansion at any order of
the eigenvalues, which can be used for instance to compute a numerical approximation of these
eigenvalues and associated eigenvectors. Numerical experiments illustrate the theoretical results.

This was done in the framework of the Phd of Elizaveta Vasilevskaya with who I have worked,
with also her Phd advisors Patrick Joly (POEMS) and Bérangère Delourme (LAGA). We have
written two papers and a research report [15] [19,23] on a similar situation – existence of trapped
modes in a ladder-like domain infinite in one direction and bounded in the other one with Neu-
mann boundary conditions and not quasi-periodic ones – with the same approach.
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3.3.1 Model problem

We consider the propagation of acoustic waves in a particular periodic medium that consists of
the plane R2 minus an infinite set of equispaced perfect conductor rectangular obstacles with
Neumann boundary conditions. The parameter ε represents the distance between the obstacles.
We introduce a lineic defect in this perfectly periodic domain by changing the distance between
two consecutive columns of obstacles from ε to µε, where µ > 0 (cf. Figure 3.6 for µ ∈ (0, 1)).
Our aim is to find guided modes, that is to say solutions of the homogeneous wave equation

Figure 3.6: Periodic and perturbed domains

propagating along the defect. We know from the previous section that this problem can be
reformulated as an eigenvalue problem for the Laplacian in the periodicity band Ωµ

ε with β-
quasi-periodic boundary conditions in the y−direction (cf. Figure 3.7). More precisely, we seek
the couples (uε, λ

ε) ∈ H1(Ωµ
ε )× R+ satisfying

−∆uε = λ2
ε u

ε in Ωµ
ε , (3.2)

together with β-quasi-periodicity boundary conditions on Σ± = ∂Ωµ
ε ∩ {y = ±L/2} with β ∈

[0, 2π/L],
uε|Σ+ = eıβL uε|Σ− , ∂yu

ε|Σ+ = eıβL ∂yu
ε|Σ− , (3.3)

and homogeneous Neumann boundary conditions on the remaining part of the boundary:

∂nu
ε = 0 on ∂Ωµ

ε \ (Σ+ ∪ Σ−). (3.4)

More precisely, let us introduce the following self-adjoint operator for β ∈ [0, 2π/L[:

Figure 3.7: The periodicity band Ωµε

Aµε (β) : L2(Ωµ
ε )→ L2(Ωµ

ε ), Aµε (β)v = −∆v,

D(Aµε (β)) =
{
v ∈ H1(∆,Ωµ

ε ), ∂nv|∂Ωµε \(Σ+∪Σ−) = 0, v|Σ+ = eıβL v|Σ− , ∂yv|Σ+ = eıβL ∂yv|Σ−
}
.
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Problem (3.2)-(3.3)-(3.4) turns out to be an eigenvalue problem for Aµε (β) in L2(Ωµ
ε ). For µ = 1,

there is no eigenvalue. We investigate the possibility of creating eigenvalues by playing with the
parameter µ.

3.3.2 Limit problem

The investigation of the spectral problem (3.2)-(3.3)-(3.4) is based on its asymptotic analysis
as ε tends to zero. First, we identify the limit spectral problem. This problem is posed on the
graph G obtained by taking the geometrical limit of the domain Ωµ

ε when its thickness tends to
zero (cf. Figure 3.8). More precisely, we look for the eigenpairs (u, λ), where, for any edge e of
G, the restriction ue of u to e is solution of

−u′′e = λ ue,

u is β-quasi periodic in the y−direction, and, at each "interior" vertex M of the graph, u is
continuous and satisfies the so-called Kirchhoff transmission conditions∑

e∈E(M)

wµ(e) u′e(M) = 0, (3.5)

u′e(M) being defined outward. In (3.5), E(M) denotes the set of the edges sharing M as a com-
mon vertex, wµ(e) = 1 for any unperturbed edge and wµ(e) = µ for the two perturbed edges.

In order to describe the limit operator defined on the graph G we need to introduce the fol-
lowing function spaces.

Lµ2,G =

{
u; ue ∈ L2(e), ∀e ∈ G; ‖u‖2Lµ2,G :=

∑
e∈G

wµ(e)‖ue‖2L2 <∞

}

H2
G =

{
u ∈ Lµ2,G ∩ C(G); ue ∈ H2(e), ∀e ∈ G; ‖u‖2H2

G
:=
∑
e∈G
‖ue‖2H2 <∞

}

The limit operator Aµ(β) is defined as follows.

∀e ∈ G, (Aµ(β)u)e = −u′′e , D(Aµ(β)) =
{
u ∈ H2

G ,
∑

e∈E(M)

wµ(e) u′e(M) = 0, u β −QP
}
.

The operator Aµ(β) is selfadjoint in Lµ2 (G). Its spectrum can be characterized explicitly through
the Floquet-Bloch theory and using a finite difference scheme and we have in particular the
following result:

Theorem 3.3.1
For any β ∈ [0, 2π/L], the essential spectrum of Aµ(β) has infinitely many gaps of the form
(an0 (β), bn0 (β)), n ∈ N, where, an0 (β) and bn0 (β) go to +∞ as n tends to +∞, and bn−1

0 (β) < an0 (β).
Moreover, if µ ≥ 1, the discrete spectrum of Aµ(β) is empty, while if µ < 1 it contains one or
two eigenvalue(s) in each gap.
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Figure 3.8: Limit graph

3.3.3 Existence of eigenvalues for the operator on the ladder

In this section, we restrict ourselves to the case µ ∈ (0, 1). It is known that the spectrum of
the operator Aµε (β) approaches in some sense the spectrum of the operator Aµ(β) as ε is small
enough (see [Kuchment and Zeng, 2001,Post, 2006] for more details). By constructing a so called
quasi-mode of the Aµε (β) from a mode of the limit operator Aµ(β), we can obtain a more precise
result:

Theorem 3.3.2
Let µ ∈ (0, 1). For any β ∈ [0, 2π/L], let {(an0 (β), bn0 (β)), n ∈ N∗} be the gaps of the limit
operator Aµ(β). Then, for each n0 ∈ N∗, there exists ε0 > 0 such that if ε < ε0, the operator
Aµε (β) has at least n0 gaps {(anε (β), bnε (β)), 1 ≤ n ≤ n0} such that

anε = an0 +O(ε), bnε = bn0 +O(ε), ε→ 0, 1 ≤ n ≤ n0.

and the operator Aµε (β) has 1 or 2 eigenvalues inside each (anε (β), bnε (β)). Moreover, if λ ∈
(an0 (β), bn0 (β)), n ≤ n0, is an eigenvalue of Aµ(β), there exists an eigenvalue λε of Aµε (β) such
that

λε − λ = O(
√
ε). (3.6)

Remark 3.3.1
It is worth noting that imposing Dirichlet boundary condition on the obstacles (instead of the Neumann
one) would lead to a totally different asymptotic as ε goes to 0 ( [Nazarov, 2012b]).

3.3.4 Asymptotic analysis

The error estimates (3.6) obtained for the eigenvalues is suboptimal. In fact, using matched
asymptotic expansions and writing a high order asymptotic expansion of λε restore the optimal
convergence rate

λε − λ = O(ε).

Moreover, we can go further. More precisely, we can show that the eigenvalue has the following
asymptotic expansion:

∀n ∈ N, λε = λ0 +

n∑
k=1

λk ε
k +O

(
εn+1

)
. (3.7)

The coefficients {λk}k∈N can be computed by an explicit recurrence procedure that involves:

• the solutions, called the far fields, of family of problems set on the graph G with jump
conditions and non homogeneous Kirchhoff conditions at each vertices;
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• the solutions, called the near fields, of family of elliptic problems set on infinite normalized
junctions (two reference geometry (see Figure 3.9)) with polynomial growth at infinity ;

• the two families of problems are coupled through matching conditions linking the behaviour
of the far fields on each vertices to the behaviour at each infinity of the near fields.

