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Algorithmes gloutons orthogonaux sous
contrainte de positivité

Reconstruction de signaux parcimonieux positifs

De nombreux domaines applicatifs conduisent à résoudre des problèmes inverses où le signal
ou l’image à reconstruire sont à la fois parcimonieux et positifs. Citons les exemples de la
télédétection [Iordache et al., 2011], de l’analyse de signaux audio [Virtanen et al., 2013], de la
chimiométrie [Bro and De Jond, 1997], de l’astrophysique [Högbom, 1974] ou de la reconstruction
tomographique [Petra and Schnörr, 2014]. La reconstruction d’un signal parcimonieux et positif
est naturellement formulée comme un problème de minimisation `0 sous contrainte de positivité,
du type:

min
x
‖y −Hx‖2 s.c. x ≥ 0, ‖x‖0 ≤ K, (1)

où ‖ . ‖ et ‖ . ‖0 représentent respectivement la norme euclidienne et la “norme” `0, correspondant
au nombre d’éléments non-nuls d’un vecteur.

Ce problème est connu pour être NP-difficile [Natarajan, 1995]. On distingue plusieurs caté-
gories d’approches allant des méthodes de relaxation convexe (via les algorithmes proximaux
notamment) aux méthodes d’optimisation non-convexe d’un critère continu et non-différentiable
approchant [Gasso et al., 2009] ou reformulant [Soubies et al., 2015] le critère (1), et aux méthodes
abordant directement l’optimisation du critère `0 non-modifié via une stratégie d’optimisation
exacte [Bourguignon et al., 2016] ou sous-optimale. Les algorithmes gloutons font partie de cette
dernière catégorie. Leur principe est de partir d’une solution nulle et de construire progressive-
ment une solution K-parcimonieuse en sélectionnant un à un des atomes du dictionnaire H, avec
une mise à jour des amplitudes associées et du résidu d’approximation r = y −Hx au fur et à
mesure que les nouveaux atomes sont sélectionnés.

Les algorithmes gloutons orthogonaux comme Orthogonal Matching Pursuit (OMP) et Or-
thogonal Least Squares (OLS) mettent à jour les amplitudes par un calcul de projection orthog-
onale. En notant S le support courant, les amplitudes associées x(S) sont celles pour lesquelles
le résidu d’approximation rS = y − HSx(S) est minimum en norme `2, où HS est la sous-
matrice de H réduite à S. Leur calcul nécessite la résolution d’un problème de moindres carrés
non-contraints (ULS pour Unconstrained Least Squares). Les implémentations efficaces des algo-
rithmes gloutons reposent sur l’idée que la solution de ce problème de moindres carrés peut être
mise à jour rapidement lorsque le support est augmenté d’un élément (S ← S ∪ {`}), modulo
la mise à jour d’une factorisation matricielle de type Gram-Schmidt ou de Cholesky [Sturm and
Christensen, 2012].

Les algorithmes gloutons généralisés à la reconstruction de signaux positifs possèdent une
structure proche des algorithmes gloutons standard, avec à chaque itération, la sélection d’un
nouvel atome et la mise à jour des amplitudes en résolvant un problème de moindres carrés
sous contrainte de positivité (NNLS pour Non-Negative Least Squares) [Bruckstein et al., 2008].
Cependant, leur implémentation pose une difficulté majeure liée au fait que les problèmes NNLS
ne possèdent pas de solution explicite. Dans la littérature, ces algorithmes sont réputés lents et
des solutions récursives approchées ont été privilégiées [Yaghoobi et al., 2015]. Dans [Nguyen
et al., 2019a], nous montrons que des implémentations récursives exactes sont possibles sans
nécessiter de surcoût calculatoire substantiel. Cette contribution est présentée dans les chapitres 2
et 3.

L’analyse théorique des algorithmes de reconstruction parcimonieuse vise à caractériser leur
capacité à reconstruire le support d’une représentation K-parcimonieuse. Les analyses classiques
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Algorithm 1: Structure générale des algorithmes gloutons orthogonaux pour minimiser (1).
hi désigne la i-ème colonne du dictionnaire H, et x̂+

S représente la solution NNLS associée
au support S.
entrées: y, H,K
sorties : x

1 x← 0 ; S ← ∅ ; rS ← y ;
2 tant que |S| < K et maxi/∈S h

t
irS > 0 faire

3 Sélectionner un atome ` /∈ S ;
4 S ← S ∪ {`} ;
5 x← x̂+

S ;
6 S ← supp(x) ;
7 rS = y −Hx ;
8 fin

d’algorithmes gloutons en K-itérations cherchent à prouver que chaque itération sélectionne un
atome dans le support du vecteur parcimonieux inconnu [Tropp, 2004]. Elles ne s’étendent pas
directement aux algorithmes gloutons non-négatifs, car les propriétés géométriques sur lesquelles
elles s’appuient (en particulier, l’orthogonalité entre le résidu et l’espace d’approximation) ne sont
plus valables. Il est donc nécessaire de repenser ces analyses. Dans [Nguyen et al., 2019d], nous
proposons une analyse basée sur l’hypothèse de cohérence mutuelle faible µ < 1/(2K − 1) pour
analyser de façon unifiée différents algorithmes proposés dans la littérature [Bruckstein et al.,
2008,Yaghoobi et al., 2015]. Les mécanismes sur lesquels cette analyse repose sont synthétisés
dans le chapitre 4.

Algorithmes gloutons orthogonaux positifs

La structure générale des algorithmes gloutons orthogonaux positifs (NNOG pour Non-Negative
Orthogonal Greedy algorithms) est résumée dans l’algorithme 1. Une itération de l’algorithme
consiste en trois étapes:

1. Sélection d’un nouvel atome ` /∈ S pour enrichir le support S de la représentation parci-
monieuse.

2. Mise à jour des amplitudes liées aux atomes sélectionnés (i ∈ S) via la résolution du
problème NNLS associé au support de x:

x̂+
S = arg min

x≥0
‖y −Hx‖2 s.c. supp(x) ⊂ S. (2)

3. Compression du support.

La principale différence structurelle avec les algorithmes gloutons orthogonaux classiques est
la troisième étape de compression du support. On remarque en effet que les coefficients de
la représentation parcimonieuse obtenus après l’étape NNLS s’annulent lorsque les contraintes
de positivité du problème (2) sont activées. L’étape de compression que nous avons proposée
dans [Nguyen et al., 2017, Nguyen et al., 2019a] vise à supprimer les indices correspondants
aux coefficients annulés, pour faire coïncider S avec le support de la solution courante x. La
structure de l’algorithme est donc sensiblement différente des algorithmes gloutons classiques,
qui possèdent une propriété d’emboîtement entre supports.

L’algorithme 1 est conçu comme un algorithme de descente. Ses deux conditions d’arrêt
garantissent que le vecteur obtenu est exactement K-parcimonieux (|S| = K) ou qu’aucune
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décroissance du critère ‖y−Hx‖2 n’est possible en ajoutant un nouvel atome au support courant.
La condition ht

irS > 0 garantit en effet que l’erreur quadratique peut décroître en sélectionnant
l’atome i, ce qui nous a conduit à introduire le concept de “atome descendant” dans le chapitre 2.

La structure des algorithmes NNOG dans le tableau 1 est commune à différents algorithmes
comme Non-Negative Orthogonal Matching Pursuit (NNOMP) [Bruckstein et al., 2008], défini
comme une généralisation d’OMP, Non-Negative Orthogonal Least Squares (NNOLS) et Subopti-
mal Non-Negative Orthogonal Least Squares (SNNOLS), qui sont deux généralisations d’OLS [Yaghoobi
and Davies, 2015]. Dans leur principe, ces algorithmes diffèrent uniquement par leur règle de
sélection du nouvel atome:

`nnomp ∈ arg max
i/∈S

ht
irS , (3)

`snnols ∈ arg max
i/∈S

bt
irS , (4)

`nnols ∈ arg min
i/∈S

‖r+
S∪{i}‖

2, (5)

où r+
S∪{i} := y − Hx̂+

S∪{i} désigne le “résidu positif” lié à la solution NNLS pour le support
S ∪ {i}, et bi représente le projeté orthogonal normalisé de hi sur le sous-espace orthogonal aux
atomes hj , j ∈ S.

La règle de sélection de NNOMP est une extension directe de celle d’OMP, qui maximise
|ht
irS |. De même, NNOLS suit le mécanisme d’OLS, où l’atome sélectionné est celui qui engendre

une décroissance maximale du résidu d’approximation. Finalement, SNNOLS est inspiré d’une
vision géométrique d’OLS en terme d’angle maximal entre le projeté orthogonal bi de l’atome
candidat et le résidu courant. Si les deux interprétations d’OLS en terme d’optimisation et
de géométrie projective sont équivalentes, cette équivalence n’est plus valable dans le cas des
algorithmes gloutons positifs, ce qui conduit à deux algorithmes distincts SNNOLS et NNOLS
(voir chapitre 2).

NNOMP est clairement le moins coûteux des trois algorithmes, car sa règle de sélection ne
repose que sur le calcul d’un produit scalaire par atome. Néanmoins, ses limites de performance
pour des problèmes mal posés nous ont poussé à nous intéresser aux algorithmes inspirés d’OLS,
dont la complexité calculatoire est accrue. La différence de complexité entre NNOLS et SNNOLS
s’avère délicate à analyser à partir des expressions (4) et (5). Nous avons montré que (4) équivaut
à (voir chapitre 2):

`snnols ∈ arg min
i/∈S

{
min
u,v≥0

‖y −HSu− hiv‖2
}
. (6)

Il apparaît alors que le test de sélection d’atome de SNNOLS est largement moins coûteux que
celui de NNOLS, car (6) est un problème de moindres carrés non-contraint par rapport à u, et
sous contrainte de positivité par rapport à la variable scalaire v. Par opposition, le calcul de
r+
S∪{i} dans le cas de NNOLS nécessite de résoudre un problème NNLS avec des contraintes de

positivité sur u et v.

Implémentation rapide

Dans notre article de conférence [Nguyen et al., 2017], nous avons présenté une implémentation
rapide de NNOMP basée sur la résolution récursive des sous-problèmes NNLS par l’algorithme
des contraintes actives [Lawson and Hanson, 1974] avec un démarrage à chaud correspondant à
une initialisation par l’itéré courant de NNOMP. L’algorithme des contraintes actives résout le
problème NNLS de façon exacte en un nombre fini d’itérations. Comme il possède une structure
gloutonne, les implémentations qui résultent de son couplage avec les algorithmes NNOG sont
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pleinement récursives. Nous avons constaté empiriquement que l’algorithme des contraintes
actives avec démarrage à chaud converge en un très faible nombre d’itérations.

Dans le chapitre 2, nous avons proposé une série d’améliorations supplémentaires visant à
résoudre les problèmes de sélection d’atomes (3)-(5) de manière rapide. Il s’agit (i) de prédétecter
que certains atomes candidats ne sont pas descendants et donc les écarter; (ii) pour les atomes
restants et dans le cas de NNOLS (qui requiert la résolution répétée de problèmes NNLS), un
précalcul des solutions du problème ULS pour le support candidat S ∪ {i} permet de détecter
des atomes non-optimaux au sens de (5), ce qui nous évite des appels à NNLS.

À titre d’exemple, les tests effectués dans le chapitre 3 pour un problème de déconvolution
impulsionnelle de taille x ∈ R1140 avec un filtre passe-bas montrent que pour un support S de
taille 80, il y a 30 % d’atomes candidats (i /∈ S) non testés, 68 % d’atomes candidats pour lesquels
seule la solution ULS associée à S ∪{i} est calculée, et seulement 2% des atomes candidats pour
lequel un appel à NNLS est requis.

Analyse d’algorithmes gloutons orthogonaux positifs

L’analyse théorique des algorithmes NNOG en termes de reconstruction exacte du support d’une
représentation parcimonieuse y = Ax (avec x ≥ 0) est un problème ouvert. En effet, à notre con-
naissance, il n’existe pas d’analyse mathématique des algorithmes NNOMP, NNOLS et SNNOLS.
Néanmoins, Bruckstein et al. [Bruckstein et al., 2008] ont conjecturé que NNOMP présente
des garanties de reconstruction exacte en K itérations si la cohérence mutuelle du dictionnaire
µ = maxi 6=j |〈hi,hj〉| vérifie:

µ <
1

2K − 1
. (7)

Dans le chapitre 4, nous avons prouvé cette conjecture non seulement pour NNOMP mais
aussi pour les algorithmes NNOLS et SNNOLS. Notre technique de preuve s’appuie sur une
analyse de préservation de signe par les algorithmes OMP et OLS. Nous avons d’abord établi le
résultat suivant.

Theorem 1. [Nguyen et al., 2019d, Cor. III.1] Supposons que µ < 1
2K−1 . Soit y = Hx une

représentation K-parcimonieuse avec x ≥ 0. Alors OMP et OLS reconstruisent correctement
le support de x en K itérations. De plus, pour chaque itération k = 1, . . . ,K, les poids des k
atomes sélectionnés sont positifs.

La première partie de ce résultat est bien connue. En effet, (7) est une condition néces-
saire [Cai et al., 2010] et suffisante [Tropp, 2004, Herzet et al., 2013] de reconstruction exacte
quelles que soient les amplitudes non nulles des poids dans x. La deuxième partie du théorème
indique qu’en régime de reconstruction exacte, l’itéré courant d’OMP/OLS a des coordonnées
positives. Comme cet itéré correspond à la solution du problème des moindres carrés (ULS)
associé au support courant S, la solution NNLS correspondant au même support coïncide avec
la solution ULS. La très grande proximité entre les règles de sélection d’atomes d’OMP et de
NNOMP (3) nous permet de conclure que les itérés de NNOMP et OMP coïncident. De façon
parallèle, ceux de NNOLS, SNNOLS et OLS coïncident, d’où le résultat suivant.

Theorem 2. [Nguyen et al., 2019d, Cor. III.2] Supposons que µ < 1
2K−1 . Soit y = Hx une

représentation K-parcimonieuse avec x ≥ 0. Alors les itérés de NNOMP coïncident avec ceux de
OMP. De plus, les itérés de NNOLS et SNNOLS coïncident avec ceux de OLS. Par conséquent,
NNOMP, SNNOLS et NNOLS reconstruisent tous le support de x en K itérations.
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Notons enfin que NNLS étant des problèmes d’optimisation contraints, certaines contraintes
de positivité sont susceptibles d’être activées à chaque itération des algorithmes NNOG, entraî-
nant l’annulation des poids correspondants dans la représentation parcimonieuse. Dans ce cas,
l’algorithme NNOG doit effectuer un nombre d’itérations supérieur à K pour pouvoir reconstru-
ire une représentation réellement K-parcimonieuse. Le théorème 2 indique que le phénomène
d’annulation des poids ne se produit pas en régime de reconstruction exacte, où la reconstruction
exacte se produit en K itérations.

Conclusions

Dans ce document, nous présentons un panorama unifié des algorithmes gloutons orthogonaux
non-négatifs (NNOG), conçus comme des algorithmes de descente pour le problème de min-
imisation `0 (1), ainsi qu’une analyse de leur propriété de reconstruction exacte d’un vecteur
K-parcimonieux positif sous l’hypothèse de cohérence mutuelle inférieure à 1

2K−1 .
Du point de vue pratique, nous avons développé un logiciel Matlab en accès libre qui intè-

gre les implémentations récursives proposées dans la section 2.4 [Nguyen et al., 2019b]. Nous
avons effectué des simulations numériques extensives (voire chapitre 3) visant à comparer les
algorithmes NNOMP, SNNOLS et NNOLS pour des problèmes difficiles de type déconvolution
impulsionnelle avec un filtre passe-bas pour lesquels la cohérence mutuelle est proche de 1. Il
ressort d’abord de ces tests que bien que les algorithmes non-négatifs sont plus coûteux que
les versions standards OMP et OLS, le surcoût n’est pas rédhibitoire grâce aux implémenta-
tions rapides proposées (le ratio en temps de calcul entre les versions standards et non-négatives
n’excède jamais un facteur 5 pour des problèmes de taille 1200 avec K = 80). NNOMP s’avère
plus rapide mais nettement moins précis que SNNOLS et NNOLS pour reconstruire le vecteur
parcimonieux. La précision est évaluée en termes d’erreur quadratique sur x et de nombre de
vrais positifs dans le support trouvé. Ces deux algorithmes fournissent des reconstructions parci-
monieuses de qualité comparable, SNNOLS étant sensiblement plus rapide. Plus précisément, on
peut noter que le nombre d’itérations de NNOLS pour atteindre un support de taille K est sensi-
blement plus faible que celui de SNNOLS (en moyenne 120 itérations contre 150 sont nécessaires
pour obtenir un support de taille K = 80 pour l’exemple donné dans la section 3.3) mais le coût
par itération de NNOLS reste plus important. En revanche, les défauts de SNNOLS semblent
être plus prononcés pour des problèmes de type “super-résolution” en utilisant des grilles fines
(impliquant des dictionnaires plus gros et plus corrélés), où le nombre d’itérations de SNNOLS
augmente significativement, induisant un coût calculatoire qui devient globalement supérieur à
celui de NNOLS.
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This work is supported by the BECOSE project (2016-2019)1 aiming to develop efficient
sparse algorithms for ill-conditioned inverse problems. The BECOSE project contains three
main tasks. The first task is to develop new sparsity-based algorithms dedicated to ill-posed
inverse problems by exploiting additional structural information such as non-negativity or by
working on continuous dictionaries. The second task is to enrich the theoretical analysis of
sparse algorithms, especially the stepwise orthogonal greedy search algorithms, by taking into
account prior knowledge on the signs, coefficient values, and partial support information. The
third task is to assess the proposed algorithms in the context of tomographic Particle Image
Velocimetry (PIV) application. This thesis addresses partly the first and second tasks of the
BECOSE project.

In this introduction, we start by presenting the non-negative sparse reconstruction problem
and some motivating applications. We next review the state-of-the-art sparse algorithms with
a focus on greedy algorithms and recall the state-of-the-art exact recovery analyses of greedy
algorithms. Then we summarize our contributions related to non-negative orthogonal greedy
algorithms and exact recovery analysis. We end up with the list of resulting publications.

1Funded by the French National Research Agency (No. ANR-15-CE23-0021). http://becose.univ-lorraine.fr



2 1. Introduction

1.1 Non-negative sparse reconstruction

Sparse approximation appears in a wide range of applications, especially in signal and image
processing and compressive sensing [Elad, 2010]. Given a signal y ∈ Rm and a redundant
dictionary H ∈ Rm×n, one is interested in finding the smallest set of dictionary columns (also
called atoms) that describes y well enough. In other words, one seeks for a vector x ∈ Rn
that gives the best approximation y ≈ Hx and has the fewest non-zero coefficients (i.e., the
sparsest solution). A simple illustration is given in Figure 1.1. Sparse approximation often leads
to solving an `0 minimization problem that takes one of the following forms:

min
x

‖x‖0 s.t. ‖y −Hx‖2 ≤ ε (`0Cε)

min
x

‖y −Hx‖22 s.t. ‖x‖0 ≤ K (`0CK)

min
x

‖y −Hx‖22 + λ‖x‖0 (`0P )

in which ε, K and λ are positive quantities related to the noise standard deviation, the sparsity
level and the regularization strength, respectively. Let us recall that the `0-“norm” counts the
number of non-zero coefficients: ‖x‖0 = Card{i : xi 6= 0}. According to its definition, `0 is
not a proper norm since it is not homogeneous. However, it is widely used as a pseudo-norm
in statistics, scientific computing and information theory. Hereafter, we call Hx a K-sparse
representation if ‖x‖0 = K. Without loss of generality, we assume that the dictionary H is
normalized (so every atom hi has `2-norm equal to 1). The `2-norm ‖·‖2 will be also denoted
‖·‖.

≈

y H x

known unknown

Figure 1.1: A simple illustration of sparse approximation. The red color indicates the non-zero
coefficients and the corresponding dictionary atoms.

In several application fields such as geoscience and remote sensing [Iordache et al., 2011,Esser
et al., 2013], audio [Virtanen et al., 2013], chemometrics [Bro and De Jond, 1997], bioinformat-
ics [Slawski et al., 2012], astrophysics [Högbom, 1974] and computed tomography [Petra and
Schnörr, 2014], the signal or image of interest is sparse, but also non-negative. In such contexts,
a common practice is to regularize the inverse problem to favor both sparsity and non-negativity
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of the sought signal, see, e.g., [Hoyer, 2004,Petra and Schnörr, 2014,Slawski et al., 2012,Rapin
et al., 2013]. This regularization leads to non-negative `0 minimization problems as follows.

min
x≥0

‖x‖0 s.t. ‖y −Hx‖2 ≤ ε (`0Cε+)

min
x≥0

‖y −Hx‖22 s.t. ‖x‖0 ≤ K (`0CK+)

min
x≥0

‖y −Hx‖22 + λ‖x‖0 (`0P+)

To address these problems, a usual approach is to incorporate the non-negativity into existing
sparse solvers. The obtained algorithms are called non-negative sparse solvers. However, the
extension of sparse solvers to the non-negative setting is not always obvious. Besides, the non-
negative sparse solvers may be significantly more expensive than the primary sparse solvers. We
will discuss this later in Section 1.3. Now, let us take a quick tour on some applications of
non-negative sparse reconstruction.

1.2 Some applications

In this section, we briefly discuss two among several applications in which both sparsity and non-
negativity are required for the sought solution. The presented applications contain tomographic
PIV reconstruction and spectral unmixing. More details on other applications can be found in
the references cited in the previous section.

1.2.1 Tomographic PIV reconstruction

Tomographic Particle Image Velocimetry (Tomo-PIV) [Elsinga et al., 2006] is a method to re-
construct 3-D maps of the velocity field of the flows in fluids. The fluid is seeded with point-like
tracer particles whose motion is used to calculate the speed and direction of the flow. A laser with
an optical arrangement is used to limit the physical region illuminated. Several (at least four)
cameras are placed at different angles to record simultaneous views (radiograph, i.e., projection
images) of the illuminated particles. The volume is then reconstructed to yield a discretized 3-D
intensity field. The principle of Tomo-PIV is summarized in Figure 1.2.

Tomo-PIV contains two steps: (i) reconstruction of 3-D volume from 2-D radiographs and
(ii) estimation of the vector field from reconstructed volumes at consecutive times. The re-
construction procedure is an under-determined inverse problem since the number of unknowns
(the number of voxels of the 3-D volume) is usually much higher than the number of data (the
number of radiograph pixels). The light intensity corresponding to a voxel is nonzero if a par-
ticle is present at that voxel and zero otherwise. Since the number of tracer particles is small
compared with the number of voxels and the light intensity is non-negative, the sought solu-
tion corresponding to the volume intensity is sparse and non-negative [Barbu and Herzet, 2016].
Therefore, Tomo-PIV reconstruction leads to a non-negative sparse approximation problem.

One example of Tomo-PIV reconstruction is given in Figs. 1.3-1.4. The simulated discretized
3-D volume of dimension 79× 75× 12 with 81 tracer particles is reconstructed from 4 quantized
radiographs of size 32× 322. Here the data vector y is built from the 4 images whose pixels are
unfolded and rearranged in lexicographical order. The ground truth vector x is built similarly
from the unfolded discretized 3-D volume and the amplitudes represent the light intensities at
each voxel of the discretized volume. The dictionary H is built from the projection operator
[Barbu and Herzet, 2016], each column is the projection of each voxel. It should be noted that
the choice of the 3-D grid is somewhat arbitrary although there are standard conventions in
Tomo-PIV. The choice of a fine grid leads to a high resolution but also a more difficult problem

2This work is done within the scope of the collaboration with ONERA in the BECOSE project.
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Figure 1.2: Principle of Tomo-PIV (source: [Elsinga et al., 2006])

since the number of voxels dramatically increases. It is hence important to know until which
resolution one can handle (see Chapter 3 for further discussion). A recent trend is to work with
a continuous dictionary (off-the-grid approach) [Ait Tilat et al., 2019,Elvira et al., 2019]. In this
thesis, we will not explore the continuous approach. Instead, we will elaborate on the case of a
discrete dictionary corresponding to a fine grid.

Figure 1.4 presents our reconstruction from the simulated data in Figure 1.3 using the SBR
algorithm [Soussen et al., 2011]. The rate of correct detection is 68 %. It should be noted that
correct detection is the detection of a particle in the same voxel as the ground truth particle. The
rate 68 % might seem low but, as can be seen in Figure 1.4, the reconstruction is very accurate in
the qualitative viewpoint: each detected particle is located very close to a ground truth particle.



1.2. Some applications 5

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

Figure 1.3: Four quantized images in a Tomo-PIV simulation provided by ONERA.
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Figure 1.4: Reconstructed discretized 3-D volume of a Tomo-PIV simulation using the SBR
algorithm. The black circles represent the true particles. The detected particles are represented
with bullets where the color represents the light intensity.



6 1. Introduction

1.2.2 Spectral unmixing

Figure 1.5: Spectral unmixing (image credit: Boeing)

Hyperspectral images are often presented as a cube with two spatial dimensions and one
spectral dimension. Each hyperspectral pixel is a spectrum collecting light reflectance at different
spectral bands. Very often, each spectrum of a hyperspectral image can be seen as a linear
mixture of pure spectra related to several materials [Bioucas-Dias et al., 2012]. This happens
when different materials are combined in the scene location or when the spatial resolution of the
hyperspectral sensor is low enough for many materials to jointly occupy a single pixel. The linear
mixture model assumes that the mixed pixel spectrum can be presented as a linear combination
of spectra of constituent materials [Keshava and Mustard, 2002]. Therefore, decomposing the
spectrum helps to detect the materials constituting the measured pixel.

Spectral unmixing is the procedure that decomposes a mixed spectrum into different spectra
(endmembers) and the corresponding fractions (abundances). This decomposition is often done
using a library (dictionary) of spectra [Mortada, 2018]. Since the number of constituting spectra
is often very small compared with the number of spectra in the library and the correspond-
ing fractions are non-negative, spectral unmixing leads to a non-negative sparse approximation
problem [Iordache et al., 2011,Wang et al., 2018]. Using our notation, the data vector y is the
mixed spectrum, the dictionary H is the library of spectra in which each column presents a pure
spectrum. One looks for the vector x containing the fractions of each pure spectrum in the
mixed spectrum y. In Figure 1.5, the mixed spectrum (bottom left) is decomposed as a linear
combination of 4 spectra (right) extracted from the large size dictionary (not shown) which may
contain many hundreds or many thousands of spectra.

1.3 State-of-the-art algorithms

The aforementioned `0 minimization problems can be seen as discrete (combinatorial problem)
since the main difficulty is to find the support of the sparse representation S = {i : xi 6= 0}.
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The `0 minimization problems are known to be NP-hard for general dictionaries [Natarajan,
1995,Davis et al., 1997]. This means that when the problem dimension is large, it is hopeless
to look for the optimal solution since the exhaustive search might be extremely long. Therefore,
one rather relies on suboptimal algorithms which run in polynomial time and return a solution
(hopefully) close to the optimal. Such algorithms include greedy algorithms, convex and non-
convex solvers. In this section we make an overview of the three categories with a focus on
greedy algorithms and their non-negative extensions. We therefore choose to start the section
with a review of greedy algorithms, then go towards non-negative greedy algorithms, then quickly
present convex solvers and end up with a short discussion about non-convex solvers.

1.3.1 Greedy algorithms

Greedy algorithms are suboptimal algorithms acting on the `0-norm of solution. Originally,
greedy algorithms start from the zero vector (sparsest solution) which corresponds to an empty
support, and gradually change the cardinality of the support one-by-one through iterations,
hence the name “greedy”. According to this formulation, greedy algorithms can be interpreted as
descent algorithms (the residual norm ‖y−Hx‖ is decreasing at each iteration) especially suited
for reconstructing highly sparse solutions. In the literature, the name “greedy” also refers to
another class of algorithms in which a support of fixed cardinality is produced at each iteration.
Unlike the previous strategies, these algorithms are not always descent algorithms and they
require some prior knowledge about the cardinality of the solution support. We next discuss
some typical greedy algorithms of both strategies. These algorithms and the corresponding
problem they address are shown in Table 1.1. Note that in the rest of the thesis we use the term
“greedy” to refer to the one-by-one updating strategy only.

Problem Algorithms
(`0Cε) MP, OMP, OLS
(`0CK) MP, OMP, OLS, CoSaMP, SP, IHT, HTP
(`0P ) Bayesian MP, Bayesian OMP, SBR, CSBR

Table 1.1: Typical greedy algorithms and the corresponding problems addressed

1.3.1.1 One-by-one updating strategy

Greedy algorithms increasing the support cardinality one-by-one at each iteration contain Match-
ing Pursuit (MP) [Mallat and Zhang, 1993], Orthogonal Matching Pursuit (OMP) [Pati et al.,
1993], and Orthogonal Least Squares (OLS) [Chen et al., 1989]3, in increasing order of complex-
ity. The greedy mechanism consists of two steps: (i) new atom selection (h`) yielding a new
support S ← S ∪{`}, and (ii) update of the sparse coefficients xS . MP and OMP share the way
of choosing the new atom by maximizing the inner product of the current residual and dictionary
atoms

` ∈ arg max
i

|rthi|. (1.1)

However, they differ in the way the coefficients are updated. While MP only updates the co-
efficient related to the new selected atom x`, OMP updates all the coefficients xi, i ∈ S by

3In the literature, OLS is also known as Order Recursive Matching Pursuit (ORMP) [Cotter et al., 1999],
Optimized Orthogonal Matching Pursuit (OOMP) [Rebollo-Neira and Lowe, 2002], and Pure Orthogonal Matching
Pursuit [Foucart, 2013].
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performing an orthogonal projection (hence the name “orthogonal”). As a result, the residual
r = y − HSx(S) is orthogonal to the subspace spanned by selected atoms span (HS) (see Fig.
1.6). Note that the orthogonal projection x(S)← H†Sy is equivalent to solve the Unconstrained

y

PSy = Hx

r

span(HS)

Figure 1.6: Orthogonal projection of y onto span (HS) and the resulting residual r.

