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was the opportunity to work with a recognized researcher in the musculoskeletal community -Mark de Zee and 
a recognized researcher in physical ergonomics – Pascal Madeleine. My topic was to assess the limits of 
musculoskeletal modeling and the way it can be used for physical risk factors assessment, with a specific 
application to meat cutting tasks. 

I demonstrated the usability of an upper limb musculoskeletal model for physical risk factors assessment, under 
conditions that are i) relative comparison of work conditions ii) investigating primary task effectors only.  
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TEMPORARY ASSISTANT PROFESSOR AT ENS RENNES - IRISA (2011-2012) 

Back in Rennes after my post-doctoral fellowship, I had a temporary assistant professor position for one year. 
This short contract was an opportunity for me to join the VISIONAIR project, that was an INFRA FP7 
european project, led by Frédéric Noël, enabling the use of Virtual Reality facilities for researchers of various 
domains. In this scope, I proposed an application to my colleagues from Aalborg, Pascal Madeleine and Afshin 
Samani to work on the usability of virtual reality for physical risk factors assessment. We developed an ambitious 
experimental framework, enabling the biomechanical comparison at the postural and muscle level of assembly 
tasks performed in real and virtual environments. We began to call this biofidelity, or biomechanical fidelity, 
that is the propensity of  virtual environments and their interaction to generate realistic biomechanical responses 
of the subject regarding a task to perform, a fundamental feature for applications in preventive ergonomics.  

We obtained several interesting results, particularly showing that i) there were perception issues between felt 
and measured postures in VR ii) such simulator was usable as an ergonomic assessment tool since the evolution 
of most physical risk factors criteria in function of workstation design parameters was similar in real and virtual 
environments. Obviously, this work was limited to small assembly tasks and need to be extended to a larger 
applicative scope. 

ASSOCIATE PROFESSOR AT ENS RENNES – MIMETIC RESEARCH TEAM (SINCE 2012) 

I finally get an associate professor position in mechanics at ENS Rennes, in secondment at Ecoles de Saint-Cyr 
Coëtquidan (French military school) in 2012. I continued to work in the MimeTIC research team since this date, 
continuing to contribute on both virtual reality and motion analysis developments for ergonomics. Since this 
date, I supervised 7 PhD theses (2 defended, 5 ongoing at this date), 1 post-doctoral fellow and several Master 
theses. 

We particularly focused on the design roles and metaphors to be provided to users in collaborative environments 
for ergonomics, as well as on efficient motion analysis tools for corrective and preventive ergonomics, with the 
idea to democratize the use of such tools to non-expert people. 

Since September 2018, I achieved my secondment at Ecoles de Saint-Cyr Coëtquidan and I am now at ENS 
Rennes as an associate professor.  

TEACHING SUMMARY 

ECOLES DE SAINT-CYR COEQUIDAN (ECOLE SPECIALE MILITAIRE, ECOLE INTERARMES) 

 (2012-2018) Numerical methods –20h course (Master 1 mechanics-physics). Design of the course, practicals 
and writing of the courses supports  

(2012-2018) Simulation of mechanical systems –20h course  (Master 1 mechanics-physics). Design and 
realization of the course, practicals and courses supports with Brice Mudry, Professeur Agrégé 
in mechanics. 

(2012-2018) Lagrangian mechanics and vibration of discrete systems – 40h course (Master 1 mechanics-physics). 
Design of the practicals (10h). 

(2012-2018) Numerical control – 20h course (Bachelor 3 electronics). Design of the course, practicals and 
writing of the courses supports 

https://team.inria.fr/mimetic/
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(2012-2018) Robotics: serial and legged robots – 20h course (Master 1 electronics). Design of the course, 
practicals and writing of the courses supports 

(2014-2018) International robotics seminar (international cadets officers) on legged robots – 12h course in 
english. Design and realization of the course, practicals and courses supports with Brice Mudry, 
Professeur Agrégé in mechanics. 

(2014-2018) Research projects (100h each, Master 1 mechanics-physics): Design and command of a quadruped 
robot, Characterization of mechanical properties of knee prosthesis by motion analysis, analysis 
in ecological situation of amputee gait, design of a rehabilitation system for amputee people. 
(collaborations with the Centre d’Etude et de Recherche sur l’Appareillage des Handicapés, 
from  « Invalides » institution) 

ECOLE NORMALE SUPERIEURE DE RENNES (DEPARTEMENT MECATRONIQUE)  

(2007-2012) Strengths of materials, limitations and specificities – 24h course (Master 2 in higher education of 
engineering sciences). Design of the course, practicals and writing of the courses supports. 

(2011-2012) Continuum mechanics – 24h course (Master 2 in higher education of engineering sciences). Design 
of the course, practicals and writing of the courses supports. 

 (2014-2019) Mechanical and Multiphysics systems simulation – 24h course (Master 2 in higher education of 
engineering sciences). Design of the course, practicals and writing of the courses supports.  

(2017-2019) Simulation of poly-articulated systems – 24h course (Master 1 in complex systems engineering). 
Design of the course, practicals and writing of the courses supports. 

(2017-2019) Serial robotics – 20h course (Bachelor in complex systems engineering). Design of the course, 
practicals and writing of the courses supports. 

(2007-2019) Preparation to oral exams in « Agrégation de Mécanique » (Master 2 in higher education of 
engineering sciences). Industrial projects, educational usage of practicals. 

(2017-2019) Numerical methods projects – (Bachelor in complex systems engineering). Numerical methods for 
human lower limbs simulation, numerical simulation of a transtibial prosthesis. 

UNIVERSITE DE RENNES 2 

 (2016-2018) Musculoskeletal analysis of workstations ergonomics (Master 1 Engineerig and ergonomics of 
physical activity). 

UNIVERSITE DE RENNES 1 

(2018-2019) Musculoskeletal analysis with CusToM – 8h course (PhD course) 

 

FUN STUFF 

Guitarist for 25 years, ukulele player for 13 years, double bass player for 8 years, played in many groups. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 
Simulated assembly tasks in real and virtual environments   

Pontonnier, C. et al. (2014). Assessing the ability of a VR-based assembly task simulation to evaluate 
physical risk factors. IEEE transactions on visualization and computer graphics, 20(5) 
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RESEARCH CONTEXT 

 

Figure 1.1 – (Left) A scene from Charlie Chaplin’s “Modern Times” illustrating the man-machine interaction and its 

consequences on the worker health. (Right) An illustrative engine assembly line in 2015 (Getty images). 

New manufacturing processes accompanying industrial revolutions impacts work organization as well as work 
conditions in a broad way. Productive industrial contexts favored the appearance of work-related diseases, 
especially work-related musculoskeletal disorders (WMSD) that are considered as one of the major health, social 
and economic issue of the last decades. Annual national and international work reports are all showing similar 
trends: WMSD declarations are still growing in all countries over the world. WMSD are impacting the health of 
the worker and its capability to perform his work in a convenient manner. It is in France the 2nd cause of 
invalidity declaration, being involved in more than 10 million of work days losses in 2015. WMSD represents 
more than 80% of the work-related diseases to be declared, representing more than 1 million cases in 20171. 
This phenomenon is largely under estimated by the national work-related diseases statistics, since a large part of 
these diseases are not declared. The 6th European working conditions survey shows that in 2015 back pain 
(44%), neck and upper limb pains (42%) are the 2 first health issue of European workers (in 28 EU countries 
plus 5 candidate countries, plus Norway and Switzerland) [1]. WMSD are at first place of the work-related 
diseases in most industrialized countries.  

The risk factors involved in the development of work-related musculoskeletal disorders (WMSD) are commonly 
divided into internal and external risk factors [2]. Individual factors like age, gender, fitness level, and personality 
are known as internal risk factors. The external risk factors are expressed in terms of physical and psychosocial 
components. Stress and pain behavior, as well as work inter-personal relationships have been identified as some 
of the important psychological risk factors. A relatively fixed erect posture, repetitive arm movements, heavy 
work, insufficient rest, vibrations as well as static posture are recognized important physical factors contributing 
to WMSD [2,3]. Thus, the presence of internal and external risk factors emphasizes the complex etiology of 
WMSD. Further, the inter-relationships among the risk factors do not facilitate the evaluation of the impact of 
ergonomic interventions.  

                                                                 

 

1 https://www.ameli.fr/entreprise/sante-travail/risques/troubles-musculo-squelettiques-tms/tms-consequences 

https://www.ameli.fr/entreprise/sante-travail/risques/troubles-musculo-squelettiques-tms/tms-consequences
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The need of prevention and occurrence reduction of WMSD is the icing on the cake of all consensual debates 
about well-being and health at work. However, these intentions are not yet well translated to effective results 
due to the lack of economic interest for industrials in preserving the health of their employees. This observation 
tends to evolve in the last ten years due to the demonstrated direct and indirect economical costs for the 
companies that are caused by WMSD. Since this is a major issue in our modern societies, there is a need of 
adapted tools and methods to be developed to prevent such diseases systematically in many work sectors, 
particularly in analyzing the most prevalent risk factors that are the physical ones. Industrial plants are the most 
obvious playground, since high cadence, strenuous and repetitive tasks are listed as some of the main physical 
risk factors involved in WMSD appearance. Office work is also a very challenging sector, with prolonged sit 
posture, neck-shoulder solicitations and carpal syndrome channel occurrences.  

To minimize physical risk factors, two types of approaches may be considered:  

- Corrective ergonomics, that we can define as any corrective action made to minimize risk factors 
identified on an existing setup. Classically, ergonomists use assessment scores (RULA [4], REBA [5], 
NIOSH [6] …) to evaluate the postural and force constraints applied to the worker. These approaches 
are relevant but asks for long and tedious observation phases to be efficient and can provide 
information on a restricted set of key moments of the task to be assessed. Therefore, there is a need 
for low cost and efficient motion analysis tools to be deployed on site to diagnose and help ergonomists 
to plan an action. Such systems may be efficient only if they can be deployed quickly without perturbing 
the work process, be easily analyzed by the ergonomist, be fast enough to provide a feedback to the 
ergonomist or the user in almost real time, and reliable enough to provide insightful information at 
both postural and force (muscle) levels. 

- Preventive ergonomics, that we can define as any preventive action made to minimize risk factors 
during the design of a work setup. Such approaches were historically applied to physical mock-ups on 
which the methods evoked above for corrective ergonomics were applied. A physical mock-up is not 
easy and fast to realize and is quite complex to modify in order to minimize a risk factor. Digital mock-
ups opened the way to several enhancements in preventive ergonomics. First, digital manikins were 
used to assess risk factors on a mock-up only by simulation – what is commonly called digital human 
modeling [7]. This approach is limited since it does not consider the worker specificities (morphology, 
work habits, skills…) and is mainly postural (therefore applied to reachability issues or key moments of 
the task), even if several advances have been made on physically realistic manikins [8] and on 
incorporating force features in the assessment [71]. Therefore, there is a need for low cost and efficient 
tools to be used during the design phase of a workstation and involving the worker in the design and 
assessment. Such systems may be efficient only if they are able to properly represent the real work 
conditions (leading to similar biomechanical solicitations), to make user and experts able to participate 
to the design, to make the design easy to modify, and to make the results available quickly.  

Both approaches can be extended to any other risk factor mentioned above, even if it is not the purpose of the 
current document. Their application to the physical risks factors is leading to several research questions that are 
presented below and that are the main scientific objectives of my research. 
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RESEARCH OBJECTIVES AND CHALLENGES  

The approaches presented above are leading to a set of scientific challenges to be reached. In the following 
sections, we are presenting a brief introduction of these challenges. 

DEMOCRATIZE MUSCULOSKELETAL SIMULATION AS A DAILY LIFE TOOL FOR ERGONOMISTS 

Both preventive and corrective approaches ask for efficient motion analysis tools to be deployed and integrated 
as support decision for ergonomists. Musculoskeletal simulation is the most advanced way to analyze motion 
and the most relevant simulation to be used in ergonomics, for the following reasons. 

The interests and applications for musculoskeletal simulation (MS) are on the rise in diverse fields in addition 
to ergonomics, e.g. rehabilitation sports, clinics… Indeed, this tool has the potential to provide insightful 
information about motion and motor control of humans at kinematical, dynamical and muscle levels through 
minimally invasive measurements.  

The simulation itself consists in solving kinematics and dynamics equations of a motion in order to estimate the 
forces necessary to generate it. Classical musculoskeletal simulation is performed in a “inverse dynamics” 
fashion way, leading to the following analysis pipeline: 

 

Figure 1.2. Classical inverse dynamics musculoskeletal simulation pipeline. Inputs are generally motion capture data and external 
forces measures data, and outputs are the quantities on the right side of the boxes: joint coordinates, joint torques and muscles forces 
against time. Joint reaction forces are also one of the possible outputs depending on the way the inverse dynamics step is implemented.  
Calibration procedures accompany these analysis steps to scale the corresponding layers of the musculoskeletal model (geometrical, 
inertial and muscle layers)to the subject. Extracted from [9]. 

Generally, in MS, a musculoskeletal model (MSM) relies on an arborescent structure of rigid segments linked 
by joints and actuated through muscles. Therefore, such a model exhibits 3 descriptive levels of parameters 
coupled together. First, the geometrical level (segment lengths, joint centers …) corresponding to the osteo-
articular model, second, the inertial level (mass, inertias, center of mass…), and last the muscle level. The last 
one mixes geometrical parameters that may be issued from the first one (muscle chiefs’ origins/insertions, via 
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points, wrapping surfaces…) and force generation parameters (Maximal isometric strength, tendon slack length 
…). This hierarchy is leading to a large set of parameters influencing such simulation. 

Three major leaks remain to achieve widespread use of such inverse analysis in ergonomics: 

- First, computation methods must be enhanced to make these simulations easier to deploy and use daily, 
with a higher accuracy in the results.  Currently, most musculoskeletal analyses need heavy pre-
processing of the data, large computation time and heavy post-processing to give relevant results. This 
is clearly non-compatible with a daily use by non-expert users such as ergonomists, asking for a similar 
level of accuracy with drastically decreased computation and processing times. This is also a real need 
to make such simulations usable in preventive ergonomics sessions, leading to similar computation 
issues. Reducing computation time also opens the opportunity to enhance the work conditions by 
biofeedback, enabling the worker to assess and modify by itself its work gestures and procedures. There 
are also efforts to be made on the force estimation problem itself, representing more accurately the 
motor control of the subject in relation to a task. It is well known that current methods used in the field 
badly predict co-activation behaviours for example. 

- Second, the calibration of MSM to subjects (scaled to subject models) still requires significant 
improvements to be made. Now, accurate models are systematically based on invasive, expensive and 
rare tools (MRI, CT-scans, …). Moreover, this data asks for tedious post-processing to be used for 
scaling.  There is a need of simplified scaling methods able to personalize models in a limited time and 
with a limited set of measures, as it would be used in an ergonomics context. 

- Third, the experimental facilities necessary to drive such simulation are still heavy to deploy and costly 
(optoelectronic systems, force platforms…). This is also non-compatible with onsite analysis. In an 
industrial plant, a complete motion capture system with external force measurements is difficult to 
deploy and ask to modify the environment (occlusions, luminosity) to be efficient. This reduces the 
ecology of the situations to analyse and impact the production of the plant. There is a need of methods 
able to provide accurate musculoskeletal results from a degraded or reduced set of data, collected with 
limited and minimally impacting equipment. 

These issues are motivating most of the developments I present in the second chapter of this manuscript, and 
are extensively described there. 

MAKE VIRTUAL REALITY REALISTIC AND USABLE ENOUGH TO BE USED IN PREVENTIVE 

ERGONOMICS 

The recent development of virtual reality headsets and glasses made it very popular the last few years. This is 
also a valuable tool to prototype virtually workstations and products. This approach is more cost-effective and 
convenient since working directly on the Digital Mock-Up (DMU) in a virtual environment is preferable to 
constructing a real physical mock-up in a Real Environment (RE). This is substantiated by the fact that a Virtual 
Reality (VR) set-up can be easily modified, enabling quick adjustments of the workstation design. Indeed, the 
aim of integrating ergonomics evaluation tools in VE is to facilitate the design process, enhance the design 
efficiency, and reduce the costs. VR has already been used in ergonomics to assess aspects of manual handling 
operations [10,11,12]. In such applications, the end-user, generally the future operator of the workstation to 
design, is immersed in a VR-based simulator that mimics the real work environment and he or she is asked to 
perform tasks through interactions in VE corresponding to tasks he would perform in RE. Interactions are 
mostly performed with peripherals such as motion-tracking systems or haptic interfaces. Other actors of the 
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design - ergonomists, in charge of the evaluation of the system regarding the user, and design engineers, in 
charge of the functionality of the system regarding the production scheme – can also interact with the scenes 
and the end-user to enhance both working conditions and workstation usability. Generalize the use of such 
systems to systematize the ergonomic assessment in a design process ask for the following research questions: 

 

Figure 1.3 –A generic collaborative framework for ergonomics assessment in a virtual environment, involving an end-user 
(operator), ergonomists and design engineers (from [13]). 

- First, the environment must be collaborative and propose efficient metaphors and design modes to be 
used by the different actors of the design. It asks for architectural and behavioral questions, regarding 
the way the actors are interacting with the scene and between them. For example, an ergonomist must 
be able to provide ergonomic recommendations to the end-user and the design engineer whereas the 
latter may have to indicate production constraints to the other actors.  

- Second, how reliable are the recommendations issued from a VR-based ergonomics study? And how 
realistic is the simulator? To make a VR simulator usable for ergonomics purposes, it asks to ensure the 
transferability of the results from the virtual world to the real one. This transferability can be reached 
only at a cost of the thorough assessment of the realism of the simulator regarding the tasks to simulate.  

Therefore, there is a need of collaborative methods in high end realistic environments to democratize preventive 
ergonomics as a credible decision support tool for ergonomists and designers, and a real need of assessment of 
the realism of such systems in biomechanical terms to be used in preventive ergonomics. 
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APPLIED AND AFFORDABLE 

There is no interest in having such applied research objectives if there is no application behind. It is fundamental 
to me that the developments we make in the two domains presented above must be applied to real cases. 
Musculoskeletal simulation as well as VR are generally still used by experts without a real adoption of the 
methods by end-users (ergonomists in our case). To achieve a deployment of such methods in broad way, there 
is a need of tools to be developed that would be i) easy to use ii) fast and integrative iii) customizable. 

There is also a lot to do to prove the interest and usability of such methods in many applicative fields. Therefore, 
all the applications we can pursue are of interest to show the usability of these methods in these cases. 

DOCUMENT OVERVIEW 

Regarding the challenges presented above, the next chapters are explaining into details the different 
contributions I participated to in the last 12 years, since I began my PhD thesis. A final section is concluding 
and opening perspectives to this work. The figure 1.4. summarizes the principle of corrective and preventive 
assessment of physical risk factors and replace the plan of the manuscript within this scheme. 

 

Figure 1.4. Document overview: corrective and preventive physical risk factors assessment and the corresponding contributions 
gathered by chapters. 