Figure 3.9: The two reference junctions

3.3.5 Numerical results

To illustrate and validate the existence of gaps for ε small enough and the existence of eigen-
values for µ ∈ (0, 1) and for ε small enough (see Theorem 3.3.2), in Figure 3.10, we have fixed
µ = 0.25 and ε = 0.1 and have computed a part of the essential spectrum and eigenvalues of
Aµε (β) for different values of β, using the method presented in Section 3.2.

In Figure 3.11, for a fixed ε = 0.1 and β = 1, we have represented the position of the eigenvalues
in the second gap of Aµε (β) when µ varies from 0 to 1. We remark that when µ tends to 1, the
eigenvalues tends to the boundary of the gaps. We know that for µ = 1, the operator is perfectly
periodic and then cannot have any eigenvalues.

The different terms of the asymptotic expansion were computed for the case described in [15]
[19,23], i.e. for the same problem replacing the quasi-periodic boundary conditions by Neumann
ones. For a fixed µ, we compare the computations, for different values of ε, of one eigenvalue
using the DtN approach (see Section 3.2) with the asymptotic expansion (3.7) of the eigenvalue
at different order n = 1 to 5. We have validated with this numerical result represented in Fig-
ure 3.12, the computation of each term of the expansion. Surprisingly, the asymptotic expansion
approaches the eigenvalue for quite large values of ε. The computation of the asymptotic expan-
sion is much cheaper since it does not require a mesh adapted to the geometry of the ladder.
It requires the solution of problem set on graph and the solution of problems set on normalized
junctions, which are independent of ε.

3.4 Some perspective works

In all of the works that I have mentioned in this chapter, for instance the existence of gaps, the
materials are frequency independent. However, the frequency dispersion can in general not be
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Figure 3.10: For a ε = 0.1, µ = 0.25, different values of β, (blue) essential
spectrum of Aµε (β) and (red asterisks) eigenvalues of Aµε (β)

Figure 3.11: For ε = 0.1, β = 1, for different values of µ, in the second gap,
we represent in red asterisks, the position of the eigenvalues of Aµε (β)

ignored since dispersive effects are present in materials. Considering the frequency dispersion
raises challenging mathematical and numerical questions since the spectral problems become non
linear. We want to address this first question in collaboration with B. Gralak and M. Cassier
from the Fresnel Institute.

In presence of a boundary, an interface or more generally a lineic perturbation in a periodic
medium, we have seen that energy localization can be created. The mathematical analysis and
the numerical methods have been developed for frequency independent materials and for the
case of periodic perturbations with the same periodicity than the bulk. Here again, a challenging
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Figure 3.12: Computation of the eigenvalue λε for different values of ε = δ

and comparison with the asymptotic expansion at different order n = 1 to
5

question is to take the dispersion into account. But, more importantly, it seems that an essential
property for applications is robustness: is that possible to propose sufficient conditions to ensure
the existence of localized guided waves which are stable with respect to local imperfections of
the lineic periodic perturbation (see Figure 3.13)? In that case, we speak about the so called

Figure 3.13: Robustness of the localized guided modes : under which con-
ditions are they stable with respect to local imperfections?

topologically protected states, as in condensed matter physics. All the classical mathematical
methods based on the Floquet-Bloch theory, used in the fore-mentioned papers for instance,
fail to deal with these local imperfections. In the last decades, the most complete mathematical
works on topologically protected states are [Fefferman and Weinstein, 2012, Fefferman et al.,
2014,Fefferman and Weinstein, 2014,Fefferman et al., 2016b,Fefferman et al., 2016a]. Until now,
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they have considered the Schrodinger operator with periodic potentials having a honeycomb
structure. In [Lee-Thorp et al., 2017], the authors have begun the analysis for 2D Maxwell’s
equations. We want to use our expertise on periodic media and perturbations techniques to con-
tribute to that subject, beginning with graph-type problems. This will be done in collaboration
with Bérangère Delourme (LAGA, Paris 13).

For the computation of the localized guided waves, in presence of dispersion, since both the
Supercell method and the DtN method would require the solution of non linear eigenvalue prob-
lems and since it seems more difficult to evaluate the confinement of the wave, the DtN method
seems to be the most relevant method. This has to be investigated. Finally, to our knowledge,
there exists no numerical method to compute the topological protected guided waves. This is a
configuration which is closed to the ones mentioned in Sections 1.5 and 2.6 and for which we
want to propose a numerical method.
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4 Homogenization of transmission
problems

Collaborations : Patrick Ciarlet (POEMS), Xavier Claeys (LJLL, Paris 6)
Supervising : Valentin Vinoles’s PhD (2012-2016), Clément Beneteau’s PhD (2017-...), Chris-
tian Stohrer’s Post doc (2013-2015)

4.1 Introduction

Recent discoveries have shown the possibility of producing weakly dissipative electromagnetic
materials whose effective dielectric and magnetic constants have negative real parts. These
"metamaterials", of complex multiscale structure, lead to extraordinary phenomena as regards
the propagation of electromagnetic waves (negative refraction, resonance of "wavelength" cav-
ities, etc.) and thus arouse great interest in view of many potential applications (super lenses,
stealth coating, miniaturization of antennas, ...).

The optimization of devices exploiting or controlling these metamaterials requires the devel-
opment of appropriate numerical methods. Their structure presenting several scales of very
different size, it is very expensive or even impossible to simulate the wave propagation in these
media taking into account all their complexity. An attractive alternative is to model the metama-
terial by a homogeneous material, with physical constants of negative real part. This approach
is now widely used by physicists and is the subject of active mathematical research in the
homogenization community. For a good overview on the homogenization theory of elliptic sys-
tem with periodic coefficients, we refer the reader to [Bensoussan et al., 1978,Cioranescu and
Donato, 1999,Tartar, 2009,Jikov et al., 2012]. Thus, one can find in the literature that for cer-
tain periodic media whose structure has resonance mechanisms (being related to the geometry
via Helmholtz resonators for example or to the characteristics of the materials), the dielectric
permittivity [Felbacq and Bouchitté, 1997,Silveirinha and Fernandes, 2005] or magnetic perme-
ability [Pendry et al., 1999, Lindell et al., 2001, Bouchitté and Felbacq, 2004, Bouchitté et al.,
2017] or even both [Felbacq and Bouchitté, 2005b,Felbacq and Bouchitté, 2005a,Bouchitté et al.,
2009,Bourel, 2010,Bouchitté and Bourel, 2012] can become negative for certain frequency ranges.
Specific techniques of homogenization (reiterated homogenization techniques for instance) have
to be introduced in order to take into account the resonances phenomena and the multi-scale
effects. Convergence (of two-scale type) results have also been proved.
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However, it is well known that classical homogenization process poorly takes into account bound-
aries or interfaces. This is particularly unfortunate when considering negative materials, because
important phenomena arise precisely at their surface (plasmonic waves for instance) and it seems
that the effective model may be imprecise or even completely false. Indeed, when we consider
an interface between a dielectric and a metamaterial and that the permittivity and/or perme-
ability contrast is equal to -1, it appears at the interface an accumulation of energy that is not
compatible with the usual mathematical/physical framework [Costabel and Stephan, 1985,Ola,
1995,Nguyen, 2015,Nguyen, 2016,Li, 2016]. It seems that these difficulties are due to an insuffi-
ciently fine asymptotic description of the propagation phenomena in the vicinity of the interfaces.