Least Squares (ULS) subproblem

x(S)← arg min
z

‖y −HSz‖2. (1.2)

MP iteration is very fast but the number of MP iterations to reach a given residual value ε
might be significantly larger than that of OMP. In addition, OMP is empirically more effective
than MP [Pati et al., 1993]. OLS updates the coefficients the same way as OMP but differs in
atom selection. While OMP selects the atom having the highest inner product (in magnitude)
with the current residual, OLS considers the inner product with the projection of atoms onto
the orthogonal complement of selected subspace after normalization (the normalized projected
atoms). This is illustrated in Algorithms 2-3 in which S denotes the support of the current
solution and g̃Si denotes the normalized projected atom, i.e.,

h̃Si = P⊥S hi, g̃Si =
h̃Si
‖h̃Si ‖

. (1.3)

Algorithm 2: OMP [Pati et al., 1993]
Input: y, H, K
Output: x solving (`0CK)

1 Initialization: x← 0; S ← ∅; r ← y ;
2 while |S| < K do
3 ` ∈ arg maxi/∈S |rthi| ;
4 S ← S ∪ {`} ;
5 x(S)← H†Sy ;
6 r ← y −HSx(S) ;
7 end

Algorithm 3: OLS [Chen et al., 1989]
Input: y, H, K
Output: x solving (`0CK)

1 Initialization: x← 0; S ← ∅; r ← y ;
2 while |S| < K do
3 ` ∈ arg maxi/∈S |rtg̃Si | ;
4 S ← S ∪ {`} ;
5 x(S)← H†Sy;
6 r ← y −HSx(S);
7 end

Note that from an optimization viewpoint, the selection rule of OMP (line 3 of Algorithm 2)
is equivalent to

` ∈ arg min
i/∈S

(
min
z
‖y −HSx(S)− zhi‖2

)
. (1.4)
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Indeed, minz ‖y − HSx(S) − zhi‖2 = minz ‖r − zhi‖2 = ‖r‖2 − |rthi|2 as ‖hi‖ = 1. Besides,
OLS selection rule (line 3 of Algorithm 3) is equivalent to [Blumensath and Davies, 2007]

` ∈ arg min
i/∈S

(
min
z
‖y −HS∪{i}z‖2

)
. (1.5)

From this point of view, it is obvious that the OLS selection rule is more costly than that of OMP,
although recursive4 update schemes are available, see, e.g., [Chen et al., 1989,Rebollo-Neira and
Lowe, 2002]. In this thesis we are particularly interested in orthogonal greedy algorithms such
as OMP and OLS since they are fast in comparison with non-greedy solvers and empirically
effective.

Some greedy algorithms change the support cardinality one-by-one at each iteration but
in both forward and backward directions [Miller, 2002]. This means these algorithms either
add or remove one atom at each iteration. Examples include Bayesian MP (BMP), Bayesian
OMP (BOMP) [Herzet and Drémeau, 2010], Single Best Replacement (SBR) [Soussen et al.,
2011] and CSBR [Soussen et al., 2015]. BMP, BOMP, SBR are forward-backward extensions
of MP, OMP, OLS, respectively. They are designed as descent algorithms dedicated to the
penalized `0 minimization problem (`0P ) with a particular value of the parameter λ. CSBR is
the “continuous” version of SBR which solves (`0P ) for a continuum of values of λ. Like MP, BMP
is fast but the three algorithms BOMP, SBR and CSBR are empirically more effective [Herzet
and Drémeau, 2010,Soussen et al., 2011]. Like OMP and OLS, the forward-backward extensions
BOMP, SBR and CSBR can be efficiently implemented using recursive updating schemes [Sturm
and Christensen, 2012,Soussen et al., 2011].

1.3.1.2 Fixed-cardinality updating strategy

Instead of changing the support size one-by-one, some algorithms produce a support of fixed-
cardinality at every iteration. Such algorithms are specifically designed to address (`0CK).
They include CoSaMP [Needell and Tropp, 2009], Subspace Pursuit (SP) [Dai and Milenkovic,
2009], Iterative Hard Thresholding (IHT) [Blumensath and Davies, 2008], and Hard Thresholding
Pursuit (HTP) [Foucart, 2011], to name but a few. CoSaMP and SP are very similar, as well as
IHT and HTP. We hence choose to present them closely for ease of comparison (see Algorithms
4-7).

At each CoSaMP iteration, at most 2K atoms (reselection might occur) are selected to enter
the support, then the coefficients are updated by performing an orthogonal projection followed
by a thresholding. Similarly, SP selects at most K atoms to enter the support and updates the
coefficients by performing an orthogonal projection followed by a thresholding and an additional
orthogonal projection. Note that CoSaMP performs one orthogonal projection related to a
support of size around 3K at each iteration while SP performs two orthogonal projections related
to support sizes around 2K and K. In the literature, CoSaMP and SP are known to have very
competitive performances [Needell and Tropp, 2009,Dai and Milenkovic, 2009].

IHT’s principle is to repeat a gradient descent move followed by a thresholding [Blumensath
and Davies, 2008]. Therefore, IHT is very fast at each iteration but it might need a large number
of iterations to converge. To improve the convergence speed, more effective step search strategies
were proposed later [Blumensath and Davies, 2010]. Hereafter, we use the name IHT to refer to
the later scheme (presented in Algorithm 6). It should be noted that a version of IHT dedicated
to (`0P ) was also proposed but it was reported to be less effective than Algorithm 6 [Blumensath
and Davies, 2008].

HTP [Foucart, 2011] is a variant of IHT in which an orthogonal projection is performed
to update the coefficients at each iteration. Note that the orthogonal prjection at line 12 of

4in the sense that the current iterate is used to accelerate the computation of the next iterate.
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Algorithm 7 is computed approximately using a certain number of gradient descent iterations
(otherwise α = 0 at the next iteration). Each iteration of HTP is more costly than that of IHT.
However, HTP is empirically more effective [Foucart, 2011].

Since CoSaMP, SP and HTP may change many of the support elements at each iteration, they
are difficult to lend themselves to recursive implementations. Besides, their coefficient update
is done by orthogonal projection which might be expensive without recursive implementation.
Therefore, their coefficient update step is often implemented approximately (see, e.g., [Needell
and Tropp, 2009]). Finally, it is worth emphasizing that, among greedy algorithms performing
orthogonal projection at every stage, OMP and OLS can address both (`0Cε) and (`0CK) with
a slight modification in their stopping rules (replacing |S| < K by ‖r‖ > ε). On the contrary,
CoSaMP, SP, and HTP are restricted to (`0CK) since they require the sparsity level K as an
input argument.

Algorithm 4: CoSaMP [Needell and
Tropp, 2009]
Input: y, H, K
Output: x solving (`0CK)

1 Initialization: x← 0; S ← ∅; r ← y ;
2 while not stop do
3 T ← set of indices of the 2K

largest magnitudes of |Htr| ;
4 S ← S ∪ T ;
5 x(S)← H†Sy ;
6 S ← set of indices of the K

largest magnitudes of x ;
7 Set xi = 0 for all i /∈ S ;
8 r ← y −HSx(S) ;
9 end

10 ;

Algorithm 5: SP [Dai and
Milenkovic, 2009]
Input: y, H, K
Output: x solving (`0CK)

1 Initialization: x← 0; S ← ∅; r ← y ;
2 while not stop do
3 T ← set of indices of the K

largest magnitudes of |Htr| ;
4 S ← S ∪ T ;
5 x(S)← H†Sy ;
6 S ← set of indices of the K

largest magnitudes of x ;
7 Set xi = 0 for all i /∈ S ;
8 x(S)← H†Sy ;
9 r ← y −HSx(S) ;

10 end

Algorithm 6: IHT [Blumensath and
Davies, 2010]
Input: y, H, K
Output: x solving (`0CK)

1 Initialization: x← 0; S ← ∅; r ← y ;
2 while not stop do
3 if S = ∅ then
4 α = 1

5 else

6 α← ‖Ht
Sr‖2

‖HSHt
Sr‖2

7 end
8 x← x+ αHtr ;
9 S ← set of indices of the K

largest magnitudes of x ;
10 Set xi = 0 for all i /∈ S ;
11 r ← y −HSx(S) ;
12 end

Algorithm 7: HTP [Foucart, 2011]
Input: y, H, K
Output: x solving (`0CK)

1 Initialization: x← 0; S ← ∅; r ← y ;
2 while not stop do
3 if S = ∅ then
4 α = 1

5 else

6 α← ‖Ht
Sr‖2

‖HSHt
Sr‖2

7 end
8 x← x+ αHtr ;
9 S ← set of indices of the K

largest magnitudes of x ;
10 Set xi = 0 for all i /∈ S ;
11 x(S)← H†Sy ;
12 r ← y −HSx(S) ;
13 end
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1.3.2 Non-negative greedy algorithms

Some greedy algorithms such as MP and IHT, due to the simplicity of their iterations, can be
turned to non-negative setting quite simply. However, it is not the case for orthogonal greedy
algorithms such as OMP and OLS. Taking non-negativity into account within OMP and OLS
can raise some non-trivial issues since the structure of the algorithm is deeply modified and, more
importantly, proposing efficient implementation is not obvious. Let us now explain the issues
and how they are addressed in the literature.

Non-negative extensions of OMP The first non-negative extension of OMP was introduced
by Bruckstein et al. under the name Non-negative OMP (NNOMP) [Bruckstein et al., 2008]. This
extension naturally considers only positive inner products in the selection step (see Algorithm
8). In addition, the coefficient update is done by solving a Non-Negative Least Squares (NNLS)
subproblem

x(S)← arg min
z≥0

‖y −HSz‖2 (1.6)

instead of the ULS subproblem (1.2). Since the NNLS solution might differ from the ULS solution
when some non-negativity constraints are activated, the orthogonality between the residual vector
and the selected subspace might not hold anymore. Besides, unlike the ULS problem, NNLS
does not have a closed-form solution, so one needs to run an iterative subroutine to compute
the NNLS solution at each iteration. As a result, NNOMP and other non-negative versions of
OMP and OLS are expected to be much more expensive than OMP and OLS [Bruckstein et al.,
2008,Yaghoobi et al., 2015,Yaghoobi and Davies, 2015]. The same argument applies to the non-
negative extensions of CoSaMP, SP and HTP. However, the non-negative extensions of OMP
and OLS can still have fully recursive implementation as explained in Chapter 2 while it seems
not to be the case for the non-negative extensions of CoSaMP, SP and HTP.

The fast implementation of NNOMP was not addressed in [Bruckstein et al., 2008] but later
in [Yaghoobi et al., 2015,Ramamurthy et al., 2014,Kim and Haldar, 2016,Wang et al., 2018].
Yaghoobi et al. [Yaghoobi et al., 2015] proposed a scheme named Fast NNOMP (FNNOMP)
which combines the selection and the coefficient update steps in one so that the residual vector
is orthogonal to the selected subspace at every iteration. Thus, FNNOMP does not require to
solve any NNLS subproblem but it might return a different output from that of NNOMP. In
other words, FNNOMP can be seen as a variant of NNOMP without NNLS solving. Another
variant of NNOMP was proposed by Wang et al. [Wang et al., 2018]. This variant, named
NN-OMP, selects the new atom the same way as OMP but updates the coefficients by solving a
NNLS subproblem. Thus NN-OMP and NNOMP have roughly the same costs but likely different
outputs.

Non-negative extensions of OLS [Yaghoobi and Davies, 2015] firstly introduced a non-
negative extension of OLS named Non-Negative OLS (NNOLS). This version (presented in Al-
gorithm 10) replaces all the orthogonal projections (1.5) by NNLS subproblems

` ∈ arg min
i/∈S

(
min
z≥0

‖y −HS∪{i}z‖2
)
. (1.7)

As a result, NNOLS requires to solve as many NNLS subproblems as the number of non-selected
atoms at each iteration, hence it was considered to be too expensive [Yaghoobi and Davies, 2015].
Yaghoobi and Davies proposed two variants of NNOLS namely Suboptimal NNOLS (SNNOLS)
and Fast NNOLS (FNNOLS) [Yaghoobi and Davies, 2015]. SNNOLS (presented in Algorithm
9) is based on OLS selection rule (see Algorithm 3) but it only considers positive inner products.
Besides, SNNOLS requires to solve only one NNLS subproblem related to the augmented support
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at each iteration. FNNOLS was inspired from SNNOLS the same way as FNNOMP was inspired
from NNOMP. The two approximate schemes FNNOMP and FNNOLS are not presented here
because we have examples showing that FNNOMP and FNNOLS do not always respect the
positivity constraint [Nguyen et al., 2017].

NNOMP and SNNOLS (Algorithms 8-9) can be seen as intuitive extensions to the non-
negative setting of OMP and OLS (Algorithms 2-3), respectively. Besides, NNOLS is a direct
non-negative extension of OLS in optimization viewpoint. Indeed, NNOLS is designed as a
descent algorithm aiming to decrease at most the residual using a single change in the support.
It is noteworthy that, while the two interpretations of OLS ((1.5) and line 3-Algorithm 3) are
equivalent [Blumensath and Davies, 2007], NNOLS and SNNOLS significantly differ since (1.5)
and line 3-Algorithm 3 are no more equivalent in the non-negative setting. Indeed, the SNNOLS
selection rule (line 3-Algorithm 9) can be interpreted as

` ∈ arg min
i/∈S

(
min
u,v≥0

‖y −HSu− vhi‖2
)

while (1.7) can be rewritten as

` ∈ arg min
i/∈S

(
min

u≥0,v≥0
‖y −HSu− vhi‖2

)
(see Chapter 2 for more details). From this point of view, we can see that SNNOLS selection rule
is less costly than that of NNOLS. Finally, the three algorithms NNOLS, SNNOLS and NNOMP
can address either (`0Cε+) or (`0CK+) by a slight modification in the stopping rule (replacing
|S| < K by ‖r‖ > ε).

Algorithm 8: NNOMP [Bruckstein
et al., 2008]
Input: y, H, K
Output: x solving (`0CK+)

1 Initialization: x← 0; S ← ∅; r ← y;
2 while |S| < K and maxi/∈S r

thi > 0

do
3 ` ∈ arg maxi/∈S r

thi ;
4 S ← S ∪ {`} ;
5 x(S)← arg minz≥0 ‖y −HSz‖2;
6 r ← y −HSx(S) ;
7 end

Algorithm 9: SNNOLS [Yaghoobi
and Davies, 2015]
Input: y, H, K
Output: x solving (`0CK+)

1 Initialization: x← 0; S ← ∅; r ← y;
2 while |S| < K and maxi/∈S r

tg̃Si > 0

do
3 ` ∈ arg maxi/∈S r

tg̃Si ;
4 S ← S ∪ {`} ;
5 x(S)← arg minz≥0 ‖y −HSz‖2;
6 r ← y −HSx(S) ;
7 end

Algorithm 10: NNOLS [Yaghoobi and Davies, 2015]
Input: y, H, K
Output: x solving (`0CK+)

1 Initialization: x← 0; S ← ∅; r ← y;
2 while |S| < K do
3 ` ∈ arg mini/∈S

(
minz≥0 ‖y −HS∪{i}z‖2

)
;

4 S ← S ∪ {`} ;
5 x(S)← arg minz≥0 ‖y −HSz‖2 ;
6 end

Non-negative extensions of CoSaMP, SP, and HTP CoSaMP, SP, and HTP were ex-
tended to the non-negative setting in [Kim and Haldar, 2016]. These extensions (named NNCoSaMP,
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NNSP and NNHTP, respectively) consider only the positive inner products in atom selection and
replace the orthogonal projection by NNLS solving, just as the way NNOMP [Bruckstein et al.,
2008] was designed. NNCoSaMP is displayed in Algorithm 11 for an illustration. It is noteworthy
that, while CoSaMP, SP and HTP produce an exactly K-sparse solution at each iteration, their
non-negative extension do not. This is because the NNLS solution differs from the ULS solution
(and is sparser) when some non-negative constraints are activated. More importantly, there is
no obvious way to enforce the K-sparseness of the output of NNCoSaMP, NNSP and NNHTP.
This is one drawback when using these algorithms in practice. In addition, NNCoSaMP, NNSP
and NNHTP are restricted to address (`0CK+) as they requires the prior knowledge on the spar-
sity level K of the solution. Finally, these algorithms are hard to lend themselves to recursive
implementation since several support elements are changed at each iteration.

Algorithm 11: Non-Negative CoSaMP (NNCoSaMP) [Kim and Haldar, 2016]
Input: y, H, K
Output: x solving (`0CK+)

1 Initialization: x← 0; S ← ∅; r ← y ;
2 while not stop do
3 T ← set of indices of the 2K largest positive entries of Htr ;
4 S ← S ∪ T ;
5 x(S)← arg minz≥0 ‖y −HSz‖2 ;
6 S ← set of indices of the K largest magnitude of x ;
7 Set xi = 0 for all i /∈ S ;
8 r ← y −HSx(S) ;
9 end

1.3.3 Convex solvers

Since `0 minimization is NP-hard and several local minimizers may exist, an alternative approach
is to replace `0 by `1 to obtain a convex optimization problem which is easier to solve (and there
exist fast solvers) and has a single minimizer. However, the `1 solution might be very far from the
global minimizer of the `0 problem (except for easy problems where `0 − `1 equivalence holds).
`1 minimization problem which is often referred to as LASSO [Tibshirani, 1996,Friedman et al.,
2007] or Basic Pursuit [Chen et al., 2001, van den Berg and Friedlander, 2009] can take one of
the following forms

min
x

‖x‖1 s.t. ‖y −Hx‖2 ≤ ε (`1Cε)

min
x

‖y −Hx‖22 s.t. ‖x‖1 ≤ K (`1CK)

min
x

‖y −Hx‖22 + λ‖x‖1 (`1P )

Note that the three `1 minimization problems are equivalent in the sense that we can find a value
of λ so that (`1P ) solution identifies with that of (`1Cε) or (`1CK). Moreover, it was shown that
when λ tends to zero, the solution of (`1P ) converges to that of (`1Cε) for ε = 0 [Donoho and
Tsaig, 2008]. `1 minimization problems can be solved by many methods such as interior point,
gradient projection, homotopy, Lagrange multiplier, etc. Popular `1 solvers include ADMM [Boyd
et al., 2011], FISTA [Beck and Teboulle, 2009], LARS [Efron et al., 2004] and Homotopy [Donoho
and Tsaig, 2008]. Originally, LARS [Efron et al., 2004] was designed as a forward algorithm.
LARS with the LASSO modification [Efron et al., 2004] is forward-backward and it is identical
to Homotopy. While ADMM an FISTA only solve (`0P ) approximately for a particular value of
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λ, LARS and Homotopy solve it exactly under mild assumptions and produce the entire solution
path for all values of λ (for undercomplete case in [Donoho and Tsaig, 2008] and overcomplete
case in [Efron et al., 2004]). Interestingly, both Homotopy and LARS use greedy strategies and
they are shown to be structurally close to OMP [Donoho and Tsaig, 2008]. It is noteworthy that
since `1 solvers tend to produce biased coefficents [Fan and Li, 2001], usually a post-processing
step is done to debias amplitudes

S ← supp (x), x(S)← H†Sy. (1.8)

Addressing a well-defined convex problem, `1 solvers can be extended to the non-negative
setting without many difficulties. ADMM [Barbu and Herzet, 2016] and Non-negative LARS
(NLARS) [Efron et al., 2004, Morup et al., 2008] are typical examples among others. Note
that NLARS is the non-negative extension of modified LARS (i.e., non-negative extension of
Homotopy). Since we are interested in greedy structure and non-negativity, NLARS is worth to
be commented. NLARS returns the solution path of non-negative LASSO

min
x≥0

‖y −Hx‖22 + λ‖x‖1 (`1P+)

for all values of λ. It is notable that (`1P+) is equivalent to

min
x≥0

‖y −Hx‖22 + λ1tx

which is a standard quadratic program for a certain value of λ hence it can also be solved by
active-set method [Nocedal and Wright, 2006]. The main idea of NLARS is to maintain `1
optimal condition when λ is changing. Each iteration consists of either an addition or a removal
of one atom from the support and the update of sparse approximation Hx along the direction
equiangular to the selected atoms. The main structural difference with LARS is that NLARS
considers only the positive inner products rthi in the atom selection. In terms of complexity,
NLARS requires the update of the inverse Gram matrix (Ht

SHS)−1 at each iteration but it does
not perform orthogonal projectionH†Sy. Finally, NLARS can also be turned to obtain aK-sparse
solution (see Matlab code accompanying to the paper [Morup et al., 2008]).

1.3.4 Non-convex solvers

Since `1 solvers tend to produce less sparse solutions and biased estimates for large coefficients
[Fan and Li, 2001], another approach is to replace `0 by a non-convex separable function which
is singular at the origin to promote sparsity and has vanished derivative for large values to be
unbiased. Such non-convex functions include the smoothly clipped absolute deviation (SCAD)
[Fan and Li, 2001], the `p pseudonorm (‖x‖pp with 0 < p < 1) [Frank and Friedman, 1993] and
logarithm

∑
i log(|xi|+ η) [Candes et al., 2008] among others. The SCAD function is piecewise

smooth. It is defined in 1-D by clipping three 1-D functions with separable regularization.
Intuitively, it looks like `1 norm around the origin and flat at large values. The `p pseudonorm
(with 0 < p < 1) and logarithm are quasi-smooth approximations of the `0 norm. To minimize
the non-convex objective function, a usual technique is to locally approximate it by a convex
(linear or quadratic) function then use one or many iterations of proximal gradient methods or
Newton’s method to solve the resulting convex optimization problem [Zou and Li, 2008,Huang
et al., 2008, Saab et al., 2008]. As a result, non-convex solvers often suffer from a rather high
computational complexity compared with `1 solvers and greedy algorithms. Another technique
is to solve the non-convex minimization problem through a sequence of weighted `1 minimization
problems [Candes et al., 2008]. This is a special case of DC programming [Thoai, 1988,Le Thi
et al., 2013]. In the literature, non-negative extension of non-convex solvers is quite rare.
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1.4 State-of-the-art exact recovery analyses of greedy algorithms

1.4.1 Exact recovery with greedy algorithms

OMP is guaranteed to recover the K-sparse representation of a data signal in the noiseless case
if the mutual coherence

µ = max
i 6=j
|ht
ihj |

of the dictionary H satisfies [Tropp, 2004,Herzet et al., 2013]

µ <
1

2K − 1
. (1.9)

This condition was proved to be sharp [Cai et al., 2010] and extensions to noisy cases were
considered [Ben-Haim et al., 2010,Cai and Wang, 2011]. Besides, relaxations of (1.9) given partial
information on the decomposition of the data signal were proposed [Herzet et al., 2013,Herzet
et al., 2016]. Other exact recovery analyses of OMP also consider ERC condition [Tropp, 2004]

max
i/∈S∗
‖H†S∗hi‖1 < 1 (1.10)

(where S∗ presents the true support of the K-sparse representation) or the Restricted Isometry
Property (RIP) condition of order K [Davenport and Wakin, 2010,Satpathi et al., 2013,Li et al.,
2015,Wen et al., 2017b]

(1− δ)‖x‖2 ≤ ‖Hx‖2 ≤ (1 + δ)‖x‖2 (1.11)

for all K-sparse vectors x (where δ presents the RIP constant).
While the mutual coherence based condition (1.9) is intuitive and its computation is feasible,

it is stronger than (i.e., it implies) the ERC condition (1.10) [Tropp, 2004] and might never hold
for very large size dictionaries [Foucart and Rauhut, 2013]. On the contrary, evaluating ERC
condition (1.10) requires the knowledge of the true support S∗ which is often unavailable and
evaluating RIP condition (1.11) is computationally intractable in general [Tillmann, 2015].

Exact support recovery properties of OLS have been studied more recently. In [Herzet et al.,
2013], the mutual coherence based condition (1.9) was extended to OLS in the noiseless case,
while [Soussen et al., 2013] considered ERC condition and [Wen et al., 2017a,Wang and Li, 2017]
used RIP assumptions.

Exact recovery analyses of CoSaMP, SP, IHT and HTP are all based on RIP condition [Needell
and Tropp, 2009,Dai and Milenkovic, 2009,Blumensath and Davies, 2008,Foucart, 2011].

1.4.2 Exact recovery with non-negative greedy algorithms

It was stated in [Bruckstein et al., 2008, Theorem 3] that the mutual coherence based condition
(1.9) is a sufficient condition for exact recovery of any K-sparse representation using NNOMP
[Bruckstein et al., 2008] in the noiseless setting. However, the proof is not provided. Besides,
Kim et al. generalized (1.9) for the case of multiple measurement vector (i.e., data y is a matrix
instead of a vector) in the noiseless setting but the authors acknowledged that their condition
turns out to be very restrictive [Kim and Haldar, 2016].

In the literature, the exact recovery analysis of NNOMP in noisy cases has not been addressed
yet. The theoretical guarantees of other non-negative greedy algorithms are still missing too.

1.5 Contributions

Targeting `0 minimization, we are interested in greedy algorithms since their structure is simple
and fast implementation is available (for standard greedy algorithms). On the contrary, the
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`1 global minimizer may be far from the `0 global minimizer and non-convex solvers are with
rather high computational complexity. Orthogonal greedy algorithms such as OMP and OLS
often have good performance in sparse reconstruction. Moreover, they can be easily adapted to
address the constraint related to the sparsity level ‖x‖0 ≤ K and/or noise level ‖y −Hx‖ ≤ ε.
It is not the case for the algorithms such as CoSaMP, SP and HTP which are also difficult
to lend themselves to recursive implementation. However, the extension of orthogonal greedy
algorithms to the non-negative setting is challenging. The issue arises since the orthogonal
projection which is equivalent to ULS solving (1.2) is replaced by NNLS solving (1.6). Since
the NNLS problem does not have a closed-form solution, solving NNLS is more computationally
demanding than ULS solving. In addition, when some non-negativity constraints are activated,
the NNLS solution differs from the ULS solution so the orthogonality between the residual vector
and the selected subspace does not hold anymore. Addressing these algorithmic issues is our first
main contribution.

Besides, the theoretical guarantee of OMP and OLS has always been a fruitful topic. OMP
and OLS are guaranteed to have exact support recovery under several types of conditions such
as mutual coherence based condition, Tropp’s condition ERC, RIP condition, etc. These results
strengthen the interest of OMP and OLS and make them more popular. However, equivalent
results for the non-negative extensions of OMP and OLS are rare and limited. Hence our theo-
retical study of non-negative orthogonal greedy algorithms is a second important contribution.

More precisely, our contributions can be summarized in four main points as follows, where
the first contribution is split in two: analyzing structural properties (§1.5.1) and proposing fast
implementation (§1.5.2) of non-negative greedy algorithms. The second contribution appears in
§1.5.3. The last contribution is about NP-hardness of the non-negative `0 minimization and can
be found in §1.5.4.

1.5.1 Structural properties of non-negative greedy algorithms

We revisit the non-negative versions of OMP and OLS in a unified way. We introduce a new
class of Non-Negative Orthogonal Greedy (NNOG) algorithms which covers many existing non-
negative extensions of OMP and OLS such as NNOMP, NNOLS and SNNOLS, up to some
modifications. Moreover, we show that NNOG algorithms share many desirable properties,
which are not obvious for existing non-negative extensions of OMP and OLS, such as: the norm
of residual is decreasing at each iteration and the residual vector is orthogonal to the selected
atoms. This is possible because a so-called support compression step is included in NNOG
structure to make the support set identifies to the support of the current NNLS solution at each
iteration. This contribution is presented in Chapter 2.

1.5.2 Fast implementation

As the NNLS problem does not have a closed-form solution, solving it is computationally de-
manding. Existing implementations of non-negative greedy algorithms either solve NNLS sub-
problems independently (hence in an exact but time-consuming way) or avoid NNLS solving
(hence yielding fast but approximate schemes). Unlike any of previous contributions, we pro-
pose a fast and exact implementation of NNOG algorithms. This implementation exploits the
active-set algorithm [Lawson and Hanson, 1974] for NNLS solving, and makes use of warm start
initialization. Warm start is a popular technique but it is especially efficient when it is combined
with active-set NNLS in NNOG implementation. Moreover, we elaborate on recursive imple-
mentations of NNOG algorithms and design further types of accelerations. According to our
comparisons, the computing time of NNOG algorithms using proposed implementation becomes
comparable to that of orthogonal greedy algorithms. This contribution is presented in Chapter
2 with numerical results in Chapter 3.
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1.5.3 Theoretical guarantees

In the literature, theoretical analyses of NNOMP are rare and somewhat discordant while the
analysis of other NNOG algorithms is missing. In this context, we establish a unified exact support
recovery analysis for non-negative extensions of OMP and OLS using mutual coherence based
condition. This is a consequence of a more fundamental result about OMP and OLS which
is named sign preservation property. More precisely, we show that under mutual coherence
based condition (1.9), (i) OMP and OLS outputs identify with the true support of the K-sparse
representation in K iterations, and (ii) the weights of selected atoms have the correct sign at
any of the K iterations. As a result, NNOG algorithms recover exactly the true support of the
K-sparse representation with non-negative weights in K iterations under the condition (1.9). It
should be noted that while the very few existing analyses of NNOMP are made in the noise-free
case, our analysis is made in the noisy cases and it also applies to other algorithms such as
NNOLS and SNNOLS. This contribution is presented in Chapter 4.

1.5.4 NP-hardness of non-negative `0 minimization

The final contribution of the thesis is about the NP-hardness of non-negative `0 minimization
problems. The reasoning is the same as that of Natarajan [Natarajan, 1995] and our analysis is
a direct extension. However, we discovered that some existing analyses have errors and clarify
these issues. Besides, our analysis can apply to more general cases. This contribution is presented
in Chapter 5.
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In this chapter, we revisit the non-negative versions of OMP and OLS in a unified way.
In particular, we introduce a new class of non-negative orthogonal greedy (NNOG) algorithms
which covers many existing non-negative versions of OMP and OLS, up to some modifications.
We exhibit the structural properties of NNOG algorithms and introduce a fast implementation.
The proposed fast implementation of NNOG algorithm will be assessed afterward by a set of
numerical results in Chapter 3.