The scientific contributions related to the challenges are summarized in the following section. 
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MAIN CONTRIBUTIONS 

EFFICIENT MUSCULOSKELETAL SIMULATION FOR ERGONOMICS (CHAPTER 2) 

As stated in introduction, musculoskeletal simulation is a fundamental tool for studying physical risk factors at 
work. To enhance their efficiency and reliability, we proposed several contributions related to the issues raised 
in the previous section. 

EFFICIENT MUSCLE FORCES ESTIMATION 

In this contribution we proposed alternative methods (interpolation) to classical (optimization) methods for 
muscle forces estimation. The main strength of this approach consists in its propensity to get in a very reduced 
time, compared to classical methods, results with a similar optimality. The developed method (MusIC, for 
Muscle Forces Interpolation and Correction) is about 30 times faster than classical optimization for a 12 DoF 
lower limbs model with 82 muscles. 

EFFICIENT SCALING 

Musculoskeletal models have to be scaled to the subject in order to be as accurate as possible. We proposed 
several studies on this subject to get i) realistic geometrical parameters (segment lengths, joint axes…) ii) realistic 
muscle parameters (maximal isometric force, optimal muscle length…). We particularly explored the importance 
of these parameters with regard to the results through sensitivity studies. We also proposed alternative joint 
strength models to represent the subject capacities in terms of force generation, that is absolutely fundamental 
for physical risk factors assessment. 

MUSCULOSKELETAL SIMULATION IN INDUSTRIAL CONDITIONS 

Such simulations are interesting only if they are applicable to real situations. Therefore, we developed methods 
to make it usable out of the lab. We particularly developed inverse dynamics methods based on depth camera 
data, since this device is easy to deploy in any environment with a minimal action on the subject to study, and 
we developed external forces prediction methods able to provide external forces applied on a given subject from 
a measure of its motion only. Such method is really relevant out of the lab, since force platforms or any over 
external forces measurement device are difficult to deploy on field. 

INTEGRATIVE APPROACH 

All of our development in musculoskeletal simulation have been integrated in a single open source Matlab 
toolbox2, following the idea that: i) it has to be usable by anyone ii) it has to be as modular as possible (changing 

                                                                 

 

2 https://github.com/anmuller/CusToM 

https://github.com/anmuller/CusToM


23 
 

 

 

models, analysis to run, input data …) iii) it has to be alive. I am particularly proud to have participated to this 
development, that is full of promises for the next years. 

EFFICIENT VIRTUAL REALITY FOR ERGONOMICS (CHAPTER 3) 

As I already explained above, virtual reality is a powerful and appealing tool for preventive ergonomics and 
physical risk factors assessment. To enhance its efficiency and reliability, I proposed several contributions 
relative to the issues raised in introduction. 

BIOMECHANICAL FIDELITY OF VIRTUAL ENVIRONMENTS 

First, we made some fundamental studies comparing real and virtual assembly/sorting tasks in terms of 
biomechanical quantities. These works showed interesting similarities and discrepancies between real and virtual 
results, enabling a cautious use of such setup for preventive ergonomics…of such tasks. It led us to the concept 
of biomechanical fidelity, that is extensively presented in the introduction of the corresponding chapter. 

COLLABORATIVE VIRTUAL ENVIRONMENTS FOR ERGONOMICS 

Second, we focused on collaborative virtual environments, enabling the joint work of 3 actors, that are an 
ergonomist, a design engineer and an end-user. We particularly focused on the interaction modes and metaphors 
that such setups may propose, and on their evaluation in terms of usability. 
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CHAPTER 2 

 

Efficient musculoskeletal simulation for 

ergonomics 

 

   

Motion analysis of a handling task with the CusToM toolbox 
Muller, A. et al. (2019). CusToM: a Matlab toolbox for musculoskeletal simulation. Journal of Open 

Source Software. 
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INTRODUCTION  

 

Developing efficient musculoskeletal simulation for ergonomics is a real need regarding the specificities of this 
activity. Indeed, preventive or corrective ergonomics in an industrial context are subject to constraints, having 
to be performed in a limited time and with limited means. At the same time, having an idea of forces exerted by 
the worker is mandatory to have a complete assessment of its work conditions. This observation militates for 
tools that can be accurate enough to provide reliable force information about the workers activity, fast enough 
to be deployed in a relatively short time and deployed with a minimum of experimental means. Several 
commercial or open-source musculoskeletal simulation solutions have been developed during the past years. 
The two most well-known software solutions are the AnyBody Modeling System [14] and OpenSim [15]. Such 
systems have found multiple applications in clinics, sports, rehabilitation as well as exoskeleton prototyping. 
Their use in physical risk factors assessement is still subject to questions, that I will now develop. 

The musculoskeletal analysis of a motion by inverse dynamics thanks to a musculoskeletal model exhibiting 𝑛𝑐 
degrees of freedom, 𝑛𝑏 bodies, and 𝑛𝑚 muscles can be summarized by the following scheme:  

 
Figure 2.1. Inverse dynamics analysis pipeline. 

Generally, the inputs are motion capture data coming from an optoelectronic system, in other words the 3D 

position against time of a set of markers 𝑿, and external forces data coming from force platforms, in other 

words 6D efforts (forces and moments) under each foot of the subject 𝑓𝑒𝑥𝑡. The first processing step (inverse 

kinematics) consists in computing the joint coordinates and its derivatives against time (𝒒, �̇�, �̈�). This is 
generally done by minimizing the distance between experimental and reconstructed markers placed on the 
kinematical model, that can be defined as an optimization problem [16], although alternative methods proved 
their value to compute the joint coordinates efficiently (Jacobian-based [9], Extended Kalman filters [17]). The 
second step consists in the inverse dynamics itself, generally solved thanks to an iterative approach like the 
Newton-Euler algorithm if the biomechanical model is an open structure, or global (Lagrange based) approaches 

for structures involving closed loops [18]. Therefore, it computes the joint torques 𝚪𝒔𝒊𝒎 from the external forces 

and the motion quantities in the joint space (𝒒, �̇�, �̈�). Finally, the muscle forces estimation is the step computing 
the muscle forces from the joint torques. Most musculoskeletal models exhibit actuation redundancy that leads 
to an infinite number of actuation solutions, as there are less equations (dynamics equations) than unknowns 
(muscle forces, given that muscles can only pull). The models may also exhibit under actuation, due to the fact 
that a single muscle can actuate several joints simultaneously, such as bi-articular muscles. These challenges can 
be solved by defining what is the optimal actuation solution, through the modelling of known motor control 
laws associated to a motion. Several models of motor control are actively studied and used in the fields of 
neuroscience, biomechanics, and robotics to generate muscle forces.  In inverse dynamics based musculoskeletal 
analyses, the force sharing problem – distributing the forces deployed by muscles to generate a given motion - 
is mostly solved thanks to optimization methods. In [19, 20] the force sharing problem is assumed to be an 
optimization problem, consisting in minimizing a criterion representing a central nervous system (CNS) strategy. 
The criterion represents a cost, e.g. metabolic energy, muscle fatigue or joint reaction forces. It is also 
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noteworthy that both inverse dynamics and muscle forces estimation must be solved simultaneously in the case 
of closed loop systems, since computing the joint torques for closed-loop is a non-sense. This is the way it is 
handled in AnyBody for example [14].  

The analysis pipeline applies inputs to a model that needs to be scaled to the subject to study. A classical whole-
body musculoskeletal model exhibits ~50 DoF, ~50 solids, and ~300 muscles that leads to ~5000 parameters 
to be known to fully scale it. At the geometrical level, the parameters are segment lengths, joint axes, joint 
locations and muscle paths. At the inertial level, the parameters are the body segments inertial parameters 
(masses, centers of masses locations, inertia matrices). At the muscle level, the parameters are the force 
generation parameters (optimal muscle fiber length, maximal isometric force…). Individual factors such as 
height, weight, or fat mass index are completing this model and may be used to scale it [21]. 
Classically, regression methods based on anthropometric data collections on cadavers have been used to scale 
both geometric and inertial parameters [22,23,24]. Muscle parameters have also been scaled thanks to 
anthropometric rules, as it has been done in [25] or presented in [26]. However, such methods do not enable to 
obtain accurate subject specific models. Three-dimensional scanning or magnetic resonance imaging 
measurements have also been used to calibrate precisely and individually geometric, inertial and muscle 
parameters [27,28,29], but these methods are expensive, long to post-process and can be invasive (radiations). 
Consequently, subject-specific scaling methods with lighter, less invasive and faster protocols have been 
developed. These methods mainly rely on equipments available in a motion analysis laboratory. 
Calibration of geometrical parameters (joint axes orientations, bone lengths, joint positions...) based on motion 
capture data has been proposed in several studies [30-33]. In most of these papers, the main idea consists in 
minimizing the reconstruction error between the model anatomical landmarks location and recorded 
experimental markers placed on the same landmarks among a given set of frames. Segments dimensions and 
joint centers of rotation are then extracted from the optimized data. Solutions [32,33] are the ones implemented 
in the AnyBody Modeling System, whereas solution [31] can be found in OpenSim. 
Non-invasive optimization methods have also been proposed to estimate personalized inertial parameters 
(center of mass location, mass, inertia...) in vivo. It requires using motion capture and external force 
measurements to obtain the optimal Body Segment Inertial Parameters (BSIP) that best fit the motion dynamics 
equations [34]. Different approaches were used to solve this problem. [35, 36,37] wrote the inverse dynamics to 
inertial parameters relationship under the form of a system of a linear equation and solve the corresponding 
problem in a least-square sense. This approach has also been applied to more affordable measurement systems 
[38]. Meanwhile, [39,40] focused on the 6 degrees of freedom (DoF) joint between the floating-base system and 
the global reference frame as a measure of the simulation accuracy. The optimization problem consisted in 
minimizing the generalized forces at this virtual joint that corresponds to the dynamic residuals. We can also 
cite [41] that estimated the inertial parameters by adjusting ellipsoid shapes on photographies and anatomical 
landmarks from motion capture data. The AnyBody modeling system does not have any inertial calibration 
(customized values are scaled from geometrical parameters and initial anthropometric values), whereas 
OpenSim uses a residual reduction algorithm (RRA) to modify masses and centres of mass position, by 
minimizing the residuals between external forces and acceleration data (a method close to the ones proposed in 
[39,40]).  
Finally, the most challenging calibration remains on the muscle aspect, since no direct measurement of muscle 
force generation parameters is possible and only a few non-invasive (strength based) techniques exist [42]. We 
will separate the muscular calibration in two steps. First, the geometrical calibration described above is also used 
to scale the relative origin, insertion and paths of the action lines of muscles. Next, the muscular calibration 
itself is calibrating the muscle force generation parameters (tendon slack length, isometric strength…). These 
techniques are based on the measurement of the maximal joint strength (i.e. the maximal torque developed by 
a given joint for a given angular position and velocity, thanks to an isokinetic ergometer) corresponding to 
isometric or isokinetic muscle efforts and trying optimizing muscle parameters to match these values. For 
example, [43] proposed a two-step optimization method based on isometric measurements, first solving the 
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force sharing problem among upper limb joints, and second fitting at best individual muscle torques by changing 
muscle parameters. [44] proposed a similar approach with the addition of isokinetic trials to enhance the 
calibration whereas [45] used isometric trials and EMG to scale muscles parameters of a hand MSM. [46] 
proposed an approach coupling EMG measurements and motion capture trials to calibrate the musculo-tendon 
parameters of the muscles crossing the elbow [45] has been applied with a low coupling with the AnyBody 
modelling system whereas OpenSim only exhibits a geometrical calibration. Force generation parameters are 
not scaled to the subject in this software. In a general way, there is no whole-body rule enabling a complete 
scaling from a set of measures for this layer of the MSM. 
 
Even if this short summary of what we call musculoskeletal simulation is appealing for ergonomics, there are 
still several limitations hampering its use, as we already presented it in the introduction of this manuscript: 

- First, computation times must be decreased in order to make these simulations easier to deploy and use 
daily. Optimization remains costly in terms of computation time, despite of several implementations 
and improvements in the last years. Mostly, the use of Sequential Quadratic Programming Methods 
(SQP) have deeply improved the computation times since the muscle forces estimation problem is well 
shaped for such an algorithm. However, in real-time simulations including muscle forces estimation, 
the result remains suboptimal. In the method proposed in [47], muscles were gathered by functional 
groups to reduce the problem complexity, that led to strong bias in the estimated forces. In the work 
of [48], the use of a neural network dedicated to quadratic optimization led to a real-time but sub-
optimal result, since computation time was limited to ensure real-time computation. Moreover, force-
length and force-velocity relationships were not considered in the muscle models in this paper. Last, 
these approaches are limited to a given musculoskeletal model and are not systematically applicable to 
any other model. Therefore, there is a need for alternative methods able to give in a limited amount of 
time similar results to classical methods and independent from the model to be analysed. This is one of 
the contributions I work on during the past twelve years, as it is presented in the following section. 

- Second, the calibration of MSM to subjects (scaled to subject models) may benefit for simplification in 
both acquisition and processing of the data, to bypass too invasive and costly methods  - imagery based 
methods. Even if alternatives methods circumvented these issues by using directly the motion and 
external forces data to scale the subject as mentioned above, there is a lack of validation of these 
methods. Since they indirectly calibrate the parameters with resulting values (motion, forces,…), they 
have a propensity to overfitting, meaning over-calibrating parameters to minimize an error that is 
caused by another issue. Moreover, their usefulness is questioning and may ask for sensitivity analyses 
to understand their importance in the accuracy of the results. The second topic of this chapter deals 
with these analyses and their impact on these methods. 

- Third, the data acquisition and processing should be simplified drastically to make it usable onsite. In 
an industrial context, there is no room for heavy and impacting protocols. The systematic use of 
optoelectronic motion capture data and force platforms for such analyses is particularly constraining. 
A few studies showed the potential application of inverse kinematics and inverse dynamics methods to 
alternative motion capture data, such as inertial measurements units (IMUs) [49-52] and Depth cameras 
[53] data. If IMUs data tend to be as accurate as motion capture, the scaling of the model is still very 
complicated with such a system since it provides no absolute measure of distance. Moreover, the 
application of classical inverse dynamics methods remains a complex procedure with such a data. Depth 
cameras showed a good potential to be used in ergonomics, however the input data is relatively poor 
and ask for simplified models to be deployed (ex: no wrist motion, no ankle motion) for inverse 
dynamics analyses. Finally, these analyses are very limited by the lack of external forces measurement. 
This data is mandatory to estimate internal forces and torques. A few studies proposed approaches to 
estimate these forces only from the whole motion of the subject, but there is still a need of improvement 
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to make them usable with any model and with multiple contacts. These issues are leading to the third 
topic of this chapter. 

- Last, to democratize the use of this tool for physical risk factors assessment, there is a necessity of 
simplification of the processing to make it usable by non-expert people. Currently, musculokeletal 
simulation still asks for expertise to be driven (typically: researchers of the domain), and tedious pre 
and post-processing actions. The definition of new models to be studied and coupled with original 
analysis protocols asks for complex developments in softwares like OpenSim or AnyBody. This issue 
is leading directly the contribution proposed in the fourth topic of this chapter. 

TOPIC 1: EFFICIENT MUSCLE FORCES ESTIMATION 

CONTEXT AND OBJECTIVE  

In relation to the first issue presented in the previous section, we focused on the development of muscle forces 
estimation methods that could run in -almost- real time, independently from the model to run and independently 
from the problem to solve. In other words, we proposed solutions able to replicate the results of an optimization 
method without solving it. The main assumption behind this kind of solution is that we can find from pre-
computed data an approximation of the optimal solution, since muscles are viscoelastic actuators that behave 
continuously against time (and therefore against motion quantities) due to their force-length and force-velocity 
relationships. The first occurrence of this idea was developed during my PhD thesis [54,55]. This first approach 
consisted in approximating the solution of a classical optimization thanks to a barycentric interpolation in the 

articular space (𝒒, �̇�, �̈�). First, it consisted in feeding a database with results of a classical optimization. For a 
set of reference motion capture and external forces data, we computed the following optimization: 

 

{
  
 

  
 

At each frame :

𝑚𝑖𝑛 𝑓(𝑭) = ∑ (
𝐹𝑖

𝐹𝑚𝑎𝑥𝑖
)
2

𝑛𝑚

Subject to: 

𝚪𝒔𝒊𝒎 − 𝑅𝑭 = 0
𝐹𝑖 − 𝐹𝑚𝑎𝑥𝑖 ≤ 0

                                (1) 

Where 𝑭 is the muscle forces vector - 𝑭𝒎𝒂𝒙 being the maximal muscle forces vector, 𝑓(𝑭) the cost function to 

minimize - representing the CNS behavior (here the squared sum of the normalized muscle forces), 𝚪𝒔𝒊𝒎 the 

joint torque vector and 𝑅  the moment arms matrix. The database was transformed through a Delaunay 

tessellation of the (𝒒, �̇�, �̈�) joint space. 

The interpolation step consisted, for a sample motion, to find at any frame the simplex containing the current 

(𝒒, �̇�, �̈�) state of the joint and to apply a barycentric interpolation to the current state inside this simplex to find 
an approximation of the muscle forces, as shown in figure 2.2. 
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Figure 2.2. Barycentric interpolation of muscle forces in the joint space. 

This approach has shown promising results, especially in terms of computation time and a real portability 
between subjects. However, there were large concerns about the extension of such a method to multibody 
models and multi-articular muscles, mostly due to the high degree of coupling existing between joints. Moreover, 
the method did not ensure the dynamical equilibrium of the interpolated forces, that led to unrealistic force 
sharing solutions with respect to the mechanics of the motion. 

This very first approach led us to the developments that are presented in the following section. This work has 
been particularly developed during the Ph.D of Antoine Muller, who I happily supervised with Georges Dumont 
between 2014 and 2017. 

THE MUSIC METHOD                

The limitations of the barycentric interpolation led us to develop the MusIC method, meaning Muscle forces 
Interpolation and Correction [56]. We based this approach on two main hypotheses: 

- the muscle forces problem can be first solved joint per joint and the inter-joint muscular coupling 
(multi-articular muscles) can be taken into account a posteriori;  

- the muscle forces can be corrected to respect the dynamic equilibrium.  

Therefore, the MusIC method is separated in two steps. The first one consists in computing a database 
describing the muscle forces sharing solution joint per joint. The second one consists in interpolating forces 
thanks to this database, mixing them to consider muscular coupling and finally correcting them to respect the 
dynamics of the motion. 

