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Abstract

Functional encryption is a recent paradigm that generalizes the classical public
key encryption. This formalization aims to finely manage both the access control
to the encrypted data, and the information revealed by the decryption. This thesis
studies possibilities of delegation through these two sides.

First, we deal with a multi-client context: several users provide each one an
encryption of personal data, and an entity wishes to extract information from the
aggregate of those inputs. Our contribution in this environment consists to provide
these clients the possibility to give, or refuse, their consent for such an extraction.
To this aim, we describe constructions of multi-client functional encryption. We then
formalize several levels of security and provide methods to reach them. Eventually,
we decentralize the construction of the functional decryption key, so that one needs
the agreement of all clients to get a functional decryption key. All this, in a practical
way.

Second, we consider a more specific case where a video content provider wishes
to delegate the distribution of his creation, but without revealing it. Our solution
is a key encapsulation mechanism, derived from attribute-based encryption, with a
particular property. The provider uses it to encapsulate the key of the encrypted
stream under several attributes, and provides the encapsulations to the distributor.
This "content manager" can then use the property to combine the encapsulations
and make a new one under the access policy of his choice.
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Résumé

Le chiffrement fonctionnel est un paradigme récent qui généralise le chiffrement à
clef publique classique. Cette formalisation a pour objectif de réguler plus finement
le contrôle d’accès aux données chiffrées, ainsi que l’information dévoilée par le
déchiffrement. Cette thèse étudie des possibilités de délégation au travers de ces
deux aspects.

Dans un premier temps, nous travaillons dans un contexte multi-client: plusieurs
utilisateurs fournissent chacun une donnée personnelle chiffrée, et une entité souhaite
extraire de l’information de ces données. Notre contribution consiste à permettre à
ces utilisateurs de donner, ou refuser, leur accord à cette extraction. Pour ce faire,
nous décrivons des constructions de chiffrement fonctionnel multi-utilisateur, puis
nous definissons plusieurs niveaux de sécurité et fournissons des méthodes pour les
atteindre. Enfin, principal objectif de ces travaux, nous décentralisons la fabrication
de la clef de déchiffrement, pour qu’une personne souhaitant une clef de déchiffrement
ait besoin de l’accord de tous pour l’obtenir. Toutes les instantiations proposées
dans ces travaux sont utilisables en pratique.

Dans second temps, nous considérons une autre problématique dans laquelle
un producteur de contenu vidéo cherche à déléguer la distribution de sa création,
sans la révéler. Notre solution est un mécanisme d’encapsulation de clef, dérivé du
chiffrement par attributs, avec une propriété particulière. Ce producteur l’utilise pour
encapsuler la clef du flux vidéo sous plusieurs attributs, et fournit les encapsulations au
distributeur. Celui-ci peut alors utiliser la propriété pour combiner les encapsulations
et en définir les conditions d’accès à sa guise.
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1 Introduction

A brief crypto story
Information is the key behind any decision, and it is primordial for conflicting

entities to hide it from each other. From the Antiquity, cryptography was used to
this aim, mainly to allow several beings, knowing each other, to communicate safely.
Thus, most of the techniques used then relate to what we call today symmetric
cryptography, a protocol where two trusted parties must share a same secret to
communicate each other.

In the nineteenth-twentieth century, with the rise of long distance communication
devices, and on the strength of new mathematical tools, military research interest in
this science grew up. Among the scientific projections, August Kerchkoffs enunciated
the famous principle, which states that the secrecy of an encryption scheme must not
depend on the knowledge of the algorithm. The one-time pad was formalized, rotor
machines were used in the first world war, their cryptanalysis followed... However,
the main goal was still to build complex systems to hide a stream between two
entities sharing a secret. Furthermore, the reliability of these systems was not
dependent of complex mathematical problems, leaving open the possibility of a
potential cryptanalysis.

Our recent era saw the development of an international network that allows
real-time communication between the smallest cells of any human organization, the
human himself. But in a context where even adversaries are directly connected,
how can one really trust someone else? The establishment of this situation created
new needs in numerical security, like proven authentication, the possibility to start
a secure communication with a totally unknown individual, or the insurance that
transmitted messages are not modified. This is where the modern cryptography
started to develop, principally through the formalization of public key cryptography.

Public key cryptography regroups protocols that require to publish a key to
encrypt/prove/share something. Few examples are the public key encryption, signa-
ture and key exchange. Usually, public key encryption is illustrated by a user that
provides a second one an open lock while he keeps the key. This lock acts has a
public key: the second user utilizes it to hide a message in a box that can be open
by the first user only. A signature is a trace of a message that cannot be falsified,
but can be verified publicly. And the key exchange allows two individuals to share a
common key after several public interactions.

The first practical schemes for these protocols were described after the mid-
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seventies: the first key exchange in [DH76], then signature and public key encryption
in [RSA78]. They relied on mathematical problems from number theory the authors
believed to be hard to break. However, there was no proof that one needs to solve
those mathematical problems to violate the security supposedly given by the scheme.
The way for a new methodology of proven security was opened by Shafi Goldwasser
and Silvio Micalli in [GM84], which proposed a new public key encryption scheme
associated to an original proof system for a formalized security model. More generally,
it is now a standard that new cryptosystems come with an associated proof, stating
that breaking the system implies solving an allegedly hard mathematical problem.

Our context
The Internet is now an exchange surface that allows a free circulation of infor-

mation. The direct access to different services helps enterprises and institutions to
better structure and delegate their tasks and needs. Consequently, new services
related to informatics have emerged: some enterprises now rent computational power
and storage space. This leads to a situation where clients willingly provide their
information to untrusted organisms. This business model was democratized, and
the use of external servers for storage or computational work is now referred as
Cloud computing. The problem here is, when a source provides personal data, he
technically loses control of it, so this "cloudy" context seemingly leaves no place for
the user’s privacy. The recent history has proven this suspicion was justified. We now
know that private and governmental organizations have recorded, shared, sold data
without the source’s consent for statistics, advertising, spying or political purposes.

These circumstances call for new cryptographic solutions to protect an user
unwilling to divulge his data, but also to permit the extraction of information if he
allows it. A recent and promising candidate that partially solve this problematic is the
fully homomorphic encryption. This primitive is an encryption protocol that allows
two operations on the ciphertexts, which acts homomorphically on the corresponding
plaintexts; a first instantiation was described in [Gen09]. It fits with our problematic
in the sense that the server can work on the ciphertext without learning anything
on the content. However, the original formalism of fully homomorphic encryption
does not permit the server to extract information from the ciphertext after the
computation. Also, while it aims to apply generic functions on the input, it is
currently not efficient in most of the cases. In this thesis, we focus on an alternative
primitive that reformulates the public key encryption: the functional encryption.

Functional encryption
Functional encryption is comparable to public key encryption, except that the

key is associated to a function f : for any function f from a class F , a functional
decryption key dkf can be computed such that, given any ciphertext c with underlying
plaintext x, using dkf , a user can efficiently compute f(x), but does not get any
additional information about x.

Mentioned for the first time in [AL10, LOS+10, OT10], functional encryption
was originally aimed to generalize the description of access control in public key
encryption, gathering together protocols like Identity-Based Encryption, Inner Prod-
uct Encryption or Broadcast Encryption. At that time, the definition focused on
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"all-or-nothing" protocols, where the decryption returns f(x) = x when the user is
authorized to decrypt and ⊥ otherwise, and the first constructions considered were
attribute-based encryption schemes.

Attribute-based encryption
Attribute-based encryption (ABE) was introduced by Sahai and Waters [SW05],

it is a generalization of some advanced primitives such as identity-based encryption
[Sha84,BF01] and broadcast encryption [FN94]. It gives a flexible way to define
the target group of people who can receive the message: encryption and decryption
can be based on the user’s attributes. This primitive was further developed by
Goyal et al. [GPSW06] who introduced two categories of ABE: "ciphertext-policy"
attribute-based encryption (CP-ABE) and "key-policy" attribute-based encryption
(KP-ABE). In a CP-ABE scheme, the secret key is associated with a set of attributes
and the ciphertext is associated with an access policy over the universe of attributes:
a user can decrypt a given ciphertext if he holds the attributes that satisfy the access
policy underlying the ciphertext. KP-ABE is the dual to CP-ABE in the sense that
an access policy is encoded into the users secret key, and a ciphertext is computed
with respect to a set of attributes: the ciphertext is decryptable by a user only if the
attributes in the ciphertext satisfy the user’s access policy.

Over the last few years, there has been a lot of progress in constructing secure
and efficient ABE schemes from different assumptions and for different settings
[SW05,GPSW06,OSW07,GJPS08,HLR10,ALdP11,OT12,RW13,CCL+13,GVW13,
YAHK14,BGG+14,KW19], to name a few.

Other classes of function
In parallel, through the articles [O’N10,BSW11], the authors supposed other

classes of functions than "all-or-nothing", and generic constructions came with
[GVW12,GKP+13b,GKP+13a,Wat15,ABSV15,GGG+14,BGJS16,BKS16]. Unfortu-
nately, they all rely on non standard cryptographic assumptions (indistinguishability
obfuscation, multi-linear maps), or offer black-box contributions where the cipher-
text’s size somehow depends of the number of queried keys. It is more important
in practice, and it is an interesting challenge, to build functional encryption for
restricted (but concrete) classes of functions, satisfying standard security definitions,
under well-understood assumptions.

This was achieved in 2015, with the inner product function family. Abdalla,
Bourse, De Caro, and Pointcheval [ABDP15] considered the question of building
functional encryption for inner product functions. In their paper, they show that inner
product functional encryption can be efficiently realized under standard assumptions
like the decisional Diffie-Hellman and learning-with-errors assumptions [Reg05], but
in a weak security model, named "selective security". Later, Agrawal, Libert and
Stehlé [ALS16] considered "adaptive security" for inner product functional encryption
and proposed constructions whose security is based on decisional Diffie-Hellman,
learning-with-errors or Paillier’s decisional composite residuosity [Pai99] assumptions.
Finally, [Gay16,BCFG17] recently achieved single input functional encryption for
quadratic functions. Their work proposes several schemes based either on matrix
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decisional Diffie Hellman group assumption or on an idealized model called the
generic group model.

Multi-user context
Note however that all the above works consider functional encryption schemes on

an input from a single source. Whereas the input can be large, like a high-dimensional
vector, the basic definition of functional encryption implies that the input data comes
from only one party: all the coordinates of the vector are provided by one party, and
all are encrypted at the same time. In many practical applications, the data are an
aggregation of information coming from different parties that may not trust each
other. Especially, in the cloud context, a server stores data from several independent
sources (Fig. 1.1).

· · ·

Figure 1.1: Clients trustfully leaving their data on a server which can perform
analysis. This situation is possible through functional encryption. In this case,
the clients provided encrypted data, and the server uses a key that leaks a precise
function of the data, and no more.

To handle this, Gordon, Goldwasser et al. [GKL+13,GGG+14] introduced both
the notions of multi-input and multi-client functional encryption which break down a
single input x into an input vector (x1, . . . , xn) where the components are independent.
In those primitives, anyone owning a functional decryption key dkf , for an n-ary
function f and multiple ciphertexts c1 = Encrypt(ek1, x1), . . . , cn = Encrypt(ekn, xn)
(Encrypt(eki, xi, i, `) in the multi-client case), can compute f(x1, . . . , xn) but nothing
else about the individual xi’s. Multi-input and multi-client functional encryption are
similar except that the former presents no notion of ciphertext index or label: an
user i can enter xi and encrypt it as ci = Encrypt(eki, xi). This means that in the
latter, combination of ciphertexts generated for different labels does not give a valid
global ciphertext and the adversary learns nothing from it. This little difference
has important consequences in the control of the possible evaluations. To give an
example, we consider a multi-client protocol where an user possesses one decryption
key dkf , and is given two encrypted vectors ~c1,~c2 hiding the values x1, x2 under
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the labels 1, 2. This user can recover two values f(x1), f(x2) and no more. If we
repeat this situation in a multi-input protocol (without labels involved), the user
can compute f(x) for any mix x of any coordinate from x1, x2, respecting the users
indexes. We can thus count up to 2n possible pairs (x, f(x)), n being the size of
the vectors. Such an amount of informations can totally reveal the plaintext hidden
in ~c1,~c2, making this simple example a potential and trivial attack. Hence, the
adversary is strongly limited on the encryption and key queries it is allowed to ask
in the case of multi-input functional encryption.

Numerous applications of multi-input functional encryption have been given
in detail in [GGG+14]. Like the single-input version, multi-input and multi-client
schemes first relied on indistinguishability obfuscation or multilinear maps, which
we currently do not know how to instantiate under standard cryptographic assump-
tions. Extending inner product functional encryption to the multi-input setting has
proved technically challenging. [AGRW17] builds the first multi-input inner product
functional encryption, that is, each input slot encrypts a vector ~xi ∈ Zmp for some
dimension m, each functional decryption key is associated with a vector ~y, and de-
cryption recovers 〈~x, ~y〉 where ~x := (~xi‖ · · · ‖~xn), ~y ∈ Zn·mp , and n denotes the number
of slots, which can be set up arbitrarily. They prove their construction secure under
standard assumptions in bilinear groups. Concurrently, [LL16] build a two-input
(i.e. n = 2) functional encryption using similar assumptions in bilinear groups. Very
recently, [DOT18,ACF+18] gave a "function-hiding" multi-input functional encryp-
tion for inner products, where the functional decryption keys do not reveal their
underlying functions. [ACF+18] also gives a generic transformation from single to
multi-input for inner product functional encryption, which gives the first multi-input
constructions whose security rely on decisional Diffie-Hellman, learning-with-errors
or decisional composite residuosity.

These works allow extraction of information from the aggregation of data from
independent sources. However, they all suppose an entity centralizing all the secrets,
at least to make functional decryption keys, leaving users powerless regarding the
distribution of such keys, and defenseless against the corruption of this entity. On
an other side, they potentially require interactions between the users to set-up
the protocol, which is hardly possible in a practical situation involving a large
number of users unaware of each other. Also, while it was considered in the original
work [GGG+14], no one seems to handle with the user corruption. Finally, only
multi-input functional encryption schemes were proposed to this point, leaving the
open challenge to include a time-stamp system present in the multi-client version.
All these points were studied in our article [CDG+18a].

First contribution
For the reason previously detailed about the difference between multi-input and

multi-client functional encryption, our work [CDG+18a] focuses on the multi-client
protocol. It introduces the notion of decentralized multi-client functional encryption,
in which we decentralize the generation of functional decryption keys among the
same clients as the ones that generate the ciphertexts.

A naive way to distribute the ciphertext generation could be to take a functional
encryption scheme and to have a trusted party handling the setup and the key
generation phases, while the encryption procedure would be left to many clients
to execute by secure multi-party computation. This construction has two obvious
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weaknesses. First, generating any ciphertext potentially requires heavy interactions,
with everybody simultaneously online, and the full ciphertext has to be generated at
once, with all the components being known at the same time, which is impossible if
an user does not answer at the moment. Secondly, the trusted third party reserves
the power to recover every client’s private data and the choice of the decryption keys
to provide, which completely goes against our main goal.

Another idea, which is the one behind our method, is the use of a multi-input/client
functional encryption (multi-client in our case) scheme with multi-party computation
to build the decryption key. Again, while multi-party computation often requires
several interactions, our target is a non-interactive generation of the functional
decryption keys (in the Inner-Product case). We avoid this problem, in [CDG+18a],
by using an other multi-client scheme to assemble the key. The encryption of this
second scheme then corresponds to the key construction of the first, and necessitates
no interaction between the users.

The resulting schemes are the first practical instantiations of multi-client func-
tional encryption scheme, with a label system allowing a finer control of the possible
evaluations than the multi-input setting. They are highly practical as their efficiency
is comparable to that of the decisional Diffie Hellman based inner product functional
encryption scheme from [ALS16]: a value xi is encrypted as one or two group elements
Ci, depending of the security level needed. The setup phase, key generation and
decryption all take time linear in the number of participants, and encryption takes
time linear in the size of its input. Regarding security, two of the three schemes
(Section 4.2.3, Section 5.2.1) are adaptive under classical assumptions either in
prime order groups or pairing groups, and the last one (Section 4.2.1) is selective.
In addition, we successfully address corruptions of clients, even adaptive ones in
the centralized multi-client setting, exploring what Goldwasser et al. [GGG+14]
highlighted as an "interesting direction". Finally, concerning the interactivity, the
decentralized multi-client functional encryption scheme we present in Section 5.2 has
a key generation protocol that does not require communications between the users.

Scheme Non Interactive
SetUp

Non Interactive
Encrypt

Non Interactive
KeyGen

Decentralized
Keys

MIFE [AGRW17] 3 3 3 7
FE [ABDP15] + MPC

in Encrypt 3 7 3 7
MCFE Section 4.2.3 3 3 3 7

MCFE Section 4.2.3 + MPC
in KeyGen 3 3 7 3

DMCFE Section 5.2 7 3 3 3
DMCFE + DSum Section 5.1.6 3 3 3 3

Figure 1.2: Comparison of different cryptographic solutions to the problem of linearly
aggregating private multi-client data.

However, those constructions present some restrictions that we briefly describe
here. First, when we succeed in decentralizing the decryption key generation, the
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set-up lose this property, which clearly goes against our objective. Also, the decentral-
ization needs to introduce pairings because of a discrete logarithm computation. A
alternative multi-party computation scheme could potentially remove this restriction.
Another point is that our schemes do not capture the multi-input case, while the
original definition described the multi-client functional encryption as a "multi-input
with labels". Last cited, but not the least, the security level is at most an IND∗

derivative. This means that the schemes are not secure against the event where
not all the users provide a encrypted value. Actually there is even a proof that our
schemes are vulnerable in such a situation. Since this event is highly probable in a
real-life context, we considered this limitation as a major problem.

Second contribution
Our recent work [CDG+18b] solves most of the previously evoked points.
We first deal with the limitation in the security model from [CDG+18a], that

requires complete ciphertexts. Our solution is generic, as this is an additional layer,
that is applied to the ciphertexts so that, unless the ciphertext is complete (with all
the encrypted components), no information leaks about the individual ciphertexts,
and thus on each components. This technique relies on a linear secret sharing scheme,
hence the name "secret sharing encapsulation" (Section 6.1). It can also be seen as
a decentralized version of "all-or-nothing transforms" from [Riv97,Boy99,CDH+00].
We propose a concrete instantiation in pairing-friendly groups, under the decisional
bilinear Diffie-Hellman problem, in the random oracle model. We stress that this
conversion transforms "any" IND∗-secure multi-client functional encryption (not
necessarily for inner products) into an IND equivalent at constant cost, meaning that
it now manages the case where ciphertexts are missing. Our conversion just adds
two group elements to individual ciphertexts.

A second part of this contribution deals with the number of encryptions under a
same label. In the inner product multi-client functional encryption from [CDG+18a],
the definition only allows to send a unique scalar (vector if we extend the key). Yet,
when vectors are input, it makes sense to allow mix-and-match between the inputs.
In addition, requiring a unique component per label for each client, while under
his responsibility, is a strong limitation. What happens when the client makes a
mistake? The Section 6.2 provides a solution specifically for the group based schemes
from [CDG+18a]. Briefly explained, each user adds an inner product functional
encryption layer on his encrypted vector. This permits to combine the vectors from
different users on one label with respect to the coordinates, and it finally achieves
the multi-input mix-and-match functionality on this label.

In Section 5.1, we also propose an efficient decentralized algorithm to generate
a sum of private inputs, hence called distributed sum, which can convert an inner
product multi-client functional encryption into a decentralized one: this technique is
inspired from [KDK11], and only applies to the functional decryption key generation
algorithm, so it is compatible with the other conversions (Fig. 1.3). Namely, this
improves on the decentralization from [CDG+18a] since it does not require pair-
ings, and because no interactions are needed in its set-up, achieving thus a fully
decentralized multi-client functional encryption (Fig. 1.2).

Eventually, to maximize the security level, we show how to prove security against
chosen ciphertext attacks (noted CCA) generically, simply by adding signatures to
ciphertexts for each slot (Section 6.3). This transformation applies to any multi-client
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scheme that reaches the IND-security level (the ideal one), and is not limited to
the inner product functionality. Even though security against chosen ciphertext
attacks is the de facto security notion for encryption, the only way to obtain a
multi-client functional encryption secure against chosen ciphertext attacks prior to
our work consists of applying the generic Naor Yung paradigm [NY90], that requires
extra assumptions (simulation-sound non interactive zero knowledge arguments), and
doubles the ciphertext size. This is true even assuming the random oracle model. In
particular, the seminal Fujisaki Okamoto transform [FO99] is of no help for functional
encryption, where decryption only recovers partial information of the plaintext.

IP-DMCFE
(IND∗)

IP-DMCFE
(IND)

IP-MCFE
(IND∗)

IP-MCFE
(IND)

IP-DMCFE
(wtr-IND∗)

IP-MCFE
(wtr-IND∗)

IP-MCFE
(wtr-IND)

MCFE
(∗-IND∗)

MCFE
(∗-IND)

MCFE
(∗-IND-CCA)

SSE

[Theorem 6.2]

DSum [Section 5.1] DSum [Section 5.1]

SSE

[Theorem 6.2]

IP-FE
[Theorem 6.3]

DSum [Section 5.1]

SSE

[Theorem 6.2]
Sign

[Section 6.3]

Figure 1.3: Contributions and theorems. Here, wtr stands for: "without repetitions",
CCA for: "chosen ciphertexts attacks" and IND∗ is a security level that does not
manage the case where an user does not provide a ciphertext, IND being the natural
one.

All the above conversions preserve the efficiency of the underlying multi-client
functional encryption. While the secret sharing encapsulation techniques introduce
pairings, the two others do not: they only rely on the decisional or even computational
Diffie Hellman assumptions, in the standard or random oracle models. But we also
stress that our secret sharing encapsulation techniques is constant-size. A concurrent
and independent work [ABKW19] also proposes a compiler from IND∗-security to
IND-security, without pairings, but ciphertext size becomes linear in the number of
clients.

To sum up those two works, we develop a practical solution to give someone a
right of refusal regarding the exploitation of his data, in a context of mass storage
on external platform. These results adequately answer the problematic described in
Fig. 1.1 if a server aims to compute weighted means over an aggregated database.
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Third contribution
The last work presented in this thesis considers a different question: is it possible

to encrypt data such that someone else can choose the final target without seeing the
contents? Our article [CPP17] answers this problem positively using the attribute-
based encryption.

Before explaining our scenario, we recall that attribute-based encryption can
be qualified either ciphertext-policy or key-policy (we will note ABE, CP-ABE and
KP-ABE), and both consider different situations. In KP-ABE, the encryptor has no
control over who has access to the data he encrypts. This is the key-issuer who
generates and controls the appropriate keys to grant or deny access to the users.
In contrast, in CP-ABE, the encryptor is able to decide who should or should not
have access to the data that he encrypts. In the applications we target such as
pay-TV, this would mean that the access control is either dynamically managed
by the encryptor (with a CP-ABE) or statically managed by the key-issuer (with a
KP-ABE), while in real-life a third-party could be in charge of a dynamic policy.

In KP-ABE, the access policy is controlled at the key generation phase, while in
CP-ABE, the access policy is controlled at the message encryption phase. We go a
step further in this consideration by postponing the management of the access policy
to a later phase and show how one can manage the access policies without knowing
any secret nor the content of message.

Previous works on CP-ABE consider classical encryption: the encryptor, taking
as input an access policy and a message, produces a corresponding ciphertext. The
encryptor thus manages both the access policy and the encryption of the original
message. This scenario is unavoidable when limiting the access policy as a single
atomic attribute characterizing a user’s identity (e.g., identity-based encryption)
or a target group of users (e.g., identity-based broadcast encryption) because the
encryptor needs to know the message to encrypt with the single attribute. However,
in the general case, where the access policy is composed from sub-policies via AND
and OR operators, the encryption of a message for the whole access policy can be
computed from the ciphertexts of the sub-policies, without the knowledge of the
original message.

Aiming to this scenario, where a combiner should manage the access policy
without knowledge of the original message, we need an additional property in ABE:
the homomorphic-policy. This property weakens the security of an ABE when the
combiner colludes with legitimate users. However, in our practical application, there
is no incentive for the combiner to break the scheme. The combiner is indeed involved
in the protocol to improve on the flexibility of the access control, and even if it is
corrupted, there is no harm for the system, comparing to the scenario where there is
no combiner and everything is managed by a unique authority.

Considering Pay-TV, we can now separate the roles of the content provider and of
the manager of the access policies (see Fig. 1.4): the content provider (C) encapsulates
the same session key K under each attribute, encrypts the content under this session
key K, and provides the encapsulation together with the encrypted content to the
manager of the access policies (M). The latter broadcasts the encrypted content,
but according to the access policy, it combines the appropriate encapsulations to
produce a unique encapsulation, to be broadcast to the users (the recipients (R)).
Each authorized user can decrypt this encapsulation (by owning attributes satisfying
the access policy) and get the session key to decrypt the content. All secrets and
keys are provided by a security manager (S), a trusted, incorruptible entity. His role
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is not considered in our work, or is implicitly played by the content provider (C).

(C)

(S)

(M)

(R)

E(K) ET (K)

pk

pk dk

Figure 1.4: Separating the roles, the content provider (C) encapsulates the key K
of his stream with the public key pk, and provides this encapsulation E(K) to the
content manager (M). This one chooses the target T and fixes the policy with the
public key, and distributes the encapsulation ET (K) to the final receiver (R). (C)
and (M) can be totally independents, or not. Also, (C) can play the role of the
security manager (S), or not.

We can also envisage another case where the entities (C) and (M) are totally
independent. To illustrate this, let us assume the manager (M) is a service of video
conferencing (again referring to Fig. 1.4), and the content provider (C) is a client
that asks (A) to organize a meeting with the participants (R). The authorized
participants are identified by several attributes. At the moment of the meeting,
(C) secretly gives (M) the encapsulations of the session key K, under the various
attributes, so that it can publicly distribute it according to the appropriate policy
to the participants. Only the authorized participants get access to the session K
and can participate to the meeting. The manager (M) does not learn any secret
information, and cannot eavesdrop the meeting.

As explained in the above context, the homomorphic-policy property is compatible
for key encapsulation rather than for encryption. Technically, we thus need to define
attribute-based key encapsulation mechanisms (ABKEM) which encapsulate a session
key for an access policy. Then, the combination of two encapsulations of the same
session key under two sub-policies into an encapsulation for the composed access
policy is completed via the homomorphic-policy property: if we have encapsulations
of a session key K under two policies p1 and p2, we will be able to produce an
encapsulation of the same session key K for the policies p1 ∨ p2 and p1 ∧ p2. The
achievement of an homomorphic-policy ABKEM is the main contribution of this
chapter. But of course, this is important to keep all the initial properties of an ABE
scheme, and namely the collusion-resistance of the final encapsulation.

As explained above, our main contribution is the definition and construction of
homomorphic-policy attribute-based key encapsulation mechanisms (HP-ABKEM).
To this aim, we define properly the homomorphic policy property and ABKEM. We
exploit special properties of LSSS for AND and OR operations and transforms them
in an efficient way of combining the corresponding encapsulations. We also propose
an efficient randomization method for making any ciphertext (possibly obtained
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from the above combinations) statistically indistinguishable from a fresh ciphertext
targeting the same policy, this part is important for the security of the system.
Finally, we describe a construction of ABKEM that relies on the Lewko-Waters ABE
scheme [LW11], which security holds in the random-oracle model. Putting altogether,
our final result gives an HP-ABKEM which is as efficient as the Lewko-Waters ABE
system. It is interesting that we get the homomorphic-policy property without paying
an extra cost. Actually, the final encapsulation after several combinations turns out
to be the same as the one the Lewko-Waters sender would have produced, hence
the same security level, and namely the collusion-resistance (in the random-oracle
model).

Organisation of this thesis
In addition to this introduction, this work is organized in six technical chapters

plus the conclusion.
In Chapter 2 we specify some notations used all along this thesis, and we provide

classical definitions and mathematical hypothesis needed for the proofs.
Chapter 3 chapter describes precisely the definitions of (decentralized) multi-client

functional encryption, and the associated security notions.
Chapter 4 provides several constructions for the previously defined primitive, one

theoretical and two others practical. The two last are parts of the results presented
in [CDG+18a].

Chapter 5 describes two constructions of decentralized multi-client functional
encryption. The first, generic, is taken from [CDG+18b], and the second from
[CDG+18a].

In Chapter 6 we explain how to enhance, in several ways, the security of the
schemes described in the previous chapters. All the material of this part are results
from the article [CDG+18b]

Chapter 7 is the last technical chapter. It defines and provides a construction of
homomorphic-policy attribute-based key encapsulation mechanism. This part gather
the contributions of [CPP17].

Finally, the conclusion sum up some open questions, principally about the multi-
client functional encryption.
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2 Preliminaries

In this chapter we introduce, in this order, notations, standard cryptographic
notions, and the mathematical assumptions needed for our work.
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2.1 Notations and mathematical notions . . . . . . . . . . . . . . . . . 13
2.2 Generic cryptography notions . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 About randomness . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Basic primitives . . . . . . . . . . . . . . . . . . . . . . . . 15
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2.3.1 Prime order group assumptions . . . . . . . . . . . . . . . . 23
2.3.2 Pairing group assumptions . . . . . . . . . . . . . . . . . . 24
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2.1 Notations and mathematical notions
Basics

We define the usual sets N, Z and ZN as the natural numbers, integers and
the integers modulo N . We denote the vector notation ~x = (xi)i. We denote
Pr[X = x] the probability for a random variable X to be equal to x, and Un the
uniform distribution over {0, 1}n. For any set S, we denote s $← S a random element
uniformly picked in S. The abbreviation PPT stands for Probabilistic Polynomial
Time. A PPT algorithm is running in polynomial time with respect to the input,
meaning that it is asymptotically efficient. An oracle is an ideal algorithm which
answers any given query, in a black-box way. A random oracle associates and returns
uniform randomness to any input. An adversary Adv is an entity that tries to
extract informations he is not allowed to get. In security proofs he is formalized as
an algorithm, usually PPT. A security parameter, designated by λ in this work,
is a value used to adapt the parameters of a cryptographic protocol to the supposed
computational power of an adversary.

Prime order groups

We use a prime-order group generator GGen, a probabilistic polynomial time
(PPT) algorithm that on input the security parameter 1λ returns a description
G = (G, p, P ) of an additive cyclic group G of order p for a 2λ-bit prime p, whose
generator is P .