2.1 Introduction

Greedy algorithms for sparse signal reconstruction are very popular iterative schemes. Their
principle is to repeatedly (i) enrich the sparse support by selecting a new dictionary atom, and
then (ii) update the sparse approximation coefficients. In orthogonal greedy algorithms, the
sparse approximation signal is computed as the orthogonal projection of the data vector onto

1This chapter is an adaptation of the paper [Nguyen et al., 2019a]
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the subspace spanned by the selected atoms. Therefore, the coefficients can be estimated by
solving an Unconstrained Least Squares (ULS) problem. Popular orthogonal greedy algorithms
include Orthogonal Matching Pursuit (OMP) [Pati et al., 1993] and Orthogonal Least Squares
(OLS) [Chen et al., 1989]. OMP and OLS differ in the way the new atom is selected. In both
cases, the atom inducing the largest decrease of the norm of the residual is selected. However, all
nonzero atom weights are optimally tuned in OLS whereas only the new atom weight is considered
in OMP, which amounts to selecting the atom having the largest inner product with the current
residual. The computational complexity of OLS is obviously higher, since the selection rule
requires to solve as many ULS problems as the number of candidate atoms. Fortunately, the
ULS solutions have a closed-form expression, which can be recursively (fastly) updated when
the support is enriched by a new element, see e.g., [Miller, 2002]. Specifically, both OMP
and OLS implementations are recursive and make use of matrix factorization, such as Gram-
Schmidt orthogonalization, the Cholesky factorization or techniques utilizing the matrix inversion
lemma [Sturm and Christensen, 2012].

In many applications, the signal or image of interest is sparse, but also non-negative. In
such contexts, a common practice is to regularize the inverse problem in order to favor both
sparsity and non-negativity. Some classical sparse algorithms can be straightforwardly adapted
to deal with non-negativity constraints. This is the case of proximal splitting algorithms and
the Alternating Direction Method of Multipliers (ADMM) for convex optimization [Combettes
and Pesquet, 2011,Boyd et al., 2011], and of the DC algorithm (Difference of Convex functions)
for nonconvex optimization [Gasso et al., 2009, Le Thi et al., 2013]. On the contrary, the non-
negative extension of greedy algorithms is a challenging issue since the unconstrained least-
squares subproblems are replaced by non-negative least-squares (NNLS) subproblems which do
not have closed-form solutions anymore, so a subroutine solving NNLS is needed. There are
different methods for NNLS solving [Björck, 1996] such as active-set [Lawson and Hanson, 1974],
interior-point [Wright, 1992], and gradient-projection [Benvenuto et al., 2010]. The latter two
families typically require to tune some stopping criteria empirically, resulting in approximate
resolution of the NNLS problem. Here, we are focusing on active-set methods for NNLS solving
since such methods have a greedy structure and exactly solve NNLS problems after a finite
number of iterations. Although our focus will be on extensions of orthogonal greedy schemes to
the non-negative case, let us mention that several other non-negative sparse methods have been
elaborated on the basis of the active-set NNLS algorithm, e.g., hard-thresholded NNLS [Slawski
and Hein, 2011,Slawski and Hein, 2013] and Sparse NNLS or Reverse Sparse NNLS [Peharz and
Pernkopf, 2012].

Several existing contributions deal with orthogonal greedy algorithms in the non-negative
case. Non-Negative OMP (NNOMP) was first proposed by Bruckstein et al. [Bruckstein et al.,
2008] as a direct generalization of OMP. At each iteration, the atom having the maximum positive
inner product with the current residual is selected. Contrary to OMP, negative inner products are
discarded. Then, the sparse approximation coefficients are updated by solving the NNLS problem
related to the augmented subset. The canonical (i.e., non-recursive) NNOMP implementation
of Bruckstein et al. [Bruckstein et al., 2008] solves NNLS subproblems independently. Later,
Yaghoobi et al. proposed an accelerated version named Fast Non-Negative OMP (FNNOMP),
which avoids solving NNLS subproblems but rather recursively approximates the sought solu-
tion using QR matrix factorization [Yaghoobi et al., 2015]. Although FNNOMP is much faster
than canonical NNOMP, it is an approximate version likely to deliver a different output. In
[Yaghoobi and Davies, 2015], Yaghoobi et al. introduced a canonical version of Non-Negative
OLS (NNOLS), defined as a direct non-negative extension of OLS. The principle of NNOLS is to
select the atom for which the positive residual (the residual corresponding to the NNLS solution)
is minimum. This selection rule appears to be time-consuming since one needs to compute as
many positive residuals as the number of candidate atoms, i.e., n − k NNLS problems have to
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be solved at iteration k, with n being the size of the dictionary. Yaghoobi et al. [Yaghoobi and
Davies, 2015] further proposed two accelerated versions of NNOLS named Suboptimal NNOLS
(SNNOLS) and Fast NNOLS (FNNOLS). SNNOLS [Yaghoobi and Davies, 2015] selects the atom
that is positively correlated with the current residual whose projection forms a maximum angle
with the residual. Besides, an NNLS problem must be solved at each iteration to update the
sparse approximation coefficients. FNNOLS is a recursive implementation in the same spirit as
FNNOMP, where no NNLS problem needs to be solved anymore. It shall be noticed that FN-
NOLS and SNNOLS do not necessarily deliver the same iterates, and that both can be viewed
as approximate versions of NNOLS.

Generally speaking, the “orthogonal” denomination of NNOMP and NNOLS is somewhat
abusive since when the support set S is updated, the related NNLS solution may not identify
with the orthogonal projection of the data vector onto the span of atoms indexed by S, but
rather with its projection onto their positive span. Both projected vectors differ as soon as
the NNLS solution has zero entries, i.e., when some non-negativity constraints become active.
Therefore, in NNOMP, NNOLS and their derived versions [Bruckstein et al., 2008, Yaghoobi
et al., 2015,Yaghoobi and Davies, 2015], the support of the sparse vector at the current iteration
is a subset of the current support set S (which is expanded at each iteration) and may not
identify with it. In turn, more than K iterations may be necessary to reach a truly K-sparse
representation.

In this chapter, our contributions are twofold. First, non-negative orthogonal greedy algo-
rithms are revisited in a unified way. The algorithms under study share four desirable properties:

1. The norm of the data residual is always decreasing when a new atom enters the solution
support.

2. The algorithm does not stop while additional atom selections would make it decrease,
unless an explicit stopping condition is reached.

3. A so-called compression step is included to shrink the support set by removing the atoms
having zero coefficients, so the support set identifies to the support of the current NNLS
solution.

4. The residual vector is orthogonal to the selected atoms. In other words, the sparse approx-
imation vector identifies with the orthogonal projection of the data vector onto the span
of the selected atoms.

These structural properties are exhibited and compared to those of existing non-negative greedy
algorithms. The second contribution is a fast and exact implementation of non-negative or-
thogonal greedy algorithms exploiting the active-set algorithm [Lawson and Hanson, 1974] for
NNLS solving, and based on warm start initialization. Moreover, we elaborate on recursive
implementations and we design further types of accelerations.

The chapter is organized as follows. Section 2.2 introduces the family of so-called Non-
negative Orthogonal Greedy (NNOG) algorithms. The different members of the family differ
by the selection rule to pick a new atom at each iteration. It includes NNOLS, SNNOLS and
NNOLS up to a modification of their structure, namely the compression step mentioned above.
In Section 2.3, we propose a fast implementation based on recursivity and on the use of warm
starts for solving the NNLS subproblems. Section 2.4 is devoted to NNOG acceleration. Finally,
discussion and perspectives will be found in Section 2.5.
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2.2 Non-negative greedy algorithms

2.2.1 Basic definitions and notations

Given a data vector y ∈ Rm and a dictionary H ∈ Rm×n, we are interested in finding a K-sparse
non-negative weight vector x ∈ Rn+ yielding an accurate approximation y ≈ Hx. This can be
formulated as the constrained minimization program:

min
x≥0
‖y −Hx‖22 s.t. ‖x‖0 ≤ K. (`0+)

We have the following useful identity for any two vectors r, h of same length, h being normalized:

min
v≥0
‖r − hv‖2 = ‖r‖2 −

(
max{htr, 0}

)2 (2.1)

where, .t stands for the transpose operator.
We denote by S = supp(x) = {i : x(i) 6= 0} the support of x (x(i) being the i-th entry

of x), S̄ the complement of S, |S| the cardinality of S, HS and x(S) the subdictionary and
subvector indexed by S, respectively. Finally, H† and span(H) are the pseudo-inverse and the
column space of H, respectively. Let h̃Si = hi − HSH

†
Shi stand for the orthogonal projection

of hi onto the orthogonal complement (span(HS))⊥, which will be simply denoted h̃i whenever
unambiguous, and g̃i = h̃i/‖h̃i‖ denote the normalized projected atom if hi 6∈ span(HS), i.e.,
h̃i 6= 0. If hi ∈ span(HS), it will be convenient to set g̃i = 0.

For any support S, let us call an unconstrained least-squares (ULS) and a nonnegative least-
squares (NNLS) solution corresponding to S, any vector x in Rn or Rn+, respectively, that
minimizes ‖y −Hx‖2 with the constraint that supp(x) ⊂ S. Such vectors will be denoted x̂S
and x̂+

S , respectively. The following notations will be also useful:

rS = y −Hx̂S ,
r+
S = y −Hx̂+

S .

When HS is full column rank, ‖y −HSz‖2 is a strictly convex function of z ∈ R|S|, so x̂+
S

and x̂S are then uniquely defined. Throughout the chapter, we will denote by C ⊂ S the
so-called compressed support, defined as the support of x̂+

S . The NNLS optimal solutions can
be characterized using the Karush-Kuhn-Tucker (KKT) conditions [Lawson and Hanson, 1974,
Chap. 3], which are recalled next for completeness.

Lemma 2.1. Consider the NNLS problem related to support S:

min
x≥0
‖y −Hx‖2 s.t. supp(x) ⊂ S. (2.2)

x̂+
S is a solution to (2.2) if and only if the KKT conditions are satisfied:{

Ht
C(y −Hx̂+

S ) = 0

Ht
S\C(y −Hx̂+

S ) ≤ 0
(2.3)

where C := supp(x̂+
S ) ⊂ S.

Proof. From the definition of C, it is clear that x̂+
S (C) > 0, so the active constraints in (2.2) are

indexed by C̄. Let λ ∈ Rn gather the Lagrange multipliers related to both equality and inequality
constraints. The Lagrangian function induced by (2.2) is defined as L(x;λ) = ‖y −Hx‖2−λtx

and the KKT conditions for optimal variables (x̂+
S , λ̂) read:

∇xL(x̂+
S ; λ̂) = 2Ht(Hx̂+

S − y)− λ̂ = 0,

∀i ∈ S, λ̂(i)x̂+
S (i) = 0 with x̂+

S (i) ≥ 0, λ̂(i) ≥ 0,

∀i /∈ S, x̂+
S (i) = 0.

(2.4)
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For quadratic programming problems involving positive semidefinite matrices, the KKT condi-
tions are necessary and sufficient conditions of optimality [Nocedal and Wright, 2006, Chap. 16],
so x̂+

S is a solution to (2.2) if and only if
λ̂ = −2Ht(y −Hx̂+

S )

λ̂(C) = 0

λ̂(S\C) ≥ 0

that is, when (2.3) is satisfied. �

Definition 2.1. Let us call a positive support related to the full-size NNLS problem

min
x≥0
‖y −Hx‖2 , (2.5)

any index set S such that HS is full column rank and x̂+
S (S) > 0. By extension, the empty

support S = ∅ will also be considered as a positive support.

Lemma 2.2. S is a positive support if and only if HS is full rank and x̂S(S) > 0. Moreover,
when S is a positive support, x̂+

S = x̂S, r+
S = rS and Ht

SrS = 0.

Proof. When S is a positive support, ULS and NNLS solutions x̂S and x̂+
S are uniquely defined

and coincide. The orthogonality property Ht
SrS = 0 follows from (2.3). �

Positive supports will play an important role in our specification of fast non-negative orthog-
onal greedy algorithms.

2.2.2 Non-negative orthogonal greedy algorithms

Let us define the class of non-negative orthogonal greedy (NNOG) algorithms, sharing the fol-
lowing general structure. We start from the empty support S = ∅. At each iteration, an atom is
moved from S̄ to S. A new NNLS solution x̂+

S is then computed to optimally adapt the weights
to the newly extended support. The algorithm stops when the desired cardinality K is reached
or when the norm of the residual cannot decrease anymore. The general structure of NNOG
algorithms is given by Algorithm 12. Some aspects will be made clear later, such as the role of
the test ht

irS > 0 with respect to the decrease of the norm of the residual.

Algorithm 12: General structure of a non-negative orthogonal greedy algorithm to
solve (`0+).
input : y, H,K
output: x

1 x← 0 ; S ← ∅ ; rS ← y ;
2 while |S| < K and maxi∈S̄ h

t
irS > 0 do

3 Select an index ` ∈ S̄ by a selection rule S(y, H, S) ;
4 S ← S ∪ {`} ;
5 x← x̂+

S ;
6 S ← supp(x) ;
7 rS = y −Hx ;
8 end

The NNOG class is a direct adaptation of the family of orthogonal greedy algorithms from
the unconstrained case to the nonnegative one. At first glance, the two families only differ by
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the fact that an NNLS solution is computed rather than a ULS one to update the weights at
each iteration. However, some important features differ between the two cases, which require
non trivial adaptations.

In both cases, the greedy character corresponds to the fact that a unique atom is added
to the current support per iteration. However, a distinct feature of NNOG algorithms is that
the support size may be smaller than the current iteration index, because some components of
x̂+
S (S) may vanish at each iteration due to the activation of the corresponding nonnegativity

constraints. In the unconstrained case, some components of x̂S(S) may also vanish, but such
events are fortuitous and do not need any specific consideration.

In the unconstrained case, rS is orthogonal to span(HS). This geometrical property does
not necessarily hold for r+

S because NNLS is an inequality constrained problem. Fortunately,
provided that the indices of zero components of x̂+

S are moved to S̄, it remains true that y−Hx̂+
S

is orthogonal to span(HS). This is a direct consequence of the following lemma, which states
that x̂+

S reads as a ULS solution related to the compressed version of support S.

Lemma 2.3. For any S, let C = supp(x̂+
S ) (where neither x̂+

S nor C are necessarily unique if
HS is not full column rank). Then we have

x̂+
S = x̂C = x̂+

C . (2.6)

Proof. Using Lemma 2.1, we have Ht
Cr

+
S = 0. Since r+

S = y −Hx̂+
S , we get Ht

Cy = Ht
CHx̂

+
S .

Thus, x̂+
S is a ULS solution (denoted by x̂C) associated to support C. We have also x̂C = x̂+

C

since x̂C ≥ 0. �

According to the above definition of NNOG algorithms, distinct algorithms can only differ
by the selection rule used to select an atom at each iteration. The design of a selection rule
corresponds to the definition of a function S(y, H, S), taking values in S̄. It is clear that some
indices ` ∈ S̄ correspond to inappropriate choices, in the sense that their selection would produce
x̂+
S∪{`}(`) = 0, and hence a useless iteration, and possibly an early stopping of the algorithm.

In contrast, in the unconstrained case, any selection ` ∈ S̄ yields a decrease of ‖y −Hx‖2
unless h` ∈ span(HS). The capacity of some selection rules to avoid inappropriate selections is
examined in the next two subsections.

Finally, a practically important aspect is the computing cost of NNOG algorithms. It is com-
putationally more demanding to solve an NNLS problem than the corresponding ULS problem, so
one must expect a larger computing cost for NNOG algorithms compared to their unconstrained
counterparts. However, NNOG algorithms lend themselves to recursive implementations akin to
usual orthogonal greedy schemes, as detailed in Section 2.3.

2.2.3 Descending atoms and descent selection rules

Greedy algorithms can be interpreted as descent algorithms dedicated to the minimization of
the residual norm using supports of growing size. Contrary to the unconstrained case, only
the selection of some atoms in S̄ may produce a decrease of the residual at a given iteration
of an NNOG algorithm. For the rest of the atoms in S̄, the residual norm decrease is possible
only if the nonnegativity constraint is violated. Such a specificity has both formal and practical
consequences on the design of NNOG algorithms, as examined in this subsection.

Definition 2.2. For a given support S, let us define the set of indices corresponding to descending
atoms as follows:

DS =
{
i ∈ {1, . . . , n}, ‖r+

S∪{i}‖ < ‖r
+
S ‖
}
.

Obviously, we have DS ⊂ S̄. In what follows, we focus on selection rules ensuring the selection
of a descending atom at any iteration. The latter rules are referred to as descent selection rules.
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Definition 2.3. A descent selection rule is a function S(y, H, S) that takes its values in DS.
Clearly, NNOG algorithms relying on a descent selection rule are descent algorithms and we

have the following property.

Lemma 2.4. NNOG algorithms relying on a descent selection rule terminate after a finite num-
ber of iterations.

Proof. The error norm decreases at each iteration, and there is a finite number of supports with
a cardinality not exceeding K, and thus a finite number of solutions to visit. �

The following proposition allows one to characterize whether an atom is descending.

Proposition 2.1. The descending atom condition i ∈ DS is equivalent to

0 < ht
ir

+
S . (2.7)

When S is a positive support, it is also equivalent to each condition

0 < ht
irS , (2.8)

0 < g̃t
ir

+
S , (2.9)

0 < g̃t
irS . (2.10)

When HS∪{i} is full column rank, it is also equivalent to

x̂+
S∪{i}(i) > 0. (2.11)

Proof. See Appendix 2.A.1. �

Let us remark that from the first item of Proposition 2.1, the selection rule is invoked at
Line 3 of Algorithm 12 only if DS 6= ∅, otherwise the stopping condition of Line 2 is activated.
Hence, we do not need to define S(y, H, S) when DS = ∅.

The following three lemmas have interesting consequences for the practical specification of
valid NNOG algorithms.

Lemma 2.5. If S is a positive support and i ∈ DS, then matrix HS∪{i} is full column rank.

Proof. Assume that S is a positive support, so HS is full column rank, and x̂+
S = x̂S . Let us

also assume that HS∪{i} is not full column rank. Then hi ∈ span(HS), so x̂S is a ULS solution
corresponding to S ∪ {i}, and also an NNLS solution corresponding to S ∪ {i} since x̂S ≥ 0.
This implies that i 6∈ DS . �

Lemma 2.6. After each iteration of an NNOG algorithm relying on a descent selection rule, it
holds that the support of the current solution is positive.

Proof. The proof is immediate by recursive application of Lemmas 2.3 and 2.5, starting with the
empty support. �

Let us stress that Lemma 2.6 refers to NNOG algorithms strictly conforming to the scheme of
Algorithm 12 (with an additional restriction to descent selection rules at Line 3). In particular,
the support compression step performed at Line 6 is necessary to make Lemma 2.5 applicable. To
our best knowledge, such a compression step has not been proposed in any previous contribution
about nonnegative greedy schemes targeting `0 minimization 2.

According to Lemma 2.6, the restriction to a descent selection rule implies r+
S = rS at any

iteration, which justifies that we have dropped the ’+’ sign in Algorithm 12. This simplification
is adopted in the rest of the chapter. Moreover, the termination rule maxi h

t
irS ≤ 0 is used at

Line 2 since in this case, there are no descending atoms anymore, so the residual cannot decrease
by selection of a new atom.

2However, this kind of operation was introduced in [Leichner et al., 1993,Morup et al., 2008].
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2.2.4 Examples of descent selection rules

In what follows, selection rules are denoted S(S), the dependence on y and H being implicit.
Let us introduce three important selection rules by their distinct ways of picking an index in DS
when DS 6= ∅.

• NNOMP rule [Bruckstein et al., 2008,Ramamurthy et al., 2014,Yaghoobi et al., 2015,Kim
and Haldar, 2016]:

S1(S) ∈ arg max
i/∈S

ht
irS (2.12)

• Suboptimal NNOLS (SNNOLS, [Yaghoobi and Davies, 2015]) rule:

S2(S) ∈ arg max
i/∈S

g̃t
irS (2.13)

• NNOLS rule [Yaghoobi and Davies, 2015]:

S3(S) ∈ arg min
i/∈S

‖r+
S∪{i}‖

2 (2.14)

(2.14) is a descent selection rule by definition. The fact that (2.12) and (2.13) are descent selection
rules is deduced from recursive application of Proposition 2.1 and Lemma 2.6. As regards the
latter rules, rS is the current residual vector, i.e., a readily available quantity. On the other
hand, projected atoms g̃i enter rule (2.13), so we can expect the computing cost of (2.13) to be
larger than that of (2.12). Rule (2.14) needs the solution of NNLS problems on supports S ∪ {i},
which is even more demanding.

Note that [Wang et al., 2018] introduced another version of non-negative OMP named NN-
OMP in which the selection rule is that of OMP. Clearly, this version does not rely on a descent
selection rule. On the other hand, it is unclear whether the FNNOMP and FNNOLS algorithms
proposed in [Yaghoobi et al., 2015,Yaghoobi and Davies, 2015] rely on a descent selection rule.
They will therefore not be further analyzed.

The following proposition makes it possible to compare the three rules (2.12)-(2.14) by relat-
ing them to the minimization of a residual norm.

Proposition 2.2. Rules (2.12)-(2.14) are equivalent to

Sj(S) ∈ arg min
i∈DS

µj(S, i), (2.15)

where µj are specific to each rule:

µ1(S, i) = min
v
‖y −HSxS − hiv‖2 , (2.16)

µ2(S, i) = min
u,v
‖y −HSu− hiv‖2 , (2.17)

µ3(S, i) = min
u≥0,v≥0

‖y −HSu− hiv‖2 . (2.18)

Proof. Let us first emphasize that because (2.12)-(2.14) are descent selection rules, i /∈ S in
(2.12)-(2.14) can be replaced by i ∈ DS . Clearly, (2.15) with (2.18) simply duplicate (2.14).
Using identity (2.1) with r = rS and h = hi, (2.12) can be rewritten as the argmin over i ∈ DS
of

min
v≥0
‖y −HSxS − hiv‖2 . (2.19)

Likewise, applying (2.1) with r = rS and h = g̃i and using the fact that g̃i is the normalized
version of h̃i, (2.13) can be rewritten as the argmin over i ∈ DS of

min
v≥0
‖rS − h̃iv‖2 = min

u,v≥0
‖y −HSu− hiv‖2 . (2.20)
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(2.20) follows from explicit minimization with respect to u and from the fact that rS and h̃i read
as the orthogonal projections of y and hi onto (span(HS))⊥. Finally, the positivity constraint
on v in (2.19)-(2.20) turns out to be inactive. Indeed, according to Proposition 2.1, we have that
ht
irS > 0 and h̃t

irS > 0 for i ∈ DS . It is easy to see from (2.1) that the minimum error norm
in (2.19)-(2.20) is then strictly lower than ‖rS‖. Hence, the optimal variable v in (2.19)-(2.20)
is nonzero.

Finally, (2.15) with (2.19) and (2.15) with (2.20) rewrite as (2.15) with (2.16) and (2.15) with
(2.17), respectively. �

For j ∈ {1, 2, 3}, an alternate way of viewing the descending character of each rule consists in
noticing that ‖rS∪{i}‖2 ≤ µj(S, i) < ‖rS‖2 for all i ∈ DS . Figure 2.2.4 illustrates the three rules
in a simple case where all results differ. It is interesting to see that, by restricting the selection
to the set of descending atoms, the selection rules of NNOMP and SNNOLS rely on the same
criteria (2.16)-(2.17) as those of OMP and OLS, respectively.

Figure 2.1: Graphical illustration of (2.16)-(2.18) in a simple case where S contains a single
atom, whose weight u varies along the horizontal axis, while the weight v of the candidate atom
varies along the vertical axis. The contour plot represents ‖y − hSu− hiv‖2.

2.2.5 On the usefulness of support compression

As already mentioned, rules (2.12)-(2.14) were introduced in existing works devoted to (`0+)
without support compression. Let us analyze the impact of removing the support compression
step at Line 6 in Algorithm 12.

• The subset S then becomes an extended support, with x = x̂+
S and supp(x) ⊂ S. As a

consequence, when supp(x) 6= S, the current residual r+
S = y − Hx does not identify to

rS anymore since x does not read as a ULS solution related to S.

• In the case of NNOMP and NNOLS (selection rules (2.12) and (2.14), with rS replaced
by the current residual r+

S ), Proposition 2.1 can still be applied, since condition ht
ir

+
S > 0

still characterizes descending atoms without support compression. As for SNNOLS, we
cannot guarantee that S(y, H, S) defined in (2.13) is a descent selection rule when S is not
positive, since the equivalence (2.9) in Proposition 2.1 does not hold anymore.
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• Finally, for any NNOG algorithm, Lemma 2.5 is no more valid when S is not a positive
support, so HS might become rank deficient at any subsequent iteration, x̂+

S not being well
defined anymore.

We consider the last point as the main justification to apply support compression. An open
question would be to determine whether the assumptions of Lemma 2.5 can be weakened, the
positivity of S being replaced by the full rankness of HS . However, we lack concrete elements
in this sense. Therefore, at this stage, NNOG with compression present formal guarantees that
NNOG without compression do not.

2.3 Active-set NNLS algorithms and recursivity

Let us consider the NNLS problem related to support S in (2.2). When matrix HS is full column
rank, it is a special case of a strictly convex quadratic program. The successive resolution of
possibly many NNLS problems for nested supports S is a basic ingredient of NNOG algorithms.
NNLS problems do not admit closed-form solutions in general. However, active-set NNLS (AS-
NNLS) algorithms are well-known schemes that solve NNLS problems in a finite number of
iterations [Lawson and Hanson, 1974,Chen et al., 2010]. Moreover, the computation of NNLS
solutions can be efficiently accelerated by exploiting that warm start solutions are available and
using classical recursive updates of matrix factorizations.

This section first contains a short reminder on active-set NNLS algorithms and on their
efficient implementation. Then, we show how to preserve computational efficiency when NNLS
subproblems are solved within an NNOG scheme. We also analyze the similarity between the
structures of AS-NNLS algorithm and NNOMP, already pointed out in [Peharz and Pernkopf,
2012,Foucart and Koslicki, 2014].

2.3.1 Fast active-set algorithms

Among many numerical methods for solving (2.2), AS-NNLS algorithms correspond to greedy
schemes, since the solution is found by incremental modifications of its support V ⊂ S, the active
set being defined as the complementary set S\V (by reference to the active constraints). Such
an incremental structure is an essential element to obtain practically fast implementations [Law-
son and Hanson, 1974, Björck, 1996,Nocedal and Wright, 2006]. Whenever V is modified, the
corresponding ULS solution x̂V is updated. Each iteration requires at least one ULS solution
of the selection type, i.e., H†V ∪{`}y. Some iterations also need to compute deselection type

ULS solutions H†V \{`}y. For the sake of computational efficiency, it is crucial to compute both
types of solutions recursively, given that x̂V is already available. In this respect, the situation
is identical to that of bi-directional greedy algorithms in the unconstrained case (e.g., Bayesian
OMP [Herzet and Drémeau, 2010], SBR [Soussen et al., 2011] or FoBa [Zhang, 2011]), also called
stepwise algorithms [Miller, 2002, Chapter 3], for which selections and deselections are imple-
mented recursively. Fast recursive implementations require specific computations and storage of
quantities related to the Gram matrix GV = Ht

VHV . Efficient selection steps can be obtained us-
ing QR or Cholesky matrix factorizations applied to GV , or the Matrix Inversion Lemma (MIL),
with roughly the same cost [Sturm and Christensen, 2012]. MIL consists in storing and updating
the inverse of GV . It appears to be the cheapest concerning deselections, so our default choice
here is based on the MIL.

2.3.2 Warm start and full recursivity

Since NNOG algorithms are based on iterated calls to an active-set scheme, we must carefully
consider the way we initialize the latter. The starting point of AS-NNLS is usually defined as
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the zero solution (associated with the empty support). This is the case in the Lawson-Hanson
algorithm, which is the reference AS-NNLS scheme [Lawson and Hanson, 1974]. In [Nocedal and
Wright, 2006, Chap. 16], Nocedal and Wright proposed an AS-NNLS algorithm with any feasible
vector as a possible starting point. Algorithm 13 is a generalized version of the Lawson-Hanson
algorithm to address the NNLS problem related to an augmented target set T ⊃ S, where the
initial point is not restricted to be the zero vector (the rest of the scheme being unaltered).
Specifically, the initial point is set as the ULS solution x̂S ≥ 0, S being a positive support. For
this specific initial point, it can easily be checked that Algorithm 13 identifies with Nocedal and
Wright’s scheme.