The database generation and structure are explained in figure 2.3. It consists, as in the first approach described 
in the previous section, in storing the muscle forces sharing solution joint per joint. The difference here is that 
there is no need of experimental data to compute the solution: the articular space is discretized, and a solution 
is found for all the configurations of a given joint by applying an arbitrary positive or negative joint torque to 
the joint. The solution for the given joint (primary) and the ones impacted by pluri-articular muscles crossing 
this joint (secondary) is obtained by solving the following equation:  
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At each frame :
𝑚𝑖𝑛 𝑓(�̃�)

Subject to: 

𝚪𝒔𝒊𝒎 − �̃��̃� = 0
𝐹𝑖 − 𝐹𝑚𝑎𝑥𝑖 ≤ 0

                                                        (2) 

Where ∼ refers to the joints (primary and secondary) affecting the moment arms of the joint associated to this 

sub-database and muscles actuating this joint. Thus, 𝑅 ̃is the sub-matrix of 𝑅 containing the rows associated to 

the referred joints and the columns associated to the referred muscles. �̃� is the sub-vector of 𝑭 containing the 

forces associated to the referred muscles.  𝚪𝒔𝒊𝒎 contains the torques applied in referred joints – 𝛤𝑠𝑖𝑚 for the 
joint associated to the sub-database and zero value for the others. A vector of normalized activations – activation 

ratio vector 𝜶 is then stored for the considered configuration. 𝑓 is the cost function the method will emulate.  

 

Figure 2.3. Database structure for activation ratios vectors 𝜶 for a given joint 𝑖. Activation ratios are normalized with the sum 
of the activations of the considered joint to make them independent from the joint torque.  

Once the database compiled, the method can be applied to sample motions. As shown in figure 2.4., the 
interpolation step consists, for a given frame, to find the closest configuration in each joint sub-database and to 

compute a set of muscle forces for the muscles crossing this joint, by multiplying the activation ratio vector 𝜶 
by the joint torque value relative to the moment arms of the muscles crossing the considered joint. This 
interpolation leads to multiple force values for pluri-articular muscles. Considering the joint torque to be 
generated joint per joint, a barycentric interpolation between these values is computed to obtain a single muscle 
force vector for all the muscles of the model at the considered frame. Finally, to ensure that the solution is 
physiologically realistic and respects the dynamics of the motion, a correction is computed. It consists in finding 
the closest solution to the interpolated forces of the previous step subject to the dynamic equilibrium and the 
physiological properties – muscles can only pull with maximal forces. An active set method using Karush-Kuhn-
Tucker (KKT) conditions is used to solve this problem. The gradients are analytically computed since the cost 
function is quadratic and constraint equations are linear. 
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Figure 2.4. Step 2 (Interpolation and Correction) pipeline. Muscle forces are deducted from joint coordinates 𝒒 and joint torques 

𝜞. A first estimation is interpolated from the database for each joint. These solutions are mixed into a unique solution by a 

barycentric interpolation using the torque associated to each joint. The correction step finds a solution 𝑭 close to the first estimation 
that respects the dynamic equilibrium and the physiological properties. 

The original paper did apply the method to a 2 dofs planar arm with 12 muscles ( 8 mono-articular and 3 bi-
articular) performing simulated pointing tasks using a minimum jerk pointing model (a total of 18207 motions), 
and 3 cost functions were tested (two  polynomial criteria and a min/max formulation). Results were particularly 
good, since the MusIC method found quasi optimal solutions in any case ten times faster than classical 
optimization. Results were particularly good with polynomial cost functions, whereas results of the min/max 
formulation was less well reproduced.  Figure 2.5. show sample results of the method mimicking cost functions 
for a given set of motions. The interpolated forces were shown to be close to the optimized ones. 

 

Figure 2.5. Sample results of the MusIC method mimicking various cost functions – 2nd order polynomial, 3rd order polynomial, 
min/max formulation respectively for 3 representative motions. Cost function values are less well reproduced for high level 
polynomials. 
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Globally, if this first validation was satisfying, several issues remained: first, if the method mimics satisfyingly 
classical cost functions, it does not guarantee that the results are valid regarding real activations or forces arising 
from a real motion. The MusIC method is just a shortcut to the classical force sharing problem encountered in 
any musculoskeletal simulation and asks for validation as any of those methods. Second, the model used here 
remained simple and asked for additional studies to be made on more complex – 3d – models. Third, the method 
was not tested with real data.  

Last, the MusIC method required an additional computation time corresponding to the database generation 
time – about one hour. This time may seem important and widely increase the global computation time. Indeed, 
the database is subject-specific, and therefore it is necessary to compute one per subject in a given study with a 
given model. The database density was not handled in the original paper, and we arbitrary choose to make it 
“dense” enough without consideration to the performance of the method. This issue was the most important 
to deal with, and this is what we made in the adjunct paper that we shortly present here [57]. 

Considering the database generation computation time as a central problem, we decided to explore the accuracy 
of the method with respect to the density of the sub-databases. We assumed that i) the muscle forces 
interpolation error was directly correlated to the moment arm estimation error in the database and ii) the 
densities with highest trade-off between accuracy and off-line computation time for a scaled (to a subject) model 
were the same as whose defined on a generic model. We defined the term generic model as a non-scaled model.  

Considering these two assumptions we developed a methodology assessing the accuracy of the method on real 
data and scaled models with respect to the accuracy of the moment arms deduced from the database 
discretization. Results of the study are summarized in the figure 2.6. 

 

Figure 2.6. A summary of the results obtained in [57]. One can see the similarity of the results between the accuracy of the 
interpolated moment arms in the databse (on the left) and the accuracy of the MusIC method (on the right). The model used in the 
middle was similar to the classical leg model of AnyBody. It is composed of 82 muscles and actuates 6 joints containing 12 dofs – 
3 for the hip, 1 for the knee and 2 for the ankle. This model uses a majority of poly-articular muscles and allowed the method to be 
tested with a significant muscular coupling.  

Considering the results on 10 subjects performing a standardized motion (activating all dofs successively), we 
found an interesting tradeoff between the database density and the MusIC method accuracy for a 82 muscles – 
12 dofs lower limbs model. Indeed, a density of (4,4) (meaning 4 values to discretize the joint space of the main 
joint of a given sub-database and 4 values to discretize the joint space of the adjoining joints – joints influencing 
the muscle forces sharing solution for the main joint) led to a database generation time of less than 10 minutes. 
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The result was particularly interesting since the online forces estimation was more than 30 times faster than the 
optimization method (Sequential Quadratic Programming algorithm).  

The second fundamental result hidden behind this is that the choice of the database density regarding the 
accuracy of the method can be made directly on a canonical model, without scaling it to any subject. This is a 
very interesting property of the method since when creating a new model, before applying it in a given study 
and a given subject (and therefore create the appropriate database), one can assess the moment arm 
discretization along the joint amplitude (left of figure 2.6.) in a very short time with a specific routine. 

CONCLUSION 

We made significant progress on the muscle forces estimation methods by defining a method able to mimic 
optimization results in a very short time, thanks to a database and an interpolation scheme. The method is fully 
implemented in our toolbox (CusToM, see Integrative Approach) and available to any user interested in it. The 
results of this work are very encouraging to enable live analysis sessions. Indeed, with this method, a final user 
or an expert can have a feedback about a motion that has just been captured in a very short time, at the 
kinematical, dynamical and muscle level. The method is still to be improved. One major limitation concerns the 
type of model that can be handled. The method cannot handle systems involving kinematical loops, since it asks 
for a precomputation of the torque at any joint to be applied. Extending it to closed loop systems would ask for 
strong adjustments in the method itself. A second flaw comes from the muscle model itself. In its current 
implementation, the MusIC method only consider the force-length relationship, that lead to only interpolate a 
solution from the joint angles. In the case that the method would be extended to force-velocity relationships, 
the interpolation should be made from angles and angular velocities, that complexify the search in the database. 
However, for a large set of applications, the method is usable as it is and may be enough to study the human at 
work for example. As future improvement, one can think about replacing the interpolation scheme by a  learning 
method, even if it asks the questions of the independency of the results regarding the subject. In such cases, a 
specific learning scheme would have to take into account both motion and model parameters to be efficient. 
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TOPIC 2: EFFICIENT SCALING 

CONTEXT AND OBJECTIVE  

As explained in the introduction of this section, the calibration of MSM to subjects (scaled to subject models) 
may benefit from motion based and external force-based methods. Even if some methods exist and may be 
used daily, as presented in introduction, they generally work as black boxes, meaning that they reduce a resulting 
error (kinematic error, dynamics residuals, torque production error) between experimental and model data, 
without checking if the parameter values they optimize make any sense.  

The very first example of that comes at the geometrical level, when one tries to optimize the geometrical 
parameters of a model. As explained in the introduction, the most classical solution consists in adjusting both 
geometrical parameters and joint coordinates by minimizing the distance between model and experimental 
markers on a set of frames. This can be expressed as an optimization problem: 

{
 
 

 
 

At each frame :

𝑚𝑖𝑛 𝑓(𝒑𝒂𝒓𝒂𝒎𝒔, 𝒒𝒊) = ∑ ∑ ‖𝑿𝒑(𝑡𝑖) − 𝑿𝒑𝒎
(𝒑𝒂𝒓𝒂𝒎𝒔, 𝒒𝒊)‖

2

𝑛𝑝𝑛𝑓

Subject to: 

𝒒
𝒋
𝒊 ∈  [ 𝑞

𝑗
𝑖𝑛𝑓, 𝑞

𝑗
𝑠𝑢𝑝]                       𝑗 = [1…𝑛𝑞]

                                                 (3) 

 

With 𝒑𝒂𝒓𝒂𝒎𝒔 a vector containing geometrical parameters (segment lengths, joint axes orientations, local 

marker coordinates) and 𝒒𝒊 the vector of joint coordinates at frame 𝑖, 𝑛𝑓 the number of frames selected for the 

optimization, and 𝑛𝑝 the number of markers on the model. 

This optimization can either be done by optimizing concomitantly [32,33] or successively [30,31] joint 
coordinates and geometrical parameters. Additional constraints (symmetry, distance to anthropometrics 
standards, proportional rules) can be added on geometrical parameters depending on their nature. 

The problem with this scheme is that the unique validation criterion is generally the kinematic error, i.e. the 
distance between model and experimental markers…that is also the quantity to be minimized by the 
optimization. The method is likely subject to overfitting, since this error is due to the misestimation of the 
geometrical parameters, but also to the experimental measure errors and the kinematical model simplifications. 
In other words, the minimization can find a set of irrelevant geometrical parameters that lead to an optimal 
error.  

This issue can be generalized to any layer of analysis, i.e. kinematical, dynamical and muscle. Moreover, scaling 
errors made at a given layer will also contaminate the other ones. Typically, inaccurate segment lengths will 
impact joint angles, that will impact joint torques and forces and therefore muscle forces estimation. At the 
same time, these segment lengths will also impact the musculotendon lengths and therefore change the intrinsic 
capacities of the muscle to generate forces in the model.  

This issue led us to the two following contributions. First, understanding how errors propagate from one layer 
to another in a musculoskeletal model calibration. Second, how we can represent force generation capacities of 
subject that fits the data but still have a biomechanical/physical sense, at the muscle layer, for validation 
purposes. Such force generation model can therefore be used for muscle calibration in MSM. 

The first study was performed within the thesis of Antoine Muller, whereas the second one was pursued during 
the post-doctoral fellowship of Diane Haering that was under my supervision with Georges Dumont, Nicolas 
Bideau and Guillaume Nicolas between 2015 and 2017. 
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KINEMATIC ERROR PROPAGATION IN DYNAMICS 

Non-invasive Body Segment Inertial Parameters (BSIP) calibration consists in using motion capture and external 
force measurements to reproduce the motion dynamics and find the best BSIP that fit with these equations [58]. 
As said before, the idea may be to reduce the dynamics residuals, i.e. the remaining quantities in the dynamical 
equilibrium of the biomechanical model. In their work, [59] stated that “the magnitude of the vector of residuals 
gives an idea of the accuracy of the simulation, including the kinematic data, the mechanical model and the 
ground reaction forces’ measurements”. Thus, errors associated to kinematic data and force platform 
measurements directly influence optimization results. This may cause overfitting and distort the BSIP estimates. 
Indeed, [23] defined overfitting as “asking too much from the available data. Given a certain number of 
observations in a data set, there is an upper limit to the complexity of the model that can be derived with any 
acceptable degree of uncertainty”. Therefore, the idea of the study presented here [60] was to investigate the 
propagation of the uncertainty from kinematics results and force plates measurements to dynamics results in a 
whole-body biomechanical model inverse dynamics method. We captured the movements of 10 participants 
performing a standardized motion to evaluate the following hypotheses: 

H1: regression methods compute acceptable body segment inertial parameters (BSIP) estimate for the inverse 
dynamics problem; 

H2: dynamic residuals can be used to achieve a subject-specific BSIP calibration without overfitting. 

The experimental data were used to drive a multibody human model scaled using a classical regression rule and 
dynamic residuals were computed and analyzed to investigate hypothesis H1. Then, a Monte Carlo-based 
method was applied to both kinematics and force plate measurements to determine the uncertainty due to these 
errors in the dynamic residuals. This approach allowed us to investigate hypothesis H2.   

   

Figure 2.7. Inverse dynamics pipeline used with reference (non-disturbed) data. The accuracy of the results is quantified by assessing 

two indicators: 𝝐𝒓𝒆
∗  (markers reconstruction error) and 𝝐𝒅𝒓

∗  (dynamics residuals indicator) 

Following a classical inverse dynamics analysis pipeline as presented in figure 2.7., we used recorded data as a 
reference to compute two indicators of accuracy, that were the reconstruction error 𝜖𝑟𝑒

∗  (distance between 
experimental and model markers averaged per frames and markers) and the dynamics residuals indicator 𝝐𝒅𝒓

∗  
(root-mean-square of the dynamics residuals vector throughout the motion and normalized to the subject 
mass and size). The model used here was a whole-body model composed of 16 rigid segments linked by 15 
joints and exhibits 35 degrees of freedom. Geometrical parameters were scaled thanks to the method 
described in introduction and BSIP were derived from [24]. 
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Figure 2.8. Inverse dynamics pipeline used with perturbed motion data. Dynamics residuals indicator is used to assess the 
amount of uncertainty on dynamics residuals brought by the motion uncertainty. 

Thus, a database of perturbed motion data was computed from the reference one to feed the inverse dynamics 

pipeline (see figure 2.8). The dispersion of the dynamics residual indicators due to motion uncertainty ∆𝝐𝒅𝒓
𝒓𝒆  

and the dispersion of the dynamics residual indicators due to ground reaction forces uncertainty ∆𝝐𝒅𝒓
𝒑𝒆

 were 

then assessed to understand how motion and forces uncertainties affected the dynamical quantities. 

 

Figure 2.9. Reference dynamic residuals indicators and global uncertainties in the dynamic residuals indicators for each component. 
Each graph represents the results with one subject. 

The analysis of the results led us to several conclusions that are of interest. First, we found that the geometrically 
scaled whole body model with BSIP obtained by regression led to force dynamics residuals of 2 ± 0.6 % and 
torque dynamics residuals of 1.3 ± 0.7 % . These orders of magnitude were similar to [37] after a subject specific 
BSIP calibration. This result seemed to support H1, meaning that the regression-based BSIP evaluation was an 
acceptable estimate to calibrate the model. Since volunteers were regular people (healthy, no high-level athletes, 
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neither underweight nor obese: Body Mass Index within (18.5,30) range), the anthropometric data of [24] 
seemed close enough to subject-specific parameters.  

Second, the dispersion due to motion uncertainty was proportional to the reconstruction error. This observation 
was fundamental since it allowed us to consider the uncertainty on dynamics residuals at an additional 100% of 
the reconstruction error to be equal to the one introduced by this error in the reference dynamics residuals. 
Considering this value, we also observed that the uncertainty due to the motion data was 5 orders of magnitude 
higher than the uncertainty due to ground reaction forces. Finally, comparing this uncertainty with the dynamics 
residuals of the reference data, as shown in figure 2.9., the uncertainties in the dynamic residuals are higher than 
the reference dynamic residuals, except for the vertical moment component (z-axis).  

This final observation is fully rejecting H2 as a valid assumption. Indeed, the residuals are here widely explained 
by the reconstruction error and minimizing them to achieve a BSIP calibration would lead to erroneous results 
– overfitting issues. Therefore, considering the experimental protocol and the multibody model used, hypothesis 
H2 is refuted.  

Even if motion uncertainty can be reduced in many ways (improving the kinematical model [61,62], taking into 
account STA reduction models [63,64], alternative inverse kinematics methods [17,59], using global inverse 
dynamics methods instead of iterative ones [65], better choosing data input [66]), this result is of importance 
since it illustrates one of the most fundamental issues asked by motion analysis and musculoskeletal simulation 
in general: calibration methods tend to overfit by adjusting parameters that are only partially responsible of the 
error to minimize. In this particular case, our final recommendation was i) to adjust BSIP only when it is really 
necessary (unconventional morphologies, amputees …) ii) to add information to drive the BSIP adjustments – 
meaning that it is necessary to constrain the optimization problem with symmetries or proportional rules for 
example [67]. 

STRENGTH PROFILES: MODELING AND APPLIED ASPECTS 

Joint strength models [68,69,70] are valuable representations of the torque generation capacities of a human, 
useful in direct assessment as well as in musculoskeletal modeling and analyses of human body, especially to 
characterize its strengths capacities with regard to a specified posture or task [71]. These models assume that 
muscles are viscoelastic actuators [72,73,74], resulting at the joint level in Joint Torque-Angle and Torque-
Velocity Relationships (JTAR and JTVR respectively, and their coupling JTAVR). The interest of such models 
to scale the muscle layer of musculoskeletal models lies in the fact that from a limited set of experimental data, 
the muscle capacities can be extrapolated to the whole range of motion of a given joint and therefore scaled on 
this whole range [9]. A direct in-vivo estimation of the parameters of the muscle layer remains an issue, since it 
requires cadaveric, invasive or expensive measurements. Joint strength models are therefore useful to get these 
values indirectly.  

Fitting such JTAVR envelopes to specific subject data while keeping their physiological meaning remains an 
issue. Basically, the data to fit consists in isometric and isokinetic measurements of joint torques in different 
angle and angular velocity conditions. No consensus exists on JTAR models: many models were proposed 
(cosine, quadratic, among others). Meanwhile, JTVR is mostly represented with hyperbolic functions [75,76], 
although it might not cover all the joint velocity range [77]. Logistic models also prove to be efficient in 
prediction of the torque values for extrapolated data [8]. However, such model loose most of its interest since 
it does not give any physiologically relevant information. For example, maximal strength and muscle 
compositions are useful in ergonomics [79,80].  We were therefore interested in finding relevant JTAVR models 
able to provide the torque generation capacities of a given joint on the whole range of motion for scaling 
purposes with physiologically relevant parameters. We ran an experimental protocol with 22 healthy subjects 
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(33±6 years; 1.81±0.07 m; 78±9 kg). These subjects performed elbow isometric and isokinetic trials on a Con-
Trex MJ® isokinetic dynamometer (CMV AG, Dübendorf, Switzerland, see figure 2.10.). Isometric trials 
consisted voluntary contractions hold for 5 seconds in flexion or extension at angles evenly spaced throughout 
the range of motion of the subjects. Isokinetic trials consisted in concentric-passive cycles at 60°.s-1, 120°.s-1 
and 180°.s-1 in flexion and extension. 