We use implicit representation of group elements as introduced in [EHK+13]. For
a ∈ Zp, define [a] = aP ∈ G as the implicit representation of a in G. More generally,
for a matrix A = (aij) ∈ Zn×mp we define [A] as the implicit representation of A in
G:

[A] :=

a11P ... a1mP

an1P ... anmP

 ∈ Gn×m

We will always use this implicit notation of elements in G, i.e., we let [a] ∈ G be
an element in G. Note that from a random [a] ∈ G, it is generally hard to compute
the value a (discrete logarithm problem in G). Obviously, given [a], [b] ∈ G and a
scalar x ∈ Zp, one can efficiently compute [ax] ∈ G and [a+ b] = [a] + [b] ∈ G.

Pairing group

We also use a pairing-friendly group generator PGGen, a PPT algorithm that on
input 1λ returns a description PG = (G1,G2,GT , p, P1, P2, e) of asymmetric pairing
groups where G1, G2, GT are additive cyclic groups of order p for a 2λ-bit prime p,
P1 and P2 are generators of G1 and G2, respectively, and e : G1 × G2 → GT is an
efficiently computable (non-degenerate) bilinear map. Define PT := e(P1, P2), which
is a generator of GT . We again use implicit representation of group elements. For
s ∈ {1, 2, T} and a ∈ Zp, define [a]s = aPs ∈ Gs as the implicit representation of a
in Gs . Given [a]1, [a]2, one can efficiently compute [ab]T using the pairing e. For
two matrices A, B with matching dimensions define e([A]1, [B]2) := [AB]T ∈ GT .
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2.2 Generic cryptography notions
2.2.1 About randomness

Randomness is a crucial element in cryptography for keys, nonces, passwords...
However, true randomness is not possible to produce with deterministic algorithms,
making it a valuable resource.

Pseudo-random function

This justifies the use of pseudo-randomness, a source indistinguishable from
true uniform randomness. In this work (Section 4.1 and Section 5.1.4) we use
a pseudo-random function [GGM86], indistinguishable from a randomly chosen
function, because of its reproducibility.

Definition 2.1: Pseudo-Random Function family

Let be F : K ×X → Y a family of efficiently computable functions used in the
following security game:

• SetUp(λ): takes as input a security parameter λ. The challenger C picks a
random bit b $← {0, 1}, a random key k $← K, and defines f : x→ F (k, x)
if b = 0 or f $← FX→Y if b = 1.

• Query(x): the adversary A submits a request x to C, who computes and
returns the value f(x). A can use this algorithm any polynomial number
of time.

• Guess: A concludes this security game by sending C his guess b′ for the
bit b.

A such function family is called Pseudo-Random Function (PRF) family if the
following quantity is negligible:

AdvAPRF = P (b′ = 0|b = 0)− P (b′ = 0|b = 1)

Among the different possible properties of a pseudo-random function stands the
key homomorphism. This property, defined in [BLMR13], describes the conservation
of a structure between the key and output spaces. This property is the main
mechanism behind the scheme from Section 4.1.

Definition 2.2: Key-Homomorphic Pseudo-Random Function family

We call Key-Homomorphic Pseudo-Random Function (KH-PRF) family a set of
functions F : K × X → Y, where (K,⊕) and (Y ,⊗) are two groups, with the
two following properties:

• F is a PRF.

• F (k1, x) ⊗ F (k2, x) = F (k1 ⊕ k2, x) for all keys k1, k2 ∈ K and values
x ∈ X .
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Since the Key-Homomorphism only appears as an additional property, the security
definition remains the same as the original PRF.

Leftover hash lemma

Another way to produce randomness is through randomness extractors. Those
algorithms, given a "low quality" randomness, output a something "statically close"
to the uniform distribution. Here is the formal definition of those notions:

• behind the named quality is the min-entropy, defined as the value ME(X) :=
− log(maxx Pr(X = x)), where is X a random variable.

• the statistical distance between two random variables is, given two random
variables X, Y , the value SD(X, Y ) := 1

2
∑
x |Pr[X = x]− Pr[Y = x]|

Definition 2.3: Randomness Extractor

A function Ext : X × {0, 1}n → {0, 1}v is an (m, ε)-extractor (for space X ), if
for all (X,Z) such that X is distributed over X and ME(X|Z) ≥ m, we get
SD(Ext(X,S), Uv|(S,Z)) ≤ ε where S ∼ Un denotes the seed of Ext.

The main difference with the usual pseudo-randomness described above is the
proximity to real randomness, the statistical distance offered by extractors being
stronger than the computational indistinguishability of pseudo-random generators.

The proof of the scheme Section 5.1.5 requires a practical randomness extractor,
and mentions the use of the leftover hash lemma. This result from [ILL89,HILL99]
mainly states that specific hash functions, the universal hash functions, can be used
as randomness extractors:

Definition 2.4: ρ-Universal Hashing

A family H of (deterministic) functions h : X → {0, 1}n is called a ρ-universal
hash family (on X ), if for any x1 6= x2 ∈ X we have Pr

h
$←H

[h(x1) = h(x2)] ≤ ρ.

And finally, we recall the Leftover Hash Lemma, following the description
from [BDK+11]:

Theorem 2.1: Leftover Hash Lemma

Assume that the family H of functions h : X → {0, 1}n is a 1+γ
2n -universal hash

family. Then a function Ext(x, h) := h(x), where h $← H, is an (m, ε)-extractor,
where ε = 1

2

√
γ + 1

2m−n .

2.2.2 Basic primitives
Symmetric key encryption

Symmetric encryption is one of the most basic cryptographic primitive. It uses
the same key for the encryption and the decryption. Since symmetric encryption
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is a pseudo-random permutation, without an included key derivation algorithm the
encryption key can be used only once.

Definition 2.5: Symmetric Key Encryption scheme

A Symmetric Key Encryption (SKE) (SEnc, SDec) with key space K is defined
as:

• SEnc(K,m): given a key K and a message m, outputs a ciphertext ct;

• SDec(K, ct): given a key K and a ciphertext ct, output a plaintext.

The following must hold:

Correctness. For all m in the message space, Pr[SDec(K, SEnc(K,m)) = m] =
1, where the probability is taken over K $← K.

One time security is a formalization of what offers the classical one time pad. It
consists of an unique message sent between two parties sharing a same key.

Definition 2.6: One Time Security

For any PPT adversary A, the following advantage is negligible:

AdvOT
SKE(A) =

∣∣∣∣∣∣∣2× Pr

b′ = b :
(m0,m1)← A(1λ)
K $← K, b $← {0, 1}, ct = SEnc(K,mb)
b′ ← A(ct)

− 1

∣∣∣∣∣∣∣ .
If the key space is larger than the message space, on can simply use the one-time
pad to build a one-time secure symmetric encryption. Otherwise, a pseudo-
random generator can stretch the key to the right length.

Signature

A signature scheme ensures authenticity and integrity of a message. The signer
makes a trace of a message using a secret, which can be publicly verified. Signature
schemes may offer several properties (homomorphism, group signature...) and security
levels. In this work (more precisely in Section 6.1.4), we use a standard signature
scheme, but with a quite strong security: strong unforgeability. Here we provide the
definitions of both signature scheme and strong unforgeability:

Definition 2.7: Signature Scheme

A signature scheme onM is defined by four algorithms:

• SetUp(λ): takes as input the security parameter λ, and outputs the public
parameters pp;

• KeyGen(pp): takes as input the public parameters and outputs a pair of
signing and verification keys (sk, vk);
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• Sign(sk,m): takes as input a signing key sk and a message m ∈M, and
outputs a signature s;

• Verif(vk,m, s): takes as input the verification key vk, a message m and a
signature s, and returns either 1 or 0, whether the signature is valid or
not.

Strong unforgeability ensures an adversary cannot create a new pair (message,
signature) from a set of pairs of his choice. The difference with the weaker existential
notion is that it prevents the adversary to make a new signature from a previously
queried message, when it originally was considered as a trivial attack.

Definition 2.8: Strong Unforgeability

Let us consider a signature scheme, no adversary A should be able to win the
following security game against a challenger C:

• Initialize: the challenger C runs the setup algorithm pp ← SetUp(λ) as
well as the key generation algorithm (sk, vk)← KeyGen(pp), and provides
vk to the adversary A;

• Signature queries QSign(m): A has unlimited and adaptive access to the
signing oracle, and receives the signature s← Sign(sk,m). One appends
(m, s) to the list Queries;

• Finalize: A provides a pair (m, s). A wins if Verif(vk,m, s) when (m, s) /∈
Queries.

We say Sign is strongly unforgeable if for any adversary A, the following value
is negligible

AdvSUF
Sign(A) = Pr

 (m, s)← AQSign,
(m, s) /∈ Queries,

Verif(pp,m, s) = 1



Key encapsulation mechanism

Key encapsulation mechanism, as the name presumes, is used to transmit a crypto-
graphic key. It is generally used in the combination of symmetric/asymmetric cryptog-
raphy to share a key for a symmetric protocol. It is also our use-case in the last chapter
(Chapter 7), where we aim to delegate the access control over an encrypted stream.

Definition 2.9: Key Encapsulation Mechanism

An Key Encapsulation Mechanism (KEM) is defined by the three following
algorithms:

• SetUp(λ): takes as input the security parameter, and outputs the master
secret key sk and the public key pk;

• Encaps(pk): takes as input the public key pk to output a key K and an
encapsulation E of this key;
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• Decaps(sk, E): takes as input a decryption key and an encapsulation E,
to output the encapsulated key K or ⊥.

Correctness. For any (sk, pk) ← SetUp(λ) and (K,E) ← Encaps(pk, p),
Decaps(sk, E) = K.

Indistinguishability. Security notion very similar to the indisguishability of public
key encryption, but here the adversary cannot distinguish between two encapsulated
keys instead of messages.

Definition 2.10: IND-security game for KEM

Let us consider an KEM. No adversary A should be able to break the following
security game against a challenger:

• Initialization: the challenger runs the setup algorithm to get (msk, pk)←
SetUp(λ), and provides pk to the adversary A;

• Challenge: the challenger runs (K,E)← Encaps(pk, p), and sets Kb ← K
and K1−b as a random key, for a random bit b. It provides (E,K0, K1) to
the adversary;

• Finalize: the adversary A outputs its guess b′ on the bit b.

We then define Advind(A) = |2× Pr[b′ = b]− 1|, and say that an KEM is (t, ε)-
adaptively secure if no adversary A running within time t can get Advind(A) ≥ ε.

Secret sharing schemes

For any application with limited access, one needs to define the access structure,
which precises which combinations of conditions grant access to the data or to the
system.

Definition 2.11: Access Structure

Let P = {P1, P2, . . . , Pm} be a set of parties (human players or attributes). An
access structure in P is a collection A ⊆ 2P\{∅}. The sets in A are called the
authorized sets, while the others are called unauthorized sets.

When some minimal sets of parties are required to access the system (but any
superset is good too), only monotone access structures make sense, since one can
always ignore any supplementary party.

Definition 2.12: Monotone Access Structure

Let P = {P1, P2, . . . , Pm} be a set of parties and A an access structure in P.
A is said monotone if, for any subsets B,C ⊆ P, if B ⊆ C, when B ∈ A then
C ∈ A.
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In order to control access rights according to a monotone access structure, the
use of a secret sharing scheme that spreads the secret key among several players is a
classical technique. One must use a secret sharing scheme that just allows authorized
sets to reconstruct the secret key. This is even better if the secret key is never
fully reconstructed, but just in a virtual way to run the restricted process (such as
signature or decryption).

Definition 2.13: Secret Sharing Scheme

A secret sharing scheme over a set of parties P , for an access structure A over P ,
allows to share a secret s among the players, with shares ν1, . . . , νm such that:

• any set of parties in A can efficiently reconstruct the secret s from their
shares;

• any set of parties not in A has no information about the secret s from
their shares.

A linear secret sharing scheme is quite appropriate to share a secret key in order to
run the restricted process in a distributed way, since many cryptographic primitives
have such linear properties.

Definition 2.14: Linear Secret Sharing Scheme

A Linear Secret Sharing Scheme (LSSS) over a field K and a set of parties
P is defined by a share-generating matrix A ∈ Km×n and a labeling map
ρ : {1, . . . ,m} → P according to the access policy A: for any I ⊂ {1, . . . ,m},
anyone can efficiently find a vector ~c ∈ Km with support I such that ~ct ·A =
(1, 0, . . . , 0) if and only if ρ(I) ∈ A.

2.2.3 Functional encryption
Functional encryption is the core of this work. In this section we provide its

original definition, which we need to understand the scheme from [ABDP15] cited
in the introduction, and used in Section 6.2. We then give the multi-input version
to understand the differences with the multi-client Definition 3.2, also cited in the
introduction. And finally we describe the attribute-based encryption, needed for
Chapter 7.

The original functional encryption

As mentioned in the introduction, functional encryption originally aims to gener-
alize the public key encryption, covering encryption schemes with different access
control, or computation over encrypted data. It works like public key encryption,
but returns a function of the key and the message. Public key encryption is thus a
specific instantiation of functional encryption with a functionality that returns ⊥ or
the message depending of the validity of the key.
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Definition 2.15: Functional Encryption

A private-key, single input Functional Encryption (FE) for a family F consists
of the following PPT algorithms:

• SetUp(λ): on input a security parameter, it outputs a master secret key
msk and a public key mpk. The latter is implicitly input of all other
algorithms.

• Encrypt(msk, x): on input the master secret key and a message x, it outputs
a ciphertext ct.

• DKeyGen(msk, f): on input the master secret key and a function f ∈ F ,
it outputs a decryption key dkf .

• Dec(ct, dkf): deterministic algorithm that returns f(x), if ct is a valid
encryption of x, or ⊥ otherwise.

Correctness and security, as defined below, must hold:

Correctness. For any message x, and any function f in the family F , we have:
Pr[Dec(ct, dkf ) = f(x)] = 1, where the probability is taken over (msk,mpk)←
SetUp(λ), ct← Encrypt(msk, x), and dkf ← DKeyGen(msk, f).

Indistinguishability. The security notion is defined by an indistinguishability game.
Like the classical public key encryption, the goal is to distinguish the bit hidden in a
ciphertext. However, the adversary now is allowed to compute a functionality with
functional decryption keys, so this functionality must not trivially reveal this bit:

Definition 2.16: IND-Security Game for FE

Let FE be a functional encryption scheme. No adversary A should be able to
win the following security game:

• Initialize: runs (msk,mpk)← SetUp(λ), choose a random bit b $← {0, 1}
and returns mpk to A.

• QLeftRight(x0, x1): on input two messages (x0, x1), returns Enc(msk, xb).

• QDKeyGen(f): on input a function f ∈ F , returns DKeyGen(msk, f).

• Finalize: it outputs the guess b′ ofA on the bit b, unless some f was queried
to QDKeyGen and (x0, x1) was queried to QLeftRight such that f(x0) 6=
f(x1), in which case it outputs a uniformly random bit, independent of
A’s guess.

The adversary A has unlimited and adaptive access to the left-right encryption
oracle QLeftRight, and to the key generation oracle QDKeyGen. We say FE is IND-
secure if for any adversary A, AdvIND

FE (A) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|
is negligible.
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Multi-input functional encryption

Multi-input functional encryption is the first attempt to extend the functional
encryption setting to multi-party computation. This protocol, like the original
functional encryption, allows the computation of a function over an encrypted input,
the difference is that this ciphertext is now an aggregation from several independent
sources. In that respect, multi-input functional encryption and multi-client functional
encryption (Section 3.1) are very close. Roughly speaking, the latter can be considered
as an extension of the former that allows re-usability through labels.

Definition 2.17: Multi-Input Functional Encryption

A private-key, Multi-Input Functional Encryption (MIFE) for a family F over n
users consists of the following PPT algorithms:

• SetUp(λ): on input a security parameter, it outputs a master secret key
msk, encryption keys (eki)i and a public key mpk. The latter is implicitly
input of all other algorithms.

• Encrypt(eki, xi): on input an encryption key eki and a message xi, it
outputs a ciphertext ct.

• DKeyGen(msk, f): on input the master secret key and a function f ∈ F ,
it outputs a decryption key dkf .

• Dec((cti)i∈[n], dkf ): deterministic algorithm that returns f(~x), if (cti)i∈[n]
is a valid encryption of ~x = (xi)i ∈Mn, or ⊥ otherwise.

Correctness and security, as defined below, must hold:

Correctness. For any vector of messages ~x, and any function f in the fam-
ily F , we have: Pr[Dec((cti)i∈[n], dkf) = f(~x)] = 1, where the probability is
taken over (msk, (eki)i,mpk) ← SetUp(λ), ct ← Encrypt(eki, xi), and dkf ←
DKeyGen(msk, f).

Indistinguishability. The security notion is quite the same as functional encryption.
But since the ciphertext now comes from several sources, the finalize only considers
function of full vectors, and thus incomplete ciphertext must not reveal anything
to the adversary. This point makes this definition comparable to our IND-security,
defined in Section 6.1.

Definition 2.18: IND-security game for MIFE

Let MIFE be a multi-input functional encryption scheme. No adversary A should
be able to win the following security game:

• Initialize: runs (msk,mpk)← SetUp(λ), choose a random bit b $← {0, 1}
and returns mpk to A.

• QLeftRight(x0
i , x

1
i ): on input two messages (x0

i , x
1
i ), returns Enc(eki, xbi).
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• QDKeyGen(f): on input a function f ∈ F , returns DKeyGen(msk, f).

• Finalize: it outputs the guess b′ ofA on the bit b, unless some f was queried
to QDKeyGen and (~x0, ~x1) was queried to QLeftRight such that f(~x0) 6=
f(~x1), in which case it outputs a uniformly random bit, independent of
A’s guess.

The adversary A has unlimited and adaptive access to the left-right encryption
oracle QLeftRight, and to the key generation oracle QDKeyGen. We say FE is IND-
secure if for any adversary A, AdvIND

FE (A) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|
is negligible.

Attribute-based encryption

Finally, the last part of our work focuses on a specific use of attribute-based en-
cryption. Like the original public key encryption, it is an all-or-nothing functionality,
meaning that the decryption returns either ⊥ or the original message. The specificity
here is in the access control management; a predicate P , corresponding to the access
policy, and attributes a ∈ A are encoded somewhere in the ciphertext or in the key,
and the decryption returns the original message if and only if P (a1, · · · , ak) = 1.
When the predicate is encoded in the ciphertext and the attributes in the keys, it is
called Ciphertext Policy attribute-based encryption. In the opposite case, it is called
Key Policy attribute-based encryption, but our work only considers the first case:

Definition 2.19: Ciphertext-Policy Attribute-Based Encryption

An Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme over an
attribute space A is defined by four algorithms:

• SetUp(λ): takes as input the security parameter, and outputs the master
secret key msk and the public key pk;

• KeyGen(msk,A): takes as input the master secret key msk and a set of
attributes A, to output the private decryption key dkA;

• Encrypt(pk, p,m): takes as input the public key, a policy p, and a message
m, to output the encryption Cp = (ct, p);

• Decrypt({dk, C): takes as input a decryption key dk and an encryption C,
to output a message m or ⊥.

Correctness. For any (msk, pk)← SetUp(λ), dk← KeyGen(msk,A), and Cp ←
Encrypt(pk, p,m), Decrypt(dk, Cp) = m if A satisfies the policy p.

Indistinguishability. The main security property is the usual indistinguishability
(IND), similar to the usual public key encryption. It should prevent leaks from
adaptively chosen decryption keys, thus modeling potential collusions:
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Definition 2.20: IND-security game for CP-ABE

Let us consider an CP-ABE over an attribute space A. No adversary A should
be able to break the following security game against a challenger:

• Initialization: the challenger runs the setup algorithm to get the values
(msk, pk)← SetUp(λ), and provides pk to the adversary A;

• Key Queries QKeyGen: the adversary A can ask KeyGen-queries, for any
attribute set A of its choice to get dkA;

• Challenge Challenge: the adversary A provides a policy p and two mes-
sages m0,m1 to the challenger that picks a random bit b and runs
Cp ← Encrypt(pk, p,mb). It provides Cp to the adversary;

• Key Queries QKeyGen: the adversary A can again ask KeyGen-queries of
its choice;

• Finalize: the adversary A outputs its guess b′ on the bit b.

We also define the event Cheat, which means that a user owns a set of attributes
A that satisfies p: in such a case, the adversary can trivially guess b. Hence, we
only allow adversaries such that Pr[Cheat] = 0. We then define Advind(A) =
|2 × Pr[b′ = b] − 1|, and say that an CP-ABE is (t, ε)-adaptively secure if no
adversary A running within time t can get Advind(A) ≥ ε.

2.3 Assumptions
In this part we define the mathematical assumptions used in this work. They are

all related to groups, and count among the most classical assumptions in group-based
cryptography.

2.3.1 Prime order group assumptions
This first one states that given two random elements from the group, no one

can compute their product, which is the basic idea behind every group assumptions.

Definition 2.21: Computational Diffie-Hellman assumption

The Computational Diffie-Hellman (CDH) assumption states that, in a prime-
order group G $← GGen(1λ), no PPT adversary can compute [xy], from [x] and
[y] for x, y $← Zp, with non-negligible success probability.

Equivalently, this assumption states it is hard to compute [a2] from [a] for a $← Zp.
This comes from the fact that 4[xy] = [(x+ y)2]− [(x− y)2].

The second is the decisional problem associated to the first one, given two random
elements from the group, no one can distinguish between the product a third random
element.
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Definition 2.22: Decisional Diffie-Hellman assumption

The Decisional Diffie-Hellman (DDH) assumption states that, in a prime-order
group G $← GGen(1λ), no PPT adversary can distinguish between the two
following distributions with non-negligible advantage:

{([a], [r], [ar]) | a, r $← Zp} and {([a], [r], [s]) | a, r, s $← Zp}.

Equivalently, this assumption states it is hard to distinguish, knowing [a], a random
element from the span of [~a] for ~a = (1

a
) , from a random element in G2: [~a] · r =

[~ar] = ( [r]
[ar]) ≈ ([r][s]) .

We can extend this second assumption in a vector of random elements with the
help of the following proposition:

Proposition 2.1

For any distinguisher A running within time t, the best advantage A can get in
distinguishing

Dm = {(X, (Yj, Zj = CDH(X, Yj))j) | X, Yj $← G, j = 1, . . . ,m}
D′m = {(X, (Yj, Zj)j) | X, Yj, Zj $← G, j = 1, . . . ,m}.

is bounded by Advddh(t+ 4m× tG), where tG is the time for an exponentiation
in G.

Proof

One can first note that the best advantage one can get, within time t, between

D = {(X, Y, Z = CDH(X, Y )) | X, Y $← G}
D′ = {(X, Y, Z) | X, Y, Z $← G}.

is bounded by Advddh(t). This is actually the DDH assumption. One can note
that Dm and D′m can be rewritten as

Dm ={(X, (Yj = gujY vj , Zj = Xuj · CDH(X, Y )vj)j) | X, Y $← G, uj, vj $← Zp}
D′m ={(X, (Yj = gujY vj , Zj = Xuj · Zvj)j) | X, Y, Z $← G, uj, vj $← Zp}

Since, from (X, Y, Z), the m tuples require 4 additional exponentiations per
index j, one get the expected bound.

2.3.2 Pairing group assumptions
These assumptions, also considered classical, concerns the kind of groups we refer

to in Section 2.1. The main difference with prime order groups is that the group GT

now allows one multiplication.
This first assumption relies with the original group assumptions, presuming that

DDH holds in both G1 and G2.
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Definition 2.23: Symmetric eXternal Diffie-Hellman assumption

The Symmetric eXternal Diffie-Hellman (SXDH) assumption states that, in a
pairing group PG $← PGGen(1λ), the DDH assumption holds in both G1 and
G2.

The second really exploits the potential offered by the pairing. Three random
elements from G1 or G2 are given, and the goal is to distinguish between the product
of those three elements in GT or a random element from GT .

Definition 2.24: Decisional Bilinear Diffie Hellman assumption

The Decisional Bilinear Diffie Hellman (DBDH) assumption states that, in a
pairing group PG $← PGGen(1λ), for any PPT adversary, the following advantage
is negligible, where the probability distribution is over a, b, c, s $← Zp:

AdvDBDH
PG (A) =|Pr[1← A(PG, [a]1, [b]1, [b]2, [c]2, [abc]T )]

− Pr[1← A(PG, [a]1, [b]1, [b]2, [c]2, [s]T )]|.

Once again it can be extended in a vector of elements in the Q-fold DBDH
assumption:

Proposition 2.2: Q-fold DBDH

For any integer Q, the Q-fold DBDH assumption states for any PPT adversary,
the following advantage is negligible, where the probability distribution is over
a, b, ci, si

$← Zp:

AdvQ-DBDH
PG (A) =|Pr[1← A(PG, [a]1, [b]1, [b]2, {[ci]2, [abci]T}i∈[Q])]

− Pr[1← A(PG, [a]1, [b]1, [b]2, {[ci]2, [si]T}i∈[Q])]|.

And this lemma prove that Q-fold DBDH assumption is equivalent to classical DBDH
assumption:

Lemma 2.1: Random self reducibility of DBDH

For any adversary A against the Q-fold DBDH, running within time t, there
exists an adversary B running within time t+ 2Q(tGT + tG2), where tGT and tG2

denote respectively the time for an exponentiation in GT and G2 (we only take
into account the time for exponentiations here), such that

AdvQ-DBDH
PG (A) ≤ AdvDBDH

PG (B).
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Proof

Upon receiving a DBDH challenge (PG, [a]1, [b]1, [b]2, [c]2, [s]T ), B samples the
values αi, c′i

$← Zp computes [ci]2 := [αi · c]2 + [c′i]2, [si]T := [αi · s]T + [ci · ab]T
for all i ∈ [Q], and gives the challenge (PG, [a]1, [b]1, [b]2, {[ci]2, [si]T}i∈[Q]) to A.
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3 Multi-client functional encryption

This section is devoted to formalize multi-client functional encryption, decentral-
ized multi-client functional encryption and their security models. We also discuss
about the links and differences between several security level.

Contents
3.1 Multi-client functional encryption . . . . . . . . . . . . . . . . . . . 28

3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Decentralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 Definition of decentralized multi-client functional encryption 32
3.2.2 Security of DMCFE . . . . . . . . . . . . . . . . . . . . . . 33

27



3.1 Multi-client functional encryption
We now define a private-key MCFE as in [CDG+18b], which is a variant of the

definition from [GGG+14,GKL+13,CDG+18a]. The difference is, since we consider
the symmetric setting, we allow users to decrypt using their own keys, to get back
their component plaintexts at least when the ciphertexts were fully generated.

3.1.1 Definition
An MCFE scheme encrypts vectors of data from several senders i using personal

encryption keys eki, and it allows the controlled computation of functions f on these
heterogeneous data with a functional decryption key dkf . In this work, we consider
the symmetric-key setting, where the encryption key eki can also serve to decrypt
individual ciphertext for slot i ∈ [n], using the Decrypt algorithm. It works like the
functional decryption algorithm FDecrypt, they both take as input a complete vector
of individual ciphertexts, but the former uses eki to decrypt an individual ciphertext,
while the latter uses dkf to evaluate f on the global plaintext. The algorithm Decrypt
will be used when proving CCA security in Section 6.3. We can thus define the MCFE
definition as follows.

Definition 3.1: Multi-Client Functional Encryption

A multi-client functional encryption (MCFE) onM over a set of n senders is
defined by five algorithms:

• SetUp(λ): takes as input the security parameter λ, and outputs the public
parameters mpk, the master secret key msk and the n private encryption
keys eki;

• Encrypt(eki, xi, `): takes as input a user encryption key eki, a value xi to
encrypt, and a label `, and outputs the ciphertext C`,i;

• DKeyGen(msk, f): takes as input the master secret key msk and a function
f :Mn → R, and outputs a functional decryption key dkf ;

• FDecrypt(dkf , `, ~C): takes as input a functional decryption key dkf , a
label `, and an n-vector ciphertext ~C, and outputs f(~x), if ~C is a valid
encryption of ~x = (xi)i ∈Mn for the label `, or ⊥ otherwise.

• Decrypt(eki, `, ~C): takes as input a label `, a user encryption key eki and
an n-vector ciphertext ~C, and outputs a value xi, if ~C is a valid encryption
of ~x = (xi)i ∈Mn for the label `, or ⊥ otherwise.

We will assume public parameters being implicitly included in the keys.

Correctness. Given (mpk,msk, (eki)i)← SetUp(λ), for any label `, any func-
tion f :Mn → R, and any vector ~x = (xi)i ∈Mn, if C`,i ← Encrypt(eki, xi, `),
for i ∈ {1, . . . , n}, and dkf ← DKeyGen(msk, f), then FDecrypt(dkf , `, ~C` =
(C`,i)i) = f(~x = (xi)i) and Decrypt(eki, `, ~C`) = xi.
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Relation MIFE-MCFE

One can notice this definition makes MCFE very close to the MIFE described
in Definition 2.17. In MIFE, every ciphertext for every slot can be combined with
any other ciphertext for any other slot, and used with functional decryption keys to
decrypt an exponential number of values, as soon as there are more than one ciphertext
per slot. This "mix-and-match" feature is crucial for some of the applications of MIFE,
such as building indistinguishability obfuscation [GGG+14]. However, it also means
the information leaked about the underlying plaintext is enormous, and in many
applications, the security guarantees simply become void, especially when many
functional decryption keys are queried. In the case of inner product, as soon asm well-
chosen functional decryption keys are queried (i.e. for linearly independent vectors),
the plaintexts are completely revealed. In the multi-client setting however, since only
ciphertexts with the same label can be combined for decryption, information leakage
of the plaintext is much controled.

Also we remark that, for both MIFE and MCFE, private-key is more relevant than
their public-key counterparts. Essentially, in a public-key MCFE, an encryption of
unknown plaintext xi, for some label `, can be used together with encryptions of
arbitrarily chosen values x′j for each slot j ∈ [n] (for the same label `) and a functional
decryption key for some function f , to obtain the value f(x′1, · · · , x′i1 , xi, x

′
i+1, · · · , x′n).

Since the values x′j for j 6= i are arbitrarily chosen, this reveals typically too much
information on xi for practical uses. In the case of inner product, that means
that, from Enc(i, xi, `), dk~y, and the public key, one can efficiently extract the values
xiyi+

∑
j 6=i x

′
jyj for chosen x′j , which exactly reveals the partial inner product xiyi (see

[AGRW17] for more details on the limitations of public-key IP-FE in the multi-input
setting). In order to prevent the adversary from a trivial win, one should make the
restriction that the adversary is only allowed to ask functional decryption keys dkf for
functions f that satisfy f(x0

1, ·, . . . , ·) = f(x1
1, ·, . . . , ·), f(·, x0

2, . . . , ·) = f(·, x1
2, . . . , ·),

. . . , f(·, ·, . . . , x0
n) = f(·, ·, . . . , x1

n). This would essentially exclude any function.
A private-key encryption solves this issue, and is still well-suited for practical
applications.