This is why we have proposed to revisit the asymptotic process in order to propose a new
homogenized model that is simple to implement and more accurate near the boundaries or the
interfaces.

Of course this subject is linked to the presence of boundary layers which appear when consider-
ing asymptotic model near boundaries or interfaces. It has already been pointed out for instance
in [Bensoussan et al., 1978] and studied and analysed in [Moskow and Vogelius, 1997b,Moskow
and Vogelius, 1997a,Allaire and Amar, 1999, Birman and Suslina, 2006a,Birman and Suslina,
2006b,Gérard-Varet and Masmoudi, 2012,Gérard-Varet and Masmoudi, 2011,Shen and Zhuge,
2016, Armstrong et al., 2017] for elliptic systems with Dirichlet and Neumann conditions and
in a more general setting in [Blanc et al., 2018]. Concerning transmission problems, very few
results are available [Bakhvalov and Panasenko, 1989] with the notable exception of the recent
article [Cakoni et al., 2016].

Before dealing with metamaterials and Maxwell’s equations, in the context of the Valentin
Vinoles’s PhD, we have began with an intermediate problem: the propagation of acoustic waves
in harmonic regime between a homogeneous half-space and a standard periodic half-space (see
Section 4.2). Because the periodic medium is standard, classical homogenization tools can be
used. But even for this simplified problem, the effective model is less accurate in presence of
interfaces and an enriched homogenized model can be proposed. Coupling a classical multiscale
expansion in the periodic half-space with matched asymptotic techniques near the interface, we
have proposed an appropriate and accurate (at any order) asymptotic model in Section 4.3.
We can also derive high order transmission conditions. They are more precise than the clas-
sical transmission conditions (corresponding to the continuity of the solution and its normal
derivative across the interface) but less standard since they involve differential operators along
the interface (see Section 4.4). An error analysis confirms this accuracy and numerical results,
shown in Section 4.5, illustrate the efficiency and the accuracy of these new conditions.

This research topic is at its beginning and these first results seem very encouraging to con-
tinue in this direction. I will give in Section 4.6 my perspectives on this topic.

Let us mention that the results of the chapter are part of Valentin Vinoles’s PhD and pre-
sented in two forthcoming papers [21, 22].
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4.2 Model problem and classical results

Ω− Ω+Γ

ε

supp f

Figure 4.1: Geometry of the transmission problem (4.1).

Let us denote in the following Ω± := {x = (x1, x2) ∈ R2 | ±x1 > 0}, and Γ := {0}×R = ∂Ω±.
Let us consider the problem{

Find uε ∈ H1(R2) such that

−∇ · (aε∇uε)− ω2ρεuε = f in R2
(4.1)

where

• Im ω2 > 0;

• the two functions (characterizing the material properties of the medium) aε, ρε : R2 →
(0,+∞) are defined as follows

aε(x) = a01Ω−(x) + ap(
x

ε
)1Ω+(x) and ρε(x) = ρ01Ω−(x) + ρp(

x

ε
)1Ω+(x)

where 1Ω± is the characteristic function associated to Ω±, a0, ρ0 ∈ (0,+∞) are two positive
constants, and ap, ρp ∈ L∞(R2) satisfies λ ≤ ap(x) ≤ Λ and λ ≤ ρp(x) ≤ Λ for all
x ∈ R2(for fixed λ,Λ ∈ (0,+∞)) and they are 1-periodic functions in the two directions.
We denote Y = (0, 1)2 the unit periodicity cell.

• a source functional f ∈ H−1(R2) such that Supp(f) ⊂ Ω− (in particular Γ∩Supp(f) = ∅)

This is pictured in Figure 4.1 above. This problem admits a unique solution according to Lax-
Milgram’s lemma. Besides satisfying the PDE both in Ω+ and Ω−, any solution to the above
equation must satisfy transmission conditions at the interface Γ, namely

uε|+Γ = uε|−Γ and e1 · ∇uε|+Γ = e1 · ∇uε|−Γ .

We are interested in studying the behaviour of the solution as ε → 0. This analysis and the
study of this limit is given by the homogenization theory (see for instance [Bensoussan et al.,
1978,Cioranescu and Donato, 1999,Tartar, 2009,Jikov et al., 2012]).
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4.2.1 Classical results of the homogenization theory

To review the classical results of the homogenization theory, let us consider the unique solution
uε in H1(R2) of

−∇ · (aε∇uε)− ω2ρεuε = f in R2 (4.2)

with
aε(x) = ap(

x

ε
) and ρε(x) = ρp(

x

ε
).

To study the behaviour of uε when ε goes to 0, there exist several methods (two-scale methods,
compound method, Floquet-Bloch approach). Here, we use the two-scale asymptotic expansion
which consists in postulating an ansatz for the solution

uε(x) '
∞∑
n=0

εnun(x,x/ε) x ∈ R2 where ∀n ≥ 0, un(x, ·) ∈ H1
] (Y). (4.3)

where H1
] (Y) is the closed subspace of H1(Y) containing the 1-periodic functions. We denote

H1
] (Y)′ its dual space.

Plugging Ansatz (4.3) into (4.2) yields the following cascade of equations

L0un + L1(∂x)un−1 + L2(∂x)un−2 = 0 n ≥ 0, x ∈ R2, y ∈ Y,

where L0v := −∇y · (a(y)∇yv)

where L1(∂x)v := −∇y · (a(y)∇xv)−∇x · (a(y)∇yv)

where L2(∂x)v := −a(y)∆xv + ρ(y)v

(4.4)

In the equations above, we took the usual convention that u−1 = u−2 = 0. Besides Lj , j = 0, 1, 2

should be understood as polynomials in ∂x, and as variational operators with respect to y. More
precisely, for any η = (η1, η2) ∈ C2, define L0, L1(η), L2(η) regarded as continuous operators
mapping H1

] (Y) into H1
] (Y)′ and defined variationally by

〈L0v, w〉 :=
∫

Y a(y)∇yv · ∇yw dy

〈L1(η)v, w〉 :=
∫

Y a(y)η · (v∇yw + w∇yv) dy

〈L2(η)v, w〉 :=
∫

Y(ρ(y)− a(y) |η|2)v(y)w(y) dy ∀v, w ∈ H1
] (Y).

(4.5)

Let us show how the calculation of the uk(x,y) that are functions depending a priori on both
x and y can be reduced to the calculation on functions ûk(x) that depend on x only and on
solution of cell problems set in Y .

First of all, observe that the operator L0 is not invertible on H1
] (Y), its kernel consists in

constant functions over the unit cell Y. According to Fredholm alternative, for g ∈ H1
] (Y)′ there

exists u ∈ H1
] (Y) satisfying L0u = g if and only if 〈g, 1〉 = 0. This is the compatibility condition

associated to the problem L0u = g in Y . If this condition is satisfied, the solution is defined up
to an element of the kernel of L0, i.e. up to a constant.
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The process is then as follows : for each n, there exists a n−th term in the expansion (4.3)
if and only if the compatibility condition associated to Problem (4.4) is satisfied. In that case,
the solution is unique up to a function ûn(x) that depend on x only. More precisely,

• (4.4) for n = 0 gives that u0(x,y) = u0(x);

• (4.4) for n = 1 gives that u1(x,y) = w(y) · ∇u0(x) + û1(x) where w(y) = (w1, w2)

and wi is the unique solution in Ḣ1
] (Y) = {w ∈ H1

] (Y),
∫
Y w = 0} of the cell problem

L0wi = L1(ei)1 where e1 = (1, 0) and e2 = (0, 1) ;

• the compatibility condition of (4.4) for n = 2 gives that

−∇x · (A∗∇xu0(x))− ω2ρ∗u0(x) = f in R2

where

A∗ = (a∗j,k) ∈ R2×2, a∗j,k :=

∫
Y
a(y)(∂yjwk(y) + δj,k)dy, ρ∗ =

∫
Y
ρ(y)dy.