 

Figure 2.10 Experimental set up. The participant is seated and attached to the ConTrex dynamometer in upright position with 
the arm along his side. The axis of the dynamometer is aligned with the epicondylitis axis with the elbow flexed at 90°. 

 

Figure 2.11. Anderson-based (A) and power-based JTVR models. Both models induce continuity and derivative constraints 
preserving the shape of the curve along the velocity range. 
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We fitted 5 JTAR and 2 JTVR to this data. The JTAR were issued from the literature (Normal [74,81], Quadratic 
[82,70], Cosinus [83], Cubic [84] and Sinus-exponential [75] model). The JTVR were the one based on the work 
of Anderson (a cosinus based model with an additional parameter [70]) and a new one, supposed to be more 
physiologically relevant, based on the maximal power velocity definition. We wanted to test the capacity of such 
a model to correctly fit the data and provide meaningful physiological information. Without considering 
specifically the equations behind these models, the parameters they introduced were the following: 

Table 1 JTAR physiological parameters 

Table 2  JTVR physiological parameters. 

Results of the study had to be considered from data fitting and interpretation points of views. Concerning data 
fitting, the most relevant JTAR model for the elbow strength representation seemed to be the quadratic one. 
This result is logical since the maximal strength of the elbow is approximately obtained at half of the flexion 
range. Therefore, a symmetrical model such as the quadratic one has more chances to be efficient in this case. 
Associated to this JTAR model, both JTVR models fit the data with a similar level of performance.  

Parameters Limits 

𝛤𝑚𝑎𝑥 Max. isometric torque 0.75 𝛤m𝑒𝑎𝑠 1.25 𝛤𝑚𝑒𝑎𝑠 

𝑅𝑜𝑀 Max. isometric range of motion 0  𝜋 

𝛼0 Isometric optimal angle 𝜋 6⁄  5𝜋 6⁄  

Model Parameters Limits 

Anderson-based 
torque-velocity model 

𝑃1 𝜔𝜞.75 Velocity at 75% of maximal isometric torque 0 𝜋 

𝑃2 𝜔𝜞.5 𝜔𝜞.75⁄  Ratio between velocities at 50% and 75% of maximal 
isometric torque 

1.9 2.1 

𝑃3 𝐸 Eccentric to concentric torque index . 1 .8 

Power-based torque-
velocity model 

𝑃1 𝜔𝑚𝑎𝑥 Max. concentric velocity 𝜋 3⁄  5𝜋 

𝑃2 𝜔𝑷𝑚𝑎𝑥 Velocity at maximal power 0.25 0.4 

𝑃3 𝜔𝑚𝑖𝑛 𝜔𝑚𝑎𝑥⁄  Max. eccentric to concentric velocity ratio −1 −0.1 

𝑃4 𝛤𝐸𝐶𝐶 𝛤𝐶𝑂𝑁⁄  Max. eccentric to concentric torque ratio 1.1 1.8 
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In terms of physiological relevance of the parameters, JTAR parameters obtained with the quadratic model were 
all in range that the literature confirms. For example, the Γ𝑚𝑎𝑥 value remained in a range of 63 N.m to 69 N.m 
and the flexion/extension ratio from 0.95 to 0.97, that is consistent with the literature [73,85,86]. The resulting 
ranges of motion  𝑅𝑜𝑀  were larger than the anatomical reference [87], however it was the case for all the JTAR 
models, since the strength model goes beyond the real elbow range of motion, limited by the osteo-articular 

structure. Finally, the isometric optimal angle 𝛼0 of 77° in flexion and 72° in extension for the quadratic model 
were close to observed average angles [88,89].  Therefore, all these parameters were correctly predicted by the 
model from the data and are meaningful for analysis. 

Regarding JTVR models, we first focused on the concentric velocity at maximal power, 𝜔𝑃𝑚𝑎𝑥 . Due to its 

relationship with muscle composition [87], linking mechanical and physiological muscle functions, the 
implementation of this parameter in  the power-based model seemed relevant for sports, rehabilitation or 

ergonomics applications [90]. Optimized 𝜔𝑃𝑚𝑎𝑥 values, between 404°.s-1, and 561°.s-1, were about two times 

larger than 𝜔𝑃𝑚𝑎𝑥  values measured on isokinetic dynamometer for thigh muscles [91]. For further work, a 

combination of 𝜔𝑃𝑚𝑎𝑥 measurements with Hill-model correction and electromyography should be investigated.  

As a conclusion, the power-based JTVR model seemed relevant to fit the data and propose physiologically 
relevant parameters to associated to a given subject. These results can be really interesting for ergonomics, since 
it can give an overview of the force capacities of a subject, in a similar manner as the Force Feasible Set for 
example [71]. 

CONCLUSION 

The scaling of the musculoskeletal models is a major concern for musculoskeletal simulation, and we see a large 
turn of the research community to the imagery methods. However, such methods may be relevant for clinical 
applications, not for industrial/ergonomics ones, due to the availability of the equipment and data processing 
steps. Therefore, there are still a lot of room to propose alternative (motion or force based) calibration or scaling 
methods, offering a satisfying tradeoff between accuracy and usability. We exposed in this section several works 
about scaling of musculoskeletal models, from motion and external forces measurements. Obviously, this work 
is far from being exhaustive, dependent from the body parts to be studied, the data to be collected and many 
other issues. Multiple enhancements and research questions are still to be solved. Particularly, overfitting issues 
are still prevalent in minimization-based methods and most of these developments must be challenged with 
reference data. For example, geometrical parameters of a musculoskeletal model must be compared to image-
based measures to be validated, additionally to any validation of the kinematics. This is some of the issues 
currently pursued within the thesis of Pierre Puchaud that I currently supervise as a director with Nicolas Bideau 
and Georges Dumont.   

Considering joint torques envelopes, a few considerations may offer relevant research perspectives. First, how 
we can use them efficiently in musculoskeletal modeling? Even if envelopes are valuable representations of 
muscle capacities at a given time, the link to the muscle force generation capacities is leading to an indeterminate 
problem (one torque for multiple muscles forces relationships composed of multiple parameters).  Second, we 
know that these envelopes evolve with internal (e.g. fatigue [91]) and external (e.g. cold [92]) factors. Therefore, 
assessing these envelopes evolution with regard to these factors may be relevant to take into account work 
conditions more accurately.  
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TOPIC 3: MUSCULOSKELETAL SIMULATION IN INDUSTRIAL CONDITIONS   

CONTEXT AND OBJECTIVE  

Motion analysis, even more musculoskeletal simulation, is often limited to lab conditions, since it asks for 
accurate and exhaustive data to be efficient. Indeed, as explained in introduction of this section, most of the 
works dealing with musculoskeletal analyses rely on optoelectronic motion capture data completed with ground 
reaction forces measurements through force platforms. These conditions are clearly restrictive and hamper the 
democratization of such methods for day-by-day analyses in “natural” or occluded environments. Moreover, 
the use of force platforms limits the area of investigation to the area of contact and prevent the use of inverse 
dynamics methods when other segments are in contact (hands for example). 

Following the goal to democratize the use of musculoskeletal analysis tools for ergonomics, we explored 
methods to be used in occluded environments with a very limited setup, corresponding to the first study 
presented in this section. We also proposed methods enabling an estimation of external forces applied to a 
subject without any direct measure of these forces, enabling motion analysis in large fields without any force 
platform or sensor. It corresponds to the second study developed in this section. 

The first study was performed as a collaboration between two PhD students during their thesis, Pierre Plantard, 
supervised by Franck Multon, and Antoine Muller that has already been presented. It consisted in proposing an 
inverse dynamics pipeline based on Kinect data for occluded environment. The second study was a post-
doctoral work of Antoine Muller under my supervision and the one from Georges Dumont. It consisted in a 
motion-based external force prediction method for hands and feet validated on lifting tasks. 

USING KINECT DATA IN INVERSE DYNAMICS FOR ERGONOMICS 

In this work, our purpose was to assess the feasibility of an inverse dynamics analysis based on Kinect data in 
an occluded -close to ecological conditions – environment. For this purpose, we applied some of the 
developments on inverse dynamics realized by Antoine Muller with data collected and processed thanks to the 
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method developed by Pierre Plantard during his PhD thesis. Indeed, Pierre developed a Kinect real-time 
processing method able to increase the reliability of the postural data classically obtained by a Kinect. Such a 
depth camera is known to encounter severe issues in occluded environments, when the body is partially seen by 
the camera. In such a case, the occluded members positions tend to be badly estimated. Thanks to the use of a 
filtered pose graph and a postural database, the method assesses the reliability of each segment of the postural 
position evaluated by the Kinect and use the most reliable ones to reconstruct from previous events and the 
database a better postural candidate. The method has shown its efficiency with several publications [93,94]. 

 

Figure 2.12. Overview of the two pipelines allowing the joint torque comparisons, using both Kinect data (in green) and reference 
Vicon data (in blue). Joint torque estimation was divided in three steps: 1) Handling of occlusions; 2) inverse kinematic computation 
and 3) inverse dynamics computation. 

To evaluate dynamics quantities computed from Kinect data we developed a framework providing joint torques 
for a whole-body model with classical optoelectronic data, and for an upper limb model with Kinect data, as 
shown in figure 2.12.  

The difference between the input data provided by each motion capture system required to process dynamic 
estimation separately.  Classical motion capture was processed  by reconstructing occluded trajectories and low-
pass filtering (5Hz). A classical inverse kinematics method [16] was applied on a whole-body model with 35 
degrees of freedom, as shown in figure 2.13. (left). Kinect data was corrected with the method proposed by [93] 
as explained above. Thus, using the model presented on the right of the figure 2.13., the different segment 
frames were computed thanks to the experimental positions of joint provided by the correction method. From 
kinematics of the biomechanical model, the joint coordinates were identified in agreement with the ISB 
recommendations [95]. Since the hand position obtained with the Kinect was uncertain, the wrist was considered 
as fixed. The pronation and supination of the forearm were not considered by the arm joint position, so the 
elbow joint was modeled as a revolute joint. The limb lengths were identified from the raw data processing 
method. BSIP were estimated with the regression method proposed by [24]. 

For both methods, the joint torques were obtained from joint positions, velocities and accelerations using a 
recursive Newton-Euler algorithm [18].  
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Figure 2.13.  (Left) Kinematics of biomechanical model and model markers position for the reference inverse dynamic pipeline. A 
virtual 6 degrees of freedom (DoF) joint connects the pelvis to the global reference frame to convert a floating-base system into an 
equivalent fixed based system. (Right) Kinematics of biomechanical model for the Kinect inverse dynamic pipeline. 

To generate comparison data between both methods, we simulated a handling task with severe occlusion 
conditions.  12 male participants (age: 30.1 ± 7.0 years, height: 1.75 ± 0.046 m, mass: 62 ± 2.7 kg) were 
volunteers to participate in this study. 

The subjects had to perform Getting and Putting tasks, with an empty cardboard box, as depicted in the right 
part of figure 2.14. In this protocol, we have chosen an empty cardboard box to have a minimum weight 
manipulated by the subject (200 g), leading to negligible external forces but introducing occlusions. The Getting 
task consisted of a carrying box motion from initial position to the front of the hips. The Putting task involved 
replacing the box to the starting position. The initial position of the box was set at two possible locations to 
generate motion variability, represented by P1 and P2 on the figure 2.14. (right). 

The manipulated box was supposed to generate occlusions according to its placement in relation to the position 
of the Kinect. We tested different scenarios with and without the box, and various positions of the Kinect to 
analyze the impact of different types of occlusions: 

- NB: without box condition. The subject had to mimic the manipulating motion without using a box, 
leading to a situation without occlusion. Under this condition, subjects were simply asked to reach the 
position with their hands where the box would normally be. The Kinect was placed in front of the 
subjects, as recommended by Microsoft. This scenario allowed us to test the robustness of the Kinect 
in optimal conditions. 

- B: with box. The manipulation was realized with the box, leading to occlusions of body parts, as in real 
work conditions. The Kinect camera was again placed in front of the subject, as recommended by 
Microsoft. 

- B45: with box and camera placement 45° to the right. The only difference with condition B was that 
the Kinect was placed 45° on the right of the subject. This type of non-recommended Kinect placement 
generally occurs in cluttered environments. Under this condition, the risk of occlusions was greater 
than in all previous conditions. 
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Figure 2.14. Experimental set-up with two placements (P1: object on the left or P2: front-left), with two Kinect positions (NBF 
and BF: in front or B45: 45° left). 

Joint angles 𝜽
𝒓𝒆𝒇

and 𝜽𝒌𝒊𝒏 and torques 𝝉
𝒓𝒆𝒇

and 𝝉𝒌𝒊𝒏 were computed from both data sources following the 

method described above. After a validation of what was considered as the reference data (𝜽
𝒓𝒆𝒇

, 𝝉
𝒓𝒆𝒇

) by 

analyzing the dynamics residuals during the task (see previous focus about uncertainty propagation), joint angle 

trajectories and joint torques trajectories among 𝑌𝑋𝑌 shoulder axis and the 𝑍 elbow axis were compared by 
computing the cross-correlation between signals. Additionally, an intra-class correlation (ICC) was computed 
between maximal torques obtained by each method for each task to assess the consistency of this value. Finally, 
RMSE and nRMSE during dynamic phases of the task were computed to complete the quantitative comparison 
of both methods. 

Results can be summarized as follows. First, joint angles were highly correlated, the lowest correlation result 
being about 0.65 in the most occluded condition (Box in front position P2 and Kinect in front position B) for 

the 𝑌2 axis. Second, joint torques were also highly correlated (mean 𝑟 = 0.77 for all conditions and all joints), 

excepted for the 𝑌1 (orientation of the left shoulder elevation plane) shoulder axis (0.26 to 0.5 depending on the 
conditions). Maximal joint torques per task were highly correlated between both methods (0.98, 0.98, 0.99, 0.99 

along the 𝑌1 , 𝑋 and 𝑌2 shoulder axis, and along the Z elbow axis respectively). RMSE and nRMSE results 
showed significant differences between both methods for all the joints, with an error of approx. 29.5% in mean 
for all the axes. 

From these results, several observations can be made: first, cross-correlation and intra-class correlation (ICC) 
showed that torques estimated with the Kinect on the considered joints were consistent with the reference. ICC 
results were particularly high, leading to the conclusion that the method using Kinect data was able to 
discriminate properly two different work situations in terms of torque level. nRMSE may show that the system 
estimated quite poorly the absolute values of the joint torques. However, ICC proved that such a method may 
be used to assess the torque of a given task and compare it to another task. This result is really encouraging 
since it indicates that a Kinect placed in an industrial environment may be usable to assess internal forces arising 
from a given task.  



45 
 

 

 

Obviously, these results are still to be confirmed on a larger cohort and with more discriminative work situations. 
Several other limitations must be mentioned: first, the kinematic model used with the Kinect data is still quite 
poor, being unable to capture small details such as hand motions that can be of high interest in WMSD 
prevention. Second, the 30 Hz acquisition frequency of the Kinect is limiting the estimation of dynamic 
quantities to relatively slow motions. Last, the current study did not consider any external forces measurement 
since the box was supposed to apply a negligible load on the subject. 

This last issue is fundamental for more strenuous tasks that are generally encountered in the industry, such as 
handling tasks. Therefore, we developed the method proposed in the following contribution, dealing with 
external forces prediction from motion data only. 

PREDICTING EXTERNAL FORCES FROM MOTION DATA 

Following the idea to enable an easier and more applicative use of motion analysis, especially musculoskeletal 
analysis, one of the fundamental issues is the restriction of the field of analysis to the force measurement surfaces 
being in contact with the subject. Therefore, there is a need of methods able to estimate dynamical quantities 
(joint torques, muscle forces) without this restriction. This is particularly true for onsite ergonomics studies, in 
which no instrumentation of contacts can be realized, but also in sports sciences for ecological situations to be 
studied. 

Several methods proved their efficiency to predict from motion only the external forces equilibrating the body 
in dynamics terms (machine learning methods [96], analytical methods [97,98], and optimization methods based 
on contact points [99,100]). However, none of these methods was applied to other contact surfaces than feet. 
Therefore, there was a need of a method able to predict both contact forces and moments at the feet and the 
hands. This is obviously useful for ergonomics, especially for handling and carrying tasks that are very common 
in the industrial context. The study presented here deals with this issue, proposing a methodology able to predict 
contact forces and moments at hands and feet for asymmetric lifting tasks [101]. 

To this end, we developed an experimental protocol consisting in the lifting and carrying of an instrumented 
box, enabling the record of 13 subjects (age: 27±7 years old, height: 177±4cm, mass:  73±15 kg) that participated 
in this study. We considered a cycle as a set of three elementary movements from one location to one other as 
depicted in figure 2.15. The load to carry was a custom load box of 6.9 kg with two handles. One of the handles 
was equipped with a 6-dof force sensor (AMTI MC3A). Motion of subjects was captured thanks to a VICON 
system sampled at 200 Hz. The marker set was a whole-body marker set inspired from the ISB 
recommendations. Two force platforms (AMTI, sampled at 1000Hz) were used to measure the feet contact 
forces separately. Motion of the load box was also captured for evaluation purposes with 9 markers.  

The prediction method consisted in the application of 3 successive steps to the data. 

First, a grip/deposit event detection was applied to the data. This step was mandatory to know when the box 
was carried or not by the subject. It consisted of a neural network trained to detect the most probable instants 
for grip deposit events. The neural network was trained with 5 descriptors based on the markers placed on both 
hands (distance between the markers, velocity and acceleration magnitudes of each marker). During the learning 
phase, a video recording was used to manually detect the grip and deposit events. A normal distribution centered 
on the identified grip and deposit events was applied as the probability to have such an event during this time 
window. Using this trained neural network, the probability to detect a grip or deposit event was evaluated for 
every subject and every trial at any instant. The method was validated thanks to a leave-one-out validation 
method. 



46 
 

 

 

 

    

Figure 2.15. (Left) Experimental setup. The numbers represent the zones where the subject must deposit the box. (Right) Hand 

and Foot contact points definition for the prediction method.  

Second, a reconstruction of the load motion was computed to apply rigid bodies dynamics laws on it. To be 
close from ecological conditions, it was necessary to be able to reconstruct the load motion without any marker 
placed on it. Markers placed on the load were used to validate this method. The load motion was approximated 
from the motion of the markers placed on both right and left hands. It was assumed that the load did not rotate 
around the axis defined by both grasping points (handles). 

Last, using the two first steps result and the subject motion capture data, the prediction method was applied to 
a whole-body biomechanical model composed of 18 rigid segments linked by 17 joints corresponding to 41 
degrees of freedom, to compute the external efforts applied on the feet (GRF&M) and external efforts applied 
on the hands (LCF&M). The geometrical parameters were calibrated to the subject, and body segment inertial 
parameters (BSIP) were computed from [24]. A set of contact points was defined to map the contact areas 
[99,100] as shown in figure 2.15. 

The prediction problem formulation depended on the considered phases of the cycle: we distinguished phases 
without load carriage from those with load carriage. 