3.1.2 Security
The security model is the usual left-or-right indistinguishability [BDJR97], but

where the adversary should not be able to get functional decryption keys that trivially
help distinguish the encrypted vectors. Also, as explained in [GGG+14,GKL+13,
CDG+18a], one has to consider corruptions, since the senders do not trust each other,
and they can collude and give their secret keys to the adversary who will play on
their behalf.

IND∗ and IND

The reader will notice this definition describes two different versions, a weaker
called IND∗, and a stronger, IND. The former is given in [CDG+18a] (more precisely
wtr-IND∗ without QEncrypt, see Section 3.1.2 and Section 4.2.2). In this one there
is the additional restriction on incomplete ciphertexts which formerly says that a
challenge on a partial encryption of a vector over a label is considerate illegitimate.
This constraint may seem artificial, but the construction given in [CDG+18a] was
vulnerable to this kind of attack. The latter is an improvement, and appears in
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[CDG+18b]. This article fixes the shortcomings of the security achieved in [CDG+18a],
principally by allowing the adversary to query the left-or-right encryption oracle for
some honest users, but not necessarily all of them, leading to incomplete ciphertexts.

We highlight the differences with the security definition from [CDG+18a] and the
one from [CDG+18b]. Namely, the extra requirements in gray corresponds to the
IND∗-security and the framed to the IND one. Eventually, we note that the IND notion
implicitly achieves CPA security. So we also consider CCA security, with additional
functional decryption queries (dotted).

Definition 3.2: IND∗ , IND -CCA -Security Game for MCFE

Let us consider MCFE, a scheme over a set of n senders. No adversary A should
be able to win the following security game against a challenger C, with unlimited
and adaptive access to the oracles QEncrypt, QLeftRight, QFDecrypt, QDKeyGen,
and QCorrupt described below:

• Initialize: the challenger C runs the setup algorithm (mpk,msk, (eki)i)←
SetUp(λ) and chooses a random bit b $← {0, 1}. It provides mpk to the
adversary A;

• Encryption queries QEncrypt(i, x, `): outputs the ciphertext C`,i ←
Encrypt(eki, x, `);

• Challenge queries QLeftRight(i, x0, x1, `): outputs the ciphertext C`,i ←
Encrypt(eki, xb, `);

• Functional decryption queries QFDecrypt(f, `, ~C): the oracle first asks for
the functional decryption key dkf , and then outputs FDecrypt(dkf , `, ~C).

• Functional decryption key queries QDKeyGen(f): outputs the functional
decryption key dkf ← DKeyGen(msk, f);

• Corruption queries QCorrupt(i): outputs the encryption key eki;

• Finalize: A provides its guess b′ on the bit b, and this procedure outputs
the result β of the security game, according to the analysis given below.

The output β of the game depends on some conditions, where CS is the set
of corrupted senders (the set of indexes i input to QCorrupt during the whole
game), and HS the set of honest (non-corrupted) senders. We set the output to
β ← b′, unless one of the cases below is true, in which case we set β $← {0, 1}:

1. some QLeftRight(i, x0
i , x

1
i , `)-query has been asked for an index i ∈ CS

with x0
i 6= x1

i when encryption queries have been asked for all i ∈ HS;

2. for some label ` and for some function f asked to QDKeyGen, there exists
a pair of vectors (~x0 = (x0

i )i, ~x1 = (x1
i )i) such that f(~x0) 6= f(~x1), when

• x0
i = x1

i , for all i ∈ CS;
• QLeftRight(i, x0

i , x
1
i , `)-queries (or QEncrypt(i, xi, `)-queries if xi =

x0
i = x1

i ) have been asked for all i ∈ HS;
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3. for some label `, a challenge query QLeftRight(i, x0
i , x

1
i , `) has been asked

for some i ∈ HS, but challenge queries QLeftRight(j, x0
j , x

1
j , `) or encryp-

tion queries QEncrypt(j, xj, `) have not all been asked for all j ∈ HS.

for some QFDecrypt(f, `, ~C = (Ci)i)-query, we have
4. • the answer was not ⊥;

• there exist two vectors ~x0 and ~x1 such that for all i ∈ CS: x0
i = x1

i ,
for all i ∈ HS: either there is a query QLeftRight(i, x0

i , x
1
i , `) that

led to Ci, or x0
i = x1

i = xi and there is a query QEncrypt(i, xi, `)
that led to Ci.

• the above vectors ~x0 and ~x1 satisfy f(~x0) 6= f(~x1).

We say MCFE is IND-secure if for any adversary A, AdvIND
MCFE(A) = |Pr[β = 1|b =

1]− Pr[β = 1|b = 0]| is negligible.

About the finalize

The two first excluded cases are situations where the adversary could trivially
distinguish the encrypted vectors, they are thus considered illegitimate attacks:

1. since we are dealing with symmetric-key encryption, where the encryption
key and the decryption key are the same, a QLeftRight(i, x0

i , x
1
i , `)-query with

x0
i 6= x1

i , for i ∈ CS leaks b (either at the QLeftRight-query time or at the
corruption-time). In our stronger security model, this criteria is less restrictive,
applying only when honest encryption are all queried;

2. for any functional decryption key, all the possible evaluations should not trivially
allow the adversary to distinguish the ciphertexts generated through QLeftRight-
queries (on honest components), only when ciphertexts are complete;

And the last condition is classical, in the CCA-setting, and here in the functional
encryption context, as we consider illegitimate functional decryption queries on
challenge ciphertexts that could result in a different values depending on the value
of b. For such illegitimate attacks, the guess of the adversary is not considered (a
random bit β is output). Otherwise, this is a legitimate attack, and the guess b′ of
the adversary is output.

Other variants

We also define several variants of the security game:

• where the adversary must announce in advance the corruption (QCorrupt)
queries: static security (sta-IND∗/sta-IND);

• where the adversary must announce in advance the challenge (QLeftRight)
queries: selective security (sel-IND∗/sel-IND);

• where the adversary is limited to one encryption/challenge query on each (i, `)
(later queries with the same i and ` will be ignored by QEncrypt and QLeftRight):
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without-repetition security (wtr-IND∗/wtr-IND). It was a problematic char-
acteristic of the security definition of [CDG+18a] fixed in [CDG+18b], the
resulting construction is described in Section 6.2;

• where the adversary is limited to challenge queries on one particular label:
1-Label-IND∗-security. The 1-Label-IND∗ security is exactly the same security
notion as IND∗ where the challenge QLeftRight oracle can only be queried with
the same label. Hence, as above, the index ρ of the target label `∗ is provided by
the adversary, at the beginning, and so we can assume that all the encryption
queries for `∗ = `ρ are asked to the QLeftRight oracle, while the other encryption
queries are asked to the QEncrypt oracle. It is known that 1-Label-IND∗ and
IND∗ are equivalent [BDJR97], but the former is more convenient in the CCA
security proof in Section 6.3;

About the oracle QEncrypt

Note that in the IND security game, the oracle QEncrypt can be simulated by
QLeftRight, queried on input x0

i = x1
i . However, in the IND∗, this oracle gives more

power to the adversary: it is not possible for the adversary to query QLeftRight on
some but not all input slots, for a given label (this is the condition 3. from Finalize),
but it can query QEncrypt on incomplete ciphertexts, without triggering Finalize to
output a random bit. This will be helpful when going from IND∗ to IND security, in
Section 6.1.

3.2 Decentralization
Here, we define decentralized multi-client functional encryption (DMCFE), where

the generation of functional decryption key is decentralized, and only requires
individual secret keys, instead of the master secret key.

3.2.1 Definition of decentralized multi-client functional encryp-
tion

In MCFE, an authority owns a master secret key msk to generate the functional
decryption keys. We would like to avoid such a powerful authority, and make the
scheme totally decentralized among the owners of the data (the senders). We thus
define DMCFE, for decentralized multi-client functional encryption. In this context,
there are n senders (Si)i, for i = 1, . . . , n, who will play the role of both the encrypting
players and the functional decryption key generators, for a functional decryptor FD.
Of course, the senders do not trust each other and they want to control the functional
decryption keys that will be generated. There may be several functional decryptors,
but since they could collude and combine all the functional decryption keys, in the
description below, and in the security model, we will consider only one functional
decryptor FD. We could simply use the definition of MCFE [GGG+14,GKL+13],
where the setup and the functional decryption key algorithms are replaced by MPC
protocols among the clients. But this could lead to a quite interactive process. We
thus focus on efficient one-round key generation protocols DKeyGen that can be split
in a first step DKeyGenShare that generates partial keys and the combining algorithm
DKeyComb that combines partial keys into the functional decryption key.
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Definition 3.3: Decentralized Multi-Client Functional Encryption

A decentralized multi-client functional encryption (DMCFE) onM between a
set of n senders (Si)i, for i = 1, . . . , n, and a functional decrypter FD is defined
by the setup protocol and four algorithms:

• SetUp(λ): this is a protocol between the senders (Si)i that generate their
own secret keys ski and encryption keys eki, and eventually output the
public parameters mpk;

• Encrypt(eki, xi, `): takes as input a user encryption key eki, a value xi to
encrypt, and a label `, and outputs the ciphertext C`,i;

• DKeyGenShare(ski, `f): takes as input a user secret key ski and a label
`f , and outputs the partial functional decryption key dkf,i for a function
f :Mn → R that is described in `f ;

• DKeyComb((dkf,i)i, `f): takes as input the partial functional decryption
keys and eventually outputs the functional decryption key dkf ;

• FDecrypt(dkf , `, ~C): takes as input a functional decryption key dkf , a
label `, and an n-vector ciphertext ~C, and outputs f(~x), if ~C is a valid
encryption of ~x = (xi)i ∈Mn for the label `, or ⊥ otherwise;

• Decrypt(eki, `, ~C): takes as input an encryption key eki, a label `, and
an n-vector ciphertext ~C, and outputs xi, if ~C is a valid encryption of
xi ∈M for the label `, or ⊥ otherwise;

We make the assumption that mpk is included in all the secret and encryption
keys, as well as the (partial) functional decryption keys. Similarly, the function
f might be included in the (partial) functional decryption keys.

Correctness. Given (mpk, (ski)i, (eki)i)← SetUp(λ), for any label `, any func-
tion f :Mn → R, and any vector ~x = (xi)i ∈Mn, if C`,i ← Encrypt(eki, xi, `),
for i ∈ {1, . . . , n}, and dkf ← DKeyComb((DKeyGenShare(ski, `f ))i, `f ), then we
have FDecrypt(dkf , `, ~C` = (C`,i)i) = f(~x = (xi)i). The correctness property
essentially states the combined key corresponds to the functional decryption
key.

3.2.2 Security of DMCFE
The IND-security model is quite similar to the previous one for MCFE (see

Definition 3.2), the differences occur on the three following points.
First, for the DKeyGen protocol: the adversary has access to transcripts of the

communications, thus modeled by a query QDKeyGen(i, f) that generates a part of
the key through DKeyGenShare(ski, `f ), where `f is a description of f . Consequently,
the QDKeyGen takes the user i as input.

• Functional decryption key queries QDKeyGen(i, f): A has unlimited and adap-
tive access to the (non-corrupted) senders running the DKeyGenShare(ski, f)

33



algorithm for any input function f of its choice. It is given back the partial
functional decryption key dkf,i;

Secondly, corruption queries additionally reveal the secret keys ski used in the
DKeyGenShare algorithm:

• Corruptions queries QCorrupt(i): A can make an unlimited number of adaptive
corruption queries on input index i, to get the secret and encryption keys
(ski, eki) of any sender i of its choice.

Last point, the Finalize procedure ignores incomplete functional decryption keys:
for condition (2), only functions f for which all the honest key-shares have been
asked are considered:

1. some QLeftRight(i, x0
i , x

1
i , `)-query has been asked for an index i ∈ CS with

x0
i 6= x1

i when encryption queries have been asked for all i ∈ HS;

2. for some label ` and for some function f asked to QDKeyGen, there exists a
pair of vectors (~x0 = (x0

i )i, ~x1 = (x1
i )i) such that f(~x0) 6= f(~x1), when

• x0
i = x1

i , for all i ∈ CS;
• QLeftRight(i, x0

i , x
1
i , `)-queries (or QEncrypt(i, xi, `)-queries if xi = x0

i =
x1
i ) have been asked for all i ∈ HS;

• QKeyGen(i, f)-queries have been asked for all i ∈ HS

The critical point is the last one: the distributed key generation must guarantee
that without all the shares, no information is known about the functional decryption
key. In addition, the protocol must be efficient.
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4 Construction of MCFE

In this section we present several constructions of inner product MCFE (IP-MCFE).
The first one is generic, using a KH-PRF, and is proven sel-wtr-IND∗-secure. The
two others are group-based schemes, and were described in [CDG+18a]. One can be
considered as the direct instantiation of the first construction, and the security level
remains the same. The other is an improvement that reaches the wtr-IND∗-security
against adaptive queries and corruptions.
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4.1 IP-MCFE from key-homomorphic PRF
Here we describe how to build an IP-MCFE from a KH-PRF in a black-box way.

Overview

The main idea is the same as the inner product FE (IP-FE) from [ABDP15], which
consists to mask linearly the x`,i with some secret r`,i. The decryption processes by
computing ∑i(x`,i + r`,i) · yi and then removing the value ∑i r`,i · yi with a decryption
key dk~y. There are essentially two constraints on the r`,i to satisfy when building such
a scheme. First, these values must be indistinguishable from uniform randomness to
ensure statistical security of x`,i. Secondly, they must be correlated with a same label
` to correctly decrypt with a same key dk~y. Eventually, they must be uncorrelated
between the different labels to avoid mix-and-match attacks. A KH-PRF F fulfills
these conditions if we consider the label ` as the input, and a user key eki as the key:
r`,i = F (eki, `).

4.1.1 Description
Our construction, using additive notation:

• SetUp(λ): outputs a KH-PRF F : K ×X −→ Y as public parameter pp, and a
personal encryption key eki $← K for each users i ∈ [n]. We note msk = (eki)i.

• Encrypt(xi, eki, `): takes as input a value xi to encrypt, a personal encryption
key eki, a label `, and outputs the ciphertext C`,i = F (eki, `) + xi.

• DKeyGen(msk, ~y): takes as input msk, the vector ~y that characterizes the
function f~y(~x) = 〈~x, ~y〉 and provides dk~y = (~y, 〈msk, ~y〉) = (~y, 〈(eki)i, ~y〉).

• FDecrypt(dkf , `, ~C` = (C`,j)j): takes as input a decryption key dkf , a label `,
and a ciphertext ~C` to compute the value: 〈~C`, ~y〉 − F (dk~y, `).

• Decrypt(eki, `, ~C` = (C`,j)j): takes as input a decryption key dkf , a label `, and
a ciphertext ~C` to compute the value: C`,i − F (eki, `).

Correctness. If the scalar dk in the functional decryption key dk~y = (~y, dk) is
indeed dk = 〈(eki)i, ~y〉, then:

〈~C`, ~y〉 − F (dk~y, `) = 〈(F (eki, `) + xi)i, ~y〉 − F (dk~y, `)
= F (〈(eki)i, ~y〉, `) + 〈~x, ~y〉 − F (dk~y, `)
= 〈~x, ~y〉

4.1.2 Security analysis
Sadly, the security level guaranteed by this construction is inversely proportional

to its simplicity: only selective in encryption queries, limited to one encryption under
the pair (i, `), and overall it is not secure if we suppose that the adversary can ask
partial ciphertexts only.
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Theorem 4.1: sel-wtr-IND∗ Security

The MCFE protocol described above (see Section 4.1) is sel-wtr-IND∗ secure if
the function F is a PRF. More precisely, we have

AdvIND(A) ≤ 2Q` · Adv(t)PRF
KH-PRF,

for any adversary A running in time t, where Q` is the number of labels.

The proof of this theorem consists in a sequence of hybrid games on the labels,
from G0 = G1,1,0 to G2 = G1,Q`,5 where Q` is the number of labels. The idea is to
pick a part of the key as a vector of 〈~x0 − ~xb〉, then inject randomness through the
KH-PRF. The following Fig. 4.1 summarizes this proof.

Games G1,q,0, G1,q,1 , G1,q,2 , G1,q,3, G1,q,4(
state, (`j, zj,i)i∈[n],j∈[Q]

)
← A(1λ, 1n)

where each zj,i = (x0
j,i, x

1
j,i) ∈ Z2

p, or zj,i = ⊥, which stands for no query.
Initialize PRFO: pick µ $← K Initialize PRFO as RF .
For all i ∈ [n], si $← K, pick µ $← K, , and generate a KH-PRF F : K ×X −→ Y .
eki := si, eki := si + µ(x0

i,`q − x
b
i,`q) , msk := (eki)i, mpk := F .

When zj,i = (x0
j,i, x

1
j,i), then Cj,i = QLeftRight(i, x0

j,i, x
1
j,i, `j) for i ∈ [n], j ∈ [Q`].

b′ ← AQDKeyGen(·),QCorrupt(·)(mpk, state).
Run Finalize on b′.

QLeftRight(i, x0
i , x

1
i , `): // {G1,q,j}j=0,1 , G1,q,2,G1,q,3, G1,q,4

For bj = 0 when j < q, j ≤ q , b else.
Ci := F (eki, `j) + x

bj
i .

Ci := F (eki, `j) + (x0
i,`q − x

b
i,`q)PRFO(`) + x

bj
i .

Return [ci].
QEncrypt(i, xi, `): // {G1,q,j}j=0···4
Return QLeftRight(i, xi, xi, `).

PRFO(`): // G1,q,2, {G1,q,j}j=3,4

Return F (µ, `), RF(`) .
QDKeyGen(~y): // {G1,q,j}j=0···4
Return 〈~s, ~y〉.
QCorrupt(i): // {G1,q,j}j=0···4
Return si.

Figure 4.1: Summary of the hybrid-games proof system of the Theorem 4.1. On this
description, PRFO plays the role of the challenger of the PRF security game, and
appears only in three games.
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Proof

Game G0 : this is the selective wtr-IND∗ game, following the definition from
Definition 3.2. Details are given in the Fig. 4.1.

Game G1,q,0 : this game is characterized by the encryption:

• for queries `j where j < q, encrypts x0

• for queries `j where j ≥ q, encrypts xb

Game G1,q,1 : this game only changes the generation of msk: C chooses msk =
µ(~x0

`q − ~x1
`q) + ~s where µ $← K and ~s $← Kn, and the eki used in the

encryption are now eki : si +µ(x0
i,`q −x

1
i,`q). Note that the decryption keys

are dk~y = 〈(eki)i, ~y〉 = 〈~s, ~y〉.

Game G1,q,2 : now C only chooses the ~s part of the key in the SetUp. To
prepare the QLeftRight queries, he asks an oracle PRFO the values F (µ, `j)
for any query `j and returns:

• Ci = F (si, `j) + (x0
i,`q − x

1
i,`q)F (µ, `j) + x0

i,`j
when j < q

• Ci = F (si, `j) + (x0
i,`q − x

1
i,`q)F (µ, `j) + xbi,`j when j ≥ q

Also, C can still answer other queries: for QDKeyGen he computes and
sends 〈~s, ~y〉, and for QCorrupt he answers si.

Game G1,q,3 : same as previously except that the oracle PRFO now answers
RF(`) for any query `, where RF : X −→ Y was randomly chosen at the
initialization of PRFO.

Game G1,q,4 : this game switches the bit used in the encryption into 0 for the
label `q.

Game G1,q,5 = G1,q+1,0 : in this game, the SetUp turns back to the original
description of G1,q,0 to start a new iteration, and we have G1,q,5 = G1,q+1,0.

Game G2 : same game as G0 except that the bit used for encryption is 0.
The advantages for A are the same in G1,q,0, G1,q,1 and G1,q,2 since the

distributions of both ciphertexts and keys are not modified. The PRF makes it
hard to distinguish between G1,q,2 and G1,q,3, |Adv`,2 − Adv`,3| = AdvPRF

KH-PRF(B),
where B is an adversary playing against PRFO. The step between G1,q,3 and
G1,q,4 is statistically secure, since PRFO has the same probability to use a
function RF(`) or RFq(`) where RFq(`) = RF(`) + δ`q(`). In the last game G1,q,5,
the challenger comes back to the use of a PRF, repeating the PRF security game.
Thus, the final advantage is AdvIND∗

MCFE(A) ≤ 2Q` × AdvPRF
KH-PRF, where Q` is the

number of labels.

Remark 1. Note that, because of the first finalize condition, the extra value
(x0

i,`q − x1
i,`q)F (µ, `j) is null for corrupted users, so their ciphertexts are not

modified in a valid simulation.
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Remark 2. Also, the QEncrypt(i, xi, `) can here be answered with the value
QLeftRight(i, xi, xi, `). As explained in remark Section 3.1.2, the only difference
between these two values is that QEncrypt allows the adversary to make incom-
plete ciphertext queries, not QLeftRight. In the security proof, the challenge
ciphertexts output by QLeftRight are switched from an encryption of xbi to en-
cryption of x0

i , introducing a delta terms in the functional decryption keys. This
delta term cancels out thanks to the conditions given in the Finalize procedure
(for which we need complete ciphertexts). For QEncrypt queries, xbi = x0

i = x1
i ,

which means the delta term is zero, and doesn’t show up in any of the functional
decryption key even for incomplete ciphertexts.

Limitations

Following the KH-PRF definition, for such a function F , we have that αF (k, `) =
F (αk, `) for any α ∈ Zp. Thus, the discrete logarithm problem must hold in the
image space, else F cannot be a PRF. Consequently, two problems appear here:

• if the decryption need to solve a discrete logarithm to recover the value 〈~x, ~y〉,
it limits the size of the outputs and decreases the efficiency of the scheme.
However, we can avoid this by working on groups with subgroups that allow
discrete logarithm computation.

• the group instantiation seems to be the only one for this precise construction.
Such a PRF exists, since our scheme from [CDG+18a] proposes one: F (k, `) =
H(`)k, where H : {0, 1}∗ −→ G is an hash function onto the group G. However,
this PRF has the drawback to be secure in the random oracle model only.

Another assumption

There exists a family of "almost key-homomorphic" PRF which allows an operation
with a bounded error. Since the method described here presents a bounded number
of operations (n additions and scalar multiplications in the decryption), we can
imagine to manage this noise. This PRF was first described in the paper [BLMR13],
under an assumption derived from Learning With Errors, in the standard model. It
was then re-developed in the paper [BP14] under the standard Learning With Errors
problem, still in standard model. Finally, a recent work, [LT19], achieved a MCFE
scheme from an "almost key-homomorphic" PRF family derived from these works.
Their scheme is secure under the Learning With Errors assumption in the standard
model. However, it loses in efficiency comparatively to the group instantiation, since
this PRF uses techniques from fully homomorphic encryption.

Another interesting work from the same conference, [ABG19], builds (Decen-
tralized) IP-MCFE from single-input IP-FE and a simple PRF in a black-box way.
However, this construction mainly aims to be generic, and makes a trade-off on the
size of the ciphertext, which is linear in the size of users.

4.2 IP-MCFE from groups
In this section we describe two MCFE schemes based on groups. While the first

can now be seen as an instantiation of the generic construction, it was originally
inspired by Abdalla et al. in [ABDP15]. The second improves the security from
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selective to adaptive, achieving the wtr-IND∗ security using a similar technique
as [ALS16].

Overview

This section describes two secret-key MCFE schemes initially built up from the
public-key FE scheme introduced by Abdalla et al. [ABDP15] (itself a selectively-
secure scheme). Mainly, we replace the global randomness with a hash function
(modeled as a random oracle for the security analysis), in order to make the generation
of the ciphertexts independent for each client. The comparison is illustrated in Figure
Fig. 4.2. Note that for the final decryption to be possible, one needs the function
evaluation α to be small enough, within this discrete logarithm setting. This is one
limitation, which is still reasonable for real-world applications that use concrete
numbers, that are not of cryptographic size.

From Section 4.2.1 MCFE ABDP15 [ABDP15]

SetUp Pick (si)i∈[n] at random
Pick (si)i∈[n] at random

and set Vi = [si]

Encrypt Each client i, on input (xi, si, `),
return [ci] = [xi] + si · H(`)

On input ((xi)i, (vi)i), pick r $← Zp,
return ([c0] = [r], ([ci] = [xi] + r · Vi)i)

DKeyGen On input ((yi)i, (si)i),
return dk~y = ∑

i yisi

On input ((yi)i, (si)i),
return dk~y = ∑

i yisi

Decrypt Discrete logarithm on
[α] = ∑

i yi · [ci]− dk~y · H(`)
Discrete logarithm on

[α] = ∑
i yi · [ci]− dk~y · [c0]

Figure 4.2: Comparison of the IP-FE scheme from Abdalla et al. [ABDP15] and a
similar MCFE obtained by introducing a hash function H.

If we write [c0] = [r] in the single input case and [c0] = H(`) in the multi-client
case, we have [ci] = [xi] + si · [c0] for i ∈ [n] in both cases. In the public-key scheme
from [ABDP15], si was private, and only Vi = [si] was known to the encryptor. Since
we are now dealing with private encryption, the encryptor can use si. Correctness
then follows from

[α] =
∑
i

yi · [ci]− dk~y · [c0] =
∑
i

yi · ([xi] + si · [c0])− dk~y · [c0]

=
∑
i

[xiyi] + (
∑
i

siyi) · [c0]− dk~y · [c0] = [〈~x, ~y〉]

We now describe this MCFE scheme and prove it selectively secure under the DDH
assumption.

4.2.1 Description of selective version
• SetUp(λ): takes as input the security parameter, and generates a group G of

prime order p ≈ 2λ, g ∈ G a generator, and H a full-domain hash function onto
G. It also generates the encryption keys si $← Zp, for i = 1, . . . , n, and sets
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~s = (si)i. The public parameters mpk consist of (G, p, g,H), while the master
secret key is msk = ~s and the encryption keys are eki = si for i = 1, . . . , n (in
addition to mpk, which is omitted).

• Encrypt(eki, xi, `): takes as input the value xi to encrypt, under the key eki = si
and the label `. It computes [u`] := H(`) ∈ G, and outputs the ciphertext
[ci] = [u`si + xi] ∈ G.

• DKeyGen(msk, ~y): takes as input msk = (si)i and an inner product function
defined by ~y as f~y(~x) = 〈~x, ~y〉, and outputs the functional decryption key
dk~y = (~y,∑i siyi) ∈ Znp × Zp.

• FDecrypt(dk~y, `, ([ci])i∈[n]): takes as input a decryption key dk~y = (~y, d), a label
`. It computes [u`] := H(`), [α] = ∑

i yi · [ci] − d · [u`], and eventually solves
the discrete logarithm to extract and return α.

• Decrypt(eki, `, ([cj])j∈[n]): takes as input an encryption key eki = si, a label
`. It computes [u`] := H(`), [α] = [cj] − eki · [u`], and eventually solves the
discrete logarithm to extract and return α.

Correctness. If the scalar dk in the functional decryption key dk~y = (~y, dk) is
indeed dk = 〈~s, ~y〉, then:

[α] =
∑
i

yi · [ci]− d · [u`] =
∑
i

yi · [u`si + xi]− [u`] ·
∑
i

siyi

= [u`] ·
∑
i

siyi + [
∑
i

xiyi]− [u`] ·
∑
i

siyi = [
∑
i

xiyi].

4.2.2 Security analysis
Like Abdalla et al.’s original scheme [ABDP15], this protocol can only be proven

secure in the weaker security model, sel-wtr-IND∗ in the MCFE context, where the
adversary has to commit in advance to all of the pairs of messages for the left-or-right
encryption oracle (QLeftRight-queries), and can only make one encryption per label.
However, it can adaptively ask for functional decryption keys (QDKeyGen-queries)
and encryption keys (QCorrupt-queries). Concretely, the challenger is provided
(plaintext,label) pairs: (xbj,i, `j)b∈{0,1},i∈[n],j∈[Q], where Q is the number of query to
QLeftRight(i, ·, ·, `j), each one for a different label `j (note that in the security model,
we assume each slots are queried the same number of time, on different labels). The
challenge ciphertexts Ci,j = Encrypt(eki, xbj,i, `j), for the random bit b, are returned
to the adversary. The adversary committing to challenge ciphertexts also limits its
ability to corrupt users during the game: it must corrupt clients for which it didn’t
ask a ciphertext and cannot corrupt any client from which it asked a ciphertext for
x0
j,i 6= x1

j,i.

About the security in [CDG+18a]

Note that the security notion proven in [CDG+18a] slightly differs from the
sel-wtr-IND∗ security notion we use here, in that it does not give the adversary
access to a QEncrypt oracle, but only QLeftRight (see Section 3.1.2 on the role of
the oracle QEncrypt, and why it generally cannot be simulated by QLeftRight in the
IND∗ security game). For the same reason as in 4.1, it follows from inspection of the
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security proof of [CDG+18a] that it can actually achieve the IND∗ security notion
defined here.

Theorem 4.2: sel-wtr-IND∗ Security

The MCFE protocol described above (see Section 4.2.1) is sel-wtr-IND∗ secure
under the DDH assumption, in the random oracle model. More precisely, we
have

AdvIND(A) ≤ 2Q · Advddh
G (t),

for any adversary A, running within time t, where Q is the number of encryption
queries per slot.

Games G0, G1, (G2.q)q∈[Q+1](
state, (`j, zj,i)i∈[n],j∈[Q]

)
← A(1λ, 1n)

where each zj,i = (x0
j,i, x

1
j,i) ∈ Z2

p, or zj,i = ⊥, which stands for no query.
G ← GGen(1λ), for all i ∈ [n], si $← Zp,eki := si, msk := (si)i, mpk := (G, p, g).
Cj,i = QLeftRight(i, x0

j,i, x
1
j,i, `j) for i ∈ [n], j ∈ [Q] such that zj,i = (x0

j,i, x
1
j,i).

b′ ← AQDKeyGen(·),QCorrupt(·),RO(·)(mpk, state).
Run Finalize on b′.

RO(`): // G0, G1, G2.q

[u`] := H(`) , [u`] := RF(`) .
Return [u`].

QLeftRight(i, x0
i , x

1
i , `): // G0, G1, G2.q

[u`] := RO(`),
[ci] := [u`] · si + [xbi ]
If ` = `j with j < q: [ci] := [u`si + x0

i ]
Return [ci].
QEncrypt(i, xi, `): // G0, {G1,q,j}j=0···4
Return QLeftRight(i, xi, xi, `).
QDKeyGen(~y): // G0, G1, G2.q
Return ∑i yisi.
QCorrupt(i): // G0, G1, G2.q
Return si.

Figure 4.3: Games G0, G1, (G2.)q∈[Q+1], for the proof of Theorem 4.2. Here, RF is a
random function onto G, that is computed on the fly. Note that QLeftRight is only
used as a subroutine of the initialization of the game and is not accessible to the
adversary. In each procedure, the components inside a solid frame are only present
in the games marked by a solid frame.