Then u2(x,y) = ∇x · (w(y)∇xu0)(x) + w(y) · ∇xu1(x) + û2(x) where w = (wij)i,j and
the wij ’s are solutions of cell problems whose right hand side depends on w ;

• by induction it can be shown that

un(x,y) =
n∑
k=0

Θk(y, ∂x)ûn−k(x). (4.6)

where

– Θ0 = 1 and for all k ≥ 1, ∀η = (η1, η2) ∈ C2, Θk(y,η) is solution in Ḣ1
] (Y ) of the

cell problem parametrized by η and defined by induction

L0Θk(y,η) := −( L̃1(η)Θk−1(y,η) + L̃2(η)Θk−2(y,η) )

with L̃i(η) = Li(η) −
∫
Y Li(η). One can prove by induction that η 7→ Θk(y,η) is a

polynomial of degree k: Θk(y,η) =
∑
|α|≤k Θα

k (y)ηα, where ηα = ηα1
1 ηα2

2 (note that
we have Θ1(y,η) = w · η;

– the ûn’s are solution in H1(R2) to an homogenized second order elliptic problem with
a right-hand side depending on the previous terms,

−∇x · (A∗∇xûn(x))− ω2ρ∗ûn(x) = δn0f +

n∑
k=1

∑
|α|≤k+2

Qα
k ∂

α
x ûn−k(x) in R2

where the coefficients Qα
k ∈ R admit explicit expressions in terms of the Θα

k ’s. Note
that, in the case n = 0, the sum vanishes. Although not obvious, the right hand side
above also vanishes for n = 1. To be more specific, we have Qα

1 = 0,∀α ∈ N2. This
was established in [Moskow and Vogelius, 1997a,Allaire et al., 2016]. We deduce that
û1 = 0. Note that the right hand side is non-trivial for n ≥ 2.

Observe that (4.6) takes the form of a discrete convolution. Besides, ûn(x) is the mean value
in Y of un(x,y), the remaining part is called the oscillating part of un or the n−th volume
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corrector of the expansion and is defined thanks to the derivatives of the previous terms.

Finally, error estimates validate the asymptotic expansion : for all N if f, ap, ρp are suffi-
ciently smooth

∀N ∈ N∗,

∥∥∥∥∥uε −
N∑
n=0

εn
n∑
k=0

Θk(x/ε, ∂x)ûn−k(x)

∥∥∥∥∥
L2(R2)

= O(εN+1),

and

∀N ∈ N∗,

∥∥∥∥∥uε −
N∑
n=0

εn
n∑
k=0

Θk(x/ε, ∂x)ûn−k(x)

∥∥∥∥∥
H1(R2)

= O(εN ).

4.2.2 Application to the transmission problem

A natural idea would be to apply this approach to our transmission problem, the ansatz being
introduced only in the periodic part of the domain Ω+. We obtain that uε tends in L2 to a
function u0 ∈ H1(R2) which is solution of

−∇ · (A∗0∇u0)− ω2ρ∗0 u0 = f in R2 (4.7)

where

A∗0(x) := a0 1Ω−(x)Id + 1Ω+(x)A∗ and ρ∗0(x) := ρ0 1Ω−(x)Id + 1Ω+(x)ρ∗.

All the other terms of the expansion would live only in Ω+ . For instance, the second term would
be given by u1(x,y) = 1Ω+(x) [w(y) · ∇u0(x) + û1(x)] with û1(x) satisfying

−∇ · (A∗∇û1)− ω2ρ∗ û1 = 0 in Ω+.

Unfortunately, plugging (4.3) to the natural transmission conditions of (4.1) leads to boundary
condition for û1 that depends on the fast variable x/ε, which is incompatible with the macro-
scopic nature of û1. This incompatibility appears at any order. This shows that the classical
asymptotic two-scale expansion is not adapted to the presence of an interface (or similarly to a
boundary). Moreover, neglecting û1 by assuming that û1 = 0 as in the free space leads to the
error estimates [Cakoni et al., 2016]

‖uε − u0‖L2(R2) = O(ε)

‖uε − u0‖H1(Ω−) + ‖uε − u0 − εu1(·, ·/ε)‖H1(Ω+) = O(
√
ε).

Adding the volume correctors of higher order would not improve these convergence rates.

This deteriorated error estimate is well documented in the existing literature on homogenization
theory. It is related to the presence of boundary layers at the interface Γ. There are already
a lot of contributions on this topic, as already mentioned in the introduction. We propose in
our work to use matched asymptotic expansion in order to propose a more accurate asymptotic
description of the solution.

Remark 4.2.1
The method that we propose here can also be used for periodic halfspace problem with Dirichlet or
Neumann boundary conditions.
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4.3 The matched asymptotic expansion applied to the transmis-
sion problem

One cannot expect a simple asymptotic expansion that would be valid uniformly in the whole
space. We propose to use different asymptotic expansions in different areas using matched asymp-
totic expansions [Ilin, 1992,Maz’Ya et al., 2012] in order to get a more precise homogenized
model. For our problem, we are going to use three asymptotic expansions: two on each side of
the interfaces and a third near the interface. These three expansions must coincide on interme-
diate areas (matching areas).

Our work differs from [Cakoni et al., 2016]: we do not seek to construct bulk correctors but sev-
eral asymptotic expansions in different areas. Notably there are two novelty in our approach: (1)
an asymptotic expansion near the interface and (2) an asymptotic expansion in the homogeneous
medium. For more details on matched asymptotic expansions, we refer to [Ilin, 1992,Maz’Ya
et al., 2012, Van Dyke, 1964]. Our work is inspired by previous works on diffraction of thin
layers (periodic or not), see for instance [Schmidt, 2008,Delourme et al., 2012,Delourme et al.,
2013,Claeys and Delourme, 2013].

Remark 4.3.1
This work relies on the matched asymptotic method, but one also can use multi-scales techniques. These
two methods are actually "equivalent", see for instance [Tordeux et al., 2006] for a precise comparison.

In this work, for simplicity we restrict ourselves to the 2D case, to the Helmholtz equation and to
functions aε that are scalar-valued, but all our results easily generalize to higher dimensions, to any
other elliptic equation and to the case where aε is a symmetric tensor.

In this section, we present first the formal steps of the matched asymptotic expansion, then the
construction by induction of the different terms of each expansion and finally give the error esti-
mates which validate the asymptotic expansion. From this asymptotic expansion, we can derive
high order approximate problem which computes directly an approximation of the first terms of
the asymptotic. This will be done in the next section where numerical results will be also shown.

Homogenous far field Periodic far fieldNear field

ε

supp f

2η(ε)

η(ε)

Figure 4.2: Matched asymptotic expansion for the transmission problem
(4.1).

As indicated in Figure 4.2, we will distinguish different regions in which we postulate differ-
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ent ansatz: two far field zones (regions far from the interface Ω±ε = {(x1, x2), ±x1 ≥ η(ε)) and
one near field zone (region in a neighborhood of the interface Ω0

ε = {(x1, x2), |x1| ≤ 2η(ε)). The
regions overlap and the asymptotic expansions have to coincide in the overlapping zone.