Algorithm 13: Active-set algorithm to solve the NNLS problem related to T , starting
from a positive support S. Format: AS_NNLS(y, H, T, S, x̂S)

input : y, H, target set T , initial support S ⊂ T , x̂S
output: V := supp(x̂+

T ), x̂+
T := x̂V

1 x← x̂S ; V ← S; rV ← y −Hx ;
2 while max{ht

irV , i ∈ T\V } > 0 do
3 `+ ← arg max{ht

irV , i ∈ T\V } ;
4 V ← V ∪ {`+};
5 Update x̂V (call Algorithm 15);
6 while min(x̂V ) < 0 do
7 `− ∈ arg min

{i∈V :x̂V (i)<0}
x(i)/(x(i)− x̂V (i)) ;

8 α← x(`−)/(x(`−)− x̂V (`−)) ;
9 x← x+ α(x̂V − x) ;

10 V ← V \ {`−} ;
11 Update x̂V (call Algorithm 15);
12 end
13 x← x̂V ;
14 rV ← y −Hx ;
15 end

Algorithm 14: NNOG with active-set implementation.
input : y, H,K
output: x := x̂+

S (with S a positive support)

1 x← 0 ; S ← ∅ ; rS ← y ;
2 while |S| < K and maxi∈S̄ h

t
irS > 0 do

3 Select an index ` ∈ S̄ by a selection rule S(y, H, S) ;
4 Call [C,x] = AS_NNLS(y, H, S ∪ {`}, S,x);
5 S ← C ;
6 rS = y −Hx ;
7 end

At any iteration of a valid NNOG algorithm, the current solution x̂+
S can be used as the

initial point to compute x̂+
S∪{`} using Algorithm 13 with T = S ∪ {`}. In this way, the initial

support is V = S, so T\V = {`} and the first iteration of AS-NNLS begins by selecting `. In
practice, the NNLS algorithm is expected to terminate after a single iteration (if no deselection
is performed in the second part of it), or otherwise after very few iterations. Algorithm 14 is
a global view of the active-set implementation of NNOG obtained by integrating the calls to
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the AS-NNLS solver (Algorithm 13) in the NNOG framework (Algorithm 12). Whenever a new
atom ` is selected, AS-NNLS starts by computing x̂S∪{`}. If x̂S∪{`} ≥ 0, then x̂+

S∪{`} = x̂S∪{`}
and AS-NNLS stops after one support change. Otherwise, AS-NNLS deselects at least one atom
from S ∪ {`} (Algorithm 13, Line 7) and then alternates between atom selections and series of
deselections. This mechanism is illustrated by a simple example in the next subsection.

A reduced number of iterations is obtained because we use Algorithm 13 with a warm start.
To further improve the overall numerical efficiency, we also need to reduce the computing cost
of the ULS solution at Lines 5 and 11. These are selection and deselection-type ULS problems,
respectively, that can be solved recursively provided that the inverse of the Gram matrix GV be
both an input and an output quantity of the NNLS algorithm. In Appendix 2.B, Algorithm 15 is
a pseudo-code to implement ULS updates in the forward (V ← V ∪{`}) and backward scenarios
(V ← V \{`}). This implementation enables us to obtain a fully recursive implementation of
AS-NNLS as well by updating the Gram matrix inverse at each call to ULS in Algorithm 13
(Lines 4-5 and 10-11).

2.3.3 Step-by-step illustrative example of NNOG

Fig. 2.2 displays a schematic step-by-step illustration of NNOG. NNOG iterates Sk are repre-
sented with bullets. NNOG starts with the empty support. In this example, it turns out that
during the first three iterations, NNOG yields a positive support Sk−1 ∪ {`} (x̂Sk−1∪{`} ≥ 0),
hence Sk ← Sk−1 ∪ {`}. Therefore, S1 ⊂ S2 ⊂ S3 are of cardinalities 1, 2 and 3, respectively.
At iteration 4, S3 ∪ {`} is not positive so AS-NNLS performs two support changes, namely the
selection of ` and a deselection. The next NNOG iterate reads S4 ← S3 ∪ {`}\{`1}. Iteration 5
is more tricky (and unlikely). Here again, S4 ∪ {`} is not a positive support. The first dese-
lection does not yield a positive support either, so another deselection is carried out, yielding
V ← S4 ∪ {`}\{`1, `2}, V being a positive support. However, the stopping condition of AS-
NNLS (Line 2 of Algorithm 13, with T ← S4 ∪ {`}) is not met since h`1 is a descending atom.
Therefore, `1 is reselected: V ← V ∪ {`1}. Since V is now a positive support and there are no
descending atoms anymore in T\V , the convergence of AS-NNLS is reached. In the last two
NNOG iterations, Sk−1 ∪ {`} are positive supports, so single selection moves are done within
AS-NNLS.

|S|

Number of support changes
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S6
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Figure 2.2: Step-by-step illustration of NNOG after each change of support. Bullets represent
supports corresponding to the first seven NNOG iterates whereas other intermediate supports
found during the calls to AS-NNLS are represented without bullets.
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2.3.4 Connection between AS-NNLS and NNOMP

In Algorithm 14, the structure of the NNOG main iteration consists of one atom selection fol-
lowed by a variable number of updates (selections or deselections) of the support S when the
ULS solution x̂S has some negative entries. The first of these updates is necessarily an atom
deselection. Interestingly, [Peharz and Pernkopf, 2012] and [Foucart and Koslicki, 2014] pointed
out that the AS-NNLS algorithm initialized with the zero vector, has a structure similar to
NNOMP: each main NNLS iteration consists of an atom selection followed by a series of atom
deselections (respectively, Line 3 and Lines 6-12 of Algorithm 13). This connection led Peharz
and Pernkopf to propose AS-NNLS with an early stopping rule |S| = K as a stand-alone NNOG
algorithm (called Sparse NNLS in [Peharz and Pernkopf, 2012]). Given the strong similarity of
Sparse NNLS and NNOMP, an interesting question is to determine whether their iterates always
coincide. It turns out that this is not always true. However, as long as Sparse NNLS performs
only simple support changes, both algorithms yield the same iterates, according to the following
proposition.

Proposition 2.3. Let us consider Sparse NNLS, i.e., Algorithm 13 initialized with the empty
support together with the early stopping rule |S| = K. In any case where no iteration produces
two or more successive removals in Lines 6–12, the output of Sparse NNLS identifies with that
of NNOMP (i.e., Algorithm 12 with rule S1 in (2.12)).

Proof. See Appendix 2.A.2. �

2.4 Acceleration of NNOG algorithms

The NNOMP, SNNOLS and NNOLS selection rules (2.12)-(2.14) all read as the optimization
of a criterion with respect to the candidate index i /∈ S. Since all three ensure the selection of
an atom in DS , an obvious acceleration of SNNOLS and NNOLS consists of pre-selecting the
descending atoms according to ht

irS > 0 (see Proposition 2.1) to carry out the optimization
tasks (2.13) and (2.14) over i ∈ DS only. This operation is referred to as type-I pruning of the
dictionary3. Testing the sign of ht

irS requires O(m) operations. This is much less than the
(recursive) computation of the criteria g̃t

irS and ‖r+
S∪{i}‖2, which costs at least O(|S|2 + km)

operations.

2.4.1 Atom selection

The atom selection step of both NNOMP and SNNOLS can be efficiently implemented using
vectorized computations. The NNOMP case is the simplest, since Ht

S̄
rS directly yields the

expected set of inner products ht
irS . Indeed, the selection steps of OMP and NNOMP are both

based on the minimization of (2.16), so they share the same possibilities of parallel computations.
Likewise, OLS and SNNOLS being both based on the minimization of (2.17), they share the same
possibilities of parallel implementation. In coherence with our choice of recursive implementation
of ULS solutions (see Appendix 2.B), we have adopted a MIL based solution to solve (2.17) in a
vectorized way (see Matlab code in supplementary material).

In contrast, the NNOLS selection rule (2.14) does not lend itself to fully vectorized compu-
tations, since we have as many NNLS subproblems to solve as candidate atoms, with a variable
number of subiterations of AS-NNLS for each of them. Fortunately, the structure of the NNOLS
rule can be made closer to that of SNNOLS, with the benefit of vectorized computations for

3Contrary to screening techniques, see e.g., [Bonnefoy et al., 2015], note that the atoms indexed by i /∈ DS

are pruned from the dictionary for the current NNOG iteration only, but they are considered again in further
iterations.
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the largest part. The key point is that for each candidate atom, the initial step of AS-NNLS
corresponding to Lines 1-5 of Algorithm 13 yields the same unconstrained minimizer x̂S∪{i} as
the one involved in the SNNOLS rule (2.17). Hence, these vectors can be obtained using vec-
torized computations that exactly identify to the main step of SNNOLS atom selection. The
extra computations induced by NNOLS reside in the additional AS-NNLS iterations required
for each non-positive support S ∪ {i}. According to our empirical tests, only a small minority of
atoms needs more than one iteration. Moreover, a lot of them can be pruned without actually
performing any additional AS-NNLS iterations. Let us denote by eopt the smallest residual error
produced by atoms i for which S ∪ {i} is a positive support. Since ‖r+

S∪{i}‖ ≥ ‖rS∪{i}‖ for
all i, one can immediately ignore the atoms i for which ‖rS∪{i}‖ ≥ eopt. Moreover, since we
sequentially visit the remaining ones, the threshold eopt can be gradually lowered whenever a
new atom is found to improve the smallest current residual error. This operation called type-II
pruning is specific to NNOLS implementation.

2.4.2 Coefficient update

Once an atom i is selected, NNOG algorithms need to update the coefficients by solving an
NNLS subproblem (Algorithm 12, Line 5). However, in the case of NNOLS, the update is
already being performed in the selection step. In the case of NNOMP, one needs to call the AS-
NNLS algorithm (Algorithm 13) from the initial set S to the target set S ∪ {`}. For SNNOLS,
a call to Algorithm 13 is needed only when S ∪ {`} is not positive.

2.4.3 Software

An open source Matlab implementation of the acceleration strategies detailed above is provided
on CodeOcean [Nguyen et al., 2019b] (https://doi.org/10.24433/CO.2445681.v1). This soft-
ware contains a fully recursive, vectorized version of NNOMP, NNOLS and SNNOLS together
with test programs.

2.5 Conclusion

Until now, greedy algorithms dedicated to non-negative sparse signal reconstruction have been
considered as slow schemes, requiring the repeated resolution of constrained least square prob-
lems. In order to accelerate the computation, approximate schemes have been proposed [Yaghoobi
et al., 2015,Yaghoobi and Davies, 2015] at the price of some loss of control on the algorithmic
behavior, and possibly degraded performance. Another commonly found option has been to
replace the `0 “norm” by the `1-norm and to solve the resulting convex programming problem,
with a possible loss in terms of performance (see [Peharz and Pernkopf, 2012] for an interesting
case of sparse NMF).

In this chapter, our first contribution is to provide a unified framework to define non-negative
orthogonal greedy algorithms in a formal way, ensuring well-defined iterations. The second and
probably most important one in terms of practical impact, is to show that the additional cost of
non-negative greedy algorithms to handle the sign constraint can be strongly reduced using three
ingredients. The main one is that non-negative greedy algorithms can be made fully recursive.
Moreover, several pruning strategies can be combined to reduce the number of tests at the atom
selection stage. Finally, the latter step can benefit from vectorized computations.

Our contributions can be extended in several directions. A straightforward generalization
can be made to deal with nonnegativity-constrained simultaneous sparse decomposition, which
is useful in several applications such as hyperspectral imaging [Wang et al., 2018], dynamic
PET [Lin et al., 2014], and diffusion MRI [Kim and Haldar, 2016]. On the other hand, other

https://doi.org/10.24433/CO.2445681.v1
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greedy algorithms such as CoSaMP [Needell and Tropp, 2009], BOMP [Herzet and Drémeau,
2010] and SBR [Soussen et al., 2011] could also be extended to the non-negative setting using
similar principles and using a recursive implementation.

Appendix 2.A Proof of technical results

2.A.1 Proof of Proposition 2.1

Let us first prove that ht
ir

+
S > 0 implies i ∈ DS . Let ht

ir
+
S > 0. According to (2.1) for r = r+

S ,
we deduce that i ∈ DS since

‖r+
S∪{i}‖

2 ≤ min
v≥0

∥∥r+
S − vhi

∥∥2
< ‖r+

S ‖2.

Conversely, let i ∈ DS . Define f(z) =
∥∥y −HS∪{i}z

∥∥2 where z ∈ R|S|+1. Let us also define
the subvectors zS := x̂+

S (S ∪ {i}) and zS∪{i} := x̂+
S∪{i}(S ∪ {i}), x̂

+
S and x̂+

S∪{i} being two NNLS
solutions related to S and S ∪ {i}. Condition i ∈ DS reads

f(zS∪{i}) < f(zS).

Since f is convex, one has

(zS∪{i} − zS)t∇f(zS) ≤ f(zS∪{i})− f(zS) < 0 (2.21)

where the gradient of f is defined by

∇f(zS) = 2Ht
S∪{i}(HS∪{i}zS − y) = −2Ht

S∪{i}r
+
S .

Denoting by C := supp(x̂+
S ) the compressed support, we have from Lemma 2.1 that Ht

S\Cr
+
S ≤ 0

and Ht
Cr

+
S = 0. Since x̂+

S is supported by C, the latter equality implies that zt
S∇f(zS) = 0.

(2.21) yields (zS∪{i})
tHt

S∪{i}r
+
S > 0, i.e.,

(x̂+
S∪{i}(S ∪ {i}))

tHt
S∪{i}r

+
S > 0. (2.22)

Since Ht
Cr

+
S = 0, (2.22) rereads:

(x̂+
S∪{i}(S\C))tHt

S\Cr
+
S + (ht

ir
+
S ) x̂+

S∪{i}(i) > 0 (2.23)

and since Ht
S\Cr

+
S ≤ 0 and x̂+

S∪{i} ≥ 0, (2.23) implies that

(ht
ir

+
S ) x̂+

S∪{i}(i) > 0 (2.24)

and thus ht
ir

+
S > 0.

Let us now assume that S is a positive support. According to Lemma 2.2, we have x̂+
S = x̂S

and r+
S = rS , so (2.7) and (2.8) are identical, as well as (2.9) and (2.10). To show that (2.7)-

(2.8) are equivalent to (2.9)-(2.10), we first notice that rS ∈ (span(HS))⊥, thus h̃t
irS = ht

irS
since h̃i − hi ∈ span(HS). Therefore, (2.8) rereads 0 < h̃t

irS , which implies that h̃i 6= 0 and
g̃i = h̃i/‖h̃i‖ 6= 0. Hence, (2.8) rereads 0 < g̃t

irS , which identifies with (2.10).
Finally, let us show that i ∈ DS is equivalent to condition (2.11). Consider the function

f(z) =
∥∥y −HS∪{i}z

∥∥2 and the notations zS and zS∪{i} defined above. Assuming that HS∪{i}
is full column rank, we have that f is strictly convex, so f admits a unique minimizer zS∪{i}. If
x̂+
S∪{i}(i) > 0, then zS∪{i} 6= zS and

‖r+
S∪{i}‖

2 = f(zS∪{i}) < ‖r+
S ‖2 = f(zS),

that is, i ∈ DS . Conversely, x̂+
S∪{i}(i) = 0 implies x̂+

S∪{i} = x̂+
S , hence r

+
S∪{i} = r+

S and i /∈ DS .
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2.A.2 Proof of Proposition 2.3

Any iteration of AS-NNLS starts with the addition of a new atom to the current support (Line
4 of Algorithm 13). Then, a variable number of atoms are removed from it one after the other
(Lines 6 to 12). Let r denote the number of removals at the current AS-NNLS iteration. Let
also V ⊂ {1, . . . , n} and x̂V respectively stand for the current support and solution obtained at
Lines 4 and 5, and let V ′ ⊂ V and x̂V ′ denote the corresponding quantities after r removals.
Let us first show that any AS-NNLS iteration for which r = 0 or r = 1 yields a solution of the
NNLS problem restricted to the support V .

If x̂V ≥ 0, then r = 0, so V ′ = V and x̂V ′ = x̂+
V ≥ 0. Otherwise, we have min(x̂V ) < 0 and

r > 0. If r = 1, a single index `− is removed at Lines 6-12, so that V ′ = V \ {`−}, and x̂V ′ ≥ 0.
Let us remark that we have x̂V (`−) < 0 according to Line 7. Let us then prove that x̂V ′ = x̂+

V

by showing that KKT conditions are satisfied at x̂V ′ for the NNLS problem related to support
V . Note that the NNLS solution is unique since the supports generated by AS-NNLS are such
that HV is full column rank, as pointed out in subsection 2.3.2. According to Lemma 2.1, the
KKT conditions read:

Ht
V ′(y −Hx̂V ′) = 0, (2.25a)

ht
`−(y −Hx̂V ′) ≤ 0. (2.25b)

(2.25a) is obviously satisfied. On the other hand, remark that x̂V ′ = x̂+
V ′ since x̂V ′ ≥ 0 and that

according to Proposition 2.1, x̂V (`−) < 0 implies that ht
`−rV ′ ≤ 0, which identifies with (2.25b).

This concludes the proof.

Appendix 2.B Recursive implementation of ULS

Algorithm 15 recalls the recursive ULS computation using MIL [Björck, 1996] for selection (for-
ward move V ← V ∪ {`}) and deselection (backward move V ← V \{`}) operations. The ULS
solution x̂ := x̂V is updated. Moreover, Θ := (Ht

VHV )−1 refers to the inverse of the Gram
matrix related to subset V . The Boolean entry fw is set to true and false for selection and
deselection updates, respectively. Finally, e2 stands for the squared residual error ‖rV ‖2. All
these factors are updated in Algorithm 15. Notation −j refers to all indices except j, and θj
stands for the j-th column of Θ.

For reminding, MIL for block matrix can be read as [Golub and Van Loan, 1996][
A B

C D

]−1

=

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
(2.26)

When a new atom is added to the support, S′ = S ∪ {`} and HS′ = [HS ,h`]. Therefore,

Ht
S′HS′ =

[
Ht
SHS Ht

Sh`
ht
`HS ‖hi‖2

]
.

By applying (2.26), one can express the inversion (Ht
S′HS′)

−1 by means of (Ht
SHS)−1 as for-

mulated at line 7 of Algorithm 15. When an atom is removed from the support, S′ = S \ {`}.
Let us firstly consider the case where h` is the last column of HS . Then HS = [HS′ ,h`]. By
switching S and S′ in the calculation of the case of atom addition, one can express the inversion
(Ht

S′HS′)
−1 by means of (Ht

SHS)−1 as formulated at line 13 of Algorithm 15. The case where h`
is not the last column of HS can be turned to the previous case by using a permutation matrix

Pj = [e1, · · · , ej−1, e|S|, ej , · · · , e|S|−1]
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Algorithm 15: Recursive ULS [Björck, 1996].
Format: ULS(y, H, V, fw, `, x̂,Θ, e2)

1 if fw then
2 φ← Ht

V h` ;
3 δ ← (1− φtΘφ)−1 ;
4 β ← φtx̂(V )− ht

`y ;
5 e2 ← e2 − δβ2 ;

6 x̂(V ∪ {`})← x̂(V ∪ {`}) + δβ

[
Θφ

−1

]
;

7 Θ←
[
Θ 0

0 0

]
+ δ

[
Θφ

−1

] [
Θφ

−1

]t

;

8 V ← V ∪ {`} ;
9 else

10 j ← index of ` in V ;
11 e2 ← e2 + (x̂(`))2/θj(j) ;
12 x̂(V )← x̂(V )− x̂(`)θj/θj(j) ;
13 Θ← Θ(−j,−j)− θj(−j)θj(−j)t/θj(j) ;
14 V ← V \ {`} ;
15 end

where j is the index of ` in S and ek is the vector of size |S| × 1 whose k-th entry is equal to 1
and other entries are equal to 0. Note that Pj is an orthogonal matrix and its inversion is also
a permutation matrix

P−1
j = P t

j = [e1, · · · , ej−1, ej+1, · · · , e|S|, ej ].

One can easily check that HSPj moves the last column of HS to the j-th column (and keeps the
same order for the other columns) and HSP

t
j moves the j-th column of HS to the last column.

The calls to Algorithm 15 for updating ULS solutions at Lines 4-5 and 10-11 of Algorithm 13
take the respective forms:

ULS(y, H, V, 1, `+, x̂V ,Θ, ‖rV ‖2),

ULS(y, H, V, 0, `−, x̂V ,Θ, ‖rV ‖2).
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3.1 Introduction

In the previous chapter, we presented our unified framework of NNOG algorithms and proposed
a (recursive) fast implementation. The purpose of this chapter is to assess the proposed fast
implementation of NNOG algorithms by a set of numerical results. Firstly, we introduce the
problems considered in our tests which include: (i) sparse deconvolution with Gaussian kernel,
(ii) sparse deconvolution for super resolution and (iii) decomposition of real-world near-infrared
(NIR) spectra into elementary Gaussian features. Secondly, we validate the accelerations of
NNOG algorithms proposed in Section 2.4. Thirdly, we compare the performance of several
NNOG algorithms. Finally, we compare NNOG algorithms with competing algorithms which
include: (i) unconstrained greedy algorithms, (ii) fast approximate non-negative greedy algo-
rithms, (iii) non-negative extensions of CoSaMP, SP, HTP and (iv) non-negative extension of
LARS. The results presented in this chapter are achieved on a macOS X system with 16 GB
RAM and Intel Core i7 processor at 2.7 GHz.

Before going further, let us emphasize that in applications (microscopy, tomography, etc...),
the data are discrete. Therefore, two grids will be considered: (i) the sampling grid corresponding
to the data domain (e.g., the pixels of the radiograph in Tomo-PIV), and (ii) the grid correspond-
ing to the sparse solution (e.g., the voxels of the discretized 3-D volume in Tomo-PIV). Note
that in sparse deconvolution both data and solution domain coincide (e.g., the time domain).
However, the practitioner may set the solution grid according to the desired resolution level.

3.2 Problems

3.2.1 Sparse deconvolution with Gaussian kernel

We consider a convolution problem with a normalized Gaussian kernel h of standard deviation σ.
h is approximated by a finite impulse response of length 6σ by thresholding the smallest values.
The discrete convolution h ∗ x∗ can be rewritten as a matrix-vector product Hx∗ where H is a
Toeplitz matrix containing all possible delayed version of the Gaussian kernel h = [h1, · · · , hp],
i.e.,

H =



h1 0 . . . 0
... h1

. . .
...

hp
...

. . . 0

0 hp
. . . h1

...
. . . . . .

...
0 . . . 0 hp


. (3.1)

H is a slightly under-complete dictionary (of size m × n with n = m − p + 1) since we set the
boundary condition so that the supports of all atoms are included in the observation window.

Simulated data are generated according to

y = Hx∗ + ε (3.2)

where x∗ and ε stand for the ground truth coefficients and white Gaussian noise, respectively. The
support S∗ of x∗, of cardinality K, is randomly generated with a uniform distribution whereas
the non-zero coefficients of x∗ are set to either a positive constant or randomly generated from
a Gamma distribution. The signal-to-noise ratio is defined by

SNR = 10 log10 (PHx∗/Pε) (3.3)

where
PHx∗ = ‖Hx∗‖2 /m (3.4)
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is the average power of the noise-free data and Pε is the noise variance.
A simple illustration of the data decomposition is given in Fig. 3.1. The data y is sampled

with step equal to 1 and it is decomposed into three Gaussians h1, h2, h3 whose centers are
located on the sampling grid. The Gaussians h1, h2, h3 are of the same width, thus each
Gaussian is a delayed version of the first Gaussian. Fig. 3.2 shows an example of simulated data
y corresponding to an SNR = 30 dB. The number of samples is set to m = 300. The Gaussian
kernel is of width σ = 5. The ground truth x∗ contains 10 spikes located at integer values.

x
1
h

1
x

2
h

2

y x
3
h

3

1

Figure 3.1: A simple illustration of sparse deconvolution with Gaussian kernel. (top) Discrete
data are represented with bullets. Sampling step is set to 1. The three spikes (one in red, one
in blue, one in green) corresponding to the centers of the constitute Gaussians h1, h2, h3 are
located on the sampling grid. (bottom) The data y can be represented as a linear combination
of three Gaussians h1, h2, h3 with corresponding weights x1, x2, x3.

It should be noted that in this simulation the grid corresponding to the delays (locations of
spikes) is the same as the one of the data signal y with step size equal to 1. In the generation
of ground truth x∗, the delays of Gaussians are set to integer values. Therefore, it is possible
to get exact recovery results (y = Hx) in the noise-free case (ε = 0) if the delays are correctly
found by the algorithm.

All comparisons using this problem are based on reconstruction accuracy and CPU time.
Reconstruction accuracy is quantified by three factors:

• Support recovery: ratio of true positives to K;

• Coefficient inaccuracy: relative error for the recovered coefficients

‖x− x∗‖ / ‖x∗‖ ; (3.5)

• Residual norm: Euclidean norm of the data residual (‖y −Hx‖).

Note that here the accuracy criterion (3.5) makes sense because the true spikes are located at
integer values. This criterion will be no longer applicable in the simulation of §3.2.2 since the
true spikes in that simulation are located at real values.
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Figure 3.2: An example of simulated data and the corresponding ground truth in a sparse
deconvolution problem with Gaussian kernel.

3.2.2 Sparse deconvolution for super resolution

While it is more convenient to impose that the true spike are located at integer values or on a
predefined grid, this situation is not feasible in real-world applications. For instance, in Tomo-
PIV application (see Chapter 1-§1.2.1), the spike locations correspond to the 3-D positions of the
tracer particles in the volume. Thus, when the volume is discretized by a predefined grid, it is
unrealistic to expect the spike locations to be located at the center of voxels. A recent trend is to
work with a continuous dictionary (off-the-grid approach) (see, e.g., [Ait Tilat et al., 2019,Elvira
et al., 2019]). In the continuous approach, the dictionary contains an infinite number of atoms.
Here we do not exploit the continuous approach. Instead, we elaborate on the case of a discrete
dictionary corresponding to a fine grid.

In this simulation, we consider a more realistic setting where the spikes are located at real
values. The continuous signal y(τ) is obtained by a convolution of a Gaussian function

h(τ) = exp

(−τ2

2σ2

)
(3.6)

and a sparse spike train

x(τ) =
K∑
j=1

x∗jδ(τ − c∗j ) (3.7)

where x∗j are positive weights, δ(τ) is the Dirac delta function and c∗j ∈ R, j = 1, . . . ,K stands
for the location of the K spikes. Hence, the noisy continuous signal can be expressed as

y(τ) = (h ∗ x) (τ) + noise (3.8)

=
K∑
j=1

x∗jh(τ − c∗j ) + noise. (3.9)

We assume, without loss of generality, that the sampling step corresponding to the acquisition
of the data y is equal to 1, so that the samples yi correspond to the time τ = i. Therefore, for
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i = 1, · · · ,m with m being the number of samples,

yi =
K∑
j=1

x∗jh(i− c∗j ) + noise. (3.10)

Thus, the simulated data are generated according to

y =

K∑
j=1

x∗jhc∗j + ε (3.11)

where hc∗j stands for the discrete Gaussian of width σ and centered at c∗j , and ε stands for the
white Gaussian noise. The true centers c∗j and true weights x∗j are randomly generated with a
uniform distribution. Note that we restrict the true centers to

3σ ≤ c∗j ≤ m− 3σ (3.12)

so that the supports of all Gaussians are included in the observation window.
For sparse reconstruction, it is usual to choose a resolution grid of step size ∆ = 1/α where α

is a positive integer. We approximate the data y in (3.11) by a linear combination of normalized
discrete Gaussians hcj whose centers cj are located on the resolution grid. It should be noted
that in the previous simulation (§3.2.1), as the true centers c∗j are located at integer values, one
can expect the exact recovery (i.e., cj = c∗j ) in the noise-free case (i.e., ε = 0). On the contrary,
in the current simulation, as the true center c∗j are located at real values, one can only expect
that the estimated centers will be in the same cell as the true centers (i.e., |cj − c∗j | < ∆/2).

The related dictionary H contains all normalized discrete Gaussians hci whose centers ci
are located on the resolution grid of step size ∆ = 1/α. Thus, H has roughly αm atoms.
However, since we set the boundary condition so that the supports of all atoms are included in
the observation window, the number of atoms n is restricted to

n = αbm− 6σc − 1 (3.13)

where b·c denotes the integer part. Note that H can be read as a block Toeplitz matrix up to
reordering of its atoms. A simple illustration is shown in Fig. 3.3 where m = 9, σ = 1, n = 5,
and step size ∆ = 1/2. H contains 5 normalized atoms:

H = [h1,h2,h3,h4,h5] (3.14)

with support of size p = 7. Each atom is a delayed version of the previous one by a step
∆. By reordering the atoms, H can be read as a block Toeplitz matrix H = [H(1), H(2)]

where H(1) = [h1,h3,h5] and H(2) = [h2,h4]. Since the dictionary H can be read as a block
Toeplitz matrix, it can lead to fast computations [Carcreff, 2014]. It should be noted that in
this simulation all atoms are of the same width. On the contrary, in the decomposition of NIR
spectra (see §3.2.3), the Gaussian dictionary is built as a block Toeplitz matrix but each block
is corresponding to the convolution matrix related to the Gaussian kernel of a different width.

3.2.3 Decomposition of NIR spectra into elementary Gaussian features

In the two previous problems, we have moved the simulated data from a basic framework (§3.2.1)
to a more realistic one (§3.2.2). Here we deal with real-world near-infrared (NIR) data processing.

The data were obtained during Trispirabois project (2013-2016) gathering two public labora-
tories (CRAN and LCPME), three industrial companies (Egger, Pellenc ST and CrittBois) and
funded by the french “FUI EcoIndustries 2012” program. The main objective of the project was
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Figure 3.3: A simple illustration of the dictionary in super resolution problem. H =

[h1,h2,h3,h4]. Discrete atoms are represented by bullets. Sampling grid has step size 1 while
the grid for sparse reconstruction has step ∆ = 0.5. Each atom is a delayed version of the
previous atom by a step ∆.

to increase the rate of recycled wood in the production of new particleboards. In this respect,
more than 300 wood samples with different composition (raw wood, plywood, particle boards,
MDF-HDF) and different finition (raw, painted, varnished) were collected on a wood waste park
and scanned using a Nicolet 8700 FTIR spectrometer. The resulting reflectance spectra are
composed of 1647 wavenumbers covering the near-infrared (NIR) range 3600–10000 cm−1 (which
correspond to wavelengths in the interval [1, 2.8] µm). The aim is to design a binary classifier
based on the identification of a subset of informative wavelengths for detecting the so-called non
recyclable samples (i.e., MDF-HDF) [Belmerhnia et al., 2015,Wagner et al., 2015]. As the final
objective is to design an industrial (fast) sorting system, the number of selected wavelengths has
to be as small as possible (typically between 16 and 32). Sparse modeling of the NIR spectra is
a common approach to select the informative wavelengths. For instance, Turlach et al. [Turlach
et al., 2005] proposed an algorithm for variable selection based on an extension of the LASSO
and applied it to near infrared measurements.