We proceed using hybrid games, summarized in Fig. 4.3, in a similar method as
the KH-PRF-based construction: we play on the space defined by the vectors ~x0 − ~xb
to inject randomness and switch the bit.
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Proof

Game G0: this is the sel-wtr-IND∗ security game as given in Definition 3.2
(see the paragraph about weaker models), with all the encryption queries
being sent first: they are stored in zj,i = (x0

j,i, x
1
j,i), for j ∈ [Q] and i ∈ [n],

where j is for the j-th H-query that specifies the label `j and i is for the
index of the sender. If the query is not asked, we have zj,i = ⊥. Note that
the hash function H is modeled as a random oracle RO onto G. This is
used to generate [u`] = H(`).

Game G1: we simulate the answers to any new RO query by computing a
truly random element of G, on the fly. The simulation remains perfect, so
Adv0 = Adv1.

Game G2: we simulate every encryption as the encryption of x0
i instead of xbi .

While it is clear that in this last game the advantage of any adversary is
exactly 0 since b does not appear anywhere, the gap between G1 and G2 will
be proven using an hybrid argument on the RO-queries. We thus index the
following games by q, where q = 1, . . . , Q. Note that only distinct RO-queries
are counted, since a second similar query is answered as the first one.

G2.1: this is exactly game G1. Thus, Adv1 = Adv2.1.

G2.q  G2.q+1: we change the generation of the ciphertexts from [cq,i] := [u`qsi+
xbq,i] to [cq,i] := [u`qsi + x0

q,i]. We proceed in three steps:

Step 1. We use the fact that the two following distributions are identical,
for any choice of γ:

(si)i∈[n],zq,i=(x0
q,i,x

b
q,i)

and
(
si + γ(x0

q,i − xbq,i)
)
i∈[n],zq,i=(x0

q,i,x
1
q,i)
,

where si $← Zp, for all i ∈ [n]. This is true since the si are independent of
the zq,i (we are in a selective setting, so the si’s are generated after the
zq,i’s have been chosen). Thus, we can re-write si into si + γ(x0

q,i − xbq,i)
without changing the distribution of the game.
Note that when Finalize does not output a random bit β $← {0, 1} inde-
pendent of the guess b′, γ does not appear in the outputs of QCorrupt(i),
since it must be that x0

i = x1
i or zq,i = ⊥, and it does not appear in the

output of QDKeyGen(~y) either, since ∑i si · yi +
∑
i γ(x0

q,i − xbq,i)yi , where
the gray term equals zero by Definition 3.1. The fact that γ does not
appear in the outputs of these oracles will be crucial for step 2, which
applies DDH on [γ].

Step 2. We use the DDH assumption to replace the [u`qγ] that appear
in the output of the q-th query to QLeftRight queries with [r`q + 1] with
r`q

$← Zp. This is possible since the rest of the adversary view can be
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generated only from [γ] and [r`q + 1]. This increases the adversary’s
advantage by no more than Advddh

G (t). We now have:

[cq,i] :=[u`qsi + (x0
q,i − xbq,i)(r`q + 1) + xbq,i]

=[u`qsi + r`q(x0
q,i − xbq,i) + x0

q,i − xbq,i + xbq,i]
=[u`qsi + r`q(x0

q,i − xbq,i) + x0
q,i].

Step 3. We switch [r`q ] in the output of the q-query to QLeftRight back
to [u`qγ], using the DDH assumption again. This is possible since the
adversary’s view is simulatable solely from [γ], [u`q ], and [r`q ]. We finally
undo the distribution change on the ~si, which brings us to G2.q+1.

As a conclusion, since G2.Q+1 = G2, we have Adv1 − Adv2 ≤ 2Q · Advddh
G (t). In

addition, Adv2 = 0, which concludes the proof.

4.2.3 Description of adaptative version
After the selective construction from [CDG+18a], we propose another construction

of MCFE for inner product from the same article, adapted from the Agrawal et
al. [ALS16] scheme in the same manner. The main contribution of this construction
is re-uses a technique from this article to achieve the adaptive wtr-IND∗-security.
Roughly speaking, it consists to double the size of the keys.

• SetUp(λ): takes as input the security parameter, and generates prime-order
group G := (G, p, P ) $← GGen(1λ), and H a full-domain hash function onto G2.
It also generates the encryption keys ~si $← Z2

p, for i = 1, . . . , n. The public
parameters mpk consist of (G, p, g,H), while the encryption keys are eki = ~si
for i = 1, . . . , n, and the master secret key is msk = ((eki)i), (in addition to
mpk, which is omitted).

• Encrypt(eki, xi, `): takes as input the value xi to encrypt, under the key eki = ~si
and the label `. It computes [~u`] := H(`) ∈ G2, and outputs the ciphertext
[ci] = [~u>` ~si + xi] ∈ G.

• DKeyGen(msk, ~y): takes as input msk = (~si)i and an inner product function
defined by ~y as f~y(~x) = 〈~x, ~y〉, and outputs the functional decryption key
dk~y = (~y,∑i ~si · yi) ∈ Znp × Z2

p.

• FDecrypt(dk~y, `, ([ci])i∈[n]): takes as input a functional decryption key dk~y =
(~y, ~d), a label `, and ciphertexts. It computes [~u`] := H(`), [α] = ∑

i[ci] · yi −
[~u>` ] · ~d, and eventually solves the discrete logarithm to extract and return α.

• Decrypt(eki, `, ([cj])j∈[n]): takes as input an encryption key eki = (s1, s2), a
label `. It computes [~u`] := H(`), [α] = [cj]− eki · [~u`], and eventually solves
the discrete logarithm to extract and return α.
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Correctness. If the scalar ~d in the functional decryption key dk~y = (~y, ~d) is indeed
~d = (〈~s1, ~y〉, 〈~s2, ~y〉), then:

[α] =
∑
i

[ci] · yi − [~u>` ] · ~d =
∑
i

[~u>` ~si + xi] · yi − [~u>` ] ·
∑
i

yi~si

=
∑
i

[~u>` ] · ~siyi +
∑
i

[xi] · yi − [~u>` ] ·
∑
i

yi~si = [
∑
i

xiyi].

4.2.4 Security Analysis
We stress that the following theorem supports both adaptive encryption queries

and adaptive corruptions.

Theorem 4.3: wtr-IND∗-Security

The above MCFE protocol (see Section 4.2.3) is wtr-IND∗-secure under the DDH
assumption, in the random oracle model. More precisely, we have

AdvIND(A) ≤ 2Q · Advddh
G (t) + Advddh

G (t+ 4Q× tG) + 2Q
p
,

for any adversary A, running within time t, where Q is the number of (direct
and indirect —asked by QEncrypt-queries—) queries to H (modeled as a random
oracle), and tG is the time for an exponentiation in G.

To obtain adaptive security, we use a technique that consists of first proving
perfect security in the selective variant of the involved games, then, using a guessing
(a.k.a. complexity leveraging) argument, which incurs an exponential security loss,
we obtain the same security guarantees in the adaptive games. Since the security
in the selective game is perfect (the advantage of any adversary is exactly zero),
the exponential security loss is multiplied by a zero term, and the overall adaptive
security is preserved. This technique has been used before in [Wee14] in the context
of attribute-based encryption, or more recently, in [AGRW17,ACF+18] in the context
of multi-input IP-FE. We defer to [Wee14, Remark 1] and [AGRW17, Remark 5] for
more details on this proof technique. We proceed using hybrid games, described in
Fig. 4.4.

Proof

Let A be a PPT adversary. For any game Gindex, we denote by Advindex :=
|Pr[Gindex(A)|b = 1]− Pr[Gindex(A)|b = 0]|, where the probability is taken over
the random coins of Gindex and A. Also, by event Gindex(A), or just Gindex when
there is no ambiguity, we mean that the Finalize procedure in game Gindex
(defined as in Definition 3.2) returns β = 1 from the adversary’s answer b′ when
interacting with A.

Game G0: this is the IND-security game as given in Definition 3.2. Note that
the hash function H is modeled as a random oracle RO onto G2. This is
essentially used to generate [~u`] = H(`).

Game G1: we simulate the answers to any new RO-query by a truly random
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pair in G2, on the fly. The simulation remains perfect, and so Adv0 = Adv1.

Game G2: we simulate the answers to any new RO-query by a truly random
pair in the span of [~a] for ~a := (1

a
) , with a $← Zp. This uses the Multi-

DDH assumption, which tightly reduces to the DDH assumption using
the random-self reducibility (see Lemma Proposition 2.1): Adv1 − Adv2 ≤
Advddh

G (t+ 4Q× tG), where Q is the number of RO-queries and tG the time
for an exponentiation.

Game G3: we simulate any QEncrypt query as the encryption of x0
i instead of

xbi and go back for the answers to any new RO query by a truly random
pair in G2.

While it is clear that in this last game the advantage of any adversary is exactly
0 since b does not appear anywhere, the gap between G2 and G3 will be proven
using a hybrid technique on the RO-queries. We thus index the following games
by q, where q = 1, . . . , Q. Note that only distinct RO-queries are counted, since
a second similar query is answered as the first one. We detail this proof because
the technique is important (Fig. 4.5).

G3.1.1: this is exactly game G2. Thus, Adv2 = Adv3.1.1.

G3.q.1  G3.q.2: we first change the distribution of the output of the q-th RO-
query, from uniformly random in the span of [~a] to uniformly random
over G2, using the DDH assumption. Then, we use the basis ((1

a
) ,(−a1 ) ) of

Z2
p, to write a uniformly random vector over Z2

p as u1 · ~a+ u2 · ~a⊥, where
u1, u2

$← Zp. Finally, we switch to u1 · ~a + u2 · ~a⊥ where u1
$← Zp, and

u2
$← Z∗p, which only changes the adversary view by a statistical distance

of 1/p: Adv3.q.1 − Adv3.q.2 ≤ Advddh
G (t) + 1/p. The last step with u2 ∈ Z∗p

will be important to guarantee that ~u>` ~a⊥ 6= 0.

G3.q.2  G3.q.3: we now change the generation of the ciphertext [ci] := [~u>` ] ·~si +
[xbi ] by [ci] := [~u>` ] · ~si + [x0

i ], where [~u`] corresponds to the q-th RO-query.
We then prove this does not change the adversary’s view.
Note that if the output of the q-th RO-query is not used by QEncrypt-
queries, then the games G3.q.2 and G3.q.3 are identical. But we can show
this is true too when there are RO-queries that are really involved in
QEncrypt-queries, and show that Adv3.q.2 = Adv3.q.3 in that case too, in
two steps. In Step 1, we show that there exists a PPT adversary B? such
that Adv3.q.t = (p2 + 1)n · Adv?3.q.t(B?), for t = 2, 3, where the games G?

3.q.2
and G?

3.q.3 are selective variants of games G3.q.2 and G3.q.3 respectively
(see Fig. 4.5), where QCorrupt queries are asked before the initialization
phase. In Step 2, we show that for all PPT adversaries B?, we have
Adv?3.q.2(B?) = Adv?3.q.3(B?). This will conclude the two steps.

Step 1. We build a PPT adversary B? playing against G?
3.q.t for t = 2, 3,

such that Adv3.q.t = (p2 + 1)n · Adv?3.q.t(B?).
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Adversary B? first guesses for all i ∈ [n], zi $← Z2
p ∪ {⊥}, which it sends to

its selective game G?
3.q.t. That is, each guess zi is either a pair of values

(x0
i , x

1
i ) queried to QEncrypt, or ⊥, which means no query to QEncrypt.

Then, it simulates A’s view using its own oracles. When B? guesses
successfully (call E that event), it simulates A’s view exactly as in G3.q.t.
If the guess was not successful, then B? stops the simulation and outputs
a random bit β. Since event E happens with probability (p2 + 1)−n and is
independent of the view of adversary A: Adv?3.q.t(B?) is equal to
∣∣∣∣Pr[G?

3.q.t|b = 0, E] · Pr[E] + Pr[¬E]
2 − Pr[G?

3.q.t|b = 1, E] · Pr[E]− Pr[¬E]
2

∣∣∣∣
= Pr[E] · |Pr[G?

3.q.t|b = 0, E]− Pr[G?
3.q.t|b = 1, E]| = (p2 + 1)−n · Adv3.q.t.

Step 2. We assume the values (zi)i∈[n] sent by B? are consistent, that is,
they don’t make the game end and return a random bit, and Finalize on
b′ does not return a random bit independent of b′ (call E ′ this event).
We show that games G?

3.q.2 and G?
3.q.3 are identically distributed, con-

ditioned on E ′. To prove it, we use the fact that the two following
distributions are identical, for any choice of γ:

(~si)i∈[n],zi=(x0
i ,x

1
i ) and

(
~si + ~a⊥ · γ(xbi − x0

i )
)
i∈[n],zi=(x0

i ,x
1
i )
,

where ~a⊥ := (−a1 ) ∈ Z2
p and ~si $← Z2

p, for all i = 1, . . . , n. This is true since
the ~si are independent of the zi (note that this is true because we are in a
selective setting, while this would not necessarily be true with adaptive
QEncrypt-queries). Thus, we can re-write ~si into ~si+~a⊥ ·γ(xbi−x0

i ) without
changing the distribution of the game.
We now take a look at where the extra terms ~a⊥ · γ(xbi − x0

i ) actually
appear in the adversary’s view:

• they do not appear in the output of QCorrupt, because we assume
event E ′ holds, which implies that if zi 6= ⊥, then i is not queried to
QCorrupt or x1

i = x0
i .

• they might appear in QDKeyGen(~y) as

dk~y =
∑
i∈[n]

~si · yi + ~a⊥ · γ∑i:zi=(x0
i ,x

1
i ) yi(xbi − x0

i ) .

But the gray term equals 0 by the constraints for E ′ in Definition 3.2:
for all i ∈ HS, zi 6= ⊥; if i ∈ CS and zi 6= ⊥, x1

i = x0
i ; and

f(~x0) = f(~x1), hence ∑i:zi=(x0
i ,x

1
i ) yi(xbi − x0

i ) = 0.
• eventually, they appear in the output of the QEncrypt-queries which
use [~u`] computed on the q-th RO-query, since for all others, the
vector [~u`] lies in the span of [~a], and ~a>~a⊥ = 0. We thus have
[ci] := [~u>` ] · ~si + (xbi − x0

i )γ[~u>` ]~a⊥ + [xbi ]. Since ~u>` ~a⊥ 6= 0, we can
choose γ = −1/~u>` ~a⊥ mod p, and then [ci] = [~u>` ] · ~si + [x0

i ], which
is the encryption of x0

i . We stress that γ is independent of the
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index i, and so this simultaneously converts all the encryptions of xbi
into encryptions of x0

i . Finally, reverting these statistically perfect
changes, we obtain that [ci] is identically distributed to [~u>` ] ·~si + [x0

i ],
as in game G?

3.q.3.

Thus, when event E ′ happens, the games are identically distributed.
When ¬E happens, the games both return β $← {0, 1}: Adv?3.q.2(B?) =
Adv?3.q.3(B?). As a conclusion, we get Adv3.q.2 = Adv3.q.3.

G3.q.3  G3.q+1.1: this transition is the reverse of G3.q.1  G3.q.2, namely, we use
the DDH assumption to switch back the distribution of [~u`] computed on the
q-th RO-query from uniformly random overG2 (conditioned on the fact that
~u>` ~a

⊥ 6= 0) to uniformly random in the span of [~a]: Adv3.q.3 − Adv3.q+1.1 ≤
Advddh

G (t) + 1/p.

As a conclusion, since G3.Q+1.1 = G3, we have Adv2−Adv3 ≤ 2Q(Advddh
G (t)+1/p).

In addition, Adv3 = 0, which concludes the proof.
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Games G0, G1, G2, (G3.q.1)q∈[Q+1], (G3.q.2, G3.q.3)q∈[Q]

G ← GGen(1λ), for all i ∈ [n], ~si $← Z2
p, eki := ~si, msk := (~si)i, mpk := (G, p, g).

a $← Zp, ~a := (1
a
) , ~a⊥ := (−a1 )

Sample a full-domain hash function H onto G2, and a bit b $← {0, 1}.
b′ ← AQEncrypt(·,·,·,·),QDKeyGen(·),QCorrupt(·),RO(·)(mpk).
Run Finalize on b′.

RO(`): // G0, G1 , G2, G3.q.1, G3.q.2, G3.q.3

[~u`] := H(`), [~u`] := RF(`) , [~u`] := [~a · r`], with r` := RF′(`)
On the q’th (fresh) query: [~u`] := RF′(`) · ~a+ RF′′(`) · ~a⊥
Return [~u`].

QEncrypt(i, x0
i , x

1
i , `): // G0, G1, G2, G3.q.1, G3.q.2, G3.q.3

[~u`] := RO(`),
[ci] := [~u>` ] · ~si + [xbi ]
If [~u`] is computed on the j RO-query, for j < q: [ci] := [~u>` ] · ~si + [x0

i ]
If [~u`] is computed on the q-th RO-query: [ci] := [~u>` ] · ~si + [x0

i ]
Return [ci]
QEncrypt(i, xi, `): // G0, {G1,q,j}j=0···4
Return QLeftRight(i, xi, xi, `).
QDKeyGen(~y): Return ∑i yi~si. //G0, G1, G2, G3.q.1, G3.q.2, G3.q.3

QCorrupt(i): Return ~si. // G0, G1, G2, G3.q.1, G3.q.2, G3.q.3

Figure 4.4: Games for the proof of Theorem 4.3. Here, RF, RF′, RF′′ are random
functions onto G2, Zp, and Z∗p, respectively, that are computed on the fly. In each
procedure, the components inside a solid (dotted, gray) frame are only present in
the games marked by a solid (dotted, gray) frame. The Finalize procedure is defined
as in Definition 3.2.
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Games (G?
3.q.2, G

?
3.q.3)q∈[Q]:(

state, (zi ∈ Z2
p ∪ {⊥})i∈[n]

)
← A(1λ, 1n)

G ← GGen(1λ), for all i ∈ [n], ~si $← Z2
p, eki := ~si, msk := (~si)i, mpk := (G, p, g).

a $← Zp, ~a := (1
a
) , ~a⊥ := (−a1 ) , b $← {0, 1}.

b′ ← AQEncrypt(·,·,·,·),QDKeyGen(·),QCorrupt(·),RO(·)(mpk, state).
Run Finalize on b′.
RO(`): // G?

3.q.2, G?
3.q.3

[~u`] := [~a · r`], with r` := RF′(`)
On the q’th (fresh) query: [~u`] := [RF′(`) · ~a+ RF′′(`) · ~a⊥]
Return [~u`].

QEncrypt(i, x0
i , x

1
i , `): // G?

3.q.2 , G?
3.q.3

[~u`] := RO(`),
[ci] := [~u>` ] · ~si + [xbi ]
If [~u`] is computed on the j-th RO-query with j < q: [ci] := [~u>` ] · ~si + [x0

i ].
If [~u`] is computed on the q-th RO-query, then:
• if (x0

i , x
1
i ) 6= zi, the game ends and returns β $← {0, 1}.

• otherwise, [ci] := [~u>` ] · ~si +[xbi ] +[x0
i ] , S := S ∪ {i}.

Return [ci].
QEncrypt(i, xi, `): // G0, {G1,q,j}j=0···4
Return QLeftRight(i, xi, xi, `).
QDKeyGen(~y): Return ∑i yi~si. //G?

3.q.2, G
?
3.q.3

QCorrupt(i): // G?
3.q.2, G

?
3.q.3

If zi = (x0
i , x

1
i ) with x0

i 6= x1
i , the game ends, and returns β $← {0, 1}.

Return ~si.

Figure 4.5: Games G?
3.q.2 and G?

3.q.3, with q ∈ [Q], for the proof of Theorem 4.3.
Here, RF, RF′ are random functions onto G2, and Zp, respectively, that are computed
on the fly. In each procedure, the components inside a solid (gray) frame are only
present in the games marked by a solid (gray frame.
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5 Construction of DMCFE

This chapter present two ways to build a DMCFE scheme. The first one is a black-
box construction and was described in [CDG+18b]. The second (while chronologically
the first) is a scheme from [CDG+18a], and relies on pairings. Both are based on the
idea of an efficient secure multi-party computation applied to the construction of the
decryption key.
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5.1 IP-DMCFE from multi-party computation
In this section, we convert an IP-MCFE into IP-DMCFE using a layer of multi-party

computation (MPC). We first describe it and its characteristics then we provide a
construction from [KDK11] and a derivative. Finally, we explain how to apply this
layer of a MCFE.

5.1.1 Distributed sum
In order to convert an MCFE scheme into a DMCFE, one needs to allow efficient

distributed computation of the functional decryption key. In the case of our IP-MCFE,
this can be seen as a particularMCFE for the unique sum function on the contributions
of all the clients, since the key is dk~y = (~y,∑i yi · ~si), and namely one has to
compute ∑i xi = ∑

i yi · ~si, where the xi’s can be computed by each client. This
primitive can also be considered as a two rounds secure MPC for the sum, called
Private Stream Aggregation (PSA). This notion is an old primitive introduced
by Shi et al. [SCR+11]. It is quite similar to our target DMCFE scheme, however
PSA does not consider the possibility of adaptively generating different keys for
different inner product evaluations, but only enables the aggregator to compute
the sum of the client’s data for each time period. PSA also typically involves a
Differential Privacy component, which has yet to be studied in the larger setting
of DMCFE. Further research on PSA has focused on achieving new properties or
better efficiency [CSS12,Emu17,JL13,LC13,LC12,BJL16] but not on enabling new
functionalities.

Definition 5.1: Distributed Sum

A Distributed Sum (DSum) on a group G among n senders is defined by three
algorithms:

• DSum.SetUp(λ): Takes as input the security parameter λ. Generates the
public parameters pp and the personal secret keys ski for i = 1 · · ·n.

• DSum.Encode(xi, `, ski): Takes the xi value to encode, a label ` and the
personal secret key ski of the user i. Returns the share M`,i.

• DSum.Combine( ~M): Takes as input a vector ~M = (M`,i)i of shares. Re-
turns the value ∑iM`,i.

Correctness. For any label `, we want Pr[DSum.Combine( ~M`) = ∑
i xi] = 1,

where the probability is taken over M`,i ← DSum.Encode(xi, `, ski) for all i ∈ [n],
and (pp, (ski)i)← DSum.SetUp(λ) .

Security notion. This protocol must guarantee the privacy of the xi’s, their sum
possibly excepted when all the shares are known. This is the classical security
notion for MPC, where the security proof is performed by simulating the view of the
adversary from the output of the result: nothing when not all the shares are asked,
and just the sum of the inputs when all the shares are queried. We also have to deal
with the corruptions, which give the users’ secret keys.
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5.1.2 DSum protocol in the random oracle model
The protocol below is similar to [KDK11], with a hash function. We provide

a new security analysis, which relies on the CDH problem in the Random Oracle
Model.
• DSum.SetUp(λ): takes as input the security parameter λ and generates a group
G of prime order p, with a generator g, were the CDH assumption holds. It also
generates a hash function H : {0, 1}∗ → G, for any groupG, denoted additively.
Each user i, picks ti $← Zp. The public parameters pp are (G, p, g,H, ([ti])i) and
the personal secret keys ski = ti for i = 1 · · ·n (with the public parameters).

• DSum.Encode(xi, `, ski): takes the xi value to encode, a label ` and the personal
secret key ski = ti of the user i, it returnsM`,i computed as below, where h`,i,j =
H([tmin{i,j}], [tmax{i,j}], ti · [tj], `) = h`,j,i: M`,i = xi −

∑
j<i h`,i,j +∑

j>i h`,i,j.

• DSum.Combine( ~M = (M`,i)i): takes as input a vector ~M of shares. Computes
and return the value ∑iM`,i.

Correctness. The correctness should show that the sum of the shares is equal to
the sum of the xi’s: the former is equal to

∑
i

xi −∑
j<i

h`,i,j +
∑
j>i

h`,i,j

 =
∑
i

xi −
∑
i

∑
j<i

h`,i,j +
∑
i

∑
j>i

h`,j,i

=
∑
i

xi −
∑
i

∑
j<i

h`,i,j +
∑
j

∑
i<j

h`,j,i =
∑
i

xi

5.1.3 Security analysis
We now provide the proof of security for the DSum variant described above,

under CDH assumption in the Random Oracle Model. We will prove that there
exists a simulator that generates the view of the adversary from the output only. In
this proof, we will assume static corruptions (the set CS of the corrupted clients is
known from the beginning) and the hardness of the CDH problem. However, this
construction will only tolerate up to n− 2 corruptions, so that there are at least 2
honest users. But this is also the case for the MCFE.

Proof

W.l.o.g., we can assume thatHS = {1, . . . , n−c} and CS = {n−c+1, . . . , n}, by
simply reordering the clients, when CS is known. We will gradually modify the
behavior of the simulator, with less and less powerful queries. At the beginning,
the DSum.Encode-query takes all the same inputs as in the real game, including
the secret keys. At the end, it should just take the sum (when all the queries
have been asked), as well as the corrupted xj’s.

Game G0 : the simulator runs as in the real game, with known CS.

Game G1 : the simulator is given a group G with a generator g and a random
pair (X = [t];Y = [t2]).

• DSum.SetUp: the simulator randomly chooses αi $← Zp, for i =
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1, . . . , n − c, and defines Xi ← X + [αi]. This sets ti = t + αi. It
can also set Yi,j = CDH(Xi, Xj) = Y + (αi + αj) · X + [αiαj], for
i, j ≤ n− c. It then randomly choses ti ← Zp for i > n− c and sets
Xi = [ti]. It can also generate all the other Yi,j = CDH(Xi, Xj)’s,
using the known ti’s. It sends the Xi’s as the pp, and the secret keys
ti of the corrupted users.
• DSum.Encode(xi, `): the simulator generates all the required h`,i,j
using the Xj’s and Yi,j’s, querying the hash function, and returns
M`,i = xi −

∑
j<i h`,i,j +∑

j>i h`,i,j.

Game G2 : the simulator does as above, but just uses a random Y ′ $← G
instead of Y , to answer the DSum.Encode-queries.
This can make a difference for the adversary if the latter asks for the hash
function on some tuple (Xmin{i,j}, Xmax{i,j},CDH(Xi, Xj), `), for i, j ≤
n − c, as this will not be the value h`,i,j, which has been computed
using Yi,j 6= CDH(Xi, Xj). In such a case, one can find CDH(Xi, Xj) =
Y + [αi + αj] ·X + [αiαj] in the list of the hash queries, and thus extract
Y = CDH(X,X). As a consequence, under the hardness of the square
Diffie-Hellman problem (which is equivalent to the CDH problem), this
simulation is indistinguishable from the previous one.

Game G3 : the simulator does as above except for the DSum.Encode-queries.
If this is not the last-honest query under label `, the simulator returns
M`,i = −∑j<i h`,i,j + ∑

j>i h`,i,j; for the last honest query, it returns
M`,i = SH −

∑
j<i h`,i,j +∑

j>i h`,i,j, where SH = ∑
j∈HS xj.

Actually, for a label `, if we denote i` the index of the honest player
involved in the last query, the view of the adversary is exactly the same
as if, for every i 6= i`, we have replaced h`,i,i` by h`,i,i` + xi (if i` > i) or
by h`,i,i` − xi (if i` < i). We thus replace uniformly distributed variables
by other uniformly distributed variables: this simulation is perfectly
indistinguishable from the previous one.

Game G4 : the simulator now ignores the values h`,i,j for honest i, j. But for
each label, it knows the corrupted xj’s, and can thus compute the values
M`,j for the corrupted users, using the corrupted xj’s and secret keys. If
this is not the last honest query, it returns a random M`,i. For the last
honest query, knowing S = ∑

j xj, it outputs M`,i = S −∑j 6=iM`,j.

As in the previous analysis, if one first sets all the h`,i,j, for j 6= i`, this
corresponds to define h`,i,i` from M`,i, for i 6= i`.

5.1.4 DSum protocol in the standard model
A variant of the protocol from Section 5.1.2 can also be described with a ran-

domness extractor and a PRF. We then provide the security analysis under the DDH
assumption and the PRF indistinguishability. More precisely, for the randomness
extractor, we can use the Leftover-Hash-Lemma (see Theorem 2.1), with a random
seed k in the common reference string to extract random keys K for a PRF (FK)K ,
with a universal hash function (Hk)k:
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• DSum.SetUp(λ): takes as input the security parameter λ and generates a group
G of prime order p, with a generator g. From a family of universal hash
functions (Hk)k and a random key k, this define the randomness extractor
E(·) = Hk(·), later used to generate the keys K of a PRF (FK)K . Each user i,
picks ti $← Zp. The public parameters pp are (G, p, g, E , (FK)K , ([ti])i) and the
personal secret keys ski = ti for i = 1 · · ·n (with the public parameters).

• DSum.Encode(xi, `, ski): takes the xi value to encode, a label ` and the personal
secret key ski = ti of the user i, it returns M`,i computed as below, where
h`,i,j = FKi,j(`) with Ki,j = E(ti · [tj]): M`,i = xi −

∑
j<i h`,i,j +∑

j>i h`,i,j.

• DSum.Combine( ~M = (M`,i)i): takes as input a vector ~M of shares. Computes
and return the value ∑iM`,i.

The correctness is the same as in Section 5.1.2, since it just makes use of h`,i,j. The
security however requires the DDH assumption, in order to guarantee the randomness
of all the Diffie-Hellman values [ti · tj ]. The Left-over-Hash Lemma thereafter ensures
the uniform and independent distributions of the Ki,j’s which then make the h`,i,j’s
unpredictable for all the honest i, j.

5.1.5 Security analysis
In the section Section 5.1.3, we observe that we do not exploit programmability

of the random oracle, and can actually use the Decisional Diffie-Hellman assumption
to prove it in the standard model. The key used Ki,j for F is E([titj]), where E is a
randomness extractor, and the input is `.

Proof

We still assume that HS = {1, . . . , n− c}.

Game G0 : the simulator runs as in the real game, with known CS (assumed
to be {n − c + 1, . . . , n}, without loss of generality, since we are in the
static corruption setting).

Game G1 : the simulator does as above, but just uses a random value Yi,j $← G
instead of the key [titj], when both i 6= j ∈ HS, to generate the Ki,j’s
to answer the DSum.Encode-queries. After the hybrid sequence described
below, the advantage for the adversary is:

|AdvG0(A)− AdvG1(A)| ≤ (n− c)2

2 · Advddh(B),

for some adversary B running with a similar time as A.

Game G2 : the simulator now uses random keys Ki,j’s in the cases i < j are
both honest, and Kj,i = Ki,j. Because of the entropy on the Yi,j’s, the
Left-over-Hash Lemma guarantees a statistical indistinguishability with
the previous game.