4.3.1 Asymptotic expansion : ansatz and equations

Far field terms: we start by describing a suitable asymptotic expansion of uε in the left half-
plane which is the homogeneous part of the propagation medium. This is the easiest part of our
analysis. We start with an ansatz for the expansion taking the form

uε(x) '
∞∑
n=0

εnûn(x) x ∈ Ω−ε

As usual in asymptotic analysis, the series above is not a priori convergent and should be
understood in the sense of asymptotic series, see e.g the introduction of [Ilin, 1992]. Plugging
this ansatz in the equations of (4.1) yields a PDE to be satisfied by each term of the expansion,

−a0∆ûn − ω2ρ0ûn =

{
f if n = 0,

0 else
in Ω−. (4.8)

Next we focus on the derivation of an expansion in the other half plane, namely Ω+
ε . We can

use the two-scale asymptotic expansion to describe uε in the periodic part of the medium:

uε(x) '
∞∑
n=0

εnun(x,x/ε) x ∈ Ω+
ε (4.9)

where for all n ≥ 0, un(x, ·) ∈ H1
] (Y) and as explained in Section 4.2.1

un(x,y) =
n∑
k=0

Θk(y, ∂x)ûn−k(x).

with the Θk’s defined in the previous section and the un’s satisfy

−∇x · (A∗∇xûn)− ω2ρ∗ûn =
n∑
k=1

∑
|α|≤k+2

Qα
k ∂

α
x ûn−k in Ω+

(4.10)

all the coefficients A∗, ρ∗ and Qα
k being defined also in the previous section.

Let us sum up : for all n, if the preceding terms ûn−1, ûn−2, . . . , û0 are assumed already known
and sufficiently regular, the macroscopic far field term ûn satisfies (4.8) in Ω− and (4.10) in Ω+.
The oscillating part of the un’s in Ω+ can be computed then a posteriori. To make the problem
well-posed, transmission conditions involving the jump and the jump in the conormal derivative
associated to the homogenised operator ∇ · (A∗0∇·) defined by

[u]Γ := u|+Γ − u|
−
Γ ,

[∂nAu]Γ := e1 · (A∗∇u|+Γ − a0∇u|−Γ )
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are missing. They will be derived thanks to the matching condition steps.

Near field terms: Consider the different ansatz

uε(x) '
∞∑
n=0

εnUn(x2,x/ε) x ∈ Ω0
ε (4.11)

This time we assume for all n that y2 7→ Un(x2, y1, y2) is 1-periodic for all x2 and y1. However, in
contrast with Ansatz (4.9), periodicity is not assumed anymore with respect to the y1 variable.
Plugging (4.11) yields a new cascade of equations that we shall refer to as "near field equations"

L0Un + L1(∂x2)Un−1 + L2(∂x2)Un−2 = 0 n ≥ 0, x2 ∈ R, y ∈ B := R× (0, 1),

where L0v := −∇y · (a(y)∇yv)

where L1(∂x2)v := −∂y2(a(y)∂x2v)− ∂x2(a(y)∂y2v)

where L2(∂x2)v := −a(y)∂2
x2v + ρ(y)v

This time, the natural domain for the equations is the domain B that is periodized according
to the y2-variable only. In these equations, x2 plays the role of a parameter. We do not have
specified yet the functional space in which the near field terms have to be looked for. As we will
see in the matching condition step, the near field terms may have a polynomial growth at infinity.

Matching conditions : The different asymptotic expansions have to coincide in the regions
where they coexist, i.e. the overlapping zones {(x1, x2), −2η(ε) < x1 < −η(ε)} and
{(x1, x2), 2η(ε) < x1 < 2η(ε)}. We suppose that

lim
ε→0

η(ε) = 0 and lim
ε→0

η(ε)

ε
= +∞

so that seen from the far field terms the overlapping zones tend respectively to Γ− and Γ+

(where Γ± = {(x1, x2), x1 = 0±}) when ε goes to 0 and seen from the near field terms, they
tend respectively to −∞ and +∞. In consequence the matching conditions consists in linking

Predominant behaviour of
N∑
n=0

εnUn(x2,x/ε) for ε→ 0, x1/ε→ ±∞
=

Predominant behaviour of
N∑
n=0

εnun(x,x/ε) for ε→ 0, x1 → 0±

This relies on Taylor expansion of the far field terms ûn for x1 = 0± and the behaviour at ±∞
of the near field terms Un.

Remark 4.3.2
The choice of η(ε) does not really matter for the formal derivation of the equations. It is important only
to obtain optimal error estimates. To fix the ideas, η(ε) is typically εγ for γ ∈ (0, 1).

Of course, as already discussed in the existing abundant literature on matched asymptotic
method (see in particular [Ilin, 1992]) the matching principle is, at this stage of our analy-
sis, a vague statement that only offers a guide to further calculus. Genuine justification of the
whole analysis can only be obtained through error estimates that will be provided in Section
4.3.4.
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To apply this principle, let us derive the predominant behaviour of the far field expansion
at the interface. Examining the behaviour of an arbitrary function v(x,y) (supposed to be C∞

with respect to x) Taylor expansion formally yields

v(x1, x2,y) =

+∞∑
p=0

xp1
p!

(∂px1v)
∣∣
Γ±

(x2,y) for x1 → 0±

with the trace operator on Γ± defined as (∂px1v)
∣∣
Γ±

:= (∂px1v)(x1 = 0±, x2,y). Replacing formally
x1 = εy1, we can rewrite the previous relation as

Ξε(v) =

+∞∑
p=0

εpΞ±p (v) for εy1 → 0±, ,

where Ξεv(x2,y) := v(εy1, x2,y) and
[
Ξ±p v

]
(x2,y) :=

yp1
p!

(∂px1v)
∣∣
Γ±
.

(4.12)

We first examine the case ε → 0, x1 < 0. To obtain formally the behaviour of uε(x) =∑+∞
n=0 ε

nûn(x) as x1 → 0, x1 < 0, we first write uε(x) = uε(x1, x2) = uε(εy1, x2), which boils
down to applying the operator Ξε to the far field ansatz

∑
n ε

nûn(x). Letting ε → 0, we then
simply use (4.12) for functions independent of y. This yields

Ξε(uε) = Ξε

( +∞∑
n=0

εnûn

)
=
( +∞∑
p=0

εpΞ−p

)( +∞∑
n=0

εnûn

)
Ξε(uε) = Ξε

( +∞∑
n=0

εnûn

)
=

+∞∑
k=0

εk
k∑
p=0

Ξ−p ûk−p =

+∞∑
k=0

εkm−k

with m−k (x2,y) :=
k∑
p=0

yp1
p!

(∂px1 ûk−p)
∣∣
Γ−

(4.13)

Note that the definition we take above for m−k (x2,y) holds for y1 < 0.

Now we focus on the boundary behaviour of uε for ε → 0 and x1 → 0, x1 > 0. In this part
of the problem, we have to consider functions that depend both on x and y. Writing Θp (resp.
ûn) instead of Θp(y, ∂x) (resp. ûn(x)) for the sake of conciseness, leads to

Ξε(uε) = Ξε

( +∞∑
n=0

εnun

)
=
( +∞∑
p=0

εpΞ+
p

)( +∞∑
n=0

εn
n∑
q=0

Θqûn−q

)
Ξε(uε) = Ξε

( +∞∑
n=0

εnun

)
=
( +∞∑
k=0

εk
k∑
p=0

Ξ+
p ·

k−p∑
q=0

Θqûk−p−q

)
=

+∞∑
k=0

εkm+
k

with m+
k (x2,y) :=

k∑
m=0

( m∑
p=0

Ξ+
p ·Θm−p

)
ûk−m for y1 > 0.