The principle of wood classification by the decomposition of NIR spectra is summarized in
Fig. 3.4. The different wood pieces are placed on a black background (conveyor) and scanned
using a spectrometer. The resulted data can be represented as a cube with two spatial dimensions
and one spectral dimension. One pixel of the data cube is a NIR spectrum composed of different
wavelengths. One decompose the NIR spectrum (into elementary Gaussian features) to identify
a subset of informative wavelengths in order to detect recyclable wood samples.

For convenience, let us start by introducing the sparse decomposition of one spectrum into
elementary Gaussian features. Fig. 3.5 presents a simple illustration of such a decomposition.
The simulated data (in black) is decomposed into three Gaussians of different widths σ (σ = 10

for the red Gaussian, 20 for the green and 30 for the blue). The noisy data is generated such
that SNR = 30 dB. Fig. 3.6 presents another illustration of the decomposition with a focus on
how the dictionary looks like. The dictionary is a block Toeplitz matrix

H = [H1, · · · , Hj , · · · , Hq] (3.15)

where each block Hj is the Toeplitz dictionary corresponding to the convolution matrix related
to the Gaussian impulse response of width σj . In Fig. 3.6, H contains 3 blocks: red, green,
blue (hence q = 3) where the red block corresponds to the smallest width σ and the blue block
corresponds to the largest width.

Hereafter, we consider the decomposition of 50 NIR spectra, seen as data vectors y of length
1647. The data pre-processing includes baseline removal, offset correction ensuring zero lower
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Figure 3.4: Principle of wood classification by NIR spectra decomposition.
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Figure 3.5: A simulation of the decomposition of a spectrum into elementary Gaussian features.
The data signal (in black) is decomposed into three Gaussians (red, green and blue) of different
widths (smallest in red and largest in blue).

bound, and unit energy normalization. One typical spectrum is shown in Fig. 3.7. To decompose
the spectra, we build a dictionary H with Gaussian-shaped columns obtained by discretizing the
parameters of a Gaussian function (centers and widths). This dictionary is formed by appending
the columns of the convolution dictionaries (corresponding to a fixed width σ) used in Sub-
section 3.2.1 for 60 equally spaced values of σ ∈ [10, 600] cm−1. The generated dictionary is
composed of 2998 atoms. Note that the centers of Gaussian atoms of same width σ are sampled
with a step equal to σ, whereas the sampling step of the input signals y equals 4 cm−1.
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Figure 3.6: A simple illustration of sparse decomposition of one spectrum. The Gaussian dic-
tionary consists of three Toeplitz blocks (red, green and blue) corresponding to the convolution
matrices related to the Gaussian impulse response of given widths (smallest width in red and
largest width in blue). The spectrum y can be decomposed into three spectra of different widths
(one red, one green and one blue) with the corresponding weights in vector x. The three spectral
components are highlighted in bold and the non-zero weights are in color (red, green and blue).
Figure was kindly shared by Dr. Hassan Mortada.
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Figure 3.7: A typical NIR spectrum.

3.3 Validation of NNOG accelerations

In §2.4 we proposed accelerations for NNOG algorithms. Let us remind that NNOG algorithms
can be made fully recursive by using active-set NNLS initialized with warm start. Moreover,
several pruning strategies (type-I and type-II) can be combined to reduce the number of tests at
the atom selection stage. Finally, the latter step can benefit from vectorized computations.

In this section we compare the accelerated implementation of NNOG algorithms with their
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standard implementation in terms of computing time in a sparse deconvolution problem with
Gaussian kernel (see §3.2.1 for description). Our comparison aims to illustrate the effect of the
proposed accelerations in reducing the computing time of NNOG algorithms.

3.3.1 Sparse deconvolution with Gaussian kernel

We generate a convolution dictionary of size 1200 × 1140 (with σ = 10). For each value of
K ∈ {20, 40, 60, 80}, 200 trials are carried out in which the support S∗ is generated. The non-zero
coefficients of x∗ are set to 1, and the SNR is set to 30 dB. OMP, OLS, NNOMP, SNNOLS, and
NNOLS are run until the support cardinality equalsK. We consider the recursive implementation
of OMP and OLS utilizing the matrix inversion lemma. We chose this implementation to make
it consistent with our proposed NNOG implementation. Note that NNOG algorithms may need
more than K iterations because of support compression. The following quantities are computed
and averaged out over the number of trials:

• Acceleration gain: ratio, in terms of CPU time, between canonical (non-recursive) and
accelerated recursive implementations of NNOG algorithms.

• Non-negativity loss: ratio, in terms of CPU time, between accelerated implementation of
NNOG algorithms and the corresponding unconstrained versions.

• Iterations: average number of iterations of NNOG algorithms needed to yield a support of
cardinality K. This number is larger than K if support compression occurs.

Before going further, let us clarify that the so-called “canonical implementations” refer to the
following settings. The AS-NNLS algorithm is called from scratch from the initial zero solution.
Moreover, obvious accelerations are taken into account such as type-I pruning, computation of
the ULS solutions for candidate supports S ∪ {i} so as to avoid calling AS-NNLS when the
augmented support is positive, and recursive computation of the AS-NNLS iterates. On the
other hand, advanced accelerations such as type-II pruning and warm start initialization are not
included. Support compression is included in such a way that both canonical and accelerated
versions of a given NNOG algorithm yield the same iterates.

The scores can be found in Table 3.1. Accelerated implementations yield a gain in time by
a factor greater than 2. For NNOMP, the gain increases with K. Since NNOLS needs to solve
many NNLS subproblems per iteration, the gain is much larger. The time gain is intermediate
for SNNOLS. We further notice that using accelerated implementations, the cost of NNOMP
and SNNOLS becomes comparable with that of OMP and OLS, respectively, the non-negativity
loss remaining below 1.5. Regarding NNOLS vs OLS, the non-negativity loss remains lower than
5 in these simulations. At last, the fact that the number of iterations is often larger than K

reveals that support compression is happening quite often. Note that the number of times the
support compression occurs does not identify to the gap between the number of iterations and
K, since support compression may remove several atoms per iteration.

Table 3.1: Acceleration gain of NNOG algorithms for a sparse deconvolution problem with
Gaussian kernel (σ = 10). Mean over 200 trials. The dictionary size is 1200× 1140.

K
Acceleration gain Non-negativity loss Iterations

NNOMP SNNOLS NNOLS NNOMP SNNOLS NNOLS NNOMP SNNOLS NNOLS
20 2.7 10.5 792 1.2 1.0 1.5 20 22 21
40 4.5 11.5 1110 1.2 1.2 1.9 41 51 43
60 6.4 11.4 952 1.1 1.2 2.1 65 97 73
80 8.5 11.5 646 1.1 1.3 4.1 95 152 121
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3.3.2 Computation burden of SNNOLS and NNOLS

Hereafter, the computation burden of SNNOLS and NNOLS is assessed more thoroughly so as
to evaluate the accelerations proposed in Section 2.4. Four indicators are computed at each
iteration:

1. ρ↓ = |DS |/|S̄|: rate of descending atoms. The rate of discarded atoms after type-I pruning
reads 1− ρ↓.

2. ρ+
cand: rate of descending candidate atoms for which S ∪ {i} is a positive support.

3. ρII: rate of candidate atoms discarded by type-II pruning among all atoms i for which
S ∪ {i} is not a positive support.

4. ρ+
sel: rate of selected atoms yielding a positive support S ∪ {`}.

The underlying idea is that the computational cost of an NNOG iteration is closely related to
the values of these ratios. Indeed, large scores indicate that the cost of testing candidate atoms
is dramatically reduced. Specifically, ρ↓ is the rate of candidate that are truly considered in the
selection rule (2.15) of NNOG algorithms. Both ratios ρ+

cand and ρII quantify the computational
burden of the NNOLS selection step: large values of ρ+

cand and ρII indicate that AS-NNLS has
to be run for a few candidate atoms only, since other atoms are either pruned or yield a non-
negative ULS solution. ρ+

sel is defined similar to ρ+
cand. However, ρ+

sel does not apply to the
candidate atoms, but to the selected atoms, in order to bring information on the computational
burden of the coefficient update stage of SNNOLS.

Using the dictionary of size 1200 × 1140 and the settings K = 80 and SNR = 30 dB, the
computational burden of SNNOLS and NNOLS is assessed in Fig. 3.8. It is noticeable that the
number of iterations L required to reach a support of cardinality K is larger than K because
of support compression. Specifically, the histograms of Fig. 3.8(b) show that on average, L is
larger than K for NNOLS and even larger for SNNOLS (the average values are given in the last
lines and columns of Table 3.1). This is consistent with the fact that the NNOLS selection rule
is more involved but more reliable. Moreover, the standard deviation of L corresponding to the
histograms of Fig. 3.8(b) is 17 and 12 for SNNOLS and NNOLS, respectively, which indicates
that the size of the support found after k iterations may significantly vary between trials. In
order to get meaningful evaluations, we choose to compute the average values of each indicator
over the last t iterations, with t ∈ {0, . . . , 79}. When t = 0, only the last iteration is taken
into account, so the current support is of size K. For larger values of t, the supports found
during the last t iterations have varying sizes, but the averaging operation remains meaningful,
especially for the last iterations, which are the most costly. The curves displaying the average
of each indicator over 200 trials and over the last t iterations are shown in Fig. 3.8(a). One can
observe from the curve (1−ρ↓) that descending atoms are numerous at early iterations, and then
their rate gradually decreases for both SNNOLS and NNOLS. Therefore, type-I pruning is more
effective at late iterations, where it discards about half of the atoms.

The effect of type-II pruning in NNOLS is measured by ρ+
cand and ρII indicators in Fig. 3.8(a).

Large values of ρ+
cand and ρII are obtained, which indicates that the computing cost of NNOLS

is dramatically reduced. Recall that a large value of ρII implies that type-II pruning eliminates
most atoms in DS that do not result in a positive support. The decrease of ρ+

cand implies that
the rate of descending atoms not resulting in a positive support gets larger as the number of
iteration increases. However, type-II pruning remains truly effective. For instance, in the last
iterations, around 25% of descending atoms do not yield a positive support and type-II pruning
eliminates 90% of them, that is, 22% of descending atoms. As a result, only 3% of descending
atoms require to proceed a complete NNLS solving. Let us stress that the extra cost of NNOLS
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(a) Complexity indicators of SNNOLS (left) and NNOLS (right)
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Figure 3.8: Complexity analysis of SNNOLS and NNOLS for a simulated sparse deconvolution
problem with Gaussian kernel (σ = 10) and a SNR of 30 dB. The dictionary size is 1200× 1140,
K = 80 and 200 trials are performed. (a) Evolution of complexity factors during the last t
iterations (from L − t to L). ρ↓: ratio of descending atoms; ρ+

cand: ratio of atoms resulting in
a positive support in NNOLS; ρII: ratio of atoms discarded by type-II pruning in NNOLS; ρ+

sel:
rate of positive supports found by SNNOLS. (b) Histogram of the average number of iterations
L required to reach a support of cardinality K = 80.

as compared with SNNOLS essentially comes from the number of atoms related to a complete
NNLS solving, so it directly depends on the efficiency of type-II pruning.

Besides, the decrease of the indicators ρ+
sel, ρ

+
cand and ρII highlights that both SNNOLS and

NNOLS call NNLS more often at the late iterations. A reason for this behavior is that the
correlation between atoms becomes larger when the set of considered atoms enlarges.

3.3.3 Conclusion

The accelerated implementation of NNOG algorithms are significantly faster than the standard
implementation and becomes comparable with that of unconstrained greedy algorithms. There-
fore it is reasonable to use NNOG algorithms in any non-negative sparse problem instead of the
traditional OMP and OLS.
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3.4 Comparison of three NNOG algorithms

In this section we compare the computing time and performance of the three NNOG algorithms
(NNOMP, NNOLS and SNNOLS, see Chapter 2 for their descriptions) in two simulated problems:
(i) sparse deconvolution with Gaussian kernel, and (ii) sparse deconvolution for super resolution.
The readers are referred to §3.2.1-§3.2.2 for the description of these problems.

3.4.1 Sparse deconvolution with Gaussian kernel

The curves shown in Fig. 3.9 are obtained for a convolution dictionary of size 2400 × 2388,
with σ = 2 and for various settings of K ∈ [2, 80]. For each K, 400 trials are carried out in
which the support S∗ is drawn according to the uniform distribution and the non-zero coefficients
of x∗ are drawn from a Gamma distribution with shape and scale parameters set to 1 and 2,
respectively. Note that for increasing K, the density of spikes increases, and hence the difficulty
of the problem. Working at a given level of SNR would have even increased the difficulty at large
values of K, so we have preferred to keep the noise level Pε constant; it is set to Pε = 10−2. In
this simulation condition, it is noticeable in Fig. 3.9(b) that the coefficient inaccuracy ‖x− x∗‖
becomes somewhat large when the spike density is high. For easier problems (lower value of σ
and lower density of spikes), many algorithms would provide good results, so it would be difficult
to see differences in terms of estimation quality.

In this test, NNOMP is faster but less accurate than NNOLS and SNNOLS. SNNOLS has
roughly the same performance as NNOLS but with lower cost which is close to that of NNOMP.
Illustration on one trial is shown in Fig. 3.10.

3.4.2 Super resolution problem

The noiseless data of size m = 300 are obtained by a linear combination of K = 40 discrete
Gaussian features of width σ = 2 and centered at continuous locations c∗j . The true centers c∗j
and weights x∗j are randomly generated with uniform distribution. Then the data signal y is
obtained by adding a white Gaussian noise corresponding to a SNR=30 dB. The resolution grid
is chosen with step size ∆ = 2−N where N varies from 1 to 7. For each value of N (hence each
value of ∆), the corresponding dictionary H is built from all possible delayed versions of the
Gaussian of width σ. The centers of atoms are located on the grid of chosen step ∆.

NNOMP, NNOLS and SNNOLS are run until a support of cardinality K is reached. We com-
pare the three algorithms in terms of CPU time, the number of iterations and the reconstruction
accuracy which is characterized by three factors:

• Support recovery : ratio of true positives to K

• Relative residual norm: ‖y −Hx‖/‖y‖

• Normalized support distance:∑
i

min
j
|c∗i − cj |+

∑
j

min
i
|c∗i − cj |

 /(2K) (3.16)

where cj are estimated locations of the true centers c∗j .

Note that (3.16) is a symmetric measure of the minimum distance (in average) between the
location of one true spike and the corresponding estimated location. Its value is always non-zero
since the true spike locations c∗i are set to real values, hence, they are almost surely located off
the resolution grid containing the estimated locations ci.
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Figure 3.9: Comparison of NNOG algorithms. Performances are averaged over 400 trials in a
simulated sparse deconvolution problem with Gaussian kernel with σ = 2, Pn = 10−2, and a
dictionary of size 2400× 2388.
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Figure 3.10: One trial of data y and ground truth x∗ when K = 10 and the reconstruction using
NNOMP. NNOMP detects correctly 9 spikes (in red) and yields one false detection (in blue).
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One example of simulated data and the average performance of the three algorithms over
100 trials are shown in Figure 3.11. NNOMP yields the weakest performance while NNOLS and
SNNOLS perform competitively. We observed that, for larger value of N , NNOLS yields a lower
support error in comparison with SNNOLS. This means that NNOLS has a better capacity in
locating true spikes even when the dictionary is highly correlated (i.e.,, when the grid step size is
small, the consecutive atoms are very similar hence it is more difficult to distinguish). Besides,
when N is larger than 5, SNNOLS becomes more costly than NNOLS as it requires many more
iterations.

3.4.3 Conclusion

Among the three NNOG algorithms, NNOMP is the fastest but yields the weakest performance.
NNOLS has the best capacity in locating the true spikes, specially when dealing with highly cor-
related dictionaries. SNNOLS has the best trade of between computing time and reconstruction
accuracy.

3.5 Comparison with unconstrained greedy algorithms

In this section we perform comparisons between NNOG algorithms and (unconstrained) OMP
and OLS to demonstrate the usefulness of working with NNOG algorithms. The comparisons are
done in a simulated sparse deconvolution problem with Gaussian kernel (described in §3.2.1) and
in the decomposition of real-world NIR spectra into elementary Gaussian features (described in
§3.2.3). In order to obtain non-negative coefficients from the OMP (respectively, OLS) outputs,
a simple possibility is to apply a post-processing step using the solution support yielded after
K iterations of OMP (resp., OLS). This post-processing consists of solving the NNLS problem
related to the support found by OMP/OLS, with possible annealing of coefficients when non-
negativity constraints are activated. The resulting schemes are denoted by OMP+ and OLS+.

3.5.1 Sparse deconvolution with Gaussian kernel

We use the same setting as in §3.4.1. Figure 3.12 includes a comparison of NNOMP and NNOLS
with OMP, OLS, OMP+ and OLS+. The performance of OMP, OLS, OMP+ and OLS+ in
terms of support recovery and coefficient accuracy is weaker than those of NNOG algorithms.
In Figure 3.12(a), the scores of OMP+ (OLS+) are identical to those of OMP (OLS). This is
because the support recovery measure considers the rate of true positives, which is unchanged
since the post-processing step of OMP+ (OLS+) essentially removes false positives. On the
contrary, the coefficient inaccuracy ratio is improved due to the latter removal. In Figure 3.12(c-
d), the time and error scores of OMP (resp., OLS) are both lower than those of NNOMP (resp.,
SNNOLS and NNOLS). This is not a surprise since unconstrained algorithms are simpler, and the
obtained solutions are expected to reach lower values of the residual since they do not satisfy the
non-negativity constraint. The simple post-processing in OMP+/OLS+ does not allow to yield
a residual norm as small as the one obtained using NNOG. This shows that NNOG algorithms
do improve the performance of (unconstrained) OMP and OLS.

3.5.2 Decomposition of NIR spectra

For each NIR spectrum, NNOMP, NNOLS, OMP, OLS are run until a support of cardinality
K = 20 is reached. The simple OMP+ and OLS+ algorithms are considered as well. For each
competing algorithm, the CPU time and the relative residual norm ‖y − Hx‖/‖y‖, averaged
over 50 spectra, are displayed in Tab. 3.2. First, the time and approximation errors of OMP
(resp., OLS) are both lower than those of NNOMP (resp., NNOLS). This is not a surprise since
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Figure 3.11: Comparison between NNOMP, NNOLS and SNNOLS in a super resolution problem
where resolution grid step is set to ∆ = 2−N for N varying between 1 and 7.

unconstrained algorithms are expected to reach lower criterion values. When one performs a
post-processing by removing these negative spikes such as with OMP+/OLS+, the error scores
become larger than those of NNOG algorithms, and the sparse approximation accuracy is weaker.
This confirms the weak capacity of OMP and OLS to reconstruct correct supports from non-
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Figure 3.12: Comparison of NNOG algorithms with unconstrained greedy algorithms. Perfor-
mances are averaged over 400 trials in a simulated sparse deconvolution problem with Gaussian
kernel with σ = 2, Pn = 10−2, and a dictionary of size 2400× 2388.

negative sparse representations. Finally, the CPU times of NNOG algorithms vs their related
unconstrained versions given in Tab. 3.2 are consistent with the non-negativity losses gathered
in Tab. 3.1.

Table 3.2: CPU time and normalized approximation error of NNOG algorithms and uncon-
strained greedy algorithms for sparse decomposition of NIR spectra. Average over 50 spectra.
Symbol ** indicates that the considered algorithm does not enforce the non-negative constraint.

Algorithm **OMP OMP+ NNOMP **OLS OLS+ NNOLS
Time (ms) 23 24 28 25 26 40
‖y −Hx‖/‖y‖ × 102 6.6 16.4 9.6 5.7 16.6 6.4

These results are further illustrated for a specific spectrum in Fig. 3.13, where approximations
and sparse recoveries are displayed for all competing algorithms. OMP and OLS yield 7 and 9
negative peaks, respectively. Besides, the OMP+ and OLS+ approximations around 4500–7000
cm−1 and 5000 cm−1, respectively, are rather poor. NNOLS outperforms NNOMP, in particular,
around 4200 and 7000 cm−1.
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Figure 3.13: Data approximation and sparse recovery of an NIR spectrum using NNOG algo-
rithms and unconstrained greedy algorithms. The Gaussian dictionary contains 2998 atoms and
the sparsity level is set to K = 20.

3.5.3 Conclusion

OMP and OLS have weak capacities of reconstructing non-negative ground truth. The simple
post-processing by removing negative coefficients is not sufficient to convert OMP and OLS to
non-negative sparse solvers. NNOMP and NNOLS significant improve the performance of OMP
and OLS in the reconstruction of non-negative ground truth. Moreover, the computing time of
NNOMP and NNOLS becomes comparable to that of OMP and OLS. Therefore, it is reasonable
to use NNOMP and NNOLS in any non-negative sparse problem instead of OMP and OLS.
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3.6 Comparison with fast approximate non-negative greedy algo-
rithms

In this section we compare NNOG algorithms with FNNOMP [Yaghoobi et al., 2015] and FN-
NOLS [Yaghoobi and Davies, 2015]. Let us remind that FNNOMP was introduced in [Yaghoobi
et al., 2015] as a fast (but approximative) implementation of NNOMP. Similarly, FNNOLS was
introduced in [Yaghoobi and Davies, 2015] as a fast implementation of NNOLS. Our comparisons
are done in a simulated sparse deconvolution problem with Gaussian kernel (described in §3.2.1)
and in the decomposition of real-world NIR spectra into elementary Gaussian features (described
in §3.2.3).

3.6.1 Sparse deconvolution with Gaussian kernel

We use the same setting as in §3.4.1. Figure 3.14 presents a comparison with the FNNOMP
and FNNOLS implementations1 of Yaghoobi et al. [Yaghoobi et al., 2015,Yaghoobi and Davies,
2015]. FNNOLS turns out to be much slower and less accurate than our fast implementations
of SNNOLS and NNOLS. On the other hand, the statistical performances of NNOMP and
FNNOMP are very close both in terms of computational time and accuracy. However, FNNOMP
may return some negative coefficients in the reconstructed sparse vector. In contrast, our fast
implementation of NNOMP is exact and the non-negativity constraint is always satisfied.

3.6.2 Decomposition of NIR spectra

For each NIR spectrum, NNOG algorithms, FNNOMP and FNNOLS are run until a support of
cardinality K = 20 is reached. The average computing time and normalized approximation error
over 50 spectra are shown in Tab. 3.3. As can be seen, NNOMP and FNNOMP have roughly
same cost and performance. FNNOLS is more costly than NNOLS and SNNOLS with a slightly
weaker performance. Illustration on a spectrum is shown in Fig. 3.15.

Table 3.3: CPU time and normalized approximation error of different implementations of NNOG
algorithms for sparse decomposition of NIR spectra. Average over 50 spectra.

Algorithm NNOMP FNNOMP SNNOLS NNOLS FNNOLS
Time (ms) 28 25 30 40 2720
‖y −Hx‖/‖y‖ × 102 9.6 9.6 6.4 6.4 7.0

3.6.3 Conclusion

FNNOMP has roughly the same cost and performance as our exact implementation of NNOMP.
However, FNNOMP might return some negative coefficients. Besides, FNNOLS is much slower
than NNOLS and SNNOLS with slightly weaker performance. Therefore, we conclude that it is
not necessary to work on approximative schemes to derive efficient implementations.

3.7 Comparison with non-negative extensions of CoSaMP, SP
and HTP

In this section we compare NNOG algorithms with non-negative extensions of CoSaMP [Needell
and Tropp, 2009], SP [Dai and Milenkovic, 2009] and HTP [Foucart, 2011] which are named
NNCoSaMP, NNSP and NNHTP [Kim and Haldar, 2016], respectively. Our comparisons are

1kindly provided by Dr. Mehrdad Yaghoobi.
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Figure 3.14: Comparison of NNOG algorithms with with approximative fast non-negative greedy
algorithms. Performances are averaged over 400 trials in a simulated sparse deconvolution prob-
lem with Gaussian kernel with σ = 2, Pn = 10−2, and a dictionary of size 2400× 2388.

done in a simulated sparse deconvolution problem with Gaussian kernel (described in §3.2.1) and
in the decomposition of real-world NIR spectra into elementary Gaussian features (described in
§3.2.3).

Let us remind that the principle of NNCoSaMP and NNSP [Kim and Haldar, 2016] is to
maintain an estimated support of size K. To do so, three kinds of operations are performed at
each iteration including support merging, NNLS estimation of coefficients and support pruning.
In NNCoSaMP, the current support of size K is merged with a support of size 2K, and an NNLS
problem is solved with this augmented support. Then, thresholding is performed by keeping
the K coefficients having the largest magnitudes. The structure of NNSP is similar, but two
NNLS problems (of size roughly 2K and K) are solved before and after thresholding. The NNSP
output thus contains at most K nonzero elements depending on the activation of nonnegativity
constraints. NNHTP [Kim and Haldar, 2016] maintains an estimated support of size K by
keeping the K coefficients having the largest magnitudes from a gradient descend move then
solving the NNLS problem related to the maintained support. Therefore, NNHTP output also
contains at most K nonzero elements.



56 3. Numerical validation of NNOG algorithms

4000 5000 6000 7000 8000 9000 10000

0

0.01

0.02

0.03

0.04

0.05

0.06

(a) NNOMP

4000 5000 6000 7000 8000 9000 10000

0

0.01

0.02

0.03

0.04

0.05

0.06

(b) FNNOMP

4000 5000 6000 7000 8000 9000 10000

0

0.01

0.02

0.03

0.04

0.05

0.06

(c) NNOLS

4000 5000 6000 7000 8000 9000 10000

0

0.01

0.02

0.03

0.04

0.05

0.06

(d) FNNOLS

4000 5000 6000 7000 8000 9000 10000

0

0.01

0.02

0.03

0.04

0.05

0.06

(e) SNNOLS

Figure 3.15: Data approximation and sparse recovery of an NIR spectrum using NNOG algo-
rithms and approximative fast versions. The Gaussian dictionary contains 2998 atoms and the
sparsity level is set to K = 20.

3.7.1 Sparse deconvolution with Gaussian kernel

We use the same setting as in §3.4.1 and the result is shown in Figure 3.16. As can be seen, the
NNOG algorithms yield competitive accuracy performance compared to NNCoSaMP and NNSP
while NNHTP yields the weakest performance. In particular, NNOG algorithms have a better
ability to find a low value of the residual norm for a given cardinality K. This said, no algorithm
outperforms all competitors in terms of coefficient accuracy for all scenarios. Nonetheless, the
times of computation of NNOG with our recursive implementations are always lower than those
of NNCoSaMP, NNSP and NNHTP. Let us stress that the structure of the latter algorithms does
not easily lend itself to recursive implementations. Indeed, there is no nested property between
the supports found at consecutive iterations. Consequently, solving the NNLS problems in a very
efficient manner does not seem obvious anymore. For instance, NNCoSaMP needs to solve NNLS
problems for augmented supports of size roughly 3K. The current K-sparse vector obtained after
thresholding may be used as a warm start (although it is usually not an NNLS solution), but
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the number of inner NNLS iterations is expected to be much larger than for NNOG algorithms.
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Figure 3.16: Comparison of NNOG algorithms with non-negative versions of CoSaMP, SP, HTP.
Performances are averaged over 400 trials in a simulated sparse deconvolution problem with
Gaussian kernel with σ = 2, Pn = 10−2, and a dictionary of size 2400× 2388.

3.7.2 Decomposition of NIR spectra

For each NIR spectrum, NNOG algorithms, NNCoSaMP, NNSP and NNHTP are run until a
support of cardinality K = 20 is reached. The average computing time and normalized approx-
imation error over 50 spectra are shown in Tab. 3.4. NNCoSaMP and NNSP are slower than
NNOG algorithms and yield higher errors. NNHTP is at the same cost as NNOLS but with a
weaker performance. This result is further illustrated in Fig. 3.17. In this example, SNNOLS
and NNOLS outperform NNCoSaMP and NNSP around 9000 cm−1 while NNHTP performance
is rather poor.

Table 3.4: CPU time and normalized approximation error of several non-negative greedy algo-
rithms for sparse decomposition of NIR spectra. Average over 50 spectra.

Algorithm NNOMP SNNOLS NNOLS NNCoSaMP NNSP NNHTP
Time (ms) 28 30 40 45 57 40
‖y −Hx‖/‖y‖ × 102 9.6 6.4 6.4 10.1 8.2 9.7
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Figure 3.17: Data approximation and sparse recovery of an NIR spectrum using non-negative
greedy algorithms. The Gaussian dictionary contains 2998 atoms and the sparsity level is set to
K = 20.

3.7.3 Conclusion

NNOG algorithms yields competitive performances to those of NNCoSaMP, NNSP and NNHTP.
However, NNOG algorithms can easily lend themselves to recursive implementation while it is
not the case for NNCoSaMP, NNSP and NNHTP.

3.8 Comparison with non-negative extension of LARS

In this section we compare NNOG algorithms with non-negative extensions of LARS [Efron
et al., 2004] named NLARS [Morup et al., 2008]. Note that LARS is an `1 solver with a greedy
structure. Each iteration of NLARS consists of either a forward move or a backward move and
the update of amplitudes along a computed direction. Our comparisons are done in a simulated
sparse deconvolution problem with Gaussian kernel (described in §3.2.1) and in the decomposition
of real-world NIR spectra into elementary Gaussian features (described in §3.2.3).
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3.8.1 Sparse deconvolution with Gaussian kernel

We use the same setting as in §3.4.1 and the result is shown in Figure 3.18. The NNOG algorithms
and NLARS yield competitive performances in terms of support recovery and coefficient accuracy.
However, NNOG algorithms have a better ability to find a low value of the residual for a given
cardinality K while NLARS is faster.
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Figure 3.18: Comparison of NNOG algorithms with NLARS. Performances are averaged over 400
trials in a simulated sparse deconvolution problem with Gaussian kernel with σ = 2, Pn = 10−2,
and a dictionary of size 2400× 2388.