Game G3 : The simulator now chooses random h`,i,j for any `, in the cases
i < j are both honest, and h`,j,i = h`,i,j. Under the indistinguishability of
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the PRF with random keys, this game is indistinguishable from G2. Now,
the rest of the proof is similar to the previous one, with a final simulation
as in above game G4.

Hybrid Sequence:

Here we present the hybrid games Hi,j,k between G0 and G1. An iteration
of this sequence describes how to replace the value [ti∗tj∗ ] used in the setup
phasis, for honest i∗ < j∗, by random Yi∗,j∗

$← G. The progression follows
the lexicographical order on the pairs (i, j) ∈ HS where i < j, and Succ(i, j)
denotes the next pair. It will be clear that G0 = H1,2,0 and G1 = Hn−c−1,n−c,3.
In addition, for all (1, 2) ≤ (i∗, j∗) < (n− c− 1, n− c), Hi∗,j∗,3 = HSucc(i∗,j∗),0.
We indeed insist that Ki,i is never used, so only Diffie-Hellman values for two
different keys are used.

Game Hi∗,j∗,0 : the simulator runs the real game, except that it additionally
initializes Yi,j in the DSum.SetUp, used for the extracted keysKi,j = E(Yi,j)
during the DSum.Encode, either correctly as [titj] or at random:

• DSum.SetUp: after having generated the group G of prime order
p, with a generator g, the randomness extractor E(·), and the PRF
(FK)K , the simulator generates the secret keys ti $← Zp and sets
Xi ← [ti], for all i. Then it defines:
– for (i, j) < (i∗, j∗), where i < j are both honest, pick a random

element Yi,j $← G
– for (i, j) ≥ (i∗, j∗), where i < j are both honest, set Yi,j ← [titj]
– for (i, j) where i < j and some of them is corrupted, set Yi,j ←

[titj]
– for (i, j) where i > j, set Yi,j ← Yj,i

It sends the Xi’s as the pp, and the secret keys ti of the corrupted users.

Game Hi∗,j∗,1 : for i∗ < j∗, the simulator is given a group G with a generator
g and a random Diffie-Hellman tuple (X = [x], Y = [y], Z = [xy]).

• DSum.SetUp: it uses the above group G and generator g, and gen-
erates E and (FK)K . For the indices i∗, j∗, the simulator defines
Xi∗ ← X and Xj∗ ← Y . This sets ti∗ ← x and tj∗ ← y. It can
also set Yi∗,j∗ = CDH(Xi∗ , Xj∗) = Z. It then randomly chooses
ti

$← Zp for i 6= i∗, j∗ and sets Xi ← [ti]. It can also generate
Yi,j = CDH(Xi, Xj), using the known ti, for (i, j) > (i∗, j∗) and i < j.
The cases (i, j) < (i∗, j∗) for i < j and the cases i > j remain un-
changed. It sends the Xi’s as the pp, and the secret keys ti of the
corrupted users.

The view of the adversary remains the same.

Game Hi∗,j∗,2 : for i∗ < j∗, the simulator is given a random tuple (X =
[x], Y = [y], Z $← G), and does as above. Under the hardness of the
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Decisional Diffie-Hellman problem, this simulation is indistinguishable
from the previous one.

Game Hi∗,j∗,3 : this is quite similar to game Hi∗,j∗,0, but with difference for
(i, j) = (i∗, j∗):

• DSum.SetUp: after having generated the group G of prime order
p, with a generator g, the randomness extractor E(·), and the PRF
(FK)K , the simulator generates the secret keys ti $← Zp and sets
Xi ← [ti], for all i. Then it defines:
– for (i, j) ≤ (i∗, j∗), where i < j are both honest, pick a random

element Yi,j $← G
– for (i, j) > (i∗, j∗), where i < j are both honest, set Yi,j ← [titj]
– for (i, j) where i < j and some of them is corrupted, set Yi,j ←

[titj]
– for (i, j) where i > j, set Yi,j ← Yj,i

The view of the adversary does not change.

Starting from (1, 2) up to (n− c− 1, n− c), there are (n− c)(n− c− 1)/2
cases with i∗ < j∗ which involve the DDH assumption, hence the conclusion.

5.1.6 Application to IP-DMCFE
Finally, one can generically convert an IP-MCFE into an IP-DMCFE, when dk~y =(

~y, ~d~y
)
, where ~d~y = ∑

i xi, with the xi’s computed by each client, as xi ← yi · ~si
in [CDG+18a], by letting the clients generating the DSum secret keys at the setup
time, and the label is the vector ~y:

• SetUp(λ): runs the set-up of the IP-MCFE scheme plus DSum.SetUp(λ).

• DKeyGenShare(ski, ~y): outputs M~y,i ← DSum.Encode(xi, ~y, ski).

• DKeyComb((M~y,i)i, ~y): outputs the functional decryption key dk~y =
(
~y, ~d~y

)
,

where ~d~y is publicly computed as DSum.Combine((M~y,i)i).

In the last simulated game, we can now show that all the DKeyGenShare(ski, ~y)-queries
are simulated at random, excepted the last query that requires a DKeyGen-query to
the IP-MCFE scheme to get the sum and program the output. Hence, unless all the
queries are asked, the functional decryption key is unknown. However, this proof
system forces statical security in the final DMCFE, meaning that the adversary decides
the set of corrupted users on the beginning of the security game (Definition 3.2).

Remark : This technique is in the same vein as the idea introduced in a recent
independent work [ACF+19]. In that work, the SetUp is fully decentralized by
definition, and their construction uses a two-round MPC scheme in a same way as we
do with the DSum: one round in the SetUp to output public parameters and another
in the decryption key generation to compute the key. This potentially generalizes
our method to several other functionalities.
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5.2 IP-DMCFE from pairings
While the transformation using DSum is quite generic, our original decentralized

scheme from [CDG+18a] relies on pairing groups. The idea, however, remains the
same: using an existing MCFE, but making the decryption key with a MPC scheme.
In this section, the decryption key is build with another MCFE scheme.

Overview

Our construction from Section 4.2.1 (or Section 4.2.3 if we double si) uses
functional decryption keys dk~y = (~y,∑i siyi) = (~y, dk), where dk = 〈~s, ~y〉 = ∑

i siyi =
〈~t,~1〉, with ti = siyi, for i = 1, . . . , n, and ~1 = (1, . . . , 1). Hence, one can split
msk = ~s into mski = si and define F (~t) = 〈~t,~1〉. We could thus wish to use one of
the MCFE constructions for inner product from Section 4.2 to describe a DMCFE for
inner product. However, this is not straightforward as those schemes only allow small
results for the function evaluations, since a discrete logarithm has to be computed.
While, for real-life applications, it might be reasonable to assume the plaintexts and
any evaluations on them are small enough, it is impossible to recover such a large
scalar as dk = 〈~s, ~y〉, which comes up when we use our scheme to encrypt encryption
keys. Nevertheless, following this idea we can overcome the concern above with
pairings: one can only recover [dk], but using a pairing e : G1 × G2 → GT , one
can use our MCFE in both G1 and G2. This allows us to compute the functional
decryption in GT , to get [〈~x, ~y〉]T , which is decryptable as 〈~x, ~y〉 is small enough.

5.2.1 Construction
Let us describe the new construction, using an asymmetric pairing group, as in

Section 2.1.

• SetUp(λ): generates PG := (G1,G2, p, P1, P2, e) $← PGGen(1λ). Samples two
full-domain hash functionsH1 andH2 onto G2

1 and G2
2 respectively. Each sender

Si generates ~si $← Z2
p for all i ∈ [n], and interactively generates Ti

$← Z2×2
p such

that ∑i∈[n] Ti = 0. One then sets mpk ← (PG,H1,H2), and for i = 1, . . . , n,
eki = ~si, ski = (~si,Ti).

• Encrypt(eki, xi, `): takes as input the value xi to encrypt, under the key eki = ~si
and the label `. It computes [~u`]1 := H1(`) ∈ G2

1, and outputs the ciphertext
[ci]1 = [~u>` ~si + xi]1 ∈ G1.

• DKeyGenShare(ski, ~y): on input ~y ∈ Znp that defines the function f~y(~x) = 〈~x, ~y〉,
and the secret key ski = (~si,Ti), it computes [~v~y]2 := H2(~y) ∈ G2

2, [~di]2 :=
[yi · ~si + Ti~v~y]2, and returns the partial decryption key as dk~y,i := ([~di]2).

• DKeyComb((dk~y,i)i∈[n], ~y): the partial decryption keys
(
dk~y,i = ([~di]2)

)
i∈[n]

, lead

to dk~y := (~y, [~d]2), where [~d]2 = ∑
i∈[n][~di]2.

• Decrypt(dk~y, `, ([ci]1)i∈[n]): on input the decryption key dk~y = [~d]2, the label `,
and ciphertexts ([ci]1)i∈[n], it computes [α]T := ∑

i∈[n] e([ci]1, [yi]2)−e([~u`]>1 , [~d]2),
and eventually solve the discrete logarithm in basis [1]T to extract and return
α.
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Correctness: Let ~x, ~y ∈ Znp , we have:

[~d]2 =
∑
i∈[n]

[~di]2 =
∑
i∈[n]

[yi · ~si + Ti~v~y]2

= [
∑
i∈[n]

yi · ~si]2 + [~v~y]2 ·
∑
i∈[n]

Ti = [
∑
i∈[n]

yi · ~si]2.

Thus:

[α]T :=
∑
i∈[n]

e([ci]1, [yi]2)− e([~u`]>1 , [~d]2)

=
∑
i

[(~u>` ~si + xi)yi]T − [
∑
i∈[n]

yi~u
>
` ~si]T = [

∑
i

xiyi]T .

Compatibility

Our constructions from Section 4.2 use a prime-order group, while this one
uses pairing groups. Since the latter use the former as a building block, we must
use groups that are compatible with each other. Notice that one can generate a
prime-order group either with G := (G, p, P ) $← GGen(1λ), but also using PG :=
(G1,G2, p, P1, P2, e) $← PGGen(1λ), and setting G := G1. This is possible here because
we use asymmetric pairings and rely on the SXDH assumption in the pairing group,
which is DDH in G1 and G2 (see Section 2.3).

5.2.2 Security analysis

Theorem 5.1: sta-wtr-IND∗-Security

The above DMCFE protocol (see Section 5.2.1) is sta-wtr-IND∗-secure under
the SXDH assumption, in the random oracle model. Namely, for any PPT
adversary A, there exist PPT adversaries B1 and B2 such that:

AdvIND(A) ≤ 2Q1 · Advddh
G1 (t) + 2Q2 · Advddh

G2 (t) + 2Q1 + 2Q2

p

+ Advddh
G1 (t+ 4Q1 × tG1) + 2 · Advddh

G2 (t+ 4Q2 × tG2),

where Q1 and Q2 are the number of (direct and indirect) queries to H1 and
H2 respectively (modeled as random oracles). The former being asked by
QLeftRight-queries and the latter being asked by QDKeyGen-queries.

We stress that the above Theorem supports adaptive encryption queries, but
static corruptions only. To prove it, we proceed using hybrid games, described in
Fig. 5.1.

Proof

Game G0: this is the sta-wtr-IND∗-security game as given in Section 3.2.2, but
with the set CS of corrupted senders known from the beginning. Note that
the hash functions H1 and H2 are modeled as random oracles. The former
is used to generate [~u`]1 := H1(`) ∈ G2

1 and the latter [~v~y]2 := H2(~y) ∈ G2
2.
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Game G1: we replace the hash function H2 by a random oracle RO2 that
generates random pairs from G2

2 on the fly. In addition, for any QDKeyGen-
query on a corrupted index i ∈ CS, one generates the partial functional
decryption key by itself, without explicitly querying QDKeyGen. Hence,
we can assume that A does not query QCorrupt and QDKeyGen on the
same indices i ∈ [n]. The simulation remains perfect, and so Adv0 = Adv1.

Game G2: now, the outputs of RO2 are uniformly random in the span of
[~b]2 for ~b := (1

a′
) , with a′ $← Zp. As in the previous proof, we have

Adv1 − Adv2 ≤ Advddh
G2 (t + 4Q2 × tG2), where Q2 is the number of RO2-

queries and tG2 the time for an exponentiation.

Game G3: we replace all the partial key decryption answers by dk~y,i := [yi ·~si +
~wi · (~b⊥)>~v~y + Ti~v~y]2, for new ~wi

$← Z2
p, such that ∑i ~wi = 0, for each ~y.

This sum being among the honest clients, we need to know the last queried
honest client to set this sum to zero. Hence the requirement to know the
set of honest clients, and thus just security against static corruptions. We
show below that Adv2 = Adv3.

Game G4: we switch back the distribution of all the vectors [~v~y]2 output by
RO2, from uniformly random in the span of [~b]2, to uniformly random
over G2

2, thus back to H2(~y). This transition is reverse to the two first
transitions of this proof: Adv3 − Adv4 ≤ Advddh

G2 (t+ 4Q2 × tG2).
In order to prove the gap between G2 and G3, we do a new hybrid proof:

Game G3.1.1: this is exactly game G2. Thus, Adv2 = Adv3.1.1.

G3.q.1  G3.q.2: as in the previous proof, we first change the distribution of the
output of the q-th RO2-query, from uniformly random in the span of [~b]
to uniformly random over G2, using the DDH assumption. Then, we use
the basis ((1

a′
) ,(−a′1 ) ) of Z2

p, to write a uniformly random vector over Z2
p as

v1 ·~b + v2 ·~b⊥, where v1, v2
$← Zp. Finally, we switch to v1 ·~b + v2 ·~b⊥

where v1
$← Zp, and v2

$← Z∗p, which only changes the adversary view by a
statistical distance of 1/p: Adv3.q.1 − Adv3.q.2 ≤ Advddh

G (t) + 1/p. The last
step with v2 ∈ Z∗p will be important to guarantee that ~v>~y ~b⊥ 6= 0.

G3.q.2  G3.q.3: we now change the simulation of dk~y,i from dk~y,i = [yi ·~si+Ti~v~y]2
to dk~y,i = [yi · ~si + RFi(~y) + Ti~v~y]2, with some RFi functions onto Z2

p such
that ∑i RFi(~y) = 0 for any input ~y. We prove Adv3.q.2 = Adv3.q.3.
To this aim, we use the fact that the two following distributions are
identical, for any choice of ~wi $← Z2

p, such that ∑i ~wi = 0:

(Ti)i∈HS and (Ti + ~wi(~b⊥)>)i∈HS ,

where for all i ∈ [n], Ti
$← Z2×2

p such that ∑i Ti = 0, and ~b⊥ := (−a′1 ) .

The extra terms (~wi(~b⊥)>)i∈HS only appear in the output of the queries to
QDKeyGen which use the vector [~v~y]2 computed on the q-th RO2-query (if
there are such queries), because for all other queries, [~v~y]2 lies in the span
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of [~b]2, and ~b>~b⊥ = 0. We thus have dk~y,i := [yi · ~si + ~wi · (~b⊥)>~v~y + Ti~v~y]2.
Since ~v~y is such that ~v>~y ~b⊥ 6= 0, (~b⊥)>~v~y 6= 0. In that case, the vectors
~wi · (~b⊥)>~v~y are uniformly random over Z2

p such that ∑i ~wi · (~b⊥)>~v~y = 0,
which is as in G3.q.3, by setting RFi(~y) := ~wi · (~b⊥)>~v~y.

G3.q.3  G3.q+1.1: this transition is the reverse of G3.q.1  G3.q.2, namely, we use
the DDH assumption to switch back the distribution of [~v~y]2 to uniformly
random in the span of [~b]2: Adv3.q.3 − Adv3.q+1.1 ≤ Advddh

G2 (t) + 1/p.

Then one can note that G3.Q2+1.1 = G3, but also that in Game G4, all the
dk~y,i output by QDKeyGen can be computed only knowing ∑i∈[n] ~si · yi, which is
exactly the functional decryption key dk~y from our MCFE in Section 4.2.3. This
follows from the fact that the values RFi(~y) perfectly mask the vectors ~si · yi, up
to revealing ∑i∈[n] ~si · yi (as the RFi must sum up to the zero function). Thus,
we can reduce to the IND-security of the MCFE from Section 4.2.3 (or even sta-
IND-security) by designing an adversary B against the MCFE from Section 4.2.3:
Adversary B first samples Ti

$← Z2×2
p for all i ∈ [n], such that ∑i∈[n] Ti = 0. It

sends CS given by A (set of static corruptions), then it receives mpk from the
MCFE security game, as well as the secret keys ~si for i ∈ CS. It forwards mpk
as well as (~si,Ti) for i ∈ CS to A. Then

• B answers oracle calls to RO1, RO2 and QEncrypt from A using its own
oracles.

• To answer QDKeyGen(i, ~y): if i is the last non-corrupted index for ~y, B
queries its own QDKeyGen oracle on ~y, to get dk~y := ∑

i ~si · yi ∈ Z2
p,

computes [~v~y]2 := H2(~y), and returns dk~y,i := [dk~y + RFi(~y) + Ti~v~y]2 to A.
Otherwise, it computes [~v~y]2 := H2(~y), and returns dk~y,i := [RFi(~y)+Ti~v~y]2
to A. The random functions RFi are computed on the fly, such that their
sum is the zero function.

We stress that this last simulation requires to know CS and HS, hence static
corruptions only. From this reduction, one gets

Adv4 ≤ 2Q1 · Advddh
G1 (t) + Advddh

G1 (t+ 4Q1 × tG1) + 2Q1

p
,

where Q1 denotes the number of calls to RO1, tG1 denotes the time to compute
an exponentiation in G1. This concludes the proof.
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Games G0, G1, G2, (G3.q.1)q∈[Qdk+1], (G3.q.2, G3.q.3)q∈[Qdk] , G4

PG ← PGGen(1λ), ∀i ∈ [n]: ~si $← Z2
p, Ti

$← Z2×2
p , such that ∑i∈[n] Ti = 0

eki := ~si, ski := (~si,Ti), mpk := (G, p, g).
a′ $← Zp, ~b := (1

a′
)

Sample full-domain hash functions H1 onto G2
1 and H2 onto G2

2.
Sample a bit b $← {0, 1}.
b′ ← AQEncrypt(·,·,·,·),QDKeyGen(·,·),QCorrupt(·),RO1(·),RO2(·)(mpk).
Run Finalize on b′.
RO1(`): // G0, G1, G2, G3.q.1, G3.q.2, G3.q.3
Return H1(`).

RO2(~y): // G0, G1 , G2, G3.q.1, G3.q.2, G3.q.3 , G4

[~v~y]2 := H2(~y), [~v~y]2 := RF(~y) , [~v~y]2 := [~b · t~y]2, with t~y := RF′(~y).
On the q-th RO2-query: [~v~y]2 := RF(~y).
Return [~v~y]2.
QLeftRight(i, x0

i , x
1
i , `): // G0, G1, G2, G3.q.1, G3.q.2, G3.q.3, G4

[~u`]1 := RO1(`).
[ci]1 := [~u>` ]1 · ~si + [xbi ]1.
Return [ci].
QEncrypt(i, xi, `): // G0, G1, G2, G3.q.1, G3.q.2, G3.q.3, G4
[ci]1 := QLeftRight(i, xi, xi, `)
Return [ci]

QDKeyGen(~y, i): //G0, G1, G2, G3.q.1, G3.q.2, G3.q.3 , G4

Compute [~v~y]2 := RO2(~y), dk~y,i := [yi · ~si + Ti~v~y]2, set S := S ∪ {i}.
If [~v~y]2 is computed on the j-th RO2-query, for j < q:
dk~y,i := [yi · ~si + RFi(~y) + Ti~v~y]2.
If [~v~y]2 is computed on the q-th RO2-query:
dk~y,i := [yi · ~si + RFi(~y) + Ti~v~y]2.

dk~y,i := [yi · ~si + RFi(~y) + Ti~v~y]2.
Return dk~y,i.
QCorrupt(i): Return (~si,Ti). // G0, G1, G2, G3.q.1, G3.q.2, G3.q.3, G4

Figure 5.1: Games for the proof of Theorem 5.1. Here, RF, RF′ are random functions
onto G2

2 and Zp, respectively, that are computed on the fly. The RFi are random
functions conditioned on the fact that ∑i∈[n] RFi is the zero function. In each
procedure, the components inside a solid (dotted, gray) frame are only present in
the games marked by a solid (dotted, gray) frame. The Finalize procedure is defined
as in Section 3.2.2.
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6 Modular security for MCFE

Our work [CDG+18a] gave a construction that only satisfies the weaker wtr-IND∗

security definition for Inner Product. In this part we propose several techniques
from [CDG+18b] to increase the security of a MCFE scheme in multiple ways.
Especially, they permit to modify the wtr-IND∗-security of the MCFE scheme from
Section 4.2.3 into IND-CCA-security.

On a first time, we show how to go, from any variant of IND∗, to the same
variant of IND, using an extra Secret Sharing Encapsulation, in Section 6.1. This
transformation strengthen the security model by allowing the adversary to query
encryptions, but not necessarily all of them, leading to incomplete ciphertexts.

Secondly, we show how to allow several encryptions under a same label (X-
wtr-IND-Y to X-IND-Y ) for Inner Product, in Section 6.2, by adding a layer of
single-input functional encryption for Inner Product. This transformation specifically
relies on the IP-MCFE scheme from [CDG+18a], described in Section 4.2.3.

Finally, we briefly show in Section 6.3 how to achieve CCA security (additional
functional decryption queries) from any X-IND-Y scheme, in a generic way.

We remind these contributions are summed up in Fig. 1.3, and all the different
security notions we go into through this chapter are given in Definition 3.2.
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6.1 From IND* to IND with secret sharing encapsu-
lation

As explained in Section 3.1.2, the main difference between the IND notion and
the IND∗, is that incomplete ciphertexts were considered illegitimate. This was with
the intuition that no adversary should use it since this leaks no information. But
actually, an adversary could exploit that in the real-life, especially in the scheme
from [CDG+18a] which use homomorphic properties. The IND notion requires the
scheme to actually leak nothing in such a case.

In this section, we present a generic layer, called the secret sharing encapsulation
(SSE), that we will use to encapsulate ciphertexts from a MCFE scheme. It allows a
user to recover the ciphertexts from the n senders only when he gets the contributions
of all the servers. That is, if one sender did not send anything, the user cannot get
any information from any of the ciphertexts of the other senders. More concretely, a
share of a key S`,i is generated for each user i ∈ [n] and each label `. Unless all the
shares Si,` have been generated, the encapsulation keys are random and mask all the
ciphertexts.

After giving the definition of SSE, we provide a construction whose security is
based on the DBDH assumption, and we show how to apply it on any MCFE scheme.

6.1.1 Definitions for secret sharing encapsulation

Definition 6.1: Secret Sharing Encapsulation

A Secret Sharing Encapsulation (SSE) on K over a set of n senders is defined
by four algorithms:

• SSE.SetUp(λ): on input a security parameter λ, generates the public
parameters pksse and the personal encryption keys are eksse,i for all i ∈ [n].

• SSE.Encaps(pksse, `): on input pksse and the label `, outputs a ciphertext
C` and an encapsulation key K` ∈ K.

• SSE.Share(eksse,i, `): on input eksse,i and the label `, outputs the share S`,i.

• SSE.Decaps(pksse, (S`,i)i∈[n], `, C`): on input all the shares S`,i for all i ∈ [n],
a label `, and a ciphertext C`, outputs the encapsulation key K`.

Correctness. For any label `, we have: Pr[SSE.Decaps(pksse, (S`,i)i∈[n], `, C`) =
K`] = 1, where the probability is taken over

(
pksse, (eksse,i)i∈[n]

)
← SSE.SetUp(λ),

(C`, K`)← SSE.Encaps(pksse, `), and S`,i ← SSE.Share(eksse,i, `) for all i ∈ [n].

Indistinguishability. We want to show that the encapsulated keys are indistinguish-
able from random if not all the shares are known to the adversary. We could define
a Real-or-Random security game [BDJR97] for all the masks. Instead, we limit the
Real-or-Random queries to one label only, and for all the other labels, the adversary
can do the encapsulation by itself, since it just uses a public key. This is well-known
that a hybrid proof among the label indices (the order they appear in the game)
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shows that the One-Label security is equivalent to the Many-Label security. The
One-Label definition will be enough for our applications.

Definition 6.2: 1-Label-IND-security game for SSE

Let us consider an SSE scheme over a set of n senders. We define the following
security game against a challenger C, where the adversary has unlimited and
adaptive access to the oracles QRealRandom, QShare, and QCorrupt described
below.

• Initialize(i∗): the adversary announces an index i∗[n]. The challenger C
runs the setup algorithm (pksse, (eksse,i)i∈[n]) ← SetUp(λ) and chooses a
random bit b $← {0, 1}. It provides pksse to the adversary A.

• Challenge queries QRealRandom(`): outputs a ciphertext C`, together
with an encapsulation key Kb

` , where (C`, K0
` )← SSE.Encaps(pksse, `), and

K1
`

$← K, where K is the encapsulation key space.

• Sharing queries QShare(i, `): outputs S`,i ← SSE.Share(eksse,i, `).

• Corruption queries QCorrupt(i): outputs the encapsulation key eksse,i.

• Finalize: A provides its guess b′ on the bit b, and this procedure outputs
this β ← b′ if the following condition is satisfied: QRealRandom is only
queried on at most one label `∗ and i∗ was not queried to QCorrupt and
(i∗, `∗) was not queried to QShare. If this condition is not satisfied, Finalize
outputs a random bit β.

We say this SSE is 1-Label-IND-secure if for any PPT adversaryA, its advantage
Adv1-Label-IND

SSE (A) = |Pr[β = 1|b = 1]− Pr[β = 1|b = 0]| is negligible.

We can also define the weaker static variant, where corruptions are known from the
beginning.

6.1.2 Construction
Let us exhibit a concrete construct for our main tool SSE, in the random oracle

model, under the DBDH assumption.

• SSE.SetUp(λ): takes as input a security parameter λ and generates PG =
(G1,G2,GT , psse, P1, P2, e) $← PGGensse(1λ). Generates a full domain hash
function Hsse from {0, 1}λ into G1. It also generates ~t $← Znp . The public
parameters pksse consist of (PG,Hsse, [~t]2), and the personal encapsulation keys
are eksse,i = ti, the i-th coordinate of ~t.

• SSE.Share(eksse,i, `): takes as input the key eksse,i = ti and the label ` and
outputs the share S`,i = ti · Hsse(`) ∈ G1.

• SSE.Encaps(pksse, `): takes as input the public key pksse = (PG,Hsse, [~t]2) and
the label `, samples r $← Zp, and outputs the ciphertext C` and the encapsula-
tion key K` defined as: C` = [r]2, K` = e(Hsse(`), [r

∑
j∈[n] tj]2).
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• SSE.Decaps(pksse, (S`,i)i∈[n], `, C`): takes as input all the shares S`,i for all i ∈ [n],
a label ` and a ciphertext C`, and outputs an encapsulation key

K` = e
(∑

j

S`,j, C`
)
.

We stress here that K` is not unique for each label `: whereas S`,i deterministically
depends on ` and the client i, K` is randomized by the random coins r in C`. Hence,
with all the shares, using a specific C`, one can recover the associated K`.

Correctness. It follows from the fact that the above decapsulated key K` is equal
to:

e
(∑

j

tjHsse(`), [r]2
)

= e
(
Hsse(`), [r ·

∑
j

tj]2
)
,

where the pair (C`, K`) has been generated by SSE.Encaps(pksse, `) with random r.

6.1.3 Security analysis
The intuition for the security is that given all the S`,i = ti · Hsse(`) for a label `,

one can recover the masks K` = e(Hsse(`), [r
∑
j tj]2) using C` = [r]2. However if S`,i

is missing for one slot i, then all the encapsulation keys K` are pseudo-random, from
the DBDH assumption.

Theorem 6.1

Let A be a PPT adversary against the security of the above SSE. We can build
a PPT adversary B against the qr-fold DBDH such that:

Adv1-Label-IND
SSE (A) ≤ (1 + qh) · Advqr-DBDH

PG (B),

where qh denotes the number of Hsse queries (explicit or implicit) and qr the
number of challenge-queries to the QRealRandom oracle.

Applying Lemma Lemma 2.1, one can reduce the security to the DBDH assump-
tion. Here we describe the construction of such an adversary:

Proof

B receives a qr-fold DBDH challenge
(
PG, [a]1, [b]1, [b]2, {[ci]2, [si]T}i∈[qr]

)
, where

qr denotes the number of queries of A to its oracle QRealRandom, and receives
i? ∈ [n] from A.

Then, B guesses ρ $← {0, . . . , qh}. Intuitively, ρ is a guess on when the random
oracle is going to be queried on `?, the first label used as input to QRealRandom
(without loss of generality, we can assume QRealRandom is queried at least once
by A, otherwise the security is trivially satisfied), with ρ = 0 indicating that
the adversary never queries Hsse on `? before querying QRealRandom.

Then, B samples ti $← Zp and sets eksse,i := ti for all i ∈ [n], i 6= i?, and sets
[ti? ]2 = [b]2. It returns pksse = (PG, [~t]2) to A.

For any query QCorrupt(i): if i 6= i?, B returns eksse,i, otherwise B stops
simulating the experiment for A and returns 0 to its own experiment.

For any query to the random oracle Hsse, if this the ρ’th new query, then B
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sets Hsse(`ρ) := [a]1. For others queries, B outputs [h]1 for a random h $← Zp.
B keeps track of the queries and outputs to the random oracle Hsse, so that it
answers two identical queries with the same output.

For any query to QRealRandom(`): if ` has never been queried to the random
oracle Hsse before (directly, or indirectly via QShare) and ρ = 0, then B sets
Hsse(`) := [a]1; if ` was queried to random oracle as the ρ’th new query (again, we
consider direct and indirect queries to Hsse, the latter coming from QShare), then
we already haveHsse(`) = [a]1. In both cases, B sets C` ← [cj ]2, for the next index
j in the qr-fold DBDH instance, computes K` ← [sj]T + e([a]1, (

∑
i 6=i? ti) · [cj]2),

and returns (C`, K`) to A. Otherwise, the guess ρ was incorrect: B stops
simulating the experiment for A, and returns 0 to its own experiment. Moreover,
if A ever calls QRealRandom on different labels `, then B stops simulating this
experiment for A and returns 0 to its own experiment.

For any query to QShare(i, `): if the random has been called on `, then B
uses the already computed input Hsse(`); otherwise, it computes Hsse(`) for the
first time as explained above. If i = i? and ` = `ρ, then B stops simulating the
experiment for A and returns 0 to its own experiment. Otherwise, that means
either i 6= i?, in which case B knows ti ∈ Zp, or ` 6= `ρ, in which case B the discrete
logarithm of Hsse(`). In both cases, B can compute S`,i := ti · Hsse(`) ∈ G1,
which it returns to A.