The prediction problem without load carriage can be summarized as follows: 

min
𝐹
∑ ‖𝑭𝒊‖

22𝑁𝑓
𝑖=1

𝑠. 𝑡.                𝑴𝒔(𝒒)�̈� + 𝑪𝒔(𝒒, �̇�) + 𝑮𝒔(𝒒) + 𝝀𝒔 + 𝑬𝒔 = 𝟎 

∀𝑖 ∈ ⟦1,2𝑁𝑓⟧, 𝑭𝒊 < 𝑭𝒊
𝒎𝒂𝒙

               (4) 

Where, by isolating the biomechanical model, 𝑴𝒔(𝒒) is the inertia matrix, 𝑪𝒔(𝒒, �̇�) is the centrifugal and 

Coriolis force vector, 𝑮𝒔(𝒒) is the gravity force vector, 𝝀𝒔 is the generalized internal force vector, 𝑬𝒔 is the 

generalized external force vector and 𝑭𝒊
𝒎𝒂𝒙is the vector containing the maximal forces available for the contact 

point 𝑖. This problem was solved at each frame using an SQP algorithm.  

When the load was carried, the equations of motion of the load were added to the constraint of the minimization 
problem: 
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min
𝐹
∑ ‖𝑭𝒊‖

22𝑁𝑓
𝑖=1

𝑠. 𝑡.                𝑴𝒔(𝒒)�̈� + 𝑪𝒔(𝒒, �̇�) + 𝑮𝒔(𝒒) + 𝝀𝒔 + 𝑬𝒔 = 𝟎 

          𝑴𝒍(𝒒)�̈� + 𝑪𝒍(𝒒, �̇�) + 𝑮𝒍(𝒒) + 𝑬𝒍 = 𝟎

∀𝑖 ∈ ⟦1,2𝑁𝑓⟧, 𝑭𝒊 < 𝑭𝒊
𝒎𝒂𝒙

               (5) 

Where, by isolating the load, 𝑴𝒍(𝒒)is the inertia matrix, 𝑪𝒍(𝒒, �̇�) is the centrifugal and Coriolis force vector, 

𝑮𝒍(𝒒) is the gravity force vector and 𝑬𝒍 is the generalized external force vector. The external efforts vector 

𝑬𝒔 contained the external forces applied on the feet and the external efforts vector 𝑬𝒍 contained the external 
forces applied on the hands.  

For both methods, at each frame, we ensured that each active contact point was sufficiently close to the floor 
and almost without motion [99,100]. The distance and velocity thresholds were respectively 0.02m and 0.8m/s. 
When a contact point was respecting the thresholds, the associated force was limited to 0.4BW (Body Weight) 
and had to respect the Coulomb’s law of friction. A friction coefficient of 0.5 was used here [99,102]. The results 
of the method were evaluated at 3 different levels: first, the grip/deposit event prediction was validated with a 
leave-one-out cross validation. Second, the predicted GRF&M were compared to those measured by the force 
platforms, and the LCF on the right hand were compared to those measured by the force sensor mounted in 
the handle (RMSE and relative RMSE were computed for all of these forces). Last, the L5/S1 joint moments 
were computed with predicted and measured data and compared. This last validation seemed relevant since 
L5/S1 joint moments are a consistent measure of back loading for handling tasks [103]. 

The grip/deposit event prediction gave satisfactory results since on the whole number of events to predict (312), 
8 only were found to be outside the uncertainty areas, with a very low error on these “badly” predicted events. 
The chosen descriptors of the grip and deposit moments were then satisfactory and the method seemed relevant 
and robust to  get  the  current  state  of  the  task  (carrying the load or not). 

Figure 2.16. depicts a classical contact and ground reaction forces prediction on a sample trial. These 
representative results show that the relative error was the lowest on the vertical GRF which corresponds to the 
weight component. The results in the carrying phase (between the two orange areas) seemed not to be affected 
by the contact efforts on the hands. The most important errors were observed on the medio-lateral forces. 
Indeed, the subject probably generated some forces in this direction to improve his stability. Since the method 
is based on a minimization, it cannot predict forces that are not directly responsible of the motion. This trend 
is also visible on hands where the subject applied traction or compression forces to better grip the load. In the 
same manner, these forces were impossible to predict without additional sensors. Moreover, during uncertainty 
phases, the subject had indirectly a contact with the ground or the table where the load was placed. This contact 
was not considered in the proposed method, generating prediction errors. 

The global RMSE for the vertical forces was 17.9N and 20.3N for each foot, corresponding to 0.24N/kg and 
0.28N/kg. These errors were lower than those presented in the literature for walking motions, whatever the 
prediction method: empirical functions [98] (0.90N/kg), machine learning [96] (0.73N/kg) or a contact model 
[100] (between 0.52N/kg and 0.91N/kg).  

The RMSE for the antero-posterior axis was below 0.10N/kg since the efforts values were very low due to the 
performed tasks. The medio-lateral forces component obtained the most important errors (0.37N/kg and 
0.45N/kg for each foot corresponding to 34.8% and 40.7%) which confirms the observations previously made 
on figure 2.16. Also, the GRM were in the same order of magnitude as those reported previously [100]. 
Considering all these results for the phases with no load, one can conclude that the method presented here 
reproduced similar results as in the literature in similar cases. 
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Figure 2.16. - Representative example of predicted and measured GRF&M and LCF for a grip/deposit cycle. The blue curve 
corresponds to the measured data, the red one corresponds to the predicted data. The orange areas represent the uncertainty phases 
(identified with the video). Inside these areas, the subject was in contact with the load but without completely carrying it. 

The RMSE error on the L5/S1 joint moments estimation were 18.7±11Nm, 10.6±7.8 Nm and 12.6±9.6Nm 
on sagittal, frontal and transverse axis, respectively. The associated rRMSE are 9.9±5.8%, 8.9±6.5% and 
37±36%. Compared to uncertainties reported in the literature studying handling tasks by inverse dynamics 
approaches [99,100,101]. These values are of the same order of magnitude. Moreover, for the sagittal axis, the 
relative error was lower than 10%. This axis contains the most important moment values and is the most studied 
in handling tasks assessment in the literature.  

Therefore, even if several limits can be reported on the design of the method (arbitrary parameters/thresholds 
in the method, anthropometrics-based BSIP, contact points design), it estimated the GRF&M and the LCF 
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during asymmetric handling tasks with a small margin of error, and with the subject motion as a unique source 
of experimental data. This estimation could be used to compute kinetics variables as back loading with an 
acceptable error. Next improvements should first be to use out-of-the-lab motion capture devices (Depth 
cameras, IMUs…) to unleash the restriction on the optoelectronic data, and the development of a more robust 
grip/deposit event detection. Indeed, this last limitation is of importance since in the current study, the handling 
of the load was particularly constrained by the handles. In classical handling/carrying tasks, subjects exhibit 
much more variability in their grip/deposit strategies, that is a challenging issue to automatically detect these 
events. In conclusion, thanks to this method, inverse dynamics studies are not limited anymore to motions 
where the body is in contact with force sensors to estimate the external forces. It may be extremely useful in 
work tasks assessment or sport gesture analyses, opening a wide range of applications. It indicates that we can 
develop and analyze more complex experimental protocols with a higher level of generalizability to real tasks in 
a motion analysis lab.  

This work has recently been extended successfully to a large cohort of subject handling boxes on a large force 
platform [107], and we also applied it to an experimental dataset of fencing lunges, showing its limits for 
static/quasi-static tasks and its strength for dynamic ones [108]. Results showed that there was some unexpected 
solutions that are loading inefficiently the joints of the model. It militates to an extension of the method to 
minimize at the same time the internal forces, to enforce a more physiologically plausible solution. 

CONCLUSION 

These two contributions showed enthusiastic results for the development of onsite, real time analyses of motion 
as a decision support for ergonomists. Obviously, these are parts of a more complex puzzle, since one may 
think that coupling both studies may lead to an optimal setup for onsite analysis. However, coupling a Kinect 
with a force prediction method raises additional challenges to be solved. For example, the Kinect data exhibit 
large position jumps from one frame to one other, leading to inaccurate distal segment positions that are totally 
incompatible with a force prediction method that needs contact information to be efficient. A solution could 
be to couple such a system with a pressure map on the ground, giving contact information at any time to the 
method.  
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TOPIC 4: INTEGRATIVE APPROACH 

CONTEXT AND OBJECTIVE  

All the works presented in the previous focuses of this section are militating for an easier use of musculoskeletal 
analysis in ergonomics. Therefore, it was necessary to integrate all this work in a unique framework, easy to 
handle for any user, and easy to develop with for researchers. This necessity was even more obvious that at a 
stage, most of the research projects in which I am involved are more less related to a part of the scheme 
presented figure 1.2. Therefore, we decided to integrate all our work in a unique framework, called CusToM for 
“Customizable Toolbox for Musculoskeletal Simulation”. As it is extensively presented in the following section, 
the toolbox was also an opportunity to tackle several usability issues that we already mentioned. First, we made 
it customizable enough to mix between body part models, between muscle sets and between marker sets. We 
also made it usable for many different inputs (motion capture, IMUs). Finally, we developed user interfaces 
making it usable by any on-coder people interested in musculoskeletal analysis in a very short time. 

CUSTOM 

Customizable Toolbox for Musculoskeletal simulation (CusToM) is a MATLAB toolbox aimed at performing 
inverse dynamics based musculoskeletal analyzes [109]. CusToM exhibits several features. It can generate a 
personalized musculoskeletal model, and can solve from motion capture data inverse kinematics, external forces 
estimation, inverse dynamics and muscle forces estimation problems. 

According to user choices, the musculoskeletal model generation is achieved by assembling automatically pre-
registered osteoarticular models or sub-models (body parts) [110]. The originality of the toolbox lies in the fact 
that markers and muscles are independent sets from the osteoarticular model. Indeed, the correspondence 
between marker sets and muscle sets is made through the definition of geometrical locations on the body parts. 
The design or the modification of a musculoskeletal model is simplified thanks to this modularity. Following 
the same idea, some methods are defined as adaptable bricks. Testing new cost functions in the optimization 
schemes, changing performance criteria or creating alternative motion analysis methods can be done in a 
relatively easy way. 

The analysis pipeline work as this: from an anthropometric based model, the geometric, inertial and muscular 
parameters are calibrated to fit the size and mass of the subject to be analyzed [9,30,67].Then, from motion 
capture data (extracted from a c3d file thanks to the Biomechanical Toolkit [111]) the inverse kinematics step 
computes joint coordinates trajectories against time [16]. Then, joint torques are computed thanks to an inverse 
dynamics step [18]. To this end, external forces applied to the subject have to be known. They may be directly 
extracted from experimental data (as platform forces) or be estimated from motion data by using the equations 
of motion in an optimization scheme [101,107], as presented above. Last, muscle forces are estimated. The 
problem can be solved in classical fashion (optimization scheme) or with the MusIC method, as presented in 
the first focus of this chapter. 
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Figure 2.17 – A screenshot of an animation generated with CusToM. The GiBBON toolbox practical features are integrated 
into CusToM to obtain these renderings.  

For a large set of musculoskeletal models and motion data, CusToM can easily perform all the analyzes described 
above. CusToM has been created as a modular tool to let the user being as free and autonomous as possible. 
The osteoarticular models, set of markers and set of muscles are defined as bricks customizable and adaptable 
with each other. Post processing features are also interesting to deal with experimentations with numerous trials. 
Last, recent developments on visualization (by including the GIBBON toolbox [112] in the distribution) enable 
the edition of nice animations, as shown in figure 2.17. 

CONCLUSION 

CusToM is still a fresh contribution to the musculoskeletal simulation community, but it is an exciting tool, 
accessible by many researchers that are not necessarily high-level developers. Even if the toolbox remains limited 
(open loop systems, limited library of models, …), its open source nature is a real chance for its development 
in the next years. At term, CusToM may be used by non-expert as an analysis tool for preventive/corrective 
ergonomics without any limitation, since its graphical interface does not need any code to run and its model 
selection is simplified. The toolbox has been mainly initiated by Antoine Muller during his PhD thesis, even if 
I actively developed the core algorithms for inverse dynamics and I take credit for model assembly and muscle 
forces estimation features. Since its release, it is also the development tool used by three other PhD students I 
supervise (Pierre Puchaud, Louise Demestre and Claire Livet) and is currently used for analysis by several other 
students and colleagues (Olfa haj Mahmoud that is also under my supervision for example). We also propose 
doctoral courses on musculoskeletal modeling, using CusToM as a support software. It led me to develop several 
tutorials to be used with the toolbox.  
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CONCLUSION 

The work I presented in the current chapter is clearly motivated by the idea to democratize musculoskeletal 
simulation as a daily routine analysis tool. I’m not the first contributor of most of this work, and I can only 
thank the PhD students (Antoine Muller, Pierre Puchaud, Olfa haj Mahmoud, Claire Livet, Louise Demestre), 
the post-doc fellows (Diane Haering) I supervised this last 7 years for their work on the subject, as well as the 
other colleagues that participated to this work (Georges Dumont, Nicolas Bideau, Franck Multon, Pierre 
Plantard, Guillaume Nicolas, Coralie Germain). This is a collective effort and I am really proud of our 
achievements. 

There is still a lot of room for research to be made, since democratizing musculoskeletal simulation for 
ergonomics studies is still a wish to accomplish. We evoked some of these issues in the last focuses, but we can 
summarize it here: 

- First, the efficiency of such analysis methods for ergonomics relies strongly on computation time. Even 
if our results are interesting, we already reported that they are limited by the type of model they tackle 
(open loop arborescence). A real step forward would be to tackle any type of model with such methods, 
enabling more complex and accurate models to be used for assessment. As it has been explained earlier, 
this should pass by a deep adaptation of the methods, since dynamics of the system must be integrated 
into the interpolation scheme to solve concomitantly the inverse dynamics and the force estimation 
steps. I see here a real chance to adapt some relevant machine learning techniques to these challenges, 
as it has been proposed in [113]. I believe that a mix between model-based approaches and machine 
learning techniques such as neural networks or support vector machines may be relevant to limit the 
computation time and to learn from a limited amount of data some general rules to apply to any subject 
[71].  

-  Second, efficiency also relies on accuracy, asking for improvements in i) the accuracy of the models, ii) 
the realism of the motor control strategies applied to these models. Accuracy of the models is still 
subject to improvements through the development of original methods for scaling, especially at the 
muscle level. Force-based assessment of the work conditions is not developed at all and may benefit 
from accurate musculoskeletal models to be realized systematically. Again, machine learning techniques 
are relevant to tackle this issue, as it is proposed in the last chapter of this manuscript. The realism of 
the motor control is also subject to questions. Classical cost functions used in muscle forces estimation 
are not adapted to all the motions to study and are quite bad at estimating co-contraction. Alternative 
control strategies were evaluated (metabolic cost, stiffness-based cost functions [114,115]) but there is 
a need of development of new and adapted control strategies to enhance this part of the simulations. 

- Last, these is still a need to better handle the inputs of the analysis. It implies to have easily available 
data (IMU, depth cameras), with a relevant pre-processing (drift [116], STA [64,117] …), enabling a 
similar level of analysis as gold standard input data (optoelectronic motion capture). Such developments 
may also benefit from data correction and completion, as we already proposed it for Kinect. 

In addition to these scientific issues, these works open several application perspectives that are extensively 
developed in the last chapter (5) of this manuscript. 

I made the choice to no present all our work related to musculoskeletal simulation to be focused on issues 
specific to ergonomics. To be more exhaustive, I should mention that we conducted a very comprehensive work 
on throwing motions during the PhD work of Ana Lucia Cruz Ruiz, that I co-supervised with Georges Dumont 
within the frame of the ENTRACTE (ANR CONTINT) project between 2013 and 2016. The idea was to 
generate a low-level representation of the motor control involved in such motions (throwing a ball over the 
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shoulder) to synthetize motions in direct dynamics for musculoskeletal models. The link with ergonomics is not 
direct, however this work was an important step for us to extend our knowledge on motor control and motion 
analysis and synthesis. Moreover, it was the first application made from the CusToM library, that was not called 
like this at this stage. This work has been published in several articles [118,119,120]. 

At last, I also conducted a thorough analysis of simulated meat cutting tasks during my postdoctoral stay in 
Aalborg. This work was conducted with the AnyBody software and was the opportunity to demonstrate the 
usability of such software for an analysis of a complex task involving large force exertion. I particularly 
developed during this stay a validation by trend analysis, considering comparison of muscle forces/activation 
between work situations to be a relevant way to use musculoskeletal models for ergonomics [13]. This work has 
been fundamental in my research background since it let me acquire a real expertise with the AnyBody software 
and the fundamental algorithmic developments related to it. 

 

 

 

 

 

 

 

 

 

 



54 
 

 

 

CHAPTER 3 

 

 

Efficient virtual reality for ergonomics 

  

End-user in interaction with a collaborative virtual environment for ergonomics  
Nguyen, H. et al. (2017). VR-based Operating Modes and Metaphors for Collaborative Ergonomic 

Design of Industrial Workstations. Journal on Multimodal User Interfaces 
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INTRODUCTION 

As stated in introduction of this document, virtual reality (VR) is an appealing technology to develop controlled 
and modifiable environments in interaction with multiple users. This is particularly true for sports, rehabilitation 
or ergonomics applications. VR is already used as a support for products [121,122] or workstations design 
[10,123]. Indeed, virtual prototyping - the act of evaluating a product by simulating its behavior and its 
interactions with humans and/or other components - has become increasingly relevant, especially for evaluating 
assembly tasks. At this point, the use VR becomes quite natural to evaluate the functionalities or ergonomic 
features of workstations [124,125] since it is more cost-effective and easier to edit a digital mock-up (DMU) 
than a real mock-up. The display and interaction modalities may differ from one application to one other. 
Classically, CAVE (large immersive rooms) were the classical way to display the workstation to the final user, 
but the recent development of efficient Head-Mounted Displays (HMD) – see Oculus Rift®, HTC Vive® 
systems for example, led to several developments on these display tools. The interaction may also differ 
depending on the application. Generic interaction devices may be used for low forces exertion (tracked joysticks 
for example), whereas for tasks involving force exertion haptic devices may be preferred. 

Considering the following scheme that we proposed in one of our papers [13], a collaborative ergonomic design 
session should provide i) high fidelity systems leading to reliable and transferable conclusions in terms of 
physical risk factors assessments ii) high usability systems leading to a flexible interaction between different 
actors of the design and the design itself. 

 

Figure 3.1. A very first approach of collaborative virtual environment for ergonomics. One can notice at the bottom of the figure 
the box containing most of the motion analysis methods developed and proposed in the previous chapter. 