(4.14)

This time, the above definition holds for y1 > 0. The expression (4.14) for m+
k are less explicit

compared with (4.13). To get a more concrete idea of these functions, let us give an explicit
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expression for the first terms. We have

m+
0 (x2,y) = û+

0 (0+, x2)

m+
1 (x2,y) = û1(0+, x2) + y1 ∂x1 û0(0+, x2) +w(y) · ∇û0(0+, x2)

m+
2 (x2,y) = û2(0+, x2) + y1 ∂x1 û1(0+, x2) +w(y) · ∇û1(0+, x2)

m2(x2,y) = + y2
1/2 ∂

2
x1 û0(0+, x2) +w(y) · ∇∂x1 û0(0+, x2) + Θ2(y, ∂x) û0(0+, x2).

(4.15)

We have then shown that

Predominant behaviour of
N∑
n=0

εnun(x,x/ε) for ε→ 0, x1 → 0±
=

N∑
n=0

εnm±n (x2,y)

The matching conditions reduces to

Un(x2,y) ∼
y1→±∞

m±n (x2,y).

The functions m±k shall play a pivotal role in the subsequent analysis. We shall refer to them as
"the matching functions".

4.3.2 Equations caracterising the near field terms

The previous computation leads to imposing the following equations for the caracterization of
the near field expansion

L0Un + L1(∂x2)Un−1 + L2(∂x2)Un−2 = 0 n ≥ 0, x2 ∈ R, y ∈ B := R× (0, 1)

Un(x2,y) ∼
y1→±∞

m±n (x2,y)
(4.16)

As is easily seen from Formula (4.15), the matching functions m±n (x2,y) are definitely not
bounded with respect to y1 and admits a polynomial growth (combined with more complicated
dependency in y inherited from the Θj ’s).

As a consequence, the problems above defining the Un’s do not fit the standard variational
framework for equations associated with the operator L0 in B, since such a standard framework
would enforce boundedness on the Un’s. So we have to introduce another framework allowing
polynomially growing behaviour of solution to such equations as (4.16).

In these equations, the variable x2 plays the role of a parameter; that is why the problems in
this section do not involve it. Thus we focus on problems of the form: "find u that is 1-periodic
with respect to y2 and such that −∇· (a∇U) = g" posed in the infinite strip B = R× (0, 1) (see
Figure 4.3). Before imposing any behaviour at infinity, we are first interested in the behaviour
when y1 tend to ±∞ of such solutions.

When the function a is constant at infinity as in previous works on thin layers (see for in-
stance [Claeys and Delourme, 2013,Delourme et al., 2012,Delourme et al., 2013,Schmidt, 2008]),
analytic computations using Fourier series are available. In our problem the function a is peri-
odic in the right part of the strip B. One cannot expect explicit representations of the solutions.



104 Chapter 4. Homogenization of transmission problems

1

Figure 4.3: The strip B

Thus we shall use more theoretical tools.

As already mentioned, the variational framework is too restrictive because it does not allow
unbounded solution at y1 = ±∞. We shall use Kondratiev theory [Kozlov et al., 1997] that
requires weighted Sobolev spaces. So let us introduce for β > 0 the space V k

β (B) defined as

V 1
β (B) = {U ∈ H1

loc(B), U
∣∣
y2=1

= U
∣∣
y2=0

,
∑
|α|≤1

e−2πβ|y1|∂αyU ∈ L2(B)}

This space contains functions that are allowed to grow when y1 tends to ±∞ but not faster than
e2πβ|y1|. We also need to consider the dual space V 1

β (B)∗ of V 1
β (B) equipped with the dual norm.

Intuitively, the space V 1
β (B)∗ contains objects that have the same behaviour at infinity that the

functions of V 1
−β(B) but less regular. An important example of elements of V 1

β (B)∗ are L2(B)

functions with compact support. We will look for the near field terms in the space V 1
β (B). The

choice of β has to be chosen carefully and we show (without giving any detail here) that there
exists a β for which all the following results hold.

Recall that we want to solve problems of form: "find U ∈ V 1
β (B) such that −∇ · (a∇U) = g".

First observe that there is no uniqueness because constants functions (which belongs to V 1
β (B))

are non-trivial solutions of the homogeneous problem. We can build another function which is
linearly independent of the constants, noting that for y1 < 0, the equation −∇· (a∇u) is simply
−a0∆u with a non-trivial solution y1 (which belongs to in V 1

β (B)); and for y1 > 0, that a is pe-
riodic and a non-trivial solution (in V 1

β (B)) of −∇·(a∇u) is given by y1 +w1 (see Section 4.2.1).
By coupling Floquet-Bloch Transform and the Kondratiev theory [Kozlov et al., 1997], we have
shown the two following results.

Proposition 4.3.1
The kernel of the operator L0 = −∇ · a∇ in V 1

β (B) is of dimension 2:

KerL0 = {1,N}

Moreover, there exists N∞ ∈ R such that N satisfies the conditions at infinity

N ∼
y1→−∞

y1

a0
−N∞ and N ∼

y1→+∞

y1 + w1(y)

A∗11

+N∞.

The function N is called a profile function and depends not only on the periodic medium but
also on the position of the interface.
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Proposition 4.3.2
Suppose that U in V 1

β (B) is such that L0 U = g ∈ V 1
β (B)∗. Then there exist α±, β± ∈ R such

that U has the following behaviour at infinity

U ∼
y1→−∞

β−
y1

a0
+ α− and U ∼

y1→+∞
β+ y1 + w1(y)

A∗11

+ α+.

Since the kernel of L0 is of dimension 2, the constants α±, β± ∈ R and the r.h.s g have
to satisfy necessarily two compatibility conditions (obtained using generalized Green’s formulas
with the two functions 1 andN ). These necessary conditions are also sufficient to ensure existence
and uniqueness of strip problems, as stated by the following theorem.

Theorem 4.3.3 (Existence and uniqueness of the strip problems)
Given g ∈ V 1

β (B)∗, α±, β± ∈ R there exists a unique solution U in V 1
β (B) of

L0 U = g in B

U ∼
y1→−∞

β−
y1

a0
+ α− and U ∼

y1→+∞
β+ y1 + w1(y)

A∗11

+ α+

if and only if

α+ − α− = N∞
β+ + β−

2
− < g,N > and β+ − β− = − < g, 1 > .

We have now all the ingredients at hand to formulate a precise definition for the terms
Un, n 6= 0 of the ansatz (4.16). We suppose that the far fields terms ûn exist and necessary
conditions on this far field terms are derived that ensure the existence and uniqueness of the
near field terms. We use the definition (4.13) and (4.14) of the matching functions m±n . Let us
remind that x2 plays a role of a parameter in the near field problems.

• We look for a near field term U0 such that

L0U0 = 0, y ∈ B, x2 ∈ R

U0(x2,y) ∼
|y1|→±∞

û0

∣∣
Γ±
.

Applying Theorem 4.3.3 with g = 0, α− = û0

∣∣
Γ−

, α+ = û0

∣∣
Γ+ , β± = 0 we have that there

exists a unique U0 ∈ V 1
β (B) solution of this near field problem if and only if

[û0]Γ = 0.

In that case, U0(x2,y) = û0

∣∣
Γ
(x2) for all x2.