At the end of the experiment, B receives the output α from A. If its guess
ρ was correct, B outputs α to its own experiment, otherwise, it ignores α and
returns 0.

When B’s guess is incorrect, it returns 0 to its experiment. Otherwise, when
it is given as input a real qr-fold DBDH challenge, that is sj = abcj for all indices
j ∈ [qr], then B simulates the 1-Label-IND security game with b = 0. Indeed,
since b = ti? , for the j-th query to QRealRandom, we have:

K`? = [sj]T + e([a]1, (
∑
i 6=i?

ti) · [cj]2) = [abcj]T + e([a]1, (
∑
i 6=i?

ti) · [cj]2)

= e([a]1, [bcj]2) + e([a]1, (
∑
i 6=i?

ti) · [cj]2) = e([a]1, [bcj]2 + (
∑
i 6=i?

ti) · [cj]2)

= e([a]1, (b+
∑
i 6=i?

ti) · [cj]2) = e([a]1,
∑
i

ti · [cj]2) = e(Hsse(`?),
∑
i

ti · [cj]2)

where C`? = [cj]2. When given as input a random qr-fold DBDH challenge, the
simulation corresponds to the case b = 1. Finally, we conclude using the fact
that the guess ρ is correct with probability exactly 1

qh+1 .

6.1.4 Generic construction of IND-secure MCFE
We now show how we can enhance the security of anyMCFE using a SSE as defined

in Definition 6.1. Namely, we show that the following construction is IND secure
if the underlying MCFE is IND∗-secure, thereby removing the complete-ciphertext
restriction, as incomplete ciphertexts do not leak any information thanks to the SSE
layer.

Let MCFE = (SetUp,Encrypt,DKeyGen,FDecrypt,Decrypt) be a MCFE scheme,
SSE = (SSE.SetUp, SSE.Encaps, SSE.Decaps) be a SSE scheme, and SKE = (SEnc,
SDec) be a Symmetric Key Encryption scheme (Definition 2.5) with same key space
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as SSE, and whose message space is the ciphertext space of MCFE. We define
MCFE′ = (SetUp′,Encrypt′,DKeyGen′,FDecrypt′,Decrypt′) as follows:

• SetUp′(λ): it executes (mpk,msk, (eki)i) ← SetUp(λ) and (pksse, (eksse,i)i) ←
SSE.SetUp(λ). The public parameters mpk′ consist of mpk ∪ pksse, while the
encryption keys are ek′i = eki ∪ eksse,i for i = 1, . . . , n, and the master secret
key is msk′ = msk.

• Encrypt′(ek′i, xi, `): it parses the encryption key ek′i as eki ∪ eksse,i, runs C`,i ←
Encrypt(eki, xi, `), executes (D`,i, K`,i) ← SSE.Encaps(pksse, `), and S`,i ←
SSE.Share(eksse,i, `). The ciphertext C ′`,i is then set to the tuple (E`,i =
SEnc(K`,i, C`,i), D`,i, S`,i).

• DKeyGen′(msk′, f): with msk = msk′, it runs dkf = DKeyGen(msk, f).

• FDecrypt′(dkf , `, (C ′`,i)i∈[n]): takes as input a functional decryption key dkf , a
label `, and ciphertexts (C ′`,i = (E`,i, D`,i, S`,i))i∈[n]. It operates in two steps;
first it applies SSE.Decapssse(pksse, (S`,j)j∈[n], `,D`,i) on all the ciphertexts D`,i

to get all the encapsulation keys K`,i’s and thus all the plaintexts C`,i’s using
SDec on E`,i. Then it runs FDecrypt(dkf , `, (C`,i)i∈[n]).

• Decrypt′(eki, `, (C ′`,i)i∈[n]): takes as input an encryption key eki, a label `, and
ciphertexts (C ′`,i = (E`,i, D`,i, S`,i))i∈[n]. It operates in two steps; first it applies
SSE.Decapssse(pksse, (S`,j)j∈[n], `,D`,i) on all the ciphertexts D`,i to get all the
encapsulation keys K`,i’s and thus all the plaintexts C`,i’s using SDec on E`,i.
Then it runs Decrypt(eki, `, (C`,i)i∈[n]).

Remark : Because the DSum protocol (described in Section 5.1), the SSE (described
in Section 6.1) and the original MCFE from [CDG+18a] (recalled in Section 4.2.3)
all have a decentralized setup, the resulting scheme also enjoys the same property,
thereby completely getting rid of the need for a trusted party generating the private
keys.

6.1.5 Security analysis
We show that this generic construction MCFE′ achieves IND-security, assuming

the underlying MCFE is IND∗-secure (see Definition 3.2), SSE is 1-Label-IND-secure
(see Definition 6.2), and the symmetric encryption is one-time secure (see definition
in Definition 2.6). More precisely, we can state the following security result:

Theorem 6.2

For any adversary A running within time t, against the IND-security of the
above MCFE’,

AdvIND
MCFE′(A) ≤ (n+ 1) · L×

(
AdvIND∗

MCFE(t) + 2 · Adv1-Label-IND
SSE (t′)

+qe · AdvOT
SKE(t′′)

)
,

with t′ and t′′ quite close to t, where L is the total number of labels queried to
the oracle QLeftRight′, and qe is the maximum number of queries to QLeftRight′
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for a given label. In addition Adv(t), for any security notion, is the maximum
advantage an algorithm can get within time t.

We stress that this security result keeps all the properties of the basic MCFE and
the SSE schemes:

• if MCFE and SSE are both secure against adaptive corruptions, MCFE’ is also
IND against adaptive corruptions;

• if MCFE is secure with repetitions (see Section 6.2), MCFE’ is also IND with
repetitions.

The proof uses a hybrid argument that goes over all the labels `1, . . . , `L used as
input to the queries A makes to the QLeftRight′ oracle.

Proof

We define the following hybrid games, for all ρ = 0, . . . , L:
Game Gρ: This hybrid game outputs right answers for the QLeftRight′-queries
involving the first ρ labels, and left answers for the other labels, to the IND-
adversary A, as follows:

• Initialize: it gets the global parameters (mpk,msk, (eki)i∈[n])← SetUp(λ),
(pksse, (eksse,i)i∈[n])← SSE.SetUp(λ) and it returns the public ones mpk′ =
mpk ∪ pksse to the adversary A.

• QEncrypt′(i, x, `j): it returns Encrypt′(eki, x, `j).

• QLeftRight′(i, x0, x1, `j): if j ≤ ρ, it returns Encrypt′(eki, x1, `j), if j > ρ,
it returns Encrypt′(eki, x0, `j).

• QDKeyGen′(f): it returns DKeyGen′(msk, f).

• QCorrupt′(i): it returns ek′i = eki ∪ eksse,i;

• Finalize: as in Definition 3.2, for IND-security.

For any hybrid game Gρ, we denote by AdvGρ(A) := Pr[β = 1], where β
is the output of Finalize. Note that AdvIND

MCFE′(A) = |AdvG0(A) − AdvGL
(A)|.

Lemma 6.1 states that for all i ∈ [L], |AdvGi−1(A) − AdvGi
(A)| is negligible,

which concludes the proof.

Lemma 6.1

For any adversary A against the IND-security of the above MCFE′, for all ρ ∈ [L],
there exist PPT adversaries Bρ, B′ρ, and B′′ρ such that :

|AdvGρ−1(A)−AdvGρ(A)| ≤ (n+1) ·
(

AdvIND∗
MCFE(Bρ)+

2 · Adv1-Label-IND
SSE (B′ρ) + qe · AdvOT

SKE(B′′ρ)

)
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Proof

Actually, two cases can happen between games Gρ−1 and Gρ, for each ρ ∈
{1, . . . , L}: either all the honest components of the ciphertext are generated
under `ρ or not all of them. We first make the guess, and then deal with the
two cases: if they are all generated (for honest clients), this is the simple IND∗

security game for the underlying MCFE, otherwise there is an honest index i∗
for which the ciphertext has not been generated, and the SSE scheme will help,
together with the symmetric encryption scheme:
Guess of the case for the `ρ: We define a new sequence of hybrid games
G∗ρ for all ρ = 0, . . . , n, which is exactly as above, except that a guess for the
missing honest-client ciphertext i∗ under `ρ is performed (i∗ = 0 means that all
the honest-client ciphertexts are expected to be generated under `ρ):

• Initialize: it first makes a guess for i∗ $← {0, . . . , n}, and then does as in
Gρ.

• QEncrypt′(i, x, `j), QLeftRight′(i, x0, x1, `j), QDKeyGen′(f), QCorrupt′(i),
as in Gρ.

• Finalize: as in Gρ, except if

– i∗ = 0, but not all the honest ciphertexts under `ρ have been asked.
– i∗ 6= 0, but client i∗ is corrupted.
– i∗ 6= 0, but the i∗-th client ciphertext has been asked under `ρ.

in which cases a random bit is output.

Since G∗ρ and Gρ are the same when the guess incorrect, which happens with
probability exactly 1/(n+1), for any adversaryA: AdvGρ(A) = (n+1)·AdvG∗ρ(A).

All the ciphertexts are generated under `ρ: Under the condition that A
asks for all the honest ciphertexts under `ρ, which means the correct guess is
i∗ = 0, we build a PPT adversary Bρ against the IND∗ security of MCFE such
that |AdvG∗ρ−1

(A ∧ i∗ = 0)− AdvG∗ρ(A ∧ i∗ = 0)| ≤ AdvIND∗
MCFE(Bρ). Bρ simulates

the IND-adversary A’s view as follows:

• Initialize: it obtains mpk from its own IND∗-security game for MCFE,
samples (pksse, (eksse,i)i∈[n]) ← SSE.SetUp(λ) and returns mpk′ = mpk ∪
pksse to the adversary A.

• QEncrypt′(i, x, `j): it uses its own encryption oracle QEncrypt to get C`j ,i ←
QEncrypt(i, x, `j). Then, it computes (D`j ,i, K`j ,i)← SSE.Encaps(pksse, `j),
and S`j ,i ← SSE.Share(eksse,i, `j). Eventually, it computes and returns the
ciphertext (E`j ,i = SEnc(K`j ,i, C`j ,i), D`j , S`j ,i).

• QLeftRight′(i, x0, x1, `j):

– if j < ρ, it uses its own encryption oracle QEncrypt to get the
ciphertext C`j ,i ← QEncrypt(i, x1, `j).
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– if j > ρ, it uses its own encryption oracle QEncrypt to get the
ciphertext C`j ,i ← QEncrypt(i, x0, `j).

– if j = ρ, then it uses its own left-or-right encryption oracle to get the
ciphertext C`j ,i ← QLeftRight(i, x0, x1, `ρ).

Then, it computes the encapsulation (D`j ,i, K`j ,i)← SSE.Encaps(pksse, `j)
and the share S`j ,i ← SSE.Share(eksse,i, `j). Eventually, it returns the
ciphertext (E`j ,i = SEnc(K`j ,i, C`j ,i), D`j ,i, S`j ,i).

• QCorrupt′(i): it uses its own corruption oracle to get eki ← QCorrupt(i),
and returns ek′i = eki ∪ eksse,i.

• Finalize: Bρ checks whether all the honest ciphertexts under `ρ have been
asked. If not, it ignores A’s guess and sends a uniformly random bit
β $← {0, 1}. Otherwise, it forwards A’s guess to the Finalize procedure of
the IND∗-security game.

When the guess i∗ = 0 is correct, the queries Bρ makes to its QLeftRight oracle
are valid, i.e. they don’t make the Finalize procedure output a uniformly random
bit (independent of Bρ’s guess). Indeed, if QLeftRight(i, ·, ·, `ρ) is queried for
some i ∈ [n], then for all slots j ∈ HS, QLeftRight(j, ·, ·, `ρ) is also queried.
Thus, we can use the IND∗ security of MCFE to switch Encrypt′(eki, ~x0, `ρ) as in
game G∗ρ−1 to Encrypt′(eki, ~x1, `ρ) as in game G∗ρ.
Some ciphertexts are missing under `ρ: For β ∈ {0, 1}, we define the
game Hρ,β as G∗ρ, except that when i∗ 6= 0, QEncrypt′(i, x, `ρ) encrypts x
and QLeftRight′(i, x0, x1, `ρ) encrypts xβ in C`ρ,i, then they both generate
the encapsulation (D`ρ,i, K`ρ,i) ← SSE.Encaps(pksse, `ρ) and the share S`ρ,i ←
SSE.Share(eksse,i, `ρ), sample a fresh key K ′`ρ,i

$← K at random in the key space,
and return the ciphertext (E`ρ,i = SEnc(K ′`ρ,i, C`ρ,i), D`ρ,i, S`ρ,i).

Now, we build PPT adversaries Bρ,0 and Bρ,1 against the 1-Label-IND-
security of the SSE such that

|AdvG∗ρ−1
(A ∧ i∗ 6= 0)− AdvHρ,0(A ∧ i∗ 6= 0)| ≤ Adv1-Label-IND

SSE (Bρ,0)
and |AdvG∗ρ(A ∧ i

∗ 6= 0)− AdvHρ,1(A ∧ i∗ 6= 0)| ≤ Adv1-Label-IND
SSE (Bρ,1).

Let β ∈ {0, 1}. We proceed to describe Bρ,β. First, Bρ,β samples the guess
i∗ $← {0, . . . , n}. If i∗ = 0, then Bρ,β behaves exactly as the challenger in the
game G∗ρ−1+β. Otherwise, it does the following, using the 1-Label-IND-security
game against SSE:

• Initialize: it generates (mpk,msk, (eki)i∈[n])← SetUp(λ), and sends i∗ to
receive pksse from its own 1-Label-IND challenger for SSE. It returns
mpk′ = mpk ∪ pksse to the adversary A.

• QEncrypt′(i, x, `j): it can compute C`j ,i ← Encrypt(eki, x, `j). Then, it
call its own oracle to get S`j ,i ← QShare(i, `j). If j 6= ρ, it computes
(D`j ,i, K`j ,i) ← SSE.Encaps(pksse, `j); if j = ρ, it calls (D`ρ,i, K`ρ,i) ←
QRealRandom(`ρ). Eventually, it returns the ciphertext

E`j ,i = (SEnc(K`j ,i, C`j ,i), D`j ,i, S`j ,i)
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• QLeftRight′(i, x0, x1, `j): if j < ρ, it computes C`j ,i = Encrypt(eki, x1, `j);
if j > ρ, it computes C`j ,i = Encrypt(eki, x0, `j); and if j = ρ, it computes
C`j ,i = Encrypt(eki, xβ, `j). Then it calls its own oracle to get S`j ,i =
QShare(i, `j). If j 6= ρ, it computes (D`j ,i, K`j ,i) ← SSE.Encaps(pksse, `j);
if j = ρ, it calls (D`ρ,i, K`ρ,i)← QRealRandom(`ρ). Eventually, it returns
the ciphertext (E`j ,i = SEnc(K`j ,i, C`j ,i), D`j ,i, S`j ,i).

• QDKeyGen′(f): it runs and returns DKeyGen(msk, f).

• QCorrupt′(i): it uses its own corruption oracle to get eksse,i ← QCorrupt(i),
and returns ek′i = eki ∪ eksse,i.

• Finalize: Bρ,β checks whether the ciphertext for the i∗-th client has been
asked under `ρ, or corrupted. If so, it ignores A’s guess and sends a
uniformly random bit β $← {0, 1}. Otherwise, it forwards A’s guess to the
Finalize procedure of the IND∗-security game.

Game Gρ, which encrypts x1 under `ρ, just differs from Hρ,1 with real vs.
random keys K`ρ , as emulated by Bρ,1, according to the real-or-random behavior
of the 1-Label-IND game for SSE. Game Gρ−1, which encrypts x0 under `ρ, just
differs from Hρ,0 with real vs. random keys K`ρ , as emulated by Bρ,0, according
to the real-or-random behavior of the 1-Label-IND game for SSE. Note that if
adversary A makes queries that satisfy the conditions required by the Finalize
procedure from the game IND∗ of MCFE′, and that the guess i∗ 6= 0 is correct,
then the queries of Bρ,β satisfy the conditions required by the 1-Label-IND
security game for SSE, namely, QRealRandom is only queried on one label `ρ,
QCorrupt is never queried on i∗, and QShare is never queried on (i∗, `ρ).

Note that in the case the guess i∗ 6= 0 is correct, in the IND-security game,
the adversary can ask QLeftRight queries on users i ∈ CS for the label `ρ, which
was not allowed in the original IND∗-security game (and would lead to a random
output). The reason is that security here relies on the 1-Label-IND security
of the SSE for the label `ρ. In the simulation, no matter what is encrypted in
C`ρ,i under the label `ρ, the QRealRandom algorithm provides randomness and
makes the ciphertexts C`ρ,i impossible to recover.

Since the encapsulation keys K`ρ are uniformly random in games Hρ,0 and
Hρ,1, we can use the one-time security of SKE, for each ciphertext for the label
`ρ, to obtain a PPT adversary B′′ρ such that:

|AdvHρ,0(A ∧ i∗ 6= 0)− AdvHρ,1(A ∧ i∗ 6= 0)| ≤ qe · AdvOT
SKE(B′′ρ),

where qe denotes maximum number of ciphertexts generated by the QLeftRight
oracle for a given label.

Putting everything together, for the case i∗ 6= 0, we obtain PPT adversaries
B′ρ and B′′ρ such that: |AdvG∗ρ−1

(A ∧ i∗ 6= 0) − AdvG∗ρ(A ∧ i∗ 6= 0)| is upper-
bounded by 2 · Adv1-Label-IND

SSE (B′ρ) + qe · AdvOT
SKE(B′′ρ)). Since for any game G

and any adversary A, AdvG(A) = AdvG(A ∧ i∗ = 0) + AdvG(A ∧ i∗ 6= 0), this
concludes the proof of Lemma 6.1.
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6.2 Bridge between MIFE and MCFE
In this section, we add a layer of IP-FE on top of the IP-MCFE from Section 4.2.3,

to remove the restriction of having a unique challenge ciphertext per client and per
label. This way, our IP-MCFE really captures the MIFE formalism on one label (see
Section 3.1.1) in the case of the inner product functionality.

Overview

Our construction works for any IP-FE that is compatible with the IP-MCFE from
Section 4.2.3, namely, an IP-FE whose message space is the ciphertext space of the
IP-MCFE.

For correctness, we exploit the fact that decryption of the IP-MCFE computes the
inner product of the ciphertext together with the decryption keys. Also, we make
use of the fact that the encryption algorithm can act on vectors of group elements,
in Gm, where G is a prime-order group, as opposed to vectors over Z. Decryption
recovers the inner product in the group G, without any restriction on the size of
the input of the encryption and decryption key generation algorithms. Namely, the
message space of IP-FE is Gm, for some dimension m, its decryption key space is Zmp ,
where p is the order of G, and for any [~x] ∈ Gm, ~y ∈ Zmp , IP.Dec(ct, dk~y) = [~x>~y] with
probability one, where ct ← IP.Encrypt(IP.msk, [~x]), dk~y ← IP.DKeyGen(IP.msk, ~y),
and (IP.mpk, IP.msk)← IP.SetUp(λ)

For security, we exploit the fact that this IP-MCFE is linearly homomorphic, in
the sense that given an input ~x, one can publicly maul an encryption of ~x′ into
an encryption of ~x + ~x′. This is used to bootstrap the security from one to many
challenge ciphertexts per (user,label) pair, similarly to [AGRW17,ACF+18] in the
context of multi-input IP-FE. In fact, [ACF+18] uses a one-time secure MIFE as inner
layer, and a single-input IP-FE as outer layer, while we use an IP-MCFE as inner
layer, and an IP-FE as outer layer. The main technical challenge is to handle the case
of (adaptive) corruptions, which are not considered in [AGRW17,ACF+18] (even in
the static case where corruptions are known beforehand).

Remark. Notice finally that using the IP-FE from [ALS16], the IP-MCFE from
Section 4.2.3, and adding the SSE scheme from Section 6.1.2, one gets an IP-MCFE
that is IND-secure, with repetitions and with adaptive corruptions.

6.2.1 Extension of IP-MCFE to vectors
We first extend the IP-MCFE from Section 4.2.3 to handle vectors as inputs of

the encryption algorithm for each client, instead of just scalars.

• SetUp(λ): samples G := (G, p, P ) $← GGen(1λ), a full-domain hash function H
onto G2, Si $← Zm×2

p , for i = 1, . . . , n. Returns the public key mpk := (G,H),
encryption keys eki = Si for i = 1, . . . , n, and the master secret key msk =
((Si)i), (in addition to mpk, which is omitted).

• Encrypt(eki, ~xi, `): Takes as input the value ~xi ∈ Zmp to encrypt, under the key
eki = Si and the label `. It computes [~u`] := H(`) ∈ G2, and outputs the
ciphertext [~ci] = [Si~u` + ~xi] ∈ Gm.
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• DKeyGen(msk, ~y): Takes as input msk = (Si)i and an inner product function
defined by ~y ∈ Zm·np as f~y(~x) = 〈~x, ~y〉,where ~x = (~x1‖ · · · ‖~xn) ∈ Znmp , and
outputs the functional decryption key dk~y =

(
~y,
∑
i S>i ~yi

)
∈ Zmnp × Z2

p.

• FDecrypt(dk~y, `, ([~ci])i∈[n]): Takes as input a functional decryption key dk~y =
(~y, ~d), a label `, and ciphertexts. It computes [~u`] := H(`) and returns [α] =∑

i[~ci]>~yi − [~u`]>~d.

• Decrypt(eki, `, ([~ci])i∈[n]): Takes as input the encryption key eki = Si, a label `,
and ciphertexts. It computes [~u`] := H(`) and returns [~x`,i] = [~ci]− [Si~u`].

Correctness. One can check that:

[α] =
∑
i

[~ci]>~yi − [~u`]>~d =
∑
i

[Si~u` + ~xi]>~yi − [~u`]>
∑
i

S>i ~yi

=
∑
i

[Si~u`]>~yi + [~xi]>~yi −
∑
i

[Si~u`]>~yi =
∑
i

[~xi]>~yi = [~x>~y] = [〈~x, ~y〉].

For security, we will use the two following properties of the IP-MCFE from Sec-
tion 4.2.3:

• Linear Homomorphism of ciphertexts: for any i ∈ [n], ~xi, ~x′i ∈ Zp, and any label
`, we have [~ci] + [~x′i] = Encrypt(eki, ~xi + ~x′i, `), where [~ci] = Encrypt(eki, ~xi, `).

• Deterministic Encryption: in particular, together with the linear homomor-
phism of ciphertexts, this implies that for any ~xi, ~x′i ∈ Zmp and any label `, we
have: Encrypt(eki, ~xi, `)− Encrypt(eki, ~x′i, `) = [~xi − ~x′i].

6.2.2 Construction of IND-secure IP-MCFE with repetitions
We now give our generic construction to obtain security with repetitions. Let

MCFE = (SetUp,Encrypt,DKeyGen,FDecrypt,Decrypt) be the above IP-MCFE scheme
and IP-FE = (IP.SetUp, IP.Encrypt, IP.DKeyGen, IP.Dec) be a single-input IP-FE (as
defined in Definition 2.15) whose message space is the ciphertext space of MCFE.
We define a new MCFE′ = (SetUp′,Encrypt′,DKeyGen′,Decrypt′) as follows:

• SetUp′(λ): it executes (mpk,msk, (eki)i)← SetUp(λ) as well as, for i = 1, . . . , n,
(IP.mpki, IP.mski)← IP.SetUp(λ). The encryption keys are ek′i = (eki, IP.mski)
for all i = 1, . . . , n, the public key is mpk′ := (mpk, {IP.mpki}i), and the master
secret key is msk′ = (msk, {IP.mski}i).

• Encrypt′(ek′i, ~xi, `): it parses the encryption key ek′i as (eki, IP.mski), runs
[~ci,`]← Encrypt(eki, ~xi, `), and returns C ′`,i := IP.Encrypt(IP.mski, [~ci,`]).

• DKeyGen′(msk′, ~y): on input ~y := (~y1‖ · · · ‖~yn) ∈ Znmp , it computes dk~y =
DKeyGen(msk, ~y), and for all i ∈ [n]: dk~yi = IP.DKeyGen(IP.mski, ~yi). It
returns dk′~y =

(
dk~y, {dk~yi}i∈[n]

)
.

The three above algorithms are enough to show the security (as proven below),
which holds with respect to any IP-MCFE that satisfies the Linearly Homomorphism
of ciphertexts, and deterministic encryption, as defined above. However, correctness
only holds for the particular IP-MCFE from Section 4.2.3, where decryption computes
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the inner product between ciphertexts and decryption keys. That prevents from
a generic transformation. We now prove correctness when using the IP-MCFE
from Section 4.2.3 in MCFE’:

• FDecrypt′(dk′~y, `, (C ′`,i)i∈[n]): takes as input a functional decryption key dk′~y =(
dk~y, {dk~yi}i∈[n]

)
, where dk~y = (~y, ~d = ∑

i S>i ~yi), a label `, and ciphertexts
(C ′`,i)i∈[n]. First, it computes [di,`] = IP.Dec(dk~yi , C ′`,i) for i = 1 · · ·n. Then it
computes [~u`] = H(`), and computes [α] = [∑i di,`]− ~d>[~u`]. Finally, it returns
the discrete logarithm α ∈ Zp.

• Decrypt′(ek′i, `, (C ′`,i)i∈[n]): takes as input an encryption key ek′i = (eki, IP.mski),
a label `, and ciphertexts (C ′`,i)i∈[n]. For k ∈ [m], computes dkk =
IP.DKeyGen(IP.mski, (δk,j)j), then [ci] = IP.Dec(dkk, C ′`,i), and finally ~xi =
Decrypt(eki, `, [~ci]).

Correctness. By correctness of the IP-FE, we have for all i ∈ [n], and any label `:
[di,`] = [〈~yi, ~xi+Si~u`〉] = [〈~yi, ~xi〉]+〈~yi,Si〉 · [~u`]. Thus,

∑
i[di,`] = [〈~y, ~x〉]+(∑i ~y

>
i Si) ·

[~u`]. Since ~d = ∑
i S>i ~yi, we have ∑i[di,`] = [〈~y, ~x〉] + ~d>[~u`], hence α = 〈~x, ~y〉.

6.2.3 Security analysis
In this section, we provide the proof that the MCFE′ described above achieves

1-Label-IND∗-security (Section 3.1.2), using the wtr-IND∗-security of the MCFE
from Section 4.2.3, assuming the IP-FE is IND-secure (concrete instances of which
are given in [ALS16]). We can state the following security result:

Theorem 6.3

For any adversary A, against the 1-Label-IND∗-security of the above MCFE′,

Adv1-Label-IND∗
MCFE′ (A) ≤ Advwtr-IND∗

MCFE (t′) + n · AdvIND
IP-FE(t′′),

where both t′ and t′′ are close to the running time t of A.

We prove how the scheme from Section 6.2.2 achieves the 1-Label-IND∗-security.
As explained in Definition 3.2, the 1-Label-IND∗-security game for MCFE is exactly
the IND∗-security game where only one label `∗ is allowed in the challenge QLeftRight
oracle, defined by its index ρ, at the initialization step. We assume that all the
other encryption queries are asked to the QEncrypt. The proof uses a series of hybrid
games, defined below:

Proof

For any game G, we denote AdvG(A) the advantage of A in the game G,
that is, the probability that the procedure Finalize in the game G outputs
1. For any user i ∈ [n], we denote by Qi the number of queries to the oracle
QLeftRight′ containing the user i, that is, of the form: QLeftRight′(i, ~xk,0i , ~xk,1i , `),
for k ∈ {1, . . . , Qi}. When all the Qi’s are 1, there is no repetition, but here we
are dealing with repetitions. The counter k numbers the repetitions.
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Game Gβ : For any β ∈ {0, 1}, we define the following game, where multiple
plaintexts can be queried for the same user i and the same label. We use
a counter k, which starts at 1 to number the queries (~xk,0i , ~xk,1i ), under the
label `∗ = `ρ. We do not keep track of the queries under other labels (as
in previous definitions).

• Initialize(ρ): it generates (mpk,msk, (eki)i∈[n])← SetUp(λ), and for
all i ∈ [n], (IP.mpki, IP.mski) ← IP.SetUp(λ). It returns mpk′ :=
(mpk, (IP.mpki)i∈[n]) to the adversary A.
• QEncrypt′(i, ~xi, `j): it first computes [~ci] ← Encrypt(eki, ~xi, `j), and

returns IP.Enc(mski, [~ci]).
• QLeftRight′(i, ~xk,0i , ~xk,1i , `ρ): it computes [~cki ] ← Encrypt(eki, ~xk,βi , `ρ),

and returns IP.Enc(mski, [~cki ]).
• QDKeyGen′(~y): on input ~y := (~y1‖ · · · ‖~yn) ∈ Znmp , it first com-
putes dk~y = DKeyGen(msk, ~y), and then, for all i ∈ [n]: dk~yi =
IP.DKeyGen(mski, ~yi). It returns dk′~y =

(
dk~y, {dk~yi}i∈[n]

)
.

• QCorrupt′(i): on input a user i ∈ [n], it returns (eki, IP.mski).
• Finalize: as in Definition 3.2.

Note that:

Adv1-Label-IND∗
MCFE′ (A) = |AdvG0(A)− AdvG1(A)|.

Game H0 : Now we consider the game H0 defined exactly as G0, except in
QLeftRight′(i, ~xk,0i , ~xk,1i , `ρ), one computes [~cki ]← Encrypt(eki, ~xk,0i + ~x1,1

i −
~x1,0
i , `ρ). Then it returns IP.Enc(IP.mski, [~cki ]). The transition from G0

and H0 uses 1-Label-IND∗ security and the linear homomorphism of the
ciphertexts of MCFE. Namely, we build a PPT adversary B against the
1-Label-IND∗ security of MCFE such that:

|AdvG0(A)− AdvH0(A)| ≤ Adv1-Label-IND∗
MCFE (B).

B simulates the view of the 1-Label-IND∗-adversary A against MCFE′ as
follows:

• Initialize(ρ): after having sent ρ, it gets mpk from its 1-Label-IND∗

challenger. For all i ∈ [n], (IP.mpki, IP.mski)← IP.SetUp(λ), and it
returns mpk′ := (mpk, (IP.mpki)i∈[n]) to the adversary A.
• QEncrypt′(i, ~xi, `j): it first computes [~ci] ← QEncrypt(i, ~xi, `j), and

returns IP.Enc(mski, [~ci]).
• QLeftRight′(i, ~xk,0i , ~xk,1i , `ρ): for k = 1, i.e. the first query for user i, B
queries its own QLeftRight oracle to get the value [~c1

i ] =
QLeftRight(i, ~xk,0i , ~xk,1i , `ρ), otherwise it computes [~cki ] := [~c1

i ] + [~xk,0i −
~x1,0
i ]. It then returns IP.Encrypt(IP.mski, [~cki ]) to A.
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• QDKeyGen′(~y): on input ~y := (~y1‖ · · · ‖~yn) ∈ Znmp , it first com-
putes dk~y = DKeyGen(msk, ~y), and then, for all i ∈ [n]: dk~yi =
IP.DKeyGen(mski, ~yi). It returns dk′~y =

(
dk~y, {dk~yi}i∈[n]

)
.