The first major question concerns the reliability and transferability of the assessment in virtual reality and its 
conformity with the real world. If we consider assessing physical risk factors in virtual reality, it is necessary to 
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ensure that the motions and forces exerted by the user in a virtual environment to perform a virtualized task are 
comparable to the ones he would develop for real. Moreover, there is a necessity to ensure that motor control 
and sensory feedback are comparable, since comparable forces and motions may be realized in many ways by a 
human subject. All these questions can be summarized by a concept that we can call the “biomechanical fidelity” 
(or biofidelity) of the environment. Considering the classical definition of the fidelity - the objective degree of 
exactness with which real-world experiences and effects are reproduced by a computing system [126], the 
biomechanical fidelity combines interaction, simulation, and visualization features to define the exactness with 
which the virtual environment makes the subjects react in terms of motion, forces and control. In ergonomics, 
designers and industrials tend to minimize the cost of the simulator in virtualizing most of the workstation 
features. Moreover, the most-cost effective approach is to define several types of interactions with a generic 
device, such as a joystick or a haptic arm, to limit the development costs. These choices make the virtual 
environment being quite far from the real one. Thus, it seems crucial to find objective and subjective metrics 
that enable comparisons between real and virtual situations. The biomechanical fidelity concept is extensively 
developed as the first topic of this chapter. 

The second major issue is the question of the usability of such systems. Virtual environments will be efficient 
for workstation design and ergonomics only if the different actors involved in the design process, i.e. design 
engineers, ergonomists and final users (industrial workers) can interact with each other and with the scene in a 
convenient way. Indeed, the design engineer guarantees the process constraints to be fulfilled while the 
ergonomist guarantees the respect of the ergonomic constraints. At last the final user guarantees that the 
workstation is adapted to his morphological and physical features according to the task to complete and has a 
role to play in the final usability of the workstation. This question is complex since it asks to provide interaction 
tools that differs from one user to another and that must be adapted to multiple rendering media. It also have 
to cover all the possible need of constraint expressions that could arise from such design. Therefore, we focused 
on the development of virtual environments enabling an interaction between different actors using different 
media for ergonomics design sessions. This is the second topic developed in this chapter. 

I first worked on the virtual workstation design setups just after my stay in Aalborg university in 2012. At this 
stage, I had the opportunity to collaborate with my colleagues from Aalborg Afshin Samani (associate professor, 
ergonomics) and Pascal Madeleine (professor, ergonomics) within the VISIONAIR project (FP7 INFRA, led 
by Pr. Frédéric Noël [127]) – this project was dedicated to provide high level virtual reality infrastructures to 
European researchers. This collaboration led to the first contribution developed in the current chapter on 
biomechanical fidelity of virtual environments. I also had the opportunity to work with my colleague Thierry 
Duval (professor at IMT Atlantique). Thierry is a specialist of collaborative virtual environments and developed 
with some of his students a framework for collaboration in virtual environments called Collaviz [128]. I 
particularly collaborated to the PhD of Huyen Nguyen that Thierry supervised in the years 2011-2014. More 
recently, we extended our work on biomechanical fidelity to several other tasks with the thesis of Simon Hilt 
(2017-), co-supervised with Georges Dumont.  
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TOPIC 1: BIOMECHANICAL FIDELITY OF VIRTUAL ENVIRONMENTS 

CONTEXT & OBJECTIVE 

Though ergonomic design and evaluations have already been performed in virtual reality at a postural level, it 
has been done with weak guarantees of transferability, which can be defined as the degree to which the 
ergonomic conclusions in virtual environments are valid in the real world. Indeed, the transferability of the 
results is deeply related to the level of fidelity of the simulator – the extent to which a Virtual Environment 
(VE) and interactions with it are indistinguishable from a real environment. Fidelity of VE has been described 
in literature as a composite feature of three main dimensions: simulation, display and interaction fidelity 
[129,130]. These dimensions are not enough to fully characterize fidelity in the case of ergonomic design 
applications. In such applications, it is mandatory to understand how human motor control is affected by 
physical, sensorial and cognitive differences between simulation and reality. Conclusions made at the end of an 
ergonomic design session must be transferable to the real world with the same descriptive level of ergonomic 
analysis. It is therefore necessary to define a new dimension in fidelity, which I refer to as Biomechanical Fidelity 
(BF). I propose to define the biomechanical fidelity as the degree of similarity between motions, forces, and 
tasks realized in real and virtual environments at a biomechanical level (the level used to assess physical risk 
factors in ergonomics). A high biomechanical fidelity rating would ensure that conclusions and changes applied 
to the virtual workstation are transferable to the real world. However, characterizing biomechanical fidelity is 
not straightforward and requires addressing multiple scientific challenges. 

Biomechanical fidelity can be seen as a multilevel scale of description associated to virtual applications. Indeed, 
the biomechanical fidelity expresses the idea that biomechanical quantities are consistent between a real and 
virtual counterpart of a given activity. In fact, good postural fidelity may be enough for non-strenuous but 
repetitive tasks whereas tasks asking for a high level of force may have to be assessed at muscular level and 
therefore ask for high biomechanical fidelity at this descriptive level. 

Figure 3.2. depicts a classification of the descriptive levels to be assessed to ensure a sufficient BF. 3 main levels 
corresponding to classical biomechanical quantities are identified:  kinematics, dynamics and muscular. For each 
of these levels, objective assessments of the similarity between a real activity and its virtual counterpart are 
proposed. 

For example, assessing the biomechanical fidelity at a kinematics level of sorting tasks will consist in recording 
motion to compute kinematics (postures and joint angles) in real and virtual. 

The comparison of the quantities can be done globally (using classical ergonomic criteria, e.g. RULA or REBA 
scores), or at a more specific level (e.g. comparing joint angles trajectories). A more complex analysis can be 
driven through the challenge of motor control theories (in our example: uncontrolled manifold on a goal such 
as balance). 
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Figure 3.2. Multilevel classification for Biomechanical Fidelity and objective and subjective assessment suggestions.  

A perfectly biomechanically faithful virtual application will in all these analyses give similar quantitative results 
as the real application.  However, the virtual version of the task will give quite different quantitative results, 
since the interaction, sensory feedback…will be different. Thus, it is necessary to apprehend the validation 
differently.  

Several prior works attended to tackle this problem by comparing real and virtual setups thanks to biomechanical 
quantities. We can cite for example the work of Ma et al. that worked specifically on simulated drilling tasks, 
showing clear differences in terms of postures and discomfort between real and virtual setups [131,132]. These 
results were inspiring for us since they mostly assessed the key postures of the motion. We wanted to extend 
such works to the complete motion of the subject during the task. 

This is the topic of the current section, in which are presented several works developed during my first years as 
an associate professor and in collaboration with my colleagues of Aalborg, Afshin Samani and Pascal Madeleine. 
We particularly collaborated within the frame of the VISIONAIR project, in which we proposed an exploratory 
project that led to the following setup. 

AN EXPERIMENTAL SETUP 

To compare simulated tasks at a biomechanical level in real and virtual environments, we chose a task that was 
simple enough to be reproduced in an immersive room with generic devices, and complex enough to authorize 
experimental condition variations. Indeed, changing the work environment and following the trends of the 
biomechanical indicators regarding these trends is a relevant way to enhance work conditions.  
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The chosen task was a simplified sorting/assembly task, including several elementary operations and conditions 
that can be found in a real industrial process: target reaching, object manipulation, piece sorting, standing 
posture, and repetitive motion. These specific features are well-known to be involved in the appearance of 
WMSDs [1]. The task was performed in three environments: RE, VE, and VE with force feedback (VEF). VEF 
was proposed to the subjects in an additional session. The task was somewhat different from the other ones, as 
haptic device articular limitations required several additional manipulations during the task.  

An overview of the experimental setup is shown in Figure 3.3. The RE consisted of a workspace including a 
storage and a disposal zone, a holed box, and twelve wooden objects. The holed box was located on a work 
plan set at elbow height (recommended for light work [133]) and the storage and disposal zones were located 
40 cm above the table surface and 16 cm to the left and right of the center of the holed box, respectively. The 
holed box had several holes with different cross-sectional contours which could accept some of the objects 
(“fitters”), while the other objects (“non-fitters”) could not pass through any of the holes. 

 

Figure 3.3. Simulated assembly tasks performed in real and virtual environments. The task consists in placing sorting objects 
with a holed box. 12 wooden objects taken from the disposal zone A must be sorted. 6 objects are fitting the holes and 6 others 
must be placed in disposal zone B. Experimental conditions changed in two ways: task timing and complexity. 

During the study, the subject stood in front of the table and, after receiving a verbal let-go signal, grabbed an 
object from the storage zone with his right hand. The subject had to pass fitters through the appropriate holes 
in the holed box while non-fitters were placed in the disposal zone. There were six fitters and six non-fitters in 
each trial. Each piece weighed about 40 grams.  
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The VE was designed to precisely mimic the RE. The 3D representations of the workstation and of the holed 
box were derived from the DMUs used to fabricate the real environment. The virtual table height was also 
visually adjusted with respect to the subject’s elbow height. The pipeline leading to both manufacturing of the 
real work plan and the preparation of the digital one for the experimentation has been extensively explained in 
[13] and can be summarized as shown in figure 3.4. 

 

Figure 3.4. Numerical pipeline leading to the development of the digital and real workplan. A particular attention was paid to 
the physical and rendering issues, leading to several simplifications. Indeed, make the scene able to run in real time with collisions 
and complex fitting issues was challenging. An initial study proposed in [13] showed that neither physical or rendering simplifications 
did diminish the fidelity rated by the subjects. 

The virtual system used a high-resolution stereoscopic immersion room including a wall and a floor (vertical 
wall: 9.6mx3.1m, 6240x2016 pixels, eight Barco NW12 projectors, BARCO Inc., USA; floor: 9.6mx2.88m, 
3500x1050 pixels, three Barco Galaxy 7 projectors, BARCO Inc., USA). Three-dimensional glasses (ActiveEyes-
Pro, Volfoni, SAS, France) tracked with a 360° tracking system equipped with 16 ART infra-red cameras 
(Advanced Real Time Tracking GmbH, Germany) were used to adapt the simulation to the user point-of-view. 
Only one object appeared on the storage shelf at a time and the subject had to grab the object using a wireless 
interaction device (Flystick2, Advanced Real Time Tracking GmbH, Germany) co-localized with the VE.   
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To compare the simulated assembly tasks realized in real and virtual environments, we led an experimentation 
campaign based on the experimental protocol described above.  

We recruited sixteen male subject that participated to the study after giving their informed consent. They were 
all novices in Virtual Reality (Average experience of 1.4±0.5 on a 5-point scale).  

Each subject realized the task described in the previous section. Different within-subject factors were 
investigated in order to understand the influence of the VE and VEF on performance. Two cases of complexity 
of the task were proposed: a case with only two types of fitters (cylinder and parallelepiped) and a case with six 
types of fitters (see Figure 2). The timing regime factor also had two levels: “as fast as possible”, where the 
subject did not take any break between pieces, and “time-constrained”, where the subject waited for a sound 
signal before taking a new piece, which occurred every 10 seconds. For each environment, the complexity and 
timing regime were randomly ordered to prevent cross-over effects. The different environments were randomly 
balanced to prevent task-learning effects (RE, VE and VEF).  

During the task realization, orientations of the trunk and the upper limb segments were tracked using six 
dedicated AR-Tracking targets, sampled at a 60 Hz frame rate: lower trunk, upper trunk, head (glasses), right 
arm, forearm, and hand. Muscle activities were recorded along the kinematical chain. Five bipolar channels were 
used to collect electromyographic (EMG) signals from the Erector Spinae (ES, back extensor), Deltoideus 
Medialis (DltMed, shoulder abductor), Biceps Brachii (Bscps, forearm supinator and  elbow flexor), Triceps 
Long Head (Trcps, elbow extensor and shoulder stabilizer) and Flexor carpi ulnaris (FCU, wrist flexor and 
adductor) with bipolar surface electrodes (Neuroline 720, Ambu, Denmark). Bipolar surface electrodes were 
aligned (inter-electrodes distance: 2 cm) on abraded ethanol-cleaned skin along the direction of the muscle 
fibers. Bipolar electrodes were placed with respect to anatomical landmarks. Upper-middle trapezius activity 
was recorded thanks to a semi-disposable adhesive grid of 64 electrodes (LISiN-Spes Medica, Italy, model 
ELSCH064R3S). The EMG signals were amplified 2000 times (64-channel surface EMG amplifier, 
SEA64EMG-USB, LISiN-OT Bioelectronica, Torino, Italy), band-pass filtered [5-500 Hz] and sampled at 2048 
Hz (National Instrument, 12 bits acquisition board, Austin, USA).  

FIDELITY ASSESSMENT 

From this experimentation, we ran 3 main analyses that were published in different articles [134,135,136]. 

First, we focused on a comparison of indicators of discomfort computed in real and virtual environment. For 
this approach, after ensuring through a first statistical approach that it had no influence on the other results, we 
discarded the VEF trials that were incomplete (only 10 from 16 subjects did this part of the experiment). This 
first approach was simple and a real assessment of the capacity of the virtual setup to provide similar conclusions 
as the real setup in terms of physical risk factors. 

Therefore, we computed several indicators of discomfort from the recorded data:  we computed a RULA (Rapid 
Upper Limb Assessment) score from the tracked orientations of the segments. The RULA score represents a 
good indicator of postural discomfort [4]. We also computed Averaged Muscle Activations (AMAs) that are 
simply an averaged measure of the activity for a considered muscle. AMAs give a good overview of the muscle 
load during the task and are used to compare similar tasks under different conditions [137]. EMG activation 
profiles were normalized with activation levels obtained from a reference task, to get comparable results across 
subjects. For the” as fast as possible” condition, the elapsed time between the beginning and the end of the task 
was recorded as Total Task Time (TTT), as task duration affects fatigue and discomfort of the subjects and 
vice-versa. Finally, subjective indicators were reported during the experimentation. After each trial, subjects 
were invited to report their Rated Perceived Exertion (RPE), based on CR-10 Borg’s scale [138] and indicating 



62 
 

 

 

the perceived level of discomfort (0 – no discomfort, 10 - highly uncomfortable). At the end of the 
experimentation, subjects answered a short questionnaire assessing the difficulty of the task in real and virtual, 
and fidelity of the virtual environment.  

.  

Figure 3.5.  RULA, RPE and AMAs scores comparison between real and virtual environments. The statistical analysis 
revealed different activation levels, a lower postural constraint and a higher perceived discomfort for the virtual environment in 
comparison to the real one. 

Results were statistically processed using ANOVA and post-hoc tests (Tuckey’s HSD). Interaction type, Timing 
regime and Complexity were introduced as independent factors and dependent variables were the objective and 
subjective indicators (RULA score, AMAs and RPE score). A specific ANOVA was calculated for TTT, 
including only the interaction type and the complexity. The level of confidence was set to p < 0.05.  Correlations 
between indicators obtained from RE and VE trials were investigated using a linear regression. The correlation 
coefficient r was computed for each indicator with a level of confidence set to p < 0.05. Sample sign tests were 
performed to determine differences between RE and VE for questionnaire results. 

The results of this study showed several interesting results that we summarized here. 

First, a statistical difference between RULA scores were found between real and virtual environments. This 
must be related to the statistical difference reported for the RPE. This is a fundamental point since postures 
were less comfortable in virtual than in real (see figure 3.5.) whereas the subjects reported more discomfort in 
virtual than in real. In ergonomics, a classical way to consider the subjective and objective indicators is to 
consider they are correlated [139]. This is not the case here and asks for questions in the way the subjects were 
disturbed by the virtual environment. Cognitive charge as well as sensory feedback were different, and it is 
classical to consider that it leads to different motor control strategies. The most obvious reason of these 
difference is the interaction itself, that was quite different between both environments. However, the previous 
remark about motor control and sensory feedback seems a valid hypothesis to explain the contradiction between 
the objective and subjective ratings. 
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At the same time, the correlation between scores obtained in real and virtual environments for similar conditions 
was positive for many indicators, as shown in figure 3.6. It showed that despite the differences reported above 
between the real and the virtual tasks, the evolution of these scores regarding the experimental conditions 
(complexity, timing regime) were consistent between both environments. This is a major observation since it 
validates, at least for this type of task/motion, the usage of such generic interaction and display devices as a 
relevant assessment system for preventive ergonomics. 

 

Figure 3.6.  Correlation between indicators measured in real and virtual environments for similar conditions (timing regime and 
complexity). All trials of all subjects were used to compute the correlation. 

These two results implied several additional research questions. These questions were addressed in two 
additional papers. 

The first issue that was addressed can be summarized like this: was the variability of the motor control response 
higher from one environment to one other or from one subject to one other? A classical assumption in 
ergonomics to compare two work conditions is that if the intra-subject variability across the conditions is greater 
than the inter-subject variability within a task, the two conditions will be seen as different working conditions 
[140,141]. Therefore, along with such an approach one can apply methods such as cross-correlation and 
normalized mutual information (NMI) to quantify the similarity (the opposite of the concept of variability) of 
the biomechanical response of subjects in different conditions and compare the inter- and intra-subject similarity 
[142]. Considering this, we assumed that the intra-subject similarity of biomechanical response across real and 
virtual environments is comparable with the inter-subject similarity within the real environment.  

More specifically, we applied this method to the 3 joint angle trajectories of the shoulder and the spatial muscle 
activity of the upper-middle trapezius, recorded with a semi-disposable adhesive grid of 64 electrodes. We 
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measured the intra-similarity of these quantities between real (RE), virtual (VE), and virtual plus force feedback 
(VEF) environments, and the inter-subject similarity of these quantities for the real environment. 

Results showed that even if VE preserved better the kinematic trajectories than VEF regarding real trajectories, 
trapezius activity patterns were more similar between VEF and RE than VE and RE. This result is of interest 
since it indicates that even if the shoulder kinematics was better reproduced in VE, the lack of force feedback 
changed the muscle activity. A similar contrast between EMG and kinematic patterns has previously been 
observed and explained by the notion of complexity trade-offs between the macroscopic (kinematics) and 

microscopic (EMG) levels of a control system [143]. 

  

Figure 3.7.  Kinematical pattern intra-subject similarity is lower that the inter-subject one. On the contrary, muscle activation 
pattern intra-subject similarity is higher than the inter-subject one. 

Finally, contrary to our assumption, we found that the kinematic trajectories were more similar between the 
participants performing the task in RE compared with the similarity of kinematic trajectories belonging to a 
single participant working in different environments. This is an important finding since a reliable evaluation of 
the biomechanics in VR environments requires that the intra-subject similarity of the biomechanical responses 
across platforms is comparable with the inter-subject similarity of the biomechanical responses of the real work 
platform. A similar approach has previously been applied in ergonomics studies where the ratio between inter- 
and intra-subject variability has been used to contrast different working conditions [142,144]. It seems unlikely 
that the gradual adaptation of the participants to the task would result in a systematic bias to our results at the 
within-subject level because the participants performed the task in a randomized balanced order across the 
platforms. Additionally, if the adaptation level is assumed to be different across subjects, the between-subject 
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variance increases and, in turn, results in lower inter-subject similarity. This supports our interpretation even 
further. Muscle pattern similarity showed the opposite trend, since intra-subject similarity was higher from one 
platform to one other than inter-subject similarity on the real platform. 

These results qualified a bit the results of the first analysis since even if the global criteria evaluated in the first 
study showed relatively positive correlation between platforms, the detailed analysis performed here showed 
large differences between environments in terms of angle trajectories and muscle activation patterns. 