3.8.2 Decomposition of NIR spectra

For each NIR spectrum, NNOG algorithms and NLARS are run until a support of cardinality
K = 20 is reached. The average computing time and normalized approximation error over 50
spectra are shown in Tab. 3.5. Similar to the previous comparison (§3.8.1), NLARS yields a larger
approximation error than those of NNOG algorithms. However, in this comparison, NLARS is
slower than NNOG algorithms. We noticed that the number of iterations of NLARS is much
higher than those of NNOG algorithms (50 iterations in average for NLARS in comparison with
21 for NNOG algorithms). This might come from the fact that the dictionary in this problem
is over-complete (with roughly twice columns as rows, hence highly correlated) while the one
in §3.8.1 is slightly under-complete. Since, at each iteration of NLARS, the residual is not
orthogonal to the selected subspace, NLARS might need several iterations to select and deselect
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the same atoms before finding a good candidate to append to the current support. Therefore,
NLARS can be more costly than NNOG algorithms even though each NLARS iteration might
be cheaper than that of NNOG algorithm.

This comparison is further illustrated in Fig. 3.19. As can be seen, the approximation resulted
by NLARS is much poorer than those of NNOG algorithms.

Table 3.5: CPU time and normalized approximation error of NLARS and NNOG algorithms for
sparse decomposition of NIR spectra. Average over 50 spectra.

Algorithm NNOMP SNNOLS NNOLS NLARS
Time (ms) 28 30 40 77
‖y −Hx‖/‖y‖ × 102 9.6 6.4 6.4 21.1
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Figure 3.19: Data approximation and sparse recovery of an NIR spectrum using NLARS and
NNOG algorithms. The Gaussian dictionary contains 2998 atoms and the sparsity level is set to
K = 20.

3.8.3 Conclusion

NNOG algorithms and NLARS yield competitive performances in terms of support recovery and
coefficient accuracy. However, NNOG algorithms yield a lower residual value for a given cardi-
nality K. Besides, NLARS tends to be slower when dealing with highly correlated dictionaries.

3.9 Conclusion

According to our numerical comparisons, we can conclude that the computing time of NNOMP
then becomes comparable to that of OMP, so that the additional cost should not prevent users
from skipping from OMP to NNOMP in any nonnegative sparse problem. The performances of
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NNOMP and FNNOMP are very close both in terms of computational time and accuracy. Since
FNNOMP was introduced as a fast but approximate version of NNOMP, we conclude that it is
not necessary to work on approximate schemes to derive efficient implementations. On the other
hand, we have obtained a dramatic acceleration of NNOLS compared to both canonical and fast
versions proposed in [Yaghoobi and Davies, 2015]. The computing cost of NNOLS remains larger
than that of OLS. However, whenever OLS can be used, our exact implementation of NNOLS
is a realistic option to handle nonnegativity constraints, given that the potential of performance
gain between NNOMP and NNOLS is comparable to the one between OMP and OLS in the
unconstrained case. We have also studied SNNOLS, which is a suboptimal version of NNOLS
originally introduced in [Yaghoobi and Davies, 2015]. Our conclusion is that SNNOLS represents
a good trade-off between NNOMP and NNOLS: it is structurally simpler than NNOLS and hence
significantly faster, with very similar performance in terms of estimation error. However, NNOLS
is more robust in dealing with high conditioning.

Our comparisons with NNSP and NNCoSaMP show that NNOG algorithms are very com-
petitive in terms of accuracy, although no algorithm outperforms the others in all scenarios. The
proposed recursive implementations yield a substantial reduction of computation compared to
NNSP and NNCoSaMP. An attractive feature of NNOG algorithms is their versatility. Indeed,
the implementations presented in this chapter can be used to address both forms of (1) problems
with constraints ‖x‖0 ≤ K (as addressed in this chapter) or ‖y −Hx‖22 ≤ ε2, where ε2 is related
to the noise variance. In the latter case, one simply needs to replace the stopping condition
|S| = K in Algorithm 12 by ‖rS‖22 ≤ ε2. NNSP, NNCoSaMP, and NNHTP are apparently less
versatile, although the proposal of novel versions dedicated to the constraint ‖y −Hx‖22 ≤ ε2

could be addressed as a perspective to the work in [Kim and Haldar, 2016].
Finally, our comparison shows that NNOG algorithms and NLARS are very competitive in

performance. However, NNOG algorithms have a better ability to find a low value of the residual
for a given cardinality K.
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In Chapters 2-3, we addressed the algorithmic issues of non-negative greedy algorithms. In
particular, we introduced the class of NNOG algorithms, exhibited their structural properties and
proposed a fast implementation of NNOG algorithms which was assessed by several numerical
comparisons. In this chapter we address the theoretical guarantee of NNOG algorithms.

4.1 Introduction

Orthogonal Matching Pursuit (OMP) [Pati et al., 1993] and Orthogonal Least Squares (OLS) [Chen
et al., 1989] are well known greedy, iterative algorithms for sparse decomposition. Their common
principle is to sequentially select atoms from a given dictionary, that produce a maximal decrease
of the residual error in the least square sense. Finding the K atoms that jointly minimize the
residual error at a given sparsity level K is an NP-hard subset selection problem [Natarajan,
1995]. Greedy algorithms such as OMP and OLS form a family of approximate schemes, with a
relatively low computing cost compared to exact methods [Bourguignon et al., 2016], while convex
relaxation yields another important branch of approximate methods [Tibshirani, 1996,Donoho
and Tsaig, 2008].

1This chapter is an adaptation of the paper [Nguyen et al., 2019d]
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Orthogonal greedy algorithms are able to achieve exact support recovery under certain con-
ditions. The Mutual Incoherence Property (MIP) condition states that OMP is guaranteed to
recover the K-sparse representation of a data signal in the noiseless case if the mutual coherence
of the dictionary is less than 1

2K−1 [Tropp, 2004,Herzet et al., 2013]. In the last years, much at-
tention was paid to variations over such a condition. In particular, extensions to noisy cases were
considered, see, e.g., [Ben-Haim et al., 2010,Cai and Wang, 2011], and relaxations given partial
information on the decomposition of the data signal were proposed [Herzet et al., 2013,Herzet
et al., 2016]. Other studies about the theoretical assessment of OMP also consider the Restricted
Isometry Property (RIP) condition [Davenport and Wakin, 2010,Satpathi et al., 2013,Li et al.,
2015,Wen et al., 2017b]. Exact support recovery properties of OLS have been studied more
recently. The MIP condition was extended to OLS in the noiseless case [Herzet et al., 2013]
as well as noisy case [Herzet et al., 2016], whereas the exact recovery analyses in [Wen et al.,
2017a,Wang and Li, 2017] are based on RIP assumptions. In [Soussen et al., 2013,Herzet et al.,
2013,Herzet et al., 2016], OMP and OLS were treated as two instances of a unique orthogonal
greedy scheme, and the generic acronym Oxx was used to refer to both. We will adopt the same
convention in this chapter.

In the traditional K-step analysis, exact support recovery holds when each iteration of Oxx
necessarily selects an atom in the true support S∗, so that S∗ is recovered after K = |S∗|
iterations. Our main contribution in this chapter is to unveil an exact sign recovery property
regarding the weights of the selected atoms in the best current approximation under the MIP
condition and when the noise is bounded in `2 norm: at any iteration k between 1 and K,
the k coefficients found by Oxx have the same sign as the k corresponding ones in the true
decomposition of the data signal.

As an immediate consequence of this sign preservation property, we can theoretically assess
exact support recovery properties for the non-negative version of OMP and other non-negative
greedy schemes. Non-negative OMP (NNOMP) was first introduced by Bruckstein et al. [Bruck-
stein et al., 2008]. It relies on the repeated maximization of the positive inner product between
the residual error and the dictionary atoms, followed by the resolution of a non negative least
square problem. For such a sign constrained version of OMP, existing exact support recovery
analyses are rare, and somewhat discordant. On the one hand, Bruckstein et al. conjectured
that a MIP type property holds for NNOMP [Bruckstein et al., 2008], and that the proof is
similar to the one given in [Tropp, 2004,Donoho et al., 2006] for OMP. Specifically, [Bruckstein
et al., 2008, Theorem 3] states that µ < 1

2K−1 is a sufficient condition for exact recovery of any
K-sparse representation using NNOMP. On the other hand, Kim et al. elaborate a unified MIP
analysis of NNOMP and its generalized version in the multiple measurement vector setting [Kim
and Haldar, 2016, Theorem 1]. In the specific case of NNOMP, that is, for single measurement
vectors, the authors acknowledged that their MIP condition turns out to be very restrictive.
Indeed, µ is required to be lower than 1

K−1 − 1
2 , which can occur only when K = 1 or 2. In

addition, both analyses in [Bruckstein et al., 2008] and [Kim and Haldar, 2016] are made for the
noiseless case. To the best of our knowledge, the exact support recovery of non-negative OLS
has not been addressed yet and neither does the extension of related analyses to noisy cases.

We have been unable to prove [Bruckstein et al., 2008, Theorem 3] as prescribed by the
authors (as a direct extension of the derivations in [Tropp, 2004,Donoho et al., 2006]). The major
obstacle is that the NNOMP selection rule performs comparisons between signed inner products,
whereas a small mutual coherence condition yields a bound on the unsigned magnitude of inner
products (see Section 4.2.3 for further details). Fortunately, the sign preservation property
of OMP implies that OMP and NNOMP coincide in the exact support recovery regime, so
[Bruckstein et al., 2008, Theorem 3] becomes a trivial byproduct of our sign preservation analysis.
Under the same conditions, OLS and NNOLS [Yaghoobi and Davies, 2015] coincide, which
allows us to extend [Bruckstein et al., 2008, Theorem 3] to NNOLS. Similarly, the same applies
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to SNNOLS [Yaghoobi and Davies, 2015]. Furthermore, our analysis does not restrict to the
noiseless case but can apply to noisy cases in which the noise is `2-bounded.

The chapter is organized as follows. Section 4.2 introduces useful notations and briefly recalls
known results about orthogonal greedy algorithms and their non-negative versions. Section 4.3
contains our main results on sign preservation of Oxx, as well as their consequences on sign-
constrained greedy algorithms. The key result, stated as Theorem 4.1, is proved in the same
section, most technical steps being postponed in Appendix. Section 4.4 contains a limited set of
simulations to illustrate the average behavior of the studied algorithms outside the exact support
recovery regime. Finally, conclusion can be found in Section 4.5.

4.2 Some notations and background

4.2.1 Notations

In this chapter, for convenience, we denote by xS the subvector indexed by S (and xi being
the i-th entry of x). Besides, we denote by P⊥S = Im − HSH

†
S the orthogonal projection onto

span(HS)⊥, where Im stands for the identity matrix of size m × m. We place the convention
that P⊥S = Im when S = ∅. When HS is full column rank, one has a further explicit formulation

H†S = (Ht
SHS)−1Ht

S . (4.1)

Let us recall that
h̃Si = P⊥S hi (4.2)

and
g̃Si = h̃Si /‖h̃Si ‖, (4.3)

Later, we also use the generic notation

c̃Si =

{
h̃Si (OMP case),
g̃Si (OLS case)

(4.4)

to refer to either h̃Si or g̃Si depending on the context. We will denote by H̃S (resp., G̃S and C̃S)
the matrix of size m× n formed by gathering all projected atoms h̃Si (resp., g̃Si and c̃Si ).

For convenience, the residual vector and the support found by orthogonal greedy algorithms
at iteration k will be denoted rk and Sk, respectively, with |Sk| = k. By extension, we will
denote r0 = y and S0 = ∅. Whenever unambiguous, we will use the simpler notations r and S.

In our analysis, we make use of the mutual coherence of the dictionary, defined by

µ(H) = max
i 6=j
|ht
ihj |. (4.5)

This quantity tells us how much the dictionary atoms look alike.

4.2.2 Exact recovery analysis of OMP and OLS

As seen in Chapter 1, OMP and OLS address the following minimization problem:

min
‖x‖0≤K

‖y −Hx‖2. (4.6)

Both algorithms start with a zero vector solution corresponding to the empty support. Then,
at each iteration, a new atom ` is selected and added to the support. This process is repeated
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Algorithm 16: Oxx in K steps.
Input: y, H
Output: x with ‖x‖0 = K

1 Initialization: x← 0; S ← ∅;
2 repeat
3 r ← y −HSxS ;
4 Choose an atom ` according to either (4.7) or (4.8);
5 S ← S ∪ {`};
6 xS ← H†Sy;
7 until |S| = K;

until the support of cardinality K is reached (see Algorithm 16). OMP and OLS share the same
coefficient update and only differ by their selection rule:

OMP: ` ∈ arg max
i/∈S

|rthi|, (4.7)

OLS: ` ∈ arg max
i/∈S

|rtg̃Si | (4.8)

where r = P⊥S y denotes the current residual vector. Note that (4.7) can also be written as

` ∈ arg max
i/∈S

|rth̃Si | (4.9)

since r is orthogonal to span(HS). These inner product expressions come from the geometrical
interpretation of OMP and OLS [Blumensath and Davies, 2007]. Besides, from an optimization
viewpoint, the selection rule of OMP is based on the minimization of ‖r − zihi‖2 w.r.t. scalar
zi, whereas OLS relies on the minimization of ‖y − HS∪{i}z‖2 w.r.t. vector z of length |S| +
1 [Blumensath and Davies, 2007]. From this point of view, it is obvious that the OLS selection
rule is more costly than that of OMP, although recursive update schemes are available, see,
e.g., [Chen et al., 1989,Rebollo-Neira and Lowe, 2002].

Let us state the MIP condition that holds for both OMP and OLS in the noiseless case. Note
that under the assumption of Lemma 4.1, the K-sparse representation is unique [Donoho and
Elad, 2003, Theorem 7].

Lemma 4.1. [Tropp, 2004, Theorem 3.1-3.5], [Herzet et al., 2013, Theorem 2]. Assume that
µ(H) < 1

2K−1 . Let y = Hx∗ be a K-sparse representation. Then Oxx recover the support of x∗

in K iterations.

The MIP condition in Lemma 4.1 was extended to noisy cases in which the noise is bounded
in `2 norm in [Cai and Wang, 2011,Herzet et al., 2016]. We combine these results in a unique
statement in Lemma 4.2. One can find back the result in [Cai and Wang, 2011, Theorem 1]
when replacing ‖ε‖2 in (4.11) by any upper bound b ≥ ‖ε‖2. When the non-zero coefficients of
x∗ are sorted in a descending order, the result in [Herzet et al., 2016, Theorem 4] is obtained
when replacing (4.11) by

‖ε‖2 <
1− (2K − i)µ(H)

2
|x∗i |, ∀ 1 ≤ i ≤ K. (4.10)

Lemma 4.2. [Cai and Wang, 2011, Theorem 1], [Herzet et al., 2016, Theorem 4]. Assume that
µ(H) < 1

2K−1 . Let y = Hx∗ + ε where x∗ is K-sparse and

‖ε‖2 <
1− (2K − 1)µ(H)

2
min{|x∗i |, x∗i 6= 0}. (4.11)

Then Oxx recover the support of x∗ in K iterations.
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Obviously, Lemma 4.1 is a special case of Lemma 4.2 when ε = 0. Also, let us emphasize
that the mutual coherence in the previous simulations in Chapter 3 does not satisfy the MIP
condition hence the Lemmas 4.1- 4.2 do not apply. For instance, in the simulation of §3.4.1,
µ(H) = 0.94 hence the MIP condition µ(H) < 1

2K−1 only holds for K = 1 and the inequality
(4.11) only holds for the noise level Pε < 10−7 min{|x∗i |2, x∗i 6= 0}.

Here and throughout this chapter, we consider that in the special case where the Oxx selection
rules (4.7)-(4.8) yield several solutions (i.e., two atoms i1 and i2 for which |rtc̃Si1 | = |rtc̃Si2 |)
including an atom that does not belong to the support of x∗, Oxx makes the wrong decision and
hence K-step exact recovery does not occur.

4.2.3 Exact recovery analysis in the non-negative setting

4.2.3.1 Extension of K-step exact recovery analysis of OMP

Bruckstein et al. [Bruckstein et al., 2008] claimed that the K-step exact recovery analysis of
NNOMP can be carried out as a straightforward extension of the classical K-step exact recovery
analyses of OMP [Tropp, 2004,Donoho et al., 2006]. Here, we argue that this extension does not
actually appear to be trivial.

Tropp’s reasoning in [Tropp, 2004] consists in lower bounding the absolute value of the inner
product |rthi| between the residual and the correct dictionary atoms based on induced matrix
norm identities. Unfortunately, similar lower bounds cannot be directly extended when absolute
values are dropped. Donoho et al.’s recursive proof [Donoho et al., 2006] exploits that for noiseless
sparse inputs, the data residual lays in the subspace spanned by the true atoms. So the result
at the first iteration (guaranteed selection of a true atom) can be exploited again in the next
iterations by replacing the original input signal by the residual. To generalize this reasoning
to the non-negative case, one would need to prove that for non-negative sparse decompositions
y = Hx∗ (i.e., inputs laying in the positive span of the true atoms), the residual lays in the
positive span of the dictionary atoms as well. This conjecture turns out to be false; if true atoms
are selected until iteration k, the residual r = H(x∗ − x̂(k)) lays in the subspace spanned by
the true atoms, where x̂(k) denotes the NNOMP iterate. Provided that the latter atoms are
linearly independent, it is clear that r lays in their positive span if and only if x̂(k) ≤ x∗. Simple
numerical tests show that even for toy problems, x̂(k) ≤ x∗ may not hold when x∗ ≥ 0 and
µ(H) < 1

2K−1 : see Fig.. 4.1 for a simple illustration, also § 4.4.2 and Fig. 4.3(a). Therefore,
sign-preservation does not apply to the residual vector, hence Donoho et al.’s reasoning cannot
be directly extended to the non-negative case.

4.2.3.2 `1 analysis with non-negativity constraints

The theoretical analysis of non-negative versions of Basis Pursuit

BP : min
x
‖x‖1 s.t. y = Hx (4.12)

and Basis Pursuit Denoising

BPDN : min
x
‖y −Hx‖2 + λ‖x‖1 (4.13)

turns out to be far simpler than the analysis of orthogonal greedy algorithms. Indeed, it is well-
known that contrary to greedy algorithms, the exact recovery analysis of Basis Pursuit heavily
depends on the sign pattern. Fuchs [Fuchs, 2004] proved that when y = Hx∗, BP and BPDN
(for sufficiently small λ) both have a unique solution under the MIP assumption, and that this
solution identifies with x∗ as long as HS∗ is full rank and

∀j /∈ S∗, |〈σ∗, H†S∗hj〉| < 1 (4.14)
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Figure 4.1: The positive span assumption does not propagate to the residual.

where S∗ := supp(x∗) and σ∗ := sign(x∗S∗) ∈ {−1, 1}K denotes the sign pattern. It is noticeable
that the latter condition2 only depends on the sign pattern, but not on the magnitudes of
coefficients x∗i . Denoting by 1 the “all-ones” vector of size K, condition (4.14) with σ∗ ← 1 thus
guarantees exact recovery of x∗ for any x∗ ≥ 0 supported by S∗. It follows that x = x∗ is not
only the unique solution of BP/BPDN but also of their non-negative counterpart

min
x≥0
‖y −Hx‖2 + λ‖x‖1, (4.15)

often referred to as the non-negative Garrote in statistics [Miller, 2002]. Indeed, the minimum
value of ‖y−Hx‖2 + λ‖x‖1 over x ≥ 0 can be reached only for x = x∗. Summarizing, the sign
preservation property of BP is guaranteed as long as Fuchs condition (4.14) is met.

4.2.3.3 Extension of K-step exact recovery analysis of `1 homotopy

Homotopy is a popular greedy algorithm dedicated to `1 minimization. It was originally proposed
in [Efron et al., 2004] in the undercomplete setting, and named modified Least Angle Regression
(LARS). It was later renamed homotopy by Donoho and Tsaig, and further analyzed in the
overcomplete setting under the MIP assumption in the same paper [Donoho and Tsaig, 2008].
Homotopy aims to solve the BPDN problem (4.13) for a continuum of λ’s. The principle of
homotopy is to reconstruct the regularization path (defined as the set of solutions for all λ) by
solving the `1 problem for gradually decreasing λ’s starting from λ = +∞, with the corresponding
solution x = 0. Homotopy has a stepwise mechanism with an atom selection or deselection at
each iteration. It turns out [Donoho and Tsaig, 2008, Theorem 1] that when µ(H) < 1

2K−1 ,
K-step recovery of any K-sparse vector x∗ from noise-free observations y = Hx∗ is guaranteed.
Not only the support but also the magnitudes of x∗ are found after K iterations (no deselection
occurs).

Although homotopy has a greedy structure, a major difference with Oxx algorithms is that ho-
motopy solves an `1-penalized least square problem at each iteration. Therefore, the related exact
recovery analysis significantly differs from that of Oxx. The exact recovery analysis in [Donoho
and Tsaig, 2008, Theorem 1] is based on two ingredients: the correct selection of atoms indexed
by supp(x∗) and the so-called sign agreement property. The latter ensures that elements from

2referred to as Fuchs corollary condition in [Plumbley, 2007] as opposed to the sharp (but more involved) Fuchs
condition in [Plumbley, 2007, Theorem 2]. The latter condition solely depends on the sign pattern as well.
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the solution support are never removed, so the deselection event never occurs. Sign agreement is
defined as follows: at every iteration k, the homotopy iterate x satisfies sign(xS) = sign(Ht

Sr),
where S = supp(x). Donoho and Tsaig showed that when µ(H) < 1

2K−1 , the magnitudes of
the active atoms always increase while λ is decreasing. Since the correct magnitudes are exactly
found at iteration K (x = x∗), it follows that their sign is unchanged throughout the iterations.
So, a sign preservation result in the `1 case is truly obtained as a byproduct of [Donoho and Tsaig,
2008, Theorem 1]. In the Oxx setting, the sign preservation result will be obtained here using far
less straightforward reasoning. Moreover, the sign agreement property “sign(xS) = sign(Ht

Sr)”
does not make sense anymore since Ht

Sr = 0, due to the orthogonality between the residual
vector and the selected atoms.

4.3 Sign preservation and exact recovery

This section contains our main results concerning sign preservation of Oxx when the exact recov-
ery condition in terms of mutual coherence is met. The cornerstone of our study is Theorem 4.1,
while the other results of Subsection 4.3.1 are rather direct consequences. In Subsection 4.3.2,
we have decomposed the proof of Theorem 4.1 into distinct steps, most technical elements being
postponed in Appendix.

4.3.1 Main results

While the dictionary H satisfies µ(H) < 1
2K−1 , let us define the constant

Mx∗ :=
1− (2K − 1)µ(H)

2
min{|x∗i |, x∗i 6= 0} (4.16)

for any K-sparse vector x∗. The sign preservation property for arbitrary noisy K-sparse repre-
sentations is stated now.

Theorem 4.1. Assume that µ(H) < 1
2K−1 . Let y = Hx∗+ε be a noisy K-sparse representation

with ‖ε‖2 < Mx∗. Then Oxx recovers the support of x∗ in K iterations, and at each iteration,
the weights of selected atoms are of the same sign as the corresponding magnitudes of x∗.

An obvious corollary can be stated in the special case of noisy K-sparse representations with
non-negative weights.

Corollary 4.1. Assume that µ(H) < 1
2K−1 . Let y = Hx∗+ε be a noisy K-sparse representation

with x∗ ≥ 0 and ‖ε‖2 < Mx∗ . Then, Oxx recovers the support of x∗ in K iterations, and at each
iteration, the weights of selected atoms are positive.

In the non-negative setting, Corollary 4.1 has interesting implications concerning non-negative
versions of Oxx. Let us start with the following lemma.

Lemma 4.3. Let y ∈ Rm and assume that any combination of K dictionary columns is linearly
independent.

• Assume that at every iteration k = 1, . . . ,K of OMP, the selection rule yields a unique
optimal index ` and that the weights of selected atoms are all positive. Then NNOMP
provides the same iterates as OMP (i.e., with the same support and the same weights at
every iteration).

• The same applies if OMP and NNOMP are replaced by OLS and SNNOLS, respectively.

• It also applies if OMP and NNOMP are replaced by OLS and NNOLS, respectively.
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This result is intuitive since at each iteration of Oxx, the weights of selected atoms form a
vector defined as a least squares solution. Clearly, if an unconstrained least squares solution is
positive, then it is also the solution of the corresponding NNLS problem.

Proof. See Appendix 4.B.2. �

From Corollary 4.1 and Lemma 4.3, we can deduce the following result.

Corollary 4.2. Assume that µ(H) < 1
2K−1 . Let y = Hx∗+ε be a noisy K-sparse representation

with x∗ ≥ 0 and ‖ε‖2 < Mx∗. Then NNOMP identifies with OMP whereas both NNOLS and
SNNOLS identify with OLS. Thus, NNOMP, NNOLS and SNNOLS all recover the support of
x∗ in K iterations.

By Proposition 2.3 in Chapter 2 one can deduce that Sparse NNLS [Peharz and Pernkopf,
2012] identifies with NNOMP and OMP under the assumptions of Corollary 4.2. Therefore, we
have the following result regarding the exact recovery of Sparse NNLS.

Corollary 4.3. Assume that µ(H) < 1
2K−1 . Let y = Hx∗+ε be a noisy K-sparse representation

with x∗ ≥ 0 and ‖ε‖2 < Mx∗ . Then Sparse NNLS identifies with OMP and recovers the support
of x∗ in K iterations.

It is known that the MIP condition µ(H) < 1
2K−1 is not only sufficient but also necessary for

uniform (i.e., irrespective of the magnitudes of nonzero coefficients in the sparse representation
and of the choice of the dictionary) K-step exact support recovery [Cai et al., 2010,Herzet et al.,
2013] by Oxx. Cai et al. [Cai et al., 2010] indeed exhibited an equiangular dictionary whose
mutual coherence equals µ(H) = 1

2K−1 and a vector y having two K-sparse representations
Hx = Hz with distinct supports. K-step exact support recovery does not make sense anymore
in this situation, since either the support of x or z cannot be reconstructed in K steps. The
same analysis can be made concerning non-negative extensions of Oxx.

Corollary 4.4. The MIP condition µ(H) < 1
2K−1 is necessary for K-step exact recovery of any

non-negative K-sparse vector by non-negative orthogonal greedy algorithms, since there exists a
dictionary H with µ(H) = 1

2K−1 and a vector y having two non-negative K-sparse representations
with distinct supports.

Proof. Consider the dictionary H ∈ Rm×n with µ(H) = 1
2K−1 and the vector y ∈ Rm proposed

in [Cai et al., 2010, Section III], the latter vector having two K-sparse representations Hx = Hz

with distinct supports. Since both supports are distinct, one can define the subrogate dictionary
H ′ ∈ Rm×n as:

h′i =


sign(xi)hi if i ∈ supp(x),

sign(zi)hi if i ∈ supp(z),

hi otherwise.
(4.17)

Moreover, let |x| and |z| ∈ Rn denote the non-negative vectors whose entries are equal to |xi|
and |zi|, respectively. Obviously, H ′|x| = H ′|z|, and µ(H ′) = µ(H) = 1

2K−1 . �

4.3.2 Proof of Theorem 4.1

Let us remark that it is sufficient to consider the case of non-negative weights. Indeed, an
arbitrary K-sparse representation can be reduced to the case with non-negative weights, by
an obvious transformation where each negative weight is replaced by its opposite value, the
corresponding atom being also replaced by the opposite one. Moreover, it is straightforward to
check that the list of atoms selected by Oxx is invariant through such a transformation. We
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therefore simply need to prove the result for non-negative weights, which corresponds to the
setting of Corollary 4.1.

Before going further, let us denote by

C+
K,ε := {Hx∗ + ε, x∗ ≥ 0, ‖x∗‖0 = K and‖ε‖2 < Mx∗} (4.18)

the set of noisy K-sparse representations with non-negative weights and `2-bounded noise. Now,
consider y = Hx∗ + ε ∈ C+

K,ε. From Lemma 4.2, Oxx recovers the support S∗ of x∗ in K

iterations. At any iteration k ≤ K, the support Sk of the current solution x̂(k) is therefore a
subset of S∗. Recall that x̂(k)

Sk
is the unconstrained least squares solution related to support

Sk, see Algorithm 16, line 6. Let rk = P⊥Sk
y denote the related residual vector, with r0 = y

corresponding to S0 = ∅.
We proceed in two distinct steps to prove that x̂(k)

Sk
> 0 for all k ∈ {1, . . . , K}. First, we

prove that the weight of each newly selected atom x̂
(k)
Sk\Sk−1

is positive for any k ≤ K. Then,

we show that the updated coefficients x̂(k)
Sk−1

remain positive. Let us remark that Theorem 4.1
states a trivial fact at iteration K, since x̂(K) = x∗ according to Lemma 4.1.

Let us first characterize the last k − j coefficients of x̂(k)
Sk

, j < k being an arbitrary index in
the following lemma. Note that this lemma applies to any real vector y.

Lemma 4.4. Let y ∈ Rm, and let j and k be two iteration indices such that 0 ≤ j < k. Assume
that HSk

is full column rank. Then, the k-th iterate of Oxx satisfies

x̂
(k)
Sk\Sj

=
[
H̃
Sj

Sk\Sj

]†
rj . (4.19)

Proof. See Appendix 4.B.1. �

Then, the two main steps of the proof of Theorem 4.1 correspond to the following lemmas.

Lemma 4.5 (non-negativity of new coefficient). Assume that µ(H) < 1
2K−1 and let y ∈ C+

K,ε.