• QCorrupt′(i): B queries its own oracle to obtain eki ← QCorrupt(i),
and returns (eki, IP.mski) to A.
• Finalize: B verifies that the conditions in Definition 3.2 are satisfied;

if they are, it forwards the guess b′ of A, otherwise, it sends a random
bit to its own Finalize oracle.

Note that the constraints B has to verify in the finalize procedure, and
namely for condition (2), might look exponential for general functionalities.
But in the case of inner product, one just has to look at spanned vector sub-
spaces. Namely, all queries (i, ~xki,0i , ~xki,1i , `ρ)i∈[n],ki∈[Qi] to QLeftRight′ and
all queries ~y := (~y1‖ · · · ‖~yn) to QDKeyGen′ must satisfy: ∑i〈~xki,0i , ~yi〉 =∑
i〈~xki,1i , ~yi〉. This is an exponential number of linear equations, but, as

noted in [AGRW17], it suffices to verify the linearly independent equations,
of which there can be at most n ·m. This can be done efficiently given
the queries.
One can note that, for the label `ρ = `∗, [~c1

i ] received by B is actually
[~c1
i ] = Encrypt(eki, ~x1,b

i , `
∗), where b is the random bit chosen by the

1-Label-IND∗ security game for MCFE that B is interacting with. By
linear homomorphism of the ciphertexts of MCFE, for all k ∈ [Qi], we have:
[~cki ] = Encrypt(eki, ~x1,b

i , `
∗)+[~xk,0i −~x

1,0
i ] = Encrypt(eki, ~xk,0i +~x1,b

i −~x
1,0
i , `∗).

So, when b = 0, B simulates G0, while it simulates H0 when b = 1, which
proves |AdvG0(A)− AdvH0(A)| ≤ Adv1-Label-IND∗

MCFE (B).
We define the following hybrid games Hr, for all r ∈ [n], as H0, except for
QLeftRight′(i, ~xk,0i , ~xk,1i , `ρ): for all i ≤ r, it sets [~cki ]← Encrypt(eki, ~xk,1i , `ρ),
instead of [~cki ] ← Encrypt(eki, ~xk,0i + ~x1,1

i − ~x1,0
i , `k), and returns

IP.Enc(mski, [~cki ]). Note that this definition is compatible with H0 de-
fined previously, and Hn is G1. Thus, it suffices to build a PPT adversary
Br for all r ∈ [n], against the IND-security of the IP-FE, such that:

|AdvHr−1(A)− AdvHr(A)| ≤ AdvIND
IP-FE(Br).

We distinguish two cases. The first case occurs when A queries the user r to
its oracle QCorrupt′. Then, conditioned on the event that Finalize doesn’t
output a random bit, it must be the case that for all k ∈ [Qr], ~xk,0r = ~xk,1r .
If we call E this first case, we have: AdvHr−1(A∧E) = AdvHr(A∧E). The
second case corresponds to the event ¬E: A does not query QCorrupt′ on r.
We build a PPT adversary B such that |AdvHr−1(A|¬E)−AdvHr(A|¬E) ≤
AdvIND

IP-FE(Br), which implies that |AdvHr−1(A ∧ ¬E) − AdvHr(A ∧ ¬E) ≤
AdvIND

IP-FE(Br). We conclude using the fact that for any game G and event
E: AdvG(A) = AdvG(A ∧ E) + AdvG(A ∧ ¬E).
We now proceed to describe Br, which simulates the view of the
1-Label-IND∗ adversary A against MCFE′ as follows:
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• Initialize(ρ): Br obtains IP.mpkr from its own Initialize oracle, and
generates (IP.mpki, IP.mski)← IP.SetUp(λ) for all i 6= r, (mpk,msk,
(eki)i)← SetUp(λ) and returns mpk′ := (mpk, (IP.mpki)i) to A.
• QEncrypt′(i, ~xi, `j): it computes [~ci]← Encrypt(eki, ~xi, `j). If i 6= r, it

returns IP.Enc(mski, [~ci]); if i = r, it returns QLeftRight([~ci], [~ci]).
• QLeftRight′(i, ~xk,0i , ~xk,1i , `ρ): B computes [~ck,0i ] = Encrypt(eki, ~xk,1i , `ρ)
and [~ck,1i ] = Encrypt(eki, ~xk,0i + ~x1,1

i − ~x1,0
i , `ρ), and uses its own

QLeftRight oracle to output the ciphertext to A
– if i < r, it outputs IP.Enc(mski, [~ck,0i ]).
– if i > r, it outputs IP.Enc(mski, [~ck,1i ]).
– if i = r, it outputs QLeftRight([~ck,0i ], [~ck,1i ]).

• QDKeyGen′(~y): on input ~y := (~y1‖ · · · ‖~yn) ∈ Znmp , Br computes
dk~y = DKeyGen(msk, ~y), for all i 6= r: it computes dk~yi =
IP.DKeyGen(mski, ~yi), and it queries its QDKeyGen oracle to obtain
QDKeyGen(~yr). It returns dk′~y =

(
dk~y, {dk~yi}i∈[n]

)
to A.

• QCorrupt(i): if i = r, B aborts the simulation and sends a random
bit to its Finalize oracle. Otherwise, it returns IP.mski.
• Finalize: Br verifies that the conditions in Definition 3.2 are satisfied;

if they are, it forwards the guess b′ of A, otherwise, it sends a random
bit to its own Finalize oracle.

Note that when the random bit b used by the IND-security game of IP-FE
that Br is interacting with is equal to 0, then, Br simulates the game Hr to
A; otherwise, it simulates the game Hr−1. In particular, the condition of
the Finalize from Definition 3.2 implies that for all queries (i, ~xki,0i , ~xki,1i , `ρ)
to QLeftRight′, we have: ∑i〈~xki,0i , ~yi〉 = ∑

i〈~xki,1i , ~yi〉 for all ki ∈ [Qi]. Thus,
we have in particular, for all k ∈ [Qr]:

〈~xk,0r − ~x1,0
ρ , ~yr〉 = 〈~xk,1r − ~x1,1

ρ , ~yr〉 ⇒
〈~xk,0r + ~x1,1

r − ~x1,0
ρ , ~yr〉 = 〈~xk,1r + ~x1,1

r − ~x1,1
ρ , ~yr〉 ⇒

〈~ck,0r , ~yr〉 = 〈~ck,1r , ~yr〉,

where [~ck,0r ] = Encrypt(ekr, (~xk,0r + ~x1,1
r − ~x1,0

r ), `ρ) and [~ck,1r ] =
Encrypt(ekr, (~xk,1r +~x1,1

r −~x1,1
r ), `ρ). The last implication uses the structural

properties of the IP-MCFE scheme, namely, the property of linear homo-
morphism, and deterministic encryption. The last equality corresponds
exactly to the condition to prevent the Finalize oracle from the IND security
game of the IP-FE from outputting a random bit (see Definition 2.16).
This proves |AdvHr−1(A)− AdvHr(A)| ≤ AdvIND

IP-FE(Br), and concludes the
security proof.

6.3 CCA security from signatures
In this section we briefly describe how to achieve Chosen-Ciphertext (CCA) security

in a black-box way, where the adversary may have access to functional decryption
queries, without learning the functional decryption key, but just the result. Indeed,
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while using public-key cryptography techniques, MCFE remains a symmetric-key
primitive, where the client encryption key not only allows encryption, but decryp-
tion. Using the additional decryption algorithm, we show that adding a signature
(Definition 2.7) simply provides CCA-security.

6.3.1 Description
More precisely, given an IND-secure MCFE scheme MCFE = (MCFE.SetUp,

MCFE.Encrypt, MCFE.KeyGen, MCFE.FDecrypt, MCFE.Decrypt), a strongly unforge-
able signature (S.SetUp, S.Sign, S.Verif), we generically build an IND-CCA-secure
scheme M̃CFE, where the changes are as follows:

• M̃CFE.SetUp(λ): executes (msk, (eki)i, pp) ← MCFE.SetUp(λ) and, for any
i ∈ [n], sets the signature parameters (S.keyi, S.ppi) ← S.SetUp(λ) for each
user i. m̃sk = (msk, (S.keyi)i), for all i sets ẽki = (eki, S.keyi), and finally
p̃p = (pp, (S.ppi)i).

• M̃CFE.Encrypt(ẽki, xi, `): computes A`,i ← MCFE.Encrypt(eki, xi, `) and the
signature S`,i ← S.Sign(S.keyi, (A`,i, `)) to return C`,i = (A`,i, S`,i).

• M̃CFE.FDecrypt(dkf , `, ~C): given a ciphertext ~C = (Ai, Si)i, computes the
values S.Verif(S.ppi, (Ai, `), Si) for any user i. If all the signatures are valid,
returns α← MCFE.FDecrypt(dkf , `, (Ai)i), otherwise, returns ⊥.

• M̃CFE.Decrypt(ẽki, `, ~C): given a ciphertext ~C = (Ai, Si)i, computes the values
S.Verif(S.ppi, (Ai, `), Si) for any user i. If all the signatures are valid, returns
xi ← MCFE.Decrypt(eki, `, (Ai)i), otherwise, returns ⊥.

M̃CFE.DKeyGen remains the same as MCFE.DKeyGen. In the following section we
provide the full security proof.

6.3.2 Security analysis
Here we formally prove the scheme described in Section 6.3 to achieve the IND−CCA

security level using the strong unforgeability (see Definition 2.8) property of the
signature. The proof consists of a sequence of games starting from G0, playing
the real security game described as above, to G2 where we are back to the basic
IND-security game, without decryption queries.

Proof

Game G0 : the real security game.

• Initialize: C runs both the algorithmsMCFE.SetUp(λ) and S.SetUp(λ),
to get respectively (msk, (eki)i, pp) and (S.keyi, S.ppi)i. Finally, C
chooses a bit b $← {0, 1} and provides A the public parameters
mpk = (pp, (S.ppi)i).
• Encryption queries QEncrypt(i, xi, `): for each encryption query, C
computes A`,i ← MCFE.Encrypt(eki, xi, `) and the signature S`,i ←
S.Sign(S.keyi, (A`,i, `)) to return A the value C`,i = (A`,i, S`,i).
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• Challenge queries QLeftRight(i, x0
i , x

1
i , `): for each encryption query,

C computes A`,i ← MCFE.Encrypt(eki, xbi , `) and the signature S`,i ←
S.Sign(S.keyi, (A`,i, `)) to return A the value C`,i = (A`,i, S`,i).
• Functional decryption key queries QDKeyGen(f): for each functional

key query, C returns dkf ← MCFE.QDKeyGen(msk, f).
• Corruption queries QCorrupt(i): for each corruption query, C returns

ẽki = (eki, S.keyi).
• Functional decryption queries QFDecrypt(~C, `, f): for each functional

decryption query, C first checks the validity of the signatures parts Si
of Ci. If all the signatures are valid, recovers the decryption function
key dkf and runs MCFE.FDecrypt(dkf , `, ~C).

Game G1 : in this game, C does as above, but rejects (outputting ⊥) upon
a query QFDecrypt(f, `, ~C) for which there is i ∈ HS, and Ci is not the
output of QEncrypt or QLeftRight on previous queries. This makes a
difference with game G0 only if such Ci contains a valid signature, which
would be a forgery. By simply guessing which client will be impersonated
(which is correct with probability greater than 1/n), one can output a
forgery as soon as a difference happens:

|AdvG1(A)− AdvG0(A)| ≤ n× AdvSUF
S (t).

Now we build a PPT adversary B such that: AdvG1(A) ≤ AdvIND
MCFE(B), that

is, we rely on the IND-CPA security of the underlying MCFE to conclude
the CCA security proof. B samples the signature parameters (S.keyi, S.ppi)i ←
S.SetUp(λ) for all i ∈ [n], and uses its own oracle to simulate the oracles QEncrypt,
QLeftRight, QDKeyGen and QCorrupt. It answers queries QFDecrypt(f, `, ~C) as
follows. If for some i ∈ HS, Ci is not the output of QEncrypt or QLeftRight on
previous queries, then output ⊥. Otherwise, that means that for all i ∈ HS,
either Ci is the output of QEncrypt(i, xi, `), in which case B sets x̃i := xi; either
Ci is the output of QLeftRight(i, x0

i , x
1
i , `), in which case B sets x̃i := x0

i . For all
corrupted slots i ∈ [n] \ HS, B computes x̃i ← Decrypt(eki, `, ~C), which it can
do since it knows eki, and ~C is a complete valid ciphertext. It finally outputs
f(~̃x = (x̃i)i) to A, which is correctly simulated, since the Finalize procedure
imposes that the function f doesn’t distinguish between x0

i and x1
i queried to

QLeftRight, that is, it doesn’t matter whether we choose x̃i := x0
i or x̃i := x1

i .
This allows B to properly simulate the oracle QFDecrypt without knowing which
bit b is chosen by QLeftRight in its own experiment.
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7 Delegation of access control

In this last chapter, we describe how to delegate the access control through
functional encryption, the material from this chapter comes from the work [CPP17].

In a first part, we define the attribute-based key encapsulation mechanism primi-
tive, a mix of CP-ABE and KEM (see Definition 2.19 and Definition 2.9 respectively),
and the homomorphic policy property. We discuss about the security behind those
notions.

In the second part, we discuss about a construction of a new LSSS (Definition 2.14)
from two independent LSSS, following combinations of their shares.

In the last part, we provide an example with an adaptation of the Lewko-Waters
scheme from [LW11], and we explain how to exploit homomorphic policy property
using the LSSS techniques from the second part.
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7.1 Preliminaries
In this part we derive a key encapsulation mechanism from the usual attribute-

based encryption, we define the homomorphic-policy property and the associated
security notions, and we explain how schemes based on this formalism can solve the
access control delegation problem described in the introduction.

7.1.1 Attribute-based key encapsulation mechanism
We first extend ABE to attribute-based key encapsulation mechanism (ABKEM),

where the ciphertext encapsulates a session key, later used to encrypt the message,
in a symmetric way.

Definition 7.1: ABKEM

An attribute-based key encapsulation mechanism (ABKEM) over an attribute
space A is defined by four algorithms:

• SetUp(λ): takes as input the security parameter, and outputs the master
secret key msk and the public key pk.

• KeyGen(msk, id, a): takes as input the master secret key msk, the identity
id of a player, and an attribute a ∈ A, to output the private decryption
key dka

id for this attribute a.

• Encaps(pk, p): takes as input the public key pk and a policy p, to output
a key K and an encapsulation E of this key.

• Decaps(dk, E): takes as input a decryption key and an encapsulation E,
to output the encapsulated key K or ⊥.

Correctness. For any (msk, pk) ← SetUp(λ), dka
id ← KeyGen(msk, id, a) for

a ∈ A, and (K,E)← Encaps(pk, p), Decaps(dkid, E) = K if A satisfies the policy
p.

Note that the decryption key will indifferently mean a key dka
id for a specific user

id and a specific attribute a, or a set dkA
id of keys specific to a user id, but for many

attributes a ∈ A ⊂ A.

Indistinguishability. The main security property is the usual indistinguishability
(IND), which should prevent collusions of adaptively chosen players, that can also get
decryption keys for adaptively chosen attributes:

Definition 7.2: IND for ABKEM

Let us consider an ABKEM over an attribute space A. No adversary A should
be able to break the following security game against a challenger:

• Initialization: the challenger runs the setup (msk, pk) ← SetUp(λ), and
provides pk to the adversary A.
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• Key Queries QKeyGen: the adversary A can ask KeyGen-queries, for any
id and any attribute a of its choice to get dka

id.

• Challenge Challenge: the adversary A provides a policy p to the challenger
that runs (K,E)← Encaps(pk, p), and setsKb ← K andK1−b as a random
key, for a random bit b. It provides (E,K0, K1) to the adversary.

• Key Queries QKeyGen: the adversary A can again ask KeyGen-queries of
its choice.

• Finalize: the adversary A outputs its guess b′ on the bit b.

We also define the event Cheat, which means that a user (with some identity
id) owns a set of attributes A (the set of all the attributes a asked to a Key
Query for id) that satisfies p: in such a case, the adversary can trivially guess
b. Hence, we only allow adversaries such that Pr[Cheat] = 0. We then define
Advind(A) = |2 × Pr[b′ = b] − 1|, and say that an ABKEM is (t, ε)-adaptively
secure if no adversary A running within time t can get Advind(A) ≥ ε.

We stress that everything is adaptive in this definition: the identities and the at-
tributes asked to the key queries, and the policy asked for the challenge query.
However, we are in the chosen-plaintext scenario, without access to any decryp-
tion/decapsulation oracle.

7.1.2 Homomorphic-policy
While CP-ABE allows to specify the policy at the encryption time, which is also

the case for our definition of ABKEM, the sender may not be aware of the policy yet.
We thus suggest to exploit an homomorphic property on the policy: we would like
to allow the derivation of an encapsulation of K under a combination p = p1 ∧ p2
or p = p1 ∨ p2 from the encapsulations of K under the policies p1 and p2 on the
attributes in A, without knowing K (which has already been used to encrypt the
payload).

∨ (→ Ep)

∧ ∨

∨ ∧ ∧ Ea8

E1 E2 E3 E4 ∨ E7

E5 E6

Figure 7.1: Derivation of Ep from a set of encapsulations {Ei}, for the policy
p = ((a1 ∨ a2) ∧ (a3 ∧ a4)) ∨ (((a5 ∨ a6) ∧ a7) ∨ a8)

With such an homomorphism on the policies, from the encapsulations of a common
key K under all the attributes a ∈ A, one could publicly generate an encapsulation of
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K under any policy on A: as illustrated above on Fig. 7.1, from the encapsulations
{Ei}i of K for the attributes A = {ai}, one can derive the encapsulation Ep of K
under any policy p, encoded as a binary tree with AND (∧) and OR (∨) gates.
Again, we only consider monotone policies, hence the absence of NOT gates. On
attributes, if one wants to consider the negation (or absence) of some attribute a,
one has to define a second attribute a′ that is exclusive with a, so that, if p = (a),
then ¬p = (a′).

To achieve this goal, we just need to be able to combine two encapsulations of K
under p1 and p2 in order to derive the encapsulation of K under p∨ = p1 ∨ p2 and
under p∧ = p1 ∧ p2. The global encapsulation under a more general policy can then
be recursively built.

Definition 7.3: Homomorphic-Policy ABKEM

An Homomorphic-Policy Attribute-Based Key Encapsulation Mechanism (de-
noted HP-ABKEM) over an attribute space A is an ABKEM (see Definition 7.1),
with a more specific encapsulation algorithm and two additional algorithms for
the homomorphism:

• Encaps(pk, P ): takes as input the public key pk, a list of policies P = (pi)i,
to output a key K and the encapsulations Ei of this key under the policies
pi’s.

• Combine(pk, gate, E1, E2): takes as input the public key pk as well as
two encapsulations E1 and E2, and a gate gate ∈ {∧,∨}, to output an
encapsulation under the combination of the initial policies for E1 and E2.

• Rand(pk, E): takes as input the public key pk as well as an encapsulation,
to output a new encapsulation (of the same key under the same policy).

The intuition behind the new Encaps algorithm is that we want to be able to
encapsulate the same key K under various policies. We thus opt for an encapsulation
algorithm that takes as input all the policies that will be combined later.

Correctness. The correctness properties are:

• if (Ei)i ← Encaps(pk, (pi)i) are common encapsulations of a key K under the
pi’s, then for any i, j, E ← Combine(pk, gate, Ei, Ej) is an encapsulation of the
same key K, but under the policy p = pi gate pj.

• for any encapsulation E of some key K under a policy p, E ′ ← Rand(pk, E)
follows the same distribution as a fresh encapsulation of K under the policy p.

Note that we do not expect the combination to hide the structure of the initial
encapsulations. The randomization will do this work, but there is no need to do it
at each step, hence the separation of the two processes: one will iteratively combine
the encapsulations in order to obtain the encapsulation under the appropriate policy,
and then the randomization will finalize the process. Fig. 7.2 illustrates this fact:
combining and randomizing at each step leads to exactly the same distribution of the
root encapsulation as combining at each step and randomizing at the last step only.

84



∨

∧ ∨

∨ ∧ ∧ a8

a1 a2 a3 a4 ∨ a7

a5 a6

∨

∧ ∨

∨ ∧ ∧ a8

a1 a2 a3 a4 ∨ a7

a5 a6

⇐⇒

: Randomization

Figure 7.2: Randomization process in combination

7.1.3 Security
As explained in the Pay-TV scenario in the introduction, we have three players:

the content provider (or the sender), the manager of the access policy (or the
combiner) and the receiver. We recall that we do not consider the security manager
here since it is a necessary trusted party, potentially played by the sender. We thus
expect the sender to encapsulate a key K under each attribute, and to encrypt the
payload under K; the combiner then generates the encapsulation of K under the
appropriate policy; so that only the legitimate receivers can decapsulate and decrypt
the payload.

When the adversary plays the role of the receivers, the required security notion
is exactly the previous indistinguishability: given several keys for various attributes,
and even several identities (to model collusions), an adversary should not be able to
get any information about a key encapsulated under a policy that is not satisfies
by any of the users under its control. We stress that this indistinguishability game
(IND) models the resistance against the collusion of receivers. But both the sender
and the combiner are considered honest.

On the other hand, the sender may not totally trust the combiner and may want
to limit the risk in case the combiner would be corrupted: while the former sends K
encapsulated under many attributes (or more generally many policies), the latter
should not be able to distinguish K from a random key, in order to guarantee to
privacy of the content encrypted under K. Hence the new indistinguishability game
with multiple encapsulations (m-IND), but without being able to get any decryption
key, hence the no-key attack (NKA). Since the adversary does not have access to any
decryption key, this security scenario does not allow the combiner to collude with
anybody, and namely not with any receiver.

Definition 7.4: m-IND-NKA for ABKEM

Let us consider an ABKEM over an attribute space A. No adversary A should
be able to break the following security game against a challenger:

• Initialization: the challenger runs the setup (msk, pk) ← SetUp(λ) and
provides pk to the adversary A;

85



• Challenge: the challenger runs (K, (Ei)i)← Encaps(pk,A), and sets Kb ←
K andK1−b as a random key, for a random bit b. It provides ((Ei)i, K0, K1)
to the adversary;

• Finalize: the adversary A outputs its guess b′ on the bit b.

We then define Advm-ind−nka(A) = |2×Pr[b′ = b]−1|, and say that an ABKEM is
(t, ε)-m-IND if no adversary A running within time t can get Advm-ind−nka(A) ≥ ε.

We stress that now, nothing is adaptive, since the adversary cannot get decryp-
tion keys, but gets the encapsulations of the same key K under all the individual
attributes. We also remain in the chosen-plaintext scenario, without access to any
decryption/decapsulation oracle. In addition, since the adversary is the combiner
that receives the key K encapsulated under every attribute, we do not allow any
collusion with a user: any attribute would be enough to get K and break the security
game.

On can note that in the real-life, such a combiner would not be a critical party
since it does not know any long-term secret. Of course, it will learn ephemeral
encapsulations that would allow any receiver (with attributes that satisfy the final
policy or not) to decapsulate the session key and to decrypt the content. But a
short-term corruption will just leak the content during a short period, and not for
ever.

7.2 An appropriate LSSS construction
The ABKEM we aim to build with the homomorphic policy functionality allows a

very fine grained access control. The classical method to realize a such control used
in ABE is the monotone span program (Definition 2.12), achieved by a linear secret
sharing scheme (Definition 2.14).

Linear secret sharing is a secret sharing (Definition 2.13) defined with a matrix.
In order to share s ∈ K, one chooses v2, . . . , vn

$← K and sets ~v ← (s, v2, . . . , vn)t,
then the share-vector is ~ν ← A · ~v. One would like to be able to reconstruct s
from a few coordinates of this share-vector is ~ν. Being able to find such a vector
~c with support I is equivalent to reconstruct s for the players satisfying ρ(I) only:∑

i∈I ci · νi = ∑m
i=1 ci · νi = ~ct · ~ν = ~ct ·A · ~v = (1, 0, . . . , 0) · ~v = s.

Lewko-Waters LSSS construction

To give an example, we can refer to the LSSS proposed by Lewko-Waters [LW11].
It generates the matrix A and the map ρ from any monotone policy p that is encoded
as a boolean tree, with binary AND and OR gates. One does not need to handle
NOT gates, since one only considers monotone policies. We recall in Fig. 7.3 this
construction from a predicate: let p be a predicate, we build the corresponding binary
tree and we apply the following algorithm to build the share-generating matrix A.

However, this chapter aims to describe another way to build such a LSSS matrix,
more adapted to the homomorphic policy functionality. This one assemble several
independents LSSS into one. More precisely, we detail a construction of the LSSS,
from a boolean tree (with only OR and AND gates), in an iterative way.
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Input: Predicate binary tree
c← 1 ;
A← [∅] ;
Associate (1) to the root ;
Do a Depth First Search in the tree, from the root, and ;
for unvisited nodes do

Set v to the vector associated to the node ;
if node = ∨ then

Associate v||(0, ..., 0)︸ ︷︷ ︸
c

to the children ;

end
if node = ∧ then

c← c+ 1 ;
Associate v||(0, ..., 0, 1)︸ ︷︷ ︸

c

to one children ;

Associate (0, ..., 0,−1)︸ ︷︷ ︸
c

to the other children ;

end
end
Create the matrix A with the rows corresponding to the vectors associated to
the leaves (extend the vectors with 0 at the end when necessary) ;
Output: A

Figure 7.3: Conversion of predicate binary tree into an LSSS share-generating matrix,
method used in [LW11].

Iterative LSSS construction

First, we have to start from an LSSS for a simple policy p = (ai), for some i
(i.e., a unique attribute): Ai = (1) and ρ(1) = i. Then we explain how to combine
two policies p1 and p2, represented by the LSSS’s (A1, ρ1) and (A2, ρ2) respectively,
into the policies p∧ = p1 ∧ p2 and p∨ = p1 ∨ p2 with LSSS’s (A∧, ρ∧) and (A∨, ρ∨)
respectively.

In the following, for any A, we denote A1 the first column et A∗ the matrix A
without the first column (i.e., A =

(
A1 A∗

)
).

Proposition 7.1

Let (A1, ρ1) and (A2, ρ2) be two LSSS’s for the policies p1 and p2. Then we
can build the LSSS’s (A∧, ρ∧) and (A∨, ρ∨) for the policies p∧ = p1 ∧ p2 and
p∨ = p1 ∨ p2 as follows

A∨ =
(

A1
1 A∗1 0

A1
2 0 A∗2

)
A∧ =

(
A1

1 A1
1 A∗1 0

0 −A1
2 0 −A∗2

)

If we label the rows of the matrices from 1 to m1 +m2, where A1 ∈ Km1×n1 and

87



A2 ∈ Km2×n2 , we have

ρ∧ = ρ∨ : x 7→
{
ρ1(x), if x ≤ m1
ρ2(x−m1), if x ≥ m1 + 1

This construction is not really new, since it was described in [NN04] in a more
generic way. But we need this explicit description for the security analysis of our
ABKEM. The correctness of this LSSS construction is provided in the following proof.
Up to a re-ordering of the rows and columns of the matrices, this is also the same
construction obtained from the algorithm presented in Fig. 7.3 from [LW11]. A brief
comparison of the two methods is indeed proposed after the proof of Proposition 7.1.

Proof

Let us now prove the combinations of LSSS lead to LSSS for the combined
policies.

First, let us remark that with the initialization A = (1) and ρ(1) = i for a
simple policy p = (ai), this is indeed an LSSS:

• ν1 = s, where ν1 is the share of the player i (or with attribute ai). The
secret s can be revocered;

• Without ν1, no information is leaked about s.

Disjunctions. We assume that for some attributes A, there is I such that
ρ(I) ⊂ A satisfies the policy p1 ∨ p2. This also means there is I ′ ⊆ I such that
ρ(I ′) ⊂ A satisfies the policy pb, for b = 1 or b = 2: from the LSSS (Ab, ρb),
there is ~cb with support I ′ such that ~ctb ·Ab = (1, 0, . . . , 0). Let us take the other
vector ~ct3−b ← (0, . . . , 0)t and build:

~c =
(

(2− b)~c1
(b− 1)~c2

)(
=
(
~c1
0

)
or =

(
0
~c2

))
.

This vector also has the same support I ′ ⊆ I as ~cb. The first component of
~ct ·A∨ is (2− b)~ct1 ·A1

1 + (b− 1)~c2 ·A1
2, which is ~ct1 ·A1

1 = 1 if b = 1, or ~c2 ·A1
2 = 1

if b = 2. The next block of n1 − 1 components is (2− b)~ct1 ·A∗1, which is clearly
(0, . . . , 0) if b = 2, and ~ct1 ·A∗1 = (0, . . . , 0) if b = 1. The last block of n2 − 1
components is also also (0, . . . , 0).

In the other direction, in order to be able to distinguish s from a random
value, given the coordinates of ~ν in I, one must be able to find ~c such that

~ct ·A∨ = (1, 0, . . . , 0), with support I. Of course, we can split ~c =
(
~c1
~c2

)
.

~ct ·A∨ = (~ct1 ·A1
1 + ~ct2 ·A1

2,~c
t
1 ·A∗1,~ct2 ·A∗2).

As a consequence, ~ct1 ·A1
1 + ~ct2 ·A1

2 = 1 and ~ct1 ·A∗1 = (0, . . . , 0) and ~ct2 ·A∗2) =
(0, . . . , 0). At least, one of the two elements ~ct1 ·A1

1 or ~ct2 ·A1
2 is non-zero. Let us

assume this is the first one, and it is equal to α ∈ K∗: the vector ~c′1 ← α−1 · ~c1

satisfies ~c′t1 ·A1 = (1, 0, . . . , 0). This vector has a support I ′ ⊆ I, and thus (from
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the LSSS property) ρ(I ′) must satisfy the policy p1, and so does ρ(I) because of
the monotonicity.

Conjunctions. We assume that for some attributes A, there is I such that
ρ(I) ⊂ A satisfies the policy p1 ∧ p2. This also means there is Ib ⊆ I such that
ρ(Ib) ⊂ A satisfies the policy pb, for b = 1, 2: from the LSSS (Ab, ρb), there is ~cb
with support Ib such that ~ctb ·Ab = (1, 0, . . . , 0). Let us build ~c =

(
~c1
~c2

)
.