Another issue we wanted to further investigate was the contradiction reported between RPE and RULA in the 
initial study [132]. Indeed, we wanted to understand why the subject experienced more discomfort with less 
postural constraint. To this end, we studied the stabilization of the upper body during the realization of the task 
between RE and VE. We used the Uncontrolled Manifold Theory (UCM) [145] to understand how was 
controlled the stabilization of the center of mass of the upper body during the task. Thanks to this motor control 
theory, we decomposed the contribution of joint angles of the upper body into a goal equivalent (GE) and non-
goal equivalent (NGE) component, representing how much the different joint angles are used to stabilize the 
upper body. The ratio between GE and NGE is a good representation of that: the higher it is, the higher is the 
stabilization.  

 

Figure 3.8. GE/NGE ratio between real and virtual environments for fitter and non-fitter objects. The ratio is significantly 
lower in VE than in RE, showing a less stabilized center of mass of the upper body in VE than in RE. 

Computing this quantity for RE and VE, results showed in both environment a higher GE than NGE. It is 
logical since stability is a core motor control task that must be always fulfilled. A higher ratio in RE compared 
with VE indicates that the subject performed the task in RE while they had a more stable upper body (i.e. CM) 
compared with VE (see figure 3.8.). This ratio could be used as index of performance in VE when it is being 
compared to the real ones. It is conceivable that the visual feedback is changed in VE and visual feedback is 
known to be crucial in movement planning and control [146]. Thus, the differences between VE and RE 
platform can be related to a manipulated visual interface in VE. Even if this interpretation may be contested in 
many ways, the lack of stability in VE may be a relevant explanation of the contradictory results between RULA 
and RPE. Indeed, even if postures were less constraining in VE than in RE, the perceived discomfort was 
higher: the lack of stability of the subject may have produced this perception. 
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CONCLUSION 

Finally, the most important characteristic of a virtual environment dedicated to preventive ergonomics is its 
ability to make the results transferable. A good way to ensure that is to compare the evolution (or trends) of the 
biomechanical quantities with regard to changes in the activity instead of absolute values. For the type of tasks 
we just presented (sorting/assembly tasks) it can be assessing the joint angle ranges with regard to the workplan 
height and compare real and virtual results. That is the sense of what we called the biomechanical fidelity at the 
beginning of this section. 

Moreover, disturbed sensory feedback in VR may have a negative impact and lead to bias in the assessment as 
we already observed in some of the results we had. Therefore, an additional necessary condition of transferability 
concerns the correlation between objective and subjective ergonomic criteria. The reliability of subjective criteria 
(Rate of Perceived Exertion, Body Part Discomfort…) is based on the correlation with objective ones, then 
similar correlation has to be found in a virtual setup aimed at performing ergonomics.  

To conclude, the biomechanical fidelity can be seen as a key to enhance the usability of virtual environments 
for preventive ergonomics. The work we developed here extensively studied sorting/assembly tasks and has to 
be taken with caution since it deals with a specific rendering/interaction setup, as well as a specific simulated 
task. Transferability of the results must also be assessed with regard to the adaptation of the subject to the task. 
These differences in motor control adaptation may have to be assessed on large cohorts and on long term 
studies. Within the frame of the PhD work of Simon Hilt, currently supervised by Georges Dumont and me, 
we are trying to extend the work we made on sorting/assembly tasks to new ones, using alternative rendering 
setups. In particular, we worked on pick-and-place tasks [147] and we are currently exploring virtual hammering 
with a similar approach to the one developed above: assessing biomechanical fidelity as a key for the 
transferability of the ergonomic assessment results from virtual to real. 
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TOPIC 2: COLLABORATIVE VIRTUAL ENVIRONMENTS FOR ERGONOMICS 

CONTEXT & OBJECTIVE 

After we first established a short review of studies dealing with VR for preventive ergonomics, we identified a 
real lack in virtual environments able to provide reliable interaction techniques for the different actors of a 
workstation design in virtual environments working on a shared representation of this workstation. In a paper 
we published in 2013 [148], we went to the following framework as relevant for such an approach: 

 

Figure 3.9. A relevant collaborative virtual environment setup enabling the interaction between a end-user, a design engineer and 
an ergonomist. 

The virtual environment is shared among 3 types of users, that are the end user (that will eventually use the 
prototyped workstation in real conditions) and ergonomist (guaranteeing the ergonomic constraints to be 
respected) and the design engineer (guaranteeing the process constraints to be respected). 

The development of specific tools based on collaborative virtual environments (CVE) is a serious way to enable 
such interactions. CVE exhibit a great potential of application in numerous domains: scientific visualization, 
product design, rehabilitation and many more.  Using a CVE for ergonomic purposes is very compelling. Indeed, 
a CVE can be considered as a major tool for workstation design, as it has the potential to enable real-time 
interactions between all the actors involved in the design process. This statement is true only if the CVE is 
properly designed. 

The following section explains the design we proposed for our dedicated CVE and its evaluation in terms of 
collaborative design, that I mostly developed from 2011 to 2014, and in collaboration with Thierry Duval within 
the thesis of Huyen NGuyen. 

CVE ARCHITECTURE 

On the basis of the scheme above, we developed with our colleague Thierry Duval several metaphors and tools 
to enable the interaction between the actors. These developments have been published in two conference 
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articles [148,149]. The idea was mostly to find relevant ways to enable collaboration with simple and clear 
metaphors. All of these features were developed in the Collaviz framework [128] and tested in the immersia 
immersive room [150]. 

End-user/ergonomist interaction architecture 

 

Figure 3.10. An interaction architecture between and ergonomist and an end-user in a collaborative virtual environment dedicated 
to preventive ergonomics. 

First, the end-user and the ergonomist need to communicate. The end-user must be able to realize the 
virtualized task and receive advices/recommendations from the ergonomist. The ergonomist must be able to 
visualize the workstation, analyse the motion of the end-user, and propose recommendations to the end-user 
(and the design engineer to modify the DMU). 

In order to enable this communication and interaction between these actors, we proposed the architecture 
presented figure 3.10. Two similar virtual manikins represented in the virtual environment and seen by both 
users are proposed. The manikin A is used as a main manikin and can be animated either directly from the 
motion tracking of the end-user or in replaying a previously recorded motion. Manikin B that can be considered 
as a ghost manikin, can either mimic the manikin A or be manipulated by the ergonomist. Actually, manikin B 
is mimicking manikin A most of the time, but the ergonomist has the opportunity to stop this mimetic feature 
to indicate whatever he needs on the manikin. The combination of these animation modes define several work 
modes for the application: 

Active-Passive: Manikin A in direct tracking and manikin B in mimetic. This mode is mostly used by the 
ergonomist to observe, analyse and record the current work task; 

Active-active: Manikin A in direct tracking and manikin B manipulated by the ergonomist. This mode is used 
for a direct evaluation of the current work task. The ergonomist asks the user to reach several postures involved 
in the task realization and propose via manikin B several recommendations; 
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Passive-active: Manikin A in motion replay and manikin B manipulated by the ergonomist. This mode is used 
for non direct evaluation of the current work task. The ergonomist replays a problematic sequence, indicates 
during the replay the problematic postures and propose recommendations.  

The manikins are the main vector of the ergonomic information provided to the ergonomist as well as the main 
vector for the gesture recommendations provided to the main user. From the posture of manikins A and B, 
the software computes automatically the corresponding joint angles and the RULA and REBA (Rapid Entire 
Body Assessment) scores. The main user can visualize these scores through local and global colour codes 
associated to the manikin segments (from green to red). The ergonomist can also see these colour codes, but 
has additional tools enabling to tune the postural scores with adjusment (force, frequency,…) scores as 
proposed in the initial definition of both RULA and REBA scores. Additionnaly, the ergonomist can save/run 
sequences performed by the main user. At last additional outputs options are available. The ergonomist can 
activate/deactivate color codes, display the global scores on his screen, and display the kinematical traces (global 
scores, local scores, joint coordinates) on curves if necessary.  

The ergonomist has also to be able to provide recommendations to the main user. At this point, the ergonomist 
can only modify directly the manikin B by clicking joints and displacing them in the environment. This 
interaction enables a simple recommendation metaphor, consisting in indicating the desired posture on manikin 
B with regard to the problematic one described on manikin A. 

In the original paper, we just exhibitied a sample trial with preliminary results on this interaction scheme. 

End-user/design engineer interaction architecture 

Second, the end-user and the design engineer need to communicate. The design engineer has to be able to show 
design constraints to the user, whereas the latter may bave to indicate usability issues to the engineer. To this 
end, we developed several interaction tools and metaphors leading to, as well as for the ergonomist/end-user 
interaction, a set of design modes. 

The design engineer can have different roles, depending on the operating mode currently being used during the 
session. According to figure 3.11. (a), the design engineer must be able to consider recommendations coming 
from the other users, and to act on the DMU to indicate and to proceed to modifications in accordance with 
the process specifications. In this operating mode, the design engineer has an active role as he is the only one 
allowed to modify the DMU. We can call this operating mode “direct design” mode. In this operating mode, 
the final user (and the ergonomist) use informative metaphors such as visual signals (arrows, spots, ...) and 
auditory signals (voice, bips…) to highlight process design issues. Moreover, the final used (and the ergonomist) 
must show reachable positions and volumes to the design engineer. At last, the design engineer must modify or 
move parts of the workstation with convenient manipulation techniques. 
A second way to consider this interaction leads to the “supervised design mode” presented figure 3.11. (b).  The 
design engineer is not acting directly on the DMU, but supervises, frames and validates regarding its process 
expertise the changes made by the other actors. Here, changes are directly realized regarding usability and 
ergonomic considerations, coming respectively from the final user’s experience and from the ergonomist’s 
analysis.  The design engineer needs tools, such as process information metaphors, to frame and indicate to the 
other actors if the modifications they plan to do are compatible with the process specifications. Such 
information metaphors will mostly consist in plans and volumes materializations. 
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Figure 3.11. Direct (a) and supervised (b) design modes. The design engineer leads the design and acts direclty and indirectly 

(respectively) on the workstation DMU. 

These general considerations were applied to a very standard issue in ergonomic workstation design: the 

reachability.  

 

Figure 3.12.Process (a) and reachability (b) design metaphors. 

In direct design mode, the user or the ergonomist can express their reachability recommendations through 3D 
annotations such as describing the volume that can be easily reached by the user, which volume can be reached 
with more efforts, and what are the ultimate reachable limits. We have implemented a first tool enabling a user 
to express these three different kinds of bounds, as illustrated in figure 3.12. (b). The metaphor consists in a 
3D pencil allowing the main user or the ergonomist to draw limits of a reachable volume. Extruded 3D objects 
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are materializing these limits. The 3D objects can be drawn in 3 different colors, manually chosen by the main 
user to indicate the kind of bound he is drawing - green = easy, yellow = difficult, red = ultimate. 

In supervised design mode, the end-user deals directly with its own constraints, and the engineer must propose 
limits to the positions proposed by the user or by the ergonomist. For example, the user or the ergonomist can 
propose a new position for the the element of the workstation, while the engineer can express recommendations 
through other kinds of 3D annotations, expressing if the modification has a low, medium or high impact on the 
global design of the workstation. Here again, we have implemented some tools enabling an engineer to express 
these three different level impacts. The main metaphor used here is the one presented in figure 3.12. (a). It 
consists in the creation of translucent volumes with the same color-scale convention indicating the impact of 
the use of these bounds on the whole process. The engineer can use it during the user’s interaction, and he can 
also create these bounds prior to the interaction of the user and the ergonomist in order to prepare the virtual 
environment. 
 
To assess the usability of design modes and metaphors, we developed a use case and an experimental protocol 
presented below [151]. 

DESIGN MODES AND METAPHORS USABILITY FOR REACHABILITY ISSUES 

 
The chosen use case is a very common ergonomic intervention: an element of the workstation is not optimally 
placed, and the final user needs to adopt uncomfortable postures to reach the element. Both ergonomist and 
final user request for a modification of the position of this element to the design engineer. Then all of the actors 
try to find a compromise between the user’s comfort and the process specifications, which consists in finding 

an intersection 𝑈 ∩ 𝑉 between the reachable volume 𝑈 defined by the final user (and maybe pondered by the 

ergonomist) and the volume defined by the design engineer with regard to the process specifications 𝑉. Figure 
3.13. illustrates this use case. The use case has been implemented in the collaborative platform Collaviz [128], 
using its distribution features and its abilities for modelling the physical spaces of the users of CVE. 
 
The experimentation did only involve the design engineer and the end-user. In order to assess the usability of 
the operating modes and metaphors between these actors, it was important to ensure that the results of the 
simulation were generic. Hence, in the experiment, each scene was unique but comparable with the others in 
terms of difficulty and of difference in morphology of the subjects. We assumed that a relevant indicator of 
difficulty could be extracted from the size and the shape of the reachable zone. Therefore, we created a difficulty 

criterion that was weighted volume of the intersection between 𝑈 and 𝑉. The randomized parameters used to 
generate the scenes were the dead zones’ positions, the end-user’s position and the initial position of the DMU 
element. 2 levels of difficulty were tested: 1 and 2 dead zones (zones with process constraints). 
Sixteen subjects (one woman and fifteen men) took part in this experiment (age: 24.8 ± 2.83 years old, height: 
179 ± 8.54 cm).  
The end-user was immersed in Immersia [150], which size was 9.60 m long, 3.10 m high and 2.88 m deep. They 
used a flystick device to drive a 3D cursor - an interaction tool to either grab and manipulate the DMU element 
in the supervised design mode or to draw reachable zones in the direct design mode. The design engineer had 
a simpler interface on a desktop computer with two windows that provided a top-view and a front-view of the 
CVE. We used a simplified avatar to represent the end-user’s current activity in the design engineer field of 
view. The design engineer used a mouse to drive a 3D cursor to manipulate the DMU element in the direct 
design mode or to draw dead zones in the supervised design mode. The design engineer and the end-user were 
not allowed to use verbal communications because we wanted to evaluate the efficiency of the collaborative 
metaphors used to exchange information. We restricted to a single color the interaction metaphors designed 
above after a preliminary evaluation. Furthermore, the end-user used only one hand since they could represent 
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their reachable zone using only one interaction tool and the design engineer still could estimate their reachable 
limits. For each session, each subject was playing both roles (end-user and design engineer) to limit the number 
of experiments to run. In more details, 12 scenes (3 different scenes ×2 levels of difficulty ×2 operating modes) 
were randomly chosen from the pool of scenes related to a morphology category. The scenes were randomly 
ordered in each session in terms of level of difficulty and operating mode to be used. Once they had finished 
the first set of 12 scenes, they exchanged their roles and performed 12 new scenes chosen in accordance with 
the morphology category of the new end-user. 

 

Figure 3.13. A simple use-case illustrating reachability issues. 

To assess the usability of the system, in accordance with the ISO definition of usability [152], three main 
dimensions were investigated: 

• efficiency: resources expended in relation to the accuracy and completeness of goals achieved. We 
assessed the efficiency by investigating the completion time per trial and the expected-final distance. 
The completion time was automatically recorded for the end-user and the design engineer to move 
the DMU element from its initial position to its final position and to validate the task. This metric 
is a direct indicator of the fastest operating mode to achieve the tasks. Then, the expected-final 
distance - the distance between the expected position of the DMU element on the table and its 
final position - was measured for each trial. The expected position was defined as the best trade-
off between process and reachability constraints. 

• effectiveness: accuracy and completeness with which specified users can achieve specified goals 
in particular environments. To assess the effectiveness, we computed the RULA score associated 
to the final position of the DMU element. It defines in terms of comfort the trade-off found by 
both users at the end of the design phase. 

• satisfaction: comfort and acceptability of the work system to its users and other people affected 
by its use. To assess the satisfaction, we used 3 questionnaires: evaluation of the end-user’s role 
and the respective collaborative metaphors; evaluation of the design engineer’s role and the 
respective collaborative metaphors; and general comparison between two roles in the two operating 
design modes. 

The statistical analysis of the results showed several interesting facts from this experimentation. 
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Figure 3.14. Interaction plots for usability metrics. 

In summary, on the one hand, if we consider the efficiency as the most important dimension when the end-user 
and the design engineer work together in a workstation design process, the design engineer would be the one 
who should control the element. The reason is that they know the workstation design more specifically than the 
end-user. Moreover, in this case, the design engineer does not need to describe the workstation design 
specifications to the end-user. On the other hand, if we consider the effectiveness, i.e. the comfort of the end-
user in the workstation design, as the main criterion to evaluate the usability of a design process, it would be 
better if the one who controls the element is the end-user. They have a real view of the workstation design from 
the first-person viewpoint and they can find a good spot to put the element regarding their own postural 
comfort. Moreover, we assume the result would have been significantly different with the addition of the 
ergonomist’s role in the loop. Indeed, ergonomists have a knowledge about comfort, usability and activity 
enhancement that would have been of interest to criticize the trade-off found between the design engineer and 
the end-user and to maximize the effectiveness of the design session. The results of the subjective questionnaires 
make us think that users were satisfied of these tools to be used in a real design situation. However, having the 
feedback of expert users (design engineers in particular) seems mandatory in order to enhance the usability of 
the design tools. 

CONCLUSION 

The work presented in this part was finally a proof of concept. The experimentation presented above and the 
pilot trials proposed for the ergonomist features are far to be sufficient. Experimentations involving the 3 actors 
in more complex scenario would be a valuable validation of the concept. Moreover, the proposed use case did 
not ask to the design engineer to have any expertise. In more complex scenario, one may think that an 
understanding of the whole process and how the industrial machines work would be necessary to indicate any 
process constraint, further to reachability issues. Similarly, one may think that the DMU modification may only 
be done by the design engineer for much more complex DMUS with complex shapes and multiples 
components. In addition, understanding more in details how the interaction between actors is handled in such 
design sessions is a fundamental concept to enhance preventive ergonomics. Also, the experimentation 
proposed above was quite far from the standards we recommended in the biomechanical fidelity section. Task 
exertion assessment was not possible in this current implementation. This may imply a simulation of the 
environing industrial process in order to make the user performing the work tasks in a much more realistic way. 
These issues are fundamental and may profit from recent developments of realistic industrial environments 
[153]. Last, we did not consider auditory communication in the implementation in order to challenge the 
metaphors. It seems obvious that in an operative setup, auditory communication should be authorized in 
addition to visual communication, as it can be found in several collaborative VR setups. 
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CONCLUSION  

In conclusion, the work presented in this section was a first step in a relatively unexplored domain, dealing with 
the validity of VR for preventive ergonomics purposes. If we can find in several works recently published trying 
to deal with these issues, particularly by comparing real and virtual work situations [130,131,154,155], there are 
still a lot of room for additional developments, particularly in finding ways to assess complete tasks and complex 
interactions in VR.  