For all k ∈ {1, . . . ,K}, x̂(k)
Sk\Sk−1

> 0.

Proof. See Appendix 4.B.3. �

Lemma 4.6 (non-negativity of updated coefficients). Assume that µ(H) < 1
2K−1 and let y ∈

C+
K,ε. For all k ∈ {2, . . . , K}, x̂(k)

Sk−1
> 0.

Proof. See Appendix 4.B.4. �

4.4 Numerical study

4.4.1 Comparison of Oxx and their sign-aware versions

The previous section shows that in some specifically favorable situations, greedy algorithms such
as OMP have not only the capacity to recover the support of the true solution, but also to
recover the correct weight signs. In such conditions, according to Lemma 4.3, implementing non-
negative (or more generally, sign-aware) versions of such greedy algorithms is useless. However,
one cannot generalize such a conclusion to more realistic scenarios. On the contrary, one can
empirically observe that sign-aware greedy algorithms tend to reach superior performance, which
is in agreement with the fact that they exploit more information than usual greedy algorithms. To
illustrate this fact, let us consider a dictionary H with 22 regularly spaced, discretized Gaussian-
shaped atoms, with a constant standard deviation σ = 0.5, and a mutual coherence µ(H) = 0.37.
We randomly choose K = 10 atoms in H, whose location in the dictionary are distributed
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Figure 4.2: Rate of exact support recovery (SK = S∗) and non-negativity at all iterations
(∀k, x̂(k) ≥ 0) w.r.t. the signal-to-noise ratio for a simulated data experiment involving Gaussian-
shaped atoms. SNNOLS (not shown here) yields the exact same curve as NNOLS.

according to the uniform distribution. The atoms are all equally weighted with a unit weight,
and we generate data y = Hx∗+ε with some additive Gaussian noise ε. Note that µ(H) > 1

2K−1 ,
which implies that exact support recovery is not mathematically guaranteed even at low noise.
Within a certain range of signal-to-noise ratio (SNR, defined by 10 log10(‖Hx∗‖2/‖ε‖2)), we
have generated average performance for OMP, NNOMP, OLS, SNNOLS and NNOLS in terms of
rate of exact support recovery, the stopping condition being that the cardinality of the estimated
support should be 10. This experiment has been repeated 1000 times to obtain the average
results shown in Fig. 4.2. Several empirical conclusions can be drawn. Some of them are already
acknowledged facts. For instance, greedy algorithms keep some exact recovery capacities far
beyond the “zero defect” area. In contrast, in the low SNR regime, the exact recovery capacity
almost surely vanishes. The intermediate zone is the most interesting. Specifically, one can
notice that there is a significant difference of performance between the usual greedy algorithms
and their non-negative extensions. We have also performed a sign-preservation test for OMP and
OLS that simply consists in checking whether at all iterations, all estimated weights are positive.
Fig. 4.2 shows that such a sign-preservation property is rather robust, and that empirically,
sign-preservation is always reached with Oxx whenever exact support recovery is found.

4.4.2 Non-monotony of the magnitude variations

As argued in § 4.2.3.3, `1 homotopy is a stepwise greedy algorithm for which the sign preservation
guarantee holds whenever µ(H) < 1

2K−1 . In [Donoho and Tsaig, 2008], Donoho and Tsaig

proved a stronger result under the mutual coherence condition: the magnitudes x̂(k)
i of the

selected atoms keep increasing while k is increasing. In contrast, such monotony property does
not hold for Oxx algorithms, since the magnitudes may either increase or decrease during the
iterations. This claim can be proven analytically at iteration 2, by using the fact that x̂(1)

S1
> 0

and x̂(2)
S2

> 0 according to Corollary 4.1. Since x̂(1) and x̂(2) have closed-form expressions, a
simple calculation (skipped for brevity reasons) shows that the first magnitude is decreasing,
i.e., x̂(1)

S1
− x̂(2)

S1
> 0 if and only if the inner product between the atoms selected in the first two
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Figure 4.3: Behavior of Oxx and `1-homotopy in the case of a toy problem (m = n = 5)
corresponding to a 4-sparse noiseless representation. (a) The OMP and OLS iterates are identical
and yield magnitudes x̂(k)

i with non-monotonous variations throughout the iterations k. (b) On
the contrary, the magnitudes of the `1-homotopy iterates are always increasing. The ground
truth magnitudes x∗i are represented with bullets for k = 4, and are exactly recovered after
K = 4 iterations (x̂(k) = x∗).

iterations is positive. So, the magnitude of x̂S1 may either increase or decrease depending on the
sign of the inner product. We further compare `1-homotopy with the Oxx algorithms for a toy
problem of dimension (m,n) = (5, 5), with an equiangular dictionary H such that µ(H) = 0.9

2K−1 .
The columns of H satisfy 〈hi,hj〉 = ±µ(H), where the sign of the inner product is randomly
chosen. The ground truth vector x∗ is K-sparse with K = 4, with nonzero magnitudes drawn
from the uniform distribution U([0.6, 1]). Since µ(H) < 1

2K−1 , K-step exact recovery holds

for all considered algorithms. In Fig. 4.3, the variation of each entry x̂(k)
i with respect to k is

represented with a specific color. As expected (since exact support recovery holds), the black
magnitude, which corresponds to the wrong atom i /∈ S∗, is equal to 0 throughout the iterations.
`1-homotopy yields magnitudes that are indeed increasing with k, which is consistent with the
theoretical result in [Donoho and Tsaig, 2008]. On the contrary, the OMP and OLS iterates
(which are identical here; the same indices are selected at each iteration) are non-monotonous.

4.5 Conclusion

We have established that OMP and OLS satisfy the sign preservation property when dealing
with sufficiently incoherent dictionaries: in the exact recovery regime µ(H) < 1

2K−1 , the Oxx
estimates are guaranteed to keep the same sign as the ground-truth sparse vector, at all iterations.
This interesting property enables us to establish the first K-step recovery analysis of three non-
negative greedy algorithms proposed previously, namely NNOMP, NNOLS and SNNOLS, under
the MIP condition µ(H) < 1

2K−1 . This exact recovery condition turns out to be identical for
both Oxx algorithms and their non-negative extensions. Moreover, it is not only a sufficient
but also a (worst-case) necessary condition of exact recovery. Therefore, one cannot distinguish
the performance of Oxx and their nonnegative counterparts from this theoretical viewpoint.
There is still room for improvement though in cases where the dictionary atoms are known to be
non-negative valued, since then the MIP condition is not guaranteed to be necessary anymore.
This setting covers many application fields ranging from sparse deconvolution [Bendory, 2017]
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to tomographic image reconstruction [Petra and Schnörr, 2014].
Empirically, we observed that the sign preservation property holds for noiseless scenarios when

µ(H) is substantially greater than 1
2K−1 . However, for truly coherent dictionaries and for noisy

observations, Oxx algorithms do yield iterates with negative entries, thus sign-aware versions are
worth being considered. Furthermore, the latter versions yield improvement of empirical exact
recovery performance for random dictionaries when µ(H) > 1

2K−1 (see Chapter 3).
A perspective of this work is to elaborate on exact recovery conditions when µ(H) ≥ 1

2K−1 .
We argued that the MIP condition µ(H) < 1

2K−1 is both necessary and sufficient for uniform
recovery of K-sparse signals, that is, irrespective of the magnitudes of the nonzero coefficients
in the K-sparse representation. It is well-known that such worst case analysis is pessimistic
since practically, algorithms may succeed far beyond the exact recovery regime µ(H) < 1

2K−1 .
It was shown in [Herzet et al., 2016] that exact recovery guarantees can be obtained for Oxx
when µ(H) ∈ [ 1

2K−1 ,
1
K ) provided that the decay of the magnitudes of the nonzero coefficients

is fast enough (the minimum rate of decay required to ensure exact support recovery depends
on µ(H)). It would then be interesting to generalize our sign preservation analysis to the case
µ(H) ∈ [ 1

2K−1 ,
1
K ). However, this extension does not appear to be obvious and is left for future

work. With the same idea of elaborating on sign preservation under weaker K-step support
recovery conditions, Tropp’s exact recovery condition (ERC) is worth being considered. Indeed,
it is both necessary and sufficient for uniformK-step exact recovery of all representations having a
given support S∗ with both OMP and OLS [Tropp, 2004,Soussen et al., 2013]. In all our empirical
tests, we found that sign preservation holds whenever the ERC is met. However, proving this
conjecture would necessitate more involved theoretical analysis than those we derived in this
document.

Appendix 4.A Useful lemmas

Let us recall some useful lemmas. Lemma 4.7 provides an upper bound on the `1-norm of the
Gram matrix columns by means of mutual coherence. Lemma 4.8 provides lower and upper
bounds on the inner product of projected atoms. Lemma 4.9 is related to the full rankness of
the matrix of projected atoms. Lemma 4.10 is a simple algebraic manipulation related to the
pseudo-inverse.

Lemma 4.7. [Foucart and Rauhut, 2013, Theorem 5.3], [Tropp, 2004, Proposition 2.1, Theorem
3.5]. If B is a column-normalized matrix with k columns and µ(B) < 1

k−1 then B is full column
rank and

‖(BtB)−1‖1,1 ≤
1

1− (k − 1)µ(B)
(4.20)

wherein ‖ · ‖1,1 equals the maximum absolute column sum of its argument.

Lemma 4.8. [Herzet et al., 2016, Lemmas 2-3]. If µ(H) ≤ 1
k+1 with k = |S| then

∀i /∈ S, ‖h̃Si ‖2 ≥ βk, (4.21)

∀p 6= q, |(c̃Sp )th̃Sq | ≤ µkηk, (4.22)

where

βk =
(µ(H) + 1)(1− kµ(H))

1− (k − 1)µ(H)
(4.23)

µk =
µ(H)

1− kµ(H)
(4.24)

ηk =

{
βk for OMP,
√
βk for OLS.

(4.25)
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Lemma 4.9. [Soussen et al., 2013, Lemma 8] If S ∩S′ = ∅ and HS∪S′ is full column rank, then
matrices H̃S

S′ and G̃
S
S′ are full column rank.

Lemma 4.10. Consider a full column rank matrix H =
[
h1, H2

]
∈ Rp×q where h1 ∈ Rp and

H2 ∈ Rp×(q−1) denotes the submatrix formed of the last q − 1 column vectors. Then,

∀r ∈ Rp,
(
H†r

)
1

=
〈r, P⊥S2

h1〉
‖P⊥S2

h1‖2
. (4.26)

where the index set S2 = {2, . . . , q} corresponds to the columns of H2.

Proof. Let r ∈ Rp. Since H is full column rank, r can be uniquely decomposed as

r = pH + pH⊥ = (H†r)1h1 + rH2 + pH⊥ (4.27)

where pH and pH⊥ are the orthogonal projections of r onto span(H) and span(H)⊥, respec-
tively, and rH2 ∈ span(H2). Note though that the decomposition pH = (H†r)1h1 + rH2 is not
orthogonal. Rewriting h1 as PS2h1 + P⊥S2

h1 yields the orthogonal decomposition:

r =
(
H†r

)
1
P⊥S2

h1 + (rH2 + PS2h1) + pH⊥ . (4.28)

(4.26) is obtained directly from (4.28) by writing the inner product 〈r, P⊥S2
h1〉 because the latter

decomposition is orthogonal. The denominator in (4.26) is nonzero because of the full rankness
of H. �

Appendix 4.B Technical proofs

4.B.1 Proof of Lemma 4.4

Let us now start with the proof of Lemma 4.4, since this Lemma will be used later in the proofs
of Lemmas 4.3, 4.5, and 4.6.

Since x̂(k)
Sk

is the unconstrained least squares solution related to subset Sk, we have for j < k,

x̂
(k)
Sk

= arg min
z∈Rk

‖y −HSk
z‖2

= arg min
v,w

‖y −HSjv −HSk\Sj
w‖2. (4.29)

In addition,

min
v,w
‖y −HSjv −HSk\Sj

w‖2 = min
w

(
min
v
‖(y −HSk\Sj

w)−HSjv‖2
)

= min
w
‖P⊥Sj

(y −HSk\Sj
w)‖2

= min
w
‖rj − H̃Sj

Sk\Sj
w‖2. (4.30)

Since HSk
is full column rank, H̃Sj

Sk\Sj
is full column rank as well according to Lemma 4.9. The

minimum corresponding to (4.30) is reached for

w =
[
H̃
Sj

Sk\Sj

]†
rj (4.31)

which identifies with x̂(k)
Sk\Sj

according to (4.29).
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4.B.2 Proof of Lemma 4.3

We prove by induction that the supports found by OMP and NNOMP (respectively, by OLS and
NNOLS/SNNOLS) coincide at each iteration.

4.B.2.1 NNOMP vs OMP

Let us first prove the claim at the first iteration. Let us denote by ` the index of the atom
selected by OMP. The first OMP iterate is the one-sparse vector supported by {`} such that
x̂

(1)
` = ht

`y. By assumption, x̂(1)
` > 0. Since ` is the unique solution to (4.7) with r0 = y, we

have:
{`} = arg max

i
{ht

iy}, (4.32)

which implies that ` is also selected by NNOMP. Since ht
`y > 0, x̂(1) ≥ 0 corresponds to both

the unconstrained and non-negative solutions related to subset {`}, that is, to both NNOMP
and OMP very first iterates.

Let us assume that OMP and NNOMP deliver the same support Sk−1 and solution after k−1

iterations. The residual vectors rk−1 corresponding to OMP and NNOMP therefore coincide.
Let Sk = Sk−1 ∪ {`} denote the support found by OMP at iteration k with ` the index of the
atom selected at iteration k, and let x̂(k) denote the OMP iterate. Lemma 4.4 with j ← k − 1

implies that:

x̂
(k)
` =

[
h̃
Sk−1

`

]†
rk−1 =

rt
k−1h̃

Sk−1

`

‖h̃Sk−1

` ‖2
(4.33)

=
rt
k−1h`

‖h̃Sk−1

` ‖2
. (4.34)

h̃
Sk−1

` 6= 0 in (4.33) follows from Lemma 4.9 and the full rankness assumption of HSk
. (4.34)

holds because h̃Sk−1

` − h` lays in span(HSk−1
), and the OMP residual rk−1 is orthogonal to

span(HSk−1
). By assumption, x̂(k) ≥ 0, so (4.34) implies that rt

k−1h` ≥ 0. Since ` is the unique
solution to (4.7), we have:

{`} = arg max
i/∈Sk−1

{rt
k−1hi}. (4.35)

So, ` is also selected by NNOMP at iteration k, leading to the same subset Sk as for OMP.
Because the OMP iterate is non-negative, it is also the NNLS solution corresponding to Sk.
Hence, NNOMP yields the same iterate as OMP.

4.B.2.2 SNNOLS vs OLS

We can make a similar argument as in the previous case by replacing the dictionary atoms hi
by their normalized projections g̃Si .

At the first iteration, g̃∅i = h̃∅i = hi, so the very first iterates of SNNOLS and OLS respectively
identify with those of NNOMP and OMP. They coincide according to § 4.B.2.1. At iteration k,
the proof of § 4.B.2.1 can be repeated, where x̂(k) now denotes the OLS iterate. The right-hand
side of (4.33) rereads

(
rt
k−1g̃

Sk−1

`

)
/‖h̃Sk−1

` ‖ ≥ 0, so rt
k−1g̃

Sk−1

` ≥ 0. Finally, since ` is the only
maximizer of the OLS selection rule (4.8), we have

{`} = arg max
i/∈Sk−1

{
rt
k−1g̃

Sk−1

i

}
. (4.36)

So, ` is also selected by SNNOLS. Similar to the NNOMP vs OMP case, we conclude that
NNOLS and SNNOLS yield the same iterate at iteration k.
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4.B.2.3 NNOLS vs OLS

The very first iterates of OLS and NNOLS identify to those of OMP and NNOMP, respectively.
We have proved above that they coincide.

Assume that OLS and NNOLS deliver the same support Sk−1 after k− 1 iterations, and the
same iterate x̂(k)

Sk−1
= H†Sk−1

y > 0. Let ` denote the atom selected by OLS at iteration k, with
Sk = Sk−1 ∪ {`}. Since OLS selects the atom yielding the least squared error and the optimal
index ` is unique, we have

∀i /∈ Sk, min
z
‖y −HSk

z‖2 < min
z
‖y −HSk−1∪{i}z‖2. (4.37)

Clearly,

min
z
‖y −HSk−1∪{i}z‖2 ≤ min

z≥0
‖y −HSk−1∪{i}z‖2. (4.38)

Moreover, since the OLS iterate at iteration k is non-negative, it is also an NNLS solution related
to Sk. Therefore,

min
z
‖y −HSk

z‖2 = min
z≥0
‖y −HSk

z‖2. (4.39)

From (4.37)-(4.39), we get

∀i /∈ Sk, min
z≥0
‖y −HSk

z‖2 < min
z≥0
‖y −HSk−1∪{i}z‖2,

which implies that ` is also selected by NNOLS. By assumption, HSk
is full column rank, so the

unconstrained and non-negative least-squares solutions related to Sk are unique. (4.39) implies
that they coincide. Hence, OLS and NNOLS yield the same iterate at iteration k.

4.B.3 Proof of Lemma 4.5

In this proof, the abridged notations ỹ, h̃i, g̃i, c̃i, ε̃ correspond to projected vectors onto
span(HSk−1

)⊥. In a somewhat counter-intuitive manner, our proof of Lemma 4.5 is not re-
cursive: to prove that x̂(k)

Sk\Sk−1
> 0, we exploit that good atoms have been selected at previous

iterations, but the current weight signs are not taken into consideration. We denote by ` the
atom selected at iteration k, so that Sk\Sk−1 = {`}.

Let us first consider the case K = 1. Without loss of generality, we assume that y = xh1 + ε

where x > 0. From Lemma 4.2, h1 is selected at the first iteration. Thus we have

∀j > 1, |ht
1y| ≥ |ht

jy|. (4.40)

To prove that ht
1y > 0, we are going to exhibit an index p > 1 such that

ht
1y > −|ht

py|. (4.41)

(4.41) and (4.40) with j ← p indeed imply that ht
1y > 0. From y = xh1 + ε we have

ht
1y + ht

py = x+ xht
1hp + εth1 + εthp (4.42)

≥ x− µ(H)x− |εth1| − |εthp| (4.43)

≥ x(1− µ(H))− 2‖ε‖ (4.44)

> 0 (4.45)

wherein (4.45) is by ‖ε‖ < 1− µ(H)

2
x and (4.44) is by Cauchy-Schwarz inequality

|εthi| ≤ ‖ε‖ ‖hi‖ ≤ ‖ε‖, (4.46)
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for i = 1 and i = p. Now ht
1y + ht

py > 0 implies (4.41) so the case K = 1 is proved.
Hereafter we consider the case where K ≥ 2. Also, it should be noticed that µ(H) < 1

2K−1

implies that HS∗ is full column rank according to Lemma 4.7. Applying Lemma 4.4 for j ← k−1,
we have

x̂
(k)
Sk\Sk−1

= h̃t
`rk−1. (4.47)

Therefore, x̂(k)
Sk\Sk−1

has the same sign as c̃t
`rk−1 since c̃` = h̃` or h̃`/‖h̃`‖ (h̃` 6= 0 according to

Lemma 4.9). The remaining part of the proof consists in showing that c̃t
`rk−1 > 0.

Since h` is selected at the k-th iteration, we have

∀j /∈ Sk, |c̃t
`rk−1| ≥ |c̃t

jrk−1|. (4.48)

To prove that c̃t
`rk−1 > 0, we are going to exhibit an index p /∈ Sk such that

c̃t
`rk−1 > −|c̃t

prk−1|. (4.49)

(4.49) and (4.48) with j ← p indeed imply that c̃t
`rk−1 > 0.

Let us introduce the decomposition

rk−1 = P⊥Sk−1
y =

∑
i/∈Sk−1

x∗i h̃i + ε̃. (4.50)

For any j ∈ S∗\Sk−1, we deduce

c̃t
jrk−1 = x∗j h̃

t
j c̃j +

∑
i/∈Sk−1∪{j}

x∗i h̃
t
i c̃j + ε̃tc̃j . (4.51)

Clearly,

h̃t
j c̃j =

{
‖h̃j‖2 for OMP,
‖h̃j‖ for OLS.

(4.52)

Since for K ≥ 2, µ(H) < 1
2K−1 ≤ 1

k+1 , Lemma 4.8 yields:

h̃t
j c̃j ≥ ηk−1, (4.53)

|h̃t
i c̃j | ≤ µk−1ηk−1 (4.54)

with µk−1 and ηk−1 defined in (4.24)-(4.25). By Cauchy-Schwarz inequality,

|ε̃tc̃j | ≤ ‖ε̃‖‖c̃j‖ ≤ ‖ε̃‖ (4.55)

as ‖c̃j‖ ≤ 1. From (4.51), we get for j ∈ S∗\Sk−1,

c̃t
jrk−1 ≥ ηk−1

(
x∗j − µk−1

∑
i/∈Sk−1∪{j}

x∗i

)
− ‖ε̃‖. (4.56)

Notice that there are K − k nonzero terms in the sum in (4.56) since x∗ is K-sparse. The latter
sum can then be upper bounded as:∑

i/∈Sk−1∪{j}

x∗i ≤
{
x∗` + (K − k − 1)x∗p if j 6= `,

(K − k)x∗p if j = `
(4.57)

with p defined as:

p ∈ arg max
i∈S∗\Sk

x∗i . (4.58)
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Apply (4.56) twice with j ← p and j ← `. We get

c̃t
prk−1 ≥ ηk−1

(
(1− (K − k − 1)µk−1)x∗p − µk−1x

∗
`

)
− ‖ε̃‖,

c̃t
`rk−1 ≥ ηk−1

(
x∗` − (K − k)µk−1x

∗
p

)
− ‖ε̃‖,

from which we deduce

c̃t
prk−1 + c̃t

`rk−1 ≥ ηk−1(τ1x
∗
` + τ2x

∗
p)− 2‖ε̃‖, (4.59)

with

τ1 := 1− µk−1, (4.60)

τ2 := 1− (2K − 2k − 1)µk−1. (4.61)

According to (4.24), τ1 > 0 if µ(H) < 1
k and τ2 > 0 if (2K−k−2)µ(H) < 1. Since µ(H) < 1

2K−1 ,
it holds true that τ1 > 0 and τ2 > 0. Let us define

q ∈ arg min
i∈S∗

x∗i . (4.62)

Then

ηk−1(τ1x
∗
` + τ2x

∗
p)− 2‖ε̃‖ ≥ ηk−1(τ1 + τ2)x∗q − 2‖ε̃‖. (4.63)

According to (4.21), βk−1 ≤ 1 which implies βk−1 ≤
√
βk−1 ≤ 1 hence ηk−1 ≥ βk−1 by definition.

Besides,

‖ε̃‖ ≤ ‖ε‖ < 1− (2K − 1)µ(H)

2
x∗q . (4.64)

Therefore,

ηk−1(τ1 + τ2)x∗q − 2‖ε̃‖ > βk−1(τ1 + τ2)x∗q − (1− (2K − 1)µ(H))x∗q . (4.65)

According to (4.60)-(4.61) and (4.23)-(4.24),

βk−1(τ1 + τ2) = 2βk−1(1− (K − k)µk−1) (4.66)

=
2(1 + µ(H))(1− (k − 1)µ(H))

1− (k − 2)µ(H)

(
1− (K − k)µ(H)

1− (k − 1)µ(H)

)
(4.67)

=
2(1 + µ(H))(1− (k − 1)µ(H))

1− (k − 2)µ(H)

1− (K − 1)µ(H)

1− (k − 1)µ(H)
(4.68)

=
2(1 + µ(H))(1− (K − 1)µ(H))

1− (k − 2)µ(H)
. (4.69)

As k ≥ 1, we have 1− (k − 2)µ(H) ≤ 1 + µ(H) so

2(1 + µ(H))(1− (K − 1)µ(H))

1− (k − 2)µ(H)
≥ 2(1− (K − 1)µ(H)). (4.70)

As a result,
βk−1(τ1 + τ2) ≥ 2(1− (K − 1)µ(H)). (4.71)

From (4.65) and (4.71) we have

ηk−1(τ1 + τ2)x∗q − 2‖ε̃‖ > 2(1− (K − 1)µ(H))x∗q − (1− (2K − 1)µ(H))x∗q (4.72)

= (1 + µ(H))x∗q (4.73)

> 0. (4.74)

Thus, from (4.63) we get ηk−1(τ1x
∗
` + τ2x

∗
p)− 2‖ε̃‖ > 0.

Hence, from (4.59) we get c̃t
prk−1 + c̃t

`rk−1 > 0, which implies (4.49). We thus conclude that
c̃t
`rk−1 and x̂(k)

Sk\Sk−1
are positive quantities.
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4.B.4 Proof of Lemma 4.6

In this proof, the abridged notations h̃i, g̃i, c̃i correspond to projected vectors onto span(HSj−1)⊥

(the latter space being different from that of Subsection 4.B.3). Similarly, we will use the abridged
notations H̃, G̃, C̃ to refer to H̃Sj−1 , G̃Sj−1 and C̃Sj−1 , respectively. For any subset S, the Gram
matrices of H̃S and G̃S will be respectively denoted by GrOMP

S := H̃t
SH̃S and GrOLS

S := G̃t
SG̃S .

For statements that are common to both OMP and OLS, we will use the simpler generic notation
GrS := C̃t

SC̃S .
The proof of Lemma 4.6 is not recursive. However, in order to prove that x̂(k)

Sk−1
> 0, we use

the fact that x̂(j)
Sj\Sj−1

> 0 for j < k, which holds according to Lemma 4.5.
Let ` ∈ Sk−1 and denote by j < k the iteration at which the atom indexed by ` has been

selected by Oxx, so that Sj\Sj−1 = {`}. According to Lemma 4.4 and since ` is the first entry
in the ordered set Sk\Sj−1, we have

x̂
(k)
` =

(
H̃†Sk\Sj−1

rj−1

)
1
. (4.75)

In order to exploit the Oxx selection rule which is based on the atoms c̃i defined in (4.4), let
us rewrite (4.75) with respect to matrix C̃. Obviously, one can rewrite H̃Sk\Sj−1

= C̃Sk\Sj−1
∆,

where ∆ > 0 is a square diagonal matrix whose diagonal elements are either equal to 1 (OMP,
C̃ ← H̃) or to ‖h̃i‖ > 0, i ∈ Sk\Sj−1 (OLS, C̃ ← G̃). The positivity property is related to
the full rankness of C̃Sk\Sj−1

, which deduces from that of HSk
according to Lemma 4.9. From

standard properties of pseudo-inverses, we have H̃†Sk\Sj−1
= ∆−1C̃†Sk\Sj−1

. (4.75) yields

x̂
(k)
` ∝+

(
C̃†Sk\Sj−1

rj−1

)
1

=
([
c̃`, C̃Sk\Sj

]†
rj−1

)
1

(4.76)

=

〈
rj−1, P̃

⊥
Sk\Sj

c̃`
〉∥∥P̃⊥Sk\Sj

c̃`
∥∥2 (4.77)

where ∝+ indicates proportionality up to a positive factor, P̃⊥Sk\Sj
denotes the orthogonal pro-

jection onto the orthogonal complement of span(C̃Sk\Sj
), and (4.77) deduces from Lemma 4.10.

(4.77) implies that:

x̂
(k)
` > 0 ⇐⇒ 〈P̃⊥Sk\Sj

rj−1, c̃`〉 > 0 (4.78)

⇐⇒ 〈C̃Sk\Sj
C̃†Sk\Sj

rj−1, c̃`〉 < 〈rj−1, c̃`〉 (4.79)

⇐⇒ 〈C̃†Sk\Sj
rj−1, C̃

t
Sk\Sj

c̃`〉 < 〈rj−1, c̃`〉. (4.80)

By Hölder’s inequality and since C̃†Sk\Sj
= Gr−1

Sk\Sj
C̃t
Sk\Sj

, the left-hand side (LHS) of (4.80)
is upper bounded by

‖C̃t
Sk\Sj

c̃`‖∞‖C̃†Sk\Sj
rj−1‖1 ≤ ‖C̃t

Sk\Sj
c̃`‖∞‖Gr−1

Sk\Sj
‖1,1‖C̃t

Sk\Sj
rj−1‖1

≤ µ(C̃) ‖Gr−1
Sk\Sj

‖1,1‖C̃t
Sk\Sj

rj−1‖1
≤ µ(C̃) ‖Gr−1

Sk\Sj
‖1,1 (k − j) |〈rj−1, c̃`〉|. (4.81)

To obtain the last inequality, we exploit that h` has been selected at the j-th iteration of Oxx,
therefore:

∀i ∈ Sk\Sj , |〈rj−1, c̃i〉| ≤ |〈rj−1, c̃`〉|. (4.82)
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From Lemma 4.5, we have x̂(j)
` > 0, and as already remarked in the proof of Lemma 4.5, c̃t

`rj−1

is of same sign as x̂(j)
` , see (4.47). The upper bound in (4.81) thus rewrites

(k − j)µ(C̃) ‖Gr−1
Sk\Sj

‖1,1 〈rj−1, c̃`〉 (4.83)

and we deduce from (4.80) that

(
(k − j)µ(C̃)‖Gr−1

Sk\Sj
‖1,1 < 1

)
=⇒

(
x̂

(k)
` > 0

)
. (4.84)

Let us now provide some upper bounds on µ(C̃) and ‖Gr−1
Sk\Sj

‖1,1 in order to show that the
LHS of (4.84) holds true.

4.B.4.1 Upper bound on µ(C̃)

Since µ(H) < 1
2K−1 <

1
j , Lemma 4.8 yields:

∀i /∈ Sj−1, ‖h̃i‖2 ≥ βj−1, (4.85)

∀p 6= q, |h̃t
ph̃q| ≤ µj−1βj−1, (4.86)

with µj−1 and βj−1 defined in (4.23)-(4.24), from which we can easily deduce that

µ(C̃) =

{
µ(H̃) ≤ µj−1βj−1 (OMP case),
µ(G̃) ≤ µj−1 (OLS case).