• We look for a near field term U1 such that

L0U1 = ∂y2a∂x2 û0, x2 ∈ R, y ∈ B

U1(x2,y) ∼
y1→−∞

y1(∂x1 û0)
∣∣
Γ−

+ û1

∣∣
Γ−

U1(x2,y) ∼
y1→+∞

y1(∂x1 û0)
∣∣
Γ+ + w(y) · (∇û0)

∣∣
Γ+ + û1

∣∣
Γ+ .
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where we have used that U0(x2) = û0(x2). We are not in the appropriate framework to
apply Theorem 4.3.3 since the r.h.s is not in V 1

β (B)∗ (it is not vanishing at +∞). But by
using a truncature function χ(y1) = 0 for y1 < 1 and χ(y1) = 1 for y1 > 2, we can write a
problem for Ũ1 = U1 − χw2∂x2u0 as follows

L0 Ũ1 =
[
∂y2a− L0(χw2)

]
∂x2u0 x2 ∈ R, y ∈ B

Ũ1(x2,y) ∼
y1→−∞

y1(∂x1 û0)
∣∣
Γ−

+ û1

∣∣
Γ−

Ũ1(x2,y) ∼
y1→+∞

y1(∂x1 û0)
∣∣
Γ+ + w1(y)(∂x1 û0)

∣∣
Γ+ + û1

∣∣
Γ+ .

(4.17)

Applying Theorem 4.3.3 with g = ∂y2a − L0(χw2), α+ = û1

∣∣
Γ+ , α− = û1

∣∣
Γ−

, β− =

a0 ∂x1 û0

∣∣
Γ−

and β+ = A∗11 ∂x1 û0

∣∣
Γ+ we have that there exists a unique Ũ1 ∈ V 1

β (B)

solution of the previous near field problem if and only if (the proof is not straighforward)

[û1]Γ = C1∂x1 û0 + C2∂x2 û0

∣∣
Γ

and [∂nAu0]Γ = 0

where C1 depends on the profile function N and C2 depends on N and another profile
function (defined thanks to Ũ1).

• This can be done at any order. As you have noticed for n = 1, a difficulty is that the
r.h.s of the near field problem (4.16) is not in V 1

β (B)∗ for n ≥ 2 and the behaviour at
infinity of the near field terms are not only linear but polynomial. But by definition of the
matching functions m±n from the far field terms ûn (solution of the far field equations (4.8)
and (4.5)), it is easy to show that the matching functions m±n , n ≥ 0 satisfy the recurrent
system of PDEs satisfying by the near field terms respectively in B± = B ∩ {±y1 > 0}.
By using truncature functions, it is then possible to introduce a problem which fits in
the framework of Theorem 4.3.3 (as for n = 1). The compatibility conditions yield finally
to relations linking [∂nAûn−1]Γ and [ûn]Γ to (normal and tangential) derivatives of the
previous far field terms.

4.3.3 Equations on the far field terms

The uniqueness and existence of the near field terms satisfying the cascad of equations and the
matching conditions yield to conditions on the jump of each far field term and its conormal
derivative across Γ.

• The first far field term û0 is solution of

−∇ · (A∗0∇u0)− ω2ρ∗0u0 = f, in R2,

[û0]Γ = 0,

[∂nA û0]Γ = 0.

This is exactly the classical homogenized transmission problem. Obviously this problem is
well-posed in H1(R2).

• The second far field term û1 is solution of

−∇ · (A∗0∇u1)− ω2ρ∗0u1 = 0, in Ω− ∪ Ω+,

[û1]Γ = C1∂x1 û0 + C2∂x2 û0,

[∂nA û1]Γ = C3∂
2
x1x2 û0 + C4∂

2
x2 û0 + C5ω

2û0.
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This far field term is not continuous across Γ and its co-normal derivative as well. This
problem is well-posed in V = {v ∈ L2(Ω), v

∣∣
Ω±
∈ H1(Ω±)}. All the constants Cj are

defined thanks to cell solutions and solutions of problem set in the band B.

• By induction, the n-th far field terms can be determined thanks to the previous terms
through the equation set on R2, for n ≥ 2

−a0∆ûn − ω2ρ0ûn = 0 in Ω−

−∇ · (A∗∇ûn)− ω2ρ∗ûn =

n∑
k=1

∑
|α|≤k+2

Qα
k ∂

α
x ûn−k in Ω+

[ûn]Γ =
n∑
k=1

T 1
k ûn−k and [∂nA ûn]Γ =

n∑
k=1

T 2
k ûn−k.

(4.18)

where in T 1
k (resp. T 2

k ) are differential operator on Γ± of order at most k (resp. at most
k + 1).

4.3.4 Algorithm of construction of the expansion and error estimates

The construction of each far field term and each near field term is done by induction as follows.
For all n ≥ 0

1. the far field term ûn is solution of the transmission problem (4.18) (which depends on the
previous terms);

2. the transmission conditions of ûn (jump condition) and of ûn−1 (the jump condition on the
conormal derivative) are necessary and sufficient condition for existence and uniqueness of
the near field term Un.

We can propose a global approximation of the solution uε. Introducing three smooth cut-off
functions ψ±, χ : R→ [0, 1] defined by

ψ+(t) :=

{
1 for t ≥ 2,

0 for t ≤ 1,
ψ−(t) :=

{
1 for t ≤ −2,

0 for t ≥ −1,
and χ := 1− (ψ− + ψ+),

the global expansion at order N of uε is given by

uε,N (x) = ψ−(
x1

η(ε)
)

N∑
n=0

εnun(x) + χ(
x1

η(ε)
)

N∑
n=0

εnUn

(
x2,

x

ε

)
+ ψ+(

x1

η(ε)
)

N∑
n=0

εnun

(
x,
x

ε

)
.

Error estimates validate the asymptotic expansion : for all N if f, ap, ρp are sufficiently smooth

∀N ∈ N∗, ‖uε − uε,N‖L2(R2) = O(εN+1),

and
∀N ∈ N∗, ‖uε − uε,N‖H1(R2) = O(εN ).



108 Chapter 4. Homogenization of transmission problems

4.4 A high order approximate homogenized model

We have explained in the previous section how to construct each term of the asymptotic expan-
sion by induction. One can be interested in deriving a problem whose solution is an approxi-
mation of the first N far field terms for instance, the near field approximation being computed
a posteriori if needed. This problem corresponds to an approximate model of order N. Let us
explain how to derive an approximate model of order 1 (the approximate model of order 0 being
the classical homogenized transmission problem).

A natural better approximation than û0 would be

ûε,1 =
û0(x) + ε û1(x) in Ω−

û0(x) + ε
[
w(
x

ε
) · ∇û0(x) + û1(x)

]
in Ω+.

By using the problems satisfied by û0 and û1, we find

−∇ · (A∗0∇ûε,1)− ω2ρ∗0ûε,1 = O(ε2), in Ω− ∪ Ω+,

[ûε,1]Γ = C1ε < ∂nA∂x1 ûε,1 >Γ +C2ε < ∂x2 ûε,1 >Γ +O(ε2),

[∂nA ûε,1]Γ = C3ε < ∂2
x1x2 ûε,1 >Γ +C4ε < ∂2

x2 ûε,1 >Γ +C5ω
2ε < ûε,1 >Γ +O(ε2)

where < v >Γ= (v+ + v−)/2. By neglecting the O(ε2) terms, we find the homogenized trans-
mission problem of order 1

−∇ · (A∗0∇û
app
ε,1 )− ω2ρ∗0û

app
ε,1 = 0, in Ω− ∪ Ω+,

[ûapp
ε,1 ]Γ = C1ε < ∂nA∂x1 û

app
ε,1 >Γ +C2ε < ∂x2 û

app
ε,1 >Γ,

[∂nA û
app
ε,1 ]Γ = C3ε < ∂2

x1x2 û
app
ε,1 >Γ +C4ε < ∂2

x2 û
app
ε,1 >Γ +C5ω

2ε < ûapp
ε,1 >Γ +

(4.19)

The volume equation is as simple as the homogenized transmission problem of order 0. The
problem depends simply on ε without introducing a microscopic scale. In the transmission con-
ditions, differential operator of the interface up to order 2 are involved. The constants Cj can be
computed by solving cell problem (as in classical homogenization) and strip problems (taking
into account the position of the interface).