Even if a proper VR-simulator involving the main actors of the design was found, improving the biomechanical 
fidelity to ensure a transferability of the results is still a goal to reach, particularly with the development of new 
display and interaction devices. Exploring the relevance of these devices (HMD, treadmills, tangible interfaces 
among others) for ergonomics is still to be done.  Exploring these issues for much more complex tasks as well. 
These new devices are also of interest since their deployment cost is significantly lower than classical VR systems 
(cave, immersive rooms). With the objective to democratize the use of such setups, it seems mandatory to have 
a look at these systems for future preventive ergonomics development. All of this must be made in relation with 
the classical concepts developed to understand the human behavior in a virtual environment (avatar, presence, 
immersion…). Indeed, linking the biomechanical quantities to the cognitive and perceptive behavior of the user 
is fundamental to understand how we can link the results obtained in virtual environments to the real world. 

Finally, collaborative environments may still lack of additional analysis tools, as the ones proposed in the first 
contribution chapter of this manuscript. Indeed, only postural scores were proposed here. Developing muscle-
based or dynamics-based metrics is still to be done to enhance the decision support tools for ergonomists. The 
interaction between users and the deployment of such systems are still complex to run out of the academic 
scope, however we can see several initiatives of collaborative environments and media that may make this easier 
in the next years [156,157].  
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CHAPTER 4 

 

Research perspectives 
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INTRODUCTION 

The current manuscript summarizes 12 years of research in musculoskeletal simulation and virtual reality for 
ergonomics. This research has been largely driven by a wish of applicability to practical issues. I wished to 
consider the work context and the user as a central piece of my developments. In the following chapter, we will 
evoke some future research topics that seems fundamental to me considering the evolution of the industry and 
the place of the human inside it. 

My main motivations remain the same: applying new methods and technologies to old but still prevalent issues. 
Objectivate physical risk factors and detect them early, with simple and quick methods. 

EVOLVING INDUSTRIAL WORK CONDITIONS: 4.0 INDUSTRY 

As we mentioned at the beginning of this report, the industry is now evolving concomitantly with new 
technologies (IoT, IA, robotics…).  This evolution is commonly denoted as the “4.0 industry”, corresponding 
to the era of cyber-physical systems – systems in which computers and control entities autonomously control 
physical systems. 4.0 Industry is currently becoming real, with lots of new challenges to deal with. First, 
technological issues: smart production (producing in connection with the consumer), virtual prototyping, 
collborative robotics, big data…Second, economic and social issues: environment, human at work, well-being… 
Finding the human place in these new productive environments is not straightforward. 4.0 industry tends to 
include the human into the cyber-physical system, by “augmenting” him in many ways. Therefore, each worker 
become a connected worker with more responsibilities and capacities, including being able to communicate with 
the production tools and performing news types of tasks. 

 

Figure 4.1. Sample assistive devices currently proposed by companies in industrial context. On the left: the FORTIS passive 
exoskeleton, on the right: the JEAN PERROT Smart Glasses 

4.0. Industry is an opportunity to consider the human place at work in a general way. This is an opportunity to 
consider health and well-being as a central dimension of this place. Moreover, the emergence of new 
technologies with connected and logged data is an asset for the evaluation of the work conditions, providing a 
lot of additional data to be processed and making possible longitudinal studies on large cohorts. 
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In this context, the emergence of assistive devices, making the worker more efficient, powerful and connected, 
is accompanied by several scientific questions to be solved. Among those (usability, acceptance …), their impact 
on physical risk factors exposure is particularly important.  

In my opinion, physical assistive devices (cobots, exoskeletons), supposed to minimize strenuous/repetitive 
tasks impact on the worker, must be validated in terms of physical risk factors reduction [158]. Indeed, these 
systems will impact the worker capacities to perform physical tasks, but compensatory strategies may appear. 
The motor control of the worker will be affected and may lead to other physical risk factors exposures, by 
changing the way work tasks are performed. Let us say that an exoskeleton manages to report the strength from 
the back to the legs, this force transfer will have short and long terms impact on worker exposure and health. 
At the same time, a cobot used to hold a heavy load will ask for accurate/stiff manipulations that may, at term, 
being malefic. A field able to provide answers to these questions is the musculoskeletal simulation. Therefore, 
there is a need of development of efficient musculoskeletal simulators able to evaluate the impact of the 
exoskeletons and cobots on the worker health, as well as to prototype them more efficiently. 

At the same time, cognitive assistive devices (biofeedback devices, display devices, augmented reality devices, 
already used to assist several work tasks [164]) will also impact workers’ heath, since they will transform the way 
he works in many aspects. As reported in the literature [159], changes in cognition impacts the motor control 
associated to a task and alters it significantly, particularly in unfamiliar environments [129]. If this is true for 
virtual environments, augmented environments may as well provoke such changes. Altered perception may also 
lead to changes in the way the user perceives the task in terms of comfort. We noticed in previous works some 
compensatory processes related to altered perception [132,133], that may also appear in such 
connected/augmented environments. 

Last, all of this must be easily assessed, in ecologic situations, with a minimal experimental deployment. This is 
in contradiction with the complexification of the models to be solved. Still, it asks for efficient methods (again) 
to be deployed, with affordable measurement devices, easy to use and deploy out of the lab. 

In the following sections, I will develop the scientific ideas I want to explore regarding this context in the 
following years.  

TOPIC 1: EVALUATING ASSISTIVE DEVICES AND THEIR IMPACT ON WORKERS HEALTH 

From the context above, and in relation to the evolution of the human-machine interactions, I identified two 
major scientific issues that I want to explore in the few next years. 

BIOMECHANICAL IMPACT OF PHYSICAL ASSISTIVE DEVICES  

This first issue concerns the use of musculoskeletal models for the prototyping and the evaluation of 
exoskeletons. Indeed, there is a real potential in understanding how these devices impact the forces and motion 
of a subject. Musculoskeletal modeling and simulation are a real improvement in comparison with classical 
(EMG, mocap) motion analysis approaches, especially to explore compensatory muscle patterns that may arise 
in unexpected areas of the body when assisting it. A few preliminary studies already developed inverse dynamics-
based methodologies proposing such approaches, without or with muscles, by integrating into the simulation 
the action of assistive devices. It has been done in several way, the simplest being adding external (simulated or 
measured) forces during the simulation resulting in altered internal forces [160]. Alternatively, some other 
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simulations integrated the mechanical structure of the exoskeleton inside the simulation and linked it to the 
model through mechanical joints [161]. There is a lot of room to enhance this interaction, particularly by 
integrating the control structure of the exoskeleton directly in the simulation if it is an active one, as well as 
using force-dependent kinematics features (and maybe deformable objects in a more general way) as it is done 
in [14] to develop passive exoskeletons such as [162]. Such applications ask for severe improvements in the 
simulation itself, particularly by handling closed loops systems that will appear systematically with such devices, 
and by adding co-simulation features to our developments enabling weak or strong coupling between rigid 
bodies simulation and deformable ones. A scheme summarizing the way such assessment can be done is given 
in figure 4.2. This is the solution scheme I proposed during my work as an expert in musculoskeletal simulation 
in the AFNOR group for the evaluation of the impact of assistive devices on workers in 2015-2017. I consider 
applying such methods soon since I have several industrial contacts wanting to compete their prototypes with 
objectives measures to enhance their performance. Additionally, I begin to supervise in 2019 a PhD student 
(Claire Livet, with Georges Dumont) working specifically on muscle forces estimation for closed loops systems, 
and a PhD student (Louise Demestre, with Nicolas Bideau, Guillaume Nicolas and Georges Dumont) working 
specifically on the coupling between musculoskeletal modeling and elastic structures simulation. Therefore, 
these two fundamental approaches in musculoskeletal modeling may strongly benefit to the approaches 
developed above. In addition to this, we are currently supervising (with Franck Multon and Georges Dumont) 
a PhD student (Olfa Haj Mahmoud) working specifically on continuous postural and force-based criteria, that 
are mandatory to assess the impact of an exoskeleton since dynamics of the worker during the task is clearly 
affected by such systems. 

 

Figure 4.2. A numerical pipeline for the assessment of the biomechanical impact of an exoskeleton thanks to musculoskeletal 
simulation  (issued from [2017]). 

The scenario described above is applicable to the assessment of existing devices, but one can also consider 
applying such simulation for prototyping. Indeed, musculoskeletal simulation can be used in two ways in this 
context: first, by considering a virtual exoskeleton applied to a real or synthetized motion (the latter would be 
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in this case performed as an optimal control problem in direct dynamics), we can predict the effects of the 
control/architecture/harnessing on the forces and motion of a given subject. Second, prototyping of 
exoskeleton may ask for specifications relative to the population to assist (anthropometrics, physiological, force 
generation capacities), and relative to the task/motion to assist. Musculoskeletal simulation can be helpful in 
this context, by using database of models as a basis for population characterization. From these database, 
specific groups of individuals may be found to be representative for the development of a range of systems. 
This is the sense of what we made in Topic 2, chapter 2, and what we are currently exploring through the thesis 
of Pierre Puchaud. We explore the development of canonical models for prototyping, particularly by applying 
learning and classification methods (neural networks) effective for such data. 

BIOMECHANICAL IMPACT OF COGNITIVE ASSISTIVE DEVICES 

Following the issues evoked in introduction, the introduction in the work environment of more and more 
sophisticated cognitive assistive devices ask questions about their impact on workers health. This is part of a 
larger question being how human adapt its behavior to altered/augmented cognitive environments. Considering 
the work we previously conducted on biomechanical fidelity of virtual environments, I consider that the 
methodologies we developed to this end may be adapted for these new usage/devices evaluation. 

Considering tasks that should be good candidates for cognitive assistance, i.e. assembly or maintenance tasks, 
we consider measuring, analyzing and comparing key biomechanical and efficiency factors associated to these 
tasks realized with the assistance (augmented) or not (non-augmented) of connected and augmented reality 
devices (tablets, AR glasses mostly). Scenarios can be tested through integrative measures realized in controlled 
environments. Measures could consist in EMG measures of the muscle activity and motion capture of the upper 
limb and neck/shoulder zone. Additional physiological measures (heart rate, gas exchange) could be added at 
some point to complete the assessment. Such assessments may result in metrics able to compare efficiency and 
risk factors regarding the assistive devices to be used and the types of task to be realized. 

Following the methodology we developed for VR-based preventive ergonomics, we can propose in a second 
time interaction and visualization metaphors able to diminish the sensory-motor disturbance of connected and 
augmented reality devices with a similar level of efficiency.  

I recently participated in the writing of an ITN particularly dedicated to these issues, led by Valentina Camomilla, 
and that should be resubmitted in December 2019. Therefore, I have several local and international contacts 
with companies designing AR devices, that may be interested by such assessments in a near future. 

TOPIC 2: SIMPLIFYING THE EVALUATION 

The complexification of the musculoskeletal models to be simulated leads to an increased computation time 
and an associated expertise of the software user. Since one of my major motivations in research lies in the 
development of affordable/easy-to-use/fast devices for ergonomics, such developments should be 
accompanied by the design of alternative methods enabling this fast and easy analysis. I see two major levers of 
simplification that are valuable research topics to be investigated. In both topics, the main idea resides in the 
usage of learning/classification techniques to get rid of complexity. 
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SIMPLIFYING THE CALIBRATION 

As it has been explained in introduction of this manuscript, calibrating musculoskeletal models is a complex 
task to fulfill. A classical whole-body musculoskeletal model exhibits ~50 DoF, ~50 solids, and ~300 muscles 
that leads to ~5000 parameters to be known to fully calibrate it. At the geometrical level, the parameters are 
segment lengths, joint axes, joint locations and muscle paths mostly. At the inertial level, the parameters are the 
body segments inertial parameters (masses, centers of masses locations, inertia matrices). At the muscle level, 
the parameters are the force generation parameters (optimal muscle fiber length, maximal isometric force…). 
Individual factors such as height, weight, or fat mass index (macro parameters) are completing this model and 
may be used to scale it.  

To simplify the calibration procedure, several ideas can be evoked. 

 

Figure 4.3. A simplification pipeline for musculoskeletal model scaling 

First, we consider applying to a large cohort of subjects a “complete” calibration procedure enabling a sequential 
calibration of the 3 descriptive levels that are geometric, inertial (whole body model) and muscle (upper limbs 
and lower limbs flexion/extension joints, that are fundamental in ergonomics and sports applications), as it has 
been partly presented in chapter 2. To do so, an acquisition of reference motion capture data, reference external 
forces, and reference joint strengths data is necessary, in addition to the macro parameters. Some of these 
parameters can be linked to the MSM ones statistically.  

Second, we consider finding an efficient low-dimensional representation of the inputs (particularly joint 
strengths) and outputs (MSM parameters) of the model that would lead to the reduction of parameters to 
optimize in the calibration. From this result, we consider training efficient interpolation rules to generate 
accurate initial guesses for the calibration methods using machine learning techniques (linear regression for 
example) and some of the macro parameters evoked above, leading to an anthropometrics-based calibration 
method. Finally, we consider using supervised learning (Neural networks or Autoencoders) to adapt the 
calibration to degraded/incomplete data captured with ‘out of the lab’ devices (dedicated isometric ergometer, 
IMU motion capture, Depth camera motion capture). To perform inverse dynamics, these dedicated devices 
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will ask for external forces prediction methods, consisting in finding a set of forces minimizing the “virtual 
forces” applied to the model, as presented in [101,107]  and chapter 2, and implemented in CusToM. 

Such developments are asking for large cohorts and experimental means. We already began to develop such 
protocols within the thesis of Pierre Puchaud and I am currently applying to national projects in order to develop 
this approach. 

SIMPLIFYING THE FORCES ESTIMATION 

We presented in the second chapter of this research summary the MusIC method (Muscle forces Interpolation 
and Correction).  The MusIC method is based on two main hypotheses: 

•  the muscle forces problem can be first solved joint per joint and the inter-joint muscular coupling 
(multi-articular muscles) can be taken into account a posteriori; 

•  the muscle forces can be corrected to respect the dynamic equilibrium. 

The method has been proved to be at least ten times faster at runtime than classical optimization for similar 
results in terms of optimality. This rapidity is of first importance because it allows the user (subject) to analyze 
her/his motion or gesture while performing it and so allows to learn how to improve this motion or gesture. 

However, limitations remain: 

• First, the method only applies to open-loop models, meaning that no complex architecture including 
kinematical loop can be used with the method; 

• Second, the method asks for a database generation that can be time consuming. There is a need of 
simplification of the database; 

• Third, the method is unable to consider muscle activation dynamics; 

• Last, the database gives results based on the joint configuration only, whereas angular velocities must 
be considered since muscles are visco-elastic actuators. 

Therefore, regarding the complexification of the models to solve, it is necessary to deploy methods able to 
provide accurately the muscle forces arising from constrained dynamics and efficient in terms of computation 
time, activation dynamics and actuation models. 

Such a method can be developed with a similar philosophy to the one we proposed for the calibration and the 
original MusIC method. Indeed, results from an optimization can be learned from a database of results. It can 
be made from interpolation methods, as well as more advanced learning methods, as proposed at the end of the 
second chapter.  I definitely think that such approaches are valuable, at the extent that we need to keep a 
physiological and biomechanical sense of the quantities to be computed. 

Last, these methods can be only validated thanks to experimentations, enabling the comparison of the muscle 
forces estimation results with measures of the muscle activity (through EMG for example). 

SIMPLIFYING THE MEASURE 

All of these developments should be made with regard to new technologies that are more adapted to on field 
measure than classical motion analysis tools we can find in a laboratory. Alternative motion capture means are 
really appealing. It seems important to develop accurate and reliable methods able to provide joint angles, joint 
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torques and muscle forces from affordable and easy-to-deploy devices such as inertial measurement units or 
depth cameras (Kinect for example). Moreover, the measure of external forces is still an issue in on field 
measures. From this perspective, the methods presented above need to be adapted to incomplete, noisy data, 
with badly calibrated models. This means that the data should be completed or corrected at some point to 
deliver relevant results. 

Again, this can be approached by model reduction and machine learning techniques. As we already showed in 
chapter 2, Kinect can be a reliable assessment tool for internal forces, at the condition that its initial measure is 
processed and corrected with a database. At the same time, external forces prediction methods are more and 
more efficient, and we participated to this enhancement quite largely with some major publications. We plan to 
continue exploring these new devices and see how we can complete their measure to obtain rich and reliable 
information from a degraded and incomplete data. We are currently testing optimal contact descriptions with 
regard to the subject and task specificities, that could lead to a better estimation of external forces from motion. 
Such development may be impactful for on-field ergonomics assessment in the following years. 

SIMPLIFYING PREVENTION 

The 3 propositions above are applicable to corrective ergonomics. However, we may consider also developing 
additional ideas to enable an easier preventive ergonomics application, following the work presented in chapter 
3. Considering the growth of the virtual reality market, with more affordable display and interactive devices, 
there are several developments to be made in order to make them usable for ergonomics. We can assess the 
usage of such devices through the methodologies developed in the manuscript, particularly from the 
biomechanical fidelity point of view. Again, the idea is to find levers of simplifications able to make suchminimal 
setups usable by anyone interested in for a reasonable cost and with a maximal accuracy. 

TOPIC 3: INTEGRATING 

Developing the topics evoked above will be of relevance if they can be easily applied through a relevant software, 
easy-to-use and asking no specific expertise in coding/computer science. From this philosophy, we developed 
the CusToM toolbox, presented in topic 4 of chapter 2. The topics proposed above will all find a natural place 
inside this software, reinforcing its efficiency and versatility. This is important since we have the ambition to 
make this software a major actor of the musculoskeletal simulation, following the success of developments such 
as OpenSim and Anybody. To this end, we proposed a public Git3  that is currently active with 4 main 
contributors (including me) and regular visitors, clones and downloads. The Git is active since less than 1 year 
and will be a central tool for many PhD students in the following years.  

 

 

 

 

                                                                 

 

3 https://github.com/anmuller/CusToM 

https://github.com/anmuller/CusToM
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CONCLUSION 

From the 3 topics proposed above, we can merge a more general concept: assessing workers health and well-
being with regard of the evolution of the work conditions, particularly regarding the technology advances. This 
is clearly the project I want to push front in the next years to come. It is ambitious, challenging and a lot of 
work. But there is nothing that cannot be reached in these challenges. I really believe that these objectives are 
realistic and may found lots of final usage in the industry as well as in other domains such as sports sciences of 
clinics.  

Some of the challenges proposed above are already at the heart of some of the projects I am currently 
participating to or leading, and some other will be developed in the next years. For sure, a real and important 
effort must be made to make these developments more in collaboration with companies. My feeling is that the 
last 2 years, I had many more industrial contacts than in the last 10 years. This is telling me that the companies 
are ready to hear how they can enhance the work conditions of their employees in synergy with their production 
/rentability objectives, much more than 10 years ago. This maturity is concomitant with the maturity of several 
research works we developed. I see a rapid growth of our research collaboration with the industry, and this is 
clearly good news about my objectives. 

As a conclusion to this document, I would like to thank again all the people I worked with. As an associate 
professor, I clearly not have the time I would like to have to develop my research issues. Fortunately, I had the 
opportunity to supervise some amazing PhD students and post-doctoral fellows that made some amazing work 
on all the topics evoked in this summary. I hope that I will still be the case in the following years. 
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