(4.87)

4.B.4.2 Upper bound on ‖Gr−1
Sk\Sj

‖1,1 in the OLS case

We have shown that for i ∈ Sk\Sj , h̃i 6= 0, so matrix G̃Sk\Sj
is column-normalized, hence GrOLS

Sk\Sj

has a unit diagonal. Since µ(H) < 1
2K−1 , (4.87) and (4.24) imply that:

µ(G̃) ≤ µj−1 ≤
1

2K − j ≤
1

k − j . (4.88)

Lemma 4.7 then applies to matrix G̃Sk\Sj
∈ Rm×(k−j), so the latter is full column rank, and

∥∥[GrOLS
Sk\Sj

]−1∥∥
1,1
≤ 1

1− (k − j − 1)µ(G̃Sk\Sj
)
≤ 1

1− (k − j − 1)µ(G̃)
. (4.89)

It follows from (4.87) that

µ(G̃)
∥∥[GrOLS

Sk\Sj

]−1∥∥
1,1
≤ µj−1

∥∥[GrOLS
Sk\Sj

]−1∥∥
1,1

≤ µj−1

1− (k − j − 1)µ(G̃)
,

≤ 1

2K − k + 1
(4.90)

<
1

k − j (4.91)

where (4.90) follows from the second upper bound in (4.88). (4.91) thus implies that the LHS
of (4.84) is true in the OLS case.
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4.B.4.3 Upper bound on ‖Gr−1
Sk\Sj

‖1,1 in the OMP case

Contrary to the OLS case, the diagonal elements of GrOMP
Sk\Sj

(‖h̃i‖2, i ∈ Sk\Sj) are not equal
to 1, so Lemma 4.7 does not apply. Let ∆ be the square diagonal matrix with the elements
‖h̃i‖, i ∈ Sk\Sj on its diagonal. Clearly, H̃Sk\Sj

= G̃Sk\Sj
∆, hence[

GrOMP
Sk\Sj

]−1
= ∆−1

[
GrOLS

Sk\Sj

]−1
∆−1, (4.92)

and thus ∥∥[GrOMP
Sk\Sj

]−1∥∥
1,1
≤
∥∥[GrOLS

Sk\Sj

]−1∥∥
1,1
‖∆−1‖21,1. (4.93)

Moreover,

‖∆−1‖21,1 =
1

mini∈Sk\Sj
‖h̃i‖2

≤ 1

βj−1
(4.94)

by (4.85). We have thus

µ(H̃)
∥∥[GrOMP

Sk\Sj

]−1∥∥
1,1
≤ µ(H̃)

βj−1

∥∥[GrOLS
Sk\Sj

]−1∥∥
1,1
≤ µj−1

∥∥[GrOLS
Sk\Sj

]−1∥∥
1,1

according to (4.87). From (4.91), we conclude that the LHS of (4.84) is also true in the OMP
case.



Chapter 5

NP-hardness of `0 minimization
problems1
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In chapters 2-4, we addressed the algorithmic issues and theoretical analysis of NNOG al-
gorithms. In particular, we exhibited structural properties and proposed a fast implementation
of NNOG algorithms. Moreover, we established an exact support recovery analysis of NNOG
algorithms under the standard mutual coherence based condition. Note that NNOG algorithms
are designed to address the constrained non-negative `0 minimization problems. In this chapter,
we discuss about NP-hardness of non-negative `0 minimization problems.

5.1 Introduction

Sparse approximation appears in a wide range of applications, especially in signal processing,
image processing and compressed sensing [Elad, 2010]. Given a signal data y ∈ Rm and a
dictionary H of size m× n, the aim is to find a signal x ∈ Rn that gives the best approximation
y ≈ Hx and has the fewest non-zero coefficients (i.e.,, sparsest solution). This task leads to
solving one of the following constrained or penalized `0 minimization problems:

min
x

‖x‖0 s.t. ‖y −Hx‖2 ≤ ε (`0Cε)

min
x

‖y −Hx‖22 s.t. ‖x‖0 ≤ K (`0CK)

min
x

‖y −Hx‖22 + λ‖x‖0 (`0P )

in which ε, K and λ are positive quantities related to the noise standard deviation, the sparsity
level and regularization strength, respectively. Letters C and P respectively indicate that the
problem is constrained or penalized. Depending on application, the appropriate statement will
be addressed. It is noteworthy that n and K often depend on m when one considers the size
of problem. (`0Cε) and (`0CK) are well known to be NP-hard [Natarajan, 1995, Davis et al.,
1997]. The NP-hardness of (`0P ) was claimed to be a particular case of more general complexity
analyses in [Chen et al., 2014,Huo and Chen, 2010]. However, we point out hereafter that these
complexity analyses do not rigorously apply to (`0P ) as claimed. Then we provide a new proof
for the NP-hardness of (`0P ) adapted from Natarajan’s construction [Natarajan, 1995].

1This chapter is an adaptation of the paper [Nguyen et al., 2019c]
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In several applications the signal or image of interest is both sparse and non-negative. There-
fore, many researchers are interested in non-negative `0 minimization problems as follows:

min
x≥0

‖x‖0 s.t. ‖y −Hx‖2 ≤ ε (`0Cε+)

min
x≥0

‖y −Hx‖22 s.t. ‖x‖0 ≤ K (`0CK+)

min
x≥0

‖y −Hx‖22 + λ‖x‖0 (`0P+)

Several papers address non-negative `0 minimization problems in the literature (see, e.g.,, [Bruck-
stein et al., 2008,Peharz and Pernkopf, 2012,Yaghoobi et al., 2015,Wang et al., 2018]). However,
to the best of our knowledge, the complexity of these problems has not been addressed yet, the
question of their NP-hardness being still open. Here we show that these problems are NP-hard
and the proof can be derived from the NP-hardness of `0 minimization problems.

5.2 Background on NP-hardness and constrained `0 minimization
problems

Let us recall that an NP-complete problem is a problem in NP to which any other problem in NP
can be reduced in polynomial time. Thus NP-complete problems are identified as the hardest
problems in NP. An NP-complete problem is strongly NP-complete if it remains NP-complete
when all of its numerical parameters are bounded by a polynomial in the length of the input.
NP-hard problems are at least as hard as NP-complete problems. However, NP-hard problems
do not need to be in NP and do not need to be decision problems. Formally, a problem is
NP-hard (respectively, strongly NP-hard) if a NP-complete (respectively, strongly NP-complete)
problem can be reduced in polynomial time to it. The reader is referred to [Garey and Johnson,
1979,Leeuwen, 1990] for more information on this topic.

In the literature, problem (`0Cε), called SAS in [Natarajan, 1995], is well known to be NP-
hard [Natarajan, 1995, Theorem 1]. The NP-hardness of (`0Cε) is a valuable extension of an
earlier result: the problem of minimum weight solution to linear equations (equivalent to (`0Cε)
with ε = 0) is NP-hard [Garey and Johnson, 1979, p. 246]. Davis et al. proved that (`0CK),
called M -optimal approximation in [Davis et al., 1997], is NP-hard for any K < m [Davis et al.,
1997, Theorem2.1]. Both analyses of Natarajan and Davis were made by a polynomial time
reduction from the “exact cover by 3-sets” problem2 which is known to be NP-complete [Garey
and Johnson, 1979, p. 221].

5.3 Existing analyses on penalized `0 minimization

In [Chen et al., 2014,Huo and Chen, 2010], the NP-hardness of (`0P ) is deduced as a particular
case of more general complexity analyses. However, it turns out that the latter do not apply to
(`0P ), as explained hereafter. Chen et al. [Chen et al., 2014] address the unconstrained `q-`p
minimization problem, defined by:

min
x
‖y −Hx‖qq + λ‖x‖pp (`q-`p)

where λ > 0, q ≥ 1 and 0 ≤ p < 1. The authors showed that problem (`q-`p) is NP-hard with
any λ > 0, q ≥ 1 and 0 ≤ p < 1 [Chen et al., 2014, Theorem3]. Obviously, (`0P ) is the case

2The latter problem, denoted by X3C in [Natarajan, 1995, Garey and Johnson, 1979], is stated as follows:
Given a set S and a collection C of 3-element subsets of S (called triplets), is there a subcollection of disjoint
triplets that exactly covers S?



5.3. Existing analyses on penalized `0 minimization 85

where q = 2 and p = 0. The proof was done by i) introducing an invertible transformation which
scales any instance of problem (`q-`p) to the problem (`q-`p) with λ = 1/2, and ii) establishing a
polynomial time reduction from the partition problem which is known to be NP-complete [Garey
and Johnson, 1979] to the problem (`q-`p) with λ = 1/2. In other words, they showed that
problem (`q-`p) with λ = 1/2 is NP-hard and, because there exists an invertible transformation
from any problem (`q-`p) to the one with λ = 1/2, every problem (`q-`p) is NP-hard. Similarly,
they showed that (`q-`p) is strongly NP-hard [Chen et al., 2014, Theorem5] by a reduction from
the 3-partition problem which is known to be strongly NP-hard [Garey and Johnson, 1979]. The
invertible transform used in [Chen et al., 2014] is defined by:

x̃ = (2λ)1/px, H̃ = (2λ)−1/pH. (5.1)

Unfortunately, (5.1) is not well-defined when p = 0. Therefore, [Chen et al., 2014, Theorems 3
and 5] do not apply to (`0P ) when λ 6= 1/2.

Using a different approach, Huo and Chen’s paper [Huo and Chen, 2010] addresses the
penalized least-squares problem defined by:

min
x
‖y −Hx‖22 + λ

n∑
i=1

φ(|xi|), (PLS)

where φ is a penalty function mapping non-negative values to non-negative values. The authors
showed that (PLS) is NP-hard if the penalty function φ satisfies the following four conditions
[Huo and Chen, 2010, Theorem3.1]:

C1. φ(0) = 0 and ∀ 0 ≤ τ1 < τ2, φ(τ1) ≤ φ(τ2).

C2. There exists τ0 > 0 and a constant d > 0 such that

φ(τ) ≥ φ(τ0)− d(τ0 − τ)2

for every 0 ≤ τ < τ0.

C3. For the aforementioned τ0, if τ1, τ2 < τ0 then

φ(τ1) + φ(τ2) ≥ φ(τ1 + τ2).

C4. For every 0 ≤ τ < τ0,
φ(τ) + φ(τ0 − τ) > φ(τ0). (5.2)

The proof of [Huo and Chen, 2010, Theorem3.1] is by a reduction from the NP-complete problem
X3C to the decision version of (PLS); this leads to the NP-completeness of the decision version
of (PLS) and so the NP-hardness of (PLS) [Huo and Chen, 2010, Appendix 1]. The authors
claimed that the `0 penalty function satisfies conditions C1-C4 for τ0 = d = 1. Therefore, the
(PLS) problem with the `0 penalty function is NP-hard [Huo and Chen, 2010, Corollary 3.2].
Unfortunately, it turns out that the `0 penalty does not fulfill condition C4 as claimed. Indeed,
for τ = 0 the strict inequality (5.2) becomes φ(0) > 0. Besides, in the proof [Huo and Chen,
2010, Appendix 1], the inputs of the decision problem are not guaranteed to have rational values.
This might also violate the polynomiality of the reduction. Therefore, [Huo and Chen, 2010,
Theorem3.1] does not apply to (`0P ).

In [Huo and Chen, 2010], the authors also mention an alternate proof of NP-hardness of (`0P )
from Huo and Ni’s earlier paper [Huo and Ni, 2007] as a special case of their results. In this proof
[Huo and Ni, 2007, Appendix A.1], the relation between (`0P ) and (`0Cε) is established using
the principle of Lagrange multiplier. More precisely, the authors introduce an instance of (`0Cε)
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in which ε is defined from the minimizer of (`0P ) and argue that solving (`0P ) is equivalent
to solving the mentioned instance of (`0Cε), which is known to be NP-hard [Natarajan, 1995].
There are a number of issues in the NP-hardness proof in [Huo and Ni, 2007]. For instance, the
proposed transformation between (`0P ) and (`0Cε) is not a polynomial time reduction. Besides,
it is well known that (`0P ) and (`0Cε) are not equivalent [Nikolova, 2013].

5.4 New analysis on penalized `0 minimization

To prove that a problem T is NP-hard, one must establish a polynomial time reduction (briefly
called reduction hereafter) from some known NP-hard or NP-complete problem to T [Leeuwen,
1990]. Roughly speaking, the reduction from a problem T1 to another problem T2 implies that
T1 is not harder than T2. Therefore, if there exists a reduction from T1 to T2 and if T1 is
NP-hard, T2 must be NP-hard too. The NP-hardness proofs in [Natarajan, 1995] and [Davis
et al., 1997] use this principle. As an adaptation of Natarajan’s construction, we prove the
NP-hardness of (`0P ) using the same principle as follows.

Theorem 5.1. Problem (`0P ) is NP-hard.

The proof is by a reduction from the known NP-complete problem X3C to (`0P ). The proof
contains three steps: (1) Construct an instance of (`0P ) from a given instance of X3C; (2)
Construct a solution of (`0P ) from a solution of X3C; (3) Construct a solution of X3C from a
solution of (`0P ).

We only need to consider the case where 0 < λ < 3. For the case where λ ≥ 3, we can always
scale3 the problem to the case where λ < 3 by respectively replacing y, H and λ by 1√

t
y, 1√

t
H

and λ
t where t > 1 is a positive integer satisfying 3 ≤ λ < 3t.

Construction of an instance of (`0P ) from a given instance of X3C

Given an instance of X3C: S = {s1, s2, ..., sm} is a set of m elements. C is a collection of n
triplets cj , 1 ≤ j ≤ n. Without loss of generality we can assume that m is a multiple of 3 since
otherwise there is trivially no exact cover so no solution of X3C.

We now construct an instance of (`0P ). Let y = [1, 1, ..., 1]T ∈ Rm. LetH = (hij)1≤i≤m,1≤j≤n
where hij = 1 if si ∈ cj and hij = 0 otherwise. Let λ ∈ Q, 0 < λ < 3. Let

F (x) := ‖y −Hx‖22 + λ‖x‖0. (5.3)

Construction of a solution of (`0P ) from a solution of X3C

Assume that there is a subcollection of disjoint triplets Ĉ which exactly covers S. Let x∗ =

[x∗1, x
∗
2, ..., x

∗
n]T where x∗j = 1 if cj ∈ Ĉ and x∗j = 0 otherwise. We will prove that x∗ is a solution

of (`0P ).
Since Ĉ exactly covers S, |Ĉ| = m/3 and y = Hx∗. Thus, ‖x∗‖0 = m/3 and

F (x∗) = 0 + λ
m

3
= λ

m

3
.

Suppose that there exists x̄ such that

F (x̄) < F (x∗) = λ
m

3
. (5.4)

Let us show that this leads to a contradiction.
3This transformation was kindly suggested by Andreas M. Tillmann at the SampTA conference in July 2019.
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Since F (x̄) ≥ λ‖x̄‖0, from (5.4) we have ‖x̄‖0 < m/3. Therefore, we can rewrite ‖x̄‖0 =

m/3 − q for some q ∈ N, 1 ≤ q < m/3. Note that Hx̄ has m entries. Since the number of
non-zero entries of Hx̄ identifies with the number of elements si recovered by the subcollection
corresponding to x̄, this number cannot exceed 3‖x̄‖0 = m− 3q. As a result, the number of zero
entries of Hx̄ must be between 3q and m. Since y is the all-one vector, y −Hx̄ has at least 3q

entries valued 1, which implies
‖y −Hx̄‖22 ≥ 3q. (5.5)

Hence,

F (x̄) ≥ 3q + λ
(m

3
− q
)

= λ
m

3
+ (3− λ)q > λ

m

3
, (5.6)

which contradicts (5.4). Therefore, x∗ is a solution of (`0P ).

Construction of a solution of X3C from a solution of (`0P )

Assume that x∗ is a solution of (`0P ). We will consider four cases as follows.

Case ‖x∗‖0 > m/3 We deduce that X3C has no solution. Indeed, assume that Ĉ is an exact
cover for S. Define x = [x1, x2, ..., xn]T where xj = 1 if cj ∈ Ĉ and xi = 0 otherwise. Then we
have

F (x) = λ
m

3
< λ‖x∗‖0 ≤ F (x∗)

which contradicts the fact that x∗ is a solution of (`0P ).

Case ‖x∗‖0 < m/3 We deduce that X3C has no solution. Indeed, assume that Ĉ is an exact
cover for S. Let x = [x1, x2, ..., xn]T where xj = 1 if cj ∈ Ĉ and xi = 0 otherwise. Then
we have F (x) = λ

m

3
. Since ‖x∗‖0 < m/3, we can write ‖x∗‖0 = m/3 − q for some q ∈ N

and 1 ≤ q < m/3. Similar to (5.6), we have F (x∗) > λ
m

3
. Since F (x) = λ

m

3
, we obtain

F (x∗) > F (x) which contradicts the fact that x∗ is a solution of (`0P ).

Case where ‖x∗‖0 = m/3 and y 6= Hx∗ We deduce that X3C has no solution. Indeed,
assume that Ĉ is an exact cover for S. Define x = [x1, x2, ..., xn]T where xj = 1 if cj ∈ Ĉ and
xi = 0 otherwise. Then we have

F (x) = λ
m

3
< ‖y −Hx∗‖22 + λ‖x∗‖0 = F (x∗)

which contradicts the fact that x∗ is a solution of (`0P ).

Case where ‖x∗‖0 = m/3 and y = Hx∗ Let Ĉ be the collection of triplets cj such that the
jth entry of x∗ is non-zero. Obviously, Ĉ is an exact cover for S so a solution of X3C.

Thus Theorem 5.1 is proved.
It is notable that the proof above is also valid when F (x) := ‖y − Hx‖pp + λ‖x‖0 for any

p ≥ 1. Indeed, one only needs to check whether (5.5) still holds when the `2 norm is replaced
by the `p norm with p ≥ 1. This is the case since y − Hx̄ has at least 3q entries equal to 1.
Therefore, we have the following generalization of Theorem 5.1.

Theorem 5.2. Problem minx ‖y −Hx‖pp + λ‖x‖0 is NP-hard for p ≥ 1.
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5.5 Hardness of non-negative `0 minimization problems

The NP-hardness of non-negative `0 minimization problems is a consequence of NP-hard proofs
of (`0Cε) [Natarajan, 1995], (`0CK) [Davis et al., 1997] and (`0P ) (Theorem 5.1). Indeed, all
these proofs consist in a reduction from X3C and the solution that established equivalence is
binary. Therefore, the additional non-negativity constraints do not change the validity of these
proofs. In other words, one can repeat the same proofs as in [Natarajan, 1995,Davis et al., 1997]
and that of Theorem 5.1 for the corresponding non-negative `0 minimization problems (`0Cε+),
(`0CK+) and (`0P+). Another way to prove the NP-hardness of non-negative `0 minimization
problems is by a reduction from the corresponding `0 minimization problems which are known
to be NP-hard. In this reduction, the instance of non-negative problems is defined by

ỹ = y, H̃ = [H,−H], x̃ =

[
x+

x−

]
where x+ = max{x,0}, x− = max{−x,0}. Naturally, by this construction, one gets x̃ ≥ 0,
‖x̃‖0 = ‖x‖0 and H̃x̃ = Hx. The proofs (skipped for brevity) contain three steps similar to
that of Theorem 5.1.

Therefore, we can state the following theorem without proof.

Theorem 5.3. (`0Cε+), (`0CK+) and (`0P+) are NP-hard.

In the same spirit and using the same argument as at the end of Section 5.4 one can directly
extend Theorem 5.2 to the non-negative setting.

Theorem 5.4. Problem minx≥0 ‖y −Hx‖pp + λ‖x‖0 is NP-hard for p ≥ 1.

5.6 Conclusion

NP-hardness of penalized `0 minimization problems cannot be deduced from previous complexity
analyses, as stated in [Chen et al., 2014,Huo and Chen, 2010]. Here, we introduced a new proof of
NP-hardness of penalized `0 minimization problems by an adaptation of Natarajan’s construction
[Natarajan, 1995] . Besides, we showed that the `0 minimization problems with non-negative
constraints are also NP-hard. Therefore it is of interest to propose effective heuristic algorithms
such as NNOG algorithms (see Chapter 2).

This work can be extended in several directions. For instance, researchers interested in
what makes NP-hard problems even harder might be interested in the strong NP-hardness of
the aforementioned optimization problems. As it is widely believed that X3C is strongly NP-
complete, one might easily deduce the strong NP-hardness of (`0Cε), (`0CK) and other problems
which are reduced from X3C. However, to the best of our knowledge, X3C is only proved to be
NP-complete [Garey and Johnson, 1979, pp. 53, 221] and the strong NP-completeness has not
been rigorously shown yet. Therefore, we believe that the question of strong NP-hardness of
(non-negative) `0 minimization problems is not trivial and needs more work in future.

Besides, as (non-negative) `0 minimization problems are NP-hard, it would be interesting to
know if the associated decision problems are in NP (so being NP-complete). Let us consider the
decision problem associated with (`0Cε): given y ∈ Qm, H ∈ Qm×n, a positive rational number
ε and a positive integer K, does there exist x ∈ Rn such that ‖y −Hx‖2 ≤ ε and ‖x‖0 ≤ K?
This decision problem should be in NP since if one can guess a rational solution x, it can be
verified in polynomial time if ‖y −Hx‖2 ≤ ε and ‖x‖0 ≤ K. Similarly, we conjecture that the
decision version of other optimization problems mentioned in the chapter are in NP as well.

Another perspective is the approximability of aforementioned NP-hard problems. The hard-
ness of approximating (`0Cε) was discussed in [Amaldi and Kann, 1998,Tillmann, 2015]. It was
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shown that approximating (`0Cε) to within a factor of (1−α) ln(n), 0 < α < 1 is NP-hard [Till-
mann, 2015]. Examining whether similar results can be obtained on other NP-hard problems
presented in the chapter would require more involved theoretical analysis, which is left for future
work.
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Chapter 6

Conclusion and perspectives

Contents
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6.2.2 Theoretical guarantee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

The thesis addresses non-negative sparse approximation by greedy approach. The non-
negative extension of orthogonal greedy algorithms is investigated to target the `0 minimiza-
tion problem under non-negativity constraints. The thesis contributions cover both algorithmic
aspect and theoretical guarantee of non-negative orthogonal greedy (NNOG) algorithms.

6.1 Summary of the contributions

In Chapter 2 we presented a unified framework of NNOG algorithms. We introduced the concepts
of descending atom and descent selection rule and integrated the support compression step
into the structure of standard NNOG algorithms. The resulted NNOG algorithms have simple
structure but more advantageous structural properties in comparison with existing approximate
schemes. More importantly, the proposed NNOG algorithms can naturally lend themselves to a
recursive (so fast) implementation that existing approximate schemes can hardly do without some
loss in the algorithmic behavior. The proposed recursive implementation uses active-set method
with warm start initialization to solve the non-negative least-square (NNLS) subproblems. We
also elaborated on this implementation and suggested further accelerations using several pruning
strategies and vectorized computation.

The proposed implementation is validated through a rich set of simulations in Chapter 3. The
proposed NNOG implementations are compared with the corresponding unconstrained versions
and with existing approximate schemes, in terms of computing time and reconstruction accuracy.
According to our comparison, the proposed implementation significantly reduces the cost of
NNOG algorithms and appears to be more advantageous than existing approximate schemes.
We also compared NNOG algorithms with other sparse solvers in their non-negative setting such
as NNCoSaMP, NNSP, NNHTP and NLARS. It turns out that NNOG algorithms are quite
competitive with other non-negative sparse solver in terms of reconstruction accuracy. However,
NNOG algorithms have the advantage of a fast implementation that the competitors hardly
apply.

While Chapters 2-3 are dedicated to algorithmic development of NNOG algorithms, Chapter
4 discusses the theoretical guarantee issue. We presented for the first time a unified K-step exact
support recovery analysis of NNOG algorithms when the mutual coherence of the dictionary is
lower than 1/(2K − 1). Note that the mutual coherence value considered in exact recovery
analysis is different from that in the simulations in Chapter 3, so the conclusion of Chapter 4
differs from the empirical observation in Chapter 3. More precisely, exact recovery analysis is
derived from easy problem with low mutual coherence so that all NNOG algorithms perform
the same. On the contrary, the mutual coherence value considered in simulations is close to 1.
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This yields a highly ill-posed problem for which the performances of NNOG algorithms differ. It
is usually difficult to carry out exact recovery analyses when the mutual coherence is high but,
even when the mutual coherence is low, the exact recovery analysis in the non-negative setting
was not done before. Therefore, our analysis is strongly novel and it can be investigated in the
context of higher mutual coherence as a perspective.

Finally we showed in Chapter 5 that non-negative `0 minimization problem is actually NP-
hard. Therefore, it is of interest to develop efficient heuristic algorithms. The study of NNOG
algorithms and their fast implementation in Chapters 2-4 is hence meaningful.

6.2 Perspectives

6.2.1 Algorithmic aspect

The proposed framework of NNOG algorithms can be extended in several directions. A straight-
forward generalization can be made to deal with nonnegativity-constrained simultaneous sparse
decomposition, which is useful in several applications such as hyperspectral imaging [Wang et al.,
2018], dynamic PET [Lin et al., 2014], and diffusion MRI [Kim and Haldar, 2016]. On the other
hand, forward-backward greedy algorithms such as BOMP [Herzet and Drémeau, 2010] and SBR
[Soussen et al., 2011] could also be extended to the non-negative setting using similar principles
and using a recursive implementation. Besides, the combination between NNOG algorithms
and `1 solvers might generate a hybrid algorithm with higher performance than both greedy
algorithms and `1 solvers as suggested in [Wen et al., 2010].

6.2.2 Theoretical guarantee

Our contribution related to K-step exact support recovery analysis of NNOG algorithms when
the mutual coherence of the dictionary is lower than 1/(2K−1) can have different extensions. For
instance, the mutual coherence bound 1/(2K−1) might be weakened by taking into account prior
information on the sought signal such as the decay of the magnitudes of the nonzero coefficients
[Herzet et al., 2016]. With the same idea of deriving exact recovery analysis under weaker
conditions, Tropp’s exact recovery condition (ERC) [Tropp, 2004] is worth being considered,
especially when this condition has a strong connection with mutual coherence value. Finally
it is also interesting to check if the usual analysis of OMP and OLS based on RIP condition
[Davenport and Wakin, 2010] can be extended to the non-negative setting in a similar way.
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Résumé

De nombreux domaines applicatifs conduisent à résoudre des problèmes inverses où le sig-
nal ou l’image à reconstruire est à la fois parcimonieux et positif. Si la structure de certains
algorithmes de reconstruction parcimonieuse s’adapte directement pour traiter les contraintes
de positivité, il n’en va pas de même des algorithmes gloutons orthogonaux comme OMP et
OLS. Leur extension positive pose des problèmes d’implémentation car les sous-problèmes de
moindres carrés positifs à résoudre ne possèdent pas de solution explicite. Dans la littérature,
les algorithmes gloutons positifs (NNOG, pour non-negative orthogonal greedy algorithms) sont
souvent considérés comme lents, et les implémentations récemment proposées exploitent des
schémas récursifs approchés pour compenser cette lenteur.

Dans ce manuscrit, les algorithmes NNOG sont vus comme des heuristiques pour résoudre
le problème de minimisation `0 sous contrainte de positivité. La première contribution est de
montrer que ce problème est NP-difficile. Deuxièmement, nous dressons un panorama unifié
des algorithmes NNOG et proposons une implémentation exacte et rapide basée sur la méthode
des contraintes actives avec démarrage à chaud pour résoudre les sous-problèmes de moindres
carrés positifs. Cette implémentation réduit considérablement le coût des algorithmes NNOG et
s’avère avantageuse par rapport aux schémas approximatifs existants. La troisième contribution
consiste en une analyse de reconstruction exacte en K étapes du support d’une représentation
K-parcimonieuse par les algorithmes NNOG lorsque la cohérence mutuelle du dictionnaire est
inférieure à 1/(2K − 1). C’est la première analyse de ce type.

Mots clefs : algorithmes gloutons orthogonaux, reconstruction parcimonieux, contrainte de
positivité, moindres carrés positif, l’algorithme des contraintes actives, reconstruction de sup-
port exact, cohérence mutuelle, NP-difficile, problème minimisé `0.

Abstract

Non-negative sparse approximation arises in many applications fields such as biomedical
engineering, fluid mechanics, astrophysics, and remote sensing. Some classical sparse algorithms
can be straightforwardly adapted to deal with non-negativity constraints. On the contrary,
the non-negative extension of orthogonal greedy algorithms is a challenging issue since the
unconstrained least square subproblems are replaced by non-negative least squares subproblems
which do not have closed-form solutions. In the literature, non-negative orthogonal greedy
(NNOG) algorithms are often considered to be slow. Moreover, some recent works exploit
approximate schemes to derive efficient recursive implementations.

In this thesis, NNOG algorithms are introduced as heuristic solvers dedicated to `0 min-
imization under non-negativity constraints. It is first shown that the latter `0 minimization
problem is NP-hard. The second contribution is to propose a unified framework on NNOG
algorithms together with an exact and fast implementation, where the non-negative least-square
subproblems are solved using the active-set algorithm with warm start initialization. The pro-
posed implementation significantly reduces the cost of NNOG algorithms and appears to be
more advantageous than existing approximate schemes. The third contribution consists of a
unified K-step exact support recovery analysis of NNOG algorithms when the mutual coherence
of the dictionary is lower than 1/(2K − 1). This is the first analysis of this kind.

Keywords : orthogonal greedy algorithms, sparse reconstruction, non-negativity, non-
negative least squares, active-set algorithms, exact recovery condition, mutual coherence, NP-
hardness, `0 minimization.
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