The appropriate functional framework is

Ṽ = {v ∈ L2(R2), v
∣∣
Ω±
∈ H1(Ω±), v

∣∣
Γ±
∈ H1(Γ)}.

Unfortunately, this problem is not necessarily well posed in Ṽ (the sign of the constant C4 is
not a priori known). Adapting [Delourme et al., 2012], we write the transmission conditions in
two separated boundaries Γ±α = Γ± ± α± ε, α± > 0 on both sides of the interface, for instance

[u]α = u
∣∣
Γ+
α
− u
∣∣
Γ−α

and use Taylor expansions, for instance

u
∣∣
Γ+
α

= u
∣∣
Γ+ + α+ ε ∂x1u

∣∣
Γ+ +O(ε2).

The transmission conditions are similar to the ones of (4.19) but the constants Cj are replaced
by constants Cαj depending on α±. For well-chosen α±, the sign of the constant Cα4 can be
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controlled and the associated problem is well posed.

Up to this change, error estimates validate that we have at hand a better approximation (than
û0) of uε. Indeed, let

vapp
ε,1 (x) = ûapp

ε,1 (x) + εw(
x

ε
) · ∇ûapp

ε,1 (x) 1Ω+(x), x ∈ R2

we can show that for any open set O ⊂ Ω− ∪ Ω+, we have∥∥∥uε − vapp
ε,1

∥∥∥
L2(O)

= O(ε2),

and ∥∥∥uε − vapp
ε,1

∥∥∥
H1(O)

= O(ε).

The latter estimate becoming of order 2 if we add the second volume corrector in Ω+: let us
define

vapp
ε,2 = vapp

ε,1 + ε2 Θ2(
x

ε
, ∂x)ûapp

ε,1 (x) 1Ω+(x)

then we prove that ∥∥∥uε − vapp
ε,2

∥∥∥
H1(O)

= O(ε2).

Near field terms can be computed a posteriori in order to have an approximation of uε near
Γ and by using truncature functions, one can recover a good approximation in the whole do-
main.

4.5 Numerical results and validation

To compute the approximate problem, it suffices then to

1. solve the first and second family of cell problems appearing in the classical homogenization
theory;

2. solve problems set on the strip B (for instance the problem given in Proposition 4.3.1
satisfied by the profile function N or Problem (4.17)), the combined difficulties being
(1) the polynomial growth of the solution at infinity (2) the half-infinite periodic part
of the strip. We use DtN operators (see Chapter 1) to restrict the computation on the
interface between the homogeneous half-strip and the periodic half-strip (see Figure 4.5
for 2 examples of profile functions for the medium represented in Figure 4.4(b) );

3. compute all the constants appearing in the transmission conditions;

4. solve the approximate problem with the non classical transmission conditions involving
differential operators on the interface.
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(a) Case (1) (b) Case (2)

Figure 4.4: Level set of two functions aε.

Figure 4.5: Two examples of profile functions for the medium represented
in Figure 4.4(b).

For a fixed ε, the exact solution uε can also be computed using the method described in Section
1.3.5.

We consider two different media characterized by a function aε represented Figure 4.4 (and
ρε = 1 in these examples). We have compared for different values of ε

• the classical homogenized transmission problem : we represent the difference x→ uε(x)−
û0(x) (where û0 is solution of (4.7)) and in order to recover a part of the oscillation of uε
(and have a better H1−approximation), we compute a posteriori the first volume corrector
and plot x→ uε(x)− û0(x)− εw(x/ε) · ∇û0(x) 1Ω+(x) ;

• the high order homogenized transmission problem : we represent the difference x→ uε(x)−
ûε,1(x) (where ûε,1 is solution of (4.19)) and in order to recover a part of the oscillation
of uε (and have a better H1−approximation), we compute the first volume corrector and
plot x→ uε(x)− ûε,1(x)− εw(x/ε) · ∇ûε,1(x) 1Ω+(x) .

The differences are represented with the same color scales.

The qualitative comparison are clear : we see that the classical homogenized transmission prob-
lem is not accurate near the interface and also in the homogeneous medium. The volume corrector
helps for a better accuracy in the periodic medium. By contrast, the high order homogenized
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transmission problem is more accurate near the interface and in the homogeneous medium. Let
us mention that even if the error estimates have been obtained only for sufficiently smooth
coefficients, the high order homogenized transmission problem gives good results.

Figure 4.6: For the case (1) (medium represented in Figure 4.4(a)) and
ε = 0.5, comparison of classical homogenized transmission problem (bot-
tom figures) and the high order homogenized transmisssion problem (top
figures). The same color scales are used.
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Figure 4.7: For the case (2) (medium represented in Figure 4.4(a)) and
ε = 0.5, comparison of classical homogenized transmission problem (bot-
tom figures) and the high order homogenized transmisssion problem (top
figures). The same color scales are used.

Figure 4.8: For the case (2) (medium represented in Figure 4.4(a)) and
ε = 0.25, comparison of classical homogenized transmission problem (bot-
tom figures) and the high order homogenized transmisssion problem (top
figures). The same color scales are used.
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4.6 Some perspective works

This research topic is at its beginning and the first results seem very encouraging. Clement
Beneteau’s thesis have begun in October 2017 to deal with the following questions: (1) the
extension to Maxwell’s equations, (2) the transmission problem when a half-space is a meta-
material (a resonant periodic medium). We want also to extend the method to more general
geometry than halfspaces. This extension is not simple at all. First, it would be necessary to
treat the case of two half-spaces but with an interface which does not cut the periodic medium
in a direction of periodicity. This situation is a real challenge for different reasons. First of all,
the calculation of the exact solution is already interesting, this subject was already mentioned
in Section 1.5. Moreover, to obtain the high order homogenization model, it is necessary to
analyze accurately the behavior of the near field terms. This analysis was performed recently for
the case of Dirichlet boundary conditions [Gérard-Varet and Masmoudi, 2011,Gérard-Varet and
Masmoudi, 2012,Armstrong et al., 2017]. From a numerical point of view, until now, no method
has been proposed to compute these near field terms. I think that in the recent papers [Gérard-
Varet and Masmoudi, 2011,Gérard-Varet and Masmoudi, 2012], we can find a promising lead.

Concerning the application to metamaterials, we will derive new effective models with high
order transmission conditions and the mathematical analysis of these models has to be done.
Indeed, we have mentioned in the introduction that when we consider an interface between a
dielectric and a metamaterial, the problem is not well-posed in a classical mathematical frame-
work when the permittivity and/or permeability contrast is equal to -1. We want to show that
these high order transmission conditions regularize the problem.

In addition, our approach can be used to derive boundary or transmission conditions for all
the terms involved in the two-scale asymptotic expansion of the solution. For instance, the third
term, u2(x,y), is really important if one needs an accurate model of the time-domain wave equa-
tion at long time scale (see for instance [Santosa and Symes, 1991,Dohnal et al., 2014,Allaire
et al., 2016]). This model is obtained by introducing the equation satisfied approximately by
û0 + ε2û2. The model is not hyperbolic anymore since an operator of order 4 is involved. For the
moment these models were derived and analyzed in infinite domain. With our approach, we can
deal with the presence of boundaries or interfaces. The mathematical analysis of the problem
has to be done.

As the construction of the transmission conditions requires the a priori solution of cell and
band problems, it could be interesting to propose a numerical method which computes directly
the more accurate effective solution, by adapting the FE-HMM which computes the classical
effective solution (see [14] for the extension of the classical FE-HMM to Maxwell’s equations).
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