~ct ·A∧ = (~ct1 ·A1
1,~c

t
1 ·A1

1 − ~ct2 ·A1
2,~c

t
1 ·A∗1,−~ct2 ·A∗2)

= (1, 1− 1, (0, . . . , 0), (0, . . . , 0)) = (1, 0, 0, . . . , 0)

This vector ~c has a support I1 ∪ I2 ⊆ I.
In the other direction, in order to be able to distinguish s from a random

value, given the coordinates of ~ν in I, one must be able to find ~c such that

~ct ·A∧ = (1, 0, . . . , 0). Of course, we can split ~c =
(
~c1
~c2

)
:

~ct ·A∧ = (~ct1 ·A1
1,~c

t
1 ·A1

1 − ~ct2 ·A1
2,~c

t
1 ·A∗1,−~ct2 ·A∗2).

Then ~ct1 · A1
1 = 1 and ~ct1 · A1

1 − ~ct2 · A1
2 = 0, which also implies ~ct2 · A1

2 = 1;
~ct1 ·A∗1 = (0, . . . , 0) and ~ct2 ·A∗2 = (0, . . . , 0).

We thus have both ~ct1 ·A1 = (1, 0, . . . , 0) and ~ct2 ·A2 = (1, 0, . . . , 0) and the
supports of ~c1 and ~c2 are I1 and I2 included in I. From the LSSS property
ρ(Ib) must satisfy the policy pb, for b = 1, 2, and so does ρ(I) because of the
monotonicity. As a consequence, ρ(I) satisfies the policy p1 ∧ p2.

About the two constructions

To summarize, we illustrate here these methods to construct the LSSS for the
policy p = ((a1 ∨ a2) ∧ (a3 ∧ a4)) ∨ (((a5 ∨ a6) ∧ a7) ∨ a8).

Using Lewko-Waters’ algorithm, we get the tree and the matrix described on
Fig. 7.4. This algorithm explores the tree following nodes corresponding to binary
gates (i) and associates vectors with values in {−1, 0, 1} to the child nodes. The
vectors linked to leaves form the final matrix. Using our combination of matrices,
starting from the leaves, associated to the matrix [1], and going go back to the root,
we obtain the construction on Fig. 7.5.

The matrices obtained are equivalent: columns can just differ with the sign.
Indeed, if there exists ~c such that ~ct ·A = (1, 0, . . . , 0), changing the sign of a column
of A does not impact the support of ~c: changing the sign of the first column needs
changing the sign of ~c, while changing the sign of the other columns does not impact
~c at all. The matrices also have the same size: m rows for n+ 1 columns where m is
the numbers of literals in the predicate p and n is the number of AND gates. If this
is well known for the matrices made from Lewko-Waters’s method, it is easy to see
it with our method too, by induction. Let A1 and A2 be two LSSS matrices, with
respectively n1 and n2 columns, for the policies p1 and p2, with respectively n1 and
n2 AND gates. Following our construction, the new LSSS matrices A∨ and A∧ have
respectively n1 + n2 and n1 + n2 + 1 columns, and their associated policies p1 ∨ p2
and p1 ∧ p2 respectively have n1 + n2 and n1 + n2 + 1 AND gates. Note that we start
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from the atomic predicates p = (ai), and we assume them all being distinct.

1(1)

1(2)

11(3) 01(4)

1(5)

100(6)

1001(7)

100

11 11 011 001 0001

1001 1001

=⇒



1 1 0 0
1 1 0 0
0 -1 1 0
0 0 -1 0
1 0 0 1
1 0 0 1
0 0 0 -1
1 0 0 0



Figure 7.4: Lewko-Waters’s construction applied on the policy p, using the method
exposed in Fig. 7.3. The indexes represent the state of the run in the tree, and the
resulting vectors are the leaves which are then filled with zeros to make the matrix.
Also, we denote 1 := −1 for the sake of clarity.

a1 : [1]

a2 : [1]

a3 : [1]

a4 : [1]

a5 : [1]

a6 : [1]

a7 : [1]

a8 : [1]

∨ :
(

1
1

)

∧ :
(

1 1
0 -1

)

∨ :
(

1
1

)
∧ :


1 1 0
1 1 0
0 -1 -1
0 0 1



∧ :

1 1
1 1
0 -1


∨ :


1 1
1 1
0 -1
1 0



∨ :



1 1 0 0
1 1 0 0
0 -1 -1 0
0 0 1 0
1 0 0 1
1 0 0 1
0 0 0 -1
1 0 0 0



Figure 7.5: Matrix-based iterative construction of p, following the method described
in Proposition 7.1.

7.3 Practical example
Finally, we provide an example that details the application of the iterative LSSS

construction on an ABKEM to achieve homomorphic policy property. To this aim,
we need an ABKEM scheme allowing linear combinations on the shares νi (where
~ν = A · ~v) encoded in the encapsulations; it is necessary to make use of the LSSS
properties. Thus, we present here a revised version of a CP-ABE scheme from [LW11].
First, for the sake of simplicity, we do not exploit the decentralized version and so all
the attributes are managed by the same entity (but we could keep the decentralized
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version). Second, for the homomorphic property, we consider a KEM instead of an
encryption scheme, which just encaps a session key. However, we still use an LSSS to
realize the access policy and pairing techniques to ensure collusion resistance. More
precisely, we use a symmetric pairing e : G×G −→ GT , where the groups G and GT

will be of composite order N = q1q2q3, with three large prime integers q1, q2, and q3.
Let us describe our variant of ABKEM.

7.3.1 Description
• SetUp(λ): one first generates symmetric pairing groups (G,GT , [g], N, e) ←

PGGen(λ) of composite order N = q1q2q3. One also generates a generator [g1]
of the subgroup G1 ⊂ G of order q1 and a hash function H : {0, 1}∗ −→ G.
We also denote G = e([g1], [g1]) = [g2

1]T ∈ GT . Then, for each attribute a, the
authority specifies the pair of secret/public keys, respectively ska = (αa, ya)
and pka = (Ga = αa · G, [ga] = ya · [g1]). The master secret key msk is the
concatenation of the ska’s, and the public key pk contains N , [g1] and H,
together with the concatenation of the pka’s.

• KeyGen(msk, id, a): from msk = {ska}, id and a, the authority outputs dka
id =

αa · [g1] + ya · H(id).

• Encaps(pk, P ): from the public key pk and a set P of policies, one first chooses
some random s $← ZN and sets the symmetric encapsulated key K ← s · G.
Then, for each p ∈ P , we process the following encapsulation: from the LSSS
matrix A ∈ Km×n and the associated labeling map ρ onto the attributes
describing the access structure defined by the policy p, we set ~v = (s, v2, . . . , vn)
and ~w = (0, w2, . . . , wn), with vk, wk $← ZN for k = 2, . . . , n and ~r $← ZmN . We
build the share vectors ~ν = A · ~v and ~ω = A · ~w. Eventually, for each line
x ∈ {1, . . . ,m} of the matrix A, we construct the encapsulation using the keys
pkρ(x) = (Gρ(x), [gρ(x)]) associated to the attribute ax = ρ(x) involved in the
policy p:

E1,x = νx ·G+ rx ·Gρ(x) E2,x = rx · [g1] E3,x = ωx · [g1] + rx · [gρ(x)]

The algorithm returns Ep = {(E1,x, E2,x, E3,x)}x for each p ∈ P .

• Decaps(dkid, Ep), where dkid = (dka
id) for the attributes owned by id: first,

the user must find a vector ~c ∈ Km such that ~ct · A = (1, 0, . . . , 0) and
the support I of the non-zero components of ~c links to a set of attributes
owned by the user. Then, for each x ∈ I, the user computes Fx = E1,x +
e(H(id), E3,x)− e(dkρ(x)

id , E2,x). He finally gets K by combining with the vector
~c: K ← ∑

x∈I cx · Fx.

Correctness. The latter reconstruction works since:

∑
x∈I

cx · νx =
m∑
x=1

cx · νx = 〈~c, ~ν〉 = ~ct ·A · ~v = (1, 0, . . . , 0) · ~v = s

∑
x∈I

cx · ωx =
m∑
x=1

cx · ωx = 〈~c, ~ω〉 = ~ct ·A · ~w = (1, 0, . . . , 0) · ~w = 0
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In addition, for each x ∈ I,

Fx = E1,x + e(H(id), E3,x)− e(dkρ(x)
id , E2,x) = νx ·G+ ωx · e(H(id), [g1]).

And so, the final combination leads to∑
x∈I

cx · Fx =
∑
x∈I

cx · (νx ·G+ ωx · e(H(id), [g1]))

= 〈~c, ~ν〉 ·G+ 〈~c, ~ω〉 · e(H(id), [g1]) = s ·G.

Note that this scheme produces ciphertexts decryptable when at least k attributes
overlapped between a ciphertext and a private key. While they showed that this
primitive is useful for error-tolerant encryption with biometrics, the lack of express-
ibility limits its applicability when more general policy are required. Consequently,
the map ρ needs to be an injection. In practice, this is not a real issue, since one can
simply duplicate the attributes and provide multiple keys to users.

7.3.2 Security analysis
In [LW11], Lewko and Waters proved their ABE scheme to be indistinguish-

able under several assumptions in the composite-order pairing setting recalled here
(Section 7.3.2), and the condition that ρ is injective. This easily leads to the IND
security for the above variant of ABKEM, even for adaptive KeyGen-queries. Hence,
this ABKEM construction achieves the IND security level. We now show that, the
m-IND-NKA security of the modified ABKEM can also be based on the IND security of
Lewko-Waters scheme.

Theorem 7.1

The IND security level of Lewko-Waters implies the m-IND-NKA security of the
modified ABKEM.

Proof

As highlighted in Fig. 7.6, the two security games are quite similar, the main
differences appear in the challenge phase, and the lack of key-queries in the latter.
If one looks at the above construction of the LSSS-matrix, for p = a1 ∨ . . . ∨ ak,
then A = (1, . . . , 1)t and ~ν = (s, . . . , s)t: from an encapsulation E of the key
K = s · G under the policy p, one can easily extract the encapsulations Ei
of the same K, under the policies pi = (ai) respectively: indeed, each triple
(E1,x, E2,x, E3,x) is a simple encapsulation of K under ax = ρ(x).

This remark is true for every conjunction pf = ∨
pi where the policies pi’s

do not share any attribute. Note that the triples (E1,x, E2,x, E3,x) involved
in the decryption of a policy pi are those associated to the attributes which
appears in this policy. The choice of these triples is given by the vector c.
Consequently, we can easily convert the challenger’s answer from one game to
another by concatenating/separating the ciphertext(s) by following this policy
decomposition. Because of the lack of key-queries in the m-IND-NKA security
game, we can just build an adversary B for the IND game from an adversary
A of the m-IND-NKA game. More precisely, if an adversary A has an advantage
Advm-ind−nka(A) = ε in the m-IND-NKA game for the policies (pj)j, one can
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construct an adversary B with the same advantage Advind(B) = ε in the IND
game for the policy pf = ∨

pi.

IND game m-IND-NKA game

SetUp(λ) : (msk, pk)← SetUp(λ) (msk, pk)← SetUp(λ)

QKeyGen(idi, ai) : dkai
idi
← KeyGen(msk, idi, ai) none

Challenge(p) : p = ∨
pi p = (pj)j

(K,E)← Encaps(pk, p) (K, (Ej)j)← Encaps(pk, (pj)j)
Kb ← K, K1−b

$← K Kb ← K, K1−b
$← K

(E,K0, K1) ((Ej)j, K0, K1)

QKeyGen(idi, ai) : dkai
idi
← KeyGen(msk, idi, ai) none

Finalize : (E,Cβ,M0,M1) ((Ej)j, Cβ,M0,M1)

Figure 7.6: Comparison between the original IND security game for ABKEM and the
m-IND-NKA game. The pi’s are different policies that do not share any attribute, and
K is the key space.

Remark. As already noted, Lewko and Waters [LW11] assume a one-use restriction
on attributes throughout the proof: this means that the row-labeling map ρ of the
challenge ciphertext access matrix (A, ρ) must be injective. The reason is that, if
an attribute is used twice in the access matrix, then there will appear an implicit
relation between the randomnesses associated to the corresponding two lines of the
matrix and the proof does not go through anymore. To overcome this issue, Lewko
and Waters suggested to associate k independent attributes to any attribute a, where
k is an upper-bound on the number of repetitions of an attribute in a policy. Thus,
it is important to note our ABKEM derivation inherently has the same limitation.

Composite group assumptions

While we do not recall the proof of the original CP-ABE scheme from [LW11],
we describe the assumptions used. Unlike the other work presented in this thesis,
this scheme uses non standard assumptions, based on pairing groups with an order
N = p1p2p3 where the pi are primes.

Definition 7.5: Composite group assumption 1

Given a group generator G, let be the following distribution:

G = (N = p1p2p3, e : G×G→ GT ) $← G

g1
$← Gp1
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D = (G, g1)

T0
$← G, T1

$← Gp1

This assumption says that with the distribution D but without the knowledge
of the factorization of N , we can’t decide if Tβ $← {T0, T1} is in G or Gp1 .

Definition 7.6: Composite group assumption 2

Given a group generator G, let be the following distribution:

G = (N = p1p2p3, e : G×G→ GT ) $← G

g1, X1
$← Gp1 , X2

$← Gp2 , g3
$← Gp3

D = (G, g1, g3, X1X2)

T0
$← Gp1 , T1

$← Gp1p2

This assumption says that with the distribution D but without the knowledge
of the factorization of N , we can’t decide if Tβ $← {T0, T1} is in Gp1 or Gp1p2 .

Definition 7.7: Composite group assumption 3

Given a group generator G, let be the following distribution:

G = (N = p1p2p3, e : G×G→ GT ) $← G

g1, X1
$← Gp1 , Y2

$← Gp2 , X3, Y3
$← Gp3

D = (G, g1, X1X3, Y2Y3)

T0
$← Gp1p2 , T1

$← Gp1p3

This assumption says that with the distribution D but without the knowledge
of the factorization of N , we can’t decide if Tβ $← {T0, T1} is in Gp1p2 or Gp1p3 .

Definition 7.8: Composite group assumption 4

Given a group generator G, let be the following distribution:

G = (N = p1p2p3, e : G×G→ GT ) $← G

g1, X1
$← Gp1 , g2

$← Gp2 , g3
$← Gp3 , (a, b, c, d)

$← ZN
D = (G, g1, g2, g3, g

a
1 , g

b
1g
b
3, g

c
1, g

ac
1 g

d
3)

T0 = e(g1, g1)abc, T1
$← GT

This assumption says that with the distribution D but without the knowledge
of the factorization of N , we can’t decide if Tβ $← {T0, T1} is in the GT or a
subgroup of GT generated by e(g1, g1).
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7.3.3 Achieving homomorphic policy
Eventually, we now show how the iterative construction of the LSSS can be

exploited in our ABKEM (Section 7.3.1) to fulfill the homomorphic-policy property.
We recall that in this scheme, ~ν = A · ~v is a secret sharing of a random scalar s,

while ~ω = A · ~w is a secret sharing of 0, the components νx and ωx being hidden in
E1,x and E3,x by Grx

ρ(x) and g
rx
ρ(x) respectively. Also, note that the encapsulated key is

not exactly s but s ·G.

Shares combinations

We first describe the share combinations that are needed to achieve our goal;
because of the linear property of the LSSS, by concatenating or by adding the shares,
we either obtain the OR or the AND policies of two encapsulations E(1) and E(2):

Share-Vectors Encapsulations(
~ν1
~ν2

)
←→ E(1) ∪ E(2)

~ν1 + ~ν2 ←→ E(1) + E(2)

Of course, the same applies on the shares ~ω of 0, but we focus on the shares ~ν of the
random s

One secret under two policies. Let us be given two encapsulations E(1) and
E(2) of the same secret value K = s · G under the policies p1 and p2, represented
by the LSSS (A1, ρ1) and (A2, ρ2). The construction thus used the share-vectors
~νi = (νi,1, . . . , νi,mi) = Ai · ~vi, with ~vi = (s, vi,2, . . . , vi,ni)t, for i = 1, 2. Using

A∨ =
(

A1
1 A∗1 0

A1
2 0 A∗2

)
and ~v = (s, v1,2, . . . , v1,n1 , v2,2, . . . , v2,n2)t,

one gets ~ν =
(
~ν1
~ν2

)
. From attributes satisfying pi, under the LSSS property, one can

efficiently find a vector ~ci = (ci,1, . . . , ci,mi)t ∈ Km such that ~cti ·Ai = (1, 0, . . . , 0).
By multiplying this vector on the appropriate half of ~ν, one can get s:

(c1,1, . . . , c1,m1 , 0, . . . , 0) · ~ν = ~ct1 · ~ν1 = s

(0, . . . , 0, c2,1, . . . , c2,m2) · ~ν = ~ct2 · ~ν2 = s.

It will be used for the disjunction of policies in Section 7.3.3.

Two secrets under different policies. Let us be given two encapsulations E(1) and
E(2) of two secret values K1 = s1 · G and K2 = s2 · G under the policies p1 and
p2, represented by the LSSS (A1, ρ1) and (A2, ρ2). The construction thus used the
share-vectors ~νi = (νi,1, . . . , νi,mi) = Ai · ~vi, with ~vi = (si, vi,2, . . . , vi,ni)t, for i = 1, 2.
Using

A∧ =
(

A1
1 A1

1 A∗1 0
0 −A1

2 0 −A∗2

)
and ~v = (s1 + s2,−s2, v1,2, . . . , v1,n1 , v2,2, . . . , v2,n2)t,

one gets again ~ν =
(
~ν1
~ν2

)
. This combination will be used for the conjunction of policies

in Section 7.3.3, but only with the same secret. Note that the produced encapsulation
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must be randomized to perform the new policy, otherwise there is a colluding attack:
with independent keys for each policy, two players can independently get s1 and s2,
and can then combine them to get s1 + s2.

Two secrets under the same policy. Let us be given two encapsulations E(1) and
E(2) of two secret values K1 = s1 · G and K2 = s2 · G under the same policy p,
represented by the LSSS (A, ρ). The construction thus used the share-vectors ~ν1
and ~ν2 of the random scalars s1 and s2 respectively under the same policy p. Then,
one can see ~ν = ~ν1 + ~ν2 as a share-vector of s = s1 + s2 under the policy p, since
~ν = A · (~v1 + ~v2). Indeed, from attributes satisfying p, one can efficiently find a
vector ~c ∈ Km such that ~ct ·A = (1, 0, . . . , 0):

~ct · ~ν = ~ct ·A · (~v1 + ~v2) = (1, 0 . . . , 0) · (~v1 + ~v2) = s1 + s2.

This combination will be used for the randomization in Section 7.3.3, with s2 = 0.

Encapsulations combinations

Let us now see how this impacts on the encapsulations, when one wants to do
disjunctions and conjunctions of policies.

Disjunctions. Let us be given two encapsulations E(1) and E(2) of the same key
K = s · G under the policies p1 and p2, represented by the LSSS (A1, ρ1) and
(A2, ρ2). We want to make an encapsulation of K under the policy p1 ∨ p2. Using
the construction of the share-vectors from Section 7.3.3, which applies on both ~ν1, ~ν2
and ~ω1, ~ω2, we know that the resulting encapsulation should use

~ν =
(
~ν1
~ν2

)
~ω =

(
~ω1
~ω2

)
.

Therefore, the resulting encapsulation is Ep1∨p2 = {(E(1)
j,x , E

(2)
j,x )j=1,2,3}x∈A.

Conjunctions. Let us be given two encapsulations E(1) and E(2) of the same key
K = s · G under the policies p1 and p2, represented by the LSSS (A1, ρ1) and
(A2, ρ2). We want to make an encapsulation of K under the policy p1 ∧ p2. Using
the construction of the share-vectors from Section 7.3.3, which applies on both ~ν1, ~ν2
and ~ω1, ~ω2, we know that the resulting encapsulation should use

~ν =
(
~ν1
~ν2

)
~ω =

(
~ω1
~ω2

)
.

However, this will contain the key 2 ·K = 2s ·G. We thus have to halve: the resulting
encapsulation is Ep1∧p2 = {((1

2 · E
(1)
j,x ), (1

2 · E
(2)
j,x ))j=1,2,3}x∈A. Note that even if in the

Lewko-Waters’ construction there is a modulus N = q1q2q3 that is hard to factor,
this is the order of the group. Hence 1

2 · [g] = α · [g] where α = (N + 1)/2.
As already noted, collusion is possible. But this is even worse in this case since

we are using s = s1 = s2: just satisfying one of the two policies, one can recover
1
2 ·K = s

2 ·G, which thereafter easily leads to K. We thus need to randomize the
encapsulation, in order to glue together the policies.
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Randomization. If one looks in details the description of the Encaps algorithm,
there are 4 kinds of randomness:

• s, that defined the encapsulated key K = s ·G;

• vk, wk $← ZN for k = 2, . . . , n, to define ~v and ~w;

• ~r $← ZmN .

Let us start from any encapsulation E(1) of K under a policy p, with

E
(1)
1,x = ν(1)

x ·G+ r(1)
x ·Gρ(x) E

(1)
2,x = r(1)

x · [g1] E
(1)
3,x = ω(1)

x · [g1] + r(1)
x · [gρ(x)]

for each ax = ρ(x) involved in the policy p, where ~ν(1) = A · ~v(1) and ~ω(1) = A · ~w(1).
We now define a new fresh encapsulation E(2):

E
(2)
1,x = ν(2)

x ·G+ r(2)
x ·Gρ(x) E

(2)
2,x = r(2)

x · [g1] E
(2)
3,x = ω(2)

x · [g1] + r(2)
x · [gρ(x)]

where ~ν(2) = A · ~v(2) and ~ω(2) = A · ~w(2), for ~v(2) = (0, v′2, . . . , v′n)t and ~w(2) =
(0, w′2, . . . , w′n)t, with v′k, w′k

$← ZN for k = 2, . . . , n, and ~r(2) $← ZmN . This is actually
a fresh random encapsulation of K(2) = e([g], [g]) = [1]T under the policy p. It can be
computed from the public key pk that contains N , [g1], and the keys pka = (Ga, [ga]),
for all the attributes, as would be generated a fresh encapsulation of K = [1]T .
Eventually, the new encapsulation E = {(E(1)

1,x + E
(2)
1,x, E

(1)
2,x + E

(2)
2,x, E

(1)
3,x + E

(2)
3,x)}x is a

truly random encapsulation of the same K under the policy p, and so looks like a
fresh encapsulation.
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8 Conclusion

This thesis presented two ways to delegate the access control to encrypted data,
both based on functional encryption.

The first chapters describe how to allow a distributed control of data analysis
with the decentralization of multi-client functional encryption; after defining the
main definitions and security notions in Chapter 3, we provide practical schemes in
Chapter 4. Finally, we describe black-box combinations or generic ideas to achieve
a non-interactive decentralized construction and improve security, respectively in
Chapter 6 and Chapter 5. All this, with standard assumptions in the random oracle
model.

The last chapter (Chapter 7) describes a contribution on a different delegation
problem. It allows to separate the roles of the sender and the access right manager.
This is a quite useful property for the Pay-TV context, since the access right manager
does not have access anymore to the content payload. The distribution to the
subscribers can be performed by a weakly trusted party.

Open questions. Through MCFE, we aim to build analysis tools for aggregated
data. Our work makes an important step towards this goal, but also left open several
questions:

• A first point is the security. Our work is based on groups, uses pairings, and is
only proven secure in the random oracle model. It would be interesting to know
if we can generalize the ideas presented in this thesis to other assumptions,
especially lattices-based. Getting rid of the random oracle model also seems to
be an important gap to pass.
In Section 4.1.2 we cite an ongoing work [LT19] that deals with these two
points. This article describes a scheme built with something close to a KH-PRF,
based on Learning With Errors, and is proven secure in the standard model.
However, it implies an heavy trade-off on the practicability.

• As noticed in the Section 4.1.2, our IP-MCFE constructions are based on groups
where the discrete logarithm problem holds, and the size of the numbers we
encrypt is limited by the necessity to solve one in the decryption. At first sight,
this constraint may not be problematic for financial or marketing applications,
where they work on relatively little values. However it is a real limitation
for cryptographic applications since one can not re-use the functionality as a
black-box.
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A solution to re-use the framework described in this thesis could be using
groups that allow discrete logarithm on sub-groups. Thus, the use of groups
from Paillier’s cryptosystem [Pai99] (Z/N2Z)∗ seems legitimate. More recently,
another recent work [CLT18] uses specific kind of groups with this property in
an IP-FE context.

• A problem not tackled in this work is the dynamic setting. In a practical
application, an external user could manifest his wish to join the protocol. This
case involves several problems, the first being the creation of the secrets for
this new user. A joining algorithm is equivalent to a personal set-up, and must
not concern the other participants, so we must imagine a fully decentralized,
non-interactive set-up from the beginning. Note that our work offers this
possibility. Also, it is the goal of the recent paper [ACF+19] in the MIFE
context.
Another point related to the dynamic setting is the forward secrecy. When
a new user is added to an existing group, should he be able to apply a
decryption key on the old ciphertexts. In the other way, should we allow a
user with an old decryption key to work on a ciphertext from a more recent
set of participants? We could add the group as input to the decryption key
generation and encryption algorithms to handle these questions, or maybe pair
the MCFE with a finer grained access control, similarly to [DP19].

• Another functionality to study is the function-hiding. Briefly explained, we
can suppose a case where a user is given a decryption key that does not leak
the function encoded inside. This is already possible with the MIFE through
the paper [ACF+18], and the technique seems applicable to MCFE. However it
remains a problem in the decentralized context.
In the case of the DMCFE, even if the users do not know the precise function
when they make the decryption key, they must use a common time stamp to
forbid combination of pieces from different keys. Consequently, no one is fully
aware of the function, the key requester only knows the time stamp, and the
senders know this time stamp and their personal values encoded in their key
parts.

• Last point, but not the least, is about the others function we could potentially
describe through MCFE. In this work we described a framework principally
aiming inner product functionality, and a natural extension would be higher
degree polynomials. We know today, since the paper [LT17], that trilinear
maps would imply strong theoretical results in cryptography. Furthermore,
functional encryption for quadratic functions is now known possible for single
input functional encryption through the work [BCFG17], a scheme that relies
on the use of pairings. Therefore, the important question is to know if quadratic
functionality is possible in a (decentralized) multi-client context.
In an attempt to answer positively, an idea to explore is to re-use an additive
mask ~c` = ~x+ ~s`, apply the function A: ~c` · A · ~c` and use function-hiding to
remove the ~x · A · ~s` terms, while we take away ~s`A~s` using a key, analogously
to IP-FE schemes.

Finally, on homomorphic-policy, we leave open the question of a generalization of
the method used in [CPP17] to others ABE schemes with more standard assumptions.
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Abbreviations

PPT Probabilistic Polynomial Time

IND Indistinguability

CCA Chosen Cipher Attack

GGen/PGGen (Pairing-friendly) Group Generator

CDH Computational Diffie Hellman

DDH Decisional Diffie Hellman

SXDH Symmetric eXternal Diffie Hellman

DBDH Decisional Bilinear Diffie Hellman

PRF/KH-PRF (Key Homomorphic) Pseudo Random Function

LSSS Linear Secret Sharing Scheme

SSE Secret Sharing Encapsulation

SKE Symmetric Key Encryption

FE/MIFE (Multi-Input) Functional Encryption

MCFE/DMCFE (Decentralized) Multi-Client Functional Encryption

IP Inner Product

MPC Multi-Party Computation

PSA Private Stream Aggregation

DSum Distributed Sum

ABE/CP-ABE (Ciphertext-Policy) Attribute-Based Encryption

KEM/ABKEM (Attribute-Based) Key Encapsulation Mechanism

HP Homomorphic-Policy
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Résumé
Le chiffrement fonctionnel est un paradigme ré-
cent qui généralise le chiffrement à clef publique
classique. Cette formalisation a pour objectif de
réguler plus finement le contrôle d’accès aux don-
nées chiffrées, ainsi que l’information dévoilée par
le déchiffrement. Cette thèse étudie des possibili-
tés de délégation au travers de ces deux aspects.

Dans un premier temps, nous travaillons dans un
contexte multi-client : plusieurs utilisateurs four-
nissent chacun une donnée personnelle chiffrée,
et une entité souhaite extraire de l’information
de ces données. Notre contribution consiste à
permettre à ces utilisateurs de donner, ou refu-
ser, leur accord à cette extraction. Pour ce faire,
nous décrivons des constructions de chiffrement
fonctionnel multi-utilisateur, puis nous definis-
sons plusieurs niveaux de sécurité et fournissons
des méthodes pour les atteindre. Enfin, principal
objectif de ces travaux, nous décentralisons la fa-
brication de la clef de déchiffrement, pour qu’une
personne souhaitant une clef de déchiffrement ait
besoin de l’accord de tous pour l’obtenir. Toutes
les instantiations proposées dans ces travaux sont
utilisables en pratique.

Dans second temps, nous considérons une autre
problématique dans laquelle un producteur de
contenu vidéo cherche à déléguer la distribution
de sa création, sans la révéler. Notre solution est
un mécanisme d’encapsulation de clef, dérivé du
chiffrement par attributs, avec une propriété par-
ticulière. Ce producteur l’utilise pour encapsuler
la clef du flux vidéo sous plusieurs attributs, et
fournit les encapsulations au distributeur. Celui-
ci peut alors utiliser la propriété pour combi-
ner les encapsulations et en définir les conditions
d’accès à sa guise.

Abstract
Functional encryption is a recent paradigm that
generalizes the classical public key encryption.
This formalization aims to finely manage both
the access control to the encrypted data, and
the information revealed by the decryption. This
thesis studies possibilities of delegation through
these two sides.

First, we deal with a multi-client context : seve-
ral users provide each one an encryption of per-
sonal data, and an entity wishes to extract infor-
mation from the aggregate of those inputs. Our
contribution in this environment consists to pro-
vide these clients the possibility to give, or refuse,
their consent for such an extraction. To this aim,
we describe constructions of multi-client functio-
nal encryption. We then formalize several levels
of security and provide methods to reach them.
Eventually, we decentralize the construction of
the functional decryption key, so that one needs
the agreement of all clients to get a functional
decryption key. All this, in a practical way.

Second, we consider a more specific case where a
video content provider wishes to delegate the dis-
tribution of his creation, but without revealing it.
Our solution is a key encapsulation mechanism,
derived from attribute-based encryption, with a
particular property. The provider uses it to en-
capsulate the key of the encrypted stream under
several attributes, and provides the encapsula-
tions to the distributor. This "content manager"
can then use the property to combine the encap-
sulations and make a new one under the access
policy of his choice.

Mots clés
cryptographie, chiffrement fonctionnel, déléga-
tion, multi-utilisateur, décentralisation

Keywords
cryptography, functional encryption, delegation,
multi-client, decentralization
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